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Lay Summary  

Due to increasing population demand, development in the mountains, such as the construction 

of buildings, roads, and railways, has led to deforestation, slope cuts, unstable mountains, and 

global warming. Climate change and associated extreme weather conditions result in a surge of 

natural hazards such as floods, earthquakes, landslides, and avalanches worldwide. With the 

present land use scenarios and changing climate, these natural hazards will likely increase in the 

future. While land-use planning could decrease vulnerability and mitigate risk before a disaster 

happens, however, these measures are usually implemented after a disaster. Hence, our focus 

should be sustainable development on mountainous terrain, preservation of the environment, 

and resistance to natural hazards. The current study focuses on accurate prediction of the future 

landslide hotspot zones. Here, we have identified the key landslide causing factors and used 

them for predicting future landslide events. The susceptibility maps generated in this study 

predict future landslide hotspot zones. The study region of Tehri, Uttarakhand state of India, 

was chosen for the research. Further, the Himachal Pradesh state of India, along with its two 

prominent landslide prone sites of Chamba and Bhuntar, were used for validating the results. 

The results conclude that unplanned rapid urbanization will lead to an increase in landslide 

susceptibility in the future. The study also concludes that the change climate scenarios will 

increase the intensity of the dynamic variables like rainfall and temperature, ultimately 

increasing the very high landslide susceptibility zone by 8%. As the forcing scenarios increase, 

the climate variables and landslide hotspot zones also increase for the year 2050. These accurate 

prediction of landslide zones and their future projections can help land use policymakers restrict 

the urbanization growth in high landslide risk zones and ensure sustainable development.  
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Abstract  

Worldwide, landslides are the most frequently occurring disaster that are very destructive and 

unpredictable in nature. Tehri Garhwal in the Uttarakhand State of the Indian Himalayas is one 

such region where 850 landslide events were detected during 2005-2020. Many researchers have 

conducted landslide susceptibility mapping (LSM) studies for this region using different static 

landslide-causing factors. However, these studies lack consistency in selecting landslide causing 

factors for the susceptibility analysis and mapping. Also, studies considering dynamic factors 

in predicting future landslide susceptibility scenarios are inadequate. Hence in this study, 

initially, landslide causing factors were optimized for LSM, and then dynamic factors were 

utilized for future projection of LSM.  

The main objectives of this research include the development of scientific methodology for 

determining significant landslide causing factors for the Tehri region and validating them on 

two landslide prone sites of Himachal Pradesh with similar terrain conditions. Further, the LSM 

was prepared using the derived significant factors, and dynamic factors such as Land Use Land 

Cover (LULC) and climate variables were incorporated for future projection of the LSM. To 

achieve these objectives, first, the geospatial database in three temporal categories, 2005-2010, 

2010-2015, and 2015-2020, was prepared for the historical landslide events. Second, the 

landslide-causing factors were optimized using multicollinearity analysis considering Pearson 

correlation and the Artificial Neural Network (ANN) model's sensitivity analysis. Third, the 

relevance of these significant factors in predicting landslide susceptibility was checked for the 

two test sites of the Himalayan region and utilized in LSM for 2010, 2015, and 2020. Fourth, 

the projected LULC map was generated for the year 2050 using the Artificial Neural Network-

Cellular Automata (ANN-CA) model. Fifth, CMIP6 climate projections maps were prepared 

using the Indian Institute of Tropical Meteorology Earth system model (IITM ESM) under four 

Shared Socioeconomic Pathway (SSP) scenarios. Finally, the projected maps were used as the 

driving parameter for the future prediction of LSM. The predicted maps were validated utilizing 

the Area under the Receiver Operating Characteristic (ROC) curve, and the Kappa coefficient 

verifies the reliability of the simulated future projected results. 

The results reveal that out of 21 parameters considered for the Tehri region, 11 were found to 

be significant for LSM and achieved the prediction accuracy of 0.93 Area Under Curve (AUC) 

value. Thus, this study recommends using the derived 11 landslide parameters and their 

hierarchy for carrying out LSM in the Himalayan region. Also, a high increase in the built-up 

area (5%) and agriculture land (4%) with a decrease in forest area (10%) in future LULC 



xiv 

 

projections was observed. This LULC change and change in climate variable under four climate 

forcing scenarios of SSP 1-2.6, SSP 2-4.5, SSP 3-7.0 and SSP 5-8.5 has resulted in an increase 

of very high landslide susceptibility class by 2%, 4%, 7%, and 9% respectively. Future 

Prediction of LSM can help in the proper management and sustainable distribution of 

environmental resources. The target audiences can be land use policymakers who must decide 

which direction urbanization takes and which direction to restrict. 

Keywords: Significant Landslide Causing Factors; Future Landslide susceptibility mapping; 

Land use land cover projections; Climate projections 
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Chapter 1  

Introduction 

 

1.1 Background 

A landslide is the movement of rock, soil, organic matter, and Earth debris down the slope 

under the influence of gravity. This occurs when the driving forces of gravity go beyond the 

material frictional resistance on the slope (Varnes, 1978). Many types of mass movements can 

be triggered by heavy rainfall, earthquakes, typhoons, hurricanes, volcanic eruptions, snowmelt, 

or anthropogenic activities such as slope cutting for the widening of roads, deforestation, 

quarrying, tunneling, mining, landfill construction, and unplanned urbanisation.  

According to Mousavi et al. (2011), landslides account for about 9% of all-natural 

disasters globally. Landslide-related fatalities are high in hilly regions with fragile geological 

environments and intense climatic conditions. According to a report by Froude and Petley 

(2018), 55 997 people were killed in 4862, distinct by non-seismic landslides from January 2004 

to December 2016. Many areas worldwide are susceptible to landslides, which cause loss of life 

and adversely impact infrastructure, the environment, and communities. According to Lee and 

Pradhan (2007), approximately 1000 deaths yearly are caused by landslides, with about four 

billion US dollars in property damages. 

Landslides are usually local events compared to other catastrophes such as floods, 

earthquakes, cyclones, tsunamis, etc. With the increase in population, humans are moving 

towards hills for the inhabitant to areas of intrinsically fragile land, thereby maintaining a 

delicate balance in nature. Landslides can be very damaging, especially when failure is 

significant, long runout, and (or) rapid velocity. In India, about 0.49 million sq. km (15%) of 

the land surface is landslide-prone, including 16 states and two union territories (NDMA, 2009). 

Thus, it is necessary to predict landslide hazards accurately.  

Shallow landslides are rapidly moving flows of mixed rocks, soil, organic matter, and 

mud that drive down the hill at 55 km per hour or more, influenced by gravitational force. They 

are caused primarily by prolonged, heavy rainfall on saturated hill slopes (Baum et al. 2002). 

Landslides are classified as shallow if not more than 2 m deep (van Asch et al., 1999, Sidle and 

Ochiai, 2006). Rainfall-induced shallow landslides are global phenomena that result in the loss 

of human life and destroy homes, roads, bridges, and other property every year. During Extreme 

rainfall events, landslides are very obvious in the Himalayan portion. Worldwide, landslide 

research has been in focus for the last four decades, and still, it is challenging to define many 
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mechanisms dealing with these phenomena. No method has been developed till now which can 

be standardised at the world level for accurate prediction of landslides. In all methods developed 

so far, uncertainty for landslide prediction is still present. The approaches used for prediction 

are generally accompanied by many assumptions. One of the basic assumptions is that what all 

factors that were responsible for causing landslides in the past will again be responsible for 

causing landslides in the future. This is not true because the factors causing landslides can also 

change with time, especially when so many anthropogenic activities are happening worldwide. 

Another assumption generally observed in (Landslide Susceptibility Mapping) LSM studies is 

that all the factors are considered static in the analysis. Again, this is false because factors like 

(Land Use Land Cover) LULC, precipitation, temperature, etc., vary with time. Their influence 

also changes in due course of time, especially in climate change scenarios, where the extreme 

rainfall events values and defined rainfall thresholds change drastically. 

The probability of determining the location of landslides is called spatial probability. The 

information on where landslides can possibly take place in the future can be determined using 

various landslide-causing environmental factors. As all factors do not influence the landslide 

occurrence equally, therefore these factors are weighted using LSM models. These models 

determine the relationship between these factors and historical landslide data to derive 

correlation and define their significance. The significant factors are then further used for 

preparing the susceptibility map. Some of the dynamic factors that change with time can also 

be used as triggering factors and can be adopted for future prediction after determining the 

changing trend of these dynamic factors. 

1.2 Motivation 

Landslides are among the most common natural hazards in the Himalayas, especially in 

the monsoons. To some extent, the information on when landslides can take place in the 

Himalayas can be determined using rainfall data analysis and defining the rainfall thresholds. 

Similarly, the information on where landslides can occur in the Himalayas can be determined 

using LSM. However, predicting landslides is challenging due to their high uncertainty. 

Therefore, accurately predicting when and where landslides will occur is tough. 

Alterations of the Earth's land surface for the human settlement, transportation, and 

communication have made these highlands unstable, causing frequent landslides. Landslides 

are among the most dangerous, widespread, and destructive natural hazards. They cause serious 

injuries, loss of life, structural and economic damage, etc. Therefore, landslide study is essential 

all around the globe. Developments in remote-sensing techniques have considerably improved 

our capability to map landslides of different sizes with fewer field studies quickly. Petley (2012) 

has shown that in less developed countries, loss of life is more because of relatively more minor 

investment in understanding the landslide hazards and risks. Kirschbaum et al. (2010) analysed 
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and confirmed that emerging nations account for nearly 80% of landslide fatalities. 

Landslides studies have drawn world attention primarily because of their socioeconomic 

influences and urbanisation growth on hilly terrain (Aleotti and Chowdhury, 1999; Champati 

Ray and Lakhera, 2004). Growing populations and human settlements over hilly regions are 

increasing the landslide risk worldwide (Rosenfeld, 1994; Alexander, 1995). Due to slope 

failures, traffic blockage along the road leaves tourists, pilgrims, and locals stuck for hours. 

Hence, there is a need to identify, divide, and map areas that have or could have the impact of 

landslides. These maps develop strategies and implement suitable risk mitigation 

measurements. 

 

Fig. 1.1 Some landslides were detected along the reservoir embankment in the Tehri region. 

The Tehri region of Uttarakhand is one such landslide-prone region. Apart from heavy 

rainfall and high seismic factors, this zone of Uttarakhand has a reservoir effect that adds to 

developing slope instability in this region. Many landslide activities were observed in the Tehri 

region of the Himalayas (Fig. 1.1) and predicting these landslides in advance is essential. 

According to M. Van Den Eeckhaut et al. (2006), LSM is the most important tool for reducing 

the damage caused by landslides. Identifying the location of future landslides, even if we are 

unaware of when they will occur, can resist urbanisation and development in the direction of 

high landslide-risk zones. Developing land use policies considering these future projections of 

landslide susceptible areas can reduce the landslide risk.  
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1.3 Scope of the research 

This research aims to determine the present and future landslide susceptibility areas 

incorporating static and dynamic significant landslide causative factors. This work also reviews 

various landslide susceptibility and hazard mapping methods incorporating various landslide 

causative factors. Based on this, appropriate procedures were selected, and significant landslide 

causative factors were derived. The research was conducted for the case study of the Tehri 

region, India. The significant landslide causative factors were initially derived using 

multicollinearity and sensitivity analysis. These derived significant factors were correlated with 

historical landslide data (70%), and weights of factors were derived. The remaining 30% was 

used to test the model's accuracy using the area under the ROC curve technique. These weighted 

landslide causative factors were integrated to generate the landslide susceptibility maps for the 

Tehri region. Further, future projections of Land Use Land Cover (LULC) and climate variables 

were utilised to derive future scenarios of Landslide Susceptibility Mapping (LSM).  

1.4 Thesis Outline 

The thesis structure follows the following order to accomplish the study's objectives. 

Chapter 1 provides an overall introduction to the research background and highlights the 

existing difficulties in LSM. It also defines the purposes of the study along with the research 

scope. Chapter 2 discusses the earlier findings and research for landslide susceptibility hazard 

mapping using various qualitative, semi-quantitative, and quantitative approaches. Further, 

previous literature emphasising the impact of dynamic factors on landslide activities was also 

investigated. Chapter 3 describes the study area and test sites in terms of their locations, 

physiography, vegetation climate, and drainage. Chapter 4 discusses the data used and their 

derivatives, the fundamental theories of the methods, and the overall methodology adopted for 

the study. Chapter 5 describes a scientific method of deriving significant landslide causative 

factors and their application in LSM using different models for deriving their weights. Further, 

these derived significant factors were tested on two landslide-prone sites. Chapter 6 describes 

the methodology adopted for deriving future LSM scenarios incorporating LULC projections. 

Chapter 7 determines the future LSM scenarios using future LULC and climate projections 

under four Shared Socioeconomic Pathways (SSPs). Chapter 8 summarises and conclude the 

research work with limitation and recommendations for future work.
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Chapter 2  

Literature Review 

 

2.1 Introduction 

Landslides constitute a fragile landscape where habitation or other engineering structures 

cannot be developed or constructed. The increase in human population and rapid urbanisation 

has led to the expansion of construction activities in hilly terrains and has resulted in frequent 

landslide events in recent times. In many developing countries, this problem is remarkable, 

mainly due to the rapid non-sustainable development of natural resources. The use of landslide 

susceptibility and hazard maps for land use planning has increased significantly during the last 

few decades. Landslide Susceptibility Mapping (LSM) and Landslide Hazard Mapping (LHM) 

are essential steps in mitigation measures for planning and recognising the regions needing 

protective measurements. Numerous advances have been made in modeling landslide initiation, 

triggering mechanisms, and probability for slope instability using high-resolution satellite 

imageries and Geographic Information Systems (GIS). The ultimate aim of all the research is to 

generate landslide susceptibility maps with reasonable accuracy. This chapter reviews early 

works and commonly accepted definitions relevant to the landslide hazard. Here, we will discuss 

various landslide prediction research conducted to produce reliable susceptibility and hazard 

maps by incorporating various landslide causative factors and models in landslide mapping 

studies. Also, we will review literature focusing on dynamic factors' impact on future landslide 

prediction.  

2.2 History of Landslide Susceptibility and Hazard Mapping 

Many researchers have proposed various Landslide Susceptibility and Hazard Mapping 

(LSHM) techniques by considering landslide causative and triggering factors. Adopting a 

unique method and factors responsible for the landslide is difficult due to the heterogeneous 

terrain of the Earth's surface. Some scientific societies and institutions have proposed guidelines 

for LSHM, intending to use common terminologies and guide practitioners in their analyses 

(Wong et al., 2006; Fell et al., 2008). However, the methodologies applied vary from region to 

region and even within the same area (Corominas, 2010). The methodology to construct the 

LSHZ map depends on numerous factors divided into intrinsic and triggering factors (Crozier, 

1986; Siddle et al., 1991). Intrinsic factors include lithology, structural features, 

geomorphology, vegetation, hydrogeological conditions, nature of the terrain, etc., and external 

or triggering factors include seismicity, rainfall, anthropogenic factors, etc. 
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Varnes (1984) defined landslide hazard as the likelihood of a destructive landslide 

phenomenon for a specific region at a particular time. This is the most extensively used 

definition for natural hazard maps representing its scattering over an area (Mitchell, 1988; 

Einstein, 1988, 1997; Starosolszky and Melder., 1989; Horlick-Jones et al., 1995). The 

definition includes place, time, and magnitude or intensity. Magnitude refers to landslide 

destructive power, which is characterised by its intensity (Hungr, 1997). The temporal 

assessment of landslides is usually stated in terms of the return period, frequency, or exceedance 

probability. Crovelli (2000) formulated the exceedance probability of one or more landslides 

during a definite time using a continuous-time model (Poisson model) and a discrete-time model 

(binomial model). LHM uses the LSM and allocates a probable frequency to the landslides of a 

definite intensity. 

Only intrinsic factors are used in LSM, while the recurrence period of the triggering 

factors is usually used to assess the frequency of events that are subsequently used for LHM 

(Corominas and Moya, 2008). Frequency and magnitude are two critical components of LHM. 

The frequency can be expressed either in terms of the number of landslides of a particular 

character in the study area in a given period or the probability of a specific area experiencing 

landslides for a given threshold value. Data regarding the number of landslides in the same area 

requires many years of observation, as Guzzetti et al. (2005) adopted. Hence probability based 

on a defined threshold is a better alternative for temporal prediction. A threshold can be 

determined using any landslide-triggering factor like rainfall, earthquake, groundwater level, 

etc. Most articles on the temporal prediction of landslides have considered rainfall for defining 

the threshold. The rainfall threshold is the minimum quantity of rainfall required to trigger a 

landslide (Endo, 1970; Caine, 1980). Some authors have used rainfall thresholds for temporal 

prediction and permanent intrinsic factors for spatial prediction of landslides (Miller et al., 2009; 

Segoni et al., 2015; Pham et al., 2017). Guzzetti et al., 1999 recommended using landslide 

magnitude or size, which represents landslide destructiveness, in the LHM to complete the 

definition of hazard given by Varnes, 1984. The probability of landslide magnitude or size can 

be calculated from the study of the frequency–area distribution of landslide inventory prepared 

(Stark and Hovius, 2001; Guzzetti et al., 2002; Guthrie and Evans, 2004; Malamud et al., 2004). 

Landslide hazard in a region is a function of three components, i.e., spatial, temporal, and 

magnitude probabilities of landslide events. However, because of the severe scarcity of data on 

landslide dates and magnitudes, many authors have not incorporated the magnitude and time of 

landslide occurrences in the LHM. LHM is comparatively more challenging than LSM, as 

susceptibility is one of the three components of landslide hazard. However, in the last four 

decades, some researchers have repeatedly mistakenly used hazard and susceptibility as 

synonyms. Many maps in the articles that are susceptible maps were mentioned as hazard maps. 

Many have shown their concern about mistakenly using these two terms (Guzzetti et al., 1999; 
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Chacón et al., 2006; Guzzetti et al., 2006a; Cascini, 2008; Hervas and Bobrowsky, 2009; 

Reichenbach et al., 2018, NDMA, 2019).  

Here we present a comprehensive review of different methods available for LSHM. The 

geographical distribution of LSHM methods for various countries is shown with the size of the 

pie chart is directly proportional to the number of articles for the country (Fig. 2.1). Further, it 

was also attempted to classify LSM with LHM based on the information and data these maps 

can provide (Fig. 2.2). If a map can only provide information on the prediction of where a 

landslide can take place it is classified as LSM, and if it can provide information of where, when 

and how big a landslide can take place it will be classified as LHM. 

 

Fig. 2.1. Map showing the geographical distribution of LSHM methods for different 

countries in different colors (Blue- direct method, Red- MCDM, Black- Physically Based, 

Yellow- Probabilistic, and Green- Statistical). The size of the pie chart is directly proportional 

to the number of articles for the country. 

 

Fig 2.2 Pie charts showing the percentages of prediction types for landslide hazards. 
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2.3 Landslides Causative Factors 

In landslide studies, factors responsible for landslides are frequently considered based on 

the analysis of the landslide types and the features of the study region (Ayalew et al. 2005). The 

occurrence of landslides depends on many factors that can be divided into intrinsic or static 

factors, which are the areas' inherent properties, causing instability and triggering or dynamic 

factors that trigger the event. These factors are associated with an area's geology, topography, 

geotechnical properties, geomorphology, LULC, rainfall, seismicity, anthropogenic activities, 

etc. (Dai et al., 2002). All factors have different influences in causing landslides depending on 

the environmental setting of that area. As the terrain conditions vary from place to place, these 

factors and their combination also change. Hence, no standard methodology is available 

worldwide for choosing the significant landslide causative factors. 

Terzaghi (1950) divided landslide causes into external causes, which increase shearing 

stress (e.g., Geotechnical changes, unloading the slope toe, loading the slope crest, shocks, 

vibrations, drawdown, changes in water regime, etc.) and internal causes, which result in a 

decrease of the shearing resistance (e.g., progressive failure, weathering, seepage erosion, etc.). 

Varnes (1984) identified landslide causative factors like geology, geomorphology, hydrologic 

conditions, climate, vegetation, factors that change stress conditions, and the strength of 

materials. Hutchinson (1995) discussed the various combination of geo-environmental factors 

leading to landslides. He concluded that bedrock geology, geomorphology, soil properties, 

LULC, and hydrological condition are essential factors and should be incorporated in LSM. The 

landslide-inducing factors may be divided into static and dynamic factors (Jia et al., 2008; Tyagi 

et al., 2023). 

2.3.1 Static Factors 

The static factors include geological and geographical ones, e.g., the lithology, fault, 

hydrogeology, topography, etc., that are relatively steady and invariable and provide the 

necessary prerequisite for forming landslides slopes. Brabb (1972) was the first to analyse the 

frequency of landslides using geology and slope as the causative factors in San Mateo County, 

California. He defined susceptibility as the likelihood of a landslide happening in a region based 

on intrinsic parameters. It provides us with information of "where" landslides are likely to occur. 

Basic surface-related characteristics related to sliding are called static factors or primary factors 

(Sidle and Ochiai, 2006). Static factors are the determinants of landslide susceptibility and can 

be derived from surface characteristics. 
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2.3.2 Dynamic Factors 

The dynamic factors include rainfall, earthquake, human activities (LULC), and 

groundwater that accelerate or decelerate the landslide occurrences. The dynamic factors of 

landslides can be divided into human and natural factors. Natural factors include meteorological 

hydrology, hydrogeology, weathering, and new tectonic movements due to earthquakes, river 

erosion, freezing, and thawing (Capitani et al., 2013). Human factors refer to human engineering 

activities, indicating that human factors are the most significant factors for developing 

landslides and are often even the decisive influencing factors. The landslides are often triggered 

by torrential heavy rainfall, flash floods, seismic activities, or anthropological reasons such as 

heavy vehicles' movement or, usually, human activities on unstable slopes (Kwan et al. 2014; 

Li et al. 2014). Many past literature reviews suggest that complex hydrogeological settings and 

increasing anthropogenic activities are among the key factors that often influence landslide 

occurrences (Rai et al., 2014; Singh and Sharma, 2021).  

Researchers have concluded that human-induced LULC change has a significant impact 

on the initiation of landslide events (Guillard and Zêzere 2012; Galve et al. 2015; Meneses et 

al. 2019), particularly in populated areas where landslides are the main threat to human 

settlements and infrastructures (Pinyol et al. 2012; Abancó and Hürlimann, 2014). 

Developments such as road and railways construction, building construction due to increasing 

population, etc., have led to deforestation, slope cuts, construction landfills, and garbage dumps, 

thereby destabilizing the area and making the region prone to landslides. Though urban 

development leads to industrialization and commercialization, it has some limitations. It has a 

significant impact on the regional and global climate (Karl and Trenberth 2003), 

biogeochemical systems (Oleson et al. 2008), hydrological condition (Chung et al. 2011), and 

LULC change (Patra et al. 2018). 

Deforested areas have a diminished capacity to act as a carbon dioxide sink and are a 

direct source of greenhouse gases if accompanied by biomass burning. Land conversion from 

natural vegetation to agriculture or pasturage also alters the terrestrial albedo, contributing to 

changes in the surface radiative balance (Krishnan et al., 2020). The severe changes in land 

cover and climate, particularly in developing countries, are mainly due to widespread urban 

growth and the alteration of natural regions into industrial or agricultural areas (Jat, 2008). 

About one-third of the Earth's surface is used for irrigation, and over half of the surface has been 

altered over the past few years (Houghton, 1994). In future decades, this depletion trend in 

natural land, thick forests, watersheds, and increased urbanization will increase regional 

precipitation and temperature due to climate change (Schuster 1996; Andersson-Sköld et al. 

2013).  

 



Chapter 2/ Literature Review 

10 

 

The extreme changes in climatic conditions will further cause rivers to dry in summer 

and heavy runoff during the rainy season (Olsson et al. 2011). These changes will cause soil 

erosion, water level change, and vegetation changes that will affect slope stability (Parry et al. 

2007). The increased erosion will increase the landslide probability, while other climate change 

impacts on landslide probability are challenging to predict (Suh et al. 2011; Korup et al. 2012). 

Dynamic factors like climate change and LULC change are the most influencing and can also 

be used in predicting future LSM. Climate and its variations control or affect landslide activities, 

chiefly precipitation and temperature (Sidle and Ochiai 2006; Crozier 2010; Huggel et al. 2012). 

2.3.3 Optimization of factors 

In landslide studies, these parameters are frequently considered based on the analysis of 

the landslide types and the features of the study region (Ayalew et al. 2005). Selecting landslide 

causal parameters and their classes should be considered an essential step in LSM analysis 

(Costanzo et al. 2012; Meinhardt et al. 2015). According to Lee and Talib (2005), selecting 

significant parameters can increase the model's prediction accuracy. Thus, determining 

parameter significance for the study area is essential before performing susceptibility analysis. 

Removing less effective factors can reduce noise and uncertainties and thus improve the 

predicting ability of the model (Pradhan and Lee 2010; Martínez-Álvarez et al. 2013). Methods 

like multicollinearity analysis and correlation attribute evaluation can eliminate the least 

significant parameters (Chen et al. 2017). 

2.4 LSHM Models 

The spatial probability of landslide occurrence, known as susceptibility, is the probability 

that any given region will be affected by landslides with influences of a set of environmental 

variables (Brabb, 1984). The susceptibility map aims to identify areas likely to be affected by 

landslides in the near future by various natural and artificial causes. LSM aims to differentiate 

a land surface into homogeneous regions according to the degree of potential hazard caused by 

a mass movement in specific locations (Varnes, 1978). 

According to Brabb (1984), landslide susceptibility is the likelihood of a landslide 

happening in a region based on intrinsic factors. It provides us with information of "where" 

landslides are likely to occur. LSM does not consider the size or intensity of the landslides but 

can be prepared for different landslides (Carrara et al., 1995). LSM uses landslide inventory 

data to predict future slope failure assuming all the environmental conditions will remain the 

same. Landslides inventory data is prepared by recognising, categorising, and mapping these 

landslides through remote sensing and field surveys (Rib and Liang, 1978; Varnes, 1978; 

Hutchinson, 1988; Dikau et al., 1996). The prediction to identify the place of landslide 

happening over an area based on intrinsic landslide-causing factors is termed as a spatial 

prediction of landslide. It can also be defined as partitioning a study area into homogeneous 
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zones based on geological and geomorphological characteristics and then ranking them based 

on the degrees of landslide susceptibility. 

The LSHM is complex as the terrain and climatic conditions vary from place to place 

(Brabb, 1991). Factors responsible for causing landslides also change as these conditions 

change. Several methods have been proposed for ranking slope instability factors (Fig. 2.3). 

These methods are used for assigning the levels of danger to terrain that can be done in a 

qualitative, semi-quantitative, or quantitative way. The most effective methods in practice for 

more than 20 years were investigated and can be grouped into a few main categories: 

Qualitative, Semi-Quantitative, and Quantitative. 

 

Fig. 2.3 Landslide susceptibility and hazard zonation methods 

2.4.1 Qualitative Models 

In qualitative methods, the data used for analysis are generally non-numeric. Also, the 

high proportion of subjectivity is involved in the generation of numerous thematic data layers 

responsible for landslide events combined in LSM for the region. Qualitative methods are direct 

methods that portray zoning in descriptive terms. We obtained two qualitative methods from 

the database prepared, i.e., Inventory analysis and Geomorphic analysis used by various authors 

in landslide studies, as discussed below. 
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Inventory Analysis (IA) 

It is one of the most straightforward, direct, and qualitative methods for LSM. Past 

landslide data are obtained through field study, old records, aerial photographs, and satellite 

images. In this analysis, inventory maps that depict the spatial arrangement of landslide 

scattering are prepared. Campbell (1973), Wright and Nilsen (1974), and Wright et al. (1974) 

generated isopleth maps of landslide data using the areal distribution of landslides. The Isopleth 

map shows the number or percent of the area covered by landslide deposits over a region. 

Further, they discussed their uses in different fields of applications. DeGraff (1985) transformed 

landslide inventory maps into isopleth maps and defined relative landslide susceptibility as the 

percent of a standard area underlain by landslides. Cruden (1991) explained inventory analysis 

as the simplest type of landslide data consisting of landslide type, location, and event date. 

Guzzetti et al. (1994) prepared the inventory of areas historically affected by landslides and 

floods in Italy to predict future instability patterns from the past and present distribution of 

landslide deposits. They used mainly three sources of information for inventory preparation, 

i.e., newspapers, interviews, and the review of technical and scientific documents. According to 

Dai and Lee (2002) and Galli et al. (2008), IA methods are a mandatory step for all data-driven 

LSM methods, as they are used to prepare input data for analysis and validation purposes. 

Guzzetti et al. (2002) used universal area statistics to compare three landslide inventories. The 

result shows that as the landslide area increases, the number of landslide events rapidly increases 

to an extreme value and then reduces as a power-law function. Chau et al. (2004) used the IA 

method and prepared a GIS structure for organised LHM by using past landslide records in the 

Hong Kong region, combining geological, rainfall, climatic population, and geomorphological 

data. Colombo et al. (2005) generated landslide inventory maps by orderly inspections using 

aerial photos and GIS records to process the data. The IA approaches are expensive, 

cumbersome, and laborious, but maps obtained from this give basic information on areas 

affected by landslides. 

Geomorphic Analysis (GA) 

It is a direct, qualitative technique that depends on the researcher's capability to evaluate 

actual and potential slope failures. The investigator prepares LSM based on his experience by 

studying the geomorphological properties of the study region. Kienholz et al. (1983, 1984) 

presented land use maps and geomorphic damages maps, which were further used to prepare a 

base map. The base map contains information like actual and potential damage by erosion and 

landslides, an area protected by forests and streams, and supplementary information. 

