
Journal of Combinatorial Optimization
https://doi.org/10.1007/s10878-022-00897-4

Algorithms for maximum internal spanning tree problem
for some graph classes

Gopika Sharma1 · Arti Pandey1 ·Michael C. Wigal2

Accepted: 13 August 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
For a given graph G, a maximum internal spanning tree of G is a spanning tree of
G with maximum number of internal vertices. TheMaximum Internal Spanning
Tree (MIST) problem is to find a maximum internal spanning tree of the given
graph. The MIST problem is a generalization of the Hamiltonian path problem. Since
the Hamiltonian path problem is NP-hard, even for bipartite and chordal graphs, two
important subclasses of graphs, the MIST problem also remains NP-hard for these
graph classes. In this paper, we propose linear-time algorithms to compute amaximum
internal spanning tree of cographs, block graphs, cactus graphs, chain graphs and
bipartite permutation graphs. The optimal path cover problem, which asks to find a
path cover of the given graph with maximum number of edges, is also a well studied
problem. In this paper, we also study the relationship between the number of internal
vertices in maximum internal spanning tree and number of edges in optimal path cover
for the special graph classes mentioned above.

Keywords Maximum internal spanning tree · Bipartite graphs · Chordal graphs ·
Optimal path cover · NP-completeness · Graph Algorithms

Michael C. Wigal is supported by an NSF Graduate Research Fellowship under Grant No. DGE-1650044.

B Arti Pandey
arti@iitrpr.ac.in

Gopika Sharma
2017maz0007@iitrpr.ac.in

Michael C. Wigal
wigal@gatech.edu

1 Department of Mathematics, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001,
India

2 School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10878-022-00897-4&domain=pdf

Journal of Combinatorial Optimization

1 Introduction

TheMaximum Internal SpanningTree (MIST) problem is a degree based spanning tree
optimization problem, in which we ask to find a spanning tree of a given graph such
that the number of vertices of degree at least two is maximized. The MIST problem
is motivated by telecommunication network design (Salamon 2010). We also believe
that MIST problem has its own theoretical importance as it is a generalization of the
Hamiltonian path problem, a knownNP-complete problem (Garey and Johnson 1979).
The Hamiltonian path problem remains NP-complete for chordal graphs and chordal
bipartite graphs (Lai and Wei 1993; Müller 1996). Hence, we also do not expect
polynomial time algorithms for the MIST problem in chordal graphs and chordal
bipartite graphs.

The dual problem to MIST, the Minimum Leaves Spanning Tree (MLST)
problem asks to find a spanning tree with minimum number of leaves for a given
graph. The MLST problem cannot be approximated within any constant factor unless
P=NP (Lu and Ravi 1992). Unlike MLST, several constant factor approximation algo-
rithms have been proposed for the MIST problem in literature. In 2003, Prieto et
al. (Prieto and Sloper 2003) gave a 2-approximation algorithm for the MIST problem
whose running timewas later improved bySalamon et al. in 2008 (Salamon andWiener
2008). Salamon also gave approximation algorithms for claw-free and cubic graphs
with approximation factors 3

2 and
6
5 respectively (Salamon andWiener 2008). In 2009,

Salamon (Salamon 2009) gave a 7
4 -approximation algorithm for graphs with no pen-

dant vertices and later, in 2015, Knauer et al. (Knauer and Spoerhase 2015) showed
that a simplified and faster version of Salamon’s algorithm yields a 5

3 -approximation
algorithm even on general graphs. In 2014, Li et al. proposed a 3

2 -approximation algo-
rithm using a different approach for general undirected graphs and improved this ratio
to 4

3 for graphs without leaves (Li and Zhu 2014). Li et al. gave a 3
2 -approximation

algorithm for general graphs using depth-5 local search (Li et al 2017). In 2018, Chen
et al. presented a 17

13 -approximation algorithm which is the best approximation factor
till now (Chen et al 2018). Recently, Li et al. proved that the MIST problem is Max-
SNP-hard (Li et al 2021). Several FPT-algorithms have also been designed for the
MIST problem where the considered parameter is the solution size (Prieto and Sloper
2003; Li et al 2017; Cohen et al 2010; Fomin et al 2013; Binkele-Raible et al 2013;
Li et al 2015).

For finding efficient algorithms for the MIST problem, it is often useful to reduce
the MIST problem to the path cover problem. A path cover P of a graph is a spanning
subgraph such that every component of P is a path. A path cover with maximum
number of edges is called an optimal path cover of G. If P∗ denotes an optimal path
cover of a graph, then number of edges in P∗ is denoted by |E(P∗)|. In 2018, Li et
al. proposed a polynomial time algorithm for the MIST problem in interval graphs (Li
et al 2018). They also proved that number of internal vertices in anyMIST of any graph
G is at most |E(P∗)| − 1, where P∗ is an optimal path cover of G. We will observe
that number of internal vertices in any MIST of a chain graph is either |E(P∗)| − 1
or |E(P∗)| − 2 and is |E(P∗)| − 1 for cographs. For bipartite permutation, block and
cactus graphs, we prove that there is no constant k such that |E(P∗)| − k is the lower

123

Journal of Combinatorial Optimization

Fig. 1 Hierarchy relationship between some classes of graphs

bound on the number of internal vertices in anyMIST of such graphs.We also propose
linear-time algorithms for the MIST problem in bipartite permutation graphs, block
graphs, cactus graphs and cographs. A hierarchy relationship between these classes
of graphs is shown in Fig. 1.

The structure of the paper is as follows. In Section 2, we give some basic definitions
and notations used in the paper. In Section 3, we discuss MIST problem for block
graphs and cactus graphs and provide linear-time algorithms for both these graph
classes. In Section 4, we prove that MIST of cographs can be computed in linear-time
by providing an algorithm. In Section 5, we present a linear-time algorithm to find a
MIST of an arbitrary bipartite permutation graph. In Section 6, we prove a bound for
chain graphs regarding number of internal vertices in itsMIST. For all the graph classes
mentioned above, we discuss the relationship between number of internal vertices in
anyMIST of a graphG and number of edges in an optimal path cover ofG in Section 7.
Finally, Section 8 concludes the paper.

2 Preliminaries

Let G = (V , E) be a graph. In this paper, we only consider simple, undirected and
connected graphs. For a vertex u ∈ G, dG(u) denotes the degree of u in G and NG(u)

denotes the neighborhood of u in G. When there is no ambiguity regarding the graph
G, we simply use d(u) and N (u), to represent the degree of u and neighborhood of
u, respectively. A vertex u in V is called pendant if d(u) = 1. The set of pendant
vertices in G is denoted by P(G). The vertex adjacent to a pendant vertex u is called
the support vertex of u, and is denoted by S(u). A vertex u ∈ V (G) is called internal,
if u is not pendant, that is, d(u) ≥ 2. Let I (G) denotes the set of internal vertices
in G, and i(G) = |I (G)|. For a set A ⊆ V and a spanning tree T of G, we define
iT (A) = |I (T) ∩ A|. Hence, for an empty set A, iT (A) = 0.

For vertices x and y, we denote an edge between x and y by xy. For a subset S of
V (G), G − S denotes the subgraph of G obtained after removing vertices of S and
edges incident on these vertices from G. If S = {v}, then we simply write G − v for
G − S. A vertex v of a graph G is called a cut vertex if G − v is disconnected.

123

Journal of Combinatorial Optimization

Throughout this paper, n denotes the number of vertices andm denotes the number
of edges inG. A graphG is said to be bipartite if V can be partitioned into two disjoint
sets X and Y such that every edge of G joins a vertex in X to a vertex in Y . Such a
partition (X ,Y) of V is called a bipartition. A bipartite graph with bipartition (X ,Y)

of V is denoted by G = (X ,Y , E). For a set S ⊆ V , an induced subgraph is the graph
whose vertex set is S and edge set consists of all the edges in E that have both the
endpoints in S, and is denoted by G[S]. If G[C],C ⊆ V , is a complete subgraph of
G, then C is called a clique of G.

A subgraph of G is called a spanning subgraph if it contains all the vertices of G.
A path cover P of a graph is a spanning subgraph such that every component of P
is a path. A path cover is an optimal path cover if it has the maximum number of
edges. A spanning subgraph of G which is also a tree is called a spanning tree of G.
A spanning tree is called a maximum internal spanning tree(MIST) if it contains the
maximum number of internal vertices among all the spanning trees of G. For a graph
G, the number of internal vertices in any MIST of G is denoted by Opt(G).

Now we state a useful theorem which gives an upper bound on the number of
internal vertices in a MIST with respect to the graph’s optimal path cover.

Theorem 1 (Li et al 2018)For a graphG, the number of internal vertices in amaximum
internal spanning tree of G is less than the number of edges in an optimal path cover
of G, that is, Opt(G) ≤ |E(P∗)| − 1, where P∗ denotes an optimal path cover of G.
Moreover, this bound is tight.

Note that the vertices which are pendant in G itself, will be pendant in any MIST
of G. Hence, we have the following lemma.

Lemma 1 For a graph G, if v is a pendant vertex and u is the support vertex of v in
G, then v remains a pendant vertex and u remains adjacent support vertex of v in any
MIST of G.

Suppose G is not a tree and u ∈ V (G) is adjacent to k pendant vertices, say
a1, . . . , ak . Let G ′ = G − {a2, . . . , ak}. Then based on Lemma 1, the number of
internal vertices in a MIST of G will be same as the number of internal vertices in
any MIST of G ′. It is also easy to obtain a MIST of G from any MIST of G ′. Hence,
throughout this work, we assume that every vertex has at most one pendant vertex
adjacent with it.

Below,wegive another result regarding the number of pendant vertices in a spanning
tree of a bipartite graph. Note that, if we have α number of internal vertices in a
spanning tree of G from one partite set, then at least α + 1 vertices must be present in
the neighborhood of these α vertices, which lie in the other partite set of the bipartite
graph G.

Lemma 2 Let G = (X ,Y , E) be a bipartite graph with A ⊆ X and B ⊆ Y . If
N (A) = B, then there are at leastmax{0, |A|−|B|+1} pendant vertices from A in any
spanning tree ofG. Similarly, if N (B) = A, then there are at leastmax{0, |B|−|A|+1}
pendant vertices from B in any spanning tree of G.

