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Abstract

Light possesses various spatial and temporal degrees of freedom, such as amplitude,

phase, polarization, time, and frequency. Controlling these aspects for generating light

with complex field distributions possessing exotic propagation properties, has renewed its

interest in numerous applications both in fundamental science as well in applied fields.

Due to this there has been growing interest in synthesizing such complex light field dis-

tributions, also called as structured light. Typically, the output from a laser consists of a

Gaussian distribution, which exhibits physical limitations for various applications. How-

ever, with continuous advancements, it has become possible to control the distribution

of light in di↵erent degrees of freedom. In this thesis, our aim has been to develop sim-

ple, cost-e↵ective, and e�cient outer-cavity and intra-cavity methods for generation and

characterization of novel spatially structured light with customised intensity and phase

distributions as well as possessing exotic propagation properties. In addition to these, our

emphasis has also been to improve the quality, resolution, resilience against perturbations,

and spectral range of spatially controlled structured light.

Chapter 1 is an introduction to the thesis, where we begin with the role of structured

light in the modern world by mentioning its applications in fundamental and applied fields

where conventional Gaussian beams pose physical limitations. We have discussed various

types of spatially structured light along with their propagation properties, obtained by

tailoring light in its various spatial degrees of freedom. Further, we have discussed the

generation of spatially structured light based on various outer-cavity and intra-cavity

methods. We have also described the analytical and numerical methods for modeling

the laser cavities as well as the propagation and quantification of spatially structured

light. We have also provided a brief overview of spatial light modulators including the

mechanism for modulating light in the amplitude and phase degrees of freedom.

Chapter 2 emphasizes the tailoring of amplitude degree of freedom of light to gener-

ate uniform-intensity distribution with customized spatial shapes, such as square, annular,

hollow-square, rectangular, and plus-sign, based on an outer-cavity method. Such struc-

tured light beams are non-trivial, as these are not the regular modes of conventional

laser systems. We have generated such beams from di↵ractive optical elements (DOEs)

whose phase distributions are obtained from an iterative algorithm that involves Fresnel

propagation and spatial Fourier filtering. Particularly, an input Gaussian beam from a

laser illuminates the DOE, and after propagating a certain distance (working distance)

transforms into a desired structured light output. In our method, the spatial Fourier

filtering enables to obtain a relatively simple design of DOE (smooth phase distribution),
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and produces a high-quality uniform-intensity output beam. The simple smooth phase

distribution o↵ers the possibility of easy manufacturing of DOEs. We have simulated dif-

ferent DOEs, and demonstrated the generation of uniform-intensity beams with di↵erent

spatial shapes. We have characterized the quality of shaped output beams by the root

mean square error, and show that the shaped output beams are generated with high-

quality. Further, we have performed a detailed robustness analysis of our method, where

the quality of shaped output beam is investigated against the various imperfections in

an input beam, such as misalignment with respect to DOE, e↵ect of asymmetry, speckle

noise, presence of higher-order transverse modes, and mismatch of beam sizes. We have

found that for imperfections < 10%, the quality of shaped output beams remains reason-

ably good. We have also shown that the quality of shaped output beams can be further

improved by additional external spatial Fourier filtering. We have also demonstrated the

generation of shaped output beam over a broad spectral range using a single DOE.

In Chapter 3, we present the tailoring of amplitude and phase degrees of freedom

of light based on an outer-cavity method for generating aberration laser beams (ALBs)

containing multiple bright lobes in a transverse plane and possessing unique propagation

properties, such as controlled autofocusing and self-healing in both free space as well as in

turbulent media. The ALBs are generated using a DOE whose phase distribution consists

of radial (rq) and periodic angular dependence (sin(m�)). Owing to the radial phase term,

the ALBs possess autofocusing properties, and the periodic angular dependence generates

di↵raction pattern with m
th�order symmetry. We have given a detailed mathematical

formulation for describing the propagation of ALBs in turbulent media by solving Huygen-

Fresnel integral using stationary phase method. Further, the numerical and experimental

investigations for the generation and propagation of ALBs are also carried out. We have

observed that the turbulence deteriorates the spatial structure of ALBs and causes the

beam wandering. The e↵ect of turbulence on the propagation of ALBs is quantified by

calculating an overlap integral with respect to ALB in free space. The ALBs possess good

autofocusing properties both in free space as well as in turbulent media, where on-axis

peak intensity becomes maximum with tight focusing. The autofocusing properties of

ALBs remain invariant irrespective of turbulence strength. The autofocusing distance,

both in free space and turbulent media, can be controlled from any small to large values

by controlling the ALB parameters. Further, we have also investigated the spectral de-

pendence of autofocusing of ALBs in turbulent medium, and found that the autofocusing

distance does not depend on the turbulence, however, it decreases with an increase in

wavelength.

Furthermore, we have performed a detailed investigation of self-healing of ALBs both
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in free space as well as in turbulent media. We have found that, both in free space

and turbulent media, the truncated ALB self-heals by redistributing the intensity within

the beam, and it can self-heal reasonably well even for a large amount of truncation

⇠ 60%. The maximum self-healing always occurs at autofocusing distance, which remains

invariant irrespective of amount of truncation and strength of turbulence.

In Chapter 4, we have presented the generation of asymmetric aberration laser beams

(aALBs) with controlled intensity distribution based on an outer-cavity method employing

a DOE with phase asymmetry. The asymmetry in the phase distribution is introduced

by shifting the coordinates in a complex plane, which provides additional control over the

spatial intensity distribution of the beam. We have derived the mathematical formulations

for general aALBs as well as the special cases of it. We have explored the mechanism

of asymmetric control of intensity in aALBs, and found that the asymmetry parameters

control the position of indeterminate phase point of the trigonometric phase term in

aALBs, which creates a controlled asymmetric intensity distribution in the near-field

plane, and upon propagation further provides a controlled transfer of intensity within

the aALBs. In ALBs the intensity is symmetrically distributed in all lobes, and we have

shown that by introducing asymmetry most of the intensity can be transferred to any

one of the single lobe, and generates a high-energy density. In general, for aALB with

number of lobes m, the spatial location of high-energy density lobe can be controlled with

a precise variation in the asymmetry parameter (�), and we have determined empirical

relations between � and m. We show that, for specific values of �, the intensity in

high-energy density lobe can be increased by several times as compared to other lobes.

Further, we have investigated the propagation of aALBs, and have found that similar to

ALBs, the aALBs also possess good autofocusing properties, which are not a↵ected by the

asymmetry. The autofocusing distance of aALBs can be varied from small to large values

by changing the parameters of aALB. The aALBs provide a more general framework for

controlling intensity distribution, as for the specific values of asymmetry parameters the

aALB behaves as an ALB.

In Chapter 5, we present the generation of high-energy densities by suppression of

higher-order sidelobes in the far-field of phase-locked lasers in di↵erent array geometries.

We have generated an array of lasers in various one-dimensional (1D) and two-dimensional

(2D) array geometries in a degenerate cavity and phase-locked them in the in-phase [out-

of-phase] configuration using far-field coupling with Gaussian apodizer [binary circular

aperture]. Owing to non-uniform amplitude the geometry of laser array, the far-field of

phase-locked lasers consists of higher-order sidelobes. These sidelobes contain a significant

amount of energy, which limits the use of an output beam for high-power applications.
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Our method relies on modifying the combined field (near-field and far-field) distribution

of phase-locked lasers to obtain uniform amplitude and uniform phase distributions in

the near-field plane, which enables the generation of high-energy density lobe (zeroth-

order) in the far-filed intensity distribution. The method is applied to various 1D and

2D array geometries, such as square, triangular, Kagome, random, and 1D ring. We have

shown that for the long-range in-phase locked laser arrays, the di↵raction e�ciency of

zeroth-order lobe can be improved by several factors (⇠ 3�4). The improved di↵raction

e�ciencies are found to be in a range of 90%�95% (for 2D arrays) and ⇠ 75% (for 1D ring

array). Further, the e↵ects of range of phase locking, system size, as well as topological

defects are examined on the di↵raction e�ciency of zeroth-order lobe in the far-field of

phase-locked laser arrays.

We have also investigated our method for the out-of-phase locked lasers in a square

array, where the zeroth-order has no intensity. With our method, we have obtained a

high-energy-density zeroth-order lobe with a di↵raction e�ciency of 81%. Our results

on producing high-energy density beams with suppressed higher-order sidelobes can be

exploited for various applications in di↵erent areas.

In Chapter 6, we present a novel and e�cient intra-cavity method for the generation

of high-power discrete optical vortices with precisely controlled topological charges (l) by

phase locking one-dimensional (1D) ring array of lasers in a degenerate cavity that involves

spatial Fourier filtering. Owing to the special geometry of a degenerate cavity, it enables

an e�cient formation of a 1D ring array of lasers, where each laser consists of a nearly

fundamental Gaussian distribution, and independent from each other. Initially, the lasers

consist of random phase distribution, and are equally probable. To force 1D ring array

of lasers in desired phase-locked steady state of optical vortex configuration, we employ a

spatial Fourier filter (amplitude mask) at the Fourier plane inside the degenerate cavity,

whose transmission function is engineered by the Fourier transform of a desired discrete

optical vortex. The spatial Fourier filtering mechanism helps to eliminate the undesired

phase distributions by introducing additional losses to them, thereby, enables the lasers to

find a correct phase distribution in the form of a desired discrete optical vortex. With the

specifically engineered spatial Fourier filters, we have demonstrated generation of discrete

optical vortices with di↵erent system sizes and precisely controlled topological charges.

Further, we have performed a detailed investigation of propagation, such as diver-

gence and self-healing, of discrete optical vortices, and compared them with the conven-

tional continuous optical vortices (Laguerre-Gaussian/Bessel-Gauss beams). Unlike con-

ventional continuous optical vortices, we have found that for a given system size (number

of lasers) and fixed distance between the neighbouring lasers, the size of a discrete optical
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vortex and its divergence does not depend on l. Further, we have performed a detailed

investigation of self-healing by partially truncating a discrete optical vortex in the waist

plane (z = 0) and propagated plane (z > 0). The results show that partially truncated

discrete optical vortices can self-heal quite well. The self-healing distance is found to be

dependent on the amount of truncation, particularly, it increases with an increase in the

amount of truncation. We have found a good agreement between the experimental and

numerical results.

In Chapter 7, we present a novel and e�cient method for accurate determination of

magnitude and sign of topological charge of an unknown discrete optical vortex, which is

formed by an array of lasers in a 1D ring geometry. It relies on measuring the interference

pattern of a discrete optical vortex, which is obtained by interfering a single selected

laser with itself and with all the other lasers in a 1D ring array, using a Mach-Zhender

interferometer. The interference pattern is quantified by analyzing the fringe visibility at

each laser in a 1D ring array. The discrete laser arrays with l = 0 and l 6= 0 have di↵erent

phase distributions, thus producing interference patterns with shifted interference fringes.

The averaging of these phase shifted interference patterns gives rise to a variation in the

fringe visibility as a function of laser number in a discrete optical vortex, thus enables

the identification of topological charge. The magnitude of topological charge of a discrete

optical vortex is found to be proportional to the number of dips observed in the fringe

visibility curve.

Further, for an accurate determination of sign of an unknown discrete optical vortex,

we have averaged the interference pattern of an unknown discrete optical vortex (l 6= 0)

with the interference pattern of a discrete optical vortex with known topological charge

l = +1. The number of dips in the fringe visibility curve decreases by one for positive

values of l, and increases by one for negative values of l. We have also investigated

the robustness of our method against the presence of phase disorder that may occur

due to aberrations in a system. It is found that the phase disorder does not a↵ect an

accurate determination of topological charge. We have demonstrated our method for

discrete optical vortices with topological charges from small to large values, and accurately

determined their magnitude and sign. We have provided theoretical descriptions along

with the numerical and experimental results, and found an excellent agreement between

them, indicating that our method is highly e�cient.

The interest in the field of spatially controlled structured light is growing because of

its potential applications in many branches of modern technology. It has shown potential

where commonly used Gaussian beams have encountered physical limitations. The results

presented in this thesis will contribute in developing novel structured light sources as well

v



as characterization tools, with widespread potential applications. Our experimental and

theoretical findings will open new possibilities in the field of fundamental research, health,

defense, industries, optical communications, optical computing, etc.

vi



List of abbreviations

aALB - Asymmetric Aberration Laser Beam

ALB - Aberration Laser Beam

aLG - Asymmetric Laguerre Gaussian

ASM - Angular Spectrum Method

BM - Back Mirror

BG - Bessel Gauss

CAB - Circular Airy Beam

DDCL - Digital Degenerate Cavity

DMD - Digital Micromirror Device

DOE - Di↵ractive Optical Element]

FF Mask - Far Field Mask

HG - Hermite Gaussian

LG - Laguerre Gaussian

LC - Liquid Crystal

MIP - Maximum Intensity Point

NF Mask - Near Field Mask

OC - Output Coupler

OV - Optical Vortex

RMSE - Root Mean Square Error

SLM - Spatial Light Modulator

SPP - Spiral Phase Plate

vii



List of symbols

⌘ - Di↵raction e�ciency

V - Fringe Visibility

M
2 - Beam Quality Factor

F - Fourier Transform

F�1 - Inverse Fourier Transform

C(z) - Overlap Integral

� - Wavelength

k - Wavenumber

m - Number of lobes in ALB

q - Radial power of ALB/aALB

�0 - Beam waist

�G - Size of Gaussian apodizer

(w, �) - Asymmetry parameters for aALB

E0 - Maximum amplitude of beam

C
2
n - Structure constant

viii



Contents

1 Introduction 1

1.1 Structured light . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Types of spatially structured light . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Amplitude tailoring . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.2 Symmetric amplitude-phase tailoring . . . . . . . . . . . . . . . . . 10

1.2.3 Asymmetric amplitude-phase tailoring . . . . . . . . . . . . . . . . 16

1.3 Methods for generating structured light . . . . . . . . . . . . . . . . . . . . 20

1.3.1 Outer-cavity methods . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.3.2 Intra-cavity methods . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.4 Numerical and analytical methods . . . . . . . . . . . . . . . . . . . . . . . 31

1.4.1 Modeling of laser cavity . . . . . . . . . . . . . . . . . . . . . . . . 31

1.4.2 Propagation of light in free space and complex media . . . . . . . . 33

1.4.3 Quantification parameters . . . . . . . . . . . . . . . . . . . . . . . 38

1.5 Spatial light modulators: A tool for laser beam shaping . . . . . . . . . . . 41

1.5.1 Computer generated holograms for SLMs . . . . . . . . . . . . . . . 43

1.6 Outline of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2 Generation of structured light with uniform-intensity and customized

spatial shapes 53

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.2 Basic procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

ix



2.3 Uniform-intensity beams with customized spatial shapes . . . . . . . . . . 58

2.4 Robustness analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.4.1 E↵ect of input beam size . . . . . . . . . . . . . . . . . . . . . . . . 62

2.4.2 E↵ect of misalignment . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.4.3 E↵ect of asymmetry in the input beam . . . . . . . . . . . . . . . . 65

2.4.4 E↵ect of speckle noise in an input beam . . . . . . . . . . . . . . . 67

2.4.5 Spectral e↵ect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.4.6 E↵ect of higher order modes . . . . . . . . . . . . . . . . . . . . . . 74

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3 Aberration laser beams with controlled autofocusing and self-healing 81

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.2 Theoretical description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.2.1 Simple application of the stationary phase method . . . . . . . . . . 86

3.2.2 Complicated application of the stationary phase method . . . . . . 89

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.4 Spectral dependence of autofocusing of ALB in a turbulent medium . . . . 104

3.5 Self-healing of ALBs in free space . . . . . . . . . . . . . . . . . . . . . . . 106

3.6 Self-healing in a turbulent media . . . . . . . . . . . . . . . . . . . . . . . 111

3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

3.8 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

3.8.1 Comparison between single-phase and multiple-phase screen methods116

4 Asymmetric aberration laser beams with controlled intensity distribu-

tion 117

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.2 Theoretical description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.3 Propagation of asymmetric ALBs . . . . . . . . . . . . . . . . . . . . . . . 124

4.4 Intensity Distribution for di↵erent � . . . . . . . . . . . . . . . . . . . . . 128

4.5 Spatial control of high-energy density regions . . . . . . . . . . . . . . . . . 132

x



4.5.1 E↵ect of m on the intensity distribution of aALB . . . . . . . . . . 137

4.6 E↵ect of non-quadratic phase distribution (q 6= 2) . . . . . . . . . . . . . . 139

4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5 Generating high-energy densities by sidelobe suppression in the far-field

of phase-locked lasers 143

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.2 Basic arrangement for phase locking laser arrays . . . . . . . . . . . . . . . 146

5.3 Robustness Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

5.3.1 E↵ect of range of phase-locking . . . . . . . . . . . . . . . . . . . . 155

5.3.2 E↵ect of system size . . . . . . . . . . . . . . . . . . . . . . . . . . 158

5.3.3 E↵ect of topological defects . . . . . . . . . . . . . . . . . . . . . . 159

5.4 High-energy densities from out-of-phase locked lasers . . . . . . . . . . . . 160

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

6 Discrete optical vortex: Divergence and self-healing 165

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

6.2 Generation of a discrete optical vortex . . . . . . . . . . . . . . . . . . . . 168

6.3 Propagation Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

6.4 Self-healing properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

7 Method for characterization of topological charge of unknown discrete

optical vortices 199

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

7.2 Working principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

7.3 Experimental arrangement . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

7.4 Results and discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

7.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

7.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

xi



8 Summary and Future Outlook 227

8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

8.2 Future outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

xii



Chapter 1

Introduction

1.1 Structured light

Light is characterized primarily by its spatial and temporal degrees of freedom. The

spatial degrees of freedom of light are defined by amplitude/intensity, phase, and polari-

sation, whereas, the temporal degrees of freedom include time and frequency/wavelength.

Structured light refers to the tailoring of light in all its degrees of freedom-weather con-

trolling spatial degrees of freedom to form custom intensity and phase distributions with

desired polarization [1,2]; or, in time and frequency, to tailor time pulses with controlled

pulse duration, repetition rate, and spectral content [3, 4]. Our main focus in this thesis

is to unravel the potential of light in its spatial degrees of freedom, specifically in the am-

plitude and phase degrees of freedom. Typically, the output from a laser source consists

of a Gaussian distribution, which encounters physical limitations in several applications.

However, with the advancement in optical technologies, it has become possible to control

light in the spatial degrees of freedom, which allows to produce controlled intensity [5] and

phase distributions [6]. The spatially controlled structured light has attracted consider-

able interest due to numerous applications both in fundamental and applied fields [7]. A

few examples of potential applications include the optical communications with increased

data capacity [8], optical trapping and manipulation [9], super-resolution microscopy [10],

1
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precision material processing [11], optical meteorology [12], lithography, quantum infor-

mation processing [13], and atomtronic devices [14], etc. The spatially structured light

such as optical vortex has been exploited to generate optical spanners to rotate particles at

ultrafast speeds, trapping the particles in multiple planes, and sorting blood cells [15,16].

The optical vortices have also been used to increase the data carrying capacity in optical

communications [6], as well as to explore the magnetic materials [17]. A daisy-petal-like

intensity distribution has been used to probe planer and non-planner surface displace-

ments at picometer scale resolution [18, 19], which has paved the way for assessing the

e↵ects of low radiation pressures and altering the interaction of light with the interface

of liquids and solids, which has significant implications for optofluidics [20], microfluidics,

and gravitational wave detection [21]. A novel approach for controlling the interactions

of chiral compounds with structured light has been proposed [22], which o↵ers potential

applications in drug development [23]. The well-known Rayleigh limit is shown to be

overcome by structured illumination, and thus allowed to achieve super-resolution in the

imaging techniques [14]. For example, the compressive three-dimensional super-resolution

microscopy with speckle-saturated fluorescence excitation has been demonstrated [24].

Furthermore, manipulating spatial degrees of freedom of light allows for the acquisi-

tion of highly desirable propagation features, such as autofocusing [25], self-healing [26],

di↵raction-free nature (extended depth-of-focus) [27], and resilience against perturba-

tions [28]. The controlled autofocusing allows the beam to precisely focus its energy at

a desired distance, resulting in high-energy density that is useful for high-power applica-

tions [25]. In some cases, autofocusing results into parabolic trajectory of light, which

is crucial for selective illumination of the sample in material processing [25]. The self-

healing aspect is especially important when the beam travels through various apertures

and complex media (for example, turbulence and biological tissues), as it prevents the

loss of information carried by the beam [29]. The di↵raction-free beams are critical for

applications that require a large depth-of-focus, such as optical coherence tomography

(OCT) [30], microscopy [14], and micro-machining [31]. The light beams robust to per-

turbations are important in precision-based applications, where the propagation of light
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beam in a system can avoid the imperfections introduced from misalignment of com-

ponents, aberrations, and disorder in the media. For example, in underwater oceanic

communication, investigation of complex biological tissues, precision material processing

and atmospheric sensing and meteorology [28].

In general, renewed interest of structuring light with various degrees of freedom has

increased in a wide range of applications. Therefore, there is an increasing interest in syn-

thesizing such beams with high-quality, high-resolution, precisely controlled intensity and

phase distributions, good self-healing abilities, controlled autofocusing, resilience against

perturbations, and broad spectral range. To realize such spatially controlled structured

light fields, continuous e↵orts are being made towards the development of simple, cost-

e↵ective and e�cient methods as well as characterization tools in order to improve these

properties for their potential applications in various fields.

In this thesis, we theoretically, numerically, and experimentally investigate simple,

cost-e↵ective and e�cient intra-cavity and outer-cavity methods, for generating and char-

acterizing the novel structured light with precisely controlled intensity and phase distri-

butions, as well as possessing exotic propagation properties, such as controlled autofo-

cusing, self-healing, and strong resilience against perturbations. In addition to these, our

emphasis has also been to improve the quality, resolution, and spectral range of spatially

controlled structured light.

We have tailored the amplitude degree of freedom of light to generate high-quality

laser beams with controlled spatial shapes and intensity distribution. For example, we

have generated high-quality uniform-intensity beams with customized spatial shapes (cir-

cular, square, annular, hollow-square, and plus-sign), which are not the regular modes of

a conventional laser system [32,33]. Such beams are useful in several applications as men-

tioned earlier, as well as in quantum emulation [34], ultra-cold experiments, optical lattice

atomic clocks [35], and e�cient high harmonic generation [36], etc. In various applica-

tions simultaneous illumination of multiple regions is also required. To address this issue,

we have tailored the amplitude and phase to generate aberration laser beams (ALBs)

containing multiple bright lobe structure, where the localization of intensity among the

1 Introduction
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lobes can be controlled precisely in a symmetric and asymmetric manner [37–39]. This

control enables to generate high-energy densities in a transverse plane at any desired lo-

cation [38,40]. Further, to attain ultra-high energy density, the power from several lasers

can also be coherently combined (phase-locking of lasers) that can be tightly focused to

a desired narrow region. However, in this approach a significant amount of intensity lies

in higher-order sidelobes (higher di↵raction orders in the far-field intensity distribution),

which causes a reduced di↵raction e�ciency of high-energy density zeroth-order lobe. To

resolve this issues, we have presented an approach to suppress these higher-order side-

lobes and transfer their intensity to the zeroth-order lobe, which enables the generation

of high-energy density with good di↵raction e�ciency [41,42].

Further, every customized intensity distribution exhibits distinct propagation behav-

ior for di↵erent phase distributions; hence, controlled phase modulation is essential to

provide adequate propagation control. We have tailored the phase distribution of light to

enable special propagation properties, such as controlled autofocusing, self-healing, and

resilience against perturbations both in free space as well as in complex media (random

disorder media). Particularly, we have shown that the spatially controlled structured light

autofocuses its intensity upon propagation, and generates high-energy density. The aut-

ofocusing distance can be precisely controlled from small to large values. As opposed to

conventional light beams, the specific structured light also possesses self-healing abilities

for a large amount of truncation, and the self-healing distance is found to be independent

of the amount of truncation. Further, the structured light also shows good resilience

against perturbations both in free space as well as in turbulent media of weak to strong

turbulent strengths [41].

Furthermore, controlled tailoring of the phase distribution enables to generate struc-

tured light with helical wavefront, known as optical vortex. Helical wavefront results in

additional orbital angular momentum, which is di↵erent from an intrinsic spin angular

momentum of light. The number of intertwined helical phases per wavelength is known

as its topological charge. Despite the remarkable progress on optical vortex, there still

remains a vital issue that restricts the practical implementation and application of the
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optical vortex in the future, namely the limitation of power scaling capacity. Generally,

conventional optical vortices are formed from a single laser, whose output power is lim-

ited due to various physical constraints, such as damage threshold of laser gain medium,

gain saturation, and non-linear e↵ects. Furthermore, strong pumping in a laser may ex-

cite higher-order transverse modes, which results in an output beam with low quality.

To address these issues, we have generated optical vortices by phase-locking lasers in a

one-dimensional (1D) ring array, where phase circulates from one laser to another in a

clockwise or anti-clockwise direction [43–45]. Owing to the step like behaviour of inten-

sity and phase, these are known as discrete optical vortices. It is well-known that discrete

systems behave di↵erently than continuous systems, so we have performed a detailed in-

vestigation on the propagation, such as divergence and self-healing, of discrete optical

vortices, and compared them with the conventional continuous optical vortices. These

investigations have opened the door for new applications, where conventional continuous

optical vortices pose limitations [43, 44]. The applications of optical vortices are usually

associated with their orbital angular momentum (topological charge), therefore over the

past several years various methods have been proposed with a particular emphasis on

simple, cost-e↵ective and e�cient approach for accurately determining the topological

charge. However, these characterization methods have been employed mostly for conven-

tional continuous vortices, also many of these su↵er from various limitations, and may

not be suitable for discrete optical vortices [46]. We have presented a novel and e�cient

characterization method for accurately determining the magnitude and sign of topological

charge (from small to large values) of unknown discrete optical vortices lasers [46].

Although, beam shaping started long ago when Archimedes structured light by using

a set of mirrors to set fire to Roman ships, still the field su↵ers from various limitations,

such as the generation of high-quality and high-resolution structured light with precisely

controlled spatial degrees of freedom, robustness against imperfections such as presence of

noise, sensitive to misalignment, aberrations, self-healing in random media with a small

self-healing distance, generation of high-energy densities with good di↵raction e�ciency,

simple and cost-e↵ective design of experimental setup. The goal of this thesis is to develop
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simple, cost-e↵ective, and e�cient intra-cavity and outer-cavity methods for generating

and characterizing novel structured light with controlled intensity and phase distributions

as well as possessing exotic propagation properties, such as controlled autofocusing, self-

healing, and strong resilience against perturbations both in free space as well as in complex

media. Further, our emphasis has also been to improve the quality, resolution, and spectral

range of spatially controlled structured light. The overall goal of this thesis is to contribute

new knowledge in the field of structured light, as well as to develop novel and e�cient

structured light sources and characterization tools, with widespread potential applications

in fundamental research as well as in applied fields [1, 2].

The chapter is organized as follows. Section 1.2 presents a detailed discussion on

various types of spatially structured light. In Sec. 1.3, various outer-cavity and intra-

cavity methods for the generation of spatially controlled structured light are discussed.

Section 1.4 presents the analytical and numerical methods for modeling the laser cavities

as well as propagation and quantification of spatially structured light. In Sec. 1.5, we

have provided a brief overview of spatial light modulators, including the mechanism for

modulating light in the amplitude and phase degrees of freedom. Finally, Sec. 1.6 presents

an outline of the thesis.

1.2 Types of spatially structured light

Over time, numerous spatially structured light beams have been proposed theoretically

and generated experimentally, each possessing unique intensity and phase distributions

as well as exotic propagation properties [2]. Light can be spatially tailored by modifying

one or more of its spatial degrees of freedom, such as amplitude/intensity, phase, and

polarization. The amplitude tailoring results in the generation of light with controlled

spatial shapes and intensity distribution [47]. Whereas, the propagation properties of

light can be controlled by tailoring the phase and amplitude degrees of freedom. The

main examples of such beams are the modes of paraxial Helmholtz equation in Cartesian,

cylindrical and elliptical coordinates, which include Hermite-Gaussian (HG) beams [48],
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Laguerre-Gaussian (LG) beams [6], and Icne-Gaussian (IG) beams [49]. However, other

categories include the beams with exotic propagation properties, for example, di↵raction-

free beams such as Airy beams [50], Bessel beams [51], Weber beams, and Mathieu beams

[52]; and autofocusing beams such as circular Airy beam (CAB) and its higher-order

radial derivatives (CADBs), aberration laser beams (ALBs), circular Airy vortex beams

(CAVB), radial carpet beam, and Pearcey beams [53–57]. Further, controlling these

degrees of freedom has also enabled the generation of other special types of structured

light, such as optical bottle beams [58], discrete optical vortex [59], optical pin beams [55],

etc. Below we have provided a detailed description of various types of spatially structured

light, obtained by symmetric and asymmetric tailoring of amplitude and phase degrees of

freedom of light.

1.2.1 Amplitude tailoring

Tailoring an amplitude degree of freedom of light enables to obtain controlled intensity

distribution with customized spatial shapes. It is essentially required in various appli-

cations involving light-matter interactions, where precise control of intensity distribution

improves the e�ciency of interaction. For example, in material processing, the shape of

heat a↵ected region strongly depends on the intensity distribution of a laser beam. Thus,

precise control of intensity distribution improves the quality and e�ciency of material

processing [60]. It also improves plastic welding, cladding, selective laser melting, hard-

ening, brazing, and annealing [5], tweezing for manipulating microparticles and biological

cells with high accuracy [61].

The output of most of lasers is represented by a Gaussian distribution, which poses

physical limitations for various applications. The intensity in peripheral regions of Gaus-

sian distribution is lower, and hence wasted in applications, for example in laser surgery

and material processing. Further, the intensity in long tail of Gaussian distribution can

also a↵ect the neighboring undesired regions. For such purposes, uniform-intensity beams

(also called flat-top beams) can be potentially advantageous [5].

1 Introduction
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Ideally, uniform-intensity beams are represented by a disc or square function, with an

abrupt transition of intensity (from maximum to zero) on the edges. Therefore, due to

di↵raction, their intensity distributions are strongly distorted after propagating a short

distance, resulting in a shorter depth-of-focus. To extend the depth-of-focus, required for

many applications, the uniform-intensity beams can be approximated with round corners

with a continuous transition at the edges (nearly flat-top beam). Such uniform-intensity

beams can be described by a super-Gaussian function [62]. These uniform-intensity beams

have also been proposed as flattened Gaussian function [63], finite sum of fundamental

Gaussian beams [64], sum of LG beams [65], Fermi-Dirac distribution [66], and super-

Lorentzian function [64, 67]. A few examples of uniform-intensity beams with di↵erent

spatial shapes are shown in Fig 1.1.

Figures 1.1(a1)-1.1(f1) represent the mathematical functions, and Figs. 1.1(a2)-1.1(f2)

show the corresponding beams with uniform-intensity distribution and di↵erent spatial

shapes, such as circular, square, annular, hollow square, rectangle, and plus-sign. E0

denotes maximum amplitude, (x, y) represents the Cartesian coordinates, and n, n1 & n2

denote the uniformity indices. In Figs. 1.1(a1)-(b1), �0 denotes the beam waist of circular

and square shaped uniform-intensity beams. In Fig. 1.1(c1) r0 is the width of annular

region, and �0 is the inner radius of annular uniform-intensity beam. In Fig. 1.1(d1) �01

and �02 represent the waist of inner and outer sides of hollow-square shaped uniform-

intensity beam. For the case of rectangular shaped uniform-intensity beam, �01 and �02

represent beam waists in horizontal and vertical directions (Fig. 1.1(e1)). Similarly, for

plus shaped beam, �01 and �02 denote the beam waist along the longest and shortest sides

(Fig. 1.1(f1)). The increase in the values of n, n1 and n2 makes more sharp variation of

intensity at the edges, and upon propagation such beams experience more distortions in

their intensity distribution and exhibit a short depth-of-focus [47]. The depth-of-focus has

been shown to extend by generating these uniform-intensity beams with uniform-phase

distribution [47]. Furthermore, the propagation of uniform-intensity beams has been

extensively investigated, and shown exceptional stability in a turbulent environment [68].

With these excellent properties, such uniform-intensity beams are highly useful in di↵erent
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Figure 1.1: (a1)-(f1) Mathematical expressions, and (a2)-(f2) intensity distributions for
circular, square, annular, hollow-square, rectangle, and plus shaped uniform-intensity
beams.
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areas, as discussed previously [69].

1.2.2 Symmetric amplitude-phase tailoring

Tailoring of amplitude along with phase provides additional control over the propagation

properties of structured light. However, based on the symmetry of intensity distribu-

tion with respect to origin (on-axis center), the tailoring can be classified into two types:

(a) symmetric amplitude-phase tailoring, and (b) asymmetric amplitude-phase tailoring.

Below, we have discussed various types of structured light obtained by tailoring simulta-

neously the amplitude and phase of light, which provides spatially symmetric intensity

and phase distributions.

1.2.2.1 Laguerre-Gaussian (LG) beams

Laguerre-Gaussian (LG) beams are characterized by a helical phase distribution, which

results into a doughnut-shape intensity distribution with zero intensity at the center [70]

Owing to the phase distribution function exp(il�), the Poynting vector in these beams is

skewed with respect to the axis of propagation at an angle � = |l|/kr, and gives rise to

orbital angular momentum of l~ per photon, where l is the number of intertwined helical

phase distributions in the beam (also called topological charge), k = 2⇡/� is the wave

number (� is wavelength of light), and r is a radial distance [71]. These beams are also

referred to as optical vortices (OVs). The Laguerre-Gaussian (LG) beams are the solution

of paraxial Helmholtz equation in cylindrical coordinates [6, 28].

Figure 1.2 shows the field (intensity and phase) distributions of LG beams with various

orders (l, p), where p is a redial index of Laguerre polynomial. As evident, the region of

zero intensity increases with an increase in the topological charge l. The radial index

p controls the number of rings in LG beams. Furthermore, these beams exhibit special

propagation properties, such as l dependent beam divergence, self-healing, robustness

against perturbations, and conservation of orbital angular momentum [72]. The LG beams

have potential applications in various areas, as discussed earlier [14].
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Figure 1.2: Field (intensity and phase) distribution of LG beams with di↵erent indices
(l, p). l is the topological charge, and p is a radial index. Note, brightness represents the
intensity and color represents the phase.

1.2.2.2 Discrete optical vortex beams

The intensity distribution of discrete optical vortex consists of a finite number of lasers (or

beamlets/waveguides) in a 1D ring array, where phase circulates from one laser to another

in a clockwise or anti-clockwise direction. The discrete optical vortices are particularly

interesting for high-power applications, where conventional continuous optical vortices

pose limitations due to physical constraints, as mentioned in Sec. 1.1. However, in a

discrete optical vortex several lasers are combined coherently to achieve a high-power

output with reasonably good beam quality [59, 73, 74]. The electric field of a discrete

optical vortex can be written as [59]

E(x, y; z = 0) = E0

NX

j=1

e
�

(x�↵j)
2+(y��j)

2

2�2
0 e

i�j , (1.1)

where (↵j, �j) = a(cos ✓j, sin ✓j), a = d/

p
1� cos(2⇡/N), ✓j = ⇡(2j � 1)/N , and �j =

⇡l(2j�1)/N . N denotes the number of lasers in a discrete optical vortex (system size), a

denotes radial distance of each laser from centre of discrete optical vortex. d denotes the

distance between two nearest neighbour lasers. Each laser (j) has the same amplitude E0,

same beam waist �0, and di↵erent initial phase �j. The topological charge l of a discrete
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optical vortex can be defined as [74]:

l =
1

2⇡

NX

j=1

arg(E⇤
jEj+1), (1.2)

with the argument taking the values arg (⇥) ✏[�⇡, ⇡], and Ej represents the complex field

of site j on a ring. Further, a continuous system can support a continuum of stable

solutions, however, a discrete system can only have a finite number |l|  N/2 [75].

Figure 1.3: (a) Near-field intensity distribution of discrete optical vortex for a system
size of N = 20 lasers for all values of l with condition l  N/2. (b)-(d) Near-field phase
distribution of discrete optical vortex with topological charge l = 1, l = 2, and l = 3
respectively. (e)-(g) Far-field intensity distributions of discrete optical vortices with l =1,
2, and 3, respectively.

Figure 1.3(a) shows the near-field intensity distribution of a discrete optical vortex

with system size N = 20. Figures 1.3(b)-1.3(d) show the phase distributions of discrete

optical vortices with N = 20 and topological charge l = 1, 2 and 3, respectively. Note, the

near-field intensity distribution of discrete optical vortex corresponding to Figs. 1.3(b)-

1.3(d) remains the same as given in Fig. 1.3(a). Figures 1.3(e)-1.3(f) show the far-field

intensity distribution of discrete optical vortices with l = 1, 2, 3, respectively. As evident,

in contrast to continuous optical vortices, the near-field intensity distribution of discrete

optical vortices remains the same for all topological charges. However, the intensity

distribution in a far-field plane is di↵erent.
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It is well-known that discrete systems behave di↵erently than the continuous system.

In continuous optical vortices, the size and divergence strongly depend on l, which limits

the transfer of vortices with higher l values over a long distance due to problems in

detection (detector has finite active area) [72]. Therefore, discrete optical vortices can be

a solution to such limitations. Further, discrete systems also provide the most general

framework for investigating networks of nonlinear coupled oscillators [75].

1.2.2.3 Bessel beams

Bessel beams possess a unique intensity distribution with multiple concentric rings and

a helical phase distribution. The intensity gradually diminishes in the rings along the

radial direction. This distinctive combination of intensity and phase distribution grants

Bessel beams their unique propagation characteristics, such as the ability to self-heal and

exhibit di↵raction-free properties. Bessel beam is an exact solution of the Helmholtz

equation whose intensity distribution is governed by the Bessel function with a vortex

phase exp(il�), where l is the topological charge [76].

Owing to the dependence on J
2
l (krr), where Jl is lth order Bessel function and kr is a

radial wave vector, Bessel beam possesses infinite width with zero divergence leads to an

ideal plane wave like behaviour. A bessel beam can be considered as a set of plane waves

propagating on a cone, therefore, possesses an additional property of self-healing. Thus, if

the beam is subjected to an obstruction, the constituting waves move past the obstruction

by casting a shadow on the beam and eventually reconstruct the spatial structure of the

beam. The minimum distance required to reconstruct the beam is known as self-healing

distance and is given as zmin ⇡ ak/2kz, where a is width of obstruction and kz is a wave

vector in axial direction. Figures 1.4(a),1.4(c) and 1.4(e) show the intensity distributions,

whereas Figs. 1.4(b), 1.4(d) and 1.4(f) show the corresponding phase distributions, for

l = 0, 1 and 2 respectively. As evident, an increase in the topological charge results in

di↵erent intensity and phase distributions.

Owing to the infinite beam width, an ideal Bessel beam is impossible to construct,

however, a hybrid Bessel-Gauss beam is a reasonably good approximation, where the
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Figure 1.4: Intensity and phase distributions of Bessel beams for topological charges (a)-
(b) l = 0, (c)-(d) l = 1, and (e)-(f) l = 2 respectively.

external rings are restricted by the Gaussian function, and instead of plane waves, Bessel-

Gauss beams are composed of superposition of Gaussian beams, whose axes are uni-

formly distributed on a cone [77]. Such beams have applications in diverse fields due to

di↵raction-free and self-healing characteristics.

1.2.2.4 Airy beams

The intensity distribution of Airy beams can be described as having a central lobe sur-

rounded by oscillating side lobes and possess di↵raction-free behavior as well as self-

healing capabilities [78]. Further, the self-bending or self-acceleration in free space di↵er-

entiates Airy beams from Bessel beams [79]. The di↵raction-free nature can be attributed

to the infinite energy of Airy beam. However, in actual practice, such beams are trun-

cated by an aperture, which results in di↵raction during the propagation. If the size of an

aperture exceeds the spatial features of ideal di↵raction-free beam, the di↵raction process

can be slowed down considerably during the propagation.

The intensity and phase distributions of 1D and 2D Airy beams at propagation dis-

tance z = 0 are shown in Figs. 1.5(a)-1.5(b) and Figs. 1.5(c)-1.5(d), respectively. As

evident, these beams possess unique intensity and phase distributions, therefore, show

di↵erent propagation properties. Figure 1.5(e) shows the propagation of 1D Airy beam,

indicating the behaviour of self-acceleration. The Airy beam also possesses resilience

against the perturbations (turbulence), and shows self-healing properties against various

types of obstructions. Such beams with these exotic features can be exploited for various
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Figure 1.5: (a)-(b) Intensity and phase distributions of 1D Airy beam. (c)-(d) Intensity
and phase distributions of 2D Airy beam. (e) Intensity distribution of Airy beam in
longitudinal (propagation) plane, indicating self-acceleration.

applications involving light-matter interactions.

1.2.2.5 Aberration laser beams (ALBs)

Aberration laser beams (ALBs) possess multiple bright lobes in the near-field plane with

m
th�order symmetry, and several distinct propagation properties such as autofocusing,

self-healing, and resilience against the perturbations in complex media. Generally, aber-

rations are recognized as distortions in the phase distribution and cause undesired e↵ects

like blurring, widening, and distortion in an optical field [80]. Several attempts have been

made to reduce the impact of aberrations [81, 82]. However, aberrations have also been

deliberately exploited to create optical systems with specific characteristics [83, 84]. For

example, a certain type of aberration in an optical system can produce a focal plane with

a more strongly focused region [85]. ALBs are realized by combining angular dependence

of Zernike polynomials with a r
q type approximation of chirped Airy function and can be

expressed as:

E(r, ✓) = A(r) exp (�i↵r
q + i sin (m✓)), r  R. (1.3)

Where A(r) = exp(�r
2
/2�2

0) denotes a Gaussian with beam waist �0, m is an integer

that controls the symmetry (lobe structure), R is the radius of a circular aperture, q is

radial power, ↵ is a scaling parameter having unit mm�q and controls the steepness of

the phase distribution of ALB. In free space, for such ALB the autofocusing distance is
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given as [86]:

zmax ⇡
2⇡

q↵�(2�0/3)
q�2 , (1.4)

where � is the wavelength. As seen from Eq. (1.4), the auto-focusing distance can be

controlled from small to large values by controlled variation of beam parameters. Note,

for q = 2, rq is equivalent to a classical lens, results in abrupt autofocusing properties, and

autofocusing distance becomes independent of beam waist of an input Gaussian beam.

Figure 1.6: Intensity distributions of ALB at various propagation distances (a) z = 10
cm, (b) z = 30 cm, (c) z = 50 cm, (d) z = 85 cm, and (e) z = 100 cm. Simulation
parameter: parameters: ↵ = 3.5 mm�2

, q = 2,m = 4, �0 = 1.35 mm,� = 1064 nm.

Figures 1.6(a)-1.6(e) show the intensity distributions of ALB at di↵erent propagation

distances z = 10 cm, 30 cm, 50 cm, 85 cm, and 100 cm, respectively. As evident, ALB

possesses spatially controlled intensity distribution and shows autofocusing behaviour at

z = 85 cm. At the autofocusing distance, the intensity becomes tightly focused and

creates a high-energy density. With these unique features, such beams can be exploited

for various applications in di↵erent areas [87–90].

1.2.3 Asymmetric amplitude-phase tailoring

In symmetric amplitude-phase tailoring, the generated structured light consists of sym-

metric intensity distribution. However, to gain an additional control on the intensity

distribution, the asymmetry can be exploited in the phase of structured light. The

phase asymmetry can be introduced by shifting coordinates in a complex plane [91].

Several types of asymmetric beams have been realized experimentally and also exploited

for various applications. For example, asymmetric Gaussian optical vortex, asymmet-

ric Bessel modes, asymmetric Bessel-Gauss (aBG) beams, asymmetric Laguerre-Gaussian
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(aLG) beams, nonparaxial asymmetric Bessel beams, and paraxial asymmetric Bessel-

Gaussian [91–95]. As asymmetry allows better control on the intensity distribution, so it

has been used to form various kinds of specialized optical traps for controlling and ma-

nipulating microparticles. Further, it has also been used to steer the intensity at desired

spatial locations to form high-energy density, which is useful for high-power applications.

A few examples of asymmetrically structured light are discussed below.

1.2.3.1 Asymmetric Laguerre-Gaussian (aLG) beams:

Asymmetric Laguerre-Gaussian (aLG) beams are asymmetric counterpart of LG beams,

where asymmetry is introduced for additional intensity control in a transverse plane [91].

An aLG beam consists of intensity distribution in a crescent shape, which di↵ers signifi-

cantly from LG beam. The intensity distribution of aLG beam at di↵erent propagation

distances are shown in Figs. 1.7(a)-1.7(d). During the propagation, the intensity redis-

tributes from the central ring to peripheral areas asymmetrically (Figs. 1.7(b)-1.7(d)) [91].

As evident, in aLG beams, the asymmetry results in rotation of crescent shape intensity

Figure 1.7: The intensity distribution of aLG beam at various propagation distances (a)
z = 0, (b) z = 4 m, (c) z = 8 m, (d) z = 12 m.

and additional orbital angular momentum (OAM). The additional OAM can be exploited

to control the motion of living cells without any thermal damage. Such beams can also

be utilized to create a set of entangled photons with wide orbital angular momentum

through the process of spontaneous parametric down-conversion [16, 96].

1 Introduction
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1.2.3.2 Asymmetric Bessel-Gauss beams (aBG):

An aBG beam is expressed as the superposition of BG beams that contain Bessel function

with complex argument and possess a crescent shape intensity distribution [95]. Further-

more, asymmetry in Bessel beam also a↵ects the propagation properties as the aBG

beam rotates non-uniformly about the optical axis, causing the vortex centers to rotate

⇡/4 within the Rayleigh range and another ⇡/4 throughout the remaining distance, which

makes them di↵erent from aLG beams [95] Unlike Bessel-Gauss (BG) beams, the asym-

metric Bessel-Gauss beams possess more flexible controlled intensity distribution [95].

The asymmetric Bessel-Gauss beams are shown in Fig. 1.8. Figures 1.8(a),1.8(c) and

Figure 1.8: The phase and intensity distributions of asymmetric Bessel-Gauss beam with
topological charge l = 4 and asymmetry parameter (a)-(b) c = 1, (c)-(d) c = 5, and
(e)-(f) c = 10. [95]

1.8(e) show the intensity distributions, whereas, Figs. 1.8(b),1.8(d) and 1.8(f) show the

phase distributions of aBG with l = 4 and asymmetry parameter c = 1, 5 and 10, re-

spectively. As evident, the position of optical nulls in the intensity distribution varies

with the parameter c, causing variation in the orbital angular momentum (OAM) carried

by the beam. Similar to aLG beams, asymmetry in aBG also results in additional frac-

tional OAM, which increases almost linearly with an increase in asymmetry c [95]. These

additional features increase the applicability of aBG beams for various applications.
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1.2.3.3 Asymmetric aberration laser beams (aALBs):

The asymmetric aberration laser beams are obtained by introducing phase asymmetry

to the ALBs. As opposed to ALBs, the aALBs have better flexibility in controlling

the intensity distribution, and intensity distributes asymmetrically in the multiple bright

lobes. In an ideal ALB containing equal intensity bright lobes, by introducing asymmetry

most of the intensity can be shifted to any of the single bright lobe, and creates a high-

energy density [38]. Similar to ALBs, aALBs possess good autofocusing properties, which

remain invariant irrespective of asymmetry.

The asymmetry in an ALB is introduced by complex coordinate shifting in the phase

term of Eq. (1.3) [38, 91], we have

⇠ = exp(�i↵s
q + i sin(m✓)), (1.5)

where, s2 = (x� xo)2 + (y � yo)2, xo = a+ ib and yo = c+ id. Solving Eq. (1.5) for q = 2

yields

⇠ = exp(�i↵ (x2 + y
2 � (b2 + d

2)) + i sin(m✓)), (1.6)

where ✓ = tan�1
⇣

y�b
x�(�d)

⌘
. The asymmetry parameters a and c mimic the misalignment,

hence taken as 0. The asymmetry parameters b and d can be expressed in terms of polar

coordinates (w, �), which only shifts the origin of trigonometric phase without changing

the functional form of chirped phase [38].

The controlled intensity distributions of aALBs for two di↵erent sets of asymmetry

parameters are shown in Fig. 1.9. Figures 1.9(a1)-1.9(e1) and Figs. 1.9(f1)-1.9(j1) show

the intensity distribution of aALB at di↵erent propagation distances for asymmetry � = ⇡

and 3⇡/2, respectively. As evident, in both cases the intensity evolves asymmetrically and

di↵erently, however, the autofocusing is obtained at the same distance. This indicates that

asymmetry does not influence the autofocusing properties of aALB. Further, with the help

of asymmetry, the longitudinal intensity can also be controlled, as shown in Fig. 1.9. The

aALBs with these novel features can be exploited for various applications in di↵erent
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Figure 1.9: For asymmetry parameters � = ⇡ (top row) and � = 3⇡/2 (bottom row), the
intensity distribution of aALB at various propagation distances (a1, f1) z = 25 cm, (b1,
g1) z = 55 cm, (c1, h1) z = 70 cm, (d1, j1) z = 84 cm, and (e1, j1) z = 100 cm. We have
taken the value of w = 1. Simulation parameters: ↵ = 5.9 mm�2, �0 = 1.45 mm, m = 3,
q = 2 and � = 632 nm.

areas. An extensive study on aALBs is given in Chapter 4, where the mechanism behind

the intensity transfer as well as the propagation properties are discussed.

In addition to these examples, various other forms of spatially structured light are

also discovered, which are mentioned above in Sec. 1.2. It is clearly visible that controlling

amplitude and phase degrees of freedom has enabled to generate various kinds of spatially

structured light, possessing distinct intensity and phase distributions as well as unique

propagation properties. With these distinct properties, the spatially structured light can

be potentially applied in various fields, for finding new solutions to old problems.

