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Lay Summary

The thesis provides a detailed analysis for finding the approximate solutions to boundary

value problems arising in the study of interaction of water waves with barrier(s) over

different bottom profiles. Under suitable assumptions, the physical problems of water

wave interaction are modelled mathematically. The boundary value problems obtained in

mathematical formulation are linearized using small amplitude wave theory. The cases

of horizontal and vertical barriers over different bottom profiles are discussed in this

thesis. Depending on the bottom boundary conditions, the boundary value problems

are solved either by the eigenfunction expansions in conjunction with the orthogonality of

eigenfunctions or the eigenfunction expansions in conjunction with least-square method

or the finite element based technique. The physical quantities, namely, reflection and

transmission coefficients, force on the barrier(s), and free surface elevation, are calculated.

These physical quantities have significant importance in the area of Ocean and Marine

Engineering to construct coastal structures such as sea walls, barriers, bottom mattress,

dike etc. The coastal structures are required for the protection of ports, harbours,

floating bridges, floating storage bases, floating buildings, tourism points etc. from natural

calamities such as tsunamis, cyclones, red tides, harmful algal blooms and increased sea

level. These coastal structures are constructed offshore parallel to the coastal line to reduce

the impact of incident wave loads. Thus, they lessen coastal erosion and provide safety

to various coastal infrastructures and facilities near the shoreline. It is apparent from the

above description that the study of water wave problems is of immense importance in the

field of ocean engineering for various applications.
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Abstract

In this thesis, a detailed analysis of a class of water wave problems arising in Ocean

and Marine Engineering due to water waves interaction with the barrier(s) over different

type of bottom topographies is carried out. The physical problems associated with water

wave propagation are modelled mathematically by utilizing the assumptions that the fluid

under consideration is homogeneous, inviscid, incompressible, and the motion of the fluid

is irrotational and harmonic in time. Further, the motion of the fluid which is under

gravity and the free surface deviation from its horizontal position are assumed to be small

in the sense that the linearized theory of water waves can be utilized.

The objective of the thesis is to give emphasis for a class of wave-structure interaction

problems with significance being given for i) developing various numerical techniques

for a class of physical problems associated with surface wave interaction with rigid

barriers in presence of uneven bottom topography, and ii) investigating the influence

of various system parameters associated with the physical problems. Both the cases of

horizontal and vertical barriers are considered in this thesis. On formulating the physical

problems, the governing partial differential equation comes about Laplace equation for

the case of normal incidence of surface waves while it is Helmholtz equation for the case

of oblique incidence of water waves. The boundary condition at the free surface i.e. at

the air-water interface is of the Robin type and the impermeable boundary condition at

the bottom is of Neumann type. In addition to this, far-field conditions are imposed at

infinite fluid boundaries to ensure the uniqueness of the solution. The boundary value

problem involving the scattering of water waves by finite dock over stepped-type bottom

profile is solved by using eigenfunction expansions in conjunction with orthogonality of

eigenfunctions. The problems of vertical barrier(s) over step type or shelf type bottom are

solved by utilizing the eigenfunction expansions in conjunction with least-square method.

The physical quantities, namely, reflection and transmission coefficients, force on the

barriers and free surface elevation are calculated. The variation of these physical quantities

against the various system parameters is presented and depicted through different graphs

and tabular data. In the last part of the thesis, a different approach namely, the finite

element based technique is used to solve the boundary value problem involving arbitrary

topography at the bottom. The finite domain is constructed by truncating the radiation

boundary conditions at some finite distance. The finite element formulation is done

using weighted residual method. The solution of boundary value problem, the scattered

velocity potential, is further utilized to determine the various physical quantities, namely,

reflection and transmission coefficients, the force on the barriers. For each of the above

physical problems, the energy balance relation is derived with the aid of Green’s integral

theorem and the verification of this identity ensures the accuracy of the present numerical

results carried out for the physical quantities. In addition, the convergence of number of

evanescent modes in the series expansions is performed numerically. Also, the convergence

of the finite element analysis is computationally carried out. The present numerical

results are also compared with the results available in the literature for validating the
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model. The present study is of immense importance in the field of ocean and marine

engineering towards the application of breakwaters.

Keywords: Water wave scattering; Linearized water wave theory; Eigenfunction

expansion method; Orthogonality of eigenfunctions; Least-square approximation method;

Finite element method; Energy Balance Relation; Reflection and transmission coefficients;

Free surface elevation; Force on the barrier(s).
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Chapter 1

Introduction

1.1 Preamble

There are many types of coastal infrastructures and facilities near the seashore due to

increased human activities such as ports, harbours, floating buildings, tourism points,

floating bridges, navigation channels, embankments, movement of armies etc. The pressure

on land-scarce island countries is drastically increasing day by day. They are trying to find

alternatives to this scarcity of land by constructing artificial floating structures near the

shoreline, that is, also known as land reclamation. But, this land reclamation and coastal

infrastructures have its limitations due to natural calamities such as tsunamis, cyclones,

red tides, harmful algal blooms and increased sea level, and also the burden on these.

So, it has become a challenge for the engineers to protect these coastal infrastructures

and facilities. Due to this, the renewal and innovation of coastal structures such as

sea walls, barriers, bottom mattress, groins, dike etc. have become an important topic

to protect these coastal infrastructures and facilities. Among these coastal structures

for the protection of coastal developments, design and construction of breakwaters have

taken a leading role. There are essentially three types of breakwaters which are in

use worldwide such as rubble-mound breakwaters, vertical breakwaters, and horizontal

breakwaters (docks). These breakwaters are the structures which are constructed offshore

parallel to the coast to protect shoreline from the incident waves by reducing the impact

of waves on the shore, much like a natural reef. Thus, they lessen coastal erosion and

provide safety for various constructions near the seashore including harbors and inlets.

It is apparent from the above description that the study of water waves problems is of

immense importance in the fields of ocean engineering for various applications. To study

water waves interactions with barriers, the interdisciplinary subject “Fluid Dynamics”

has significant importance. In fluid dynamics, we study the motion state of fluid and

here in our study we deals with wave propagation. These waves are produced in ocean

due to various types of forces such as meteorological forces (wind pressure), astronomical

forces, and earthquake. The water waves are waves propagating on the free surface i.e. at

the air-water interface under the restoring forces, gravity and surface tension. The water

waves propagating towards the shoreline are both longitudinal and transverse in nature

and through these surface deformation waves energy propagate towards the shore. On

the basis of the ratio of the water depth and wavelength, water waves are of two types,

shallow-water waves and deep-water waves. In case of shallow water wave propagation,

water molecules travel in an elliptic orbit while in deep water wave propagation, water
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molecules travel in a circular orbit. During extreme events like tsunamis, cyclones, red

tides shallow water waves generate even in deep sea because it has a very long wavelength

while deep-water waves generated by local winds or distant winds (swell).

To examine the water wave problems mathematically various assumptions are imposed on

the seabed, barriers and the nature of fluids. Under suitable assumptions, these problems

can be solved by utilizing two different theories, namely 1) Linearized wave theory 2)

Non-linear wave theory. In the linearized theory of water waves, the motion of water

waves which is under the action of gravity and the free surface deviation from its horizontal

position are assumed to be small. These assumptions of smallness constitute the basis for

the linearized theory of water waves. This mean, the velocity components together with

their derivatives (assumed to be exist) are quantities of first order of smallness so that their

squares, products and higher powers can be neglected. Thus, the free surface boundary

conditions can be linearized. However, in many engineering applications, the water wave

problems are non-linear. For example, in design of offshore structures, the wave heights

of interest are such that the non-linearities must be considered. But, many researchers

are restricting their study to linearized wave theory in many of water wave problems

because linear theory is enough, upto some extent, to handle most of the problems

in the area of coastal and marine engineering and also this theory probably provides

the sufficient information to the engineers for their use. Due to this reason, in recent

decades, many researchers are using linearized theory of water waves in mathematical

modelling of problems arising in the area of coastal and marine engineering. The basic

equations in the formulation of water waves problems are derived from the equation of

continuity (equation conservation of mass) and Euler’s equation of motion (equation of

conservation of momentum). In our study, we lead to a class of problems consisting of

two-dimensional Laplace/Helmholtz equation along with mixed type boundary conditions.

It may be argued that a Laplace/Helmholtz partial differential equation along with

specified boundary condition may not lead to non-trivial mathematical difficulties and

may be solved semi-analytically or numerically. But, in reality, things are not much easy

due to the fact that in water waves problems the boundary conditions at infinity are

not completely known and therefore, methods will have to be developed to determine

the solution of Laplace/Helmholtz equation along with unknown boundary conditions at

infinity. Further, in the context of the problems consisting in the present thesis, when the

surface wave train coming from the infinity large distance strikes the coastal structure(s)

i.e. barrier(s), then the scattering of incident water waves occurs in two parts, namely

reflected wave and transmitted wave. The part of incident water wave reflected back by

the barrier(s) is known as reflected wave and the ratio of amplitude of reflected wave

to the amplitude of incident wave is called “reflection coefficient”. The other part of

incident water wave which is transmitted forward is known as transmitted wave and

the ratio of amplitude of transmitted wave to the amplitude of incident wave is called

“transmission coefficient”. In the mathematical study of water wave scattering problems,

these two coefficients have vital role since they provide a measure for the amount of



Chapter 1. Introduction 3

reflected and transmitted waves. This information is highly important in the areas of

marine and coastal engineering for constructing the offshore structures. The analysis

of the problems involving scattering of water waves has practical importance in various

applications e.g. design and construction of breakwaters for the protection from open

sea and wavemakers etc. The impact of the surface water waves on the barriers is also

necessary to analyse in terms of the forces as their durability depend on the forces acting

on them. Due to these significant applications, the scattering problems are being studied

by the scientists and ocean technologists with interest. The mathematical analysis of such

problems consists of mixed boundary value problem having Laplace/Helmholtz equation

as the governing equation, the Robin type boundary condition at the free surface, the

Neumann type boundary conditions at the bottom, the radiation boundary conditions and

the boundary conditions (Robin/Neumann-type) on the structure(s). The researchers are

drawing their attention in developing various analytical, semi-analytical and numerical

methods to determine their complete solutions. In some of the problems, due to their

complexity, the researchers have emphasized to determine the physical quantities directly

instead of going into detailed solution for unknown velocity potential. After, this preamble,

a brief history of the investigations done by many researchers for various types of water

wave problems over the last decades, which are relevant to this thesis are described in the

next section.

1.2 Brief History and Motivation

The theory of water waves has been a subject of great significance for scientific researches

since the days of Airy. In 1845, Airy made substantial contribution to this field by

producing linear water wave theory. In 1872, Boussinesq developed the long wave theory

for the water waves problems. The limiting wave heights theory was developed by Michell

in 1893 and McCowan in 1894. But, at first, the theory of water waves was initiated by

Sir Isaac Newton in Book II: Prop. XLV of Principia in 1687. Later on, the theoretical

studies pioneers namely, Euler, Laplace, Gerstner, Poissson, Cauchy etc. developed some

theories on water waves. In 1850, the effect of wind on surface waves was studied by

Stevenson and derived empirical relationship relating the rate of wave growth to the wind.

The higher order wave theories was developed by Stokes in 1947. To observe physical

insight of the behaviour of oceanic and tidal surface waves, scientists and researchers have

great practical importance from the theory of water waves.

1.2.1 Water wave scattering by rigid vertical barrier(s)

The study of scattering of surface water waves by fixed obstacles became significant to

ensure the safety of coastal structures like bays, ports, and harbours. Many researchers are

drawing great attention to the study of scattering of water waves to create a transquility

zone by dissipating maximum incident wave energy or by reflecting maximum incident

wave energy. A suitable option to reduce the transmission of incident wave energy is by
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the help of rigid vertical barriers. The scattering of water waves by vertical barrier(s)

over different type of sea bottom topography is governed by the Laplace/Helmholtz

equation along with appropriate boundary conditions for the free surface, barriers, bottom

and the radiation conditions. Both linear and non-linear theories can be used to solve

these water waves boundary value problems mathematically to determine the physical

quantities, namely, the reflection and transmission coefficients, forces on the barriers, free

surface elevation etc. The problems involving the scattering of surface waves by rigid

vertical barrier(s) were investigated by many authors in the literature. For example,

among theoretical studies of single vertical barrier, Ursell [137] considered the problem of

interaction of surface waves with a thin vertical barrier and found out the expressions for

reflection and transmission coefficients with the aid of modified Bessel functions. Dean

[34] constructed the solution of the problem by utilizing the complex variable technique

in infinite depth of water. Evans [37] also utilized the complex variable technique to solve

Ursell’s [137] problem with incorporating the effect of surface tension and investigated

the reflection and transmission coefficients. Evans [38] introduced the reduced velocity

potential and derived the expressions for velocity potential in closed form everywhere

within the fluid and on the plate. They derived first and second order forces, moments

on the plate, and the reflection and transmission coefficients. Faulkner [41] studied

the interaction of obliquely incident surface waves with a completely submerged vertical

barrier in deep water based on the Wiener-Hopf technique and derived the reflection and

transmission coefficients. Porter and Evans [106] and Mandal and Das [83] employed

one-term and multi-term Galerkin approximation methods to calculate very accurate

upper and lower bounds for the reflection and transmission coefficients by vertical barrier

for finite and deep depths respectively. Losada et al. [78] examined the reflection and

transmission coefficients of monochromatic surface waves over uniform water depth using

an eigenfunction expansion method. Reddy and Neelamani [112] used a wave flume for

the experimental analysis of water wave scattering by a partially immersed rigid vertical

barrier to investigate the reflection and transmission characteristics of waves. Mandal and

Gayen [87] employed the simplified perturbation analysis to study surface wave scattering

problem over bottom undulations in the presence of a partially immersed thin vertical

barrier. Koley et al. [63] investigated the oblique wave trapping by bottom standing

and surface-piercing porous structures of finite width placed at a finite distance from

a vertical rigid wall using the Sollitt and Cross Model. Choudhary and Martha [21]

studied diffraction of surface waves by an undulating bed topography in the presence of

vertical barrier. Many researchers like Chakrabarti [11] and Mandal and Kundu [88] etc.

developed different mathematical techniques to obtain the reflection and transmission

coefficients instead of determining the velocity potential. Thorne [131] employed a

multi-pole expansion method to obtain a necessary form of the Green’s function for the

boundary value problem arising from the physical problem. Levine and Rodemich [74]

reduced the problem of partially immersed barrier into a problem of singular integral

equation and obtained the solution in known form by using an appropriate Green’s
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function. They also investigated the problem of scattering of water waves by two vertical

parallel barriers. Evans [40] studied the small oscillation of partially immersed plate by

a suitable application of the Green’s integral theorem and obtained the results of Ursell

[137]. Porter [105] examined the solution for the interaction of surface waves involving by

vertical barrier having a gap in infinite depth of water by employing the complex variable

technique as well as Green’s integral theorem. Venkateswarlu and Karmakar [138] analyzed

the effect of vertical porous structure over flat and elevated bottom profiles. The impact

of a porous rectangular barrier placed over the seabed with the dynamic characteristics

of gravity waves was analysed by Meng and Lu [95] by employing the method of matched

eigenfunction expansions. Mandal and Dolai [86] employed the Galerkin approximation

method to derive the solution for water wave interaction problem due to vertical barrier.

Chakrabarti et al. [13] employed special logarithmic singular integral equation technique

to study the scattering of water waves by a vertical barrier with a gap. Banerjea et

al. [3] utilized the one-term and multi-term Galerkin approximation to evaluate the

reflection coefficient for the problem handled by Porter [105]. Mandal and Chakrabarti

[84] obtained the approximate solutions of a number of water wave scattering problems

involving thin vertical barriers by utilizing the Galerkin’s method. Ray et al. [110]

investigated water wave scattering by thin vertical barriers for four different geometrical

configurations in deep water with the aid of Galerkin approximation. Gayen and Mondal

[44] studied wave scattering by a thin inclined porous plate by using hypersingular integral

equation approach. Mondal and Banerjea [98] studied scattering of water waves by an

submerged inclined porous plate beneath an ice cover with the aid of hypersingular integral

equation approach and using collocation method to represent the unknown function using

Chebychev polynomials. The scattering of water waves by thick vertical barrier was

studied by Choudhary et al. [22] over an arbitrary bottom using a coupled eigenfunction

expansion-boundary element method. Kanoria et al. [59] examined the problem involving

scattering of water waves by different kinds of thick vertical barriers. Bhatta and Rahman

[7] studied scattering as well as radiation problems for a floating vertical circular cylinder in

a finite depth of water. Das and Bora [29] considered the problem of water wave diffraction

by a vertical porous structures placed over stepped bottom topography. Chakrabarti et

al. [12] examined the interaction of surface waves with vertical barrier in the presence

of ice-cover. Bhatta [5] also examined the problem involving the diffraction of water

waves by the elliptical and circular cylinders in water of finite depth. The interaction of

laminar wakes with free-surface waves generated by a moving body beneath the surface of

an incompressible viscous fluid of infinite depth was investigated analytically by Lu [79]

using the method of integral transforms. Manam et al. [81] derived the mode-coupling

relations by utilizing Fourier integral theorem for the fluid structure interaction problems

in semi-infinite strip and semi-infinite domain. The problem of diffraction of oblique

water waves incident upon an infinite cylinder floating on the free surface was studied

by Bai [2] using finite element technique and calculated the reflection and transmission

characteristics and also diffraction forces and moment. Ni and Teng [102] studied the
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reflection of incident surface waves by a breakwater with permeable trapezoidal bars on a

sloping porous seabed using modified mild-slope equations.

For improved performance, twin vertical barriers were investigated by several researchers.

Newman [101] studied the diffraction of surface waves in deep water by two thin vertical

barriers and derived the expressions for reflection and transmission coefficients with the

aid of modified Bessel functions. McIver [91] studied the same problem in uniform depth

of water using the eigenfunction expansion method and investigated the zeros of reflection

and transmission coefficients. Isaacson et al. [56] constructed a physical model in support

of theoretical results carried out by the eigenfunction method for a diffraction problem

involving a pair of thin vertical permeable barriers. The experimental investigation was

also carried out by Neelamani and Vedagiri [99] for the wave reflection, transmission,

free surface fluctuations in between barriers, and energy dissipation characteristics for

the problem of twin vertical barriers. Das et al. [27] studied the diffraction of oblique

surface wave in uniform water depth by twin thin vertical barriers using one-term

Galerkin approximation and the expressions of upper and lower bounds for reflection and

transmission characteristics were derived. Rezanejad et al. [114] analysed the efficiency of

the device of executing a double-chamber oscillating water column over stepped bottom by

using both analytical and numerical methods such as the eigenfunction expansion method

(EEM) and boundary integral equation method (BIEM). Roy et al. [116] studied oblique

incident wave scattering by twin non-identical thin vertical barriers in infinity depth of

water by employing Havelock’s expansion of velocity potential and reduced the problem

finally to the solution of a pair of integral equations of the first kind. Evans and Morris [39]

discussed the problem of surface waves interaction by two parallel vertical barriers in deep

water depths. They calculated the upper and lower bounds to the reflection coefficient by

assuming an appropriate solution to the integral equation generated by using Havelock’s

inversion. Wang et al. [141] solved the scattering problem by two thin non-identical surface

piercing vertical barriers over stepped-type bottom topography using the eigenfunction

expansion method and least square approach. The reflection coefficient, the horizontal

forces acting on the two barriers, and the free surface elevation between them were

numerically calculated for various system parameters. Sarkar and De [122] investigated

the scattering of water waves by a pair of partially immersed barriers over a shelf-type

bottom topography using multi-term Galerkin approach, where the half-singularities at

the edges of the barriers are handled using Chebyshev polynomials and the one-third

singularities at the sharp edges of the shelf are handled using ultra-spherical Gegenbauer

polynomials with suitable weight functions. Gupta and Gayen [46] studied the influence of

two submerged non-identical permeable plates using a multi-term Galerkin approximation

method. Chanda and Bora ([18], [19]) investigated the influence of a permeable sea-bed

on water waves scattering by twin thin vertical submerged porous barriers employing

eigenfunction expansion and least square method. Sannasiraj et al. ([119], [120]) carried

out research on diffraction due to floating rectangular structure over the flat seabed and

examined the hydrodynamic responses using sway, heave and roll modes. In the former, the
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behaviour of pontoon type floating breakwaters in the beam waves using finite element

method which was further supported by experimental investigations while in the latter

paper the dynamics of multiple floating structures was discussed.

In addition to this, the interaction of surface waves with a long linear array of offshore

breakwaters with arbitrary gaps was studied by Lewin [75], Mei [93] and Dalrymple [26].

Dalrymple [26] used eigenfunction expansion method while Lewin [75] and Mei [93] used

the theory of Riemann-Hilbert problems to examine their respective problems. Leonard

et al. [71] investigated the diffraction arising due to the interaction of obliquely incident

water waves and multiple two-dimensional horizontal cylinders by using FEM. Parsons and

Martin [104] studied the scattering of linear monochromatic surface waves by thin arbitrary

oriented straight barriers and curved barriers using hypersingular integral equations. Roy

et al. [117] analysed water waves scattering by multiple thin vertical barriers utilizing

a multi-term Galerkin method. Liu et al. [77] constructed an analytical solution in

terms of Taylor series to the modified mild-slope equation for surface waves propagating

over a finite array of trapezoidal artificial bars from deep water to shallow water. Tseng

et al. [136] studied the scattering problem due the presence of periodic arrangement

breakwaters for surface piercing and submerged configurations. Panduranga et al. [103]

investigated the effectiveness of multiple slatted screens placed in front of a caissons porous

breakwater in the presence of seabed undulation to dissipate the incident wave energy

using an iterative multi-domain boundary element method. Tran et al. [132] investigated

oblique water waves scattering by multiple thin vertical barriers over undulating bottom

using the eigenfunction matching method by slicing the bottom topographies into shelves

separated by steps.

