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Lay Summary

Inpainting is a task of completing the image which has some corrupted regions. Suppose

one has an image which is taken a long-time back and it is corrupted due to some

scratches. Image inpainting helps to recover this corrupted image. Also, if you are having

a photograph containing some unwanted portion or object and you want to remove this

unwanted object, image inpainting comes in handy. It removes the unwanted objects in

an image.

The image inpainting methods complete the corrupted image in the way how a painter

paints the incomplete image. Image inpainting methods generally use different ways to

complete the corrupted image. Some methods first try to consider the global view of the

corrupted image. Then they finely complete these globally completed image. The other

methods try to directly complete the image in one take itself. In this, some paint the

image from outermost part to innermost part of the corrupted region. Some methods take

extra information from the users to inpaint the image. All these methods sometimes fail

at painting the corrupted images effectively by generating some blurry results. Apart from

this, the methods which inpaint the corrupted images effectively, they take too much time

to generate the results.

In this work, we propose different methods for image inpainting. Some of our proposed

methods adapt global completion followed by fine completion of corrupted image. The

other methods directly complete the images. Our proposed methods give visually plausible

results with less time as compared to the existing methods.
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Abstract

Image inpainting is a reconstruction method, where a corrupted image consisting of

holes is filled with the most relevant contents from the valid region of same image.

With the advancements in image editing applications, image inpainting is gaining more

attention due to its ability to recover corrupted images efficiently. Also, it has a

wide variety of applications such as reconstruction of the corrupted image, occlusion

removal, reflection removal, etc. Existing approaches achieved superior performance with

coarse-to-fine, single-stage, progressive, and recurrent architectures with a compromise

of either perceptual quality (blurry, spatial inconsistencies) of results or computational

complexity. Also, the performance of the existing methods degrades when images with

large missing regions are considered. In order to mitigate these limitations, in this work,

we propose the deep generative architectures for image inpainting.

Firstly, we propose the coarse-to-fine architectures for inpainting images with varying

corrupted regions with improved performance as compared to state-of-the-art methods.

The three proposed coarse-to-fine solutions consist of: (a) a spatial projection layer to

focus on spatial consistencies in the inpainted image, (b) encoder-level feature aggregation

followed by multi-scale and multi-receptive feature sharing decoder, and (c) a nested

deformable multi-head attention layer to effectively merge the encoder-decoder features.

Further, to reduce the computational complexity, we proposed single-stage architectures

with three solutions as: (a) a correlated multi-resolution feature fusion, (b)

diverse-receptive fields based feature learning, and (c) pseudo-decoder guided

reconstruction for image inpainting. The proposed architectures have less computational

complexity compared to earlier one and state-of-the-art methods for image inpainting.

The performance of these proposed architectures is validated in terms of qualitative,

quantitative results and computational complexity in comparison with each other and

existing methods for image inpainting.

Furthermore, to reduce the mask dependency of the proposed and existing approaches,

we propose two novel blind image inpainting approaches consisting of (a) wavelet query

multi-head attention transformer and omni-dimensional gated attention (b) high receptive

fields (multi-kernel) multi-head attention and novel high-frequency offset deformable

feature merging module. These proposed approaches is compared qualitatively and

quantitatively with existing state-of-the-art methods for blind image inpainting. To

validate the performance of the proposed architectures, the experimental analysis is done

on different datasets like: CelebA-HQ, FFHQ, Paris Street View, Places2 and Imagenet.

Keywords: Feature Aggregation; Spatial Projections; Multi-head Attention; Diverse

Receptive Fields; Image Inpainting; Blind Image Inpainting.
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Chapter 1

Introduction

In this chapter, the introduction, motivation, and applications of image inpainting task are

provided. Section 1.1 introduces the formation of corrupted image and the generalized flow

of image inpainting. Different applications of image inpainting task are detailed in Section

1.2. Section 1.3 gives the motivation of the proposed work. The identified problems in

the image inpainting task are detailed in Section 1.4. Section 1.5 defines the aims and

objectives of the proposed work. The main contributions are provided in Section 1.6.

Finally, Section 1.7 provides the overall thesis structure.

1.1 Introduction

Image inpainting is an image restoration task where the corrupted image with missing

content (hole) is synthesized with the information from available (non-hole) regions. This

Figure 1.1: (a) Formation of corrupted image (Ic), (b) Image inpainting architecture.

is a one to multi-solution kind of task where the hole regions can be filled with distinct

content relevant with the non-hole region. The corrupted image (IC) for the task of image

inpainting is generated as:

IC = IT · (1− IM ) + IM (1.1)
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where, IT is the target image, IM is the mask image with 1 (white region) indicating

missing regions and 0 (black region) indicating available regions.

The formation of corrupted image (IC) is shown in Figure 1.1. The aim is to inpaint

the image with the semantically valid contents or generating visually plausible contents

in the image by removing unwanted or corrupted content. Here, the inpainted/restored

image (II) is obtained from generated image (IG) by the inpainting method. The II can

be obtained as:

II = IG · IM + IC · (1− IM ) (1.2)

Image inpainting task is categorized in two types, blind and non-blind. The non-blind

means, the inpainting architectures are aware with the corrupted locations in the image

by taking mask as input. Whereas, blind image inpainting methods are the ones which do

not depend on any kind of information regarding the corrupted locations. Unlike normal

image inpainting, blind image inpainting expects the corrupted input with the image

having some noise blended with the actual image. The formation of corrupted image for

the task of blind image inpainting is given as:

IC = IT · (1− IM ) + IM ·Noise (1.3)

where, Noise is any noisy input like graffiti, different images, etc. The sample images

considered for the task of blind image inpainting are shown in Figure 1.2. Also, the

region of corruption may vary in size, shape and location as shown in Figure 1.2 (for blind

inpainting) and Figure 1.3 (for non-blind inpainting).

Figure 1.2: Sample corrupted inputs for blind image inpainting.
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Figure 1.3: Types of corruptions in images with varying masked region.

1.2 Applications

With the ability of restoring the corrupted image with some missing regions, image

inpainting is widely used in different applications like:

• Corrupted image restoration [38]: The basic application of the image inpainting

task is corrupted image restoration. This helps to restore the old corrupted images

with most plausible content. Figure 1.4 shows a sample corrupted image restoration

application.

Figure 1.4: Corrupted image restoration.

• Unwanted object removal [22]: If someone wants to remove the unwanted objects

from the image, image inpainting comes in handy. Provided with the region of object

to be removed, image inpainting removes the object by replacing the masked region

with relevant surrounding content. Sample application of object removal is shown

in Figure 1.5.

• Virtual try-on [39, 40]: Nowadays, with the advancement in the technology, online

shopping is gaining more attention. Image inpainting is utilized in online shopping
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Figure 1.5: Unwanted object removal.

applications for virtual try-on. This application helps the end user to visualize the

look for different clothes. Figure 1.6 shows samples of virtual try-on using image

inpainting.

Figure 1.6: Virtual try-on.

• Video de-captioning [41, 42]: Considering the videos of different languages, there

are captions or commercials overlapping the overall frame content. Inpainting plays

an important role in removing these contents, which is termed as de-captioning as

shown in Figure 1.7.

• Single image scene synthesis: Image inpainting is also applied to convert the

arbitrary photos to life called as single image scene synthesis. For this application,

the estimation beyond the input pixels is done with image inpainting task. This

inpainting generates different views of input single image as shown in Figure 1.8.
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Figure 1.7: Video de-captioning.

Figure 1.8: Single image scene synthesis.

1.3 Motivation

Advancement in image editing technology increases its demand in different applications

such as image restoration, object removal, scene synthesis, dis-occlusion, etc. Image

inpainting is one of the crucial processing techniques used for these applications. There

exist numerous methods for image inpainting tasks. The conventional hand crafted

methods deal with the textural statistics in the input image. They try to extract the

statistical information from the available regions and utilize them to inpaint the missing

regions. These methods lack in generating high-level semantics or structurally plausible

results and are feasible when considering images with consistent regions like uniform

background. Also, nowadays, various learning based methods are introduced for image

inpainting tasks. These methods achieve great performance at inpainting the images

but with the cost of high computational complexity. Some methods lack in generating

structurally and visually plausible inpainted results. Further, the generative approaches

nowadays are gaining more importance due to their better convergence for the tasks like

image restoration, image segmentation, object detection, etc.

With the convincing ability of generative learning based methods towards efficient

learning as compared to conventional hand-crafted methods, we are motivated to propose

the generative approaches for image inpainting. In order to avoid the issue of high

computational complexity, which leads to time consuming inpainting/restoration process,

we aim to propose the inpainting methods with less computational complexity. Also,

motivated with the reliability of blind image inpainting on various kinds of degradations,

which does not depend on mask as input, we aim to propose a blind image inpainting

architecture.
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1.4 Problem Statement

The existing learning based methods efficiently inpaint the images if the masked region

is of small size. The performance of these methods degrade when applied on the images

with large masked regions. The existing methods have high computational complexity in

terms of number of trainable parameters or run time. There are very few methods which

deal with the blind image inpainting. From these observations, we define the problem

statements for our work as:

• Difficulty in inpainting the image with large hole size.

• The performance of coarse-to-fine methods is dependent on each other.

• Lack of computationally efficient networks for image inpainting.

• Limited existing approaches for blind image inpainting.

1.5 Aim and Objectives

From the identified problems in existing image inpainting methods, we define the aim and

objectives of our work as:

Aim: To propose a novel approach for image inpainting with deep generative architectures.

Objectives:

• To design a generative coarse-to-fine approach for inpainting images with varying

hole sizes.

• To propose a single-stage lightweight approach for image inpainting with varying

hole sizes.

• To propose a novel mask prediction independent approach for blind image inpainting.

1.6 Contributions

This study is focused on deep generative architectures for image inpainting task. The

major contributions of this work are listed below:

• Inpainting the image with varying masked regions is a key requirement of any

inpainting method. In this regard, we propose the novel coarse-to-fine architectures

for image inpainting.

• In order to overcome the limitation of high computational complexity, we propose

the novel single-stage architectures with reduced computational complexity for image

inpainting.
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• The availability of masks for image inpainting is another concern for non-blind

methods. To solve this issue, we propose a novel mask independent single stage

approach for blind image inpainting.

1.7 Thesis Structure

• Chapter 1: This chapter introduces the image inpainting task, applications of

image inpainting, and motivation of the proposed work. Also, this chapter contains

the preamble to the entire thesis.

• Chapter 2: This chapter provides the literature survey of different existing

approaches in detail for image inpainting. Further, existing datasets and evaluation

measures for image inpainting are explained in detail.

• Chapter 3: In this chapter, the exposition of proposed coarse-to-fine architectures

consisting of encoder-level feature aggregation followed by feature sharing decoder,

spatial projection layer, nested deformable multi-head attention, etc. for image

inpainting is provided.

• Chapter 4: The proposed single-stage architectures with diverse receptive fields,

multi-resolution feature fusion, and pseudo-decoder are detailed in this chapter.

These single-stage architectures are computationally less complex as compared to

state-of-the-art methods for image inpainting.

• Chapter 5: To avoid the mask dependency of inpainting architectures, the proposed

blind image inpainting architecture is presented in this chapter.

• Chapter 6: This chapter provides the comparative study of all the proposed

approaches in this work and concludes the overall thesis. It also discusses the future

scope of this work to further improve the proposed work.
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Chapter 2

Literature Survey

This chapter discusses about the existing approaches for image inpainting task. Also, the

standard datasets used for experimental analysis and evaluation measures used to verify

the effectiveness of the inpainting approach are discussed in this chapter.

2.1 Existing Approaches for Image Inpainting

Image inpainting is considered as an ill-posed task because for single image with missing

regions, we can have multiple inpainted images. The image inpainting approaches are

generally divided into two categories i.e. conventional (hand-crafted) and learning based

image inpainting approaches.

2.1.1 Conventional Image Inpainting

The conventional inpainting methods focused mainly on texture synthesis, extracting the

information from various patches of valid region in an image, and utilizing the statistical

information of the textures from the valid regions. Initially, Bertalmio et al . [43] proposed

a digital image inpainting method by analyzing how the experts will paint the corrupted

image. They observed different key points like: the global view helps to determine how to

fill the gap, the structure surrounding the gap can be continued to fill the gap, and different

regions inside the gap can be filled with the contour lines or color followed by the textural

details. Schoenemann et al . [44] proposed curvature based segmentation and inpainting

approach. Meur et al . [45] proposed an exemplar based hierarchical super-resolution

approach for image inpainting. In this, they inpainted the images from low-resolution

to high-resolution by following two steps patch priority and texture synthesis at each

resolution. Similarly, Shi and Qi [46] proposed patch selection followed by patch inpainting

approach for image inpainting. Further, Hasegawa et al . [47] proposed signal prediction

based on the non-harmonic analysis. He and Wang [48], Li and Zeng [49] proposed sparsity

based image inpainting models.

Patch based approaches were proposed for image inpainting in [50, 51, 52, 53, 54, 55].

Barnes et al . [50] proposed a patch based method where the patch from nearest neighbour

match is used for inpainting the image. Köppel et al . [51] proposed a fast image

completion approach by finding the best texture from the spatial offsets of similar patches.
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Further, Ruzic and Pizurica [52] proposed a context-aware patch-based approach by

using textural descriptors to find best patch match. In order to maintain textural

and structural consistency, Li et al . [53] used super-wavelet transform for estimating

the multi-directional features of corrupted images. These features are then combined

with weighted color-direction distance to find best similar patch. Similarly, to maintain

structural coherence and textural consistency, Ghorai et al . [54] proposed a patch statistics

based multiple pyramidal approach to generate multiple outcomes for single corrupted

input. Further these outcomes are combined with weighted average to generate final

inpainted image. Jin and Bai [55] proposed facet deduced directional derivative based

patch-sparsity-based algorithm for image inpainting. Thaskani et al . [56] proposed a

multi-view image inpainting approach with patch-based exemplar dictionary.

Casaca et al . [57] proposed a Laplacian coordinates segmentation approach combined with

inner product-based filling order mechanism, anisotropic diffusion, and exemplar-based

completion approach for interactive image inpainting. Ma et al . [58] proposed a

group vectorized patch similarity approximation by low-rank matrix approach for image

inpainting. Amrani et al . [59] proposed diffusion-based inpainting algorithm using partial

differential equations for compressing hyper-spectral images. In order to have minimal

user input, Zhang et al . [60] proposed super-pixel segmentation technique for image

inpainting. Further, Liu et al . [61] proposed an architecture for exemplar-based image

inpainting using a structure-guided approach. Ding et al . [62] proposed a Gaussian

non-local texture similarity measure based patch search approach to obtain similar patches

for image inpainting.

These conventional image inpainting methods generally follow exemplar, diffusion,

patch-match and textural based approaches. Though the conventional methods

extract statistical, structural and textural information efficiently, they either generate

discontinuous texture at hole region or fail at reproducing the high-level semantic

structures.

2.1.2 Learning Based Image Inpainting

The ability of learning approaches towards better convergence as compared to conventional

approaches has been proved in different tasks like image restoration [63, 64], video

segmentation [65, 66, 67], etc. The learning-based methods proposed for image inpainting

follow different architectural pattern like coarse-to-fine (two-stage) [68, 69, 70, 12, 12] or

single-stage [71, 72] architectures. In the coarse-to-fine architectures, first stage is focused

on generating a globally inpainted image which is then used to generate a coarse output

with finer inpainted results. The single stage architectures generally apply recurrent [14],

progressive [73], and inverse generative adversarial networks (GANs) approaches for image

inpainting. In the next subsections, the coarse-to-fine and single-stage architectures are
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explained in detail.

Coarse-to-fine Architectures

The main motivation of the coarse-to-fine architecture lies in generating the global context

first followed by generating the detailed texture in the final inpainted image. Yu et al .

[68] proposed a coarse-to-refinement network consisting of contextual attention in order

to generate finer inpainted image. With the observation of blurry outcomes of existing

approaches, Liu et al . [69] proposed an architecture consisting of coherent semantic

attention layer (CSA). The CSA layer is proposed with the motivation from human

behavior to repair the corrupted picture with rough and refined steps. To inpaint the

corrupted image with structural consistency, Ren et al . [70] proposed an architecture

with structure re-constructor followed by texture generator. For structure reconstruction,

they provided the corrupted image with the input structure which generate the recovered

structure at first stage and then fine texture in final outcome. Yu et al . [12] claimed that

vanilla convolutions treat all the available and missing pixel locations as the valid ones

which may fail at consistent image generation. To avoid this, Yu et al . [12] proposed a

gated convolution where a learnable mask updation mechanism is proposed unlike [18].

In order to inpaint the image with finer edges, Nazeri et al . [13] proposed a structure

guided architecture for edge inpainting followed by image inpainting method. Similarly,

Xu et al . [74] proposed edge-to-image generative inpainting approach. In [75], Lee et al .

used the pre-trained model from [13] and proposed self-supervised fine-tuning algorithm

for image inpainting. To inpaint ultra high resolution images, Yi et al . [22] proposed a

residual aggregation approach in which the coarse-to-fine architecture is used to inpaint

an image with normal resolution. Further, a contextual residual is aggregated onto the

inpainted image to generate ultra high resolution inpainted image. Similarly, Moskalenko

et al . [76] proposed a high-resolution inpainting approach. At first, they inpaint low

resolution image and then up-sample the inpainted image. Then the four direction shifts

and original image are used to inpaint final image. Liu et al . [77] proposed a probabilistic

diverse GAN architecture which is based on vanilla convolution GAN. While inpainting the

image, deep features of input random noise via coarse-to-fine architecture are modulated

by previously restored image of multiple scales and the hole regions. This random noise

produces pluralistic inpainted outcomes of single input image. Similarly, Peng et al . [78]

proposed diverse structure generation approach for input corrupted image via hierarchical

quantized variational auto-encoder. Wadhwa et al . [8] proposed the hyper-graph based

approach for globally semantic inpainted image with a trainable method for hyper-graph

convolutions. Further, Zeng et al . [79] proposed a coarse-to-fine generative approach with

auxiliary contextual reconstruction loss to appropriately borrow the available regions to

fill missing regions effectively. Wang et al . [80] proposed a conditional normalizing flow
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model for generating diverse structural prior followed by inpainting to achieve real-time

inference to generate diverse inpainted images. GAN inversion has faithful convergence

ability as the pre-trained encoder or decoder of GANs architecture is used to guide actual

inpainting architecture or fixed decoder is used to train the encoder. In this regard, Wang

et al . [81] proposed a dual-path GAN inversion approach for image inpainting. Similarly,

Yoon et al . [82] proposed styleGAN inversion approach for image inpainting. Cao et al .

[83] proposed a sketch-tensor space based approach for image inpainting.

Apart from coarse-to-fine architectures, researchers have proposed multi stage

architectures. Xiong et al . [84] proposed a foreground aware architecture for image

inpainting. In this, they proposed a contour detection followed by contour completion

and then image completion module. Failure in contour detection will lead to failure in

final image inpainting results. Hedjazi et al . [85] proposed a multi-scale texture-aware

GANs architecture for image inpainting. Similarly, Qu et al . [86] proposed a multi-scale

architecture in inpaint the structure first and then the texture with pyramidal generators.

Kim et al . [87] proposed a super-resolution based approach for image inpainting. In this,

they applied the super-resolution on the coarse inpainted output followed by refinement.

The refined output is then downscaled in order to get original dimensions. In [88], Dong

et al . applied the structure restoration first by considering corrupted image and corrupted

edges as input followed by the structure feature encoder and then final Fourier convolution

texture restoration. In order to inpaint the image with local and global consistency, Quan

et al . [89] applied a three-stage architecture for image inpainting consisting of first stage

for global inpainting followed by two stages for global and local refinements respectively.

Cai et al . [90] proposed a multi-stage coarse-to-fine architecture for inpainting the image

with multiple stages representing respective scales. Li et al . [91] proposed a multi-level

approach with Siamese filtering consisting of kernel prediction branch followed by image

filtering branch for image inpainting. Yamashita et al . [92] proposed the depth and edge

inpainting followed by image inpainting approach for depth-aware image inpainting. Also,

Wang et al . [93] proposed a novel approach with monochromatic reconstruction and the

multi-stage internal color restoration approach. These coarse-to-fine architectures produce

visually better inpainted images but with the compromise in the computational complexity.

Single-stage Architectures

Xie et al . [71] proposed the very first learning based approach for image inpainting

containing the combination of sparse coding and pre-trained denoising auto encoder.

Further, Köhler et al . [72] proposed an approach to learn mapping from image patches with

the help of deep neural network. Later on, with the emergence of GANs, Pathak et al . [94]

introduced the context encoder based adversarial learning approach for image inpainting.

Yeh et al . [95] used the trained generative model for searching the closest encoding of
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the input corrupted image by utlizing the context and prior losses for image inpainting.

With the claim on normal convolutional neural networks (CNNs) that they process the

valid and missing content with same priority, Liu et al . [18] proposed a partial convolution

layer for image inpainting. In partial convolution, the mask information is utilized to

determine the valid and invalid content to process the features at each encoder layer [12].

The feature normalization and mask updation in this method is rule based which is then

made learnable by [12]. Xie et al . [96] proposed the learnable bi-directional attention

maps for mask updation. Su et al . [97] proposed the dense connections based U-Net

architecture [98] consisting of partial convolutions for image inpainting. Introduction

of contextual attention mechanism paved a way towards efficient image inpainting in

various research works. Li et al . [99] proposed context-aware semantic approach for image

inpainting in order to maintain spatial information accurately. Zeng et al . [21] proposed

a pyramidal context-encoder with multi-scale decoder approach for image inpainting.

Similar to contextual attention Li et al . [14] proposed a recurrent approach consisting

of knowledge consistent attention for image inpainting. Wang et al . [100] proposd a

contextual attention layer based network with parallel streams for damaged image and

mask processing.

With the observation of predicting the missing content by propagating the surrounding

features via convolution layer in context encoder, Yan et al . [10] proposed shift-connection

layer approach for image inpainting. In the shift-connection layer, the CNN features are

shifted to form an estimation of missing features. In this, the decoding features are

ignored which is then modified with the introduction of bishift layer [101] which captures

information from both the encoder and decoder. Wang et al . [9] proposed a single stage

architecture which synthesizes the multiple image components in parallel with a confidence

driven reconstruction loss for detail enhancement. Similarly, Sagong et al . [102, 103]

proposed parallel extended decoder approach for image inpainting with less computational

complexity. Zhu et al . [104] proposed the recovery and refinement decoders to inpaint

arbitrary missing regions. Ma et al . [105] proposed a contrastive attention based network

with two parallel encoders. Wang et al . [106] proposed a parallel multi-resolution fusion

approach for image inpainting.

Yang et al . [107] proposed a two stage architecture consisting of a content and texture

network. The content network is mainly proposed for content generation in the missing

regions whereas the texture network generates the fine texture in the inpainted image.

Zheng et al . [11] proposed probabilistically principled framework for pluralistic image

inpainting task. To inpaint the images with large missing regions, Li et al . [73] proposed

a progressive image inpainting approach which progressively inpaints the structure of

corrupted image. Saad et al . [108] proposed a novel discriminator approach to determine

patch-wise real or fake output which helps to generate visually realistic results. Li et al .
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[109] proposed the progressive decomposition of features into two different streams followed

by the fusion of them in order to get sharp textures in the inpainted image. Lahiri et al .

[110] proposed a two stage training approach with GANs and noise prior prediction training

to infer intermediate noise for input corrupted image. Zhao et al . [111] proposed a cross

semantic attention layer with primary branch for manifold projection to map instance

image space to image completion space and secondary branch with conditional encoder

to generate the label. Liao et al . [112] proposed a semantic guidance and estimation

based network to iteratively evaluate the uncertainty of the inpainted image using the

pixel-wise semantic segmentation followed by the alternate optimization of structural

prior and inpainted contents. Liao et al . [113] also proposed an architecture guided by

coherence prior of textures and semantics. Similarly, Chen and Liu [114] proposed dual

encoder branches: one to process corrupted image and the other for edges which are then

merged in the dual attention layer. Han and Wang [115] proposed the evolutionary GANs

approach for facial image inpainting. Suvorov et al . [116] proposed Fourier convolutions

for inpainting the images with large masks. Further, Lu et al . [117] proposed the Fourier

convolutions based architecture with spatial and frequency loss for image inpainting. Jam

et al . [118] proposed a reverse masking network to blend the valid to missing regions

efficiently. Guo et al . [16] proposed an architecture for conditional structure in terms

of edges and texture generation. Yu et al . [119] proposed a discrete wavelet transform

(DWT) based approach for image inpainting. Suin et al . [120] proposed a knowledge

distillation approach to provide feature level supervision while training the network for

image inpainting. Zhao et al . [121] proposed a co-modulated GANs architecture for image

inpainting. Likewise, Zheng et al . [122] proposed cascaded modulation GANs for image

inpainting.

The ability of extracting long-range dependencies of the transformers is utilized in different

image inpainting approaches [123, 124, 17, 125, 126]. Fan et al . [124] proposed a spatial

attention transformer network for image inpainting. Also, Li et al . [17] proposed a

transformer based approach where the long-range dependencies are modelled by the valid

tokens from the mask. Zhou et al . [125] proposed a color-spatial transformer to adjust the

color and spatial misalignments of multiple global homographies. All the homographies

are merged in order to generate the final inpainted image. Wan et al . [126] proposed a

pluralistic image generation architecture with two networks: bidirectional transformer

to generate the probability distributions for missing regions and a CNN network for

appearance generation. Due to down-sampling of the input into much lower resolution

in the transformer approaches, there is a chance of information loss which is reduced

in [123] by introducing patch based auto-encoder and un-quantized transformer for image

inpainting. With the evolution of denoising diffusion models, Lugmayr et al . [127] proposed

the denoising diffusion probabilistic models based approach for image inpainting. Most of
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the above discussed architectures generally have high complexity or they lack in producing

the plausible results when images with large missing regions are considered.

2.2 Existing Approaches for Blind Inpainting

The emergence of blind image inpainting with learning based methods appeared with

the CNN in [128]. Liu et al . [129] proposed a residual learning based approach with

the horizontal and vertical gradients to generate the detailed clear image. Prior to

these works, Xie et al . [71] utilized the sparse auto-encoder for image denoising and

blind image inpainting. Similarly, in [130], Ren et al . proposed Shepard convolutional

network for image denoising and blind image inpainting. These approaches consider simple

contaminations like text imposed on images or images with some part appended from other

images of masks with thin size.

In order to consider the complex contaminations, Wang et al . [23] proposed coarse-to-fine

architecture for blind image inpainting. The network proposed by [23] is a visual

consistency network which first estimates where to inpaint by predicting the masks

and then utilize the image inpainting network. Further, Wang et al . [131] include the

contextual coherence and additional frequency modality input for mask prediction task.

This is followed by the landmark prediction and then final inpainting of facial images.

Both [23] and [131] use coarse-to-fine architectures containing mask prediction followed

by inpainting. In this kind of inpainting, there may be a chance of unavoidable mask

prediction error leading to undesired image inpainting results. In this regard, Zhao et al .

[24] observed that, in blind image inpainting, the differentiation of contaminated and valid

regions and mask prediction are heavily correlated. With this assumption, Zhao et al . [24]

proposed a single stage hybrid encoder-decoder network for blind image inpainting. In

order to capture global context, the transformer encoder is used [24] and CNN decoder is

used to revamp the contaminations.

2.3 Existing Experimental Datasets

For experimental analysis, we have used five publicly available image datasets corrupted

with different mask ratios.

2.3.1 Image Datasets

The different image datasets are:

CelebA-HQ [1]: This dataset contains a high quality images of celebrity faces. This

dataset contains a total of 30000 images with 28000 for training and 2000 for validation.

Places2 [3]: It contains approximately 1.8M images from 365 different places categories.
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For our experiment, we have considered 20 different places categories with respective

images from validation splits.

Paris street view [4]: This dataset contains 14900 training and 100 validation images

from the street views of Paris.

Flickr-Faces-HQ (FFHQ) [2]: This dataset consists of 70,000 high-quality face images

with different variations in terms of age, ethnicity and image background.

ImageNet [5]: This dataset contains 14 million images, a little more than 21 thousand

groups or classes. Figure 2.1 shows the sample images from all the considered datasets.