1.3 Methods for generating structured light

As mentioned above, structured light fields are increasingly finding applications in various

areas, therefore, there has been growing interest in generating such beams possessing dis-

tinct properties. Special e↵orts are being made towards the development of methods that

include various aspects, namely, arbitrary control of intensity and phase distributions,

high-power damage threshold, less sensitive to imperfections, simple and cost-e↵ective

design, high e�ciency, and wide spectral range. Over the past several years, various
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methods have been proposed, which are broadly classified into two main categories: (a)

outer-cavity methods and (b) intra-cavity methods. The outer-cavity methods involve the

modification of an input Gaussian beam external to the laser source by means of trans-

forming device/element, such as spatial light modulators (SLMs), digital micromirror

devices (DMDs), di↵ractive optical elements (DOEs), mask and mask-like mirrors, refrac-

tive elements like spiral phase plates, q-plates, etc. On the other hand, in intra-cavity

methods, the modifications are applied directly at the laser source, which includes placing

of transforming device/element inside the laser cavity, and due to that structured light is

generated directly at the source [97–100]. Methods based on both categories have their

own advantages and disadvantages, for example, outer-cavity methods may be simple and

e�cient, whereas intra-cavity methods can be suitable for high-power, high-purity, and

high-resolution structured light [101,102].

1.3.1 Outer-cavity methods

In an outer-cavity method, the light is tailored external to the laser, by using external

devices/elements, such as lenses, mirrors, di↵erent shape apertures, di↵ractive elements,

SLMs, DMDs, etc. [1, 2, 103, 104], as shown in Fig. 1.10. Figure 1.10 shows that an input

Figure 1.10: Illustration of an outer-cavity beam shaping method.

Gaussian beam from laser incidents on a transforming device/element, and after propaga-

tion to a certain distance it transforms into a desired structured light. Note, for obtaining
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di↵erent types of structured light, the required transforming devices/elements will be dif-

ferent. We have discussed below a few commonly used transforming devices/elements for

outer-cavity methods.

Apertures and Masks: The apertures and masks are straight forward mechanical

elements that modify an input laser beam by selectively blocking or allowing certain

portions of it. These elements have the ability to tailor the amplitude degree of freedom

of light, to produce light beams with customized spatial shapes. Further, the size of

the shaped output beam can be controlled by the size of the aperture [105]. Here, the

shaping is not lossless, and conversion e�ciency strongly depends upon the size of an

aperture [5, 106].

Reflective and refractive elements: The lossless beam shaping can be achieved

by simultaneous tailoring of amplitude and phase degrees of freedom. The transforming

elements, such as reflective mirrors, lenses, anisotropic crystals, and various other phase

elements can be employed to modify the intensity and phase distribution of laser beam.

In reflective mirrors the phase shift is introduced by changing the orientation of the mir-

ror [107], for example, conical mirrors can be used to generate optical vortices without

chromatic aberrations [108]. Further, refractive elements can shape the light in the form

of uniform-intensity, doughnut, or other desired intensity distributions [66,103,104]. In re-

fractive elements, the phase shift is introduced by varying surface curvature and thickness

of element [109]. For example, spiral phase plate (SPP) is a phase element with uniform

refractive index, with increasing thickness in the circular direction. SPPs are potential

phase elements to generate optical vortices with topological charge [110]. A controllable

transformation of HG modes to LG modes can be obtained by a pair of astigmatic lenses

by introducing a Gouy phase shift [111]. The Axicons can be exploited for the interference

of plane waves which in turn can be used to generate Bessel beam [51]. Further, birefrin-

gent liquid crystal-based q-plates can be used to generate optical vortex with topological

charge from a laser beam having a well-defined spin angular momentum [112].

Grating/Di↵ractive optics: Gratings, di↵ractive lenses, and far-field di↵ractive dif-

fusers are examples of beam shaping di↵ractive optical elements. The computer generated
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holograms can be used to generate optical vortices from an input Gaussian beam [113]. For

the generation of uniform-intensity laser beams, the di↵ractive optical elements can be de-

signed by various methods, such as holographic conversion [114], geometric transformation

and ray tracing [115,116], hybrid methods [117], Gerchberg–Saxton algorithm [118], modi-

fied Gerchberg–Saxton algorithm [119], Yang–Gu algorithm [120], genetic algorithm [121],

and simulated annealing algorithm [122].

Spatial Light Modulators (SLMs) and digital micromirror devices (DMDs):

Spatial light modulators and digital micromirror devices are electronically controlled de-

vices and can modulate the phase or amplitude of an incident laser beam. By applying

specific phase or amplitude patterns on the SLM or DMD, the incident laser beam can be

tailored into various forms of structured light, including customized intensity and phase

distributions [123]. In this thesis, we have investigated tailoring of light by using SLM,

hence, a detailed description of SLM is presented in Sec. 1.5.

Other methods such as adaptive optics based systems use wavefront sensing and correc-

tion techniques to compensate for aberrations and distortions in a laser beam. By actively

controlling deformable mirrors or other optical elements, adaptive optics can shape the

beam as per desire. Several of these methods pose di↵erent kinds of limitations, and

accordingly, these methods are evolved over the past several years, and still, the field is

actively growing in finding more suitable methods (simple, cost-e↵ective, and e�cient) for

realizing structured light with improved properties, such as high-quality, high-resolution,

flexible intensity control, flexible phase control, good self-healing, controlled autofocusing,

large depth-of-focus, strong resilience against the perturbations, broad spectral range, etc.

1.3.2 Intra-cavity methods

Although, outer-cavity methods have a number of advantages, still they su↵er from var-

ious limitations. For instance, the quality and resolution of shaped laser beams may be

compromised by aberrations caused by optical components. A relatively small damage

threshold of transforming elements limits the use of outer-cavity methods for high-power
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applications. Also, the residual reflection and absorption from various optical components

cause significant power loss in the outer-cavity methods. To overcome such limitations,

intra-cavity methods can be used, where, the degrees of freedom of light are tailored in-

side the laser cavity by utilizing a variety of optical devices, including mirrors, lenses,

and spatial light modulator. The laser cavities possess inherent filtering properties that

enable them to remove undesired modes, thereby enhancing the purity and power of the

desired modes. For example, outer-cavity generation of OAM modes by azimuthal phase

change, often results in the numerous radial modes, with a low power desired zeroth-order

radial mode [2,124]. However, by employing the same approach in an intra-cavity method,

all undesired higher-order modes can be suppressed, thereby enables the generation of a

high-purity desired mode [2, 124]. A general illustration of an intra-cavity beam shap-

ing method is given in Fig. 1.11. Figure 1.11 shows a laser cavity with two mirrors, a

Figure 1.11: Illustration of an intra-cavity beam shaping method. BM: back mirror; OC:
output coupler.

back mirror (BM) with high reflectivity (R ⇡ 100%), a partially reflecting output coupler

(OC) (R < 100%)), and a gain medium for light amplification. Depending upon the pump

strength and cavity parameters, such as curvature of mirrors and length of the cavity, the

laser will lase in a light field distribution with minimum loss in the cavity. However,

to attain a controlled distribution of the output beam, the cavity is modified either by

placing any transforming device/element inside the cavity or changing the cavity param-
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eters (for example, structured cavity mirrors and structured illumination of gain medium

by structured pump). Such manipulations introduce additional losses to the undesired

modes (light field distributions) of the cavity, and eventually, a desired structured light

beam will be obtained as a steady-state minimum loss solution of the laser at the output.

Intra-cavity beam shaping entails inserting a transforming device/element within the

laser cavity to select a single desired mode among all the available modes. Most of the

mode selection methods introduce an extra loss to undesirable modes, forcing the laser

to lase in a desired mode. For example, the Laguerre-Gaussian modes, are selected by

inserting wires and regulating the intra-cavity aperture size [125]. Depending upon the

transforming device/element, the intra-cavity beam shaping can be divided into three

types:

(a) Absorptive, reflective, and transmissive

(b) Digital cavity laser

(c) Degenerate cavity laser

1.3.2.1 Absorptive, reflective and transmissive

A particular mode in a laser cavity can be selected by inserting additional absorption

masks or wires, phased mirrors, and transmissive optics such as di↵ractive optical ele-

ments, binary phase elements, spiral phase plates, etc. For example, a Gaussian mode is

selected by placing a circular aperture inside the laser cavity. Apart from the fundamental

Gaussian mode, the higher-order LG and HG modes can be selected by inserting wires

and controlling the aperture size of the laser cavity [125].

In connection to reflective elements, a graded phase mirror (GPM) with non-spherical

curvature can be used to generate uniform-intensity beams. The back mirror in the cavity

is replaced by a GPM, which results in an additional phase shift of �� (phase constraint).

Hence, the desired shaped beam can be generated at the output coupler by controlling

the phase profile of GPM [126]. Similarly, a precise phase control can be obtained with

di↵ractive mirrors having a phase distribution with many 2⇡ discontinuities [127,128].
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As discussed, the attenuation of light by absorbing elements such as wires can produce

heat and reduce the system’s overall e�ciency. Therefore, non-absorbing phase elements

(transmissive elements) can be used, where loss is introduced by di↵raction and interfer-

ence of the laser beam. For example, a wire grid is replaced by a phase element where a

phase shift of ⇡ is introduced along the narrow lines instead of wires, keeping the phase

same in other regions [129]. Such phase elements having a phase shift of either 0 or ⇡,

are known as binary phase elements (BPEs).

Further, as discussed earlier, a spiral phase plate (SPP) (transmissive element) intro-

duces a phase shift of exp(il�) (l is an integer) and can be used to generate orbital angular

momentum modes (optical vortices) outside the laser cavity. However, SPPs are designed

such that, their thickness increases in azimuthal direction to produce optical vortices cor-

responding to a particular wavelength. Therefore, depending upon the finite bandwidth

of an incident light, the purity of modes is strongly a↵ected. To resolve this issue, SPPs

are placed inside the laser cavity [130,131]. In this intra-cavity method, SPPs are nearly

lossless for the desired modes and introduce high losses to all other undesired modes.

Therefore, it leads to the generation of a desired optical vortex with high e�ciency. Re-

cently, a similar approach has been employed to generate uniform-intensity beams either

by inserting phase elements or by curvature of cavity mirrors [132]. The intra-cavity laser

beam shaping with these absorptive, reflective, and transmissive elements is shown in

Figs. 1.12(a)-1.12(c), respectively.

Figure 1.12: Schematics for intra-cavity laser beam shaping consisting of (a) amplitude
mask (AM) (absorptive), (b) graded phase mirror (GPM) (reflective), and (c) phase mask
(PM) (transmissive).
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1.3.2.2 Digital cavity laser

In the previous Sec. 1.3.2.1, we have discussed the generation of a particular light field

distribution by modifying amplitude and phase of light inside the laser cavity. The gen-

eration of a specific field distributions requires inserting of specific optical elements inside

the cavity, and the cavity needs to be aligned properly every time. Further, the generation

of a complex light field distribution requires an optical device/element (amplitude/phase

mask) with complex features, which involves manufacturing di�culties. These aspects

pose limitations for generating arbitrary light field distributions.

To overcome these limitations, SLM based approach is proposed, where the back mir-

ror of a laser cavity is replaced with a reflective type phase-only SLM [102,133]. With this

modification, it is known as a digital cavity laser because the SLM can be controlled elec-

tronically, and modulation of light can be achieved by implementing amplitude and phase

masks digitally on the SLM. The power and quality of generated structured light depends

on the SLM, thus SLM should have high-damage threshold, high reflectivity, high reso-

lution, high conversion e�ciency, and small cross-talk between the pixels. The schematic

of a digital cavity laser as well as illustrative results are shown in Fig. 1.13. It consists of

a Brewster window to control polarization and solid-state Nd:YAG (neodymium-doped

yttrium aluminium garnet) gain medium pumped by an external laser diode (LD). The

desired structured light is obtained at the output coupler (OC).

With an ability to easily control amplitude and phase on the SLM, a digital laser can

be used to generate arbitrary light field distributions. For generating a desired light field

distribution, the required phase hologram for SLM can be simulated by a suitable approach

described in Sec. 1.5. Figure 1.13(b) shows the generated structured light (top row) and

corresponding SLM holograms (bottom row). Particularly, HG3,0 mode is generated with

a hologram having loss lines containing checkerboard pattern, which causes amplitude

modulation. Other beams such as Airy and uniform-intensity are generated by phase-

only modulation. The LG1,0 is generated by modulating both amplitude and phase. As

compared to the previously mentioned approaches, a digital cavity laser has advantages,
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Figure 1.13: (a) Schematic of a digital cavity laser. SLM: spatial light modulator; BW:
Brewster window; HR: high reflectivity mirror at an angle of 45�; LD: external laser diode
source; OC: output coupler. [102]

such as it is a dynamic method, and di↵erent types of structured light can be generated

on demand, without re-alignment/modification/optimization of the cavity.

1.3.2.3 Degenerate cavity laser

In the previous Sec. 1.3.2.2, we have discussed a dynamic method involving intra-cavity

SLM to digitally select and control desired structured light in a conventional laser cavity.

Unfortunately, in such a conventional laser cavity the number of lasing modes is limited,

and due to that the resolution of generated structured light at the output of laser is

inherently poor and mostly limited to the standard predetermined modes of the cavity.

Further, the local independent control of intensity and phase distributions of laser modes

by each pixel of SLM is strongly a↵ected by the di↵ractive coupling between the pixels

due to round-trip propagation of light.

Further, in a digital cavity laser, a desired mode is selected from a single laser source.

However, single laser sources are limited, particularly, for high-power applications be-
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cause of various physical constraints, such as damage threshold of the gain medium, gain

saturation, optical facet damage, and non-linear e↵ects. Further, strong pump may lead

to excitation of higher-order transverse modes, which may deteriorate the output beam

quality (M2
>> 1). The presence of higher-order modes results in an increase in the

di↵raction and a decrease in the focusing abilities of a laser beam. Furthermore, higher-

order modes distort the beam profile, reduce power density in the far field, as well as

reduce the spatial coherence of an output laser beam. To overcome such limitations,

phase-locking of several lasers can be employed to generate structured light with high

output power. The structured light with high-quality, high-resolution, and high-power

can be generated using a degenerate cavity laser [134].

Figure 1.14: Schematic of a degenerate cavity laser for generating an array of lasers. BM:
back mirror; OC: output coupler; L1, L2: plano-convex lenses of focal length f ; NF mask:
near-field mask.

A degenerate cavity laser consists of two mirrors, a high-reflectivity back mirror (BM)

and a partially reflecting output coupler (OC), a gain medium (Nd:YAG), and two plano-

convex lenses L1 and L2 arranged in 4f telescopic configuration (Fig. 1.14). The 4f

arrangement ensures perfect imaging inside the cavity, as a ray from each point on the

back mirror will map onto itself after a complete round-trip. Hence, the transverse field

at each point on the back mirror will act as a mode of the laser cavity. All the modes are

having same path length, same quality factor, and are equally probable. Therefore, all

the modes are degenerate in losses, and hence it is known as degenerate cavity laser. In

a degenerate cavity laser, the number of lasing transverse modes is proportional to cross-

section area of the gain medium. A typical degenerate cavity supports > 105 transverse
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modes [135]. The number of transverse modes can be controlled precisely by inserting

additional various intracavity elements, such as near-field and far-field amplitude masks,

phase plates, lenses, etc [136,137].

The array of independent lasers in various network geometries can be generated using

a degenerate cavity. A binary amplitude mask with circular holes (diameter ⇠ 200 µm

and center-to-center separation ⇠ 300 µm) (NF mask in Fig. 1.14) in an array geometry is

placed close to OC, and because of perfect imaging, each hole behaves as an independent

laser with a nearly Gaussian distribution (TEM00 mode profile). The lasers can be phase-

locked by coupling them using various mechanisms, such as near-field coupling with Talbot

di↵raction (OC is displaced from NF mask by a distance of ↵zT , as shown in Fig. 1.15) and

the far-field coupling with Fourier aperture (FF mask in Fig. 1.15) [136,138]. In the near-

field coupling with Talbot di↵raction, the sign of coupling can be changed by varying the

distance ↵zT . Due to the dissipative nature of coupling as well as mode competition over

the same gain, the mode with minimum loss is obtained as the steady-state phase-locked

solution.

Figure 1.15: Schematic of a degenerate cavity laser. BM: back mirror; OC: output coupler;
L1, L2: plano-convex lenses; NF mask: near-field mask; ↵zT denotes Talbot length, and
by changing factor ↵ Talbot length can be varied. [136].

Further, to overcome the issues related with digital cavity laser, a more e�cient digital

degenerate cavity laser (DDCL) has been demonstrated [101]. It has several advantages,

such as it supports a very large number of independent spatial lasing modes, and has

access of both near-field and far-field planes. These properties enable for independent

manipulations and control of several degrees of freedom of the lasing beam. Therefore,

in DDCL, by simultaneously controlling the intensity, phase, and coherence of the laser,
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a variety of unique, high-quality, and high-resolution arbitrarily shaped structured light

have been generated [101].

The degenerate cavity laser can also be used in rapid phase retrieval problems [139], to

simulate classical XY spin array [140], investigation of complex network dynamics [141],

and, to solve computationally hard problems [142].

1.4 Numerical and analytical methods

1.4.1 Modeling of laser cavity

To analyze the output of a laser cavity, we can perform an eigenvalue analysis. The

eigenvalue equation can be given as

KUn = �nUn, (1.7)

where Un represents the field of the eigenvectors/modes, corresponding to eigenvalues �n.

The power loss per round-trip for each mode can be calculated as 1 � |�n|2. K denotes

the free space propagation kernel, computed by the Kirchho↵-Fresnel integral [143].

The eigenvectors for a specific cavity can be calculated by solving Eq. (1.7) numeri-

cally or analytically. The Fox-Li iterative algorithm is commonly used to simulate the

laser cavities [144]. It considers an initial vector (U = V0) with an arbitrary field distri-

bution, and for the round-trip propagation, the kernel K is applied repeatedly to obtain

a sequence of vectors Vm+1 = KVm. Note, one round-trip corresponds to one iteration

in the algorithm. If the initial vector V0 is written as a linear superposition of eigenvec-

tors of the cavity as V0 =
P

n anUn, then the sequence of vectors can be expressed as

Vm =
P

n an�
m
n Un. If the eigenvalues follow the relation �1 � �2 � �3... � �N , then eigen-

vectors corresponding to higher m will su↵er more losses, hence, U1 will be a dominant

mode. Therefore, Vm ⇡ a1�
m
1 U1, and after several iterations, the fundamental mode with

minimum loss is obtained. Furthermore, the approach can be employed to a multimode

cavity that supports various modes with the same losses (known as degenerate cavity).
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For such a cavity, the eigenvalues will be approximately equal (�1 ⇡ �2 ⇡ �3...).

Another approach for simulating the laser cavity is based on the Gerchberg-Saxton

(GS) iterative algorithm [145]. Although, GS algorithm is widely used for the phase

retrieval between the two planes with known intensity distributions, and are related by

mathematical operation, namely, Fresnel propagation or Fourier transform. However,

based on the intensity or phase constraints at two di↵erent planes, it can compute the

field distribution at any plane in a laser cavity. For example, in a degenerate cavity

shown in Fig. 1.16, for a particular desired intensity distribution at the output coupler

and a phase constraint at the back mirror, the field distribution at any plane inside the

laser cavity can be calculated.

Figure 1.16: Schematic of a laser cavity with Gerchberg-Saxton algorithm to generate
desired intensity Id having a phase constraint �2c at back mirror.

Figure 1.16 shows the GS algorithm and basic schematic of a laser cavity. The algo-

rithm starts with an initial random phase and desired intensity Id at the output coupler.

Now, this field is propagated to the back mirror and becomes
p
I2 exp(i�2). At the back

mirror, the phase of this field is modified due to a phase constraint �2c, and produces field
p
I2 exp(i�2c). Now, a back propagation of this modified field to the output coupler re-

sults in a field
p
I1 exp(i�1), where the intensity constraint Id is imposed. This procedure

is repeated until I1 converges to Id [145].

Apart from these methods, several other methods are also reported to realize the

laser cavities. For example, Prony’s method can be employed to calculate the losses and

phase shifts over a wide range of parameters of a laser cavity with circular mirrors. It

provides an e↵ective algorithm to solve eigenvalue equation to obtain all the significant

lowest order modes in a laser cavity. In Prony’s method the orthogonality of modes is
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employed to construct a set of equations containing eigenvalues of the laser cavity, and

upon solving these equations eigenvalues and eigenvectors can be obtained [146]. In the

matrix diagonalization method, Eq. (1.7) is solved by diagonalization of a propagation

matrix. For example, for a laser cavity with two mirrors, the round-trip matrix can be

written as M(round�trip) = M(free space)M(mirror1)M(free space)M(mirror2). The diagonalization

of matrix M(round�trip), results in eigenvectors/modes U with eigenvalues �, and thereby

the round-trip losses.

1.4.2 Propagation of light in free space and complex media

In several applications, the propagation of structured light is required either in free space

or in complex media. In this thesis, our aim has also been to investigate the propagation

of structured light, for example, to analyze properties such as autofocusing, self-healing,

and resilience to perturbations. To calculate the intensity distribution as a function of

propagation distance, the wave equation can be solved to obtain Huygen-Fresnel integral.

The wave equation can be written as [76, 147]:

r2
u =

1

c2

@
2
u

@t2
, (1.8)

where u denotes the electric field of light, r2 is Laplacian operator in the Cartesian

coordinates (x,y,z), c denotes the speed of light in free space, and t represents the time.

Now, for a wave with sinusoidal variation, the above equation leads to a time independent

Helmholtz equation.

[r2 + k
2]E(x, y, z) = 0. (1.9)

Further E(x, y, z) = U(x, y, z) exp(ikz), therefore Eq. (1.8) can be written as
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The slow variation of u(x, y, z) with respect to z is known as paraxial approximation.

Mathematically it can be expressed as

����
@
2
u

@z2

����⌧
����2k

@u

@z

���� . (1.11)

Therefore, on omitting second order partial derivative term in Eq. (1.10), the resulting

equation can be written as

[r2
t + k

2]u(s, z) = 0, (1.12)

where s refers to transverse coordinates and r2
t represents Laplacian operator in these

coordinates. The general solution to an exact wave equation is a uniform spherical wave

diverging from a point source r0.

E(r, r0) =
exp(�ik⇢(r, r0))

⇢(r, r0)
, (1.13)

where E(r, r0) is mean field at point r due to a source at point r0 and ⇢(r, r0) represents

the distance between them. Therefore,

⇢(r, r0) =
p

(x� x0)2 + (y � y0)2 + (z � z0)2. (1.14)

According to Fresnel approximation in di↵raction theory, in the expansion of ⇢(r, r0) the

terms higher than quadratic order can be dropped. Therefore, Eq. (1.13) can be written

as

E(x, y, z) ⇡ 1

z � z0
exp

✓
�ik(z � z0)� ik

(x� x0)2 + (y � y0)2

2(z � z0)

◆
, (1.15)

Now, according to Huygen’s principle, for an incident field distribution E(x0, y0, z0) over

any closed surface S0, each point on that surface can act as a source of uniform spherical

wave or Huygens’ wavelet. The resultant field at any other point (x, y, z) beyond (or

inside) S0 can be obtained by adding the fields of all Huygens’ wavelets originating from
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S0. Mathematically, this can be expressed as

E(x, y, z) =
i

�

ZZ

S0

E(x0, y0, z0)
exp(�ik⇢(r, r0))

⇢(r, r0)
cos ✓dS0, (1.16)

where cos ✓ is obliquity factor. After substituting Eq. (1.15) in Eq. (1.16), we get

E(x, y, z) ⇡ ie
�ik(z�z0)

(z � z0)�

ZZ
E0 (x0, y0, z0) exp

"
�ik

(x� x0)
2 + (y � y0)

2

2 (z � z0)

#
dx0dy0. (1.17)

Further, for z0 = 0, and in cylindrical coordinates the above integral is written as

E(⇢,�, z) = � ik0

2⇡z
exp (ikz) exp

⇣
ik

2z
⇢
2
⌘ZZ

E(r, ✓) exp
⇣
ik

2z
r
2
⌘

⇥ exp
⇣
� ik

z
⇢ r cos(✓ � �)

⌘
rdr d✓, (1.18)

where (r, ✓) and (⇢,�) represent coordinates of source and observation (output) planes,

respectively, separated by a distance z. k = 2⇡/� represents the wavenumber of an optical

field in free space.

Equation (1.18) can also be exploited to investigate the propagation of structured

light fields in turbulent/random medium. For that, a complex phase function  (⇢, r, z) is

introduced in the integral describing a turbulent medium.

E(⇢,�, z) = � ik

2⇡z
exp (ikz) exp

⇣
ik

2z
⇢
2
⌘ZZ

E(r, ✓) exp
⇣
ik

2z
r
2
⌘

⇥ exp
⇣
� ik

z
⇢ r cos(✓ � �)

⌘
exp[ (⇢, r, z)] rdr d✓, (1.19)

Intensity after propagating distance z in a turbulent medium is given by

hI(⇢,�, z)i = hE(⇢,�, z)E⇤(⇢,�, z)i (1.20)

Where h . i denotes an ensemble averaging over di↵erent realizations of random phases
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corresponding to a turbulent medium. Using Eq. (1.19) into Eq. (1.20), we get

hI(⇢,�, z)i =
⇣

k

2⇡z

⌘2 ZZ ZZ
E(r, ✓)E⇤(r0, ✓0) exp

⇣
ik

2z
(r2 � r

02)
⌘

⇥ exp
⇣
� ik

z
r⇢ cos (�� ✓)

⌘
exp

⇣
ik

z
r
0
⇢ cos (�� ✓

0)
⌘

⇥hexp[ (⇢, r, z) +  
⇤(⇢, r0, z)]irr0 dr dr0 d✓ d✓0. (1.21)

The last term in above integral describes the correlation of random fluctuations, which is

given as

hexp[ (⇢, r, z) +  
⇤(⇢, r0, z)]i = exp(�0.5D ) = exp

⇣
� (r � r

0)2

l(z)2

⌘
. (1.22)

D denotes the phase structure function in Rytov’s representation, and l(z) is the coher-

ence length of the spherical wave propagating in a turbulent medium and depends upon

turbulence strength C
2
n as l(z) = (0.545C2

nk
2
z)�3/5. After substituting Eq. (1.22) into

Eq. 1.21, we get

hI(⇢,�, z)i =
⇣

k

2⇡z

⌘2 ZZ ZZ
E(r, ✓)E⇤(r0, ✓0) exp

⇣
ik

2z
(r2 � r

02)
⌘

⇥ exp
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� ik

z
r⇢ cos (�� ✓)

⌘
exp

⇣
ik

z
r
0
⇢ cos (�� ✓

0)
⌘

⇥ exp
⇣
� (r � r

0)2

l(z)2

⌘
rr

0
dr dr

0
d✓ d✓

0
. (1.23)

Equation (1.23) represents an intensity distribution at a propagation distance z in a tur-

bulent medium. The last term in Eq. (1.23) restricts the separability of radial and angular

parts, making it di�cult to solve it in its present form. The integral in Eq. (1.23) is di�cult

to solve analytically for complicated intensity and phase distributions. Therefore, it can

either be solved by a stationary phase method or numerically by the Angular Spectrum

Method (ASM) [148].

ASM is a mathematical approach for simulating the wave propagation. It is useful

for analyzing wavefront propagation through optical systems including lenses, di↵raction
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gratings, and free space propagation. The ASM is based on the idea of breaking down a

wavefront into a series of plane waves with varying propagation directions (angles). Each

plane wave component of the wavefront contains information of spatial frequency content

and propagation direction of the wavefront. By accounting for a number of plane wave

components, the ASM successfully simulates wave propagation over long distances as well

as in sophisticated optical systems.

A step-by-step procedure of the angular spectrum method is given as [148]:

1. Fourier transform: Using a Fourier transform operation, the electric field E(r, ✓)

with its complex phase is divided into its spatial frequency components. Now the spatial

domain of the field is transformed into the frequency domain. The Fourier spectrum of

the field is splitted into angular slices or planes, each of which corresponds to a certain

propagation direction. The angular slices are perpendicular to the propagation axis.

2. Propagation of angular slice: Each angular slice is propagated individually

using a propagator for a certain distance. This involves applying a phase shift that is in

line with the angular slice’s unique propagation direction and propagation distance.

3. Inverse Fourier transform: After propagating each angular slice, an inverse

Fourier transform is applied to obtain the wavefront in the spatial domain.

The above steps can be summarized as [148]:

E(⇢,�; z) = F�1
.H(f, z).F(E(r, ✓)), (1.24)

where, F and F�1 denote the Fourier and inverse Fourier transform operations. H(f, z) =

e
ik0ze

�i⇡�z(f2
x+f2

y ) is a propagator for distance z. fx and fy are the spatial frequencies along

horizontal and vertical directions. The ASM enables simulation of wave propagation

through various optical systems, including free space propagation, di↵raction, and phase

elements. The ASM also provides a flexible and computationally e�cient approach to

understand the propagation of light in random or turbulent media.
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1.4.3 Quantification parameters

To characterize the various properties of generated spatially structured light, di↵erent

types of quantification approaches are required. Here, we have discussed various quantifi-

cation parameters to measure the quality, purity, self-healing, autofocusing, and coherence

of spatially controlled structured light.

1.4.3.1 Root mean square error (RMSE)

The quality of generated light can be quantified by the root mean square error (RMSE),

and it can be defined as [149]

RMSE(z) =

vuuuuuuut

NX

i=1

(Ig(x, y; z)� It(x, y; z))
2

NX

i=1

It(x, y; z)

, (1.25)

where Ig(x, y; z) and It(x, y; z) represent the intensity distributions of generated and tar-

get structured light at a distance z. It measures the di↵erences between generated and

target intensity distributions, and accordingly, it quantifies the quality of generated struc-

tured light.

1.4.3.2 Overlap integral

An overlap integral measures similarities between the generated and target intensity dis-

tributions of structured light. It is defined as [150]

C(z) =

RR
It(x, y; z)Ig(x, y; z) dx dyqRR

I
2
t (x, y; z) dx dy

RR
I2g (x, y; z) dx dy

. (1.26)

It is a normalized integral whose value varies between 0 to 1. The value “0” denotes the

poor similarity, whereas value “1” denotes high similarity. It also determines the quality
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of generated structured light. This parameter is highly used in quantifying the degree of

self-healing of partially truncated structured light. Further, it is also used to quantify the

distortions introduced by propagation of light through complex media.

1.4.3.3 Beam quality factor (M2)

The beam quality factor is used to assess the quality of a laser beam. Particularly, M2

is a dimensionless quantity that measures the divergence and focusing capabilities of a

laser beam. The M
2 = 1 corresponds to a perfect Gaussian beam. A lower value of

M
2 indicates a good beam quality and has less divergence as well as better focusing

abilities [151]. It is defined as

✓d = M
2 �

⇡�0
, (1.27)

where ✓d is half-angle beam divergence, � denotes the wavelength of light, and �0 is

minimum beam waist. The M
2 provides a simple means for accurately calculating the

most commonly required features of laser beams, namely, divergence angle, propagation

characteristics, and the size of focused spot.

1.4.3.4 Modal decomposition

Owing to the completeness and orthogonality of HG and LG beams, any beam can be

expressed as a linear superposition of higher orders LG and HG modes [152].

I(r) =
X

p,l

|cpl|2|upl(r, ✓)|2, (1.28)

where |cpl| is the weight of each mode. The self-healing properties of structured light can

be quantified by calculating the modal spectrum. For example, if U(x, z) and Ū(x, z) are

ideal and self-heald beam, then

Ū(x, z) ⇡ ↵U(x, z), (1.29)
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where ↵ represents the power loss due to truncation. The modal spectrum can be written

as

c̄pl ⇡ ↵ cpl, (1.30)

This suggests that for self-healing to occur the modal spectrum of the truncated beam

should resemble the modal spectrum of an ideal beam. Since the modal spectrum is

invariant under propagation, this decomposition can be performed at any convenient

plane [152].

1.4.3.5 Di↵raction e�ciency (⌘)

Di↵raction e�ciency determines the fraction of light in any local region of transverse plane

compared to the total amount of light. It is defined as

⌘ =
Intensity in a selected region

Total intensity of light
. (1.31)

It is a dimensionless quantity, and its modified versions can also be used to calculate the

conversion e�ciency ⌘c of beam shaping methods.

⌘c =
Intensity in the shaped output beam

Total intensity of incident light
. (1.32)

1.4.3.6 Fringe visibility (V)

It quantifies the coherence of two interfering sources by calculating the contrast between

the maxima and minima of interference pattern. It is defined as [153]

V =
Imax � Imin

Imax + Imin
, (1.33)

where Imax and Imin denote the intensity at the locations of interference maxima and

minima.
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1.5 Spatial light modulators: A tool for laser beam

shaping

In this thesis, we have employed Spatial light modulators (SLMs) for generation and

characterization of spatially controlled structured light. Therefore, in this section, we

have discussed working principle of SLM for amplitude and phase modulation of light.

SLMs are computer controlled devices and can act as transforming elements in laser beam

shaping. Owing to the digital control, SLMs can modulate the light both inside as well

as outside the laser cavity. SLMs allow the precise control and manipulation of light by

modifying the amplitude, phase, or polarization of an incident light.

In most of the SLMs, nematic liquid crystals (LCs) are used to introduce phase shift

in the incident laser beams. In the absence of an electric field (voltage), the LC molecules

are randomly oriented. However, applying a voltage (V ) can change the orientation of

the LCs in a pixel by an amount (�). Due to this, the refractive index corresponding to

an extraordinary light ray will change according to the relation

1

n2
e(�)

=
⇣cos �

ne

⌘2
+
⇣sin �

no

⌘2
. (1.34)

Where ne and no are refractive indices corresponding to ordinary and extraordinary light

rays. According to Jones matrix formulation, the matrix for a phase retarder can be

written as:

M =

0

@ exp (i✓e) 0

0 exp (i✓o)

1

A = exp (i✓o)

0

@ exp (i (✓e � ✓o)) 0

0 1

1

A . (1.35)

Here, ✓o = kdno and ✓e = kdne are phase o↵sets in the directions of no and ne respectively.

k = 2⇡/� is the wavenumber of an incident light and d denotes the thickness of liquid

crystals. Therefore, the total phase shift is given by:

�⇥ = k(ne � no)d. (1.36)
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For an incident electric field in the form Ein = Eeê+Eoô, the output electric field can be

written as:

Eout = MEe =

0

@ Ein exp (i (✓e � ✓o))

Eo

1

A . (1.37)

Equation (1.37) shows that the component of electric field parallel to ne, acquires a phase

shift, whereas, the component parallel to no remains unchanged. Figure 1.17 shows the

structure of LCoS-SLM (liquid crystal on silicon based SLM). Figure 1.17(a) shows the

schematic of an SLM, where a transparent layer of electrode controls the LCs sandwiched

between two transparent alignment layers. The SLM includes a silicon substrate at the

bottom, with an active matrix circuit on top, directly connected to pixelated metal elec-

trodes. These electrodes control the orientation of the LC molecules at each pixel. Finally,

the top of the SLM is covered with a transparent glass substrate. Figure 1.17(b) shows

a front view of HOLOEYE reflective type phase-only SLM, used for the investigation of

beam shaping throughout this thesis. Our SLM has a resolution of 1920 ⇥ 1080 pixels,

with a pixel size of 8 µm. The SLM is connected to a driver board with the flex cable,

which is further connected to a computer. Thus, any phase distribution in grayscale,

divided into 256 levels can be projected on SLM display, which can change the phase of

an incident beam from 0 to 2⇡.

Figure 1.17: (a) Schematic of SLM structure. (b) Image of a commercial phase-only
reflective type HOLOEYE SLM.
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1.5.1 Computer generated holograms for SLMs

As discussed above, SLM is an electronically controlled device, where the phase shift

from 0 to 2⇡ can be given by the controlled rotation of LCs. The rotation of LCs is

directly proportional to an applied voltage, however, for a precise rotation/orientation,

the calibration of SLM is required. The calibration of SLM can be done either by the

provided calibration data or by performing a double slit experiment with SLM. Once

calibrated, a computer-generated hologram can be projected on the SLM display, allowing

modification of phase or complex-amplitude (both amplitude and phase) of the light. The

methods for preparing phase-only holograms for both types of modulations are discussed

below.

1.5.1.1 Phase-only modulation

In phase-only modulation, the amplitude of an incident laser beam remains the same as

that of modulated beam. This is similar to a case when any point in a complex plane

lying on the circumference of a circle is shifted to another point on the circle keeping the

radius (amplitude) same (shown in Fig. 1.18). Therefore, points inside the circle are not

available for the transformation. Let us assume that E1 = E01exp(i�1) is an incident field

with amplitude E01 and phase �1, and E2 = E02exp(i�2) is a desired field. Then, the

Figure 1.18: Representation of a complex plane for phase-only modulation.

transfer function can be written as

t =
E2

E1
=

E02 exp(i�2)

E01 exp(i�1)
. (1.38)
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For phase-only modulation, E01 = E02, hence the transfer function is simplified as

t = exp[i(�2 � �1)] (1.39)

Corresponding to the above transfer function (Eq. (1.39)), the phase of a computer-

generated hologram is given as mod(�2 � �1, 2⇡). Now, for any phase encoded on SLM,

the conversion e�ciency is not 100% even for an accurate polarisation state of an incident

light. It is due the fact that a 2D grating is formed by a pixel array (pixelation), and

because of it light di↵racts in many directions. Also, imperfections in the calibration

and residual reflection from electrodes result in unmodulated light. If these are not sep-

arated, then it may interfere with the modulated light, which in turn may degrade the

output beam quality. To isolate the modulated light, a blazed grating is added to the

hologram, which separates the modulated light in the first-order and the unmodulated

light in zeroth-order. The angle of separation can be controlled by the spatial frequency

of the grating. Therefore, the phase of hologram can be given as

t = exp[i(2⇡Nxx+ 2⇡Nyy + (�2 � �1))]. (1.40)

Also, if an incident light is assumed to be a plane wave then �1 = 0, and �2 = � represents

the phase of a desired beam. In this scenario, the transfer function is written as

t = exp[i(2⇡Nxx+ 2⇡Nyy + �)]. (1.41)

1.5.1.2 Complex amplitude modulation

Simultaneous modulation in both amplitude and phase of an incident beam is known

as complex-amplitude modulation. Phase-only SLMs face challenges when it comes to

complex-amplitude modulation, as they can only modulate the phase of an incident laser

beam. Also, SLM is not a component with an active medium, hence it cannot increase

the amplitude of an incident laser beam. Therefore, to change the amplitude of the beam,
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light is steered away from the desired locations in the modulated first order. Hence, the

phase hologram must contain information about both the amplitude and phase of a desired

beam. To modulate the amplitude, a blazed grating with high spatial frequency is added

to the field, and the di↵racted beam is filtered out in higher orders. This can be understood

Figure 1.19: Representation of a complex plane for modulation of complex-amplitude.

from a generalized example of complex plane, where A1 and A2 represent vectors on unit

circle with phase �1 and �2 .The resultant vector is represented by vector A3, which is

not on unit circle i.e., a non-unit amplitude with any desired phase (Fig. 1.19). A simple

example is checkerboard pattern described by binary phase distribution, where �1 and �2

represent phase values of neighboring boxes with equal amplitude. In complex plane this

can be assumed as two vectors with equal amplitude with di↵erent phase angles. Therefore

the resultant amplitude can be controlled by the phase di↵erence (�2��1) [154]. In recent

past, various methods for the generation of holograms have been proposed [155,156].

The complex electric field of a desired beam can be expressed as

E(x, y) = E0(x, y) exp(i�(x, y)), (1.42)

where E0(x, y) is normalised field amplitude and �(x, y) represents the phase of a desired

beam. The aim is to encode the complex field E(x, y) by means of a phase transmittance

function (phase hologram) to incorporate amplitude variations as the phase variations,

that is, a function t(x, y) must be given by

t(x, y) = exp [i (E0,�)] , (1.43)
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where  (E0,�) accounts both the amplitude and phase variations. To find the desired

form of phase function  (E0,�), t(x, y) can be expressed as the Fourier series in a domain

of  as [155]

t(x, y) =
1X

p=�1
c
E0
p exp(ip�), (1.44)

where

c
E0
p =

1

2⇡

Z ⇡

�⇡
exp[i (E0,�)] exp(�ip�)d�. (1.45)

The field E(x, y) can be recovered from only the first-order term of Eq. (1.45), provided

that the following identity is fulfilled

c
E0
1 = E0a, (1.46)

where a is a positive constant. Further, the phase function  (E0,�) with odd symmetry

can be expressed as

 (E0,�) = f(E0) sin(�). (1.47)

In this case, the phase transmittance function (Eq. 1.43) becomes t(x, y) = exp[i.f(E0) sin(�)].

Expressing it in the Fourier series using Jacobi-Anger identity, we get

exp[i.f(E0) sin(�)] =
1X

q=�1
Jq[f(E0)] exp(iq�), (1.48)

where Jq represents Bessel function of qth order. Using Eqs. (1.44), (1.46) and (1.48), we

get

c
E0
1 = J1[f(E0)]. (1.49)

Therefore, from Eqs. 1.46 and (1.49), we get

E0a = J1[f(E0)]. (1.50)

The function f(E0) can be determined by numerical inversion of Eq. (1.50). The maximum
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value of a for which Eq. (1.50) can be fulfilled is⇠ 0.58, which corresponds to the maximum

value of the first-order Bessel function J1(x), which occurs at x ⇡ 1.84. This restricts

f(E0) in the interval [0, 1.84]. The modulated field consists of first and higher orders,

thus to separate the first order, a blazed grating is added to the phase of hologram, as

described previously.

1.6 Outline of thesis

The thesis is structured into eight chapters. In present chapter, we have given a brief

review of the literature relevant to the thesis to provide state-of-the-art in the field of

structured light by discussing various types of spatially structured light and methods to

generate them. We emphasize the challenges in the field of structured light and elaborate

on how we address those challenges. The summary of the contents of each chapter is

provided below.

In Chapter 2, we have presented an outer-cavity method for tailoring the light in

amplitude degree of freedom to generate high-quality uniform-intensity beams with cus-

tomized shapes, using di↵ractive optical elements (DOEs) [32, 33]. The phase of DOEs

is obtained by an iterative method (modified Gerchberg-Saxton algorithm) that involves

spatial Fourier filtering. The obtained DOEs consist of simple design (smooth phase

distribution), which makes them easier to fabricate. An input laser beam with Gaussian

intensity distribution illuminates the DOE, and after propagating a certain distance (work-

ing distance) transforms into the desired uniform-intensity output beams with customized

shapes such as square, annular, rectangular, hollow square, and plus spatial shapes. The

quality of the output beams is quantified by calculating root mean square error (RMSE)

with respect to the ideal beams. We have performed a detailed robustness analysis on

the quality of shaped output beams against various types of imperfections in an input

beam, such as misalignment with respect to DOE, presence of speckle noise, asymmetry,

presence of higher order transverse modes, and mismatch of beam sizes. We have found

that the shaped output beams with reasonably good quality are obtained over a broad

1 Introduction
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range of imperfections. However, in the case of speckle noise, the quality of shaped output

beams can be further improved by an additional external spatial Fourier filter of suitable

transmission function. Furthermore, to investigate spectral properties of method, we have

designed a DOE for a particular wavelength and illuminated it with an input beam over

a broad range of wavelengths. We have found that the quality of shaped output beams

remains excellent over a broad spectral range. However, the working distance decreases

with an increase in the wavelength.

In Chapter 3, we have presented tailoring of light in the amplitude and phase degrees

of freedom for generating special type of structured light (called aberration laser beams

(ALBs)) containing multiple bright lobes and possessing unique propagation features, such

as autofocusing and self-healing in both free space as well as in turbulent media [37, 39].

The ALBs are generated, based on an outer-cavity method, using a DOE whose phase

distribution consists of radial and periodic angular dependence. We have presented a

detailed mathematical formulation for describing the propagation of ALBs in turbulent

media by solving Huygen-Fresnel integral using stationary phase method. We have found

that the presence of turbulence leads to distortions in the spatial intensity distribution

of ALBs, as well as causes beam wandering. The e↵ect of turbulence on the propagation

of ALBs is quantified by calculating overlap integral with respect to ALB in free space.

The ALBs possess good autofocusing properties both in free space as well as in turbulent

media, where on-axis peak intensity becomes maximum with tight focusing. In particular,

the autofocusing properties of ALBs remain invariant, irrespective of turbulence strength.

The autofocusing distance can be controlled from any small to large values, by controlling

the ALB parameters. Further, we have also investigated the spectral dependence of

autofocusing of ALBs in turbulent medium and found that autofocusing distance does

not depend on the turbulence, however, it decreases with an increase in wavelength.

Furthermore, we have performed a detailed investigation of self-healing of ALBs both

in free space as well as in turbulent media of di↵erent turbulence strengths. We have

found that, both in free space and turbulent media, the truncated ALB self-heals by re-

distributing the intensity within the beam. The ALBs self-heal reasonably well even for a
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large amount of truncation (⇠ 60%). The maximum self-healing always occurs at an aut-

ofocusing distance, which remains invariant irrespective of the amount of truncation and

strength of turbulence. A good agreement between theory, simulations, and experimental

results is obtained.

In Chapter 4, we have presented generation of asymmetric aberration laser beams

(aALBs) with controlled intensity distribution, based on an outer-cavity method employ-

ing a DOE with phase asymmetry [38, 40]. We have introduced the phase asymmetry in

DOE by shifting coordinates in a complex plane, which provides an additional control

over spatial intensity distribution of beam. We have derived the mathematical formu-

lations for general aALBs as well as the special cases of it. We have shown that in an

ideal ALB containing equal intensity bright lobes, by introducing asymmetry most of the

intensity can be transferred to any one of the single lobe, and generates a high-energy

density. Further, we have explored the mechanism of asymmetric control of intensity in

aALBs and found that the asymmetry parameters control the position of indeterminate

phase point of the trigonometric phase term in aALB, which creates a controlled asym-

metric intensity distribution in the near-field plane. As a result of propagation it provides

a controlled transfer of intensity within aALB. In general, for a given parameter m of

aALB, the precise spatial location of high-energy density lobe can be controlled by by

the precise variation in the asymmetry parameter �, and we have determined empirical

relations for them. We have found that for the specific values of � and m, the intensity

in the high-energy density lobe can be enhanced by several times the intensity in other

lobes. Further, we have investigated the propagation of aALBs, and found that similar

to ALBs, the aALBs possess good autofocusing properties, which are not a↵ected by the

asymmetry. The autofocusing distance in aALBs can be varied from small to large val-

ues by changing the beam parameters. We have found a good agreement between the

experimental results and numerical simulations.

In Chapter 5, we have presented the generation of high-energy densities by sup-

pression of higher-order sidelobes in the far-field of phase-locked lasers [41, 42]. We have

generated an array of lasers in various 1D and 2D array geometries in a degenerate cav-

1 Introduction
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ity and phase-locked them in the in-phase [out-of-phase] configuration with the far-field

coupling using Gaussian apodizer [binary circular aperture]. Owing to the non-uniform

amplitude and definite geometry, the far-field of phase-locked lasers consists of higher-

order sidelobes. These sidelobes contain a significant amount of energy, which limits the

use of an output beam for high-power applications. Our method relies on modifying the

combined field (near-field and far-field) distribution of phase-locked lasers to obtain uni-

form amplitude and phase distributions in a near-field plane, which enables the formation

of a high-power density lobe (zeroth-order) in the far-field. We have demonstrated our

method for phase-locked lasers in various array geometries, such as square, triangular,

Kagome, random, and 1D ring. The results are quantified by calculating the di↵raction

e�ciency of the zeroth-order lobe. It is found that for long-range in-phase locked laser

arrays, the di↵raction e�ciency of zeroth-order lobe can be improved by several factors

(⇠ 3� 4). The improved di↵raction e�ciencies are found to be in a range of 90%� 95%

(for 2D arrays) and ⇠ 75% (for 1D ring array). Further, we have analyzed robustness of

our method against various factors, such as the range of phase-locking, system size, and

presence of topological defects in a 1D ring array. We have also investigated our method

for out-of-phase locked lasers in a square array, where the zeroth-order has no intensity.

We have obtained a high-energy-density zeroth-order lobe with a high di↵raction e�ciency

of 81%.

In Chapter 6, we have presented a novel and e�cient intra-cavity method for the

generation of high-power discrete optical vortices with precisely controlled topological

charges (l) by phase-locking one-dimensional (1D) ring array of lasers in a degenerate

cavity that involves spatial Fourier filtering [43–45]. Owing to the special geometry of a

degenerate cavity, it enables an e�cient formation of a 1D ring array of lasers, where each

laser consists of a nearly fundamental Gaussian distribution, and independent from each

other. Initially, the lasers consist of random phase distribution and are equally probable.

To force them into a desired phase-locked state of optical vortex configuration, we employ

a special Fourier filter (amplitude mask) at the Fourier plane inside the cavity. The

spatial Fourier filtering mechanism helps to eliminate the undesired phase distributions
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by introducing additional losses to them, thereby, enables the lasers to find a correct

phase distribution in the form of a desired discrete optical vortex. We have performed a

detailed investigation on the propagation, such as divergence and self-healing, of discrete

optical vortices, and compared them with the conventional continuous optical vortices. We

have found that for a given system size (number of lasers) and fixed distance between the

neighbouring lasers, the size of a discrete optical vortex and its divergence does not depend

on the topological charge, which is found to be di↵erent than the conventional continuous

optical vortices (Laguerre-Gaussian/Bessel-Gaussian beams). Further, we have performed

a detailed investigation of self-healing by partially truncating a discrete optical vortex in

the waist plane (z = 0) and propagated plane (z > 0). To quantify the self-healing,

we have calculated an overlap integral to analyze the similarities between the self-healed

and ideal discrete optical vortices. The results show that partially truncated discrete

optical vortex can self-heal reasonably well. Moreover, we have found that the self-healing

distance increases with the value of topological charge of discrete optical vortex. The self-

healing distance is also found to be dependent on the amount of blocking, particularly, it

increases with an increase in the amount of blocking. We have obtained a good agreement

between the analytical and numerical results.

