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Lay Summary

Image Super-Resolution (SR) is the task of reconstructing a low resolution image to

generate a plausible looking high-resolution image. For example, we have a image that

is taken from a smartphone, and it is corrupted on account of hand tremor. Image

super-resolution, specifically burst super-resolution helps to recover this corrupted image

by merging information from multiple frames. Also, if we have some old photo that is

degraded on account of low-quality cameras or time issues, we can use SR to restore the

quality of image.

The existing deep-learning based SR models do not distinguish much about the frequency

of image (e.g. low and high-frequency) equally across the channels and often lack the

discriminative learning ability that limits their ability to implicitly recover high-frequency

details. Along with yielding photo-realistic outputs, network size is equally a challenging

problem in image SR. The existing models are quite heavy with millions of parameters, and

inference through such a complex network demands billions of floating point operations.

Recently, multi-frame super-resolution approaches are gaining popularity. They seek the

reconstruction of HR images by employing numerous degraded LR images of a scene.

But capturing LR images under the burst mode results in sub-pixel shifts among the

multiple LR burst images and thereby, generates different LR samplings of the underlying

scene. Additionally, in general the existing CNN-based super-resolution (SR) methods are

often based on the assumption that the degradations are fixed and known (e.g. bicubic

downsampling). However, these approaches suffer a severe performance drop when the

real degradation is different from the predefined assumption.

In this work, we propose different methods for tackling different problem in image SR. All

our approaches make use of novel state-of-the-art concepts for proposing different solutions

for each problem. Our proposed methods give visually plausible results with less time as

compared to the existing methods.



viii

Abstract

Digital images, an extension of human memory is one of the most important information

carrier for human activities. It plays a critical role in many day-to-day applications, from

online social networking to commercial advertising to medical images. On account of

the constraints in the physical characteristics of the digital sensor, e.g. size and density,

the resolution of the captured image is limited. In many cases, the limited resolution

becomes a barrier for fast and accurate analysis. Thus, it is highly desirable to breach

the resolution limitation and acquire high-resolution (HR) digital images. One of the

most promising approach is to utilize signal processing techniques for obtaining an HR

image from Low-resolution (LR) image, and this resolution enhancement approach is called

super-resolution (SR). The major advantage of this software approach is that it costs

much less than upgrading hardware and existing camera systems. Over the past decades,

many pioneers have developed various algorithms to improve the quality of reconstructed

images. More critically, low-resolution images have lesser number of pixels representing

an object of interest, thus making it difficult to find the details. SR targets to solve

this problem, whereby a given LR image is upscaled to retrieve an image with higher

resolution and thus obtain more discernible details that can be employed in downstream

tasks like face recognition, and object classification. The common goal of these techniques

is to provide finer details than the given low-resolution (LR) image by increasing the

number of pixels per unit of space. Additionally, in comparison to DSLR cameras,

low-quality images are generally output from portable devices on account of their physical

limitations. The synthesized low-quality images usually have multiple degradations -

low-resolution owing to small camera sensors, mosaic patterns on account of camera filter

array and sub-pixel shifts on account of camera motions. These degradations generally

refrain the performance of single image super-resolution for retrieving high-resolution

(HR) image from a single low-resolution (LR) image. Considering the above points,

the current prevailing deep-learning based super-resolution algorithms often lack in some

aspects: they are highly dependent on designing heavy-weight architectures to achieve

state-of-the-art (SoTA) results and generally do not take into consideration the real-world

degradations. They generally fail in maintaining the balance between spatial details and

contextual information, that is the basic requirement for exhibiting superior performance

in super-resolution task. We also observe that the recent approaches focus more on

feature extraction, without paying much attention to the up-sampling strategies involved.

Moreover, the current approaches fail to leverage the advantages of capturing abundant

information from multiple LR images. Our work focuses on analysing and designing

different solutions for super-resolution task in the context of providing solution to the

above mentioned challenges.

The significant contributions of this work are : (1) A novel approach for generating
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contextually enriched outputs by preserving the required information without any sort

of prior information, (2) A novel lightweight approach capable of generating contextually

enriched features for image super-resolution and other applications, (3) A novel framework

for efficiently merging multiple burst LR RAW images in a coherent and effective way to

generate HR RGB outputs with realistic textures and additional high-frequency details,

and (4) A novel transformer based blind approach for resolving the real-world degradations.

The proposed super-resolution approaches are evaluated on the current SoTA single image

SR databases such as Set5 [1], Set14 [2], BSD100 [3], Urban100 [4], DIV2K [5], Flickr2K

[6], and burst SR databases such as BurstSR [7], and SyntheticBurst dataset [7] and

animated SR database, Manga109 [8]. Also, we evaluate our proposed modules for

DND [9], SIDD [10] for the case of single image denoising and color [11] and gray-scale

[12] datasets for burst denoising. We utilize LoL [13] and MIT [14] datasets for single

image low-light enhancement and SONY dataset for burst low-light enhancement. The

qualitative and quantitative results of proposed methods are examined and compared

with SoTA hand-crafted and learning based methods. Standard quantitative evaluation

parameters such as Structural Similarity Index (SSIM), Peak-to-Signal Ratio (PSNR) and

Learned Perceptual Image Patch Similarity (LPIPS) are used to evaluate the proposed

super-resolution approaches.

Keywords: Image Super-Resolution, Burst Super-Resolution, Blind Super-Resolution,

Multi-Scale Feature Learning, Frequency Extraction, Denoising, and Low-light

enhancement.
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Chapter 1

Introduction

In this chapter, the topic of image super-resolution is introduced. The introduction about

super-resolution is given in Section 1.1 and the motivation of this work is discussed in

Section 1.2. Section 1.3 introduces a few applications of super-resolution and its usability

in the real world. The common research challenges in the field of super-resolution are

discussed in Section 1.4. The major problems identified in the task of super-resolution are

discussed in Section 1.5. In Section 1.6, the main aim and objectives of our research work

are discussed. Section 1.7 defines the major contributions of our work. Finally, Section

1.8 provides the overall structure and outline of the thesis.

1.1 Introduction

We all have seen old monochrome pictures (most often grayscale) that have several

artefacts, which are then colourised and thereafter made to look like they were recently

acquired with a modern camera. It is an example of image restoration, that can be

generally defined as the process of retrieving the underlying high-quality original image

from a corrupted image. Several factors affect the output quality of an image, and the

most common are the suboptimal photography conditions (e.g., on account of motion blur,

poor lightning conditions), lens properties (e.g., noise, blur, lens flare), and post-processing

artefacts (e.g., lossy compression schemes, that perform compression in such a manner that

is irreversible and consequently leads to loss of information).

Another factor that affects the image quality is the resolution. More critically,

low-resolution (LR) images have lesser number of pixels representing an object of interest,

thus making it difficult to find the details. It can be either because the image itself is very

small, or because an object is too far from the camera thus causing it to cover a small area

within the image. Super-Resolution (SR) targets to solve this problem, whereby a given LR

image is up-scaled to retrieve an image with higher resolution for more discernible details

that can then be employed in downstream tasks like face recognition, object classification,

and so on.

Additionally, extensive use of high-resolution displays, high-definition televisions and

hand-held portable devices in our day-to-day life is the primary reason for the

recent explosive attention of image super-resolution in the research field and industrial

applications. This high-resolution technology is also exploited much for broadcasting of

the image content. However, the images while data transmission are often contaminated

on account of the medium and dynamics between the cameras, scene elements and various
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Figure 1.1: Overall framework of SR.

Figure 1.2: The training process of data-driven based deep SR networks.

dependent or independent noises. Therefore, restoration of images is vital for improving

their aesthetic quality.

As shown in Figure 1.1, let us consider a low-resolution image, Ix ∈ Rh×w and the

corresponding ground-truth high-resolution image as Iy ∈ RH×W , where H > h and

W > w. Generally, in a single image super-resolution (SISR) framework as shown in Fig.

1.2, any LR image is modelled as Ix = D(Iy; θD), where D denotes a degradation map

RH×W → Rh×w and θD represents the degradation factor. Typically, the researchers try

to model the unknown degradation process. The most popular degradation model is:

D(Iy; θD) = (Iy ⊗ k)↓s + n (1.1)

where, Iy ⊗ k denotes the convolution operation between the blur kernel k and HR image

Iy. ↓s is a subsequent downsampling operation with scale factor s, and n represents the

additive Gaussian noise with standard deviation σ. For the SISR task, it is required to

recover an SR image, ISR from the LR image IX . Thus, the overall task can be formulated

as ISR = F (Ix; θF ), where F denotes the SR algorithm and θF represents the parameter

set of SR process.

Recently, the researchers have resorted for SISR as an end-to-end learning task, that relies

on massive training data and effective loss functions. Thus, the overall SISR task can be
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transformed into the following optimization goal:

θ̂F = arg
θF

minL(ISR, Iy) + λϕ(θ) (1.2)

where, L denotes the loss function between the generated SR image ISR and the HR image

Iy, ϕ(θ) is used to represent the regularization term, and λ is the trade-off parameter

for controlling the percentage of regularization term. Depending upon the degradation,

especially the downsampling operation used to generate the low-resolution images, image

super-resolution can be classified into single image and blind image super-resolution.

Additionally, depending upon the number of input LR images used for improving

the resolution of images, image super-resolution can be classified into single image

super-resolution and multi-frame super-resolution.

1.2 Motivation

For most electronic imaging applications, images with high-resolution are desired and

often required. At this point, one natural question is ”what is the need to get into

the trouble of developing algorithms for obtaining the results, if we could use better

quality cameras?” The answer to this question lies in some practical considerations,

for instance though mobile phone cameras capture fairly good quality images, but they

yield several imperfections resulting primarily from the need to utilize lenses and sensors

which are compact enough for fitting on a phone without making it bulky, while also

being comparatively cheap. Though, the most feasible solution for increasing the spatial

resolution is to reduce the pixel size by utilizing sensor manufacturing techniques. But the

decrease in pixel size, also reduces the amount of light available. It results in shot noise

that decreases the quality of image. Thus for reducing the pixel size, without suffering the

effects of shot noise, there exists a limitation in pixel size reduction, and the optimal size

of pixel is 40 um2 for a 0.35 um CMOS process. Presently, the current sensor technology

has almost touched this level. Another approach to increase the spatial resolution is to

reduce the chip size or increase the focal length. But, the increase in focal length will lead

to an increase in the size and weight of cameras and reducing the chip size leads to an

increase in capacitance. Therefore to overcome the limitations of hardware technology, a

new software based approach is introduced towards increasing the spatial resolution.

One of the most promising approach is to utilize signal processing techniques for obtaining

an HR image from LR image, and this resolution enhancement approach is called

super-resolution. The major advantage of this being that it costs less and the existing

LR imaging systems can be utilized.

Even for the case of CCTVs, it is very interpretable that the cost of cameras increase

with higher quality, additionally higher-quality footage also demands more storage space,
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leading to additional costs. Furthermore, there exist several images that are acquired

from low quality cameras but they contain necessary information. Hence, it is important

to improve the quality of these images.

Though, we can increase the size of an image by using basic editing software programs, like

Microsoft Paint. But, these software programs often employ simple algorithms like bicubic

and bilinear interpolation that are fast, but not much capable of producing high-fidelity

images. In fact, the generated output images tend to contain much pixelations, and it is

not easier to discern details. Since, increasing the resolution means increasing the number

of pixels, that also means that we need to infer the missing information. This is the

main reason due to which the simple interpolation techniques like bicubic, nearest and

bilinear interpolation are not able to yield satisfactory results as they do not leverage

any knowledge by looking at other similar samples to infer the missing data and fail to

generate high-quality images. Thus the overall motivation for image SR can be summed

as:

� Down-sampled images make the data more manageable by reducing the dimension

of data and thus resulting in fast processing of images.

� The possible hardware based solutions (designing better quality cameras) for

increasing the resolution are generally costly compared to the algorithmic based

approaches.

� There are plenty of smartphone manufacturers deploying super-resolution in their

products (Samsung, GooglePixel, Apple) to enhance their zooming capabilities.

� Most digital videos are generated by complex pipeline mapping the RAW sensor

data to low-resolution frames resulting in loss of high-frequency details.

� Degradations arising due to poor imaging equipments, erosion in the air and time

can degrade the quality of image.

1.3 Applications of Image Super-Resolution

Image SR is an important class of image processing techniques in computer vision and

image processing. Besides improving image perceptual quality, it enjoys a wide range of

real-world applications, like medical imaging, surveillance and security, amongst others.

Below, we have shortly described the usability of the SR in real-world applications:

1.3.1 Multimedia Industry and Video Enhancement

In today’s scenarios, movies, animations, and visual effects all require HD data, so SR

can be a useful technique for video enhancement as shown in Fig. 1.3. Additionally, the

resolution of TV displays has increased over the past few years. Zooming has recently
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Figure 1.3: Zooming and security based applications of super-resolution.

been the most important feature of smartphone cameras with the leading manufacturers

advertising their devices to achieve high level of picture quality at sometimes high zoom

level. Thus, SR is now used to provide high quality pictures at high zoom levels in

Huawei’s flagship models and several emerging devices of leading mobile phone makers. In

contrast to the noise filtering and edge enhancement techniques, SR provides real increase

of effective resolution thus making visible the indistinguishable details. It captures more

details in zoomed area, and replaces the optical zoom lens for a fraction of cost of such

lens, without adding much weight and size to the device.

Nowadays demand for high-resolution security cameras is increasing day by day. The

higher the resolution of the security cameras, better is the image quality and it will generate

vivid details. For instance, 4K (3840×2160) security cameras generate more sharp and

clean images than 1440p (2560×1440), 1080p (1920×1080), and 720p (1280×720) security

cameras. But to ensure the long-term stable operation of recording devices, as well as the

appropriate frame rate for dynamic scenes, these surveillance products tend to sacrifice

resolution to some extent. Thus, SR techniques could be deployed to adapt images for

displaying on devices with different resolutions and for generating visually pleasing outputs

from surveillance cameras.

Additionally image down-scaling and compression techniques are widely employed for

meeting the limits of hardware storage and network capacity, that sometimes sacrifice

the visual effects as well as causes trouble in visual detection and recognition. Thus SR

techniques are widely deployed to reduce the cost as media could be sent at low-resolution

and up-scaled on the fly.

Latest developments in machine learning (ML) when combined with increasingly powerful

Internet of Things (IoT) devices through efficient processors, are resulting in near real-time

object detection and classification for augmented reality (AR) and virtual reality (VR)

applications. Thus opening the opportunities for exploring new object detection and

classification technologies leveraging super-resolution (SR), that have the potential to be

integrated into small, mobile and low-power PSNR devices.
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Figure 1.4: (a) Low-Resolution vehicle plate recognition [15], (b) Face recognition [16],
and (c) Object detection in satellite images [17].

Figure 1.5: Application of super-resolution in remote sensing.

1.3.2 Performance Improvement in High-Level Vision Problems

Super-resolution is a classical problem of reconstructing low-resolution images, that is

naturally lost after downsampling the HR image. It is thus widely employed in applications

like face recognition, object detection, vehicular plate recognition as shown in Figure 1.4.

As the complexity of traffic management is becoming more and more challenging year

by year, much research is going on for improving the efficiency and accuracy of vehicle

plate recognition. They are highly useful for traffic monitoring and control systems

like intelligent parking management, finding stolen vehicles and traffic law enforcement.

However in surveillance systems, low-resolution images or videos are widely used. In

low-resolution systems, the car plate text is very negligible on account of distance,

illumination, and distortion. Thus super-resolution techniques come handy for improving

the car plate image quality by processing a single LR image or multiple LR images into a
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Figure 1.6: Applications in (a) Medical [18] and, (b) Astronomical images [19].

single HR image.

In remote sensing field as shown in Figure 1.5, unlike ordinary camera imaging, images

acquired from space-borne equipments are greatly affected to different degrees on account

of several factors: (1) ground sampling area, (2) atmospheric attenuation. Thus,

the quality of existing LR remote sensing images is too low for meeting the learning

requirements of models. For solving this, SR strategy can be used to reconstruct a

low-resolution image.

1.3.3 Astronomical and Medical Image Processing

High-resolution telescopic imaging is quite a necessity in astronomy, especially for binary

stars, and gravitational lenses. Space telescopes or ground-based telescopes are capable

of reaching diffraction-limited spatial resolution. For increasing the spatial resolution and

to obtain more discernible details of the celestial bodies, the astronomers are trying to

build much larger space and ground-based telescopes. However, the cost of these kind of

telescopes will also become more expensive. In contrast, SR technologies can break the

diffraction limit of the imaging system and enhance its spatial resolution with compact

set-up and low cost, thus making SR telescopic imaging more attractive and meaningful.

In the field of medical imaging, for each imaging modality, specific physical laws are in

control, defining the meaning of noise and the sensitivity of the imaging process. But, how

to extract 3D models of the human structure with high-resolution images while reducing

the level of radiation is still an open challenge. Until now, the designers of medical device

were trying to make a trade-off between the size of device and resolution. Additionally,

the dimensions of camera modules and their integrated image sensors are often limited

by the outer diameter of the endoscope. But, for obtaining a sufficiently bright image

while limiting the heat dissipation of the LEDs, the sensors must have a relatively large

pixel size. Thus SR algorithm enhances the sensor’s resolution and image quality that

enables the doctors and nurses to view the captured images on high-definition monitors

and tablets.

Thus, the overall applications of super-resolution can be summarized as:

� Smartphones for enabling high-quality lossless zoom.
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Figure 1.7: Failure cases of a non-blind SR method, that is unable to sharpen the texture
for a blurry input and keeps the noise for noisy input. Here, SRResNet is a popular
non-blind SR method [20].

� Medical Cameras for enabling doctors to see with the smallest endoscope.

� Machine Vision Cameras for achieving robust object detection during weather

conditions.

� VR/AR Head Mounted Displays for enhancing the picture quality of see-through

cameras.

� Laptop Cameras for achieving picture quality by keeping thin structure.

1.4 Research Challenges

There are several challenges that are yet to be resolved for developing a robust automated

system. Because, these systems demand the SISR data as input for further processing like

video surveillance, traffic monitoring, etc. The challenges for SR are discussed below:

1.4.1 Performance Degradation for Real-World Images:

Image SR is highly limited in real-world scenarios like suffering from unknown

degradations. Real-world images often tend to suffer from degradations like blurring,

compression artifacts, and additive noise. Therefore, the models trained on datasets that

are synthesized manually perform poorly in several real-world scenes as shown in Figure

1.7. Further, such methods assume a known fixed degradation process, and thus tend to

fail when approached with different and more complex degradations than those for which

they were specifically trained upon. Moreover, the type of degradations afflicting an image

are generally unknown.

1.4.2 Ill-posed Problem

Generally a super-resolution model is trained by using pairs of high and low-resolution

images. Infinitely several high-resolution images, as shown in Figure 1.8 can be

down-sampled to the same low-resolution image. It makes SR problem an ill-posed one,

that cannot be inverted with a deterministic sampling. This one-to-many stochastic

formulation has not been explored in literature and generally outputting multiple
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Figure 1.8: Several high-resolution images could be downsampled to a single low-resolution
image, making SR an ill-posed problem.

predictions for a single image leads to indeterministic mapping, especially for real-world

images.

1.4.3 Aliasing Artifacts in Existing Upsampling Methods

Upsampling plays the most indispensable role while reconstructing a low-resolution

image. Despite rapid advancements in learning based super-resolution techniques, there

is dearth of research being done on the upsampling techniques. One of the most popular

learnable upsampling method, deconvolution can easily have uneven overlap, especially

when the kernel size is not divisible by stride, this uneven overlap is more prominent

for two dimensional cases, where the overlap tend to multiply together thus generating

checkerboard artifacts as shown in Figure 1.9. Sub-pixel convolution (another popular

learnable upsampling layer) is a specific implementation of deconvolution layer, being

interpreted as a standard convolution in low-resolution space followed by periodic shuffling

operations. Though, sub-pixel convolution is constrained to not allow deconvolution

overlap but it generally suffers from artifacts owing to their random initializations.

Specifically, the involved shifting of feature channels into the spatial domain generally

results in the introduction of alignment artifacts.

1.4.4 Incapability of Single-Image Approaches in Smartphones

As shown in Figure 1.10, in some of the scenarios single image approaches fail to properly

retrieve the high-frequency details when compared to multi-frame approaches. However,

lesser research has been done in the field of multi-frame super-resolution as compared

to single frame approaches. Additionally, with the soaring popularity of smart-phones

in day-to-day life, the demand for capturing high-quality images is rapidly increasing.

However, the camera in smartphone has several limitations due to the constraints placed on

it in order to be integrated into smartphone’s thin profile. The most prominent hardware
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Figure 1.9: (a) Aliasing artifacts introduced by popular Conv2d-Transpose upsampling
layer, (b) Desired high-resolution image.

limitations are the small camera sensor size and the associated lens optics that reduce their

spatial resolution and dynamic range [74], impeding them in reconstructing DSLR-alike

images. To deal with these inherent physical limitations of mobile photography, one

emerging solution is to leverage multi-frame (burst) processing instead of single-frame

processing.

1.4.5 Alignment Issues while Fusing Multiple Frames

As shown in Figure 1.11, the major issue for multi-frame super-resolution is the artifacts

arising on account of inaccurate alignment of the multiple frames. Generally, any burst

processing approach is limited by the accuracy of alignment process due to the camera and

scene motion of dynamically moving objects. Therefore, it is crucial to design a module

for facilitating accurate alignment, as the subsequent fusion and reconstruction modules

must be robust to misalignment for generating an artifact-free image.

1.5 Problem Statement

From the above observations, we have identified the following problems for image

super-resolution:

1. The performance of the existing state-of-the-art approaches for super-resolution is

highly dependent upon prior edge information.

2. Lack of computationally efficient architectures for image super-resolution.
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3. More end-to-end novel solutions for the burst processing /multi-frame processing

approach need to be explored.

4. The generalization capability of the existing super-resolution approaches is limited

in real-world scenarios.

5. The existing up-sampling approaches generate artifacts (jaggy, and checkerboard) in

the reconstructed image.

1.6 Aims and Objectives

From the identified problems in existing image super-resolution methods, we define the

aim and objective of our work as:

Aim: To propose novel solutions for resolving different problems in Image

Super-Resolution.

Objectives:

1. To design a novel SR approach for improving the desired high-frequency details and

to preserve the low-frequency information without using prior information.

2. To propose a novel lightweight approach that is capable of generating spatially

accurate and contextually enriched features.

3. To propose a novel burst/multi-frame processing super-resolution approach for

targeting alignment and fusion problems.

4. To propose a novel blind SR approach that is generalized for different real-world

degradations.

1.7 Main Contributions

This study is focused on analysing the different modalities and recent trends of image

super-resolution task. The major contributions of this work are listed below:

� A novel approach is proposed to improve the desired high-frequency details and

preserve the low-frequency information for SR task without any explicit prior

information.

� A novel lightweight approach is proposed that is capable of generating spatially

accurate and contextually enriched features by maintaining a proper trade-off

between accuracy and speed.

� A novel multi-frame super-resolution based approach is proposed that targets at

solving multiple degradations-low resolution owing to small camera sensors, mosaic

patterns on camera filter array, and sub-pixel shifts on account of camera motion.
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Figure 1.10: Single frame approach vs. multi-frame approach. (a) Original image, (b)
Single-frame output, and (c) Multi-frame output

� An efficient transformer-based network, based upon the kernel-oriented adjustment

of features, KOADNet is proposed that jointly learns the kernel degradation and

content information for adapting to the blur characteristics in real-world images.

1.8 Thesis Structure

� Chapter 1: This chapter describes the motivation behind the present work and

presents the preface of whole thesis work.

� Chapter 2: This chapter describes the comprehensive study on different

hand-crafted and learning based approaches for image super-resolution, burst

super-resolution and blind super-resolution.

� Chapter 3: We propose a learning-based frequency extraction approach for

super-resolution without prior information.

� Chapter 4: In this chapter, to resolve the problems of computationally expensive

architectures of SR, several lightweight approaches for SR and other restoration

applications are discussed.

� Chapter 5: To effectively capture more information from multi-frames, a novel

burst super-resolution approach is proposed that is also extensible to other

applications.
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Figure 1.11: (a) Artifacts resulting while fusing multiple frames if not properly aligned,
(b) Output for proper alignment.

� Chapter 6: In this chapter, we have proposed the generalization of the existing SR

approaches on blind/real-world degradations.

� Chapter 7: This chapter lists the conclusion of thesis work and discusses the

possible future scope which could further improve the usability of super-resolution

for different high-level computer vision applications.
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Chapter 2

Literature Survey

In this chapter, existing approaches and benchmark datasets used for experimental analysis

in the field of super-resolution and evaluation measures used for the proposed networks

analysis are discussed.

2.1 Existing Super-Resolution Approaches

The existing state-of-the-art super-resolution approaches are divided into four parts.

1. Prior Hand-crafted Based Single Image Super-Resolution Approaches

2. Learning-Based Single Image Super-Resolution Approaches

3. Learning-Based Multi-Frame Super-Resolution Approaches

4. Learning-Based Blind Image Super-Resolution Approaches

2.1.1 Prior Hand-crafted Based SISR Approaches

Generally SISR approaches aim at generating high-quality HR images from a single

LR input after exploiting certain image priors. In accordance with the image priors,

hand-crafted based SISR algorithms can be categorized into different types of approaches.

Prediction Models: SISR algorithms under this category generate HR images

from LR inputs via a predefined mathematical formula without any training. For

instance, Interpolation-based methods (bilinear, bicubic and Lanczos) reconstruct HR

pixel intensities by weighted average of neighborhood LR pixel values. As interpolated

intensities are locally quite similar to the neighboring pixels, these algorithms generate

smooth regions but output insufficient large gradients along edges and for high-frequency

regions. Irani et al. [89] generate a low-resolution image via predefined downsampling

model and it compensates the difference map in LR back to the HR image.

Edge-based Methods: Edges are important primitive structures that play a vital role

in visual perception. Many SISR algorithms have been proposed for learning priors from

edge features to reconstruct HR images. Many edge features have been proposed like the

width and depth of an edge [90] or by employing the parameter of a gradient profile [91].

As the priors are learned from edges, the reconstructed HR images have sharp edges with

optimum brightness and minute artifacts. But, edge priors are not much effective to model

the textural information.

Image Statistical Methods: Several image properties may be exploited as priors for

predicting HR images from LR images. Shan et al. [92] exploited the heavy-tailed gradient
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distribution [93] for SISR. Additionally, the sparsity property of large gradients in generic

images is further exploited in [94] for reducing the computational load and for regularizing

the LR input images. To generate HR images, total variation has been employed as a

regularization term to generate HR images [95].

Patch Based Methods: From a given set of paired LR and HR training images,

patches can be cropped from the training images for learning the mapping functions.

The exemplar patches may be generated from the external datasets [96, 97], input image

[98], or from combined sources [99]. Several learning based methods of the mapping

functions have been proposed like weighted average [100, 101], support vector regression

[102], Gaussian process regression [103], kernel regression [104], and sparse dictionary

representation [105, 106]. Additionally many methods for blending the overlapped pixels

have been proposed including weighted averaging [107], conditional random fields [108],

and markov random fields [109].

2.1.2 Learning-Based Single Image Super-Resolution Approaches

The pioneer work in learning based SISR was introduced by Dong et al. [110],

who proposed SRCNN. After outperforming most of the conventional example-based

methods, it paved the way for various SoTA CNN-based SISR techniques. However,

on account of its shallow network (three convolutional layers), this method was limited

in its learning capabilities. To address this issue, Kim et al. through VDSR and

DRCN [111] increased the depth of the network (20 layers) and achieved noticeable

improvement in the performance of SR. After the remarkable success of residual blocks

in ResNet [112], deep networks like EDSR [26] and DRRN [113] were proposed using

local residual learning for SISR. To overcome the inefficiency and shortcomings of the

residual learning, multi-scale architectures like [29], [114],[115], [64] were proposed for

improving the feature representation of residual blocks. Furthermore, for building strong

relationships for information flows in each convolution layer, Zhang et al. [45] proposed

RDN model differing from other CNN-based models, i.e., it did not employ full utilization

of hierarchical features from LR images. Lately, there has been an increasing trend of

building lightweight and efficient models in SISR for reducing the computational cost.

Mehri et al. [116] proposed a novel lightweight network for avoiding abundant low-level

information via its efficient adaptive residual block. Other recent notable SISR network

architectures employ progressive reconstruction [117, 118], generative adversarial networks

[119], [120], and recursive learning [121, 122] for improving the efficacy of super-resolution.

Our literature analysis reveals that above mentioned deep learning-based SR models do

not show much concern regarding image frequency and network complexity, resulting in

under-restoration of complex textures and over-restoration of simple textures. Henceforth,

to alleviate this limitation, our work focuses on developing an architecture associating
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frequency information with model of appropriate computational complexity.

After achieving massive success in classification, machine translation tasks, the

self-attention methods [123], have been tremendously explored for low-vision tasks. The

attention concept in the field of SR was brought up by Zhang et al. [44], who investigated

the importance of high-frequency channel-wise features for HR reconstruction. Following

CBAM [124], Hu et al. further proposed [125], employing both channel-wise and spatial

features into the residual blocks, for modulating the features globally and locally. Wang et

al. proposed a new class of neural networks [126] for capturing long-range dependencies via

non-local operations. Following which several works like, SAN [52], CSNLN [39], DRLN

[41], RNAN [81] were proposed demonstrating huge benefits from non-local operations

in the field of SR. Niu et al. proposed a new layer attention module in HAN [42] for

considering the correlation between multi-scale layers. Liu et al. [43] proposed an enhanced

spatial attention block for obtaining a more sophisticated attention map. Recently, Du et

al. [127] proposed a deep expectation-maximization attention cross residual network for

tackling the image SR reconstruction. Recently, transformer-based models [128, 129] have

been incorporated in the field of SR. SwinIR [129] applied the concept of shifted window

mechanism (spatially varying convolution) for modelling long-range dependency problem.

Despite achieving significant progress, their major constraint resides in memory inefficient

and highly computationally complex operations.