1.2.2 Water wave scattering by rigid horizontal floating barrier(s)

In case, some part of the free surface of water is covered by some floating structures

of different shape, size and nature e.g. floating rigid or flexible dock, floating bridges,

floating oil storage base etc., then in the mathematical formulation of such physical

problems discontinuities occur in the free surface boundary conditions where the edges

of the obstacles meet with the free water surface. This kind of discontinuities at the free

surface provide hinderance to the incoming surface waves as the phenomenon of reflection

and transmission of the incident waves occurs. Many researchers are drawing a great

attention to this kind of problems because of their significant importance in the field of

costal and marine engineering. Heins [52] examined the interaction of surface waves with a

semi-infinite rigid floating dock in uniform depth of water by employing the Weiner-Hopf

technique. The same problem in deep water depth was investigated by Friedrichs and Lewy

[43] by employing the complex variable technique. Then, Rubin [118] investigated the finite

dock problem in an ocean of infinite depth using variational method. Later, Chakrabarti

et al. [14] recovered the results for the same problem as Friedrichs and Lewy [43] by

solving Carleman-type singular integral equations. Haskind [48] studied the problem of

diffraction of surface water waves with a finite dock by utilizing the complex variable
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technique. However, Holford ([54], [55]) utilized the Green’s function technique to solve

the problem of interaction of surface waves by a finite dock. Mei and Black [94] investigated

the scattering of water waves by floating as well as submerged configuration of rectangular

obstacle in uniform finite depth of the water. The scattering of normal incident of surface

waves by a finite dock using the Laplace transform was examined by Leppington [72].

Later on, Leppington [73] utilized the integral equation technique to study the problem

of radiation of short water waves by a finite dock and analyzed the amplitude of reflected

and transmitted waves. Linton [76] utilized the modified residue calculus technique to

determine the solution of the finite dock problem. Hermans [53] proposed an integral

equation method based on Green’s theorem to derive a solution for the problem on the wave

interaction with rigid or flexible dock of zero draught. Karmakar and Sahoo [60] analyzed

the problem of scattering of surface water waves by a semi-infinite floating membrane

due to abrupt change in bottom topography by using expansion formulae for finite and

infinite steps. Choudhary et al. [24] studied the scattering and radiation of surface waves

by a finite dock over an asymmetric rectangular-trench type bottom topography using

matched eigenfunction expansion method and boundary element method. Tsai et al.

[134] studied the scattering of water waves induced by tension leg structures over the

uneven bottom topography, where the uneven bottom was sliced into a number of shelves

separated by abrupt steps and then they applied the matched eigenfunction method over

each shelf region to solve the problem. Chakrabarti and Martha [15] studied interaction

due to floating elastic plate and derived the energy balance relations. Bhattacharjee and

Soares [8] employed the matched eigenfunction expansion method to find the solution

of scattering of water waves by a floating structure near a wall over stepped bottom

topography. Dhillon et al. [36] studied the problem of scattering of surface waves by

a rigid dock over a step-type bottom topography by applying matched eigenfunction

expansion method. Singla et al. [126] examined the scattering of obliquely incident surface

waves by a surface-piercing porous box using matched eigenfunction expansion method.

Further, Singla et al. [127] investigated the interaction of surface waves with a thin elastic

plate in the presence of a porous box with the aid of matched eigenfunction expansion

method. Choudhary and Martha [25] studied the interaction of oblique water waves by

two non-uniform submerged horizontal porous plates in the presence of a pair of trenches

using Havelock’s expansions. Guo et al. [47] examined oblique wave scattering by a

semi infinite elastic dock with finite draft floating over a step topography. The scattering

of water waves by a floating flexible porous plate was studied using integro-differential

equation approach by Koley and Sahoo [64]. Kaligatla et al. [58] studied oblique wave

interaction due to a partially submerged rectangular breakwater where as the problem of a

rectangular submarine trench in the presence of a thin vertical partially immersed barrier

was investigated using Galerkin approximation method by Ray et al. [111]. Manisha

et al. [89] studied the influence of undulating bottom for reducing wave-induced forces

on a floating bridge with the aid of modified mild-slope and eigenfunction expansion

method. Recently, Jain and Bora [57] studied the scattering of obliquely incident water
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waves by a floating bridge with rectangular porous wall using matched eigenfunction

method. Maiti and Mandal [80] studied surface wave interaction by an elastic floating

plate over a porous sea-bed using the matched eigenfunction expansion method. Selvan et

al. [123] investigated the reduction of hydro-elastic response of a flexible floating structure

by an annular flexible permeable membrane using the matched eigenfunction expansion

method along with the orthogonality of the eigenfunction in the open water region. Das

et al. [30] studied gravity waves interaction with an elliptic disc submerged in a two-layer

fluid with the aid of matched eigenfunction expansion method along with the orthogonal

properties of eigenfunctions. Borah and Hassan [10] studied the problem of diffraction of

water waves by partially submerged floating hollow cylinder placed over a fixed coaxial

bottom-mounted obstacle with the aid of matched eigenfunction expansion and obtained

the analytical expressions of potentials. Recently, Hassan et al. [49] examined the radiation

problem due to two coaxial cylinders using the method of separation of variables along

with eigenfunction expansion matching method. Sarkar and Bora [121] used the same

approach as in Hassan et al. [49] to obtain the solution of the water wave radiation

problem involving a floating semi-porous compound cylinder. Singh et al. [124, 125]

studied the reflection of plane waves at the stress-free/rigid surface of a micro-mechanically

modelled piezo-electro-magnetic fiber-reinforced composite half-space. A study on the

head-on collision between two solitary waves in a thin elastic plate floating on an inviscid

fluid of finite depth was examined analytically by means of a singular perturbation method

by Bhatti and Lu [6]. Praveen et al. [108] investigated wave transformation due to finite

elastic dock over abrupt change in bottom topography. Vijay et al. [139] studied Bragg

scattering of surface wave train by an array of submerged breakwater and a floating dock.

Guha and Singh [45] studied reflection/transmission of plane waves in an initially stressed

rotating piezo-electro-magnetic fiber-reinforced composite half-space.

1.2.3 Water wave scattering due to bottom undulations

Often the ocean floor is uneven rather than flat-type. This makes, it is significant to

consider the problems of propagation of water wave over an uneven sea bed, which are

also interesting due to their importance in coastal and marine engineering. Mei and

Mehaute [92] gave a note on the equations of long waves over an undulating bottom. The

problems of scattering of surface waves by a small undulation present in the bottom have

been considered by many researchers (see Miles [96], Davies [31], Davies and Heathershaw

[33], Martha and Bora [90] etc.). Newman [100] investigated the problem of propagation

of water waves over a step region between the regions of finite and infinite depth. He

presented the experimental results in support of theoretical calculated results for reflection

and transmission coefficients. Fitz-Gerald [42] studied the reflection of incident surface

gravity waves traveling over varying depth. He employed the Fourier transform method

to convert the boundary value problem to a pair of integro-differential equation. Miles

[96] derived the first order reflection and transmission coefficients in terms of integrals

by using perturbation theory along with the Finite cosine transformation technique when
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oblique waves strike to the cylindrical obstacle. Davies [31] examined the interaction

of progressive waves with small sinusoidal undulations of infinite horizontal extent and

then showed that this interaction gave rise to two new waves with wave numbers which

were the sum and difference of those of the surface waves and undulations. Davies [32]

used a somewhat elaborate method to handle the problem of water wave scattering by a

sinusoidal undulating bottom for normal incidence. Heathershaw [51] gave a experimental

proof to the theoretical results of reflection of wave energy due to the resonant interactions

between surface water waves and undulating bottom topography. Davies and Heathershaw

[33] discussed the problem of the reflection of the incident waves by irregular bottom using

Fourier transform technique. Mandal and Basu [82] generalized the Miles [96] problem

with the inclusion of surface tension at the free surface. Porter and Porter [107] examined

the interaction of linearized surface gravity water waves with three dimensional periodic

topography. They studied the trapping and scattering of water waves by three dimensional

submerged topography, infinite and periodic in one horizontal coordinate and of finite

extent in the other. Martha and Bora [90] and Bora and Martha [9] considered the

problem of water wave scattering by different types of undulating topography by making

use of perturbation theory. Mandal and De [85] analysed surface wave scattering over small

undulations with surface discontinuity by employing simplified perturbation analysis. Tsai

et al. [135] examined oblique surface wave scattering and breaking by variable porous

breakwater placed at the uneven bottom using matched eigenfunction expansion method.

In case of bottom profile for undulating bottom, one may also look at step-type bottom

topography in which an abrupt change occur in the depth of ocean. Wave propagation

over an abrupt change in bottom topography give rise to wave reflection, shoaling and

refraction, which have important effects on the constructions and design of offshore

platforms. Bartholomeusz [4] utilized long wave theory to study the problem of scattering

of surface water waves by sudden change of the depth. He presented the theoretical

as well as experimental results for reflection and transmission coefficients. Tsai et al.

[133] developed an eigenfunction matching method to provide different kinds of step

approximations for water wave problems. Chakraborty and Mandal ([16],[17]) studied

oblique wave scattering by a rectangular submarine trench. Kaur et al. [61] studied

the propagation of obliquely incident surface water waves over a pair of asymmetrical

rectangular trenches by incorporating the edge conditions at the sharp edges of the trenches

with the aid of a system of singular integral equations of first kind, where the one-third

singularity at each edge of trench is handled using suitably designed polynomial as a basis

function having collocation points as the zeros of the Chebyshev polynomial. Rezanejad

et al. [113] analyzed the role of stepped bottom topography by increasing the efficiency

of a nearshore oscillating water column device. They employed methods namely, the

matched eigenfunction expansion method and boundary integral equation method to find

the solution of the problem. Cho et al. [20] developed finite element formulation for

the diffraction of waves caused by depth changes. The model developed was applied

to calculate reflection and transmission coefficients. Kreisel [65] studied the problem of
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propagation of normal incident waves over a variable-depth geometries which involves the

conformal mapping of a fluid domain into a rectangular strip through which the problem

for the velocity function is reduced to an integral equation. Lassiter [69] investigated the

problem of scattering of water waves by a rectangular trench where the water depths on

the both sides of the trench are constant and may be different (an asymmetric trench). He

formulated the problem in terms of complementary variational integrals and determined

the reflection and transmission coefficients by utilizing the conditions that velocity and

pressure is continuous across the vertical lines before and after trench. Lee and Ayer [70]

employed the transform method to the symmetric infinite trench problem by conveying

solutions in two regions, one with infinitely uniform finite depth region and the other

with a rectangular region representing the trench below the uniform seabed level. They

performed a number of laboratory experiments in a wave tank and compared their results

with the theoretical results. Miles [97] utilized a conformal mapping algorithm to the

rectangular trench problem for normal incidence. He also obtained the solution for the

case of oblique incidence through a variational formulation of Mei and Black [94]. Kirby

and Dalrymple [62] investigated the problem of diffraction of surface water waves by an

asymmetric rectangular trench with the aid of matched eigenfunction expansion method

and compared their results with the data received from a small-scale wave tank experiment.

Au and Brebbia [1] considered a problem in which wave forces are calculated on floating

and submerged bodies of different geometries using the boundary element method.

The problems involving scattering of water waves by the structures horizontal/vertical

along with some bottom topography will serve as an effective wave barrier to protect

various coastal facilities from wave loads. To the best of our knowledge, this type of work

involving different structures and different bottom topographies are very less. Thus, this

motivate us to study such kind of problems for different configurations of the structures

over an uneven bottom with application of suitable mathematical methods.

In the following section, the aims and objectives of the thesis are presented concisely.

1.3 Aims and Objectives

This thesis mainly focuses on the solution of class of problems involving surface water waves

interaction with horizontal/vertical barrier(s) over different type of bottom topographies

with the aid of different mathematical techniques. The emphasis is given to

(i) analyzing reflection and transmission of incident water waves by barriers (floating

dock, vertical rigid barrier, a pair of partial and submerged barriers, multiple

rigid vertical barriers) over bottom topographies with respect to various system

parameters

(ii) analyzing force, moments on the the barriers and free surface elevation

(iii) development of different mathematical techniques depending on the complexity

(arising due to different boundary conditions) of the problem.
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The basic equations associated under the assumption of linearized theory of water waves

in single layered fluid can be found in Lamb [68], Dean and Dalrymple [35], Rahman [109]

and Stoker [130]. In the next section, the relevant basic equations of the linearized theory

of water waves are presented in details.

1.4 Basic Equations

The mathematical modelling of the real life physical problems are always made under

certain physical assumptions. There is a class of physical problems in ocean/marine

engineering which are analyzed with the aid of the linear theory of water waves. In

the linear wave theory, the motion of water waves which is under the action of gravity

and the free surface deviation from its horizontal position are assumed to be very small

such that the velocity components together with their derivatives (assumed to be exist)

are quantities of first order of smallness so that their squares, products and higher powers

can be neglected. Thus, the boundary conditions can be linearized. In this section, the

basic equations are derived which are used frequently in the Chapters 2-5 of this thesis.

1.4.1 Governing equations and boundary conditions of water waves in

the context of homogeneous fluid

The rectangular Cartesian co-ordinate system has been chosen in which the positive

direction of y-axis is taken vertically downwards and the xz-plane is taken along the

undisturbed free surface of the fluid. The fluid under consideration occupies the region

−∞ < x, z <∞, 0 ≤ y ≤ h. The flat bottom surface is represented by y = h. It is assumed

that the fluid is incompressible, inviscid and the motion of the fluid is irrotational and

simple harmonic in time.

(i) Governing equation:

Since, the motion is irrotational, there exists a velocity potential Φ(x, y, z, t) such that

velocity ~q of fluid can be expressed as

~q = (u, v, w) = ∇Φ (1.1)

The equation of continuity for incompressible and inviscid is

∇.~q = 0 (1.2)

From the equation (1.1) and (1.2), we have the governing equation as Laplace’s equation

∂2Φ

∂x2
+
∂2Φ

∂y2
+
∂2Φ

∂z2
= 0, in the fluid region. (1.3)
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(ii) Dynamic free surface boundary conditions:

The Euler’s equation of motion is

∂~q

∂t
+ (~q.∇)~q = g − 1

ρ
∇p (1.4)

where p is the pressure at the fluid, ρ is the density of the fluid and g is the acceleration

due to gravity.

On simplifying the relation (1.4), the Euler’s equation of motion gives

∂Φ

∂t
+

1

2

[(∂Φ

∂x

)2
+
(∂Φ

∂y

)2
+
(∂Φ

∂z

)2]
+
p

ρ
− gy = 0, (1.5)

which is known as Bernoulli’s equation of motion. The pressure at the free surface y =

η(x, z, t) is equal to the atmospheric pressure which is constant, taken zero here without

lose of generality. Thus, the relation (1.5) reduces to

∂Φ

∂t
+

1

2

[(∂Φ

∂x

)2
+
(∂Φ

∂y

)2
+
(∂Φ

∂z

)2]
− gη = 0, on y = η(x, z, t), (1.6)

which is known as dynamic free surface boundary condition.

(iii) Kinematic free surface boundary condition:

The vertical velocity component of the fluid over the free surface is equal to the rate of

rise/fall of the surface at any point which gives the condition as given by

∂Φ

∂y
=
∂η

∂t
+
∂η

∂x

∂Φ

∂x
+
∂η

∂z

∂Φ

∂z
, on y = η(x, z, t), (1.7)

(iv) Linearized free surface boundary condition:

Under the assumption of linear water wave theory, the velocity components and the free

surface elevation/depression together with their partial derivatives are small quantities,

so their squares, higher powers and the product may be neglected so that the conditions

(1.6) and (1.7) respectively become

∂Φ

∂t
− gη = 0, on y = η(x, z, t), (1.8)

and
∂Φ

∂y
=
∂η

∂t
, on y = η(x, z, t). (1.9)

By using Taylor’s series expansion and neglecting the second and higher orders of

smallness, the relations (1.8) and (1.9) reduce to the linearized boundary conditions:

∂Φ

∂t
− gη = 0, on y = 0, (1.10)

and
∂Φ

∂y
=
∂η

∂t
, on y = 0. (1.11)
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Now, eliminating η between the relation (1.10) and (1.11), we have

∂2Φ

∂t2
= g

∂Φ

∂y
, on y = 0, (1.12)

which is the combined linearized free surface condition.

(v) Bottom boundary condition:

In this thesis, a flat rigid bottom is considered, thus, no flux boundary condition on the

bottom bed at y = h, is given by

∂Φ

∂y
= 0, on y = h, (1.13)

The equations (1.3), (1.12) and (1.13) are the basic equations of the linearized water wave

theory.

In case, the surface water waves incident at an angle, α with the positive direction of

x−axis, the characteristic behaviour of the motion of the fluid remains the same along

the z−direction and as the motion of fluid is taken to be simple harmonic in time with

angular frequency ω, the velocity potential Φ(x, y, z, t) may be expressed as

Φ(x, y, z, t) = <[φ(x, y)ei(µz−ωt)], (1.14)

where < represents the rear part and µ is the component of the incident wavenumber k0

along z−direction which is given by µ = k0 sinα and k0 is the unique real positive root of

the transcendental equation K − k tanh kh = 0.

Substituting the relation (1.14) in relations (1.3), (1.12) and (1.13), the governing equation,

the free surface and bottom boundary conditions become

∂2φ

∂x2
+
∂2φ

∂y2
− µ2φ = 0, in the fluid region. (1.15)

Kφ+
∂φ

∂y
= 0, on y = 0, (1.16)

∂φ

∂y
= 0, on y = h, (1.17)

where K = ω2/g. In case of the normal incidence (α = 0) of surface water waves, the

equations (1.16) and (1.17) remain the same while the equation (1.15) becomes

∂2φ

∂x2
+
∂2φ

∂y2
= 0, in the fluid region. (1.18)

The governing Helmholtz equation (1.15) along with boundary conditions (1.16) and (1.17)

has two types solutions: the wave like solution and the non-wave like solution which are

described as follows:

Solution for the velocity potential:
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The progressive wave solution (wave like solution) of the Helmholtz equation is given by

φ(x, y) =
cosh k0(h− y)

cosh k0h
e±i(k0 cosα)x, (1.19)

where k0 is the unique real positive root of the dispersion relation in k which is given by

K − k tanh kh = 0. (1.20)

The local solutions (non-wave like solution) are given by

φ(x, y) = cos kn(h− y)e±(kncosα)|x|, (1.21)

where kn(n = 1, 2, 3, ...) are purely imaginary roots of the dispersion relation (1.20).

1.5 Outline of the thesis

In the thesis, there are six chapters: Chapters 2-5 describe different research problems

where as Chapter 1 represents the introduction and Chapter 6 summarizes the whole

research work done in the thesis and highlights the future directions of the work.

In Chapter 1, a basic introduction, relevant literature, aims and objectives behind the

current work are presented. In addition, the basis equations for the linearized theory of

surface water waves followed by the summary of each chapter are presented.

In Chapter 2, a study on the scattering of surface water waves by a finite dock over

a two stepped bottom topography is examined under the assumptions of the linearized

water wave theory using eigenfunction expansion method followed by suitable application

of orthogonality of eigenfunctions for normal incident of surface water waves. The effect

of abrupt change in bottom topography on the wave propagation from lower depth

region as well as from higher depth region is analyzed. It is observed that the reflection

coefficient is decreasing slightly and transmission coefficient is increasing with increasing

the depth ratios for wave propagation from lower depth region. On the other hand,

for wave propagation from higher depth region, the reflection coefficient is increasing

as the values of the depth ratios are increasing while the transmission coefficient is

decreasing. The reflection coefficient is also increasing by increasing the wavenumber,

dock length and width of the step whereas the transmission coefficient is decreasing for

the same. Furthermore, this problem is generalized for multi-steps and it is found that the

transmission coefficient is increasing but the reflection coefficient is slightly decreasing by

increasing the number of steps. The energy balance relation is also derived and verified,

where it is observed that the numerical results obtained for reflection and transmission

coefficients satisfy the energy balance relation almost accurately. The present results are

also validated through the results available in the literature. This study concludes that

the horizontal breakwater over multi-stepped bottom is important and may be helpful for

designing the structures for protection of seashore.
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Chapter 3 deals with the scattering of oblique incident surface gravity waves by a

thin vertical rigid barrier over a stepped bottom topography with the aid of matched

eigenfunction expansion method using algebraic least squares method. The energy balance

relation for the present problem is derived and verified numerically. Also, the present

problem validated through the available results in the literature. The effect of different

parameters are studied by plotting the graphs for reflection and transmission coefficients,

non-dimensional horizontal force. The reflection coefficient increases as the length of the

barrier and the step height increase while it decreases as the angle of incidence increases. It

is observed that the maximum reflection occurs for normal incidence of the incident waves

in comparison to oblique incidence. The analysis of non-dimensional horizontal force per

unit width of the barrier is also examined. As the length of the barrier over the step

increases, the absolute maximum of force curves goes on increasing. The non-dimensional

horizontal force on the barrier decreases as the reflection coefficient due to the presence

of the barrier decreases. Also, it is noticed that the force on the barrier is less for oblique

incident waves in comparison to normal incident waves. Therefore, the barrier over stepped

bottom may be utilized to effectively reflect the incident waves and create a calm zone

along lee side, yielding less impact on seashore.

In Chapter 4, the problem of scattering of water waves by two thin vertical barriers

over a shelf-type bottom topography is examined for its solution using the eigenfunction

expansion method and the algebraic least square approach. The energy balance relation

for the given problem is derived and checked. Also, the present results are validated with

the available results in literature. The numerical values of the reflection and transmission

coefficients are plotted through different graphs to demonstrate the influence of various

system parameters. For identical length of the barriers over symmetric shelf bottom, the

zeros in the reflection curve occur. These zeros in the reflection curve may be avoided by

using non-identical length of the barriers or asymmetric shelf bottom topography. It is

also observed that more energy is reflected by a pair of barriers in comparison to single

barrier. On increasing the length of the barriers, more reflection and consequently less

transmission occurs to the lee side. As the gap between the barriers increases, it causes

more number of oscillations on both the reflection and transmission coefficients curves.

