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Lay Summary

Battery-less technology evolved to replace battery usage in space, deep mines, and
other environments to reduce cost and pollution. The alternative and promising solution
to replace battery-operated devices is energy harvesters, which help to collect energy from
the environment to power up IoT devices. The collected energy is stored in a capacitor,
and this energy is used for computations, so power failures may often occur in these IoT
systems. We refer to this computation as an intermittent computation. Data loss is the
major challenge in these intermittently powered IoT devices.

In the literature, non-volatile memory (NVM) based processors, i.e., Non-Volatile
Processor (NVP), have been explored to save the system state during frequent power
failures. NVPs are required for these intermittently powered IoT devices. We proposed
three different architectures that could be combined to create an appropriate and efficient
NVP for intermittent computing. We proposed three works that address these challenges
while remaining efficient for intermittently powered embedded devices. We support
intermittent computing in all three works.

Our first work proposes an efficient architecture that deploys NVM at the L1 and main
memory. In the first work, we proposed efficient prediction and migration policies that
perform better and consume less energy than existing and baseline architectures during
frequent power failures. Our second work uses NVM at both the LLC and main memory
levels. In the second work, we propose efficient cache management policies that perform
better and consume less energy than the baseline architectures during frequent power
failures. In the second work, we use fixed energy to backup all volatile contents to NVM.
Our third work proposes an ILP-based memory mapping technique for modern MCUs such
as MSP430FR6989 and MSP430F5529. In the third work, the proposed memory mapping
technique achieves a lower EDP than existing and baseline architectures during stable and

unstable power scenarios.
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Abstract

Internet of Things (IoT) devices are rapidly expanding in many areas, including deep
mines, space, industrial environments, and health monitoring systems. Most sensors and
actuators are battery-powered, and these batteries have a finite lifespan. Maintenance and
replacement of these many batteries will increase the maintenance cost of IoT systems
and cause massive environmental damage. Energy Harvesting Devices (EHDs) are an
alternative and promising solution to these battery-operated IoT devices.

The energy harvester stores enough energy in a capacitor to power the embedded device
and compute the task. This type of computation is known as intermittent computing.
Energy harvesters cannot provide continuous power to embedded devices, resulting in
power failures in the IoT system. On conventional processors, all registers and caches are
volatile. We require a processor that consists of Non-Volatile Memory (NVM) at either
the cache or main memory level to store volatile contents during a power failure.

We must use NVM at either the cache or main memory levels to design an NVM-based
processor. NVM caches degrade system performance and use more energy than volatile
caches. Using a pure NVM at L1 reduces system performance by 45.93%, inspiring the idea
of an efficient hybrid cache architecture. We propose efficient placement and migration
policies for a hybrid cache architecture at L1 that uses volatile memory and NVM. The
proposed architecture includes cache block placement and migration policies to reduce
the number of writes to NVM. During a power failure, the backup strategy identifies and
migrates critical blocks from the volatile memory region to NVM.

The energy stored in a capacitor is used as a backup during a power failure. Because the
size of a capacitor is fixed and limited, the available energy in a capacitor is also limited and
fixed. Thus, the capacitor energy cannot store the entire program state during frequent
power failures. We propose an NVM-based architecture at the last-level cache (LLC) that
ensures safe backup of volatile contents during a power failure under energy constraints.
Using a proposed dirty block table (DBT) and a writeback queue (WBQ), the proposed
architecture limits the number of dirty blocks in the L1 cache at any given time. We
conducted experiments by varying the parameter sizes to help users make appropriate
design decisions regarding their energy requirements.

Recent NVM-based microcontrollers, such as MSP430FR6989 and MSP430F5529,
comprise hybrid main memory. Such devices have small volatile memory and large
non-volatile memory. To make the system energy efficient, we need to use volatile
memory efficiently. Therefore, we must select some portions of the application and
map them to volatile memory or NVM. We propose an Integer Linear Programming
(ILP) based memory mapping technique for intermittently powered IoT devices.
Our proposed technique gives an optimal mapping choice that reduces the system’s
Energy-Delay Product (EDP). We validated our system using TI-based MSP430FR6989
and MSP430F5529 development boards.

Keywords: Non-Volatile Memory; Hybrid cache; Intermittent power; Limited Energy;
MSP430FR6989; ILP; Memory mapping.
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Chapter 1

Introduction

This chapter introduces intermittent computing, NVM-based architectures, and various
related problems. We analyze various research questions, as well as the contribution that
we have made to answer them. A review of the most recent research literature is used to

identify research gaps. The objectives of this study are based on these research gaps.

1.1 Intermittent Computing

The Internet of Things (IoT) has created several fascinating applications consisting of
intelligent sensors and systems. [oT may consist of billions of sensors and systems by the
end of 2050 [2]. This prediction is exciting and promising, but deciding how to power
these IoT devices is the main challenge [3]. Most of the IoT devices are battery-powered.
In some areas, such as deep mines, space, and industrial environments, replacing batteries
after installation is difficult and expensive.

Furthermore, the battery has a specific problem with its lifetime [3]. As a result,
an alternative and promising solution is to replace the battery with energy harvesters.
Energy-harvesting devices extract energy from their surroundings, such as light, vibration,
radio, and many others [4]. The accumulated energy is used to power these IoT devices.

The unpredictable nature of energy harvesters causes voltage fluctuations or power
failure. A voltage stabilizer or capacitor is a standard solution to the issue of voltage
fluctuation [5]. However, in a conventional processor, power failures result in data loss.
The data is lost because registers, caches, and main memories are designed using volatile
memories, such as SRAM and DRAM [6]. Data lost include the application’s program
state and progress. The contents of the registers, cache, and main memory are all part
of the program state. As a result, when the power failure occurs, some parts of the
application have to re-execute, causing the execution progress to be slow and consuming
extra energy. This type of computing is known as intermittent computing [7]. We discuss
intermittent computing in detail in Section 1.2.

The solution is to store the application’s program state at a precise restart point before
a power failure. The question is, where should the program state be stored? Using
Non-volatile memory (NVM), we can save the application’s program state during a power
failure. Recently, several new NVMs have been proposed, such as spin-transfer-torque
RAM (STT-RAM) [8], phase-change memory (PCM) [9], resistive RAM (Re-RAM)
[10], and ferroelectric RAM (FRAM) [11]. We need to change the memory model in

conventional architectures to support intermittent computing, discussed in Section 1.2.1.
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1.2 Application Scenario

When enough energy is harvested in a capacitor, and the energy harvester directly provides
enough energy, the IoT application runs as usual, using the energy directly from the
harvester source. When the harvester does not provide energy directly from the source, the
IoT device must rely on the energy from the capacitor to perform essential tasks. Fig. 1.1
shows enough solar energy during the day for the IoT device to run the application without
intervention around 01:00 PM. The IoT device must use the energy of the capacitor to

complete important tasks before turning off in the evening, around 05:00 PM.

T @ o I SO @G

Power Power
Failure Restore

Energy Source N A%
[ RestoreI Executing IBackupI Power Off I RestoreI Executing IBackupI Power Off IRestore]

I Di I Dij+1 I Dj+2---

Figure 1.1: An Overview of Intermittent Computing for Solar-based Harvesting Systems

Because energy is not always available for harvesting, execution in such devices is
intermittent, resulting in power failures in the IoT environment [7, 12, 13, 14]. Even
when energy is readily available, it takes time to accumulate enough energy to perform
valuable work. To design an intermittently aware architecture, new memory technologies
and additional procedures must be incorporated into the execution and memory model of

a conventional processor.

1.2.1 Memory Model for Intermittently Powered Devices

The hardware of an intermittently functioning device may include general-purpose
computing units such as a CPU or a microcontroller unit (MCU), a group of sensors,
and one or more radios for communication. Almost all of these devices use a volatile
memory model. Fig. 1.2 (a) shows the conventional memory hierarchy, which includes the
register file, caches, main memory, and secondary storage. As illustrated in Fig. 1.1, when
no energy is available from the harvester source, such as at night time, the IoT device will
shut down; during this time, the data stored in registers, caches, and main memory is lost.
This thesis uses the term CPU to mean MCU, CPU, or any other processing unit.

There are two alternatives to keep volatile contents safe [15, 16]. One approach is to
save all computed results and decisions made during the execution phase to secondary
storage before the CPU enters the power-off state. The second approach is to restart
the IoT application whenever the energy harvester provides enough energy to the CPU.
Both alternatives are inefficient because backup/recovery to/from secondary storage and

re-executing the same application take more time and energy. As a result, it is necessary
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Figure 1.2: Differences between Conventional and Non-Volatile Memory Models

to have a memory model that can store the memory contents when the energy source is
unavailable. Thus, we require a new memory technology that can maintain a system state

without consuming power, i.e., NVM based model.

NVM technology is being developed to overcome the disadvantages of volatile memory
technologies. Flash, STT-RAM, PCM, ReRAM, and FRAM are examples of emerging
NVM technologies. Due to their physical properties, NVMs have the potential to consume
very little power while providing a significantly higher density than conventional memory
technologies. A standard SRAM cell, for example, has a size of 125 — 200F?2, and a PCM
and Flash cell have sizes of 4 —12F? and 4 — 62, accordingly, where F refers to the lowest
lithographic dimensions that range in a specific technology node. Due to their advantages,
NVMs are becoming more common in real-time devices. Flash memory is, for example,

used as a cache in Intel TurboMemory.

Table 1.1: Comparisons between different Traditional Memory Technologies for different
Features

Property SRAM DRAM HDD
Cell Size (F?) 120 — 200 | 6 — 12 NA
Read Latency ~1 ns ~110 ns 5 ms
Write Latency ~1 ns ~110 ns 5 ms
Write Energy _15 _14 14
(3 /bit) ~ 10 ~ 10 ~ 10
Leakage Power High Medium Medium
Erase Latency NA NA NA
Access Granularity 64 64 512

(B)

Endurance > 106 > 1016 > 10"
Standby Power 0.6 — 1.2W | Refresh Power | 1 — 2W
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However, these NVMs have some limitations. NVMs, for example, have higher latency
and consume more energy than volatile memory technology. Write endurance is the
property that determines how many writes a memory block can withstand before it
becomes ineffective. NVMs have significantly lower write endurance than traditional
memory technologies. Tables 1.1 and 1.2 provides detailed comparisons of various
properties with various memory technologies. Access granularity is defined as the minimum
size of data read/written in each access. Furthermore, they can store data for many years
without requiring standby power under regular circumstances. As shown in Table 1.1, the
common understanding of all NVM technologies is that the write latency /energy is greater
than the read latency/energy [17, 18, 19, 20, 21].

Table 1.2: Comparisons between different Non-Volatile Memory Technologies for different
Features

Property SLC Flash | PCM STT-RAM | ReRAM | FRAM
Cell Size (F?) 4—-6 4—-12 6 — 50 4-10 12 -15
Read Latency 255 50 ns <10 ns <10 ns 50 ns
Write Latency 500us 500 ns 10 ns <10 ns 50 ns
Write Energy -9 —11 ~13 ~13 ~12
(3 /bit) 10 10 10 10 10
Leakage Power Low Low Low Low Low
Erase Latency 2 ms NA NA NA NA
_EXBC;:ess Granularity 1K 64 64 64 64
Endurance 10* — 10° 10° — 101 | >100 10° — 10* | 10*° — 10'*
Standby Power 0 0 0 0 0

In terms of characteristic features, STT-RAM outperforms all other NVM technologies.
Table 1.1 shows that STT-RAM outperforms other NVMs in terms of write endurance,
latency, and energy consumption. As a result, STT-RAM [22, 23, 8, 24, 25, 26| is a
promising candidate for cache, main memory, and scratch-pad memory. However, because
STT-RAM is more expensive than other NVMs, it is not suitable for use at the main
memory level. PCM is the next better NVM technology after STT-RAM because its size
and write endurance are better than other NVMs [9, 27, 28, 29, 30, 31]. As a result, PCM is
a promising candidate for use in the cache and main memory. However, because STT-RAM
has a longer lifespan than PCM, it is not suitable for use at the cache level. PCM is
the better candidate for main memory. ReRAM and FRAM share some characteristics;
both were promising candidates for main memory. ReRAM, on the other hand, has lower
latency and energy consumption than FRAM. For example, the MSP430FR6989 is a recent
TI-based microcontroller with 2KB SRAM and 128KB FRAM at the main memory level.

Incorporating NVMs at each level preserves the data in these IoT devices from frequent
power failures, switching the traditional processor into a non-volatile processor (NVP).
Fig. 1.2 (b) shows the memory hierarchy of non-volatile flip-flops, non-volatile caches
(STT-RAM / PCM), and non-volatile main memory (PCM, ReRAM, and FRAM). Thus,

using the non-volatile memory model instead of volatile memory helps in intermittent



Chapter 1. Introduction 5

computing and reduces the time and energy required to backup/retrieve volatile contents.

1.2.1.1 Designing NVM-based Processor for Intermittently Powered IoT

Devices
CPU CPU
A A
2 2
STT-RAM SRAM STT-RAM
based L1 based L1 based L1
A A
2 \ 2
STT-RAM based SRAM STT-RAM
LLC based LLC based LLC
A A
2 2
PCM based SRAM based PCM based
Main Memory Main Memory Main Memory
Pure NVM-based Hybrid NVM-based
Architecture Architecture

Figure 1.3: (a) Pure-NVM based architecture, STT-RAM at cache levels & PCM at main
memory level and (b) Hybrid-NVM based architecture, SRAM+STT-RAM at cache levels
& SRAM+PCM at main memory level

NVP is designed by replacing volatile memory with NVM at each level. Fig. 1.3
shows two distinct architectures that demonstrate the differences between the pure NVM
architecture and the hybrid NVM architecture. There is pure NVM technology at each
level in architecture-1, particularly STT-RAM at the L1 and last-level cache (LLC) levels
and PCM at the main memory level. In architecture-2, hybrid NVM technology is used
at each level, with SRAM + STT-RAM at the L1 and LLC levels and SRAM + PCM at
the main memory level [32, 11, 33, 1, 34, 35].

The main advantage of hybrid architecture over pure NVM architecture is that it
takes advantage of both SRAM and NVM, i.e., performance benefits from SRAM and
non-volatility; and density benefits from NVM. Fig. 1.3 (b) shows a design that allows
you to experiment with various combinations. As needed, the designer must select hybrid
NVM and pure NVM architectures. The main disadvantage of using hybrid NVM over
pure NVM architecture is that volatile contents in the hybrid architecture must be stored
in NVM during frequent power failures, which increases backup time and energy.

There is a good possibility of making new NVM-based architectures, as shown in
Fig. 1.4. Instead of pure NVM-based and hybrid-based architectures, we can selectively

use NVM at the cache or main memory level. For instance, we can only use NVM at
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CPU CPU
A A
4 \ 4
SRAM SRAM
based L1 based L1
A A
Y 4
SRAM based STT-RAM based
LLC LLC
A A
\ 4 \ 4
PCM based PCM based
Main Memory Main Memory
Only NVM at NVM at LLC and
main memory level main memory levels

Figure 1.4: (a) NVM-based architecture only PCM at main memory level and (b)
NVM-based architecture, STT-RAM at LLLC & PCM at main memory levels

the main memory level, as shown in Fig. 1.4 (a), and in Fig. 1.4 (b), we use NVM at
LLC and main memory levels. Thus, using NVM at different levels and utilizing NVM
characteristics is user-defined and application-specific. Research has been going on all of
these scenarios and possibilities [36, 37, 38, 32, 39, 40] mentioned in Fig. 1.3 and Fig. 1.4.

1.2.2 Execution Model for Intermittently Powered Devices

Despite several significant differences between the intermittent execution model and
the conventional execution model, designers of today’s intermittently powered devices
use standard C-like embedded computing abstractions. Applications on intermittently
powered devices run until the energy of the device has been drained. Once the application’s
energy is restored, it resumes execution from a certain point in its execution history, such
as the start of the main() function or a safe point. The main difference between traditional
and intermittent execution models is that a program that normally runs should run until
completed. In contrast, a model of intermittent execution must complete the execution
of the program despite multiple power interruptions. Various system components, such
as languages, runtime behavior, and program semantics, need to be modified to create an
intermittence-aware design.

Among all these changes, we have identified three significant changes that are required
in the application execution flow for the intermittence-aware design.

Checkpoint(): When a checkpoint procedure is detected, all volatile content is copied
to NVMs to maintain the system state. Existing literature in this area focuses on when
and where checkpoints should be placed. Recent research suggests two ways to determine

when to perform the checkpoint procedure.
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1. Specially designed hardware is required to monitor the power source and capacitor.
When it falls below a certain threshold, the system sends an interrupt that stops the
application and starts the backup() procedure. Thus, checkpoints can occur at any

time.

2. Instead of maintaining hardware to monitor energy requirements, existing solutions
track changes in the application state. There are solutions that determine the
variation at checkpoint time, either through hash comparisons or by comparing main
memory word-by-word with the most recent checkpoint data, which are already in
NVM. When there are many changes to initiate a backup() procedure, the system

issues an interrupt.

Backup(): Whenever a backup() procedure is initiated, it copies the volatile contents
to NVM, which means that it reads the contents from volatile memory technology and
writes them to NVM technology.

Restore(): Whenever a restore() procedure is initiated, it copies the backed-up
contents from NVM to volatile memory, which means that it reads the contents from
NVM technology and writes them to volatile memory technology.

Adding additional procedures such as checkpoint(), backup(), and restore() to the
conventional execution supports intermittent computing, which also completes Fig. 1.1.
However, these additional procedures may incur additional costs. To reduce additional
overhead in the intermittent execution model, efficient checkpoint, backup, and rollback

policies are required.

1.3 Motivation

This section discusses observations that motivate us to propose new architectures and
techniques. We also investigated research questions that motivated us to explore new

techniques and architectures.

1.3.1 Challenges associated with NVM-based architectures to support

intermittent computing

Let’s explore some of the challenges associated with NVM architectures that support
intermittent computing, which gives a way to identify some of the research questions in

the next section.

e Introducing NVM at the cache or main memory level can degrade system
performance and consume more energy due to their higher latency and energy
compared to traditional memories such as SRAM and DRAM. Therefore, we must

use NVM as efficiently as possible.

o If the application’s system state is not completely backed up across all power failures,

the application will re-run from the start, i.e., from the main() function [7, 12, 13].
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e During a power failure, we must save the entire program state to NVM. If power
comes back, we need to restore the state before power failure; otherwise, we could

end up with inconsistent results.

e Even if an application has appropriate checkpoints and a system that maintains a
consistent state between NVM and volatile memory, it may perform differently than
expected. When the capacitor discharges and there is a power failure, the energy
harvesting device is turned off for a certain period of time, and all peripherals and
their system states are cleared. This behavior may violate the designer’s assumptions
about the atomicity of operations and the timeliness of data when compared to

continuously powered devices.

— Atomicity: Certain code regions must execute sequentially (with no

checkpoints in the middle), ensuring the application runs correctly.

— Timeliness: Some information loses value over time. Because the device
may remain on for a prolonged period of time if the power goes out, placing

checkpoints between the gathering and using data restricts its usefulness.

o Another important challenge is deciding where and when to place a checkpoint
procedure. Placing unnecessary checkpoints degrades the system performance very

badly and consumes more energy than in the standard scenario.

1.3.2 Research Questions

Question 1: Does a pure NVM-based architecture in the L1 cache provide more benefits
during frequent power failures?

Analysis: Introducing STT-RAM as a cache can deteriorate system performance due
to its long access time and high dynamic energy. We modeled two cache architectures
in gem5 [41], pure SRAM cache (only SRAM at L-1) and pure STT-RAM cache (only
STT-RAM at L-1), to compare their performance and energy consumption.

In Fig. 1.5, the performance and energy consumption of the cache architectures is
normalized based on the pure SRAM cache architecture. Fig. 1.5 (a) shows that the
STT-RAM cache architecture takes 45.93% more execution time than the pure SRAM
cache architecture. Thus, a hybrid cache consisting of SRAM and STT-RAM cache at L1
will potentially be useful.

Question 2: Hybrid caches offer more benefits than pure NVM-based architectures
during a power failure; how do we decide which cache blocks should be placed in which
cache region?

Analysis: In the case of hybrid cache architectures, the movement between two cache
regions was explored in the literature, i.e., migration-based policies for hybrid caches
[42], [43], [44], [45], [46]. Moving cache blocks from one cache region to another cache

region creates additional overhead, i.e., migration overhead. This overhead increases the
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number of read and write operations to the NVM and requires additional cycles and
energy, causing the system to be inefficient by consuming more energy and deteriorating
the overall system performance. Thus, our observation is to reduce these additional

migration overheads.

Contributions made to the use of NVM in L1: We introduce the following

techniques and architectures to answer questions 1 and 2.

e We are convinced that the hybrid cache architecture benefits more than the pure
NVM-based architecture in L1. Thus, we proposed a hybrid NVM-based architecture
that consists of SRAM and STT-RAM at L1.

o We proposed efficient placement and migration policies to decide which cache blocks

should be placed in which cache region.

Question 3: As mentioned in question 1, what design options will NVM have in LLCs?
Analysis: SRAM is used at L1 and LLC, and PCM is used in the main memory, as shown
in Fig. 1.4 (a), i.e., traditional architecture. SRAM is used at L1, STT-RAM at LLC, and
PCM is used at the main memory, as shown in Fig. 1.4 (b), i.e., baseline architecture. We
analyze these two architectures under both stable and unstable power supply scenarios.

Under stable power supply: Both architectures shown in Fig. 1.4 (a) and Fig. 1.4
(b) give an equal number of writes to the PCM during regular operation. In architecture
(Fig. 1.4 (b)), STT-RAM takes more cycles to execute than architecture-1 because the
CPU must stall to complete each STT-RAM write. So, we implement the LLC cache so
that the LLC gets fewer writes by passing the writes to PCM to hide the LLC latency. We
observe that architecture (Fig. 1.4 (b)) takes 5.88% more execution time than architecture
(Fig. 1.4 (b)) during stable power. Thus, the use of STT-RAM in the cache should have
a minimal impact on overall system performance.

