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Lay Summary

This dissertation is inspired by the limited network coverage provided by the terrestrial

base station, particularly in emergency and disaster-a↵ected areas. In such cases,

unmanned aerial vehicles (UAVs) can be programmed to act as aerial base stations (ABSs)

to provide on-demand coverage to the users. In comparison to the terrestrial base stations,

UAVs as ABSs can be deployed in a timely and energy-e�cient manner. Thus, in this

work, we consider UAVs that can be deployed as an ABS to enable communication service

to ground users in a given area. However, there are multiple challenges that need to be

addressed while deploying UAV as an ABS. Out of which, optimal deployment location

of the UAV, the trajectory design of the UAV, and the limited battery available with the

UAV are some of the challenges addressed in this dissertation.

In particular, we first identify the final location where the UAV can be deployed to

provide maximum coverage to the ground users. Second, we design the path of the UAV

to reach that location, given the limited battery of the UAV. Later, the UAV deployed

at the final location will eventually run out of energy over time due to manoeuvring and

hovering-related energy. Thus, to ensure that the UAV provides continuous coverage for

longer durations, we show how the energy-depleted UAV can be replaced by another fully

charged UAV. Furthermore, we also study the e↵ect of communication channels on the

UAV association probability, which refers to the probability by which the ground user is

connected to a particular UAV.

Later, in this dissertation, we present the essential challenges that still need to be

addressed in the context of using UAVs as ABSs in UAV-assisted communication networks.
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Abstract

Unmanned aerial vehicles (UAVs) are thought to be the next-generation systems to

enhance cellular coverage. The aerial nature of UAVs and their inherent characteristics,

such as mobility, flexibility, and adaptive altitude, allow them to be deployed on an

on-demand basis to assist the current cellular infrastructure by delivering additional

coverage capabilities in either the hotspot or remote areas. Moreover, they can maintain

line-of-sight (LoS) connection with the ground users leading to enhanced coverage and

e�ciency. Therefore, it is desirable to use the UAV as an aerial base station (ABS) to

improve the wireless services and coverage in hotspot areas, such as football stadiums,

fairs, public safety services (for example, firefighters and military operations), etc.

However, the use of UAVs as ABS requires some key design considerations, such

as three-dimensional (3D) placement, communication-oriented trajectory design, energy

e�ciency, maximizing the performance metric, etc., to meet the application-specific

requirements. Therefore, this dissertation intends to study a UAV-assisted communication

system wherein a UAV is to be deployed in a timely and energy-e�cient manner to provide

optimum coverage to ground users.

In particular, we first study the optimal deployment location of the UAV to provide

maximal performance to the ground users. After that, we obtain the UAV’s path from the

initial to the deployment location while meeting the UAV’s energy and flight duration

constraints. This scenario is very relevant to many practical applications where the

deployment location is unknown and is based on ground users’ location, such as providing

high-speed connectivity to the first responders in emergencies, o✏oading tra�c in a

high-density area, such as football stadiums, or recovering the service in a disaster-a↵ected

areas.

We then study the velocity-acceleration and time profile to maximize the sum user

throughput while considering the UAV kinematics (velocity and acceleration), mission

completion time and UAV energy consumption as a function of velocity and acceleration as

constraints. This is because the onboard energy available with the UAV, which is utilized

in manoeuvring and hovering-related tasks, is determined by its flying velocity-acceleration

profile and flight time.

Notably, in missions requiring long battery endurance, the battery limitation problem

inhibits the UAV from delivering long-term service. As a result, to maintain coverage

continuity, we propose a UAV replacement mechanism (a way to provide an uninterrupted

long-term service). UAV replacement indicates that the existing serving UAV must be



ix

replaced by another fully charged UAV when its available energy is exhausted. Finally,

when multiple UAVs are deployed to provide service to multiple ground users spread over

a given area, we study an association probability model based on a stochastic geometry

framework for a UAV-assisted wireless communication network.

The above works/setups can be applied to many practical applications, such as

establishing two-way communication between first responders and firefighters in areas

with inadequate coverage or tra�c o✏oading in a hotspot area, such as sports events.

Keywords: UAV-assisted wireless communication; on-demand coverage; UAV

deployment and trajectory; UAV replacement; resource allocation; multi-UAV network;

limited on-board energy;
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Chapter 1

Introduction

1.1 Background: UAV Meets Cellular Network

In recent years, unmanned aerial vehicles (UAVs) have provided an e↵ective solution

to various kinds of applications, such as search and rescue, cargo delivery, military

applications, commercial applications, telecommunications, precision agriculture, etc.

[1], [2]. This is possible because of their inherent characteristics, such as controllable

three-dimensional (3D) mobility, flexible deployment, and on-demand service. As a result,

the global drone market is expected to reach US$58 billion by 2026, showing how fast

the drone industry is evolving [3]. Furthermore, in the telecommunication industry, these

appealing attributes have enabled them to provide communication-related service and

assist the terrestrial wireless infrastructure [4].

Compared to the existing constrained terrestrial wireless infrastructure, UAVs are

considered to be the next-generation systems to enhance cellular coverage. This is because,

in special scenarios, such as search and rescue operations and on-demand emergency

services, the deployment of an adequate ground infrastructure in a timely and economical

manner is impractical due to high capital and operational costs, as well as substantial

delay in deployment [5]. Thus, in many such scenarios, it is anticipated that the existing

ground infrastructure might be insu�cient to cater to the current needs.

The use of UAVs as network relays or aerial base stations (ABSs) can prove to be an

e↵ective solution due to their flexibility, on-demand coverage, and swift deployment. UAVs

can maintain line-of-sight (LoS) communication links with the ground users/terminals

and enhance the performance and coverage of the current cellular networks [6]. As a

result, UAVs can be integrated with cellular networks by deploying them as an ABS or

relays to support the terrestrial communication system [4]. These UAV functionalities

have encouraged the governmental organizations and industry to develop policies for UAV

operations.

Specifically, there are two typical use cases of UAVs in wireless communication: First,
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the UAVs can be deployed on-demand as an ABS or relays to provide communication

service in the desired areas. Second, UAVs as aerial user equipment’s (UEs) to support the

user applications, such as drone delivery and surveillance-related missions. This function

of UAVs as UE’s is referred to as cellular-connected UAVs.

From the above brief discussion, the two main roles or paradigms of UAVs when

integrated into wireless communications systems are:

• Cellular-enabled UAV communication: In this paradigm, the UAVs operate as aerial

users and have their own mission. Similar to ground users, aerial users are also

served by ground base stations (BSs). Typical use cases of cellular-enabled UAV

communication include cargo delivery, video surveillance, etc.

• UAV-assisted cellular communication: In this paradigm, UAVs operate as aerial

platforms where the UAVs are either used as ABSs or relays to serve the ground

users in cellular networks. Possible use case include tra�c o✏oading in hotspot

areas.

The UAVs integrated into wireless communication systems have numerous advantages.

In particular, UAVs can o✏oad tra�c and can complement the existing BS. They can even

provide coverage expansion in the areas where the BS deployment is di�cult, such as in

hard-to-reach rural areas. UAVs also o↵er several services to Internet of Things (IoT)

applications [7]. IoT devices have low transmit power and cannot communicate over

a long range. In such cases, UAVs can act as wireless relays to improve the coverage

and connectivity of these IoT devices. UAVs also helps in surveillance, which is another

key use case of IoT. Lastly, in regions (due to terrain constraints) where constructing

a complete cellular setup is extremely expensive, UAVs become particularly useful as

they eliminate the need for high-priced towers and infrastructure installations. The

real-world projects that employ UAVs as ABS for wireless connectivity include Google’s

Loon project, where the UAVs were used to deliver airborne global Internet connectivity in

developing countries [8]. Furthermore, Qualcomm and AT&T are also planning to deploy

UAVs in the fifth-generation (5G) networks to enable wide-scale wireless communications.

Likewise, Amazon Prime Air and Google’s Project Wing programs are notable instances

of cellular-connected UAV use cases.

Despite these promising advantages of UAVs, there are various challenges that must

be resolved before using them for any given networking application. For example,

performance characterization, optimal 3D deployment of UAVs, resource allocation, flight

time minimization, energy-e�cient communication, trajectory optimization, and network
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planning are the primary design factors while employing UAVs as ABSs. Contrarily, the

primary issues in the cellular-connected UAVs scenario include interference and handover

management, low-latency communication, channel modeling, and localization. In this

dissertation, we intend to study a UAV-assisted wireless communication system, where

the UAV functions as an ABS to serve the ground users. Next, we present opportunities

and challenges in a UAV-assisted communication system.

1.2 Opportunities and Challenges

In comparison to the ground BSs and fixed relays, UAVs as ABSs have the following new

capabilities:

• Fast and flexible deployment: Traditional terrestrial infrastructures are often

stationary; as a result, their design is limited to considering the long-term data

tra�c and distribution of the users in the given area. Whereas UAVs can be flexibly

deployed as quasi-stationary ABSs to meet the real-time demand in a particular area

and thus enhances the performance of the communication system. Notably, the fast,

flexible and on-demand deployment of UAVs makes them a preferable alternative

for providing ubiquitous cellular coverage in isolated, rural areas or hotspot events

without the need to establish additional terrestrial infrastructure.

• Controllable 3D mobility: Besides serving as ABSs at specific locations, the

controllable 3D mobility of UAVs allows them to function as mobile ABS capable

of flying over the ground users in the serving area to provide more e↵ective

communication. Thus, in scenarios, such as user procession or first responders,

the UAVs can track the mobility of the user and provide optimum coverage.

• LoS-dominant channel: Due to their controllable 3D mobility, the UAVs as an

ABS has the capability to establish a LoS dominant channel by establishing LoS

links with the ground users in rural or suburban environments. However, in

urban environments, the UAV and ground user channel can be characterized via a

probabilistic LoS channel wherein the LoS and non-LoS (NLoS) links have a certain

occurrence probability.

As a result of the above capabilities, UAV-assisted wireless communication is

anticipated to be a key technology for next-generation networks to meet the exponential

growth in data tra�c demands. Some common use cases are coverage expansion in isolated
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areas without or with minimal terrestrial infrastructure; service recovery in emergency

situations or disaster-a↵ected areas; o✏oad tra�c from the ground BS in hotspot events;

aerial relaying to connect far-flung ground users; and cost-e↵ective and reliable data

collection in machine-type communications, etc. [4].

However, the following design issues need to be addressed before realizing the enticing

idea of UAVs as ABSs in wireless communication systems.

• 3D deployment for UAVs: Due to the additional degree of freedom (DoF) in the

UAV’s mobility and ability to adjust its altitude and horizontal location, the 3D

deployment for UAVs as aerial platforms is more complicated than the traditional

two-dimensional (2D) placement of terrestrial BS. Also, the deployment of UAVs as

an aerial platform must ensure optimum coverage to all ground users.

• Communication-oriented trajectory design: The trajectory or the path traced by the

UAVs must be planned to maximize the ground user’s experience or the system’s

performance. For instance, a UAV can fly closer to a ground user and shorten the link

distance with the ground users to achieve a high communication rate. This ensures

an increase in capacity and a reduction in resources. Thus, the UAV trajectory

must be designed while considering the limited resources available with the UAVs

to further enhance the communication performance and for optimum utilization of

communication resources.

• Energy-e�cient communication: Besides the communication-related energy (energy

consumed for signal processing and amplification), UAVs require additional energy to

remain aloft in the air and move freely. This energy is referred to as propulsion energy

consumption, which is typically far more substantial than the communication-related

energy. For example, propulsion energy consumption is of the order of kilowatt

versus watt in communication-related energy [9], [10]. The limited onboard energy

available with the UAVs and the high propulsion energy consumption poses serious

limitations when deployed to provide communication service in a specific area. Thus,

energy-e�cient design is essential to improve the long-term performance of UAVs in

wireless communication.

To fully leverage the advantages of UAVs in wireless communication while also

considering the above challenges, several research organizations, regulatory bodies, etc.,

are actively involved in conducting various trials and experiments. Therefore, we next



Chapter 1. Introduction 5

introduce the global market of UAVs, followed by the UAV rules, regulations, and

standards for utilizing UAVs in enhancing wireless connectivity.

1.3 Global Market of UAVs

The rapid development of UAV technology in 5G has resulted in a myriad of wireless

communication use cases. According to reports [11], 5G is expected to enable global

economic outputs of 12.3 trillion and support the creation of 22 million jobs. The value

chain is expected to generate a result of $3.5 trillion annually in 2035. Research is ongoing

to harness the potential of UAVs to support the existing cellular systems [12].

Many research bodies are working towards this integration to target the applications

of UAVs and terrestrial BSs. Two globally recognized telecommunication companies –

Nokia and Qualcomm, begun a research project called the “5G!Drones” being funded by

the European Union’s Horizon 2020 Research and Innovation Programme, the biggest

European Union research and innovation program to date with over 80 billion in funding

[13]. Several research groups, such as Eurecom, Airbus, the University of Oulu, and

many more, are also part of this project. The project is made up of a large consortium

of businesses located throughout the European Union and Switzerland and is aimed

at conducting trials of several UAV use cases and validating the attainment of 5G key

performance indices (KPIs) for supporting such use cases [13]. As an outcome of their

collaboration, several works, for example, [14], and [15], have been published identifying

the optimal trajectories of UAVs.

Recently, Federal Government awarded $20 million across 19 5G projects that will

trial 5G across the key sectors of the economy, including agriculture, construction,

manufacturing, transport, and education and training. In particular, $1,496,627 in funding

has been allocated to Rheinmetall Defence Australia Pty. Ltd. for 5G Remote Controlled

Firefighting vehicle [16]. The purpose of this vehicle is to traverse extremely dangerous

terrains to support rescue, path clearing, and firefighting missions.

Several communication societies are also targeting the UAV-cellular integration from

various releases and standards. For example, the third-generation partnership project

(3GPP) provides the recent definition of new UAV applications within Release 17 and a

radio access network (RAN) work item for UAV support within Release 18.
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1.4 UAV Rules, Regulations and Standards

As described in the previous subsection, the current market growth of UAVs has shifted the

focus of researchers toward the development of communication technologies and protocols

and the applications that support UAV operations. In addition, the industry has already

begun to integrate UAVs into fourth-generation (4G) and 5G communication networks.

The standards organization for cellular networks, such as 3GPP, is actively

participating in identifying the new wireless technologies and communication protocols

for the usage of UAVs in wireless communication along with the current needs and

requirements. The 3GPP has successfully completed the study that includes the support

for UAVs as UEs in long-term evolution (LTE) in their Release 15 (Rel-15) Technical

Report TR 36.777 in the year 2017. This study identifies the necessary enhancements that

must be applied to LTE to maximize network e�ciency when serving UAVs (as UEs). The

important framework discussed regarding the UAV services is the development of a robust

communications framework. This framework ensures authorization and maintains safety

that incorporates the airspace regulation. These requirements were studied in Technical

Specification TS 22.125 (in 2018) for providing UAV services.

In 2019, through TR 22.829, the 3GPP identified the required communications and

networking performance enhancements as well as a number of UAV-enabled use cases

and applications that will be supported by the 5G technology. In 2020, the 3GPP in

the Rel-17 aimed to focus on the two major factors related to UAV communications:

the processes for maintaining connectivity, identification, and tracking of UAVs, and the

network infrastructure and application architecture to support UAV operations in TR

23.754, and TR 23.755, respectively. Currently, 3GPP is working on Rel-18, which is

envisioned to enable the support of next-generation networks through 5G cellular systems.

The growing interest in massive IoT and machine-type communication based services is

the primary aim of studying UAV communication in 3GPP Rel 18.

Besides 3GPP, the Institute of Electrical and Electronics Engineers (IEEE) and

the International Telecommunication Union (ITU) are also actively working in this

domain of research. Di↵erent IEEE standards groups have developed standards for

drone applications, tra�c management for low-altitude UAVs, aerial communication,

and networking standards [17]. In line with the 3GPP vision, the ITU develops a fully

functional framework for UAVs that will act as UE’s for IMT-2020 networks [18].

For e↵ective communication with UAVs, the 3GPP has defined certain standards.
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Figure 1.1: Summary of use-cases of UAVs in wireless communication.

First, the remote identification process, which requires the UAV nodes to register,

authenticate and notify the network of their status regularly. The cellular network can

then be used to enable services like control and communications. Second, for e�cient

management of airspace operations and to ensure safety, the UAV needs to provide regular

updates of its presence to the airspace management system. This implies that in addition

to the UAVs, the controller must also periodically validate their presence to the supporting

network. This information is then transferred to UAV tra�c management to ensure the

safety of the aerial vehicles. The UAV tra�c management supports remote identification of

the aerial platforms, in-flight re-routing, strategic aerial de-confliction between coexisting

missions, airspace authorization, and flight intent sharing with other authorizations [19].

Modern radios can be deployed on UAVs to provide high-quality data links for a

variety of applications. This includes the UAV radio node to support terrestrial RANs,

which can be used to extend the coverage or provide communication in isolated regions. As

discussed in the previous subsections, it enables rapid deployment in emergency scenarios,

such as supporting evacuation in disaster-a↵ected areas or they can be used to provide

on-demand communication at hotspot events. The summary of use cases of UAVs in

wireless communication is illustrated in Figure 1.1.

However, as per the regulation protocol set by the 3GPP, before starting the predefined

mission to provide wireless connectivity in the desired area, the UAV needs to be first

authorized and then programmed only to perform a specific operation (with the defined

regulations and objectives). After the authenticity, using spectral resources, the UAV

can now be deployed at a particular location in a geographical area (specifying the no-fly

zones) only for a provided mission time.
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Since the UAVs are battery-operated, the overall flight time of the UAV is limited.

Furthermore, there are other factors also, that reduce the operational time of UAVs, such

as the size of the UAV, power rating of the onboard battery, size and weight of the payload,

cargo, aerodynamics, and approved airspace laws that, in turn, enable the UAVs to take

longer paths. As a result, the 3GPP systems are helping UAV nodes by allowing close

monitoring and continuously reporting the power consumption status of the UAV, its

location, trajectory, and environmental conditions. This constant monitoring and status

reports of the UAV will help to maintain the appropriate quality-of-service (QoS) during

its flight time and can easily manage UAV replacements when the power runs low on the

UAV.

The research organizations and the industry are motivated to define the needs and

requirements and standardize a set of services that can be o↵ered to fully leverage the

advantages of UAVs. Standardizing these services will enable service delivery and path

planning by optimizing the operational parameters, and these services will assist in reduced

in power consumption of UAV. To help standardize the services and requirements of UAV

as an aerial node, significant R&D initiatives have been taken, and testbeds have been

built to enhance UAV communications. These initiatives investigate the UAV performance

requirements and protocol solutions to support a variety of real-life use cases. As a result,

the experimental findings that are obtained in a regulated environment with real-time

settings will speed up the process of UAV communication advancements. The several

R&D initiatives are highlighted below.

Aerial Experimentation and Research Platform for Advanced Wireless

(AERPAW): A large-scale testbed developed by the US in 2019 for the Advanced

Wireless Research initiative. AERPAW enables the experimentation of systems of UAVs

with advanced wireless technology. The aim of AERPAW is to support 5G and beyond 5G

oriented research. Additionally, it also provides access to 5G networks that are suitable

for commercial use and software radios that are deployed as payloads to enable UAV

communications.

5G!Drones: An initiative taken by European Union in June 2019. Under 5G!Drones,

several academic institutes, research centers, and network operators have come together

to examine the use cases of UAVs over 5G networks. This project considers the following

UAV use cases: UAV tra�c management, public safety, and situational awareness. The

goal of 5G!Drones is to evaluate the performance and capability of aerial nodes providing

aerial services. They also provide feedback to aid performance improvement, requirements
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Figure 1.2: UAV-assisted wireless communication system.

and needs of a selected user case in 5G systems. 5G!Drones is part of the European

Commission-funded 5G Public Private Partnership (5GPPP) projects.

5G-DIVE: The 5G-DIVE initiative was launched in October 2019 by a collaboration

of vendors, service providers, network operators, small and medium-sized companies

(SMEs), and academic and research centers from the European Union and Taiwan. The

goal of 5G-Drive is to conduct real-world tests of several 5G technologies on the field to

ensure that all the technical aspects are fulfilled before taking these technologies to the next

level. The 5G-DIVE focuses on autonomous drone reconnaissance, which includes drone

fleet navigation and cognitive image analysis. The European Union is funding 5G-DIVE

under the H2020 Program.

1.5 Motivation

The use of UAVs as ABSs can prove to be an e↵ective solution (as described in the previous

sub-sections) to support the terrestrial communication systems [20]. Some common use

cases include coverage expansion or o✏oading the tra�c in a particular scenario, such as

sports stadium, carnivals, and live concerts, where the present ground system is insu�cient

to provide adequate QoS, service restoration when the ground network infrastructure

is interrupted, etc. [21]. Furthermore, in special scenarios, such as search and rescue

operations, it is anticipated that the UAVs can be timely deployed to provide low-cost

communication service in comparison to the existing ground infrastructure.

However, as specified in Section 1.4, there exist multiple challenges in deploying
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the UAVs to enhance cellular coverage, such as optimal deployment in 3D space,

communication-oriented trajectory design, and energy-e�cient communication [22].

Furthermore, the limited onboard energy available with the UAV is a major concern due

to which the operational time of the UAV is quite short.

In view of the above challenges, in this work, we introduce a framework to optimize the

resources available with the UAV and the path of the UAV such that the communication

performance is maximized. Specifically, as described in Figure 1.2, we consider the ground

users to be present in the circular field. A UAV as an ABS is launched from the launchpad

to provide communication in a given area while addressing the key challenges, such as

3D deployment, trajectory design of the UAV, resource allocation, and limited onboard

energy of the UAV. This setup can be applied to many practical applications, such as

establishing two-way communication between first responders and firefighters in an area

with inadequate coverage or tra�c o✏oading in a hotspot area, such as sports events.

1.6 Objectives

This dissertation intends to study a UAV-assisted communication system wherein a UAV

is to be deployed in a timely and energy-e�cient manner to provide optimum coverage to

the ground users. The objectives formulated to study the communication system are as

follows.

Objective 1: We consider a UAV-assisted communication scenario based on a

user-centric approach wherein a UAV trajectory is optimized to provide maximum sum

rate to the ground users while deploying the UAV at a suitably optimal location. This

is because it is known that the maximal system performance is achieved when the final

location is considered to be the optimal deployment location instead of considering the

arbitrary final location [23]. So, the first step is to find the deployment location where the

sum rate is maximum. After that, we obtain an optimal trajectory from the launchpad to

the deployment location to maximize the average sum rate while meeting the energy and

flight duration constraints of the UAV.

However, due to terrain limitations, legal restrictions, or some policies and regulations,

the UAV might not be able to stay at the optimal location. In such cases, the final location

can be a location other than the optimal location. Therefore, Objective 2 considers the

scenario where a UAV has to fly from the launchpad to an arbitrary final location in a

stipulated time and with available onboard energy to provide coverage to a given set of

users. Specifically, a trajectory optimization problem is formulated that optimizes the 3D
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UAV trajectory while considering the velocity and total onboard energy availability as

constraints.

The onboard energy available with the UAV is utilized in manoeuvring, which is

determined by its flying velocity-acceleration profile and flight time [24]. In the prior

objectives, we didn’t consider the acceleration related energy consumption to handle the

computational tractability of the problem. Thus, the communication system’s design must

consider energy consumption as a function of UAV velocity, acceleration, and time along

with the other constraints. This is because the acceleration of the UAV also contributes to

a significant energy consumption (as shown in Chapter 5). In this context, Objective 3

studies the UAV kinematics optimization in an energy-aware UAV-assisted communication

system, where we optimize the UAV velocity-acceleration and time profile in the presence

of onboard energy, velocity, acceleration, and mission completion time constraints to

maximize the performance of the UAV communication system, for a given trajectory of

the UAV.

As the UAVs have limited onboard energy, its energy will become low after certain

time. This is because manoeuvring and hovering consumes a significant amount of energy.

Thus, to fully utilize the benefits of the UAV as an ABS, we need to find a way to

provide an uninterrupted long-term service rather than short-term. Notably, in missions

that require long battery endurance, we cannot solve the battery limitation problem by

improving energy e�ciency or energy management [25]. Thus, practical implementation

of UAV applications requires UAV battery recharge or replacement. Therefore, the UAV

must be grounded frequently at the charging station to replenish its battery. That is, if

one UAV gets low on battery, another fully charged UAV can take its place to provide

uninterrupted service to the ground users. As another UAV is launched for replacement,

multiple key challenges like resource allocation and multi-UAV trajectory planning must

be addressed by the communication system designer in the presence of UAV energy

consumption constraints. Motivated by the UAV replacement scenario and its challenges,

the Objective 4 presents a novel framework for maintaining coverage continuity in a

UAV-assisted wireless communication system by launching a fully charged UAV to replace

the existing UAV, which is low on energy. This framework includes optimizing the 3D

multi-UAV trajectory and bandwidth allocation to maximize the minimum achievable

data rate by the ground users in the presence of onboard energy availability constraints.

Lastly, when multiple UAVs are deployed to provide communication to the ground

users spread over a given area, a ground node is associated with the UAV that is closest.
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However, in a UAV-assisted wireless communication, the UAV-user channel can be LoS or

NLoS based on the channel conditions. In such a system, it may happen that a closer UAV

may be in NLoS or may experience deep fade than a farther UAV with a LoS channel.

Thus, instead of associating with the closest UAV, the ground user may want to associate

with another UAV with a better channel for better communication. Therefore, Objective

5 studies an association probability model based on stochastic geometry framework for

UAV-assisted wireless communication where the UAV-user links are characterized by LoS

or NLoS by taking fading into account. Since the channel between the UAV and the user is

estimated through obtaining the instantaneous signal-to-noise ratio (SNR), which includes

fading, it is necessary to study the impact of fading on the association probability.

1.7 Thesis Outline

The organization of this dissertation is as follows.

• Chapter 2: System Model - This chapter introduces a UAV trajectory model,

velocity and acceleration-dependent energy consumption model, and air-to-ground

(A2G) channel model. This chapter sets the stage for the rest of the chapters, where

we utilize these models to build the communication setup and formulate the problem.
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• Chapter 3: UAV Trajectory Design: Launchpad to Optimal Deployment

Location - In this chapter, we address the problem of UAV deployment in 3D space

to provide on-demand coverage to the users such that their sum rate is maximized.

First, we find the optimal UAV location in 3D space where the sum rate is maximized

for all ground users. Thereafter, an optimal trajectory is designed for the UAV to

travel from the initial to the optimal location, such that the overall average sum

rate during the flight is maximized while meeting the onboard energy availability

and flight duration constraints.

• Chapter 4: UAV Trajectory Design: Launchpad to Arbitrary Final

Location - In this chapter, an energy-aware trajectory optimization problem is

formulated where the UAV is launched from the launchpad and moves to the

arbitrary final location. In particular, we minimize the average outage probability

of the system by optimizing the 3D trajectory of the UAV while considering the

velocity and onboard energy as constraints.

• Chapter 5: UAV Kinematics Optimization - In this chapter, we provide

a generalized framework for joint optimization of velocity and acceleration that

can be applied to any existing UAV trajectory to maximize its performance. It

optimizes the UAV velocity-acceleration profile in the presence of onboard energy,

velocity, acceleration, and mission completion time constraints. This approach

can be applied to both user-centric or UAV-centric applications and increases the

UAV performance for the same trajectory by utilizing its energy optimally. In

particular, we consider two problems, the sum throughput maximization, and energy

consumption minimization.

• Chapter 6: UAV Replacement for Coverage Continuity - In this chapter,

we present a novel framework for UAV replacement to maintain coverage continuity

in a UAV-assisted wireless communication system when a serving UAV runs out of

energy. Our objective during this replacement process is to maximize the minimum

achievable throughput to the UAV-served ground users by jointly optimizing the 3D

multi-UAV trajectory and resources allocated to the users from the individual UAVs.

• Chapter 7: Impact of Fading on User Association Probability - In

this chapter, we consider a UAV-assisted wireless communication system where

multiple UAVs are deployed to serve ground users. We model the A2G channel

based on the instantaneous channel; we consider a generalized fading model, the
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Nakagami-m model for the A2G link, to provide a more generic analysis. Through

analytical insights, we obtain the exact and closed-form approximate expression of

the association probability of the ground user with the UAV and infer the capacity

enhancement obtained by considering fading compared to the average SNR scenario.

• Chapter 8: Conclusion and Future Scope - This chapter summarizes the key

takeaways of each objective and highlights some possible future research direction

in the UAV-assisted wireless communication system.



Chapter 2

System Model

In the previous chapter, we highlighted the requirements for a UAV-assisted

communication system from the application’s perspective and noted some key challenges

that need to be addressed in this field. In this chapter, we describe the system model for

the UAV-assisted communication system. In particular, we describe

• UAV trajectory model that presents the model involving the grounds users and UAV

trajectory along with the mobility constraints

• Energy consumption model of a rotary-wing UAV

• A2G channel model

This sets the stage for rest of the chapters in this thesis, where we utilize these models

to build the communication setup and formulate the problem.

2.1 UAV Trajectory Model

In this thesis, we consider a downlink communication setup as described in Figure 2.1,

where a UAV serves K ground users, indexed by K , {1, · · · ,K}, distributed randomly

in a circular field of radius r. The users are static, and the location of the k
th-user is

given by (wk, 0), where wk = [xk, yk] 2 R1⇥2, where k 2 N , and R denotes the set of

real-valued numbers. For a mobile network with mobile ground users, we assume that the

user location is known to the UAV but only at the beginning of every time slot. This

can be achieved by employing tracking algorithms as presented in [26], and [27]. As the

nodes are mobile, the future locations of the mobile users are di�cult to be known at the

current time instant. Hence, it is more challenging to achieve optimal performance metric

for the communication system with mobile users. Future extensions include mobile node

prediction in future times and UAV trajectory design for a mobile network.

We assume the UAV uses frequency division multiple access (FDMA) as the channel

access technique to serve the ground users [28]. Under this FDMA scheme, we assume
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Figure 2.1: System model representing the coverage field having K ground users in a 2D
plane along with UAV’s initial and final locations.

that the UAV allocates equal channel bandwidth to each mobile ground user to maintain

fairness and avoid interference. To serve the ground users, we deploy a single UAV, where

the location of the UAV at time t is given as (x(t), y(t), z(t)). The UAV is launched from

the initial location XI with coordinates (xI, yI, zI) and moves to the final location XF

with coordinates (xF, yF, zF). Later, in this thesis, when we consider the multiple UAVs,

we index the UAVs by M , {1, · · · ,M}, and the location of the m
th-UAV is given by

(xm(t), ym(t), zm(t)). However, we include this notation after Chapter 6, from Chapter

2 to 5, we use (x(t), y(t), z(t)) as the UAV trajectory. Furthermore, we assume that the

backhaul link provides su�cient capacity and does not pose any constraint on the UAV

placement/trajectory design.

For ease of analysis, the total completion time available with the UAV to reach from

the initial to the final location is divided into N slots, indexed by N = {0, 1, · · · , N}

and the n
th-slot is of duration ⌧ [n], where n 2 N . The time slot duration is chosen such

that the distance travelled by the UAV in a time slot is much smaller than the distance

between the UAV and the ground users. Then, the UAV location in the n
th-time slot is

expressed as (x[n], y[n], z[n]), where n = 0 implies the UAV is at the initial location and

n = N implies the UAV is at the final location. We assume that in the n
th-time slot, the

UAV moves with a fixed acceleration a[n] (m/s2) and the velocity achieved by the UAV at

the end of the n
th-time slot is v[n] (m/s). For all quantitative consideration, we consider

the location of the UAV at the end of a given time slot to be the UAV location in that
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time slot. Similarly, the UAV velocity at the end of the time slot is considered to be the

velocity of the UAV in that slot for ease of analysis. This hold when ⌧ [n] is su�ciently

small.

