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Abstract

The flow of viscoelastic fluids through a porous media such as polymer or wormlike mi-

cellar solutions is encountered in many pragmatic applications ranging from enhanced

oil recovery (EOR) process to soil remediation. This particular flow system deserves

special attention in the complex fluids research community due to the occurrence of

the viscoelastic instability phenomenon resulting from the interaction between the non-

linear elastic stresses and a high streamline curvature present in this flow system. The

present thesis aims to investigate the complex flow dynamics of these viscoelastic fluids

through various model porous systems, such as a straight microchannel with step expan-

sion and contraction or a microchannel with in-built obstacles, under both pressure and

electrokinetically driven flow conditions. Extensive finite volume method (FVM) based

computational fluid dynamics (CFD) simulations and limited microfluidic experiments

comprising soft lithography and micro-particle image velocimetry (µ-PIV) techniques

have been conducted to achieve the objectives of the present thesis. Additionally, the

present dissertation performs a detailed rheological study of viscoelastic fluids and uses

the data-driven reduced-order modeling technique to explain and understand the results

in more detail. The chapter-wise abstract of the present thesis is written below.

Chapter 4 discusses the rheological investigation of rhamnolipid, a well-known bac-

terial biosurfactant produced by the Pseudomonas aeruginosa bacteria. This chapter

presents a thorough and complete investigation of this biosurfactant’s shear and exten-

sional rheological behaviours. While steady shear and small amplitude oscillatory shear

(SAOS) measurements are conducted to investigate the shear rheological behaviour, the

dripping-onto-substrate (DoS) extensional rheometry technique is used to understand its

extensional rheological behaviour. A chemically derived surfactant (cetyltrimethyl am-

monium bromide (CTAB)) is also used in the analysis to show and discuss the qualitative

and quantitative differences in their rheological behaviours. Along with the detailed rhe-

ological study, some studies on the physicochemical properties, such as surface tension,

contact angle, particle size analysis, thermal stability, etc., are also conducted to com-

pare the two surfactants. Both surfactants show strong shear-thinning and extensional
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hardening behaviors in shear and extensional rheological flows, respectively. However,

the zero-shear rate viscosity and extensional viscosity are higher for rhamnolipid surfac-

tant solutions than for CTAB. The corresponding shear and extensional relaxation times

also follow the same trend. Furthermore, the surface tension is found to be less, and the

contact angle is found to be more for rhamnolipid biosurfactant than for CTAB. Rham-

nolipid shows more excellent thermal stability, particularly at high temperatures, than

CTAB. Therefore, the results and discussion presented in this chapter will help to choose

the present rhamnolipid biosurfactant for any particular application, particularly where

the knowledge of the rheological responses of a surfactant solution is essential.

The flow of wormlike micellar solutions past a microfluidic cylinder confined in a

channel is considered in chapter 5. Earlier experiments showed the existence of an elastic

instability for the flow of a wormlike micellar solution in this model porous system after

a critical value of the Weissenberg number in the creeping flow regime. This chapter

presents a detailed numerical investigation of this elastic instability in this model porous

system using the two-species VCM (Vasquez-Cook-McKinley) constitutive model for the

wormlike micellar solution. In line with the experimental trends, we also observe a similar

elastic instability in this flow system once the Weissenberg number exceeds a critical value.

We also find that the breakage and reformation dynamics of the wormlike micelles greatly

influence the elastic instability in this model geometry. In particular, the onset of such

an elastic instability is delayed or even maybe suppressed entirely as the micelles become

progressively easier to break. Furthermore, this elastic instability is associated with the

elastic wave phenomena, which have been recently observed experimentally for polymer

solutions. The present study reveals that the speed of such an elastic wave increases

non-linearly with the Weissenberg number similar to that seen in polymer solutions.

Chapter 6 presents an extensive numerical investigation of the flow characteristics of

wormlike micellar solutions past a single and two vertically aligned microcylinders placed

in a microchannel in the creeping flow regime. For the case of a single microcylinder, as the

blockage ratio (ratio of the cylinder diameter to that of the channel height) is gradually

varied, we find the existence of a flow bifurcation in the system and also a gradual

transition for a range of flow states, for instance, steady and symmetric or Newtonian

like, steady and asymmetric, unsteady periodic and asymmetric, unsteady quasi-periodic

and asymmetric, and finally, unsteady quasi-periodic and symmetric. For the case of two
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microcylinders, we observe the presence of three distinct flow states in the system, namely,

diverging (D), asymmetric-diverging (AD), and converging (C) states as the intercylinder

spacing between the two cylinders is varied. Recent experiments dealing with wormlike

micellar solutions also observe similar flow states. However, we show that either this

transition from one flow state to another in the case of a single microcylinder or the

occurrence of any flow state in the case of two microcylinders is strongly dependent upon

the values of the Weissenberg number and the non-linear VCM model parameter ξ, which

indicates how easy or hard it is to break a micelle. Based on the results and discussion

presented herein for the single and two microcylinders, we hope this study will facilitate

the understanding behind the formation of preferential paths or lanes during the flow of

viscoelastic fluids through a porous media, which was seen in many prior experiments in

the creeping flow regime.

Chapter 7 presents a detailed numerical investigation of the electrokinetic transport

of both Newtonian and viscoelastic fluids in a model porous system consisting of a long

micropore with step expansion and contraction. Over the whole range of conditions

encompassed in this study, a steady and symmetric flow field is observed for a Newtonian

fluid. However, for a viscoelastic fluid, we observe a transition in the flow field from

steady and symmetric to unsteady and asymmetric once the Weissenberg number (ratio

of the elastic to that of the viscous forces) exceeds a critical value. We show that this

transition is caused due to the onset of an electro-elastic instability in the system. The

critical value of this Weissenberg number (at which this transition occurs) depends on

various factors. In particular, this value increases with the polymer viscosity ratio and

expansion and contraction lengths of the micropore. At fixed values of the electric field

strength, polymer viscosity ratio, contraction, and expansion lengths of the micropore,

we observe the existence of different vortex dynamics within this model porous system

as the Weissenberg number gradually increases, such as the emergence of the entrant

and re-entrant lip vortices, oscillating lip vortices, multi vortices, etc. Therefore, the

electrokinetic flow dynamics of viscoelastic fluids in a porous system are much more

complex than that of simple Newtonian fluids. We hope this study for a model porous

system will facilitate a better understanding of the electrokinetic transport phenomena

of viscoelastic fluids in an actual porous media. Furthermore, we show how this model

system of a long micropore with step expansion and contraction could also be successfully
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utilized for other practical applications, such as mixing two viscoelastic fluids.

Chapter 8 investigates the electroosmotic flows of viscoelastic fluids through a mi-

crofluidic setup consisting of a straight microchannel with an in-built cylindrical obstacle

present in it with the help of both numerical simulations and experiments. It has been

found that the flow dynamics of viscoelastic fluids inside this microfluidic setup become

unsteady and fluctuating as the applied electric field strength is gradually increased, even

though the Reynolds number remains much lower than one. This is because of the origin

of the electro-elastic instability (EEI) phenomenon, resulting from the interaction between

the non-linear elastic stresses in viscoelastic fluids and streamline curvature present in

the flow system. This instability ultimately leads to a flow-switching phenomenon inside

the microfluidic setup, observed both in numerical simulations and experiments. The

results and discussion of this chapter could facilitate a better understanding of the elec-

trokinetic flows of complex fluids through a porous media, which is encountered in many

practical applications such as electro-chromatography, micro-pumping, chemical radia-

tion of contaminated soil, etc. Furthermore, this chapter shows that this flow-switching

phenomenon could successfully mix viscoelastic fluids in this simple, easy-to-fabricate

microfluidic setup. Additionally, the data-driven dynamic mode decomposition (DMD)

analysis has been employed in this study to understand better the dynamical behaviour

of various coherent flow structures that originated due to this flow-switching phenomenon

and their subsequent influence on the mixing phenomenon.
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Chapter 1
Introduction

Viscoelastic fluids are a sub-class of complex fluids ubiquitous in daily life and many

technological applications [1]. These fluids exhibit both viscous and elastic properties with

varying extents under deformation depending upon the microstructure of the fluids and

the flow condition in any particular application. This suggests that these fluids can deform

and flow like a viscous fluid and store or dissipate elastic energy like an elastic solid [2].

The most common examples of these fluids are polymer solutions, suspensions, emulsions,

melts, etc., routinely used in polymer and food processing applications. Furthermore,

many biofluids, such as blood, saliva, sputum, synovial, cerebrospinal, etc., also exhibit

a great extent of viscoelastic behaviour under deformation [3, 4]. Another example of

viscoelastic fluids is a surfactant solution with long, flexible micellar chains. Above a

critical surfactant concentration, the surfactant molecules are self-assembled and form

large aggregates called micelles. Further increasing the surfactant concentration in the

solution leads to the entanglement of these micellar chains, originating wormlike micelles

in the solution [5]. The Hitchhiker’s Guide to the Universe of complex fluids, presented

by Professor Gareth McKinley, is the classic illustration of the complex viscoelastic fluids

existing in nature and various technological applications, shown in Fig. 1.1.

The flow behaviour of these viscoelastic fluids through geometries of practical interest

with an inhomogeneous flow field is found to be complex and rich in physics compared to

that seen for simple Newtonian fluids under the same flow conditions. This is because a

non-linear relationship is present between the stress and the applied deformation in the

case of a viscoelastic fluid compared to that of a linear relationship present for Newtonian

fluids. In particular, this thesis deals with the flow of such viscoelastic fluids through a

porous geometry. This particular flow plays an essential role in many industrial and

engineering operations, such as petroleum exploration (particularly in the enhanced oil

recovery (EOR) process), groundwater remediation, oil filters, ceramic and textile engi-

neering, biomedical membranes, etc. [7, 8, 9]. This flow is a matter of intense investigation

from the past several decades and is still subject to many unsolved fundamental ques-

tions. Therefore, the investigation presented in this thesis aims to facilitate a profound
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Figure 1.1: Representation of the hitchhiker’s guide to the universe of complex viscoelastic
fluids by Professor Gareth McKinley [6].
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understanding of the complex flow behaviour of viscoelastic fluids in porous media.

However, it is readily acknowledged that an actual porous media consists of millions of

interconnected pores of micron size through which the fluid flow happens. It is tremen-

dously challenging to analyze the flow behaviour in such complicated flow paths of a

porous media with the help of either state-of-the-art experiments or advanced numerical

simulation techniques. Therefore, a model porous media is often used to understand

the flow dynamics of complex fluids through a real porous system. A typical model

porous system consists of a microchannel with many in-built micropillars, as presented

in Fig. 1.2. This geometry is extensively used in the complex fluids research community

to understand the flow behaviour of various complex fluids [10]. A simpler version of this

model porous geometry is a straight microchannel with an obstacle or constriction present

in it, as schematically shown in the same figure. All these model porous geometries are

easy to fabricate experimentally or simulate numerically. Although these geometries are

simple in structure, they can generate a highly inhomogeneous flow field inside the geom-

etry, likewise in a real porous system, and facilitate a deeper understanding of the flow

behaviour of complex viscoelastic fluids. Therefore, the fundamental understanding of

the flow behaviour of viscoelastic fluids in these simple model porous geometries would

provide better guidance on their handling and flow in a practical application.

Due to the presence of non-linear elastic stresses in a viscoelastic fluid, various complex

flow behaviours are seen in this fluid. For instance, the rod climbing or extrude swell

effect is a well-known example of this complex flow behaviour in a viscoelastic fluid [2].

Furthermore, these non-linear elastic stresses also generate instabilities in the viscoelastic

fluid flow, even in the absence of inertial forces or at very low values of the Reynolds

number (ratio of inertial to that of viscous forces) when the non-dimensional Deborah

(De) or Weissenberg (Wi) number exceeds a critical value. Although a difference is

present in their definitions; however, both these numbers signify a dimensional relaxation

time compared to that of a characteristic time scale for the flow [11]. A viscoelastic fluid

will become more elastic (or have more elastic stresses) as the value of either this Deborah

or Weissenberg number increases. The time scale for flow in the case of the Deborah

number is taken as the direct measurement of the time over which the flow happens,

whereas it is the inverse of the imposed shear rate in the case of the Weissenberg number.

These instabilities driven by purely elastic forces are known as viscoelastic flow or elastic
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instabilities. These instabilities transit to a more chaotic and fluctuating flow state as this

Deborah or Weissenberg number progressively increases, known as the elastic turbulence

state. Although the topic of elastic turbulence has gained much more attention in the

21st century; however, the phenomenon and the term were known even in 1926 when

Ostwald and Auerbach observed anomalously high-pressure drops during the pumping of

some complex fluids through a tube at a flow condition where a laminar flow condition

was expected to exist [12]. Almost 40 years later, Giesekus [13] extensively investigated

this phenomenon in the flows of polyacrylamide solutions through converging nozzles and

slits. Subsequently, many investigators found the existence of an unstable flow field due

to these elastic instabilities and elastic turbulence in many polymer processing operations

such as injection molding, and some excellent review articles are present on this [14, 15].

A more quantitative analysis of elastic instability was carried out by Muller, Larson,

and Shaqfeh [16] in 1989. They conducted experiments and linear stability analyses

on these viscoelastic flow instabilities in a Taylor-Couette flow geometry. They found

a good qualitative agreement between the experiments and theory. In the subsequent

years, many other studies for several canonical shearing flows were also carried out based

on the linear stability theory, which Shaqfeh nicely documented in a review article in

1996 [17]. Later, McKinley and co-researchers suggested a scaling law to evaluate the

critical conditions at which this elastic instability will emerge in a flow system [18]. They

particularly devised a dimensionless Pakdel-McKinley parameter M , whose critical value

Mcrit signifies the onset of this pure elastic instability. It is defined as

λU
R

N1
|τ |

≥M2
crit (1.1)

where λ is the fluid relaxation time, U is the characteristic streamwise fluid velocity, R

is the characteristic streamline curvature, N1 is the first normal stress difference in the

fluid, and τ is the shear stress in the fluid. They demonstrated that elastic instability

emerges in a flow field due to the interaction between streamline curvature in a flow field

and normal elastic stresses along the streamlines. Poole [19] has presented a bucket of

different small-scale geometries with curved streamlines where such a purely elastic flow

instability was primarily observed experimentally. Figure 1.3 demonstrates the same as

presented by Poole, which was then modified a bit by Datta et al. [20].

Experiments and simulations have also been conducted on more complex geome-
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Figure 1.3: Schematics of different geometries where a purely elastic flow instability was
observed as presented by Poole [19] and then modified by Datta et al. [20]. Here the
numbers on the geometry name designate the corresponding reference number of the
article by Datta et al. [20].
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Figure 1.4: Schematic of the formation of different-shaped micelles in a solution.

tries to delineate this viscoelastic instability and its subsequent influence on the vari-

ous complex flow phenomena. For instance, De and co-researchers found the presence

of time-dependent preferential paths or lanes in the flows of viscoelastic fluids through

a model porous geometry consisting of a microchannel with many micropillars placed

in it [21, 22, 23]. Recently, Walkama et al. [24] experimentally demonstrated that the

chaotic fluctuation arising from the elastic instability in this model porous geometry is

suppressed as the geometric disorder increases. Subsequently, Haward et al. [25] proposed

that the number of stagnation points near the micropillars controls the flow fluctuation

in this model porous geometry. However, Chauhan et al. [26] very recently showed by

numerical simulations that the chaotic fluctuation in this model porous system strongly

depends on the rheological properties, such as shear-thinning and strain-hardening, of the

viscoelastic fluid, which are a strong function of the polymer concentration and polymer

size.

The present thesis further aims to demonstrate these elastic instabilities in various

model porous geometries (as schematically shown in Fig. 1.2) when either a viscoelastic

wormlike micellar or polymer solution flows through them. This thesis mainly focuses on

the flow dynamics of the former solutions, which are formed when surfactant molecules

are added to a solvent like water. These are also called "living polymers" because of

the spontaneous breakage and reformation of the micelles under deformation. Due to

this unique characteristic, wormlike micellar solutions are often preferred over polymer

solutions in many applications, such as in enhanced oil recovery process [27]. In this

particular application, polymer molecules may permanently degrade in a high-shearing

zone of the porous oil reservoir, leading to a decrease in the overall volumetric sweeping
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efficiency. This particular problem will be less for a micellar solution due to the micelles’

spontaneous breakage and reformation dynamics. Figure 1.4 represents the mechanism

behind the formation of wormlike micelles in a solution. Surfactant molecules are am-

phiphilic in nature, constituting both hydrophobic tail and hydrophilic head groups in

their structure [28]. Adding surfactant into an aqueous solution at a concentration above

their critical micellar concentration (CMC) leads to the self-assembly of the micellar

structure [29]. The hydrophobic tail isolates itself from the water, while the hydrophilic

head loves to be in contact with water, forming micelles in the solution. Conceptually,

the shape of the micelles depends upon the critical packing parameter of the surfactant

as Cp = v
a0l

, where v is the volume and l is the length of the hydrophobic tail, and a0

is the effective surface area of the surfactant head group [30]. When the critical packing

parameter Cp is less than 0.33, the micelles are in a cone shape; however, at CMC, they

are spontaneously assembled into a spherical shape. The micelles are supposed to form

a cylindrical rod-like structure for 0.33<Cp < 0.5. When the values of the critical pack-

ing parameter are 0.5 < Cp < 1 and Cp = 1, the vesicles and bilayers are expected to be

present in the solution, respectively [31]. The critical packing parameter also depends on

the surfactant concentration and the co-surfactant in the solution, resulting in the trans-

formation of the structure of the micelles in the solution. In a dilute surfactant solution,

the rod-like micelles have almost a cylindrical shape with two hemispherical end caps,

and the curvature of the cylindrical body is smaller than the curvature of the end caps.

However, further increasing the concentration of the surfactant in the solution results in

a significant change in the shape of the micelles. The added surfactant relocates itself on

the micelles’ cylindrical body to reduce the solution’s free energy, resulting in the uniaxial

growth of micellar structures [32]. The change in the length of rod-like micelles leads to

the formation of the long cylindrical structure known as the wormlike micelles.

In summary, the present thesis will aim to answer some unresolved questions in the

field of flows of either micellar or polymer solutions through a model porous system;

for instance, how will the breakage and reformation dynamics of micelles and the flow

strength influence the elastic instability in flows through various model porous systems?

Why do these complex fluids make preferential paths or lanes during their flows through

porous systems? The present study employs both experiments and numerical simula-

tions to answer these questions. The experiments include using the soft-lithography
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technique to prepare the model microfluidic porous chips and the micro-particle image

velocimetry technique (µ-PIV) to visualize the velocity fields. Numerical simulations

involve computational rheology based on the computational fluid dynamics (CFD) tech-

nique. A detailed rheological study, in terms of both shear and extensional rheology, is

also conducted in this study. This is because the rheological behavior of either micellar

or polymer solutions is essential for understanding viscoelastic flow instabilities in flows

through complex geometries. The rheological characteristics, such as shear-thinning and

strain-hardening, can significantly control the onset and development of these viscoelastic

flow instabilities. In particular, the present thesis focuses on the rheological study of a

biosurfactant-derived micellar solution named rhamnolipid and shows a detailed compar-

ison with a chemically-derived micellar solution. Furthermore, the present dissertation

considers both pressure-driven and electrokinetically driven flows through these model

porous geometries. Most of the studies conducted so far analyzed viscoelastic flow in-

stabilities originating in pressure-driven flows. In contrast, few studies have analyzed

elastic instabilities, particularly electro-elastic instabilities (EEI), developing in electroki-

netically driven flows through these different model porous systems. Therefore, another

major objective of the present thesis will be to fill this knowledge gap in the literature.
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Chapter 2
Literature survey

This chapter presents an extensive literature survey on the current status of the inves-

tigations that have been carried out so far on the rheological and physicochemical studies

of micellar or polymer solutions and on the phenomenon of viscoelastic flow instabilities

(both pressure and electrokinetically driven) that occur during their flows through vari-

ous micro-scale model porous systems such as flow past confined microcylinders or flow

through a channel with step expansion and contraction. This chapter also aims to find

out the knowledge gap and set the present thesis’s objectives.

2.1 Rheological and physicochemical studies of bio-

surfactant and chemically derived micellar solu-

tions

Surfactants are generally organic compounds containing both hydrophilic head and hy-

drophobic tail groups. In an aqueous solution, surfactants are generally self-assembled

and form aggregates of various shapes, such as spherical, cylindrical, worm-like micelles,

lipid bilayers, etc. This aggregation behaviour of surfactant molecules can be significantly

affected by various external forces such as flow, temperature, pressure, etc. [33]. Most

ionic and non-ionic surfactants are usually considered Newtonian fluids at low values

of the deformation rate. However, as the deformation rate becomes significant, these

surfactant solutions often exhibit complex rheological properties [34, 35]. For instance,

surfactant solutions with worm-like micellar structures show a significant extent of vis-

coelastic behaviour [36, 37, 38]. It originates due to the formation of a transient network

structure in the solution once the surfactant concentration exceeds a critical value, known

as the critical micelle concentration (CMC) [39, 40, 41]. This network structure can un-

dergo spontaneous scission and reformation mechanisms under an applied deformation

field, which is why they are sometimes called living polymers [42, 43, 44].

Surfactants are classified into two categories based on their origin: chemically derived

surfactant and biologically derived surfactant [45]. Chemically derived surfactants are
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produced synthetically with the help of chemical reactions by combining a hydrophobic

chain with a hydrophilic group. Some of the well-known synthetic surfactants are, for

example, cetyltrimethylammonium bromide (CTAB), cetylpyridinium chloride (CPC),

sodium dodecyl sulfate (SDS), etc. On the other hand, biosurfactants are a class of

compounds with structurally different groups of surface-active bio-molecules produced

by plants, animals, and microorganisms. Due to their unique structure and eco-friendly

properties, biosurfactants are extensively used in many industrial applications like food,

pharmaceuticals, cosmetics, agriculture, chemical and petrochemical industries, etc. [46].

Biosurfactants are less toxic and biodegradable compared to chemically derived surfac-

tants. They also have good surface activity and perform excellently under harsh environ-

mental conditions [47].

Among various biosurfactants, glycolipids are the most common and widely used

biosurfactants. In this group of biosurfactants, rhamnolipid is a well-known bacterial

biosurfactant produced by the pseudomonas aeruginosa bacteria [48, 49, 50]. It consists

of a glycosyl head group of rhamnose moiety and a tail group of 3-(hydroxyalkanoyloxy)

alkanoic acid (HAA) such as 3-hydroxydecanoic acid [49, 51]. Based on the attached

number of rhamnose units, rhamnolipids are classified as mono and di-rhamnolipids. It

has been found that mono-rhamnolipids have a higher capacity of micellar solubilization

than di-rhamnolipids [52, 53]. Also, some studies show that rhamnolipids are weak acids

due to the existence of a carboxylic group, which is supposed to undergo aggregation

in the solution [54]. This biosurfactant is being widely used in the cosmetic industry as

moisturizers and shampoo [55], in bioremediation of polluted sites and enhanced oil recov-

ery [56], degradation of waste hydrocarbons [57], pharmaceuticals and therapeutics [58],

in detergent and cleaner products industry [59], etc. Due to its widespread applications

and excellent potential for further future applications, a voluminous number of studies

are present on this [60, 61, 62, 63, 64]. Some of those studies are mentioned here for

the sake of brevity. For instance, Mendes et al. [65] presented experimental results on

the physicochemical properties of rhamnolipid biosurfactants and compared them with

conventionally used synthetic surfactants. Their results showed that the rhamnolipid bio-

surfactant reduces the surface tension more than that of synthetic sodium dodecyl sulfate

(SDS) surfactant. They found that rhamnolipid requires only 26 mg to reach the critical

micellar concentration, whereas SDS requires 2.6 gm. Rhamnolipid also showed better
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thermal resistance characteristics while heated from 4 to 80°C and then cooled back to

4°C. Ilori et al. [66] observed that after an exposure of 2 hours to heat ( at 100°C), rham-

nolipid biosurfactant had retained its original activity up to 77 %. Lovagilo et al. [67] used

rhamnolipid as an emulsifier and evaluated the effect of pH on its stability. Due to the

presence of the carboxylic group in the rhamnolipid molecular structure, both the stabil-

ity and emulsifying activity increase with –OH ion concentration. Therefore, rhamnolipid

could be used in industrial processes that involve emulsifying activity at pH ≥ 5. Camara

et al. [68] investigated the ability of rhamnolipid biosurfactant in microbial-enhanced oil

recovery. They found that rhamnolipid effectively reduces the surface tension from 72 to

35.26 mN/m at its CMC of 127 mg/L and increases the emulsification rate (E 24) by up

to 69 % for crude oil. They also observed that rhamnolipid biosurfactant could recover

the crude oil after two months of production. This shows the excellent biodegradability

nature of rhamnolipid.

Although extensive investigations have been conducted on the physicochemical and

thermophysical properties of rhamnolipid biosurfactants, almost no systematic study is

available on the corresponding rheological properties of this biosurfactant. This charac-

terization of surfactants is essential to investigate for their better and more efficient use

in various applications, particularly in cosmetics and food [69, 70]. For synthetic surfac-

tants, a considerable amount of corresponding studies on these rheological behaviours are

available in the literature. For instance, Cappelaere et al. [71] studied the linear and non-

linear rheological behaviour of CTAB solutions without salt. They found a very unusual

power-law exponent of nearly 12 for the zero-shear rate viscosity and 62 for the terminal

relaxation time. Kuperkar et al. [72] investigated the steady and dynamic rheological

behaviour of CTAB in the presence of sodium nitrate salt using the small-angle neutron

scattering (SANS) and cryogenic-transmission electron microscopy (Cryo-TEM). A max-

imum in the zero-shear viscosity of the surfactant solution was found as the concentration

of NaNO3 increased, and the addition of salt facilitated the formation of micelles, as con-

firmed by their SANS and Cyro-TEM experiments. In the presence of sodium tosylate

salt, the rheological behaviour of CTAB surfactant solutions was studied by Hartmann

and Cressely [73]. They found a shear-thickening behaviour at low salt concentrations,

whereas a shear-thinning behaviour at high salt concentrations. Not only on steady and

dynamic shear rheological measurements but also a significant number of studies on the
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extensional rheological measurements were also performed for chemically synthetic sur-

factants. For instance, Yesilata et al. [74] reported the extensional flow dynamics of erucyl

bis(2-hydroxyethyl) methyl ammonium chloride (EHAC) using the capillary breakup ex-

tensional rheometer (CaBER). They found a strong extensional thickening behaviour

with the Trouton ratio increasing up to two orders of magnitude. Furthermore, they

found that the extensional relaxation time was smaller than that obtained from the os-

cillatory experiments. Garcia and Saraji [75] investigated the extensional rheological

behaviour of a surfactant solution composed of N-tetradecyl-N,N-dimethyl-3-ammonio-

1-propanesulfonate (TDPS), sodium dodecyl sulfate (SDS), and sodium chloride (NaCl)

using the hyperbolic microfluidic geometry. A viscoelastic transition from extensional-

thickening to extensional-thinning was observed in their study. Rothstein [76] studied

the extensional rheology of a synthetic surfactant of cetyltrimethylammonium bromide

and sodium salicylate in de-ionized water using the filament stretching rheometer. They

found the existence of a significant strain-hardening and a rupture of filament in their

experiments. They proposed that this filament rupture is due to the breakage of long

micelles. Recently, Narvaez et al. [77] examined the extensional rheological behaviour of

a mixture of surfactant (sodium dodecyl sulfate (SDS)) and polymer (polyethylene oxide

(PEO)) using the recently developed dripping-onto-substrate (DoS) technique. They re-

vealed that adding a chemical surfactant to an uncharged polymer solution decreases the

critical shear rate for the onset of shear-thinning but hardly influences the extensional

relaxation time and viscosity.