123

Journal of Combinatorial Optimization

3 Block and cactus graphs

In this section, we discuss the MIST problem for block graphs and cactus graphs.
We will show that the MIST problem can be solved in linear-time for both classes
of graphs. Block and cactus graphs will also provide our first family of examples in
which Opt(G) cannot be lower bounded in terms of |E(P∗)| − k where P∗ is an
optimal path cover of G and k is some constant.

A block of a graph G is a maximal connected subgraph with no cut vertices. Note
that a block of G is either an edge or a 2-connected subgraph. The set of blocks of a
graph is called the block decomposition of G and is denoted by B(G). Let B0 ∈ B(G)

and u, v be two vertices belonging to B0, then a path between u and v, which contains
all the vertices of the block B0, is called a spanning path between u and v in B0. We
say a block B is good if there exists distinct u, v ∈ V (B) such that both u and v are
cut vertices of G and B has a spanning path between u and v. A block is said to be
bad otherwise. Let Bad(G) denote the set of bad blocks of G.

A block graph is a graph inwhich every block is a clique. If a block graphG contains
only one block then G is a complete graph. A block graph is said to be nontrivial if
it contains at least two blocks. Note that a trivial block has a Hamiltonian path. Thus
for the remainder of the section we only consider nontrivial block graphs.

Let G be a nontrivial block graph. Bad blocks of G have another characterization
which we state as the Proposition 1.

Proposition 1 A block B of a nontrivial block graph G is bad if and only if it contains
exactly one cut vertex of G.

Proof A block containing exactly one cut vertex of G can not be a good block. So,
assume B is a bad block of G and it contains at least 2 cut vertices of G. Then, these 2
vertices has a spanning path between them in B as G[V (B)] is a clique. This implies
that B is a good block, a contradiction. Hence, B contains exactly one cut vertex of
G. 	

A graph G is a cactus graph if every block of G is either a cycle or an edge. If a
cactus graph G contains only one block then G is either a cycle or an edge and in that
case finding a MIST of G is trivial. Again, a cactus graph is said to be nontrivial if it
contains at least two blocks and now we only consider nontrivial cactus graphs.

Let G be a nontrivial cactus graph. A block of G is called an end block of G if it
contains exactly one cut vertex of G. Note that an end block of a cactus graph G is
also a bad block of G. Bad blocks of a cactus graph G have another characterization
which we state in the following Proposition.

Proposition 2 A block B of a nontrivial cactus graph G is bad if and only if B does
not contain two adjacent cut vertices of G.

Proof First, let B be a bad block of G. If B is an end block then it does not have two
distinct cut vertices of G and so, there is nothing to prove. If B is not an end block,
then it contains at least 2 cut vertices of G. Since B is a bad block and two adjacent
vertices of a block of a cactus graph have a spanning path between them so, B does

123

Journal of Combinatorial Optimization

not contain two adjacent cut vertices of G. Conversely, let B be a block such that it
does not contain two adjacent cut vertices of G. Then no two cut vertices of G has a
spanning path between them in B. Hence, B is a bad block of G. 	

If Bi and Bj are two blocks of a block/cactus graph G and V (Bi) ∩ V (Bj) �= ∅,
then |V (Bi) ∩ V (Bj)| = 1 and the vertex x ∈ V (Bi) ∩ V (Bj) is a cut vertex of G.
Below, we state two propositions which hold true for both block and cactus graphs.

Proposition 3 Let T be a MIST of a nontrivial block/cactus graph G. Then, T must
have at least one leaf in every bad block of G.

Proof Let B be a bad block of G. If B is an edge, then one vertex of B is itself pendant
in G. So, we may assume that B is not an edge. Now, suppose that every vertex of
block B is internal in T then the degree of each vertex of B is at least 2 in T .

First, let G be a block graph. By Proposition 1, B has exactly one cut vertex of G,
say u. Let T ′ = T [V (B)]. As T ′ is a forest, it must contain at least two leafs. As for
any x ∈ V (B) \ {u}, dT (x) = dT ′(x), B must contain at least one leaf of T .

Now, let G be a cactus graph and u ∈ V (B) be a cut vertex of G. Let x and y be
neighbors of u in B. Since B is a bad block, by Proposition 2, x and y are non-cut
vertices inG which implies that their degree is exactly 2 inG and edges xu, uy belong
to T . Now, let v ∈ V (B) be any non-cut vertex of G and let x ′ and y′ be neighbors of
v. Since dG(v) is 2 and it is an internal vertex in T , edges x ′v, vy′ belong to T . So,
we see that every edge of the block B of G belongs to T , a contradiction.

Hence, T must have at least one leaf in every bad block. 	

Proposition 4 Let T be aMIST of a nontrivial block/cactus graph G. Then, Opt(G) ≤
n − |Bad(G)|, where Opt(G) denotes the number of internal vertices in T .

Proof By Proposition 3, we have that |P(T)| ≥ |Bad(G)|, where P(T) denotes the
set of leaves of T . So,

Opt(G) = number of internal vertices in a MIST of G

= n − number of pendant vertices in a MIST of G

= n − |P(T)|
≤ n − |Bad(G)| 	

Recall that block decomposition of a graph G is the set of blocks of G. It can
be computed in O(n) time using the following approach. Let b be a cut vertex of a
block/cactus graph G and G1,G2, . . . ,Gt be the connected components of the graph
G − b. Let Hi denotes the subgraph G[V (Gi) ∪ {b}], for each 1 ≤ i ≤ t . We call
H1, H2, . . . , Ht the b-components of G. The block decomposition of a block/cactus
graph can be found by recursively choosing a cut vertex b and computing the b-
components.

123

Journal of Combinatorial Optimization

3.1 Algorithm for block and cactus graphs

In this subsection,wefirst prove a theoremwhich relates the number of internal vertices
in a MIST of a block/cactus graph G to the number of bad components of G. Then,
we outline a linear-time algorithm to compute a MIST of G.

Theorem 2 Let G be a graph with a nontrivial block decomposition such that each
block has a spanning path with a cut vertex as an endpoint. Then G has a spanning
tree T in which number of internal vertices is n − |Bad(G)|.
Proof Let l be the number of blocks in G and Bi ∈ B(G) be an arbitary block of G. If
Bi is good, then let Pi be a spanning path between two cut vertices of Bi . If Bi is bad,
we let Pi be a spanning path with a single cut vertex as an endpoint. Let T = ⋃l

i=1 Pi .
Note that T is a spanning tree of G. Furthermore, as any cut vertex of G cannot be a
leaf of T , we have i(T) = n − |Bad(G)|. 	

The proof of Theorem 2 gives a simple algorithm for a block or cactus graph. First
find a block decomposition, this takes O(n) time. Then for each block B, determine
if B is bad or not and find the corresponding path. This takes O(|B|) time. In total we
have a linear-time algorithm. As both block and cactus graphs satisfy the hypothesis
of Theorem 2, combining with Proposition 4 we have the following,

Corollary 1 If G is a block or cactus graph, then Opt(G) = n − |Bad(G)|.

4 Cographs

In this section, we discuss theMIST problem for cographs. The complement-reducible
graphs or cographs have been discovered independently by several authors since the
1970s (Seinsche 1974; Jung 1978). In the literature, the cographs are also known as
P4-free graphs, D∗-graphs, Hereditary Dacey graphs and 2-parity graphs. The class
of cographs is defined recursively as follows:

• A graph containing a single vertex is a cograph;
• Complement of a graph is also a cograph;
• Disjoint union of two cographs is also a cograph.

Cographs admit a rooted tree representation (Lerchs 1972). This tree is called a
cotree of a cograph G, denoted T (G). The set of leaves of the left subtree (right
subtree) of an interior vertex x of T (G) is denoted by L(xle f t) (L(xright)). Lin et al
(1995), gave an algorithm to preprocess a cotree T (G) with root r such that it is a
binary rooted tree possessing the following properties:

1. Every internal vertex has exactly two children.
2. Every internal vertex is labeled 0 or 1 with the root r receiving label 1, such that

no two adjacent internal vertices receive the same label.
3. The leaves of T (G) form a bijective correspondence with V (G), such that x, y ∈

V (G) are adjacent if and only if their lower common ancestor of x and y in T (G)

has label 1.

123

Journal of Combinatorial Optimization

Fig. 2 Illustrating a cograph and its cotree

Fig. 3 Optimal path cover of G contains more than 1 path components

4. For all interior vertices x of T (G) assigned label 1, |L(xle f t)| ≥ |L(xright)|.
Fig. 2 illustrates a cograph G along with its cotree T (G).

Proposition 5 For any x ∈ L(rle f t), y ∈ L(rright), we have xy ∈ E(G).

Proof A leaf of T (G) represents a vertex of the graph G. Let x ∈ L(rle f t), y ∈
L(rright). As the least common ancestor of x and y is r and r has label 1, by property
3 of a cotree, xy ∈ E(G). 	

Recall that a path cover P of a graph G is a spanning subgraph such that every
component of P is a path. A path cover is an optimal path cover if it has the maximum
number of edges. Lin et al (1995) gave a linear-time algorithm to compute an optimal
path cover of a cograph G. The optimal path cover P∗ constructed in (Lin et al 1995)
is one of the following type:

• The path cover P∗ contains a single path component which is a Hamiltonian path
of G.

• The path cover P∗ contains at least two path components. In this case, there exists
exactly one path p in P∗ which contains vertices from both the sets L(rle f t) and
L(rright) and all other paths in P∗ contain vertices from L(rright) only. Fig. 3
illustrates this case.

Algorithm 1 uses the optimal path cover constructed from (Lin et al 1995) to
compute a MIST of a cograph G.

Note that by Theorem 1 we have Opt(G) ≤ |E(P∗)|−1 for an optimal path cover
P∗. Below, we give a theorem which implies that Algorithm 1 also outputs a spanning
tree which attains this upper bound.