Furthermore along with the UAV mobility model, to ensure a safe flight of the UAV,

we also consider some practical mobility constraint which are described as follow. In a

UAV-assisted communication system, to avoid obstacles/building, etc., we ensure that the

UAV makes lateral movement only when its height is above a minimum threshold height

Hmin i.e., the UAV only makes vertical movement when its height is below Hmin. Apart

from this due to the mechanical constraints, the UAV velocity and acceleration is restricted

to a maximum velocity Vmax and acceleration Amax obtainable by the UAV. Moreover,

the total time of the UAV to transit from the initial to the final location is also restricted

to Tmax. We also consider that UAV has certain maximum onboard energy Emax which

is required to remain aloft. Thus, we assume that UAV energy consumption must not

exceeds the maximum available onboard energy Emax.

2.2 UAV Energy Consumption Model

From [24], we know that the UAV velocity, acceleration, and hence flight time are a↵ected

by the limited on-board energy. Thus, to analyze how energy consumption a↵ects the

trajectory, we consider the energy consumption model for a rotary-wing UAV. Rotary-wing

UAV is considered in our work due to its better hovering features over fixed-wing UAVs [9].

Its energy consumption primarily comprises of propulsion energy consumption, which is

required to support its movement and hovering related tasks. In general, UAV energy

consumption consists of propulsion energy and communication-related energy. It has

been shown in [10] that the communication energy that arises from the communication

circuits, signal processing and signal radiation, etc., is far less than the propulsion energy.

Therefore, in this work, we mainly focus on propulsion energy. As discussed in [29],

the propulsion energy consumption comprises of two components: energy consumption

during level-straight flight and energy consumption in vertical flight. Accordingly, the UAV

velocity v[n] in a time slot can be decomposed into two components, namely the horizontal

and the vertical components denoted by v
xy[n], and v

z[n], respectively. Similarly, the UAV

acceleration a[n] in a time slot can be decomposed into horizontal and vertical components

and is given as a
xy[n], and a

z[n], respectively. In the following subsections, we describe

the two energy models, one is the velocity dependent energy consumption model and the

other is the velocity-acceleration dependent energy consumption model. These models are
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Table 2.1: Energy consumption model parameters

Parameter Symbol
Profile drag coe�cient �

Air density (kg/m3) ⇢

Rotor solidity  

Blade angular velocity (radians/second) ⌦
Rotor disc area (m2) Aen

Rotor radius (m) Ren

UAV mass (kg) Men

Incremental correction factor to induced power Ken

UAV weight (Newton) Wen

Fuselage equivalent flat plate area (m2) Sen

Fuselage drag ratio Den

Mean rotor induced velocity in hovering vo

studied because in some cases, for the purpose of exposition and more tractable analysis,

the UAV energy consumption caused by UAV acceleration/de-acceleration is ignored. This

is reasonable for some scenarios, where the UAV’s manoeuvring time is quite lesser than the

UAV’s operational time. Under such scenarios, we need to study the velocity dependent

energy model. For the other case, we study the velocity-acceleration dependent energy

consumption model.

2.2.1 Velocity Dependent Energy Model

In this subsection, we present the velocity-dependent energy consumption model for the

rotary-wing model. The terminologies and notations that are used to present the energy

model is shown in Table 2.1. By following the derivation from [9], the power required for

hovering can be expressed as

Ph =
�

8
⇢ Aen⌦

3
R

3
en

| {z }
Po

+(1 +Ken)
W

3/2
enp

2⇢Aen| {z }
Pi

, (2.1)

where Po, and Pi are the constants whose values depend upon the value of parameters

chosen. Then, the energy model of a rotary-wing UAV as a function of velocity is given

as [30, Eq. 11]

e[n] =Po⌧ [n]

✓
1 +

3vxy[n]2

⌦2R2
en

◆
+ Pi⌧ [n]

 s

1 +
vxy[n]4

4v2o
� v

xy[n]2

2v4o

! 1
2

+
1

2
⌧ [n]Den⇢ Aenv

xy[n]3 +Wenv
z[n], (2.2)
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where v
xy[n] and v

z[n] represent the horizontal and vertical component of velocity,

respectively, at the nth-time slot, and physical meaning of other parameters are defined in

Table 2.1. Then, the energy consumed by the UAV during its flight time is given by

etot =
NX

n=1

e[n]. (2.3)

2.2.2 Velocity-Acceleration Dependent Energy Model

From the UAV mechanics, we know that the UAVs generate forward thrust when the air is

pushed in the direction opposite to flight. The forward thrust is proportional to the mass

of the UAV multiplied by the rate of change in velocity (acceleration) of the UAV. To show

that the acceleration plays a crucial role in the UAV trajectory design, we present the UAV

energy consumption with the variation in acceleration in Figure 2.2. Figure 2.2(a) and

Figure 2.2(b) shows the level-straight and vertical flight energy consumption, respectively.

From Figure 2.2, it can be observed that as the acceleration increases, the energy

consumption significantly increases for a fixed velocity. Therefore, we need to consider

the acceleration of the UAV along with the UAV velocity to design a UAV trajectory. The

relation between UAV velocity and acceleration is expressed as

v
xy[n] =

2k(x[n], y[n])� (x[n� 1], y[n� 1])k
⌧ [n]

� v
xy[n� 1], (2.4)

v
z[n] =

2(z[n]� z[n� 1])

⌧ [n]
� v

z[n� 1], (2.5)

a
xy[n] =

v
xy[n]� v

xy[n� 1]

⌧ [n]
, (2.6)

a
z[n] =

v
z[n]� v

z[n� 1]

⌧ [n]
, (2.7)

where (2.4)�(2.7) represent the kinematic equations to predict the unknown information

about the UAV’s motion. These equations represent the mathematical relationship

between the UAV displacement in the n
th-time slot, UAV’s velocities at the n

th and

the (n� 1)th-time slot, and time duration of nth-time slot for the horizontal and vertical

components, respectively. Note that the overall velocity in a time slot is the resultant

of the horizontal and vertical component i.e, v[n] =
p

(vxy[n])2 + (vz[n])2, and similarly,

a[n] =
p

(axy[n])2 + (az[n])2.

Among all the analytical formulations of the propulsion energy consumption models for

a rotary-wing UAVs present in the literature [9, 29, 31], we have utilized the most realistic
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Figure 2.2: Energy consumed with di↵erent accelerations for (a) level-straight flight, and
(b) vertical flight of UAV.

e
xy[n] = ⌧ [n]

⇣
P0(1 + C1(v

xy[n])2) + P1

p
1 + (C2(vxy[n])2 + C3a

xy[n]vxy[n])2)

.

rq
1 + (C2(vxy[n])2 + C3a

xy[n]vxy[n])2 + C
2
4 (v

xy[n])4 � C4(vxy[n])2 + C5(v
xy[n])3

⌘

(2.8)

e
z[n] =⌧ [n]

 
P2 +

Wenv
z[n] +Mena

z[n]vz[n]

2
+

Wen +Mena
z[n]

2

⇥

s

(vz[n])2 +
2(Wen +Mena

z[n])

⇢Aen

!
(2.9)

model that takes into account the UAV velocity, acceleration/deacceleration, and time

duration as presented in [29]. Then, as defined in [29], the propulsion energy consumption

of a rotary-wing UAV under individual horizontal and vertical components for the nth-time

slot is given by e
xy[n] in (2.8), and e

z[n] in (2.9), respectively. Here, Po and Pi are the

constants as defined in the (2.1). P2, C1, C2, C3, C4, and C5 are the constants whose

values depend upon the mechanical parameters of the UAV and is given as

P2 = Po +Ken

W
3/2
enp

2⇢Aen

, C1 =
3

⌦2R2
en

, C2 =
⇢Sen

2Wen

, C3 =
Men

Wen

, C4 =
⇢Aen

Wen

, C5 =
1

2
Den⇢ Aen,

where the physical meaning of the parameters are defined in Table 2.1. Then, the total

energy consumed by the UAV during its flight time is given by

etot =
NX

n=1

e
xy[n] +

NX

n=1

e
z[n]. (2.10)
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Next, we present the channel model for the A2G communication.

2.3 A2G Channel Model

Although UAVs has the ability to adjust altitude to maintain a LoS communication link,

in some instances, the A2G link is more prone to blockage due to the presence of obstacles

and buildings, such as in the urban environment. Therefore, it is necessary to consider

the channel model, including the LoS and NLoS links. This work considers a realistic

probabilistic LoS channel model wherein the LoS and NLoS links have a certain occurrence

probability [23]. Then, the path loss for LoS and NLoS links are expressed as

Lk[n] =

8
><

>:

d0dk[n]�↵̄, for LoS link, and

d0dk[n]�↵̄, for NLoS link,
(2.11)

where d0 represents the path loss at a reference distance of 1 meter (m), ↵̄ represents the

path loss exponent, and  < 1 accounts for additional attenuation factor due to NLoS

component and dk[n] represents the distance between the k
th-user and the UAV, given by

dk[n] =
p
(x[n]� xk)2 + (y[n]� yk)2 + z[n]2. The probability that the k

th-user is in LoS

with the UAV at time slot n is represented as a logistic function of elevation angle [32]

and is given by

P
L

k
[n] =

1

(1 + C exp(�D[�k[n]� C]))
, (2.12)

where C and D are parameters depending on environment, such as rural, sub-urban and

urban. �k[n] (in degrees) is the elevation angle of UAV from the k
th-user at time slot n

given as �k[n] =
180
⇡

sin�1
⇣

z[n]
dk[n]

⌘
.

The average path loss hk[n] between the UAV and the k
th-user at time slot n is

expressed as

hk[n] = P
L

k
[n]d0dk[n]

�↵̄ + (1� P
L

k
[n])d0dk[n]

�↵̄

=d0
(1� )PL

k
[n] + 

((x[n]� xk)2 + (y[n]� yk)2 + z[n]2)↵
, (2.13)

where ↵ = ↵̄

2 .

The above pathloss hk[n] is considered in the subsequent chapters to derive the

performance metric, such as outage probability and throughput.
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Chapter 3

UAV Trajectory Design: Fixed

Initial to Optimized Final Location

3.1 Introduction

Deploying a UAV as an ABS is a promising technology that enables service connectivity in

areas where the terrestrial BS is insu�cient to provide service to ground users or is under

maintenance. For example, in remote areas, crowded areas, and areas a↵ected by disasters

or emergencies. In such scenarios, we need to compute the optimal deployment location of

the UAV in 3D space where high-quality service to the ground user is ensured. Thereafter,

we need to design the path of the UAV to reach the optimal deployment location. Thus, in

this chapter, we address the problem of UAV deployment and trajectory design in 3D space

to provide on-demand coverage to ground users such that their sum rate is maximized.

We first find the optimal UAV location in 3D space where the sum rate is maximized for

all ground users. Thereafter an optimal trajectory is designed for the UAV to travel from

the initial to the optimal location, such that the overall average sum rate during the flight

is maximized while meeting the onboard energy availability and flight duration constraints.

The problem formulated is non-convex. To obtain the optimal location, we approximate

the rate expression to obtain the concave regions and apply alternating optimization. An

iterative scheme is proposed to obtain the optimal UAV trajectory, which computes the

optimal location in each time slot sequentially, followed by a greedy approach to reach the

final location. Simulation results provide useful insights into the optimal location and the

UAV trajectory problem and show on an average 16.5% improvement over the benchmark

schemes.

This scenario is very relevant to many practical applications where the deployment

location is unknown and is based on ground users’ location, such as providing high-speed

connectivity to the first responders in emergencies, o✏oading tra�c in a high-density area,

such as football stadiums, or recovering the service in a disaster-a↵ected areas.
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3.1.1 State-of-the-Art

Performance enhancement in the UAV-assisted communication system has been an active

area of research in recent years. We broadly classify the state-of-the-art into two objectives:

UAV deployment and UAV trajectory design for performance enhancement.

UAV deployment

From the UAV deployment perspective, researchers have focused on finding the optimal

UAV placement, where the UAVs act as an aerial quasi-static BS to support ground users

in a given area [33, 34, 32, 35, 36]. Thus, the altitude and horizontal locations of the UAV

are optimized either independently or jointly based on di↵erent QoS requirements of the

users. In particular, [32] optimized the UAV altitude to provide maximum coverage to the

ground users. In contrast, the UAV horizontal location was optimized in [35] by fixing the

UAV altitude to minimize the number of UAVs required to provide coverage in a given

area. In 3D space, the problem of a drone-enabled small cell placement optimization was

explored in [36] to maximize the number of users to be served. Similarly, in [37], and

[38], a drone placement for maximizing the number of users served was considered in the

presence of minimum rate requirement for each user.

Some works [39, 40, 41] focused on UAV deployment with an objective to maximize

throughput. The authors in [39] maximized the communication rate by optimizing the

UAV’s flying altitude and antenna beamwidth. In [40], the authors maximized the

achievable sum rate in the presence of a constant-modulus constraint for the beamforming

vector in millimeter-wave communications. However, in their work, the authors fixed

the altitude of the UAV. The multi-UAV deployment problem was investigated in [41]

by maximizing the minimum rate for all ground users while assuming the channel to be

dominated by LoS links.

UAV Trajectory Design

Some researchers have focused on UAV trajectory design for maximizing the throughput

of the system under di↵erent scenarios. The authors in [42] maximized the minimum

throughput over the ground users by optimizing the UAV trajectory over a finite time

horizon. However, in their model, they assumed that the UAV flew only at a fixed

altitude. In [43], the authors maximized the throughput of a UAV relay system by

optimizing the UAV trajectory and transmit power considering the mobility constraints.

The throughput was also maximized for UAV-enabled multi-user downlink communication
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in [44]. The authors in [45] maximized the total system capacity by jointly optimizing

the UAV trajectory, user scheduling, and transmission power. They assumed the LoS

dominant scenario where a full-duplex UAV-BS was employed to serve the targeted small

cell users from a fixed altitude. In [46], the sum rate was maximized by optimizing the

UAV trajectory at the edge of multiple cells. Moreover, the authors in [47] optimized the

3D UAV trajectory to minimize the average outage probability over all users by considering

the probabilistic LoS channel model.

In the above works [42, 43, 44, 45, 46, 48], the energy consumption in UAV was not

considered. The significance of UAV on-board energy was first emphasized in [20]. Because

of the limited availability of on-board energy, it must be used as e�ciently as possible.

To establish a relationship between the propulsion energy and the UAV flight status, the

authors in [10] first proposed a mathematical propulsion energy model for a fixed-wing

UAV. Subsequently, a propulsion model for a rotary-wing UAV was proposed in [9]. For

both the UAVs, it was shown that the UAV propulsion energy consumption is a function of

velocity as well as the acceleration of the UAV. The authors in [10] studied energy-e�cient

communication and optimized the UAV trajectory. In addition, they assumed that the

UAV flew at a fixed altitude and considered a simple path loss channel model. Transmit

power, user scheduling, UAV trajectory, and bandwidth allocation were jointly optimized

in [49] to maximize the energy e�ciency while satisfying the user quality-of-experience

requirements. Similarly, [50], and [30] jointly optimized the resource allocation and UAV

trajectory to maximize energy e�ciency, where the former considered the UAV to fly in a

circular path while the latter considered the fuel-powered UAV.

In practice, the UAV-assisted communication system is constrained by not only the

on-board energy but also via the mission completion time [22]. Towards this end, the

authors in [51], presented energy versus flight duration tradeo↵ for meeting a required

minimum rate. They optimized the UAV trajectory by considering the free-space path

loss model. On the other hand, the authors in [52] considered the energy budget constraints

of the UAV and rate constraint for each device to minimize the mission completion time

via optimizing the UAV 2D trajectory and transmit power. Moreover, [53], and [54]

considered the propulsion energy consumption of a fixed-wing UAV as a constraint to

optimize the UAV trajectory when flying at a fixed altitude while considering the LoS

channel for UAV-user link. In particular, [53], and [54] formulated a max-min average

sum rate problem and maximized the achievable sum rate of the ground user, respectively.

Additionally, rotary-wing UAV has been considered in [55] to maximize the number of
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users served.

Similarly, in [10], [9] and [56], energy e�ciency was maximized while including a

rate constraint to the optimization problem. The authors in [57] considered the energy

e�ciency and throughput jointly while designing the UAV trajectory over a finite flight

time. However, they assumed the UAV to be flying at a fixed altitude.

3.1.2 Contributions and Organization

Towards this direction, our current work bridges the gap in the existing literature by

finding first, an optimal deployment location for UAV in 3D space where the sum rate

over all ground users is maximized while considering a realistic UAV-user channel model.

Thereafter, we obtain an optimal 3D UAV trajectory from the initial to the final location

in a time bounded fashion while ensuring on-board energy availability to maximize the sum

rate of the users. The current work considers a practical communication setup, where the

channel is modelled having LoS and NLoS components [23]. To the author’s knowledge,

there is no work reported on enhancing the sum rate of the system by optimizing the

UAV trajectory in the presence of on-board energy and flight duration constraints. Our

current setup can also be applied to UAV-assisted mm-wave communication systems, first

responders, hotspot areas, etc.

The key contributions of this chapter are as follows:

• Firstly, we formulate a 3D deployment problem that computes the optimal location

for UAV deployment in 3D space by maximizing the sum rate over all users. Secondly,

we formulate a trajectory optimization problem that finds an optimal UAV path from

the initial to the final location by maximizing the sum rate averaged over time in

the presence of on-board energy and flight duration constraints.

• The 3D deployment problem is non-convex and NP-hard. Thus, a closed-form

approximation of rate expression is provided, and conditional concavity is explored

to obtain the optimal location for the 3D deployment problem.

• An e�cient algorithm is proposed to obtain the sub-optimal solution for the

trajectory optimization problem. The sub-optimal solution is obtained sequentially

by searching for the optimal location in each time slot using the steepest ascent

method.

• Finally, numerical results provide useful insights into the optimal deployment

location and the UAV trajectory. Firstly, the e↵ectiveness of the proposed approach
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to obtain the optimal location is shown. Secondly, the performance of the

sub-optimal trajectory is explored. Our proposed scheme provides on an average

16.5% improvement over the benchmark schemes.

The remaining part of this chapter is organized as follows. System model and problem

definition are described in Section 3.2 and 3.3, respectively. Sections 3.4 and 3.5 present

the methodology adopted to solve the UAV location and trajectory problem, respectively.

Numerical results are provided in Section 3.6. The chapter is concluded in Section 3.7.

3.2 System Model

3.2.1 Communication Setup

As shown in Figure 2.1 in Chapter 2, a downlink communication setup is considered,

where the UAV serves the K ground users. To serve the users, we deploy a single UAV

that starts from a pre-defined initial location XI (xI, yI, zI) and moves to an optimal final

location. The final location is the location of the UAV in 3D space where the sum rate

over all ground users is maximum. In this chapter, we assume that the UAV flies with a

fixed velocity V m/s. The time dependent distance between the UAV and the k
th-user at

the n
th-time slot is given by dk[n] =

p
(x[n]� xk)2 + (y[n]� yk)2 + z[n]2.

3.2.2 Performance Metric

We consider a probabilistic LoS channel model, whose average path loss hk[n] expression is

given in Chapter 2, equation 2.13. Let Ptr denote the UAV transmit power. The achievable

rate in bits/second (bps) between the UAV and the k
th-user is given by [9, Eq. 10],

Rk[n] =
B

K
log2

✓
1 +

Ptrhk[n]

�2

◆
, (3.1)

where B denotes the total channel bandwidth available to the UAV, and �2 is the channel

noise power at the receiver. Substituting (2.13) in (3.1), we get

Rk[n] =
B

K
log2

 
1 +

�̃o
bPL

k
[n]

((x[n]� xk)2 + (y[n]� yk)2 + z[n]2)↵

!
, (3.2)

where �̃o , Ptrd0/�
2, bPL

k
[n] = (1� )PL

k
[n] +  and ↵ , ↵̄/2.
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3.3 Problem Formulation

Our objective in this chapter is to provide on-demand coverage to the ground users by

optimizing the UAV trajectory and deploying it at an optimal location in 3D space. To

begin with, we decouple our objective into two problems:

Problem 1: Given a circular field with K users, what is the optimal location in 3D

space where the UAV should be deployed to maximize the sum rate capacity?

Problem 2: Given the UAV initial and final locations, what should be the UAV

trajectory to maximize the sum rate averaged over time in the presence of on-board energy

and flight duration constraints?

We begin by defining Problem 1 and Problem 2 mathematically. For Problem 1, we

formulate a sum rate maximization problem to obtain the optimal location as

(P1) : max
{x,y,z}

Q ,
KX

k=1

Rk

subject to (s.t.) : � r  x, y  r, (3.3a)

Hmin  z  Hmax, (3.3b)

where Hmin is the minimum height required by the UAV to avoid ground obstacles and

make horizontal movements, and Hmax is the maximum height achievable by the UAV.

Note that we omit [n] in calculation of Rk in (3.2). Since all the users are present in the

circular field of radius r centered at the origin, then it can be easily interpreted that the

optimal values of x and y will also lie in the circular field. Therefore, we restrict the search

space of x and y to the radius of circular field i.e., �r  x, y  r.

We treat the optimal location X ⇤ = (x⇤, y⇤, z⇤) obtained from (P1) to be the final

location where the UAV will be deployed to provide service to the users. Thus, in Problem

2, we obtain an optimal UAV trajectory in flying from the initial location (xI, yI, zI) to the

final location X ⇤ in the presence of energy and flight durations constraints. Problem 2 is

formulated as follows

(P2) : max
N,{x[n],y[n],z[n]}
8n2{1,··· ,N}

1

N

NX

n=1

KX

k=1

Rk[n]
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s.t. (C1) : (x[N ], y[N ], z[N ]) = (x⇤, y⇤, z⇤), (3.4a)

(C2) : z[n] � Hmin, 8n 2 {1, · · · , N � 1}, (3.4b)

(C3) : k(x[n], y[n], z[n])�(x[n� 1], y[n� 1], z[n� 1])k

= ⌧V, 8n 2 {1, · · · , N � 1}, (3.4c)

(C4) : k(x⇤, y⇤, z⇤)�(x[N �1], y[N �1], z[N �1])k  ⌧V, (3.4d)

(C5) : N  min

⇢
Emax

E , Nav

�
, (3.4e)

where Rk[n] is defined in (3.2). Constraint (3.4a) represents the final location constraint,

(3.4b) represents the minimum altitude required by the UAV to avoid obstacles. Constraint

(3.4c) represents the distance travelled by the UAV in a particular time slot, where for

n = 1, (x[0], y[0], z[0]) = (xI, yI, zI). Similarly, (3.4d) represents the distance travelled in

the final time slot. Nav in (3.4e) represents the maximum number of time slots a UAV can

take to reach the final location. Emax represents the total on-board energy available with

the UAV. Since the energy consumed by the UAV E is fixed due to fixed UAV velocity,

the ratio Emax/E gives the number of time slots the UAV can fly before exhausting its

on-board energy Emax. Thus, according to the constraint (3.4e), the UAV can at most

consume the time slots out of Nav or Emax/E , whichever is minimum. To ensure that

the UAV reaches the final location without exhausting its resources, velocity V should

be greater than the minimum velocity required by the UAV to reach the final location

via straight-line path i.e., V � k(x⇤
,y

⇤
,z

⇤)�(xI,yI,zI)k
min(Emax

E ,Nav)
. Both problems (P1) and (P2) are

non-convex due to the presence of non-concave objective function. Therefore, for Problem

1, we find the optimal location in 3D space by using alternating maximization that uses

a combination of golden section search (GSS) and linear search as discussed in Section

3.4. For Problem 2, we propose an iterative scheme that successively searches for optimal

location in each time slot, as discussed in Section 3.5.

3.4 Computation of Optimized Final Location

In this section, we obtain the solution to the problem (P1). Rk defined in (3.2) is a function

of not only the distance between the UAV and the k
th-user but also bPL

k
[n], which makes

Rk di�cult to handle. Rk defined in (3.2) is a non-concave function, hence it is di�cult

to obtain the optimal solution of (P1). Exhaustive search (ES) can be used to obtain the
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global solution, albeit with high computational complexity.

From the problem (P1), we analyzed that for specific ranges of x, y, and z, the function

is concave if the variable (x, y, orz) is taken individually. Note that it remains non-concave

if the variables are considered jointly. Thus to have a faster solution, we exploit this unique

feature of the objective function in the next sub-section to find the concave regions. We

break the domain of the function under individual variable (x, y, or z) into two parts,

concave and non-concave. In the concave region, we can apply faster search algorithms

like GSS [58], whereas in the non-concave region, we can use linear search to find the

maxima in the specified interval.

GSS is an e↵ective search technique to find the maxima in a specified interval, where

the function is concave (or unimodal). It operates by successively narrowing the search

range of maxima over the specified interval. In particular, in each iteration, it reduces the

search region by a fraction of 0.618 (golden ratio) than the previous iteration. On the other

hand, linear search sequentially obtains the value of the objective function at each point

spaced ✏-apart and computes the maxima. Thereafter we use an alternating maximization

to solve (P1) where the objective function over individual variable is maximized using GSS

in the concave region and linear search in the non-concave region.

In general, it is di�cult to evaluate the closed-form expression for the region where

the sum rate Q , P
K

k=1Rk is concave. Thus, to get analytical insights on the concavity,

we approximate the sigmoidal function in bPL

k
[n] described in (2.12) and (2.13) to obtain

a closed-form approximation for the concave region in Q. Thereafter, for maximization

over the concave domain in a single variable, GSS is used, which reduces the computations

significantly.

3.4.1 Approximation and Concave Regions

We provide an approximation to the sigmoidal function defined in the expression of Rk.

We propose two approximations to Rk, namely step and linear approximation as discussed

below.

Step Approximation

For higher values of D, i.e., D � 1 and su�cient UAV height in (2.12), PL

k
[n] tends to

one i.e., PL

k
[n]⇡1, 8k2K. The approximate Rk is given as

eRS

k
=

B

K
log2

✓
1 +

�̃o

((x� xk)2 + (y � yk)2 + z2)↵

◆
. (3.5)
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eRS

k
defined above is still a non-concave function of x, y, and z. However, we can obtain the

domain over which the function is concave in x, y, and z individually. Next, we present a

lemma to find the region of concavity.

Lemma 1. The region over which eQS , P
K

k=1
eRS

k
is individually concave in x, y, and z

is given by RS
x =

T
K

k=1Rk
xs,RS

y =
T

K

k=1Rk
ys, and RS

z =
T

K

k=1Rk
zs as defined in (A.1.7),

where eRS

k
is defined in (3.5).

Proof. See Appendix A.1.1.

Linear Approximation

If the value of D is small, i.e., D ⌧ 1 in (2.12), then the sigmoidal function in (2.12) can

be approximated as zp
(x�xk)2+(y�yk)2+z2

. Then, Rk defined in (3.2) is approximated as

eRL

k
=

B

K
log2

0

B@1 + �̃o

(1�)zp
(x�xk)2+(y�yk)2+z2

+ 

((x� xk)2 + (y � yk)2 + z2)↵

1

CA . (3.6)

Again, eRL

k
in (3.6) is non-concave with respect to x, y, and z. Next, we present a lemma

to find the region of individual concavity of eQL , P
K

k=1
eRL

k
in x, y, and z.

Lemma 2. eQL , P
K

k=1
eRL

k
defined above is individually concave with respect to x, y, and

z in the region defined by RL
x =

T
K

k=1Rk

xl
,RL

y =
T

K

k=1Rk

yl
, andRL

z =
T

K

k=1Rk

zl
as defined

in (A.1.14), respectively.

Proof. See Appendix A.1.2.

From Lemmas 1 and 2, we obtained the regions where eQ is concave in x, y, and z,

individually, using step or linear approximations, respectively. Note that eQ = eQS if D � 1

and eQ = eQL if D ⌧ 1.

The advantage of using the step and linear approximation is used to get the analytical

insights on Rk. It reduces the computational complexity to obtain maxima by finding the

concave regions. It is observed that, for D � 1 in (2), the PL

k
[n] ⇡ 1, 8k 2 K. This implies

for environments like rural areas or when the UAV is present at high altitude such that

there always exists a LoS link between the UAV and the users, the Rk can be approximated

using step function to R
S

k
. Linear approximation, on the other hand, is ideal for dense

environments or low-altitude UAVs since P
L

k
[n] becomes a linear function of the elevation

angle �k[n]. Hence, the use of approximation depends upon the type of environment and

the ability to maintain LoS links with the UAV.
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3.4.2 Solution using Alternating Optimization

Alternating optimization is employed to obtain a sub-optimal solution of (P1). In

alternating optimization, the function is maximized over a single variable successively, and

the algorithm iterates to obtain a sub-optimal solution. While optimizing the function over

a single variable x, y or z, the domain of the function is divided into two parts: concave

and non-concave. Over the concave region, GSS is used, while in the non-concave region,

linear search is employed. The individually concave regions are defined asR ,  2 {x, y, z}

that are obtained either using the step or linear approximation. Let Bx, By, and Bz be

the region spanned by �r  x  r, �r  y  r, and Hmin  z  Hmax for x, y, and z,

respectively. Then, the non-concave regions are given by B \R .

The algorithm repetitively gives the alternating individual optimization sequence of

x
⇤, y⇤ and z

⇤ at the l
th iteration. Qk is the sum rate at the l

th-iteration. The algorithm

iterates until Ql � Ql�1 � ✏, where ✏ is the acceptable tolerance threshold. In each

alternating maximization subproblem, we obtain two solutions, one corresponding to the

GSS applied over the concave region and the second corresponding to the linear search

over the non-concave region. The best among the two is chosen as the solution to the

alternating optimization subproblem. The steps to obtain the sub-optimal solution of

(P1) are presented in Algorithm 1. Later, in the numerical section, it is observed that the

sub-optimal solution obtained by using this low complexity algorithm is very close to the

globally optimal solution obtained using ES. The solution obtained for (P1) is named as

X ⇤ = (x⇤, y⇤, z⇤).

3.4.3 Convergence and Complexity

Since (P1) is a non-convex problem, we used alternating optimization to obtain the

deployment location of UAV by applying GSS in the concave region and linear search

in the non-concave region. The number of iterations involved in the convergence of

alternating optimization is as follows. In each iteration for concave region, the search

space �x = (xub � x
lb), �y = (yub � y

lb), and �z = (zub � z
lb) reduces by a factor of

0.618 [58].  ub and  
lb denote the upper and lower bound of the concave region in the

search space, respectively, that are computed either by using (A.1.7) or (A.1.14), where

 2 {x, y, z}. Let L =  
ub� lb

✏
,  2 {x, y, z}, denote the number of computations

required to find the maximum sum rate in  in the non-concave region. Then, the average

iterations are given by Litr = 2Lp

⇣
ln
�
�x

✏

�
+ ln

⇣
�y

✏

⌘
+ ln

�
�z

✏

�
+ Lx + Ly + Lz

⌘
, where

Lp denotes the number of executions of the main loop in Algorithm 1. The term in
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Algorithm 1 Alternating optimization to obtain sub-optimal solution of (P1)

Input: r, Hmin, Hmax, Bx, By, Bz, N , (xk, yk), 8k 2 K and ✏.
Output: Q

⇤ along with X ⇤ = (x⇤, y⇤, z⇤).
1: Initialize k = 1, y = �r, z = Hmin, Q0 = 0, and Q1 = 0.1.
2: Calculate Rx, Ry, and Rz, obtained either by step or linear approximation using

(A.1.7) or (A.1.14), respectively.
3: while Ql �Ql�1 � ✏ do
4: l = l + 1.
5: for  2 {x, y, z} do
6: For R , compute  ⇤

1 = arg max
 

Q , P
K

k=1Rk, using GSS within acceptable

tolerance ✏.
7: Evaluate  ⇤

2 = arg max
 

Q, through linear search with step size ✏ by varying  

over the region B \R .
8: Find  ⇤ = arg max

{ ⇤
j
}
Q for j 2 {1, 2}.