Zimmerman et al. (1986) mapped numerous geomorphic hazard processes (avalanches, rockfall, 

landslide hazards) on a scale of 1: 50,000. Seeley and West (1990) evaluated and zoned 

geological hazards for land-use planning without describing any rules. They used aerial 

photographs, field data and consulted with selected geologists and volcanologists for this 
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purpose. Hansen et al. (1995) reviewed factors like terrain classification, geology type, etc., 

related to the application of GIS services concerning landslides. In the same year, Hearn (1995) 

study consisted of a thorough landslide inventory, geomorphological mapping using aerial 

photographs, and assessment of available geological and geotechnical data. He commented that 

the LSM is directly prepared from comprehensive geomorphological maps. Cardinali et al. 

(2002) presented a geomorphological method to produce landslide hazards and risk maps. They 

used multi-temporal landslide inventory maps to represent the scattering of the current and past 

landslides and their variation for about 60 years. Reichenbach et al. (2005) used a 

geomorphological method for LSM and risk assessment in Umbria, Italy. It is built on vigilant 

recognition of landslides, inspecting the regional geology and morphology, and studying past 

data on landslides for the selected region. Much evidence used to determine LSM was gathered 

from the investigation of past landslide data that depicts evidence on the scattering, nature, and 

shape of landslides and how they vary with time. The multitemporal map was generated by 

integrating historic landslide data of different periods, which were prepared using aerial 

photographs and field studies. Calista et al. (2016) used this technique to study the development 

of new landslides and the likely retreat of the prominent scarp. This was done by performing 

multitemporal geomorphological investigation using aerial photographs, LiDAR data, and field 

data interpretation.  

2.4.2 Semi-Quantitative Models 

Semi-quantitative methods are a hybrid of both qualitative and quantitative methods. 

These methods have the ability to make decisions in the calculation of weights and ratings of 

factors and their classes in LSM. To make a decision, these methods use some criteria like past 

landslide data or expert knowledge, or a combination of both in analysis. In the database 

analysis, we obtained three semi-quantitative Multiple-criteria Decision Making (MCDM) 

methods used extensively over the last three decades. These methods include weighted overlay, 

analytical hierarchy process, and fuzzy logic, as discussed below.  

Weighted Overlay (WOL) 

It is an indirect semi-quantitative method where the investigator uses prior knowledge 

and information to give weightage subjectively. These weights and rating is given numerically 

based on the scales defined by different authors. These approaches are based on the a priori 

information of all the factors responsible for causing landslides in the area. Accuracy depends 

on how good an investigator is at understanding the terrain geomorphology. Brabb et al. (1972) 

were the first to analyse the frequency of landslides using the geology and slope as the causative 

factors in San Mateo County, California. Further, Nilsen and Brabb (1977) mentioned other 

factors apart from slope and geology responsible for causing slope failure in their study. 

Hollingsworth and Kovacs (1981) assigned numeric values to three factors responsible for 

causing southern California soil slumps during heavy rainstorms. Takei (1980) considered 
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fracturing, vegetation cover, rock types, landslide inventory, slopes, and springs as the 

contributing factors for susceptibility map preparation in Japan. Roth (1983) constructed a data 

set to analyse regional landslide-susceptibility with six input variables, i.e., slope angle, Soil, 

rainfall, rock, vegetation, and landslide inventory. Gupta and Joshi (1990) used the landslide 

nominal risk factor method with field surveys and aerial photography for LHM. Thereafter, 

many authors followed this technique in landslide studies.  

The WOL method is a simple overlay technique for LHM, considering factors that cause 

slope instability. These factors are signed by weight subjectively by analysing the relationship 

between causative factors and landslide frequency (McKean et al., 1991; Pachauri and Pant, 

1992; Sarkar et al., 1995; Gökceoglu and Aksoy, 1996; Turrini and Visintainer, 1998; Abella 

and Van Westen, 2008; Ruff and Czurda, 2008; Nithya and Prasanna, 2010; Balteanu et al., 

2010; Lallianthanga et al., 2013; Ayele et al., 2014). Further, Anbalagan (1992) suggested a 

rating system called Landslide hazard evaluation factor for LHM. This empirical system used 

major intrinsic factors of landslide, such as geology, slope, relative relief, groundwater, and 

LULC. Van Westen (1994) discussed the applications and suitability of GIS in indirect LSM, 

where all promising landslide-responsible factors were correlated with past landslide data using 

data-integration methods. A method presented by Mejıá-Navarro et al. (1994) uses the GIS 

technique to evaluate geological hazards in the region of concentrated debris flows and sheet 

erosion activated by landslides. Further, vulnerability and risk were also assessed for Glenwood 

Springs, Colorado. For LHM, obtaining various thematic layers of factors responsible for 

landslides was preferred using aerial photographs and satellite images (Panikkar and 

Subramaniyan, 1997; Saha et al., 2002; Parise, 2002; Patwary and Parvaiz, 2009; Chandel et al., 

2011) and analysing them in GIS environment (Sarkar and Kanungo, 2004; Champati Ray, 

2005; Pandey et al., 2008; Deshpande et al., 2009; Gupta et al., 2009; Raghuvanshi et al., 2014; 

Kumar et al., 2018; Prakasam et al., 2020). 

Analytic hierarchy process (AHP)  

It is an MCDM approach invented by Satty (1980) to break complex decisions into a 

hierarchy of simple forms which can be evaluated subjectively. Using a numerical scale, this 

subjectivity is removed, and each alternative is ranked numerically. It assists decision-makers 

in determining the relative influence of different factors by comparing them pair-wise (Yoon 

and Hwang, 1995). Saaty (1990) and Saaty and Vargas (2007) gave a stepwise procedure for 

applying AHP. The first step is to define the problem. Afterward, goals and alternatives are 

determined, followed by a pair-wise comparison. Further, weights are obtained based on the 

results of the comparison. AHP can be used successfully for medium-scale LSM, where various 

landslide causative factors are considered as alternatives (Soeters and van Westen, 1996). The 

AHP method was compared with the WOL method (Barredo et al., 2000), Logistic Regression 

(LR) method (Ayalew et al., 2005), Information Value (IV) method (Yalcin, 2008), and Support 
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Vector Machine (SVM) method (Kavzoglu et al., 2014). The comparison showed that the AHP 

method gave a more accurate image of the real distribution of landslide susceptibility than other 

methods for their respective study areas.  

AHP method was applied for LSM using various topographical and geological factors 

responsible for causing landslides (Yoshimatsu and Abe, 2006; Mondal and Maiti, 2012; Thanh 

and De Smedt, 2012; Feizizadeh et al., 2013; Kayastha et al., 2013; Ma et al., 2013; Kumar et 

al., 2018; Bera et al., 2019). The attractive characteristic of the AHP is the ability to calculate 

the inconsistent weights produced. The eigenvalues obtained in the calculation are used to 

measure the consistency of the matrix defined by Satty (1980). The inconsistencies obtained 

while making the decision can find out using AHP and can be corrected. Hence, the performance 

of the AHP model is often more for LSM than other models. However, in AHP, it is assumed 

that factors are independent and are not correlated with each other. To overcome this limitation, 

Saaty developed Analytical Network Process (ANP) technique after twenty-five years of 

development of the AHP method, which considers inner dependence among factors in a 

network. Neaupane and Piantanakulchai (2006) used this successor of the AHP for the LHM of 

a region in the mountainous terrain of Nepal. The main drawback in ANP is the formation and 

calculation of multiple matrices, which gets complicated as the number of factors increases in 

landslide analysis. Komac (2006) used multivariate statistical analysis to obtain the relation 

between landslide distribution and factors. Based on the statistical results, many LSM analysis 

were performed using the AHP method. Akgun et al. (2008) used the Frequency ratio (FR) 

method and weighted linear combination (WLC) method to produce LSM for the Findikli 

district, Rize, Northeast Turkey. The WLC model used expert judgment in decision-making, 

and analysis was performed using the reliable mathematical AHP method. Wu and Chen (2009) 

generated an LSM model for Taiwan using the AHP technique. They considered rainfall as the 

main contributing factor in causing landslides. Akgun and Turk (2010) used the fuzzy set model 

to prepare a pair-wise matrix by assigning values to the AHP matrix for comparison and 

obtaining weights. Intarawichian and Dasananda (2010) used AHP to give weights and WLC 

methods to generate Landslide Susceptibility Index (LSI), which were classified and divided 

into zones to obtain an LSM of the Mae Chaem Watershed, north Thailand.  

GIS-MCDM combines and transforms geographical data and makes decisions by 

judgments to obtain information (Feizizadeh and Blaschke, 2013). They used the landslide 

inventory dataset and Dempster-Shafer theory to measure the uncertainty in the LSM. Results 

indicated that the AHP model accuracy was the best compared to the WLC and Ordered 

weighted averaging (OWA) models. WLC and OWA are two commonly used MCDM methods 

in landslide studies. According to Kumar and Anbalagan (2016), a major drawback of AHP is 

that the relative weightage given to factors causing landslides by an individual is often not 

understood by others. Although, if weights are provided by considering past landslide records, 
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they are more evident to others. Van et al. (2016) combined AHP and WLC methods to produce 

LSM for Vietnam. They used AHP for pair-wise comparison and to build the weights of 

individual factors. After that, the weights are integrated by the WLC to form a single score for 

each pixel. Based on this pixel value, they are further classified into zones to generate a 

susceptible map. Yan et al. (2019) combined AHP with FR methods to generate LSM. They 

used the AHP method to obtain the weight of individual factors and the FR method to obtain 

the weight of each class for all factors. Further, they concluded that the AHP method is suitable 

for solving complex problems in landslide studies. Still, as different experts give different 

weights to all the factors, it has this limitation of subjectivity. Dikshit et al. (2020) used the 

Poisson probability model for the temporal assessment of landslides, which was further used as 

a factor in the AHP method for LSM. Roccati et al. (2021) applied AHP for risk mitigation 

planning. They added objectivity to the model by using landslide inventory data and obtaining 

quantitative results. Further, the subjective component that arises from the expert's opinion 

helped the decision-making process.  

Fuzzy logic (FL) 

The term fuzzy logic was first introduced by La (1965) using fuzzy set theory. His theory 

is generally considered an effective tool for dealing with linguistic data. This theory can deliver 

a method where multiple datasets can be quantitatively processed. Juang et al. (1992) and Davis 

and Keller (1997) used fuzzy set analysis to develop an inexpensive, qualitative evaluation 

scheme for mapping slope failure potential. Fuzzy set theory is comparatively more flexible 

than classical theory (Berkan and Trubatch, 1997). FL method for LSM used bivariate analysis 

where all factors are represented by 0 and 1 values depending on their influence on landslide 

occurrence. FL methods help to handle data uncertainty, particularly at small scales of LHM, 

because data have to classify in sets (Elias and Bandis, 2000). FL method can be used for LHM 

by using the correlation between landslide inventory and factors responsible for causing 

landslides (Chi et al., 2002; Champatiray et al., 2007; Rampini et al., 2013; Zhu et al., 2014; 

Uvaraj and Neelakantan, 2018; Razifard et al., 2019; Baharvand et al., 2020). Ercanoglu and 

Gokceoglu (2002) extracted factors representing if-then rules and fuzzy sets from landslide 

inventory. Factors were selected for generating LSM using these rules. Ross (2004), in his book 

"Fuzzy Logic with Engineering Applications," explained in detail the methods of fuzzy systems, 

differences in classical and fuzzy relations, and how decisions are made using fuzzy 

Information. Ercanoglu and Gokceoglu (2004) analysed both factors and landslide data using 

FULLSA. This computer program generated LSM utilising fuzzy relations.  

Further, Kanungo et al. (2006) prepared LSM in a part of the Darjeeling Himalayas using 

three methods, i.e., ANN, FL, and a combination of both. Among all these methods, the LSM 

prepared based on the hybrid method was significantly better than others. Lee (2007) and Kumar 

and Anbalagan (2015a) combined FR and FL to increase the accuracy of LSM. They aimed to 
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provide subjectivity using FL to a data-driven method like FR to improve the model's flexibility. 

Pradhan (2011) attempted to produce the LSM of Malaysia using the relationships of FL. 

Further, he commented that the main advantage of FL over other methods is that it does not 

depend on the statistical distribution of the data, and there is no requirement for particular 

statistical variables. Pourghasemi et al. (2012a) produced the LSM of an area in Iran subjected 

to landslide by using both FL and AHP methods. The comparison results showed that the FL 

method's accuracy was better than the AHP method. Bui et al. (2012a) used FR to calculate 

factors contribution, and then the ratio value was normalised from 0.1 to 0.9. These fuzzy 

membership values were combined using fuzzy operators like fuzzy SUM, fuzzy PRODUCT, 

and fuzzy GAMMA to calculate landslide susceptibility index (LSI) values. Further, they 

concluded that fuzzy SUM had the least prediction ability than PRODUCT and GAMMA 

operators. Akgun et al. (2012) developed a method that uses expert opinion in LSM for the 

Sinop area in Turkey. This method applied Mamdani fuzzy inference system (Mamdani and 

Assilian, 1975) developed using the MATLAB program. Ahmed et al. (2014) used semi-

qualitative WOL and FL techniques for LSM in the Upper Indus River basin. Also, they 

highlighted those critical local areas which demand a more comprehensive site-specific 

investigation. Berenguer et al. (2015) used the FL method for spatial and temporal prediction 

and combined them to produce dynamic LHM at a regional scale in Spain. Meten et al. (2015) 

used FL and a Rock Engineering System (RES) for LSM in the Selelkula area in Central 

Ethiopian Highland. They applied different fuzzy operators using the input fuzzy membership 

functions for LSM. All different kinds of fuzzy operators used in the analysis produced various 

quality maps. They generated 12 maps using multiple operators and compared them using the 

AUC of the Receiver Operating Characteristic (ROC) curve. The result showed that the gamma 

operator (γ = 0.8) presented the finest prediction accuracy while the fuzzy OR operator 

presented the least. The results showed that the accuracy of the technique is appropriate in 

predicting landslide occurrences. 

2.4.3 Quantitative Models 

Quantitative methods generate numerical approximations of landslide events in an area 

using landslide inventory. These methods calculate the probability of landslides based on the 

assumption that landslide-responsible factors and landslides are uniformly distributed in an area. 

These methods can estimate the weightage and rating of factors objectively for LSM. Several 

quantitative methods are used in LSHM, which are summarised below. 

Statistical Analysis 

The statistical method uses mathematical equations for the analysis of raw research data. 

They are built on studying the functional relations between factors responsible for landslides 

and inventory. Carrara et al. (1977, 1978, 1991) correlated the landslide distribution with factors 

responsible for landslides using software-automated thematic cartography. He commented that 
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multivariate techniques are efficient for objectively measuring different landslide susceptibility 

zones. Predictions about future landslide occurrences can be made using statistical relationships 

between landslide inventory and factors responsible for landslides (Chung and Fabbri, 1995; 

pan et al., 2008). Both bivariate and multivariate statistical models can be used for the analysis. 

Multivariate methods are superior to bivariate as they are more sensitive in intermixing the 

landslide-responsible factors considered for the modeling (Süzen and Doyuran, 2004). 

Multivariate methods give more reliable results, both in terms of the training and prediction 

portions of the susceptibility analysis, as these methods simultaneously consider all the factors 

contributing to landslides (Nandi and Shakoor, 2010). To reduce the subjectivity in giving 

weight, data-driven methods are used instead of knowledge-driven (Kanungo et al., 2012). Here, 

we discuss five data-driven statistical methods used in LSHM by the researcher. 

Discriminant analysis (DA)  

It is one of the oldest statistical methods which uses multiple variables for LSM. It helps 

to differentiate between the effect of different landside responsible factors and give weightage 

to them. Neuland (1976) used principal component analysis to clarify the relationships between 

the topography of Germany and 250 past landslide records. Further, a prediction is made using 

a bivariate DA whose efficiency is tested by a procedure of the Euclid distance. Carrara (1983) 

used DA and regression analysis for LHM in Calabria, Italy. He used geological and 

geomorphological factors in the investigation responsible for landslides. Neeley and Rice 

(1990) used the checklist for mass movement and field data to generate a three-variable 

equation. This equation was used to predict the risk of debris slides in California. Inventory 

maps accuracy has a significant influence on the accuracy of predicted LHM. Hence, assessing 

the impact of errors in inventory maps on predictive models of landslide hazards is essential 

(Ardizzone et al., 2002). 

DA method is a very effective multivariate statistical technique for situations involving 

categorical dependent variables like landslide inventory and quantitative independent variables 

like geological-geomorphological factors (Santacana et al., 2003; Lee et al., 2008; Eeckhaut et 

al., 2009; Dong et al., 2009; Chen and Chang, 2016). Guzzetti et al. (2006) used this method for 

the spatial prediction of landslides. They adopted a Poisson probability model for temporal 

prediction to determine the exceedance probability of having one or more landslides for all 

pixels or cells. Further, they obtain the probability of landslide size by analysing frequency–

area statistics of landslides. Using these three probabilities and assuming their independence, 

they performed LHM for the area. Rossi et al. (2010) performed LSM using LR, neural network 

(nn), Linear Discriminant Analysis (LDA), and Quadratic Discriminant Analysis (QDA). In the 

training set, nn over-fitted the information of landslides. The result concludes that LR, LDA, 

and QDA had better prediction capability for the area in Umbria, Italy. Calvello et al. (2013) 

used a methodology based on the evaluation for each Terrain Computational Unit (TCU) of a 
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score used to discriminate between two groups of terrain units, i.e., landslide-affected and 

landslide-free areas. 

Ramos-Cañón et al. (2016) used LDA to obtain easy mathematical functions that signify 

the probability of landslides happening in Bogotá, Colombia. The functions were also used to 

recognise the most relevant variables, such as normalised rainfall intensity and normalised daily 

rainfall derived from rainfall records linked to the landslide events. Multivariate statistical 

methods like LR, DA, and IV do well when calculated over diverse terrain, and the selection of 

these methods for LSM should depend on the variability of these terrain units (Zêzere et al., 

2017). Barella et al. (2019) compared FR, IV, LR, Bayesian model, Weights of Evidence 

(WofE), and landslide density models for LSM in Minas Gerais state in Brazil. Validation of 

models showed that all methods produced acceptable results. Wang et al. (2020) used WofE, 

LDA, Fisher's Linear Discriminant Analysis (FLDA), and QDA to obtain the LSM in China. 

The results based on the Success Rate Curve (SRC) revealed that FLDA had greater accuracy 

than the other methods. According to Eiras et al. (2021) latest machine learning methods for 

LSM are very robust, whereas simple methods like DA also have good predictive abilities for 

generating LSMs. 

Information Value (IV)  

It is a bi-variate statistical technique to find a relationship between unstable slopes and 

their responsible factors (Yin and Yan, 1988). Jade and Sarkar (1993) and Van Westen (1997) 

proposed the IV method for LHM, which considers the likelihood of landslide occurrence. It is 

an indirect statistical method that objectively evaluates LSM (Zezere, 2002). This method was 

compared with Landslide Nominal Susceptibility Factor (LNSF) techniques by Saha et al. 

(2005) and AHP by Singh and Kumar (2018). It was found that the LHM prepared using the IV 

method had a better prediction rate than AHP and LNSF for respective study areas. Wang and 

Sassa (2005) adopted LR and the IV model to produce susceptibility maps of landslide 

occurrence and combined them to increase the prediction rate. Sarkar et al. (2006) selected six 

factors for preparing LSM for Sikkim by preparing thematic data layers and determined the IV 

for every subdivision of landslide-related factors based on the presence or absence of landslide 

in a given area. The best combination of factors should be chosen for predicting landslides 

(Pereira et al., 2012). Both optical Balsubramani and Kumaraswamy (2013), Sarda and Pandey 

(2019), and InSAR satellite data Mengistu et al. (2019) can be used in LHM by adopting the IV 

method. 

Logistic Regression (LR)  

It is a very suitable method for predicting the existence or nonexistence of a landslide 

(Atkinson and Massari, 1998). The LR prediction rate is approximately 90% in successfully 

mapping stable and unstable areas (Rowbotham and Dudycha, 1998). This method is widely 
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adopted in obtaining the correlation between landslide inventory and landslide causative factors 

(Dai and Lee, 2001; Gorsevski et al., 2006; Nefeslioglu et al., 2008; Mancini et al., 2010; Kumar 

and Anbalagan, 2015b; Kavzoglu et al., 2015; Erener et al., 2016; Zhu et al., 2018; Zhao et al., 

2019; Du et al., 2020; Goyes-Peñafiel and Hernandez-Rojas, 2021). LR relates landslide-

responsible factors to the presence or absence of landslides within topographic cells and uses 

the relationship to generate a map showing the likelihood of future landslides (Ohlmacher and 

Davis, 2003). LR method was compared with the FR method (Lee, 2005), the SVM method 

(Brenning, 2005), the AHP method (Akgun, 2012), Statistical Index (SI) method (Pourghasemi 

et al., 2013a). Comparison results showed that the LR method is good at simplifying and 

produced fewer error rates than other methods for their respective study areas. 

According to Ayalew and Yamagishi (2005), LR is flexible compared to other 

multivariate statistical methods as it can be transformed into a bivariate so that interpretation of 

results can be simple. Greco et al. (2007) gave a stepwise procedure for adopting the LR method. 

The first step is to collect samples with factors responsible for landslides. In the second step, 

variables are transformed from non-parametric to parametric. The third step is to fit the model 

for calculating coefficients, and the last step is applying the model where the function is best 

fitted. Standard rainfall-induced landslide models are insufficient for areas with a higher 

frequency of storm and earthquake events. Hence, Chang et al. (2007) generated typhoon- and 

earthquake-induced landslide models using LR in Taiwan. Chang and Chiang (2009) used a 

critical rainfall rate, while Lee et al. (2010) used seismic ground motions and amplification 

factors as landslide causative factors in LHM. Meusburger and Alewell (2009) obtained the 

variation in LSM prepared for 1959 and 2000 and generated the deviated map. Further, they 

commented that changing responsible, dynamic factors would affect the landslide prediction.  

Jaiswal et al. (2010) used the available historical records of landslide volume for 

calculating the probability of magnitude prediction of landslide hazard. Further, they estimated 

the probabilities for spatial and temporal prediction using LR and Poisson models and combined 

magnitude probability to obtain the joint probability, assuming all three probabilities to be 

mutually independent. Erner and Düzgün (2010) stated that the LR method does not consider 

spatial changeability in the regression factors. Hence to increase the efficiency of the technique, 

factors were investigated to obtain a spatial correlation between them to produce a susceptibility 

map. Analysis in the LR method becomes complex as the number of causative factors increases. 

Hence, Atkinson and Massari (2011) omitted several insignificant factors using auto-covariate. 

The auto-covariate was estimated by applying a Gibbs sampler to the susceptibilities for 

neighboring pixels. Das et al. (2011) evaluated the landslide hazard based on Homogenous 

Susceptible Units (HSU). They derived these units from an LSM generated using the LR method 

using an automated segmentation procedure. Temporal probabilities are estimated using a 

Poisson method, and size probabilities are calculated using an inverse-gamma method. A 
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quantitative analysis of landslide hazards for each unit was done by multiplying spatial, 

temporal, and size probabilities. According to Das et al. (2012), ordinary LR does not permit 

the addition of previous information. Hence to solve this purpose, they took the help of Bayesian 

analysis using iterative simulation methods for LSM. Xing et al. (2021) revised the LR 

technique to estimate dynamic landslide susceptibility using rainfall data. The revised model 

can evaluate the possibility of future landslides under critical rainfall events.  

Support Vector Machine (SVM)  

SVMs are the supervised learning methods used for classification applications in the early 

1990s, and their application was afterward extended to regression problems based on statistical 

learning theory by Vapnik (1995). The SVM accomplishes classification jobs by using classifier 

functions, which can create hyperplanes in multidimensional space, thus separating dissimilar 

clusters of training data (Vapnick, 1998). The SVM model can be applied for LSM using remote 

sensing data and GIS techniques (Ma et al., 2003; Jiang et al., 2005; Marjanović et al., 2011; 

Lin et al., 2017). SVM transfers the input factors into a large-dimension space which can provide 

non-linear solutions to regression and classification problems (Yao and Dai, 2006; Yao et al., 

2008; Ballabio and Sterlacchini, 2012; Xu et al., 2012) 

Pourghasemi et al. (2013b) used six kernel classifiers in the SVM technique to generate 

the LSM. It was concluded that the prediction capability of the radial basis function (RBF) 

classifier was superior to linear polynomials of degrees 2,3, 4 and sigmoid classifiers. Similarly, 

Chen et al. (2016) also compared the prediction rate of four kernel classifiers, i.e., linear, 

polynomial, RBF and sigmoid. Chen et al. (2017) compared the prediction capabilities of three 

data mining methods. Generalised Additive Model (GAM), SVM, and combined ANFIS with 

FR methods were adopted for generating LSM in the China region. They concluded that SVM 

outperformed the other two methods for predicting landslide-prone areas in the China region.  

Artificial Neural Network (ANN)  

ANNs are fundamentally huge parallel computational models replicating the human 

brain's role. It comprises a significant number of easy processors connected by a weighted 

system. Here, neurons are processing units whose output depends only on the data that is locally 

available at the node, either stored internally or received via the weighted connections. These 

input units obtain various information based on the internal weighting system. Further, it tries 

to learn and generate output based on the information provided. ANN can perform large-scale 

processing by allocating parallel work. ANN is a computational tool that can obtain, represent, 

and calculate a plotting from a multivariate information space to another given set representing 

that mapping (Garrett, 1994). The most regularly used algorithm in the neural network method 

is back-propagation. It is used to define the rules for assigning weights to factors responsible 

for landslides and to train the multi-layered neural network, which can further classify the whole 
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database (Paola and Schowengerdt, 1995; Lee et al., 2001; Lee et al., 2003; Ercanglu, 2005; 

Melchiore et al. (2008); Nefeslioglu et al., 2008; Caniani et al., 2008; Pradhan and Lee, 2009; 

Pradhan and Lee, 2010; Bui et al., 2012; Tsangaratos and Benardos, 2014). ANN is quite similar 

to statistical methods, and numerous ANNs were established on a statistical basis (Bishop, 1995; 

Patterson, 1996). It is a non-linear technique capable of performing LSM with high accuracy. It 

does not need specific variables as it is free of the statistical distribution of the data (Perus and 

Krajinc, 1996; Lee et al., 2004). ANN method was compared with the WOL method (Arora et 

al., 2004), LR method (Yesilnacar and Topal, 2005), Decision Tree (DT) method, SVM method 

(Pradhan, 2012), and FR method (Aditian et al., 2018). They concluded from their comparison 

result that ANN gives more realistic results than others for their respective areas.   

Chang and Liu (2004) and Gomez and Kavzoglu (2005) fused multi-source data to build 

the feature space for landslide investigation. An nn method called Multilayer Perceptron (MLP), 

along with landslide features, was used for recognizing landslides. Ermini et al. (2005) used two 

different ANNs, i.e., MLP and the Probabilistic Neural Network (PNN), in classification 

problems. Both methods can be grouped in black-box models. The MLPs support the back-

propagation algorithm, and PNNs use the Kernel approach for estimating the probability density 

function. Further, they concluded that MLP had slightly better performance than PNN. Catani 

et al. (2005) adopted the ANN method for the spatial and temporal assessment of landslide 

hazards in the Arno River, Italy basin. The temporal assessment was achieved by combining the 

susceptibility values with data on average recurrence intervals to the susceptibility classes, 

which gives a return period. Further, vulnerability and risk assessment was carried out for land 

planning and risk prevention. Oh and Pradhan (2011) and Sezer et al. (2011) used both bits of 

knowledge of an expert and supervised learning algorithm for LSM. They used the Adaptive 

Neuro-Fuzzy Inference System (ANFIS) model, where factors responsible for landslides are 

related to past landslides by if-then fuzzy rules and were further optimised by ANN. Kumar and 

Anbalagan (2015c) used an ANN system called Radial Basis Function Link Net (RBFLN), 

which is an extension of the Radial Basis Function Neural Network (RBFNN) for the LSM. 

Further, they stated that integrating factors responsible for landslides using RBFLN had 

produced satisfactory results for the Tehri region, India. Chen et al. (2017) used a probabilistic 

method of Certainty Factor (CF) to find the relationships between landslide-responsible factors 

and past landslides. Further, data mining techniques like a Genetic Algorithm (GA), Differential 

Evolution (DE), and Particle Swarm Optimisation (PSO) were combined with the ANFIS 

method to generate a model for LHM. They concluded that the highest accuracy achieved was 

in the case of the ANFIS-DE model, and the least was in the ANFIS-PSO model.  

Moayedi et al. (2019) used PSO to optimise the ANN technique for predicting areas 

susceptible to sliding. Further, they concluded that the PSO-ANN model presented greater 

consistency in predicting the LSM than the ANN. Nguyen et al. (2019) evaluated the capability 
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of ANN created with PSO and Artificial Bee Colony (ABC) algorithms for LSM. They 

concluded that PSO-ANN performs better than ABC-ANN. Bui et al. (2019) used the 

metaheuristic algorithm Harris Hawks Optimisation (HHO) to optimise the performance of 

ANN in LSM. They concluded that the performance of ANN could be improved effectively 

using the HHO algorithm in both recognising and predicting the landslide pattern. Moayedi et 

al. (2019) outlined two novel optimisation algorithms of ANN, i.e., Biogeography-Based 

Optimisation (BBO) and Grey Wolf Optimisation (GWO) for LSM. They stated that both 

algorithms could be used to increase the learning ability of the MLP. Shahri et al. (2019) 

generated LSM of a large area by subdivision approach. Apart from ANN, recent authors have 

also used two different types of neural networks in deep learning, such as Convolutional Neural 

Networks (CNN) by Fang et al. (2020) and Recurrent Neural Networks (RNN) by Wang et al. 

