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Abstract—Infectious diseases are those that can be transmitted
from person to person upon some form of contact. In this regard,
airborne infectious diseases can wreak quite a havoc as they
have a high degree of infectiousness and can easily infect a
healthy person who comes in proximity of an infected person
for a specific interval of time. The situation can take the form
of an epidemic in no time if the outbreak of a disease is not
checked at an earlier stage. In this paper, we simulate the spread
of airborne infectious disease in the city population. Disease
transmission from an infected person to a healthy person is
modeled based on proximity and contact time. We analyze how
population density affects the spread of disease. Moreover, we
also analyze how practices like wearing a mask and hotspot
lockdowns might slow down the spread of infection. Finally, we
analyze how an epidemic mitigates when a certain fraction of
the population becomes immune to the disease. Observations
and inferences drawn from the simulation results can help make
policies to tackle the spread of airborne infectious disease in a
city community.

Keywords: Epidemic, infectious diseases, hotspot lockdown,
wearing masks.

I. INTRODUCTION

Urban areas are characterized by high population den-
sity. When combined with extensive population mobility,
the spread of airborne disease becomes rapid. The Covid-
19 epidemic is a real example of such a disease spread.
It is an airborne contagious disease caused by the novel
coronavirus(SARS COV-2). The disease has affected about
96 million people and is responsible for the death of about 2
million people worldwide as of January 2021 [1].

Several measures are taken care of to slow down the spread
of this disease. Pal et al. [2] in their research propose a
three phased system in which thermal imaging is utilized
to identify and quarrantine individuals who are suspected to
have infection based on their elevated body temperatures. In
our paper, we consider two preventive measures employed to
mitigate the spread of disease. They are locking down the
hotspot areas and wearing a mask. Hotspot area refers to the
regions with a high number of infected people. Masks act
as a barrier between the susceptible person and the infection
source and help prevent infection spread.

A healthy person could catch the infection if he inhaled
a certain quantity of disease-causing pathogens from the
infected person. The quantity of pathogens inhaled by the

person depends upon the proximity and time duration of
contact with the infection source [3]. Therefore, we analyze
disease transmission through a probabilistic distribution model
by using proximity between persons and the time of contact
as its parameters. Wearing a mask can significantly reduce the
number of pathogens exhaled or inhaled. We have also taken
this parameter into account in our simulation model.

The rest of the paper is organized as follows: Section II
summarizes some of the previous related works in this area.
Section III discusses the epidemic model used in the simula-
tion. Section IV discusses the actual design specifications of
the simulation. Section V discusses the results obtained and
their analysis followed by the conclusion in section VI.

II. RELATED WORKS

Mittal et al. [3] presents a mathematical framework to
estimate the risk of airborne transmission of COVID-19.
EpiSimS [4] presents a discrete-event-driven stochastic
model for the spread of an infectious agent in an urban
population. However, EpiSimS does not consider the traveling
pattern of people and their encounters with one another.
These factors directly affect how an epidemic develops in
a population. We have addressed this issue in our research.
The epidemic model formulated by us in this paper involves
a movement model wherein the people in the city walk along
predefined paths to reach their destination. The speed of
movement has also been kept within a predetermined range
mimicking the actual traveling characteristics of people.
Upon reaching the destination, people wait at the destination
for a random interval of time chosen from a predetermined
range. Moreover, people plan their journey such that their
journey path does not pass through an infection hotspot.
Mei et al. [5] in their research have also implemented
such a model using the Geographic Information System
(GIS) to model a city’s infrastructure prone to an epidemic.
However, they have not considered the impact of various
preventive measures employed for an infection outbreak. We
address this drawback in our paper. We include two epidemic
mitigation methods in the simulation, locking-down hotspots
and wearing masks to prevent disease transfer. We analyze
how these methods are effective in slowing down the spread
of epidemic disease in the population.
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The specific contributions of this paper are summarised as
follows:

1) We simulate the spread of an infectious disease in a city
environment based on a probabilistic disease transfer
model from person to person.

2) We analyze how the infection spreads in the population
and how the population experiences multiple waves of
infection events.

3) We analyze how the spread of epidemic varies with
population density.

4) We incorporate two epidemic mitigation methods in our
simulation, wearing masks by people and locking-down
hotspots. We analyze how effective these two methods
are in mitigating an epidemic.

III. EPIDEMIC MODEL

A. Infection transmission model

The airborne transmission of respiratory infections involves
the following sequence of events:

1) Viruses containing droplets are generated, released, and
aerosolized through the nose and mouth of the infected
person.

2) Aerosolized droplets are transported by air currents to
a susceptible person.

3) The droplets are inhaled and deposited in the respiratory
mucosa of the susceptible person, causing infection.