Therefore, from the literature cited herein, it is clear that a considerable number of

studies have been conducted to examine the shear and extensional rheological behaviours

of various chemically synthetic surfactants. In contrast, despite its wide applications in

various industrial settings, no corresponding study is available on biosurfactants, partic-

ularly rhamnolipid. The present thesis aims to fill this gap of knowledge in the literature.

In particular, this thesis aims to present a detailed and systematic investigation of the

steady and dynamic shear and extensional rheological behaviours of rhamnolipid biosur-

factants at different concentrations. Our study also includes the results of a chemically

synthetic surfactant (CTAB) to compare its rheological and physicochemical behaviours

with rhamnolipid. We also present results on physicochemical properties such as surface

tension, contact angle, particle size distribution, zeta potential, and thermal stability. It
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will facilitate an overall comparison between the two surfactants. The primary motivation

behind this is that it will help to decide whether the present biosurfactant can replace a

chemically synthetic surfactant in any particular application.

2.2 Pressure driven flows of wormlike micellar solu-

tions past a single microcylinder confined in a

channel

A model porous system consisting of a microcylinder confined in a channel is often used

as a benchmark problem both in experiments and numerical simulations to understand

the complex flow dynamics of viscoelastic fluids [78, 79, 80, 81, 82, 83]. This simple

geometry can create both shear (in the gap regions between the channel and cylinder

walls) and extensional (downstream of the cylinder) flow dominated regions. It has stag-

nation zones on both the upstream and downstream sides of the cylinder and is free from

any geometric singularity. Consequently, several experimental studies have investigated

the flow phenomena of wormlike micellar solutions in this model porous system. For

instance, Moss and Rothstein [84] employed two WLM solutions, namely, CTAB/NaSal

(cetyltrimethyl ammonium bromide / Sodium salicylate) and CPyCl/NaSal (Cetylpyri-

dinium chloride/Sodium salicylate) and for two blockage ratios (ratio of cylinder diameter

to that of channel height), namely, 0.2 and 0.1. They found that the normalized pressure

drop initially decreased with the Weissenberg number, reaching a plateau at high values.

This is due to the dominance of the shear-thinning and extensional properties of the fluid

at low and high Weissenberg numbers, respectively. Furthermore, an elastic instability

was observed in their CTAB/NaSal solution beyond a critical value of the Weissenberg

number. In contrast, it was not seen in the CPyCl/NaSal solution over the range of

conditions encompassed in their study. The blockage ratio did not affect the onset of this

elastic instability. Subsequently, Moss and Rothstein [85] conducted a similar study for

a periodic array of cylinders.

On the other hand, Zhao et al. [86] used CTAB/SHNC (3-hydroxy naphthalene-2-

carboxylate) WLM solution in this benchmark flow system over a large range of the

Weissenberg number (O(1 ) to O(10 5 )) than those encompassed by Moss and Roth-
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stein [84]. Over such a wide range of the Weissenberg number, they observed five dis-

tinct flow regimes: Newtonian-like flow, bending streamlines, vortex growth upstream,

unsteady flow downstream, and finally, three-dimensional and time-dependent flow. Fur-

thermore, their study revealed that all these flow patterns and the onset of the elastic

instability strongly depended on the channel blockage ratio. This is in stark contrast to

the observation of Moss and Rothstein [84]. Recently, Haward et al. [87] also performed

a similar study using CPyCl/NaSal micellar solution with the Weissenberg number up

to 3750. They observed a flow transition from a steady and symmetric to a steady and

asymmetric one at around the first critical Weissenberg number of 60, characterized as a

supercritical pitchfork bifurcation. With a further increase in the value of the Weissenberg

number, the flow became time-dependent and exhibited a subcritical Hopf bifurcation at

the second critical Weissenberg number of around 130.

Therefore, a reasonable body of experimental information is available on this model

porous flow configuration for various wormlike micellar solutions. In contrast, to our

knowledge, no corresponding numerical investigation has been reported to date. One of

the reasons for this deficiency in numerical studies is that there was no suitable constitu-

tive relation available in the literature for such wormlike micellar solutions until the VCM

(Vasquez-Cook-McKinley) model [88] was proposed. This model efficiently captures all

the typical rheological characteristics of a WLM solution like the shear-thinning, exten-

sional hardening and subsequent thinning, shear-banding, etc. It models the wormlike

micelles as elastic networks composed of Hookean springs, which can continuously break

and reform in a flow field. The breakage and reformation dynamics are incorporated

based on the discrete and simplified version of Cates’s original reversible breaking theory

for wormlike micelles [89]. According to the VCM model, a long wormlike micelle of

length L can be broken exactly in the middle to provide two short micelles of length L/2

or vice-versa. This is opposed to the Cates theory [89] in which micelles can break into

short micelles with equal probability at any point along their length. Also, micelles of

any length can join together to form long micelles. However, this simplification allows

the VCM model to easily capture the temporal and spatial variations in the number

density of the chain species. It should be mentioned here that two types of scission

mechanisms are available in the case of a micellar solution: equilibrium reversible and

flow-induced scissions. The equilibrium reversible scission transpires when the rates of
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micelle formation and dissociation reach a state of equilibrium. Despite continuous scis-

sion and recombination, the average micelle length and size remain constant in this type

of scission. Comprehending this equilibrium scission phenomenon bears significance, as

it enables the fine-tuning of the rheological characteristics of micellar solutions to align

with specific applications. On the other hand, in the presence of flow, the breakage of

these wormlike micelles is termed as flow-induced scission. Within a flow field, micelles

are subjected to both shear and extensional forces, prompting their elongation or stretch-

ing. When this elongation surpasses a critical threshold, micelles can experience scission,

forming smaller micelles—a phenomenon known as flow-induced scission. The VCM

model mainly deals with this flow-induced scission mechanism experienced by micelles.

The breakage and reformation dynamics, as well as the variation in the number density

of chain species, are not accounted for in the earlier single species bead-spring models

for wormlike micelles, for instance, Johnson-Segalman (JS) model [90, 91] or Bautista-

Manero-Puig (BMP) model [92]. Therefore, these models do not allow us to relate the

stress directly to the micro-structural dynamics of the micelles, as does the VCM model.

For different viscometric flows, a very good agreement has been found between the

predictions of the VCM model and the corresponding experimental results [93, 94]. For

non-viscometric flows, a good qualitative match has been seen in a recent study [95].

Furthermore, some recent numerical studies showed how the breakage dynamics of the

micelles in the VCM model are important to compare with the corresponding experi-

mental observations. For instance, Kalb et al. [96, 97] showed how the chain scission

mechanism of the VCM model helps in understanding the formation of lip vortices and

the generation of elastic instability in a cross-slot device as seen in the corresponding

experiments [98, 99]. Furthermore, a recent study by Sasmal [100] also showed how the

breakage dynamics is important to understand the flow characteristics of wormlike mi-

cellar solutions through a long micropore with step expansion and contraction as seen in

the corresponding experiments [101].

It is thus clear from the aforementioned literature that the breakage and reformation

mechanisms are extremely vital to perform an either theoretical or numerical investigation

on the flow dynamics of wormlike micellar solutions. Therefore, the aim of this thesis

is as follows: we first present a discussion on the flow characteristics of the VCM model

in the absence of breakage and reformation dynamics. This limiting case corresponds to
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two uncoupled upper convected Maxwell (UCM) models. We then discuss how the flow

characteristics, particularly the elastic instability, in a wormlike micellar solution can be

influenced in this model system once the breakage and reformation of the micelles become

important. In addition, we compare, at least qualitatively, our numerical predictions with

some of the available experimental observations [84, 86, 87].
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2.3 Pressure driven flows of wormlike micellar solu-

tions past two vertically aligned microcylinders

confined in a channel

The flow of micellar solutions through a porous media can exhibit many complex flow

behaviours. For instance, in many experiments, it has been found that the micellar

solution selects a preferential path or lane during the flow through a porous media. De

et al. [22] observed the formation of lanes when a micellar solution comprising of cetyl

tri-methyl ammonium bromide (CTAB) and sodium salicylate (NaSal) flows through a

model porous media consisting of a microchannel with cylindrical pillars placed in it.

Another study [21] of the same authors found a similar formation of lanes and their path-

switching phenomena when dealing with a hydrolyzed polyacrylamide (HPAM) polymer

solution. Muller et al. [102] also noticed the same phenomena in polyalphaolefine polymer

solution flowing in a model porous medium consisting of a glass pipe filled with Duran

glass spheres. They further noted spatial and temporal variations of these preferential

paths in the porous media. Recently, both Walkama et al. [24], and Eberhard et al. [103]

also showed the formation of these lanes in both ordered and disordered model porous

structures during the flow of a high molecular weight polyacrylamide (PAA) and xanthan

gum polymer solutions, respectively.

To understand such complex flow behaviour of either micellar or polymer solutions in

an actual porous media, it is always better to start with a simple system consisting of a sin-

gle microcylinder placed in a microchannel. As mentioned earlier, this simple benchmark

system creates a non-homogeneous flow field in the system, which in turn, facilitates the

understanding of the flow behaviour of various complex fluids. This ultimately leads to

a better understanding of the flow behaviour in a more complex system. For this reason,

a significant amount of studies, comprising of both experiments and numerical simula-

tions, have been carried out on this benchmark system for polymer [81, 80, 104, 105, 106]

as well as micellar [84, 86, 87, 107] solutions. Some interesting flow physics have been

found from these studies, which were not seen in simple Newtonian fluids under otherwise

identical conditions. For instance, the emergence of an elastic instability [106] and flow

bifurcation [87] have been found in this model geometry.
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Although the geometrical configuration of this model system is simple, the flow dy-

namics within it can be significantly altered either by changing the blockage ratio (ratio

of the cylinder diameter to the channel height) or by placing another microcylinder next

or above or bottom to the existing cylinder with various intercylinder spacings. For

instance, both Moss and Rothstein [84] and Zhao et al. [86] found that the onset of

the elastic instability in CPyCl (cetylpyridinium chloride)/NaSal and CTAB/SHNC (3-

hydroxy naphthalene-2-carboxylate) micellar solutions were delayed as the blockage ratio

was decreased. Furthermore, Zhao et al. [86] observed a broad spectrum of flow states

in this model geometry as the blockage ratio and Weissenberg number were varied, for

instance, Newtonian-like, bending streamlines, vortex growth upstream, unsteady down-

stream, chaotic upstream and three-dimensional time dependent. Recently, Varchanis

et al. [108] conducted both experiments using polyethylene oxide (PEO) polymer solu-

tion and numerical simulations using the linear Phan-Thien-Tanner (I-PTT) constitutive

model over a wide range of the blockage ratio. They found the existence of supercritical

and subcritical pitchfork bifurcations in the flow field as the blockage ratio was varied

and also observed no bifurcation in the flow for certain ranges of the blockage ratio.

Apart from the influence of the blockage ratio, placing another microcylinder in the

channel can also greatly modify the flow field in this model geometry. For example,

Haward et al. [109] experimentally found a significant modification in the flow field be-

tween the two microcylinders than that seen for the single microcylinder case, particu-

larly at high Weissenberg numbers. Varshney and Steinberg [110] found an increase in

the vortex growth between the two microcylinders. This starkly contrasts the findings of

suppressing a vortex by the polymer additives into a Newtonian solvent [111, 112]. Both

these studies used a polymer solution in their experiments wherein two microcylinders

were placed horizontally side-by-side. Recently, Hopkins et al. [113] performed experi-

ments using CPyCl/NaSal micellar solution for the flow past two microcylinders placed

vertically side-by-side over a broad range of the intercylinder gaps and Weissenberg num-

bers. This experimental study, performed for the first time for this geometry, found

the existence of three stable flow states in the system depending upon the values of the

intercylinder gap and Weissenberg number, namely, diverging (D) state in which all of

the fluid preferably passes through the gaps in between the channel walls and cylinder

surface, asymmetric-diverging (AD) state in which the fluid prefers to pass through ei-
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ther the gap in between the upper channel wall and top cylinder surface or the lower

channel wall and bottom cylinder surface, and converging (C) state in which most of

the fluid passes through the gap in between the two cylinders. They presented a phase

diagram on the existence of all these flow states as a function of the intercylinder gap

and Weissenberg number. Also, they found a critical value of the intercylinder gap at

which all these three states, namely, D, AD, and C, co-exist together, thereby showing

the existence of a tristable state in viscoelastic fluids for the first time.

These studies demonstrate that the flow physics past a microcylinder confined in a

channel can become increasingly complex if one changes the blockage ratio or places an

additional microcylinder in it. This is primarily due to the variation in the extent of

shear and extensional flow fields in the domain and due to the interaction of the elas-

tic stresses generated around the microcylinders. However, it can be seen that most of

these investigations are experimental, and compared to this, very few numerical stud-

ies have been carried out [108]. Furthermore, these numerical simulations are based on

the single-species viscoelastic constitutive equations, thus restricting their applicability

to only polymer solutions where breakage and reformation dynamics are absent, un-

like wormlike micellar solutions. Therefore, these widely used single-species viscoelastic

constitutive equations sometimes cannot predict some typical flow physics happening in

wormlike micellar solutions. For instance, many experimental studies have found an ex-

istence of unsteady motion of a sphere falling freely in wormlike micellar solutions in

the creeping flow regime once the Weissenberg exceeds a critical value [114, 115]. Ex-

perimentally, this motion was predicted to be due to the breakage of long and stretched

micelles downstream of the sphere, resulting from increased extensional flow strength.

Only recently [116], it has been proven that this motion is, indeed, due to the breakage of

micelles downstream of the sphere using the two-species Vasquez-Cook-McKinley (VCM)

model [88]. Therefore, there is a gap of knowledge present in the literature, particularly

for the flow past two vertically aligned microcylinders, which may facilitate the under-

standing of the formation of preferential paths or lanes during the flow of viscoelastic

fluids like micellar solutions in a porous media. Therefore, this thesis aims to numeri-

cally investigate how the blockage ratio would tend to influence the flow dynamics of a

micellar solution past a single microcylinder placed in a channel using the two-species

VCM constitutive model. Secondly, it plans to extend the investigation for two verti-
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cally aligned microcylinders placed in a channel for different intercylinder gap ratios and

try reproducing some of the flow behaviors observed in recent experiments with WLM

solutions [113]. Finally, the present investigation can also facilitate understanding the

formation of preferential paths or lanes during the flow of viscoelastic fluids through a

porous media based on the analysis of our single and double microcylinder results.

2.4 Electrokinetically driven flows of viscoelastic flu-

ids through a microchannel with step expansion

and contraction

Various complex fluids are often transported in many micro and nanofluidic systems with

the help of the electrohydrodynamics phenomenon. In this process, fluid flow happens

due to the formation and movement of an electrical double layer (EDL) formed along

the charged surface of a system under the application of an external electric field [117].

This mode of fluid transport is often preferred over the traditional pressure-driven flows

in microfluidic systems. This is because it offers less resistance during the flow because

of the formation of a plug-like velocity profile in contrast to a parabolic one in pressure-

driven flows. Therefore, over the years, extensive research efforts have been devoted to

understanding the electrokinetic transport phenomena of various Newtonian and complex

non-Newtonian fluids in many micro-scale systems [118, 119].

In many earlier investigations, however, it has been observed that the electrokinetic

transport phenomena in complex non-Newtonian fluids, particularly in viscoelastic flu-

ids, are much more complicated than that seen in simple Newtonian fluids under oth-

erwise identical conditions. For instance, Afonso et al. [120] found the existence of an

electro-elastic instability (EEI) in flows through a microfluidic cross-slot geometry once

the Weissenberg number (ratio of the viscous to that of the elastic forces) exceeds a

critical value. These instabilities in viscoelastic fluids are associated with an unsteady

and asymmetric flow field as opposed to that of a steady and symmetric flow field in

Newtonian fluids. The presence of such elastic instabilities was also seen in many earlier

investigations dealing with pressure-driven viscoelastic flows, and extensive literature is

also present on this [20]. In comparison, very few studies are present on the corresponding
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electrokinetically driven flows. An interaction between the elastic stresses (originated due

to the stretching of viscoelastic microstructure) and the streamline curvature present in

a system causes these instabilities. These purely electro-elastic instabilities in a microflu-

idic cross-slot geometry were later verified experimentally by Pimenta and Alves [121].

They experimented with dilute and semi-dilute polyacrylamide (PAA) polymer solutions.

They found a fluctuating flow field with a broad range of excitation frequencies with a

power-law decay at large frequencies. The corresponding experiments in a contraction

and expansion geometry were performed by Sadek et al. [122]. They also observed the

existence of these purely electro-elastic instabilities once the voltage difference between

the inlet and outlet of the microchannel exceeded a critical value as seen in the studies

of Afonso et al. [120] and Pimenta and Alves [121]. They particularly found two flow

regimes as the voltage difference gradually incremented, namely, unsteady symmetric

and irregular flows. Similar electro-elastic instabilities were also seen in a more recent

numerical study by Ji et al. [123] for a contraction and expansion geometry. Song et

al. [124] conducted an experimental study on the electro-elastic instability in flows of

viscoelastic fluids through a T-shaped microchannel. It should be mentioned here that

these electro-elastic instabilities seen in viscoelastic fluids are not the same as that of

electrokinetic instability (EKI) seen in flows of Newtonian fluids. The former instability

originated due to the presence of elastic stresses and streamline curvature. In contrast,

the latter is caused due to the presence of an electrical conductivity gradient in a system.

Apart from studies on cross-slot and hyperbolic expansion and contraction micro-

geometries, a reasonable amount of studies are also present on the electrokinetic flows

of viscoelastic fluids in a long straight microchannel by considering either the fractional

Oldroyd-B or Maxwell viscoelastic fluid model, for instance, see the refs. [125, 126, 127,

126, 128, 129, 130]. Further studies with other more complex viscoelastic constitutive

equations, for instance, the Phan-Thien-Tanner (PTT) or FENE-P (finitely extensible

non-linear elastic spring with the Peterlin approximation) equations, are also available in

the literature. Sarma et al. [131] performed an analytical study using the simplified PTT

viscoelastic model and found an enhancement in the volumetric flow rate in a parallel-

plate microchannel as the fluid viscoelasticity increases. The electrokinetic flow in a

wavy microchannel using the PTT viscoelastic fluid model was studied by Martinez et

al. [132], and they also found an increase in the volumetric flow rate compared to that seen
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for a Newtonian fluid under the same conditions. Dhinakaran et al. [133] performed an

analytical study based on the PTT model and observed a constitutive flow instability once

the shear rate and Deborah number exceeded some critical values. Bautista et al. [134]

carried out both numerical simulations and asymptotic analysis using the lubrication

approximation and found a substantial modification in the velocity and pressure profiles

in a slit microchannel due to the presence of fluid viscoelasticity. Ferras et al. [135]

studied the effect of solvent viscosity and fluid viscoelasticity. Song et al. [136] performed

an experimental study on the electrokinetic instability phenomena in a T microfluidic

junction filled with viscoelastic fluids.

Therefore, it can be seen that a sufficient amount of studies on the electroosmotic

flows of viscoelastic fluids are present in the literature, and some excellent reviews on the

same are also present [137]. However, these studies are restricted to simple geometries

like straight microchannel or cross-slot geometry. Compared to this, very few studies

are available on more complex geometries like in porous media, and those studies are

again constrained to simple Newtonian fluids [138]. In particular, the problem of elec-

trokinetic flow in a porous media has many practical applications, which often deal with

various non-Newtonian viscoelastic fluids, such as in electro-chromatography [139, 140],

micro-pumping [141, 142, 143], chemical remediation of contaminated soil [144, 145], etc.

Therefore, it is imperative to investigate this problem for better equipment design and

process operation dealing with various complex fluids.

The flow dynamics of viscoelastic fluids in porous media are much more complex and

rich in physics than that seen in simple Newtonian fluids [146]. Many exciting and com-

plicated flow physics have already been observed in viscoelastic fluid’s pressure-driven

porous media flows. For instance, in many earlier studies, it has been observed that

the flow of a viscoelastic fluid inside a porous media becomes chaotic and fluctuating

turbulent-like (known as the elastic turbulence [147, 20, 148]) in nature once the flow

rate exceeds a critical value [149, 150, 151, 24, 25, 152]. To understand the origin of this

complex flow dynamics of viscoelastic fluids in a porous media, one needs to investigate

the fluid flow phenomena that are happening at the pore scale. An actual porous media

consists of millions of micro-pores interconnected with each other. However, a relatively

simple system consisting of a long micropore with step expansion and contraction is also

often used as a model porous media to understand the macroscopic flow phenomena seen
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in an actual porous media [153]. For the pressure-driven flows, this model porous media

is proven to be successful in capturing the flow physics occurring in an actual porous

media [154, 155, 156]. For the electrokinetically-driven flows, no corresponding study,

either experimental or numerical, is available for such a model porous system filled with

viscoelastic fluids. Therefore, this thesis aims to investigate the same in detail. Although

the present thesis considers a simple model porous media; however, it will facilitate a

better understanding of the complex flow dynamics that can happen in actual porous

media. Furthermore, this thesis shows how this model geometry can be used in other

practical applications, such as mixing fluids. Due to the laminar flow condition, it is often

challenging in micro-scale systems regardless of the external driving agency (pressure or

electric field). Therefore, over the years, many designs and techniques based on passive

and active modes have been developed to enhance the mixing efficiency in various micro-

scale systems; for instance, see some excellent review articles in the literature [157, 158].

This dissertation further aims to show how the mixing process of these complex vis-

coelastic fluids could be achieved in this model porous system using the phenomenon of

electro-elastic instability.

2.5 Electrokinetically driven flows of viscoelastic flu-

ids past a microcylinder confined in a channel

The study of electroosmotic flow in non-Newtonian fluids deserves special attention. This

is not only due to their frequent appearance in various practical applications but also to

the unusual flow behaviours in these fluids, which are not seen in simple Newtonian flu-

ids under the same conditions. One such flow behaviour often seen during the flow of

non-Newtonian viscoelastic fluids is electro-elastic instability (EEI) [120, 122]. This EEI

phenomenon in an electroosmotic flow was probably first observed by Bryce and Free-

man [159] in their experiments in a long microchannel with many step expansions and

contractions present in it. Although they found an unsteady and chaotic flow field inside

this flow system because of these instabilities; however, they did not observe any im-

provement in the mixing process of the two fluids. In contrast, they observed a reduction

in the mixing process for viscoelastic fluids than for Newtonian fluids. Some other stud-

ies were also performed for this kind of contraction and expansion geometry and found
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the existence of this EEI phenomenon once either the applied electric field strength or

the Weissenberg number (quantifies the extent of fluid viscoelasticity) exceeded a criti-

cal value [122, 123]. Afonso et al. [120] observed this electro-elastic instability in their

numerical simulations for a cross-shaped microchannel, which was later verified in an

experimental study conducted by the same research group [121]. Song et al. [124] per-

formed the corresponding analysis for a T-shaped microchannel. The EEI phenomenon

was even observed in a straight microchannel with non-uniform zeta potentials present

on its wall [160]. Park and Lee [161] found that the volumetric flow rates of a viscoelastic

fluid were significantly different from that of a Newtonian fluid under the same external

electric field during the electroosmotic flow through a rectangular microchannel. Lu et

al. [162] experimentally studied the electrophoresis phenomenon in viscoelastic polyethy-

lene oxide (PEO) polymer solutions through a constricted microchannel. They observed

unexpected particle oscillating phenomena in the constricted region of the microchannel.

Another study [163] found particle aggregates formed in the constricted microchannel

region. They proposed that both these phenomena originated due to the non-linear in-

teraction between electrokinetic and viscoelastic forces. Bentor et al. [164] studied the

insulator-based dielectrophoretic (iDEP) phenomenon in three non-Newtonian fluids with

distinct rheological properties through a constricted microchannel. They reported that

the focusing and trapping of particles using the iDEP phenomenon was weakly affected

by the moderate fluid viscoelasticity but strongly affected by the highly viscoelastic and

shear-thinning properties of polyacrylamide solutions. Recently, they extended this work

to an array of microcylinders placed in a microchannel [165] and found relatively weaker

iDEP effects in this geometry than seen for a constricted microchannel.

The present thesis focuses on the electroosmotic flows through a microfluidic setup

consisting of a straight microchannel with an in-built cylindrical obstacle. This particu-

lar geometry is a benchmark setup extensively used to study how a complex fluid would

behave in an inhomogeneous pressure-driven flow field [166, 167, 86, 107]. Furthermore,

this particular geometry can also serve as a model system to study the flow dynamics

in a porous media. In particular, the electroosmotic flow in a porous media has many

practical applications, such as electro-chromatography [139], micro-pumping [142, 141],

chemical remediation of contaminated soil [144, 145], etc., which often deal with such

non-Newtonian viscoelastic fluids. Therefore, it is imperative to study this flow system
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to understand and design these processes in a better way. The presence of complex flow

phenomena in viscoelastic fluids, such as the EEI phenomenon, provides further motiva-

tion to study this particular micro-scale flow geometry. This study particularly plans to

investigate how this electro-elastic instability in electroosmotic flows of viscoelastic fluids

could generate a flow-switching phenomenon in this geometry, which is absent in simple

Newtonian fluids under the same conditions. Therefore, it will show how the electroos-

motic flows of viscoelastic fluids in a porous media can become more complex and rich

in physics than a simple Newtonian fluid. We also aim to demonstrate how this flow-

switching phenomenon could efficiently mix viscoelastic fluids in this simple microfluidic

setup. This is particularly important from an application point of view, as mixing fluids

in a lab-on-a-chip (LOC) device is still challenging due to the domination of molecular

diffusion, demanding a much longer time for the process than that seen in convective mix-

ing. Many passive and active methods have been proposed in the literature to enhance

this mixing process in a micro-scale geometry [168, 169, 170, 171], and is still an active

area of research in the domain of micro and nanofluidics. Our proposed idea in this study

is simple yet efficient for mixing viscoelastic fluids in an easy-to-fabricate microfluidic

device consisting of a straight microchannel with a cylindrical obstacle.

Furthermore, this dissertation plans to use the data-driven dynamic mode decompo-

sition (DMD) technique to understand and analyze the coherent flow structures arising

from this EEI phenomenon. This technique is one of the reduced order modeling (ROM)

techniques widely used in distilling the important spatial features of a flow field in terms

of the so-called ‘modes’ [172]. The spatial structures of these modes and their frequency

are significant to investigate for a better understanding of various transport phenomena,

such as mixing in the present study [173]. To fulfill the present investigation’s objec-

tives, we employ continuum-scale numerical simulations and microfluidic experimental

techniques. The numerical simulations involve the solution of mass, momentum, and

viscoelastic constitutive equations using an open-source computational fluid dynamics

(CFD) code, OpenFOAM [174]. Although full-scale three-dimensional numerical simula-

tions can provide better insights into the present flow phenomena; however, the present

study considers two-dimensional numerical simulations, which also offer sufficient infor-

mation for flow physics with relatively less computational cost. On the other hand, the

experimental techniques comprise soft-lithography and fluorescent microscopy for fabri-

25



cating microfluidic geometry and flow visualization, respectively.

