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Lay Summary

Image classification is the task in which a machine learning model predicts the
class/category of an object contained in a given image from the set of known classes.
Convolutional Neural Networks(CNN) have achieved state-of-the-art image classification
results. However, how these models arrive at predictions for a given image is unclear.
The research field Explainable Al (XAI), aims to unravel the working mechanism used
by these accurate, opaque black boxes. If the explanations are closer to how humans
interpret images, they help better understand the working mechanism of CNNs. This fact
was proved by previous experiments as reviewed from existing XAT literature. Studies
show that humans process images in terms of sub-regions called concepts. For instance, a
peacock is identified by its characteristic concepts like green feathers, blue neck, etc. This
thesis aims to automatically extract such concepts learned by CNN from the data.

Three novel frameworks are proposed to provide automatically extracted concept-based
explanations for standard image classifiers. The first framework, PACE, automatically
extracts class-specific concepts relevant to the prediction. While class-specific concepts
unravel the blueprints of a class from CNN’s perspective, concepts are often shared across
classes; for instance, gorillas and chimpanzees naturally share many characteristics as they
belong to the same family. The second framework, SCE, unravels the concept sharedness
across related classes from CNNs perspective. The relevance of the extracted concepts
towards prediction and the primitive image aspects, like color, texture, and shape encoded
by the concept, are estimated after training the explainer.

The thesis identifies a void in XAI’s panorama that much attention is given to classifiers
trained and tested using the same data. However, allied paradigms have been shown to add
to state-of-the-art successes. Despite the data hunger of deep models, domain adaptation
techniques have been employed to leverage a huge amount of related data to help learn
a classifier that is expected to work on scarce data of interest. The third framework
XSDA-Net, builds a supervised domain-adapted classifier that can explain itself in terms
of concepts extracted from the different datasets the classifier is exposed to.
Experiments demonstrate the utility of all three proposed frameworks in automatically
extracting concepts from the data such that they unravel the working mechanism of the
image classifiers. The thesis reviews the different types of explanations prevalent in the
XAI field and enlightens the possible future research avenues for potential researchers

looking to venture into XAI.



viii

Abstract

Convolutional Neural Networks(CNN) have achieved state-of-the-art image classification
results. The research sub-field, Explainable AI (XAI), aims to unravel the working
mechanism used by these accurate, opaque black boxes to enhance users’ trust, and detect
spurious correlations, thereby enabling the pervasive adoption of Al systems. Studies
show that humans process images in terms of sub-regions called concepts. For instance, a
peacock is identified by its green feathers, blue neck, etc. So explanations in terms of such
concepts are proven to be helpful for humans to understand the working of CNN better.
Existing approaches leverage an external repository of concept examples to extract the
concept representations learned by the CNNs. However, distributional differences that
may exist between the external repository and the data on which the CNN is trained,
the faithfulness of these explanations, i.e., if the extracted representations truly represent
the learned representations, is not guaranteed. To circumvent this challenge, the thesis
proposes three novel frameworks that automatically extract the concepts from the data.
The first framework, PACE, automatically extracts class-specific concepts relevant to the
black-box prediction. It tightly integrates the faithfulness of the explanatory framework
into the black-box model. It generates explanations for two different CNN architectures
trained for classifying the AWA2 and Imagenet-Birds datasets. Extensive human subject
experiments are conducted to validate the human interpretability and consistency of the
extracted explanations.

While class-specific concepts unravel the blueprints of a class from CNN’s perspective,
concepts are often shared across classes; for instance, gorillas and chimpanzees naturally
share many characteristics as they belong to the same family. The second framework,
SCE, unravels the concept sharedness across related classes from CNNs perspective. The
relevance of the extracted concepts towards prediction and the primitive image aspects,
like color, texture, and shape encoded by the concept, are estimated after training the
explainer, enabling it to shed light on the various concepts on which the different black
box architectures trained on the Imagenet dataset group and distinguish related classes.
The secondary focus of the thesis is to extend the fruits of explainability to allied
learning paradigms contributing to state-of-the-art image classification successes. Domain
adaptation techniques that leverage knowledge from an auxiliary source domain for
learning in labeled data-scarce target domain increase accuracy. However, the adaptation
process remains unclear, particularly the knowledge leveraged from the source domain.
The third framework XSDA-Net uses a case-based reasoning mechanism to explain the
prediction of a test instance in terms of similar-looking regions in the source and target
train images. The utility of the proposed framework is theoretically and empirically
demonstrated by curating the domain adaptation settings on datasets popularly known
to exhibit part-based explainability. Ablation analyses show the importance of each
component of the learning objective.

This thesis also provides a complete description of the XAI field, summarizing the

state-of-the-art contributions to the different types of explanations. The underlying
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principle, limitations, and improvements made to these seminal contributions have also
been highlighted. Furthermore, this thesis also presents future research directions and
unexplored avenues in XAI research.

Keywords: Explainable AI; Concept-based Explanations; Posthoc Explainability;
Explainable by Design; Supervised Domain Adaptation
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Chapter 1

Introduction

Object recognition is the task of identifying objects present in an image, for instance,
a computer, an animal, or a bird. This is a task that a human can easily accomplish.
However, it is challenging to get an object automatically recognized through computers.
Computer Vision techniques realize the object classification task as choosing the category
of the object contained in an image from a given set of object categories [1]. A typical image
classification model has two major steps: feature extraction and classification. Feature
extraction is the process of extracting relevant attributes called features from the image
that contain traces enabling identification of the object class. The classifier combines the
extracted features to predict the object class.

Traditional Computer Vision techniques focused on developing hand-crafted features
like the Scale Invariant Feature Transform [2], Histogram of Oriented Gradients [3],
etc., to extract features whose aggregation would yield the prediction. However, using
hand-crafted features yielded limited results with the growing complexity of data [4]. The
advent of deep Convolutional Neural Networks (CNN), since the AlexNet [5], brought in
a paradigm shift in the community’s notion of feature extraction, as these models were
able to extract the discriminative features automatically from the data. With time, deeper
architectures with more hidden layers[6, 7] demonstrated higher performances.

However, the increased accuracy with the increased number of parameters comes at the
cost of decreased transparency. Traditional machine learning models, for instance, a
decision tree, are interpretable by nature as their working mechanism can be summarized
by means of if-then-else rules. Summing up the working mechanism of a CNN in a similar
manner is not trivial. It is well recognized that the initial layers closer to the input detect
rudimentary features like edges or contours while the latter layers closer to the output layer
process complex image components like object parts [8, 9]. Gaps persist in the community’s
understanding of how an image is decomposed, and the extracted features are aggregated
to deduce an instance’s class. As this opacity of CNNs can limit their widespread use in
many safety-critical paradigms like medicine [10, 11], judiciary [12], where transparency
regarding the working mechanism of the deployed model is sought, it becomes important
to develop mechanisms to explain the working of these deep black-boxes. Moreover, The
Right to Explanation Act by the European Union(EU) [13] has made it mandatory for
businesses leveraging Artificial Intelligence(Al) in their work processing pipeline to explain
why a certain decision made by the Al model was carried out. This has led to a spurt in

the development of Explainable Al.



2 Chapter 1. Introduction

1.1 What is Explainable AI (XAI)?

Explainable Al refers to the set of techniques and methodologies used to make Al systems
more transparent, interpretable, and understandable to humans. These techniques can be
used to help humans understand how an Al system makes a decision, what factors are
considered, and how confident the system is in its decision. In traditional models like
linear regressors, the coefficients reveal the importance the model gives to a certain input
feature. Similarly, the working logic encoded in a decision tree can be translated into a
set of if-then-else rules. XAl algorithms are developed to unravel the working mechanisms
of complex, accurate models like random forests, neural networks, etc., whose working is
difficult to summarize in a similar human-interpretable manner. There have been several
attempts to explain the working of different types of black boxes that work with data
of different modalities like tabular data [14], text [15], images [16], etc. Explainable Al
methods that unravel the internals of the black boxes can have several benefits for both
users and developers of Al systems. For users, XAl can help build trust in the system,
as they can understand how it works and why it made a particular decision. This can
be especially important in high-stake applications, such as healthcare [10, 11] or finance
[17, 18], where decisions made by an Al system can have significant consequences. For
developers, XAI can help debug and improve the system, as they can understand how the
system makes decisions and identify areas for improvement [19]. As image classification,
the task in the scope of this thesis is typically done using CNNs, the focus of this thesis
will be on explaining the working of CNNs.

Firstly it is important to clarify what it means to explain a CNN. A CNN takes an image
as an input, extracts features using the convolutional and pooling layers, and combines
them using the fully connected layers to classify the instance into one of the several
categories. Considering the example of the previously stated classical machine learning
model, namely the decision tree, translating the path traversed from the root to the
leaf node into if-then-else rules yields the features that led to the prediction. Similarly, an
explanation that unravels a CNN’s working mechanism to classify a given image is expected
to highlight the significant image features to arrive at the prediction. We illustrate the
benefits of an explanation through a motivating example.

Consider a CNN model that recognizes birds in images and classifies them as either an
albatross, hummingbird, or pelican. If a test image of an albatross is misclassified as a
pelican, one may be curious to know why the instance is misclassified. One may turn to
XATI algorithms to analyze the feature in the albatross image that is misjudged as that of
a pelican. A good explanation that can justify the misclassification may be that in the
given image, the beak of the albatross looks similar to that of the pelican, resulting in the
albatross instance being misclassified as a pelican.

While misclassification is one scenario where understanding the CNN’s working mechanism
is sought, explanations may also be needed for correct classifications. Such explanations

can reveal what features the model relies on to make predictions and enlighten the
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Figure 1.1: CNN explanation in the form of a saliency map localizing the image region
contributing to the prediction.

correctness of the model’s working. Moreover, explanations can highlight spurious biases
[20, 21, 22] that the model relies on, helping to assess the model’s deployability in
real-world scenarios. For example, in the bird classification task, a model may rely
on the presence of a water background to distinguish pelicans from other birds. This
correlation may enhance accuracy in the given dataset, but the model cannot be deployed
in a real-world bird recognition task, where the background need not always contain water
that the model has encountered during the training time.

To improve the user’s trust in the deep model and to ensure their ethical deployment for
real-world tasks, the XAl research community aims to develop methods that explain the

internal working mechanism of the learned CNN models, which are essentially black boxes.

1.1.1 Types of Explanation

The need for XAl has resulted in the development of various explanation mechanisms to
understand a CNN. The different types of explanations have been overviewed to identify
the missing gaps in the existing proposals that may motivate proposing newer viewpoints
on what should make an ideal explanation.

The most common outlook for explaining a CNN is identifying the key image regions
contributing to the predictions [21, 23, 24, 25]. These key regions are often displayed
using a saliency map, where the image regions are color-coded based on their importance.
Several examples of these saliency maps are shown in Figure 1.1. As illustrated, the image
region containing the entire object is almost always said to contribute to the prediction.
This type of explanation confirms whether the classifier focuses on the object or relies
on any spurious associations that are not relevant to the object. However, additional
fine-grained information, such as the contribution of image primitives like colors, textures,
shapes, and parts towards the predictions, cannot be obtained from such an explanation.
The XAI community proposed dividing the image into smaller segments to obtain
fine-grained information. The explanation algorithm ranks the segments based on their
importance to the prediction [20, 26, 27]. An example of how such an explanation would
appear can be seen in Figure 1.2, where the segments covering the ears, muzzle, legs, and
black body are highlighted to be significant to the prediction. While at the outset, it may
seem that this proposal achieves extracting fine-grained explanations, it is to be noted that
the image is segmented using different known techniques [28, 29]. There is no guarantee

that the CNN uses a similar segmentation to process the images [30]. For instance, in the
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way, the beagle image has been segmented in Figure 1.2, the ears and muzzle are a part
of the same segment. It is not necessary that CNN also considers these parts together. In
other words, the faithfulness of the explanation to CNN is not guaranteed, i.e., what is
revealed to be important for prediction by the explanation need not be what CNN actually
deems important.