The infection may get transmitted from an infected person
i to a healthy person j upon an event of contact with the
probability Pij . The probability that a susceptible person
catches an infection while in a particular location depends
on: the number of infected people occupying the area, the
time duration of visit, activity performed at the location, and
the infectiousness of the infected persons (Eubank et al. [6]).
According to Valle et al. [7], σ is the average frequency
of disease transmission events per hour of contact between
fully infectious and fully susceptible people. For events that
occur randomly in time, the number of occurrences of disease
transmission in a period of time t obeys a Poisson probability
law with parameter σt [7], as proposed by Valle et al. [7]
in their research. Given a random variable X denoting the
occurrences of disease transmission in the time interval t,

P (X = k) =
e−σt(σt)k

k!
, k = 0, 1, 2, . . . , N (1)

As illustrated in Figure 1, a susceptible person is within
the minimum threshold distance from n infected persons
for a time period t. The random variable Xi represents the
infection transmission event from the infected person i to
the susceptible person. The probability that there is at least
one occurrence of disease transmission event from an infected
person to susceptible person can be derived as follows:

P

(
n∑
i=1

Xi = 1

)
= 1−

n∏
i=1

P (Xi = 0)

∵ P (Xi = 0) = e−σt

P

(
n∑
i=1

Xi = 1

)
= 1− e−nσt (2)

We define ∆ as the minimum distance of approach in which
the disease can be transmitted from an infected person to a
susceptible person. If n infected individuals and a susceptible
individual stay within a distance threshold ∆ (varies with the
disease) for a time interval T , the susceptible individual can
catch an infection with a probability of P = 1− e−nσT . The
proximity of contact, δ is defined as the distance of separation
between two individuals. In case δ ≤ ∆, the duration of the
contact is recorded and the transmission of infection occurs
according to Equation 2. In case δ ≥ ∆, the probability of
infection transmission is taken to be zero. σ can be estimated
based on the history of the disease.

Fig. 1: Disease transmission

B. Effect of wearing a face mask

A face mask prevents the exhalation and inhalation of
infected droplets in the form of an aerosol depending upon the
quality of the product. A well-fitting N-95 stops about 95%
of the particles passing through it. Wearing a proper mask by
either the infected person or the healthy person reduces the
transmission risk by a factor of about 20 [3]. Our simulation
models the city population such that the fraction Fmask of
the total individuals are wearing a mask. We define a risk
mitigation factor Ri associated with each person i. Ri is
modeled as follows:

Ri ∼ N (µmit, σmit), i ∈M
Ri = 1, i /∈M,

(3)

where µmit and σmit represent the mean and variance value
for the factor by which infection transmission probability is
mitigated upon wearing a mask. M is the set of individuals
wearing a mask. When an infected person i and a healthy
person j come into contact within the minimum threshold
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distance ∆ (defined in section III-A), the revised effective
probability of disease transmission is given by the following
expression:

P =
1− e−σt

RiRj
(4)

Various possible scenarios are shown in Figure 2. Extending
the case where n infected individuals i1, i2, . . . , in come
into contact with a susceptible person j within the minimum
threshold distance, the effective probability of disease trans-
mission will be:

P =
1− e−nσt∑n
y=1RiyRj

(5)

Where Ri is the infection transmission risk mitigation factor
if person i is wearing a mask, as defined in equation 3.

Fig. 2: Effect of wearing a face mask on infection transmission
probability

C. Disease Progression

According to Mei et al. [8], once a person is infected, the
disease spreads through the following phases:

1) Incubation period: During this period, the person is
infected but the symptoms of the disease have not
surfaced and hence the person feels no need to take
recursive measures.

2) Symptomatic period: The symptoms of the disease
surface and the person seeks medical health and other
safety measures like self-isolation to prevent the further
spread of disease.

3) Recovery: In case a person recovers from the disease,
the person remains immune from it for some time
interval due to the presence of antibodies.

To simulate the phenomenon, we have taken 3 parameters
in our model, τinc, τsym, and τimm. These parameters come
from Normal prior distributions.

τinc ∼ N (µinc, σinc)

τsym ∼ N (µsym, σsym)

τimm ∼ N (µimm, σimm)

(6)

The parameters τincubation, τsymptomatic, and τimmunity
vary from disease to disease. The progression of a person
from various disease stages are illustrated in Figure 3.

Fig. 3: Stages of disease progression

D. Hotspot identification

The simulated city area is bounded in a P × Q grid. The
area is further divided into sub-regions, the dimension of each
region being S × T . Let N and NG denote the number of
detected disease transmission cases in the city and in the grid-
square G. Then the grid-square G is declared a hotspot if the
following conditions are satisfied:

NG
N
≥ φ, (7)

where φ is the minimum threshold fraction. Once the grid-
square G is declared a hotspot, individuals are not allowed to
pass through this sub-region during their commute (hotspot
lockdown phase).