123

Journal of Combinatorial Optimization

Algorithm 1 Algorithm for finding a MIST of a cograph G
Input: A cograph G and a cotree T (G) of G
Output: A Maximum Internal Spanning Tree T of G

1 Let P∗ = {P1, P2, . . . , Pk } be the optimal path cover of G computed by the algorithm in (Lin et al 1995);
2 V (T) = V (G) and E(T) = E(P∗);
3 if k = 1 then
4 return T ;

5 else
/* P1 is the path which contains vertices from both the sets L(rle f t) and L(rright) and all other paths
in P∗ contain vertices from L(rright) only */

6 Let u ∈ (V (P1) ∩ L(rle f t));
7 Let vi be an end vertex of the path Pi , for 2 ≤ i ≤ k;
8 E(T) = E(T) ∪ {uv2, uv3, . . . , uvk };
9 return T .

Theorem 3 Algorithm 1 outputs a spanning tree T of a cograph G such that, i(T) =
|E(P∗)|−1, where P∗ is an optimal path cover of G. Hence, Opt(G) = |E(P∗)|−1.

Proof Let P∗ = {P1, P2, . . . , Pk} be the optimal path cover computed in step 1 of
Algorithm 1. If |P∗| = 1, then G has a Hamiltonian path and Algorithm 1 returns a
Hamiltonian path. Now, suppose |P∗| > 1, then the path P1 contains vertices from
both sets L(rle f t) and L(rright) and Pi ∩ L(rle f t) = ∅ for all i ≥ 2. Now, let u ∈
V (P1) ∩ L(rle f t) such that u is not an end vertex of P1.

For each path in Pi ∈ P∗ \ {P1}, consider a pendent vertex vi of the path. By
Proposition 5, vi and u are adjacent. Let T = ⋃k

i=1 Pi ∪ {vi u : 2 ≤ i ≤ k}. These
new edges connect one internal vertex with a pendant vertex of path of P∗. This is
illustrated by the dash edges in Fig. 3. Note then the number of internal vertices of T
is |E(P∗)| − 1, hence i(T) = Opt(G) = |E(P∗)| − 1 by Theorem 1. 	

Note that step 1 of Algorithm 1 can be performed in linear-time (Lin et al 1995).
Furthermore, note that the construction of T inTheorem3 is also linear-time. Therefore
Algorithm 1 outputs a MIST of G in linear-time.

5 Bipartite permutation graphs

In this section, we discuss the MIST problem for bipartite permutation graphs. A
graph G = (V , E) with V = {v1, v2, . . . , vn} is said to be a permutation graph
if there is a permutation σ over {1, 2, . . . , n} such that viv j ∈ E if and only if
(i − j)(σ−1(i) − σ−1(j)) < 0. Intuitively, each vertex v in a permutation graph
corresponds to a line segment lv joining two points on two parallel lines L1 and L2,
which is called a line representation. Then, two vertices v and u are adjacent if and
only if the corresponding line segments lv and lu are crossing. Vertex indices give the
ordering of the points on L1, and the permutation of the indices gives the ordering
of the points on L2. Fig. 4 shows an example of a permutation graph along with its
line representation. When a permutation graph is bipartite, it is said to be a bipartite
permutation graph.

123

Journal of Combinatorial Optimization

Fig. 4 A permutation graph G on 5 vertices with permutation (σ1, σ2, σ3, σ4, σ5) = (5, 4, 2, 1, 3)

A strong ordering (<X ,<Y) of a bipartite graph G = (X ,Y , E) consists of an
ordering <X of X and an ordering <Y of Y , such that for all edges ab, a′b′ with
a, a′ ∈ X and b, b′ ∈ Y : if a <X a′ and b′ <Y b, then ab′ and a′b are edges in
G. An ordering <X of X has the adjacency property if, for every vertex in Y , its
neighbors in X are consecutive in <X . The ordering <X has the enclosure property if,
for every pair of vertices y, y′ of Y with N (y) ⊆ N (y′), the vertices of N (y′) \ N (y)
appear consecutively in <X . These properties are useful for characterizing bipartite
permutation graphs.

Heggernes et al (2012) proved that a bipartite graph is a bipartite permutation
graph if and only if it admits a strong ordering. Furthermore if we assume that the
graph is connected, then we can say more.

Lemma 3 (Heggernes et al 2012) Let (<X ,<Y) be a strong ordering of a connected
bipartite permutation graph G = (X ,Y , E). Then both <X and <Y have the adja-
cency property and the enclosure property.

Throughout this section, G = (X ,Y , E) denotes a connected bipartite permutation
graph. A strong ordering of a bipartite permutation graph can be computed in linear-
time (Spinrad et al 1987). Let (<X ,<Y) be a strong ordering of G, where <X=
(x1, x2, . . . , xn1) and <Y= (y1, y2, . . . , yn2). We write strong ordering of vertices
of G as (<X ,<Y) = (x1, x2, . . . , xn1 , y1, y2, . . . , yn2). For u, v ∈ V (G), we write
u <X v if u, v ∈ X and u appears before v in the strong ordering; we define u <Y v

in a similar manner. We write xi < x j (or, yi < y j) when i < j . For vertices u, v of
G, u ≤ v denotes either u <X v, u <Y v, or u = v holds.

Since each vertex ofG satisfies the adjacency property, the neighborhood of any ver-
tex consists of consecutive vertices in the strong ordering. We define the first neighbor
of a vertex as the vertex with minimum index in its neighborhood and the last neighbor
of a vertex as the vertex with maximum index in its neighborhood. We notate the first
and last neighbors of a vertex u as f (u) and l(u) respectively. Combining the above
statements for a bipartite permutation graph G with its strong ordering (<X ,<Y), G
has the following properties (Lai and Wei 1997):

1. For any vertex of G, vertices in its neighborhood are consecutive with respect to
the ordering <X or <Y .

2. If u < v then f (u) ≤ f (v) and l(u) ≤ l(v), for each pair of vertices u, v ∈ V (G).

123

Journal of Combinatorial Optimization

Now, we define some terminology which we require for the remainder of this
section. A vertex xi ∈ X , (1 ≤ i ≤ n1) with l(xi) = y j is of type 1 if j ≥ i . A
vertex yi ∈ Y , (1 ≤ i ≤ n2) with l(yi) = x j is of type 1 if j ≥ i + 1. Similarly, a
vertex xi ∈ X , (1 ≤ i ≤ n1) with l(xi) = y j is of type 2 if j ≥ i + 1 and a vertex
yi ∈ Y , (1 ≤ i ≤ n2) with l(yi) = x j is of type 2 if j ≥ i . Note that a type 2 vertex
x ∈ X is also a type 1 vertex but the converse may not be true. Furthermore, a type
1 vertex y ∈ Y is also a type 2 vertex. Characterizing the vertices in this way is an
important distinction for our algorithm. We now prove two important lemmas which
will be used to prove the correctness of Algorithm 2.

Lemma 4 Let X ′ = {x1, x2, . . . , xk, xk+1} ⊆ X , Y ′ = {y1, y2, . . . , yk} ⊆ Y . Fur-
thermore, suppose each vertex of X ′ and Y ′ is of type 1 except xk+1, l(xk+1) = yk and
N (X ′) = Y ′. Then there exists a MIST T of G, in which x1 and xk+1 are pendant.
Moreover; if X \ X ′ �= ∅, then the support vertex of xk+1 is of degree at least 3 in T .

Proof We first show xi yi , yi xi+1 ∈ E(G) for all 1 ≤ i ≤ k. Suppose there exists
1 ≤ i ≤ k such that xi yi /∈ E(G). Let l(xi) = y j and l(yi) = xl . As both xi and yi
are type 1, we have y j ≥ yi and xl > xi . As (<X ,<Y) is a strong ordering, we have
xi yi ∈ E(G), a contradiction. Thus we may assume xi yi ∈ E(G). Furthermore as yi
is type 1, we have xi yi , yi xi+1 ∈ E(G) for all 1 ≤ i ≤ k.

Suppose X = X ′. Note that as (<X ,<Y) is a strong ordering of G, we have for all
x ∈ X , l(x) ≤ l(xk+1) = yk . As we assumed G is connected, we have that Y = Y ′
as well. Note that this implies that G has the Hamiltonian path x1y1x2 . . . xk ykxk+1
which is a MIST. So, we may assume that X \ X ′ �= ∅.

Now, let T ∗ be aMIST ofG. If x1 and xk+1 are pendant in T ∗ and degree of S(xk+1)

is at least 3 in T ∗, then we are done. Suppose otherwise, and we modify T ∗ in the
following way. We first remove all edges of T ∗ incident with the vertices of X ′ and
then add edges x1y1, y1x2, x2y2, . . . , xk yk and ykxk+1 to obtain a new graph T . Note
that as N (X ′) = Y ′, T is connected.

First suppose T contains no cycle.Note that T is a spanning tree ofG. If dT (yk) = 2,
then as N (X ′) = Y ′ we can choose an edge vyi (i < k) in T such that v ∈ X \ X ′.
Since the strong ordering (<X ,<Y) of the vertices of G satisfies property 2, we have
vyk ∈ E(G). So we can further modify T by removing the edge vyi and replacing
with the edge vyk . We see that

i(T ∗) = iT ∗(X ′) + iT ∗(X \ X ′) + iT ∗(Y ′) + iT ∗(Y \ Y ′)
≤ (k − 1) + iT ∗(X \ X ′) + k + iT ∗(Y \ Y ′) = i(T).

So, we have i(T ∗) ≤ i(T). Since T is a spanning tree and T ∗ is a MIST of G, we
have that T is also a MIST. Thus, we obtain our desired MIST in which x1 and xk+1
are pendant and the support vertex of xk+1 is of degree at least 3.