(2020). The performance of CNN is considered more powerful than RNN and ANN and has 

applications in facial recognition, text digitisation, and natural language processing. 

Probabilistic Analysis 

Probabilistic methods in LSM bring objectivity in allocating weights. According to 

Chung and Fabbri (1993), the first step is establishing a Favourability Function (FF) for each 

layer, which sets up a platform for developing integration methods based on probabilistic 

operations. Lee and Min (2001) compared the probabilistic model with the statistical model and 

concluded that both models efficiently estimate the susceptible area of landslide. Further, they 

commented on the simplicity of using a probabilistic model and the easy understanding of 

results. 

Certainty Factor (CF) 

The CF method is one of the promising indirect FF approaches to solve the trouble of 

having dissimilar data and handling the uncertainty of the input data. Shortliffe and Buchanan 

(1975) were the first to develop the CF model; later, it was modified by Heckerman (1986). This 

method can either be data-driven, based on expert knowledge, or a combination of both. 

Suppose past landslide distribution data is not available. In that case, the expert can input crisp 

CF values for all factors responsible for landslides, but the expert judgment's irregularity is hard 

to estimate (Binaghi et al., 1998). The CF approach assesses the quantitative relation between 

the responsible factors and the past landslide. CF values can be evaluated by merging 

conditional probability and the prior probability of a landslide-prone zone (Luzi and Pergalani, 

1999; Lan et al., 2004; Sujatha et al., 2012). This quantitative value of CF ranges from mines 

one to one to define the possibility of landslides occurring. A positive number indicates a more 

chance of happening landslide events, while a negative number indicates a less chance. Kanungo 

et al. (2011) combined ANN with CF, LR, and FL approaches for LSM, and their relative 

efficiency was checked using visual interpretation, landslide density analysis, and the success 

rate curves method. Nahayo et al. (2019) compared the performance of the AHP and CF models 
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in LSM in the western province of Rwanda. The result showed that the CF model generated 

high accuracy and prediction rates than the AHP model. Wubalem (2021) applied FR, CF, and 

IV methods to determine the areas susceptible to landslides. Further, they concluded that all 

three methods accurately predict critical areas susceptible to sliding for the study region.  

Conditional Probability (CP) 

It measures the probability of an incident happening, given that another incident has 

already happened. This method is based on Bayes Theorem. Chung and Fabri (1999) delivered 

a combined framework for predictive modeling with GIS using probability theories for LHM. 

According to Clerici et al. (2002), among the multivariate methods, the CP method is mainly 

straightforward from a conceptual point of view and primarily suitable for a GIS platform. 

Gorsevski et al. (2003) predicted landslide hazards by integrating FL and CP techniques. This 

modeling technique was built on calculating CPs from relative frequencies of datasets to be 

modeled and used FL to classify predictor datasets. Yilmaz (2010) compared four methods such 

as CP, LR, ANN, and SVM, for preparing LSM. He concluded that CP is an easy method in 

LSM and exceptionally compatible with the GIS platform. Pourghasemi et al. (2012b) used the 

CP model to produce LSM in the Safarood basin, Iran where the uncertainty was related to 

landslide phenomena and their relation with factors responsible for landslides. Saha et al. (2021) 

used the CP method to increase the accuracy of the Boost Regression Tree (BRT) method in the 

Rudraprayag district, India. They concluded that the combination of the two methods had 

resolved the deficiencies of the solo method, increased the performance, and lifted the model's 

predictive capability. 

Frequency Ratio  

The FR is the ratio of the probabilities of a landslide incidence to a non-incidence for a 

given factor. It is a bi-variate statistical method for LSM, built on the detected relations between 

past landslides and factors responsible for landslides. Mehrotra et al. (1996) performed LHM of 

East Sikkim Himalaya using this technique by evaluating various terrain factors like lithology, 

drainage, structure, slope, and land use related to past landslides. Süzen and Doyuran (2004) 

aim was to improve the earlier defined bivariate statistical LSM techniques in a more data-

dependent method. For this, they performed frequency analysis, named the landslide zone by 

seed cells, and obtained weights as the ratio of the seed cell abundance over the class region. 

The landslide inventory layer is overlaid on each thematic data layer to determine the impact of 

different factors on landslide occurrence. Further, the area ratio values of landslide-affected area 

by non-affected area are calculated for all factors. Ratio values are used as the ratings and 

weights for the factors and their corresponding classes, which were then integrated for LHM 

(Lee and Talib, 2005; Lee and Pradhan, 2006, 2007; Vijith and Madhu, 2008; Bourenane et al., 

(2016); Chimidi et al., (2017); Hamza and Raghuvanshi, 2017; Pirasteh and Li, 2017; 

Maheshwari, 2019).  
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FR method was compared with other methods like LR (Lee and Sambath, 2006), ANN 

(Yilmaz, 2009), FL (Pradhan, 2010), AHP (Demir et al., 2012), IV (Kumar et al., 2019) and 

WofE (Versain et al., 2019; Ozdemir, 2020; Arifianti et al., 2020). They concluded that the FR 

method is simple and accurate when sufficient data is available. Moung-Jin et al. (2014) used 

FR for LSM and rainfall data for the temporal assessment of LHM for the different time frames. 

Umar et al. (2014) used FR to measure the effect of classes of all factors responsible for 

landslide activity. As FR method neglects the intermediate correlation between the factors. 

Hence they used LR to analyse the relationship among the factors. Meten et al. (2015) 

determined the independence of different causative factors among each other by applying the 

correlation matrix of LR. These factors were then used for preparing LSM using the FR method. 

Anbalagan et al. (2015) used FR and FL for LHM for Lachung Valley, Sikkim. They concluded 

that factors responsible for landslides integrated using FL had yielded good results. 

Weight of Evidence (WofE) 

WofE is a Bayesian probability method that uses log-linear relations for performing LSM 

analysis. For training the model, it uses landslide distribution data and predicts both the 

favorable and unfavorable probabilities of landslide susceptibility (Lee et al., 2002; Lee and 

Choi, 2004; Thiery et al., 2004; 2007; Sharma and Kumar, 2008). The WofE method was 

compared with the BIS method (Ghosh et al., 2009), the physically-based model, the FL method 

(Cervi et al., 2010), the LR method (Schicker and Moon, 2012), and the CF methods 

(Pourghasemi et al., 2013c). Results showed that the WofE method presented better prediction 

rates when compared with the other methods for respective study areas. Maximum accuracy can 

be achieved by combining WofE with other methods such as ANN - WofE (Vahidnia et al., 

2009), FL - WofE (Hong et al., 2017), and SVM - WofE (Saha and Saha, 2020). These hybrid 

methods showed high predictive power than the conventional WofE method. In the WofE 

method, likelihood ratios are used to define the possibility of a landslide happening and to 

calculate positive and negative weights in the case of the existence of the evidence. Contrast (C) 

is defined as the difference between these positive and negative weights (Ilia et al., 2010; 

Sterlacchini et al., 2011; Xu et al., 2012; Armas, 2012; Kayastha et al., 2012; Neuhauser et al., 

2012; Piacentini et al., 2012). When the contrast value is zero, it designates that the factor is not 

essential for analysis. If the value is positive, it means a positive spatial relationship, and vice 

versa for a negative contrast. Blahut et al. (2010) compared LSMs generated with the same 

WofE method but dissimilar landslide inventories and demonstrated that better LSM could be 

obtained from an accurate landslide inventory prepared. Martha et al. (2013) used the WofE 

technique for LSM, where weights were obtained from past landslide data combined with 

landslide-responsible factors. Ilia and Tsangaratos (2016) performed a sensitivity analysis for 

the WofE method to recognise how this method is reacting to the change made in the weight 

values of factors responsible for landslides. This was done to identify those critical factors that 

significantly influence landslide occurrence in Greece. 
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Physically Based Distributed Analysis (PBDA) 

Physically based are built on physical laws governing slope movement (Dunne, 1991). 

The factors used in the site-specific methods can be obtained from field data collection and 

performing laboratory experiments. The distributed analysis is not site-specific and needs the 

spatial distribution of various data. PBDA models like Shallow Landslide Stability Model 

(SHALSTAB) and Stability Index Mapping (SINMAP) can be used for LHM considering 

spatially distributed input data of soil-moisture, slope angle, and factor of safety (Montgomery 

and Dietrich, 1994; Wu and Sidle, 1995; Terlien et al., 1995; Pack and Tarboton, 1998). 

Modeling slope failure processes can be applied to shallow landslides that use groundwater 

fluctuation, rainfall data, or earthquake data as a triggering factor in the study (Hungr, 1995; 

Stead et al., 2001). 

Dietrich et al. (1995) developed a method to predict soil depth, which was used to 

determine the effects of root cohesion and saturated conductivity variation in the vertical 

direction. Further, these data were used in slope stability modeling. Jibson et al. (2000) used the 

landslide inventory, earthquake ground motion records, geologic map, soil properties, and DEM 

in a dynamic model to obtain LHM for study areas in California. Baum et al. (2002, 2008) used 

a program in Fortran to generate a model called TRIGRS (Transient Rainfall Infiltration and 

Grid-based Regional Slope Stability analysis) to compute temporary changes in pore pressure 

and variations in the safety factors due to infiltration of rainfall. A dynamic model for LHM 

considers both spatial and temporal prediction (Casadei et al., 2003; Xie et al., 2004; Dhakal 

and Sidle, 2004; Fall et al., 2006; Rosso et al., 2006; Salciarini et al., 2006; Simoni et al., 2008; 

Godt, 2008; Baum et al., 2010; Wang and Lin., 2010; Takara et al., 2010; Alvioli and Baum, 

2016). GIS-based PB models can be done by merging a soil-moisture and a slope-stability model 

(Acharya et al., 2006; Sharma and Shakya, 2008; Ray and De Smedt, 2009).  

Shallow Landslides Instability Prediction (SLIP) is another physically-based 

deterministic model used by Montrasio and Valentino (2008); Montrasio et al. (2011) in rainfall-

induced landslide modeling. Jia et al. (2012), Rossi et al. (2013), and Anagnostopoulos et al. 

(2015) used Limits Equilibrium Models (LEM) for PB landslide distributed modeling systems 

to examine the stability/instability conditions. Ciurleo et al. (2017) produced LSM for a 

Catanzaro in southern Italy using the statistical IV and the deterministic TRIGRS model. They 

concluded from the result that if sufficient data is available to perform deterministic analysis, it 

should be preferred over a statistical model. Dolojan et al. (2021) constructed a model for 

evaluating shallow slope failures triggered by rainstorms by including infiltration rate with slope 

stability analysis.  
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2.5 Research gaps 

After carrying out the detailed literature survey, a few essential research gaps were 

derived, as discussed below: 

1. The inconsistency is selecting landslide causative factors. This brings the 

requirement to develop a scientific methodology for identifying significant 

factors. 

2. The factors selection was random and mainly depended on the availability of the 

data. Also, the testing of the selected factors was not done on other similar terrain 

conditions. 

3. Researchers have restricted themselves in predicting present landslide 

susceptibility maps. These susceptibility maps should be constantly updated 

because of dynamic Earth and ecosystem processes and unstoppable 

anthropogenic activities. 

4. Future predictions of landslide susceptible regions have not been quantified. 

Updating the susceptibility maps frequently is challenging and demands 

continuous monitories of one particular area. However, future predations of these 

susceptibility maps can prevent us from updating these maps regularly. 

5. Dynamic factors such as LULC and climate variables were not adopted in 

predicting future LSM scenarios. Most of the studies have only incorporated 

static factors in their analysis. Although few studies have adopted dynamic 

factors, however, they have not used them for determining future LSM scenarios. 

2.6 Research objectives 

Based on the above research gaps defined, the study aims to predict landslide 

susceptibility scenarios for present and future conditions by incorporating both static and 

dynamic landslide causative factors. Based on this key objective, specific objectives are defined 

as follows: 

1. Development of scientific methodology for the determination of significant 

landslide causative factors. 

2. Predicting present LSM incorporating the derived significant landslide causative 

factors and testing the applicability of significant factors on two landslide-prone 

sites. 

3. Development of an innovative methodology for predicting future LSM scenarios 

considering derived future LULC projections. 

4. Adopting the developed methodology for predicting future LSM scenarios 

incorporating future projections of LULC and Climate under four SSPs. 
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2.7 Novelty of the Research 

The novelty of this study is the adaptation of the innovative methodology for deriving 

future LSM scenarios by incorporating dynamic factors. The methodology used the past data as 

the input, and based on the changes identified in the past information, future projections are 

derived. We have observed these changes in landslide susceptibility maps and LULC maps. 

This methodology projects these changes to the future and helps us understand future scenarios. 

Further, we have also used future climate projections under four SSPs for predicting future LSM 

conditions. Based on the different pathways adopted, different susceptibility conditions will be 

generated. Hence, we have incorporated both LULC and climate projections in the future 

prediction of LSM scenarios under four SSPs. 

2.8 Summary 

LSHM is the first step in hazard assessment, but it can also be considered the final land-

use planning product. This chapter describes the efforts of researchers attempting to determine 

LSHM for different regions all around the world since the mid-1970s. Most of the works were 

focused on spatial prediction with inconsistency in the selection of models and landslide 

causative factors. About 86% of the literature found to be working on spatial prediction only, 

11% used both spatial and temporal prediction, and only 3% of the literature used all three 

spatial, temporal, and magnitude components in landslide hazard analysis, as shown in Fig. 2.2. 

If sufficient data is available for temporal and magnitude prediction, it should also be carried 

out along with spatial prediction to understand landslide hazards better. Further, risk analysis 

should also be carried out if the data related to the vulnerability of structures and other properties 

are available.  

The chapter also summarises the most commonly used methods for susceptibility 

assessment are LR, ANN, FL, AHP, WofE, and FR. PBDA should also be preferred for areas 

with homogeneous geological and geomorphological conditions with a clear understanding of 

the triggering mechanisms. Even though some approaches have shown higher accuracy, no 

single approach is still superior in all environmental and field conditions. The knowledge and 

talent of the researcher in using a particular method are more important than the approach. Also, 

many studies have shown that hybrid methods are better than single methods in terms of 

performance, as the deficiency of one method is overcome by another. 

The last section of this chapter discusses the research gaps, objectives, and novelty of the 

research work. Based on the literature survey, few research gaps were defined which are 

necessary for the current situation. Further, the research objectives were derived from the 

defined research gaps. Also, the novelty of the research was highlighted in the end. 
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Chapter 3 

Study Area and Testing Sites 

 

3.1 Introduction 

The Himalayas has a conspicuous landscape consisting of tall ridges, steep slopes, large 

streams, and deep valleys. The topography of the Himalayas and increasing anthropogenic 

activities are mainly responsible for the landslide incidences (Gupta and Anbalagan, 1997). One 

of the leading reasons for land degradation in the Himalayan region is landslides, a recurring 

phenomenon. Above all, the Himalayas is a young mountain involved in numerous geodynamic 

activities such as earthquakes, shearing, folding, and faulting. Also, they receive prolong 

intensify rainfall in the monsoon season, causing saturation of hill slopes. All these adverse 

phenomena of the Himalayan topography, along with human interventions, lead to slope 

instability. The Indian Himalayas, particularly Uttarakhand and Himachal, are home to several 

religious and recreational places, attracting thousands of tourists annually. To cater to the needs 

of the surging tourists, unplanned constructions like hotels, shops, and other infrastructures have 

increased the degree of hazard. Financial prosperity among the population of the hilly region 

has changed the traditional approach of construction and cultivation pattern, which is 

increasingly resulting in frequent slope instability problems. After carrying out the literature 

review, the area where the landslide problem dominated was selected. The site should also have 

the availability of historical landslide data and good-resolution satellite imagery.  

The Tehri region of Uttarakhand, the Chamba and the Bhuntar regions of Himachal 

Pradesh are some of the landslide-prone sites used in this study. These three study regions have 

an almost similar types of terrain and climatic conditions. Apart from heavy rainfall and high 

seismic factors, these study areas also have a high stream network that adds to the hills 

instability. In this chapter, we will discuss in detail the location, physiographic characteristics, 

and drainage pattern of the selected study area of the Tehri region. Further, two test sites, 

Chamba and Bhuntar, were also investigated for testing the derived results of optimised 

landslide causative factors (Fig. 3.1). The Two test sites from the Himalayas were selected from 

the state of Himachal Pradesh with similar terrain conditions and data availability of historical 

landslide events and landslide causative factors. This chapter also discusses the characteristic 

feathers of these two chosen test sites in detail. 
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Fig. 3.1 Location of the study area and Testing sites. (A) Tehri region, (B) Chamba 

region, and (C) Bhuntar region 

3.2 The Tehri Region 

The Tehri region falls in the state of Uttarakhand, India. The state is undoubtedly a 

paradise on earth, popularly known as the home of the Himalayas and the land of gods. The 

state is famous for fresh air, pure water, snow-covered mountains, and small villages with 

simple people having challenging lifestyles. The state lies along the great Indo-Gangetic plain 

consisting of the Higher, lesser, and sub-Himalaya parts. The study area falls in the basin of the 

Bhagirathi and Bhilangna rivers. These two rivers confluence to form a massive reservoir at 

India's tallest Tehri Dam.  

The dam's height is 260.5 m, and its reservoir covers around 45 km2 of the region, which 

has submerged 125 villages (Hanumantha Rao Committee Report, 1997 as quoted in Bisht, 

2009). Many environmentalists and locals opposed the dam construction as thousands of people 

were displaced forcefully (Asthana, 2012). The new Tehri town was raised with full civic 

facilities for the resettlement of villagers. To boost tourism, multiple spots for water sports 

activities all around the lake were created (Naithani and Saha, 2019). All these activities for 

economic development and urbanisation are vulnerable to climate change due to the emission 

of significant quantities of greenhouse gas into the atmosphere (Kumar and Sharma, 2016). Due 

to this, areas with a lower altitude in the Indian Himalayan region have experienced increased 

temperatures, rainfall intensity, and decreased number of rainy days. This reduced water 

availability for farming and overall food production (Pandey et al., 2017). 
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Fig. 3.2 Photographs showing landslides in the Tehri region. 

3.2.1 Location and Geology of Study Area 

The study area ranges between 30° 36" 57.6' N to 30° 19" 1.2' N latitude and 78° 39" 3.6' 

E to 78° 13" 15' E longitude in the Lesser Himalaya of Garhwal hills in Uttarakhand, India (Fig. 

3.2). The area covered in this study was about 1350 km2, which falls in the part of Bhagirathi 

and Bhilangna river basins. These two rivers confluence to form a massive reservoir at India's 

tallest Tehri Dam with a maximum water level (MWL) of 830 m and dead storage level (DSL) 

of 740 m (Kumar and Anbalagan, 2015). The Tehri region lies in zone IV of India's seismic 

zoning map, which comes under high-risk area. Due to the variation of water level in the 

reservoir, the area has large-scale slope instability and landslide changes along the reservoir's 

embankment. Hence, many researchers have studied this area for LSM (Gupta and Anbalagan, 

1997; Joshi et al., 2003; Ghosh and Bhattacharya, 2010; Kumar and Anbalagan, 2015, 2016; 

Pandey et al., 2020; Tyagi et al., 2021). In the last three decades, several hydroelectric projects, 

roads, towers, ropeways, and other public utility works, and indiscriminate mining and 

quarrying further aggravated the landslide problems. 

The geology of the Tehri region can be classified into seven groups, i.e., Garhwal, 

Baliana, Jaunsar, Tal, Krol, Toli, and basic meta-volcanic. The whole study area is a part of the 

broader physiographic entity called Lesser Himalaya. Rocks in the central part of the area are 

low-grade metamorphosed lustrous phyllites and highly weathered quartzites. These rocks are 
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highly vulnerable to sliding because of the presence of well-developed foliation plains and 

joints. In the western part of the study area, quartzites with subordinate intercalation of gray and 

olive green slates with siltstones with white, purple, and green colors were identified. The 

eastern and northeastern part of the study area consists of fine-grained limestone with minor 

phyllitic intercalations. These rocks are mainly found at the higher ridges. In the eastern part of 

the area, the rocks are primarily quartzites. In the western part of the study area, the formation 

comprises quartzites, slates, and carbonate rocks 

3.2.2 Physiography and Vegetation 

Physiographically, the study area, falling in the Lesser Himalayas, is highly rugged due 

to high mountains, steep slopes, and deep valleys. Numerous hazardous incidences were 

reported from important roads like National Highway 134, commonly referred to as NH-134, a 

spur road of NH-34. NH-34 crosses the state of Uttarakhand and runs along the left side of the 

study area. It is a critical road connecting Gangotri in the north and Rishikesh in the south. A 

spur road connecting old Tehri with Srinagar (NH-707A) running along the Bhilangna river in 

the southeast direction of the study region has also experienced landslide activities in the few 

years. The hills of the study area are covered with plants like Camapanualatum, Buras, Neem, 

Pinus, Pipal, Piceasp, Deodar, Betulautilus, Cesrus, etc. whereas, the moderate to lower altitude 

regions are generally used in step cultivation. The study area has a good forest cover in many 

parts. The development processes such as urbanization, road construction, hydroelectric 

projects, and other civil structures have been primarily responsible for putting additional 

pressure on vegetation, wildlife, and pastoral lands. In this context, Garhwal Himalaya was 

greatly subjected to this type of pressure, in addition to intensive cultivation, overgrazing, 

ruthless felling of trees, new human settlements, and population influx, which resulted in the 

reduction of forest cover of this region. 

3.2.3 Climate and Drainage 

Throughout the year, the Tehri area experiences a subtropical temperature climate 

because of its high altitude location. The maximum elevation of about 2800 m and the minimum 

of about 600 m were detected with reference to the mean sea level. The study area has received 

heavy monsoon rainfall for about two months, with more than 2.5 mm daily rainfall (Kumar 

and Sharma, 2016). The mean minimum temperature for the region is about 4.6°C, obtained in 

December or January, and the maximum temperature of 35.5°C in June or July. The Bhagirathi 

river emerges from the Gangotri glacier in Gaumukh of Tethys Himalaya, flowing from the 

north to south direction of the study area. The river is fed with several small first and second-

order streams from both sides. Most of the NH-134 road runs parallel to the Bhagirathi river.  
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3.3 The Chamba Region 

Chamba test site falls in the state of Himachal Pradesh, India. It's a state situated in North–

West India chiefly covered with mountains with altitudes ranging from 6978m to 350m above 

mean sea level. It has a very dismembered highland scattered with deep valleys and gorges. The 

climate of the state varies from semi-tropical to semi-arctic. From the North-East part, it is 

joined with the China border. 

3.3.1 Location and Geology of Testing Site 1 

Chamba situated at 32°34'12"N latitude and 76°7'48"E longitude, is a town in the 

Himachal Pradesh state of India. It lies in the North-West part of Himachal Pradesh. The study 

area covers about 640 km2, with the elevation varying from 705m to 4240 m. The town has 

many temples and hosts two famous fairs, i.e., "Minjar Mela" and "Suhi Mata Mela." These two 

tourist attraction fairs are organised for many days and include music and dance performance. 

The geology of the Chamba region (test site 1) includes a wide range of rock formations. The 

Salkhala Group is surrounded by the Vaikrita Group and Katari Gali formations in the Chamba 

region. The Bhalai Formation, Chamba Formation, Manjir Formation, Batal Formation, 

Katarigali Formation, and Mandi granites are present in the area regionally, whereas along the 

NH-154A, quartzites, slates, and gneiss rocks exist locally (Singh and Kumar, 2021). 

3.3.2 Physiography and Vegetation 

National Highway 154A, commonly called NH 154A, passes through the study area from 

North-West to South-East, connecting Chamba town to Bharmour. NH 154A is a spur road of 

National Highway 54 that runs along with Ravi river in the study area (Fig. 3.3). The area is 

covered with water body (0.7%), dense forest (48%), agriculture land (0.9%), built-up area 

(2%), Barren land (2%), snow-covered (0.4%), sparse forest (46%). The sub-Himalayan range 

of mountains, full of diverse flora and fauna, makes Chamba an exhilarating experience. The 

hills of the study area are covered with plants like cedrus deodara, Abies pindrow, Barain 

(Acorus calamus L), Chuang (Achillea millefolium L), Chharmara (Artemisia nilagirica), Kosh 

(Alnus nitida), Chirndu (Sarcococca saligna), Bhang (Cannabis sativa), Kokhua (Stellaria 

media), Khaldri (Dioscorea deltoidea), Cheehun (Rhododendron arboreum), Kodal 

(Desmodium elegans), Chirayta (Swertia chirayita), Goon (Aesculus indica), Akhrot (Juglans 

regia L), Chirndi (Neolitsea pallens), Salam-Mishri (Polygonatum cirrhifolium), etc. 
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Fig. 3.3 Figure on the left shows the map of NH-154A buffering and on the right side 

shows the LULC class map for the Chamba test site. 

3.3.3 Climate and Drainage 

The maximum and minimum temperatures recorded in summer and winter are 42 °C and 

0 °C, respectively, with an average annual rainfall of 1190.9 mm (IMD Pune, 2010). The 

monsoon rainfall occurs in July, August, and mid-September in Chamba. The Ravi river passes 

through the testing area and flows from the west to the east direction forming canyons (Fig. 

3.4). In spring and summer, river water levels increase significantly because of snowmelt.  

 

Fig. 3.4 The left shows the stream buffer map, and the right side shows the Ravi river 

buffer map for the Chamba test site. 
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3.4 The Bhuntar Region 

Bhuntar Town also falls in Himachal Pradesh and is a nagar panchayat in Kullu district, 

India. Bhuntar has an airport that links prominent cities through the air. Bhuntar is typically a 

getaway to Kullu, Manali, Kasol, and Manikaran. 

3.4.1 Location and Geology of Testing Site 2 

Bhuntar situated at 31° 51' 36"N latitude and 77° 9' 0"E longitude, covers about 640 km2 

area with the elevation varying from 888 m to 4230 m. It is just 11 km from Kullu town and lies 

at the center of Himachal state along National Highway 3. The geology of Bhuntar region (test 

site 2) mainly comprises metamorphic rocks spread generally along the high slopes and 

crystalline rocks mainly present in the valleys. Jutogh, Kullu, and Vaikrita thrusts run along the 

valleys with several local faults/lineaments spread into the southern part of the area. 

3.4.2 Physiography and Vegetation 

The National Highway-3 passes the study area along the Beas river in the North-South 

direction. The NH-3 starts from Atari in Amritsar, nearby the India-Pakistan border, and ends 

at Leh in Ladakh via Bhuntar, Kullu, and Manali in Himachal Pradesh (Fig. 3.5). The area is 

covered with water body (0.8%), dense forest (47%), agriculture land (1.1%), built-up area 

(3%), Barren land (6%), snow-covered (0.1%), sparse forest (42%).  The site contains Shisham, 

sal, pine, and broad shiny leaved trees. This region has another range of oaks, blue pines, and 

fir trees. Sturdy mountain trees with firm tangled roots can be seen if you hike up to the 

mountains. These are alders and birches. The most prominent and beautiful plant is the 

Rhodendron. In the summers and autumn, gladiolas, roses, fragrant chrysanthemums, lilies, 

tulips, gladiolas, and carnations can be seen.  

 

Fig. 3.5 Figure on the left shows the NH-3 buffer map, and on the right side shows 

LULC class map for the Bhuntar test site. 
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3.4.3 Climate and Drainage 

Bhuntar is situated on the right bank of the Beas River. The Beas river passes through the 

testing region flowing southward (Fig. 3.6). The maximum and minimum temperatures recorded 

in summer and winter are 40 °C and -5.2 °C, respectively, with an average annual rainfall of 

941.8 mm (IMD 2016). 

 

 

Fig. 3.6 Figure on the left shows the stream buffer map and on the right side shows 

Beas river buffer map for the Bhuntar test site. 

 

3.5 Summary 

This chapter describes in detail the location, physiographic characteristics, vegetation 

covered, climate, and drainage pattern of the study area of the Tehri region and two test sites of 

the Chamba and Bhuntar regions of the Indian Himalayas. The study region of Tehri is shown 

with photographs and was mapped in Uttarakhand, India, with historical landslide data, major 

roads, and streams network. The two test sites of Chamba and Bhuntar were mapped in 

Himachal Pradesh, India, with historical landslide data, major roads, and streams network. The 

unique characteristics and features of these places attract tourists from all over the world, 

leading to the demand for activities like slope cutting, widening of roads, hotels, construction, 

etc., which further leads to population growth and urbanisation.
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Chapter 4 

 Methodology Overview 

 

4.1 Introduction 

This chapter describes the approach implemented to accomplish the various objectives of 

this research work. For LSM, it is vital to make a comprehensive landslide inventory of the 

Tehri region. The spatial prediction of landslides can be achieved using landslide-causing 

factors, and for deriving weights of these factors, LSM models are required. Factors like slope 

relative relief, aspect, etc., can be derived from the high-resolution Digital Elevation Model 

(DEM). Other factors like soil type, geological structure, LULC, etc., require visual and digital 

interpretation of remotely sensed images to extract the thematic maps for the Tehri region. These 

thematic maps are classified and weighted using LSM models for spatial prediction of landslide 

susceptibility. In this chapter, we will discuss various static and dynamic factors used for the 

analysis of LSM and methods adopted for deriving weights for these factors. The methods used 

in this study were AHP, FR, and ANN to derive the relation between dependent and independent 

variables. Also, this chapter discusses the ANN-CA model used to project the current trend to 

the future. The last section of this chapter describes the two methods namely area under the 

ROC curve and Kappa coefficient, which were incorporated for validating the results in this 

study.   