Under unstable power supply: During frequent power failures, a writeback
of volatile contents is essential. In architecture (Fig. 1.4 (a)), the PCM gets more
writes due to frequent power failures, which consumes more energy. In architecture
(Fig. 1.4 (b)), PCM gets fewer writes because STT-RAM can save cache blocks during
a power failure, which consumes less energy than in architecture (Fig. 1.4 (a)). We
compared architecture (Fig. 1.4 (a)) and architecture (Fig. 1.4 (b)) in terms of energy
and performance during frequent power failures. We used the same set of benchmarks
used in section 5.3 and the experimental setup shown in Table 3.1. We observed that
architecture (Fig. 1.4 (a)) takes 8.13% more execution time than architecture (Fig. 1.4
(b)) during power failures. On average, architecture (Fig. 1.4 (b)) saves energy of 0.07%
for every power failure. If the number of power failures is 200, we save 9.04% of the system

energy. Thus, NVM at LLC and main memory save energy during frequent power failures.

Question 4: What if we have a capacitor that can store only a fixed amount of

energy? Is this fixed amount of energy enough to backup volatile contents during power
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failures?
Analysis: When using battery-less hardware, the device must be turned off when the
harvested power is no longer available. To avoid sudden power failures and fluctuations,
such devices accumulate energy in a capacitor that smoothens power availability and
provides energy during power failures [5, 47, 48]. Thus, during a power failure, the energy
stored in a capacitor is used to backup the processor state. The entire process state in
volatile memory must be backed up to ensure correctness. Furthermore, cache lines store
a copy of data elements present in memory; therefore, cache lines that are not modified
need not be backed up. However, in the worst case, all cache lines could be dirty.

Since the capacitor energy storage capacity is limited and fixed, only fixed SRAM
contents can be copied to NVM during a power failure. A sub-optimal solution is to
constrain the cache size based on the energy available in a capacitor or design the

capacitor to store the entire cache.

Contributions made to use NVM in LLC under certain energy constraints: To

answer these questions, we introduce the following techniques and architectures.

e We are convinced that the use of pure NVM-based architecture benefits more than
the hybrid cache architecture at LLC during frequent power failures. Thus, we

proposed a pure NVM-based architecture at LLC.

e We proposed an efficient cache management and replacement policy that ensures
that during a power failure, we can perform a safe backup using a fixed amount of

energy.

Question 5: For a particular hybrid main memory-based architecture like
MSP430FR6989, how do we choose appropriate sections of the program and map them to
SRAM or FRAM regions? A major challenge is mapping the program’s stack, code, and
data sections to SRAM or FRAM.

Analysis: SRAM is 2KB, and FRAM is 128KB in FRAM-based MCU, MSP430FR6989.
The first naive approach is to use the entire 128KB of FRAM in both stable and unstable
power scenarios, resulting in longer execution cycles and higher energy consumption.
Similarly, we have a second naive approach to use the entire 2KB SRAM for small
applications (whichever fits within the SRAM size), which has advantages during regular
operation. Unfortunately, it loses all 2KB SRAM data during a power failure and takes
more time to backup 2KB contents to FRAM during a power failure. As shown in Fig. 1.6,
for the FRAM-only configuration, we map the three sections to FRAM and the three
sections to SRAM for the SRAM-only configuration.

We compared the FRAM-only configuration and the SRAM-only configuration in both
stable and unstable power scenarios. FRAM-only configuration performs better during
frequent power failures, whereas the SRAM-only configuration performs better during
regular operations (without any power failures), as shown in Fig. 1.7. On the other

hand, the FRAM-only configuration consumes 47.9% more energy than the SRAM-only
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configuration during stable power, as shown in Fig. 1.7 (a). On average, the SRAM-only
configuration consumes 32.7% more energy than the FRAM-only configuration during
unstable power, as shown in Fig. 1.7 (b). For large-size applications that cannot run using
only SRAM, it requires FRAM as well. Thus, large applications consume more energy in

the SRAM-only configuration during a stable power scenario.

Table 1.3: Analysis of the Empirical Methods Used by Jayakumar et al. [1] for gsort_ small
Under Stable and Unstable Power Scenarios

Configuration | Text Data | Stack | Energysiapie(mJ) | Energyunstabie(m.J)
1. {SSS} SRAM | SRAM | SRAM | 16.70 79.56
2. {SSF} SRAM | SRAM | FRAM | 21.08 66.34
3. {SFS} SRAM | FRAM | SRAM | 28.75 33.79
4. {SFF} SRAM | FRAM | FRAM | 35.97 52.10
5. {FSS} FRAM | SRAM | SRAM | 39.48 68.24
6. {FSF} FRAM | SRAM | FRAM | 57.64 54.75
7. {FFS} FRAM | FRAM | SRAM | 64.14 45.83
8. {FFF} FRAM | FRAM | FRAM | 92.09 36.07

These two designs motivate us to propose a hybrid memory design that effectively uses
both SRAM and FRAM. We also found that the SRAM-only configuration is ineffective
for larger applications. As a result, we had to use a hybrid memory and figure out how
and where to place the sections. To the best of our knowledge, only one work explored
the memory mapping issue for these MCUs [1]. We analyze mapping decisions using their
empirical model. Jayakumar et al. [1] calculated the energy consumption values for each
configuration. Jayakumar et al. empirical method suggested that the sections be assigned
to either SRAM or FRAM based on energy values.

We introduced an empirical method that was proposed by the Jayakumar et al. is
as follows. Jayakumar et al. empirical method consider functions as the basic unit.
They explored all configurations and calculated the energy values, as shown in Table
1.3. Jayakumar et al. empirical method have eight configurations because they have two
memory regions (SRAM or FRAM) and need to map three sections (stack, data, text).
Using the Jayakumar et al. empirical method, we calculated the energy values for the
gsort_small application. For instance, the {SSS} configuration performs better during
a stable power supply, and during a power failure, {SFS} consumes less energy than all
other configurations. As a result, Jayakumar et al. empirical method allocate text and
stack sections to SRAM and data sections to FRAM.

We observed that this empirical method becomes ineffective as the number of
configurations increases. Jayakumar et al. empirical method considered all global
variables, arrays, and constants as data sections. Instead, why can’t we map each global
variable or array to either SRAM or FRAM? This increases the number of configurations,
and calculating/tracking energy values is challenging. Our design space grows enormously

and makes our mapping problem challenging.
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Figure 1.7: Comparison between FRAM-only and SRAM-only configurations under Stable

and Unstable Power

Contributions made to use NVM at main memory level in these
MSP430FR6989 devices:

o We proposed the Integer-Linear Programming (ILP) based memory mapping

technique for intermittently powered IoT devices.

e« We incorporated energy harvesting scenarios into the ILP model so that the

frequency of power failures is considered as an input for our ILP model.
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o We formulated the memory mapping problem to cover all the possible design choices.

We also formulated our problem in such a way that it supports large-size applications.

¢« We proposed a framework that efficiently consumes low energy during regular
operation and frequent power failures. Our proposed framework supports

intermittent computing.

1.4 Research Gaps

As per the challenges and various research questions mentioned above and reviewed

literature, the following research gaps are observed:

e« At L1: We found very few works on NVM-based L1 caches in the literature. We
analyzed the NVM-based architectures at L1 with different NVM technologies.

— Prediction and Migration Policies: We observed that when we used pure
NVM at L1, the system’s performance was degraded and consumed more energy.
This behavior motivated us to explore hybrid caches to benefit from SRAM
and NVM. However, we need to answer specific questions about deciding which
cache blocks should be placed in which cache region, either in SRAM or NVM.
To answer these questions, we have to explore efficient prediction and migration
policies.

In existing architectures, Xie et al. [32] also introduced a similar hybrid
cache architecture that consists of STT-RAM in the L1 cache. Some of the

observations that we reported from the work of Xie et al. are listed below.

1. Xie et al. wused a pattern sampler for the prediction table, which
does not collect all of the application’s details, resulting in inaccurate
predictions. When the prediction information is incomplete, placement
and migration policies cannot provide accurate predictions. Inaccurate
predictions increase the number of reads and write operations, consuming

more execution time and energy.

2. Xie et al. wused a standard LRU replacement policy to identify the
cache block for eviction. What if the evicted block turns out to be a
write-intensive block the next time? The used replacement policy may

result in unnecessary writes to NVM and consumes more energy.

All of the above challenges and observations motivated us to explore efficient

prediction and migration policies for an NVM-based hybrid cache architecture.

e Under Energy Constraints: During a power failure, what if we have a fixed
amount of energy to do a backup? This question motivated us to study relevant
research. Unfortunately, there is no work associated with this study that inspires

us to explore efficient NVM-based architectures and cache management policies
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to answer this question and also to support NVM-based architectures under these

energy constraints.

Checkpointing Overhead: Checkpoint is a procedure that invokes a backup
procedure that copies the volatile state of the system to the NVM. We noticed that
unnecessary checkpoints increase the number of writes to the NVM that consume
more energy. Therefore, in stable and unstable power scenarios, we need to decide
when and where to checkpoint. There are many checkpoint techniques in the
literature. However, we still need intelligent backup/restore policies that reduce

backup/restore content size during a checkpoint or power failure.

Memory Partitioning in MSP430-based M CUs: MSP430-based MCUs such as
MSP430FR6989 consist of SRAM and FRAM-based main memory. As we already
mentioned, for any hybrid memory architecture, it is necessary to decide which
part of the application goes to which memory region, whether SRAM or FRAM;
essentially, this is a memory mapping problem. There is only one work on hybrid
main memory architectures that supports recent MCUs, which has given us enough
motivation to investigate efficient memory mapping techniques for hybrid main

memory architectures.

1.5 Research Aim and Objectives

The main aim of the thesis is the design of non-volatile processors for intermittent

computing scenarios. In addition, the objectives of the thesis are given as follows:

e Objective 1: To design an NVM-based architecture at L1 cache for intermittent

computing.

o Objective 2: To design an NVM-based architecture at Last-Level cache (LLC) for

intermittent computing under energy constraints.

e Objective 3: To design an NVM-based architecture at main memory for

intermittent computing.

1.6 Thesis Organization

The research work provided in this study is on designing non-volatile processors for

intermittent computing. Chapter-wise organization of this study is summarized below.

Chapter 1 gives an introduction to non-volatile memory (NVM), its application, and

intermittent computing. This chapter also discusses the various challenges associated with

NVMs and devices that are intermittently powered. The research gaps and objectives of

this study have been summarized hereafter.

Chapter 2 gives a detailed review of the literature on different memory technologies,

the literature on NVM-based architectures, the literature on NVM-based architectures
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that support intermittent computing, and different checkpointing techniques have been
discussed.

Chapter 3 focuses on designing an NVM-based hybrid cache architecture at L1 that
supports intermittent computing. Efficient prediction and migration policies have been
introduced and thoroughly discussed in order to benefit from the benefits of both SRAM
and STT-RAM. The proposed architecture is evaluated and compared to existing and
baseline architectures under both stable and unstable power scenarios.

Chapter 4 focuses on designing an NVM-based hybrid cache architecture at LLC
that supports intermittent computing. Efficient cache management policies have been
introduced and thoroughly discussed in order to use fixed energy for backup operations
during frequent power failures. The proposed architecture is evaluated and compared to
existing and baseline architectures under both stable and unstable power scenarios.

Chapter 5 focuses on designing an efficient memory mapping technique for a recent
microcontroller that consists of NVM-based hybrid main memory. ILP-based memory
mapping techniques have been introduced and discussed in detail to get benefits from both
SRAM and FRAM. The proposed framework and techniques are evaluated under stable
and unstable power scenarios and compared with the existing and baseline frameworks.

Chapter 6 finally presents conclusions and possible directions for further research.
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Chapter 2

Literature Review

This chapter gives a detailed literature review on different memory technologies;
the state-of-the-art works on NVM-based architectures, the state-of-the-art works on
NVM-based architectures that support intermittent computing, and different checkpointing
techniques have been discussed. This chapter begins with recent advancements in various
memory technologies in Section 2.1, followed by related works on NVM-based architecture
described in Section 2.2. We present the detailed literature survey on developments
in intermittent aware designs in Section 2.3. Recent advances in real-time MCUs are
described in Section 2.4. It is followed by detailed state-of-the-art works on memory

mapping techniques described in Section 2.5.

2.1 Developments in Memory Technologies

Static Random Access Memory (SRAM) and Dynamic Random Access Memory (DRAM)
are used to design registers, caches, and main memory for conventional processors. Recent
advances in NVM technologies include Spin-Transfer Torque RAM (STT-RAM) [22],
Phase Change Memory (PCM) [9], NAND Flash [49] and Ferroelectric RAM (FRAM)
[11]. These NVM technologies motivated researchers for their appealing characteristics,
such as non-volatility, low cost, and high density. NVM is used to design flip-flops
[50, 51, 52]. S. Thirumala et al. [50] proposed reconfigurable ferroelectric transistors
to design energy-efficient intermittent devices. NVM is used to design the L1 cache [32],
the last-level cache (LLC) [53, 54, 55, and the main memory [11, 9] in the literature. Many
studies have used NVMs to build even hybrid memories [22, 23, 46, 32], saving significant
energy when configured and used correctly.

Overview of SRAM Developments (Table 2.1): Mittal et al. [56] use a typical
SRAM cell with a four-transistor (4T). Rabaey et al. and Majumdar et al. [13, 57]
designed 5T cells with two and four PMOS and NMOS transistors, respectively. Zhang et
al. [58] presented a machine learning classifier that achieves computation performance in
a typical 6T SRAM array. 8T SRAM cell has been introduced [59, 60, 61] to hold data
from the 6T and 7T SRAM cells. Vaknin et al. [41] designed a DF-SRAM that utilizes less
power and relatively low voltage. Aggregate power improves with 14. 5% when combined
with traditional 6T SRAM cells [62, 63, 64]. Akerman et al. [65] introduced SRAM-based
ternary content addressable memory (TCAM). Kitagata et al. [66] designed a technique
for NV-SRAM that uses magnetic tunnel junctions (MTJs) to reduce current leakage and

thus improve energy efficiency.
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Table 2.1: Overview of SRAM Developments

Classification References
[57, 32, 58, 61, 67, 68, 64],
[69, 70, 71, 72, 73]

Power Optimizations [56, 12, 13, 41, 74, 68]

Read/Write Security [59, 60, 62, 63]
[
[

Read/Write Performance

NVM using SRAM 65, 66, 75]
Cache Optimizations 76]

Overview of DRAM Developments (Table 2.2): Seshadri et al. [77] propose
a novel DRAM structure that internally achieves bulk data copy and startup processes
at a low hardware cost. Advani et al. [78] used REVA, a refresh scheme that usually
refreshes merely the imperative region of interest (ROI). Choi et al. [79] presented a
method to automatically synthesize the proportional circuit of the dielectric relaxation
(DR) trademark in DRAM. Kim et al. [80] discussed the issues, fabrication technologies,
current development, and imminent nature of DRAM materials. Lee et al. [81] describe
Tiered-Latency DRAM (TL-DRAM). Chang et al. [82] introduced the Flexible Latency
DRAM (FLY-DRAM), which characterizes the fluctuation in latency present in each
DRAM module. Lee et al. [83] proposed Adaptive Latency DRAM, which has designed a

mechanism to identify and safely reduce the timing margin to speed up DRAM accesses.

Table 2.2: Overview of DRAM Developments

Classification References
Latency Improvements 80, 81, 83, 82, 84, 85]
Read/Write Performance | [86, 87, 8§]

DRAM Security 89, 90, 91, 92]

[
[
[
Power Optimizations [79, 93, 94, 95]
[
[
[

Bank Optimizations 77, 96, 97]
DRAM Refresh 98, 78]
Density Improvements 99, 100, 101]

Background on Spin Transfer Torque RAM (STT-RAM:) STT-RAM is a new
kind of magnetoresistive RAM (MRAM). STT-RAM cell uses magnetic tunnel junction
(MTJ) for the data storage, as shown in Fig. 2.1 (a), (b) and (c). An MTJ consists of
two ferromagnetic films divided by an oxide barrier layer (e.g., MgO). One of the films
has a fixed magnetic orientation, known as a fixed layer, and the other film’s magnetic
orientation can be altered, known as a free layer. When the free and fixed layer directions
are in parallel, MTJ signifies 0 (low state). Whenever two layers were in anti-parallel
directions, MTJ signifies 1 (high state). Idle energy is required to read the MTJ state, while
enormous energy is used to flip the magnetic state causing high write energy consumption
and longer write latency. STT-RAM can retain its stored data for at least ten years by
using MTJ, where MTJ has been modeled for the highest operating temperatures, so MTJ
cannot change its polarity stored in the junction. Hence STT-RAM stores data indefinitely

and doesn’t need a periodic refresh.
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Figure 2.1: (a) Overview of STT-RAM cell, (b) Representing 0 state, and (c) Representing
1 state

Overview of STT-RAM Developments (Table 2.3): Zhu et al. and Lepak
et al. [24, 25] described STT-RAM, an innovative version of MRAM. Takemura et
al. [26] discussed the challenges faced by STT-RAM due to the high write energy.
Kawahara et al. [102] described NV-RAM, which reduces power utilization by introducing
a method of on/off processing. Bell et al. [103] deployed a complex free layer in an
STT-RAM cell for ultra-high-thickness memory. Choi et al. [104] use a cache management
strategy to reduce unequal write requests to STT-RAM to overcome the long-latency
issue. Mittal [105] deployed SHIELD in STT-RAM LLCs to mitigate read-disturbance
error (RDE). The works [106, 107] used a Vertical Transport MRAM (VMRAM), where
current passes through the vertical column to alter magnetic orientation, thus reducing

write disturbances.

Table 2.3: Overview of STT-RAM Developments

Classification References
MTJ Optimizations | [108, 109, 110, 111, 106, 107, 112, 113, 24, 25, 114, 102]
Layers Optimization [76, 115, 103, 116]
Energy Improvements | [26, 117, 118, 119, 120]
[104, 121, 105]

Usage as Cache

Overview of NAND Flash Developments (Table 2.4): Kang et al. [122]
presented a 48-word line (WL) loaded 256-Gb V-NAND flash memory with a 3b multi-level
cell (MLC). Park et al. [123] presented a genuine 3D, 128 Gb, 2-bit/cell vertical- NAND
(V-NAND) Flash. The chip achieves 50 MB/s write throughput and has an endurance
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of 3K for conventional embedded applications [124]. Tanaka et al. [125] dealt with the
NAND scaling problem with a Floating Gate (FG) of 3D NAND and a charge trap flash
(CTF) of 3D NAND. Parat et al. [126] presented a 3b/cell NAND flash memory with a 3D
FG mechanism to limit the scaling problem. Yoon et al. [127] describe the improvements
in V-NAND flash memory technology. Park et al. [128] demonstrate Solid State Drives
(SSDs).

Table 2.4: Overview of NAND Flash Developments

Classification References
Performance Improvements | [124, 129, 122, 130, 131]
Scalability [132, 125, 123]

SSD Compatibility [126, 127]

Overview of PCM-RAM Developments (Table 2.5): The PCM architecture has
a phase change material and a small electrode called a heater [27, 28, 29, 30, 31]. Park
et al. [133] implemented sub-20 nm PCM technology with the TCAD simulator and a
heat-aware write method (HAW) to regulate write current and voltage. Reduce energy

consumption by about 36%. [134] uses a 512Mb diode switch PCM-RAM on a 90nm
CMOS.

Table 2.5: Overview of PCM-RAM Developments

Classification References
Performance Improvements | [27, 134, 135]
Energy Improvements [136, 133]
Density Improvements [28, 29, 30, 31]

Overview of Re-RAM Developments (Table 2.6): Chi et al. [137, 138] adopted
ReRAM as an alternative to DRAM-based main memory. However, PCM shows better
qualities than ReRAM, and it is promising because of its higher density, lower write energy,
and shorter read latency. Xu et al. [139] deploy a multi-directional write mechanism to
reduce hardware overhead. Beigi et al. [140] used a 3D-loaded ReRAM to achieve an

adaptable memory framework design.

Table 2.6: Overview of Re-RAM Developments

Classification References
Performance Improvements | [139, 141, 142, 138, 143|
Material Optimizations (144, 145, 146, 147, 148]
Density Improvements [137, 140, 149]

2.2 Developments in NVM-based Architectures

This section reviews the related work in hybrid cache architectures (HCAs) and NVM for

last-level caches and L1 caches.
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2.2.1 NVM for LLC

STT-RAM offers better features than the existing NVM technologies [22, 23, 8]. To use
STT-RAM at LLC, we have two possible and distinct preferences. First, we replace the
entire SRAM cache with STT-RAM at LLC. Second, we use HCA (SRAM + STT-RAM)
at LLC, where this design takes advantage of both SRAM and STT-RAM.

Wu et al. [150] modeled a 3-level cache architecture by replacing SRAM with
STT-RAM in L3 and using SRAM in L1 and L2. This architecture achieved an
improvement in instructions per cycle (IPC) of approximately 4%, and compared to the
traditional 3-level SRAM cache design, Wu et al. achieved a reduction of 63% in power
consumption.

Usually, for hybrid caches, block placement and movement between caches are the main
challenges. Classifying cache blocks based on write frequencies [151] and write access
behavior [37] [38] [40] [13] helps decide where to place the respective cache block. Many
HCA architectures use table-based prediction techniques to predict and place the cache
block in an appropriate cache region and migrate from one cache to another [40]. The
challenges in L1 HCA are different from those of LLC. In LLC, input traffic is due to L1

/ L2, while read /write requests in L1 are due to load/store instructions.

2.2.2 HCA for L1 caches

The write access latency of STT-RAM is higher than the SRAM, which creates the primary
limiting factor of using STT-RAM at the L1 cache. For this concern, there are two possible
alternatives. First, relax the nonvolatility of STT-RAM to reduce the overall STT-RAM’s
write access latency [36], [39]. Relaxing the nonvolatility of STT-RAM is achievable by
reducing the MTJ planar area and the MTJ switching current [152]. Second, reduce the
STT-RAM’s write latency and energy consumption by limiting the number of writes to
STT-RAM. Usually, the number of reads and write operations in the L1 cache is more
than in the LLC.