Now, suppose T contains a cycle C . This implies that there exists v ∈ X \ X ′ such
that vyi , vy j ∈ E(C) with i < j ≤ k. Now, we modify T by removing the edge vyi .
This step reduces degree of v by 1 while leaving the graph T connected.We repeat this
modification until T has no more cycles, thus T will be a spanning tree of G. Let us
assume that there are α such vertices which became pendant in this process of updating

123

Journal of Combinatorial Optimization

T . Let A ⊆ X \ X ′ be the set of α vertices. Note these α vertices were internal in T ∗.
Suppose iT ∗(X ′) > k − (α + 1). As N (X ′) = Y ′, then the subforest of T ∗ induced by
the set X ′ ∪ Y ′ ∪ A would have at least 2(k − α) + (1+ α) + 2α = 2k + 1+ α edges.
As 2k + 1+ α > |X ′ ∪ Y ′ ∪ A| − 1, this contradicts the fact that T ∗ was a tree. Thus
we have iT ∗(X ′) ≤ k − (α + 1). It follows,

i(T ∗) = iT ∗(X ′) + iT ∗(X \ X ′) + iT ∗(Y ′) + iT ∗(Y \ Y ′)
≤ (k − (α + 1)) + iT ∗(X \ X ′) + k + iT ∗(Y \ Y ′)
= (k − 1) + (iT ∗(X \ X ′) − α) + k + iT ∗(Y \ Y ′) = i(T).

Again, we have i(T ∗) ≤ i(T) which implies that T is also a MIST. If dT (yk) = 2,
then we can choose an edge vyi (i < k) in T , such that v ∈ X \ X ′. Since the strong
ordering (<X ,<Y) satisfies property 2, we have vyk ∈ E(G). So we update the tree
T by removing the edge vyi and adding the edge vyk . Thus, we obtain a MIST T in
which x1 and xk+1 are pendant and support vertex of xk+1 is of degree at least 3. 	

Lemma 5 Let X ′ = {x1, x2, . . . , xk} ⊆ X , Y ′ = {y1, y2, . . . , yk} ⊆ Y . Furthermore,
suppose each vertex of X ′ and Y ′ is of type 1 except yk , l(yk) = xk and N (Y ′) = X ′.

(a) If xi yi+1 ∈ E(G) for all 1 ≤ i ≤ (k − 1), then there exists a MIST T of G, in
which y1 is pendant.

(b) If there exists 1 ≤ t ≤ (k − 1) such that xt yt+1 /∈ E(G), then there exists a MIST
T of G, in which x1 and yk are pendant. Moreover; if Y \ Y ′ �= ∅, then support
vertex of yk is of degree at least 3 in T .

Proof We first argue that xi yi , yi xi+1 ∈ E(G) for 1 ≤ i ≤ k − 1. First assume for
some i , xi yi /∈ E(G). As both xi and yi are type 1, we have xi < l(yi) and yi < l(xi).
As (<X ,<Y) is a strong ordering, we have xi yi ∈ E(G), a contradiction. Furthermore,
as yi is type 1, we have yi xi+1 ∈ E(G) for all 1 ≤ i ≤ k − 1.

Suppose Y ′ = Y . As N (Y ′) = X ′, and G is connected we have that X = X ′ as
well. Note then if xi yi+1 ∈ E(G) for all 1 ≤ i ≤ (k − 1), then y1x1 . . . xk−1ykxk is a
Hamiltonian path. Otherwise, if there exists 1 ≤ t ≤ (k−1) such that xt yt+1 /∈ E(G),
then the path x1y1, y1x2, x2y3, . . . , yk−1xk and xk yk gives the desired Hamiltonian
path.

So, we may assume that Y \ Y ′ �= ∅ and we will first prove part (a). Let T ∗ be
a MIST of G and suppose y1 is not pendant in T ∗. Let T be the graph obtained
from T ∗ where we remove all edges incident to the vertices of Y ′ and add edges
y1x1, x1y2, y2x2, . . . , xk−1yk and ykxk . Note as N (Y ′) = X ′, y1 is pendant in T .

First, suppose T contains no cycles. Note then that T is a spanning tree of G. We
argue that we may assume dT (xk) ≥ 2. Suppose otherwise, that is, dT (xk) = 1. Let
v ∈ Y \ Y ′ such that vxi (i < k). As the strong ordering of the vertices of G satsifies
property 2, we have vxk ∈ E(G) as well. So we further modify T by removing the
edge vxi and adding the edge vxk . We see that

i(T ∗) = iT ∗(X ′) + iT ∗(X \ X ′) + iT ∗(Y ′) + iT ∗(Y \ Y ′)
≤ k + iT ∗(X \ X ′) + (k − 1) + iT ∗(Y \ Y ′) = i(T).

123

Journal of Combinatorial Optimization

So, we have that i(T ∗) ≤ i(T). Since T is a spanning tree and T ∗ is a MIST of G,
T is also a MIST of G.

Next, suppose T is not a tree. We now modify T to remove the cycles. Let C be
a cycle of T . Note then there is a vertex v ∈ Y \ Y ′ such that vxi , vx j ∈ E(C) with
i < j ≤ k. We then modify T by removing the edge vxi . Note that the degree of v

decreases by 1. We repeat this process until no cycles remain in T . Assume that α

cycles were removed during this process and thus at most α pendant vertices were
created in this process. As N (Y ′) = X ′ and T ∗ is a tree, we have iT ∗(Y ′) ≤ k−α −1.
We see that,

i(T ∗) = iT ∗(X ′) + iT ∗(X \ X ′) + iT ∗(Y ′) + iT ∗(Y \ Y ′)
≤ k + iT ∗(X \ X ′) + (k − α − 1) + iT ∗(Y \ Y ′)
≤ k + iT ∗(X \ X ′) + (k − 1) + (iT ∗(Y \ Y ′) − α) = i(T)

Again, we have that i(T ∗) ≤ i(T) which implies that T is also a MIST. Hence,
part (a) holds.

Next, we prove part (b). Let T ∗ be a MIST of G. If x1 and yk are pendant in T ∗
and degree of S(yk) is at least 3 in T ∗, then we are done, so assume otherwise. Let T
be the graph obtained from modifying T ∗ where we remove all edges incident on the
vertices of Y ′ and add edges x1y1, y1x2, x2y2, . . . , yk−1xk and xk yk .

First suppose T contains no cycle, then T is a spanning tree ofG. If dT (xk) ≥ 3, then
we are done modifying, so suppose dT (xk) = 2. As Y \Y ′ �= ∅ and N (Y ′) = X ′, there
exists an edge vxi (i < k) in T . Since the strong ordering of the vertices of G satisfies
property 2, we have vxk ∈ E(G). Thus we further modify T where we remove vxi
and add the edge vxk . As we assumed there exists a 1 ≤ t ≤ (k−1) such that xt yt+1 /∈
E(G), we have N ({x1, x2, ..., xt }) = {y1, y2, ..., yt }. Let X ′′ = {x1, x2, . . . , xt } and
note N (X ′′) = Y ′′ = {y1, y2, ..., yt }. By Lemma 2, we see that for any spanning tree
of G, X ′′ contains at least one pendant vertex. So, iT ∗(X ′) ≤ (k − 1).We see that

i(T ∗) = iT ∗(X ′) + iT ∗(X \ X ′) + iT ∗(Y ′) + iT ∗(Y \ Y ′)
≤ (k − 1) + iT ∗(X \ X ′) + (k − 1) + iT ∗(Y \ Y ′) = i(T).

Again, we have i(T ∗) ≤ i(T) which implies that T is a MIST. Thus, we obtained a
MIST T in which x1 and yk are pendant and support vertex of yk is of degree at least
3.

Now, suppose T contains a cycle. We now modify T to be a spanning tree. Let
C be a cycle contained in T . This implies that there is a vertex v ∈ Y \ Y ′ such
that vxi , vx j ∈ E(C) with i < j ≤ k. We remove the edge vxi from T . This
decreases the degree of v by 1. We repeat this process until no cycles remain in T .
Let A ⊆ Y \ Y ′ with |A| = α be the set of the vertices made pendant in this process.
Suppose iT ∗(Y ′) ≥ (k−α). As N (Y ′) = X ′, the subgraph of T ∗ induced by X ′∪Y ′∪A
has at least (2k − α) + k + 2α = 2k + α edges. As |X ′ ∪ Y ′ ∪ A| = 2k + α, this
contradicts the fact that T ∗ is a tree. Thus we may assume iT ∗(Y ′) ≤ k − α − 1. As
before, we may assume dT (xk) ≥ 3. It follows,

123

Journal of Combinatorial Optimization

i(T ∗) = iT ∗(X ′) + iT ∗(X \ X ′) + iT ∗(Y ′) + iT ∗(Y \ Y ′)
≤ (k − 1) + iT ∗(X \ X ′) + (k − α − 1) + iT ∗(Y \ Y ′)
≤ (k − 1) + iT ∗(X \ X ′) + (k − 1) + (iT ∗(Y \ Y ′) − α) = i(T)

This implies that T is also a MIST. Thus, we obtained a MIST T in which x1 and
yk are pendant and support vertex of yk is of degree at least 3. 	

We state similar results when the vertices are of type 2. By symmetry, the proofs
of Lemmas 6 and 7 follow from Lemmas 4 and 5.

Lemma 6 Let X ′ = {x1, x2, . . . , xk} ⊆ X , Y ′ = {y1, y2, . . . , yk, yk+1} ⊆ Y . Fur-
thermore, suppose each vertex of X ′ and Y ′ is of type 2 except yk+1, l(yk+1) = xk and
N (Y ′) = X ′. Then there exists a MIST T of G, in which y1 and yk+1 are pendant.
Moreover; if Y \ Y ′ �= ∅, then support vertex of yk+1 is of degree at least 3 in T .

Lemma 7 Let X ′ = {x1, x2, . . . , xk} ⊆ X , Y ′ = {y1, y2, . . . , yk} ⊆ Y . Furthermore,
suppose each vertex of X ′ and Y ′ is of type 2 except xk , l(xk) = yk and N (X ′) = Y ′.

(a) If yi xi+1 ∈ E(G) ∀ 1 ≤ i ≤ (k − 1), then there exists a MIST T of G, in which x1
is pendant.

(b) If ∃ 1 ≤ t ≤ (k − 1) such that yt xt+1 /∈ E(G), then there exists a MIST T of G,
in which y1 and xk are pendant. Moreover; if X \ X ′ �= ∅, then support vertex of
xk is of degree at least 3 in T .

Next, we propose an algorithm to find a MIST of G based on the Lemmas 4, 5,
6 and 7. In our algorithm, we first find a vertex u such that it is a pendant vertex in
some MIST T of G and the degree of support vertex of u in T is at least 3. Now, if
we remove u from G and call the remaining graph G ′, then we see that the number of
internal vertices in a MIST of G is same as the number of internal vertices in a MIST
of G ′. Note that we can easily construct a MIST of G from a MIST of G ′ by adding
the pendant vertex u to the corresponding support vertex. So, after finding the vertex
u, the problem is reduced to finding MIST of G \ {u}, say G ′. We continue doing the
same until no such vertex u exists and then the resultant graph has a Hamiltonian path.