The viewpoints on explaining a CNN discussed so far are deliberative, meaning they intend
to explain a given prediction. They are mostly used to justify a classifier’s predictions and
diagnose any spurious correlations it relies on. On the other hand, the misclassification
scenario, as discussed previously, involves comparing pairs of images of different categories
to justify/diagnose the misclassification. To address this concern, the counterfactual
perspective on explanations was introduced, in which pairs of images are compared to
determine the minimal edits to the query image that flips the prediction [31], as shown in
Figure 1.2 where a change in the muzzle structure flips the prediction of a given query
image from beagle to basset. This standpoint of associating instance pairs has been derived
from explanations developed for models that work with tabular datasets where the range
of feature values is known, and the minimal set of features whose perturbation flips the
prediction can be deduced. However, the range of values that the pixels, which constitute
an image’s input features, can theoretically take is the entire real space. Realistic images
lie within a manifold, but determining this manifold is non-trivial. Therefore, generating
images within this manifold, such that the generated instance looks realistic and lies within
the data distribution, is challenging.

Another line of work focused on estimating the free-form, human-interpretable,
and fine-grained explanations decomposes the prediction into contributions from
human-interpretable concepts, which can encode any image primitives like color, texture,
or parts. Consider a zebra that can be thought of as a horse having alternate black
and white stripes throughout the body. These explanations, termed concept-based
explanations [32, 33, 34], estimate the impact of each of these concepts, such as stripes,
black, white, horse-like mane on the back, etc., towards predicting a zebra. The
representations of these human-interpretable concepts are extracted from positive and
negative examples that denote the presence and absence of these concepts. Its importance
is quantified by assessing the effects of perturbing a concept representation on the
prediction. However, a key bottleneck in these approaches is the need for annotated
examples that depict the presence or absence of concepts. As the aim of extracting
the concept representations from the CNN is to explain the working of the classifier,
the examples depicting the presence and absence of concepts must be curated from the
same distribution as that of the manifold on which the classifier is trained. When the
distributions differ, the representations learned may not reflect the representations used
by the CNN [35]. Curating annotated examples that depict the concepts so that the
explanations faithfully unravel the importance of these concepts is the main challenge
associated with these techniques.

Similar to how CNNs learned to extract features automatically from the data, the XAI
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community proposed enforcing the CNNs to learn interpretable concepts automatically
from the data and use them to predict the object category [36, 37, 38]. An illustration
can be seen in Figure 1.2, where the characteristic regions similar to that of the muzzle,
ears, body, etc., of a beagle guide the shallow predictor to predict the given test instance
as a beagle. The discriminative interpretable concepts are learned automatically from the
data, and the detection of these concepts in test instances guides the prediction using
an inherently interpretable predictor like a linear regressor or decision tree, allowing the
complete reasoning pipeline of the modified CNN to be unearthed. In such models, an
explanation is incorporated in its training phase by design. As the ability to explain
has been incorporated during the training phase, and the CNN is guided to use these
explainable components to make predictions, the faithfulness of these explanations is
guaranteed. In other words, whatever information the explanation reveals is truly what
the model uses to arrive at the prediction. However, it must be retrained from scratch to
incorporate such explainability into a CNN. This perspective can be leveraged when the
model is yet to be deployed, and it is desirable to deploy a model that can explain itself
but cannot be employed for an already deployed model.

The interpretations of the working of CNN, which have been discussed until now, rely on
the visual aspects only. There are also attempts to leverage natural language expressions
to obtain human-interpretable descriptive explanations [39, 40, 41, 42, 43, 44]. The key
principle in this line of works is to generate natural language phrases that correspond
to different regions of an image, which in turn justify the CNN’s prediction. Figure
1.2 shows an example of this type of explanation, where a CNN is said to predict the
given test instance as a beagle due to the presence of floppy ears and a tricolor body
localized by color-coded bounding boxes. While this perspective has some advantages,
such as providing a more human-readable explanation of CNN’s prediction, it also has
some limitations. For example, it requires large amounts of annotated data to train the
natural language model to provide accurate justifications, which can be expensive and
time-consuming. Furthermore, the language model used to generate the natural language
phrases is another black box whose working mechanism is unknown and needs to be
unearthed [45]. Nonetheless, this can be used as an additional tool for understanding how

CNNs operate and can be a useful complement to other types of explanations [46, 47, 48].

1.1.2 Explainable AI Approaches

The discussions thus far have centered around the types of explanations. This section
provides an overview of the XAl methods. A detailed review analyzing the pros and cons
of individual mechanisms can be found in the next chapter.

The XAI techniques can be classified into two broad families: Posthoc and Antehoc
techniques, based on how the explanations are incorporated. In Posthoc techniques,
explanations are generated without modifying the underlying CNN architecture. The
method may [23, 25] or may not assume access [20, 26] to the intermediate layers of the
CNN. As the black box, aka the CNN, is undisturbed, there is no need to retrain the
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model to incorporate explainability. This makes posthoc methods preferred to generate
explanations from an already deployed model. However, ensuring faithfulness of the
generated explanation to the working mechanism of the CNN is a key challenge when
posthoc methods are employed to explain a CNN, i.e., ensuring the consistency between
the explanation’s ranking of the features based on their significance to the prediction and
the ranking by the black box CNN being explained is a non-trivial requirement to be
fulfilled by the posthoc explanation method employed.

On the other hand, Antehoc methods incorporate the aspect of explainability and
maximizing the classification accuracy into the learning pipeline. For this, they either
modify the existing black-box architectures [49] or propose novel architectures where
explainable artifacts are detected. These detections then guide the prediction [36, 38].
As explainability is a part of the training pipeline, the generated explanations are faithful
to the CNN, i.e., the explanation reveals the true underlying mechanism used by the CNN
to arrive at its prediction. However, retraining the CNN or modifying its architecture to
extract faithful explanations comes at the cost of lowered accuracy, i.e., it is challenging
to achieve the classification accuracy of an unrestricted CNN in the modified version with
explanatory bottlenecks incorporated by its design. Thus, as it can be seen from the
summary in Figure 1.3, the Explainable Al methods have an accuracy-interpretability
tradeoft.

1.2 Automated Concept-based Explanations

The explanations generated by the Explainable Al approaches will be used by humans to
assess the trustworthiness of the CNNs. Hence it is important for the algorithms to furnish
faithful explanations in a way that is aligned with how humans process the images. Lake et
al. [50] studied how humans process images and ascertained the previous theories [51, 52]
supporting recognition of complex images in terms of individual concepts. For instance,

a skateboard is recognized by means of individual components like wheels, handles, etc.
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Figure 1.4: Explanation - an illustration

The study suggests that this recognition in terms of concepts (parts) aids humans in
recognizing sketches that look slightly different from that of the real object. Also, a
human can recognize these concepts in a novel, related class, such as a motorbike with
wheels and handles. The novel concept of a seat present in the motorbike is learned, and
thus humans quickly expand their knowledge by leveraging already-known concepts. Kim
et al. [32] suggest that concept-based explanations help users better diagnose and trust
the CNNs as the explanation in terms of individual concepts is closely aligned with how
humans process images [53]. These studies motivate the thesis to propose concept-based
explanations with the intent to learn concepts automatically from the data.

A concept-based explanation is thus defined as a set of concepts ¢ and its corresponding
relevance r, formally defined as e = {(¢,7)}. The concepts ¢ are technically abstract
vectors in a latent space. These vectors encode image primitives like colors, textures, and
parts present in the image sub-regions. The pipeline to unravel the working mechanism of
a CNN gets completed when the significance of these extracted concepts towards predicting
a given instance is estimated. This is termed the relevance r, which is a normalized score
r € [—1, 1], indicating the extent to which a concept supports/inhibits a specific prediction.
Figure 1.4 illustrates an example of an explanation generated by our proposed frameworks
as a set of concepts and their corresponding relevances expressed in percentage. Differently
colored contours represent different concepts, and the numbers beside them indicate their
relevance to the prediction. For the image of an elephant shown in Figure 1.4, the concept
of the elephant face contributes 67% to the prediction, while the concept of the elephant
trunk contributes 39%. On the other hand, the green trees present in the background
suppress the prediction confidence by 6%, i.e., the detection of these green trees inhibited

the prediction to be steered towards the elephant class.

1.3 Research Problems

There are two key questions addressed by this thesis. The first question addresses a
challenge associated with existing posthoc concept-based explanations. In real-world
scenarios, concept annotations may not be available. Additionally, leveraging any other

available concept repository may not yield faithful explanations [35] due to the possibilities
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of distribution shift between the data on which the CNN was trained and the data from
which concept representations are learned to be extracted by the explainer. To faithfully
explain a CNN in a posthoc fashion and human-friendly manner, can concepts learned by
a CNN relevant to prediction be automatically extracted?

While much focus of the XAI community is on explaining in-domain classifiers, which
are trained and tested on data sampled from the same distribution, the second research
question addressed in the thesis extends explainability methods to unearth the working
of a cross-domain classifier that is trained and tested on data sampled from different
distributions. Domain adaptation is one of the key drivers of deep learning success that
enables its application to other fields where data availability is scarce. Although many
state-of-the-art domain adaptation techniques have been developed that yield competitive
performances using deep models with very limited data, the underlying process that
enables the domain adaptation algorithms to leverage the aspects of an auxiliary data-rich
source domain is unclear. To bridge this gap, the thesis proposes to build an antehoc

domain-adapted classifier that can explain itself.

1.4 Notations

This section lists the key notations used across the different frameworks proposed in this

thesis.

e The black box CNN being explained is a K-way classifier, i.e., the CNN categorizes

the given instances into one of the K known classes.

e The CNN processing an instance x consists of a feature extractor f yielding feature
maps f(x) € RIXWXD 'where H and W denote the height and width of the feature
map and D denotes the number of channels in the convolutional layer of interest,

and a classifier h yielding a probability distribution P over the K classes.
« Explanation is in terms of a set of concepts C.

— The C concepts can be shared across all classes denoted by C = {ca}aczl

— Otherwise, the concepts may be class-specific denoted by C = {Ck}i(:l, where
each Cp = {c,}¢_,. Whenever the subscript has two indices, the primary index
corresponds to the class, and the secondary index corresponds to the concept

being considered.

— g € R? denotes the b*" concept of the a'” class, with @ denoting the dimension
of the low-dimensional explanatory latent space. Typically Q < D.

o In the cross-domain classification setting, a superscript d € {s,t} denotes the domain

bth

being considered. For instance c;, denotes the concept of the at" class in the

source domain superscribed by s.

e The parameters of the baselines considered are superscribed as BL. For instance,

cbe denotes the b*" concept of the a!” class in the baseline framework.
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1.5 Contributions

The thesis proposes three novel frameworks that explain the working of black-box classifiers
through the lens of concepts. The concepts are human-interpretable sub-regions that
are automatically learned from the data. The first two frameworks explain in-domain
classifiers that are trained and tested on data sampled from the same distribution in a
posthoc manner by proposing an explainer that can automatically learn to extract concepts
used by the CNN to predict a given instance; the third framework proposes a mechanism
to build a cross-domain classifier that leverages data from an auxiliary data-rich domain
to classify instances sampled from a data-scarce domain having a different distribution
that can explain itself by design.

The first framework, Posthoc Architecture-agnostic Concepts Extractor, abbreviated as
PACE, explains an in-domain classifier in a posthoc manner by extracting class-specific
concepts. The concept extraction process starts by learning to extract image-specific
representations called embeddings, which are latent vectors in a low-dimensional space.
Class-specific discriminative latent vector representations called concepts are then learned,
centered around these embeddings. These concepts are propagated forward through the
rest of the network to ensure that the learned concept representations faithfully represent
the features used by the black box model. A measure has been proposed exclusively for
assessing the goodness of concept-based explanations called agreement accuracy. It is
used to validate the faithfulness of the learned explainer. The concepts are enforced to
be class-specific by encouraging the creation of tight coalitions in the latent space based
on class labels. The concepts extracted must be significant for the black box to predict
instances of the corresponding class. A concept is significant to the prediction if its removal
causes a significant drop in the prediction probability of the black box. This is enforced as
a constraint in the concept learning pipeline to extract class-discriminant concepts relevant
to the black box to predict instances of the given class. The extracted concepts shed light
on the black box classifier’s mechanism to arrive at the prediction.