9: Substitute  =  
⇤ in Q.

10: Set Ql = Q.

11: Set Q⇤ = Ql.

parenthesis are the number of iterations involved to obtain the optimal value for each

variable in concave and non-concave region. The worst-case number of iterations of (P1)

in alternating optimization when no concave regions are found is Litr = Lp(Lx+Ly+Lz).

Whereas using ES, the total number of computations taken to find the optimal location

with maximum sum rate is LxLyLz.

3.5 UAV Trajectory Design towards Optimized Final

Location

3.5.1 Mathematical Analysis

In this section, we find the optimal trajectory of the UAV in travelling from initial to

final location by solving (P2), where final location corresponds to X ⇤ obtained by solving

(P1) in the previous section. In problem (P2), constraint (3.4b) states that the UAV

height is always above the minimum height Hmin to avoid obstacles, i.e., z[n] � Hmin,

8n 2 {1, · · · , N � 1}. If the UAV initial height zI is less than (Hmin � ⌧V ), then the

UAV cannot attain a minimum height Hmin in a time slot. In such a case, we assume

that the UAV only makes vertical movement in z-direction until it attains a height z̄I �

Hmin�⌧V . The number of time slots required to reach the location (xI, yI, z̄I) that satisfies

z̄I � Hmin � ⌧V is given by Sh =
j
Hmin�zI

⌧V

k
and z̄I is given as z̄I = zI + ⌧ShV . Energy

consumed in travelling from (xI, yI, zI) to (xI, yI, z̄I) is given by EI = ShE . Therefore,

when the UAV height is less than Hmin, the UAV is constrained to move vertically in
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Figure 3.1: Proposed scheme to obtain the optimal trajectory for problem (P3).

z-direction to reach (xI, yI, z̄I). Thereafter, we re-frame the problem (P2) to optimize the

UAV trajectory in travelling from (xI, yI, z̄I) to the deployment location by adjusting the

energy availability and time elapsed in going from the initial to (xI, yI, z̄I) as follows

(P3) : max
N,{x[n],y[n],z[n]}
8n2{Sh+1,··· ,N}

Qavg , 1

N

NX

n=Sh+1

KX

k=1

Rk[n] (3.7a)

s.t. (3.4a), (3.4d), (3.7b)

z[n] � Hmin, 8n 2 {Sh + 1, · · · , N � 1}, (3.7c)

k(x[n], y[n], z[n])� (x[n� 1], y[n� 1], z[n� 1])k

= ⌧V, 8n 2 {Sh + 1, · · · , N � 1}, (3.7d)

N � Sh  min

⇢
Emax � EI

E , Nav � Sh

�
. (3.7e)

Constraint (3.7e) represents the total time slots available with the UAV (i.e., N time

slots) in travelling from the initial to the final location while accounting for the initial Sh

time slots utilized in vertical take-o↵. Emax�EI
E denotes the available time slots as per the

on-board energy availability after reaching (xI, yI, z̄I). Nav � Sh denotes the remaining

time slots to reach the final location. Then, according to (3.7e), the UAV can at most

consume the time slots out of Emax�EI
E or Nav � Sh, whichever is minimum.
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3.5.2 Algorithm Design

Problem (P3) is still a non-convex problem due to the presence of non-concave function

Rk[n]. Therefore, to solve (P3), we propose an iterative scheme that searches for the best

location in each time slot sequentially to reach the final location. A UAV flying with

velocity V can reach a distance of ⌧V in a time slot. Therefore, the search space for a

new location in time slot n is a sphere of radius ⌧V , centered at the previous time slot

location, i.e., (n � 1)th-time slot location (x[n � 1], y[n � 1], z[n � 1]). This procedure is

repeated for every time slot until the final location is reached. Figure 3.1 presents the

proposed scheme to solve (P3).

For ease of analysis, we switch to spherical coordinate system. A point in spherical

coordinate system is defined by the azimuth � and polar angle ✓ from the origin. Thus,

instead of directly computing the UAV location for the n
th-time slot, we find the value

of �[n] and ✓[n] from the (n � 1)th location. Origin in our case is considered to be the

(n � 1)th-time slot location i.e., (x[n � 1], y[n � 1], z[n � 1]). Thereafter, we convert the

spherical coordinates to Cartesian coordinates to obtain the UAV location using

x[n] = x[n� 1] + ⌧V sin�[n] cos ✓[n],

y[n] = y[n� 1] + ⌧V sin�[n] sin ✓[n], and (3.8)

z[n] = z[n� 1] + ⌧V cos�[n].

Substituting (3.8) in (3.2), Rk[n] in terms of ✓[n] and �[n] is expressed as

Rk[n] =
B

K
log2

0

BB@1 + �̃o

1�

1+Ce

�D

 
180
⇡

sin�1

"
⌧V cos�[n]p

l
k
[n]

#
�C

! + 

(lk[n])↵

1

CCA , (3.9)

where lk[n] = (x[n�1]+⌧V sin�[n] cos ✓[n]�xk)2+(y[n�1]+⌧V sin�[n] sin ✓[n]�yk)2+

(z[n� 1] + ⌧V cos�[n])2.

In each time slot, the UAVmoves to the best location where the sum rate bRG(✓[n],�[n])

is maximum. Sum rate in time slot n is defined as

bRG(✓[n],�[n]) ,
KX

k=1

Rk[n], (3.10)

where Rk[n] is defined in (3.9). Since (3.10) is non-concave, obtaining a trajectory when

travelling towards the optimal location in each time slot sequentially does not ensure
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Algorithm 2 Steepest ascent algorithm to compute the trajectory

Input: Sh, �, (xk, yk) 8k 2 K, ⌧ , V , ✏, (xI, yI, z̄I) and X ⇤.
Output: x

⇤[n], y⇤[n], z⇤[n], 8n 2 {Sh + 1, · · · , Nav} and N
⇤ = Nav.

1: for n = Sh + 1 to � do
2: Make a sphere of radius ⌧V from (x[n� 1], y[n� 1], z[n� 1]), and a line segment

joining the (x[n � 1], y[n � 1], z[n � 1]) and X ⇤. Denote the intersection point
between (x[n� 1], y[n� 1], z[n� 1]) and X ⇤ as (xs, ys, zs).

3: Evaluate ✓
(0)[n] = tan�1

⇣
ys�y[n�1]
xs�x[n�1]

⌘
and �(0)[n] =

tan�1

✓p
(xs�x[n�1])2+(ys�y[n�1])2

zs�z[n�1]

◆
. Set the initial guesses as ✓

(0)[n] and

�(0)[n].
4: Compute r bRG(✓[n],�[n]) evaluated at ✓(0)[n] and �(0)[n], where bRG(✓[n],�[n]) is

defined in (3.10).
5: Set k = 1.
6: while �r bRG(✓[n],�[n]) � ✏ do

7: Find the search direction
h
✓
(k)
s ,�(k)

s

i
= r bRG(✓(k)[n],�(k)[n]).

8: Calculate step size e↵(k) = arg max
e↵

bRG(✓(k)[n] + e↵(k)
✓
(k)
s ,�(k)[n] + e↵(k)�(k)

s ).

9: Update the result ✓(k+1)[n] = ✓
(k)[n] + e↵(k)

✓
(k)
s and �(k+1)[n] = �(k)[n] + e↵(k)�(k)

s .
10: k = k + 1.
11: Set ✓⇤[n] = ✓

(k)[n] and �⇤[n] = �(k)[n].
12: Find x

⇤[n], y⇤[n], and z
⇤[n] using (3.8).

13: Make a straight line path from X0 to X ⇤ with velocity V . Set N⇤ = (� � 1) +l
kX0�X ⇤k

⌧V

m
. Save the solution as (x⇤[n], y⇤[n], z⇤[n])N

⇤
m=� .

that the UAV will reach the final location in the specified time frame (Nav) or meet the

on-board energy constraints. Therefore, we split our proposed scheme into two parts: 1.)

UAV searches for the optimal location in each time slot and reaches that location. 2.)

UAV takes a greedy approach to reach the final location i.e, it takes a straight-line path

to reach the destination. This implies, in the earlier time slots, we maximize (3.10) to

obtain the optimal location. Then, after certain time slots (say � 2 {Sh + 1, · · · , N}), we

take a straight-line path from the previous time slot to the final location. � depends upon

the number of available time slots such that the UAV reaches the final location within the

specified time slots i.e., N⇤ = min
n

Emax�EI
E , Nav � Sh

o
+ Sh.

The optimal location with a maximum sum rate in each time slot is computed using

the steepest ascent method described in Algorithm 2. In time slot n, we start the steepest

ascent method by taking the initial starting point as ✓(0)[n] and �(0)[n], corresponding

to (xs, ys, zs). This starting point is obtained by drawing a line segment between the

UAV location at (n� 1)th-time slot and the final location X ⇤. The point obtained by the

intersection of the sphere of radius ⌧V and line segment between the (n � 1)th-time slot

and X ⇤ is taken as the initial starting point for the steepest ascent algorithm.
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After computing the initial starting point, at the lth- iteration the algorithm computes

the positive gradient v(l)s , v 2 {✓,�}, of the function at the current point. The steps 6-10

of Algorithm 2 generates the next iteration point v(l+1)[n], v 2 {✓,�}, which takes a step

size ↵̃(l) in the direction v
(l)
s , v 2 {✓,�}, starting from the previous point v

(l)[n]. The

direction v
(l)
s decides which direction to search next, and the step size ↵̃(l) determines how

far we must go in that particular direction to obtain the maximum sum rate. This ↵̃(l) is

chosen such that bRG(v(l)[n] + e↵ v
(l)
s ) is maximized. Thus,

e↵(l) = arg max
e↵

bRG(v
(l)[n] + e↵ v

(l)
s ), (3.11)

where bRG(.) is defined in (3.10) and is solved using GSS. This algorithm continues its

search in the direction which will maximize the function value, given the current point.

The steepest ascent iterates until �r bRG(✓[n],�[n]) � ✏, and later converges to the

local solution ✓
⇤[n] and �⇤[n], where ✏ is the acceptable tolerance threshold. Then,

using (3.8), we change the coordinate system from spherical to Cartesian to compute

(x⇤[n], y⇤[n], z⇤[n]).

Thus, for n < �, a similar approach is followed in each time slot to obtain the optimal

location of UAV for that time slot. In other words, Algorithm 2 describes the steps involved

to obtain the trajectory using steepest ascent for n = {Sh + 1, · · · ,�}. Next, we discuss

how to obtain optimal �.

The appropriate choice of � depends upon the constraint (3.7e). Algorithm 3 is used

to compute � and its corresponding sub-optimal trajectory. The procedure followed in

Algorithm 3 is as follows. It first initializes the value of � to Nav. Thereafter, it calls

Algorithm 2 to obtain the UAV trajectory for given � = Nav using the steepest ascent

algorithm. If constraints (3.4a) and (3.7e) are satisfied, then the obtained trajectory is the

sub-optimal final solution, and the algorithm terminates. Otherwise, it decrements the

value of � by 1 i.e., � = ��1. Now, to obtain the trajectory corresponding to this new �,

for n = {Sh+1, · · · ,��1}, it uses the same locations as obtained from Algorithm 2 in the

previous case (with � = Nav). For n � �, it follows straight-line trajectory to reach the

final location. After computing the trajectory for this new �, it outputs the total number

of time slots (N⇤) required to reach the final location. This implies that (3.4a) is satisfied.

However, constraint (3.7e) needs to be checked. If (3.7e) is satisfied, then the obtained

solution is the sub-optimal trajectory for the given problem. Otherwise, we decrement the

value of � by 1 and follow similar steps to compute the sub-optimal trajectory.

The main benefit of this proposed scheme is that we do not have to compute the
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Algorithm 3 Proposed scheme to obtain solution of (P3)

Input: (xI, yI, z̄I), X ⇤, Sh, EI , E , Nav, (xk, yk) 8k 2 K, V , ✏, Emax.
Output: Q

⇤
avg along with optimal N⇤ and (x⇤[n], y⇤[n], z⇤[n]), 8n 2 {Sh + 1, · · · , N⇤}.

1: Call Algorithm 2 with V and � = Nav to obtain {x⇤[n], y⇤[n], z⇤[n]}Nav

m=Sh+1 and N
⇤.

2: if N
⇤
< min

n
Emax�EI

E , Nav � Sh

o
+ Sh and (x⇤[Nav], y⇤[Nav], z⇤[Nav]) = X ⇤ then

3: The obtained trajectory {x⇤[n], y⇤[n], z⇤[n]}N⇤
n=Sh+1 is the sub-optimal final

trajectory.
4: else
5: while N

⇤
> min

n
Emax�EI

E , Nav � Sh

o
+ Sh do

6: Set � = � � 1.
7: Make a straight-line path from X0 = (x⇤[� � 1], y⇤[� � 1], z⇤[� � 1]) to X ⇤

with velocity V . Set N
⇤ = (� � 1) +

l
kX0�X ⇤k

⌧V

m
. Save the solution as

(x⇤[n], y⇤[n], z⇤[n])N
⇤

n=� .

8: Calculate Rk[n] defined in (3.2), 8n 2 {Sh + 1, · · · , N⇤} and then evaluate Q
⇤
avg =

1
N⇤

P
N

⇤

n=Sh+1

P
K

k=1Rk[n].

trajectory using the steepest ascent method for every �. Instead, it stores the locations of

the UAV obtained by using the steepest ascent method for � = Nav and uses these stored

locations when � < Nav. For n � �, a greedy approach is followed in each iteration to

computes the sub-optimal trajectory. In this way, Algorithm 3 computes �, and N
⇤ and

average sum rate Qavg corresponding to �.

3.5.3 Complexity Analysis

The computation cost of Algorithm 3 depends primarily on the complexity of steepest

ascent. The worst-case complexity of steepest ascent at which the norm of objective

function’s gradient is less than ✏ is O
�
1/✏2

�
[59]. Since the steepest ascent algorithm is

called for Nav time slots, the complexity of trajectory using steepest ascent is O
�
Nav

✏2

�
.

O (Nav) is the computations to compute the appropriate value of �. The total complexity

to compute the sub-optimal solution is O
�
Nav

✏2

�
.

3.6 Result and Discussions

In this section, numerical results are provided to validate the proposed UAV trajectory

model. We consider a system with 10 users [60] that are distributed randomly in a circular

field of radius 150 m, centered at origin. The total communication bandwidth B is set to

1 MHz. The reference SNR at distance d0 = 1 m is taken as �̃o = 80 dB. The modelling

parameters are set as C = 10, D = 0.6,  = 0.2, and ↵̄ = 2.3 [9]. The minimum height

Hmin to be attained by the UAV as described in (3.7c) is 15 m. The fixed time slot
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Figure 3.2: Validation of optimal location at (a) y = y
⇤
es, (b) z = z

⇤
es.

duration ⌧ is set to 0.2 s. The UAV’s initial location is set to (xI, yI, zI) = (-200,0,0) m.

The acceptable tolerance is taken as ✏ = 1⇥ 10�6. The simulation values taken for energy

consumption model are as follows: Po = 79.86W, Pi = 88.63W, Utip = 120, vo = 4.03 m/s,

df = 0.6, ⇢ = 1.225, s = 0.05, and Ar = 0.503 [9].

3.6.1 Optimal Location

To validate the optimal location for UAV deployment, we plot Figure 3.2. The solution

using ES is (x⇤es, y
⇤
es, z

⇤
es). In Figures 3.2(a) and (b), contour lines for sum rate is plotted

against x and z for a given y = y
⇤
es, and x and y for a given z = z

⇤
es, respectively. The

figure also shows that the low-complexity solution obtained using alternating optimization

for the problem (P1) converges to the solution obtained by using ES. On performing

simulations on Intel Core i7 processor with 3.20 GHz CPU clock, the time taken to obtain

the optimal location using ES is approximately 180 minutes, whereas it took approximately

15 minutes to solve the problem using alternating optimization. Thus, we infer that the

proposed alternating optimization scheme provides a better complexity compared to ES.

To validate the proposed optimal deployment location, we compare it with the other

schemes as follows:

• Optimized altitude [39]: Here, the UAV altitude is optimized to obtain a maximum

sum rate of the system while fixing the horizontal coordinates to the center of the

field.

• QoS-aware UAV placement [38]: This scheme finds the 3D placement of UAV by

considering the di↵erent QoS requirements of the ground users to maximize the

achievable sum rate.
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Figure 3.3: Variation of sum rate at optimal location with other schemes by varying
number of users K.

Figure 3.4: Variation of sum rate at optimal location with other schemes by varying field
radius r.

• Geometric center [44], [61]: In this scheme, the horizontal location of the UAV is set

to the geometric center of all users while the UAV altitude is fixed to 25 m.

• Center of the field: In this scheme, the horizontal location is set to the center of the

field while the UAV altitude is set to 25 m.

Figure 3.3 shows the sum rate comparison of the proposed scheme with di↵erent schemes

as addressed above and is plotted by varying the number of users in a circular field of

radius r = 150 m. It is observed that the sum rate of the optimal location is higher than

the other schemes. It is because the proposed scheme jointly optimizes the horizontal

and vertical coordinates of the UAV. In contrast, the other schemes either optimize the

UAV altitude or consider the fixed UAV altitude. Also, a sharp decrease in the QoS-aware

UAV placement scheme is observed because the QoS-based scheme focuses on rate fairness
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Figure 3.5: Insights on sub-optimal trajectories of UAV

rather than maximizing the sum rate.

Figure 3.4 is plotted for K = 20 users by varying the radius of the circular field. As

the field radius r increases, the path loss increases. Thus, the sum rate decreases with an

increase in the field radius. Here the performance of QoS-aware UAV placement is better

than other schemes due to the fixed number of users in a field. Intuitively, the optimal

UAV height should increase with an increase in the field radius. Due to fixed UAV height

in the geometric center and the center of the field cases, the sum rate worsens with an

increase in the field radius. As a result, it gives lower sum rate in comparison to other

schemes.

3.6.2 Trajectory Design Insights

Through Figure 3.5, we give insights on the UAV trajectory for the proposed scheme when

velocity V is set to 15 m/s. The figure is plotted for di↵erent values of total on-board

energy availability Emax and the maximum allowed time slotsNav in (3.7e). Figure 3.5 also

presents the benchmark schemes i.e., straight flight, and inverted-L. In a straight flight

trajectory, UAV follows the straight-line path from the initial location to the destination.

In the inverted-L trajectory, the UAV first moves vertically until the optimal height z⇤ is

reached. Then, it makes a horizontal movement in a straight-line path to reach the final

location. Along with the UAV trajectories, the figure also shows the globally optimal final

location obtained using ES and low-complexity sub-optimal solution obtained by using

alternating optimization for the problem (P1).

In our proposed scheme, the UAV first moves up to the region where the sum rate is

high and, after that, moves to the optimal location. Unlike the other benchmark schemes,

because our UAV quickly reaches the high sum rate region, (though it is not the maximum
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(c)(b)(a)

Figure 3.6: Variation of average sum rate Qavg, time slots attained by the UAV N
⇤, and �

with maximum allowed time slots Nav for di↵erent values of on-board energy availability
Emax.

sum rate but close to the maximum) our trajectory provides better performance than the

benchmark schemes. As stated in Section 3.5, the UAV first travels by calculating the

optimal location for each time slot as long as n is less than �, and afterwards, it travels in

a straight-line to reach the final location. The same can also be observed from Figure 3.5.

Also, the value of � decreases with a decrease in either Emax or Nav. This occurs in order

to meet the constraint (3.7e).

Note that to make a fair comparison between the proposed and the benchmark schemes,

we utilize the concept of time normalization. Under the time normalization framework,

the total time span considered for each of the schemes is the maximum time required by

our proposed scheme to reach the optimal location. Thus, while the UAV in a straight

flight trajectory reaches the destination early, it stays there until the UAV in our proposed

path reaches the destination to compute the average sum rate.

3.6.3 Performance Analysis of Proposed Scheme

To study the variation in average sum rate Qavg, time slots required by the UAV to reach

the destination N
⇤, and � with the change in maximum allowed time slots Nav, we plot

Figure 3.6(a)-(c). The figures are plotted for di↵erent values of Emax = {2350, 2400, 2450}

J. As we know, in early stage, the UAV travels by computing optimal location in each

time slot and later takes a straight-line trajectory to reach the final location. Thus, as

Nav increases, � also increases. This implies that the UAV now follows the optimal path

(obtained using steepest ascent method) for more number of time slots. As a result, N⇤

and Qavg also increases.

Emax also plays an important role in N
⇤ =

n
Emax�EI

E , Nav � Sh

o
+Sh. As we decrease

Emax, � also decreases, and for lower values of Emax, the UAV takes a straight-line
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Figure 3.7: Overall performance improvement in average sum rate over the inverted-L,
straight flight trajectory and fly-hover scheme.

trajectory to reach the final location. Hence, more the on-board energy available, the

better is the average sum rate Qavg. Similarly, less restriction in energy will increase �,

as a result, the number of time slots N
⇤ consumed to reach the final location will also

increase. When the energy constraint is met with equality, there is no change in Qavg, �,

and N
⇤ as seen in Figure 3.6(a)-(c).

3.6.4 Performance Comparison with Benchmark Schemes

In this sub-section, we compare the proposed scheme’s performance with the benchmark

schemes i.e., straight flight, inverted-L, and fly-hover scheme [9], [62]. In the fly-hover

scheme, the UAV first visits the hovering locations (i.e., user’s location with a fixed altitude

HF�H) before reaching the destination. This scheme first computes the visiting sequence

of the hovering locations to maximize the average sum rate. Thereafter, it obtains the

UAV trajectory with the given velocity while keeping in view the energy consumption

and flight duration constraints. Next, we first present the overall percentage improvement

in the average sum rate of our proposed scheme. Secondly, we provide the performance

comparison in a high-scale environment i.e., with a large number of users in a larger area

with high UAV velocity.

To present the overall percentage improvement in the average sum rate of our proposed

UAV flight trajectory as compared to the benchmark schemes, we plot Figure 3.7. These

benchmark schemes are compared by varying the total energy available Emax and the

time slots available Nav for the UAV to reach the final location. It is observed that the

proposed scheme always outperforms the benchmark schemes. This is because, in our

proposed scheme, the UAV takes a path wherein it quickly reaches a region where a high

sum rate can be achieved by first travelling in the vertical direction to attain height and
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Figure 3.8: Variation in average sum rate with the change in the number of users, K,
distributed in a field of radius r = 500 m.

Figure 3.9: Variation in the average sum rate with the change in velocity of UAV, V (m/s).

then travelling towards the final location. On an average, our proposed scheme provides

13%, 7%, and 30% improvement over the straight flight, inverted-L, and fly-hover scheme,

respectively.

Figure 3.8 is plotted by varying the number of users in a circular field of radius r = 500

m, at the flying velocity V = 50 m/s. We assume that the UAV starts its journey from the

initial location at (�550, 0, 0) m and flies towards the final location. The UAV’s on-board

energy and available time slots are set to Emax = 20 kJ and Nav = 80, respectively. As the

number of users and their locations vary, the proposed scheme first computes the optimal

location to compute the UAV trajectory. It can be observed that the proposed scheme

outperforms the other benchmark schemes, and our proposed algorithm can be applied to

a scenario with a large number of users.

Figure 3.9 is plotted by varying the UAV’s velocity to serve K = 800 ground users

randomly distributed in a circular field of radius r = 500 m. At low velocity, the UAV will

take more time to reach the final location. On the other hand, at high velocity, the UAV
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reaches the final location quickly, and the rest of the time slots are utilized for hovering

at the optimal location. Thus, as the UAV’s velocity increases, the average sum rate also

increases. Also, the proposed scheme performs relatively better in comparison to the other

schemes and can be applied to a scenario with a large number of users and high velocity.

3.7 Conclusion

This chapter optimizes the 3D UAV trajectory to maximize the average sum rate over all

users. It is achieved by first computing the optimal deployment location. The optimal

deployment location is computed by obtaining the concave regions and then applying

alternating optimization. The 3D UAV trajectory is optimized to reach the deployment

location using an iterative scheme wherein the UAV travels by searching the optimal

location in each time slot using the steepest ascent method. Results show that the

deployment location obtained using alternating maximization yielded a low complexity

solution while providing a solution close to the globally optimal solution. The UAV

trajectory obtained using our proposed scheme outperformed the benchmark schemes,

with a performance improvement of around 16.5%, on an average. Note that our work

is equally applicable to mobile users, provided that the users’ location is known to

the UAV in each time slot. Our proposed scheme can assist the UAV deployment in

on-demand high-tra�c applications where quick network deployment is required, such as

first-responders in emergencies, service recovery in disasters, etc.

This chapter assumes the UAV to be deployed at an optimal deployment location.

However, in real-world scenarios, there may be some terrain constraints or legal

restrictions; as a result, we cannot deploy the UAV at an optimal location for a long

time duration. In that case, we need to deploy the UAV to the pre-defined fixed final

location as specified by the regulatory authorities. Therefore, it is necessary to analyze

the system when the final location is di↵erent from the optimal deployment location.

Thus, in the next chapter, we proposed a framework where we optimize the trajectory

of the UAV from the initial location to the pre-defined final location in a stipulated time

in the presence of onboard energy constraints.
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Chapter 4

UAV Trajectory Design: Fixed

Initial to Arbitrary Final Location

4.1 Introduction

This chapter studies the flight trajectory of UAV to provide 5G cellular service in a given

area. We consider a single UAV launched from the pre-defined initial to a pre-defined final

location in a stipulated time, during which it serves the ground users that are distributed

in a circular field. UAV’s limited on-board energy has been a major concern a↵ecting the

system’s performance. Therefore, in this work, we minimize the average outage probability

of the system by optimizing the 3D trajectory of the UAV while considering the velocity

and on-board energy as constraints. To solve this problem, we propose two approaches:

the low-complexity vertex and the high-performance sequential approach. The vertex

approach involves two steps. Firstly, it obtains the optimal solution while relaxing the

velocity and on-board energy constraints. Secondly, a greedy solution is proposed for the

original problem. The sequential approach finds the optimal location in each time slot

sequentially. Simulation results compare the two approaches and show that our proposed

strategies provide on an average 41% improvement in average outage probability over the

benchmark schemes. Additionally, we show that the sequential approach is better than

the vertex approach, though at the cost of high computational complexity.

Our present work is motivated by practical scenarios, such as providing coverage to first

responders or providing connectivity in a crowded region, wherein a UAV is to be deployed

in a timely and energy-e�cient manner. This setup can be applied to many practical

applications, such as establishing two-way communication between first responders, and

fire-fighters in an area with inadequate coverage or tra�c o✏oading in a hotspot area,

such as sports events, etc.
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4.1.1 Related Works

A trajectory design for the UAV-assisted communication system needs to address two

main concerns, namely, communication-related performance and energy consumption in

UAV manoeuvring. Over the last few years, a substantial number of studies have been

carried out in the above areas, for which we provide a survey on the relevant prior work.

In communication-oriented trajectory design, UAV as an amplify-and-forward relay

was considered in [63] to optimize the trajectory and transmit power of the UAV by

minimizing the outage probability of the relay system. In [45], UAV 2D trajectory

was optimized for full-duplex UAV aided small cell wireless systems to maximize the

total system capacity. The authors in [64] jointly optimized buoy sensors communication

scheduling, UAV trajectory, and system power to minimize the maximum average outage

probability among all buoy sensors. In [47], the UAV trajectory was optimized by

minimizing the average outage probability over all users considering a probabilistic LoS

channel model. Due to the limited resources available with the UAVs, user scheduling and

UAV trajectory were jointly optimized in [65] and [44] to maximize the minimum data

collection rate in UAV-enabled wireless sensor networks.

As there is limited on-board energy available with the UAVs, their energy must

be utilized e↵ectively to increase the system’s performance. The above works on

communication-oriented trajectory design do not consider the energy availability at the

UAV. The energy consumed by the UAV was first emphasized in [10] for a fixed-wing

UAV and in [9] for a rotary-wing UAV. In both works, the authors maximized energy

e�ciency while achieving the user’s minimum rate requirement. Similarly, [66] considered

coverage as a constraint to optimize the trajectory and minimize the energy consumption.

The 3D trajectory of a UAV relay was designed in [30] to maximize the system energy

e�ciency while meeting the constraints on UAV trajectory, data rate requirement, and

communication and mechanical energy consumption. The authors in [49] focussed on

jointly optimizing the user scheduling, power, and bandwidth allocation along with the

trajectory to maximize the UAV energy e�ciency in the presence of quality-of-experience

(QoE) requirements of the users. On the same note, the aim in [50] was to serve the edge

users and assist in tra�c o✏oading while the UAV flew in a circular path. Similarly, the

works [67], and [68] also considered the energy e�ciency to design the 2D trajectory of

the UAV.

The works presented so far have focused on UAV trajectory design based on

energy e�ciency and outage minimization, individually. In all of the above-highlighted
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works, energy e�ciency was considered as an objective function for obtaining an

optimal UAV trajectory. However, from the perspective of communication systems,

communication-related performance metrics, such as outage, throughput, etc., should

be regarded as objective functions, while energy consumption can be included in the

constraints. This UAV energy consumption as a constraint ensures that the UAV

completes its mission without completely exhausting the available on-board energy.

Towards this end, the authors in [69] and [53] considered the energy consumption

constraint to optimize the UAV flight trajectory when flying at a fixed altitude while

considering the LoS UAV-user channel model. In particular, [69] considered UAV flying

energy consumption to be independent of velocity while [53] considered the energy

consumption model for a fixed-wing UAV. Moreover, in [70], the authors considered LoS

channel model with an objective to maximize coverage to a number of ground users to

design the 2D trajectory of the UAV in the presence of energy constraints. Whereas, the

authors in [71] considered the 2D trajectory under a probabilistic LoS channel model but

assumed the UAV to move with a fixed velocity. Also, the work in [72] took the energy

constraint and minimized total outage duration in a LoS channel.

The above works [69]-[72] considered the energy constraint to design the 2D trajectory

of the UAV. However, for a rotary-wing UAV, there are very few works for 3D trajectory

design in a probabilistic LoS channel model. Some of the works are as follows. The

authors in [73] studied the 3D trajectory design by considering the energy consumption as

a constraint to maximize the overall throughput of the system but considered the UAV to

move with the fixed maximum velocity. This is not applicable to scenarios when UAV have

a less limited energy, where the decrease in UAV velocity saves certain amount of energy.

To this extent, the authors in [74], considered the variable speed to design UAV trajectory

for the same scenario. However, they designed the UAV trajectory while considering the

analysis only under the LoS condition and not considering the NLoS condition which is

oversimplified. Table 4.1 describes the short summary of related work with key di↵erences

that considers the energy constraint.

4.1.2 Contributions and Organization

We consider the scenario where a UAV has to fly from a pre-defined initial to a pre-defined

final location in a stipulated time and energy availability to provide coverage to a given

set of users. Compared to the prior works [73] and [74], our present work considers a 1)

realistic trajectory design (with varying altitude). 2) Practical UAV-user channel model
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Table 4.1: Short summary of related works that considers energy constraint in their
model. P.LoS is the probabilistic LoS channel model.

