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Lay Summary

A knot is a simple closed curve in the three-dimensional space, and more generally,

a link is a finite union of disjoint simple closed curves. Any property of a link

that is preserved under its continuous deformations in space is called a topological

invariant of that link. Knot theory is a mathematical study of topological properties

of various knots and links. The main objective of this thesis is to study two such

topological invariants — the knot determinant and the unknotting number — for

specific collections of weaving knots and some of their generalizations. In this thesis,

we derive formulas for the determinant of 3-strand weaving knots, weaving knots of

repetition index two, twisted generalized hybrid weaving knots, and 5-strand spiral

knots. Consequently, it proves a conjecture that appeared in a recent paper of Singh

and Chbili. Further, we provide some bounds of the unknotting numbers of 3-strand

weaving knots and weaving knots of repetition index two by examining their Jones

polynomials, another topological invariant of knots and links. Besides that, we study

a different type of topological objects that resemble knots, namely, theta-curves.

We define the notion of Gordian distance between any two theta-curves and study

its metric properties. Then we define the Gordian complex of theta-curves, which

is an abstract simplicial complex, by considering pairs of theta-curves with Gordian

distance one from each other and study its structural properties. More precisely, we

prove the existence of arbitrarily high dimensional simplexes of theta-curves.
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Abstract

The main objective of this thesis is to study determinants and unknotting numbers

for certain families of weaving knots and their generalizations. Besides that, we also

study the Gordian complex of theta-curves. The first part of this thesis presents

determinant formulae for the 3-strand weaving knots, weaving knots of repetition

index two, twisted generalized hybrid weaving knots, and 5-strand spiral knots.

Further, we calculate the dimension of the first homology group with coefficients in

Z3 of the double branched cover of the 3-sphere S3 over 3-strand weaving knots and

weaving knots of repetition index two, respectively. As a consequence, we obtain a

lower bound of the unknotting number for 3-strand weaving knots in certain cases.

Some upper bounds of the unknotting numbers of 3-strand weaving knots and

weaving knots of repetition index two are also discussed. In the second part of this

thesis, we extend the notion of the Gordian metric to the set of theta-curves and give

a lower bound of the same. Then we define the Gordian complex of theta-curves and

study its structural properties. More precisely, the existence of an n-dimensional

simplex of theta-curves for any n is shown. We also prove that given any theta-curve,

there exists an infinite family of theta-curves containing the given theta-curve such

that the Gordian distance between any pair of distinct members of this family is one.

Keywords: Weaving knots; twisted generalized hybrid weaving knots; spiral knots;

knot determinant; unknotting number; theta-curves; Gordian complex.
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Chapter 1

Introduction

Knot theory is the study of topological properties of knots and links in a 3-space.

A knot is the image of a homeomorphism from the circle S1 into the 3-dimensional

Euclidean space R3 or the 3-sphere S3. Similarly, an n-component link is n disjoint

circles embedded in R3. More generally, a spatial graph is a graph embedded in R3.

Every knot is a link of one component, and every link is the union of a finite number

of disjoint cycle graphs embedded in R3. Though any knot, as a topological space

in its own right, is same as the circle, but the way it is embedded in a 3-space may

possibly be distinct from those of the other knots. For basic terminology, the reader

may refer to standard textbooks on knot theory, e.g., [43,50,52,67,76].

Two links are identical if there exists an isotopic deformation of the ambient

space R3 that deforms one of the links onto the other. This defines an equivalence

relation on the set of links if we regard identical links as links related to each other.

Its equivalence classes are called link isotopy classes. Given a pair of links, the most

fundamental problem in knot theory is to decide whether they are identical or not.

That is to say, if they have the same isotopy type or not. It is not possible to give

a general solution of this problem, but partial solutions can be found. For instance,

a particular case of this problem is to find if a given knot is isotopic to the trivial

knot, which has a solution given by the Dehn-Papakyriakopoulos theorem [72].

A link is commonly depicted by a link diagram, a regular projection of that link

to the 2-dimensional space R2 or the 2-sphere S2 retaining information about the

over-strand and under-strand at all the double points called crossings of the diagram.

A theorem of Reidemeister asserts that two links belong to the same isotopy class if

and only if a diagram of one of them can be converted to a diagram of the other by a

finite succession of certain local diagram transformations known as the Reidemeister

moves. It may be quite challenging to apply Reidemeister theorem for certain pairs

of links. For instance, two knots, now known as the Perko’s pair, were considered

distinct for almost 74 years before Kenneth A. Perko [73] showed that despite being

entirely different in their appearances, these knots were indeed the same. Perko was

able to draw a sequence of Reidemeister moves that transforms the respective knot

diagrams into each other. However, in general, for a pair of link diagrams, there

may not exist a sequence of Reidemeister moves that transforms one into the other.

But how does one know for sure if it is indeed the case? Such problems are typically
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solved by using topological invariants of links. Therefore, much of the knot theory

is devoted to the development and study of link invariants. A link invariant is a

mathematical object associated to every link that remains unchanged during any

isotopic deformation of R3; and alternatively, under Reidemeister moves on link

diagrams. These concepts generalize to spatial graphs in a natural way.

The major part of this thesis studies two link invariants — the determinant and

the unknotting number — for certain infinite families of links. These families are

as follows: (i) weaving knots of 3-strands; (ii) weaving knots of repetition index 2;

(iii) twisted generalized hybrid weaving knots; and (iv) spiral knots of 5-strands.

It partly studies a metric on the set of theta-curves called the Gordian metric (cf.

Murakami [62]), which is based on an unknotting operation, the crossing change.

Further, we study a simplicial complex of theta-curves called the Gordian complex,

which is defined using pairs of theta-curves with Gordian distance 1 from each other.

The remaining chapters are structured as follows: Chapter 2 introduces basic

concepts in knot theory and spatial graph theory required for the development of

the thesis. We also discuss some known results pertaining to the scope of this thesis.

In Chapter 3, we calculate the knot determinant for certain families of weaving

knots by evaluating either their Jones polynomials or the Alexander polynomials at

t = −1. In Section 3.1, we discuss two recursive formulas of the Jones polynomial

that we use in the subsequent sections. In Section 3.2, we obtain the determinant of

the 3-strand weaving knot W (3, n) by using a result of Mishra and Staffeldt [57]. In

Section 3.3, we derive a knot determinant formula for W (p, 2), the p-strand weaving

knot of repetition index 2. Section 3.4 presents a formula for the determinant of the

twisted generalized hybrid weaving knot Q̂3(m1,−m2, n, ℓ), which is a generalization

of the weaving knot W (3, n). As a corollary, we prove a conjecture that appeared in

Singh and Chbili [79, Conjecture 2]. In Section 3.5, we compute the determinants

of 5-strand spiral knots S(5, k, ϵ).

In Chapter 4, we study the evaluation of Jones polynomial at t = eiπ/3 and its

relationship with the unknotting number. This evaluation enables us to calculate the

dimension of the first homology group with coefficients in Z3 of the branched cyclic

cover of the 3-sphere S3 over the weaving knots W (3, n) and W (p, 2) in Section 4.1

and Section 4.2, respectively. As a consequence, we obtain a lower bound of the

unknotting number of W (3, n) in the case when n is divisible by 4. Some upper

bounds of the unknotting numbers of W (3, n) and W (p, 2) are also discussed.

In Chapter 5, we study about a simplicial complex consisting of theta-curves.

Section 5.1 reviews various types of Gordian complexes of knots. In Section 5.2, we

extend the notion of Gordian metric based on the crossing change operation to the

set of theta-curves. Then we obtain a lower bound of the Gordian distance function

and discuss some of its applications. In Section 5.3, we define the Gordian complex
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of theta-curves and prove the existence of an n-dimensional simplex of theta-curves

for any nonnegative integer n. Moreover, we show that for every theta-curve, there

exists an infinite family of theta-curves containing the given theta-curve such that

the Gordian distance between any pair of distinct members of this family is equal

to 1.

Chapter 6 concludes the thesis and discusses some open questions related to the

work presented here. It focuses on the determinants of 6-strand weaving knots and

a problem related to theta-curves of Gordian distance two from each other.
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Chapter 2

Background

Throughout the text, we work in the piecewise-linear (PL) category. Therefore,

every topological space in this thesis admits a triangulation — in particular, each

curve or line is considered as polygonal, each surface as polyhedral, and so on. All

homeomorphisms and embeddings are considered as piecewise-linear mappings.

To denote various knots and links, we use their customary names, as given for

instance in the Alexander-Briggs-Rolfsen tables (see Rolfsen [76, Appendix C]), or

the KnotInfo database (see Livingston and Moore [53]). For theta-curves, we use

the names given in the Litherland-Moriuchi table (see Moriuchi [59]).

This chapter covers basic concepts and results in knot theory and spatial graph

theory. It consists mostly of definitions, examples, and fundamental theorems

necessary for the development of this thesis.

2.1 Knots and links

Let Rn be the n-dimensional Euclidean space and let Sn be the n-dimensional sphere,

which is homeomorphic to the one-point compactification of Rn.

Definition 2.1.1. A subset K of R3 is a knot if there exist an embedding f : S1 →
R3 such that K = f(S1).

For example, two knots — each of which is called a trefoil knot — are shown in

Figure 2.1. According to the customary notations, the trivial knot is denoted by 01,

trefoil knot by 31, figure-eight knot (see Figure 2.6) by 41, and so on.

(a) The left-hand trefoil knot. (b) The right-hand trefoil knot.

Figure 2.1: Trefoil knots.

Definition 2.1.2. Let n ∈ Z+. A set L ⊂ R3 is an n-component link if there is an

embedding f : ⊔ni=1S
1 → R3 such that L = f(⊔ni=1S

1).
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An example of a 2-component link, a Hopf link, is shown in Figure 2.2. A knot is

a 1-component link. A link is said to be tame if it is equivalent to a polygonal link.

We shall see many examples of knots and links as we progress towards the goal of

this thesis.

Figure 2.2: Hopf link.

A link of at least two components is called a split link if there exists a 2-sphere

S2 in R3 such that each component of R3\S2 contains at least one component of the

link. A link is said to be oriented if each of its components is oriented by assignment

of a direction. This thesis only deals with unoriented knots and links except for a

few topics.

Assume that R3 is endowed with the standard orientation, which may be defined

by means of the right-hand rule with regard to xyz-axes. Two links L1 and L2

are considered equivalent if there exists an orientation-preserving homeomorphism

h : R3 → R3 such that h(L1) = L2. This notion of equivalence among links is indeed

an equivalence relation on the totality of links. Each equivalence class under this

relation is called a link type. But we often do not make any distinction between a

‘link’ and its ‘link type’.

There is a different, however equivalent, notion of link equivalence which is

geometric and more intuitive in nature. It is defined as follows: Two links L1

and L2 are said to be ambient isotopic if there exists a family of homeomorphisms

ht : R3 → R3, 0 ≤ t ≤ 1, such that h0 is the identity map, h1(L1) = L2, and the

associated map H defined by H(t, x) = ht(x) is simultaneously continuous in the

variables t and x. Such a family is called an isotopic deformation of R3 and the map

H is called an ambient isotopy.

The central problem in knot theory is to determine for any pair of links, whether

they are equivalent or not. It is same as asking if they are ambient isotopic or not.

Therefore, in the grand scheme of things, a classification of all knots and links is all

we seek. A general solution to the classification problem is apparently impossible.

However, its truncated versions have been resolved over the years of development of

the theory of knots and links.

Links are schematically represented by their planar projections. Let π : R3 → R2

be the natural projection given by π(x, y, z) = (x, y) and consider projecting the link

in R3 to the plane R2.

Definition 2.1.3. A subset D of R2 is a link diagram of the link L if D = π(L)
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and for each point p ∈ D, the cardinality of π−1(p) is either 1 or 2. Further,

if π−1(p) consists of two points, i.e., when p is a double point, then there exists a

neighborhood of p in D which is homeomorphic to two lines intersecting transversely

at p. Moreover, one of them is indicated as lying over the other one depending on

the greater value of the z-coordinates of the preimages of p.

Such a double point is called a crossing of the diagram D. The curve between

any two consecutive undercrossings is called an arc of the diagram D. A typical

example of a trefoil knot diagram is shown in Figure 2.3. But, as it appears, there

are infinitely many choices for diagrams of any knot or link. However, every link

diagram here has a finite number of crossings as we are working in the category of

tame links.

Figure 2.3: A diagram of the trefoil knot.

An obvious question here is that how does one characterize the notion of link

equivalence in terms of link diagrams. A theorem of Reidemeister, in theory, answers

the same; see Theorem 2.1.1. This result, known as the Reidemeister theorem, has

also been proved by Alexander and Briggs [4] independently.

Theorem 2.1.1. Two links L1 and L2 are ambient isotopic if and only if there

exists a link diagram of L1 that can be transformed into a link diagram of L2 by a

finite sequence of Reidemeister moves, which are as shown in Figure 2.4.

←→ ←→I.

←→II.

III. ←→

Figure 2.4: Reidemeister moves.

This seminal result paves the way for a diagrammatic approach to study knot

theory. Consider two link diagrams D1 and D2 related if D1 can be converted to D2
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by a finite succession of Reidemeister moves. It defines an equivalence relation on

the totality of link diagrams. Since the Reidemeister moves are an imitation of the

ambient isotopy, a link would thus be simply defined as the equivalence class of its

diagrams. Hence, the link diagrams themselves become the mathematical objects

of interest. Now the topological problem of link equivalence can be reformulated as

follows: Given a pair of link diagrams, determine whether they are related to each

other by the Reidemeister moves or not. This combinatorial topological problem is

fairly easy to solve in comparison to the original problem. Moreover, one could even

write tremendously simple solutions in particular cases. For instance, showing the

existence of an ambient isotopy that deforms the knot in Figure 2.1a onto the knot

in Figure 2.5 is still challenging, whereas finding a sequence of Reidemeister moves

that relates their respective diagrams would be a simple procedure.

Figure 2.5: Trefoil knot.

On the other hand, if the given links are not ambient isotopic, there does not

exist any sequence of Reidemeister moves converting their respective link diagrams

to each other. Such cases, where we want to distinguish links from each other, are

settled by using link invariants. It will be discussed separately in Section 2.3.

Links that have certain features are particularly interesting. Alternating knots

and links constitute one such remarkable class of links. A link diagram is said to be

alternating if it is connected and, as one travels around any component of the link,

the undercrossings and overcrossings alternate. A link is said to be alternating if it

possesses an alternating diagram. Thus, a non-alternating link does not have any

alternating diagram. One-component alternating links are called alternating knots.

The first example of a non-alternating knot was discovered by Bankwitz in 1930.

Alternating knots have been an intriguing class since the inception of knot theory.

Many of their properties have been discovered over the years with contributions from

several knot theorists. Some remarkable ones are known as Tait’s conjectures that

have been proved by Kauffman [41], Murasugi [65,66], Thistlethwaite [86,87], and

Menasco and Thistlethwaite [56]. Recently, Green [27] and Howie [32] independently

discovered topological characterizations of alternating links.

Another topologically interesting property of knots and links is amphicheirality.

One can construct a new link from a given link by considering its reflection in the

projection plane. For any link L, the link obtained by switching all the crossings of
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any diagram D of L is called the mirror image of L. For example, Figure 2.1 shows

knots that are mirror images of each other. A link is amphicheiral if it is ambient

isotopic to its mirror image. An example of amphicheiral knots, the figure-eight knot,

is shown in Figure 2.6. However, the trefoil knot is known to be not amphicheiral.

Figure 2.6: A diagram of the figure-eight knot.

The operation of connected sum on knots provides another method to construct

new knots using given pairs of knots. It has the following diagrammatic definition.

For any two oriented knots K1 and K2, their connected sum K1♯K2 is the oriented

knot represented by the diagram obtained after removing small arcs from oriented

knot diagrams of K1 and K2 and then connecting the four endpoints by new arcs as

illustrated in Figure 2.7.

Figure 2.7: Connected sum of knots.

The oriented knot K1♯K2 obtained in this manner remains consistent with the

orientations of the given knots. It neither depends on the choice of diagrams nor on

the position of the arcs removed. Therefore K1♯K2 is called the connected sum of

K1 and K2. However, for unoriented knots, this operation is not well-defined as it

depends upon the position of the arcs we remove and the choice of connecting the

endpoints thereafter. Hence it is possible to form two different connected sums from

the same pair of unoriented knots.