Although class-specific concepts help understand the notion the black box model
has developed for a class, the classes are not always independent from each other.
Commonalities across classes exist in nature [37], in addition to concepts that distinguish
them apart, as illustrated in Figure 1.5. The second framework, Shared Concepts
Extractor, abbreviated as SCE, facilitates the extraction of such shared concepts from
the lens of in-domain classifiers in a posthoc manner. The concepts are extracted in
the same space as the features generated from the black box. An incremental concept
extraction mechanism that extracts concepts from instances processed as mini-batches
facilitates concept extraction from large multi-way classifiers leveraging available memory
resources. Instead of restricting concepts to be forward propagated based on their stronger
presence, as done previously, forward propagation is formulated by combining the presence
of concepts without capping based on the strength of their presence. The constraint

regarding extracting relevant concepts has been relaxed to unravel all concepts detected
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Figure 1.5: Concept sharedness - an illustration. The concepts corresponding to the class
macaw are enclosed in a blue dotted rectangle, and those of the class lorikeet are enclosed
in an orange dashed rectangle. The concepts shared across both classes are enclosed by a
bold purple rectangle.

by the black box. The explanation pipeline is simplified by estimating the relevance of a
concept after its extraction. SCE also automatically tags the image primitives like color,
shape, and texture encoded by the concept by inspecting the effect of perturbing the
primitive [54] on concept detection. The framework unravels the grouping of classes based
on the shared concepts and highlights spurious correlations the model has picked up in
line with a recent observation [22].

While the first two contributions aim to explain an in-domain classifier in a posthoc
manner by varying the sharedness of the extracted concepts across different classes, the
third contribution, termed the EXplainable Supervised Domain Adaptation Network,
abbreviated as XSDA-Net, focuses on cross-domain classification. The goal is to propose
a supervised domain-adapted classifier that can explain itself. In other words, XSDA-Net
proposes an antehoc domain-adapted classifier with case-based reasoning integrated by
design, which learns to extract domain-invariant concept pairs, called prototypes, that
are discriminative for each class and domain. Predictions for a test instance are made by
detecting concepts in it that are similar to the learned domain-invariant prototypes. As
the prediction is based on the extracted interpretable concepts, the complete reasoning
pipeline of the proposed case-based domain-adapted classifier, aka the XSDA-Net, can be
explained.

Overall, these contributions represent a significant step forward in developing interpretable
classifiers, as it allows for a deeper understanding of the reasoning process behind the

predictions.

1.6 Organization of the Thesis

The thesis comprises six chapters, with Chapter 2 covering relevant literature in the field
of Explainable Artificial Intelligence (XAI). This chapter discusses a wide range of XAI

techniques, from those that explain the black box by observing input-output interactions
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to those that leverage black box parameters to generate explanations. In addition to
explaining already-deployed black box models, the chapter also explores techniques for
building models from scratch that incorporates human-interpretable concept detection.
The chapter also covers recent posthoc techniques that map internal representations of
black boxes to human-interpretable concepts, as well as discusses the gaps in the existing
techniques that motivated the proposal of the three concept-based explanation frameworks.
The next three chapters (Chapters 3, 4, and 5) are dedicated to the proposed concept-based
explanation frameworks. The structure of these chapters is similar. Initially, the problem
statement and rationale behind the proposed framework are introduced. The framework’s
benefits are then presented in the context of the shortcomings of the most comparable
frameworks it addresses. Subsequently, an in-depth explanation of the methodology and
the training process is provided. Additionally, each chapter outlines the experimental
setup, datasets, and baselines used to evaluate the performance. Finally, the results of the
experiments are detailed and analyzed for each framework.

The final chapter summarizes the key insights gained from the proposed frameworks. It
concludes the thesis by discussing open-ended questions in the field of XAI and possible
future avenues of research. Specifically, three directions for future research are discussed -
one by incorporating explainability into other learning paradigms like Few-shot Learning,
Incremental Learning, etc. The second direction discusses the sufficiency of the existing
metrics in assessing the goodness of the posthoc explanations when extended to other
paradigms. The third direction suggests leveraging ideas from Neural Architectural
Search to determine the optimal network configuration in the antehoc concept-based
frameworks to achieve a minimal drop in performance compared to their non-interpretable

counterparts.



Chapter 2

Literature Review

This chapter presents a condensed review of the state-of-the-art contributions to the
Explainable AT (XAI) field. The underlying principle, limitations, and improvements
made to these seminal contributions have also been highlighted. Based on the stage at
which the explanations are incorporated, the XAl methods have been categorized into two
broad families: posthoc and antehoc. While posthoc methods leave the CNN undisturbed,
antehoc methods modify the training mechanism to incorporate explainability into the
model. While the discussion in this chapter is based on this categorization of approaches,
other perspectives exist to classify XAl frameworks.

On the basis of the scope of their explanations, i.e., whether the generated explanation
unearths the whole working mechanism of the model or restricts itself to explaining how
the model behaves in a limited neighborhood surrounding an instance of interest, the XAl
methods are bifurcated as local or global methods. Global methods explaining the CNN in
the complete instance space can be used to construct interpretable proxies mimicking the
working of the CNN that can be used in safety-critical applications where explainability
is essential. While this is desirable, often generating a global explanation that faithfully
encodes the non-linear manifolds learned by the CNN is challenging. To manage the
challenge, local explanations exploiting the local linearity of the data manifold are used
to explain the CNN in a local vicinity around the instance of interest. One can obtain an
approximate global explanation by aggregating local explanations over a set of instances.
Based on assumptions regarding the type of black box it queries to generate explanations,
the methods are categorized into model-specific and model-agnostic methods, with
model-specific methods assuming architectural constraints to generate explanations.
In contrast, model-agnostic methods generate explanations by looking at the input
and output interactions, assuming nothing about the black box it aims to explain.
Model-agnostic explanations are useful, particularly when the black box model is not
publicly available and is used through an API that supports providing inputs and
accessing the corresponding outputs only. However, these methods have certain underlying
principles; for instance, there exist interpretable features whose aggregation would yield
the working of the black box, to facilitate working with any black box architecture or data
modality. Such principles need not always be true, so it is desirable to use model-specific
methods whenever the black box to be explained is completely accessible.

As per the class label on which the explanation is queried, the explanation may be
categorized as deliberative if the black box prediction is justified. The other category,

namely the counterfactual explanations, supports editing the given instance with the
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intent to alter the predicted label. While deliberative explanations help identify biases,
if any, in the learned model, counterfactual explanations are useful in Machine Teaching
[55] where the explanations based on hypothetical counterfactual instances created shall
help humans better understand the distinction between classes as the intent of generating
counterfactual is to find the closest instance belonging to an alternate class of interest.

As motivated in the previous chapter, the thesis proposes concept-based explanatory
frameworks to explain a CNN. The concepts encompass the global information about the
model, which the users unearth through aggregating from multiple local explanations.
The proposed explainers can support pseudo-counterfactual queries seeking deliberate
explanations justifying a certain prediction probability for an alternate class. It is to be
noted that the explanation can be generated to justify the prediction probability the black
box has attributed to an alternate class through deliberate explanations from the proposed
frameworks. However, the counterfactual perspective of modifying the given instance,
thereby generating a hypothetical instance whose prediction is steered towards an alternate
class of interest, is beyond the scope of the proposed explainers. To explain in-domain
classifiers, the thesis proposes posthoc frameworks, and for cross-domain classification,
the thesis proposes an antehoc supervised explainable domain adaptation framework that
explains itself. This chapter reviews existing techniques that explain cross-domain and
in-domain classifiers from the antehoc and posthoc perspectives, determining the stage at

which interpretability is embodied.

2.1 Posthoc Methods

Posthoc XAI methods refer to techniques and methodologies used to explain the behavior
of an Al system after it has been trained to make a decision. These methods do not
necessarily modify the AI system itself but rather analyze the output generated by the
system to provide explanations for the decision-making process. A major advantage
of using these methods is that they do not require any architectural modification or
black-box retraining. They probe the trained black-box model to understand its working.
The posthoc methods can be subcategorized under four major heads: Saliency Map,
Model-agnostic, Counterfactual, and Concept-based approaches, as discussed in the

following subsections.

2.1.1 Class Activation Maps

Saliency Maps assume that the region salient towards the prediction of a class can be
obtained from a weighted combination of the activation maps from the convolutional layer
filters. Inspired by the observation that the latter layers encode complex parts [9], most
saliency estimation approaches extract activation maps from the last convolutional layer
closest to the output. Let the convolutional layer of interest have n filters. Let A; be the
activation map from the ¥ filter. The explanation algorithms assess the salient regions

that the CNN focuses on by means of a saliency map S that can be expressed as a weighted
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combination of the activation maps from each of the n filters, i.e., S = > | w;A;. This
formulation stems from the understanding that the features extracted are combined to
arrive at the prediction. The low dimensional saliency map obtained through the weighted
combination of the activation maps from the individual filters is then upsampled, to the
full image size to generate an explanation showing the image region that the CNN focuses
on to arrive at the prediction. Various mechanisms have been proposed to estimate the
weights {w; }I* ; that combine the activation maps from the filters. These approaches can
be bifurcated based on leveragement of gradients, as will be discussed below.

Gradients capture the direction along which the value of a function increases. Thus
gradients propagated back to the convolutional layers from the output layer carry a
signal indicating the features whose presence steers the model towards making a desired
prediction. This signal is leveraged to estimate the weights to combine the activation
maps by the gradient-based saliency approaches. Grad-CAM (Gradient-weighted Class
Activation Mapping) [21] is a visualization technique for deep neural networks that helps
understand where a neural network looks in an image when making a prediction. It
generates a saliency map highlighting the regions of the input image that were most
relevant for the neural network’s prediction. It works by computing gradients of the output
prediction with respect to the activations of the final convolutional layer. The activation
maps are combined based on the weights obtained by averaging the gradients with respect
to the corresponding filter over all the spatial locations. No additional modifications to the
neural network architecture are needed to generate explanations and thus can be leveraged
to explain any CNN. The following year Chattopadhyay et al. [23] observed that having
the averaged gradients as weights to combine the activation maps do not localize well in
images where multiple instances of the same class are present. They proposed applying
different weights to gradients observed at each spatial location to uncover all regions
steering the prediction; thereby, the observed limitation of Grad-CAM [21] in localizing
more than one instance of the class can be overcome. The weights to these spatial locations
were deduced to be obtained from higher-order derivatives whose computation could be
demanding in complex architectures. Integrated gradients [56] considers a reference input
and traverses the instance space across the path from a reference input to reach the given
instance. The attributions with respect to the intermediate instances along the path are
integrated to obtain a robust saliency map depicting the salient pixels in the given instance.
Excitation backpropagation [57] utilizes a probabilistic winner take all strategy where
the attribution being propagated to a downstream neuron is probabilistically determined.
Guided backpropagation [58] proposes propagating attribution only to those neurons which
were active during the forward pass, thereby generating finer pixel-level saliency maps
compared to the vanilla backpropagation [59] that propagated gradients as attribution
irrespective of the contribution of the neuron until arriving at the output layer.

Various quantitative measures [23] have been proposed to assess the faithfulness of the
generated explanations. The proposed measures are based on the requirement that

removing a salient region must lower the model’s prediction confidence while its presence
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has to amplify the confidence. Viewed differently, these measures observe the effect of
perturbing the regions deemed salient on the model’s prediction probability. The proposal
of these measures is inspired by the first principles of generating explanations that a
region whose perturbation impacts the prediction is salient. Instead of going through the
voluminous possibilities of all image perturbations, Chattopadhyay et al. [23] propose to
use derivatives to localize salient regions and verify if the regions localized to be salient are
truly salient by observing the effect of perturbing those regions on the CNN’s prediction
probability.

