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Lay Summary

The thesis investigates the structure of the unit group of group rings, which are
formed by combining a group and a ring. The normal complement problem in group
rings is also studied, which involves understanding the structure of the unit group
of a group ring and determining if there exists a certain type of subgroup called a

normal complement.

The thesis begins by studying unit groups of group algebras of the alternating
group on 4 symbols, a class of dihedral groups and the symmetric group on 4 symbols,
when taken over a field of characterstic 2. The thesis explores the group rings of
the groups of exponent 2 and 4 over the ring of integers modulo n. The unit groups
of these group rings are studied and their structure and generators are determined.
Furthermore, the normal complement problem is solved for some of these group rings.
Additionally, the unit group of the group ring of the elementary abelian 3-group over
the ring of integers modulo n is investigated, and its structure and generators are

determined.
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|.X| The cardinality of the set X

o(9) The order of the group element g

H The sum of elements of H as an additive group
Ch A cyclic group of order n
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Cu(g) The centralizer of g in a group H

RG The group ring of a group G over a ring R
w(RG) The augmentation ideal of a group ring RG
Z(QG) The center of a group G

Z(RQ) The center of a group ring RG
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M,(R) The ring of n X n matrices over R

GL(n, R) The general linear group of degree n over R
SL(n,R) The special linear group of degree n over R
w(m) The Euler-phi function of m

HxK The direct product of groups H and K
HxK The internal semidirect product of groups H and K
exp(Q) The exponent of the group G

G™ The direct product of n-copies of G







Abstract

The primary objective of this thesis is to investigate the unit group of group rings

and address the normal complement problem in the unit group.

Firstly, we assume that F is finite field of characteristic 2 and investigate
the existence of normal complements for the dihedral group Dy, of order 4m and
the alternating group A4, where m is an odd integer greater than or equal to 3. A
normal complement for Sy in V(F'Sy) over a field F' containing exactly two elements

has been found.

Further, let Z,, be the ring of integers modulo n. We use Cy, £,,, and F, 5 to
respectively denote the cyclic group of order ¢, the elementary abelian 2-group of
order 2™, and an abelian group of exponent 4 with order 2"4°. We find the generators
of the normalized unit group V(Z,,Cs) and solve the normal complement problem in
V(Z,Cs). We also provide a normal complement of E,, in V(Zan E,,,). Furthermore,
we determine the structure of V(Z,» F, 5) for an odd prime p and establish that F, g

does not have a normal complement in V(Z. F, ;).

Moreover, we give the structure and generators of the unit group U(Z,C3).
Lastly, we provide the structure of U(Z,T,,), where T,, is the elementary abelian

3-group of order 3™ and ged(n, 3) = 1.
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Chapter 1

Introduction

In 1843, Cayley [1] introduced the abstract group, and also introduced group
rings as the basic units of a hypercomplex system in the same article. However,
group rings remained unnoticed until T. Molien used his semi-simple criteria to
study these structures. Notably, F.G. Frobenius, R. Brauer, and E. Noether
recognized the importance of group rings in the development of representation
theory. The publication of Irving Kaplansky’s books [2] and [3], in 1957 and 1970
generated significant interest in group rings among ring theorists, leading to increased
exploration in this area. lan G. Connell’s [4] article in 1962 highlighted various

ring-theoretic properties of group rings.

Group rings are a fundamental algebraic concept that integrates the study of
groups, rings, and modules. They are a powerful tool for understanding algebraic
structures in mathematics and physics. Specifically, they are essential in the study of
representations of finite groups, which play a crucial role in algebraic number theory
and algebraic geometry. Additionally, group rings have applications in topology,
where they define higher K-theory groups. In cryptography, they are used to construct
secure encryption algorithms. The broad range of applications and versatility of
group rings make them a subject of significant importance in modern mathematics
and its applications. Several books on the subject have been published in recent

years (see [5], [6], [7], [8], [9]).

1.1 Preliminaries

In this section, we first provide some basic definitions from group theory and
ring theory that will be used throughout this thesis. These definitions can be found
in [10], [7], and [11].

Firstly, let us fix some notations. Suppose G is a group with identity element
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e. Then, the exponent of group G is defined as the smallest positive integer [ such
that ¢! = e for all g € G. We denote the exponent of G by exp(G). Furthermore,
let Z(G) denote the center of group G, and let o(g) denote the order of an element

g € G. For any n,m € Z, we say that n’||m if n’ divides m but n*™! does not.

Now, we recall some group-theoretic definitions that will be needed in later

chapters of this thesis. These definitions can be found in [7].

Let H and K be subgroups of a group GG. We say that G is an internal
semidirect product of H by K, denoted by G = H x K, if:

1. G=HK =KH.
2. HN K = {e}.

3. H is a normal subgroup of G.

Consider the sequence of groups G, K, and H with homomorphisms ¢ and :
(e} > HS GBS K = {e}.

This sequence is called a short exact sequence if ¢ is injective, v is surjective, and
the image of ¢ is equal to the kernel of 9, i.e., Im¢ = kert. If there exists a
homomorphism § : K — G such that v o § is the identity map on K, then the

sequence is called a split exact sequence, and we have G = H x K.

A matrix representation of G over R of degree n is by definition a group
homomorphism 7' : G — GL(n, R). If the homomorphism 7" associates to every
element of G with the identity of GL(n,R), then it is said to be the trivial
representation of G over R of degree n. The representations T',7" : G — GL(n, R) of
the group G are said to be equivalent if there exists an invertible matrix M € GL(n, R)
such that T'(g) = M~'T"(g)M for all g € G.

Let’s review some definitions and standard results from ring theory. The
characteristic of a ring R is defined to be the smallest number of times one must add
the ring’s multiplicative identity to get the additive identity. An element x € R is
called a nilpotent element if there exists a positive integer k such that 2% = 0. If z is

a nilpotent element of a ring R, then the element (14 ) € U(R). Thus, for a nil
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ideal I of a ring R, (14 I) is a normal subgroup of U(R). Hence, if I be a nil ideal
of a ring R, then the natural epimorphism R — R/I induces an epimorphism from
U(R) onto U(R/I) with kernel 1 + I. Thus,

Uy (1Y, o

A ring A with unity (denoted by 14) is said to be an R-algebra, for a
commutative ring R with unity (denoted by 1g), if there is a ring homomorphism

¢ : R — A such that ¢(1g) = 14 and ¢(R) C Z(A), the center of A.

1.2 Group Ring

This section serves as an introduction to the topic of group rings, where we
present fundamental definitions and facts. The definitions and results presented in

this section are sourced from [13].

For a group G and a ring with unity R, the set of all R-valued functions on
G that vanish except for finitely many points, form a ring and is called a group ring
and is denoted by RG. On denoting the function d, that takes value 1 on o € G
and zero elsewhere by simply «, the function that takes values b, € R at the point
a € G, can be expressed as Y by, where b, = 0 for all but finitely many « € G.
Note that RG is a free R-module with G as its basis. If R is commutative, then RG
is an R-algebra as R gets embedded naturally inside the center of RG. Moreover,
when G is a finite group, RG becomes a finite-dimensional R-algebra, and its rank

over R, denoted rankg(RG), is equal to the cardinality of G, i.e., rankg(RG) = |G]|.

Let R be a commutative ring with prime characteristic p, and suppose there
exists an element of order p in the group G. Then, the group algebra RG is called a

modular group algebra.

A group algebra F'G of a finite group G over a finite field F' is semisimple if
and only if the characteristic of F' does not divide |G|. By the Wedderburn-Artin’s

structure theorem [13, Section 3.4], F'G is isomorphic to a direct sum of matrix rings
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over division rings, i.e.,

where D; is a division ring containing an isomorphic copy of F' in its center, and the

above isomorphism is an isomorphism of F-algebras.

Next, we introduce the augmentation map and the augmentation ideal, which
play a key role in our study in this thesis. We define the map ¢ : RG — R by the
rule E(ZQGG agg) = dec oy, which is known as the augmentation map. It is easy to
see that € is a surjective homomorphism. The kernel of € is called the augmentation

ideal of RG, denoted by w(RG). Explicitly, we have

w(RG) = {Zagge RG | Zag:O }

geCG geG

Note that any element w =}, a,9 € w(RG) can be written asw = Y, a,(g—1).

geG
It follows that the set {g—1]| g € G, g # 1} forms a basis of w(RG) as an R-module.