The local maxima in reflection curve decreases as the angle of incidence increases. Also,

the reflection coefficient decreases as the depth of submergence of the barriers increases.

Furthermore, the problem is generalized for an array of surface piercing barriers over

shelf bottom topography. It is noticed that local maxima in reflection curve increases as

additional pairs of surface piercing barriers are considered between the barriers. It is also

observed that the wave amplitude after the barriers can be decreased with the increased

length of the barriers. The analysis of non-dimensional horizontal force per unit width of

the front and rear barriers is also observed. It is shown that the front barrier experience

more force as compared to the rear barrier.

The Chapter 5 deals with the scattering of obliquely incident surface waves by two

vertical barriers over an arbitrary bottom topography. To handle the problem with
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arbitrary bottom topography, the finite element method is employed to solve the problem.

The results are analyzed for parabolic and rectangular type hump bottom profiles. The

radiation boundary conditions are kept at a finite distance from the vertical barriers as

the local disturbances decay sufficiently within a distance. The scattered potential is

determined computationally and is further used to obtain the numerical values of the

reflection and transmission coefficients and the force on the barriers. It is observed that

the zeros on the reflection and transmission curves exist for identical length of the barriers

and these zeros increases as the gap between the barriers increases. Also, the lower

frequency zeros of the transmission curve coalesce in pairs as the gap between the barriers

increases. The study reveals that the reflection coefficient increases due to the height of

bottom topography for smaller wave numbers while it has a negligible effect for larger

wavenumbers. This means for larger wavenumbers the water depth throughout the region

can be seen as deep enough. It is noticed that the reflection coefficient increases with

the drafts and thickness of the barriers. Also, the influence of the angle of incidence on

the reflection coefficient has been observed. In addition to this, the effect of the hump

height and the drafts of the barriers on the non-dimensional horizontal force on the front

and rear barriers is studied. The energy balance relation is derived from Green’s identity

which ensures the correctness of the present numerical results. The obtained results are

compared with the results available in the literature for validation purpose.

Chapter 6 presents the summary of the work done in the thesis followed by the future

scope of research. In this chapter, we have highlighted the major contributions.
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Chapter 2

Scattering of surface water waves

by a finite dock over two-stepped

bottom profile

2.1 Introduction

In this chapter, the scattering of surface waves by the edges of a finite dock over a 2−step

bottom topography is investigated for normal incidence under the assumption of linear

water wave theory. Here, the incidence of water waves is considered in two different

manners (i) from lower depth region, and (ii) from higher depth region. Further, a

generalization of the problem is made for multiple steps at the bottom profile. The problem

under consideration give rise to a mixed boundary value problem which is solved with the

aid of an eigenfunction expansion method in conjunction with the matching technique.

The main idea behind this method is to apply appropriate matching conditions along

with associated orthogonal relations of eigenfunctions which give rise to a determined

system of linear algebraic equations involving the unknowns. The values of the physical

quantities, namely, the reflection and transmission coefficients can be obtained by solving

the system with any standard method as the determinant of coefficient matrix is non

zero. The numerical values of these coefficients are compared with the known results of

Linton [76] using graphical as well as tabular results. The energy identity relation, an

important relation in the study involving scattering of surface water waves, is deducted

for the present problem with the help of Green’s integral theorem. The identity provides

the correctness of numerical results obtained in this chapter. The force and moments of

surface waves on the dock are also analyzed. A major part of the work presented in this

chapter has been published in (Choudhary et al. [23]).

2.2 Mathematical Formulation and Method of Solution

2.2.1 Case-I: When waves incident from lower depth region

Here, the problem of scattering of surface water waves by the edges of a finite floating

dock over a 2-step bottom topography is considered where the waves incident on the dock

from the lower depth water region (see Fig. 2.1). Consider a two dimensional Cartesian

co-ordinate system in which the x-axis represents the mean horizontal position of the free
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surface of the fluid and the positive direction of the y-axis is taken vertically downward

in the fluid region. We assume that a finite floating dock occupies the region −a < x < a,

y = 0, whereas the region (−∞ < x < −a)
⋃

(a < x < ∞), y = 0 is free to the upper

atmosphere. The region (x ≤ 0, 0 ≤ y ≤ h1) denotes the lower depth water region whereas

the region (x ≥ b, 0 ≤ y ≤ h3) represents the higher depth water region. The entire fluid
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Figure 2.1: Definition sketch for case-I

domain is divided into five regions:

(i) The open region 1: −∞ < x < −a, 0 < y < h1

(ii) The covered region 2: −a < x < 0, 0 < y < h1

(iii) The covered region 3: 0 < x < b, 0 < y < h2

(iv) The covered region 4: b < x < a, 0 < y < h3

(v) The open region 5: a < x <∞, 0 < y < h3.

Assuming the motion of the fluid is simple harmonic in time, the velocity potential

can be written as Re{φ(x, y)e−iσt}, where σ is the angular frequency. For the inviscid,

incompressible and irrotational fluid, the complex velocity potential φ(x, y) satisfies the

Laplace’s equation:

∂2φj
∂x2

+
∂2φj
∂y2

= 0, j = 1, 2, 3, 4, 5, in the corresponding fluid region j, (2.1)

along with the following boundary conditions in different regions.

In region 1, φ1 satisfies the free surface condition

∂φ1

∂y
+Kφ1 = 0, on y = 0,−∞ < x < −a, (2.2)
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along with the bottom condition

∂φ1

∂y
= 0, on y = h1, (2.3)

where K = σ2/g with g is the acceleration due to gravity.

In region 2, φ2 satisfies the condition on the rigid dock

∂φ2

∂y
= 0, on y = 0,−a < x < 0, (2.4)

with the bottom condition
∂φ2

∂y
= 0, on y = h1. (2.5)

In region 3, φ3 satisfies the dock condition and the vertical wall condition respectively as

∂φ3

∂y
= 0, on y = 0, 0 < x < b, (2.6)

∂φ3

∂x
= 0, on x = 0, h1 < y < h2, (2.7)

with the bottom condition
∂φ3

∂y
= 0, on y = h2. (2.8)

In region 4, φ4 satisfies the conditions on the dock and vertical wall respectively as given

by

∂φ4

∂y
= 0, on y = 0, b < x < a, (2.9)

∂φ4

∂x
= 0, on x = b, h2 < y < h3, (2.10)

with the bottom condition
∂φ4

∂y
= 0, on y = h3. (2.11)

In region 5, φ5 satisfies the free surface condition

∂φ5

∂y
+Kφ5 = 0, on y = 0, a < x <∞, (2.12)

with the bottom condition
∂φ5

∂y
= 0, on y = h3. (2.13)

The edge conditions at the two ends of the dock is given by the relation

∂φj
∂y
∼ Â ln r as r → 0 (2.14)

where Â is a constant with r2 = [(x + a)2 + y2] for j = 1, 2 and r2 = [(x − a)2 + y2] for

j = 4, 5.
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The velocity potentials φ1 and φ5 satisfy the far filed conditions as given by

φ1(x, y) ∼ (eik0(x+a) +Re−ik0(x+a))
cosh k0(h1 − y)

cosh k0h1
, as x→ −∞, (2.15)

φ5(x, y) ∼ Teip0(x−a) cosh p0(h3 − y)

cosh p0h3
, as x→∞. (2.16)

where k = k0 and k = p0 are, respectively, the positive real roots of the transcendental

equations

K − k tanh kh1 = 0, (2.17)

K − k tanh kh3 = 0, (2.18)

and R and T represent, respectively, the reflection and transmission coefficients to be

determined here. The other conditions that will be necessary to be applied to obtain the

solution of the above problem are that the pressure and velocity are continuous across the

interfaces x = −a, x = 0, x = b and x = a. So we can write

φ1(−a−, y) = φ2(−a+, y)
∂φ1(−a−, y)

∂x
=

∂φ2(−a+, y)

∂x

 0 < y < h1, (2.19)

φ2(0−, y) = φ3(0+, y)
∂φ2(0−, y)

∂x
=

∂φ3(0+, y)

∂x

 0 < y < h1, (2.20)

φ3(b−, y) = φ4(b+, y)
∂φ3(b−, y)

∂x
=

∂φ4(b+, y)

∂x

 0 < y < h2, (2.21)

φ4(a−, y) = φ5(a+, y)
∂φ4(a−, y)

∂x
=

∂φ5(a+, y)

∂x

 0 < y < h3, (2.22)

Expansion method

The Havelock’s expansion [50] of the velocity potential φj(j = 1, 2, 3, 4, 5) in terms of

appropriate eigenfunctions can be expressed as

φ1(x, y) =
(
eik0(x+a) +Re−ik0(x+a)

) cosh k0(h1 − y)

cosh k0h1
+

∞∑
n=1

Ane
kn(x+a) cos kn(h1 − y)

cos knh1
,

(−∞ < x < −a, 0 < y < h1), (2.23)

φ2(x, y) = B0 +B1
x

a
+
∞∑
n=1

(
B̂ne

nπx
h1 + B̃ne

−nπx
h1

)
cos

(
nπ

h1
y

)
,

(−a < x < 0, 0 < y < h1), (2.24)

φ3(x, y) = C0 + C1
x

a
+

∞∑
n=1

(
Ĉne

nπx
h2 + C̃ne

−nπx
h2

)
cos

(
nπ

h2
y

)
,

(0 < x < b, 0 < y < h2), (2.25)
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φ4(x, y) = D0 +D1
x

a
+
∞∑
n=1

(
D̂ne

nπx
h3 + D̃ne

−nπx
h3

)
cos

(
nπ

h3
y

)
,

(b < x < a, 0 < y < h3), (2.26)

φ5(x, y) = Teip0(x−a) cosh p0(h3 − y)

cosh p0h3
+

∞∑
n=1

Ene
−pn(x−a) cos pn(h3 − y)

cos pnh3
,

(a < x <∞, 0 < y < h3), (2.27)

where kn and pn(n = 1, 2, . . .) are the real positive roots of the transcendental

equations K + k tan kh1 = 0 and K + k tan kh3 = 0, respectively and

R,An, B0, B1, B̂n, B̃n, C0, C1, Ĉn, C̃n, D0, D1, D̂n, D̃n, T, En, (n = 1, 2, 3, . . .) are the

unknown constants to be determined. On truncating the series given in relations

(2.23)-(2.27) to a finite number N (say), we have (8N + 8) unknowns. Now, multiplying

both sides of the matching conditions (2.19)-(2.22) by cos(mπy/hi), (i = 1, 2, 3;m =

0, 1, 2, . . . , N) appropriately, we have

φ1(−a−, y) cos

(
mπ

h1
y

)
= φ2(−a+, y) cos

(
mπ
h1
y
)

∂φ1(−a−, y)

∂x
cos

(
mπ

h1
y

)
=

∂φ2(−a+, y)

∂x
cos

(
mπ

h1
y

)
 , (2.28)

φ2(0−, y) cos

(
mπ

h1
y

)
= φ3(0+, y) cos

(
mπ
h1
y
)

∂φ2(0−, y)

∂x
cos

(
mπ

h2
y

)
=

∂φ3(0+, y)

∂x
cos

(
mπ

h2
y

)
 , (2.29)

φ3(b−, y) cos

(
mπ

h2
y

)
= φ4(b+, y) cos

(
mπ
h2
y
)

∂φ3(b−, y)

∂x
cos

(
mπ

h3
y

)
=

∂φ4(b+, y)

∂x
cos

(
mπ

h3
y

)
 , (2.30)

φ4(a−, y) cos

(
mπ

h3
y

)
= φ5(a+, y) cos

(
mπ
h3
y
)

∂φ4(a−, y)

∂x
cos

(
mπ

h3
y

)
=

∂φ5(a+, y)

∂x
cos

(
mπ

h3
y

)
 . (2.31)

After multiplication, integrate each equation in relations (2.28)-(2.31) over (0, hi)

appropriately and using the wall condition (2.7) in relation (2.29) and the wall condition

(2.10) in relation (2.30), we obtain∫ h1

0
φ1(−a, y) cos

(
mπ

h1
y

)
dy =

∫ h1

0
φ2(−a, y) cos

(
mπ

h1
y

)
dy,∫ h1

0

∂φ1(−a, y)

∂x
cos

(
mπ

h1
y

)
dy =

∫ h1

0

∂φ1(−a, y)

∂x
cos

(
mπ

h1
y

)
dy,

 (2.32)

∫ h1

0
φ2(0, y) cos

(
mπ

h1
y

)
dy =

∫ h1

0
φ3(0, y) cos

(
mπ

h1
y

)
dy,∫ h1

0

∂φ2(0, y)

∂x
cos

(
mπ

h2
y

)
dy =

∫ h2

0

∂φ3(0, y)

∂x
cos

(
mπ

h2
y

)
dy,

 (2.33)
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profile∫ h2

0
φ3(b, y) cos

(
mπ

h2
y

)
dy =

∫ h2

0
φ4(b, y) cos

(
mπ

h2
y

)
dy,∫ h2

0

∂φ3(b, y)

∂x
cos

(
mπ

h3
y

)
dy =

∫ h3

0

∂φ4(b, y)

∂x
cos

(
mπ

h3
y

)
dy,

 (2.34)

∫ h3

0
φ4(a, y) cos

(
mπ

h3
y

)
dy =

∫ h3

0
φ5(a, y) cos

(
mπ

h3
y

)
dy,∫ h3

0

∂φ4(a, y)

∂x
cos

(
mπ

h3
y

)
dy =

∫ h3

0

∂φ5(a, y)

∂x
cos

(
mπ

h3
y

)
dy.

 (2.35)

Here, the relations (2.32)-(2.35) produce a system of (8N + 8) linear algebraic equations

with (8N + 8) unknowns R,An, B0, B1, B̂n, B̃n, C0, C1, Ĉn, C̃n, D0, D1, D̂n, D̃n, T, En(n =

1, 2, . . . , N). This requires the inversion of (8N+8)×(8N+8) complex valued matrix. The

system of equations is solved by Gauss elimination method with the help of MATLAB.

It may be noted that the above system can have a unique solution if the occurrence of

ill-conditioned matrix can be avoided. This situation can be avoided by choosing the

appropriate values of the parameters.

2.2.2 Case-II: When waves incident from higher depth region

Here, the surface water wave propagating from x = +∞ is incident on the dock (see Fig.

2.2). In this case, we will have the same equations as discussed in Case-I, except the

far-field condition which is given by

φ1(x, y) ∼ T̂ e−ik0(x+a) cosh k0(h1 − y)

cosh k0h1
as x→ −∞, (2.36)

φ5(x, y) ∼ (e−ip0(x−a) + R̂eip0(x−a))
cosh p0(h3 − y)

cosh p0h3
as x→∞, (2.37)

where R̂ and T̂ , respectively, denote the reflection and transmission coefficients for the

Case-II. The Havelock’s expansions for the different velocity potentials in the five regions

with appropriate eigenfunctions are almost same as given in relations (2.23)-(2.27) with

some modification in the velocity potentials φ1(x, y) and φ5(x, y) as given by:

φ1(x, y) = T̂ e−ik0(x+a) cosh k0(h1 − y)

cosh k0h1
+
∞∑
n=1

Êne
kn(x+a) cos kn(h1 − y)

cos knh1
,

(−∞ < x < −a, 0 < y < h1), (2.38)

φ5(x, y) = (e−ip0(x−a) + R̂eip0(x−a))
cosh p0(h3 − y)

cosh p0h3
+

∞∑
n=1

Âne
−pn(x−a) cos pn(h3 − y)

cos pnh3
,

(a < x <∞, 0 < y < h3). (2.39)

Here also, on truncating the series to a finite number N (say) we left with (8N + 8)

unknowns. The same procedure as described in the Section 2.2.1 for Case-I, is followed

here to determine these unknowns.
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Figure 2.2: Definition sketch for Case II

2.3 Multiple steps at the bottom

Here, the problem of scattering of surface water waves by the edges of a finite floating dock

over a M-step bottom topography is considered where the waves incident on the dock from

the lower depth water region (see Fig. 2.3). The position of the finite floating dock is same

as above. The positions of steps at the bottom are given by a(j−3)/M ≤ x ≤ a(j−2)/M,

y = h(j) = h1 + (j − 2)h, j = 3, 4, ...,M + 2 where h is equal heights of all steps with

h(1) = h(2) = h1. We have taken h(M+2) = h(M+3) here. The entire fluid domain is divided

Dock

Step-1

Step-M

Region 1 Region 2 Region 3 Region (M+2)
Region (M+3)

h h

h

h

(3)

(M+3)

(1)
(2)

M
-steps

x=-a x=0 x=a

x1 x2 x3 xM+2 x-axis

y-axis

y=0

Figure 2.3: Definition sketch for multisteps at the bottom
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into M + 3 regions:

(i) The open region 1: −∞ < x < −a, 0 < y < h1

(ii) The covered region 2: −a < x < 0, 0 < y < h1

(iii) Other covered regions 3,4,...,M+2:

a(j − 3)/M < x < a(j − 2)/M, 0 < y < h1 + (j − 2)h, j = 3, 4, ...,M + 2

(iv) The open region M+3: a < x <∞, 0 < y < h(M+3).

The region (x ≤ 0, 0 ≤ y ≤ h1) denotes the lower depth water region whereas the region

(x ≥ a(M − 1)/M, 0 ≤ y ≤ h(M+3)) represents the higher depth water region. Here, the

complex velocity potential φ(x, y) satisfies the Laplace’s equation:

∂2φj
∂x2

+
∂2φj
∂y2

= 0, j = 1, 2, ...,M + 3, in the corresponding fluid region j, (2.40)

along with the following different boundary conditions:

at y = 0, the free surface conditions (excluding rigid dock position) are

∂φj
∂y

+Kφi = 0, j = 1,M + 3, (2.41)

at y = 0, −a ≤ x ≤ a, the rigid dock conditions are

∂φj
∂y

= 0, j = 2, 3, ...,M + 2, (2.42)

the bottom conditions at y = h(j) as

∂φj
∂y

= 0, j = 1, 2, ...,M + 3, (2.43)

and conditions at the walls x = xj−1 (where xj−1 = a(j − 3)/M) of the stepped profile as

∂φj
∂x

= 0, j = 3, 4, ...,M + 2. (2.44)

The edge conditions at the two ends of the dock is given by the relation

∂φj
∂y
∼ Â ln r as r → 0, (2.45)

where Â is a constant with r2 = [(x + a)2 + y2] for j = 1, 2 and r2 = [(x − a)2 + y2] for

j = M + 2,M + 3.

The velocity potentials φ1 and φM+3 satisfy the far filed conditions as given by

φ1(x, y) ∼ (eik0(x+a) +Re−ik0(x+a))
cosh k0(h1 − y)

cosh k0h1
, x→ −∞, (2.46)

φM+3(x, y) ∼ Teip0(x−a) cosh p0(h3 − y)

cosh p0h3
, x→∞. (2.47)
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where k = k0 and k = p0 are the positive real roots of the transcendental equations

K − k tanh kh(1) = 0 and K − k tanh kh(M+3) = 0, respectively and R and T represent,

respectively, the reflection and transmission coefficients to be determined here.

The other conditions that will be necessary to be applied to obtain the solution of the

above problem are that the pressure and velocity are continuous across the interfaces

x = x1 = −a, x = xj−1 = a(j − 3)/M, j = 3, ...,M + 3, which are given by

φj(xj−, y) = φj+1(xj+ , y)
∂φj(xj−, y)

∂x
=

∂φj+1(xj+, y)

∂x

 0 < y < h(j), j = 1, 2, 3, ...,M + 2. (2.48)

Assuming M steps of equal heights at the bottom and the wave is incident from lower

depth region, the expressions of the velocity potential φj(j = 1, 2, ...,M + 3) in all regions

can be expressed as

φ1(x, y) =
(
eik0(x+a) +Re−ik0(x+a)

) cosh k0(h1 − y)

cosh k0h1
+
∞∑
n=1

Ane
kn(x+a) cos kn(h1 − y)

cos knh1
,

(−∞ < x < −a, 0 < y < h1), (2.49)

φ2(x, y) = B0 +B1
x

a
+
∞∑
n=1

(
B̂ne

nπx
h1 + B̃ne

−nπx
h1

)
cos

(
nπ

h1
y

)
,

(−a < x < 0, 0 < y < h1), (2.50)

φj(x, y) = B
(j)
0 +B

(j)
1

x

a
+
∞∑
n=1

(
B̂n

(j)
e
nπx

h(j) + B̃n
(j)
e
−nπx
h(j)

)
cos
( nπ
h(j)

y
)
,

(a(j − 3)

M
< x <

a(j − 2)

M
, 0 < y < h1 +(j−2)h; 3 ≤ j ≤M +2

)
, (2.51)

φM+3(x, y) = Teip0(x−a) cosh p0(h1 +Mh− y)

cosh p0(h1 +Mh)
+

∞∑
n=1

Ene
−pn(x−a) cos pn(h1 +Mh− y)

cos pn(h1 +Mh)
,

(a < x <∞, 0 < y < h1 +Mh), (2.52)

where R,An, B0, B1, B̂n, B̃n, B
(j)
0 , B

(j)
1 , B̂

(j)
n , B̃n

(j)
, T, En, (3 ≤ j ≤M+2) are the unknown

constants to be determined. Following the same procedure as described in the previous

section, to produce a system of linear algebraic equations, we multiply the matching

conditions by cos(mπy/h(j)); (j = 1, 2, ...,M+3,m = 0, 1, 2, . . . , N), then integrating over

(0, h(j)) appropriately and using wall conditions appropriately, we obtain 2(N +1)(M +1)

number of equations in 2(N + 1)(M + 1) unknowns which need to be solved to determine

the unknowns. In the case of incidence of wave from higher depth region we proceed in

similar way as described in the Section 2.2.
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2.4 Energy Balance Relation

For derivation of the energy balance relation for Case-I of the present problem, we use the

Green’s integral theorem: ∫
C

(
φ
∂φ∗

∂n
− φ∗∂φ

∂n

)
ds = 0 (2.53)

where φ∗ is the complex conjugate of φ, ∂/∂n represents the outward normal derivative

to the boundary denoted by C of the fluid region

y = 0 (a < x < X); y = 0 (−a < x < a); y = 0 (−X < x < −a);x = −X (0 < y < h1);

y = h1 (−X < x < 0);x = 0 (h1 < y < h2); y = h2 (0 < x < b);x = b (h2 < y < h3);

y = h3 (b < x < X);x = X (0 < y < h3).