Ref. Objective Channel/Traj. Key di↵erences

[69]
Maximize the system’s throughput
to optimize the UAV trajectory

LoS / 2D
Considered 2D trajectory and LoS dominant

links

[53]
Minimum average rate maximization

and energy e�ciency
LoS / 2D

Considered the analysis with fixed-wing
UAV

[70]
Maximize coverage to a number

of ground users
LoS / 2D Coverage as a performance metric

[71]
Maximize the throughput of the network

during the flight time
P.LoS / 2D

Considered the UAV to move with fixed
velocity

[72] Minimization of total outage duration LoS / 2D
LoS dominant links and the UAV with fixed

height

[73] Overall throughput maximization P.LoS / 3D
UAV moves with fixed maximum

velocity

[74] Maximize the minimum throughput P.LoS / 3D
Analysis only under the LoS

conditions

i.e., Probabilistic LoS channel model [23] considering probabilities of both the LoS and

NLoS links, as opposed to [74] which only examines LoS links for analysis. 3) Velocity

dependent energy consumption model for a rotary-wing UAV such as drones [9] in the

presence of mobility constraints, which [73] assumed the UAV to fly with a fixed velocity.

Based on the above di↵erences, this work considers the UAV deployment from a practical

standpoint which cannot be derived from the prior works in the literature due to their

unrealistic assumptions, such as fixed UAV velocity or LoS channel model.

The key contributions of this work are listed below:

• An optimization problem is framed to minimize the average outage probability over

all ground users by optimizing the 3D UAV trajectory, while considering the velocity

and total on-board energy constraints under probabilistic LoS channel model that

incorporates the probabilities of LoS link and NLoS link separately.

• Noting the non-convexity of the problem, we present the low-complexity vertex

approach in Section 4.4, where the 3D location with minimum outage probability is

computed followed by greedy approach to obtain a UAV trajectory. To obtain 3D

location, the optimal location problem is framed and the globally optimal solution

within acceptable tolerance is obtained.

• To improve upon the vertex solution, we present a high-performance sequential

approach discussed in Section 4.5. It starts from the initial location and searches for

the optimal UAV location in each time slot sequentially.

• Numerical results provide useful insights on the UAV trajectory obtained from both

the approaches and compares them with the benchmark schemes. For both the

approaches, the impact of velocity on the average outage probability is shown, and
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a trade-o↵ between UAV velocity and energy availability is studied.

• In particular, our proposed vertex and sequential approaches show on an average

31% and 52% improvement over the benchmark schemes, respectively.

Rest of the chapter is organized as follows. Section 4.2 provides the overview of the

communication system model. Section 4.3 presents the problem formulation. Section, 4.4

and 4.5 describe the methodologies proposed followed by their computational complexities.

Numerical results are provided in Section 4.6, followed by conclusion in Section 4.7.

4.2 System Model

4.2.1 Communication Setup

For a given downlink communication model and UAV trajectory model as described in

Chapter 2 and also shown in Figure 2.1, the UAV has to complete its mission (going

from the initial location XI to the final location XF to serve the K ground users in

N time slots while assuming the time slot duration to be fixed for each time slot,

i.e., ⌧ [n] = ⌧ , 8n. Given the ground users and the UAV location at the n
th-time

slot, the distance between the UAV and the k
th-user at any time slot n is given by

dk[n] =
p

(x[n]� xk)2 + (y[n]� yk)2 + z[n]2. Velocity of the UAV within each time slot

is given by

v[n] , 1

⌧

�
(x[n]� x[n� 1])2 + (y[n]� y[n� 1])2 + (z[n]� z[n� 1])2

� 1
2 . (4.1)

4.2.2 Performance Metric

In this work, we assume that alongside Probabilistic LoS channel model, the channel

between the UAV and the user also undergoes the small-scale fading due to rich scattering.

Thus, the channel between the UAV and the k
th-user at the n

th-time slot is modelled as

gk[n] =
p

hk[n]h̃k[n], where h̃k[n] accounts for small-scale fading while hk[n] accounts for

large-scale attenuation which includes path loss as described in (2.13).

Then, the received SNR, denoted by �k[n], between the k
th-user and the UAV at time

slot n is given as �k[n] =
Ptr|gk[n]|2

�2
n

, where Ptr represent the transmit power of the UAV,

and �
2
n is the noise power. Furthermore, for simplicity and without loss of generality,

we assume Rayleigh fading channel so that the probability density function of SNR �k[n]

follows exponential distribution f�k[n](�k[n]) =
1

�̄k[n]
e

�
k
[n]

�̄
k
[n] , where �̄k[n] is the average SNR



52 Chapter 4. UAV Trajectory Design: Fixed Initial to Arbitrary Final Location

given by �̄k[n] =
PtrE[hk[n]]

�2
n

. This is in line with [75] and is obtained when E[|h̃k[n]|2] = 1,

and E[hk[n]] as defined in (2.13). Substituting E[hk[n]] in �̄k[n], we get

�̄k[n] =
�̃o((1� )PL

k
[n] + )

((x[n]� xk)2 + (y[n]� yk)2 + z[n]2)↵
, (4.2)

where �̃o , Ptrd0/�
2
n and ↵ , ↵̄/2.

Outage probability of the k
th-user, defined as the probability that the received SNR

falls below the threshold �th [76]. Here, for a Rayleigh fading channel, the outage

probability P
k
out[n] of k

th-user follows P
k
out[n] = 1 � e

� �
th

�̄
k
[n] . Using (4.2), the outage

probability of kth-user is given as

P
k

out[n] = 1� e

✓
� �

th

�̃o

((x[n]�x
k
)2+(y[n]�y

k
)2+z[n]2)↵

(1�)PL

k
[n]+

◆

. (4.3)

In this work, we minimize the outage probability (4.3) averaged over all users and time to

obtain the optimal trajectory.

Lemma 3. The energy consumed by the UAV defined in (2.2) is a pseudoconvex function

with respect to v
xy[n].

Proof. See Appendix A.2.1.

4.3 Problem Formulation

We intent to minimize the outage probability averaged over time and users by optimizing

UAV trajectory (x[n],y[n],z[n]), while meeting the constraints on trajectory and energy

consumption model. Our optimal designs are aimed at serving applications with a UAV

communication system-centric goal, rather than individual user-level, where the best-e↵ort

delivery is desired to minimize the aggregate outage probability. Then, the optimization

problem is formulated as

(P1) : min
{x[n],y[n],z[n]}

8n2N

1

NK

NX

n=1

KX

k=1

P
k

out[n]

subject to (s.t.) :
NX

n=1

e[n]  Emax, (4.4a)

(x[N ], y[N ], z[N ]) = (xF, yF, zF), (4.4b)

z[n] � Hmin, 8n 2 N , (4.4c)

v[n]  Vmax, 8n 2 N , (4.4d)
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where (4.4a) is the energy consumption constraint with e[n] defined in (2.2) and v[n] is

defined in (4.1). Emax in (4.4a) represents the on-board energy available with UAV for

completing the mission. Constraint (4.4b) ensures that the UAV reaches the final location

within N slots, and (4.4c) represents the minimum height Hmin required by UAV to avoid

collisions. We assume zF � Hmin. If zI < Hmin, we constrained the UAV to move vertically

in z-direction until minimum height Hmin is achieved. Constraint (4.4d) represents the

maximum velocity constraint of the UAV. To obtain the solution to the above problem,

we first present the following proposition.

Proposition 1. Using bP k
out[n] defined below in (4.5) instead of P k

out[n] defined in (4.3) in

problem (P1) is equivalent.

bP k

out[n] ,
�th

�̃o
((x[n]� xk)2 + (y[n]� yk)2 + z[n]2)↵

(1� )PL

k
[n] + 

. (4.5)

Proof. Using e
�a ⇡ 1�a, 8a ⌧ 1, in (4.3), since the P k

out is a strictly increasing function of

bP k
out, the two optimization problems with objective functions bP k

out and P
i
out are equivalent

and share the same set of optimal points (x⇤[n], y⇤[n], z⇤[n]) [77]. The optimal values are

related as P k⇤
out = 1� e

� bPk⇤
out .

Accounting the above proposition, we modify (P1) by substituting bP k
out[n] instead of

P
k
out[n] as follows

(P2) : min
{x[n],y[n],z[n]}

8n2N

bPavg , 1

NK

NX

n=1

KX

k=1

bP k

out[n],

s.t. : (4.4a)� (4.4d).

The objective function in (P2) is non-convex with respect to x[n], y[n] and z[n], 8n 2 N .

We propose two solutions based on computational complexity, namely, a low-complexity

vertex approach with moderate performance and a high performance sequential approach

with higher complexity. However, the high computational complexity of sequential

approach limits its practical usage when deploying the UAV in a realistic scenario for faster

deployment. Thus, to mitigate this issue, we need to have a faster solution. Therefore, we

introduce the vertex approach. The vertex approach is practically a very fast algorithm

than the sequential one, but we have to sacrifice a bit on the performance to adopt this

algorithm. Thus, there exists a trade-o↵ between the performance and the complexity.

Moreover, the vertex approach is a greedy scheme that computes the optimal location

of the UAV in 3D space, where the average outage probability is minimum, and builds

a trajectory by using this optimal location (as discussed in Section 4.4). On the other
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3D trajectory design

Vertex Approach Sequential Approach
Computes -globally
optimal location (vertex)

One run greedy approach

Low-complexity High-complexity
Moderate performance High performance

Computes optimal
location in each time
slot (  locations)

Figure 4.1: Motivation and brief description of proposed solutions.

hand, the sequential approach is a sub-optimal scheme that forms the trajectory while

computing the optimal location at every time slot (shown in Figure 4.3, Section 4.5). The

higher complexity of the sequential approach than that of the vertex approach is discussed

in Section 4.6.1. The brief description on the two approaches is shown in Figure 4.1.

In this section, we propose a low-complexity greedy solution. The key idea is to first

relax the on-board energy and velocity constraints i.e., (4.4a) and (4.4d), respectively, in

(P2), then obtain the optimal trajectory that comprises of the initial location, the optimal

location (we call it vertex ), and the final location. Note that the UAV will not directly

go to the final location as the outage at the final location may not be minimum. Thus,

the UAV will stay at the vertex till n < N . Accordingly, we relax (4.4a) and (4.4d), and

introduce a new problem to obtain the best location in 3D space (vertex ) where the average

outage probability is minimum. Then, we utilize this vertex to obtain a greedy solution

to (P2) while accounting for velocity and on-board energy constraints. This approach is

named as vertex approach because it constructs the UAV trajectory by following the vertex

as shown in Figure 4.2.

4.4 Vertex Approach: Proposed Solution I

4.4.1 Vertex Computation

In this sub-section, our objective is to compute the vertex by relaxing (4.4a) and (4.4d)

in (P2). As the outage probability bP k
out[n] defined in (4.5) is a function of the location

of fixed ground users (xk, yk), 8k 2 K and UAV, we will get a single location in 3D space

where the average outage probability is minimum. Next, we define a new optimization

problem (P3) to compute the vertex while omitting [n] as follows

(P3) : min
{x,y,z}

P̄out,

s.t. |x|, |y|  r;Hmin  z  Hmax,
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Q

XI

(xF, yF, zF) 

Initial Location

Final Location

Vertex

Vertex approach
Vertex approach with strict 
constraints
Straight flight trajectory

(xI, yI, zI) 

(xI, yI, zI) XI

XF

Figure 4.2: Vertex approach to obtain the 3D UAV trajectory.

Algorithm 4 Solution of (P3) using alternating optimization

Input: �r  x  r, �r  y  r, Hmin  z  Hmax, K, (xk, yk), 8k 2 K, and ✏.
Output: P̄

⇤
out along with X ⇤ = (x⇤, y⇤, z⇤).

1: Initialize l = 1, P̄ 0
out = 1, P̄ 1

out = 0.99, x1 = y
1 = �r, and z

1 = Hmin.
2: while P̄

l�1
out

� P̄
l
out  ✏ do

3: Apply 2D GSS on P̄out to obtain x
l+1 and y

l+1 for fixed z
l.

4: Apply 1D GSS on P̄out to obtain z
l+1 for fixed x

l+1 and y
l+1.

5: Compute P̄
l+1
out

for (xl+1
, y

l+1
, z

l+1).
6: Set l = l + 1.
7: Set (x⇤, y⇤, z⇤) = (xl, yl, zl) and P̄

⇤
out = P̄

l
out.

where P̄out , 1
K

P
K

i=1
bP k
out with bP k

out defined as in (4.5). As users are present in the

coverage field of radius r centered at origin, it is convenient to assume that the optimal

points x⇤ and y
⇤ will lie within the coverage field. Thus, �r  x  r, �r  y  r, and z is

constraint by Hmax. Hmax is maximum flying height of the UAV. Since P̄out is non-convex

in x, y, and z, it is di�cult to obtain the globally optimal solution.

We apply alternating optimization to obtain the solution to (P3). In alternating

optimization [78], we iteratively optimize the objective function with respect to the

horizontal (x, y) and vertical (z) coordinates by applying the GSS [79] to compute the

minimum in each dimension i.e., horizontal (x, y) and vertical (z) coordinates. To show

that the GSS converges to the optimal solution in each iteration, we present a proof for

pseudoconvexity of P̄out in the horizontal (x, y) and vertical (z) coordinates as follows

Lemma 4. P̄out is a jointly pseudoconvex function of x and y for any given value of z,

and P̄out is a pseudoconvex function of z for any given value of x and y.

Proof. See Appendix A.2.2.

Lemma 2 ensures that the GSS converges to the optimal location in each iteration.
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Algorithm 5 ✏-globally optimal solution

Input: �r  x  r, �r  y  r, Hmin  z  Hmax, N , (xk, yk), 8k 2 K, and ✏.
Output: P̄

⇤
out with X ⇤ = (x⇤, y⇤, z⇤).

1: Compute RC using (A.2.13), as defined in Appendix A.2.3.
2: Let X = (x, y, z). For RC , compute X ⇤

1 = arg min
X

P̄out using steepest descent with ✏.

3: Evaluate X ⇤
2 = arg min

X
P̄out using linear search over the region RNC = R/RC by

keeping step size ✏.
4: Obtain X ⇤ = arg min

{X ⇤
j
}
P̄out for j 2 {1, 2}.

5: Set P̄ ⇤
out to P̄out corresponding to X ⇤.

Algorithm 4 describes the steps involved in the alternating optimization. In each iteration

l, we optimize (x, y) fixing the z obtained in the last iteration, and then obtain optimal z

by fixing (x, y). The algorithm converges when P̄
l�1
out

� P̄
l
out  ✏, where P̄

l�1
out

and P̄
l
out are

the outage probability obtained at (l � 1)th and l
th iterations, respectively, and ✏ is the

pre-defined tolerance threshold.

Next, we propose a ✏-globally optimal solution where the obtained solution lies in the

✏-neighbourhood of the globally optimal solution. In this, we first obtain the conditional

convexity of P̄out. Thereafter, we apply steepest descent in the convex region and linear

search in the non-convex region to obtain a low-complexity solution. In the following, we

provide the region over which the function is convex.

Lemma 5. The region over which P̄out is jointly convex in x, y, and z is given by RC ,

where RC is defined in (A.2.13).

Proof. See Appendix A.2.3.

Thus, the problem (P3) is convex in region RC and non-convex in region RNC =

R/RC , where R is the region defined by �r  x  r, �r  y  r, and Hmin  z  Hmax.

Then first, by applying steepest descent in RC with acceptable tolerance ✏ and later

using linear search in RNC by taking step size ✏, we can obtain two optimal solutions

within an acceptable tolerance ✏. Best among the two solutions is termed as ✏-globally

optimal solution for which P̄out is minimum. Algorithm 5 describes the steps to obtain

the ✏-globally optimal solution X ⇤ for (P3).

4.4.2 UAV Trajectory without Energy and Velocity Constraint

The solution to (P3) is called the vertex (X ⇤) represents the solution obtained by using

Algorithm 4 or Algorithm 5. Then, the path traced by the UAV in travelling from the
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initial (XI) to X ⇤ and then to the final location (XF ) while hovering at X ⇤ for all n 2

N\{N} is defined as the optimal path of (P2) when (4.4a) and (4.4d) are relaxed.

The UAV velocity Vopt is obtained for the slot over which the distance travelled by

UAV is maximum which is given by

Vopt=max

⇢
k(xF, yF, zF)� X ⇤k

⌧
,
k(xI, yI, zI)� X ⇤k

⌧

�
. (4.6)

4.4.3 Proposed Vertex Approach

As seen earlier, the optimal trajectory when the energy and velocity constraints are relaxed

consists of only three distinct locations - the initial, the vertex, and the final locations,

where for all m 2 N\{N} slots, the UAV hovers at the vertex. The presence of on-board

energy (4.4a) and velocity (4.4d) constraints will restrict the UAV to reach the vertex X ⇤

in a single time slot.

At the vertex X ⇤, the average outage probability is minimum. Our objective is to

reach this vertex as quickly as possible and stay there for longer time periods to minimize

the average outage. In case, due to insu�cient on-board energy or low velocity, if the

UAV cannot reach the vertex, then it should at least approach the vertex while transiting

towards the final location. This implies that the UAV will move with velocity Vmax in this

approach.

Assuming that the su�cient energy is available with the UAV, whenever Vmax � Vopt

in (4.4d), with Vopt defined in (4.6), the velocity constraint will not a↵ect the trajectory.

This is because the UAV can still reach the vertex X ⇤ in a single time slot. Then, Vopt

can be treated as upper bound on the velocity. However, if Vmax < Vopt, the UAV will

first move in the direction of X ⇤ and then towards the final location. This implies the

UAV now takes multiple time slots to reach X ⇤. As a result, the UAV path consists of

many locations while travelling towards X ⇤ and then towards the final location. Here,

the outage at all other locations will be higher than X ⇤. Therefore, bPavg in this case will

always be higher than that obtained when energy and velocity constraints are relaxed.

Therefore, the bPavg obtained in (P2) while relaxing (4.4a) and (4.4d) is defined as the

asymptotic outage of bPavg.

To obtain the solution of (P2) i.e., while considering the on-board energy consumption,

we present Algorithm 6. The steps involved in Algorithm 6 are as follows
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Algorithm 6 Vertex approach to obtain solution of (P2)

Input: (xI, yI, zI), (xF, yF, zF), K, N , Vmax, (xk, yk), 8k 2 K, Emax, ⌧ , and ✏.
Output: bP ⇤

avg with optimal x⇤[n], y⇤[n], and z
⇤[n], 8n 2 N .

1: Find the vertex X ⇤ using Algorithm 4 or 5.
2: if zI < Hmin then

3: UAV flies vertically up with Vmax for NI =
l
Hmin�zI

⌧Vmax

m
time slots. Set z̄I , z[NI ] =

zI + NI⌧Vmax and EI , NIE(Vmax) be the energy to reach z̄I . Calculate bP k
out[n]

using (4.5), 8n 2 {1, · · · , NI}.
4: else
5: Set z̄I = zI and NI = EI = 0.

6: Initially, set vallow = Vmax and assuming there is su�cient energy available.

7: Calculate N1 =
l
k(xI,yI,z̄I)�X ⇤k

⌧Vallow

m
and N2 =

l
kX ⇤�(xF,yF,zF)k

⌧Vallow

m
. Set Nv = N1 +N2.

8: if Nv  N �NI then
9: Make a straight line from (xI, yI, z̄I) to X ⇤ and from X ⇤ to (xF, yF, zF) each

containing N1 and N2 locations, respectively. For N � NI � Nv time slots, the
UAV will stay at X ⇤.

10: Set the obtained locations as solution i.e., (x⇤[n], y⇤[n], z⇤[n]), 8n 2 {NI +
1, · · · , N}, and obtain bP ⇤

avg , 1
NK

P
N

n=1

P
K

k=1
bP k
out[n] by calculating bP k

out[n] using
(4.5).

11: else
12: Solve optimization problem (4.7), where Q passes through a location in a line

segment drawn perpendicular to the straight flight trajectory from the X ⇤.
13: Repeat step 7 and step 9 with Q instead of X ⇤ to obtain trajectory and calculate

bP ⇤
avg using step 10.

14: Calculate v[n] and then e[n], 8n 2 {NI +1, · · · , N}, using (4.1) and (2.2), respectively.
Then, calculate Eh =

P
N

n=NI+1 e[n].
15: if Eh + EI  Emax then
16: The obtained is feasible and is the proposed vertex solution.
17: else
18: Find percentage energy decrease: ER =

⇣
Eh+EI�Emax

Eh+EI

⌘
⇥ 100.

19: Find E(vallow) by substituting v[n] = vallow into (2.2).
20: Obtain new energy per slot: EN = E(vallow)� [(ER/100)⇥ E(vallow)].
21: Solve equation (2.2) i.e., E(v[n]) = EN for v[n]. Denote the roots as: V1 and V2.

Set vallow = max{V1,V2}.
22: while ER > 0 do
23: Repeat steps 7 to 22 with vallow and set the solution.

Initial Check on zI

Whenever z0 < Hmin, we constrained the UAV to move vertically in z-direction until

minimum height Hmin is achieved. Thus, if zI < Hmin, the UAV will take NI =
l
Hmin�zI

⌧Vmax

m

slots to reach a z[NI ] = zI + ⌧NIVmax. Beyond this, the UAV can make horizontal

movement. Let z̄I , z[NI ] = zI +NI⌧Vmax, and EI , NIE(Vmax) be the energy required

to reach z̄I , where E(Vmax) is calculated using (2.2) with v[n] = Vmax.
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Time Constrained Trajectory

While we relax the energy constraint, the UAV moves with velocity Vmax first to reach

the vertex and then to the final location. The minimum time taken to reach the final

location is Nv =
l
k(xI,yI,z̄I)�X ⇤k

⌧Vmax

m
+
l
kX ⇤�(xF,yF,zF)k

⌧Vmax

m
. If the UAV cannot reach the final

location in the stipulated time, then to reduce its flight time, the UAV takes a shorter

path closer to the straight-line path as shown in Figure 4.2. We draw a perpendicular from

the vertex to the shortest path. The UAV passes through one of the locations through

this perpendicular such that it passes through a point close to the vertex and the time

taken by the UAV is equal to N . This point Q as shown in Figure 4.2 can be obtained by

solving the following optimization problem

min
Q

kQ� X ⇤k

s.t.

⇠
kQ� X̄Ik
⌧Vmax

⇡
+

⇠
kQ�XF k
⌧Vmax

⇡
+

⇠
kX̄I �XIk
⌧Vmax

⇡
 N, (4.7)

where X̄I = (xI, yI, z̄I). This part is described in Step 6-13 of Algorithm 6.

Time and Energy Constrained Trajectory

After obtaining the UAV trajectory with given velocity, we compute the total energy

consumed by the UAV in travelling from the initial X̄I , (xI, yI, z̄I) to the final location

using Eh , P
N

n=NI+1 e[n], with e[n] defined in (2.2). If the energy consumed by the UAV

is lesser than the total on-board energy available i.e., Eh + EI  Emax, then the obtained

solution is feasible and this is our final vertex solution. However, if Eh + EI > Emax,

we compute a new velocity, to meet the energy consumption constraint. This is done by

calculating the percentage energy to be decreased from each slot to get the new energy

requirement as described in Step 18 i.e., ER =
⇣
Eh+EI�Emax

Eh+EI

⌘
⇥ 100. This new energy

requirement will result in the new maximum allowed UAV velocity denoted by vallow,

which is obtained by solving (2.2) for v[n]. After computing vallow, the UAV now travels

with vallow instead of Vmax. With this new vallow, we again compute trajectory using Step

7-13 of Algorithm 6. Then with this new trajectory and velocity, we compute the energy

consumed and iterate to meet the energy as well as time requirements. Therefore, vallow

is a result of the trade-o↵ between constraints (4.4a) and (4.4d). Finally, the algorithm

returns the greedy solution of (P2).

Remark 1. The implementation of the Algorithm 6 is based on the fact that the users’

location is known to the UAV. However, when the users location/mobility is unknown,
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various estimation methodologies must be used to aware the UAV with the locations of the

ground users.

4.4.4 Complexity Analysis

In this sub-section, we discuss the computational complexity of the vertex approach. First,

we obtain the computations in obtaining the vertex location using Algorithm 4 and 5.

Thereafter, we state the complexity of the proposed vertex approach.

Alternating Optimization: Algorithm 4 presents the solution to problem (P3) using

alternating optimization. The algorithm gives the alternating optimization sequence until

(P̄ l�1
out

� P̄
l
out)  ✏. It works iteratively by applying 2D GSS followed by 1D GSS in

every iteration. In GSS, the search spaces �x = (xub � x
lb), �y = (yub � y

lb), and

�z = (zub � z
lb) reduces by a factor of 0.618 in each iteration. X lb and X ub denote the

lower and upper bounds on variable X 2 {x, y, z}, respectively. Values of the bounds are

set as x
lb = y

lb = �r, z
lb = Hmin, and x

ub = y
ub = r, zub = Hmax. Let Ll represents

the average number of executions, then the number of iterations are given as Litr =

2Ll

⇣
ln
⇣
max{�x,�y}

✏

⌘
+ ln

�
�z

✏

�⌘
, where the first and the second term are the iterations

involved in step 3 and step 5 of Algorithm 4, respectively.

✏-globally optimal solution: Algorithm 5 presents the solution to problem (P3).

The algorithm first computes the convex region using (A.2.13) and then apply steepest

descent in the convex region and linear search in the non-convex region. The steepest

descent can take O
�
✏
�2
�
iterations to find an iterate where the Euclidean norm of the

gradient is lesser than a pre-defined tolerance [80]. The worst-case complexity of Algorithm

5 when no convex regions are found is given by O(L3), where L represents the set of x, y,

and z. Then the number of iterations are given as Litr = O
�
✏
�2
�
O(L3).

Proposed vertex approach: Algorithm 6 finds the solution to (P2) using the greedy

algorithm. The number of iterations involved in Algorithm 6 while ignoring Step 1 depends

upon obtaining the velocity vallow that satisfies the energy constraint. Let Le denote the

iteration count. Then, the overall iterations involved in the vertex approach is given by

Litr + Le, where Litr is for ✏-globally optimal solution or alternating optimization.

The numerical value obtained for Le is described in Section 4.6.1. The term

low-complexity used for the vertex approach will be verified when we discuss the average

number of iterations involved in proposed approaches in Section 4.6.1.
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Figure 4.3: UAV 3D trajectory design under sequential approach.

4.5 Sequential Approach: Proposed Solution II

4.5.1 Proposed Sequential Approach

Intuitively, whenever the UAV is away from the coverage field, to achieve low outage or

better LoS link, the UAV has to make large upward movement. In the vertex approach,

the greedy solution to (P2) does not guarantee an optimal trajectory. Thus, to obtain a

better trajectory, in this section, we propose a sequential approach. Unlike vertex approach

that travels in a single direction towards the vertex, the sequential approach searches for

an optimal location in each slot sequentially to reach the final location by keeping in view

the velocity constraint. Thereafter, the energy constraint is met in the same way as in

vertex approach. Note that, as seen in vertex approach, if zI < Hmin, then UAV will make

vertical movement to z̄I as shown in Section 4.4.3.

The reach of the UAV in each slot depends upon its location in the previous slot, since

it is constrained by velocity. We adopt a heuristic approach where the UAV starts with

the initial location and moves to an optimal new location in the next slot. Similarly, the

UAV moves in further slots until the (N � 1)th-time slot. In this way, we sequentially

obtain the optimal points in each slot to determine the UAV trajectory.

To find the optimal location in the n
th-time slot, we first determine the region where

the UAV should move to. To determine this, we first define the reachable region of the

UAV within a slot from the (n � 1)th-time slot as In. Here In is a sphere of radius

S = ⌧Vmax. Similarly, Bn defines the region from which the final location is reachable in

(N � n) time slots. So, Bn is a sphere of radius Sn = ⌧(N � n)Vmax, centered at the final

location. The regions In and Bn are shown in Figure 4.3. Then, the feasible region for



62 Chapter 4. UAV Trajectory Design: Fixed Initial to Arbitrary Final Location

Algorithm 7 Sequential approach to obtain solution of (P2)

Input: (xI, yI, zI), (xF, yF, zF), K, N , Vmax, (xk, yk), 8k 2 K, Emax, ⌧ , RC and ✏.
Output: bP ⇤

avg with optimal x⇤[n], y⇤[n], and z
⇤[n], 8n 2 N .

1: Repeat steps 2 to 5 of Algorithm 6 to find z̄I , NI , and EI and calculate P̄out[n] ,
1
K

P
K

k=1
bP k
out[n], 8n 2 {1, · · · , NI}, with bP k

out[n] defined in (4.5).
2: Let X0 = (xI, yI, z̄I), XF = (xF, yF, zF), and set vallow = Vmax.
3: for n = NI + 1 : N � 1 do
4: Set S = vallow⌧ and make a sphere of radius S centered at X0 and denote the

region as In.
5: Set Sn = vallow(N�n)⌧ and make a sphere of radius Sn centered at XF and denote

it by Bn.
6: Find Fn = In

T
Bn.

7: Calculate R1 = Fn

T
RC and R2 = Fn/R1.

8: Let X [n] = (x[n], y[n], z[n]). For R1, compute X ⇤
1 [n] = arg min

X [n]
P̄out[n] ,

1
K

P
K

k=1
bP k
out[n], using GSS with ✏.

9: Evaluate X ⇤
2 [n] = arg min

X [n]
P̄out[n] using linear search over the region R2 by keeping

step size ✏.
10: Obtain X ⇤[n] = arg min

X ⇤
j
[n]

P̄out[n] for j 2 {1, 2}.

11: Update X0 = X ⇤[n] and set P̄ ⇤
out[n] = P̄out[n].

12: Calculate bP ⇤
avg = 1

N

P
N

n=1 P̄
⇤
out[n].

13: Repeat steps 14-21 of Algorithm 6 to update vallow and find ER.
14: while ER > 0 do
15: Repeat steps 3 to 13 with vallow and find the solution.

the UAV to move to in the n
th-time slot is given by Fn = In

T
Bn. Therefore, instead of

the entire region In, the optimal location in each time slot is searched in region Fn. To

obtain the optimal location in Fn, we identify the regions in Fn, where the function is

convex/non-convex and then use the search methods to obtain the next slot location to

move to. The region over which the function is convex can be computed using (A.2.13) as

described in Lemma 5.

Therefore, in Fn, the convex region is given by RC

T
Fn (RC is defined in (A.2.13)),

while the non-convex region is given by Fn/(RC

T
Fn). In the convex region, we use faster

search technique like GSS [58] while in the non-convex region, we obtain the optimal point

using linear search with ✏-tolerance to find the minima in the specified interval. In each

iteration, two solutions are obtained, one corresponding to the GSS applied over convex

region and other corresponding to the linear search over non-convex region. The minimum

among the two is chosen as the solution for the n
th-time slot.

The steps describing the sequential approach are defined in Algorithm 7. On-board

energy (4.4a) and velocity (4.4d) constraints in (P2) are satisfied using the same concept

as discussed in Section 4.4.3. Flight duration constraint is automatically met as the search

area is restricted to Fn = In
T

Bn.
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Table 4.2: System Parameters Considered for Simulations

Parameter Symbol Value
Reference, threshold SNR �̃o, �th 52.5 dB, �3.01 dB
Environment parameters C, D 10, 0.6

Additional attenuation factor  0.2
Pathloss exponent ↵̄ 2.3

Blade profile, induced power Po, Pi 79.86 W, 88.63 W
Tip of rotor blade Utip = ⌦Ren 120
Fuselag drag ratio Den 0.6

Fuselag equipment plate area Sen 0.0151 m2

Mean rotor induced velocity vo 4.01 m/s
Air density ⇢ 1.225 kg/m3

Rotor disc area Aen 0.503 m2

Aircraft’s weight Wen 20 N

Remark 2. In contrast to the vertex approach, where the UAV follows a single direction

to reach the vertex location, the sequential approach follows a more accurate path that leads

the UAV into a region with low outage in minimum possible time. This happens because

the increase in the computation of UAV locations in the sequential approach will enable it

to find the optimal location in every slot while reaching the vertex location. However, in

the sequential approach, if we constrain the UAV to move in one particular direction, the

obtained location will overlap with the vertex location in the vertex approach. Thus, the

vertex approach can be viewed as a subset of the sequential approach.