Let H be a subgroup of G, and let T) (£) = {to | @ € I} denote a left
transversal of H in G. Thus, any element g of G can be written as t,h, where
to €1, (%) and h € H. Therefore, any element a = EQGG ag9 € RG can be
expressed uniquely as a = > to,;, where x; € RH. Thus, RG is a free right
RH-module with T; (%) as a free RH-basis. Moreover, RG is also a free left

RH-module with a right transversal of H in GG as a free RH-basis.

For a subgroup H of G, we define I';(H) to be the left ideal of RG generated
by elements {h — 1,h € H}. Then it is evident that the elements in the set

L:{ta(h—1)|taeTl(%),17£heH}

form a basis of I';(H) as a left R-module. In a similar way one can define the right
ideal ', (H) of RG. Note that I';(H) or I, (H) is a two-sided ideal of RG if and only
if H is a normal subgroup of GG and in this case, we denote this two sided ideal by
I'(H). Therefore, I'(H) = w(RH) - RG = RG - w(RH). In particular, when H = G,
we have I'(G) = w(RG).
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Let F be a finite field. Suppose H is a normal subgroup of the group
G. Consider the canonical group homomorphism ¢ : G — G/H defined by the rule
g +— gH. Then 1 can be extended to an F-algebra homomorphism from F'G onto
F(G/H) with I'(H) as its kernel. Thus

If H =G, then
FG

w(FG)

and so in this case w(F'G) is a maximal ideal of F'G. Further, it follows from [6,
Lemma 1.6] that the augmentation ideal of a group algebra F'G is a nilpotent ideal

if and only if char(F') = p > 0 and G is a finite p-group.

For a fixed element a € G, define C, = {g~'ag : g € G}, a set of all conjugates
of the element a in G. It is called the conjugacy class of the group G containing a.
Note that the class sum 6\,1 € Z(FG). It is well known that the set of all finite class

sums forms a basis of Z(FG) over F.

Let R be a ring with unity and H be a subgroup of G. If |H| is invertible in

R, then ey = % is idempotent in RG. Moreover, if H < (G, then ey is central and

RG = RGey ® RG(1 — ey).

Further, let Ry, Ro, ..., R; be unital rings. Then for any finite group G, we

have , ,
(H Ri) G~ H R;G.
=1 =1

For details, see [14, Lemma 1].

1.3 Unit Group

The study of units, nilpotent elements, idempotent elements, and zero divisors

plays a crucial role in the theory of group rings. However, the study of units has
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received significant research attention in the last few decades. This section will define
some terms and explain the fundamental concepts related to the unit group of a
group algebra. We also provide a literature review of the unit group in the end. We
begin with defining the normalized unit group of group algebra F'G, which is the
collection of all invertible elements of F'G that have an augmentation equal to 1.

This set is denoted by V(F'G). Thus

V(FG) = {Z%g EUFG): > ay= 1}.

geG geG

It is clear that V(F'G) forms a subgroup of the unit group U(FG) and that
U(FG) = V(FG) x F*.

Further, note that for a normal subgroup H of a finite p-group G and a field

F' of characteristic p, the F-algebra isomorphism % = F(G/H) induces a group

epimorphism from V(FG) to V(F(G/H)) whose kernel is (1 +I'(H)) and so

V(FG)

T o V(F(G/H)).

In particular, when H = G, we get that (1 +w(FG)) C V(FG) and therefore,
V(FG) =1+ w(FG) is a p-group.

In his paper [15], G. Higman investigated the units in integral group rings of
finite abelian groups and provided a characterization of the finite groups that have
only trivial units. A. Bovdi’s survey article [16] discussed various results and open
problems related to the group of units of the group algebra F'G, where F'is a finite
field of characteristic p and G is a finite p-group. R. Sandling [17] determined the
generators and invariants of the unit group of F'G when G is a finite abelian p-group
and F has p elements. This line of investigation was continued in [18] by V. Bovdi
and M. Salim, who provided the invariants for the unit group of the group algebra

ZpeG. For more articles in this direction, see [19], [20], and [21].

Several authors have explicitly determined the structure of the unit group

of some group algebras of non-abelian groups. The structures of U(F'Sy), U(F Dy),
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U(FAy), and U(F'S;3) over any finite field F' are obtained in [22], [23], [24], and [25],
respectively. For an odd prime p, the descriptions of U(F Ds,) over the field F' with 2
elements and over a finite field F' such that char(F') = p are provided in [26] and [27],
respectively. The structure of U(F(C5 x Dg)) over a finite field F' of characteristic
3 is established in [28]. For a detailed study of the structure of the unit group in

various integral group rings, one can refer to [5] and [§].

1.4 Normal Complement

In this section, we introduce the normal complement problem in group rings

and provide an overview of its current status.

R. Keith Dennis in 1977 posed a problem which asks,* For which group G
and ring R, there exists a homomorphism ¢ : U(RG) — G such that it is split by
the natural inclusion i : G — U(RG).” If it splits, then we have

U(RG) =N x G,

where N = ker ¢. Even, if it is known that G has a normal complement in U(RG),
finding N is also an interesting problem. This problem has connections with other
intriguing problems of group algebras, such as Fuchs’ problem and Isomorphism

problem.

It is known that if G = H x K is a group and F' is a field, then G has a
normal complement in V(FG) if and only if H and K have a normal complement
in V(FH) and V(FK), respectively (see [29]). Further, note that for any group
G = H x K, if G has a normal complement in V(FG), then K also has a normal
complement in V(FK). Indeed, if ¢ : V(FG) — G is a map fixing elements of G,
then for the natural projection p : G — K and the natural inclusion ¢ : V(FK) —
V(FG), pogoi:V(FK)— K is an epimorphism fixing elements of K.

In this direction, several results have been obtained for modular group algebras

over finite p-groups. Let L, denote the class of p-groups which have a normal
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complement in the normalized unit group of group algebra F'G, over the field F' with
p elements. Moran and Tench proved in 1977 that any finite abelian p-group lies
in L, (see [30]). They also obtained that for an odd prime p, any finite p-group of
exponent p and nilpotency class 2 lies in L,. Moreover, Dg and (s € Ly, whereas
D1 does not. In the next year, D.L. Johnson [31] gave some more results in favor of

the normal complement problem.

In 1980, L. R. Ivory proved in [32] that dihedral, semi-dihedral and quaternion
groups of order 16 and greater do not lie in Ly, hence proving that out of 14 groups

of order 16, only 11 lie in Ls.

The existence of torsion-free normal complement of A4 in V(ZA,) was shown
in [33]. Further, in [34], it was established that a normal complement to A, in
V(ZA,) must be torsion-free. A normal complement of Sy in V(ZS,) was studied
in [35]. In [36], the normal complement problem for central elementary-by-abelian

p-groups over the field £, was discussed.

Many results on the normal complement problem for modular group algebras

of finite groups which are not p-groups can be found in [38, 39].

There are infinite examples of abelian semisimple group algebras in which the
normal complement problem has an affirmative answer, see [29, Example 1]. In the
same article, it was shown that normal complement does not exist in the case of
semisimple group algebras of metacyclic groups of order p; - ps, where p; and p, are
odd primes. Recently, the problem for semisimple group algebras of symmetric and

alternating groups was also discussed in [37].

1.5 Organization of the Thesis

In this section, we give a brief outline of the present thesis. The research work

has been divided into the following three chapters.

In Chapter 2, we examine the problem for modular group algebras of Ay,

Sy, and Dy, over a field of characteristic 2. The existence of normal complement
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is shown in case of A4, Sy and D15 in their respective unit groups of group algebra
when the underlying field contains 2 elements. Further, we prove that A, does not
have a normal complement in U(F'A,), when |F| > 4. It is also proved that Dy,
does not have a normal complement in U(F Dy,,) for m > 3. Also, we have explicitly
found a normal complement of the symmetric group Sy in V(FSy) over the field F

containing 2 elements.

