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Abstract

Seminal works of Hardy and Littlewood [32] on the growth of analytic functions

contain the comparison of the integral mean Mp(r, f) with Mp(r, f
′) and Mq(r, f).

For a complex-valued harmonic function f in the unit disk D, using the notation

|∇f | = (|fz|2+|fz̄|2)1/2, we explore the relation betweenMp(r, f) andMp(r,∇f). We

show that if |∇f | grows slowly, then f is continuous on the closed unit disk, and the

boundary function satisfies a Lipschitz condition. We also discuss the comparative

growth of the integral means Mp(r, f) and Mq(r, f).

The growth of univalent harmonic functions is studied explicitly. We give an

order of growth for these functions, which consequently leads to a coefficient bound.

Then we explore the membership of univalent harmonic functions in the harmonic

Hardy space hp. Interestingly, our ideas extend to certain classes of locally univalent

harmonic functions. As a result, we obtain a “best possible” coefficient estimate for

univalent and locally univalent harmonic functions with some nice properties.

We produce Baernstein type extremal results for the integral means of univalent

harmonic functions, which was earlier unexplored, to the best of our knowledge.

In particular, sharp Baernstein type inequalities for the classes of convex and

close-to-convex harmonic functions are obtained, which lead to integral mean

estimates for the respective classes. We also propose a harmonic analogue of the

logarithmic coefficients of an analytic univalent function, and establish a sharp

inequality involving these coefficients.

Finally, we compare the integral of |f |p, for f harmonic, along certain curves.

In particular, we present a Riesz-Fejér type inequality which compares the integral

along a circle to the same along a pair of its diameters. As a consequence, a result

pertaining to real sequences is obtained which generalizes a famous inequality of

Hilbert. Several of the results turn out to be sharp.

We also pose a couple of open problems, one of which, in particular, could lead

to a significant progress on the harmonic analogue of the Bieberbach conjecture, due

to Clunie and Sheil-Small [15].

Keywords: Univalent functions; harmonic functions; growth problems;

coefficient estimate; integral means; Hardy spaces; Baernstein’s theorem; Riesz-Fejér

inequality; convex; close-to-convex.
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Chapter 1

Introduction

1.1 Origin of univalent functions

Let C be the complex plane. An analytic function f in a domain D ⊂ C is said to be

univalent if it is one-to-one, i.e., f (z1) ̸= f (z2) unless z1 = z2. The function f is said

to be locally univalent at a point z0 ∈ D if it is univalent in some neighbourhood of

z0. For an analytic function f , the condition f ′(z0) ̸= 0 is necessary and sufficient for

local univalence at z0. A (locally) univalent analytic function is called a conformal

mapping as it preserves angles and orientation.

Conformal mappings originated as means of solving problems in engineering and

physics. In general, problems that can be expressed in terms of functions in C,
but exhibit complicated geometries, can be transformed into a nicer setting by an

appropriate choice of conformal mapping. One such problem, for instance, is to

calculate the electric field induced by a point charge positioned near the corner of

two conducting planes aligned at a certain angle. This problem is quite difficult to

solve in its actual form. However, through a standard conformal mapping, the corner

of the two planes can be transformed into a straight line. In this new setting, the

problem has a rather simple solution, which can then be mapped back to the original

domain via a composition with the chosen conformal map. Another type of study

where conformal mappings are frequently used are the boundary value problems for

liquid inside a container.

Given two simply connected domains D1, D2 ⊊ C, in 1851, Riemann proved that

it is always possible to find an analytic function which maps D1 onto D2. Initially

Riemann’s theorem defied understanding and could not find many applications, until

Koebe, in 1907, gave a more complete description of these functions.

Theorem A. [39] Let D ̸= C be a simply connected domain and let z0 ∈ D. Then

there exists a unique function f , analytic and univalent in D, which maps D onto

the open unit disk D = {z : |z| < 1} in such a way that f (z0) = 0 and f ′ (z0) > 0.

By virtue of this strong version of the Riemann mapping theorem, numerous

problems about simply connected domains can be reduced to the special case of
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the unit disk. In particular, the study of univalent functions between two arbitrary

simply connected domains is equivalent to the study of univalent functions from

D onto any simply connected domain D ̸= C. Also, the normalization conditions

f(0) = 0 = f ′(0)− 1 prove to be helpful, and do not affect any result pertaining to

univalent functions. We let S denote the family of analytic, univalent and normalized

functions defined in D. Thus, a function f in S has the power series representation

f(z) = z +
∞∑
n=2

anz
n, z ∈ D. (1.1)

It is well-known that S is compact with respect to the topology of uniform

convergence on compact subsets of D. The Koebe function

k(z) = z/(1− z)2 = z +
∞∑
n=2

nzn,

which maps D onto the whole complex plane minus the slit (−∞, 1/4], is extremal

for many problems in the class S. In 1916, Bieberbach [9] started the problem on

coefficient bounds for functions f ∈ S and observed that |a2| ≤ 2, while the equality

occurs only for the Koebe function and its rotations. This led him to make the

following conjecture.

Conjecture A. [9] If f ∈ S is any function of the form (1.1), then |an| ≤ n for all

n ≥ 2. Furthermore, |an| = n for all n if and only if f is the Koebe function k, or

its rotations.

In 1925, the first significant progress on the conjecture was made by Littlewood

[43], who showed that |an| < en, ensuring that the Bieberbach conjecture has the

correct order of magnitude. Over the years, the constant e was successively replaced

by a string of smaller constants, although a complete proof remained elusive. Finally,

it was de Branges [17] who settled the conjecture entirely in 1985, i.e. 69 years after

its origin.

Failure to settle the Bieberbach conjecture for a long time led to the origin and

development of several subclasses of S. A nice subclass, denoted by K, consists of

the functions that map D onto a convex domain. This geometric subclass can be

neatly described through the following analytic characterization.

Theorem B. [21, Theorem 2.11] Let f ∈ S. Then f ∈ K if and only if

Re

(
1 +

zf ′′(z)

f ′(z)

)
> 0, z ∈ D.
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A function f ∈ K is called a convex function. Curiously, for these functions the

coefficient bound |an| ≤ 1 holds, with equality occurring for the function

l(z) = z/(1− z) =
∞∑
n=1

zn

which maps D onto the half-plane Re{w} > −1/2. The analytic condition in

Theorem B was generalized by Umezawa [58] to introduce convex functions of

order α. A normalized analytic function f in D is said to be convex of order α

(−1/2 ≤ α < 1), denoted by f ∈ K(α), if f is locally univalent in D and satisfies

the condition

Re

(
1 +

zf ′′(z)

f ′(z)

)
> α, z ∈ D.

It is clear that K(0) = K and K(α) ⊆ K(0) = K for all α ∈ (0, 1). For −1/2 ≤
α < 0, the functions in K(α) are not convex, but still have nice geometric properties.

Closely related to the results of Umezawa are functions convex in one direction. A

domain D ⊂ C is called convex in the direction φ (0 ≤ φ < π) if every line parallel

to the segment joining 0 and eiφ has a connected (or empty) intersection with D.

We say that f is convex in one direction if f(D) is convex in the direction φ for some

φ ∈ [0, π). Functions in the class K(α) are univalent and convex in one direction

for all α ≥ −1/2 (see [58]). Clearly, convex functions are convex in the direction φ

for every φ, so the functions convex in one direction are a natural generalization of

convex functions.

Probably the most interesting geometric subclass of S is the family C of functions

which map D onto a close-to-convex domain, i.e., a domain whose complement can

be expressed as a union of non-intersecting half-lines. Functions in C are called

close-to-convex. In analytical terms, a function f analytic in D is close-to-convex if

there is a univalent convex function g (need not be normalized) such that

Re

(
f ′(z)

g′(z)

)
> 0, z ∈ D.

Interestingly, Kaplan gave another characterization of close-to-convex functions

which is very useful.

Theorem C. [37] Let f be analytic and locally univalent in D. Then f is

close-to-convex if and only if∫ θ2

θ1

Re

(
1 +

zf ′′(z)

f ′(z)

)
dθ > −π, z = reiθ,
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for every r (0 < r < 1) and for every pair of real numbers θ1 and θ2 with θ1 < θ2.

It is easy to see that K ⊊ C, as the Koebe function and its rotations are in

C, but not in K. More generally, functions convex in one direction are indeed

close-to-convex. A detailed study of the class S and its major subclasses can be

found in the monographs of Duren [21], Goodman [28, 29] and Pommerenke [50].

1.2 Integral means and Hardy spaces

For a function f analytic in D, the integral means

Mp(r, f) =


(

1

2π

∫ 2π

0

|f(reiθ)|pdθ
) 1

p

, 0 < p <∞,

sup
|z|=r

|f(z)|, p = ∞

serve as a measure of growth and contribute to profound studies that contain

numerous important problems of classical analysis. An analytic function f defined

in D belongs to the Hardy space Hp (0 < p ≤ ∞) if Mp(r, f) remains bounded as

r → 1−. For example, H∞ consists of functions that are analytic and bounded in

the unit disk, and H2 is the space of functions having the power series
∑
anz

n with∑ |an|2 <∞. The norm of a function f ∈ Hp is defined as

∥f∥p = lim
r→1−

Mp(r, f).

Integral means and Hardy spaces play a fundamental role in studies concerning the

growth of functions, and we refer to the books of Duren [20], Koosis [40] and Pavlović

[48] for a detailed survey.

For functions in the Hardy space, the boundary behaviour is of particular

interest. For every f ∈ Hp, the radial limit f(eiθ) = limr→1− f(re
iθ) is known to

exist almost everywhere. Remarkably, the following theorem of F. Riesz describes

the mean convergence of an Hp-function to its boundary function.

Theorem D. [52] If f ∈ Hp for some p > 0, then

lim
r→1−

∫ 2π

0

|f(reiθ)|pdθ =
∫ 2π

0

|f(eiθ)|pdθ

and

lim
r→1−

∫ 2π

0

|f(reiθ)− f(eiθ)|pdθ = 0,

where f(eiθ) denotes for the radial limit of f on the unit circle T = {z : |z| = 1}.
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In the same paper, Riesz also gave the factorization formula for a function f ∈
Hp. This principle has been immensely useful in the development of the Hardy space

theory.

Theorem E. [52] Every function f ̸≡ 0 of class Hp (p > 0) can be factored in the

form

f(z) = B(z)g(z), z ∈ D, (1.2)

where B is a Blaschke product consisting of the zeros of f , and g is a non-vanishing

Hp-function in D.

Integral means hold special importance in the context of univalent functions. The

integral mean M1(r, f) is closely related to the Bieberbach conjecture. The primary

tool in Littlewood’s proof of |an| < en is the inequality M1(r, f) ≤ r/(1− r) for any

f ∈ S. If this estimate can be improved to

M1(r, f) ≤ r/(1− r2) =M1(r, k),

the same argument leads to the much better bound |an| < (e/2)n. This gave rise to

the natural interest to find the sharp upper bound for M1(r, f), or more generally,

for Mp(r, f), 0 < p <∞.

In 1951, Bazilevich [7] produced a partial approach to this problem for the cases

p = 1, 2. He showed that

Mp(r, f) < Mp(r, k) + Cp, p = 1, 2,

where Cp is a constant, given explicitly, that does not depend on f . Years later, in

1974, Baernstein [5] introduced radically new methods to prove that

Mp(r, f) ≤Mp(r, k), 0 < p <∞.

Indeed, Baernstein obtained a much more general inequality for convex functions,

the proof of which involves a curious maximal function, namely the star-function.

Another important result on the growth of univalent functions is their

membership in the Hardy space, as follows.

Theorem F. [20, Theorem 3.16] If f is analytic and univalent in D, then f ∈ Hp

for all p < 1/2.

This result has numerous implications. For example, it ensures that a conformal

mapping of D onto any arbitrary simply connected domain, regardless of how

complicated the boundary is, automatically has a radial limit in almost every
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direction. It also asserts that as a member of Hp, every univalent function f has the

factorization (1.2), where it is obvious that the Blaschke product B has at most one

factor. The Koebe function k, which does not belong to H1/2, shows that the range

p < 1/2 is best possible. However, it is known that every convex function f ∈ K is

of class Hp for all p < 1.

1.3 Univalent harmonic functions

Throughout the thesis, we reserve the term “harmonic function” to mean

complex-valued harmonic function, unless otherwise specified. Also, we use the

terms “harmonic mapping” and “harmonic function” interchangeably, as this is

customary in recent literature.

Univalent harmonic functions can be thought of as a natural generalization of

conformal mappings. However, unlike conformal mappings, these functions are not

at all determined (up to normalization) by their image domains. Univalent harmonic

functions in C have traditionally appeared in the description of minimal surfaces.

For instance, in 1952, Heinz [33] studied the Gaussian curvature of non-parametric

minimal surfaces over D by making use of such functions. After the emergence

of the seminal paper [15] of Clunie and Sheil-Small, univalent harmonic functions

generated interest more from a function theoretic point of view. This approach had a

clear advantage: the functions could now be treated with elegant function theoretic

methods that were earlier not in use for similar problems, while the results could still

be connected to the theory of minimal surfaces. Also, it was observed that univalent

harmonic functions with nice geometric properties has particular importance in the

study of minimal surfaces, thereby making the geometric subclasses of such functions

quite interesting.

A complex-valued function f = u + iv is harmonic in the unit disk if u and

v are real-valued harmonic functions in D. Every such function has a unique

representation f = h + ḡ, where h, g are analytic functions in D with g(0) = 0.