Xie et al. [32] introduce an HCA that consists of STT-RAM in the L1 cache. During
power failures, the program state is backed up from the SRAM cache to the STT-RAM
cache. Xie et al. use an access pattern-based predictor that predicts block behavior. Based
on the prediction, Xie et al. placed the cache block in the respective cache region. During
an eviction or on a wrong prediction, Xie et al. propose a migration policy that migrates
a cache block from one cache region to another. Whenever power comes back, Xie et al.
restore the cache contents from the STT-RAM cache to the SRAM cache.

2.2.3 Reducing Writes to NVM in a Hybrid Architectures

Many researchers are working to reduce the number of NVM writes at the cache or main
memory. Choi et al. [46] proposed a way allocation scheme to reduce write counts to NVM
in their hybrid LLC. Lee et al. [153] introduced PCM buffers to overcome the overheads,

i.e., write latency and energy. Qureshi et al. [154] proposed a write cancelation and write
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pausing technique to give more priority to read requests than write requests. Hybrid main
memory architectures [155], [156] have been introduced to efficiently use DRAM and PCM

to reduce write latency and energy.

2.3 Developments in Intermittent Aware Designs

To develop an intermittent aware design, we should also change the execution model of
a conventional processor by incorporating additional backup/restore procedures [7]. We
require an efficient backup /restore procedure that restores and backups volatile contents
during power failures. The size of volatile contents determines the energy required to
backup/restore during a power failure [1]. We may get inconsistent results if we only
have a small amount of available energy in our capacitor, which is insufficient to cover all
volatile contents. As a result, we must reduce backup/restore overhead during frequent
power failures.

Many researchers are working to reduce NVP backup and restore overheads. Recent
checkpointing techniques [157, 158, 159, 50] have also been proposed to reduce the size of
volatile contents that must be backup/restored during frequent power failures. Priyanka
et al. [160] give an overview of recent checkpointing techniques. In situ checkpointing
has gained popularity in recent times [50, 161], using unified NVM architectures. Lee
et al. [10] proposed an adaptive NVP that prioritizes data retention to reduce the
frequency of backup/restore operations. The number of power failures can be reduced
by adjusting the voltage and frequency [162], [163]. Rather than reducing the number of
backups and restore operations, researchers [164] focused on reducing the size of the backup
contents. Architectures [165], [166] based on the comparison and compression strategies
are proposed to reduce the number of bits/contents to be stored in the non-volatile flip
flop (NVFF)-based NVP, which reduces the dynamic energy consumption.

Checkponting Techniques for Intermittent power devices: NVM-based NVPs
[167], [168], [169] are proposed by storing the contents of the registers, volatile on-chip
data to the non-volatile registers, and non-volatile memories, respectively. Whenever the
power comes back, the system uses data from the NVM region to continue and complete
the application execution.

Checkpoint-based approaches for HCA are the other alternative for supporting
intermittently powered IoT devices. In these checkpoint-based approaches, volatile data
is checkpointed to NVM at regular intervals to store the application program state [170].
Mementos [171] was one of the initial checkpointing techniques. It used periodic voltage
checks to decide when to back up the program state. Hibernus [172] extended the work
of [171] by introducing NVM. These checkpointing schemes do not consider the timely
execution of the applications. TICS [173] overcomes this problem by introducing timely
execution, branching, and efficient automatic checkpoints.

Checkpoints are placed using either software procedures or hardware components.

Checkpointing approaches such as [171], [174], and [175] were proposed to backup and
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restore a consistent program state. The compiler or software procedures were primarily
responsible for placing software-based checkpoints. Whenever a checkpoint is identified,
the system initiates a backup procedure that stores the program state to NVM. In [175],
checkpoints are placed based on the expiration of a timer. Hardware-based checkpoints
were mainly associated with external devices. In [174], hardware-based checkpoints were

placed using a voltage detector that triggers a backup mechanism for an NVP.

2.4 Developments in Real-time NVM-based MCUs

FRAM consumes less energy than other NVM technologies, such as Flash. FRAM can
be helpful for low-power IoT devices. These NVM technologies motivated researchers
due to their attractive characteristics, such as non-volatility, low cost, and high density
[176, 34, 33, 177, 178].

Researchers started using real-time NVM-based MCUs for intermittent computing
[179, 180, 11, 181, 182]. Researchers observed that using only NVMs at the cache or
main memory level degrades the system’s performance and consumes more energy, which
motivates the use of hybrid memories. Recent NVM-based MCUs such as MSP430FR6989
[11] consist of both SRAM and FRAM. We need to utilize SRAM and FRAM efficiently
and correctly; otherwise, we may degrade system performance and consume extra energy.
To make the system more efficient, we need to map the application contents to either
SRAM or FRAM. This is actually a memory mapping problem, similar to scratch-pad
memories.

Recent works focused on incorporating NVMs as virtual memory during frequent power
failures. Andrea et al. [183] propose Alfred, a mapping technique that maps virtual
memory to volatile or NVM. Andrea et al. use machine-level codes for these mappings
that achieve 2x improvement compared to existing techniques and systems. However,
the Andrea et al. technique does not discuss the complete design choices or consider the
real-time power scenarios.

Including NVMs in systems needs to answer the following research questions: when
to checkpoint and where to checkpoint the volatile data. Researchers proposed efficient
checkpointing techniques [184, 185] incorporating user-defined function calls that help
determine how much energy is still available in the capacitor. Based on that analysis, the
system invokes the checkpoint. These techniques even predict power failures and support

intermittent computing.

2.5 Memory Mapping Techniques from Scratch Pad
Memories to Modern MCUs

Researchers explored a similar mapping problem in scratch-pad memories (SPMs)
[186, 187, 188]. Chakraborty et al. [189] documented the existing and standard

memory mapping techniques on SPMs. In earlier works, memory mapping was done
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mainly between SPMs and main memory. Memory mapping can be done statically and
dynamically [190, 191]. In static memory mapping, either ILP or the compiler can help
to determine the best placement [186, 187, 192, 188]. ILP-solver takes inputs obtained
from profilers and memory sizes as constraints in ILP-based memory mapping works. The
ILP-solver provides the best placement option based on the objective function. In dynamic
memory allocation [193, 194, 195, 196], either the user-defined program or the compiler
will decide on an optimal placement choice at run-time.

However, our problem differs from the memory mapping techniques in SPMs because
intermittent computing brings new constraints. During intermittent computation, the
challenges were the forward progress of an application, the consistency of data, the
consistency of the environment, and the concurrency between tasks. Due to these
challenges, the execution model and development environment differ from SPM-based
memory mapping techniques. As a result, we require a memory mapping technique that
supports intermittent computation.

Researchers have explored memory mapping techniques and analysis for the
MSP430FR6989 MCU. Kasim et al. [197] proposed a task-based mapping mechanism
considering all event-driven paradigms that support intermittent computing and
battery-less sensing devices. In FRAM-based MCUs, Jayakumar et al. [154] implement
a checkpointing policy. They save the system state to FRAM during a power failure.
Jayakumar et al. [198, 1] propose an energy-efficient memory mapping technique for
TI-based applications in FRAM-based MCUs. Kim et al. [199] present a detailed analysis
of energy consumption for all memory sections in FRAM-based MCUs with different

memory mappings.

2.6 Challenges Identified from the Literature

We observed some challenges from the state-of-the-art works that motivated us to propose

architectures and techniques to solve these challenges. We list these challenges below:

e Challenge-1 related to NVMs write energy: Writes to NVMs consume more
latency and energy compared to volatile memory. We must optimize NVM utilization

by reducing the usage of NVM or reducing the number of writes to NVM.

e Challenge-2 related to HCAs: Usually, for hybrid caches, block placement
and movement between caches are the main challenges. In these hybrid caches,
incorrectly placing a cache block in any region causes migration overhead. Migration
overhead increases the number of writes to NVM and consumes more write energy.
Introducing NVM in the L1 cache shows an impact on performance and energy

consumption.

o Challenge-3 related to checkpointing or backup/restore Overheads: The
main problem with the architectures and techniques mentioned above is the extra

computation caused by multiple checkpoints. Another issue with checkpointing
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2.7

during a power failure is data inconsistency, leading to a corrupted output. Another
disadvantage of the checkpointing approach is that whenever power comes back, we
must restore the contents of non-volatile main memory to the cache. Whenever
power comes back, we must implement a restoration procedure that restores the
saved checkpoint from the NVM. Restoring the program state introduces one more
extra overhead. These additional overheads degrade system performance very badly

and consume more energy.

Challenge-4 related to energy constraints for backup/restore operations:
As per our knowledge, there were no works explored on this challenge. Our main
concern is how we can guarantee a safe backup during a power failure. Is capacitor
energy sufficient to perform this backup? As per our analysis of the related works, we
observed that no work is using a constant amount of energy for backing up/restoring

the volatile contents.

Challenge-5 related to Mapping contents in Hybrid Main Memory
Architectures: As per our knowledge, there were very few works that explored
hybrid main memory architectures on real-time boards. Earlier works investigated
this problem by analyzing the possibilities to make the system efficient. The works
[198, 1, 199] have not covered all the possibilities and design choices. In addition,
there is significantly less contribution toward memory mappings in FRAM-based

MCUs that support intermittent computation.

Works Proposed to address the Challenges

In order to solve challenges 1, 2, and 3 in section 2.6, we proposed an efficient
HCA to address the challenges mentioned in the literature [34]. We use SRAM and
STT-RAM at the L1 cache to reduce these migration overheads during both stable
and unstable power scenarios. We proposed placement and migration policies, which
also have a prediction table to predict the correct placement to reduce additional
backup/restore overheads. We discussed the proposed architecture and techniques

in the section 3 in detail.

In order to solve challenges 1 and 4 in section 2.6, we proposed an architecture
that uses constant energy for backing up/restoring the volatile contents to/from
NVM during frequent power failures [33]. Efficient cache management policies have
been introduced and thoroughly discussed in order to use fixed energy for backup
operations during frequent power failures. We discussed the proposed architecture

and techniques in the section 4 in detail.

In order to solve challenges 1 and 5 in section 2.6, Our work [35] proposes an
energy-efficient memory mapping technique for intermittently powered IoT devices
that experience frequent power failures. We have discussed the proposed mapping

technique in the section 5 in detail.
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Chapter 3

Placement and Migration Policies
for NVM based Hybrid L1 Caches

The research work presented in this chapter focuses on designing NVM-based hybrid
cache architecture at L1 that supports intermittent computing. The proposed architecture
introduces NVM at the L1 cache and main memory levels. NVM-based caches reduce
system performance and consume more energy than SRAM-based caches. In order to
get the benefits of both wvolatile and non-volatile memories, the proposed architecture
employs a hybrid cache consisting of both SRAM and NVM. This chapter discusses the
efficient placement and migration policies for hybrid cache architecture that uses SRAM
and STT-RAM at the first-level cache. The proposed architecture includes cache block
placement and migration policies to reduce the number of writes to STT-RAM. During
a power failure, the backup strategy identifies and migrates the important blocks from
SRAM to STT-RAM. This chapter begins with an introduction in Section 3.1. Section 3.2
describes the proposed hybrid NVM-based architecture, followed by a discussion on efficient
placement and migration policies. FExperimental setup and discussions on results have been

given in section 3.4. The summary of the chapter is given in Section 3.5.

3.1 Introduction

In a conventional processor, all registers, caches, and main memories are volatile, which
means that we lose all the data stored in these during a power failure. Data lost include
the application’s program state and progress. The program state includes the contents of
registers, cache, and main memory. As a result, when a power failure occurs, some parts
of the application must re-execute, slowing execution and consuming extra energy. This
type of computing is defined as intermittent computing [7, 47, 48].

The solution is to store the application’s program state at a precise restart point before
a power failure. The question is, where should the program state be stored? Using
Non-volatile memories (NVM), we can save the application’s program state during a power
failure. Recently, several new NVMs have been proposed, such as STT-RAM [200, 22, 23,
8], PCM [9, 201], Re-RAM [10], and FRAM [11].

NVM cache enhances the application’s execution progress even during frequent power
failures. The write access latency of NVM is higher than the SRAM, which creates the
primary limiting factor of using NVM at the L1 cache. It is not a good idea to replace
the entire SRAM with NVM; instead, we can integrate both SRAM and NVM to make
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a hybrid architecture [32] [202] at the cache level. STT-RAM offers better features than
existing NVM technologies [22, 23, 8] at the cache level. PCM offers better features than
the existing NVM technologies [9] at the main memory level. To design a hybrid cache,
we observed two main challenges associated with this kind of design.

The first challenge is that introducing STT-RAM as a cache can deteriorate the
system’s performance due to its long access time and consumes more dynamic energy.
We observed that the STT-RAM-based architecture consumes 49.53% more energy than
the SRAM-based architecture. We need to use STT-RAM efficiently so that the system
performs better and consumes less energy. In the case of a hybrid cache, we need to utilize
SRAM and STT-RAM as efficiently as possible to benefit from both.

The second challenge is placing a cache block in the wrong memory region in these
hybrid caches causes unnecessary movements between cache regions and yields extra
overheads, i.e., migration overheads. These overheads increase the number of reads and
write operations and require additional cycles and energy, making the system inefficient
by consuming more energy and deteriorating the overall system’s performance.

In the existing architectures, Xie et al. [32] also introduced a similar hybrid cache
architecture that consists of STT-RAM at the L1 cache. The main observations that we
reported from the Xie et al. work and the main challenges associated with the existing

hybrid cache architecture [32] are listed below.

o For the prediction table, Xie et al. used a pattern sampler, which doesn’t gather the

complete details of the application.

e Where the placement and migration policies cannot provide accurate predictions
if the prediction information is incomplete. As previously stated, inaccurate
predictions increase the number of reads and write operations, which consume more

execution time and energy.

o Xie et al. used a checkpointing scheme, which uses more energy because we need to

write/read to/from the NVM for every checkpoint.

e Xie et al. used a standard LRU replacement policy to identify the cache block for
eviction. What if the evicted block turns out to be a write-intensive block the next
time? The used replacement policy may result in unnecessary writes to NVM and

consume more energy.

o Xie et al. backup all volatile contents during a power failure, which is not always

necessary, and push more writes to NVM during frequent power failures.

All the above challenges and observations motivated us to propose an efficient hybrid
cache architecture that considers these issues.

In this chapter, we address challenge-1, 2, and 3 described in chapter 2, and we achieve
objective 1 discussed in chapter 1 by proposing a hybrid cache architecture that efficiently
uses both SRAM and STT-RAM by gaining benefits from SRAM during regular operation
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and from STT-RAM during frequent power failures. The main contributions of this work

are summarized below:

e We propose efficient placement and migration policies for the hybrid cache
architecture at the L1. The proposed placement policy suggests which cache block
should be placed in which memory region, whether SRAM or STT-RAM. We
proposed a prediction mechanism that helps in block placement. The proposed

prediction mechanism helps to reduce unnecessary migrations between cache regions.

e The proposed architecture supports intermittent computing. To reduce the
backup time during frequent power failures, the proposed architecture identifies the
important blocks that need to be backed up to NVM instead of saving the entire

volatile content.

3.2 Proposed Architecture

The proposed architecture uses the proposed placement, migration, and backup policies
[34]. Fig. 3.1 shows the proposed architecture. Every cache set in the proposed architecture
contains a mix of SRAM and STT-RAM cache blocks. Along with the valid bit (V), dirty
bit (D), tag, and data in each cache block, we added three more entries: i) Read-Intensive
Counter (RIC), ii) Write-Intensive Counter (WIC), and iii) Confidence bits (CONF). These
three entries are beneficial for cache placement and migration policies. We classified the
blocks into two types: read-intensive blocks and write-intensive blocks. Read-intensive
(RI) blocks have more read accesses than a predefined threshold at a given point in time,
whereas write-intensive (WI) blocks have more write accesses than a predefined threshold
at a certain point in time.

We keep two counters for each block, RIC and the WIC. Furthermore, we added a 2-bit
CONTF field that tracks important blocks; important block information is helpful during
power failures. A prediction table has also been included. Each prediction table entry
has a previous region (PR) bit. During the replacement/eviction process, this PR bit is

updated. The PR bit stores the block’s most recent cache region.

3.2.1 Placement and Migration Policies

We describe the proposed block placement and migration policies in this section. Because
STT-RAM has higher read/write latency and consumes more energy than SRAM, the
placement policy aims to reduce the number of writes to STT-RAM. The write latency of
STT-RAM is ten times more than its read latency [200]. Therefore, we would like to place
write-intensive blocks in the SRAM cache and read-intensive blocks in the STT-RAM
cache. We use the PR bit to check the prediction table and place the block in the
appropriate cache region based on whether it is read-intensive or write-intensive.

The algorithm 1 demonstrates the placement policy in case of a cache miss. Line 1 uses

a tag to check the prediction table on a read/write miss. We access the PR bit associated
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Figure 3.1: Overview of the Proposed Architecture, which consists of SRAM and
STT-RAM-based caches at .1 and PCM at the main memory level.

with the tag entry. We keep the PR bit to note the previous block placement information
for that tag entry. If PR = 0, lines 3-5 in algorithm 1 check whether the corresponding
STT-RAM cache set is full or not. If it is full, we replace the block with the lowest RIC
value; otherwise, we place it in the STT-RAM cache. Suppose PR!=0, lines 10-12 in
algorithm 1 check whether the SRAM cache set is full or not. We replace the block with
the lowest WIC value; otherwise, we place the block in the SRAM cache.

The algorithm 2 describes the placement and migration policies whenever there is a
read hit. Line 1 checks the block’s RIC value with the empirically determined threshold.
We fixed the threshold limit empirically. If the block’s RIC is equal to the threshold, we
call that block an RI block. The proposed placement policy suggests that all RI blocks
should be placed in STT-RAM. If the block is present in the SRAM cache, we migrate
from SRAM to STT-RAM and re-initialize RIC, WIC, and CONF to zero. If the block is
not in the SRAM cache, we place the block in the STT-RAM cache and increment CONF
by 1. If the threshold does not equal the block’s RIC value, we increment RIC by 1. The
block chosen for replacement has to update its PR bit in the prediction table. If RIC
reaches the threshold and CONF reaches 11 state, then we do not increment RIC.

The algorithm 3 describes the placement and migration policies whenever there is a
write hit. Line 1 checks the block’s WIC value with the threshold. If the block’s WIC
equals the threshold, we call that block a WI block. The proposed placement policy
suggests that all WI blocks should be placed in SRAM. If the block is already present in
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Algorithm 1: Placement Algorithm in case of Cache miss
1: Check Prediction Table.
2: if PR == 0 then
3:  if STT-RAM set is full then

4: Replace block with lowest b. RIC

5: Update the replaced block’s PR bit in the Prediction Table.
6: else

7: Place in the STT-RAM cache.

8: Re-Intialize b.RIC, b.WIC to zero.

9: end if

10: else

11:  if SRAM set is full then

12: Replace block with lowest b.WIC.

13: Update the replaced block’s PR bit in the Prediction Table.
14: else

15: Place in the SRAM cache.

16: Re-Intialize b.RIC, bW IC' to zero.

17 end if

18: end if

the STT-RAM cache, we migrate from STT-RAM to SRAM and re-initialize RIC, WIC,
and CONF to zero. This case reduces the number of writes to the STT-RAM cache. If
the threshold does not equal the block’s WIC value, we increment WIC by 1. The block
chosen for replacement has to update its PR bit in the prediction table. If WIC reaches
the threshold and CONF reaches 11 state, then we do not increment WIC.

3.2.2 Prediction Table Design

The importance of the prediction table in the proposed architecture is to store the previous
region for the respective tag entry. The prediction table has L entries, where L denotes
the number of entries in the prediction table. This table acts as a direct-mapped buffer,
indexed using (Address/block size) % L. Each entry in the prediction table has a PR
(Previous Region) field. The prediction table does not store the tag bits in order to save
area; its size is L bits. Initially, all bits in the prediction table are set to 1.

We update the PR field whenever there is a replacement in the cache due to the
SRAM/STT-RAM set being full. If PR is 1, the block is a WIC because its WIC was
greater than RIC during replacement. Place the WIC block into the SRAM cache region.
If PR is zero, the block is a RIC because its RIC is greater than WIC during replacement.
Place the RIC block into the STT-RAM cache region.

3.2.3 Support for Intermittent Power Supply

Our proposed architecture supports intermittent computing and performs well during
frequent power failures. We define important blocks as those with high CONF values. We
used RIC/WIC values to update the CONF field. When power is restored in a traditional

architecture, we begin execution by accessing blocks from the main memory and copying
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Algorithm 2: Placement and Migration Algorithm in case of Read hit
1: if b.RIC == threshold then
2: if Block is in SRAM then

if STT-RAM set is full then
Replace block with lowest b.RIC and b.CONF
Update the replaced block’s PR bit in the Prediction Table.
Migrate to STT-RAM.

else
Migrate to STT-RAM.

end if

10: Re-Intialize b.RIC, bWIC, b.CONF to zero.

11:  end if

122 b.CONF =b.CONF + 1

13:  Re-Initialize b.RIC' to zero.

14: else

15:  b.RIC =bRIC + 1

16: end if

Algorithm 3: Placement and Migration Algorithm in case of Write hit
1. if b.WIC == threshold then
2: if Block is in STT-RAM then

if SRAM set is full then
Replace block with lowest b.WIC and b.CON F
Update the replaced block’s PR bit in the Prediction Table.
Migrate to SRAM.

else
Migrate to SRAM.

end if

10: Re-Intialize b.RIC, bW IC, b.CONF to zero.

11:  end if

122 b.CONF =b.CONF + 1

13:  Re-Initialize b.WIC to zero.

14: else

5. bWIC =bWIC + 1

16: end if
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them to the cache. We save important blocks in STT-RAM that help to start execution
without restoring blocks from the main memory to SRAM.