4.5.2 Complexity Analysis

In the sequential approach, the sub-optimal solution is achieved sequentially by obtaining

the optimal location in each time slot. As discussed in Algorithm 7, in each iteration to

obtain the optimal location, the 3D GSS is applied on convex region and linear search on

the non-convex region for N�1 time slots. In 3D GSS, the search spaces �x = (xub�x
lb),

�y = (yub � y
lb), and �z = (zub � z

lb) reduces by a factor of 0.618 in each iteration [81].

X lb and X ub denote the lower and upper bounds on variable X 2 {x, y, z}, respectively.

Let Lfe denote the number of iterations to compute vallow. Then, the overall number

of iterations involved in Algorithm 7 is given by 2LfLfe

⇣
ln
⇣
max{�x,�y,�z}

✏

⌘⌘
, where

Lf = N � 1. In Section 4.6, we provide the numerical values of Lfe.

4.6 Simulation Results

In this section, we present the 3D UAV trajectory and its performance for the proposed

strategies and compare it with the benchmark schemes. We consider a setup with 10
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Figure 4.4: Insights on sub-optimal trajectories of UAV.

Figure 4.5: Variation of (a) x[n]⇤, (b) y[n]⇤, (c) z[n]⇤, and (d) v[n]⇤ with number of time
slots for di↵erent values of energy availability constraint, Emax. SA and VA are sequential
and vertex approach, respectively.

ground users [73], randomly distributed in a circle of radius 120 m, centered at origin.

The UAV is assumed to fly from the initial location (�150, 0, 0) m to the final location

(0, 0, 150) m. The system parameters taken for simulations are listed in Table 4.2.

4.6.1 Trajectory Design Insights

Through Figure 4.4, we provide insights into the 3D UAV trajectory. It is plotted for both

vertex and sequential approaches with Vmax = 30 m/s, T = 20 s, N = 500, and Hmin = 15

m for di↵erent values of Emax = {3000, 2700} J. Along with the proposed trajectories

from vertex and sequential approaches, the vertex point obtained using ✏-globally optimal

algorithm and alternating optimization approach. It can be observed that the solution

obtained from alternating optimization almost converges to the ✏-globally optimal solution,

thus it can be inferred that the low-complexity alternating optimization approach can

be applied to obtain a vertex point. As shown in the Figure 4.4, for vertex approach

with Emax = 3000 J, the UAV first travels towards the vertex and then travels to the

final location in a straight line with velocity Vmax while hovering at the vertex. For the
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sequential approach, it first attains some height and then reaches the location with the

minimum average outage probability. This is because it does not follow vertex location

but instead searches the best location with minimum average outage probability in each

time slot sequentially. On the other hand, when Emax = 2700 J, for vertex approach,

due to less energy available, UAV cannot reach the vertex. Thus, it tries to approach the

vertex by passing through point Q depending upon the energy available. Also, it can be

seen that UAV initially moves vertically to point X̄I to attain a minimum height Hmin as

defined in Section 4.4.3.

In the vertex approach, to obtain vallow, the average number of iteration Le counts

to 12. On the other hand, in the sequential approach, the average number of iterations

counted for Lfe and Lf is 9 and 49, respectively. Further, to analyze the complexity of

both approaches, we use Matlab on an Intel Core i7 processor with a 3.20 GHz CPU

clock to perform simulations. We consider the UAV maximum velocity as Vmax = 30

m/s, total flight time as T = 20 s which is discretized in N = 50 time slots and total

on-bard energy availability as Emax = 4000 J. The total execution time to obtain the

UAV trajectory using the vertex approach is approximately 12.4 s, whereas, the sequential

approach took around 45.6 s to optimize the trajectory. This di↵erence increases further

when the number of time slots N increases. Hence, we conclude that the vertex approach

gives a low-complexity solution compared to the sequential approach. The performance

comparison of both approaches will be studied in the next sub-section.

To gain further insights into the UAV trajectory obtained using the proposed

approaches, we plot Figure 4.5 to show how the optimal x[n]⇤, y[n]⇤, z[n]⇤, and v[n]⇤

of UAV is changing with time. Figure 4.5(a)-(d) is plotted with respect to Emax =

{2700, 3000} J in (4.4a) when Vmax, T , Hmin, and N are set to 30 m/s, 20 s, 15 m,

and 500, respectively. The presence of energy constraint restricts the UAV to fly with

Vmax and finds the new maximum allowed velocity vallow at which the UAV should fly.

Increasing Emax in constraint (4.4a), will increase vallow. As a result, for both approaches,

the UAV can reach the vertex and stay there for longer periods of time. For example, in

Figure 4.5(a)-(c), when Emax = 2700 J, the UAV does not arrive at the optimal location;

instead, it flies to the final location from a certain midway point near the vertex point.

However, for Emax = 3000 J, it reaches the optimal location and stays there for some time.

From Figure 4.5(d), it is observed that the UAV first travels with Vmax in the z-direction

without changing the (x, y) coordinates to satisfy (4.4c) as discussed in Section 4.4.3 and

then travels with vallow. Also, zero UAV velocity in Figure 4.5(d) corresponds to hovering
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Figure 4.6: Change in average outage probability with Vmax for di↵erent flight time T .

Figure 4.7: Change in average outage probability with T for di↵erent maximum velocity
Vmax.

at the vertex point.

4.6.2 Performance Analysis of Proposed Scheme

To understand the impact on bPavg for di↵erent Vmax and flight time T , while assuming

su�cient on-board energy availability at the UAV, we plot Figure 4.6, and Figure 4.7. In

Figure 4.6, bPavg is plotted against Vmax for T = {80, 100} s. In Figure 4.7, bPavg is plotted

against T for Vmax = {20, 30} m/s. From Figure 4.5(d), we observe that the UAV flies

with velocity vallow in both the approaches if the on-board energy is limited. However, if

su�cient on-board energy is available, the UAV flies with Vmax. At higher velocity, UAV

reaches the optimal location quickly and therefore, the outage probability is minimized.

The same is applicable to flight time.

Therefore, for both higher velocity and flight time, the UAV will spend more time at

the vertex. Since the vertex corresponds to the location of minimum outage probability,

spending more time at vertex will decrease the outage probability, and it will finally
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Figure 4.8: (a) vallow of UAV due to energy constraint (4.4a) at di↵erent values of Emax.
(b) Impact of Emax on average outage probability.

converge to the asymptotic outage of bPavg in (P2). It can be observed that the sequential

approach performs better than the vertex approach for any fixed value of Vmax and T

because the sequential approach searches the best location in every time slot instead of

following the vertex.

From Lemma 3, we have seen that the energy consumption is a pseudoconvex function

of the UAV velocity. Therefore, it will have an impact on the velocity by which the UAV

should fly. Figure 4.8(a) shows how the total energy available, Emax, a↵ects the UAV

velocity, with Vmax = 30 m/s and T = 20 s. We consider the case when the energy

consumed by the UAV when flying at Vmax always exceeds the energy threshold Emax

i.e., step 15 of Algorithm 6 is not satisfied for both the approaches. From Figure 4.6,

we observed that more the Vmax, lower is bPavg. However, increasing Vmax > V0 results

in higher energy consumption, where V0 is the velocity at which the energy consumption

is minimal as obtained in (A.2.3). Hence, to obtain the minimum bPavg, the constraint in

(4.4a) should be satisfied with equality. Because of this, there exists a trade-o↵ in the

velocity by which the UAV moves, denoted by vallow. It is observed that increasing the

value of Emax will increase vallow. As we increase Hmin for fixed Emax, more number of

time slots are consumed to reach the minimum height Hmin, therefore, EI will increase.

Certainly, the energy left for the rest of the time will decrease. As a result, to compensate

the energy left for the n 2 {NI , · · · , N} time slots, vallow will further reduce. Therefore,

vallow decreases as Hmin increases.

Similarly, in Figure 4.8(b), we study the impact of Emax on average outage probability

using the same values of Vmax and T . The monotonic decreasing nature of bPavg is desired

because vallow increases with an increase in Emax as observed from Figure 4.8(a). Thus,

the UAV reaches the vertex quickly and spends longer time at that location, decreasing
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Figure 4.9: Comparison of proposed approaches with existing benchmark schemes.

bPavg.

4.6.3 Performance Comparison with Benchmark Schemes

To show the e↵ectiveness of the proposed approach, in Figure 4.9(a)-(d), we compare

the proposed approaches with the benchmark schemes. The approaches are compared

by varying the maximum velocity Vmax, the flight time T of the UAV, on-board energy

availability Emax, and number of users N . Figure 4.9(a) is plotted with T = 20 s, K = 10,

and Emax = 6000 J. Figure 4.9(b) is plotted with Vmax = 20 m/s, K = 10, and Emax =

6000 J. Figure 4.9(c) is plotted with Vmax = 30 s, T = 20 s, and K = 10. Figure 4.9(d) is

plotted with Vmax = 20 s, T = 20 s, and Emax = 4000 J. Minimum height Hmin and time

slotsN are set to 15 m and 50, respectively, for all the sub-figures. The benchmark schemes

considered for comparison are the fly-and-hover scheme [69], particle swarm optimization

(PSO) [82]-[83], and straight flight trajectory [84]. In the fly-and-hover scheme, the UAV

flies sequentially over the users before reaching the destination. It first computes the

sequence of users to be visited to minimize the average outage probability. Following that,

it obtains the UAV trajectory while keeping in view the energy consumption constraint.

Thus, the horizontal coordinate (x, y) will change according to the user’s location, whereas

the vertical coordinate (z) of the UAV is set to the z-coordinate of the vertex till the UAV

covers all the users. In PSO, each particle refers to a randomly initialized possible solution.

The velocity and position of each particle are then updated in each iteration based on
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information about the particle’s prior velocity, the particle personal best, and the best

position ever occupied by any particle in the swarm. On the other hand, the straight

flight trajectory, as shown in Figure 4.4 is the straight-line path between the initial and

final locations.

Flying over users reduces the outage probability of that particular user but does not

ensure a decrease in the average outage probability for all users. Whereas in PSO, the

non-convexity of the objective function obstructs the UAV to reach the vertex but instead

travels through a high outage locations. The vertex approach computes the optimal

location where the average outage probability over all users is minimum rather than

focussing on the single user. On the other hand, sequential approach, computes that

location in every time slot. Therefore, the two proposed trajectory designs, namely the

vertex and sequential approach outperform the other schemes and achieves a minimum

average outage probability. Furthermore, the trajectory obtained by the sequential

approach achieves better performance than the vertex approach. On an average our

proposed vertex and sequential approach provide on an average 31% and 52% improvement

over the benchmark schemes, respectively.

4.7 Conclusion

In this chapter, a framework to optimize the UAV trajectory has been presented with an

objective to minimize the average outage probability in a UAV-assisted 5G communication

system. The UAV is constrained with both the maximum velocity and on-board energy

availability. To solve this problem, we propose two trajectory optimization approaches:

the vertex and the sequential approach. The vertex approach is based on finding an optimal

location with minimum average outage probability and constructing the trajectory based

on that location. On the other hand, the sequential approach adopts a heuristic method

to obtain the trajectory by searching the best location sequentially in each time slot. This

approach provides better performance at the cost of complexity when compared to the

vertex approach. Extensive simulations show that both approaches achieve better average

outage probability compared to the benchmark schemes. Besides, the optimal location

obtained in the vertex approach could be used as a referential baseline to obtain the

asymptotic outage of average outage probability while assuming the su�cient on-board

energy is available with the UAV.

However, in this chapter, we consider the velocity-dependent energy consumption

model of the rotary-wing UAV. In general, the energy consumed by the UAV in
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manoeuvring-related tasks is determined by both the UAV’s velocity and acceleration.

Moreover, in cases where the UAV manoeuvring time is much larger than the UAV

hovering time, the UAV accelerated related energy cannot be ignored. Therefore, for

a more accurate and realistic analysis, we study the UAV’s velocity, acceleration, and

time profile in the next chapter while considering a more realistic energy consumption

model of a rotary-wing UAV.



Chapter 5

UAV Kinematics Optimization

5.1 Introduction

For the purpose of exposition and more tractable analysis, in the previous chapters, we

have ignored the acceleration/de-acceleration related UAV energy consumption. Since the

UAV consumes a significant amount of energy while accelerating (as shown in Figure 2.2

of Section 2.2.2), we need to consider the velocity and acceleration related energy for more

accurate analysis when designing the UAV trajectory in the presence of onboard energy

constraint.

Therefore, in this chapter, we consider a scenario where the path which the UAV would

take is predefined. It could be an optimized path based on maximizing some performance

metric, or it could be based on certain regulatory or environmental constraints such as

buildings, trees, etc., or it could be the pre-specified path through which the UAV has to

move, such as air corridors. In such a case, for a given trajectory, we show how much impact

the velocity-acceleration profile has on the UAV energy consumption and subsequently on

network performance, and service delivery. The performance metric could be anything,

depending on the scenario. Particularly, in this chapter, we consider two performance

measures (1) user-centric (sum throughput) and (2) UAV-centric (energy consumption).

A generalized optimization framework is presented in this chapter to account for UAV

velocity and acceleration dependent energy consumption and a velocity-acceleration profile

of the UAV for its optimal operation. The proposed problem is challenging since it

includes multiple non-convex functions; approximations are proposed to e�ciently solve

this non-convex optimization problem.

5.1.1 Related Work

The related work of the UAV-enabled communication system is divided into two parts; the

energy e�ciency and the user throughput. To keep the literature short, we have considered

only those works that takes the onboard energy as constraints.
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Several techniques have been developed in the literature to improve the energy

e�ciency of the UAV-assisted communication system. From the rotary-wing UAV

perspective, the propulsion energy model was developed in [9], and [29], where the authors

minimized the energy consumption to optimize the trajectory and scheduling subject to

the throughput requirement of the ground nodes. In addition, the authors in [49], and [30]

considered the resource allocation apart from the UAV trajectory to maximize the energy

e�ciency.

The authors in [85] considered the onboard energy as a constraint to maximize the

minimum throughput while optimizing the UAV trajectory, user scheduling and bandwidth

allocation. However, the energy consumption model chosen was for fixed-wing UAV.

Similar to [85], the authors in [86] maximized the data collection rate but considered the

UAV to hover at a fixed height. Moreover, in [52], the authors minimized the completion

time via optimizing the UAV trajectory, and transmit power subject to onboard energy

constraints. The recent works, [73], and [74] considered the throughput as an objective

to optimize the 3D UAV trajectory while considering the onboard energy constraint for a

rotary-wing UAV. However, [73] assumed the UAV to fly with a fixed maximum speed, as

a result, the energy consumed in a particular slot remains fixed. On the other hand, [74]

considered the maximum velocity constraint but ignored the acceleration of the UAV.

5.1.2 Novelty, Motivation and Contribution

In general, the propulsion energy consumption model of a rotary-wing UAV depends upon

its mobility, which is determined by the UAV’s velocity-acceleration profile in horizontal

and vertical directions, and the flight duration [29]. Many prior works have considered

either fixed velocity of the UAV throughout its flight trajectory or they do not consider

acceleration dependent energy consumption or UAV mobility constraints such as velocity

and acceleration. UAV acceleration results in significant amount of energy consumption

and plays a critical role in designing the trajectory of the UAV. To the best of author’s

knowledge, the aforementioned velocity-acceleration dependent energy model has not

been considered in the prior works. Therefore, in this chapter, we consider velocity

and acceleration dependent energy consumption model of a UAV and optimize the UAV

velocity, and acceleration to maximize the system performance metrics. We consider

two performance metrics 1) user-centered (sum throughput) and UAV-centered (energy

consumption).

This work can be applied to any given UAV trajectory irrespective of the objective
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chosen and the channel between the UAV and the user. From the results, we observe that

when a UAV keeps the same trajectory, this approach provides significant improvement

in terms of lesser energy consumption.

5.2 System Model

Based on the UAV trajectory presented in the previous works, we assume here the

trajectory of a UAV going from its initial to the final location is pre-specified. This

scenario can be applied in Urban Air Mobility, where the UAV moving in air corridors

[87] have pre-specified waypoints through which it has to pass and move in a pre-specified

air corridor. The transition of a UAV from the initial to the final location is subjected to

some practical constraints, such as velocity, acceleration, onboard energy availability, etc.

As specified before, the UAV takes a predefined trajectory. The di↵erent waypoints the

UAV passes through during its flight is known. As the time slot duration is variable which

will be optimized later, we consider these waypoints correspond to the UAV location at

di↵erent time slots. These waypoints can be at varying distances from each other. Thus,

the UAV is aware of its location at each time slot denoted by (x[n], y[n], z[n]), 8n.

There could be various performance metric that could be optimized for the UAV to

optimally adjust its velocity-acceleration profile. For example, in a UAV-centered setting,

the UAV may want to minimize its energy consumption in going from the initial to the final

location. Another example could be a user-centric case, wherein, the UAV moves in such

a way so that the sum-rate to all users is maximized. There could be other performance

measures as well. However, in this chapter, we focus on two objectives namely, energy

minimization and throughput maximization. For any other performance measures, similar

technique as discussed in this work can be used.

Since the trajectory is known, sum user throughput at each UAV location (waypoint)

is known. This sum user throughput at the n
th-time slot is obtained by using R[n] =

P
K

k=1
B

K
log2(1+SNRk), whereK is the total number of users, B is the available bandwidth

in Hertz (Hz), and SNR is the signal-to-noise ratio. SNRk of kth-user is calculated by

assuming the probabilistic LoS channel between the UAV and user. Then, overall sum

throughput R averaged over time is given by

R =

P
N

n=1 ⌧ [n]R[n]
P

N

n=1 ⌧ [n]
. (5.1)
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5.3 Problem Formulation

Our objective in this work is to minimize the UAV’s total energy consumption and to

maximize the overall sum throughput R of the system by obtaining an velocity-time

profile of the UAV in going from the initial to the final location in the presence of velocity,

acceleration, energy and time constraints. UAV follows a predefined trajectory wherein

UAV position at di↵erent times is given as X [n] , (x[n], y[n], z[n]). At each times, sum

rate to the users is also known which is dependent on UAV locations at time slot n and

is denoted by R[n]. From the given trajectory, the distance travelled by the UAV in

the n
th-time slot is also known which is denoted by d

s[n] , k(x[n], y[n], z[n]) � (x[n �

1], y[n� 1], z[n� 1])k, 8n, where X [n] and X [n� 1] represent the UAV locations. The two

optimization problems formulated are given as follows.

5.3.1 Sum Throughput Maximization

In a user-centric approach, the UAV moves while providing communication service to

the ground users. Here our goal is to maximize the sum user throughput by suitably

adjusting the UAV velocity and acceleration. Based on UAV kinematics relations in a

slot, i.e., distance, velocity, acceleration and time are interlinked. Therefore, optimizing

one adjusts the other. So, out of these distances in known as the waypoints or UAV

location at each time slot is fixed. In this work, we attempt to optimize the velocity and

time slot duration. It results in suitable change in acceleration which can be obtained

from (2.6) and (2.7). The optimization problem can be formulated as (P1).

(P1) : max
v[n],⌧ [n],8n

1

Tmax

NX

n=1

⌧ [n]R[n]

s.t. v[n]� v[n� 1]�Amax⌧ [n]  0, 8n, (5.2a)

v[n] + v[n� 1]� 2ds[n]

⌧ [n]
= 0, 8n, (5.2b)

v[0] = 0, v[N ] = 0, (5.2c)

|a[n]|  Amax, 8n, (5.2d)

v[n]  Vmax, 8n, (5.2e)

NX

n=1

⌧ [n] = Tmax, (5.2f)

etot ,
NX

n=1

exy[n] +
NX

n=1

ez[n]  Emax. (5.2g)
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(5.2a) and (5.2b) represents the constraints on the dynamics and kinematics of UAV,

where d
s[n] , k(x[n], y[n], z[n]) � (x[n � 1], y[n � 1], z[n � 1])k, 8n, denotes the distance

travelled by the UAV in the nth-time slot. (5.2c) state that the initial and the final velocity

of the UAV is zero. (5.2d), and (5.2e) denote the maximum acceleration and velocity

constraint, respectively, where Amax and Vmax represent the maximal acceleration and

velocity, respectively, that a UAV can attain. Tmax in (5.2f) denotes the total flight time

of the UAV. Due to the stringent energy storage of the UAV, we have added an onboard

energy constraint in (5.2g) such that the UAV reaches the final location before exhausting

its given energy Emax.

5.3.2 Energy Minimization

Energy minimization problem is more suitable for a UAV-centric approach wherein the

UAV minimizes its energy consumption in reaching to the destination while at the same

time provide a minimum sum rate to all users. The energy minimization problem is

formulated as

(P2) : min
v[n],⌧ [n],8n

etot =
NX

n=1

exy[n] +
NX

n=1

ez[n]

s.t. (5.2a)� (5.2f),

NX

n=1

⌧ [n]R[n] � Rth, (5.3a)

(5.3a) represents the achievable sum rate of the UAV path should be greater than the

threshold rate. Here R[n] is the sum throughput over all users at the n
th-time slot and

Rth is the minimum rate required during its transition from the initial to the final location.

5.4 P1: Sum Throughput Maximization

5.4.1 Algorithmic Implementation of P1

Problem (P1) is di�cult to solve directly due to the non-linear constraint (5.2a), non-a�ne

constraint (5.2b) and non-convex constraint (5.2g). To tackle this issue, we first relax the

energy constraint (5.2g) and solve (P1). We name this modified problem as (P1a). To

solve problem (P1a), a two-stage alternating optimization is proposed. In the first stage,

the time slot duration ⌧ [n] is optimized by fixing v[n]. Then, in the second stage, v[n] is

optimized for the obtained ⌧ [n]. The two stages are solved alternatively until convergence.
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Algorithm 8 Proposed approach for solving (P1)

Input: R[n] (sum user throughput at each waypoint).
Output: ⌧ [n]⇤ (optimized ⌧ [n]), v[n]⇤ (optimized v[n]), 8n 2 {1, · · · , N}.
1: Set l = 0.
2: Set r = 0, and initialize v[n]r.
3: repeat
4: With given v[n]r solve (P1a) to obtain ⌧ [n]r+1 by using (5.4) instead of (5.2b).
5: With given ⌧ [n]r+1 solve (P1a) to obtain v[n]r+1.
6: Set r = r + 1.
7: Until The objective function converges.
8: Calculate v

xy[n] and v
z[n], and a

xy[n] and a
z[n] using (2.4)-(2.7), respectively. Then,

calculate e
xy[n] and e

z[n] defined in (2.8), and (2.9), respectively, to calculate e
l
tot.

9: repeat
10: l = l + 1.
11: Update constraint (5.2e) using (5.5).
12: Repeat Steps 2-13.
13: Until eltot < Emax

The solution to (P1a) is checked against energy consumption constraint. If the constraint

is satisfied, the solution obtained is a final solution. Otherwise, (P1a) is again executed

with a modified Vmax constraint as defined later in this section.

In the first stage, for a given v[n], (5.2b) is a non-a�ne constraint in ⌧ [n]. To tackle

this non-a�ne constraint, we use first-order Taylor expansion at a point ⌧r[n] to make

(5.2b) linear, where ⌧r[n] denotes the value of ⌧ [n] in the r
th-iteration. Accounting this,

(5.2b) can be rewritten as

v[n] + v[m� 1]� 2ds[n]

✓
1

⌧r[n]
+
⌧ [n]� ⌧r[n]

⌧r[n]2

◆
= 0. (5.4)

Using (5.4) in place of (5.2b) makes the problem (P1a) a linear programming problem in

⌧ [n] for a given v[n].

In the second stage, for a given ⌧ [n] it can be observed that the problem (P1a) is a

linear programming problem in v[n] since constraints (5.2a) and (5.2b) are both linear

in v[n]. Thus, to optimize v[n] and ⌧ [n] alternatively, interior point method can be used

to solve (P1a). To get an initial v[n] and ⌧ [n], we assume the UAV takes maximum

acceleration in the starting to reach the peak velocity Vmax and then continue its flight.

The solution of (P1a) is checked against energy consumption constraint (5.2g). Energy

consumption is computed using equations (2.8), (2.9), and using etot. If the energy

consumption constraint is met, this is the final solution. Otherwise Vmax is adjusted to

reduce the overall energy consumption of the UAV. From (2.8) and (2.9), we understand

that the UAV energy consumption is directly proportional to velocity and acceleration
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i.e., higher the velocity/acceleration, higher the energy consumption. Therefore, we adjust

Vmax to reduce energy consumption of the UAV. The new V
l
max is defined as

V
l

max =
Emax

e
l�1
tot

⇥ V
l�1
max, (5.5)

where V l
max is the updated velocity in the lth-iteration, V l�1

max is the velocity in the previous

iteration (l� 1), and e
l�1
tot

is the energy consumption in the (k� 1)th-iteration. Algorithm

8 presents the solution to (P1).

5.4.2 Complexity and Convergence Analysis

The complexity of (P1) lies in solving (P1a) using alternating optimization and the

number of iterations needed to satisfy the energy constraint in (5.2g). In alternating

optimization, the time slot duration and velocity are optimized sequentially using the

interior point method. Then, the complexity to optimize each variable optimally is given

as O(N3.5 log(1/✏)), with a given solution accuracy ✏ [88]. Accounting the alternating

optimization iterations with log(1/✏) of complexity, the total computational complexity

of a two-stage alternating optimization is given by O(N3.5 log2(1/✏)). Let lmax denote

the number of iterations utilized to satisfy the energy constraint. Then, the overall

computations required to solve (P1) is given by O
�
l
max

N
3.5 log2(1/✏)

�
.

Define RP1a(⌧ [n], v[n]) and R†
P1a(⌧ [n], v[n]) as the value of objective function to the

original problem (P1) and approximation of (P1a), respectively. Then at rth-iteration, we

have

RP1a(⌧ [n]
r
, v[n]r)

(a)
= R†

P1a(⌧ [n]
r
, v[n]r)

(b)
 R†

P1a(⌧ [n]
r+1

, v[n]r)

(c)
 RP1a(⌧ [n]

r+1
, v[n]r), (5.6)

where (a) holds because the first-order Taylor expansion defined in (5.4) is tight at a local

point, (b) holds since the problem is solved optimally, and (c) holds since the objective

function of the approximate problem is the lower bound of the original problem where

we optimize ⌧ [n] by fixing v[n]. Thus, (5.6) implies that even though we have considered

the approximate problem to obtain the solution, the objective function defined in (P1a)

is still non-decreasing after each iteration. Since the problem to optimize v[n] is convex,
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then accordingly we have

RP1a(⌧ [n]
r+1

, v[n]r)  RP1a(⌧ [n]
r+1

, v[n]r+1). (5.7)

Based on (5.6) and (5.7), we observe that the objective value is non-decreasing after every

iteration. Thus, (P1a) is guaranteed to converge. Furthermore, only convex optimization

problems are solved in each iteration. Thus, it can be e↵ectively implemented with a faster

convergence.

5.5 P2: Energy Consumption Minimization

5.5.1 Algorithmic Implementation of P2

Problem (P2) is non-convex due to the non-convex objective function in vxy[n] and vz[n].

To solve this problem, we approximate the non-convex objective function into convex

and obtain an approximate solution. This is done by substituting ai[n] = (vi[n] � vi[n �

1])/⌧ [n], 8i 2 {xy, z} in (P2) and introducing slack variables defined as follows.

X1[n] � C2vxy[n]
2 + C3X5[n], 8n, (5.8)

X2[n] � 0, (5.9)

X2[n]
2 

q
1 + X1[n]2 + C

2
4vxy[n]

4 + C4vxy[n]
2
, 8n, (5.10)

X3[n]
2 � vz[n]

2 +
2Wen

⇢Aen

+
2Men

⇢Aen

X4[n], 8n, (5.11)

X4[n] �
vz[n]� vz[n� 1]

⌧ [n]
, 8n, (5.12)

X5[n] �
vi[n]2

⌧ [n]
� vi[n]vi[n� 1]

⌧ [n]
, 8i 2 {xy, z}, 8n. (5.13)

The above slack variables transforms exy[n] defined in (2.8) into

ẽxy[n] = Po(1 + C1vxy[n]
2) + Pi

1 + X 2
1 [n]

X2[n]
+ C5vxy[n]

3
, (5.14)

and ez[n] defined in (2.9) into

ẽz[n] = P2 +
Wenvz[n]

2
+MenX5 +

WenX3

2
+

MenX4

2
. (5.15)

As a result, the horizontal and vertical component of velocity-acceleration energy model

as described in (2.8) and (2.9) can be equivalently represented by (5.14), (5.15) and the
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variables Xj [n], 8j 2 {1, · · · , 5} defined in (5.8)-(5.13).

Then, problem (P2) is reformulated as

(P2e) : min
v[n],⌧ [n],8n

Xj [n],8n8j2{1,2,3,4,5}

etot =
NX

n=1

ẽxy[n] +
NX

n=1

ẽz[n]

s.t. (5.2a)� (5.3a), (5.8)� (5.13).

From (P2e), it can be observed that the objective is convex, while the constraints

(5.10), (5.12), (5.13) are non-convex. To tackle these constraints, we utilize first-order

Taylor expansion. Define vxy,l[n], vz,l[n], ⌧l[n] to be the values of vxy[n], vz[n], ⌧ [n] at the

l
th-iteration, respectively.

To deal with constraint (5.13), on the right hand side vi[n]2

⌧ [n] is convex. However,

vi[n]vi[n�1]
⌧ [n] is not concave. Then, using Taylor expansion at a point vi,l[n], vi,l[n� 1], and

⌧l[n], we get

vi[n]vi[m� 1]

⌧ [n]
= f

✓
vi,l[n]vi,l[m� 1]

⌧l[n]

◆
+

2

6664

vi,l[n�1]
⌧l[n]
vi,l[n]
⌧l[n]

�vi,l[n]vi,l[m�1]
⌧l[n]2

3

7775

·
h
vi[n]� vi,l[n] vi[m� 1]� vi,l[m� 1] ⌧ [n]� ⌧l[n]

i
. (5.16)

Similarly, following the same steps, constraint (5.12) can be converted into the convex

constraint.

For constraint (5.10), it can be observed that the right hand side is a convex function

in X1[n] and vxy[n]. Therefore to make (5.10) a convex constraint, we use

q
1 + X1[n]2 + C

2
4vxy[n]

4 + C4vxy[n]
2 � (1 + X1[n]

2 + C
2
4v

xy

l
[n]4)�

1
2

⇥

X1,l[n](X1[n]� X1,l[n]) + 2C2

4vxy,l[n]
3(vxy[n]� vxy,l[n])

�

+
q

1 + X1,l[n]2 + C
2
4vxy,l[n]

4 + C4vxy,l[n]
2 + 2C4(vxy[n]� vxy,l[n]) , b

l

xy. (5.17)

Using the transformation defined for (5.13), (5.12), (5.10), problem (P1e) can be

approximated to form a convex optimization problem wherein interior point method is

used to get the solution to (P2e).

Problem (P2e) can be solved iteratively using the interior point method to get the

optimal solution of (P2). Algorithm 9 shows the steps to obtain the solution of problem

(P2e). The initial point is obtained again by considering that the UAV takes maximum
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Algorithm 9 Proposed approach to obtain solution of (P2e)

Input: R[n], acceptable tolerance ✏.
Output: ⌧ [n]⇤, v[n]⇤, 8n 2 {1, · · · , N}.
1: Set l = 0, and initialize X0 and objective e

0
tot, where X = {v[n], ⌧ [n],Xj [n], 8j}.