The function h is said to be the analytic part, and g the co-analytic part, of f .

Thus, harmonic functions exhibit a two-folded series structure: one is a power series

in z, and the other being a power series in z̄.

It is clear that every analytic function is indeed harmonic, but the converse is

not true. In particular, the functions u and v need not satisfy the Cauchy-Riemann

equations. This relaxation significantly affects the behaviour of harmonic functions.

In contrast to analytic functions, the composition, product, reciprocal and inverse

of harmonic functions need not be harmonic. Surprisingly though, it is true that
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if f is harmonic and g is analytic, then the composition f ◦ g, suitably defined, is

harmonic. This, together with the Riemann mapping theorem and the following

well-known result of Radó, reduce the study of univalent harmonic mappings in any

arbitrary simply connected domain D ̸= C to the study of such mappings in D.

Theorem G. [19, p. 24] There is no univalent harmonic function which maps D
onto C.

As mentioned in Section 1.1, an analytic function is locally univalent at a

point z0 if and only if f ′(z0) ̸= 0. Since the Jacobian Jf (z) equals |f ′(z)|2 for

an analytic function f , it means that every locally univalent analytic function has

a non-vanishing Jacobian. Remarkably, Lewy [42] showed that the same principle

remains true for planar harmonic mappings.

Theorem H. Let f = h + ḡ be a harmonic function defined in a domain D ⊂ C.

If f is locally univalent at z0 ∈ D, then

Jf (z0) = |h′(z0)|2 − |g′(z0)|2 ̸= 0.

The Jacobian of a locally univalent harmonic function, since continuous, has the

same sign throughout a domain. The function f is known to be sense-preserving (or,

orientation-preserving) in D if Jf (z) > 0 for all z ∈ D, and to be sense-reversing

if Jf (z) < 0 for every z ∈ D. If f is sense-reversing, then f̄ is sense-preserving, so

one may confine interest to sense-preserving harmonic functions, without any loss of

generality. In the context of the unit disk, a harmonic function f = h+ ḡ is locally

univalent and sense-preserving in D if and only if the inequality |h′(z)| > |g′(z)|
holds for every z ∈ D. Associated with every such function is the dilatation w(z) =

g′(z)/h′(z), which satisfies |w(z)| < 1 on D.

Let SH be the class of all sense-preserving univalent harmonic functions f = h+ḡ

in D normalized by h(0) = g(0) = h′(0)−1 = 0. Thus, each function f = h+ ḡ ∈ SH

admits the representation

h(z) = z +
∞∑
n=2

anz
n and g(z) =

∞∑
n=1

bnz
n.

It is known that SH is a normal family, but not compact. For instance, the functions

fn(z) = z + (n/(n + 1))z̄ are in SH , but as n → ∞, fn(z) → 2Re (z), which is

not univalent. Therefore, to study extremal problems, e.g. the upper bounds of

coefficients, it is often more convenient to work with the compact normal family

S0
H = {f = h + ḡ ∈ SH : g′(0) = 0}, which is in a one-to-one correspondence with
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SH . If f ∈ SH , then |b1| < 1 and the function

f0 =
f − b1f

1− |b1|2

is in S0
H . Similarly, for f0 ∈ S0

H and |b1| < 1, the function f = f0 + b1f0 belongs to

SH . Analogous to the geometric subclasses of S, one can define various subclasses

of SH . Let KH and CH be the subclasses of SH consisting of harmonic mappings

onto convex and close-to-convex domains, respectively, and let K0
H = KH ∩ S0

H and

C0
H = CH ∩ S0

H be the corresponding compact classes. Two leading examples of

univalent harmonic functions are

L(z) = H1(z) +G1(z) =

(
z − 1

2
z2

(1− z)2

)
+

( −1
2
z2

(1− z)2

)
which maps the unit disk onto the half-plane Re {w} > −1/2, and the harmonic

Koebe function

K(z) = H2(z) +G2(z) =

(
z − 1

2
z2 + 1

6
z3

(1− z)3

)
+

( 1
2
z2 + 1

6
z3

(1− z)3

)
which maps D onto the entire plane minus the real interval (−∞,−1/6]. It is easy

to see that L ∈ K0
H and K ∈ C0

H . Interestingly, these functions originated through

a method of shear construction due to Clunie and Sheil-Small, which is the most

well-known tool for constructing univalent harmonic mappings in D (with prescribed

dilatation).

Theorem I. [15, Theorem 5.3] Let f = h+ḡ be a locally univalent harmonic function

in D. Then f is univalent and its range is convex in the horizontal direction (resp.

vertical direction) if and only if h− g (resp. h+ g) has the same properties.

Theorem I makes it possible to construct univalent harmonic functions convex in

the horizontal direction, by “shearing” (i.e., stretching and translating) the range of

a given univalent analytic function in the horizontal direction. The necessary steps

are as follows.

(i) Choose h−g = ϕ, where ϕ ∈ S maps D onto a domain convex in the horizontal

direction.

(ii) Choose an analytic function w in D with |w(z)| < 1.

(iii) Solve the relations

h′ − g′ = ϕ′ and wh′ = g′

to find h and g.
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(iv) The solutions are

h(z) =

∫ z

0

φ′(ζ)

1− ω(ζ)
dζ and g(z) = h(z)− ϕ(z).

(v) Then the desired harmonic function is

f(z) = h(z) + g(z) = 2Re(h(z))− ϕ(z).

Similarly, one can choose h + g = φ, where φ ∈ S maps D onto a domain

convex in the vertical direction, and follow the above steps to construct univalent

harmonic functions convex in the vertical direction. Using this method, the harmonic

half-plane mapping L arises through the choices

h(z) + g(z) = l(z) = z/(1− z) and w(z) = −z,

while the harmonic Koebe function is obtained by choosing

h(z)− g(z) = k(z) = z/(1− z)2 and w(z) = z.

More details on univalent harmonic functions can be found in the paper of Clunie

and Sheil-Small [15], as well as in the monograph of Duren [19] and the expository

article of Bshouty and Hengartner [12].

The following harmonic analogue of the Bieberbach conjecture due to Clunie

and Sheil-Small has been the primary motivation behind the theory of univalent

harmonic functions.

Conjecture B. [15] Suppose f = h + ḡ ∈ S0
H , with h(z) = z +

∑∞
n=2 anz

n and

g(z) =
∑∞

n=2 bnz
n. Then for all n ≥ 2,

|an| ≤
(n+ 1)(2n+ 1)

6
,

|bn| ≤
(n− 1)(2n− 1)

6
,

and ||an| − |bn|| ≤ n.

The bounds are attained for the harmonic Koebe function K.

The conjecture has been verified for a number of subclasses of S0
H , see [15, 54].

Most notably, Wang, Liang and Zhang [59] verified the conjecture for the class C0
H .

For the whole class S0
H , the inequality |b2| ≤ 1/2 has been established, but the
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problem remains vastly open, even for |a2|. To this end, the latest known bound is

|a2| < 21, due to Abu Muhanna, Ali and Ponnusamy [1]. It is pertinent to mention

that for functions f ∈ K0
H , the improved bounds

|an| ≤
n+ 1

2
, |bn| ≤

n− 1

2
, and ||an| − |bn|| ≤ 1

are known. Equality occurs for the half-plane mapping L.

The representation f = h + ḡ, in view of the rich theory of Hardy spaces of

analytic functions, led to considerable interest in the boundary behaviour of planar

harmonic mappings. Analogous to the Hp spaces, the harmonic Hardy spaces hp

are defined as the class of harmonic functions f in D which satisfy

∥f∥p = lim
r→1−

Mp(r, f) <∞.

In particular, Abu-Muhanna and Lyzzaik [2] showed that there exists a universal

p > 0 such that every f ∈ SH belongs to the class hp. This implies that every

univalent harmonic function in D has a finite radial limit in almost every direction.

Later, Nowak [47] improved the results of Abu-Muhanna and Lyzziak, and obtained

sharp estimates for p > 0 such that the classes KH and CH are contained in hp.

However, the exact range of p > 0 for the whole class SH remains unknown. This

problem motivates a significant part of this thesis.

1.4 Outline of the thesis

The thesis contains four chapters, including the introduction. In the second chapter,

we focus on the mean growth and smoothness of harmonic functions in the unit

disk. For a complex-valued harmonic function f in D, using the notation |∇f | =
(|fz|2 + |fz̄|2)1/2, we explore the relation between Mp(r, f) and Mp(r,∇f). We show

that if |∇f | has a “slow” rate of growth, then f is continuous on D, and the boundary

function satisfies a Lipschitz condition. We also compare the growth of the integral

means Mp(r, f) for different values of p. Indeed, it is shown that if one knows the

growth of Mp(r, f), then the growth of Mq(r, f), for any q > p, can be given in

a surprisingly precise form. The growth of univalent harmonic functions receives

special treatment. First, we give an order of growth for functions in SH , which

leads to a coefficient bound for these functions. Then we study the membership

of univalent and locally univalent harmonic functions in the Hardy space, and as a

consequence, obtain a “best possible” coefficient estimate for functions with certain

properties.
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The third chapter focuses on Baernstein type results for univalent harmonic

functions, which was previously unexplored, to the best of our knowledge. We

produce Baernstein type inequalities for the classes of convex and close-to-convex

harmonic functions, which lead to integral mean estimates for the respective classes.

We also propose a harmonic analogue of the logarithmic coefficients of a function

in S, and obtain a sharp inequality involving these coefficients. The chapter closes

with a related open problem, a positive answer to which will imply a substantial

progress on the coefficient problem of Clunie and Sheil-Small.

The final chapter centres upon the comparison of the integral of |f |p along

different curves. In particular, we present a Riesz-Fejér type inequality which

compares the integral along a circle to the same along a pair of its diameters. As

a consequence, a result pertaining to real sequences is obtained which generalizes

a famous inequality of Hilbert. Several of the results turn out to be sharp. We

conclude the chapter, and thereby the thesis, with a sharpness conjecture, which

has the potential to invoke future interests.
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Chapter 2

Growth of Harmonic Functions in

the Unit Disk

2.1 Classical results of Hardy and Littlewood

The classical work of Hardy and Littlewood [32] contains foundational results on

the mean growth of analytic functions. For example, the following intricate result

explores the relation between the integral means of an analytic function and those

of its derivative.

Theorem J. [32] Suppose 0 < p ≤ ∞ and α > 1, and let f be an analytic function

in D. Then

Mp(r, f
′) = O

(
1

(1− r)α

)
as r → 1

if and only if

Mp(r, f) = O

(
1

(1− r)α−1

)
as r → 1.

In general terms, f ′ has a faster rate of growth, by a factor of (1−r)−1, compared

to the growth of f . In this context, it is worthwhile to discuss the smoothness of

the boundary function. One can reasonably expect an analytic function to have a

smooth extension to the boundary if the derivative grows “slowly”, and vice versa.

Let Λα (α > 0) be the class of functions φ : R → C satisfying a Lipschitz condition

of order α:

|φ(x)− φ(y)| ≤ A|x− y|α.

It is to be noted that for α > 1, the class Λα only consists of constant functions.

Hence one should confine interest to the case 0 < α ≤ 1. The next result connects

the growth of the derivative to the smoothness of the boundary function.

Theorem K. [32] Let 0 < α ≤ 1 and f be an analytic function in D. Then f is

continuous in D and f(eiθ) ∈ Λα if and only if

|f ′(z)| = O

(
1

(1− r)1−α

)
as r = |z| → 1.
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On the other hand, if f ∈ Hp (0 < p < ∞), one can give a sharp estimate on

the growth of Mq(r, f) for any q > p. In fact, this statement can be expressed in a

stronger form, as follows.

Theorem L. [32] Let f be analytic in D and suppose for some positive constant C,

Mp(r, f) ≤
C

(1− r)β
, 0 < p <∞, β ≥ 0.

Then there is a positive constant K, independent of f , such that

Mq(r, f) ≤
KC

(1− r)β+
1
p
− 1

q

, p < q ≤ ∞.

The exponent (β + 1/p− 1/q) cannot be improved. Furthermore, if β = 0 (i.e., f ∈
Hp), then Mq(r, f) = o

(
(1− r)

1
q
− 1

p

)
.

This result, despite being best possible in one respect, has an interesting

refinement.

Theorem M. [32] If 0 < p < q ≤ ∞, f ∈ Hp, λ ≥ p, and α = 1/p− 1/q, then∫ 1

0

(1− r)λα−1{Mq(r, f)}λdr <∞.

We refer to [16, 20, 31, 44] for further results on the integral means of analytic

functions. Girela, Pavlović and Peláez extended Theorem J to the case α = 1 in the

following manner.

Theorem N. [27] If 2 < p <∞ and f is an analytic function in D such that

Mp(r, f
′) = O

(
1

1− r

)
as r → 1,

then

Mp(r, f) = O

((
log

1

1− r

) 1
2

)
as r → 1.

In a relatively recent development, Chen, Ponnusamy and Wang [14] observed

that Theorem N remains valid for harmonic functions as well. Let us state the result.

Theorem O. Suppose p > 2 and f is a harmonic function in D. Let ∇f = (fz, fz̄)

and |∇f | = (|fz|2 + |fz̄|2)
1
2 . If

Mp(r,∇f) = O

(
1

1− r

)
as r → 1,
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then

Mp(r, f) = O

((
log

1

1− r

) 1
2

)
as r → 1.