Then, we take limit as X →∞.

The contributions from the lines y = 0 (a < x < X); y = 0 (−a < x < a) and y =

0 (−X < x < −a) are zero.

There are no contributions from the lines y = h1 (−X < x < 0); x = 0 (h1 < y < h2); y =

h2 (0 < x < b); x = b (h2 < y < h3) and y = h3 (b < x < X).

The contribution from the line x = −X (0 < y < h1) is∫ h

0

(
φ
∂φ∗

∂x
− φ∗∂φ

∂x

)
dy = i(1− |R|2)

2k0h1 + sinh 2k0h1

2 cosh2 k0h1

, (2.54)

and from the line x = X (0 < y < h3) is∫ 0

h

(
φ
∂φ∗

∂x
− φ∗∂φ

∂x

)
dy = −i|T |2 2p0h3 + sinh 2p0h3

2 cosh2 p0h3

. (2.55)

Hence, on combining all the contributions shown above, the relation (2.53) produces the

energy balance relation as given by

|R|2 + J1|T |2 = 1, (2.56)

where

J1 =

(
2p0h3 + sinh 2p0h3

2k0h1 + sinh 2k0h1

)(
2 cosh2 k0h1

2 cosh2 p0h3

)
.

Similarly, the energy balance relation can be derived for the Case-II, when the wave is

incident on the dock from positive infinity and is given by

|R̂|2 + J2|T̂ |2 = 1, (2.57)

where

J2 =

(
2k0h1 + sinh 2k0h1

2p0h3 + sinh 2p0h3

)(
2 cosh2 p0h3

2 cosh2 k0h1

)
.
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2.5 Numerical Results and Discussion

In this section, MATLAB programs are worked out to investigate the effects of the

various system parameters such as dock length “a”, width “b” of step-1, depth ratios

h2/h1 and h3/h1 (or heights of the steps: (h2 − h1) and (h3 − h1)), on the reflection and

transmission coefficients. The main aim of the present investigation is to look how the

incident wave energy is scattered by both obstacles, dock and two steps. Furthermore,

the other important factors of the study, namely, force and moment on the dock over

this two step-type bottom topography are also determined and plotted through graphs.

For ensuring the correctness of the numerical results the energy identity relation is also

derived and verified. Here, all the system parameters are non-dimensionalized by using h1

as the length scale. The new non-dimensionalized parameters are A = a/h1, B = b/h1,

K ′ = Kh1, H2 = h2/h1 and H3 = h3/h1.

2.5.1 Convergence for N

In this section, the convergence study for N i.e. the number of evanescent modes is

examined for the dock over two step-type bottom topography. In Table 2.1, the values of

|R| are tabulated against K ′ for various values of N = 2, 3, 5, 6, 8. The table shows that a

sufficient accuracy in the present results is obtained with N = 5 for all the values of K ′

and almost same results are obtained for N = 6, 7, 8. Hence, N = 5 is taken throughout

the study.

Table 2.1: |R| versus K ′ for various values of N = 2, 3, 5, 6, 8 with A = 1, B = 0.5, H2 =
1.2, H3 = 2.

K ′ |R|(N = 2) |R|(N = 3) |R|(N = 5) |R|(N = 6) |R|(N = 8)

0.2 0.377478 0.414558 0.428097 0.428112 0.428122

0.4 0.524783 0.549555 0.569775 0.569782 0.569791

0.6 0.625412 0.651122 0.667499 0.667501 0.667511

0.8 0.690012 0.718745 0.735588 0.735600 0.735614

1.0 0.755322 0.769875 0.787637 0.787648 0.787655

2.5.2 Validation of the results

To validate the present model, the results of the present study are compared with the

results available in the literature. It should be observed that if we consider the depth

ratios equal to 1 (i.e. H2 = 1 and H3 = 1), the present problem reduces to the problem of

scattering of water waves by a finite dock over horizontal bottom (Linton [76], for normal

incidence). From the Fig. 2.4 and Table 2.2, it is observed that an excellent agreement

is achieved between the present results and results of Linton [76], for normal incidence.

Moreover, the energy balance relations (2.56) and (2.57) agree and provides a numerical

check for the results obatained through numerical computations as shown in Table 2.3 and

Table 2.4.
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Table 2.2: Comparison of present results with Linton (2001) for different K ′ with fixed
A = 1, B = 0.5, H2 = 1 and H3 = 1

K ′
Linton (2001), for θ = 0 Present results
|R| |T | |R| |T |

0.2 0.4226 0.9062 0.4226 0.9062

0.4 0.5674 0.8234 0.5673 0.8235

0.6 0.6619 0.7495 0.6619 0.7496

0.8 0.7302 0.6831 0.7301 0.6833

1.0 0.7818 0.6234 0.7817 0.6236

Table 2.3: Verification of energy balance relation for Case I with A = 1, B = 0.5

K ′ H2 H3 R T |R|2 + J1|T |2
0.2 1 1 0.1759-0.3843i 0.9347-0.0034i 1.0000

0.4 1 1 0.3118-0.4739i 0.8724-0.0093i 1.0000

1.0 1 1 0.5623-0.5431i 0.7063-0.0335i 1.0000

0.2 1.65 2 0.2139-0.3499i 0.9851+0.0125i 1.0065

0.5 1.18 2 0.2851-0.5663i 0.7269-0.0174i 0.9991

Table 2.4: Verification of energy balance relation for Case II with A = 1, B = 0.5

K ′ H2 H3 R̂ T̂ |R̂|2 + J2|T̂ |2
0.2 1 1 0.1759 - 0.3843i 0.8241 + 0.3771i 1.0000

0.4 1 1 0.3118 - 0.4739i 0.6879 + 0.4526i 1.0000

1.0 1 1 0.5623 - 0.5431i 0.4333 + 0.4485i 1.0000

3.3 2.5 3 0.8151 - 0.5495i 0.0713 + 0.1682i 1.0002

3.5 2.5 3 0.8291 - 0.5485i 0.0639 + 0.1651i 1.0200
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Figure 2.4: Comparison of present results with Linton (2001) for fixed A = 1, B = 0.5,
H2 = 1 and H3 = 1
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2.5.3 Effect of system parameters on the reflection and transmission

coefficients

Case I: Waves incident from lower depth region
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Figure 2.5: |R| and |T | with fixed H2 = 1.2 and H3 = 2 for different values of dock length
A where in Fig. (a) B = 0.2 and in Fig. (b) B = 0.5.
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Figure 2.6: |R| and |T | with fixed H2 = 1.2 and H3 = 2 for different values of width B of
step-1 where in (a) A = 1.0 and in (b) A = 1.5.

(i) Effect of dock length

Figs. 2.5a and 2.5b show the variation in the reflection coefficient |R| and

transmission coefficient |T | against the wavenumber K ′ for different values of dock

length A = 1.0, 1.5, 2.0. Here, H2 = 1.2 and H3 = 2 are kept fixed. From these

figures, it is observed that the values of the reflection coefficient |R| are very small

for small K ′ (< 0.1) which is plausible, since for long waves the flow is uniform along

the horizontal direction, i.e., the incident waves can not be observed by the floating

dock and hence incident waves almost fully transmitted. The values of |R| for K ′
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Figure 2.7: |R| and |T | against K ′ for different depth ratios with A = 1 and B = 0.5

(< 0.1) are nearly same for different values of A. It is also found that the reflection

coefficient is increasing as the value of K ′ is increasing whereas the transmission

coefficient is decreasing with increasing the value of K ′. This is due to the fact that

for large value of K ′, the incident wave is concentrated near the free surface and as

such most of the incident wave energy is reflected by the floating dock. Furthermore,

the values of |R| are increasing and the values of |T | are decreasing as the values

of A (and B) are increasing for average values of K ′. Hence, it is found that the

values of |R| are increasing and the values of |T | are decreasing as the dock length

is increasing which is plausible as longer the dock length produces more reflection.

(ii) Effect of width of step-1

The reflection coefficient |R| and transmission coefficient |T | are plotted against K ′

for different values of width of step-1 (B = 0.2, 0.5, 0.8) in Figs. 2.6a and 2.6b with

fixed H2 = 1.2 and H3 = 2. In these figures we observe the similar behavior of the

curves of |R| and |T | against K ′ as shown in Figs. 2.5a and 2.5b. It is also seen

from these figures that the values of |R| is increasing to a small extent as the value

of B is increasing from 0.2 to 0.8. Because when step 2 is moving away from step

1, it has very less effect on the reflection coefficient. Similarly, |T | is decreasing to

a small extent as the width B is increasing. Hence, the width B has very less effect

on reflection and transmission coefficients.

(iii) Effect of water depth ratios and comparison between the flat bottom,

1-step bottom, 2-step bottom and M-steps bottom

The variation of the water depths H2 and H3 on the reflection coefficient |R| and

transmission coefficient |T | is shown in Fig. 2.7. From this figure, it is observed

that the values of |R| are decreasing slightly with increasing the values of K ′ while

the values of |T | are increasing as the values of K ′ are increasing. This may happen

due to the fact that increasing the depth ratios creates more gap in the region

x > 0 producing more transmission. The effect of different number of steps (i.e., flat
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Figure 2.8: |R| and |T | against K ′ with A = 1 and B = 0.5 for (a) flat-type, 1-step and
2-step bottom (b) multi-stepped bottom.

bottom, 1-step bottom, 2-step bottom and M-steps bottom) is shown in Figs. 2.8a

and 2.8b for Case-I only. In Fig. 2.8a, we consider the depth ratios H2 = H3 = 1

for flat bottom, H2 = H3 6= 1 for 1-step bottom and H2 6= H3 6= 1(H2 < H3) for

2-step bottom. From this figure, it is found that the reflection coefficient is slightly

decreasing as we go from flat bottom to 1-step bottom then to 2-step bottom. But the

transmission coefficient is increasing as the number of steps are increasing, which is

true because increasing the number of steps produces more transmitting fluid region

causing more transmission. Although the transmission coefficient is increasing but

the reflection coefficient is slightly decreasing by increasing the number of steps. In

Fig. 2.8b, the more number of steps are considered, i.e. M = 1, 5, 10 (1-step bottom,

5-steps bottom and 10-steps bottom). In this case also, the same observation is

obtained as in the Fig. 2.8a, i.e. the reflection coefficient is slightly decreasing and

the transmission coefficient is increasing as the number of steps are increasing. This

is plausible from the physical behaviour of the problem.

Case II: Waves incident from higher depth region

Here, the surface wave is incident on the dock from the higher depth region to lower depth

region, i.e., wave is incident on the dock from positive infinity. The effect for various

system parameters on the reflection |R̂| and transmission |T̂ | coefficients is shown in Figs.

2.9, 2.10 and 2.11.

(i) Effect of dock length

The reflection and transmission coefficients against K ′ are depicted in Figs. 2.9a

and 2.9b for different values of A = 1.0, 1.5, 2.0. Here, we have taken H2 = 1.3 and

H3 = 2. It is observed that the reflection coefficient is increasing and transmission

coefficient is decreasing with increasing the value of K ′ as observed in the case when

the wave train is incident from lower depth region. It also seen that |R̂| is increasing

and |T̂ | decreasing as the value of the dock length is increasing. This is plausible
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Figure 2.9: |R̂| and |T̂ | against K ′ for fixed H2 = 1.3 and H3 = 2 with different (a) B = 0.2
and (b) B = 0.5.
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Figure 2.10: |R̂| and |T̂ | against K ′ for fixed H2 = 1.3 and H3 = 2 with different (a)
A = 1.0 and (b) A = 1.5.

from the fact that longer the length of the dock will certainly increase the reflection.

(ii) Effect of width of step-1

The values of reflection coefficient |R̂| and transmission coefficient |T̂ | are depicted

against K ′ in Figs. 2.10a and 2.10b for different values of width of step-1, B =

0.3, 0.5, 0.8. In each figure, the values of other parameters are H2 = 1.3 and H3 = 2.

From these figures, it is found that the reflection coefficient is increasing slightly as

the value of B is increasing form 0.3 to 0.8 and also the transmission coefficient is

decreasing slightly. Both results are plausible as described in Case-I.

(iii) Effect of water depth ratios

Fig. 2.11 shows the variation of depth ratios H2 and H3 on |R̂| and |T̂ | against K ′.

From this figure, it is observed that the values of |R̂| curves are increasing as the

values of depth ratios are increasing whereas the values of |T̂ | curves are decreasing.
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Figure 2.11: |R̂| and |T̂ | against K ′ for different depth ratios with A = 1 and B = 0.5

This result is plausible from the physical understanding that larger the depth ratio

will increase the height of side wall of the step producing more reflection and less

transmission.

2.6 Force and Moment

Force and moment are the important factors in the study of water waves for designing the

breakwaters. Here, the results are derived for the Case-I only (i.e., when wave is incident

from lower depth region). Similarly, force and moment for Case-II can also be derived

with proper modification in the velocity potentials as described in Section 2.2.2.

Force: The dimensionless vertical exciting force on the dock due to an incident wave is

given by

F =
e−ik0a

a
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Fig. 2.12 shows the variation of the absolute value of dimensionless force |F | against K ′ for
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Figure 2.12: |F | against K ′ for fixed B = 0.5

different values of the dock length A = 1, 2 and depth ratios H2 = 1.5, 2.0, H3 = 1.5, 2.0

with fixed B = 0.5. From this figure, it is observed that the force is decreasing with

increasing the values of K ′ (Linton [76]). It is also found that the force is decreasing as

the length of the dock is increasing (Linton [76]). This is plausible from the physical point

of view.

Moment: The dimensionless vertical pitching moment on the dock due to an incident

wave is given by

M =
e−ik0a
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The dimensionless moment on the finite dock is depicted against K ′ in Fig. 2.13. It is
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Table 2.5: Force and moment for different K ′ with A = 1, B = 0.5, H2 = 1, H3 = 1

K ′
Linton (2001), for θ = 0 Present results
|F | |M | |F | |M |

0.2 1.8844 0.2671 1.8842 0.2670

0.4 1.7738 0.3396 1.7734 0.3394

0.6 1.6689 0.3753 1.6684 0.3749

0.8 1.5704 0.3922 1.5696 0.3918

1.0 1.4788 0.3984 1.4779 0.3978
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Figure 2.13: |M | against K ′ for fixed B = 0.5

observed that the moment is increasing as the values of dock length A (Linton [76]) and

the depth ratios H2, H3 are increasing. The values of force |F | and moment |M | are given

in tabular form (Table 2.5) for different values of K ′. Here, the other parameters A = 1,

B = 0.5, H2 = 1 = and H3 = 1 are kept fixed. It is found that the present results for

force and moment are matching with Linton [76] correct up to three decimal places. This

also ensures the correctness of the numerical results of the present problem.

2.7 Conclusion

The scattering of surface water waves by a finite dock is examined under the assumptions

of the linearized water wave theory. In addition to finite dock, 2-step bottom topography

is considered to analyze the effect of abrupt change in bottom topography on the

wave propagation from lower depth region (Case-I) as well as from higher depth

region (Case-II). It is observed that the reflection coefficient is decreasing slightly and

transmission coefficient is increasing with increasing the depth ratios for Case-I. On

the other hand, for Case-II, the reflection coefficient is increasing as the values of the

depth ratios are increasing while the transmission coefficient is decreasing. The reflection

coefficient is also increasing with increasing the values of K ′, dock length and width of
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the step-1 whereas the transmission coefficient is decreasing for the same. Furthermore,

this problem is generalized over M−steps and it is found that the transmission coefficient

is increasing but the reflection coefficient is slightly decreasing by increasing the number

of steps. The energy balance relation is also derived and verified. It is observed that

the numerical results obtained for reflection and transmission coefficients satisfy the

energy balance relation almost accurately. The present results are also validated through

the results available in the literature. Further, this paper provides information towards

the designing of horizontal breakwater over step topography towards the protection of

seashore.



Chapter 3

Scattering of Water Waves by a

Thin Vertical Barrier Over Stepped

Bottom Topography

3.1 Introduction

In Chapter 2, the scattering of surface water waves for normal incidence by rigid horizontal

dock over stepped bottom topography was considered for its solutions. In this chapter,

instead of rigid dock, the interaction of obliquely incident surface waves by thin rigid

vertical barrier over an impermeable stepped bottom is studied. The physical problem is

formulated as mixed boundary value problem which involves Helmholtz equation as the

governing equation. It is analyzed under the assumption of small amplitude water wave

theory. The associated mixed boundary value problem is solved using the eigenfunction

expansion of the velocity potential. The resulting system of equations is solved using

algebraic least squares method giving rise the numerical values of the reflection and

transmission coefficients by the barrier over step. The numerical values of these coefficients

are compared with the known results of Rhee [115] and Losada [78]. The energy balance

relation for the given problem is derived and verified numerically ensuring the correctness

of the present results. A major part of the work presented in this chapter has been

published in Kumar et al. [66].

3.2 Mathematical Formulation

Let us assume the fluid under consideration is homogeneous, incompressible, inviscid

and the fluid motion is irrotational and also simple harmonic in time t. The Cartesian

coordinate system is taken with mean free surface along the xz-plane and y-axis is vertically

downwards (taken as positive) through the thin vertical rigid barrier of length d over the

step bottom topography. The position of the step is at x = 0, h2 ≤ y ≤ h1 and the

barrier is at x = 0, 0 ≤ y ≤ d. The fluid domain is divided into two regions such as

R1 : −∞ < x ≤ 0, 0 ≤ y ≤ h1, R2 : 0 ≤ x < ∞, 0 ≤ y ≤ h2. Under the

small amplitude theory of water waves, the velocity potential can be represented by

Φ(x, y, z, t) = <{φ(x, y)ei(µz−ωt)}, where < denotes the real part and ω is the angular

frequency of the wave. The complex valued spatial potential φ(x, y) denoted as φ1 for
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Figure 3.1: Schematic of the problem with rigid barrier over impermeable stepped bottom.

x < 0 and φ2 for x > 0, satisfies the Helmholtz equation (Rhee [115])

∂2φ

∂x2
+
∂2φ

∂y2
− µ2φ = 0 in the regions Rj , j = 1, 2, (3.1)

where µ = k0 sinα, α is the angle of incidence with respect to x-axis and k0 is the wave

number of the incident wave. Also, φj(x, y), j = 1, 2, satisfies the boundary conditions

(Losada et al. [78] and Rhee [115]) as defined below:

∂φ1

∂y
+Kφ1 = 0 on y = 0,−∞ < x < 0;K = ω2/g, (3.2)

∂φ2

∂y
+Kφ2 = 0 on y = 0, 0 < x <∞, (3.3)

∂φ1

∂y
= 0 on y = h1,−∞ < x < 0, (3.4)

∂φ2

∂y
= 0 on y = h2, 0 < x <∞, (3.5)

and the far-field conditions

φ1(x, y) ∼ ig

w
{eis0x +Re−is0x}cosh k0(y − h1)

cosh k0h1
as x→ −∞, (3.6)

and φ2(x, y) ∼ ig

w
{Teiq0x}cosh p0(y − h2)

cosh p0h2
as x→∞, (3.7)

where s0 =
√
k2

0 − µ2, q0 =
√
p2

0 − µ2; k0 and p0 satisfy the respective transcendental

equations k tanh kh1 − K = 0, and k tanh kh2 − K = 0, g is acceleration due to gravity

and |R| and |T | respectively represent the reflection and transmission coefficients. The

phase speed along the rays of the incident wave leading to Snell’s law for refraction across
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the step at the bottom, resulting µ = k0 sinα = p0 sinβ as mentioned by Kirby and

Dalrymple [62].

In addition to this, the matching conditions at x = 0 due to continuity of pressure and

velocity are:

φ1(0, y) = φ2(0, y), d ≤ y ≤ h2 (at the gap), (3.8)

∂φ1

∂x
(0, y) =

∂φ2

∂x
(0, y), d ≤ y ≤ h2 (at the gap), (3.9)

∂φ1

∂x
(0, y) = 0, 0 ≤ y ≤ d (at the barrier), (3.10)

∂φ2

∂x
(0, y) = 0, 0 ≤ y ≤ d (at the barrier), (3.11)

∂φ1

∂x
(0, y) = 0, h2 ≤ y ≤ h1 (at the step). (3.12)

In this problem, the singularity (Ray et al. [110]) at the edge of the vertical barrier is not

considered. The study uses the Eqs. (3.1)-(3.12) to coin a system of equations and the

system of equation will be solved numerically to determine R and T which is described in

the next section.