In Chapter 3, we find the generators of the unit group V(Z,Cs) and solve
the normal complement problem in V(Z,:C3), where p is a prime number. We
also provide a normal complement of E,, in V(Zan E,,). Further, we determine the

structure of V(Zn F, ;) for an odd prime p.

In Chapter 4, we give the structure and generators of the unit group

U(Z,Cs), where ged(n, 3) = 1. Also, we give structure of U(Z,,T5,,).






Chapter 2

Normal complement problem over a finite field of

characteristic 2

Let F be a finite field of characteristic 2. In this chapter, we look into the existence
of normal complement of G in V(F'G), where G is either the alternating group A4 or
the dihedral group Dy, of order 4m, for an odd integer m > 3. Also, we explicitly
provide a normal complement of the symmetric group Sy in V(F'Sy) over the field F

containing 2 elements.

Let A be a finite normal 2-group contained in G and F a finite field of
characteristic 2. Then I'(A) is a nilpotent ideal of FG. Let G = A x B. In this
case, the group homomorphism a — 1, b+— b, a € A, b € B from G to B induces
an epimorphism ¢ from the normalized unit group V(FG) to the normalized unit
group V(FB) with kernel 1 4 I'(A).

V(FG) %
(1+T(4)
Ifi : V(FB) — V(FQG) denotes the natural inclusion, then ¢ o4 is the identity

map on V(FB) and hence the short exact sequence
{1} = (1+T(A)) = V(FG) = V(FB) — {1}

splits. Thus,
V(FG)=(14T(A)) x V(FB).

Firstly, we investigate the existence of normal complement of A, in V(F Ay)
over a finite field F' of characteristic 2. Subsequently, we show that if F' is a finite
field of characteristic 2, then for any odd integer m > 3, Dy, does not have a normal
complement in V(F Dy,,), except for m = 3 and |F| = 2. At the end, we explicitly

give a normal complement of Sy in V(F'Sy) over the field F' containing 2 elements.
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2.1 Normal complement in V(F Ay)

In this section, we study the existence of normal complement of A4 in V(F'Ay),
over a finite field F' of characteristic 2. We use the presentation A, = (a,b: a*> = 1* =
1, (ab)® = 1). Therefore, we can write Ay = (bab?, b*>ab) x (b) = K, x C3, where K is
the Klein-4 group and (5 is the cyclic group of order 3. We can observe that I’ (K4)2
is contained in the center of F'A,, which implies that I'(/,)® = 0 and the exponent
of 1 + I'(Ky) is 4. For |F| = 2, we have V(FC5) = Cs. Further, if 3 | (|F| — 1),
then by [43], we have FC3 = F & F @& F and hence V(FC3) = F* x F*. The main

theorem of this section is as follows:

Theorem 2.1.1. Let F' be a finite field of characteristic 2.

(i) If |F| = 2 elements, then 1+ w(FA,)w(FK,) is a normal complement to Ay in
V(FAy).

(ii) If |F| = 2" with t > 2 a multiple of 2 or 3, then A4 does not have a normal

complement in V(F Ay).

Proof. Let Ay = K4 x C3. Since F is a finite field of characteristic 2, we have
V(FAy) = (1+T(Ky)) x V(FCy).

(1) Suppose that |F| = 2. Let T denote a transversal of K in Ay. Define a map
0:1+1(Ky) — Ky by

T H JRICTY; ’

keK4\{1}
where x =143, ., 1y @x(k — 1) such that the support of oy belongs to T'. Note
that for t € T', we can write t(k — 1) = (k — 1) + (¢t — 1)(k — 1) and therefore = can
be written as x = 1 + x1 + o, where 11 = Zk€K4\{1} Br(k—1), pr € F and s is
a F-linear combination of (¢t — 1)(k — 1), where t € T' and k € Ky. It is clear that
O(x)= T[] kP Ify=1+y;+ys, wherey,; € w(FK,)and yo € w(FA)w(FKy), is
anotherkgfé?lgét of 14+ T'(Ky), then zy = 1421+ 31 + 2, for some z € w(F A )w(FKy).
This implies that §(zy) = 0(x)0(y) and so 0 is a group homomorphism. Now, if

z € ker 6, then f(x) = [] kP =1, and therefore z € 1 + w(FA,)w(FK,). Now,
ke K4\{1}
consider an element 1+ (h —1)(ky — 1) € 1 + w(FAy)w(FK,), where h = tk, for
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some k € Kyandt € T. Then 1+ (tk —1)(k; — 1) =1+ (t(k— 1)+ (t — 1)) (k1 — 1)
and hence 0(1+ (h —1)(k; — 1)) = 1. Hence, ker 0 = 1 + w(F Ay)w(FK,) and we can

construct an exact sequence

If ¢ denotes the natural embedding of K4 into 1 + I'(K}), then 0 o is an identity
map on K. Therefore, 1 + I'(K,) = (1 + w(FAy)w(FK,)) x K4. Since the ideal
w(FAy)w(FK,) is contained in I'(Ky) and I'(Ky) is a nilpotent ideal of F'Ay, it
follows that 1+ w(F As)w(FKy) is a normal subgroup of V(F'A,). Hence, V(FA,) =
(14 w(FA)w(FKy)) x Ay

(ii) Case (I). |F| = 2%* k > 1. Assume that N is a normal complement of A, in
V(FAy). Let ¢ : V(FAy) — Ay be an epimorphism fixing A4 element-wise, such that
ker p = N. The exponent of 1 + I'(K4) and V(FC3) are 4 and |F| — 1 respectively,
which are coprime, so restriction of ¢ on 1+ I'(Ky) and V(FCs5) map to K, and Cj

_ [4T(Ky

respectively. Therefore, |[N N (1 + ['(Ky))| 1 1 and so

IN\L+ T (K[ = [N = [N N (1 +D(Ky))|

TR

(F| -1

Further, [N NV(FCs)| = 3

One can compute that Chirk,)(b) = {1+ a(1 + a + bab® + b*ab), o € FCs}.
Since {1, a+ bab* + b%ab, b(1 + a + bab* + b*ab), b*(1+ a + bab* + b*ab)} is a set

of class sums of A4, we have that C';p(x,)(b) is contained in the center of F'Ay.

Define
S ={v € V(FCs) | Crurxy (b) = Criracy ()}

Now, if 2z € Ciyrk,) (), then ¢(2) € Ck,(b) = {1}, which implies that central
subgroup Ciyrk,)(b) < N. Consider the set

W={s-2z|se€SNN, z€ Ciiri,(b)}.
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We claim that the elements of W are disjoint conjugacy class representatives of
N\1+T'(Ky) in V(FA,). Indeed, if s1z; and sy2y are in the same conjugacy class,

151210 = 5925 can be written as z;(s121,v)z, ' = 57 's5. It implies

then the equation v~
that s; = s9, as (1 + I['(K4)) N V(FC3) = {1}. Since the exponent of 1+ I'(Ky) is 4

and the exponent of V(FC3) is |F| — 1, it follows that

implies v™1z; 7'v = 27! and therefore z; = 25 as z; is a central element.