For an analytic function f , it is obvious that |∇f(z)| = |f ′(z)|. Therefore, this

result particularly contains the result of Girela, Pavlović and Peláez. While Theorem

O extends Theorem N to harmonic functions, we could not find harmonic analogues

of the more fundamental Theorems J–M. Therefore, we are naturally intrigued by

the question: to what extent are the growth results for analytic functions valid for

harmonic functions? This chapter produces a comprehensive study in that direction.

We show that these results indeed hold in the setting of harmonic functions in the

unit disk, leading to the understanding that analytic and harmonic functions behave

alike in regards to growth.

2.2 Growth and smoothness of harmonic

functions

The representation of a harmonic function in terms of a pair of analytic functions is

enormously useful. It allows one to deduce certain properties of harmonic functions

from those of analytic functions. Therefore, it is of interest to relate the growth

of a harmonic function to that of its analytic and co-analytic parts. Clearly, for a

harmonic function f = h+ ḡ, if h and g have the same order of growth, then so does

f . The converse is less obvious, and is given below.

Lemma 2.1. Let 0 < p ≤ ∞ and β > 0. Suppose f = h+ ḡ is harmonic in D. If

Mp(r, f) = O

(
1

(1− r)β

)
as r → 1,

then so are Mp(r, h) and Mp(r, g).

Proof. Let us write f = u + iv, where u and v are real-valued harmonic functions

in D. Let u1, v1 be the harmonic conjugates of u and v, respectively. Suppose

U = u+ iu1 and V = v + iv1. Then

f = ReU + iReV =
1

2

(
U + U

)
+
i

2

(
V + V

)
=

1

2
(U + iV ) +

1

2
(U − iV ).

Therefore, we may choose h = 1
2
(U + iV ) and g = 1

2
(U − iV ). Indeed, h and

1
2
(U + iV ) can vary at most by a constant, which does not affect the order of growth
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and can be ignored. Same is true for g and 1
2
(U − iV ). As |u|, |v| ≤ |f |, clearly

Mp(r, u) = O

(
1

(1− r)β

)
as r → 1,

and so is Mp(r, v). Since a harmonic function and its conjugate have the same order

of growth (see [44]), we find that Mp(r, U) and Mp(r, V ) are O
(
(1− r)−β

)
when r

nears 1. The desired conclusion now follows from the aforementioned choice of h

and g.

Remark 2.1. This result, although elementary, has important restrictions. If β = 0,

Lemma 2.1 holds for 1 < p <∞ but fails for 0 < p ≤ 1. For example, the half-plane

mapping L = H1 + G1 is in h1/2, while H1, G1 /∈ H1/2. Since the function L is

extremal for many problems in the class K0
H , one may be tempted to think that

every convex harmonic function is of class h1/2. However, this is false, as Aleman

and Martin [3] constructed a family of convex harmonic mappings that do not belong

to h1/2.

We recall the following well-known inequality that will be useful in the sequel.

Lemma A. [20, p. 57] For arbitrary positive numbers a and b,

(a+ b)p ≤
{
ap + bp, 0 < p ≤ 1,

2p−1(ap + bp), p > 1.

As the first major result of this chapter, we prove that Theorem J holds when f

is a harmonic function in D.

Theorem 2.1. Let 1 ≤ p <∞ and α > 1. If f is a harmonic function in D, then

Mp(r,∇f) = O

(
1

(1− r)α

)
as r → 1

if and only if

Mp(r, f) = O

(
1

(1− r)α−1

)
as r → 1.

Proof. Let f = h+ ḡ, where h and g are analytic functions in D. SupposeMp(r, f) =

O ((1− r)1−α) as r → 1. It follows from Lemma 2.1 that Mp(r, h) and Mp(r, g) are

O ((1− r)1−α). Thus Theorem J implies that Mp(r, h
′) = O ((1− r)−α) and so is
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Mp(r, g
′). By Lemma A, for a suitable constant A1, we have

{Mp(r,∇f)}p =
1

2π

∫ 2π

0

(
|h′(reiθ)|2 + |g′(reiθ)|2

) p
2 dθ

≤ 1

2π

∫ 2π

0

A1

(
|h′(reiθ)|p + |g′(reiθ)|p

)
dθ

= A1 ({Mp(r, h
′)}p + {Mp(r, g

′)}p) = O

(
1

(1− r)αp

)
.

Therefore, Mp(r,∇f) = O ((1− r)−α) as r → 1.

For the converse, let us assume that Mp(r,∇f) = O ((1− r)−α) as r → 1. Given

any fixed θ ∈ [0, 2π), we can write

|f(reiθ)| ≤ |f(0)|+
∫ r

0

∣∣∣∣ ddsf(seiθ)
∣∣∣∣ ds. (2.1)

Now observe that∫ r

0

∣∣∣∣ ddsf(seiθ)
∣∣∣∣ ds = ∫ r

0

∣∣∣eiθh′(seiθ) + eiθg′(seiθ)
∣∣∣ ds

≤
√
2

∫ r

0

(
|h′(seiθ)|2 + |g′(seiθ)|2

) 1
2 ds (by Lemma A)

=
√
2

∫ r

0

|∇f(seiθ)|ds.

Therefore, from (2.1) we see that

Mp(r, f) ≤
(

1

2π

∫ 2π

0

(
|f(0)|+

√
2

∫ r

0

|∇f(seiθ)|ds
)p

dθ

) 1
p

≤ |f(0)|+
√
2

(
1

2π

∫ 2π

0

(∫ r

0

|∇f(seiθ)|ds
)p

dθ

) 1
p

.

An appeal to Minkowski’s inequality gives

(
1

2π

∫ 2π

0

(∫ r

0

|∇f(seiθ)|ds
)p

dθ

) 1
p

≤
∫ r

0

Mp(s,∇f)ds,

which implies

Mp(r, f) ≤ |f(0)|+
√
2

∫ r

0

Mp(s,∇f)ds

≤ |f(0)|+
√
2

∫ r

0

A2

(1− s)α
ds (for constant A2 > 0)

= O

(
1

(1− r)α−1

)
.
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This completes the proof.

Next, we prove that if |∇f | grows sufficiently slowly, then the boundary function

belongs to the class Λα. The converse is true as well, and the precise statement is

as follows.

Theorem 2.2. Let 0 < α < 1 and f be a harmonic function in D. Then f is

continuous in D and f(eiθ) ∈ Λα if and only if

|∇f(z)| = O

(
1

(1− r)1−α

)
as r = |z| → 1.

Proof. Suppose there is a positive constant C such that

|∇f(reiθ)| ≤ C

(1− r)1−α
.

The growth condition implies that the radial limit

f(eiθ) = lim
r→1

f(reiθ) = f(0) + lim
r→1

∫ r

0

d

ds
f(seiθ)ds

exists everywhere. Since f is harmonic, f(reiθ) is the Poisson integral of f(eiθ), thus

the continuity of f(eiθ) is sufficient to ensure the continuity of f in D. Hence we

only need to prove that f(eiθ) belongs to the class Λα. Choose θ1 and θ2 such that

0 < θ1 − θ2 < 1. For a fixed R (0 < R < 1) we may write

|f(eiθ1)− f(eiθ2)| ≤ |f(eiθ1)− f(Reiθ1)|+ |f(Reiθ1)− f(Reiθ2)|
+ |f(eiθ2)− f(Reiθ2)|.

Like in the proof of Theorem 2.1, we see that

|f(eiθ1)− f(Reiθ1)| ≤
√
2

∫ 1

R

|∇f(seiθ1)|ds

≤
√
2

∫ 1

R

C

(1− s)1−α
ds =

√
2C

α
(1−R)α.

Similarly we have |f(eiθ2) − f(Reiθ2)| ≤
√
2C

α
(1 − R)α. An analogous reasoning

shows

|f(Reiθ1)− f(Reiθ2)| ≤
√
2R

∫ θ1

θ2

|∇f(Reiθ)|dθ

≤
√
2

∫ θ1

θ2

C

(1−R)1−α
dθ =

√
2C

(θ1 − θ2)

(1−R)1−α
.
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Therefore, we find that

|f(eiθ1)− f(eiθ2)| ≤ 2
√
2C

α
(1−R)α +

√
2C

(θ1 − θ2)

(1−R)1−α
.

We may now choose R = 1− (θ1 − θ2) to obtain

|f(eiθ1)− f(eiθ2)| ≤
√
2C

(
2

α
+ 1

)
(θ1 − θ2)

α,

so that f(eiθ) ∈ Λα.

For the converse part of the result, let us assume that f(eiθ) ∈ Λα and write

f = h+ ḡ. It is well-known that if a harmonic function is of class Λα (α < 1), so is

its conjugate (see [20, Theorem 5.8]). An argument similar to the proof of Lemma

2.1 gives h(eiθ), g(eiθ) ∈ Λα. Therefore, Theorem K implies that h′(z) and g′(z)

are O ((1− r)α−1) as r = |z| → 1. The desired conclusion follows, and the proof is

complete.

Now we turn our attention to the comparative growth of means.

Theorem 2.3. Let f be harmonic in D and suppose for some positive constant C,

Mp(r, f) ≤
C

(1− r)β
, 1 ≤ p <∞, β ≥ 0.

Then there is a positive constant K independent of f such that

Mq(r, f) ≤
KC

(1− r)β+
1
p
− 1

q

, p < q ≤ ∞. (2.2)

The exponent (β + 1/p− 1/q) cannot be improved. Furthermore, if β = 0 (i.e., f ∈
hp), then Mq(r, f) = o

(
(1− r)

1
q
− 1

p

)
.

Proof. First we observe that it is enough to consider the case q = ∞. To see this,

suppose (2.2) has been proved for q = ∞, and for convenience assume that K ≥ 1.

Then for p < q <∞,

Mq(r, f) =

(
1

2π

∫ 2π

0

|f(reiθ)|p|f(reiθ)|q−pdθ
) 1

q

≤ (M∞(r, f))1−
p
q (Mp(r, f))

p
q

≤
(

KC

(1− r)β+
1
p

)1− p
q (

C

(1− r)β

) p
q

≤ KC

(1− r)λ
,
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where

λ =

(
β +

1

p

)(
1− p

q

)
+
βp

q
= β +

1

p
− 1

q
.

Similar argument is valid for the “o” part of the theorem as well. Hence we may

restrict our attention to the case q = ∞. The proof further makes use of the following

lemmas.

Lemma B. [20, p. 65] For each p > 1,∫ π

−π

dθ

|eiθ − r|p = O

(
1

(1− r)p−1

)
as r → 1.

Lemma C. [20, p. 84] If p > 1 and ρ = 1+r
2

, then∫ 2π

0

dθ

|ρeiθ − r|p = O

(
1

(1− r)p−1

)
as r → 1.

Let us resume the proof of the theorem. For 0 < ρ < 1, let Dρ denote the disk

{z ∈ C : |z| < ρ}. Since f is harmonic in Dρ, it has the following Poisson integral

representation:

f(z) =
1

2π

∫ 2π

0

ρ2 − |z|2
|ρeiθ − z|2f(ρe

iθ)dθ, z ∈ Dρ.

This implies that

|f(z)| ≤ 1

2π

∫ 2π

0

ρ+ |z|
|ρeiθ − z| |f(ρe

iθ)|dθ. (2.3)

Case I: Let p = 1. From (2.3) it follows that

|f(z)| ≤ 1

2π

∫ 2π

0

2ρ

ρ− |z| |f(ρe
iθ)|dθ.

Write z = reit and take ρ = 1+r
2

so that ρ− r = 1− ρ = 1−r
2
. Then we have

|f(reit)| ≤ 4ρ

1− r
M1(ρ, f) ≤

KC

(1− r)β+1
,

where K is some positive constant independent of f .

Case II: Let 1 < p <∞ and let p′ be the conjugate exponent, i.e., 1
p
+ 1

p′
= 1. From
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(2.3) and Hölder’s inequality, we see that for z = reit,

|f(reit)| ≤ 2ρMp(ρ, f)

(
1

2π

∫ 2π

0

dθ

|ρeiθ − reit|p′
) 1

p′

≤ 2ρ
C

(1− ρ)β

(
1

2π

∫ 2π

0

|ρeiθ − r|−p′dθ
) 1

p′

.

Now take ρ = 1+r
2

and apply Lemma C to obtain (2.2) for q = ∞.

Next we turn to the “o” part. Let f ∈ hp, 1 ≤ p < ∞. For 0 < ρ < 1, set

fρ(z) = f(ρz), z ∈ D. Then fρ(z) is harmonic in D and has the Poisson integral

representation

fρ(re
iθ) =

1

2π

∫ π

−π

1− r2

|eit − reiθ|2fρ(e
it)dt =

1

2π

∫ π

−π

1− r2

|eit − r|2fρ(e
i(t+θ))dt.

It follows that

|fρ(reiθ)| ≤
1

π

∫ π

−π

1

|eit − r| |fρ(e
i(t+θ))|dt. (2.4)

Since fρ ∈ hp, for any ϵ > 0 there exists δ > 0 such that∫ δ

−δ
|fρ(ei(t+θ))|pdt < ϵp for every θ.

Denote J = |fρ(ei(t+θ))|/|eit − r| and rewrite (2.4) as

|fρ(reiθ)| ≤
1

π

(∫ −δ

−π
J dt+

∫ δ

−δ
J dt+

∫ π

δ

J dt

)
. (2.5)

Clearly for each δ > 0, the first and the third integrals in (2.5) remain bounded as

r → 1. Suppose p > 1 and p′ is the conjugate exponent. Then an appeal to Hölder’s

inequality shows that

∫ δ

−δ

1

|eit − r| |fρ(e
i(t+θ))|dt ≤

(∫ δ

−δ
|fρ(ei(t+θ))|pdt

) 1
p
(∫ δ

−δ

dt

|eit − r|p′
) 1

p′

<
Aϵ

(1− r)
1
p

(by Lemma B).