In our algorithm, we visit the vertices alternatively from the partitions X and Y .
We consider two special orderings (x1, y1, x2, y2, ...) and (y1, x1, y2, x2, ...) of V (G)

which we call α and β, respectively. Below, we describe the method to find a vertex
u which is pendant in some MIST T of G and dT (S(u)) is at least 3.

We first visit the vertices of G in the ordering α and search for the first vertex,
which is not of type 1. Let u be such a vertex. If u ∈ X or u ∈ Y and the conditions
of part (b) of Lemma 5 are satisfied, then there exists a MIST T of G in which u is a
pendant vertex and the degree of support vertex of u in T is at least 3. So, we remove
u from G and find a MIST T ′ of G \ {u}. Later, we obtain a MIST of G by adding u
to T ′. But, if u ∈ Y , say u = yk and conditions of part (a) of Lemma 5 are satisfied,
then there exists a MIST T of G in which y1 is a pendant vertex. In this case, we start
visiting the vertices of G in the ordering β, starting from y1. At this step, we do not
maintain any information from α search.

123

Journal of Combinatorial Optimization

Now, let u be the first vertex not of type 2 in the ordering β. If u ∈ Y or u ∈ X and
the conditions of part (b) of Lemma 7 are satisfied, then there exists a MIST T of G
in which u is a pendant vertex and the degree of support vertex of u in T is at least 3.
So, we remove u from G and find a MIST T ′ of G \ {u}. Later, we obtain a MIST of G
by adding u to T ′. Here, if u ∈ X and conditions of part (a) of Lemma 7 are satisfied,
then there exists a MIST T of G in which x1 is a pendant vertex. But, we have already
explored this possibility while visiting the vertices of G in the ordering α. So, we do
not get such a vertex u. To see this, suppose that we get such a vertex u. Then, u = xt
for some t , where t > k. Now, part (a) of Lemma 7 tells that yi xi+1 ∈ E(G) for
all 1 ≤ i ≤ (t − 1) implying that ykxk+1 ∈ E(G). But, while visiting the vertices
in the ordering α, we got a vertex yk satisfying l(yk) = xk , so ykxk+1 /∈ E(G), a
contradiction.

The detailed procedure for computing a MIST of a bipartite permutation graph is
presented in Algorithm 2. Algorithm 2 either finds a vertex which is not of type 1
or a vertex which is not of type 2. When such a vertex u is found, we call u as an
encountered vertex. All the encountered vertices are found while executing the steps
written in lines 4, 11, 17, 22, 31 or 39 of Algorithm 2.We see that the algorithm returns
a spanning tree T of G. Before proving the correctness of the Algorithm 2, we state a
necessary lemma.

Lemma 8 Let G be the input bipartite permutation graph for the Algorithm 2 and a1
denotes the first encountered vertex in either the α or β search. Suppose that T is the
spanning tree of G returned byAlgorithm2. Let X1 ⊆ X be the set of verticeswhich are
visited from X side till a1 and Y1 ⊆ Y be the set of verticeswhich are visited fromY side
till a1. Then there exists a MIST T ∗ of G such that E(T ∗[X1∪Y1]) = E(T [X1∪Y1]).
Proof We have four cases to consider.
Case 1: a1 ∈ X and it is not of type 1. Then the vertex a1 was found when flag = 1 in
Algorithm 2, that is, when searching for the first vertex not of type 1. Let a1 = xk+1 for
some k. Then the sets X ′ = {x1, x2, . . . , xk, xk+1} ⊆ X , Y ′ = {y1, y2, . . . , yk} ⊆ Y
satisfy the hypothesis of Lemma 4. Thus by Lemma 4, there exists a MIST T ∗ of
G such that E(T ∗[X1 ∪ Y1]) = {x1y1, y1x2, x2y2, . . . , xk yk, ykxk+1}. In particular,
E(T ∗[X1 ∪ Y1]) = E(T [X1 ∪ Y1]).
Case 2: a1 ∈ Y and it is not of type 1. Then the vertex a1 was also found
when flag = 1 in the algorithm. Let a1 = yk for some k. Then the sets X ′ =
{x1, x2, . . . , xk} ⊆ X , Y ′ = {y1, y2, . . . , yk} ⊆ Y satisfy the hypothesis of
part (b) of Lemma 5. Thus by Lemma 5, there exists a MIST T ∗ of G such that
E(T ′[X1 ∪ Y1]) = {x1y1, y1x2, x2y2, . . . , xk yk} = E(T [X1 ∪ Y1]).

By symmetry, the other two cases (a1 ∈ X and it is not of type 2; a1 ∈ Y and it is
not of type 2) follow from Lemmas 6 and 7 . Thus there exists a MIST T ∗ of G such
that E(T ∗[X1 ∪ Y1]) = E(T [X1 ∪ Y1]) in all cases. 	

Now, we prove the correctness of Algorithm 2.

Theorem 4 Algorithm 2 returns a maximum internal spanning tree of G.

Proof Let T ∗ be aMIST ofG and T be the spanning tree ofG returned byAlgorithm 2.
Recall in the execution of Algorithm 2, we either search for a vertex not of type 1 with

123

Journal of Combinatorial Optimization

Algorithm 2 Algorithm for finding a MIST of a bipartite permutation graph G
Input: A bipartite permutation graph G and a strong ordering (<X , <Y) =
(x1, x2, . . . , xn1 , y1, y2, . . . , yn2) of V (G). Output: A MIST T of G.

1 V (T) = X ∪ Y , E(T) = ∅, t = 0; f lag = 1;
2 α = (x1, y1, x2, y2, ...) and β = (y1, x1, y2, x2, ...);
3 Visit the vertices of V (G) in the ordering α;
4 Let u be the first vertex with minimum index in the ordering α which is not of type 1;
5 while f lag == 1 do
6 if u ∈ X then
7 Let u = xk+1 for some k;
8 if k + 1 �= n1 then
9 t = t + 1; rename xk+1 as at ; E(T) = E(T) ∪ {ykat };

10 Rename xi as xi−1 for every k + 2 ≤ i ≤ n1; n1 = n1 − 1;
11 Continue looking for a next vertex which is not of type 1 in the ordering α, call it u;

12 else
13 E(T) = E(T) ∪ {x1y1, y1x2, x2y2, . . . , xk yk , yk xk+1}; return T ;

14 else
15 Let u = yk for some k;
16 if xi yi+1 ∈ E(G) ∀ 1 ≤ i ≤ (k − 1) then
17 Find a vertex which is not of type 2 in the ordering β starting from y1, call it u; f lag = 2;

18 else
19 if k �= n2 then
20 t = t + 1; rename yk as at ; E(T) = E(T) ∪ {xkat };
21 Rename yi as yi−1 for every k + 1 ≤ i ≤ n2; n2 = n2 − 1;
22 Continue looking for a next vertex which is not of type 1 in the ordering α, call it u;

23 else
24 E(T) = E(T) ∪ {x1y1, y1x2, x2y2, . . . , yk−1xk , xk yk }; return T ;

25 while f lag == 2 do
26 if u ∈ Y then
27 Let u = yk+1 for some k;
28 if k + 1 �= n2 then
29 t = t + 1; rename yk+1 as at ; E(T) = E(T) ∪ {xkat };
30 Rename yi as yi−1 for every k + 2 ≤ i ≤ n2; n2 = n2 − 1;
31 Continue looking for a next vertex which is not of type 2 in the ordering β, call it u;

32 else
33 E(T) = E(T) ∪ {y1x1, x1y2, y2x2, . . . , yk xk , xk yk+1}; return T ;

34 else
35 Let u = xk for some k;
36 if k �= n1 then
37 t = t + 1; rename xk as at ; E(T) = E(T) ∪ {ykat };
38 Rename xi as xi−1 for every k + 1 ≤ i ≤ n1; n1 = n1 − 1;
39 Continue looking for a next vertex which is not of type 2 in the ordering β, call it u;

40 else
41 E(T) = E(T) ∪ {y1x1, x1y2, y2x2, . . . , xk−1yk , yk xk }; return T ;

123

Journal of Combinatorial Optimization

the ordering α or we search for a vertex not of type 2 with the ordering β. This is
ensured since either we never arrive at line 17 or we arrive at it once and after that flag
remains 2 throughout the algorithm. Let a1, a2, . . . , ap be the sequence of vertices
encountered in the execution of Algorithm 2. Let X1 and Y1 denote the set of vertices
visited till a1 from X and Y side respectively. For 1 < i < p, let Xi denotes the set of
vertices visited from X side after ai−1 and upto ai . Similarly, let Yi denotes the set of
vertices visited from Y side after ai−1 and upto ai . Let X p and Yp denote the set of
all vertices visited after ap−1 from X and Y side respectively.

First suppose Algorithm 2 is searching for a vertex not of type 1 with the ordering
α and it never arrives at line 17. This means that flag is 1 throughout the algorithm. To
prove that T is a MIST of G, we will prove that T ∗ can be modified so that it remains
a MIST of G and E(T ∗) is same as E(T), that is,

E(T ∗[
p⋃

j=1

X j ∪
p⋃

j=1

Y j]) = E(T [
p⋃

j=1

X j ∪
p⋃

j=1

Y j]). (1)

Weprove (1) using inductionon p. If p = 1,wehave E(T ∗[X1∪Y1]) = E(T [X1∪Y1])
due to Lemma 8. Hence, (1) is true for p = 1. Assume that (1) is true for p = i .

We now show that (1) is true for p = i + 1. So, consider vertex ai+1 for i ≥ 2.
Two possible cases arise.
Case 1: ai+1 ∈ X .