In Chapter 7, we present a novel and e�cient method for accurate determination

of magnitude and sign of topological charge (l) of an unknown discrete optical vortex,

which is formed by an array of lasers in a 1D ring geometry [46]. We have presented a

simple analytical formulation of working principle of our method. It relies on measuring

the interference pattern of a discrete optical vortex, which is obtained by interfering a

single selected laser with itself and with all the other lasers in a 1D ring array, using

a Mach-Zhender interferometer. The interference pattern is quantified by analyzing the

fringe visibility at each laser in a 1D ring array. The discrete laser arrays with l = 0 and

l 6= 0 have di↵erent phase distributions, thus produce interference patterns with shifted

interference fringes. The averaging of these phase-shifted interference patterns gives rise

to a variation in the fringe visibility as a function of laser number in the discrete optical

vortex, thus enabling identification of l. The magnitude of l of a discrete optical vortex

1 Introduction
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is found to be proportional to the number of dips observed in the fringe visibility curve.

Further, for an accurate determination of sign of an unknown discrete optical vortex

(l 6= 0), we have averaged the interference pattern of it with the interference pattern

of known l = +1. The number of dips in the fringe visibility curve increases by one for

positive values of l and increases by one for negative values of l. We have also investigated

the robustness of our method against the presence of phase disorder that may occur due

to the presence of aberrations in a system. It is found that the phase disorder does

not a↵ect an accurate measurement of topological charge of an unknown discrete optical

vortex. We have demonstrated our method for discrete optical vortices with topological

charges from small to large values and accurately determined their magnitude and sign.

We have provided a theoretical description along with numerical and experimental results,

and found an excellent agreement between them, indicating that our method is accurate

and highly e�cient.

At the end, the conclusive chapter (Chapter 8) contains a summary of the results

discussed in the aforementioned main chapters of the thesis. We also consider some future

directions that might aid in gaining a deeper understanding of structured light and its

propagation properties.



Chapter 2

Generation of structured light with

uniform-intensity and customized

spatial shapes

2.1 Introduction

In previous chapter, we have discussed the concept of spatially structured light with

relevance to applications in diverse fields as well as its generation based on various intra-

cavity and outer-cavity methods. This chapter emphasizes on simple, cost-e↵ective, and

e�cient outer-cavity method for tailoring of amplitude degree of freedom of light to ob-

tain uniform-intensity beams with customized spatial shapes. As discussed in Sec. 1.2.1,

uniform-intensity beams are desired for numerous applications where conventional Gaus-

sian beam poses physical limitations, for example, in material processing, micro struc-

turing, laser thermal annealing, laser fusion, lithography, laser radars that use detector

arrays, laser scanning, e�cient power extraction in laser amplifiers, medical, optical data

processing, interferometric gravity wave detectors, optical lattices, etc. [36, 47, 157–161].

Over the years several methods have been investigated to generate uniform-intensity

beams, including transmissive optics (images of masks and mask-like mirrors) [97,98], re-

53
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fractive optics (lenses, aspheric elements and anisotropic crystals) [99,100,162], di↵ractive

optics (with propagation to far field plane or near-field plane) [47,127,157,163–165], and

spatial light modulators (SLMs) [123, 158, 166–168] [and refs. there in]. Further, another

approach is also realized based on that the spatial coherence of an optical field in the

source plane is closely related to the intensity distribution of its far-field [169,170].

For e�cient light tailoring, a method is desired with low loss, high throughput, high

damage threshold, robustness against errors, and simple and cost-e↵ective design. As

many investigations are based on SLMs, which pose limitations due to low damage

threshold, and exhibits power loss due to higher di↵raction orders and polarization el-

ements [167, 168]. It also involves challenges such as inherent wavefront error of SLM,

digitization e↵ect of SLM command resolution, as well as cross-talk between the pix-

els [171]. Whereas, methods based on di↵ractive optical element (DOE) rely only on few

passive elements in a compact configuration, exhibits high power e�ciency, high damage

threshold, and low cost of production and replication [163, 172], which are particularly

important for high-power applications.

The DOE based method involves a rapid conversion from an input beam into a shaped

output beam with high-quality after a certain propagation distance [47]. The quality of

beam shaping also depends on the DOE design parameters, for example, input/output

beam size, wavelength, and imperfections in an input beam. For example, when a DOE

designed with specific parameters, is illuminated with an input beam that has either a

di↵erent size or wavelength or is misaligned or consists of noise (speckles or higher order

modes), the quality of the shaped output beam deteriorates as well as the energy losses

also occurs [165, 173, 174]. Thus to achieve high-quality shaped output beams, we have

investigated these aspects of robustness in detail.

In this chapter, we present a DOE based outer-cavity method for generation of uniform-

intensity beams with customized spatial shapes. Quality of generated beams is quantified

by the calculation of root mean square (RMSE) (Eq. (1.25)). Further, we have performed

a detailed robustness analysis on the quality of generated shaped output beams against

the various imperfections in an input beam. We have also performed spectral analysis of
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method and show that the quality of shaped output beam remains excellent over a broad

spectral range of input beam. In Section 2.2, we present a method to determine the phase

distribution of DOE for generating uniform-intensity beams. In Section 2.3, the designs

of DOEs for generating di↵erent spatial shape beams are presented. In Section 2.4, a

detailed analysis on the quality of generation of spatially shaped beams is presented. Fi-

nally, in Section 2.5 we present concluding remarks. The results presented in this Chapter

are given in Refs. [32, 33].

2.2 Basic procedure

The uniform-intensity beams with customized spatial shapes are generated with a simple

yet e�cient outer-cavity method by means of DOEs using the basic procedure illustrated

in Fig. 2.1. An input Gaussian beam illuminates the DOE at z = 0, the phase distribution

Input 

DOE

Output

Figure 2.1: Basic arrangement for forming uniform-intensity spatial shaped beams based
on a DOE. The schematic illustrates the conversion of an input Gaussian beam into a
uniform-intensity square shaped output beam. The representative results are simulated
with parameters: input/output beam waist = 2 mm, n = 14, � = 1.064 µm, and working
distance z = 75 cm. The intensity is normalized to the maximum value of 1 (same in
other figures).

2 Generation of structured light with uniform-intensity and customized

spatial shapes
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of DOE is imposed on it, which then transforms into an output beam of desired spatial

shape with uniform-intensity distribution after propagating a certain distance z (called

working distance). Specifically, Fig. 2.1 shows the generation of a square-shaped beam

with uniform-intensity distribution.

The DOEs are phase-only elements whose phase distributions can be determined by

either analytical [114, 115], hybrid [117], or numerical methods [47, 165]. The analytical

methods have been realized by the holographic conversion [114], ray-tracing and geomet-

ric transformation [115, 116], whereas, the hybrid methods involve analytical solution as

a start step in the iterative process [117]. Beam shaping has also been obtained with

a conformal approach based on 1D symmetrical solutions [175, 176]. This method relies

on a Fourier transform relation between the input and output beam functions. Several

numerical methods based on iterative algorithms are also proposed for designing DOEs.

These include Gerchberg-Saxton (GS) algorithm [118] and its modified versions [149],

the Yang-Gu algorithm [120], the simulated annealing algorithm [122], and the genetic

algorithm [121]. Many of these algorithms su↵er from various limitations, such as (i)

presence of speckle noise or intensity fluctuations in shaped output beam, which leads to

poor beam quality, (ii) irregular phase distribution of DOE, which leads to fabrication

di�culties, and (iii) strong dependence on initial conditions of algorithm results in conver-

gence di�culties. However, considerable e↵orts have been made to improve the quality of

generated shaped output beam [47, 123, 165, 166]. Recently, new methods based on deep

learning have also been proposed to overcome issues related to traditional time-consuming

iterative methods for designing non-trivial optical elements [177,178].

We determine the phase distribution of DOEs by using a modified Grechberg-Saxton

algorithm, which is an iterative algorithm for determining the phase of a pair of field

distributions that are related by the Fresnel propagation, and involves a spatial Fourier

filtering mechanism to ensure a smooth and accurate phase distribution [47, 165]. In

our method (Fig. 2.2), the incorporation of spatial Fourier filtering is inspired by an ex-

perimental approach, where a variable intracavity Fourier aperture helps to control the

number of spatial modes [179]. By varying the size of Fourier aperture introduces losses
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Spatial Fourier filtering

Propagation (z)

Input plane

Propagation (z)
Output plane

Extract phase
and impose on
target intensity

Extract phase
and impose on
input intensity

Input

Target

Random 
phase

for first
iteration

Figure 2.2: Modified GS algorithm for obtaining the phase distribution of DOEs, which
are used for generating uniform-intensity beams with customized spatial shapes.

to some of the modes, and thus these modes stop lasing in the cavity. Similarly, in our

approach, spatial Fourier filtering with variable aperture eliminates the undesired phase

distributions and enables to find the correct phase distribution that can transform an

input field distribution into a desired output field distribution. Particularly, only those

phase distributions can pass through the spatial filter that satisfies the input and out-

put field distributions. The process involved in our method is similar to that in phase

retrieval [139]. Further, spatial Fourier filtering also ensures a smooth phase distribution

of DOE, which makes it technically suitable for fabrication.

Particularly, in our method we start with a known Gaussian field distribution having

an initial random phase distribution at the input z = 0, and then propagate it to the

output plane at distance z by the Fourier transform and spatial Fourier filtering (shown

in Fig. 2.2). The propagation of beams at a distance z in free space can be realized using

either Fresnel propagation or based on Fourier transform taking into account the diverging

wavefront [180, 181]. Since we have used spatial Fourier filtering, thus propagated beam

based on the Fourier transform method. After that we obtain new amplitude and phase

distributions. We replace this new amplitude distribution with the amplitude of the

desired output field and keep the new phase distribution. The resultant field distribution

2 Generation of structured light with uniform-intensity and customized

spatial shapes
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is propagated back to z=0 by Fourier transform and spatial Fourier filtering. We repeat

this process iteratively such that a correct phase distribution is obtained at z=0, which

can convert an input Gaussian beam into a desired output beam at the working distance z.

As opposed to the Gerchberg-Saxton algorithm, where the conversion is highly sensitive

to the initial choice of phase distributions, our method does not depend on the initial

conditions [165].

2.3 Uniform-intensity beams with customized spatial

shapes

We have generated di↵erent customized spatial shape beams with uniform-intensity dis-

tribution by means of di↵erent DOEs. The field distribution of a uniform-intensity square

shaped beam can be given as

ET (x, y) = E0 exp

✓
�x

n + y
n

�
n
0

◆
, (2.1)

where � is the beam waist, n is the order that describes the steepness of edges of ET (x, y),

and E0 is the maximum field amplitude. The results for generating a square shaped

output beam are shown in Fig. 2.1. The results are obtained with the parameter values

of input/output beam waist �0 = 2 mm, working distance z = 75 cm, order n = 14,

and wavelength � = 1.064 µm. As evident, the generated square shaped output beam

shows good qualitative agreement with an ideal beam (Eq. (2.1)). We have quantified the

quality of generated output beam by calculating RMSE (Eq. (1.25)). We have found

the RMSE value of 0.0076 (0.76%) for the square shaped output beam, which indicates a

high-quality generation.

The quality of the shaped output beam also depends on the working distance z for

which DOE is designed. For the very small and large values of z, the phase distribution

of DOE does not result a high-quality conversion [47]. Therefore, it is required to se-

lect an optimal working distance in a proper range that can maintain the generation of
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shaped output beam with high-quality. The optimal working distance depends on several

parameters, for example, wavelength, input beam size, and output beam size [47, 165].

By changing the input beam waist or output beam waist, it is also possible to change the

optimal working distance.

Further, we have generated uniform-intensity beams with various customized spatial

shapes such as annular, hollow square, rectangle, and plus. The results are shown in

Fig. 2.3.
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Figure 2.3: The phase distributions of DOEs for annular, hollow square, rectangle, and
plus spatial shapes (top row). The corresponding intensity distributions of generated
output beams with di↵erent spatial shapes (middle row). The corresponding intensity
cross-sections of the generated output beams (blue curves) together with the intensity
cross-sections of ideal beams (dot-dashed red curves) (bottom row).

The field distribution of a uniform-intensity annular shaped beam can be written

as [11]

ET (x, y) = E0 exp

0

@�

⇣p
x2 + y2 � r0

⌘n

�
n
0

1

A , (2.2)

where r0 is width of annular region, E0 is maximum amplitude, and �0 is the radius

of inner ring. The results for the uniform-intensity annular shaped beam are shown in

Figs. 2.3(a)-2.3(c). Figure 2.3(a) shows the phase distribution of DOE. The corresponding

generated annular shaped output beam is shown in Fig. 2.3(b). Figure 2.3(c) shows the

2 Generation of structured light with uniform-intensity and customized

spatial shapes
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intensity cross-sections of generated annular shaped beam and ideal beam (Eq. (2.2)),

which shows a reasonably good qualitative agreement. The results are obtained with the

parameter values of n = 14, �0 = 0.75 mm, r0 = 1.25 mm, z = 70 cm, and � = 1.064 µm.

We have found the RMSE value of 7.95%, indicating a good quality of annular shaped

output beam.

Next, we have formed a uniform-intensity hollow-square shaped beam, whose field

distribution is given as

ET (x, y) = E0 exp
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02

◆
. (2.3)

The results for the hollow-square shaped beam are shown in Figs. 2.3(d)-2.3(f). The

simulations are performed with the parameters n1 = 14, n2 = 4, �01 = 2 mm, and

�02 = 0.6 mm, z = 40 cm, and � = 1.064 µm. Figure 2.3(d) shows the phase distribution

of DOE. The corresponding generated hollow-square shaped beam is shown in Fig. 2.3(e).

Figure 2.3(f) shows the intensity cross-sections of generated hollow-square shaped beam

and ideal beam (Eq. (2.3)), which shows a reasonably good qualitative agreement. The

RMSE value is found to be 8.55%.

Further, we have generated a uniform-intensity rectangular shaped beam for which

the field distribution is given as

ET (x, y) = E0 exp
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�
n
02

◆
. (2.4)

The simulated results with the parameters n = 14, �01 = 2 mm, �02 = 1 mm, and

z = 79 cm, are shown in Figs. 2.3(g)-2.3(i). Figure 2.3(g) shows the phase distribution

of DOE. The corresponding generated rectangular shaped beam is shown in Fig. 2.3(h).

Figure 2.3(i) shows the intensity cross-sections of generated rectangular shaped beam and

ideal beam (Eq. (2.4)), which shows a reasonably good qualitative agreement. The RMSE

value is found to be 3.83%.

Finally, we have generated a uniform-intensity plus shaped beam for which the field
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distribution is written as

ET (x, y) = E0 exp
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The simulated results with the parameters n = 14, �01 = 2 mm, �02 = 0.7 mm, and

z = 41 cm, are shown in Figs. 2.3(j)-2.3(l). Figure 2.3(j) shows the phase distribution

of DOE. The corresponding generated rectangular shaped beam is shown in Fig. 2.3(k).

Figure 2.3(l) shows the intensity cross-sections of generated plus shaped beam and ideal

beam (Eq. (2.5)), which shows a reasonably good qualitative agreement. The RMSE value

is found to be 13.88%.

For generalization of our method, we have also examined the Fermi-Dirac, Flattened-

Gaussian, and Super-Lorentzian beams [63, 182]. The results are shown in Fig. 2.4. As

(a) (b) (c)

(e)

(h)

(d) (f)

(g) (i)

0

1π

-π

First row- Fermi-Dirac beam
Second row- Flattened-Gaussian beam.

Third row- Super-Lorentzian beam

Fermi-Dirac

Flattened-Gaussian

Super-Lorentzian

DOE (phase) Output Cross-section

Figure 2.4: Simulated results for the Fermi-Dirac, Flattened-Gaussian, and Super-
Lorentzian beams. First column: DOE phase distribution. Second column: Shaped
output beam. Third column: Intensity cross-sections of calculated and theoretical output
beams. The input/output beam waist �0 = 2 mm, flat-top index n = 14 and working
distance z=75 cm.
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evident, our method results in a very high-quality conversion from Gaussian input beam

into Fermi-Dirac, Flattened-Gaussian, and Super-Lorentzian shaped output beams, for

which RMSE is found to be ⇠ 0.5%. Although, these beams have di↵erent mathematical

expressions, but for the same parameters (degree of flatness and beam waist) all these

beams behave in a similar fashion [182], and thus the results appear to be the same.

2.4 Robustness analysis

In generation of structured light by means of DOE, the process of finding the phase

distribution of DOE involves the well defined parameters of input and output beams.

For example, to convert an input Gaussian beam into a square shaped output beam, the

design of DOE requires specific parameters, such as input and output beam size (waist),

and wavelength. Now, when a DOE designed with specific parameters, is illuminated with

an input beam which has either di↵erent waist, or wavelength, or includes misalignment,

speckles, and higher order transverse modes, the quality of shaped output beam becomes

deteriorated. So, we have performed a detailed analysis on the quality of shaped output

beams when various types of imperfections are introduced in an input beam. Such analysis

is important for the general applications of structured light in various fields. Note, the

robustness analysis is performed with square shaped output beam. A similar analysis is

also valid for other types of shaped output beams.

2.4.1 E↵ect of input beam size

Here, we have analyzed the quality of square shaped output beam against the imperfec-

tions introduced in the size of an input Gaussian beam. Specifically, we design a DOE

for an input Gaussian beam of waist �0 = 2 mm and then illuminate it with an input

Gaussian beam whose waist is varied from �
0
0 = 1 mm to �0

0 = 3 mm. The quality of

generated square shaped output beam is analyzed by calculating RMSE using Eq. (1.25).

The results are shown in Fig. 2.5. Figure 2.5(a) shows the variation of RMSE with the

deviation (�� = �
0
0 � �0) of input Gaussian beam waist with respect to �0. As evident,
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Figure 2.5: (a) The RMSE as a function of deviation in the input beam waist (�� =
�
0
0 � �0). (b) The intensity cross-sections of square shaped output beams (along dashed

blue line in inset corresponding to point P) for �� = 0.2 mm (solid blue curve), and for
�� = 0 mm (dot-dashed red curve). (c) The intensity cross-sections of square shaped
output beams (along dashed blue line in inset corresponding to point Q) for �� = �0.5
mm (solid blue curve), and for �� = 0 mm (dot-dashed red curve). The working distance
z= 75 cm, wavelength � = 1.064 µm, and square shaped output beam waist = 2 mm.

the RMSE is zero for �� = 0, and increases with the increase of |��|. The insets show

the intensity distributions of generated square shaped output beams for the deviations

�� = 0.2 mm and �� = �0.5 mm, corresponding to points P and Q, respectively. Fig-

ures 2.5(b) and 2.5(c) show the intensity cross-sections of the insets (along dashed blue

line) corresponding to points P and Q (solid blue curve), together with intensity cross-

section of square shaped output beam for �� = 0 (dot-dashed red curve). Specifically,

for �� = 0.2 mm, the RMSE is found to be 16% (Fig. 2.5(b)), whereas, for �� = �0.5

mm the RMSE is increased to 47% (Fig. 2.5(c)). We have found that for the deviation

|��| < 0.2 mm, the quality of generated square shaped output beam remains reasonably

good.

2.4.2 E↵ect of misalignment

In various applications of structured light generation, misalignment may occur, which

can cause distortion in the shaped output beam. So, we have investigated the e↵ect of

2 Generation of structured light with uniform-intensity and customized

spatial shapes
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misalignment of input Gaussian beam with respect to DOE. The results are presented

in Fig. 2.6. Figure 2.6(a) shows the RMSE of square shaped output beam as a function

of decentering o↵set (�x) (Gaussian is shifted horizontally with respect to the central

position of DOE). As evident, the RMSE increases with an increase in |�x|. The RMSE

increases due to the non-uniformity in the intensity distribution of square shaped output

beam. Specifically, when an input Gaussian beam is decentered towards the right (x > 0)

with respect to the center (x = 0) of DOE, the corresponding intensity decreases on the

left side (x < 0) of the square shaped beam (see insets in Fig. 2.6(a)). This is due to the

fact that left side (x < 0) of the DOE is illuminated with less intensity than the right side

(x > 0) of DOE.
Decentring of input Gaussian:

(a) (b)

(c)

P

Q

0 10.5

Figure 2.6: (a) The RMSE as a function of decentering o↵set (�x). The insets show
square shaped output beams corresponding to di↵erent o↵set values of �x = 0.1 mm and
�x = 0.6 mm. (b) The intensity cross-sections of square shaped output beams (along
dashed blue line in inset corresponding to point P) for �x = 0.1 mm (solid blue curve),
and for �x = 0 (dot-dashed red curve). (c) The intensity cross-sections of square shaped
output beams (along dashed blue line in inset corresponding to point Q) for �x = 0.6
mm (solid blue curve), and for �x = 0 (dot-dashed red curve). The working distance
z=75 cm, wavelength � = 1.064 µm, and input/output beam waist = 2 mm.

The insets show the intensity distributions of generated square shaped output beams

for the decentring o↵sets �x = 0.1 mm and �x = 0.6 mm, corresponding to points P and

Q, respectively. Figures 2.6(b) and 2.6(c) show the intensity cross-sections of the insets

(along dashed blue line) corresponding to points P and Q (solid blue curve), together
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with the intensity cross-section of square shaped output beam for �x = 0 (dot-dashed

red curve). Specifically, for �x = 0.1 mm, the RMSE is found to be ⇠ 10% (Fig. 2.6(b)),

whereas, for �x = 0.6 mm the RMSE is increased to ⇠ 60% (Fig. 2.6(c)). We have found

that for the o↵set |�x| < 0.1 mm, the generated square shaped output beam consists of

> 90% uniformity, and thus quality remains reasonably good.

2.4.3 E↵ect of asymmetry in the input beam

In many cases, the laser’s output profile is not circularly symmetric. When such a non-

circular (asymmetric) laser beam is used to illuminate DOE, the quality of shaped output

beam can be significantly impacted. Thus, we have investigated the e↵ect of asymmetry

in an input Gaussian beam on the quality of shaped output beam. The asymmetry in an

input beam is introduced by increasing the beam waist in the horizontal direction (�0x),

whereas it remains the same in a vertical direction (�0y). The asymmetry is measured as

�r = �0x/�0y. The results are shown in Fig. 2.7.Non-symmetric Gaussian

(a) (b)
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Figure 2.7: (a) The RMSE as a function of asymmetry �r in an input Gaussian beam.
(b) The intensity cross-sections of square shaped output beams (along dashed blue line
in inset corresponding to point P) for �r = 1.1 (solid blue curve), and for �r = 1 (dot-
dashed red curve). (c) The intensity cross-sections of square shaped output beams (along
dashed blue line in inset corresponding to point Q) for �r = 1.3 (solid blue curve), and
for �r = 1 (dot-dashed red curve). The working distance z = 75 cm, � = 1.064 µm, and
output beam waist = 2 mm.
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Figure 2.7(a) shows the RMSE in the shaped output beam as a function of asymme-

try �r in an input Gaussian beam. As evident, RMSE increases with the increase of

asymmetry �r. The insets show the intensity distributions of input Gaussian beam and

generated square shaped output beams for �r = 1.1 and �r = 1.3, corresponding to

points P and Q, respectively. Figures 2.7(b) and 2.7(c) show the intensity cross-sections

of square shaped output beams (along dashed blue line of insets) corresponding to points

P and Q (solid blue curve), together with the intensity cross-section of square shaped

output beam for �r = 1 (dot-dashed red curve). Specifically, for �r = 1.1, the RMSE is

found to be ⇠ 10% (Fig. 2.7(b)), whereas, for �r = 1.3, the RMSE is increased to ⇠ 34%

(Fig. 2.7(c)). We have found that for asymmetry �r < 1.1, the quality of generated square

shaped output beam remains reasonably good.

Next, we have considered asymmetric input Gaussian beam (beam waist 3 mm along

y-axis and 2 mm along x-axis) with di↵erent orientations in a transverse plane. The

(a) (b)

(c)
(d)

θ

Figure 2.8: (a) Asymmetric input Gaussian beam rotated by an angle ✓ with respect
to vertical y-axis. (b) The square shaped output beam when asymmetric input beam
rotated with ✓ = 45o illuminates DOE. (C) The rectangular shaped output beam when
asymmetric input beam rotated with ✓ = 45o illuminates DOE. (d) The RMSE of square
(blue line with squares) and rectangular (red line with stars) shaped output beams as a
function of rotation angle ✓ of asymmetric input Gaussian beam

asymmetric input Gaussian beam consists of 38% RMSE (with respect to an ideal sym-

metric Gaussian with a beam waist of 2 mm), which remains unchanged with rotation.
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The results are shown in Fig. 2.8. Fig. 2.8(a) shows an asymmetric input Gaussian beam

rotated with an angle of ✓ = 45o with respect to y-axis. Figures 2.8(b) and 2.8(c) show

the square and rectangular shaped output beams when an asymmetric input Gaussian

beam (Fig. 2.8(a)) incidents on DOEs. As evidenced, the rotation of asymmetric input

Gaussian beam leads to the reduction of uniformity in the intensity distributions of square

and rectangular shaped output beams. A more generalized study for several rotation an-

gles is presented in Fig. 2.8(d), which indicates that RMSE curves for both square and

rectangular shaped beams are not the same.

2.4.4 E↵ect of speckle noise in an input beam

The speckle noise is one of the major factors to a↵ect the quality of shaped output beam.

Several e↵orts have been made to reduce the speckle noise in the shaped output beam gen-

erated by means of di↵erent approaches [149,165,183]. Here, we explore how the speckle

noise (⇣) in an input Gaussian beam that illuminates the DOE (designed with specific

parameters), a↵ects the quality of shaped output beam. This is an important issue, as the

input Gaussian beam from many laser sources consists of intensity fluctuations (speckles).

⇣ refers to the root mean square error in input laser beam with respect to ideal Gaussian

beam, due to the presence of random intensity fluctuations. The simulated results are

shown in Fig. 2.9.

Figure 2.9(a) shows the RMSE as a function of speckle noise (⇣) in an input Gaussian

beam. As evident, the RMSE increases with the increase of ⇣. The insets show the

intensity distributions of input Gaussian beam and generated square shaped output beam

for ⇣ = 18% and ⇣ = 52%, corresponding to points P and Q, respectively. Figures 2.9(b)

and 2.9(c) show the intensity cross-sections of square shaped output beams (along dashed

blue line in insets) corresponding to points P and Q (solid blue curve), together with the

intensity cross-section of square shaped output beam for ⇣ = 0% (dot-dashed red curve).

Specifically, for ⇣ = 18%, the RMSE is found to be ⇠ 10% (Fig. 2.9(b)), whereas, for

⇣ = 52%, the RMSE is increased to ⇠ 34% (Fig. 2.9(c)). We have found that for the

2 Generation of structured light with uniform-intensity and customized
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speckle noise ⇣ < 20%, the quality of generated square shaped output beam remains very

good.
Presence of speckle noise in input Gaussian:

(a) (b)

(c)
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Figure 2.9: (a) The RMSE as a function of the speckle noise (⇣) present in the input
Gaussian beam. (b) The intensity cross-sections of square shaped output beams (along
dashed blue line in inset corresponding to point P) for ⇣ = 18% (solid blue curve), and
for ⇣ = 0% (dot-dashed red curve). (c) The intensity cross-sections of square shaped
output beams (along dashed blue line in inset corresponding to point Q) for ⇣ = 52%
(solid blue curve), and for ⇣ = 0% (dot-dashed red curve). The working distance z=75
cm, � = 1.064 µm, and input/output beam waist = 2 mm.

Furthermore, we have also demonstrated that the quality of shaped output beam can

be further improved by using an additional external spatial filter. Above, we have shown

that controlling speckle noise in an input Gaussian beam allows to reduce the speckles

in the square shaped output beam. However, for a large amount of speckles in an input

Gaussian beam (e.g., ⇣ > 20%), the square shaped output beam consists of significant

amount of speckles, thus quality remains poor. So, we have found that for such cases the

quality of square shaped output beam can be further improved by passing it through an

additional external spatial filter. Spatial filtering has also been emphasized in other works,

for example, in beam shaping [165], manipulating spatial coherence [179], and object

reconstruction [139]. The schematic and representative results are shown in Fig. 2.10.

Figure 2.10(a) shows a spatial filtering mechanism that involves two plano-convex lenses

(focal length f) in a telescope configuration, and a spatial filter (pinhole) at the Fourier

plane in between the two lenses. The first lens performs a Fourier transform of the
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speckled beam (Fig. 2.10(b)) and converts it into a spatial frequency domain (Fx = x/�f ,

Fy = y/�f), where the speckle noise in the form of high-frequency components is filtered

out by the pinhole, and then second lens performs an inverse Fourier transform to convert

it again in the real domain (x, y), and accordingly improves the quality of the beam

(Fig. 2.10(c)).

Lens

Lens

Spatial 
filterSpeckled 

Input

Filtered 
output

0 1

(a)

(b)

(c)(d)

Figure 2.10: (a) Schematic and working principle of a spatial filter. (b) The intensity
distribution of square shaped beam with speckled noise. (c) The intensity distribution
of square shaped beam after spatial filtering. (d) The intensity cross-sections of square
shaped beams (along dashed lines in (b) and (c)) before and after spatial filtering. Note,
the filtered intensity plots are not normalized.

Figure 2.10(b) shows the intensity distribution of a square shaped output beam gener-

ated by means of a DOE (as discussed above), and served as speckled input for the spatial

filter. It consists of a significant amount of speckle noise, which has the RMSE value of

34.6%. Figure 2.10(c) shows the square shaped output beam after spatial filtering (filtered

output), where the RMSE is reduced to 14.7%. The corresponding intensity cross-sections

of the square shaped output beam before spatial filtering (green solid curve) and after

spatial filtering (dot-dashed blue curve) are shown in Fig. 2.10(d). As evident, the quality

of square shaped output beam has improved significantly by the spatial filtering.

We have also performed filtering of speckle noise by considering an example of a Fermi-

Dirac beam, the results are shown in Fig. 2.11. We have passed the speckled Fermi-Dirac

beam (Fig. 2.11(a)) with RMSE value of 42% through the circular (Fig. 2.11 (b)) and

Airy (Fig. 2.11(c)) spatial filters. Airy filter, obtained by the Fourier transform of a

2 Generation of structured light with uniform-intensity and customized
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Waist of central 
disc is 2.8 mm
Calculated by (1/e2) 
method. Because 
central part is 
Gaussian

(a) Speckled Fermi Dirac beam with 41.97 % RMSE with ideal
(b) Circular filter of radius 2.2 mm
(c) Airy filter obtained from FFT of Fermi Dirac beam of width 0.3mm
(d) Output of circular filter with RMSE 22.55 %. 
(e) Airy filtered output  with RMSE 19.20 %.
(f) Cross- section intensity comparison.

Efficiency of Airy filter is 83.02 %
Efficiency of circular filter is 89.69%

(a) (b)

(d) (e)
(f)

(c)
Beam with speckle Circular filter Airy filter

After circular filtering After Airy filtering

Figure 2.11: Filtering of speckle noise from a Fermi-Dirac beam. (a) The intensity dis-
tribution of a Fermi-Dirac beam with speckle noise. (b) Circular filter. (c) Airy filter
(Fourier transform of Fermi-Dirac beam). (d) Intensity distribution of Fermi-Dirac beam
after circular filtering (e) Intensity distribution of Fermi-Dirac beam after Airy filtering.
(f) The intensity cross-sections of Fermi-Dirac beams (along dashed lines in (a), (d) and
(e)) before and after spatial filtering.

Fermi-Dirac beam, has a central lobe waist 2.8 mm (calculated by 1/e2 method), and the

circular filter has a radius 2.2 mm. After filtering we obtained Fermi-Dirac beams with

RMSE of 19% (with Airy filter, Fig. 2.11(d)) and 22% (with circular filter, Fig. 2.11(e)).

The corresponding intensity cross-sections of Fermi-Dirac beams before and after filtering

are shown in Fig. 2.11(f). As evident, the quality of filtered beams has improved in both

cases. However, the RMSE of filtered beams is not reduced to zero, indicating that speckle

noise is not completely constrained by the filters.

2.4.5 Spectral e↵ect

The quality and stability of formed patterns under illumination of DOEs with di↵er-

ent wavelengths are important in various applications, particularly, based on the use of

structured pulsed beams [90, 184]. It has been shown that DOE microrelief is optimal

for monochromatic radiation. Particularly, spectral dispersion accompanying short laser

pulses lead to a loss in the quality of the formed spatial distribution [185]. However, it

was shown that phase DOEs match with laser radiation modes and are quite resistant
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to chromatic dispersion [186]. Further, it has been shown that energy losses occur when

specific DOEs are illuminated with di↵erent wavelengths, which causes the decrease in

di↵raction e�ciency of generated shaped output beams [187].Effect of wavelength

(a) (b)

(c)

P

Q

0 10.5

Figure 2.12: (a) The RMSE as a function of wavelength of an input Gaussian beam.
(b) The intensity cross-sections of square shaped output beams (along dashed blue line in
inset corresponding to point P) for � = 1.164 µm (solid blue curves), and for � = 1.064 µm
(dot-dashed red curve). (c) The intensity cross-sections of square shaped output beams
(along dashed blue line in inset corresponding to point Q) for � = 0.714 µm (solid blue
curves), and for � = 1.064 µm (dot-dashed red curve).

As discussed above, the generation of structured light by means of DOEs involves

well-defined parameters of input and output beams. Specifically, when a DOE designed

for a specific wavelength, is illuminated with an input beam of di↵erent wavelengths,

the quality of shaped output beam becomes deteriorated [165, 173, 174]. First, we design

a DOE (for converting an input Gaussian into a square shaped output beam) for the

specific parameters of input/output beam waist �0 = 2 mm, wavelength � = 1.064 µm,

and working distance z = 75 cm. After that, we illuminate DOE with an input Gaussian

beam whose wavelength is varied from � = 0.5 µm to � = 1.5 µm, and then analyzed

the quality (RMSE) of generated square shaped output beam at a working distance z=75

cm. The results are shown in Fig. 2.12. Figure 2.12(a) shows the RMSE as a function of

wavelength �, which indicates that RMSE increases for wavelengths � 6= 1.064 µm (design

wavelength). The insets show the intensity distributions of square shaped output beams

2 Generation of structured light with uniform-intensity and customized
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for � = 0.714 µm and � = 1.164 µm, corresponding to points P and Q, respectively.

Figures 2.12(b) and 2.12(c) show the intensity cross-sections of square shaped output

beam (along dashed blue lines of insets) corresponding to points P and Q, together with

the intensity cross-section of square shaped output beam for � = 1.064 µm (dot-dashed

red curve). Specifically, for � = 1.164 µm, the RMSE is found to be ⇠ 10% (Fig. 2.12(b)),

whereas, for � = 0.714 µm, the RMSE is increased to ⇠ 30% (Fig. 2.12(c)). We have

found that for RMSE of < 10%, the quality of generated square shaped output beam

remains reasonably good.

The distortion in the shaped output beam by varying the wavelength of an input Gaus-

sian beam can also be understood by the e↵ect of di↵raction. When an input Gaussian

beam incidents on DOE at z= 0, after a propagation distance z the desired shaped output

beam is created as a result of redistribution of light intensity. The di↵raction occurs as a

result of beam propagation, which depends on the wavelength of a beam. Due to di↵rac-

tion, the beam diverges, resulting in distortions as it propagates. For a Gaussian beam,

the beam divergence can be approximated as � ⇡ �/⇡�, � is the beam waist. The beam

with a small wavelength diverges less as compared to a large wavelength. Specifically, an

increase in wavelength will cause more divergence of a beam, so the desired shaped output

beam should be formed at smaller distances. Thus, when a specific DOE, designed for a

particular wavelength and working distance z, is illuminated with other wavelengths then

it leads to distortion in the desired shaped output beam at working distance z (as shown

in Fig. 2.12).

Furthermore, for various applications in di↵erent spectral (wavelength) regimes, it is

required to obtain the high-quality beam shaping over a broad range of wavelengths. In

our earlier study, we obtained high-quality beam shaping over a broad spectral range by

using di↵erent DOEs for the di↵erent wavelengths [165]. However, in few studies wave-

length tunable beam shaping has been shown to obtain in a narrow range of wavelengths

by means of only a single DOE [174]. It was shown that in a conformal approach for the

same � / 2⇡/�f , the beam shaping remains unchanged, as wavelength � can be traded

for focal length f of a Fourier transforming lens [175,176]. To the best of our knowledge,
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so far no studies have reported where only a single DOE can perform high-quality beam

shaping over a broad range of wavelengths. Here, we demonstrate that a single DOE can

generate a high-quality shaped output beam over a broad range of wavelengths.

(a)

(b)

(c)
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λ = 1.5 μm

Working distance

Figure 2.13: (a-c) The conversion of an input Gaussian beam into square shaped output
beam for di↵erent wavelengths � = 0.5 µm, � = 1.0 µm, and � = 1.5 µm. (p-r) Intensity
cross-sections (along dashed blue line) corresponding to points p, q, and r.

Above, we have analyzed the quality of generated square shaped output beam at a fixed

working distance z = 75 cm for a broad range of wavelengths. Further, we have illuminated

a DOE (designed for specific parameters as described above) by an input Gaussian beam

at z = 0, and after that investigated the propagation of resulting beam for distance z > 0.

Due to wavelength dependence of di↵raction of beam, the desired shaped output beam

can occur at di↵erent working distances z, when the wavelength is varied. Specifically,

an increase in wavelength will cause more divergence of beam, so the desired shaped

output beam will be formed at smaller distances. The results for di↵erent wavelengths

are shown in Fig. 2.13. As evident, for di↵erent wavelengths, the high-quality square

shaped output beam occurs at di↵erent propagation distances z (indicated by dashed

blue line). Specifically, for wavelength � = 0.5 µm, the high-quality square shaped output

beam is found at propagation distance z = 1.65 m (working distance) (Fig. 2.13(a)). For

� = 1.0 µm and � = 1.5 µm, the working distances are 0.8 m and 0.5 m, respectively

2 Generation of structured light with uniform-intensity and customized
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(Figs. 2.13(b) and 2.13(c)). Specifically, the working distance decreases with an increase

in wavelength. Figures. 2.13(p), 2.13(q), 2.13(r) show the intensity cross-sections (along

dashed blue line) corresponding to points p, q, and r in Figs. 2.13(a), 2.13(b), and 2.13(c),

respectively.

A more general study on the variation of working distance as a function of wavelength

is shown in Fig. 2.14. As evident, the working distance decreases with an increase in wave-

length. This analysis confirms that a single DOE can be used for high-quality generation

of structured light over a broad range of wavelengths.

Figure 2.14: The variation of working distance as a function of wavelength. Input/output
beam waist = 2 mm.

2.4.6 E↵ect of higher order modes

Generally, the output light from high-power lasers consists of higher-order transverse

modes along with the fundamental mode (TEM00). Thus, the intensity distribution of

such laser beams strongly deviates from the Gaussian distribution of pure TEM00 mode.

Since the di↵raction properties of these laser beams strongly di↵er from a pure TEM00, so

it can influence the quality of shaped output beam. We have investigated how the presence

of higher-order modes in an input Gaussian beam that illuminates the DOE (designed

with specific parameters as given for Fig. 2.1 ), a↵ects the quality of shaped output beam.

The presence of high-order modes in an input beam can be determined by a beam quality
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parameter ✏ (RMSE). We have generated such input beams by incoherent superposition

of several Laguerre-Gauss modes (upl(r, ✓)) with di↵erent fractional amplitudes (weights)

in each mode (|cpl|) [147, 188].

I(r) =
X

p,l

|cpl|2|upl(r, ✓)|2, (2.6)

where r and ✓ denote the radius and azimuthal angle. The l and p represent the azimuthal

mode index and radial index. The resultant multimode beam intensity given by Eq. (2.6) is

normalized such that the total intensity
P

p,l |cpl|2 = 1. The ✏ of a pure TEM00 (Gaussian

distribution) mode is zero. The intensity distributions of beams with di↵erent values of ✏

are shown in Fig. 2.15.
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Figure 2.15: (a-c) The intensity distributions of beams with RMSE of input beam ✏ =
0%, 18% and 70%. (d) Corresponding intensity cross-sections for ✏ = 0% (solid red
curve), ✏ = 18% (dashed black curve), and ✏ = 70% (dot-dashed blue curve).

Figure 2.15(a) shows the intensity distribution of a fundamental mode LG00 (TEM00)

with ✏ = 0%. Figure. 2.15(b) shows the intensity distribution of a beam with ✏ = 18% that

includes the superposition of 0.80 (u00)+0.10 (u01)+0.10 (u10). Figure. 2.15(c) represents

the intensity distribution of a beam with ✏ = 70% that includes superposition of 0.30

(u00)+0.35 (u01)+0.35 (u10). We use these beams as the input beams to illuminate the

2 Generation of structured light with uniform-intensity and customized
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DOE (designed with specific parameters as given for Fig. 2.1) to obtain the desired square

shaped output beam. The quality of generated squared shaped beam is analyzed, and

results are shown in Fig. 2.16. Effect of beam quality(new)

Input

Input
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Figure 2.16: (a) The RMSE of output as a function of RMSE of input beam (✏). The insets
show the intensity distributions of input and square shaped output beams corresponding
to the points P and Q. (b) The intensity cross-sections of square shaped output beams
(along dashed blue line in inset corresponding to point P) for ✏ = 18% (solid blue curve)
and ✏ = 0 (dot-dashed red curve). (c) The intensity cross-sections of square shaped output
beams (along dashed blue line in inset corresponding to point Q) for ✏ = 70% (solid blue
curve) and ✏ = 0 (dot-dashed red curve). Note, the intensity cross-sections of shaped
output beams are not normalized.

Figure 2.16(a) shows the RMSE as a function of input beam quality factor (✏). As

evident, the RMSE increases with the increase of ✏. The presence of higher-order LG

modes broadens the input Gaussian beam, and thus we observe a caustic in the shaped

output beam [175], which increases the RMSE. The insets show the intensity distributions

of input beam and generated square shaped output beams for ✏ = 18% and ✏ = 70%,

corresponding to the points P and Q, respectively. Figures 2.16(b) and 2.16(c) show the

intensity cross-sections of the square shaped output beams (along dashed blue line in

insets) corresponding to points P and Q (solid blue curve), together with the intensity

cross-section of square shaped output beam for ✏ = 0 (dot-dashed red curve). Specifically,

for ✏ = 18%, the RMSE is found to be⇠ 21%, whereas, for ✏ = 70%, the RMSE is increased

to ⇠ 69%. Here, the RMSE is mainly caused by the di↵erence in the amplitudes as well
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as non-uniformity in the output beams, as shown in Figs. 2.16(b) and 2.16(c).

We have considered another case in which higher order modes are taken as Hermite-

Gaussian (HG) modes [147, 188], and performed the quality analysis of shaped output

beam by increasing the percentage of higher order modes in the input beam. Specifically,

we have generated input beam by an incoherent superposition of HG modes, namely HG00

(Gaussian), HG01, and HG10 with di↵erent fractional amplitudes (weights) in each mode

(as shown above for LG modes). The results are shown in Fig. 2.17, which evident that

the RMSE of square shaped output beam increases with an increase of RMSE of the input

beam (by increasing the weights of HG01 and HG10 modes).

0 10.5

Input Output(a)

Input Output

P

Q

(b)

(c)

Figure 2.17: The RMSE of output as a function of RMSE of input beam, where input
beam consists of superposition of HG modes. The insets show the intensity distributions
of input and square shaped output beams corresponding to the points P and Q. (b) The
intensity cross-sections of square shaped output beams (along dashed blue line in inset
corresponding to point P) for ✏ = 16% (solid blue curve) and ✏ = 0 (dot-dashed red curve).
(c) The intensity cross-sections of square shaped output beams (along dashed blue line
in inset corresponding to Q) for ✏ = 62% (solid blue curve) and ✏ = 0 (dot-dashed red
curve).

In Fig. 2.17, insets show the intensity distributions of input beam and generated square

shaped output beams for ✏ = 16% and ✏ = 62%, corresponding to points P and Q,

respectively. The corresponding intensity cross-sections of square shaped output beams

(for ✏ = 16% and 62%) together with intensity cross-section of a square shaped output

beam for ✏ = 0 are shown in Figs. 2.17(b) and 2.17(c). Similar to the LG modes (Fig. 2.16),
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the presence of higher-order HG modes also leads to an increase of RMSE in the square

shaped output beam.

2.5 Conclusion

In this Chapter, we have investigated tailoring of light in the amplitude degree of freedom

to generate uniform-intensity distribution with customized spatial shapes. Such struc-

tured light beams are non-trivial, as these are not the regular modes of a conventional

laser system. We have generated these beams, based on an outer-cavity method, using

di↵ractive optical elements (DOEs) whose phase distributions are obtained from a mod-

ified Gerchberg–Saxton algorithm that involves Fresnel propagation and spatial Fourier

filtering. In particular, an input Gaussian beam from a laser illuminates the DOE, and

after propagating a certain distance (working distance) transforms into a desired uniform-

intensity output beam. The spatial Fourier filtering enables to obtain a relatively simple

design of DOE (smooth phase distribution) and produces a high-quality uniform-intensity

output beam. The simple smooth phase distribution o↵ers the possibility of easy manufac-

turing of DOEs. We have simulated di↵erent DOEs and demonstrated the generation of

uniform-intensity beams with several customized spatial shapes, such as square, annular,

rectangular, hollow square, and plus-sign. We have characterized the quality of shaped

output beams by calculating root mean square error (RMSE), and found that quality of

shaped output beams is reasonably good. Further, the RMSE is found to be dependent on

spatial shapes and increases with an increase in the complexity of shape. The quality of

shaped output beam also depends on the working distance (z) for which DOE is designed,

in particular, for very small and large values of z, the phase distribution of DOE does

not result in a high-quality conversion. The optimal working distance depends on several

parameters, such as wavelength, order of uniformity, input beam size, and output beam

size.

Further, we have performed a detailed robustness analysis on the quality of gener-

ated shaped output beams against various imperfections in an input beam, for example,
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misalignment with respect to DOE, e↵ect of asymmetry, speckle noise, presence of higher-

order modes, and mismatch of beam sizes. We have found that for imperfections < 10%,

the quality of shaped output beams remains reasonably good. In the case of speckle noise

up to 18%, the quality of shaped output beam remains excellent. In this case, we have

also shown that the quality of shaped output beam can be further improved using an ad-

ditional external spatial Fourier filter of suitable transmission function. Further, we have

shown that our method generates shaped output beam with excellent quality over a broad

spectra range, however, the working distance z is found to be decreased with an increase

in the wavelength. The results presented in this chapter are reported in Refs. [32, 33].
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Chapter 3

Aberration laser beams with

controlled autofocusing and

self-healing

3.1 Introduction

In previous Chapter 2, we have discussed a simple and e�cient outer-cavity method for

tailoring an amplitude degree of freedom of light to generate uniform-intensity beams

with customized spatial shapes. However, for various applications, light beams with

more complex intensity distribution and exotic propagation properties are required. Such

beams can be achieved by tailoring the light both in amplitude and phase degrees of

freedom simultaneously. In this Chapter, we present an outer-cavity method for tailoring

the amplitude and phase degrees of freedom of light to generate novel aberration laser

beams (ALBs) containing multiple bright lobes in a transverse plane and possessing exotic

propagation properties, such as controlled autofocusing and self-healing both in free space

as well as in turbulent media.

Owing to unique intensity distribution and exotic propagation properties, ALBs have

attracted considerable interest due to their widespread applications, such as in optical

81



82 3.1. Introduction

communications, imaging and investigation of bio-medical materials and examination of

small complex biological samples or tissues, ablation, trapping and guiding the micro-

particles, material processing, etc. [25, 55, 56, 189, 190]. Generally, the term aberration

refers to an error (distortions) in the phase distribution of light, which degrades the

quality of imaging and focusing properties of a system [80]. Aberration can cause various

symmetric and asymmetric adverse e↵ects like blurring, widening, and distortion in light

fields, and for the minimization of these e↵ects, various methods have been proposed

[191–193]. However, in certain cases, aberrations have been deliberately exploited for

various purposes. For example, the presence of a certain type of aberrations in an optical

system has been shown to increase the sharp focusing features of an imaging system

[85,194]. The aberrations have also been explored to generate di↵raction free laser beams

[195], identification of the order of singularity in optical vortices [196–198], and generation

of zero intensity spot in a focal plane [199]. ALBs can be realized by combining angular

dependence of Zernike polynomials with a rq type approximation of chirped Airy function.

Further, it has been shown that for q > 1, ALBs possess an abrupt autofocusing during

propagation.

Further, in various applications, laser beams are required to propagate either in free

space or in a random disorder media. The propagation of laser beam through a ran-

dom media encounters various e↵ects like scattering, intensity fluctuations, attenuation of

beam, loss of coherence, and localization [200–202]. Although scattering is a primary phe-

nomenon in random media, these scattering and intensity fluctuations can be controlled by

introducing disorder-specific active components to the medium [203]. Atmospheric turbu-

lence can be considered as a disordered media having random fluctuations in the refractive

index and wind velocity due to uncertain variations in the temperature gradient of the

medium [204]. Although, several works have been carried out to study the propagation

of light through random media. However, the field is still growing to better understand

the propagation of structured light in random media of di↵erent strengths [28, 205].

Recently non-di↵racting optical beams, called pin-like optical beams, have been in-

vestigated, and shown that these beams exhibit autofocusing after a certain distance
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and convert to Bessel beam that remains invariant upon further propagation [55, 189].

The invariant propagation characteristic was also shown in turbulent media for longer

distances. Further, these invariant characteristics were also compared with abruptly aut-

ofocused beams [189]. The width of main lobe of these beams was shown to be inversely

proportional to propagation distance, so a tight focusing of energy can be obtained over

a long distance. Further, the linearly and circularly polarized circular Airy beams are

shown to possess robust autofocusing properties against strong disturbance by large sized

particles and are found to be a decent candidate for trapping and guiding the micropar-

ticles [56, 206]. In topological beams (LG and Bessel beams) atmospheric turbulence

induces a cross-talk between the modes, making them inadequate for free space optical

communication. However, it has been shown that autofocused beams can overcome such

e↵ects for free space optical communications [190]. Although, several works have reported

various kinds of autofocused and non-di↵racting beams, such as pin-like optical beams

and abruptly focused beams [25,55,56,189,206]. However, with these autofocused beams,

several aspects such as easy control on tuning the autofocusing position from small to

large values, self-healing abilities in free space as well as in turbulent media, and spectral

dependence of autofocusing, have not been explored in great detail.