2: repeat
3: Substitute X0 to problem (P2e) and solve convex problem (P2e).
4: Obtain the solution X⇤ and objective e

⇤
tot.

5: Set l = l + 1, Xl = X⇤, and e
l
tot = e

⇤
tot.

6: Until |eltot � e
l�1
tot

|  ✏.

acceleration in the starting to reach the peak velocity and then it continues its flight with

Vmax.

5.5.2 Complexity and Convergence Analysis

The computational complexity of (P2e) is determined by finding the number of iterations

and the computational complexity for solving the convex optimization problem in each

iteration. In each iteration, 7N variables are solved. Therefore, the overall complexity

of (P1e) is O(rmax(7N)3.5 log(1/✏)), where rmax is the number of iterations required until

the solution converges. The proposed solution for solving (P2e) is guaranteed to converge.

This convergence can be again proved using similar steps (ref. eq. (5.6)) as presented for

earlier case.

5.6 Results and Discussion

In this section, we provide the numerical results to validate the proposed solution. From

the system perspective, the initial and final location of the UAV is set to (�150, 0, 0)

m and (�1, 0, 36) m, respectively. We consider 10 ground users distributed in a circular

field of radius 120 m. The sum user rate R[n] at each time slot is calculated using the

probabilistic LoS channel model [9] and finally the rate is calculated using (5.1). The

total flight of the UAV is taken to be Tmax = 15 s, which is discretized in N = 80 slots.

The maximum velocity and acceleration is set to Vmax = 20 m/s and Amax = 5 m/s2,

respectively [89]. The total bandwidth B available for communication is set to 20 MHz.

The simulation values taken for the energy model are as shown in Table 2.1, Section 2.2

[29].
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Figure 5.1: UAV dynamics with respect to sum rate maximization.

5.6.1 Sub-optimal Design Insights: Sum Throughput Maximization

For problem (P1), Fig. 5.1 provides insights on how the velocity, acceleration, and time

profile varies with the change in the onboard energy availability Emax when a simple

conventional straight flight trajectory is considered wherein UAV moves in straight line

path from initial to the final location. The velocity profile shows that to maximize the

system’s performance, in the given trajectory, the UAV always moves with maximum

velocity. This is because the final location is the optimal deployment location where the

sum throughput over all ground users is maximum. In such a case, high throughput is

ensured when the UAV spends more time at the locations where the sum throughput is

high. Also, it can be observed that for all energy levels, the UAV first increases its velocity,

accounting the acceleration constraint and later de-accelerates to reach the final location.

Zero velocity indicates the UAV is hovering at the final location.

Similarly, the acceleration plot in Fig. 5.1(b) shows the acceleration profile of the UAV.

It can be seen that the accelerating or de-accelerating peaks are obtained when the UAV
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Figure 5.2: UAV dynamics with respect to energy minimization problem.

attains maximum velocity from zero velocity or decreases from maximum velocity to zero

velocity at the final location. A similar explanation can also be applied to the time slot

duration ⌧ [n] plot shown in Fig. 5.1(c). The duration of time slot ⌧ [n] depends strictly

upon the total time available with the UAV i.e., Tmax. Since energy consumed in a time

slot is a function of time slot duration and velocity-acceleration profile in that slot, when

a peak occurs in Figs. 5.1(b)-(c), the UAV also consumes high energy.

5.6.2 Sub-optimal Design Insights: Energy Minimization

Fig. 5.2, shows the variation in UAV velocity, acceleration, time and energy consumption

for di↵erent value of minimum rate threshold Rth defined in (5.1). Here an inverted-L

shaped trajectory is considered [73] wherein the UAV first attains the height equal to

zF (z-coordinate of the final location) and then travels horizontally to reach the final

location. It can be observed that as the rate requirement increases, the UAV consumes

more energy in travelling from the initial to the final location. This is because the UAV
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Figure 5.3: Performance of proposed scheme w.r.t. conventional schemes.

attains maximum velocity to reach the final location (as it is the optimal location to

provide maximum throughput) and thus consumes more energy. However, at the optimal

energy, the UAV achieves a lower data rate, which is desired as both are complementary

to each other. Thus, to appropriately design the communication system there needs a

trade-o↵ between the sum throughput and the energy consumption.

5.6.3 Performance Comparison

To show the e↵ectiveness of our proposed scheme, we compare its performance with the

simple conventional schemes, namely, straight flight and inverted-L shaped trajectory [73].

In both the schemes, the UAV accelerates with Amax to reach Vmax, and thereafter moves

with constant velocity Vmax. Finally it de-accelerates to reach the final location with

v[n] = 0. To the best of author’s knowledge, none of the prior works in literature have

optimized the velocity, acceleration, and time profile. Therefore, we have considered this

simple conventional scheme for comparison.

Fig. 3(a) shows the improvement in sum throughput with the variation in Emax, and

Fig. 3(b) shows the optimal energy consumption with di↵erent minimum rate requirement

Rth. It is observed that the proposed velocity-acceleration optimization applied over the

given trajectories performs better than the conventional approach due to its ability to

optimize velocity, acceleration and time in every time slot. Compared to the conventional

schemes, optimizing the velocity, acceleration, and time using our proposed approach

provides additional flexibility by consuming lesser energy in the pre-specified path. From

Fig. 3(b), it is observed that as Rth increases, the UAV consumes higher energy. This

is because the UAV travels with a higher velocity to provide a higher sum rate. From
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results, for a user-centric applications, our proposed scheme provides 9% improvement

in sum rate when UAV consumes same energy in both the proposed and conventional

schemes. Similarly, UAV consumes 15% lesser energy than the conventional scheme for

the same sum rate provided by both the schemes in a UAV-centric applications.

5.7 Conclusion

In this chapter, we provide a generalized framework that can be applied to any predefined

trajectory and optimizes the velocity-acceleration profile to optimize a given performance

metric. In this chapter, we considered two performance measures namely, sum throughput

and energy consumption. Through our proposed velocity-acceleration framework, we

enable the UAV to traverse the same trajectory e�ciently. This is achieved in the presence

of an accurate energy consumption model that depends on the velocity and acceleration of

the UAV, UAV mobility, and mission completion time constraints. The problems framed

are non-convex, we utilize the alternating optimization to obtain the velocity-acceleration

and time profile. Simulation results demonstrate the e↵ectiveness of the proposed approach

over the conventional schemes.



Chapter 6

UAV Replacement for Coverage

Continuity

6.1 Introduction

In Chapters 3-5, we studied the optimal deployment location, communication-oriented

trajectory design, and the optimal velocity-acceleration and time profile for the specified

UAV trajectory while considering the UAV mobility constraints and onboard energy

availability constraints. In other words, the previous chapters address several UAV

challenges, such as deployment location, where a UAV must be deployed to deliver fruitful

service, and the UAV trajectory to maximize the system’s performance when the UAV is

available with limited onboard energy. Though we have e�ciently designed the trajectory

of the UAV, the limited energy availability is still a concern that inhibits the UAV from

delivering long-term service.

To fully utilize the benefits of the UAV as an ABS, we need to find a way to provide

a long-term service rather than short-term. Notably, in missions that requires long

battery endurance, the battery limitation problem cannot be solved by improving the

energy e�ciency or energy management. As a result, for the practical implementation

of UAV applications, UAV battery recharge or replacement is essential [25]. Therefore,

the UAV must be grounded frequently at the charging station to replenish its battery.

That is, if one UAV gets low on battery, another fully charged UAV can take its place

to provide continuous coverage to the ground users. As another UAV is launched for

replacement, multiple key challenges like resource allocation and multi-UAV trajectory

planning must be addressed by the communication system designer in the presence of

UAV energy consumption constraints.

Motivated by the UAV replacement scenario and its challenges, this chapter presents

a novel framework for maintaining coverage continuity in a UAV-assisted wireless

communication system by launching a fully charged UAV to replace the existing UAV,
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which is low on energy. This framework includes optimizing the 3D multi-UAV trajectory

and bandwidth allocation to maximize the minimum achievable data rate by the ground

users in the presence on onboard energy availability constraints.

6.1.1 Related Works

In general, in UAV-assisted wireless communication system, one line of research is to

minimize the UAV’s energy consumption for example, [90] and another line focuses on

maximizing the user’s data rate while considering energy availability as a constraint. In

this work, our interest lies in the latter case. Towards this end, the authors in [91]

maximized the minimum user throughput by jointly optimizing the multi-UAV trajectory

and power allocation, while assuming the UAV to fly at a fixed altitude. In [92], the

authors considered the wireless power system with downlink and uplink with sub-time

slot. First, in the downlink sub-time slot, the power is transferred from the UAV to the

ground user and then, in the uplink sub-time slot, the user uploads data to the UAV. They

optimized the 2D multi-UAV trajectory, scheduling and power to maximize the minimum

average rate among all ground users in the presence of harvested energy constraints. The

same objective was also considered in [93]. The authors in [94] maximized the number of

admitted users while satisfying the rate requirement constraint and jointly optimized the

bandwidth, power allocation, and multi-UAV trajectory. In the above works, [91, 92, 93],

the system was designed such that in a particular time, the UAV was deployed to serve

one ground user. Moreover, they have optimized the 2D trajectory of the UAV.

In [95, 96, 97], the authors optimized the 3D multi-UAV trajectory while considering

the LoS-dominant channel between the UAV and the user. For dense environments, the

A2G channel is prone to blockage due to the presence of high-rise buildings. Thus,

considering the assumption that UAV will always remain in LoS is not true and such

analysis cannot be applied to dense scenarios, where the UAV can also experience NLoS

link. Thus, a more practical channel model, such as probabilistic LoS channel model

where the UAV can experience LoS and NLoS link with certain probabilities needs to be

considered. On the same note, the authors in [98] optimized the 3D trajectory to maximize

the total downlink coverage capacity by leveraging the UAV mobility under the presence

of coverage constraints. However, all the existing works [91]�[98] have not taken into

account the energy consumption of the UAV.

Noting the importance of UAV’s limited onboard energy, the authors in [99] considered

an uplink scenario. They optimized the 3D multi-UAV trajectory when the UAV and the
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Table 6.1: Key di↵erences between the related existing literature with our work. PLoS
here stands for probabilistic LoS channel.

Ref. Objective Design
A2G
model

Bandwidth
allocation

Energy
constraint

Application Fair

[91]
Max-min throughput

over all users
2D LoS

Orthogonal
channels

⇥ UAV associates with
atmost one user

X

[92]
Max-min average rate

among all users
2D LoS

Same
bandwidth

Harvested
energy

constraint

User uploads data to
UAV: One UAV

associates to atmost
one user

X

[93]
Max-min throughput
over all ground users

2D LoS
Same

bandwidth
⇥

Each UAV serves
atmost one user
and vice versa

X

[94]
Number of admitted
users while satisfying

requirement constraints
2D LoS X ⇥ - -

[95]
Improve the minimum

throughput
3D LoS

Same
bandwidth

⇥ One UAV can associate
with only one user

X

[96]
Aggregate sum rate

of the UAV
3D LoS

Same
bandwidth

⇥
No. of UAVs should be

equal to no. of
users

⇥

[97]
Max-min throughput
among UAV-served

users
3D LoS

Same
bandwidth

⇥ Each UAV serves up
one requester

X

[98]
Maximize the total
downlink capacity

3D PLoS
Same

bandwidth
⇥

Downlink setup: UAV
provides coverage to

multiple users
⇥

[99]
Max-min achievable
rate among all users

3D PLoS
Orthogonal
channels

X
harvested
energy

constraint

User uploads data
to UAV: One UAV
associates to atmost

one user

X

Ours

Max-min aggregate
throughput among

all users over
all time

3D PLoS X X

Downlink setup: UAV
provides coverage to
multiple users and
users can connect
to multiple UAVs

X

user experiences a probabilistic LoS channel model to maximize the minimum throughput

among all the users. However, there are some limitations of their system. First, they have

considered the uplink communication system, where only one user could connect to the

UAV to upload the data, and each UAV can only be connected to atmost one user. Second,

such a system will only ensure that the user will receive a reasonable data rate in certain

time slots (time slots for which the user is connected to the UAV) but not throughout the

service time. Third, they assumed that an equal bandwidth is allocated to all the users.

Considering the above limitations, the analysis done in [99] cannot be applied to the

downlink communication system, where the multiple users must be served by the UAV

providing su�cient data rate in every time slot and allocates bandwidth depending upon

the channel conditions to further improve the user’s throughput. Also, none of the works

have considered the importance and need for UAV replacement when the UAV goes low

on energy. Although the prior works have considered UAV’s onboard energy but have not

provided how continuous long-term communication can be achieved using the multiple

UAVs. Thus while designing the downlink communication system, it is critical to consider

the above factors.
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6.1.2 Contributions and Organization

In this chapter, we consider a novel UAV replacement framework where the existing UAV

low on energy is replaced by an another fully charged UAV. This is done to maintain the

service continuity and provide long-term coverage to the ground users. We maximize the

minimum achievable rate of the ground user during the total flight time of the UAV by

jointly optimizing the 3D multi-UAV trajectory and bandwidth allocation in the presence

of UAV mobility, energy consumption constraint, and the minimum rate required by the

ground user at each time instant. This work is carried out by considering a realistic A2G

channel model comprising both LoS and NLoS links, i.e., the probabilistic LoS channel

model. As per the author’s knowledge, there is no related work reported in the literature

for the UAV replacement problem. Thus, this work fills the lacuna in providing continuous

coverage to the users using UAVs.

This setup can be applied to many practical applications such as sports events, rescue

and search operations, events taking place in urban environments, etc., where temporary

coverage for upto several hours is required. The key contributions of this work are as

follows:

• We consider a UAV replacement framework, where the existing UAV low on energy

is replaced by an another fully charged UAV.

• We formulate a joint optimization problem that jointly optimizes the UAV trajectory

and resource allocation to maximize the minimum rate achievable by the user.

• The formulated problem is non-convex. We propose an alternating optimization

scheme based on successive convex approximation (SCA) methods to obtain the

solution.

• Numerical results are plotted to show key insights and compares the performance of

proposed scheme with the benchmark schemes.

The organization of this chapter is as follows. Section 6.2 describes the communication

model with multiple UAVs and describes the performance metric. Section 6.3 describes

the problem statement. The solution methodology is proposed in Section 6.4, followed by

the overall algorithm and complexity in Section 6.5. Section 6.6 presents the numerical

results. Finally, we conclude the chapter in Section 6.7.
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Figure 6.1: Model representing the UAV replacement framework.

6.2 System Model

6.2.1 Communication Model

We consider a UAV-assisted wireless communication system as shown in Figure 6.1 with

K = {1, · · · ,K} ground users (or users) that are distributed over a circular field of radius

r. Location of the kth-user is given by wk = [xk, yk], where k 2 K. The users are assumed

to be stationary and their location is known. To consider the UAV replacement scenario,

we consider m 2 M UAVs, where M = {1, 2}. One is the currently serving UAV, denoted

by U1(m = 1) and the other one is a fully charged UAV, denoted by U2(m = 2). At

the start of the replacement process, we assume that U1 is located at the final location

XF = [xF, yF, zF] and is serving users while U2 is at the charging station XI = [xI, yI, zI]

and proceeding towards XF to replace U1. Over time T , the replacement of the UAV

takes place with U2 taking position XF while U1 returning back to the launch station XI .

The UAV location at the n
th-time slot is given by Xm[n] = [qm[n], zm[n]], where m 2

{1, 2}, and qm[n] and zm[n] are the horizontal and vertical coordinates of the m
th-UAV,

respectively. Then, the constraint on the UAV locations with respect to time is given as

X1[0] =XF ,X1[Nf ] =XI ,X2[0] =XI ,X2[N ] =XF . (6.1)

The slot index Nf  N is the number of time slots taken by the UAV U1 to reach XI .

Accordingly, if Nf < N , then after Nf time slots only UAV U2 will provide communication

to the ground users considering that the UAV U1 has reached the charging station and has

terminated its service. Note that, in our work, we consider two-UAVs for better insights

but this work is also valid for more than two UAVs.
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We assume the maximum flying velocity of the UAV is constrained by Vmax such that

vm[n]  Vmax, 8n,m 2 {1, 2}, where vm[n] is the velocity of m
th-UAV at time slot n.

vm[n] = dm[n]/⌧ , where dm[n] = kXm[n] � Xm[n � 1]k is the distance travelled by the

m
th-UAV in the nth-time slot. Also, we assume the minimum separation distance required

to avoid collision between the two UAVs is Dmin.

Note that after UAV U1 has reached the charging station only UAV U2 will serve

the ground users from the final location. Therefore, the final location should be the

optimal location where the performance is optimal. In this work, to better understand

the replacement mechanism, we have considered the final location to be any location in

3D space and did not impose any constraint on the final location. However, this work is

equally applicable when final location is an optimal location.

Since only UAV U1 is low on energy, in this work, we consider the onboard energy

constraint for UAV U1 only, which is given by

NfX

n=1

e1[n]  Eleft, (6.2)

where e1[n] is defined in (2.2), Chapter 2, and Eleft is the energy left with the UAV U1.

6.2.2 Performance Metric

Since the A2G link is more prone to blockage due to the presence of obstacles and

buildings, such as in the urban environment, we consider probabilistic LoS channel model

(as described in Chapter 2). Then, the average path loss hk,m[n] between the m
th-UAV

and the k
th-user at time slot n is expressed as

hk,m[n] = �0

(1� )PL

k,m
[n] + 

kqm[n]�wkk2 + zm[n]2
. (6.3)

Equation (6.3) is an extended form of (2.13) when multiple UAVs are present. Similarly,

P
L

k,m
[n] can be written as

P
L

k,m
[n] =

1

(1 + C exp (�D[�k,m[n]� C]))
, (6.4)

which describes the LoS probability of the m
th-UAV with the k

th-user at time slot n,

where C and D are parameters describing either the suburban, urban, or dense urban

environment. �k,m[n] = tan�1
⇣

zm[n]
kq

m
[n]�wkk

⌘
in (6.4) is the elevation angle between the

m
th-UAV and the k

th-user at time slot n.
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We consider a downlink communication setup where the UAV uses FDMA scheme for

sharing resources among the ground users. Let bk,m[n] denote the bandwidth allocated

by the m
th-UAV to the k

th-user in the n
th-time slot from the total bandwidth B (Hz)

available. Then, the bandwidth allocation is given as

KX

k=1

2X

m=1

bk,m[n] = B. (6.5)

We assume the UAV transmits with equal power Ptr to all the users. Then, the achievable

data rate by averaging over the small-scale fading e↵ects at the k
th-user by the m

th-UAV

at time slot n is given by

rk,m[n] ⇡ bk,m[n] log2

✓
1 +

Ptrhk,m[n]

bk,m[n]�2

◆
, (6.6)

where �2 is the receiver’s noise power density. Consequently, the achievable data rate of

the k
th-user during the flight time T is expressed as

Rk ,
NfX

n=1

rk,1[n] +
NX

n=1

rk,2[n]. (6.7)

6.3 Problem Formulation

In this work, we intend to maximize the minimum rate among all the users in a

UAV-assisted wireless communication system. We define B = {bk,m[n], 8k 2 K,m 2

M, n 2 N}, and T = {Xm[n], 8m 2 M, n 2 N} as bandwidth, and multi-UAV trajectory,

respectively. Then, the optimization problem is formulated as

(P1) : max
B,T

min
k

Rk ,
NfX

n=1

rk,1[n] +
NX

n=1

rk,2[n],

s.t. X1[0] = XF ,X1[Nf ] = XI , ,X2[0] = XI ,X2[N ] = XF , (6.8a)

vm[n]  Vmax, 8m,n, (6.8b)

kXm[n]�Xj [n]k2 � D
2
min, 8n,m 6= j, (6.8c)

NfX

n=1

e1[n]  Eleft, Nf  N, (6.8d)

rk,1[n] + rk,2[n] � Rth, 8k, n, (6.8e)

KX

k=1

2X

m=1

bk,m[n] = B, (6.8f)
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where constraints (6.8a), (6.8b), and (6.8c) are the the initial and final location, maximum

velocity, and collision avoidance constraints, respectively. Constraint (6.8d) is the energy

consumption constraint, (6.8e) ensures a minimum rate Rth is ensured to each user at

every time slot, and (6.8f) is the bandwidth constraint.

It can be observed that problem (P1) is highly complex and is di�cult to be solved due

to the following reasons. First, the objective function (i.e., rate expression) is non-convex.

Second, the constraints (6.8c) � (6.8e) are non-convex, which either contain the bandwidth

and trajectory coupled together or contain individual variables. Therefore, the formulated

problem is non-convex and NP-hard that cannot be solved using the existing methods. In

the following section, we propose a method to obtain a sub-optimal solution.

6.4 Proposed Methodology

In this section, we first transform the max-min problem defined in (P1) to a maximization

problem by introducing an auxiliary variable R = min
k

Rk, as a function of B and T.

Then, the problem is defined as

(P1.1) : max
R,B,T

R

s.t. Rk � R, 8k 2 K, (6.9a)

(6.8a)� (6.8f).

The problem (P1.1) is still non-convex with additional non-convex constraint in (6.9a). We

solve this problem by decoupling it into two sub-problems, namely bandwidth optimization

and UAV trajectory optimization. Thereafter, we apply alternating optimization to solve

this problem. In alternating optimization, we solve the two subproblems alternatively.

In particular, we first solve the bandwidth optimization under the initially given UAV

trajectories using linear programming. Then, the UAV trajectory optimization problem

is solved to obtain the optimal trajectory using the SCA approach. This repeats until

the di↵erence in the objective value between the two successive iterations is below an

acceptable tolerance. Furthermore, we show the analytical complexity and convergence of

the proposed iterative algorithm.

6.4.1 Bandwidth Optimization

For given UAV trajectories T, the bandwidth optimization problem can be formulated as
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(P2) : max
R,B

R

s.t. (6.9a), (6.8e), (6.8f).

It can be observed that rk,m[n] defined in (6.6) is convex in bk,m[n] and so is Rk defined

in (6.9a). Furthermore, the constraints (6.9a) and (6.8e) are also convex along with the

linear constraint in (6.8f). As a result, problem (P2) is a covex optimization problem and

it can be e�ciently solved using interior point method.

6.4.2 Trajectory Optimization

We optimize the UAV trajectories T for a given bandwidth allocation B. The trajectory

optimization problem is formulated as follow

(P3) : max
R,T

R

s.t. (6.9a), (6.8a)� (6.8e).

It can be observed that due to the presence of non-convex constraints in (6.9a), (6.8c)

� (6.8e), the problem (P3) is non-convex. To tackle this di�culty e�ciently, we solve

for qm[n] (horizontal) and zm[n] (vertical) trajectory coordinates separately in trajectory

optimization. Thereafter, we propose an iterative algorithm that optimizes the horizontal

and vertical coordinates iteratively.

Horizontal Coordinate Optimization

Given the vertical coordinates of the UAVs i.e., {zm[n], 8m,n}, the horizontal coordinate

problem is formulated as follows

(P3.1) : max
R,{qm[n],8m,n}

R

s.t. (6.9a), (6.8a)� (6.8e).

Note that the problem (P3.1) is non-convex due to non-convex constraints in (6.9a), (6.8c)

� (6.8e). To obtain a solution to this problem, we apply SCA method to convert the

non-convex constraints to convex.

Since Rk in (6.9a) is a non-negative sum function of rk,m[n], to make this a concave

function, we need to prove the concavity of rk,m[n], 8m 2 {1, 2} [100]. The rk,m[n] defined

in (6.6) is a logarithmic function of average channel gain hk,m[n]. As from [100], we know



94 Chapter 6. UAV Replacement for Coverage Continuity

that the logarithmic function preserves the concavity, therefore, we only need to deal with

hk,m[n].

To transform hk,m[n], let us introduce an auxiliary variable ↵k,m[n], such that

↵k,m[n] 
(1� )PL

k,m
[n] + 

kqm[n]�wkk2 + zm[n]2
. (6.13)

Then, the rk,m[n] defined in constraints (6.9a) and (6.8e) can be written in the form

r̄k,m[n] = bk,m[n] log2(1 + �̃o↵k,m[n]), (6.14)

where �̃o =
Ptr�0
�2 . As a consequence, the constraints (6.9a) and (6.8e) results in a convex

constraints in ↵k,m[n]. The constraint introducing the auxiliary variable i.e., (6.13) is

however a non-convex constraint.

Lemma 6. The non-convex constraint in (6.13) can be written in its equivalent forms

represented by equations (A.3.1), (A.3.2), (A.3.3), (A.3.4), (A.3.5), defined in Appendix

A.3.1.

Proof. See Appendix A.3.1.

Accounting Lemma 6, the problem (P3.1) can now be represented as (P3.1.1)

(P3.1.1) : max
R,{qm[n],8m,n},X

R

s.t. (6.8a)� (6.8d), (A.3.1)� (A.3.5)

r̄k,1[n] + r̄k,2[n] � Rth, 8k, n, (6.15a)

NfX

n=1

r̄k,1[n] +
NX

n=1

r̄k,2[n] � R, 8k, (6.15b)

where X = {↵k,m[n],�k,m[n], yk,m[n],�k,m[n]}, 8k,m, n. The constraints (6.15a) and

(6.15b) are the modifications of constraints (6.8e) and (6.9a) in (P3.1), respectively, by

introducing the auxiliary variable ↵k,m[n] with r̄k,m[n] defined in (6.14). In problem

(P3.1.1), the constraints (6.8c), (6.8d), (A.3.1), (A.3.2), and (A.3.4) belong to a non-convex

set. Accordingly, we utilize SCA method to obtain an approximate solution to (P3.1.1).

We first introduce the following lemmas to convexify the non-convex constraints.

Lemma 7. The constraint (A.3.1) can be represented in the convex form using the SCA

method given as
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1

2
(�k,m[n] + kqm[n]�wkk)2 � �k,m[n]  zm[n], (6.16)

where �k,m[n] is defined in (A.3.8).

Proof. See Appendix A.3.2.

In a similar fashion as in Lemma 7, we can transform (A.3.2) to obtain

P�k,m[n] �
✓

1

y
r

k,m
[n]

+
(yk,m[n]� y

r

k,m
[n])

y
r

k,m
[n]2

◆
 0, (6.17)

where P�k,m[n] = 1 + C exp
�
�D

⇥
tan�1�k,m[n]� C

⇤�
. Similarly, (A.3.4) can be replaced

by its convex form which is given by

1

2

�
↵k,m[n] + kqm[n]�wkk2

�2
+ ↵k,m[n]zm[n]2 � �k,m[n]  �k,m[n], (6.18)

where �k,m[n] = 1
2(↵

r

k,m
[n]2 + kqr

m[n] � wkk4) + ↵
r

k,m
[n](↵k,m[n] � ↵

r

k,m
[n]) + kqr

m[n] �

wkk2(kqm[n]�wkk2�kqr
m[n]�wkk2). To deal with the non-convex set (6.8c) and (6.8d),

we introduce the following lemma

Lemma 8. The collision constraint in (6.8c) can be transformed into its convex form given

in (A.3.10) and the energy constraint in (6.8d) can be written as
PNf

n=1 ẽ1[n]  Eleft, along

with the additional convex constraint defined in (A.3.12), where ẽ1[n] is given as

ẽ1[n] = ⌧Po

 
1+

3vxy1 [n]2

U
2
tip

!
+Pig1[n]+

⌧

2
d0⇢SAv

xy

1 [n]3+Wv
z

1 [n]. (6.19)

Proof. See Appendix A.3.3.

Accounting all the above discussion and lemmas to convexify the constraints, it can

be observed that the problem (P3.1.1) can now be approximated to a convex optimization

problem. Thus, interior point method can be employed to obtain the optimal solution.

By adopting the first-order Taylor expansion to compute the bounds on the non-convex

constraints, the solution to problem (P3.1.1) can be thought of as a subset of problem

(P3.1). Therefore, the value of objective function obtained from (P3.1.1) is always lesser

or equal to the solution obtained from (P3.1). This implies (P3.1.1) converges to atleast

one locally optimal solution.

Vertical Coordinate Optimization

Given the horizontal coordinates {qm[n], 8m,n} obtained from the horizontal coordinate

optimization subproblem, the vertical coordinate optimization subproblem is given as
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(P3.2) : max
R,{zm[n],8m,n}

R

s.t. (6.9a), (6.8a)� (6.8e).

It can be observed that the problem is non-convex due to the non-convex constraints (6.9a),

(6.8c), and (6.8e). Following the same procedure as done for the horizontal coordinate

optimization problem, the problem (P3.2) can be written as

(P3.2.1) : max
{zm[n],8m,n},X

R

s.t. (6.8a)� (6.8d), (6.15a), (6.15b), (A.3.1)� (A.3.5).

where X = {↵k,m[n],�k,m[n], yk,m[n],�k,m[n]}, 8k,m, n. The constraints (6.15a), (6.15b),

(A.3.1)� (A.3.5) are obtained using the same procedure as defined in horizontal coordinate

optimization. It can be observed that the problem is non-convex due to the constraints

(6.8c), (A.3.2), and (A.3.4).

Utilizing similar methods as used in the previous subsection, the constraint (6.8c) can

be written as (A.3.10) with Xr

m[n] = (qm[n], zrm[n]) and Xr

j [n] = (qj [n], z
r

j
[n]), and the

constraint (A.3.2) can be transformed to a convex function as (6.17). Similarly, non-convex

constraint (A.3.4) can be written in convex form as

1

2

�
↵k,m[n] + zm[n]2

�2
+ ↵k,m[n]kqm[n]�wkk2 � �

v

k,m
[n]  �k,m[n], (6.22)

where �v
k,m

[n] = 1
2(↵

r

k,m
[n]2+z

r
m[n]4)+↵r

k,m
[n](↵k,m[n]�↵r

k,m
[n])+z

r
m[n]2(zm[n]2�z

r
m[n]2).

Accounting the first-order Taylor expansions, the problem (P3.2.1) is now convex and can

be solved using the interior point method. Similar to the horizontal coordinate subproblem,

(P3.2.1) also converges to locally optimal solution of (P3.2).

Finally, using the subproblems (P3.1.1) and (P3.2.1), we obtain the sub-optimal

trajectories T of the both UAVs U1 and U2 for a given bandwidth B. Algorithm 10

presents the procedure to obtain T using alternating optimization. Here, in the first stage

{qm[n], 8m,n} is solved for a fixed {zm[n], 8m,n}, and in the second stage {zm[n], 8m,n}

is solved for the obtained {qm[n], 8m,n}. These two stages are iteratively executed until

the objective function R converges.

6.5 Overall Algorithm

In this section, we present the overall algorithm to obtain the solution to problem (P1.1),

its computational complexity, and convergence. Note that we have initialized the UAV
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Algorithm 10 Trajectory optimization algorithm

Input: XI , XF , wk, 8k 2 K, Vmax.
1: Initialize B0, {qm[n]0, 8m,n}, {zm[n]0, 8m,n}. Set acceptable tolerance ✏ = 10�4,

and iteration count r = 0.
2: Repeat
3: Fix {zm[n]r, 8m,n} and solve for {qm[n]r+1

, 8m,n} in problem (P3.1.1).
4: Fix {qm[n]r+1

, 8m,n} and solve for {zm[n]r+1
, 8m,n} in problem (P3.2.1).

5: Set r = r + 1, and calculate Rr+1.
6: Until Rr+1 �Rr  ✏.

Figure 6.2: Trajectory initialization based on straight-line path.

trajectory in Algorithm 10. In general, the converged solution and the performance of the

iterative algorithms depend on the initialization schemes. Therefore, we first present a

low-complexity trajectory initialization strategy.