Figure 2.1: Sample images from CelebA-HQ [1], FFHQ [2], Places2 [3], Paris Street View
[4] and ImageNet [5] datasets.

2.3.2 Mask Datasets

Three different types of masks are used to corrupt the images. The three mask datasets

are: NVIDIA mask dataset [6], quick draw irregular mask dataset (QD-IMD) [7] and

synthetically generated masks [8].

NVIDIA Mask Dataset [6]: This dataset contains around 54000 masks for training and

12000 masks for testing. To generate the training masks, we have to threshold the images

and then randomly dilate the binarized masks in order to get diversity in the masks for

training. Further, testing set of NVIDIA mask dataset covers different hole-to-image area

i.e., mask ratios in the range (0.01, 0.6]. In total, there are 12k masks available which are
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divided into six sets with (0.01, 0.1], (0.1, 0.2], (0.2, 0.3], (0.3, 0.4], (0.4, 0.5], and (0.5, 0.6]

mask ratio.

Quick Draw Irregular Mask Dataset (QD-IMD) [7]: This is a mask dataset with

strokes drawn by human hand called as quick draw irregular mask dataset (QD-IMD) [7].

The two mask datasets differ from each other where, the NVIDIA mask dataset is based on

occlusion/dis-occlusion mask estimation between two consecutive frames which has sharp

edges due of rough crops near to borders and the QD-IMD consists of irregularly drawn

strokes without sharp edges.

Synthetic masks [8]: In synthetic mask dataset [8], we can generate five mask sets with

mask ratios 0.1− 0.2, 0.2− 0.3, 0.3− 0.4, 0.4− 0.5, 0.5− 0.6 for training and testing. The

synthetic mask dataset generates random holes (with ones at holes and zeros at non-hole

region) by simulating spots, scratches etc. The sample masks are given in 2.2.

Figure 2.2: Sample masks from NVIDIA [6], QD-IMD [7] and synthetic [8] datasets

2.4 Training Losses

Given the image with holes (IC) and the mask (IM ) with ones at holes and zeros at the

non-hole region, it is required to generate the inpainted image (II) similar to the target

image (IT ). While training, instead of calculating the loss on the overall image which

will create the disturbances in the hole and non-hole region, we have used the separate

loss function for the hole and non-hole region which is as given in Eq. (2.1) and (2.2),

respectively.

LHoles1 = ‖IM ◦ (II − IT )‖ (2.1)

LNon−holes1 = ‖(1− IM ) ◦ (II − IT )‖ (2.2)

where, ◦ stands for the Hadamard product. For the generation of the globally and locally

consistent realistic image, the adversarial loss plays an important role [132], [133]. The
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adversarial loss is the min-max problem between generator and discriminator. It can be

explained with the Eq. (2.3).

LAdv = max
D

min
G

E[log(D(IC , IT ))] + E[log(1−D(IC , G(IC , IM )))] (2.3)

where, D is the discriminator and G is the generator. To guide the network for textural

and structural information, the perceptual loss is calculated between the deep feature

maps of the ground-truth and inpainted images by passing them through the pre-trained

VGG19 model [134]. The perceptual loss is given as:

LPer =
S∑
s=1

 M∑
i=1

N∑
j=1

K∑
k=1

1

MNK
‖φs(IT )i,j,k − φs(II)i,j,k‖1

 (2.4)

where, φ are the feature maps (s ∈ (1, S)) of the VGG19 model. M , N , and K are the

dimensions of the feature maps. Along with these losses, the edge loss is also considered

to focus on the edge enhancement while training. The edge loss is formulated as:

Ledge = ‖S(IT )− S(II)‖1 (2.5)

where, S is the sobel operator. Along with all these losses, a structural similarity loss

LSSIM is optimized to minimize the per pixel difference in the output image.
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Coarse-to-fine Image Inpainting

In this chapter, we discuss the proposed two-stage architectures for image inpainting. Some

of the existing approaches for image inpainting depend on the prior information [13, 74]

to inpaint the input corrupted image. Also, different methods utilized more than two

cascaded models to inpaint the images [84, 85, 86]. These methods sometimes generate

inconsistent results or they have high computational complexity. In order to balance

these issues of quality and complexity, we have proposed three different solutions with

coarse-to-fine architectures to inpaint the images with varying missing regions. The three

contributions with coarse-to-fine architectures are:

1. Image Inpainting via Spatial Projections.

2. Nested Deformable Multi-head Attention for Facial Image Inpainting.

3. FASNet: Feature Aggregation and Sharing Network for Image Inpainting.

These solutions are explained in the next sections.

3.1 Image inpainting via spatial projections

Following the existing works [79, 22, 69, 70, 12, 8, 13], we use coarse-to-fine architecture for

image inpainting. This will help the network to progressively inpaint the image without

any disturbances in the image. Further, to effectively inpaint the image it is necessary

to focus on the edges in an image for effective inpainting. So, while training the network

for inpainting task we have provided a novel canny edge based loss for optimization. The

existing state-of-the-art method use the edge loss with the Sobel operator [8]. The Sobel

operator works well if there is less noise in the input. With more noisy input, the Sobel

operator will generate false edges. This will lead to false training as the network will try to

optimize the generated output with the false edges of ground truth. In [135], the authors

proposed the region based loss for image super-resolution task, where the considered region

is the edges calculated from target by canny edge detector. Hence, in order to avoid the

chance of false edge guided optimization of the network while training, we propose the use

of Canny edge operator, after its success in image super-resolution task [135] and style

transfer task [136]. The Canny edge operator is less sensitive to noise due to which there is
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no effect of noise in the generated edges. This will help the network for better optimization

while training. Our main contributions are:

• A novel architecture is proposed for image inpainting without any self-attention

mechanism.

• A novel spatial projection layer is proposed to project the spatial information from

non-hole regions to the hole regions for introducing efficient spatial consistencies in

the inpainted image.

• Unlike existing state-of-the-art architectures for image inpainting, we introduced the

use of edge loss with Canny edge operator for better optimization of the network.

Figure 3.1: Proposed spatial projection layer to introduce efficient spatial consistencies.

3.1.1 Proposed Framework

Here, first we give the exposition to multi-layer perceptron (MLP) based gMLP [35]. Then

we give an overview of our proposed spatial projection layer to introduce efficient spatial

consistencies in the inpainted image. Further, we elaborate on the proposed architecture

for image inpainting.

Gated MLP Overview

Generally, the self-attention blocks try to combine the spatial information from all the

representations. The attention mechanism gives the bias that the spatial interactions

should be dynamically parametrized based on the input representations. But, the MLPs in

the self-attention represent the static parametrization for arbitrary functions [35]. Because

of this, it is difficult to give remarkable effectiveness with the attention mechanisms [35].

So, in [35], the authors introduced the MLP-based alternative without self-attentions,

consisting of channel projections and spatial projections with static parametrization for
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Figure 3.2: Architectural details of the proposed framework for image inpainting.
Architecture consists of two stages: coarse and fine. In fine stage, a spatial projection
layer is proposed to project the spatial information from non-hole regions to hole regions
in an image (Better viewed in color).

image classification task. In their work, the projections are utilized with the linear and

multiplicative gating mechanism and named as gMLP since it is built with basic MLP

layers with gating mechanism. The gMLP block is defined as:

Ỹ = Z̃ � V ; Z̃ = s(Z); Z = σ(X � U) (3.1)

where, Ỹ is the output of gMLP, X is input, σ is GeLU activation function, U , V are

linear projections along channel dimensions, s(.) is a spatial interaction (spatial gating

unit) and � is element-wise multiplication.

To introduce spatial interactions, the spatial gating unit contains the contraction operation

over the spatial dimension. Here, the linear projection i.e., spatially linear mapping is

considered as spatial projection. The s(.), a spatial interaction output or the output of

linear gating mechanism is given as:

s(Z) = Z � fw,b(Z) (3.2)

where, � is element-wise multiplication operation. This gMLP layer with repetitive layers,

first introduced for image classification task [35] with superior performance than VIT [137].

Table 3.1: Differences between gMLP [35] and the proposed SPL

Method → gMLP [35] Proposed SPL

Input Input Embeddings
Channel-wise averaged

Input features

Projections Channel Spatial

Normalizations Channel Spatial
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Proposed Spatial Projection Layer

Inspired by the success of gMLP [35] for image classification task, in this work, we propose

the spatial projection layer (SPL) to focus on the spatial features relevant for image

inpainting task. The overview of the spatial projection layer is shown in Figure 3.1. The

SPL is designed to project the spatial information from various non-hole locations to the

hole region in that specific feature map. This projected spatial information is then added

to the input feature maps to fill the hole regions effectively.

The input feature maps of size m×n× c are first squeezed channel-wise to the size m×n
using global average pooling. These squeezed feature maps contain the global information

from all the channels of the input feature maps. The squeezed feature map is then fed to

the spatial normalization layer. The spatial normalization with X as input feature maps

can be equated as:

norm(X) =
fin − E(X)√
V ar(X) + ε

(3.3)

where, E is mean, V ar is variance. This normalization helps to normalize all the feature

values in the desired range, which in turn reduces the inconsistencies in the hole and

non-hole regions by filling of hole region with neighbouring features in the feature map.

This normalized feature map is then fed to the spatial projection layer which is a linear

projection along spatial dimension. The spatial projections are given as:

fw,b(X) = wX + b (3.4)

where, w is a matrix with the dimension same as that of sequence length, b is the respective

bias. Unlike the self-attentions, the spatial projection matrix, w, is independent of input

representations. Output of SPL with X as input is given as:

OutSPL = Ỹ +X (3.5)

Ỹ = fw,b(S(σ(fw,b(norm(X))))) (3.6)

where, X is the input feature map, fw,b is the spatial projection, σ is GeLU activation

layer, S(.) is the spatial gating module, and Z is formulated as:

Z = U � fw,b(V ′); V ′ = norm(V ) (3.7)

where, � is element-wise multiplication, U and V are the linear projections along spatial

dimension. Unlike gMLP [35], where the main focus is on extracting the information

from channel dimension for channel-wise information projection. Here in proposed SPL,

the information is projected in the spatial dimensions. This spatial projection of

information helps the network to extract the relevant information from the non-hole feature
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space to fill the hole region effectively (See Table 3.1 for the difference between gatedMLPs

[35] and proposed SPL).

Inpainting Framework

The proposed inpainting framework makes use of cascaded two-stage GANs model for

image inpainting task (see Figure 3.2). The purpose behind the use of coarse-to-fine

architecture is that, using the spatial projection layer with only one stage may produce

disturbances in the output. SPL is designed to mainly focus on the non-hole information

which is further projected in the hole regions for effective inpainting. It was observed

through experiments, utilizing this SPL in coarse stage generates discontinuity in the

feature maps, as they contain the hole region which denormalize the features (the effect

of applying SPL in coarse and fine stage is analysed in Section 3.1.3). Unlike in coarse

stage, the fine stage has some approximate content at the hole locations which may be

easily utilized for overall feature map normalization. This paves a way towards efficient

projection of information.

The generator model in coarse stage consists of gated convolution layers followed by

the dilated gated convolution layers and decoder layers with skip connections from the

respective encoder layers. The dilated convolution layers are utilized to focus on maximum

receptive field. The first generator generates the coarsely inpainted outcome which is

then fed to the fine stage. The second generator i.e., fine stage consists of the gated

convolution layers followed by the dilated gated convolution layers and decoder layers with

skip connections processed through proposed spatial projection layers. The SPL provides

the spatially projected information from the neighbouring locations in a feature map to the

hole locations. These processed feature maps guide the decoder with spatially correlated

information for reconstruction of the image.

We have trained both the stages in adversarial learning manner. The output of both

the generators is then fed to respective discriminator to discriminate it as real or fake.

Learning both the stages in adversarial manner helps the network to converge efficiently.

The discriminator used for this task is similar to the PatchGAN [133]. The coarse output

and ground-truth pair is used for first discriminator loss calculation and fine output with

ground-truth is given for second stage discriminator loss calculation. The discriminator

is used in parallel combination where total discriminator loss is average of first stage and

second stage loss.

3.1.2 Training Details of Proposed Network

Implementation Details: We implemented the proposed network architecture in

PyTorch. Network is trained on images of 256×256×3 size with a batch size of 1. Network

parameters are optimized using the Adam optimizer with a learning rate = 0.0002, β1 = 0.5
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Table 3.2: Comparison of the proposed method with state-of-the-art methods for image
inpainting on CelebA-HQ dataset with NVIDIA masks from [6].

Mask Ratio Method Publication PSNR↑ SSIM↑ L1 ↓ LPIPS↓ FID↓

0.1-0.2

SN [10] ECCV-18 28.70 0.949 3.439 0.0584 4.342
GMCNN [9] NIPS-18 28.03 0.943 3.070 0.074 11.259
PIC [11] CVPR-19 28.39 0.953 2.054 0.062 5.420
Gconv [12] ICCV-19 27.56 0.947 2.216 0.0612 5.563
EC [13] CVPRW-19 29.20 0.962 1.952 0.0637 4.638
RFR [14] CVPR-20 29.38 0.946 1.900 0.029 3.894
MANET [15] PR-20 32.42 0.952 0.630 0.0248 3.254
HR [8] WACV-21 30.95 0.969 2.544 0.0229 3.224
CTSDG [16] ICCV-21 32.11 0.971 0.859 0.025 3.326
Ours PR-22 34.27 0.983 0.540 0.023 1.870

0.3-0.4

SN [10] ECCV-18 22.80 0.891 3.354 0.2358 31.899
GMCNN [9] NIPS-18 23.36 0.843 4.157 0.1943 33.877
PIC [11] CVPR-19 22.99 0.854 3.893 0.172 25.971
Gconv [12] ICCV-19 23.59 0.854 3.893 0.152 12.429
EC [13] CVPRW-19 24.97 0.904 3.167 0.1445 12.084
RFR [14] CVPR-20 25.06 0.901 3.116 0.1586 17.056
MANET [15] PR-20 26.67 0.874 1.743 0.1248 11.522
HR [8] WACV-21 25.52 0.927 3.486 0.1529 12.490
CTSDG [16] ICCV-21 26.81 0.929 2.970 0.1055 11.299
Ours PR-22 28.86 0.944 1.240 0.0732 6.570

0.4-0.5

SN [10] ECCV-18 21.21 0.787 5.820 0.327 34.530
GMCNN [9] NIPS-18 19.66 0.785 5.652 0.3403 48.739
PIC [11] CVPR-19 20.85 0.776 5.016 0.2932 42.440
Gconv [12] ICCV-19 21.25 0.852 5.421 0.245 42.220
EC [13] CVPRW-19 22.46 0.866 5.597 0.2345 41.453
RFR [14] CVPR-20 23.77 0.839 4.584 0.2045 29.827
MANET [15] PR-20 24.51 0.892 2.012 0.181 11.085
HR [8] WACV-21 23.28 0.889 4.265 0.1974 26.455
CTSDG [16] ICCV-21 23.96 0.895 3.975 0.185 10.872
Ours PR-22 26.37 0.911 1.970 0.1081 8.650

and β2 = 0.999 for both the generator and discriminator. The total loss is a combination

of L1, adversarial, perceptual and proposed edge loss (Eq. 3.8) for both the stages as

given in Eq. 3.9 is used for the optimization of the network. The training of the proposed

network is done on NVIDIA DGX station with 2.2 GHz processor, Intel Xeon E5-2698,

NVIDIA Tesla V100 16 GB GPU and tested on CPU.

Loss Functions: Generally, to calculate the edge loss, a Sobel operator is used [8]. The

limitation of using the Sobel operator is its sensitivity to noise. With the increase in noise,

the gradient magnitude of the edges also degrades which produces inaccurate edges. In this

context, inspired from style transfer task [136], unlike existing state-of-the-art methods

for image inpainting, we propose the use of the edge loss with the Canny edge detection

operator. The edge loss LEdges for stage s is calculated as:

LEdges = ‖C(IGens)− C(IGt)‖ (3.8)
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Figure 3.3: Qualitative results comparison of the proposed and existing methods (GMCNN
[9], SN [10], PIC [11], GConv [12], EC [13], RFR [14], MANET [15], HR [8], CTSDG [16])
for image inpainting on CelebA-HQ dataset.

where, C is the Canny edge detection operator. The effect of utilizing the Canny edge

detection operator over Sobel operator for edge loss calculation is analysed in Section 3.1.3.

Along with the above mentioned losses, the L1 loss is used for both the coarse and fine

stages. For calculating the end-to-end loss from coarse and fine stages, we have taken the

average of losses from both the stages. So, the total loss used for training the proposed

network is weighted sum of all losses as given in:

LTotals = λ1L1s + λAdvLAdvs + λPerLPers + λEdgeLEdges (3.9)

We use the weights λ1 = 1, λAdv = 0.01, λPer = 0.4, λEdge = 0.25 for training the network.

3.1.3 Experimental Analysis

Extensive experimental analysis is carried out on the proposed architecture over existing

state-of-the-art methods with different datasets and different ratios of masks. The ablation

study is also conducted to show the effectiveness of the proposed layer and the use of

loss while training. A user study is carried out to show the superiority of inpainted

images from proposed architecture over existing state-of-the-art methods (the quantitative

and qualitative results are taken from the available source codes and pre-trained weights
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Table 3.3: Comparison of the proposed method with state-of-the-art methods for image
inpainting on Places2 dataset with NVIDIA masks from [6].

Mask Ratio Method Publication PSNR↑ SSIM↑ L1 ↓ LPIPS↓ FID↓

0.1-0.2

SN [10] ECCV-18 25.69 0.831 3.150 0.180 15.492
GMCNN [9] NIPS-18 25.74 0.861 3.895 0.140 15.082
PIC [11] CVPR-19 26.32 0.937 1.096 0.183 9.588
Gconv [12] ICCV-19 26.05 0.894 2.985 0.172 9.867
EC [13] CVPRW-19 27.28 0.943 1.060 0.185 6.094
RFR [14] CVPR-20 28.28 0.954 1.033 0.128 5.149
MANET [15] PR-20 28.84 0.910 1.245 0.078 5.216
HR [8] WACV-21 28.79 0.920 2.017 0.132 5.235
CTSDG [16] ICCV-21 29.69 0.957 0.924 0.089 5.129
Ours PR-22 30.82 0.968 0.912 0.057 5.020

0.3-0.4

SN [10] ECCV-18 22.42 0.754 5.307 0.261 28.511
GMCNN [9] NIPS-18 22.65 0.796 5.471 0.246 25.994
PIC [11] CVPR-19 20.77 0.771 3.447 0.237 34.240
Gconv [12] ICCV-19 23.45 0.850 4.895 0.225 21.453
EC [13] CVPRW-19 22.27 0.879 2.506 0.227 18.935
RFR [14] CVPR-20 23.28 0.875 2.534 0.219 15.540
MANET [15] PR-20 23.96 0.885 2.863 0.199 15.974
HR [8] WACV-21 24.02 0.877 4.169 0.215 18.184
CTSDG [16] ICCV-21 23.50 0.876 2.503 0.209 16.879
Ours PR-22 24.71 0.899 2.410 0.161 15.220

0.4-0.5

SN [10] ECCV-18 19.66 0.682 6.719 0.373 59.790
GMCNN [9] NIPS-18 19.31 0.714 6.537 0.325 58.571
PIC [11] CVPR-19 20.64 0.728 5.133 0.324 56.870
Gconv [12] ICCV-19 20.98 0.762 5.892 0.301 50.450
EC [13] CVPRW-19 21.00 0.785 5.331 0.299 49.650
RFR [14] CVPR-20 21.53 0.768 5.846 0.286 48.250
MANET [15] PR-20 21.98 0.792 4.622 0.270 39.876
HR [8] WACV-21 21.86 0.778 5.230 0.275 45.127
CTSDG [16] ICCV-21 22.01 0.830 4.952 0.273 39.110
Ours PR-22 23.12 0.848 3.480 0.222 34.071

provided by respective authors).

Quantitative Result Analysis

The evaluation of the proposed method is performed on three publicly available datasets

CelebA-HQ, Places2 and Paris SV for image inpainting with the masks from [6]. Table

3.2, 3.3 and 3.4 show the comparison of proposed method with state-of-the-art methods:

multi-column image inpainting (GMCNN) [9], Shift-Net (SN) [10], pluralistic image

inpainting (PIC) [11], gated convolutions (GConv) [12], EdgeConnect (EC) [13], recurrent

feature reasoning (RFR) [14], hyper-realistic image inpainting with hyper-graphs (HR) [8],

MANET [15] and CTSDG [16] in terms of peak signal-to-noise ratio (PSNR), structural

similarity index (SSIM), mean L1 error, Fréchet inception distance (FID) and Learned

Perceptual Image Patch Similarity (LPIPS)1. The comparison is carried out for irregular

1The quantitative values are calculated from the results obtained with the source code with pre-trained
weights provided by respective authors. For MANET, due to unavailability of pre-trained weights, the
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Figure 3.4: Qualitative results comparison of the proposed and existing methods (GMCNN
[9], SN [10], PIC [11], GConv [12], EC [13], RFR [14], MANET [15], HR [8], CTSDG [16])
for image inpainting on Places2 dataset.

masks with three different mask ratios i.e., 0.1 − 0.2, 0.3 − 0.4, 0.4 − 0.5. As shown in

Table 3.2, 3.3 and 3.4, it can be concluded that our proposed method easily compete the

existing-state-of-the-art methods on all types of masks and ratios for image inpainting

task. We give this credit to our proposed SPL.

Qualitative Result Analysis

For visual comparison of proposed method with state-of-the-art methods we have used

the source codes from the respective methods. We compare our results with GMCNN

[9], SN [10], PIC [11], GConv [12], EC [13], RFR [14], HR [8] and CTSDG [16] etc.

In Figure 3.3, we can clearly see that the proposed method generate efficient structural

information of corrupted region of a face as compared to existing methods (see the bounding

boxes highlighting the consistent facial inpainting ability of proposed method). Also, the

Figure 3.4 depicts the superiority of the proposed method by reflecting spatially consistent

inpainted regions in the images (see the structure and edges of mountains in the bounding

box ). Similarly, Figure 3.5 revels the ability of proposed method to generate spatially

consistent structural information in the inpainted image. Here, the bounding boxes are

used to highlight the effectiveness of proposed method over existing methods for inpainting

network is retrained with the code provided by respective author.
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Table 3.4: Comparison of the proposed method with state-of-the-art methods for image
inpainting on Paris SV dataset with NVIDIA masks from [6].

Mask Ratio Method Publication PSNR↑ SSIM↑ L1 ↓ LPIPS↓ FID↓

0.1-0.2

SN [10] ECCV-18 30.6 0.958 1.407 0.0865 22.038
GMCNN [9] NIPS-18 30.63 0.968 1.027 0.0829 21.953
PIC [11] CVPR-19 30.71 0.941 2.116 0.0727 21.321
Gconv [12] ICCV-19 26.49 0.891 2.355 0.0625 19.992
EC [13] CVPRW-19 30.87 0.944 2.796 0.0691 14.824
RFR [14] CVPR-20 31.64 0.946 1.105 0.0623 16.620
MANET [15] PR-20 32.38 0.957 0.890 0.0582 10.528
HR [8] WACV-21 32.25 0.966 1.734 0.0652 16.171
CTSDG [16] ICCV-21 32.50 0.956 0.912 0.0465 9.195
Ours PR-22 33.13 0.972 0.686 0.0463 8.516

0.3-0.4

SN [10] ECCV-18 22.49 0.779 3.109 0.2245 64.818
GMCNN [9] NIPS-18 22.03 0.716 3.686 0.2108 63.902
PIC [11] CVPR-19 24.86 0.741 4.346 0.2051 61.277
Gconv [12] ICCV-19 22.15 0.757 4.808 0.1998 93.584
EC [13] CVPRW-19 25.66 0.706 3.35 0.1994 45.482
RFR [14] CVPR-20 26.19 0.799 2.767 0.01521 40.170
MANET [15] PR-20 26.95 0.873 2.212 0.1448 51.946
HR [8] WACV-21 27.95 0.859 2.874 0.1454 52.031
CTSDG [16] ICCV-21 27.02 0.858 2.651 0.1455 32.348
Ours PR-22 27.80 0.907 2.63 0.1345 31.751

0.4-0.5

SN [10] ECCV-18 21.74 0.749 6.124 0.2801 91.685
GMCNN [9] NIPS-18 22.25 0.738 5.041 0.2434 89.001
PIC [11] CVPR-19 22.02 0.731 5.296 0.2321 82.492
Gconv [12] ICCV-19 23.58 0.799 4.951 0.2215 79.525
EC [13] CVPRW-19 23.86 0.812 3.563 0.2201 68.402
RFR [14] CVPR-20 23.95 0.842 3.552 0.2123 65.152
MANET [15] PR-20 24.980 0.843 3.524 0.2036 66.172
HR [8] WACV-21 24.01 0.843 3.781 0.2036 65.318
CTSDG [16] ICCV-21 24.17 0.843 3.108 0.1944 55.172
Ours PR-22 25.69 0.851 3.051 0.1885 52.140

the structures and fine edges.

From the above discussion, it is clear that the proposed method produce superior visual

results as compared to existing state-of-the-art methods. We give this credit of generating

efficient structural and spatially correlated effective information to our proposed spatial

projection layer. Similarly, we give the credit of generating refined edge information in

the inpainted images to the proposed use of Canny edge operator.

Object Removal Application

Also, to verify the applicability of our proposed method, we have conducted an experiment

with the real world object removal scenarios. For this analysis, we have considered the

DAVIS-2016 [138] dataset. The qualitative results for object removal task are as shown

in Figure 3.6. From this, it is clear that our proposed method gives comparative results

with existing methods for object removal task.
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Figure 3.5: Qualitative results comparison of the proposed and existing methods (GMCNN
[9], SN [10], PIC [11], GConv [12], EC [13], RFR [14], MANET [15], HR [8], CTSDG [16])
for image inpainting on Paris SV dataset.

Table 3.5: Quantitative results of ablation study on CelebA-HQ dataset for 0.4−0.5 mask
ratio. Note- (a) w/o SPL and w/o canny edge loss, (b) w/o SPL and w/i canny edge loss,
(c) w/i SPL and w/o canny edge loss, and (d) the proposed w/i SPL and w/i canny edge
loss.

Mask Ratio Metric a b c d

0.1-0.2

PSNR↑ 32.42 33.02 33.89 34.27
SSIM↑ 0.921 0.942 0.956 0.983
L1 ↓ 1.180 0.950 0.790 0.540
LPIPS↓ 0.095 0.078 0.058 0.023
FID↓ 4.740 3.570 2.890 1.870

0.3-0.4

PSNR↑ 26.65 27.06 27.98 28.86
SSIM↑ 2.28 1.95 1.08 0.944
L1 ↓ 2.970 2.560 2.040 1.240
LPIPS↓ 0.1982 0.158 0.105 0.0732
FID↓ 9.790 8.250 7.620 6.570

0.4-0.5

PSNR↑ 24.48 25.03 25.86 26.37
SSIM↑ 0.878 0.883 0.895 0.911
L1 ↓ 3.158 3.159 2.047 1.970
LPIPS↓ 0.2185 0.1958 0.1484 0.1081
FID↓ 10.614 10.863 9.234 8.650
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Figure 3.6: Qualitative results comparison of the proposed and existing methods (GMCNN
[9], SN [10], PIC [11], GConv [12], EC [13], RFR [14], MANET [15], HR [8], CTSDG [16])
for object removal task.

Figure 3.7: Inpainting analysis via user study (Note- RFR [14], HR [8], CTSDG [16]).

User Study

To verify the effectiveness of our proposed method, we have performed an experiment of

user study. For this study, we have used all the three datasets CelebA-HQ, Places2 and

Paris SV with random masks. We consider 20 images from each dataset. This creates

total 60 different questions for user study. For this analysis, we have considered existing

state-of-the-art RFR [14], HR [8], CTSDG [16] methods. We have shared this user study

questionnaire to 30 users with and without technical background and asked to vote more

realistic inpainting for each question. The analysis of the user study is depicted in Figure

3.7. The user study analysis in Figure 3.7 proves realistic inpainting ability of the proposed

method over existing state-of-the-art methods.