In this Chapter, we present the investigations on the propagation (autofocusing) and

self-healing properties of ALBs in free space and in turbulent media. In Section 3.2, we

present detailed analytical modelling of the propagation of ALBs in turbulent media. In

Section 3.3, the numerical and experimental results are presented for the propagation of

ALBs in free space and in turbulent media under weak, moderate, and strong turbulence

conditions. The quantification of autofocusing distance is performed by analyzing the

overlap integral. In Section 3.4, we present the spectral dependence of autofocusing

properties of ALB in a turbulent medium. In Sections 3.5 and 3.6, we present the self-

healing properties of ALBs in free space as well as in turbulent media, respectively. Finally,

in Section 3.7, we present the concluding remarks. The investigations presented in this

Chapter are given in Refs. [37, 39].

3 Aberration laser beams with controlled autofocusing and self-healing
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3.2 Theoretical description

The ALBs can be defined in multiple ways, however, the electric field of a specific type

can be expressed as [86, 207]:

E(r, ✓) = A(r) exp (�i↵r
q + i sin (m✓)), r  R. (3.1)

where A(r) = exp(�r
2
/2�2

0) denotes a Gaussian with beam waist �0, m is an integer,

which controls the lobe structure in ALB, R is the radius of a circular aperture, q is

radial power, ↵ is a scale parameter having unit mm�q. In free space, for such ALB the

autofocusing distance can be given as [86]:

zmax ⇡
2⇡

q↵�(2�0/3)
q�2 , (3.2)

where � is the wavelength. As seen from Eq. (3.2), the autofocusing distance can be

controlled by several parameters, however, dependence on ↵ is the simplest and most

convenient to manage. ↵ is a scale parameter that controls the steepness in aberrated

wavefront (Eq. (3.1)). The high value of ↵ results in greater steepness in the wavefront, and

autofocuses the beam at shorter propagation distances. Note, the value of m (Eq. (3.1))

controls the number of lobes in the ALB and does not a↵ect the autofocusing distance.

For various applications, a light field is required to propagate through a disordered

media. For example, when a light field propagates through a typical atmosphere, it

encounters various random temperature fluctuations in its optical path. These random

temperature fluctuations result in random variation in the refractive index of the medium,

which leads to the distortion in wavefront of the propagated light field. The Kolmogorov

model for atmospheric turbulence gives an appropriate description for such random vari-

ation in the refractive index of the medium [28, 204, 208]. The propagation of ALB in a

free space and in a turbulent medium can be described using extended Huygens-Fresnel

integrals, as shown in Sec. 1.4.2 by Eqs. (1.18) and (1.21) [204,209].

For the propagation of light field in a turbulent media, the expression of an average
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intensity at the output plane can be given as (Eq. (1.21))

hI(⇢,�, z)i =
⇣

k

2⇡z

⌘2 ZZ ZZ
E(r, ✓)E⇤(r0, ✓0) exp

⇣
ik

2z
(r2 � r

02)
⌘

exp

⇣
� ik

z
r⇢ cos (�� ✓)

⌘
exp

⇣
ik

z
r
0
⇢ cos (�� ✓

0)
⌘

⇥hexp[ (⇢, r, z) +  
⇤(⇢, r0, z)]irr0 dr dr0 d✓ d✓0. (3.3)

Where  (⇢, r, z) represents a random complex phase function describing the irregularities

of turbulent medium. The last term in Eq. (3.3) describes the correlation of random

fluctuations, and can be expressed as [205,209].

hexp[ (⇢, r, z) +  
⇤(⇢, r0, z)]i = exp(�0.5D )

= exp
⇣
� (r � r

0)2

l(z)2

⌘
. (3.4)

D represents the phase structure function in Rytov’s representation, and l(z) is the

coherence length of the spherical wave propagating in a turbulent medium [205, 209]. In

a turbulent medium l(z) = (0.545C2
nk

2
z)�3/5, where C

2
n denotes the structure constant

of medium. Generally, the analytical calculation of the intensity from Eq. (3.3) is very

di�cult. However, the calculation of intensity on the optical axis becomes relatively

simple. Thus, substituting ⇢ = 0 (for on optical axis intensity) as well as light field from

Eq. (3.1), Eq. (3.3) can be written as

hI(⇢ = 0, z)i =
⇣

k

2⇡z

⌘2 ZZ ZZ
exp

⇣
� r

2 + r
02

2�2
0

⌘
exp

⇣
� (r � r

0)2

l(z)2

⌘

exp (�i↵r
q + i sin (m✓)) exp (+i↵r

0q � i sin (m✓0))

⇥ exp
⇣
ik

2z
(r2 � r

02)
⌘
rr

0
dr dr

0
d✓ d✓

0
. (3.5)
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The expression in Eq. (3.5) is now factorized into angular and radial parts as

hI(⇢ = 0, z)i =
⇣

k

2⇡z

⌘2 Z 2⇡

0

exp(i sin(m✓)) d✓

Z 2⇡

0

exp(�i sin(m✓0)) d✓0

Z R

0

Z R

0

exp
⇣
� r

2 + r
02

2�2
0

⌘
exp

⇣
� (r � r

0)2

l(z)2

⌘

⇥ exp
⇣
ik

2z
(r2 � r

02)
⌘
exp[�i↵ (rq � r

0q)] rr0 dr dr0. (3.6)

Note that only the factor exp
⇣
� (r�r0)2

l(z)2

⌘
prevents the separability of radial part in Eq.

(3.6). Moreover, for l(z) ! 1 (completely coherent case) this factor is equal to unity, and

factorization occurs, as it should be in the coherent case. The integrals over the angles ✓

and ✓0 are the same and equal to 2⇡J0(1) regardless of m. If the radius of the aperture R

satisfies the inequality R > 2�0 then without the loss of accuracy, an upper limit can be

replaced by +1. Nevertheless, the exact solution of above expression (Eq. (3.6)) is not

easy to get. Therefore, we apply a stationary phase method for the analysis of expression

in Eq. (3.6).

3.2.1 Simple application of the stationary phase method

In this case, we assume that all real factors are slowly varying. Thus, the radial part in

Eq. (3.6) can be represented as follows:

T (z) =

Z R

0

Z R

0

exp
⇣
� r

2 + r
02

2�2
0

⌘
exp

⇣
� (r � r

0)2

l(z)2

⌘

exp
⇣
ik

2z
(r2 � r

02)
⌘
exp[�i↵ (rq � r

0q)] rr0 dr dr0

⇡
Z 1

0

Z 1

0

A(r, r0; �0, l) exp(i (r, r
0; z)) dr dr0, (3.7)

where

A(r, r0; �0, l) = exp
⇣
� r

2 + r
02

2�2
0

⌘
exp

⇣
� (r � r

0)2

l(z)2

⌘
rr

0
. (3.8)

 (r, r0; z) = �↵rq + k

2z
r
2 + ↵r

0q � k

2z
r
02
. (3.9)



87

The inseparable factor is in the amplitude (Eq. (3.8)), and the phase is factorized (Eq.

(3.9))), therefore the mixed derivative of the phase is zero. Therefore, the integral in Eq.

(3.7)) can be approximated in a simple form:

T (z) ⇡ ⇡A(r0, r
0
0; �0, l)

����
@
2
 (r0; z)

@r2

@
2
 (r00; z)

@r02

����

��1/2

, (3.10)

where r0 and r
0
0 are stationary points. To solve it, we need to find the stationary points

as well as the second derivatives.

@ (r, r0; z)

@r
= �↵qrq�1 +

k

z
r = 0

) r0 =
⇣

k

↵qz

⌘1/(q�2)

, (3.11a)

@ (r, r0; z)

@r0
= ↵qr

0q�1 � k

z
r
0 = 0

) r
0
0 =

⇣
k

↵qz

⌘1/(q�2)

. (3.11b)

@
2
 (r0; z)

@r2
= �k

z
(q � 2), (3.12a)

@
2
 (r00; z)

@r02
=

k

z
(q � 2). (3.12b)

Thus, the expression in Eq. (3.10) has the following explicit form:

T (z) ⇡ ⇡z

k|q � 2| exp
⇣
� r

2
0

�
2
0

⌘
r
2
0. (3.13)

The main disadvantage of the obtained expression (Eq. (3.13)) is that there is no depen-

dence on the coherence length l(z) (turbulent media). The resulting expression for the

intensity as a zero approximation can now be given as:

hI(0, z)i =
⇡

|q � 2|J
2
0 (1)

k

z

✓
k

↵qz

◆ 2
q�2

⇥ exp

 
�
✓

k

↵qz

◆ 2
q�2

.
1

�
2
0

!
. (3.14)
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As can be seen, Eq. (3.14) has a singularity at q = 2, which is explained from the physical

point of view as follows: the used propagation operator corresponds to the expansion in

parabolic waves, therefore the operator’s kernel has a quadratic dependence on the radius.

In this regard, a converging parabolic wavefront (q = 2 corresponds to a parabolic lens)

is special in this situation and will be discussed in more detail below.

Above, we have not taken into account the presence of an entrance pupil of radius R.

If we take it into account, then in certain areas there will be shadows, so the obtained

expressions will work correctly in the following areas [86, 207]:

z <
k

↵qR(q�2)
, (q < 2), (3.15a)

z >
k

↵qR(q�2)
, (q > 2). (3.15b)

It can be seen that the boundary of the shadow is determined by one formula, but the

location of the shadow area depends on the degree of q. Note, even a rough approxi-

mation (Eq. (3.14)) allows finding the position of intensity maximum, and thereby the

autofocusing distance. Discarding the factors, that are independent of z, Eq. (3.14) can

be written as:

hI(0, z)i ⇡ z
q/(2�q) exp

⇣
� µ z

2/(2�q)
⌘
, (3.16)

where µ =
⇣

k�2�q
0
↵q

⌘2/q�2

. It can be shown that for any q, the on-axis intensity (Eq.

(3.16)) tends to zero at z ! 0 and at z ! 1. The intensity maximum is reached at

zmax =
�

q
2µ

�(2�q)/2
or, explicitly at

zmax =
⇣
q

2

⌘(2�q)/2

.
k

↵q�
q�2
0

. (3.17)

To prevent the intensity maximum falling into the shadow region, in addition to R > 2�0,

it is necessary to satisfy the inequality

R > �0

r
q

2
. (3.18)



89

3.2.2 Complicated application of the stationary phase method

As we have seen above, the final expression of on-axis intensity (Eq. (3.14)) does not

contain the dependence on l(z) (turbulent medium), so we have applied the stationary

phase method more flexibly. Namely, we replace the phases with quadratic expansions,

replace the first powers of r and r
0 with stationary values r0, and r

0
0 respectively, but leave

the real exponents in their original form. Then we get an expression for integral in Eq.

(3.6) in the form:

T (z) ⇡
Z R

0

Z R

0

exp
⇣
� r

2 + r
02

2�2
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0
, (3.19)

where

 (r0; z) =
k r

2
0 (q � 2)

2qz
and  (r00; z) = �k r

02
0 (q � 2)

2qz
(3.20)

Let us take into account that r0 = r
0
0 (see Eq. (3.11)), then  (r0; z) = � (r00; z). In

addition, from Eq. (3.12) we get @2 (r0;z)
@r2 = �@2 (r00;z)

@r02 . Then integral in Eq. (3.19) takes

the following form:

T (z) ⇡ r
2
0

Z R
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Z R
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⇣
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2 + r
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dr dr
0 (3.21)

From Eq. (3.21) we can obtain the integral of the form:

ZZ +1

�1
exp[�(Ax2 +By

2 + Cxy +Dx+ Ey)] dx dy

=
⇡p

AB � C2/4
exp


1

4
.
AE

2 +BD
2 � CDE

AB � C2/4

�
(3.22)
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Expression in Eq. (3.22) is true if AB > C
2
/4. In the case under consideration:

A =
1

2 �2
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+
1

l(z)2
� i

2
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2
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@r2
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2
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@r2
,

C = � 2

l(z)2
, D = i r0

@
2
 (r0; z)

@r2
, E = �i r0

@
2
 (r0; z)

@r2
(3.23)

After simplification, integral (Eq. (3.21)) is solved and substituted to Eq. (3.6) to obtain

a simplified form that is convenient for the analysis.

hI(0, z)i =

✓
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!
(3.24)

Equation (3.24) shows the dependence of on-axis average intensity on the combination of

various parameters, including input beam waist �0 and coherence length l(z). If we omit

the factors independent of z, then Eq. (3.24) can be re-written as

hI(0, z)i ⇡ z
q/(2�q)

p
�z2 + �

exp

✓
� µ

z
2/(2�q)

�z2 + �

◆
, (3.25)

where µ =

✓
k�2�q

0
↵q

◆2/(q�2)

, � = 1 + 4�2
0

l(z)2 , and � = k
2
�
4
0(q � 2)2. From Eq. (3.25), one can

obtain the position of the extremum, which is found from the equation:

⇥
(2q � 2)�z + q�z

�1
⇤
(�z2 + �) = µ

�
(2q � 2)�z

4�q
2�q + 2�z

q
2�q
�
. (3.26)

It should be noted that expression (Eq. (3.16)) and more precise expression (Eq. (3.25))

are inapplicable for q = 2. Therefore, we consider separately the special case for q = 2.

For q = 2, instead of Eq. (3.6), taking into account the value of the integral over the
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angle, we obtain:

hI(0, z)i|q=2 =
⇣
k
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We simplify Eq. (3.27) using Eq. (3.22), choosing the maximum of the modulus of the

integrand as the stationary point. After mathematical transformations, we get an explicit

form:

hI(0, z)i|q=2 =
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k

z
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J
2
0 (1) �

2
0
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4�4
0
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+ (↵� k

2z )
2
. (3.28)

The maximum will be at ↵ = k
2z , which corresponds to the lens focus position and coincides

with Eq. (3.2) at q = 2. Note that Eq. (3.28) is obtained by the stationary phase method,

therefore, in principle, it is an approximate solution, for the coherent case l(z) = 1, an

exact solution can be obtained.

It is based on the equality

Z 1

0

r exp(�Ar
2)dr =

1

2A
. (3.29)

In the coherent case, the integrand in Eq. (3.27) is separable and we obtain

hI(0, z)i|q=2 =
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The main di↵erence between Eq. (3.30) and Eq. (3.28) is the absence of the root sign,

which is especially pronounced far from the focus. In a partially coherent case, the

calculation is more cumbersome, since the function must be made separable. Without

giving details, we give the final result, which is similar to both expressions in Eqs. (3.28)

and (3.30):
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(3.31)

Using Eq. (3.31), it is possible to analytically obtain the autofocusing distance of ALB for

3 Aberration laser beams with controlled autofocusing and self-healing
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fixed values of the coherence length (l(z)=constant):

zmax =
k↵

2
⇣
↵2 + 1

4�4
0
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⌘ (3.32)

As can be seen from Eq. (3.32), if
⇣

1
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⌘
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2, then zmax = k/2↵ which is

equal to the lens focus position. This fact allows us to find the approximate position of

the maximum for varying coherence length l(z). We calculate first l0 = l(z = k/2↵). If
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Otherwise, the maximum can be determined from the graph of the function in Eq. (3.31),

as shown in Fig. 3.1. Figure 3.1 shows the behaviour of on-axis intensity of ALB as
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Figure 3.1: Variation of on-axis normalized intensity as a function of propagation distance
z. Plot is obtained for the parameters: ↵ = 3.5 mm�2

, q = 2,m = 4, �0 = 1.35 mm,� =
1064 nm, and C

2
n = 10�12 m2/3

. The peak value of on-axis intensity indicates the autofo-
cusing position of ALB.

a function of propagation distance in a strong turbulent media. As evident, the plot

consists of a peak at z = 84 cm, indicating the autofocusing position of ALB. However,

in a free space, for the same ALB, the autofocusing distance is found to be z = 84.36 cm

(calculated using Eq. (3.2)). It suggests that the autofocusing distance does not show
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any considerable changes while propagating in a turbulent medium.

3.3 Results

For free space propagation, intensity distribution of a light field can be calculated (or

simulated) by an extended Huygens-Fresnel integral. However, the propagation through

an atmosphere needs the involvement of a random phase. For ideal considerations, the

refractive index of air is taken as nearly unity, but in actual practice, random fluctuations

of temperature and wind velocity a↵ect the value of the refractive index in a random

fashion, and induce a considerable e↵ect on the spatial intensity and phase distributions

of a light field, when propagated in the atmosphere. Similar e↵ects also occur when light

propagates through any disordered or di↵usive media. For convenience, to examine the

e↵ect of atmospheric turbulence on the laser beam, turbulent media is prepared artificially

by several methods, such as, aqueous suspension obtained from the mixing of distilled

water with insoluble micro-powder [210], aerosol optical medium [205], heated Aluminum

panel with high power resistors [211], artificial atmospheric and oceanic turbulence, soft

biological tissues [208] (and ref. there in), turbulence chambers consisting of heating

elements and fans to create distortions [212], glass plates etched with turbulence phase

(turbulent plates), which can be rotated or translated to consider the e↵ect of dynamic

turbulence on the laser beam profile [213].

Further, turbulent medium in the laboratory is also realized by implementing random

phase on Spatial Light Modulators (SLMs) and Digital Micromirror Devices (DMDs) [28].

These methods involve more flexibility, as turbulent strength as well as its phase distribu-

tion can be controlled and altered easily. To simulate the random phase screen that can

behave like a turbulent media of desired strength, various methods are reported, namely,

weighted superposition of Zernike polynomials [214], Monte-Carlo method [215] and sub-

harmonic method [216]. Out of these methods, the Monte-Carlo method is considered to

be simple and convenient. It generates a random phase screen by using Fourier trans-

form of complex random matrix in spatial frequency domain, whose variance is directly

3 Aberration laser beams with controlled autofocusing and self-healing
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calculated from the von Karman power spectrum and mimics the atmospheric turbulence

in the simulations [217, 218]. The phase screen based approach is further classified into

two types: (i) single-phase screen method, and (ii) multiple-phase screen method. The

method based on multiple phase screens involves the splitting of desired length (z) of the

medium into small intervals �z, and for each sub-part of the medium, a phase screen

is prepared and placed at a distance of �z [218, 219]. This method gives good results

when the length of the medium is large enough, whereas, for smaller propagation distance

in turbulent media, or the case when thickness of the medium is small as compared to

the total propagation length of light beam, a single-phase screen is enough to mimic the

turbulent media [28, 220]. In our study, the autofocusing distance is in the range of 1

m, so the single-phase screen approach is used. However, for the propagation of ALB

through turbulent media, we have performed a comparison between the two approaches

and obtained similar outcomes (see Appendix 3.8.1).

To analyze the propagation of ALB in a turbulent medium, we simulated a phase

screen consisting of random phase fluctuations that represent a turbulent medium and

imparted it on light field of ALB and propagated further, as shown schematically in

Fig. 3.2. Figure 3.2 depicts the generation of ALB by illuminating DOE with an input

Gaussian beam (laser output), as well as propagation in free space and turbulent media.

The turbulence is imparted on the ALB by turbulent phase screen that consists of random

fluctuations in the phase distribution.

To simulate the turbulent media, we employed the Monte-Carlo method that generates

a random phase screen. The variance of random phase function is given by [28,204]

�
2
v(kx, ky) = 2⇡k2

z

⇣ 2⇡

N�x

⌘2
�n(kx, ky), (3.34)

where �x denotes grid spacing of N⇥N size matrix over which phase screen is generated,

and kx and ky represent the spatial frequencies over the grid. z denotes distance over

which turbulent phase screen is simulated. �n(kx, ky) represents a refractive index power
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Figure 3.2: Schematic illustrating the formation of ALB by illuminating input light from
a laser on DOE, and after that propagated in a free space as well as in a turbulent media.
For the propagation in turbulent media, we imparted a random phase distribution on
ALB and then propagated.

spectrum, which is given as [28, 204].

�n(kx, ky) = 0.33C2
n

exp(�k
2
r/k

2
l )

(k2 + k
2
h)

11/6
, 0  k < 1, (3.35)

where k
2
r = k

2
x + k

2
y is a radial vector in the spatial frequency domain. kl = 5.92/l0 and

kh = 2⇡/L0. The l0 and L0 denote the size of small and large scale eddies. C2
n represents

the strength of atmospheric turbulence. The values of C2
n ranges from 10�18 m2/3 for weak

turbulence up to 10�12 m2/3 for strong turbulence conditions [28]. Now, a N ⇥ N size

screen with random phase fluctuations can be generated as

�(x, y) = F�1(rand(kx, ky)⇥ �v(kx, ky)), (3.36)

where F�1 denotes the inverse Fourier transform, and a normal distribution with zero

mean and variance one, is used to sample random entries of a complex matrix rand(kx, ky).

The simulated phase screens for two di↵erent propagation distances are shown in Fig.

3.3. Figure 3.3 clearly shows that although C
2
n is fixed, but the randomness in the phase

3 Aberration laser beams with controlled autofocusing and self-healing
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Figure : 3
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Figure 3.3: The random phase screen for (a) z = 2 m, and (b)z = 10 m, depicting turbu-
lent medium with di↵erent randomness. The results are obtained for a fixed turbulence
strength C

2
n = 10�12 m2/3, L0 = 10 m and l0 = 0.001 m.

distribution can also be varied by changing the propagation distance z. Particularly, a

longer propagation in a weak random medium is equivalent to a short propagation in a

highly random medium.

To analyze the e↵ect of turbulence on ALB, we have generated ALB with parameter

values ↵ = 3.5 mm�2
, q = 2,m = 4,� = 1064 nm, and input beam waist �0 = 1.35

mm (Fig. 3.2). After that, we impose random phase screens with di↵erent turbulence

strengths on ALB, and then the resulting field is propagated, the results are shown in

Fig.3.4. Note, the parameter values are chosen for the convenience of analytics and

experiments. For example, ↵ = 3.5 mm�2 provides the autofocusing of ALB in the range

of 1 m, suitable for experimental measurements. We have also verified numerical results

for other values, but obtained similar findings except that the autofocusing distance will

change to di↵erent values, as well as the lobe structure in ALB will also be di↵erent

for di↵erent m. Figure 3.4(a) shows the intensity distribution of a generated ALB at

z = 10 cm. Figures 3.4(b)-3.4(e) present the intensity distribution of ALB at various

propagation distances in a free space. As evident the ALB autofocuses at a distance

of z = 85 cm. Figures 3.4(f)-3.4(i) show the intensity distribution of ALB at various

propagation distances in a weak turbulent medium with C
2
n = 10�14 m2/3. The weak

turbulence does not a↵ect the ALB significantly, and it again autofocuses at z = 85 cm.

Figures 3.4(j)-3.4(m) show the intensity distribution of ALB at intermediate turbulence

strength C
2
n = 10�13 m2/3, indicating that the spatial structure is distorted, however, ALB

still autofocuses at the same distance z = 85 cm. Figures 3.4(n)-3.4(q) show the intensity



97

Figure : 4

Simulation parameters : 
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Figure 3.4: (a) Intensity distribution of ALB at z = 10 cm. The intensity distribution of
ALB at various propagation distances in (b)-(e) free space, (f)-(i) weak turbulent medium
with C

2
n = 10�14 m2/3, (j)-(m) intermediate turbulent medium with C

2
n = 10�13 m2/3, and

(n)-(q) strong turbulent medium with C
2
n = 10�12 m2/3.The results are simulated for the

parameters: ↵ = 3.5 mm�2
, q = 2,m = 4, �0 = 1.35 mm,� = 1064 nm, L0 = 10 m, and

l0 = 0.001 m. For propagation in turbulent media with di↵erent strengths, the random
phase screens are simulated for a propagation length of 2 m.
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distribution of ALB at various propagation distances in a strong turbulent medium with

C
2
n = 10�12 m2/3. As evidenced, the spatial structure of ALB is significantly distorted

during the propagation. However, the ALB shows autofocusing at the same distance

z = 85 cm. From these results it is clear that, although the spatial structure of ALB is

distorted due to randomness in turbulence, but autofocusing distance remains invariant,

indicating the robustness of ALB.

We have quantified the e↵ect of turbulence using an overlap integral, which is given by

Eq. (1.26) [150]. The calculated values of overlap integral at various propagation distances

in turbulent medium are written on the sub figures. As evident, the value of C decreases

with an increase in randomness of turbulent medium (from weak to strong turbulence

strength). Further, for a fixed value of C2
n (e.g., for strong turbulence) the value of C is

⇠ 96% at z = 30 cm (Fig. 3.4(n)) and it continues to decrease and becomes minimum

(C = 55%) at z = 85 cm (Fig. 3.4(p)), and afterward it again starts increasing. The

decrease in C by increasing turbulence strength can be explained mainly by two reasons:

i) beam wandering and ii) distortions in the spatial structure of beam. Beam wandering

relates to the shifting of beam centre and beam trajectory due to insertion of random

phase in the path of light, and later is the distortion in the spatial structure of light

that happens due to distortion of the actual wavefront of ALB, as random phase adds a

non-uniform path in various parts of ALB that ends up with an overall spatial distortion

of the beam.

Figure 3.5 demonstrates the beam wandering e↵ect as well as overlap integral as a

function of propagation distance z. Figure 3.5(a) shows the intensity cross-section of

ALB as a function of z in free space, indicating that ALB autofocuses at z = 85 cm.

An arrow with a solid blue line marks the central position of the unshifted ALB. In Fig.

3.5(b), the intensity cross-section of ALB as a function of z in a strong turbulent medium

clearly shows that the ALB still autofocuses at z = 85 cm, however, the center of ALB

is shifted vertically, as shown by an arrow with a dashed green line. Figure 3.5(c) shows

the overlap C as a function of propagation distance z in a strong turbulent medium.

As evident, the overlap decreases with an increase in z, reaches a minimum value at
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Figure 3.5: Intensity cross-section of ALB as a function of propagation distance in (a)
free space, and (b) turbulent media. (c) The overlap integral as a function of propagation
distance. The insets in (c) showing at autofocusing distance, a centered ALB in free space
and wandered ALB in turbulent medium. The simulation parameters are kept the same
as in Fig. 3.4. An arrow with blue solid line marks the central position of unshifted ALB,
whereas, an arrow with a green dashed line marks the shifting of central position of ALB
due to wandering e↵ect in turbulence.

P, and after that, it again starts increasing. The point P where C becomes minimum

corresponds to an autofocusing position of ALB. The lowest value of C at autofocusing

distance can be understood by the fact that most of the energy of ALB is concentrated in

a small region, and randomness in the turbulent medium leads to distortion in the spatial

structure and beam wandering, which results in a large change in C. The observation of

a dip with a minimum value of C can also be used to identify the autofocusing distance of

ALB. Further, we also investigated the dependence of beam wandering on the turbulence

strength of the turbulent media. We found that the beam wandering becomes more

prominent for a stronger turbulent medium.

Figure 3.6, demonstrates the e↵ects of beam wandering on the propagation of ALB in

the turbulent media of di↵erent strengths. Beam wandering of ALB in turbulent media

is analyzed by considering 40 realizations of random phase screens (for each turbulent

strength) to obtain more reliable results. It is evident that for a fixed turbulence strength,

beam wander increases as beam propagates through the turbulent medium. Further, beam

wander becomes more prominent for stronger turbulence strength.

3 Aberration laser beams with controlled autofocusing and self-healing
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Figure 3.6: Beam wandering as a function of propagation distance z, when ALB is prop-
agated in a turbulent medium with various turbulence strengths. Simulation parameters
are ↵ = 3.5 mm�2

, q = 2,m = 4, �0 = 1.35 mm, � = 1064 nm, L0 = 10 m, and l0 = 0.001
m. For propagation in turbulent media with di↵erent strengths, the random phase screens
are simulated for a propagation length of 2 m.

Further, we have also quantified the findings presented in Fig. 3.4 for di↵erent turbu-

lence strengths, the results are shown in Fig. 3.7. It is evident from Fig. 3.7 that for each

turbulence strength the minimum of C falls exactly at the same distance, which denotes

the same position of autofocusing of ALB. Note, the minimum value of C is found to be

di↵erent for di↵erent turbulence strengths and can be understood by reasons explained

in Fig. 3.5.

For the experimental verification of our simulation results, we have generated ALBs

from SLM. A picture of the experimental setup is shown in Fig. 3.8. A linearly polarised

CW laser of wavelength � = 1064 nm is expanded with lenses L1 and L2 of focal lengths

5 cm and 10 cm respectively, and incident on SLM normally. The phase of the hologram

for the generation of ALBs can be represented as [221]:

 =  ((↵rq + i sin (m✓)) + 2⇡Nxx+ 2⇡Nyy) (3.37)

Where Nx = Ny = 100 represents the grating frequencies along x and y directions. As per

the requirements of the SLM, the phase of the hologram is divided into 256 gray levels
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Figure 3.7: Overlap integral C as a function of propagation distance z, when ALB is
propagated in a turbulent medium with di↵erent turbulence strengths. Solid black curve
with circles: weak turbulence with C

2
n = 10�14 m2/3; dashed blue curve with squares:

intermediate turbulence with C
2
n = 10�13 m2/3; red dot-dash curve with stars: strong

turbulence with C
2
n = 10�12 m2/3. Simulation parameters: ↵ = 3.5 mm�2

, q = 2,m =
4, �0 = 1.35 mm, � = 1064 nm, L0 = 10 m, and l0 = 0.001 m. Each phase screen mimics
the propagation of ALB in a turbulent medium of length 2 m.
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Figure 3.8: Experimental setup to generate ALBs. M1,M2: Mirrors; L1, L2, L3, L4:
Plano convex lens with focal lengths 5 cm, 10 cm, 20 cm, and 20 cm respectively; BS:
Beam splitter; SLM: Spatial light modulator; CA: Circular aperture.
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Figure 3.9: (a) Phase distribution of DOE for ALB. (b) Gray scale hologram to generate
ALB. (c) Intensity cross-section of laser output (input beam). Inset shows the 2D intensity
distribution of laser output with calculated value of M2 = 1.5.

(Fig. 3.9(b)), which corresponds to DOE given in Fig. 3.9(a). This phase hologram is

then encoded on a phase-only HOLOEYE SLM, with a resolution of 1920 ⇥ 1080 pixels

and a pixel size of 8µm. As the result of the blazed grating in the hologram, ALB can

be filtered out by using a circular aperture of suitable size placed in the far-field of the

telescope formed by lenses L3 and L4 of focal lengths 20 cm. To study the propagation of

ALB in a turbulent medium, we have inserted an element carrying hot air in the path of

ALB [212]. The hot air along the element consists of random fluctuations in temperature

and a↵ects the refractive index in a random fashion, which creates an optical turbulence

e↵ect. The temperature of hot element is stabilized at di↵erent values to produce the

turbulence of various strengths. Note, Fig. 3.9(c) shows the output of laser, which is used

for illuminating the SLM.

The propagation of ALB in free space as well as in turbulent medium with di↵erent

strengths are shown in Fig. 3.10. Figures 3.10(a)-3.10(d) show the propagation of ALB

in a free space, indicating that ALB is autofocused at a distance z = 87 cm. The

results of propagation of ALB through turbulent medium (hot air) with di↵erent strengths

(di↵erent temperatures) are shown in Figs. 3.10(e)-3.10(h), 3.10(i)-3.10(l) and 3.10(m)-

3.10(p). As evident, upon increasing the temperature of hot air, the distortion in the

spatial intensity distribution of ALB increases. However, at di↵erent temperatures, the

ALB always autofocuses at the same distance z = 87 cm. This clearly indicates that
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Figure 3.10: Experimental results. The intensity distribution of ALB at various propa-
gation distances in (a)-(d) free space, (e)-(h) hot air with temperature 60 0C (weak tur-
bulence), (i)-(l) hot air with temperature 90 0C (intermediate turbulence), and (m)-(p)
hot air with temperature 110 0C (strong turbulence). Experimental results are obtained
for the parameters: ↵ = 3.5 mm�2

, q = 2,m = 4, �0 = 1.35 mm, � = 1064 nm, and input
beam diameter = 3 mm.
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autofocusing distance of ALB remains invariant, which shows a good agreement with the

numerical results. Note that there is a small mismatch between the values of autofocusing

distance found in the experiment and simulations, which is anticipated due to the non-

ideal experimental conditions. Unlike simulations, the input beam in the experiment is

not a pure Gaussian (as M2 = 1.5) as well as has di↵erent size, as shown in Fig. 3.9(c).

3.4 Spectral dependence of autofocusing of ALB in a

turbulent medium

Spectral properties play a vital role in propagation of light, as spectral variations directly

a↵ect the focusing distance of ALB in free space [86]. It has been shown that the change

Figure : 8
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Figure 3.11: The intensity distribution of ALB at various propagation distances in a
turbulent media for di↵erent wavelengths (a)-(e) � = 445 nm, and (f)-(j) � = 663 nm.
Simulation parameters: ↵ = 3.5 mm�2

, q = 2,m = 4, �0 = 1.35 mm, � = 1064 nm,
C

2
n = 10�12 m2/3, L0 = 10 m, and l0 = 0.001 m. Phase screen is prepared for propagation

of ALB in the turbulent medium of length 2 m.

in the wavelength of ALB has no e↵ect on the spatial intensity distribution, however, it

a↵ects the autofocusing distance (Eq. (3.2)). Here, we analyse the e↵ect of turbulence on

the autofocusing distance when the wavelength of ALB is varied. We impose a turbulent

phase screen (as described above) simulated for wavelength � = 1064 nm on ALB of

di↵erent wavelengths, and then analysed its propagation. The results are shown in Fig.

3.11. Figures 3.11(a)-3.11(e) show the intensity distributions of ALB at various propaga-
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tion distances in a turbulent media for a wavelength � = 445 nm. As evident, the spatial

intensity distribution of ALB is distorted due to turbulence, however, the ALB autofo-

cuses at a distance ⇠ 200 cm. Figures 3.11(f)-3.11(j) show the intensity distribution of

ALB in a turbulent media for a wavelength � = 663 nm. The spatial distortion as well as

autofocusing is again observed. However, the autofocusing distance is decreased by ⇠ 64

cm, and now ALB is focused at z = 136 cm. The values of C are obtained by calculating

overlap integral (Eq. (1.26)) between ALBs in turbulent media and their respective ALBs

in free space. A detailed plot for C as a function of propagation distance z is shown in

Fig. 3.12. The variation in C can be described with the same reason as given above for

Figs. 3.4 and 3.5. As evident, for each wavelength a dip with a minimum value of C is

observed, indicating the value of z corresponding to an autofocusing distance of ALB. For

Figure : 9 new

Figure 3.12: The overlap integral as a function of propagation distance for di↵erent
wavelength � = 445 nm (blue dot-dashed curve with stars), � = 663 nm (red dashed
curve with squares), � = 1064 nm (black curve with circles). Points P, Q, and R indicate
the autofocusing distances for the respective wavelengths.

the di↵erent wavelengths, the dip occurs at di↵erent values of z, indicating the spectral

dependence of autofocusing distance. Specifically, the values of autofocusing distances are

found to be 85 cm (for � = 1064 nm), 136 cm (for � = 663 nm), and 202 cm (for � = 445

nm). The autofocusing distance decreases with the increase in wavelength. We have also

calculated the autofocusing distances for propagation of ALBs in a free space using Eq.

(3.2), and found the values of 84.36 cm (for � = 1064 nm), 135.4 cm (for � = 663 nm) and

3 Aberration laser beams with controlled autofocusing and self-healing
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201.7 cm (for � = 445 nm). As evident, the simulated values of autofocusing distances

are very close to the theoretical values, which indicates that the spectral dependence of

autofocusing distance remains invariant in turbulent media.

3.5 Self-healing of ALBs in free space

We have investigated the self-healing of ALB in a free space. Specifically, we analyzed the

e↵ect of various types and amounts of truncation of ALBs on their self-healing abilities.

For the quantification of self-healing, we calculate the overlap integral (Eq. (1.26)), which

allows to identify the degree of similarity between the original and truncated beam [150].

The ALB is generated by illuminating DOE with an input Gaussian beam at z = 0 and

then propagated up to a distance z = 10 cm so that ALB is well formed. The ALB is then

truncated by an amplitude mask. The original and truncated beams are shown in Figs.

3.13(a) and 3.13(f), respectively. The truncation of main lobes leads to a decrease in the

value of overlap integral to 58% (Fig. 3.13(f)). The truncated ALB is then propagated

further to analyze the self-healing abilities (Figs. 3.13(f)-3.13(j)). For the comparison and

quantification of overlap integral C, we have also propagated non-truncated ALB (ideal

case), as shown in Figs. 3.13(a)-3.13(e).

As evident, upon propagation of truncated ALB the energy from nearby areas moves

into the truncated parts, and thereby it self-heals, as indicated by the complete recovery

of the blocked main lobes (Figs. 3.13(g)-3.13(j)). However, as per the conservation of

energy, the total energy contained in the beam will be smaller than the non-truncated

beam, as a part of energy is removed by the truncation. The energy di↵raction e�ciency

in the truncated beam is reduced to 68% with respect to the ideal ALB. The recovery

of truncated lobes is also evidenced by the increased value of overlap integral. In addi-

tion to self-healing, the beam also retains the autofocusing property, as shown in Fig.

3.13(i). The ALB autofocuses at a distance z = 85cm, and also at this distance the beam

completely self-heals, indicated by the maximum value of overlap integral C = 99.53%.

The autofocusing distance is found to be the same as in non-truncated case (Fig. 3.13(d)),
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Diffraction efficiency η ≈ 68 %Figure 3.13: (a) The intensity distribution of ALB, showing a clear four lobes struc-
ture. (b)-(e) Intensity distribution of ideal ALB (non-truncated) at various propagation
distances. (f) Intensity distribution of ALB with truncated lobes. (g)-(j) Intensity dis-
tribution of truncated ALB at various propagation distances. C denotes the calculated
value of overlap integral with respect to the ideal case. The parameters for the ALB are
↵ = 3.5 mm�2

, q = 2,m = 4, �0 = 1.35 mm, and � = 1064 nm.

which also agrees with the theoretical value obtained from Eq. (3.2). Further, we have

investigated how compound truncation with various percentages a↵ects the self-healing

abilities of ALB. The results are shown in Fig. 3.14. Figures 3.14(a)-3.14(e) show the

propagation of a truncated beam, in which 20% of the beam area is blocked by an am-

plitude mask, in free space. As evident, the truncated ALB completely self-heals at the

autofocusing distance z = 85 cm (Figs. 3.14(a)-3.14(e)), indicated by the maximum value

of overlap C. The propagation of ALBs with 40% and 60% of truncations also shows that

the maximum self-healing occurs at autofocusing distance z = 85 cm, which is evident

from the maximum values of overlap C (Figs. 3.14(f)-3.14(j) and Figs. 3.14(k)-3.14(o)).

From these results, it is clear that truncation of ALB does not a↵ect the autofocusing

distance as well as the self-healing distance. The self-healing can be understood by the

fact that during the propagation of a truncated beam, the energy self-redistributes and

flows towards the truncated parts, and slowly attains its original shape.

We have also calculated the overlap C as a function of propagation distance for various

percentages of compound truncation, as shown in Fig. 3.15. It is found that the value

of C increases with distance z, and reaches a maximum value, and after that, it again

starts decreasing. The peak with highest C (marked by R in Fig. 3.15(a)) indicates a

3 Aberration laser beams with controlled autofocusing and self-healing



108 3.5. Self-healing of ALBs in free space
Figure : 11
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Figure 3.14: Self-healing of ALB when various percentages of beam are truncated. Inten-
sity distribution at various propagation distances for the compound truncation of (a)-(e)
20%, (f)-(j) 40%, and (k)-(o) 60%. The corresponding values of overlap integral are writ-
ten on them. The parameters for the ALB are ↵ = 3.5 mm�2

, q = 2,m = 4, �0 = 1.35
mm, and � = 1064 nm.
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Figure 3.15: (a) The overlap integral as a function of propagation distance for 60% of
compound truncation. (b)-(e) The intensity distributions of truncated ALB together with
the ideal non-truncated ALB, corresponding to points P, Q, R, and S. The parameters
for the ALB are ↵ = 3.5 mm�2

, q = 2,m = 4, �0 = 1.35 mm, and � = 1064 nm.
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position at which truncated ALB recovers well, and shows maximum similarity with the

ideal (original) beam at that propagation distance. Note that for the higher percentages

of truncation, the value of C also becomes relatively smaller. The observation of another

lower peak at P and minima at Q and S can be explained as follows. In free space, when

a partially blocked ALB propagates, self-healing occurs due to the fact that di↵erent

parts of the ALB interfere upon propagation, and redistribution of intensity takes place.

Because of this, the spatial intensity distribution of ALB changes, which results a change

in the values of overlap integral (marked by P, Q, and S in Fig. 3.15(a)). However, at the

autofocusing distance, the ALB recovers maximally and a significant portion of intensity

is tightly focused at the centre, and thus shows a high degree of similarity (high overlap

integral value, marked by R) with an ideal ALB (unblocked ALB). After the autofocusing,

upon further propagation the ALB defocuses and redistribution of intensity further takes

place that results in the change of spatial intensity distribution of ALB, and thus the

value of overlap integral again changes. Finally, when the spatial intensity distribution

becomes stable, the overlap integral attains a constant value.

As evident, corresponding to points P, Q, R, and S (in Fig. 3.15 (a)), the Figs. 3.15

(b-e) show that the ideal and blocked beams have di↵erent spatial intensity distributions

and therefore the value of C is di↵erent. After point S, the spatial intensity distribution

of ALB changes slowly and tends to stabilise, and thus the value of C varies slowly and

tends to approach a fixed value.

Furthermore, these beams (ALBs) show some other advantages such as, the self-healing

distance being independent of the amount of truncation of ALB (as the self-healing reaches

its maximum value for the same value of the propagation distance, i.e. autofocusing dis-

tance) which makes them di↵erent from the other beams exhibiting self-healing property.

Further, we have verified the autofocusing distance by analysing the intensity of ALB

at the centre (on-axis), as it should increase to a maximum value at the autofocusing

distance. Figure 3.16 shows cross-section of on-axis intensity of ALB as a function of

propagation distance for various percentages of compound truncation. For the compar-

ison, we have also included results for a non-truncated ALB. The on-axis intensities of

3 Aberration laser beams with controlled autofocusing and self-healing
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truncated beams are normalized with respect to the non-truncated beam (solid black

curve). As evidenced, for all the cases of truncation the on-axis intensity becomes max-

imum (peak value) at z = 85 cm (which is the autofocusing distance of a non-truncated

ALB, Fig. 3.13(d)), indicating that the truncation of ALB does not a↵ect the autofo-

cusing distance. The on-axis intensity at the autofocusing distance decreases with the

increase of truncation, but the autofocusing properties remain invariant even after a large

truncation of ALB (60%). These results clearly indicate that even if a major part of the
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Figure 3.16: Cross-section of on-axis intensity of ALB as a function of propagation dis-
tance, for the various percentages of compound truncation.

beam is truncated, the ALBs do possess self-healing properties. Also, the truncation has

no e↵ect on the autofocusing distance of ALBs, indicating good robustness of ALBs.

To verify the simulation results of self-healing of ALB in free space, we have performed

an experiment with the same parameter values. In the experiment, we have used a binary

mask to truncate ⇠ 25% area of ALB (compound truncation) around center, which is

kept at a distance of ⇠ 10 cm from the SLM. The truncated ALB is propagated fur-

ther and intensity distribution is recorded at various propagation distances. The results

are shown in Fig. 3.17. For the comparison, we have also recorded intensity distribution

of an ideal ALB (non-truncated) at various propagation distances (Figs. 3.17(a)-3.17(e)).

Figures 3.17(f)-3.17(j) show the intensity distribution of a truncated ALB at various prop-
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Figure : 14
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Figure 3.17: Experimental results of self-healing of ALB in free space, when⇠ 25% area of
ALB is truncated around the center. The parameters for the ALB are ↵ = 3.5 mm�2

, q =
2,m = 4, �0 = 1.35 mm, and � = 1064 nm.

agation distances, which indicates that truncated ALB self-heals as well as autofocus. In

both cases autofocusing is observed at the same distance z = 87 cm. The experimental

results show good agreement with the simulations, which further confirms the self-healing

abilities of ALB.

3.6 Self-healing in a turbulent media

We have also investigated the self-healing abilities of ALBs in a turbulent medium, the

results are shown in Fig. 3.18. The ALB is considered with the same parameters as in

Fig. 3.13 and then truncated di↵erently by amplitude masks (Figs. 3.18(a) and 3.18(f)).

Figures 3.18(b)-3.18(e) show the propagation in a strong turbulent medium with C
2
n =

10�12 m2/3, when main lobes of the ALB are truncated. Whereas, Figs. 3.18(g)-3.18(j)

show the propagation of a compound-truncated ALB in the same turbulent media. The

C values in Figs. 3.18(a) and 3.18(f) show that the percentage of truncation is not the

same in both cases. As evident, in both cases, the truncated parts of the ALBs recover

upon propagation. However, as compared to Figs. 3.13 and 3.14, the spatial structure of

ALB is distorted due to turbulent medium. The truncated ALBs show the autofocusing

at a distance ⇠ 85 cm. As explained for the free space propagation in Figs. 3.13 and

3 Aberration laser beams with controlled autofocusing and self-healing
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Figure : 15
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Figure 3.18: The self-healing of ALBs in a turbulent media. (a)-(e) Intensity distri-
bution at various distances, when a lobe-truncated ALB is propagated in a turbulent
media of strong turbulence strength. (f)-(j) Intensity distribution at various distances,
when compound-truncated ALB is propagated in a turbulent media of the same strength.
Simulation parameters: ↵ = 3.5 mm�2

, q = 2,m = 4, �0 = 1.35 mm, � = 1064 nm,
C

2
n = 10�12 m2/3, L0 = 10 m, and l0 = 0.001 m.

3.14, the self-healing becomes maximum at autofocusing distance. In a turbulent medium,

the maximum self-healing also occurs at the autofocusing distance. However, unlike the

case in free space, a minimum value of overlap integral is observed at the autofocusing

distance due to beam wandering e↵ect, where a tightly focused energy beam is shifted

from its original position, and distortion occurs in the spatial structure of ALB due to the

presence of randomness in the phase. Further propagation after the autofocusing distance

again leads to the defocusing of beam, and due to its large size, the beam exhibits more

overlap with the non-truncated beam (at z = 100 cm), and hence an increased value of

C is observed.

In a strong turbulent medium with C
2
n = 10�12 m2/3, we have also analysed the

self-healing of ALB with di↵erent percentages of compound truncation. The results are

shown in Fig. 3.19. It is evidenced that ALB self-heals reasonably well for a compound

truncation up to 60%. We have also checked for the increased compound truncation up

to 80% (not shown here), and it is observed that ALB still can self-heal quite well.

Figure 3.19 shows the overlap C as a function of z for the various percentages of

compound truncation of ALB. Again, a dip with a minimum value of C is observed at

the same distance, corresponding to an autofocusing distance of non-truncated ALB (Fig.
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Figure 3.19: The variation of overlap C as a function of propagation distance for the
various percentages of compound truncation.

3.13(d)). At this distance, the compound-truncated ALB exhibits a maximum self-healing.

Figure : 17
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Figure 3.20: Experimental results. (a) Intensity distribution of truncated ALB. (b)-(f)
Intensity distribution of truncated ALB at various propagation distances in a turbulent
media (hot air at 110 oC).

We have also recorded experimental results of self-healing of ALB in a turbulent

medium. To do that we have truncated ⇠ 25% area of ALB from the center (Fig. 3.20(a)),

and then propagated through hot air at temperature 110 0C (Fig. 3.20(b)-3.20(f)). As

evident, truncated ALB self-heals upon propagation as well as autofocuses at a distance of

z = 87 cm, which shows a good qualitative agreement with numerical results (Fig. 3.18).

3 Aberration laser beams with controlled autofocusing and self-healing
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We again observed the distortions in the spatial structure of ALB upon propagation,

which is caused by the randomness in the turbulence.

3.7 Conclusions

In this Chapter, we have investigated outer-cavity based tailoring of light in the ampli-

tude and phase degrees of freedom for generating ALBs containing multiple bright lobes

and possessing exotic propagation properties, such as autofocusing and self-healing in

both free space as well as in turbulent media [37]. The ALBs are generated from a DOE

whose phase distribution consists of radial (rq) and periodic angular dependence (sinm�).

The radial term in phase distribution provides the autofocusing properties, and autofo-

cusing distance can be controlled from any small to large values by controlling the ALB

parameters, such as �, q, ↵, and input beam waist. Whereas, the presence of periodic

angular dependence provides generation of di↵raction pattern with m
th-order symme-

try. Therefore, the intensity symmetrically distributes in various lobes depending on the

m-values. We have investigated the e↵ect of turbulence on the propagation (autofocus-

ing) and self-healing properties of ALBs. First, we have analytically solved the extended

Huygen-Fresnel integral for ALBs in turbulent media by using simple and complex sta-

tionary phase methods. Analytically, we have found that the autofocusing distance of an

ALB does not change in the presence of turbulence. Further, we have verified our analyt-

ical findings in numerical simulations as well as in experiments. In numerical simulations,

an ALB is propagated in turbulent media of di↵erent strengths (weak, intermediate, and

strong) by means of random phase screens using Monte Carlo method, where turbulence

strength is controlled by randomness in the phase distribution. Whereas, in experiments,

turbulence is generated by hot air at di↵erent temperatures.

From numerical and experimental results we have found that the autofocusing of ALBs

does not depend on the strength of turbulent medium, however, turbulence causes beam

wander and distortions in the spatial intensity distribution of ALBs. To quantify the

intensity distortions, an overlap integral is calculated. Further, overlap is found to be
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minimum at autofocusing distance due to beam wandering and intensity distortions. We

have also investigated the spectral dependence of autofocusing of ALBs in a turbulent

medium and found that autofocusing distance does not depend on the turbulence, how-

ever, it decreases with an increase in wavelength.

