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Abstract—The burgeoning demands of the Internet of Things
(IoT) applications such as video/audio streaming in surveil-
lance, disaster recovery, multimedia, and healthcare paves
the need to provide better Quality of Service (QoS) delivery.
The growth in the amount of data generated by multimedia
applications increases congestion in the network. Software-
Defined Networking (SDN) is an emerging approach that
centrally controls the network and solves the congestion prob-
lem in the network. SDN has many advantages that help
in network management, traffic shaping, and routing in the
IoT network to manage the data generated from a diverse
range of applications. In this paper, we propose a congestion
technique using Hierarchical Token Bucket (HTB) to manage
the bandwidth in the Software-Defined IoT (SDIoT) network.
Further, we propose a routing scheme to compute optimal
routing shortest paths using Dijkstra’s algorithm by selecting
the min-cost path based on the priorities of traffic flows.
The results illustrate that the proposed approach achieves a
reduction in end-to-end delay by 38%, 44% and higher average
throughput by 29%, 43% in comparison with the benchmark
schemes – SDN with HTB and the Delay Minimization method,
respectively.

Keywords-Congestion, Internet of Things, Quality of Service,
Routing, Software Defined Networking

I. INTRODUCTION

The evolution of networks leads to the discovery of the

Internet of Things (IoT) which tends to interconnect people,

devices, and different objects together [1]. The heteroge-

neous network interconnects the smart objects such as lap-

tops, sensors, home appliances, cars, radio-frequency identi-

fication tags, smartphones, and access points [2]. The present

Internet architecture due to its distributed nature contributes

towards the interconnection of these devices/objects to pro-

vide access to a wide range of communication technologies

[3]. The number of devices using the Internet is rising at

a startling rate which creates a demand for resources such

as bandwidth on the heterogeneous constrained backbone

network [4].

A. Motivation

The different IoT applications in various sectors such

as multimedia, entertainment, healthcare, agriculture, and

autonomous vehicles demand better service delivery to guar-

antee Quality of Service (QoS) to end-users [1]. The current

Internet architecture provides best-effort service delivery [4],

[5]. Some of the multimedia-based applications are delay

sensitive while others are packet loss sensitive [6]. Due

to the heterogeneity in the IoT network, it fails to satisfy

the QoS guarantee to the end-user applications. Software-

Defined Networking (SDN) is an emerging technology that

provides flexibility into the network due to its programmable

nature [7]. Due to the abstraction in SDN, it allows the

dynamic configuration of the application-level policies and

addresses the limitations of current Internet architecture [8].

Therefore, SDN in IoT networks (SDIoT) provides an ability

to adhere to problems of various high-level applications and

imparts to enhance QoS to the end-users.

B. Contribution

In this paper, we propose an SDN-based approach that

considers the QoS requirements of traffic flows in the IoT

network. In particular, our proposed approach varies from

the state-of-the-art in two ways. Firstly, we introduce a con-

gestion technique using Hierarchical Token Bucket (HTB)

traffic shaping algorithm in an SDIoT network to manage

the bandwidth in the network. The proposed architecture

utilizes the programming nature of SDN and satisfies the

end-users QoS requirements by considering link congestion

in the network. Secondly, we propose a routing scheme to

compute min-cost routing paths for the traffic flows in the

network.

The contribution of the work is stated as follows:

1) We propose an approach that uses the HTB queuing

discipline to manage the bandwidth in the SDIoT

network.

2) We propose a routing scheme to compute optimal

routing paths considering congestion in the network

while taking into account QoS requirements of TCP

and UDP traffic flows.

3) The proposed routing scheme computes the shortest

routing path using the Dijkstra algorithm and selects
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the min-cost path based on the priority of traffic flows

in the network.

4) The proposed architecture has been evaluated using

the Mininet emulator and POX controller used in

SDN. The proposed approach achieves a reduction

in end-to-end delay by 38%, 44% and higher aver-

age throughput by 29%, 43% in comparison to the

benchmark schemes – SDN with HTB and the Delay

Minimization method, respectively.