Ablation study

Effect of SPL and Canny Edge Loss: To examine effectiveness of the proposed spatial

projection layer (SPL) and use of edge loss with Canny operator, we conducted the

experiments as: (a) without (w/o) SPL and w/o Canny edge loss, (b) w/o SPL and

with (w/i) Canny edge loss, (c) w/i SPL and w/o Canny edge loss, and the proposed

(d) w/i SPL and w/i Canny edge loss. First, we examine Does the SPL contribute

toward spatially correlated results? This is evaluated with the experiment (a), (b)

and (c). From Figure 3.8 (a), (b) and (c), we can see that the inpainted results with SPL
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Figure 3.8: Qualitative results comparison of ablation study: (a) w/o SPL and w/o Canny
edge loss, (b) w/o SPL and w/i Canny edge loss, (c) w/i SPL and w/o Canny edge loss,
and the proposed, and (d) w/i SPL and w/i Canny edge loss.

Table 3.6: Quantitative analysis of placing the proposed SPL in coarse (Stage 1) and fine
stage (Stage 2) in the proposed architecture for image inpainting on CelebA-HQ dataset.

Mask Ratio 0.1-0.2 0.3-0.4 0.4-0.5

Metric Stage 1 Stage 2 Stage 1 Stage 2 Stage 1 Stage 2

PSNR ↑ 32.58 34.27 27.65 28.86 25.04 26.37
SSIM ↑ 0.961 0.983 0.937 0.944 0.901 0.911
L1 ↓ 1.18 0.54 1.97 1.24 2.52 1.97
LPIPS ↓ 0.085 0.023 0.0982 0.0732 0.1526 0.1081
FID ↓ 2.74 1.87 8.79 6.57 10.18 8.65

generate spatially correlated information. Also, the quantitative evaluation is provided

in Table 3.5. The results of Table 3.5 and Figure 3.8 show the efficiency of the SPL at

producing the spatially consistent information in the hole region.

Next, we evaluate, Whether the use of Canny edge operator contribute to the

true edges in the inpainted image? For this evaluation, we considered the experiment

with using Sobel operator for edge loss calculation. We can easily see in Figure 3.8 (d),

the use of Canny loss generated the true edges (with Canny operator) unlike Figure 3.8

(c) where some false edges are introduced (with Sobel operator).

Effect of the Proposed SPL in Stage 1 and Stage 2: The effect of utilizing the proposed

spatial projection layer (SPL) in stage 1 and stage 2 is analysed in this study. The

quantitative comparison is given in Table 3.6 and the qualitative comparison is given in

Figure 3.9. Stage I: In this case, the SPL is used in the first stage. Stage II (proposed

method): In this case, the SPL is used in the second stage.

Analysis of the Proposed SPL and Existing Self-attention: Also, we have verified the
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Figure 3.9: Qualitative results comparison of the proposed SPL placed in coarse (Stage I)
and fine stage (Stage II: Proposed Method) of the architecture for image inpainting.

Table 3.7: Analysis on placing existing self-attention (SA) instead of proposed SPL for
image inpainting on CelebA-HQ dataset.

Mask Ratio 0.1-0.2 0.3-0.4 0.4-0.5

Metric SA SPL SA SPL SA SPL

PSNR ↑ 33.08 34.27 27.45 28.86 25.86 26.37
SSIM ↑ 0.972 0.983 0.934 0.944 0.852 0.911
L1 ↓ 0.86 0.54 1.98 1.24 3.158 1.97
LPIPS ↓ 0.048 0.023 0.0985 0.0732 0.1245 0.1081
FID ↓ 2.06 1.87 7.85 6.57 9.824 8.65

Table 3.8: Analysis on different losses for training of the proposed network for image
inpainting on CelebA-HQ dataset. Note: Different combinations (La, Lb, Lc, LT ) of total
loss LTotal are analysed where, La → λ1L1; Lb → La + λAdvLAdv; Lc → Lb + λPerLPer;
LT → Lc + λEdgeLEdge

Mask Ratio Metric La Lb Lc LT

0.1-0.2

PSNR↑ 32.86 33.27 33.85 34.27
SSIM↑ 0.961 0.964 0.975 0.983
L1 ↓ 1.570 1.060 0.920 0.540

LPIPS↓ 0.097 0.085 0.052 0.023
FID↓ 3.010 2.560 2.110 1.870

0.3-0.4

PSNR↑ 26.61 27.12 27.98 28.86
SSIM↑ 0.921 0.929 0.935 0.944
L1 ↓ 2.860 2.080 1.940 1.240

LPIPS↓ 0.1125 0.1054 0.0915 0.0732
FID↓ 8.260 7.620 7.080 6.570

0.4-0.5

PSNR↑ 24.86 25.94 26.02 26.37
SSIM↑ 0.875 0.886 0.892 0.911
L1 ↓ 3.010 2.950 2.580 1.970

LPIPS↓ 0.1821 0.1614 0.1572 0.1081
FID↓ 10.050 9.720 9.140 8.650
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effect of proposed SPL compared to existing self-attention. Table 3.7 shows the

quantitative comparison of proposed SPL versus existing self-attention in the proposed

architecture for image inpainting. From Table 3.7, we can clearly observe that the proposed

SPL gives superior performance over existing self-attention for image inpainting.

Effect of different training losses: In this study, we analyse the effect of different losses

used to train the proposed network for image inpainting. The study is carried out

on CelebA-HQ dataset. Various combinations of the losses are considered to train

the network. The quantitative comparison of proposed network trained with different

combinations is provided in Table 3.8. From Table 3.8 it is clear that, the combination

of L1, adversarial (LAdv), perceptual (LPer) and edge (LEdge) loss leads to the better

outcome for image inpainting task.
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3.2 Nested Deformable Multi-head Attention for Facial

Image Inpainting

The attention mechanism in general is an effective approach for image inpainting task.

Since it helps the network to effectively extract the features from valid locations for

inpainting the holes. Also, to fill the holes of large size, it is necessary to have a varying

receptive field in consideration while extracting the features. The multi-head attention

urges to weigh the feature maps with the valid features. Considering these points, in this

work, we propose a nested deformable multi-head attention layer (NDMAL) to transfer

the encoder features for effective reconstruction while considering diverse receptive fields.

Inspired by the success of linear unified nested attention [139] for a sequence modelling

task, we propose a nested deformable multi-head attention layer for image inpainting task.

Unlike [139], we consider encoder and decoder features as packed and unpacked inputs.

Though, encoder and decoder features are inputs to the multi-head attention, our proposed

layer has linear complexity. Since we utilize the channel-wise attention instead of spatial

attention. The proposed NDMAL helps the network to effectively extract the features

from the valid region (background) to fill the holes. Further, we propose deformable

multi-head attention (DMHA) for extracting decoder features from diverse fields which

are then merged with the skip features from the encoder. Also, a gated feed-forward layer

is utilized to again pass the weighted features for reconstruction. Resembling the encoder

skip features as a query sequence, packed attention is calculated, called packed context.

This packed context is again processed through DMHA with query sequence as decoder

features and the unpacked context is generated. Both of these packed and unpacked

contexts are merged and then forwarded to the next layer. These packed and unpacked

context features assist in the effective reconstruction of the inpainted image. The main

contributions of our work are:

• Formulating a lightweight architecture consisting of novel transformer layer for facial

image inpainting.

• We propose a nested deformable multi-head attention transformer layer (NDMAL)

to effectively fuse the encoder and decoder features. The use of NDMAL allows

the network to effectively capture long term dependencies and to extract the valid

features from maximum receptive fields.

• We propose the analysis of inpainting methods on seen and unseen types of masks.

The ablation study is carried out to verify the efficiency of the proposed NDMAL.

Comparative analysis of the proposed approach on CelebA-HQ dataset corrupted with

masks from two different datasets and Places2 dataset proves its efficiency for image

inpainting task.
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3.2.1 Proposed Framework

Figure 3.10: Proposed architecture for image inpainting. We propose a nested deformable
multi-head attention transformer layer (NDMAL) to focus on large receptive fields with
long term dependencies. The proposed layer consists of single layer in turn reducing the
computational complexity of the network.

In this section we first introduce in general multi-head attention used in the transformer

[140], the linear unified nested attention [139] and then we put a light on the proposed

nested deformable multi-head attention layer (NDMAL) used for image inpainting task.

Transformer with Self Attention

The multi-head attention [140] mapping A ∈ Rn×p ×B ∈ Rm×p → Y ∈ Rn×p is generally

formulated as:

Y = Attn(A,B) = σ(
Aφq(Bφk)

T

√
dk

)Bφv (3.10)

where, A and B are the query and context sequences with length n and m respectively, σ

is the Softmax activation, p is the embedding dimension, φq, φk and φv are the trainable

parameters used to project the input into query, key and values, dk is dimension of key.

In [140] for multi-head attention A = B is considered, called as self-attention. The output

of this multi-head attention i.e., self-attention is fed to position wise feed-forward layer

followed by layer normalization. The final output of the transformer (Y ′) is given as:

Y ′ = η(FFN(YA) + YA) (3.11)

where, η is LayerNormalization, YA = η(Y + A). These transformer layers are

sequentially utilized l times in each block. The feed-forward network (FFN) is

independently applied on each position and layer normalization controls the gradient scales

[140]. The SA generally has quadratic complexity. The computational load of the SA is

reduced with applying the SA on small spatial window size, ws = 8× 8 [141, 142] instead

of global attention.
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Linear Unified Nested Attention

The linear unified nested attention [139] (LUNA) deals with the quadratic memory and

computational complexity of transformers (O(mn)) (Section 3.2.1) by introducing an extra

input sequence of fixed length in order to have two outputs. This in turn gives linear

complexity to the transformer layer. The pack (YP ) and unpack (YU ) attentions are

introduced as:

YP = Attn(C,B); YU = Attn(A, YP ) (3.12)

where, C ∈ Rl×p is an extra input sequence with fixed length l. The packed and unpacked

attentions have the complexity of O(lm) and O(ln). So, the LUNA takes three inputs

in general (A, B and C) and produces a packed and unpacked attention as output. The

LUNA layers take these attentions to further process via FFN and LayerNormalization

as:

YP , YU = LunaAttn(A,C,B)

YA, CA = η(YP +A), η(YU + C)

Y ′, C ′ = η(FFN(YA) + YA), CA

(3.13)

where, Y ′ and C ′ are the outputs of the LUNA Layer.

Proposed Nested Deformable Multi-head Attention

In combination to both of the multi-head attention (Section 3.2.1) and LUNA attention

(Section 3.2.1), we propose a nested deformable multi-head attention for the task of image

inpainting (Figure 3.10). The LUNA attention provides an extra input with actual inputs

to have linear complexity. Applying the self-attention to the image inpainting task may

provide relative contextual information either from the encoded features or from decoder

features. Whereas, in our proposed approach, we provide the decoder (De) and skip

connection features from the encoder (En) as input. Considering both the features from

the encoder and decoder may allow delving into the valid feature space efficiently. Also, in

order to extract maximum receptive field from the decoder processed features, we leverage

the deformable convolution layer [143] unlike [140] and [139]. Here, we consider the encoder

features to be the context information provided to the decoder for effective reconstruction.

So, the proposed deformable multi-head attention (DMHA) is formulated as:

Y = DMHA(DeN−l, Enl) = σ
(
Enlφq(DeN−lφ

df
k )T

)
DeN−lφ

df
v (3.14)

where, φdf shows the deformable convolution applied to the decoder features to

delve into the maximum receptive fields, l ∈ (1, 4) is the number of layers and

N = 5 (see DMHA in Figure 3.10). In deformable convolution, the normal grid

O = {(−1,−1), (−1, 0), ..., (0, 1), (1, 1)} is augmented with the offsets {4pn|n = 1, ......, P},
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P = |O|. So, for each location p0 in the output feature map φdf ,

φdf (p0) =
∑
pn∈O

w(pn).x(p0 + pn +4pn) (3.15)

Further, we introduce the nested deformable attention mechanism to increase the required

receptive field and to focus on long-term dependencies. Also, nesting of DMHA makes

sense that, it can capture sufficient contextual information. The packed (YP ) and unpacked

(YU ) outcomes of the nested deformable attention are given as:

YP = DMHA(DeN−l, Enl)

YU = DMHA(YP , DeN−l)
(3.16)

Since we consider the encoder layer features with the input sequence, it will be able to

pack the global context of the input efficiently. The packed and unpacked outputs are

then forwarded to layer normalization and gated feed-forward layer (GFFL). The output

(Y ′) of proposed NDMAL is given as:

YE , YD = η(YP + Enl), η(YU +DeN−l)

Y ′ =< η(GFFL(YD) + YD), YE >
(3.17)

where, < . > indicates concatenation operation. The GFFL is the gated feed forward layer

which is used to suppress any undesired features if present. The GFFL is represented as:

GFFL(fin) = φ(fin) + G(ψ(fin)) (3.18)

where, G is GELU activation function, φ and ψ are learn-able functions (i.e., convolution

layers).

Overall Architecture

The overall architecture of the proposed approach is visualized in Figure 3.10. We follow

a coarse-to-fine architecture. The purpose behind the coarse-to-fine architecture is to

forward the coarse output features through the proposed NDMAL as a query to provide

sufficient contextual information. So that the network will be able to capture long-term

dependencies effectively. The proposed NDMAL is utilized in the fine stage which takes

input from the encoder layer and considers it as a query to the respective decoder feature

key and values. Also, the packed attention in the NDMAL is calculated with respect to the

encoder skip inputs which is then concatenated with the processed unpacked attention.

The concatenation of both allows to preserve the valid content efficiently.

The encoder and decoder layers of both the coarse and fine stages are designed with the

gated convolution layer followed by a LeakyReLu activation. The successive encoder



38 Chapter 3. Coarse-to-fine Image Inpainting

Configuration (Parameters) PSNR SSIM L1 LPIPS FID

SA on En Feat (3.61M) 24.25 0.842 4.259 0.162 9.482
SA on De Feat (3.61M) 24.98 0.857 4.008 0.151 9.106
+Nested -Deformable (3.62M) 27.68 0.915 3.007 0.104 7.864
-Nested +Deformable (3.85M) 26.28 0.897 3.856 0.122 8.567
Proposed Network (4.12M) 28.19 0.931 2.575 0.082 6.844

Table 3.9: Quantitative comparison for different configurations of the proposed network
for image inpainting on 0.01 − 0.6 mask ratio on CelebA-HQ dataset (Note: + indicates
inclusion and - indicates exclusion of particular block, SA is self-attention, En Feat and
De Feat are encoder and decoder features respectively).

layers at the bottleneck of the coarse stage allow focusing on the different receptive

fields which produce an approximate output. This coarse output is then fed to the fine

stage which includes the proposed NDMAL. The overall architecture with effective usage

of NDMAL generates faithful inpainted results. As we are considering the deformable

multi-head attention, it may help the network to extract information from maximum

receptive fields. Also, the nested multi-head attention applied to the encoded and decoded

features may help to capture the long-term dependencies. So, unlike existing transformer

architectures, our proposed NDMAL consists of only one block with ws = 8 × 8. This

helps to reduce the computational cost of our proposed inpainting network. Though

the two inputs to the proposed NDMAL are having the length of n,m, it preserves

the linear complexity. This is because we apply the attention channel-wise instead of

spatially [32]. So, the attention will effectively encode the global context by computing

the cross-covariance across the channels. This also reduces the necessity of an extra input

with constant length (l) like [139].

3.2.2 Training of the Proposed Network

The proposed architecture is trained with the corrupted image and its mask as input and

generates an inpainted image as output. The discriminator network is the same as that of

[133]. While training, the image values are linearly scaled between the range [0, 1]. Weight

parameters of the network are updated on NVIDIA DGX station having Tesla V100 1×16

GB GPU with the batch size of 1 for 200 epochs (38 GPU Hours). The ADAM optimizer

[144] with the learning rate of 2 × 10−4, β1 = 0.5 and β2 = 0.99 is used. The total loss

used for training the proposed network is weighted sum of all losses as given in:

LTotals = λ1L1s + λAdvLAdvs + λPerLPers + λEdgeLEdges (3.19)

We use the weights λ1 = 10, λAdv = 0.01, λPer = 0.5, λEdge = 0.3 for training the network.
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Figure 3.11: Analysis on different configurations of proposed method.

Table 3.10: Quantitative comparison of the proposed method (Ours) with the
state-of-the-art methods on NVIDIA [18] masks for image inpainting on CelebA-HQ
dataset.

Mask Ratio Method Publication PSNR↑ SSIM↑ L1 ↓ LPIPS↓ FID↓

0.01-0.2

SN [10] ECCV-18 30.84 0.961 2.827 0.0601 4.134
GMCNN [9] NIPS-18 30.54 0.957 2.867 0.0572 7.537
PIC [11] CVPR-19 32.08 0.967 2.689 0.0382 4.042
Gconv [12] ICCV-19 32.06 0.960 2.681 0.0384 4.309
EC [13] CVPRW-19 32.04 0.973 3.108 0.0387 4.042
RFR [14] CVPR-20 33.45 0.973 1.824 0.0453 2.516
HR [8] WACV-21 33.28 0.976 1.925 0.0418 2.257
CTSDG [16] ICCV-21 33.57 0.979 1.329 0.0280 2.105
MAT [17] CVPR-22 33.56 0.977 1.147 0.1860 2.032
Ours WACV-23 33.99 0.982 1.017 0.0229 1.775

0.2-0.4

SN [10] ECCV-18 25.77 0.896 4.246 0.2091 10.643
GMCNN [9] NIPS-18 24.49 0.894 4.120 0.1711 28.170
PIC [11] CVPR-19 25.30 0.891 3.691 0.1772 14.376
Gconv [12] ICCV-19 25.48 0.904 4.147 0.1668 11.010
EC [13] CVPRW-19 26.30 0.901 3.194 0.1630 7.338
RFR [14] CVPR-20 26.44 0.917 3.022 0.1414 11.767
HR [8] WACV-21 26.76 0.935 3.213 0.1341 10.330
CTSDG [16] ICCV-21 27.02 0.936 2.466 0.1020 7.516
MAT [17] CVPR-22 27.13 0.931 2.466 0.0944 6.620
Ours WACV-23 27.43 0.948 2.382 0.0740 5.862

0.4-0.6

SN [10] ECCV-18 18.65 0.657 8.852 0.3690 61.160
GMCNN [9] NIPS-18 18.74 0.744 6.747 0.4060 50.981
PIC [11] CVPR-19 19.01 0.679 7.011 0.3451 49.120
Gconv [12] ICCV-19 19.70 0.860 5.695 0.3017 34.940
EC [13] CVPRW-19 21.33 0.809 5.828 0.2755 33.011
RFR [14] CVPR-20 21.23 0.755 6.354 0.2551 30.650
HR [8] WACV-21 22.04 0.831 5.345 0.2429 28.498
CTSDG [16] ICCV-21 22.24 0.845 4.451 0.1910 14.371
MAT [17] CVPR-22 22.55 0.847 4.402 0.1811 13.121
Ours WACV-23 23.14 0.858 4.326 0.1479 12.897
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Figure 3.12: Qualitative comparison of the proposed method (Ours) with existing methods
(GMCNN [9], SN [10], PIC [11], GConv [12], EC [13], RFR [14], HR [8], CTSDG [16],
MAT [17]) on CelebA HQ dataset for NVIDIA [18] mask.

3.2.3 Experimental Analysis

Here, we provide details of baselines, the ablation study on different configurations of

proposed architecture, comparative and computational complexity analysis.

Baselines

To examine the efficiency, we consider the comparison of our proposed method with

existing state-of-the-art methods for image inpainting : Shift-net (SN) [10], GMCNN

[9], pluristic-image completion (PIC) [11], gated-convolutions (GConv) [12], edge-connect

(EC) [13], recurrent feature reasoning (RFR) [14], hyper-graphs (HR) [8], contextual

texture-structure dual generation (CTSDG) [16], and mask aware transformers (MAT)

[17].

Ablation Study

In order to come up with an optimum architecture for image inpainting task, we carried out

meticulous experiments with different combinations of our network. These experiments

include, (a) considering the self attention (Section 3.2.1) applied on the encoder features

and merged with decoder features (SA on encoder features) , (b) self attention (Section

3.2.1) applied on the decoder features and merged with encoder features (SA on decoder

features), (c) applying the nested attention without deformable layer (similar to LUNA

Section 3.2.1) (+Nested -Deformable), (d) applying the deformable multi-head attention

without nested attention layers (-Nested +Deformable), (e) finally, applying the nested

deformable multi-head attention layer (+Nested +Deformable i.e., Proposed Network)

(see Table 3.9).

Purpose of this study is to compare quantitative and qualitative differences between

different configurations of the proposed network. We examine whether the
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Table 3.11: Quantitative comparison of the proposed method (Ours) with state-of-the-art
methods on QD-IMD [7] masks for image inpainting on CelebA-HQ dataset.

Mask
Ratio

Method PSNR↑ SSIM↑ L1 ↓ LPIPS↓ FID↓

0.01-0.2

EC [13] 33.19 0.972 1.340 0.0404 2.929
RFR [14] 33.45 0.973 1.824 0.0291 2.516
HR [8] 33.28 0.974 1.143 0.0259 2.051
CTSDG[16] 34.55 0.981 0.984 0.0186 1.913
MAT [17] 34.66 0.982 0.945 0.0201 1.627
Ours 35.05 0.989 0.818 0.0172 1.567

0.2-0.4

EC [13] 25.85 0.933 2.719 0.1319 7.561
RFR [14] 26.92 0.939 2.513 0.1182 7.267
HR [8] 27.68 0.948 2.443 0.1082 6.652
CTSDG[16] 28.48 0.956 2.089 0.0540 6.262
MAT [17] 28.62 0.957 1.930 0.0535 6.016
Ours 28.94 0.961 1.807 0.0533 5.181

0.4-0.6

EC [13] 22.43 0.856 5.007 0.2136 19.543
RFR [14] 22.93 0.868 4.754 0.1801 18.650
HR [8] 23.37 0.871 4.039 0.1734 17.685
CTSDG[16] 23.80 0.880 3.707 0.1308 16.111
MAT [17] 24.03 0.887 3.637 0.1229 15.921
Ours 24.56 0.895 3.508 0.1186 15.493

Figure 3.13: Qualitative comparison of the proposed method (Ours) with existing methods
(EC [13], RFR [14], HR [8], CTSDG[16], MAT [17]) on CelebA HQ dataset for unknown
mask dataset QD-IMD [7].

self-attention applied on either encoder or decoder features works better.

The existing self attention tries to extract the long term dependencies from the input

feature maps. Applying it on the encoder or decoder features affects differently while

reconstructing the image. Row 2 and 3 in Table 3.9 show the results for the configuration

where the self attention is applied on encoder and decoder features respectively. From

Table 3.9 and Figure 3.11, it is clear that, the self attention when applied with encoder

(row 2 of Table 3.9) or decoder (row 3 of Table 3.9) feature map as input fails to produce

efficient outcome in terms numeric and visual results. Inspired with the LUNA attention,

we ought to include the LUNA layer in the inapinting architecture to verify

its ability to delve into the valid features. Contrary to self attention, the results

are improved quantitatively and also generate better structural information visually (see

row 4 in Table 3.9 and column 5 in Figure 3.11). The reason behind this might be, here
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Figure 3.14: Qualitative comparison of the proposed method (Ours) with existing methods
(GMCNN [9], SN [10], PIC [11], GConv [12], EC [13], RFR [14], HR [8], CTSDG [16],
MAT [17]) on Places2 dataset for NVIDIA [18] mask.

we consider both the information from encoder features and decoder features in order to

get better contextual information as compared to considering either of them. Further,

we pondered that, if we try to consider maximum receptive field, it will further help the

network towards better outcome. A study is carried out to determine whether

addition of deformable convolution works well to extract maximum receptive

field. In light of that, we considered a deformable multi-head attention (row 5 of Table

3.9) for extracting the contextual information from the input feature maps which resulted

into better convergence of structural information. So, in combination to +Nested and

+Deformable (see Proposed Network in Table 3.9 and Figure 3.11), we come up with

our proposed network, nested deformable multi-head attention layer (NDMAL) for image

inpainting. This proposed NDMAL gives inpainted output akin to ground-truth (see

Proposed Network in Table 3.9 and Figure 3.11).

Comparative Analysis

We train our network on CelebA-HQ image dataset corrupted with NVIDIA mask training

dataset similar to baselines (Section 3.2.3). For comparative analysis, we considered two

types of masks NVIDIA [6] and QD-IMD [7]. For both mask datasets, we considered 0.01−
0.2, 0.2− 0.4 and 0.4− 0.6 mask ratios. Quantitative comparison of the proposed method

with existing baselines in terms of PSNR, SSIM, L1 norm, LPIPS and FID is given in

Table 3.10. From Table 3.10, we can clearly mention that the proposed method effectively

outperforms the baselines for all mask ratios. Along with the numeric superiority, we

assess visual comparison of proposed method with existing baselines. Visual comparison

is depicted in Figure 3.12. With the comparison, we come up with some observations: our

proposed method does not generate ghosting outcomes, it does not create stitching effects,

it does not produce over sharp results, etc. Furthermore, our outputs are more accurate

when compared with baselines because their resemblance to ground truth is greater.

Along with this comparison on NVIDIA dataset masks, we urge to verify reliability of

our method with other mask datasets. For this experiment, we consider the CelebA-HQ

images corrupted with QD-IMD [7] dataset. Similar to existing baselines, our model

is also not trained for these type of masks. It means, we are comparing all the

methods (including ours) with unknown types of masks. In order to make it simple, we
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Table 3.12: Quantitative comparison of the proposed method (Ours) with the
state-of-the-art methods on NVIDIA [18] masks for image inpainting on Places2 dataset.

Mask Ratio Method PSNR↑ SSIM↑ L1 ↓ LPIPS↓ FID↓

0.01-0.2

SN [10] 27.88 0.876 3.371 0.1340 10.763
GMCNN [9] 28.22 0.894 3.637 0.1125 10.543
PIC [11] 29.52 0.917 2.796 0.1362 8.447
Gconv [12] 29.50 0.921 2.698 0.1269 7.718
EC [13] 29.69 0.915 2.585 0.1322 7.499
RFR [14] 30.64 0.928 1.181 0.1020 6.104
HR [8] 30.12 0.936 1.661 0.0975 6.148
CTSDG [16] 30.61 0.953 1.490 0.0660 4.459
MAT [17] 30.68 0.954 1.411 0.0442 3.696
Ours 32.51 0.968 1.104 0.0622 3.639

0.2-0.4

SN [10] 22.67 0.816 5.173 0.2394 29.126
GMCNN [9] 22.82 0.858 5.532 0.2232 27.398
PIC [11] 23.46 0.842 4.410 0.2180 25.799
Gconv [12] 22.80 0.872 4.393 0.2050 22.007
EC [13] 23.70 0.877 4.081 0.2027 21.018
RFR [14] 24.22 0.850 3.828 0.1935 20.218
HR [8] 24.18 0.856 3.638 0.1837 19.326
CTSDG [16] 25.10 0.877 3.327 0.1833 18.427
MAT [17] 25.23 0.884 3.067 0.1660 14.839
Ours 26.22 0.893 2.661 0.1739 14.254

0.4-0.6

SN [10] 18.19 0.621 9.330 0.4468 74.150
GMCNN [9] 18.19 0.660 7.499 0.3997 73.696
PIC [11] 18.82 0.692 7.111 0.3713 73.408
Gconv [12] 19.48 0.724 6.657 0.3567 68.005
EC [13] 19.52 0.719 6.361 0.3598 54.341
RFR [14] 20.76 0.726 6.486 0.3426 49.204
HR [8] 20.83 0.745 5.999 0.3351 55.461
CTSDG [16] 21.03 0.770 5.763 0.3285 40.266
MAT [17] 21.18 0.676 5.333 0.2480 35.810
Ours 21.89 0.776 5.037 0.3117 37.887

compare our method with only best five baselines. The quantitative and qualitative results’

comparison is provided in Table 3.11 and Figure 3.13 respectively. Our proposed approach

gives quantitatively improved results as compared with the existing baselines. In Figure

3.13, comparing our results with existing best methods, we find that our method is able

to generate more plausible results. We give this credit of faithful image inpainting to

our proposed nested deformable multi-head attention, since it is able to easily extract the

contextual information from both the encoded features and decoded features.