2.5.1 Major objectives of the present thesis

The broad objective of the present thesis is to explore the flow dynamics of complex fluids

such as micellar or polymer solutions through a model porous system such as flow past a

cylinder confined in a microchannel or flow through a microchannel with step expansion

and contraction under both pressure and electrokinetically driven flows. In this regard,

the above comprehensive literature survey shows the gap in the current knowledge. The

aim of the present thesis to fill this gap of knowledge in the literature is also mentioned

at the end of each topic. In particular, the objectives of the present dissertation are as

follows:

1. A detailed and systematic study on rheological and physicochemical properties of

rhamnolipid biosurfactant solutions and presents a qualitative comparison with

chemical surfactant solutions, chapter 4.

2. A comprehensive study on how micelles’ chain scission and reformation mechanisms

would influence the flow characteristics such as viscoelastic flow instability past a

microcylinder confined in a microchannel, chapter 5.

3. An investigation of the effect of the blockage and gap ratios on the flow dynamics

of wormlike micellar solutions past single and two vertically aligned microcylinders

confined in a microchannel, chapter 6.

4. A detailed study of the electro-elastic instability phenomenon in viscoelastic fluid

fluids through a microchannel with step expansion and contraction, chapter 7.

5. A thorough study of the flow-switching and mixing phenomena in electroosmotic

flows of viscoelastic fluids past a single microcylinder confined in a channel, chap-

ter 8.
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Chapter 3
Methodology

The present dissertation involves both numerical and experimental methodologies to

study the flow dynamics of viscoelastic fluids through a model porous system. The

numerical methodology is first presented and discussed here.

3.1 Numerical Methodology

To describe the numerical methodology adopted in the present thesis, the problems that

have been solved are broadly divided into two categories, namely, pressure driven flows of

viscoelastic wormlike micellar solutions and electrokinetically driven flows of viscoelastic

polymer solutions through various model porous geometries.

3.1.1 Governing equations for pressure driven creeping flows of

viscoelastic wormlike micellar solutions

The flow field will be governed by the following equations, written in their dimensionless

forms

Equation of continuity

∇·U = 0 (3.1)

Cauchy momentum equation

−∇P +∇· τ = 0 (3.2)

In the above equations, U , t, and τ are the velocity vector, time, and total extra stress

tensor, respectively. All the spatial dimensions were scaled by a characteristic length L

(which was varied depending upon the problem to be solved. For instance, in the case

of flow past a microcylinder, the microcylinder radius R was taken as the characteristic

length L), velocity was scaled by L/λeff , stress and pressure were scaled by η0Uin/L

and time was scaled by λeff . Here λeff = λA
1+c′

AeqλA
is the effective relaxation time for

the two-species Vasquez-Cook-McKinley model for micelles in which λA and c′
Aeq are the

dimensional relaxation time and equilibrium breakage rate of the long worm A, respec-
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tively, as written in detail below. In the present study, the Weissenberg and Reynolds

numbers were defined as Wi= λeffUin
L and Re= LUinρ

η0
, respectively. A perfect inertialess

(i.e., Re = 0) flow condition was simulated for all problems in this thesis by neglecting

the convective terms of Cauchy’s momentum equation. Here ρ and η0 are the solution

density and zero-shear rate viscosity, respectively. The total extra stress tensor, τ , for a

wormlike micellar solution is given as:

τ = τw + τs (3.3)

where τw is the non-Newtonian contribution from the wormlike micelles, whereas τs is

the contribution from that of the Newtonian solvent, which is equal to βγ̇. Here the

parameter β is the ratio of the solvent viscosity to that of the zero-shear rate viscosity

of the wormlike micellar solution and γ̇ = ∇U + ∇UT is the strain-rate tensor. For the

two-species VCM model [88], the total extra stress tensor is given by

τ = τw + τs = (A+2B)− (nA+nB)I+βγ̇ (3.4)

Here nA and A are the number density and conformation tensor of the long worm A,

respectively, whereas nB and B are to that of the short worm B. The temporal and spatial

evaluation of the number density and conformation tensor for the short and long worms

are written as follows. The VCM constitutive equations provide the species conservation

equations for the long (nA) and short worms (nB) along with the equations for the

evolution of their conformation tensors A and B, respectively. According to this model,

the equations for the variations of nA, nB, A, and B are given in their non-dimensional

forms as follows [88]:

µ
DnA
Dt

−2δA∇2nA = 1
2cBn

2
B − cAnA (3.5)

µ
DnB
Dt

−2δB∇2nB = −cBn2
B +2cAnA (3.6)

µA(1) +A−nAI− δA∇2A= cBnBB− cAA (3.7)

ϵµB(1) +B− nB
2 I− ϵδB∇2B = −2ϵcBnBB+2ϵcAA (3.8)

Here the subscript ()(1) denotes the upper-convected derivative defined as ∂()
∂t +U ·∇()−(

(∇U)T · ()+() ·∇U
)
. The non-dimensional parameters µ, ϵ and δA,B are defined as
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λA
λeff

, λB
λA

and λADA,B
R2 , respectively, where λB is the relaxation time of the short worm B

and DA,B are the dimensional diffusivities of the long and short worms. Furthermore,

according to the VCM model, the non-dimensional breakage rate (cA) of the long worm

A into two equally sized small worms B depends on the local state of the stress field,

given by the expression cA = cAeq +µ ξ3

(
γ̇ : A

nA

)
. On the other hand, the reforming rate

of the long worm A from the two short worms B is assumed to be constant, given by the

equilibrium reforming rate, i.e., cB = cBeq. Here the non-linear parameter ξ is the scission

energy required to break a long worm into two equal-sized short worms. The significance

of this parameter is that as its value decreases, the amount of stress needed to break a

micelle increases.

3.1.2 Governing equations for electrokinetically driven creeping

flows of viscoelastic polymer solutions

The flow field induced by an electric field will be governed by the following equations

written in their dimensional forms, namely,

Continuity equation:

∇·u = 0 (3.9)

Cauchy momentum equation:

0 = −∇p+ηs∇2u+∇· τp−ρeE (3.10)

In these above equations, t is the time, u is the velocity vector, p is the pressure, ηs is the

solvent viscosity, ρe is the charge density, E is the external electric field strength and τp is

the extra stress due to the presence of viscoelastic microstructure like polymer molecules.

Depending upon the rheological responses of a viscoelastic fluid in standard homogeneous

flows like simple shear or uniaxial extensional flows, one can select a suitable viscoelastic

constitutive relation to evaluate τp. In the present study, we have used the Oldroyd-B

viscoelastic constitutive equation to evaluate τp. This is because of the facts [175] that i)

it is a relatively simple viscoelastic model which depends on a single conformation tensor

for predicting the state of stress in a liquid and is associated with only two parameters,

namely, polymer concentration and polymer relaxation time ii) it has been derived based
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on the simplest kinetic theory of polymers in which a polymer molecule is assumed to

be a dumbbell with two beads connected by an infinitely stretchable elastic spring iii) it

can successfully mimic the rheological behaviour of a constant shear viscosity viscoelastic

fluid or the so-called Boger fluid [176]. According to this model, the polymeric stress

components are evaluated as follows [2, 175]

τp = ηp
λ

(A− I) (3.11)

where ηp is the polymer viscosity, λ is the polymer relaxation time, A is the polymeric

conformation tensor and I is the identity tensor. The conformation tensor of an Oldroyd-

B fluid is evaluated as per the following equation

∂A

∂t
+u ·∇A= A ·∇u+(∇u)T ·A− 1

λ
(A− I) (3.12)

The electric potential (ψ) in the system is computed by solving Gauss’s law as follows

∇· (ϵ∇ψ) = ρe (3.13)

The charge density is calculated as ρe = F
∑N
i=1 zici where F is the Faraday’s constant

(96485.33289 C · mol−1), zi is the charge valence on species i and ci is the concentration

of species i. The thickness of EDL formed along the channel wall is much smaller than the

dimension of the channel, and hence we have used the Poisson-Boltzmann (PB) equation

to calculate the ion distribution in the system. Under this assumption, the Gauss’s law

becomes [117]

∇· (ϵ∇ψ) = F
N∑
i=1

zici,0 exp
(

−ezi
kT

ψ
)

(3.14)

where ci,0 is the bulk concentration of ion species i in the system, e is the electron charge

(1.6021766341×10−9 C), k is the Boltzmann’s constant (1.380649×10−23 J·K−1) and T

is the absolute temperature of the fluid. We have used the following values of these pa-

rameters in all our electrokinetically driven flows: ci,0 = 9.44×10−5 mol/m3, T = 298 K,

ϵ= 7.0922 × 10−10 F/m. The viscoelasticity of the present fluid is quantified in terms of

the Weissenberg number, which is defined as λU0
L . Here U0 is the Helmholtz–Smoluchowski

velocity [117] defined as ϵζ0Ex
η0

, where η0 is the zero-shear rate viscosity of the present vis-

coelastic fluid. The polymer viscosity ratio β
(
= ηs

ηs+ηp

)
is used to study the influence of
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Figure 3.1: An illustration of the transformation of a physical model into discrete forms
in numerical simulation methodology [177].

the polymer concentration on the flow dynamics. The present study has simulated a per-

fect creeping flow condition (i.e., Re= 0) by setting the inertial terms of the momentum

equation equal to zero.

3.1.3 Numerical solution technique

All governing equations used in this thesis have been numerically solved using the fi-

nite volume method (FVM) based computational fluid dynamics (CFD) technique. A

finite volume method is a numerical approach that converts the partial differential equa-

tions constituting conservation laws into discrete algebraic equations over finite volumes.

The finite volume method is relatively easy to implement with different boundary con-

ditions and quite suitable for numerical simulations involving fluid flow, heat, and mass

transfer. It can handle all kinds of complex flow problems [178]. The different steps in

the discretization process are depicted in Fig. 3.1. The numerical simulation technique

demonstrates a continuous physical system by equivalent discrete entities, i.e.,

• Time divided into intervals, ∆ t
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(a)   Division of representative domain into smaller cells.  (b) Typical contiguous volume elements.  

Figure 3.2: Subdivision of domain into finite volume elements or cells, (a), typical in-
terconnected polyhedral cells (b) having a common face. Each face inside the domain is
shared by two cells; one is the owner, and the other is the neighboring cell [177].

• Space splits into cells or meshes

• Fields, such as velocity, become discrete values

• The partial differential equations become linear differential equations

Besides the finite volume method, the finite element and finite difference methods are

also used for the same purpose. However, the finite volume method has an advantage

over the other methods as it discretizes the different terms in the governing equations

separately using an efficient and appropriate scheme. Furthermore, the finite volume

method directly implements discretization using an integral formulation. On the other

hand, the finite element and finite difference methods are used to calculate the field

variables. In the finite volume method, the corresponding domain is converted into

smaller adjacent volume elements/cells called finite volumes, Fig. 3.2. These elements can

be of any irregular polyhedral shape in three dimensional. The constitutive equations are

then executed for each cell by balancing the mass and momentum flux across the surfaces

between the connected cells and considering the sources or sinks within each cell.

The discretization of the governing equations is carried out in two steps [178]:

1. Integration of the partial differential equations over each element resulting in the

conversion of surface and volume integrals (first converted into surface integrals by
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utilizing the Gauss theorem) into discrete algebraic relations.

∫
s
(dS ·Ψ) =

∑
f

(Sf ·Ψf )

Here, Ψ is the general field variable, subscript f represents the face values, dS=ndS

is the area vector, and Sf is the face area vector.

2. Transformation of the algebraic relations into algebraic equations of the variables

(flux terms). Interpolation schemes are required to relate the surface values to the

cell values.

Based on this FVM method, all the governing equations have been solved using Open-

FOAM, which is an open-source CFD toolbox. In particular, the recently developed ’rhe-

oFoam’ and ’rheoEFoam’ solvers available in Rheotool [179] package have been used to

solve all the governing equations along with OpenFOAM. All the diffusion terms in the

momentum, constitutive, and number density equations were discretized using the second-

order accurate Gauss linear orthogonal interpolation scheme. All the diffusion terms in

the momentum, constitutive, and number density equations were discretized using the

second-order accurate Gauss linear orthogonal interpolation scheme. All the gradient

terms were discretized using the Gauss linear interpolation scheme. While the linear sys-

tems of the pressure and velocity fields were solved using the preconditioned conjugate

solver (PCG) with DIC (Diagonal-based Incomplete Cholesky) preconditioner, the stress

fields were solved using the preconditioned bi-conjugate gradient solver (PBiCG) solver

with DILU (Diagonal-based Incomplete LU) preconditioner [180, 181]. All the advective

terms in the constitutive equations were discretized using the high-resolution CUBISTA

(Convergent and Universally Bounded Interpolation Scheme for Treatment of Advection)

scheme for its improved iterative convergence properties [182]. All these modifications

were done in the ’fvSchemes’ and ’fvSolution’ subroutines available in the OpenFOAM

solvers. For all the problems in the present study, the pressure-velocity coupling was

established using the SIMPLE (Semi-Implicit Method for Pressure-Linked Equations)

method, and the improved both-side diffusion (iBSD) and log-conformation tensor tech-

niques were used to stabilize the numerical solutions. A typical case file structure in

OpenFOAM is shown in Fig. 3.3.
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0 Folder

Constant

System

initial and boundary conditions

properties of the fluid like viscosity etc.
polyMesh subfolder holds the mesh data

controlDict file holds the data to
control the simulation like time-
-step, max. courant number etc.

fvSchemes file contains the 
discretization schemes

fvsolution file contains the 
linear algebra solvers for the 

discretized equations

Contents

Figure 3.3: A simple case file structure in OpenFOAM [183]. After initiating the terminal,
the command is typed to carry out the simulation and the post-processing.

 

Paraview Post-Processing

Pre-Processing

Problem solving

solver
openFoam

blockMeshDict
          &
   Paraview

Solving system of

Geometry

blockMesh

checkMesh

Discretization

equations

Analysis &
visualization

START

END

Figure 3.4: Flowchart of the steps followed to solve the present problem using Open-
FOAM.

Any CFD simulation consists of three main steps: pre-processing, problem-solving,

and post-processing. A schematic of these different steps in OpenFOAM is summarised

in Fig. 3.4. The pre-processing step involves the formation of the computational domain
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(geometry), followed by mesh generation. The computational domain and its meshing

have been done with the help of the blockMeshDict subroutine available in OpenFOAM.

During the making of any grid, careful consideration is taken into account. For instance,

a very fine mesh is created near a solid wall to capture the steep gradients of velocity,

stress, or concentration fields, whereas a relatively coarse mesh is created away from it.

The problem-solving step involves the selection of a solver, discretization schemes, and

fixing the boundary and initial conditions. For the post-processing step, a third-party

ParaView software is used to analyze and visualize the results. Another important factor

used in the current study to ensure the simulation’s stability is the Courant number. It

is defined as the ratio of the time step size ∆ t to the characteristic convection time scale
∆x
u (time in which a disturbance convects over a given distance of ∆x) and is provided

as:

Co= u∆ t

∆x

To ensure the stability and accuracy of the simulation (explicit numerical schemes), the

Courant-Friedrichs-Lewy or CFL condition of Co≤ 1 is satisfied for all simulations.

3.2 Experimental Methodology

The experimental methodology involves the rheological and physicochemical characteri-

zation and comparison of biosurfactant and chemically derived micellar solutions, which

are first presented and discussed here.

3.2.1 Rheological and physicochemical characterization of mi-

cellar solutions

Materials

Di-rhamnolipid biosurfactant, C32H58O13 (R-90) with 90 % purity (10% mono-rhamnolipid

as impurity [184] and mol. wt. 650.79) produced by AGAE technologies (Oregon, USA)

was purchased from Sigma Aldrich. It was used as received without any further alter-

ation. The conventionally used cationic surfactant cetyltrimethylammonium bromide,

C19H42BrN (mol. wt. 364.4) was purchased from Spectrochem Private Limited (Mum-

bai, India), and it was also used as received. The molecular structure of both surfactants
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Figure 3.5: Representation of molecular structure of (a) rhamnolipid and (b) CTAB. (c)
FTIR results of di-rhamnolipid surfactant, which reveal the presence of mono-rhamnolipid
as 10% impurity in it. This observation is in line with that seen by Rahman et al. [185].
The first marked circle from the left side represents -OH stretch due to the hydrogen
bonding (3310 cm−1), and the second marked circle represents an aliphatic bond stretch-
ing (2960 - 2859 cm−1). Rhamnose rings and hydrocarbon chains are found in these two
regions. The third marked circle confirms the presence of di-rhamnolipid.

is shown in Fig. 3.5. The solvent used to prepare the test solutions was double distilled

water produced with the help of an in-house facility. All the surfactant solutions at var-

ious concentrations were prepared by dissolving a known amount of either rhamnolipid

or CTAB surfactant into de-ionized water having a specific conductivity of 1.2 µS cm−1.

The surfactant solutions were mixed vigorously with a magnetic stirrer at 700 rpm for

about 2 hours and left for a whole night to equilibrate before starting any measurement.
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Surface tension and contact angle measurements

The surface tension of all the surfactant solutions was measured using the force ten-

siometer (Sigma 700, purchased from Biolin Scientific) at 25 °C. The tensiometer was

first calibrated with distilled water before measuring the surface tension of the present

surfactant solutions. For the removal of any contaminant, the glassware used for the

measurement was cleaned with ethanol and then rinsed with distilled water. Also, the

platinum ring used in this setup was washed with distilled water and heated on a flame

before starting any measurement. The ring was hung and dipped into the solution, and

then the maximum force required for pulling out the ring from the solution was con-

sidered as the surface tension. On the other hand, the surface wetting property of the

present surfactant solutions was quantified by measuring the contact angle (CA) using

the Wilhelmy plate method. Both the surface tension and contact angle data for each

sample were repeated at least three times to achieve the reproducibility of the present

results.

Particle size analysis

In the present investigation, a particle size analyzer (Microtrac, Nanotrac wave series,

USA) was used to measure the size of the agglomerates formed in the surfactant solutions.

It operates based on the concept of the dynamic light scattering technique (DLS) with

the detection angle of 186 °. It uses a 4 mW He-Ne standard laser, which operates at

a wavelength of 633 nm. In this technique, a surfactant solution is illuminated by a

beam of laser light and then the fluctuation of the scattered light is collected, which is

ultimately associated with the distribution of particle size present in a solution. The

particle size distribution was measured from the correlation function using the Multiple

Narrow Modes algorithm and this algorithm is based upon a non-negative least squares

(NNLS) fit [186, 187].

Thermal gravimetric analysis (TGA)

The thermal gravimetric analysis measures a material’s mass change as a function of

temperature over time when it is heated at a predetermined rate. A surfactant’s thermal

stability was measured using the SDT 650 apparatus from TA instruments (Finland).
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The test was performed at a constant heating ramp rate of 30 °C/min from 20 to 500 °C.

The alumina sample pan of 90 µL capacity was used to run the experiment under inert

environment condition (nitrogen) at a flow rate of 100 mL/min.

Shear rheological measurement method

For steady and dynamic shear rheological measurements, all surfactant solutions were

characterized by using a stress-controlled rheometer (Anton-Paar, MCR 702 twin drive)

with cone-plate geometry (60 mm of diameter and cone angle of 1°) with a truncation

gap of 100 µm. The experiments were performed at a fixed temperature of 25 °C. The

shear rheological characterizations were reported at both fixed shear (10 s−1) and varying

shear rates (0.01 to 1000 s−1). After each experiment, the measuring plate was cleaned

with distilled water to remove the last sample and then again cleaned with ethanol and

dried out before its use. The viscoelastic property of a surfactant solution is essential to

understanding the relationship between the change in its microstructure and the complex

rheological behaviour. To understand this behaviour, a small amplitude oscillatory shear

(SAOS) test was conducted and presented in the results section. The micelles can break

and reform simultaneously in a solution with equal tendency and show the Maxwellian

behavior when the times for micelles’ breaking and reforming processes dominate over

the reptation time [29, 74]. In this regime, the storage (G′) and loss (G′′) moduli of the

surfactant solution can be fitted to the Maxwell model as follows [188, 189]:

G′ = G0(ωλs)2

1+(ωλs)2 (3.15)

G′′ = G0(ωλs)
1+(ωλs)2 (3.16)

where G0, ω and λs are the plateau modulus, angular frequency, and shear relaxation

time, respectively.

Dripping-onto-substrate (DoS) extensional rheometry

The dripping-onto-substrate (DoS) rheometry method is used to measure the extensional

viscosity of the present surfactant solutions. The experimental setup used for this method

includes a dispensing system and an imaging system, as shown in Fig. 3.6. The dispensing

system releases a known amount of sample onto a glass substrate placed under it. An
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Figure 3.6: Schematic representation of the dripping-onto-substrate (DoS) rheometry
setup. It consists of a light source for backlighting the liquid filament, and a high-
speed camera connected to a computer system to record the filament thinning and pinch-
off dynamics of the liquid bridge formed between the dispensing system and the glass
substrate. The dispensing system consists of a syringe pump that releases a known
amount of test sample through a nozzle of diameter Do placed at a height H from the
glass substrate.

optimized aspect ratio (H/Do) of around three was used in the present study [190, 191],

where H is the height between the nozzle and the glass substrate and Do is the outer

diameter of the nozzle. A syringe pump dispensed the test sample at a flow rate of 0.02

ml/min, and the flow stopped when the fluid drop touched the glass surface. The slow

release of the sample on the glass substrate helps to record the real-time capillary thinning

and pinch-off dynamics of a particular sample. This transient phenomenon was captured

by a high-speed camera (Photron, Fast Cam SA4) with magnification lenses (A G-type

AF-S macro, Nikon) and variable frame rates of up to 12,000 fps. The captured images

and videos were processed by using the image processing program ImageJ. Furthermore,

an in-house code written in Python was used to analyze the capillary thinning and pinch-

off dynamics data.
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Chapter 4
Rheological and physicochemical stud-
ies of biosurfactant and chemically de-
rived micellar solutions

This chapter aims to present detailed rheological and physicochemical studies of biosur-

factant and chemically derived micellar solutions as they are important to investigate

the corresponding flow dynamics. In particular, the present thesis has used rhamnolipid

and cetyl trimethyl ammonium bromide (CTAB) as bio and chemical surfactants and

presented a detailed comparison of their behaviors. The introduction and motivation

behind this chapter have already been introduced in section 2.1 of chapter 2. The physic-

ochemical studies include surface tension and contact angle measurement, particle size

analysis, and thermal gravimetric analysis, whereas rheological studies include steady

shear, small amplitude oscillatory shear (SAOS), and dripping-onto-substrate (DoS) ex-

tensional rheometry.

4.1 Results and Discussion

4.1.1 Surface tension and contact angle

The addition of surfactant molecules in a solution greatly influences the surface tension

and the surface wetting phenomenon. These are important in various applications that

consider fast wetting, such as pesticide spraying, ink-jet printing, etc. [192, 193]. The

adsorption of surfactant molecules at the interface decreases the surface tension until

the equilibrium value is reached. The results for the surface tension of both surfactant

solutions as a function of concentration are plotted in Fig. 4.1. The measurement was

carried out for the concentration ranging from 0.01 to 1.0 wt.% at 25 °C. It is seen that

the surface tension value of the rhamnolipid surfactant solution is lower than that of the

CTAB surfactant solution at the same concentration. The CMC values were observed

at around 0.15 wt.% and 0.30 wt.% for rhamnolipid and CTAB surfactants, respectively.

This suggests that the rhamnolipid has a stronger ability and efficiency to reduce surface
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Figure 4.1: Representation of surface tension as a function of surfactant concentration
for both rhamnolipid and CTAB surfactant solutions at 25 °C.

tension than the CTAB surfactant. Further increasing the surfactant concentration, it

reaches a constant value for both the surfactant solutions. This is because, at high

concentrations, the surface is entirely saturated with the micelles, and no vacant site

can be further occupied. As a result, no further decrease in the surface tension value

is observed [194, 195, 196, 197, 198, 199]. As the critical micelle concentration (CMC)

is reached, the change in surface tension with concentration becomes minimal because

there is no significant change in the monomer concentration with increasing surfactant

concentration. This result indicates that the adsorption of surfactant molecules is greatly

affected by the concentration, which concluded that the presence of micelles makes no

difference in the adsorption dynamics [200].

For the contact angle measurement, the surfactant equilibrated Wilhemly platinum

plate was clamped into the tensiometer balance and immersed into the surfactant solution

at a speed of 5 mm/min. The plate was immersed to a depth of 3 mm and then pull-

backed to get advancing and receding contact angle measurements. Fig 4.2 shows the
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(a) (b) 

Figure 4.2: (a) Representation of wetting force as a function of immersion depth (b) ad-
vancing and receding contact angles (in degree) as a function of wetting cycle number for
both CTAB and rhamnolipid surfactant solutions on pre-equilibrated Wilhelmy platinum
plate at 1.0 wt.% concentration. The immersion depth and speed were kept at 3 mm and
5 mm/min, respectively.

results for both surfactant solutions. The wetting force decreases with the immersion

depth for both surfactants due to buoyancy, as seen from Fig. 4.2(a). In particular, it

remains almost constant initially and then starts to decrease with further increment in

the depth, and this trend was also observed in earlier experiments [201]. Depending on

the nature of the sample (hydrophobic or hydrophilic), the wetting force can be positive

or negative. In this case, a positive value of the wetting force is observed due to the

downward direction of the force on the surfactant solution. The advancing wetting force

is higher, and the receding wetting force is lower for the rhamnolipid surfactant than

for the CTAB. Fig. 4.2(b) represents the contact angle (θ) for both surfactants with

respect to the number of wetting cycles. In both cases, it is found that the advancing

contact angle decreases and then approaches a constant value as the surface becomes

wetter in subsequent evaluations. The receding contact angle is almost constant due

to the aggregation of the surfactant molecules on the plate surface. As the surfactant

concentration gradually increases, the advancing contact angle value shows no significant

change irrespective of the surfactant type, see Table 4.1. This is due to the formation of

a monolayer of surfactant molecules on the plate surface and then more aggregation of

surfactant molecules on the plate surface at high surfactant concentration. Note that here
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CTAB CTAB Rhamnolipid Rhamnolipid
Concentration (wt.%) Adv. CA Rec. CA Adv. CA Rec. CA

0.01 67.709 57.45 75.685 64.177
0.1 67.901 60.42 75.95 64.874
0.25 68.459 61.266 76.241 65.02
0.5 68.857 61.872 76.951 65.728
1.0 69.162 62.286 77.183 66.38

Table 4.1: Values of the advancing and receding contact angles for both CTAB and
rhamnolipid surfactants as a function of concentration.

the advancing and receding contact angles are calculated from the following relation [202]

F

L
= γ̇a/wCosθ−d∆ρg (4.1)

where F is the force, L is wetting plate length, γ̇a/w is surface tension at the air/surfactant

solution interface, d is the immersing depth, θ is the contact angle, g is the gravity force

and ∆ρ is the water and sample density difference.

4.1.2 Particle size measurement

Particle size analysis is an important characteristic used for quality control in many

industrial processes such as pharmaceuticals, paints and coatings, aerosol, food industry,

etc. It is one of the important factors that determine the efficiency and performance of

the processes. In the present study, this analysis will provide information about the size

distribution of micelles in the solution [203, 204]. The particle size or aggregate of the

rhamnolipid biosurfactant is smaller than that of the CTAB chemical surfactant as can be

seen from see Fig. 4.3. Furthermore, it can be observed that the micelle size distribution

of rhamnolipid biosurfactant is better than the distribution of CTAB surfactant in a

solution. The particle size distribution curve of the CTAB surfactant is close to that of a

skewed distribution function, whereas it is of a mono-modal distribution function for the

rhamnolipid surfactant. Furthermore, it has been observed that the rhamnolipid remains

well mixed and stable in an aqueous solution than that seen for CTAB, which starts to

settle down after some time. The rhamnolipid surfactant consists of a rhamnose group,

which is linked together with 3-hydroxyl fatty acids. The carboxyl end of the fatty acid

is highly polar; therefore, this biosurfactant is highly water-soluble and stable.
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Figure 4.3: Particle size distribution for 1.0 wt.% of (a) CTAB and (b) rhamnolipid
surfactant solution at 25 °C.