C. Organization

We organize the paper according to different sections.

Section II discusses the state-of-the-art. Section III describes

the system architecture of the network. Section IV illus-

trates the proposed approach and routing algorithm used in

the SDIoT network. Section V describes the performance

metrics used in the experiment and discusses the obtained

results. Finally, Section VI consists of the conclusion and

future work.

II. RELATED WORK

In this section, we address the state-of-the-art that has

been considered by various researchers to improve the QoS

in SDN-based IoT networks.

Sun et al. [9] studied the problem of intelligent routing

of traffic flows generated by IoT applications. The different

types of traffic flows in IoT applications have different

QoS requirements. Thus, to guarantee QoS requirements of

traffic flows, the authors introduced a data flow classification

algorithm to classify the data flow and route them on suitable

paths. Llopis et al. [10] introduced a delay minimization

method for routing traffic flows in SDN. The authors have

considered only metric delay but not considered bandwidth

utilization while routing traffic flows in the network. Deng et
al. [8] proposed an application-aware QoS routing algorithm

to provide routing paths to traffic in an SDN-based IoT

network. The authors failed to consider the priority-based

transmission from end-user applications.

Ren et al. [11] utilize the concept of Hierarchical To-

ken Bucket (HTB) to manage the bandwidth by using the

borrowing technique. The best-effort flows are routed on the

shortest path using the Dijkstra algorithm. The authors failed

to evaluate the performance of their proposed approach on

QoS metrics such as delay and throughput. Further, the

authors in [12] proposed an HTB queuing discipline to guar-

antee QoS for DiffServ provisioning. The results had been

validated to dynamically optimize the bandwidth sharing

by redistributing the unused bandwidth to the backlogged

flows. But they have not taken into account the priority-

based multimedia transmission to enhance QoS.

The state-of-the-art reveals that a research lacuna exists

to consider the traffic flows based on the priority of real-

time applications. The existing literature work approaches

considered constraints to manage the bandwidth in the

Figure 1: Proposed System Architecture using Hierarchical

Token Bucket algorithm

network for routing of traffic flows. But the authors have not

taken into account the use of HTB to manage bandwidth by

considering the priority of real-time application traffic flows

in SDIoT networks.

III. SYSTEM MODEL

This section presents the proposed system architecture of

the SDIoT network as shown in Figure 1.

A. Architecture

In the proposed architecture, the host sends the traffic

flows to the switch linked with the host in the network.

The switches are connected to the SDN controller by the

OpenFlow API as shown in Figure 1. The application

layer consists of a QoS module deployed on the top of

the controller. The QoS module comprises two main sub-

modules – the first is the computation of the shortest path

using the Dijkstra algorithm and the second is queuing

discipline in which HTB is used to regulate the bandwidth

in the SDIoT network. On the arrival of a new packet from

a host, the switch checks whether its flow entry exits in the

flow table. If no such entries are there in the flow table,

it then sends the Packet-in to the controller. The controller

takes necessary actions such as add, drop, or delete the flow

entries in the flow table for the incoming Packet-in message.

The controller decides with the help of a QoS module that

is deployed in the form of an application on top of the POX

controller.

Let us consider the SDN network as a graph G = (V , L).

Here, V represents the set of OpenFlow switches and

L = {(s, t)|s, t ⊂ V , s �= t}, (1)

denotes the set of links between the switches that is the

link from switch i to switch j as shown in Equation 1. Here,

s and t represent the source and destination switch.

B. Impact of QoS on IoT applications

The demand for QoS in the IoT applications is present

at all the layers – the physical layer, link layer, network

layer, and transport layer. The IoT applications can use
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either User Datagram Protocol (UDP) or Transport Control

Protocol (TCP) at the transport layer. TCP is a connection-

oriented protocol due to which it extrapolates the latency as

each session starts with the connection setup phase. Broadly,

UDP is most applicable for the applications that are delay-

sensitive because it is connection-less oriented. Presently, the

Internet traffic flows drifts by TCP communication protocols

for applications, such as video streaming which severely

affect the QoS. Therefore, it becomes necessary to build

a competent end-to-end path for the efficient routing of the

distinct traffic flows in the network.
The different types of flows in the network can be

represented mathematically as:

F = {fz | z ε N}, fz := (sz, tz, ρz, βz), (2)

where, sz , tz , ρz , βz represents the source, destination, type

of the flow (UDP or TCP), bandwidth demand of traffic flow.