Further, we have also investigated the self-healing of ALBs, both in free space as

well as in turbulent media by propagating partially truncating ALBs. Owing to the

redistribution of the intensity within the beam, ALBs show self-healing both in free space

as well as in turbulent media. In particular, self-healing distance is found to be the same

as autofocusing distance. It is also found that when a large portion of ALB (⇠ 60%)

is truncated, the beam is still able to self-heal reasonably well. Further, for di↵erent

percentages of truncation, the maximum self-healing always occurs at the auto-focusing

distance, which remains invariant irrespective of amount of truncation and strength of

turbulence. the self-healing distance remains the same. The ALBs are found to exhibit

great robustness against truncation, which can be applied in various fields. The results

presented in this Chapter are reported in Refs. [37, 39].

3 Aberration laser beams with controlled autofocusing and self-healing



116 3.8. Appendix

3.8 Appendix

3.8.1 Comparison between single-phase and multiple-phase screen

methods
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Figure 3.21: Comparison of results obtained from single phase screen method (black
dashed curve) and multiple phase screen method (solid red curve). Simulation parameters:
↵ = 3.5 , q = 2, and C2

n = 10�12
m

�2/3.

Here, we have compared the results obtained on the propagation of the ALB in turbulent

media based on single-phase screen and multiple-phase screen methods. For the single-

phase screen method, a turbulent phase screen is created for a propagation length of 1.8

m, representing a turbulent medium of length 1.8 m. The ALB is propagated through

this turbulent medium, and overlap integral is calculated with respect to the free-space

propagation, the results are shown in Fig. 3.21. For single-phase screen method (black

dashed curve), a dip is observed at a distance z = 85 cm, which confirms the auto-focusing

of ALB (also see Fig. 4.6). In the second method of multiple-phase screen, several phase

screens are prepared corresponding to �z = 12 cm and placed in the path of ALB at

equal intervals. The obtained results are shown by a solid red curve in Fig. 3.21. Again,

a dip is observed at the same auto-focusing distance (z = 85 cm) and provides similar

information as was obtained from the single-phase screen method.



Chapter 4

Asymmetric aberration laser beams

with controlled intensity distribution

4.1 Introduction

In previous Chapter 3, we have discussed the outer-cavity generation of ALBs, by tailoring

amplitude and phase degrees of freedom of light. ALBs contain multiple bright lobes in

a transverse plane and possess exotic propagation properties, such as controlled autofo-

cusing and self-healing both in free space as well as in turbulent media [37]. In ALBs,

the intensity is symmetrically distributed in all bright lobes and restricted to attain a

precise control of intensity at arbitrary spatial locations. Further, ALBs always autofocus

their intensity at on-axis center to create a high-energy density region, which can not be

shifted to other spatial locations. These limitations on controlling intensity distribution

of ALBs restrict their use for various applications. Therefore, in this Chapter, we present

the generation of asymmetric aberration laser beams (aALBs) with controlled intensity

distribution, based on an outer-cavity method using a di↵ractive optical element involving

phase asymmetry.

Laser beams with controlled intensity distribution and containing high-energy densi-

ties are potentially crucial for improving light-matter interactions, thereby making laser

117
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processing even more flexible, precise, and e↵ective. For example, in material processing,

the intensity distribution of a laser beam strongly influences the shape of heat-influenced

zone [60]. Thus, by using controlled intensity distribution of laser beams, the process-

ing quality and e�ciency can be improved. More applications include metal or plastic

welding, cladding, selective laser melting, hardening, brazing, and annealing.

It has been shown that asymmetry o↵ers additional capabilities for controlling the

laser intensity distribution [91]. Several types of asymmetric beams have been investi-

gated, including Kummer laser beams with transverse complex shift, asymmetric Gaus-

sian optical vortex, asymmetric Bessel modes, asymmetric Bessel-Gauss (BG) beams,

asymmetric Laguerre-Gaussian (LG) beams, nonparaxial asymmetric Bessel beams, and

paraxial asymmetric Bessel-Gaussian [91–95]. These beams have been exploited to form

various types of optical tweezers that are used in many areas of physics. It has been shown

that the rate of microparticle motion increases near linearly with increasing asymmetry

of BG and LG beams [16, 222]. The LG beams with large asymmetry possess a crescent

shape that rotates on propagation, which can be used for optical trapping and for con-

trolling the motion of living cells without thermal damage [16,223]. Such optical tweezers

can be used to orient trapped objects and rotate during propagation. The asymmetric

beams have also been used to generate a pair of entangled photons with broad orbital

angular momentum using spontaneous parametric down-conversion [224].

Over the years, several other kinds of optical beams with distinct features have been

theoretically proposed and realized experimentally. A few examples include Hermite-

Gaussian beam [53], Airy beam [54], pin-like optical beam [55], abruptly auto-focused

beam [50,56], discrete vortex [43], and radial carpet beam [57]. In particular, ALBs have

shown unique propagation properties and strong resilience against perturbations both

in free space as well as in turbulent media [37], as detailed in Chapter 3. However, in

ALBs, the autofocusing enables to obtain high-energy density focused spot, but spatially

it always occurs at the centre of the beam, irrespective of parameters of ALB, as shown

in Sec. 3.3 and in Refs. [37, 207, 225]. Further, the intensity in ALBs is symmetrically

distributed in various bright lobes, and evolves symmetrically upon propagation, and
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focuses tightly on a single spot at the autofocusing distance [37, 225]. It prevents us

to precisely control the intensity distribution of ALB, thereby to form such high-energy

density regions at desired spatial locations. Further, it also limits to control the shape of

ALBs during the propagation. Although, ALBs possess several novel properties, but these

limitations restrict their use for various applications as mentioned above. To overcome

these limitations for enhancing the capabilities of ALBs for a wide range of applications,

we have performed investigations to precisely control the intensity distribution of ALBs,

and thereby to generate high-energy density regions at desired spatial locations.

In this Chapter, we have investigated asymmetric e↵ects in the ALBs. Specifically, we

have exploited asymmetry to precisely control the intensity distribution of ALBs to form

asymmetric aberration laser beams (aALBs), and explored the mechanism of transfer

of intensity inside the beam, and formation of the high-energy density regions at desired

spatial locations. Further, the e↵ect of asymmetry is also investigated on the autofocusing

properties of aALBs. This study provides a more general framework for controlling the

properties of aALBs, and making them potentially useful for a wide range of applications.

A detailed analysis of asymmetric e↵ects with quantification is presented. In Sec. 4.2,

we have given an analytical description of asymmetric aberration laser beams (aALBs).

In Sec. 4.3, we have described the experimental generation and numerical simulations of

aALBs and compared their propagation properties with ideal ALB. In Sec. 4.4, we have

described the role of di↵erent asymmetric parameters on the intensity distribution of

aALBs. In Sec. 4.5, we present the results on spatial control of high-energy density regions

in aALBs. Finally, in Sec. 4.7 concluding remarks are presented. The investigations

presented in this Chapter are given in Refs. [38, 40].

4.2 Theoretical description

The expression of phase of ALB is given by [207,225]

⇠(r,�) = exp(�i↵r
q + i sin(m�)) r  R (4.1)

4 Asymmetric aberration laser beams with controlled intensity distribution
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such that

r exp(i�) = x+ iy, r
2 = x

2 + y
2
. (4.2)

Here, q represents radial power, m is an integer, which controls the lobe structure in

ALB, and ↵ is a scale parameter, has a dimension of mm�q, R is the radius of the

di↵ractive optical element (DOE). The presence of periodic angular dependence in phase

distribution provides generation of di↵raction pattern with mth-order symmetry. The term

exp(�i↵r
q) represents the transmission function of a generalized parabolic lens [226]. An

optical element encoded with the above phase function is same as that of a zone plate with

circular lines. The di↵ractive version of such a phase element is equivalent to a classical

lens (quadratic phase dependence on radius) [227]. The circular Airy beams, which have

an asymptotic phase dependence proportional to r
3/2, are regarded as autofocusing beams

[50,228]. The beams with a dependence on r
q with 1 < q < 2 have also been investigated

[229]. The ALBs with a radial dependence r
q, where q takes any positive value (q >

0), including q > 2, the autofocusing has also been observed [207]. The ALBs possess

greater flexibility in managing autofocusing properties as compared to circular Airy beams

[207,227].

Further, to generate aALBs the phase asymmetry is introduced by complex coordinate

shifting in Eq. (4.1) [91], we have

⇠ = exp(�i↵s
q + i sin(m✓)) = exp

�
�i↵(s2)q/2

�
exp(i sin(m✓)), (4.3)

where,

s
2 = (x� xo)

2 + (y � yo)
2
, (4.4)

xo = a+ ib, yo = c+ id, a, b, c, d 2 R. (4.5)

For the new polar coordinates p and ✓:

p exp(i✓) = (x� xo) + i(y � yo) = (x� a+ d) + i(y � c� b). (4.6)
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The angular coordinate ✓ is given by

p cos(✓) = (x� a+ d), p sin(✓) = y � c� b, (4.7)

✓ = tan�1

✓
y � c� b

x� a+ d

◆
. (4.8)

The modified phase due to complex coordinate shifting can be calculated from Eq. (4.3).

For simplification, we have taken x� a = X and y � c = Y . Thus,

s
2 = (X2 + Y

2 � b
2 � d

2)� i(2Xb+ 2Y d), (4.9)

= G exp(i�), (4.10)

where,

G cos(�) = (X2 + Y
2 � b

2 � d
2), (4.11)

G sin(�) = �2(Xb+ Y d). (4.12)

Substituting s
2 into Eq. (4.3), we get

⇠ = exp(�i↵(G exp(i�))q/2) exp(i sin(m✓)),

= exp(�i↵G
q/2 exp

⇣
i
q�

2

⌘
exp(i sin(m✓)),

= exp(�i↵G
q/2(cos(q�/2) + i sin(q�/2))) exp(i sin(m✓)),

= exp(�i↵G
q/2 cos(q�/2) + i sin(m✓)) exp(↵Gq/2 sin(q�/2)) (4.13)

The term exp(↵Gq/2 sin(q�/2)) is a real quantity and does not contribute to the phase,

thus the phase expression is reduced as

⇠ ⇡ exp(�i↵G
q/2 cos

⇣
q�

2

⌘
+ i sin(m✓)), (4.14)

As explained in Chapter 3, for the case of q = 2, ALB shows more prominent abrupt

autofocusing, and it also provides more peculiarities, such as it becomes equivalent to a

4 Asymmetric aberration laser beams with controlled intensity distribution
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simple lens and the mathematical analysis is significantly simplified [37, 225]. Therefore,

in the present work, all the experimental results and most of the numerical simulations

are presented for q = 2. Note, some of the numerical simulations are also presented for

q 6= 2 (see Sec. 4.6). Now, for q = 2, Eq. 4.14 becomes:

⇠ = exp(�i↵G cos(�) + i sin(m✓)),

= exp(�i↵ ((x� a)2 + (y � c)2 � b
2 � d

2) + i sin(m✓)). (4.15)

The expression for ✓ and its dependence on parameters is given by Eq. (4.7). It can be

readily noticed that the parameters a and c (real part of x0 and y0) are just shifting the

origin in a real two-dimensional (2D) plane. From a practical point of view, it will just

simulate the e↵ect of a misaligned or o↵-axis input beam. By choosing a = c = 0, we

impose the axis-to-axis alignment of an input beam with the DOE. This new modified

phase for ALB can be expressed as

⇠ = exp(�i↵ (x2 + y
2 � (b2 + d

2)) + i sin(m✓)), (4.16)

where,

✓ = tan�1

✓
y � b

x� (�d)

◆
. (4.17)

It can be seen that for the part of chirped phase asymmetry parameters b and d are just

rescaling the radius of concentric circles (origin (0, 0)). Whereas, in trigonometric term

(exp(i sin(m✓)), asymmetry shifts the origin to (b,�d) locally. The asymmetry parameters

b and d can be expressed in terms of angular parameters (w, �), which only relocates the

origin for trigonometric phase without changing the functional form of chirped phase, as

described below.

d = �w cos(�), b = w sin(�). (4.18)

Considering an input laser beam with fundamental transverse mode (Gaussian), the op-
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tical field of an asymmetric ALB (aALB) can be written as

E(r, ✓) = exp

✓
�r

2

2�2
0

◆
exp

�
�i↵(r2 � w

2) + i sin(m✓)
�
. (4.19)

The condition 0 < w
2
< 2�2

0 makes sure that the asymmetric e↵ects are well aligned

with an input Gaussian beam. It should be noted that the symmetry of trigonometrically

modulated phase is decided by parity of m [230]. As sin(m(✓ + ⇡)) = ± sin(m✓), the

diametrically opposite points on phase distribution will be in and out of phase for even

and odd parity, respectively. In earlier studies, it has been shown that the di↵raction

pattern of such a phase distribution consists of a number of bright spots depending upon

the value of m [199]. In our work, we have considered the case of m = 3, however, similar

findings can be obtained for other values of m. For �0 = 1.45 mm and m = 3, we find

that the value of w = 1 mm introduces appreciable asymmetry into the phase of aALB.

So, we have kept these parameters same throughout the work.

0

β = π/2 w = 0 (c) β = π β = 3π/2(d)

1mm

(b)(a) 2π

Figure 4.1: The phase distribution of DOE with (a) w = 0, � = [0, 2⇡], (b) w = 1 mm,
� = ⇡/2, (c) w = 1 mm, � = ⇡, (d) w = 1 mm, � = 3⇡/2. The other parameters are
m = 3, q = 2, ↵ = 5.9 mm�2.

The phase distributions of DOEs for generating the ideal and asymmetric ALBs are

shown in Fig. 4.1. Figure 4.1(a) shows the DOE of an ideal ALB (w = 0). As substituting

w = 0 in Eqs. (4.16)-(4.18), gives rise to Eq. (4.1) for an ideal ALB. Figures (4.1(b)-4.1(d))

show the DOEs of an asymmetric ALB (aALB) with di↵erent asymmetry parameters �.

As evident, di↵erent values of � provide a di↵erent phase distribution of DOE and thereby

provide an ability to control the propagation properties of aALBs.

4 Asymmetric aberration laser beams with controlled intensity distribution
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4.3 Propagation of asymmetric ALBs

The schematic of experimental arrangement for the generation and characterization of

aALBs is schematically shown in Fig. 4.2. We have generated aALBs by using the same

experimental method used to generate ALBs in Chapter 3 (Fig. 3.8). A linearly polarized

Figure 4.2: Experimental arrangement for generation and characterization of asymmetric
ALB. L1 and L2: plano-convex lenses of focal length f1 = 5 cm and f2 = 20 cm, respec-
tively. �/2: half-wave plate, SLM: spatial light modulator.

light from a He-Ne laser (� = 632 nm) incident on a half-wave (�/2) plate to fix the po-

larization orientation in a specific direction. After that light is passed through a telescope

made with lenses L1 (f1 = 5 cm) and L2 (f2 = 20 cm) to magnify its size in order to

illuminate well the screen of a phase-only spatial light modulator (SLM). We impose a

phase pattern (DOE) on the SLM, which modulates the phase of the incident light, and

after propagating a certain distance aALB is formed. The intensity distribution of aALB

at di↵erent propagation distances is recorded on a CCD camera.

Further, we have numerically simulated the propagation of an aALB using an extended

Huygens-Fresnel integral as (Eq. (1.18))

E(⇢,�, z) = � ik
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where (r, ✓) and (⇢,�) represent coordinates of source and observation (output) planes,

respectively, separated by a distance z. k = 2⇡/� represents the wave number of an

optical field in free space.

The experimental and simulation results are shown in Fig. 4.3, presenting a comparison

between the propagation of ideal ALB and aALB. The results are presented for parameter

values of m = 3, q = 2, ↵ = 5.9 mm�2. For aALB, the asymmetry parameters are taken

as w = 1 mm and � = ⇡/2. Figures. 4.3(a1)-4.3(e1) and Figs. 4.3(a2)-4.3(e2) show the
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Figure 4.3: The intensity distributions of ideal ALB (w = 0) ((a1)-(e1), (a2)-(e2)) and
aALB (w = 1 mm, � = ⇡/2) ((f1)-(j1), (f2)-(j2)) at di↵erent propagation distances
z = 25 cm, 55 cm, 70 cm, 84 cm, and 100 cm. The results are obtained for the following
parameters: ↵ = 5.9mm�2, �0 = 1.45mm, m = 3, q = 2 and � = 632 nm.

simulation and experimental results of intensity distributions of an ideal ALB at di↵erent

propagation distances, respectively. As evident, for m = 3 there are three bright lobes

having equal intensity within them. During the propagation, the intensity from back-

4 Asymmetric aberration laser beams with controlled intensity distribution
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ground moves inside the bright lobes, and evolution of intensity remains symmetrically

as all three bright lobes are equally intense (Figs. 4.3(a1)-4.3(c1), Figs. 4.3(a2)-4.3(c2)).

At a distance z = 70 cm, the bright lobe pattern is fully developed, as most of the in-

tensity from all parts of the beam shifted equally into them. After further propagation,

the bright lobe pattern starts shrinking by merging of bright lobes. At a distance z = 84

cm, all three bright lobes collapsed into a tightly focused single bright spot, called the

autofocusing distance (z = zaf ) (Figs. 4.3(d1) and 4.3(d2)). After autofocusing distance,

the bright lobes again get separated and intensity distributes symmetrically and equally

among them. Figures. 4.3(f1)-4.3(j1) and Figs. 4.3(f2)-4.3(j2) show the simulation and ex-

perimental results of intensity distributions of aALB at di↵erent propagation distances,

respectively. As evident, by introducing asymmetry using complex coordinate shifting

(w = 1 mm and � = ⇡/2), the symmetry of equal intensity distribution in three bright

lobes gets disturbed (Figs. 4.3(f1)-4.3(h1) and Figs. 4.3(f2)-4.3(h2)). More specifically, in-

stead of three equal intensity bright lobes, the intensity in the bottom single bright lobe is

larger than the top two bright lobes. Further, as aALB propagates there is a continuous

transfer of intensity between the bright lobes. At z = 70 cm, the intensity in the upper

two bright lobes reduced dramatically and enhanced significantly in the bottom bright

lobe (Figs. 4.3(h1) and 4.3(h2)). It should be noticed that, for an ideal ALB, the lobes

pattern develops around on-axis (beam axis) (Fig. 4.3(a1), 4.3(a2)). Whereas, for aALB,

initially the lobes pattern develops around the point (w, �), and after that, it moves to-

wards on-axis. At autofocusing distance z = 84 cm, again a tightly focused single bright

spot centered on the beam axis is observed (Figs. 4.3(i1) and 4.3(i2)). After autofocusing

distance, the intensity again redistributes such that it becomes larger in the upper two

bright lobes as compared to the bottom bright lobe (Figs. 4.3(j1) and 4.3(j2)).

We have found that the autofocusing distance remains the same for both ideal ALB

and aALB. However, for aALB, the asymmetry leads to a controlled variation of intensity

distribution with the propagation distance, which can be used in guiding micro-particles

longitudinally on a desired path. The asymmetry induced variation in the intensity dis-

tribution has also been observed with other beams such as LG, Bessel, Bessel-Gauss,
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and Kummer laser beams [91–95]. For an ideal ALB, the relationship between the beam

parameters and autofocusing distance is given as [225]

zaf ⇡ 2⇡

q↵�(2�0/3)q�2
. (4.21)

By tuning the beam parameters, the autofocusing distance can be varied from small to

large values.
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Figure 4.4: (a) Intensity distribution of an ideal ALB as a function of propagation distance.
(b) The intensity distribution of an aALB (with w = 1 mm and � = ⇡/2) as a function of
propagation distance. (c) Longitudinal intensity cross-section is taken along the horizontal
axis (at x = 0) (on-axis intensity) in (a) and (b), as a function of z. The blue solid curve:
ideal ALB; dashed pink curve: aALB with � = ⇡/2; dash-dotted red curve: aALB with
� = ⇡; dotted black curve: aALB with � = 11⇡/6. The parameters are taken as w = 1
mm, �0 = 1.45 mm, ↵ = 5.9 mm�2, m = 3, q = 2 and � = 632 nm. zaf denotes the
autofocusing distance.

To check the dependence of autofocusing distance on asymmetry parameter �, we have

propagated aALB with di↵erent � values and then analyzed on-axis intensity distribution.

The results are shown in Fig. 4.4. Figures 4.4(a) and 4.4(b) show the propagation of an

ideal ALB and aALB with � = ⇡/2. As evidenced, the on-axis intensity peak is observed

at z = 84 cm in both cases (marked by a vertical dashed-line), denotes the autofocusing

distance. Figure 4.4(c) shows the longitudinal intensity cross-section taken along the

horizontal axis (x = 0), indicating that on-axis intensity peak occurs at the same z value

for ideal ALB and aALB with di↵erent � values, which shows that the autofocusing

4 Asymmetric aberration laser beams with controlled intensity distribution
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distance remains invariant with respect to the asymmetry. Note, the 2D intensity plots

for aALB with � = ⇡ and 11⇡/6 are not shown. The observed value of autofocusing

distance agrees with the calculated value of zaf = 84.25 cm (Eq. (4.21)) for an ideal ALB.

Similar to ideal ALB, the autofocusing distance of aALB can be controlled from small to

large values by varying the beam parameters (q, ↵, �, �0). Note, we have also verified

the autofocusing properties for q 6= 2, and a similar trend is observed in the numerical

results, except that the autofocusing distance will be di↵erent.

4.4 Intensity Distribution for di↵erent �
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Figure 4.5: Intensity distribution of aALB at various propagation distances, for di↵erent
values of �. ((a1) - (e1), (a2) - (e2)) � = ⇡/2, and ((f1)-(j1), (f2) - (j2)) � = 3⇡/2. The
results are obtained for the following parameters: ↵ = 5.9mm�2, �0 = 1.45mm, m = 3,
q = 2 and � = 632 nm.
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To generalize and gain a better understanding, we have further varied the phase asym-

metry and analyzed its e↵ect on the intensity distribution of aALBs. The results are shown

in Fig. 4.5. Figures. 4.5(a1)-4.5(e1) and Figs. 4.5(a2)-4.5(e2) show the simulation and ex-

perimental results for an asymmetry parameter � = ⇡, respectively. Figures 4.5(f1)-4.5(j1)

and Figs. 4.5(f2)-4.5(j2) show the results for � = 3⇡/2. Note, for � = ⇡/2, the results

are shown in Fig. 4.3. As evident, the asymmetry leads to a significant change in the

intensity distribution of aALB. For di↵erent values of � the intensity in the background

as well as inside bright lobes migrates di↵erently, thereby enabling a controlled intensity

distribution of aALB. For example, for � = ⇡ a greater portion of intensity can be trans-

ferred to a single bright lobe (Figs. 4.5(c1) and 4.5(c2)). Whereas, for � = 3⇡/2, the

intensity transfers into two bright lobes (Figs. 4.5(h1) and 4.5(h2)). By a careful choice

of � values, one can control the intensity distribution precisely. As mentioned above, for

any asymmetry value, initially (for small z values) beam develops around the coordinates

(w, �), so spatial position of three bright lobes pattern (triangular pattern for m = 3)

appears o↵-centered (Figs. 4.5(a1), 4.5(f1), 4.5(a2) and 4.5(f2)) from the on-axis. As the

beam propagates for longer z values, in addition to migration of intensity into bright

lobes, the spatial position of bright lobes pattern also moves towards the on-axis center.

At autofocusing distance z = 84 cm, the intensity becomes tightly focused to a single

bright spot (Figs. 4.5(d1), 4.5(i1), 4.5(d2) and 4.5(i2)). After the autofocusing distance

(at z = 100 cm), the intensity distribution again changes depending on the value of �.

The o↵-centered position of the bright lobes pattern is quite evident at distance z = 25

cm (Figs. 4.5(a1), 4.5(f1), 4.5(a2) and 4.5(f2)) as well as for the small values of z. This can

be attributed to the fact that the spatial position of indeterminate phase point [231] of

trigonometric phase (exp(i sin(3✓))) is correlated with the asymmetry parameters (w, �)

(Eqs. (4.16)-(4.18)), as shown in Fig. 4.6. For an ideal ALB, the on-axis center of an input

beam and indeterminate phase point coincide, and as a result of propagation, it leads

to the formation of a three bright lobes pattern with triangular symmetry (Figs. 4.6(a)).

However, for aALB (non-zero value of w), the indeterminate phase point does not coincide

with the on-axis center of an input beam. Figures 4.6(b)-4.6(c) show the change in the

4 Asymmetric aberration laser beams with controlled intensity distribution
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β = π
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Ideal ALB (w = 0)
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Figure 4.6: Trigonometric Phase (exp(i sin(3✓))) for (a) w = 0 and � = [0, 2⇡], (b) w = 1
mm, � = ⇡/2, (c) w = 1 mm, � = ⇡. A red circle of radius 1 mm with centre(0,0) is
drawn to show the e↵ect of asymmetry. (d)-(f) The intensity distribution of ideal ALB
and aALB at z = 0.027 cm (near-field), corresponding to the phase distributions given
in (a)-(c). The other simulation parameters are taken as ↵ = 5.9 mm�2, �0 = 1.45 mm,
m = 3, q = 2, and � = 632 nm.
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position of indeterminate phase point with the coordinates (w, �). A circle of radius 1

mm with center (0,0) is drawn to show the shifting of an indeterminate phase point from

the center. This shift due to the asymmetry a↵ects significantly the intensity distribution

of aALB during the propagation. When both ideal ALB and aALB are propagated by

a small distance z = 0.027 cm (near-field plane (close to DOE plane)), a peak with

maximum intensity (say maximum intensity point (MIP)) on top of Gaussian distribution

starts appearing at the precise location of indeterminate phase point (Figs. 4.6(d)-4.6(f)),

which then helps to initially develop the bright lobes pattern in aALB, o↵-centered at

coordinates (w, �). Upon propagation to large distances, this leads to an asymmetric

intensity distribution, which can be precisely controlled by varying w and �, as shown in

Figs. 4.3 and 4.5.

A detailed plot for varying the position of near-field MIP with asymmetry parameters

(w, �) is shown in Fig. 4.7. The position of near-field MIP is extracted from aALB at

w

β

Figure 4.7: The positions of near-field MIP for di↵erent asymmetry parameters w and �.
The position of near-field MIP is extracted from aALB at z = 0.027 cm. Red filled circle:
MIP for an ideal ALB (w = 0); Blue filled circle: MIP for aALB (w = 1 mm).

z = 0.027 cm (Figs. 4.6(d)-4.6(f)). In Fig. 4.7, a red-filled circle in the center represents

the location of a near-field MIP for ideal ALB (a special case of aALB for w = 0), and

blue-filled circles denote the near-field MIPs for aALB (w = 1 mm).

We have also investigated the formation of MIP at z = 0.027 m, and its role in

4 Asymmetric aberration laser beams with controlled intensity distribution



132 4.5. Spatial control of high-energy density regions

developing high-intensity region around the coordinates (w, �) (shown in Fig. 4.8). As

evident, due to asymmetry, a bright peak on the left of Gaussian distribution (MIP)

starts to appear (Fig. 4.8(a)), which then initiates the development of bright lobes o↵-

centered from the on-axis center (Figs. 4.8(b)-4.8(c)). With the propagation, the intensity

keeps shifting from the background to bright lobes. Unlike ideal ALB, in aALB due to

asymmetry, the intensity shifts inside the bright lobes asymmetrically. For a specific set

of asymmetry parameters, it completely shifts in one of the bright lobes. Further, during

the propagation over larger distances, the bright lobes shift toward the on-axis center, as

shown in Figs. 4.8(d)-4.8(f).

0.027 cm 1 cm 5 cm

75 cm35 cm10 cm

(a) (b) (c)

(f)(e)(d)

1

0β = π

0.5 mm

w = 1 mm, 

Figure 4.8: Intensity distribution of aALB for � = ⇡ at various propagation distances z
(a) 0.027 cm, (b) 1 cm, (c) 5 cm, (d) 10 cm, (e) 35 cm, (f) 75 cm. The other parameter
values are w = 1 mm, ↵ = 5.9 mm�2, �0 = 1.45mm, m = 3, q = 2 and � = 632 nm.

4.5 Spatial control of high-energy density regions

Autofocusing enables to obtain high power density focused spot, but spatially it always

occurs at on-axis center of the beam, irrespective of parameters of ALB. In the ALB, the

intensity symmetrically distributes in various lobes depending on m values, and evolves

symmetrically, and focuses tightly on a single spot at the autofocusing distance. It pre-

vents precise control of the spatial position of such high-energy density regions. However,
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by introducing asymmetry, the high-energy density region can be formed by controlled

transfer of intensity within the beam before and after the autofocusing distance and can be

tuned to di↵erent desired spatial positions. Now, the question is for which set of asymme-

try parameters such high-energy density lobes can be obtained at di↵erent desired spatial

positions. So we have explored the correlation between the asymmetry parameters and

the spatial position of bright lobes.

From Fig.4.4(c), it can be seen that a sharp rise of intensity due to autofocusing

phenomenon occurs near the value of z = 70 cm. After this distance, the lobes in the

pattern begin to merge and convert into a tightly focused bright spot at zaf = 84 cm.

At the autofocusing distance, the peak power becomes maximum due to the merging of

bright lobes, but it always appears at the on-axis center of the beam. Thus the spatial

position of the tightly focused bright spot at autofocusing distance can not be changed.

However, up to a distance of z = 70 cm, the high-intensity lobe continues to develop

and remains well separated in a pattern. At z = 70 cm, most of the intensity becomes

confined tightly within these bright lobes (lobes with high-energy density) (Figs. 4.3 and

4.5). At this distance, the spatial position of high-energy density lobe can be controlled

by transferring intensity between the bright lobes using asymmetry parameter �. Note, a

similar control can also be obtained at other distances after autofocusing, as these bright

lobes are separated well and intensity is confined within them.

For di↵erent asymmetry parameters, the intensity distributions of aALB are given in

Figs. 4.3 and 4.5. As evident, the spatial intensity distribution of aALB is di↵erent for

di↵erent values of w and �. For the specific values of �, most of the intensity can be

confined to any one of the bright lobes. For example, for � = ⇡/2 and w = 1 mm, most

of the intensity shifts and confines to a single bright lobe, which represents a high-energy

density lobe (Figs. 4.3(h1) and 4.3(h2)). The spatial position of the high-energy density

lobe can be varied by choosing other specific values of �, for which most of the intensity

will transfer to the other bright lobe.

A controlled shift of intensity into any one of bright bright lobes can be explained by

establishing a correlation between the autofocusing point (z = zaf ) (Fig. 4.3(d1)), near-

4 Asymmetric aberration laser beams with controlled intensity distribution
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field MIP (Fig. 4.7) and position of bright lobes in the pattern (Fig. 4.3(c1)). Particularly,

a relative alignment among them decides the shifting of intensity in a certain direction,

and accordingly high-energy density lobe forms at a specific spatial position. For two set

of parameters (w = 1 mm, � = 7⇡/6) and (w = 1 mm, � = 4⇡/3), the results are shown

in Fig. 4.9.
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Figure 4.9: (a)-(b) The intensity distributions of ideal ALB at z = 70 cm (Fig. 4.3(c1))
and at autofocusing distance zaf = 84 cm (Fig. 4.3(d1)) are superimposed. The yellow
dots in (a) and (b) mark the spatial position of near-field MIP (Fig. 4.7) for w = 1 mm
and � = 7⇡/6 and 4⇡/3, respectively. (c)-(d) The intensity distributions of aALB at
z = 70 cm for w = 1 mm and �=7⇡/6 and 4⇡/3. Other parameters are taken as m = 3,
q = 2, ↵ = 5.9 mm�2, �0 = 1.45 mm and � = 632 nm.

In Figs. 4.9(a)-4.9(b), the intensity distributions of ideal ALB at z = 70 cm (Fig. 4.3(c1))

and at autofocusing distance zaf = 84 cm (Fig. 4.3(d1)), are superimposed. The spatial

position of MIPs (Fig. 4.7) for two set of asymmetry parameters (w = 1, � = 7⇡/6) and

(w = 1, � = 4⇡/3) are represented by yellow dots in Figs. 4.9(a) and 4.9(b), respectively.

A straight line connecting near-field MIP and center of the autofocused bright spot is

drawn, where an arrow denotes the direction of flow of intensity in order to form high-

energy density lobes. Figures 4.9(c)-4.9(d) show the intensity distributions of aALB at

a distance of z = 70 cm for (w = 1 mm, � = 7⇡/6) and (w = 1 mm and � = 4⇡/3),

respectively. The bright lobes in the pattern are marked as 1, 2, and 3. When near-

field MIP, auto-focused central bright spot, and bright lobe in the pattern are aligned

well in a straight line (shown by a solid line in Fig. 4.9(a)), the intensity flows towards

that aligned bright lobe in the pattern and forms a high-power density lobe in that di-

rection. For example, in Fig. 4.9(a) (for w = 1 mm and � = 7⇡/6), only bright lobe

2 is aligned perfectly, so most of the intensity shifts to only bright lobe 2, and forms a
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high-energy density lobe (Fig. 4.9(c)). In this case, most of the intensity from bright lobes

1 and 2 transfers to bright lobe 2. When such alignment does not satisfy, for example,

in Fig. 4.9(b) (for w = 1 mm and � = 4⇡/3), the shifting of most of the intensity in a

single bright lobe does not occur, and a significant portion of intensity also remains in

the other bright lobes, as shown in Fig. 4.9(d). In this case, the bright bright lobe 2 is

closer to the alignment (marked by the solid line in Fig. 4.9(b)) as compared to the bright

lobe 1, so it receives more intensity. As the arrow direction points from bottom to top,

so intensity flows mostly in that direction. In this case, the intensity from bright lobe 3

transfers almost completely, and from bright lobe 1 transfers partially.

Note, for each bright lobe in the pattern this alignment can occur for two MIPs (di-

ametrically opposite values in Fig. 4.7), where in one case high-energy density lobe is

obtained before the autofocusing distance (at z = 70 cm), and for other after the autofo-

cusing point (z ⇡ 100 cm). For example, it has been observed for � = ⇡/2 (Fig. 4.3(h1))

and � = 3⇡/2 (Fig. 4.5(j1)). This can be attributed to the fact that there exists an on-axis

symmetry around autofocusing distance (zaf ) for both ideal ALB and aALB (Fig. 4.4(c)).

More specifically, the spatial intensity distribution of ideal ALB at z = 70 cm (Fig. 4.3(c1))

and z = 100 cm (Fig. 4.3(e1)) are similar. However, for aALB, due to intensity migration

the region of less intensity in aALB at z = 70 cm (Fig. 4.5(h1)) becomes a region of high

intensity at z = 100 cm (Fig. 4.5(j1)).

In the considered examples of ALB and aALB, there are three bright lobes for m = 3,

which are oriented at di↵erent angles. Thus, the high-energy density lobes can be created

at three di↵erent spatial positions by choosing three specific values of �. For m = 3,

three � values are (⇡/2 , 7⇡/6 , 11⇡/6) (for distance z = 70 cm, before the autofocusing).

However, to generate high-energy density lobes at more spatial positions, the value of m

can be increased further (m > 3), and accordingly, there will be more values of � (shown

later in Sec. 4.5.1). In general, for a given value of m, � can be found using the following

empirical relation:

Odd m �n =
⇡

2m
(4n� 1) n = 1, 2, ..m (4.22)
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Even m �n =
⇡

2m
(4n� 3) n = 1, 2, ..m (4.23)

Further, for the case of m = 3, we quantified the shift of intensity in bright lobes for

three specific values of �. The results are shown in Fig. 4.10. Figures 4.10(a1) and 4.10(a2)
Intensity vs β at z = 70cm(Figure 9)
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Figure 4.10: (a1)-(a2) The intensity distributions of ideal ALB at z = 70 cm. The
intensity distributions of aALB at z = 70 cm for di↵erent values of � (b1)-(b2) ⇡/2,
(c1)-(c2) 7⇡/6, and (d1)-(d2) 11⇡/6. The other parameters: w = 1 mm, ↵ = 5.9 mm�2,
�0 = 1.45mm, m = 3, q = 2 and � = 632 nm.

show the simulated and experimental intensity distributions of ideal ALB at z = 70

cm, respectively, indicating the equal intensity in all three bright lobes. The percentage

of intensity inside each lobe (marked by the red circle) is calculated by the method of

di↵raction e�ciency [232]. The di↵raction e�ciency represents the amount of intensity

inside the bright lobe (area marked by red circles) with respect to the total intensity

of the beam. Note, in the experimental results the intensity inside the bright lobes is

distributed equally, but their values are smaller than the numerical results. We attribute

this di↵erence due to the imperfections related to SLM, which causes a significant residual

reflection. The SLM is anti-reflection (AR) coated at 1064 nm, however, the experimental

results are obtained with He-Ne laser at 632 nm. Figures 4.10(b1)-4.10(d1) and 4.10(b2)-

4.10(d2) show the simulation and experimental results of the intensity distribution of

aALB at z = 70 cm for three di↵erent values of � = ⇡/2, 7⇡/6, and 11⇡/6, respectively.
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As evident, for these three specific values of �, most of the intensity is transferred to

any of the bright lobes, spatially positioned at di↵erent locations. More specifically, for

aALBs, the intensity is enhanced by a factor of > 2 in any one of these bright lobes (41%)

as compared to ideal ALB (19%). Further, asymmetry shifts a major portion of intensity

in one of the bright lobes (high-power density lobe), and the intensity between the high-

power density lobe (41%) and other lobes (⇠ 7%) di↵ers by a factor ⇠ 6, as shown in

Figs. 4.10(b1)-4.10(d1). The experimental results show qualitatively the same behaviour,

however, the di↵erence factor is obtained between 3� 4.5 (Figs. 4.10(b2)-4.10(d2)).

4.5.1 E↵ect of m on the intensity distribution of aALB

We have also shown that by varying the aALB parameterm, it is possible to obtain a more

flexible control of spatial intensity distribution. The number of bright lobes (having equal
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Figure 4.11: The intensity distributions of ideal ALB and aALBs with di↵erent � values
for m = 4 (first row), m = 5 (second row), and m = 6 (third row). The propagation
distance is taken to be z = 70 cm. The other parameter values are ↵ = 5.9 mm�2,
�0 = 1.45mm, q = 2 and � = 632 nm.
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intensity) in ideal ALBs are determined by the value of m and thus enables the possibility

to increase the number of spatial positions where high-energy density regions (most of

the beam intensity transfer to a tightly focused lobe) can be formed using asymmetry. In

Fig. 4.10, for m = 3, it was shown that the high-energy density regions can be created only

at three di↵erent spatial positions. In general, the number of spatial positions carrying

high-energy density lobes can be increased in proportional to m. To show it, we have

simulated the results for di↵erent values of m, as shown in Fig. 4.11. The results consist

of intensity distributions of ideal ALB and aALBs (with di↵erent � values) at z = 70

cm for various values of m = 4 (first row), m = 5 (second row) and m = 6 (third row).

The percentage of intensity inside each bright lobe represents the di↵raction e�ciency.

As evident, for ideal ALBs, the intensity in bright lobes is equally and symmetrically

distributed. However, in aALBs, the intensity is asymmetrically distributed and can be

migrated to a desired spatial location by controlling asymmetry parameter �. The specific

values of � for which most of the intensity can be transferred to a single tightly focused

bright lobe at di↵erent spatial positions can be determined by the empirical relations

(Eq. (4.22) & Eq. (4.23)). As evident by changing the values of �, the spatial position of

the high-energy density region can be precisely tuned. The number of spatial positions

having high-energy density region are marked by the red circles, which shows that the

number of these spatial positions are proportional to m. For other values of �, it is

possible to migrate intensity at other spatial positions, but all the intensity will not be

transferred to a single location to form a high-energy density region. For m = 4, with

the specific values of �, the di↵raction e�ciency of high-energy density region can be

enhanced by a factor of ⇠ 3.5 (11% in ideal ALB, 38% in aALB). This factor further

increases with the value m, for example, for m = 5 and 6, it is found to be ⇠ 4.4

(Fig. 4.11(e)-4.11(h)) and ⇠ 6.2 (Fig. 4.11(i)-4.11(l)), respectively. Now, in aALBs with

di↵erent m values, the intensity di↵erence between the high-energy density and other

lobes has significantly increased by several factors. Therefore, we have found that by

varying the aALB parameter m, it is possible to obtain more flexible control of spatial

intensity distribution. Specifically, it is found that the high-energy density bright lobe
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can be generated at more spatial positions by increasing the parameter m.

4.6 E↵ect of non-quadratic phase distribution (q 6= 2)

For the generalization of our method, we have also investigated the controlled intensity

distribution of aALBs having non-quadratic phase distribution (q 6= 2). We have consid-

ered two di↵erent cases of radial power q = 1.5 and q = 2.5. The intensity distribution

of ideal ALBs with q = 1.5 and q = 2.5 are shown in Figs. 4.12(a) and 4.12(e), respec-

tively. The di↵erent q values provide di↵erent phase distribution of ALBs, and thus their

propagation properties become di↵erent. The autofocusing for ALBs with q = 1.5 and

2.5 is observed at z = 117 cm and 60 cm, respectively. These values of autofocusing

distance show a small discrepancy with the calculated values of z = 110 cm and 68 cm

from Eq. (4.21). This small discrepancy is due to the fact that the analytical expression

(Eq. (4.21)) is obtained with a stationary phase method involving assumptions (described

in Chapter 3).
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Further, to show the e↵ect of asymmetry for controlling spatial intensity distribution

4 Asymmetric aberration laser beams with controlled intensity distribution
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(specifically to form high-energy density regions), we have chosen propagation distances

z = 72 cm and 52 cm for q = 1.5 and 2.5, respectively. This is due to the fact that

at these distances lobes are developed and separated well. For simplicity, we have kept

the asymmetry parameter w = 1 mm and varied only �. To obtain high-energy density

regions, the specific values of � are calculated from empirical relation (Eq. (4.22)). For

q = 1.5, in an ideal ALB with m = 3, the intensity is symmetrically distributed in three

lobes with a di↵raction e�ciency of 6.7% (Fig. 4.12(a)), and by introducing asymmetry

�, the intensity migrates to form a high-energy density region with enhanced di↵raction

e�ciency of 20% (Figs. 4.12(b)-4.12(d)). The spatial position of high-energy density

region is changed by changing the specific values of �. The results for q = 2.5 are shown

in Figs. 4.12(e)-4.12(h), indicating that high-energy density regions are obtained with

enhanced di↵raction e�ciency of 22%. From the results, it is clear that our approach

works well for aALBs with non-quadratic phase distribution.

Therefore, it is clear from these results, that we can generate high-energy density lobes

with controlled spatial position by introducing the asymmetry as well as varying the beam

parameters m and q.

4.7 Conclusions

In this Chapter, we have presented the generation of asymmetric aberration laser beams

(aALBs) with controlled intensity distribution, based on an outer-cavity method using a

di↵ractive optical element (DOE) involving phase asymmetry. In ALBs, the intensity is

symmetrically distributed in all lobes, however, in aALBs, the asymmetry in phase distri-

bution enables an additional control of intensity distribution by redistributing intensity

within the beam, and forms the high-energy density regions at desired spatial locations.

The asymmetry in phase distribution is introduced by shifting the coordinates in a com-

plex plane. We have derived the mathematical formulations for general aALBs as well

as the special cases of it. Specifically, we have exploited asymmetry to precisely control

the intensity distribution of ALBs. In an ideal ALB, intensity is equally distributed in all
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bright lobes. We have shown that, by the introduction of phase asymmetry, most of the

intensity can be transferred to any one of the single lobes, and generate a high-energy den-

sity. Further, we have also investigated the mechanism of asymmetric control of intensity

in aALBs. We have found that the asymmetry parameters control the position of inde-

terminate phase point of trigonometric phase term in aALB, which creates a controlled

asymmetric intensity distribution in the near-field plane. As a result of propagation, it

provides a controlled transfer of intensity within aALB. In general, for a given parameter

m of aALB, the precise spatial location of high-energy density lobe can be controlled by

asymmetry parameter �, and we have determined empirical relations between � and m.

We have found that for the specific values of � and m, the intensity in the high-energy

density lobe can be enhanced by several times the intensity in other lobes. For example,

intensity in the high-energy density lobe can be enhanced by the factor of ⇠ 6.2 for m = 6

and � = ⇡/12. Further, the e↵ect of di↵erent beam parameters such as m and q is also

investigated, which provides more flexibility in controlling the intensity distribution of

aALBs.

Furthermore, unlike ideal ALBs, the aALBs possess more complex intensity and phase

distributions, so we have investigated their propagation properties. We have found that

similar to ideal ALBs, the aALBs also possess good autofocusing properties, which are

not a↵ected by the asymmetry parameters. The autofocusing distance of aALBs can be

varied from small to large values by changing the beam parameters. The aALBs provides

a more general framework for controlling intensity distribution, as for the specific values of

asymmetry parameters (w = 0) aALB behaves as an ideal ALB. These aspects of aALBs

make them potentially important for various applications of modern optics and photonics,

such as forming various types of optical traps to guide and manipulate particles, material

processing etc. The results presented in this Chapter are reported in Refs. [38, 40].

4 Asymmetric aberration laser beams with controlled intensity distribution





Chapter 5

Generating high-energy densities by

sidelobe suppression in the far-field

of phase-locked lasers

5.1 Introduction

In previous Chapter 4, we have presented the generation of asymmetric aberration laser

beams (aALBs) with controlled intensity distribution, based on an outer-cavity method

using a di↵ractive optical element involving the phase asymmetry. Owing to the phase

asymmetry, in aALBs high-energy density lobes can be created at desired spatial locations

within the beam. However, the total energy in the high-energy density lobe is limited

by the output power of a laser. In general, the generation of high-energy density from

a single laser is typically limited by several physical constraints, such as gain saturation,

non-linear e↵ects, optical facet damage, and damage threshold of gain medium [233,234].

Further, strong pumping of the gain medium may excite undesired high-order transverse

modes, which can degrade the quality of laser output (M2
>> 1) [151, 235]. Also, the

presence of higher-order transverse modes a↵ects the propagation and focusing properties

of a laser beam, which results in a significant decrease in the energy density of focused

143
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spot in the far-field [151,235]. In this regard, phase-locking/coherent combining of several

lasers can be employed, which increases the output power significantly while maintaining

good output beam quality [236–239]. Various methods have been investigated for the

phase-locking of lasers in di↵erent array geometries [136, 239–242]. However, di↵erent

approaches su↵er from di↵erent kinds of limitations, and based on their e�ciency, the

lasers in the arrays are phase-locked either in the in-phase or out-of-phase configurations.

Unfortunately, in the far-field of these phase locked laser arrays, a significant percentage

of the energy resides in undesired sidelobes (higher di↵raction orders) and prevents from

obtaining a high-energy density output beam [136, 243]. Therefore, in this Chapter, we

present the generation of high-energy densities by suppression of higher-order sidelobes

in the far-field of phase-locked lasers.

A high-energy density single lobe far-field can be obtained from a near-field consisting

of uniform amplitude and uniform phase distributions [180]. For the in-phase locked

lasers, the phase distribution becomes uniform, as all the lasers are locked with the same

phase [239]. However, due to finite inter-laser separation, the amplitude of an optical field

across the output becomes non-uniform [244,245]. Due to such non-uniformities, the far-

field intensity distribution of a laser array contains undesired sidelobes having a significant

amount of energy [136,243]. Thus, finding a method capable of redistributing the sidelobe

energy to generate a high-energy zeroth-order lobe becomes a long-standing fundamental

problem. Therefore, several e↵orts have been made to suppress the higher-order sidelobes

to obtain a high-energy density zeroth-order lobe, for example, superposition of Bessel

beams with opposite k�vectors [246, 247], arbitrary phasing based on active segmented

mirrors [248], quantum cascade lasers with coupled ridged waveguides [249], diode laser

arrays integrated with a phase shifter [250], conjugate and phase controlled Dammann

grating [251,252].

Furthermore, aperture filling approach has also been shown to successfully suppress

the sidelobes in the far-field of coherent laser arrays and enables the generation of a tightly

focused single-lobed far-field intensity distribution. In this method, a uniform near-field

intensity distribution is generated by filling the intensity in the vacant space between
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the lasers of a periodic array, based on the principle of conversion of amplitude non-

uniformities to phase non-uniformities [244, 245]. However, in certain cases the reverse

approach has also been shown, i.e., uniform near-field is obtained by the phase modifi-

cation of central lobe of the far-field pattern [245]. A phase corrector is then employed

to nullify the phase non-uniformities of near-field to obtain a high intensity central peak

in the far-field. However, the method is limited due to two main assumptions: (i) Array

fill factor should be greater than 25% and (ii) the array modes must consist of binary

amplitudes. These two factors a↵ect the e�ciency of method [244, 245]. In particular,

for reduced fill factors or nonbinary amplitude profiles, the e�ciency can be considerably

lower. An improved and generalized version of this approach has also been demonstrated,

where phase of multiple orders in the Fourier plane is changed in order to produce a uni-

form function in the output plane, which ensures an improved e�ciency [253]. Further,

most of these aperture filling studies are performed with small system sizes and simple

array geometries such as linear and two-dimensional square arrays. Further, the arrays

are generated by illuminating an appropriately designed mask with an expanded, colli-

mated beam from a highly coherent laser source [244,245,250,252,254,255]. However, for

real phase-locked laser arrays in various complex geometries such as square, triangular,

Kagome, random, and 1D ring, the investigations are yet to be explored. Further, how

the range of phase locking, e↵ect of system size, and presence of topological defects in the

phase-locked laser arrays could a↵ect the e�ciency of aperture filling method?

In this Chapter, we have extended the approach of aperture filling to real phase-locked

laser arrays in various complex array geometries and investigated the e↵ect of various

system parameters on the e�ciency of method for generating high-energy densities. In

Sec. 5.2, we present a basic arrangement to generate phase-locked lasers in di↵erent array

geometries. The method to suppress higher-order sidelobes is discussed and numerical

results are presented, and show that aperture filling technique works well for di↵erent

laser array geometries. In Sec. 5.3, we present a detailed robustness analysis of the method

against the system size, range of phase locking, and presence of topological defects. In

Sec. 5.4, the approach is demonstrated with an out-of-phase locked square laser array. In

5 Generating high-energy densities by sidelobe suppression in the far-field

of phase-locked lasers
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Sec. 5.5, concluding remarks are presented. The results presented in this Chapter are

reported in Refs. [41, 42].