4.2 Data Collection 

Numerous factors are responsible for causing landslides and should be incorporated into 

the analysis of LSM. The accuracy of the landslide susceptibility maps depends upon the quality 

of the input data. Hence, the primary step for LSM is the preparation of the database. Field-

based approach for mapping is costly and time-consuming, while both time and cost can be 

optimised using remote sensing data. Here, remote sensing and GIS technique was adopted to 

derive all the required input data for LSM analysis. For DEM generation, Cartosat-1 satellite 

data was utilised. Landslides historical data were taken from the Bhukosh portal and were 

identified using Google Earth images. Satellite images of Landsat 5 and 8 were taken for 

mapping the LULC. A brief description of the dataset and respective sources are given below 

in table 4.1. 
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Table 4.1 Various sources utilised for preparing landslide causative factors. 

Data Type Variables Sources Derivatives 

Dynamic 

Landsat 5 and 8 

data 

Earthexplore.usgs.gov 

(last accessed on 

23/01/2023) 

Maps of LULC  

CMIP6 Climate 

Projections 
cds.climate.copernicus.eu 

Future projections of temperature 

and precipitation. 

Static 

GPM rainfall data 

Giovanni.gsfc.nasa.gov 

Rainfall map 

NOAH land surface 

Model  

Maps of Soil moisture, Soil 

Temperature, and 

Evapotranspiration. 

Earthquake data Earthquake.usgs.gov Peak Horizontal Acceleration map 

Cartosat-1 DEM bhuvan.nrsc.gov.in 

Maps of slope, Curvature, Relative 

relief, Aspect, STI, TRI, TWI, SPI 

and distance to streams. 

Ancillary data 

Bhukosh GSI data 

Maps of lithology, geomorphology 

geology, distance to waterway, 

and distance to road. 

Kumar and Anbalagan, 

2015 
Soil map  

 

4.3 Landslide Inventory Maps 

Some sources of landslide event data are newspapers, governmental documents, and 

historical travel guides. However, such documents contain overstatements that are still useful 

for obtaining information about the event. The landslide database of the Tehri region was 

generated using a field survey, image interpretation from Google Earth, and historical data from 

the Bhukosh portal (bhukosh.gsi.gov.in/Bhukosh /MapViewer.aspx and last accessed on 

29/12/2022). In total, 850 landslide events were mapped from 2005 to 2020 for the Tehri region. 

Also, 166 and 79 landslide points were mapped for Chamba and Bhuntar validation sites. The 

landslides point data utilised here are centroid points of the landslide polygon prepared by the 

Geological Survey of India (GSI). The Bhukosh portal of the GSI is a gateway to all 

geoscientific data used in the scientific domain. The landslide data can further be divided based 

on the type of land cover, material, and movement, as shown in fig. 4.1. Based on the type of 

landcover, about 5% of the landslides were observed on barren land, 10% on cultivated land, 

18% on extensive cut slope, 13% on moderate vegetation, 1% on settlements, 3% on wasteland, 

2% on thick vegetation and remaining 48% on sparse vegetation. Based on the type of material, 

about 27% of the landslides had debris, and about 73% of them had rocks. Further, based on the 

type of movement, landslides were divided into slides (98%) and falls (2%). The changes in 

LULC were observed at every five-year interval (Marquez et al., 2019); hence, these landslide 

events data were clustered into three major temporal categories, 2005-2010, 2010-2015, and 
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2015-2020 (Annexure 1). Further, the landslide inventory maps for these periods were prepared 

using 218, 243, and 387 landslide events, respectively, as shown in fig. 4.2.  

 

Fig. 4.1 Classification of landslides (A) Based on the type of Movement (B) based on 

the type of Material (C) Based on the type of Land cover. 

 

Fig. 4.2 Landslide Inventory and LULC Maps for the Tehri region. 
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4.4 Land Use Land Cover Maps  

Land cover plays an essential part in causing landslides in mountainous areas. Their 

relationship with landslides can be complicated depending on the type and nature of LULC. 

Thus, LULC classes were prepared from the satellite Landsat data on 1: 2,50,000 scale using a 

supervised classification method. The maximum likelihood classification algorithm uses the 

spectral signature of the training class to classify the whole Tehri region into five categories, 

i.e., waterbody, dense forest, built-up area, sparse forest, and agriculture land. LULC maps were 

generated using Landsat 5 and 8 data for 2010, 2015 and 2020. The prepared LULC map is 

shown in fig. 4.2.  

4.5 DEM Derivatives Maps  

Terrain factors such as slope, aspect, curvature, etc., play a vital part in sharp slopes 

influencing landslides (Guzzetti et al., 2005). Thus, in the present study, primary topographic 

attributes such as slope, aspect, relative relief, and curvature were derived with the service of 

ArcGIS software in a GIS environment using IRS Cartosat-1 DEM data. Acquisition date 

01/10/2013, from the PAN Stereo sensor of the Cartosat-1 satellite, was downloaded from 

bhuvan.nrsc.gov.in at the spatial resolution of 30m x30m. (ISRO, Hyderabad, India). Secondary 

topographic attributes were generated using two or more primary attributes, which include the 

Sediment Transport Index (STI), Stream Power Index (SPI), Topographic Wetness Index 

(TWI), and Topographic Ruggedness Index (TRI).  

4.5.1 Slope  

The slope is the main measure for evaluating the slope stability of the hilly terrain. Many 

researchers have concluded that areas with greater slope gradients are more prone to landslides, 

while areas with small slope gradients are less prone (Saha et al., 2005; Kayastha et al., 2013; 

Tyagi et al., 2021). The present study's slope was classified into five classes using the Jenks 

classification technique (Jenks, 1967; ESRI, 2016). The classified slope map is shown below in 

fig. 4.3 was found to be varying in the range of 0° to 73°. Five slope categories namely 0°- 15°, 

15.1°-23°, 23.1°- 30°, 30.1°- 38° and 38.1°-73° were categorised from the DEM.  

4.5.2 Aspect 

Aspect also significantly impacts the stability of the slope in the mountainous region. 

This study divided the aspect into nine classes: flat, North, North-East, East, South-East, South, 

South-West, and North-West. The classified aspect map is shown in fig. 4.3. Landscape aspect 

often impacts landslide susceptibility. The slope face controls the temperature differences, with 

slopes facing toward the sun having higher temperatures with respect to faces not receiving 
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sufficient sunlight. In the Himalayan region, the south-facing surface receives more sunlight; 

hence, they are warm, moist, and green compared to north-facing surfaces, which are dry, cold, 

and snow-covered.  

 

Fig. 4.3 Slope and Aspect Maps for the Tehri region. 

4.5.3 Relative Relief 

Relative relief is another essential derivative commonly used in LSM. It measures 

elevation change in the region (Kumar and Anbalagan, 2015). Here, variation in the relative 

relief was observed, ranging from 13 to 836 m. Following four classes: 13-200 m, 201-400 m, 

401-600 m, and 60-836 m (Fig. 4.4) were used in LSM. Field observations suggest that 

landscapes with small relative relief are less prone to landslides and vice-versa. 

 

Fig. 4.4 Relative Relief and Curvature Maps for the Tehri region. 
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4.5.4 Curvature 

Slope curvatures determine the direction of flowing water and hence is very essential to 

be included in the LSM analysis (Ayalew and Yamagishi, 2005). The curvature is associated 

with the second derivative of the height. This derivative will give the inflection point of the 

function (Misagh and Ashouri, 2016). Values greater than the inflection point represent a 

convex surface (anticline) having a positive value. In contrast, negative values are concave 

surface (syncline), and zero value indicates a flat surface. The curvature map was generated and 

classified into five classes, as shown in fig. 4.4. 

4.5.5 Topographic Ruggedness Index 

TRI is the elevation difference between adjacent cells of a DEM. The roughness of the 

terrain is computed using the TRI value. It provides an objective quantitative measure of 

topographic heterogeneity. Topographic roughness for all grid pixels was calculated by taking 

the mean elevation changes between its neighboring cells (Riley et al., 1999). For the Tehri 

region, the range of TRI values varies from 0-0.7. The higher the value, the higher the elevation 

difference between the neighboring cells.  

 

Fig. 4.5 Topographic Ruggedness Index and Topographic Wetness Index Maps for the 

Tehri region. 

4.5.6 Topographic Wetness Index 

TWI is a steady-state wetness index that represents the influence of landscape on the 

location and size of the saturated source zones for runoff generation under the assumptions of 

homogeneous soil properties and steady-state conditions. It can be calculated using equation 4.1 

by incorporating catchment area (CA) and slope gradient (β) (Wilson 2011). 

𝑻𝑾𝑰 = 𝒍𝒏
𝑪𝑨

𝐭𝐚𝐧𝜷
 (4.1) 
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As the catchment region increases and the slope decreases, TWI increase. It is directly 

related to flow accumulation and helps to determine the soil moisture condition of the area. For 

study areas such as the Tehri region, where reservoir fluctuation induces water saturation in side 

slopes, TWI values can help to understand the water table conditions. 

4.5.7 Stream Power Index 

SPI measures the erosive power of flowing water. The potential flow erosion at a given 

point can be described using the SPI, which is directly proportional to the erosion risk. The SPI 

can be calculated using equation 4.2.  

𝑺𝑷𝑰 = 𝐥𝐧⁡(𝐂𝐀 × 𝐭𝐚𝐧𝜷) (4.2) 

Where CA and β are catchment area and surface slope, respectively. High positive SPI 

represents a high erosive index, associated with more landslides, while negative or low SPI 

values represent a less erosive index or more deposition index (Kumar and Anbalagan, 2015; 

Ahmad et al., 2020) (Fig. 4.6).  

 

Fig. 4.6 Stream Power Index and Sediment Transport Index Maps for the Tehri region. 

4.5.8 Sediment Transport Index  

STI provides vital information on sediment transport potential in the stream network for 

a given watershed. The index incorporates catchment area under the assumption that the area is 

directly related to the slope (β) and discharge. It illustrates the spatial distribution of the 

sediment transport capacity and accumulation. The index can be defined as: 

𝑺𝑻𝑰 = (𝑪𝑨 × 𝐬𝐢𝐧𝜷) (4.3) 
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4.6 Climate Variables Maps  

4.6.1 Rainfall 

The multi-satellite precipitation Global Precipitation Measurement (GPM) product is 

used to prepare the rainfall intensity map in this study (Huffman et al.2019). The time average 

rainfall intensity map was generated for the study period between 2005 and 2020 using a web-

based application called Giovanni (Giovanni.gsfc.nasa.gov). The average rainfall intensity of 

the study region is calculated, and the time average map is generated for the GIS domain. The 

temporal resolution is monthly, and the spatial resolution is 0.1 x 0.1 degrees. The spatial 

distribution of rainfall intensity varied from 0.16 to 0.22 mm/h (Fig. 4.7). 

 

Fig. 4.7 Rainfall and Soil Temperature Maps for the Tehri region. 

4.6.2 Soil temperature  

The time average soil temperature maps for the study area were prepared using the 

FLDAS Noah land surface model (McNally 2018). Average layer soil temperature is the depth-

averaged temperature beneath the soil surface at a specified layer. These soil temperatures may 

contribute to the low-frequency variability of energy and water fluxes. For the Tehri region, the 

variation in soil temperature was observed, varying from 282 to 292 K (Fig. 4.7). 

4.6.3 Evapotranspiration 

The time average map of evapotranspiration for the Tehri region was prepared using the 

FLDAS Noah land surface model. It is the sum of evaporation and plant transpiration. The 

evapotranspiration rate expresses the amount of water lost from a unit surface area per unit time. 

The spatial variation was observed to vary from 0.00003 to 0.000035 kg/m2/s (Fig. 4.8). 
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Fig. 4.8 Evapotranspiration and Soil Moisture Content Maps for the Tehri region. 

4.6.4 Soil moisture 

The time average maps of soil moisture for the study area was prepared using the FLDAS 

Noah land surface model. The average layer of soil moisture is the depth-averaged amount of 

water present beneath the surface in a specific soil layer. Soil moisture can also be expressed as 

Volumetric Soil Moisture (VSM), which is the volume of water per unit volume of soil. For the 

Tehri region, the spatial variation in soil moisture was observed from 0.24 to 0.35 (m3/m3). 

4.7 Peak Horizontal Acceleration Map 

Earthquakes have repeatedly shaken Uttarakhand in the past. Uttarkashi suffered one of 

India's deadliest earthquakes in 1991, which killed nearly 730 people and affected over three 

lakhs. Another major earthquake hit the Chamoli district of Uttarakhand in 1999, where 103 

people died. Hence, it can be stated that Uttarakhand in the Himalayas is situated in a highly 

seismic zone. In this study, within a 500 km radius of the study area, events of earthquakes were 

taken from the USGS website. About 950 seismic events were found in the 500 km vicinity of 

the study area from 1950 to 2019 of magnitude four and above. A deterministic method was 

used for seismic hazard assessment. A relationship for the Himalayas in India for peak ground 

accelerations was developed by Sharma (1998) and was used to calculate PHA. The general 

formula shows the relationship between ground motion and parameters like magnitude, 

distance, etc. 

𝐥𝐨𝐠(𝒚) = 𝒃𝟏 + 𝒃𝟐𝑴+𝒃𝟑 𝐥𝐨𝐠⁡[ √𝑹𝑱𝑩
𝟐 + 𝒃𝟒

𝟐𝟐
] + 𝒃𝟓𝑺 + 𝒃𝟔𝑯 (4.4) 

Here, y is acceleration, S is kept 1 as the study area is rocky, H varies from 0-1, M is the 

earthquake's magnitude, RJB is Joyner distance, and b1, b2, b3, b4, b5, and b6 are the regression 
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coefficients. For the Tehri region, a map of PHA was prepared at the bedrock level (Fig. 4.9). 

To calculate PHA at the surface level amplification technique was used here (Stewart et al., 

2003). The PHA at the surface was calculated having a slope more than or equal to 10 degrees. 

The surfaces with a slope angle less than 10 degrees were neglected, considering them to be flat 

(James and Sitharam, 2014). The surfaces with slope angle 10 degrees and above comes under 

the B-type site class (Wald and Allen, 2007), for which the velocity of shear wave is more than 

760 m/s for the top 30 m overburden (Vs30) (Council, 2003). The following relationship was 

used to calculate PHA at the surface level. 

𝐘𝐬 = 𝐘𝐛𝐫 + 𝐅𝐬 (4.5) 

Here Ys is surface-level PHA, Fs is the amplification factor, and Ybr is PHA at bedrock. 

The amplification factor was calculated using the following relationship proposed by Raghu 

Kanth and Iyengar in 2007. 

𝐥𝐧 𝐅𝐒 = 𝐚𝟏⁡𝐘𝐛𝐫 + 𝐚𝟐 + 𝐥𝐧(𝛅𝐬) (4.6) 

Here, a1 and a2 are site class regression coefficients, Ybr is the spectral acceleration at the 

bedrock level, and δs is the error term. 

 

Fig. 4.9 Peak Horizontal Acceleration and Distance to Road Maps for the Tehri region. 

4.8 Distance/Buffer Maps  

4.8.1 Distance to Road  

Road construction activities in mountainous regions brutally change the slope stability, 

creating prone landslide zones. The influence of roads in LSM can be adopted by creating buffer 

zones along the roads and weighting these zones based on their distance (Ayalew and 

Yamagishi, 2005). Thus Road buffer map with the multi-buffer (100 m, 500 m, 1000 m, and 
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2000) layer was prepared, given its proximity to landslides shown in fig. 4.9. The excessive 

number of landslides were detected along the roads because of unsystematic slope cutting. Most 

of the cut slopes were found to be untreated. During rainfall, these unstable cuttings fail 

repeatedly and hamper transportation.  

4.8.2 Distance to Waterways 

Fluctuation in reservoir water level has led to saturation of embankments, causing 

instability and landslides. Several landslides were reported from the neighboring regions also. 

Field observations give an indication of the frequency of landslides along the reservoir region; 

accordingly, a waterways multi-buffer map (100 m, 500 m, 1000 m, and 5000 m) was prepared 

(Fig. 4.10) 

 

Fig. 4.10 Distance to Waterway and Distance to Stream Maps for the Tehri region. 

4.8.3 Distance to Streams 

The Tehri region's extremely undulant topography has supported the drainages network. 

Earlier researchers have also shown a clear correlation between drainage networks and 

landslides. The drainage density is directly proportional to the occurrence of landslide events 

(Kumar and Anbalagan, 2015). 

In mountainous areas, streams constantly erode the embankments and craft sharp slopes 

that are prone to landslides. For the LSM, a drainage buffer map (200 m, 400 m, 600 m, and 

800 m) was prepared, complying with field evidence (Fig. 4.10). The streams impact the soil's 

saturation degree, which directly links to the pore water pressure, a crucial parameter affecting 

slope stability. Moreover, the erection of drainage structures by the streamside intensively 

affects stability. The Archydro tool of the ESRI GIS package was used to derive a distance to 

streams map from the DEM. 
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4.9 Ancillary Data  

Ancillary data in polyline and polygon format included maps of soil, geomorphology, 

lithology, and geology, taken from the online portal of Bhukosh GSI data, and thematic maps 

were prepared at 1:2,50,000 scale.  

4.9.1 Soil Type  

Soil categories of the Tehri reservoir region consist of alluvial, sandy loam, and black 

clay soil (Fig. 4.11). Alluvial mixed with boulders were observed at an elevation ranging from 

600m to 1000 m. The sandy, loamy soils were identified in the intermediated elevation (1000–

1500 m), and black clay soils were observed above 1500 m of elevation (Kumar and Anbalagan, 

2015). The soil types with varying properties have a significant influence on landslide 

occurrence. Due to thick vegetation support, black clay soil is less prone to slope failures. The 

alluvium and loose boulder deposits are more susceptible to landslides. Sandy loamy soil is also 

weathering-prone due to less cementation and compaction. Several debris cones formed because 

older landslides consist of various materials. Soil categories of the reservoir area consist of 

alluvial soil, sandy soil, and clayey soil. The soil map was digitized from the past literature and 

mapped at a scale of 1:250000 (Kumar and Anbalagan 2015). 

 

Fig. 4.11 Soil Type and Geomorphology Maps for the Tehri region. 

4.9.2 Geomorphology 

Geomorphology is the study of landforms, the processes of their formation, and the 

relations between forms and techniques in their spatial order. The geomorphology of the study 

area was classified based on its origin into five categories, i.e., water bodies, fluvial origin, 

anthropogenic origin, structure origin, and denudational origin (Fig. 4.11). 
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4.9.3 Lithology 

Different rock types (lithology) behave differently concerning landslide occurrence due 

to their changing mineral composition that decides their strength. The more substantial rocks 

provide additional resistance; therefore, they are less susceptible to landslides and vice versa. 

In the Tehri region, phyllite, quartzite, and shales were found in the center part of the study area. 

Slate and meta-volcanic in the North-East and Eastern parts and limestone in the South-West 

part of the region (Fig. 4.12). 

 

Fig. 4.12 Lithology and Geology Maps for the Tehri region. 

4.9.4 Geology 

The geology map of the area is classified into seven groups, i.e., Garhwal, Baliana, 

Jaunsar, Tal, Krol, Toli, and Basic Meta-Volcanic (Fig. 4.12). The whole study area is a part of 

the broader physiographic entity called Lesser Himalaya. Rocks in the central part of the area 

are low-grade metamorphosed lustrous phyllites and highly weathered quartzites. The well-

developed foliation plains and joints make these rocks extremely prone to landslides. In the 

western part of the study area, quartzites with subordinate intercalation of grey and olive green 

slates with siltstones with white, purple, and green colors were identified. The Eastern and 

northeastern part of the study area consists of fine-grained limestone with minor phyllitic 

intercalations. These rocks are mainly found at the higher ridges. In the eastern part of the area, 

the rocks are primarily quartzites. In the western part of the study area, the formation comprises 

quartzites, slates, and carbonate rocks. 
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4.10 LSM Methods  

4.10.1 Analytical Hierarchy Process 

AHP is an MCDM technique invented by Saaty (1988), where both objectives and 

subjective factors can be considered while making decisions Feizizadeh and Blaschke (2013). 

AHP breakdowns complex decision-making problems into a pyramid of factors and alternatives. 

Weights are assigned to factors and alternatives on a nine-point scale (Table 4.2) by pair-wise 

comparison. 

Table 4.2 The priorities scale between two factors defined by Saaty (1977). 

Preference Degree 

1 Equal 

3 Moderate 

5 Strong 

7 Very strong 

9 Extreme 

2,4,6,8 In-between 

Reciprocals Reverse 

 

As these weights were given subjectively. Therefore, it is essential to check the 

consistency of the weight provided. To check consistency, Saaty (1977) has defined two terms, 

i.e., consistency index (CI) and consistency ratio (CR). The following formula is used to 

calculate the consistency index: 

𝑪𝑰 =
𝝀𝒎𝒂𝒙 −𝑵

𝑵− 𝟏
 (4.7) 

 Here, N is the number of factors, and λmax is the maximum eigenvalue. After calculating 

the CI, the random index is obtained from the table prepared by Saaty. From the ratio of CI and 

RI, the consistency ratio is calculated.  

Table 4.3 Random consistency index prepared by Saaty. 

N 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

RI 0 0 0.57 0.90 1.11 1.23 1.31 1.42 1.44 1.48 1.52 1.54 1.55 1.58 1.58 

Table 4.3 of the Random index was prepared by Satty in 1977 by random sampling. CR 

value greater than 0.1 shows inconsistency. While CR value 0 shows that it is perfectly 

consistent.  
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4.10.2 Frequency Ratio 

The frequency ratio (FR) method deals with the proportion of pixels influenced by the 

historical landslide events to the proportion of class pixels for the chosen factor. In this study, 

each class of all landslide-causing factors and their corresponding pixels of landslide and non-

landslide information was utilised for LSM (Porghasemi, 2007; Avinash and Ashamanjari, 

2010; Karim et al., 2011; Intarawichian and Dasananda, 2011). Equation 4.8 was adopted for 

calculating the FR values of each class of all the landslide-causing factors selected for LSM 

analysis. 

𝑭𝑹 =
𝒂
𝒃⁄
𝒄
𝒅⁄

⁄  (4.8) 

Where a is the number of pixels with landslides for each class, b is the number of landslide 

pixels in the study region, c is the number of pixels in each category in all factors, and d is the 

total number of pixels in the Tehri region. FR values of all classes are considered as weights of 

all categories. Relative frequency (RF) is further calculated to easily understand class influence. 

For each factor, classes are normalized and shown in percentage. 

𝐋𝐇𝐈 =∑𝐅𝐑𝐢𝐣⁡

𝐍

𝐣=𝟏

 (4.9) 

Where FRij denotes the weight of an ith class of causative factor, J. LHI map was then 

divided into five categories using Jenks natural breaks classification. The Jenks optimization 

technique, also called the Jenks natural breaks classification method, is one of the data clustering 

techniques aimed at calculating the finest arrangement of values into various categories. Natural 

Breaks are the optimum tactic for splitting the ranges, implying that similar categories are 

grouped together. It is used to minimize the squared deviations of the class means (Jenks, 1967; 

ESRI, 2016) and is also known as the Goodness of Variance Fit (GVF).  

4.10.3 Artificial Neural Network 

An ANN is a machine-learning model designed like the human brain. Like the neurons 

in the human brain, nodes in networking perform a similar function. The neural network 

structure consists of the input, hidden, and output layers. In this study, n (input layers) × h 

(hidden layers) × 2 (output layers) structure was selected for the network (Fig. 4.13). A neuron 

can be defined as declared in equation 4.10 (Jacinth Jennifer and Saravanan 2021): 

𝒚 = 𝝓(∑𝒘𝒋𝒙𝒋 + 𝒃

𝒏

𝒋=𝟏

) (4.10) 
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Where y is the output signal of the neuron, x1,…xn are input signals, w1,…wn are synaptic 

weights, b is the bias, and ϕ is the activation function. The 'landslide-affected zones' and 'non-

landslide affected zones' are the primary attributes of training sites before running the ANN 

model. Out of this, 70% of the pixels are used as training datasets and the remaining 30% as 

testing datasets. The landslide inventory data are represented in binary form in the datasets, with 

'1' denoting landslide pixels and '0' indicating non-landslide pixels. The nominal and interval 

class group input data were converted to continuous values ranging between 0.1 and 0.9. 

 

Fig. 4.13 Neuralnet (nn) plot. 

The neural net (nn) package from R software is used in this study. The 'nn' package 

focuses on multi-layer perceptron (MLP), which is well applicable in modeling functional 

relationships. The resilient backpropagation with weight backtracking algorithm trains the 

neural network. The algorithm transferred the error backward and iteratively adjusted the 

weights. The number of epochs was set to 2,000, and the Root Mean Square Error (RMSE) 

value was set to 0.01 for terminating the iteration. The primary aim was to fulfill the RMSE 

stopping condition. If RMSE is not accomplished, the number of epochs can be employed as an 

ending criterion. According to Saputra and lee (2019), 2n/3 hidden neurons can generate results 

of almost similar accuracy to 2n+1 hidden neurons while requiring much less time to train, 

where n is the total number of factors.  

4.10.4 Artificial-neural-network-based cellular automaton 

In an ANN-CA model, the CA provides a spatio-temporal framework for simulation. 

ANN was used as a data mining tool to calculate the transition probability using multiple output 

neurons to estimate class changes. Further, the CA algorithm used these transition probabilities 

to model the changes. A cellular automaton is a collection of cells/pixels on a grid that are 

synchronously updated through several discrete time steps according to a set of rules based on 
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the states of neighboring cells. The QGIS and its MOLUSCE module were utilized for the ANN-

CA modeling.  

 

Fig. 4.14 Artificial-neural-network-based cellular automaton (ANN-CA) model 

structure for simulating future changes. 

The ANN model was used to calculate the transition probability, and further CA 

simulation uses these transition probabilities to model the changes (Fig 4.14). The transition 

potential model used in this study was trained with a momentum of 0.050 and a learning rate of 

0.01 to stabilize the learning graph. Furthermore, the number of iterations was set to 100 to 

prevent the issue of overfitting in the model. These inputs were found optimal for training the 

ANN (Zeshan et al., 2021). The learning algorithm examines the accuracy of training and 

validation sets of samples and stores the best neural net in memory. The training process finishes 

when the best accuracy is reached. To control the rate of change in classes, the threshold value 

of 0.9 was used (Li and Yeh, 2002). 

4.11 Accuracy Assessment 

The scientific importance of the work is incomplete without its validation. Here, we have 

used two approaches to assess the results accurately. The area under the ROC curve method was 

used to validate the landslide susceptibility mapping, and Cohen's kappa coefficient was used 

to validate the LULC classification and future predictions. The area under the ROC curve is 

used to check the accuracy of the models. The curve delivers a graphical plot that provides the 

performance of the binary classifier method. Many studies have used this curve to check the 

accuracy of models in LSM, where the true positive rate is plotted against the false positive rate 

at several threshold settings. The AUC values between 0.5-1 represent a good fit, and values 

below 0.5 represent a random fit (Zweig and Campbell 1993). The Kappa coefficient is widely 

used to measure the true agreement between the observed and chance agreement. The kappa 
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coefficient has become a standard means of assessment of image classification accuracy 

(Rwanga and Ndambuki 2017). The Kappa coefficient (K) is calculated using equation 4.11 

(Zeshan et al. 2021). 

𝑲 =
𝑵∑ 𝒙𝒊𝒊

𝒓
𝒊=𝒍 − ∑ (𝒙𝒊+ ∗ 𝒙+𝒊)

𝒓
𝒊=𝒍

𝑵𝟐 − ∑ (𝒙𝒊+ ∗ 𝒙+𝒊)
𝒓
𝒊=𝒍

 (4.11) 

Where r = the number of rows and columns in the error matrix, N = total number of 

observations (pixels), Xii = observation in row i and column i, Xi+ = marginal total of row i, 

and X+i = marginal total of column i. The statistic typically ranges between 0 and 1, with values 

closest to 1 reflecting the highest agreement (Jenness and Wynne, 2005). Interpretation of the 

agreement of kappa has been described by Landis and Koch (1977) (Table 4.4).  

Table 4.4 Interpretation of agreement for Kappa coefficient 

Value of Kappa coefficient Nature of agreement 

0.8 ≤K≥ 1 Almost perfect  

0.61 ≤K≥ 0.80 Substantial  

0.41 ≤K≥ 0.60 Moderate  

0.21 ≤K≥ 0.40 Fair  

0 ≤K≥0.20 Slight  

K <0.00 Poor  

 

4.12 Summary 

The methodology adopted in this study includes the preparation of a landslide inventory 

map using historical information of landslide events, generation of thematic maps of landslide 

causative factors, determination of significant landslide causative factors by adopting 

optimisation techniques, deriving correlation between landslide causative factors and historical 

landslide events using LSM models and finally based on the derived weights of the factors, 

LSM was done. Three methods were discussed in this chapter which was adopted for LSM in 

this study which includes AHP, FR, and ANN. The results of LSM were validated using the 

area under the ROC curve. Further, the dynamic landslide causative factors were also used for 

future LSM using the ANN-CA model. The dynamic factors such as LULC, rainfall, and 

temperature were projected for the future and used as the driving parameter for LSM future 

prediction. 2010 and 2015 data were used for training, and 2020 data was used for accuracy 

assessment. The Kappa coefficient values were used to validate the results. 