The argument for p = 1 readily follows from (2.4). Therefore for p ≥ 1, we have

fρ(z) = o
(
(1− r)−

1
p

)
. Now let ρ → 1 to conclude that f(z) = o

(
(1− r)−

1
p

)
and

the proof is complete.

The argument for the exponent
(
β + 1

p
− 1

q

)
to be best possible is identical to

the case of Theorem L: one needs to review the well-known example f(z) = (1−z)−ζ
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for suitable ζ > 0.

Theorem 2.4. If 1 < p < q ≤ ∞, f ∈ hp, λ ≥ p, and α = 1/p− 1/q, then∫ 1

0

(1− r)λα−1{Mq(r, f)}λdr <∞.

Proof. This result can be directly obtained from Theorem M. Interestingly, this

technique can be used to establish several results for harmonic functions from the

corresponding results for analytic functions. The strategy is to first prove the result

for subharmonic functions, which can be based upon the following classical result of

Gabriel [24].

Lemma D. [24] If F (reiθ) is subharmonic and continuous in 0 ≤ r ≤ 1 and f(reiθ)

is the Poisson integral of F (eiθ), then F (reiθ) ≤ f(reiθ), 0 ≤ r < 1.

Now, suppose U is non-negative, subharmonic and continuous in D, with

lim
r→1

Mp(r, U) < ∞. For 0 < ρ < 1, write Uρ(z) = U(ρz). Then Uρ is subharmonic

and continuous in D. Let u(reiθ) be the Poisson integral of Uρ(e
iθ). Then u is

harmonic in D and has boundary values u(eiθ) = Uρ(e
iθ). Therefore by Lemma D,

Uρ(re
iθ) ≤ u(reiθ) for 0 ≤ r < 1. Clearly,∫ 2π

0

up(eiθ)dθ =

∫ 2π

0

Uρ
p(eiθ)dθ =

∫ 2π

0

Up(ρeiθ)dθ <∞,

so that u ∈ hp. Let v be the harmonic conjugate of u for which v(0) = u(0). By

a well-known result of M. Riesz [53], it then follows that v ∈ hp. This implies that

the analytic function f = u+ iv is of class Hp. Therefore, by Theorem M we have∫ 1

0

(1− r)λα−1{Mq(r, f)}λdr <∞.

As Uρ(re
iθ) ≤ u(reiθ) ≤ |f(reiθ)|, it follows that∫ 1

0

(1− r)λα−1{Mq(r, Uρ)}λdr <∞.

Now, we let ρ→ 1 and obtain the desired result (for the function U) by Lebesgue’s

monotone convergence theorem.

It is easy to check that for a function f harmonic in the unit disk, the function

|f | is subharmonic. One can simply deduce the sub-mean-value property of |f | from
the man-value property of f . Therefore, the proof is complete.
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This result can also be understood from a function space point of view. In [49,

p. 84], the mixed-norm space hp,qα is defined as the class of harmonic functions f

such that

∥f∥hp,qα
=

(∫ 1

0

(1− r)qα−1{Mp(r, f)}qdr
) 1

q

<∞.

Theorem 2.4 essentially states that under the given hypothesis, the function f

belongs to the class hq,λα . Many important results (e.g. Hardy-Littlewood maximal

theorem) of the classical Hp-setting remain valid in such mixed-norm spaces, we

refer to [49, Chapter 3] for an exposition.

2.3 Growth of univalent harmonic functions

Closely related to the coefficient problem for functions in SH is the mean growth

of these functions, in the sense that the study of integral means enables one to

estimate the Taylor series coefficients of the corresponding analytic and co-analytic

parts. Here we give an order of growth for the integral mean of a function f ∈ SH ,

and as a consequence, obtain a coefficient estimate. For our purpose, let us recall

the following result of Nowak.

Theorem P. [47] Let h be analytic and locally univalent in D, with h(0) = 0 =

h′(0)− 1, and suppose∣∣∣∣zh′′(z)h′(z)
− 2|z|2

1− |z|2
∣∣∣∣ ≤ 2A|z|

1− |z|2 (z ∈ D) (2.6)

for some A ≥ 1. Then, for p > 0,

lim sup
r→1

logMp
p (r, h

′)

− log(1− r)
≤
√
A2p2 − p+

1

4
+ p− 1

2
.

We are now ready to state our result.

Theorem 2.5. Suppose f = h + ḡ ∈ SH with h(z) = z +
∑∞

n=2 anz
n and g(z) =∑∞

n=1 bnz
n. Let α = supf∈SH

|a2|. Then for every ϵ > 0,

Mp(r, f) = O

(
1

(1− r)k(p)+ϵ

)
(1 ≤ p <∞),

where k(p) =
√
α2 − 1

p
+ 1

4p2
− 1

2p
. Consequently,

|an| = O(nα−
1
2 ), |bn| = O(nα−

1
2 ), n = 2, 3, 4, . . . .
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Proof. For fixed ζ ∈ D, the function

F (z) =
f
(
z+ζ
1+ζ̄z

)
− f(ζ)

(1− |ζ|2)h′(ζ) = H(z) +G(z) (z ∈ D)

is known to be in SH . Let us write

H(z) = z + A2(ζ)z
2 + A3(ζ)z

3 + · · · .

A customary computation gives

A2(ζ) =
1

2

{
(1− |ζ|2)h

′′(ζ)

h′(ζ)
− 2ζ̄

}
. (2.7)

Since |A2(ζ)| ≤ α, clearly h satisfies (2.6) with A = α. Therefore, Theorem P

implies that for given ϵ > 0,

Mp(r, g
′) < Mp(r, h

′) = O

(
1

(1− r)k(p)+1+ϵ

)
.

It follows from our earlier discussions that Mp(r,∇f) has the same order of growth.

The desired estimate now results from the inequality

Mp(r, f) ≤
√
2

∫ r

0

Mp(s,∇f)ds.

For the coefficient bound, we see that

|an| =
∣∣∣∣ 1

2πi

∫
|z|=r

h(z)

zn+1
dz

∣∣∣∣ = ∣∣∣∣ 1

2πi

∫
|z|=r

f(z)

zn+1
dz

∣∣∣∣ ≤ r−nM1(r, f). (2.8)

From what we have already shown,

M1(r, f) = O

(
1

(1− r)k(1)+ϵ

)
, k(1) =

√
α2 − 3

4
− 1

2
.

Now
√
α2 − 3

4
= α− δ for some δ > 0. Choose ϵ = δ so that (2.8) gives

|an| ≤
C1

rn(1− r)α−
1
2

,

for some absolute constant C1. The function on the right hand side attains a
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minimum at r = n
n+α−1/2

. With this choice of r, we obtain

|an| ≤ C2

(
1 +

α− 1
2

n

)n(
n+ α− 1

2

)α− 1
2

≤ C3n
α− 1

2 ,

where C2, C3 are constants. Similarly, one can show that |bn| = O(nα−
1
2 ), and the

proof is complete.

Remark 2.2. The coefficient bound is an improvement on an earlier estimate by

Starkov [56, Lemma 2] which involves nα.

The importance of α in the growth of univalent harmonic functions is explicitly

discussed in the next section. We also improve the coefficient estimate obtained here

for certain functions in SH .

2.4 Membership in the Hardy space

A central problem pertaining to the growth of univalent harmonic mappings is to

determine the range of p > 0 so that a function f belongs to the harmonic Hardy

space hp. Let us give an account of the problem. Suppose f = h+ ḡ ∈ SH , with

h(z) = z +
∞∑
n=2

anz
n and g(z) =

∞∑
n=1

bnz
n. (2.9)

Recall that α = supf∈SH
|a2|. Then α has crucial influence in the growth of functions

in SH , see [54] for an exposition. Interest in the boundary behavior of functions

f ∈ SH was initiated by Abu-Muhanna and Lyzzaik [2], who proved that f ∈ hp

for p < 1/(2α+ 2)2. Bshouty and Hengartner [12] proposed to find the exact range

of p > 0 for which f ∈ hp. In [47], Nowak improved the range to p < 1/α2, and

obtained the sharp results that f ∈ hp for p < 1/2 (resp. p < 1/3) whenever f

is a convex (resp. close-to-convex) harmonic function. These observations led her

to conjecture that if f ∈ SH , then f ∈ hp for p < 1/α. The conjecture seems

challenging, and in [51] the authors verified it by confining interest to harmonic

quasiconformal mappings.

Here we first give a relation between Mp(r, f) and Mp(r, h
′), which naturally

allows us to check the boundedness of ∥f∥p whenever h′ behaves “nicely”. As it

turns out, this can be achieved by placing the simple restriction that h′ takes no

value infinitely often. An analytic function φ in D has valency m if φ takes no value

more thanm times. More generally, letW (R) be the area of the image under φ of the

disk |z| ≤ R, with regions covered multiply counted according to multiplicity. Then
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φ is said to have mean valency m, where m is a positive number (not necessarily an

integer), if

W (R) ≤ mπR2

for every R > 0. This notion is due to Spencer, who gave the following inequality

on the integral means of these functions.

Theorem Q. [55] If f has finite mean valency, f(0) = 0, and p > 0, then

Mp
p (r, f) ≤ K

∫ r

0

Mp
∞(s, f)

s
ds,

where K is a positive constant independent of f .

The value of K is known, but is redundant for our purpose. This inequality was

initially proved by Prawitz (see [50, Theorem 5.1]) for univalent functions. We now

prove a theorem that lays the foundation for the subsequent results, while also being

of some independent interest.

Theorem 2.6. Let 0 < p ≤ 1. Suppose f = h + ḡ is a locally univalent,

sense-preserving harmonic function in D with f(0) = 0. Then

Mp
p (r, f) ≤ C

∫ r

0

(r − s)p−1Mp
p (s, h

′)ds,

where C is a constant independent of f .

Proof. For 0 ≤ r1 < r2 < 1, we have

|f(r2eiθ)− f(r1e
iθ)| =

∣∣∣∣∫ r2

r1

d

dt
f(teiθ)dt

∣∣∣∣
≤
∫ r2

r1

∣∣∣eiθh′(teiθ) + eiθg′(teiθ)
∣∣∣ dt

≤
√
2

∫ r2

r1

(
|h′(teiθ)|2 + |g′(teiθ)|2

)1/2
dt

=
√
2

∫ r2

r1

|∇f(teiθ)|dt

≤
√
2 (r2 − r1) sup

r1≤t≤r2
|∇f(teiθ)|.

Since f is sense-preserving, i.e. |g′(z)| < |h′(z)| for every z ∈ D, we find that

|∇f(teiθ)| ≤ |h′(teiθ)|+ |g′(teiθ)| < 2|h′(teiθ)|.
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Therefore,

Mp
p (r2, f)−Mp

p (r1, f) ≤
1

2π

∫ 2π

0

|f(r2eiθ)− f(r1e
iθ)|pdθ

≤ 23p/2 (r2 − r1)
p 1

2π

∫ 2π

0

(
sup

r1≤t≤r2
|h′(teiθ)|

)p
dθ.

In what follows, C will denote a positive constant that is not necessarily the same

at each occurrence. An appeal to the Hardy-Littlewood maximal theorem gives

1

2π

∫ 2π

0

(
sup

r1≤t≤r2
|h′(teiθ)|

)p
dθ ≤ CMp

p (r2, h
′),

so that

Mp
p (r2, f)−Mp

p (r1, f) ≤ C (r2 − r1)
pMp

p (r2, h
′). (2.10)

Let 0 < r < 1 be arbitrary and let rn = r(1 − 2−n), n = 0, 1, 2, . . .. Clearly,

Mp(0, f) = 0 as f(0) = 0. Using (2.10) we see that

Mp
p (rn+1, f) =

n+1∑
k=1

[
Mp

p (rk, f)−Mp
p (rk−1, f)

]
≤ C

n+1∑
k=1

(rk − rk−1)
pMp

p (rk, h
′)

= C
n+1∑
k=1

(rk − rk−1)(r − rk)
p−1Mp

p (rk, h
′),

since rk − rk−1 = 2−kr = r − rk. We let n → ∞ to obtain, by means of Riemann

integration, that

Mp
p (r, f) ≤ C

∫ r

0

(r − s)p−1Mp
p (s, h

′)ds,

and the proof is complete.

As a consequence of Theorem 2.6, we verify Nowak’s conjecture for certain

functions in SH . Indeed, the result is true for a more general class of functions. Let

us recall that a family L of harmonic functions in D is said to be linear invariant

(see [54]) if for every f = h+ ḡ ∈ L, the functions

Tφ(f(z)) =
f(φ(z))− f(φ(0))

φ′(0)h′(φ(0))
, φ ∈ Aut(D),

belong to L, where Aut(D) denotes the set of analytic automorphisms of D. Our

result does not require univalence, and holds for any linear invariant classH of locally

univalent and sense-preserving harmonic functions (with usual normalizations), for
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which α(H) = supf∈H |a2| is finite. For the remainder of this chapter, we preserve

the notation H to mean any such class of locally univalent harmonic functions.

Theorem 2.7. Let f = h + ḡ ∈ SH be such that h′ has finite mean valency. Then

f ∈ hp for p < 1/α. If f ∈ H and h′ has finite mean valency, then f ∈ hp for

p < 1/α(H).