The inverse operations of connected sum of knots are knot decompositions. The

knots K1 and K2 are called the factors of the connected sum K1♯K2. A knot is said

to be a composite knot if it can be expressed as a connected sum of two non-trivial

knots. A knot is called a prime knot if it is neither the trivial nor a composite knot.

Schubert (1949) proved an analogue of the fundamental theorem of arithmetic for

knots (see Kawauchi [43]), which is as follows:

Theorem 2.1.2 (Unique prime decomposition of knots). Every non-trivial knot K

can be expressed as K = K1♯K2♯ · · · ♯Kn, where each factor Ki is a prime knot.
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Moreover, this decomposition of K into connected sums of prime knots is unique up

to the order of the factors.

2.2 Braids and braid groups

The theory of braids has played a significant role in the development of knot theory.

It was formally introduced by E. Artin in 1925. There exist various manifestations

of braids in topology and algebra. Here, we discuss braids specifically from the point

of view of diagrammatic knot theory.

Let I denote the subspace [0, 1] of R.

Definition 2.2.1. Let n ∈ Z+. A subset D of R× I is a braid diagram on n strands

if there exists a local homeomorphism h : ⊔ni=1I → D such that

(i) each strand (the direct image of each interval under h) of D intersects the line

R× {t} with t ∈ I in exactly one point;

(ii) for each point p ∈ D, the cardinality of h−1(p) is either 1 or 2, where in case of

a double point, the respective strands intersect transversely and one of them

is distinguished as going over the other strand.

For example, see Figure 2.8a. Two braid diagrams D1 and D2 are equivalent if

D1 can be transformed into D2 by a finite sequence of Reidemeister moves II, III.

This is an equivalence relation which partitions the totality of braid diagrams into

equivalence classes called braids. By an n-braid, we mean the equivalence class of a

braid diagram on n strands.

(a) A braid diagram on 3 strands.

(b) A closed braid diagram.

Figure 2.8: A braid and its closure.

Any braid diagram D viewed as a subset of R2 can be converted to a link diagram

D̂ by joining the endpoints of each of its strands with a curve in R2 in such a way
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that the curves neither intersect themselves nor D as shown in Figure 2.8b. The link

represented by D̂ is uniquely determined for braid diagrams equivalent to D, and

therefore, it is called the closure of the braid represented by D. For any braid α, we

denote its closure by α̂. However, this correspondence α 7→ α̂ is many-to-one, i.e.,

different braids may have the same closure. Conversely, links can be represented as

closed braid diagrams. More formally, Alexander [2] proved the following result.

Theorem 2.2.1. For every link L, there exists a braid β whose closure is L.

Alexander’s theorem connotes that braids are closely related to links. Moreover,

braids exhibit the structure of a group that makes them indispensable and useful

for the mathematical study of knots and links. The group structure on braids is

defined in the following manner.

For any two n-braids α and β, define their multiplication αβ by concatenation

of α and β as follows: Place any diagram of α on the top of any diagram of β and

squeeze the resulting diagram into R × I; see Figure 2.9 for an illustration. Then

αβ is the braid represented by the diagram we have obtained.

α

β

· · ·

· · ·

· · ·

αβ :=

Figure 2.9: Multiplication of two braids.

The collection of all n-braids together with this multiplication forms a group,

which is known as the Artin n-braid group. It is denoted by Bn. Its identity element,

denoted by ε, is the trivial n-braid, a diagram of which is shown in Figure 2.10. For

each α ∈ Bn, its inverse element is the n-braid represented by the braid diagram

obtained as follows: Take any braid diagram of α, consider its reflection across the

line R× {0} and shift the resulting diagram into R× I.

· · ·ε =

Figure 2.10: The trivial n-braid.

Besides the diagrammatic definition of the braid group Bn, there is also the

following algebraic definition in terms of group presentations (see Murasugi [67]).
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Definition 2.2.2. For each n ∈ Z+, the Artin braid group Bn is the group defined

by the finite presentation

Bn =

〈
σ1, σ2, . . . , σn−1

∣∣∣∣∣
σiσj = σjσi, |i− j| ≥ 2,

σiσi+1σi = σi+1σiσi+1.

〉

Here σ1, σ2, . . . , σn−1 are the generators of Bn and the relations satisfied by them

are called the fundamental braid relations. The following correspondence is indeed

an isomorphism between algebraically and diagrammatically defined braid groups.

· · · · · ·
i1 n

σi ←→

· · · · · ·
i1 n

σ−1i
←→

Figure 2.11: Braid generators.

For example, the braid diagram shown in Figure 2.8a corresponds to the braid

word (σ1σ
−1
2 )2 ∈ B3. Similarly, diagrammatic interpretations of fundamental braid

relations are shown in Figure 2.12. These are manifestations of planar isotopy and

Reidemeister III-move on braid diagrams; the trivial relation σiσ
−1
i = ε exhibits

Reidemeister II-move.

· · · · · · ≡

σiσi+1σi = σi+1σiσi+1

≡

σiσj = σjσi

Figure 2.12: Fundamental braid relations.

In the study of knots and links using braids, a theorem of A. A. Markov provides

an answer to the crucial question of when any two braids have the same closure.

It considers the notion of Markov equivalence among braids, which is defined as

follows: Let B∞ = ∪∞n=1Bn. The two types of Markov moves on any two elements

of B∞ are the following.

(I) Replace β ⇄ γβγ−1, for any β, γ ∈ Bn. This transformation simply allows

an n-braid to be replaced by any of its conjugates in Bn.

(II) Replace β ⇄ βσ±1n , for any β ∈ Bn ↪→ Bn+1 and σn ∈ Bn+1. This operation

transforms an n-braid into either of the two (n + 1)-braids βσn or βσ−1n , or

vice-versa.
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These transformation are called the first and second Markov moves, denoted by

M1 and M2, respectively. The M1-move is called the conjugation move, while the

M2-move is called the right stabilization move.

Two braids α and β are said to be Markov equivalent if there exists a finite

sequence of Markov moves that converts α to β. The following theorem of Markov

shows the importance of Markov moves in knot theory.

Theorem 2.2.2. Two braids have ambient isotopic closures if and only if the braids

are Markov equivalent.

Alexander and Markov theorems establish a connection between knot theory

and the theory of braids. They characterize the topological study of knots and links

into an algebraic study of Markov equivalent braids. Many topologically interesting

families of knots and links are defined as the closures of special types of braids.

Some of them are discussed in Section 2.4. Further, invariants of such knots and

link are often studied using the algebraic structure of the underlying braids.

2.3 Invariants of knots and links

Neither the links themselves nor their diagrams are practical and simple enough to

distinguish among their various isotopy types. Therefore, it is necessary to study

links via their compromised topological information encoded in the form of numbers,

polynomials, matrices, groups, etc., which are easier to understand as compared to

the links themselves.

Definition 2.3.1. LetX be a set. A link isotopy invariant is a map f : {links} → X

such that if L and L′ are any two equivalent links, then f(L) = f(L′).

Given a link L and a link isotopy invariant f , the image f(L) is called an invariant

of the isotopy type of the link L, or simply, an invariant of L. There are numerous

examples of link invariants, viz. the number of components, linking number, crossing

number, tricolorability, braid index, Alexander polynomial, torsion invariants, knot

group, and so on.

Invariants are quintessential tools for distinguishing various knots, links, or say,

spatial graphs among themselves. A sufficient condition for any pair of knots or links

to be of distinct isotopy types is the existence of a link invariant that takes different

values for them. However, invariants that characterize link types are very difficult

to construct. Thus, knot theorists tend to develop the theory of link invariants.

This section recalls definitions of some well-known link isotopy invariants, which

will be used throughout the text, and some useful literature related to them.
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2.3.1 The crossing number

The crossing number of a link is one of the oldest classical link invariants. Let c(D)

denote the number of crossings of the link diagram D. It is clear that the number

c(D) is not an invariant of the link represented by D.

Definition 2.3.2. The crossing number of a link L, denoted by c(L), is defined as

the minimum value of c(D) where D varies over all the link diagrams of L.

The crossing number c(L) is an invariant of the link L. It is also called the

minimum number of crossings of L. For example, c(01) = 0, c(31) = 3, c(41) = 4,

and so on. There is no general method to find the crossing number of any given link.

Nevertheless, the crossing number of any alternating link is completely determined

by the Jones polynomial, another invariant of links. Tables of knots and links are

indexed by the crossing number. According to the most recent knot census data by

Burton [15], all prime knots with c(K) ≤ 19 are tabulated; cf. Hoste, Thistlethwaite

and Weeks [31] for the classification of prime knots with c(K) ≤ 16. All prime links

with c(L) ≤ 13 are also tabulated.

2.3.2 The Alexander polynomial

J. W. Alexander discovered the first polynomial invariant of knots and links in 1923.

It is a Laurent polynomial in one variable with integer coefficients associated to every

knot, suitably generalized for links as well, which does not change under any isotopic

deformation of R3. This polynomial is denoted by ∆K(t). Alexander [3] introduced

a combinatorial procedure that uses matrices associated with link diagrams for the

computation of this polynomial. There are many other ways in the literature to

calculate the Alexander polynomial of any given link. In the late 1960s, Conway [19]

introduced a disguised and normalized form of the Alexander polynomial, known as

the Alexander-Conway polynomial, and a procedure for its computation using a

skein relation.

The Alexander polynomial is quite efficient at distinguishing knots, for instance,

it distinguishes all prime knots of crossing number c(K) ≤ 8 from one another.

However, it is not sufficient to distinguish all knots and links. Whereas the knots

814 and 98 are distinct, their Alexander polynomials are in fact same; ∆814(t) =

∆98(t) = 2−8t+11t2−8t3+2t4 up to multiplication by a unit in Z[t, t−1]. Further,
this polynomial is unable to recognize the trivial knot since ∆P (−3,5,7)(t) = 1, where

P (−3, 5, 7) is the pretzel knot shown in Figure 2.13, is also the Alexander polynomial

of the unknot.
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Figure 2.13: A pretzel knot.

The Alexander polynomial has several nice properties, out of which the following

two basic properties are crucial. (1) This polynomial is symmetric, i.e., for any link

L, there exists n ∈ Z such that ∆L(t) = ±tn∆L(t
−1). To express this equality, we

customarily write ∆L(t)
·
= ∆L(t

−1), where the symbol
·
= denotes that the equality

holds up to multiplication by a unit in the Laurent polynomial ring Z[t, t−1]; (2)
For any knot K, ∆K(1) = ±1, and for any link L of more than one component,

∆L(1) = 0. For more details on the properties of Alexander polynomial, one may

refer to standard textbooks on knot theory, see for example Lickorish [50].

In the early stages of the development of knot theory, the Burau representation

of the Artin braid groups has played a pivotal role in understanding the Alexander

polynomial. Burau discovered a nice relationship between the Burau representation

and Alexander polynomial, for which we refer to the monograph [8] by Birman.

Let φ : Bn → GLn−1(Z[t, t−1]) be the reduced Burau representation under which

the braid generators are mapped as follows:

σ1 7→




−t 1

0 1
. . .

1



, σi 7→




1
. . .

1 0 0

t −t 1

0 0 1
. . .

1




(for 1 < i < n).

Theorem 2.3.1 ([8, Theorem 3.11]). Let φ be the reduced Burau representation of

Bn. If β ∈ Bn and ∆β̂(t) denotes the Alexander polynomial of the link β̂ formed by

taking the closure of the braid β, then the equality

(1 + t+ · · ·+ tn−1)∆β̂(t) = det(φ(β)− I) (2.1)

where I is the identity matrix in GLn−1(Z[t, t−1]), holds up to multiplication by a
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unit in Z[t, t−1].

We shall use Theorem 2.3.1 later in the thesis to study link determinant, which

is another well-known invariant of links.

2.3.3 The link determinant

First we recall the concept of coloring a link, which was invented by Ralph Fox.

Definition 2.3.3. Given a link L and n ∈ Z+, we say that L is colorable mod n if L

has a diagram whose arcs can be labeled with integers from 0 to n−1 in such a way

that at least two labels are distinct and at each crossing the sum of the labels of the

undercrossings is equal to twice the label of the overcrossing modulo n as depicted

in Figure 2.14.

b

a

c
: a+ c ≡ 2b (mod n)

Figure 2.14: Coloring rule for a crossing.

Figure 2.15 shows that the 3-twist knot 52 is colorable mod 7. For each n, the

property of being colorable mod n is a link invariant. For a mathematical treatment,

the question of whether a link is colorable mod n or not can be reduced to finding

solutions of a system of linear equations.

Note that if L is a split link, then it is colorable mod n for any n ≥ 2 as we can

label one of its components by 0 and the remaining components by 1 in any diagram

D of L. Further, it is imperative to observe that if a link diagram does not have any

closed curves, where by a closed curve we mean an arc without any breaks, then it

has equal number of arcs and crossings. This fact is clear because after orienting

such a diagram, every arc points to exactly one crossing. On the other hand, every

link diagram that has a closed curve necessarily represents a split link.

Given a link diagram D without any closed curves, let x1, x2 . . . , xm be the labels

(or colors) on the arcs of D and let C1, C2, . . . , Cm denote the crossings of D. Let

M = [aij] be them×m integer matrix whose rows (respectively columns) correspond

to the crossings (respectively arcs) of D. If the equation 2xj ≡ xi + xk (mod n)

holds at the crossing Cp, then api = apk = −1, apj = 2, and apl = 0 for l ̸= i, j, k.

Let M ′ denote the matrix obtained by deleting any one column and any one row

fromM . Then the absolute value of the determinant of the matrixM ′ forD depends

only on the isotopy type of link represented by D (see for example Livingston [52]).

If L is a split link, then the columns ofM ′ are linearly dependent. Thus the following

defines a link invariant.
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Definition 2.3.4. The determinant of a link L, denoted by det(L), is defined as

the absolute value of the determinant of the matrix M ′ constructed as above.

A relation between the colorability and determinant of a link is expressed in the

following result.

Theorem 2.3.2. A link is colorable mod n for some n ≥ 2 if and only if n and

det(L) have a common factor.

0 1
6

5 3

x1 x2

x3

x4 x5

A

B
C D

E

Figure 2.15: A coloring of 52.

For the knot diagram of 52 shown in Figure 2.15, the coloring conditions and

the matrix M are given by

A : 2x1 ≡ x2 + x3 (mod n)

B : 2x3 ≡ x4 + x1 (mod n)

C : 2x4 ≡ x1 + x5 (mod n)

D : 2x2 ≡ x3 + x5 (mod n)

E : 2x5 ≡ x2 + x4 (mod n)

M =




2 −1 −1 0 0

−1 0 2 −1 0

−1 0 0 2 −1
0 2 −1 0 −1
0 −1 0 −1 2




Then det(52) = |det(M ′)| = 7. The determinant of a link has several other

definitions in the literature, as we shall see in the sequel.

2.3.4 The unknotting number

Let D be a link diagram and let c be any crossing of D. A crossing change at c is a

local transformation of D in a neighborhood of c which interchanges the overstrand

and understrand information of c as shown in Figure 2.16.

7→

Figure 2.16: Crossing change.
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This local move changes D into a diagram of some other link. In fact, for every

link diagram D, there exists a finite number of crossings in D such that applying

the crossing change operation at each of them converts D to a diagram of the trivial

link. However, this number is clearly not an invariant of the link represented by D.

Definition 2.3.5. The unknotting number of a knot K, denoted by u(K), is defined

as the minimum number of crossing changes required to transform a knot diagram

of K into a diagram of the trivial knot.

For example, u(31) = 1, u(812) = 2, u(819) = 3, etc. The unknotting number is

a knot invariant. It essentially measures how far a knot is from being the unknot.

Similarly, the unlinking number of any link is defined. For every knot K, it is known

that u(K) ≤ c(K)
2

. Murasugi [63] proved that u(K) ≥
∣∣∣σ(K)

2

∣∣∣, where σ(·) denotes the
link signature function, another well-known invariant of links which was introduced

by Trotter and generalized by Murasugi.

Unknotting numbers are generally hard to determine due to their dependence

on the knot diagrams. A diagram of a link L is called minimal if its number of

crossings agrees with the crossing number of L. Bleiler [11] showed that minimal

diagrams do not necessarily realize the unknotting number of a knot. This result

was independently proved by Nakanishi [68]. There are several knots mentioned in

the literature for which the unknotting number is not yet known. For example, the

knot 1011 which is shown in Figure 2.17.