The traditional works in the field of SISR used interpolation for resizing the feature maps

from LR to HR. Few example operators include nearest-neighbour, bicubic interpolation

[130], edge-based methods [131] for accomplishing the task of SR. Despite being fast, these

methods suffered from poor accuracy and were incapable to capture semantic information,

since they focus on sub-pixel neighbourhood. The concept of learnable up-sampling in the

field of SR was introduced by [132]. Following which, several variants in the up-sampling

layers were introduced in the form of deconvolution layer [132], and pixel-shuffle layer

[133]. Deconvolution is usually associated to perform the inverse operation of convolution

and pixel shuffling was based on the concept that depth of the feature-map channels can be

reshaped spatially into height and width of the feature maps. These layers, along with the

suitable architectures have been constantly refreshing the results for SR. But as proposed

in [134], these up-sampling layers, on account of uneven overlapping, tend to introduce

checker-board effects, resulting in low-quality image. Li et al. [135] utilised the concept of

separation of low and high-frequency components, and proposed residual deconvolution for

up-sampling the residual information. Further in [136], Xiong et al. introduced a variant

in the up-sampling technique using the concept of spatial-shuffle and channel-shuffle. Hu

et al. [137] discussed a novel way of up-sampling for non-integer factors by predicting

the weights of convolution kernel. Recently, Dai et al. [138] introduced the concept of

learning affinity while upsampling (Affinity-Aware Upsampling), for exploiting pairwise
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interactions in deep networks. Following the trend of learning-based paradigm, we too

intend to propose a learnable upsampling block. We show that, when compared with the

other popular upsampling techniques, our proposed module achieves better performance,

by maintaining a light-weight learning paradigm.

2.1.3 Learning-Based Burst SR Approaches

SISR usually exploit strong priors or require training data. However, they are often

limited in the extent they can reconstruct from aliasing. In contrast to SISR approaches,

Multi-Frame Super-Resolution (MFSR) aims at increasing the optical resolution. But it

encounters new challenges while estimating the offsets among different images caused by

camera movement and moving objects. In terms of sampling theory literature, MFSR

approaches date as far back as the ’70s [139]. Tsai and Huang [140] were the first to put

forward a frequency domain based solution, easy in implementation and computationally

cheap for MFSR problem. However, processing in frequency domain resulted in serious

visual artifacts. On account of the drawbacks of frequency based approaches, algorithms

that enhances image in spatial domain became increasingly popular [141]. Irani and Peleg

[142] and Peleg et al. [143] proposed an iterative back-projection approach for sequentially

estimating the HR image. Successive works [144, 145, 146] improved this approach with

maximum posterior (MAP) model. Robustness to varying noise levels and outliers were

further addressed in [147, 148]. But all the above mentioned approaches were based

upon the assumption that motion between input frames, as well as the image formation

model can be well estimated. Subsequent works addressed this issue by joint estimation

of the unknown parameters [149, 150]. Farsui et al. [151] proposed a hybrid method

for performing demosaicking and super-resolution with MAP framework. Wronski et al.

[152] proposed a MFSR algorithm that merges burst of raw images for supplanting the

requirement of demosaicking in camera pipeline.

Recently, a few works resorted to incorporating deep learning for handling the MFSR

problem. Deudon et al. [73] presented HighRes-net, the first deep learning MFSR

approach in satellite imagery, capable of learning all its sub-tasks in an end-to-end

fashion. Molini et al. [153] designed a novel CNN based algorithm for exploiting both

temporal and spatial correlations to combine multiple images. Bhat et al. [7] addressed

the problem of multi-frame burst SR by proposing an explicit feature alignment and

attention-based fusion mechanism. However, explicit use of motion estimation and image

warping techniques can pose difficulty handling scenes with fast object motions. Dudhane

et al. [75] proposed a generalised approach for processing noisy raw bursts through their

edge boosting feature alignment and pseudo burst fusion modules.
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2.1.4 Learning-Based Blind SR Approaches

Non Blind Super-resolution

In the recent years, various CNN-based SR methods are focused upon the restoration of

HR images from LR images that are synthesized with predefined bicubic setting. Since the

first CNN-based SR work by Dong et al. [154], several sophisticated networks based upon

bicubic downsampling have been proposed. Though these methods perform favorably

under the ideal bicubic-degraded setting, they tend to generate blurry results in case the

degradations in test images deviate from bicubic settings on account of domain gap. Few

non-blind SR approaches try to address the problem of multiple degradations by restoring

the HR images with the given corresponding kernels. Zhang et al. [155] proposed a

dimension stretching strategy using additional input in form of kernels and concatenated

it with the LR input for degradation aware SR. Based upon the concept of SRMD, Gu

et al. [86] propose SFTMD model for inputting kernels at different stages of the network

via SFT layer [156]. Xu et al. [157] integrated the degradation information in the same

manner using dynamic upsampling filters in UDVD model for raising the SR performance.

But these methods require ground truth information while testing, that is unrealistic for

real-world scenarios.

Blind SR

Before the advent of deep learning era, the blind SR methods estimated the HR image

and the resulting kernel via edge prior or image patch information [158, 159, 160].

Recently, deep neural network based methods have become the mainstream of blind-image

super-resolution research. In the blind SR setting, HR image is recovered from the LR

image that is degraded with unknown kernel [160, 161, 162]. Many DNN based blind image

SR methods directly perform super-resolution without explicitly estimating the kernel,

that include unapired SR [163, 164, 165, 166], and zero-shot SR [167, 168]. However,

these methods do not take into consideration the entire process of image degradation and

largely rely upon the training dataset while learning the model. Thus, their performance

deteriorates while encountering unseen degradation parameters during inference. Hence,

the recent approaches solve this problem via a two stage framework: kernel estimation

and kernel oriented HR image restoration. In the former, KernelGAN [169] estimate the

degradation kernel by applying generative adversarial network (GAN) on a single image,

and the estimated kernel is then applied to a non-blind SR approach (ZSSR) to obtain

the SR result. Based upon KernelGAN [170], Liang et al. improved the performance

of kernel estimation by incorporating a flow-based prior. However, KernelGAN and its

variant are less suitable for low-resolution images as the GAN optimization brings unstable

kernel estimation. Tao et al. [171] proposed a spectrum-to-kernel network and prove the
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Figure 2.1: Sample images from DIV2K [5] and Flickr2K [6] database.

conducivity of kernel estimation in the frequency domain rather than the spatial domain.

For the latter category, Gu et al. [172] applied spatial feature transform (SFT) and

iterative estimation of kernel (IKC) strategy to accurately estimate kernel and refine SR.

Luo et al. [173] develop an end-to-end deep alternating network (DAN) through reduced

kernel estimation and iterative restoration of HR image. One common problem of IKC

and DAN are they are time consuming and they predict the features of kernels rather

than the kernel itself. Liang et al. [174] propsed a mutually affine transformation network

for estimating the kernel in blind image super-resolution by limiting the receptive field to

localize the degradation. Zheng et al. [175] proposed an unfolded deep kernel estimation

method for jointly learning the image and kernel priors.

2.2 Existing Experimental Databases

Here, we have discussed about the existing benchmark datasets used to evaluate the

performance of the proposed and the existing state-of-the-art approaches in this work.

2.2.1 DIV2K Database

DIV2K dataset [5] is a high-quality (2K resolution) image dataset for single image and

blind image super-resolution task. It consists of 800 training, 100 validation, and 100

testing images.

2.2.2 Flickr2K Database

Flickr2K dataset [6] is a high-quality (2K resolution) image dataset for single image and

blind image super-resolution task. It consists of 2650 training images.

2.2.3 Set5 Database

Set5 [1] dataset is a benchmark testing dataset and consists of only five images of a baby,

butterfly, bird, head and a woman.
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2.2.4 Set14 Database

Set14 [2] consists of some more categories as compared to Set5 [1]; however it has still less

number of images, i.e. 14.

2.2.5 Urban100 Database

This dataset [4] is further composed of 100 images and the focus of the photographs is on

human-based structures, i.e. urban scenes.

2.2.6 BSD100 Database

This database [3] is composed of 100 images ranging from natural images to object specific

such as food, people, plants and so on.

2.2.7 Manga109

This dataset [49] is composed of 109 test images of a manga volume. These mangas were

drawn professionally by Japanese artists.

2.2.8 Synthetic BurstSR Database

This dataset consists of 46,839 RAW bursts for training and 300 for validation. Each burst

contains 14 LR RAW images (each of size 48× 48 pixels) that are synthetically generated

from a single sRGB image. Each sRGB image is first converted to the RAW space using

the inverse camera pipeline [7]. Next, the burst is generated with random rotations and

translations. Finally, the LR burst is obtained by applying the bilinear downsampling

followed by Bayer mosaicking, sampling and random noise addition operations.

2.2.9 Real BurstSR Database

BurstSR dataset consists of 200 RAW bursts, each containing 14 images. To gather these

burst sequences, the LR images and the corresponding (ground-truth) HR images are

captured with a smartphone camera and a DSLR camera, respectively. From 200 bursts,

5,405 patches are cropped for training and 882 for validation. Each input crop is of size

80×80 pixels.

2.3 Evaluation Measures

Structural Similarity Index:

Structural Similarity (SSIM) index measures an image quality which is based on the

hypothesis that the human visual system is highly sensitive to the structural information.

Let, J
′

and J are the predicted super-resolved and ground-truth high resolution images,
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Figure 2.2: Sample images from burst super-resolution dataset [7].

respectively. Then, SSIM between J
′

and J is given as follows:

SSIM =
[
lm

(
J

′
,J

)]α
·
[
c
(
J

′
,J

)]β
·
[
s
(
J

′
,J

)]γ
(2.1)

where, luminance (lm), contrast (c), and structural terms (s) are the characteristics of an

image having α, β and γ as the exponents respectively and given as,

lm
(
J

′
,J

)
=

2µ
J
′µJ + C1

µ2
J
′ + µ2J + C1

c
(
J

′
,J

)
=

2σ
J
′σJ + C2

σ2
J
′ + σ2J + C2

s
(
J

′
,J

)
=

σ
J
′
J

+ C3

σ
J
′σJ + C3

If α = β = γ (the default exponents) and C3 =
C2

2
then Eq. (2.1) reduces to,

SSIM =

(
2µ

J
′µJ

) (
2σ

J
′
J

+ C2

)(
µ2
J
′ + µ2J + C1

)(
σ2
J
′ + σ2J + C2

) (2.2)

where, µ
J
′ , µJ, σJ′ , σJ and σ

J
′
J

are the local means, standard deviations, and

cross-covariance for images J
′
, J respectively. C1 and C2 are the small constants 0.01

and 0.03 respectively are added to avoid the undefined values.

If haze-free image recovered by a certain approach is ideally matches to the ground truth

haze-free image then SSIM=1 otherwise its value stands in the range [0, 1].
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Peak Signal to Noise Ratio:

Peak Signal to Noise Ratio (PSNR) is a traditional evaluation measure for image regression

tasks. Mean Square Error (MSE) is calculated by the sum of square of prediction error

which is ground truth high resolution image minus predicted super-resolved image and

then divide by the number of pixels in an image. It gives an absolute number on how

much predicted results deviate from the actual number. Formulation of the MSE is given

as follows,

MSE =
1

N

N∑
i=1

(
J

′
i − Ji

)2
(2.3)

where, N represents the number of pixels in an image.

If the predicted super-resolved image ideally matches to the target high-resolution image

then MSE=0 otherwise its value stands in the range [0, 1]. Peak Signal to Noise Ratio

can be calculated between the super-resolved and target ground-truth image as given

below,

PSNR = 10 × log10

(
R2

MSE

)
(2.4)

Here, R denotes the maximum fluctuation in the input image data type. For an 8-bit

unsigned integer, R=255. Ideal value for PSNR=∞ while its value stands in the range

[0,∞]
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Chapter 3

Implicit Learning based Frequency

Extraction Approach for Single

Image Super-Resolution

The existing SoTA CNN-based SR method [176, 26, 177] treat different types of

information (e.g., low and high-frequency) equally across channels and often lack the

discriminative learning ability while dealing with them, that limits their ability to

implicitly recover high-frequency details. Additionally the popular SoTA methods use

explicit prior (edge prior) information [178, 179] to reconstruct the lost details, thus

increasing the overall complexity of the network. Moreover, the popular up-sampling

methods [180, 181] introduce checker-board and aliasing artifacts in the reconstructed

image, thereby resulting in relatively low performance of the overall network.

Hence, how to effectively utilize these multi-level, channel-wise features within neural

networks, without introducing aliasing is crucial for HR reconstruction and need to be

further explored. To practically handle the aforementioned bottlenecks, in this chapter

we have proposed two different end-to-end solutions for implicitly handling the prior

information without any separate training. The two contributions for implicitly extracting

the frequency information are:

� Image Super-Resolution with Content-Aware Feature Processing.

� (MLE2A2U)-Net: Image Super-Resolution via Multi-Level Edge Embedding and

Aggregated Attentive Upsampler Network.

These solutions are explained in detail in the following sections.

3.1 Image Super-Resolution with Content-Aware Feature

Processing

In this chapter, we propose a novel multi-level bi-cubic up-sampler network (MBUp-Net)

for high-quality image reconstruction without utilizing any prior information. Every stage

of our proposed MBUp-Net consists of a stack of content-aware feature difference (CAFD)

and maximum bi-cubic up-sampler (MBU) as its building modules. The proposed CAFD

block is designed specifically for extracting the variable (high and low-frequency) content
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Figure 3.1: (a) Framework of the proposed two-stage MBUp-Net architecture that learns
enriched features for ×4 super-resolution, (b) Schematic of MLA block. (c) CAFD block,
and (d) Visual illustration of our MBU operation (Here the operation is shown for ×2).

in the image. This specific combination of stacked CAFDs effectively infers better initial

LR features. Further, multi-level attention (MLA) blocks are cascaded inside each CAFD

block to ensure effective utilization of contextual information from the incoming features.

Additionally, unlike direct approaches that up-sample either at the beginning or at the

end of the network, an MBU block is utilised progressively at the end of each stage for

high-fidelity results. The main contributions of our work are summarised as follows:

� A multi-level bi-cubic up-sampler network (MBUp-Net) is proposed for generating

accurate and contextually-enriched outputs.

� A novel content-aware feature difference (CAFD) block is proposed for effectively

encoding the multi-scale contextual information by focusing on features of required

frequency.

� A novel up-sampling layer based on bi-cubic maximum operation is designed for

avoiding the artefacts introduced by other up-sampling techniques.

3.1.1 Proposed Method

The proposed multi-level bi-cubic up-sampler network (MBUp-Net), outlined in Figure

3.1 (a) is a two-stage progressive network. Every stage is a combination of stacked

content-aware feature difference (CAFD) blocks and an maximum bi-cubic up-sampler

(MBU) block. Let’s represent ILR and IHR as the low-resolution input and the

reconstructed high-resolution output of MBUp-Net, respectively. Given ILR ∈ RH×W×3,

we first apply a convolution layer with LeakyReLU activation for exploiting the shallow

features FS ∈ RH×W×C as:

Fs = GSF (ILR), (3.1)

where, GSF (.) denotes the shallow feature extraction. Next, Fs is given as an input to

Stage-I and utilized for feature restoration via content aware feature difference (CAFD)
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blocks. So we can further have:

Fi
CAFD = Gi

CAFD(...G1
CAFD(Fs)), (3.2)

where, Gi
CAFD(.) and Fi

CAFD denote the function of the i -th CAFD and its corresponding

restoration result, ∀ i = 1, 2, 3,.. 10. The architecture of the proposed CAFD block is

shown in Figure 3.1 (c), which is composed of four multi-level attention (MLA) blocks.

More details about CAFD and MLA blocks are given in the following sub-sections. After

extracting hierarchical features from a set of CAFD blocks in low-resolution space, we stack

an MBU block in high-resolution space. It improves the reconstruction performance of

the overall model and finally outputs, Frec1 ∈ R2H×2W×C . It is worth mentioning that we

adopt global residual learning after the MBU block in each stage to ease the transmission

process. This residual addition further ensures the adaptive fusion of features produced

by the proposed up-sampling block. Thus, the overall output of Stage-I is formulated as:

FStageI = Frec1 +W3(Bic↑2(FS)), (3.3)

where, W3 denotes a convolution layer with filter size 3×3. Bic↑s represents the simple ×s

bi-cubically interpolated input followed by a convolution layer. Thereafter, the obtained

features from Stage-I are imported into the second stage to learn more enriched feature

representations, Frec2 ∈ R4H×4W×C . Consequently, the overall operation of Stage-II is

defined as:

FStageII = Frec2 +W3(Bic↑4(FS)) (3.4)

At the end of our network, we apply convolution layers with LeakyReLU activation

function for transforming the output of Stage-II from feature to image domain. Thus,

we obtain the output IHR ∈ R4H×4W×3 as:

IHR = D(ILR), (3.5)

where, D(.) refers to the function of whole MBUp-Net. The following sections describe

the individual components.

Multi-level Attention Block

One basic property of neurons in the visual cortex is to adaptively change receptive fields

according to the stimulus [182]. This adjustment of receptive fields can be incorporated

in CNNs via multi-scale feature generation. Thus, for efficiently harnessing multi-scale

features, we impose a two-level architectural design as shown in Figure 3.1 (b). Moreover,

it is certified that parallelly stacked CNN architecture [183] assists in adaptive learning of

the subsequent layers to pick and choose the relevant information. This results in a larger
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receptive field that is associated to capture more contextual information. Considering

the above factors, both the levels in our proposed MLA block have multiple parallel

convolution layers for enhancing the overall ability of our proposed network. For Level-I,

the feature maps obtained through 1×1 convolution layer are added to the concatenated

feature maps from two parallel paths as shown in the left part of Figure 3.1 (b). These

concatenated feature maps obtained from large size filters increase the contextual variation

in the input and consequently improve the efficiency of next level (Level-II). Further

addition with these concatenated features, as shown in Eq. (3.6) helps in preservation of

the required features by avoiding the learning of redundant features. The overall function

of Level-I in MLA block is defined as:

F1
MLA = [F1

1F
1
2] + F1

3, (3.6)

where, [.] represents the concatenation operation and F1
1, F1

2, and F1
3 represent the

features extracted at Level-1, F1
1 = ℓ(W3(ℓ(W3(FS)))), F1

2 = ℓ(W3(ℓ(W1(FS)))), and

F1
3 = ℓ(W1(Fs)). Here, ℓ is used to represent LeakyReLU function and Wx represents

convolution layer with filter size x.

Channel Attention Block

Multi-scale pattern targets on information from variable receptive fields, whereas attention

mechanism focuses on adjustment of the distribution of feature map for efficiently exploring

correlation among features. Consequently, to strengthen the effectiveness of our proposed

MLA block we incorporate an attention module, channel attention block (CAB) between

both the levels. CAB (middle part of Figure 3.1 (b)) generates attention maps for

suppressing the less informative features of Level-I and allows only the useful features

to propagate to the next level. As illustrated in Figure 3.1 (b), on the incoming features

F1
MLA ∈ RH×W×C from Level-I, CAB first applies global average pooling on individual

channels to obtain global feature descriptor Fg ∈ R1×1×C . To capture the inter-channel

dependencies, we pass the descriptor Fg through two 3×3 convolutions and sigmoid

activation, resulting in new attention features Fe ∈ R1×1×C . Finally, after getting

the attention weight of all channels, each obtained attention feature is scaled by the

corresponding original feature map (F1
MLA) as shown below:

FCA:,i,:,: = Fei ⊙ F1
MLA:,i,:,:

∀i = {0, 1, ...C − 1}, (3.7)

where FCA is used to denote the output of the channel attention block, and FMLA:,i,:,:

denotes the feature map of the ith channel of input FMLA.

Further, the extracted attention-augmented features, FCA produced by Channel attention

(CA) block are passed to the next level, where they are processed again through a parallel



Chapter 3. Implicit Learning based Frequency Extraction Approach for Single Image
Super-Resolution 29

multi-scale architecture for inheriting better contextual information among the features.

Furthermore, the overall operation of Level-II in the MLA block is given as:

F2
MLA = F2

1 + F2
2 + F2

3, (3.8)

where F2
1, F2

2, and F2
3 denote the features extracted at Level-II. Here, F2

1 =

ℓ(W3(ℓ(W3(FCA)))), F2
2 = ℓ(W3(ℓ(W1(FCA)))) and F2

3 = ℓ(W1(FCA)). Finally, for each

MLA block we adopt residual learning to improve the performance of the network and the

overall output is defined as:

FMLA = Fs + F2
MLA (3.9)

This sequential exploration of the features via two-level MLA block aids the proposed

network to overcome the under-utilization of local features and give visually pleasing

results.

Content-Aware Feature Difference Block

Generally, the LR feature space contains abundant low-frequency and valuable

high-frequency content (edges, textures) that contribute differently for recuperating

high-fidelity details. It is required to exploit this variable content (low and high-frequency)

for facilitating the representation power of the overall network. To efficiently extract this

content, it is important to collect contextual information outside the local region [36]. In

light of this and to surge the network’s sensitivity towards higher contributing features,

we propose a computationally effective design, content-aware feature difference (CAFD)

block.

Our proposed CAFD block as shown in Figure 3.1 (c) is composed of four multi-level

attention (MLA) blocks, connected through skip connections. Fundamentally, our CAFD

block is inspired from the concept of high-boost filtering, which focuses on enhancing

high-frequency information while preserving the information with low-frequency content.

In CAFD, we initially evaluate the absolute difference between features of the second

and first MLA block to obtain ∆1. Subsequently, the obtained difference features, ∆1

are added to the original features (from second MLA) for attaining coarse high-frequency

features, ∂1.

Thereafter, these obtained coarse features are provided as input to the third MLA

block and the above procedure for getting ∆1 (via subtraction between features of

consecutive blocks) and ∂1 (via addition) is repeated to boost and consequently generate

fine high-frequency features, ∂2. Furthermore, as shown in Figure 3.1 (c), we add the

features of the initial shallow layer (FS) to the features processed from fourth MLA block,

(FMLA4) for maintaining the diversity of overall content. Thus, the overall function of

ith CAFD can be summarized as follows:
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Fi
CAFD = 0.2 ∗ Fi

MLA4
+ FS , (3.10)

where, Fi
MLA4

represents the extracted features of the fourth MLA block in ith CAFD.

Critically as shown in Eq. (3.10), multiplication by 0.2 (residual scaling) is incorporated to

avoid the amplitude magnification of the input signals in the proposed CAFD blocks, which

may otherwise affect the overall training of the proposed network. To further ameliorate

the network performance, the proposed network deploy 20 CAFD blocks (10 in each stage)

that accomplishes significant performance gain as discussed in the ablation study.

Maximum Bi-cubic Up-sampler Block

SR requires accurate prediction of pixels present in the low-resolution image and therefore

an effective up-sampling layer adept for filling in the missing details needs to be designed.

Previous successful attempts for SR are subjected to novel architectures and training

strategies, but little work has been done for up-sampling layer. Most commonly used

non-learnable up-sampling layers like bi-cubic, nearest-neighbour, bilinear, and learnable

up-sampling layers like pixel shuffle [181], deconvolution [180] introduce smoothing,

aliasing, and checker-board artefacts [180]. Particularly, strided deconvolution [180] can

easily have uneven overlap, especially when the kernel size is not divisible by stride,

and this uneven overlap is more prominent for two-dimensional cases where the overlap

tends to multiply together, thus generating checkerboard artefacts. Sub-pixel convolution

(pixel-shuffle) is a specific implementation of deconvolution layer, often interpreted as

standard convolution in low-resolution space followed by periodic shuffling operations.

Though sub-pixel convolution is constrained to not allow deconvolution overlap, it

generally suffers from checkerboard artefacts owing to their random initialization [184].

Specifically, this shifting of feature channels into the spatial domain generally results in the

introduction of alignment artefacts. Unlike the above-mentioned up-sampling techniques,

our proposed up-sampler (maximum bi-cubic) avoids shuffling or overlap between the

channels to mitigate the artefacts with less computational complexity.

Initially as shown in Figure 3.1 (d), we first perform bi-cubic up-sampling to increase

the resolution from H × W × C to 2H × 2W × C, where H,W and, C denote the

height, width, and the number of channels, respectively. We then consider the maximum

pixel among all the channels to preserve the high-frequency information, that is usually

lost in low-resolution images. This maximization operation for all the M channels

leads to a reduction in the number of channels by a factor of M , thus minimizing the

number of computations. Furthermore, the effectiveness of our proposed upsampling

layer in generating sharper edges can be verified from Figure 3.2. Meanwhile, embedding

residual learning after every MBU module helps in proper exploitation of the relative

information between high-resolution and low-resolution multi-scale features for boosting
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Figure 3.2: (a) Input low-resolution image, (b) cropped intermediate attention feature
maps with (only bi-cubic) operation, (c) reconstructed results after bi-cubic interpolation,
(d) Cropped Intermediate attention feature maps with proposed (bi-cubic+maximum)
operation, and (e) the results after applying proposed maximum bi-cubic up-sampler.

the reconstruction performance.

3.1.2 Experimental Analysis

Datasets

In our experiments, we trained our network using 800 high-quality DIV2K [5] images. For

high diversity, we further augmented our training dataset with random horizontal flips and

90-degree rotations. We conducted ablation studies on benchmark SR testing datasets,

Set5 [1], Set14 [2], BSD100 [3], Urban100 [4], and Manga109 [49]. These datasets contain a

variety of natural scenes, urban scenes and Japanese cartoon images, thus authenticating

the overall performance of our proposed architecture.

Table 3.1: Training image settings for DIV2K images.

Size ×2 ×3 ×4

Sub-image size 640×640 512×512 480×480
crop size 128×128 85×85 64×64

Training Settings

The resolution of training images in DIV2K is nearly 2K and on account of memory

limitations directly super-resolving 2K×2K is difficult, hence we first prepare overlapping

sub-images of smaller size i.e. 640×640, 512×512 and 480×480, respectively for scales ×2,

×3 and ×4. From these prepared sub-images, we further crop corresponding patches of

different sizes depending on the scale factors for facilitating stable training as shown in
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Table 3.1. LR images of multiple scale factors are obtained by down-sampling the training

images with a bi-cubic kernel. The proposed network is implemented in TensorFlow 2.0

and trained for 25,00,000 iterations using ADAM optimizer. Following the settings of [33],

the initial learning rate is set at 1×10−4 and halved every 104 iterations. The training

hyper-parameters are implemented using NVIDIA DGX station with processor 2.2GHz,

Intel Xenon E5-2698, NVIDIA Tesla V100 1×16 GB GPU, using peak signal-to-noise ratio

(PSNR) and structural similarity index (SSIM) as the evaluation metrics.

For exhibiting the effectiveness of our proposed MBUp-Net, we choose the commonly used

L1 loss as the objective function. Given a training set {ILR, IHR}Bb=1 that comprises of B

corrupted low-resolution (LR) inputs and their corresponding high-resolution (HR) labels.

The objective function for training MBUp-Net is defined as:

L(θ) =
1

B

B∑
b=1

||IbHR −D(IbLR)||1, (3.11)

where, θ refers to the learnable parameters and D(.) refers to the overall function of the

proposed MBUp-Net.

Comparison with the State-of-The-Art Methods

We compare the performance of the proposed MBUp-Net with popular CNN-based SR

methods1 that prove the efficiency of our proposed model. For a fair comparison, PSNR

has been evaluated on the Y channel of the transformed YCbCr space of the reconstructed

SR image.

1The source codes and results are downloaded from the respective authors’ homepage and we have used
directly the settings as recommended by the authors.
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Objective Evaluation

Table 3.2 demonstrates that our method attains SoTA results on all the benchmark SR

datasets. Most of the compared CNN-based models are well-designed networks and have

the best results at their time. Among the series of large SR models being proposed,

EDSR [26] is the most popular with about 43 Million parameters, whereas our proposed

MBUp-Net (9 Million) with just one-fourth of the total parameters of EDSR has achieved

better results. Specifically, the proposed method outperforms the recently proposed SHSR

[186], FM-Net [187], and CCN [188] by about 1.12, 1.15, and 1.13 dB, respectively on

Urban100 dataset for ×4 scaling factor. In comparison to the conventional SR networks of

VDSR [191], LapSRN [23], SRNSSI [179], and SeaNet [178], the proposed method exhibits

a great performance gain on all the considered datasets.

Subjective Evaluation

We have presented some subjective results in Figure 3.3 and 3.4 for the investigation

of the proposed method in terms of visual quality. Since for applications like image

super-resolution, visual results are much more valuable than the quantitative comparison,

we have compared selected challenging images with about eleven different methods,

including Bi-cubic, SRCNN [22], VDSR [191], DRRN [192], Memnet [24], FSRCNN [35],

EDSR [26], LapSRN [23], MSRN [32], RDN [30], IDN [25], CARN [28], SRMD [27],

GLADSR [193], and CNF [194]. For facilitating better comparison quality, we have

enlarged selected regions in the SR image, showing that the images being super-resolved

by our method have shown superior results. We have focused mainly on large scaling

factor (×4) for comparison of the proposed method. As shown in Figure 3.3 and 3.4, most

of the compared methods are unable to recover finer details and introduce artefacts in the

reconstructed image (e.g. Urban100img 076 in Figure 3.3, Set14-barbara in Figure 3.4).

Unlike these methods, our proposed MBUp-Net generate images that are much sharper

and visually faithful to the ground-truth. Additionally, as shown in Urban100img 092

and Urban100img 004 of Figure 3.3 and 3.4 respectively, majority of the compared SR

methods are inept in capturing crisp edges and produce images with blotchy texture.

Whereas, our proposed MBUp-Net preserves the image edges and is more coherent in

gathering information from the low-level features.

Difference with prior works

In this subsection, we highlight the major differences between our proposed MBUp-Net

and several popular related existing works.

For MSRN [32], a multi-scale approach for efficient image reconstruction is proposed. But

there exist few differences that need to be addressed. Firstly, their multi-scale model
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Figure 3.3: Visual comparison on ×4 images for Urban100 dataset [21] where (a) cropped
ground-truth HR, (b) Bi-cubic, (c) SRCNN [22], (d) LapSRN [23], (e) MemNet [24], (f)
IDN [25], (g) EDSR [26], (h) SRMDNF [27], (i) CARN [28], (j) MSRN [29], (k) RCAN
[30], and (l) Proposed Method.