3.3 Method of Solution

The Havelock’s expansion for the velocity potential in regions Rj , j = 1, 2, are given by

φ1(x, y) =
ig

w

[
{eis0x +Re−is0x}f0(y) +

∞∑
n=1

Ane
−isnxfn(y)

]
,

−∞ < x ≤ 0, 0 ≤ y ≤ h1, (3.13)

φ2(x, y) =
ig

w

[
{Teiq0x}g0(y) +

∞∑
n=1

Bne
iqnxgn(y)

]
, 0 ≤ x <∞, 0 ≤ y ≤ h2, (3.14)

with

fn(y) =
cosh kn(y − h1)

cosh knh1
, gn(y) =

cosh pn(y − h2)

cosh pnh2
; n = 0, 1, 2, ... (3.15)

and kn & pn, n = 0, 1, 2, ... satisfy the transcendental equations

k tanh kh1 −K = 0 and p tanh ph2 −K = 0,

respectively, where k0, p0 are real roots corresponding to propagating mode while kn, pn,

n = 1, 2, ... are purely imaginary roots corresponding to evanescent modes. Also, sn =√
k2
n − µ2, qn =

√
p2
n − µ2 for n = 1, 2, ... . The unknowns R,An, T, Bn, n = 1, 2, 3, ... are

to be determined. After truncating the series to a finite number say N , we have 2N + 2

number of unknowns.
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Using the relations (3.13) and (3.14) in the conditions (3.8)− (3.12), we obtain

(1 +R)f0(y) +
N∑
n=1

Anfn(y)− Tg0(y)−
N∑
n=1

Bngn(y) = 0, d ≤ y ≤ h2, (3.16)

is0(1−R)f0(y)−
N∑
n=1

isnAnfn(y) = 0, 0 ≤ y ≤ d, (3.17)

iq0Tg0(y) +

N∑
n=1

iqnBngn(y) = 0, 0 ≤ y ≤ d, (3.18)

is0(1−R)f0(y)−
N∑
n=1

isnAnfn(y)− iq0Tg0(y)−
N∑
n=1

iqnBngn(y) = 0,

d ≤ y ≤ h2, (3.19)

is0(1−R)f0(y)−
N∑
n=1

isnAnfn(y) = 0, h2 ≤ y ≤ h1. (3.20)

Approximate solution of the 2N + 2 unknowns appearing in Eqs. (3.16) − (3.20) can be

obtained by the method of algebraic least-squares for which we consider infinite number of

discretized points: (i) ŷ1, ŷ2, ŷ3, ... on the barrier (0, d), (ii) ỹ1, ỹ2, ỹ3, ... in the gap (d, h2)

and (iii) y̌1, y̌2, y̌3, ... on the step (h2, h1), which lead to an overdetermined system with

infinite number of equations in the matrix form as

A ~X = ~b, (3.21)

where A is the coefficient matrix, ~b is the known vector and ~X = [R,An, T, Bn]; n =

1, 2, 3, ..., N, is unknown vector to be determined. The least square solution is found for

which the following normal system need to be solved:

A∗A ~X = A∗~b, (3.22)

where A∗ denotes the conjugate transpose of A. Here, the system of equations (3.22)

is solved by Gauss elimination method with the help of MATLAB. If A has linearly

independent columns then the least-squares solution is unique and is given by

~X = (A∗A)−1A∗b, (3.23)

Here, it may be noted that, the ill-conditioned matrix can be avoided by choosing

appropriate discretized points (see Section 5). The non-dimensional horizontal force per

unit width of the barrier over the step-type bottom is given by

|Fh|
ρgh1A

=
ω

gh1

∣∣∣ ∫ d

0
(φ2(0, y)− φ1(0, y))dy

∣∣∣. (3.24)
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3.4 Energy Balance Relation

The energy identity relating to reflection and transmission coefficients of the given problem,

can be derived by using Green’s integral theorem:∫
Γ

(
φ
∂φ∗

∂n
− φ∗∂φ

∂n

)
dS = 0, (3.25)

where ∂
∂n is the outward normal derivative to the boundary Γ, φ∗ is the complex conjugate

of φ, Γ is composed of {−X ≤ x ≤ 0, y = 0} ∪ {x = −X, 0 ≤ y ≤ h1} ∪ {−X ≤ x ≤ 0, y =

h1} ∪{x = 0, h2 ≤ y ≤ h1} ∪ {0 ≤ x ≤ X, 0 ≤ y ≤ h2} ∪ {x = X, 0 ≤ y ≤ h2} ∪ {0 ≤ x ≤
X, y = 0} ∪ {x = 0+, 0 ≤ y ≤ d} ∪ {x = 0−, 0 ≤ y ≤ d} and then we take X →∞.

The contribution to the integral (3.25) is zero due to the bottom as well as the barrier

since ∂φ
∂n = 0 & ∂φ∗

∂n = 0. The contribution to the integral (3.25) at the free surface is zero.

The contribution from the line x = −X, 0 ≤ y ≤ h1 is∫ h1

0

(
φ1
∂φ∗1
∂x
− φ∗1

∂φ1

∂x

)
dy =

g2

ω2

is0(|R|2 − 1)

2k0 cosh2(k0h1)
[2k0h1 + sinh(2k0h1)]. (3.26)

At the line x = X, 0 ≤ y ≤ h2, the integral gives rise to∫ 0

h2

(
φ2
∂φ∗2
∂x
− φ∗2

∂φ2

∂x

)
dy =

g2

ω2

iq0|T |2
2p0 cosh2(p0h2)

[2p0h2 + sinh(2p0h2)]. (3.27)

On adding all of these contributions in Eq. (3.25), we get the energy identity as

|R|2 + δ |T |2 = 1, (3.28)

where δ = iq0k0(2p0h2+sinh(2p0h2)
is0p0(2k0h1+sinh(2k0h1)

cosh2(k0h1)

cosh2(p0h2)
.

3.5 Numerical Results and Discussion

Here, the reflection |R| coefficient and transmission |T | coefficient are computed by solving

the system given in Eq. (3.21) using algebraic least-squares method. The non-dimensional

horizontal force on the barrier is computed numerically from the Eq. (3.24). These values

are shown through tables and also through graphs for various values of parameters. For

applying the algebraic least-square method, we consider different number of equally spaced

discretized points, say m1 points on the barrier: ŷi = id/(m1 − 1), i = 0, 1, 2, ..., (m1 − 1),

m2 points in the gap: ỹi = d+ i(h2 − d)/(m2 − 1), i = 0, 1, 2, ..., (m2 − 1) and m3 points

on the step: y̌i = h2 + i(h1 − h2)/(m3 − 1), i = 0, 1, 2, ..., (m3 − 1). Thus, from Eqs.

(3.16)-(3.20), we obtain 2(m1 +m2) +m3 = m̂ (say) equations in 2N + 2 unknowns which

are to be determined by solving the system (3.21). The non-dimensionalization of the

physical parameters is made using both the depths h1 & h2. Here, the non-dimensional

parameter are d/h1, Kh1, H = h2/h1, p0h2.
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Figure 3.2: Comparison of the present results with (a) Rhee (1997) with H = 0.1, α =
0, d/h1 = 0 (b) Losada et al. (1992) with H = 1.0,Kh1 = 4.262, α = 0.

3.5.1 Validation

For validation of the present results, the results for a vertical step h2/h1 at the bottom

topography in the absence of the barrier are compared with results of Rhee [115] in Fig.

3.2a. Here, |R| and |T | against p0h2 are drawn where the present results (solid lines) fully

coincide with Rhee [115] (stars), proving the correctness of present results. In Fig. 3.2b,

the present results for |T | are compared with Losada et al. [78] for vertical barrier over flat

bed (in the absence of step). The transmission coefficient |T | against the dimensionless

barrier length d/h1 for fixed Kh1 = 4.262 and α = 0 is presented in Fig. 3.2b, where the

present results agree well with those of Losada et al. [78]. This proves the correctness of

the present results. In Table 3.1, |R| and |T | are calculated for different non-dimensional

values of Kh1 and the results tabulated here show that the current numerical results verify

the energy balance relation (3.28) showing again the correctness of the present results.

Kh1 |R| |T | |R|2 + γ|T |2
0.5 0.2836709 0.971339 0.998969
1 0.542422 0.839165 0.996779

1.5 0.797381 0.595626 0.995996
2 0.938224 0.339009 0.997709

2.5 0.984274 0.172273 0.999051
3 0.996101 0.085408 0.999610

3.5 0.998994 0.042712 0.999828
4 0.999722 0.021717 0.999918

4.5 0.999916 0.011221 0.999959

Table 3.1: Verification of energy balance relation for d/h1 = 0.6, H = 0.9, α = π/4.
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3.5.2 Convergence for N and (m1,m2,m3)

The convergence of N (the number of evanescent modes) and the convergence of number

of discretization points (m1,m2,m3) are examined. In Table 3.2, the values of |R| are

given versus Kh1 for various values of N = 10, 20, 30, 55 and 60 for fixed values of d/h1 =

0.6, H = 0.9, α = π/4. The tabular data show that the accuracy in |R| upto two decimal

places are obtained with N = 55 for all the values of Kh1. Further, the Table 3.3 shows,

the tabulated values of |R| and |T | versus Kh1 for various values of (m1,m2,m3) for fixed

values of d/h1 = 0.3, H = 0.5, α = 0 and N = 55. The tabular data show that the accuracy

in the results upto four decimal places are obtained with (m1,m2,m3) = (700, 700, 350).

Kh1 |R|(N = 10) |R|(N = 20) |R|(N = 30) |R|(N = 55) |R|(N = 60)

0.5 0.301273 0.294279 0.289798 0.284316 0.283670
1 0.564326 0.556549 0.550659 0.543309 0.542421

1.5 0.810078 0.806768 0.802992 0.798008 0.797381
2 0.940626 0.941080 0.940057 0.938443 0.938224

2.5 0.983528 0.984619 0.984594 0.984321 0.984273
3 0.995167 0.995944 0.996081 0.996105 0.996100

Table 3.2: |R| versus Kh1 for various values of N = 10, 20, 30, 55 and 60.

Kh1 (m1,m2,m3) |R| |T |
0.1 (100,100,50) 0.197766 1.151433

(200,200,100) 0.197685 1.151281
(400,400,200) 0.197632 1.151208
(700,700,350) 0.197599 1.151172
(800,800,400) 0.197588 1.151156

0.5 (100,100,50) 0.294316 1.064908
(200,200,100) 0.294429 1.064789
(400,400,200) 0.294445 1.064757
(700,700,350) 0.294438 1.064742
(800,800,400) 0.294434 1.064736

0.7 (100,100,50) 0.342612 1.019294
(200,200,100) 0.342789 1.019196
(400,400,200) 0.342826 1.019186
(700,700,350) 0.342827 1.019182
(800,800,400) 0.342826 1.019180

Table 3.3: |R| and |T | versus Kh1 for fixed N = 55 with different values of (m1,m2,m3).

3.5.3 Influence of physical parameters on the reflection coefficient,

transmission coefficient and force on the barrier over stepped

bottom

Here, the reflection |R| and transmission |T | coefficients, and the force on the barrier

are calculated numerically and plotted through different graphs for various values of the
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parameters. The variation of |R| & |T | against the non-dimensional wave frequency Kh1

for three different lengths of the barrier is shown in Fig. 3.3. It is observed that the

reflection coefficient increases as the length of the barrier d/h1 increases from 0.25 to

0.75. Consequently, the transmission coefficient decreases as the length of the barrier

increases. Also, the reflection coefficient increases while transmission coefficient decreases

as the non-dimensional wave frequency increases. Hence, larger frequency waves gets

maximum reflection and minimum transmission. This may happen due to the fact that

larger frequency waves almost confined near the free surface and hence gets comparatively

more reflection and lesser transmission. In Fig. 3.4, the variation of reflection |R| and

transmission |T | coefficients as a function of non-dimensional wave frequency Kh1 by

thin vertical barrier of length d/h1 = 0.2 for three different step heights at the bottom

is represented. The reflection coefficient |R| decreases while transmission coefficient |T |
increases as the depth ratio H increases (i.e. the step height decreases). The effect of
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depth ratio H on |R| & |T | is diminished as the value of Kh1 becomes larger which

may be due to the fact that the larger frequency waves i.e. waves with short wavelength

are almost confined near the free surface and get lesser influenced due to the stepped

bottom. It is also noticed that the pattern of transmission coefficient is also different

for Kh1 < 1, which may be due to phase shift in transmitted waves by altering depth

ratio. Figure 3.5 shows |R| versus Kh1 for different values of angle of incidence. As the

angle of incidence α increases, the reflection coefficient decreases. Also, there is more

reflection for normal incidence case (α = 0) in comparison to oblique incidence case. It

is also observed that |R| becomes unity for α = π/2 for all the frequencies of incident

waves, which validate the physical behaviour of the problem. In Fig. 3.6, the reflection

coefficient monotonically decreases with the angle of incidence for all these dimensionless

lengths of the barrier ranging from 0.25− 0.75. Consequently, the transmission coefficient

monotonically increases with the angle of incidence for all these dimensionless lengths of
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the barrier. The variation of the non-dimensional horizontal force |Fh|/ρgh1A against the

non-dimensional wave frequency Kh1 is reported in Fig. 3.7. For Kh1 < 2.5, the force

on the barrier decreases as H increases while for Kh1 > 2.5, the force on the barrier

increases as H increases. The pattern in the curves in Fig. 3.7 is changing because there

may be a phase shift due to alteration of depth ratio for each curve. In Fig. 3.8, the

variation of |Fh|/ρgh1A as a function of Kh1 is shown for three different lengths of the

barrier d/h1 = 0.25, 0.50, 075. It is observed that the force on the barrier increases as

the value of d/h1 increases. It is also observed that as the length of the barrier increases,

the reflection coefficient increases but force on the barrier also increases. Fig. 3.9 shows

the non-dimensional horizontal force versus Kh1 for three different angle of incidence

α = 0, π/6, π/4. The maximum value of the non-dimensional horizontal force on the

barrier decreases as the angle incidence increases. In Fig. 3.10, the non-dimensional

horizontal force versus angle of incidence for three different dimensionless lengths of the

barrier ranging from 0.25 − 0.75 is demonstrated. It is observed that the dimensionless

force decreases versus angle of incidence for each dimensionless lengths of the barrier. It

may also be constructed from Figs. 3.6 and 3.10 that the dimensionless force versus α

decreases for each length of the barrier as the reflection coefficient decreases.

3.6 Conclusion

In this chapter, an oblique surface wave scattering by thin vertical rigid barrier over a step

bottom topography is examined for its solution using matched eigenfunction expansion

method by the aid of algebraic least squares method. The performance of the barrier over

step is studied through various graphs of the reflection and transmission coefficients and

non-dimensional horizontal force. The reflection coefficient increases as the length of the

barrier and the step height increase while it decreases as the angle of incidence increases.

Also, the maximum reflection occurs for normal incidence of the incident waves. The

analysis of non-dimensional horizontal force per unit width of the barrier is also examined.

As the length of the barrier over the step increases, the peak on force curves goes up. The

non-dimensional horizontal force on the barrier decreases as the reflection coefficient due

to the presence of the barrier decreases. Also, it is noticed that the force on the barrier is

less for obliquely incidence waves in comparison of normal incidence waves. These results

conclude that the barrier along with step works as an effective barrier to reflect more

incident waves causing tranquillity zone along lee side, yielding less impact on seashore.



Chapter 4

Scattering of Water Waves by Two

Thin Vertical Barriers Over Shelf

Bottom Topography

4.1 Introduction

In the present chapter, the problem of Chapter-3 is considered for its solution where

double barrier is considered instead of single barrier and shelf bottom topography is

considered in place of stepped bottom topography. Here, two different configuration of the

barriers are considered (i) surface piercing positions, and (ii) fully submerged positions.

Further, the problem is generalized for an array of surface piercing barriers. The associated

mixed boundary value problem is solved with the aid of method involving eigenfunction

expansions of the velocity potential and orthogonality relation of the eigenfunctions. The

resulting system of algebraic equations is solved using least square method to find the

physical quantities i.e. reflection and transmission coefficients, free surface elevation and

non-dimensional horizontal force experienced by the barriers. The energy balance relation

is derived from Green’s integral theorem and the numerically calculated results satisfy this

relation, which ensures the correctness of the present results. Also, the obtained results

are compared with the results available in the literature of Das [27] and also compared

with the results of Chapter-3, for validation purpose. The major part of this chapter is

published in Kumar et al. [67].

4.2 Mathematical Formulation

Here, the rectangular cartesian coordinate system is chosen in which the mean free surface

of the water coincides with xz-plane and the positive direction of the y-axis is taken

vertically downwards. A pair of surface piercing thin vertical barriers i.e. front and rear,

of lengths d1 and d2 are placed at x = ∓a respectively over shelf bottom topography. The

whole fluid domain is divided into three regions as

R1 : −∞ < x ≤ −a, 0 ≤ y ≤ h1; R2 : −a ≤ x ≤ a, 0 ≤ y ≤ h2;

R3 : a ≤ x ≤ ∞, 0 ≤ y ≤ h3.

We assume that the fluid under consideration is homogeneous, incompressible,

and inviscid and the fluid motion is irrotational and simple harmonic in time
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Figure 4.1: Two unequal thin vertical barriers over asymmetric shelf bottom topography.

t. It is also assumed that the barriers and the shelf profile are infinitely long in

z-direction and therefore the characteristic behaviour remains the same along z-axis.

Under the linearised wave theory of water waves, the velocity potential may be

represented by Φj(x, y, z, t) = <{φj(x, y, z)e−iωt+iµz}, where < denotes the real

part, ω is the angular frequency, θ is the angle of incidence and µ = k
(1)
0 sin θ,

µ is the z component of the wave number k
(1)
0 associated with the incident wave

given by ψ(x, y, z, t) = <{[cosh k
(1)
0 (y − h1)/ cosh k

(1)
0 h1]eik

(1)
0x x−iωt+iµz}, where

k
(1)
0x = k

(1)
0 cos θ =

√
(k

(1)
0 )2 − µ2 (k

(1)
0x is the x component of the wave number k

(1)
0

associated with the incident wave) and k = k
(1)
0 is the unique positive real root of

k tanh kh1 −K = 0 and φj(x, y) satisfies the Helmholtz equation

∂2φj
∂x2

+
∂2φj
∂y2

− µ2φj = 0 in each fluid region Rj , j = 1, 2, 3, (4.1)

along with the boundary conditions

∂φj
∂y

+Kφj = 0 on y = 0 in Rj , j = 1, 2, 3, (4.2)

∂φ1

∂y
= 0 on y = h1, −∞ < x ≤ −a, (4.3)

∂φ2

∂y
= 0 on y = h2, − a ≤ x ≤ a, (4.4)

∂φ3

∂y
= 0 on y = h3, a ≤ x ≤ ∞. (4.5)

The matching conditions due to continuity of pressure and velocity are

φ1(−a, y) = φ2(−a, y), d1 ≤ y ≤ h2, (4.6)

φ1x(−a, y) = φ2x(−a, y), d1 ≤ y ≤ h2, (4.7)

φ1x(−a, y) = φ2x(−a, y) = 0, 0 ≤ y ≤ d1, (4.8)

φ2(a, y) = φ3(a, y), d2 ≤ y ≤ h2, (4.9)
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φ2x(a, y) = φ3x(a, y), d2 ≤ y ≤ h2, (4.10)

φ2x(a, y) = φ3x(a, y) = 0, 0 ≤ y ≤ d2, (4.11)

the vertical wall conditions at the bottom are

φ1x(−a, y) = 0, h2 ≤ y ≤ h1, (4.12)

φ3x(a, y) = 0, h2 ≤ y ≤ h3, (4.13)

and the far field conditions are

φ1(x, y) ∼ [eik
(1)
0x (x+a) +Re−ik

(1)
0x (x+a)]

cosh k
(1)
0 (y − h1)

cosh k
(1)
0 h1

as x→ −∞, (4.14)

φ3(x, y) ∼ [Teik
(3)
0x (x−a)]

cosh k
(3)
0 (y − h3)

cosh k
(3)
0 h3

as x→∞. (4.15)

Here |R| and |T | are the reflection and transmission coefficients associated with reflected

and transmitted waves respectively which have to determined and k
(3)
0 satisfies the

transcendental equation k tanh kh3 − K = 0, where K = ω2/g with g as acceleration

due to gravity, and k
(3)
0x = k

(3)
0 cos θ =

√
(k

(3)
0 )2 − µ2. In this problem, the singularity

(Ray et al. [110]) at the edges of the vertical barriers is not considered.

4.3 Method of Solution

The Havelock’s expansions for the velocity potentials in regions Rj , j = 1, 2, 3 are given

by

φ1(x, y) = [eik
(1)
0x (x+a) +Re−ik

(1)
0x (x+a)]f

(1)
0 (y) +

∞∑
n=1

Ane
k
(1)
nx (x+a)f (1)

n (y);

−∞ < x ≤ −a, 0 ≤ y ≤ h1, (4.16)

φ2(x, y) = [B0e
ik

(2)
0x (x+a) + C0e

−ik(2)0x (x−a)]f
(2)
0 (y) +

∞∑
n=1

[Bne
−k(2)nx (x+a)

+ Cne
k
(2)
nx (x−a)]f (2)

n (y); − a ≤ x ≤ a, 0 ≤ y ≤ h2, (4.17)

φ3(x, y) = [Teik
(3)
0x (x−a)]f

(3)
0 (y) +

∞∑
n=1

Dne
−k(3)nx (x−a)f (3)

n (y);

a ≤ x <∞, 0 ≤ y ≤ h3. (4.18)

with

f
(j)
0 (y) =

cosh k
(j)
0 (y − hj)

cosh k
(j)
0 hj

, f (j)
n (y) =

cos k
(j)
n (y − hj)

cos k
(j)
n hj

, j = 1, 2, 3; n = 1, 2, 3, ...
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and k
(j)
0 , k

(j)
n are the roots of the transcendental equations k

(j)
0 tanh k

(j)
0 hj − K = 0

and k
(j)
n tan k

(j)
n hj + K = 0, j = 1, 2, 3, respectively, k

(j)
0x =

√
(k

(j)
0 )2 − µ2 and

k
(j)
nx =

√
(k

(j)
n )2 + µ2, j = 1, 2, 3. Here R,An, B0, Bn, C0, Cn, T,Dn, n = 1, 2, ... are

unknowns to be determined. After truncating the number of evanescent modes present in

Eqs. (4.16− 4.18) to a finite number say N , we have 4N + 4 number of unknowns.