Figure 2.17: The knot 1011.

2.3.5 The Jones polynomial

The Jones polynomial, an invariant of oriented knots and links, was discovered by

V. F. R. Jones in 1984. It was originally defined via representations of braid groups

in certain von Neumann algebras. Alternatively, it can be defined by a skein relation

as follows:

Definition 2.3.6 (Jones [35]). The Jones polynomial invariant is a map V :

{oriented links} → Z[t 1
2 , t−

1
2 ] defined by the following axioms.
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(i) If K is the unknot, then VK(t) = 1.

(ii) If D+, D−, and D0 are oriented link diagrams of links K+, K−, and K0,

respectively, that are identical except in the neighborhood of a crossing where

they differ as shown in Figure 2.18, then the following skein relation

t−1VK+(t)− tVK−(t) = (t
1
2 − t−

1
2 )VK0(t) (2.2)

holds.

D+ D− D0

Figure 2.18: A skein triple.

The Alexander polynomial does not distinguish between a knot and its mirror

image, whereas the Jones polynomial distinguishes the left-hand trefoil knot from its

mirror image, the right-hand trefoil knot. On the other hand, there exists distinct

knots which are distinguishable by the Alexander polynomial, but not by the Jones

polynomial. Hence, none of the two polynomial invariants is stronger than the other.

Jones [36, §12] discusses the values of the Jones polynomial at t = e2πi/n for

n = 1, 2, 3, 4, 6, 10 and their relationship with other isotopy invariants of L. These

evaluations are interesting. For example, VL(−1) = ∆L(−1). The absolute value of

∆L(−1) is equal to det(L), the determinant of the link L.

Suppose that L is an oriented link in S3 with µ(L) components. Let DL be the

double cyclic cover of S3 branched over L and let H1(DL;Z3) be the first homology

group of DL with coefficients in Z3. Let nL denote the dimension of the vector

space H1(DL;Z3) over the field Z3. The following theorem is due to Lickorish and

Millett [51].

Theorem 2.3.3 ([51, Theorem 3]). VL(e
iπ/3) = ± iµ(L)−1 (i

√
3)nL.

Further, the value of nL is also related to the unknotting number. Let K be a

knot whose unknotting number is u(K) and dimH1(DK ;Z3) = nK . The following

theorem of Wendt is given in Miyazawa [58].

Theorem 2.3.4 ([58, Corollary 1.4]). u(K) ≥ nK.

Similarly, link determinant satisfies dimH1(DL;Z) = det(L). It seems unlikely

that new information about unknotting numbers can be obtained from VL(e
iπ/3),

though calculation of these may give a quick way of computing nL ([51, p. 351]).
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However, Traczyk [89] and later Stoimenow [83] have demonstrated how evaluations

of link polynomials can be used to determine unknotting numbers for some of the

knots. Miyazawa [58] used knot polynomial evaluations to find Gordian distances

between various pairs of knots.

2.4 Some families of knots and links

A complete classification of all links is indeed a far-fetched possibility. Therefore,

it is natural to group links with common properties together and then try for their

classification. For instance, all prime knots of crossing number n have been classified

for n ≤ 16 with contributions from several theorists over the last 120 years. All torus

links admit a classification. Links that are closures of 3-braids are classified. Besides

that, there are many other interesting knot classifications available in the literature.

Invariants play a crucial role in classifying knots and links. For example, a proof

of the classification theorem for torus links is based on the Alexander polynomial.

But even such truncated versions of the knot classification problem could be very

intricate in nature. For instance, the collection of knots of unknotting number one

is extremely difficult to classify or to even imagine. However, the set of knots whose

knot group is isomorphic to Z contains only the trivial knot. Knots that have the

trivial Jones polynomial are not yet classified, though it is believed that only the

unknot will satisfy this property. It is noteworthy to mention that Thistlethwaite [88]

constructed non-trivial links of components 2 and 3 whose Jones polynomial is equal

to that of the corresponding unlink. Hence, various families of knots and links are

interesting enough to be investigated upon.

For link families arising from specific braids, it is natural to exploit the associated

braids to study their invariants. For instance, Kim, Stees and Taalman [44] utilized

the closed braid presentations of spiral knots to find their determinants with up to

4-strands. Here we recall some link families which are objects of our interest.

2.4.1 Torus links

Definition 2.4.1. A link is a torus link if it can be embedded in the standard torus

S1 × S1 inside R3 or S3.

Alternatively, all torus link-types can be defined by a pair of integers as follows:

For p, q ∈ Z+, let T (p, q) denote the link obtained by the closure of the braid

(σ1σ2 · · · σp−1)q. Then the torus link of type (p, q) is defined as T (p, q) or T (q, p).

This notation is well-defined since T (p, q) is ambient isotopic to T (q, p). The number

of components of the (p, q)-torus link is equal to gcd(p, q). This implies that T (p, q)
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defines a knot if gcd(p, q) = 1. The mirror image of T (p, q) is also a torus link, which

is denoted by T (−p, q). It is known that T (p, q) is not amphicheiral if p, q > 1.

Torus links are the most interesting and a well-studied family of knots and links.

Apart from the classification, their closed braid representations are known. Many of

their invariants have been explicitly computed, for example, Alexander polynomials,

crossing numbers, and bridge numbers. Moreover, the unknotting numbers, Seifert

genera, determinants, and Jones polynomials of torus knots are also known.

2.4.2 Weaving knots

Definition 2.4.2. Let p, n ∈ Z+. The weaving knot W (p, n) is the knot or link

obtained by the closure of the p-strand braid
(
σ1σ

−1
2 σ3σ

−1
4 · · ·σ(−1)p

p−1
)n
.

(a) T (3, 2) = 31. (b) W (3, 2) = 41. (c) T (3, 3) = 633. (d) W (4, 2) = 623.

Figure 2.19: Some torus and weaving knots.

Some examples of torus and weaving knots are shown in Figure 2.19. Weaving

knots are geometrically interesting. They possess many distinguishing features, such

as being alternating, hyperbolic, amphicheiral if p is odd, and not amphicheiral if p

is even. Weaving knots share the same projection with torus links. It follows from

Manturov [54] result on torus links that every knot/link can also be obtained from a

weaving knot’s standard closed braid presentation by switching some of its crossings.

However, unlike torus links, weaving knots are not explored much in the literature.

In the early 2000s, Xiao-Song Lin conjectured that weaving knots would be among

the knots with the maximum hyperbolic volume for a fixed crossing number.

Champanerkar, Kofman and Purcell [17] gave asymptotically sharp explicit bounds

of the hyperbolic volume of the weaving knots in terms of p and n. Recently, Mishra

and Staffeldt [57] made significant contributions to the study of weaving knots. For

instance, they calculated signatures of weaving knots, which are given as follows:

Theorem 2.4.1 ([57, Proposition 3.1]). For a weaving knot W (2k+ 1, n), the knot

signature σ(W (2k + 1, n)) = 0, and for W (2k, n), σ(W (2k, n)) = −n+ 1.
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In particular, Mishra and Staffeldt [57] compute polynomial knot invariants and

knot homologies for the infinite subfamily W (3, n) of the family of weaving knots.

We shall use some of their results in our work. Our interest lies in certain families

of weaving knots, namely, W (3, n) and W (p, 2), and some of their generalizations.

2.4.3 Spiral knots

The family of spiral knots is introduced by Brothers et al. [13]. It generalizes the

families of torus links and weaving knots.

Definition 2.4.3. Let n, k ∈ Z+ and let ϵ = (ϵ1, ϵ2, . . . , ϵn−1) be an (n − 1)-tuple

such that each ϵi ∈ {−1, 1}. The spiral knot S(n, k, ϵ) is the knot or link obtained

as the closure of the n-strand braid (σϵ1
1 σϵ2

2 · · ·σϵn−1

n−1 )
k.

Here n and k are called the strand number and the repetition index, respectively,

of the spiral knot S(n, k, ϵ). The braid α = σϵ1
1 σϵ2

2 · · ·σϵn−1

n−1 is called the base braid

word of the spiral knot S(n, k, ϵ).

In particular, S(n, k, ϵ) represents the torus link T (n, k) if ϵi = 1 for each i. If

ϵi = (−1)i+1 for i = 1, 2, . . . , n− 1, then S(n, k, ϵ) is the weaving knot W (n, k). The

authors of the introductory paper [13] studied three topological properties of spiral

knots — the genus, bounds of the crossing number, and the m-alternating excess.

Later, Kim et al. [44] calculated spiral knot determinants for strand number n ≤ 4.

More precisely, they proved the following result.

Theorem 2.4.2 ([44, Theorem 2]). The determinants of the spiral knots S(n, k, ϵ)

with n ≤ 4 are given by the following formulas:

(i) det(S(2, k, (1))) = k,

(ii) det(S(3, k, (1, 1))) = 2− (1−i
√
3)k+(1+i

√
3)k

2k
,

(iii) det(S(3, k, (1,−1))) = (3−
√
5)k+(3+

√
5)k

2k
− 2,

(iv) det(S(4, k, (1, 1, 1))) = k
(
1− ik+i−k

2

)
,

(v) det(S(4, k, (1, 1,−1))) = k3,

(vi) det(S(4, k, (1,−1, 1))) = k ((2−
√
3)k+(2+

√
3)k−2)

2
.

It is interesting that the determinant formulas in Theorem 2.4.2 correspond

to the sequences: A000027, A131027, A004146, A251610, A000578, and A006235,

respectively, in the Online Encyclopedia of Integer Sequences (OEIS).

Spiral knots constitute a much larger class of knots and links as compared to the

torus links and weaving knots. Therefore it is anticipated to explore possibilities

https://oeis.org/A000027
https://oeis.org/A131027
https://oeis.org/A004146
https://oeis.org/A251610
https://oeis.org/A000578
https://oeis.org/A006235
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of extending results known for torus links and weaving knots to spiral knots. Since

torus links and weaving knots show contrasting properties, it will be interesting to

study their invariants in the unified set-up of spiral knots. For instance, observe the

form and complexity of determinant formulas in Theorem 2.4.2.

2.4.4 Closed 3-braids

Knots and links obtained by taking the closure of 3-braids are a well-studied class.

Murasugi [64] classified 3-braids up to conjugation into normal forms and used it

to study topological invariants of closed 3-braids. This includes computations of

the Alexander polynomial, calculation of the knot signature, and determination of

braid indices for several knots. Moreover, the characterization of closed 3-braids split

links, and a necessary condition for any link to be a closed 3-braid are presented.

Murasugi’s monograph [64] is heavily computational in nature, which studies closed

3-braids from the purely algebraic point of view.

Birman and Menasco [10] classified all closed 3-braid links. Some other

remarkable results pertaining to closed 3-braids are — a formula for the Alexander

polynomial by Morton [60], calculation of the signature by Erle [23], and

classification of alternating closed 3-braids by Stoimenow [82].

The Burau representation has been an effective tool in the study of knots and

links via their closed braid representations. Birman [9] studied the Jones polynomial

of closed 3-braids using the Burau representation and proved that for any 3-braid,

its exponent sum and the trace of its Burau matrix completely determine the Jones

polynomial of its closure. More precisely, the following general formula was derived.

Theorem 2.4.3 ([9, p. 289]). Let φ be the reduced Burau representation. For any

α ∈ B3, if L = α̂ denotes the link determined by the closure of the braid α, then the

Jones polynomial of L is given by

VL(t) = (−
√
t)eα

(
t+ t−1 + trace φ(α)

)
(2.3)

where eα is the exponent sum of α as a word.

Qazaqzeh and Chbili [74] employed Theorem 2.4.3 and Murasugi’s classification

to derive the following explicit formula for the determinant of any closed 3-braid.

Proposition 2.4.4 ([74, Proposition A.1]).

1. Let h = (σ1σ2)
3. Suppose that α = hnσp1

1 σ−q12 · · ·σps
1 σ−qs2 and L = α̂, where

s, pi, qi are positive integers. Let p =
∑s

i=1 pi and q =
∑s

i=1 qi.
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(a) If n is odd, then

det(L) = 4 + pq +
s∑

k=2
i1<···<ik

pi1 · · · pik(qi1 + · · ·+ qi2−1)

· · · (qik−1
+ · · ·+ qik−1)(q − (qi1 + · · ·+ qik−1

)).

(b) If n is even, then

det(L) = pq +
s∑

k=2
i1<···<ik

pi1 · · · pik(qi1 + · · ·+ qi2−1)

· · · (qik−1
+ · · ·+ qik−1)(q − (qi1 + · · ·+ qik−1

)).

2. If L = ĥnσm
2 where m ∈ Z, then det(L) = 0 if n is even and det(L) = 4 if n

is odd.

3. If L = ̂hnσm
1 σ
−1
2 where m{−1,−2,−3}, then det(L) = 2 if m = −2 and

det(L) = 2 + (−1)3n+m if m = −1 or −3.

Recently, Chbili [18] utilized Birman’s result to study the structure of the Jones

polynomial of closed 3-braids.

2.4.5 Twisted generalized hybrid weaving knots

Singh, Mishra and Ramadevi [80] derived a closed-form expression for HOMFLY-PT

polynomials of hybrid weaving knots. While extending their work to a wider class

of links, Singh and Chbili [79] introduced the family of twisted generalized hybrid

weaving knots. These knots and links generalize the family of hybrid weaving knots,

which itself is a generalization of the family of 3-strand weaving knots W (3, n).

Definition 2.4.4. Let m1,m2, n ∈ Z+ and ℓ ∈ Z. The twisted generalized hybrid

weaving knot Q̂3(m1,−m2, n, ℓ) is the knot or link obtained by the closure of the

3-strand braid (σm1
1 σ−m2

2 )n(σ1σ2)
3ℓ.

Figure 2.20 shows the standard closed braid presentation of Q̂3(m1,−m2, n, ℓ).

Although the collection of twisted generalized hybrid weaving knots is a small subset

of closed 3-braids, it contains many interesting knots and links as mentioned in

Table 2.1.



Chapter 2. Background 25

· · ·
· · ·

m1

m2

· · · · · ·
· · ·

m1

m2

n
︸ ︷︷ ︸

· · ·

3ℓ
︸ ︷︷ ︸

Figure 2.20: Twisted generalized hybrid weaving knot.

Table 2.1: Examples of twisted generalized hybrid weaving knots.

Q̂3(1,−1, n, 0) weaving knot W (3, n)

Q̂3(m,−m,n, 0) hybrid weaving knot Ŵ3(m,n)

Q̂3(q,−1, 1, 0) torus knot T (2, q)

Q̂3(1,−5, 1, 2) Perko’s pair of knots {10161, 10162}

Singh and Chbili [79] applied a modified version of the Reshitikhin-Turaev

method to obtain a closed-form expression for the HOMFLY-PT polynomial of

Q̂3(m1,−m2, n, ℓ). The formula obtained is notably explicit, but rather difficult to

comprehend as it even involves terms of quadruple summation of various binomial

coefficients. An interesting revelation from their study is the following relationship

between the determinants of twisted hybrid weaving knot and generalized Lucas

numbers (see [79]).

Conjecture 1 ([79, Conjecture 2]). Let {Lm,n : n = 0, 1, 2, . . .} denote the sequence

of m-Lucas numbers. Then we have

det(Q̂3(m,−m,n, 0)) = Lm,2n − 2,

det(Q̂3(m,−m,n,±1)) = Lm,2n + 2.

It is mentioned in the same paper that for m = 1, the result has already

been proved in [44,69]. For a better understanding of these formulas, we recall

the definition of generalized Lucas numbers. For each m ∈ Z+, the sequence of

m-Lucas numbers, denoted by {Lm,n : n = 0, 1, 2, . . .}, may be recursively defined

by Lm,0 = 2, Lm,1 = m, and Lm,n+1 = mLm,n + Lm,n−1, for n ≥ 1.

Falcon [24] proved the following Binet formula for m-Lucas numbers, some

particular cases of which are mentioned in the Table 2.2.

Theorem 2.4.5 ([24, Theorem 2.2]). For each m ∈ Z+, m-Lucas numbers are given
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by the formula

Lm,n = Φn
m + (−Φ−1m )n, where Φm =

m+
√
m2 + 4

2
.

Table 2.2: Some generalized Lucas numbers.

m Φm Lm,n

1 1+
√
5

2
(the golden ratio) Lucas numbers: 2, 1, 3, 4, 7, 11, 18, . . .