We propose a state model to assist in determining the most important blocks. Using
the CONF field, we can determine which blocks should be present in STT-RAM during a
power failure. Initially, CONF is in the 00 state and supports four states, ie 00, 01, 10,
and 11 states, as shown in Fig. 3.2. To represent the proposed state model, we need a
2-bit CONF field. The algorithmic process of updating the CONF field has already been
described in algorithms 2 and 3.

RIC/WIC =7
RIC/WIC =7 RIC/WIC =7
Migrate() RIC/WIC =7
invoked

Migrate()
invoked

Migrate()
invoked

Figure 3.2: State Diagram for Updating CONF.

In summary, if RIC/WIC exceeds the threshold, CONF is increased by one and
advances to the next state. ~ When CONF is in the 11 state and crosses the
threshold, it remains in that state. If any migration occurs from SRAM/STT-RAM to
STT-RAM/SRAM cache, then CONF resets to the 00 state along with the RIC and WIC
values.

During a power failure, the proposed backup policy is triggered to save important
blocks from SRAM to STT-RAM. According to the proposed backup policy, the blocks
with CONF field 11 are the most important blocks. Therefore, we prioritize blocks with
the CONF field on the order of 11 > 10 > 01 > 00. If any SRAM block has a CONF
field of 11, we replace that block with the least priority block in STT-RAM. If there is no
block with 11 state in the SRAM, we decrement our priority order by 1

Now our priority becomes 10. If there are blocks with 10 state in the SRAM cache
line, we replace the blocks with the least priority block in STT-RAM. If there is no block
with 10 state in the SRAM line, we decrement our priority order by one. Similarly, we
check blocks with 01 and 00 states. Priority with 00 is the case where we copy the SRAM
contents to STT-RAM and the STT-RAM contents to PCM. Whenever the power comes
back, the STT-RAM contents are accessed automatically without copying to SRAM. Our
migration policy automatically migrates from STT-RAM to SRAM if needed and vice

versa.
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3.2.4 Storage Overhead

We analyze the storage overhead because we added extra bits, a prediction table, and
backup logic. For the same system configuration shown in table 3.1, we evaluate the
overhead area of the proposed architecture. We showed the area overhead as an example.

There are two aspects of the proposed architecture that cause storage overhead.

e The proposed architecture has two 3-bit counters and two confidence bits per
block. The data cache has 256 blocks, each with 8 bits, so the data cache requires
256%8=2048 bits.

e The proposed prediction table has 4K byte entries with 1-bit per entry, resulting in
a total storage overhead of 1024*4 = 4096 bits.

The overall storage overhead of the proposed architecture will be 2048 + 4096 = 6144
bits=0.75KB. The total percentage of area overhead is about 0.75KB/32KB=2.34%.

3.3 Detailed Example

Fig. 3.3 illustrates the operation of the proposed architecture. In figure 3.3, Initially, the
SRAM cache has (a,c) blocks, and the STT-RAM cache has (b,d) blocks. We defined
all counters and CONF as a tuple [RIC, WC, CONF] and initialized it to [0, 0, 00]. A
prediction table has a PR field. We take a sequence of access requests; read requests are
labeled as rd; (i.e., read block i), and write requests are labeled as wr; (i.e., write block 1).
We labeled different timing points as A, B, C, .., and K. In this section, we discuss how
the proposed architecture works after every timing point.

In Fig A of Fig. 3.3, we update the RIC of ‘a’ to 2 because of two consecutive reads. In
Fig B, the WIC of ‘b’ has become 2. In Fig C, [RIC, WIC] of ‘a’ updates to [3, 1]. In Fig
D, the WIC of ‘b’ becomes 7, which equals the threshold and becomes a write-intensive
block. Our placement policy suggests that write-intensive blocks should be placed in
SRAM. SRAM set is full; to replace the block, we find the block having the lowest WIC.
The block ‘¢’ has a low WIC value; we replace ‘c’ with ‘b’ and reset all ‘b’ counters to
[0, 0, 00]. In Fig E, the RIC of ‘a’ becomes 7, which equals the threshold and becomes a
read-intensive block. Our placement policy suggests that read-intensive blocks should be
placed in STT-RAM. STT-RAM set had one empty slot; we migrated ‘a’ from SRAM to
STT-RAM. Reset all ‘a’ counters to [0, 0, 00] and update the WIC of ‘b’ to 2.

In Fig F, the RIC of ‘a’ updates to 4. A new block request, ‘c,” occurred between the
timing points F and G. The block request ‘c’ is not present in both caches. Check the
prediction table for index 2, associated with tag., to find the ¢’s PR field. We found an
entry in the prediction table of index 2 with PR = 1. If the PR value is 1, the block is
placed in the SRAM cache during the last eviction. We place ‘¢’ in the SRAM cache. In
Fig G, the WIC of ‘¢’ updates to 7, which equals the threshold, becomes a write-intensive
block and updates the RIC of ‘a’ to 4. Our placement policy suggests that write-intensive
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Figure 3.3: Working Example of the Proposed Architecture for a given set of Access
Requests.
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blocks should be placed in the SRAM; ‘¢’ is already in the SRAM. We update the CONF
of ‘¢’ to 01 and reset the counter values. After H, the WIC of ‘¢’ updates to 3.

A new block request ‘e’ occurred between the timing points H and I. Block request ‘e’
is not present in both caches. Check the prediction table for index 3, associated with tage,
to find the PR field of e. We found an entry in the prediction table of index 3 with PR =
0. If the PR value is 0, the block is placed in the STT-RAM cache during the last eviction.
We place ‘e’ in the STT-RAM cache. STT-RAM set is full; we find the lowest RIC to
replace the block. The block ‘d’ has a low RIC value; we replace ‘€’ with ‘d’. Update all
‘e’ counters to {1, 0, 00}.

Power failure (PF) occurred; our backup policy saves important blocks using the CONF
field. Where the CONF of ‘¢’ has 01 and ‘a’ has 00, our priority order suggests that 01
has the highest priority compared to 00. We place ‘a’ in main memory and backup ‘c’
in STT-RAM. We prefer write-intensive blocks compared to read-intensive ones during a
power failure. So ‘b’ replaces ‘e’ In Fig J, ‘¢’ and ‘b’ are saved to STT-RAM. Whenever
power comes back (PB), we do not require any restoration process. Fig K shows the RIC

of ‘¢’ and ‘b’ updates to 1.

3.4 Experimental Setup and Results Analysis

3.4.1 Experimental Setup

We evaluate the proposed architecture using the gem5 [41] simulator and 18 benchmarks
from the MiBench suite [74]. Our targeting applications primarily work with embedded
devices. Based on the literature survey, Mi-Bench Suite is the preferred set of applications
for embedded devices. As a result, we compared the proposed architectures to baselines
and existing architectures using the Mi-Bench suite. The general microarchitectural

parameters used for the implementation are shown in Table 3.1.

Table 3.1: System Configuration

Component Description
CPU core 1-core, 480MHZ

Block size - 64-byte, 4-way associative (2-way SRAM,
L1 Cache 2-way STT-RAM);

Private cache (16KB hybrid D-cache, and 16KB I-cache)
VB-1bit, WIC and RIC-3bits, CONF-2bits,
L- 4K bytes, threshold-7, and PR-1bit
Main memory 128MB PCRAM

Clock Period: 2ns,

SRAM Read: 1 Cycle,

SRAM Write: 2 Cycles,

Others STT-RAM Read: 2 Cycles,

STT-RAM Write: 10 Cycles,

PCM Read: 35 Cycles, and

PCM Write: 100 Cycles

Size Parameters
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Table 3.2: Nvsim parameters of SRAM, STT-RAM Caches, PCM memory (350K, 22nm)

Parameter 16KB 16KB 128KB 128MB
SRAM | STT-RAM | STT-RAM | PCM
Read Latency | 0.792 ns | 1.994 ns 1.861 ns 204.584ns
Read Energy 0.006 nJ | 0.081 nJ 0.123 nJ 1.553 nJ
RESET -
Write Latency | 0.772 ns | 10.520 ns 10.446 ns 134.923 ns
SET -
264.954 ns
RESET -
Write Energy | 0.002 nJ | 0.217 nJ 0.542 nJ 6.946 nJ
SET -
6.927 nJ

Table 3.2 shows the dynamic energy and latency for a single read and write operation
on SRAM and STT-RAM, taken using Nvsim [70].

3.4.2 Baseline Architecture

We modeled a baseline architecture to compare with the proposed architecture. In
order to choose the baseline architecture, we did a thorough investigation by comparing
different possible approaches. If we have two memory regions, we will have three possible
architectures, one is to use only SRAM, the second is to use only STT-RAM, and the
third is to use both. Among these three architectures, we have to choose one relevant
architecture. The chosen baseline architecture will be used for comparison purposes.

We first compared the performance and dynamic energy consumption of the pure
SRAM, pure STT-RAM, and hybrid (SRAM and STT-RAM) cache architectures to
determine the baseline architecture. Based on the analysis, we choose the relevant baseline

architecture to compare the proposed and existing architectures throughout this work.

e Pure SRAM cache: We don’t require any placement or migration policies in pure
SRAM cache because we have only SRAM at L1.

e Pure STT-RAM cache: We do not require any placement or migration policies
in pure STT-RAM cache because we have only STT-RAM at L1.

e« Hybrid cache: At L1, the hybrid cache architecture includes both SRAM and
STT-RAM. We use a random placement policy in this architecture. In the random
placement policy, the block is randomly placed in either SRAM or STT-RAM. We
use the migration policy based on counters. We empirically determined the threshold

as 7 and the size of the counters as 3 bits.

We set the L1 size to 32KB in all three architectures. In all three cache architectures,
we did not use any prediction mechanisms. In Fig. 3.4, the performance and energy

consumption of the cache architectures are normalized with the pure SRAM cache
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Figure 3.4: Comparisons between Pure SRAM, Pure STT-RAM, and Hybrid Cache
Architectures.

architecture. We observed that the hybrid architecture performs between pure SRAM
and STT-RAM architecture from Fig. 3.4. Thus, we used the normal hybrid architecture
as our baseline architecture. We termed only one architecture as a baseline throughout
this chapter.

Baseline Architecture: We selected the hybrid architecture as our base architecture
throughout this work with the modeling details mentioned above.

We experimented with the baseline architecture to determine the threshold value.
When the respective counter crosses its threshold, we move the block from one cache
to another to check energy values. The size of the counters is determined by the threshold
value. For example, if the threshold is 3, the counter size is log4. (counts from 0 to 3). We
experimented with threshold values of 1, 3, 7, and 15. We observed that threshold value 7

consumes less energy than the other threshold values on average. We set the threshold to



Chapter 3. Placement and Migration Policies for NVM based Hybrid L1 Caches 41

7 because we noticed that migrations between cache regions increase when the threshold
is exceeded. We also observed that NVM gets more writes if the threshold is higher than
7, increasing the hybrid cache architecture’s energy consumption. Fig. 3.5 shows that

threshold value 7 consumed less energy than the other threshold values.
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Figure 3.5: Dynamic Energy Consumption for Various Threshold Values.

3.4.3 Results & Analysis

This section evaluates the proposed architecture under stable power and frequent power
failures. We also evaluated the proposed architecture for backup and energy efficiency

w.r.t. baseline and existing architectures.

3.4.3.1 Number of Writes to NVM

One of the main objectives of the proposed architecture is to reduce the number of writes
to the STT-RAM cache. To achieve this, we place the write-intensive blocks in the SRAM
cache. We have shown the ratio of write operations to STT-RAM with total write accesses
in Fig. 3.6. A lower number of writes to STT-RAM shows the effectiveness of the proposed
architecture. The percentage of writes to the STT-RAM cache is normalized with the
baseline architecture shown in Fig. 3.6. In general, the proposed architecture helps reduce
STT-RAM write operations from 63.35% to 35.93% compared to the baseline architecture.
If our prediction accuracy increases, the number of migrations decreases. If the number of
migrations decreases, we observe fewer writes to NVM. Thus, our proposed architecture
decreases the number of writes to STT-RAM.

3.4.3.2 Analysis for Execution Time and Dynamic Energy Consumption

Under Stable Power Scenarios: We compare our proposed architecture with the
baseline and the architecture proposed by Xie et al. [32]. We implemented the work

of Xie et al. [32] to analyze both stable power and intermittent power systems. For a fair
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Figure 3.6: Write operations to STT-RAM

comparison, all these architectures use the same system configuration shown in Table 3.1
and the energy/delay values of STT-RAM and PCM from Table 3.2.

Reducing the STT-RAM writes also guarantees better endurance and a lifetime
of IoT nodes. Performance and energy consumption values are normalized with the
baseline architecture in Fig. 3.7 (a) and Fig. 3.7 (b). Figs. 3.7 (a) and 3.7 (b) show a
better execution time and dynamic energy consumption than the existing and baseline
architectures. We achieve better values because of accurate prediction when we compare
the proposed architecture with the Xie et al. architecture. In addition, the proposed
prediction table helps decrease the number of migrations and accesses. Therefore, our
architecture results in 32.85% better execution time and saves 23.42% of dynamic energy
consumption than the baseline architecture.

Under Unstable Power Scenarios: We assume that frequent power failures occur
every 2 and 4 million instructions. We performed all experiments with one billion
instructions in the Gemb5 simulator. We modeled three scenarios of power failure, as
shown in Table 3.3. In case 1, power failures occur every 2 million instructions. In case 2,
power failures occur every 4 million instructions. In case 3, power failures occur randomly
in between 2 to 4 million instructions.

Considering energy-harvesting sources, such as piezoelectric and vibration-based
sources, they extract much less energy from the surroundings. In these cases, the capacitor
cannot store enough energy, leading to frequent power failures. As a result, our proposed
architecture supports these worst-case scenarios. However, the existing work by Xie et al.
[32] made similar assumptions, assuming that each power failure occurs every 500 ms.

We also compared the SRAM+PCM-based architecture to show how much performance
improved during intermittent power supply. In the SRAM + PCM architecture, SRAM is
the L1 cache, and PCM is the main memory. We introduced a power failure randomly and
a safe point for every 4 million instructions. When a power failure occurs, we back up all

SRAM contents to PCM. Whenever power comes back, we start the application’s execution
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Figure 3.7: Comparisons between Proposed, baseline, and Existing Architectures under
Stable Power.

from the nearest safe point. When we compared the SRAM + PCM architecture with the
proposed architecture, the proposed architecture gave better results because the proposed
architecture saves data in the L1 cache itself (by using STT-RAM). proposed architecture
saves the re-execution time of the application and reduces the number of writes to PCM
during a power failure. The performance and energy consumption values are normalized
to the baseline architecture. We compare execution time and energy consumption with
the baseline architecture during these frequent power failures, as shown in Fig. 3.8 (a) and
Fig. 3.8 (b).

We also compared the proposed architecture with existing work, i.e., Xie et al. They
checkpoint only selective dirty blocks from SRAM to STT-RAM during power failures.
This type of checkpointing increases writes to PCM, which increases the dynamic energy

consumption of their architecture. Thus, the proposed architecture achieves better
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Table 3.3: Different Power Failure Scenarios

Configuration Power Failure (PF) Scenario
Case-1 (Proposed 2M) PF for every 2-Million Instructions
Case-2 (Proposed 4M) PF for every 4-Million Instructions

Random PF between every

Case-3 (Proposed Random) 2 to 4-Million Instructions

execution time and energy values than the existing architecture. Whenever power comes
back, the proposed architecture uses blocks from STT-RAM directly. In the work of Xie
et al., STT-RAM consists of fewer blocks than the proposed architecture, which increases

the execution time in existing work.
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Figure 3.8: Comparisons between Proposed, baseline, and Existing Architectures under
Frequent Power Failures.
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3.4.3.3 Analysis for Dynamic Energy with Traditional Checkpointing

Under Stable Power Scenarios: During stable power, we performed experiments to
compare the traditional checkpointing approach with the proposed architecture. We use a
traditional checkpointing method, creating a safe point for every 4 million instructions. We
save the program state for every 4 million instructions to the main memory. Our proposed
architecture outperforms traditional checkpointing. In the traditional checkpointing
technique, backup occurs for each safe point, but in the proposed architecture, backup
occurs only during a power failure. We normalize the energy consumption values
with the traditional checkpointing approach. The proposed architecture reduces energy
consumption by 22.95%, as shown in Fig. 3.9 (a).

Under Unstable Power Scenarios: We compare the traditional checkpointing
approach with the proposed architecture during power failures. We save the program state
for every 4 million instructions. We retrieve the program state from the main memory at
every safe point to continue with the remaining execution of the application. For instance,
if a random power failure occurs at 7" million instructions. We re-execute the application

4" million instruction.

from 4" million instruction because the nearest safe point is at
Energy consumption values are normalized on the basis of the traditional checkpointing
approach. We compared the proposed architecture with the traditional checkpointing

approach, which reduces energy consumption by 31.03%, as shown in Fig. 3.5 (b).

3.4.3.4 Analysis for Different Cache Settings

We also performed experiments by changing the system configurations, such as cache sizes
and associativity, that are different from the system configuration shown in Table 3.1. We
used six different cache settings for these experiments, as shown in Table 3.4.

Here, we used two different cache sizes; one is 16 KB, and the other is 32 KB. We
compared the energy consumption for these 10 configurations under stable power. We
used all the proposed policies and techniques in these 10 sets of configurations.

Under Stable Power Scenarios: We observed that for the 16KB cache size,
configuration-1 consumes more energy than the other 4 configurations during stable power
because STT-RAM consumes more energy than SRAM. During a stable power supply,
we observed that the configuration with more SRAM ways consumes less energy than
others without relating to cache sizes. We observed that the 16K{8,0} setting consumes
less energy than all the other 4 configurations because it is like a pure SRAM-based
architecture), and after this, the 16K{6,2} setting consumes less energy than all the other
3 configurations. After 16K{6,2}, the 16K{4,4} setting consumes less energy than the
other two configurations, i.e., 16K{2,6} and 16K{0,8}. Compared to the pure STT-RAM
cache architecture, the 16K{6,2} setting consumes 38.10% less energy, and the 16K{4,4}
setting consumes 17.97% less energy. Compared to the pure STT-RAM cache architecture,
the 16K{2,6} setting consumes 5.82% less energy.

Similarly, we observed that the 32K{8,0} setting consumes less energy than all other
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Figure 3.9: Comparisons between Proposed and Baseline Architectures with Traditional
Checkpointing Approach.

4 configurations because it is like a pure SRAM-based architecture) and after this, the
32K{6,2} setting consumes less energy than all other 4 configurations for the 32KB cache
size. The order is the same as the 32KB cache size because a large SRAM size gives
more benefits during stable power. Compared to the pure STT-RAM cache architecture,
the 32K{6,2} setting consumes 42.91% less energy, and the 32K{4,4} setting consumes
26. 01% less energy. Compared to the pure STT-RAM cache architecture, the 32K{2,6}
setting consumes 13.37% less energy.

Under Unstable Power Scenarios: We observed that for the 16KB cache size,
configuration-5 consumes more energy than the other four configurations during an
unstable power due to backing up the SRAM contents to SRAM. During an unstable
power supply, we observed that the configuration with more STT-RAM ways consumes

less energy than others without relating to cache sizes. We observed that the 16K{0,8}
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Table 3.4: Different Cache Configurations Used to Analyze Proposed Policies

Configuration | Cache Setting | Cache Size | Associativity

1 16K {0;8} 16KB ?owiﬁy SRAM, 8-way STT-RAM}
2 16K {2,6} 16KB ?zwiﬁy SRAM, 6-way STT-RAM}
3 16K {4.4} 10KB ?4W;Zy SRAM, 4-way STT-RAM}
4 16K {6,2} 16KB ?E;V.Vviﬁy SRAM, 2-way STT-RAM}
. 16K {8,0} 16KB ?8WV?ZY SRAM, 0-way STT-RAM}
6 32K {0.8} S2RB ?E)V.fiﬁy SRAM, 8-way STT-RAM}
7 32K {2,6} 32KB ?zwiiﬁy SRAM, 6-way STT-RAM}
8 32K {44} 32KB ?fngy SRAM, 4-way STT-RAM}
9 32K ({6.2} 32KB E{gﬁwv&gy SRAM, 2-way STT-RAM}
10 32K {8,0} S2KB ?swiﬁy SRAM, 0-way STT-RAM}

setting consumes less energy than all other four configurations because it is like a pure
STT-RAM-based architecture), and after this, the 16K{2,6} setting consumes less energy
than all three configurations. After 16K{2,6}, the 16K{4,4} setting consumes less energy
than the other two configurations, i.e., 16K{6,2} and 16K{8,0}. Compared to the pure
SRAM cache architecture, the 16K{2,6} setting consumes 16.70% less energy, and the
16K{4,4} setting consumes 12.19% less energy. Compared to the pure STT-RAM cache
architecture, the 16K{6,2} setting consumes 7.11% less energy.

Similarly, we observed that the 32K{0,8} setting consumes less energy than all other
four configurations because it is like a pure STT-RAM-based architecture) and after this,
the 32K{2,6} setting consumes less energy than the three configurations for the 32KB
cache size. The order is the same as the 16KB cache size because a large STT-RAM
size gives more benefits during unstable power, where it backups more data and reduces
both backup and restore overhead. Compared to the pure SRAM cache architecture, the
32K{2,6} setting consumes 21.10% less energy, and the 32K{4,4} setting consumes 15.49%
less energy. Compared to the pure STT-RAM cache architecture, the 32K{6,2} setting

consumes 9.14% less energy.

3.4.3.5 Analysis for Backup & Energy Efficiency

For the hybrid architecture model, our design performs a backup during a power failure,
and when the power comes back, it performs a memory restore operation. As a result, we

define the energy required to execute the application in Equation 3.1.
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Eoverall = Eeacec + Ebackup + Erestore (31)

Where E,erqu is the energy required to execute the overall application, Fege. is the
energy required to execute the program. We backup the system state by copying all
register contents and SRAM cache blocks to NVM. The energy consumed by the backup
procedure is Ep,cryp, Where it depends on the number of bytes to be backed up to NVM

as shown in Equation 3.2.