  



55 

 

Chapter 5 

LSM using Significant/Influential Landslide Causative Factors 

 

5.1 Introduction 

Landslide causative factors are generally selected based on the mechanism of the 

landslide process, the scale of analysis, and the features of the study area (Caniani et al., 2008; 

Sdao et al., 2013). However, standardisation on choosing and selecting these factors is not yet 

done. The literature review revealed that several studies had employed different landslide 

causative factors for LSM. The variability in selecting factors for the same region by various 

researchers has made it difficult to compare the models' prediction accuracies. Thus, the present 

chapter describes the use of optimising techniques for the determination of significant landslide 

causative factors for the Tehri region. This chapter discusses two optimising methods of 

multicollinearity analysis and sensitivity analysis. Also, here we have incorporated four LSM 

models, i.e., Analytical Hierarchy Process (AHP), Frequency Ratio (FR), FR-AHP, and 

Artificial Neural Network (ANN), for deriving the weights of these factors. The impact of 

derived significant factors using ANN sensitivity analysis was also checked using another data-

driven FR model. Further, the accuracy of the FR model was enhanced by giving flexibility to 

it using the AHP model. The later part of the chapter demonstrates the testing of two landslide-

prone sites in Himachal Pradesh with similar terrain conditions. The LSM for these two sites 

was performed using the AHP model adopting derived significant factors.   

5.2 Identification of Significant Landslide causing Factors 

Determination of significant landslide causative factors is essential. The literature review 

revealed that several studies had employed different models and diverse landslide causative 

factors for LSM. The variability in selecting factors for the same region by various researchers 

has made it difficult to compare the models' prediction accuracies. Hence, there is a need for the 

standardization of factors for LSM. Studies related to the identification of significant landslide 

causative factors are limited. In landslide studies, these factors are frequently considered based 

on the analysis of the landslide types and the features of the study region (Ayalew et al. 2005). 

Selecting landslide causal factors and their classes should be considered an essential step in 

LSM analysis (Meinhardt et al. 2015). According to Lee and Talib (2005), selecting significant 

factors can increase the model's prediction accuracy. Thus, determining factor significance for 

the study area is essential before performing susceptibility analysis. Removing less significant 

factors can reduce noise and uncertainties and thus improve the predicting ability of the model 

(Pradhan and Lee 2010; Martínez-Álvarez et al. 2013). Methods like multicollinearity analysis 
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and correlation attribute evaluation can eliminate the least significant factors (Chen et al. 2019). 

For the Tehri region, many LSM studies (Gupta and Anbalagan 1997; Joshi et al. 2003; Ghosh 

and Bhattacharya 2010; Kumar and Anbalagan 2015a, b, 2016; Pandey et al. 2020) have been 

carried out, and factors selection was made based on individual judgment (Table 5.1). This 

brings the requirement to develop a scientific methodology for identifying significant factors. 

Table 5.1 Literature review for LSM in the Tehri region 

Authors Causative Factors Models 

Gupta and 

Anbalagan 

(1997) 

Lithology, structural discontinuities, Slope, 

morphometry, LULC, RR, Hydrogeological conditions 

LHEF rating scheme 

Joshi et al. 

(2003) 

Lithology, geomorphology, lineament, slope, drainage, 

land use 

Weighted overlay 

technique 

Ghosh and 

Bhattacharya 

(2010) 

Lithology, Structure, Slope, RR, LULC, Groundwater 

condition/rainfall 

LHEF rating scheme 

Kumar and 

Anbalagan 

(2015a, b, 

2016) 

Slope, RR, aspect, curvature, distance to drainage, 

distance to road, distance to reservoir/waterway, SPI, 

TWI, LULC class, soil type, lithology, lineament 

FR, Fuzzy logic, 

AHP, and Logistic 

regression 

Pandey et al. 

(2020) 

Altitude, slope, curvature, aspect, geology, soil 

texture, TWI, NDVI, LULC, distance to rivers, roads, 

and faults. 

Maximum entropy 

and Support vector 

machine 

 

5.2.1 Multicollinearity analysis using the Pearson correlation coefficient 

Multicollinearity happens when independent factors in the regression model are highly 

correlated. As all 21 factors are closely related to landslides, they may also have a high 

correlation. Factors with high correlations can be removed to simplify the model interpretation 

and avoid overfitting problems. This study calculated the linear correlations between two 

causative factors using Pearson's correlation coefficient (Table 5.2). Pearson correlation 

coefficient is defined as the covariance of two conditioning factors divided by the product of 

their standard deviations (Eq. 5.1). The correlation coefficient ranges from −1 to 1. A coefficient 

value of more than 0.7 indicates high collinearity (Al-Najjar et al., 2019).  

𝐫𝐱𝐲 =∑
(𝐱𝐢 − 𝐱 )(𝐲𝐢 − ȳ)

√∑ (𝐱𝐢 − 𝐱 )𝟐𝐧
𝐤=𝟏 √∑ (𝐲𝐢 − ȳ)𝟐𝐧

𝐤=𝟏

𝐧

𝐢=𝟏

 (5.1) 
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Table 5.2 Pearson correlations between landslide causative factors 

Facto

rs 
A B C D E F G H I J K L M N O P Q R S T U 

A 1 -0.29 0 0 0.12 0.02 0.15 0.01 -0.08 0.08 -0.16 0.18 -0.21 0.14 0.30 0.16 0.09 -0.33 0 0.34 -0.07 

B  1 0 0 -0.16 -0.04 -0.08 0.10 0.13 -0.09 0.14 -0.18 0.05 -0.05 -0.63 -0.15 -0.36 0.44 -0.02 -0.55 0.04 

C   1 -0.10 -0.04 0 0 0 0.30 -0.06 0.01 -0.03 0.05 -0.09 0.01 0 0.01 0.01 0.22 0 0 

D    1 0.01 0 0 0 -0.32 0 0 0.02 -0.05 0.04 0 0 0 0 -0.55 0 0 

E     1 0.06 0.06 0 -0.23 0.20 -0.06 0.30 0.03 0.17 0.19 0.19 0.02 0 0.01 0.19 0.10 

F      1 0.02 -0.01 -0.11 0.05 0.01 0.14 -0.02 0 0.05 0.07 0.01 0 0.02 0.02 0.05 

G       1 0.51 -0.05 0.01 0.13 0.06 0.02 0 0.59 -0.07 -0.43 -0.03 0 -0.07 0.06 

H        1 0 -0.04 0.28 0.04 0.04 0.01 0.05 -0.26 -0.66 0.07 -0.01 -0.25 0.23 

I         1 -0.41 0.04 -0.38 -0.08 -0.21 -0.13 -0.26 -0.02 0.03 0.52 -0.13 -0.03 

J          1 -0.07 0.21 0.02 0.07 0.08 0.33 0.06 -0.01 0.14 0.10 0.04 

K           1 -0.05 0.08 -0.09 -0.05 -0.18 -0.32 0.03 0 -0.21 -0.11 

L            1 0.09 0.52 0.16 0.32 -0.01 -0.11 0.01 0.22 0.02 

M             1 -0.07 -0.03 0.06 -0.05 0.12 0.08 -0.09 0.03 

N              1 0.05 0.18 0 -0.15 -0.07 0.12 0.05 

O               1 0.13 0.12 -0.36 0.02 0.34 0.01 

P                1 0.29 -0.07 0.07 0.22 0.09 

Q                 1 -0.17 0.02 0.37 -0.23 

R                  1 0 -0.20 0.01 

S                   1 0.02 0 

T                    1 -0.04 

U                     1 

A-Distance to road, B-ST, C-STI, D-Curvature, E-Geomorphology, F-Aspect, G-ET, H-

Rainfall, I-TWI, J-Slope, K-Geology, L-TRI, M-LULC, N-Distance to stream, O-SM, P-RR, 

Q-PHA, R-Soil, S-SPI, T-Distance to waterway, U-Lithology. 

5.2.2 Sensitivity analysis using ANN model 

Sensitivity analysis in an ANN identifies the significant factors having more impact on 

the output. The sensitivity analysis decides the effect of independent factors on dependent 

factors. Here, both output and input are analysed by changing the input variables. This analysis 

improves the model's prediction accuracy by selecting the most influencing input factors. The 

factor hierarchy was built based on the weights of the factors derived using the ANN model. 

The factor with higher weightage/ percentage agreement with landslide points was considered 

a more significant factor (Fig. 5.1). Initially, all the factors were considered for LSM, and to 

identify the significant factors, one by one, the least significant factors were removed, and LS 

analysis was performed. In total, 21 analyses were performed, and the accuracy of the analysis 

was checked using the AUC value of the ROC curve.  



Chapter 5/ LSM using Significant/Influential Landslide Causative Factors 

58 

 

 

Fig. 5.1 Significant factors showing percentage agreement with landslide points. (TRI is 

topographic ruggedness index, SPI is stream power index, TWI is topographic wetness index, 

ET is evapotranspiration, PHA is peak horizontal acceleration, RR is relative relief, SM is soil 

moisture, and STI is sediment transport index). 

5.2.3 Results and Discussion  

The significant landslide-causing factors were selected by performing multicollinearity 

analysis using Pearson's correlation (Table 5.2) and sensitivity analysis using the ANN method 

(Fig.5.1). As the Pearson's correlation values of all the factors are less than 0.7, they all are 

taken forward for sensitivity analysis. They are arranged in descending order based on their 

correlation with historical landslide data, as shown in fig. 5.1. The slope profile factor has shown 

a maximum agreement of 52% with the landslide points, followed by distance to the road with 

37%. The least agreement of zero percent was shown by STI, SM, lithology, geomorphology, 

and curvature. Initially, all the factors were selected in the analysis, and one by one, factors with 

lease significance were removed. In total, 21 analyses were performed, and accuracy was 

checked. The top 11 significant factors gave the maximum precision with an AUC value of 0.93. 

Hence the identified significant landslide causative factors were further used for LSM. 

In this research, we have scientifically obtained the most significant landslide-causing 

factors for the Tehri region. Pearson's correlation test confirmed no multicollinearity among the 

selected factors. Hence, all 21 factors were taken forward to perform the sensitivity analysis 

using the ANN model for choosing the most suitable combination of factors. Among 21 
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analyses, the analysis with the combination of eleven significant factors has shown maximum 

AUC value and hence was selected for LSM. 

5.3 LSM using ANN Model  

The neural net (nn) package from R software was used here (Jacinth Jennifer and 

Saravanan, 2022). The 'nn' package focuses on multi-layer perceptron (MLP), which is well 

applicable in modeling functional relationships. The resilient backpropagation with weight 

backtracking algorithm trains the neural network. The algorithm transferred the error backward 

and iteratively adjusted the weights. The number of epochs was set to 2,000, and the root mean 

square error (RMSE) value was set to 0.01 for terminating the iteration. The primary aim was 

to fulfill the RMSE stopping condition. If RMSE is not accomplished, the number of epochs 

can be employed as an ending criterion.  

5.3.1 Mapping and Validating Results 

The map was divided into five landslide-susceptible zones by applying a natural break 

classifier. The majority of the areas, about 52%, come under the very low susceptibility zone, 

with the probability of landslides occurring less than 20%. Whereas about 8% of the area comes 

under a very high susceptibility zone with more than 80% of landslide occurrence probability. 

The percentage of the susceptible area with the corresponding percentage of landslide area in 

each zone is shown in bar chart format (Fig. 5.2). The susceptibility map generated using the 

ANN model has achieved the prediction accuracy of 0.93 Area Under Curve (AUC) value. 

 

Fig. 5.2 Landslide Susceptibility maps, Area distribution, and area under the ROC curves 

using ANN Model. 
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5.3.2 Discussion 

The chosen 11 significant factors were used for LSM using the ANN models. The Jenks 

natural break method was used to determine the threshold values for classifying the landslide 

causative factor and susceptibility maps (Baeza et al., 2016; Kumar and Anbalagan, 2016). The 

accuracy achieved using the ANN method using significant factors was considerably high 

compared to previous results from other researchers working on the Tehri region. Most parts of 

the high susceptibility zone run along the roads and streams.   

5.4 LSM using FR, AHP and FR-AHP Models   

FR is a data-driven model used to obtain the relationships between the distribution of 

landslides and each landslide influencing factor and their corresponding classes. The correlation 

between landslide locations and the factors for the study area is obtained in the form of RF 

values. The Factors and their classes with higher RF values indicate it has a greater influence 

on landslide occurrence. AHP is a multi-criteria decision-making technique invented by Saaty, 

where both objective as well as subjective factors can be considered while taking decisions. 

Weights are assigned to factors and classes on a nine-point scale by pair-wise comparison 

between them. AHP has many applications in the selection of in sites and doing LHZ (Ayalew 

2005). Further, an attempt was made to increase the prediction accuracy of the data-driven FR 

model by combining it with the AHP model. The FR method used in this hybrid model gives 

the class weightage, whereas for obtaining weights of factors, the AHP method was used.  

5.4.1 Mapping using FR Model and Validating Results 

In FR analysis, we obtained that the "0-100 m" class of distance to road, "quartzite, Sandy 

limestone" class of lithology, and "Toli Granite" class of geology are with higher RF values. 

Although the lithology factor is not significant factor as per ANN model, however out of 22 

classes of lithology one class is showing high agreement with the landslide data. Similarity for 

geology factor also, single class agreement with landslide data does make factor as the 

significant factor. Although, in FR analysis these factors have gain more weightage and hence, 

the influence of these factor classes on the prediction map is strong. Following table 5.3 refer 

to the factors and their classes with their respective derived FR and RF values. Further, the FR 

values were integrated for LSM for the Tehri region. Here, we used two sets of data for mapping 

to determine the impact of derived significant factors. In the first case, all 21 factors FR values 

were integrated to perform LSM (Fig. 5.3, A), and in the second case, only 11 derived significant 

factors FR values were integrated for LSM (Fig. 5.3, B). The maps were then classified into five 

classes using the natural break classifier. The susceptibility maps prepared using the FR method 

shows the AUC value of 0.83 while incorporating all 21 factors and 0.90 while using only 11 

significant factors. 
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Table 5.3 Coefficient values for frequency ratio in the case of each factor and their classes 

Data Layers 

of Factors 

Class Landslide Pixels Class Pixels FR RF 

% Count % Count % 

Distance  

to  

Roads (m) 

0-100 257 77.64 238346 15.00 5.18 86 

100-500 53 16.01 503311 31.67 0.51 8 

500-1000 11 3.32 326750 20.56 0.16 3 

1000-2000 8 2.42 339291 21.35 0.11 2 

2000-5899 2 0.60 181372 11.41 0.05 1 

Distance 

 to 

Waterways 

(m) 

0 - 100 12 3.63 39382 2.48 1.46 23 

100 - 500 47 14.20 143277 9.02 1.57 25 

500 - 1000 39 11.78 164209 10.33 1.14 18 

1000 - 5000 154 46.53 941639 59.26 0.79 13 

5000 - 12816 79 23.87 300563 18.91 1.26 20 

Aspect Flat 0 0.00 2876 0.18 0.00 0 

North 15 4.53 232837 14.66 0.31 4 

North-East 16 4.83 177305 11.17 0.43 5 

East 48 14.50 216728 13.65 1.06 13 

South-East 45 13.60 172203 10.84 1.25 16 

South 74 22.36 214354 13.50 1.66 21 

South-West 64 19.34 206202 12.99 1.49 19 

West 53 16.01 212753 13.40 1.20 15 

North-West 16 4.83 155561 9.80 0.49 6 

Curvature -26.4 - -3.5 25 7.55 113142 7.13 1.06 20 

-3.5 - 0 96 29.00 385739 24.29 1.19 23 

Flat 60 18.13 331932 20.90 0.87 17 

0 - 3.5 121 36.56 642792 40.48 0.90 17 

3.5 - 33.06 29 8.76 114338 7.20 1.22 23 

PHA < 0.12g 0 0.00 161732 10.19 0.00 0 

0.12g - 0.13g 11 3.32 328167 20.68 0.16 4 

0.13g - 0.14g 131 39.58 374788 23.62 1.68 39 

0.14g - 0.15g 66 19.94 275322 17.35 1.15 27 

0.15g - 0.19g 123 37.16 446807 28.16 1.32 31 

Lithology Quartzite, Limestone 0 0.00 33159 2.09 0.00 0 

Gravel, Pebble, Sand, Silt 0 0.00 17280 1.09 0.00 0 

Porphyritic Nonfoliated Granite 5 1.51 18767 1.18 1.28 0 

Basic Meta-Volcanics 32 9.67 105122 6.62 1.46 0 

Quartzite, Shale, Phyllite 24 7.25 213354 13.44 0.54 0 

Quartzite And Slate 6 1.81 464805 29.27 0.06 0 

Phyllite, Qtz, Shale,Dolomite 75 22.66 509412 32.08 0.71 0 

Grey Sand, Silt And Clay 131 39.58 7348 0.46 85.53 8 

Basic Rocks (Epidiorite) 2 0.60 27831 1.75 0.34 0 

Quartzite, Sandy Limestone 27 8.16 138 0.01 938.6 89 

Massive Sandy Limestone 0 0.00 824 0.05 0.00 0 

Basic Rock (Epidiorite) 0 0.00 2915 0.18 0.00 0 

Splintery Shale With Nodular 1 0.30 723 0.05 6.64 1 

Diamictite, Quartzite, Slate 0 0.00 30701 1.93 0.00 0 

Quartzite, Slate, Lensoidal 0 0.00 56385 3.55 0.00 0 

Quartzite, Siltstone, Chert 25 7.55 7064 0.44 16.98 2 

Limestone, Dolomite, Shale 0 0.00 16499 1.04 0.00 0 

Dolomitic Limestone With Shale 0 0.00 55266 3.48 0.00 0 

Basic Rock (Amphibolite) 0 0.00 763 0.05 0.00 0 

Shale 0 0.00 506 0.03 0.00 0 
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Quartzite, Schist/Phyllite 0 0.00 3840 0.24 0.00 0 

Carbonaceous Shale, Slate 3 0.91 15241 0.96 0.94 0 

Geomorphology Water Bodies 15 4.53 19640 1.24 3.66 0 

Fluvial Origin 9 2.72 63662 4.01 0.68 0 

Anthropogenic Origin 1 0.30 1486 0.09 3.23 0 

Structural Origin 301 90.94 1501853 94.58 0.96 0 

Denudational Origin 5 1.51 1302 0.08 18.42 2 

Geology Garhwal Group 129 38.97 577496 36.37 1.07 10 

Baliana Group 0 0.00 45227 2.85 0.00 0 

Jaunsar Group 146 44.11 745080 46.92 0.94 9 

Tal Group 0 0.00 42025 2.65 0.00 0 

Krol Group 0 0.00 55770 3.51 0.00 0 

Toli granite 31 9.37 19216 1.21 7.74 71 

Basic Meta-Volcanics 25 7.55 103129 6.49 1.16 11 

Rainfall (mm/h) 0.16 - 0.17 32 9.67 78149 4.92 1.96 30 

0.17 - 0.18 39 11.78 145803 9.19 1.28 20 

0.18 - 0.19 145 43.81 529320 33.36 1.31 20 

0.19 - 0.20 55 16.62 345048 21.74 0.76 12 

0.20 - 0.21 15 4.53 220850 13.92 0.33 5 

0.21 - 0.22 45 13.60 267646 16.87 0.81 12 

RR(m) 13 - 200 0 0.00 9431 0.59 0.00 0 

200 - 400 54 16.31 269867 16.99 0.96 38 

400 - 600 267 80.66 1217612 76.68 1.05 41 

600 - 836 10 3.02 91033 5.73 0.53 21 

Slope 0 - 15 32 9.67 254415 16.02 0.60 12 

15 - 23 72 21.75 347984 21.91 0.99 20 

23 - 30 67 20.24 354372 22.32 0.91 18 

30 - 38 91 27.49 349688 22.02 1.25 25 

38 - 73 69 20.85 281484 17.73 1.18 24 

Soil Sandy Soil 174 52.57 1124264 70.80 0.74 15 

Alluvial Soil 62 18.73 99859 6.29 2.98 58 

Black Clay 95 28.70 329020 20.72 1.39 27 

SPI < -2 100 30.21 545337 34.37 0.88 22 

-2 - 0 59 17.82 279912 17.64 1.01 25 

0 - 2 100 30.21 450516 28.39 1.06 26 

> 2 72 21.75 311051 19.60 1.11 27 

STI 0 - 10 297 89.73 1437303 90.58 0.99 23 

10-20 13 3.93 69004 4.35 0.90 21 

20 - 30 6 1.81 29752 1.87 0.97 23 

> 30 15 4.53 50757 3.20 1.42 33 

Stream 0 - 200 130 39.27 425212 26.78 1.47 32 

200 - 400 88 26.59 342342 21.56 1.23 27 

400 - 600 58 17.52 334561 21.07 0.83 18 

600 - 800 36 10.88 266996 16.81 0.65 14 

> 800 19 5.74 218832 13.78 0.42 9 

TWI 0 - 4 46 13.90 210627 13.27 1.05 21 

4 - 5 123 37.16 556561 35.07 1.06 21 

5 - 6 50 15.11 291908 18.40 0.82 16 

6 - 7 43 12.99 190139 11.98 1.08 22 

< 7 69 20.85 337581 21.27 0.98 20 

TRI 0 - 0.3 17 5.14 69790 4.40 1.17 20 

0.3 - 0.4 94 28.40 177622 11.19 2.54 44 

0.4 - 0.5 125 37.76 646857 40.76 0.93 16 
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0.5 - 0.6 86 25.98 566730 35.71 0.73 13 

0.6 - 0.7 9 2.72 125817 7.93 0.34 6 

ST 282 - 284 21 6.34 41035 2.59 2.45 33 

284-286 12 3.63 24391 1.54 2.36 31 

286-288 123 37.16 627108 39.52 0.94 13 

288-290 35 10.57 387557 24.42 0.43 6 

290-292 140 42.30 506725 31.93 1.32 18 

SM 0.24-0.26 21 6.34 221133 13.94 0.46 11 

0.26-0.28 2 0.60 15709 0.99 0.61 15 

0.28-0.30 0 0.00 0 0.00 0.00 0 

0.30-0.32 100 30.21 213583 13.46 2.24 54 

0.32-0.35 208 62.84 1136391 71.61 0.88 21 

LULC Water body 9 2.72 49696 3.13 0.87 8 

Dense Forest 27 8.16 484207 30.49 0.27 3 

Built up area 43 12.99 36204 2.28 5.70 55 

Sparse Forest 132 39.88 811493 51.10 0.78 8 

Agriculture land 120 36.25 206343 12.99 2.79 27 

ET 0.000030 - 0.000031 14 4.23 14263 0.90 4.71 55 

0.000031 - 0.000032 36 10.88 299911 18.90 0.58 7 

0.000032 - 0.000033 182 54.98 422313 26.61 2.07 24 

0.000033 - 0.000034 35 10.57 215334 13.57 0.78 9 

0.000034 - 0.000035 64 19.34 634995 40.02 0.48 6 
 

 

Fig. 5.3 Landslide Susceptibility maps, area under the ROC curves using the FR Model 

and (A) All 21 factors (B) Significant 11 factors. 
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5.4.2 Mapping using AHP Model and Validating Results 

For synthesizing weights of these causative factors, the AHP method was used. It is a 

method to derive ratio by paired comparisons. Here, we have compared the eleven factors 

subjectively by adopting AHP technique. Matrix was formed with different causative factors 

and their respective classes (Saaty 1977). For comparison, weights are provided which are 

subjective. In this study, weights are given based on a field visit and past works of literature. 

From the matrix, Eigen values and Eigen vectors are obtained which represent the influence of 

that factor or class for causing a landslide. The following are the matrix prepared for all the 

causative factors and their respective classes (Table 5.4).  

Table 5.4 Scores of factors and their classes obtained by performing AHP 

S. No. Factors A B C D E F G H I J K Weights 

1 Distance to road (A) 1 3 5 2 3 5 2 5 5 4 4 0.248 

2 Distance to waterways (B) 0.33 1 1.5 0.66 1.25 1.5 0.66 1.5 1.5 1 1 0.077 

3 Rainfall (C) 0.2 0.5 1 0.33 0.8 1.25 0.33 1.25 1.25 0.66 0.66 0.049 

4 Slope (D) 0.5 1.5 3 1 2 4 1 4 4 1.5 1.5 0.140 

5 Soil (E) 0.33 0.8 1.25 0.5 1 1.25 0.5 1.25 1.25 0.8 0.8 0.063 

6 SPI (F) 0.2 0.5 0.8 0.25 0.8 1 0.25 1 1 0.66 0.66 0.044 

7 Distance to Streams (G) 0.5 1.5 3 1 2 4 1 4 4 1.5 1.5 0.140 

8 TWI (H) 0.2 0.5 0.8 0.25 0.8 1 0.25 1 1 0.66 0.66 0.044 

9 TRI (I) 0.2 0.5 0.8 0.25 0.8 1 0.25 1 1 0.66 0.66 0.044 

10 ET (J) 0.25 1 1.5 0.66 1.25 1.5 0.66 1.5 1.5 1 0.5 0.071 

11 LULC (K) 0.25 1 1.5 0.66 1.25 1.5 0.66 1.5 1.5 2 1 0.081 

λmax = 11.0571, CI = 0.00571, CR= 0.003568 

 

Distance to Road (A) 

0-100 m 1     0.48637 

101 m – 500 m 1/3 1    0.23394 

501 m – 1000 m 1/4 1/3 1   0.15493 

1001 m – 2000 m 1/5 1/4 1/2 1  0.08045 

>2000 m 1/7 1/6 1/4 1/3 1 0.04432 

CR = 0.0781, λmax = 5.347 
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Distance to Waterways (B) 

0-100 m 1     0.48637 

101 m – 500 m 1/3 1    0.23394 

501 m – 1000 m 1/4 1/3 1   0.15493 

1001 m – 5000 m 1/5 1/4 1/2 1  0.08045 

>5000 m 1/7 1/6 1/4 1/3 1 0.04432 

CR = 0.0781, λmax = 5.347 

 

Rainfall (mm/h) (C) 

0.16 – 0.17 1      0.02964 

0.171-0.18 3 1     0.06494 

0.181-0.19 4 2 1    0.10303 

0.191-0.20 5 3 2 1   0.16406 

0.201-0.21 6 4 3 2 1  0.25485 

0.211-0.22 9 5 4 3 2 1 0.38348 

CR = 0.0923, λmax = 6.568 

 

Slope (D) 

0˚– 15˚ 1     0.04308 

15.1˚ – 23˚ 2 1    0.06682 

23.1˚– 30˚ 4 3 1   0.14245 

30.1˚– 38˚ 6 5 3 1  0.29466 

38.1˚– 73˚ 8 6 4 2 1 0.45299 

CR = 0.051, λmax = 5.230 

 

Soil Cover (E) 

Alluvial Soil 1   0.638 

Black clay 1/5 1  0.101 

Sandy soil 1/3 3 1 0.262 

CR = 0.021, λmax = 3.030 

 

SPI (F) 

0-10 1    0.07173 

10-20 3 1   0.15323 

20-30 4 2 1  0.24412 
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>30 5 4 3 1 0.53092 

CR = 0.077, λmax = 4.209 

 

Distance to Streams (G) 

0-200 m 1     0.48637 

201 m – 400 m 1/3 1    0.23394 

401 m – 600 m 1/4 1/3 1   0.15493 

601 m – 800 m 1/5 1/4 1/2 1  0.08045 

>800 m 1/7 1/6 1/4 1/3 1 0.04432 

CR = 0.0781, λmax = 5.347 

 

TWI (H) 

0-4 1     0.06232 

4-5 2 1    0.09846 

5-6 3 2 1   0.16083 

6-7 4 3 2 1  0.26192 

>7 5 4 3 2 1 0.41646 

CR = 0.0248, λmax = 5.1103 

 

TRI (I) 

0 – 0.3 1     0.06232 

0.31 – 0.4 2 1    0.09846 

0.41 – 0.5 3 2 1   0.16083 

0.51 – 0.6 4 3 2 1  0.26192 

0.61 – 0.7 5 4 3 2 1 0.41646 

CR = 0.0248, λmax = 5.1103 

 

ET (J) 

0.000030-0.000031 1     0.06232 

0.0000311-0.000032 2 1    0.09846 

0.0000321-0.000033 3 2 1   0.16083 

0.0000331-0.000034 4 3 2 1  0.26192 

0.0000341-0.000035 5 4 3 2 1 0.41646 

CR = 0.0248, λmax = 5.1103 
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LULC (K) 

Water body 1     0.04674 

Dense forest 2 1    0.07483 

Sparse forest 3 2 1   0.11732 

Agriculture land 5 4 3 1  0.25099 

Built up area 8 6 5 3 1 0.51012 

CR = 0.0538, λmax = 5.239 

 

After calculating the weights of all the factors and their class, the next step in AHP 

analysis was the calculation of LHI. It was computed by multiplying weights with respective 

classes and then using the following formula: 

LHI =∑ 𝑤𝑒𝑖𝑔ℎ𝑡⁡𝑜𝑓⁡𝑓𝑎𝑐𝑡𝑜𝑟⁡(𝑊𝑗) × 𝑤𝑒𝑖𝑔ℎ𝑡⁡𝑜𝑓⁡𝑓𝑎𝑐𝑡𝑜𝑟⁡𝑐𝑙𝑎𝑠𝑠𝑒𝑠⁡(𝑊𝑖𝑗)⁡
𝑁

𝑗=1
 (5.1) 

where Wij denotes the weight of ith class of causative factor J. LHI map generated was 

again divided into five classes: very low, low, moderate, high, and very high to achieve a 

susceptibility map for the Tehri region (Fig. 5.4). 