5.2 Basic arrangement for phase locking laser arrays

The scheme for generation and phase-locking of lasers in various array geometries is de-

picted in Fig. 5.1. It is based on a modified degenerate cavity that comprised of two flat

mirrors with reflectivities 99.5% (back mirror) and 80% (output coupler), solid-state gain

medium, two plano-convex lenses (focal length = 40 cm), a spatial Fourier filter placed in

the middle of two lenses (far-field (FF) plane) with Gaussian transmission function and

a near-field (NF) mask adjacent to output coupler containing circular holes in desired

geometry. In the NF mask, the area within the circular holes has a transmission value

‘1’, and other outside areas have a transmission value ‘0’. Two lenses are arranged in a

4f telescope configuration that ensures perfect imaging inside the cavity such that every

point E(x, y) on the output coupler maps onto itself after every round-trip. This enables

each hole on the mask to lase independently in a nearly Gaussian distribution (acts as

an individual laser) [73,75,136], and accordingly it forms an array of lasers in the desired

array geometry. The lasers in the array are coupled by a Gaussian apodizer in the far-

field plane, which provides a positive coupling between the lasers and enables an in-phase

locking of the lasers [239]. The range and strength of coupling can be controlled by the

size of the Gaussian apodizer.

The Gaussian apodizer helps to eliminate the undesired phase distributions by intro-

ducing additional losses to them and, thereby, enables the lasers to find a correct phase

distribution. Initially, all the lasers in the array have random phase distributions and,

thus, are equally probable. During the several round-trip propagation of field inside the

cavity, di↵erent phase distributions of lasers compete with each other for the same gain

medium, and adding a Gaussian apodizer imposes di↵erent losses to the di↵erent phase

distributions. As a result, only the phase distribution with minimum loss sustains, and

others stop lasing inside the cavity. The minimum loss solution represents a steady-state
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Figure 5.1: The schematic of a degenerate cavity for the generation and phase locking of
lasers in di↵erent array geometries.

in-phase locked solution due to the positive nature of coupling between the lasers.

The scheme is simulated by using a modified Fox-Li iterative method, which has also

been adopted earlier to reproduce the experimental findings of phase-locking of lasers in

a degenerate cavity [136]. The method enables to simulate accurately the results of near-

field and far-field intensity distributions of laser arrays, as well as corresponding phase

distributions [37]. One round trip propagation of field inside the degenerate cavity is

simulated by the following operations:

Em+1(x, y) = M (F�1 (T (kx, ky) (F (g(x, y)⇥ Em(x, y))))), (5.1)

where Em(x, y) and Em+1(x, y) represent the field distributions ofmth and (m+1)th round-

trip at the output coupler. M represents the matrix corresponding to binary amplitude

mask placed at the near-field plane. The transmission function of M is either 0 (where

holes are absent) or 1 (where holes are present) arranged in a desired geometry. T (kx, ky)

denotes the transmission function of Gaussian apodizer, which can be written as

T (kx, ky) = exp
⇣
�

k
2
x + k

2
y

2�2
G

⌘
, (5.2)

where �G represents the width of Gaussian aperture. kx = x/�f and ky = y/�f represent

5 Generating high-energy densities by sidelobe suppression in the far-field

of phase-locked lasers
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spatial frequencies in the Fourier domain, where f denotes the focal length of a Fourier

transforming lens. F and F�1 denote the Fourier transform and inverse Fourier transform

operations, respectively. g describes the gain saturation function and can be written as

g(x, y) =
g0

1 + I(x,y)
Isat

, (5.3)

where I(x, y) = E(x, y)2. Isat is saturation intensity, and g0 denotes the unsaturated gain.

One round-trip propagation of field inside the degenerate cavity is equivalent to one

iteration in the simulation. For repetitive iterations in the simulation, the Eq. (5.1) is

repeated several times. Our modified Fox-Li method needs around 200 iterations to reach

the steady-state of in-phase locked laser array. The simulations are performed with the

parameters as: Isat = 1000, g0 = 8, �G = 0.5 mm, and � = 1064 nm. The simulated

results of in-phase locked lasers in the square, triangular, Kagome, 1D ring, and random

array geometries are shown in Fig. 5.2. Figures 5.2(a)-5.2(e) show the near-field intensity

distributions of in-phase locked lasers in the square, triangular, Kagome, 1D ring, and

random laser arrays, respectively. The lasers close to the boundaries in 2D arrays have less

intensity, which is attributed to the Gaussian nature of transmission function of a far-field

aperture. Note, for a large-size Gaussian apodizer, all the lasers become equally intense.

The size (diameter) of each laser is considered 0.48 mm, and the separation between

the two nearest neighbour lasers (centre to centre separation) is 0.72 mm. Figures 5.2(f)

-5.2(j) show the phase distributions of in-phase-locked lasers in the square, triangular,

Kagome, ring, and random arrays, respectively. Note, the black colour in the phase

distribution plot represents the zero-intensity regions, where the phase is not defined,

hence it is not included in the colormap of a well-defined phase. As evident, the phase is

uniform throughout the array, indicating a long-range in-phase locking of lasers. Further,

it confirms that the Gaussian coupling enables the in-phase locking of lasers irrespective

of array geometry without changing the system parameters (fix diameter of Gaussian

apodizer) [239]. Figures 5.2(k)-5.2(o) show the far-field intensity distribution of phase-

locked lasers in the square, triangular, Kagome, ring, and random arrays, respectively. A
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narrow sharp bright peak in the center again confirms a long-range in-phase locking of

lasers. The corresponding phase distributions of far-fields are shown in Figs. 5.2(p)-5.2(t).

Figure 5.2: Results of in-phase locked lasers in various array geometries. (a-e) Near-
field intensity distribution. (f-j) Phase distribution in a near-field plane. (k-o) Far-field
intensity distribution. (p-t) Phase distribution in a far-field plane. Note, in the phase
distribution plots, black colour represents the regions where phase is not defined due to
zero intensity. ⌘o denotes the di↵raction e�ciency of zeroth-order central lobe (Eq. (1.31)).

In the far-field intensity distribution (Figs. 5.2(k)-5.2(o)), in addition to a central

bright peak (zeroth-order) there are several higher orders (sidelobes) that consist of a

significant amount of intensity. These undesired sidelobes reduce the available powers

in the form a high-energy density beam. In other words, it causes a reduced di↵raction

e�ciency of the zero-order lobe, as marked by ⌘o in Figs. 5.2(k)-5.2(o). Note, the di↵rac-

tion e�ciency is calculated using Eq. (1.31). The formation of sidelobes (higher orders) is

anticipated by the discreteness and periodic arrangement of elements in the system, for

5 Generating high-energy densities by sidelobe suppression in the far-field

of phase-locked lasers
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example, finite inter laser separation that results in a non-uniform optical field of laser

array across the near-field plane. To overcome these issues, several methods have been

developed to suppress the sidelobes for the generation of a single-lobe far-field intensity

distribution [244, 245, 250, 252, 254, 255]. However, the approaches still su↵er several lim-

itations, and improvements are still being made to reinforce the power in the zero-order

lobe. We are using an aperture filling approach (called phase plate method) to transfer the

intensity from the higher-order sidelobes to zeroth-order lobe, to improve its di↵raction

e�ciency.

Figure 5.3: Illustration of method for suppressing higher-order sidelobes in the far-field
of phase-locked laser array. (a) Step-I demonstrates the formation of uniform near-field
amplitude of laser array. (b) The phase neutralization step to obtain uniform near-field
amplitude with uniform phase distribution, which gives a tightly focused single high-
intensity lobe in the far-field plane. PN and PC denote the phase neutralizer and phase
corrector, respectively.

The approach is illustrated in Fig. 5.3, which is based on the principle of obtaining uni-

form near-field intensity distribution by the phase modification of far-field distribution.

The phase distributions of zero and higher-orders in the far-field intensity distribution

have a certain symmetry and relation between them, as shown in Figs. 5.2(p)-5.2(t). For
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example, in a square laser array, the phase di↵erence between the zero-order and first-

order lobes is ⇡ (Fig. 5.2(p)). By changing the symmetry of phase (i.e., modifying the

phase of lobes), it can create a nearly uniform amplitude in the near-field plane. A

uniform amplitude with plane phase will have a single high-energy density lobe in the

far-field intensity distribution. The method involves two steps, as illustrated in Fig. 5.3.

In step -I (Fig. 5.3(a)), the initial in-phase locked laser array consists of uniform phase

but non-uniform intensity (due to inter-laser separation) across the array, which upon

Fourier transform gives lobe pattern (zero and higher-order lobes) in the far-field. The

phase of zeroth-order lobe is modified by � using a phase corrector (PC), and then inverse

Fourier transform is performed to get the near-field of laser array. Due to the phase mod-

ification, light will redistribute to form a uniform near-field amplitude and binary phase

distribution. In step-II (Fig. 5.3(b)), a phase neutralizer (PN) is imposed on the modified

near-field (obtained from step-I), which converts a non-uniform phase distribution to the

uniform phase distribution. This will result in a plane wave (uniform amplitude with

uniform phase) and can be focused tightly to a single lobe in the far-field plane.

The success of the approach relies on how well the uniformity in the near-field am-

plitude and phase distribution of laser array is obtained, which strongly depends on the

correction phase �. To analyze the e↵ect of �, we impose the variation of � in a range

[0�2⇡] on the zeroth-order lobe, and calculate the di↵raction e�ciency of it in the far-field

intensity distribution (Eq. (1.31) and [232]). The results for various laser array geome-

tries with maximum di↵raction e�ciency are presented in Fig. 5.4. Figures 5.4(a)-5.4(e)

show the modified near-field intensity distribution of laser arrays after implementing the

phase correction (step-I in Fig. 5.3(a)). It is evident that the phase correction (�) leads

to the redistribution of intensity to the regions where lasers were not present (inter-

laser separation), and results in a nearly uniform amplitude/intensity. Note, the values

of � are chosen such that maximum di↵raction e�ciency is achieved. To quantify the

uniformity of the modified near-field amplitude, we have calculated an overlap integral

with respect to a uniform amplitude distribution (Eq. (1.26)) and [37]), which is found

to be 87.68%, 90.40%, 86.21%, 55.14%, and 95.8% for the square, triangular, Kagome,

5 Generating high-energy densities by sidelobe suppression in the far-field
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Figure 5.4: (a-d) Modified near-field of laser array after correcting the phase of zeroth-
order lobe in the far-field. (e-h) The phase neutralizer for obtaining uniform phase dis-
tribution of modified near-field. (i-l) Modified far-field with suppressed higher-order side-
lobes. ⌘m denotes the di↵raction e�ciency of the modified far-field. For the maximum
di↵raction e�ciency, the results are obtained with � = 2.5 rad (square), 2.2 rad (triangu-
lar), and ⇡ rad (for Kagome and ring).

1D ring, and random array of lasers, respectively. After obtaining a nearly uniform am-

plitude distribution, the phase distribution is extracted and neutralized to produce an

optical field that is similar to a plane wave (uniform amplitude and uniform phase dis-

tributions). Figures 5.4(f)-5.4(j) show the phase distribution of neutralizers that enable

to obtain the uniform phase distribution of modified near-field of di↵erent laser arrays

(step-II in Fig. 5.3(b)). As evident, the phase distribution of neutralizers is binary, which

is easy to fabricate, and makes the method more simple, cost-e↵ective, and advantageous.

After performing steps I and II (Fig. 5.3), we obtain a modified far-field intensity distri-

bution, where higher-orders are suppressed quite well and intensity is tightly focused in

the form of a single zeroth-order lobe, as shown in Figs. 5.4(k)-5.4(o). The di↵raction

e�ciency ⌘m is calculated for all laser arrays, which is found to be 90% for square array,
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92% for triangular array, 90% for Kagome array, 75% for ring array, and 95% for random

laser array. One of the reasons for observing ⌘m < 100% is due to the presence of a

small non-uniformity in the modified near-field (Figs. 5.4(a)-5.4(e)) (as shown above by

the calculated values of overlap integral). However, various other reasons have also been

mentioned in earlier studies [244], which include i) smaller array fill factors, ii) binary

mode profile of individual laser is an ideal approximation, iii) phase corrector is continu-

ous for non-ideal systems, and iv) finite extent of the real laser array. Further, correcting

the phase of multi-orders has also been shown to improve the di↵raction e�ciency [253].

To show an improvement in the di↵raction e�ciency quantitatively, we have compared

the cross-sections of the original (Figs. 5.2(k)-5.2(o)) and modified (Figs. 5.4(k)-5.4(o))

far-field intensity distributions of various laser array geometries, as shown in Fig. 5.5.

Note, the intensity cross-sections are normalized with respect to the intensity of the

modified far-field. The di↵raction e�ciencies of zero-order lobe in original and modified

far-field intensity distributions are denoted by ⌘o and ⌘m. As evident, in the original

far-field intensity distribution, the intensity is distributed in zeroth-order and high-order

sidelobes (shown by the dot-dashed blue curve), and the di↵raction e�ciency (⌘o) of

zeroth-order lobe is found to be 25% in a square array (Fig. 5.5(a)), 29% in a triangular

array (Fig. 5.5(b)), 23% in a Kagome array (Fig. 5.5(c)), 18% in a ring array (Fig. 5.5(d)),

and 22% in a random array (Fig. 5.5(e)). After applying our approach, in the modified

far-field intensity distribution, the high-order sidelobes are suppressed quite well, and

the di↵raction e�ciency of the zeroth-order lobe (⌘m) is enhanced by the several factors

(3 � 4) (shown by solid red curve). Particularly, ⌘m is found to be 90% in square array

(Fig. 5.5(a)), 92% in triangular array (Fig. 5.5(b)), 90% in Kagome array (Fig. 5.5(c)),

75% in ring array (Fig. 5.5(d)), and 95% in random laser array (Fig. 5.5(e)).

The above results are obtained for the fixed values of phase correction (�) that corre-

spond to a maximum di↵raction e�ciency. However, to understand the role of � better for

improving the di↵raction e�ciency, we have varied the value of � in a complete range of

[0 to 2⇡] and analyzed the di↵raction e�ciency of various laser arrays in di↵erent geome-

tries. The results are shown in Fig. 5.6. It is evident that the di↵raction e�ciency (⌘m)
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Figure 5.5: The cross sections of original (dash-dot blue curve) and modified (solid red
curve) far-field intensity distributions of various arrays (a) square, (b) triangular, (c)
Kagome, (d) 1D ring, and (e) random laser array. Note, the cross-sections are taken
along the horizontal x-axis in Figs. 5.2(k)-5.2(o) (original far-field) and Figs. 5.4(k)-5.4(o)
(modified far-field). The ⌘o and ⌘m are di↵raction e�ciencies of the central zero-order
lobe in original and modified far-field intensity distributions.

of zeroth-order increases by increasing �, and it attains a maximum value and remains

the same for a certain range, and after that, it decreases. The curve is symmetric with

respect to ⇡ for a range of � 2 [0, 2⇡]. The range of � for which maximum ⌘m occurs (say

�m) varies with the laser array geometry, as shown in Fig. 5.5. The range of �m is found

to be 1.88� 4.4 rad. for a square array, 1.73� 4.55 rad. for a triangular array, 2.04� 4.24

rad. for a ring array, and 2.2 � 4.15 rad. for a random laser array. In a Kagome laser

array, the maximum value of ⌘m occurs at �m = ⇡. Note, �m is calculated by taking ⌘m

values within the 95% of maximum di↵raction e�ciency.

From above analysis, it is clearly evidenced that the approach works well for suppress-

ing the higher-order sidelobes in 1D and 2D laser arrays. However, the redistribution of

intensity from high-order to zeroth-order lobe depends on the parameters of array geome-

try, as evidenced by di↵raction e�ciency curves in Fig. 5.6. The approach clearly enables
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Figure 5.6: Variation of the di↵raction e�ciency ⌘m as a function of phase correction
angle � for various laser array geometries.

the e�cient generation of high-energy density output laser beams.

5.3 Robustness Analysis

In Sec. 5.2, we have considered a long-range in-phase phase locking of lasers (all the lasers

are fully phase-locked in all directions) in various array geometries, and no defects are

present. However, achieving a long-range phase locking is a challenging task, as the

presence of aberrations in a degenerate cavity can introduce detuning between the lasers,

and critical value of coupling strength can be very high [256]. The phase locking of

lasers in a 1D ring array is highly susceptible to topological defects [73, 75]. Thus, to

check the reliability of our approach, we have carried out a detailed study by considering

several factors such as e↵ect of range of phase locking, e↵ect of system size, and e↵ect of

topological defects.

5.3.1 E↵ect of range of phase-locking

It is possible that all the lasers in an array are not completely in-phase with each other

in a real experimental situation. Due to this zeroth-order lobe in the far-field intensity

distribution widens, and the suppression of higher-order sidelobes can be a↵ected. To

5 Generating high-energy densities by sidelobe suppression in the far-field
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study it, we have considered a square array of 81 lasers, where all the lasers are not

perfectly in-phase with each other (short-range of phase-locking). Such a short range

in-phase locking of lasers is obtained in a degenerate cavity (Fig. 5.1). The range of

phase-locking can be controlled by varying the width (�G) of Gaussian apodizer [239].

Increasing the width of the Gaussian apodizer reduces the range of coupling between the

lasers, and thus reduces the number of phase-locked lasers.

Figure 5.7: E↵ect of short-range phase-locking on the suppression of high-order sidelobes.
(a)-(c) Phase distribution of lasers in the near-field plane. (d)-(f) Far-field intensity
distribution. (g)-(i) Modified near-field intensity distribution. (j)-(l) Phase distribution
of neutralizers. �G denotes the width of Gaussian apodizer. The value of phase correction
is taken to be � = 2.5 rad, corresponding to a maximum di↵raction e�ciency (Fig. 5.4).

Figures 5.7(a)-5.7(c) show the phase distribution of lasers in a near-field plane for

di↵erent widths of Gaussian apodizer, indicating a short-range in-phase locking as the



157

phase is not uniform throughout the array. The phase is uniform within small domains (as

colour remains the same within each domain). The range of phase-locking decreases as the

width of Gaussian apodizer increases. This is also evident by a decrease in the domain size

and an increase in the number of domains. Figures 5.7(d)-5.7(f) show the far-field intensity

distribution of lasers corresponding to Figs. 5.7(a)-5.7(c). A bright lobe in the center

indicates in-phase locking of lasers, however, broadened lobes show a short-range of phase-

locking. The increase in the width of lobes by increasing the width of Gaussian apodizer

again confirms a decrease in range of phase-locking. Due to a short range of phase-locking,

a significant portion of intensity also resides in the background (Fig. 5.7(f)). We have

calculated the number of phase-locked lasers in x and y directions as Nx/y = d/FWHM ,

where d is the distance between zeroth-order lobe and first-order lobe in the far-field

intensity distribution, and FWHM is the full width at half-maximum of zeroth-order

lobe [257]. The total number of phase-locked lasers in an array is given as N = Nx ⇥Ny.

The number of phase locked lasers are found to beN = 28 (Fig. 5.7(a,d)), 15 (Fig. 5.7(b,e))

and 9 (Fig. 5.7(c,f)), corresponding to the Gaussian apodizer of widths �G = 0.53 mm,

0.64 mm, and 0.81 mm, respectively. Figures 5.7(g)-5.7(i) show the modified near-field

intensities after the application of phase correction (� = 2.5 rad.). As evident, a decrease

in the range of phase-locking leads to a decrease in the uniformity in a modified near-

field intensity distribution. The reduced values of overlap integral are found to be 88.8%

(Fig. 5.7(g)), 74.4% (Fig. 5.7(h)), and 68% (Fig. 5.7(i)), corresponding to �G = 0.53 mm,

0.64 mm, and 0.81 mm, respectively. Figures 5.7(j)-5.7(l) show the phase distribution of

neutralizers, indicating that these consist of multi-phase structures (continuous phase),

which is unlike the binary nature of a perfect long-range phase-locking of lasers (Fig. 5.4).

The increase in non-uniformity a↵ects the suppression of higher-order sidelobes in the

far-field intensity distribution and thus a↵ects the di↵raction e�ciency of zeroth-order

lobe. We have found reduced di↵raction e�ciency of 87%, 80% and 75% for various

short-range phase-locking of lasers obtained with �G = 0.53 mm 0.64 mm, and 0.81 mm,

respectively. In particular, for the smallest phase-locking range, the di↵raction e�ciency

has the lowest value (Fig. 5.7(l)). The range of phase-locking plays a crucial role in
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suppressing the higher-order sidelobes and obtaining a high-energy density laser output

beam.

5.3.2 E↵ect of system size

High-energy density laser beam is desired for various applications, which can be generated

by phase-locking more and more number of lasers. In principle, for the N number of

perfectly phase-locked lasers, the intensity can be enhanced to ⇠ N
2 [233]. However, a

significant portion of intensity still lies in the higher-order sidelobes. We have analyzed

the e↵ect of system size on the sidelobe suppression. To do that we have varied the

number of lasers in a square array, and in-phase locked with a Gaussian apodizer of width

�G = 0.5 mm, and after that calculated the di↵raction e�ciency of zeroth-order lobe in the

modified far-field intensity distribution. The results are shown in Fig. 5.8. As evident, the

di↵raction e�ciency remains approximately the same (⇡ 90%) upon variation of system

size (N = 16 to 255 lasers).

Figure 5.8: Variation of di↵raction e�ciency of zeroth-order lobe in a modified far-field
intensity distribution, as a function of number of phase-locked lasers N . The parameters
are taken as � = 2.5 rad. and �G = 0.5 mm.

It is evident that as long as the lasers in an array are perfectly phase-locked (long-

range phase-locking), the di↵raction e�ciency remains almost the same (irrespective of

the system size).



159

5.3.3 E↵ect of topological defects

Topological defects (vortex/anti-vortex) can occur during the phase-locking of laser arrays

[73, 75, 136]. It has been observed that a 1D ring array geometry is highly susceptible to

the occurrence of topological defects [73, 75]. Due to the phase singularity of topological

defects, intensity remains zero at the center in the far-field intensity distribution. However,

the intensity lies in multiple rings around the dark center. So, we have considered a

ring array geometry to see the e↵ect of topological defects on suppressing sidelobes and

forming a high-energy density lobe in the center of far-field intensity distribution. We

have phase-locked lasers (1D ring array) in a topological defect using the approach based

on a degenerate cavity [37]. We have considered defects with various topological charges

l, which determines the number of helices in the wavefront in one phase cycle. The results

are shown in Fig. 5.9.

Figure 5.9: (a) The phase distribution of lasers in the near-field plane, where 20 lasers
are phase-locked in a topological defect (vortex) with topological charge l = 1. (b) Far-
field intensity distribution. (c) Phase distribution of neutralizer. (d) Modified far-field
intensity distribution. (e) The di↵raction e�ciency of central lobe in the modified far-field
intensity distribution as a function of topological charge l for N = 20 lasers.

Figure 5.9(a) shows the phase distribution of lasers in the near-field plane, where N =
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20 lasers are phase-locked in a defect (vortex) with topological charge l = 1. As evident,

the phase circulates from one site to the next, which confirms the vortex nature of output

beam. The far-field intensity distribution of this topological defect is shown in Fig. 5.9,

indicating almost zero intensity in the center, and all the intensity lies in multiple rings.

To obtain modified near-field intensity, a phase correction of � = ⇡ is applied to the

innermost ring of the far-field distribution, and after that, a Fourier transform of the

resultant field is performed. The modified near-field consists of an annular shape beam

with same topological charge on the laser sites and an opposite topological charge in the

background. To obtain the uniform phase distribution of modified near-field distribution,

we neutralize the phase by a phase distribution given in Fig. 5.9(c). The modified near-field

distribution with uniform phase results in a single lobe far-field (Fig. 5.9(d)), indicating

that the intensity from multiple rings is successfully redistributed to form a high-energy

density lobe in the center. The di↵raction e�ciency of this high-energy density lobe is

found to be 78%. To see the e↵ects of higher-order topological defects, we have varied l

and calculated the di↵raction e�ciency, as shown in Fig. 5.9(e). As evident, the di↵raction

e�ciency is found to be high for small values of l. A decrease in the di↵raction e�ciency

for the large values of l can be attributed to the fact that size of dark region in the center

becomes bigger and size of multiple rings also increases. It is clearly evidenced that even

in the presence of topological defects, our approach is able to generate a high-energy

density beam with a reasonably good di↵raction e�ciency.

5.4 High-energy densities from out-of-phase locked

lasers

For the phase-locking of an array of lasers, the common passive techniques involve either

Talbot di↵raction or Fourier filtering. The method based on Talbot di↵raction results

in an e�cient out-of-phase locking (usually at a half Talbot length) of lasers that can

not be tightly focused. With the method based on spatial Fourier filtering, using an
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aperture, the in-phase locking can be achieved. However, the e�ciency of this method is

low, specially, for small apertures, due to di↵raction losses of the higher-orders, alignment

sensitivity is relatively high, and the possible damage to the aperture due to strong intra-

cavity fields. A recent approach based on combining the Talbot di↵raction and Fourier

filtering has been shown to obtain either in-phase locking or out-of-phase locking of large

arrays with a good e�ciency [136]. However, in both in-phase and out-of-phase locking

a significant portion of intensity lies in higher-order sidelobes. So far, we have shown

that by using the aperture filling approach, in the in-phase locked lasers, high di↵raction

e�ciency of zeroth-order lobe can be obtained. However, a natural question arises whether

the aperture filling approach can also be applied to the out-of-phase locked laser arrays,

in order to obtain a high di↵raction e�ciency zeroth-order lobe in the far-field intensity

distribution.

To check it, we have phase-locked the lasers in an out-of-phase configuration by using a

simple approach of Fourier filtering with an aperture (a binary circular aperture). Placing

a binary circular aperture in the far-field plane gives rise to a sinc coupling function in

the near-field plane. The sinc function consists of both positive and negative values

and thus enables phase-locking of lasers in an out-of-phase configuration [136]. We have

phase-locked 121 lasers in an out-of-phase configuration in a square array with the help

of a binary circular aperture of diameter 1.7 mm. The results are shown in Fig. 5.10.

Figure 5.10(a) shows the phase distribution of lasers in a square array, indicating out-of-

phase configuration throughout the array. The far-field intensity distribution consists of

darkness in the center, and sharp first and higher-order lobes that again confirm a long-

range out-of-phase locking of lasers (Fig. 5.10(b)). To obtain high-energy density lobe in

the center, we have considered three di↵erent cases: i) phases of all the lobes (1 to 4 in

Fig. 5.10(b)) are corrected by � = ⇡, ii) phases of only lobes 1 and 2 are corrected by

⇡, and iii) phase of only lobe 1 is corrected by ⇡. Corresponding to these three cases,

the phase distributions of neutralizers are shown in Figs. 5.10(c)-5.10(e). As evident, each

case gives a di↵erent phase distribution of neutralizer. The modified far-field intensity

distributions corresponding to these three di↵erent cases are shown in Figs. 5.10(f)-5.10(h).

5 Generating high-energy densities by sidelobe suppression in the far-field
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Figure 5.10: (a) The near-field phase distribution of lasers in a square array. (b) The
far-field intensity distribution of out-of-phase locked lasers in a square array. The phase
distribution of neutralizers, extracted from modified near-fields obtained by applying the
phase correction � = ⇡ to the first-order lobes (in the far-field) (c) 1 to 4, (d) 1 and 2, and
(e) only 1. The modified far-field intensity distribution when phase correction is applied
to (f) all lobes from 1 to 4,(g) only lobes 1 and 2, and (h) only lobe 1.

As evident, a majority of intensity is found to be tightly focused in the zeroth-order lobe

with di↵raction e�ciency ⌘m = 71%, 73%, and 81% corresponding to three di↵erent cases,

respectively. It shows that our approach works reasonably well for the out-of-phase locked

lasers.

5.5 Conclusions

In this Chapter, we have investigated the generation of high-energy densities by suppress-

ing higher-order sidelobes in the far-field of phase-locked lasers. We have generated lasers

in various 1D and 2D array geometries in a degenerate cavity and phase-locked them in the

in-phase [out-of-phase] configuration with the far-field coupling using Gaussian apodizer

[binary circular aperture]. Owing to the non-uniform amplitude and definite geometry,

the far-field of phase-locked lasers consists of higher-order sidelobes. These higher-order

sidelobes contain a significant amount of energy, which limits the use of an output beam

for high-power applications. Further, the fraction of total energy residing in higher-order
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sidelobes depends upon phase and geometry of laser arrays. To e�ciently suppress higher-

order sidelobes, the method involves two steps: (i) first step is the phase correction, where

the phase of zeroth-order lobe in the far-field is changed by a certain angle, which results

in a modified near-field, with nearly uniform-intensity distribution and non-uniform phase

distribution, and (ii) second step includes the phase neutralization, where, in the modi-

fied near-field, the non-uniform phase distribution is neutralized to obtain a beam with

a nearly uniform-intensity distribution and uniform-phase distribution. This beam yields

a tightly focused high-energy density peak (zeroth-order lobe) in the far-field intensity

distribution.

We have demonstrated our method for the phase-locked lasers in various 1D and 2D

array geometries, such as square, triangular, Kagome, random, and 1D ring, based on

a degenerate cavity. The results are quantified by calculating di↵raction e�ciency of

the zeroth-order lobe. It is found that for long-range in-phase-locked laser arrays, the

di↵raction e�ciency of zeroth-order lobe can be improved by several factors (⇠ 3 � 4).

The improved di↵raction e�ciencies are found to be in a range between (90� 95)% (for

2D arrays) and ⇠ 75% (for 1D ring array). Further, for the long-range in-phase locking

of lasers, the phase distribution of neutralizers is found to be binary in nature, which

improves the simplicity of method.

Further, we have also analyzed the robustness of our method against various factors,

such as system size, range of phase-locking, and presence of topological defects in a 1D ring

array. It is found that a reduced phase-locking range decreases the di↵raction e�ciency

of zeroth-order lobe. However, for a very short-range of phase-locking (only 9 lasers are

phase-locked in an array of 81 lasers), the di↵raction e�ciency is found to be⇠ 75%, which

is still significantly better than the e�ciency of phase-locked laser array with higher-order

sidelobes. The decrease in the di↵raction e�ciency can be attributed to the non-binary

nature of phase distribution in neutralizers. We have found that the method works well

for small to large system sizes, and di↵raction e�ciency approximately remains the same.

In a 1D ring array, the high-energy density zeroth-order lobe can be generated with good

di↵raction e�ciency even in the presence of topological defects.

5 Generating high-energy densities by sidelobe suppression in the far-field
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We have also applied our method for the out-of-phase locked square laser array, where

the zeroth-order has no intensity. We have obtained a high-energy-density zeroth-order

lobe with a high di↵raction e�ciency of 81%. Our results on producing high-energy

density beams with suppressed higher-order sidelobes can be useful for various applications

in di↵erent areas. The results presented in this Chapter are reported in Refs. [41, 42].



Chapter 6

Discrete optical vortex: Divergence

and self-healing

6.1 Introduction

In previous chapters 2-5, we have discussed various types of spatially controlled struc-

tured light, with a particular emphasis on controlling intensity distributions as well as

propagation properties. The optical vortex is also a well-known spatially structured

light, which has attracted considerable interest in various fields, such as in optical com-

munications, optical trapping and manipulation, microscopy, and material processing,

etc [6, 11, 14, 258, 259]. Despite the remarkable progress on optical vortex, there still

remains a vital issue that restricts the practical implementation and application of the

optical vortex in the future, namely the limitation of power scaling capacity. In this

Chapter, we present a novel and e�cient intra-cavity method for the controlled genera-

tion of high-power discrete optical vortices by phase-locking a 1D ring array of lasers in

a degenerate cavity. Further, a detailed investigation on the propagation properties such

as divergence and self-healing are also performed.

An optical vortex is defined by a zero intensity point at the centre of beam with a

screw-type dislocation in its phase distribution. Due to this screw-type dislocation in

165
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the phase distribution, indefiniteness occurs at zero intensity spot, which is called phase-

singularity point. Such beams possess an additional degree of freedom called orbital

angular momentum (topological charge) that is di↵erent from the linear and spin angular

momentum of field present due to its polarisation. There have been extensive studies

on optical vortices such as Laguerre–Gaussian (LG) beam, Bessel-Gaussian (BG) beam,

and Airy-vortex beam [77,260,261]. These are examples of continuous vortices that have

continuous intensity and phase distribution over the contour. In addition to continuous

vortices (exist on a uniform background), a new class of discrete optical vortices has been

investigated both theoretically and experimentally in optics and atomic physics, such as in

optical lattices of Bose-Einstein condensates (BECs) [262], 1D and 2D periodic photonic

structures of light [74,263–267], 1D ring network of coupled lasers [73,75], 1D ring network

of coupled parametric oscillators [268], and linear azimuthons in circular fiber arrays [269].

In such vortices, the core consists of zero intensity, and phase winds to provide localized

circular energy flows between the sites. These consist of step-like phase functions over the

discrete contour [74, 75, 270].

There are various methods for generating optical vortices, which include generation

either directly at the source or externally. In several methods, a continuous optical vor-

tex is generated from a single laser source, whose output power and beam quality are

limited by the laser operation parameters. It is well-known that in high-power lasers,

the presence of nonlinear e↵ects, higher order modes, and thermal e↵ects lead to the

degradation of output beam quality. Further, the generation of optical vortices external

to the laser source su↵ers more power loss due to optical transforming elements. How-

ever, for generating high-powers with ideal output beam quality, an alternate approach

is to take several low-power laser beams (with fundamental Gaussian mode profile) and

combine them coherently. In this regard, several methods based on coherent beam com-

bining/phase locking of lasers have been proposed, where phases of all the laser beams

are precisely controlled [271]. The idea of phase controlling ability has also been exploited

to form high-power optical vortices in cyclic arrays of linear and nonlinear systems. For

example, high-power vortices have been realized by coherent beam combination of a six-
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element hexagonal fiber amplifier array [272], and by employing a concept of extracting

cost functions at the non-focal-plane in a tiled aperture coherent beam combination sys-

tem [273]. In a degenerate cavity configuration, 1D ring array of lasers with the nearest

neighbour negative coupling has been shown to form a steady-state phase-locked solu-

tion that consists of topological charge, and behaves as a discrete optical vortex [73, 75].

Further, radial arrays of Gaussian beamlets with well-defined initial phase distributions

have been shown to form an optical vortex [59,270,274]. The circular arrays of nonlinear

waveguides and linear azimuthons in circular fiber arrays have also been shown to form

discrete optical vortices [74, 269]. We present a novel and e�cient method for controlled

generation of discrete optical vortex of any arbitrary system size and topological charge.

Generally, the propagation of optical vortices is required for their use in applications,

and in this context, several investigations have been performed. In 1D and 2D non-

linear systems (coupled nonlinear waveguides and optically induced photonic lattices),

the formation of discrete optical vortex solitions as well as their propagation dynamics

and stability have been extensively studied [74, 74, 263–267]. Further, the propagation

of optical vortices, formed in 1D radial arrays (linear systems), has also been investi-

gated [59, 269, 270, 272–274]. Particularly, it has been shown that the radial array of

coherent Gaussian laser beams with specific initial phase distributions can be used to

form an optical vortex after propagating a certain distance [59]. The e↵ect of atmo-

spheric turbulence on the propagation of these vortices has also been investigated, and

it is shown that the turbulence can prohibit the formation of an optical vortex or it can

lead to the disappearance of the formed optical vortex [274]. The propagation properties

of phase-locked and non-phase-locked radial laser arrays have been investigated analyti-

cally based on calculations of irradiance distribution and M
2 factor [275]. Further, the

propagation of well-known LG, BG, and Airy vortex beams have also been investigated

in detail [14, 276,277].

It is well-known that discrete systems behave di↵erently than continuous systems. For

example, in the context of vortex, a continuous system (e.g, LG, BG, and Airy vortex)

can have a continuum of stable solutions (topological charge states), whereas, a discrete

6 Discrete optical vortex: Divergence and self-healing



168 6.2. Generation of a discrete optical vortex

system can have a finite number [74,75,269]. The discrete systems also provide the most

general framework for studying networks of nonlinear coupled oscillators, and circulation

of the power flow between occupied sites identifies the presence of a discrete optical

vortex [75, 278–280]. In the continuous vortices, in addition to the power limitation,

the size of vortex and divergence upon propagation depends strongly on the topological

charge values [276], which limits the imposition of higher topological charge transfer over

a long range because of the di�culty of detection due to limited size of detector. The

question arises whether discrete optical vortices exhibit the same propagation properties or

not. The self-healing in various types of continuous beams with and without topological

charge has also been extensively investigated [57, 281–284]. However, for the discrete

optical vortices, the question remains unexplored whether these exhibit similar self-healing

properties or not.

The Chapter is organized as follows. In Sec. 6.2, we present the formation of discrete

optical vortices by phase-locking 1D ring array of lasers in a degenerate cavity that in-

volves spatial Fourier filtering with a specifically designed amplitude mask. This approach

has enabled a controlled generation of discrete optical vortices with di↵erent topological

charges. Further, in Sec. 6.3, we have discussed the propagation properties of generated

discrete optical vortices, and have shown that for a fixed system size and distance between

the lasers, the size of discrete optical vortex, as well as its divergence, do not depend on

the topological charge, as opposed to the continuous optical vortices. In Sec. 6.4, a de-

tailed analysis on the self-healing properties of discrete optical vortices is presented. The

self-healing of optical vortex is quantified by an overlap integral (Eq. (1.26)) [150]. The

conclusions of the chapter are given in Sec. 6.5. The investigations presented in this

Chapter are given in Refs. [43–45].

6.2 Generation of a discrete optical vortex

A continuous optical vortex can be described as E / r
|l| exp(il�), where E is the field, r

and � are the polar coordinates [269,276]. The integer quantity l is the topological charge
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of the vortex that determines the number of helices in the wavefront, in a phase cycle of

0 to 2⇡. The intensity is continuous in a donut-shape around the center and consists of a

non-zero phase circulation in multiplication of 2⇡.

A discrete optical vortex consists of a finite number of sites (lasers/beamlets/waveguides)

in a cyclic array, where the intensity in the center is zero, and phase circulates from one site

to the next in either clockwise (vortex) or anticlockwise (anti-vortex) direction [73–75,269].

Unlike a continuous optical vortex, the discrete optical vortex consists of step-like be-

haviour of phase along the contour encompassing the phase singularity [269]. A discrete

optical vortex is shown in Fig. 6.1, which is prepared by arranging 20 lasers in a ring array

with a specific initial phase distribution in the vortex configuration. A discrete optical

vortex has also been reported in Refs. [59, 269,274].

Figure 6.1: Illustration of a discrete optical vortex having topological charge l = 1,
prepared by N = 20 lasers (with Gaussian TEM00 mode profiles) arranged in a circular
ring array. The other parameters are chosen as a = 5.8 mm, beam waist of each laser
�0 = 0.4 mm, and distance between two neighbouring lasers d = 1.8 mm.

For a general case of N lasers, the electric field distribution of a discrete optical vortex

can be written as (Eq. (1.1))

E(x, y; z = 0) = E0

NX

j=1

e
�

(x�↵j)
2+(y��j)

2

2�2
0 e

i�j , (6.1)
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where (↵j, �j) = a(cos ✓j, sin ✓j), a = d/

p
1� cos(2⇡/N), ✓j = ⇡(2j � 1)/N , and �j =

2⇡l(j � 1)/N . d denotes the distance between the two nearest neighbour lasers. Each

laser (j) has the same amplitude E0, same beam waist �0, and di↵erent initial phase �j.

Note, to form a discrete optical vortex the ring array must obey the periodic boundary

conditions: Ej+N = Ej [73]. The topological charge l of the discrete optical vortex is

given by Eq. (1.2).

The discrete optical vortices have been formed by di↵erent methods, such as in op-

tically induced photonic lattices [74, 263–267], nonlinear waveguides [74], circular fiber

arrays [269], coherent beam combining technique [272, 273], coupled parametric oscilla-

tors [268], and phase-locked lasers [73, 75]. We present generation of discrete optical

vortices by phase-locking of lasers in a degenerate cavity, involving spatial Fourier filter-

ing in the far-field plane. In Refs. [73,75], the discrete optical vortex has been formed by

phase-locked lasers in a 1D ring array, where lasers were negatively coupled by di↵ractive

coupling. It was found that with an odd number of lasers, a discrete optical vortex/anti-

vortex with the lowest topological charge is the most probable solution. However, for

an even number of lasers, the probability of finding discrete optical vortex/anti-vortex

was negligible for N  10, and increases monotonically for large N . The reported works

mainly focused on the e↵ect of optical vortices in phase-locking of lasers, and their links

to Kibble-Zurek mechanism [73, 75], however, by this method a controlled generation of

discrete optical vortex with specific l and arbitrary system size (N) was not possible. In

this regard, we present a novel and e�cient intra-cavity method to generate discrete op-

tical vortex with precisely controlled topological charge l for a given system size N . The

scheme as well as representative results are shown in Fig. 6.2.

The scheme is based on a similar degenerate cavity as described in Chapter 5, where

a Gaussian apodizer in the far-field is replaced by a specifically designed amplitude mask

(FF mask), whose transmission function is governed by the Fourier transform of desired

discrete optical vortex beam. Note, a detailed description of degenerate cavity is already

given in Sec. 5.2 of Chapter 5. The FF mask helps to eliminate the undesired phase

distributions by introducing additional losses to them and thereby enables the lasers to
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Figure 6.2: (a) Schematic of a degenerate laser cavity for generating a discrete optical
vortex. (b) Near-field binary amplitude mask containing 20 circular holes in a ring ge-
ometry. (c) Far-field gray-scale mask. (d)-(e) Simulated near-field intensity and phase
distributions of lasers in a ring array with topological charge l = 2.

find a correct phase distribution. In the beginning, all the lasers have random phase

distributions, and thus are equally probable. As the process evolves (multi-round-trip

propagation), di↵erent phase distributions of lasers compete with each other for the same

gain medium, and upon introduction of an additional constraint FF mask, di↵erent phase

distributions consist of di↵erent amounts of losses, and thus during the mode competition

only the phase distribution with minimum loss sustains and others stop lasing. The

minimum loss solution represents a phase-locked state of lasers, which is a desired discrete

optical vortex. The spatial Fourier filtering (by FF mask) is a key parameter to find the

correct and desired phase distribution of lasers. The role of additional constraints in the

Fourier plane is also emphasized in phase retrieval problems solved by laser solver [139].

The obtained discrete optical vortex is a coherent steady-state solution.

We have simulated this scheme by using a modified Fox-Li iterative method, which

is also adopted earlier to reproduce experimental findings of phase locking of lasers in a

6 Discrete optical vortex: Divergence and self-healing
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degenerate cavity [136]. Corresponding to one-round trip propagation of field inside the

degenerate cavity (Fig. 6.2), the simulation involves the following operations

En+1(x, y) = NF (F�1 (FF (F (g(x, y)⇥ En(x, y))))), (6.2)

where En and En+1 denote the field distributions of nth and (n + 1)th round-trips at the

near-field plane. One round trip propagation inside the degenerate cavity is equivalent

to one iteration in the simulation. NF represents near-field binary amplitude mask and

FF denotes the far-field gray-scale mask. F and F�1 indicate the Fourier transform

and inverse Fourier transform operations, respectively. g(x, y) denotes the saturated gain

described as

g(x, y) =
g0

1 + I(x,y)
Isat

. (6.3)

g0 is the unsaturated gain, Isat is saturation intensity and I(x, y) = E
2(x, y) is the local

intensity. In all our simulations, we have chosen g0 = 15, Isat = 1000, a = 5.8 mm,

d = 1.8 mm, and �0 = 0.4 mm. Our simulations require around 100 iterations in order to

converge to a desired steady-state discrete optical vortex. The representative results are

shown in Figs. 6.2(b)-6.2(e). Figure 6.2(b) shows the binary near-field (NF) mask, where

N = 20 holes of diameter 1.2 mm are arranged in a 1D ring geometry. Figure 6.2(c) shows

the far-field (FF) mask, obtained by Fourier transform of a discrete optical vortex with

N = 20 and l = 2. The steady-state solution of the laser output is shown in Figs. 6.2(d)

and 6.2(e), indicating intensity and phase distributions of lasers. It is evident that phase-

locking of lasers forms a discrete optical vortex, and phase circulation corresponds to a

topological charge of l = 2. Note, each laser in the array consists of nearly a fundamental

TEM00 mode.

To demonstrate a controlled generation of discrete optical vortices, we have simulated

the results for di↵erent N and l values, as shown in Figs. 6.3 and 6.4. Figure 6.3(a) shows

a near-field binary amplitude mask for N = 10. Figures 6.3(b)-6.3(d) show the far-field
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Figure 6.3: Simulated results of discrete optical vortices with various topological charges
in a ring array of N = 10 lasers. (a) Near-field binary amplitude mask. (b)-(d) Far-field
masks corresponding to l = 1, l = 2, and l = 3, respectively. (e) Near-field intensity
distribution of phase-locked lasers in a discrete optical vortex, which remains the same
for all l values. (f)-(h) Near-field phase distributions of phase-locked lasers in a discrete
optical vortex with l = 1, l = 2, and l = 3, respectively.

masks, obtained by Fourier transform of discrete optical vortices with topological charges

l = 1 (Fig. 6.3(b)), l = 2 (Fig. 6.3(c)), and l = 3 (Fig. 6.3(d)). As evident, for di↵erent

l values, the far-field masks are di↵erent and thus enable a controlled generation of spe-

cific discrete optical vortex at the output. Figure 6.3(e) represents the near-field output

intensity distribution of phase-locked lasers in a discrete optical vortex, which remains

the same for all l values. Figures 6.3(f)-6.3(h) show the near-field phase distributions of

phase-locked lasers in a discrete optical vortex with l = 1 (Fig. 6.3(f)), l = 2 (Fig. 6.3(g)),

and l = 3 (Fig. 6.3(h)). As evident, by specifically designing a far-field mask, a discrete

optical vortex with specific l can be generated e�ciently. To show the generalization of

our method, we have also generated discrete optical vortices for N = 20 and topological

charges l = 1 and 3, the results are shown in Fig. 6.4. Note, for l = 2, the results are

already shown in Fig. 6.2. It is clearly evidenced that a controlled generation of discrete

optical vortex with specific N and l can be obtained by using a specifically designed

6 Discrete optical vortex: Divergence and self-healing
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far-field mask.

Figure 6.4: Simulated results of discrete optical vortices with various topological charges
in a ring array of N = 20 lasers. (a)-(b) Far-field mask corresponding to l = 1, and l = 3,
respectively. (c)-(d) near-field phase distributions of phase-locked lasers in a discrete
optical vortex with l = 1, and l = 3, respectively. Note, for l = 2 the results are shown in
Fig. 6.2.

6.3 Propagation Properties

In various applications, an optical beam is required to travel in free space, through various

optical components (having finite size aperture) and needs to be detected with a device

that has finite active area. To maintain the e�ciency of a system (complete beam should

be reached and detected at the receiving end), the knowledge of beam divergence upon

propagation is required. Recently, an analytical study on the divergence of a continuous

vortex (LG beam) has been performed, and shown that LG beams with di↵erent topologi-

cal charges exhibit di↵erent sizes, and consequently possess di↵erent divergence properties

upon propagation [276].

The propagation of an optical beam in free space can be described by using an extended

Huygens-Fresnel di↵raction integral [148]:

E(x0
, y

0; z) =
�ik e

ikz

2⇡z

ZZ 1

�1
E(x, y; z = 0) exp

⇣
ik

2z

⇥
(x� x

0)2 + (y � y
0)2
⇤⌘

dx dy, (6.4)

where k is a wave number, (x, y) and (x0
, y

0) are spatial coordinates of input and output

plane separated by a distance z.
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The LG modes with p = 0 (radial index) and l > 0, consist of single-ring-annular

shapes with vortex phase distributions, and radius of maximum optical intensity can be

given as [276]

r(ILGmax) =

r
|l|
2
�
LG(z). (6.5)

where �LG(z) is the beam waist. Equation (6.5) shows that the size of the LG beam is

proportional to l, indicating that size grows with increasing l, and for high l it can be

much larger than the beam waist.

However, for the discrete case, the size of a vortex does not depend on l, rather it

depends on the number of lasers (N) in an array, as well as the distance between the

nearest-neighbor lasers (d). To show it, we calculate the maximum intensity radius of a

discrete optical vortex (Eq. (6.1)) at the waist plane (z = 0). We first convert Eq. (6.1) in

polar coordinates (r and  ) using relations x = r cos and y = r sin , and then find the

derivative with respect to r as

@

@r

 
E0

NX

j=1

exp
⇣
r
2 + a

2 � 2ra cos( � ✓j)

2�2
0

⌘
exp (i�j)

!
= 0. (6.6)

The term exp (i�j) describes the constant phase of each laser (j) that is independent of

radial distance r. Therefore, for  = ✓j, after simplifications we obtain

r(IDis
max) = a. (6.7)

Equation (6.7) clearly shows that the size of a discrete optical vortex depends on param-

eter a, which is a function of N and d (Eq. (6.1)). Thus, for a fixed N , a discrete optical

vortex with di↵erent l values exhibits the same size. Note, for a discrete system, there are

finite number of topological charges (|l|  N/2) [74], as opposed to a continuous system.

Figure 6.5 shows a comparison between the continuous and discrete optical vortices, indi-

cating that maximum intensity radius remains constant for various topological charges in

6 Discrete optical vortex: Divergence and self-healing
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a discrete optical vortex. This property could be exploited to improve the e�ciency of a

system involving components with finite size apertures.

Figure 6.5: The maximum intensity radius as a function of topological charge (l). The
radius increases with l for a continuous vortex (red-solid curve), whereas, it remains
invariant for a discrete optical vortex (blue-dashed curve). Note, for the continuous
vortex case, LG beams are considered with p = 0, �LG

0 = a and l 6= 0. For the discrete
case, a ring array of N = 20 lasers is considered.