Table 3.3: PSNR/SSIM results achieved on Set5 [38] dataset for two scale factors (×2,
and ×4).

Methods Params Flops Time ×2 ×4

EDSR [26] 43M 1.2G 0.05s 38.11/0.9602 32.46/0.8968
RDN [30] 22M 0.3G 0.07s 38.24/0.9614 32.47/0.8990
RCAN [36] 15M 0.5G 0.23s 38.27/0.9614 32.63/0.9002
MBUp-Net 9M 0.1G 0.02s 38.31/0.9626 32.67/0.9005

does not use a progressive architecture that is associated to have stable training for

large-scale factors [23]. Secondly, unlike MSRN, our proposed MBUp-Net utilizes an

attention mechanism in the residual block for emphasizing important channel features.

Thirdly, we incorporated maximum bi-cubic up-sampling unlike their pixel shuffle for

resizing the obtained features.

RCAN [36]: Our proposed model adopts the attention module similar to RCAN, but there

are subtle differences in our proposed architecture. Firstly, RCAN is a much larger model

(more than 400 layers) with 15M parameters as compared to the proposed MBUp-Net with

9M parameters. Secondly, for effective removal of dead features in the attention branch

for deeper networks we utilized LeakyReLU, unlike ReLU used in RCAN. Thirdly, unlike

RCAN our proposed model is a multi-scale progressive architecture focused on increasing

the receptive field for better reconstruction.

ESRGAN [33]: In ESRGAN, a residual in residual block using dense connections has been

proposed. However, different from ESRGAN we proposed a CAFD block to highlight the
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Figure 3.4: Visual Comparison on some challenging images from Set14 [31] and Urban100
datasets [21] where (a) denotes the cropped ground-truth HR, (b) Bi-cubic, (c) SRCNN
[22], (d) LapSRN [23], (e) CARN [28], (f) EDSR [26], (g) MSRN [32], and (h) Proposed
method.

important regions like texture and edges. Further, ESRGAN employs nearest neighbor

interpolation as their up-sampling technique that is usually associated with blurring

artefacts. On the other hand, our proposed up-sampling technique is effective in removing

those unpleasant artefacts.

Computational Complexity

In Table 3.3, we compare our proposed MBUp-Net with the most popular SoTA

super-resolution methods in terms of network parameters, FLOPs and execution time. Our

MBUp-Net obtains the best results with lesser parameters. This certainly demonstrates

that our method can very well balance the trade-off between the number of parameters

and reconstruction performance. To further, reflect the efficiency of our method, we also

compare the running time of MBUp-Net on Set5 [38] with other competitive methods. It
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is quite apparent from Table 3.3, that our proposed model is the fastest among all others.

Table 3.4: Ablation study on CAFD block, CA block and MLA block. The model is
trained for 3 settings: With and Without CA block, MLA block, and CAFD block. Each
setting is compared in performance for PSNR/SSIM on four benchmark datasets. Note:
✓ and ✗ indicate the model, with and without corresponding blocks, respectively.

Scale CA MLA CAFD Set5 [38] Set14 [31] BSD100 [21] Urban100 [84]

✗ ✗ ✗ 35.31/0.912 30.55/0.892 28.96/0.857 28.73/0.883
✗ ✗ ✓ 37.64/0.943 32.41/0.901 30.16/0.878 30.91/0.908

×2 ✗ ✓ ✓ 38.04/0.958 32.68/0.821 31.43/0.891 30.58/0.913
✓ ✓ ✓ 38.17/0.966 33.62/0.921 32.52/0.910 31.61/0.923

✗ ✗ ✗ 31.78/0.879 27.88/0.814 26.49/0.764 25.14/0.824
✗ ✗ ✓ 33.09/0.907 29.72/0.837 28.76/0.799 27.98/0.855

×3 ✗ ✓ ✓ 33.56/0.915 30.01/0.841 28.99/0.800 28.17/0.862
✓ ✓ ✓ 34.01/0.921 30.46/0.849 29.12/0.805 28.35/0.865

✗ ✗ ✗ 29.31/0.843 25.58/0.746 25.96/0.692 24.73/0.713
✗ ✗ ✓ 31.54/0.859 27.88/0.771 27.62/0.710 25.18/0.719

×4 ✗ ✓ ✓ 31.84/0.865 27.92/0.767 27.69/0.727 25.89/0.722
✓ ✓ ✓ 32.31/0.870 28.64/0.777 27.71/0.732 26.08/0.731

Adversarial training

Here, we perform an additional experiment to demonstrate the effect of adversarial training

[195] on our proposed MBUp-Net. We utilise our proposed MBUp-Net as the generator

network and our discriminator network is inspired from SRGAN [34]. The discriminator

is composed of six convolution layers, each of size 3×3 followed by LeakyReLU and a final

Sigmoid layer for discriminating between real and generated SR images. We have trained

the proposed network with adversarial and perceptual loss [196] and the visual result is

shown in Figure 3.5 for ×4 SR. The model with adversarial training generates plausible

details on regions with irregular structures like feathers. However, as visible in the zoomed

portion, the reconstructed image is not able to produce faithful results in comparison to

the ground-truth high-resolution image, thus lacking in accuracy when compared to the

proposed MBUp-Net. Moreover, generative adversarial networks (GANs) are known to be

susceptible to mode collapse, which may cause the generator to produce the same output

over and over again. Though this problem can be resolved by several variants in the loss

function [197], but the main problem we faced was the failure of GANs to converge which

ultimately lead to unstable training.

3.1.3 Ablation Study

For examining the impact of individual architectural components of our proposed network,

an ablation study is comprehensively conducted on DIV2K database. All the ablation
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Figure 3.5: Visual analysis for adversarial training. We differentiated the results trained
on our model with and without adversarial training, (b) Results with adversarial training,
and (c) Original MBUp-Net results without any adversarial training.

models are trained for 105 iterations.

Impact of different components

Table 3.4 demonstrates the effectiveness of different modules in the proposed model. We

study their impact by progressively introducing them in our model. The baseline is

obtained without CA, MLA and CAFD block and performs very poorly (Here we employ

just simple residual block [32] in place of CAFD block). It is quite evident that addition

of CAFD block provides favorable performance gain of about (2.33 dB) over the baseline.

Furthermore, addition of proposed MLA block causes 0.44 dB gain in the accuracy of

the model. Table 3.4 also shows that incorporation of CA block inside our proposed

MLA block further increases the PSNR score. It is evident that all the modules used

together contribute positively towards the final image quality, indicating the importance

of considering difference among features and further paying attention to channel-wise

features.

Table 3.5: Ablation study on the effect of proposed up-sampling technique (MBU). Results
are calculated for PSNR on Set5/Set14 for scale factor ×4.

Up-sampling Technique Parameters PSNR

Conv2DTranspose [198] 65.5K 32.21/28.45
Sub-Pixel Convolution [34] 55.3K 32.33/28.66

Bicubic Maximum 30.5K 32.56/28.89
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Figure 3.6: Visual analysis for different up-sampling layers. It is evident that (b) and
(c) [33] introduce blurring, (d) [34] and (e) [35] introduce checker-board artefacts, and (f)
bicubic maximum overcomes all the defects and obtains realistic images.

Effect of different up-sampling layers

The traditional non-learnable interpolation techniques like nearest-neighbor, and bilinear

considered the spatial distance between the pixels for ushering the up-sampling process,

hence it failed to add much new information to the LR image. As visible from Figure 3.6 (b,

c) if our proposed network (under similar training settings) uses traditional up-sampling

layers, the outputs of different images from Set5 [38], Set14 [31], and BSD100 [21] have

certain artefacts and blurring. Similarly, subpixel layer [34] also leads to artefacts around

the boundaries of different objects as shown in the Figure 3.6 (d). Deconvolution layer or

transposed convolution layer generates checkerboard like-pattern and ultimately degrades

the quality of the image which cannot be avoided even after proper learning as is visible in

Figure 3.6 (e). Unlike other techniques, our proposed MBU block as shown in Figure 3.6

(f) demonstrates visually plausible results by generating sharper and crisp edges. Table

3.5 reveals that replacing the proposed up-sampling layer with popular up-sampling layers

(Conv2DTranspose and pixel-shuffle) reduces the PSNR score with an increase in the

number of parameters. Thus, we can conclude that the proposed MBUp-Net generates

realistic-looking images closer to the ground truth and overcome the artefacts with a

significant reduction in parameters.



40
Chapter 3. Implicit Learning based Frequency Extraction Approach for Single Image

Super-Resolution

Figure 3.7: Comparison with prior network configurations. (a) Simple Residual
block (Configuration1) [26], (b) Inception block (Configuration2) [32], (c) Dense block
(Configuration3)[30], (d) Residual channel attention (RCAB) block (Configuration4) [36],
(e) Atrous spatial pyramid pooling (ASPP) block (Configuration5) [37], and (f) our
proposed Multi-level Attention Residual block.

Investigation on different network configurations

Next, we analyze the importance of our proposed MLA block by comparing it with

other popular residual configurations as shown in Figure 3.7. All the configurations

(Configuration1-6) are trained on the same dataset. As shown in Table 3.6, it is

inevitable that for enlargement by factor ×4, the proposed multi-level attention block

shows better performance on PSNR/SSIM for Set5 [38] and Set14 [31]. This improvement

in the performance gain of the proposed configuration indicates that multi-scale feature

extraction along with attention mechanism via MLA block is more adept for capturing

contextual information as compared to simple residual block [199], or multi-scale residual

[200, 36, 37] and dense blocks [30]. Further, we also demonstrate the convergence analysis

of different residual configurations in Figure 3.8.
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Figure 3.8: Convergence analysis for different residual configurations shown in Table VII.
The curve is evaluated on Set5 [38] and Set14 [31] for ×4.

Table 3.6: Quantitative evaluation of PSNR/SSIM for different residual block
configurations on Set5 [38] and Set14 datasets [31].

Residual Configurations Set5 [38] Set14 [31]

Configuration1 [26] 31.13/0.8656 27.92/0.7515
Configuration2 [32] 31.96/0.8674 28.01/0.7563
Configuration3 [30] 32.16/0.8866 28.25/0.7896
Configuration4 [36] 32.45/0.8897 28.67/0.7978
Configuration5 [37] 32.37/0.8784 28.69/0.7765
Configuration6 32.54/0.8999 28.87/0.7988

Table 3.7: Analysis of the number of CAFD blocks for PSNR/SSIM on Set5, Set14 and
BSD100 datasets for × 4.

Approach Set5 [38] Set14 [31] BSD100 [21]

with 4 32.36/0.8882 28.80/0.7871 27.69/0.7458
with 10 32.56/0.8990 28.85/0.7884 27.74/0.6462
with 16 32.62/0.8997 28.90/0.7889 27.81/0.7469
with 20 32.63/0.8998 28.91/0.7889 27.81/0.7471

Table 3.8: Performance evaluation of proposed MBUp-Net with and without edge
information as input in terms of PSNR/SSIM.

Configuration ×2 ×3 ×4

Without edge prior 38.31/0.9626 34.76/0.9296 32.67/0.9005
With edge prior 38.00/0.9596 34.45/0.9276 32.45/0.8987

Table 3.9: Effectiveness of the proposed MLA block.

Method ×2 ×4

MBUp-Net (With MLA) 38.31/0.9626 32.67/0.9005
MBUp-Net (Without MLA) 37.99/0.9463 32.33/0.8964

Investigation on using maximum operation in up-sampling

On account of the disadvantage of the learnable up-sampling methods, in our proposed

up-sampling layer, bi-cubic interpolation followed by a convolution layer has been applied.



42
Chapter 3. Implicit Learning based Frequency Extraction Approach for Single Image

Super-Resolution

Figure 3.9: Visual analysis of our proposed maximum bi-cubic up-sampling versus average
bi-cubic up-sampling and bi-cubic interpolation.

Figure 3.10: Visual comparison of the feature maps generated by our proposed CAFD
block where, (a) represents the output with prior edge input, and (b) represents the
output of our CAFD block. It is quite apparent that (b) generates high-fidelity output
with better content preservation.

For better extraction of important features while reconstruction, maximum of all the

channels is further considered to up-sample the features efficiently. For better analysis,

we have compared the proposed maximum bi-cubic results with bi-cubic interpolation

followed by the averaging operation and simple bi-cubic interpolation, as shown in Figure

3.9. The visual results using the maximum operation prove the efficiency of the maximum

operation in generating high-frequency details.

Impact of number of Content-Aware Feature Difference block (CAFD) blocks

The capacity of the proposed network is determined mainly by the number of CAFD

blocks. In this study, we test the effect of this parameter on image SR. Table 3.7 distinctly

states that increasing the CAFD blocks beyond 20 causes very little refinement in the

performance of our proposed network. Therefore, we opt for 20 CAFDs as a balanced

choice.
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Figure 3.11: Intermediate feature maps after the application of bi-cubic maximum
operation.

Effectiveness of CAFD and MLA block

To prove the efficacy of our proposed MLA block in preserving edges, we perform an

experiment: where we first extract the edges of the input LR image by utilizing EdgeNet

module (deep edge extraction) from SoftNet [178] and gave the extracted edges as a

content input in MLA. As shown in Table 3.8 and Figures 3.10 and 3.11, giving edge prior

information to MLA block reduces the overall accuracy of the model. The main reason

for the results could be attributed to the fact that main goal of CAFD block (composed

of MLA blocks) is the preservation of the overall content (low and high frequency) in an

image. But, giving edge information as the input focuses only on high-frequency content

thereby affecting the overall quality of the output reconstructed image.

To further prove the potency of our proposed MLA block in capturing contextual

information, we perform an additional experiment. Basically, the role of our proposed

MLA block is to extract the global contextual information by increasing the receptive

field and its employment inside CAFD blocks further facilitates the preservation of high

and low-frequency content. Since, CAFD relies heavily on MLA, what if MLA is just a

simple convolution layer? Generally, in a simple convolution layer, every filter operates

with a local receptive field and its resulting output feature map is unable to exploit the

contextual information outside the local region. Henceforth, if we replace the MLA block

with a simple convolution layer it would not be able to properly highlight the extracted

features thus resulting in poor preservation of the content information and lower accuracy

of the model. Table 3.9 shows a comparative analysis of our approach MBUp-Net (with

MLA block) and MBUp-Net (without MLA block), where we replace the MLA block with

a simple convolution layer. It is inevitable that for both the compared scale factors, MLA
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block shows much better performance in terms of PSNR and SSIM.

In summary, we discussed the impact of each component (up-sampling layers, popular

network architectures, CAFD block, MLA block and the number of CAFD blocks) of our

proposed MBUp-Net. All these components together account for better feature learning

by generating plausible high-resolution images.
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3.2 (MLE2A2U)-Net: Image Super-Resolution via

Multi-Level Edge Embedding and Aggregated Attentive

Upsampler Network

Albeit the rapid advancement of high profile convolutional neural networks (CNNs), the

CNN-based SR methods have achieved remarkable progress, being quite successful in

utilising the image statics inherent in the training datasets. But what should be the next

progress for SISR? Nevertheless, the popular SR methods [26, 45, 201, 39, 42] showed

remarkable results. But, still there is a great urge to revisit the various components and

reconsider the previous methods to search for more efficient SR model and address some

issues like: (1) How is it possible to improve the capability of the overall SR network and to

utilize the low-frequency information for preserving the high-frequency details, without

involving much deeper architectures. (2) Most of the recent SR approaches focus on

using pixel-shuffle or Conv2D-Transpose as the up-sampling layers, without exploring

much the other possibilities for up-sampling. (3) Does enlarging the receptive

field, really improves the final performance of the SR network? and (4) Though,

the local and the non-local attention blocks lead to good performance in SR results, but

what is the exact position in the SR architecture to place these blocks.

For addressing the above issues and to improve the SR performance, we propose a

purposeful method to improve the performance of super-resolution without using much

deeper architecture. The overall architecture of the proposed method is shown in Figure

3.12. In summary, the main contributions of our work are four-fold:

1. An edge embedding and attentive up-sampler network (MLE2A2U-Net) is proposed

to improve the desired high-frequency details and preserve the low-frequency

information for SISR task, by incorporating both local and non-local attention

mechanisms.

2. We design a novel multi-level edge embedding module, with stacked novel

multi-receptive field extractor blocks, to exploit the features at various scales and

reuse them for the next scale to faithfully preserve the precise spatial details at each

resolution.

3. Also, we propose a novel aggregated attentive up-sampler block, aggregating

information from the popular SoTA up-sampling layers, in an attentive manner to

adaptively rescale the required important features.

4. We also propose a lightweight version of the proposed network (MLE2A2U-Net),

MLE2A2U-NetL by adjusting the hyper-parameter settings of the main network.
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Figure 3.12: (a) The proposed MLE2A2U-Net architecture for SISR, (b) Non-local (NL)
block, (c) Local residual attention-based enhancement (LRAE) block, (d) Multi-level edge
embedding (MLEE) module, and (e) Feature refinement (FR) module.

3.2.1 Proposed Method

For SISR application, stacking profoundly deep networks with variations in the

architectural designs, loss functions and attention blocks is an efficient way of representing

the non-linear mapping between input LR and HR image. However, there is a requirement

to analyse the various components that goes in the designing of SR architecture and finalize

a generic model capable of inheriting the strengths of the existing approaches.

Inspired by this, we propose an architecture, outlined in Figure 3.12, comprising of an

initial feature extraction network (IFEN), a non-local and local attention-based (NLLA)

block and an aggregated attentive up-sampler (AAU) block. Specifically, IFEN network is

proposed to represent the input LR image as a set of feature maps via convolution layers,

with PReLU as the activation function. Taking the extracted LR features as input, the

proposed NLLA block focuses on extracting more informative features, by paying more

attention to the detail fidelity. Next, embedding of the acquired deep features to detailed

up-scaled features, is obtained through an AAU block. Now, we individually illustrate

the design details of the two basic components of the proposed SR model, including the

NLLA block and AAU block.

Non-Local and Local Attention Block

To make a trade-off between the local and non-local properties of features, NLLA block

is built comprising of non-local block and local residual attention-based enhancement

block. Such a combination scheme, not only gathers the contextual information within

the local receptive field but also exploits the information outside the local region. Non-local
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operations are more useful for images with repetitive details, whereas local operations are

a suitable choice for images with complex textures [202] and when used together, they can

complement each other and improve the reconstruction performance. Further, to bypass

redundant low-frequency information in the input LR images and to facilitate the training

of our network, we have utilised several share-source skip connections [52] and local source

skip connections in our proposed NLLA architecture.

Non-local Block

The non-local (NL) block [126] aims to strengthen the features of the query spatial position,

through aggregation of information from all other spatial positions as shown in Figure

3.12 (b). NL block can be considered as global context modelling block accumulating

query-specific global context features to each query position.

For an input feature X ∈ RC×H×W where, C, H, W denote the number of channels,

spatial height and spatial width, respectively. Initially three 1×1 convolutions, Wθ, Wϕ

and Wη are used to transform the input feature X, into different embeddings, θ, ϕ and η.

θ = Wθ(X), ϕ = Wϕ(X), η = Wη(X) (3.12)

Following it, the three embeddings are flattened to size C×S, where S indicates the total

number of spatial locations and S = HW. The correlation matrix, C in embedding space is

defined in our work by Embedded Gaussian [126] and is calculated by matrix calculation

as,

M = ηT θ (3.13)

where M ∈ RS×S . Then, we apply a normalization operation to M, in the form of Softmax,

and get Z ∈ RC×S as the output, which is defined as,

Z = Softmax(M) × ϕ (3.14)

The final output, Y ∈ RC×H×W is obtained by adding the original input X with the

weighting parameter Wc, implemented through 1 × 1 convolution.

Y = Wc(Z) +X (3.15)

Thus, the non-local block helps the network to access long-range information via its flexible

residual architecture by making use of less number of layers and parameters. Moreover,

since the non-local block helps in capturing better interactions between any two positions

make it a suitable candidate for SR applications.
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Figure 3.13: Visualization of the attention maps of the three different outputs of an nth

MLEE block. (a) Represents sample input images from Set14 [2] dataset, (b), (c) Attention
maps of ∂n

′s (d) Attention maps of σn
′s.

Local Residual Attention-based Enhancement Block

After non-local operations, to enhance the features via extracting their spatial correlation,

a local residual attention-based enhancement block (LRAE) comprising of multi-level edge

embedding (MLEE) module with multi-receptive field extractor (MRFE) module stacked

inside it is proposed. Since, LRAE blocks are itself composed of several MLEE modules,

incorporating skip connections between these modules help in better propagation of the

contextual information towards end of the network by avoiding the problem of vanishing

gradients. The MLEE module has been further followed by a feature refinement module

to exploit better correlation among the features as shown in Figure 3.12 (c). Various

components of the LRAE block are discussed in detail as follows:

Multi-Level Edge Embedding Module In the proposed module, we target at two

main problems in SR. Firstly, for SR task, the feature distribution is varying across

different frequency bands, with low-frequency information consisting of simpler textures

and high-frequency information consisting of complex textures [203]. Hence, a dedicated

architecture for the preservation of low and high-frequency information is required.

Secondly, since the receptive field of CNNs tends to grow slowly with increase in the depth

of network [204], thereby adversely effecting the extraction of long-range relationships

among pixels, hence we require a remedial solution for the same. Inspired by the work

in [204], we propose a novel multi-level edge embedding (MLEE) module. The proposed

MLEE module, is designed to boost the enhanced features at the current level and to pass

the learnt high-frequency details onto the next level using share-source skip connections.

To further enhance the representational ability of the different resolution features and to

effectively remedy the missing information from multi-levels, the proposed MLEE module

consists of several MRFE blocks stacked together in a multi-level way. Specifically, as
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shown in Figure 3.12 (d), k -level MLEE stacks a chain of n multi-receptive field extractor

blocks, MRFE {Mm}nm=1. Considering the kth level MLEE module be denoted as Ek, the

input of which consists of features from the previous embedding module, Ek−1. Further,

for every kth embedding module we have used three MRFE (Mn) blocks, outputting two

subtraction (∂n) and one addition operation (σn). As clear from the Figure 3.12 (c), the

last embedding module Ek, receives input from all the preceding levels of MLEE modules

alleviating the issue of vanishing gradient [205].

The overall operation of the kth embedding block with Mnth
MRFE block is defined as,

� Compute the difference ∂n between the adjacent MRFE features Mn at the same

level. For every level of edge embedding module, we define the difference output as,

∂n = Mn+k −Mn+k−1, ∀n = [1, 10]; k =

⌊
n+ 1

2

⌋
(3.16)

� The enhanced feature σn is obtained after considering the boosted features from all

the previous levels and detailed features from the same level and is given by

σn = σn−1 +M3n−2 + (M3n −M3n−1), n ∈ [1, 5] (3.17)

The feature maps obtained after the subtraction operation, ∂n encodes the details like

edges and textures, whereas the feature maps obtained after addition operation, σn encodes

the high level semantic and detailed information as shown in Figure 3.13. Since, both

the extracted features consists of redundant and complimentary information and focus

on different frequency information (with ∂′ns focusing on high-frequency and σ′ns

focusing on the low-frequency information) in the image, directly combining them

using simple concatenation or addition operations could ignore the information between

different layers. Hence, we introduce a feature refinement module for exploitation of the

complementary information.

Multi-Receptive Field Extractor Block Since SR requires prediction for every single

pixel in the input LR image, it is important for every output pixel to have large receptive

field in order to avoid missing important information while making predictions. Moreover,

limited spatial size of the input image is insufficient to learn the diverse LR-to-HR

mappings. To relieve this situation by rethinking the influence of multi-scale learning

and skip connections in the field of SR, we design a novel multi-receptive field extractor

(MRFE) block as shown in Figure 3.14 (a). It is capable of extracting features from

various receptive fields to cover different shapes and textures of the objects. In MRFE

block, different levels of the convolution layers corresponds to different degrees of feature

information extraction. The cross-scale concatenation between the multi-scale features is
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Figure 3.14: (a) The proposed Multi-receptive Field Extractor (MRFE) block.
Represented as M in Figure 3.12 (d), (b) Attention block used in Figure 3.12 (c) and
Figure 3.12 (e).

shown in Figure 3.14 (a). The obtained feature subset, fi at each level i, where i ∈ {1, 2, 3}
are further concatenated and passed through the 1 × 1 convolution layer. Notice, that at

each level, fi could potentially receive information from all the previous levels fj ; j ≤ i.

This way of feature representation not only allows the features to be explored sequentially,

but also explores their distinctive complimentary characteristics. Further, passing the

fused features of one level to other level helps in better sharing the information at different

scales.

Contrary to the existing MDCN [115] which uses dual path network by densely connecting

the features at different scales, our MRFE is capable of exploiting more contextual

information with increased receptive field by utilizing less number of parameters. The

receptive field, (RF) is generally calculated as,

RFi = RFi−1 + (k − 1)

L∏
i=1

Si (3.18)

where, i denote the layer under consideration. L denotes the total number of layers in the

network, S denotes the cumulative stride of all the previous i − 1 layers and k indicates

the filter size. Specifically, after passing through k level MLEE block with n MRFEs,

the receptive field RF increases progressively helping the network for gathering more

contextual information.
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Feature Refinement Module The addition σn and subtraction ∂n outputs of the

MLEE module contain complimentary and redundant information and directly fusing

these different features may limit the expressive power of the overall network. Hence,

we need to design a novel way of fusing these contradictory feature response from different

layers. Most deep SR networks integrating multi-level features, directly by concatenation

or addition operations (without any post-processing), generally ignores the gap between

different features and may lead to some undesirable artifacts [206]. Working on this goal,

in our proposed feature refinement (FR) module, we propose a non-linear mechanism

for combining the complimentary features using attention mechanism. Our FR module

separately receives the subtraction and addition outputs of all the MLEE modules as inputs

as shown in Figure 3.12 (e). Firstly, all the subtraction outputs ∂n’s are concatenated, and

then these discriminative concatenated feature maps are passed through a 1×1 convolution

layer to generate fused subtraction features (FSF). The FSF is defined as,

FSF = WS ∗ ([∂1, ∂2, ∂3..., ∂n]) + bS (3.19)

where, WS , bS denote the weight and biases of the convolution layer for FSF features,

learned during training. ∂i denotes the ith feature map obtained after subtraction

operation, where ∂i ∈ RC×H×W .

On a similar note, the fused addition features (FAF) aggregating all the σn
′s is defined as,

FAF = WA ∗ ([σ1, σ2, σ3..., σn]) + bA (3.20)

where, WA, bA denote the weight and biases of the convolution layer for FAF features

learned during training.

To further remove any redundant information, the feature maps of FSF and FAF are

passed through an attention block to adaptively re-calibrate the feature maps. Then,

the refined FSF and FAF are aggregated through concatenation. For selection of useful

multi-level information with respect to the features of every layer and for reducing the

number of channels to the original channels, a final convolution layer with weight WR and

bias bR has been added after the aggregated features. The final refined feature (FRF)

maps can be formulated as,

FRF = WR ∗ ([FSF, FAF ]) + bR (3.21)

Attention Block To strengthen the role of useful feature channels (excite) and weaken

the role of useless channels (squeeze), we ought to assign different weights to separate

channels [201]. Contrary to the previous SR works [44], [52] which uses only global average

pooling to capture the global statistics of feature maps, we leveraged both global average
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pooling (GAP) and global max pooling (GMP) to aggregate the global information.

Since, spatial details are more important for the discriminability of SR network, and

max-pooling being a good option for preserving the most activated pixels, hence it becomes

a suitable choice in our network design. For excitation operation, we re-calibrate the

feature descriptor (obtained after merging the two squeezed feature vectors by element-wise

addition) by using two convolution layers with weights Wdown and weights Wup. After

receiving the excited feature maps, we pass it through Sigmoid function to capture the

channel-wise dependencies from the aggregated information. The overall operation of the

attention block is summarised as:

w = sig(Wup(ReLU(Wdown ∗ (zc
avg + zc

max))))

zc
avg = GAP (Xc) = 1

h×w

∑
i

∑
j
Xc(i, j)

zc
max = GMP (Xc) = max(Xc(i, j))

(3.22)

where, sig represents the Sigmoid function, inserted at the end of attention block.

The attention block has been inserted in every module of our network and

serves several purposes as mentioned below:

� In the proposed upsampler block, it serves the benefit of sharing information within

a tensor along the channel dimension.

� In the proposed feature refinement module which receives several ∂n and σn as inputs,

attention block serves the purpose of discriminatively focusing on the important

information and bypassing the redundant information.

� Since different scales of the receptive fields generate features with different levels of

discrimination, hence an attention module is added in LRAE module after every FR

module for modelling rich contextual dependencies over the local features.

SR being a pixel-to-pixel correspondence task, proper care must be taken, while preserving

the fine spatial details and on collecting long-distance spatial contextual information.

Towards this goal, as discussed our designed NLLA block with MLEE module is suitable

for capturing the fine details (edges and textures), and the stacked MRFE’s serves the

purpose of increasing the receptive field for capturing large context of the input image.

Aggregated Attentive Up-sampler Block

Upsampling, being the key step for reconstructing the HR images from LR images,

any improper up-sampling technique may lead to certain redundant information in the

reconstructed image. Majority of the SoTA SR methods adapt similar type of up-sampling

techniques by either using deconvolution, pixel-shuffle or learn-able convolution layers.