2 1 +
√
2 (the silver ratio) Pell-Lucas numbers: 2, 2, 6, 14, 34, 82, 198, . . .

3 3+
√
13

2
(the bronze ratio) 3-Lucas numbers: 2, 3, 11, 36, 119, 393, 1298, . . .

The family of twisted generalized hybrid weaving knots contains a large class of

quasi-alternating links, which is an interesting generalization of alternating links.

Further, using the expression of the HOMFLY-PT polynomial of Q̂3(m1,−m2, n, ℓ),

Singh and Chbili [79] computed the exact coefficients of the Jones and Alexander

polynomials of Q̂3(1,−1, n,±1). They also proved that the asymptotic nature of the

absolute values of the coefficients of the Alexander polynomials of Q̂3(1,−1, n, ℓ) for
ℓ ∈ {0,−1, 1} is trapezoidal. Moreover, the colored HOMFLY-PT polynomials of

these knots were computed.

2.4.6 Quasi-alternating links

Ozsváth and Szabó [71] introduced quasi-alternating links in their study of Heegaard

Floer homology theory. Quasi-alternating links are defined recursively as follows:

Definition 2.4.5. The set Q of quasi-alternating links is the smallest set of links

which satisfies the following two properties:

1. The unknot is in Q.

2. If a link L admits a diagram with a crossing for which

(a) both resolutions L0, L1 ∈ Q, see Figure 2.21,

(b) det(L) = det(L0) + det(L1),

then L ∈ Q.

L L0 L1

Figure 2.21: Resolutions of a crossing.
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It is certainly not easy to apply this definition, due to its recursive nature, for

showing a link to be quasi-alternating. Moreover, it is impossible to use the same

to prove that a given link is not quasi-alternating. Therefore, to understand which

links are quasi-alternating and which links are not, one needs to examine topological

invariants of quasi-alternating links. But this topic goes beyond the scope of our

study, and therefore, will not be addressed here. Nevertheless, we discuss some basic

results on quasi-alternating links, which will be used later in our study.

Ozsváth and Szabó [71] showed that every alternating knot and every non-split

alternating link is quasi-alternating. There also exist examples of quasi-alternating

knots and links that are non-alternating, for instance, 820 ∈ Q. On the other hand,

several necessary conditions for a link to be quasi-alternating have been introduced

over the last two decades, one of which is mentioned at the end of this subsection.

One of the remarkable results is the classification of quasi-alternating 3-braids links

by Baldwin [7], which is as follows:

Theorem 2.4.6 ([7, Theorem 8.6]). Let h = (σ1σ2)
3 ∈ B3. The following is a

complete classification of quasi-alternating links with braid index at most 3.

1. If K is the closure of the braid hdσ1σ
−a1
2 · · ·σ1σ

−an
2 , where ai ≥ 0 and some

aj ̸= 0, then K ∈ Q if and only if d ∈ {−1, 0, 1}.

2. If K is the closure of the braid hdσm
2 , then K ∈ Q if and only if either d = 1

and m ∈ {−1,−2,−3} or d = −1 and m ∈ {1, 2, 3}.

3. If K is the closure of the braid hdσm
1 σ
−1
2 , where m ∈ {−1,−2,−3}, then K ∈ Q

if and only if d ∈ {0, 1}.

It follows from Theorem 2.4.6 that the twisted generalized hybrid weaving knot

Q̂3(m1,−m2, n, ℓ) is quasi-alternating if and only if ℓ ∈ {−1, 0, 1}. In particular, the

knot Q̂3(1,−5, 1, 2), which belongs to the isotopy class of the Perko’s pair of knots

{10161, 10162}, is not quasi-alternating.
The determinants of quasi-alternating links play an integral part in the study of

their isotopy invariants. Qazaqzeh and Chbili [74] gave an obstruction criteria for

a link to be quasi-alternating by studying their Q-polynomials and determinants.

Later, Teragaito [85] found a refinement of the same. These results are as follows:

Theorem 2.4.7 ([74, Theorem 2.2]). If L ∈ Q, then degQL ≤ det(L)− 1.

Theorem 2.4.8 ([85, Theorem 1.2]). If L ∈ Q and L is not a (2, q)-torus link, then

degQL ≤ det(L)− 2.

A list of other such necessary conditions for a link to be quasi-alternating is given

in Qazaqzeh and Chbili [75].
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2.5 Spatial graphs and their invariants

Definition 2.5.1. Let Γ = (V,E) be a graph. A subset G of R3 is a spatial graph

if there exists an embedding f : Γ→ R3 such that G = f(Γ).

In particular, if Γ is the graph that consists of two vertices joined by three edges,

i.e., Γ = , then G is called a theta-curve. For example, Kinoshita’s theta-curve is

shown in Figure 2.22. It is a known fact that every finite graph can be embedded

into R3.

Figure 2.22: Kinoshita theta-curve.

Spatial graph theory is a generalization of knot theory in the sense that all knots

and links are embeddings of finitely many disjoint cycle graphs. Note that every

cycle graph is homeomorphic to S1. For two spatial graphs G1 and G2, if there

exists an isotopic deformation ht : R3 → R3, 0 ≤ t ≤ 1, such that h1(G1) = G2,

then we say that G1 and G2 are ambient isotopic. Equivalently, there exists an

orientation-preserving homeomorphism of R3 that maps G1 onto G2. This general

notion of the ambient isotopy presumes graph vertices to be pliable/topological in

nature, and therefore, it is also called the pliable isotopy. There is a category of

spatial graphs, known as flat/rigid vertex spatial graphs, having a slightly different

notion of ambient isotopy that considers graph vertices as rigid objects in R3. This

category has been an object of interest in spatial graph theory, for instance, the

Yamada polynomial [91] is an invariant of flat vertex spatial graphs.

A spatial graph G is said to be trivial, or unknotted, if there exists an isotopic

deformation {ht : 0 ≤ t ≤ 1} of R3 such that h1(G) ⊂ R2 or S2. Thus G necessarily

is a spatial embedding of a planar graph. It is clear from the Kuratowski’s theorem

in graph theory that there exist graphs which does not admit a planar embedding.

Therefore no spatial embedding of a non-planar graph is trivial. The notion of link

diagrams extends to spatial graph diagrams in a natural way.

Definition 2.5.2. A subset D of R2 is a spatial graph diagram of the spatial graph

G if D = π(G) is a regular projection having a finite number of transverse double

points that are equipped with the over/under crossing information and disjoint from

the images of the vertices of the graph.
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Some examples of spatial graph diagrams are given in Figure 2.23, where K6

denotes the complete graph on 6-vertices.

(a) A diagram of K6 ↪→ R3. (b) Kinoshita theta-curve.

b

(c) Simon graph.

Figure 2.23: Spatial graph diagrams.

Kauffman [42] and Yetter [92] independently described spatial graph equivalence

in terms of combinatorial moves on spatial graph diagrams. Yamada [91] also studied

spatial graphs from a diagrammatic point of view around the same time. Their

papers generalize Reidemeister’s theorem from links to spatial graphs.

Theorem 2.5.1. Two embedded graphs are ambient isotopic if and only if any two

diagrams of them are related by a finite sequence of the Reidemeister moves and the

Reidemeister vertex moves, shown in Figure 2.24.

· · · · · · · · ·←→ ←→IV.

←→ ←→...
...

...V.

Figure 2.24: Reidemeister vertex moves.

It can be observed in Theorem 2.5.1 that the V-move considers the graph vertex

to be topological in nature. Therefore, a twist in the strands emanating from such

a vertex can be undone without altering the other strands incident to that vertex.

However, there is an analogue of this move for flat or rigid vertex spatial graphs,

but it is not necessary to be discussed here.

Several invariants of links have been extended to spatial graphs over the years.

Moreover, by exploiting the underlying graph structure, new invariants of spatial

graphs were also invented. The crossing number of a spatial graph is defined in the

following natural way. For any spatial graph G, its crossing number c(G) is defined

as the minimum number of crossing points among all spatial graph diagrams of G.

For example, the crossing number of Kinoshita theta-curve (Figure 2.23b) is 5; see

[61] for a proof.
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Further, the concept of unknotting number naturally generalizes to those spatial

graphs which are embeddings of some planar graph. Recall that a spatial graph is

trivial if it can be embedded in R2. Mason [55] proved that any two trivial spatial

embeddings of a planar graph are ambient (or pliably) isotopic. Equivalently, in

the language of diagrams in a plane, every spatial graph diagram of a trivial spatial

graph can be converted to a diagram that has no crossings by a finite sequence of

Reidemeister moves for spatial graphs.

Let Γ be a planar graph and let G = f(Γ) be a spatial graph defined by the

embedding f : Γ→ R3. The unknotting number u(G) of the spatial graph G is the

minimum number of crossing changes required to convert G to the trivial embedding

of Γ, where the minimum is taken over all spatial graph diagrams representing G.

Buck and O’Donnol [14] calculated unknotting numbers of the theta-curves in the

Litherland-Moriuchi table. Recently, Akimoto and Taniyama [1] showed that the

inequality u(G) ≤ c(G)
2
, where c(G) is the crossing number of the spatial graph G

does not hold in general, unlike the case of knots. In fact, they proved the following

result.

Theorem 2.5.2 ([1, Theorem 1.3]). Let Γ be a planar graph. Then there exist real

numbers A and B with the following property. For any spatial embedding f : Γ→ R3

of Γ, u(G) ≤ A · c(G) +B, where G = f(Γ).

Conway and Gordon [20] presents a remarkable knot-theoretic treatment of

spatial graphs. Let Kn denote the complete graph on n vertices. The following

results from their paper have inspired several results in the theory of spatial graphs.

Theorem 2.5.3 ([20, Theorem 1-2]).

1. Every spatial embedding of K6 contains a non-trivial link.

2. Every spatial embedding of K7 contains a non-trivial knot.

Kauffman [42] introduces methods for constructing invariants of spatial graphs.

Given a spatial graph G, associate a collection of knots and links to G as follows: At

each vertex v of G, make a local replacement which leaves any two edges connected

but unplugs all other edges incident to v. An illustration is given in Figure 2.25. If

the degree of the vertex v is deg(v) = n, then there are n(n−1)
2

choices available for a

local replacement to be made at v. Having chosen a replacement at each vertex of G,

let L denote the link obtained by this process after eliminating the open-ended arcs.

Define T (G) to be the collection of links L for all possible choices of a replacement.

Then Kauffman proved that T (G) is an invariant of G in [42]. The collection T (G) is

precisely the set of all knots and links contained in G. If G = Kinoshita theta-curve

or Simon graph (Figure 2.23b and 2.23c), then T (G) = {01} or {01, 41}, respectively.
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It is clear that any invariant of a link L ∈ T (G) remains invariant for the spatial

graph G as well.

Moreover, there are several invariants directly defined for spatial graphs. For

example, Alexander polynomials as generalized by Kinoshita [45,46], the Yamada

polynomial [91] for flat/rigid vertex spatial graphs, topological symmetry group by

Simon [77].

7→ , ,

Figure 2.25: Local replacements at a degree-3 vertex.

The problems that arise when we study the theory of links, or more generally

spatial graphs, can be divided into two categories — the global problems and the

local problems. Whilst global problems concern themselves with how the totality

of all links behaves, local problems concern the quintessential properties of a given

link. In spatial graph theory, these problems grow manifold as one can choose any

graph to study its embeddings. One fundamental approach to the theory of spatial

graphs is to seek knots or links associated with spatially embedded graphs. In fact,

Conway and Gordon [20], Kauffman [42], Wolcott [90], etc. primarily revolutionized

and used this approach. Among the plethora of graphical structures, each of them

having countless spatial embeddings, theta-curves are much studied in the literature

due to their close resemblance with knots.

Let Θ be a theta-curve with vertices labeled as {v1, v2} and edges as {e1, e2, e3}.
But we often do not show the underlying labels. A constituent knot Kij (1 ≤ i <

j ≤ 3) of Θ is the embedded cycle v1eiv2ejv1 ⊂ R3. For example, the constituent

knots of Kinoshita theta-curve (Figure 2.23b) are shown in Figure 2.26.

Figure 2.26: The constituent knots of Kinoshita theta-curve.

Wolcott [90] studies the knot theory of theta-curves in great detail. It provides

methods to combine spatial graphs by means of order-n vertex connect sums, which

are different from the classical connected sums of spatial graphs defined by Suzuki.

For any two theta-curves Θ and Θ′, their order-3 vertex connect sum, denoted by

Θ♯3Θ
′, is defined as follows: Remove three-ball small neighborhoods of vertices v2

and v1 of Θ and Θ′ respectively and then glue the remaining three-balls together

in such a way that the images of the edge ei in the boundary of each three-ball are
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identified. The resultant theta-curve obtained in this way is uniquely determined

up to ambient isotopy. Of course, matching different edges, let’s say e1, e2, e3 of Θ

with e2, e1, e3 of Θ′ respectively, may produce different sum graphs. Example of an

order-3 vertex connect sum of two theta-curves is shown in Figure 2.27.

bbb b bb

Figure 2.27: Order-3 vertex connect sum of theta-curves.

An enumeration of all the prime theta-curves with up to seven crossings has been

carried out independently by Litherland (1989) and Moriuchi [59]. Moriuchi utilized

the concept of tangles and prime basic θ-polyhedrons for the classification, which

are essentially generalizations of Conway’s idea of tangles and basic polyhedrons

used for enumerating knots and links. A cropped picture of the Litherland-Moriuchi

table is shown in Figure 2.28.

Figure 2.28: Litherland-Moriuchi (truncated) table. Courtesy of Moriuchi [59].
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Evaluations of Knot Determinants

This chapter presents compact formulas for the determinant of certain families of

weaving knots and their generalizations. The methods used are based on evaluating

either the Alexander or the Jones polynomial at a specific root of unity.

3.1 Some results on the Jones polynomial

For each n ∈ Z+, the 2-strand weaving knotW (2, n) is same as the torus link T (2, n),

for which most of the invariants are explicitly known. This section examines the

Jones polynomial for the following infinite subfamilies of weaving knots.

1. The weaving knots of 3-strands, {W (3, n) : n = 1, 2, 3, . . .}.

2. The weaving knots of repetition index 2, {W (p, 2) : p = 2, 3, 4, . . .}.

Mishra and Staffeldt [57, p. 31] proved the following recursive formula for the

Jones polynomial of the weaving knot W (3, n).

VW (3,n)(t) = t−n−1
[
(1 + t)2Cn,0(t) + (1 + t)

(
Cn,1(t) + Cn,2(t)

)
t2+

(
Cn,12(t) + Cn,21(t)

)
t4
]
,

(3.1)

where the polynomials Cn,0(t), Cn,1(t), Cn,2(t), Cn,12(t), Cn,21(t) ∈ Z[t] are recursively
defined by

Cn,0(t) = −t(t− 1)Cn−1,1(t) + t2Cn−1,21(t), (3.2a)

Cn,1(t) = −(t− 1)Cn−1,0(t)− (t− 1)2Cn−1,1(t), (3.2b)

Cn,2(t) = tCn−1,1(t), (3.2c)

Cn,12(t) = Cn−1,0(t) + (t− 1)Cn−1,1(t), (3.2d)

Cn,21(t) = tCn−1,12(t), (3.2e)

with initial values C1,0(t) = 0, C1,1(t) = −(t − 1), C1,2(t) = 0, C1,12(t) = 1, and

C1,21(t) = 0. In [37], we reformulate this result of Mishra and Staffeldt in terms of

matrices as follows:
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Theorem 3.1.1. Let

Cn(t) =
[
Cn,0(t) Cn,1(t) Cn,2(t) Cn,12(t) Cn,21(t)

]T
,

where n is any positive integer, Cn,0(t), Cn,1(t), Cn,2(t), Cn,12(t), Cn,21(t) ∈ Z[t], and

C1(t) =
[
0 −(t− 1) 0 1 0

]T
.

For n ≥ 2, if Cn(t) = M(t)Cn−1(t), where

M(t) =




0 −t(t− 1) 0 0 t2

−(t− 1) −(t− 1)2 0 0 0

0 t 0 0 0

1 t− 1 0 0 0

0 0 0 t 0




,

then the Jones polynomial VW (3,n)(t) of the weaving knot W (3, n) is given by (3.1).