In a continuous vortex, for l = 0 the maximum intensity radius comes out to be zero

(Eq. (6.6)), and fails to describe the size of a beam [276]. The size of a vortex can also

be determined by calculating the root mean square radius or variance of laser intensity

distribution. The root mean square radius can give accurate information on how the size

of a beam grows with the propagation distance. In a discrete optical vortex, after a certain

propagation distance, the intensity distribution consists of multiple rings, and then the

size of a resulting beam can be accurately determined by calculating its variance. The

root mean square radius can be described as [276]

r
2
rms =

RR
(x2 + y

2) I dx dyRR
I dx dy

. (6.8)

The root mean square radius for a continuous vortex (LG beam with radial index p = 0)
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is given as [276]

rrms(I
LG) =

r
|l|+ 1

2
�
LG(z). (6.9)

Equation (6.9) shows that it is also valid for a special case of l = 0. We have also

determined the root mean square radius of a discrete optical vortex as a function of

propagation distance (z > 0) and compared it with a continuous vortex. The intensity

distribution of a discrete optical vortex at a propagation distance z > 0 can be given

as [274]

I
Dis(x, y; z) =

E
2
0�

2
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2
0
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, (6.10)

where �(z) =
h
�
2
0 + �2z2

4⇡2�2
0

i1/2
is the beam waist at a distance z. To analyze the root

mean square radius of a discrete optical vortex, we have used Eq. (6.10) in Eq. (6.8), and

solved it numerically. The results of root mean square radius of discrete and continuous

vortices with di↵erent l values are shown in Fig. 6.6. As evident, the size of a discrete

optical vortex increases with propagation distance z, but it remains invariant for di↵erent

l (Fig. 6.6(a)). Whereas, in a continuous vortex, the size varies with l (Fig. 6.6(b)).

It is well-known that divergence is an inherent property of light beams. The light

beams with minimal divergence are required for various applications including long-range

communications and high-rate data transfer. We have analyzed the divergence of a dis-

crete optical vortex, and its dependence on l, and compared these properties with a

continuous vortex. Mathematically, divergence ↵(z) can be written as:

↵(z) = arctan
⇣
@rrms

@z

⌘
. (6.11)
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Figure 6.6: The root mean square radius as a function of propagation distance z, for (a) a
discrete optical vortex with di↵erent l values, and (b) a continuous vortex with di↵erent
l values. The continuous vortex is considered as an LG beam with p = 0 and �LG

0 = a. A
discrete optical vortex is considered with N = 20.

For a continuous vortex (LG beam with p = 0), the divergence is found to be dependent

on l as [276]

↵
LG(z) =

r
|l|+ 1

2

2

k�
LG
0

, (6.12)

where k is wave vector in free space. Equation (6.12) shows that divergence increases

with the l. Particularly, a continuous vortex with high l exhibits large divergence. Using

Eq. (6.11), we can find the divergence of a discrete optical vortex. The results for both

continuous and discrete optical vortices for di↵erent values of l are presented in Fig. 6.7.

As evident, the divergence of a discrete optical vortex remains almost invariant with l, as

opposed to a continuous vortex.

6.4 Self-healing properties

Self-healing refers to the ability of an obstructed beam can regain its truncated parts by

simply propagating a certain distance. It is an important property, which is associated
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Figure 6.7: The divergence (↵) as a function of topological charge l for a discrete optical
vortex (red solid curve with circles) and a continuous vortex (blue dashed curve with
squares). The discrete optical vortex is formed by N = 20 phase-locked lasers in a ring
array, whereas, a continuous vortex is considered as an LG beam with p = 0 and �LG

0 = a.
↵ is calculated by propagating vortex up to a distance of z = 100 m.

with the robustness of a beam against perturbations, and is highly desired in applications.

There have been several investigations to study the self-healing property of various kinds

of beams including di↵racting (Hermite-Gaussian (HG) and Laguerre-Gaussian (LG))

and non-di↵racting (Bessel and Airy) beams [281,283,285,286]. For a continuous vortex,

self-healing has already been investigated in detail [281–283]. However, in a discrete

optical vortex, self-healing has not yet been explored. As mentioned above, the size and

divergence of a discrete optical vortex are found to exhibit di↵erent behaviour (Figs. 6.5,

6.6 and 6.7). A natural question arises whether a discrete optical vortex possesses similar

or di↵erent self-healing e↵ects than a continuous optical vortex. We have investigated

self-healing of discrete optical vortex under di↵erent conditions, for example, truncation

of a single laser as well as compound truncation at waist plane (z = 0) and truncation of

multiple inner rings at propagation planes (z > 0). We have quantified the self-healing

e↵ects by calculating an overlap integral (Eq. (1.26)), which measures the resemblance

between the self-healed and original beams.

6 Discrete optical vortex: Divergence and self-healing
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To check the self-healing e↵ects, first we have truncated a discrete optical vortex by

truncating a laser at the waist plane z = 0 and then propagated it in a free space.

The results of ideal and truncated discrete optical vortices are shown in Fig. 6.8. Fig-

ure 6.8(a) shows the intensity distribution of a discrete optical vortex with N = 20 and

l = 1 at z = 0. The propagation shows alternations in the intensity distribution due

to di↵raction, and at a relatively large distance (z ⇠ 15 m) it acquires a multiple-ring

intensity pattern (Figs. 6.8(b)-6.8(f)). Figure 6.8(g) shows a truncated discrete optical

vortex, where one laser is removed from the array at z = 0. The propagation of this

truncated vortex clearly shows that the removed part slowly reappears, and attains an

almost similar multiple-ring pattern at a distance of z = 15 m, as shown in Figs. 6.8(h)-

6.8(j). To understand the self-healing, we plotted the intensity cross-sections of truncated

discrete optical vortex (blue-dashed curve) and compared with the intensity cross-sections

of an ideal discrete optical vortex (green-solid curve) at various propagation distances,

as shown in Figs. 6.8(m)-6.8(p). The intensity cross-sections are obtained along circles

drawn in Figs. 6.8(a)-6.8(d) for an ideal discrete optical vortex and Figs. 6.8(g)-6.8(j) for

a truncated discrete optical vortex. As evident, during the propagation, the intensity

redistributes as a result of di↵raction (Figs. 6.8(n) and 6.8(o)), and intensity from the

nearest-neighbour lasers moves into the removed laser site, indicated by the decreased

peak values of intensities (Fig. 6.8(p)). This results in the self-healing of a truncated

discrete optical vortex.

Further, we have verified self-healing in the experiments. To do this, we have gener-

ated discrete optical vortices using a spatial light modulator (SLM), as shown in Fig. 6.9,

based on our convenience and availability of equipment. The experimentally generated

discrete optical vortices are completely identical to the ones simulated using degenerate

laser cavity shown in Fig. 6.2. The phase hologram for SLM is prepared by complex am-

plitude modulation using a method described in Sec. 1.5.1. The SLM screen is illuminated

normally with a Gaussian beam, expanded with lenses L1 and L2 of focal lengths f1 = 5

cm and f2 = 30 cm. The phase hologram on the SLM modulates amplitude and phase

of an input Gaussian laser beam, and accordingly, the light from an input Gaussian laser
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Figure 6.8: Simulated results of self-healing of a discrete optical vortex with N = 20
and l = 1. (a)-(f) Intensity distributions of an ideal discrete optical vortex at various
propagation distances. (g)-(l) Intensity distributions of a truncated discrete optical vortex
at various propagation distances. (m)-(p) The intensity cross-sections across the circles
drawn in (a)-(d) and (g)-(j), for ideal and truncated discrete optical vortices, respectively.

6 Discrete optical vortex: Divergence and self-healing
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Figure 6.9: Schematic of experimental setup used to generate discrete optical vortices.
�/2: Half-wave plate; L1, L2, L3, L4: Plano-convex lens with focal lengths 5 cm, 30 cm,
20 cm and 20 cm. CA: Circular aperture; SLM: Spatial Light Modulator.

beam splits in the form of multiple lasers arranged on a 1D ring array with discrete phase

distributions in a vortex configuration. After reflection from SLM, we obtain modulated

light in several orders (see Sec. 1.5), which contains the desired discrete optical vortex.

The desired discrete optical vortex in the first order is isolated with a spatial Fourier filter

(CA) of suitable size, placed in the middle of a telescope made with lenses L3 (f3 = 20

cm) and L4 (f4 = 20 cm) (Fig. 6.9).

Figure 6.10: Experimental results of self-healing of a discrete optical vortex with N = 20
and l = 1. (a)-(e) Intensity distributions of an ideal discrete optical vortex at various
propagation distances. (f)-(j) Intensity distributions of a truncated discrete optical vortex
at various propagation distances.
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Figure 6.10 shows the experimental results corresponding to the self-healing of discrete

optical vortex for N = 20 and l = 1. In the experimental generation of discrete optical

vortex, beam waist of each laser is chosen as 0.16 mm and centre-to-centre separation

is 0.84 mm (Fig. 6.10(a)). Note, we have chosen di↵erent parameters in our experiments

compared to the simulations, specially due to the limited dimensions of SLM and camera.

Figures 6.10(a)-6.10(e) show the intensity distributions of ideal discrete optical vortex

propagated to z = 200 mm. Figure 6.10(f) shows a truncated discrete optical vortex,

where a laser is truncated from the array at z = 0. Figures 6.10(g)-6.10(j) show the self-

healing of truncated discrete optical vortex, where the truncated part reappears during the

propagation in free space, and at z = 200 mm, multiple ring type intensity distribution is

observed. As evident, the experimental results show good agreement with the simulations.

Further, we have also investigated the propagation of truncated discrete optical vor-

tices with topological charges l = 2 and 3, and have found similar e↵ects of self-healing.

At a propagation distance of ⇠ 15 m, we have observed that an innermost ring in intensity

distribution consists of a lobe structure, which indicates the information of a topological

charge of a discrete optical vortex. The results are shown in Fig. 6.11. Figures 6.11(a)-

6.11(c) show the intensity distributions of discrete optical vortices with di↵erent l values,

at a propagation distance of z = 15 m. As evident, the intensity distributions consist

of multiple-ring structure, and for the di↵erent values of l an innermost ring consists

of di↵erent number of intensity lobes (intensity maximas). This is clearly visible in the

normalized intensity cross-sections of innermost rings (taken along dotted circles marked

in Figs. 6.11(a)-6.11(c) for di↵erent l values, as shown in Fig. 6.11(d). It is evident that

for di↵erent values of l = 1, 2 and 3, there are one (black-solid curve), two (red-dashed

curve), and three (blue-dot-dashed curve) intensity lobes (maxima), respectively. The

intensity lobes are found to be the same as l values, which precisely tell the information

of topological charge carried by a discrete optical vortex. This suggests that by removing

a single laser site, and propagation of this truncated discrete optical vortex enables to

extract the information of topological charge carried by a discrete optical vortex. Our

results on identification of topological charge of a discrete optical vortex show similarities

6 Discrete optical vortex: Divergence and self-healing
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Figure 6.11: Simulated results. For a system size of N = (20 � 1) lasers (one laser is
truncated at z = 0), the intensity distributions of discrete optical vortices at a distance
of z = 15 m, with di↵erent topological charges (a) l = 1, (b) l = 2, and (c) l = 3. (d)
Intensity cross-sections of innermost rings, taken along dotted circles marked in (a), (b),
and (c) for l = 1 (black-solid curve), l = 2 (red-dashed curve) and l = 3 (blue-dot-dashed
curve).

with the findings of a similar method developed for a continuous vortex [287]. However,

this method may not be suitable for higher-order topological charges, as the maximum

intensity lobes will overlap, and will be di�cult to distinguish for di↵erent l values.

We have also investigated the self-healing of a discrete optical vortex compound trun-

cated at z = 0 plane. To do that we have considered a discrete optical vortex with N = 20

lasers and l = 2, and truncated partially each laser by the same amount using a binary

amplitude mask, and after that propagated in a free space to check the self-healing. The

results are shown in Fig. 6.12. Figure 6.12(a) shows the intensity distribution of a discrete

optical vortex with N = 20 and l = 2 at z = 0. The propagation shows alternations in

the intensity distribution due to di↵raction, and at a relatively large distance (z ⇠ 15 m)

it acquires a multiple-ring intensity pattern (Figs.6.12(b)-6.12(f)). Figure 6.12(g) shows
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Figure 6.12: Simulation results of self-healing of a compound truncated discrete optical
vortex with N = 20 and l = 2. (a)-(f) Intensity distributions of an ideal discrete optical
vortex at various propagation distances. (g)-(l) Intensity distributions of a compound
truncated discrete optical vortex at various propagation distances. (m) Overlap integral
(Eq. (1.26)) as a function of propagation distance. Intensity distributions are normalized
to a maximum value of 1.
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a compound truncated discrete optical vortex, where all the lasers are partially truncated

by an amplitude mask at z = 0 plane. The truncation removes ⇠ 50% of the intensity

of an ideal discrete optical vortex (Fig. 6.12(a)), and leads to the reduction of an overlap

integral value to C = 71% (Eq. (1.26)). The truncated discrete optical vortex is then

propagated in free space, and its intensity distributions at di↵erent propagation distances

are shown in Figs. 6.12(b)-6.12(f). As evident, the compound truncated discrete optical

vortex regains its shape due to the redistribution of intensity and results in the formation

of a stable multiple-ring pattern at z = 15 m (Fig. 6.12(f)), which shows a good similarity

with an ideal discrete optical vortex at the same propagation distance (Fig. 6.12(f)). To

quantify the self-healing e↵ects, we have calculated an overlap integral C (Eq. (1.26)), as

marked in Figs. 6.12(g)-6.12(l), and a detailed plot is shown in Fig. 6.12(m). As evident,

the overlap C fluctuates for small values of z due to the redistribution of intensity that

forms an unstable intensity distribution, and after that slowly approaches to a maximum

value where intensity distribution becomes stable. After attaining a stable intensity dis-

tribution, the value of C remains approximately the same for further longer propagation

distances. In a stable regime, a minimum propagation distance z at which a maximum

value of C is obtained, called a self-healing distance, and at this distance, a truncated

discrete optical vortex acquires a maximum similarity with an ideal discrete optical vortex

(Figs. 6.12(f) and 6.12(l)). Specifically, in this case, we have found a self-healing distance

of z = 15 m, where overlap approaches to C = 91%.

The experimental results for the self-healing of compound truncated discrete optical

vortex are shown in Fig. 6.13. Figures 6.13(a)-6.13(d) and Figs. 6.13(e)-6.13(h) show the

intensity distributions of ideal and truncated discrete optical vortices at di↵erent prop-

agation distances z = 0, 50 mm, 100 mm, and 150 mm, respectively. As evident, the

compound truncated discrete optical vortex self-heals quite well, and the experimental

results show good agreement with the simulations (Fig. 6.12).

Further, the maximum value of overlap integral is found to be C = 91% (less than

100%) (Fig. 6.12(l)), so to understand further insights, we have checked the cross-section

of a truncated discrete optical vortex at di↵erent propagation distances. The results are
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Figure 6.13: Experimental results. (a) Intensity distribution of an ideal discrete optical
vortex of size N = 20 with l = 2 at z = 0, (b)-(d) Intensity distributions of an ideal
discrete optical vortex at di↵erent propagation distances. (e) Intensity distribution of a
compound truncated discrete optical vortex with size N = 20 and l = 2. (f)-(h) Intensity
distributions of compound truncated discrete optical vortex at di↵erent propagation dis-
tances. Note, intensity distributions are normalized to a maximum value of 1.

shown in Fig. 6.14. Figures 6.14(a)-6.14(e) show the intensity cross-sections of ideal (solid-

green curve) and compound truncated (blue-dashed curve) discrete optical vortices at

propagation distances z = 2 m, 4 m, 6 m, 10 m, and 15 m, respectively. Note, the intensity

cross-sections are taken along a horizontal line drawn through the center of Figs. 6.12(b)-

6.12(f) (for ideal discrete optical vortex) and Figs. 6.12(h)-6.12(l) (for truncated discrete

optical vortex). As evident, at z = 2 m, 4 m, and 6 m, the intensity cross-sections of ideal

and truncated discrete optical vortices exhibit fewer similarities, which results in overlap

values C = 89%, 86% and 80%, respectively (Figs. 6.14(a)- 6.14(c)). At a propagation

distance z = 10 m, the self-healing in a truncated discrete optical vortex leads to a

better similarity, and an increased value of C is found to be 86% (Fig. 6.14(d)). Further

propagation at z = 15 m, leads to an improved similarity with C = 91% (Fig. 6.14(e)),

however, it has not reached to ⇠ 100%. From Fig. 6.14(e), it is clear that peaks in the

intensity cross-sections of ideal and truncated discrete optical vortices, match well close

to the center, and away from the center matching degrades significantly. As most of the

energy lies close to the central areas, so obtaining a good similarity in these areas can be

considered as a good self-healing of a compound truncated discrete optical vortex.

Further, we have checked the self-healing of a discrete optical vortex when it is trun-
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Figure 6.14: Simulated results. Normalized intensity cross-sections (along a horizontal
line drawn through the center of a vortex) of ideal (solid-green curve) and compound
truncated (blue-dashed curve) discrete optical vortices at various propagation distances
(a) z = 2 m, (b) z = 4 m, (c) z = 6 m. (d) z = 10 m, and (e) z = 15 m. For the
propagation distances z = 2 m, 4 m, 6 m, 10 m, and 15 m, the intensity distributions of
ideal and compound truncated discrete optical vortices are given in Figs. 6.12(b)-6.12(f)
and Figs. 6.12(h)-6.12(l).

cated in a propagation plane (z > 0). The results are shown in Fig. 6.15. Figures 6.15(a)-

6.15(d) show the intensity distributions of ideal discrete optical vortices, with N = 20

lasers and di↵erent values of l = 1, 2, 3 and 4, at a propagation distance z = 12 m.

The intensity distributions consist of multiple rings, and darkness in the center increases

with increasing l. Figures 6.15(e)-6.15(h) show the truncated discrete optical vortices with

di↵erent l values (corresponding to Figs.6.15(a)-6.15(d)), where the first innermost ring

is truncated. Due to truncation, the overlap integral shows reduced values in a range

C = 85% � 87%. The truncated discrete optical vortices are propagated to a distance

such that maximum self-healing is obtained. Figures 6.15(i)-6.15(l) show the intensity

distributions of ideal discrete optical vortices with di↵erent l values at z = 40 m. The

propagation of truncated discrete optical vortices to the same distance are shown in
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Figs. 6.15(m)-6.15(p). As evident, the truncated first innermost ring reappears and shows

a good similarity with the ideal discrete optical vortices (Figs. 6.15(i)-6.15(l)). This is

also evident by the increased values of C in a range of 96% � 98%, indicating a good

self-healing ability of discrete optical vortices.

Corresponding to the simulation results (Fig. 6.15), the experimental results are shown

in Fig. 6.16. Note, the di↵erence in propagation distances, which is due to the fact that

the experimental results are obtained with di↵erent parameters of discrete optical vortex,

as mentioned above. The experimental results show that the truncated discrete optical

vortices having di↵erent l values self-heal very well. The experimental results also show

a good agreement with the simulated results (Fig. 6.15).

For a detailed quantification of self-healing of truncated discrete optical vortices given

in Figs. 6.15(e)-6.15(h), we have analyzed the overlap integral (Eq. (1.26)) as a function

of propagation distance z, as shown in Fig. 6.17. Note, the propagation is shown for

distances z > 12 m, since discrete optical vortex is truncated at z = 12 m. As evident,

due to redistribution of intensity, the overlap decreases first and after that it increases

to a maximum value, and becomes almost invariant for longer propagation distances.

It is found that the self-healing distance varies with l, specifically, it increases with the

increase in l. For smaller values of l, the truncated discrete optical vortex self-heals

relatively faster.

Next, we have investigated the self-healing of a discrete optical vortex, truncated with

di↵erent amounts at a propagated plane (z = 12 m). To do that we have propagated

a discrete optical vortex with N = 20 and l = 2 to a distance of z = 12 m, and then

truncated central part by various size amplitude masks. The truncated discrete optical

vortex is propagated further (z > 12 m) to analyze the self-healing. The results are shown

in Fig. 6.18. Figure 6.18(a) shows intensity distribution of an ideal discrete optical vortex

of size N = 20 with l = 2 at a propagation distance of z = 12 m, which consists of multiple

rings. Figures 6.18(b)-6.18(d) show the intensity distributions, where one, two, and three

inner rings are truncated from an ideal discrete optical vortex given in Fig.6.18(a). The

di↵erent amount of truncation leads to di↵erent values of C. In particular, for a large

6 Discrete optical vortex: Divergence and self-healing
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Figure 6.15: Simulated results of self-healing of a discrete optical vortex, when truncated
at z = 12 m. (a)-(d) Intensity distributions of ideal discrete optical vortices, with N = 20
lasers and l = 1, 2, 3, and 4, at z = 12 m. (e)-(h) Intensity distributions of truncated
discrete optical vortices at z = 12 m, which are obtained by truncating first innermost ring
of discrete optical vortices given in (a)-(d). (i)-(l) Intensity distributions of ideal discrete
optical vortices at a propagation distance of z = 40 m. (m)-(p) Intensity distributions
of truncated discrete optical vortices at z = 40 m. C denotes the value of an overlap
integral. Intensity distributions in the first, third, and fourth columns are normalized to
a maximum value of 1. Intensity distributions in a second column are normalized by the
corresponding distributions given in the first column.
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Figure 6.16: Experimental results of self-healing of a discrete optical vortex, when trun-
cated at z = 125 mm. (a)-(d) Intensity distributions of ideal discrete optical vortices,
with N = 20 lasers and l = 1, 2, 3, and 4, at z = 125 mm. (e)-(h) Intensity distributions
of truncated discrete optical vortices at z = 125 mm, which are obtained by truncating
first innermost ring of discrete optical vortices given in (a)-(d). (i)-(l) Intensity distribu-
tions of ideal discrete optical vortices at a propagation distance of z = 250 mm. (m)-(p)
Intensity distributions of truncated discrete optical vortices at z = 250 mm.

6 Discrete optical vortex: Divergence and self-healing



192 6.4. Self-healing properties

Figure 6.17: Simulated results. For the truncated discrete optical vortices of size N = 20
and di↵erent values of l = 1, 2, 3, and 4, the overlap integral C as a function of propagation
distance z. Note, the discrete optical vortex is truncated in a propagated plane at z = 12
m, by truncating first innermost ring as shown in Figs. 6.15(e)-6.15(h).

amount of truncation (Fig. 6.18(d)) the overlap C is reduced to 74%. The truncated

discrete optical vortices (Figs. 6.18(b)-6.18(d)) are propagated to various distances to

analyze the self-healing abilities, as shown in Figs. 6.18(e)-6.18(g). As evident, the self-

healing distance (a point where C becomes maximum) is di↵erent for di↵erent amounts of

truncation. In particular, truncation of one, two, and three inner rings, requires a distance

of z = 40 m, 47 m, and 108 m, respectively, to self-heal the truncated discrete optical

vortices to show maximum similarities with the ideal discrete optical vortices at the same

propagation distances. In Fig. 6.18(h), we have analyzed an overlap integral as a function

of propagation distance, for various amounts of truncation. As evident, for a fixed amount

of truncation, the overlap varies with the propagation distance. In particular, it decreases

initially, and after that increases to a maximum value and becomes constant for further

longer propagation distances. Further, the distance required to increase the overlap to

a maximum constant value also depends on the amount of truncation. Specifically, a

discrete optical vortex with truncation of one inner ring requires less propagation distance

as compared to truncation of two and three inner rings (Fig. 6.18(h)). It indicates that

a discrete optical vortex with a large amount of truncation requires a longer distance for
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Figure 6.18: Simulated results of self-healing of a discrete optical vortex with various
amounts of truncation. (a) Intensity distribution of an ideal discrete optical vortex of
size N = 20 with l = 2 at a propagation distance z = 12 m. Intensity distribution of
discrete optical vortex with truncation of (b) first inner ring, (c) two inner rings, and
(d) three inner rings. (e)-(g) Intensity distributions of truncated discrete optical vortices,
corresponding to Figs. 6.18(e)-6.18(d), at a propagation distance of z = 40 m, 47 m, and
108 m, respectively. (h) Overlap C as a function of propagation distance, for the truncated
discrete optical vortices correspond to Figs. 6.18(e)-6.18(g). Note, (b)-(d) are normalized
with respect to (a), and (e)-(g) are normalized to a maximum value of 1.

self-healing.

Corresponding to the simulated results (Fig. 6.18), the experimental results are shown

in Fig. 6.19. As evident, the results show that the discrete optical vortex truncated with

di↵erent amounts shows good self-healing ability, and the self-healing distance increases

with an increase in the amount of truncation. The experimental results show good agree-

ment with the simulated results.

Further, we have analyzed the self-healing of a truncated discrete optical vortex

(Fig. 6.18(c)) by comparing its normalized intensity cross-section with an ideal discrete

optical vortex at various propagation distances, as shown in Figs. 6.20(a)-6.20(f). Fig-
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Figure 6.19: Experimental results of self-healing of a discrete optical vortex with di↵erent
amounts of truncation in propagated plane. (a) Intensity distribution of an ideal discrete
optical vortex of size N = 20 with l = 2 at a propagation distance z = 125 mm. Intensity
distribution of discrete optical vortex with truncation of (b) first inner ring, (c) two inner
rings, and (d) three inner rings. (e)-(g) Intensity distributions of truncated discrete optical
vortices, corresponding to Figs. 6.18(b)-6.18(d), at a propagation distance of z = 200 mm,
225 mm, and 250 mm, respectively.

ure 6.20 shows the investigation of self-healing of discrete optical vortex in propagated

plane (z = 12 m) when two inner rings are truncated by an amplitude mask. Fig-

ures 6.20(a)-6.20(f) show the intensity distributions of ideal discrete optical vortex beam

for N = 20 and l = 2, at various propagation distances. Figures 6.20(g) shows the in-

tensity distribution, where two innermost rings are truncated from the centre of discrete

optical vortex shown in Fig. 6.20(a). As the truncated discrete optical vortex is propagated

in free space, it regains its shape, which shows good self-healing (Figs. 6.20(h)-6.20(l)).

To understand the self-healing and redistribution of the intensity within the beam, we

have compared the intensity cross-sections of truncated and ideal beams (shown in Figs.

6.20(m)-6.20(r)). The intensity cross-sections are taken along a green-dashed horizontal

line marked in the intensity distributions of ideal (Figs. 6.20(a)-6.20(f)) and blue-dashed

horizontal line in truncated discrete optical vortex (Figs. 6.20(g)-6.20(l)). Figure 6.20(m)

shows the intensity cross-sections of truncated (blue-dashed curve) and ideal (green-solid

curve) discrete optical vortices at z = 12 m. For a truncated discrete optical vortex, the

peaks corresponding to two inner-rings are missing, and due to which C is reduced to 80%.

As the truncated discrete optical vortex propagates, as a result of redistribution of inten-
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Figure 6.20: Simulated results. Intensity distributions of (a)-(f) ideal and (g)-(l) truncated
(two inner rings are truncated) discrete optical vortex of system size N = 20 and l = 2
at various propagation distances z = 12 m, 15 m, 20 m, 25 m, 30 m, and 47 m. Intensity
cross-sections of ideal discrete optical vortex (green-solid curve) and truncated discrete
optical vortex (blue-dashed curve) and at various propagation distances (m) z = 12 m,
(n) z = 15 m, (o) z = 20 m, (p) z = 25 m, (q) z = 30 m, and (r) z = 47 m. Intensity
cross-sections are taken along a horizontal green-dashed line marked in (a)-(f) for ideal,
and blue-dashed line marked on (g)-(l) for a truncated discrete optical vortex. Note, the
intensities of self-healed truncated discrete optical vortices are normalized by the ideal
discrete optical vortices at their respective propagation distances.
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sity, the intensity moves into central truncated regions, which leads to the self-healing of

truncated parts, as shown in Figs.6.20(n)-6.20(r). This is also evidenced by the increased

values of C with z. The maximum value of C is found 96% at z = 47 m (Fig. 6.20(r)).

Note, the overlap values at z = 15 m and 20 m (Figs. 6.20(n) and 6.20(o)) are found to be

72% and 75%, respectively, which are smaller than an initial value of C = 80% at z = 12

m (Fig. 6.20(m)). This is due to the fact that upon propagation of a truncated discrete

optical vortex, the intensity from neighbouring rings redistributes to fill the truncated

parts, which causes a distortion in the shape of neighbouring rings, and hence results in

a reduction in the overlap values. As the truncated parts start reappearing, the overlap

C starts increasing, and becomes 96% at z = 47 m (Fig. 6.20(r)), which is larger than an

initial value of C = 80%, as shown in Figs. 6.20(n)-6.20(r).

It has been shown that laser beams carrying helical phase distribution, exhibit rota-

tion of their energy and momentum around the beam axis [288]. The rotational dynamics

of transverse intensity pattern has been investigated in LG beams [289]. In a truncated

vector vortex, the self-healing was shown to occur as a result of rotational dynamics in

the transverse intensity [290]. We have also analyzed the rotation dynamics of intensity

in a discrete optical vortex, as well as its e↵ects on self-healing of a truncated discrete

optical vortex. To do that we have considered a discrete optical vortex of size N = 20

Figure 6.21: Simulated results. (a) Intensity distribution of a truncated discrete optical
vortex of sizeN = 20 and l = 2 at a propagation distance z = 12 m. Intensity distributions
of truncated discrete optical vortex propagated to various distances (b) z = 16 m, (c)
z = 20 m, and (d) z = 30 m. The intensity distributions are normalized to a maximum
value of 1.

and l = 2 (Figs. 6.2(d) and 6.2(e)) and propagated to a distance of z = 12 m so that it

acquires multiple rings in the intensity distribution (Fig. 6.15(b)). After that, an inner-
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most ring is partially truncated (Fig. 6.21(a)), and resulting beam is further propagated

for longer distances (Figs. 6.21(b)-6.21(d)). As evident, upon propagation of truncated

discrete optical vortex, the intensity shows rotation dynamics. As a result of rotation

dynamics, the intensity moves into truncated parts, which results in the formation of a

complete innermost ring, as shown in Fig. 6.21(d).

6.5 Conclusions

In conclusion, we have presented a novel and e�cient intra-cavity method for the con-

trolled generation of high-power discrete optical vortices by phase-locking a 1D ring array

of lasers in a degenerate cavity that includes specific near-field and far-field masks. De-

spite the remarkable progress on conventional optical vortex, there still remains a vital

issue that restricts the practical implementation and application of the optical vortex in

the future, namely the limitation of power scaling capacity. However, the discrete optical

vortices are realized by phase-locking of several lasers, thus having an improved power

scaling capacity. Owing to the special geometry of a degenerate cavity, it enables an e�-

cient formation of 1D ring array of lasers, where each laser consists of nearly fundamental

Gaussian distribution, and is independent from each other. Initially, the lasers consist of

random phase distribution and are equally probable. To force 1D ring array of lasers in

a phase-locked steady state of desired optical vortex configuration, we employ a spatial

Fourier filter (amplitude mask) at the Fourier plane inside the degenerate cavity, whose

transmission function is engineered by the Fourier transform of desired discrete optical

vortex. The spatial Fourier filtering mechanism helps to eliminate the undesired phase

distributions by introducing additional losses to them, and, thereby, enables the lasers to

find a correct phase distribution in the form of desired discrete optical vortex. With the

specifically engineered spatial Fourier filters, we have demonstrated generation of discrete

optical vortices with di↵erent system sizes and precisely controlled topological charges.

Further, it is well-known that discrete systems behave di↵erently than continuous sys-

tems, so we have performed a detailed investigation on the propagation, such as divergence
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and self-healing, of discrete optical vortices, and compared them with the conventional

continuous optical vortices. We have found that for a given system size (number of

lasers) and fixed distance between the neighbouring lasers, the size of a discrete optical

vortex and its divergence does not depend on the topological charge, which is found to

be di↵erent than the conventional continuous optical vortices (Laguerre-Gaussian/Bessel-

Gaussian beams). Further, we have performed a detailed investigation of self-healing by

partially truncating a discrete optical vortex in the waist plane (z = 0) and propagated

plane (z > 0). In the waist plane, a discrete optical vortex is truncated in two ways: (a)

single laser is truncated, and (b) compound truncation where all the lasers are equally par-

tially truncated. To quantify the self-healing, we have calculated an overlap integral (Eq.

1.26) to analyze similarities between the self-healed and ideal discrete optical vortices. In

both cases, when a partially truncated discrete optical vortex is propagated, as a result

of intensity redistribution, the intensity from nearby regions propagates into truncated

parts, and accordingly the beam self-heals. The results show that partially truncated

discrete optical vortex can self-heal very well. The self-healing distance is also found to

be dependent on the amount of truncation, particularly, it increases with an increase in

the amount of truncation. Further, the simulation results of self-healing properties are

verified experimentally, and we have found a good agreement between them.

These investigations have opened the door for new applications, where conventional

continuous optical vortices pose limitations. The results reported in this chapter are given

in Refs. [43–45]



Chapter 7

Method for characterization of

topological charge of unknown

discrete optical vortices

7.1 Introduction

In previous Chapter 6, we have presented a novel and e�cient intra-cavity method for

the controlled generation of high-power discrete optical vortices by phase-locking a 1D

ring array of lasers in a degenerate cavity. The discrete optical vortices are particularly

interesting for high-power applications, such as in long-distance optical communications,

material processing, laser ablation, optical tweezers, etc. [6, 11, 258]. The applications of

optical vortex are usually associated with its topological charge, thus accurate characteri-

zation (determination) of the value of topological charge (l) (magnitude and sign) is very

important. Therefore, exploring simple and e↵ective methods to accurately determine

topological charge of an optical vortex has been a highly challenging issue, and contin-

uous e↵orts are growing in this direction. Therefore in this Chapter, we present a new

e�cient method for accurate determination of magnitude and sign of topological charge

of an unknown discrete optical vortex, which is formed by an array of lasers in a 1D ring

199
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geometry.

Over the years, several methods have been investigated, which are broadly classified

into two categories: first type is based on the interference approach, and the second type

is based on the di↵raction approach. The information of topological charge is manifested

in the intensity distribution when an optical vortex beam either undergoes di↵raction

through slits/apertures [291, 292], or interfere with another beam (plane wave/vortex

beam/spherical wave) [293, 294]. Therefore, from the di↵raction pattern or interference

pattern, the topological charge of optical vortex beam can be inferred. The interfer-

ence approaches are mainly based on the Mach-Zehnder interferometer [293–295], Fizeau

inteferometer [296], Sagnac interferometer [297], double-slit interferometer [298], multi-

point interferometer [299], and Talbot interferometer [300]. Whereas, the di↵raction ap-

proaches involve the annular aperture [301], triangular aperture [302], single-slit [291,292],

multi-pinhole plate [303], gratings [304], and metasurfaces [305], etc. Further, some more

methods for the detection of topological charges of optical vortex have also been pro-

posed, which are based on conformal mappings [306], multiplane light conversion [307],

mode converter [308], rotational Doppler e↵ect [309], and two-dimensional materials [310].

The above methods rely on detecting the topological charges indirectly by analyzing the

changes in the intensity distributions. However, some direct methods for determining

topological charge of an optical vortex have also been investigated. These are based on

directly measuring the phase distribution of a vortex, and the method includes phase-

shifting digital hologram [311] and Shack-Hartmann wavefront sensors [312].

Many of these methods pose limitations in various forms, such as complexity in the

setup, unable to precisely determine high-order topological charges (magnitude and sign),

sensitive to aperture dimensions, and sensitive to aberrations in the system. Further, most

of these methods infer the topological charge of a vortex by propagation and analysis of

changes in its intensity distribution. These methods have been applied to the continuous

systems (continuous vortices). However, it is well-known that discrete systems show

di↵erent propagation behaviour, so a natural question arises that whether the above

methods can be applied or not for identifying the topological charges of discrete optical
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vortices.

Methods based on direct measurement of phase distribution of an optical vortex [311,

312] can be useful for determining small values of topological charge of discrete optical

vortex, however, given the aberrations as well as very small di↵erences in the phases of

lasers for large topological charges, these may not be able to precisely determine the high-

order topological charges of discrete optical vortices. Here, we present a new method for

precisely determining the magnitude and sign of topological charges (from small to large

values) of discrete optical vortices, based on measuring the interference patterns of 1D

ring array of lasers. More specifically, we average the interference pattern of an unknown

discrete optical vortex (l 6= 0) with the interference pattern of ring array with known

topological charge, which gives rise to a variation in the fringe visibility as a function of

laser number, and the number of dips observed in fringe visibility provides an accurate

information of magnitude and sign of an unknown topological charge. Our method is also

found to be robust against the phase disorder in a system.

The Chapter is organized as follows. In Sec. 7.2, we present the working principle of our

method with the illustrative results. In Sec. 7.3, we have described the experimental gen-

eration of discrete optical vortex as well as measuring its interference pattern. In Sec. 7.4,

we have presented the numerical and experimental results on accurate determination of

topological charges of discrete optical vortices for di↵erent system sizes. Further, results

on finding the sign of topological charge (positive/negative) are also presented. The ro-

bustness of our method is also verified against the phase disorder. Finally, in Sec. 7.5,

we present the concluding remarks. The results reported in this Chapter are given in

Ref [46].

7.2 Working principle

We consider the interference of two waves of intensities I1 and I2: one propagating in the

z direction; the other propagating at an angle ✓ with respect to the z axis, in the x � z

7 Method for characterization of topological charge of unknown discrete

optical vortices



202 7.2. Working principle

plane. The fields of these interfering waves can be written as [313]

U1 =
p

I1 exp(�ikz) exp(i�1), (7.1)

U2 =
p

I2 exp[�i(k cos ✓z + k sin ✓x)] exp(i�2), (7.2)

where �1 and �2 are the phases of two waves. At the z = 0 plane, the resultant intensity

after superposition of these two waves can be written as

I = |U1 + U2|2 = I1 + I2 + 2
p
I1I2 cos(k sin ✓x� d�), (7.3)

where d� = �2 � �1. For I1 = I2 = I0, we get

I = 2I0 [1 + cos (k sin ✓x� d�)] . (7.4)

The interference intensity distribution consists of straight fringes with maxima and min-

ima positions vary with x, and the fringe spacing is � = 2⇡/k0 sin ✓ = �/ sin ✓. The

locations of minima and maxima can be determined from Eq. (7.4).

For maxima:

xmax =
[2m⇡ + d�]

k sin ✓
, m = 0,±1,±2,±3, ... (7.5)

For minima:

xmin =
[(2m+ 1)⇡ + d�]

k sin ✓
, m = 0,±1,±2,±3, ... (7.6)

The positions of maxima and minima in the interference fringe pattern depend on the

value of relative phase shift d�. By changing it, these maxima and minima positions

shift either on the left or right with respect to initial positions. To show this, we have

considered two Gaussian beams with equal intensities I1 = I2 = I0, tilt angle ✓ = 110o

and d� = 0 and ± ⇡/2. The interference expression for these cases can be written as:

(i) For d� = 0

IT1 = 2I0 [1 + cos (0.94kx)] . (7.7)
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(ii) For d� = �⇡/2

IT2 = 2I0 [1 + cos (0.94kx+ ⇡/2)] . (7.8)

(iii) For d� = ⇡/2

IT3 = 2I0 [1 + cos (0.94kx� ⇡/2)] . (7.9)

The interference patterns obtained from Eqs. (7.7)-(7.9) are shown in Figs. 7.1(a)-

7.1(c). As evident, for all three cases, interference patterns consist of straight fringesFigure 1

𝑑𝜑𝑖 − 𝑑𝜑𝑗 → 𝜋

F.V. → 0

𝑑𝜑 = −𝜋/2

𝑑𝜑 = 0

𝑑𝜑 = 𝜋/2

Reference

Averaged
interference pattern

V = 0.7

V = 0.7

(a)

(b)

(c)

(d)

(e)

(f)

(g)

V = 1

V = 1

V = 1

V = 0.7

V = 0.7

10

Figure 7.1: Interference pattern between the two waves having a relative phase shift of
(a) d� = �⇡/2, (b) d� = 0, and (c) d� = ⇡/2. The averaged interference pattern obtained
with superposition of (d) d� = 0 and �⇡/2, and (e) d� = 0 and ⇡/2. (f) The intensity
cross-sections are taken along the horizontal axis in (a), (b), and (d). (g) The intensity
cross-sections taken along the horizontal axis in (b), (c), and (e).

with maxima and minima at di↵erent positions. We consider the case of d� = 0 as the

reference interference pattern. A vertical white dashed line marks the position of fringe

with central maximum (Fig.7.1(b)). For d� = �⇡/2, the fringes in the interference pattern

are shifted towards the right with respect to a reference white dashed line (Fig. 7.1(a)).

Similarly, for d� = ⇡/2, the fringes in the interference pattern are shifted towards the

left with respect to a reference white dashed line (Fig. 7.1(c)). The interference pattern

is quantified by the fringe visibility V = (Imax � Imin)/(Imax + Imin) [313], where Imax and
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Imin are the maximal and minimal values of time-averaged intensities in the interference

pattern. In all three individual interference patterns (for d� = 0,�⇡/2, and ⇡/2) the

fringe visibility is found to be V = 1 (Figs. 7.1(a)-7.1(c)).

Further, we have performed averaging of these interference patterns. The expression

of averaged interference pattern can be written as following:

(i) For averaging the interference patterns corresponding to Figs. 7.1(a) and 7.1(b), we

add Eqs.(7.7) and (7.8)

ISum1 = I0 [2 + cos (0.94kx) + cos (0.94kx+ ⇡/2)] . (7.10)

Note, due to averaging the factor 2 is dropped.

(ii) For averaging the interference patterns corresponding to Figs. 7.1(b) and 7.1(c), we

add Eqs.(7.7) and (7.9)

ISum2 = I0 [2 + cos (0.94kx) + cos (0.94kx� ⇡/2)] . (7.11)

The averaged interference patterns corresponding to Eqs. (7.10) and (7.11) are shown in

Figs. 7.1(d) and 7.1(e), respectively. As evident, when two interference patterns with

d� = 0 and d� = ±⇡/2 (each with V = 1) are averaged, they produce a resultant interfer-

ence pattern, where the fringe visibility is found to be reduced (V = 0.7) (Figs. 7.1(d) and

7.1(e)). This is more clearly shown in Figs. 7.1(f) and 7.1(g). Figure 7.1(f) shows the inten-

sity cross-sections taken along the horizontal axis in Fig. 7.1(a) (blue dot-dashed curve),

Fig. 7.1(b) (red dashed curve) and Fig. 7.1(d) (black solid curve). Similarly, Fig. 7.1(g)

shows the intensity cross-sections taken along the horizontal axis in Fig. 7.1(b) (red dashed

curve), Fig. 7.1(c) (blue dot-dashed curve) and Fig. 7.1(e) (black solid curve). It is clearly

evidenced that the averaged intensity cross-section (black solid curve) results in a reduced

value of the fringe visibility. Note, averaging the interference patterns corresponding to

d� = 0 and d� = ±⇡, results in the fringe visibility V = 0.

We utilize this principle of reduction in visibility by averaging the interference patterns,
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for determining the magnitude and sign of topological charge of an unknown discrete

optical vortex.

7.3 Experimental arrangement

A discrete optical vortex consists of a finite number of sites (lasers/beamlets/waveguides)

in a 1D ring array, where intensity in the center is zero, and the phase circulates from one

site to the next either in clockwise or anti-clockwise direction [73, 74, 269, 273, 314]. The

field of a discrete optical vortex can be given as (Eq. (1.1))

E(x, y; z = 0) = E0

NX

j=1

e
�

(x�↵j)
2+(y��j)

2

2�2
o e

i�j , (7.12)

where (↵j, �j) = a(cos ✓j, sin ✓j) represents the coordinates of each laser, ✓j = ⇡(2j�1)/N ,

a = d/

p
1� cos(2⇡/N), and �j = 2⇡l(j�1)/N . d denotes the center-to-center separation

between two neighboring lasers. All lasers in a discrete optical vortex have the same

amplitude E0, beam waist �0, and di↵erent phase �j, satisfying the periodic boundary

conditions: Ej+N = Ej. The topological charge l of a discrete optical vortex is given

by Eq. (1.2). A continuous optical vortex is formed by a single laser source, so it su↵ers

the limitation of the power scaling capacity. Whereas, the discrete optical vortex can be

formed either by the coherent combining of several laser beams or by phase-locking of

several lasers, thus overcomes the issue of power limitations.

In previous Chapter 6, we have shown the generation of discrete optical vortices with

precisely controlled topological charges by phase-locking several lasers in a 1D ring array

in a degenerate cavity. However, in this chapter, our main goal is to e�ciently determine

the topological charge (magnitude and sign) of a discrete optical vortex. To show the proof

of concept of our method, we have generated a discrete optical vortex from a computer

generated hologram using a spatial light modulator (SLM). The schematic of experimental

setup as well as representative results are presented in Fig. 7.2. The picture of a real

experimental setup is shown in Figure 7.3. We use a phase-only SLM with the screen

7 Method for characterization of topological charge of unknown discrete

optical vortices



206 7.3. Experimental arrangement

Figure 7.2: (a) Experimental arrangement for the generation of discrete optical vortex,
and determining its topological charge (including magnitude and sign). SLM: Spatial light
modulator; BS1, BS2, BS3: 50:50 Beam splitters; L1, L2, L3 and L4: Plano-convex lenses
with focal lengths f1, f2, f3 and f4, respectively; M1, M2, M3 and M4: Mirrors, CA1, CA2:
Circular apertures. (b) The phase hologram corresponding to a discrete optical vortex
with l = 1. (c) The phase distribution of a discrete optical vortex with l = 1. (d) The
intensity distribution of a discrete optical vortex with N= 10 lasers. (e) The interference
pattern where a single selected reference laser interfered with itself and with all the other
lasers.

Figure 7.3: Picture of experimental setup for determining the topological charge (magni-
tude and sign) of a discrete optical vortex. SLM: Spatial light modulator; BS1, BS2, BS3:
50:50 Beam splitters; L1, L2, L3 and L4: Plano-convex lenses with focal lengths 5 cm, 30
cm, 30 cm and 20 cm, respectively; M1, M2, M3 and M4: Mirrors; CA1, CA2: Circular
apertures; ND: Neutral density filter.
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resolution 1920 ⇥ 1080 and pixel size 8 µm. A collimated linearly polarized laser beam

with the fundamental Gaussian distribution, wavelength � = 1064 nm, and beam waist

radius 10 mm incidents normally on the SLM with a beam splitter (BS1). The size of an

input Gaussian beam is chosen such that it illuminates whole screen of SLM. On the SLM

screen a computer generated phase hologram corresponding to a discrete optical vortex

is applied (Fig. 7.2(b)). The method for preparing the phase holograms is described in

Sec. 1.5 of Chapter 1 (see also Appendix 7.6).

The phase hologram on the SLM modulates amplitude and phase of an input Gaussian

laser beam, and accordingly the light from an input Gaussian laser beam splits in the form

of multiple lasers arranged on a 1D ring array with discrete phase distributions in a vortex

configuration. After reflection from SLM, we obtain modulated light in several orders (see

Appendix 7.6), which contains the desired discrete optical vortex. The desired discrete

optical vortex in the first order is isolated with a spatial Fourier filter CA1 placed in

the middle of a telescope made with lenses L3 (f3 = 30 cm) and L4 (f4 = 20 cm) (Fig.

7.3). After spatial filtering, we obtain a clean discrete optical vortex at the focal plane

of L4. The phase distribution and intensity distribution of a generated discrete optical

vortex are shown in Figs. 7.2(c) and 7.2(d), respectively. As evident, the discrete optical

vortex consists of N=10 lasers (with TEM00 fundamental Gaussian mode profiles) in a

1D ring array (Fig. 7.2(d)), and the lasers possess discrete phase distribution (Fig. 7.2(c))

in a vortex configuration. This is identical to a discrete optical vortex obtained by phase-

locking of lasers in a 1D ring array inside a degenerate cavity (Chapter 6).

To determine the magnitude and sign of topological charge of a discrete optical vortex,

we measure the interference between the lasers using a Mach-Zhender interferometer, as

shown in Figs. 7.2(a) and 7.3. The discrete optical vortex (Figs. 7.2(c) and 7.2(d)) splits

into two channels (Ch-1 and Ch-2) at the beam splitter BS2. In one channel (Ch-1), the

discrete optical vortex is imaged directly onto the camera. In the other channel (Ch-2),

a single reference laser is selected with a circular aperture CA2, and then its light is

expanded such that it fully overlaps and interferes with the light from all other lasers

with a beam splitter BS3 on the camera (Figs. 7.2(a), Fig. 7.3). This enables that a

7 Method for characterization of topological charge of unknown discrete
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single selected reference laser interferes with itself and with all the other lasers. A small

tilt (Eq. (7.2)) between two channels provides a few interference fringes for each laser (as

shown in the interference pattern Fig. 7.2(e)) from which the fringe visibility is analyzed.