 

 

 

 

 

 

 

 

 

 

  

  

Figure 4.4: Representation of TGA curves in terms of weight loss in % for both surfactants
under nitrogen atmosphere conditions and ramp rate 30 °C/min.
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4.1.3 Thermal gravimetric analysis

The thermal stability of a surfactant solution is another important property that plays a

significant role in many applications, such as in the surfactant flooding-based enhanced

oil recovery process. At a relatively high temperature, the performance of a surfactant

solution can be affected because of its thermal degradation behaviour. Surfactants get

precipitated at high temperatures, decreasing their ability to drastically lower the surface

tension. The thermal stability of both surfactants is presented in Fig. 4.4 under a nitrogen

atmosphere within a temperature ranging from 20 to 500 °C. It shows no significant weight

loss of up to 150 °C of both surfactants. After this temperature, rhamnolipid degrades

as the temperature further increases, but CTAB surfactant shows better stability at low

temperatures. At around temperature 260-270 °C, severe thermal degradation is observed

for the CTAB surfactant, while rhamnolipid performs better at the same temperature.

For the CTAB surfactant, around 70 % weight loss is observed at 280 °C, whereas only

26.75 % weight loss is seen for the rhamnolipid surfactant. While rhamnolipid shows an

almost linear decreasing trend in the thermal degradation behaviour with the temperature

of up to 500 °C, a drastic steep decomposition of the CTAB surfactant occurs at around

260 °C, and then it remains almost constant up to a temperature of 500 °C. These thermal

stability tests suggest that the rhamnolipid biosurfactant has better thermal stability at

high temperatures (> 300 °C) than the CTAB surfactant. Therefore, it is better suited

for high-temperature applications such as in the surfactant flooding-based enhanced oil

recovery process.

4.1.4 Steady shear rheological measurements

For the successful formulation of industrial products such as paints, polymers, food,

and pharmaceuticals, studying the rheology of surfactant solutions for their better use

under various flow conditions is imperative. To do so, first, we examine the variation

of the shear viscosity with the shear rate at various surfactant concentrations at 25 °C.

Fig. 4.5 depicts the effect of the shear rate on the shear viscosity of both rhamnolipid and

CTAB at different concentrations. In all the cases, a shear-thinning behavior is observed

between the low and intermediate shear rate regimes irrespective of the surfactant type

and concentration. This is because as the shear rate gradually increases, micelles’ internal
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Figure 4.5: Variation of the steady shear viscosity with shear the rates both for CTAB
and rhamnolipid solutions at 25 °C.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6: Variation of zero-shear viscosity with concentration both for CTAB and
rhamnolipid solutions at 25 °C.
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entangled network structure is supposed to be disrupted at a higher rate than the rate of

structure reformation. They orient themselves parallel to the driving force (known as the

shear alignment) [205, 206, 207, 208], ultimately leading to this shear-thinning behavior.

Furthermore, a plateau region in the shear viscosity at a low shear rate regime is also

observed, followed by a change in its value by order of magnitude at the intermediate

shear rate regime [189, 209]. All these suggest that the rheological responses of both bio

and chemically-derived surfactant solutions are very sensitive to the change in the shear

rate due to the change in their molecular architecture. The shear-thinning behavior of

the present surfactant solution is best described by the following power-law model [210]:

η = kγ̇n−1 (4.2)

Here η is the shear viscosity (mPa.S), γ̇ is the shear rate (s−1), k is the flow-consistency

index (Pa.sn), and n is the flow behaviour index (dimensionless). For a Newtonian fluid,

the flow behaviour index n = 1, whereas for shear-thinning (or pseudoplastic) fluids,

the flow behaviour index n <1. When n > 1, fluid shows a shear-thickening behaviour

called a dilatant fluid. Fluid can also exhibit yield stress along with shear-thinning and

shear-thickening behaviours, and those fluids can be modeled either with Bingham or

Herschel-Bulkley model [211]. The above non-linear power-law model fitted the exper-

imentally measured shear viscosity. For CTAB surfactant solutions, the values of n at

0.25, 0.5, and 1.0 wt.% are 0.861, 0.871, and 0.877, respectively. On the other hand, for

rhamnolipid biosurfactant solutions, the corresponding values of n are 0.868, 0.875, and

0.882, respectively. It can be seen that the value of n slightly increases with the surfac-

tant concentration, suggesting that the shear-thinning behaviour of the present surfactant

solutions hardly depends on the surfactant concentration. On the other hand, the vari-

ation of the zero-shear rate viscosity (η0) with the surfactant concentration is plotted

in Fig. 4.6. It is an important rheological parameter widely used in various practical

applications [212, 213]. It is evaluated by extrapolating the shear viscosity data at low

shear rate values to its zero value. An increasing trend in its variation with the surfac-

tant concentration can be seen irrespective of the surfactant type due to the increase in

the tendency to form an entangled network structure with the surfactant concentration.

This trend also aligns with that seen in earlier investigations [214, 215]. At any surfactant

concentration, the value of η0 is higher for rhamnolipid than for CTAB. This is because
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Figure 4.7: Representation of storage (G′) and loss (G′′) moduli as a function of angular
frequency (ω) both for CTAB and rhamnolipid surfactant solutions at 25 °C and shear
strain 0.1 %. Slopes 1 and 2 represent the divergence for rhamnolipid biosurfactant.

the latter has a lower molecular weight than the former one, and the zero-shear rate

viscosity scales with the molecular weight as η0 ∼Mα
w [216]. We have fitted these results

with a form η0 ∼ Cα where C is the surfactant concentration. The values of the expo-

nent α are 0.09431 and 0.1876 for CTAB and rhamnolipid, respectively. These values are

smaller than that predicted by the scaling theory of Cates and Candau [29]. This may

be attributed to the low surfactant concentration and the absence of salt in the present

study.

4.1.5 Small amplitude oscillatory shear (SAOS) measurements

Small amplitude oscillatory shear (SAOS) can influence the microstructure of the mi-

celles. Oscillatory shear applies a sinusoidal stress to the material, thereby periodically

changing the deformation and stress. This periodic deformation can have a significant

effect on the microstructure of the micelles. Due to the oscillatory shear, the micelles

experience alternative stretching and relaxation, resulting in a change in the micelles
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Figure 4.8: Representation of storage (G′) and loss (G′′) moduli as a function of strain
(%) both for CTAB and rhamnolipid surfactant solutions at 25 °C.

 

Figure 4.9: Representation of shear relaxation time (λs) as a function of surfactant con-
centration both for CTAB and rhamnolipid surfactant solutions at 25 °C.
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microstructure. Small amplitude oscillatory shear measurements are often conducted to

measure the viscoelastic property of a complex fluid in the linear regime [217, 218]. In this

measurement, the elastic part of the solution is called the storage modulus (G′), which

measures the energy stored and recovered. On the other hand, the viscous part is called

the loss modulus (G′′), which is a measure of the energy dissipated [2, 219]. The storage

and loss moduli results against the angular frequency (ω) are shown in Fig. 4.7 at 25

°C. At low angular frequency, the loss modulus (Gȷ) is greater than the storage modulus

(G′) regardless of the surfactant type, thereby showing a liquid-like behaviour. Further

increasing the angular frequency, the storage and loss moduli proceed towards the critical

point where G′ = G′′, known as the crossover frequency. Beyond this point, the storage

modulus is greater than the loss modulus, showing an elastic solid-like behaviour at high-

frequency regions. The storage and loss moduli continue to increase, indicating rod-like

micelles in the solution [220, 221]. At low frequencies, the results follow the Maxwellian

trend with slopes of 1 and 2 for G′ and G′′, respectively. The divergence from viscous to

elastic state suggests the formation of micelles in the solution and the transition of the

relaxation mode from slower to faster. The results were consistent with Tang et al. [222].

It can be seen that the rhamnolipid biosurfactant shows more elasticity than the CTAB

chemical surfactant at all concentrations (results for 0.25 and 0.50 wt.% of surfactant

solutions are not shown here as the trends are almost similar as that seen for 1%).

The results for the amplitude sweep experiments of both CTAB and rhamnolipid sur-

factants are depicted in Fig. 4.8. Irrespective of the surfactant type, the storage modulus

(G′) as well as loss modulus (G′′) remain almost constant up to a strain amplitude of

around 10, indicating the existence of a linear viscoelastic regime up to this value of the

strain amplitude for both the surfactants. At low strain amplitudes, the storage modu-

lus is always greater than the loss modulus, suggesting the elastic contribution is more

dominant than the dissipative contribution. On the other hand, the viscous contribution

dominates over the elastic response at high strain amplitudes. Once again, it can be seen

that the storage and loss moduli are larger for the rhamnolipid biosurfactant than for the

CTAB chemical surfactant over the whole range of the strain amplitude considered in this

study. This is again due to the difference in the molecular weight of the two surfactants.

The shear relaxation time λs is obtained by fitting the experimental results of G′ and

G′′ using the single-mode Maxwell model [223], and the results are presented in Fig. 4.9
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both for rhamnolipid and CTAB. One can see that irrespective of the surfactant type, the

shear relaxation time increases with the surfactant concentration. It should be mentioned

here that the relaxation time should be independent of the surfactant concentration in the

dilute regime [2, 224]. However, we can see almost a linear dependence of the relaxation

time on the surfactant concentration. It suggests that the surfactant concentration must

be in the semi-dilute or entangled regime, where the relaxation time depends on the

concentration. For instance, in the unentangled semi-dilute regime, the relaxation time

scales as λs ∝ c
c∗

2−3v
3v−1 where v is the excluded volume scaling exponent and c∗ is the

overlap concentration [224, 225]. Furthermore, at any concentration, the relaxation time

of the rhamnolipid biosurfactant is larger than that of CTAB due to the higher molecular

weight of the former surfactant than the latter one. This trend, i.e., increase in the

relaxation time with the molecular weight, can also be seen from the expression of the

Zimm relaxation time (although it is valid in the dilute regime) as [2, 226] λz = F [η]Mwηs
RT ,

where F is a parameter which depends on the excluded volume scaling exponent v, [η] is

the intrinsic viscosity, Mw is the molecular weight, R is the universal gas constant and T

is the absolute temperature.

4.1.6 Capillary thinning and pinch-off dynamics by DoS rheom-

etry

The rheological phenomena under an extensional flow field differ from those in the shear

flow field. Investigating the extensional property of a material is very important for its

use in various applications, such as jetting, coating, spinning, spraying, etc. [227, 228].

In this study, we have used the DoS rheometry protocol to investigate the capillary

thinning and pinch-off dynamics of both surfactants at various concentrations. The DoS

rheometry setup is shown in Fig. 3.6, and its working principle is already explained

in sub-section 2.3. The representative images of different filament shapes during the

capillary-thinning process at a time interval of ∆t = 0.3 ms are presented in Fig. 4.10

for both surfactants. This figure shows that both the neck thinning and pinching rates

seem to be visually comparable for both surfactants. A slender cylindrical liquid filament

is formed, and a small head bead appears at the end in both cases. The corresponding

temporal evaluation of the filament radius is displayed in Fig. 4.11. It suggests that

both surfactants show qualitatively similar behavior in the temporal evaluation of the
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Figure 4.10: Representation of different filament shapes and pinch-off obtained using the
dripping-onto-substrate (DoS) method at different times for (a) CTAB and (b) rhamno-
lipid surfactants at 1 wt.% concentration.
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 Figure 4.11: Evaluation of radius as a function of time for CTAB and Rhamnolipid
surfactant at different concentrations. The plot displayed how the pinch-off time shifted
as the surfactant concentration increased.

filament radius. On increasing the surfactant concentration, the pinch-off time is delayed

regardless of the surfactant type. This is due to an increase in the formation of viscoelastic

network structure with the surfactant concentration, which was also observed in previous

studies [190]. Rhamnolipid shows more delay in the pinching off than CTAB due to the

former surfactant’s higher molecular weight and complex molecular architecture.

In Fig. 4.12, two different regimes are observed in the temporal evaluation of the

filament radius: first is the inertia-capillary (IC) regime, where the balance between the

inertia governs the thinning dynamics of the liquid filament originated due to the weight

of the liquid drop and capillary forces. Second is the elasto-capillary (EC) regime, where

the thinning dynamics of the liquid filament are governed by the balance between the fluid

elasticity and capillary forces [191]. The transition between these two regimes happens

at a time tc, schematically shown by a dotted line in Fig. 4.12.

The evaluation of the filament radius in the IC regime can be expressed by the fol-

lowing equation [229]
R(t)
R0

= 0.8(tic− t)2/3

tR
(4.3)
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Figure 4.12: Filament radius evaluation plot as a function of time at different concentra-
tions of CTAB and Rhamnolipid. Here the time axis is shifted with time tc. This figure
shows the presence of two regimes: one is the inertia-capillary regime (IC) before tc and
elasto-capillary regime (EC) after tc.

54



 

 

 

 

 

 

 

 

 

 

  

  

 

 

 

Figure 4.13: (a) Variation of the extensional relaxation time (λE) with the surfactant
concentration. (b) Variation of the ratio of the extensional and shear relaxation times
(λS) with the surfactant concentration.

Here R0 represents the initial radius, tic is the pinch-off time, and tR is the Rayleigh time(
tR = (ρR3

0)1/2

σ

)
, which is a characteristic time scale for the inertia-capillary regime. Here

ρ and σ are the surfactant density and surface tension, respectively [230, 231]. On the

other hand, in the elasto-capillary (EC) regime, the evaluation of the filament radius can

be described by the following expression as proposed by Entov and Hinch [232],

R(t)
R0

= (R0GE)1/3

2σ exp
( −t

3λE

)
(4.4)

Here GE and λE are the extensional elastic modulus and extensional relaxation time,

respectively. Note that the extensional modulus and extensional relaxation time values

are different in magnitude from that of shear modulus and shear relaxation time for both

surfactants. Both GE and λE can be computed from the temporal evaluation of the fila-

ment radius in the EC regime. One can see that the temporal evaluation of the filament

radius in the EC regime shows a linear trend in a semi-log plot. Furthermore, it shows less

concentration dependence in the IC regime than in the EC regime. This is because elastic

effects become important in the EC regime, and in this regime, different molecular-scale

phenomena such as micelles stretching and orientation happen that contribute to the ori-

gin of these elastic effects. These again strongly depend on the surfactant concentration.

A similar observation was also reported in the experimental works of Dinic et al., and

Nodoushan et al. [233, 234, 235, 236].
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Figure 4.13(a) shows the variation of the extensional relaxation time λE as a function

of surfactant concentration. The extensional relaxation time can be obtained by fitting

Eq. 6 in the elasto-capillary regime. It can be seen that the extensional relaxation time

strongly depends on the surfactant concentration regardless of the surfactant type. As

the surfactant concentration increases, the extensional relaxation time also increases due

to the formation of strong and long micelles and entanglement among them, which all

together make the solution more viscoelastic in nature. Once again, the extensional re-

laxation time is higher for rhamnolipid than for CTAB because of the larger molecular

weight of the former one than the latter one. We have found a linear relationship on a

semi-log plot between the variation of the extensional relaxation time with the surfac-

tant concentration. The corresponding slopes of the fitted lines are also mentioned in

Fig. 4.13(a).

Figure 4.13(b) depicts the variation of the ratio of extensional (λE) to that of shear

(λS) relaxation times. It can be seen that this ratio of two relaxation times decreases

with the surfactant concentration irrespective of the surfactant type. A similar observa-

tion was seen in earlier studies by Nodoushan et al. [236], and Sachsenheimer et al. [237]

for chemically derived surfactants. The reason behind this is as follows: in extensional

flows, micelles align themselves with the flow and form a structure, which is known as

the extension-induced structure (EIS) [236, 237]. This alignment of micelles actually

increases the extensional relaxation time. However, as the surfactant concentration in-

creases, the tendency to form this alignment of micelles due to this extension-induced

structure gradually decreases due to the increase in the entanglement of the micellar

network. Therefore, it eventually decreases the ratio of the relaxation times with the

surfactant concentration.

The transient extensional viscosity ηE of both surfactant solutions is also reported

in this work. It is computed from the elasto-capillary regime data after establishing a

homogeneous extensional flow field within the liquid neck. The transient extensional

viscosity is calculated using the following equation [191]

ηE = σ

ϵ̇R
= σ

−2dR(t)/dt (4.5)

where ϵ̇ is the extensional rate measured from the temporal evaluation of the filament

radius in the EC regime. Figure 4.14 represents the variation of the transient extensional
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Figure 4.14: Extensional viscosity (ηS) as a function of Hencky strain (ϵ) for both sur-
factant at different concentrations.

viscosity (ηE) as a function of the Hencky strain ϵ
(
= −2ln R0

R(t)

)
at different surfac-

tant concentrations, which is a standard procedure to represent the transient extensional

viscosity. It can be seen that the extensional viscosity increases with the total accumu-

lated strain, irrespective of the surfactant type and concentration. The variation in the

transient extensional viscosity for both surfactant solutions appeared to be qualitatively

similar. For a Newtonian fluid, the Trouton ratio (ratio of the extensional viscosity to that

of the shear viscosity, TR = ηE
ηS

) is 3, whereas, for viscoelastic fluids, TR value is higher

than that seen for Newtonian fluids, often is of the order of 101 −105 [238]. For instance,

the Trouton ratios for 0.25 wt.% of CTAB and Rhamnolipid are found to be 33.06 and

43.166, respectively, which are much greater than that seen for Newtonian fluids. These

high values of the Trouton ratio indicate the presence of sufficient strain-hardening phe-

nomena in both surfactant solutions. The tendency of this strain-hardening behaviour

increases with the surfactant concentration regardless of the surfactant type due to the

formation of a strong viscoelastic network structure. As the Trouton ratio is greater than

one, the extensional viscosity is naturally always higher than the shear viscosity for all

concentrations of surfactant solutions. This increase in the extensional viscosity with the
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surfactant concentration also results in a significant delay in the filament breakup, as

shown and discussed earlier.
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Chapter 5
Pressure driven flows of wormlike mi-
cellar solutions past a single micro-
cylinder confined in a channel

The introduction and literature survey on this particular problem is already presented

in section 2.2 of chapter 2. This chapter presents and discusses the results in detail for

this problem. In particular, this chapter delineates how the chain scission of wormlike

micelles will influence the flow dynamics, particularly viscoelastic flow instabilities, during

the flow past a single microcylinder confined in a microchannel.

5.1 Problem formulation

The problem considered herein is the study of the flow characteristics of a non-shear

banding and incompressible wormlike micellar solution past a circular cylinder of diameter

d confined symmetrically in a channel of height H in the creeping flow regime, as shown

schematically in Fig. 5.1(a). A fixed value of the blockage ratio (BR) (defined as the

ratio of the cylinder diameter to the channel height, i.e., d/H) of 0.67 is considered here.

The inlet and outlet lengths of the channel are fixed at 40d, Fig. 5.1(a). Furthermore,

the wormlike micelles are modeled here using the VCM model, as written and discussed

in section 3.1.1 of chapter 3. According to this model, the micelles are considered an

elastically active network dispersed uniformly in an incompressible Newtonian solvent.

Once the flow is initiated, this network strand starts to deform, break, and simultaneously

reform, and hence, the resulting motion becomes completely non-linear.

Figure 5.1: (a) Schematic of the present problem (b) A typical mesh used in the present
study with a zoomed view near the cylinder surface.
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Figure 5.2: (a) Variation of the non-dimensional shear viscosity versus the shear rate in
homogeneous shear flow (b) Variation of the non-dimensional extensional viscosity versus
the extensional rate in homogeneous planar extensional flow.

Boundary Velocity Pressure Chain number density Conformation tensor
Inlet UX = 1,UY = UZ = 0 ∂P

∂n = 0 nA = 1,nB =
√

2CAeq/CBeq A = (1 0 0 1 0 1)
B = (ϕ 0 0 ϕ 0 ϕ)
where ϕ= nB/2

Outlet ∂U
∂n = 0 P = 0 ∂nA

∂n = ∂nB
∂n = 0 ∂A

∂n = ∂B
∂n = 0

Solid wall UX = UY = UZ = 0 ∂P
∂n = 0 ∂nA

∂n = ∂nB
∂n = 0 ∂A

∂n = ∂B
∂n = 0

Table 5.1: Boundary conditions for the present computation domain

5.2 Numerical solution procedure and its validation

The details of the governing and VCM constitutive equations and their numerical solution

techniques have already been presented in subsections 3.1.1 and 3.1.3 of chapter 3. The

appropriate boundary conditions employed here are presented (in their non-dimensional

forms) in Table 5.1. Three different grid densities with a different number of cells on the

cylinder surface and in the whole computational domain were created. A grid consisting

of 58800 hexahedral cells (with 480 grid points on the cylinder surface and a grid spacing

of ∆X = 0.00654) was found to be adequate to capture the flow physics for the whole

range of conditions encompassed here. This was confirmed by performing simulations

with a higher grid density (almost double) than those selected in the present study, and

the results (in terms of the time-averaged drag and lift forces acting on the cylinder as well

as the temporal variation of velocity and stress) were almost indistinguishable from each

other. A typical mesh used in the present study is shown in Fig. 5.1(b) with a zoomed
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Figure 5.3: Comparison between the present results (lines) and the results of Cromer
et al. [239] (symbols) for the flow of a wormlike micellar solution through a straight mi-
crochannel at a non-dimensional pressure gradient of P = 1. Non-dimensional streamwise
velocity at (a) = 10−3 and (b) = 10−1. The magnitude of the non-dimensional conforma-
tional tensor component of the long chain A at two different non-dimensional values of the
diffusivity parameter, namely, (c) D = 10−3 and (d) D = 10−1. Other non-dimensional
VCM parameters are: β = 7 × 10−5, µ = 1.9, cAeq = 0.9, cBeq = 1.4, ϵ = 6.27 × 10−4,
ξ = 0.3.

61



view near the cylinder surface. After fixing the grid density, the present numerical setup

was validated against the results of Cromer et al. [239] for the pressure-driven flow of a

wormlike micellar solution through a straight microchannel, and an excellent agreement

was found between the two results, Fig. 5.3. The normalization scheme for velocity, stress,

and time with the definition of Weissenberg number is discussed in subsections 3.1.1 of

chapter 3.

5.3 Results and discussion

At the outset, the results for a Newtonian fluid are presented to show how the rheological

complexity of a wormlike micellar can influence the flow characteristics in this benchmark

system under otherwise identical conditions. As expected, for a Newtonian fluid, the

streamlines remain attached to the cylinder surface, and perfect fore-aft symmetry is

seen to be present (Fig. 5.4). This aligns with the experimental results of Zhao et al. [86].

We next present the results for a wormlike micellar solution with the non-linear VCM

model parameter ξ = 0, i.e., without breakage and reformation. In this limit, the VCM

constitutive model would tend to behave as two uncoupled upper convective Maxwell

(UCM) models [88]. For this limiting case, the simulations were run up to the Weissenberg

number of 0.51, and beyond this value, the convergence became difficult, in line with the

findings of others [81]. Figure 5.5(a) shows the variation of the stream-wise velocity

Ux (non-dimensionalized with the mean inlet velocity Uin) along the mid-plane both

upstream and downstream of the cylinder and both for Newtonian and VCM fluids for two

values of the Weissenberg number, namely, 0.29 and 0.4. Once again, a perfect symmetry

in the velocity field is seen for a Newtonian fluid. For the VCM fluid, the symmetry

is gradually destroyed as the value of the Weissenberg number progressively increases.

Furthermore, a downward velocity shifting with the Weissenberg number is seen upstream

and downstream of the cylinder. This observation also aligns with that seen earlier for

the UCM fluids [81]. At Wi= 0.445, a purely elastic instability appears for the VCM fluid

with ξ = 0, and due to this, the fore-aft symmetry in the streamline profiles is destroyed,

see Fig. 5.4 (b). The emergence of the elastic instability at this Weissenberg number

is further confirmed by plotting the temporal variation of the stream-wise velocity at a

position near the rear stagnation point of the cylinder at two values of the Weissenberg
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Figure 5.4: Representative of streamline profiles (a) Newtonian fluid (b) WLM solution,
ξ = 0, Wi= 0.445, (c) ξ = 0.01, Wi= 0.001.

Figure 5.5: (a) Variation of the non-dimensionalized stream-wise velocity both for Newto-
nian and VCM fluids upstream and downstream mid-plane of the cylinder (b) Temporal
variation of the stream-wise velocity at a point downstream of the cylinder for VCM
fluids at two different values of the Weissenberg number.

number, namely, 0.4 and 0.445, in sub-Fig. 5.5(b). It is seen that the velocity attains

a steady value with time for Wi = 0.4, whereas it fluctuates at Wi = 0.445. The range

of the Weissenberg number at which this instability appears corresponds well with the

earlier studies carried out for the UCM fluids [240, 241].

5.3.1 Hydrodynamics

We now focus on analyzing the flow characteristics at finite values of ξ wherein the

breakage and reformation dynamics of the micelles are important. To do so, simulations

were run for the Weissenberg number ranging from 0.001 to 3 for three values of ξ,

namely, 0.01, 0.05, and 0.1. Figure 5.6 shows the streamline profiles at two values of the

Weissenberg number, namely, 0.5 and 2.5, and for two values of ξ, namely, 0.01 and 0.1.
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Figure 5.6: Representative streamline patterns at various values of the Weissenberg num-
ber and for two values of the non-linear VCM model parameter ξ, namely, 0.01 and 0.1.

A similar trend of streamline profiles was observed at a very low value of the Weissenberg

number of 0.0001 as that seen for a Newtonian fluid due to a negligible effect of its non-

Newtonian behaviour (Fig. 5.4(c)). However, as the value of Wi increases, say to 0.5, one

can clearly see the differences in the streamline profiles for WLM solutions compared to

that seen for Newtonian and WLM solutions at low values of the Weissenberg number.

At this combination of Wi and ξ, the symmetry along the vertical mid-plane passing

through the origin disappears, but the horizontal mid-plane symmetry still exists, see

sub-Fig. 5.6(a) for ξ = 0.01 and sub-Fig. 5.6(e) for ξ = 0.1. Furthermore, two small

vortices of equal size and shape are formed downstream of the cylinder, as seen in the

zoomed figure. Note that the flow is still steady and laminar up to this value of the

Weissenberg number regardless of the value of ξ.

On further increasing the Weissenberg number to 2.5, the horizontal mid-plane sym-

metry at Y = 0 in the streamline profiles still exists for WLM solutions with ξ = 0.1; for

instance, see sub-Fig. 5.6(f) or (g) or (h). Furthermore, the flow remains steady, as can

be seen from the streamline profiles, which are indistinguishable at three different times.