Proof. The system of equations (3.2a)–(3.2e) is equivalent to the matrix equation

Cn(t) = M(t)Cn−1(t). Hence (3.1) holds.

Using Theorem 3.1.1, rewrite (3.1) as:

VW (3,n)(t) = t−n−1 Z(t)Cn(t) = Z(t)
(
t−n−1Mn−1(t)

)
C1(t), (3.3)

where the matrix

Z(t) =
[
(1 + t)2 (1 + t)t2 (1 + t)t2 t4 t4

]
.

We shall use (3.3) to derive a formula for the determinant of the weaving knot

W (3, n) by evaluating VW (3,n)(t) at t = −1 in Theorem 3.2.1.

Similarly, we want to derive a knot determinant formula for the weaving knot

W (p, 2) by evaluating its Jones polynomial at t = −1. To accomplish this goal,

we prove a recursive formula for the Jones polynomial of the weaving knot W (p, 2)

in [37], which is as follows:

Theorem 3.1.2. For the weaving knot W (p, 2) where p ≥ 2, the Jones polynomial

is recursively defined by the equations:

VW (2,2)(t) = −(t
5
2 + t

1
2 ),

VW (3,2)(t) = t−2 − t−1zVW (2,2)(t), where z = t
1
2 − t−

1
2 ,
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and for any integer n ≥ 2,

VW (2n,2)(t) = t2VW (2n−2,2)(t) + tzVW (2n−1,2)(t),

VW (2n+1,2)(t) = t−2VW (2n−1,2)(t)− t−1zVW (2n,2)(t).

Proof. The skein relation (2.2) can be written as

VK+(t) = t2VK−(t) + tzVK0(t), or

VK−(t) = t−2VK+(t)− t−1zVK0(t), where z = t
1
2 − t−

1
2 .

By considering skein triples (K−, K+, K0) = (W (2n+ 1, 2),W (2n− 1, 2),W (2n, 2))

and (K+, K−, K0) = (W (2n, 2),W (2n− 2, 2),W (2n− 1, 2)) at marked crossings in

the skein tree diagram shown in Figure 3.1, we obtain the desired equations.

t−2 t−1z

≃ ≃

W (2n− 1, 2) W (2n, 2)

W (2n+ 1, 2) ≃

W (2n− 2, 2)

t2 tz

≃

W (2n− 1, 2)

≃

Figure 3.1: A skein tree diagram.
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As an application, we shall use Theorem 3.1.2 to calculate the determinant of

the weaving knot W (p, 2) in Theorem 3.3.1.

3.2 Determinants of 3-strand weaving knots

In this section, we use the letter ‘φ’ to denote the golden ratio (see Table 2.2), which

has also been used to denote the Burau representation. Nevertheless, both of them

are easily distinguishable in the context in which they appear.

On substituting t = −1 in (3.1), we obtain that

|VW (3,n)(−1)| = |Cn,12(−1) + Cn,21(−1)| = det(W (3, n)).

It is clear from (3.2) that for any n, none of the Cn,12(t), Cn,21(t), Cn,1(t), and Cn,0(t)

depends on C−,2(t). Henceforth, we exclude C−,2(t) from our calculations and prove

the following formula in [37].

Theorem 3.2.1. Let φ = 1+
√
5

2
. Then the determinant of the weaving knot W (3, n)

is given by

det(W (3, n)) = −2 + (1 + φ)n + (1− φ−1)n. (3.4)

Proof. Let Z̃, M̃ , and C̃1 be the matrices obtained from the matrices Z(−1), M(−1),
and C1(−1) by deleting their third column, third row and third column, and third

row, respectively. Thus, C−,2(t) is eliminated and we have

Z̃ =
[
0 0 1 1

]
, M̃ =




0 −2 0 −1
2 −4 0 0

1 −2 0 0

0 0 −1 0



, C̃1 =




0

2

1

0



.

The characteristic polynomial of the matrix M̃ is fM̃(x) = x4 + 4x3 + 4x2 + x. The

eigenvalues of M̃ are 0,−1,−3+
√
5

2
,−3−

√
5

2
. Clearly, M̃ is diagonalizable over R and

M̃ = PDP−1, where

P =




3 2 5+
√
5

2
5−
√
5

2

2 1 3 +
√
5 3−

√
5

1 0 3+
√
5

2
3−
√
5

2

1 2 1 1



, D =




−1 0 0 0

0 0 0 0

0 0 −
(

3+
√
5

2

)
0

0 0 0 −
(

3−
√
5

2

)



,
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P−1 =




1 0 −1 −1
0 1 −2 0
√
5−5
10

3√
5
− 1 5

2
− 11

2
√
5

1− 2√
5

−
√
5−5
10

− 3√
5
− 1 5

2
+ 11

2
√
5

1 + 2√
5



.

After substituting t = −1 in (3.3), we obtain

det(W (3, n)) =
∣∣Z(−1)

(
(−1)n−1Mn−1(−1)

)
C1(−1)

∣∣

=
∣∣∣Z̃
(
(−1)−n−1M̃n−1

)
C̃1

∣∣∣

=

∣∣∣∣Z̃
(
−M̃

)n−1
C̃1

∣∣∣∣

=
∣∣∣
(
Z̃P
)
(−D)n−1

(
P−1C̃1

)∣∣∣

=
[
2 2 5+

√
5

2
5−
√
5

2

]




1 0 0 0

0 0 0 0

0 0 3+
√
5

2
0

0 0 0 3−
√
5

2




n−1 


−1
0

5+
√
5

10

5−
√
5

10




= −2 +
(
3 +
√
5

2

)n

+

(
3−
√
5

2

)n

= −2 +
(
1 +

1 +
√
5

2

)n

+

(
1− 2

1 +
√
5

)n

.

This completes the proof.

Remark 3.2.1. Oesper [69, p. 15] derived the following formula for the determinant

of the weaving knot W (3, n) by using the minor crossing matrix for its standard

closed braid diagram

det(W (3, n)) = −(C2n−2 + 1)C2n + (C2n−1)
2, where Cj =

j∑

i=1

(−1)i+1fi

and fi = i-th Fibonacci number (see for example Singh [78]). Using Krebes’s

approach [47] for calculating the knot determinant via alternating diagrams,

Stoimenow [84, Lemma 3.1] showed that

det
(

̂(σ1σ
−1
2 )k

)
= ck, where ck = F2k + 2

k−1∑

i=1

F2i

and Fi = i-th Fibonacci number. Later, Kim, Stees and Taalman [44, p. 9] simplified
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Oesper’s formula using identities of Fibonacci and Lucas numbers to deduce that

det(W (3, n)) = L2n − 2, where Lk =
(1 +

√
5)k + (1−

√
5)k

2k

is the k-th Lucas number, same as (3.4). Burton [16] has also proved the same result

using a result on the determinants of block tridiagonal matrices. It is important to

observe that all these proofs use distinct methods.

3.3 Determinants of weaving knots of repetition

index 2

It is interesting to know if there is a general formula for the determinant of any

weaving knotW (p, n). To the best of my knowledge, such a formula is not yet known.

Nevertheless, we derive a formula for the determinant of the p-strand weaving knot

of repetition index 2 in [37].

Theorem 3.3.1. Let δS = 1 +
√
2. Then the determinant of the weaving knot

W (p, 2) is given by

det(W (p, 2)) =
δpS −

(
−δ−1S

)p

2
√
2

. (3.5)

Proof. Substitute t = −1 in Theorem 3.1.2. Put an = VW (2n,2)(−1) and bn =

VW (2n+1,2)(−1) for n = 1, 2, 3, . . .. Then

z = 2i,

a1 = −2i, a2 = −12i, b1 = 5, b2 = 29,

an = an−1 − 2ibn−1, bn = bn−1 + 2ian (n ≥ 3).

This implies

an+1 − an
−2i =

an − an−1
−2i + 2ian ⇒ an+1 = 6an − an−1 (n ≥ 2),

bn − bn−1
2i

=
bn−1 − bn−2

2i
− 2ibn−1 ⇒ bn = 6bn−1 − bn−2 (n ≥ 3).

The characteristic equation of both the linear recurrence relations is x2−6x+1 = 0.

Its roots are 3+2
√
2 = δ2S and 3−2

√
2 = δ−2S . By solving these recurrence relations

for the given initial conditions, we obtain

an =
−i(3 + 2

√
2)n + i(3− 2

√
2)n

2
√
2

,

bn =
(1 +

√
2)(3 + 2

√
2)n − (1−

√
2)(3− 2

√
2)n

2
√
2

.
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Since det(W (2n, 2)) = |an| and det(W (2n+ 1, 2)) = |bn|, we obtain (3.5).

Remark 3.3.1. Note that an alternative proof of Theorem 3.3.1 by counting the

number of spanning trees in a checkerboard graph of W (p, 2) has been obtained

in Dowdall et al. [22]. It is appealing that det(W (p, 2)) turns out to be the p-th

Pell number, which is expressed in terms of the silver ratio δS (see Table 2.2). Pell

numbers arise in solutions of the Pell’s equation x2−ny2 = ±1 when solved for n = 2.

Alternatively, the sequence of Pell numbers {Pn}∞n=0 is defined by P0 = 0, P1 = 1,

and Pn = 2Pn−1 + Pn−2 for n ≥ 2.

The appearance of Pell and Lucas numbers in the determinant formulae presented

in Section 3.3 and 3.2 are not limited to only these weaving knots. We shall see that

knot determinants for other families of weaving knots can also be formulated in

terms of similar well-known sequences of integers.

In the end, we present Table A.3 in Appendix A for values of the determinant

of the weaving knot W (p, n) for p, n ≤ 8.

3.4 Determinants of twisted generalized hybrid

weaving knots

Recently, Singh and Chbili [79] defined twisted generalized hybrid weaving knots,

which constitute a subset of the set of closed 3-braids. Moreover, they conjectured

that the determinant of certain twisted generalized hybrid weaving knots could be

expressed in terms of the generalized Lucas numbers, as discussed in Section 2.4.

However, this relationship is not evident from the general determinant formula of

any closed 3-braid, Proposition 2.4.4, given by Qazaqzeh and Chbili.

We find a compact formula for the determinant of any twisted generalized hybrid

weaving knot in [39]. This result is an outgrowth of our attempts to prove the

formulas mentioned in Conjecture 1. We denote the collection of twisted generalized

hybrid weaving knots by

F := {Q̂3(m1,−m2, n, ℓ) : m1,m2, n ∈ Z+, ℓ ∈ Z}.

Theorem 3.4.1. For any Q̂3(m1,−m2, n, ℓ) ∈ F , the knot determinant is given by

det(Q̂3(m1,−m2, n, ℓ)) =

(
2 +m1m2 +

√
m2

1m
2
2 + 4m1m2

2

)n

+

(
2 +m1m2 −

√
m2

1m
2
2 + 4m1m2

2

)n

+ (−1)ℓ+1 2.

(3.6)
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Proof. Let φ be the group homomorphism mentioned in Theorem 2.3.1, and let

A = φ(σ1)
∣∣
t=−1 =


1 1

0 1


 , B = φ(σ2)

∣∣
t=−1 =


 1 0

−1 1


 .

If β = (σm1
1 σ−m2

2 )n(σ1σ2)
3ℓ, then its closure β̂ = Q̂3(m1,−m2, n, ℓ) and φ(β)

∣∣
t=−1 =

(Am1B−m2)n(AB)3ℓ. Observe that (AB)3 = −I. Let

C = Am1B−m2 =


1 +m1m2 m1

m2 1


 .

Then the characteristic polynomial of the matrix C is f(x) = x2− (2 +m1m2)x+1

and the eigenvalues of C are

2 +m1m2 +
√

m2
1m

2
2 + 4m1m2

2
,

2 +m1m2 −
√

m2
1m

2
2 + 4m1m2

2
.

Thus, C is a diagonalizable matrix over R. Hence, there exists an invertible matrix

P such that C = PDP−1, where D is a diagonal matrix whose diagonal entries are

the eigenvalues of C. Using (2.1), we get

±∆Q̂3(m1,−m2,n,ℓ)
(−1) = det(φ(β)− I)

∣∣
t=−1

= det((Am1B−m2)n(AB)3ℓ − I)

= det((−1)ℓCn − I)

= det(PDnP−1 − (−1)ℓI)
= det(Dn + (−1)ℓ+1I)

=

[(
2 +m1m2 +

√
m2

1m
2
2 + 4m1m2

2

)n

+ (−1)ℓ+1

]
×

[(
2 +m1m2 −

√
m2

1m
2
2 + 4m1m2

2

)n

+ (−1)ℓ+1

]

= (−1)ℓ+1

(
2 +m1m2 +

√
m2

1m
2
2 + 4m1m2

2

)n

+

(−1)ℓ+1

(
2 +m1m2 −

√
m2

1m
2
2 + 4m1m2

2

)n

+ 2.

Since det(Q̂3(m1,−m2, n, ℓ)) = |∆Q̂3(m1,−m2,n,ℓ)
(−1)|, we obtain (3.6).

Remark 3.4.1. Theorem 3.4.1 can alternatively be proved by doing a similar

calculation with the Birman’s formula (2.3).
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Now we present some applications of this result. First, we recover 3-strand

weaving knot determinants.

Corollary 3.4.2. Let {Ln : n = 0, 1, 2, . . .} denote the sequence of Lucas numbers.

Then for the weaving knot W (3, n), we have

det(W (3, n)) = L2n − 2. (3.7)

Proof. Note that Q̂3(1,−1, n, 0) = W (3, n). If we substitute m1 = m2 = 1 and ℓ = 0

in (3.6), it yields

det(Q̂3(1,−1, n, 0)) =
(
3 +
√
5

2

)n

+

(
3−
√
5

2

)n

− 2

=

(
1 +
√
5

2

)2n

+

(
1−
√
5

2

)2n

− 2

= L2n − 2.

Conjecture 1 provides a formula for the determinant of Q̂3(m,−m,n, ℓ), which is

either a hybrid weaving knot or a twisted hybrid weaving knot for ℓ ∈ {−1, 0, 1}, in
terms of generalized Lucas numbers. In the next corollary, we prove this conjecture

of Singh and Chbili.

Corollary 3.4.3. Let {Lm,n : n = 0, 1, 2, . . .} be the sequence of m-Lucas numbers.

Then for Ŵ3(m,n), Q̂3(m,−m,n,±1) ∈ F ,

det(Ŵ3(m,n)) = Lm,2n − 2, (3.8)

det(Q̂3(m,−m,n,±1)) = Lm,2n + 2. (3.9)

Proof. If m1 = m2 = m in Theorem 3.4.1 and Φm = m+
√
m2+4
2

, then (3.6) gives

det(Q̂3(m,−m,n, ℓ)) =

(
2 +m2 +

√
m4 + 4m2

2

)n

+

(
2 +m2 −

√
m4 + 4m2

2

)n

+ (−1)ℓ+1 2

= Φ2n
m + Φ−2nm + (−1)ℓ+1 2

= Lm,2n + (−1)ℓ+1 2. (3.10)

Note that Q̂3(m,−m,n, 0) = Ŵ3(m,n). By substituting ℓ = 0 and ℓ = ±1 in (3.10),

we obtain (3.8) and (3.9), respectively.

Observe that we can also recover the determinant of torus link T (2, q) from (3.6).
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Corollary 3.4.4. If q ∈ Z+ and T (2, q) is the torus knot or link of type (2, q), then

det(T (2, q)) = q.

Proof. Suppose that m1 = q, m2 = 1, n = 1 and ℓ = 0 in Theorem 3.4.1. Then

Q̂3(q,−1, 1, 0) = T (2, q) and (3.6) reduces to

det(T (2, q)) =
2 + q +

√
q2 + 4q

2
+

2 + q −
√

q2 + 4q

2
− 2 = q.

It follows from Baldwin’s classification, Theorem 2.4.6, that if ℓ ∈ Z \ {0, 1,−1},
then Q̂3(1,−5, n, ℓ) is not quasi-alternating for any n. Motivated by intellectual

curiosity, we give the following result wherein infinite families of quasi-alternating

3-braid links are distinguished by their determinants given in terms of the Lucas

numbers.

Corollary 3.4.5. For any Q̂3(1,−5, n, ℓ) ∈ F , the knot determinant is given by

det(Q̂3(1,−5, n, ℓ)) = L4n + (−1)ℓ+12.