To show the generalizability of our proposed method, we have considered a Places2 natural

images dataset [3]. The quantitative and qualitative comparison on Places2 dataset is given

in Table 3.12 and Figure 3.14 respectively. This comparison shows that our proposed

method performs well for the non-face/natural image inpainting. Though our proposed
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method has very less number of parameters (4.1M) i.e., 1
15

th
of the baseline [17] (60M), it

performs well for face and non-face image inpainting task.

Figure 3.15: Comparison of the proposed method (ours) with existing methods (SN [10],
GConv [12], EC [13], RFR [14], HR [8], CTSDG [16], MAT [17]) in terms of number
of trainable parameters (x-axis), number of operations (GMAC) (y-axis) and run time
complexity in seconds per image (bubble size).

Complexity Analysis

We claim that, our propose method has low complexity with good results as compared

to existing baselines. Our proposed nested deformable multi-head attention has linear

complexity, since we apply the attention across channels similar to [32]. Also, the existing

self attention based methods utilize number of blocks with different window sizes to capture

long term dependencies in turn increasing the computational cost. Here, in this approach

we come up with a single block in our NDMAL as it already consider two different feature

maps to find the relative contextual information. Further, the nested attention helps the

layer to extract valid content more extensively. Also, the deformable additively provide it

with the larger receptive field. These points altogether allow a single block NDMAL with

a ws = 8 to extract relevant features for image inpainting.

The computational complexity analysis in terms of number of trainable parameters,

number of operations i.e., Giga multiply-accumulate operations (GMAC) and average

run time in terms of seconds/image is visualized in Figure 3.15. From Figure 3.15 and

Tables 3.10, 3.11 and 3.12, it is clear that, with lower computational complexity, our

method has good performance as compared to existing baselines.
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3.3 FASNet: Feature Aggregation and Sharing Network for

Image Inpainting

The attention mechanism generally focuses on the spatial information from the feature

maps or coherence information from the non-hole region instead of focusing on the

channel-wise information. The prior based methods consider the image globally neglecting

the local information. The progressive or recurrent approach may suffer with output

latency issue. GANs [132] now-a-days gaining more and more attention due to its ability

of efficient image generation for different tasks like image-to-image translation [133], image

enhancement [145], object segmentation [146], etc. Inspired by the fruitful results of

GANs and limitations of the existing image inpainting methods, we propose a novel

cascaded feature sharing and refinement adversarial architecture for image inpainting.

Main contributions of the proposed work are:

• A novel feature aggregation and sharing with refinement architecture (with 2.5M

parameters) is proposed for image inpainting.

• Multi-scale spatial channel-wise feature aggregation mechanism is proposed for

extracting the efficient features from each encoder level.

• To avail the multi-scale and multi-receptive information, a decoder feature sharing

mechanism is introduced.

• Further, refinement network is proposed with a novel edge extraction block to refine

the inpainted image.

Comparison of the proposed method is done qualitatively and quantitatively on three

benchmark datasets: CelebA-HQ [36], [1], Paris Street View (Paris SV) [4] and Places2

[3] with existing state-of-the-art methods for image inpainting.

3.3.1 Proposed Framework

To inpaint an image, it is desired to consider the spatial and channel-wise information

from the feature maps. Also, consideration of the maximum receptive fields is necessary

to fill small to large holes efficiently. Considering that the feature maps in each of the

encoder levels contain most of the relevant information, providing the features from only

one encoder level may reduce the information to be forwarded to the decoder for effective

reconstruction of the inpainted image. So, we aim to extract the maximum information

which will help the decoder for inpainting the hole regions. To do this, we propose

the extraction of features from each encoder-level and merge it to get relevant features.

Similarly, taking the direct skip connections from the encoder may pass the irrelevant

features of hole locations. To avoid this, we have introduced a feature aggregation block
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Figure 3.16: Flow-graph of the proposed generator framework for image inpainting.

(FAB) by combining the features from each of the encoder levels to efficiently guide

the decoder for the reconstruction of the relevant content. A multi-scale multi-receptive

decoder feature sharing (DFS) is proposed to reconstruct the image with small to large hole

size. The inpainting network is used for generating the inpainted image from the corrupted

input image. Further, in refinement network, an edge-guided refinement mechanism is

proposed for enhancing and refining the inpainted image from the first network. A detailed

explanation about the proposed framework is as given below:

Inpainting Network

In the inpainting architecture, the masked image is given as input. This input is passed

through 1st convolution layer (l) with stride 1 and then it is processed through four

convolution layers (l ∈ [2, 5]) with stride 2. The outputs of all the convolution layers from

l = 2 → 5 are then merged in FAB to extract the contextual information from all the

encoder levels. Before passing these feature maps to FAB, they are processed through a

convolution layer with stride 2N−l, N = 5, l ∈ [2, 5] in order to maintain the similarity

in spatial dimension between the feature maps. The merged output from FAB is then

forwarded to the DFS unlike existing methods. In the DFS, at each decoder level, the

multi-scale and multi-receptive features are shared in order to focus on maximum receptive

field at different resolutions. The proposed inpainting architecture is as shown in Figure

3.16 (see Image Inpainting Network architecture in blue dotted box ). The exposition of

different blocks in the inpainting architecture is given in next subsections.

Feature Aggregation Block

In this block, the features from each of the encoder levels are aggregated by processing

them through the multi scale spatial channel-wise attention (MsSCA) block. The output

of MsSCA is (refer FAB and MSSCA block in Figure 3.16 ):

OMsSCA = C3
1{[O3

SCA, O
5
SCA, O

7
SCA]} (3.20)
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where, C3
s is convolution with stride s and filter size 3×3, [.] is concatenation operation and

OkSCA is output of kth spatial channel-wise attention block. The MsSCA is proposed to

extract the features with different scales along with the spatial and channel-wise attention

(SCA) block. The SCA block provides the relative weight to spatial and channel-wise

(depth) feature maps. The output feature maps of the SCA block are the spatial-depth

weighted outcomes. This weighing of feature map or feature map calibration helps the

network to effectively correlate the spatial and channel information for inpainting the hole

regions. The output of SCA is:

OkSCA = σ(SAvg(f
k
in))� (fkin � σ(CAvg(f

k
in))) (3.21)

where, fkin is input to SCA block i.e., Ck1(Enl); k ∈ [3, 5, 7], Enl is lth encoder level

(l ∈ (1, 4)), σ is Sigmoid activation function, � represents the element-wise multiplication,

SAvg is spatial average pooling and CAvg is channel-wise average pooling. The SCA block

extracts the spatial and depth-relevant information from the input feature map. This helps

the network to learn the correlation of both spatial and depth features for the content to

be inpainted. Also, the MsSCA (Eq. (3.20)) process the information with different filter

size which in turn deals with the image having small to large hole size.

Feature Sharing Decoder

The output of feature aggregation block (FAB) is given as input to decoder feature sharing

(DFS). Two parallel paths are considered, one for extracting the information from different

receptive fields and the other to extract information from different scales of input feature

maps. The multi-receptive (Fmr) and multi-scale (Fms) blocks (refer MRB and MSB in

Figure 3.16 ) are explained in the Eq. (3.22) and (3.23), respectively.

Fmrl = C3
r1{⊗[C3

r1 ,C
3
r2 ,C

3
r3 ,C

3
r4 ]} (3.22)

where, Cmrn represents convolution with stride = 1, m × m filter size and rn for nth,

n ∈ (1, 4), dilation rate.

Fmsl = C3
1{⊗[C1

1,C3
1,C5

1,C7
1]} (3.23)

where, Cm1 represents convolution with stride and dilation rate = 1 with m×m filter size.

As shown in Figure 3.16, in each DFS block (DFSB), dual-path features are shared at each

level for extracting the relevant features. Three DFSB are used for three decoder levels

and at last level the outputs of both the streams are processed through MSB and MRB

respectively without feature sharing. These features are then concatenated to recover the

inpainted image.
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Refinement Network

The refinement architecture is used to enhance the edges of reconstructed image from

inpainting architecture. For this purpose, the edge extraction block (EEB) is defined

which extracts the edges from the input feature map (see EEB in Figure 3.16 ). In EEB,

the subtractive features from different receptive fields are extracted which are then utilized

in the refinement stage (see edge refinement stage (ERS) in Figure 3.16 ). The output

of each ERS is taken for the loss calculation while training the network, which helps the

network to improve the output at each stage. With such implementation, the final output

will be structurally as well as visually plausible. Both these architectures, in combination

give the refined inpainted image as output.

Table 3.13: Quantitative comparison of the proposed method (Ours) with SOTA methods
on CelebA-HQ dataset using NVIDIA [18] masks for image inpainting.

Mask Ratio Method PSNR ↑ SSIM ↑ L1 ↓ FID ↓ LPIPS ↓

0.1-0.2

PIC[11] 30.97 0.965 0.01110 5.420 0.062
GConv [12] 32.56 0.973 0.00880 5.563 0.061
EC [13] 32.48 0.975 0.00880 4.638 0.064
RFRNet [14] 33.56 0.981 0.00750 3.894 0.029
CTSDG [16] 32.11 0.971 0.00859 3.326 0.025
Ours 34.19 0.983 0.00620 3.095 0.029

0.3-0.4

PIC[11] 24.47 0.881 0.03140 25.971 0.172
GConv [12] 26.72 0.914 0.02450 12.429 0.152
EC [13] 26.62 0.915 0.02470 12.084 0.144
RFRNet [14] 27.76 0.934 0.02120 17.056 0.158
CTSDG [16] 26.71 0.929 0.02970 11.299 0.105
Ours 28.21 0.942 0.01800 11.130 0.110

0.5-0.6

PIC[11] 19.29 0.670 0.07490 44.555 0.397
GConv [12] 21.47 0.767 0.05610 34.980 0.358
EC [13] 21.49 0.759 0.05720 30.277 0.316
RFRNet [14] 21.80 0.819 0.04700 31.571 0.305
CTSDG [16] 21.52 0.825 0.05692 27.869 0.197
Ours 21.85 0.844 0.04390 21.640 0.144

3.3.2 Training of the Proposed Network

The proposed architecture is trained in two steps i.e, the inpainting network is trained first

for the image inpainting task with the corrupted image as input. Further, the refinement

network is trained with an inpainted image as input. The discriminator network is same

as that of [133]. Weight parameters of the network are updated on NVIDIA DGX station

having Tesla V100 1×16 GB GPU with the batch size of 1. The Adam optimizer [144]

with the learning rate of 2× 10−4, β1 = 0.5 and β2 = 0.99 are used.
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Table 3.14: Quantitative comparison of the proposed method (Ours) with SOTA methods
on Places2 dataset using NVIDIA [18] masks for image inpainting.

Mask Ratio Method PSNR ↑ SSIM ↑ L1 ↓ FID ↓ LPIPS ↓

0.1-0.2

PIC[11] 27.14 0.932 0.01610 9.588 0.182
GConv [12] 26.05 0.894 0.01680 9.867 0.172
EC [13] 27.17 0.933 0.01570 6.094 0.184
RFRNet [14] 27.75 0.939 0.01420 5.149 0.128
CTSDG [16] 29.69 0.957 0.00924 5.129 0.089
Ours 30.11 0.962 0.00910 3.095 0.082

0.3-0.4

PIC[11] 21.72 0.786 0.04410 34.240 0.236
GConv [12] 22.45 0.821 0.04215 21.453 0.225
EC [13] 22.18 0.802 0.04080 18.935 0.227
RFRNet [14] 22.63 0.819 0.03810 15.540 0.218
CTSDG [16] 23.50 0.826 0.02503 16.879 0.208
Ours 24.45 0.831 0.0245 14.530 0.198

0.5-0.6

PIC[11] 17.17 0.494 0.09440 68.730 0.418
GConv [12] 17.98 0.685 0.07421 50.450 0.412
EC [13] 18.35 0.553 0.08210 57.677 0.420
RFRNet [14] 18.92 0.596 0.07610 43.158 0.399
CTSDG [16] 18.05 0.749 0.06573 41.422 0.384
Ours 19.86 0.762 0.05510 35.190 0.326

Loss Function

While training, instead of calculating the loss on the overall image which will create the

disturbances in the hole and non-hole region, we have used a separate loss function for the

hole LHoles1 and non-hole LNonHoles1 . Along with the adversarial loss LGAN , perceptual

loss LPer, structural similarity index (SSIM) loss LSSIM and edge loss LEdge are used for

network optimization. So, overall loss for training the proposed network is given as:

LTotal = λHolesL
Holes
1 + λNonHolesL

NonHoles
1 +

λedgeLEdge + λPerLPer + λSSIMLSSIM + λGANLGAN
(3.24)

here, λloss are the weights assigned for the respective loss functions. The values of each

of the weights are λHoles = 3, λNonHoles = 1 , λEdge = 1 , λPer = 0.2 , λSSIM = 0.2 and

λGAN = 1. All these mentioned losses are considered for training of both, the inpainting

and refining network. For refinement architecture, a multi-stage loss is calculated at each

stage of output (Out1 G2, Out2 G2, Out3 G2) and sum of all stage losses (Loss1 G2 +

Loss2 G2 + Loss3 G2) is used for training the refinement network.

3.3.3 Experimental Analysis

In this section, the comparative analysis and ablation study are discussed in detail. For

training and testing of the proposed method, we have utilized publicly available NVIDIA

masks from [6]. For analysis, we have used 0.1− 0.2, 0.3− 0.4, and 0.5− 0.6 mask ratios
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Table 3.15: Quantitative comparison of the proposed method (Ours) with SOTA methods
on Paris Street View using NVIDIA [18] masks for image inpainting.

Mask Ratio Method PSNR ↑ SSIM ↑ L1 ↓ FID ↓ LPIPS ↓

0.1-0.2

PIC[11] 29.35 0.930 0.0140 21.300 0.053
GConv [12] 31.32 0.953 0.0120 19.992 0.047
EC [13] 31.19 0.950 0.0110 14.800 0.039
RFRNet [14] 31.71 0.954 0.0110 11.620 0.015
CTSDG [16] 32.50 0.949 0.0098 9.190 0.010
Ours 32.93 0.960 0.0069 7.455 0.012

0.3-0.4

PIC[11] 23.97 0.785 0.0379 61.277 0.155
GConv [12] 25.54 0.846 0.0309 93.584 0.125
EC [13] 26.04 0.846 0.0286 45.480 0.099
RFRNet [14] 26.44 0.862 0.0275 40.170 0.065
CTSDG [16] 27.02 0.858 0.0265 32.340 0.058
Ours 27.64 0.875 0.0196 31.880 0.057

0.5-0.6

PIC[11] 19.52 0.519 0.0799 86.624 0.396
GConv [12] 20.61 0.621 0.0660 80.465 0.326
EC [13] 21.89 0.646 0.0582 72.167 0.209
RFRNet [14] 22.40 0.681 0.0546 68.613 0.197
CTSDG [16] 22.11 0.748 0.0590 64.440 0.192
Ours 22.83 0.755 0.0466 62.530 0.184

same as that of [14].

Comparative Analysis

Comparison of the proposed method and existing methods is done on Places2, Celeb HQ

and Paris SV dataset images corrupted using NVIDIA’s mask dataset from [6]. Table 3.13,

3.15, 3.14 show the comparison in terms of PSNR, SSIM, Mean L1 error, FID and LPIPS.

The proposed method gives less mean L1 error on Places2, CelebA-HQ and Paris SV

datasets respectively as compared to exsting methods for image inpainting. Increase in

PSNR values indicate that the proposed method inpaints each pixel in hole region very

efficiently (with consistent information at holes) while keeping good structural information

(with good SSIM). From Table 3.13, 3.15, 3.14, it is clear that the proposed method

outperforms all the existing SOTA methods. Qualitative comparison of the proposed

method with the existing methods is given in Figure 3.17.

From both the quantitative and qualitative comparison with existing methods, it is clear

that the proposed method gives improvement for lower to higher mask ratios. Also, it is

worth to note that complexity (in terms of number of trainable parameters) of the proposed

architecture is less (2.5M ) as compared to the existing methods (3.64 M [11], 4.05M

[12], 53M [13], 52.14M [16] , 31M [14]). Specifically, the proposed method outperforms

the existing methods with a comparatively less number of parameters.
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Figure 3.17: Qualitative comparison of the proposed method (Ours) with existing methods
(PIC [11], GConv [12], Edge-Connect [13], RFRNet [14]) for NVIDIA [18] mask (Row 1
-Places2, row 2 -Paris SV, row 3 -CelebA HQ).

Table 3.16: Effect of the proposed refinement architecture for image inpainting using
Paris SV dataset.

Mask Ratio → 0.1-0.2 0.3-0.4 0.5-0.6

Refinement Stage PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

× × 30.26 0.931 26.52 0.860 20.68 0.622
X 1 31.43 0.944 26.64 0.866 21.95 0.693
X 2 31.89 0.956 26.95 0.871 22.12 0.704
X 3 32.93 0.960 27.64 0.875 22.83 0.755
X 4 31.87 0.949 27.04 0.862 22.04 0.694

Table 3.17: Ablation study on feature aggregation block (FAB), multi receptive block
(MRB) and multi scale block (MSB) on Paris SV dataset (Note: ‡ and ] indicate without
and with decoder feature sharing respectively)

Mask Ratio → 0.1-0.2 0.3-0.4 0.5-0.6

FAB MRB MSB PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

× × × 30.12 0.906 25.73 0.858 20.15 0.640
× X X 31.26 0.921 26.13 0.849 21.28 0.701
X × X 30.98 0.954 25.85 0.862 20.65 0.695
X X × 30.92 0.920 25.97 0.860 20.83 0.692
X X‡ X‡ 31.97 0.956 26.28 0.869 21.89 0.709
X X] X] 32.93 0.960 27.64 0.875 22.83 0.755

Ablation Study

To determine How the refinement architecture contributes to the efficient image

inpainting? The experiment is performed without refinement network i.e., inpainting

network only (row 1 of Table 3.16) and with refinement at different stage output (rows 2

to 5 of Table 3.16). From Table 3.16, it can be observed that the refinement architecture

with output at stage 3 gives an effective performance. If the number of the output stages

is increased further, there is not much improvement in the output. Table 3.16 shows

the effectiveness of the proposed refinement architecture for image inpainting. Also, it

represents that, the three-stage refinement architecture performs better in terms of PSNR
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and SSIM.

In the proposed method, we have incorporated different blocks to address various issues

in image inpainting. Here, the intuition behind proposing these blocks is explained i.e.,

How do the feature aggregation block, multi receptive block, multi-scale block,

and decoder feature sharing approach help overall architecture for image

inpainting? To scrutinize this, experiments are performed with (X) and without (×)

respective blocks on Paris SV dataset. Table 3.17 shows various experiments done for

analysing the effect of the above-mentioned blocks as well as the effect of DFS in terms of

PSNR and SSIM. From Table 3.17, it is clear that the proposed FAB, MRB, MSB, and

DFS are effective for accurate image inpainting.

Figure 3.18: Comparison of the proposed methods (I:A-Section 3.1, I:B-Section 3.2,
I:C-3.3) with existing methods. Left: in terms of the number of trainable parameters
(x-axis), number of operations (GMAC) (y-axis), and run-time complexity in seconds per
image (bubble size), Right: in terms of average PSNR on CelebA-HQ dataset.

3.4 Summary of Proposed Contribution

In this chapter, we proposed three different solutions with coarse-to-fine architectures

for image inpainting. In first solution (Section 3.1), a novel spatial projection layer is

proposed to inpaint the images with spatial consistencies. Also, a Canny edge detection

based edge loss is proposed in order to generate detailed edges in the inpainted images.

The qualitative and quantitative comparison of proposed solution is done with existing

methods on three benchmark datasets corrupted using NVIDIA masks [6].

In second solution (Section 3.2), we proposed a nested deformable mutli-head attention

layer (NDMAL) to effectively fuse the encoder and decoder features. This NDMAL allows

the network to effectively capture the long-term dependencies and focus on valid features

from different receptive fields. The qualitative and quantitative comparison is carried out

on existing methods on two benchmark datasets corrupted using NVIDIA masks [6]. Also,

the comparative analysis is done on corrupted images with unseen masks [7].

Third solution (Section 3.3) proposes a novel feature aggregation and sharing followed by
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refinement architecture for image inpainting. In this, a multi-scale spatial channel-wise

feature aggregation mechanism is proposed along with multi-scale and multi-receptive

decoder feature sharing. Also, a edge refinement stage is proposed for finer edge generation

in the inpainted images. The qualitative and quantittive comparison is carried out on

existing methods on two benchmark datasets corrupted using NVIDIA masks [6].

The comparison of computational complexity and performance in terms of PSNR for

proposed solutions and existing methods is shown in Figure 3.18.
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Chapter 4

Single-stage Architectures

The inpainting results with coarse-to-fine architectures generally have a dependency of fine

stage on coarse stage outputs. Also, most of the time, these coarse to fine architectures

posses high computational complexity. There exist the single-stage architectures for image

inpainting [73, 14, 102, 103] with blurry or inconsistent results. Also, these architectures

have comparatively high computational complexity even-though they utilize single-stage

architectures for image inpainting. With this motivation, we proposed three different

solutions with single-stage architectures with relatively less computational complexity and

efficient inpainting results. The proposed three solutions are:

1. Image inpainting via correlated multi-resolution feature projection.

2. Diverse receptive field based adversarial concurrent encoder network for image

inpainting.

3. Pseudo decoder guided light-weight architecture for image inpainting.

4.1 Image Inpainting via Correlated Multi-resolution

Feature Projection

Existing image inpainting architectures give notable results with deeper networks and have

more computational complexity in terms of number of trainable parameters or run-time

whereas the architectures with shallow networks lack in the reliability of outcomes. To

inpaint an image efficiently with random hole size, we have proposed a single stage

architecture with moderate complexity and remarkable outcomes. Here, we process

the multi-resolution inputs to extract the information from various resolutions. These

multi-resolution features are then processed through a multi-kernel non-local attention.

This helps to correlate the multi-resolution features efficiently. Also, a proposed feature

projection block pave a way to project correlated features from the multi-resolution inputs

to decoder for effective reconstruction. Also, a valid feature fusion block is introduced to

avail valid locations of encoder features for faithful reconstruction. The main contributions

of the proposed work are:

• A novel single stage architecture with multi-resolution input is proposed for image

inpainting.
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• A multi-kernel non-local attention block is proposed to merge the encoder features

from each resolution.

• To project the multi resolution processed features, a feature projection block is

proposed for effective reconstruction.

• Further, a valid feature fusion block is proposed to merge the relevant features from

the encoder to decoder.

Comparison of the proposed method is done qualitatively and quantitatively on two

benchmark datasets: CelebA-HQ [36], [1] and Places2 [3] with existing state-of-the-art

methods for image inpainting and detailed ablation study with state-of-the-art modules

(non-local attention and squeeze-excitation block). Also, the comparative analysis for

object removal task is discussed.

Figure 4.1: Comparison of proposed method (Ours) with existing methods (GMCNN [9],
SN [10], PIC [11], GConv [12], EC [13], RFR [14], HR [8], CTSDG [16]) in terms of number
of trainable parameters (y-axis), run time complexity and PSNR (x-axis) on CelebA-HQ
dataset. The size of bubble indicates the run time complexity in image/second which is
also written with bubble for respective method.

4.1.1 Proposed Framework

Designing very deep networks in deep learning approaches provide admirable inpainting

results with a compromise of computational complexity (in terms of number of parameters

or average run-time to process one image in terms of image/second). Whereas, the shallow

networks with less computational complexity generate unpleasant results. So, we aim

to propose an intermediate solution to this issue by designing a novel architecture with

moderate complexity and excellent outcomes (see Figure 4.1). Processing multi-resolution
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Figure 4.2: Proposed generator architecture for image inpainting.

input allows the exploitation of the features across each resolution in turn reducing

the dominance of holes in the corrupted image. The proposed architecture for image

inpainting basically depends on multi-resolution inputs. The encoder is designed to

process the multiple inputs of different resolutions called as multi resolution encoder. All

feature maps from the three resolutions are then merged to form effective feature maps

for image inpainting. The fused feature maps are then processed through multi-kernel

non-local attention block. This helps the network to attend the effective local and global

information generation. Further, these fused features are then projected at the respective

reconstruction decoder to help for better convergence. The encoder features of original

resolution input are merged with the reconstruction decoder through skip connection via

proposed valid feature fusion block. This merges the valid features from the encoder at the

valid locations and decoder features at hole locations while reconstruction. Along with

this, a multi-scale loss is also considered for training the network for efficient learning.

Figure 4.2 shows the schematic of proposed generator architecture for image inpainting.

The detail exposition of each of the proposed blocks is given below:

Multi Resolution Encoder

The proposed architecture processes the corrupted input image (Ic) with three different

resolutions. Three inputs to the network are: Ic, Ic ↓ 2 and Ic ↓ 4 respectively. Where,

↓ s indicates image down-sampled by factor s with bicubic interpolation. The input image

in each resolution(ρ) is first processed through a Convolution → ReLu → Convolution
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Figure 4.3: Proposed multi-kernel non-local attention block.

→ ReLu with stride = 1 layer to convert into low level feature maps. These feature maps

are then processed through the encoder level i.e., Convolution → ReLu → Convolution

→ ReLu with stride = 2. The number of encoder levels for each resolution input are given

as: Eρl where l ∈ (1, 5 − ρ) and ρ = 1, 2, 3. So, the input at first resolution ρ = 1 has

four encoder levels (Eρl ; l ∈ (1, 4) and ρ = 1). The respective encoder features of each

resolution are then concatenated and forwarded to multi-kernel non-local attention block.

Multi Kernel Non-local Attention

To perceive the contextual information from all the pixels in input, we have proposed

a multi kernel non-local (MKNL) attention for image inpainting task. The existing

channel-wise and spatial features do not consider the uneven distribution of the

information in the input corrupted images [19]. The non-local attention [19] helps to

capture the long-range dependencies among the features and also pays attention to the

difficult parts in a feature map. The existing method depending on graph convolutions

[8] lacks in extracting the contextual information from all the features in a feature map.

Whereas, our proposed MKNL attention helps to perceive the information from all the

features in input feature maps. So, overall the proposed MKNL helps the network:

• To focus mainly on the valid informative regions in the input feature

maps.

• To capture the global as well as local correlations among the features.

Let, fin ε Rm×n×c be the input feature maps to the MKNL block. Where, m,n is

the spatial dimension and c is number of channels. At first, the proposed MKNL
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attention takes the input features and maps them into multi-kernel feature space. For

this, they are processed with the multi kernel convolutions i.e., θk, k ∈ (1, 3, 5). The

proposed MKNL differs from existing non-local attentions [147, 148, 149] used for image

super-resolution task. Where, the input features are mapped by processing with the same

kernel convolutions (generally 1×1 kernel size). Here, the proposed multi-kernel delve into

different receptive fields of the input feature maps. This helps to capture the long-term

dependencies from the input feature maps. So, the mapped input with multi kernels is

given as:

k = θ1(fin); q = θ3(fin); v = θ5(fin) (4.1)

where, fin is the input feature map, θm is convolution with kernel size = m × m.

Further, we collapse the spatial dimension of multi-kernel responses into a single dimension

which yield a size of mn × c. The correlation between k and q is then passed through a

Sigmoid layer to form a weighted feature attention (Wa):

Wa = σ(k.qT ) (4.2)

Also, to capture more long-term dependencies, the weighted feature attention Wa is

multiplied with v and a residual connection from input is added to the response. So,

the final outcome of the MKNL is given as:

Z = θ1(Wa � k) + fin (4.3)

where, � is element-wise multiplication. This MKNL is applied on the concatenated

encoder feature maps from different resolutions (see Figure. 4.2 and 4.3 ).

The merged features of all the input resolutions are then forwarded to the feature

projection (FP) block. The FP block, is proposed to project the merged features to the

decoder in order to help for reconstructing inpainting image efficiently. These projected

features are the accumulation of multi-scale and multi-resolution feature maps. This helps

the network towards filling the holes with variable size. The effect of proposed multi-kernel

non-local attention is analysed in Section 4.1.3.