6.5.1 Trajectory Initialization Strategy

In this subsection, we present a low-complexity strategy to initialize the UAV trajectories

that is based on straight flight trajectory. The strategy is as follows. First, we develop

a straight-line between the initial and the final location. Second, to keep a safe distance

between the UAVs, a semicircle of radius equal to Dmin is formed from the centre of the

straight line connecting the initial and the final location. The following two paths formed

by considering the semicircle is shown in Figure 6.2. One path is the solid line while the

other one is dashed line between the initial and the final location. Third, since the UAV

launched from the initial location is full on energy, the UAV U2 will take a semicircle path

to reach the final location, and the other UAV U1 takes a straight line path. Furthermore,

in this initial trajectory design, the UAV moves with a fixed speed 0  vm[n]  Vmax which

is same for both the UAVs. This velocity vm[n] is obtained based on the energy available

with the energy-constraint UAV, which is given by vm[n] = Eleft/N . The initial trajectory

design is specifically chosen because of its low-complexity and systematic design.

6.5.2 Overall Algorithm

In this subsection, we present the overall algorithm design. Based on the analysis provided

by decomposing the problem into subproblems, we present an alternating optimization
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Algorithm 11 Overall algorithm to obtain solution of (P1.1)

Input: XI , XF , wk, 8k 2 K, Vmax.
1: Initialize B0, T0, set acceptable tolerance ✏ = 10�4, and iteration count r = 0.
2: Repeat
3: Fix Tr and solve for Br+1 in problem (P2).
4: Fix Br+1, call Algorithm 10 to obtain Tr+1.
5: Update {Tr

,Br} with {Tr+1
,Br+1}.

6: Set r = r + 1, and calculate Rr+1.
7: Until Rr+1 �Rr  ✏.

algorithm to obtain a sub-optimal solution. The overall algorithm is presented in

Algorithm 11. The steps in the Algorithm 11 are as follows. In step 1, we initialize the

bandwidth allocation B0, and multi-UAV trajectory T0. Step 2 to Step 7 involve the steps

corresponding to alternating optimization, where bandwidth allocation and multi-UAV

trajectory are optimized iteratively by fixing the other design variables. Particularly, in

Step 3, for any given multi-UAV trajectory Tr, we optimize the bandwidth allocated to

each user by solving a linear programming problem. In Step 4, for an optimized bandwidth

Br+1, the UAV trajectories Tr+1 are optimized using Algorithm 10. The algorithm returns

a solution when the di↵erence in the objective function of the current iteration to the

previous iteration is below the pre-defined tolerance ✏.

6.5.3 Complexity and Convergence

The computational complexity of the overall algorithm depends on the complexity

involved in solving the trajectory optimization subproblem. In particular, it depends on

the iterative scheme (Algorithm 10) that solves the horizontal and vertical coordinate

optimization subproblem iteratively, for (P3.1.1) and (P3.2.1), respectively. The

complexity to solve problem (P3.1.1) is given by Chor , O((4KMN + (M +

1)N)3.5 log(1/✏)), where 4KMN+(M+1)N represents the number of variables that are to

be optimized and ✏ represents the solution accuracy [88]. Similarly, the complexity to solve

problem (P3.2.1) is given by Cver , O((4KMN+MN)3.5 log(1/✏)), where 4KMN+MN

represents the number of variables to be optimized for vertical coordinate optimization.

Let Riter indicates the number of iteration to achieve convergence of Algorithm 10, then

the overall complexity is given by O(Ritermax(Chor, Cver)).

Since we have solved the approximate problems to obtain the multi-UAV trajectory

and allocated bandwidth to each user, we need to ensure the convergence of the alternating

optimization method. This is proved by showing that the objective value increases in each

iteration in a maximization problem. Here, we first present the convergence of Algorithm

10. Then, using that, we prove the convergence of the overall algorithm.
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We define R(Q,Z), Rlb

hor
(Q,Z), and Rlb

ver(Q,Z) as the objective value of

(P3), horizontal coordinate optimization problem P3.1.3, and the vertical coordinate

optimization problem (P3.2.1), respectively, with Q = {qm[n], 8m,n} and Z =

{zm[n], 8m,n}. In Algorithm 10, for a fixed Zr, Qr+1 is optimized by solving P3.1.3.

Then, we have

R(Qr
,Zr)

(a)
= Rlb

hor
(Qr

,Zr)

(b)
 Rlb

hor
(Qr+1

,Zr)

(c)
 R(Qr+1

,Zr), (6.23)

where (a) holds because of the tightness of the first-order Taylor expansion of the

constraints at the local point, (b) holds since the optimal solution Qr+1 is obtained for the

approximate problem with the given Zr, and (c) holds because the approximate problem

is the lower bound of the original problem at Qr+1. Thus, (6.23) implies the objective

function is non-decreasing after each iteration. Since the procedure to compute Z is similar

to Q, then we have

R(Qr+1
,Zr)  R(Qr+1

,Zr+1). (6.24)

Through (6.23) and (6.24), we obtain R(Qr
,Zr)  R(Qr+1

,Zr+1). This implies that the

objective value of Algorithm 10 is non-decreasing after each iteration by solving for both

the horizontal and vertical coordinate optimization problems. Therefore, the trajectory

optimization algorithm i.e., Algorithm 10 guarantees convergence.

Since we have followed the alternating optimization approach in Algorithm 11 to obtain

Br+1 and Tr+1, then we can directly write

R(Br
,Tr)  R(Br+1

,Tr+1). (6.25)

This shows that Algorithm 11 guarantees convergence. It is known that for alternating

optimization algorithms, the performance of the converged solution in general depends on

the initialization methods [93]. In our work, we have considered a low-complexity and

simple trajectory initialization as discussed in Section 6.5.1.

6.6 Results and Discussions

In this section, to evaluate the performance of our proposed scheme, we consider three

scenarios. In Scenario 1, we consider a single user because when a single user is present, the



100 Chapter 6. UAV Replacement for Coverage Continuity

Figure 6.3: UAV trajectories for both UAV U1 and UAV U2 with Eleft = 5000 J in (a)
3D-plane, and (b) XY-plane.

algorithm maximizes the user’s throughput instead of max-min. Therefore, the max-min

problem (P1.1) will be equivalent to a maximization problem. In Scenario 2, we consider a

multi-user UAV replacement mechanism. In Scenario 3, we consider the case when K = 12

users forming three clusters.

In our system, we consider reference distance �0 = 1 m and the environment parameters

are set to C = 10, and D = 0.6. We consider the pathloss exponent and additional

attenuation as ↵̄ = 2.3, and  = 0.2, respectively [9]. The time slot duration ⌧ is set to 0.2

s with N = 24 time slots. Note that to keep the understanding of the UAV replacement

mechanism simple we have considered a smaller value of N and smaller field with closer

initial and final locations. In general, this approach can also be applied to a larger value

of N . The UAV’s starting location XI = (�50, 0, 0) m, and XF = (0, 0, 30) m. The

total communication power available with each UAV is Ptr = 0.1 W [97], and the total

communication bandwidth B of the system is set to 20 MHz unless specified. The UAV’s

maximum velocity is set to Vmax = 30 m/s. The minimum safe distance between the UAVs

to avoid collision is set to Dmin = 10 m. The parameters in energy consumption model

are taken as follows: Po = 79.86 W, Pi = 88.63 W, vo = 4.03 m/s, d0 = 0.6, Utip = 120,

⇢ = 1.225 kg/m3, S = 0.05, W = 20 N and A = 0.503 [101].

6.6.1 Scenario 1: Single-user UAV Replacement Mechanism

In this sub-section, we study a single-user UAV replacement mechanism. Figure 6.3 and

Figure 6.4 exhibit the UAV trajectories for two di↵erent onboard energies, i.e., Eleft =
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Figure 6.4: UAV trajectories for both UAV U1 and UAV U2 with Eleft = 2000 J in (a)
3D-plane, and (b) XY-plane.

5000 J and Eleft = 2000 J, respectively. In this single user case, it is intuitive that the

UAVs would fly near to the users. The same can be observed from Figure 6.3 wherein

both the UAVs tend to fly close to the user, and try to get as close as possible to minimize

path loss. To avoid collision, the UAVs maintain a safe distance with each other as

shown in Figure 6.3(a). As the UAV U1 is low on energy due to which replacement is

required, a lesser energy will restrict the UAV to approach close to the user. As a result,

it forces the UAV to take a path closer to the straight line between the deployment and

the charging station to reach the charging station without exhausting its full energy, as

shown in Figure 6.4. To achieve a better performance, the ground user will connect only

to a UAV with better channel conditions instead of associating with both the UAVs in a

particular time slot. As a result, the whole system bandwidth is allocated to the user by

the UAV with better channel condition.

6.6.2 Scenario 2: Multi-user UAV Replacement Mechanism

Here, we consider two users and observe how the proposed scheme achieves fairness

among the two ground users by adjusting the UAV trajectory and bandwidth allocation.

Figure 6.5 and Figure 6.6 depicts the optimized trajectories of the UAVs based on di↵erent

onboard energy available with the UAV U1. It is worth noting that when two users are

present, the UAV must move close to each user to provide a higher rate. However, to

maintain fairness among the ground users (corresponding to our max-min problem), the

UAV must maintain equal coverage to both the users for the whole flight duration. The
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Figure 6.5: UAV trajectories for both UAV U1 and UAV U2 with Eleft = 5000 J in (a)
3D-plane, and (b) XY-plane for Scenario 2.

Figure 6.6: UAV trajectories for both UAV U1 and UAV U2 with Eleft = 2000 J in (a)
3D-plane, and (b) XY-plane for Scenario 2.

term fairness here describes that a user must be provided with a sum rate equal to or

comparable to other users during the service duration. The max-min problem achieves

this fairness by maximizing the minimum rate provided to the users and finally, the solution

returns the sum rate, which is equal or comparable to all the users. Similar to a single-user

case, when the UAV U1 has lesser energy available, the UAV U1 takes a shorter path

(straight line) to reach the charging station.

To illustrate how much bandwidth is allocated to each user, we plot Figure 6.7, and

Figure 6.8, with both Eleft = 5000 J, and Eleft = 2000 J, respectively. Note that to ensure

that the user is under coverage in a particular time slot, we have applied a minimum rate

constraint. As a result, the user will experience a minimum rate Rth within a time slot.
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Figure 6.7: Optimal bandwidth allocated to (a) the user 1, and (b) user 2, when Eleft =
5000 J.

Figure 6.8: Optimal bandwidth allocated to (a) the user 1, and (b) user 2, when Eleft =
2000 J.

It can be seen from Figure 6.7, as the UAV U2 moves toward user 2, it allocates the

majority of the system’s bandwidth to user 2 as a better channel is experienced by user 2.

However, to maintain fairness among users at the later stages, the UAV allocates a higher

bandwidth to user 1. The same can also be observed when lesser energy is available with

UAV U1 in Figure 6.8.

To verify the performance of the proposed scheme, we consider four benchmark schemes

as follows. (i) Straight flight trajectory [102]; (ii) Straight flight trajectory with bandwidth

optimization (BWO); (iii) Ellipsoidal trajectory [103], [104]; (iv) Ellipsoidal trajectory

with BWO. In a straight flight trajectory, the UAV travels in a straight line to reach

the final location ensuring a minimum safe distance between the UAVs. In an ellipsoidal
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Figure 6.9: Comparison of proposed schemes with conventional schemes with di↵erent
energy levels for Scenario 2.

Figure 6.10: UAV trajectories for both UAV U1 and UAV U2 with Eleft = 5000 J in (a)
3D-plane, and (b) XY-plane for Scenario 3.

trajectory, UAVs travel by forming an arc in the opposite direction to reach their respective

location, resulting in a trajectory that resembles an ellipse. For both the straight flight

and ellipsoidal trajectory, the equal amount of bandwidth is allocated to each user from

each UAV irrespective of the channel conditions. Under BWO scheme, the problem (P2)

(BWO) is solved for the pre-specified path of the UAVs, i.e., straight flight and ellipsoidal

trajectory, such that the bandwidth is optimized to provide a fair rate to each user.

It can be observed from Figure 6.9 that the proposed scheme provides better max-min

rate compared to the other schemes as the energy availability increases. This is because

as the energy level increases, the UAV has more freedom to get closer to the users and

thereby providing higher rates. However, in the other schemes, such as straight flight and

ellipsoidal trajectory with BWO, straight flight trajectory, and ellipsoidal trajectory, the

throughput is significantly lower than the proposed scheme. This is because, in the other
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Figure 6.11: UAV trajectories for both UAV U1 and UAV U2 with Eleft = 2000 J in (a)
3D-plane, and (b) XY-plane for Scenario 3.

schemes, the UAV follows a predefined path, and the user’s throughput only increases if

the users are present along the UAV’s path. As a result, the user su↵ers from worse channel

conditions and achieves a lower throughput. Therefore, optimizing the UAV trajectory

and bandwidth allocation leads to a multi-fold performance enhancement in comparison

to the benchmark schemes. Specifically, our proposed scheme provides on an average 42%

improvement over the ellipsoidal with BWO (best performing benchmark schemes) and

110% improvement over the straight flight trajectory (poorer performing benchmark).

6.6.3 Scenario 3: Clustered-users UAV Replacement Mechanism

Similar to Scenario 1 and Scenario 2, Figure 6.10, and Figure 6.11 show the optimized

trajectories for Eleft = 5000 J and Eleft = 2000 J energy levels, respectively. In this

scenario, instead of following the user’s individual locations, the UAV treats the group of

users as a cluster and optimizes its trajectory.

The comparison of the proposed scheme for Scenario 3 with other schemes is shown in

Figure 6.12. Apart from this, we also present the sum throughput obtained by each user

during the total flight time in comparison to the benchmark schemes in Figure 6.13. It can

be observed that the benchmark schemes, such as straight flight trajectory and ellipsoidal

trajectory provide a better rate to only some of the ground users that are closer to the

trajectory of the UAVs. As a result, the other ground users get a significantly lesser rate.

Furthermore, it is also challenging to maintain fairness between the ground users under

such schemes. However, schemes such as straight flight with BWO and ellipsoidal with

BWO can achieve fairness but at a lesser rate. In comparison to the benchmark schemes,
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Figure 6.12: Comparison of max-min throughput with di↵erent energy levels for a
clustered-user UAV replacement scenario.

Figure 6.13: Comparison of achievable sum throughput of K = 12 users using di↵erent
schemes for Scenario 3.

multi-fold enhancement is achieved due to the joint optimization of multi-UAV trajectory

and bandwidth allocation. In particular, we observe that our proposed scheme provides

110% and 250% improvement in the minimum rate provided to the users in comparison to

the ellipsoidal with BWO and straight flight trajectory, respectively. Thus, we conclude

that the rate provided by the proposed scheme is fair and is significantly higher than the

benchmark schemes for all the considered scenarios.

6.7 Conclusion

Given the UAV’s limited onboard energy availability, in this work, we design a

UAV replacement scheme to maintain coverage continuity in a UAV-assisted wireless

communication system. A fully charged UAV is launched from the charging station

to replace an energy depleted UAV. Service fairness to all ground users is ensured by

formulating a max-min throughput optimization problem to jointly optimize the 3D



Chapter 6. UAV Replacement for Coverage Continuity 107

multi-UAV trajectory and resource allocation. The formulated problem is non-convex

and an e�cient iterative alternating optimization approach is proposed based on the

SCA method to solve the optimization problem. Numerical results present insights on

the UAV trajectories. Furthermore, our proposed scheme provides multi-fold performance

enhancement in achievable sum rate due to the joint optimization of multi-UAV trajectory

and bandwidth allocation in comparison to the benchmark schemes. In the future, UAVs

can use various energy sources to prolong battery endurance. In such instances, managing

the scheduling of communication and energy resources between the UAVs while considering

their cooperation is essential.

In a multi-UAV network, to achieve a higher communication rate, the ground user

associates with one of the UAVs based on the received signal strength. In this chapter, we

assume that the user associates with both the UAVs, but to achieve better communication

service to the ground user, the user primarily connects to the UAV with better received

signal strength. The same can also be observed from Figure 6.8, where a user connects to

one UAV by allocating su�cient bandwidth to the ground user at a particular time.

Therefore, in the next chapter, we study the association probability model for

UAV-assisted wireless communication systems, which defines the probability that the

ground user is connected to a particular UAV. Furthermore, we also study the impact

of fading on the association probability.
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Chapter 7

Impact of Fading on Association

Probability

7.1 Introduction

7.1.1 Motivation

The advancements in wireless communication networks, ranging from emergency assistance

to remote communication enable the use of UAVs as an ABSs. They are an essential

means to provide seamless connectivity, improved scalability, and higher data-rate support

in various scenarios, such as improved data transmission scalability to the IoT devices,

non-terrestrial networks, etc. [101]. Consider a scenario where multiple UAVs are deployed

to provide communication to the ground users spread over a given area. The A2G channel

can be characterized by path loss, probability of presence of LoS link, etc. To achieve a

higher communication rate, the user associates with one of the UAV based on the received

signal strength, and the ground user association probability is defined as the probability

that the ground user is connected to a particular UAV.

In general, the user is associated with the UAV that is closest. In a UAV-assisted

wireless communication networks, the A2G channel is classified into LoS and NLoS based

on the channel fading conditions. In such a system, it may happen that a closer UAV may

be in NLoS or may experience deep fade than a farther UAV with a LoS channel. Thus,

instead of associating with the closest UAV, the ground user may want to associate with

another UAV with better channel for better communication.

Nevertheless, the small-scale e↵ect is most often neglected while obtaining the

association probability models for UAV-assisted wireless communication networks. Owing

to the emergence of UAV-assisted wireless communication networks and the impact of

small-scale fading, we study an association probability model for data transmission in a

UAV-assisted wireless communication networks where the A2G links are characterized by

LoS or NLoS UAV by taking fading into account. Since the channel between the UAV



110 Chapter 7. Impact of Fading on Association Probability

and the user is estimated through obtaining the instantaneous SNR which includes fading,

therefore, it is necessary to study the impact of fading on the association probability.

We assume that the user is associated with either the closest LoS or NLoS UAV by

considering a realistic channel model with Nakagami-m fading. To this extent, we derive

an exact and closed-form approximate analytical expressions using stochastic geometry

for LoS association probability i.e., the user is connected to the closest LoS UAV while

considering fading. We also discuss the impact of various parameters, such as the altitude

and spatial density of UAV, pathloss exponent, and the scale parameter of Nakagami-m

fading on the LoS association probability. At last, we provide a comparison of our

analytical model with the average fading model.

7.1.2 Related Works

Stochastic geometry has been extensively used to model the terrestrial networks. However,

few works have used such an approach for UAV-assisted communication networks. The

authors in [105] analyzed the performance of UAV-assisted communication networks where

the location distribution of UAV forms a Poisson point process (PPP). They considered

the heterogeneous system consisting of UAV and derived the association probability of

the typical receiver by considering the strongest average received power (i.e., the typical

receiver is connected to closest UAV). The authors in [106] and [107] analyzed the

performance of the UAV-assisted communication network by considering LoS and NLoS

components while assuming the typical user is connected to the closest UAV and UAV are

distributed according to PPP, however, they have not considered the impact of fading in

their model. The work in [108] studied a finite network of UAVs with a LoS channel model

distributed over a disc located at a fixed altitude following a 2D binomial point process.

However, UAVs in LoS conditions with the users may not be justified if the UAVs hover

below buildings or in dense environments. On a similar note, the recent work in [109]

evaluated the network performance by considering the association of UAV based on the

strongest average received power. Considering the blockage e↵ect, the authors in [110]

derived the coverage probability when the user is associated to the closest visible UAV.

In the above works [105]-[110], the authors have considered the user to be associated

with the UAV which is closer. In a practical scenario, considering closest UAV may not

result in better performance due to the obstruction in signal strength that may even

cause deep fade. Also, the characterization of the A2G channel is determined by its

instantaneous SNR. Therefore, this work bridges the gap in understanding how fading
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a↵ects the network’s performance. In particular, from analysis, we conclude that if the

user associates with the UAV while accounting fading, we get an average improvement

of 10% in the ergodic capacity. Furthermore, the results show that considering fading

in addition to pathloss is beneficial for low-altitude scenarios, as it provides a significant

increase in the user association probability compared to the average fading scenario.

This work is di↵erent from the analysis done on terrestrial networks because the channel

model for UAV-assisted communication network includes both the LoS and the NLoS links

between the UAV and the user. Also, the pathloss of the A2G channel depends on the

distance and elevation angle, whereas in the terrestrial networks, it increases monotonically

with distance.

7.2 System Model

7.2.1 Aerial Network Deployment

We consider a UAV-assisted communication network comprising of multiple UAVs to serve

the set of users. We assume the UAVs are deployed to hover at a constant height H and

are distributed according to PPP, � , {xi} with density �, where xi denotes the 3D

location of the ith-UAV. Note that the practical deployment of base station is not random,

however, the PPP assumption allows useful analytical tools from stochastic geometry and

provides much tractability to track the real deployment of base stations [111]. Indeed,

the authors in [112] showed that even with the PPP used for base station locations, the

resulting model is about as accurate as the grid model. Furthermore, we assume that all

UAVs transmit at power PB and are equipped with adequate backhaul links (su�cient

bandwidth). To simplify our analysis, we consider a typical user to be present at the

origin.

7.2.2 A2G channel model

The A2G channel model is characterized by a combination of large-scale attenuation and

small-scale fading. According to [113], the A2G links comprise of both the LoS and

the NLoS that considers the occurrence probabilities of both the links separately. The

large-scale attenuation due to pathloss is modelled as L(X) = X
�↵s , where s 2 {L,N}

represents the type of sight i.e., L for LoS and N for NLoS. X =
p
r2 +H2 is the distance

between UAV and a typical user, where r denotes the 2D distance from the projection

of UAV onto the ground and the typical user. ↵s denotes the pathloss exponent, where
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↵s = ↵L with probability PL(X) and ↵s = ↵N with probability PN (X).

The probability PL(X) is the probability of LoS transmissions which depends upon

the height and density of the buildings, and elevation angle between the typical user and

UAV. The probability PL(X) is given by

PL(X) =
1

1 + C exp(�D(! � C))
, (7.1)

where C and D are environment-dependent constants, and ! = 180
⇡

sin�1(H/X) is the

elevation angle between the typical user and the UAV. Then, PN (X) is the probability of

NLoS transmission given by PN (X) = 1� PL(X).

The typical user experiences either a LoS or NLoS channel with each UAV

independently depending on the probability of pathloss PL(X) in (7.1). Therefore, from

the user’s view point, we decomposed the set of UAVs � into two independent PPP, i.e.,

� = �N

S
�L. �N and �L denote the set of UAV that are in NLoS and LoS with the

typical user, respectively. The above two sets are disjoint i.e., �N

T
�L = ?.

In this work, we assume the LoS and NLoS links undergo independent small-scale

Nakagami-m fading. The Nakagami-m parameters for LoS and NLoS links are given by

(mL, ✓L) and (mN , ✓N ), respectively, where mL and mN are shape parameters, and ✓L

and ✓N are the scale parameters. Accordingly, the channel power gain Hs,xi
, s 2 {L,N}

between the UAV located at xi and the typical user, follow Gamma distribution with

probability density function (PDF) given by

fHs,xi
(hs)=

1

↵m�(m)
h
m�1

e
�hs/✓, hs>0, 8 xi2�, (7.2)

where s 2 {L,N}, m 2 {mL,mN} and �(.) is the Gamma function. The received power

at the typical user from LoS UAV and NLoS UAV located at point xi is given by

Ps,xi
= PBHs,xi

X
�↵s

s,xi
, 8 xi 2 �s, (7.3)

where s 2 {L,N}, respectively. Xs,xi
, represents the distances between the typical user

and the i
th-UAV located at xi for s

th-transmissions, respectively. Next, we introduce a

framework to derive the user association probability.
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7.3 Association Probability Analysis

In this section, we first describe the key statistical results required to provide the analysis of

association probability. Further, the exact analytical expression of association probability

along with its special case is derived. Note that to avoid ping-pong e↵ect due to rapid

channel fluctuations, the notion of hysteresis discussed in [114] can be employed.

7.3.1 Key Statistical Results

Let U and V be the two independent random variables, and R1 = V

U
. Then, the PDF of

R1 according to the ratio property [115] is given as

fR1(r) =

Z 1

u

ufV (ru)fU (u) du. (7.4)

Let R2 = U · V , then the PDF of R2 according to the product property [115] is given as

fR2(r) =

Z 1

v

1

v
fU

⇣
r

v

⌘
fV (v) du. (7.5)

Let V = U
1
a , then

��du
dv

�� =
��av(a�1)

��. Using transformation of random variable [115], the

PDF of V is given by

fV (v) = fU (v
a)

����
du

dv

���� . (7.6)

Using the above key results, we next derive the exact analysis of association probability.

7.3.2 Exact Association Probability

We assume that the user is connected to the closest LoS UAV or the closest NLoS UAV.

The probability that it will be connected with the second closest UAV is very less given that

the minimum distance between any two UAVs is greater than some threshold distance to

avoid collision. Here, we make note that the fading introduces small channel variations in

the signal than the pathloss. Then, the serving UAV yi when the typical user is connected

to the closest UAV of sight s 2 {L,N} is given by

yi = arg maxyi PBHs,xi
X

�↵s

s,xi
, (7.7)
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where Xs,xi
denotes the distance from the typical user to the closest UAV from �s with

density Ps(Xs,xi
)�. The PDF of distance Xs,xi

is taken as in [109], given by

fXs,xi
(x) = 2⇡xPs(x)� exp (X (x)) , x�H,xi2�s, (7.8)

with X (x)= �
Z p

x2�H2

0
2⇡uPs

⇣p
u2+H2

⌘
� du, (7.9)

and s 2 {L,N}. Due to LoS and NLoS, there exists two possible cases in the association

of typical user: typical user associated with LoS UAV and NLoS UAV. According to the

law of probability, if the typical user is associated with the LoS UAV with probability

PLoS , then PNLoS = 1�PLoS , represents the association probability with the NLoS UAV.

Therefore, in this work, we focus on PLoS , i.e., PLoS , P[s = L]. Next, we introduce a

lemma to obtain PLoS .

Lemma 9. The probability of the typical user to be associated with the LoS UAV is given

by

PLoS = A1

Z 1

q=H

z

exp (X (qz))

(Z 1

H

↵L
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PL

⇣
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dq, (7.10)

where A1 =
2⇡↵N�

↵L�(mL,mN ) .

Proof. See Appendix A.4.1.

With the above exact expression of PLoS , we next describe the special case of PLoS .

7.3.3 Special Case: Rayleigh Fading

Taking mL = mN = 1, this scenario reduces to the Rayleigh fading model. Then, the

probability of association of typical user to the LoS UAV for Rayleigh fading channel

denoted by PR

LoS
is given by

PR

LoS =
2⇡↵N�

↵L�(mL,mN )

Z 1

q=H

z

q
↵N exp (X (qz))

(Z 1

H

↵L
↵N
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⌘
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+↵N�1

(b↵N + q↵N )2
exp

⇣
X
⇣
b

↵N

↵L

⌘⌘
db

)
dq. (7.11)

To gain more analytical insights and obtain the closed-form expression for the user
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association probability with the closest LoS UAV, we approximate (7.11). The validity of

the approximated closed-form association probability is discussed later in Section 7.5.1.

7.4 Approximate Association Probability

Since the PLoS in (7.11) takes into account the regularized LoS probability of form

PL(X) as defined in (7.1) which is a function of distance between the typical user and

UAV. This makes (7.11) di�cult to handle. To address this issue, one way is to use a

homogeneous approximation of the LoS probability, where the LoS probability is set to

the value corresponding to the most likely elevation angle. This reduces PL(X) to a scalar

value, lets say PL. Then, (7.8) reduces to

fXs,xi
(x) =2⇡xPs� exp

�
�⇡Ps�(x

2�H
2)
�
, x � H, (7.12)

where s 2 {L,N}. Thereafter, we present a lemma to obtain the approximate expression

of association probability.

Lemma 10. The approximate LoS association probability of a typical user to be associated

with LoS UAV is given by ePLoS = exp(�sNH
2)T , where T is given by

T = A2

Z 1

H

q exp(�sNz
2
q
2)G2,1

1,2

0

@sL q
2

����
�1

0 0

1

A dq

�A2

Z 1

H

1

q3
exp(�sNz

2
q
2)

1X

k=0

(�sL)k

k!

(H2)k+2

k + 2

⇥ 2F1(2, k + 2; k + 3;
�H

2

q2
) dq, (7.13)

with A2 = 2⇡ PL� exp(⇡PL�H
2), G

2,1
1,2(.) is the Meijer-G function and 2F1(·; ·; ·) is the

Gauss hypergeometric function [116].

Proof. See Appendix A.4.2.

Since the closed-form expression of approximate LoS association probability ePLoS is

di�cult to obtain, we present a special case of ePLoS in the next sub-section to obtain a

closed-form expression.

7.4.1 Special Case: Low Altitude UAVs

While obtaining the approximate LoS association probability in (A.4.17), it can be

observed that for low heights UAVs, fQ(q) ⇡ fQ1(q). Then, FZ(z) in (A.4.24) can be



116 Chapter 7. Impact of Fading on Association Probability

Figure 7.1: Validation of exact and closed-form expression with the simulation runs.

written as FZ(z) , 1�exp(�sNH
2)bT , and association probability bPLoS = exp(�sNH

2)bT ,

where

bT = A2

Z 1

0
q exp(�sNz

2
q
2)G2,1

1,2

0

@sL q
2

����
�1

0 0

1

A dq, (7.14)

with A2 = 2⇡ PL� exp(⇡PL�H
2). Substituting q

2 = t to transform integral and then

using property [116, Eq. 07.34.21.0088.01], we get

bT =
A2

2sNz2
G

2,2
2,2

0

@ sL

sNz2

����
0 �1

0 0

1

A dq. (7.15)

Then, using (7.15) and bPLoS , we can obtain the closed-form expression of association

probability of a typical user with closest LoS UAV for low heights UAVs, for example,

rural areas.

7.5 Result and Discussions

In this section, we first validate the exact and approximate expressions derived for

association probability under fading. Later, we discuss the impacts of various parameters

on the association probability. We use Matlab for performing Monte Carlo simulation.

The association probability is obtained by averaging over 105 simulation runs.
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Nakagami-m

Rayleigh

Figure 7.2: Impact of UAV’s altitude on the LoS association probability for di↵erent
environment scenarios.

Figure 7.3: Comparison of di↵erent fading scenario and validation of approximation LoS
association probability.

7.5.1 Validation of Association Probability

To validate the analytical expression and closed-form approximate expression obtained for

association probability, we plot Figure 7.1. Figure 7.1(a) shows the validation of PDF of Z

(with Nakagami fading) obtained from the CDF defined in (7.10) with the simulation runs.

Similarly, Figure 7.1(b) validates the approximated Z defined in (7.15) with simulation

runs. From Figure 7.1, we conclude that the analytical expressions match the simulations

with negligible errors.

7.5.2 Performance Analysis

In Figure 7.2 and Figure 7.3, we show the impact of height on the association probability for

di↵erent environments and pathloss variations. Figure 7.2 is plotted by taking ↵N = 2.3,
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Rayleigh

Nakagami-m

Nakagami-m

Rayleigh

Figure 7.4: Impact of UAV density, � on the LoS association probability for (a) dense
urban scenario, (b) sub-urban scenario.

↵L = 2, � = 5, and mL = 1.3, mN = 1.2 for Nakagami-m fading model and mL = mN = 1,

for Rayleigh fading model. It can be observed that as the environment becomes dense

for a particular fading scenario, the association probability with LoS UAV decreases for a

particular height, and with the increase in the height of the UAV, the chances to experience

LoS links increases and certainly the typical user will associate towards the LoS UAV in

comparison to the NLoS UAV. However, for suburban, it first increases and then decreases

after a particular height. This is because that in suburban environment, increasing altitude

results in poor channel conditions between the UAV and the user despite the fact that

the A2G links are usually LoS. Also, the association probability for Nakagami-m fading

is higher than the Rayleigh fading, because for LoS UAV, Nakagami-m is assumed to be

better than the Rayleigh fading as there exists the chances to maintain LoS links and thus

the received power increases.