Next, choose w € V(FCj). Since w is an element of augmentation 1, we
can write w = 1+ ag(b — 1) + az(b* — 1), where ay,ay € F. If either ay = 0
or ay = 0 (excluding the case when both a; = ay = 0), then Ciipx,)(w) =
Clir( K4)(b). Let us suppose that both a; and ay are non-zero. Then we can write
w=1+a;((b—1)+i(b*—1)), where i = a; 'ay. Since 3 | (22* — 1), we have I C F*,

where I denotes the set of cube roots of unity.

e We claim that there are exactly 3(|F'| — 2) invertible elements corresponding
to the set I. It is enough to show that for each ¢ € I there is a unique
a; € F* such that w = 14+ a; (b—1) +i(b* — 1) is not a unit. Observe
that w is a unit if and only if ¢;(w) # 0 for every i € I, where ¢; is the
representation of (b) mapping b to i. Since ¢;(w) = 1, if £ denotes a primitive
3" root of unity then w is a unit if and only if ¢¢(w)pe2(w) # 0. If i = 1
then ge(w)de(w) = 1+ a1 (=D + (€ -1) 1+ m (€ -1+ (1) =
(1 + a;1)® and hence w is a unit if and only if oy # 1. Ifi = £ then ¢¢(w)ge (w) =
I+ (E=1)+E(E2=1)(1+ a; (2 —1)+£(£—1)) =1 — a1 and hence
w is a unit if and only if a; # & Finally, if ¢ = & then ¢¢(w)de(w) =
1401 (E=1)+(-1)1+a1 (& —-1)+ (€ —1)) =1+ a1€ and hence

w is a unit if and only if ay # £2.

o If i € F*\I, we can define
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Since i # 1, it implies that v € V(FC3). We can observe that Ciirx,)(v) =
Chyr(k,)(vb) and therefore Cypk,)(v) < Ciirxk,)(b), which further implies
that Cl+F(K4)(U) = Cl+F(K4)(b)- Note that C'1+F(K4)(w) = 01+1‘*(K4)(U), and

hence Cl+F(K4)(w) = CI+F(K4)(b)'

We can deduce that the cardinality of the set
{y € V(FC5) | Crirn(y) # Crargry (D)}
is at most 3(|F| —2). As NN S = X¢ where
X ={z e NNV(FC) | Crira,) () # Crira (b))
and X¢ is the complement of X in N N V(FC3), we get

INNS[=[NNV(FC)| - |X]

> —<|F|3_ D 3F—2).

Note that the identity element does not belong to N N S. It follows that there are at
least (M — (3(|F| —2) + 1)) elements in SN N. Thus,

wi = (P - r1 -2 +1) (Coruo 0]

Since z € Ci4r(k,) (D) is a central element, we have that Cy(pa,)(s2) = Cy(ra,(s) and
|Cl(s.z)| = |Cl(s)|, where s € S. Further, as Cy(pa,)(s) = Ciirk,(s) x V(FCs),

we have |Cl(s)| = % Therefore,

gz (Y - gr -2+ 0) el

Since |F|* — 14|F| + 22 > 0 for |F| > 16, we have that

0 (L2 — o = 2 1y) > LR (WELDE )

This leads to a contradiction. Therefore, A4 does not have a normal complement in
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V(FAy).

Case (II). |F| = 2% r € N. By [29, Proposition 1], if A4 has a normal complement
in V(FA,), then C3 has a normal complement in V(F'C3). Further, it is known [29,
Theorem 2] that Cs has a normal complement in V(FC3) if and only if 3 || 23793 — 1,
where O3 denotes the order of 23" modulo 3 and for n,m € Z, n® | m means n’ | m,
but n'™! + m. If 3r is even, then O3 = 1 and 32 | (23" — 1). Further, when 3r is odd,
O3 = 2 and 32 | (226" — 1). Therefore, A4 does not have a normal complement in

V(FAy). 0

2.2 Normal complement in V(F Dy,,)

In this section, we study the existence of normal complement of Dy, in
V(FDyp,), for any odd integer m > 3. Consider Djy; = S3 X Cy, where S3 =
{(a,b|a®=0*=1, b'ab=a"') and Cy = {1,c} . The main result of this section is

as follows:

Theorem 2.2.1. Let F be a finite field of characteristic 2 and Dy, be the dihedral
group of order 4m, where m is an odd integer. Then, Dy, does not have a normal

complement in V(F Dyy,), except for m =3 and |F| = 2.

Proof. Assume that m = 3 and F has 2 elements. It is known [29] that V(F'S3) =
(bu) x S3, where u = 1 + (1 + b)a(1l + b). Also, we have V(FCy) = Cy. Let ¢ :
V(FS;) — S3 and ¢y : V(FCy) — Cy be epimorphisms, fixing S3 and Cy and having

kernels (bu) and {1} respectively. Define ¢ as shown in the following diagram:

/ FSg\

V( (5,3 % C2>> =(p1091)-(p20%2) 83 % C2

\ FC%

Here, 17 is the canonical epimorphism, defined as (ZSGSS Zwecz sz (S - x)) =

Y ose S5 ercg (5.8, where oy, € F. Clearly, ¢ fixes S5 element-wise. Similarly, we
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can define 1), (23653 D mecy, Xsa(s 93)) = 25653 > wcc, Qsa, fixing Co. Hence, ¢ is
an epimorphism, fixing S5 x C5 and the kernel of ¢ is the required normal complement,
say N. Observe that

T=(u=s;c+s; +c|1<i<5h, s isnon-identity element of Ss)

is a subgroup of N. Further, observe that

U, = 8ic+8+c
Uy Uz = 1+ 81+ Sg+ S1¢+ So¢
Up Uy U3 = 81+ 82+ 83+ S1C+ SaCc+ S3Cc+ ¢
UL U - U3 -Us = 14814 89+ 83+ 5S4+ +51¢+ S9¢+ S3¢+ s4c
UL~ Uo - Uz - Uy *Us = 81+ So + 83+ 84+ S5+ s1¢+ S9¢ + S3¢ + s4¢ + S5¢ + c.

Since order of u; is 2 and u;-u; = u;-u;, we have that T = (u1) x (ug) X (us) X (u4) X (us).
Note that u = ac+ a*c+ b+ ab+ a*b € N and the order of u is 2. As 1 or ¢ does not
belong to the support of w, it implies that u ¢ T. Also, we have that u - u; = u; - u for
1 <i < 5. Therefore, we can conclude that 7' x (u) is an elemantary abelian 2-group
of order 2°. Further, we can deduce from [45, Theorem 1] that the order of N is 2.
Therefore, N =T x (u). If |F| > 2, then S3 does not have a normal complement in

V(F'S3), which implies that D15 does not have a normal complement in V(F Dy3).

Next, assume that m > 3. Since Dy, = Cy X Ds,, and Ds,, does not have
a normal complement in V(FD,,,) over any finite field of characteristic 2 [29], it

implies that Dy, does not have a normal complement in V(F Dy,,). O

2.3 Normal complement in V(F'S))

In the last section, we construct a normal complement of S, in V(FSy).
We use the presentation Sy = (x,y,a,0 | 22 = y?> = a® = b* = 1, a”lza =
b~ lxb = zy, a”lya = x, b7yb = y, b~lab = a7'). Therefore, we can write

Sy = (x,y) X {a,b) = K4 x Ss.
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Proposition 2.3.1. Let F be the field with 2 elements and let S3 = (a,b) with
la| =3 and |b| =2. Letu =1+ (1 +b)a(l+b). Then (1 + w (FS4) w (FKy)) x (bu)

is a normal complement of Sy in V (F'Sy).

Proof. We already know that V(F'Sy) = (1 4+ I'(Ky)) x V(FS3). Proceeding along
the same line as Theorem 3.1.1(i), we get that 14 I'(K}) is a split extension of K, by
14+ w(FSy)w(FKy). Therefore, V(FSy) = (1 + w(FSy)w(FKy) x Ky) x ((bu) x S3).
Since w(F'Sy)w(F Ky) is a nilpotent ideal, we have that (1 + w(FSy)w(FKy)) is a
normal subgroup of V(F'Sy). It follows that (bu) normalizes (1 4+ w(FSy)w(FKy)).

Furthermore, since

v (bu)z = bu(l + (bu) H(a +b)(y — 1) + (bu) ' (a* + ba)(xy — 1)) and

vyt (bw)y = bu(l + (bu) " (ab+ a®)(z — 1) + (bu) " (a + ba)(zy — 1))

are in (14+w(FSy)w(F K4))x (bu), it implies that K4 normalizes (14w (FSy)w(FKy))x
(bu) . Hence, the result follows. O



Chapter 3

Unit group of group rings of groups of exponent 2

and 4 over Z,

Let Cy, E,,,, and F, ; respectively denote the cyclic group of order ¢, the elementary
abelian 2-group of order 2™, and an abelian group of exponent 4 with order 2"4°. In
this chapter, we find the generators of the unit group V(Z,C5) and solve the normal
complement problem in V(Z,:C5), where p is a prime number. We also provide a
normal complement of E,, in V(ZgE,,). Further, we determine the structure of

V(Zyn F,. s) for an odd prime p.