Feature Projection Block

Let, X ∈ Rm×n×c is the input feature map to the FP block. The channels of the input

feature maps are first collapsed as given in Eq. 4.4 with the spatial output of size m× n.

Favg = avgc(Xm,n,c) (4.4)

where, avgc is the channel-wise average pooling. This average information is then

normalized with the layer normalization. This converts all the averaged features in
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Figure 4.4: Proposed feature projection block.

the particular range. The normalized features are then mapped linearly to preserve the

structure of averaged features. So, the output features after normalization and mapping

are:

Fmap = w(`(Favg)) + b (4.5)

where, ` is layer normalization, w is weight and b is bias to linearly map the averaged

feature map Favg. Further, the activated features with GeLu Activation are split in two

parts with size m× n
2 . One part is normalized and linearly mapped with linear projection.

These mapped features are added to the another part with size m × n
2 . Since we are

extracting the spatially weighted feature maps (unlike channel-wise gated convolution),

this overall process is called as spatial gating mechanism. The gating mechanism assign

the linearly mapped weight to Fmap in turn generating linearly mapped features to be

projected to decoder for reconstruction. This feature projection of information helps

the network to extract the relevant information from the non-hole feature space to fill

the hole region effectively. The effectiveness of proposed feature projection is analysed in

Section 4.1.3

Fused Feature Decoder

Generally, the decoder is designed such that it takes an input from previous level and

encoder features as skip connections to reconstruct the desired output. In our proposed

architecture, we improve the decoder reconstruction by providing the feature projection

from multi-resolution fused features processed with MKNL and FP. Also, similar to general

decoder architectures, we also provide a skip connection. But, here instead of directly

providing the skip connection we propose to utilize the valid features from the encoder

and forward them with the respective decoder layer outcome. This is achieved by the

valid feature fusion block in the proposed architecture (see Figure 4.2 ). The features

from encoder of original resolution (E1
4) are given to the decoder for reconstruction. To

effectively extract the features and to avoid the problem of vanishing gradients, these

features are processed through two successive residual blocks. The residual block is

represented in Figure 4.5, where each layer is a convolution layer. The outcome of
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Figure 4.5: Residual block.

residual layers is then merged with the features from FP block. This makes sure that all

the features from all resolutions are projected to the decoder layer helping the network to

reproduce the output efficiently. The merged residual and FP block features are then fed

to deconvolution block.

The features from each encoder of original resolution (ρ = 1) are taken as skip connections

for respective decoder layer. Unlike existing phenomenon of utilizing the skip features as

it is, we have proposed a valid feature fusion (VFF) block. In VFF block, the skip

features from each encoder layer and the previous level decoder features are merged with

the knowledge of hole locations with mask M as input (similar to existing approaches

[10, 9, 11, 12, 13, 8, 16] we utilize mask as input). The output of VFF block as:

V FFout = (Dl ∗M↓2l−1) + (SE1
l ∗ (1−M↓

2l−1)) (4.6)

where, SE1
l are the skip connection from encoder layer l of resolution ρ = 1, M↓

2l−1 is the

mask down-sampled by 2l−1 indicating hole locations = 1 and valid locations = 0, and

Dl is the lth decoder layer (l ∈ (1, 4)) (see Figure 4.2 ). The effectiveness of VFF block is

analysed in Section 4.1.3 .

The output from each of the decoder layer is extracted by adding a Deconvolution→
Tanh Activation layer. This output from each decoder scale is further utilized for loss

calculation called as multi-scale loss while training the network. The output of last decoder

layer is considered as the final inpainted output.

4.1.2 Training of the Proposed Network

The proposed architecture is trained with the corrupted image and its mask as input and

generates inpainted image as output. The discriminator network is same as that of [133].

While training, the image values are linearly scaled between the range [0 : 1]. Weight

parameters of the network are updated on NVIDIA DGX station having Tesla V100 1×16

GB GPU with the batch size of 1. The ADAM optimizer [144] with the learning rate of

2× 10−4, β1 = 0.5 and β2 = 0.99 is used.
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Table 4.1: Quantitative comparison of the proposed method (Ours) with state-of-the-art
methods on NVIDIA [18] masks for image inpainting on CelebA-HQ dataset.

Mask Ratio Method Publication PSNR↑ SSIM↑ L1 ↓ LPIPS↓ FID↓

0.01-0.2

SN [10] ECCV-18 30.84 0.961 2.827 0.0601 4.134
GMCNN [9] NIPS-18 30.54 0.957 2.867 0.0572 7.537
PIC [11] CVPR-19 32.08 0.967 2.689 0.0382 4.042
Gconv [12] ICCV-19 32.06 0.960 2.681 0.0384 4.309
EC [13] CVPRW-19 32.04 0.973 3.108 0.0387 4.042
RFR [14] CVPR-20 33.45 0.973 1.824 0.0453 2.516
HR [8] WACV-21 33.28 0.976 1.925 0.0418 2.257
CTSDG [16] ICCV-21 33.57 0.979 1.329 0.0280 2.105
Ours - 34.33 0.985 0.950 0.0220 1.851

0.2-0.4

SN [10] ECCV-18 25.77 0.896 4.246 0.2091 10.643
GMCNN [9] NIPS-18 24.49 0.894 4.120 0.1711 28.170
PIC [11] CVPR-19 25.30 0.891 3.691 0.1772 14.376
Gconv [12] ICCV-19 25.48 0.904 4.147 0.1668 11.010
EC [13] CVPRW-19 26.30 0.901 3.194 0.1630 7.338
RFR [14] CVPR-20 26.44 0.917 3.022 0.1414 11.767
HR [8] WACV-21 26.76 0.935 3.213 0.1341 10.330
CTSDG [16] ICCV-21 27.02 0.936 2.466 0.1020 7.516
Ours - 27.33 0.940 2.219 0.0648 7.135

0.4-0.6

SN [10] ECCV-18 18.65 0.657 8.852 0.3690 61.160
GMCNN [9] NIPS-18 18.74 0.744 6.747 0.4060 50.981
PIC [11] CVPR-19 19.01 0.679 7.011 0.3451 49.120
Gconv [12] ICCV-19 19.70 0.860 5.695 0.3017 34.940
EC [13] CVPRW-19 21.33 0.809 5.828 0.2755 33.011
RFR [14] CVPR-20 21.23 0.755 6.354 0.2551 30.650
HR [8] WACV-21 22.04 0.831 5.345 0.2429 28.498
CTSDG [16] ICCV-21 22.24 0.845 4.451 0.1910 14.371
Ours - 23.09 0.901 4.302 0.1675 11.851

The overall loss for training the network is given as:

LTotal = λHolesL
Holes
1 + λNonHolesL

Non−holes
1 +

λedgeLedge + λPLP + λSSIMLSSIM + λGANLGAN
(4.7)

here, λloss are the weights assigned for the respective loss functions. The values of each

of the weights are λHoles = 3, λNonHoles = 1 , λedge = 1 , λP = 0.2 , λSSIM = 0.2 and

λGAN = 0.1. All these mentioned losses are considered for each scale of decoder output.

So, the total loss is sum of all scale losses.

4.1.3 Experimental Analysis

In this section, the experiments are discussed in detail for image inpainting. The training

and testing of the proposed method is done with the images corrupted using NVIDIA [6]



Chapter 4. Single-stage Architectures 63

Figure 4.6: Qualitative comparison of the proposed method (Ours) with existing methods
(GMCNN [9], SN [10], PIC [11], GConv [12], EC [13], RFR [14], HR [8], CTSDG [16]) on
CelebA HQ dataset for NVIDIA [18] mask.

Figure 4.7: Qualitative comparison of the proposed method (Ours) with existing methods
(GMCNN [9], SN [10], PIC [11], GConv [12], EC [13], RFR [14], HR [8], CTSDG [16]) on
Places2 dataset for NVIDIA [18] mask.

mask dataset.
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Table 4.2: Quantitative comparison of the proposed method (Ours) with state-of-the-art
methods on NVIDIA [18] masks for image inpainting on Places2 dataset.

Mask Ratio Method Publication PSNR SSIM L1 LPIPS FID

0.01-0.2

SN [10] ECCV-18 27.88 0.876 3.371 0.1340 10.763
GMCNN [9] NIPS-18 28.22 0.894 3.637 0.1125 10.543
PIC [11] CVPR-19 29.52 0.917 2.796 0.1362 8.447
Gconv [12] ICCV-19 29.50 0.921 2.698 0.1269 7.718
EC [13] CVPRW-19 29.69 0.915 2.585 0.1322 7.499
RFR [14] CVPR-20 30.64 0.928 1.181 0.1020 6.104
HR [8] WACV-21 30.12 0.936 1.661 0.0975 6.148
CTSDG [16] ICCV-21 30.86 0.953 1.490 0.0660 4.459
Ours - 31.28 0.964 1.170 0.0622 3.968

0.2-0.4

SN [10] ECCV-18 22.67 0.816 5.173 0.2394 29.126
GMCNN [9] NIPS-18 22.82 0.858 5.532 0.2232 27.398
PIC [11] CVPR-19 23.46 0.842 4.410 0.2180 25.799
Gconv [12] ICCV-19 23.30 0.872 4.393 0.2050 22.007
EC [13] CVPRW-19 23.70 0.877 4.081 0.2027 21.018
RFR [14] CVPR-20 24.22 0.850 3.828 0.1935 20.218
HR [8] WACV-21 24.18 0.856 3.638 0.1837 19.326
CTSDG [16] ICCV-21 25.10 0.877 3.327 0.1833 18.427
Ours - 25.38 0.888 3.172 0.1739 17.254

0.4-0.6

SN [10] ECCV-18 18.19 0.621 9.330 0.4468 74.150
GMCNN [9] NIPS-18 18.19 0.660 7.499 0.3997 73.696
PIC [11] CVPR-19 18.82 0.692 7.111 0.3713 73.408
Gconv [12] ICCV-19 19.48 0.724 6.657 0.3567 68.005
EC [13] CVPRW-19 19.52 0.719 6.361 0.3598 54.341
RFR [14] CVPR-20 20.76 0.726 6.486 0.3426 49.204
HR [8] WACV-21 20.83 0.745 5.999 0.3351 55.461
CTSDG [16] ICCV-21 21.03 0.770 5.763 0.3285 40.266
Ours - 21.89 0.776 5.427 0.3117 37.887

Baseline

The qualitative and quantitative analysis of the proposed method is done with

existing state-of-the-art methods for image inpainting: multi-column image inpainting

(GMCNN) [9], Shift-Net (SN) [10], pluralistic image inpainting (PIC) [11], gated

convolutions (GConv) [12], EdgeConnect (EC) [13], recurrent feature reasoning (RFR)

[14], hyper-realistic image inpainting with hyper-graphs (HR) [8] and CTSDG [16]. For

quantitative analysis, the PSNR, SSIM, Mean L1 error, FID and LPIPS metrics are used.

Result Analysis

The comparison with existing state of the art methods is carried out qualitatively and

quantitatively (The results of existing methods are calculated from the publicly available

source codes provided by respective authors).
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Figure 4.8: Visual comparison of the proposed method (Ours) with existing methods
(GMCNN [9], SN [10], PIC [11], GConv [12], EC [13], RFR [14], HR [8], CTSDG [16]) for
object removal task (First three rows- DAVIS-2017 dataset, last three rows- CelebA-HQ
dataset).

Quantitative Comparison: The quantitative evaluation for both the CelebA-HQ and

Places2 dataset in terms of PSNR, SSIM, L1, FID and LPIPS is given in Table 4.1 and

4.2 respectively. The existing works generally use the prior information such as structural

prior, edge prior, recurrent approach or two stage architectures, etc. These architectures

lack in extracting the features from inputs with different resolutions, whereas our proposed

method does so. This multi-resolution allows the network to delve into the features in

detail. Also, the proposed MKNL alleviate the correlation of features from different

resolutions. The existing three best methods with best results have 31M , 30M and

52M number of trainable parameters. Whereas, our proposed method has 14M trainable

parameters. The proposed method gives an average 0.64 dB and 0.52 dB increase in

PSNR, 0.02 and 0.01 increase in SSIM for CelebA-HQ and Places2 datasets, respectively.

With this improvement, further there is a noticeable decrease in the values of average L1

error, LPIPS and FID for both the datasets for image inpainting.

Qualitative Comparison: The qualitative comparison of the proposed method with the

existing methods is given in Figure 4.6 and 4.7 for Celeb HQ and Places2 dataset

respectively. For verifying the effectiveness of inpainting methods qualitatively, we have

provided the visual results for 0.4 − 0.6 mask ratio. From Figure 4.6, it is clear that

our proposed method neither creates any discontinuity at hole region and valid region

boundary nor or generates asymmetric results. Also, the Figure 4.7 is evidence of
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structurally pleasant results of proposed method as compared to existing methods for

image inpainting.

From both the quantitative and qualitative comparison with state-of-the-art methods, it

is clear that the proposed method gives improvement for all lower to higher mask ratios.

Image inpainting for Object Removal

One of the widely used applications of the image inpainting is object removal. To verify the

effectiveness of proposed method for object removal application, we have compared with

existing methods for image inpainting. For this experiment we have considered an object

segmentation dataset DAVIS-2017 [150]. Also, the analysis is carried out on CelebA-HQ

dataset with the object masks of DAVIS-2017 dataset. Figure 4.8 depicts the object

removal results. The methods GMCNN [9], SN [10], GConv [12] and HR [8] are unable to

remove the object effectively. Methods PIC [11], EC [13], RFR [14] have some distortions.

The proposed method gives flawless results as compared to existing methods.

Ablation Study

To determine Whether the multi-resolution inputs contribute to remarkable

results?, an ablation study is done and its analysis is given in Table 4.3 and Figure

4.9. Table 4.3 shows that there is improvement in average PSNR and SSIM if image with

three different resolutions provided as input to the network. Also, it is clearly seen that

the proposed method with ρ = 1, 2, 3 generate effective inpainted output as compared to

input with two resolutions (ρ = 1, 2) or one resolution (ρ = 1) only. Further increase in

multi resolution inputs degrade the performance (see last row of Table 4.3 ). This also

verifies that the optimized multi resolution analysis of input helps the network to extract

more relevant information.

Table 4.3: Ablation study of the proposed method on CelebA-HQ dataset on 0.01 − 0.6
mask ratio.

Parameters
(Millions)

Input
resolutions

MKNL FP VFF PSNR SSIM

13.42 1 X X X 26.46 0.85
13.96 2 X X X 27.01 0.89
15.04 3 X X × 28.04 0.92
13.93 3 X × X 27.86 0.91
13.44 3 × X X 27.52 0.90
14.04 3 X X X 28.25 0.94
14.59 4 X X X 27.25 0.92

The another study is carried out to verify the effectiveness of proposed MKNL

block. The quantitative evaluation for the same is tabulated in Table 4.3 and visualized
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Figure 4.9: Analysis on effect of multi-resolution inputs on CelebA-HQ dataset (ρ = 1
means only actual resolution image as input, ρ = 1, 2 means two inputs i.e., actual image
and image down-sampled by 2).

Figure 4.10: Analysis on effect of the proposed multi-kernel non-local attention block on
CelebA-HQ dataset (w/o MKNL- without proposed MKNL block, NL - existing non-local
attention [19] instead of proposed MKNL).

in Figure 4.10. In Figure 4.10, we can see that the outcomes without proposed MKNL

(w/o MKNL) generated uncorrelated results (see bounding boxes). We also verified the

inclusion of existing non-local attention [19] instead of MKNL in the proposed

architecture. The difference between the existing non-local attention (NL) [19] and MKNL

is that, the MKNL extracts the features of input with multiple kernels. This allows to

consider the multi-scale long-range dependencies from the input feature maps. This can

be easily proved from Figure 4.10, where the results of NL still have uncorrelated outcomes

as compared to results of MKNL.

The valid feature fusion in the proposed architecture is utilized to extract the knowledge

of hole locations while extracting the valid encoder features through skip connections

and adding them with the decoder features at hole locations. This in turn helps the

reconstruction of inpainted image. We carried out an experiment of whether the

VFF instead of simple Concatenation → Convolution of skip connection from

encoder helps the architecture for effective reconstruction? Table 4.3 shows that,



68 Chapter 4. Single-stage Architectures

Figure 4.11: Analysis on effect of valid feature fusion on CelebA-HQ dataset (w/o VFF-
without proposed VFF i.e., only concatenation → convolution of features).

without VFF the results of proposed method decreases with the increase in number of

trainable parameters. Also, Figure 4.11, shows that the output of proposed method with

just simple Concatenation → Convolution generate unnatural and ghosting results at

hole locations. Whereas, a simple VFF can generate faithful results at the hole locations.

To effectively utilize the multi-resolution features, we proposed a feature projection block

(FP) which projects the weighted features from multi-resolution input to each decoder

level for efficient reconstruction. To verify the effectiveness of FP, we carried out

an experiment, where the multi-resolution features are directly forwarded to each decoder

level by only up-sampling them for each level i.e., w/o FP means direct concatenation of

features from multi-resolution inputs. Table 4.3 shows that the removal of FP block affects

on the performance of proposed architecture. The visual results (Figure 4.12) also shows

that without feature projection there is asymmetry in the inpainted results. An additional

experiment is performed by replacing the proposed FP with existing squeeze and

excitation module [20]. In Figure 4.12, we can observe that the squeeze excitation block

works well when considered to direct feature concatenation but does not provide spatial

consistency as compared to FP. Training of the network with effective loss functions plays

Table 4.4: Analysis on the effect of losses on CelebA-HQ dataset with average PSNR and
SSIM on 0.01− 0.6 mask ratio.

Total Loss PSNR SSIM

L1+LGAN 26.94 0.87
L1+LGAN+LEdge 27.25 0.90
L1+LGAN+LEdge+LPer 27.98 0.91
L1+LGAN+LEdge+LPer+LSSIM 28.25 0.94

a vital role towards appropriate outcomes. To determine the effectiveness of utilized
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Figure 4.12: Analysis on effect of feature projection on CelebA-HQ dataset (w/o FP-
without proposed FP, Squeeze Excitation - existing squeeze excitation [20] instead of
proposed FP).

losses, the experimental analysis with different loss functions is carried out.

Table 4.4 enlist the combinations of losses used while training the proposed network. From

Table 4.4, it is clear that, utilizing the combination of L1, LGAN , LEdge, LPer and LSSIM

helps the proposed network for efficient learning for image inpainting.
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4.2 Diverse Receptive Field based Adversarial Concurrent

Encoder Network for Image Inpainting

Use of the normal encoder-decoder architecture may result in unambiguous results as

the correlation between the pixel values in the non-hole region reduces when the size of

the region to be filled increases [96], [12]. For this, the progressive fashion-based image

inpainting method is proposed in [151] which is computationally expensive. To overcome

this limitation of progressive approach, in [14] the authors proposed a recurrent feature

reasoning for image inpainting. This recurrent approach may fail if the inference at the

first iteration does not produce the effective boundary related feature space, which will be

gathered in successive inferences to inpaint the hole regions. To overcome these limitations,

focusing on the diverse receptive fields for hole region with respect to non-hole region

may help to reproduce a semantically plausible inpainted image. The progressive and

recurrent approaches give superior results for inpainting by ignoring an important aspect

of computational complexity. The concurrent encoder feature learning may be effective

as the feature learning will be independent of each other with an advantage of lower

computational complexity unlike in recurrent or progressive approaches. Thus, we have

proposed a lightweight concurrent encoder approach consisting of residual diverse receptive

fields for image inpainting. The number of parameters in our model is far lower (4.8M)

compared to those in the current methods for e.g. [69] uses 100M+ parameters, [18] uses

33M parameters, and [14] uses 31M parameters. The major contributions of this work

are:

• A novel lightweight adversarial framework is proposed with concurrent encoders by

integrating diverse receptive fields for image inpainting.

• Concurrent processing of multi-level encoder features with an advantage of lower

computational complexity.

• Design of residual diverse receptive module to effectively correlate the hole and

non-hole regions in an image.

The quantitative and qualitative results’ comparison with state-of-the-art approaches is

carried on Places2 [3] and Paris Street View (Paris SV) [4] datasets for image inpainting.

4.2.1 Proposed Framework

The available approaches for image inpainting generally follow a coarse-to-fine [69]

architecture or progressive fashion [151] or a recurrent architecture [14]. In these

types of architectures, if the initial inpainting stage gives irrelevant generated content,

those content will be carry forwarded for further inpainting tasks. This may create an
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Figure 4.13: Architectural details of the proposed framework for image inpainting.

unambiguous content generation which in turn results in semantically irrelevant inpainted

patches in the output image. In [152], the authors proposed a multi-scale network

that works as coarse-to-fine and fine-to-coarse architecture to maximize the information

flow for image de-blurring. To overcome limitations of existing inpainting methods and

motivated by [152], we have proposed a lightweight concurrent encoder architecture for

image inpainting based on GANs as shown in Figure 4.13. The generator architecture

consisting of a concurrent encoder features processing approach with residual diverse

receptive block (RDRB) and the conditioned discriminator (with input-generation and

input-ground-truth pair) architecture are shown in Figure 4.13. The concurrent paths are

designed to maximize the information to be provided to the decoder. Also, each of the

concurrent paths comprises the residual diverse receptive blocks to educe information from

various receptive fields.

The input image to be inpainted is first processed through a single convolution block with

filter size 3×3 with stride 1. The feature maps are then down-sampled by average pooling

operation with a stride factor of s = 2P−1, P ∈ [1, 4] and given to each path (P ). These

feature maps are then processed through four concurrent paths (P ∈ [1, 4]). The number

of RDRB blocks in each path are given as: RDRBf×i
i , i ∈ (1, N−P ) where N = 5, f × i is

number of output feature maps with f = 32. As previously described, the RDRB focuses

on diverse receptive fields in each path to extract feature context from different receptive

fields in each path. The feature maps from all the concurrent paths are then concatenated

and passed through the Convolution → ReLu in order to accumulate relevant features

from all the concurrent paths. These concatenated feature maps are fed to the decoder

part for the reconstruction of input. The decoder is defined as Dconv
f×(N−l)
l , l ∈ (1, 4)

with stride factor of 2. A brief explanation and significance of concurrent multi encoder
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path processing and RDRB in the proposed architecture are as follows:

Concurrent Multi-encoder Processing

To overcome limitations of existing approaches, we have proposed a concurrent architecture

as shown in Figure 4.13. Here, the feature maps, after convolution with stride 1, are

processed through four paths. The feature maps from the first convolution layer are

downscaled by the average pooling S ∈ (1, 2, 3, 4) with kernel size S × S as shown in

Figure 4.13. The concurrent processing of those feature maps is done via four paths. In

each path, these feature maps are processed through a number of RDRB blocks to get

efficient features by focusing on diverse receptive fields for correlating the non-hole and

hole region. Each of the paths processes different feature maps concurrently, because of

which the proposed architecture comes up with a lower number of trainable parameters.

Residual Diverse-Receptive Block

For the image inpainting, the input may have missing regions with different size and shape.

A single fixed receptive field may fail at filling the regions with varying size and shape.

In order to mitigate this issue, it is desired that the network should learn the different

receptive fields features. To focus on the diverse receptive fields for the region to be

inpainted, we have proposed RDRB consisting of a diverse receptive block (DRB). The

DRB generates the output feature map OutDRB as:

OutDRB = ϕ (OutDC123 ⊗OutDC23)

OutDC123 = ϕ (ϕ (OutDC23 ⊗DC1)⊗DC1)

OutDC23 = ϕ (ϕ (DC3 ⊗DC2)⊗DC2)

(4.8)

where, DCr is the dilated convolution with dilation rate (r), ⊗ , ϕ indicates concatenation

and Convolution→Relu respectively. In DRB, the features are concatenated from

different receptive fields which extract the efficient features from the required receptive

field. This will help the inpainting architecture to fill the image with diverse hole regions

effectively. Also, we have defined the RDRB to avoid the vanishing gradients problem and

is given in Eq. (4.9)

RDRBout =
((
Conv3×3s=1 → DRB

)
⊗ Fin

)
→ Conv1×1s=1 → Conv3×3s=2 (4.9)

where, Fin is input feature map and Convm×ms is convolution with stride s and filter size

m×m followed by Relu activation. The concurrent multi encoder processing with RDRB

blocks pave a way to efficient image inpainting.
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4.2.2 Training of the Proposed Network

The proposed method makes use of an adversarial training procedure because image

inpainting is a similar task like image-to-image translation [133] where the goal is to fill

the corrupted region with structurally plausible content. The training and testing of the

proposed architecture is done on two datasets: Places2 [3] and Paris SV [4]. The masks

from [18] are used for the training and testing of the proposed architecture for image

inpainting.

The overall loss for training of the network Ltotal is given as follows:

Ltotal = λholes1 Lholes1 + λnon holes1 Lnon holes1 +

λAdvLAdv + λEdgeLEdge + λPerLPer
(4.10)

where, λholes1 , λnon holes1 , λAdv, λEdge and λPer are the weights for hole loss, non hole loss,

adversarial loss, edge loss and perceptual loss respectively. The network is trained for 150

epochs using Adam optimizer with a learning rate of 0.0002 and beta = 0.5. The values

of weights for the given losses are λholes1 = 7, λnon−holes1 = 3, λad = 1, λedge = 1.5, and

λP = 1.75. Remaining settings of the model are similar to the [133]. Weights of network

are updated on NVIDIA DGX station having Tesla V100 1×16 GB GPU.

4.2.3 Experimental Analysis

Detailed qualitative and quantitative evaluation of results estimated using the proposed

network with existing SOTA methods is discussed in this section. The result analysis

is done on two benchmark datasets i.e., Places2 [3] and Paris SV [4]. The training and

testing of the network is done by using the masks provided by [6] similar to [14]. The

testing masks are considered with different hole to image ratio i.e., (0.1, 0.2], (0.3, 0.4],

(0.5, 0.6]. Each of the mask ratio categories includes 2k masks.

Result Analysis

The quantitative comparison is done with CA [94], PIC [11], PConv [18], GConv [12], EC

[13], PRVS [73], RFR [14] and UHR [22] in terms of PSNR and SSIM. The quantitative

results for existing state-of-the art methods are taken from [14, 22]. For qualitative

comparison, the results are generated by using the source code provided by respective

authors. Table 4.5, 4.6 show the quantitative comparison of the proposed architecture

with SOTA methods for image inpainting. From Table 4.5, 4.6, it is clear that the

proposed method outperforms all the existing methods in terms of PSNR and SSIM for

image inpainting. The qualitative result comparison of the proposed method with SOTA

methods [11], [12], [13], [14] is shown in the Figure 4.14. From Figure 4.14, it is observed

that the proposed method does not produce any patches in the generated image and

produces the semantically plausible results. This shows the effectiveness of the proposed
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Table 4.5: Quantitative comparison of the proposed method (Ours) with state-of-the-art
methods on Places2 [3] dataset for image inpainting.

Metric Methods Publication 0.1-0.2 0.3-0.4 0.5-0.6

PSNR↑

CA [94] CVPR-16 25.81 20.89 17.10
PIC [11] CVPR-19 27.14 21.72 17.17
Pconv [18] ECCV-18 27.29 22.15 18.29
GConv [12] ICCV-19 27.05 21.55 16.94
EC [13] ICCVW-19 27.17 22.18 18.35
PRVS [73] ICCV-19 27.41 22.36 18.67
RFR [14] CVPR-20 27.75 22.63 18.92
UHR [22] CVPR-20 25.36 20.21 16.07
Ours SPL-21 30.23 24.84 20.37

SSIM↑

CA [94] CVPR-16 0.906 0.783 0.648
PIC [11] CVPR-19 0.932 0.786 0.494
Pconv [18] ECCV-18 0.934 0.803 0.555
GConv [12] ICCV-19 0.921 0.796 0.626
EC [13] ICCVW-19 0.933 0.802 0.553
PRVS [73] ICCV-19 0.936 0.81 0.574
RFR [14] CVPR-20 0.939 0.819 0.596
UHR [22] CVPR-20 0.905 0.762 0.588
Ours SPL-21 0.961 0.897 0.794

parallel diverse receptive approach on the Places2 and Paris SV dataset.