Figure 2: Illustration of Path 1 and Path 2 for routing the

traffic flows from source to destination

Each link is associated with a bandwidth capacity c(i, j)
and delay d(i, j) between nodes i and j. In Figure 2, s is

the source switch, t is the destination switch and p, q, and r
are the intermediate nodes/switches. Let P(s, t) represent the

set of paths in the network topology. The set of the paths is

defined as:

P(s, t) = {pi | pi is a path from (s, t)} , i = {1, 2, ...n} .
(3)

In Figure 2, there are two paths represented as Path 1

and Path 2. The shortest path is calculated according to its

bandwidth requirements for a UDP or TCP traffic flow in

an IoT application.

IV. PROPOSED ROUTING APPROACH

In this section, we compute the routing paths while

considering the QoS requirements of traffic flows. The

objective is to find the min-cost routing path that fulfills the

essential bandwidth demand of the flows while considering

the priority of traffic flows.

A. QoS-aware routing in Software-defined IoT network

Figure 3: Proposed architecture represents the different mod-

ules in the controller layer

Figure 3 represents the proposed controller architecture.

The D-ITG traffic generator [13] generates the UDP/TCP

traffic flows. The Packet-in module of the controller handles

the Packet-in message generated by the switches. However,

the classification module classifies the packet based on the

type of packet generated as Address Resolution Protocol

(ARP), Link Layer Discovery Protocol (LLDP), Internet

Protocol (IP). The classification module also assigns the pri-

ority level to the hosts. The switches forward the Packet-in

messages that arrive at them to the controller. The proposed

architecture uses the POX controller, and the OpenFlow 1.0

protocol provides communication between the switches and

the controller. As the mesh topology starts running, the link
discovery module discovers the links that generate between

the hosts and the switches. The topology manager module
represents an overall scenario of the network to the QoS

module. The QoS module calculates the shortest path using

the Dijkstra algorithm and uses the HTB queue discipline

algorithm. Keeping this concept in mind, Algorithm 1 re-

volves around the idea of communication between the host

and destination switch and finds the shortest path between

the source and the destination node using the cost function

stated in Equation 4. It also uses HTB to assign queue ID

(as qid) to the links between host and switch for managing

the link bandwidth in Algorithm 1.

Further, the classification module checks the bandwidth

demand of the incoming flows and classifies the packets

based on their priority. The QoS module computes the

cost of all the paths using Equation 4 where, c(i, j) and

d(i, j) represents the bandwidth and delay of a link (i, j)
respectively, whereas, cutili,j denotes the link capacity utiliza-

tion and dmax
f is the maximum delay a flow can tolerate.

The parameter α is user-defined to measure the impact of

these factors on the cost function. Further, the module sorts

the paths based on the ascending order of the cost. The
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Algorithm 1 Routing Algorithm

Input : Graph G, source and destination switch repre-

sented as src switch, dst switch, Set of flows F � User

defined

Output : Path on which flow is routed

1: function HANDLE PACKET IN(src switch)

2: if pkt.type == ARP then � new Packets are arrived

at controller

3: for all Ip’s in [switch list] do
4: if destIp ← [switch list] then
5: src switch → dest.MAC

6: src switch ← dest.IP

7: else
8: flooding on all switches (pkt)
9: end if

10: end for
11: end if
12: if pkt.type == IP then
13: a = IPv4.payload

14: if src switch is TRUE then
15: src switch → qid(dest host)
16: if src switch.dpid == dest.dpid then
17: install path(dest dpid, src switch)

18: else
19: Dijkstra algo(src switch, dest switch)

20: install path(dest dpid, src switch) � in-

stall path function installs the routing paths in switches

21: end if
22: end if
23: end if
24: end function

controller checks the priority of the flows and assigns the

highest priority flow to the min-cost path. Thus, the different

traffic flows can be forwarded through paths to minimize the

congestion in the network. Finally, the cost of the paths gets

updated as the residual bandwidth of the links is updated.