Ebackup = Nw7L1 * €w  sttram + Nwimain * ewipcm (32)

Where N,, 11 is the number of writes to STT_RAM, Ny main is the number of writes
to main memory, ey sttram is the energy per write for the STT-RAM and ey, pem is the
energy per write for PCM RAM

The energy required to restore volatile contents from NVM is E,.¢sore, Where it depends

on the number of bytes to be restored from NVM and can be defined as follows:

Erestore - NT7L1 * € sttram + Nrimain * eripcm (33)

Where N, 1 is the number of reads to STT_RAM, N, ,qin is the number of reads
to main memory, €, siram i the energy per read for the STT-RAM and e, pem is the
energy per read for PCM RAM. Whenever the power comes back, the size of the restored
contents is the same as the content that was backed up during a power failure. Thus,
Equation 3.2 and Equation 3.3 were interrelated in terms of sizes, and as we are doing
automatic restoration, so we don’t have any restore overhead in our proposed hybrid cache
architecture.

one of our objectives is to maximize the backup efficiency (), which is defined as shown

in Equation 3.4.

Nw_Ll
Nw7L1 + Nwimain

n= (3.4)

If we achieve less Nypites, our n increases. Thus, we achieve one of our objectives by
reducing Nyrites-

Lastly, we define energy efficiency as the ratio of the energy consumed during normal
execution without any power failures to the energy consumed during power failures. Let

0 be the energy efficiency as defined in Equation 3.5.

E !
9 _ norma 3.5
Eoverall ( )

Here, FE,orma is the energy required for normal execution without any power
interruptions.

As shown in Fig. 3.11 and Fig. 3.12, we performed experiments to analyze the backup
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Figure 3.11: Comparison of Backup Efficiency () during Power failures

efficiency (1) and energy efficiency () for both proposed and existing architectures. The
values of 17 and 0 are normalized with the baseline architecture. Our proposed architecture
improves n by 32.52% and 6 by 43.41% due to the proposed backup strategy. The other
reason for the improvement in 7 and 6 is a reduction in Epgckyp and By.

We calculated the average backup time (By), i.e., the time required to backup all the
SRAM contents to NVM. We also evaluated a random intermittent power system, where
power failure occurs very often and randomly, to check B; and the efficiency of the proposed
architecture. The performance and energy consumption values are normalized based on
the baseline architecture. We compare the average B; with the baseline, as shown in
Fig. 3.10.

The limitations that we observed in this chapter are as follows: (1) This chapter limits
the NVM at the L1 and main memory levels; (2) This work does not support fixed energy

constraints, which means that the proposed architecture does not perform safe backup
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during power failures using a fixed amount of energy; and (3) The proposed architecture
consists of a prediction table, implying that optimized prediction-based techniques for

these hybrid cache architectures may still exist.

3.5 Summary

In this chapter, a hybrid cache architecture at L1 has been proposed for intermittently
powered embedded systems. The proposed architecture is beneficial for IoT applications,
where power failures are often unpredictable. Due to its high write latency and energy
consumption, NVM introduces overhead in hybrid caches. We proposed an efficient
prediction-based placement policy and an intelligent migration policy that efficiently uses
SRAM and STT-RAM. We reduce the number of writes to STT-RAM using the proposed
prediction table. Compared to the baseline architecture, the proposed architecture reduces
STT-RAM writes from 63.35% to 35.93%. As a result, our energy consumption and
execution time are reduced.

We compared the proposed architecture with the state-of-the-art and baseline
architectures. The proposed architecture improves energy and backup efficiency. We
proposed a backup strategy to ensure efficient backup of the program state. During
a power failure, the proposed backup strategy helps to recognize important blocks and
migrate them to the STT-RAM cache. Compared to baseline and existing architectures,

the proposed architecture requires less backup time.



Chapter 4

NVM based Last-Level Cache
Architecture under Energy

Constraints

This chapter comprises an architecture that ensures safe backup of volatile contents during
a power failure under a given energy constraint. Non-volatile memory (NVM) based
processors were explored to store the program state during a power failure. The energy
stored in a capacitor is used for a backup during a power failure. Since the size of a
capacitor is fixed and limited, the available energy in a capacitor is also limited and fized.
Thus, the capacitor energy is insufficient to store the entire program state during frequent
power failures. Using a proposed dirty block table (DBT) and a writeback queue (WBQ),
this work limits the number of dirty blocks in the L1 cache at any given time. This chapter
begins with an introduction in Section 4.1. Section 4.2 describes the proposed architecture
in detail, which is finally followed by a detailed experimental setup and results and analysis
in the context of stable power and intermittent power supply scenarios in Section 4.3. We

write the summary of this work in Section 4.4.

4.1 Introduction

Non-volatile processors (NVP) have been proposed [10, 203, 204] as a solution in the past.
An NVP stores the processor state in NVM during a power failure. Thus, NVP resumes
the application’s computational tasks once the power supply is restored, thus achieving
faster recovery and backup speeds compared to traditional processors.

During a power failure, NVP needs to store volatile memory content (registers/SRAM
caches) in an NVM such that the application can restart from the same point. The size of
the registers and the content of the SRAM caches determine the time and energy required
for the backup. Although using no SRAM caches reduces backup time and energy to
almost negligible, it significantly impacts performance.

When using battery-less hardware, the device must be turned off when the harvested
power is no longer available. To avoid sudden power failures and fluctuations, such devices
accumulate energy in a capacitor that smoothens power availability and provides energy
during power failures [5, 47, 48]. Thus, during a power failure, the energy stored in
a capacitor is used to backup the processor state. The entire process state in volatile

memory must be backed up to ensure correctness. In addition, cache lines store a copy of
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data elements present in memory; therefore, cache lines that are not modified need not be
backed up. However, in the worst case, all cache lines could be dirty.

For example, if the base architecture consists of NVM in LLC and main memory as
shown in Fig. 1.3 (b). So, we require a capacitor that helps to backup the entire L1 dirty
blocks to PCM or STT-RAM. Equation 4.1 formulates the backup energy required for
architecture-2. In the worst case, we need to backup all L1 contents to STT-RAM or
PCM.

Ebackup = NB/Ll X (ewisttram) (41)

Where Epgcrup is the backup energy required for the base architecture during a power
failure. Npg /L1 18 the number of blocks at L1, and ey, sttram is the energy per write for the
STT-RAM cache block.

Since the capacitor energy storage capacity is limited and fixed, only fixed SRAM
contents can be copied to NVM during a power failure.

Usually, a capacitor has fixed energy (Ecupacitor) that can only backup a fixed number
of cache blocks (K) during a power failure. In the worst case, we need to backup the
entire L1 content to either STT-RAM or PCM for the base architecture. We need a
larger capacitor to backup all L1 contents, as shown in Equation 4.1, which is infeasible
in practice. A large capacitor requires more time to charge. Thus, maintaining the larger
capacitor will not help us during frequent power failures, resulting in faulty computations.
This observation motivated us to propose an architecture that uses fixed energy to backup
the L1 dirty cache contents during a power failure.

We defined Ecgpacitor in Equation 4.2. Where C is the capacitance, and V is the

operating voltage.

1
Ecapacitor = §CV2 (42)

A sub-optimal solution is to constrain the cache size based on the energy available in a
capacitor or design the capacitor to store the entire cache. Therefore, given E.qpacitor as

constant, our objective is to maximize the cache blocks K. We define K using Equation 4.3.

K= Ecapacitor - Ereg_file (4.3)

Cw _ sttram

Where K is the maximum number of blocks that can backup to NVM during a power
failure. Here E,cq fiie is the energy required to backup the register file to STT-RAM.

Instead of saving entire SRAM contents during a power failure, we backup only K
blocks from the L1 cache to NVM. Where K << (Ndz‘rty/Ll) w.r.t base architecture
during a backup procedure.

Thus, we require a capacitor of size C' that can provide energy of > Eiqpacitor; this
ensures that the K blocks are completely and safely backed up to NVM. We assumed that
the capacitor energy was fixed and could not be replaced again. As a result, Ecqpacitor 1S
sufficient to backup K blocks from the L1 cache and the register file contents to NVM,



Chapter 4. NVM based Last-Level Cache Architecture under Energy Constraints 53

which we explained in section 4.2.2.

The main objective here is to use the given E qpacitor efficiently and complete the backup
within the given Eiqpacitor during a power failure. We need to restrict the number of dirty
blocks to K to achieve the above objective. We need to address the following issues that

help to restrict the number of dirty blocks to K:

1. The number of dirty blocks at any point in time should be counted and tracked.

2. The write time to LLC is longer than the L1 cache. Every (K + 1)th dirty block
would require additional time to write back to the LLC. The processor would stall
during this time, which degrades the system’s performance. How can we avoid this

unnecessary stalling?

3. We need to decide which block should be replaced when the dirty blocks are more
than K.

4. Where should all dirty blocks be stored during a power failure?

In this chapter, we address challenge-1 and 4 described in chapter 2, and we achieve
objective 2 discussed in chapter 1 by proposing an NVM-based architecture. In order to

solve the above issue mentioned, we brief our contributions as follows:

e In the proposed architecture, we divided K into M + N blocks. To address the first
issue, we propose a dirty block table (DBT) that tracks dirty blocks M [33]. We
discuss DBT in section 4.2.

o We introduced a write-back queue (WBQ) at the L1 cache that tracks N dirty blocks,

which resolves the second issue. We discuss WBQ in the section 4.2.

e To address the third issue, we explore two different replacement policies. These

replacement policies are discussed in section 4.2.1.

e The proposed architecture supports intermittent computing, and we introduced an
STT-RAM-based backup region at LLC, which provides additional storage space for

volatile data during power failures.

4.2 Proposed Architecture

The proposed architecture is shown in Fig. 4.1. Each cache block contains a valid bit (V),
a dirty bit (D), a tag, and data.

The algorithm 4 refers to whenever there is a write hit in the L1 cache. Line 1 checks;
if a write hit occurs and the dirty bit is 0, we set the dirty bit to 1 and create an entry in
DBT. Line 3 checks whether the number of valid DBT blocks is equal to M. If the number
of valid blocks in DBT equals M, we use the DBT replacement policy to make space for
the new entry. Line 6 checks if there are more than N entries in WBQ); the processor stalls

to complete a writeback to LLC. Line 12 determines whether the number of valid blocks
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in DBT is less than M and inserts an entry into DBT. Line 15 determines whether there is
a write request and if the dirty bit is already set to 1. If Line 15 becomes true, we update
the WC field in DBT.

Dirty Block Table
CPU V [(set,way}| we [1
A
=
\ 4 &
T — |2
1 1 1 a
SRAM | )] « | [[3
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Figure 4.1: Overview of Proposed Architecture that consists of SRAM-based cache at L1,
STT-RAM-based cache at LLC, and PCM at main memory, which tracks and backup the
finite Dirty blocks from L1 to LLC using the proposed DBT and WBQ.

If we find any dirty block, we make an entry in DBT. DBT stores dirty block information
in four fields: valid bit (V), set, way, and write counter (WC). DBT is implemented as an
associative buffer of M entry. DBT does not impact the clock period because it does not
come under the critical path. When a victim entry is chosen from DBT for replacement,
the tag information of that entry is moved into WBQ.

WBQ has N entries that store the {set, way} field information. To hide the latency of
STT-RAM writes, we use a writeback queue in a standard mechanism. WBQ works as
a queue and writes the data to LLC to maintain N entries. When the data are written
from WBQ), the dirty bit in the cache is cleared. We update the modified value in WBQ
whenever there is a write hit to the WBQ entry.

The primary importance of WBQ is seen in a scenario where we need to write back
the data to LLC, which takes an additional number of cycles for every (K + 1)th block.
During this time, the processor would halt for the ‘X’ number of cycles to write one of

the (K + 1)th blocks to LLC, where X is the number of cycles required to complete one
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STT-RAM write. This additional stalling degrades system performance and consumes a
significant amount of energy.

Rather than saving the entire contents of the SRAM, we backup M + N dirty blocks
to the STT-RAM. This reduces writes to STT-RAM and PCM during a power failure. In

case of a miss at the L1 cache, the architecture is the same as the conventional architecture.

Algorithm 4: L1 cache hit access
On access to block b in set s
1. if (b.write) & !(b.D) then
2: b.D =1

3:  if DBT.size() == M then

4: invokes replacement policy.
5: replacement policy returns a victim DBT entry.
6: if WBQ.isFull() then

7 STALL

8: else

9: Make an entry in WBQ.
10: end if

11:  else

12: Make an entry in DBT.

13: Update WC field in DBT.
14:  end if

15: else if b.write then

16:  Update WC.

17: else

18:  This is a read-hit case; provide the data.
19: end if

4.2.1 Replacement Policy in DBT

When the DBT size exceeds >M, we require a replacement policy in the DBT to replace
any of the M entries. The traditional LRU replacement policy does not work for our
architecture because we want to replace a block based on the number of writes or the write
behavior. For the proposed architecture, we explore two replacement policies. First, the
least frequently written (LF'W) policy replaces an entry that has received the least number
of writes compared to all other entries in the DBT. Second, the least recently written
(LRW) policy maintains the recency information for each block. Instead of replacing the
block based on write counts, the LRW policy recommends replacing the most recently
written block to preserve write access recency information.

We introduce a write counter (WC) field in the DBT to identify the LFW block; the
size of the WC depends on ‘M. If a write request is made to any DBT entry, we increment
the WC by one. For instance, the WC has a size of 5 bits. If the WC of the requested entry
is equal to the maximum value (2% — 1), we do the logical right shift, i.e., we decrement
(2°/2) from all DBT entries. For example, the size of the WC is 5 bits, and the DBT
has four entries with the WC values as follows {19, 17, 31, 3}. Suppose that a new write
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request is received for the third entry. The WC value for the third entry exceeds 31; we
subtract 16 from all DBT entries, which becomes {3, 1, 15, 0}. We replace the entry with
the lowest WC value during a replacement request.

We used the LRW field in the DBT to implement the LRW replacement policy. The
LRW field has a size of [logM| bits. For example, if M is 16, we require a 4-bit LRW
field. The implementation of LRW is identical to that of the 4-bit priority queue. When
we use the LRW policy, we replace the WC field in DBT with the LRW field.

4.2.2 During Intermittent power supply

Apart from the STT-RAM-based LLC, we introduce a backup region (BR). STT-RAM is
used to implement the backup region. The backup region can always have a maximum size
of K blocks + reg file. To read/update the backup region, we used the same access latency
and energy values as the STT-RAM cache. During a power failure, we have registers and
K block (M+N) contents to backup. When the power comes back, we move the contents
of the backup region to the L1 cache. With these contents, we begin the execution.
Validity of Proposed work: The following activities occur in the system during a

power failure and before initiating the backup procedure.
1. Except for the processor, all peripherals of the system receive power-off signals.
2. As the processor is stalled, no new instructions are carried out by the processor.

(a) Since all peripherals are switched off, no peripheral can issue an interrupt during

this time.

3. Because the processor is stalled, it consumes no dynamic energy. As a result, we can

use the energy of the entire capacitor to backup the volatile contents.

After completing the previous three phases, we initiate the backup procedure. During
backup, volatile contents are stored in the register file and the SRAM-based cache;
a specially designed controller is responsible for saving the volatile contents to the
STT-RAM-based BR at LLC. During backup, the controller reads the (set, way) fields in
DBT and WBQ one entry after another to identify a block in the L1 cache, then writes
the dirty data to the STT-RAM-based BR at LLC. The controller performs the following
operations: reading from the register file, reading from the SRAM-based cache (‘K’ block
data), and writing to the STT-RAM-based BR at LLC. In the proposed architecture,
the register file size and the number of dirty blocks at the L1 cache are minimal, and
the backup procedure requires a constant and fixed number of cycles. As a result, the
proposed architecture requires a fixed overhead for backup.

The processor has been set to shutdown mode once the backup procedure has been
completed. We use the energy of the capacitor (Ecqpacitor) to perform the backup. When

power is restored, we perform the same operations as in a conventional processor.
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Therefore, for a given capacitor energy, system configuration, register files, and
read /write parameters for the memory system, we define the required number of K blocks

in section 4.1 using Equation 4.3.

4.3 Experimental Setup and Results

4.3.1 Experimental Setup

The proposed architecture is evaluated using the gemb simulator [41] and 14 MiBench
benchmarks [74]. Our targeting applications primarily work with embedded devices.
Based on the literature survey, Mi-Bench Suite is the preferred set of applications for
embedded devices. As a result, we compared the proposed architectures to baselines and
existing architectures using the Mi-Bench suite. Table 4.1 shows the micro-architectural
parameters used for implementation. We collected dynamic energy and latency values for
a single read and write operation to SRAM and STT-RAM using Nvsim [70], as shown in
Table 3.2.

Table 4.1: System Configuration

Component Description
CPU core 1-core, 480MHZ

Block size is 64-byte, 4-way associative
L1 Cache Private cache

(16KB D-cache,and 16KB I-cache)
Block size is 64-byte, 16-way associative
Private cache

(128KB D-cache, and 128KB I-cache),
write-back cache policy

VB - 1bit, WC - 6bits

Size Parameters | K- 16; M- 12, N- 4, LRW- 4bits, and
C should be > 1.92 nF

Main memory 128MB PCM

Clock Period: 2ns,

SRAM Read: 1 Cycle,

SRAM Write: 2 Cycles,

Others STT-RAM Read: 2 Cycles,
STT-RAM Write: 10 Cycles,

PCM Read: 35 Cycles, and

PCM Write: 100 Cycles

Last-Level Cache

4.3.2 Baseline Architecture

We modeled three baseline architectures to compare them with the proposed architecture,

as shown in Table 4.2.

e In L1, Baseline-1 uses a write-through policy. As a result, L1 contains no dirty

blocks. Baseline-1 uses the least amount of backup energy during a power failure.
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Table 4.2: Overview of Baseline Architectures Configurations

Architecture | Memory Policy
L1: SRAM (32 KB) Write-through
Baseline-1 LLC: STT-RAM (256 KB) Write back
Main Memory: PCM (128 MB) | -
L1: SRAM (32 KB) Write back
Baseline-2 LLC: STT-RAM (256 KB) Write back
Main Memory: PCM (128 MB)
L1: SRAM (4 KB) Write back
Baseline-3 LLC: STT-RAM (256 KB) Write back
Main Memory: PCM (128 MB)

e At L1, Baseline-2 uses a write-back policy. As a result, the number of LLC writes

decreases. Baseline-2 improves system performance over baseline-1.

e Baseline-3 has a 4 KB L1 cache and the same LLC and main memory sizes as in
baseline-2. Baseline-3 helps to determine whether using small-size volatile memory
at L1 improves performance during a stable power supply. During a power failure,

our proposed backup contents are the same size as baseline-3.

Under a stable power supply, we compared baselines 1, 2, and 3 with the proposed
architecture. We compared baseline-2 with the proposed architecture during frequent
power failures. Proposed policies such as DBT, WBQ), and replacement policies are not

included in the baselines 1,2, and 3 architectures.

4.3.3 Results & Analysis

The proposed architecture is evaluated in this section under stable power and power

failures. The proposed architecture is compared with two baseline architectures.

4.3.3.1 Number of Writes to NVM

In order to reduce the system’s energy consumption, we first need to reduce the number of
writes to both STT-RAM and PCM. We performed experiments to compare the number
of writes for NVM in the baseline and the proposed architectures. All values shown in
Fig. 4.2 and Fig. 4.4 are normalized with the baseline-1 architecture. All values shown in
Fig. 4.3 are normalized with the baseline-3 architecture. Baseline-2 receives fewer writes
than the proposed architecture at LLC and PCM by 14.11% and 7.84%, as shown in
Fig. 4.2. Compared to baseline-1, the proposed gets 18.97% fewer writes in the LLC and
10.66% in the PCM, as shown in Fig. 4.2.

4.3.3.2 Analysis for Execution Time and Dynamic Energy Consumption &
Experiments to Compare the Replacement Policies

Under Stable Power Scenarios: During a power failure, the proposed architecture
only backs up the content of DBT and WBQ to LLC.
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The combined size of DBT and WBQ is approximately less than or equal to 4 KB.
As a result, we compare the proposed architecture to baseline 3 to see how it performs in
normal operations. As shown in Fig. 4.3, architecture-3 performs poorly compared to the
proposed and baseline architectures. Compared to baseline-3, the proposed architecture
takes 38.79% less execution time during regular operation. Thus, using a small L1 size
cache does not improve performance during a stable power supply.

As shown in Fig. 4.3, we compared the architectures with the LRW and LFW policies.
As shown in Table 4.3, the proposed architecture uses the LEW replacement policy, and
the proposed LRW architecture uses the LRW replacement policy instead of LFW. As
shown in Fig. 4.3, the proposed architecture takes 13.11% less execution time than the
baseline-1 architecture and 5.10% more execution time than the baseline-2 architecture.
The proposed architecture with the LEW policy performs better than the architecture
with the LRW policy.

Table 4.3: Overview of the Different Possibilities for the Proposed Architecture that are
Used for the Comparisons

Proposed
Base Architecture DBT &
Proposed Architecture | (L1: SRAM, WBQ LFW | LRW | BR
LLC-STT-RAM,
Memory: PCM)
Proposed with LRW v v X v v
Proposed
without BR v v X X
Proposed with LRW
without BR v v/ X v X
Proposed Architecture | v v X
v- Supported , X- Not Supported

As shown in Fig. 4.4, the proposed architecture consumes 17.56% less energy than the
baseline-1 architecture and 4.93% more energy than the baseline-2 architecture. Under
a stable power supply scenario, the proposed architecture consumes less energy than
baseline-1 and more energy than baseline-2.

Under Unstable Power Scenarios: We simulate frequent power failures assuming
that a power failure occurs every 2 million instructions. The open-source version of
the Gemb core does not model an intermittent power supply processor. By introducing
interrupts, we modified gem5 to support intermittent power supply processors. So, for
every 2 million instructions, there is an interrupt, which the processor model admits as
a power failure. The Gemb simulator is used to run all the experiments with one billion
instructions. We assumed that a power failure occurs every 2 million instructions because,
on average, 2 million instructions take approximately 25-30 ms of time to execute. In
another way, there is a power interruption every 30 ms, so these power failures are not as
frequent as they would be in real life. Therefore, the results are rather conservative.