Figure 4.14: Qualitative comparison of the proposed method with state-of-the-art methods
(PIC[11], GatedConv [12], EdgeConnect [13], RFR-Net[14]). Note: Row 1, 2 - Paris SV
dataset and row 3, 4 Places2 dataset.
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Table 4.6: Quantitative comparison of the proposed method (Ours) with state-of-the-art
methods Paris SV dataset [4] for image inpainting.

Metric Methods Publication 0.1-0.2 0.3-0.4 0.5-0.6

PSNR ↑

PIC [11] CVPR-19 29.35 23.97 19.52
Pconv [18] ECCV-18 30.76 25.46 21.39
GConv [12] ICCV-19 31.32 25.54 20.61
EC [13] ICCVW-19 31.19 26.04 21.89
PRVS [73] ICCV-19 31.49 26.17 22.07
RFR [14] CVPR-20 31.71 26.44 22.40
Ours SPL-21 31.87 26.57 22.50

SSIM ↑

PIC [11] CVPR-19 0.93 0.785 0.519
Pconv [18] ECCV-18 0.947 0.835 0.619
GConv [12] ICCV-19 0.953 0.846 0.621
EC [13] ICCVW-19 0.95 0.846 0.646
PRVS [73] ICCV-19 0.953 0.854 0.659
RFR [14] CVPR-20 0.954 0.862 0.681
Ours SPL-21 0.954 0.871 0.744

Table 4.7: Computational complexity analysis on Paris Street View dataset.

Approach Coarse-to-fine [69] Pconv [18] RFR [14] Ours

# Parameters 100M+ 33M 31M 4.8M
PSNR 23.1 23.69 24.6 26.52
SSIM 0.768 0.759 0.796 0.875

Parameter Analysis

We have compared the proposed model with existing (Coarse-to-fine [69] , Pconv [18]

and RFR [14]) state-of-the-art methods in terms of number of parameters (the results

for existing method are taken from [14]). The comparison is done on Paris SV dataset

for 0.4-0.5 mask ratio. As given in Table 4.7, the proposed model has fewer parameters

as compared to the existing methods. With less number of parameters, the proposed

approach outperforms the existing methods in terms of PSNR and SSIM for 0.4-0.5 mask

ratio on Paris SV dataset. This shows that the proposed concurrent encoders with diverse

receptive filed give the advantage of less number of parameters with superior results.

Ablation Study

The ablation study is performed on Paris SV dataset. The purpose of integrating DRB

in the concurrent encoder is to focus on the diverse receptive fields to fill different hole

regions for image inpainting. Does the proposed DRB helps the network to inpaint

different hole sizes effectively? To examine the effectiveness of the proposed DRB, we

have analysed the network performance with and without DRB for different combinations

of concurrent paths (1 to 5) as given in Table 4.8. For without DRB analysis, the DRB

block is removed and two convolution layers with stride 1 and 2 are used respectively.
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Table 4.8: Analysis number of concurrent paths with and without DRB

Mask
Ratio

Metric DRB
Number of Parallel Paths

1 2 3 4 5

0.5-0.6

PSNR
Without 16.78 17.62 19.52 21.16 20.13
With 19.14 19.83 20.14 22.50 21.85

SSIM
Without 0.593 0.605 0.684 0.714 0.695
With 0.660 0.709 0.726 0.744 0.734

Here, the training is done separately for with and without DRB block. From Table 4.8,

it is evident that the proposed framework with DRB gives superior results as compared

to without DRB. Also, the concurrent processing of encoder features is employed in the

proposed network. Whether this concurrent processing of encoder features help

the network to integrate the effective features? To do this, the result of the proposed

network is examined with combinations of concurrent paths. This analysis is depicted in

Table 4.8. From results reported in Table 4.8, it is clear that the proposed method with

four concurrent paths consisting of DRBs is effective for image inpainting.
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4.3 Pseudo Decoder Guided Light-weight Architecture for

Image Inpainting

The existing approaches [94, 153] fail to reproduce correlated global and local information

in images. Because, either they make use of the latent prior which fails to reproduce

high dimensional information or they use of local and global information separately which

reduce the consistency in reproduced contents. Also, the prior information like noise prior

[110], or edge/structure information [13], [70] based methods learn the reproduction of the

information and incorporate it in the inpainting task. The distribution of these contents

like noise prior, generated edges or structures may vary from the actual distribution of the

required image. This may lead to lack of useful information like color or texture in the

completed image. Some of the non-blind methods use knowledge of masks for passing

the relevant contents from one stage to next stage. This may generate disturbances

at the edges of the hole and non-hole regions in the completed images [22], [8]. The

coarse-to-fine architectures require numerous resources which lead to high computational

cost of the network [8]. The existing methods give effective outcomes regardless of

computational complexity as shown in Table 4.9. From Table 4.9, we can see that, the

existing methods have very high computational complexity. Also, the methods which

use the prior information like edge information have to rely on the available methods

for generation of prior information. The progressive [73] or the recurrent [14] methods

give convincing results as compared to coarse-to-fine architectures. Considering these

limitations of existing methods, we have proposed a light-weight architecture for image

inpainting (see Ours in Table 4.9) without need of any prior information. The authors

in [21], proposed a method based on pyramid context encoder by passing the encoder

information to the decoder similar to U-Net with an attention mechanism. Motivated from

this, we have used the encoder multi level information by merging the feature maps from all

the encoder levels and extracting the relevant information from the encoder levels unlike

[21], where the information is passed from each encoder to respective decoder. In this

work, we have proposed an end-to-end multi-scale pseudo decoder weighted reconstruction

architecture for image inpainting. In the proposed architecture, we have used the mask

information with different scales to forward the relevant information for the regeneration

of complete image. The main contributions of the proposed work are:

• An end-to-end light-weight architecture is proposed for image inpainting with very

less number of parameters (0.97M).

• The concept of encoder multi level feature fusion is proposed to take out the valid

context from each level (Section 4.3.1).

• A pseudo decoder is proposed to share weighted features from encoder levels to
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regeneration decoder for effective image inpainting (Section 4.3.1).

• A novel regeneration decoder is proposed to merge the features from the pseudo

decoder and corresponding encoder levels (Section 4.3.1).

The comparison of the proposed method is done qualitatively and quantitatively on three

benchmark datasets: CelebA-HQ [36], [1], Paris Street View (Paris SV) [4] and Places2

[3]. The corrupted images with the masks from [18] and synthetically generated mask

from [8] are used for image inpainting task. Also, the effectiveness of proposed method is

verified for high resolution image inpainting.

Table 4.9: Computational complexity analysis of the proposed method (Ours) and existing
methods in terms of number of parameters and FLOPs for image inpainting

Method Publication Parameters (Millions) FLOPs (×109)

CTSDG [16] ICCV-21 52.14 17.65

HR [8] WACV-21 30.25 23.85

RFRNet [14] CVPR-20 31.30 206.11

UHR [22] CVPR-20 2.70 41.46

GConv [12] ICCV-19 4.050 55.57

PEN [21] CVPR-19 10.23 48.07

PICNet [11] CVPR-19 3.630 -

EC [13] CVPRW-19 53.00 128.98

SN [10] ECCV-18 54.94 70.10

PConv [18] ECCV-18 33.00 18.95

GMCNN [9] NIPS-18 3.115 -

Ours TIP-22 0.971 13.7

Figure 4.15: Proposed light-weight generator architecture for image inpainting. Note:
L1,L2,L3 and L4 are the losses calculated at each scale [1 to 4] with respect to ground-truth
while training and the total loss is the sum of all the losses. The final outcome while
inference/testing is the outcome of last scale (i.e., Out4).
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4.3.1 Proposed Framework

Image inpainting desires to synthesize the missing regions in an image. In learning-based

methods, specifically, in encoder-decoder based architectures when it is required to provide

the skip connections for image inpainting task, the task becomes difficult as it may merge

the hole content without any relevant features. Different layers like partial convolution [18]

and gated convolution [12] are proposed for utilizing the hole related relevant features for

image inpainting. Also, many methods [68], [8], [22] make use of coarse-to-fine architecture,

where processed features from the first stage will be given to fine (second) stage for

generating efficient results. In spite of exceptional results on image inpainting, these

methods demand high computational complexity in terms of number of parameters and

FLOPs (see Table 4.9 ). Considering this, here, propose an end-to-end single stage pseudo

decoder guided reconstruction architecture for image inpainting. The proposed method

makes use of the mask at each level of regeneration decoder for merging the valid features

from the encoder level and weighted features from pseudo decoder, unlike coarse-to-fine

architectures. The proposed generator architecture for image inpainting is shown in Figure

4.15.

As shown in Figure 4.15, the features from each of the encoder levels (E1−E4) are processed

through the varying receptive fields blocks and then fused to form effective feature maps

by focusing on different receptive fields. Further, pseudo decoder path takes the fused

features from all the encoder levels and then the response of each pseudo decoder level is

processed through the space-depth correlation based weighted features to provide weighted

guidance for regeneration decoder. In regeneration decoder path, weighted features from

pseudo decoder and from preceding decoder level are concatenated in order to forward

the significant features to next decoder level with the help of weighted pseudo feature

maps. This provides the correlated weight to the feature maps. The feature merge (FM)

block is then used to merge the valid content from respective encoder level and highly

correlated features from decoder levels for efficient learning. While training of the network,

multi scale loss is calculated at each level of the regeneration decoder for learning the

detailed information. Each module of the proposed architecture is explained in the next

subsections.

Encoder Multi Level Feature Fusion

Stacking more encoder levels is one of the ways to consider maximum receptive fields for

extracting valid information to inpaint the image. Further, forwarding the features of

only last encoder level to inpaint the image may fail to reproduce the detailed texture and

structure in the inpainted image. The shallow encoder layers contain most of the textural

information whereas the deep layers contain structural information. Existing approach for

image inpainting considers to process the information from encoder levels with structural
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Figure 4.16: Details of varying receptive fields (VRF) block, space depth correlation (SDC)
module and residual block (RB) proposed in the architecture.

and textural maps separately [154]. This leads to the uncorrelated structural and textural

information. Also, we assume, the dominance of holes in the feature maps reduces as we

further go deeper in the encoder layers. So, every encoder layer owns unique features (valid

textural and structural both) which may help to inpaint the image efficiently. Further,

direct merging of the features from encoder to decoder may pass the irrelevant hole features

to the decoder leading to unpleasant results. Hence, instead of processing either the feature

maps from the last encoder level or structural and textural feature maps separately or

providing direct skip connections, here, we have proposed the encoder multi-level feature

fusion module (EMLFF). In EMLFF, the feature maps from each of the encoder levels

(convolution with stride 2 → ReLU) are fused and processed to extract the feature

maps relevant for filling out hole regions. This will help the network to learn structurally

and texturally correlated features from encoder. Also, to extract most relevant textural

and structural feature to fill the holes of any size, it is required to consider the features

from different receptive fields. In [21], the authors merged the encoder level features with

the corresponding decoder level by processing them through the dilated convolution blocks

with direct skip connections which may transfer invalid content if the mask is very large.

To avoid this, we propose to process all the encoder features with diverse receptive fields

and merge them for effective feature extraction helping the network towards effective

inpainting results. This will help the network to extract most relevant structural and

textural information from different receptive fields. The effect of the proposed encoder

multi-level feature fusion (EMLFF) is analysed in Section 4.3.3 .

The feature maps from each of the encoder layers are merged after passing through the

varying receptive fields (VRF) block. This merging mechanism does the exploration

of relevant/valid context with various receptive fields from all the encoder

levels. In VRF block, the maximum of all the encoder-level features from different

receptive fields is considered for extracting the most relevant features from different

receptive fields. This block helps to extract the features not only from a single receptive

field but also from different receptive fields which in turn helps for filling the holes from

small to large hole size. The VRF block for each of the encoder levels can be represented
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as given in Eq. (4.11) (see VRF block in Figure 4.16 ).

V RFS = maxS{ϕ1,1
3×3(ξl), ϕ

1,5
3×3(ξl), ϕ

1,7
3×3(ξl), ϕ

1,9
3×3(ξl)} (4.11)

where, maxS indicates max-pooling operation with stride S (Sε[8, 4, 2, 1] for lth encoder

layer lε[1, 4] respectively), ϕs,rm×m(ξl) indicates the convolution with filter size m × m,

stride s and dilation rate r on lth level feature map ξl. The feature maps from four

encoder layers are merged with a concatenation operation after passing through respective

VRF. Processing each level from the VRF block will extract the maximum contextual

information by considering different receptive fields (analysis on the effect of VRF is

carried out in Section 4.3.3 ). Further, these merged features are forwarded to the pseudo

decoder. So, in general the encoder multi level feature fusion block helps the image

inpainting architecture:

• To focus on the varying receptive fields for filling out the regions with smaller to

larger hole sizes.

• To extract the most relevant feature maps from each of the encoder levels.

Pseudo Decoder Weighted Feature Sharing

The fused feature maps from the encoder are processed in the pseudo decoder to

merge them at each of the respective regeneration decoder levels. As this decoder

is not considered for actual image reconstruction, instead it provides the supportive

features for the reconstruction of the inpainted image, so it is named as pseudo

decoder. The pseudo decoder is defined as convolution with stride 1 → ReLU and

3 deconvolution layers with stride 2 → ReLU as shown in the Figure 4.15. The

processed features from the pseudo-decoder are further attentively forwarded to the

regeneration decoder.

Existing methods [103, 79, 113, 120] generally try to find similarity in the encoded

features of hole locations and valid locations by using the similarity measures between

the patches of hole locations and valid locations at the encoder. This similarity attention

feature maps are then utilized to forward the information to decoder. This patch based

similarity measure lacks in depth-wise correlated information. The spatial and channel

wise excitation blocks are proposed in [155, 156] to provide semantic and contextual

information in image captioning and segmentation tasks. These methods apply aggregated

spatial and channel-wise attention or employ a selective spatial and channel excitation.

Unlike existing methods, the spatial and channel-wise extracted features are merged

attentively to correlate the depth wise and spatial features from the pseudo decoder

at each reconstruction scale. Hence, it is named as space depth correlation (SDC). The

SDC does not depend on the patches in the feature map. Instead it processes the overall
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feature map both spatially and depth-wise. This helps to extract more information which

will be correlated spatially as well as depth-wise (the effectiveness of SDC is examined in

Section 4.3.3).

The outcome of each level in pseudo decoder is then passed through the SDC to weigh the

pseudo decoder responses according to correlated information. To consider the maximum

spatial and depth-wise correlation between the features, the merged features at each

of the decoder levels are processed through the SDC before sending to the respective

reconstruction level. The SDC helps the architecture to maintain the spatial

and depth (channel-wise) correlation introducing a spatial and depth-wise

contextual attention at each level of pseudo decoder. The space depth correlation

block can be represented as given in Eq. (4.12) (See SDC block in Figure 4.16 ).

OutSDC = {σ(ϕ1(Dmax))} � {ξin � σ(FC3(Smax))} (4.12)

where, the FCl are l fully connected layers, ϕ1 is convolution layer, σ is the sigmoid

activation function. The Dmax and Smax are the depth-wise and spatial maximum feature

map from input feature map ξ which are as given in Eq. (4.13) and (4.14) respectively.

Dmax = max
C

(ξM,N,C) (4.13)

Smax = max
M,N

(ξM,N,C) (4.14)

From Eq. (4.13) and (4.14), it is clear that the Dmax has M × N × 1 and Smax has

1× 1×C dimensions where M ×N is spatial dimension and C is number of feature maps

i.e., channels. The fully connected FCl and the convolution layers ϕ1 are used on the

Smax and Dmax respectively to correlate the spatial and depth-wise features efficiently.

The dimensions of fully connected layer and convolution layers applied on Smax and Dmax

respectively can be seen in detail from Figure 4.15. The responses after FCl and ϕ1 are

passed through a Softmax layer, to provide the sufficient weight to most relevant feature

maps, which are then multiplied with input. These weighted feature maps from each

layer of pseudo decoder are then merged with respective layer of regeneration

decoder to provide correlated contextual information. Thus, the proposed pseudo

decoder feature sharing with SDC helps the inpainting architecture:

• To merge the relevant weighted contextual information at each regeneration decoder

level for efficient regeneration of inpainted image.

• To provide the spatial and depth-wise contextual attention.
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Table 4.10: Quantitative comparison of the proposed method (Ours) with state-of-the-art
methods for image inpainting on CelebA-HQ dataset [36] corrupted with NVIDIA Masks
from [6].

Mask Ratio Method PSNR ↑ SSIM ↑ L1 ↓ FID ↓

0.1-0.2

PIC [11] 28.39 0.953 2.054 5.420
GConv [12] 27.56 0.947 2.216 5.563
EC [13] 29.20 0.962 1.952 4.638
RFR [14] 29.38 0.964 1.900 3.894
CTSDG [16] 32.11 0.971 0.859 3.326
Ours 33.70 0.980 0.780 3.066

0.3-0.4

PIC [11] 22.99 0.854 3.893 25.971
GConv [12] 23.59 0.883 3.696 12.429
EC [13] 24.97 0.904 3.167 12.084
RFR [14] 25.06 0.901 3.116 17.056
CTSDG [16] 26.71 0.929 2.970 11.299
Ours 27.78 0.935 2.105 10.582

0.5-0.6

PIC [11] 17.21 0.587 8.758 44.555
GConv [12] 18.14 0.775 5.968 34.980
EC [13] 18.09 0.751 6.174 30.277
RFR[14] 20.85 0.782 7.342 31.571
CTSDG [16] 21.52 0.825 5.692 27.869
Ours 22.71 0.862 5.301 22.504

Regeneration Decoder

For the reconstruction of the inpainted image, we have proposed a regeneration decoder

architecture (see regeneration decoder in Figure 4.15 ). A residual block is used

before every decoder layer to avoid the vanishing gradients problem. Consider the

convolution with m × m filter size, stride = 1 and n number of filters is defined as

Convm,n, then the residual block is defined as: Conv3,321 → Conv3,322 → Conv3,323 →
ρ
(〈
Conv3,321 , Conv3,322 , Conv3,323

〉
→ Conv3,32

)
, where, 〈·〉 and ρ are concatenation and

ReLU activation function respectively (See RB block in Figure 4.16 ). After passing the

input from the two consecutive residual blocks, at each of the decoder stage, the weighted

features from pseudo decoder levels followed by SDC blocks (S1 to S4) (Section 4.3.1)

are concatenated with respective residual block output, as shown in Figure 4.15. This

concatenated output is then processed in the feature merge block (FM). The FM is

used to merge the valid features from the encoder with the respective decoder

layer features availing the hole locations from mask at each of the levels. This

merging helps the decoder architecture to extract the features related to the hole region

processed from the the pseudo decoder (Eq. (4.12)) and valid region from the encoder

efficiently. The output of the FM block at each decoder layer can be represented as:

FMOut
l = EN−l � (1−MN−l) +Dl �MN−l (4.15)
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Figure 4.17: Qualitative comparison of the proposed method (Ours) with state-of-the-art
methods (PICNet [11], GConv [12], EC[13], RFR-Net[14], CTSDG [16]) on CelebA HQ
dataset for image inpainting using publicly available masks from [18].

Figure 4.18: Qualitative comparison of the proposed method (Ours) with state-of-the-art
methods (PICNet [11], EC[13], RFR-Net[14], CTSDG [16]) on Places2 dataset for image
inpainting using publicly available masks from [18].

where, El, Dl are lth level encoder and decoder feature maps respectively, lε[1, 4], N = 5

and Ml is the down-sampled mask (by 8, 4, 2, 1) with respect to each decoder level (l =

1, 2, 3, 4 respectively). In regeneration decoder, four deconvolution layers are used to get

the inpainted output image. The proposed encoder multi level feature merging,

pseudo decoder weighted feature sharing, and reconstruction decoder account

for efficient image inpainting architecture.

4.3.2 Training of the Proposed Network

The proposed architecture is trained end-to-end with adversarial learning for image

inpainting task with the corrupted image as input. The discriminator architecture is

same as that of [133].

Multi-Scale Loss

Existing approaches for image inpainting [157, 158] train the network with loss at different

scales. In [157], the reconstruction loss (as combination of L1 and perceptual loss i.e.,
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Table 4.11: Quantitative comparison of the proposed method (Ours) with state-of-the-art
methods for image inpainting on Places2 dataset [3] corrupted with NVIDIA Masks from
[6].

Mask Ratio Method PSNR ↑ SSIM ↑ L1 ↓ FID ↓

0.1-0.2

PIC [11] 26.32 0.937 1.096 9.588
EC [13] 27.28 0.943 1.060 6.094
RFR [14] 28.28 0.954 1.033 5.149
CTSDG [16] 29.69 0.957 0.924 5.129
Ours 30.26 0.961 0.850 4.690

0.3-0.4

PIC [11] 20.77 0.771 3.447 34.240
EC [13] 22.27 0.879 2.506 18.935
RFR [14] 23.28 0.875 2.534 15.540
CTSDG [16] 23.50 0.876 2.503 16.879
Ours 24.19 0.885 2.360 14.745

0.5-0.6

PIC [11] 16.04 0.564 8.326 68.730
EC [13] 16.26 0.677 7.950 57.677
RFR[14] 17.99 0.684 7.126 43.158
CTSDG [16] 18.05 0.749 6.573 41.422
Ours 19.08 0.764 6.350 39.305

L1 + LP ) is calculated for all output scales and adversarial loss is calculated only at last

output scale. This may not help at generating good structural information. Since, at

high dimension of feature maps we have more structural information. Also, calculating

structural and textural loss at different scales differently [158] may produce structural

and textual discontinuity. So, we propose to train the network with a multi-scale loss

by considering same losses (reconstruction and adversarial both) at each output scale.

We consider reconstruction loss as a combination of L1, perceptual loss (LP ), and edge

loss (Ledge). In this context, the output of every FM block is processed through a

convolution block with tanh activation function (See Figure 4.13 ) with filter size 3×3 and

output channels = 3. Every scale output (i.e., Outl, lε[1, 4]) is used to calculate the loss

(L1 toL4) with the ground-truth (of respective size) while training the network. Output

at the last scale (l = 4) is considered as the outcome of the image inpainting architecture.

Effectiveness of multi-scale loss is verified in Section 4.3.3.

The loss at a particular reconstruction scale is given as:

Lscale = λholeLhole + λvalidLvalid+

λAdvLAdv + λEdgeLEdge + λPerLPer
(4.16)

where, Lscale is the loss calculated at each reconstruction scale, λloss are the weights

assigned to the respective losses. The values of each of the weights are λhole = 3 , λvalid = 1
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Table 4.12: Quantitative comparison of the proposed method (Ours) with state-of-the-art
methods for image inpainting on Paris Street View dataset corrupted with NVIDIA Masks
from [6].

Mask Ratio Method PSNR ↑ SSIM ↑ L1 ↓ FID ↓

0.1-0.2

PIC [11] 30.71 0.940 2.116 21.300
GConv [12] 26.49 0.891 2.355 19.992
EC [13] 30.87 0.944 2.796 14.800
RFR [14] 31.64 0.946 1.105 11.620
CTSDG [16] 32.50 0.949 0.978 9.190
Ours 32.71 0.956 0.910 8.490

0.3-0.4

PIC [11] 24.86 0.840 4.346 61.277
GConv [12] 22.15 0.757 4.808 93.584
EC [13] 25.66 0.706 3.350 45.480
RFR [14] 26.19 0.799 2.767 40.170
CTSDG [16] 27.02 0.858 2.651 32.340
Ours 27.38 0.879 2.440 30.621

0.5-0.6

PIC [11] 17.17 0.501 10.304 86.624
GConv [12] 19.14 0.609 8.002 80.465
EC [13] 21.25 0.722 6.852 72.167
RFR[14] 21.46 0.741 6.199 68.613
CTSDG [16] 22.11 0.748 5.895 64.440
Ours 22.53 0.752 5.401 61.200

, λedge = 1 , λP = 0.2 , and λGAN = 1. The overall loss of all the scales is given as:

Ltotal =

4∑
scale=1

Lscale (4.17)

The input is converted in the range [0, 1] before giving as input to the network. The weight

parameters of the network are updated on NVIDIA DGX station having Tesla V100 1×16

GB GPU with the batch size of 1. The Adam optimizer [144] with the learning rate of

2× 10−4, β1 = 0.5 and β2 = 0.99.

4.3.3 Experimental Analysis

The proposed architecture is compared qualitatively and quantitatively with

state-of-the-art image inpainting methods in terms of PSNR, SSIM, Mean L1 error, FID

[159], etc. The comparison of proposed method on masks from [18] is done with CTSDG

[16], recurrent feature reasoning (RFR) [14], gated convolutions (GConv) [12], pluralistic

image inpainting (PIC) [11], and EdgeConnect (EC) [13]. The comparison of proposed

method on synthetic mask from [8] is done with PIC [11], multi-column image inpainting

(GMCNN) [9], GConv [12], Shift-Net (SN) [10], and Hyper-realistic image inpainting (HR)

[8]. The comparison of proposed method for high resolution images is done with PEN [21],

Pconv [18] and ultra-high resolution (UHR) [22] methods in terms of PSNR, SSIM, Mean
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Figure 4.19: Qualitative comparison of the proposed method (Ours) with state-of-the-art
methods (PICNet [11], GConv [12], EC[13], RFR-Net[14], CTSDG [16]) on Paris SV
dataset for image inpainting using publicly available masks from [18].

Figure 4.20: Qualitative comparison of the proposed method (Ours) with state-of-the-art
methods (GMCNN [9], PICNet [11], SN [10], GConv [12], HR [8]) on CelebA HQ dataset
for image inpainting on synthetic masks.

L1 error and FID. The quantitative and qualitative evaluation is done on images with

256 × 256 size. For quantitative evaluation on high-resolution, images with 512 × 512,

1k × 1k and 2k × 2k resolution are considered and random masks with mask ratio ≤ 0.25

are used similar to [22].

Results Analysis

Experiment 1: In this experiment, the image datasets corrupted by publicly available

masks from [18] are considered for evaluation. Table 4.10, 4.11, 4.12 show the quantitative

analysis of the proposed method with state-of-the-art methods for image inpainting on

Places2, CelebA-HQ, and Paris SV datasets in terms of PSNR, SSIM, Mean L1 error

and FID same as that of [14]. Table 4.10, 4.11, 4.12 show the results on different mask

ratios same as that of [14] and average performance on given mask ratios. The proposed

method gives superior performance as compared to existing state-of-the-art methods for

given mask ratios. Also, the visual comparison of proposed method with state-of-the-art

methods on the images corrupted using masks from [18] are shown in Figure 4.17, 4.19

and 4.18 for CelebA HQ, Paris SV and Places2 dataset respectively.
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Table 4.13: Quantitative comparison of the proposed method (Ours) with state-of-the-art
methods for image inpainting on CelebA-HQ dataset corrupted using synthetic masks

Mask
Ratio

Method
Parameters

PIC
3.63 M

GMCNN
3.11 M

GConv
4.050 M

SN
54.94 M

HR
30.25 M

Ours
0.971 M

Publication CVPR-19 NIPS-18 ICCV-19 ECCV-18 WACV-21 TIP-22

0
.1

-0
.2

PSNR ↑ 30.99 33.00 27.72 30.91 33.51 34.05
SSIM ↑ 0.957 0.981 0.940 0.953 0.975 0.987
L1 ↓ 1.956 1.418 1.744 1.550 1.447 1.160
FID ↓ 4.435 2.660 13.670 4.715 2.537 2.372

0.
2-

0
.3

PSNR ↑ 28.41 30.54 25.48 29.12 30.44 31.73
SSIM ↑ 0.929 0.969 0.910 0.933 0.967 0.979
L1 ↓ 1.848 1.518 2.606 1.969 1.625 1.500
FID ↓ 8.153 4.616 22.020 7.281 7.068 3.881

0.
3-

0.
4

PSNR ↑ 26.57 28.78 24.03 27.34 28.49 30.03
SSIM ↑ 0.899 0.955 0.883 0.900 0.957 0.970
L1 ↓ 2.220 1.950 3.434 2.604 2.828 1.872
FID ↓ 13.573 7.679 29.930 11.679 9.474 5.705

0.
4-

0.
5

PSNR ↑ 24.64 26.97 22.59 24.62 27.30 28.31
SSIM ↑ 0.845 0.934 0.849 0.819 0.942 0.955
L1 ↓ 3.126 3.223 4.448 4.094 2.945 2.375
FID ↓ 24.955 13.280 36.166 28.346 13.109 8.293

0.
5-

0.
6

PSNR ↑ 22.99 25.47 21.48 21.15 26.22 26.84
SSIM ↑ 0.786 0.909 0.815 0.682 0.925 0.938
L1 ↓ 4.134 3.857 5.492 6.829 3.512 2.907
FID ↓ 45.607 22.480 40.830 30.255 17.307 11.113

Experiment 2: Along with the comparison on publicly available mask dataset, we have

compared the proposed method with state-of-the-art methods on synthetically generated

masks from [8]. Table 4.14, 4.13 show the quantitative analysis of the proposed method

with state-of-the-art methods for image inpainting on corrupted images using synthetic

masks from [8] on CelebA-HQ and Places2 datasets in terms of PSNR, SSIM, Mean L1

error and FID same as that of [8]. The Table 4.14, 4.13 prove the generalizability of

proposed method on all the mask ratio sets for image inpainting. The visual comparison of

proposed method on image datasets corrupted using synthetic mask are depicted in Figure

4.20 and 4.21 for CelebA-HQ and Places2 datasets respectively. Specifically, the proposed

method gives significant performance overall on all the mask ratios even though it has less

computational complexity (0.97M parameters) than existing methods in the literature (see

Table 4.9). This shows that the proposed architecture reconstructs the corrupted images

from smaller to larger hole regions efficiently compared to state-of-the-art methods.