Bilinear and Bicubic interpolation are implemented in accordance with the spatial
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Figure 3.15: The proposed Aggregated Attentive Upsampler (AAU) block for ×4
upsampling.

distances, the basic difference between the two is the number of positions being considered

(4 pixels for bilinear and 16 for bicubic). Images reassembled with bicubic interpolation

tend to produce smoother outputs with less interpolation distortion. Bilinear interpolation

also tends to remove some visual distortions. The operation of transposed convolutions,

commonly known as deconvolution layers, is equivalent of interleaving the input features

with 0’s and then applying a standard convolution layer. Pixel-shuffle, also known as

sub-pixel convolution, shifts the feature channels into spatial dimensions and preserves

all floats inside the high-dimensional representation of the image, since it only changes

the placement of pixels. However, these techniques when incorporated individually in the

network may not be that much effective, as they introduce certain redundant information

in the reconstructed image. Moreover, these methods map the LR image to SR image

with content-irrelevant up-sampling weights, which implies that weights for up-sampling

are same for different pixels. Hence, it may result in over-smooth SR results. To combine

the advantages of all the up-sampling layers and to overcome the shortcomings imposed,

when each of them used individually, we propose a novel Aggregated Attentive Up-sampler

(AAU) block, which aggregates all the up-sampling techniques in an attentive way. The

structure of our proposed AAU block is shown in Figure 3.15. It adaptively learns the

up-sampling weights for different pixels to produce SR results.

Given a LR feature map F (y) ∈ RC×H×W to be up-sampled, our goal is to generate an

up-sampled feature map F ′(y) ∈ RC×rH×rW , where r denotes the up-sampling factor.

For position (u’,v’ ) in F’(y), the corresponding source position (u,v) is solved by equating

u′ = ⌈ur ⌉ and v′ = ⌈vr ⌉. We aim to learn an up-sampling weight w for each position in F’(y).

Applying these learned weights to each channel of the up-sampled feature map denoted



54
Chapter 3. Implicit Learning based Frequency Extraction Approach for Single Image

Super-Resolution

Table 3.10: Hyper-parameters setting for the proposed model and its lightweight version.

Method MLEE (E ) MRFE (M ) LRAE (L)

MLE2A2U-Net 5 15 5

MLE2A2U-NetL 2 6 5

by F ′(y) ∈ R1×rH×rW , helps to dynamically characterize the useful set of kernels from

each branch. We further ensemble the features through concatenation to adaptively learn

more accurate representation, after passing the attentive response from every up-sampling

branch, through two convolution layers to get the aggregated response as F
′
aau.

(F
′
aau)c = [(wbic × F

′
bic)c, (wbil × F

′
bil)c, (wps×F

′
ps)c, (wdec×F

′
dec)c]) (3.23)

Here, F
′
aau represents the final up-sampled feature map, obtained after passing through the

AAU block. [·] denotes the concatenation operation performed after passing the attentive

weight response, through two convolution layers with filter size 3×3. (wup×F
′
up)c denotes

the element-wise multiplication of the corresponding learned up-sampling weights (given

by Eq. 3.22) of the cth channel and the up-sampled feature map (Here, up represents

the different up-sampling techniques (Bicubic (bic), Bilnear (bil), Pixel-shuffle (ps) and

deconvolution (dec))). It is worth noting that to make bilinear and bicubic up-sampling

comparable to the other learning methods, we have used an additional convolutional layer

after the up-sampling operation.

3.2.2 Experimental Analysis

In this section, initially, we provide the experimental setup followed by the comparison

between the proposed MLE2A2U-Net and other state-of-the-art methods on several

benchmark datasets for SISR. Further, we discuss the contributions of the different

components in the proposed model via detailed ablation study.

Experimental Details

Dataset

The performance of the proposed MLE2A2U-Net has been validated on Set5 [1], Set14 [2],

BSD100 [3], Urban100 [4] and Manga109 [49] datasets for SISR.

In this work, we have trained the proposed network on DIV2K dataset [5] that is

composed of high-quality 800 training images, 100 validation and 100 testing images.

Data augmentation in form of horizontal flipping and rotation by 90◦ is performed on

800 DIV2K images. Degraded data for training has been further obtained by bicubic

interpolation.
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Training Details

Training hyper-parameters have been implemented in PyTorch, using NVIDIA DGX

station with processor 2.2 GHz, Intel Xeon E5-2698, NVIDIA Tesla V100 1×16 GB GPU.

Following the settings of [26], we have pre-processed the images, by subtraction of the

mean RGB value of the DIV2K dataset. Sixteen low-resolution patches of size 48×48 has

been randomly sampled from the training batch. The patch size for ground-truth HR

images depends on the corresponding scale factor. The model had been optimized using

ADAM optimizer [207] with β1, β2 and ϵ set to 0.9, 0.999 and 10−8, respectively. During

training, learning rate is set to 10−4 and decreases after every 2×105 mini-batch updates.

The network has been trained with L1 loss for 1000 epochs. Following, the trend in SISR,

evaluation of the measured PSNR and SSIM metrics has been done on the luminance

channel of the image, with boundary pixel cropping.

Implementation Details

As shown in Figure 3.12, our proposed MLE2A2U-Net depends on various

hyper-parameters, including the number of LRAE blocks (L), MLEE (E ) modules and

the number of MRFE (M ) modules in every MLEE and the specific settings of the

attention block and aggregated attentive up-sampler block. For lightweight applications,

we propose a lightweight version of our MLE2A2U-Net model as MLE2A2U-NetL with

different configurations of hyper-parameters as shown in Table 3.10. The shown Table

compare the settings of the main modules of our originally proposed model and its

lightweight version. The non-local block is embedded at the beginning and the end of

proposed NLLA module. For the attention block, we have set the kernel size of convolution

layer as 1 × 1 and reduction ratio is set to 16. For convolution filters, outside the attention

block, we have set the filter size and the number of filters as, 3 × 3 and 64, respectively.

For the up-sampler block, we have set the kernel size of convolution layer as 3 × 3 and the

number of filters = 64 for all the layers, except the last 1 × 1 layer and the deconvolution

layer, for which the filter size, stride and padding are set to 6, 2, and 2 respectively for ×
4 factor.
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Figure 3.16: Subjective evaluation for ×4 upscaling on images from Urban100 [4] dataset.
(a) Ground truth HR image, (b) CSNLN [39], (c) DBPN [40], (d) DRLN [41], (e) EDSR
[26], (f) HAN [42], (g) RFA-Net [43], (h) RCAN [44], (i) RDN [45], (j) SRFBN [46], (k)
USRNet [47], (l) SRGAT [48] and (m) MLE2A2U-Net (Proposed Method).

Comparison with State-of-the-art Methods

For evaluating the effectiveness of the proposed MLE2A2U-Net model, several

state-of-the-art methods are compared in terms of quantitative and qualitative evaluation

and local attribution maps [51].

Quantitative Evaluation

We compare the proposed MLE2A2U-Net with fourteen state-of-the-art methods for SISR.

For quantitative purpose, we have compared the PSNR and SSIM values of different

methods for scales ×2 and ×4. From Table 3.11, it is clear that our model, with 8.2

Million parameters, yields the best performance, with highest PSNR and SSIM on

almost all the datasets. It is worth noting, that the proposed model clearly outperforms

heavy models (with about 40 Million parameters) EDSR [26], OISR-RK3 [208], by a large

margin of about 0.3 dB and 0.2 dB for Set5 and Set14, respectively for × 4 up-scaling. As

reported in Table 3.11, the improvement margins of PSNR when compared with SAN [52],

for ×2, ×4 are beyond 0.2 dB, 0.3 dB, respectively for challenging dataset of Manga109[49]

and Urban100 [4]. Both these datasets, consists of highly complicated and repetitive

bands, making it quite challenging for task of super-resolution. Furthermore, the proposed

MLE2A2U-Net shows an improvement of 0.2 dB when compared with recently proposed

TSAN [209] and DeFiAN [210] on Set5 [1] dataset for ×4. This proves the accuracy of our

model, in better learning the relationship among the training patches in feature space.

To further prove the effectiveness of the proposed model, we have compared our lightweight

MLE2A2U-NetL with 8 state-of-the-art lightweight SR methods as shown in Table 3.12.
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Figure 3.17: Subjective evaluation for ×4 upscaling on ”Momoyamahaikagura” and
”Ollunch” from Manga109 [49] dataset. (a) Ground truth HR image, (b) CSNLN [39],
(c) DRLN [41], (d) HAN [42], (e) DBPN [40], (f) RFA-Net [43], (g) RCAN [44], (h) RDN
[45], (i) SRFBN [46], (j) SRGAT [48] and (k) Proposed Method.

Figure 3.18: Subjective evaluation for ×2 upscaling on ”img012” and ”img013” from
Urban100 [4] dataset. (a) Ground truth HR image, (b) CARN [50], (c) CSNLN [39], (d)
DBPN [40], (e) DRLN [41], (f) HAN [42], (g) MSRN [34], (h) RCAN [44], (i) RDN [45]
and (j) MLE2A2U-Net (Ours). (Better view in zoom)

Our lightweight model with 2.03 Million parameters, clearly outperforms the recently

proposed DeFian [210] by 0.16 dB and 0.3 dB on Set5 for × 2 and × 4 scaling, respectively.

Qualitative Evaluation

We further assess qualitatively the performance of the proposed MLE2A2U-Net on some

challenging images from the benchmark datasets for × 4 and × 2 as shown in Figure

3.16, 3.17 and 3.18. For better understanding, we have zoomed in the details of the

considered example and labelled the PSNR/SSIM under each image patch. Our proposed

method is more accurate at reconstructing most of the parallel straight lines and grid

patterns, such as the highlighted stripes of the wall and the rectangular grid as shown in

Figure 3.16. The compared methods are hardly able to reconstruct the right patterns

of these lines and suffer from unpleasant blurring artifacts. On the other hand, the
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Figure 3.19: Demonstration of the Local Attribution Maps (LAM) for SR network
interpretation [51]. Here, (a) RCAN [44], (b) SAN [52], (c) CARN [50], (d) EDSR [26]
and (e) Proposed method.

super-resolved results of the proposed MLE2A2U-Net contain visually pleasant patterns,

with more high-frequency details, such as textures and edges. This phenomenon of better

reconstruction is further highlighted for images with complicated and repetitive bands,

like for examples in Figure 3.17, our proposed method is better at reconstructing the texts

and characters (the characters marked with red color arrows are better generated by our

proposed model). Besides, as shown in Figure 3.18, the visual comparisons for scale ×2

demonstrate that our approach is best at reconstructing the high-frequency image details

with high fidelity to the ground-truth HR image. This is mainly, because we attempt

to exploit information among patches by utilising feature correlations, and thus parallely

recover the structured information and semantic details.

Results for Local Attribution Maps

Gu et al. [51], recently proposed the concept of local attribution maps (LAM) for SR,

to find the contribution of input pixels, that strongly influence the SR results. LAM,

aims to highlight the most important pixels, and for the same input LR patch, if local

attribution maps for the SR image covers a wide range of pixels, it indicates that more

information has been extracted and used for reconstruction. It can be concluded from

Figure 3.19 that network like CARN [50], covers only limited range of pixels, on account

of its limited receptive field. EDSR [26] and RCAN [44] covers a wide range of pixels and

exhibits better results than [50]. Further, it is worth noting that some of the networks like

SAN [52] may cover a broader range of pixels, but still lead to the generation of wrong

textures in the final reconstructed SR image. While our model, besides covering large

range of pixels is also capable of generating crisp edges. This proves the effectiveness of

the modules incorporated in our network for utilising global information to assist SR.
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Figure 3.20: Comparison of MLE2A2U-Net on different model sizes. Average PSNR on
Set5 and Set14 datasets for × 4 scale factor. Here (x,y) denotes the corresponding PSNR
values for Set5 [1] and Set14 [2].

Figure 3.21: Comparison of PSNR vs. the number of MLEE blocks for Set5 dataset.
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3.2.3 Ablation Study

In this subsection, the effects and the contributions of different components in the proposed

model are analysed by conducting a series of experiments, including the effect of model

size, effect of incorporating MRFE, MLEE, LRAE, effect of AAU, feature refinement

module and the effect of pooling operations. For all experiments, the hyper-parameters of

the models in this subsection are set as L = 5, E = 5 and M = 15 and have been trained

on DIV2K datasets.

Analysis of Model Size

In this work, several hyper-parameters play an important role in designing our full model;

including the number of LRAE blocks, MLEE blocks, the number of MRFE blocks,

etc. We, then conduct the ablation analysis for different settings of hyper-parameters

as shown in Figure 3.20 and Figure 3.21. From Figure 3.20, showing the results of

PSNR performance (represented using different colors on Set5 and Set14 for

×4) versus the number of LRAE and MRFE blocks, we find that as the model size increases

(increase in number of LRAE, MRFE blocks), the performance of our network improves,

but we find increasing it beyond a particular range, limits the performance of our SR

network. It is evident from Figure 3.20 that network with 5 LRAE and 15 MRFE blocks

exhibits PSNR gain of about 0.1 dB when compared to deeper model 15 LRAE and 20

MRFE blocks.

Effect of Different Modules

Next, we conduct an ablation study for each component of our proposed MLE2A2U-Net,

including the multi-level edge embedding module (MLEE), attention block (AB) and

aggregated attentive up-sampler block (AAU). All these variants have been tested on

Set5 dataset and the detailed performance has been shown in Table 3.13. Further, to

focus on the high-frequency details of the features, we visualize the intermediate feature

maps as shown in Figure 3.22. The 8 different feature maps corresponds to the 8 different

settings of Table 3.13, by removing or adding different modules. It is clear from the Figure

3.22 that undesirable discrepancies in detailed regions have been reduced greatly from (a)

→ (h).

We further construct a baseline model by removing all the main modules in the network.

We can check from Table 3.13 that the baseline model reaches 31.56 dB PSNR on Set5

dataset for ×4. Meanwhile, results in the first four columns of Table 3.13 demonstrates

the efficiency of each module, exhibiting significant improvement over the Baseline. As

an example, the effect of adding AAU block is visible from Figure 3.22 (c) (showing the

feature maps of each combination), that shows more details when compared to (a). When
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Figure 3.22: Visualization of feature maps for different combinations given in Table 3.13.

we integrate the two modules (MLEE and AAU), the ability of the network for detail

preservation is improved by about 1 dB from the baseline model. The major reason

lies in the removal of excessive redundant information and collection of large contextual

information via increased receptive field. Furthermore, when all the three modules are

used, the performance is significantly improved from 31.56 dB to 32.68 dB; showing the

effectiveness of the proposed architecture.

Table 3.13: Ablation study on Set5 dataset for × 4 scale factor with different modules.

MLEE × ✓ × ✓ ✓ × ✓
AAU × × ✓ ✓ × ✓ ✓
AB × × × × ✓ ✓ ✓

PSNR (dB) 31.56 32.10 31.97 32.56 32.29 32.44 32.68

Effect of AAU

After confirming the validity of the proposed components, we next compare the

performance of our network for various up-sampling techniques. Our baseline network

is the proposed model employing AAU for up-sampling. Next, we train our network

separately, adopting bicubic, deconvolution, pixel-shuffle and bilinear for up-sampling

in place of our proposed AAU block. It is clear from the Table 3.14 that the baseline

method using our proposed AAU module is better than the Pixel Shuffle, Bilinear

and Deconvolution operation in terms of PSNR by approximately 0.2, 0.3 and 0.4 dB,

respectively for × 4 up-scaling on Set5 dataset.
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Table 3.14: Effect of different upsampling techniques. Average PSNR on different datasets
for × 4 scaling.

Methods Set5 Set14 BSD100 Urban100

Bicubic 32.46 28.77 27.66 26.79
Deconvolution 32.44 28.78 27.63 26.75
Pixel-Shuffle 32.69 28.90 27.79 26.88

Bilinear 32.52 28.86 27.77 26.66
Proposed Method 32.80 28.97 27.85 27.05

Table 3.15: Effect of feature fusion strategy for ×4 on Set5.

Method PSNR/SSIM

Concat 32.15/0.8993
Addition 32.23/0.8996
Feature Refinement Module 32.66/0.9004

Table 3.16: Effect of pooling operation in the Attention Block (AB). GAP denotes Global
Average Pooling and GMP denotes Global Max Pooling.

Model Set5 Set14 B100

AB + GAP 32.46/0.8958 28.69/0.7884 27.58/0.7316
AB + GMP 32.52/0.8974 28.85/0.7895 27.71/0.7327
AB + GMP + GAP 32.69/0.9000 28.93/0.7900 27.82/0.7338

Table 3.17: Different Locations: Non-local Blocks are inserted at different positions in
our proposed model for Set5 dataset.

Model PSNR /SSIM

Without NLB 31.95/0.8984
After every LRAE 32.21/0.9004
Parallel with every LRAE 32.05/0.8999
Proposed Method 32.57/0.9007

Effect of Feature Refinement Module

We show the importance of feature refinement module by comparing it with other

commonly used fusion strategies in literature i.e. feature addition and feature

concatenation. From the Table 3.15, it is found that our feature refinement module

obtains the best results on all the datasets, by showing an improvement of nearly 0.4 dB

for Set5 dataset when compared with other fusion strategies, and thus demonstrates the

effectiveness of incorporating it in our network. This comparison proves the fact that since,

both the addition and subtraction operations of MLEE module contains complementary

information; and fusion of these features using trivial concatenation or element wise feature

addition may overlook the redundant information. Hence, we need to introduce some sort

of attentive mechanism in our combination framework, justifying the importance of feature
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refinement module.

Effect of Pooling operation in Attention Block

In order to highlight the effect of different pooling operations in the attention block, we

compared three different settings as shown in Table 3.16. It should be noticed, that while

employing both GAP and GMP in the attention block, our accuracy results surpasses the

other settings by a huge margin, proving the efficacy of the proposed attention block.

Which Stage do We Need to add Non-Local Block?

As discussed in [126], the position of non-local block in the network plays an important

role in capturing the precise spatial information. We also conducted series of experiments,

as tabulated in Table 3.17, for placing the non-local block at different positions in the

proposed architecture. The comparisons have been performed for Set5, Set14 and BSD100

at scale ×4. Without NLB refers to the proposed architecture without any non-local block

and exhibits the lowest performance in terms of PSNR/SSIM. Further, it is clearly visible

that placing the non-local blocks either in parallel or in series, after every LRAE module,

does not contribute much in improving the performance. One possible explanation is

that, non-local blocks are not that much effective in linking the long-range dependency

information when incorporated in such a way. It is evident that plugging one non-local

block at the beginning of the LRAE module and one before the up-sampling module (or

after the last LRAE module) gives the best performance.
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3.3 Summary

This chapter addresses the problem of frequency extraction in super-resolution without any

requirement of explicit prior information. In the first solution (Section 3.1), we propose

an effective framework, novel multi-level bi-cubic up-sampler network (MBUp-Net)

for modelling the process of super-resolution. Specifically, a novel content aware

feature difference (CAFD) block is designed to effectively encode multi-scale contextual

information and to extract high-frequency details. In each CAFD, multi-level attention

(MLA) blocks enable full utilization of the multi-scale features by allowing only more

informative ones to pass further. Our proposed up-sampling strategy ensures superior

results by removing the artefacts and aliasing introduced by other layers to a great extent.

In our second solution 2 (Section 3.2), we propose an edge embedding with attentive

up-sampler (MLE2A2U-Net) network for single image super-resolution aiming to preserve

the precise spatial details by capturing long-range information without any prior

information. Particularly, to extract the multi-scale high-frequency information for

generating images with high visual quality, a novel multi-level edge embedding module

with stacked multi-receptive field extractor block has been proposed. Furthermore, a novel

aggregated attentive up-sampling module is proposed to effectively merge the attentive

features from different layers.

However, there is more requirement of computationally intensive architectures for saving

the memory consumption. A detailed discussion is given in the next chapter.



Chapter 4

A Novel Lightweight Approach for

Image Super-resolution

Though the existing super-resolution networks yield photo-realistic outputs, but the

models are quite heavy with millions of parameters [68, 216] and the inference through such

a complex network demands billions of floating point operations (FLOPs). Consequently,

it results in larger computational cost, more power consumption and limited flexibility of

the overall network while deploying on hardware. The best possible solution for this is to

come up with some lightweight networks that offer a trade-off between accuracy and speed.

In order to balance these issues of quality and complexity, in this chapter we proposed two

different lightweight solutions with relatively less computational complexity and efficient

super-resolution results. The proposed two solutions are:

1. MSAR-Net: Multi-scale Attention based Light-Weight Image Super-Resolution.

2. Con-Net: A Consolidated Light-Weight Image Restoration Network.

These solutions are explained in detail in the following sections.

4.1 MSAR-Net: Multi-scale Attention based Light-Weight

Image Super-Resolution

Despite considerable improvement brought up by the existing SR techniques [36, 68, 216,

217, 186], a computationally intensive method for consolidating the feature representation

and edge-enhancing capability in a single network with less computational burden needs

to be exploited. Attention mechanism that focuses on the correlation of the features either

spatially or channel-wise has shown promising results in the field of image super-resolution,

but at the cost of large number of parameters [36] and [176]. Owing to the effectiveness

of attention blocks, our proposed method embedded a novel lightweight attention module

into the proposed multi-scale residual block. Additionally, to effectively super-resolve

an image it is necessary to focus on the edges in an image, thus a novel up and down

sampling projection block has been used after each multi-scale attention residual block

for collecting the high-frequency information. But still a natural question arises, is it

possible to have an effective consolidated framework capable of promoting the understanding

of image contents, with less number of parameters? It is obvious that increasing the
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Figure 4.1: The proposed architecture of the network for image super-resolution.

layer depth will cause vanishing gradient and computational burden problems. Hence, to

promote better reconstruction performance with fewer number of parameters, we propose

a Lightweight MSAR-Net for exploiting both the feature and edge information in single

network. The main contributions of our work are listed as below:

1. We propose a progressive multi-scale network to sequentially explore the hierarchical

information with fewer parameters. This lightweight architecture makes it possible

to handle the image features efficiently for high quality image restoration.

2. We propose Multi-scale attention residual (MSAR) blocks for adaptively capturing

the multi-scale correlations among the features and an up and down sampling

projection (UDP) block for edge refinement of the extracted multi-scale features.

4.1.1 Proposed Method

The overall pipeline of the proposed network shown in Figure 4.1 is composed of three

modules: (1) Feature Extraction Block (FEB) that processes a LR input image to

collect the robust features, (2) stack of multi-scale attention residual (MSAR) blocks for

performing the non-linear mapping after exploring the relationship between features, (3)

up and down projection (UDP) block for performing the edge refinement of the extracted

features. The feature extraction module consists of two 3×3 convolution layers which are

used to extract the features by collecting the activations of the inputs and generate LR

feature maps. Eq. (4.1) defines the basic function of FEB.

H0 = ψFEB (ILR), (4.1)

where, ψFEB denotes the function of feature extraction block, H0 represents the extracted

features, and ILR denotes the input LR image. After extracting the features, a stack of
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MSAR blocks are used to further explore the features non-linearly and finally map the LR

features to SR using pixel-shuffle layer. Each MSAR block consists of multi-scale attention

block and the features further extracted are fused by global learning. This process for k

blocks can be formulated as Hk, where Hk denotes the output of kth MSAR block. After

passing through all MSAR’s and UDP’s, the concatenated features will pass through the

up-sampling block which will up-sample the feature maps through pixel-shuffling. The

reconstructed feature maps consisting of refined upsampled features is defined as,

Hrec = ψUDP (ψMSAR(H0)), (4.2)

where, ψUDP and ψMSAR, denote the function of the UDP block and MSAR block,

respectively. The final high-quality SR image we seek is defined as,

ISR = f3×3Hrec, (4.3)

where, f3×3 denotes the function of convolution layer with kernel size 3. We have used

pixel-shuffle [181] as our upsampling layer. It is worth mentioning, that processing the

information at different scales and subsequently aggregating helps in the abstraction of

features for the next stage, thus making the model capable of extracting a variety of

information. Further, the residual connections are been used in the model that helps in

eliminating the problem of vanishing gradients, thus ultimately stabilising the training

procedure. In the next subsection, we discuss the two main components of the proposed

MSAR-Net, Multi-scale Attention Residual Block and Up and Down projection block in

detail.

Multi-Scale Attention Residual Block

An overall progressive multi-scale model for better feature-correlation, while moving

deeper in the network has been proposed. Different from the other residual and inception

blocks proposed in existing literature [30, 32], we made an attempt to increase the receptive

field for better feature extraction. For allocation of the available resources toward the more

informative contents in the image, we have used the concept of attention inspired from

[36]. To further increase the network capability on learning more important features,

a spatial attention unit and channel attention unit has been designed. The multi-scale

features obtained by passing the information from parallel convolution layers of size 1, 3,

51 are concatenated as:

ψres = [f1×1, f3×3, f5×5], (4.4)

where, [·] and ψres denote the concatenation and multi-scale features, respectively. Each

convolution layer from the proposed MSAR block consists of 32 filters.

1f5×5 in Figure 4.1 has been implemented using two f3×3 convolutions [218].
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For further contextual information, not gathered by the local receptive field, global average

pooling [36] has been used. We have opted to extract the channel characteristics using

a sigmoid function for enhancing the non-linear interactions between the channels. The

channel attention block is defined below:

xc = VGP (ψresc) =
1

h× w

h∑
i=1

w∑
j=1

ψresc(i, j), (4.5)

ψCA = [δ(f1×1(λ(f1×1(xc))))] × ψresc, (4.6)

Here, VGP (·) represents the average global pooling operation to take into account the

channel-wise spatial information. δ(·) represents the sigmoid function and λ(·) represents

the LeakyReLU activation function, respectively. ψCA represents the output of channel

attention block. ψresc represents the cth channel feature map and xc represents the

statistics obtained by shrinking ψres spatially. To emphasize on the non-linear activations

between the channels, the obtained features are first downsampled channel-wise via

convolution layer of 32 filters and kernel size of 1 × 1, followed by channel upsampling

performed via a convolution layer of 1 × 1 with 64 filters. For rescaling the input, the

obtained channel statistic is multiplied by the feature map in the cth channel as shown in

Eq. (4.6) to scale the important channel features.

To modulate the features locally, spatial attention unit has been used, which is defined as,

ψSA = (f1×1(ϕ(ψres))), (4.7)

ψcat = [ψSA × ψres, ψCA × ψres]ψMSAR = ψres + ψcat, (4.8)

Here, ψSA represents the output of spatial attention block. ψMSAR represents the final

output of the MSAR block. ϕ(·) represents the depth wise convolution with filter size 3×3.

ψcat represents the concatenated attention features. The proposed attention blocks are

capable of exploiting the inter and intra channel information, where the use of Depth-wise

convolution further helps in generation of different 2D spatial attention maps for each

channel. The obtained maps are then passed through a convolution layer with 64 filters

for better refinement. To utilise the benefits of both the blocks simultaneously, we have

combined them through concatenation.

Up and Down projection Block

After obtaining the refined features from MSAR block, we ought to increase the content

of high-frequency information in the image by using the proposed UDP block as shown

in Figure 4.1. The overall operation of UDP block has been summarized in Eqs. (4.9)

and (4.10). Firstly, the difference of the consecutive multi-scale feature maps of MRFE is



Chapter 4. A Novel Lightweight Approach for Image Super-resolution 71

evaluated. It focuses on the high-frequency information, then the subtracted features are

passed through an upsampling layer Conv2DTranspose with stride 2. The upsampled

features are converted back to the LR space by using a convolution layer of stride

2. The final subtraction operation, outputting ζn in Eq. (4.9) helps in removing

the redundant information. The addition operation shown in Eq. (4.10), with ψUDP

output, extracts the relevant features required for the reconstruction of sharp image and

consequently boosts the multi-scale features. Further, the features from all the UDP

blocks are added together for better gradient propagation. Finally, the concatenation of

all the residual features and edge features have been performed for full exploitation of the

multi-scale edge features.

ζn = ∆n − in

∆n = ψresn − ψresn−1

in=↓2(↑2(∆n)),

(4.9)

ψUDP = ζn + ψresn (4.10)

Here, the ↑2 and ↓2 represent the upsampling and downsampling operations by ×2,

respectively.

4.1.2 Experimental Analysis

In experiments, we have trained our model using DIV2K dataset [36]. The training LR

images are generated by downsampling the HR image through bicubic interpolation. Our

model has been further evaluated on Set5 [1], Set14 [2], BSD100 [3], Urban100 [4] and

Manga109 [49]. All these datasets further consist of a variety of scenarios, thus completely

validating the performance of the proposed method. The proposed network has been

trained for 500 epochs and implemented in Tensorflow 2.0 deep learning framework. The

model has been optimized using ADAM with β1, β2 and ϵ set to 0.9, 0.999 and 10−8,

respectively. During training, learning rate is set to 10−4 and halved every 104 iterations.

The model has been trained on NVIDIA RTX 2080Ti GPU using mean absolute error

function between the ground truth IHR and reconstructed image ISR.
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Results and Discussion

We have compared the performance of the proposed network with popular CNN-based

SR methods including, SRCNN [22], VDSR [191], DRCN [111], MemNet [24], SRFBN

[185], IDN [25], CARN [28], MSRN [32], IMDN [53], RFDN [43], MSICF [219], MIPN

[55] and SMSR [56]. We have quantitatively evaluated the performance of the proposed

MSAR-Net for PSNR and SSIM metrics and is given in Table 4.1. The proposed method

clearly outperforms the recent MIPN [55], SMSR [56] on PSNR and SSIM for ×2, ×3, ×4

scaling factor. It is clear from the Table 4.1 that the proposed method performs stably

well on all the datasets when compared with the existing methods.

Furthermore, referring to Images, Urban100img−092, Urban100img−093,

Urban100img−011, Urban100img−046, Urban100img−033, Urban100img−076,

Urban100img−072 shown in Figure 4.2, 4.3 and 4.4, from Urban100 dataset, it is

clearly visible that the compared existing SR methods are unable to capture clean, crisp

edges and subsequently, add undesirable textures. Moreover, we find that our proposed

MSAR-Net has clear advantage over the recently proposed MIPN [55], HDRN [54] and

SMSR [56] methods in preserving the image edges and thus consequently, generating

realistic textures in the reconstructed image. From the above-detailed analysis, the

capability of the proposed network for synthesizing better textures and structures is

proved for image super-resolution.

4.1.3 Ablation Study

We have further investigated the performance of the proposed network with different

numbers of MSAR blocks. As clear from Table 4.2, both the performance metrics are

incremental with an increase in the number of MSAR blocks. But, the increase in the

number of MSARs beyond 5, gives a negligible improvement in the performance of the

proposed network. Hence, we have used 5 MSAR blocks to ensure better feature learning

and obtain efficient results. Further, to know the importance of the proposed UDP block,

we have analysed the performance of the proposed network with and without UDP block.