The proposed architecture outperforms the baseline-2 architecture by 19.61% during
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frequent power failures for execution time. This advantage is due to DBT and WBQ);
most L1 requests result in hits, which reduces performance overhead. Another significant
advantage of the proposed architecture is the explored replacement policies. During
a stable power supply, the proposed replacement policy helps save important blocks
(write-intensive blocks) at the L1 cache rather than evicting them. Thus, incorporating
DBT and WBQ improves the proposed architecture’s performance under intermittent
power.

All values shown in Fig. 4.5 and Fig. 4.6 are normalized with the baseline-2 architecture.
The proposed architecture consumes 20.94% less energy than the baseline-2 architecture, as
shown in Fig. 4.5. We evaluated the proposed architecture with both replacement policies.
The architecture that uses LEW performs better than LRW, as shown in Fig. 4.6.
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Figure 4.6: Comparisons between LRW and LFW Replacement Policies with Proposed
and Baseline Architectures under Unstable Power.

4.3.3.3 Experiments to determine the K, M, and N Values

We performed experiments to determine the K, M, and N values as shown in Fig. 4.7 and
Fig. 4.8. Where ‘K’ is the total number of dirty blocks at any time in the L1 cache. ‘K’
is denoted as M+N, where M is the total number of entries in DBT and N is the total
number of entries in WBQ.

We performed experiments for various K values, as shown in Fig. 4.7. We performed
experiments with various K values from K=8 to K=128. For all experiments shown in
Fig. 4.7, we assumed that (M, N) was equal. For example, if K=16, M=N=8. As shown in
Fig. 4.7, increasing the K value consumes higher energy values. We assume the capacitor

energy as input; thus, K is also input to our design based on Equation 3.3. We analyze
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Figure 4.7: Energy Consumption for Different K Values under Stable Power.

various K values because different sizes of capacitors are available on the market. The
size of M entirely decides the size of the LRW field. Fig. 4.8 already shows the energy
consumption values for various M values. On the basis of the M value, we can set the
LRW field’s size. If we look at Fig. 4.7, we observe that the system uses less energy up to

K = 42, then gradually consumes more energy as K increases.
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As shown in Fig. 4.8, we used K as 32 in these experiments. Within K = 32, we
experimented with various pairs (M, N). In Fig. 4.8, when M=2, N becomes 14 (16-M),
and when M=12, N becomes 4. We performed experiments with various possible (M, N)
pairs such as (6, 10), (16, 16), (24, 8), and (32, 0). We observe that (26, 6) uses less energy
than the other pairs. As a result, for K=32, we used (M, N) as (26, 6) throughout this
work. In the same way, we experimented to identify the best pair (M, N) for K = 64. We
observe that (54, 10) uses less energy than all other pairs for K=64.

We performed experiments on the same benchmark suite used in section 4.3.1 to
determine the K, M, and N values. We selected the K, M, and N values on the basis
of the average values. The optimal K, M, and N values vary depending on the application
behavior and the system configuration. We also observed that for the selected K, M, and
N values, most of the benchmarks (11 out of 14) outperformed others. The variation
between the other K, M, and N values and the selected values is negligible for the other
three benchmarks. As a result, we selected the values of K, M, and N after considering all
the benchmarks. We have shown the overall average values in Fig. 4.7 and Fig. 4.8. Table
4.1 lists the selected values of K, M, and N.

4.3.3.4 Analysis for Dynamic Energy with Unified NVM Architecture

We use
STT-RAM at LLC and PCM at main memory throughout this work. In architecture-1,
SRAM is used at L1 and LLC, and PCM is used at the main memory, as shown in Fig. 4.9

(a), i.e., traditional architecture.

We chose NVM for LLC and main memory based on previous discussions.

CPU CPU CPU CPU
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éi Volatile L1 Volatile L1 Non-Volatile L1 Volatile L1 i é
o 3 3 z z s
Si Volatile LLC Non-Volatile LLC Non-Volatile LLC Non-Volatile LLC BR i g
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q Main Memory Main Memory Main Memory Main Memory q

(c) Architecture-3 (d) Architecture-4

(a) Architecture-1 (b) Architecture-2

Figure 4.9: Architecture Designs to integrate NVM (a) Introduce NVM at Main-memory,
and (b) Introduce NVM at the last-level cache and main-memory levels, (c¢) Introduce
NVM at both the cache levels and main-memory level, and (d) Introduce NVM based
Backup-Region (BR) at the last-level cache.

Architecture-2 is shown in Fig. 4.9 (b), SRAM is used at L1, STT-RAM at LLC, and
PCM is used at the main memory, i.e., our base architecture. ¢) STT-RAM at L1, LLC,
and PCM is used at the main memory, but it does not consist of any STT-RAM-based
backup region. d) SRAM is used at L1, STT-RAM at LLC, and PCM is used at the main
memory, but this architecture consists of any STT-RAM-based backup region. These
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comparisons help to evaluate how bad or good our base architecture is under stable and
unstable power scenarios.

Under Stable Power Scenarios: We performed experiments with the unified NVM
architecture, i.e., architecture-3. We compared the unified NVM architecture with the
proposed architecture to determine how good or bad architecture-3 will perform under a
stable power supply. We compare architecture-3 with architectures 1 and 2 for dynamic
energy consumption, as shown in Fig. 4.10. Under a stable power supply, architecture-1
outperforms architectures-2, 3, and the proposed architecture. This advantage is due to

the use of volatile memory at L1 and LLC in architecture-1.
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Figure 4.10: Comparisons between Proposed Architecture and Unified NVM-based
Architectures for Dynamic Energy Consumption under Stable Power.

We observed that NVM receives more read /write accesses when the entire memory at L1
is NVM-based. Compared to the proposed architecture, architecture-3 consumes 43.25%
more energy and has a performance overhead of 38.99% under a stable power supply. This
analysis motivated us to compare the proposed architecture with one that uses NVM-based
memory for only DBT and WBQ at the L1 cache. The proposed architecture consumes
19.41% less energy than this design.

We performed experiments to compare architecture-3 with the architecture that uses
NVM-based DBT and WBQ for the number of NVM writes, as shown in Fig. 4.11. Under
stable power, the NVM-based DBT and WBQ design consumes 37.17% fewer writes than
architecture-3 and 21.79% more writes than the proposed architecture. As a result, a
unified NVM architecture is not a good choice to use for regular operations.

Under Unstable Power Scenarios: We want to examine whether all these benefits
are due to PCM at the main memory level. Therefore, we compare the energy consumption

for four architectures shown in Fig. 4.12. As shown in Fig. 4.12, architecture-1 consumes
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Figure 4.11: Comparisons between Proposed Architecture and Unified NVM-based
Architectures for NVM Write operations under Stable Power.

more energy than the other three architectures because the number of writes to PCM is
greater in architecture-1. The only difference between architecture-2 and architecture-4 is
that architecture-4 is BR-enabled.

The performance of BR-enabled architecture is more effective than that of
non-BR-enabled architecture, i.e., architecture-2. With a BR at LLC, we can directly
place those K blocks in BR and quickly restore the contents of the L1 cache. When
we remove BR from LLC, we must first update LLC. If LLC is full, we need to replace
some blocks at LLC to make space for the L1 dirty blocks. We use the LRU replacement
policy at LLC, which increases the number of writes to PCM compared to the BR-enabled
architecture. We assume that our system has a fixed-energy capacitor that can only backup
the K blocks and the register file. When we remove BR, from LLC, the capacitor no longer
supports safe backup because we have to lose K or < K blocks (either from L1 or LLC).
As a result, we either end up with the wrong results or have to restart the application.
As illustrated in Fig. 4.5, the BR-enabled architecture consumes less energy than the
architecture without BR at LLC. This benefit is due to the increased number of writes
to PCM. The proposed architecture consumes less energy than the baseline-2 architecture
because frequent power failures increase reads/writes to the NVM, as shown in Fig. 4.5.

Compared to architecture-1, architecture-2 consumes 19.02% less energy, and
architecture-4 consumes 32.64% less energy. Fig. 4.12 shows that architecture-4 is better
than the other three architectures. Therefore, not all of these improvements are solely
related to PCM since our proposed policies also help to achieve better performance and
energy.

We performed experiments with the unified NVM architecture, i.e., architecture-3.
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Figure 4.12: Comparisons between Architectures-1, 2, 3, and 4 for Overall Dynamic Energy
Consumption under Intermittent Power Supply.

All values shown in Fig. 4.12 are normalized with architecture-1. Under frequent
power failures, architecture-3 outperforms architecture-1, but not architecture-2 and the
proposed architecture. This advantage for architecture-3 is due to the usage of NVM at
L1 and LLC.

Architecture-3 consumes 23.01% more energy than the proposed architecture, i.e.,
architecture-4, as shown in Fig. 4.12. This benefit for the proposed architecture is
because the energy required for backing up the K blocks is less than that of the energy
required for architecture-3 during regular operations. Fig. 4.10 and Fig. 4.11 show that
architecture-3 consumes more energy and attracts more NVM reads and writes during
regular operations. Architecture-3 is not suitable for intermittent power supply scenarios
due to these overheads during normal operations. The unified NVM architecture requires

additional procedures to make the system more energy efficient.

4.3.4 Analysis for Backup Energy During Intermittent Power Supply

We performed a series of experiments to analyze the backup energy.

During frequent power failures, architecture-3 outperforms architecture-1 and the
proposed architecture for backup energy consumption. Compared to architecture-1,
architecture-4 consumes 35.57% less energy, as shown in Fig. 4.13. Because we need
to backup the entire L1 and LLC to PCM, architecture-1 requires more backup energy
than architecture-3. Due to the unified NVM architecture, architecture-3 only needs to
backup volatile register contents. Architecture-4 requires constant backup energy because

we only need to backup volatile register contents and K blocks to BR during a power
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failure. Thus, architecture-4 consumes more energy than architecture-3. We have shown
the required backup energy for architecture-1 and 4 in Equation 4.1. Architectures 3 and

4 use constant energy to store volatile contents.
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Figure 4.13: Comparisons between Architecture-1, 3, and 4 for Backup Energy
Consumption under Unstable Power.

4.3.5 Analysis for Execution Time & Dynamic Energy with Existing
Checkpointing Techniques

The proposed backup/restore strategy looks similar to checkpointing. We performed
experiments with a stable and an unstable power supply to compare the proposed
backup/restore strategy with existing checkpointing approaches. We used four different
checkpointing methods for these experiments.

First, we designed a traditional checkpointing technique, introducing a safe point at
every 4 million instructions. For every 4 million instructions, we backup the system state
to NVM. We restore from the main memory at each safe point and continue with the
application’s execution. Our proposed architecture outperforms traditional checkpointing
because backup occurs only during power failure.

Second, we used a checkpointing method proposed by Xie et al. [32]. Xie et al.
identified important volatile blocks that needed to be backed up during a power failure
using STT-RAM-based counters (DBCounter and MCounter). Xie et al. used the LRU
policy for replacement in NVM-based caches and volatile caches. Updating and accessing
these counters is similar to NVM writes and reads, which use more energy and slow down
the system. Because Xie et al. perform backup during a power failure, we compared

performance and energy consumption based on total NVM reads/writes.
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Third, we implemented a checkpointing procedure that creates a checkpoint whenever
the system state changes. For every write request, we increment the write counter (WC).
Once WC reaches the threshold, the checkpoint procedure is triggered, size of the WC size
is the same as the proposed system configuration.

Fourth, we implemented a checkpointing procedure that initiates a backup procedure
whenever the system state changes. During a power failure, the checkpoint procedure is
triggered and we compare the previous checkpoint data with the new checkpoint data,
block by block. Only volatile contents that differ from the previous checkpoint data are
backed up. Copy-by-Change checkpointing procedures are proposed by S. Ahmed et al.
[157, 158].

Under Stable Power Scenarios: We used the first three checkpointing methods for
these experiments to compare with the proposed architecture under a stable power supply.

All values shown in Fig. 4.14 and Fig. 4.15 are normalized with the traditional
checkpointing technique. The proposed architecture reduces performance overhead and
energy consumption by 41.27% and 37.95% compared to the traditional checkpointing
technique, the proposed architecture reduces performance overhead and energy by 19.03%
and 14.72% compared to the Xie et al. checkpointing technique, and the proposed
architecture reduces performance overhead and energy consumption by 39. 11% and 33.

10% compared to the third checkpointing technique as shown in Fig. 4.14 and Fig. 4.15.
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Figure 4.14: Comparisons between Proposed Backup and Different Existing Checkpointing
Techniques for Execution Time under Stable Power.

The traditional checkpointing technique is the standard and the worst-case scenario
for these intermittently powered systems. If we want to add another level of filtering
checkpoints, we can add a counter per cache block, and if any cache block reaches the

defined threshold, the checkpoint procedure is triggered. This checkpointing technique
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Figure 4.15: Comparisons between Proposed Backup and Different Existing Checkpointing
Techniques for Energy Consumption under Stable Power.

performs better than traditional checkpointing. However, the second checkpointing
technique increases the number of NVM accesses. Instead of checkpointing for every
safe point or for every > W case, we can add another level to reduce checkpoints by
placing a checkpoint only during a power failure. Xie et al. proposed a checkpointing
policy that only backups the dirty blocks selected during a power failure. Xie et al.
outperform the other two checkpointing policies. However, the proposed backup strategy
reduces performance and energy overhead compared to Xie et al., as shown in Fig. 4.14
and Fig. 4.15.

Under Unstable Power Scenarios: We used all four checkpointing methods for
these experiments to compare with the proposed architecture under an unstable power
supply.

All values shown in Fig. 4.16 and Fig. 4.17 are normalized with the traditional
checkpointing technique. For example, suppose that an unexpected power failure occurs
at the 7th million instruction. We re-execute the application from the 4th million
instruction because it is the closest safe point. These unnecessary executions increase
NVM writes/reads, consume more energy, and degrade system performance. Compared
to the traditional checkpointing technique, the proposed architecture reduces performance
overhead and energy consumption by 48.70% and 40.19%, as shown in Fig. 4.16 and
Fig. 4.17.

Compared to Xie et al., the proposed architecture reduces performance overhead and
energy consumption by 27.99% and 20.07%, as shown in Fig. 4.16 and Fig. 4.17. This
advantage is due to the selection of an LRU-based replacement policy in Xie et al. work

for updating the counters, which we observed as insufficient to reduce the number of writes
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Figure 4.16: Comparisons between Proposed Backup and Different Existing Checkpointing
Techniques for Execution Time under Unstable Power.

to NVM. Another reason is that Xie et al. did not backup the entire dirty block to NVM,
which requires the application to be re-executed, which consumes more energy during

frequent power failures.
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Figure 4.17: Comparisons between Proposed Backup and Different Existing Checkpointing
Techniques for Energy Consumption under Unstable Power.

Compared with the third checkpointing technique, the proposed architecture reduces
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performance overhead and energy consumption by 38.71% and 32.13%, as shown in
Fig. 4.16 and Fig. 4.17. During frequent power failures, backup/restore sizes increase in
this technique, potentially causing NVM reads and writes to increase, which degrades
system performance and consumes more energy. The proposed architecture reduces
performance overhead and energy consumption by 21.93% and 16.55% compared to S.

Ahmed et al. checkpointing policy, as shown in Fig. 4.16 and Fig. 4.17.

4.3.6 Analysis for Multi-Cache Levels and Multi-Core Designs

The proposed architecture consists of an SRAM-based L1 cache and an STT-RAM-based
LLC. We found two possibilities if we want to add one or two levels of cache to the proposed

architecture.

First, suppose that we introduce one or two levels of STT-RAM-based caches. In that
case, our proposed architecture has no impact or complications with this design because
we proposed a backup strategy that can only track and backup K dirty blocks from the
L1/L2/13 caches. Everything is the same as in the proposed architecture during a stable
power supply. We don’t need a backup of L2/L3 during frequent power failures because
these are already NVM-based caches. According to our proposed backup policy, we must
back up the contents of the registers and the L1 dirty contents to LLC. We must track
the number of dirty block contents in the L1 cache. This appears to be similar to our
proposed architecture and techniques. As a result, our proposed architecture does not

require additional methods and data structures for the first possibility.

Second, imagine that we have one or two levels of SRAM-based caches. In that case,
our proposed architecture makes a difference. This design is complicated because it is
necessary to limit the total number of dirty blocks from all levels of SRAM-based caches,
i.e., from L1/L2/L3 caches to K at any time. This issue requires several changes to
the proposed architecture for tracking and maintaining K dirty data at each level. If
the processor is multi-core, the problem becomes even more complex and introduces new
complications, such as cache coherence issues. Selecting volatile data and backing it up to
NVM requires significant energy and additional techniques during frequent power failures.
These extra procedures add various overheads, such as size and performance. However,

these complex systems are not required for embedded devices or applications.

NVM-enabled microcontrollers do not contain a second-level cache. Texas Instruments
(TI)-based NVPs, such as the MSP430FR6989 and MSP430F5529, do not have a cache
and contain only main memory. The main memory of the MSP430FR6989 contains 2KB
of SRAM and 128KB of FRAM, while the MSP430F5529 contains SRAM and flash. For
these intermittently powered IoT systems to run embedded applications, we don’t need
a multi-core processor with complex cache hierarchies; instead, one/two levels of caches
and a 1-core processor are sufficient. As a result, in this work, we did not examine the

proposed architecture for higher levels of cache or multi-core processors.
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4.3.7 Exploring Design Space for Various Parameter Combinations

In this section, we evaluate the proposed architecture for various combinations of
parameters. The parameters in our work are the cache size, main memory size, and sizes
of K, M, N, and WC. We intend to allow the end user to choose a suitable architecture
with an appropriate parameter size.

As shown in Table 4.1 and Table 3.2, we used the same experimental setup and
latency/energy values for NVM. Our design depends on the number of power failures
that occur. We performed experiments to observe the energy gains when the number of
power failures increased from 500 to 1000 and decreased from 500 to 200. Usually, we
introduce a power failure for every 2 million instructions, which means that by executing
1 billion instructions, we experience 500 power failures. We introduce a power failure for
every 1 million instructions to increase the number of failures from 500 to 1000. Similarly,
if we introduce a power failure every 5 million instructions, the total number of power
failures becomes 200.

So, our design space depends on (cache_size, Memory_size, K, M, N, WC,
Replacement__policies, BR, number of power failures). If we fix cache, memory, and
WC sizes w.r.t our experimental setup, our design space becomes large enough. Let
us take an instance to see how large our design space will become. For K = 16, the
possible K values are 16. If K = 16, possible pairs (M, N) are 16 * 16. For BR, possible
conditions are 2 (BR-enabled or not). For replacement policies, the possible ways are
2 (LRW or LFW). The number of power failures; the possible cases are 4 (as per the
experiments we performed) if we combine all these parameters to calculate the design
space size (16%16%16*2*2*4) equals 65,536 design choices for the given cache size, main
memory size, WC and K = 16.

We can notice from Table 4.4 that only one design choice performs better in all the
given combinations. For the given cache size, the main memory size, and K = 16, we find
that the combination of M = 12, N = 4, WC = 6, enabled by BR, and the number of
power failures=1000 is preferable to all other 65,536 design choices.

The limitations that we observed in this chapter are as follows: (1) This chapter limits
the NVM at the LLC and main memory levels; and (2) This work does not predict the
power failures beforehand, which means that the proposed architecture is not able to
identify the power failure in advance and what if the energy in a capacitor is not full and

cannot perform the safe backup during power failures.

4.4 Summary

In this chapter, we describe an NVM-based architecture. Using the proposed DBT
and WBQ, we see fewer writes to STT-RAM (LLC) and PCM (main memory). The
proposed architecture decreases STT-RAM writes by 18.97% and PCM writes by 10.66%
compared to the baseline-1 architecture. As a result, we have reduced energy consumption

by approximately 17.56%. However, the proposed architecture has 5.10% execution
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Table 4.4: Comparison of Different Possibilities for a given Cache size(L1/LLC) as 32KB/256KB and Main memory size as 64MB

Cache size Main Memory Number of Energy .
(L1/LLC) size K | M| N | WC | LRW/LFW | BR-enabled power failures | Gain (%) Compared with

8 6 2 |6 LFW Yes 500 13.60 Baseline-2

8 6 2 10 LRW Yes 500 12.35 Baseline-2

8 6 2 |6 LFW No 500 7.15 Baseline-2

8 6 2 |6 LFW Yes 200 11.76 Baseline-2

8 6 2 |6 LEFW No 200 6.84 Baseline-2

8 6 2 |6 LFW Yes 1000 14.32 Baseline-2

8 6 2 |6 LFW No 1000 7.58 Baseline-2

16 | 8 8 | 6 LFW Yes 500 15.37 Baseline-2

16 [ 12 |4 |0 LRW Yes 500 15.56 Baseline-2

16 |12 |4 |6 LFW No 500 8.230 Baseline-2
32KB/256KB | 64MB 16 |12 |4 | 6 LFW Yes 200 15.64 Baseline-2

16 |12 |4 | 6 LFW Yes 1000 18.04 Baseline-2

16 | 8 8 | 6 LFW Yes 200 14.45 Baseline-2

16 | 8 8 | 6 LFW No 1000 9.43 Baseline-2

16 |12 |4 |0 LRW No 200 8.60 Baseline-2

16 |12 |4 |0 LRW Yes 1000 16.63 Baseline-2
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overhead and 4.93% energy overhead compared to the baseline-2 architecture under a
stable power supply. We also compared the existing checkpointing policies with the
proposed architecture. We introduced an STT-RAM-based backup region at LLC that
helps for backup from L1 during a power failure. We also evaluated and analyzed the
unified NVM architecture with the proposed architecture. We explored various design
spaces to determine how our proposed architecture behaves when changing parameter
sizes.