However, no symmetry is present in the streamline profiles for wormlike micellar solutions

with ξ = 0.01. At this value of ξ, the streamlines start to distort, particularly near the
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(a) 

(b) 

Figure 5.7: (a) Temporal variation of X-component velocity at a position near to the
front stagnation point (b) Power spectral density plot of the temporal variation of X-
component velocity at Wi= 2.5 and ξ = 0.01.

cylinder’s front and rear stagnation points, sub-Figs. 5.6(b), (c), and (d). Furthermore,

the flow becomes unsteady at this value of ξ as the flow pattern becomes time-dependent,

which is also evident in the streamline plots. In addition to the distortion of streamlines,

small vortex regions are also formed both upstream and downstream of the cylinder near

the stagnation points. The size and shape of these stagnant zones vary with time, and

sometimes they completely disappear. All these flow characteristics suggest that elastic

instability appears in the flow at these values of the Weissenberg number and non-linear

VCM model parameter ξ. The instability is seen to be initiated upstream of the cylin-

der, which is in line with that observed experimentally [86, 87]. However, it should be

mentioned here that the range of the Weissenberg number was higher in these experi-

ments than the values used here. The unsteadiness in the flow is further confirmed by

plotting the X-component velocity at a point (X = -0.75d, Y = 0) near the front stagna-

tion point of the cylinder for two values of the Weissenberg number, namely, 0.001 and

2.5, Fig. 5.7(a). In this figure, the velocity reaches a steady state value with time for

Wi = 0.001 regardless of the value of ξ. On the other hand, at Wi = 2.5, the velocity
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again reaches a steady state value with time for ξ = 0.1, but it fluctuates and becomes

time-dependent for ξ = 0.01. The nature of this unsteadiness is further examined by

plotting the power spectral density of the temporal variation of the X-velocity compo-

nent in Fig. 5.7(b). It is seen that a single fundamental dominant frequency governs the

velocity fluctuation in the power spectrum plot. This suggests that the flow seems to

reach a quasi-periodic state at these values of the Weissenberg number and non-linear

VCM model parameter ξ.

Next, we explored the reasons for this elastic instability and why the onset of this

instability is facilitated by the decreasing value of ξ for a wormlike micellar solution. This

can be explained, at least, qualitatively as follows: as pointed out earlier, the physical

significance of ξ is that the higher the value of this parameter, the lower the stress or

stretch (or scission energy) needed to break the micelles. As the micelles reach the front

stagnation point of the cylinder (θ = 0), they gradually stretch as they travel along the

cylinder surface towards the rear stagnation point (θ = 180) due to a strong shearing

motion in this region. At higher values of ξ, for instance, at ξ = 0.1 used in this study,

the long micelles tend to easily break into smaller micelles during their movement, even

at a very low flow strength, as they are easier to break. For this reason, the energy

stored during the stretching of the micelles is released during the breakdown of the

micelles, and it happens before the stretching of the micelles could trigger the onset of

elastic instability. With the decreasing values of ξ, the maximum extent up to which the

micelles can be stretched gradually increases, and it also becomes progressively difficult

to break the micelles. This results in an increase in both the stream-wise and span-

wise normal stresses in both the upstream and downstream regions of the cylinder. This

eventually leads to elastic instability. This is further confirmed in Fig. 5.8 wherein the

temporal variation of the span-wise normal stress component τw,Y Y at a point near the

front stagnation point of the cylinder is plotted for two values of ξ, namely, 0.1 and 0.01

at a fixed value of Wi = 2.5. In this figure, the normal stress component becomes time-

dependent and also higher in magnitude for the WLM solution with ξ = 0.01 compared

to that of a steady value seen with ξ = 0.1.

To add further weight to the preceding explanation, we analyze the extension rate

(ϵ̇XX) along the mid-plane downstream of the cylinder at Wi = 2.0 and ξ = 0.01 (sub-

Fig. 5.9(a)). This is similar to the calculation by Moss and Rothstein [84]. The extension
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Figure 5.8: Temporal variation of the normal stress component τw,Y Y .

Figure 5.9: (a) Variation of extension rate (ϵ̇XX) along the mid-plane downstream of
the cylinder at Wi = 2.0 at two different times (b) Temporal variation of the maximum
extension rate (ϵ̇M ) downstream of the cylinder at Wi = 2.0 (c) Variation of the local
extensional Weissenberg number (WiLExt) with the Weissenberg number
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Figure 5.10: Velocity magnitude plot (a) Wi = 1.5, ξ = 0.01, t = 49 (b) Wi = 2.5, ξ =
0.01, t = 49.1 (c) Wi = 2.5, ξ = 0.01, t = 50 (d) Wi = 1.5, ξ = 0.1, t = 49 (e) Wi = 2.5, ξ =
0.1, t= 49.1 (f) Wi= 2.5, ξ = 0.1, t= 50.

rate is seen to be maximum near the rear stagnation point of the cylinder and time-

dependent, which gradually becomes zero far away from the cylinder. The temporal

variation of this local maximum extension rate (ϵ̇M,XX) is plotted in sub-Fig. 5.9(b). We

now define a local extensional Weissenberg number based on the time-averaged value of

this local maximum extension rate, i.e., WiLExt = λeff ϵ̇M,XX and its variation with the

global Weissenberg number is shown in sub-Fig. 5.9(c). One can see that the value of such

a local extensional Weissenberg number gradually increases with the global Weissenberg

number due to the increase in the extension rate. The flow becomes unsteady when

the value of WiLExt (or the value of the global Weissenberg number is nearly equal to

0.76) becomes at around 1.41, which is indicated in sub-Fig. 5.9(c). Calculating the local

extensional Weissenberg number has also been used in the experiments of a falling sphere

in wormlike micellar solutions [114, 242] to explain the onset of the elastic instability.

Fig. 5.10 shows the velocity magnitude (non-dimensionalized with the inlet velocity,

Uin) plot at various values of the Weissenberg number and two values of ξ, namely, 0.01

and 0.1. Similar to the streamline profiles, there is a fore-aft symmetry present in the

velocity magnitude plot both for Newtonian fluids and wormlike micellar solution at a

low Weissenberg number of Wi= 0.001 (Figs. 5.11 (a) and (b)). In line with the overall

mass balance, the magnitude of the velocity is always higher in the narrow gap between

the cylinder and channel walls, irrespective of the fluid type.

At higher Wi, say to 1.5, the symmetry in the velocity magnitude plot along the verti-

cal mid-plane passing through the origin is destroyed. However, the horizontal symmetry
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Figure 5.11: Velocity magnitude plots (a) Newtonian fluid (b) WLM solution, ξ = 0.01,
Wi= 0.001.

still persists both for ξ = 0.01 (sub-Fig. 5.10(a)) and 0.1 (sub-Fig. 5.10(d)). Furthermore,

as discussed above, a conical-shaped region of almost zero velocity magnitude is formed

due to the formation of vortices for the WLM solution. On further increasing the Weis-

senberg number to 2.5, the vertical symmetry at Y = 0 in the velocity magnitude plot

still exists for the micellar solution with ξ = 0.1. However, the horizontal and vertical

symmetries disappear for the WLM solution with ξ = 0.01. Moreover, at these values

of the Weissenberg number and non-linear VCM model parameter ξ, the magnitude of

the velocity is seen to be higher in the upper gap region between the cylinder and upper

channel walls, sub-Fig. 5.10(b) at time t = 49.1, whereas at a later time of t = 50, it is

seen to be higher in the lower gap region between the cylinder and lower channel walls,

sub-Fig. 5.10(c). This suggests that the highest velocity magnitude zone region changes

its position with time between these two gap regions. This temporal shifting of the higher

velocity magnitude zone has also recently been observed in the experiments of Haward

et al. [87] and in the numerical simulations of Varchanis et al. [108] dealing with polymer

solutions. Therefore, one would expect the cross-correlation function (CCF) of either the

stream-wise or cross-stream velocity component at these two locations to be highly anti-

correlated. Indeed, the cross-correlation function of the stream-wise velocity component

at two locations, namely, one at X = 0, Y = 0.626 (upper gap region) and another at

X = 0, Y = -0.625 (lower gap region), are shown in Fig. 5.12. The stream-wise velocity

components at these two locations are highly anti-correlated.

This behaviour is explained as follows: when the flow becomes quasi-periodic, the

stresses generated due to wormlike micelles in the solution also oscillate and become pe-

riodic, as shown in Fig. 5.8. At any instant of time, when the normal stress is higher in

the upward direction, it then exerts a force normal to the flow in the upward direction,

which in turn, forces the fluid to pass through the lower gap region with a higher velocity
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Figure 5.12: Cross-correlation function plot for the X-component velocity at two loca-
tions, one at the upper gap region and another at the lower gap region of the channel.

magnitude to satisfy the mass conservation principle. This higher velocity region drags

and stretches the micelles more in the downward direction, resulting in the stress compo-

nent being higher in the downward direction at the next moment. This stress component

again produces a force normal to the flow in the downward direction (negative Y direc-

tion). As a result, the higher velocity magnitude zone will be shifted to the upper gap

region.

This continuous shifting of the higher velocity magnitude zone between the upper

and lower gap regions generates a wave in the flow structure downstream of the cylinder.

This is known as the ’elastic wave’, which has been recently observed in experiments

dealing with polymer solutions [106, 243, 244]. We calculated the speed of this elastic

wave propagation downstream of the cylinder by calculating the cross-correlation function

of the stream-wise velocity at two different locations in the flow domain. If the two

observation points are separated by a distance ∆x, there is a peak shift (or lag) time tp
in the cross-correlation function between the two points. The elastic wave speed can be

calculated as ev = e
′
vλeff/d = λeff/d

(
Uin+ ∆x

tp

)
. The variation of the non-dimensional

values of the elastic wave speed with the Weissenberg number is shown in Fig. 5.13 as

symbols, whereas a power-law fit of the data in the form of ev = C1WiC2 with C1 = 2.51

and C2 = 0.92 is also shown as a line. This figure shows that the elastic wave speed

increases non-linearly with the Weissenberg number as seen in polymer solutions [106,

243].

To visualize the wavy nature of the flow field due to the propagation of this elastic
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Figure 5.13: Variation of the elastic wave speed with the Weissenberg number. Here the
results are presented for the non-linear VCM model parameter ξ = 0.01.

 

(a) 

(b) 

(c) 

Figure 5.14: Variation of dye concentration at (a) t = 0 (b) t = 35.0 and (c) t = 35.7.

wave downstream of the cylinder, a dye with a finite concentration in the upper hori-

zontal half of the channel and a zero concentration in the lower half of the channel is

introduced as shown in Fig. 5.14(a) at t = 0. After that, a convective-diffusive mass

transfer equation was solved for the variation of the dye concentration along with the

continuity, momentum, and constitutive equations. A wavy flow field can be clearly seen

in sub-Figs. 5.14(b) and (c) at two different times for the wormlike micellar solution with

ξ = 0.01. In addition to the emergence of this elastic wave, the shifting of the fluid from

the mid-horizontal plane in the upward (sub-Fig. 5.14(b)) and downward directions (sub-

Fig. 5.14(c)) is also evident in the front stagnation region of the cylinder in the same

figure. This study, for the first time, provides evidence of the existence of such an elastic

wave in a wormlike micellar solution which has recently been seen in polymer solutions

in the creeping flow regime [106, 243].
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5.3.2 Variation of micellar concentration and principal stress

difference

One of the main features of a WLM solution is the breakage and reformation of the

micelles. The distribution of micelle concentration within a flow system will help our

understanding of the flow physics like the elastic instability discussed in the preceding

section and the variation of the principal stress differences, which will be defined and

discussed later in this section, Figure 5.15.

At very low Weissenberg numbers, such as 0.001, the distribution of the long chain

density is almost uniform throughout the whole system regardless of the value of ξ due

to a very low flow strength. As the value of Wi increases says to 0.5, the distribution

becomes non-uniform within the system (sub-Figs. 5.16 (c) and (d)). However, the non-

homogeneity in the distribution of long chains is more pronounced in the case of the WLM

solution with ξ = 0.1 than that seen with ξ = 0.01 as the former is easier to break than

in the latter case. Irrespective of the values of Wi and ξ, the long chain number density

is always lower in the vicinity of the cylinder and the gap regions between the cylinder

and channel walls. This is due to the high shearing fluid motion in these regions, which

causes the breakage of many long micelles. Furthermore, with the increasing Weissenberg

number, the non-uniformity in the distribution of the long chain number density extends

more downstream of the cylinder along the mid-plane of the channel and near the channel

walls, see sub-Fig. 5.15(c) or (d). This is so simply because of the strong extensional flow

field in this region, whose strength increases with the increasing Weissenberg number.

The principal stress difference (PSD) is defined as
√(

τw,XX − τw,Y Y
)2

+4τ2
w,XY where

τw,XX and τw,Y Y are the normal stress components in X and Y directions respectively

and τw,XY is the shearing component. It provides useful information on the alignment

and stretching of micelles, and it is directly related to the flow-induced birefringence

(∆n) pattern, which can be measured experimentally. In particular, for a material that

follows the stress-optical rule, the principal stress difference is directly proportional to

the flow-induced birefringence (FIB) through the relation ∆σ = ∆n/C where C is the

stress-optical coefficient. At very low Weissenberg numbers, for instance, at Wi= 0.001,

the principal stress difference is maximum near the cylinder and channel walls in the

gap regions. In contrast, it is almost zero at the front and rear stagnation regions; for
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(i) 

Figure 5.15: Distribution of the long chain number density (a-d) and principal stress
difference (e-h). (a,e) Wi = 1.5, ξ = 0.1 (b,f) Wi = 1.5, ξ = 0.01 (c,g) Wi = 2.5, ξ = 0.1
(d,h) Wi = 2.5, ξ = 0.01. (i) Flow-induced birefringence image taken in the experiments
of Sun and Huang [245] at Wi = 1.48.
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Figure 5.16: Distribution of the long chain number density (a-d) and principal stress
difference (e-h). (a,e) Wi= 0.001, ξ = 0.1 (b,f) Wi= 0.001, ξ = 0.01 (c,g) Wi= 0.5, ξ = 0.1
(d,h) Wi= 0.5, ξ = 0.01.

instance, see sub-Fig. 5.16 (e) or (f). Furthermore, at such low Weissenberg numbers, a

fore-aft symmetry is present in the PSD contour, as seen in the streamline and velocity

magnitude plots. However, once the Weissenberg number increases to a higher value

of 1.5, the fore-aft symmetry in the PSD contour is destroyed, sub-Figs. 5.15 (e) and

(f). Also, the value of the principal stress difference increases at the front stagnation

point regardless of the value of ξ. However, a triangular zone with an almost zero PSD

value appears at the rear stagnation region, which was also observed in the corresponding

experimental investigations [245], sub-Fig. 5.15 (i). In addition, a long and thin region

of the PSD contour with a very high value appears along the mid-plane of the channel

downstream of the cylinder. This is due to the presence of a highly extensional flow field in

this region, which leads to a high stretching and/or breakage of the micelles. This strand

of high principal stress difference was also observed in the corresponding experiments

dealing with WLM solutions [245, 84] and polymer solutions [246, 109]. As expected, the

value of the principal stress difference increases with the increasing Weissenberg number

due to the increase in the flow strength and decreasing values of the non-linear VCM
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Figure 5.17: Variation of the pressure drop with the Weissenberg number and non-linear
VCM model parameter ξ.

model parameter ξ due to a high stretching of the micelles.

5.3.3 Variation of pressure drop

Figure 5.17 shows the pressure drop variation across the cylinder with the Weissenberg

number and non-linear VCM model parameter ξ. The pressure drop is non-dimensionalized

by the corresponding Newtonian value, which is obtained by running simulations with

the same zero-shear rate viscosity and mean inlet velocity as that used for the wormlike

micellar solution, i.e., ∆PR = ∆PWLM
∆PNew

. Furthermore, the pressure drop ratio is normal-

ized with the corresponding value at the lowest value of the Weissenberg number for each

value of ξ to clearly show the shear-thinning or thickening property. This figure shows

that at very low Weissenberg numbers (Wi << 1), the pressure drop is independent of

the Weissenberg number regardless of the value of ξ. This is so simply because at this

low value of Wi, the flow strength is so low that it is insufficient to deform the micelles,

and hence, the resulting solution behaves almost like a Newtonian fluid. However, as the

value of the Weissenberg number gradually increases, the flow-induced stresses start to

deform the micelles due to the increase in their strength, thereby changing the solution’s

rheological behavior. The pressure drop decreases with the increasing values of the Weis-

senberg number irrespective of the value of ξ. The reason behind this trend is due to the

dominance of the shear-thinning as well as extensional thinning properties of the WLM

solution within this range of the Weissenberg number considered in this study. This ob-
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servation aligns well with that seen experimentally for WLM solutions [84] and polymer

solutions both experimentally and numerically [247, 248]. However, it is seen that the

extent of thinning in the variation of the pressure drop is seen to be more pronounced as

the value of ξ increases. This is because the shear-thinning property of the WLM solution

increases with the increasing value of ξ as shown in Fig. 5.2.
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Chapter 6
Pressure driven flows of wormlike mi-
cellar solutions past two vertically
aligned microcylinders confined in a
channel

The main aim of this chapter is to delineate the effects of the blockage and gap ratios

on the flow dynamics of wormlike micellar solutions past single and two microcylinders,

respectively, confined in a microchannel. In particular, this chapter aims to investigate

how these blockage and gap ratios would influence the elastic instability and flow bi-

furcation phenomena during the flow of wormlike micellar solutions. The introduction

and motivation behind this chapter have already been discussed in the subsection 2.3 of

chapter 2.

6.1 Problem formulation

The present chapter aims to investigate the flow behavior of wormlike micellar solutions

past a single and two vertically aligned microcylinders of diameter d (or of radius R)

placed in a rectangular microchannel with different blockage (BR) and gap (G) ratios, as

shown schematically in sub-Fig. 6.1(a) and (c), respectively. The WLM solution enters

the channel with a uniform velocity of Uin. In the case of a single cylinder, the blockage

ratio is defined as the ratio of the cylinder diameter to that of the channel height, i.e.,

BR= d
H . Whereas, in the case of double cylinders, the gap ratio is defined as G= S1

S1+S2
,

where S1 is the distance between the two cylinders and S2 is the distance between the

channel wall and the surface of the cylinder. A value of G = 0 implies that the surfaces

of the top and bottom cylinders touch each other, while G= 1 indicates that the cylinder

surface touches the channel wall. In the case of double cylinders, a fixed blockage ratio

of BR = 0.2 is used in the present study, whereas for the single cylinder case, a range

of values of the blockage ratio (0.167 < BR < 0.67) is used. Furthermore, in both the

cases of single and double cylinders, the upstream (Lu) and downstream (Ld) length of

the channel are kept as 100d. This length is found to be sufficiently high so that it does
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Figure 6.1: Schematic of the present problem for (a) single microcylinder and (c) side-
by-side vertically aligned two microcylinders. A typical mesh density was used in the
present study for single (b) and two (d) microcylinders. Here the flow direction is shown
by arrows in the schematic.

not influence the flow dynamics around the microcylinders.

6.2 Numerical details

The details of the governing and VCM constitutive equations and their numerical solu-

tion techniques have already been presented in subsections 3.1.1 and 3.1.3 of chapter 3.

The values of the VCM model parameters chosen for the present investigation are as

follows [107, 96]: βV CM = 10−4, µ = 2.6, CAeq = 1.6, CBeq = 0.8607, ϵ = 0.005, δA = δB

and ξ = 0.00001,0.01,0.1. The response of the present micellar solution with these VCM

model parameters in standard viscometric flows is shown in Fig. 6.2. One can see that

the solution exhibits the shear-thinning property in shear flows and extensional hardening

and subsequent thinning in uniaxial extensional flows, which are very often seen to occur

for a wormlike micellar solution. Furthermore, as the value of ξ increases, the shear-

thinning tendency of the micellar solution increases, whereas extensional hardening and

subsequent thinning tendencies decrease. The standard grid independence study selects
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Figure 6.2: Variations of the non-dimensional shear stress (a) and shear viscosity (b)
with the non-dimensional shear rate (or the shear Weissenberg number) and first normal
stress difference (c) and extensional viscosity (d) with the non-dimensional extension rate
(or the extensional Weissenberg number) in homogeneous shear and uniaxial extensional
flows, respectively. Here, the symbols (both filled and open) are used to discuss some
results presented in section 6.3.
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a suitable grid density for both cases. In doing so, three different grid densities for each

blockage (in the case of a single microcylinder) and gap (in the case of two microcylin-

ders) ratio, namely, G1, G2, and G3, consisting of a different number of grid points on

the cylinder surface as well as in the whole computational domain were created. The

simulations were run at the highest value of the Weissenberg number considered in the

present study. After inspecting the results (in terms of the variation of the velocity, stress,

and number densities of micelles at different probe locations in the computation domain)

obtained for different grid densities, the grid G2 with a range of 59280-82900 (depending

upon the blockage ratio) hexahedral cells for the single microcylinder and 83200-88200

(depending upon the gap ratio) hexahedral cells for the two microcylinders cases were

found to be adequate for the present study. During the making of any grid, careful con-

sideration is taken into account. For instance, a very fine mesh is created near the solid

cylinder wall to capture the steep gradients of velocity, stress, or concentration fields.

In contrast, a relatively coarse mesh is made away from the solid wall, sub-Figs. 6.1(b)

and (d). Likewise, the grid independence study, a systematic time independence study,

was also carried out to choose an optimum time step size. A non-dimensional time step

size of 0.00001 was selected for both cases. The normalization scheme for velocity, stress,

and time with the definition of Weissenberg number is discussed in subsections 3.1.1 of

chapter 3.

6.3 Results and discussion

6.3.1 Single microcylinder case: Effect of blockage ratio

Before studying the complex flow dynamics of a wormlike micellar solution, first, we

present the results of the flow behavior of a simple Newtonian fluid around a single

microcylinder confined between two parallel channel walls at different blockage ratios.

Figure 6.3 shows the streamlines and velocity magnitude plots of a Newtonian fluid at

a particular value of BR = 0.34. It can be seen that both the streamline and velocity

magnitude plots show a perfect fore-aft symmetry along the horizontal and vertical mid

planes passing through the origin, as expected for a simple Newtonian fluid flowing under

the creeping flow condition. The streamlines follow a smooth order and steady path

without crossing each other. Furthermore, the streamlines are seen to be attached to the
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Figure 6.3: Representative streamline and velocity magnitude plots for Newtonian fluid
with blockage ratio of BR = 0.34.

cylinder surface; hence, no flow separation happens. This result aligns with that observed

experimentally by Zhao et al. [86]. The velocity magnitude is maximum in the narrow

gap between the channel wall and the cylinder surface. A similar flow pattern is observed

for the Newtonian fluid for other blockage ratios. The only difference seen is that the

maximum velocity magnitude in the gaps between the channel wall and cylinder surface

decreases as the blockage ratio decreases. This is simply due to an increase in the flow

area with the decreasing value of the blockage ratio.

Unlike the Newtonian fluid, the flow of WLM solutions is expected to be strongly

dependent on the blockage ratio due to its complex rheological behaviour. Additionally,

one can expect a strong dependency on the values of the non-dimensional parameters like

the Weissenberg number and non-linear VCM model parameter ξ. Simulations are carried

out for a range of the Weissenberg number (0.01 − 3) and at three values of ξ, namely,

0.00001, 0.01, and 0.1. Due to the high Weissenberg number problem (HWNP) associated

with viscoelastic fluid simulations, it was not possible to carry out the simulations beyond

Weissenberg number 3. At very low values of the Weissenberg number, for instance, at

Wi= 0.01, the flow behaviour of WLM solutions at different blockage ratios is similar to

that observed for the Newtonian fluid (results are not shown here). This is due to the

presence of a weak viscoelastic effect. However, as the Weissenberg number gradually

increases to higher values, the flow dynamics become strongly dependent on the values

of the blockage ratio, Weissenberg number, and non-linear VCM model parameter ξ.

For example, at Wi = 1, although the flow remains steady, and the streamlines follow

a nice order path as that seen for Newtonian fluid and WLM solutions at Wi = 0.01,

the symmetry in the flow profiles along the vertical mid-plane passing through the origin

starts to break, see Fig. 6.4. As the blockage ratio increases, the tendency to destroy

this vertical symmetry increases; for instance, see the results in sub-Figs 6.4(b) and (d)

81



(b)

BR = 0.67 (a)

BR = 0.34

BR = 0.25 (c)

BR = 0.167 (d)

2.1

1.0

0

1.0

0.5

0

0.8

0.4

0

0.72

0.4

0

Figure 6.4: Representative streamline and velocity magnitude plots of a WLM solution
at Wi= 1.0 and ξ = 0.01 for different blockage ratios, (a) BR = 0.67, (b) BR = 0.34, (c)
BR = 0.25, (d) BR = 0.167.

at the values of BR = 0.34 and 0.167, respectively. However, the horizontal symmetry

still exists at this value of the Weissenberg number irrespective of the value of BR.

The corresponding surface plot of the non-dimensional principal stress difference, defined

as PSD =
√

(τxx− τyy)2 +(2τxy)2, is presented in Fig. 6.5 at different blockage ratios.

Regardless of the blockage ratio, the PSD value is high near the cylinder surface due to

a high shearing zone. Apart from this, a strand of high PSD value, also known as the

birefringent strand, is formed along the mid-horizontal plane downstream of the cylinder.

This is due to the formation of a highly extensional flow field in this region, thereby

aligning more long micelles in the flow field and breaking them into smaller ones. Both

these facts tend to increase the PSD value in this region. As the blockage ratio increases,

the thickness and value of this birefringent strand increase due to an increase in both the

shear and extensional flow strengths.
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Figure 6.5: Surface plot of principle stress difference of a WLM solution at Wi= 1.0 and
ξ = 0.01 for different blockage ratios, (a) BR = 0.67, (b) BR = 0.34, (c) BR = 0.25, (d)
BR = 0.167.
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As the value of the Weissenberg number is further incremented, say to 2.5, the flow

remains steady and horizontally symmetric in the case of the least blockage ratio of

BR = 0.167, sub-Fig. 6.6(e). On the other hand, at the maximum blockage ratio of

BR= 0.67 considered in this study, the flow becomes unsteady and quasi-periodic at the

same Weissenberg number. At this blockage ratio, a distortion in the streamline profiles

is observed, particularly at the rear side of the cylinder. Furthermore, the region of the

maximum velocity magnitude changes its position between the lower (sub-Fig. 6.6(a))

and upper narrow gap (sub-Fig. 6.6(b)) regions situated in between the channel wall and

cylinder surface. This suggests the emergence of an elastic instability in the flow field and

an elastic wave downstream of the cylinder due to the shifting in the maximum velocity

magnitude zone between the two gap regions, as discussed and explained in detail in the

previous chapter. Moreover, a small vortex is seen to form downstream of the cylinder

at this blockage ratio and Weissenberg number. The nature of the flow field at these

two extreme blockage ratios, namely, at BR = 0.167 and 0.67, is further confirmed in

Fig. 6.7(a) wherein the temporal variation of the non-dimensional stream-wise velocity

is plotted at a probe location placed at the mid-point in between the cylinder surface

and channel wall for different blockage ratios. At BR = 0.167, it reaches a steady value

with time, suggesting the presence of a steady-state flow field. Whereas, at BR= 0.67, it

fluctuates with time, showing instability in the flow field. The power spectrum of these

velocity fluctuations is presented in sub-Fig. 6.7(d), and from this figure, it can be seen

that a single dominant frequency governs the flow along with a broad spectrum of small

frequencies. This indicates the quasi-periodic nature of the flow field at these values of

Wi and BR.

In between these two extreme blockage ratios considered in this study, there is a

range of blockage ratios present wherein the fluid prefers to flow through one side of the

cylinder, for instance, see sub-Figs. 6.6(c) and (d) for the results at BR= 0.34 and 0.25,

respectively. This results in an almost stagnant region on the opposite side of the cylinder.