This chapter is organized as follows: In section 1, we find the generators of
V(Z,,C5) and solve the normal complement problem for this unit group in the case
when n = pF. In section 2, we find a normal complement of E,, in V(Zy. E,,). Also,
we give the necessary and sufficient conditions on prime p such that F,, has a normal
complement in V(Z,» E,;,). In section 3, we compute the structure of V(Z, F,. ;) for

an odd prime p.

3.1 The structure of V(Z,C))

In this section, we discuss the structure of the normalized unit group V(Z,,Cs).
For n = p*, where p is an odd prime, it is known that L Cy = Ly ® Ly and so
V(Z,.Cy) ~ U(Zyx), which is cyclic. Here, we find a generator of this cyclic group.
Further, we obtain the structure and provide the generators of V(Z,Cs) for any
positive integer n. Finally, we solve the normal complement problem in V(Z,.C5)

for a prime number p.
The following lemma plays a crucial role in proving this theorem.

Lemma 3.1.1. Let p be an odd prime and n > 1. Then Zyn contains a primitive

root of the form 2a — 1 for some a € Z»\{0}.
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Proof. Let g be a primitive root modulo p. Then from [49, Theorem 2.39],

we have g+ tp is a primitive root modulo p™ for 0 < ¢t < p — 1 except for

t= 175_1 ((p—1)gP2)"", which can be understood to be reduced modulo p. Here

((p— 1)gP=2)"" is the inverse of (p — 1)g*~2 modulo p.

Note that for p = 3, 2 is a primitive root modulo 3 and 2 + 3t is a primitive
root modulo 3" for ¢t = 0,1. Thus, the primitive root 2 4+ 3(1) is of the form 2a — 1.
Further, for p > 5, there exist two consecutive values of ¢, 0 <t < p — 2 such that
g + tp is a primitive root modulo p™. Out of which, one of the primitive roots is of

the form 2a — 1. ]

The main theorem of this section is as follows:

Theorem 3.1.1. Let n = 2kp,™ip,™2 . p,™s where ps are distinct odd primes and

m; > 1 for1 <i<s. Then

Hf:l Coopimi); k=0

CQ X CQkfl X H::l Ccp(pimi); k 2 ].

Proof. Suppose Cy = (x). Note that a + (1 — a)z, a € Z, is an element of V(Z,,Cy)
if and only if there exist ¢ + dx € Z,,C5 such that

has a non-zero solution, i.e. if > — (1 —a)? = 2a — 1 € U(Z,).

Case 1. Let n = 2F. If k = 1, then
V(ZQCQ) = <QI> ~ 02.

Next, assume that k& > 1. For every z € Zgx, 22 — 1 € U(Zyr ), which implies that
|V(ZyrCs)| = 2F. Since 3 € U(Zy), we get that 2 — 2 € V(ZyCy). It can be easily
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ok—1

observed that (2 —z)* =1 and

2 —x; k=2

2k72

(2—2) =
1+ 281202 — 1) — 21 (282 — 1)y k> 2

which is neither 1 nor z. Hence 2 — x is an element of order 2¥~! and therefore
V(ZorCs) = (x) X (2 —x) >~ Cy X Cor-1. (3.1)

Case 2. Let n = p;”", where p; is an odd prime and m; > 1. By Lemma 5.1.1, Z,,m;
always has a primitive root of the form 2a; — 1 for some a; € Z,,n;\{0}. Therefore,
the element o; = a; + (1 — a;)z belongs to V(Z,n: Cs). For any divisor d of ¢(p;™),
a? = A+ Bz, where A = %’_l)d Note that A = 1 if and only if d = ¢(p;,"™).
Therefore, V(Z,,m:Cy) = (cu).

Case 3. Let n = 2Fp;™p,™2 .. p,™s. Then

Zn = ng X mel X X Z;Dsms

and therefore

2y Co = Zigic Cy X Lipyymy Cg X =+ + X Lipy ms Cs.

Hence )

[Tioi(ai + (1 = a;)z); k=0

V(ZyCs) =~ § (z) x TToL, (s + (1 — a;)z); k=1

For n = 2%, the existence of a normal complement can be seen from equation
(5.1). Now, we will discuss the problem for n = p*, where p is an odd prime. The

following theorem proves the result:

Theorem 3.1.2. Let p be an odd prime. Then Cy has a normal complement in

V(Zym Cs) if and only if p=3 mod 4.
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Proof. Suppose C5 has a normal complement N in V(Z,mC5). Therefore

m—1
P (p—1)
|IN| = —
Since V(Z,mCs) is cyclic, it follows that the cardinality of N must be odd and it is

possible if and only if p =3 mod 4. O

3.2 Normal complement in V(Z,.E},)

In this section, we discuss the normal complement problem for the unit group
V(ZE,,), where E,, is the elementary abelian 2-group of order 2™ and p > 2. At
first, we obtain the structure of the unit group of V(Zs FE,,) and provide a normal
complement of F,,. Later, a necessary and sufficient condition has been given for

the existence of a normal complement in V(Z,» E,,) for an odd prime p.

Theorem 3.2.1. Let E,,, = (a1) X (ag) X - -+ X {(a,) be the elementary abelian 2-group
of order 2™. Then

V(ZonEp) = Ep X (2 —aq) X ker ¢y X + -+ X ker ¢,) ,
where ¢; : 1 +1'({a;)) — (ai) is a group homomorphism.
Proof. Define a group homomorphism
0:FE, — E,._1

such that 6(a;) = a; for 1 < i < m — 1 and f(a,,) = 1. The above map can be
extended linearly to an algebra homomorphism Zo» E,,, — Zon E,,_1. Since the kernel
of this map is a nil ideal, it implies that there exists an epimorphism 6" : V(Zyn E,,) —
V(Zan By, —1) with kernel 14T ((ap)). If i : V(Zon Eypy—v) — V(Zgn E,y,) is the inclusion
map, then 0 oi = lyz,. g, _,). Therefore, V(Zon E,,) = (1 +T'({an))) X V(Zon Epy_1).
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Thus from equation (5.1), we have

V(Zy Ew) = [ (1+T((a)) x {ar) x (2= ar).

1=2

Next, define a group homomorphism
¢i : 14+ T((ai) = {ai)

such that ¢;(1 + a(a; — 1)) = a;®), where the support of o belongs to a transversal
of (a;) in E,,. If ¢; : (a;) — 14+ TI'({a;)) is the inclusion map, then ¢; o 1); is the
identity map on (a;). Therefore, 1 4+ I'({a;)) = ker ¢; x (a;) and hence

V(Zyn Ey) = H(ker ¢ x {a;)) x {ar) X (2 — a1).

i=2
0

Theorem 3.2.2. Let p be an odd prime. Then E,, has a normal complement in

V(ZynEy,) if and only if p=3 mod 4.

Proof. 1t follows by Theorem 3.1.2 and [29, Theorem 1]. O

3.3 The structure of V(ZF, )

Let F, s be the direct product of r cyclic groups of order 2 and s cyclic groups
of order 4 with s > 1. In this section, we compute the structure of V(Z,» F, 5) for an

odd prime p.

Theorem 3.3.1. For an odd prime p, we have

(Cpnfl X Cp_1)2T4S ; p=1 mod 4
V(Zp"Fr,s) = orts orts—1(25_1) ’
(Cpn—l X C’p,l) X (an,l X Cle) ; p=3 mod4

Proof. Suppose F,, = Cy x Cy x ... x Oy x Oy x Cy x ... x Cy, where Cy = (9).