7.4 Results and discussions

To show that our method can e�ciently determine the magnitude and sign of topological

charge (from small to large values) of discrete optical vortex, we have performed several

experiments considering di↵erent system size N. The experimental results are supported

by the numerical simulations. First, we have demonstrated our approach for determining

topological charges of discrete optical vortices, formed with a 1D ring array of N=10

lasers. The results for a discrete optical vortex with l = 1 are shown in Fig. 7.4.
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Figure 7.4: Results for a discrete optical vortex with l = 1. (a) The near-field intensity
distribution of a discrete optical vortex formed by a 1D ring array of N=10 lasers. The
near-field phase distribution with (b) l = 0, and (c) l = 1. Interference pattern when
a single laser (reference laser denoted by a dashed circle) interferes with itself and with
all the other lasers for (d),(g) l = 0, and (e),(h) l = 1. (f) The average of interference
patterns of l = 0 (d) and l = 1 (e). (i) The average of interference patterns of l = 0 (g)
and l = 1 (h). (j) The variation of fringe visibility as a function of laser index.
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Figure 7.4(a) shows the intensity distribution of a discrete optical vortex, indicating that

it consists of a 1D ring array of N=10 lasers with TEM00 fundamental Gaussian mode

profiles, and each laser has the beam waist of 0.16 mm and separated with a distance of

0.84 mm (center-to-center). Figure 7.4(b) shows the phase distribution of 1D ring array

of N=10 lasers with l = 0 (in-phase distribution), indicating that there is no net phase

circulation around the center. Figure 7.4(c) shows the discrete phase distribution of 1D

ring array of N=10 lasers with l = 1, indicating the phase circulation around the center

(discrete optical vortex). Note, the intensity distribution of 1D ring array of lasers for both

l = 0 and l = 1 is the same. Figures 7.4(d)-7.4(f) show the simulated results of individual

interference patterns of 1D ring array of N=10 lasers with l = 0 and l = 1, and their

averaged interference pattern, respectively. Figures 7.4(g)-7.4(i) show the experimental

results of individual interference patterns of 1D ring array of N=10 lasers with l = 0 and

l = 1, and their averaged interference pattern, respectively. The white dashed circles in

Figs. 7.4(d), 7.4(e), 7.4(g) and 7.4(h) mark the location of a selected reference laser. The

individual interference patterns of 1D ring array of N=10 lasers with l = 0 and l = 1 are

obtained using a Mach-Zhender interferometer (Fig. 7.2(a)), where a selected reference

laser interferes with itself and with all the other lasers. As evident, in the individual

interference patterns corresponding to l = 0 and l = 1, the fringes are uniform at all

the lasers and show no distinguishabilities between l = 0 and l = 1 (Figs. 7.4(d)& 7.4(e)

and Figs. 7.4(g) & 7.4(h)). However, in the averaged interference pattern the fringes show

variation at the lasers (Figs. 7.4(f) and 7.4(i)). Particularly, at the reference laser j = 1

the fringes appear with clear maxima and minima, and the fringes degrade monotonically

for the lasers j = 2� 6 and after that fringes again improve monotonically for the lasers

j = 6� 10.

We have analyzed the fringe visibility at all the lasers in these individual and aver-

aged interference patterns (Figs. 7.5 and 7.6). The quantified simulated and experimental

results are shown in Fig. 7.4(j), which shows the variation of fringe visibility as a function

of laser index j (j = 1, 2, 3...10). As evident, for the individual interference patterns cor-

responding to l = 0 (solid black curve with squares (simulation) and dashed green curve

7 Method for characterization of topological charge of unknown discrete
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with diamonds (experiment)) and l = 1 (pink dashed curve with triangles (simulation)

and cyan dashed curve with cross (experiment)), the fringe visibility does not show any

variation and is found to be maximum V⇡ 1 at all the lasers. Note, due to small intensity

di↵erences between the lasers, the experimental visibility is found to be a bit less than

V= 1. However, in the averaged interference pattern the fringe visibility shows variation

as a function of laser index j (shown by red dashed curve with stars (experiment) and

blue solid curve with circles (simulation)). For example, the fringe visibility is found to

be maximum (V= 1) at laser j = 1 and then it decreases monotonically until laser j = 6

(minimum V ), and after that it again increases and becomes maximum again at laser

j = 10.

These variations in the fringe visibility as a function of laser index can be understood

by the working principle. The phase distribution of discrete optical vortex in a ring

array of N = 10 lasers for a topological charge l is given as: �j = l.(j � 1).(2⇡/10),

where j = 1, 2, 3... denote the laser number in the array. The interference patterns are

obtained by using a Mach-Zhender interferometer (Fig. 7.2(a)), where a single selected

reference laser interferes with itself and with all the other lasers in the array. The results

of interference patterns are shown in Figs. 7.4(d)-7.4(f) (simulation) and Figs. 7.4(g)-7.4(i)

(experiment). The analysis of fringe visibility at all lasers in the array is shown in Fig. 7.5

(simulation) and Fig. 7.6 (experiment).

The laser j = 1 is a selected reference laser, where light interferes with itself, and has

initial phase di↵erence d�1,1 = 0 (Eq. (7.4)) for both l = 0 and l = 1. The interference

expressions at laser 1 in l = 0 and l = 1 can be written as follows. Using Eq. 7.4)

IT1 = IT2 = 2I0 [1 + cos (0.94kx)] , (7.13)

The expression of averaged interference pattern is given as

ISum =
IT1 + IT2

2
= 2I0 [1 + cos (0.94kx)] . (7.14)
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As d�1,1 = 0 for both cases of l = 0 and l = 1, so maxima and minima in the fringe pattern

(Eq. (7.13)) occur at the same locations (red dashed curve and blue dot-dashed curve in

Figs. 7.5(a) and 7.6(a)). In both cases, the fringe visibility is found to be V = 1. The

average of these two interference patterns gives no change in the fringe pattern (Eq. (7.14)),

and the fringe visibility remains unchanged V = 1 (black solid curve in Figs. 7.5(a) and

7.6(a)). The interference fringes at laser 2 in l = 0 and l = 1 are obtained when the light
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V = 1 V = 0.94 V = 0.8 V = 0.58
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V = 0.94
(i) (j)
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l = 1
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l = 0
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Figure 7.5: Simulated results. The intensity cross-section in the interference patterns of
l = 0, l = 1 and averaged interference pattern l = 0 + l = 1 at (a) laser 1, (b) laser 2, (c)
laser 3, (d) laser 4, (e) laser 5, (f) laser 6, (g) laser 7, (h) laser 8, (i) laser 9, and (j) laser
10. The red dashed curve denotes l = 0, blue dot-dashed curve denotes l = 1, and black
solid curve denotes l = 0+ l = 1. Note, the intensity cross-sections in l = 0 and l = 1 are
normalized to the maximum value of 1.

from a selected reference laser j = 1 interferes with the light from laser j = 2. In l = 0,

the initial phase di↵erence between the laser j = 1 and laser j = 2 is d�1,2 = 0, whereas,

in l = 1 it is d�1,2 = 2⇡/10. The interference expressions IT1 (in l = 0) and IT2 (in l = 1)

can be given as

IT1 = 2I0 [1 + cos (0.94kx)] , (7.15)

IT2 = 2I0 [1 + cos (0.94kx� 1.(2⇡/10))] . (7.16)
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Laser 10
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Figure 7.6: Experimental results with the details same as given in Fig. 7.5.

The averaged interference pattern is given as

ISum = I0 [2 + cos (0.94kx) + cos (0.94kx� 1.(2⇡/10))] . (7.17)

The interference patterns (Eqs. (7.15) and (7.16)) consist of fringes with clear maxima

and minima, which give rise to the fringe visibility of V = 1 (red dashed curve and blue

dot-dashed curve in Figs. 7.5(b) and 7.6(b)). As evident, in these interference patterns,

the fringes (maxima and minima) are shifted relative to each other, which occurs due

to the di↵erent values of initial phase di↵erence d�1,2 in l = 0 and l = 1. When these

interference patterns with shifted fringes are averaged, the resultant interference pattern

(Eq. 7.17) consists of fringes with reduced fringe visibility V = 0.94 (black solid curve in

Figs. 7.5(b) and 7.6(b)).

Similarly, the interference fringes at other lasers are obtained by interfering the light

from a selected reference laser j = 1 and the light from other lasers j > 2. In general, in

l = 0, the phase di↵erence between the selected reference laser j = 1 and other lasers is

given as d�1,j�1 = 0, whereas, in case of l 6= 0, it is given as d�1,j�1 = l.(j � 1).(2⇡/N),
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where N denotes the number of lasers in a 1D ring array. Therefore, in case of l = 0

the interference fringes at lasers j = 3, 4, ...10 occur exactly at the same locations (red

dashed curve in Figs. 7.5(c)-7.5(j) and Figs. 7.6(c)-7.6(j)). However, in case of l = 1 the

interference fringes at j = 3, 4, ...10 occur at di↵erent locations due to di↵erent values

of d�1,j�3 (blue dot-dashed curve in Figs. 7.5(c)-7.5(j) and Figs. 7.6(c)-7.6(j)). Because

of this when the interference patterns at the same lasers (j = 3, 4, ...10) for l = 0 and

l = 1 are averaged, the resultant interference pattern consists of reduced visibility (black

solid curve in Figs. 7.5(c)-7.5(j) and Figs. 7.6(c)-7.6(j)). For example, at lasers j = 3� 6

the values of reduced fringe visibility are found to be 0.8 (Figs. 7.5(c) and 7.6(c)), 0.58

(Figs. 7.5(d) and 7.6(d)), 0.3 (Figs. 7.5(e) and 7.6(e)), and 0 (Figs. 7.5(f) and 7.6(f)),

respectively. For the lasers j = 7 � 10, the values of fringe visibility are found to be 0.3

(Figs. 7.5(g) and 7.6(g)), 0.58 (Figs. 7.5(h) and 7.6(h)), 0.80 (Figs. 7.5(i) and 7.6(i)) and

0.94 (Figs. 7.5(j) and 7.6(j)), respectively. Note, a small discrepancy between simulated

and experimental fringe visibility is anticipated by a small intensity di↵erence between

the lasers in the experiment. As evident, the fringe visibility decreases monotonically

for lasers j = 1 � 6 and after that, it again increases from j = 7 � 10. The increase

in the fringe visibility for j = 7 � 10 can be explained as follows. For laser j = 7, we

have d�1,7 = 1.6.(2⇡10 ), which can also be written as
⇥
2⇡ � (4.(2⇡10 ))

⇤
or �4.(2⇡10 ). This

becomes equivalent to the phase di↵erence between j = 1 and 5 with the negative sign

i.e., -d�1,5. Note, the positive and negative values of the same magnitude d� produce

the same shift of fringes in the interference pattern, as shown in Figs. 7.1(a) and 7.1(c).

The phase di↵erence |d�1,7| < |d�1,6|, and due to this the fringe visibility in the averaged

interference at laser j = 7 is found to be higher than laser j = 6 (and same as for j = 5).

Similarly, the increased values of V at laser j = 8, 9, and 10 can also be explained.

The variation in the fringe visibility as a function of laser index is characteristic to

the topological charge of a discrete optical vortex, so it serves as the basis for an accurate

determination of topological charge. In particular, the observation of number dips in the

fringe visibility curve provides information of topological charge. For example, a single

minimum denotes the value of l = 1.
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Further, we have determined the large values of l > 1 in a discrete optical vortex

formed with a 1D ring array of N=10 lasers. The results are shown in Fig. 7.7.
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Figure 7.7: For a discrete optical vortex of system size N=10 lasers, the determination of
l = 2, 3 and 4. The average of interference patterns of l = 0 and (a, d) l = 2, (b, e) l = 3,
and (e, f) l = 4. (g-i) The Fringe visibility as a function of laser index, corresponding
to (a, d), (b, e), and (e, f), respectively. Blue solid curve with circles represents the
simulation, and Red dashed curve with stars represents the experiment. Dashed white
circle on (a, d) marks the location of a selected reference laser j = 1.

Figures 7.7(a)-7.7(c) and 7.7(d)-7.7(f) show the simulated and experimental results ob-

tained by averaging the interference patterns of l = 2, l = 3 and l = 4 with l = 0 (l = 0

+ l = 2, l = 0 + l = 3, and l = 0 + l = 4), respectively. The white dashed circles in

Figs. 7.7(a) and 7.7(d) mark the location of a selected reference laser j = 1. The location

of reference laser remains the same in other averaged interference patterns (Figs. 7.7(b)

& 7.7(c) and Figs. 7.7(e) & 7.7(f)). As evident, in the averaged interference patterns the



215

fringes at the lasers exhibit di↵erent behaviour. The analyzed fringe visibility as a func-

tion of laser index (j) corresponding to l = 2, 3 and 4 are presented in Figs. 7.7(g)-7.7(i),

respectively, indicating di↵erent variations related to the values of topological charges.

This is due to the fact that the phase distribution of discrete optical vortex depends on

the value of l as �j = 2⇡l(j � 1)/10 (j = 1, 2, 3...10), and accordingly the fringes at

the lasers are shifted by di↵erent amounts with respect to the fringes in l = 0. Thus,

averaging of interference patterns of l 6= 0 and l = 0 results in a di↵erent variation in the

fringe visibility with the laser index (explained above), and can be used to determine the

value of l. For example, the averaging of l = 0 + l = 2 produces two dips in the fringe

visibility curve, confirming the value of l = 2 (Fig. 7.7(g)). Similarly, the observation of

three and four dips in the fringe visibility curve (Figs. 7.7(h) and 7.7(i)) confirms the value

of l = 3 and 4, respectively. The simulation and experimental results show an excellent

agreement.

Further, to show an accurate determination of higher-order topological charge of a

discrete optical vortex, we have considered a 1D ring array of N = 30 lasers. Using the

experimental arrangement shown in Fig. 7.2(a), we have generated discrete optical vortices

with l = 11 to 14, and determined their values by averaging their interference patterns

with l = 0. The results are shown in Fig. 7.8. Figures 7.8(a)-7.8(d) and 7.8(e)-7.8(h) show

the simulated and experimental results obtained by averaging the interference patterns

of l = 11, 12, 13 and 14 with l = 0 (l = 0 + l = 11, l = 0 + l = 12, l = 0 + l = 13 and

l = 0 + l = 14), respectively. The white dashed circles in Figs. 7.8(a) and 7.8(e) mark

the location of a selected reference laser j = 1. The location of reference laser remains

the same in other averaged interference patterns. As evident, in the averaged interference

patterns, corresponding to di↵erent topological charges, the fringes at the lasers exhibit

di↵erent behaviour and enable accurate identification of corresponding topological charges

of discrete optical vortices. The analyzed fringe visibility as a function of laser index

(j) corresponding to l = 11 � 14 is shown in Figs. 7.8(i)-7.8(l), respectively. The phase

distribution of discrete optical vortex with di↵erent topological charges, formed with a 1D

ring array ofN = 30 lasers can be given as �j = 2⇡l(j�1)/30, where j = 1, 2, 3, ...30. The

7 Method for characterization of topological charge of unknown discrete
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Figure 7.8: Determination of higher values of topological charge of a discrete optical
vortex with a large system size N=30 lasers. The average of interference patterns of l = 0
and (a, e) l = 11, (b, f) l = 12, (c, g) l = 13, and (d, h) l = 14. (e-h)The Fringe visibility as
a function of laser index, corresponding to (a, e), (b, f), and (c, g), respectively. Blue solid
curve with circles represents the simulation, and red dashed curve with stars represents
the experiment. Dashed white circle on (a, e) marks the location of a selected reference
laser j = 1.

observed variation in the fringe visibility as a function of laser index (j) can be explained

with the same reasons as explained above for discrete optical vortex with N = 10 lasers. It

is clearly evidenced that the averaging of interference patterns l = 0+l = 11, l = 0+l = 12,

l = 0 + l = 13, and l = 0 + l = 14 leads to distinct variations in the fringe visibility as a

function of laser index, and produces di↵erent number of dips corresponding to di↵erent

values of topological charges. For example, averaged interference pattern of l = 0+ l = 11

produces eleven dips, which confirms the value of l = 11 (Fig. 7.8(i)). Similarly, the

observation of twelve, thirteen, and fourteen dips corresponding to l = 0 + l = 12,

l = 0 + l = 13, and l = 0 + l = 14, confirms the values of l = 12 � 14, respectively. We
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have observed an excellent agreement between the numerical and experimental results,

which indicates an accurate determination of high-order topological charges of discrete

optical vortices.

So far, we have successfully shown an accurate determination of magnitude of topo-

logical charge of a discrete optical vortex by averaging the interference patterns of l 6= 0

with l = 0. However, with this averaging the same results are obtained for both positive

and negative values of topological charge, and can not distinguish the sign of l 6= 0. To

determine the sign of topological charge of a discrete optical vortex, we average the inter-

ference pattern of an unknown discrete optical vortex having l 6= 0 with the interference

pattern of a known discrete optical vortex having l = 1 (instead of l = 0 as earlier). To

show it, we have considered discrete optical vortices with di↵erent topological charges in

a 1D ring array of N = 10 lasers, as shown in Fig. 7.9.

Figures 7.9(a)-7.9(d) show the simulated averaged interference patterns of positive

l = 1, 2, 3 and 4 with l = 1 (l = 1+ l = 1, l = 1+ l = 2, l = 1+ l = 3 and l = 1+ l = 4),

respectively. Figures 7.9(e)-7.9(h) show the simulated averaged interference patterns of

negative l = �1, �2, �3, and �4 with l = 1 (l = 1+l = �1, l = 1+l = �2, l = 1+l = �3

and = 1+ l = �4, respectively. A white dashed circle in Fig. 7.9(a) represents the location

of a selected reference laser j = 1, which also remains the same in all other interference

patterns (Figs. 7.9(b)-7.9(h)). As evident, in the averaged interference patterns of positive

and negative topological charges with l = 1, the fringes at the lasers appear di↵erently,

thus enabling to distinguish the sign of topological charge. These di↵erent interference

patterns are again anticipated by the di↵erent phase distributions of discrete optical

vortices having di↵erent topological charges. The analyzed fringe visibility as a function

of laser index (j), corresponding to Figs. 7.9(a)-7.9(h), is shown in Figs. 7.9(i)-7.9(l). The

red dashed curve with circles shows the visibility curve when interference patterns of

positively charged l = +1 to l + 4 are averaged with l = +1, whereas, solid blue curve

with squares denote the case when interference patterns of negatively charged l = �1 to

l � 4 are averaged with l = +1. As evident, the variation of fringe visibility with laser

index (j) for the positive and negative topological charges is found to be di↵erent, and

7 Method for characterization of topological charge of unknown discrete
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Figure 7.9: Simulation results for determining the sign of topological charge of a discrete
optical vortex with N = 10 lasers. The averaging of interference patterns of l = 1 and
(a) l = 1, (b) l = 2, (c) l = 3, and (d) l = 4. The averaging of interference patterns of
l = 1 and (e) l = �1, (f) l = �2, (g) l = �3, and (h) l = �4. (i-l) The fringe visibility as
a function of laser index, corresponding to (a,e), (b, f), (c, g), and (d, h), respectively. A
dashed white circle in (a) marks the location of a selected reference laser j = 1.

thus enables to identify the sign of topological charge. In particular, for l = +1, the

fringe visibility is found to be 1 for all the lasers (no variation), and no dip is observed

(dashed red curve with circles in Fig. 7.9(i)). Whereas, for l = �1, the fringe visibility

shows variation, and two dips are observed (solid blue curve with squares in Fig. 7.9(i)).

As discussed earlier in Figs. 7.4-7.8, when the interference patterns of positive and

negative topological charges are averaged with the interference pattern of l = 0, the num-

ber of dips in the fringe visibility curve is found to be proportional to the magnitude of

topological charge. For example, for l = ±1 only a single dip is observed in the fringe

visibility curve (Fig. 7.4(j)). However, when the interference patterns of positive and neg-

ative topological charges are averaged with the interference pattern of l = +1, the number

of dips in the fringe visibility curve decreases by one for the positive topological charges,
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and increases by one for the negative topological charges. For example, in Fig. 7.9(i),

no dip is observed for l = +1, and two dips are observed for l = �1. Similarly, for

l = +2, +3, and +4, the number of dips are observed to be one, two, and three, respec-

tively (red dashed curve with circles in Figs. 7.9(j)-7.9(l)). Whereas, for l = �2, �3, and

�4, the number of dips are observed to be three, four, and five, respectively (solid blue

curve with squares in Figs. 7.9(j)-7.9(l)). This clearly indicates that the observation of

a decrease/increase in the number of dips in the fringe visibility curve provides accurate

information of positive/negative sign of topological charge of a discrete optical vortex.

We have also verified these findings experimentally, the results are shown in Fig. 7.10.

The experimental results show excellent agreement with the simulations. Thus, averaging

the interference patterns of positive and negative topological charges with the interference

pattern of l = +1 provides accurate information of the sign of topological charge of a

discrete optical vortex. This approach can be used for identifying the sign of topological

charge of any order.

Next, we have checked the robustness of our method against the phase disorder (for

example, aberrations due to misalignment of optical components). We have generated

phase disorder in a range [-⇡ to ⇡] through a random phase screen using Monte Carlo

method, that behaves like a disorder media of desired length and having disorder strength

C
2
n [37]. We have considered a phase disorder with a strong strength C

2
n = 10�12.

The simulated results are shown in Fig. 7.11. Figures 7.11(a)-7.11(d) show the ideal phase

distribution of discrete optical vortices with l = 1 to 4 in a 1D ring array of N = 10 lasers.

After multiplying the phase disorder, the distorted phase distributions of discrete optical

vortices with l = 1 to 4 are shown in Figs. 7.11(e)-7.11(h). It is clearly evident that most

of the lasers in the array consist of more than a single phase.

To show whether our method can still determine accurately the information of topo-

logical charge, we have measured the interference patterns of 1D ring array of lasers with

l = 1 to 4 and l = 0 under the same phase disorder, using Fig. 7.2(a). The averaged

interference patterns of l = 1 to 4 with l = 0 are shown in Fig. 7.11(i)-7.11(l). It is

evident that in the averaged interference patterns of di↵erent topological charges, the

7 Method for characterization of topological charge of unknown discrete
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Figure 7.10: Experimental results for determining the sign of topological charge of a
discrete optical vortex with N = 10 lasers. The averaging of interference patterns of l = 1
and (a) l = 1, (b) l = 2, (c) l = 3, and (d) l = 4. The averaging of interference patterns
of l = 1 and (e) l = �1, (f) l = �2, (g) l = �3, and (h) l = �4. (i-l) The fringe visibility
as a function of laser index, corresponding to (a,e), (b, f), (c, g), and (d, h), respectively.
A dashed white circle in (a) marks the location of a selected reference laser j = 1.

fringes at the lasers are distributed di↵erently with di↵erent fringe visibility. Further,

the orientations of the fringes at the lasers are found to be di↵erent (unlike ideal discrete

optical vortices in Figs. 7.2 and 7.4). This is anticipated by the multiple-phase structure

in each laser. The analyzed fringe visibility as a function of laser index (j) for all l = 1

to 4 (blue solid curve with circle for l = 1, red dashed curve with squares for l = 2, black

dot-dashed curve with star for l = 3 and pink dotted curve with triangles for l = 4), are

shown in Fig. 7.11(m). As evident, for di↵erent values of topological charge, the variation

in the fringe visibility consists of di↵erent number of dips. In particular, corresponding

to l = 1 to 4, the number of dips in the fringe visibility are found to be one, two, three,

and four, respectively, which clearly identifies the magnitude of topological charges.

We have also verified experimentally the e↵ect of phase disorder on the determination
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Figure 7.11: Simulation results showing the e↵ect of phase disorder on the determination
of topological charge of a discrete optical vortex with N = 10 lasers. The discrete optical
vortex with topological charges l = 1 to 4 having (a-d) ideal phase distribution, and
(e-h) disordered phase distribution. The average of interference patterns of l = 0 and (i)
l = 1, (j) l = 2, (k) l = 3, and (l) l = 4. (m) The fringe visibility as a function of laser
index corresponding to (i-l). A white dashed circle in (a) marks the location of a selected
reference laser.
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Figure 7.12: Experimental results showing the e↵ect of phase disorder on the determi-
nation of topological charge of a discrete optical vortex with N = 10 lasers. The average
of interference patterns of l = 0 and (a) l = 1, (b) l = 2, (c) l = 3, and (d) l = 4. (e)
The fringe visibility as a function of laser index corresponding to (a-d). Note, the phase
disorder is kept the same as in Fig. 7.11. A white dashed circle in (a) marks the location
of a selected reference laser.

of topological charge. The results for di↵erent values of l = 1 to 4, under the same

phase disorder strength C
2
n = 10�12 are presented in Fig. 7.12. Experimentally, the phase

disorder on the discrete optical vortex is realized by imposing random phase on hologram

along with the phase distribution of discrete optical vortex [37]. Figures 7.12(a)-7.12(d)

show the averaged interference patterns of l = 1 to 4 with l = 0 (l = 0 + l = 1, l =

0 + l = 2, l = 0 + l = 3 and l = 0 + l = 4), respectively, indicating the di↵erent

fringe distribution at the lasers in each case. Corresponding to Figs. 7.12(a)-7.12(d), the

analyzed fringe visibility as a function of laser number (j) is shown in Fig. 7.12(e). As

evidence, corresponding to di↵erent values of l = 1 to 4, the number of dips in the fringe

visibility variation is found to be one (blue solid curve with circles), two (red dashed curve

with squares), three (black dot-dashed curve with stars) and four (pink dotted curve with

triangles), respectively. This clearly depicts that our approach is highly robust against

the phase disorder, as it does not a↵ect the accurate determination of magnitude of

topological charge of a discrete optical vortex. Similarly, the sign of these disordered
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topological charges can be determined by averaging their interference patterns with the

interference pattern of disordered l = 1.

The numerical and experimental results show an excellent agreement and clearly depict

that our method accurately determines the magnitude and sign of topological charge of

a discrete optical vortex. The determination of topological charge is not a↵ected by the

imperfections such as the phase disorder caused by aberrations in the system. Further,

the method can be used for determining any small to large values of topological charge.

7.5 Conclusions

In conclusion, we have presented a novel and e�cient characterization method for the

accurate determination of magnitude and sign of topological charge (l) of an unknown

discrete optical vortex, formed by an array of lasers in a 1D ring geometry. Our method

relies on measuring the interference pattern of a discrete optical vortex, which is obtained

by interfering a single selected laser with itself and with all the other lasers in a 1D ring

array, using a Mach-Zhender interferometer. The interference pattern is quantified by

analyzing the fringe visibility at each laser in a 1D ring array. The discrete optical vortex

with l = 0 and l 6= 0 have di↵erent phase distributions, thus producing interference pat-

terns with shifted interference fringes. The averaging of these phase-shifted interference

patterns gives rise to a variation in the fringe visibility as a function of laser number in the

discrete optical vortex, thus enabling identification of l. The magnitude of l of a discrete

optical vortex is found to be proportional to the number of dips observed in the fringe

visibility curve.

Further, for an accurate determination of sign of unknown discrete optical vortex

(l 6= 0), we have averaged its interference pattern with the interference pattern of a

known discrete optical vortex with l = +1. The number of dips in the fringe visibility

curve decreases by one for positive values of l and increases by one for negative values of

l. We have also investigated the robustness of our method against the presence of phase

disorder that may occur due to the presence of aberrations in a system. It is found that

7 Method for characterization of topological charge of unknown discrete

optical vortices
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the phase disorder does not a↵ect an accurate measurement of topological charge of an

unknown discrete optical vortex.

For the generalization of our method, we have demonstrated it for discrete optical

vortices with topological charges from small to large values, and accurately measured their

magnitude and sign. We have obtained an excellent agreement between the numerical

and experiment results, indicating that our method is highly e�cient and accurate. Our

method can be useful in the applications of discrete optical vortices. The results reported

in this Chapter are given in Ref [46].

7.6 Appendix

Computer generated phase hologram for a discrete optical vortex:

In order to generate discrete optical vortex with desired topological charge, the phase

and amplitude of the incident Gaussian beam are modulated by phase-only holograms

[155]. The complex electric field of discrete optical vortex can be expressed as

U(x, y) = A(x, y) exp(i�(x, y)), (7.18)

where the amplitude A(x, y) and the phase �(x, y) take values in the intervals [0,1] and

[�⇡,⇡]. The aim is to encode the complex field U(x, y) by means of a phase transmittance

function (phase hologram) to incorporate amplitude variations as phase variations, that

is, a function h(x, y) must be given by

h(x, y) = exp [i (A,�)] , (7.19)

where  (A,�) accounts both amplitude and phase variations. To find the desired form

of phase function  (A,�), a detailed description of the method is given in Sec. 1.5 of

Chapter 1. The modulated field reflected from SLM consists of first and higher orders,

thus to separate the first order, a blazed grating is added to the phase of hologram. The
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resultant phase has the following form

 =  (A,�+ 2⇡Nxx+ 2⇡Nyy), (7.20)

where Nx and Ny denote the grating frequencies along x and y directions, respectively.

As per the requirement of SLM, the phase of hologram is divided into 256 levels. The

spatial frequencies are chosen as Nx = 120 and Ny = 60. The holograms corresponding

to l = 0 to 3 and system size N= 10 are shown in Fig. 7.13(a)-7.13(d), respectively. These

holograms are used on the SLM to produce the desired phase distributions of lasers in 1D

ring array with l = 0 to 3, as shown in Fig. 7.13(e)-7.13(h), respectively.
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Figure 7.13: Phase holograms corresponding to (a) l = 0, (b) l = 1, (c) l = 2, and (d)
l = 3. The phase distributions of lasers in 1D ring array corresponding to these holograms
for (e) l = 0, (f) l = 1, (g) l = 2, and (h) l = 3.

A similar procedure is also used for generating discrete optical vortices with large system

sizes and higher-order topological charges.
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Chapter 8

Summary and Future Outlook

8.1 Summary

This thesis aims to shed new light on various aspects of spatially controlled structured

light. Particularly, it proposes simple, cost-e↵ective, and e�cient methods for genera-

tion and characterization of novel spatially structured light with customized intensity and

phase distributions as well as possessing exotic propagation properties. Further, our em-

phasis has also been to improve the quality, resolution, resilience against perturbations,

and spectral range of spatially controlled structured light. The spatially controlled struc-

tured light and characterization methods have potential applications both in fundamental

and applied fields.

Chapter 1 is an introduction to the thesis, where we have discussed structured light

and its strong relevance in various fundamental and applied fields, where conventional

Gaussian laser beams pose physical limitations. We have described various types of spa-

tially controlled structured light and their exotic characteristics. We have discussed vari-

ous intra-cavity and outer-cavity methods, including their challenges as well as evolution

towards the development of improved simple, cost-e↵ective, and e�cient methods. Fur-

ther, we have described the analytical and numerical methods for modelling the laser

cavities, as well as propagation and quantification of spatially controlled structured light.

227
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In Chapter 2, we have presented the tailoring of amplitude degree of freedom of light

to generate uniform-intensity distribution with customized spatial shapes. Such struc-

tured light beams are non-trivial, as these are not the regular modes of a conventional

laser system. We have generated these beams, based on an outer-cavity method, using

di↵ractive optical elements (DOEs) whose phase distributions are obtained from an it-

erative phase retrieval algorithm that involves Fresnel propagation and spatial Fourier

filtering. In particular, an input Gaussian beam from a laser illuminates the DOE, and

after propagating a certain distance (working distance) transforms into a desired uniform-

intensity output beam. The simple form of uniform-intensity beams have also been re-

alized with other methods, however, many of these methods su↵er various limitations,

such as low-quality output, complex phase distribution of DOE, and strong dependence

on initial conditions in algorithm. However, in our method, the spatial Fourier filter-

ing enables to obtain a relatively simple design of DOE (smooth phase distribution) and

produces a high-quality uniform-intensity output beam. The simple smooth phase distri-

bution o↵ers the possibility of easy manufacturing of DOEs. We have simulated di↵erent

DOEs and demonstrated the generation of uniform-intensity beams with di↵erent spa-

tial shapes, such as square, annular, rectangular, hollow square, and plus-sign. We have

characterized the quality of shaped output beams by calculating root mean square error

(RMSE) (Eq. (1.25)), and found that the shaped output beams consist of high-quality.

The RMSE is found to be dependent on spatial shapes and increases with an increase

in the complexity of shapes. The quality of shaped output beam also depends on the

working distance (z) for which DOE is designed, in particular, for very small and large

values of z, the phase distribution of DOE does not result in a high-quality conversion.

The optimal working distance depends on several parameters, such as wavelength, input

beam size, and output beam size.

Further, we have performed a detailed robustness analysis on the quality of gener-

ated shaped output beams against various imperfections in an input beam, for example,

misalignment with respect to DOE, e↵ect of asymmetry, speckle noise, presence of higher-

order modes, and mismatch of beam sizes. We have found that for imperfections < 10%,
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the quality of shaped output beams remains reasonably good. In the case of speckle

noise up to 18%, the quality of shaped output beam remains excellent. In this case, we

have also shown that the quality of shaped output beam can be further improved using

an additional external spatial Fourier filter of suitable transmission function. Further,

structured light over a broad spectral range is desired in several applications. So, we

have designed a DOE for a particular wavelength and illuminated it with an input beam

of a broad spectral range. We have found that our method generates shaped output

beam with excellent quality over a broad spectra range, however, the working distance

z is found to be decreased with an increase in the wavelength. These uniform-intensity

beams with customized spatial shapes have potential applications in various fields, such

as material processing, lithography, interferometric gravity wave detectors, optical lattice

atomic clocks, etc. [5, 159,364].

In Chapter 3, we have presented the tailoring of light in the amplitude and phase

degrees of freedom, for generating a special type of structured light (called aberration

laser beams (ALBs)) containing multiple bright lobes and possessing exotic propagation

properties, such as autofocusing and self-healing both in free space as well as in turbulent

media. The ALBs are generated, based on an outer-cavity method, using a DOE whose

phase distribution consists of radial (rq) and periodic angular dependence (sinm�). The

presence of periodic angular dependence in the phase distribution provides generation of

di↵raction pattern with m
th-order symmetry. In particular, the intensity symmetrically

distributes in various lobes depending on the m-values. The radial term provides the

autofocusing features of ALBs. We have presented a detailed mathematical formulation

for describing the propagation of ALBs in turbulent media by solving Huygen-Fresnel

integral using stationary phase method. Numerically, the turbulent media is simulated by

random phase screens using Monte Carlo method, where turbulence strength is controlled

by randomness in the phase distribution. Experimentally, the turbulent media of di↵erent

strengths is generated by hot air at di↵erent temperatures.

We have found that the presence of turbulence leads to distortions in the spatial in-

tensity distribution of ALBs, as well as causes beam wandering. The e↵ect of turbulence

8 Summary and Future Outlook



230 8.1. Summary

on the propagation of ALBs is quantified by calculating an overlap integral with respect

to ALB in free space. With an increase in the turbulence strength, the overlap integral is

found to be decreased, indicating the spatial distortions in ALBs. The ALBs possess good

autofocusing properties both in free space as well as in turbulent media, where on-axis

peak intensity becomes maximum with tight focusing. In particular, the autofocusing

properties of ALBs remain invariant irrespective of turbulence strength. The autofocus-

ing distance can be controlled from any small to large values, by controlling the ALB

parameters, such as �, q, ↵, and input beam waist. Further, we have also investigated

the spectral dependence of autofocusing of ALBs in turbulent medium, and found that

the autofocusing distance does not depend on the turbulence, however, it decreases with

an increase in wavelength.

Furthermore, we have performed a detailed investigation of self-healing of ALBs both

in free space as well as in turbulent media with di↵erent turbulence strengths. To check

the self-healing, we have truncated ALB with di↵erent amounts using di↵erent types of

amplitude filters, and after that propagated. We have found that, both in free space

and turbulent media, the truncated ALB self-heals by redistributing intensity within the

beam. The ALBs self-heal reasonably well even for a large amount of truncation ⇠ 60%.

The maximum self-healing always occurs at the autofocusing distance, which remains

invariant irrespective of the amount of truncation and strength of turbulence.

With these unique characteristics, we believe that our findings can be potentially

exploited for a wide range of applications. For example, robustness against turbulence

and obstructions makes them useful for optical communications in free space and turbulent

atmosphere [55,189,190]. As the autofocusing forms a tightly focused spot with maximum

power, and with the ability to control the autofocusing distance from small to large

values, these beams are potentially useful for surgery and ablation applications [25]. These

beams with good self-healing abilities in free space and turbulent media, may widely be

used in imaging and investigation of biomedical materials and to examine small complex

biological samples or tissues, trapping and guiding microparticles, and material processing

[25,56,189].
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In Chapter 4, we have presented the generation of asymmetric aberration laser beams

(aALBs) with controlled intensity distribution, based on an outer-cavity method using a

di↵ractive optical element involving the phase asymmetry. In ALBs, the intensity is sym-

metrically distributed in all the lobes, however, in aALBs the asymmetry in the phase

distribution enables an additional control of intensity distribution by redistributing inten-

sity within the beam and forms the high-energy density regions at desired spatial locations.

The asymmetry in the phase distribution is introduced by shifting the coordinates in a

complex plane, and we have derived the mathematical formulations for general aALBs

as well as the special cases of it. We have shown that in an ideal ALB containing equal

intensity bright lobes, by introducing asymmetry most of the intensity can be transferred

to any one of the single lobes, and generates a high-energy density. Further, we have

explored the mechanism of asymmetric control of intensity in aALBs and found that the

asymmetry parameters control the position of indeterminate phase point of the trigono-

metric phase term in aALBs, which creates a controlled asymmetric intensity distribution

in the near-field plane. As a result of propagation, it provides a controlled transfer of

intensity within aALBs. In general, for a given parameter m of aALBs, a precise spatial

location of high-energy density lobe can be controlled by the asymmetry parameter (�),

and we have determined empirical relations between � and m. We have found that for the

specific values of � and m, the intensity in high-energy density lobe can be enhanced by

several times the intensity in other lobes. Further, the e↵ect of di↵erent beam parameters,

such as m and q are also investigated, which provides more flexibility in controlling the

intensity distribution of aALBs.

Furthermore, unlike ideal ALBs, the aALBs possess more complex intensity and phase

distributions, so we have investigated their propagation characteristics. We have found

that similar to ideal ALBs, the aALBs also possess good autofocusing properties, which

are not a↵ected by the asymmetry. The autofocusing distance of aALBs can be var-

ied from small to large values by changing the beam parameters. The aALBs provide a

more general framework of controlling intensity distribution, as for the specific values of

asymmetry parameters the aALB behaves as an ideal ALB. These aspects of aALBs mak-
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ing them potentially important for various applications of modern optics and photonics,

such as forming various types of optical traps to guide and manipulate particles, material

processing, etc.

In Chapter 5, we have presented the generation of high-energy densities by suppress-

ing higher-order sidelobes in the far-field of phase-locked lasers. We have generated lasers

in various 1D and 2D array geometries in a degenerate cavity and phase-locked them in the

in-phase [out-of-phase] configuration with the far-field coupling using Gaussian apodizer

[binary circular aperture]. Owing to the non-uniform amplitude and definite geometry,

the far-field of phase-locked lasers consists of higher-order sidelobes. These sidelobes con-

tain a significant amount of energy, which limits the use of an output beam for high-power

applications. To e�ciently suppress such higher-order sidelobes, the method involves two

steps: (i) The first step includes phase correction, where the phase of zeroth-order lobe

in the far-field is changed by a certain angle, which results in a modified near-field with

nearly uniform-intensity distribution and non-uniform phase distribution, and (ii) second

step includes the phase neutralization, where, in the modified near-field, the non-uniform

phase distribution is neutralized to obtain a beam with a nearly uniform-intensity distri-

bution and uniform-phase distribution. This beam yields a tightly focused high-energy

density peak (zeroth-order lobe) in the far-field intensity distribution.

We have demonstrated this method for the phase-locked lasers in various array geome-

tries, such as square, triangular, Kagome, random, and 1D ring. The results are quantified

by calculating the di↵raction e�ciency of the zeroth-order lobe. It is found that for the

long-range in-phase locked laser arrays, the di↵raction e�ciency of zeroth-order lobe can

be improved by several factors (⇠ 3� 4). The improved di↵raction e�ciencies are found

to be in a range of 90% � 95% (for 2D arrays) and ⇠ 75% (for 1D ring array). Further,

for a long-range in-phase locking of lasers, the phase distribution of neutralizers is found

to be binary in nature, which improves the simplicity of the method.

Further, we have analyzed the robustness of our method against various factors, such

as the range of phase-locking, system size, and presence of topological defects in a 1D ring

array. We have found that the di↵raction e�ciency of the zeroth-order lobe decreases with
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a decrease in the range of phase-locking. However, for a very short-range of phase-locking

(for example, only 9 lasers are phase-locked in an array of 81 lasers), the di↵raction

e�ciency is found to be ⇠ 75%, which is still significantly better than the e�ciency

of phase-locked laser array with higher-order sidelobes. The decrease in the di↵raction

e�ciency can be attributed to the non-binary nature of phase distribution in neutralizers.

Further, we have found that the method works well for small to large system sizes, and

di↵raction e�ciency remains almost the same. In a 1D ring array, the high-energy density

zeroth-order lobe can be generated with good di↵raction e�ciency even in the presence

of topological defects.

We have also investigated our method for an out-of-phase locked square laser array,

where the zeroth-order has no intensity. We have obtained a high-energy-density zeroth-

order lobe with a high di↵raction e�ciency of 81%. Our results on producing high-energy

density beams with suppressed higher-order sidelobes can be useful for various applications

in di↵erent areas.

In Chapter 6, we have presented a novel and e�cient intra-cavity method for the

generation of high-power discrete optical vortices with precisely controlled topological

charges by phase-locking a 1D ring array of lasers in a degenerate cavity. Despite the

remarkable progress on conventional optical vortex, there still remains a vital issue that

restricts the practical implementation and application of the optical vortex in the future,

namely, the limitation of power scaling capacity. However, the discrete optical vortices

are realized by phase-locking of several lasers, thus having an improved power scaling

capacity.

The special geometry of a degenerate cavity enables an e�cient formation of a 1D ring

array of lasers, where each laser consists of a nearly fundamental Gaussian distribution,

and independent from each other. Initially, the lasers consist of random phase distribution

and are equally probable. To force 1D ring array of lasers in a phase-locked steady state of

desired optical vortex configuration, we employ a spatial Fourier filter (amplitude mask) at

the Fourier plane inside the degenerate cavity, whose transmission function is engineered

by the Fourier transform of a desired discrete optical vortex. The spatial Fourier filtering
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mechanism helps to eliminate the undesired phase distributions by introducing additional

losses to them, thereby, enabling the lasers to find a correct phase distribution in the

form of a desired discrete optical vortex. With the specifically engineered spatial Fourier

filters, we have demonstrated generation of discrete discrete optical vortices with di↵erent

system sizes and precisely controlled topological charges.

It is well-known that discrete systems behave di↵erently than continuous systems,

so we have performed a detailed investigation on the propagation, such as divergence

and self-healing, of discrete optical vortices, and compared them with the conventional

continuous optical vortices. We have found that for a given system size (number of

lasers) and fixed distance between the neighbouring lasers, the size of a discrete optical

vortex and its divergence does not depend on the topological charge, which is found to

be di↵erent than the conventional continuous optical vortices (Laguerre-Gaussian/Bessel-

Gaussian beams). Further, we have performed a detailed investigation of self-healing by

partially truncating a discrete optical vortex in the waist plane (z = 0) and propagated

plane (z > 0). In the waist plane, a discrete optical vortex is truncated in two ways:

(a) a single laser is truncated, and (b) compound truncation where all the lasers are

equally partially truncated. To quantify the self-healing, we have calculated an overlap

integral to analyze similarities between the self-healed and ideal discrete optical vortices.

In both cases, when partially truncated discrete optical vortex propagated, as a result of

intensity redistribution, the intensity from nearby regions propagates into truncated parts,

and accordingly the beam self-heals. The results show that partially truncated discrete

vortex can self-heal quite well. The self-healing distance is also found to be dependent

on the amount of truncation, particularly, it increases with an increase in the amount

of truncation. Further, the simulation results on self-healing properties are also verified

experimentally, and we have found a good agreement between them.

These investigations have opened the door for new applications, where conventional

continuous optical vortex pose limitations.

In Chapter 7, we have presented a novel and e�cient characterization method for

accurate determination of magnitude and sign of topological charge (l) of an unknown
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discrete optical vortex, which is formed by an array of lasers in a 1D ring geometry. Since,

the applications of optical vortex are associated with its topological charge, thus accurately

determining the magnitude and sign of topological charge is very important. We have

presented a simple analytical formulation of working principle of our method. It relies

on measuring the interference pattern of a discrete optical vortex, which is obtained by

interfering a single selected laser with itself and with all the other lasers in a 1D ring array,

using a Mach-Zhender interferometer. The interference pattern is quantified by analyzing

the fringe visibility at each laser in a 1D ring array. The discrete laser arrays with l = 0

and l 6= 0 have di↵erent phase distributions, thus producing interference patterns with

shifted interference fringes. The averaging of these phase shifted interference patterns

gives rise to a variation in the fringe visibility as a function of laser number in the discrete

optical vortex, thus enabling the identification of l. The magnitude of l of a discrete

optical vortex is found to be proportional to the number of dips observed in the fringe

visibility curve.

Further, for an accurate determination of sign of an unknown discrete optical vortex

(l 6= 0), we have averaged the interference pattern of it with the interference pattern of

known discrete optical vortex with l = +1. The number of dips in the fringe visibility

curve decreases by one for positive values of l, and increases by one for negative values

of l. We have also investigated the robustness of our method against the presence of

phase disorder that may occur due to aberrations in a system. It is found that the phase

disorder does not a↵ect an accurate determination of topological charge of an unknown

discrete optical vortex.

We have demonstrated our method for discrete optical vortices with topological charges

from small to large values and accurately determined their magnitude and sign. We have

obtained an excellent agreement between the numerical and experiment results, indicating

that our method is highly e�cient. Our method can be useful in applications of discrete

optical vortices.
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8.2 Future outlook

The present work in this thesis discusses various outer-cavity and intra-cavity methods

for generation and characterization of spatially structured light with customized intensity

and phase distributions as well as possessing exotic propagation properties. However, the

work can be further extended, and some prospective work in this direction may include,

for example,

1. In the present thesis only coherent beam shaping is explored, however, an incoherent

structured light is required for various applications. Therefore, new e�cient methods

can be developed for incoherent beam shaping.

2. We have explored the generation of discrete optical vortices with integer topologi-

cal charges from phase-locked laser arrays in a degenerate cavity. However, optical

vortices with fractional topological charges have also emerged as promising struc-

tured light that can be exploited for various technological applications. Therefore,

the work can be extended to generate high-power discrete vortices with fractional

topological charges.

3. Generation of arbitrarily shaped beams with uniform-intensity distribution directly

from a degenerate cavity laser.

4. Demonstrations of controlled trapping and guiding the micro-particles based on

asymmetric aberration laser beams with controlled intensity distribution.

5. Generation and characterization of vectorial structured light possessing robust prop-

agation properties in a complex media.

6. Probing the phase transitions in soft matter (e.g., synchronization of vinegar eels)

using structured light.

7. Generation of arbitrarily shaped output beams from the phase-locked lasers.
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Structured light fields are increasingly finding applications in a wide variety of fields.

They have shown potential where commonly used Gaussian beams have encountered phys-

ical limitations. The results presented in this thesis will contribute in developing novel,

simple, cost-e↵ective, and e�cient structured light sources as well as characterization

tools, with widespread potential applications. Our experimental and theoretical findings

will open new possibilities in various fields, such as fundamental research, health, defense,

industries, optical communications, optical computing, etc.
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[275] B. Lü and H. Ma, “Beam propagation properties of radial laser arrays,” Journal of
Optical Society of America A, vol. 17, no. 11, pp. 2005–2009, 2000.

[276] M. J. Padgett, F. M. Miatto, M. P. Lavery, A. Zeilinger, and R. W. Boyd, “Di-
vergence of an orbital-angular-momentum-carrying beam upon propagation,” New
Journal of Physics, vol. 17, no. 2, p. 023011, 2015.
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[341] M. Malinauskas, A. Žukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas,
and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,”
Light: Science & Applications, vol. 5, no. 8, pp. e16133–e16133, 2016.

[342] M. Trippenbach, T. Scott, and Y. Band, “Near-field and far-field propagation of
beams and pulses in dispersive media,” Optics Letters, vol. 22, no. 9, pp. 579–581,
1997.

[343] S. L. Shapiro and D. H. Auston, Ultrashort light pulses: picosecond techniques and
applications. Springer, 1977.

[344] H. Li, X. Gong, H. Ni, P. Lu, X. Luo, J. Wen, Y. Yang, X. Qian, Z. Sun, and J. Wu,
“Light-induced ultrafast molecular dynamics: From photochemistry to optochem-
istry,” The Journal of Physical Chemistry Letters, vol. 13, no. 25, pp. 5881–5893,
2022.

[345] L. Jiang, A.-D. Wang, B. Li, T.-H. Cui, and Y.-F. Lu, “Electrons dynamics
control by shaping femtosecond laser pulses in micro/nanofabrication: modeling,
method, measurement and application,” Light: Science & Applications, vol. 7, no. 2,
pp. 17134–17134, 2018.

[346] C. Yin, S. Zhang, Y. Dong, Q. Ye, and Q. Li, “Molecular-dynamics study of multi-
pulsed ultrafast laser interaction with copper,” Advances in Production Engineering
& Management, vol. 16, no. 4, pp. 457–472, 2021.

[347] A. M. Weiner, J. P. Heritage, and J. A. Salehi, “Encoding and decoding of fem-
tosecond pulses,” Optics Letters, vol. 13, no. 4, pp. 300–302, 1988.

[348] O. Wada, “Femtosecond all-optical devices for ultrafast communication and signal
processing,” New Journal of Physics, vol. 6, no. 1, p. 183, 2004.

[349] K. Singh, N. Tabebordbar, A. Forbes, and A. Dudley, “Digital stokes polarimetry
and its application to structured light: tutorial,” Journal of the Optical Society of
America A, vol. 37, no. 11, pp. C33–C44, 2020.

[350] K. Sugioka and Y. Cheng, “Ultrafast lasers—reliable tools for advanced materials
processing,” Light: Science & Applications, vol. 3, no. 4, pp. e149–e149, 2014.

[351] S. Sogomonian, S. Klewitz, and S. Herminghaus, “Self-reconstruction of a bessel
beam in a nonlinear medium,” Optics Communications, vol. 139, no. 4-6, pp. 313–
319, 1997.

[352] S. Li and J. Wang, “Adaptive free-space optical communications through turbulence
using self-healing bessel beams,” Scientific Reports, vol. 7, no. 1, p. 43233, 2017.



[353] F. O. Fahrbach and A. Rohrbach, “Propagation stability of self-reconstructing bessel
beams enables contrast-enhanced imaging in thick media,” Nature Communications,
vol. 3, no. 1, p. 632, 2012.
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