Here the preferential side occurs at Y < 0 for BR = 0.34 (sub-Fig. 6.6(c)), whereas for

BR= 0.25, it occurs at Y > 0 (sub-Fig. 6.6(d)). However, the selection of this preferential

side for the flow is completely random; hence, there is an equal opportunity when the

fluid can go through the other side of the cylinder. This flow asymmetry indicates the

origin of a pitchfork bifurcation in the flow field. This kind of bifurcation in the flow field
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Figure 6.6: Representative streamline and velocity magnitude plots of a WLM solution
at Wi = 2.5 and ξ = 0.01 for different blockage ratios, (a) BR = 67, t = 30 (b) BR =
0.67, t = 30.2, (c) BR = 0.34, (d) BR = 0.25, (e) BR = 0.167.
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BR = 0.54

BR = 0.34

BR = 0.67

Figure 6.7: (a) Temporal variation of the stream-wise velocity component at a probe
location placed in the middle in between the cylinder surface and upper channel wall and
(b-d) power spectral density plot of the velocity fluctuations at different blockage ratios
at Wi= 2.5 and ξ = 0.01.
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has also been observed in earlier experimental investigations dealing with polymer [249]

and WLM solutions [87], as well as in numerical investigations performed with a single-

species viscoelastic constitutive model [108]. The flow field seems unsteady at BR= 0.34,

whereas it is steady at BR = 0.167, which can be seen from the temporal variation of

the non-dimensional stream-wise velocity presented in sub-Fig. 6.7(a). The corresponding

power spectrum plot for velocity fluctuations at BR= 0.34 is depicted in sub-Figs. 6.7(b).

From this figure, one can see that the flow is governed by a single dominant frequency,

thereby suggesting the occurrence of a regular periodic unsteadiness in the flow field. At

BR = 0.54, an asymmetry in the flow field is also seen (results not shown here), and

the flow field is again found to be unsteady, which is quasi-periodic, as can be evident

from the power spectrum plot of velocity fluctuations presented in sub-Fig. 6.7(c). The

corresponding variation of the PSD value at Wi = 2.5 and different blockage ratios is

depicted in Fig. 6.8. Once again, at this Weissenberg number, a long birefringent strand

of high PSD value is seen to form downstream of the cylinder; likewise, it is seen at

Wi = 1 (Fig 6.5). However, the PSD value is higher at Wi = 2.5 than that seen at

Wi = 1 due to increased flow strength. Furthermore, the strand is seen to be bending

in nature downstream of the cylinder at blockage ratios 0.34 (sub-Fig. 6.8(b)) and 0.25

(sub-Fig. 6.8(c)) due to the presence of an asymmetric flow at these blockage ratios.

To characterize the asymmetric nature of the flow more quantitatively, we define a

dimensionless flow asymmetry parameter Is as follows [108, 87]

Is = UX,1 −UX,2
UX,1 +UX,2

(6.1)

Here UX,1 and UX,2 are the stream-wise velocities at the midpoints between the cylinder

surface and upper and lower channel walls, respectively. A value of |Is| = 0 denotes a

perfect symmetric flow, whereas |Is| = ±1 implies a perfect asymmetric flow when the

whole fluid passes through one side of the cylinder. Note that in the case of an unsteady

flow, a time-averaged value of UX is considered in the calculation of Is. The variation

of the absolute value of Is with the Weissenberg number and blockage ratio is presented

in Fig. 6.9. It can be seen that the value of Is is essentially zero for the blockage ratios

of 0.17 and 0.67. This is due to the existence of the steady symmetric and unsteady

symmetric quasi-periodic flows at these two blockage ratios, respectively. On the other

hand, at blockage ratios 0.25 and 0.34, a critical value of the Weissenberg number is seen
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Figure 6.8: Surface plot of principle stress difference of a WLM solution at Wi= 2.5 and
ξ = 0.01 for different blockage ratios, (a) BR = 0.67, (b) BR = 0.34, (c) BR = 0.25, (d)
BR = 0.167.
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Figure 6.9: Variation of the flow asymmetry parameter (Is) with the Weissenberg number
and blockage ratio at ξ = 0.01.

to present up to which the asymmetry parameter is zero. Beyond that, it suddenly starts

to increase and finally reaches almost a constant value at high Weissenberg numbers.

The critical value of the Weissenberg number at which the transition from symmetric to

an asymmetric flow occurs (i.e., the onset of the pitchfork bifurcation) increases as the

blockage ratio decreases. For instance, at BR= 0.34, it is around 1.25, while it is around

1.75 at BR = 0.25.

Furthermore, one can see that the value of the flow asymmetry parameter Is increases

with the blockage ratio, which is in line with that observed by Varchanis et al. [108]

in their simulations. Based on the value of the flow asymmetry parameter, a phase

diagram is presented in Fig. 6.10 wherein different flow states observed in the present

study with the blockage ratio, are summarized at a Weissenberg number of 2.5 and non-

linear VCM model parameter ξ = 0.01. The flow is steady and symmetric at a blockage

ratio lower than 0.167. Beyond that and up to BR= 0.27, a steady and asymmetric flow

transition occurs. After that, the flow transits to an unsteady periodic state and then

to a quasi-periodic state as the blockage ratio gradually increases. On further increasing

the blockage ratio of more than around 0.55, the flow transits to a quasi-periodic and

symmetric state where a resymmetrization in the flow occurs.

Next, we aim to explain the origin of this asymmetric flow resulting from the flow

bifurcation and elastic instabilities in WLM solutions. It is well known that the onset of

elastic instabilities either in polymer or micellar solutions is the result of the presence of

curved streamlines in the vicinity of the microcylinder and the accumulation of the elastic
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Figure 6.10: Variation of the flow asymmetry parameter (Is) with the blockage ratio at
Wi= 2.5 and ξ= 0.01. In this figure (I) steady and symmetric (II) steady and asymmetric
(III) unsteady, periodic, and asymmetric (IV) unsteady, quasi-periodic and asymmetric,
and (V) unsteady, quasi-periodic, and symmetric.

stresses downstream of the microcylinder [250, 18, 251, 86], which can be seen from the

streamlines plot (Fig. 6.6) and the PSD contours (Fig. 6.5) presented here as well. Very

often, the criteria developed by McKinley and co-workers are used to figure out the onset

of these purely elastic instabilities, written as [18]

(
λU

R

τxx
η0γ̇

)
≥M2

crit (6.2)

Where R is the characteristic radius of streamline curvature and τxx is the tensile or

normal stress along the flow direction. If the dimensionless value of the left-hand side

of Eq. 6.2 becomes greater than or equal to the critical M2
crit value at any position in

the flow field, an instability will then originate in the system. For the flow of a constant

viscosity viscoelastic polymer (Boger fluid) solution past a cylinder confined in a channel,

a value of Mcrit = 6.08 was found from the linear stability analysis [18]. However, for the

present case of a wormlike micellar solution, this value should not be obviously the same

due to the presence of shear-thinning viscous properties and breakage and reformation

dynamics of the micelles. Once this instability is triggered in the flow field, then a small

and random lateral fluctuation of the birefringent strand (as shown in Fig. 6.8) of high

elastic stresses downstream of the cylinder either in the −Y or +Y direction creates a

resistance to the flow of fluid in that direction. This forces the fluid to pass through the

other side of the cylinder. This will eventually create an imbalance in the shear rate at
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the two sides of the cylinder. If the fluid shows shear-thinning properties, this imbalance

in the shear rate and hence the viscosity gets accentuated, thereby resulting in the fluid

passing through one side (at which the shear rate is high or the viscosity is low) of the

cylinder. This explanation aligns with that provided earlier for the flow of either WLM

solution [87] or polymer solution [249] past a cylinder. Therefore, to show the asymmetric

flow, the fluid should have shear-thinning properties and a sufficient amount of elastic

stresses should be accumulated downstream of the cylinder [249].

To explicitly explain this, we calculate the local shear (Wils) and extensional (Wile)

Weissenberg numbers based on the local shear rate in the gap region and local extension

rate downstream of the cylinder respectively for BR = 0.34, Wi = 2.5 and ξ = 0.01 at

which an asymmetric flow was observed (sub-Fig. 6.6(c)). We find that these values

(presented as open symbols in Fig. 6.2) lay in the shear-thinning region (in case of the

shear Weissenberg number) and extensional hardening region (in case of the extensional

Weissenberg number) in the plots presented in Fig. 6.2. As the blockage ratio increases

to 0.67, the values (presented as filled symbols in Fig. 6.2) of both (Wils) and (Wile)

increase due to the increase in the flow velocity resulting from the decrease in the flow

area. Once again, these values are shown in the same figure as symbols. One can see that

although the value of (Wile) lies in the extensional hardening region, the value of (Wils)

lies in the plateau region in shear viscosity plot. This causes a resymmetrization in the

flow field at this blockage ratio, as shown in sub-Figs. 6.6 (a) and (b).

This is further confirmed by changing the value of ξ, which indicates the scission

energy needed to break a micelle. As the value of ξ increases to 0.1 or the micelles

become progressively easier to break, a symmetric flow (with |Is| = 0) is seen to present

(sub-Fig. 6.11(c)) at the same BR = 0.34 and Wi = 2.5 as opposed to a symmetric flow

seen at ξ = 0.01. This is simply due to the fact that although the shear-thinning property

increases with an increase in ξ due to the easy breakage of micelles, the magnitude of

the elastic stresses downstream of the cylinder becomes insufficient to create instability

in the system. It is further noticed that at this value of ξ = 0.1, the streamlines are

first converged and then diverged downstream of the cylinder. This can be explained as

follows: the breakage of micelles just downstream of the cylinder results in the decrease of

the viscosity of the micellar solution at this region, which in turn, allows the streamlines

to be converged at this region. As we move away from this region, the breakage of
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Figure 6.11: Representative streamline and velocity magnitude plots at BR = 0.34 and
Wi= 2.5. (a) and (b) ξ = 0.00001, (c) ξ = 0.1.

micelles will progressively decrease due to the decrease in the extensional flow strength.

Therefore, the viscosity will increase in the region away from the cylinder. This will

diverge the streamlines in the region far away downstream of the cylinder. On the other

hand, further simulations were also run to a lower value of ξ= 0.0001 at which the micelles

become harder to break. It can be again seen a resymmetrization in the flow field, sub-

Figs. 6.11(a) and (b) shown at two different times. At this value of ξ, although the value

of Wile increases, the value of Wils lies in the plateau region shown in Fig. 6.2.

6.3.2 Two vertically aligned microcylinders case: Effect of gap

ratio

After discussing the results for the case of a single microcylinder, we now turn our at-

tention to the case of two vertically side-by-side placed microcylinders in a channel, as

schematically shown in Fig. 6.1(c). The streamlines and velocity magnitude plots for this

configuration are depicted in Fig. 6.12 at two gap ratios, namely, 0.28 (a-d) and 0.50 (e-f)

for a range of values of the Weissenberg number. Likewise, in the single cylinder case,

for a Newtonian fluid, a perfect symmetry along the horizontal and vertical mid-planes

passing through the origin is present in the flow profiles irrespective of the value of the

gap ratio G, see sub-Fig 6.12(a) and (e). Although the fluid passes through all the three
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Figure 6.12: Representative streamline and velocity magnitude plots for vertically side-
by-side two microcylinders case at ξ = 0.01, (a) G = 0.28, Newtonian (b) G = 0.28, Wi
= 0.3 (c) G = 0.28, Wi = 1.0 (d) G = 0.28, Wi = 2.5 (e) G = 0.5, Newtonian (f) G =
0.5, Wi = 0.3 (g) G = 0.5, Wi = 1.0 (h) G = 0.5, Wi = 2.5.

gaps available in the system; however, at G= 0.28, the magnitude of the velocity is larger

at the gap regions in between either the top or bottom cylinder and the channel wall than

that seen at the gap region in between the two cylinders. In contrast to this, a reverse

trend is seen for the gap ratio of G = 0.50. This is simply due to the fact that for a

Newtonian fluid and in the creeping flow regime, the volumetric flow rate of the fluid is

linearly proportional to the available flow area. At G = 0.28, the flow area is larger at the

gap in between either the top or bottom cylinder and the channel wall than that seen in

between the two cylinders, whereas, at G= 0.50, the other way around happens. Below a

critical low value of the Weissenberg number Wi <Wi1 ≈ 0.3, the flow characteristics of

a WLM solution look similar to that of a Newtonian fluid regardless of the gap ratio, as it

was also seen for the single cylinder case. For instance, see the results that are presented

in sub-Figs. 6.12(b) and (f) for gap ratios of 0.28 and 0.50, respectively. This is solely due

to the fact that at this low Weissenberg and Reynolds number flows, the elastic effects,

as well as the breakage and reformation dynamics of micelles are very weak, and hence,

it behaves like a Newtonian fluid.

However, as the Weissenberg number gradually increases to higher values and exceeds

the first critical Weissenberg number (Wi1), the system then undergoes the first transition
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due to the increase in the elastic forces. For instance, at G= 0.28, a transition from the

low-Weissenberg number symmetric state to a diverging (D) state occurs, in which the

fluid passes through the gaps in between the cylinder and channel wall, and it completely

avoids the region in between the two cylinders, sub-Fig. 6.12(c). The flow still remains

steady and symmetric along the horizontal mid-plane passing through the origin, as can

be observed in sub-Fig. 6.13(a), wherein the temporal variation of the non-dimensional

stream-wise velocity is plotted at a probe location placed at the origin. On further

increasing the Weissenberg number beyond a second critical value of the Weissenberg

number Wi>Wi2, a second transition in the flow state is observed, in which the micellar

solution mostly prefers to flow through only the gap in between the top cylinder and

the channel wall (Y > 0), as shown in sub-Fig. 6.12(d). However, there is an equal

opportunity present in which most of the fluid can also pass through the gap between the

bottom cylinder and the channel wall (Y < 0) (not shown here). This state is known as

the asymmetric-diverging state (AD). In this state, the flow becomes unsteady, as can be

evident in sub-Fig. 6.13(a) wherein the non-dimensional stream-wise velocity is seen to

be fluctuating with time. The nature of this unsteadiness is quasi-periodic as the power

spectrum of the velocity fluctuations is governed by more than one dominant frequency,

sub-Fig. 6.13(b). This state is analogous to the state observed in sub-Fig. 6.6(d) for the

case of a single cylinder. On the other hand, at G = 0.5, only one transition in the flow

state happens when the Weissenberg number exceeds its first critical value Wi>Wi1. In

this state, the whole micellar solution preferentially passes through the gap region between

the two cylinders, avoiding the gap between the cylinder and the channel wall. This state

is known as the converging state (C). However, a transition from a steady flow field to

an unsteady one occurs within this state as the Weissenberg number gradually increases.

For instance, one can see that the non-dimensional stream-wise velocity reaches a steady

value at Wi= 1.5; whereas, it becomes fluctuating in nature as the Weissenberg number

is further increased to 2.5, sub-Fig. 6.13(c). These velocity fluctuations are governed by

two dominant frequencies (sub-Fig. 6.13(d)) as opposed to a range of frequency spectrum

seen at G = 0.28 (sub-Fig. 6.13(b)) under otherwise identical conditions. Furthermore,

the amplitude of these velocity fluctuations is seen to be very large in the latter case as

compared to that seen in the former one.

Likewise, Hopkins et al. [113], we also calculate two asymmetrical parameters, namely,
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Figure 6.13: Temporal variation of the stream-wise velocity component at a probe location
X = 0 and Y = 0 for two gap ratios, namely, 0.28 (a) and 0.5 (b). The corresponding
power spectral density plot of the velocity fluctuations at G = 0.28 (b) and at G = 0.5.
Here all the results are presented for non-linear VCM model parameter ξ = 0.01.
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Figure 6.14: Variation of the flow asymmetry parameter for the two microcylinders case
at G = 0.28 (a-c) and at G = 0.5 (d-f). In subfigure (c), (I) Newtonian-like state (II)
Diverging or ’D’ state and (III) Asymmetric-diverging or ’AD’ state, whereas in subfigure
(f), (I) Newtonian-like state and (II) converging or ’C’ state.
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Figure 6.15: Variation of the principle stress difference for the two microcylinders case
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I
′
d and I

′′
d to distinguish the flow states more quantitatively for the two microcylinders

case. These are defined as follows:

I
′
d =

1
2

(
UX,u+UX,l

)
−UX,m

1
2

(
UX,u+UX,l

)
+UX,m

(6.3)

I
′′
d = UX,u−UX,l

UX,u+UX,l+UX,m
(6.4)

In the above equations, UX,u, UX,l and UX,m are the time-averaged stream-wise ve-

locities obtained at the mid-points placed in the upper gap (between the top cylinder

and channel wall), lower gap (between the bottom cylinder and lower channel wall) and

in the gap in between the two cylinders, respectively. The variations of I ′
d and I

′′
d with

the Weissenberg number are shown in sub-Figs. 6.14 (a-b) and (d-f) for the gap ratios

of 0.28 and 0.5, respectively. The total asymmetry parameter Id = I
′
d+ I

′′
d , showing the

complete bifurcation diagram, is presented in sub-Figs.(c) and (f) at G = 0.28 and 0.50,

respectively. The first transition in the value of I ′
d occurs at Wi ≈ 0.3 when the flow

transits from symmetric to diverging state (D). After this transition, as the Weissenberg

number gradually increases, one can see that the value of I ′
d also gradually increases,

ultimately leveling off to a value of 1, see sub-Fig. 6.14(a). This trend in I
′
d thereby

suggests that almost no fluid passes in between the two cylinders as the Weissenberg

number increases. The second transition in the flow state from the diverging (D) to

asymmetric-diverging (AD) state occurs when the transition in the value of I ′′
d occurs at
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Wi ≈ 2.5, sub-Fig. 6.14(b). The complete bifurcation diagram at G = 0.28 is shown in

sub-Fig. 6.14(c) in terms of the variation of the total asymmetry parameter Id with Wi.

It can be seen that the first bifurcation leads to Id → 1, whereas the second bifurcation

results in Id → 1.5. On the other hand, at G= 0.50, the first bifurcation occurs when the

flow transits from symmetric to converging state (C) at Wi≈ 0.15, which can be marked

by the transition of the value of I ′
d in sub-Fig. 6.14(d). As the Weissenberg number in-

creases, the value of I ′
d tends to -1, thereby suggesting that all of the fluid prefers to flow

through the gap region in between the two cylinders. The value of I ′′
d almost remains

zero over the whole range of the Weissenberg number considered (sub-Fig. 6.14(e)), and

hence, a second bifurcation is not observed at G = 0.50 as it was seen at G = 0.28. The

complete bifurcation diagram for this gap ratio is depicted in sub-Fig. 6.14(f).

To explain the formation of these different flow states in the case of flow past two

microcylinders, the corresponding PSD plots at these two gap ratios are presented in

Fig. 6.15. At G = 0.28 and Wi = 1.0 at which ’D’ states occur, it can be observed

that the gap between the two cylinders is closed by a region of high PSD value (sub-

Fig. 6.15 (a)), thereby blocking the fluid to pass through this region. Furthermore, at

this Weissenberg number, a long birefringent strand of high PSD value is also formed

in the mid-horizontal plane downstream of the cylinders. As the Weissenberg number

further increases to higher values, both the length and magnitude of this strand increase.

A little and random lateral fluctuation in this strand in either +Y or −Y direction

downstream of the cylinder blocks the flow of fluid in that direction, resulting in the

formation of ’AD’ state (sub-Fig. 6.15(b)). This is reminiscent of that seen in the case

of a single microcylinder. On the other hand, at G = 0.5, the velocity magnitude in

between the two cylinders progressively increases as the Weissenberg number increases

due to the shear-thinning property of the micellar solution, and hence more fluid prefers

to pass through this area due to the formation of a low-viscosity region. As a result, the

birefringent strands formed downstream of both the cylinders shift towards the channel

walls (see sub-Figs. 6.15 (c) and (d)), thereby blocking the fluid from passing through the

gap regions in between the cylinder surface and channel wall. This facilitates more fluid

to pass through the gap region between the two cylinders. This effect gets accumulated

as the Weissenberg number further increases, resulting in the formation of the ’C’ state.

At this gap ratio, the space in between the two cylinders is not closed by a region of high
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PSD value (sub-Fig. 6.15 (c)) as that seen at G = 0.28 which can block the flow, and

therefore, the fluid can easily pass through this space. Likewise the single microcylinder

case, we have again found that the flow bifurcation can be completely suppressed if

the non-linear VCM model parameter ξ increases to 0.1. In other words, if the micelles

become progressively easier to break, this bifurcation in the two cylinders case can also be

completely avoided due to the increase in the shear-thinning and decrease in the elastic

effects, Fig. 6.2. On the other hand, with a decreasing value of ξ = 0.0001 when the

micelles become progressively harder to break, we have again observed the disappearance

of these bifurcations in the flow irrespective of the gap ratio, due to an increase in the

elastic and decrease in the shear-thinning effects; likewise, we have seen for the single

microcylinder case in the preceding subsection. The explanation presented herein for

the occurrence of different flow states in the case of double microcylinders based on the

variation of the PSD value is, somehow, missing in the studies of Hopkins et al. [113].

Therefore, this study provides a complete understanding of the flow phenomena occurring

for the double microcylinders case. Due to the existence of an excellent qualitative

agreement between the present results and that of Hopkins et al. [113], this study further

shows the ability of the VCM model to predict the complex flow dynamics of a micellar

solution.

All these results presented and discussed here for single and two microcylinders cases

now may facilitate the understanding of the selection of a preferential path or lane of a

viscoelastic fluid during its flow through either an ordered or disordered porous matrix

observed in many prior experiments [21, 22, 24, 103, 102]. The onset of this phenomenon

may happen due to the flow bifurcation (either ’A’ or ’AD’ or ’C’ state) resulting from

the interaction between the shear-thinning properties of the micellar solution and elastic

stresses generated in the system, as explained above. Once the fluid prefers to flow

through a particular gap region in the porous media due to the flow bifurcation, it forms

a lane or path as it moves forward.
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Chapter 7
Electrokinetically driven flows of vis-
coelastic fluids through a microchan-
nel with step expansion and contrac-
tion

This chapter aims to demonstrate how the electrokinetically driven flows of viscoelas-

tic polymer solutions generate elastic instability during the flow through a model porous

media consisting of a microchannel with step expansion and contraction. The introduc-

tion and motivation behind this chapter have already been discussed in section 2.4 of

chapter 2.

7.1 Problem illustration

This chapter investigates the problem of electroosmotic transport of viscoelastic fluids

in a model porous system consisting of a long micropore with many step expansions

and contractions, as schematically shown in Fig. 7.1(a). As the present geometry has

a repeating geometrical structure, we have considered a unit cell of this system in our

simulations to reduce the computational burden, as schematically depicted in Fig. 7.1(b).

The height of both the inlet and outlet sections is H (= 10µm), whereas the total height

of the micropore is 4H. Here EL and CL are the expansion and contraction lengths of

the micropore, respectively, which are varied to investigate their influence on the flow

dynamics and other governing parameters. All the solid walls of the micropore possess

a constant negative wall zeta potential of ζ0. We have placed two electrodes, anode,

and cathode, at the micropore inlet and outlet, respectively, and an external potential

bias and/or voltage V0 is applied between them. This, in turn, generates an electric

field strength Ex = V0
L between the two electrodes, where L is the total distance between

the inlet and outlet of the microchannel. The electroosmotic flow will happen from the

anode towards the cathode due to the interaction between the external applied electric

field and the net charges accumulated within the EDL formed in the micropore wall’s

proximity. The viscoelastic fluid is mixed with a binary monovalent electrolyte, KCl or

NaCl, to facilitate this electroosmotic flow. The viscoelastic electrolyte fluid is assumed
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Figure 7.1: (a) Schematic of the present problem (b) Computational domain

to be incompressible. The present study has simulated a perfect creeping flow condition

(i.e., Re= 0) by setting the inertial terms of the momentum equation equal to zero.

7.2 Numerical details

The governing equations for the electrokinetically driven flows of viscoelastic polymer so-

lutions have already been presented in section 3.1.2 of chapter 3. The following boundary

conditions have been employed in this study to tackle the present problem numerically:

at all solid walls of the micropore, the standard no-slip and no-penetration conditions

(u = 0) for the velocity; a zero gradient (∇p= 0) for the pressure; a fixed negative value

(ψ = −ζ0) for the electric potential; values are linearly extrapolated for the viscoelas-
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Figure 7.2: Comparison of the stream-wise velocity in a microfluidic channel between
the present numerical and analytical results of Afsono et al. [252] at a constant wall zeta
potential of ξ0 = −110 m V. Note that the results are presented here for the half non-
dimensional height of the microchannel.

tic stress at the micropore wall. At the inlet and outlet sections, a zero gradient for

the velocity and viscoelastic stress and a zero value for the pressure are imposed. Fur-

thermore, the computational domain was created using the blockMeshDict subroutine

available in OpenFOAM, and a regular hexahedral mesh was used to discretize it. To

capture the steep gradients of the velocity, stress, and potential fields in the vicinity of

the micropore solid wall, a concentrated mesh was used in this region. For each value of

the contraction and expansion length of the micropore, a grid independence test was con-

ducted at the highest value of the Weissenberg number considered in this study. Around

30000 to 45000 hexahedral cells (depending upon the values of EL and CL) in the whole

computational domain were adequate to capture the flow physics inside the micropore.

This was confirmed by comparing the time-averaged velocity and stress fields at different

probe locations and planes passing through the origin of the micropore obtained with

at least three different grid densities. Finally, we have presented some validation studies

comparing the stream-wise electroosmotic velocity in a microfluidic channel between the

present numerical and analytical study of Afonso et al. [252] in Fig. 7.2 for an Oldroyd-B

viscoelastic fluid. An excellent agreement can be seen between the two results.
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Figure 7.3: Streamlines and velocity magnitude plots for (a) Newtonian and viscoelastic
fluids with different Weissenberg numbers, namely, (b) Wi = 0.5, (c) Wi = 2, (d) Wi =
7, (e) and (f) Wi = 15 at two different times.

7.3 Results and discussion

7.3.1 Effect of Weissenberg number

The effect of the Weissenberg number on the flow dynamics inside the micropore is studied

for the following values of the parameters, namely, Ex = 5000 V/m, EL= 4, CL= 1 and

β = 0.4. The Weissenberg number is varied between 0 and 15. Results for a Newtonian

fluid (for which the Weissenberg number is essentially zero, i.e., Wi= 0) are also included

in the discussion to show the direct effect of elastic properties of the fluid on the flow

dynamics inside the micropore. At the outset of our discussion, we present the streamlines

and velocity magnitude plots in Fig. 7.3 both for Newtonian and viscoelastic fluids with

different Weissenberg numbers to visualize the velocity field inside the micropore. For

Newtonian fluids, a steady and symmetric flow field is observed inside the micropore,

Fig. 7.3. The symmetry is seen both along the horizontal and vertical mid-planes passing
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(b) 

(c) 
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Figure 7.4: (a) Temporal variation of the non-dimensional stream-wise (Ux) velocity
component at the origin of the micropore at different Weissenberg numbers. (b) and (c)
Power spectral density plots of velocity fluctuations.

through the origin of the micropore. The streamlines are concentrated in the contraction

regions (inlet and outlet of the micropore), whereas they are dispersed in the expansion

region of the micropore. The velocity magnitude is high in the contraction region and

low in the expansion region, as expected from the conservation of mass principle. This

kind of flow behaviour is expected for a Newtonian fluid flowing in a symmetric geometry

in the creeping flow regime.