Φ(i, j) = α
cutili,j

ci,j
+ (1− α)

d(i, j)

dmax
i,j

. (4)

We analyze the running time complexity of our pro-

posed Algorithm 1. The Dijkstra algorithm computes the

shortest paths between the source and the destination node.

The running time complexity of Dijkstra function in case

of adjacency list representation in Graph G is O(|V| +
|L| log |V|). The Dijkstra function is run for |F| times.

Thus, the execution time for our proposed algorithm is

O |F| ∗ (|V|+ |L| log |V|).
B. Network Topology

We consider a mesh topology that consists of switches

represented as s1, s2, s3, and s4, and hosts as H1, H2, H3,

Figure 4: Network topology used in the work

H4, and H5 for the experiment as shown in Figure 4. The

host H1 acts as the server. The Distributed Internet Traffic

generator (D-ITG) [13] generates the IoT traffic flows in the

network topology. Table I illustrates the flow specification

of the different traffic flows generated from hosts H3, H4,

and H5. Each link in the network operates at 1 Gbps. The

network topology uses the approach of queue discipline that

is HTB algorithm. The HTB performs traffic shaping using

the token bucket filter algorithm [12]. In the topology, server

H1 has two queues represented as queue 1 and queue 2.

Further, the bandwidth has been set at 6 Mbps and 4 Mbps

between the server (H1) and switch s1. The identities to

queues are assigned to differentiate between them. When

the host H3 sends the UDP or TCP traffic flows to server

H1, the traffic flows will enter into queue 1. On the other

hand, the incoming traffic flows from host H4 and H5 will

arrive in queue 2. Thus, it helps to manage the bandwidth

between the different hosts and the switches to reduce the

congestion in the network.

Table I: Flow specification of distinct services

Flows Hosts Protocol Priority Bandwidth
F1 H3 TCP 1 20 Mbps
F2 H4 TCP 2 30 Mbps
F3 H5 UDP 3 40 Mbps

V. PERFORMANCE EVALUATION

A. Simulation Settings

The proposed topology has been generated using the

Mininet emulator [13] and the SDN POX1 controller. We

experimented using the HP-ProDesk using Intel Core i7

CPU, 3.60 GHz processors, and 8 GB RAM.

B. Results and Discussion

The experiment is performed by generating the traffic

flows such as UDP and TCP flows using the D-ITG traffic

1https://github.com/noxrepo/

582

Authorized licensed use limited to: Indian Institute of Technology (Ropar). Downloaded on August 26,2022 at 15:10:38 UTC from IEEE Xplore.  Restrictions apply. 



(a) End-to-end delay (b) Average jitter (c) Average throughput

Figure 5: End-to-End delay, average jitter and average throughput with varying number of flows using UDP traffic

(a) End-to-end delay (b) Average jitter (c) Average throughput

Figure 6: End-to-End delay, average jitter and average throughput with varying number of flows using TCP traffic

generator. In our work, we consider different metrics such

as end-to-end delay, average jitter, and average throughput

to ensure better QoS delivery to the applications. We have

performed a comparison of the proposed approach with

benchmark schemes – SDN with HTB [11] and the Delay

Minimization method [10]. The experiment is carried out

30 times to calculate the average value for each parameter.

We have computed the results at 90% confidence intervals

to compute the average for every metric. The number of

packets propagated in the case of 10, 30, 50, 70, 90 flows

are 10,000, 30,000, 50,000, 70,000, 90,000 respectively.