E. Movement model

The individuals follow the following movement model in
our simulation design:

1) An individual first selects a random destination.
2) The individual then finds the shortest valid path to the

destination node taking care that the path does not pass
through any hotspot.

3) The individual then follows the path with speeds that
vary randomly between thresholds νhigh and νlow.

4) Upon reaching the destination, the individual waits for
a random interval of time between thresholds Tmin
and Tmax. The map is composed of multiple map
nodes. Each map node has its specific location and
is connected to neighbor nodes via predefined paths.
The map nodes which are lying within containment
zones are temporarily removed from the map. The agent
then selects a random map node as its destination and
finds the shortest path using Djikstra’s shortest path
algorithm to reach the destination. Algorithm 1 gives
the pseudocode for the random destination selection and
path-finding algorithm.

IV. SIMULATION DESIGN

For evaluation of the proposed model, ONE simulator is
used. The movement of people is simulated in the form of
node movement following the RandomMapBased move-
ment model with restrictions in place so that the nodes do
not enter the hotspots. Infection transmission from person
to person is simulated through message passing between the
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Algorithm 1 Find Movement Path
Input: Map Node list N , hotspot list H, starting point s
Output: Shortest path P to a random destination

1: procedure FIND PATH(N ,H,s)
2: for each n ∈ N do
3: for each h ∈ H do
4: l← n · location
5: if l lies within h · area then N · remove(n)
6: end if
7: end for
8: end for
9: d← RandomNode(N )

10: P ← Dijkstras(s, d,N )
11: return P
12: end procedure

TABLE I: Simulation Parameters

Parameter Value
Number of nodes [400-850]

Duration 24 hours
Transmission range 6 feet

nodes which come in contact according to Equation 2. Values
of various simulation parameters are given in Table I.

The experiment consists of two parts. In the first part, we
vary the population density of the city. One of the individuals
is randomly infected with the disease and the spread of
infection is observed. We repeat the process for different
population densities and analyze the outcomes. The second
part of the experiment consists of simulating 500 individuals
under 4 scenarios as described below:

1) Scenario 1: No individual is wearing a mask and there
is no provision for hotspots to be closed.

2) Scenario 2: Half of the individuals are wearing masks.
There is no provision for hotspots to be closed.

3) Scenario 3: No individual is wearing a mask. Provision
of hotspot identification is in place.

4) Scenario 4: Half of the individuals are wearing masks.
Provision of hotspot closing is in place.

The values for various infection model parameters are given
in Table II.

In each scenario, one of the 500 individuals was randomly
infected with the disease and the outcomes were recorded.

V. RESULTS AND ANALYSIS

A. Increase in total number of cases and variation in active
cases

The graph for the total number of cases as shown in Figure
4 features multiple ripples. Each ripple consists of an initial
exponential growth period followed by a slowdown period
where the rate of epidemic spread reduces. The reason for
the exponential growth is the increase in the number of
infection sources while the slowdown period is due to the
decrease in the number of susceptible people owing to many
people already being infected or going through the immunity

TABLE II: Values of constant for epidemic model

Model Parameters Values
Disease
transmission

σ 5

∆ 6 ft.

Face Mask
model

µmit, σmit 20, 1

Disease
progression

µinc, σinc 30 min., 6 min.

µsym, σsym 110 min., 22 min.
µimm, σimm 7 min., 1.5 min.

Movement
νlow , νhigh 8 Km/hr, 50 Km/hr

Tmin, TMax 5 min., 1 hr.

Fig. 4: Total cases versus time for varying population densities

phase. These people act as a barrier to infection spread in
the population. After these people again become infection
susceptible, the graph features another ripple. The epidemic
spread rate at the beginning of the simulation is quite slow
since the number of infection sources is very less.

The graph for the number of active cases as shown in Figure
5 features a very low rate of epidemic spread at the beginning
followed by exponential growth. The reason for this change

Fig. 5: Active cases versus time for varying population densities

is the increase in the number of infection sources. The graph
features maximas and minimas similar to a sine curve. The
maximas decrease in magnitude over time. The inferences that
can be drawn from these observations are as follows:

1) The rate of infection spread is low in the beginning
when the number of infection sources is less.

2) The population faces multiple infection waves over time.
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3) The rate of infection transmission increases when the
proportion of susceptible persons in the population
increases.

4) The rate of infection transmission decreases when the
proportion of already infected people and people going
through the immunity phase in the population increases.

5) The subsequent waves of infections become less and
less severe, shown by the decreasing magnitudes of
maximas.