On the other hand, the flow phenomena for viscoelastic fluids inside the micropore

become increasingly complex as the Weissenberg number gradually increases. At very

low values of the Weissenberg number (< 0.1), the flow dynamics inside the micropore

resemble the Newtonian fluid behaviour (the results are not seen here). This is because, at

these very low values of the Weissenberg number, the elastic forces are so small that they

can not overcome the effect of the viscous forces. Hence, the viscoelastic fluid behaves

like a Newtonian fluid. However, as the Weissenberg number gradually further increases,

the elastic forces also progressively increase. As a result, the flow dynamics inside the

micropore also change significantly. For instance, at a relatively higher value of Wi= 0.5,

one can see that the vertical symmetry seen in the flow profile is destroyed; however, the

horizontal flow symmetry still exists, as seen from sub-Fig. 7.3(b). Furthermore, at this
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Weissenberg number, lip vortices are formed at the entrant corners of the micropore.

As the Weissenberg number further increases to 2 (sub-Fig. 7.3(c)), lip vortices are also

seen to form near the re-entrant corners of the micropore. As we have simulated a

perfect creeping flow condition in the present study, the effect of the inertial forces on the

flow dynamics is absent. Therefore, the formation of such a lip vortex is purely driven

by the elastic forces present in the viscoelastic fluid. The appearance of such lip vortex

around the corners has also been seen in the pressure-driven flows of polymer and micellar

solutions in geometries like sharp bend, cross-slot, micropore with step and contraction,

etc. [253, 254, 255, 97, 100]. The size of these lip vortices increases with the Weissenberg

number, as was also observed in the pressure-driven flows.

With the further increment in the Weissenberg number, say toWi= 7 (sub-Fig. 7.3(d)),

the streamlines become distorted. Also, vortices are formed inside the micropore, indi-

cating the presence of a chaotic flow field inside the micropore. These tendencies become

more pronounced as the Weissenberg number further increases; for instance, see the re-

sults presented at Wi = 15 in sub-Figs. 7.3(e) and (f) at two different times. The size

and location of these vortices become time-dependent, as can be seen from the results

presented at two different times for Wi = 15. As the Weissenberg number gradually

increases, the following trend in the vortex dynamics inside the micropore occurs: lip

vortices at the entrant corners → lip vortices both at entrant and re-entrant corners →

vortices inside the micropore.

Therefore, a transition in the flow field from steady to unsteady happens in the mi-

cropore as the Weissenberg number gradually increases. It is further clear from Fig. 7.4

wherein the temporal variation of the non-dimensional stream-wise velocity Ux at a probe

location placed at the origin of the micropore is presented at different Weissenberg num-

bers. As expected, the velocity reaches a constant value with time for a Newtonian fluid.

Similarly, it happens for viscoelastic fluids with a Weissenberg number of up to 1, in-

dicating the presence of a steady flow field inside the micropore. However, at Wi = 2,

the velocity is seen to fluctuate with time, which is a signature of the presence of un-

steadiness in the flow field. The corresponding power spectral density plot (calculated

by applying the Fast Fourier Transform (FFT) on the time-series of velocity signal at

a probe location) of the velocity fluctuations is shown in sub-Fig. 7.4(b) to know the

nature of this unsteadiness in the flow field. The velocity fluctuations are governed by
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(c) (d) 

Figure 7.5: Variation of the non-dimensional stream-wise (Ux) and span-wise (Uy) velocity
components along horizontal (a and b) and vertical (c and d) mid-planes passing through
the origin of the micropore.

a single dominant frequency at Wi = 2, suggesting the presence of a periodic unsteady

flow field inside the micropore. As the Weissenberg number further increases, say to 7,

an aperiodic fluctuation in the velocity field can be seen. This tendency increases further

as the Weissenberg number further increases to 15. A dominant primary frequency now

governs the velocity fluctuations and several secondary frequencies instead of a single

frequency at Wi= 2. Such secondary frequencies suggest that the excitation of the fluid

motion now occurs over a broad spectrum of time and length scales. This indicates the

presence of a quasi-periodic flow state in the micropore at these values of the Weissenberg

number. At this state, the flow inside the micropore also becomes highly asymmetric.

Therefore, in summary, as the Weissenberg number gradually increases, the transition in

the flow field inside the micropore occurs as: steady and symmetric → unsteady, periodic

and symmetric → unsteady, quasi-periodic and asymmetric.

To get more insights into the flow physics, both the time-averaged stream-wise and

span-wise velocities are plotted along the horizontal and vertical mid-planes passing
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Figure 7.6: Variation of the Pakdel-McKinley M parameter at different Weissenberg
numbers, namely, (a) Wi = 0.5, (b) Wi = 6, and (c) Wi = 15.

through the origin of the micropore in Fig. 7.5. For Newtonian fluids, as expected,

the stream-wise velocity shows a perfect symmetry both along the horizontal and vertical

mid-planes of the micropore. In contrast, the span-wise velocity remains almost zero,

indicating the presence of a one-dimensional flow field inside the micropore. However, for

viscoelastic fluids, the stream-wise velocity shows an overshoot in its value at the entrant

region of the micropore, sub-Fig. 7.5(a). This is due to the formation of the lip vortex,

which squeezes the flow in the middle of the entrant region. The stream-wise velocity

profile along the horizontal mid-plane also progressively becomes asymmetric in its distri-

bution with the Weissenberg number, which suggests an increase in the tendency to form

an asymmetric flow field within the micropore. Furthermore, the span-wise velocity now

acquires a finite value, particularly at high Weissenberg numbers, sub-Fig. 7.5(b). There-

fore, it indicates a two-dimensional flow field inside the micropore at high Weissenberg

numbers. The stream-wise velocity along the vertical mid-plane of the micropore shows

maximum values in the middle of the micropore for Newtonian fluids. In contrast, the

maximum values for viscoelastic fluids occur near the top and bottom horizontal walls, as

seen from sub-Fig. 7.5(c). Furthermore, these velocity overshoots near the top and bot-

tom horizontal walls decrease with the Weissenberg number. Once again, the span-wise

velocity along the vertical mid-plane is zero for Newtonian fluids. In contrast, it gains an

increasing value with the Weissenberg number for viscoelastic fluids, sub-Fig. 7.5(d).

Therefore, from the results presented here, it is clear that the flow field inside the

micropore transits from steady to an unsteady and fluctuating one as the Weissenberg

number gradually increases in the case of viscoelastic fluids. The reason behind the

107



origin of such an unstable flow field is due to the increase in the elastic stresses with

the Weissenberg number, which ultimately leads to an electro-elastic instability in the

system. As mentioned earlier in the introduction section, these instabilities originated due

to the interaction between the normal tensile stresses and streamline curvature present

in the system. It has already been observed in many prior electrokinetically driven

microflows [120, 121, 122]. To understand these instabilities in more detail, the following

M parameter criterion developed by McKinley and co-workers [18, 250] is often used

M =
√
τ11
η0γ̇

λU

R
≥Mcrit (7.1)

In the above equation, τ11 is the normal elastic stress in the flow direction along a curved

streamline, γ̇ is the characteristic value of the local deformation rate, R is the char-

acteristic radius of the streamline curvature. For a two-dimensional flow field, these

can be determined as follows [256]. The streamline curvature can be calculated as

1
R(x,y) =

(
∂ψ
∂x

)2
∂2ψ
∂y2 +

(
∂ψ
∂y

)2
∂2ψ
∂x2 −2∂ψ∂y

∂ψ
∂x

∂2ψ
∂x∂y[(

∂ψ
∂x

)2
+
(
∂ψ
∂y

)2
]3/2 where ψ is the stream function and ux = −∂ψ

∂y

and uy = ∂ψ
∂x . The normal elastic stress along a curved streamline can be calculated as

τ11 = t · τ · t = τxxt
2
x+ τyyt

2
y +2τxytxty where t = txex+ tyey is the tangent vector along a

streamline whose components are calculated as tx = −
∂ψ
∂y

|∇ψ| and ty =
∂ψ
∂x

|∇ψ| . Here ex and ey
are the unit vectors in the x and y directions, respectively. According to this criterion,

elastic instability will emerge in a flow field when this non-dimensional parameter M

exceeds a critical value Mcrit. We have also calculated this M parameter and plotted it

in Fig. 7.6 at three different values of the Weissenberg number, namely, 0.5, 6, and 15.

We have used the time-averaged velocity field to calculate this parameter, whose values

are adjusted on a scale between 0 and 1. At a very low value of the Weissenberg number,

for instance, at Wi= 0.5 (sub-Fig. 7.6(a)), the value of the M parameter is so small that

the plot becomes almost black. However, its value increases as the Weissenberg number

increases due to an increase in the elastic stresses within the system; for instance, see the

results presented at Wi= 6 and 15 in sub-Figs. 7.6(b) and (c), respectively. In particular,

one can see that the value of the M parameter is high around the entrant corners of the

micropore due to the presence of high streamline curvature and high elastic stresses in

these regions. Therefore, these regions are prone to the origin of these purely elastic in-
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stabilities in the system. For the electrokinetically driven flows in microfluidic cross-slot

and flow-focusing devices, a similar finding was also seen [121].

7.3.2 Effect of expansion and contraction lengths
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(b) (a) 

Figure 7.7: Streamlines and velocity magnitude plots inside the micropore at two different
values of EL, namely, 2 (a) and 8 (b) at Wi = 3. Note that here the x-axis label values
in the zoomed-in figures are non-dimensional.

This subsection shows how the expansion (EL) and contraction (CL) lengths of the

micropore tend to influence the onset of the electro-elastic instability and the associated

flow dynamics inside the micropore. While the electric field strength and polymer vis-

cosity ratio are kept constant at 5000 V/m and 0.5 for this study, the non-dimensional

values of EL and CL are varied as 2, 4, 8, and 1, 3, 5, respectively. For each value of

either EL or CL, the Weissenberg number is varied between 0 and 15. Figure 7.7 shows

the streamlines and velocity magnitude plots inside the micropore at two different values

of the expansion length, namely, 2 and 8 at Wi = 3. First, irrespective of the value of

EL, lip vortices are formed near entrant corners of the micropore. This can be seen from

the zoomed-in sub-figures in Fig. 7.7. The length of this lip vortex is larger for EL = 2

than that for EL = 8. The streamlines are more distorted, particularly in the middle of

the micropore for EL = 2 than EL = 8. This is simply due to the availability of more

span-wise space than stream-wise space for the fluid to flow in the former micropore than

in the latter one. The velocity magnitude is seen to be high in the entrant and re-entrant
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(a) 

(c) 

Figure 7.8: Temporal variation of the stream-wise velocity at a probe location placed
at the origin of the micropore at Wi = 3 (a) and 15 (c) at two different values of the
expansion length, namely, 2 and 8. The corresponding power spectrum plot of the velocity
fluctuations is presented in (b) and (d), respectively.
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(d) (c) 

Figure 7.9: Streamlines and velocity magnitude plots inside the micropore with CL = 3
(a) and 5 (b). The temporal variation of the stream-wise velocity and power spectrum
of velocity fluctuations are shown in sub-Figures (c) and (d). Here all the results are
presented at Wi= 3. Note that the x-axis label values in the zoomed-in figures are non-
dimensional.

regions of both the micropores; however, its maximum value is found to be larger for

El = 2 than that seen for El = 8 due to the availability of less area for the former mi-

cropore than the latter one. Furthermore, lip vortices appear near re-entrant corners for

EL= 2, whereas they are absent for EL= 8 under the same conditions. This is because

the effect of elastic forces (which ultimately leads to the formation of these lip vortices)

on the flow dynamics around the re-entrant corners is expected to be more for micropore

with EL= 2 than that with EL= 8 due to the smaller stream-wise length of the former

micropore. Therefore, this trend in the flow behaviour suggests that the influence of

the fluid elasticity on the flow dynamics inside the micropore gradually diminishes as its

expansion length progressively increases, keeping everything else the same.

To gain more insights into the flow behaviour at different values of the expansion

length, we have plotted the temporal variation and power spectrum of fluctuations of

the non-dimensional stream-wise velocity component in Fig. 7.8. At Wi= 3, the velocity

shows a regular and periodic fluctuation for EL= 8, whereas an irregular and aperiodic
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fluctuation is observed for EL = 2. This suggests that the onset of the electro-elastic

instability is delayed to higher values of the Weissenberg number as the expansion length

of the micropore increases. The reason behind this can be explained as follows: to study

the effect of the fluid elasticity on the local flow dynamics, we can define a local Deborah

number based on the time required for a fluid parcel to travel from the entrant region to

the re-entrant region of the micropore. This time is directly proportional to the expansion

length of the micropore, resulting in a decrease in the local Deborah number with the

expansion length. Therefore, the effect of the fluid elasticity on the flow field inside the

micropore also decreases with the expansion length. This ultimately delays the onset of

the electro-elastic instability inside the micropore.

Furthermore, the intensity of the velocity fluctuations increases with the decreasing

value of the expansion length, as evident from the PSD plot presented in sub-Fig. 7.4(b).

This is because of the increase in the local Deborah number with the decreasing value

of the expansion length. On the other hand, at Wi = 15, the stream-wise velocity (at

the same probe location as that presented at Wi = 3) shows an irregular and aperiodic

variation with time for both the values of the expansion length, suggesting the presence

of a more chaotic flow state inside the micropore, sub-Fig. 7.8(c). It is more obvious from

the power spectrum plot of the velocity fluctuations presented in sub-Fig. 7.8(d) wherein

the excitation of the fluid motion over a wide range of continuum frequencies can be seen.

The influence of the contraction length (CL) on the flow dynamics inside the micro-

pore is shown in Fig. 7.9 at Wi = 3. The formation of entrant lip vortices can be seen

both for CL= 3 and 5. However, the lip vortex size is larger for CL= 3 than for CL= 5;

see the zoomed-in subfigures. The temporal variation of the non-dimensional stream-wise

velocity and its power spectrum at a probe location placed at the origin of the micropore

is shown in sub-Fig. 7.9 for two values of the contraction length. The velocity shows reg-

ular periodic fluctuations for CL= 3, whereas it reaches a steady value for CL= 5 at the

same Weissenberg number of 3. Therefore, it suggests that the transition in the flow field

from periodic to quasi-periodic (as well as the onset of electro-elastic instability) happens

at lower values of the Weissenberg number as the contraction length of the micropore

decreases. Furthermore, the flow field inside the micropore also becomes more chaotic as

its contraction length gradually decreases.
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Figure 7.10: Streamlines and velocity magnitude plots at different values of the polymer
viscosity ratio, (a) β = 0.2, (b) β = 0.4, and (c) β = 0.6. (d) Temporal variation of the
stream-wise velocity at a probe location placed at the origin of the micropore at two
different values of the polymer viscosity ratio. (e) The corresponding power spectrum
plot of velocity fluctuations at β = 0.2. Here all the results are presented at Wi= 3.

7.3.3 Effect of polymer viscosity ratio

In this subsection, we have studied the influence of the polymer viscosity ratio β on the

flow dynamics inside the micropore. It is related to the polymer concentration by the

formula β = 1
1+c , where c is the polymer concentration in the solution [257]. To perform

so, we have carried out simulations for three different values of the polymer viscosity

ratio, namely, 0.2, 0.4, and 0.6. The electric field strength is kept constant at Ex = 5000

V/m, whereas the Weissenberg number is varied between 0 and 15 for each value of

β. Note that as the value of β increases, the polymer concentration in the solution

decreases, and it ultimately reaches to zero when β = 1, which represents the Newtonian

solvent only. The streamlines and velocity magnitude inside the micropore at three

different values of the polymer viscosity ratio are shown in Fig. 7.10 at Wi = 3. First,

the maximum value of the velocity magnitude increases with the decreasing value of the
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Figure 7.11: Phase diagram showing the existence of different flow states in β−Wi space.

polymer viscosity ratio. Secondly, at this value of the Weissenberg number, both the

entrant and re-entrant lip vortices are formed for β = 0.2, sub-Fig. 7.10(a). In contrast,

only the entrant lip vortex appears for β = 0.4 (sub-Fig. 7.10(b), whereas no lip vortex

appears for β = 0.6 (sub-Fig. 7.10(c). Furthermore, the entrant lip vortex size is larger for

β = 0.2 than that seen for β = 0.4. Therefore, it suggests that the tendency in appearing

lip vortices inside the micropore increases as the polymer viscosity ratio decreases and/or

the polymer concentration in the solution increases. This trend is further accentuated as

the Weissenberg number further increases.

The type of flow field inside the micropore also strongly depends on the polymer

viscosity ratio. In sub-Fig. 7.10(d), the temporal variation of the non-dimensional stream-

wise velocity at a probe location placed at the micropore origin is plotted at two values

of the polymer viscosity ratio, namely, 0.2 and 0.6. It shows that the flow dynamics

become fluctuating inside the micropore at β = 0.2 and 0.6. However, from the PSD

plot presented in sub-Fig. 7.10(e), it is seen that the fluctuations of the flow field are

quasi-periodic at β = 0.2, whereas they are periodic at β = 0.6. This flow behaviour

indicates that the transition from a steady to unsteady flow regime (where the electro-

elastic instability starts to appear) delays to higher values of the Weissenberg number as
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Figure 7.12: Instantaneous dye concentration profile inside the micropore. (a) Wi= 0.1
(b)Wi= 6 and (c)Wi= 15. Here the profile at different values of the Weissenberg number
is shown at the same non-dimensional time of t= 100. Other simulation parameters are
kept constant as Ex = 5000 and β = 0.4.

the polymer viscosity ratio gradually increases.

A phase diagram plot demarcating different flow states in β−Wi space is presented in

Fig. 7.11. It demonstrates that the critical value of the Weissenberg number increases (at

which the transition from steady to unsteady flow field or the onset of the electro-elastic

instability occurs) as the polymer viscosity ratio increases. For instance, at β = 0.2, this

critical value is around 2, whereas it is around 3.8 at β = 0.6. Below this critical value of

the Weissenberg number, a steady flow field exists, which can be further classified into

the following categories with the gradual increment of the Weissenberg number at any

value of β, namely, steady and symmetric or Newtonian-like, steady and asymmetric, the

appearance of the steady entrant and re-entrant lip vortices. On the other hand, beyond

this critical value of the Weissenberg number, an unsteady flow field exists, broadly

classified into two flow states, namely, periodic and quasi-periodic. Other flow states can

also be seen within the latter category, such as unsteady lip vortex, re-entrant vortex,

multi vortices, etc. This phase diagram clearly shows that the transition from any flow

state to another is delayed to higher values of the Weissenberg number as the polymer

viscosity ratio increases.

7.3.4 Further applications

Not only the present model system would be helpful to understand the transport of

complex viscoelastic fluids under the influence of an electric field in porous media, but it
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Figure 7.13: Variation of the mixing efficiency parameter η with the Weissenberg number.

can also be used in other practical applications such as mixing fluids. This process is often

needed for chemical and biochemical analyses in lab-on-chip microfluidic devices [258,

170]. However, due to the presence of laminar flow conditions, mixing fluids is often

challenging in these small-scale systems. Therefore, over the years, many designs and

techniques based on passive and active modes have been developed to enhance the mixing

efficiency in various micro-scale systems; for instance, see some excellent review articles

on electrokinetic mixing in the literature [157, 158]. In this study, we show that if the

working fluids to be mixed are viscoelastic (or one can add a minute amount of solid

polymers into the working fluid to make it viscoelastic). One can use this model system

of a long micropore with step expansion and contraction to mix such fluids. To show the

potential of the proposed approach, we have taken the same fluids which are needed to

be mixed. We have added a dye with a finite concentration into the fluid entering into

the upper half of the micropore. In contrast, a zero dye concentration is taken in the

fluid entering the micropore’s lower half, as schematically shown in sub-Fig. 7.12(a). The

following convective-diffusive equation has been solved to track the dye concentration

inside the microchannel to evaluate the mixing efficiency.

∂c

∂t
+u ·∇c=D∇2c (7.2)
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In the above equation, c is the dye concentration, and D is the diffusivity of the dye.

Here, the value of the diffusivity D is kept constant at a very lower value of 4 × 10−14

m2/s. Therefore, the Peclet number (Pe = HU0
D ) becomes much larger than one so that

the mixing phenomenon of the dye becomes dominated due to the advection, not due to

the diffusion. Figure 7.12 shows the instantaneous dye concentration profile inside the

microchannel at different Weissenberg numbers at the same time. It is seen that at a

low Weissenberg number, for instance, at Wi = 0.1 (sub-Fig. 7.12(a)), no mixing of the

fluids happens. However, as the Weissenberg number increases to 6, the mixing of the

two fluids can be seen mainly in the middle of the micropore, sub-Fig. 7.12(b). This

is because of the presence of the electro-elastic instability at this Weissenberg number,

resulting in an increase in the chaotic advection and hence the mixing phenomenon. As

the Weissenberg number further increases to 15, the strength of this chaotic advection

inside the micropore due to this EEI further increases, and hence the mixing phenomenon

between the two fluids also further increases, sub-Fig. 7.12(c).

To quantitatively show the mixing efficiency between the two fluids, we have also

calculated the mixing index η defined as [157, 158]

η = 1−

√
1
N

∑N
1 (C̄s− C̄∗

s )2√
1
N

∑N
1 (C̄0

s − C̄∗
s )2

(7.3)

Here C̄s, C̄∗
s and C̄0

s are the dye concentration at a point within the micropore, dye

concentration for a perfectly mixed fluid and dye concentration for an unmixed fluid,

respectively. The value of C̄0
s can be either 0 or 1, and hence the value of C̄∗

s would be

0.5. Therefore, the denominator of equation 7.3 has a constant value of 0.5. The theo-

retical range of η lies between 0 and 1, representing perfectly unmixed and mixed fluids,

respectively. Note that the calculation of this parameter is performed at the outlet of the

micropore. Figure 7.13 depicts the variation of the mixing efficiency parameter with the

Weissenberg number. The mixing efficiency is seen to be almost zero in the steady flow

regime. However, it attains a finite value in the unsteady flow regime once the electro-

elastic instability develops in the system after a critical value of the Weissenberg number.

Then it gradually increases with the Weissenberg number due to the progressive increase

in the chaotic advection inside the micropore. All these results confirm that the present

simple system of a long micropore with step expansion and contraction could also be
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successfully used to mix two viscoelastic fluids under the influence of an electric field. It

should be mentioned here that the enhancement of mixing due to this elastic instability

was also observed in earlier investigations dealing with pressure-driven flows in geome-

tries such as Couette cell [147, 259]. This study further shows that this enhancement

in mixing even could be achieved in electrokinetically driven flows through a relatively

simpler geometry consisting of a microchannel with step expansion and contraction with

no moving parts.
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Chapter 8
Electrokinetically driven flows of vis-
coelastic fluids past a microcylinder
confined in a channel

This chapter aims to demonstrate how the electro-elastic instability (EEI) phenomenon

in viscoelastic fluid flows past a cylindrical obstacle confined in a microchannel originat-

ing the flow-switching phenomenon and, subsequently, facilitating the mixing of these

fluids in this simple microdevice. To achieve this, both numerical simulations and experi-

mental investigations have been conducted. Furthermore, the data-driven dynamic mode

decomposition (DMD) technique has been employed to better understand the chaotic

flow dynamics arising in this flow system. The introduction and motivation behind this

chapter have already been discussed in section 2.5 of chapter 2.

8.1 Microfluidic setup

The schematic of the present microfluidic setup considered in this study is depicted in

sub-Fig. 8.1(a). It consists of a single microcylinder of diameter d = 0.5mm placed

in the middle of a long microchannel of width w = 0.6mm, and of a total length of

L = Lu +Ld = 14 mm. Here Lu and Ld are the upstream and downstream lengths of

the channel, as schematically shown in Fig. 8.1(a). The depth of the microchannel is

100µm. The present study considers a fixed blockage ratio of BR= d
W = 0.83 both in the

simulations and experiments. Two electrodes have been placed at the channel inlet and

outlet, and a voltage bias of V0 is applied between them so that an external electric field

strength of Ex = V0
L is created. This, in turn, creates an electric potential in the domain to

induce the flow. All the solid walls of the geometry possess a constant negative wall zeta

potential of ζ0. The electroosmotic flow occurs from the anode to the cathode due to the

interaction between the external electric field and the net charge accumulated within the

electrical double layer (EDL). To facilitate this electroosmotic flow, the viscoelastic fluid

is mixed with a binary monovalent electrolyte, and the resulting viscoelastic electrolyte

fluid is assumed to be incompressible.
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Channel wall

Flow direction

(a)

(c) (d)

Figure 8.1: (a) Schematic of the present problem and (b) grid structure (grid G3) used
in the present numerical simulation. (c) SEM image of PDMS microfluidic setup, and
(d) experimental setup with the platinum electrode and connected DC power supply.
Here, the blue dot in the schematic of the problem setup is the probe location where the
velocity is measured and analyzed.

8.2 Methodology

8.2.1 Numerical details

The governing equations and numerical solution technique details have already been pre-

sented in subsection 3.1 of chapter 3. The following boundary conditions have been

employed to solve the present problem numerically: at all solid walls of the microchannel

and cylinder, the standard no-slip and no-penetration conditions (u = 0) for the velocity;

a zero gradient (∇p= 0) for the pressure; a fixed negative value (ψ = −ζ0) for the electric

potential; values are linearly extrapolated for the viscoelastic stress at the channel wall.

At the inlet and outlet sections, a zero gradient for the velocity and viscoelastic stress

and a zero value for the pressure are imposed. A regular hexahedral mesh was used to

discretize the whole computational domain. A very fine mesh was used near the cylinder

to capture the steep gradients of velocity, stress, and potential fields, as schematically

shown in Fig. 8.1(b). An optimum grid number was chosen by performing the standard

grid-independent test conducted at the highest voltage and Weissenberg number values

considered in this study. Around 60000 hexahedral cells (grid G3) in the whole compu-
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Grid Total number of cells ux,avg.
G1 38400 5.45e-4
G2 48600 6.18e-4
G3 60000 6.35e-4
G4 72600 6.35e-4
G5 86200 6.35e-4

Table 8.1: Details of the grid independence study carried out at Ex = 4285.71 V/m and
Wi = 1.05 × 10−3 . Here ux,avg is the time-averaged stream-wise velocity evaluated at a
probe location placed at the upper cylinder gap region (blue dot in sub-Fig.1(a)).

tational domain were found to be adequate to capture the flow physics inside the present

micro-scale geometry. It was confirmed by comparing the time-averaged x-component

velocity at a probe location in the gap between the upper channel wall and the cylinder

surface, see Table 8.1. Furthermore, the polymeric stress fields were also compared for

different grid densities, and once again, grid G3 was found to be sufficient for the present

study.

8.2.2 Dynamic mode decomposition (DMD) analysis

Like the global stability analyses, the DMD technique extracts structures related to flow

disturbances that better explain the underlying cause of instability. To perform this anal-

ysis, we utilize the algorithm developed by Schmid [172] and also employed in our recent

studies [260, 261]. First, a sequence of M = 2000 snapshots of the concentration field is

sampled at an equispaced time interval of 0.005 s. These snapshots are then arranged in

a matrix by converting each snapshot into a vector form XM
1 = {xj}Mj=1. A linear map-

ping approximation is made between the two consecutive snapshots of this matrix, which

remains constant over the whole sequence. Therefore, the system can be represented as

XM
2 = AXM−1

1 ≈XM−1
1 S. This is followed by the singular value decomposition (SVD)

of the S matrix to compute its eigenvalues (Ritz values) and eigenvectors (Ritz vectors).