Substituting the series relations (4.16) − (4.18) in the conditions (4.6) − (4.13) and

multiplying either f
(1)
m or f

(2)
m or f

(3)
m suitably as given below, then integrating over

the appropriate intervals and then applying the orthogonality relation of eigenfunctions

wherever possible, we obtain∫ h2

d1

φ1(−a, y)f (2)
m (y)dy =

∫ h2

d1

φ2(−a, y)f (2)
m (y)dy, (4.19)∫ h1

0
φ1x(−a, y)f (1)

m (y)dy =

∫ h2

0
φ2x(−a, y)f (1)

m (y)dy, (4.20)∫ h2

d2

φ2(a, y)f (2)
m (y)dy =

∫ h2

d2

φ3(a, y)f (2)
m (y)dy, (4.21)∫ h2

0
φ2x(a, y)f (3)

m (y)dy =

∫ h3

0
φ3x(a, y)f (3)

m (y)dy, (4.22)∫ d1

0
φ1x(−a, y)f (1)

m (y)dy = 0, (4.23)∫ d1

0
φ2x(−a, y)f (2)

m (y)dy = 0, (4.24)∫ d2

0
φ2x(a, y)f (2)

m (y)dy = 0, (4.25)∫ d2

0
φ3x(a, y)f (3)

m (y)dy = 0, (4.26)

where m = 0, 1, 2, ..., N . On simplifying the relations (4.19)− (4.26), an over-determined

system of 8N + 8 equations in 4N + 4 unknowns is obtained as follows:

A ~X = ~b, (4.27)

where A is the coefficient matrix, ~b is the known vector and ~X = [R,An, B0, Bn, C0, Cn,

T,Dn]
′
, n = 1, 2, ..., N is the unknown vector to be determined.

The least square solution for the above system (4.27) gives rise the following normal system

which need to be solved:

A∗A ~X = A∗~b, (4.28)

where A∗ denotes the conjugate transpose of A. If A has linearly independent columns,

then the least square solution is unique and given by

~X = (A∗A)−1A∗~b. (4.29)
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Here, it may be noted that to utilize the least square approach described above successfully,

the occurrence of ill-conditioned matrices must be avoided. This can be avoided by

choosing appropriate values of parameters. Here, the system of equations (4.28) is solved

by Gauss elimination method with the help of MATLAB. The numerical values of the

unknowns ~X = [R,An, B0, Bn, C0, Cn, T,Dn]
′

are obtained, for which the error is given

by

E = || A ~X −~b ||, (4.30)

where ||.|| is the Euclidean norm.

Now, the horizontal force on the front and rear barriers can be calculated using the

following Bernoulli’s equation under the given assumptions

− ∂Φ

∂t
+ gy +

P

ρ
= constant (4.31)

where P is the pressure and ρ is the density of the fluid. Therefore the non-dimensional

horizontal forces per unit width at the front and rear barriers are respectively given by

|Ff |
ρgh2

1

=
ω

gh2
1

∣∣∣ ∫ d1

0
(φ2(−a, y)− φ1(−a, y))dy

∣∣∣ (4.32)

|Fr|
ρgh2

1

=
ω

gh2
1

∣∣∣ ∫ d2

0
(φ3(a, y)− φ2(a, y))dy

∣∣∣ (4.33)

The free surface elevations ηj in each of regions Rj can be calculated by

ηj = − iω
g
φj(x, 0), j = 1, 2, 3. (4.34)

4.3.1 Fully submerged barriers

x = −a (0, 0) x = a

e2

d2
y−axis

x−axis

d1

e1

Region 1

Region 2
Region 3

y = h1

y = h3

y = h2

Figure 4.2: Schematic of the barriers with depth of submergence.

In this case, the depth of submergence of the front and rear barriers are respectively e1
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and e2 and the modified matching conditions are

φ1(−a, y) = φ2(−a, y), y ∈ [0, e1] ∪ [e1 + d1, h2], (4.35)

φ1x(−a, y) = φ2x(−a, y), y ∈ [0, e1] ∪ [e1 + d1, h2], (4.36)

φ1x(−a, y) = φ2x(−a, y) = 0, y ∈ [e1, e1 + d1], (4.37)

φ2(a, y) = φ3(a, y), y ∈ [0, e2] ∪ [e2 + d2, h2], (4.38)

φ2x(a, y) = φ3x(a, y), y ∈ [0, e2] ∪ [e2 + d2, h2], (4.39)

φ2x(a, y) = φ3x(a, y) = 0, y ∈ [e2, e2 + d2]. (4.40)

Utilizing the relations (4.16) − (4.18) in the matching conditions (4.35) − (4.40) and the

wall conditions (4.12)− (4.13) and then using the orthogonality relation of eigenfunctions,

we obtain∫ e1

0
φ1(−a, y)f (2)

m (y)dy +

∫ h2

e1+d1

φ1(−a, y)f (2)
m (y)dy =

∫ e2

0
φ2(−a, y)f (2)

m (y)dy

+

∫ h2

e2+d2

φ2(−a, y)f (2)
m (y)dy, (4.41)

∫ h1

0
φ1x(−a, y)f (1)

m (y)dy =

∫ h2

0
φ2x(−a, y)f (1)

m (y)dy, (4.42)

∫ e2

0
φ2(a, y)f (2)

m (y)dy +

∫ h2

e2+d2

φ2(a, y)f (2)
m (y)dy =

∫ e2

0
φ3(a, y)f (2)

m (y)dy

+

∫ h2

e2+d2

φ3(a, y)f (2)
m (y)dy, (4.43)

∫ h2

0
φ2x(a, y)f (3)

m (y)dy =

∫ h3

0
φ3x(a, y)f (3)

m (y)dy, (4.44)∫ e1+d1

e1

φ1x(−a, y)f (1)
m (y)dy = 0, (4.45)∫ e1+d1

e1

φ2x(−a, y)f (2)
m (y)dy = 0, (4.46)∫ e2+d2

e2

φ2x(a, y)f (2)
m (y)dy = 0, (4.47)∫ e2+d2

e2

φ3x(a, y)f (3)
m (y)dy = 0. (4.48)

where m = 0, 1, 2, ..., N . In the similar pattern as employed in previous section, the system

of equations can be solved to obtain the unknown physical quantities.

4.3.2 Array of surface piercing vertical barriers over the shelf bottom

In this case, the surface piercing rigid thin vertical barriers (M-pairs) of equal length d

are placed at equidistant over the shelf bottom topography (see Fig. 4.3). The positions
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Figure 4.3: Schematic for the array of surface piercing barriers over shelf bottom
topography.

of these barriers are at x = bj , where bj = −a + (2(j − 1)a/(2M − 1)), j = 1, 2, ..., 2M

i.e. b1 = −a, b2M = a. Here, the whole fluid domain is divided into 2M + 1 regions as

R1 : −∞ < x ≤ b1, 0 ≤ y ≤ h1, Rj : bj−1 ≤ x ≤ bj , 0 ≤ y ≤ h2, j = 2, 3, ..., 2M,

R2M+1 : b2M ≤ x <∞, 0 ≤ y ≤ h3.

The complex valued potential φj(x, y) satisfies the Helmholtz equation:

∂2φj
∂x2

+
∂2φj
∂y2

− µ2φj = 0 in each fluid region Rj , j = 1, 2, ..., 2M + 1, (4.49)

along with the boundary conditions

∂φj
∂y

+Kφj = 0 on y = 0 in Rj , j = 1, 2, ..., 2M + 1, (4.50)

∂φ1

∂y
= 0 on y = h1, −∞ < x ≤ b1, (4.51)

∂φj
∂y

= 0 on y = h2, bj−1 ≤ x ≤ bj , j = 2, 3, ..., 2M, (4.52)

∂φ2M+1

∂y
= 0 on y = h3, b2M ≤ x <∞. (4.53)

The matching conditions due to continuity of pressure and velocity are

φj(bj , y) = φj+1(bj , y), d ≤ y ≤ h2, (4.54)

φjx(bj , y) = φ(j+1)x(bj , y), d ≤ y ≤ h2, (4.55)

φjx(bj , y) = φ(j+1)x(bj , y) = 0, 0 ≤ y ≤ d; j = 1, 2, ..., 2M, (4.56)

the vertical wall conditions of the shelf bottom are

φ1x(b1, y) = 0, h2 ≤ y ≤ h1, (4.57)

φ(2M+1)x(b2M , y) = 0, h2 ≤ y ≤ h3, (4.58)
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and the far field conditions are

φ1(x, y) ∼ [eik
(1)
0x (x−b1) +Re−ik

(1)
0x (x−b1)]

cosh k
(1)
0 (y − h1)

cosh k
(1)
0 h1

as x→ −∞, (4.59)

φ2M+1(x, y) ∼ [Teik
(3)
0x (x−b2M )]

cosh k
(3)
0 (y − h3)

cosh k
(3)
0 h3

as x→∞. (4.60)

The expressions for the velocity potentials φj (j = 1, 2, ..., 2M + 1) in each of the regions

can be expressed as

φ1(x, y) = [eik
(1)
0x (x−b1) +Re−ik

(1)
0x (x−b1)]f

(1)
0 (y) +

∞∑
n=1

Ane
k
(1)
nx (x−b1)f (1)

n (y);

−∞ < x ≤ b1, 0 ≤ y ≤ h1, (4.61)

φj(x, y) = [B
(j−1)
0 eik

(2)
0x (x−bj−1) + C

(j−1)
0 e−ik

(2)
0x (x−bj)]f

(2)
0 (y) +

∞∑
n=1

[B(j−1)
n e−k

(2)
nx (x−bj−1)

+C(j−1)
n ek

(2)
nx (x−bj)]f (2)

n (y); bj−1 ≤ x ≤ bj , 0 ≤ y ≤ h2, j = 2, 3, ..., 2M, (4.62)

φ2M+1(x, y) = [Teik
(3)
0x (x−b2M )]f

(3)
0 (y) +

∞∑
n=1

Dne
−k(3)nx (x−b2M )f (3)

n (y);

b2M ≤ x <∞, 0 ≤ y ≤ h3. (4.63)

where R,An, B
(j−1)
0 , B

(j−1)
n , C

(j−1)
0 , C

(j−1)
n , T,Dn, n = 1, 2, ... (2 ≤ j ≤ 2M) are the

unknowns to be determined. Now, following the same procedure as described in the

previous Section 3, and utilizing the matching and wall conditions along with orthogonality

of eigenfunctions, we obtained a system of 8M(N+1) algebraic equations with 4M(N+1)

unknowns which need to be solved to determine the unknown physical quantities. In

particular, for M = 1, the problem of array of vertical barriers reduces to the problem of

a pair of vertical barriers over the shelf bottom topography.

4.4 Energy Balance Relation

In this section, the energy balance relation is derived for the configuration of two

barrier over shelf bottom topography (see Fig. 4.1) to check the accuracy in numerically

calculated values.

Using Green’s integral theorem ∫
Γ

(
φ
∂φ∗

∂n
− φ∗∂φ

∂n

)
dΓ = 0 (4.64)

where φ∗ is the complex conjugate of φ and ∂
∂n is the outward normal derivative to the

boundary Γ where Γ is given as

Γ ≡ {−X ≤ x ≤ −a, y = 0} ∪ {x = −X, 0 ≤ y ≤ h1} ∪ {−X ≤ x ≤ −a, y = h1}
∪ {x = −a, h2 ≤ y ≤ h3} ∪ {−a ≤ x ≤ a, y = h2} ∪ {x = a, h2 ≤ y ≤ h3}
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∪ {a ≤ x ≤ X, y = h3} ∪ {x = X, 0 ≤ y ≤ h3} ∪ {a ≤ x ≤ X, y = 0}
∪ C2 ∪ {−a ≤ x ≤ a, y = 0} ∪ C1,

here, C2 = {x = a+, 0 ≤ y ≤ d2} ∪ {x = a−, 0 ≤ y ≤ d2} and C1 = {x = −a+, 0 ≤ y ≤
d1} ∪ {x = −a−, 0 ≤ y ≤ d1} are the curves enclosing the submerged part of the rear and

front barriers respectively.

The contribution to the integral (4.64) is zero due to the bottom condition and the front

and rear barriers conditions.

The contribution to the integral (4.64) due to the free surface is zero as∫ −X
X

[φ{−Kφ∗} − φ∗{−Kφ}] = 0. (4.65)

The contribution of the line x = −X, 0 ≤ y ≤ h1 is

∫ h1

0

(
φ1
∂φ∗1
∂x
− φ∗1

∂φ1

∂x

)
dy =

ik
(1)
0x (|R|2 − 1)

2k
(1)
0 cosh2(k

(1)
0 h1)

[2k
(1)
0 h1 + sinh(2k

(1)
0 h1)]. (4.66)

The contribution of the line x = X, 0 ≤ y ≤ h3 is

∫ 0

h3

(
φ3
∂φ∗3
∂x
− φ∗3

∂φ3

∂x

)
dy =

ik
(3)
0x |T |2

2k
(3)
0 cosh2(k

(3)
0 h3)

[2k
(3)
0 h3 + sinh(2k

(3)
0 h3)]. (4.67)

On adding, all of these contributions in Eq. (4.64), the energy balance relation is derived

as

|R|2 + γ |T |2 = 1, (4.68)

where γ =
k
(3)
0x k

(1)
0 (2k

(3)
0 h3+sinh(2k

(3)
0 h3)

k
(1)
0x k

(3)
0 (2k

(1)
0 h1+sinh(2k

(1)
0 h1)

cosh2 k
(1)
0 h1

cosh2 k
(3)
0 h3

.

4.5 Numerical Results and Discussion

The non-dimensionalisation of all the system parameters is done by using h1 as the length

scale. It may be noticed that, in the non-dimensional form, the depth ratio h3/h1 = 1

gives rise to a symmetric shelf bottom profile while the depth ratios h2/h1 = h3/h1 = 1

gives rise to a flat bottom profile. We denote d1 = d2 = d (d1/h1 = d2/h1 = d/h1 in

non-dimensional form) for the identical length of the barriers.

4.5.1 Convergence for N

In this section, the convergence study of N i.e. the number of evanescent modes is

examined for configuration of two barriers over shelf topography. In Table 4.1, the values

of |R| are tabulated against Kh1 for various values of N = 5, 25, 45, 75, 80, 85 for symmetric

shelf bottom topography. The table shows that the accuracy in the present results upto

four decimal places are obtained with N = 80 for all the values of Kh1. Hence, N = 80

is taken throughout the study. The identical length of the barriers is represented by

d(= d1 = d2) and k
(1)
0 is taken as k0 for simplicity.
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4.5.2 Validation

To validate the present results with the available results in literature |R| are plotted versus

Kh1 in Fig. 4.4. In Fig. 4.4, the obtained results are compared with the results obtained

by Das et. al. [27] for two thin vertical barriers over the flat bottom. This figure shows

that the present results are in good agreement with the known results as a particular case

in literature. The particular case of the present problem which is thin vertical barrier over

a step (by taking h2/h1 = h3/h1 and the front barrier only) is compared with the results

of Chapter-3 in Fig. 4.5. This shows an excellent agreement between the present results

and the results of Chapter-3. In Table 4.2, |R| and |T | are tabulated for different values

of k0h1. This table depicts that the present results satisfy the energy balance relation as

stated in Eq. (4.68). This also proves the correctness of the present results.
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Figure 4.4: Validation of present results
for d/h1 = 0.2, a/h1 = 0.3, θ = 0 over
flat bottom.
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Figure 4.5: Validation of present results for
d1/h1 = 0.5, d2/h1 = 0, θ = 0 over a step
h2/h1 = 0.8 and h3 = h2.

Table 4.1: |R| versus Kh1 for different values of N = 5, 25, 45, 75, 80, 85 (d1/h1 =
0.2, d2/h1 = 0.3, h2/h1 = 0.8, a/h1 = 0.5, θ = 0).

Kh1 |R|(N = 5) |R|(N = 25) |R|(N = 45) |R|(N = 75) |R|(N = 80) |R|(N = 85)

0.1 0.081730 0.074503 0.072928 0.072017 0.071919 0.071908
0.3 0.149369 0.135156 0.132137 0.130824 0.130788 0.130768
0.5 0.204106 0.183369 0.179066 0.176943 0.176872 0.176858
0.7 0.255945 0.228519 0.222937 0.218782 0.218705 0.218698
0.9 0.306924 0.272943 0.266094 0.262858 0.262799 0.262768
1.1 0.356064 0.316801 0.308791 0.304659 0.304486 0.304467
1.3 0.399229 0.358613 0.349744 0.346622 0.346586 0.346555
1.5 0.427206 0.395299 0.385152 0.377224 0.377198 0.377165
1.7 0.419549 0.422043 0.414011 0.408267 0.408087 0.407989
1.9 0.329387 0.434203 0.430019 0.428778 0.428599 0.428565
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Table 4.2: Verification of energy balance relation for a pair of thin vertical barriers over
symmetric shelf bottom topography (d1/h1 = 0.2, d2/h1 = 0.3, h2/h1 = 0.8, a/h1 =
0.2, θ = 0).

Kh1 |R| |T | |R|2 + γ|T |2
0.1 0.071919 0.994826 0.999999
0.3 0.130788 0.982893 0.999999
0.5 0.176872 0.968715 0.999999
0.7 0.218705 0.952168 1.000000
0.9 0.262799 0.930936 1.000000
1.1 0.304486 0.907288 1.000000
1.3 0.346586 0.879877 0.999999
1.5 0.377198 0.857721 1.000000
1.7 0.408267 0.833465 1.000000
1.9 0.428599 0.816302 1.000000

4.5.3 Effect of various parameters on the reflection and transmission

coefficients
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Figure 4.6: Comparison between single
and double barriers over symmetric shelf
bottom for h2/h1 = 0.6, a/h1 = 0.5, θ = 0.
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Figure 4.7: |R| & |T | for surface piercing
barriers over symmetric shelf bottom for
h2/h1 = 0.6, a/h1 = 0.5, θ = 0 .

Figs. 4.6 and 4.7 show the variation of reflection |R| & transmission |T | coefficients as

a function of non-dimensional wave number k0h1 for different lengths of the barriers.

In Fig. 4.6, a comparison is made between single and double barriers. It is noticed

that local maxima in |R| increases when there are two barriers instead of single barrier.

Therefore, local minima in |T | decreases for the same. This may happen due to the mutual

interaction between the incident and reflected waves between the barriers. Therefore, a

pair of thin vertical barriers are more effective to reflect more incident wave energy in

comparison to a single thin vertical barrier. It is also noticed from Figs. 4.6 and 4.7 that the

phenomena of zero reflection occurs for the identical lengths of the barriers i.e. d/h1 = 0.4

which may be due to the constructive/destructive interference of the incident and reflected
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Figure 4.8: Comparison between surface
piercing & submerged barriers over symm-
etric shelf bottom for d1/h1 = 0.2,d2/h1 =
0.3, h2/h1 = 0.6, a/h1 = 0.3, θ = 0.
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Figure 4.9: Submerged barriers over
symmetric shelf bottom for d/h1 = 0.3,
h2/h1 = 0.8, a/h1 = 0.5, θ = 0.

waves between the barriers. Hence, the identical lengths of the barriers should be avoided

in construction of breakwater to avoid zero reflection i.e. full transmission towards the

protection of seashore. Fig. 4.8 demonstrates the variation of |R| & |T | versus k0h1 for

two different positions, surface piercing i.e. e1/h1 = e2/h1 = 0 and bottom standing i.e.

e1/h1 = 0.4, e2/h1 = 0.3, of the barriers. It is observed that surface piercing barriers are

more effective to reflect incident wave energy as comparison to bottom standing barriers

which may be due to the fact that for larger values of wave number i.e. shorter waves

almost confined near the free surface and produce more reflection due to the surface

piercing barriers. Fig. 4.9 shows the effect of depth of submergence i.e. e1/h1, e2/h1 on

|R| & |T |. It is observed that reflection coefficient decreases as the depth of submergence

increases which may be due to the same fact as mentioned towards Fig. 4.8. In Fig.

4.10, the variation of |R| & |T | versus k0h1 for M = 1, 2 & 3, number of pairs of surface

piercing barriers over the shelf bottom is demonstrated. It is observed that as M = 1, 2, 3

(single, double and triple pair of barriers) increases the local maxima’s in |R| increases

while local minima’s in |T | decreases. Also, the figure demonstrates that zero reflection

can be avoided by increasing the number of pairs of barriers. In next part, we will discuss

the effect of various parameters on reflection and transmission coefficients.

(i) Effect of the depth ratios

The variation of |R| & |T | as a function of non-dimensional wave number k0h1 for

three different depth ratios h2/h1 over symmetric shelf bottom topography is shown

in Fig. 4.11. It is observed that local maxima in |R| increases and local minima

in |T | decreases as the depth ratio h2/h1 decreases. This may happen due to the

mutual interaction between the incident and reflected waves between the barriers.

It is also noticed that the effect of h2/h1 diminishes as the value of wavenumber

becomes larger which may be due to the fact that larger wave number waves i.e.

shorter waves almost confined near the free surface and get very less influenced due
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to the bottom topography. A significant phase shift in the oscillatory pattern of

|R| & |T | is also observed as the depth ratio h2/h1 decreases. This phase shift may

happen due to the mutual interaction of waves of different wavenumbers generated

over the shelf bottom topography. In Fig. 4.12, |R| & |T | are plotted against k0h1
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Figure 4.10: |R| and |T | versus k0h1 for
d/h1 = 0.4,h2/h1 = 0.6, a/h1 = 0.5, θ = 0
over symmetric shelf bottom.
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Figure 4.11: |R| and |T | versus k0h1 for
d/h1 = 0.4,a/h1 = 0.5, θ = 0 over
symmetric shelf bottom.

for different values of h3/h1. It is noticed that local maxima in |R| increases and

local minima in |T | decreases as h3/h1 decreases. This may happen due to the same

fact as mentioned towards Fig. 4.11. Also, it is noticed that the phenomena of zero

reflection occur only for symmetric shelf bottom topography i.e. for h3/h1 = 1.0.