Wang et al. [60] empirically showed that the gradient-based saliency maps obtained do
not vary with respect to the queried class, thereby questioning the faithfulness of these
explanations. Adebayo et al. [61] proposed litmus tests that a posthoc XAI method has
to pass towards its proof of faithfulness to the underlying black box model. There are two
basic tests that an explanation method has to pass, namely the parameter randomization,
which observes the change in explanations when the model weights are randomized,
and label randomization, which observes the change in explanations when the labels are
randomized and the CNN model is retrained to model the altered distribution. It has been
observed that most of the gradient-based techniques fail to satisfy these proposed litmus
tests. The theoretical analysis by Sixt et al. [62] attributes the invariance in the saliency
map for the model parameters and query labels to the restriction of the explanatory model
to the positive subspace of the activations.

Following the issues found with using gradients to determine saliency, the XAI community
has proposed other methods to generate saliency maps. There have been attempts [24, 25,
63] to incorporate the effect of perturbation at the level of filters to assess the importance
of the activation maps, which will, in turn, be the weights w; combining the activation
maps A;. It is easier to manage the possible perturbations [64, 65] with n filters of the
convolutional layer of interest than that of the input image of much higher dimensions.
Wang et al. [24] associate the importance weight w; to combine the activation map A;
based on the effect it has to obtain the prediction to the desired class, i.e., the prediction
probability obtained when the activation map A; is present and the other activation maps
are nullified, is the weight w; that combine the activation map A;. Desai & Ramaswamy
[25] take a complementary route by considering the drop in prediction probability when the
activation map of interest A; is ablated while forward propagating other activation maps
without any modification to determine the weight w;. A limitation of these approaches
is the need for multiple forward propagations to get a single saliency map. In contrast,
the previously proposed gradient-based approaches can generate the saliency map in a
single backward pass. To mitigate this issue, Salama et al. [63] propose clustering similar
activation maps and obtain the ablation score for a cluster from which the weights w;
for each activation map A; can be recursively determined. There have been attempts to
propagate a special signal called relevance [66, 67] from the output layer back to the input
to determine the pixels salient to the prediction. However, the fact that these pixel-level

saliency maps are not class-discriminative has led to the cross-pollination of ideas from
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these techniques to estimate the combination weights w; of CAM [68, 69, 70, 71]. Layerwise
Relevance Propagation [66] propagates the output of the neural network back through
the different layers to assign relevance scores to these input features. The forward pass
propagates the activation from the input layer and reaches the output layer. Relevance
propagation starts in the opposite direction from the output layer, and gradually the
relevance signal reaches the individual input pixels. The relevance propagation is based
on the idea of conservation, i.e., the relevance signal from a neuron is distributed across
all neurons that have contributed to it during the forward pass proportional to their
contribution. Lee et al. [68] apply the idea of relevance propagation[66] to estimate the
relevance of the filters, which can act as the weights w; to combine the activation maps
A;. Deep-LIFT [67] is a modified form of relevance propagation where differences between
activations with respect to a reference input are propagated to obtain the relevance of the
different input features. Mostly the input having zero in all its dimensions is taken as
the reference input. Extending the idea from Deep-LIFT [67], Jung & Oh [69] estimate
the filter weights w; to combine the activation maps A; through the differences of the
combination weights obtained with respect to a reference input. Sattarzadeh et al. [70]
extend the idea of integrated gradients [56] to integrate the attribution maps obtained
across the path from reference input to the given input. Wang et al. [71] generate image
patches [72] and use an attention mechanism to estimate the salient regions in a given
image. However, a major limitation of these saliency map approaches is that they almost
always highlight the region containing the entire object to be salient [73]. While these
explanations can ascertain whether the model looks at the object to arrive at its prediction
or relies on any non-object spurious correlations [20, 22]. Finer explanations depicting the
contributions of image primitives like colors, textures, and parts cannot be obtained from
the Class Activation Maps.

2.1.2 Model-agnostic Explanations

Model-agnostic methods refer to the family of XAI methods, which explain the working of
a black box model by just observing the input-output interactions. They can be applied to
any machine learning model, regardless of its type or architecture, and can work to explain
data of any modality like text, images, tabular data, etc., The scope of the explanations
these methods provide can be local to a given instance or can globally explain the overall
working of the black box. These methods aim to construct an inherently interpretable
pseudo classifier that approximates the working mechanism of the black box classifier to
be explained either locally around a small neighborhood of an instance for which the
explanation is sought or globally, spanning the complete instance space of the classifier.

Local Interpretable Model-agnostic Explanations (LIME) [20] provides explanations for
the predictions made by complex models such as neural networks. LIME generates a
simpler, more interpretable model, for instance, a linear regressor or a decision tree whose
complexity is optimized such that the determined approximator mimics the behavior of

the original model in the local vicinity of the input space around the instance to be
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explained. This simpler model can then be used to provide local explanations for individual
predictions. It can be observed that different explanations can be generated for the same
instance depending on the sampled neighbors based on which the local neighborhood is
estimated. Zafar & Khan [74] propose a deterministic approach to sampling neighbors
utilizing agglomerative hierarchical clustering and sampling k-nearest neighbors using
which an interpretable approximator is constructed. Collaris et al. [75] hint at the
possibility of sampling fewer neighbors when sampling is performed independent of the
queried instance to be explained and propose to sample from a hypersphere around the
instance to obtain a robust local explanation. Anchors [26] generate explanations for
individual predictions using if-then rules constructed in a bottom-up fashion such that
the rule precisely covers the local neighbors of the instance to be explained. MAIRE [27]
extends Anchors [26] to handle continuous-valued attributes by learning to construct an
optimal orthotope automatically, unlike the prior approach [76] that requires the range of
values to construct the orthotope. Local explanation methods aim to extract explanations
that are faithful in a local neighborhood by means of special measures like coverage
which estimates the fraction of instances that lie within the explainer’s vicinity, and
precision which denotes the fraction of covered instances whose prediction by the explainer
matches with the prediction by the black box CNN. Constructing a MAIRE [27] explainer
maximizes the coverage, ensuring faithfulness to the underlying black box by satisfying a
precision level set by the user. Though these methods offer local explanations, a global
understanding of the model can only be obtained by aggregating the local explanations
over a set of instances.

There have also been attempts to build an explainer that approximates the global behavior
of the model as a whole. SHAP [77] uses the principles from game theory (Shapley
values) to assign an importance score to each input feature, indicating how much each
feature contributes to the output of the system. These importance scores can be used to
identify the most relevant features and understand their influence on the system’s decisions.
Computing Shapley values requires considering all possible subsets of the feature space and
assessing the effect of perturbation of each subset on the output. This is computationally
exhaustive due to the exponential time complexity, and there have been many approaches
proposed based on Shapley values approximated by considering only the perturbation of
one feature at a time. Permutation feature importance [78] calculates the importance
of each input feature by randomly permuting its values and measuring the decrease in
the model’s performance. Partial dependence plots [79] visualize the relationship between
an input feature and the model’s prediction while holding all other features constant.
Despite approximations [80] to compute Shapley values efficiently, there has been a recent
observation [81] highlighting their inadequacy in faithfully capturing the global behavior
of the black box being explained. Huang & Marques-Silva [81] construct a boolean dataset
where a set of features relevant to determine the output are known. A global explanation
is ideal if it assigns zero importance to irrelevant features and non-zero importance to

features that correlate with the output. It was observed that there existed features that
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were truly irrelevant to the prediction but had non-zero Shapley values; Also, when pairs
of features were analyzed such that one was actually a relevant feature and the other
was irrelevant to the prediction, Shapley values of the irrelevant features were higher
compared to that of the relevant features. Sometimes Shapley values for truly relevant
features turned out to be zero, contrary to the basic requirement that a global explanation
must capture the feature importances accurately. Huang & Marques-Silva [81] conclude
that the Shapley values are not always correlated with the actual relevance of features for
the black box predictions.

Another important observation is that the model-agnostic methods are developed to
generate explanations for any black box model, and hence no assumption regarding
its architecture is made. The explanation is given in terms of input features that are
significant towards the prediction. In images, the pixels constitute the input features. As
pixel-level explanations are not easily interpretable for humans, a workaround suggested
using a collection of spatially closer pixels called the superpixels. These superpixels serve
as complex input features on which the model-agnostic methods can generate explanations.
For this, the existing model agnostic approaches [26, 27] use different predefined image
segmentation algorithms [28, 29] to obtain segments constituting the superpixels on which
model agnostic explanations are sought. On the surface, it may seem that this workaround
achieves a satisfactory level of human interpretability when model-agnostic explanations
are sought on images. However, it is to be noted that CNN need not process the image
by segmenting it in a manner similar to the model-agnostic explainer [30]. This refutes
the preliminary necessity of the proposed approximator, aka the explainer, to be faithful

to the underlying black box, aka the CNN being explained.

2.1.3 Counterfactual Explanations

Counterfactual explanations involve generating alternative scenarios to explain the
behavior of an Al system. For example, if an Al system for processing loan applications
denies a loan application, a counterfactual explanation might involve generating a set
of hypothetical inputs that would have resulted in an approved application [82]. These
counterfactual explanations can help users understand the decision-making process and
identify potential biases or errors in the system. They differ from the deliberative
explanations in the sense that the deliberative explanations aim to justify why a certain
prediction was made. Counterfactual explanations go a step further to analyze the changes
to the input to get another desired prediction. This explanation can be applied to analyze
a classifier that works with any data modality, be it tabular, text, or image. The methods
try to perform minimal edits to the given query instance such that the prediction is steered
towards an alternate desired class. This can be thought of as perturbations intending to
flip the prediction. In the case of tabular data, where the efficacy of the counterfactual
approaches has been mostly demonstrated, the perturbations are manageable as the range
of values the tabular features can take is known, and the instance can be perturbed to

generate another realistic instance that lies within the manifold on which the classifier
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was trained. Determining this realistic manifold is non-trivial in the case of images whose
constituents, aka the pixels, can theoretically assume any real value. The objective of
explaining using a perturbed instance is common in adversarial learning, except that it
does not have a target class towards which the prediction has to be steered. The objective
in generating an adversarial example is that prediction on the generated instance must not
be the same as that of the unperturbed instance. Caution has to be observed as a random
perturbation can generate an adversarial example [83], which may flip a prediction towards
the target class of interest but may not be an ideal candidate to extract counterfactual
explanations as the instance may be an outlier with respect to the realistic training images’
manifold, thereby questioning the faithfulness of the generated counterfactual explanation
to the underlying model and data. To circumvent this challenge, the existing approaches
[31, 84] either maintain an image bank from which the closest counterfactual image is
chosen, or a generative model [85] is used to sample the counterfactual neighbors of the
query instance from the distribution on which the CNN is trained.

There have also been some deliberative explanation approaches that allow querying
explanation with respect to another class of interest [21], harnessable to generate a
counterfactual explanation for the alternate target class of interest. However, these
approaches do not generate explanations that vary significantly with respect to the
alternate queried class [73].

The preliminary approach to generating counterfactual explanations through realistic
instances is by maintaining an image bank from which the closest counterfactual instance
to a given test instance is chosen. Various approaches have considered different ways
to estimate the closest instance. SCOUT [86] generates deliberate explanations for the
given test instance and all instances in the counterfactual image bank and chooses the
instance containing features supporting the counterfactual class and no information of the
predicted class as the closest counterfactual instance. Goyal et al. [31] simulate permuting
feature maps to obtain features closer to that of the counterfactual instances that steer
prediction towards the desired class. A main limitation of these approaches is the necessity
to skim through the image bank for every test instance to be explained. Additionally, the
image bank must be sampled from the same distribution as the data on which the CNN
is trained.