TV
T copies s copies
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Then e = 12—92 is a central idempotent and therefore
anC4 = an04(€) © an04<1 — 6).
Note that
ZynCye) = {ae+bge | a,b € Zyn }

and

ZpCy(l—e)={a(l—e)+bg(l —e)|abeZyp}.
The mapping
ZynCile) %
given by ae + bge — a + bT is a ring isomorphism. Similarly, the mapping

L [7]

an04(1 — 6) — <x2 I 1>

given by a(l —e) + bg(1 — €) — a + bz is also a ring isomorphism. Moreover,

an [x] ~
m = an X an
and
Lo |2] Lgn X Lyn; p=1 mod 4
2 - ’
(2 +1) L [1]; p=3 mod 4
where 12 = —1. Therefore, we get that
72, p=1 mod 4
ZnCy1 2 "

22, X Lylil; p=3 mod 4

p

By following the same steps, we can prove that
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The isomorphism Z,»(Cy x Cy) = (ZynCy)Cy implies

Ly p=1 mod4

I

ZnC .
7% X Ly[i]* @Y, p=3 mod 4

Since 27! € Z,nC§, we have Zyn (C5 x Cy) =2 (Zyn C5)Cy =2 Zpn C§ X Ziyn C. Thus, we
get
Zf,:fls; p=1 mod4
Lo (C5 % CF) = .
72" X L[] @70 p=3 mod 4
It is known [50, Theorem 7] that U(Zyn[i]) ~ CZ%,_, x Cpz_; and hence the result
follows. 0






Chapter 4

Unit group of group rings of groups of exponent 3

over 7,

In this chapter, we give the structure and generators of the unit group U(Z,Cs).
Further, we provide the structure of U(Z,T},), where T,, is the elementary abelian

3-group of order 3™ and ged(n,3) = 1.

For a prime p, let F}, denote the field with p elements. Let n > 2 be an integer

and f(z) be a monic polynomial of degree m over Z,», which is irreducible modulo p.
L[]
(f(2))

Then the quotient ring is known as the Galois ring. If we take ( = =+ (f(z)),

then we have

L[]

- . = Z n [C]

(fx)) 7
Any element of this ring is written as (ag + a1¢ + ... + @p_1 (™), for some
A, @1, . .., Am_1 € Zyn. For more details regarding Galois rings, one can refer to

[51).

Now we discuss the criteria for the reducibility of polynomials in the ring
Zyn|z], which is crucial to obtain the results in last section. In this direction, we first

recall what a Hensel’s lift is and then mention Hensel’s lemma.

Let g(z) be a monic polynomail over F,. A monic polynomial f(z) over Z,n|x]
is called a Hensel lift of g(z) if f(z) = g(z), where f(z) denotes the polynomial
obtained by reducing the coefficients of the polynomial f(x) modulo p, and there is
a positive integer s not divisible by p such that f(z) | (z* —1).

Hensel lemma [51, Lemma 13.7] states that if f(z) is monic polynomial
over Zyn and f(z) = g1(x)ga(x) . .. g.(x), where g;(x) are pairwise coprime monic
polynomials over F},, then there exist pairwise co-prime monic polynomials over Z,n»
such that f(z) = fi(z)fo(x) ... fr(x) in Zye[z] and f; = g;, ¥ 1 <i < 7. Thus if f(z)

is a Hensel lift of a polynomial g(x) over F),, which is reducible, then f(z) is also
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reducible in Z»[z].

t
Let n = 2% [] p;"t, where p;, for any 1 < i < m, is an odd prime except 3.
i=1

t t
Then Z, = Zor X [[ Zp,r , and Z,,C5 = ZyxC5 X [[ Zy,+:C5 . The restriction to the
i=1 i=1
unit groups yields
t

U(ZnC3) 2 U(ZoC3) x | [ U(Zy,r: Cs).

i=1
Therefore, it is sufficient to study the unit group U(Z,»C3), where p is a prime.

This chapter is organized as follows: In the first and second sections, we discuss
the generators of U(Z,»C5), when p is the even and an odd prime, respectively. In the

last section, we provide the structure of U(ZynT,,), where T,,, = C3 x C3 x ... x (3.

-~
m copies

4.1 The structure of U(ZC5)

In this section, we study the structure and generators of the unit group of

ZonC'3. In this direction, the following theorem determines the structure of the unit

group.

02(3) X Cg, n =2
Theorem 4.1.1. U(ZynC3) ~

Cy® X Cyn—2® x Cynr x Cy, 0> 2.

Proof. Assume that C3 = (g). Then e = % is a central idempotent of ZynC3

and therefore,

ZQan = ZQan€ ) Zgan(l - 6), (4].)

where

ZQanG = {ae ‘ o < ZQn}

and

ZQnOg(l - 6) = {Oé()(l - 6) + Oélg(l - 6) ‘ 0, 01 € ZQn}.
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The mapping
Zgane — Zign

given by ae — « is a ring isomorphism. Similarly, the mapping

ZQn[.ﬁC]
Ziogn C3(1 — ——
203( 6)—><1+$—|—$2>

given by ap(l—e)+a1g(l—e) — oo+ oz + <1 +x+ 3:2> is also a ring isomorphism.
ZLign []

(14 2z + 22)

the ring isomorphism obtained by the linear extension of map g — (1,w). Then the

If w denotes the element  + (1 + x + 2°) , then = Zaon|w]. Let ¢ denote

isomorphism (6.1) becomes
)
ZQan = Z2n D ZQn [(,d], (42)

Thus p(ag + a1g + a2g?) = (g + a1 + ag, ag + ayw + asw?). Now the following two

lemmas provide the order and structure of U(Zgn [w]).

Lemma 4.1.1. Let n € N. Then, |U(Zgn[w])| = 3 - 4™ 1.

Proof. Let (a+bw) € U(Zan|w]). It implies that there exists a unique (c+dw) € Zagn|w]
such that (a + bw)(c + dw) = 1. Now the system of equations ac — bd = 1 and
bc + (a — b)d = 0 have a unique solution if and only if (a® — ab + b*) € U(Zgn). Since
U(Zyn) ={1,3,...,(20 — 1)}, (a® — ab + b*) € U(Zy») if and only if at least one of a
and b is of the form (2k 4 1) for some 0 < k < (2"~ — 1). The number of possible
(a,b) € Z2. such that a + bw is a unit, is 3(2""1)(2" 1) =3 .4"" L. O

Lemma 4.1.2. U(Zgn[w]) ~ Cy X Cyn-2 X Con-1 X Cs.

Proof. When n = 2, U(Z4[w]) = (3) x ((1 + 2w)) x (w) ~ Cy x Cy x C5. Further,
when n > 2, we consider the subgroups H; = ((2"7' — 1)), H, = {(1 + 4w)) and
H; = ((1+ 2w)) of U(Zan|w]). We claim that the product of the groups Hy, Hs and

Hj is direct and is of order 4™ .

In order to prove the claim, we first note that (1 + 4w)?"~ = 1 and (1 +
40)*"" = (1 4 2" 'w). Therefore, Hy = Con—z. Similarly, (1 + 2w)*>" =1 and
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(142w)?"" = (1+2"") imply that Hy = Cou—1. Further, since (2"~ — 1) is of order
2, H1 = 02.

Now we prove that H;NH; = {1} for distinct 4, j € {1,2, 3}. Since the element
of order 2 in Hy and Hj is (1+2"'w) and (14 2"1), respectively; H, intersects H,

and Hj trivially.

Finally, we consider Hy N Hs. Since (1 + 2w)? = —3, the unique subgroup of
Hs of order 272 is generated by —3. Note that if i is such that ged(i,2""2) = 1, then
(1+4w)" ¢ Hs. Otherwise, for the integer j such that ji = 1 mod (2" %), (1+4w)” =
(1+4w) € Hs. Therefore, (1+4w) = 3°, for some 1 < b < 2"72 which is not possible.

Further, since the element (1 + 2" 'w) of order 2 in H, is not the same as
the element (—3)2" of order 2 in Hs, it follows that (1 + 4w)' ¢ Hs, for any ¢ = 2"
with 1 <r <n— 3. Now if (1 + 4w)2ri € Hj; for some ¢ and r as defined above, then

since (1 + 4w)* is a generator of Hs,, the above argument supplies a contradiction.

Thus Hy and Hj are disjoint.

We denote H; x H; by H;; and prove our claim as follows:

e Assume that Hy N Hyg # {1}. Then (2" ' —1) € H; N Hyz. Since the only
elements of order 2 in Hy3 are (1+2"1), (1+2"'w) and (1 +2"' +2"'w),

it is not possible.

o Ify € HyNHyo, theny? € H3NHy = {1}. If y # 1, then y = (1+2" 'w) € Hj.
But it is not possible as y is different from (2"~' — 1), (2""! + 1) and —1, which

are the only elements of order 2 in H; 5.

e Similarly, if 2 € HyN H, 3, then 2* € HyN Hs = {1}. Now if we assume that 2z =
(14+2"71) € Hy, then since it is different from the elements (2" —1), (2" 'w+1)
and (2"' — 2771w — 1) of order 2 in H, 3, we arrive at a contradiction. Thus

z=1.