 

Fig. 5.4 Landslide Susceptibility Maps, Area distribution and area under the ROC 

curves using the AHP Model. 

 



Chapter 5/ LSM using Significant/Influential Landslide Causative Factors 

68 

 

5.4.3 Mapping using FR-AHP Model and Validating Results 

The FR model using significant factors was adopted for LSM, had achieved an accuracy 

of AUC value of 0.88. An attempt was made to increase the FR model by combining it with 

AHP model. FR is a rigid data-driven method, which provides output based on the input data, 

whereas the AHP, on the other hand, is more flexible. Due to its subjective nature, it gives 

freedom to alter unexpected data-driven outcomes. Distance to road and distance to stream are 

the two most influencing factors obtained from AHP analysis. The weights of factors derived 

using AHP analysis were clubbed together with the data-driven FR values of classes. The 

flexibility was added to the FR-AHP model by giving this subjective preference of weighted 

factors (Table 5.4) to the rigid FR model having values of weighted classes (Table 5.3).  

The weighted factors using the AHP model and their weighted classes using the FR model 

were integrated to achieve the LSI map. This was further classified into five susceptibility 

classes using Jenks natural break classifier (Fig. 5.5). About 80% of the landslides were mapped 

in a very high susceptibility zone covering about 13% of the area. The prediction accuracy of 

0.91 AUC value was achieved using the hybrid model. This semi-quantitative hybrid model has 

shown better result than the individual models. 

 

 

Fig. 5.5 Landslide Susceptibility maps, Area distribution, and ROC curves using FR-

AHP Model. 
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5.4.4 Discussion 

The FR model uses the ratio of classes and landslide pixels to determine their correlation 

in the form of FR values. A higher FR value indicates a higher significance of factor class with 

landslides. However, the drawback of this method is its difficulty in determining the factor 

significance. The factor selection in analysis with less correlation with landslides is expected to 

lead to less accurate predictions (Martínez-Álvarez et al., 2013). In this study, the accuracy 

achieved by adopting significant factors was high with an AUC value of 0.88 compared to an 

AUC value of 0.83 achieved by adopting all the factors. Hence, to achieve higher accuracy, use 

of significant factors are recommended in LSM analysis. 

AHP technique was adopted to obtain the weightage of different causative factors for 

preparing a susceptibility map for the Tehri area. Each factor in the form of a thematic map was 

given a weight value. Weighted raster maps were integrated, resulting in an LHI map, where 

the high value of LHI means that the grid is lying on a more critical landslide zone, and the low 

value of LHI implies that the grid is lying on a less critical landslide zone. Hence, For LSM, the 

LHI map was classified into five susceptibility zones using Jenks natural break classifier: very 

low, low, moderate, high, and very high. (Fig. 5.4). The prediction accuracy of the area under 

the ROC curve value 0.89 was achieved for LSM using the AHP method. About 77% of the 

landslides were successfully mapped in the very high susceptibility zone (11.7%). The success 

of this mapping using the subjective AHP method and its simple procedure and high flexibility 

make us recommend it with the combination of significant factors as the initial choice for 

conducting future research in other similar terrains. 

The map prepared using the hybrid method has shown considerably better results than 

individual methods previously applied. The FR method used here is a data-driven method that 

can produce unreliable results based on input data accuracy. FR method was used to obtain the 

relationships between the distribution of landslides and each landslide influencing factor and 

their corresponding classes. The correlation between landslide locations and the factors for the 

study area can be obtained in the form of RF values. On the other hand, the AHP technique is 

conventionally based on a rating system provided by expert opinion. Due to its subjective 

nature, it gives freedom to alter unexpected data-driven outcomes. The unexpected weights of 

factors were replaced with weights obtained using a pairwise comparison matrix of AHP. 

However, to some extent, opinions may change for every individual expert and thus may be 

subjected to reasoning limitations with uncertainty and subjectivity. Combining the two 

methods reduces these deficiencies of the solo methods, and the hybrid model has the better 

predictive capability. This result agrees with the past studies that motivate the use of hybrid 

approaches (Kanungo et al. 2011; Ahmed and Dewan 2017; Hong et al. 2017; Chen et al. 2017; 

Pradhan et al. 2017; Goyes-Peñafiel and Hernandez-Rojas, 2021). 
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5.5 Validating the significant factors at Chamba and Bhuntar test sites 

Two landslide-prone sites were tested to check the applicability of derived significant 

factors on other similar terrains. This type of analysis can be performed for areas with 

insufficient historical landslide data, where determining correlations between landslide-causing 

factors and landslide events is challenging. Hence, significant direct factors can be adopted for 

LSM using the subjective weightage and ranking system. Here, we have adopted the AHP 

technique for LSM of the Tehri region, Chamba test site, and Bhuntar test site using the 

identified significant landslide causative factors. The matrix of 11 rows and 11 columns was 

prepared, and weights were obtained by pairwise comparison of factors (Table 5.4). The matrix 

shows weight consistency as the consistency ratio value of 0.0083 was achieved. The weighted 

raster maps of 11 factors were integrated, resulting in the LSI maps of the three study regions. 

5.5.1 Mapping and Validating Results 

The LSI maps were then classified into five classes using the Jenks natural break 

classifier. Further, the susceptibility maps for the study area of Tehri and two test sites of the 

Chamba and Bhuntar areas were generated (Fig 5.6). As AHP is subjective, we have not 

incorporated historical landslide data of test sites for generating these susceptibility maps. 

However, the historical landslide data of these regions were used to check the accuracy of the 

predicted maps. The susceptibility maps of the Chamba, Bhuntar, and Tehri regions have shown 

high prediction accuracy of 0.86, 0.82, and 0.89 AUC values, respectively.  

 

Fig. 5.6 LSMs and area under the ROC curves for (A) Chamba test site, (B) Bhuntar test site, 

and (C) Tehri region using AHP Technique. 
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5.5.2 Discussion 

The identified significant factors, along with their hierarchy, were imported into the AHP 

framework for predicting the LSM of the Tehri region as well as two different sites, namely the 

Chamba and Bhuntar sites of Himachal Pradesh. The AHP technique is based on ranking, where 

the expert's judgment gives weights. Due to its subjective nature, it offers the freedom to 

manually weight the factors. We propose this combination of significant factors and the AHP 

model for LSM in similar terrain conditions as the initial choice to the first-stage researcher 

having insufficient landslide data or skills to perform robust machine learning methods. 

5.6 Conclusion 

The Himalayan region in India faces severe challenges due to landslide activities. Hence, 

LSM is an essential step for identifying dangerous areas and a piece of crucial evidence for 

encouraging people to inhabitant on safe ground. Numerous landslide studies have been 

conducted in the Tehri region using the different combinations of landside-causing factors. 

Hence, it was urgent to determine the significant landslide causative factors for the Tehri region 

and other regions with similar terrain conditions. As the number of factors increases or 

decreases, the model accuracy changes. To achieve this purpose, two optimising techniques 

were adopted. Multicollinearity analysis was first applied to remove the high inter-correlations 

factors. Further, sensitivity analysis was performed to achieve the highest accuracy by 

identifying the suitable combination of significant factors. The aim was to ensure that the ANN's 

inputs are those with maximum correlation with the output. The results show that the eleven 

significant landslide causative factors are the most appropriate combination for LSM. The 

accuracy achieved using this combination using the ANN model was 0.93 AUC value, the 

highest accuracy achieved to date for the Tehri region. Earlier research on this study area using 

multiple models also couldn't achieve this high accuracy. This may be because the selected 

factors in earlier studies were not all that significant for the LSM analysis. In short, using the 

significant factors as ANN's inputs in this study generated the best results in all the evaluated 

cases by the previous researchers. Further, we propose this combination of significant factors 

as initial choice for conducting future research in similar terrain. 

Over the last few decades, several LSM models have been developed. As all these 

methods used for deriving weights of the causative factors have some pros and cons, hence no 

one method is standardized at a global scale. By combining the two methods, these deficiencies 

of the solo methods are reduced, and the hybrid model has better predictive capability. The map 

generated using this hybrid model shows better accuracy than individual models. The accuracy 

enhancement could be because of the flexibility provided by the AHP method, which has added 

subjectivity to the FRM.  
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The study has also concluded that the identified significant factors and their hierarchy 

can be applied to other similar regions of the Himalayas. The test performed on the two 

landslide-prone sites (Chamba and Bhuntar) of the Himalayan region with similar terrain 

conditions as Tehri gave positive outcomes. High accuracies were achieved by the predicted 

landslide susceptibility maps using the identified factors in the AHP framework. The identified 

11 significant landslide causative factors and their hierarchy derived in this study can also be 

applied to other regions of the Himalayas with similar terrain conditions. 

Conclusively, the present study results may benefit LULC and mitigation strategies 

planning for the Tehri region and other similar terrain conditions and developing infrastructural 

facilities in the future. The identified combination of significant factors affecting the landside 

for the study area is also applicable to other districts of the country. Also, the success of the 

hybrid FR-AHP model in predicting the landslide susceptibility of the Tehri region permits it to 

be put into practice in the other parts of the Himalayas. The accuracy of both ANN and hybrid 

models is excellent in predicting the LSM. However, the computational and data analysis work 

is comparatively less in the hybrid FR-AHP model. Also, adequate tests and analysis must be 

performed before applying the model.
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Chapter 6 

Future LSM Considering Future LULC Projections 

 

6.1 Introduction 

For mapping the landslide hazard, both static and dynamic factors are required. Several 

research works presented the significant effect of landslide causative factors considered as 

constant or quasi-static in times, such as lithology, morphology, hydrology, etc., on the 

incidence of landslides. However, few research articles have incorporated the impact of Land 

Use Land Cover, which varies with time due to the influence of human actions in LSM 

(Bourenane 2021). These dynamic factors can change a lot when continuous and frequent 

environmental activities occur, such as urbanization, deforestation, and modifications in 

socioeconomic structures. Change in LULC can be observed using satellite data; however, the 

minimum time interval to identify those changes depends on the satellite data's spatial 

resolution. Here we have used the Landsat images of a spatial resolution of 30m where the 

LULC change can be observed every five years (Marquez et al. 2019). In the Himalayas, the 

practice of LULC cannot be stopped, but a proper land use policy can lead to these changes 

more sustainably (Tiwari et al. 2018). Recently, studies have evaluated the effects of LULC 

change on LSM (Shu et al. 2019; Pham et al. 2021; Hürlimann et al. 2021; Sur et al. 2021). 

According to Chen et al., 2019, an increase in engineering construction activities causes LULC 

changes, increasing Landslide susceptible areas. Hence, the LULC change can further be used 

as the driving parameter to predict LSM for the future. Evaluating landslide hazards in a specific 

region provides an essential basis and scientific support for governments to prepare the land use 

policy (Nicu, 2018). LSM is a vital tool for the reduction of landslide hazard losses. This chapter 

describes the use of future LULC projections to determine the future scenarios of LSM. Initially, 

LULC changes were simulated to achieve this objective, and this change was projected for the 

future using the ANN-CA model incorporating LULC change driving parameters. This chapter 

also describes the process of selecting the significant LULC driving parameters. The later part 

of this chapter discusses the validation processes adopted to identify the accuracy of the 

generated projected maps. 

6.2 Data Preparation 

The LULC describes the physical description of the region and is generated by a 

supervised classification technique. The maximum likelihood classification algorithm uses the 

spectral signature of the training class to classify the whole image into five classes, i.e., 

waterbody, dense forest, built-up area, sparse forest, and agriculture land. LULC maps were 

prepared using Landsat 5 and 8 data for the years 2010, 2015, and 2020. It is the most preferred 
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data source as it has an extended temporal coverage (Saini and Tiwari 2020). The initial (2010) 

and final (2015) data were used as training input data, and the 2020 data was used to validate 

the result.  

6.3 Driving parameters for LULC projection 

The parameters responsible for driving the LULC change are required for projecting the 

LULC change for the future. For LULC simulation, the driving parameters were chosen based 

on the correlation of parameters with LULC using the Pearson correlation coefficient (Table 

6.1). The higher value of the coefficient indicates a higher correlation. Slope, distance to road, 

and distance to stream have shown comparatively good correlation with LULC for the Tehri 

region. This result agrees with previous studies (Araya and Cabral, 2010; Green and Ahearn, 

2016) and is hence considered as driving parameters to obtain future LULC. The correlation 

coefficient of the two parameters was calculated using the following equation 1. The correlation 

coefficient ranges from −1 to 1.  

Table 6.1 Pearson correlation coefficient between LULC and driving parameters. 

Spatial Variables Pearson coefficient 

Slope -0.406 

Distance to road -0.335 

Distance to stream 0.218 

Distance to waterways 0.093 

TRI -0.084 

Rainfall -0.066 

SPI 0.063 

Soil type -0.055 

TWI 0.049 

Evapotranspiration 0.038 

 

6.4 ANN-CA model 

The ANN-CA model was used twice in this study. At first, it was used to simulate the 

future scenario of LULC and then for the future prediction of the LSM. The initial (2010), final 

(2015), and driving parameters maps were used as the input. The area changes for each class 

between 2010 and 2015 were calculated. These class changes were used to obtain the proportion 

of pixel change from one class to another in transition matrix form. The ANN model was used 

to calculate the transition probability, and further CA simulation uses these transition 

probabilities to model the changes. The transition potential model used in this study was trained 

with a momentum of 0.050 and a learning rate of 0.01 to stabilize the learning graph. 

Furthermore, the number of iterations was set to 100 to prevent the issue of overfitting in the 

model. These inputs were found optimal for training the ANN (Zeshan et al. 2021). The learning 

algorithm examines the accuracy of training and validation sets of samples and stores the best 
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neural net in memory. The training process finishes when the best accuracy is reached. To 

control the rate of change in classes, the threshold value of 0.9 was used (Li and Yeh 2002). 

6.5 Methodology 

Fig. 6.1 presents a flow chart describing the methodology adopted in the present study. 

The primary prediction methodology adopted in point of projection from past to future includes 

the prediction of LSM for the years 2010 and 2015 using the ANN model and then projecting it 

for 2030 using the ANN-CA model. To achieve this objective, significant landslide causative 

factors were initially identified using the Pearson correlation coefficient and ANN Sensitivity 

analysis described in detail in Chapter 5. Further, the significant factors and landslide 

inventories were used in LSM for the years 2010, 2015, and 2020. LULC maps were prepared 

for the same year by adopting the maximum-likelihood classification technique. The LULC 

maps were prepared with five major classes: water body, dense forest, built-up area, spare forest, 

and agriculture land. The ANN-CA model was further used for future projections of LSM and 

LULC. The future projection of LULC was derived by incorporating slope profile, distance to 

roads and distance to stream as the LULC change driving parameters. The future projection of 

LSM was conducted by incorporating future LULC change as the driving parameters.  

 

 

Fig. 6.1 The flow chart showing the proposed methodology for this research 
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6.6 Results and Discussion 

6.6.1 Future Scenario of LULC  

The LULC of the study area showed built-up area (settlements, industries, and road 

network), dense forest, spare forest, agriculture land, and water body (reservoir and streams). 

The future scenario of the LULC was simulated for 2030, and the LULC variations for different 

years can be observed in fig. 6.2 The future scenario states that the built-up area will increase 

from 34.3 km2 to 46 km2 (34.1%) from the year 2020 to 2030. The areas of the water body and 

agriculture land will also increase from 46.1 km2 to 49 km2 (6.3%) and 195.9 km2 to 197.8 km2 

(1%), respectively. In contrast, there will be a decrease in the area from 414.3 km2 to 404.3 km2 

(2.4%) for dense forest and 738.5 km2 to 732 km2 (0.9%) for sparse forest (Fig. 6.3).  

 

Fig. 6.2 LULC maps for the year 2010, 2015, 2020 and 2030. 

 

Fig. 6.3 LULC change graph for the years 2010, 2015, 2020 and 2030. 
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6.6.2 Change detection of the future scenario of LULC 

Change detection is considered a primary method for recognizing the change in the 

pattern of different classes in distinct periods. The quantification of shifts or changes in different 

LULC is essential. The spatial distribution of classes shifts from the 2020 to 2030 time period 

is shown in fig. 6.4. The shift in LULC from one period to another reveals the future trend. The 

changes observed in the built-up class were along the road network connecting towns and 

villages, as shown by the pink color. Mostly the changes in the agriculture area were observed 

near the reservoir and built-up area. Water body class changes can be observed in light blue 

color near the river bank. Dense and sparse forest class shifts are shown with dark and light 

green colors, respectively. The percentage change between LULC class pixels was computed 

and shown in bar chart form (Fig. 6.5). 

 

Fig. 6.4 Map showing the class shift in LULC classes between the period 2020-2030. 
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Fig. 6.5 Bar Chart showing the percentage shift in LULC classes between the period. 

 

 

6.6.3 Prediction of Landslide Susceptibility 

The LSM for the year 2030 was predicted using the ANN-CA model and LULC change 

as the driving parameter. The changes in the susceptibility zones can be observed in Fig 6.6. 

Significant changes are observed in zones with very low and very high susceptibility classes. 

The zone with very low landslide susceptibility has shown a reduction from 733.5 to 596.9 km2 

(18.6%), whereas the zone with very high susceptibility has shown an increment from 398.1 

km2 to 529.4 km2 (33%). Moreover, the high susceptibility zone has also shown an increment 

in the area from 115.4 km2 to 131.8 km2 (14.2%), whereas zones with low and moderate 

susceptibility have shown a reduction from 92.4 km2 to 86.3 km2 (6.6%) and 89.9 km2 to 84.8 

km2 (5.6%) respectively (Fig. 6.7).  
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Fig. 6.6 LSM for the years 2010, 2015, 2020 and 2030. 
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Fig. 6.7 Change graph of LSM for the years 2010, 2015, 2020 and 2030. 

6.6 Validation 

The current LSM, LULC classification and projected results were validated using two 

approaches. The area under the ROC curve method was used to validate the LSM and Cohen's 

kappa coefficient was used to validate the LULC classification and future predictions. 

6.6.1 Cohen's Kappa Coefficient.  

The Kappa coefficient is widely used to measure the true agreement between the observed 

agreement and chance agreement. The calculated Kappa coefficient showed excellent and 

reliable results for all the years (Table 6.2). Initially, Then, K- values of LULC maps were 

determined using google earth data as reference data. Lastly, the K-values were also used to 

evaluate and compare the real (generated) and predicted (simulated) maps for 2020. The 

predicted results for the year 2030 have the same accuracies as the predicted 2020 results, as 

the same simulation was taken forward.  

Table 6.2 Kappa coefficient values used for validation 

Results Reference year K-

Values 

LULC classification  Google earth 2010 0.89 

2015 0.87 

2020 0.88 

Predicted LULC Generated LULC 2020 0.82 

Predicted LS Generated LSM 2020 0.85 
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6.6.2 Area Under Curve Method 

The area under the ROC curve is used to check the accuracy of the models. In this study, 

the LS maps of 2010 and 2015 were predicted using the ANN model and have achieved a 

prediction accuracy of 0.92 and 0.9 AUC values, respectively (Fig. 6.8).  

Fig. 6.8 AUC of the Predicted LS Maps for the year 2010 (A) and 2015 (B). 

6.7 Conclusion 

The past spatiotemporal changes in LSM and LULC can help predict future changes. This 

beforehand information about future changes due to rapid urban growth in the mountains can 

help the various government agencies to scientifically plan the various developmental activities. 

The future prediction for both LULC and LSM was made using the CA-ANN model.  

The results conclude that due to rapid urbanization in the Tehri region, 35% of the built-

up, 12% of the water body, and 4% of agriculture land classes area will increase by 2030. This 

will decrease dense and sparse forest class area by 4% and 2%, respectively. These LULC 

changes will negatively affect natural ecosystems, biodiversity, and climate. The results also 

conclude that LS increases as the built-up area increases in the hilly region. Such results call for 

more reasonable land use planning in the urbanization process in the future and suggest a more 

systematic inclusion of LULC change in hazard assessment so that preventive measures can be 

implemented from the beginning. 

Ultimately, the LULC change on hills could destabilize them, endanger the natural 

resources and harm the environment. Therefore, predicted future LSM will help policymakers, 

management professionals and government authorities to develop strategic planning that can 

reduce the impact of landslides. This can prevent urban growth and development in high LS 

areas. Moreover, we considered only LULC as the dynamic parameter in predicting future LSM. 

However, future studies can also consider more spatiotemporal and climatic factors. 

A B 
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Chapter 7 

LSM Incorporating Future Climate Projections 

 

7.1 Introduction 

The landslides are caused by complex interactions among many static and dynamic 

factors (Dai and Lee 2002). Static factors such as topography, geological structure, pedology, 

geomorphology, hydrology, and vegetation characteristics are intrinsic to the environmental 

properties of a specific region and play a significant role in the formation of landslides (Kim et 

al. 2013; Hess et al., 2017), whereas dynamic factors, such as land use and land cover (LULC) 

change and climate change are external in nature. These changes are mainly due to 

anthropogenic activities such as deforestation, slope cuts, construction landfills, and garbage 

dumps. Consequently, these changes generate instability on hillslopes and induce landslide 

processes, which sometimes culminate in catastrophic effects (Persichillo et al. 2017; Schmaltz 

et al. 2017; Mendes et al. 2017; Köning et al. 2019). Researchers have concluded that 

urbanisation and climate changes will significantly impact landslide frequency (Persichillo et 

al. 2017). In the Himalayas, the practice of LULC cannot be stopped, but proper land use policy 

considering future projections can bring about these changes more sustainably (Tiwari et al. 

2018). Evaluating landslide hazards in a specific region provides scientific support for 

governments to prepare land use policies (Nicu, 2018). Landslide Susceptibility Mapping 

(LSM) and Landslide Hazard Mapping (LHM) are essential steps in mitigation measures for 

planning and recognizing the regions needing protective measurements and are vital tools for 

the reduction of landslide hazard losses (Tyagi et al., 2022a). Though, studies have investigated 

the impact of LULC change (Reichenbach et al. 2014; Pisano et al. 2017; Shu et al. 2019; Pham 

et al. 2021; Sur et al. 2021) and climate change (Collison et al. 2000; Dixon and Brook 2007; 

Jakob and Lambert 2009; Comegna et al. 2013; Rianna et al. 2014; Shou and Yang, 2015, 

Hürlimann et al. 2022) on landslide occurrence. However, the future prediction of the LSM 

using these dynamic factors has not been quantified. This chapter describes the methodology 

for predicting future LSM, considering LULC and climate future projections as its prime driving 

dynamic factors. The LSM future projections were derived under four possible Shared 

Socioeconomic Pathways Scenarios. 

7.2 Data preparation 

LULC and climate change significantly impact landslide frequency and magnitude 

(Collison 2000; Moung-Jin et al. 2014). These changes have increased the global average 
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temperature and altered the rainfall pattern worldwide. The increase in extreme climate events 

has a dominant effect on LSM. Hence, we have incorporated these two climatic parameters 

(Temperature and precipitation) along with LULC change for future prediction of LSM.  

7.2.1 LULC projections  

For predicting the future LSM for the year 2050, one of the driving dynamic factors used 

in this study was LULC projections. The changing trend in LULC derived using 2010 and 2015 

data, was projected to derive the future LULC scenarios. The driving factors for LULC 

projections were slope, distance to road, and distance to stream. The projected LULC classes 

for the year 2050 will further be used as the driving factor for LSM. Refer to chapter 6 for more 

details regarding the derivation of LULC projections.  

7.2.2 Climate Projections  

Global and regional climate variations on different time scales involve complex 

interactions among various components of the Earth System, hydrosphere, lithosphere, and 

biosphere. Earth System Models (ESMs) are essential for understanding these climatic 

variations resulting from interactions between different Earth system components. The ESMs 

participated in the sixth Coupled Model Intercomparison Project (CMIP6) allows us to 

understand and quantify the physical, chemical & biological mechanisms governing the rates of 

change of elements of the Earth System. The evaluation of CMIP6 simulations over several 

regions, including South Asia, suggests that their simulated responses exhibit differences from 

earlier CMIPs studies (Almazroui et al., 2020). The CMIP6 models have typically enhanced 

versions of the models that participated in earlier phases of CMIP. Most have improved 

parameterizations of cloud microphysics and better representations of various Earth system 

processes, such as biogeochemical cycles and ice sheets. The average resolution of CMIP6 

GCMs is also finer than that of CMIP5 GCMs (Eyring et al. 2016). The CMIP6 has been 

improved in several aspects (e.g., higher horizontal resolution, better representation of synoptic 

processes, and better agreement with the estimation of global energy balance), and more 

reasonable results can be obtained from climate-extreme studies (e.g., Di Luca et al. 2020; Kim 

et al. 2020; Nie et al. 2020; Srivastava et al. 2020; Wild 2020). In the Intergovernmental Panel 

on Climate Change (IPCC) Sixth Assessment Report (IPCC AR6), projections have utilized the 

new range of scenarios known as Shared Socio-economic Pathways (SSPs) (O'Neill et al. 2017) 

introduced in the CMIP6.   

ESMs are coupled numerical models that incorporate processes within and across the 

different Earth system components and are expressed as mathematical equations. ESMs are 

global climate models capable of explicitly representing biogeochemical processes interacting 

with the physical climate. New simulations of the ESMs from the latest state-of-the-art climate 

models participating in phase 6 of the CMIP are now available (Eyring et al. 2016). These 
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simulations provide a new opportunity to evaluate the Earth system's response to radiative 

forcing change during the twenty-first century. The climate projections in this study includes 

mean precipitation flux and surface temperature projections, which were obtained from the sixth 

CMIP6 climate projections. 

In this study, the CMIP6 dataset was used to derive future temperature and precipitation 

projections over the Tehri region of the Indian Himalayas under four different Shared 

Socioeconomic Pathways (SSPs) with their radiative forcing combinations included in Tier 1 

ScenarioMIP simulations. The Scenario Model Intercomparison Project (ScenarioMIP) consists 

of a set of eight pathways of future emissions, concentrations and land use, with additional 

ensemble members and long-term extensions, grouped into two tiers of priority (of which only 

the first constitutes a required set for modeling centers participating in ScenarioMIP). Tier 1 

spans a wide range of uncertainty in future forcing pathways important for climate science 

research, including SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5. (Gidden et al. 2019; O’Neill 

et al. 2016).  The SSP scenario experiments can be understood in terms of two pathways, a SSP 

and a Representative Concentration Pathway (RCP). The three digits that make up the 

experiment's name represent the two pathways. The first digit represents the SSP storyline for 

the socioeconomic mitigation and adaptation challenges that the experiment represents (Fig. 

7.1). The second and third digits represent the RCP climate forcing that the experiment follows. 

For example, experiment SSP1-2.6 follows SSP1, a storyline with intermediate mitigation and 

adaptation challenges, and RCP2.6, which leads to a radiative forcing of 2.6 Wm-2 by the year 

2100.  

 

Fig. 7.1 The socioeconomic "Challenge Space" to be spanned by the CMIP6 SSP 

experiments (O'Neil et al. 2014). 

The GCMs data have considerable biases present due to different spatial resolutions, 

systematic model error, and inaccurate physical parameterizations (Ghosh and Mujumdar, 2009; 



Chapter 7/ LSM Incorporating Future Climate Projections 

86 

 

Chen et al., 2013; Turco et al., 2013; Gupta and Chavan, 2021, 2022). Hence, to deal with this 

issue, the data was downscaled with the help of the multiplicative multiple change factor method 

for precipitation and additive multiple change factor method for temperature following 

Semadeni-Davies et al. (2008) and Anandhi et al. (2011), which resolves the issue of bias.  

For Tehri region climate projections, we have adopted the Indian Institute of Tropical 

Meteorology earth system model (IITM ESM) developed recently at the Modelling Centre of 

CCCR-IITM (Centre for Climate Change Research, Indian Institute of Tropical Meteorology) 

Pune, India. This is India's first and only climate model contributing to the CMIP6 for the IPCC 

sixth assessment report (Ar6). The IITM-ESM has shown promising capabilities required for 

making reliable assessments of the impacts of climate change on the Global and regional 

monsoon hydro climate and Regional weather and climate extremes (Krishnan et al. 2019). 

Krishnan et al. (2020a;2020b; 2021) briefly explains the model's salient aspects. 

For Himachal Pradesh climate projections, six GCMs models were downscaled and 

ensembled in MATLAB, a statistical programming package (Table 7.1). According to Aadhar 

and Mishra (2020), among various CMIP6-GCMs, BCC-CSM2-MR does not capture the 

coupled variability between monsoon season precipitation and sea surface temperature (SST) 

over the Indian region. Also, MRI-ESM2-0 exhibited a large bias in the monsoon season 

precipitation and poor seasonal cycle variability, whereas CESM2-WACCM and IPSL-CM6A-

LR showed less bias in precipitation and captured the observed season cycle of precipitation. 