Results for High Resolution Image inpainting

To verify the generalizability of the proposed method, along with the efficiency on standard

resolution images, we have tested the proposed method with different resolution images.



Chapter 4. Single-stage Architectures 89

Table 4.14: Quantitative comparison of the proposed method (Ours) with state-of-the-art
methods for image inpainting on Places2 dataset corrupted using synthetic masks

Mask
Ratio

Method
PIC
[11]

GMCNN
[9]

GConv
[12]

SN
[10]

HR
[8]

Ours

Publication CVPR-19 NIPS-18 ICCV-19 ECCV-18 WACV-21 TIP-22

0.
1-

0
.2

PSNR ↑ 29.31 30.90 24.68 28.83 30.60 32.88
SSIM ↑ 0.936 0.957 0.846 0.932 0.945 0.984
L1 ↓ 1.231 1.002 2.293 2.183 1.557 0.692
FID ↓ 6.398 5.100 9.517 7.476 5.264 4.544

0.
2-

0.
3

PSNR ↑ 26.90 28.54 22.59 26.86 28.93 30.37
SSIM ↑ 0.897 0.930 0.780 0.897 0.918 0.975
L1 ↓ 1.963 1.538 3.423 2.829 2.506 1.275
FID ↓ 11.288 10.403 19.800 13.189 10.743 9.307

0.
3-

0.
4

PSNR ↑ 25.15 26.89 21.33 25.09 27.93 29.50
SSIM ↑ 0.851 0.901 0.724 0.855 0.900 0.923
L1 ↓ 2.752 2.100 4.445 3.653 3.311 1.148
FID ↓ 17.963 16.807 28.608 23.208 17.705 15.660

0.
4-

0.
5

PSNR ↑ 23.36 25.27 20.10 22.79 24.08 26.70
SSIM ↑ 0.784 0.860 0.660 0.776 0.753 0.880
L1 ↓ 3.836 2.846 5.772 5.235 5.171 2.190
FID ↓ 25.948 24.463 38.295 32.018 29.108 24.190

0.
5-

0.
6

PSNR ↑ 21.84 24.02 19.42 20.40 22.48 25.75
SSIM ↑ 0.707 0.819 0.608 0.668 0.725 0.853
L1 ↓ 4.977 3.562 6.697 7.772 3.866 2.252
FID ↓ 42.647 29.933 62.610 65.266 34.451 27.684

Table 4.15: Quantitative comparison of proposed method (Ours) with state-of-the-art
methods on Places2 dataset on high-resolution images (Note - The NVIDIA masks [6]
with mask ratio ≤ 0.25 are similar to[22])

Image
Size

Method PSNR ↑ SSIM ↑ L1 ↓ FID ↓

512× 512

PEN [21] 32.86 0.912 0.0079 8.206
Pconv [18] 33.12 0.935 0.0064 7.942
UHR [22] 34.98 0.962 0.0059 7.001
Ours 35.05 0.968 0.0054 6.616

1K × 1K

Pconv [18] 30.38 0.906 0.0105 9.542
UHR [22] 31.82 0.941 0.0081 8.762
Ours 32.51 0.950 0.0076 8.001

2K × 2K

Pconv [18] 27.24 0.895 0.0215 28.164
UHR [22] 28.92 0.924 0.0166 27.289
Ours 29.88 0.946 0.0112 27.046
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Figure 4.21: Qualitative comparison of the proposed method (Ours) with state-of-the-art
methods (GMCNN [9], SN [10], PICNet [11], GConv [12], HR [8]) on Places2 dataset for
image inpainting on synthetic masks.

The proposed method is tested on images with 512 × 512, 1024 × 1024, and 2048 × 2048

resolution. The proposed network has very less number of parameters (0.97M) as compared

to the existing method for high-resolution image inpainting (2.7M) [22]. We have compared

different methods (similar to [22]) for high-resolution images. The methods with out

of memory problem are not considered for this analysis. The PEN [21] method gives

out of memory problem when tested for images with 1k or higher resolution images.

The quantitative and qualitative comparison of the proposed method with state-of-the-art

methods is provided in Table 4.15 and Figure 4.22 respectively. The comparison shows

the effectiveness of the proposed method when tested on the high resolution images for

image inpainting. Our proposed method generates more plausible results as compared

with the existing methods. This proves that, with very less computational complexity

(0.97M parameters), our proposed method performs well when tested on high-resolution

images.

Results for Object Removal

Along with inpainting the corrupted images, the image inpainting methods can be used

for object removal task. Here, we verify the applicability of proposed method for object

removal task where the mask of object is explicitly provided. The qualitative comparison

of proposed method and existing-state-of-the-art methods is carried out to verify the

efficiency for real time application of object removal. Figure 4.23 shows the visual

comparison for object removal task. It can be seen from Figure 4.23, the methods

PIC, GConv, SN, EC and CTSDG are unable to reproduce the significant content

at hole region and the results of GMCNN, RFR and HR have inconsistencies at the

boundary of hole and valid region. Whereas, the proposed method generates significant

content along-with consistency at the boundary of hole and valid regions. This proves

that, the proposed method gives fruitful results for object removal task as compared to

existing-state-of-the-art methods for image inpainting. We give this credit to the proposed
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Figure 4.22: Qualitative result comparison of the proposed method (Ours) with existing
methods (PConv [18], PEN [21], UHR [22]) on high resolution images

multi level feature fusion through VRF and pseudo decoder which provides correlated

feature maps to reconstruction decoder for generating awesome-sauce inpainting results.

Efficiency and Complexity

To examine the model efficiency, we have compared the proposed model with

state-of-the-art methods in terms of the number of trainable parameters and FLOPs. Table

4.16 gives the comparison of the proposed method in terms of the number of parameters of

the network. The comparison is done on Paris SV dataset with 0.4 - 0.5 mask ratio in terms

of PSNR and SSIM. Table 4.16 shows that the proposed method, with a very less number

of parameters, outperforms the state-of-the-art methods with significant improvement for

image inpainting. Also, the parameters of proposed and existing state-of-the-art methods

with average PSNR are compared for CelebA HQ dataset on synthetic mask from [8]

and publicly available mask from [18]. Table 4.9 shows that, even-though the proposed

network has very less number of parameters and FLOPs, it gives superior performance as

compared to existing state-of-the-art methods.

Table 4.16: The hyper-parameter analysis on Paris SV dataset for 0.4 - 0.5 mask ratio

Method Coarse-to-fine [69] Pconv[18] RFR [14] Ours

#Parameters ↓ 100M+ 33M 31M 0.971M
FLOPs (×109)↓ 417.23 18.95 206.11 15.20

PSNR ↑ 23.1 23.69 24.6 25.16
SSIM ↑ 0.768 0.759 0.796 0.829
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Figure 4.23: Qualitative comparison of the proposed method (Ours) with existing
state-of-the-art methods (PIC [11], GConv [12], GMCNN [9], SN [10], EC[13], RFR[14],
HR [8], CTSDG [16]) for object removal task.

Ablation Study

To examine the effectiveness of proposed and used blocks in the architecture and losses

used while training of the network, we have done the ablation study. For the ablation

study, we have considered the Paris SV dataset with publicly available masks [18]. The

ablation study for the same is discussed in the following sections.

Effect of multi-encoder feature fusion: To verify effectiveness of the proposed encoder

multi-level feature fusion (EMLFF), we carried out the experiment with (w/) and without

(w/o) EMLFF. Here, w/o EMLFF means, direct skip connection is provided from each

encoder level to respective decoder level without feature fusion. The feature fusion is

designed in order to extract valid features from diverse receptive fields. Absence of EMLFF

will provide encoder features to corresponding decoder level without considering the valid

information. Also, hole content may be forwarded to decoder as it is and this will further

deteriorate the performance for image inpainting task. The quantitative comparison of

this experiment is included in Table 4.17. Also, visual comparison is provided in Figure

4.25. Without EMLFF, the network fails to reconstruct valid information at the hole

locations this leads to degradation of quantitative and qualitative results with large margin.

The numeric and visual comparison validates the effectiveness of the proposed encoder

multi-level feature fusion.

Effect of VRF and SDC block:

The purpose behind utilizing the VRF and SDC block is to fill the holes of large

region effectively and to provide weights to the feature maps from pseudo decoder levels
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Figure 4.24: Computational complexity analysis of the proposed method (Ours) with
state-of-the-art methods. (a) Comparison in terms of average PSNR and number of
trainable parameters on CelebA-HQ dataset corrupted using synthetic mask from [8], (b)
Comparison in terms of average PSNR and number of trainable parameters on CelebA HQ
dataset corrupted using NVIDIA mask from [6].

Table 4.17: Analysis on effect of the proposed encoder multi-level feature fusion (EMLFF)
for image inpainting

Metric EMLFF
Mask Ratio

0.1-0.2 0.3-0.4 0.5-0.6

PSNR ↑
W/o 29.48 24.51 19.81
W/ 32.71 27.38 22.53

SSIM ↑
W/o 0.928 0.826 0.702
W/ 0.956 0.879 0.752

respectively. To analyse the effect of the VRF and SDC block in the proposed method,

four different experiments are performed (a) without (w/o) VRF and SDC, (b) w/o VRF

and with (w/) SDC, (c) w/ VRF and w/o SDC (d) w/ VRF and SDC on Paris SV dataset

with different mask ratios in terms of PSNR and SSIM. From Table 4.18, it is clear that

the use of both the blocks in the network gives best outcome for image inpainting on the

images with large mask ratio. As proposed, these blocks helps the network to efficiently

fill the hole regions of any size. Also, the qualitative comparison with these configurations

is depicted in Figure 4.26. From Figure 4.26, it is clear that, use of both VRF and SDC

gives effective results for image inpainting as compared to other configurations. The VRF

helps to focus on larger receptive fields and the SDC helps to provide weighted pseudo

decoder features to regeneration decoder path.

Effect of multi-scale loss:

To train the network, generally a loss is calculated at the final output. Here to train our

proposed network, we used the multi-scale loss, where the total loss used for training is

summation of losses calculated at each decoder scale (see Eq. 4.16 ). The ablation study
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Figure 4.25: Qualitative results on the effect of the proposed encoder multi-level feature
fusion (EMLFF) for image inpainting on Paris SV dataset.

Table 4.18: Analysis on effect of VRF and SDC block on Paris SV dataset

Metric VRF SDC
Mask Ratio

0.1-0.2 0.3-0.4 0.5-0.6

PSNR ↑

w/o w/o 30.63 25.08 20.17
w/o w/ 31.99 26.42 20.79
w/ w/o 32.02 26.26 21.16
w/ w/ 32.71 27.38 22.53

SSIM ↑

w/o w/o 0.947 0.842 0.646
w/o w/ 0.954 0.865 0.681
w/ w/o 0.955 0.867 0.704
w/ w/ 0.956 0.879 0.752

Table 4.19: Analysis on effect of multi-scale loss for image inpainting

Metric Loss
Mask Ratio

0.1-0.2 0.3-0.4 0.5-0.6

PSNR ↑
Single-scale 28.66 25.01 20.33
Multi-scale 32.71 27.38 22.53

SSIM ↑
Single-scale 0.882 0.811 0.649
Multi-scale 0.956 0.879 0.752

is carried out verify the efficiency of the multi-scale loss while training the network. The

quantitative and qualitative results of the same are given in Table 4.19 and Figure 4.27,

respectively. The overall loss in Eq. (4.16) calculated at each scale guides the network at

each reconstruction stage. This provides a supervision for effective reconstruction which

further helps towards faithful results. From these results, we can easily conclude that,

the multi-scale loss helps the network for producing better outcome as compared to single

scale loss while training.
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Figure 4.26: Qualitative results on the effect of VRF and SDC for image inpainting on
Paris SV dataset.

Table 4.20: Analysis on effect of loss functions using Paris SV dataset (Note: L1 = Lhole+
Lvalid).

Metric Loss
Mask Ratio

0.1-0.2 0.3-0.4 0.5-0.6

PSNR ↑

L1 + LGAN 30.66 25.01 20.33
L1 + LGAN + LEdge 31.74 26.06 21.72
L1 + LGAN + LPer 31.97 26.35 21.22
L1 + LGAN + LEdge + LPer 32.71 27.38 22.53

SSIM ↑

L1 + LGAN 0.912 0.841 0.739
L1 + LGAN + LEdge 0.947 0.851 0.749
L1 + LGAN + LPer 0.927 0.846 0.731
L1 + LGAN + LEdge + LPer 0.956 0.879 0.752

Effect of losses:

To analyse the effect of different losses on training of the network, an ablation study is

done on Paris SV dataset with different mask ratios. The network is trained on Paris SV

dataset with different configurations of losses as given in Table 4.20. From Table 4.20,

it is clear that the effect of all the considered losses while training helps the network to

learn effectively for image inpainting task. Also in Figure 4.28, we can clearly see that,

with the edge loss (Ledge) network tries to enhance the edges generated by the network.

With addition of perceptual loss (Lp), the network improves the overall scene information.

Whereas combination of all the losses (L1+LGAN+Ledge+LP ) gives perceptually enhanced

outcome.
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Figure 4.27: Qualitative results on the effect of multi scale loss for image inpainting on
Paris SV dataset.

Figure 4.28: Qualitative results on the effect loss functions for image inpainting on
Paris SV dataset.

4.4 Summary of Proposed Contribution

In this chapter, we proposed three different solutions with single-stage architectures for

image inpainting. In first solution (Section 4.1), multi-resolution inputs are utilized for

image inpainting. A multi-kernel non-local attention is proposed to merge all the resolution

inputs. Feature projection and valid feature fusion blocks are proposed for effective
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inpainting. The quantitative and qualitative comparison is done on two benchmark

datasets corrupted using NVIDIA masks [6].

In second solution (Section 4.2), we proposed the concurrent processing of multi-level

encoder features along with the diverse receptive fields module. The comparison is carried

out on two benchmark datasets corrupted using NVIDIA masks [6].

The third solution (Section 4.3) proposes a light-weight architecture for image inpainting.

Also, a pseudo-decoder in proposed to project the spatially and depth-wise correlated

different encoder level features for actual reconstruction of inpainted image. The

quantitative and qualitative comparison is carried out on three datasets corrupted using

NVIDIA masks [6] and on two datasets corrupted using synthetic masks [8]. Further, the

proposed solution is compared quantitatively and quantitatively for high-resolution image

inpainting.

The computational complexity analysis and performance in terms of PSNR of existing

methods and proposed solutions is given in Figure 4.29.

Figure 4.29: Comparison of the proposed methods (II:A-Section 4.1, II:B-Section 4.2,
II:C-4.3) with existing methods. Left: in terms of the number of trainable parameters
(x-axis), number of operations (GMAC) (y-axis), and run-time complexity in seconds per
image (bubble size), Right: in terms of average PSNR on CelebA-HQ dataset.
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Chapter 5

Blind Image Inpainting

Typically, image inpainting methods require information about the corrupted regions

in the form of masks to guide the restoration process. These methods are known as

non-blind image inpainting methods. However, in many real-world applications, such as

photo editing, unwanted object removal, mesh-face verification, etc., it is often difficult

to obtain masks for guidance. This has led to the development of a new technique called

blind image inpainting, which does not require any prior knowledge about the corrupted

regions or masks to perform image restoration.

The existing approaches for blind image inpainting [131, 23] try to predict the corrupted

regions first and then inpaint the image using predicted mask and input corrupted image.

Also, in [24], the authors try to attentively predict the mask to inpaint the corrupted

image. Though both the stage-wise mask prediction followed by inpainting [131, 23] and

intermediate attentive mask guidance inpainting [24] seem to be different, they follow

almost similar approach to make the inpainting task directly or indirectly dependent on

the identification of inconsistent regions. Also, when image with large corrupted regions

is provided as input to these methods [131, 23, 24], they fail at inpainting the globally

consistent image. In this work, we propose an end-to-end training approach independent

of any identification of masked and non masked regions for blind image inpainting. In this

regards, we propose two contributions for blind image inpainting as:

• Blind Image Inpainting via Omni-dimensional Gated Attention and Wavelet Queries

• Blind Image Inpainting via High-frequency Attentive Deformable Convolution

These solutions are explained in next sections.

5.1 Blind Image Inpainting via Omni-dimensional Gated

Attention and Wavelet Queries

The transformers are well known for their ability to exploit long-range dependencies.

With this ability, transformers have shown better convergence in numerous applications

of image restoration [17, 88, 123, 131, 32, 34] including image inpainting. Further, the

queries are the inputs to the transformer multi-head attention for which the attention is
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calculated. Providing appropriate queries to the transformer block may further enhance

their convergence capability. With this assumption, in this work, we propose a wavelet

query-based multi-head attention mechanism in the transformer block. The processed

wavelet coefficients will provide less degraded information as a query to the multi-head

attention mechanism. Also, to forward the encoder features to the respective decoder,

we propose a gated omni-dimensional attention block. This block provides the all

dimensional attentive information to the features which may help the network for efficient

reconstruction. The contributions of our work are:

• An end-to-end transformer based architecture is proposed for blind image inpainting.

• A novel wavelet query multi-head attention mechanism is introduced in the

transformer block.

• A omni-dimensional gated attention mechanism is proposed to forward different

dimensional attentive features from encoder to respective decoder for effective

reconstruction of inpainted image.

Our proposed approach achieves remarkable performance improvement as compared to

existing state-of-the-art blind image inpainting methods.

5.1.1 Proposed Method

In this work, we propose a single-stage end-to-end transformer architecture for blind image

inpainting (see Figure 5.1). Here, we propose two major components namely: (a) wavelet

query multi-head attention mechanism in transformer: to provide processed query as input

to the multi-head attention, and (b) omnidimensional gated attention: for providing all

dimensional attentive features in order to achieve a plausible outcome. In this section, we

will first give a detailed exposition of the proposed architecture for blind image inpainting

and then we detail the proposed modules.

Overview of proposed transformer based architecture with the wavelet query multi-head

attention (WQMA) and omnidimensional gated attention (OGA) is shown in Figure 5.1.

To convert input image into feature space, we first apply the convolution layer. These

convolved features are processed through three successive transformer blocks followed by

down-sampler. The input with spatial size m,n is then converted into m
8 ,

n
8 sized feature

maps at 4th transformer block. In this transformer block, we propose a wavelet query

multi-head attention (WQMA) to provide processed features as a query to the multi-head

attention. These feature maps are then forwarded again to the successive transformer

blocks but now these blocks are followed with an up-sampler to come up with the actual

spatial dimension (m,n) at the last stage. Here, in the decoding stage, we apply the

proposed omni-dimensional gated attention (OGA) on encoder features while giving a
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Figure 5.1: Overview of the proposed architecture for blind image inpainting. The
architecture includes of transformer block consisting of the proposed wavelet query-based
multi-head attention for providing prominent information as a query. Further,
omni-dimensional gated attention is proposed in order to forward efficient attentive
features from encoder to the respective decoder.

skip connection from the respective encoder to the subsequent decoder level. The OGA

helps the network to provide multidimensional attentive features to the decoder for effective

reconstruction. The structure of the transformer block consists of the proposed WQMA

and a feed-forward network [32]. Finally, we again apply a convolution layer to generate

final output O.

Wavelet Query Multi-head Attention

In the existing transformer approach [32], generally the query, key, and values are

considered from the same input without any separate processing to generate them. In

a transformer block, the query is used to which attention is calculated and the key

is from which the attention is calculated. So, here query plays an important role in

overall multi-head attention for which attention is calculated. Providing effective features

as a query may help the transformer block to further improve its performance. The

contaminations in the inputs for a blind image inpainting task are considered as the noise

appended on top of the clear image. Wavelets are well known for the task of image

denoising where each of the decomposed wavelet coefficients is processed separately to

reduce the noise. The wavelet-based attention mechanism is proposed in [160] for the task

of image classification where the attention mechanism is applied in wavelet coefficient

space. In the case of image inpainting, the input image has some corrupted regions
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present in it. Directly applying the attention in wavelet coefficient space may consider

the corrupted regions also. Since the wavelet coefficient space also has corrupted regions

in it. In order to avoid forwarding the noisy wavelet coefficients, we propose the processing

of each wavelet coefficient. Further, the multi-head attention mechanism plays an essential

role in capturing the long-term dependencies in the transformer block. The 2D wavelet

coefficients are first calculated using forward discrete wavelet transform (DWT) as:

LL,LH,HL,HH = DWT (Fin) (5.1)

where, LL, LH, HL, and HH are approximate, horizontal, vertical, and diagonal

coefficients respectively of input feature maps Fin calculated using DWT. Each of the

coefficients is separately processed as:

LL′ = ψa(LL);LH ′ = ψh(LH)

HL′ = ψv(HL);HH ′ = ψd(HH)
(5.2)

where, ψ is depth-wise separable convolution with kernel size 3 × 3. Further, these

processed wavelet coefficients are utilized to form the output feature map by passing them

through the inverse discrete wavelet transform (see Wavelet Coefficient Processing block

in Figure 5.1). These processed wavelet coefficients are considered as the queries (QW ) to

the multi-head attention. This may help the network to calculate the attention with less

effect of contaminations. The overall attention using wavelet queries is calculated as:

Attention(Fin) = σ

(
QWK

T

√
d

)
V (5.3)

where, K = C1(ψ(Fin)), V = C1(ψ(Fin)), C1 is convolution with kernel size 1 × 1. This

proposed approach helps the network to effectively capture long-term dependencies with

the minimum effect of corrupted regions.

Omni-dimensional Gated Attention

In order to forward the encoder features to the respective decoder, we propose an

omni-dimensional gated attention mechanism. This attention mechanism is given as:

γ′i = C3(γi)� G(ODC3(γi)) (5.4)

where, γi are the encoder features with i ∈ (1, 2, 3), C3 is convolution with kernel size

3×3, G is a GELU activation function, ODC is omni-dimensional convolution with kernel

size 3× 3. This omni-dimensional gated attention provides the weighted feature from four

different dimensions to the input encoder features.

The omni-dimensional convolution is a dynamic convolution that considers all the different
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dimensions of the input feature maps. Here, the omni-dimensional refers to the four

different dimensions i.e. spatial, channel, filter, and kernel-wise attention. Let, for a

dynamic convolution there are n different convolutional kernels, each of the kernels has

the spatial dimension k×k, the number of input channels is cin, and the number of output

filters is cout. Input (γi) to the ODC is first processed through a global average pooling

operation followed by a fully connected layer and the ReLU activation function. These

processed 1D features are used to generate different attentions like (i) spatial attention

(αs) of size k×k to the spatial dimension of convolution kernel, (ii) channel attention (αc)

of size 1×1×cin to the input channels cin, (iii) filter attention (αf ) of size 1×1×cout to the

output number of filters cout, and (iv) kernel attention (αw) to the n dynamic convolution

kernels. These attentions are calculated by applying a fully connected layer (to generate

the required dimension) followed by the Sigmoid activation function. The output of ODC

is formulated as:

Y =

(
n∑
i=1

αwi � αfi � αci � αsi �Wi

)
∗ γi (5.5)

where, αwi is the attention applied to ith convolution kernel, αf is the attention applied

to the cout convolution filters, αc is the attention applied to the cin convolution filters, and

αs is attention applied to spatial dimension k × k of convolution filter [161]. This ODA

provides the network with the ability to learn attentive features from all the dimensions,

unlike existing only spatial or channel-wise attentions.

5.1.2 Experiments and Results Discussion

In this section, we will discuss different experimental datasets, evaluation metrics, and

quantitative and qualitative results of the proposed and existing state-of-the-art methods.

Datasets and Evaluation Metrics

For blind image inpainting, we use four datasets: FFHQ [2], CelebA-HQ [162], Places2 [3],

and Paris Street View(ParisSV) [4]. The comparative analysis for blind image inpainting

is done with VCNet [23], TransCNNHAE [24] (blind inpainting methods) and CTSDG [16]

(non-blind inpainting method as provided in [24]). For fair comparison we have compared

methods with publicly available source codes on all the blind/non-blind image inpainting

datasets.

For quantitative results comparison of the proposed method and existing state-of-the-art

methods on blind image inpainting, peak signal-to-noise ratio (PSNR), structural

similarity index measure (SSIM), mean L1 error and Fréchet inception distance (FID)

metrics are used.
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Figure 5.2: Qualitative result analysis of ablation study on different configurations of the
proposed network for blind image inpainting.

Table 5.1: Ablation study on different configurations of the proposed network on ParisSV
dataset for blind image inpainting. (Note: ↑- Higher is better, ↓- Lower is better).

Network Configuration PSNR↑ SSIM↑ L1 ↓ FID ↓
TransCNNHAE [24] 26.72 0.896 0.0352 41.50
QW , KW , VW 26.89 0.885 0.0347 46.63
QW , KW , VW +OGA 27.50 0.901 0.0324 43.11
QW , K, V 27.05 0.898 0.0328 44.32
QW , K, V +OGA 27.81 0.905 0.0301 40.646

Implementation and Training Details

To train the proposed blind image inpainting approach, we use AdamW optimizer with

3e−4 learning rate which is gradually reduced with the cosine annealing strategy. We

train the proposed network using the L1 loss. Also, to guide the network for textural

and structural information by extracting effective features, the perceptual loss (LP ) is

calculated between the deep feature maps of the ground-truth and inpainted images by

passing them through the pre-trained VGG16 model [134] as:

LP =
S∑
s=1

(‖φs(Gt)− φs(O)‖1) (5.6)

where, Gt is ground-truth, O is the output, φs are the feature maps (s ∈ (1, S)) of the

VGG16 model. The edge loss (Le) is also considered to focus on edge enhancement while

training. The edge loss with sobel operator S is formulated as:

Le = ‖S(Gt)− S(O)‖1 (5.7)

For structurally consistent output generation we utilized the structural similarity loss (LS),

given as:

LS = 1− SSIM(O) (5.8)

where, SSIM is structural similarity index metric. So the overall loss to train the network

is given as:

LT = λ1L1 + λPLP + λeLe + λSLS (5.9)
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where, λLoss is the weight assigned to respective Loss function which is verified

experimentally as: λ1 = 10, λP = 0.6, λe = 0.4, λS = 0.5.

Figure 5.3: Qualitative results comparison of the proposed method (Ours) with existing
state-of-the-art methods (VCNet [23], CTSDG [16], TransCNNHAE [24]) on Celeb (first
two rows) and FFHQ (last two rows) dataset for blind image inpainting.

Table 5.2: Comparison of the proposed method (Ours) and existing state-of-the-art
methods for blind image inpainting (↑- Higher is better, ↓- Lower is better).