Proof. Let 1/(α+1) < p ≤ 1 and f ∈ SH . We may choose rn = 1−2−n in the proof

of Theorem 2.6 to obtain

∥f∥pp ≤ C

∫ 1

0

(1− s)p−1Mp
p (s, h

′)ds, (2.11)

whenever the integral is finite. We break the integral in two parts, to separately

deal with possible complications around 0 and 1. For example, let us write

∥f∥pp ≤ C

[∫ 1/4

0

(1− s)p−1Mp
p (s, h

′)ds+

∫ 1

1/4

(1− s)p−1Mp
p (s, h

′)ds

]
. (2.12)

Throughout our computations, the constants will be denoted by C, K etc., and they

need not be the same at each occurrence. We do this for convenience, as constants

do not affect our conclusion.

We appeal to Theorem Q for an estimate of Mp
p (s, h

′). Since h′ is finitely mean

valent, so is zh′. Therefore, we have

Mp
p (s, zh

′) ≤ K

∫ s

0

Mp
∞(r, zh′)

r
dr. (2.13)

It is known (see [19, p. 98]) that

M∞(r, h′) ≤ (1 + r)α−1

(1− r)α+1
.

This, together with (2.13), imply

Mp
p (s, h

′) ≤ K

sp

∫ s

0

rp−1

(1− r)(α+1)p
dr. (2.14)

For s ≤ 1/4,

Mp
p (s, h

′) ≤ K

sp

∫ 1/4

0

rp−1

(1− r)(α+1)p
dr ≤ K1

sp

∫ 1/4

0

rp−1dr ≤ K2

sp
(as p ≤ 1).
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For s > 1/4,

Mp
p (s, h

′) ≤ K

sp

∫ 1/4

0

rp−1

(1− r)(α+1)p
dr +

K

sp

∫ s

1/4

rp−1

(1− r)(α+1)p
dr

≤ K2

sp
+K3

∫ s

1/4

dr

(1− r)(α+1)p

=
K2

sp
+

K3

(α + 1)p− 1

[
1

(1− s)(α+1)p−1
−K4

] (
∵ p >

1

α + 1

)
≤ K2

sp
+

K5

(1− s)(α+1)p−1
.

Substituting these bounds in (2.12), we see that

∥f∥pp ≤ C1

∫ 1/4

0

s−p(1− s)p−1ds+

[
C1

∫ 1

1/4

s−p(1− s)p−1ds+ C2

∫ 1

1/4

ds

(1− s)pα

]
= C1

∫ 1

0

s−p(1− s)p−1ds+ C2

∫ 1

1/4

ds

(1− s)pα
.

The first integral is the beta function B(1− p, p) and converges for every p ∈ (0, 1).

The second integral is finite for p < 1/α. Therefore, f ∈ hp for p < 1/α.

To prove the result for f ∈ H, we just need to establish the bound

M∞(r, h′) ≤ (1 + r)α(H)−1

(1− r)α(H)+1
.

The argument presented here is well-known (see, for example, [19, p. 98]), and will

be useful in the later results. Since H is linear invariant, for any ζ ∈ D, the function

T (z) =
f
(
z+ζ
1+ζ̄z

)
− f(ζ)

(1− |ζ|2)h′(ζ) = A(z) +B(z) (z ∈ D)

is in H. We write

A(z) = z + a2(ζ)z
2 + a3(ζ)z

3 + · · · ,

so that

a2(ζ) =
1

2

{
(1− |ζ|2)h

′′(ζ)

h′(ζ)
− 2ζ̄

}
. (2.15)

Since |a2(ζ)| ≤ α(H), we find that

2r2 − 2rα(H)

1− r2
≤ Re

{
zh′′(z)

h′(z)

}
≤ 2r2 + 2rα(H)

1− r2
(|z| = r),
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which is equivalent to

2r − 2α(H)

1− r2
≤ ∂

∂r
{log |h′(reiθ)|} ≤ 2r + 2α(H)

1− r2
.

Now we integrate from 0 to r to reach the estimate

(1− r)α(H)−1

(1 + r)α(H)+1
≤ |h′(z)| ≤ (1 + r)α(H)−1

(1− r)α(H)+1
. (2.16)

The rest of the proof follows through an identical argument, and the details are

omitted.

Remark 2.3. The choice of zh′ in (2.13) is critical, the subsequent computations

fail if one simply chooses h′.

Theorem 2.6 also leads us to the following coefficient bound for these functions.

Theorem 2.8. Suppose f = h+ ḡ ∈ SH has series representation (2.9), and h′ has

finite mean valency. Then |an| and |bn| are O(nα−1), n = 2, 3, 4, . . .. For f ∈ H
with h′ having finite mean valency, |an| and |bn| are O(nα(H)−1).

Proof. We see that

(n+ 1)|an+1| =
∣∣∣∣ 1

2πi

∫
|z|=r

h′(z)

zn+1
dz

∣∣∣∣ ≤ r−nM1(r, h
′).

We see from (2.14), for p = 1, that

M1(r, h
′) ≤ K

r

∫ r

0

ds

(1− s)α+1
≤ K

r(1− r)α
,

for some absolute constant K which varies through occurrences. Therefore,

(n+ 1)|an+1| ≤
K

rn+1(1− r)α
.

The function on the right hand side attains a minimum at r = (n+ 1)/(n+ 1+ α).

With this choice of r, we obtain

(n+ 1)|an+1| ≤ K

(
1 +

α

n+ 1

)n+1

(n+ 1 + α)α ≤ K(n+ 1)α.

Therefore, replacing n+ 1 by n,

|an| ≤ Knα−1.
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Using a similar argument, one can show that |bn| ≤ Knα−1. The proof for the second

part of the theorem is identical, except for α suitably replaced by α(H).

This coefficient estimate for f ∈ SH is in a sense best possible. The conjectured

value of α is 3. Given this, Theorem 2.8 asserts that |an| and |bn| are O(n2), which is

the same order as in the harmonic analogue of the Bieberbach conjecture (Conjecture

B).

The problem, even without the assumption of finite mean valency, can be

explored in another direction to produce a very interesting result. For f = h+ ḡ ∈
SH , the relation (2.15) (also, (2.7)) implies that∣∣∣∣h′′(z)h′(z)

∣∣∣∣ ≤ C

1− |z| (z ∈ D),

for some positive constant C. However, this is the extreme bound on h′′/h′ that a

function f = h + ḡ ∈ SH can possess. In general, it is reasonable to expect a large

subclass of SH to have a slightly restricted growth, or more precisely, to exhibit the

bound ∣∣∣∣h′′(z)h′(z)

∣∣∣∣ ≤ C

(1− |z|)β (0 ≤ β < 1).

The expression h′′/h′ is of special interest in the theory of univalent functions.

For example, it appears in the definition of the Schwarzian derivative, as well

as in characterization results for certain geometric subclasses (e.g. convex and

close-to-convex). The growth condition on h′′/h′ leads us to the following result

on the membership of univalent and locally univalent harmonic functions in the

Hardy space.

Theorem 2.9. Let f = h+ ḡ ∈ SH be such that∣∣∣∣h′′(z)h′(z)

∣∣∣∣ ≤ C

(1− |z|)β , (2.17)

for some β with 0 ≤ β < 1. Then f ∈ hp for p < 2(1 − β)/α. Analogously, if f =

h+ ḡ ∈ H satisfies the growth estimate (2.17), then f ∈ hp for p < 2(1− β)/α(H).

Proof. The Hardy-Stein identity (see [50, p. 126]) for the function h′ implies that

d

dr

[
r
d

dr
Mp

p (r, h
′)

]
=
p2r

2π

∫ 2π

0

|h′(reiθ)|p−2|h′′(reiθ)|2dθ.
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Since Mp
p (r, h

′) is a (strictly) increasing function of r, we have

d

dr
Mp

p (r, h
′) > 0.

Therefore,

d2

dr2
Mp

p (r, h
′) ≤ p2

2π

∫ 2π

0

|h′(reiθ)|p−2|h′′(reiθ)|2dθ

=
p2

2π

∫ 2π

0

|h′(reiθ)|p
∣∣∣∣h′′(reiθ)h′(reiθ)

∣∣∣∣2 dθ
≤ p2

2π

∫ 2π

0

(1 + r)(α−1)p

(1− r)(α+1)p

C2

(1− r)2β
dθ

(
∵ |h′(reiθ)| ≤ (1 + r)α−1

(1− r)α+1

)
≤ K

(1− r)(α+1)p+2β
,

for some positive constant K, which is not the same in subsequent occurrences.

Integrating twice from 0 to s (s < 1), we arrive at the estimate

Mp
p (s, h

′) ≤ K

(1− s)(α+1)p+2β−2
.

Thus, an appeal to (2.11) gives

∥f∥pp ≤ C

∫ 1

0

(1− s)p−1Mp
p (s, h

′)ds ≤ C

∫ 1

0

ds

(1− s)αp+2β−1
.

The last integral converges for αp + 2β − 1 < 1, or equivalently, p < 2(1 − β)/α.

Therefore, f ∈ hp for p < 2(1− β)/α.

The proof for f ∈ H is similar, one only needs to replace α by α(H), wherever

applicable.



Chapter 3

Integral Means of Univalent

Functions

3.1 Baernstein’s theorem and the star function

Over the years growth problems for univalent functions have been of particular

interest. A celebrated result in this direction is Baernstein’s discovery that among

the functions of class S, the Koebe function has the largest integral mean.

Theorem R. [5] If f ∈ S and Φ(x) is a convex nondecreasing function on (−∞,∞),

then ∫ π

−π
Φ
(
log |f(reiθ)|

)
dθ ≤

∫ π

−π
Φ
(
log |k(reiθ)|

)
dθ,

where k(z) = z/(1− z)2 is the Koebe function. Consequently,

Mp(r, f) ≤Mp(r, k), 0 < p <∞.

Leung [41] and Brown [11] notably proved that Baernstein’s theorem extends to

derivatives for certain subclasses of univalent functions. Extremal problems of this

type are widely studied in the literature (see, for example, [6, 21, 25, 26]) and play

a central role in the growth of analytic functions.

On the other hand, similar problems for harmonic functions remained

unexplored. In this chapter, we produce Baernstein type theorems for the major

geometric subclasses of univalent harmonic mappings. For this, we use a method of

Baernstein’s star-function. For a real-valued function g(x) integrable over [−π, π],
the star-function is defined as

g∗(θ) = sup
|E|=2θ

∫
E

g(x)dx (0 ≤ θ ≤ π),

where |E| is the Lebesgue measure of the set E ⊆ [−π, π]. The relevance of the

star-function in the study of integral means is contained in the following result of

Baernstein.
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Lemma E. [5] For g, h ∈ L1[−π, π], the following statements are equivalent.

(a) For every convex nondecreasing function Φ on (−∞,∞),∫ π

−π
Φ(g(x))dx ≤

∫ π

−π
Φ(h(x))dx.

(b) For every t ∈ (−∞,∞),∫ π

−π
[g(x)− t]+dx ≤

∫ π

−π
[h(x)− t]+dx.

(c) g∗(θ) ≤ h∗(θ), 0 ≤ θ ≤ π.

Indeed, the key to the proof of Baernstein’s theorem is an use of Lemma E on

the extremely complex inequality∫ π

−π
log+

( |f(reiθ)|
ρ

)
dθ ≤

∫ π

−π
log+

( |k(reiθ)|
ρ

)
dθ (ρ > 0)

for every f ∈ S. The following useful properties of the star-function are due to

Leung [41].

Lemma F. For g, h ∈ L1[−π, π],

[g(θ) + h(θ)]∗ ≤ g∗(θ) + h∗(θ).

Equality holds if g, h are both symmetric in [−π, π] and nonincreasing in [0, π].

Lemma G. If g, h are subharmonic functions in D and g is subordinate to h, then

for each r in (0, 1),

g∗(reiθ) ≤ h∗(reiθ), 0 ≤ θ ≤ π.

Lemma H. If p(z) = eiβ + p1z+ · · · is analytic and of positive real part in D, then

(
log |p(reiθ)|

)∗ ≤ (log ∣∣∣∣1 + reiθ

1− reiθ

∣∣∣∣)∗

, 0 ≤ θ ≤ π.

An important feature in the proof of Lemma H is that a rotation factor does

not affect the star-function. This observation will be suitably deployed at multiple

places in this chapter.
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3.2 Extremal problems for harmonic functions

Let us recall the classes K0
H and C0

H of convex and close-to-convex harmonic

functions, respectively, and also the half-plane mapping

L(z) = H1(z) +G1(z) =

(
z − 1

2
z2

(1− z)2

)
+

( −1
2
z2

(1− z)2

)
and the harmonic Koebe function

K(z) = H2(z) +G2(z) =

(
z − 1

2
z2 + 1

6
z3

(1− z)3

)
+

( 1
2
z2 + 1

6
z3

(1− z)3

)
.

We know that L ∈ K0
H and K ∈ C0

H . As it turns out, these functions play the

extremal role in Baernstein type inequalities for the respective classes. In our

pursuit, we are served well by the following analytic characterizations of convex

and close-to-convex harmonic functions.

Lemma I. [15] If f = h+ ḡ ∈ K0
H , then there exist real numbers γ, β such that

Re
{(
eiγh′(z) + e−iγg′(z)

) (
eiβ − e−iβz2

)}
> 0

for all z ∈ D.

Lemma J. [59] If f = h + ḡ ∈ C0
H , then there exist real numbers µ, θ0 and an

analytic function H(z) with positive real part such that

Re
{
H(z)

[
ieiθ0

(
1− z2

) (
e−iµh′(eiθ0z) + eiµg′(eiθ0z)

)]}
> 0, z ∈ D.