According to Reddy and Saravanan (2023 ), EC-Earth3-Veg, MRI-ESM2-0, and GFDL-ESM4 

have shown high performance in terms of finding out extreme precipitation indices. Hence, 

these models exhibit substantial uncertainty, which confirms the necessity of a model ensemble 

in investigating the climate simulations and projections. The average rainfall and mean average 

temperature of scenarios showed the trend of projected rainfall and temperature. The trend 

showed that both the hydro-climatic variables show an increase from SSP1-2.6 to 5-8.5. So, the 

increased GHGs emission and disrupted socioeconomic conditions will result in a net increase 

in temperature and precipitation in the future.   

Table 7.1 Details of 6 CMIP6-GCMs used in this study 

S. No. Model Name Source Institute  Actual resolution 

(latitude × longitude) 

1 BCC-CSM2-MR Beijing Climate Center, China 1.1121ᵒ× 1.125ᵒ 

2 EC-EARTH3-Veg EC-Earth-Consortium 0.70ᵒ× 0.70ᵒ 

3 IPSL-CM6A-LR Institute Pierre Simon Laplace, France 1.2676ᵒ × 2.5ᵒ 

4 MRI-ESM2-0 Meteorological Research Institute, Japan 1.125ᵒ × 1.11ᵒ 

5 CESM2-WACCM National Center for Atmospheric 

Research, USA 

0.9424ᵒ × 1.25ᵒ 

6 GFDL-ESM4 NOAA/ Geophysical Fluid Dynamics 

Laboratory, USA 

1.3ᵒ×1.0ᵒ 
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7.3 Methodology 

Fig. 7.2 presents a flow chart describing the methodology adopted in the present study. 

Initially, both static and dynamic factors were optimized. Chapter 5 describes the optimization 

technique in detail. Further, the ANN-CA model was adopted in this study for future projection 

of LSM, considering climate and LULC projections as their derivatives. Chapter 6 explains the 

ANN-CA model and how it was adopted. The climate projections were obtained using the 

CMIP6 climate projections with their four different SSPs and lastly, the accuracy assessment 

methods were adopted for validating the results. 

 

Fig. 7.2 The flow chart showing the proposed methodology for this research. 

7.4 Results and Discussion 

7.4.1 Landslide Susceptibility Maps for Tehri Region 

The landslide susceptibility maps for 2010, 2015, and 2020 were generated using the 

ANN model, considering the eleven most significant combinations of factors. The susceptibility 

map of 2010 has less percentage of the very high landslide susceptibility class, whereas the 2020 

landslide susceptibility map has more percentage of it (Fig. 7.3). These maps have shown a 

trend with an increase in the very high susceptibility class, which indicates the landslide 

susceptibility for the Tehri region is increasing with time.  
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Fig. 7.3 LSM for the Tehri Region of the years 2010, 2015 and 2020. 

7.4.2 Future Projections of LULC, Precipitation and Temperature for Tehri Region 

The future projections maps of LULC, precipitation and surface temperature were 

derived for 2050. This projected LULC map has shown an increase in the built-up area, 

agriculture land and reservoir area. However, the sparse and dense forest classes have decreased. 

About 5% increment in the built-up class and 4% in agriculture land is expected to take place 

in 2050, as shown in future projections (Fig. 7.4). This will lead to a decrease of forest (sparse 

and dense) land by about 10%. The projected precipitation maps and surface temperature maps 

for the year 2050 for different scenarios, with bar charts showing class percentages for each 

map, are shown in fig. 7.5 and 7.6. The mean precipitation flux and surface temperature values 

show an increasing trend as the forcing scenarios change from SSP 1-2.6 to SSP 5-8.5. 

 

Fig. 7.4 LULC maps for the Tehri region of the year (A) 2010, (B) 2015, (C) 2020 and 

(D) 2050. 
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Fig. 7.5 Projected mean precipitation flux for the Tehri region of the year 2050 under 

(A) SSP 1-2.6 (B) SSP 2-4.5 (C) SSP 3-7.0 (D)SSP 5-8.5 Scenarios. 

 

Fig. 7.6 Projected surface temperature for the Tehri region of the year 2050 under (A) 

SSP 1-2.6 (B) SSP 2-4.5 (C) SSP 3-7.0 (D) SSP 5-8.5 Scenarios. 

7.4.3 Future Predicted Landslide Susceptibility Maps for Tehri Region 

The Landslide susceptibility maps were predicted for the year 2050 using the ANN-CA 

model, considering projections of LULC, precipitation and surface temperature. Four 

susceptibility maps predicted for the Tehri region for different possible future climate change 

scenarios are shown in Fig.7.7. The bar chart shows the class percentage of maps for different 

scenarios. Map for SSP 1-2.6 scenario has shown less percentage of very high susceptibility 

class whereas the SSP 5-8.5 scenario has shown a higher percentage of it. About 8% class 
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increment in very high landslide susceptibility class was observed between SSP 1-2.6 and SSP 

5-8.5 scenarios.   

 

Fig. 7.7 Landslide susceptibility maps for SSP 1-2.6, SSP 2-4.5, SSP 3-7.0 and SSP 5-

8.5 Scenarios. 

7.4.4 Landslide susceptible Maps for Himachal Pradesh State. 

The landslide susceptibility maps for the years 2010, 2015 and 2020 were prepared for 

Himachal Pradesh using 11 significant landslide causing factors. These factors were 

weighted using the ANN model, which were further integrated to generate maps showing 

LSI. As shown in fig, these maps were classified into five classes using Jenks natural break 

classifier. 7.8.  

 

 

Fig. 7.8 LSM for the Himachal Pradesh State of the years 2010, 2015 and 2020. 
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7.4.5 Future Projections of LULC, Precipitation and Temperature for Himachal 

Pradesh State 

The projected maps of LULC for the year 2050 have shown a considerable increase in the 

water body and Built-up and Crop lands classes and a decrease in barren land and permanent 

snow cover classes, as shown in fig. 7.9. Further, as the forcing scenarios increase from SSP 

1-2.6 to SSP 5-8.5, the intensity of rainfall (Fig. 7.10) and temperature (Fig. 7.11) increase 

for the year 2050.  

 

Fig. 7.9 LULC maps for the Himachal Pradesh State of the year (A) 2010, (B) 2015, (C) 

2020 and (D) 2050. 

 

Fig. 7.10 Projected mean rainfall for the Himachal Pradesh State of the year 2050 under 

(A) SSP 1-2.6 (B) SSP 2-4.5 (C) SSP 3-7.0 (D)SSP 5-8.5 Scenarios. 
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Fig. 7.11 Projected surface temperature for the Himachal Pradesh State of the year 2050 

under (A) SSP 1-2.6 (B) SSP 2-4.5 (C) SSP 3-7.0 (D) SSP 5-8.5 Scenarios. 

7.4.6 Future Predicted Landslide Susceptibility Maps 

The future landslide susceptibility maps for the year 2050 under four SSPs were prepared, 

considering projected LULC, rainfall, and temperature as the driving parameters for 

landslide susceptibility (Fig. 7.12). These maps have shown an increase in the very high 

landslide susceptibility class as the forcing scenarios increase from SSP 1-2.6 to SSP 5-8.5.  

 

Fig. 7.12 Landslide susceptibility maps for the Himachal Pradesh State of SSP 1-2.6, SSP 

2-4.5, SSP 3-7.0 and SSP 5-8.5 Scenarios. 
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7.5 Validation 

7.5.1 Area Under Curve Method 

The area under the ROC curve was used to check the accuracy of the LSM using the 

ANN model. In this study, LSM was done for the years 2010, 2015 and 2020 using the ANN 

model and the derived significant factors. The prediction accuracy achieved by these three maps 

were 0.93, 0.89 and 0.88, respectively, as shown in fig.7.8.  

 

Fig. 7.13 AUC of the predicted landslide susceptibility maps for the years 2010 (A), 

2015 (B) and 2020 (C). 

 

7.5.2 Cohen's Kappa Coefficient 

The Kappa coefficient (K) is widely used to measure the true agreement between the 

observed and chance arrangement. The kappa constant coefficient is a perfect pointer of 

precision in measuring the general agreement between the maps that are thematically classified 

and referenced data (Adam et al. 2013). The kappa is a multi-separate variables method used to 

determine the accuracy of map classification. It is calculated from the error matrix and 

implemented over the classification based on the data reference (Hossen and Negm 2016). More 

details regarding the calculation of the K-value adopted in this study can be obtained in chapter 

4. 

 This study calculated K-values for all the LULC classifications and projected future 

maps (Table 7.1). The K- values of LULC classification maps were calculated considering 

google earth images as their reference data. The K-values for the future projection were derived 

by comparing the real (generated) and predicted (simulated) maps for 2020. The generated 2020 

maps were used as the reference map, while the projected map of 2020 was used as the predicted 

map of 2020. The predicted results for the year 2050 have the same accuracies as the predicted 

2020 results, as the same simulation was taken forward.  
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Table 7.2 Kappa coefficient values used for validation 

Results Reference year K-Values 

LULC 

classification  
Google Earth 

2010 0.89 

2015 0.87 

2020 0.88 

Predicted LULC Generated LULC 

2020 

0.82 

Predicted LSM 

(SSP1-2.6) 

Generated  LSM 

0.86 

Predicted LSM 

(SSP2-4.5) 
0.83 

Predicted LSM 

(SSP3-7.0) 
0.81 

Predicted LSM 

(SSP5-8.5) 
0.79 

 

7.6 Conclusion 

In this study, future prediction of LSM was performed considering future LULC and 

climate (precipitation and temperature) projections as their driving parameters. Initially, the 

LSM for the years 2010, 2015, and 2020 were performed considering significant landslide 

causative factors. These maps were further used as the input in the ANN-CA model for training 

the model. The model used projected LULC, precipitation and surface temperature data as their 

driving parameters in the future prediction of LSM for the year 2050. The precipitation and 

surface temperature were projected under the four CMIP6 tier-1 future forcing scenarios (SSP1-

2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5). The following summarizes the main conclusions from 

this study: 

The dynamic factors can increase or decrease landslide susceptibility in mountainous 

areas. Factors such as LULC and climate change can be used for future predictions by 

examining the trends in change detection. Identification of LULC transitions is a practical 

approach to addressing the problems regarding unregulated urbanization and environmental 

degradation. In this study, LULC projections for the year 2050 were obtained using the ANN-

CA model. The results of LULC projection for Tehri region of 2050 demonstrate high increases 

in built-up area of more than 5% and agriculture land of about 4%. Meanwhile, sparse and dense 

forest areas were projected to decrease by approximately 6% and 4%, respectively, indicating 

human influences on LULC changes from forest to built-up and agriculture. Hence, developing 

land management regulations in the Tehri region is required.  

ESMs are helpful for enhancing our fundamental understanding of the climate system. 

Its multi-scale variability, global and regional climatic phenomena and making projections of 
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future climate change can help in preparing scenario-oriented policies. Climate change is 

expected to impact the future natural and social systems profoundly. Its influence can be seen 

in frequent extreme meteorological events such as concentrated precipitation and heat waves. 

In this study, we have used CMIP6 projections of 2050 from IITM ESM for the Tehri region 

and six ensembled GCMs models for Himachal Pradesh under four SSP scenarios. The results 

conclude that the precipitation and surface temperature increase as the forcing scenarios change 

from SSP 1-2.6 to SSP 5-8.5. 

Future Prediction of LSM can help in the proper management and sustainable distribution 

of environmental resources. In this study, future predictions of LSM for the year 2050 under 

four different SSP scenarios were carried out. The result concludes that the scale of landslide-

susceptible areas is estimated to increase in the future as the forcing scenarios change from SSP 

1-2.6 to SSP 5-8.5. Hence, different socioeconomic pathway-based challenges should be 

considered in developing policies for mitigation and adaptation. 

Policymakers, planners, and managers of the Tehri region must therefore consider 

potential landslide susceptible areas to prevent damages due to landslide hazards. These 

findings would help decision-makers better understand the interactions between human and 

natural activities and formulate policies related to landslide mitigation and prevention in the 

Tehri region, India. In addition, an attempt should be made to minimize urban warming and 

improve living environments, public health, and community well-being.
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Chapter 8  

Summary and Conclusion 

 

8.1 Summary 

The entire work of this thesis can be summarised as follows. Landslides inventory data 

was prepared for the study area of the Tehri region and two test sites of the Chamba and Bhuntar 

regions. The major portion of historical landslide data was taken from the Bhukosh portal of 

GSI. These landslide data were identified using 3D imagery in Google Earth. In total, 850, 166, 

and 79 historical landslides were mapped, and inventory was prepared for the Tehri, Chamba, 

and Bhuntar regions, respectively. The historical landslide data were correlated with landslide 

causative factors. In this study, we have adopted 21 landslide causative factors for the analysis. 

The factor weights were derived by correlating them with historical landslide data using LSM 

models. Here, we have used four models for determining the weights of these factors, including 

ANN, FR, AHP, and FR-AHP. The ANN model was initially selected for the analysis, and based 

on the correlation with the historical data, the hierarchy of factors in decreasing order of their 

significance was prepared. Significant factors were selected by adopting two optimising 

techniques of multicollinearity analysis using Pearson correlation and sensitivity analysis using 

the ANN method. The combination of the first eleven factors from the prepared hierarchy 

produced the maximum prediction accuracy of 0.93 AUC value. The weights were then 

integrated to create the landslide susceptible map for the Tehri region.  

As the results of one model are insufficient, the FR model was then adopted for deriving 

weights of the factors by correlating the historical landslide pixels with factors class pixels. The 

LSM using the FR model was performed by first incorporating all 21 factors and then derived 

11 significant ones. The accuracy of the susceptibility map achieved using 21 factors was 0.83 

AUC value, and it was 0.88 using 11 significant factors. Further AHP model was adopted for 

the LSM of the Tehri region. AHP model does not use historical landslide data for deriving 

weights. Instead, here weights are given subjectively based on the researcher's experience. 

Hence, the derived significant factors using ANN and confirmed using FR were used in the 

AHP analysis. The accuracy of 0.89 AUC value was achieved using the AHP model. Also, the 

LSM was performed using a hybrid model of FR-AHP, and an accuracy of 0.91 was achieved. 

Lastly, the AHP model was applied to two landslide-prone sites of Chamba and Bhuntar for 

LSM, and prediction accuracy of 0.86 and 0.82 AUC value was achieved. 
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In this study, the future prediction of LSM was made with the help of dynamic factors 

such as LULC and climate variables. These dynamic factors changes with time and their 

changes are identified and used for future prediction. The ANN-CA model was adopted for 

determining the future projection of LULC and LSM. The climate projections were directly 

taken from CMIP6 future projections under four SSPs. These projections of LULC and Climate 

variables were used as the drivers in the ANN-CA model for future LSM scenarios. Initially, 

the LSM for the years 2010, 2015, and 2020 were performed considering significant landslide 

causative factors. These maps were further used as the input in the ANN-CA model for training 

the model. The model used projected LULC and climate variables data as their driving 

parameters in the future prediction of LSM for the future. The climate variables were projected 

under the four CMIP6 tier-1 future forcing scenarios (SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, 

and SSP5-8.5). 

8.2 Major Conclusions 

The main aim of this research is to develop a scientific methodology to prepare the current 

and future landslide susceptibility maps incorporating both static and dynamic landslide 

causative factors. The following summarizes the main conclusions from this study: 

The optimization techniques should be adopted in selecting the landslide causative 

factors. This study adopted multicollinearity and sensitivity analysis to determine significant 

factors for LSM analysis. The first eleven factors from the prepared hierarchy have shown 

maximum prediction capability and hence were adopted in LSM for the years 2010, 2015, and 

2020. Also, The FR model results confirm the reliability of the derived significant factors. The 

FR model results conclude that the significant factors in LSM produce higher prediction 

accuracy. Further, these derived significant factors were also tested on two landslide-prone sites 

of Chamba and Bhuntar to check the applicability of the significant factors on other similar 

terrains. The results of LSM from test sites concluded that the identified significant factors and 

their hierarchy could be applied to other similar regions of the Himalayas. High accuracies were 

achieved in the predicted landslide susceptibility maps using the identified factors in the AHP 

framework. The outcome of this research can help the individual make decisions in the selection 

of factors and in defining the subjective weights. Conclusively, the present study results may be 

beneficial for developing infrastructural facilities in the future and mitigation strategies planning 

for the Tehri region or any other regions with similar terrain conditions. Also, the success of the 

identified significant factors in predicting the landslide susceptibility of the Chamba test site 

and Bhuntar test site permits them to be put into practice in the other parts of the Himalayas. 

Thus, the outcome of this research can help the individual make decisions in the selection of 

factors and in defining the subjective weights. 
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Over the last few decades, several LSM models have been developed. As all these 

methods used for deriving weights of the causative factors have some pros and cons, no one 

method is standardized globally. In this study, we have adopted four such models for LSM. The 

accuracy achieved using the ANN model was 0.93 AUC value, the highest accuracy achieved 

till date for the Tehri region. The FR is another data-driven model utilised to confirm the derived 

significant factors. The AHP technique is conventionally based on a rating system provided by 

expert opinion. Due to its subjective nature, it gives freedom to alter unexpected data-driven 

outcomes. We propose the AHP model and the combination of significant factors as the initial 

choice for conducting research in similar terrain when there is data scarcity. However, to some 

extent, opinions may change for every individual expert and thus may be subjected to reasoning 

limitations with uncertainty and subjectivity. Combining the FR and AHP methods reduces 

these deficiencies of the solo methods, and the hybrid model has the better predictive capability.  

The dynamic factors can increase or decrease landslide susceptibility in hilly regions. The 

spatiotemporal changes in LSM, LULC and climate in the past can help in predicting future 

changes. Dynamic factors such as LULC and climate variables can be used for future predictions 

by examining the trends in change detection. Identification of LULC transitions is a practical 

approach for addressing the problems regarding unregulated urbanization and environmental 

degradation. In this study, future LULC projections were obtained using the ANN-CA model. 

The results of LULC projection reveal high increases in the built-up area and agriculture land. 

Meanwhile, sparse and dense forest areas were projected to decrease, signifying human 

interference in LULC changes from forest to built-up and agriculture. The results also conclude 

that landslide susceptible area increases as the built-up area increases in the mountainous area. Fatalities 

due to landslide hazards are related to human interference in natural processes leading to 

unsustainable environments. Hence, developing land management regulations in the Tehri 

region is required. 

ESMs help improves our fundamental understanding of the climate system. Its multi-

scale changeability, universal and regional climatic phenomena, and projections of future 

climate change can help prepare scenario-oriented policies. Climate change is expected to 

impact the future natural and social systems profoundly. Its influence can be seen in frequent 

extreme meteorological events such as concentrated precipitation and heat waves. In this study, 

we have used future CMIP6 projections from IITM ESM under four SSP scenarios and carried 

out future predictions of LSM. The results conclude that as the forcing scenarios change from 

SSP 1-2.6 to SSP 5-8.5, the surface temperature, precipitation intensity, and the class with very 

high landslide susceptibility increases. This concludes the importance of considering different 

socioeconomic pathway-based challenges in developing policies for mitigation and adaptation. 
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Future Prediction of LSM can help in the proper management and sustainable distribution 

of environmental resources. Policymakers, planners, and managers of the Tehri region must 

therefore consider potential landslide susceptible areas to prevent damages due to landslide 

hazards. These findings would help decision-makers better understand the interactions between 

human and natural activities and formulate landslide mitigation and prevention policies in the 

Tehri region, India. In addition, an attempt should be made to minimize urban warming and 

improve living environments, public health, and community well-being. 

8.3 Scope of future work 

An outline for future work is recommended as follows. 

1. Modification and enhancement of existing landslide Inventory using SAR data. 

2. Significant factors for the entire Himalayas can be derived and clustered into different 

groups.  

3. For better prediction accuracy, use a more complex neural network variant, such as 

Recurrent Neural Network (RNN) or Convolutional Neural Network (CNN). 

4. Along with spatial prediction, temporal and magnitude prediction can be carried out. 

5. Determining the role of urbanization and climate change in triggering the landslide hazard. 

6. Determination of LULC class change having more impact on landslide susceptibility. 

7. Impact of change in rainfall pattern on landslide frequency. 

8. Assessment of landslide hazard and risk for reducing the impact of landslides.  
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Annexure 

 Landslide Database from 2005-2020 for Tehri Region. 

S. No. Period LONGITUDE LATITUDE 

1 2005-2010 78.57559 30.32531 

2 2005-2010 78.55843 30.32554 

3 2005-2010 78.55776 30.32712 

4 2005-2010 78.56717 30.32853 

5 2005-2010 78.65295 30.32947 

6 2005-2010 78.55419 30.33136 

7 2005-2010 78.54689 30.33366 

8 2005-2010 78.6421 30.33881 

9 2005-2010 78.53706 30.34066 

10 2005-2010 78.53724 30.34117 

11 2005-2010 78.52516 30.34174 

12 2005-2010 78.64096 30.34321 

13 2005-2010 78.52464 30.34365 

14 2005-2010 78.639 30.34377 

15 2005-2010 78.62998 30.34454 

16 2005-2010 78.63103 30.34536 

17 2005-2010 78.63131 30.34764 

18 2005-2010 78.51498 30.34851 

19 2005-2010 78.51488 30.35061 

20 2005-2010 78.51349 30.35275 

21 2005-2010 78.51458 30.35564 

22 2005-2010 78.51428 30.35644 

23 2005-2010 78.50732 30.35872 

24 2005-2010 78.506 30.35944 

25 2005-2010 78.55457 30.36237 

26 2005-2010 78.5494 30.363 

27 2005-2010 78.55979 30.36368 

28 2005-2010 78.54176 30.36447 

29 2005-2010 78.59154 30.36585 

30 2005-2010 78.56447 30.36769 

31 2005-2010 78.57443 30.3687 

32 2005-2010 78.58736 30.36967 

33 2005-2010 78.50337 30.36969 

34 2005-2010 78.56237 30.36997 

35 2005-2010 78.55814 30.37032 

36 2005-2010 78.50278 30.3705 

37 2005-2010 78.59101 30.37268 

38 2005-2010 78.50611 30.37538 

39 2005-2010 78.52311 30.37608 
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40 2005-2010 78.58862 30.37617 

41 2005-2010 78.50634 30.37669 

42 2005-2010 78.51592 30.37679 

43 2005-2010 78.51704 30.37751 

44 2005-2010 78.59193 30.3783 

45 2005-2010 78.5041 30.37839 

46 2005-2010 78.54294 30.38392 

47 2005-2010 78.55158 30.38533 

48 2005-2010 78.57549 30.38628 

49 2005-2010 78.57159 30.38676 

50 2005-2010 78.57817 30.38748 

51 2005-2010 78.51676 30.39087 

52 2005-2010 78.58418 30.3911 

53 2005-2010 78.56048 30.39149 

54 2005-2010 78.52224 30.39197 

55 2005-2010 78.52452 30.39264 

56 2005-2010 78.58448 30.39371 

57 2005-2010 78.54607 30.39412 

58 2005-2010 78.59525 30.39415 

59 2005-2010 78.54561 30.39478 

60 2005-2010 78.60344 30.39647 

61 2005-2010 78.54491 30.3967 

62 2005-2010 78.52671 30.398 

63 2005-2010 78.51573 30.39881 

64 2005-2010 78.5888 30.39987 

65 2005-2010 78.58311 30.40044 

66 2005-2010 78.52531 30.40058 

67 2005-2010 78.51074 30.40113 

68 2005-2010 78.60757 30.40186 

69 2005-2010 78.6064 30.40209 

70 2005-2010 78.51751 30.40235 

71 2005-2010 78.51499 30.40361 

72 2005-2010 78.5117 30.40364 

73 2005-2010 78.51453 30.40431 

74 2005-2010 78.51309 30.40487 

75 2005-2010 78.51185 30.40591 

76 2005-2010 78.51377 30.40926 

77 2005-2010 78.51281 30.40978 

78 2005-2010 78.51433 30.4099 

79 2005-2010 78.51817 30.41881 

80 2005-2010 78.61755 30.42045 

81 2005-2010 78.62226 30.42091 

82 2005-2010 78.63547 30.42171 

83 2005-2010 78.63512 30.42177 
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84 2005-2010 78.59447 30.42208 

85 2005-2010 78.58894 30.42364 

86 2005-2010 78.51564 30.42508 

87 2005-2010 78.58784 30.42541 

88 2005-2010 78.65211 30.42782 

89 2005-2010 78.65315 30.42858 

90 2005-2010 78.6465 30.42875 

91 2005-2010 78.58668 30.42876 

92 2005-2010 78.64604 30.42973 

93 2005-2010 78.65155 30.43052 

94 2005-2010 78.64419 30.43098 

95 2005-2010 78.64107 30.4341 

96 2005-2010 78.64217 30.43565 

97 2005-2010 78.58194 30.43655 

98 2005-2010 78.63435 30.43761 

99 2005-2010 78.58015 30.44439 

100 2005-2010 78.57815 30.44845 

101 2005-2010 78.63168 30.45079 

102 2005-2010 78.63281 30.4556 

103 2005-2010 78.5735 30.45582 

104 2005-2010 78.5699 30.45979 

105 2005-2010 78.56638 30.46352 

106 2005-2010 78.62627 30.46788 

107 2005-2010 78.6173 30.49313 

108 2005-2010 78.61287 30.49755 

109 2005-2010 78.62522 30.50003 

110 2005-2010 78.44083 30.50028 

111 2005-2010 78.62744 30.50103 

112 2005-2010 78.43972 30.50111 

113 2005-2010 78.43861 30.50194 

114 2005-2010 78.62672 30.50194 

115 2005-2010 78.65089 30.50594 

116 2005-2010 78.34861 30.50833 

117 2005-2010 78.62942 30.50892 

118 2005-2010 78.44 30.50944 

119 2005-2010 78.63847 30.50967 

120 2005-2010 78.64367 30.51025 

121 2005-2010 78.64416 30.51063 

122 2005-2010 78.64258 30.51275 

123 2005-2010 78.64583 30.51425 

124 2005-2010 78.64456 30.51503 

125 2005-2010 78.64614 30.51508 

126 2005-2010 78.52314 30.51528 

127 2005-2010 78.646 30.51536 



 

144 

 

128 2005-2010 78.64447 30.51567 

129 2005-2010 78.60403 30.51728 

130 2005-2010 78.58933 30.51894 

131 2005-2010 78.34911 30.51922 

132 2005-2010 78.58888 30.51943 

133 2005-2010 78.59272 30.51967 

134 2005-2010 78.53856 30.51989 

135 2005-2010 78.35132 30.52081 

136 2005-2010 78.51544 30.52169 

137 2005-2010 78.60442 30.52233 

138 2005-2010 78.28527 30.5226 

139 2005-2010 78.50803 30.52267 

140 2005-2010 78.60464 30.52558 

141 2005-2010 78.49667 30.52667 

142 2005-2010 78.42778 30.52722 

143 2005-2010 78.42833 30.52806 

144 2005-2010 78.64039 30.52925 

145 2005-2010 78.60044 30.52931 

146 2005-2010 78.64706 30.53094 

147 2005-2010 78.64989 30.53219 

148 2005-2010 78.35901 30.53392 

149 2005-2010 78.34167 30.53444 

150 2005-2010 78.48972 30.54167 

151 2005-2010 78.64928 30.54575 

152 2005-2010 78.50067 30.546 

153 2005-2010 78.59417 30.54611 

154 2005-2010 78.32025 30.55268 

155 2005-2010 78.30833 30.55361 

156 2005-2010 78.50094 30.55419 

157 2005-2010 78.64119 30.56128 

158 2005-2010 78.2955 30.56591 

159 2005-2010 78.325 30.5658 

160 2005-2010 78.50078 30.56886 

161 2005-2010 78.63811 30.57722 

162 2005-2010 78.64639 30.57764 

163 2005-2010 78.63383 30.57989 

164 2005-2010 78.62883 30.58097 

165 2005-2010 78.3263 30.5822 

166 2005-2010 78.65003 30.5825 

167 2005-2010 78.33528 30.58306 

168 2005-2010 78.62558 30.58425 

169 2005-2010 78.50517 30.58436 

170 2005-2010 78.6445 30.58553 

171 2005-2010 78.64742 30.58694 
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172 2005-2010 78.62361 30.58717 

173 2005-2010 78.64725 30.58853 

174 2005-2010 78.64542 30.58869 

175 2005-2010 78.62089 30.58964 

176 2005-2010 78.62028 30.59047 

177 2005-2010 78.61947 30.59056 

178 2005-2010 78.62097 30.59056 

179 2005-2010 78.64678 30.59061 

180 2005-2010 78.64683 30.59167 

181 2005-2010 78.61706 30.59186 

182 2005-2010 78.64689 30.59258 

183 2005-2010 78.61353 30.59383 

184 2005-2010 78.61417 30.59408 

185 2005-2010 78.61383 30.59444 

186 2005-2010 78.61458 30.59494 

187 2005-2010 78.61319 30.59581 

188 2005-2010 78.61417 30.59864 

189 2005-2010 78.61178 30.59925 

190 2005-2010 78.61708 30.59992 

191 2005-2010 78.61131 30.60011 

192 2005-2010 78.61683 30.60022 

193 2005-2010 78.61094 30.60028 

194 2005-2010 78.63939 30.60145 

195 2005-2010 78.64139 30.60186 

196 2005-2010 78.51528 30.60233 

197 2005-2010 78.63663 30.603 

198 2005-2010 78.61019 30.60536 

199 2005-2010 78.61094 30.60553 

200 2005-2010 78.3144 30.6061 

201 2005-2010 78.32284 30.60609 

202 2005-2010 78.63928 30.60642 

203 2005-2010 78.3202 30.6072 

204 2005-2010 78.59494 30.60769 

205 2005-2010 78.51328 30.60825 

206 2005-2010 78.31243 30.60863 

207 2005-2010 78.60217 30.60881 

208 2005-2010 78.59403 30.60914 

209 2005-2010 78.59992 30.60933 

210 2005-2010 78.60219 30.61125 

211 2005-2010 78.315 30.6116 

212 2005-2010 78.31667 30.61222 

213 2005-2010 78.63689 30.61386 

214 2005-2010 78.3169 30.6144 

215 2005-2010 78.64239 30.61483 
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216 2005-2010 78.64206 30.61575 