Hence |H, x Hy x Hs| = 4"! and U(Zgn[w]) ~ Cy x Coyn-2 x Con-1 x Cs3, where
Cg ~ <w> ]
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By restricting the isomorphism in (6.2) to the unit groups, we obtain
U(ZgnC3) ~ U(Zgn) x U(Zagn|w]). (4.3)
Since U(Zagn) = Cy x Con-2, the result now follows from Lemma 4.1.2. O

Our next aim is to describe a set of generators of the unit group of ZgnCs.

Since U(ZQan) = U(Zgn) X V(Zgn Cg) and

U(Z) = (3) ~ Oy, n=2

(—1) x (5) = Cy x Cyn-2, n > 2,

it follows from (6.3) that V(ZgnC3) ~ U(Zan[w]) and hence |V(ZgnC3)| = 3 - 471,

Now in the following theorem, we give the generators for V(ZanCj).

Theorem 4.1.2. Let C3 = (g). Then

(i) V(Z4Cs) = (14 2g) x (3+2g) x (g).
(ii) Forn > 2, we have V(ZanC3) = (s1) X (s2) X (s3) X {g), where s1 = 1+ 2 -

37 Hg+ g% —2), 55 =371+ 29), and s3 =5 (1 + 4g).

Proof. Since (i) is trivial, we prove (ii). We have p(sy) = (1,37 (1 + 2w)) and
©(s3) = (1,571 (1 + 4w)). Here ((1,37(1 + 2w))) =~ Cyn-1 and ((1,5 (1 + 4w))) =~
Con—2. Similarly, since ¢(s1) = (1,—1), s; is of order 2. Now, to prove that these

subgroups have trivial intersection, we proceed as in Lemma 4.1.2. O

4.2 The structure of U(Z,.C5)

In this section, we study the unit group U(Z,»C3), when p > 3 is a prime. In

the following, we give the structure and generators of the unit group.

Theorem 4.2.1. Let p be a prime such that p =1 mod 3. Then

U(Zpn C3) ~ Cona® x 0, @,
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Proof. Recall that
Ly 7]
(1+z+2?)

Since ged(3,p) = 1 and (1 + = + 2?) | (#* — 1), it follows that the polynomial
(1+ 2 +2%) in Zyn[z] is the Hensels lift of the polynomial (1 + z + x*) € F,[x]. Since
3| (p— 1), all the roots of (1 + z + 2?) lie in F),. Therefore, Hensel’s Lemma implies
that (1+ z + 2?) is reducible over Z,. also. Thus

(1+2+2%) = (z—a)(z — a®) € Zynl|7],

where 1+ a 4+ o = 0. Now observe that ((z — «)) and {(z — a?)) are comaximal.

Indeed, since (14 2a)(37'(1+2a%)) = 1, (1+2a) is a unit in Z,» and hence we have

1=(1420)"(z —a?) — (14 2a) ' (z — ).

Therefore,
Zol)  _ Zpla] . Zpla)
(I+z+2%) ((z—-a))  ((z-0a?)
and so
P
LinC's = Lign B Lin D L . (4.4)
Now the restriction to the unit group gives the structure. O]

Since U(ZynC3) = U(Zpn) x V(ZypCs), we now obtain generators of the

normalized unit group V(Z,»C}3). In this direction, we first give the following lemma:

Lemma 4.2.1. Let R be a ring with units {r; | 1 <i <m} of finite order. Let n be

an integer such that char(R) {1 n. If G = (g) is the cyclic group of order n, then for

)g of RG, where g = zn:gi,
i=1

1—7”1'

any 1 <1 < m, the symmetric elements x; = r; + (
n

are of order o(r;). Further, if (o(r;),0(r;)) =1V 1 <1i%# j <m, then H(a:g} is a

i=1
m

subgroup of order H o(r;) of URG).

=1

Proof. Consider the element y,, = 1 + a;(¢§ —n) € RG, where o; € R. Since
p(g) = (n,0,0...,0), p(Ya,) = (1, (1—nay), ..., (1—nai)> and 5o 0(Ya,) = o(1—naq;).
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I—r L—r) .\ . .
Therefore, if a; = (1=r ), then the element y,, = (7"@- + wg) is a symmetric
n n

unit of order o(r;). O

Now since U(Zyn) =~ Cpn-1 x Cp_q, assume that U(Zyn) = (1+p) x (1), where

o(n) = (p —1). Then we have:

Proposition 4.2.1. Let C3 = (g). Then the elements t; = (1+ 5+ (&) g+ (’%2)92)
and ty = (1+p—%g) of Ly Cs are of order p"~'. Further, the elements t; = (n+529)
and ty = (1+a(g — 1) +b(g*> — 1)), where a = M and b = %1_”0‘2), are

of order (p — 1) and
V (ZynCs) = (t1) X (ta) x (t3) X (ta).

Vand p — 1,

Proof. 1t follows from the last lemma that the order of ¢, and t3 is p"~
respectively. Further, note that the isomorphism in (4.1) gives g % (1, o, o?). Since
p(t1) = (1,1,1+p), p(ta) = (1, 1+p,1 +p),p(ts) = (1,1,1), and p(ts) = (1,1,7%),

the result follows. O

Next, we discuss the case for the remaining primes.

Theorem 4.2.2. Let p be an odd prime such that p =2 mod 3. Then we have the
following:

(i) Let ky = (14p) (1 +pg) and ks = (1—2p) " (1 — p(g + ¢*)). Then the
subgroups K, = (ki) and Ky = (k) of V(ZnC3) are of order p"~' and are
disjoint.

-1

(ii) If p* # 1 mod 9 and a satisfies (—3)%(1)1)6 = —1 mod p", then
V(ZynC3) = Ki x Ky x K3, where K3 is a cyclic group of order (p* — 1)

generated by ksg, where

ks=(1+B"+a)g—1)+ B —a)g® - 1))
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Proof. (i) If p=2 mod 3, then 3 does not divide ¢(p") and so, Z,, does not contain

a cube root of unity. It follows that (1 + x + 2*) is irreducible in Z»[z] and hence
an [ﬂf]

(14 z + 22)) = Zpn|w], where w = x + ((1 + 2 + 2%)). Therefore,

1
L Ci = Do ® Lipn ], (4.5)

Clearly, (k1) = (1, (1 + p) " (1 + pw)) and (k) = (1, (1 —2p)~'(1 + p)). Since the
order of the elements (1 — 2p)~*(1 4 p) and (14 p) (1 + pw) of Zyn[w] is p" 7', it
follows that Ky = Ky = Cpn1.

Now we prove that K7 N Ky = {1}. Clearly,

(1+p)"' (1 +pw) & (1 —2p)" (1 +p)).

It implies that
(1+p) 7' (1 +pw) ¢ (1 —2p)7(1+p)),

where ged (i, p"~!) = 1. Observe that ((1—2p" 1)~} (14p"1)) is the unique subgroup
of order p in ((1 —2p)~1(1 + p)). Since

n—2

(T+p) 1 +pw)” =1+ ) A +p" '),

which is not in ((1 — 2p"1)~"}(1 4 p™~ 1)), therefore

(14 p) (1 +pw))” ¢ (1 —2p) 7 (1+p))

for 1 <k <n — 2. Further, assume that for any 7 with ged(i, p*) = 1,

(14 p) (1 +pw))”" € (1= 2p) (1 4 ).