Hence, symmetrical design of shelf bottom topography may be avoided to avoid zero

reflection i.e. full transmission. In Fig. 4.13, the influence of depth ratio h2/h1 on |R|
& |T | versus k0h1 is shown for asymmetric shelf bottom topography. It is observed

that local maxima in |R| increases as h2/h1 decreases while the local minima in |T |
decreases. Here, the phenomena of zero reflection is absent because of asymmetric

shelf bottom profile.

(ii) Effect of the length of the barriers

The effect of the length of the barriers on |R| & |T | against the wave number k0h1

is analysed in Fig. 4.14 and 4.15 respectively. It is observed that local maxima

in |R| increases as the length of the barriers d/h1 increases as shown in Fig. 4.14.

Consequently, local minima in the oscillatory pattern of |T | decreases for the same as

shown in Fig. 4.15. This may happen due to the same fact as mentioned in Fig. 4.11.

Moreover, a significant phase shift in the oscillatory pattern of |R| & |T | is observed

as d/h1 increases. This phase shift may happen due to the mutual interaction of

waves of different wave numbers generated between the barriers. Fig. 4.16 shows

the variation of |R| & |T | against the length of the barriers d/h1 for different

wave numbers k0h1 = 1.6218, 2.0653, 2.5318, 3.0144 over symmetric shelf bottom

topography. As the value of k0h1 becomes larger, |R| increases and |T | decreases.

This may happen due to the fact that larger wave numbers waves i.e. shorter waves
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Figure 4.12: |R| and |T | versus k0h1 for
d1/h1 = d2/h1 = 0.2, h2/h1 = 0.5, a/h1

= 1.0, θ = 0 for different h3/h1.
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Figure 4.13: |R| and |T | versus k0h1 for
d1/h1 = d2/h1 = 0.2, a/h1 = 0.5, θ = 0 for
different h2/h1 for asymmetric shelf
h3/h1 = 0.8.
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Figure 4.14: |R| versus k0h1 for h2/h1 =
0.7, h3/h1 = 0.8, a/h1 = 3.0, θ = 0 for
different d/h1.
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Figure 4.15: |T | versus k0h1 for h2/h1 = 0.7,
h3/h1 = 0.8, a/h1 = 3.0, θ = 0 for different
d/h1.

confined more towards the free surface and this makes barriers more effective towards

the reflection of incidence waves. Hence, less transmission is observed.

(iii) Effect of the gap between the barriers

The effect of the gap between the barriers on |R| & |T | is analysed in Figs. 4.17,

4.18 and 4.19. Figs. 4.17 and 4.18, respectively, show the variation of |R| & |T |
against k0h1 for different gaps between the barriers. In both the figures, the periodic

oscillatory pattern for |R| & |T | increases as a/h1 increases. This is due to the mutual

interaction between the incident and reflected waves between the barriers. Fig. 4.19

shows the variation of |R| & |T | against a/h1 for different lengths of the barriers.

This depicts that for certain values of gap length the maximum reflection occurs due

mutual interaction of incident and reflected waves between the barriers.

(iv) Effect of the angle of incidence
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Figure 4.16: |R| and |T | versus d/h1 for h2/h1 = 0.5, a/h1 = 0.5, θ = 0 for different wave
numbers over the symmetric shelf bottom.
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Figure 4.17: |R| versus k0h1 for h2/h1 =
0.5, h3/h1 = 0.8, d/h1 = 0.2, θ = 0 for diff-
erent gaps between the barriers.
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Figure 4.18: |T | versus k0h1 for h2/h1 =
0.5, h3/h1 = 0.8, d1/h1 = 0.2, θ = 0 for diff-
erent gaps between the barriers.
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Figure 4.19: |R| and |T | versus a/h1 for different lengths of the barriers over symmetric
shelf for h2/h1 = 0.8,Kh1 = 1.0, θ = 0.
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The effect of angle of incidence on |R| & |T | is shown through Fig. 4.20. It is

observed that as the angle of incidence increases, the local maxima in |R| decreases

while the local minima in |T | increases.
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Figure 4.20: |R| and |T | versus k0h1 for different angle of incidence for d1/h1 = 0.4, d2/h1 =
0.2, h2/h1 = 0.6, a/h1 = 0.5.

4.5.4 Free Surface Elevation Profiles

Fig. 4.21 shows the behaviour of free surface wave elevation ηj in each of region

j = 1, 2, 3 i.e. before the front barrier, between the barriers and after the rear

barrier for different lengths of the identical barriers. It is noticed that the wave

amplitude <(η1) before the front barrier increases while the wave amplitude after

the rear barrier <(η3) decreases as d/h1 increases. It is also noticed that wave

elevation after the rear barrier is less in comparison to wave elevation before the

front barrier which shows that less energy is transmitted to seashore. This fulfill the

aim of our present study.

4.5.5 Force on the Barriers

Here, the effect of various system parameters on the non-dimensional horizontal force

experienced by the front and rear barriers is observed in Figs. 4.22-4.24. The effect

of the length of the barriers d/h1 on the non-dimensional horizontal force on the

front barrier (|Ff |/ρgh2
1) and the rear barrier (|Fr|/ρgh2

1) against the wavenumber

k0h1 is demonstrated respectively in Figs. 4.22a and 4.22b. Here, it is observed

that the global maxima in both the force curves for front and rear barriers increases

as the length of the barriers d/h1 increases. This is possibly due to the mutual

interaction of incident and reflected waves between the barriers. It is also observed

that amplitude of the force on the rear barrier is less in comparison to the front

barrier. Further, the variation of the non-dimensional horizontal force experienced

by the front and rear barriers versus length of the identical barriers d/h1 is plotted



Chapter 4. Scattering of Water Waves by Two Thin Vertical Barriers Over Shelf
Bottom Topography 65

-50 -40 -30 -20 -10 -5 0 5 10 20 30 40 50
x/h

1

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

W
a

ve
 E

le
va

tio
n

 
(

j)
d/h

1
=0.3

d/h
1
=0.4

d/h
1
=0.5

Figure 4.21: Surface elevation for different d/h1 over symmetric shelf bottom for h2/h1 =
0.8, a/h1 = 5.0,Kh1 = 0.5, θ = 0.

0 0.5 1 1.5 2 2.5 3
k

0
h

1

0

0.1

0.2

0.3

0.4

0.45

|F
f
|/

g
h

12

d/h
1
=0.2

d/h
1
=0.4

d/h
1
=0.6

(a)

0 0.5 1 1.5 2 2.5 3
k

0
h

1

0

0.05

0.1

0.15

0.2

0.25

0.3

|F
r
|/

g
h

12 d/h
1
=0.2

d/h
1
=0.4

d/h
1
=0.6

(b)

Figure 4.22: Force versus k0h1 for different d/h1 for a/h1 = 0.5, θ = 0 over the flat bottom
where in Fig. (a) Force on front barrier and in Fig. (b) Force on rear barrier.

respectively in Figs. 4.23a and 4.23b for different k0h1. Both the figures depict

that the amplitude of horizontal force on the front and rear barriers increases as the

wave number becomes larger. This may happen due to the fact that waves with

larger wavenumbers i.e. shorter waves are confined near the free surface and create

more pressure on the barriers. Further, the forces experienced by the front and rear

barriers versus the gap between the barriers a/h1 are plotted respectively in Figs.

4.24a and 4.24b for different d/h1. These figures depict that for certain values of

gap length, maximum force on the front and rear barriers occurs.
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Figure 4.23: Force versus d/h1 for different wave numbers for h2/h1 = 0.5, a/h1 = 1.5, θ =
0 over symmetric shelf bottom where in Fig. (a) Force on front barrier and in Fig. (b)
Force on rear barrier.
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Figure 4.24: Force versus a/h1 for different d/h1 for h2/h1 = 0.8,Kh1 = 1.0, θ = 0 over
symmetric shelf bottom topography where in Fig. (a) Force on front barrier and in Fig.
(b) Force on rear barrier.

4.6 Conclusion

In this chapter, the problem of scattering of surface waves by two thin vertical barriers

over a shelf bottom topography is examined for its solution with the aid of eigenfunction

expansion method and least square method. The numerical values of the reflection and

transmission coefficients are plotted through different graphs to analyse the influence

of various system parameters. For identical barriers over the symmetric shelf bottom,

the zeros in the reflection curve are observed. The zeros in the reflection curve can be

avoided by using non-identical barriers or asymmetric shelf bottom topography. Hence,

less energy will be transmitted to seashore i.e. less impact on the seashore. It is also

noticed that more energy is reflected by a pair of barriers as compared to a single barrier.



Chapter 4. Scattering of Water Waves by Two Thin Vertical Barriers Over Shelf
Bottom Topography 67

Hence, less incident wave energy is transmitted to the lee side, yielding less impact on the

seashore. Increasing the length of the barriers produces more reflection and consequently

less transmission to the lee side. As the gap between the barriers increases, it causes

more number of oscillations on both the reflection and transmission coefficients curves.

The local maxima in reflection curve decreases as the angle of incidence increases. Also,

the reflection coefficient decreases as the depth of submergence of the barriers increases.

Furthermore, this problem is generalized for an array of surface piercing barriers (M -pair)

over shelf bottom topography. It is noticed that local maxima in reflection curve increases

as additional pairs of surface piercing barriers are considered between the barriers. It is also

observed that the wave amplitude after the barriers can be decreased with the increased

length of the barriers. The analysis of non-dimensional horizontal force per unit width of

the front and rear barriers is also observed. As the length of the barrier increases, the

global maxima on the force curves for both the front and rear barriers increases. Moreover,

it is noticed that the front barrier experience more force as compared to the rear barrier.
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Chapter 5

Scattering of water waves by two

vertical barriers over arbitrary

bottom topography

5.1 Introduction

In Chapter 4, the scattering of obliquely incident surface water waves by two vertical

barriers over a shelf type bottom topography was investigated for its solutions. In this

chapter, instead of shelf bottom profile, the arbitrary bottom profile is considered and

hence different methodology is applied here to solve the problem. A finite element model

is developed by formulating well-posed boundary value problem in a finite domain where

the finite domain is obtained after truncating the radiation boundary conditions at a finite

distance. The scattered potential is determined computationally and is further used to

obtain the numerical values of the reflection and transmission coefficients and the force

o the barriers. The energy balance relation is derived from Green’s integral theorem,

which ensures the correctness of the present numerical results. The obtained results

are compared with the results available in the literature Das [27] for validation purpose.

The physical quantities reflection and transmission coefficients, force on the barriers are

calculated for two particular forms namely, parabolic hump and rectangular hump bottom

profile. The study reveals, the number of zeros on the reflection and transmission curves

are investigated concerning the gap between the identical or non-identical barriers. The

effect of the gap between the barriers, height of the bottom topography, thickness of the

barriers, length of the barriers and angle of incidence on the reflection and transmission

coefficients, and the non-dimensional horizontal force on the front and rear barriers have

been investigated using this model. This study will be helpful to handle similar problems

arising in the area of applied mathematics and fluid mechanics.

5.2 Mathematical Formulation

The problem is analysed in a three-dimensional Cartesian coordinate system (x, y, z)

such that the undisturbed free surface of water coincides with xz-plane and the y-axis

is vertically downward. We consider oblique incidence of progressive wave train that

makes an angle α with the positive x-axis to a pair of surface piercing vertical barriers in
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the presence of the bottom topography which is arbitrary. Let d1 and d2 are drafts and

x = −l, l are positions of the front and rear barriers respectively, and b is the thickness

of the front as well as the rear barrier. It is assumed that the barriers and the bottom

topography are infinitely long in the z-direction and therefore the characteristic behaviour

remains the same along the z-direction. Suppose the fluid under our consideration is

Γ∞

ΓB

Γu

h

Γ∞

ΓF

Γ1

L

b b

l l

d2d1

x

y

Oblique wave train

Γ2

Figure 5.1: Schematic of the problem.

inviscid, incompressible, and the motion is irrotational and time harmonic with angular

frequency ω and also along the z-direction. Therefore, the velocity potential Φ(x, y, z, t) =

<[φ(x, y)ei(µz−ωt)], where < denotes the real part and µ is the component of the incident

wave number k0 along z-direction, µ = k0 sinα. Here, the spatial velocity potential φ(x, y)

is taken as the sum of the incident wave potential denoted by φinc(x, y) and the scattered

wave potential denoted by φsc(x, y) such that

φ(x, y) = φinc(x, y) + φsc(x, y) (5.1)

where φinc(x, y) = −Ag
ω

cosh(k0(y−h))
cosh(k0h) ei(k0 cosα)x, A is the amplitude of the incident wave,

g is acceleration due to gravity, h is the finite depth of water away from the arbitrary

undulated profile and k0 is the wave number of the incident wave, which is the positive

real root of the dispersion equation in k as

ω2h/g = kh tanh(kh). (5.2)

The scattered velocity potential φsc(x, y) satisfies the Helmholtz equation given by

∂2φsc
∂x2

+
∂2φsc
∂y2

− µ2φsc = 0, within the fluid domain Ω. (5.3)
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Apart from the governing differential equation, the scattered potential must satisfies the

following boundary conditions:

∂φsc
∂y

+
ω2

g
φsc = 0, on the free surface, (5.4)

∂φsc
∂y

= 0, on the flat bottom, (5.5)

∂φsc
∂n

= −∂φinc
∂n

, on the barriers and arbitrary bottom, (5.6)

where n represents the unit outward normal on the barriers and the arbitrary bottom.

Finally, we impose the following radiation boundary conditions on the scattered potential

at infinity to make the solution unique:

∂φsc
∂x
± (ik0 cosα)φsc = 0, on infinite boundaries i.e. x→ ∓∞. (5.7)

But, we impose the radiation boundary conditions (5.7) at a finite distance from the

barriers as the local disturbances decay sufficiently in a finite distance, say L, which is

proven in Section 5.5. Thus, we have a well-posed boundary value problem, which is

defined in a finite domain after truncating the infinite domain as shown in Fig. 5.1, where

ΓF , (Γ1,Γ2), ΓB, Γu, Γ∞ are respectively, the free surface, front and rear barriers boundary,

flat bottom boundary, undulated arbitrary bottom boundary, and radiation boundaries.

Let us rewrite the final formulation for the implementation of the finite element method

after dropping the subscript ‘sc’ from ‘φsc’ as follows:

∂2φ

∂x2
+
∂2φ

∂y2
− µ2φ = 0, in Ω (5.8)

∂φ

∂n
+
ω2

g
φ = 0, on ΓF (5.9)

∂φ

∂n
= 0, on ΓB (5.10)

∂φ

∂n
= −∂φinc

∂n
, on ΓS(= Γu ∪ Γ1 ∪ Γ2) (5.11)

∂φ

∂n
− (ik0 cosα)φ = 0, on Γ∞ (5.12)

Now, we aim to solve the boundary value problem (5.8)−(5.12) to determine the scattered

potential φ. The singularity (Ray et al. [110]) at the edges of the vertical barriers is not

taken.

5.3 Method of Solution

We employ the finite element method to solve this problem of having arbitrary bottom

topography between the surface piercing barriers.

For the present study, a two-dimensional finite element method (FEM) is employed to solve
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the boundary value problem for the scattered velocity potential. There are commonly two

ways, namely variational method and weighted residual method, to construct the integral

formulation for the governing differential equation. As the approximated potential is

substituted into the governing equation with the boundary conditions, residual occurs at

each node which is forced to be equal to zero by employing the weighted residual method.

The scattered velocity potential φ is approximated as a linear combination of the shape

functions N e
i (x, y) and the nodal values φei over each typical element, e as

φ̂e =

ne∑
i=1

φeiN
e
i (x, y) (5.13)

where φ̂e denotes the approximated scattered velocity potential and ne the number of

nodes over an element.

Now, on calculating the weighted residual of the governing differential equation (5.8) using

the weight function, w ≡ w(x, y), over each element and forcing it to zero, we obtain

0 =

∫
Ωe
−w
(
∂2φ̂e

∂x2
+
∂2φ̂e

∂y2
− µ2φ̂e

)
dΩe (5.14)

⇒ 0 =

∫
Ωe

(
∂w

∂x

∂φ̂e

∂x
+
∂w

∂y

∂φ̂e

∂y
+ µ2wφ̂e

)
dΩe −

∫
Γe
w
∂φ̂e

∂n
dΓe (5.15)

where Ωe and Γe represent the domain and boundary of a typical element in which

the corresponding integrations are taken, respectively. The second integral term

(corresponding to the boundaries) may be written as

∫
Γe
w
∂φ̂e

∂n
dΓe = −w

2

g

∫
ΓeF

wφ̂edΓeF + 0 +

∫
Γe∞

w(ik0cosα)φ̂edΓ∞e +Qe (5.16)

where

Qe =

∫
ΓeS

w

(
− ∂φinc

∂n

)
dΓeS . (5.17)

The weight functions w(x, y) are to be chosen as a set of linearly independent functions. In

Galerkin approach, w = Nj(j = 1, 2, 3, ..., ne) are taken as the choice of weight functions.

Now, substituting expressions (5.13) and (5.16) into equation (5.15), and on simplifying,

we get

ne∑
i=1

φei

[ ∫
Ωe

(∂N e
i

∂x

∂N e
j

∂x
+
∂N e

i

∂y

∂N e
j

∂y
+ µ2N e

i N
e
j

)
dΩe +

w2

g

∫
ΓeF

N e
i N

e
j dΓeF−

ik0 cosα

∫
Γe∞

N e
i N

e
j dΓe∞

]
=

∫
ΓeS

N e
j

(
− ∂φinc

∂n

)
dΓeS (5.18)

where j = 1, 2, 3, ..., ne,

⇒
ne∑
i=1

φei

[ ∫
Ωe

(∂N e
i

∂x

∂N e
j

∂x
+
∂N e

i

∂y

∂N e
j

∂y
+ µ2N e

i N
e
j

)
dΩe +

w2

g

∫
ΓeF

N e
i N

e
j dΓeF−
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− ik0cosα

∫
Γe∞

N e
i N

e
j dΓe∞

]
= −Qej . (5.19)

The computational domain of the problem is divided into finite elements by using two

types of isoparametric∗ elements. The quadratic bar and quadratic quadrilateral elements

corresponding to the boundaries and the inner domain, respectively. The local and global

coordinate systems for isoparametrisation are defined in Fig. 5.2 and the shape functions

of each node in any element in the local system are given below:

the shape functions for Quadratic Bar Element are

N e
1 =
−s(1− s)

2
, N e

2 = (1− s)(1 + s), N e
3 =

s(1 + s)

2
(5.20)

whereas, the shape functions for Quadratic Quadrilateral Element are

N e
1 = −1

4
(1− s)(1− t)(1 + s+ t), N e

2 =
1

2
(1− s2)(1− t),

N e
3 = −1

4
(1 + s)(1− t)(1− s+ t), N e

4 =
1

2
(1 + s)(1− t2),

N e
5 = −1

4
(1 + s)(1 + t)(1− s− t), N e

6 =
1

2
(1− s2)(1 + t),

Local SystemGlobal System

<Quadratic Bar Element >

<Quadratic Quadrilateral Element >

x s

x

y

t

s

Figure 5.2: Quadratic Bar and Quadrilateral Element

N e
7 = −1

4
(1− s)(1 + t)(1 + s− t), N e

8 =
1

2
(1− s2)(1− t). (5.21)

From equation (5.19), we derive the element stiffness matrix [keij ] and the load vector Qej

for the unknown nodal values φei for each element in the form as

[keij ]ne×ne{φei}ne×1 = {Qej}ne×1 (5.22)

∗The same element is used to approximate the geometry as well as the dependent unknown.
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where

keij =

∫
Ωe

(∂N e
i

∂x

∂N e
j

∂x
+
∂N e

i

∂y

∂N e
j

∂y
+µ2N e

i N
e
j

)
dΩe+

w2

g

∫
ΓeF

N e
i N

e
j dΓeF−ik0cosα

∫
Γe∞

N e
i N

e
j dΓe∞

and

Qej =

∫
ΓeS

N e
j

(
− ∂φinc

∂n

)
dΓeS (5.23)

which is further assembled to get a global stiffness matrix [Kij ] and global load vector

{Qj} over the elements and has to solve for unknown global nodal values. Once the

scattered potential is determined, the behaviour of the reflected and transmitted waves

can be investigated. The reflection and transmission coefficients of monochromatic surface

waves are calculated by using the following relations:

|R| = ω

Ag

cosh k0h

cosh k0(y0 − h)

∣∣φ(−L, y0)
∣∣ (5.24)

and

|T | = ω

Ag

cosh k0h

cosh k0(y0 − h)

∣∣∣∣∣Agω cosh k0(y0 − h)

cosh k0h
− e−i(k0 cosα)xφ(L, y0)

∣∣∣∣∣ (5.25)

where y0 ∈ [0, h] be any point. The horizontal force on the front and rear barriers are

derived from the Bernoulli’s equation for the unit amplitude of the incident waves. In

non-dimensional form, the horizontal force on the front barrier
|Ff |
ρghA and the rear barrier

|Fr|
ρghA per unit width, respectively given by the integrals:

|Ff |
ρghA

=
ω

gh

∣∣∣∣∣
∫ d1

0
(φ(−b− l, y)− φ(−l, y))dy

∣∣∣∣∣ (5.26)

and
|Fr|
ρghA

=
ω

gh

∣∣∣∣∣
∫ d2

0
(φ(b+ l, y)− φ(l, y))dy

∣∣∣∣∣ (5.27)

which are further solved numerically using Simpson’s 1/3 rule.

5.4 Energy Balance Relation

Using Green’s identity, ∫
Γ

(
φ
∂φ∗

∂n
− φ∗∂φ

∂n

)
dΓ = 0 (5.28)

where φ∗(x, y) is the complex conjugate of the velocity potential φ(x, y) and ∂
∂n is the

outward normal derivative to the boundary Γ which is boundary of the fluid region Ω.
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The contribution to the integral (5.28) due to the free surface ΓF is zero as∫
ΓF

[φ{−ω
2

g
φ∗} − φ∗{−ω

2

g
φ}]dx = 0 (5.29)

The contribution to the integral (5.28) due to the bottom Γu ∪ ΓB and the front and rear

barriers Γ1 ∪ Γ2 is also zero as ∂φ
∂n = ∂φ∗

∂n = 0 on the bottom and as well as on both the

barriers.