Table 4.2 witnessed the improvement in the performance of the proposed network with

UDP block.

Demonstration of the effect of channel attention (CA) block and spatial attention (SA)

block in the proposed MSAR-Net has been set-up with four scenarios. Table 4.3 presents

a detailed analysis and indicates the PSNR/SSIM values for ×4 scaling factors on Set5

and Set14 testing datasets. It is clearly visible that the proposed channel and spatial

attention blocks leads to the significant improvement for the considered scale, indicating

the importance of paying attention to the channel-wise and spatial features.
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Table 4.2: Analysis of the number of MSAR blocks and the importance of UDPB in the
proposed network for × 4 on Set5.

# MSAR PSNR SSIM UDPB PSNR

with 4 31.96 0.8904
with 5 32.11 0.8985 without 28.31
with 6 32.12 0.8985 with 28.51

Table 4.3: Analysis of the effect of Attention Block on PSNR/SSIM for ×4.

CA block SA block Set5 [1] Set14 [2]

× × 31.04/0.8432 26.41/0.6724
× ✓ 31.44/0.8785 27.68/0.7123
✓ × 31.75/0.8664 27.86/0.7707
✓ ✓ 32.11/0.8997 28.51/0.7808

Table 4.4: Average time consumption on different datasets for scale ×4

Datasets
Set5 Set14

Resolution time(s) Resolution time(s)

VDSR [191] 512 × 512 2.2 720 × 516 3.46
LapSRN [23] 512 × 512 4.78 720 × 516 6.29
HDRN [54] 512 × 512 1.66 720 × 516 2.14
Proposed MSAR-Net 512 × 512 0.78 720 × 516 1.86

Comparisons on Time Complexity

Further, we provide a comparison on model’s efficiency in terms of parameters and time

complexity on different datasets. Comparably, our method ensures better performance

with less number of parameters. As obvious from Table 4.4, that our MSAR-Net shows

clear advantages, when compared with other methods in term of speed, thus promoting

the efficiency of our proposed SR method in real-world applications. This further ensures

the suitability of MSAR-Net for image SR tasks in large resolution.

Besides run-time, for the proposed MSAR-Net method, computational complexity has

been evaluated for SR images of size 154 × 154 in terms of parameters and flops. We have

compared several lightweight methods VDSR [191], LapSRN [23], DRCN [111], MemNet

[24], CARN [28], DRRN [192], IDN [25], SRFBN [185] and CSFRCNN [221] as tabulated

in Table 5. It is evident from the table that the proposed MSAR-Net with least number

of flops and less number of parameters is quite suitable for real world applications. This

proves the efficiency of proposed MSAR-Net in terms of visual quality, computational

efficiency and complexity.
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Table 4.5: Comparison of the proposed MSAR-net with state-of-the-art light-weight
models in terms of parameters and flops on Set5 for ×2 upscaling.

Methods Parameters FLOPs

VDSR [191] 0.66M 10.90G
LapSRN [23] 0.43M 18.90G
DRCN [111] 1.77M 29.07G
CARN [28] 1.59M 42.07G
MemNet [24] 0.66M 11.09G
DRRN [192] 0.29M 1275.5G
IDN [25] 0.71M 31G
SRFBN [185] 3.63M 22.24G
CSFRCNN [221] 1.20M 11.08G
MSAR-Net 1.48M 8.82G

Figure 4.2: Visual comparison on challenging images of Urban100 dataset for ×4 where (a)
Represents the cropped ground-truth HR, (b) Bicubic, (c) SRCNN [22], (d) MemNet [24],
(e) IDN [25], (f) IMDN [53], (g) HDRN [54], (h) MIPN [55], (i) SMSR [56], (j) Proposed
MSAR-Net.



76 Chapter 4. A Novel Lightweight Approach for Image Super-resolution

(d) 22.02/0.6837(a) SSIM/PSNR (b) 22.98/0.6980 (c) 23.78/0.7587

(e) 23.81/0.7643 (f) 24.06/0.7851 (g) 24.51/0.8079 (h) 24.66/0.82Urbanimg_046

(a) SSIM/PSNR (b) 24.45/0.6920 (d) 23.73/0.6905

(e) 26.51/0.7650 (g) 28.33/0.8454(f) 27.63/0.8116 (h) 28.35/0.851

(c) 26.20/0.7507

Urban100img_033

Figure 4.3: Visual comparison for ×3 of Urban100 dataset where, (a) Represents the
cropped ground-truth HR, (b) Bicubic, (c) MemNet [24], (d) IDN [25], (e) IMDN [53], (f)
HDRN [54] (g) SMSR [56], (h) Proposed MSAR-Net.

(a)  PSNR/SSIM (b)  21.57/0.6283 (c) 22.03/0.6781 (d) 21.19/ 0.7250 (e) 22.11/0.697

(j) 22.75/0.72(h) 22.57/0.7143 (i) 22.85/0.727(g) 20.97/0.6917(f) 22.93/0.721Urban100img_076

(a) PSNR/SSIM (b) 19.18/0.7713 (c) 19.28/0.7786 (d) 19.330/0.7836 (e) 20.01/0.8099

(f) 21.24/0.8573 (k) 21.12/0.854 (h) 20.44/0.8927 (l) 21.46/0.8656 (j) 21.54/0.8678Urban100img_072

Figure 4.4: Visual comparison for ×2 of Urban100 dataset where, (a) Represents the
cropped ground-truth HR, (b) Bicubic, (c) SRCNN [22], (d) MemNet [24], (e) IDN [25],
(f) IMDN [53], (g) HDRN [54], (h) MIPN [55], (i) SMSR [56], (j) Proposed MSAR-Net.
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4.2 Con-Net: A Consolidated Light-Weight Image

Restoration Network

This work is focused on designing efficient modules that offer a better accuracy-speed

trade-off in comparison to cascaded convolution layers. Motivated from the understanding,

that a restoration network can benefit from the uneven distribution of different types of

information in the image and especially, for real-world cases, where the degradation model

is highly non-uniform across the spatial position of image, we adopt a consolidated network

(Con-Net) for the recovery of the degradation in a fully non-linear manner.

We present the first attempt to design a lightweight restoration network by exploiting

the edge and textural details for restoring the image content in areas with complex

textures and highly repetitive details. Our proposed Con-Net is suitable for different

types of degradations that selectively affect parts of an image. It is composed of two

main components - a spatial-degradation aware network (NetSDA) and a holistic attention

refinement network (NetHAR). NetSDA collects information from the entire image for

localizing the degradations and extracting the diverse information in the image, which

further steers the processing in NetHAR for selectivity and improving the degraded regions

by exploiting the relationships in channel and spatial dimensions.

The proposed NetHAR comprises of two degradation-aware blocks - coupled attention

module (Co-Attn) and a selective dual-branch merging module (SDBM). Co-Attn

utilizes the extracted features from NetSDA for modulating the feature statistics of the

intermediate features of NetHAR. It basically aims at improving the features by gathering

global context from all the clean regions. And, SDBM deploys two parallel branches for

fusing the features globally and locally.

On every task, we achieve significant reduction in parameters without any compromise

in the visual quality. The exhaustive experiments and detailed ablation study manifest

the generalizability of our components on a variety of low-level restoration tasks and

investigate its potential breadth. The key contributions of our work are four-fold:

� A lightweight approach capable of generating spatially accurate and contextually

enriched features by using Spatial-Degradation Aware and Holistic Attention

Refinement networks. These components ease spatially-varying degradations,

besides controlling receptive field within an image in a location-adaptive manner.

� A CNN with regularly repeated structure, where the multi-scale edge and detail

information are fused in an attentive manner, to improve the network representation

ability and finally obtain high-quality image restoration results.

� A new mechanism for merging the features using a selective dual-branch merging

module that dynamically combines different types of information and also preserves
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the original feature information.

� A novel module named channel attentive upsampling (CAU) is designed to efficiently

exploit the high-resolution clues during upsampling of the extracted features.

Figure 4.5: Illustration of our proposed network (Con-Net). Con-Net has two main
components. (1) Spatial-Degradation Aware Network (2) Holistic Attention Refinement
Network.

4.2.1 Proposed Method

An image restoration model ought to solve a few important tasks: (1) Capturing of relevant

content from the corresponding degraded regions and the simultaneous preservation of the

diverse information inherent in any degraded image. (2) Exploiting semantically-richer and

spatially-accurate feature representations in the channel and spatial dimensions. While,

spatial-degradation aware network (NetSDA) addresses the former task, we realise the

latter through holistic attention refinement network (NetHAR). A schematic layout of

the proposed Con-Net network is shown in Figure 4.5. To realize the twofold goals

of restoration and enhancement, the refinement of the extracted features in NetHAR is

enabled through coupled attention and selective dual-branch merging modules.

In this section, we provide the details of the Spatial-Degradation Aware network and

Holistic Attention Refinement network, the fundamental building blocks of our network.

Spatial-Degradation Aware Network

To maximize the generalizability of our proposed network, it is first necessary to

understand the need for preservation of the diverse information (low and high-frequency

details) in any restoration network. Generally, the low-frequency information represents

the global structure in a given image but with less perception of the minute details.

In contrast, the high-frequency information represents the local details of an image,

but being more robust to noise [223]. It is further worth emphasizing that there is
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also a huge difference regarding the distribution of this diverse information in both the

low-quality (LQ) and high-quality (HQ) images. For example, in case of denoising,

most of the homogeneous regions in both LQ and HQ images share almost the same

low-frequency information, while the high-frequency regions are relatively different in

both type of images. Moreover, in comparison to the low-frequency, the high-frequency

information is more prone to be corruptible, resulting in image degradations [224]. Hence,

it is conjectured that restoration of the local details (high-frequency information) is an

important step for improving the quality of images. However, individual use of this local

information, cannot guarantee efficient recovery of degraded information, hence it is highly

expected to use the diverse information together and apply right filter operations so that

we can fully exploit their combined merits. Further, we intuit that heavily contaminated

regions can benefit a lot from the ability to gather relevant features from the whole image

[225].

As discussed earlier, contrary to the existing restoration methods that lack discriminative

power and generally consider all types of information equally, we propose a

spatial-degradation aware network (NetSDA). For rectifying the aforementioned

shortcomings, the proposed NetSDA employ vari-kernel residual modules and diverse

information processing modules at multiple levels for effective awareness of the degradation

in the feature map and thus becoming a suitable candidate for restoring the degraded

pixels.

Vari-kernel Residual Module

Most often, propagation of high-frequency information struggles in most of the existing

restoration architectures as these networks tend to saturate with low-frequency thereby

hindering the effective learning of degraded regions in the image [225]. One possible

reason for this could be the use of same kernel across the entire spatial extent of the input

features that results in ineffective capture of the high-frequency details. Therefore, in

our proposed network to overcome this shortcoming we incorporated multiple Vari-kernel

residual (VKRs) modules stacked inside the Diverse Information Processing (DIP) module.

Figure 4.6: Vari-kernel Residual (VKR) module is added in the Diverse Information
Processing (DIP) module to facilitate the easy flow of diverse information.
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Moreover, larger receptive field helps to generate fine-level feature maps and facilitates

the reconstruction of the corrupted pixels in the contaminated images. In large contrast

to the high-level computer vision problems such as classification, and object detection

which obtain large receptive field by successfully downsampling the feature maps with

max-pooling, image restoration tasks needs finer pixel details [216] that are bit hard to

achieve from highly downsampled features. And, especially for tasks like super-resolution

and denoising that require high-frequency operations these flaws are altogether more

exacerbated. Some of the other solutions proposed in this direction either consider

the use of non-local [216] information across the whole inputs or used the concept of

dilated convolution filtering. However, where the non-local operation demands huge

computational complexity, the dilated filtering often suffer from gridding effect [226], an

undesirable effect in SR. Thus, one should be careful enough to enlarge the receptive

field, while avoiding the computational complexity and the sacrifice of performance

improvement. Working towards this realm to cover the whole features at a time with

controlled number of parameters, we design a VKR module as shown in Figure 4.6. The

vari-kernel residual module can be formulated as follows,

V̂m = Vm + ℓ(ℜ1×1(Ψ)),

Ψ =< ℜ1(Vm),ℜ3(Vm),ℜ5(Vm) >
(4.11)

Here, ℜk represents the k × k convolution filter, ℓ represents LeakyReLU, < . > is

the symbolic representation for the concatenation operation, Vm denotes the extracted

features as shown in Figure 4.6 and V̂m represents the output of a VKR module. As

illustrated from the Figure 4.6, the three convolution kernels are stacked in parallel to

extract the multi-scale features at different scales. It is to be specified that gathering

of multi-scale large context information helps in the utilization of the full feature map

effectively which further helps in identifying the degraded regions in the image. Note

that except for VKR module we refrain from using larger filter sizes (greater than 1) of

convolution layers in the entire network to keep a check on the computational complexity.

Diverse Information Processing Module

The next main concern of the proposed NetSDA is to acquire the knowledge of the

prominent degraded regions in the image. And, we believe that in order to acquire this

knowledge, the network needs to be aware of the diverse information in the extracted

features. And, this requires capturing enough contextual information so as to easily

segregate the contaminated pixels in the image. Thus, we propose diverse processing

module (DIP) as shown in Figure 4.5 (with deep red dotted line) for accomplishing

this objective. Every DIP module consists of several stacked VKR modules capable

of extracting features at multiple scales, which helps in providing local and global
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Figure 4.7: Visual illustration of the feature maps obtained for every DIP module, where
E1 and E2 are concerned with collecting local details such as edges, textures and S1 is
more focused on collecting global details.

context [227] via increased receptive field. Furthermore, every DIP module generates

three outputs, where E’s are concerned with the high-frequency information extraction

and S’s are concerned with low-frequency information extraction. Since, low-frequency

information represents the global structure (minute details) in an image and the

high-frequency information represents the local details (edges, texture) in an image. Hence

we can say that via this diverse information extraction, the architecture is capable of

capturing the desired local and global details. Although this information can be learnt

to some extent by simple convolution layers (the basic building block for all the prior

works), but they struggle for heavy degradations. Additionally, in more detail every

dth DIP module (d ∈ [1, 5]) as shown in Eq. (4.12) generates three outputs, Ed
m,

Êd
2m and Sd

m, (∀m = d). Initially, we obtain the multi-scale high-frequency output by

subtracting the outputs of two consecutive VKRs. But, since both the corruptions and

structured regions are high-frequency signals in most cases, directly just learning the

residual information is not sufficient. Thus, we further resort to subtract the obtained

output and the difference between (3m− 2)th and the (3m)th VKR for effectively learning

the formatted residual information, to get a more enhanced output, Êd
2m. And, the

low-frequency information, Sd
m for the corresponding dth DIP module in NetSDA is

obtained as below:

Sd
m = Ed

2m−1 + Êd
2m + 2V̂d

3m−1

Ed
2m−1 = V̂d

3m−2 − V̂d
3m−1

Êd
2m = Ed

2m−1 + V̂d
3m − V̂d

3m−2

(4.12)

Holistic Attention Refinement Network

Our proposed Holistic Attention Refinement (NetHAR) Network, comprises of two parts:

Coupled Attention (Co-Attn) module and Selective Dual Branch Merging (SDBM)

module. Local attention plays a vital role for image restoration tasks, as the
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Figure 4.8: (a) Coupled attention module generates complementary features. Note: To
avoid confusion, we used F to represent L, G of Eq. 4.13 and F̂ represents L̂ and Ĝ in
Eq. 4.14. (b) channel attention (CA) and spatial attention (SA) employed in Coupled
attention (Co-Attn) module.

neighbourhood for a degraded pixel could be leveraged for restoring the clean image.

And, the role of our proposed NetHAR is to restore and formulate the interdependencies

among the global and local features in channel and spatial domains extracted from NetSDA

and thus endow the network a capability to exploit semantically richer outputs. The

architecture of the two main modules (Co-Attn and SDBM) of NetHAR has been elaborated

in the following subsections.

Coupled-Attention Module

To selectively process the vast amount of discriminative information from NetSDA, we

propose a coupled-attention (Co-attn) module. The attention mechanism trying to

mimic the human visual cortex system has been widely employed in image restoration

problems [228]. Based upon the same realm, our proposed Co-attn module, as shown in

Figure 4.8 works collaboratively with its two attention mechanisms (channel and spatial

attention) to enhance the originality of the respective extracted features while reducing

their negative correlation. In which, the spatial attention focuses on the different areas in

the feature maps and channel attention emphasizes the relativity of different channels, that

redistributes the critical channel information and over-goes the unrelated information.

As shown in Figure 4.5, we denote Gi and Li, each consisting of C feature maps with size
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Figure 4.9: SDBM module handles the combination of the complimentary properties of
both types of information extracted from Co-Attn module.

C × H × W, as the input of our ith Co-Attn module.

Gi = ℜ1⟨E1
1, Ê

1
2......E

d
2m−1, Ê

d
2m⟩

Li = ℜ1⟨S1
1,S

2
2....S

d
m⟩

(4.13)

where, Ed
m, Êd

2m and Sd
m denote the outputs of the NetSDA and d,m are equal to five.

ℜ1 denotes the convolution operation with kernel size 1 and ⟨.⟩ denotes the concatenation

operation. Now, we elaborate on the details of the attention mechanisms in our proposed

Co-Attn module.

Channel attention: Considering X ∈ RC×H×W , the image tensor in the network

(where, C, H and W denotes the number of channels, height and width of the feature map,

respectively). The information expressed in the feature map of each channel is different

and channel attention (CA) aims to use the relationships between each channel of the

feature map to learn a 1-D scalar weight Ŵc ∈ RC×1×1. This scalar usually represents

and evaluates the importance of each channel. After obtaining the attention vector of all

channels, each channel of the input F̂ is scaled by the corresponding attention value (as

shown in Figure 4.8 (a). It should be noted that since, the degraded regions are usually

not distributed uniformly hence spatial attention comes into picture with major goal of

emphasizing on important areas.

Spatial attention: In order to maximize the effectiveness of our coupled attention

module, it is best to use the spatial attention (SA) mechanism in conjunction with channel

attention. It is a kind of comprehensive information module that tends to utilize the global

spatial information. One of our main consideration while designing the spatial attention

mechanism is it should be lightweight, besides capable of covering the spatial contents of

key importance. The used SA submodule is shown in Figure 4.8 (b) and is capable of

getting representative features. Further, we embed the spatial and channel attention in
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a parallel manner in the proposed Co-Attn module. In brief outline, the overall function

of both the Co-Attn modules (in NetHAR) shown in Figure 4.5, generating two outputs,

f iselg and f isell (both being the inputs to the subsequent block) could be formulated as,

f iselg = ℜ1⟨Ĝi • Ĉi, Ĝi • Ŝi⟩ + Ĝi, Ĝi = ℜ1(ℓ(ℜ1(Gi)))

f isell = ℜ1⟨L̂i • Ĉi, L̂i • Ŝi⟩ + L̂i, L̂i = ℜ1(ℓ(ℜ1(Li)))
(4.14)

where, < . > represents the concatenation operation, • is used for representing

element-wise multiplication. Ĉi and Ŝi are the outputs of channel and spatial attention

modules, respectively and Li and Gi are given by Eq. (4.13).

Selective Dual-Branch Merging Module

We tend to utilize both spatial attention as well as its dual form, channel-wise feature

attention. The input to the proposed Selective Dual-Branch Merging (SDBM) module

(as shown in Figure 4.9) has two parallel branches, where the first branch B1 carries a

reflection of the image contour f isell , and the second branch B2 carries a reflection of the

image details f iselg , hence the main role of this module aims at highlighting the respective

representation ability of the extracted features. The proposed SDBM block acts as a

gate for controlling the information flow from two branches, carrying different types of

information into the neurons in the next layer. It first merges the resulting feature maps

from two parallel (f isell , f
i
selg ,∈ RC×H×W ) attentive feature maps, followed by global

pooling to produce a global vector, z ∈ RC . Soft attention across the channels is further

employed to adaptively select different spatial scales of information, being guided by the

feature descriptor z. While restoring the degraded pixels, it assigns non-zero weights to

the more useful features, delivering strong performance as it suppresses the influence of

less important features. Contrary to the existing methods that employ concatenation or

addition of the extracted features, our merging block is adept for selecting the useful set

of attentive features from each branch representations by utilising an attention branch

and thus fusing the dual-branch results in an adaptive way. To summarize the overall

operation of SDBM module, after getting f iselg and f isell , the final output FD is obtained

by the SDBM module in the following three steps:

z = GAP (fisell + fiselg)

wfus = Ω(ℜ1(ℜ1(z))

FD = fisell •wfus + fiselg •wfus

. (4.15)

where, Ω is used for Softmax operation.
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Channel Attentive Upsampling Block

We focus on another fundamental operation that has received relatively less attention for

the task of super-resolution: upsampling block. Since, the main aim of super-resolution

is to improve the resolution of the image, hence the upsampling method plays an

indispensable role for any SR algorithm and the way it is performed affects the overall

final result. The proposed channel attentive upsampling (CAU) block has been designed

specifically to integrate the low-level details into the final feature maps for recovering

the required lost information. Figure 4.10 shows the schematic layout of the proposed

upsampling block with scale factor × 4.

Figure 4.10: Schematic layout of Channel Attentive Upsampling Block upscaling by factor
×4.

Initially, we perform element-wise multiplication of the feature maps obtained through

pixel shuffle layer with the following three feature maps: (1) obtained directly through

bilinear interpolation by scale factor of 4, (Y1), (2) obtained progressively by factor of

3, (Y2) and (3) progressively by a factor of 2, (Y3) followed by their concatenation.

The proposed module serves the binary purpose of exploiting the advantages of 1) both

direct and progressive upsampling, 2) both traditional and recent upsampling techniques.

The overall concatenation of the individual feature maps (Y1,Y2, Y3) helps in fusing

different level features becoming a suitable candidate for providing rich information in SR

reconstruction. The overall formulation of the proposed CAU block is given below:

Y1 = Ĉ(UPS(x)) • (ℜ1(UB↑4 (x)))

Y2 = Ĉ(UPS(x)) • (ℜ1(UB↑4/3 (ℜ1(UB↑3 (x)))))

Y3 = Ĉ(UPS(x)) • (ℜ1(UB↑2 (ℜ1(UB↑2 (x)))))

Y = ℜ1⟨Y1,Y2,Y3⟩

(4.16)

where, Ĉ denotes output of channel attention module. UPS(x) denotes the pixel-shuffling

operation and UB↑s (x) shows interpolation by bilinear operation with factor s.
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4.2.2 Experimental Analysis

In this section, initially we describe the datasets and the implementation details and next

we report the results on three tasks a) image super-resolution, b) image enhancement,

and c) image denoising. Following which we describe the contributions of the several

components in the proposed model through detailed ablation study.

Datasets

Image Super-resolution: In our work, for the task of super-resolution, we have trained

our model on DIV2K dataset [5], that is composed of high-quality 800 training images,

100 validation and 100 testing images. The trained model has been evaluated on Set5 [1],

Set14 [2], B100 [3] and Urban100 [4] datasets.

Image Enhancement: The performance of the proposed Con-Net has been further

validated on two real-world enhancement datasets: MIT-Adobe FiveK [14] and LoL

[13] datasets. MIT-Adobe FiveK consists of 5000 images from various indoor and outdoor

scenes captured using DSLR cameras in different lighting conditions. The tonal attributes

of all the images have been manually adjusted by five different trained photographers

(labelled as experts A to E). Inspired by [234], we have considered the enhanced images

of expert C as ground-truth. We have considered the first 4500 images for training and

the last 500 has been used for testing. LoL dataset, with 485 images for training and 15

for testing consists of low-light input image and its carefully-exposed reference images.

Image Denoising: Since real noises are usually more signal dependent and are spatially

varying depending on different in-camera pipelines, real image denoising is a highly

challenging task. For real image denoising, aiming at restoring the high-quality images

given noisy inputs, we used Smartphone Image Denoising Dataset (SIDD) [10]

consisting of 320 noisy image pairs for training and 1280 images for validation. It is

collected using five smartphone cameras in 10 static scenes. On account of small sensor

and high-resolution, the noise in smartphone images is quite higher as compared to DSLRs.

Besides, we also use Darmstadt Noise Dataset (DND) [9] consisting of 50 image pairs

from four consumer cameras. As the images are of high resolution, dataset holders have

extracted 20 crops from each image, yielding 1000 patches in total. Since, for DND the

ground truth images are not released publicly, hence we obtained the image quality scores

through online server.

Training settings

The proposed model is end-to-end trainable without any requirement of pre-training of

sub-modules. We have trained three different networks for restoration and enhancement

tasks. Except for the task of super-resolution, where we use an extra upsampling module,

the following trainable parameters are common to all the experiments: We use five DIPs,
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Figure 4.11: Comparisons for scale factor ×4 from Urban100 [4] dataset. (a) Input image,
(b) BSRN [57], (c) CARN [58], (d) IMDN [59], (e) IDN [60], (f) Latticenet [61], (g)
Con-Net (Ours), (h) Ground-truth.

each of which contains three VKRs in the NetSDA and two Co-attn modules in NetHAR.

The training hyper-parameters have been implemented using NVIDIA DGX station with

processor 2.2GHz, Intel Xenon E5-2698, NVIDIA Tesla V100 1×16 GB GPU. The model

has been optimized using ADAM optimizer [207] with β1, β2 and ϵ set to 0.9, 0.999 and

10−8, respectively. The initial learning rate has been set to 10−4 and we used cosine

annealing strategy [235] to steadily decrease the learning rate from initial value to 10−6

during the training. Batch size for all the three tasks is set to 1 and, for data augmentation,

we performed the horizontal and vertical flips. Following the trend in most of the image

restoration applications, we adopted PSNR and SSIM as the evaluation metrics.

To show the effectiveness of the proposed Con-Net, we have chosen the L1 loss as our

objective function. Given a training set with a large number of pairs, of corrupted inputs

x̂i and their clean labels xi. The major objective of the training is defined as:

L1 = |fϕ(x̂i) − xi| (4.17)

where, fϕ is a parametric family of mappings of the proposed Con-Net under L1 loss

function. And, the notation x̂i , underlines the fact that the corrupted input x̂ ∼ p(x̂|xi)
is a random variable, that is distributed according to the clean target.

Comparison with State-of-the-Art methods

In this section, we compare our proposed Con-Net with some recent SOTA methods

in synthetic image super-resolution, real-world de-noising and real-world low-light

enhancement tasks.

Results on Super-resolution

We compare our proposed Con-Net against fourteen SoTA SR approaches on four

benchmark datasets for scale factor ×2 and ×4. Following the common practise in

SR literature, we computed the PSNR and SSIM metrics on Y channel. Table 4.6

shows quantitative evaluation results, including the number of parameters and FLOPs.

The results clearly show that our method significantly advances SoTA lightweight

super-resolution methods and consistently outputs better image quality scores for both
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Figure 4.12: Visual Comparisons for low-light enhancement tasks on LoL [13] and
MIT-Adobe FiveK [14] datsets. (a) Input image, (b) SRIE [62], (c) CRM [63], (d)
RetinexNet [64], (e) Zero-DCE [65], (f) EnGAN [66], (g) Con-Net (Proposed Method),
(h) Ground-truth.

Figure 4.13: Denoising example from DND [9] dataset. (a) Input Image, (b) DnCNN [67],
(c) CBDNet [68], (d) VDN [69], (e) DANet [70], and (f) Con-Net (Proposed Method).
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Figure 4.14: Denoising examples from SIDD dataset [10]. Our proposed Con-Net, besides
effectively removing noise from the challenging images, has higher PSNR gain. (a) Input
image, (b) DnCNN [67], (c) CBDNet [68], (d) VDN [69], (e) DANet [70], (f) Con-Net
(Proposed Method), and (g) Ground-truth.

scale factors. Particularly, when compared to the recent lightweight SR methods, Overnet

[233] and Latticenet [61], our proposed method shows a performance gain of about 0.27

dB and 0.25 dB, respectively on Set5 [62] dataset for scale factor 4.

Figure 4.11 presents the visual comparisons on B100 and Urban100 for scale factor ×4. The

figure clearly shows the supremacy of our method in comparison to others by reconstructing

images much closer to the HR images. For instance, in image Img062, we observe that

unlike our proposed Con-Net all the compared methods fail to recover the orientation of

lines. And, for image Img012, the texture in case of all the predicted SR images for the

compared SR methods contains blur or aliasing. Whereas, our method is more efficient

at reconstructing the structural patterns and edges, thus generating images that are more

natural looking alike ground-truth images.

Table 4.7: Quantitative Results (PSNR, SSIM) of SoTA methods and ours on MIT-Adobe
5K and LOL datasets for low-light enhancement tasks.

Methods Parameters MIT [14] LoL [13]
(M) PSNR SSIM PSNR SSIM

MBLLEN [236] 0.45 15.59 0.71 13.93 0.49
GLADNet [237] 1.13 16.73 0.76 16.19 0.61
RetinexNet [64] 2.11 12.69 0.77 13.09 0.43
EnGAN [66] 8.64 15.01 0.77 15.64 0.58
KinD [238] 8.04 17.17 0.69 14.62 0.64
DRBN [239] 0.58 15.95 0.70 15.32 0.70
FIDE [240] 8.62 17.17 0.69 16.71 0.67
DeepUPE [241] 2.99 18.78 0.82 13.04 0.48
CSDNet [242] 17.29 18.48 0.85 21.63 0.85
ZeroDCE [65] 7.94 16.46 0.76 15.51 0.55
BLNet [243] - - - 20.14 0.72
RUAS [244] 0.41 20.83 0.85 18.23 0.35
Ours 0.57 23.36 0.91 21.98 0.88

Results on Low-Light Image Enhancement

To prove the effectiveness of our proposed work on real-world enhancement tasks, we

compared it with twelve SoTA low-light image enhancement algorithms. We reported the
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quantitative scores on the MIT-Adobe-5K [14] dataset in Table 4.7, where our method

achieves the best numerical scores. Contrary to other methods, in Figure 4.12 (first two

rows) featuring outdoor scenes, Con-Net enhances both the dark regions and preserves

the color of the input images. The results generated by our method are visually more

pleasing, without obvious noise and color casts. Though, some methods [66], [65] were

successful at enhancing the brightness successfully, but they failed to restore the clear

image textures. In contrast, our Con-Net restores both the details and brightness perfectly,

at the same time. To further prove the efficacy of our approach in real-world scenarios,

we evaluate Con-Net on LoL [13] dataset, which contains sensible noise to hinder the

image enhancement. Obviously, as mentioned in the Table 4.7, our Con-Net outperforms

several recently proposed methods [243], [244], [241] while maintaining an attractive

computational complexity. Notably, when compared with the recent best methods,

proposed Con-Net achieves 2 dB performance gain over BLNet [243] on the LoL dataset

and 3 dB improvement over RUAS [244] for the Adobe-Fivek dataset. A similar trend

follows for the SSIM scores, as well. As clear from the Figure 4.12 (last two rows) featuring

indoor scenes, of LoL [13] dataset where, most of the compared methods fail at generating

vivid and true colors, our proposed Con-Net is efficient in preserving colors and contrast.