Proof. After substituting m1 = 1 and m2 = 5 in (3.6), we get

det(Q̂3(1,−5, n, ℓ)) =
(
7 +
√
45

2

)n

+

(
7−
√
45

2

)n

+ (−1)ℓ+12

=

(
1 +
√
5

2

)4n

+

(
1−
√
5

2

)4n

+ (−1)ℓ+12

= L4n + (−1)ℓ+12.

In Corollary 3.4.5, we note that if n = 1 and ℓ = 2, then Q̂3(1,−5, n, ℓ) represents
the well-known Perko pair of equivalent knots {10161, 10162}.

Remark 3.4.2. Among closed 3-braids, it is important to note that 10139 ∈ F , whilst
10139 /∈ Q. On the other hand, 62 ∈ Q but 62 /∈ F because of the reasoning given

as follows:

Suppose Q̂3(m1,−m2, n, ℓ) = 62, for some m1,m2, n ∈ Z+ and some ℓ ∈ Z. Since
62 ∈ Q, we have ℓ ∈ {−1, 0, 1} by Theorem 2.4.6. In Theorem 3.4.1, if n ≥ 3, then

det(Q̂3(m1,−m2, n, ℓ)) ≥
(
3 +
√
5

2

)3

+

(
3−
√
5

2

)3

+ (−1)ℓ+1 2 ≥ 16.

Since det(62) = 11, therefore n ∈ {1, 2}. If n = 1, then det(Q̂3(m1,−m2, n, ℓ)) is

either m1m2 or 4 +m1m2. This gives

(m1,m2, n, ℓ) ∈ {(11, 1, 1, 0), (1, 11, 1, 0), (7, 1, 1,±1), (1, 7, 1,±1)}.
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But for none of these values, Q̂3(m1,−m2, n, ℓ) and 62 are isotopic knots since

∆Q̂3(m1,−m2,n,ℓ)
(t) ̸= ∆62(t). Similarly, if n = 2, then det(Q̂3(m1,−m2, n, ℓ)) is either

m2
1m

2
2 + 4m1m2 or 4 + m2

1m
2
2 + 4m1m2, which can never be equal to 11. Hence,

Q̂3(m1,−m2, n, ℓ) does not represent 62 for any m1,m2, n ∈ Z+ and any ℓ ∈ Z.

3.5 Determinants of 5-strand spiral knots

It is quite natural to explore if the technique used for proving Theorem 3.4.1 can be

employed to derive determinant formulas for other families of knots and links. Note

that for any α ∈ B4, if we substitute t = −1 in (2.1), then its left-hand side evaluates

to 0, and so is the right-hand side. Therefore, it is not possible to imitate our proof

of Theorem 3.4.1 unless we cancel the common factor on both sides of (2.1) before

substituting t = −1. In fact, the same problem persists for every even integer n.

However, our proof of Theorem 3.4.1 is generalizable for every odd integer n.

Using the same, we find determinant formulae for all 5-strand spiral knots, which

in fact, extends Theorem 2.4.2. If n = 5 in Theorem 2.3.1, then we have

σ1 7→




−t 1 0 0

0 1 0 0

0 0 1 0

0 0 0 1



, σ2 7→




1 0 0 0

t −t 1 0

0 0 1 0

0 0 0 1



,

σ3 7→




1 0 0 0

0 1 0 0

0 t −t 1

0 0 0 1



, σ4 7→




1 0 0 0

0 1 0 0

0 0 1 0

0 0 t −t



.

Thus for any β ∈ B5, (1 + t+ t2 + t3 + t4)∆β̂(t) = det(φ(β)− I). We utilize this

result to derive the following formulae.

Theorem 3.5.1. The determinants of the spiral knots S(n, k, ϵ) for n = 5 strands

are given by the following formulas:

(i) det(S(5, k, (1, 1, 1, 1))) =

((
1−
√
5+i
√

10+2
√
5
)k

+
(
1−
√
5−i
√

10+2
√
5
)k

4k
− 2

)

×
((

1+
√
5+i
√

10−2
√
5
)k

+
(
1−
√
5−i
√

10−2
√
5
)k

4k
− 2

)
,

(ii) det(S(5, k, (1, 1, 1,−1))) = −
((

3−
√
5+i
√

6
√
5+2
)k

+
(
3−
√
5−i
√

6
√
5+2
)k

4k
− 2

)
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×
((

3+
√
5+
√

6
√
5−2
)k

+
(
3+
√
5−
√

6
√
5−2
)k

4k
− 2

)
,

(iii) det(S(5, k, (1, 1,−1, 1))) = −
((

5−
√
5+i
√

10
√
5−14

)k
+
(
5−
√
5−i
√

10
√
5−14

)k
4k

− 2

)

×
((

5+
√
5+
√

10
√
5+14

)k
+
(
5+
√
5+
√

10
√
5+14

)k
4k

− 2

)
,

(iv) det(S(5, k, (1, 1,−1,−1))) =
((

3−i
√
3+i
√

6
√
3i+10

)k
+
(
3−i
√
3−i
√

6
√
3i+10

)k
4k

− 2

)

×
((

3+i
√
3+
√

6
√
3i−10

)k
+
(
3+i
√
3−
√

6
√
3i−10

)k
4k

− 2

)
,

(v) det(S(5, k, (1,−1,−1, 1))) =
((

5−i
√
3+
√

6−10
√
3i)k+

(
5−i
√
3−
√

6−10
√
3i
)k

4k
− 2

)

×
((

5+i
√
3+
√

6+10
√
3i)k+

(
5+i
√
3−
√

6+10
√
3i
)k

4k
− 2

)
,

(vi) det(S(5, k, (1,−1, 1,−1))) =
((

7−
√
5+
√

38−14
√
5
)k

+
(
7−
√
5−
√

38−14
√
5
)k

4k
− 2

)

×
((

7+
√
5+
√

38+14
√
5
)k

+
(
7+
√
5−
√

38+14
√
5
)k

4k
− 2

)
.

Proof. Let α = σ1σ2σ3σ4, β = αk, and A = φ(α)
∣∣
t=−1. Then

A = (φ(σ1)φ(σ2)φ(σ3)φ(σ4))
∣∣
t=−1 =




0 0 0 −t
t 0 0 −t
0 t 0 −t
0 0 t −t




∣∣∣∣∣∣∣∣∣∣∣∣
t=−1

=




0 0 0 1

−1 0 0 1

0 −1 0 1

0 0 −1 1



.

After substituting t = −1 in (2.1), we have

±∆β̂(−1) = det(φ(β)− I)
∣∣
t=−1 = det(Ak − I).

It is known that if any matrix M ∈ GL4(Z) has distinct eigenvalues λ1, λ2, λ3, λ4 ∈
C, then it is diagonalizable over C, and hence, det(Mk − I) =

∏4
i=1(λ

k
i − 1). If

M = A, then

λ1, λ2 =
1−
√
5± i

√
10 + 2

√
5

4
and λ3, λ4 =

1 +
√
5± i

√
10− 2

√
5

4
.
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This proves the part (i). Similarly, if γ = σ1σ2σ3σ
−1
4 , δ = γk, and B = φ(γ)

∣∣
t=−1 =(

φ(σ1)φ(σ2)φ(σ3)(φ(σ4))
−1)∣∣

t=−1, then

B =




0 0 1− t −t−1

t 0 1− t −t−1

0 t 1− t −t−1

0 0 1 −t−1




∣∣∣∣∣∣∣∣∣∣∣∣
t=−1

=




0 0 2 1

−1 0 2 1

0 −1 2 1

0 0 1 1




and ∆δ̂(−1) = det(φ(δ)− I)
∣∣
t=−1 = det(Bk − I). If M = B, then

λ1, λ2 =
3−
√
5± i

√
6
√
5 + 2

4
and λ3, λ4 =

3 +
√
5±

√
6
√
5− 2

4
.

This proves the part (ii). Further, the parts (iii)-(vi) of this theorem are proved in

the same manner.

The integer sequences corresponding to formulas obtained in Theorem 3.5.1 are

as follows:

(i) 1, 5, 1, 5, 16, 5, 1, 5, 1, 0, . . ..

(ii) 1, 11, 25, 11, 16, 275, 841, 891, 25, 2816, . . ..

(iii) 1, 19, 121, 475, 1296, 2299, 1681, 475, 43681, 393984, . . ..

(iv) 1, 13, 49, 117, 256, 637, 1849, 5733, 17689, 53248, . . ..

(v) 1, 21, 169, 1029, 5776, 31941, 177241, 988869, 5536609, 31051776, . . ..

(vi) 1, 29, 361, 3509, 30976, 261725, 2163841, 17688869, 143736121, 1164201984, . . ..

These sequences are not listed in the Online Encyclopedia of Integer Sequences

(OEIS). It is clear from the proof of Theorem 3.5.1 that the applicability of our

method has a limited scope as the computations of eigenvalues become more

cumbersome with increasing values of n. Moreover, unlike the situation here,

diagonalization of the Burau matrix is not always guaranteed, and therefore it will

be difficult to find its powers. It is already established that this method can’t be

used if n is an odd integer. This entails us to look for alternative and simple methods

for determinant evaluation.
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Chapter 4

Bounds of the Unknotting Number

Murasugi [63] showed that the unknotting number of any knot is greater than or

equal to half of the absolute value of its signature. Knot signature has been the

most useful invariant in determining unknotting numbers of many knots. Murasugi

also proved that for any knot, the slice genus is a lower bound of the unknotting

number in [63, Theorem 10.2]. But it is generally hard to compute the slice genus

of a given knot or link. Besides that, some knot polynomials have also been used

to determine unknotting numbers by Stoimenow [83], Traczyk [89], Kanenobu and

Matsumura [40]. Here we investigate the unknotting numbers of the weaving knots

W (3, n) and W (p, 2) via Jones polynomial evaluations in light of Theorem 2.3.3 and

Theorem 2.3.4.

A celebrated result of Kronheimer and Mrowka [48,49] is the first proof of the

following conjecture of Milnor. The slice genus as well as the unknotting number

of torus knot of the type (p, q) are equal to (p−1)(q−1)
2

. There is no procedure to

determine if closed braid diagrams realize the unknotting number of any given knot.

Nevertheless, in case of torus knots, Siwach and Prabhakar [81] showed that for any

(p, q)-torus knot with p < q, its closed braid diagram T (p, q), which is also minimal

in this case, realizes the unknotting number. In fact, they provide the exact positions

of these (p−1)(q−1)
2

crossings changes in T (p, q). Following their approach, we give an

upper bound of the unknotting number for the weaving knots W (3, n) and W (p, 2).

4.1 On unknotting numbers of 3-strand weaving

knots

By Theorem 2.4.1, we have σ(W (3, n)) = 0, and hence, the signature of the weaving

knot W (3, n) fails to give a lower bound of its unknotting number. We consider

evaluating the Jones polynomial of the weaving knotW (3, n) at t = eiπ/3 using (3.3).

Let w = eiπ/3 be the primitive sixth root of unity which satisfies the irreducible

polynomial f(x) = x2− x+1 in the polynomial ring Q[x]. We consider the subfield
Q[x]

⟨x2−x+1⟩
∼= Q(w) of C to work with matrices Cn = Cn(w), M = M(w), Z = Z(w),

where the matrices Cn(t), M(t), and Z(t) are as mentioned in Theorem 3.1.1.

Put An = w−n−1Mn−1. Then (3.3) reduces to VW (3,n)(w) = ZAnC1.
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Lemma 4.1.1. If g(x) = x6 + wx2 ∈ Q(w)[x], then the matrix M satisfies the

polynomial g(x).

Proof. Let h(x) ∈ Q(w)[x] be the characteristic polynomial of the matrix M . Then

h(x) = det(M − xI)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−x 1 0 0 w − 1

−w + 1 w − x 0 0 0

0 w −x 0 0

1 w − 1 0 −x 0

0 0 0 w −x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= −x5 + wx4 + (1− w)x3 − x2.

Thus h(M) = 0. Now

g(x) = x6 + wx2

= x
(
wx4 + (1− w)x3 − x2 − h(x)

)
+ wx2

= wx5 + (1− w)x4 − x3 + wx2 − xh(x)

= w
(
wx4 + (1− w)x3 − x2 − h(x)

)
+ (1− w)x4 − x3 + wx2 − xh(x)

=
(
w2 − w + 1

)
x4 −

(
w2 − w + 1

)
x3 − wx2 + wx2 − (x+ w)h(x)

= −(x+ w)h(x).

Hence g(M) = M6 + wM2 = −(M + wI)h(M) = 0.

The following lemma identifies a recursive pattern among matrices Ai’s, where

Ai = w−i−1M i−1, as defined previously.

Lemma 4.1.2. For every integer n ≥ 1, we have A3+4n = A3. Hence A4+4n = A4,

A5+4n = A5, and A6+4n = A6 for each integer n ≥ 1.

Proof. We shall use mathematical induction. For n = 1, we have A7 = w−8M6. By

Lemma 4.1.1, w−8M6 = w−2(−wM2) = −w−1M2 = w−4M2 = A3.

Assume that A3+4k = w−3−4k−1M3+4k−1 = w−4−4kM4k+2 = A3, for some integer

k ≥ 2. Using Lemma 4.1.1 and the induction hypothesis, we get

A3+4(k+1) = w−3−4(k+1)−1M3+4(k+1)−1

= w−8+4kM4k+6 = w−2+4kM4k(−wM2)

= −w−1+4kM4k+2 = w−4+4kM4k+2 = A3+4k = A3.
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This completes the proof of the fact that A3 = A7 = A11 = A15 = · · · . The

remaining part follows directly after multiplying A3+4n = A3 by w−1M,w−2M2, and

w−3M3 respectively.

Due to Lemma 4.1.2, we only need to know matrices A1, A2, . . . , A6 to find all

the elements of the sequence of matrices {Ai}.

Theorem 4.1.3. For the weaving knot W (3, n), the value of its Jones polynomial

at t = w is given by

VW (3,n)(w) =





3, if n = 4k, where k ≥ 1,

−1, if n = 4k − 2, where k ≥ 1,

1, otherwise.

(4.1)

Proof. Let k be any positive integer. Then

VW (3,4k)(w) = ZA4kC1

= ZA4C1

=
[
3w w − 2 w − 2 −w −w

]
×




w−5




0 1 0 0 w − 1

−w + 1 w 0 0 0

0 w 0 0 0

1 w − 1 0 0 0

0 0 0 w 0




3


×




0

−w + 1

0

1

0




= 3.

Similarly, one can obtain VW (3,4k−2)(w) = ZA4k−2C1 = ZA6C1 = −1 for every k ≥ 2

and VW (3,n)(w) = 1, for every n such that n = 4k − 1, 4k − 3. It can be checked

directly that VW (3,2)(w) = ZA2C1 = −1. This completes the proof.

Corollary 4.1.4. Suppose that k is any positive integer. For the weaving knot

W (3, n), nW (3,n) = dimH1(DW (3,n);Z3) = 0 except for the case when n = 4k. If

n = 4k, then nW (3,n) = dimH1(DW (3,n);Z3) = 2. Hence if gcd(3, 4k) = 1, then

u(W (3, 4k)) ≥ 2.

Proof. The proof of nW (3,n) = dimH1(DW (3,n);Z3) = 0 when n ̸= 4k, and otherwise

nW (3,4k) = 2 follows immediately from Theorem 4.1.3 and Theorem 2.3.3. Further,

if n = 4k and gcd(3, 4k) = 1, then µ(W (3, 4k)) = 1. By Theorem 2.3.4, we deduce

that u(W (3, 4k)) ≥ 2.
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This seems interesting that the Jones polynomial detects the property that

u(W (3, 4k)) ̸= 1 for every positive integer k. It essentially shows that there exists

an infinite family of weaving knots obstructing the unknotting number 1. However,

in other cases, Corollary 4.1.4 fails to provide any information on the unknotting

number of W (3, n), as nW (3,n) = 0, when n ̸= 4k.

Whereas lower bounds of the unknotting number matter the most when one

wants to determine the unknotting number of a knot, it will be interesting to search

for an upper bound of the unknotting number of the knot W (3, n) as a function of

n. It is known that the unknotting number of a knot is less than or equal to half of

its crossing number. Consider n > 1 and assume that n is not divisible by 3, which

implies that W (3, n) is a knot. Since the standard braid diagram of weaving knots

is alternating and reduced, and therefore minimal, we have that c(W (3, n)) = 2n

and u(W (3, n)) ≤ n. We borrow the idea of minimal unknotting crossing data for

torus knots from Siwach and Prabhakar [81] and prove the following proposition,

which gives a slightly better bound.