To maintain the distribution, an alternate set of approaches employed variants of
Generative Adversarial Networks (GAN) [87] to learn the underlying distribution. Singla
& Pollack [85] sample instances that vary the prediction probability to navigate through
the manifold of the counterfactuals. Zhao [88] proposes using a Star-GAN [89] to generate
robust counterfactuals faster. However, it is to be noted that the generative models
employed to learn the underlying distribution are, again, black boxes whose working is
unknown. This complicates the problem at hand as techniques to interpret GAN [90] need

to be employed on top of the existing counterfactual explainers.
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2.1.4 Concept-based Explanations

Humans process images through the lens of concepts [50], which can be abstract textures,
colors, parts, etc. Concept-based explanations have been proposed to align the explanation
algorithms closer to human-like thinking, i.e., the explanations are generated in terms of
abstract vector representations that can be mapped to human-interpretable concepts.
Typically, a set of examples where the concept is present (termed positive examples)
and absent (termed negative examples) are provided, from which the abstract vector
representations are learned. Koh et al. [91] proposed a family of classifiers called the
concept bottleneck models, which forces the classification to be done through the set of
known concepts, which act as a bottleneck through which the processing pipeline has to
pass. The basic idea behind the concept bottleneck models is to insert a bottleneck layer
between the feature extractor and the classifier of the original model and then train the
bottleneck layer to capture the most important concepts from the features of the input
data. This approach allows for extracting the salient concepts from the original model,
which can be used to create a more interpretable approximator. The training of the concept
bottleneck models can be done in three modes. In the sequential mode, a bottleneck layer
is designated to detect concepts, enabling the classifier to use the detected concepts to
arrive at its prediction. The joint mode of training enforces a weighted optimization of
the concept detection and classification objectives. While the third mode of training,
namely the independent mode, treats the training of concept detectors and the classifier
independently by utilizing the available ground truth. At the test time, the model mimics
the pipeline of a sequentially trained model. While the model proposed by Koh et al.
[91] may require retraining, Yuksekgonul et al. [34] suggest the usage of a dimensionality
reducer as the bottleneck layer that can faithfully map the space of the CNN features to
an interpretable low-dimensional concept space, keeping the CNN untouched. Kim et al.
[32] leverage the given positive and negative examples to extract representations from the
CNN layer of interest. The boundary that separates the positive examples containing a
concept from the rest is learned using these representations. The vector in the direction
of the positive examples and orthogonal to the learned decision boundary is chosen to be
the representative vector denoting the concept. This is illustrated in Figure 7?7, where
the vector color-coded in red color orthogonal to the linear decision boundary separating
the striped instances from others is chosen to denote the CNN’s representation of the
concept-stripes. Once the concept representation is extracted, its relevance is estimated
by inducing perturbation of the concept captured by the directional derivatives. As
directional derivatives approximate the inherent non-linearity in the CNN being explained,
Pfau et al. [92] propose propagating the perturbed concept through the rest of the
CNN and observing the impact of the perturbation on the probability as this could be
a more faithful measure due to accounting of the non-linearity of the CNN. However, a
key challenge associated with generating such concept-based explanations is the need for
annotated examples denoting the presence and absence of concepts. Ramaswamy et al. [35]

observed that the curated examples have to be sampled from the same distribution as that
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of the data on which the CNN is trained so that the extracted concept representations
faithfully capture the internals learned by the CNN. Ghorbani et al. [33] propose to
use segmentation to subdivide the images at different granularities and curate them to
extract examples depicting the presence and absence of concepts automatically. This
reintroduces the issue associated with model-agnostic approaches for explaining a CNN
regarding the questionable guarantee of the CNN processing images in terms of segments
[30], thereby raising a question on the faithfulness of the generated explanation. Arendsen
et al. [93] propose leveraging natural language word vectors to learn additional concepts
automatically. However, this approach leverages another black box whose working needs
to be unearthed [45].

2.2 Antehoc Explanations

Antehoc explainability, or explainability by design as it is popularly called, refers to the
practice of building AI systems with explainability and interpretability in mind from
the outset rather than as an afterthought. By incorporating explainability into the
design process, these methods aim to create Al systems that are inherently transparent,
interpretable, and trustworthy. Despite the advantages like inherent interpretability
and trustworthiness that antehoc explanations can offer, designing such models can be
challenging and may require domain-specific knowledge and expertise. Additionally,
some interpretability methods may come at the cost of model performance, limiting
their usefulness in certain applications. To incorporate explainability, the architecture of
existing CNN architectures may be modified [49], or novel components may be devised that
are interpretable by design. The explanation may be highlighting visual artifacts leading
to the prediction or providing textual descriptions justifying the predictions. Alternately
one may look up to existing knowledge bases to learn models whose working reflects the

real-world application requirements.

2.2.1 Visual Explanations

The earliest visual explanatory approaches used attention [94, 95, 96, 97], which is a
selective retainment of features to classify the test instance. Attention can be hard or
soft in the sense that the selection of regions from the features may be deterministic or
probabilistic. The regions attended would be turned in as an explanation. However, there
have been observations [98, 99] that an attention map visualized need not be an ideal
explanation. Extending the analyses of Jain & Wallace [98] unearthing the limitations of
attention-based approaches to explain natural language models, Akula & Zhu [99] conduct
extensive human subject experiments, which reveal the usefulness of non-attention based
approaches [31, 32] compared to attention-based approaches [20, 21, 66, 56] that explain
an image classifier. The authors conduct quantitative tests, which reveal the supremacy of
non-attention-based explanations in facilitating the user to think like the CNN as well as

qualitative analyses where the users are asked to rate the quality of explanations on various
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parameters like satisfaction, completeness, etc., as defined by Hoffman et al. [100] on a
10-point Likert scale show that attention-based approaches are not suitable explanations
Zhang et al. [101] propose to use mutual information to explicitly enforce the CNN filters
to encode distinct parts so that the filters can be visualized to understand the impact of
each part of the image. To facilitate the explanation generation, Zhou et al. [49] propose
to change the architecture of the CNN to replace the series of fully connected layers
incorporating non-linearity by means of a single linear layer which accumulates the average
pooled features to get a prediction. The weights that combine these average features are
used to combine the feature maps and visualize the salient regions contributing to the
prediction. Li et al. [102] propose an autoencoder-based case-based reasoning architecture
that looks at characteristic prototypical examples learned from the distribution of instances
whose proximity determines the class the test instance belongs to. Chen et al. [36] extend
this architecture to learn class-specific concepts called prototypes automatically from data
such that the learned concepts are class-discriminant and guide the interpretable classifier
that follows it to do the prediction. Many extensions to this approach have been proposed.
Hase et al. [103] propose to perform interpretable hierarchical classification by applying
the explainable ProtoPNet [36] at every level of the hierarchy. Wang et al. [104] propose
modeling instances as a member of class-specific orthogonal subspaces in the feature space.
Hoffman et al. [105] and Huang et al. [106] analyze the prospective shortcomings of the
ProtoPNet variants. The assumption of class discriminativeness need not be completely
true, as concepts may be shared across classes. This idea of sharedness is exploited after
training by encouraging sharing of connections to different classes [107]. Nauta et al.
[38] construct a decision tree based on learned concepts that implement sharedness by
design. However, using decision trees induces negative reasoning, which is overcome by
Protopool [37], which enforces a Gumbel-Softmax distribution across prototypes to enforce

sharedness closer to real-world sharedness.

2.2.2 Natural Language Explanations

Natural language explanation approaches [39, 40, 41, 42, 43] aim to generate textual
descriptions that provide insight into how an image classifier makes its predictions. The
key idea behind this approach is to leverage the vast amounts of linguistic knowledge that
has been accumulated over centuries of language use and incorporate it into the model.
This can help the model generate more coherent and natural-sounding explanations that
humans can understand and interpret.

This approach assumes the availability of natural language description for the classes under
consideration and for individual instances from which the mapping between visual aspects
and natural language phrases can be learned. A trained language model is incorporated
to act as an explainer into the classification pipeline to construct a CNN that can justify
it’s working through natural language phrases. The visual features extracted from the
feature extractor of the CNN are fed into the language model, which is trained to generate

captions describing the image’s content. A critic module then assesses the correctness
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of the generated caption to the image content. To train the critic module, the ground
truth (image, caption) pairs are randomized, and the model is trained to provide a low
score for a randomized instance where the image and caption don’t agree and a high score
on true instances where image and captions agree. The visual features and generated
captions from the test image are fed to the critic module, which outputs a score denoting
the goodness of the generated caption. To avoid multiple back-and-forth passes through
the CNN and caption generator based on the feedback from the critic module, the top-
k captions from the caption generator are considered, and the top-ranked caption from
the critic is passed into a localization module to localize the corresponding image region
contributing to the generation of the caption. This can be seen in Figure 1.2, where a
given test instance classified as beagle is justified by localizing the characteristic floppy
ears and tricolor body through similarly color-coded bounding boxes.

The approach is mostly used to justify the predictions made in related computer vision
tasks, specifically vision-language tasks like image captioning [108], visual question
answering [47, 48], etc. where the task involves understanding both visual and linguistic
aspects and can be preferably explained when the explanation mechanism also incorporates
both vision and language features. Wickramanayake et al. [44] incorporate the textual
embedding of the language model to guide the detection of characteristic concepts that
drive predictions. This is an explainable-by-design model that leverages both the vision
and language aspects.

However, designing effective natural language explanation approaches can be challenging
and may require domain-specific knowledge and expertise. Additionally, the quality and
effectiveness of the generated explanations can vary depending on the complexity and
accuracy of the underlying image classifier and the quality of the available linguistic
annotations. Another key challenge to be addressed when incorporating natural language
explanations is that the language model which facilitates justifying the prediction is

another black box whose working mechanism needs to be unearthed [45].

2.2.3 Neuro-symbolic methods

An alternative family of approaches, known as neuro-symbolic approaches [109], leverages
existing knowledge bases or ontologies to acquire the necessary concepts for predicting a
given instance, akin to utilizing domain knowledge curated by experts. This phenomenon
was initiated with the proposal by Maillot & Thonnat [110], who advocated for collecting
knowledge from domain experts and using it to train machine learning models that can base
their predictions on the domain experts’ knowledge. Marino et al. [111] propose a few-shot
classification task by harnessing knowledge encoded in a graphical format. The classifier
is trained to traverse different nodes of the knowledge graph and search for image features
that match the descriptions associated with the investigated node. As the model navigates
through the knowledge graph, the explanation is generated by identifying the localized
image regions with the highest degree of match. Alirezaie et al. [112] aim to alleviate the

problem of uninterpretable misclassifications by leveraging symbolic knowledge. Daniels
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et al. [113] propose the design of a bottleneck model [91], which compels the classifier
to explore the available knowledge repository and base its predictions on the acquired
knowledge. The authors hypothesize that such a design, which enforces the prediction
to pass through the knowledge repository bottleneck, enhances the robustness of the
learned model. Liao & Poggio [114] investigate the reasons why machine learning models
lack the generalizability exhibited by humans. They hypothesize that models adopt a
feature-oriented perspective, processing images as a sequence of tensor operations, which
leads to variations in representation as objects manifest differently. In contrast, human
knowledge processes images in terms of objects and concepts [51, 52, 50], exhibiting
invariance to modifications in image manifestations. The authors propose mechanisms
to transform the operations performed by feature-oriented models into an object-centric
view, aiming to incorporate human-like processing. Ordonez et al. [115] propose a
multimodal neuro-symbolic model that combines textual and visual knowledge to predict
the entry-level categories to which an image belongs. For example, a neuro-symbolic
classifier may have learned encyclopedic categories like trachypithecus johnii from the
knowledge base, which refers to a species of monkey commonly known as a langur
among wildlife enthusiasts. Ordonez et al. [115] address the challenge of mapping from
encyclopedic categories to common categories, initially approaching it as an instance
of hypernym search in a textual knowledge graph. Acknowledging the potential errors
associated with visual cues in the knowledge base due to images of different categories
appearing visually similar to humans, the authors propose a learning objective that
combines cues from the visual and textual knowledge base to predict the appropriate
entry-level category for an image. Icarte et al. [116] demonstrate the utility of a
general-purpose ontology in retrieving realistic images that are closest to a given natural

language query.