Table 4.8: Comparison of Con-Net against other SoTA methods in real-world image
denoising On DND [9] and SIDD [10].

Methods Parameters DND [9] SIDD [10]
(M) PSNR SSIM PSNR SSIM

DnCNN [245] 0.56 32.43 0.7900 23.66 0.5830
EPLL [246] - 33.51 0.8244 27.11 0.8700
TNRD [247] - 33.65 0.8306 24.73 0.6430
FFDNet [248] 0.48 34.40 0.84740 - -
BM3D[249] - 34.51 0.8507 25.65 0.6850
NC [250] - 35.43 0.8841 - -
KSVD [251] - 36.49 0.8978 26.88 0.8420
CBDNet [68] 4.34 38.06 0.9421 33.28 0.8680
RIDNet [252] 1.49 39.26 0.9528 - -
PRIDNet [253] - 39.42 0.9528 - -
DRDN [254] - 39.43 0.9531 - -
GradNet [255] 1.60 39.44 0.9543 38.34 0.9460
AINDNet [256] 13.76 39.53 0.9561 39.08 0.9530
VDN [69] 7.81 39.38 0.9518 39.26 0.9550
DANet [70] 63.01 39.58 0.9545 39.25 0.9550
InvDN [257] 2.64 39.57 0.9522 39.28 0.9550
Ours 0.57 39.32 0.9514 39.31 0.9610

Results on Real-world Denoising

In this section, we demonstrate the effectiveness of the proposed Con-Net for the task of

real-world denoising, where we compare it with sixteen SOTA denoising approaches. As

already mentioned, we have trained our model on the SIDD [10] medium training set.

Since, DND [9] does not provide any training set, therefore for it we have used the model
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Figure 4.15: Trade-off between performance vs. model size on SIDD [10].

trained on SIDD. For a fair comparison, PSNR/SSIM of other compared models on the

test set is directly taken from the official leaderboards of DND and SIDD and further

verified from their respective articles. Table 4.8 represents the test results of various

data-driven, as well as conventional, SOTA denoising modules on SIDD and DND dataset

clearly proving the attractive performance of our proposed Con-Net. To further prove the

superiority of our proposed Con-Net, we also compare it with the recently proposed InvDN

[257], and from Table 4.8 we can clearly see the superiority of Con-Net on SIDD dataset

and its comparable performance on DND dataset. Furthermore, it is worth emphasising

that CBDNet [68] and RIDNet [252] used additional training data, yet our method yield

significantly better results. For instance, our method achieves 6.03 dB performance gain

on SIDD dataset and 1.26 on DND dataset, when compared to CBDNet [68].

In Figure 4.13 and Figure 4.14, we present the visual comparisons of our results with other

methods for image denoising. It is evident that our proposed Con-Net is more capable

at maintaining the smoothness of the homogeneous regions without any sacrifice of the

structural content and fine textural details. Moreover, our proposed model is capable

of recovering the subtle edges while other models results in introduction of blockiness,

fuzziness, and random dots particularly along the edges.

Computational Complexity

Keeping in mind, that the number of parameters are not the complete reflection of the

complexity of model, hence we employ both the number of trainable parameters and

floating point operations (FLOPs) that a model takes for the processing of 256×256

image. The complexity analysis of the compared representative methods has been reported

in Figure 4.15. We have provided the denoising performance on the SIDD dataset

of various methods. As clear from the above figure compared with the recent SoTA

denoising algorithms, our proposed Con-Net have an attractive complexity and achieve

good promising performance with 26.72 G FLOPs and 0.57 Million parameters.
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Table 4.9: Importance of Con-Net modules evaluated on LoL dataset for low-light
enhancement tasks. DIP, VKR, SDBM, Co-attn, NOD denotes Diverse Information
Processing, Vari-kernel Residual, Selective Dual-Branch, Coupled Attention modules and
Number of DIP modules, respectively.

Methods DIP VKR SDBM Co-Attn NOD PSNR
Net1 × ✓ ✓ ✓ 5 17.07
Net2 ✓ × ✓ ✓ 5 18.01
Net3 ✓ ✓ ✓ × 5 20.14
Net4 ✓ ✓ × ✓ 5 18.18
Net5 ✓ ✓ × ✓ 5 18.93
Net6 ✓ ✓ ✓ ✓ 4 18.67
Net7 ✓ ✓ ✓ ✓ 3 18.42
Net8 ✓ ✓ ✓ ✓ 2 18.11
Con-Net ✓ ✓ ✓ ✓ 5 21.98

4.2.3 Ablation Study

We study the influence of each of our architectural components and design choices on the

final performance of our proposed model. Table 4.9 has been presented to quantify the

effect of the performance of Con-Net for LoL [13] dataset.

For validating our design considerations, we implemented the following baselines (reported

in Table 4.9). Net1: We modified all the Diverse Information Processing (DIP) modules

from our proposed Con-Net by employing VKR module in series, generating 1 output

(instead of 3) per DIP module. Net2: We replaced all the vari-kernel residual modules

with simple residual block as proposed in [217]. Net3: We removed the coupled attention

modules from our proposed network. Net4: We replaced the SDBM module of our

proposed Con-Net with simple addition operation. Net5: We replaced the SDBM module

with concatenation operation. In Net6, Net7 and Net8, keeping all other components same

we reduced the number of DIP modules (NOD) employed.

Effectiveness of DIP, VKR and Co-Attn modules: It is clear that our proposed

Con-Net exhibits more superiority over its incomplete versions, including Net1, Net2 and

Net3 surpassing them by 4.91 dB and 3.97 dB and 1.84 dB (PSNR), respectively. The

substantial drop in PSNR while removing these modules from our proposed Con-Net

clearly demonstrates the advantages of employing DIP, VKR and Co-Attn modules in our

network.

Effectiveness of SDBM module: To verify the necessity of Selective Dual Branch

Merging (SDBM) module, we compare our proposed Con-Net with simple addition and

concatenation operations in place of SDBM module. The 3.8 dB gain improvement by

our proposed Con-Net over Net4 and 3.05 dB gain over Net5 is attributed to SDBM

design which is capable of effectively merging the information in both the degraded

and clean regions. This comparison proves the fact that since both the addition and

subtraction operations of DIP module contains complementary information; and fusion of

these features using trivial concatenation or element wise feature addition may overlook

the redundant information, hence signifying the advantage of using SDBM module.
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Figure 4.16: The norm of filter weights vs. the DIP module index. Every set of histogram
corresponds to one DIP module. Out of the three VKR modules, present in every DIP
module, we have shown the response of first and last VKR.

Table 4.10: Quantitative comparison of the popular upsampling techniques for scale factor
×4 On Set5 [1] for super-resolution.

Methods Upsampling Set5 [1] Set14 [2]
PSNR SSIM PSNR SSIM

M1 Pixel Shuffle (PS) 32.46 0.8993 28.66 0.7848
M2 Deconvolution (DEC) 32.38 0.8982 28.53 0.7837
M3 BiL + Convolution 32.40 0.8986 28.58 0.7840
M4 CAU 32.52 0.8999 28.71 0.7852

Effectiveness of the number of DIP modules: We now assess the influence of the

number of DIP modules on the overall image restoration performance. As clearly shown

in the Table 4.9 (Net6-Net8), the performance decreases with decline in number of DIP

modules. This indicates the important role of DIP in exploiting the multi-scale edge

information. By making a tradeoff between performance and comparison, the default

number of DIP for our proposed network is set to 5.

We further illustrate the effect our proposed DIP module in the different stages of the

network. Inspired by [231], we adopt weight-norm as an approximation for the dependency

of current layer on its preceding layers. We have calculated the weight norm using the

corresponding weights from all the filters w.r.t each feature map in the DIP module. Figure

4.16 represents the norm of the filter weights vs. DIP module index. Generally, more is

the norm, then stronger is the dependency on the particular feature map. From the plot,

we further draw the following conclusions: (1) The weights of the feature maps have been

spread over all the blocks, indicating all the residual features have been used to produce

the output features of DIP module. (2) The variance of weight norms in latter modules are

much larger than that of the initial modules proving the discriminability of the network

to distinguish residual features. (3) While increasing the number of DIP > 5, the variance

of weight norms seems to be almost same in both the Vari-kernel residual (VKR) modules
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of DIP indicating no benefit of increasing the DIP module beyond 5.

Table 4.11: Comparison with prior network configurations. Here we replace our VKR
module with residual configurations of the popular SOTA SR methods for ×4.

Configuration Parameters Set5 B100
PSNR SSIM PSNR SSIM

Con-Net+ [26] 458k 32.27 0.8946 27.47 0.7353
Con-Net+ [44] 616k 32.35 0.8983 27.59 0.7368
Con-Net+ [81] 892k 32.40 0.8995 27.62 0.7389
Con-Net 670k 32.57 0.9001 27.67 0.7395

Effectiveness of Channel Attentive Upsampling module:

We exhibit on two popular benchmarks (Set5 [1] and Set14 [2]) in the task of the single

image super-resolution, that the proposed Con-Net performs consistently better than

the popular upsampling techniques of pixel-shuffle (PS), strided transpose convolution

(DEC) layer and Bilinear (BiL) interpolation followed by Convolution. Table 4.10 clearly

demonstrates the efficacy of our proposed Channel Attentive Upsampling (CAU) module

surpassing other techniques by huge margin in both SSIM and PSNR. Thus, the proposed

CAU could be used as a drop-in replacement of other upsampling layers as it improves

the model performance on account of the content adaptive nature of the attention

generated kernels with almost same number of parameters. Additional ablation studies

and qualitative results are given in the supplementary material.

Effectiveness of Vari-kernel Residual Module:

We further analyse the importance of proposed Vari-kernel residual (VKR) module by

comparing it with popular configurations as shown in Table 4.11. All the configurations

have been trained on the same dataset and experimental settings. The improvement

in performance gain of the proposed VKR can be attributed to the fact that the

proposed multi-scale approach is more successful at capturing the contextual information

as compared to the residual block [26], residual channel attention block [125], and non-local

residual block [81]. This full exploitation of local features is clearly visible from the

performance gain on PSNR of about 0.30, 0.33, and 0.17 dB of our proposed network

when compared to [26], [125], and [81], respectively.
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4.3 Summary

In this chapter, we have discussed two different lightweight approaches for super-resolution.

In our first solution (Section 4.1), we have proposed an effective multi-scale attention

residual network capable of learning the fine image details that are more realistic to the

ground truth with relatively less number of parameters. It is composed of multi-scale

attention residual (MSAR) block and up and down projection block, for better collection of

global and local contextual information. In parallel, for modulation of multi-level features

in global and local manner, channel and spatial attention in MSAR blocks is being utilized.

In our second solution (Section 4.2), we have proposed Con-Net, a network design capable

of exploiting the non-uniformities of the degradations in spatial-domain with limited

number of parameters (656k). Our proposed Con-Net comprises of basically two main

components, (1) a spatial-degradation aware network for extracting the diverse information

inherent in any degraded image, and (2) a holistic attention refinement network for

exploiting the knowledge from the degradation aware network to selectively restore the

degraded pixels. Extensive qualitative and quantitative comparison with prior arts on

benchmark datasets demonstrates the efficacy of our proposed solutions over existing

state-of-the-art heavy and lightweight architectures in terms of parameter and FLOPs

reduction. In this chapter and the previous chapter we discussed in detail about both

lightweight and heavyweight single frame super-resolution approaches, but more research

needs to be done on multi-frame super-resolution approaches. A detailed discussion is

given in the next chapter.



Chapter 5

A Novel Approach for Burst

Restoration and Enhancement

In the recent past, smartphone industry has witnessed a rampant growth on account

of the fueling demand of smartphones in day-to-day life. However, there are several

hardware barriers that hinder the smartphone industries for manufacturing versatile and

small camera sensors for these smartphones. Some of these hardware barriers are with

regard to; the small aperture lens and sensor size that limits their spatial resolution and

dynamic range [258]. Thus while acquiring images in smartphones, more informative

components are generally aliased or lost that hampers their proficiency in regenerating

DSLR-alike images. This problem has heightened the focus nowadays towards software

solutions for mitigating the hardware limitations in smartphones and to sustain the quality

gap pertaining to DSLRs.

Recently, the smartphone camera pipeline has cultivated around the concept of capturing

and merging burst images of the same scene for leveraging high quality image than

possible through the capture of single image. The burst image processing approaches aims

to recover the latent high-quality image by exploiting the multi-frame complementary

information. Recent works [75, 259] have validated the potential of burst processing

approaches in reconstructing richer details that cannot be recovered from a single image.

However, these computationally extensive approaches are unable to effectively model the

inherent sub-pixel shifts among multiple frames on account of the camera and scene motion

from dynamic moving objects. These sub-pixel shifts often pave the way for ghosting and

blurring artefacts in the resultant output image. To tackle these shifts, existing methods

employ complex explicit feature alignment [7], deformable convolutions [75], etc. Since

these approaches target only upon local features at single level, they leave a scope of

improvement in feature alignment. Additionally while aggregating multi-frame features,

existing approaches either employ late fusion strategy [7, 74] or rigid fusion mechanism

(in terms of number of inputs [75]. The former one limits the flexible inter-frame

communication, while the later one limits the adaptive multi-frame processing.

To tackle aforementioned problems, we propose two novel solutions for burst processing

as:

1. Adaptive Feature Consolidation Network for Burst Super-Resolution.
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2. Burst Restoration and Enhancement.

Each solution is discussed in detail in the subsequent sections.

5.1 Adaptive Feature Consolidation Network for Burst

Super-Resolution

SISR is the task of generating HR image using a single LR image. Numerous methods have

been developed to solve the SISR problem [260, 261]. However, the major hurdle lies in

synthesizing high-frequency details in a single input image, consistent to the ground-truth

HR image.

On the other hand, Multi-frame super-resolution seeks the reconstruction of HR image by

employing numerous degraded LR images of a scene. Critically, capturing LR images under

the burst mode results in sub-pixel shifts [262] among the multiple LR burst images and

thereby, generates different LR samplings of the underlying scene. However, the process

of burst image acquisition brings its own issues. For example, during image capturing,

any slight movement in scene objects and/or scene objects arises misalignment issues,

thereby generating blurring and ghosting artifacts in the reconstructed image [263]. The

existing MFSR approaches utilize pre-trained flow computation [264] or optical-flow [265]

for aligning the multi-frame features. This explicit feature alignment causes the resulting

errors in the flow estimation stage to be propagated to the image processing and warping

stages, thereby negatively affecting the generated outputs.

To mitigate the aforementioned problems, we propose an Adaptive Feature Consolidation

Network (AFCNet) for multi-frame super-resolution. The proposed AFCNet comprises of

four steps: 1) Feature alignment, 2) Feature extraction, 3) Feature fusion and 4) Feature

up-sampling. The features of RAW burst images are initially aligned through deformable

convolution [266] followed by feature back-projection approach. This implicit feature

alignment limits the error propagation inherent in cascaded explicit alignment approaches

[264, 265]. Further, the aligned representations of each burst image are passed through a

feature extractor [267] to extract multi-scale local-global representations. The feature

fusion mechanism enables the inter-frame communication via abridged pseudo-burst

generation such that each and every feature in the pseudo-burst encloses complimentary

properties of all input burst images. Furthermore, we adopt an adaptive group up-sampling

module [268] to select the reliable and desired information content from each burst image

and thus obtain the high-quality HR result.

On account of above modules, our framework efficiently merges the image contents among

multiple burst LR RAW frames in a coherent and effective way, generating HR RGB

outputs with realistic textures and additional high-frequency details. Highlights of the

proposed approach are outlined as follows:
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Figure 5.1: Overall pipeline of the proposed adaptive feature consolidation network
(AFCNet) for burst SR. The proposed AFCNet processes input RAW burst image and
generates a HR RGB image. It is divided into four parts: (a) Feature alignment module,
(b) Feature extraction module, (c) Feature fusion module, and (d) Feature up-sampling
module to produce HR RGB image.

1. We propose a simple but effective feature alignment module to align the burst image

features with the base frame.

2. We utilise encoder-decoder based transformer backbone for feature extraction to

enrich the aligned feature representations.

3. An efficient abridged pseudo-burst fusion module is utilized to aid inter-frame

information exchange and feature consolidation.

4. Finally, adaptive group up-sampling is performed for progressive fusion and

up-scaling of the burst features.

5.1.1 Proposed Method

On account of the rapid capture of images in a burst from a hand-held device, they

inherit minute inter-frame offsets. This creates multiple aliased versions of the same scene,

thus generating additional signal information for SR. Our proposed AFCNet processes

multiple noisy, RAW, LR images to consider the merit of this shifted complementary

information from multiple images and combines the information from individual LR images

for generating HR RGB image as output. Our first challenge lies in alignment of the slight

mismatches between multiple supporting frames and the reference frame. Following this,

effective merging of the aligned features is equally important along with the reconstruction

of HR image. In subsequent sub-sections, different modules of the proposed AFCNet are

discussed.
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Feature Alignment

The major hurdle in burst SR is the unknown inter-frame sub-pixel displacement. This

displacement, stemming from camera motion and scene variations, results in misalignment

among the frames [264]. Thus, to align the burst features with the reference frame, we

utilized modulated deformable convolutions [266] as shown in Figure 5.1 (a). Considering,{
xb

}
b∈[1:S] ∈R

S×n×H×W , as an initial representation of burst having S images and n

number of feature channels. Currently, each frame feature xb is concatenated with the

reference frame feature xbr and passed through convolution layer to get the offsets and

modulated scalars required for the deformable convolution layer. With the obtained offsets

and modulated scalars, burst features xb are processed through modulated deformable

convolutions which returns the aligned burst features x̄b.

Our alignment module consists of three deformable layers for improving the overall

alignment capability to enhance the aligned burst features. Unlike [268], we processed

and aligned the burst features without any pre-processing. We combine it with the feature

extraction module where we compute the local-global feature representations. This reduces

the extra overhead on feature alignment module and simplifies the overall architecture.

Further, high-frequency residue is evaluated by calculating the difference between these

aligned features and reference frame features followed by its addition to the aligned features

[268] to enhance the high-frequency edge information.

Feature Extraction

For further strengthening the feature alignment and to rectify small misalignment

errors, we utilize a encoder-decoder based transformer backbone (EDTB) [267] for

capturing global context information among various frames. Unlike [268], which employ

feature refinement module to capture long-range dependencies for modelling global scene

properties prior to aligning the features, we leverage a EDTB, after the aligned features as

depicted in Figure 5.1 (b). EDTB processes the aligned features x̄b and returns its enriched

representation yb. Following [267], we employ a 4-level encoder-decoder architecture with

number of transformer blocks as [4, 6, 6, 8], attention heads in multi-head attention block

are set to [1, 2, 4, 8], and number of channels are [64, 128, 256, 512], respectively.

Feature Fusion

For generating a merged feature embedding of the enriched aligned features, we designed

an abridged pseudo-burst fusion (APBF) module inspired from [268]. It is a well proven

fact that simple pooling operations like element-wise average or max pooling across the

burst frames generates dissatisfying results [264]. The major reason tends to attribute

towards the fact that fusion module requires adaptive merging on the basis of image
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content and noise levels. Furthermore, considering the benefits, and the indispensable

role of inter-frame communication among the channels with multi-path network layout,

for fusing the multi-frame features. We, thereby accomplish inter-frame connections

through concatenation of the corresponding channel-wise burst feature maps and attain

corresponding pseudo-bursts [268] as shown in Figure 5.1 (c). Given the refined features

set y =
{
yb
c

}b∈[1:S]
c∈[1:n] of burst size S and n number of channels, the pseudo-burst is generated

through,

P c = W ρ
(〈
y1
c , y

2
c , · · · , yS

c

〉)
, s.t. c ∈ [1 : n], (5.1)

where, ⟨·⟩ represents feature concatenation, y1
c is the cth feature map of 1st aligned

burst feature set y1, W ρ denotes the convolution layer with f output channel, and

P = {P c}c∈[1:n] represents the pseudo-burst of size n × n × H × W . We have set n

= 64 for this module.

Currently, every feature map in the pseudo-bursts embrace complimentary information

from all the actual burst frame features. Apart from simplifying the learning task, the

inter-frame feature representation merges the required information through decoupling

of the burst feature channels. In [268], the aligned burst features are used to obtain the

pseudo-bursts followed by the multi-scale feature extractor (encoder-decoder sub-module).

In the proposed AFCNet, we abridge this process and directly process the set of

enriched features obtained from feature extraction stage (EDTB module) to obtain

pseudo-bursts. The proposed abridged pseudo-burst fusion (APBF) scheme serves the

dual benefits of, (1) merging the consolidated feature information, and (2) avoiding the

computational overhead of processing pseudo-bursts through heavy multi-scale module

which is happening in [268].

Feature Up-sampling

The final step for reconstructing HR image is up-sampling. In AFCNet, we utilized

the adaptive group up-sampling (AGU) [268] to reconstruct the HR details shown in

Figure 5.1(d). AGU takes the feature maps (P c) produced by the abridged pseudo-burst

fusion module as input and generates a super-resolved output via three-level progressive

upsampling. In AGU, the pseudo-burst features are sequentially divided into groups of 4.

Being mindful of the benefits of applying different fusion weights to texture-less and edge

regions, we ought to predict the fusion weights through an attention mechanism. To do

so, we initially obtain a dense attention map for each pseudo-burst and subsequently

apply element-wise multiplication with the corresponding dense attention map. This

adaptively rescaled feature response is further passed through transposed convolution layer

to up-sample and thus reconstruct the final HR image.

Since, for burst SR we need to perform ×8 up-sampling1, we perform three levels, with

1The real task is to perform upsampling by ×4, additional ×2 is on account of mosaicked RAW LR



102 Chapter 5. A Novel Approach for Burst Restoration and Enhancement

Figure 5.2: Comparisons for ×4 burst super-resolution on SyntheticBurst dataset [71] (NTIRE-21
Track 1).

Figure 5.3: Comparisons on SyntheticBurst dataset [72] for ×4 burst super-resolution (NTIRE-22
Track 1). First and second rows depicts results of base frame up-scaled using bilinear interpolation
and the proposed AFCNet respectively.

each level performing up-sampling (×2). As we have 64 pseudo-bursts, for three levels of

AGU, naturally it forms a group of 16, 4, 1 pseudo-bursts group.

5.1.2 Experimental Analysis

We evaluate the proposed AFCNet for both synthetic as well as real burst SR task. We

follow the NTIRE-21 [71] and NTIRE-22 [72] competition guidelines to carry out network

training and testing.

Implementation details

Our AFCNet is a single end-to-end trainable network designed for burst SR and requires no

pre-training of the proposed module. For overall network efficiency, all burst frames have

been processed through shared AFCNet modules. AFCNet has been trained for 100 epochs

frames.
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Figure 5.4: Visual Comparisons for ×4 burst super-resolution on Real BurstSR dataset [71]
(NTIRE-21 Track 2).

on synthetic bursts generated by utilising 46,839 sRGB images from Zurich-RAW-to-RGB

dataset [269]. We train AFCNet for burst SR task using L1 loss only. While for real burst

SR, we fine-tune our AFCNet with pre-trained weights on SyntheticBurst dataset using

aligned L1 loss [270]. The models are trained with Adam optimizer. Cosine annealing

strategy [271] is deployed for steadily decreasing the learning rate from 10−4 to 10−6

during training. We augment our dataset using horizontal and vertical flips. It should be

noted that unlike [272], we have not employed any kind of ensemble techniques to boost

the evaluation metrics.

SyntheticBurst dataset (NTIRE-21 Track 1)

It consists of 300 RAW bursts for validation. Each burst contains 14 LR RAW images

(each of size 48×48 pixels) that are synthetically generated from a single sRGB image

[264]. Table 5.1 shows the quantitative evaluation on SyntheticBurst dataset [71]. Also,

we have shown the visual comparison between the proposed and existing state-of-the-art

(SoTA) methods for ×4 burst SR task in Figure 5.2. From Table 5.1 and Figure 5.2, it is

clear that the proposed AFCNet outperforms other existing SoTA methods for ×4 burst

SR task.

Real BurstSR dataset (NTIRE-21 Track 2)

It consists of 5,405 and 882 patches for training and validation, respectively cropped from

200 real RAW bursts images. Each input crop has a size of 80×80 pixels. As shown in

Table 5.1, the proposed AFCNet performs favorably well when compared to the other

existing SOTA for ×4 real burst SR task. Also, Figure 5.9 demonstrates that HR images

produced by the AFCNet for ×4 are sharper with vivid details as compared to the other

existing SoTA.
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Table 5.1: Performance assessment on SyntheticBurst and real BurstSR validation datasets
(NTIRE-21) [71] for ×4 burst super-resolution.

Methods
SyntheticBurst (Real) BurstSR

PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑
Single Image 36.17 0.91 46.29 0.982
HighRes-net [273] 37.45 0.92 46.64 0.980
DBSR [264] 40.76 0.96 48.05 0.984
LKR [265] 41.45 0.95 - -
MFIR [270] 41.56 0.96 48.33 0.985
BIPNet [268] 41.93 0.96 48.49 0.985

AFCNet (Ours) 42.21 0.96 48.63 0.986

Table 5.2: Performance evaluation on validation and test set of SyntheticBurst dataset
(NTIRE-22 Track 1) [72] for ×4 burst super-resolution.

Methods
Validation set Test set

PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑
Baseline [268] 42.24 0.97 - -

AFCNet (Ours) 42.44 0.97 42.08 0.97

SyntheticBurst dataset (NTIRE-22 Track 1)

It consists of 100 and 92 RAW bursts in validation and test set respectively. Each RAW

burst contains 14 LR RAW images (each of size 256×256 pixels) synthetically synthesized

from a single sRGB image [264]. Table 5.2 summarises the quantitative evaluation on

validation and test dataset of the proposed AFCNet in comparison with the baseline

approach on SyntheticBurst dataset [72]. While Figure 5.3 display the visual results

produced by the proposed AFCNet for RAW bursts from validation set. Figure 5.3 shows

the ability of the proposed AFCNet in producing HR images with enriched details. We

have not fine-tuned the proposed AFCNet for this experiment and we directly tested the

network trained on the training set.

Table 5.3: Significance of AFCNet modules assessed on SyntheticBurst validation set [71]
for ×4 burst SR task.

Modules A1 A2 A3 A4 A5 A6

Baseline ✓ ✓ ✓ ✓ ✓ ✓

Alignment (§5.1.1) ✓ ✓ ✓ ✓ ✓

Back-projection (§5.1.1) ✓ ✓ ✓ ✓

EDTB (§5.1.1) ✓ ✓ ✓

APBF (§5.1.1) ✓ ✓

AGU (§5.1.1) ✓

PSNR 36.38 38.92 39.50 41.20 41.80 42.21
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5.1.3 Ablation Study

In this section, we demonstrate the importance of each module in our proposed AFCNet.

Commencing from our base network, we introduce different network models systematically,

and exhibit its performance for burst SR application. Every network combination has

been trained for 100 epochs on the training set discussed in Section 5.1.2. Table 6.3

marks all the ablation experiments conducted for ×4 burst SR task on validation set of

Zurich-RAW-to-RGB dataset [269]. For the baseline model, we employ Resblocks [274]

as our feature extraction module, simple concatenation operation has been deployed as a

fusion module, and we used transposed convolution for upsampling. The baseline network

obtains 36.38 dB PSNR. After appending the proposed modules to the baseline, their

seem to be a significant and consistent improvement in results. For example, inclusion of

alignment module and back projection approach improves the PSNR by 2.54 and 0.58 dB

respectively. While, feature extraction stage which is composed of EDTB [267] achieves

significant gain of 1.70 dB in the performance. Inclusion of APBF module contributes

improvement of 0.60 dB whereas, adaptive group up-sampling block takes the gain to

42.21 dB. Overall, our AFCNet attains a captivating performance gain of 5.83 dB over

the baseline.
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5.2 Burst Restoration and Enhancement
Three critical factors involved in burst processing are feature alignment, fusion, and

subsequent reconstruction of the obtained frames. Generally, any burst processing

approach is limited by the accuracy of alignment process on account of the camera and

scene motion of dynamically moving objects. Therefore, it is crucial to design a module

for facilitating accurate alignment, as the subsequent fusion and reconstruction modules

must be robust to misalignment for generating an artifact-free image. We further note

that the alignment and fusion modules in existing burst processing approaches [75, 74]

do not consider the non-local dependencies and mutual correlation among the frames

which hinders the flexible inter-frame information exchange. Moreover, the existing

burst up-sampling approaches [7, 75] do not take into account the merits of repeatedly

transferring the information across several resolutions. To address these issues, we present

a novel burst processing framework named Gated Multi-Resolution Transfer network

(GMTNet).