Proposition 4.1.5. For any integer n ≥ 2, if n ≡ i (mod 3) where i ∈ {1, 2}, then
u(W (3, n)) ≤ 2(n−i)

3
+ i− 1.

Proof. Suppose n ≡ 2 (mod 3). If n = 2, thenW (3, n) = 41 and the inequality holds

trivially. Now if n = 3k + 2 where k ∈ Z+, let α = (σ1σ
−1
2 )3 and β = αk · (σ1σ

−1
2 )2.

Then W (3, n) = β̂. Observe that α can be converted to γ = σ1σ2σ1σ
−1
2 σ−11 σ−12 by

2 crossing changes, which is in fact equivalent to σ2σ1σ2σ
−1
2 σ−11 σ−12 = ε, the trivial

3-braid. Thus β can be converted to δ = γk(σ1σ2σ1σ
−1
2 ) = εk(σ2σ1σ2σ

−1
2 ) = σ2σ1

by 2k + 1 crossing changes, where δ̂ is the trivial knot. Since k = n−2
3
, the desired

inequality holds.

The case n = 3k+1, where k ∈ Z+, is even simpler and follows from the previous

reasoning after realizing that we do not need to change that one additional crossing

in the end.

A schematic of the above proof is given in Figure 4.1, where only the braiding

portion is shown. Although we are discussing only the case of knots, but the reader

may have already realized that the unlinking number of the linkW (3, 3k) is bounded

above by 2k by the same argument.

It is known that u(818) = 2, where 818 = W (3, 4). This fact can also be

verified as follows: By Corollary 4.1.4, u(818) ≥ n818 = 2, and by Proposition 4.1.5,

u(W (3, 4)) ≤ 2. Hence u(W (3, 4)) = 2. However W (3, 5) = 10123 whose

unknotting number is known to be 2, but either of the bounds in Corollary 4.1.4

and Proposition 4.1.5 fails to match with the unknotting number. Moreover, 10123

is a slice knot and therefore its slice genus is 0. It is evident that the unknotting
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αk−1

∗

∗

−→

∗

γk−1 ←→ ε

Figure 4.1: An unknotting crossing data.

numbers of 3-strand weaving knots are far from being determined. This leads one

to do explicit computations of other lower bounds of the unknotting number such as

Nakanishi index (see Kawauchi [43]), slice genus, or Wendt’s torsion invariants (see

Rolfsen [76]) to aid on the unknotting problem for this family.

4.2 On unknotting numbers of weaving knots of

repetition index 2

We first evaluate the Jones polynomial of the weaving knot W (p, 2) at t = eiπ/3

using the recursive formula developed in Theorem 3.1.2. Our objective is to find

information on the unknotting number of W (p, 2).

Theorem 4.2.1. Let v2n = VW (2n,2)(e
iπ/3) and v2n+1 = VW (2n+1,2)(e

iπ/3). Then

v2n =




(−1)k i, if n = 2k − 1, where k = 1, 2, 3, . . . ,

(−1)k+1
√
3, if n = 2k, where k = 1, 2, 3, . . . .

(4.2)

v2n+1 =




−1, if n ≡ 1, 2 (mod 4),

1, if n ≡ 0, 3 (mod 4).
(4.3)

Proof. Substitute t = w = eiπ/3 in Theorem 3.1.2. Then z = i and for n ≥ 3,

v2n+1 = w−2v2n−1 − iw−1v2n

= w−2(w−2v2n−3 − iw−1v2n−2)− iw−1(w2v2n−2 + iw v2n−1)

= w−4v2n−3 − (iw−3 + iw)v2n−2 − i2(w−2v2n−3 − iw−1v2n−2)

= (w−4 − i2w−2)v2n−3 + (i3w−1 − iw − iw−3)v2n−2

= (w−2 − w−1)v2n−3 + (−iw−1 − iw + i)v2n−2
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= −v2n−3.

Similarly for n ≥ 3,

v2n = w2(w2v2n−4 + iw v2n−3) + iw(w−2v2n−3 − iw−1v2n−2)

= w4 v2n−4 + (iw3 + iw−1)v2n−3 − i2(w2v2n−4 + iw v2n−3)

= (w4 − i2w2)v2n−4 + (−i3w + iw−1 + iw3)v2n−3

= (w2 − w)v2n−4 + (iw + iw−1 − i)v2n−2

= −v2n−4.

Since v2 = −i, v3 = −1, v4 =
√
3, and v5 = −1, we obtain (4.2) and (4.3).

Corollary 4.2.2. For the weaving knot W (p, 2), the dimension nW (p,2) of the vector

space H1(DW (p,2);Z3) is given by

nW (p,2) =




1, if p = 4k,

0, otherwise.

Proof. The proof follows directly from Theorem 4.2.1 and Theorem 2.3.3.

Remark 4.2.1. From Corollary 4.2.2, it is obvious that the value of nW (p,2) conveys

nothing about the unknotting number of the weaving knot W (p, 2) for any odd

number p. Further, the knot signature σ(W (2n + 1, 2)) = 0 from Theorem 2.4.1 is

also trivial.

We proceed for an upper bound of the unknotting number of the knot W (2n +

1, 2). Since c(W (2n + 1, 2)) = 4n, therefore u(W (2n + 1, 2)) ≤ c(W (2n+1,2))
2

= 2n.

Here we show that u(W (2n + 1, 2)) ≤ n. It has been observed in Figure 3.1 that

W (2n − 1, 2) is obtained from W (2n + 1, 2) by one crossing change. This gives

an unknotting sequence W (2n + 1, 2) → W (2n − 1, 2) → W (2n − 3, 2) → · · · →
W (3, 2) → 01, which transforms W (2n + 1, 2) into the unknot 01 by changing n

crossings. In fact, it follows that u(W (p, 2)) ≤ ⌊p
2
⌋, where ⌊·⌋ is the floor function.

The efficacy of this upper bound is not known. It is known thatW (7, 2) = 12a477

and u(12a477) = 2 or 3 (see Livingston and Moore [53]), which is anyway ≤ 3. In

this regard, we pose the question: Find an integer n such that u(W (2n+1, 2)) < n.

The unknotting number problem for weaving knots of repetition index 2 still remains

far from being solved.
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The Gordian Complex

The concept of a Gordian complex was introduced by Hirasawa and Uchida [28].

The Gordian complex of knots is essentially an abstract simplicial complex whose

vertex set consists of all the isotopy classes of knots, and its simplexes or faces are

defined using the notion of a distance between knots.

This chapter begins with a review of the Gordian complex of knots followed by

the study of the Gordian complex of theta-curves.

5.1 A review of various Gordian complexes

For two knots K and K ′, the Gordian distance dG(K,K ′) from K to K ′ was defined

by Murakami [62] as the minimum number of crossing changes needed to deform a

diagram of K into that of K ′, where the minimum is taken over all diagrams of K

from which one can obtain diagrams of K ′. The crossing change operation is not the

only choice, and in fact, one may choose any unknotting operation. For instance,

Murakami’s paper introduced another notion of distance between knots called the

#-Gordian distance, which is based on #-move, called the sharp move.

Hirasawa and Uchida [28] introduced the Gordian complex of knots using the

crossing change operation. Later, this idea was generalized in various settings by

several knot theorists to define Gordian complexes of classical as well as virtual

knots using various other local diagrammatic moves and similar results have been

obtained.

Ohyama [70] studied the Gordian complex of knots with respect to the Ck-move.

Horiuchi et al. [29] studied the Gordian complex of virtual knots given by the crossing

virtualization move. Horiuchi and Ohyama [30] studied the Gordian complex of

virtual knots by forbidden moves. Zhang et al. [93] studied the Gordian complex

of knots with respect to the H(n)-move. Amrendra et al. [26] studied Gordian

complexes of knots and virtual knots by considering region crossing change and arc

shift move, respectively. Our aim is to define the Gordian complex of theta-curves

and study its structural properties.

Definition 5.1.1 ([28]). The Gordian complex G of knots is a simplicial complex

defined by the following;
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1. the vertex set of G consists of all the isotopy classes of oriented knots in S3,

and

2. a family of n + 1 vertices {K0, K1, . . . , Kn} spans an n-simplex if and only if

the Gordian distance dG(Ki, Kj) = 1 for any distinct members of the family.

For example, a 3-simplex of knots is shown in Figure 5.1. Hirasawa and Uchida

proved the following results.

Theorem 5.1.1 ([28, Theorem 1.3]). For any 1-simplex e of the Gordian complex G,
there exists an infinitely high dimensional simplex σ such that e is a subcomplex of σ.

Corollary 5.1.2 ([28, Corollary 1.4]). For any knot K0, there exists an infinite

family of knots {K0, K1, K2, . . .} such that the Gordian distance dG(Ki, Kj) = 1, for

all i ̸= j.

Figure 5.1: A 3-simplex of knots. Courtesy of Hirasawa and Uchida [28].

5.2 The Gordian metric on theta-curves

Let Θ and Θ′ be two theta-curves. It is easy to show that there exists a diagram

θ of Θ such that by applying crossing change operation on some crossings of θ one

can obtain a diagram θ′ of Θ′. We define the Gordian distance between Θ and Θ′

in the same way it was defined for knots (see [38]).

Definition 5.2.1. The Gordian distance from Θ to Θ′, denoted by dG(Θ,Θ′), is

defined as the minimum number of crossing changes needed to deform a diagram of

Θ into that of Θ′, where the minimum is taken over all diagrams of Θ from which

one can obtain diagrams of Θ′.
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Note that u(Θ) = dG(Θ, 01). The function dG defines a metric on the set of all

theta-curves. In the case of knots, Murakami [62] proved the inequality:

dG(K1, K2) ≥
|σ(K1)− σ(K2)|

2
(5.1)

for any pair of knots K1, K2, where σ(·) is the knot signature function. In the case of

theta-curves, we establish a lower bound of the Gordian distance function in terms

of Gordian distances between the constituent knots. More precisely, we prove the

following in [38].

Theorem 5.2.1. If Θ and Θ′ are two theta-curves having constituent knots Kij, K
′
ij

(1 ≤ i < j ≤ 3) respectively, then

dG(Θ,Θ′) ≥ max
i,j

dG(Kij, K
′
ij). (5.2)

Proof. Let n = dG(Θ,Θ′). Suppose θ is a diagram of Θ containing three knot

diagrams D12, D13, D23 representing its constituent knots K12, K13, K23 respectively

such that changing n crossings of θ yields a diagram θ′ of Θ′ and corresponding knot

diagrams D′12, D
′
13, D

′
23 contained in θ′.

Then dG(Kij, K
′
ij) ≤ dG(Dij, D

′
ij) ≤ n = dG(Θ,Θ′) holds for 1 ≤ i < j ≤ 3.

Therefore max
i,j

dG(Kij, K
′
ij) ≤ dG(Θ,Θ′).

Here we remark that if Θ′ is trivial, then the lower bound max
i,j

dG(Kij, K
′
ij) =

max
i,j

dG(Kij, 01) = max{u(K12), u(K13), u(K23)} = mcu(Θ), where mcu(Θ) is the

maximal constituent unknotting number of Θ as defined by Buck and O’Donnol [14].

Thus (5.2) yields u(Θ) ≥ mcu(Θ), which has been proved in [14]. We shall now

discuss some applications of Theorem 5.2.1.

Proposition 5.2.2. Let X be the set of all theta-curves equipped with the metric

dG. For any n ∈ Z+, let Θ̃n and 31 be two (labeled) theta-curves that are shown in

Figure 5.2. Then dG(Θ̃n, 31) = n.

...
2n+ 2
half
twists

...
2n+ 3
half
twists

Θ̃n = = 31 ;

T (2, 2n+ 3)

n crossing

changes←−−−−−−→

e2

e1

e3

e2

e1

e3

Figure 5.2: Theta-curves of Gordian distance n.
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Proof. Let n ∈ Z+ be given. Denote the torus knot of type (2, 2n+3) by T (2, 2n+3)

and the constituent knots of Θ̃n, 31 by K̃ij, Kij (1 ≤ i < j ≤ 3), respectively. Observe

that K̃23 = T (2, 2n+ 3) and K23 = T (2, 3).

By Theorem 5.2.1,

dG(Θ̃n, 31) ≥ dG(K̃23, K23) = dG(T (2, 2n+ 3), T (2, 3))

≥ 1

2
|σ(T (2, 2n+ 3))− σ(T (2, 3))| = 1

2
| − 2n− 2 + 2| = n.

Since 2n + 2 half twists, equivalently n + 1 full twists, can be decreased to 2 half

twists by applying a crossing change and then a Reidemeister II-move n number of

times, we have that dG(Θ̃n, 31) ≤ n. Hence dG(Θ̃n, 31) = n.

Consequently, we note that the set {31, Θ̃1, Θ̃2, . . .} is an unbounded subset of

the metric space (X, dG). Further, by using values of the Gordian distance for some

pairs of knots as given in the strand passage metric table by Darcy and Sumners [21],

unknotting numbers in [14], and Theorem 5.2.1, we compute the Gordian distance

between some pairs of theta-curves; see Table 5.1.

Table 5.1: Gordian distances between some pairs of theta-curves.

01 31 3∗1 41 4∗1 51 5∗1 52 5∗2 53 5∗3

01 1 1 1 1 1 1 1 1 2 2

31 2 2 2 1 1-2 1 1-2 3 1

In Table 5.1, the notations 3∗1, 4
∗
1, etc. as usual represent the mirror images of

theta-curves 31, 41, and so on. The exact values of dG(31, 5
∗
1) and dG(31, 5

∗
2) are not

known.

5.3 The Gordian complex of theta-curves

We define the Gordian complex of theta-curves in [38].

Definition 5.3.1. The Gordian complex G of theta-curves is a simplicial complex

defined as follows:

(i) The vertex set of G consists of all the isotopy classes of unoriented theta-curves

in R3.

(ii) A family of n+1 vertices {Θ0,Θ1, . . . ,Θn} of G spans an n-simplex if and only

if dG(Θi,Θj) = 1 for 0 ≤ i, j ≤ n, i ̸= j.
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For example, the collection of theta-curves {01, 31, 52, 77} spans a 3-simplex as

shown in Figure 5.3.

77

52

31

01

∗1

∗2
∗3

∗4

∗1

∗2

∗3

∗4

∗5

∗5

∗6 ∗6

b b

b b

b b

b b

Figure 5.3: A 3-simplex of theta-curves.

IV
⇀↽

V,V
⇀↽

V,V
⇀↽

II
⇀↽

IV
⇀↽

V,V
⇀↽

IV,II
⇀↽

= 31

= 01

= 52

⇀↽

b b b b b b b b

b
b b b b b b b

b

b

bb b b

Figure 5.4: Reidemeister moves on some theta-curve diagrams.

Like the complex G of knots, the complex G of theta-curves is connected and the

Gordian distance between two vertices of G is the length of a minimal edge path

connecting them in G .

Theorem 5.3.1. For every nonnegative integer n, there exists a family of

theta-curves {Θ0,Θ1, . . . ,Θn} spanning an n-simplex in G .

Proof. Let Θn be the theta-curve whose diagram θn is shown in Figure 5.5, where the

pattern in the box with label ‘n’ is evident from the diagram. The set of constituent

knots of Θn is {Kn, trivial knot}, as shown in Figure 5.6. For any integers i and j

such that 0 ≤ i < j ≤ n, if we change the crossing ∗i+1 in the given diagram θj of

Θj, we obtain a diagram of Θi. Therefore dG(Θi,Θj) ≤ 1.
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· · · n3

θn

b

b

∗1 ∗2

Figure 5.5: A diagram of Θn.

· · · n3

· · · n3

≃

Kn =

Figure 5.6: The constituent knots of Θn.

To prove that dG(Θi,Θj) ≥ 1, it is enough to show that Θi and Θj are distinct

theta-curves. To establish this, we prove the following lemma.

Lemma 5.3.2. All knots in the set {Ki : 0 ≤ i ≤ n}, shown in Figure 5.6, are

pairwise distinct. In particular, the Jones polynomials VKi
(t)’s of Ki’s are: VK0(t) =

1, VK1(t) = t−2 − t−1 + 1− t+ t2 and for i ≥ 2,

VKi
(t) = p(t) + q(t)VKi−1

(t), where

p(t) = −t−2 + 4t−1 − 7 + 11t− 12t2 + 11t3 − 8t4 + 4t5 − t6,

q(t) = t−3 − 2t−2 + 2t−1 − 1− t+ 2t2 − 2t3 + t4.