1) End-to-End Delay: We computed the average delay

for each path with the increasing number of traffic flows

in the network. Figure 5a and Figure 6a illustrates the

end-to-end delay using UDP and TCP traffic flows using

mesh topology respectively. We analyzed that the proposed

approach achieves a reduction in end-to-end delay by 26%,

37% (with TCP flows), and 38%, 44% (with UDP flows)

in comparison to the benchmark schemes – SDN with HTB

and the Delay Minimization method. We noticed that the

proposed approach results in lesser delay in UDP traffic and

higher in TCP traffic with the increase in the number of

flows. The reason is that TCP is connection-oriented and

traffic flows take more time in establishing the connection

setup phase and results in more end-to-end delay. However,

the proposed approach achieves lesser end-to-end delay as

it assigns the higher priority traffic flows to the least cost

path and thus, reduces congestion in the network. On the

other hand, SDN with HTB scheme results in lesser delay as

compared to the Delay Minimization method. The approach

uses the HTB queue discipline and computes the shortest

path for all traffic flows without considering delay and

bandwidth requirements of flows, thus results in congestion

and also increases the delay in the network. However, in

the Delay Minimization method, the algorithm searches for

a path with minimum delay using the brute-force approach.

This method does not consider link capacity utilization to

route the traffic flows and results in higher delay.

2) Average Jitter: Figure 5b and Figure 6b represents

average jitter using UDP and TCP traffic flows in network

topology respectively. We analyzed that the proposed ap-

proach achieves a reduction in average jitter by 13%, 19%

(with TCP flows), and 15%, 24% (with UDP flows) in

comparison to the benchmark schemes – SDN with HTB

and the Delay Minimization method. The proposed scheme

considers link congestion in the network and redirects the

traffic flows with the highest priority to the least cost path.

We noticed that the proposed approach results in lesser

average jitter in TCP and UDP traffic with the increasing

number of flows in the network. On the other hand, SDN
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with HTB scheme has not considered jitter while routing

the traffic flows in the network topology. It results in less

jitter as compared to the Delay Minimization method. On

the contrary, the Delay Minimization method considered

only a single metric delay and results in higher jitter.

However, our proposed approach performs better than the

benchmark schemes as it considered the delay variation

while performing traffic forwarding in the network.
3) Average Throughput: Figure 5c and Figure 6c rep-

resents the throughput achieved using both TCP and UDP

traffic flows respectively. We analyzed that the proposed

approach achieves higher throughput by 31%, 51% (with

TCP flows), and 29%, 43% (with UDP flows) in comparison

to the benchmark schemes – SDN with HTB and the Delay

Minimization method. We observed that with the increase in

the number of flows, throughput while using the proposed

approach is higher than the benchmark schemes. The reason

is that the proposed approach sends the traffic flows on

the least-cost path based on the priority of traffic flows

and reduces congestion in the network. On the other hand,

SDN with HTB scheme does not consider the bandwidth

requirements of the traffic flows and results in lesser network

throughput. However, the Delay Minimization method does

not find the optimal routing path while satisfying the QoS

requirements of the traffic flows. Thus, both the traffic flows

achieve lesser throughput in the network in comparison to

the proposed scheme.

VI. CONCLUSIONS

In this paper, we proposed a congestion technique to

manage the bandwidth in a Software-Defined IoT network.

We formulate a routing problem to find optimal routing paths

for different traffic flows (TCP or UDP) generated using a

D-ITG generator. The routing scheme computes the shortest

path using Dijkstra’s algorithm by selecting the min-cost
path based on the priorities of traffic flows. We experimented

using different QoS parameters such as end-to-end delay,

jitter, and throughput. The results demonstrate the effective-

ness of the proposed approach. The results signify that the

proposed approach achieves a reduction in end-to-end delay

by 26%, 37% (with TCP flows), and 38%, 44% (with UDP

flows) in comparison to the benchmark schemes – SDN

with HTB and the Delay Minimization method, respectively.

Further, the proposed approach achieves higher average

throughput by 31%, 51% (with TCP flows), and 29%, 43%

(with UDP flows) in comparison to the benchmark schemes

– SDN with HTB and the Delay Minimization method,

respectively. The single-path routing leads to congestion in

the network. Therefore, as a future expansion of this work,

we will use multiple path routing to deal with congestion in

the network.
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