Until now, we have only explored the challenges and the proposed policies for
NVM-based caches, either at L1 or LLC. Therefore, we also explore NVMs at the main
memory level by using the real-time micro-controllers that consist of NVM at the main

memory level in the next chapter.
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Chapter 5

An Energy Efficient Memory
Mapping Technique for NVM
based Hybrid Main Memories

This chapter explores an ILP-based energy-efficient memory mapping technique for
NVM-based hybrid main memories. Qur proposed technique gives an optimal mapping
choice that reduces the system’s Energy-Delay Product (EDP). We validated our system
using TI-based MSP430FR6989 and MSP430F5529 development boards. TI-based
MSP430FR6989 has a small SRAM and large non-volatile-based main memory, i.e.,
FRAM. To make the system energy efficient, we need to use SRAM efficiently. So,
we must select some portions of the application and map them to SRAM or FRAM. This
chapter is organized as follows. The introduction is provided in Section 5.1. Section 5.2
explains the system model and gives an overview of the problem definition. We discuss
the proposed work in Section 5.3, which explains the proposed ILP-based memory mapping
technique and framework that supports intermittent computing. The experimental setup

and results are described in Section 5.4. We write the summary in Section 5.5.

5.1 Introduction

For intermittently powered IoT devices, energy harvesting is the main source of energy.
Energy-harvesting sources such as piezoelectric materials and radio-frequency devices
extract a small amount of energy from their surroundings. We must use energy efficiently
in both stable and unstable power supply scenarios.

In order to utilize energy efficiently and to make the system energy efficient, we
primarily have two choices. The first choice is to reduce energy consumption by
proposing new techniques that use energy efficiently. The second choice is to increase the
number of different energy harvesters, which will accumulate more energy while increasing
maintenance costs. We need to maintain these many energy harvesters, which is not a
feasible solution. Thus, our main concern is to reduce energy consumption by proposing
new techniques that help to design an energy-efficient system.

Gonzalez et al. [205] mentioned energy as not an ideal metric to evaluate the efficiency
of the system. By simply reducing the supply voltage or load capacitance, energy can
be reduced. Instead of using energy as a metric, they suggested using the Energy-Delay
Product (EDP) as the energy-efficient design metric. The EDP considers both performance
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and energy simultaneously in a design. If a design minimizes the EDP, we can call such a

design energy-efficient. We define EDP in Equation 5.1.

EDP = Esysem X Num__cycles (5.1)

Where Egystem is the energy consumption of the system, Num_ cycles is the number
of CPU cycles.

During these frequent power failures, executing IoT applications becomes more
difficult because all computed data may be lost, and the application’s execution must
restart from the beginning. During power failures, we need an additional procedure to
backup/checkpoint the volatile memory contents to NVM.

Flash memory was the prior NVM technology used by modern microcontrollers at the
main memory level, such as MSP430F5529 [181]. Flash is ineffective for frequent backups
and checkpointing because its erase/write operations require a lot of energy. Emerging
NVMs outperform flash, including STT-RAM [206, 22], PCM [207], Re-RAM, and FRAM
[11]. Previous work has been demonstrated by incorporating these emerging NVMs into
low-power-based microcontrollers (MCUs) [11, 181, 154]. Recent NVM-based MCUs, such
as the flash-based MSP430F5529 and the FRAM-based MSP430FR6989, encourage the use
of hybrid main memory. The flash-based MCU, MSP430F5529, is made up of SRAM and
flash, while the FRAM-based MCU, MSP430FR6989, is made up of SRAM and FRAM
at the main memory level. The challenges associated with hybrid main memory-based
architectures, such as MSP430FR6989, are as follows.

1. FRAM consumes 2x more energy and latency than SRAM. This design degrades

system performance and consumes extra energy even during normal operations.

2. SRAM loses contents during a power failure and needs to run the application from
the beginning, which consumes extra energy and time. For large-size applications,
this design will not be helpful. Anyway, using only SRAM performs better during

regular operations.

3. We can design a hybrid main memory to get the benefits of both SRAM and FRAM.
The following questions must be answered and analyzed to use the hybrid main

memory design.

(a) How do we choose the appropriate sections of a program and map them to either
SRAM or FRAM regions? A significant challenge is mapping a program’s stack,
code, and data sections to either SRAM or FRAM.

(b) How and where should volatile contents be backed up to the NVM region during

frequent power failures?

The main question is which section of an application should be placed in which memory
region; this is essentially a memory mapping problem. In this chapter, we address

challenge-1 and 5 described in chapter 2, and we achieve objective 3 discussed in chapter
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1 by proposing an energy-efficient memory mapping technique. Concerning all of the

challenges mentioned above, we briefly review our contributions in this chapter as follows.

e To the best of our knowledge, this is the first work on the integer linear programming

(ILP)-based memory mapping technique for intermittently powered IoT devices.

e We incorporated energy harvesting scenarios into the ILP model such that the

frequency of power failures is considered as an input for our ILP model.

o We formulated the memory mapping problem to cover all the possible design choices.

We also formulated our problem in such a way that it supports large-size applications.

e We proposed a framework that efficiently consumes low energy during regular
operation and frequent power failures. Our proposed framework supports

intermittent computing.

e We evaluated the proposed techniques and frameworks on actual hardware boards.

5.2 System model and Problem Definition

This section discusses the system model for embedded MCUs and defines the mapping
problem for these MCUs.

5.2.1 System Model

We consider a simple, customized RISC instruction set with a Von Neumann architecture,
where the instructions and data share the same address space that supports at least 16-bit
addressing. Base architecture does not have a cache to avoid uncertainty. To make things
simple, we assume a single-cycle execution of the processor. The base architecture has a
small SRAM memory and a larger NVM.

The MSP430 is an example of such a processor. Non-volatile memory sizes range from
1 kilobyte (KB) to 256 KB, while volatile RAM sizes range from 256 bytes to 2KB. Both
SRAM and NVM can be accessed by instructions using a compiler/linker script. We can
modify the linker script to map memory according to the memory ranges specified by the

user. MSP430 does not have any operating system.

5.2.2 Problem Definition

Definition 4.1: Optimal Memory Mapping Problem: Given a program that consists of
various functions and global variables, sizes of SRAM and FRAM, the number of reads and
writes for each function/variable, frequency and duration of power failures, and the energy
required per read/write to the SRAM/FRAM. What is the optimal memory mapping for
these functions/variables in order to reduce the system’s EDP?

The inputs are : The number of functions; the number of global variables; energy per
write to SRAM and FRAM; energy per read to SRAM and FRAM; SRAM and FRAM
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sizes; Number of CPU cycles per function; the number of reads; the number of writes;
frequency and duration of power failures.

The output is: Mapping information for all functions and global variables, under
which the system’s EDP is minimized.

Definition 4.2: Support for Intermittent Computing: During power failures, we
must safely backup volatile contents to NVM. As stated previously, we must use SRAM
efficiently for energy savings; but again, how can we save the contents of SRAM? There
are two significant issues with intermittent computation. First, during a power failure,
all SRAM’s mapping information and register contents are lost, causing the system to
become inconsistent. Second, how do we backup/restore the mapping information and
register contents to ensure system consistency?

Our first objective is to minimize the energy of the overall system and the EDP of the
system. We need to support the proposed system even during frequent power failures. Our
second objective is to maximize the execution progress of the application during frequent
power failures. The progress of the application is a function of both the execution time

and the frequency of power failures (7), as shown in equation 5.2.

Progress = F' (NCEgecute * 1) (5.2)

We define the frequency of power failures in equation 5.3. It is the ratio between the
time consumed during regular execution without any power failures to the time consumed
during power failures, where NCpgecute is the number of cycles required to execute the

application during regular operation.

NCExecute

= orecute 5.3
NCIntermittent ( )

n
We define the number of cycles required during power failures in equation 5.4. We need

to perform the backup and restore operations during a power failure.

NCIntermittent = NCBackup + NCE:):ecute + NCRestore (54)

Where NCpggckup is the number of cycles required for the backup operation and

N CRestore 18 the number of cycles required for the restore operation.

5.3 Proposed Memory Mapping Technique

In this section, we discuss the details of the proposed mapping technique. Our main
objective is to pick the optimal mapping choice among all the design choices, which reduces
the system’s EDP. To achieve this, we proposed an ILP-based mapping technique [35]. The
overview of the proposed mapping technique is shown in Fig. 5.1. We also discuss how we

support intermittent computing for these MCUs.
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Figure 5.1: Overview of the proposed memory mappings in MSP430FR6989

5.3.1 ILP Formulation for Data Mapping for Intermittent Computing

We present the ILP formulation for the memory mapping problem mentioned in definition
4.1. We divide this ILP formulation into two parts, one for global variables and the
second for the functions. We have shown the overview block diagram of the proposed ILP
framework in Fig. 5.2. During the profiling and characterization process, we consider the

branch instructions and their behavior from the generated assembly code.
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Figure 5.2: Overview of the Proposed ILP Framework

For Global Variables: Let the number of global variables in a program be ‘G’. Let
the number of reads and writes to the variable ‘i’ be r; and w;. We divided FRAM’s 128
KB into two regions, i.e., FRAM, and FRAM;,, FRAM, memory region has 125 KB,
and the FFRAM, memory region has 3 KB.

We have two memory regions represented as Mem,; as shown in Equation 5.5; When j

= 1, we select the memory region as SRAM, and we use FRAM,, for j=2.
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M j=1 ; SRAM (5.5)
€m; = .
j=2 ;FRAM,

Let the SRAM / FRAM sizes be Size(Mem;) as shown in Equation 5.6; When j = 1,
we refer to the SRAM memory size in bytes, and when j = 2, we refer to the FRAM,,

memory size in bytes.

j=1 :SRAM
Size(Memj) = (5.6)
j=2 FRAM,

Let the energy required for each read/write to Mem; be E, ; and E, j. Let the
number of CPU cycles required to execute a global variable v; be NC,,, where Vi €
[1,G]). Using one-time characterization and static profiling, we gathered data such as per
read/write energy to SRAM/FRAM and the number of cycles.

We define a binary variable (BV); I; (v;), which refers to a variable v; allocated to the
memory region j. If I; (v;)=1 then the variable v; is allocated and I; (v;)=0 indicates that
the variable v; is not allocated. I; (v;), where (Vj € [1, Mem;],Vi € [1,G]) is defined as

shown in Equation 5.7.

1 w; is allocated to memory region j
0 otherwise

Constraints: There are two constraints, one is for BV; I; (v;) and one is a memory
size constraint. In any case, a variable v; is allocated to only one memory region, which
means that v; is allocated to either SRAM or FRAM but not both. This constraint is
defined in Equation 5.8.

Mem;

Y L(w)=1 (¥i€ll,G) (5.8)
j=1
The other constraint is related to the size of the memory. The allocated variables v;
and its Size(v;); Vi € [1,G]) should not be greater than Size(Mem; ). This constraint is
defined in Equation 5.9.

G
ZI]- (v;) * Size(v;) < Size(Mem;) (Vj € [1, Mem;]) (5.9)
i=1
Objective 4.1: The challenge of mapping global variables in a program to SRAM
or FRAM is to reduce EDP and improve system performance. Egopq is defined in
Equation 5.10. Here Eyopq is the energy required to allocate global variables to SRAM

or FRAM and execute those from their respective memory regions.
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Mem; @G

Eglobal = Z Z[ET_] X ri+ Ew_j X wz] (510)
j=1 =1

EDPyppq is defined in Equation 5.11. Where ED Py, is the energy-delay product
required to allocate global variables to SRAM or FRAM.

Mem; @
EDPglobal = Z ZIJ (Uz) [Eglobal X NC’Uz:I (511)

j=1 i=1

For Functions: Let the number of functions in a program be ‘N}. Let the number
of reads and writes to i’ function be r(F;) and w(F;), where Vi € [1, N¢]. The functions
consist of procedural parameters, local variables, and return variables. Internally, the
code/data of functions are divided into the text, data, and stack sections. We map at least
one section among these three sections to either SRAM or FRAM regions, i.e., Mem; and
Secy (i) defines section ‘k’ of it function as shown in Equation 5.12, when k=1, we refer
to the text section of it* function when k=2, we refer to the data section of i*" function,

and when k=3, we refer to the stack section of i** function.

k=1 ; Text
Seci(i) =< k=2 ;Data ;Vi€ [l,Ny] (5.12)
k=3 ; Stack

We define a BV; I; (Seck(i)), which refers to a section Secy, of i*" function is allocated
to only one memory region j. If I; (Secy(i))=1 then the section Sec; is allocated and
I; (Sec(i))=0 that indicates the section Sec; is not allocated. I; (Secy(i)), where (Vj €
[1, Mem;],Vi € [1,N¢]), Vk € [1, Seci(i)]) is defined as shown in Equation 5.13.

) 1 Secy, of i function is allocated to j
I; (Secy(i)) = (5.13)
0 otherwise

Constraints: There are two constraints, one is for BV; I; (Secy(i)) and one is a
memory size constraint. In any case, a Secy of the i*" function is allocated to only one
memory region, which means that the Secy, of the i*" function is allocated to either SRAM
or FRAM but not both. This constraint is defined in Equation 5.14.

3 Mem;

k=1 j=1

Ij (Seck(z))) =1 (VZ S [1,Nf}) (5.14)

The other constraint is related to memory sizes. The allocated sections Secy (i) and its
Size(F;); Vk € [1, Sec(i)]), Vj € [1, Memj], Vi € [1, Nf] should not be greater than the
Size(Mem;). This constraint is defined in Equation 5.15.
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G 3 Ny

D I (vi) x Size(vi) + Y Y I (Secy(i)) x Size(Fy) < Size(Memy) (5.15)
=1 k=1 1i=1

Objective 4.2: The challenge of mapping sections of these functions in a program
to either SRAM or FRAM is to minimize EDP and improve system performance. Ejyp.

is defined in Equation 5.16, where M,, is the number of the times i functions called.

Memj Nj

Efunc= Y, > [Er_j x1(F) + Ey_j x w(F)] x M,, (5.16)
j=1 i=1

EDPpyp is defined in Equation 5.17. Where ED Py, is the energy-delay product
required to allocate all functions to either SRAM or FRAM. Where Ey,,. is the energy
required to allocate functions to either SRAM or FRAM. Where NCF, is the number of

CPU cycles required to execute a function Fj.

3 Memj Nf

EDPrync =Y > > I (Seck(i)) [Efune x NCF)] (5.17)

k=1 j=1 i=1
The overall system EDP, EDPyystem, is the sum of both ED Py, and ED Py as

shown in the equation 5.18.

EDPsystem = U(EDPglobal + EDPfunc) (518)

Our objective function is shown in Equation 5.19. Our main objective is to minimize

the system’s EDP by choosing the optimal placement choice.
Objective Function: Minimize ED Pqystem (5.19)

5.3.2 Implementing Mapping Technique in MSP430FR6989

Once we obtain the placement information from ILP_solver, we map the respective
variables and the sections of a function to SRAM or FRAM. We modify the linker script
accordingly to map the sections or variables to SRAM or FRAM. In our proposed mapping
policy, placing global variables is straightforward, i.e., mapping the respective variable to
either SRAM or FRAM based on the ILP decision.

We observed that from the linker script, we could map the whole stack section of
each function to either SRAM or FRAM. We analyzed the stack section mappings for
each function by modifying the linker script. We used built-in attributes to differentiate
the mappings between SRAM and FRAM,; for example, we used the built-in attribute
(__ attribute__ ((ramfunc)) that maps this function to SRAM. If we want to place the
stack section in SRAM, we modify the linker script by replacing the default setting with ”
stack: {} > RAM (HIGH) . If we want to place the stack section in FRAM, we modify
the linker script by replacing the default setting with ” .stack: {} > FRAM”.

Similarly, for the text section, we observed that placing the text section in either SRAM
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or FRAM shows an impact on EDP. This effect is because the majority of accesses in the
text section are read accesses, as we observed that the energy consumption for each read
access to SRAM/FRAM differs. Table 3.2 shows that approximately FRAM consumes
2x more read energy than SRAM. Thus, we analyzed each application to map the text
section based on the available free space. If we have enough space available in SRAM, we
place the text section in SRAM itself; otherwise, we place the text section in FRAM. We
included the following four lines in our linker script to check the above condition and map

the text section.

1. #ifndef LARGE CODE_MODEL_
2. .text : {} > FRAM
3. Felse

4. text : {} » SRAM

We modified the linker script for mapping the data section by using the inbuilt compiler
directives. We followed the following three steps.

1. Allocate a new memory block, for example, NEW_ _DATASECTION. We can

declare the start address and size of the data section in the linker script.

2. Define a segment (.Localvars) that is stored in this memory block
(NEW_DATASECTION).

3. Use #pragma DATA_SECTION(funct_name,seg_name) in the program
to define functions in this segment. Here funct_name is the function
name, and seg_name is the segment name created. For instance, #pragma

DATA_SECTION(func_1,.Localvars)

Once we have created the different sections, we can assign these sections to either SRAM
or FRAM based on ILP decisions. For example, placing “NEW_DATASECTION: {}
> FRAM?” in the linker script, which maps NEW_DATASECTION to FRAM.

5.3.3 Support for Intermittent Computing

When the power is stable, everything works properly. Because of the static allocation
scheme, we map all functions and/or variables to SRAM/FRAM for the first time.
During a power failure, SRAM and registers lose all of their contents, including mapping
information. When power is restored, we don’t know what functions/variables were
allocated to SRAM before the failure. As a result, we must either restart the execution
from the beginning or end up with incorrect results. Restarting the application consumes
extra energy and time, making our system inefficient in terms of energy consumption and

performance.



Chapter 5. An Energy Efficient Memory Mapping Technique for NVM based Hybrid
86 Main Memories

We propose a backup strategy during frequent power failures. FRAM was divided into
FRAM, and FRAM, as shown in Fig. 5.1. FRAM,, has a size of 125 KB and is used for
regular mappings. F'RAM,, has a size of 3 KB that serves as a backup region (BR) during
power failures. So, during a power failure, we back up all register and SRAM contents
to FRAM. Whenever power is restored, we restore the register and SRAM contents from
FRAM, to SRAM and resume the application execution. The proposed backup strategy
reduces additional energy consumption and makes the system more energy efficient.

Implementation details of Flash-based Programming for Intermittent
Computing: MSP430F5529 consists of SRAM and Flash in the main memory. SRAM
is the only memory on the chip where the CPU can read code to execute the application
during Flash programming. We need to copy the Flash program function onto the stack
whenever we want to use only SRAM for mapping the application. Whenever we want to
switch between SRAM to Flash, we need to restore the stack pointer, and as well as we
need to map the program counter register to the Flash memory region.

During a power failure scenario, we must perform the backup operation to copy the
SRAM data to the Flash memory region. For the backup operation, we made some changes
to the inbuilt MSP430 functions, such as void Flash wb( char *Data_ ptr, char byte ) and
void Flash_ww( int *Data_ ptr, int word ). Here Flash_wb() helps to write the byte to
the Flash memory region, and Flash__ww() helps to write the word to the Flash memory
region.

Whenever power comes back, we must restore the contents from the Flash-based backup
region to the SRAM memory region. We used the inbuilt functions, i.e., ctpl() functions
for copying from Flash to SRAM, and after restoring, we needed to clear the Flash-based
backup region; for this, we made changes to the inbuilt function, i.e., void Flash_ clr( int
*Data_ ptr ) to clear the Flash data.

5.4 Experimental Setup and Results

5.4.1 Experimental Setup

We used TT's MSP430FR6989 for all experiments. We experimented with mixed
benchmarks, which have both Mi-Bench [74] and TI-based benchmarks. We have shown
the experimental setup in Table 5.1. The development platform and experimental setup
are shown in Fig. 5.3. We performed experiments to determine the energy required
for a single read/write to SRAM/FRAM, as shown in Table 5.2. We collected the
number of reads/writes for each global variable and function as part of a one-time
characterization. We also used TT’'s MSP430F5529 for comparing flash with FRAM. We
performed experiments to determine the energy required for a single read/write to flash,
as shown in Table 5.2.

MCU, which we have tested, has MSP430 architecture, which is more suitable for
IoT devices. Most MSP430 software is written in C and compiled with one of TI’s
recommended compilers ( IAR Embedded Code Bench, Code-Composer Studio (CCS), or
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Table 5.1: Experimental Setup

Component Description

Target Board TT MSP430FR6989 Launchpad

Core MSP430 (1.8-3.6 V; 16 MHz)

Memory 2KB SRAM and 128KB FRAM

IDE Code Composer Studio

Energy Profiling | Energy Trace+-+

ILP Solver LPSolve IDE

Benchmarks Mixed benchmarks (MiBench and TI-based)

msp430-gee). The IAR Embedded Code Bench and CCS compilers are part of integrated
development environments (IDEs). We use the widely used, freely available, and easily
extended tool, i.e., CCS, for all experiments in this work. EnergyTrace++ technology
allows us to calculate energy and power consumption directly. According to the datasheet
for the MSP430FR6989, the number of cycles required to read /write in FRAM is twice that
of SRAM, which means the access penalty of FRAM is twice that of SRAM at this specific
operating point of 16 MHz. The latency penalty disappears when operating at/below 8
MHz and gets worse above 16 MHz.

Table 5.2: Energy Values for each read/write to SRAM and FRAM

Memory | Per Read Energy (nJ) | Per Write Energy (nJ)
SRAM 5500 5600

FRAM 10325 13125

Flash 23876 31198

MSP430F5529 MSP430FR6989

Energy Trace ++

Figure 5.3: (a) TI-based MSP430 Launchpad Development Boards (b) Working with
EnergyTrace4++ on CCS
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5.4.2 FEvaluation Benchmarks

We chose benchmarks from both the MiBench suite and TI benchmarks. One of the
primary motivations for using the MiBench suite is that most of the TI-based benchmarks
were small in size and easily fit into either SRAM or FRAM. In these cases, we don’t
require any hybrid memory design. Most TI-based benchmarks have only one or two
functions and 3-4 global variables, which is not useful for the hybrid main memory design.
Thus, we used mixed benchmarks consisting of 4 TI-based benchmarks and 12 from the
MiBench suite.