In contrast to the previous works [7, 74] which adopt bulky pre-trained modules for

alignment, we propose an implicit Multi-scale Burst Feature Alignment (MBFA) to reduce

the inter-frame misalignment. Overall, MBFA module implicitly learns feature alignment

at multiple scales through the proposed Attention-Guided Deformable Alignment (AGDA)

module and obtains an enriched feature representation via Aligned Feature Enrichment

(AFE) module. The proposed AFE module is composed of a back-projection mechanism

and capable of extracting long-range pixel interactions that ease the feature alignment in

complex motions, where simply aligning the frames does not suffice. Additionally, unlike

the recent state-of-the-art (SoTA) algorithm, BIPNet [75] that utilizes a computationally

intensive pseudo burst mechanism on the aligned burst for inter-frame communication,

we propose a simple Transposed-Attention based Feature Merging (TAFM) module that

leverages local and non-local correlations to allow an extensive interaction with the

reference frame. Finally, our Resolution Transfer Feature Up-sampler (RTFU) combines

the complementary features of both single-stage and progressive up-sampling strategies

through deployed conventional and recent feature up-samplers. Such a design enables

strong feature embedding of LR and HR images that creates a solid foundation for

up-sampling in burst SR tasks. In this work, we validate our GMTNet for popular burst

processing tasks such as super-resolution, denoising and low-light image enhancement.

Overall, the following are our key contributions:

1. A Multi-scale Burst Feature Alignment (MBFA) is proposed which uses both

local and non-local features for alignment at multiple scales, resolving the spatial

misalignment within burst images (§5.2.1).

2. A Transposed-Attention Feature Merging (TAFM) is proposed to aggregate the
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Figure 5.5: Overview of the proposed GMTNet for burst processing.

features of the aligned and reference frames (§5.2.1).

3. A Resolution Transfer Feature Up-sampler (RTFU) is proposed to upscale

the merged features. The proposed RTFU integrates the complementary

features extracted by single-stage and progressive up-sampling strategies using the

conventional and recent up-samplers (§5.2.1).

5.2.1 Proposed Method

We present the overall pipeline of our burst processing approach in Figure 5.5. Given a

raw burst image, the goal of our GMTNet is to reconstruct a clean, high-quality image

by exploiting the shifted complementary information from the noisy LR image burst. As

shown in Figure 5.5, the input RAW LR burst features are aligned to the reference frame

through our proposed Multi-scale Burst Feature Alignment (MBFA) module. Further,

aligned burst features are aggregated using the Transposed-Attention Feature Merging

(TAFM) module. Lastly, our Resolution Transfer Feature Up-sampler (RTFU) up-scales

the merged features to reconstruct a high-quality image.

Multi-scale Burst Feature Alignment

Generating an artifact-free, high-quality image through burst processing is highly reliant

upon the alignment of the mismatched burst frames. However, proper alignment is quite

challenging, specifically in low-light and low-resolution images, where noise excessively

contaminates the input burst frames. Previous burst restoration methods [75, 275, 7, 74]

often seek to alleviate these issues by following alignment on locally extracted features.

However, they do not explicitly consider the long-range dependencies which are crucial for
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Figure 5.6: Comprehensive representation of each stage of our proposed GMTNet: (a) The
proposed Multi-Scale Burst Feature Alignment (MBFA) module, (b) Attention-Guided
Deformable Alignment (AGDA), (c) Multi-Kernel Gated Attention (MKGA) module, (d)
Aligned Feature Enrichment (AFE) module, (e) Transposed Attention Feature Merging
(TAFM) module, and (f) Resolution Transfer Feature Up-sampler (RTFU).

restoration tasks. Consequently, the generated feature maps have limited receptive field

making it difficult to align the burst features in case of complex motions. In order to handle

the aforementioned issues, we design a new module termed as Multi-scale Burst Feature

Alignment (MBFA) that not only aligns burst features at multiple scales but also captures

the long-range pixel interactions which eventually ease the alignment process. Figure 5.6

(a) shows our MBFA operates in two stages: Firstly, it aligns the burst features at multiple

scales through the proposed Attention-Guided Deformable Alignment (AGDA) module.

Secondly, it refines the aligned burst features through Aligned Feature Enrichment (AFE)

module.

Attention-Guided Deformable Alignment

As discussed in [276], noise disturbs the prediction of dense correspondences among

multiple frames which is the key concern of several alignment methods. However, we find

that a well-designed module can easily tackle noisy raw data. Therefore, in order to reduce

the noise content in the initial burst features and eventually ease the alignment process,

we propose an Attention-Guided Deformable Alignment (AGDA) module that operates at

multiple scales to align the burst features as shown in Figure 5.6 (b). The proposed AGDA

module is inspired from the deformable alignment proposed in TDAN [277] and EDVR

[275]. But, their alignment approaches [277, 275] directly apply deformable convolution

on the input features, making them prone to miss the detailed information in case of

noisy RAW burst features. Additionally, they also lack at extracting long-range pixel

interactions which are useful in complex motions. To tackle these problems, we enhance
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the overall representation of the incoming noisy burst features at each scale through the

proposed Multi-kernel Gated Attention (MKGA) module (see Figure 5.6 (c)). Further,

the denoised burst features are aligned through the modulated deformable convolution

(DCN) as shown in Figure 5.6 (b).

Multi-Kernel Gated Attention.

The proposed MKGA module is designed to emphasize on learning flexible receptive

field via Multi-Scale Gated Convolution (MSGC) sub-module and thereafter it learns

the non-local spatial and inter-channel dependencies via the transposed-attention (TA)

sub-module as demonstrated in Figure 5.6 (c). Given an input tensor Y ∈ RC×H×W , the

overall operation of MSGC, outputting Ŷ, is formulated as:

Ŷ = W1 ∗ (G1(Y)) +W1 ∗ (G3(Y)) +W1 ∗ (G5(Y)) (5.2)

Here, W1 denotes a convolution filter with size 1×1, and * is a convolution operation.

Gk(Y) represent the output of the Gated Convolution block (See Figure 5.6 (c)), that is

mapped out as the element-wise product of two parallel paths for depth-wise convolution

layers with filter size k and formulated as Gk(Y) = λ(W dep
k ) ⊙ W dep

k . Here, W dep
k

denotes a depth-wise convolution layer, λ and ⊙ represents the GELU non-linearity, and

element-wise multiplication, respectively.

Transposed Attention.

The extracted multi-kernel features from the MSGC module are passed through the

transposed attention (TA) sub-module (see Figure 5.6 (c)) for capturing their long-range

pixel interactions. From a layer normalized tensor Ŷ, our TA sub-module first generates

query (Q), key (K), and value (V) projections by applying 1×1 convolutions followed by

3×3 depth-wise convolutions for encoding the non-local and channel-wise spatial context.

Thereafter, we reshape (Q,K,V) into Q̂, K̂ and V̂ projections such that the subsequent

dot-product interactions between query and key generate a transposed-attention map of

size RC×C [267], instead of the huge regular attention map of size RHW×HW [278]. And,

the overall TA process, outputting Ỹ, is defined as:

Ỹ = LN(Ŷ) +W1 ∗ (TA(Q̂, K̂, V̂));

TA(Q̂, K̂, V̂) = V̂ ⊗ S(K̂⊗ Q̂)
(5.3)

Here, Ŷ is the feature map obtained from the MSGC module, LN denote the layer

normalization; TA and S denotes the operation of the TA sub-module and Softmax,

respectively, Q̂ ∈ RHW×C , K̂ ∈ RC×HW , and V̂ ∈ RHW×C matrices are obtained

after reshaping the tensors from the original size, RC×H×W , and ⊗ denotes matrix

multiplication. Altogether, the employed MKGA module at each scale allows each

pyramidal level to focus on fine details, generating contextualized features that reduce
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noise and thus ease the subsequent alignment mechanism.

Modulated Deformable Convolution.

After extracting the features from the MKGA module, we implicitly align the current

frame features, fb with the reference frame features (we considered the first frame as

reference), fbr via modulated deformable convolution [266, 277] (learnable offsets for

deformable convolution layer are obtained through a 3×3 offset convolution layer) as shown

in Figure 5.6 (b). To ensure better learning, the predicted offsets and aligned burst

features are shared from the lower-scale to upper-scale in a bottom-up fashion to ensure

semantically stronger and cleaner aligned features.

Aligned Feature Enrichment

To fix the remaining minor alignment and noise issues, we embed a novel Aligned Feature

Enrichment (AFE) module on the obtained aligned features. The proposed AFE module

enhances the aligned burst features by boosting the high-frequency content via a simple

back-projection process followed by extracting the local-non-local features. During the

back-projection process, we simply compute the high-frequency residue between the

aligned burst features and reference frame as shown in Figure 5.6 (d). Thereafter, the

local-non-local pixel interactions are enabled by processing the aligned edge boosted burst

features through the existing transformer backbone [267]. In a nutshell, besides capturing

multi-scale local-global representation among the bursts, the AFE module also bridges the

gap between the relevant and irrelevant features of the aligned frames.

Transposed-Attention Feature Merging

In burst processing, temporal relation among the multiple frames plays an indispensable

role in feature fusion on account of blurry frames from camera perturbations. Considering

the fact, that incoming multiple frames have quite a few similar patterns at the feature

level, it is infeasible to directly concatenate or add them as it will naively introduce a large

amount of redundancy into the network. Existing DBSR [7] proposed an attention-based

fusion approach but it is limited in exploiting the complementary (global and local)

relations that can hinder the information exchange among multiple frames. Further, the

recently proposed BIPNet [75] tries to merge the relevant information by concatenating

channel-wise features from all burst feature maps. Though it is effective in extracting

complementary information, it is computationally extensive.

Unlike the aforementioned fusion techniques, we propose a Transposed-Attention Feature

Merging (TAFM) to efficiently encode local and non-local correlations before merging the

frames. As shown in Figure 5.6 (e), TAFM takes queries (Q) and a set of key-value

(K,V) pairs as input and outputs the linear combination of values that are determined

by correlations between the queries and corresponding keys [216]. The proposed TAFM
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module has been designed with two parallel blocks (see Figure 5.6 (e)), where the lower

block (outputting p1) performs the query-key interactions across channels of the aligned

neighboring frames to encode the channel-wise local context. While the upper block

(outputting p2) enhances the feature representations of the reference and current frames

by bridging their global correlations. After encoding the feature correlations globally and

locally for a given aligned frame, f̄b with b number of burst frames, the overall merged

features of TAFM, Fm ∈ R1×C×H×W are obtained as follows:

Fm = W3 ∗ (p1 C p2) (5.4)

where, W3 is a convolution layer with filter size 3×3, and C refers to the concatenation.

Resolution Transfer Feature Up-sampler

The popular up-sampling techniques deployed in SoTA burst SR methods DBSR [7], DRSR

[74] perform direct one-stage up-sampling without leveraging the benefits of information

exchange between the HR features and their corresponding LR counterparts. Considering

the fact that HR features contain abundant global information and LR features are rich

in edge information [279], we design a Resolution Transfer Feature Up-sampler (RTFU)

module to extract unique features of different resolution spaces. The proposed RTFU

module stems from the observation that the transfer of LR and HR features through

a multi-resolution framework can be propitious in adaptively recovering the textural

information from the fused frames as shown in the ablation study. In RTFU, we target at

exploiting the dual benefits of both direct [154] and progressive up-sampling [280] strategies

using the conventional [281] and recent learnable up-sampling layers [282] to adequately

get into the HR space. As shown in Figure 5.6 (f), the proposed RTFU achieves its

desired HR feature space via a three-stage design: two sets of four parallel progressive

multi-resolution streams (Stage1 and Stage3) and a Resolution-Transfer Merging (RTM)

module (Stage2).

We first apply progressive up-sampling strategy with pixel-shuffle [282] (extreme left of

Figure 5.6 (f)) parallelly in Stage1 for generating (×1, ×2, ×4, and ×8) multi-resolution

SR feature responses, which are then forwarded to the RTM module (Stage2). RTM

module consists of four input representations: Ui
r (output of Stage1), i = 1, 2, 4, and

8 with i being the input resolution index, and the associated output representations

are given by Uo
s, o = 1, 2, 4, and 8 with o being the output resolution index. Each

output representation (Uo
s) is the concatenation of the transformed representations of the

corresponding four inputs (as shown in the middle of Figure 5.6 (f)). Thus, the overall

operation of Stage2 (RTM module) can be formulated as follows:
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Uo
s =

[[
f(U i

r)
]]
i=1,2,4,8

; f =


1 ∀ i = o

o
i ↑ ∀ o > i

i
o ↓ ∀ o < i

(5.5)

Here, o ∈ {1, 2, 4, 8}, and the mathematical definition of the symbol used in Eq. 5.5 is given

as
[[
Aj

]]
j=1,2,...n

= A1 C A2..... C An, where C denotes the concatenation operation

among the inputs, and f represents the corresponding transformation operation (upsample

or downsample) applied to the input feature Ur and is dependent upon the input resolution

index (i), and the output resolution index (o). For instance, as shown above, if o > i,

then the corresponding input representation Ui
r is up-sampled (↑) by a factor of o/i.

In Stage2 (RTM), we deploy bilinear interpolation and strided convolution for feature

up-sampling and down-sampling, respectively. Thereafter, the resulting features from each

branch of Stage3 are again up-sampled progressively using bicubic interpolation to generate

an up-sampled feature map of the size R1×C×8H×8W . Finally, we add the individual

branch output of Stage3 to generate the final high-quality image. Thus, for each pixel

location, RTFU can leverage the underlying content information from input frames at

multiple-scales and utilize it to get better performance than the mainstream up-sampling

operations, pixel-shuffle or interpolations.

5.2.2 Experimental Analysis

We validate the proposed GMTNet on real and synthetic datasets for (a) Burst

Super-resolution, (b) Burst denoising, and (c) Burst low-light image enhancement tasks.

Implementation Details

We train separate models for all the considered tasks in an end-to-end manner. For better

parameter efficiency, we shared each GMTNet module for all burst frames. Our GMTNet

has 12.7M parameters with 207 GFLOPs for the burst of size 8×4×128×128 with a run

time of 24 fps. All the models are trained with Adam optimizer with L1 loss function.

We employ cosine annealing strategy [271] to decrease the learning rate from 10−4 to

10−6 during training. For real-world SR, we fine-tune our GMTNet (with pre-trained

weights on SyntheticBurst dataset) using aligned L1 loss [7]. We provide the task-specific

experimental details in the corresponding sections.

Burst Super-Resolution

We evaluate our proposed GMTNet on synthetic [7] and real-world datasets [7] for scale

factor ×4. Following the settings in [7], we utilized SyntheticBurst dataset (46,839

and 300 RAW burst sequences for training and validation respectively, where each burst

sequence consists of 14 images), and BurstSR dataset consisting of 200 RAW burst

sequences (5,405 and 882 patches of size 80×80 for training and validation, respectively).



Chapter 5. A Novel Approach for Burst Restoration and Enhancement 113

Table 5.4: Burst super-resolution results on synthetic and real-world datasets for ×4.

Methods SyntheticBurst [7] BurstSR [7]
PSNR↑ SSIM↑ PSNR↑ SSIM↑

SingleImage 36.86 0.919 46.60 0.979
WMKPN [283] 36.56 0.912 41.87 0.958
HighResNet [73] 37.45 0.924 46.64 0.980
DBSR [37] 40.76 0.959 48.05 0.984
MFIR [74] 41.56 0.964 48.33 0.985
BIPNet [75] 41.93 0.960 48.49 0.985

Ours 42.36 0.961 48.95 0.986

Figure 5.7: Visual results on SyntheticBurst [7] for ×4 burst SR, where (a) Base frame,
(b) DBSR [37], (c) LKR [73], (d) MFIR [74], (e) BIPNet [75], and (f) Ours.

SR results on SyntheticBurst dataset for ×4 and ×8.

The proposed GMTNet is trained for 300 epochs on the training split of SyntheticBurst

dataset for both ×4, and ×8 up-sampling tasks and evaluated on the validation set of

SyntheticBurst dataset [7]. We compared our proposed GMTNet with several SoTA

approaches for ×4 as shown in Table 5.4. Particularly, our GMTNet obtains a PSNR

gain of about 0.43 dB over the previously best-performing BIPNet [75] and 0.80 dB over

the second-best approach [74]. To further prove the potency of our proposed GMTNet

on large scale factors, we conduct an experiment for ×8 burst SR. The LR-HR pairs are

synthetically generated using the same procedure described for SyntheticBurst dataset [7].

Visual results shown for a few challenging images in Figure 5.7 (×4) and Figure 5.8 (×8)

clearly prove that results obtained by GMTNet are sharper and it efficiently reconstructs

the structural content and fine textures, without compromising details.

SR results on BurstSR dataset.

Since, the LR-HR pairs for BurstSR dataset are captured using different cameras, they

suffer from minor misalignment. Thus we follow the previous work [7] and use aligned L1

loss for fine-tuning the GMTNet for 25 epochs and evaluate our model by using aligned



114 Chapter 5. A Novel Approach for Burst Restoration and Enhancement

Figure 5.8: Visual results on SyntheticBurst [7] for ×8 burst SR, where (a) denotes base
frame, (b) BIPNet [75], (c) Ours, and (d) Ground-truth.

Figure 5.9: Results on real BurstSR dataset [7] for ×4 burst SR, where (a) HR Image, (b)
Base frame, (c) DBSR [37], (d) MFIR [74], (e) BIPNet [75], (f) Ours, and (g) Ground-truth.

PSNR/SSIM. Table 5.4 shows that our proposed GMTNet obtain conducive results,

outperforming SoTA BIPNet [75] by a substantial gain of 0.46 dB. Visual comparisons

in Figure 5.9 depict that unlike other compared methods, the proposed GMTNet is more

effective for generating minute details in the reconstructed images, with better color and

structure preservation.

Table 5.5: Gray-scale burst denoising [12] results with PSNR.

Methods Gain ∝ 1 Gain ∝ 2 Gain ∝ 4 Gain ∝ 8 Average

KPN [12] 36.47 33.93 31.19 27.97 32.19
BPN [11] 38.18 35.42 32.54 29.45 33.90
BIPNet [75] 38.53 35.94 33.08 29.89 34.36
MFIR [7] 39.37 36.51 33.38 29.69 34.74

Ours 39.07 36.46 33.52 30.46 34.87
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Figure 5.10: Visual results on gray-scale datasets [12] (first two rows) and color [11] (last
two rows) for burst denoising, where (a) Noisy image, (b) BPN [11], (c) MFIR [7], (d)
BIPNet [75], and (e) GT-Image.

Burst Denoising Results

This section presents the results of burst denoising on color (test split: 100 bursts) [11]

as well as gray-scale (test split: 73 bursts) [12] datasets. Both these datasets have

four variants with different noise gains (1, 2, 4, 8), corresponding to noise parameters

(log(σr), log(σs)) → (-2.2, -2.6), (-1.8, -2.2), (-1.4, -1.8), and (-1.1, -1.5), respectively. We

train separate models for grayscale and color burst denoising for 200 epochs on 20k

synthetic noisy burst samples generated using the process described in [74].

Denoising results

Table 5.5 shows the results on the gray-scale burst denoising dataset against SoTA

methods. Our GMTNet outperforms the recent BIPNet2 [75] by about 0.57 dB for the

highest noise gain (Gain ∝ 8). Similarly, for color denoising, our approach outperforms

existing MFIR [7] on all four noise levels (except the lowest noise gain) with an average

margin of 0.25 dB as shown in Table 5.6. Qualitative comparison in Figure 5.10 clearly

proves the efficacy of our approach in recovering the required subtle contextual details,

thus generating cleaner denoised outputs.

2Existing BIPNet results are collected from their official GitHub repository.
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Figure 5.11: Visual results on SONY-subset of SID dataset [76] for burst low-light image
enhancement, where (a) Input low-light patch, (b) Kardeniz et al. [77], (c) BIPNet [75],
(d) Proposed Method, and (e) Ground-truth.

Table 5.6: Color burst denoising [11] results with PSNR.

Methods Gain ∝ 1 Gain ∝ 2 Gain ∝ 4 Gain ∝ 8 Average

KPN [12] 38.86 35.97 32.79 30.01 34.40
BPN [11] 40.16 37.08 33.81 31.19 35.56
BIPNet [75] 40.58 38.13 35.30 32.87 36.72
MFIR [7] 41.90 38.85 35.48 32.29 37.13

Ours 41.74 38.91 35.74 33.09 37.38

Low-Light Enhancement Results

Following other existing works [75, 77], we test the performance of our GMTNet on the

SONY-subset from the SID dataset [76]. It contains 161 input RAW burst sequences

for training, 36 for validation, and 93 for testing. We train the proposed GMTNet with

L1 loss for 200 epochs on 5000 cropped patches of size 256×256 from the training set of

SONY-subset. Table 5.7 gives the image quality scores for several competing approaches.

The proposed GMTNet provides 0.26 dB improvement over the existing best BIPNet [75].

Visual comparisons in Figure 5.11 show that the enhanced images are relatively cleaner,

sharper and preserves more structural content than other compared approaches.

5.2.3 Ablation Study

Here we analyze the influence of every key component and design choice in our formulation.

All models are trained for 100 epochs on SyntheticBurst dataset [7] for ×4 burst SR task.

As reported in Table 5.8, the baseline model achieves a PSNR of 36.38 dB. For the baseline
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Table 5.7: Burst low-light enhancement on Sony-subset [76].

Methods PSNR ↑ SSIM ↑ LPIPS ↓
Chen et al.[76] 29.38 0.89 0.48
Maharjan et al. [284] 29.57 0.89 0.48
Zamir et al. [285] 29.13 0.88 0.46
Zhao et al. [286] 29.49 0.89 0.45
Karadeniz et al. [77] 29.80 0.89 0.30
BIPNet [75] 32.87 0.93 0.30

Ours 33.13 0.94 0.31

Table 5.8: Ablation study for GMTNet contributions. PSNR is reported on SyntheticBurst
dataset [7] for ×4 burst SR task.

TaskModules

Baseline ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Align
ment
(§5.2.1)

w/O MKGA ✓
with MKGA ✓ ✓ ✓ ✓ ✓ ✓
AFE ✓ ✓ ✓ ✓ ✓

Fusi
on
(§5.2.1)

with p1 ✓
with p2 ✓
with p1+p2 ✓ ✓

Upsample (§5.2.1) ✓

PSNR 36.38 38.02 39.12 39.40 39.84 40.23 40.74 41.82

model we deploy addition operation for fusion and pixel-shuffle for up-sampling. After

adding the proposed modules to the baseline network, the results improve persistently

and notably. For instance, we attain a performance gain of 3.02 dB when we incorporate

our alignment module into the baseline model. The insertion of the proposed fusion and

up-sampling modules in our network further improves the PSNR of the overall network

by about 1.34 dB and 1.08 dB, respectively. Overall, GMTNet obtains a compelling gain

of 5.44 dB over the baseline model.

Effectiveness of MBFA module.

As reported in Table 5.8, the inclusion of MKGA and AFE modules into our alignment

(MBFA) module provides a performance boost of around 1.10 dB and 0.28 dB, respectively

which supports the effectiveness of the proposed modules in capturing motion cues.

Further, we compare the GMTNet results in Table 6.3 (a) by replacing MBFA with other

popular explicit and implicit alignment approaches (Keeping the rest of the modules same).

We observe that the MBFA module obtains a performance gain of about 0.83 dB over PCD

module proposed in EDVR [275]. To further highlight the ability of MBFA module in

aligning burst features, we visualize the features (of few frames) before and after applying

it as shown in Figure 5.12. It clearly reveals our MBFA works well without any dedicated

supervision.

How to design TAFM module?

A trivial design of our TAFM module is to use a single stream for extracting the

information and then concatenating the features. However, from Table 5.8, it is clear
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Table 5.9: Impact of the proposed modules in terms of PSNR/SSIM on SyntheticBurst
SR dataset for ×4 burst SR task.

Task Methods PSNR↑ SSIM↑

(a)
Alignment

GMTNet + PCD [275] 40.99 0.953
GMTNet + Explicit [7] 39.26 0.944
GMTNet + EBFA [75] 41.10 0.958
GMTNet + MBFA 41.82 0.960

(b) Burst
Fusion

GMTNet + TSA [275] 39.97 0.947
GMTNet + DBSR [37] 40.32 0.950
GMTNet + PBFF [75] 41.60 0.954
GMTNet + TAFM 41.82 0.960

(c)
Upsampler

GMTNet + Bil 40.22 0.940
GMTNet + PS [37] 40.41 0.943
GMTNet + AGU [75] 41.30 0.951
GMTNet + RTFU 41.82 0.960

that utilizing both the p1 and p2 outputs for subsequent merging results in a performance

boost of around 0.90 dB. It clearly signifies that two-stream TAFM performs better than

any single-stream.

Impact of TAFM module

The results in Table 5.9 for burst fusion tasks further show that replacing our TAFM

module with other popular fusion modules have a detrimental influence on the overall

performance of our model, with PSNR drop of around 0.22 dB when utilizing the recently

proposed PBFF [75] module in our network.

Effectiveness of the proposed RTFU

To validate the effectiveness of our RTFU, we replace it with the conventional and recent,

bilinear interpolation (Bil) and pixel-shuffle (PS), AGU respectively. The accuracy scores

in Table 5.9, clearly demonstrate its ability to reconstruct a high-quality image.

How important is the proposed RTM module in RTFU?

To prove the imperativeness of the RTM module, in Figure 5.12 we visualize the feature

maps before and after embedding it in RTFU. It clearly proves that our model benefits

from the efficient use of both LR and HR information to complete the restoration of sharp

regions.
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Figure 5.12: Feature map visualizations before and after applying proposed MBFA (Figure
5.6 (b)) and RTM (middle of Figure 5.6 (f)) modules into our GMTNet.

5.3 Summary

In this chapter, we discussed two novel solutions for burst/multi-frame processing

approaches. Our first solution we propose an adaptive feature consolidation network

(AFCNet) for burst super-resolution. The proposed AFCNet is end-to-end trainable

with provision for implicit feature alignment mechanism as well as for inter-frame

communication. Additionally, it utilizes adaptive group up-sampling technique to

progressively up-scale the multi-frame features.

In our second solution, our proposed Multi-scale Burst Feature Alignment (MBFA) module

aligns the noisy burst features at multiple scales using the proposed Attention-Guided

Deformable Alignment (AGDA). The inclusion of Aligned Feature Enrichment (AFE)

module improves the aligned features by fixing any minor misalignment issue, thus

yielding well-refined, denoised and aligned features. To further improve model robustness,

Transposed Attention Feature Merging (TAFM) module manifests efficient fusion

performance by analyzing the global and local correlations among the incoming frames.

Finally, the proposed Resolution Transfer Feature Up-sampler (RTFU) up-scales the

merged features by consolidating information from both LR and HR feature spaces to

reconstruct a high-quality image.

Experimental analysis of the proposed solutions shows that the proposed networks
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outperform the existing state-of-the-art methods on all the benchmark datasets for the

burst processing task. This chapter and the approaches discussed in the previous chapter

are more trained under specific settings (bicubic degradations), and its performance tends

to degrade under different settings. Thus, we need to develop a approach that offers good

generalization ability in real-world scenarios. A detailed discussion is given in the next

chapter.



Chapter 6

A Novel Learning-Based Approach

for Blind Super-Resolution

For a deep convolutional network that is trained under fixed conditions, its generalization

capability tends to be constrained to that peculiar setting, and its overall performance

degrades under different scenarios. This is one of the significant problem in single image

super-resolution (SR), where majority of the SR methods presume that blur kernel is fixed

and ideal (generally bicubic kernel). Naturally, their performance tends to deteriorate

when the real kernel diverges from the ideal one, which is quite often in real-world images.

Henceforth, recent SR methods opt for blind SR, where the true degradation kernels are

unknown.

Blind SR that aims to reconstruct the high-resolution image from its low-resolution (LR)

counterpart, without knowing the degradation kernel and noise is intrinsically an ill-posed

problem as the complex distortions in the LR inputs disrupt many details. The overall

degradation process can be expressed as:

Y = (K ∗X)↓s + n (6.1)

where, Y represents the observed LR counterpart, X represents the HR image, K denotes

the blur kernel, ∗ is the 2D convolution operator, ↓s denotes the downsampling operation

with scale factor s, and n denotes the additive noise.

Figure 6.1: Few SR results for ×4 scale factor. The popular methods generate artifacts
as they either apply moderate receptive field (MANet) [78], or implicit degradation
embedding (DASR) [79]. We incorporate the inherent content information as an important
cue to enrich the relationship between the SR network and degradation embedding.

Generally, blind SR is a two step process: degradation kernel estimation, and the
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subsequent fusion of the kernel prior and content information into the SR network. If the

estimated blur kernel diverges from the ground truth, the reconstructed HR image would

deteriorate seriously [287, 86]. In light of this, we focus on the degradation estimation

problem for blind SR. Additionally, we observe that as the content information can act as

a useful cue for the SR network [288], thus estimation of the content-aware degradation

can help us in addressing the intrusion arising from the domain gap between the content

and degradation spaces. The popular state-of-the-art (SoTA) methods [78, 289] that only

deploy a naive encoder or small receptive field are often tumbled by the discrepancy

between the above two spaces as these embeddings do not fully exploit the relevant

information. To circumvent this problem, we present a transformer-based blind SR

framework based on the kernel-oriented adjustment of local and global SR features, called

KOADNet. The KOADNet consists of two components: a degradation estimation network

for estimating the kernels, and a fusion network for fusing the information via mapping

of the predicted degradation kernels to the feature kernel space on SR features. We train

on random anisotropic Gaussian degradation settings and our KOADNet is capable of

accurately predicting the inherent kernels and leverage this information for SR as shown

in Figure 6.1. Additionally, we visualize comparisons on real-world images to demonstrate

its good generalization ability in stark comparison to the popular blind SR methods. Our

contributions are basically three-fold:

� We design an effective blind kernel-oriented adjustment network for adaptively fusing

the degradation-aware embedding and predicted content into the SR network.

� We present an intuitive and efficient network for degradation estimation in blind

image super-resolution. It learns both the mean and variance in the latent space of

kernels via a dual attention-based information refinement (DAIR) module.

� We experimentally show that the proposed KOADNet outperforms the recently

proposed SoTA blind SR models trained under randomized degradation conditions.