We are now prepared to discuss Baernstein type results for harmonic functions.

Theorem 3.1. Let 0 < p < ∞. If f = h + ḡ ∈ K0
H and Φ(x) is a convex

nondecreasing function on (−∞,∞), then∫ π

−π
Φ
(
log |h′(reiθ)|

)
dθ ≤

∫ π

−π
Φ
(
log |H ′

1(re
iθ)|
)
dθ,∫ π

−π
Φ
(
log |g′(reiθ)|

)
dθ ≤

∫ π

−π
Φ
(
log |G′

1(re
iθ)|
)
dθ.

Consequently,

Mp(r, h
′) ≤Mp(r,H

′
1) and Mp(r, g

′) ≤Mp(r,G
′
1).

Since L = H1 +G1 ∈ K0
H , these inequalities are sharp.
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Proof. It is to be observed that the dilatation w(z) = g′(z)/h′(z) satisfies w(0) = 0

and |w(z)| < 1 for all z ∈ D. Therefore, Schwarz lemma gives |w(z)| ≤ |z| for every
z. Let

P (z) =
(
eiγh′(z) + e−iγg′(z)

) (
eiβ − e−iβz2

)
be the function in Lemma I. Clearly, |P (0)| = 1. We see that

log |h′(z)| = log |P (z)|+ log

∣∣∣∣ 1

1 + e−2iγw(z)

∣∣∣∣+ log

∣∣∣∣ 1

1− e−2iβz2

∣∣∣∣ ,
log |g′(z)| = log |h′(z)|+ log |w(z)|.

In view of Lemmas F–H, we have for z = reiθ (0 ≤ θ ≤ π),

(log |h′(z)|)∗ ≤ (log |P (z)|)∗ +
(
log

∣∣∣∣ 1

1 + e−2iγw(z)

∣∣∣∣)∗

+

(
log

∣∣∣∣ 1

1− e−2iβz2

∣∣∣∣)∗

≤
(
log

∣∣∣∣1 + z

1− z

∣∣∣∣)∗

+

(
log

∣∣∣∣ 1

1− z

∣∣∣∣)∗

+

(
log

∣∣∣∣ 1

1− z2

∣∣∣∣)∗

=

(
log

∣∣∣∣1 + z

1− z
· 1

1− z
· 1

1− z2

∣∣∣∣)∗

= (log |H ′
1(z)|)∗ .

Similarly,

(log |g′(z)|)∗ ≤ (log |h′(z)|)∗ + (log |w(z)|)∗

≤ (log |H ′
1(z)|)∗ + (log |z|)∗ = (log |G′

1(z)|)∗ .

The desired conclusions therefore follow from Lemma E. One obtains the integral

mean assertion through the choice Φ(x) = epx.

Theorem 3.2. Let 0 < p < ∞. If f = h + ḡ ∈ C0
H and Φ(x) is a convex

nondecreasing function on (−∞,∞), then∫ π

−π
Φ
(
log |h′(reiθ)|

)
dθ ≤

∫ π

−π
Φ
(
log |H ′

2(re
iθ)|
)
dθ,∫ π

−π
Φ
(
log |g′(reiθ)|

)
dθ ≤

∫ π

−π
Φ
(
log |G′

2(re
iθ)|
)
dθ.

Consequently,

Mp(r, h
′) ≤Mp(r,H

′
2) and Mp(r, g

′) ≤Mp(r,G
′
2).

Since K = H2 +G2 ∈ C0
H , these inequalities are sharp.
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Proof. Suppose

Q(z) = H(z)
[
ieiθ0

(
1− z2

) (
e−iµh′(eiθ0z) + eiµg′(eiθ0z)

)]
is the function in Lemma J. Without any loss of generality, we may assume |H(0)| =
1, so that |Q(0)| = 1. Since H(z) has positive real part, so does 1/H(z). Let

w(z) = g′(z)/h′(z) be the dilatation. We find that

log |h′(eiθ0z)| = log |Q(z)|+ log

∣∣∣∣ 1

H(z)

∣∣∣∣+ log

∣∣∣∣ 1

1− z2

∣∣∣∣+ log

∣∣∣∣ 1

1 + e2iµw(eiθ0z)

∣∣∣∣ ,
and

log |g′(eiθ0z)| = log |h′(eiθ0z)|+ log |w(eiθ0z)|.

To complete the proof it is now enough to apply reasoning similar to that in the

proof of Theorem 3.1.

These results have nice geometric appeal. For 0 < r < 1, the length of the curve

C(r) =
{
f(reiθ) = h(reiθ) + g(reiθ) : θ ∈ [0, 2π)

}
, counting multiplicity, is defined

by

Lf (r) =
∫ 2π

0

|df(reiθ)| = r

∫ 2π

0

∣∣∣h′(reiθ)− e−2iθg′(reiθ)
∣∣∣ dθ.

In case of sense-preserving harmonic mappings, we get

Lf (r) ≤ r(1 + r)

∫ 2π

0

|h′(reiθ)|dθ = 2πr(1 + r)M1(r, h
′).

Similarly, the area Af (r) of the image f(Dr), where Dr = {z : |z| < r}, is given as

Af (r) =

∫ 2π

0

∫ r

0

(
|h′(seiθ)|2 − |g′(seiθ)|2

)
s ds dθ.

Roughly, one can write

Af (r) ≤
∫ r

0

2π{M2(s, h
′)}2s ds.

With these observations, we have the following corollaries to Theorem 3.1 and

Theorem 3.2. The proofs readily follow and are omitted.

Corollary 3.1. If f = h+ḡ ∈ K0
H , then Lf (r) ≤ (1+r)LH1(r) and Af (r) ≤ AH1(r).

Corollary 3.2. If f = h+ḡ ∈ C0
H , then Lf (r) ≤ (1+r)LH2(r) and Af (r) ≤ AH2(r).

Theorems 3.1 and 3.2 also lead to integral mean estimates for functions in the

respective classes.
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Theorem 3.3. If 1 ≤ p <∞ and f = h+ ḡ ∈ K0
H , then

Mp(r, f) ≤ Bp

∫ r

0

(1 + sp)
1
pMp(s,H

′
1)ds,

where

Bp =

{ √
2, 1 ≤ p ≤ 2,

21−
1
p , p > 2.

(3.1)

Proof. From Lemma A and the inequality |g′(z)| ≤ |z||h′(z)|, we find that

{Mp(r,∇f)}p ≤
1

2π

∫ 2π

0

A
(
|h′(reiθ)|p + |g′(reiθ)|p

)
dθ

≤ A(1 + rp){Mp(r, h
′)}p,

for

A =

{
1, 1 ≤ p ≤ 2,

2
p
2
−1, p > 2.

Therefore, Theorem 3.1 implies

Mp(r,∇f) ≤ A
1
p (1 + rp)

1
pMp(r,H

′
1).

As in the proof of Theorem 2.1, we have

Mp(r, f) ≤
√
2

∫ r

0

Mp(s,∇f)ds

≤
√
2

∫ r

0

A
1
p (1 + sp)

1
pMp(s,H

′
1)ds

= Bp

∫ r

0

(1 + sp)
1
pMp(s,H

′
1)ds,

where

Bp =
√
2A

1
p =

{ √
2, 1 ≤ p ≤ 2,

21−
1
p , p > 2.

This completes the proof.

Theorem 3.4. If 1 ≤ p <∞ and f = h+ ḡ ∈ C0
H , then

Mp(r, f) ≤ Bp

∫ r

0

(1 + sp)
1
pMp(s,H

′
2)ds,

where Bp is given by (3.1).

Proof. Similar to the proof of Theorem 3.3.
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For the case 0 < p < 1, we may appeal to Theorem 2.6, together with Theorems

3.1 and 3.2, to immediately get integral mean estimates for these classes.

Corollary 3.3. Let 0 < p < 1, then we have

Mp(r, f) ≤ C1

∫ r

0

(r − s)p−1Mp
p (s,H

′
1)ds, for f ∈ K0

H ,

Mp(r, f) ≤ C2

∫ r

0

(r − s)p−1Mp
p (s,H

′
2)ds, for f ∈ C0

H ,

where C1 and C2 are absolute constants.

Therefore, the problem is more or less complete for convex and close-to-convex

harmonic functions. It is pertinent to mention that an elementary upper bound can

be easily given for the former class. If f = h + ḡ is convex, it is well-known [15,

Theorem 5.7] that h is close-to-convex, and |g(z)| ≤ |h(z)|, z ∈ D. Therefore, from
[50, Theorem 5.1], we have

Mp
p (r, f) ≤ 2pMp

p (r, h) ≤ 2pp

∫ r

0

Mp
∞(s, h)

s
ds ≤ 2pp

∫ r

0

sp−1(1− s)−2pds.

The last integral is the incomplete beta function B(r; p, 1− 2p).

3.3 Logarithm of univalent functions

In [25] Girela obtained Baernstein type results for the functions log(f(z)/z). These

functions appear in the definition of logarithmic coefficients γn of a function f ∈ S:

log
f(z)

z
= 2

∞∑
n=1

γnz
n.

The logarithmic coefficients were instrumental in de Branges’ proof of the Bieberbach

conjecture (see [17]). Girela’s work readily led to the sharp inequality

∞∑
n=1

|γn|2 ≤
π2

6
,

an important estimate earlier obtained by Duren and Leung [22]. Interestingly,

Girela proved the following extremal result for close-to-convex functions.

Theorem S. [25] Let f ∈ S be close-to-convex and 0 < p ≤ 2. Then

Mp(r, log f
′) ≤Mp(r, log k

′),
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where k is the Koebe function.

The proof involves a skillful use of Baernstein’s results on symmetrization [5, 6],

in the form of the next lemma. For this, let us recall that a domain D in C is

called Steiner symmetric if its intersection with each vertical line is either empty or

a segment placed symmetrically with respect to the real axis.

Lemma K. [25] Let F and F be analytic in D and satisfy

(i) F (0) = F(0) = 0,

(ii) (ReF )∗ ≤ (ReF)∗ in D+ = {z ∈ D : Im z > 0},

(iii) min
z∈D

ReF(z) ≤ min
z∈D

ReF (z) ≤ max
z∈D

ReF (z) ≤ max
z∈D

ReF(z),

(iv) F is univalent and F(D) is a Steiner symmetric domain.

Then, for 0 < p ≤ 2, ∫ π

−π
|F (eiθ)|pdθ ≤

∫ π

−π
|F(eiθ)|pdθ.

To explore the logarithmic coefficients in the setting of a harmonic mapping

f = h+ḡ, it is not feasible to consider f(z)/z, as this function need not be harmonic,

neither is the logarithm of a harmonic function defined in the literature. One can

not consider the functions (h(z) + cg(z))/z (c constant) either, since h(z) + cg(z)

may have zeros at points other than the origin. Therefore, proceeding along the line

of Theorem S, the functions log(h′ + cg′) seem to be the most natural choice.

Thus, we conclude the chapter with a harmonic analogue of Girela’s result: we

prove that Theorem S remains true for the functions log(h′+cg′), whenever f = h+ḡ

is a close-to-convex harmonic function and c is a constant.

Theorem 3.5. Suppose 0 < p ≤ 2 and f = h + ḡ ∈ C0
H . Then for any constant

c ∈ D, we have

Mp(r, log(h
′ + cg′)) ≤Mp(r, log(H

′
2 +G′

2)).

The bound is sharp.

Proof. Let 0 < r < 1 and write

F (z) = log(h′(rz) + cg′(rz)), F(z) = log(H ′
2(rz) +G′

2(rz)).
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Clearly, F (0) = F(0) = 0. From the proof of Theorem 3.2, we find that

log |h′(eiθ0z) + cg′(eiθ0z)| = log |Q(z)|+ log

∣∣∣∣ 1

H(z)

∣∣∣∣+ log

∣∣∣∣ 1

1− z2

∣∣∣∣
+ log

∣∣∣∣ 1

1 + e2iµw(eiθ0z)

∣∣∣∣+ log |1 + cw(eiθ0z)|,

where Q(z), H(z) are analytic functions with positive real part, µ, θ0 are real

numbers, and w(z) = g′(z)/h′(z) is the dilatation. In view of Lemmas F–H, we

have for z ∈ D+,

(log |h′(z) + cg′(z)|)∗ ≤
(
log

∣∣∣∣1 + z

1− z

∣∣∣∣)∗

+

(
log

∣∣∣∣1 + z

1− z

∣∣∣∣)∗

+

(
log

∣∣∣∣ 1

1− z2

∣∣∣∣)∗

+

(
log

∣∣∣∣ 1

1− z

∣∣∣∣)∗

+ (log |1 + z|)∗ ,

which implies

(log |h′(z) + cg′(z)|)∗ ≤
(
log

∣∣∣∣(1 + z)2

(1− z)4

∣∣∣∣)∗

= (log |H ′
2(z) +G′

2(z)|)∗ ,

i.e., (ReF )∗ ≤ (ReF)∗. For f = h + ḡ ∈ C0
H , the function f + cf̄ ∈ CH for every

constant c ∈ D. Also, it is known that CH is linear invariant and α(CH) = 3.

Therefore, (2.16) leads to the inequalities

(1− r)2

(1 + r)4
≤ |h′(reiθ) + cg′(reiθ)| ≤ (1 + r)2

(1− r)4
,

so that

min
z∈D

ReF(z) ≤ min
z∈D

ReF (z) ≤ max
z∈D

ReF (z) ≤ max
z∈D

ReF(z).