For the MiBench suite, we first make MCU-compatible benchmarks by adding
MCU-related header files and watchdog timers. All benchmarks may not be compatible
with the MCU. Thus, we need to choose the benchmarks from the MiBench suite that
are compatible with the MSP430 boards. Once we have benchmarks, we execute them on
board for the machine code. Using the .asm file, we calculate the inputs that are required
by the ILP solver, as shown in Fig. 5.2.

5.4.3 Baseline Configurations

We chose five different memory configurations to compare with the proposed memory

configuration.

1. We directly map all the functions/variables to FRAM in the FRAM-only
configuration. We use the FRAM-only configuration to compare our proposed

memory configuration during stable and unstable power scenarios.

2. We directly map all functions/variables to SRAM in the SRAM-only configuration.
We use the SRAM-only configuration to compare our proposed memory configuration

during stable and unstable power scenarios.

3. We used the empirical method of Jayakumar et al. [1]. We compare this
configuration with our proposed configuration during stable and unstable power
scenarios to observe the importance of the proposed work rather than the existing

work.

4. In the SRAM+Flash with ILP configuration, we used the proposed ILP technique
for the flash-based msp430 board [181]. We compare this configuration with our
proposed configuration during stable and unstable power scenarios to observe the
difference between the FRAM and Flash technologies.

5. In SRAM+FRAM with ILP configuration, we have the proposed memory mapping
technique that does not support BR. We compare this configuration with our
proposed configuration during frequent power failures to observe the importance
of BR. The overview of all baseline configurations is shown in Table 5.3. The
experimental setup for all the above five configurations is the same as the one

proposed.
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Table 5.3: Overview of the Different Memory Configurations for Comparing with the
Proposed Memory Configuration

Configuration FRAM | SRAM | Flash | BR | ILP
FRAM-only v X X X X
SRAM-only X v X X X
Jayakumar et al. [1] 4 4 X X X
SRAM+Flash with ILP | X v v X v
SRAM+FRAM with ILP | v/ v X X v
Proposed v v v v v
v- Supported , X- Not Supported

5.4.4 Results & Analysis

The proposed memory configuration is evaluated in this section under stable and unstable
power. The proposed memory configuration is compared with five different memory

configurations as discussed in section 5.4.3.

5.4.4.1 Analysis for System’s Energy Delay Product

Under Stable Power Scenarios: Our main objective of the proposed memory
configuration is to minimize the system’s EDP. All values shown in Fig. 5.4 are normalized
with the FRAM-only configuration. Compared to the FRAM-only configuration, the
proposed gets 38.10% lesser EDP, as shown in Fig. 5.4. Because there are no power
interruptions in this scenario, this improvement is totally due to the proposed ILP model.
In configuration-1, we place everything on FRAM, where FRAM consumes more energy
and the number of cycles than SRAM, as shown in the table 5.2. Our proposed memory
configuration incorporates the placement recommendation from the proposed ILP model
and suggests utilizing both SRAM and FRAM.

Under a stable power scenario, the proposed gets 9.30% less EDP than Jayakumar et
al., as shown in Fig. 5.4. The empirical method used by Jayakumar et al. is as follows.
Jayakumar et al. considered functions as a basic unit. They explored all configurations
and calculated the energy values. Jayakumar et al. method has eight configurations
because they have two memory regions (SRAM or FRAM) and need to map three sections
(stack, data, text). Jayakumar et al. assumed that the data section included all global
variables, constants, and arrays. As a result, our proposed ILP-based mapping differs
from the author’s mapping in that our proposed mapping outperforms the existing work.
Under stable power, Jayakumar et al. receive 24.57% less EDP than the FRAM-only
configuration, as shown in Fig. 5.4. This advantage is primarily due to hybrid memory
from Jayakumar et al.

Compared to SRAM + Flash with ILP configuration, the proposed reduces EDP by
18.55%, as shown in Fig. 5.4. In this configuration, we used flash + SRAM with our
proposed ILP framework. As shown in Table 5.2, the above benefit is mainly due to
FRAM because flash consumes more energy. Jayakumar et al. outperform SRAM +
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Figure 5.4: Comparison between Baseline configurations and the Proposed under Stable
Power.

Flash with the ILP configuration during stable power. Due to FRAM in Jayakumar et al.,
even our proposed ILP model is ineffective in this case. We found that Jayakumar et al.
achieved 9.19% less EDP than SRAM+Flash with ILP configuration, and this benefit is
due to smaller applications. From Fig. 5.4, SRAM+Flash with ILP configuration performs
better for large applications than SRAM+Flash with ILP configuration. Jayakumar et al.
empirical method suggests placing more content on SRAM because SRAM is sufficient for
placing the entire small-size application. As a result, the performance of Jayakumar et
al. depends on the application size, as for large-size applications, even FRAM does not
outperform Flash.

Comparing the proposed memory configuration with the empirical method of
Jayakumar et al. helps us understand the role of the ILP model. This comparison also
clarifies whether these advantages stem from mapping granularity or ILP. The proposed
memory configuration outperforms the existing one, demonstrating that it benefits from
mapping granularity and the ILP model.

SRAM-only configuration outperforms the proposed and all other memory
configurations under stable power conditions. We noticed that this benefit is primarily
due to SRAM, but it only applies to smaller applications. SRAM-only achieves 36.19%
less EDP than the proposed for smaller applications, as shown in Fig. 5.4. We also
looked at large applications where the proposed configuration outperforms the SRAM-only
configuration by a small margin. When the SRAM is full, the MCU must wait for the space
to be released, which consumes extra energy and cycles. For more extensive applications,
the SRAM-only configuration achieves 2.94% more EDP than proposed.

Under Unstable Power Scenarios: We used the default TI-based compute through

power loss (ctpl) tool for migration. During a power failure, we need to migrate the
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SRAM contents to a FRAM-based backup region (FRAMj,), i.e., the backup process.
Whenever the power comes back, we need to migrate the (FRAMj,) contents to SRAM,
i.e., the restoration process. Therefore, all these migrations are done using ctpl()
functions. We introduce a power failure by changing the low-power modes mentioned
in the MSP430FR6989 design document. We use ctpl() to create power failures. We
assume that the number of power failures is spread equally within the execution period.
For instance, if the total execution period for an application is 20 milliseconds (ms), and
let us say the number of power failures is four, then for every 5 ms, we experience a power
failure.

We performed experiments under unstable power to compare the proposed memory
configuration with five memory configurations, as shown in Table 5.3. All values shown in
Fig. 5.5 are normalized with the SRAM-only configuration. Compared to the SRAM-only
configuration, the proposed one gets a 15.97% lower EDP, as shown in Fig. 5.5. We
observe that the migration overhead is less than the energy consumed to execute the
FRAM application, and this migration overhead depends on the number of power failures.
For example, a backup migration consumes approximately 16.88 mJ of energy, and a
restore migration consumes approximately 11.606 mJ of energy in a gsort application.

The above benefit to our proposed configuration is using a hybrid memory.

8 FRAM-only B Jayakumar et al.
B SRAM+Flash with ILP = SRAM+FRAM with ILP

Normalized EDP (Normalized with
SRAM-only)
[N o No N
ok O ®-

Benchmarks

Figure 5.5: Comparison between Baseline configurations and the Proposed under Unstable
Power.

Under an unstable power scenario, the proposed gets 21.99% less EDP than Jayakumar
et al., as shown in Fig. 5.5. As already stated, the empirical method by Jayakumar et al. is
more beneficial for small applications. In contrast, the author’s empirical method suggests
placing more content on SRAM because SRAM is sufficient for placing the entire small-size
application. Thus, for Jayakumar et al. work, backup/restore operations take more

energy during a power failure. Our proposed mapping outperforms existing work. During
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frequent power failures, Jayakumar et al. receive 6.91% less EDP than the FRAM-only
configuration, as shown in Fig. 5.5. This advantage is primarily due to hybrid memory by
Jayakumar et al.

Compared to SRAM+Flash with ILP configuration, the proposed reduces EDP by
23.05%, as shown in Fig. 5.5. As shown in Table 5.2, the above benefit is mainly due to
FRAM because flash consumes more energy. Jayakumar et al. outperform SRAM + Flash
with the ILP configuration during stable power. Because of the FRAM in Jayakumar
et al., even our proposed ILP model is ineffective for this comparison. We found that
Jayakumar et al. achieved 6.28% less EDP than SRAM+Flash with ILP configuration
for smaller applications. The above benefit for Jayakumar et al. is minimal because the
size of backup/restore increases, which even neutralizes the flash for some applications, as
shown in Fig. 5.5. SRAM+Flash with ILP configuration achieves 2.69% less EDP than
Jayakumar et al. for large applications, as shown in Fig. 5.5. As a result, the performance
of Jayakumar et al. depends on the application size, as for large-size applications, even
FRAM does not outperform Flash.

The proposed memory configuration outperforms all memory configurations under
unstable power conditions. This benefit is primarily due to hybrid memory and the
proposed mapping technique. SRAM-only achieves 42.98% less EDP than the proposed,
as shown in Fig. 5.5.

When we remove BR, all the mapping information from the SRAM is lost because our
model is static. We introduce a BR in the FRAM memory region to save this mapping
information. During a power failure, we migrate the SRAM contents to F'RAMjy; whenever
power comes back, we restore the F'RAM, contents to the SRAM.

We experimented to know the importance of BR, where we compared the proposed
memory configuration with SRAM+FRAM with ILP configuration. Compared to
SRAM-+FRAM with ILP configuration, the proposed gets 23.94% lower EDP, as shown
in Fig. 5.5. This benefit is because we need to re-execute the application four times from
the beginning, which consumes extra time and energy. The number of times re-executing

the application is equal to the number of power failures.

5.4.4.2 Comparing Flash-based MCU (MSP430F5529) with FRAM-based
MCU (MSP430FR6989)

Under Stable Power Scenarios: We also evaluated our proposed framework with
another MSP430F5529 MCU with flash and SRAM for completeness. This comparison
helps the user in selecting the most appropriate NVM technology, such as FRAM or
Flash, as needed. To be fair, we used the same sizes of SRAM (2 KB) and Flash (128
KB) in this comparison. We compared FRAM-based and flash-based MCUs under stable
power conditions. We used the proposed frameworks and techniques in both MCUs.
We discovered that the proposed FRAM-based configuration outperforms the flash-based
configuration. Flash-based configurations consume 26.03% more EDP than FRAM-based

configurations, as shown in Fig. 5.6. Flash consumes more energy, as shown in Table 5.2.
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Figure 5.6: Comparison between MSP430FR6989 (FRAM-based MCU) and
MSP430F5529 (Flash-based MCU) under Stable Power.
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Figure 5.7  Comparison between MSP430FR6989 (FRAM-based MCU) and
MSP430F5529 (Flash-based MCU) under Unstable Power.
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Under Unstable Power Scenarios: We also evaluated our proposed framework
with another MSP430F5529 MCU, which consists of flash and SRAM for completeness.
This comparison helps the user in selecting the most appropriate NVM technology, such as
FRAM or Flash, as needed. To be fair, we used the same sizes of SRAM (2 KB) and Flash
(128 KB) in this comparison. We also used BR in these experiments; the only difference
is that we replaced the FRAM with flash in the proposed configurations, and everything
is the same. We compared FRAM-based and flash-based MCUs under unstable power
conditions. We used the proposed frameworks and techniques in both MCUs. We found
that the proposed FRAM-based configuration outperforms the flash-based configuration.
Flash-based configurations consume 16.50% more EDP than FRAM-based configurations,

as shown in Fig. 5.7. Flash consumes more energy, as shown in Table 5.2.

5.4.5 Summary of the Proposed Mapping Technique

In this section, we outline the proposed ILP-based memory mapping technique. Following
all of these analyses, we observed that the mappings shown below consume less EDP than
other design choices, as shown in the table. To keep things simple, we only show the final
mapping configurations for each application’s stack, data, and text sections, keeping out

the final mappings for global variables.

Table 5.4: Optimal Placement for different Applications in MSP430FR6989

Benchmarks Stack | Text Data

16bit_ 2dim SRAM | SRAM | SRAM
aes SRAM | FRAM | FRAM
basicmath small | SRAM | SRAM | FRAM
basicmath_large | SRAM | FRAM | FRAM
bf SRAM | SRAM | FRAM
cre SRAM | FRAM | SRAM
dhrystone FRAM | SRAM | FRAM
dijkstra SRAM | FRAM | SRAM
fft SRAM | SRAM | FRAM
fir SRAM | SRAM | FRAM
matrix mult SRAM | SRAM | SRAM
patricia SRAM | FRAM | SRAM
gsort__small SRAM | SRAM | FRAM
gsort_ large SRAM | FRAM | FRAM
sha SRAM | FRAM | FRAM
susan SRAM | FRAM | FRAM

Table 5.4 shows that, with the exception of the dhrystone application, the remaining
three TI benchmark applications (fir, matrix, and 16bit_2dim) are very small and can
easily be placed in SRAM. We don’t need FRAM for these types of smaller applications,
but there is a disadvantage during frequent power failures. The backup and restore sizes
to FRAM are larger for these applications during frequent power failures. As a result,

our proposed backup/recovery strategy should be intelligent enough to reduce EDP. The
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dhrystone application, on the other hand, has a larger stack section that requires FRAM
to accommodate the entire stack section.

As we can see in Table 5.4, many applications used both SRAM and FRAM for
Mi-Bench applications. As a result, we can conclude that a hybrid main memory design
is required for many applications. Using a hybrid main memory design helps reduce EDP
during stable power scenarios. However, determining how and where to backup volatile
contents can be difficult during frequent power outages. However, our proposed memory
mapping technique and the framework suggest using a hybrid main memory design that
supports intermittent computing.

The limitations that we observed in this chapter are as follows: (1) This chapter limits
the NVM at the main memory level; (2) This work does not support the architecture
that consists of caches; (3) The proposed memory mapping technique is a static memory
mapping technique, which opens the door for exploring dynamic memory mapping
techniques for hybrid main memory architectures; and (4) We all know that ILP is an
optimization problem and NP-complete problem, there could be a good possibility to

explore the better-optimized solutions for mapping the contents to hybrid main memory.

5.5 Summary

In this chapter, an ILP-based memory mapping technique is proposed to reduce the
system’s energy-delay product. For both global variables and functions, we formulate
an ILP model. The functions consist of data, stack, and code sections. Our ILP model
suggests placing each section on SRAM or FRAM. Under both stable and unstable
power scenarios, we compared the proposed memory configuration to the baseline memory
configurations. We evaluated our proposed frameworks and techniques on actual boards.
We added a backup region to FRAM to support intermittent computing. We compared
the proposed framework with recent related work.

Under stable power, our proposed memory configuration consumes 38.10% less
EDP than the FRAM-only configuration and 9.30% less EDP than the existing work.
Under unstable power, our proposed configuration achieves 15.97% less EDP than the
FRAM-only configuration and 21.99% less EDP than the existing work. Under stable
power, our proposed memory configuration consumes 18.55% less EDP than SRAM +
Flash with the ILP configuration. We also compared the FRAM-based MSP430FR6989
with the flash-based MSP430F5529. Compared to flash, the FRAM-based hybrid main
memory design consumes less EDP. FRAM-based design consumes 26.03% less EDP than
flash-based design during stable power and 16.50% less EDP than flash-based design during

frequent power failures.
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Chapter 6

Conclusion and Future Possibilities

This chapter provides an overall conclusion of the work presented in various chapters of
this thesis. Section 6.1 summarizes the main findings and provides an overall conclusion,

followed by the scope of future work in Section 6.2.

6.1 Major Research Contributions
The following are major research contributions discussed in this study:

— Designing a non-volatile processor (NVP) involves challenges at the register files,
caches, and main memory level. In this thesis, we analyzed the challenges at
the first-level cache, last-level cache (LLC), and main memory levels and proposed

unique/novel architectures to address some of these challenges.

— We investigated the suitability of Non-Volatile Memory (NVM) based hybrid cache
architecture for the first-level cache. We proposed efficient migration and prediction
techniques that would ultimately be helpful in determining which cache block should
be placed in which cache region. The proposed architecture and policies reduce the
number of writes to NVM, which reduces energy consumption compared to the

baseline and existing architectures.

— In intermittent computing devices, the energy to perform data backup is fixed
and limited, constraining the backup content size. We proposed efficient cache
management policies to track and maintain the fixed number of dirty blocks at
L1 using a dirty block table (DBT) and write-back queue (WBQ). The proposed
architecture uses fixed energy for backup operations during power failures. The
proposed architecture and policies reduce the number of writes to NVM, which

reduces energy consumption compared to the baseline architectures.

— We designed an efficient memory mapping technique for recent microcontrollers
(MSP430FR6989 and MSP430F5529) that consists of NVM-based hybrid main
memory (SRAM+FRAM and SRAM+Flash). Integer linear programming (ILP)
based memory mapping techniques have been introduced to get benefits from both
SRAM and NVM. The proposed ILP model gives us the optimal placement decision
to achieve less energy-delay product (EDP) than the baseline and existing memory

mapping models during power failures.
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— The code and related data are made available to the research community using

GitHub public repositories.

6.2 Future Possibilities

However, more research in this field is needed until universal adoption is achieved. The

identified future research directions are described below.

6.2.1 NVMs at Register Level

We completed deploying NVMs at the cache and main memory levels. We plan to work
on "Inserting NVMs at the Flip-Flop Level.” This topic presents several challenges that
must be thoroughly investigated.

6.2.2 Energy Harvesting Devices

We currently have many assumptions for the simulation environment. We intend to deploy
real energy harvesting devices in order to create true battery-free devices. When we deploy
real energy-harvesting devices, we may face new challenges and goals. As a result, it

generates a potential research direction to investigate further.

6.2.3 Dynamic Memory Partioning

To map the application to SRAM or FRAM, we explored a static memory partitioning
technique. In a static memory mapping technique, we need all the information ahead of
time, and we profiled each application to know the information of all inputs. However,
application scenarios can change, and using the static memory partitioning technique
may result in inaccurate memory mapping decisions. As a result, we can investigate
the feasibility of using dynamic memory partitioning techniques for MSP430-based

microcontrollers in frequent power failure scenarios.

6.2.4 Secure NVM-based Architectures

When we were exploring NVM-based architectures, we encountered many security concerns
in these types of architectures. Since the main memory of the computing system is now
integrated with NVM, attackers can easily extract the data from powered-off devices with
physical access to the device. At the same time, in an NVM-based system, the memory
state is maintained, and during critical security calculations, key memory states, such as
cryptographic functions, can reveal secret information. One such direction we observed
was to encrypt the data exposed to the attacker or encrypt the data stored in NVM. In
addition to encryption, we can even lock the NVM data during a power failure or before
a power failure. These two operations should be in an atomic execution. As a result, it

generates a potential research direction to investigate it further.
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6.2.5 Predicting Power Failures

When we deal with unstable power scenarios, we notice that power failures are random.
With this observation, we posed two questions: ”Is the energy stored by the capacitor at
the time of power failure less than the energy required to back up the SRAM contents,
even for a fixed number of SRAM contents?” "Does predicting power failures save dynamic
energy consumption and execution time, or does it worsen the situation”? These questions
inspired us to conduct further studies to investigate them and develop efficient techniques
and energy models. As a result, these questions provide an easily identifiable research

direction.

6.2.6 NVM-based GPU Architectures

Transactional memory (TM) is a programming model developed by the database
community to simplify the use of fine-grained parallelism. NVM-based main memory
has changed the existing hierarchy of memory and storage. So, the technique that initially
considered volatile and non-volatile memory separately now has to consider the persistence
throughout the stack. Persistence means that any operation, including an error, is stored
on the device throughout its lifetime. Therefore, to make the system’s state always valid,
consistency must be ensured for it to be valid. Several applications and algorithms have
already addressed the issues related to consistency, such as databases that depend on
lock-free data structures, such as hash tables, skip lists, and B+ trees.

Graphics processing units (GPUs) are widely used as standard accelerators for
high-performance computing. GPUs are designed to use many light parallel threads for
speed-oriented computation. For this purpose, they are constructed with a computing
unit that can accommodate many resident threads along with their register state, as well
as a deeply pipelined memory subsystem capable of handling a large number of parallel
memory accesses. The use and maintenance of NVM-based main memory on CPUs are
being studied intensively, but how to maintain the GPUs along with NVMs is still in the
early stages.

If we observe, the combination of TM + NVM + GPU for intermittent computing will
become an exciting research direction to explore and propose efficient NVM-based GPU

architectures.

6.2.7 Potential Applications

Some of the potential future applications of the proposed architectures and frameworks

are listed below.

— Defence Applications: Intermittent computing systems frequently lack the energy
to process all input data in a single cycle. When a process is interrupted, the current
outcome is most likely incomplete. In such cases, the approximate results can be a
complete and accurate representation of the output. In such military applications,

some sensors/cameras are deployed at the border to check the movement between
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the regions. When one of these sensors/cameras is damaged, or the power supply to
these devices is disrupted, the proposed frameworks and architectures will assist in

retrieving or processing the data using external capacitors and NVMs.

Health Monitoring Applications: If the processor cannot keep up the data from
devices that harvest energy from continuous input signals, but it can sample inputs.
A sample with precise computations is preferable to one with approximate results
from larger inputs. Dropping samples precisely to maintain data flow runs the risk of
missing critical data contained in dropping samples. The proposed frameworks and
architectures avoid this by saving the previous data and results that help to generate

approximate results for all samples to avoid the loss of important information.

Consider monitoring blood glucose levels for diabetic patients. Regular monitoring is
required to detect dangerously low concentrations and rapidly implement corrective
measures. Energy harvesting and wearable monitoring devices have been developed
to meet this demand. However, these devices must balance their rigorous energy
requirements with as much reading as possible. However, if you have sufficient energy
to continue processing the same data, our proposed frameworks and architectures
offer the benefit of increasing accuracy over time by storing the results in NVMs. The
proposed frameworks and architectures rapidly trade off the sampling frequency’s

precision based on the requirements and constraints of each application and system.
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