Metric Dataset VCNet [23] CTSDG [16] TransCNNHAE [24] Ours

PSNR ↑

CelebA-HQ 25.59 26.94 27.71 28.21
FFHQ 23.62 24.62 27.05 28.19
ParisSV 23.62 26.08 26.72 27.81
Places2 24.09 26.05 26.87 27.55

SSIM ↑

CelebA-HQ 0.874 0.934 0.949 0.951
FFHQ 0.861 0.935 0.941 0.952
ParisSV 0.824 0.861 0.896 0.905
Places2 0.869 0.905 0.910 0.918

L1 ↓

CelebA-HQ 0.0396 0.0318 0.0250 0.0221
FFHQ 0.0482 0.0392 0.0281 0.0234
ParisSV 0.0527 0.0412 0.0352 0.0301
Places2 0.0429 0.0308 0.0261 0.0231

FID ↓

CelebA-HQ 9.275 8.561 7.251 7.235
FFHQ 10.148 9.586 9.424 8.639
ParisSV 64.215 43.015 41.505 40.646
Places2 28.821 18.685 17.640 17.521
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Figure 5.4: Qualitative results comparison of the proposed method (Ours) with existing
state-of-the-art methods (VCNet [23], CTSDG [16], TransCNNHAE [24]) on Paris SV
(first two rows) and Places2 (last two rows) datasets for blind image inpainting.

Ablation Study

To determine the design choices of the network for blind image inpainting, we performed

various experiments on the Paris SV dataset. How the each of proposed modules led to

performance improvement is discussed in this section.

Effect of the wavelet-based query to multi-head attention

Wavelet base attention mechanism in transformer block has proved its efficiency for the

image classification task [160]. With this motivation, at first, we aimed to provide

wavelet query (QW ), keys (KW ), and values (KW ) to the multi-head attention. For

comparison purpose, we considered the existing best blind image inpainting method

(TransCNNHAE [24]). The results improved in terms of PSNR, SSIM, and L1 error. But

there was no improvement in FID due to structural inconsistencies. Further, we evaluated

the importance of providing wavelet processed query only to the multi-head attention

with a combination of QW ,K, V which resulted in better convergence as compared to

QW ,KW , VW (see row 2 and 4 of Table 5.1)

Effect of omni-dimensional gated attention

Further, to help the network for better reconstruction and structural information, we

proposed omni-dimensional gated attention (OGA). The experiments are carried out with

both the above discussed wavelet conditions i.e., QW ,KW , VW + OGA and QW ,K, V



Chapter 5. Blind Image Inpainting 107

Figure 5.5: Qualitative results comparison of the proposed method (Ours) with existing
state-of-the-art method (TransCNNHAE [24]) on unseen patterns.

+ OGA to verify the effectiveness of both the proposed modules. The inclusion of the

proposed OGA to forward the encoder features to the respective decoder performed well

by improving in terms of PSNR and SSIM. Along with these parameters improvement,

there is a lot of improvement in the FID value (see Table 5.1).

Overall, our proposed modules (QW ,K, V + OGA) effectively help the network with

improved performance for the task of blind image inpainting. Also, the visual results of

the ablation study are provided in Figure 5.2.

Blind Image Inpainting Results Analysis

For the task of blind image inapinting, we considered four different datasets covering

large variety of cases like natural places scenes, facial images. The comparison in terms

of PSNR, SSIM L1 error and FID is provided in Table 5.2. Along with state-of-the-art

blind image inpainting methods [23, 24] ([24] is retrained on respective datasets as per the

configurations provided due to unavailability of pre-trained checkpoints), we considered

the existing non-blind image inpainting method [16] with best performance (as provided

in [24]). Since, it is worth to note that, the existing non-blind method may not work

feasibly for blind image inpainting task, we provided the ground-truth masks as inputs to
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these methods as suggested in [24]. From Table 5.2, it is clear that the proposed approach

for blind image inpainting performs remarkably as compared to state-of-the-art blind and

non-blind methods.

The visual results comparison for blind image inpainting is provided in Figure 5.3 and 5.4.

When compared qualitatively, our proposed method generates comparatively plausible

results on all the datasets for blind image inpainting.

Unseen Contamination Result Analysis

Here, we have evaluated the performance of our proposed approach for unseen

contamination such as random scratches and text. The comparison is done with the

existing state-of-the-art (TransCNNHAE [24]) for blind image inpainting. Figure 5.5

shows the performance of our proposed approach on unseen patterns as compared to

existing approach for blind image inpainting.
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5.2 Blind Image Inpainting via High-frequency Attentive

Deformable Convolution

In order to inpaint the corrupted image with large masked regions, it is necessary to focus

on capturing the higher receptive fields which further helps the network for attaining global

consistency in the output. In this contribution, we propose a multi-kernel transformer block

which mainly does the task of considering the maximum receptive fields. The corrupted

inputs for these tasks have almost similar degradation where the valid image contents are

blended with noisy content. In this kind of restoration, it is desired to focus on the pixel

variations or inconsistencies so that the high variations (residuals) can be captured easily.

In order to achieve this, and inspired from existing image restoration tasks such as image

rain removal, snow removal, we propose a novel high-frequency offset deformable feature

merging approach to capture the variations in the input feature maps. The contributions

of our work are:

• We propose an end-to-end transformer architecture for blind image inpainting

independent of intermediate mask prediction.

• A high receptive field extracting (multi-kernel) multi-head attention is proposed to

focus on the large contextual information for blind image inpainting.

• A novel high-frequency offset deformable feature merging module is proposed to

highlight the disturbances in the input image.

This proposed approach achieves remarkable performance improvement as compared to

existing state-of-the-art blind image inpainting methods. To further verify the efficiency

of our proposed approach, we evaluate the performance of our approach on different image

restoration tasks like rain and snow removal.

5.2.1 Proposed Method

The key consideration behind designing the proposed architecture is to introduce an

efficient blind image inpainting method which does not rely on any kind of mask prediction

whether it is of two-stage [23] or single-stage [24]. Here we propose a single-stage

end-to-end transformer architecture for blind image inpainting (see Figure 5.6). In this

single stage-architecture, we propose two major components namely: (a) high receptive

field extracting multi-head attention: to capture the global context efficiently, and (b)

high-frequency offset deformable feature merging: for processing the contaminated regions

by highlighting the high variations in the input feature maps. In this section, we will first

give the detailed exposition of the proposed architecture for blind image inpainting and

then we detail the proposed modules.
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Figure 5.6: Overview of the proposed architecture for blind image inpainting.

The existing multi-stage [131, 23] and single-stage [24] blind image inpainting methods

directly or indirectly depend on predicting the masked regions. Unlike these methods,

we urge to propose an approach which directly inpaints the image without any kind

of prediction of masked regions. To do this, we observed that, in case of blind image

inpainting, the contaminations are more like the rain and snow degradations in the weather

degraded images which are nothing but the unusual variations (high-frequency) in the

image [34]. Highlighting these variations may help the network towards efficient inpainting

results. This motivated us to propose a novel high-frequency offset deformable feature

merging module to finely focus on the high-frequency (pixel variations) degradations while

inpainting the image. Also, we include the high receptive field extracting multi-head

attention to capture the global context enabling the network to inpaint the image with

large corruptions.

The overview of proposed transformer based architecture with the multi-kernel multi-head

attention (MKMA) and high-frequency attentive deformable merging (HfADM) is shown

in Figure 5.6. To convert input image into feature space, we first apply the convolution

layer. These convolved features are processed through successive transformer blocks

followed by down-sampler. The input with spatial size m,n is then converted into m
8 ,

n
8

sized feature maps at 4th transformer block. In this transformer block, we propose a

multi-kernel multi-head attention (MKMA) to focus on large receptive fields efficiently.

These feature maps are then forwarded again to the successive transformer blocks but

now these blocks are followed with up-sampler to come up with actual spatial dimension

(m,n) at the last stage. Here, in the decoding stage, we apply the proposed high-frequency

attentive deformable merging (HfADM) of features while giving skip connection from

respective encoder to subsequent decoder level. The HfADM helps the network to

attentively identify the high variations in the input feature maps and guide the decoder
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for efficient residual generation. Finally, we again apply a convolution layer to generate

the high-frequency (residual) image in terms of negative residual. This high-frequency

residual image is then added with the input to generate final output (O).

Multi-Kernel Multi-head Attention (MKMA)

Blind image inpainting is a restoration task where the contaminations in the input appear

at random i.e. random in shape, size and locations etc. In order to tackle this randomness,

it is required to consider the maximum receptive fields and long-term dependencies. The

transformers are well known to consider long range dependencies effectively [17, 32, 24]. We

consider this property of transformers to advance the blind image inpainting performance

by effectively extracting the features and capturing long-term dependencies. In existing

work [32], the multi-head attention is introduced with less computational overhead. On

top of this, we introduce the multi-head attention with the capability of capturing more

receptive fields. This high receptive fields capturing capability may help the network to

inpaint the image with varying sized corrupted regions.

At first, the input feature map (F) is converted into query (Q), key (K) and values (V ) by

processing through the 1 × 1 convolution. Then, in order to capture maximum receptive

fields, the Q, K and V are processed through the multi-kernel depth-wise separable

convolutions (MKDC) (see Figure 5.6) which is represented as:

Q = Ψ1
D

(
C
[
Ψk
D

(
Ψ1
D(F)

)])
; k ∈ (1, 3, 5, 7) (5.10)

where, C[·] is concatenation, Ψk
D is the depth-wise separable convolution with k×k kernel

size. The K and V are calculated in similar way with multi kernel depth-wise separable

convolutions (MKDC). Further, the Q, K and V are reshaped and the attentive dot

product of Q, K is projected on V . So finally the multi-kernel multi-head attention

(MKMA) on input feature F is represented as:

MKMA(F) = σ(Q ·KT ) · V (5.11)

Applying, the MKDC on Q, K and V allows the network to delve into the maximum

receptive fields while capturing the long-term dependencies. Overall, this leads to globally

consistent inpainted image. Further, similar to existing transformer blocks, the output of

MKMA is fed to feed forward network (FFN) and layer-norm.

High-frequency Attentive Deformable Merging

The existing blind image inpainting methods aim to predict the corrupted locations

[23, 131]. Due to failure in appropriate prediction, these methods are unable to inpaint

the image efficiently. We assume, the blind image inpainting task is equivalent to the
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Figure 5.7: The feature map visualization of (a) conventional convolution and (b) the
proposed high-frequency as offsets to deformable convolution.

image restoration tasks such as image snow removal and rain removal as the noise is

blended on top of the actual information. The images with these types of degradations,

generally have high variations (residuals) which should be highlighted while restoring

the image. With this intuition, we propose high-frequency attentive deformable feature

merging module (HfADM). The HfADM allows the network to effectively identify the

irrelevant variations present in the input. Attentively forwarding these input variations

to the reconstruction decoder may help for structurally consistent inpainting. In order

to highlight the residuals, we apply the phenomenon of residual generation when the

input is processed through a forward and inverse function successively. So we generate

the high-frequency variations in the feature map F as: Fres = F − (↑↓ F), where

↑ and ↓ are up-sampling and down-sampling with convolution→pixel-shuffle and

convolution→pixel-unshuffle, respectively to highlight the variations in the input

(see Figure 5.7 (b)).

In order to utilize these residuals in an efficient way, it is required to adaptively process

these variations in the input feature maps. The deformable convolution is the key to

process the input features adaptively [163]. In deformable convolution, offsets play

an important role in determining the locations to be considered for further processing.

We provide the high-frequency attentive offsets to the deformable convolution in the

proposed HfADC block. The HfADC attentively picks the locations with respect to the

high-frequency (variations) in the input feature maps. Figure 5.7 shows that the proposed

approach effectively provides high variation offsets to deformable convolution. The output

of HfADC is concatenated with the respective decoding transformer block for generation

of the negative residual (high-frequency) image which is then added with the input to

generate final inpainted image (O). So, overall the HfADC for every position n on input
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feature map ψ is represented as:

γ′ = HfADC(γn) =
N∑
i=1

ψ(ni) · γ(n+ ni + ∆ni) ·∆mni (5.12)

where, ψ is kernel weights, ∆ni and ∆mni are the high-frequency attentive extracted offsets

and modulator scalars respectively, ni ∈ {(−1,−1), (−1, 0), ......, (0, 1), (1, 1)}. Extraction

of high-frequency attentive offsets is given as:

{∆ni,∆mni} = Θ = ψoff (〈γ,GELU(γhf )� γ〉) (5.13)

where, ψoff is offset convolution with kernel size 3 × 3, and GELU is Gaussian error

linear unit activation function, 〈a, b〉 is concatenation operation on a and b, and � is the

multiplication operation.

5.2.2 Experiments and Results Discussion

In this section we will discuss different experimental datasets, evaluation metrics,

quantitative and qualitative results of the proposed and existing state-of-the-art methods.

Datasets and Evaluation Metrics

Here: FFHQ [2], CelebA-HQ [162], Placs2 [3], Paris Street View (Paris SV) [4], and

ImageNet [5]. The comparative analysis for blind image inpainting is done with VCNet

[23], TransCNNHAE [24]. Since the image corrupted regions may vary, for fair comparison

we have compared methods with publicly available source codes on all the blind image

inpainting datasets.

In addition, to further verify the network performance further, we trained and tested the

proposed approach for rain and snow removal. The Rain 13k and Test1200 datasets [32]

are used to train and test the proposed network for rain removal application respectively.

For image desnowing, we use Snow100K dataset for training and SnowTest100K-L dataset

for testing [37]. For rain and snow removal, the quantitative values are collected from

[32] and [34] respectively. The qualitative results are collected from the official github

repository.

For quantitative results comparison of the proposed method and existing state-of-the-art

methods on blind image inpainting, peak signal-to-noise ratio (PSNR), structural

similarity index measure (SSIM), mean L1 error and Fréchet inception distance (FID)

metrics are used. Further, PSNR evaluated on Y channel and SSIM metrics are used for

comparison on rain and snow removal [32].
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Table 5.3: Ablation study on different configurations of the proposed network on FFHQ
dataset for blind image inpainting.

Network Configuration PSNR↑ SSIM↑ L1 ↓ FID ↓

(a) Transformer (MHA) 26.86 0.933 0.0297 9.124
(b) Transformer (MKMA) 27.58 0.942 0.0257 8.956

(c) High-frequency merging 28.05 0.951 0.0228 8.246
(d) Deformable merging 28.96 0.958 0.0189 7.978
(e) HfADM 29.38 0.960 0.0176 7.700

Implementation and Training Details

To train the network, we use AdamW optimizer with 3e−4 learning rate which is gradually

reduced with the cosine annealing strategy. Instead of utilizing the general L1 loss function,

we calculate the region based loss function while training the network i.e. L1 loss for

corrupted (Lc1) regions and L1 loss for valid regions (Lv1). As we are focused to highlight

the residual information in the corrupted regions, more weight is given to Lc1. Along with

this, we use the perceptual loss (LPer) to guide the network for efficient feature extraction.

The edge (LEdge) and structural similarity (LSSIM ) losses are used to focus on the edge

and structural information while training the network. So the overall loss to train the

network is given as:

LT = λcL
c
1 + λvL

v
1 + λPerLPer + λEdgeLEdge + λSSIMLSSIM (5.14)

where, λLoss is the weight assigned to respective Loss function which is verified

experimentally as: λc = 0.9, λv = 0.2, λPer = 0.6, λEdge = 0.4, λSSIM = 0.5. To

train the network for rain and snow removal, instead of separate Lc1 and Lv1, we used L1

loss for overall image.

Figure 5.8: Qualitative result analysis of ablation study on different configurations of the
proposed network for blind image inpainting.
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Ablation Study

To determine the design choices of the network for blind image inpainting, we performed

various experiments on FFHQ dataset. How the successive inclusion of each proposed

module led to the performance improvement is discussed in this section.

Need of Multi Kernel Multi-head Attention:

The first observed limitation of existing blind inpainting methods is, they fail at inpainting

the image with variable contaminations. In order to mitigate this limitation, unlike [24],

we used the end-to-end transformer network architecture, which helped to extract the

long-term dependencies. The results for the end-to-end transformer with conventional

multi-head attention (MHA) [32] configuration are considered as baseline for all the

experiments (see configuration (a) in Table 5.3). So, we proposed a multi kernel multi-head

attention module in the transformer block which helped to improve the performance in

terms of all the evaluation metrics (see configuration (b) in Table 5.3). Also, from Figure

5.8, we can see that transformer block with existing multi-head attention (MHA) [32] is not

able to capture maximum information. Whereas, the multi-kernel multi-head attention

(MKMA) improve the results (see Figure 5.8 (a) and (b)).

Effect of High-frequency Attentive Deformable Merging:

Embedding the encoder features while reconstruction plays an important role in image

restoration task. Efficient feature extraction from encoder may further enhance the

performance. In order to evaluate the performance of proposed high-frequency attentive

deformable merging, we performed the experiments in which various configurations are

used as given in Table 5.3 (configuration (c), (d) and (e)). Utilizing the high-frequency

feature merging (configuration (c)) improved the performance a bit as compared to

direct merging of features (configuration (a) and (b) in Table 5.3). Further, applying

the conventional deformable convolution (see configuration (d) in Table 5.3) helped

the network to improve the performance over direct merging of the features. So, we

designed the amalgamation of attentive high-frequency features with deformable

convolution which improved the inpainting performance (see configuration (e) in Table

5.3). From Figure 5.8 (c), (d) and (e) it is clear that the amalgamation of high-frequency

attention in deformable convolution layer generate plausible results for image inpainting.

Overall, our proposed modules effectively help the network with the improved performance

for the task of blind image inpainting.

Blind Image Inpainting Results

For the task of blind image inapinting, we considered five different datasets covering large

variety of cases like natural places scenes, objects and faces. The evaluation in terms of

PSNR, SSIM, L1 error and FID is tabulated in Table 5.4. Along with state-of-the-art

blind image inpainting methods [23, 24] ([24] is retrained on respective datasets as per the
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Table 5.4: Comparison of the proposed method (ours) and existing state-of-the-art
methods for blind image inpainting.

Method PSNR↑ SSIM↑ L1 ↓ FID↓
FFHQ

VCNet [23] 23.62 0.861 0.0482 10.148
TransCNNHAE[24] 27.05 0.941 0.0281 9.424
Ours 29.38 0.960 0.0176 7.700

CelebA-HQ
VCNet [23] 25.59 0.874 0.0396 9.275
TransCNNHAE[24] 27.71 0.949 0.0250 7.251
Ours 29.12 0.959 0.0179 7.209

ImageNet
VCNet [23] 22.46 0.856 0.0518 21.984
TransCNNHAE[24] 24.68 0.903 0.0357 26.655
Ours 26.65 0.931 0.0250 21.510

Places2
VCNet [23] 24.09 0.869 0.0429 28.821
TransCNNHAE[24] 26.87 0.910 0.0261 17.640
Ours 28.62 0.928 0.0181 17.263

ParisSV
VCNet[23] 23.62 0.824 0.0527 64.215
TransCNNHAE[24] 26.72 0.896 0.0352 41.505
Ours 28.71 0.919 0.0224 39.414

configurations provided due to unavailability of pre-trained checkpoints), we considered

the existing non-blind image inpainting method [16] with best performance (as provided

in [24]). Since, it is worth to note that, the existing non-blind method may not work

feasibly for blind image inpainting task, we provided the ground-truth masks as inputs to

these methods as suggested in [24]. From Table 5.4, it is clear that the proposed approach

for blind image inpainting performs remarkably as compared to state-of-the-art blind and

non-blind methods.

The visual results comparison for blind image inpainting is provided in Figure 5.9. When

compared qualitatively, our proposed method generates comparatively plausible results on

all the datasets for blind image inpainting.

Rain Removal Results

As the design of the proposed architecture is mainly motivated with the degradation

similarity to rain and snow removal tasks, the performance of proposed method is

compared with existing state-of-the-art methods for rain removal. The quantitative

results tabulated in Table 5.5 show that the proposed architecture achieves significant

improvement over existing methods for rain removal. Specifically, our proposed

architecture obtain 1.40 dB PSNR and 0.012 SSIM gain as compared to existing best

method [32] for rain removal. Also, the qualitative results comparison is provided in Figure

5.10. The proposed method restores the image faithfully as compared to state-of-the-art
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Figure 5.9: Qualitative results comparison of the proposed method (Ours) with existing
state-of-the-art methods (VCNet [23], CTSDG [16], TransCNNHAE [24]) for blind image
inpainting.

Figure 5.10: Qualitative results comparison of the proposed method (Ours) and
existing state-of-the-art methods (DerainNet[25], SEMI[26], DIDMDN[27], UMRL [28],
RESCAN[29], PreNet[30], MPRNet[31], Restormer[32]) for rain removal.

methods for rain removal.

Snow Removal Results

We evaluate the performance of proposed method on Snow100K-L test dataset with

existing state-of-the-art methods for snow removal. The quantitative comparison provided

in Table 5.6 shows that, our proposed method achieves the best performance as compared
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Table 5.5: Comparison of the proposed method (Ours) and existing state-of-the-art
methods on Test1200 [27] dataset for rain removal.

Method Publication PSNR↑ SSIM↑

DerainNet[25] TIP-17 23.38 0.835
SEMI[26] CVPR-19 26.05 0.822
DIDMDN[27] CVPR-18 29.65 0.901
UMRL [28] CVPR-19 30.55 0.910
RESCAN[29] ECCV-18 30.51 0.882
PreNet[30] CVPR-19 31.36 0.911
MSPFN[164] CVPR-20 32.39 0.916
MPRNet[31] CVPR-21 32.91 0.916
SPAIR[165] ICCV-21 33.04 0.922
Restormer[32] CVPR-22 33.19 0.926
Ours - 34.59 0.938

Table 5.6: Comparison of the proposed method (Ours) and existing methods on
SnowTest100k-L test dataset [37] for snow removal.

Method Publication PSNR↑ SSIM↑

DetailsNet[166] CVPR-17 19.18 0.7495
DesnowNet[37] TIP-18 27.17 0.8983
JSTASR[167] ECCV-20 25.32 0.8076
WiperNet [33] ITS-22 27.64 0.8857
Swin-IR[141] ICCV-21 28.18 0.8800
DDMSNET[168] TIP-21 28.85 0.8772
All-in-One[169] CVPR-20 28.33 0.8820
TransWeather[34] CVPR-22 28.48 0.9308
Ours - 30.02 0.9261

to existing state-of-the-art methods for snow removal. Also, it is worth to note that our

proposed method achieves the improvement of 1.48 dB PSNR as compared to existing

best method [34]. The visual results comparison for snow removal is provided in Figure

5.11. This comparison shows the ability of the proposed approach towards effective snow

removal as compared to existing state-of-the-art methods.

5.3 Summary of Proposed Contribution

In this chapter we proposed two solutions for blind image inpainting. The first solution

(Section 5.1) proposes an end-to-end transformer with wavelet coefficient processing and

providing them as a query to multi-head attention in the transformer block. Further,

the gated omni-dimensional attention is proposed to forward the encoder features to

the respective decoder as a skip connection. Along with the comparison with blind and

non-blind image inpainting methods, the performance of the proposed approach is verified

for unseen contamination.

Similarly, the second contribution inpaint the images with arbitrary size, shape and
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Figure 5.11: Qualitative results comparison of the proposed method (Ours) and existing
state-of-the-art methods (WiperNet [33], TransWeather[34]) for snow removal.

Table 5.7: Computational complexity analysis (the best and second best are shown in
bold and underline).

Method Parameters (M) ↓ FLOPs (G) ↓
VCNet [23] 3.79 65.25
CTSDG [16] 52.14 53.38
TransCNNHAE [24] 2.75 19.71
III:A 3.24 16.61
III:B 4.06 29.01

locations by proposing a multi-kernel multi head attention. With the observation of

similarity in blind image inpainting and other restoration tasks (image rain/snow removal),

we proposed a high-frequency attentive deformable merging to highlight the undesired

disturbances in the input image. The quantitative and qualitative comparison is carried

out with the blind image inpainting methods. Further, the experiments on rain and

snow removal proves the efficiency of the proposed method when compared with existing

state-of-the-art methods for rain and snow removal.

The computational complexity comparison of the proposed approaches and existing

methods is given in Table 5.7 in terms of the number of trainable parameters and the

number of floating point operations (FLOPs). Although moderately complex in terms of

the number of trainable parameters and FLOPs, our proposed approaches perform better

as compared to compared to state-of-the-arts.



120 Chapter 5. Blind Image Inpainting



Chapter 6

Conclusion and Future Scope

6.1 Conclusion of Proposed Work

The main aim of this thesis work is to design novel deep generative architectures for image

inpainting and mask prediction deep generative architectures for blind image inpainting.

The major concern of image inpainting task is the balance between the quality and

complexity of the existing approaches for image inpainting. Specifically, for blind image

inpainting case, the existing approaches directly or indirectly depend on intermediate

mask prediction failing in which leads to undesired inpainted results. Many approaches

exist with coarse-to-fine or single-stage architectures for image inpainting having either

inconsistent results or high complexity.

In order to have an architecture producing highly plausible results, we proposed different

coarse to fine architectures for image inpainting. The main objective of these proposed

coarse-to-fine architectures is to generate spatially consistent inpainting results with

remarkable performance.

Also, to have computationally efficient architecture for image inpainting, we proposed

different architectures with less computational cost as compared to existing approaches

for image inpainting. These proposed architectures generate remarkable outcomes along

with having less complexity as compared to existing approaches.

The comparison of all the proposed approaches for image inpainting in terms of

computational complexity and PSNR, SSIM on three different datasets corrupted using

NVIDIA masks is given in Table 6.1.

Further, the blind image inpainting is a task where the inpainting architecture should

be ideally independent of knowledge of masked regions. In this regard we proposed

two mask prediction independent approaches for blind image inpainting. The proposed

blind image inpainting architectures give remarkable performance on five different datasets

(CelebA-HQ, FFHQ, Places2, Paris Street View and ImageNet) as compared to existing

blind image inpainting methods.

The comparison of the proposed approaches for blind image inpainting is provided in Table

6.2 in terms of computational complexity, PSNR, and SSIM on four different datasets.
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Table 6.1: The quantitative comparison between the proposed approaches in terms of
computational complexity (MS: Model Size in number of trainable parameters in Millions,
GFLOPs: Giga FLOPs number of operations, RT: Run-time in sec/image), PSNR and
SSIM for CelebA-HQ, Places2 and Paris SV datasets corrupted using NVIDIA masks [6]
for image inpainting.

Methods
I:A

(Sec. 3.1)
I:B

(Sec. 3.2)
I:C

(Sec. 3.3)
II:A

(Sec. 4.1)
II:B

(Sec. 4.2)
II:C

(Sec. 4.3)

Complexity

MS 56.00 4.10 2.30 14.01 4.80 0.97
GFLOPs 430.0 7.5 116.0 6.5 40.1 13.7

RT 0.40 0.08 0.45 0.09 0.24 0.08

CelebA-HQ
PSNR 29.83 28.19 28.08 28.25 - 28.06
SSIM 0.946 0.929 0.923 0.942 - 0.926

Places2
PSNR 26.22 26.87 24.81 26.18 25.14 24.51
SSIM 0.905 0.879 0.852 0.876 0.884 0.870

Paris SV
PSNR 28.87 - 27.8 - 26.98 27.54
SSIM 0.910 - 0.863 - 0.856 0.862

Table 6.2: The quantitative comparison between the proposed approaches (III:A, III:B)
in terms of computational complexity (MS: Model Size in number of trainable parameters
in Millions, GFLOPs: Giga FLOPs number of operations, RT: Run-time in sec/image),
PSNR and SSIM for CelebA-HQ, FFHQ, Places2, Paris SV and ImageNet datasets for
blind image inpainting

Method III:A III:B III:A III:B

Complexity
MS FLOPs

3.24 4.06 16.61 29.01

Dataset PSNR SSIM

CelebA-HQ 28.21 29.12 0.951 0.959
FFHQ 28.19 29.38 0.952 0.960
Places2 27.55 28.62 0.918 0.928
Paris SV 27.81 28.71 0.905 0.919

6.2 Future Scope

In this work, we proposed different approaches for image inpainting and blind image

inpainting. The blind image inpainting task can be further extended in order to have

computationally efficient architectures. Also, the proposed work can be extended for

image outpainting where the image is painted outwards from the inside to enlarge the

view. Considering efficiency of the proposed architectures, this work can be extended for

video inpainting task.
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