That F is univalent and F(D) is a Steiner symmetric domain can be proved using

an argument similar to the one presented in [25, Lemma 1], we include the details

below for the convenience of the reader. Therefore, the proof of the theorem is

completed through an appeal to Lemma K. Since the harmonic Koebe function

K = H2 +G2 ∈ C0
H , the sharpness can be seen by letting c→ 1−.

Lemma 3.1. Let G(z) = log(H ′
2(z) + G′

2(z)). Then G is univalent and G(D) is a

Steiner symmetric domain.

Proof. For 0 < r < 1, we have

ReG(reiθ) = 2 log

∣∣∣∣1 + reiθ

1− reiθ

∣∣∣∣+ log
1

|1− reiθ|2
.
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Thus, ReG(reiθ) is a symmetric function of θ on [−π, π], and strictly decreases on

[0, π]. It is easy to see that ImG(reiθ) > 0 if 0 < θ < π, because the same is true for

log((1 + z)/(1− z)) and log (1/(1− z)2). Also, G(re−iθ) = G(reiθ). Therefore, G is

injective on |z| = r and hence, the argument principle implies that G is univalent

in |z| ≤ r. Finally, G maps {|z| = r} onto a Jordan curve, which is symmetric with

respect to the real axis and whose real part decreases as θ increases from 0 to π.

Thus G(|z| < r) is a Steiner symmetric domain. Since r ∈ (0, 1) is arbitrary, the

desired conclusion follows.

The restriction 0 < p ≤ 2 in Theorem 3.5 is imposed by Lemma K. In other

words, we do not know if Theorem 3.5 remains valid for p > 2. Like logarithmic

coefficients in the case of analytic functions, it is interesting to study the power

series coefficients of log(h′(z) + cg′(z)) for a harmonic function f = h+ ḡ. Suppose

log(h′(z) + cg′(z)) =
∑∞

n=1 λnz
n. Then Theorem 3.5 has the following implication.

Corollary 3.4. Let f = h+ ḡ ∈ C0
H . Then we have the sharp inequality

∞∑
n=1

|λn|2 ≤
14π2

3
.

Proof. Let log(H ′(z) + G′(z)) =
∑∞

n=1 cnz
n. Through a routine computation, one

finds that

cn =
2(2− (−1)n)

n
.

For p = 2, Theorem 3.5 gives

∞∑
n=1

|λn|2r2n ≤
∞∑
n=1

|cn|2r2n.

Letting r → 1, we obtain
∞∑
n=1

|λn|2 ≤
∞∑
n=1

|cn|2.

It is easy to see that

∞∑
n=1

|cn|2 = 4

[
9

12
+

1

22
+

9

32
+

1

42
+

9

52
+

1

62
+ . . .

]
= 4

[
9

(
1 +

1

32
+

1

52
+ . . .

)
+

1

4

(
1 +

1

22
+

1

32
+ . . .

)]
= 4

[
9π2

8
+
π2

24

]
=

14π2

3
.

The sharpness follows from Theorem 3.5.
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3.4 An open problem

The harmonic Koebe function K plays the extremal role in many problems

concerning univalent harmonic mappings. Therefore, in view of Theorem 3.2, one

naturally asks whether the Baernstein type inequalities indeed hold for the whole

class S0
H .

Question 1. Let 0 < p <∞. Do the inequalities

Mp(r, h
′) ≤Mp(r,H

′
2) and Mp(r, g

′) ≤Mp(r,G
′
2)

hold for every function f = h+ ḡ ∈ S0
H? More importantly, is it true that

Mp(r, h) ≤Mp(r,H2) and Mp(r, g) ≤Mp(r,G2)?

An affirmative answer to this will either settle or improve many growth problems

for univalent harmonic functions. In particular, it would imply that |an| and |bn| are
O(n2), i.e., the harmonic analogue of the Bieberbach conjecture has the correct order

of magnitude. This will be a significant development on the coefficient problem.

Unfortunately, no analytic characterization such as Lemmas I and J, which the

proofs of Theorems 3.1 and 3.2 crucially depend on, is known for the class S0
H .

Therefore, a similar technique cannot be used to address this question.
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Chapter 4

Integral of |f |p along Different

Curves

4.1 Riesz-Fejér inequality and its generalizations

Comparison of the integral of |f |p along different curves arises naturally in the

context of Hardy spaces. Inequalities of the form∫
C

|f(z)|p|dz| ≤ A

∫
Γ

|f(z)|p|dz|,

for f analytic and C lying inside Γ, hold with sharp constants

(a) A = 1 if Γ and C are circles;

(b) A = 2 if Γ is a circle and C is any convex curve;

(c) A = (e+ 1)π + e if C and Γ are any convex curves.

These are connected with inequalities between bilinear or Hermitian forms. The

following inequality due to Riesz and Fejér is of special interest, and has numerous

ramifications.

Theorem T. [20, Theorem 3.13] If f ∈ Hp (0 < p < ∞), then the integral of

|f(x)|p along the segment −1 ≤ x ≤ 1 converges, and∫ 1

−1

|f(x)|pdx ≤ 1

2

∫ 2π

0

|f(eiθ)|pdθ. (4.1)

The constant 1
2

is best possible.

This theorem has a nice geometric description: if the unit disk is mapped

conformally onto the interior of a rectifiable Jordan curve C, the length of the

image of any diameter cannot exceed half the length of C. Over the years there

have been several generalizations of this result. Beckenbach [8] notably proved that

the same inequality remains true if in place of |f |p, we consider a positive function

whose logarithm is subharmonic. Some generalizations of Theorem T under weaker
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regularity assumptions may be found in [8, 13, 35] and the relevant references therein.

For generalizations of the Riesz-Fejér inequality in different spaces, one may refer

to [4, 18, 60].

One particular generalization of inequality (4.1) is the following result due to

Frazer which compares the integral of |f |p along a circle, to the integral along a pair

of diameters.

Theorem U. [23] If f is analytic inside and on a circle C, and D0, D1 are any

two diameters of C, then for p > 0,∫
D0+D1

|f(z)|p|dz| ≤ 1

sin θ
2
+ cos θ

2

∫
C

|f(z)|p|dz|, (4.2)

where θ is the acute angle between the diameters.

Without any loss of generality, C can be taken as the unit circle T, in which

case Theorem U remains valid under the weaker hypothesis f ∈ Hp. When θ = 0,

inequality (4.2) reduces to inequality (4.1). However, since sin θ
2
+ cos θ

2
> 1 for

θ ̸= 0, (4.2) is actually a refined variant of (4.1), despite the latter inequality being

sharp. This suggests that the angle θ plays a crucial role in the computation of the

integral along the pair of diameters.

As a consequence of Theorem U, Frazer notably obtained the following inequality

concerning subharmonic functions.

Theorem V. [23] Suppose U is subharmonic, non-negative and continuous inside

and on a circle C. Then for p ≥ 2,∫
D0+D1

Up(z)|dz| ≤ 2

sin θ
2
+ cos θ

2

∫
C

Up(z)|dz|,

where D0, D1 and θ are as in Theorem U.

Curiously, Frazer’s work does not address whether the inequality in Theorem U

is sharp. As we point out, that is indeed the case.

Theorem 4.1. The constant
1

sin θ
2
+ cos θ

2

in inequality (4.2) is best possible.

Proof. Let 0 < θ ≤ π
2
and let Rθ be the rectangle with vertices ±1, ±eiθ. Suppose

φ maps D conformally onto the interior of Rθ in such a manner that φ maps [−1, 1]

onto [−1, 1], as well as the diameter {reiθ : −1 ≤ r ≤ 1} onto itself (see Figure 4.1).
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D1

D0

θθ

A

B

C

D

ϕ

−1 θ1

ℓ

eiθ

b

O

−eiθ

1

Figure 4.1: φ maps D conformally onto the interior of Rθ.

From the formula for the length of a curve, it is clear that

∫
D0+D1

|φ′(z)||dz| = 4.

Using cosine formula for the triangle AOB, we get that

b2 = |AO|2 + |BO|2 − 2|AO||BO| cos θ = 1 + 1− 2 cos θ = 4 sin2 θ

2
.

Thus b = 2 sin
θ

2
. A similar computation for the triangle AOD gives

ℓ = 2 sin
θ1
2

= 2 cos
θ

2
,

since θ + θ1 = π. Therefore,∫
T
|φ′(z)||dz| = 2

(
2 sin

θ

2
+ 2 cos

θ

2

)
= 4

(
sin

θ

2
+ cos

θ

2

)
.

Taking ratio, we see that∫
D0+D1

|φ′(z)||dz|∫
T
|φ′(z)||dz|

=
1

sin θ
2
+ cos θ

2

.

Since φ is a conformal map, φ′(z) ̸= 0 for every z ∈ D. Hence the function [φ′(z)]
1
p

is analytic in D and is of class Hp. Choosing f(z) = [φ′(z)]
1
p , we conclude that the

constant cannot be reduced.

4.2 Inequalities for subharmonic and harmonic

functions

The main aim of this section is to prove Frazer’s inequality for functions in the

harmonic Hardy space hp, p > 1. A positive real-valued function u is called
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log-subharmonic, if log u is subharmonic. The following classical result by Lozinski

[45] allows us to obtain similar inequalities for log-subharmonic functions, which

turn out to be useful in the subsequent discussions.

Theorem W. [45] Suppose that Φ is a log-subharmonic function from D to R,

such that the integral
∫ 2π

0
Φp(reiθ) dθ is uniformly bounded with respect to r for some

p > 0. Then log Φ(eiθ) is integrable over [0, 2π), and there is f ∈ Hp such that

Φ(z) ≤ |f(z)| for z ∈ D and Φ(eiθ) = |f(eiθ)| a.e.

Lemma 4.1. Suppose Φ is as in Theorem W. Then the following sharp inequality

holds: ∫
D0+D1

Φp(z)|dz| ≤ 1

sin θ
2
+ cos θ

2

∫
T
Φp(z)|dz|,

where D0, D1 are two diameters of T, and θ is the acute angle between them.

Proof. By Theorem W, there exists f ∈ Hp such that Φ(z) ≤ |f(z)| for z ∈ D and

Φ(eiθ) = |f(eiθ)| a.e. Therefore,∫
D0+D1

Φp(z)|dz| ≤
∫
D0+D1

|f(z)|p|dz|

≤ 1

sin θ
2
+ cos θ

2

∫
T
|f(z)|p|dz| (By Theorem U)

=
1

sin θ
2
+ cos θ

2

∫
T
Φp(z)|dz|.

The sharpness follows from Theorem 4.1.

Lemma 4.2. Let φ and ψ be a pair of analytic functions defined on D such that φ,

ψ ∈ Hp for some p > 1. Then∫
D0+D1

(|φ(z)|+ |ψ(z)|)p|dz| ≤ 1

sin θ
2
+ cos θ

2

∫
T
(|φ(z)|+ |ψ(z)|)p|dz|,

where D0, D1 and θ are as in Lemma 4.1. The constant
1

sin θ
2
+ cos θ

2

is sharp.

Proof. In view of Lemma 4.1, it suffices to show that log(|φ(z)| + |ψ(z)|) is

subharmonic in the unit disk. For functions f(z) and g(z) analytic in D, the function
log(|f(z)|2 + |g(z)|2) is subharmonic in D. The proof involves a straightforward

computation to show that the Laplacian is non-negative. Without any loss of

generality, we may consider that the functions φ and ψ have no zeros. Then there

exist two non-vanishing analytic functions f(z) and g(z) in D such that f 2(z) = φ(z)

and g2(z) = ψ(z), which clearly implies that log(|φ(z)|+ |ψ(z)|) is subharmonic.
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Indeed, if φ(z) and ψ(z) have zero(s) inside D, then we can write

φ(z) = Bφ(z)f(z) and ψ(z) = Bψ(z)g(z),

where Bφ(z), Bψ(z) are Blaschke products consisting of the zero(s) of φ(z) and ψ(z)

respectively and f(z), g(z) are non-vanishing analytic functions in D. Then by what

we have already proved,∫
D0+D1

(|φ(z)|+ |ψ(z)|)p|dz| =
∫
D0+D1

(|Bφ(z)f(z)|+ |Bψ(z)g(z)|)p|dz|

≤
∫
D0+D1

(|f(z)|+ |g(z)|)p|dz|

≤ 1

sin θ
2
+ cos θ

2

∫
T
(|f(z)|+ |g(z)|)p|dz| (Lemma 4.1)

=
1

sin θ
2
+ cos θ

2

∫
T
(|φ(z)|+ |ψ(z)|)p|dz|.

The sharpness follows from Lemma 4.1.

The study of Riesz-Fejér inequalities for complex-valued harmonic functions

was initiated by Kalaj [36], who deduced the following result using a method of

plurisubharmonic functions, originally due to Hollenbeck and Verbitsky [34].

Theorem X. [36] Let 1 < p <∞. Suppose f = h+ g ∈ hp with Re (h(0)g(0)) = 0.

Then ∫
T
(|h(z)|2 + |g(z)|2) p

2 |dz| ≤ 1

(1− | cos π
p
|) p

2

∫
T
|f(z)|p|dz|.

The inequality is sharp.

In [38], Kayumov, Ponnusamy and Sairam Kaliraj obtained the sharp analogue

of the classical Riesz-Fejér inequality for the harmonic Hardy space hp, p ∈ (1, 2].