2.3 Causal Explanations

For the sake of completeness, this section discusses the various attempts of the XAI
community to generate causal explanations. In real-world data, the features are rarely
independent, which can be observed by a corresponding change in another feature when
a feature is perturbed. This relationship may be a mere correlation or causal, i.e., the
features have a cause-effect relationship. For instance, if the sales of pen increase with an
increase in the temperature of the city, this relationship is just a correlation, as there is
no known relationship between a pen and temperature. However, an increase in sales of
an umbrella with an increase in temperature has a causal relationship, as it is well-known
that people tend to look for umbrellas with increasing temperatures. Viewed differently,
an increase in temperature causes an increase in sales of umbrellas, where the increase in
temperature is a cause, and the higher sales of umbrellas as an aftermath is a result. Many
such cause-effect relationships exist in nature. It is of interest to the research community

to see if the machine learning models capture such causal relationships [117, 118, 119] and
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design models which work based on causal relationships so that the spurious correlations
[22] are not picked up to arrive at the prediction [120, 121, 122].

Frye et al. [123] leverage a causal graph depicting the causal relationship between features
to assign Shapley values respecting the causal order where source variables are attributed
more than the effects. While relationships may be intuitive in simpler tabular datasets,
such causal relationships are unclear to humans in images [124]. For instance, the proposal
by Kancheti et al. [121] to build models whose reasoning is aligned with the prior
knowledge of the underlying causal structure obtained from the domain experts based on
a specialized regularization scheme could not be demonstrated in any image dataset due to
non-availability of causal knowledge on image pixels. In the absence of a complete causal
structure existing between the pixels, which are the input features of images, Watson
et al. [125] suggest using eye-gaze data as a proxy for ground truth causal structure,
which can guide the model training to avoid picking up spurious correlations. Though the
inter-dependencies between image pixels are less intuitive to humans, inter-dependencies
at the level of concepts are known. For example, the presence of a car can be ascertained
only when it has wheels. The detection of a concept car causes an increase in confidence in
the detection of the concept of wheels [126]. Qin et al. [127] propose a causal interventional
training to incorporate such causal concept relationships. Bahadori & Heckerman [120)]
propose using instrumental variables to debias concept representations learned by Concept
Bottleneck Models [91]; thereby, the effect of confounding or correlational concepts on the
prediction is mitigated. Dash et al. [122] propose leveraging the causal structure to uncover
biases learned by a CNN by generating suitable counterfactuals, which can then be used
to retrain the CNN in a regularized manner to debias the CNN. Singla et al. [128] leverage
vision-language models to associate concept descriptions to image regions and estimate the
causal relationships captured by the trained model by observing the effect of intervening
the concept. Yang et al. [117] and Goyal et al. [129] propose a specialized variational
autoencoder to facilitate concept-level intervention. Panda et al. [118] hypothesized that
the most sparse and class discriminant features are causal and leverage a neural network
to determine those causal superpixels that maximize the mutual information. However,
it is to be noted that these architectures are, again, black boxes whose working needs to
be explained, adding up to the problem at hand of explaining the CNN of interest. To
eliminate the introduction of another black box to provide a causal explanation, Causal
CAM [119] echoes the hypothesis of Panda et al. [118] that the class discriminant features
are causal by eliminating the context features that are salient for other classes from the
saliency maps generated by Grad-CAM [21], thereby yielding a saliency map highlighting
the causal features. However, as noted in the paper, this approach cannot be scaled to
a multi-class classification scenario as it involves enumerating all possible subsets of the
set of all class labels except the class of interest to estimate the context features, whose

computation grows exponentially.
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2.4 Explaining Cross-domain Classification

Much effort of the XAI research community is towards explaining classifiers trained and
tested on the data sampled from the same underlying distribution, called the in-domain
classifiers. Cross-domain classification also plays an important role in extending the fruits
of the data-hungry deep models to be reaped for data-scarce applications by adapting
the models trained using large amounts of other related data to work on the scarce data
sampled from a different distribution. Specifically, domain adaptation refers to the process
of adapting a model trained on a data-rich source domain to a data-scarce target domain
where the distributions of the data may be different [130]. In this context, explainability
can help understand how the model adapts to the differences in the source and target
domains.

Zunino et al. [131] propose to leverage explainability approaches [21] to identify common
features across both domains. Once the domain-invariant features are identified, the CNN
is enforced to focus on these features to classify the instances. This, by design, forces
the CNN to pay attention to discriminative domain-invariant features; thereby, the model
would be accurate on any domain, and hence a domain-generalized classifier is built.
Szabé et al. [132] explores the temporal process of transfer learning. An Imagenet [133]
trained model is adapted to perform a face recognition task, and the features encoded
by the different filters of the CNN are analyzed using Activation Maximization (AM)
[134] that performs gradient ascent in the input image so that the activation of a desired
neuron of interest gets maximized. It was observed that the initial layers only adjust
trivial features like color-space etc., to adapt to the target domain, while the latter layer
filters undergo significant transformation. However, interpreting the results of AM requires
expertise and may not be suited to explain to people with good domain expertise but
limited deep learning expertise, as the optimization process of AM may generate perturbed
pixels from which abstracting the underlying concept as similar to how humans process
images [50] is challenging. Neyshabur et al. [135] perform a detailed analysis to unearth
the role of feature reuse and pretrained weights during the process of fine-tuning.

Zhang et al. [136] extend the idea of Li et al. [102] to learn characteristic source domain
prototypes whose similarity would determine the class of the given test instance. They
propose building an unsupervised domain-adapted classifier with case-based reasoning
ability incorporated by design. As no labeled target domain instances exist in unsupervised
domain adaptation, the classifier is trained using the source domain instances sampled
from the same distribution from where prototypes are learned. To instill domain
invariance, GAN-based domain adaptation mechanisms [137, 138] are employed to generate
domain-invariant features so that the target domain test instances may be classified using
the same classifier, which was trained to classify the labeled source domain instances based
on proximity to prototypes. A main drawback of this approach is that the prototypes
are complete images, unlike recent antehoc approaches [36, 38| that offer part-level

explanations. Hence, this framework needs to use the framework proposed by Nauta
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et al. [54] as an add-on to obtain finer information regarding the prototypes.

Xiao et al. [139] attempt to build a posthoc approximator for an unsupervised domain
adapted classifier based on ProtoPNet [36] whose prototypes are learned using the labelled
source domain instances which when visualized through the unlabelled target domain
instances reveals the mapping between the source and target domain instances leveraged
to classify the unlabelled target domain instances. However, this approach has challenges
regarding the fidelity of the explanation as there is no consensus regarding assessing
the correctness of how the features are aligned across the source and target domains.
Furthermore, other frameworks [54] have to be applied to get additional information on
what is encoded by the class-specific prototypes learned from the source domain instances.
Overall, concept-based explanations which are closely aligned with the human-friendly
manner of processing images [32, 50] have to be extended to support automatic extraction
of concepts learned by an already deployed CNN to circumvent the possible loss of
faithfulness due to distribution shift [35]. Similarly, the fruits of concept-based explanatory
approaches need to be extended to other learning paradigms which have contributed to
deep learning. These are the critical loopholes one can identify from the survey of related
literature discussed in this chapter. The thesis shall propose three novel frameworks
to address them in the next three chapters. Specifically, in line with extending the
explainability techniques to the allied learning paradigms, domain adaptation is of interest.
Domain adaptation techniques aim to leverage a classifier trained on huge volumes of data
on related data, which is scarce, by bridging the distribution differences between them.
The process of adaptation, specifically how different features of the source domain are
adapted to be reused on the data of interest, is unclear and needs to be unearthed.
To achieve this, the thesis proposes an antehoc domain adapted classifier that uses a
case-based reasoning pipeline to predict its instances which has been detailed in Chapter
5. While this is a baby step taken to unravel the working of allied learning paradigms,
there can be many possible extensions that are out of the scope of this thesis and
shall be suggested as a future avenue for researchers interested in exploring the field

of explainability.



Chapter 3

Posthoc Class-specific Automatic

Concept Extractors

The previous chapters motivated the need for explaining a CNN and discussed various
attempts by the XAI research community to achieve this goal. This chapter proposes
Posthoc Architecture-agnostic Concept Extractor, abbreviated as PACE, a posthoc
explanatory framework that can automatically extract concepts from the data to explain
a prediction. The extracted concepts are enforced to be class discriminative and relevant
to the prediction. The concept extraction process occurs in four steps, namely embedding
extraction, concept mining, prediction approximation, and relevance estimation. In
the embedding extraction step, the features obtained from the individual instances are
projected onto a low-dimensional latent space. The concept mining step clusters the
projected embeddings subject to certain constraints to obtain class-specific concept vectors,
which are abstract vectors in the low dimensional latent space expected to encode the
salient aspects that identify a class. These concepts form the explanatory backbone
of the proposed framework. It is important that the learned explanatory backbone
faithfully captures the working of the CNN being explained. To achieve this, the feature
embeddings at spatial locations where concepts are strongly observed are replaced by
the dominant concepts and then reprojected back to the classifier. These reprojected
features are enforced to yield a prediction probability distribution as close as possible to
that of the original distribution obtained by the CNN. Thus faithfulness of the posthoc
explanation is embedded in the explainer learning pipeline by design as its prediction
approximation involves querying the black box, thereby guaranteeing faithfulness. In
the final step, the relevance of the concepts is estimated by mimicking the effect of its
perturbation on prediction probability. The PACE framework has been used to generate
explanations for two different CNN architectures trained for classifying the AWA2 and
Imagenet-Birds datasets. Extensive human subject experiments are conducted to validate
the human interpretability and consistency of the explanations extracted by PACE. The
results from these experiments suggest that over 71% of the concepts extracted by PACE

are human-interpretable.

3.1 Introduction

Humans recognize an object through its different salient features [36, 103]. For instance, an

elephant is identified based on the presence of characteristic features like face, ears, trunk,
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(e) Elephant (f) Elephant (g) Horse (h) Horse

Figure 3.1: Class-specific concepts extracted by the model from test images of different
classes from the AwA2 dataset with their percentage contribution in the box

tusk, etc that define it. PACE aims to mimic this style of reasoning for explaining the
behavior of a black box image classification model by extracting smaller salient regions
in the given image called concepts, which a black box classifier deems relevant for the
prediction. Ideally, a concept can be any human interpretable feature/image region, say,
legs of a lion, stripes of a tiger, body texture of a leopard, background information such as
the presence of water, grass, etc. Few concepts extracted from some of the test images are
shown in Figure 3.1. As can be seen, the concepts represent salient parts of the different
animals such as ears of the bobcat, mane of the lion, trunk of the elephant, mouth of the
horse, etc.

The PACE framework assumes that every class can be explained by the presence (or
absence) of certain characteristics - the concepts. The concepts, represented as vectors
in a latent space, are global in the sense that they cater to the explanation of a class as
a whole. Simultaneously, every input image has different manifestations of the concept
vectors - named embedding vectors. The embedding vectors are extracted through an
encoder that works on the feature maps obtained from the black box. The similarity
between the embedding and concept vectors determines the presence of a concept. Image
regions with a strong presence of the concept aid in its visualization. The embeddings are
learned such that the output (classification probabilities) of the black-box model for each
of the classes is preserved on passing the reconstructed feature map. The relevance of the
embedding (and thereby the concept) is obtained by mimicking its removal and observing
the drop in the classification probability. This definition of relevance incorporates the
faithfulness of the explainer to the black box by design.