These Ritz vectors quantify the spatial flow features in the form of "modes" (denoted by

ϕj), and the associated Ritz values (denoted by λj) capture their temporal dynamics.

The mode frequency (ωj) and growth rate (σj) are calculated from the Ritz values as

ωj = Im(log(λj)/∆t) and σj =Re(log(λj)/∆t), respectively. The energy contribution of

each mode is determined by calculating its norm, given by ||ϕj ||. In most of the DMD

studies, this quantity is used to select and rank a subset of modes to provide an efficient

121



and better representation of the physical quantity of interest, which is the concentration

field in the present study. A higher norm value corresponds to higher mode energy and

greater information about the original flow field represented by a particular mode.

8.3 Microfluidic experiments

The microfluidic device used in this study was fabricated from polydimethylsiloxane

(PDMS, Sylgard 184 elastomer kit obtained from Sigma-Aldrich) using the soft-lithography

technique [262, 263]. The fabrication of the device started with the transfer of the design

from the photomask to the negative SU-8 (Kayaku Advanced Material, USA) coated mold

by exposing it to ultraviolet (UV) light. After the UV exposure, we obtained a mold after

developing it into a 1-methoxy-2-propanol acetate solvent (PGMEA, Kayaku Advanced

Material, USA). A mixture of PDMS and cross-linking curing agent in the ratio of 6:1

was then poured into the mold and heated in an oven at 80°C for 2 hours. Once the

PDMS became hard, it was peeled off from the mold, and a mold replica was obtained

on the PDMS block. Finally, the PDMS microchannel block and the glass substrate (on

which the block was placed) were treated in the oxygen plasma for two minutes. The

SEM image of the PDMS microchannel is presented in sub-Fig. 8.1(c). As the PDMS

is non-conductive, the coating of gold was done before the SEM imaging to make the

channel surface conductive. It was performed only for taking the SEM image, whereas

all the microfluidic experiments were performed using a PDMS channel without this gold

coating. The dimensions of the fabricated microchannel are the same as those used in

the numerical simulations of the present work.

The working fluid in this study is a constant viscosity Boger fluid, comprised of 37.5

wt. % (4.69 ×10−2 mol/liter) polyethylene glycol (mol wt. 8000 g/mol) and 0.2 wt. %

(2.22 ×10−6 mol/liter) polyethylene oxide (mol wt. 900000 g/mol) dissolved in de-ionized

water [264], both obtained from Sigma-Aldrich and used without further alteration. The

solution was stirred continuously for 24 hours at room temperature and left for one day

for complete hydrolysis. The shear rheology of the prepared solution was then measured

at 30°C using a stress-controlled rheometer (Anton-Paar, MCR 702 twin drive) with

cone-plate geometry (60 mm of diameter and cone angle of 1°) with a truncation gap

of 100 µm. After rheological confirmation of the Boger fluid (Fig. 8.2), 1.0 wt. % of
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Figure 8.2: (a) Variation of the shear viscosity with the shear rate. (b) Variation of the
storage (G’) and loss (G”) modulus with the angular frequency for viscoelastic Boger
fluids at 30 °C both in the presence of salt and without salt.

NaCl was added to the solution. The Boger fluid, both with and without salt, exhibits

a constant viscosity over the entire range of shear rate considered in the measurement,

sub-Fig. 8.2(a). The small amplitude oscillatory shear (SAOS) experiments with 1.0 %

strain rate were also conducted to measure the storage (G′) and loss (G′′) modulus, and

the results are presented in sub-Fig. 8.2(b). It can be seen the addition of salt to a Boger

fluid increases the zero-shear viscosity but hardly influences the values of G′ and G′′.

Before the experiments, a zeta potential was created on the PDMS wall to facilitate

the electro-osmotic flow in the microchannel. In doing so, the procedure described in the

work of Song et al. [265] was used in this study. As per their procedure, 5 wt.% (0.133

mol/liter) of polybrene (Sigma-Aldrich, mol wt. 374.2 g/mol) solution was pumped into

the PDMS channel for 4 minutes and then left for 15 minutes to create a negative wall

zeta potential on the microchannel wall. The wall zeta potential value of ζ0 = 60.1 mV was

obtained from the literature at this polybrene concentration [265, 266, 267] and also used

in the present simulations. Furthermore, the present study used the current monitoring

method (as proposed by Song et al. [265]) to calculate the value of ζ0 and found a value

of 58.58 mV, which is very close to that obtained from the literature. The working

Boger fluid with fluorescent particles (Rhodamine B of 1 µm size obtained from Sigma-

Aldrich) was first injected into the microchannel at a desired amount. The platinum

electrodes were then inserted into the inlet and outlet reservoirs of the microchannel,

which were connected to a DC power supply (Keithley 2231-A triple channel). The

whole experimental setup was placed under an inverted microscope (Leica DM16000B)
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to capture the flow dynamics with a 4X objective, Fig. 8.1(d). The obtained images were

finally post-processed using the open-source particle image velocimetry PIVlab software

from MATLAB [268].

8.4 Results and discussion

At the onset, the results of the flow dynamics inside the present microfluidic setup are

presented and discussed, obtained with both CFD simulations and experiments. The

numerical simulations have been carried out for a range of values of the applied electric

field strength and Weissenberg number and at a fixed value of the blockage ratio of

BR = 0.83. The results for a Newtonian fluid are also included in the present study

so that a direct comparison of the flow dynamics with the viscoelastic fluids can be

made under the same conditions. The experiments have also been carried out for the

same range of the electric field strength as that used in numerical simulations. The flow

dynamics results are discussed with the help of velocity vector and velocity magnitude

plots and presented for a region near the obstacle. Furthermore, a statistical analysis

of the point-wise velocity fluctuations is also provided to get further insights into flow

physics.

Figure 8.3: Velocity vector and magnitude plots both for Newtonian ((a) and (b)) and
viscoelastic fluids ((c) and (d)) at an applied electric field strength of Ex = 1428.57 V/m
and Wi = 3.53 × 10−4. (e) Temporal variation of the non-dimensional stream-wise (Ux)
velocity at a probe location placed at the upper cylinder gap region for both fluids at the
same conditions.

Figure 8.3 shows the velocity vector and magnitude plots near the obstacle at an

electric field strength of Ex = 1428.57 V/m both for viscoelastic (Wi= 3.53×10−4) and
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Figure 8.4: Velocity vector and magnitude plots for viscoelastic fluids at Ex = 2857.14
V/m and Wi = 7.06 × 10−4 for two different times both in simulations ((a) t = 0.077,
(b) t = 0.08) and experiments ((f) t = 0.087 (g) t = 0.092). The same at Ex = 4285.71
V/m and Wi= 1.05×10−3 for three different times both in simulations ((c) t= 0.09, (d)
t= 0.093, (e) t= 0.098) and experiments ((h) t= 0.095, (i) t= 0.1, (j) t= 0.103)

.
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(a) (b)

Figure 8.5: Temporal variation of the non-dimensional stream-wise (Ux) velocity compo-
nent (a) and power spectral density plot of velocity fluctuations for viscoelastic fluids (b)
at two values of the electric field strength, namely, 2857.14 V/m (Wi= 7.06×10−4) and
4285.71 V/m (Wi= 1.05×10−3).

Newtonian fluids. The flow exhibits almost a symmetric profile at this electric field

strength in both simulations and experiments. The velocity magnitude (normalized with

its maximum value) zone with the highest value is seen to be present at the upper and

lower gaps between the channel wall and cylinder surface. This is simply because the

flow area is less in this region due to the obstruction by the cylindrical obstacle. Hence,

the velocity magnitude increases in this region to obey the mass conservation principle.

The flow field also remains steady at this condition for both fluids. This is evident

in sub-Fig 8.3(e), wherein the temporal variation of the non-dimensionalized stream-

wise velocity at a probe location placed in the gap between the upper channel wall and

cylinder surface (blue dot in sub-Fig 8.1(a)) is plotted. It clearly shows that this velocity

component reaches a steady value with time.

The applied electric field strength is now increased to Ex = 2857.14 V/m, and the cor-

responding flow dynamics inside the microfluidic setup is shown in Fig 8.4 for viscoelastic

fluids with Wi= 7.06 × 10−4. First, the flow symmetry is destroyed at this electric field

strength. The maximum velocity magnitude zone now switches positions with time be-

tween the upper and lower gap regions between the cylinder surface and the channel wall.

This suggests that at a particular time, most of the fluid passes through the lower gap

region (sub-Fig 8.4(a)), whereas at the next time, it traverses through the upper gap

region (sub-Fig 8.4(b)). The same flow pattern is also observed in the corresponding

experiments at the same electric field strength; for instance, see sub-Figs 8.4(f) and (g).
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This suggests the presence of a flow-switching phenomenon in the microfluidic setup at

this condition. As the electric field strength further increases to Ex = 4285.71 V/m (and

the corresponding Weissenberg number increases to 1.05 × 10−3), this tendency in the

flow behaviour of viscoelastic fluids further increases. This is noticeable both in numeri-

cal simulations (sub-Figs. 8.4(c)-(e)) and experiments (sub-Figs. 8.4(h)-(j)) presented at

three different times.

Therefore, these results suggest that the flow field becomes unsteady or time-dependent

for viscoelastic fluids with the increased value of the applied electric field strength. This

is further explained in sub-Fig. 8.5(a), wherein the temporal variation of the stream-wise

velocity (at the same probe location depicted as the blue dot in sub-Fig. 8.1(a)) is plotted,

showing aperiodic fluctuations with time. This plot shows that the intensity of velocity

fluctuations increases with the electric field strength. The corresponding power spectral

density plot of velocity fluctuations is presented in sub-Fig. 8.5(b) at two different values

of Ex, namely, 2857.14 and 4285.71 V/m to get further insights into this unsteady flow

dynamics. It can be seen that the excitation of fluid motion occurs over a wide range

of continuum frequencies for both the applied electric field strengths. Furthermore, a

plateau in the power spectrum is seen in the low-frequency range, and at high frequen-

cies, a power-law decay (ωα) is seen, which covers almost a decade of the frequency range.

The fitted values of the power-law exponent α are 1.54 and 1.929 for Ex = 2857.14 and

4285.71 V/m, respectively. This range of α values has also been seen in the electroosmotic

flows of viscoelastic fluids through cross-slot and flow-focusing devices [121]. All these

suggest that an electro-elastic instability with fluctuating hydrodynamics is established

inside the system for viscoelastic fluids once the electric field strength exceeds a critical

value. Note that such a chaotic flow field is not observed for Newtonian fluids, even at

this study’s highest applied electric field strength.

Several previous studies have explained the reason behind this purely elastic instability

both for pressure driven [250, 18] and electrokinetically driven flows [120, 160]. It is due

to the interaction between the applied electric field, which acts on the free ions within

the EDL, and non-linear elastic stresses in a viscoelastic fluid. In this electrokinetically

driven flow, the wall zeta potential is influenced by the EDL distribution, and the electric

potential is expected to be a Gaussian distribution. Therefore, the applied electric field on

the EDL (near the channel wall) and fluid viscoelasticity instigated the chaotic motion of
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the fluid, resulting in instability in the channel. The curved streamlines around the flow

past the microcylinder facilitate the onset of this instability inside the system. The flow-

switching phenomenon happens once this EEI phenomenon is triggered in the system.

Also, viscoelastic fluid flow generates a long strand of elastic stresses downstream of

the microcylinder. This is due to the presence of a highly extensional flow field in this

region, which causes the alignment and stretching of polymer molecules in this region. It

eventually increases the elastic stresses in this region and forms a strand. This can be

visualized in Fig. 8.6, where the xx-component of the elastic stresses, τxx is plotted at

two different values of the electric field strength, namely, 1428.57 and 2857.14 V/m. As

expected, the length and value of this elastic stress strand increase with Ex due to the

increase in the electroosmotic velocity strength. Once the EEI phenomenon originates

in the system, this strand also fluctuates with time. At any instance, when this strand

moves upward, it acts as a barrier to the flow through the upper gap region between the

channel wall and cylinder surface. Therefore, most fluid passes through the lower gap

between the lower channel wall and the cylinder surface. In contrast, a reverse trend

is seen when the strand moves downward, i.e., most fluid goes through the upper gap

region. This ultimately results in the generation of this flow-switching phenomenon inside

the system. Therefore, the electroosmotic flows of viscoelastic fluids through an actual

porous media may become unsteady and chaotic once the electric field strength exceeds a

critical value due to this EEI phenomenon. This is because a real porous media consists

of many curved and interconnected flow paths of micron sizes, which may easily trigger

this instability inside a system during the flow of a viscoelastic fluid. This has been seen

in many recent studies dealing with pressure-driven flows [24, 269].

Next, we demonstrate how this flow-switching phenomenon could efficiently mix two

viscoelastic fluids in this microfluidic setup with the help of numerical simulations. To

show this potential, we have placed a viscoelastic fluid with a finite dye concentration

in the upper half of the geometry and the same viscoelastic fluid with a zero dye con-

centration in the lower half of the geometry, as schematically shown in Fig 8.7. At low

values of the electric field strength (sub-Fig. 8.7(a)), the fluids present in the upper and

lower halves of the geometry move side by side without mixing due to the presence of a

laminar flow condition. However, as the electric field strength increases to higher values,

say to 1428.57 V/m, the interface between the dyed and non-dyed fluids starts to dis-
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Figure 8.6: Surface plot of the non-dimensional elastic stress component τxx for Ex =
1428.57 V/m (Wi= 3.53×10−4) at t= 0.071 and Ex = 2857.14 V/m (Wi= 7.06×10−4)
at two different times, namely, (b) t= 0.077 and (c) t= 0.08.

Figure 8.7: Instantaneous dye concentration profiles (at a time t = 5 s) inside the mi-
crochannel at (a) 71.42, V/m, (b) 1428.57 V/m, (c) 2857.14 V/m, and (d) 4285.71 V/m.
The corresponding time-averaged mean dye concentration profiles ((e)-(h)) at the same
applied electric field strengths.
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Figure 8.8: Variation of the mixing efficiency parameter Φ with the applied electric field
strength Ex. Here the calculation is performed for a time of 5 s.

tort due to the onset of the EEI phenomenon inside the system, sub-Fig. 8.7(b). As the

electric field strength further increases, the interface becomes more distorted due to the

increased instability intensity, sub-Fig. 8.7(c-d). In particular, the flow-switching phe-

nomenon, originating from the elastic instability, drives the dyed fluid from the upper half

of the channel to its lower half and dye-free fluid in the opposite direction, upstream of

the microcylinder. This ultimately leads to efficiently mixing the two fluids downstream

of the microcylinder. This can be seen from the plot of the time-averaged mean dye

concentration in the flow domain presented in sub-Figs. 8.7(e)-(h) at different applied

electric field strength values.

To present this mixing process more quantitatively, we have calculated the mixing

efficiency parameter Φ defined as

Φ = 1−

√
1
N

∑N
1 (C̄s− C̄∗

s )2√
1
N

∑N
1 (C̄0

s − C̄∗
s )2

(8.1)

Here C̄s, C̄∗
s and C̄0

s are the mean dye concentration at a point within the geometry,

dye concentration for perfectly mixed viscoelastic fluids and dye concentration for an

unmixed viscoelastic fluid, respectively. Here, N is the number of grid points along the

vertical line at the channel outlet where the mixing efficiency is calculated. The value of

C̄0
s is either 0 or 1, and the value of C̄∗

s is 0.5. Therefore, the denominator of equation 8.1

has a constant value of 0.5. The theoretical range of Φ lies between 0 and 1, representing
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Figure 8.9: Time coefficient norm (||Coj ||) and growth rate (σj) against the frequency
(Stj) at Ea = 357.14V/m ((a) and (b), Low voltage case) and Ea = 4285.71V/m ((c) and
(d), High voltage case). The color bar in σj vs Stj represents the mode norm (||ϕj ||).
Also, in the same plot, the encircled modes are the modes sorted based on the time
coefficient norm ||Coj ||, where unlabeled modes are complex conjugates of the labeled
ones.

perfectly unmixed and mixed viscoelastic fluids. Figure 8.8 depicts the variation of Φ

with Ex. It can be seen that the mixing efficiency increases drastically after a critical

value of the electric field strength for viscoelastic fluids due to the presence of the EEI

phenomenon inside the system.

Finally, we conduct the DMD analysis of the dye evaluation pattern inside the flow

system. Note that we conducted the DMD analysis based on our numerical simulation

results, not our experimental results. In doing so, we aim to provide an insight into the

underlying flow features originating from this elastic instability and the resulting mixing

phenomena. The results are presented for two cases, namely, Ex = 357.14V/m (Low

voltage) and Ex = 4285.71V/m (High voltage), to describe the effect of varying electric

field strengths on the coherent structures. In both cases, DMD extracts a large number

of modes with slight differences in their norms (||ϕj ||); see the plots of the growth rate
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(σj) with respect to the frequency (Stj = ωj
2π ) in Fig. 8.9. Here, the value of the norm

(||ϕj ||) for most of the modes varies between 0.8 and 1 only. This is due to the highly

chaotic nature of the flow, which results in the evolution of multiple flow structures (and

associated frequencies) with nearly the same energy content. The existence of multiple

frequencies in the flow field is also evident from the PSD plots presented in Fig. 8.5.

Thus, the selection of modes based solely on the energy content might not be perfect here.

Moreover, in the same plot, very few modes are neutrally stable (i.e., non-damping), and

most of them have a negative growth rate, implying that these structures decay with

time. This is intuitive as mixing is a transient phenomenon. Adding to this, there is no

imposed frequency in the flow field (e.g., a rotating impeller), which could be used to

sort the relevant modes. Therefore, the ranking of the modes becomes complicated. To

circumvent this complexity, we resort to another parameter known as the time coefficient

norm (||Coj ||), which considers not only a mode’s initial energy contribution but also

its temporal dynamics, thereby sorting the modes in the most effective way possible.

In simple terms, the mode having a high amplitude (initial energy contribution to the

flow field) and a low growth rate (least damping) will have the highest value of the

time coefficient norm. This criterion was also employed in our earlier study [261], where

the expression to compute this quantity is presented. Based on this norm (||Coj ||),

for the sake of brevity, we explain the coherent structures in the first four modes only,

highlighted in Fig. 8.9 (where the time coefficient norm is plotted against the frequency).

These chosen modes are also encircled in the growth rate (σj) versus frequency plots.

We first present the dominant modes in Fig. 8.10. At the top, instantaneous concen-

tration fields at the final snapshot of the sequence are shown. It is clear from these plots

that the mixing phenomenon occurs downstream of the cylinder and is more intense at

the higher electric field strength than at the lower one. On decomposition, the mode

with the highest value of the time coefficient norm is the mean mode. This mode has

zero frequency and zero growth rate (see sub-Figs. 8.9(b) and (d)) and corresponds to

the time-averaged concentration field. Comparing the mean structures of the two cases

shows that mixing is higher when the flow is driven under the influence of high electric

field strength. All other modes have negative growth rates, indicating the flow’s dis-

sipative nature. Moreover, their frequencies (Stj) are symmetric about the zero value

as the DMD of real-valued data yields complex-conjugate pairs of eigenvalues. Moving
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Figure 8.10: Instantaneous concentration field (a) and representative DMD modes (b)-
(e) at Ea = 357.14V/m (Low voltage case) and Ea = 4285.71V/m (High voltage case),
respectively. Here, (b) is the mean mode, and (c), (d), and (e) correspond to mode 1,
mode 2, and mode 3, along with associated frequencies for each electric field strength.
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on to mode 1, narrow structures appear on the cylinder surface and at the interface for

low voltage cases, extending throughout the downstream distance. These structures sig-

nify the existence of disturbance at the interface between the high and low-concentration

streams. Less concentrated structures are also visible in the upstream direction of the

cylinder, which suggests that instability also exists in this region. This observation was

only possible after the DMD analysis of the flow field, as it was not apparent from the

concentration fields (even at the highest electric field strength used in this study). Upon

careful observation, it can be seen that these structures exist in an anti-symmetric fash-

ion. This arrangement occurs due to the wavy nature of the instability in space, and

the associated frequency of this wave is 0.07 Hz. On the other hand, these structures

in mode 1 of the high electric field strength case are more concentrated and broader in

the spanwise direction. Furthermore, the anti-symmetric arrangement is lost, and the

structures convect at a higher frequency of 0.42 Hz. All these features point out that

at higher electric field strengths, the instability and subsequent mixing process become

highly chaotic in nature, resulting in more mixing. For the low electric field strength

case, higher modes (mode 2 and mode 3) have qualitative similarities in their coherent

features and only differ in their frequencies. These modes are markedly different for

the high electric field strength case. In mode 2, negative structures surround the region

near the cylinder, unlike mode 1, where positive structures occupy this space. The same

trend is also observed in other modes, where positive and negative structures move at

different frequencies and surround the cylinder alternatively. This arises as the fluids in

the top and bottom half of the geometry engulf the cylinder during the flow-switching

phenomenon. Therefore, the DMD captures this phenomenon in different modes along

with their respective frequencies. Finally, mode 3 again captures intense mixing down-

stream of the cylinder with significant positive and negative structures encompassing the

whole space in this part of the microfluidic channel. Moreover, the intensity of these

structures increases as we move toward the end of the channel due to the enhancement

of the mixing phenomenon. It should be noted that the modes with higher frequencies

are less dominant, thereby dissipating at a faster rate.
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Chapter 9
Conclusions and future scope

In conclusion, the present thesis has attempted to investigate both the pressure-driven

and electrokinetically-driven flow dynamics of viscoelastic fluids, such as wormlike micel-

lar solutions or polymer solutions, through various model porous systems in the creeping

flow regime using numerical simulations and microfluidic experiments. An investigation

of the rheological and physicochemical properties of these fluids has also been performed

in the present thesis. The numerical simulations were conducted using the computational

fluid dynamics (CFD) technique. In particular, the mass, momentum, and viscoelastic

constitutive equations have been solved numerically with the help of the open-source CFD

code OpenFOAM and the RheoTool package, which was recently developed for simulat-

ing viscoelastic fluids. The Vasquez-Cook-McKinley (VCM) and Oldroyd-B constitutive

models have been utilized to realize the rheological behaviors of wormlike micellar solu-

tions and constant viscosity polymer solutions (Boger fluids), respectively, in the present

numerical simulations. On the other hand, the experimental methods adopted in this

study were the soft lithography technique for making a model microfluidic porous chip

and the flow visualization technique using an inverted fluorescent microscope. Further-

more, various rheological studies, such as steady shear, small-amplitude oscillatory shear

(SAOS), and dripping-onto-substrate (DoS) extensional rheometry, have also been per-

formed in the present thesis. The investigations carried out in the present dissertation

have found some significant conclusions. These are summarized as follows:

Both rhamnolipid biosurfactant-derived and chemically cetyltrimethylammonium bro-

mide (CTAB) surfactant-derived micellar solutions exhibited shear-thinning behaviour in

steady shear flow, which was hardly dependent on the surfactant concentration. The zero-

shear rate viscosity and shear relaxation time increased with the surfactant concentration

regardless of the surfactant type. On the other hand, the extensional viscosity (and hence

the strain-hardening behaviour) and extensional relaxation time also increased with the

surfactant concentration, irrespective of the surfactant type. However, the values were

found to be higher for rhamnolipid than those for CTAB. Furthermore, the rhamnolipid
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biosurfactant showed less surface tension, more contact angle (both advancing and pre-

ceding), and higher thermal stability than CTAB. Therefore, rhamnolipid biosurfactant

may become a better choice than CTAB for high-temperature applications such as oilfield

applications (Chapter 4).

In the case of pressure-driven flows of wormlike micellar solutions through a model

porous system consisting of a long microchannel with a cylindrical obstacle, an elastic in-

stability with unsteady and fluctuating hydrodynamics originated once the flow strength

(quantified in terms of the Weissenberg number) exceeded a critical value. This elastic

stress-induced instability was further found to be strongly dependent on how it was easy

or hard to break a micelle (Chapter 5).

Chapter 6 investigated the pressure-driven flow dynamics of wormlike micellar solu-

tions through a microfluidic system comprised of a long microchannel with either a single

or two microcylinders. A flow bifurcation was found in this model porous geometry once

the flow strength (quantified in terms of the Weissenberg number) exceeded a critical

value. This phenomenon was found to be significantly dependent on the blockage ratio

(in the case of flow past a single microcylinder) and gap ratio (in the case of flow past

two microcylinders) along with how it was easy or hard to break a micelle. An excel-

lent qualitative agreement was found between the present numerical results and prior

experimental results.

The electrokinetically driven flows of constant viscosity viscoelastic fluids (Boger fluid)

through a model porous system consisting of a long microchannel with step expansion

and contraction was studied in Chapter 7, and an electro-elastic instability was found

in the flow field once either the applied electric field strength or the fluid viscoelasticity

(quantified in terms of the Weissenberg number) exceeded a critical value. This instabil-

ity was further found to be dependent on the polymer concentration, constriction, and

expansion lengths of the micropore. It was further demonstrated that this model porous

system could also be successfully utilized for mixing two fluids if they are viscoelastic in

nature.

Both numerical simulations and experiments on the electrokinetically driven flows of

viscoelastic Boger fluids through a long microchannel with a cylindrical obstacle were

carried out in Chapter 8. A flow-switching phenomenon resulting from electro-elastic
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instability was observed in the flow field once the applied electric field strength exceeded

a critical value. This flow phenomenon was further shown to facilitate mixing two vis-

coelastic fluids in this simple microfluidic setup. A data-driven reduced order model,

the dynamic mode decomposition (DMD) technique, was also employed in this study to

further analyze the unsteady flow dynamics and the mixing phenomenon in this model

system.

All in all, the investigations carried out in the present dissertation have shown that

the flow dynamics of viscoelastic fluids, such as wormlike micellar solutions or polymer

solutions, through a model porous system could become very complex and rich in physics,

such as the generation of elastic instability and flow bifurcation, than that seen in simple

Newtonian fluids under the same conditions. This is mainly due to non-linear elastic

stresses in these viscoelastic fluids and breakage and reformation phenomena in the case

of micellar solutions. Therefore, the studies in the present thesis would help to better

understand and control the flow of these complex fluids through a real porous system,

which has many practical applications, such as in enhanced oil recovery, soil remediation,

and electro-chromatography.

A further significant scope is present for future studies in this area of flow dynamics

of complex fluids through a porous media. Some of those are mentioned here.

1. The present dissertation deals with two-dimensional flows; however, the flow could

transit to three-dimensional, particularly during the onset and development of elas-

tic instability regime. Therefore, full-scale three-dimensional studies both in nu-

merical simulations and experiments, would be helpful to get more insights into

flow physics.

2. The present thesis considers very simple model porous systems. Therefore, the

corresponding flow dynamics study could be extended to more complex geometries

akin to a real porous system used in practical applications.

3. The number of studies on the pressure-driven flows of viscoelastic fluids is much

larger than the corresponding electrokinetically driven flows. Therefore, further

studies on this particular fluid transport mechanism should be carried out due to

its wide applications in microfluidics and nanofluidics.

4. So far in the literature, no study is present on electrokinetic flows of wormlike
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micellar solutions, particularly using the VCM model. Therefore, further studies

should be carried out to fill this knowledge gap in the literature.

5. The present thesis deals with the viscoelastic fluids that exhibit shear-thinning

and elastic behaviors. However, some polymer and micellar solutions can also dis-

play shear-thickening and elastic properties simultaneously. Therefore, it would be

interesting to investigate how the latter properties could influence different flow

phenomena seen for shear-thinning and elastic fluids, such as elastic instability and

flow asymmetry phenomena.
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