If a j ∈ X for each j , 1 ≤ j ≤ i , then define X∗ = ∪i+1
j=1X j and Y ∗ = ∪i+1

j=1Y j .
Otherwise, let j be the largest index such that j ∈ {1, 2, . . . , i} and a j ∈ Y . Then
define X∗ = ∪i+1

t= j+1Xt and Y ∗ = ∪i+1
t= j+1Yt . Note that, in both the cases, we have

N (X∗) = Y ∗.
As N (X∗) = Y ∗, by Lemma 2 we have that the number of pendant vertices from

X∗ in any spanning tree ofG is at least |X∗|−|Y ∗|+1. Therefore, iT ∗(X∗) ≤ |Y ∗|−1.
If (1) is not true for p = i + 1, we remove all edges of T ∗ who have one end in

∪i
j=1(X j ∪Y j) and the other in (Xi+1 ∪Yi+1) and all edges incident with the vertices

of Xi+1 within T ∗. We then add all edges from E(T [Xi+1 ∪Yi+1]) and the edge of T
which connects ∪i

j=1(X j ∪ Y j) to (Xi+1 ∪ Yi+1) in T ∗. If cycles were created in this
process, then we can remove those cycles without introducing more pendant vertices
using the method discussed in Lemmas 4 and 5. Let T ∗

new denote this updated tree.
Define X ′ = X \ (X∗ ∪ (∪p

t=i+2Xt)) and Y ′ = X \ (Y ∗ ∪ (∪p
t=i+2Yt)). We have,

i(T ∗) = iT ∗(X ′) + iT ∗(X∗) + iT ∗(
p⋃

t=i+2

Xt) + iT ∗(Y ′) + iT ∗(Y ∗) + iT ∗(
p⋃

t=i+2

Yt)

≤ iT ∗(X ′) + |Y ∗| − 1 + iT ∗(
p⋃

t=i+2

Xt) + iT ∗(Y ′) + |Y ∗| + iT ∗(
p⋃

t=i+2

Yt)

= i(T ∗
new), as iT ∗

new
(X∗) = |Y ∗| − 1.

Thus T ∗
new is also a MIST of G and (1) is true for p = i + 1 with T ∗ = T ∗

new.
Case 2: ai+1 ∈ Y . Here, we discuss two subcases.

123

Journal of Combinatorial Optimization

Subcase 2.1: a j ∈ Y ∀ j; 1 ≤ j ≤ i .
Here, for X∗ = ∪i+1

j=1X j and Y ∗ = ∪i+1
j=1Y j , we have |X∗| = |Y ∗|− i . As N (Y ∗) =

X∗, by Lemma 2we have that the number of pendant vertices from Y ∗ in any spanning
tree of G is at least |Y ∗| − |X∗| + 1 = i + 1. Therefore iT ∗(Y ∗) ≤ |Y ∗| − (i + 1).
Here, a1 ∈ Y , so, let a1 = yk for some k. As we have assumed that flag is 1, this
implies that there exists an index t, 1 ≤ t ≤ k − 1 such that xt yt+1 /∈ E(G). So,
for X ′ = {x1, x2, . . . , xt } and Y ′ = {y1, y2, . . . , yt }, we have N (X ′) = Y ′. Now, by
Lemma 2, we know that the number of pendant vertices within X ′ in any spanning
tree of G is at least |X ′| − |Y ′| + 1 = 1. So, iT ∗(X ′) ≤ |X ′| − 1, implying that
iT ∗(X∗) ≤ |X∗| − 1. If (1) is not true for p = i + 1, we construct another spanning
tree T ∗

new of G from T ∗ in the following way: remove all edges of T ∗ who have one
end in ∪i

j=1(X j ∪ Y j) and the other in (Xi+1 ∪ Yi+1) and all edges incident with the
vertices of Yi+1 within T ∗. Then, add all edges from E(T [Xi+1 ∪Yi+1]) and the edge
of T which connects ∪i

j=1(X j ∪ Y j) to (Xi+1 ∪ Yi+1) in T ∗. As before, if cycles are
present, further modify T ∗ to remove these cycles without introducing more pendant
vertices. Now we have,

i(T ∗) = iT ∗(X∗) + iT ∗(X \ X∗) + iT ∗(Y ∗) + iT ∗(Y \ Y ∗)
≤ |X∗| − 1 + iT ∗(X \ X∗) + |Y ∗| − (i + 1) + iT ∗(Y \ Y ∗) = i(T ∗

new)

Subcase 2.2: a j ∈ X for some 1 ≤ j ≤ i .
We choose the largest j ∈ {1, 2, . . . , i} such that a j ∈ X . Then for X∗ = ∪i+1

t= j+1Xt

and Y ∗ = ∪i+1
t= j+1Yt , we have |X∗| = |Y ∗| − (i − j). As N (Y ∗) = X∗, by Lemma 2

we have that the number of pendant vertices from Y ∗ in any spanning tree of G is at
least |Y ∗| − |X∗| + 1 = i − j + 1. Therefore, iT ∗(Y ∗) ≤ |Y ∗| − (i − j + 1). If (1) is
not true for p = i + 1, we construct another spanning tree T ∗

new of G from T ∗ using
the same way as done in subcase 2.1. We have,

i(T ∗) = iT ∗(
j⋃

t=1

Xt) + iT ∗(X∗) + iT ∗(
p⋃

t=i+2

Xt) + iT ∗(
j⋃

t=1

Yt) + iT ∗(Y ∗) + iT ∗(
p⋃

t=i+2

Yt)

≤ iT ∗(
j⋃

t=1

Xt) + |X∗| + iT ∗(
p⋃

t=i+2

Xt) + iT ∗(
j⋃

t=1

Yt) + |Y ∗| − (i − j + 1)

+ iT ∗(
p⋃

t=i+2

Yt)

= i(T ∗
new).

Thus T ∗
new is also a MIST of G and (1) is true for p = i + 1 with T ∗ = T ∗

new.
Hence, we get that (1) is true for all p, that is, E(T ∗[X ∪ Y]) = E(T [X ∪ Y]) in

each possible case, when flag is 1.
If algorithm arrives at line 17, then flag changes to 2 and it remains 2 throughout

the algorithm. So, it searches vertex not of type 2 in the ordering β starting from y1.

123

Journal of Combinatorial Optimization

There will be analogous arguments for this case also, using Lemmas 6 and 7 instead.
For a quick justification why, with the assumption flag = 1, the above analysis fails if
we encounter a vertex, say u1 = y j , such that u1 is not type 1 and xi yi+1 ∈ E(G) for
all 1 ≤ i ≤ (j − 1). The analogous failure case for the flag = 2 is, when we encounter
a vertex u2 = xk that is not of type 2 and yi xi+1 ∈ E(G) for all 1 ≤ i ≤ (k−1). Note
that these cases cannot simultaneously occur. Otherwise the analysis is symmetric.
Consequently, Algorithm 2 returns a maximum internal spanning tree of G. 	

Now, we discuss the running time of Algorithm 2. Suppose Algorithm 2 returns a
MIST T . Recall that we visit the vertices in one of the orders α = (x1, y1, x2, y2, . . .),
or β = (y1, x1, y2, x2, . . .). Furthermore, any vertex encountered during the execution
of the algorithm must be pendant in T . As we never visit the same vertex twice,
these pendant vertices are found in linear-time. The remaining graph must have a
Hamiltonian path, andfinding theHamiltonian path is also linear-time in our algorithm.
So, all the steps of Algorithm 2 can be executed in O(n + m) time. Hence we have
the following corollary.

Corollary 2 A maximum internal spanning tree of a bipartite permutation graph can
be computed in linear-time.

6 Bounds for chain graphs

A bipartite graph G = (X ,Y , E) is a chain graph if the neighborhoods of the vertices
of X forma chain, that is, the vertices of X canbe linearly ordered, say {x1, x2, . . . , xn1}
such that N (x1) ⊆ N (x2) ⊆ . . . ⊆ N (xn1) and n1 = |X |. If G = (X ,Y , E) is
a chain graph, then the neighborhoods of the vertices of Y also form a chain. If
n2 = |Y |, an orderingα = (x1, x2, . . . , xn1 , y1, y2, . . . , yn2) is called a chain ordering
if N (x1) ⊆ N (x2) ⊆ . . . ⊆ N (xn1) and N (y1) ⊇ N (y2) ⊇ . . . ⊇ N (yn2). If a vertex
xi appears before x j in chain ordering, we write xi < x j . Given a chain graph G, a
chain ordering of G can be computed in linear-time (Heggernes and Kratsch 2007).
Note that a chain ordering is also a strong ordering. So, every chain graph is also
bipartite permutation graph.

In this section, we will prove the following lower bound for number of internal
vertices in a MIST of a chain graph G.

Theorem 5 Fora chaingraphG, let P∗ beanoptimal path cover ofG.Then Opt(G) ≥
|E(P∗)| − 2.

In order to prove Theorem 5, we look at optimal path covers of bipartite permuation
graphs. Srikant et al (1993) gave an algorithm tofind an optimal path cover of a bipartite
permutation graph. Note that this algorithm applies to chain graphs as well. We will
recall the algorithm given in (Srikant et al 1993), but first we cover some notations
used in the algorithm. A path cover P∗ = {P1, P2, . . . , Pk} is contiguous if it satisfies
the following two conditions:

1. If x ∈ X is the only vertex in Pi and if x ′ < x < x ′′, then x ′ and x ′′ belong to
different paths.

123

Journal of Combinatorial Optimization

2. If xy is an edge in Pi and x ′y′ is an edge in Pj , where i �= j and x < x ′, then
y < y′.

A path P is contiguous if it is one of the following forms: xi y j xi+1y j+1 . . . yt−1xr ,
xi y j xi+1y j+1 . . . yt−1xr yt , y j xi y j+1xi+1 . . . xr−1yt xr , or y j xi y j+1xi+1 . . . xr−1yt
such that r ≥ i and t ≥ j . Note that every path in a contiguous path cover is
contiguous. Let P be a contiguous path which ends with some edge, say xp yq . If
yq xp+1 /∈ E(G), then we say that the path P is not extendable on the right. A contigu-
ous path is said to be amaximal contiguous path if it is not extendable on the right. An
optimal path cover P∗ = {P1, . . . , Pk} is a maximum optimal path cover if each Pi
covers the maximum number of vertices in V (G)\ {P1 ∪ P2 ∪ . . . Pi−1}.According to
(Srikant et al 1993), there exists an optimal path cover which is a maximum optimal
path cover for any bipartite permutation graphG such that every path in the path cover
is a maximal contiguous path.