They proved that if f ∈ hp for p ∈ (1, 2], then∫ 1

−1

|f(x)|pdx ≤ 1

2
secp

(
π

2p

)∫ 2π

0

|f(eiθ)|pdθ.

It was conjectured that the inequality holds with the sharp constant 1
2
secp

(
π
2p

)
for p > 2 as well, which was later settled affirmatively by Melentijević and Božin

[46]. Proceeding along this line, here we prove the harmonic analogue of Frazer’s

inequality.
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Theorem 4.2. If f ∈ hp for some p > 1, then the following inequality holds:∫
D0+D1

|f(z)|p|dz| ≤ Ap(θ)

∫
T
|f(z)|p|dz|, (4.3)

where D0, D1 are two diameters of T, θ is the acute angle between them, and

Ap(θ) =


secp

(
π

2p

)
1

sin θ
2
+ cos θ

2

if 1 < p ≤ 2,

2

sin θ
2
+ cos θ

2

if p ≥ 2.

Proof. Let 1 < p ≤ 2 and let f = h+ g ∈ hp. We may assume that g(0) = 0. Then,

we have∫
D0+D1

|f(z)|p|dz| ≤
∫
D0+D1

(|h(z)|+ |g(z)|)p|dz|

≤ 1

sin θ
2
+ cos θ

2

∫
T
(|h(z)|+ |g(z)|)p|dz| (by Lemma 4.2)

≤ 2
p
2

sin θ
2
+ cos θ

2

∫
T
(|h(z)|2 + |g(z)|2) p

2 |dz|

≤ 2
p
2

sin θ
2
+ cos θ

2

1

(1− | cos π
p
|) p

2

∫
T
|f(z)|p|dz|,

where the last inequality follows from Theorem X. It is easy to see that for 1 < p ≤ 2,

2
p
2

(1− | cos π
p
|) p

2

= secp
(
π

2p

)
.

Now, let us assume that f ∈ hp for some p ≥ 2. For 0 < r < 1, write fr(z) = f(rz).

Clearly |fr(z)| is non-negative and continuous inside and on the unit circle T. It is
a routine exercise to check that |fr(z)| is subharmonic in the same region. Since the

norm of an hp-function is invariant under rotation, we may take D0 to be the line

segment −1 ≤ x ≤ 1 and D1 to be the diameter {xeiθ : −1 ≤ x ≤ 1}, without any
loss of generality. Thus, we have∫

D0+D1

|fr(z)|p|dz| =
∫ 1

−1

(|fr(x)|p + |fr(xeiθ)|p)dx =
1

r

∫ r

−r
(|f(x)|p + |f(xeiθ)|p)dx.

On the other hand, apply Theorem V to obtain∫
D0+D1

|fr(z)|p|dz| ≤
2

sin θ
2
+ cos θ

2

∫
T
|fr(z)|p|dz| ≤

2

sin θ
2
+ cos θ

2

∫
T
|f(z)|p|dz|,

where the last inequality follows from the fact that Mp(r, f) increases with r.
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Combining both, we get∫ r

−r
(|f(x)|p + |f(xeiθ)|p)dx ≤ 2r

sin θ
2
+ cos θ

2

∫
T
|f(z)|p|dz|

≤ 2

sin θ
2
+ cos θ

2

∫
T
|f(z)|p|dz|.

Since this holds for all r with 0 < r < 1, we let r → 1− to obtain the desired

result.

4.3 Generalization of Hilbert’s inequality

Interestingly, Theorem 4.2 leads us to the following inequalities involving sequences,

the latter of which contains a well-known inequality of Hilbert as a special case.

Theorem 4.3. Suppose {an} and {bn} are square summable sequences of real

numbers, and θ is any acute angle. Let k(θ) = π
sin θ

2
+cos θ

2

. Then, with k+ l restricted

to be even,

∞∑
k=0

∞∑
l=0

(akal + bkbl) cos(k − l) θ
2
+ 2akbl cos(k + l) θ

2

k + l + 1
≤ k(θ)

∞∑
n=0

(a2n + b2n), (4.4)

and without this restriction,

∞∑
k=0

∞∑
l=0

(akal + bkbl) cos(k − l) θ
2
+ 2akbl cos(k + l) θ

2

k + l + 1
≤ 2k(θ)

∞∑
n=0

(a2n + b2n). (4.5)

Proof. For z ∈ D, let h(z) and g(z) be the functions defined as h(z) =
∑N

k=0 akz
k,

g(z) =
∑N

k=0 bkz
k, for some N ∈ N. Clearly, h(z) and g(z) are analytic so that

the function f(z) = h(z) + g(z) is harmonic in D. Moreover, it is clear that h(z)

and g(z) are real on the real axis, hence so is f(z). This implies that h(z̄) = h(z),

g(z̄) = g(z) and f(z̄) = f(z).

Now let D0, D1 be two diameters of the unit circle T such that D0 and D1 are

symmetrically placed with respect to the real axis, which makes an angle θ/2 with

each diameter. Thus D1 is the ‘conjugate’ of D0 and vice versa. Since f(z) is real

on the real axis, we have∫
D0

|f(z)|2|dz| =
∫
D1

|f(z̄)|2|dz̄| =
∫
D1

|f(z)|2|dz|.
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Therefore,∫
D0+D1

|f(z)|2|dz| = 2

∫
D0

|f(z)|2|dz|

= 2

∫ 1

−1

[h(xei
θ
2 ) + g(xe−i

θ
2 )][h(xe−i

θ
2 ) + g(xei

θ
2 )]dx

= 2

∫ 1

−1

[h(xei
θ
2 )h(xe−i

θ
2 ) + g(xei

θ
2 )g(xe−i

θ
2 )

+ h(xei
θ
2 )g(xei

θ
2 ) + h(xe−i

θ
2 )g(xe−i

θ
2 )]dx.

Now, we have

∫ 1

−1

h(xei
θ
2 )h(xe−i

θ
2 )dx =

∫ 1

−1

(
N∑
k=0

akx
keik

θ
2

)(
N∑
l=0

alx
le−il

θ
2

)
dx

= 2
N∑
k=0

N∑
l=0

akal cos(k − l) θ
2

k + l + 1
(k + l is even),

where the last equality is obtained by comparing the real parts. Similarly,

∫ 1

−1

g(xei
θ
2 )g(xe−i

θ
2 )dx = 2

N∑
k=0

N∑
l=0

bkbl cos(k − l) θ
2

k + l + 1
(k + l is even).

It is easy to see that∫ 1

−1

[h(xei
θ
2 )g(xei

θ
2 ) + h(xe−i

θ
2 )g(xe−i

θ
2 )]dx =

∫ 1

−1

2Re [h(xei
θ
2 )g(xei

θ
2 )]dx

= 2Re

∫ 1

−1

h(xei
θ
2 )g(xei

θ
2 )dx.

Clearly,

∫ 1

−1

h(xei
θ
2 )g(xei

θ
2 )dx =

∫ 1

−1

(
N∑
k=0

akx
keik

θ
2

)(
N∑
l=0

blx
leil

θ
2

)
dx

= 2
N∑
k=0

N∑
l=0

akble
i(k+l) θ

2

k + l + 1
(k + l is even).

Taking real parts,

2Re

∫ 1

−1

h(xei
θ
2 )g(xei

θ
2 )dx = 4

N∑
k=0

N∑
l=0

akbl cos(k + l) θ
2

k + l + 1
(k + l is even).
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Combining these, we obtain

∫
D0+D1

|f(z)|2|dz| = 4
N∑
k=0

N∑
l=0

(akal + bkbl) cos(k − l) θ
2
+ 2akbl cos(k + l) θ

2

k + l + 1
, (4.6)

where the sum is taken on such pairs of indices k, l whose sum is even. An easy

computation gives ∫
T
|f(z)|2|dz| = 2π

N∑
n=0

(a2n + b2n). (4.7)

Therefore, applying Theorem 4.2 for p = 2, we deduce that

N∑
k=0

N∑
l=0

(akal + bkbl) cos(k − l) θ
2
+ 2akbl cos(k + l) θ

2

k + l + 1
≤ k(θ)

N∑
n=0

(a2n + b2n)

≤ k(θ)
∞∑
n=0

(a2n + b2n),

where k + l is restricted to be even. Since this is true for every N ∈ N, letting
N → ∞ we obtain the desired inequality.

Now we remove this restriction. It is to be observed that∫
D0+D1

|f(z)|2|dz| = 2

∫ 1

−1

|f(xei θ2 )|2dx ≥ 2

∫ 1

0

|f(xei θ2 )|2dx.

Using similar computation techniques as earlier, we get

2

∫ 1

0

|f(xei θ2 )|2 = 2
N∑
k=0

N∑
l=0

(akal + bkbl) cos(k − l) θ
2
+ 2akbl cos(k + l) θ

2

k + l + 1
.

These, together with another appeal to Theorem 4.2, produces

N∑
k=0

N∑
l=0

(akal + bkbl) cos(k − l) θ
2
+ 2akbl cos(k + l) θ

2

k + l + 1
≤ 2k(θ)

∞∑
n=0

(a2n + b2n).

Again the desired inequality is obtained by letting N → ∞.

Remark 4.1. For θ = 0 and an = bn, inequality (4.5) reduces to

∞∑
k=0

∞∑
l=0

akal
k + l + 1

≤ π

∞∑
n=0

a2n,

which is a celebrated result due to Hilbert [30]. For more details on Hilbert’s

inequality, its generalizations and applications, one can refer to [10, 57] and the
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references therein.

If bn = 0 for every n, the sharpness of inequality (4.4) readily follows from

Theorem 4.1. Less obvious is the fact that (4.4) is sharp for θ = 0, which is shown

in the next result. The sharpness for θ > 0 remains unknown.

Proposition 4.1. Inequality (4.4) is sharp for θ = 0.

Proof. In this case D0 + D1 is the same as the diameter −1 ≤ x ≤ 1 taken twice

over. For 0 < r < 1, let us consider the function

fr(z) = Re (1− r2z2)−
1
2 , z ∈ D.

We shall choose r as close to 1. Write fr(z) = hr(z) + hr(z), where hr(z) =
1

2
(1 − r2z2)−

1
2 is analytic in D. Let us assume that hr(z) has the power series

expansion
∑∞

k=0 akr
kzk. Using the coefficient formula for binomial series, one can

see that ak’s are real.

In view of (4.6) and (4.7), it is enough to prove that∫
D0+D1

|fr(z)|2|dz| → 2

∫
T
|fr(z)|2|dz| as r → 1−,

so that no smaller constant would suffice. It is to be observed that∫
D0+D1

|fr(z)|2|dz| = 2

∫ 1

−1

|fr(x)|2dx = 4

∫ 1

0

dx

1− r2x2
=

2

r
log

(
1 + r

1− r

)
.

On the other hand,∫
T
|fr(z)|2|dz| =

∫ 2π

0

∣∣∣∣cos2(1

2
arg

1

1− r2e2iθ

)∣∣∣∣ ∣∣∣∣ 1

1− r2e2iθ

∣∣∣∣ dθ
=

∫ 2π

0

∣∣∣∣cos2(1

2
arctan

r2 sin 2θ

1− r2 cos 2θ

)∣∣∣∣ ∣∣∣∣ 1

1− r2e2iθ

∣∣∣∣ dθ.
We are interested in estimating these integrals when r is close to 1. It is easy to see

that when r approaches 1, the last integral behaves like

1

1 + r2

∫ 2π

0

cos2(π
4
− θ

2
)√

1− k2 cos2 θ
dθ =

1

1 + r2

[
K(k2) +

K( k2

k2−1
)√

1− k2

]
,

where k =
2r

1 + r2
and

K(k) =

∫ π/2

0

dθ√
1− k2 sin2 θ
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is the complete elliptic integral of the first kind. Through a routine but

lengthy computation, or more conveniently, a direct computation using Wolfram

Mathematica, one finds that

lim
r→1−


∫
D0+D1

|fr(z)|2|dz|∫
T
|fr(z)|2|dz|

 = 2,

and the proof is complete.

4.4 A sharpness conjecture

We believe that inequality (4.3) is sharp for 1 < p ≤ 2. In fact, we expect (4.3) to

hold with the sharp constant

Ap(θ) = secp
(
π

2p

)
1

sin θ
2
+ cos θ

2

for every p > 1. We pose this as a conjecture.

Conjecture 4.1. Let f ∈ hp for some p > 1. Then the following sharp inequality

holds: ∫
D0+D1

|f(z)|p|dz| ≤ secp
(
π

2p

)
1

sin θ
2
+ cos θ

2

∫
T
|f(z)|p|dz|, (4.8)

where D0, D1 are two diameters of T and θ is the acute angle between them.

For the case θ = π/2, we lay out a plausible idea for the proof. Let φ(z) be the

conformal map defined as

φ(z) =

∫ z

0

dζ

(1− ζ4)
√

1 + ζ4
, z ∈ D.

One can show that φ maps the unit disk conformally onto the domain on the right

side of Figure 4.2:
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ϕ

a

Figure 4.2: φ maps D conformally onto the given region.

Here the width a is given by

a =
1

8

[
π
√
2 +

1√
π
Γ2

(
1

4

)]
, Γ is the Gamma function.

We then anticipate that the harmonic function f(z) = Re [φ′(z)]
1
p (or a rescaling

of f(z)) should work as an extremal function in inequality (4.8). However, we are

unable to verify this as the computations are overly expansive. We further add

that if this is indeed true, then some suitable modification of f(z) may settle the

conjecture completely, i.e., for arbitrary θ.
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