B. Variation in infection spread with change in population
density

To study the impact of the increase in population density,
we performed the simulation with varying amounts of people
in the city environment. As expected, the total number of cases
and the average rate of infection spread increased with an
increase in population density of the environment. The number
of active cases at any time for different city populations is
shown in Figure 5. The total number of infection transmissions
at the end of simulation under different population densities
is shown through the bar graph in Figure 6. The Pearson

Fig. 6: Total cases at the end of simulation for different population
densities

correlation coefficient for the total number of cases versus
city population is 0.98. This shows that there is a strong
direct relationship between the total number of cases and the
population density.

C. Comparison of different epidemic mitigation methods

As previously stated in section VIII, the impact of local
lockdowns and wearing a mask in the epidemic is studied
using four scenarios listed below:

1) Scenario 1: No mitigation method employed.
2) Scenario 2: Half the city population is wearing a mask.
3) Scenario 3: Local lockdowns are imposed in hotspot

areas.
4) Scenario 4: Half the city population is wearing a mask

and the provision of local lockdowns is also imposed.
The total number of cases and the active number of cases

are depicted in graphs in Figure 7 and Figure 8 respectively.
Wearing a mask proves out to be the most effective provision
to mitigate the disease spread. The imposition of local lock-
downs mitigates the spread of infection to some extent but the

impact is not much pronounced. The mitigation of the spread
of an epidemic in various scenarios can be gauged through
the bar graph as shown in Figure 9. To find the effectiveness
with which the infection spread is mitigated in a scenario, we
use the following expression:

Effectivenessi =
N1

Ni
(8)

Where N1 and Ni denote the total number of cases at the
end of simulation in Scenario 1 and Scenario i respectively.
Values of the total number of cases and the effectiveness of
methods in alleviating the disease spread are presented in
Table III .

Fig. 7: Total cases versus time for different epidemic mitigation
methods

Fig. 8: Active cases versus time for different epidemic mitigation
methods

TABLE III: Impact of epidemic mitigation methods in different
scenarios

S. No Mitigation methods Total cases Effectiveness
1 None 1394 1.00
2 Wearing mask 922 1.51
3 Hotspot lockdown 1309 1.07
4 Wearing mask, hotspot lockdown 815 1.71

D. More contribution of unmasked people in the spread of an
epidemic as compared to masked people

We distribute the infection transmission cases under the
following 4 categories:
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Fig. 9: Total cases at the end of simulation for different epidemic
mitigation methods

1) Category 1: Infection transmission from a masked per-
son to a masked person.

2) Category 2: Infection transmission from a masked per-
son to an unmasked person.

3) Category 3: Infection transmission from an unmasked
person to a masked person.

4) Category 4: Infection transmission from an unmasked
person to an unmasked person.

The number of infection cases under each category is
depicted in Table IV and the bar graph in Figure 10. Although
the probability of infection spreading from a masked person
to an unmasked person and vice versa follows identical
probability distribution, the number of cases under category 3
is almost three times the number of cases in category 2.

Let us define the sets W,M, I,U as follows:
1) Set W is the set of people in the city population not

wearing a mask.
2) Set M is the set of people in the city population wearing

a mask.
3) I is the set of infected people in the city population.
4) U is the set of uninfected people in the city population.
Upon analysis, it is found that the number of persons

in the set W ∩ I grows more rapidly than that in the set
M ∩ I. This is because the infection susceptibility of an
unmasked person is more in comparison to a masked person.
Non-mask-wearing people are majorly infected by other non-
mask-wearing infected people as compared to mask-wearing
infected people since the former outnumbers the latter.

Fig. 10: Total cases at the end of simulation for different mask
categories

TABLE IV: Number of infection cases under various categories

Category Number of cases
Masked to masked 64

Masked to unmasked 106
Unmasked to masked 302

Unmasked to Unmasked 450

VI. CONCLUSION

In this paper, we studied how population density and
various preventive measures minimize the spread of an epi-
demic in a population. There was a strong positive correlation
present between the population density and the total number
of infected cases. We compared the total number of infection
cases with and without any epidemic mitigation methods in
some places. Wearing masks came out to be the most effective
epidemic mitigation measure. Unmasked people contributed
excessively to the spread of an epidemic, not only because
of more probability to transmit the disease to an uninfected
person but also due to the high probability of getting in-
fected themselves and becoming an infection source. Placing
infection hotspots under lockdown also contributed to the
mitigation of the epidemic to some extent. Combining both
of these methods reduced the total number of infection cases
by a factor of 1.7.

Despite our best efforts, the simulation has its limitations.
We have not addressed the effect that quarantining the infected
persons would have on the spread of infection in the city
population. Further, we have also not captured how certain
locations in the city (like a mall or cinema hall) tend to have
a higher footfall of people throughout the day. We would like
to address these limitations in our future works.
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