As a chain graph is an instance of a bipartite permutation graph, we recall the
algorithm from (Srikant et al 1993) which finds this desired maximum optimal path
cover for a chain graph (Algorithm 3). From this point, we will refer such a path cover
as an optimal path cover only.

Algorithm 3 Algorithm for finding an optimal path cover of G
Input: A chain graph G = (X , Y , E) with the ordering of its vertices
Output: An optimal path cover P of G

1 Mark all vertices in X and Y as not visited; let P = ∅.
2 while all vertices of G are not visited do
3 Let x and y be the first vertices in X and Y which are not visited.
4 Let Px and Py be the maximal contiguous paths starting from x and y, respectively.
5 Q:= Maximum of Px and Py .
6 P := P ∪ Q.
7 Mark all vertices in Q as visited.

8 Output P .

Let P and Q be two distinct paths in a graph G. We define a combining edge of P
and Q as an edge of G whose one end vertex is in path P and another end vertex is in
path Q. Let P∗ be the optimal path cover obtained from Algorithm 3. A path in P∗ is
nontrivial if it has at least two vertices. We assume that the path components of P∗ are
ordered with respect to their appearance in Algorithm 3. Before proving Theorem 5,
we prove some lemmas first.

Lemma 9 Let P and Q be two consecutive nontrivial path components in P∗ such
that P ends at a vertex of X side and Q starts with a vertex of X side. Then there exists
a combining edge of P and Q which joins an internal vertex of P to a pendant vertex
of Q.

Proof Suppose that P ends at some vertex x and Q starts from some vertex x ′, where
x < x ′. Let y be the vertex adjacent to x in P , then y ∈ N (x ′) as G is a chain graph.
So, the edge yx ′ is a combining edge for path components P and Q. We see that y is
internal in P and x ′ is pendant in Q. Fig. 5 provides an illustration. 	

123

Journal of Combinatorial Optimization

Fig. 5 Two consecutive
nontrivial path components
P, Q ∈ P∗ such that P ends at
X side and Q starts from X side

Fig. 6 Two consecutive
nontrivial path components
P, Q ∈ P∗ such that P ends at
Y side and Q starts from Y side

Fig. 7 Two consecutive
nontrivial path components
P, Q ∈ P∗ such that P ends at
Y side and Q starts from X side

Lemma 10 There are no consecutive nontrivial path components P and Q in P∗ such
that:

1. P ends at a vertex of Y side and Q starts with a vertex of Y side, or,
2. P ends at a vertex of Y side and Q starts with a vertex of X side.

Proof First, suppose that there are two consecutive nontrivial path components P and
Q in P∗ such that P ends at a vertex of Y side and Q starts with a vertex of Y side.
As P∗ was constructed from Algorithm 3, every path component in P∗ is maximal
contiguous. But, in this case, P is extendable on right. So, this case will not arise.
Fig. 6 provides an illustration.

Now, suppose that there are two consecutive nontrivial path components P and Q
in P∗ such that P ends at a vertex of Y side and Q starts with a vertex of X side.
Due to the similar reason, this case will also not arise. Fig. 7 provides an illustration.
Hence, the lemma holds. 	

Lemma 11 Let P and Q be two consecutive nontrivial path components in P∗ such
that P ends at a vertex of X side and Q starts with a vertex of Y side. Then the
following is true:

1. If Q ends at a vertex of X side, then Q can be modified to another path Q′ such that
V (Q) = V (Q′), Q′ is also amaximal contiguous path and there exists a combining
edge of P and Q′ which joins an internal vertex of P to a pendant vertex of Q′.

2. If Q ends at a vertex of Y side, then there exists a combining edge of P and Q
which joins an internal vertex of P to an internal vertex of Q.

Proof Suppose that P ends at some vertex x and Q starts from some vertex y = y j .
Let y′ be the neighbor of x in P .

First, suppose that Q ends at a vertex of X side. Let Q = yxi y j+1 . . . xt yk xt+1.
As G is a chain graph, we have that Q′ = xi yxi+1 . . . yk−1xt+1yk is also a path in G.
Note that V (Q) = V (Q′) and Q′ is a maximal contiguous path. We can replace Q
with Q′ in the path cover P∗. Now we see that edge y′xi ∈ E(G) as N (x) ⊆ N (xi).

123

Journal of Combinatorial Optimization

Fig. 8 Two consecutive nontrivial path components P, Q ∈ P∗ such that P ends at X side, Q starts from
Y side and Q ends at X side

Fig. 9 Two consecutive
nontrivial path components
P, Q ∈ P∗ such that P ends at
X side, Q starts from Y side and
Q ends at Y side

So, the edge y′xi is a combining edge for path components P and Q′. We see that y′
is internal in P and xi is pendant in Q′. Fig. 8 provides an illustration.

Now, suppose that Q ends at a vertex of Y side. Let x ′ be the neighbor of y in Q.
Since, x < x ′ and G is a chain graph, edge y′x ′ ∈ E(G). Here, we consider the edge
y′x ′ as the combining edge for path components P and Q. We see that y′ is internal
in P and x ′ is also internal in Q. Fig. 9 provides an illustration. 	

Now, we give the proof of the Theorem 5.

Proof of Theorem 5 Let P∗ be the optimal path cover of G obtained fromAlgorithm 3.
Suppose P∗ has k path components P1, P2, . . . , Pk . Let us denote number of edges
of the component Pi by ei for every 1 ≤ i ≤ k. This implies that e1 + e2 + . . .+ ek =
|E(P∗)|. Note that the number of internal vertices in a path with ei edges is ei − 1.

Let P and Q be two consecutive nontrivial path components in P∗. Then using
Lemmas 9, 10 and 11, we see that in each possible case, we get a combining edge
of P and Q. If we connect each consecutive nontrivial path component with these
combining edges and connect the remaining single vertex components by an arbitrary
edge incident with an internal vertex of a nontrivial path component, we obtain a
spanning tree of G.

First, assume that we never get P and Q such that P ends at a vertex of X side,
Q starts from a vertex of Y side and Q ends at a vertex of Y side. Note then every
combining edge connects one internal vertex of P and one pendant vertex of Q. So,
i(T) = e1 − 1 + e2 + e3 + . . . + ek = |E(P∗)| − 1.

Now, assume that there exists some P and Q such that P ends at a vertex of X
side, Q starts from a vertex of Y side and Q ends at a vertex of Y side. Here, suppose

123

Journal of Combinatorial Optimization

Fig. 10 examples showing that bounds are tight

that Q ends at the vertex y0 and let x0 be the neighbor of y0 in Q. We claim that
x0 = xn1 . If this is not the case then there exists a vertex x∗ in X such that x∗ > x0
and x∗ /∈ V (Q). But, since G is a chain graph, we have that (y0, x∗) ∈ E(G) which
makes Q, a non-maximal path, a contradiction. Thus, x0 = xn1 which implies that,
if Q′′ ∈ P∗ and appears after Q in Algorithm 3, then Q′′ is a single vertex path
component containing a vertex of Y . This implies that this case appears only once. So,
i(T) = e1 − 1 + e2 + e3 + . . . + ek − 1 = |E(P∗)| − 2.

Hence, the number of internal vertices in any MIST of G is at least |E(P∗)| − 2,
that is, Opt(G) ≥ |E(P∗)| − 2. 	

Combining Theorem 1 and Theorem 5, we can state the following corollary.

Corollary 3 For a chain graph G, if P∗ denotes an optimal path cover then Opt(G)

is either |E(P∗)| − 1 or |E(P∗)| − 2.

Now, we give examples of chain graphs which shows that both the bounds (given
by Theorem 1 and Theorem 5) are tight. In Fig. 10, G1 and G2 are chain graphs
and T1 and T2 are Maximum Internal Spanning Trees of G1 and G2 respectively.
We can see that optimal path cover obtained from Algorithm 3 for the graph G1 is
{x1y1x2y2x3, y3x4y4x5y5} which has 8 edges and its MIST T1 has 6 internal vertices
i.e. Opt(G1) = |E(P∗)| − 2 = 8 − 2 = 6. Using Lemma 2, it can be verified that
any MIST of G1 has at least four pendant vertices, two from X side and two from Y
side; so, G1 can have at most 6 internal vertices in its MIST. Hence, T1 is indeed a
MIST of G1. In a similar manner, optimal path cover obtained from Algorithm 3 for
the graph G2 is {x1y1x2y2x3, y3x4y4x5y5x6} which has 9 edges and its MIST T2 has
8 internal vertices i.e. Opt(G2) = |E(P∗)| − 1 = 9 − 1 = 8.

7 Relationship betweenOpt(G) and |E(P∗)|
In this section, we summarize the relationship between Opt(G) and |E(P∗)| for all
the graph classes discussed in the previous sections.

123

Journal of Combinatorial Optimization

Fig. 11 Graph G20, its optimal path cover P∗ and its MIST T

7.1 Block/cactus graph

Let G be a block or cactus graph. Then we show that there does not exist a constant
k such that Opt(G) ≥ |E(P∗)| − k where P∗ is an optimal path cover of G. Recall
Corollary 1 states that Opt(G) = n − |Bad(G)| and Theorem 1 states Opt(G) ≤
|E(P∗)| − 1. Note that the number of edges in the optimal path cover P∗ and the
number of components in P∗ adds up to n. So, we see that n−|Bad(G)| = |E(P∗)|−
(|Bad(G)| − |P∗|). Thus, Opt(G) = |E(P∗)| − (|Bad(G)| − |P∗|) for both block
and cactus graphs.