To explain how a test image has been classified, PACE highlights the salient concepts
and provides relevance, denoting the concepts’ contribution toward the prediction. The
relevance values lie in the range [—1,1]. A positive relevance indicates that the concept

supports the prediction, and a negative relevance denotes that the concept’s presence
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inhibits the prediction. The relevances are normalized, and the percentage contribution of
the different concepts towards the prediction of various test images has also been shown in
Figure 3.1. For instance, consider the elephant’s image shown in Figure 3.1e. The concept
face has a contribution of 67%; the trunk has a contribution of 39%. These concepts
support the prediction of the image as an elephant. At the same time, the concept of
trees has a negative contribution (-6%). This can be understood as trees may be present
in the background of different animals. Hence, the presence of trees may not support the
prediction of the animal. Due to the presence of trunk and face that strongly supports the

animal being predicted as an elephant, the given test image was predicted as an elephant.

3.2 Related Work

While a detailed discussion of the various attempts of the research community in explaining
the working of a CNN can be found in the previous chapter, this section draws attention to
the most relevant attempts whose issues motivated the proposal of this PACE framework.
Concept-based explanation approaches aim to explain the working of the black box by
means of human interpretable concepts, which are vectors in the latent activation space.
TCAV [32] requires the users to provide examples of concepts, while ACE [33] uses
segmentation to automatically extracts concepts. A limitation of these approaches is that
they formulate finding the relevance of a concept using directional derivatives, which is a
weaker (linear) approximation, given the non-linearity in the network. Without the image
segment assumption of concepts, Concept SHAP [53] extracts concepts in an unsupervised
manner whose relevance is quantified by means of Shapley values [77]. However, there is
a two-layer network involved in Concept SHAP to learn the concept embeddings, which
leads to using another black box to explain the given black box. The antehoc paradigm
of This looks like That [36] proposes using a convolutional encoder to learn class-specific
prototypes automatically from the data, which are then linearly combined to perform
classification such that the complete reasoning pipeline can be completely unearthed.
However, to incorporate such explainability, the CNN has to be retrained, making this
method unsuitable for explaining an already deployed classifier. A key difference of the
proposed approach compared to the other previous concept-based approaches is that it
learns class-specific concepts [36] in a posthoc manner. In contrast, the previous works

aim to learn generic concepts for the whole dataset [102].

3.3 Contributions

The major contributions of the proposed work are:

o This is the first work that extracts relevant and discriminative class-specific concepts

to explain the behavior of any black-box CNN.

e The approach tightly integrates the relevant concept extraction into the explanation

learning process instead of leaving it as a post-training step.
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Figure 3.2: Various modules in the proposed PACE framework

o Extensive human-subject experiments are conducted to validate the consistency and

interpretability of the concepts.

3.4 Methodology

PACE is capable of explaining the working of any convolutional layer. This is a grey box
explainability approach in the sense that just the feature map from the layer of interest and
the probability distribution, which is the output of the black box, are needed to generate
explanations. The aim is to learn class-specific concepts that are integral to black box
predictions.

PACE dissects the convolutional layer of a black-box model to uncover latent
representations of class discriminative image regions. Figure 3.2 presents the schematic
diagram of the framework, consisting of two primary components, namely, an autoencoder
and the global concept representations (concepts). The encoder part of the autoencoder
transforms the convolutional feature map of an input image into a representation in the
space of concepts. In contrast, the decoder part of the autoencoder projects the vectors in
the latent concept space back to the space of the convolutional feature map. The search
for the presence of the concepts happens in the latent concept space.

The encoder is designed as a 1D convolutional layer that aims to project the feature
map representation onto a low dimensional (@) embedding concept space. The encoder
aims to coalesce the information pertaining to different concepts spread across different
feature maps into a more compact representation. The encoder is linear and thus retains
interpretability - the concept representations may be interpreted as weighted combinations
of the input features. Other approaches like Concept-SHAP [53] use non-linear activations,
thereby reducing the explanation framework’s interpretability. The decoder in the PACE
framework is also designed to be a linear transpose convolutional layer transforming the
vectors in the latent space to the space of feature maps. The working of the PACE

explainer’s modules can be interpreted in terms of weighted combinations of input features
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that are passed to those modules because of the use of simple 1 x 1 convolution and
transposed convolution layers.

Each class k is represented by a set of C' concepts that lie in the latent space of the
auto-encoder, denoted by Cp = {ckj}JG:l such that the latent representation of the
same(different) concept of a class are similar(dissimilar) across different instances of that
class. To explain a K-way classifier, PACE leverages K independent autoencoders, each
dedicated for a class. The feature maps F € RE*WXD from the convolutional layer of
interest are passed through each of the K autoencoders. H and W denote the feature maps’
height and width, and D denotes the number of channels. The k* encoder (parameterized
by ) is trained independently to learn concepts related only to the k¥ class. The latent
space for every autoencoder is different, though the dimensionality is the same.

The encoder’s output for an input image x is an embedding map (Ej, € REXWXQ) The
embedding map Fj denotes the concepts’ manifestation at each of the H x W locations
in the feature map. Once the latent concept vectors are learned (the learning procedure
will be explained later), the similarity of the )-dimensional embedding vector at each of

the H x W locations with respect to the concept vectors for the k' class i.e., C; can

C
j:17

be determined. This results in C' similarity matrices denoted by Sy = {Sk;} each of
dimension H x W. The inverse of the Euclidean distance between the embedding vector
and the concept vector is used as the similarity measure. A concept cj; is present in
the feature map at the spatial location (I, m) if Sy;[l, m| exceeds a threshold 7 determined
relative to the maximum value. The similarity matrices can be treated as masks to visualize
the concepts after suitable resizing.

The decoder (parameterized by ¢) of the autoencoder for the k' class works on the
embedding map E}, to reconstruct the original feature map F. The concept vector should
lie in the embedding manifold. Then replacing the embedding vector in E}, with the most
similar concept vector at locations with the strong presence of the concept should not alter
the decoder’s output. This idea is used to enforce alignment between the concept vectors
and the embedding manifolds, thus assisting in learning the concept vectors. Specifically,
the embedding vector at a spatial location (I, m) is replaced with the most similar concept
vector cg; € R if the j** concept of the k" class, i.e., ckj is strongly present at that spatial
location. This gives the Concept Map Ej, € RF*WX@Q which is then passed through the
decoder to obtain the reconstructed feature map F corresponding to the the k¥ class
module.

The reconstructed feature map, F}, is then passed through the rest of the black box h to
get the prediction probabilities. Let pg represent the prediction probability obtained for
the k" class using F}, and P the concatenation of the corresponding class probabilities
obtained from all the K reconstructed feature maps. Each autoencoder (0, ¢) learns
to detect concepts that are integral only for the k" class, therefore is only reliable in
explaining the output of the black-box model for the k" class. By aggregating information
from each pair, the class k, whose concepts are predominantly present, can be estimated.

Hence the concatenation helps the explainer predict the class label based on the aggregated
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information about the detected class-specific concepts. According to the PACE explainer,
the class label with the highest probability in P is the predicted label.

As discussed before, if the embedding and concept vectors are close, then the probability
distribution P obtained via the reconstructed feature maps F, should be similar to the
classification probabilities obtained from the original feature map F'. This is enforced by

using a Cross-Entropy loss between P and the black-box prediction h(x) defined as
Lo = CrsEnt(P, h(x))

As a result, even if the manifold of the randomly initialized concept vectors is not aligned
with the embedding manifold, minimizing the above loss will eventually bring them closer.
Further, to ensure that the concept vectors are different from each other, the pairwise

FEuclidean distance between these vectors of a single class is maximized as given below

K C C
£o=2_> > llera = cull3

k=1a=1b=1
The process of extracting distinct concept vectors is reinforced by applying the triplet loss
on the corresponding most similar embedding vectors. Specifically, for the instance, x;
in a batch of B images, the embedding vector ey;(i) that is most similar to the concept
ckj is obtained. The embedding vectors most similar to the concept ci; obtained from
the other images in the batch belonging to the k" class form the set of anchor positives
Pyj(i). Similarly, the embedding vectors most similar to the other concept vectors Cy, \ ci;
from the images in the batch belonging to the k' class form the set of anchor negatives
Ni;(i). As suggested by Schroff et al. [140], all anchor-positive pairs are used, while
semi-hard negatives are selected for anchor-negative pairs. The margin « is set to 1 so as

to encourage orthogonal embeddings. The triplet loss is thus defined as

Lr(ig k)= D > llew() —epll3 — llews (i) — enll3 + o

ep€Pr; (1) en€Ny; ()

The triplet loss requires a sufficient number of anchor positives to learn a good separation
[140]. To ensure this, the training strategy uses a mix of pure and mixed batch instances.
A batch is pure if all batch instances are predicted to be of the same class by the black
box; otherwise, it is a mixed batch. It is to be noted that pure batches’ formation is based
on the predicted label (output from the black box CNN) and not the ground truth. This
is done so that the explainer learns the functioning of the black box. A single iteration
succeeds every p number of training iterations involving pure batches over a mixed batch.
This helps to learn the interplay of concepts across different classes.

A concept’s relevance is estimated by mimicking its removal and observing the drop in
prediction probability. Specifically, the relevance r; € [—1,1] for concept cj; is obtained
in the following manner. At all spatial locations (I,m) where cj; is present, E}, [[,m] is

forced to be = 0, resulting in a masked concept map My; € RHXWXQ, Mj,; is passed
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through the decoder ¢ to get the reconstructed feature map (where the j** concept is
removed), and on passing that through the rest of the black box h, the final classification
probability for the k" class, Dk; is obtained. Relevance is then computed as the difference
in the probabilities. i.e. 74; = pr — prj. A positive relevance value denotes that the
concept supports the prediction of the k class. In contrast, a negative relevance value
denotes that the concept inhibits the prediction of the k" class. Concepts relevant to the
prediction are learned by applying the Squared Error loss between the relevance and the

explainer probability, defined as

K C
L= llrj — pell3

k=1 j=1

Thus, the overall loss for training the PACE framework is the weighted combination of

these four losses defined as

L=0FLc+vLr—0Lp+w

1

K
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This results in an end-to-end training of the PACE framework for learning {6y, ¢, Ck}szl

3.5 Experiments

The PACE framework is used to explain image classifiers trained on two different datasets
- Imagenet-Birds [133] and Animals With Attributes 2 (AWA2) [141]. Imagennet [133]
is a large-scale image database comprising 1000 categories of objects organized according
to the Wordnet [142] hierarchy. A subset of 10 bird classes was taken from the 1000-way
Imagenet dataset [133] to build the Imagenet-Birds dataset. In a similar manner, a subset
of 20 classes was taken from the AWA2 dataset [141] consisting of 50 categories of animals
to demonstrate the scalability of the proposed framework with the increase in the number
of classes K. The classes are chosen such that each class has at least 500 images.

The PACE framework was used to explain the behavior of two different CNN architectures,
namely, VGG16 and VGG19. These models were pretrained on the ImageNet dataset [133]
and fine-tuned on the corresponding datasets of interest with a train, validation, and test
split of 80%, 10%, and 10%, respectively. Adam optimizer [143] is used to optimize the
objective in all experiments. In all the classifier fine-tuning setups, the batch size was
64; the number of train epochs was 100; the learning rate is 1073, and the regularization
weight decay parameter is 5 x 107°. The test accuracy of the different black boxes is
tabulated in Table 3.1.