6.1 Proposed Methodolgy

Recent works [78, 79] estimate the kernel for the task of blind SR with a moderate receptive

field. Furthermore, they do not take into consideration the benefits of leveraging long-range

spatial and inter-channel dependencies that play a vital role in the preservation of the

required content information. Additionally, unlike previous works [290, 86] that pass

the estimated kernel information to each layer of the proposed network thus increasing

the overall network complexity, we try to learn the correspondences between the estimated

kernels and LR image patches via a novel fusion module. We propose a blind SR network as

shown in Fig. 6.2 with two main components: (i) a dual attention-based kernel estimation
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Figure 6.2: The schematic layout of our proposed KOADNet for blind super-resolution.
KOADNet has two main components: (a) Dual Attention-Based Kernel Estimation
(DAKE) module, (b) Kernel-Oriented Content Fusion (KOCF) module.

module that estimates the degradation kernels, and (ii) a kernel-oriented content fusion

module that contains stacked transformer and residual blocks for adaptively fusing the

relevant degradation kernel and LR information for enhanced blind SR.

6.1.1 Dual Attention-Based Kernel Estimation Module

It is vital to extract an accurate kernel for the task of blind SR, as kernel mismatch

will generate undesirable results [86]. Unlike most previous kernel estimation models

[78, 289, 291] that employ naive or small receptive field encoders and often fail to extract

the relevant degradation information, we design a dual attention-based kernel estimation

module to expand the receptive field. Additionally, other popular SR kernel estimation

algorithms [169, 172] are relatively slow and can not be deployed in real-time applications

[292]. In light of this, our kernel estimation module, as shown in Fig. 6.2 (a) inputs a

degraded LR image and aims to predict the underlying degradation kernel by an efficient

architecture that can further provide solid guidance to the kernel-oriented fusion module.

Inspired by U-Net [293], the estimation module is composed of convolution layers, dual

attention-based information refinement blocks, up-samplers, and down-samplers. The

LR image is first passed through a 3×3 convolution layer for extracting image features,

which further goes through 3 dual attention-based information refinement blocks. Each

refinement block consists of a gradual channel-splitting module with contrast-sensitive

and gated attention embedded between them. Before and after the second information
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Figure 6.3: Holistic Diagram of Dual-Attention based Information Refinement (DAIR)
module.

refinement block, we utilize convolution and a transposed convolution layer (both with

a stride of 2) to down-sample and up-sample the features, respectively. We further add

skip connections while extracting the features to improve the representation ability and

to adaptively utilize the different levels of features. After extracting the features, we

reconstruct the kernel by using a 3×3 convolution layer and a softmax layer for predicting

the kernels at every LR image pixel. Thereafter, we utilize pixel shuffle for obtaining

the kernel predictions for the HR image and the obtained kernel prediction is denoted

as K ∈ Rhw×H×W , where h, w, H and W denotes the kernel height, width, HR image

height, and width, respectively. Its capability to predict kernels by extracting degradation

cues is based on the dual attention-based information refinement block described below.

Attention-based Information Refinement Block:

The proposed Dual Attention-based Information Refinement (DAIR) block as

demonstrated in Fig. 6.3 extracts the features at a granular level, that preserves

the partial information and considers the remaining features of each layer via its gradual

splitting module. Concretely, to aggregate the retained features, a contrast-sensitive

attention layer is used to enhance the collected refined information. This attention layer

helps to adaptively learn the variance and mean of the collected features. To further

exploit more useful features (edges, corners, textures) the obtained features are passed

through a gated attention layer. Next, we provide more details about each sub-module.
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Gradual Splitting Module:

As shown in Fig. 6.3, the DAIR block comprises of two gradual splitting (GS) modules.

Each GS module initially adopts a 3×3 convolution layer for extracting the input features

for succeeding refinement steps. In every step, channel-wise splitting operation is first

employed onto the previous features, that outputs two-part features. From those features,

one part is retained (indicated by blue arrow) and the other features are fed into the next

calculation part (indicated by green arrow). We consider the retained part as the refined

features and the features being fed to the next step as the coarse features. For input

features Iifeat, the overall procedure of the each GS module is described as:

Irfeat1 , Icfeat1 = Split1(con
3×3
1 (Iifeat)), (6.2)

Irfeat2 , Icfeat2 = Split2(con
3×3
2 (Icfeat1 )), (6.3)

Irfeat3 , Icfeat3 = Split3(con
3×3
3 (Icfeat2 )), (6.4)

Irfeat4 = con3×3
4 (Icfeat3 ), (6.5)

where, con3×3
i denotes the ith convolution layer (including LeakyReLU) of each GS module,

Spliti represents the ith channel split layer, Irfeati represents the ith refined features, and

Icfeati represents the ith coarse features that require further processing. In the final stage,

all the refined features are concatenated and given as:

Iofeat = [Irfeat1 , Irfeat2 , Irfeat3 , Irfeat4 ] (6.6)

where [·] denotes the concatenation operation along the channel dimension.

Contrast Sensitive Attention Layer:

To effectively capture the information from the extracted refined features and improve the

overall accuracy of degradation estimation, we utilize a contrast-sensitive attention layer.

[20] captures the overall global information in high-level vision via average pooling, but it

lacks information about structures, and textures that are quite propitious for enhancing

the details in the estimated kernel. Here, we replace the global average pooling operation

by the summation of standard mean and deviation to evaluate the overall contrast degree

of the kernel map. If we denote Iofeat = [f1, f2, .....fc] as the input of the contrast sensitive

attention layer, that has C feature maps of spatial size, H ×W . Then, we can acquire the
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contrast information as:

zc = FGC(fc)

=

√
1

HW

∑
(i,j)∈fc

(f i,j
c

− 1
HW

∑
(i,j)∈fc

f i,jc )
2
+

1
HW

∑
(i,j)∈fc

f i,jc ,

(6.7)

where, zc represents the cth element of the output. FGC(.) represents the function for

global contrast information extraction.

Gated Attention Layer:

To further improve the representation learning of our kernel estimation network, we

propose a gated attention layer as shown in Fig. 6.3. To effectively encode the obtained

contrast information from spatially neighboring locations, we formulate this layer as the

element-wise product of two parallel paths of transformation layers, one of which is

activated through a sigmoid layer. Overall, the gated attention layer is more focused

upon enriching features with contextual information by allowing each feature to focus on

the fine details complimentary to the other features.

6.1.2 Kernel Oriented Content Fusion Module

Existing blind SR methods usually fuse estimated kernel embeddings into non-blind SR

networks without taking into consideration the domain gap. Generally, the degradation

features are quite different from the textural features that propagate into the SR network.

Thus, we propose the Kernel-Oriented Content Fusion (KOFA) module to mitigate the

domain gap by adjusting the intermediate features based upon the estimated degradation

kernels. We follow the settings in SRMD [290], which inputs the concatenated LR image

and kernel maps of size (b + C) × H ×W , where b represents the batch dimension, C,

H and W represent the channels, image height, and width respectively. Thus, given a

degraded image and the estimated kernel, KOFA first reshapes the estimated kernel from

H × W to HW , and then the dimensionality is reduced from HW to l via principal

component analysis (PCA). Thereafter, the kernel PCA vectors are stretched to a kernel

PCA map of size l × H
s × W

s , where H, W , and s denote HR image height, width, and

scale factor, respectively. However, for efficiently exploiting the kernel information, merely

concatenating the transformed kernel and LR image as done in [173, 290] is not a better

option due to the following reasons: Firstly, the kernel maps are unable to accommodate

the actual information from the image. Secondly, simultaneous processing of the kernel

maps and LR image introduces interference which is unrelated to the image.

Thus, after concatenation we pass the information through a detail-preserving module as
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shown in Fig. 6.2 (c) that consists of a down-sampling layer (via average pooling), followed

by a 3×3 convolution layer and an up-sampling layer (via transposed Convolution) for

extracting content-aware degradation features. We then forward the up-sampled features

through a gated attention mechanism to exploit the relevant detail cues. Finally, the

extracted features are passed through several cascaded transformer blocks followed by

residual blocks for leveraging the content cue.

Content Query Transformer Based Module:

Having learned the content-aware degradation information in LR and HR spaces, we

now seek to effectively integrate it among the features. For accomplishing this, we

propose a content query transformer based (CQTB) module in Fig. 6.2 (b). Each

content query transformer based module consists of transformer and residual blocks,

where the transformer module effectively leverages the content cue to query the long-range

dependencies among the features, and the residual block enhances the local collaboration

among the extracted features. In every transformer block, we employ shifted window based

multi-head attention layers and feed-forward networks. Given features F of size, H×W×C
from the detail preservation module, shifted window mechanism first reshapes the input to

HW
M2 ×M2 ×C features via partitioning the overall input into non-overlapping M ×M , w

local windows, where HW
M2 denotes the total number of windows. Next, the standard

self-attention is applied on each window. For a local window feature, X ∈ RM2×C ,

the three learnable weight matrices WQ ∈ RC×C , WK ∈ RC×C and WV ∈ RC×C are

shared across different windows and projected into the query Q, key K and value V via:

{Q,K,V} = {XWQ, XWK , XWV }. The attention function computing the dot product

of the query with key is defined as:

Attention(Q,K,V) = softmax(
QKT

√
d

)V, (6.8)

Here, d represents the dimensionality of keys. Further, a feedforward network consisting of

two multi-layer perceptrons (MLP) layers and GELU activation is employed for refining the

features generated by multi-head attention as demonstrated in Fig. 6.2 (a). To effectively

capture the global information, residual connection is further applied between the both

modules.

Ẑ = LN(MSA(Q,K,V))

Z = LN(FFN(Ẑ)) + Ẑ;
(6.9)

where, Ẑ is defined as the output of the MSA unit with X as the input. The feedforward

network (FFN) is defined as follows:

FFN(X) = GELU(W1X + b1)W2 + b2 (6.10)

Thereafter, residual block is placed in series after every transformer block for calibrating
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the anisotropically degraded features before the final reconstruction phase. After passing

the features through cascaded transformer and residual blocks, we pass the features

through pixel-shuffle layer for up-scaling the extracted features.

6.2 Experiments

6.2.1 Experimental Setup

As the blur kernels of real-world LR images are generally unimodal [160] and can be

effectively depicted by a Gaussian [294] model, most popular blind SR works [295, 86,

296, 297, 157] assume that the SR kernel is either isotropic or anisotropic Gaussian kernel.

Following this extensively-embraced assumption, we perform all the experiments upon

anisotropic Gaussian kernels and 800 training images from DIV2K and 2650 images from

Flickr2K [298] datasets are used to train the network. The training degradation makes

use of 21×21 anisotropic Gaussian kernels and the noise level is set to 0 except for the

×4 noisy experiment that is set to 15. For each scale factor s ∈ 2, 3, 4, the kernel width

and size ranges are set to [0.175s, 2.5s] and (4s + 3)×(4s + 3), respectively. For all s, the

rotation angle range is [0,Π]. According to the settings in [83, 155], we shifted the blur

kernel and the upper left pixels are left downsampled fo avoid subpixel misalignment. For

quantitative evaluation, we compare the estimated kernels using PSNR and compare the

resulting SR images using PSNR and SSIM on the Y channel in YCbCr space. Our model

is trained for 300,000 iterations. We use Adam [207] with β1 = 0.9, and β2 = 0.999 as the

optimizer. The inital learning rate is initialized as 2e-4 and reduced by half every 50,000

iterations.

Table 6.1: Quantitative comparison of the all the variants in detail preserving module on
Set5 for ×4

Variant Explanation PSNR

w/o DP module Baseline model, removing DIP 31.42
w/ EA Replacing DP with element-wise addition 31.46
w/ CA Replacing DP with channel attention [44] 31.52
w/ SA Replacing DP with spatial attention [80] 31.49

w/ NLA Replacing DP with non-local attention [81] 31.58
w/ DP (Our full model) Replacing DP with non-local attention 31.63
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Figure 6.4: The structure of the four different variants: (a) w/ EA; (b) w/ CA [44]; (c)
w/ SA [80]; (d) w/ NLA [81] which are used to substitute the detail preservation module
(DP) shown in Fig. 6.2 (c).

Table 6.2: Ablation study on popular kernel estimation and fusion modules.

Method PSNR/SSIM

RRDB-SFT [78] + IKC [86] 31.08/0.8781
RRDB-SFT [78] + MANet [78] 31.54/0.8876

RRDB-SFT [78] + DAKE 31.47/0.8875
KOCF + IKC [86] 31.38/0.8789

KOCF + MANet [78] 31.51/0.8875
KOCF + DAKE 31.63/0.8883

Table 6.3: Investigation of the transformer and residual blocks in our Content-Query
Transformer Based (CQTB) module. Here, we notice the quantitative performance
(PSNR/SSIM) on Set5 for ×4.

Metrics CQTB w/ transformer CQTB w/ residual CQTB w/ all

PSNR 31.48 31.34 31.63
SSIM 0.8849 0.8855 0.8883



130 Chapter 6. A Novel Learning-Based Approach for Blind Super-Resolution

Figure 6.5: Visual results of challenging images from different benchmark datasets for
scale ×3 (first two rows) and ×4 (last two rows).

Figure 6.6: Visual results on an image in DIV2KRK dataset for ×4 under anisotropic
gaussian kernel. Here (a) Ground-truth HR patch, (b) RCAN [44], (c) WDSR [82], (d)
KernelGAN + ZSSR [83], (e) DASR [79], and (f) Ours.
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Table 6.5: Quantitative comparison of popular SR methods for anisotropic gaussian kernels
on DIV2KRK [86] dataset.

Method PSNR/SSIM

Category 1: trained upon
bicubic downsampled images

RCAN [44] 25.66/0.6936

Category 2: winners of NTIRE
blind SR competition

WDSR [82] 25.64/0.7144

Category 3: degradation kernel
estimation + blind SR method

KernelGAN + ZSSR [83] 26.81/0.7316

Category 4: Ground-truth kernel
+ blind SR method

Ground-truth kernel
+ ZSSR [83]

27.53/0.7446

Category 5: end-to-end trainable blind
SR method(kernel estimation + SR)

DASR [79] 28.15/0.7722
DSSR [302] 28.78/0.7905

Ours 30.25/0.8340

6.2.2 Ablation Study

Here, we perform several experiments for investigating the overall effectiveness of every

proposed component in our KOADNet. For all the experiments, we trained our model for

1 × 105 iterations.

Effect of detail preservation module

For investigating the effect of our proposed detail preservation module, we quantitatively

compare performance of KOADNet with 5 other variants. For unbiased comparison, we

just substitute the detail preservation (DP) module in Fig. 6.2) (c) with the following

models:

1. The baseline model (represented by w/o DP module), that removes the detail

preserving module.

2. w/ EA module that consolidates the degradation and low-resolution information by

element-wise addition.

3. w/ SA and w/ CA, that replaces the DP module with spatial attention [80] and

channel attention [44] modules, respectively.

4. w/ NLA, that replaces the DP module with non-local attention operation [81].

The corresponding designs of all these variants are shown in Fig. 6.4. TABLE 6.1 and

Fig. 6.6 demonstrate the comparison of the quantitative and qualitative results on all the

considered variants. As clearly visible from the TABLE and Fig., our DP module generates

the best results, thus proving its effectiveness in modulating the structural contextual

information conditioned on the degradation kernels for improving the SR performance.
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Effect of kernel estimation and fusion module:

To further prove the effectiveness of our proposed kernel estimation and fusion modules, we

provide a quantitative comparison among popular kernel estimation and fusion modules.

As shown in TABLE 6.2, we replace our proposed dual-attention based kernel estimation

(DAKE) module with popular kernel estimation modules, Iterative Kernel Correction

(IKC) [86] and Mutual affine convolution layer (MANet) [78], and thereafter their

estimated kernels are embedded into fusion modules, RRDB-SFT [78] and our proposed

Kernel Oriented Content Fusion (KOCF) module. We can conclude from TABLE 6.2 that

a combination of our dual-attention based kernel estimation (DAKE) module and KOCF

gives an average 0.14 dB improvement in PSNR.

Figure 6.7: Diverse kernel samples estimated by our dual attention based kernel estimation
module.

Effect of content query based transformer module

Additionally, we research the influence of content query based transformer module in

kernel oriented content fusion module. As demonstrated in TABLE 6.3, after modulating

the content information upon both the transformer and residual blocks (w/ all), the model

performs better than as compared to when it is conditioned on either of these blocks.

Figure 6.8: (a) Kernel estimation results of our KOADNet on “img012” of Urban100
[84] for scale factor ×4 whose matching HR image has been blurred by an anisotropic
kernel as demonstrated in the top right yellow rectangle, and (b) Multiple position kernel
estimation results of our proposed KOADNet on a synthetic image for scale factor 4 that
is synthesized via blurring through a Gaussian kernel with σ1 = 6, σ2 = 1, and θ = π/4.
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Comparison with state-of-the-art methods

We perform several experiments upon degradations from anisotropic Gaussian kernels

and noise. As demonstrated in TABLE 7.1, we compare KOADNet with existing blind SR

models. For fair comparison, we retrained few methods in the same experimental settings.

As demonstrated in TABLE, the proposed KOADNet outperforms the popular DASR and

MANet by 0.54 dB and 0.28 dB, respectively on ×3 and attains competitive performance

on PSNR and SSIM. Though SRSVD [300] and IKC [86] struggle in estimating the

kernel information by incorporating adversarial network and iteratative kernel refinement,

respectively, they perform poorly when compared to KOADNet. The implicit kernel

prediction in KernelGAN is incapable of capturing the relevant information in cases of

severe degradation. HAN [42] extracts the refinement feature in the SR network by

employing the attention mechanism, but this method ignores the degradation prior that

results in poor performance. DIP [301] suffers on account of multiple degradations and

is not able to generate a suitable prior. DASR [79] improves the overall performance by

employing a discriminative degradation encoder. However, the domain gap between the

contextual and degradation space limits the quantitative results, thus performing inferior

in comparison to proposed KOADNet. It is worth mentioning that KOADNet attains

dominant performance in comparison to the SoTA methods for multiple degradations (i.e.

×4 with noise level 15) on all the benchmark datasets.

Table 6.6: Kernel estimation results under more complex noise corruptions. Here, q and
η denotes the different JPEG compression and gaussian noise level. We have reported the
PSNR/SSIM on BSD100 [84] for ×4 scale factor.

↓ η/q → 70 80 100

0 44.23/0.9937 45.97/0.9955 46.78/0.9968
5 44.44/0.9934 44.89/0.9934 44.32/0.9936
15 39.11/0.9746 40.44/0.9843 42.76/0.9911

In Fig. 6.5, we visualize few challenging images from the benchmark datasets for

comparison. It is clearly observed that popular methods SRMD and IKC cannot recover

the textural and contextual information. Though DASR and MANet performs better than

the other methods, but the resultant image contains several obvious blurs. In contrast,

our KOADNet generates visually pleasing image with sharper edges and clearer textures,

that resembles the ground-truth.

Following [86], we also compare our KOADNet with 5 types of SR algorithms on a more

challenging, DIV2KRK dataset:

1. Category 1: Non-blind SoTA SR method that is trained upon LR images that are

downsampled bicubically, e.g. RCAN [44].
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2. Category 2: The winner of the NTIRE Blind SR competition, WDSR [82].

3. Category 3: The method that consolidates the degradation kernel estimation and

blind SR framework, KernelGAN + ZSSR [83].

4. Category 4: On a similar note to Category 3 method, the ground truth blur kernels

are provided and considered as input to the complete network.

5. Category 5: The methods that unify the kernel estimation and SR reconstruction in

an end-to-end trainable framework, e.g. DASR [157], DSSR [302], and Ours.

Table 6.7: Average PSNR/SSIM results on SoTA methods for spatially variant blind SR
on BSD100 [21] dataset for ×4.

Method

Spatial Variant kernel type

1 2 3

σ1 = a+ b σ1 = a+ b σ1 = a+ b
σ2 = ax+ b σ2 = ax+ b σ2 = ax+ b

θ = 0 θ = 0 θ = πx

HAN [42] 22.19/0.5111 21.83/0.5066 21.66/0.4989
DIP [301] 25.24/0.6174 25.30/0.6242 24.01/0.5813

KernelGAN [83] 19.90/0.4317 18.32/0.6697 17.62/0.3517
HAN + Correction [299] 25.13/0.6151 25.51/0.6156 24.41/0.6017
MANet [78] + IKC [86] 26.46/0.6952 26.03/0.6880 25.58/0.6759

Ours 26.23/0.6790 26.30/0.6832 25.70/0.6655

Table 6.8: The no-reference NIQE [87] , and NRQM [88] results of SoTA methods on the
RealSRSet [85] Dataset.

Metrics
Methods

DASR MANet Ours

NIQE ↓ 6.22 6.42 6.04
NRQM ↑ 3.23 3.39 4.01

The quantitative and qualitative results (PSNR/SSIM) on DIV2KRK dataset are

illustrated in TABLE 6.5 and Fig. 6.6. As clear from the TABLE and Fig,, on account

of the kernel divergence, the method that is trained upon bicubic kernel (Category 1)

have limited capability in solving the anisotropic Gaussian kernels. Though the methods

that are trained on synthesized images of NTIRE competition (Category 2) achieve better

results than Category 1, but they still have some limitation on irregular blur kernels. From

the quantitative results of Category 3, we observe that the sequential estimation of kernel

and subsequent SR reconstruction cannot generate better HR images. Similar phenomenon

is observed in Category 5. The main reason being that these methods generate results

that are quite sensitive to kernel estimation errors, and larger estimation gap can worsen
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the results. For Category 4 method, under the provision of ground-truth kernels, ZSSR

can perform much better than compared to the estimated degradation kernels (Category

3). However, unlike DASR, and DSSR, our KOADNet attains the SoTA performance on

×4 factor for Set5 dataset.

Figure 6.9: Few Visual Results on challenging images from RealSRSet [85] for scale factor
4.

6.2.3 Experimental Analysis on Kernel Estimation

In Fig. 6.7, we demonstrated few samples of the kernels estimated by our dual-attention

based kernel estimation module. In Fig. 6.8, we plot the results of kernel estimation on a

testing image. As clearly visible, KOADNet tends to accurately estimate the kernels from

the non-flat patches (e.g., the building structures) and predict fixed kernels for the flat

patches (such as, the blue sky) in an image, that may be the average of all the possible

predicted kernels. The estimated kernels are quite variable and may not resemble the

ground-truth kernel, but majority of these are the correctly estimated kernels as specified

by the high image LR PSNR. For a clear understanding, we further test our proposed

network upon a synthetic image. As demonstrated in Fig. 6.8 (b), KOADNet can

accurately estimate kernels from a small patch of size 9×9. The overall performance

continues to ameliorate with increase in the patch size. With only edges in a small

patch, KOADNet is unable to accurately estimate the kernels on account of insufficient

information. In case of flat patches without any edges and corners, KOADNet infers a

fixed isotropic-like kernel.

In real-world scenes, images are likely to be affected on account of compression artifacts

or noisy degradations. For testing the performance of kernel estimation in more complex
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cases, we perform another experiment where we add JPEG compression and Gaussian

noises while training and consequently test the performance of the network under different

compression and noise levels. As one can see in TABLE 6.6 that the LR image PSNR

varies from 39.11 dB to 46.78 dB, which clearly reveals the potential of our network to

estimate kernels under heavy noisy corruptions.

6.2.4 Experimental Analysis on Spatially Invariant SR

Though the existing SoTA blind SR methods have attained outstanding performance,

they presume that the inherent blur kernels are spatially invariant and generally estimate

a single kernel for the complete image, causing some inherent problems. Firstly, the blur

kernels in real-world images are spatially variant and on account of several environmental

factors such as object motion and depth difference, blur kernels at multiple locations in

the image are generally variable.

Additionally, estimating a single kernel for the complete image is quite prone to the adverse

results of flat patches, even assuming the spatial invariant case. To prove the efficacy of

our approach, we show some additional results for spatially variant blind SR approach in

TABLE 6.7 where each testing image is first divided into m×n patches (every single patch

is of size 40 × 40), that are then degraded by variable kernels. Following the settings in

[78], for scale factor s, the minimum kernel width range, a and the Gaussian kernel width

range, b and are set to 0.175s and 2.325s, respectively. Particularly, for patch (i, j), the

matching kernel is decided by a, b, x = i
m , and y = j

n as demonstrated in the header of

the TABLE 6.7.

6.2.5 Experimental Analysis on Real-world SR

For further demonstrating the overall effectiveness of our method, we test our model

on some real-world images. As the ground-truth for the RealSRSet [85] is unavailable,

we utilize the non-reference image quality assessment metrics including NIQE [87], and

NRQM [88] for quantitative evaluation. As observed from TABLE 6.8, in comparison to

the SoTA methods our KOADNet shows impressive results. It certainly prove that our

KOADNet generalizes well upon images with a broad range of degradations.

As shown in Fig. 6.9, MANet and DASR method produce blurry images with ringing

artifacts. However, our KOADNet produce sharp edges with lesser artifacts, thus

corroborating the efficiency of our proposed components in terms of adding high-frequency

details in the edges and low-frequency information in the flat areas.
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6.3 Summary

Blind SR is a crucial problem to generalize the learning-based SR networks for handling

diverse types of content and degradations of LR data. In our work, we have proposed

a transformer based network for blind SR which leverages the degradation information

efficiently for subsequent modulation of the SR features. For achieving this goal,

we designed a dual-attention based kernel estimation (DAKE) module that predicts

spatially invariant kernels. Then, a kernel-oriented content fusion (KOCF) module is

proposed to leverage this estimated kernel information efficiently for enhancing the model

expressiveness. Consequently, our proposed KOADNet accurately anticipates the HR

images under real-world settings. It also exhibits good performance on degradation kernel

estimation, that leads to SoTA performance on blind image SR when fused with popular

blind SR networks. In future, our main intention is to work upon enhancing the SR ability

for much more complex degradations, like rainy and hazy scenes, low-light images, and

low-resolution surveillance videos.
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Conclusion and Future Scope

7.1 Conclusion

The main aim of this thesis work is to design and develop novel approaches for

image super-resolution. The major challenges like unknown degradations, high

dependency on prior edge information, huge computational complexity, lack of research on

multi-frame super-resolution and upsampling approaches need to be tackled for accurate

super-resolution. This work mainly focuses on analyzing and designing different solutions

for image super-resolution in the context of providing the solution to the above-mentioned

challenges.

Accurate estimation of frequency information is a key step to super-resolve the low-quality

images. Most of the existing state-of-the-art methods utilize explicit edge prior information

for extracting the relevant frequency information, which increases the overall complexity of

the network. To overcome this, an end-to-end learning based frequency extraction network

is proposed to generate visually plausible results.

The imperfection of existing heavy-weight SR approaches in terms of longer training

times, limited flexibility, huge time and power consumption inspired us to propose

computationally efficient architectures with less computational cost. In light of this, an

end-to-end lightweight network is proposed that maintains a proper trade-off between

accuracy and speed.

Burst Super-resolution is quite a challenging task since individual burst images often

have inter-frame misalignments that usually leads to ghosting, and zipper artifacts

and subsequently affecting the fusion and reconstruction stages. To mitigate this, we

have developed two novel approaches for burst image processing that focuses solely

on the relevant information exchange between burst frames and filter-out the inherent

degradations while preserving and enhancing the actual scene details.

Most of the existing techniques proposed for SR are highly dependent upon simple

degradations, that leads to limited practical serviceability of the algorithm in real-world

scenarios. To address these issues, a simple, and effective novel transformer-based blind

approach has been proposed for the task of super-resolution.

The proposed single image and blind super-resolution approaches are evaluated on the

current state-of-the-art SR databases such as Set5, Set14, BSD100, Urban100, and
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Manga109. And, the proposed burst super-resolution approaches are evaluated on testing

datasets of SyntheticBurst and real BurstSR. The qualitative and quantitative results

of proposed methods are examined and compared with SoTA learning-based methods.

Standard quantitative evaluation parameters such as PSNR, and SSIM are used to evaluate

the proposed approaches.

To summarize, the existing problems for super-resolution are scrutinized, and attempts are

made to contribute for resolving the existing problems. The quantitative comparison of

all the proposed approaches in terms of parameters, PSNR, and SSIM on the benchmark

datasets of single image and blind image super-resolution (Set5 and Urban100), and

Synthetic BurstSR and Real BurstSR datasets of burst image super-resolution for scale

factor ×4 factor is shown in Table7.1.

Table 7.1: The quantitative comparison between the proposed approaches in terms of
parameters, PSNR and SSIM for Set5, Urban100, SyntheticBurst SR, and Real BurstSR
datasets for × 4 scale factor. The best results for each contributions are highlighted in
red color.

Modalities

Single Image SR

I:A I:B II:A II:B
(Sec 3.1) (Sec 3.2) (Sec 4.1) (Sec 4.2)

Methods MBUP-Net MLEAUNet MSARNet Con-Net
Parameters 9.1M 8.2M 1.5M 0.67M

Set5 32.67/0.9005 32.80/0.9100 32.29/0.8989 32.57/0.9001
Urban100 27.67/0.8113 27.05/0.8165 26.25/0.7907 26.44/0.7972

Modalities

Burst Image SR Blind Image SR

III:A III:B IV
(Sec 5.1) (Sec 5.2) (Sec 6.1)

Methods AFCNet GMTNet KOADNet
Parameters 35M 13M 11M

Set5 - - 31.63/0.8888
Urban100 - - 25.82/0.7793

SyntheticBurst SR 42.21/0.9600 42.36/0.9610 -
RealBurst SR 48.63/0.9860 48.95/0.9860 -

7.2 Future Scope

The main aim of the work is to propose novel solutions for major super-resolution

categories - single image super-resolution, burst image super-resolution and blind image

super-resolution by tackling the major challenges of each task. In future, we intend to

propose an end-to-end trainable network that can handle arbitrary (non-integer) scale

factors. Also, we can extend our approach for much larger scale factors like ×16, ×32

and ×64. Additionally, we can propose a lightweight solution for burst super-resolution



Chapter 7. Conclusion and Future Scope 141

that can be easily deployed on mobile devices. Additionally, we can try to enhance the

reconstruction ability of SR for more complex degradations, like hazy, rainy scenes, and

low-resolution surveillance videos. Additionally, meta-learning can be considered to make

our model more adaptable and flexible on real-world scenes.
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