For every integer n = 5k (k ≥ 1), we construct a connected graph Gn with n
vertices and Opt(Gn) = |E(P∗)| − O(n). The graph Gn is both a block graph and
a cactus graph as every block of Gn is either an edge or a clique on three vertices.
The vertex set of Gn is V (Gn) = V1 ∪ V2 ∪ . . . ∪ Vk , where Vi = {xi1, xi2, . . . , xi5}
for each i ∈ {1, 2, . . . , k}. The edge set is E(Gn) = E1 ∪ E2 ∪ . . . ∪ Ek ∪ E ′,
where Ei = {xi1xi2, xi2xi3, xi3xi1, xi3xi4, xi4xi5, xi5xi3} for each i and E ′ contains the edges
of the form xi3x

i+1
3 for 1 ≤ i ≤ (k − 1). Note |E(Gn)| = 7k − 1. We obtain an

optimal path cover P∗ for Gn having 4k edges and k components (Pak-Ken 1999).
The number of bad blocks in Gn is 2k. Using Theorem 2, we obtain a MIST T of
Gn with n − |Bad(G)| = 5k − 2k = 3k internal vertices. Thus, Opt(Gn) = 3k =
4k − k = 4k − n

5 = |E(P∗)| − O(n). Fig. 11 provides an illustration for G20.
Here, we see that |Bad(Gn)|− |P∗| = 2k − k = k which implies that for arbitrary

n = 5k, we have Opt(Gn) = |E(P∗)| − k. So, block and cactus graphs do not have
lower bound for Opt(G) of the form |E(P∗)| − c for some fixed natural number c,
independent of n.

123

Journal of Combinatorial Optimization

Fig. 12 Graph G25, its optimal path cover P∗ from Algorithm 3 and its MIST T from Algorithm 2

7.2 Bipartite permutation graph

Now, let G be a bipartite permutation graph, then Opt(G) cannot be lower bounded
with value |E(P∗)| − k for any fixed natural number k. Below, for every natural
number k, we give a construction of a bipartite permutation graph such that Opt(G) =
|E(P∗)| − O(5k).

For every integer n = 5k (k ≥ 1), we construct a connected bipartite permutation
graph Gn with n vertices and Opt(Gn) = |E(P∗)| − O(n). For all 1 ≤ i ≤ k, let
Xi = {xi1, xi2} andYi = {yi1, yi2, yi3} if i is even and Xi = {xi1, xi2, xi3} andYi = {yi1, yi2}
for odd i . Let V (Gn) = V1 ∪ V2 ∪ . . . ∪ Vk where Vi = Xi ∪ Yi for all 1 ≤ i ≤ k.
Let E(Gn) = E1 ∪ E2 ∪ . . . ∪ Ek ∪ E ′ where Ei = {xy|x ∈ Xi , y ∈ Yi } for each
1 ≤ i ≤ k and E ′ is the set of edgs of the form yi2x

i+1
1 if i is odd and xi2y

i+1
1 if i is

even for each 1 ≤ i ≤ (k − 1). We see that Gn is a bipartite permutation graph with
n vertices and n + 2k − 1 edges. Algorithm 3 gives an optimal path cover P∗ for Gn

having 4k edges and Algorithm 2 gives a MIST with 3k internal vertices. So, we get
that Opt(Gn) = 3k = 4k − k = 4k − n

5 = |E(P∗)| − O(n). Fig. 12 provides an
illustration for G25.

Thus Opt(G) for bipartite permutation graphs do not have lower bound of the form
|E(P∗)| − k for some fixed natural number k, independent of n.

7.3 Chain graph and cographs

In Corollary 3, we have proved that |E(P∗)| − 2 ≤ Opt(G) ≤ |E(P∗)| − 1 where
P∗ is an optimal path cover of a chain graph G. For a cograph G, Theorem 3 states
that Opt(G) = |E(P∗)| − 1 where P∗ is an optimal path cover of G.

123

Journal of Combinatorial Optimization

8 Conclusion

We studied theMaximum Internal Spanning Tree (MIST) problem, a generalization of
Hamltonian path problem. As the MIST problem remains NP-hard even for bipartite
graphs and chordal graphs due to a reduction from the Hamiltonian path problem
(Lai and Wei 1993; Müller 1996), we further investigated the complexity of special
instances of these classes, chain graphs, bipartite permutation graphs and block graphs.
We also investigated cactus graphs and cographs, finding linear-time algorithms for
the MIST problem for each of these graph classes.

Li et al (2018) proved an upper bound for Opt(G) in terms of an optimal path cover.
We further studied this relationship between path covers and Opt(G) and showed tight
lower bounds for chain graphs and cographs. We also showed this phenomenon does
not hold for general graphs with a construction of bipartite permutation graph and
block graph such that Opt(G) is arbitrarily far from |E(P∗)|.

A convex bipartite graph G with bipartition (X ,Y) and an ordering X =
(x1, x2, . . . , xn), is a bipartite graph such that for each y ∈ Y , the neighborhood
of y in X appears consecutively. Complexity status of the MIST problem is still open
for convex bipartite graphs, which is a superclass of bipartite permutation graphs
and subclass of chordal bipartite graphs. Designing an algorithm for MIST in convex
bipartite graphs will be a good research direction.

The weighted version of the MIST problem is also well studied in literature (Sala-
mon 2009).Given a vertex-weighted connected graphG, themaximumweight internal
spanning tree (MwIST) problem asks for a spanning tree T of G such that the total
weight of internal vertices in T is maximized. Since MwIST problem is a generaliza-
tion of the MIST problem, one may also investigate the complexity status of MwIST
problem for some special classes of graphs.

To our knowledge, every known hardness proof for the MIST problem on families
of graphs relies on a reduction to Hamiltonian path problem. We leave as an open
question if there exists a family of graphs such that Hamiltonian path problem is
polynomial time, yet the MIST problem remains NP-hard.

Funding The authors have not disclosed any funding.

Data availibility Enquiries about data availability should be directed to the authors.

Declarations

Conflict of interest The authors have not disclosed any competing interests.

References

Binkele-Raible D, Fernau H, Gaspers S et al (2013) Exact and parameterized algorithms for max internal
spanning tree. Algorithmica 65(1):95–128

Chen ZZ, Harada Y, Guo F et al (2018) An approximation algorithm for maximum internal spanning tree.
J Comb Optim 35(3):955–979

Cohen N, Fomin FV, Gutin G et al (2010) Algorithm for finding k-vertex out-trees and its application to
k-internal out-branching problem. J Comput Syst Sci 76(7):650–662

123

Journal of Combinatorial Optimization

Fomin FV, Gaspers S, Saurabh S et al (2013) A linear vertex kernel for maximum internal spanning tree. J
Comput Syst Sci 79(1):1–6

Garey MR, Johnson DS (1979) Computers and intractability, vol 174. freeman San Francisco
Heggernes P, Kratsch D (2007) Linear-time certifying recognition algorithms and forbidden induced sub-

graphs. Nord J Comput 14(1–2):87–108
Heggernes P, Van’t Hof P, Lokshtanov D et al (2012) Computing the cutwidth of bipartite permutation

graphs in linear time. SIAM J Discret Math 26(3):1008–1021
Jung HA (1978) On a class of posets and the corresponding comparability graphs. J Comb Theory Series

B 24(2):125–133
Knauer M, Spoerhase J (2015) Better approximation algorithms for the maximum internal spanning tree

problem. Algorithmica 71(4):797–811
Lai TH, Wei SS (1993) The edge hamiltonian path problem is np-complete for bipartite graphs. Inf Process

Lett 46(1):21–26
Lai TH, Wei SS (1997) Bipartite permutation graphs with application to the minimum buffer size problem.

Discret Appl Math 74(1):33–55
Lerchs H (1972) On the clique-kernel structure of graphs. Dept of Computer Science, University of Toronto

1
Li W, Wang J, Chen J, et al (2015) A 2k-vertex kernel for maximum internal spanning tree. In: Workshop

on algorithms and data structures, Springer, pp 495–505
Li W, Cao Y, Chen J et al (2017) Deeper local search for parameterized and approximation algorithms for

maximum internal spanning tree. Inf Comput 252:187–200
Li X, ZhuD (2014) Approximating themaximum internal spanning tree problem via amaximum path-cycle

cover. In: International symposium on algorithms and computation, Springer, pp 467–478
Li X, Feng H, Jiang H et al (2018) Solving the maximum internal spanning tree problem on interval graphs

in polynomial time. Theor Comput Sci 734:32–37
Li X, Zhu D, Wang L (2021) A 4/3-approximation algorithm for the maximum internal spanning tree

problem. J Comput Syst Sci 118:131–140
Lin R, Olariu S, Pruesse G (1995) An optimal path cover algorithm for cographs. Comput Math Appl

30(8):75–83
Lu HI, Ravi R (1992) The power of local optimization: Approximation algorithms for maximum-leaf span-

ning tree. In: Proceedings of the annual allerton conference on communication control and computing,
University of Illinois, pp 533–533

Müller H (1996) Hamiltonian circuits in chordal bipartite graphs. Discret Math 156(1–3):291–298
Pak-Ken W (1999) Optimal path cover problem on block graphs. Theore Comput Sci 225(1–2):163–169
Prieto E, Sloper C (2003) Either/or: Using vertex cover structure in designing fpt-algorithms—the case of

k-internal spanning tree. In: Workshop on algorithms and data structures, Springer, pp 474–483
Salamon G (2009) Approximating the maximum internal spanning tree problem. Theor Comput Sci

410(50):5273–5284
Salamon G (2010) Degree-based spanning tree optimization. PhD Thesis
Salamon G, Wiener G (2008) On finding spanning trees with few leaves. Inf Process Lett 105(5):164–169
Seinsche D (1974) On a property of the class of n-colorable graphs. J Comb Theory Series B 16(2):191–193
Spinrad J, Brandstädt A, Stewart L (1987) Bipartite permutation graphs. Discret Appl Math 18(3):279–292
Srikant R, Sundaram R, Singh KS et al (1993) Optimal path cover problem on block graphs and bipartite

permutation graphs. Theor Comput Sci 115(2):351–357

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is
solely governed by the terms of such publishing agreement and applicable law.

123

	Algorithms for maximum internal spanning tree problem for some graph classes
	Abstract
	1 Introduction
	2 Preliminaries
	3 Block and cactus graphs
	3.1 Algorithm for block and cactus graphs

	4 Cographs
	5 Bipartite permutation graphs
	6 Bounds for chain graphs
	7 Relationship between Opt(G) and vertE(P*)vert
	7.1 Block/cactus graph
	7.2 Bipartite permutation graph
	7.3 Chain graph and cographs

	8 Conclusion
	References