Figure 7.3 is plotted by varying the value of pathloss exponent for urban environment

scenario. It can be observed that association probability of LoS UAV increases as the ↵N

increases due to the better connectivity with the LoS UAV because the pathloss di↵erence

between ↵N and ↵L increases. Also, for the approximated case, the association probability

is approximately close or lesser than the association probability of Rayleigh when ↵N ⇡ ↵L.

This is because of considering the most likely value of probability of LoS instead of exact

LoS probability defined in (7.1).

To get further insights on the association probability, we show the impact of BS density

� on association probability in Figure 7.4(a), and Figure 7.4(b) for dense urban and

suburban scenario, respectively. Here, H = {30, 60, 90} m, ↵N = 2.3, ↵L = 2, mL = 1.3,

mN = 1.2 for Nakagami-m fading and mL = mN = 1, for Rayleigh fading model. In
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m = 5

m = 1

m = 3

Figure 7.5: Comparison of ergodic capacity of our proposed UAV scheme with the closest
UAV scheme.

Figure 7.4(a), the decreasing trend of association probability with the increase in the base

station density is desired because for a dense-urban environment, due to large number

of obstacles, the increase in the density of UAV results in increasing the UAV which are

in NLoS with the typical user. Thus, the probability to associate with LoS decreases

as � increases. However, for a particular �, increasing altitude result in increasing the

association probability as shown in Figure 7.2. In Figure 7.4(b) for a suburban scenario,

increasing density at high altitudes does not have much impact on the LoS association

probability. This is because most of the UAV are already in LoS with the typical user.

However, at low-altitudes, the increase in density will increase the probability of serving

with LoS UAV. Thus, the desired received signal strength increases significantly.

7.5.3 Performance Comparison

To show the e↵ectiveness of user associating with the UAV on the basis of instantaneous

received signal strength, we compare it to the user associating with the average fading

scenario in Figure 7.5 and Figure 7.6. It is plotted by varying the altitude of the UAV

for di↵erent shape parameter mL = {1, 3, 5} and keeping mN = 1. Figure 7.5 shows the

ergodic capacity of typical user to be associated with LoS UAV versus altitude of UAV

which is given by PLoSE[log2(1 + SNR)] (bps/Hz) [105], where SNR is signal-to-noise

ratio defined as received power in (7.3). The values of transmit power PB and noise

power for simulation is taken as 32 dBm and �174 dbm/Hz, respectively. It is clear from

Figure 7.5 that the average improvement in the ergodic capacity of the considered system

is around 10% in comparison to the average fading scenario. This can also be inferred

from Figure 7.6 that shows the variation in association probability with the height of UAV
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Association based on:

Figure 7.6: Comparison of LoS association probability of our proposed scheme with the
closest UAV.

for association based on instantaneous SNR and average SNR. Furthermore, it is observed

that for low altitude scenario, inclusion of fading is more beneficial in comparison to the

average fading, where as for high altitude scenarios, the association probability is nearly

the same as that of average fading. Due to low gain for LoS link in case of mL = 1, the

association probability for that case is comparative lesser than the average fading.

7.6 Conclusion

In this work, we presented a stochastic geometry framework to derive the association

probability of the user in a UAV-assisted communication network. In general, the channel

between the UAV and the user is estimated through obtaining the instantaneous SNR

which includes fading, therefore, it is necessary to study the impact of fading on the

association probability. As a result, this framework considers instantaneous channel that

comprises of both the LoS and NLoS transmission with Nakagami-m fading for A2G links.

Utilizing this model, we obtain the exact and approximated closed-form expressions for

the LoS association probability. Furthermore, we validated the analytical expressions

and studied the impact of various system parameters, such as altitude and density of

UAV, pathloss exponent, scale parameter of Nakagami-m fading on the LoS association

probability. In particular, with an increase in altitude and pathloss exponent, the LoS

association probability increases, whereas it decreases with an increase in UAV density.

Also, compared to the average fading scenario, as we increase the shape parameter of

Nakagami-m fading, the association probability is higher until some altitude. Later, at

higher altitudes, it converges to the average fading scenario. The average improvement in
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the ergodic capacity of the considered system is around 10% in comparison to the average

fading scenario. Thus, the inclusion of fading at low-altitude UAV applications is more

beneficial to the association probability compared to the average fading scenario.
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Chapter 8

Conclusion and Future Scope

UAVs as ABS can extend the capability of existing terrestrial cellular infrastructure.

However, as we have seen, there exists a certain lacuna in this technology, which we

have tried to address in this dissertation. Namely, we addressed the problems of UAV

trajectory design, optimal deployment location, UAV replacement for uninterrupted

services, resource allocation, and user association. From the results, we have diligently

shown the improvement in performance our algorithm brings compared to the existing

ones.

The technology and algorithms suggested in this dissertation are analyzed on various

input parameters to show how the algorithm responds to variance. Thus, these algorithms

can be easily realized in practice by incorporating them as application-level software in 5G

communication networks along with the current needs and requirements. In this context,

the application of this dissertation lies in providing coverage continuity for practical UAV

deployments and related applications. This includes the UAV radio node to support

terrestrial RANs, which can be used to extend the coverage or provide communication in

isolated regions. As discussed in the previous chapters, it enables rapid deployment in

emergency scenarios, such as supporting evacuation in disaster-a↵ected areas or they can

be used to provide on-demand communication at hotspot events. Moreover, in contrast to

several assumptions such as the static ground users and su�cient backhauling capacity,

user mobility and backhauling constraint can be taken into the account to get a more

insightful results.

However, there is still more way to go to completely realize this UAV-assisted wireless

communication system for on-demand coverage. Some of the challenges are

• The explosive growth and heterogeneous appearance of terrestrial users necessitate

dynamic utilization of resources, and adaptation according to the service

requirements.

• There is still a need to develop a cross-layer design of MAC and PHY to optimally

support a variety of tra�c.
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• The multi-UAV network encounter several network level issues, such as periodic

rearrangement, optimum routing and handovers.

Thus, the UAV-assisted communication system for on-demand coverage still requires

robust algorithms to keep the network organized even when the UAV goes out of energy

to replenish its battery. That is, the network must have self-arrangement capabilities.

In the next few years, UAV-assisted wireless communication is heading towards the

non-terrestrial networks (integration of satellites, UAVs, and terrestrial infrastructure),

reconfigurable smart surfaces deployment on UAVs to create an intermediate path between

the ground base station and the isolated user, artificial intelligence for UAV-assisted

wireless communication networks, etc.
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Appendix Title

A.1 Detailed Proofs of Chapter 3

A.1.1 Proof of Lemma 1: Individual Concave regions for step

approximation
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Then, for K users, we obtain K regions corresponding to each user where the function

is concave in either x, y or z. The overall region over which eQS , P
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Hence, eQS is concave with respect to x, y, and z, individually, in the region RS
x , RS

y , and

RS
z , respectively.

A.1.2 Proof of Lemma 2: Individual Concave regions for linear

approximation
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Individual Concavity with Respect to x and y
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where u1 = (2↵ + 1)( � 1)z, u2 = (↵ + 1)( � 1)z, u3 = ↵, u4 = 2(1 + 2↵), and

u5 = ((y � yk)2 + z
2). Substituting w = (x � xk)2 in (A.1.9), (A.1.9) reduces to a cubic

linear equation with variable w and is given by
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Next, we find the roots of the cubic equation. Since w = (x� xk)2, we will obtain six

roots which divides the search range into seven intervals. Out of seven, we will find the
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where u1 = 1 + 2↵, u2 = (x � xk)2 + (y � yk)2, u3 = (1 + 2↵)(�1 + ), f1 = u2u3, and

f2 = u1u2. Substituting w = z
2 in (A.1.13) turns it into a cubic linear equation. Since
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A.2 Detailed Proofs of Chapter 4

A.2.1 Proof of Lemma 3: Pseudoconvexity of e[n] with respect to v[n]

In this section, we prove the pseudoconvexity of e[n] with respect to v[n]. Since e[n]

expression defined in (2.2) is di�cult to investigate due to the second term being a square

root. We consider first-order Taylor approximation of the second term when v[n] � vo,

where vo is the mean rotor induced velocity. The approximation is given as [9, Eq. 13]

E(v[n]) ⇡⌧Po

 
1 +

3v[n]2

U
2
tip

!
+ ⌧Pi

vo

v[n]
+

1

2
⌧Den⇢ Aenv[n]

3
, (A.2.1)
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where Utip = ⌦Ren. Di↵erentiating e[n] with respect to v[n], we get

@e[n]

@v[n]
=

6⌧Pov[n]

U
2
tip

� ⌧Pivo

2v[n]2
+

3

2
⌧Den⇢ Aen⌧v[n]

2
. (A.2.2)

Equating @e[n]
@v[n] = 0, we obtain two roots (one negative and other positive). Since velocity

is positive, we discard the negative root. The positive root is given by

V0 , v[n] = �

s
P 2
o

h2e
+

3
p
2 3
p
we

6he
�

22/3PiU
2
tip
vo

6 3
p
we

� Po

he

+

✓
�

3
p
2 3
p
we

6he
+

22/3PiU
2
tip
vo

6 3
p
we

+
2P 2

o

h2e

+
2
p
6P 3

o

h2e

r
�22/3h2

ePiU
2
tip

vo

3pwe
+ 3

p
2he 3

p
we + 6P 2

o

◆1/2

, (A.2.3)

where ge = 2A3
enD

3
enP

3
i
⇢
3
 
3
U

12
tip
v
3
o + 81P 4

o P
2
i
U

4
tip
v
2
o , he = AenDen⇢ U

2
tip

and we =
p
ge �

9P 2
o PiU

2
tip
vo.

It can be seen by solving (A.2.2), @e[n]
@v[n] < 0 for v[n] 2 [0, V0) and @e[n]

@v[n] > 0 for

v[n] 2 (V0,1]. This proves the pseudoconvexity of (A.2.1) with respect to v[n].

As the approximation error is small, we assume e[n] defined in (2.2) to be a

pseudoconvex function of v[n].

A.2.2 Proof of Lemma 4: Individual Pseudoconvexity of P̄out in (x, y) for

Fixed z and in z for fixed (x, y)

We will omit [n] throughout this proof. P̄out = 1
N

P
K

k=1
bP k
out. Firstly, we prove bP k

out to

be jointly convex in x and y for a given z. Thereafter P̄out is proved to be jointly convex

using the non-negative sum property of convex functions [100]. Considering

Lk =
p

(x� xk)2 + (y � yk)2, 8i 2 N (A.2.4)

where Lk represents the horizontal distance between the projection of UAV on the ground

and the k
th-user. It can also be written in form of Lk =

p
f(x, y), where f(x, y) =

(x � xk)2 + (y � yk)2. The function f(x, y) has @
2
f(x,y)
@x2 = 2, @

2
f(x,y)
@y2

= 2, and @
2
f(x,y)
@y@x

=

@
2
f(x,y)
@x@y

= 0, then, det[H(f(x, y))] > 0, where Hessian H(f(x, y)) =

2

64
@
2
f(x,y)
@x2

@
2
f(x,y)
@x@y

@
2
f(x,y)
@y@x

@
2
f(x,y)
@y2

3

75.

This implies that f(x, y) is jointly convex in x and y. Since square root is a monotonic

increasing function, therefore it preserves the convexity [100]. Substituting Lk in bP i
out
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defined in (4.5), we get,

bP k

out ,
�th

�̃o
(L2

k
+ z

2)↵

(1�)

1+C exp

 
�D

"
180
⇡

sin�1

 
zp

(L2
k
+z2)

!
�C

#! + 

. (A.2.5)

Since Lk is jointly convex in x and y, then proving convexity of bP k
out defined in (A.2.5)

with respect to Lk will result in joint convexity of bP k
out in x and y.

The double derivative of bP k
out with respect to Lk is given as

@
2 bP k

out

@L
2
k

= A


wkDz

↵⇡

✓
(2↵� 1)Lk

(wk+ 1)2
+

90Dz(1� wk)

⇡(wk+ 1)3

◆
+

(wk + 1)
⇣
(2↵� 1)L2

k
+ z

2
⌘

180(1� )(wk+ 1)

�
,

(A.2.6)

where A = 360↵�th
�̃o

(1�)
�
L
2
k
+z

2
�
↵�2

and wk = C exp
⇣
�D

⇣
180
⇡

sin�1
⇣

zp
L
2
k
+z2

⌘
�C

⌘⌘
.

It is observed that, @
2 bPk

out

@L
2
k

is positive for all values of Lk when z is fixed. This implies the

convexity of bP k
out in Lk. Then, due to non-negative sum property, P̄out is also convex in

Lk. As a result, P̄out is jointly convex (also psuedoconvex) in x and y for fixed z [117].

To show the pseudoconvexity of bP k
out with z for fixed x and y, let z0 ,

⇢
z

����

✓
@P̄out

@z
=

G1 � G2 = 0

◆�
, where

G1 , 2↵
�th

�̃o
z

KX

k=1

(1 + wk)Ak

1 + wk
, (A.2.7)

G2 , 180
�th

�̃o
D

KX

k=1

wk(1� )Ak

p
(x� xk)2 + (y � yk)2

⇡(wk + 1)2
, (A.2.8)

Ai =
⇥
(x�xk)2+(y�yk)2+z

2
⇤
↵�1

and wi = C exp
⇣
�D

⇣
180
⇡

sin�1
⇣

zp
(x�xk)2+(y�yk)2+z2

⌘
�

C

⌘⌘
. Using (A.2.7) and (A.2.8), we observe that G1 > G2 for z > z0 and G1 < G2,

otherwise. This implies @P̄out

@z
> 0 i.e., increasing function for z > z0 and @P̄out

@z
< 0 i.e.,

decreasing function for z < z0. This proves the pseudoconvexity of P̄out with respect to z

for given x and y.
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A.2.3 Proof of Lemma 5: Conditional Joint Convexity of P̄out in x, y,

and z

Although P̄out is non-convex with respect to x, y, and z, we can still find the region where

P̄out is jointly convex. As stated in Appendix A.1.2, (A.2.4) is jointly convex in Lk for a

fixed z. Thus, if we prove that bP k
out is conditionally jointly convex in Lk, and z, the same

can be applied to x, y, and z. The Hessian of bP k
out is given as H( bP k

out)=

2

64
@
2 bPk

out

@L
2
k

@
2 bPk

out

@Lk@z

@
2 bPk

out

@z@Lk

@
2 bPk

out

@z2

3

75,

where @
2 bPk

out

@L
2
k

is given by (A.2.6) and @
2 bPk

out

@z@Lk

=@
2 bPk

out

@Lk@z
is given as

@
2 bP k

out

@z@Lk

=
A1

2


(↵� 1)(wk + 1)Lkz

45D(1� )
+

✓
180DLkz(wk� 1)

⇡2(wk+ 1)2

�
(2↵� 1)(L2

k
� z

2)

⇡(wk+ 1)

◆
⇥ wk

↵

�
, (A.2.9)

@
2 bP k

out

@z2
=A1


wkLk

↵⇡

✓
(2↵+ 1)z

(wk+ 1)
+

90DLk(1� wk)

⇡(wk+ 1)2

◆

+
(wk + 1)

⇣
(2↵� 1)z2 + L

2
k

⌘

180D(1� )

�
, (A.2.10)

where A1 = 360D↵�th
�̃o

(1�)
(wk+1)

�
L
2
k
+ z

2
�
↵�2

and wk = C exp
⇣
�D

⇣
180
⇡

sin�1
⇣

zp
L
2
k
+z2

⌘
�

C

⌘⌘
. From (A.2.6), @

2 bPk

out

@L
2
k

> 0, 8Lk, z and from (A.2.10), @
2 bPk

out

@z2
> 0, 8Lk, and

z > Lk/4.5. To show det[H( bP k
out)] > 0, we need to show that K1 , @

2 bPk

out

@L
2
k

� @
2 bPk

out

@z@Lk

> 0,

and K2 , @
2 bPk

out

@z2
� @

2 bPk

out

@z@Lk

> 0. By substituting any value for z > Lk/4.5, say z = Lk/4 in

K1 and K2, we get,

K1 =A2

✓
2070(2↵� 1)wkD

⇡(wk+ 1)2
+
↵(24↵� 7)(wk + 1)

(wk+ 1)(1� )
+

81000wkD
2(1� wk)

⇡2(wk+ 1)3

◆
, (A.2.11)

K2 =A2

✓
90⇡(46↵� 7)wkD

⇡(wk+ 1)2
+
↵(23� 6↵)(wk + 1)

(wk+ 1)(1� )

+
324000wkD

2(1� wk)

⇡2(wk+ 1)3

◆
, (A.2.12)

where A2 = 25�4↵17↵�2 �th
�̃o

(1 � )
�
L
2
k

�
↵�1

. It can be easily observed that K1 > 0 and

K2 > 0 from (A.2.11) and (A.2.12), respectively. This alongwith (A.2.6) and (A.2.10)
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proves that bP k
out is jointly convex in Lk and z with condition z > Lk/4.5. From Lk, the

above condition can be written as Rk

C
, z

k
>

p
(x�xk)2+(y�yk)2

4.5 . The region Rk

C
represents

an inverted cone with center at (xk, yk). For each user we obtain similar cones. So, the

overall the region (RC) over which P̄out is jointly convex is given as the intersection region

of all these cones as

RC =
K\

k=1

Rk

C . (A.2.13)

A.3 Detailed Proofs of Chapter 6

A.3.1 Proof of Lemma 6

For ease of representation of PL

k,m
[n] defined in (6.4), we take

�k,m[n] =
zm[n]

kqm[n]�wkk
, (A.3.1)

such that PL

k,m
[n] can be expressed as

P
L

k,m
[n]=

�
1+C exp

�
�D[tan�1�k,m[n]�C]

���1
.

Then by introducing a variable yk,m[n], such that 0  yk,m[n]  P
L

k,m
[n] we have

�
1+C exp

�
�D[tan�1�k,m[n]�C]

��
 1

yk,m[n]
, (A.3.2)

yk,m[n] � 0. (A.3.3)

Substituting yk,m[n] in (6.13), we get ↵k,m[n]
�
kqm[n]�wkk2 + zm[n]2

�
 (1�)yk,m[n]+

. To simplify further, we introduce �k,m[n], where

↵k,m[n](kqm[n]�wkk2 + zm[n]2)  �k,m[n], (A.3.4)

(1� )yk,m[n] +  � �k,m. (A.3.5)

With the above substitutions and introduction of auxiliary variables, it can be observed

that the inequality constraint (6.13) is now equivalent to (A.3.2), (A.3.3), (A.3.4), (A.3.5).



APPENDIX A. Appendix Title 133

A.3.2 Proof of Lemma 7

Here, to tackle the di�culty of (A.3.1), we change the equality to inequality, represented

as

�k,m[n]  zm[n]

kqm[n]�wkk
, 8k,m, n. (A.3.6)

In the problem (P3.1.1) with (A.3.6) instead of (A.3.1) (we name this problem as (P3.1.2)),

the optimal solution can only be achieved when (A.3.6) is active, that is, �k,m[n] =

zm[n]
kq

m
[n]�wkk , 8k,m, n,. This can be proved by the contradiction. We assume that the

optimal solution to (P3.1.2) is R⇤
,qk,m[n]⇤,X ⇤, which satisfies Ri (↵i,m[n]⇤) > R⇤

, 9i 2 k,

and Rk (↵k,m[n]⇤) = R⇤
, k 6= i. Then the value of Ri (↵i,m[n]⇤) to make Ri (↵i,m[n]⇤) = R⇤

hold, whereas the objective function R⇤ does not change. Then to make this happen, we

need to decrease the bi,m[n], which will not return a feasible solution as the value of bi,m[n]

is fixed from the bandwidth optimization problem. This is in contraction to the optimal

solution. Therefore, the constraint (A.3.6) need to be active while obtaining the optimal

solution to (P3.1.2). Then, it can be observed that the problem (P3.1.2) has the same

condition on constraints as of (P3.1.1). Moreover, due to the presence of same objective

function, the solution to (P3.1.1) can be obtained while solving (P3.1.2). Thus, problem

(P3.1.2) is equivalent to (P3.1.1).

Since (A.3.6) is of the form “convex ⇥ convex  constant”, we use square of sum

formula to make (A.3.6) a di↵erence of convex function. Then, we get

1

2
(�k,m[n] + kqm[n]�wkk)2 �

1

2

�
�k,m[n]2 + kqm[n]�wkk2

�
 zm[n]. (A.3.7)

It can be observed that the (A.3.7) is of the form f � g, where f and g are both convex.

To make (A.3.7) a convex constraint, g must be a�ne. Thus, we use first-order Taylor

series expansion at any feasible point [99]. Then, g can be approximated as

�k,m[n]=
1

2

�
�r

k,m
[n]2+kqr

m[n]�wkk2
�
+
�
�k,m[n]��r

k,m
[n]
�

�r

k,m
[n] + kqr

m[n]�wkk (kqm[n]�wkk � kqr

m[n]�wkk) , (A.3.8)

where �r

k,m
[n],qr

m[n] is the value of �k,m[n],qm[n] in the rth�iteration, respectively. Using

(A.3.8) in (A.3.7), the constraint in (A.3.6) is approximated to a convex constraint given

in (6.16).
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A.3.3 Proof of Lemma 8

To deal with the non-convex constraint in (6.8c), we introduce an auxiliary variable

Dm,j [n] = {Xm[n] � Xj [n], 8n, j 6= m}. Then, (6.8c) can be written as kDm,j [n]k2 �

D
2
min

, 8n, j 6= m, so that the left side kDm,j [n]k2 is convex in Dm,j [n]. Using first order

Taylor expansion to obtain the global lower bound of convex function, we get

kDm,j [n]k2�2
�
D

r

m,j [n]
�
T
�
Dm,j [n]�D

r

m,j [n]
�
+kDr

m,j [n]k2, (A.3.9)

for a given D
r

m,j
[n]. Using (6.8c), (A.3.9) is converted into

2
�
Xr

m[n]�Xr

j [n]
�
T
�
Xm[n]�Xj [n]�Xr

m[n]�Xr

j [n]
�
+

kXr

m[n]�Xr

j [n]k2 � D
2
min, (A.3.10)

where Xr

m[n] = (qr
m[n], zm[n]) and Xr

j [n] = (qr

j
[n], zj [n]).

From (6.8d), it can be observed that the energy constraint is the non-negative sum of

e1[n], where e1[n] is defined in (2.2). It can be observed that the first and third term is

convex, where as the second term is non-convex. To deal with the second term, we follow

the same procedure as described in [9] and add an additional non-convex constraint to

make e1[n] convex. The additional non-convex constraint is given by

⌧
4

g1[n]2
= g1[n]

2 +
�1[n]2

v2o
, g1[n] � 0, 8n, (A.3.11)

where �1[n] = kq1[n + 1] � q1[n]k. Then the first order taylor expansion can be utilized

to obtain its global lower bound, which is given by

g1[n]
2+

�1[n]

v2o
�g

r

1[n]
2 + 2gr1[n] (g1[n]�g

r

1[n])�
�r

1[n]

v2o

+
2

v2o
(qr

1[n+ 1]� qr

1[n])
T (qr

1[n+ 1]� q1[n]) , (A.3.12)

where �r

1[n] = kqr

1[n + 1] � qr

1[n]k, and g
r

1[n],q
r

1[n], and qr

1[n + 1] are the values of

g1[n],q1[n], and q1[n+ 1] at rth-iteration, respectively.
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A.4 Detailed Proofs of Chapter 7

A.4.1 Proof of Lemma 9: Association probability of typical user with

the LoS UAV

The probability of the typical user to be associated with the LoS UAV is given by

PLoS = P[PL,xk
> PN,xk

] (A.4.1)

(a)
= P[PBX

�↵L

L,xk
HL,xk

> PBX
�↵N

N,xk
HN,xk

] (A.4.2)

= P
"
XN,xk

> (XL,xk
)

↵L

↵N

✓
HN,xk

HL,xk

◆ 1
↵N

#
(A.4.3)

= P [Z > 1] (A.4.4)

(b)
= F̄Z(z), (A.4.5)

where, Z =
XN,x

k

(XL,x
k
)

↵L
↵N (HN,x

k
/HL,x

k
)

1
↵N

. F̄Z(z) denotes the complementary cumulative

density function (CCDF) of Z. In the above equation, (a) is based on the definition of the

association policy, and (b) is derived according to the definition of CCDF. Thus, to find

the association probability, we compute the CCDF of Z defined in (A.4.5).
To this extent, let Y =

HN,x
k

HL,x
k

, where the PDF of HN,xk
and HL,xk

are given in (7.2).

Then, according to the definition given in (7.4), we get

fY (y) =
y
mN�1

↵mL+mN�(mL)�(mN )

Z 1

0
h
mL+mN�1
L

e
�hL(1+y)

↵ dhL

=
1

�(mL,mN )
y
mN�1(1 + y)�mL�mN , y � 0, (A.4.6)

where �(.) denote the beta distribution. Further, let W =
⇣
HN,x

k

HL,x
k

⌘ 1
↵N , then the PDF of

W is computed using the transformation of random variable as described in (7.6). Then,

fW (w) is given by

fW (w) = fY (w
↵N )↵Nw

(↵N�1)
, w � 0. (A.4.7)

Using (A.4.6), the PDF of W with w � 0 is given by

fW (w) =
↵N

w�(mL,mN )
(w↵N )mN (1 + w

↵N )�mL�mN . (A.4.8)

Similarly, let B = (XL,xk
)

↵L

↵N = (XL,xk
)1/A, where A = ↵N

↵L

and PDF of XL,xk
is defined
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in (7.8). Then, the PDF of B fB(b) obtained using transformation in (7.6) is given by

fB(b) = fXL
(bA).AbA�1

=
2⇡↵N

↵L

b

2↵N

↵L

�1
PL

⇣
b

↵N

↵L

⌘
� exp

⇣
X
⇣
b

↵N

↵L

⌘⌘
, b � H

↵L

↵N , (A.4.9)

where X (.) is defined in (7.9). Since random variable XL,xk
takes value greater than

or equal to H, accordingly b � H

↵L

↵N . Next, we need to compute the PDF for

Q = (XL,xk
)

↵L

↵N

⇣
HN,x

k

HL,x
k

⌘ 1
↵N i.e., Q = W.B. Using product property of positive random

variable defined in (7.5) and substituting the PDF of W and B from (A.4.8), and (A.4.9),

respectively in (7.5), we get

fQ(q) =
2⇡↵2

N
�

↵L�(mL,mN )

Z 1

b=H

↵L
↵N

(
1

q
PL

⇣
b

↵N

↵L

⌘
b

2↵N

↵L

�1

⇥
⇣⇣

q

b

⌘
↵N

⌘mN
⇣⇣

q

b

⌘
↵N

+ 1
⌘�mL�mN

exp
⇣
X
⇣
b

↵N

↵L

⌘⌘)
db. (A.4.10)

The cumulative density function (CDF) of Z =
XN,x

k

Q
defined in (A.4.4) can be obtained

as

FZ(z) =

Z 1

H/z

FXN,x
k

(qz)fQ(q)dq, (A.4.11)

where FXN,x
k

(qz) is the CDF of XN,xk
obtained by using the PDF fXN,x

k

(x) defined in

(7.8), which is given by FXN,x
k

(qz) = 1 � exp (X (qz)) with X (.) defined in (7.9). Since

XN,xk
� H, then q � H/z. Therefore, the lower limit of the CDF in (A.4.11) is set to

q = H/z.

Then, F̄Z(z) defined in (A.4.5) i.e., the user association probability with closest LoS

UAV, PLoS is given by

PLoS , F̄Z(z) , 1� FZ(z). (A.4.12)

Using (A.4.10) and FXN,x
k

(qz) in (A.4.12), we obtain PLoS defined in (7.10).

A.4.2 Proof of Lemma 10: Approximate association probability of

typical user with LoS UAV

Here we again need to compute the CDF of Z =
XN,x

k

Q
, where Q = W.B. To ensure the

analytical tractability, the ↵N is chosen such that ↵N ⇡ ↵L, then PDF of B as described
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in (A.4.9) is equal to the PDF of XL,xk
, which is given by

fB(b) = A2 b exp
�
�⇡PL� b

2
�
, b � H, (A.4.13)

where A2 = 2⇡ PL� exp(⇡PL�H
2). Following the same procedure as described in (A.4.7)

to compute the PDF of W , with mL = mN = 1, we get

fW (w) =
↵Nw

↵N�1

(1 + w↵N )2
, w � 0. (A.4.14)

Similarly using the product property, PDF of Q (by taking ↵N ⇡ ↵L = 2) is given by

fQ(q) = 2A2 q

Z 1

b=H

b
3

(b2 + q2)2
exp

�
�sLb

2
�
db, (A.4.15)

where sL = ⇡PL�. Substituting b
2 = x̃ to transform the integral, we get

fQ(q) = A2 q

Z 1

x̃=H2

x̃

(x̃+ q2)2
exp (�sL x̃) dx̃. (A.4.16)

Since (A.4.16) is di�cult to solve, we break the integral into two parts, which is given by

fQ(q) = A2 q

Z 1

x̃=0

x̃

(x̃+ q2)2
exp (�sL x̃) dx̃

| {z }
fQ1 (q)

� A2 q

Z
H

2

x̃=0

x̃

(x̃+ q2)2
exp (�sL x̃) dx̃

| {z }
fQ2 (q)

. (A.4.17)

Representing exponential term in fQ1(q) into Meijer-G form, we get

fQ1(q) = A2 q

Z 1

x̃=0

x̃

(x̃+ q2)2
G

1,0
0,1

0

@sLx̃

���
�

0

1

A dx̃, (A.4.18)

Then using [116, Eq. 07.34.21.0086.01], we get

fQ1(q) =
A2q

�(2)
G

2,1
1,2

0

@sL q
2

����
�1

0 0

1

A . (A.4.19)
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On the other hand, representing exponential in series form, fQ2(q) can be simplified into

fQ2(q) = A2 q

1X

k=0

(�sL)k

k!

Z
H

2

x̃=0

x̃
k+1

(x̃+ q2)2
dx̃. (A.4.20)

Using the integral property [118, Eq. 3.194], we get

fQ2(q) =
A2

q3

1X

k=0

(�sL)k

k!

(h2)k+2

k + 2
2F1(2, k + 2; k + 3;

�h
2

q2
), (A.4.21)

where 2F1(·; ·; ·) is the Gauss hypergeometric function. Then, FZ(z) as obtained in (A.4.11)

is given as

FZ(z) =

Z 1

H

FXN,x
k

(qz)fQ(q)dq, (A.4.22)

where FXN,x
k

= 1� exp(�sN (x2 �H
2)), is obtained by using the PDF of XN,xk

, defined

in (7.12), where sN = ⇡PN�. Then, FZ(z) in (A.4.22) is written as

FZ(z) =

Z 1

H

fQ(q)dq �A3

Z 1

H

exp(�sNz
2
q
2)fQ(q)dq, (A.4.23)

where A3 = exp(�sNH
2). Since Q = W.B then according to (A.4.13), and (A.4.14),

q � H, then
R1
H

fQ(q)dq = 1. Thus, we get

FZ(z) = 1�A3

Z 1

H

exp(�sNz
2
q
2)fQ(q)dq. (A.4.24)

According to the definition of association probability, F̄Z(z) = 1 � FZ(z). Then,

the approximated association probability, denoted by ePLoS is given by ePLoS , F̄Z(z) =

exp(�sNH
2)T , where T is defined in (7.13).
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