Then since ((1+4p)~'(1 +pw))i generates (((1+p)~'(1+pw))), we arrive at a
contradiction. Now the result follows.
(#1) In order to prove this, we first give the following lemma which is crucial to the

upcoming discussion as well
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Lemma 4.2.2. Let p be an odd prime such that p =2 mod (3). Then

\V(Zy C3)| = p" 2 (p* — 1). (4.6)

Proof. We first observe that if x = (a + bw) € U(Zyn|w]), then both a and b can
not be divisible by p; because otherwise, p" 'z = 0 implies p"~! = 0, which is a
contradiction. Therefore, at least one of a and b must not be divisible by p and so

we have at most

P p =)+ o= D)+ o= Dp" Hp— 1) = p* 2 (p - 1)

choices for z. Now we obtain the inverse of any such element. Clearly, when
a=bal= _Tw. Further, when a # b, then proceeding as in Lemma 4.1.1, we
obtain that (a + bw) € U(Z,[w]) if and only if (a* + b* — ab) € U(Z,»). Here note
that if p | (a* + b* — ab) then p | (a® + b?); which is not possible as both a and b are

not simultaneously divisible by p. Thus (a® + b* — ab) is a unit in Zyn and hence x is

invertible. Now since |V(Zn»Cs)| = |Zy» |w]]|, the claim is established. O
p2-1 p2—1
Now we proceed to prove the main result. If (=3) 2 (a) ¢ = -1
mod p", then

p2-1

(a1 + 2w))"

= -1 mod p"

(p*-1)
3

and therefore a(1 + 2w) is an element of order in Zy»|w]. Since

W(ks) = (1,a(l + 2w))

and ged (3, (pQT_l)) =1, we get that the order of k3g is (p* — 1). Using 4.2.2 and (i),

we get the desired structure. O]

Next, we give the generators of the unit group when p = 5. For that, we make

use of the following lemma.

Lemma 4.2.3. The congruence 9z* = —1 mod 5" has a solution.
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Proof. 1t is known that the congruence
92 = -1 mod 5 (4.7)

has 4 solutions. Thus using Hensel’s lemma, we can lift these solutions modulo

o". [l

Corollary 4.2.1. U(Z5:.C3) = (67 1(1 4+ 59)) x {(—=9) M1 = 5(g + ¢*)) x (1 + (37" +
a)(g—1)+ (3" —a)(g* —1)) x (g), where a is a solution of the congruence 9r* = —1

mod 5",

Finally, in the following, we discuss the unit group of Z,»Cs5, when p = 2
mod (3) and p* =1 mod (9). Clearly, any such prime is of form (91 + 8). It follows
from Theorem 4.2.2 that the p-Sylow subgroup of V(Z,»Cs), say A, which is of order
p*=Y is generated by ki and ky. Further, Lemma 4.2.2 implies that V(Z,.C3) =
A x B = (k) x (ko) x B, where B is an abelian group of order (p*> — 1). Now we
give a lemma which is crucial to determine the structure of the unit group in the

upcoming cases:

Lemma 4.2.4. Let p be a prime such that p = 2 mod (3). Then the 2- and the

3-subgroup of V(Z,nC3) are cyclic.

Proof. In order to establish the claim, we prove that V(Z,»C5) contains only one
element of order 2. Recall that V(Z,nC3) = Zyn[w]. If = (a + bw) is an element of
Zyn[w] of order 2, then z? = 1 gives a* — b* = 1 and b(2a — b) = 0; which in turn
implies that p"” | b(2a — b). If p t b, then p™ | (2a — b) and hence b = 2a + p"k. Thus
a’* —b* = —3a* = 1 in Zyn[w]. Since —3 is not a quadratic residue in Z,, the above

situation can not arise.

Therefore, p’ | b, for some ¢ > 1 and so p"~* | (2a —b). If n —4 > 0, it further
implies that p | a. Since it follows from Lemma 4.2.2 that if x is invertible, then
both a and b can not be multiples of p; we get that ¢ = n and so b = 0. Further,

a’—b*=1givesa=—1=x.

Similar way, it can be checked that the only elements of Z,»|[w] that are of
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order 3 are w and w?. Now the claim follows. ]

Note that (p*> —1) = (p — 1)(p+ 1) and Lemma 4.2.1 and Proposition 4.2.1
provide a generator of V(Z,»Cj5) of order (p — 1). Further, based on the discussion in
previous lemma, we are able to obtain the structure and generators in the following

cases, where the only prime divisors of (p + 1) are 2 and 3:

Example 4.2.1. V(Zl'yan) ~ Cl7n—1 X Cl7n—1 X Cg X 032.

Proof. Tt follows from Lemma 4.2.2 that |[V(Z;7:Cs)| = 17°"D(17% — 1) =
1721 (288). Now observe that if some element of V(Zy;»Cs) satisfies u? = g,
then o(u;) = 9. For instance, when n = 1, F}; = (3) and u; = 3° + 3% + 3%¢* =
5 + 14g + 16¢*. Further, as per the discussion in Proposition 4.2.1, the element
-1+ %Q), say v, is t3 with n = 5. Since o (3!) = (17—1) =16, v is of order 16.
As (3(1+ 2g))2 = v, we obtain that (1 + 2g) is of order 32. O

Example 4.2.2. V(Zg)gan) ~ 053n—1 X C53n—1 X 027 X 0104.

Proof. Here we have that (532 — 1) = 52(54) = (13(2?%))(3%). Now any solution
of u = g is of order 27. Further, note that here the order of (%(1 + 29)) is
2(53 — 1) = 104. O

When p = 71, (p* — 1) = (70)(8)(9). Thus we have the following:

Example 4.2.3. V(Z71n03) ~ 07171,—1 X C71n—1 X 0560 X 09.

1
Proof. In a similar manner, one can claim that a solution of u] = (—(1 + 29)) is of

3
order 560 and any element satisfying y® = ¢ is of order 9. Now the result follows. [

4.3 The structure of U(Z,.T),)

In this section, we provide the structure of U(Z,»T,). The main result of this

section is as follows:
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3m_1

Theorem 4.3.1. U(Z,nT,,) =~ U(Zyn) x (U(Zpn[w])) 2

Proof. 1t is known that
an(03 X 03) = (anC;g)Cg,
where ZynCs = Zyn @ Zyn[w]. Further, using e = %, we can write

~ w ZP"[WH?J]
an[W]Cg —an[ ]@ <1+y+y2>7

where
Zolll) o Zplll
(I+y+y?) (y—w)(y—w?)

Since (y — w) and (y — w?) are comaximal, we have

Ly [w][y]
— = Lo |W).
Dl o 2 021
Therefore, Zyn|[w]C3 = Zyn|w]® and hence Zyn (Cy X C3) = Zyn & Zyn[w]*. Continuing

this way, we obtain

3m_1

an (Cgm) = an @ an [W] 2

The restriction to the unit group proves the result. O

In the end, we give the structure of the unit group in the following corollaries.
Corollary 4.3.1. For p =2,

3m_1

CQX(C%XCS) 2, n=2

Cy X Con—2 X (Cy X Cgn-2 X Cayn-1 X 03)3m2_1, n>?2

Corollary 4.3.2. For an odd prime p,

(i) If p=1 mod 3 then

3m—1

U(ZynT5n) =~ Cpny X Cpq X (Cpn71(2) X CP_I(Z)) 5
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2_4q 2_4

(ii) Let p=2 mod 3. If p> #1 mod 9 and (—3)%(:1:)175 = —1 mod p" has a

solution, then

3m—1

U(ZpnTyn) = Cpn g X Copy X (Cpn1® x Cha_y) 2
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Future plans

We outline several research plans related to this topic, including the study of
group rings over Z,, the investigation of the normal complement problem and its
connection to the isomorphism problem and the exploration of the Fuchs’ problem.
By pursuing these objectives, we aim to gain a deeper understanding of the properties

and structures of group rings.

e To study the unit groups of group rings over 7Z,
The study of group rings over Z, is an under-explored area in the literature
of group rings. We have investigated the unit group structure of Z,,G, where
G is a finite group of exponent at most 4. However, there is still much to be

explored in terms of the unit group structure for groups with larger exponents.

e To find an example of a non-abelian group such that normal
complement exists in the unit group of corresponding semisimple
group algebra
The question of whether supporting examples for the normal complement
problem exist for semisimple group algebras of non-abelian groups is still

unsolved.

e To investigate the connection between isomorphism problem and
normal complement problem
In integral group rings, the isomorphism and normal complement problems
are linked. We might expect a similar connection in modular and semisimple

group algebras.

e To analyse the Fuchs’ problem
In recent years, researchers have noted a connection between Fuchs’ problem
and the normal complement problem. By exploring this intersection, we may

be able to gain new insights and find solutions to the Fuchs’ problem.
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