The contribution from the left radiation boundary is∫ h

0

(
φ
∂φ∗

∂x
− φ∗∂φ

∂x

)
dy =

A2g2

ω2

ik0cosα(|R|2 − 1)

2k0 cosh2 k0h
[2k0h+ sinh 2k0h] (5.30)

The contribution from the right radiation boundary is∫ 0

h

(
φ
∂φ∗

∂x
− φ∗∂φ

∂x

)
dy =

A2g2

ω2

ik0cosα|T |2
2k0 cosh2 k0h

[2k0h+ sinh 2k0h] (5.31)

On adding, all of these contributions in equation (5.28), we get the energy balance relation

as given by

|R|2 + |T |2 = 1. (5.32)

5.5 Numerical Results and Discussion

The arbitrary bottom profile is of two kinds, namely Type-I: Parabolic hump and Type-II:

Rectangular hump respectively.

Type-I: The parabolic hump profile is given by

x(s) = s, y(s) =
c0

l2
s2 + (−c0 + h), for − l ≤ s ≤ l. (5.33)

Type-II: The rectangular hump profile is given by

x(s) = −l, y(s) = s, for h− c0 ≤ s ≤ h,

x(s) = s, y(s) = h− c0, for − l < s < l, (5.34)

x(s) = l, y(s) = s, for h− c0 ≤ s ≤ h.

where c0 is the height of the hump of bottom topography. The depth of the regions on

both sides of the hump are equal. The non-dimensionalization of the physical parameters

is done using the finite depth h of the fluid domain as d1/h, d2/h, d/h(= d1/h = d2/h),

b/h, l/h, L/h, c0/h, k0h, ω2h/g. It may be noted that, in non-dimensional form, c0/h = 0

gives rise to flat bottom profile.
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5.5.1 Convergence

The given problem of scattering of surface water waves by two vertical barriers over

arbitrary bottom topography is formulated using FEM. The radiation boundaries are kept

at a finite distance as the local disturbances due to barriers and the undulated bottom

topography decay sufficiently within a finite distance. The analysis of the data in Table

5.1 depicts that a distance of four times the depth of the water is sufficient to keep the

radiation boundaries for sufficient accuracy in the results and the same was stated by

Bai [2]. The discretization of the computational domain has been done using two type

of elements namely, quadratic quadrilateral elements within domain and quadratic bar

elements at the boundaries. The mesh element size is progressively refined to the next

higher level and its effect on the convergence of finite element solution has been analysed in

Table 5.2. The total number of elements in the computational domain which is represented

by Ne are increased as 4666, 8531, 12651 and 18401 corresponding to 314, 474, 604 and 750

elements on the boundaries respectively. The elements shape is parsimoniously kept square

by keeping aspect ratio near to unity. The table shows that the accuracy in the present

results for some given parameters upto four decimal places is obtained with Ne = 12651

for all the values of k0h.

Table 5.1: Effect of the distance L/h of the radiation boundary conditions from the barriers
on the finite element solutions through |R| (c0/h = 0.2, d1/h = d2/h = 0.2, b/h = 0.1, α =
0) for Type-I profile

Table 5.1(a): l/h = 0.3
|R|

k0h L/h = 0.1 L/h = 1 L/h = 2 L/h = 3 L/h = 4 L/h = 5

0.5 0.276504 0.137907 0.137883 0.137851 0.136123 0.136064

1.0 0.462780 0.248362 0.251669 0.251940 0.249328 0.249295

1.5 0.473928 0.240563 0.256132 0.256492 0.251086 0.251027

2.0 0.650512 0.198451 0.155694 0.157147 0.178574 0.178646

2.5 1.144556 0.876928 0.859516 0.861297 0.870637 0.870648

Table 5.1(b): l/h = 1.5
|R|

k0h L/h = 0.1 L/h = 1 L/h = 2 L/h = 3 L/h = 4 L/h = 5

0.5 0.149939 0.074437 0.075582 0.076514 0.076521 0.076520

1.0 0.519346 0.234490 0.228199 0.230084 0.230107 0.230108

1.5 0.548457 0.141532 0.129115 0.123400 0.123482 0.123485

2.0 1.020788 0.760138 0.759746 0.758679 0.758634 0.758631

2.5 1.064250 0.747572 0.753650 0.738450 0.738187 0.738203

5.5.2 Validation

In order to validate the present method, the model developed here is first applied to

compute the reflection coefficient of scattering of normal incidence waves by two thin
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Table 5.2: Covergence of number of element Ne through |R| with respect to N (c0/h =
0.2, d1/h = d2/h = 0.2, b/h = 0.1, L/h = 4, α = 0) for Type-I profile

Table 5.2(a): l/h = 0.3
|R|

k0h Ne = 4666 Ne = 8531 Ne = 12651 Ne = 18401

0.5 0.135083 0.136123 0.138081 0.138129

1.0 0.247737 0.249328 0.253401 0.253447

1.5 0.247922 0.251086 0.259496 0.259515

2.0 0.190514 0.178574 0.144996 0.145025

2.5 1.064250 0.870637 0.855389 0.855417

Table 5.2(b): l/h = 1.5
|R|

k0h Ne = 4666 Ne = 8531 Ne = 12651 Ne = 18401

0.5 0.075310 0.075883 0.076781 0.076852

1.0 0.227398 0.228449 0.231057 0.231172

1.5 0.132235 0.128878 0.120396 0.120338

2.0 0.761662 0.760697 0.757534 0.757497

2.5 0.764996 0.755722 0.727747 0.727684

vertical barriers over the uniform bottom. This particular model is similar to Fig. 5.1 in the

absence of undulation at the bottom. In the two thin barriers, the drafts d1/h = d2/h = 0.2

and positions l/h = 0.3 are considered for this particular case. The reflection coefficient

calculated from the present model is compared with those predicted by Das et al. [27] as

shown in Fig. 5.3. A good agreement is observed and this validates the present model.

Another comparison is made with Tran et al. [132] who considered two thin identical

barriers over sinusoidal bottom topography. This particular case can be obtained from

the present model by considering the drafts of the barriers as d1/h = d2/h = 0.2 and

the arbitrary bottom profile as sinusoidal profile. The comparison is shown in Fig. 5.4,

where an excellent agreement between the reflection coefficients is observed. Moreover,

the energy identity relation |R|2 + |T |2 = 1 agrees and provides a numerical check for the

results obtained through numerical computations as shown in Fig. 5.5. For Figs. 5.3 and

5.5, the distance between thin vertical identical barriers is 0.6h. In the next section, the

effects of the undulated profile, thickness and length of the vertical barriers are examined

and an analysis for the number of zeros on |R| & |T | versus gap between the barriers is

performed.

5.5.3 Influence of various parameters on the reflection and transmission

coefficients

The scattering of surface waves by two surface-piercing thin vertical barriers having the

depth of submergence d1 and d2 over Type-I bottom profile for normal incidence waves

for different values of l/h, |R| is plotted versus k0h in Figs. 5.6 and 5.8 and |T | is plotted
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Figure 5.5: Conservation of wave energy for scattering by two thin identical barriers
d/h = 0.2, c0/h = 0.1 over Type-I hump.

versus k0h in Figs. 5.7 and 5.9. For the case of two identical barriers i.e. d/h = 0.2,

the zeros on the curve |R| vs k0h exist, and the number of zeros increases as the gap

between the barriers increases as shown in Fig. 5.6. Corresponding to the zeros on the

reflection curve, there exist zeros on the transmission curve |T | vs k0h as shown in Fig.

5.7. This may happen due to the constructive and/or destructive interference between

incident and reflected waves between the barriers. These zeros of the reflection curve

should be avoided for the protection of coastal structures. It is also observed that as

the gap between the barriers increases the lower frequency zeros of |T | curve coalesce in

pairs as shown in Fig. 5.7. When the depths of submergence of the barriers are different

i.e. d1/h = 0.18, d2/h = 0.2, Figs. 5.8 and 5.9 both show the non existence of the

zeros on the reflection and transmission curves respectively. However, the minima’s and

maxima’s still appear on both the curves and the number of maxima’s and minima’s

increases as the gap between the barriers increases. This is due to the mutual interaction

between the incident and reflected waves. As the reflection and transmission coefficients
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Figure 5.6: |R| versus k0h for d1/h = d2/h
= 0.2, c0/h = 0.1, α = 0 for different posi-
tions of the barriers.
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Figure 5.7: |T | versus k0h for d1/h = d2/h
= 0.2, c0/h = 0.1, α = 0 for different posi-
tions of the barriers.
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Figure 5.8: |R| versus k0h for d1/h = 0.18,
d2/h = 0.2, c0/h = 0.1, α = 0 for different
positions of the barriers.
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Figure 5.9: |T | versus k0h for d1/h = 0.18,
d2/h = 0.2, c0/h = 0.1, α = 0 for different
positions of the barriers.

satisfy the energy conservation identity, therefore transmission coefficient curves are not

presented in the following results now onwards. Figs. 5.10 and 5.11 show the effect of

bottom topography on |R|. In Fig. 5.10, the variation of |R| as a function of k0h by two

thin vertical barriers for different heights c0/h of the parabolic hump at the bottom is

shown. The value of |R| increases as c0/h increases for the wavenumbers 0 < k0h < 2.

While the effect on the reflection coefficient is negligible for the incident waves with larger

wavenumbers k0h > 2.2. The possible reason may be that the larger wavenumbers incident

waves are confined near the free surface. In Fig. 5.11, |R| is plotted versus k0h for different

heights of the rectangular hump at the bottom. It is again observed that |R| increases as

c0/h increases for smaller wave numbers while |R| is negligibly affected due to the waves

with larger wavenumbers. In Fig. 5.12, |R| is presented versus k0h for three different

thicknesses b/h of the barriers. It is clearly noticed that |R| increases as b/h increases.
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Figure 5.10: |R| versus k0h for thin barriers
d1/h = d2/h = 0.2, l/h = 0.3, α = 0 for diff-
erent heights of Type-I hump.
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Figure 5.11: |R| versus k0h for thin barriers
d1/h = 0.1, d2/h = 0.2, l/h = 0.5, α = 0 for
different heights of Type-II hump.
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Figure 5.12: |R| versus k0h for d1/h =
d2/h = 0.3, c0/h = 0.3, l/h = 0.3, α = 0 for
different thickness of the barriers (Type-I).
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Figure 5.13: |R| versus k0h for b/h = 0.1,
c0/h = 0.2, l/h = 1.5, α = 0 for different
drafts of the barriers (Type-I).

This may happen due to the mutual interaction of incident and reflected waves between

the barriers. Also, a phase shift is noticed in |R| that may happen due to the mutual

interaction of waves of different wavenumbers generated over the parabolic hump bottom

topography. In Fig. 5.13, |R| is presented versus k0h for three different drafts of the

identical barriers. The local maxima in |R| increase as the drafts d/h of the barriers

increases. This may happen due to the mutual interaction of incident and reflected waves

between the barriers. Also, significant phase shifts in the oscillatory pattern of |R| are

observed as the length of barriers increases. This phase shift may happen due to the same

as mentioned towards Fig. 5.12.

The effect of angle of incidence α on |R| against k0h is shown in Figs. 5.14 and 5.15 for

barriers over the parabolic and rectangular hump bottom topography respectively. As

α = 0, π/6, π/4 increases, the first local maxima in |R| decreases. After that local maxima
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in |R| increase as α increases. This may happen due to the fact that the constructive

and/or destructive interference between incident and reflected waves occurs between the

barriers. The local maxima’s in |R| shift toward the right as α increases. This phase shift

in |R| may occur due to the same fact as mentioned towards Fig. 5.12. In Fig. 5.15, the

local maxima’s in |R| decreases as α = π/18, π/6, π/4 increases. It is also noticed that the

phenomena of zero reflection do not appear due to the use of non-identical barriers.
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Figure 5.14: |R| versus k0h for d1/h =
d2/h = 0.2, b/h = 0.1, c0/h = 0.5,l/h = 1.5
for different angle of incidence (Type-I).

0 1 2 3 4
k

0
h

0

0.2

0.4

0.6

0.8

1

|R
|

= /18

= /6

= /4

Figure 5.15: |R| versus k0h for d1/h = 0.1,
d2/h = 0.2, b/h = 0.1, c0/h = 0.3, l/h = 0.5
for different angle of incidence (Type-II).

5.5.4 Force on the barriers

Figs. 5.16a and 5.16b show the variation of non-dimensional horizontal force on the front

and rear barriers versus ω2h/g for d1/h = 0.1, d2/h = 0.2, b/h = 0, α = π/6, l/h = 0.25

for the flat bottom c0/h = 0 and parabolic bottom c0/h = 0.3. The peak in both of these

plots refers to the resonant motion due to the mutual interaction between the incident and

reflected waves between the vertical barriers. A good agreement of these force profiles with

Wang et al. [141], when the parameter are the same as that of, again proves the correctness

of the present method. Figs. 5.17a and 5.17b show the variation of the non-dimensional

horizontal force on the barriers versus the length of the barriers d/h for the front and rear

barriers respectively over the rectangular hump bottom topography for three different

wavenumbers k0h = 0.7717, 1.1996, 2.0563. It is observed that the peak for both the

force curves the front and rear barriers go high as the value of the wavenumber becomes

larger. This may be due to the fact that incident wave energy with higher wavenumbers

is confined near the free surface. It is also noticed that the force on the front barrier

is more in comparison to the force on the rear barrier. Figs. 5.18a and 5.18b show the

variation of the non-dimensional horizontal force against k0h for three different values of

the heights of the parabolic hump on the front and rear barriers, respectively. The value

of the horizontal force does not change significantly for the wavenumbers 0 < k0h < 1.2

and 0 < k0h < 1.7, respectively, on the front and rear barriers but as the value of the
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Figure 5.16: Non-dimensional horizontal force versus ω2h/g where in Fig. (a) Force on
front barrier, and in Fig. (b) Force on rear barrier.
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Figure 5.17: Non-dimensional horizontal force on the barriers versus d/h for c0/h =
0.5, b/h = 0, l/h = 0.75 for three different wave numbers over Type-II hump where in
Fig. (a) Force on front barrier, and in Fig. (b) Force on rear barrier.

wavenumbers gets relatively larger, both the force profiles get fluctuates. The force on the

front barrier is more in comparison to the rear barrier. Both of the figures show that local

maxima’s on these decrease as the height of the parabolic hump increases.

5.6 Conclusion

In this chapter, a finite element method is employed to examine the scattering of obliquely

incident surface waves by two vertical barriers over an arbitrary bottom topography. The

results are obtained for two particular cases of the arbitrary bottom topography: parabolic

hump and rectangular hump. The radiation boundary conditions are kept at a finite

distance from the vertical barriers as the local disturbances decay sufficiently within a

distance of four times the depth of the water. It is observed that the zeros on the reflection
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Figure 5.18: Non-dimensional horizontal force on the barriers versus k0h for d1/h = d2/h =
0.2, b/h = 0.1, α = 0, l/h = 1.5 for different heights of Type-I hump where in Fig. (a)
Force on front barrier, and in Fig. (b) Force on rear barrier.

and transmission curves exist for the identical barriers and the number of zeros increases

as the gap between them increases. Also, the lower frequency zeros of the transmission

curve coalesce in pairs as the gap between the barriers increases. The study reveals that

the reflection coefficient increases due to the height of bottom topography for smaller

wave numbers while it has negligible effect for larger wavenumbers. This means, for larger

wavenumbers, the water depth throughout the region can be seen as deep enough. It

is noticed that the reflection coefficient increases with the drafts and thickness of the

barriers. Also, the influence of the angle of incidence on the reflection coefficient has been

demonstrated. In addition to this, the effect of the height of the hump and the drafts of the

barriers on the non-dimensional horizontal force on the front and rear barriers is observed

through different plots. Also, it should be noticed that the front barrier experiences more

force in comparison to the rear barrier. This study will be helpful to solve similar problems

arising in the area of applied mathematics and physics.
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Chapter 6

Summary and Future Work

A brief summary of the mathematical techniques and the major results derived in this

thesis are highlighted in the first section of this chapter. The scope of the future work is

highlighted in the subsequent section.

6.1 Summary of the present work

The research work considered in this thesis are presented in various chapters and the

results are highlighted in the section namely, conclusion in each chapter. Here, a brief

summary of work done in the entire thesis is highlighted.

In Chapter 2, a study on the scattering of surface water waves by a finite dock in finite

depth of water is examined under the assumptions of the linearized water wave theory

for normal incident of waves. In addition to finite dock, 2-step bottom topography is

considered to analyze the effect of abrupt change in bottom topography on the wave

propagation from lower depth region as well as from higher depth region. It is observed

that the reflection coefficient is decreasing slightly and transmission coefficient is increasing

with increasing the depth ratios for wave propagation from lower depth region. On the

other hand, for wave propagation from higher depth region, the reflection coefficient is

increasing as the values of the depth ratios are increasing while the transmission coefficient

is decreasing. The reflection coefficient is also increasing by increasing the wavenumber,

dock length and width of the step whereas the transmission coefficient is decreasing for

the same. Furthermore, this problem is generalized for multi-steps and it is found that the

transmission coefficient is increasing but the reflection coefficient is slightly decreasing by

increasing the number of steps. The energy balance relation is also derived and verified. It

is observed that the numerical results obtained for reflection and transmission coefficients

satisfy the energy balance relation almost accurately. The present results are also validated

through the results available in the literature. Thus, the horizontal breakwater can be

designed for the protection of seashore.

Chapter 3 deals with the scattering of oblique incident surface gravity waves by a

thin vertical rigid barrier over a stepped bottom topography with the aid of matched

eigenfunction expansion method using algebraic least squares method. The performance

of the barrier over stepped bottom is studied through various graphs of the reflection and

transmission coefficients and non-dimensional horizontal force. The reflection coefficient

increases as the length of the barrier and the step height increase while it decreases as

the angle of incidence increases. It is observed that the maximum reflection occurs for
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normal incidence of the incident waves. The analysis of non-dimensional horizontal force

per unit width of the barrier is also examined. As the length of the barrier over the step

increases, the absolute maximum of force curves goes on increasing. The non-dimensional

horizontal force on the barrier decreases as the reflection coefficient due to the presence of

the barrier decreases. Also, it is noticed that the force on the barrier is less for obliquely

incidence waves in comparison of normal incidence waves. Therefore, the barrier over

stepped bottom may be utilize to effectively reflect the incident waves and causes a calm

zone along lee side, yielding less impact on seashore.

In Chapter 4, the problem of scattering of water waves by two thin vertical barriers

over a shelf-type bottom topography is examined for its solution using the eigenfunction

expansion method and the least square approach. The numerical values of the reflection

and transmission coefficients are plotted through different graphs to demonstrate the

influence of various system parameters. For identical length of the barriers over symmetric

shelf bottom, the zeros in the reflection curve occur. These zeros in the reflection curve

may be avoided by using non-identical length of the barriers or asymmetric shelf bottom

topography. It is also observed that more energy is reflected by a pair of barriers in

comparison to single barrier. On increasing the length of the barriers, more reflection and

consequently less transmission occurs to the lee side. As the gap between the barriers

increases, it causes more number of oscillations on both the reflection and transmission

coefficients curves. The local maxima in reflection curve decreases as the angle of incidence

increases. Also, the reflection coefficient decreases as the depth of submergence of the

barriers increases. Furthermore, the problem is generalized for an array of surface piercing

barriers over shelf bottom topography. It is noticed that local maxima in reflection

curve increases as additional pairs of surface piercing barriers are considered between the

barriers. It is also observed that the wave amplitude after the barriers can be decreased

with the increased length of the barriers. The analysis of non-dimensional horizontal force

per unit width of the front and rear barriers is also observed. It is shown that the front

barrier experience more force as compared to the rear barrier.

In Chapter 5 deals with the scattering of obliquely incident surface waves by two vertical

barriers over an arbitrary bottom topography. The finite element method is employed to

obtain the numerical results. The radiation boundary conditions are kept at a finite

distance from the vertical barriers as the local disturbances decay sufficiently within

a distance. The numerical results are analyzed through different plots and tables for

parabolic and rectangular type hump bottom profiles. It is observed that the zeros on the

reflection and transmission curves exist for identical length of the barriers and these zeros

increases as the gap between the barriers increases. Also, the lower frequency zeros of the

transmission curve coalesce in pairs as the gap between the barriers increases. The study

reveals that the reflection coefficient increases due to the height of bottom topography

for smaller wave numbers while it has a negligible effect for larger wavenumbers. This

means for larger wavenumbers the water depth throughout the region can be seen as deep

enough. It is noticed that the reflection coefficient increases with the drafts and thickness
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of the barriers. Also, the influence of the angle of incidence on the reflection coefficient

has been observed. In addition to this, the effect of the hump height and the drafts of the

barriers on the non-dimensional horizontal force on the front and rear barriers is studied.

The energy balance relation is derived using Green’s integral theorem, which ensures the

correctness of the present numerical results. The obtained results are compared with the

results available in the literature for validation purpose.

6.2 Scope of future work

The possible extension related to scope of future research work of some of the problems

are given below. Hence, the scope of future research work can be taken up as follows:

1. The problem involving scattering of water waves by thin inclined barriers in the

presence of undulating bottom topography using hypersingular integral equation

approach can be considered.

2. The problem of diffraction of water waves by thin/thick inclined barriers

incorporating time dependence using boundary element method can be examined.

3. The problem of scattering of water waves by thin inclined barriers in the presence of

undulating bottom in two layer fluids using hypersingular integral equation approach

can be investigated.

4. The non-linear theory for scattering of water waves by vertical barrier(s) over

arbitrary bottom topography using finite element method can be developed.

5. Similar problems arising in other areas of engineering applications can be investigated

using the mathematical procedure developed here.
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