Proof. Let z = t
1
2 − t−

1
2 and δ = −t 1

2 − t−
1
2 . A skein tree diagram of Kn is shown

in Figure 5.7, where skein triples are considered at crossings labeled with △. From

the skein relations, we have

VKn(t) = t2 + tz[t2(t−2δ − t−1z) + tz(t−2δ − t−1z)Vl(t)]

= t2 + tzδ − t2z2 + (z2δ − tz3)Vl(t), where
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· · · n3

· · · n3

t2 tz

· · · n3

· · · n3 · · · n3

︸ ︷︷ ︸

· · · n3
· · · n3

Kn−1 Kn−1

Kn−1

· · · n3

Kn

t−2 t−1z

t2 tz

t−2 t−1z

t2 tz

t−2 t−1z

t2 tz

call it
link l

ut

ut

ut

ut

ut

ut

ut

Figure 5.7: A skein tree diagram of Kn.

Vl(t) = t2[(t−2δ − t−1z)VKn−1(t)] + tz[t−2VKn−1(t)− t−1z(t2δ + tz)]

= (δ − tz + t−1z)VKn−1(t)− z2t2δ − z3t,

which simplifies to

VKn(t) = t2 + tzδ − t2z2 + (−z2δ + tz3)(z2t2δ + z3t)

+ (z2δ − tz3)(δ − tz + t−1z)VKn−1(t)

= −t−2 + 4t−1 − 7 + 11t− 12t2 + 11t3 − 8t4 + 4t5 − t6

+ (t−3 − 2t−2 + 2t−1 − 1− t+ 2t2 − 2t3 + t4)VKn−1(t).

This recursive relation gives the formula max deg VKi+1
(t) = 4i+1 for all i ≥ 1 and
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maxdeg VK1(t) = 2. Hence, all knot types Ki’s are distinguished by their Jones

polynomials.

By Lemma 5.3.2, Ki and Kj are distinct knots. This implies that Θi and Θj are

distinct theta-curves. Thus dG(Θi,Θj) = 1. Hence, the vertices Θ0,Θ1, . . . ,Θn of G

span an n-simplex.

Remark 5.3.1. In the proof of [38, Lemma 3.1], it is shown that max deg VKi
(t) =

4i+ 1 for all i ≥ 2. But it is incorrect, and in Lemma 5.3.1, we have corrected that

mistake. Nevertheless, the proof follows the same lines.

Theorem 5.3.3. If Θ is any arbitrary vertex of the Gordian complex G , then there

exists an infinite family of theta-curves F = {Θ′0,Θ′1,Θ′2, . . .} such that Θ ∈ F and

the Gordian distance dG(Θ
′
i,Θ

′
j) = 1, for i ̸= j.

Proof. For given theta-curve Θ, denote its constituent knots by K12, K13 and K23.

Let Θ′n := Θ♯3Θn (n = 0, 1, 2, . . .), where Θn’s are as defined in Theorem 5.3.1. We

show that the family F = {Θ′0,Θ′1,Θ′2, . . .} has the required property.

Since Θ0 is trivial, Θ′0 = Θ ∈ F . For any two distinct nonnegative integers i

and j, we have dG(Θ
′
i,Θ

′
j) ≤ dG(Θi,Θj) = 1. The set of constituent knots of Θ′n

is {K12, K13, K23♯Kn}, where Kn is as defined in Lemma 5.3.2 and K23♯Kn is the

connected sum of knots K23 and Kn. We know that VK23♯Ki
(t) = VK23(t)VKi

(t) and

VK23♯Kj
(t) = VK23(t)VKj

(t). Since i ̸= j, therefore VK23♯Ki
(t) ̸= VK23♯Kj

(t). Thus the

knots K23♯Ki and K23♯Kj are distinct, which implies that the theta-curves Θ′i and

Θ′j are distinct. Hence dG(Θ
′
i,Θ

′
j) = 1.
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Conclusion

Invariants of weaving knots have been a subject of interest in [5,17,22,57,69,80].

However, their topological properties are less understood in comparison to torus

links. For instance, the following two basic problems are of considerable interest.

1. Find the determinant of the weaving knot W (p, n).

2. Determine the unknotting number of the weaving knot W (p, n).

Spiral knots generalize torus as well as weaving knots, and twisted generalized hybrid

weaving knots, which are recently introduced and studied in [79], generalizeW (3, n).

During our study, we developed interest in the determinants of

(i) twisted generalized hybrid weaving knots Q̂3(m1,−m2, n, ℓ), and

(ii) spiral knots S(n, k, ϵ).

Whilst we obtain partial solutions to these problems, they remain unanswered

in their full generality except for the determinants of twisted generalized hybrid

weaving knots. Further, it will be interesting to employ the techniques used here

or other known methods for evaluating determinants of pretzel knots and links.

A remarkable result in this direction is the following determinant formula for

alternating pretzel links by Burton [16].

Proposition 6.0.1 ([16, Proposition 5.3]). Let P (a1, a2, . . . , an) be the alternating

pretzel link having a1, a2, . . . , an crossings in the first, second, and so on to the n-th

twist region. Then

det(P (a1, a2, . . . , an)) =
n∑

i=1

∏

j ̸=i

aj.

Burton’s proof is based on counting the spanning trees in a checkerboard graph.

For the non-alternating pretzel link case, i.e., when ai’s possibly have different signs,

the calculation of determinant remains an open problem. Moreover, the unknotting

numbers of pretzel knots are also not known in general. However, partial results

that follow from the calculation of knot signatures have appeared in Jablan and

Radović [33, Example 2.3] and Brockway [12]. Besides that, we have studied the

Gordian complex of theta-curves with respect to the crossing change operation. In
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this direction, various other settings are available for studying the Gordian complex.

One may consider any unknotting operation instead of the crossing change. Further,

other spatial graphs in place of theta-curves may be considered. It may be interesting

to observe new phenomena in such settings. For instance, generalizations and certain

quotients of Gordian graphs of knots recently appeared in Jabuka et al. [34] and

Flippen et al. [25], respectively.

The results presented in this thesis are based on the papers [37–39]. Further,

we have also included determinant formulae for spiral knots of 5-strands that are

obtained by employing the same method used in the proof of [39, Theorem 2.1].

This thesis concludes with the following.

On link determinants: This thesis presents explicit formulae for the determinants

of the following knots and links: W (3, n), W (p, 2), Q̂3(m1,−m2, n, ℓ), and

S(5, k, ϵ). From our study, we propose that the following result holds.

Conjecture 2. The determinant of any 6-strand weaving knot is given by

det(W (6, n)) =
n

3
det(W (3, n))

[(
5 +
√
21

2

)n

+

(
5−
√
21

2

)n

− 2

]
.

On unknotting numbers: Our study provides a lower bound of the unknotting

number of W (3, n) when n is divisible by 4, but fails to give any information

on the unknotting numbers of W (3, n) and W (p, 2) in the remaining cases.

In the process, we find a recursive formula for the Jones polynomial of

W (p, 2) and calculate the homology group dimension dimH1(DL;Z3) for

L = W (3, n),W (p, 2) by evaluating their Jones polynomials at the primitive

6-th root of unity. Some upper bounds of the unknotting numbers of W (3, n)

and W (p, 2) are also given.

On the Gordian complex: We extend the existing notions of the Gordian metric

and Gordian complex for knots and virtual knots to the case of theta-curves.

A lower bound of the Gordian distance function on theta-curves is given.

Examples of n-dimensional simplexes for arbitrary n are constructed. It is

shown that for any theta-curve Θ, there exists an infinite family of theta-curves

containing Θ such that the Gordian distance of any pair of distinct elements

in this family is equal to 1.

Further, it is very natural to study theta-curves that have Gordian distance two

from each other. A theorem of Baader [6] states that for any two knots K and

K̃ of Gordian distance two, there exist infinitely many non-equivalent knots whose

Gordian distance to K and K̃ is one. Therefore, every knot of unknotting number
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two can be unknotted via infinitely many different knots of unknotting number one.

The same question can be asked for theta-curves. Let Θ and Θ̃ be two theta-curves

with dG(Θ, Θ̃) = 2. Does there exist an infinite family of theta-curves {Θ⋆
n : n ∈ Z+}

such that dG(Θ,Θ⋆
n) = dG(Θ̃,Θ⋆

n) = 1 for every n?

To the best of our knowledge, this problem remains open. It is shown in [38]

that if (Θ, Θ̃) = (31, 41), then there exists such a family with the required property.

In particular, the original problem reduces to an interesting question if Θ̃ is trivial.

Can every theta-curve of unknotting number two be unknotted via infinitely many

distinct theta-curves of unknotting number one?



64 Chapter 6. Conclusion



Appendix A

Tables

Table A.1 presents some examples of knots that belong to the families of spiral knots

or twisted generalized hybrid weaving knots, and may be of some interest to readers.

In Table A.2, we write the Jones polynomial of the weaving knot W (p, 2) for p ≤ 9,

which is computed recursively using Theorem 3.1.2.

Table A.1: Some knots with up to 8 crossings.

T (2, 3) 31

W (3, 2) 41

T (2, 5) 51

Q̂3(3,−1, 1,−1) 52

S(5, 2, (1, 1, 1,−1)) 62

S(5, 2, (1, 1,−1,−1)) 63

T (2, 7) 71

Q̂3(3,−3, 1, 1) 73

S(5, 2, (1, 1,−1, 1)) 76

S(5, 2, (1,−1,−1, 1)) 77

S(7, 2, (1, 1, 1, 1, 1,−1)) 82

Q̂3(3,−1, 2, 0) 85

S(7, 2, (1, 1, 1, 1,−1,−1)) 87

S(7, 2, (1, 1, 1,−1,−1,−1)) 89

W (5, 2) 812

W (3, 4) 818

T (3, 4) 819

Q̂3(1,−5, 1, 1) 820

Table A.2: Jones polynomial of the weaving knot W (p, 2) for p ≤ 9.

W (2, 2) = 221 −t 1
2 − t

5
2

W (3, 2) = 41 t−2 − t−1 + 1− t+ t2

W (4, 2) = 623 −t− 3
2 + 2t−

1
2 − 2t

1
2 + 2t

3
2 − 3t

5
2 + t

7
2 − t

9
2

W (5, 2) = 812 t−4 − 2t−3 + 4t−2 − 5t−1 + 5− 5t+ 4t2 − 2t3 + t4

W (6, 2) −t− 7
2 + 3t−

5
2 − 6t−

3
2 + 9t−

1
2 − 11t

1
2 + 12t

3
2−

11t
5
2 + 8t

7
2 − 6t

9
2 + 2t

11
2 − t

13
2

W (7, 2) = 12a477 t−6 − 3t−5 + 8t−4 − 14t−3 + 20t−2 − 25t−1+

27− 25t+ 20t2 − 14t3 + 8t4 − 3t5 + t6

W (8, 2) −t− 11
2 + 4t−

9
2 − 11t−

7
2 + 22t−

5
2 − 35t−

3
2 + 48t−

1
2 − 58t

1
2+

61t
3
2 − 56t

5
2 + 46t

7
2 − 33t

9
2 + 19t

11
2 − 10t

13
2 + 3t

15
2 − t

17
2

W (9, 2) t−8 − 4t−7 + 13t−6 − 29t−5 + 53t−4 − 82t−3+

110t−2 − 131t−1 + 139− 131t+ 110t2−
82t3 + 53t4 − 29t5 + 13t6 − 4t7 + t8

65



66 Appendix A. Tables

By encoding (2.1) with some computer programming in SageMath, we are able

to compute the Alexander polynomial and hence the determinant of any closed

braid prescribed beforehand, however, not for fairly large input. We list truncated

sequences of weaving knot determinants in Table A.3 computed using our program,

which is included in Appendix B. Recall that the second row in Table A.3 is the

sequence of Pell numbers A000129; the third and fourth columns correspond to

alternate Lucas numbers minus 2, i.e. A004146, and A006235, respectively, in the

OEIS.

Table A.3: Determinant of the weaving knot W (p, n) for p, n ≤ 8.

p = 2 p = 3 p = 4 p = 5 p = 6 p = 7 p = 8

n = 1 1 1 1 1 1 1 1
n = 2 2 5 12 29 70 169 408
n = 3 3 16 75 361 1728 8281 39675
n = 4 4 45 384 3509 31500 284089 2558976
n = 5 5 121 1805 30976 508805 8473921 140503005
n = 6 6 320 8100 261725 7741440 236513641 7138643400
n = 7 7 841 35287 2163841 113742727 6369316864 347251215703
n = 8 8 2205 150528 17688869 1633023000 167999155129 16435095011328

Table A.4 contains some twisted generalized hybrid weaving knots and their

respective determinants, which are indeed known but can also be given by (3.6).

Note that the knots 10139 and {10161, 10162} are not quasi-alternating.

Table A.4: Some twisted generalized hybrid weaving knots and their determinants.

(m1,m2, n, l) K = Q̂3(m1,−m2, n, ℓ) det(K)

(3, 1, 1, 0) 31 3
(1, 1, 2, 0) 41 5
(5, 1, 1, 0) 51 5
(3, 1, 1,−1) 52 7
(7, 1, 1, 0) 71 7
(3, 3, 1, 1) 73 13
(3, 1, 2, 0) 85 21
(1, 1, 4, 0) 818 45
(1, 5, 1, 1) 820 9 non-alternating, K ∈ Q
(9, 1, 1, 0) 91 9
(5, 3, 1, 1) 93 19
(1, 1, 5, 0) 10123 121
(1, 7, 1, 1) 10125 11 non-alternating, K ∈ Q
(5, 3, 1,−1) 10126 19 non-alternating, K ∈ Q
(1, 3, 1, 2) 10139 3 non-alternating, K /∈ Q
(1, 1, 4,−1) 10157 49 non-alternating, K ∈ Q
(1, 5, 1, 2) 10161 = 10162 5 non-alternating, K /∈ Q

https://oeis.org/A000129
https://oeis.org/A004146
https://oeis.org/A006235


Appendix B

SageMath Program

Here we provide a SageMath program to compute the Alexander polynomial and

the determinant of any spiral knot S(n, k, ϵ) using (2.1). It takes n, k, and ϵ as the

input, and produces ∆S(n,k,ϵ)(t) as the output, which when evaluated at t = −1 gives
the determinant.
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. Alexander polynomial of the spiral knot 

Let  denote the Artin -braid group. The reduced Burau representation

maps the generators  as follows:

If  and  denote the closure of the braid , then

The spiral knot  is the knot or link obtained as the closure of the braid .

In this worksheet, we evaluate the Alexander polynomial and the determinant of  for various values of .

In [1]: n = 6;
k = 10;
R.<t> = LaurentPolynomialRing(ZZ);
GL = MatrixSpace(R, n-1);

In [2]: Burau = matrix(GL, 1, n-1);
dummy = identity_matrix(R, n-1);
dummy[0,0] = -t;
dummy[0,1] = 1;
Burau[0,0] = dummy;
for i in range(1,n-2):

dummy = identity_matrix(R, n-1);
dummy[i,i-1] = t;
dummy[i,i] = -t;
dummy[i,i+1] = 1;
Burau[0,i] = dummy;

dummy = identity_matrix(R, n-1);
dummy[n-2,n-3] = t;
dummy[n-2,n-2] = -t;
Burau[0,n-2] = dummy;

In [3]: print "The Burau matrices corresponding to the generators are"
show(Burau)

In [4]: eps = matrix(ZZ, [1,-1,1,-1,1,-1]);

In [5]: Alex = matrix(SR, k, 2);
Det = matrix(ZZ, k, 2);
for j in range(1,k+1):

Alex[j-1,0] = j;
Det[j-1,0] = j;
alpha = identity_matrix(R, n-1);
poly = 1;
for k in range(0,n-1):

alpha = alpha*Burau[0,k]^eps[0,k];
poly = poly + t^(k+1);

alpha = alpha^j - identity_matrix(R, n-1);
Alex[j-1,1] = alpha.determinant()/poly;
Det[j-1,1] = abs(Alex[j-1,1](t=-1));
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In [6]: show(Alex[0:4,:])

In [7]: show(Det)
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