217 2005-2010 78.5125 30.61583 

218 2005-2010 78.58594 30.61692 

219 2010-2015 78.2437 30.5803 

220 2010-2015 78.2451 30.5786 

221 2010-2015 78.2446 30.5799 

222 2010-2015 78.2461 30.5804 

223 2010-2015 78.2497 30.4909 

224 2010-2015 78.2428 30.5791 

225 2010-2015 78.3242 30.5564 

226 2010-2015 78.4039 30.5004 

227 2010-2015 78.3228 30.5552 

228 2010-2015 78.3911 30.5013 

229 2010-2015 78.4987 30.5759 

230 2010-2015 78.2861 30.5191 

231 2010-2015 78.3165 30.5527 

232 2010-2015 78.2878 30.6013 

233 2010-2015 78.3513 30.5209 

234 2010-2015 78.4067 30.4844 

235 2010-2015 78.3678 30.4841 

236 2010-2015 78.257 30.4366 

237 2010-2015 78.378 30.4877 

238 2010-2015 78.3895 30.4991 

239 2010-2015 78.299 30.3986 

240 2010-2015 78.4886 30.4758 

241 2010-2015 78.2546 30.4951 

242 2010-2015 78.4076 30.4891 

243 2010-2015 78.4958 30.4835 

244 2010-2015 78.4813 30.4941 

245 2010-2015 78.2603 30.5016 

246 2010-2015 78.2604 30.5011 

247 2010-2015 78.2852 30.5227 

248 2010-2015 78.3257 30.6121 

249 2010-2015 78.3147 30.6118 

250 2010-2015 78.3421 30.5098 

251 2010-2015 78.4955 30.5547 

252 2010-2015 78.4944 30.5557 

253 2010-2015 78.2847 30.5234 

254 2010-2015 78.287 30.5194 

255 2010-2015 78.2552 30.5772 

256 2010-2015 78.3063 30.5993 

257 2010-2015 78.2971 30.5671 

258 2010-2015 78.3062 30.5617 

259 2010-2015 78.3512 30.5743 
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260 2010-2015 78.3527 30.5607 

261 2010-2015 78.4369 30.5009 

262 2010-2015 78.2513 30.5 

263 2010-2015 78.2511 30.5016 

264 2010-2015 78.3234 30.5655 

265 2010-2015 78.3343 30.5833 

266 2010-2015 78.2833 30.6066 

267 2010-2015 78.3357 30.5155 

268 2010-2015 78.3348 30.513 

269 2010-2015 78.3505 30.5428 

270 2010-2015 78.3485 30.5427 

271 2010-2015 78.4942 30.5218 

272 2010-2015 78.4967 30.5309 

273 2010-2015 78.4953 30.5321 

274 2010-2015 78.3037 30.6082 

275 2010-2015 78.2727 30.5532 

276 2010-2015 78.3906 30.4979 

277 2010-2015 78.4888 30.475 

278 2010-2015 78.3569 30.5352 

279 2010-2015 78.4086 30.4837 

280 2010-2015 78.3414 30.4805 

281 2010-2015 78.3679 30.4845 

282 2010-2015 78.3784 30.4876 

283 2010-2015 78.379 30.4871 

284 2010-2015 78.3794 30.4875 

285 2010-2015 78.4613 30.4813 

286 2010-2015 78.2721 30.4482 

287 2010-2015 78.4444 30.4196 

288 2010-2015 78.3233 30.4975 

289 2010-2015 78.3238 30.4955 

290 2010-2015 78.4843 30.4015 

291 2010-2015 78.4236 30.459 

292 2010-2015 78.4834 30.3406 

293 2010-2015 78.4933 30.4015 

294 2010-2015 78.4852 30.3608 

295 2010-2015 78.3864 30.4478 

296 2010-2015 78.3193 30.4593 

297 2010-2015 78.4073 30.4214 

298 2010-2015 78.4841 30.3395 

299 2010-2015 78.3806 30.4868 

300 2010-2015 78.3523 30.4579 

301 2010-2015 78.3685 30.4861 

302 2010-2015 78.4716 30.4394 

303 2010-2015 78.4822 30.4383 
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304 2010-2015 78.4947 30.4027 

305 2010-2015 78.4425 30.4476 

306 2010-2015 78.3354 30.4722 

307 2010-2015 78.382 30.4405 

308 2010-2015 78.3813 30.4404 

309 2010-2015 78.427 30.438 

310 2010-2015 78.2898 30.4831 

311 2010-2015 78.4818 30.4393 

312 2010-2015 78.4872 30.3539 

313 2010-2015 78.4879 30.3696 

314 2010-2015 78.4272 30.4237 

315 2010-2015 78.4838 30.3681 

316 2010-2015 78.3413 30.4793 

317 2010-2015 78.3922 30.4568 

318 2010-2015 78.3926 30.4587 

319 2010-2015 78.3519 30.4821 

320 2010-2015 78.405 30.4605 

321 2010-2015 78.4623 30.4285 

322 2010-2015 78.4601 30.4814 

323 2010-2015 78.4327 30.4818 

324 2010-2015 78.4161 30.4807 

325 2010-2015 78.4793 30.4932 

326 2010-2015 78.4844 30.3783 

327 2010-2015 78.4838 30.3762 

328 2010-2015 78.4461 30.4196 

329 2010-2015 78.48 30.3645 

330 2010-2015 78.4312 30.4826 

331 2010-2015 78.4092 30.4833 

332 2010-2015 78.484 30.367 

333 2010-2015 78.4905 30.3467 

334 2010-2015 78.4057 30.4591 

335 2010-2015 78.4331 30.4821 

336 2010-2015 78.4999 30.4547 

337 2010-2015 78.6279 30.3959 

338 2010-2015 78.5306 30.4253 

339 2010-2015 78.5351 30.41 

340 2010-2015 78.5093 30.4002 

341 2010-2015 78.5782 30.3875 

342 2010-2015 78.5942 30.4019 

343 2010-2015 78.4833 30.4018 

344 2010-2015 78.4898 30.4 

345 2010-2015 78.4699 30.4373 

346 2010-2015 78.4805 30.4922 

347 2010-2015 78.4644 30.4496 
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348 2010-2015 78.5027 30.3942 

349 2010-2015 78.5521 30.3796 

350 2010-2015 78.5068 30.3943 

351 2010-2015 78.507 30.3948 

352 2010-2015 78.501 30.3893 

353 2010-2015 78.6287 30.3969 

354 2010-2015 78.6337 30.3924 

355 2010-2015 78.3819 30.4864 

356 2010-2015 78.4228 30.4286 

357 2010-2015 78.563 30.3756 

358 2010-2015 78.5751 30.3863 

359 2010-2015 78.4231 30.4621 

360 2010-2015 78.512 30.4047 

361 2010-2015 78.5059 30.3931 

362 2010-2015 78.5049 30.3594 

363 2010-2015 78.5713 30.3999 

364 2010-2015 78.5755 30.3863 

365 2010-2015 78.5056 30.3917 

366 2010-2015 78.5111 30.3852 

367 2010-2015 78.5647 30.4443 

368 2010-2015 78.5804 30.3912 

369 2010-2015 78.504 30.4076 

370 2010-2015 78.5734 30.4375 

371 2010-2015 78.599 30.3869 

372 2010-2015 78.6222 30.4206 

373 2010-2015 78.6226 30.4781 

374 2010-2015 78.6176 30.4807 

375 2010-2015 78.6367 30.4337 

376 2010-2015 78.6292 30.4665 

377 2010-2015 78.5051 30.3563 

378 2010-2015 78.589 30.3757 

379 2010-2015 78.5893 30.3754 

380 2010-2015 78.6229 30.4764 

381 2010-2015 78.6261 30.4633 

382 2010-2015 78.5005 30.4213 

383 2010-2015 78.6013 30.4081 

384 2010-2015 78.6097 30.4115 

385 2010-2015 78.5156 30.4251 

386 2010-2015 78.5028 30.3705 

387 2010-2015 78.5175 30.4023 

388 2010-2015 78.5847 30.3813 

389 2010-2015 78.6036 30.4055 

390 2010-2015 78.5845 30.3937 

391 2010-2015 78.5888 30.3999 
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392 2010-2015 78.5801 30.4444 

393 2010-2015 78.5874 30.3697 

394 2010-2015 78.506 30.3595 

395 2010-2015 78.5546 30.3624 

396 2010-2015 78.5945 30.4221 

397 2010-2015 78.5267 30.398 

398 2010-2015 78.5429 30.3839 

399 2010-2015 78.5903 30.4022 

400 2010-2015 78.5624 30.37 

401 2010-2015 78.5171 30.3775 

402 2010-2015 78.5246 30.3437 

403 2010-2015 78.5714 30.328 

404 2010-2015 78.5716 30.3868 

405 2010-2015 78.5605 30.3915 

406 2010-2015 78.6461 30.4297 

407 2010-2015 78.5146 30.3556 

408 2010-2015 78.5149 30.3506 

409 2010-2015 78.5231 30.3761 

410 2010-2015 78.6441 30.431 

411 2010-2015 78.5417 30.3645 

412 2010-2015 78.5645 30.3677 

413 2010-2015 78.5585 30.3256 

414 2010-2015 78.6422 30.3388 

415 2010-2015 78.6313 30.3476 

416 2010-2015 78.639 30.3438 

417 2010-2015 78.6223 30.4209 

418 2010-2015 78.6317 30.4507 

419 2010-2015 78.5831 30.4005 

420 2010-2015 78.5117 30.4036 

421 2010-2015 78.5621 30.3791 

422 2010-2015 78.613 30.418 

423 2010-2015 78.5566 30.392 

424 2010-2015 78.6343 30.4376 

425 2010-2015 78.5891 30.4236 

426 2010-2015 78.5881 30.4251 

427 2010-2015 78.5869 30.4286 

428 2010-2015 78.5699 30.4598 

429 2010-2015 78.5735 30.4558 

430 2010-2015 78.5543 30.3314 

431 2010-2015 78.6521 30.4278 

432 2010-2015 78.6532 30.4286 

433 2010-2015 78.6173 30.4931 

434 2010-2015 78.6369 30.6027 

435 2010-2015 78.5234 30.5143 
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436 2010-2015 78.6181 30.5887 

437 2010-2015 78.643 30.5744 

438 2010-2015 78.6257 30.5843 

439 2010-2015 78.6236 30.5872 

440 2010-2015 78.6162 30.5898 

441 2010-2015 78.5223 30.5162 

442 2010-2015 78.6203 30.5905 

443 2010-2015 78.6135 30.5938 

444 2010-2015 78.5116 30.6189 

445 2010-2015 78.6427 30.6148 

446 2010-2015 78.6043 30.5224 

447 2010-2015 78.6454 30.5942 

448 2010-2015 78.6329 30.5763 

449 2010-2015 78.517 30.5788 

450 2010-2015 78.6431 30.5121 

451 2010-2015 78.6449 30.5151 

452 2010-2015 78.6445 30.5156 

453 2010-2015 78.6228 30.539 

454 2010-2015 78.646 30.5154 

455 2010-2015 78.5756 30.5811 

456 2010-2015 78.5794 30.5837 

457 2010-2015 78.6024 30.6089 

458 2010-2015 78.5999 30.6095 

459 2010-2015 78.6142 30.5987 

460 2010-2015 78.6109 30.6003 

461 2010-2015 78.6273 30.5351 

462 2015-2020 78.6113 30.6002 

463 2015-2020 78.2436 30.5802 

464 2015-2020 78.2596 30.5841 

465 2015-2020 78.2482 30.581 

466 2015-2020 78.2492 30.5812 

467 2015-2020 78.2376 30.5793 

468 2015-2020 78.2358 30.4662 

469 2015-2020 78.2365 30.4654 

470 2015-2020 78.2453 30.5795 

471 2015-2020 78.2459 30.5801 

472 2015-2020 78.2406 30.4932 

473 2015-2020 78.2354 30.4641 

474 2015-2020 78.248 30.497 

475 2015-2020 78.2303 30.4644 

476 2015-2020 78.3163 30.5268 

477 2015-2020 78.3162 30.5231 

478 2015-2020 78.4004 30.5002 

479 2015-2020 78.4025 30.5003 
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480 2015-2020 78.3908 30.501 

481 2015-2020 78.3908 30.5013 

482 2015-2020 78.323 30.5547 

483 2015-2020 78.3911 30.5016 

484 2015-2020 78.3907 30.5121 

485 2015-2020 78.4983 30.5766 

486 2015-2020 78.4987 30.5764 

487 2015-2020 78.2861 30.5191 

488 2015-2020 78.2984 30.5249 

489 2015-2020 78.2992 30.5246 

490 2015-2020 78.3203 30.5528 

491 2015-2020 78.3165 30.5527 

492 2015-2020 78.3251 30.5575 

493 2015-2020 78.3224 30.5545 

494 2015-2020 78.2877 30.6009 

495 2015-2020 78.3429 30.5131 

496 2015-2020 78.349 30.5192 

497 2015-2020 78.3588 30.5343 

498 2015-2020 78.3544 30.5361 

499 2015-2020 78.3547 30.5356 

500 2015-2020 78.3398 30.5071 

501 2015-2020 78.4026 30.4775 

502 2015-2020 78.37 30.486 

503 2015-2020 78.256 30.3259 

504 2015-2020 78.3926 30.4897 

505 2015-2020 78.3932 30.4895 

506 2015-2020 78.3898 30.4985 

507 2015-2020 78.2688 30.3382 

508 2015-2020 78.2682 30.3382 

509 2015-2020 78.3443 30.4736 

510 2015-2020 78.3367 30.4732 

511 2015-2020 78.3565 30.346 

512 2015-2020 78.2503 30.4995 

513 2015-2020 78.4296 30.4925 

514 2015-2020 78.4045 30.4786 

515 2015-2020 78.4955 30.4835 

516 2015-2020 78.4838 30.4997 

517 2015-2020 78.3251 30.5567 

518 2015-2020 78.3031 30.6082 

519 2015-2020 78.2597 30.5012 

520 2015-2020 78.2618 30.5017 

521 2015-2020 78.262 30.5014 

522 2015-2020 78.2636 30.5019 

523 2015-2020 78.2822 30.5256 
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524 2015-2020 78.2857 30.5236 

525 2015-2020 78.3127 30.6087 

526 2015-2020 78.3304 30.5084 

527 2015-2020 78.4946 30.5547 

528 2015-2020 78.495 30.5557 

529 2015-2020 78.2721 30.551 

530 2015-2020 78.2955 30.5659 

531 2015-2020 78.3535 30.5764 

532 2015-2020 78.3539 30.5761 

533 2015-2020 78.3054 30.5613 

534 2015-2020 78.3515 30.5747 

535 2015-2020 78.3537 30.561 

536 2015-2020 78.4375 30.5017 

537 2015-2020 78.2896 30.6008 

538 2015-2020 78.2857 30.6033 

539 2015-2020 78.2506 30.5014 

540 2015-2020 78.2509 30.5017 

541 2015-2020 78.253 30.5036 

542 2015-2020 78.3237 30.5379 

543 2015-2020 78.3384 30.5451 

544 2015-2020 78.3347 30.5548 

545 2015-2020 78.3244 30.6017 

546 2015-2020 78.3232 30.6053 

547 2015-2020 78.2837 30.6068 

548 2015-2020 78.3391 30.5374 

549 2015-2020 78.3358 30.5152 

550 2015-2020 78.3363 30.5139 

551 2015-2020 78.3342 30.5139 

552 2015-2020 78.4919 30.516 

553 2015-2020 78.4981 30.5231 

554 2015-2020 78.2596 30.5016 

555 2015-2020 78.4959 30.5321 

556 2015-2020 78.4954 30.5327 

557 2015-2020 78.273 30.5528 

558 2015-2020 78.3826 30.4864 

559 2015-2020 78.4148 30.4825 

560 2015-2020 78.4309 30.4834 

561 2015-2020 78.4298 30.4844 

562 2015-2020 78.3704 30.3735 

563 2015-2020 78.3833 30.5161 

564 2015-2020 78.3333 30.566 

565 2015-2020 78.3448 30.4662 

566 2015-2020 78.3696 30.486 

567 2015-2020 78.3786 30.4874 



 

154 

 

568 2015-2020 78.4569 30.4872 

569 2015-2020 78.4601 30.4819 

570 2015-2020 78.4478 30.4185 

571 2015-2020 78.3848 30.487 

572 2015-2020 78.4854 30.339 

573 2015-2020 78.4899 30.3997 

574 2015-2020 78.4887 30.4016 

575 2015-2020 78.4817 30.445 

576 2015-2020 78.4305 30.461 

577 2015-2020 78.4299 30.4654 

578 2015-2020 78.4069 30.4226 

579 2015-2020 78.4931 30.3282 

580 2015-2020 78.4897 30.3378 

581 2015-2020 78.3193 30.4598 

582 2015-2020 78.3987 30.4359 

583 2015-2020 78.324 30.4967 

584 2015-2020 78.2551 30.338 

585 2015-2020 78.388 30.4905 

586 2015-2020 78.4823 30.3422 

587 2015-2020 78.3591 30.4953 

588 2015-2020 78.3788 30.4851 

589 2015-2020 78.3525 30.4585 

590 2015-2020 78.3511 30.455 

591 2015-2020 78.2544 30.4961 

592 2015-2020 78.2674 30.4905 

593 2015-2020 78.2546 30.337 

594 2015-2020 78.3542 30.3925 

595 2015-2020 78.4814 30.3441 

596 2015-2020 78.482 30.3495 

597 2015-2020 78.4843 30.3533 

598 2015-2020 78.4879 30.3545 

599 2015-2020 78.4904 30.4504 

600 2015-2020 78.4891 30.4508 

601 2015-2020 78.429 30.4606 

602 2015-2020 78.4286 30.4579 

603 2015-2020 78.443 30.4469 

604 2015-2020 78.3182 30.4745 

605 2015-2020 78.3361 30.4726 

606 2015-2020 78.3377 30.4721 

607 2015-2020 78.3378 30.4728 

608 2015-2020 78.3451 30.475 

609 2015-2020 78.3969 30.459 

610 2015-2020 78.3975 30.4592 

611 2015-2020 78.442 30.4481 
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612 2015-2020 78.4421 30.4484 

613 2015-2020 78.4419 30.4477 

614 2015-2020 78.4399 30.4412 

615 2015-2020 78.342 30.4577 

616 2015-2020 78.3383 30.4577 

617 2015-2020 78.3247 30.4685 

618 2015-2020 78.4956 30.4283 

619 2015-2020 78.482 30.4404 

620 2015-2020 78.4405 30.4432 

621 2015-2020 78.4952 30.3567 

622 2015-2020 78.4276 30.4241 

623 2015-2020 78.3463 30.4745 

624 2015-2020 78.3479 30.4753 

625 2015-2020 78.3397 30.4776 

626 2015-2020 78.4855 30.3309 

627 2015-2020 78.3989 30.4601 

628 2015-2020 78.3993 30.4601 

629 2015-2020 78.405 30.4605 

630 2015-2020 78.3994 30.4605 

631 2015-2020 78.4252 30.4296 

632 2015-2020 78.416 30.471 

633 2015-2020 78.4174 30.4828 

634 2015-2020 78.4827 30.4902 

635 2015-2020 78.4798 30.3698 

636 2015-2020 78.4456 30.4198 

637 2015-2020 78.4818 30.4005 

638 2015-2020 78.4746 30.3686 

639 2015-2020 78.4066 30.487 

640 2015-2020 78.4064 30.4924 

641 2015-2020 78.4781 30.4886 

642 2015-2020 78.4717 30.4865 

643 2015-2020 78.4594 30.4854 

644 2015-2020 78.484 30.3776 

645 2015-2020 78.4843 30.3739 

646 2015-2020 78.4744 30.368 

647 2015-2020 78.4763 30.3651 

648 2015-2020 78.4107 30.4727 

649 2015-2020 78.4337 30.4824 

650 2015-2020 78.5725 30.4381 

651 2015-2020 78.5279 30.4336 

652 2015-2020 78.5354 30.41 

653 2015-2020 78.5042 30.3987 

654 2015-2020 78.5081 30.4007 

655 2015-2020 78.5733 30.3857 
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656 2015-2020 78.5779 30.3877 

657 2015-2020 78.579 30.3859 

658 2015-2020 78.5953 30.4017 

659 2015-2020 78.6139 30.4023 

660 2015-2020 78.5253 30.3624 

661 2015-2020 78.4879 30.4014 

662 2015-2020 78.4896 30.4007 

663 2015-2020 78.471 30.4378 

664 2015-2020 78.4711 30.4382 

665 2015-2020 78.4866 30.4445 

666 2015-2020 78.4648 30.4498 

667 2015-2020 78.4632 30.4465 

668 2015-2020 78.4634 30.4473 

669 2015-2020 78.5108 30.4011 

670 2015-2020 78.502 30.3897 

671 2015-2020 78.552 30.3804 

672 2015-2020 78.5093 30.3993 

673 2015-2020 78.5098 30.3996 

674 2015-2020 78.503 30.3928 

675 2015-2020 78.4539 30.3763 

676 2015-2020 78.4539 30.3788 

677 2015-2020 78.5061 30.3897 

678 2015-2020 78.6349 30.3931 

679 2015-2020 78.4938 30.3919 

680 2015-2020 78.4938 30.3913 

681 2015-2020 78.4466 30.4193 

682 2015-2020 78.385 30.4522 

683 2015-2020 78.3838 30.4868 

684 2015-2020 78.4291 30.4242 

685 2015-2020 78.4246 30.4291 

686 2015-2020 78.5026 30.3906 

687 2015-2020 78.5552 30.3787 

688 2015-2020 78.5555 30.3783 

689 2015-2020 78.5576 30.3758 

690 2015-2020 78.5218 30.3872 

691 2015-2020 78.5252 30.3966 

692 2015-2020 78.4254 30.4371 

693 2015-2020 78.5132 30.497 

694 2015-2020 78.5126 30.3936 

695 2015-2020 78.5151 30.391 

696 2015-2020 78.5053 30.3596 

697 2015-2020 78.5642 30.3754 

698 2015-2020 78.5648 30.3766 

699 2015-2020 78.5659 30.3767 



 

157 

 

700 2015-2020 78.518 30.3868 

701 2015-2020 78.5362 30.3794 

702 2015-2020 78.6476 30.4176 

703 2015-2020 78.545 30.3966 

704 2015-2020 78.5083 30.3901 

705 2015-2020 78.5253 30.4006 

706 2015-2020 78.5135 30.4968 

707 2015-2020 78.5636 30.3849 

708 2015-2020 78.5653 30.444 

709 2015-2020 78.5969 30.3874 

710 2015-2020 78.6291 30.4182 

711 2015-2020 78.6211 30.4815 

712 2015-2020 78.6355 30.4314 

713 2015-2020 78.6316 30.45 

714 2015-2020 78.5028 30.3369 

715 2015-2020 78.5071 30.359 

716 2015-2020 78.6227 30.4752 

717 2015-2020 78.6218 30.4772 

718 2015-2020 78.6173 30.4799 

719 2015-2020 78.6219 30.4522 

720 2015-2020 78.5006 30.421 

721 2015-2020 78.5883 30.3771 

722 2015-2020 78.6057 30.44 

723 2015-2020 78.5907 30.3793 

724 2015-2020 78.5923 30.3804 

725 2015-2020 78.5223 30.392 

726 2015-2020 78.5167 30.3909 

727 2015-2020 78.5131 30.4049 

728 2015-2020 78.5146 30.4043 

729 2015-2020 78.5138 30.4093 

730 2015-2020 78.5143 30.4099 

731 2015-2020 78.515 30.4036 

732 2015-2020 78.5245 30.3927 

733 2015-2020 78.5819 30.3806 

734 2015-2020 78.5855 30.3857 

735 2015-2020 78.5119 30.406 

736 2015-2020 78.5073 30.3587 

737 2015-2020 78.4921 30.3785 

738 2015-2020 78.5816 30.3868 

739 2015-2020 78.5782 30.4485 

740 2015-2020 78.5848 30.4009 

741 2015-2020 78.5494 30.363 

742 2015-2020 78.5819 30.4365 

743 2015-2020 78.5915 30.3659 



 

158 

 

744 2015-2020 78.5582 30.3704 

745 2015-2020 78.5063 30.3767 

746 2015-2020 78.591 30.3727 

747 2015-2020 78.5886 30.3761 

748 2015-2020 78.4935 30.3788 

749 2015-2020 78.5642 30.3852 

750 2015-2020 78.6422 30.4356 

751 2015-2020 78.5182 30.4188 

752 2015-2020 78.6176 30.4204 

753 2015-2020 78.5953 30.3941 

754 2015-2020 78.5061 30.3754 

755 2015-2020 78.5744 30.3687 

756 2015-2020 78.5598 30.3637 

757 2015-2020 78.5755 30.3253 

758 2015-2020 78.5672 30.3285 

759 2015-2020 78.5252 30.3417 

760 2015-2020 78.6411 30.4341 

761 2015-2020 78.5084 30.3587 

762 2015-2020 78.5842 30.3911 

763 2015-2020 78.5461 30.3941 

764 2015-2020 78.5456 30.3948 

765 2015-2020 78.5146 30.3556 

766 2015-2020 78.5135 30.3528 

767 2015-2020 78.5794 30.3861 

768 2015-2020 78.5798 30.3855 

769 2015-2020 78.6465 30.4288 

770 2015-2020 78.5469 30.3337 

771 2015-2020 78.5371 30.3407 

772 2015-2020 78.5373 30.3412 

773 2015-2020 78.592 30.3783 

774 2015-2020 78.6064 30.4021 

775 2015-2020 78.653 30.3295 

776 2015-2020 78.5159 30.3768 

777 2015-2020 78.5034 30.3697 

778 2015-2020 78.641 30.3432 

779 2015-2020 78.515 30.3485 

780 2015-2020 78.6316 30.3554 

781 2015-2020 78.63 30.3445 

782 2015-2020 78.6311 30.3453 

783 2015-2020 78.6351 30.4217 

784 2015-2020 78.6354 30.4217 

785 2015-2020 78.5157 30.3988 

786 2015-2020 78.6076 30.4019 

787 2015-2020 78.6262 30.4679 



 

159 

 

788 2015-2020 78.6048 30.4079 

789 2015-2020 78.6286 30.4184 

790 2015-2020 78.5521 30.3904 

791 2015-2020 78.5041 30.3784 

792 2015-2020 78.5664 30.4635 

793 2015-2020 78.5578 30.3271 

794 2015-2020 78.5503 30.334 

795 2015-2020 78.6532 30.4286 

796 2015-2020 78.6129 30.4975 

797 2015-2020 78.6328 30.4556 

798 2015-2020 78.6516 30.4305 

799 2015-2020 78.5232 30.5151 

800 2015-2020 78.6288 30.5811 

801 2015-2020 78.6211 30.5896 

802 2015-2020 78.6508 30.5059 

803 2015-2020 78.6209 30.5907 

804 2015-2020 78.649 30.5933 

805 2015-2020 78.6193 30.5907 

806 2015-2020 78.6125 30.5951 

807 2015-2020 78.6142 30.5941 

808 2015-2020 78.6139 30.5944 

809 2015-2020 78.5829 30.5973 

810 2015-2020 78.6333 30.5975 

811 2015-2020 78.5834 30.5987 

812 2015-2020 78.6399 30.5998 

813 2015-2020 78.6268 30.5354 

814 2015-2020 78.6102 30.6055 

815 2015-2020 78.578 30.5376 

816 2015-2020 78.5857 30.6171 

817 2015-2020 78.6424 30.6157 

818 2015-2020 78.6371 30.6142 

819 2015-2020 78.6454 30.5942 

820 2015-2020 78.5793 30.5721 

821 2015-2020 78.6329 30.5763 

822 2015-2020 78.6345 30.5781 

823 2015-2020 78.6046 30.5254 

824 2015-2020 78.6294 30.509 

825 2015-2020 78.6433 30.5101 

826 2015-2020 78.63 30.5436 

827 2015-2020 78.6474 30.5915 

828 2015-2020 78.6467 30.5904 

829 2015-2020 78.6474 30.5884 

830 2015-2020 78.5547 30.5078 

831 2015-2020 78.5025 30.5111 



 

160 

 

832 2015-2020 78.6462 30.515 

833 2015-2020 78.646 30.514 

834 2015-2020 78.518 30.5791 

835 2015-2020 78.5181 30.5798 

836 2015-2020 78.6406 30.5296 

837 2015-2020 78.5794 30.5837 

838 2015-2020 78.5521 30.5218 

839 2015-2020 78.5927 30.5197 

840 2015-2020 78.611 30.6058 

841 2015-2020 78.6023 30.6114 

842 2015-2020 78.5937 30.6091 

843 2015-2020 78.5952 30.6076 

844 2015-2020 78.6148 30.5948 

845 2015-2020 78.6166 30.6002 

846 2015-2020 78.6172 30.5998 

847 2015-2020 78.6118 30.5993 

848 2015-2020 78.6149 30.5364 

849 2015-2020 78.6267 30.5019 

850 2015-2020 78.6423 30.6018 

 