The PACE explainers for the three models are trained for 100 epochs with a batch size
of 32, a learning rate of 1074, and the regularization weight decay parameter is 0.1. The
values of the other hyper-parameters for PACE are C' = 10, Q = 32, 7 = 95%, p = 5,
5 =100, v = 1000, § = w = 1 obtained via cross validation.
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Black-box Dataset Test Accuracy
VGG16 | Imagenet (Birds) 96.6%
VGG19 | Imagenet (Birds) 97.1%
VGG16 AWA2 92.9%

Table 3.1: Classifier performance

Black-box Dataset PACE | Baseline
VGG16 | Imagenet (Birds) | 94.7% | 67.3%
VGG19 | Imagenet(Birds) | 94.1% | 70%
VGG16 AWA2 88.2% | 51.4%

Table 3.2: Explainer agreement accuracies

3.5.1 Comparison with Principal Component Analysis (PCA) and

Clustering Baseline

The proposed approach is the first to automatically extract class-specific concepts, and
hence a baseline has been curated to assess its efficacy. A strong baseline to compare
the proposed approach would be to cluster the representations obtained after applying
Principal Component Analysis (PCA) on the feature maps. PCA replicates the linearity
of the autoencoder learned by our model, and the clustering (K-means) represents the
application of the triplet loss used to learn distinct concepts by the PACE framework.
However, this baseline cannot automatically learn class-wise concepts, unlike PACE. This
is overcome by explicitly learning the cluster centroids for each class independently using
pure batches. Specifically, given a pure batch containing the images for class k, a low
dimensional embedding map E,’?L is obtained via PCA from the feature map F. These
embeddings are clustered to get C clusters representing concept vectors for that class
k denoted by CEL. The low dimensional embedding map E,EL (with the embedding
vector replaced by the most similar cluster centroid) can be transformed to obtain the
approximation to the feature map F', which in turn can be used to obtain the classification
probabilities.

The % of test instances where the label as predicted by the explainer (arg maxy px(x)) and
the black-box (argmaxy hi(z)) agree is termed the agreement accuracy. These scores for
the three CNN models with respect to the PACE explainer and the baseline explainer are
presented in Table 3.2. It can be seen that PACE significantly outperforms the baseline
in all the cases. The baseline is not included for the human subject experiments due to

the low agreement accuracy.

3.5.2 Human Subject Experiments

To assess the interpretability, consistency, and relevance of the concepts extracted by the
PACE model from a human point of view, human-subject experiments were conducted.
PACE extracted class-specific concepts which matched with certain unique features using

which one can identify animals in those classes. The objective of the survey was to get



Chapter 3. Posthoc Class-specific Automatic Concept Extractors 37

Class Interpretable Concept Tags

Bobcat Legs, Ears, Body hair, Back, Ear hair, Grass, Ear tips, Beard

Chihuahua Ears

Elephant Head, Trees, Ground, Eyes, Ears, Face, Trunk, Grass, Water

Gorilla Limbs, Forehead, Grass, Wood, Trees, Head
Hippopotamus | Legs, Feet, Water, Back, Background, Sand
Horse Mouth, Nose, Nostrils, Mane, Ears, Grass, Hair, Neck, Back
Leopard Mouth, Grass, Trees, Spots
Lion Lower mane, Trees, Mouth, Back skin, Head, Upper mane, Grass, Paws
Tiger Paws, Ears, Legs, Background, White skin
Zebra Stripes, Grass, Feet, Ground, Ears, Mouth

Table 3.3: Key concepts tagged by participants for each class

validation from a wider group about the concepts which could indeed be interpreted as
distinguishing visual features of those animals and to find out the strength and consistency
of the labels allocated to these concepts by the participants.

A concept-tagging experiment involving 100 subjects was conducted using the concepts
extracted by the PACE framework on the VGG16 model trained for the AWA2 dataset.
Participants were asked twenty unique questions. In each question pertaining to a single
concept, the participant was presented with five different images from the same class
having the visualization of the concept. The participants were asked if they could observe
any common pattern across the five visualizations and, if so, were also asked to tag the
concept. A screenshot of the interface is shown in Figure 3.3. An illustration of the
task is provided to the participants before they get into the actual tagging task. Two
randomly selected questions were duplicated to validate the consistency of the responses
of the individual participants.

The consistency of the concepts is measured as the percentage of the participants who
agreed with the presence of a common pattern across the five visualizations. The overall
consistency from the experiments was observed to be 71% as seen from the pie chart
in Figure 3.4a. Figure 3.4b presents the class-wise consistency of the concepts. All
classes except chihuahua demonstrate high consistency. The concept visualizations of
some concepts for this class are shown in Figure 3.6b. It throws light on a possible reason
for the low consistency of the chihuahua class, as it is a domestic animal among all other
animals in the chosen subset of classes. Hence the model uses the presence of household
objects and dog ties, which are not found in other classes as discriminative concepts, to
identify a chihuahua. This being different from how humans perceive a chihuahua might
have led to rating the concepts of the chihuahua class as uninterpretable. Figure 3.5
presents the visualizations of the concepts and the tags given by the human subjects. It
can be observed that the concepts are human interpretable, as the tags are meaningful.
The extracted concepts indeed are some of the features of the animals and their natural
surroundings according to which humans identify these animals. The tags for the different

concepts across the classes labeled by the participants are shown in Table 3.3.
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e

This is an example of the questions in the survey. There are five images of a zebra. The
original images are on the left and the region highlighted in the images are on the right. Image 1

Image 1

Image 3

Image 4

Image 4

Image 5

Do you feel that some specific feature or body part of the animal has been
highlighted in the images above ? (Q code d_13_01_a)

QO Yes

O No
In the images above it can be observed that the stripes of the zebra have been
highlighted. In the questions which follow it might be possible that some particular If yes, then what would be the most appropriate name which you would like to give
part of the animal is highlighted or some pattern like stripes of a zebra, spots of a to the feature ? (Q code d_13_01_b)

leopard etc. may be highlighted. Some background attributes like grass, water etc.
might also be highlighted. Kindly observe the images carefully and mention if you our
observe some common feature present in the images.

(a) Task Ilustration (b) Posed question for tagging

Figure 3.3: User interface used for human subject experiments. First, the task of concept
tagging is illustrated using an example. This illustration is followed by the actual task
where the visualizations corresponding to a concept are shown, followed by an assessment
of its stability and interpretability from the user.
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Figure 3.4: Percentage of human interpretable concepts. (a) denotes the overall
distribution, and (b) denotes the classwise distribution

3.5.3 Qualitative Concept Analysis

In Figure 3.5, it can be seen that various concepts like ears of bobcat in Figure 3.5a,
face of an elephant in Figure 3.5b, etc. being extracted by the PACE framework. A good
visual consistency backed up by human subject votes is observed in the extracted concepts.
Figure 3.5g tagged as stripes of the zebra seem to consistently highlight the stripes present
in the torso region of the animal. A similar observation can be made in Figure 3.5h tagged
as spot patterns, the concept highlighted consistently shows the torso of the animal. This
qualitatively shows that consistent concept embeddings have been learned as expected.
A few concepts that were marked uninterpretable by the human subjects are presented in
Figure 3.6. Figure 3.6a highlights sand dirt around the legs of the lion, and Figure 3.6¢
highlights grass around the tiger. As can be seen that the area highlighted to depict the
concept itself is very small. Only participants with greater attention to detail were able to
tag such concepts. The majority of the participants deemed it to be uninterpretable.
The detection of uninterpretable concepts from the feature maps can be associated
with the residuals extracted from the feature map during matrix factorization based
explanation techniques [144]. This also proves the effectiveness of PACE that a good
approximation of the internals in the feature map has been extracted through interpretable
(conceptually analogous to factors in matrix factorization [144]) and uninterpretable
concepts (conceptually analogous to residuals in matrix factorization [144]).

Figure 3.7 shows the concepts extracted by PACE for the VGG19 black-box model trained
on the Imagenet-Birds dataset. Salient parts of the birds like the eyes of the Great Grey
Owl in Figure 3.7b, its beak in Figure 3.7c, feathers of a peacock in Figure 3.7e, blue
neck in Figure 3.7f, toucan’s characteristic colorful bill in Figure 3.7h, the crest of Sulphur
Crested Cockatoo in Figure 3.7i, etc. seems to be detected by PACE. These parts are
indeed discriminatory features that help distinguish the particular bird species from other
bird species. Good visual consistency can also be found in the concepts visualized across

different images.
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Figure 3.5: Concept visualizations and tags given to them by the survey participants.
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(c) Tiger

Figure 3.6: Examples of uninterpretable concepts

3.5.4 Explaining Misclassifications

The class-discriminative concepts learned by PACE can be used to explain black-box
model misclassifications. Figure 3.8 presents a few examples of misclassified images and
their topmost salient concepts extracted by PACE. Figure 3.8a shows an image of a german
shepherd misclassified as a hippopotamus. Understandably, the model uses the concept of
water specific to the hippopotamus class for this prediction. Also, it was seen that a
swimming german shepherd as shown in the test instance in Figure 3.8a, was not found in
99% of the train instances. However, in train images corresponding to the hippopotamus
class, around 67% of the images had a water background. This could have probably led
the CNN to erroneously pick up the spurious correlation of detecting water to predict a
hippopotamus. Similarly, Figure 3.8b shows a collie being misclassified as a horse due to
high support from the concept corresponding to the mane of the horse. An observation of
the train set reveals that almost 98% of the collie images had their facial features like the
muzzle, eyes, etc., visible, unlike the test instance in Figure 3.8b where the face is covered
by fur, while 99% of the train images belonging to the horse class had hair on its mane
region visible, probably making the model associate hair to predict the given instance as a
horse. Figure 3.8c shows a hippopotamus misclassified as an elephant due to high support
from the concept corresponding to the head of the elephant. As examined already, just
around 33% of the hippopotamus, train instances do not have a water background, probably
misleading the model to associate its body features to its related class elephant, resulting

in the misclassification.Figure 3.8d shows a cow misclassified as an ox due to high support
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Figure 3.7: Visualization of the concepts extracted from VGG19 model trained on
Imagenet-Birds dataset
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Figure 3.8: Misclassified images - (a) German Shepherd misclassified as Hippopotamus,
(b) Collie misclassified as Horse, (c¢) Hippopotamus misclassified as Elephant, (d) Cow
misclassified as Ox

from the presence of characteristic horns of oz. Around 85% of the train images of cow did
not have horns, while 98% of the oz images in the train set had horns. This could have
made the model associate the presence of horns in the given test instance in Figure 3.8d
to steer the prediction towards the oz class, thereby causing a misclassification. The

explanations show that the model is wrong for the right reasons.

3.6 Summary

The PACE framework that learns to extract class-specific concepts relevant to the
black-box prediction is proposed. The relevance is formulated such that the explanations
are faithful to the black-box prediction by design. The explainer’s applicability on datasets
like AWA2 and Imagenet-Birds and black-box architectures like VGG16 and VGG19 has
been experimented with. Qualitative and quantitative analyses show that PACE extracts
concepts that are consistent and relevant. Extensive human subject experiments show

that the proposed framework provides interpretable concepts.
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Chapter 4

Shared Concepts Extractor

The previous chapter proposed a concept-based explainer that extracts class-specific
discriminant concepts automatically from the data. While class-specific concepts can
help extract the blueprints that define a class from the classifier’s perspective, concepts
need not be mutually exclusive in nature always. One may observe shared concepts in
nature. For instance, different breeds of dogs may have common features like a muzzle, four
legs, etc. Training an explainer to learn different representations for such concepts which
are shared in nature is an overkill. To model this type of sharedness in the proposed
framework, different concepts are encouraged to be shared across multiple classes. By
doing so, one can gain insight into how these models view the concept sharedness across
related classes, as often observed in the real world. With this in mind, the proposed work
aims to leverage an incremental Non-negative Matrix Factorization technique to extract
shared concepts in a memory-efficient manner, which reflects the sharedness of concepts
across classes. Post-training, the relevance of the extracted concepts towards prediction,
as well as the primitive image aspects such as color, texture, and shape encoded by the
concept, is also estimated. This approach reduces training overhead and simplifies the
explanation pipeline, thereby shedding light on the various concepts - some genuine, some
spurious - on which the different black box architectures trained on the Imagenet dataset

group and distinguish related classes.

4.1 Introduction

Concept-based explanations offer explanations close to how humans process images. The
framework proposed in the previous chapter learns class-specific concepts. These concepts
encompass the blueprint of a class from CNN’s perspective. However, it has been observed
in nature that the concepts of different classes need not always be mutually exclusive. For
instance, the animals gorilla and chimpanzee share many common features in nature as
they belong to the same family. The framework proposed in this chapter aims to unravel
such sharedness from the lens of CNN in a posthoc manner.

Analyzing the mechanism the existing posthoc concept-based explainers leverage to
learn concepts, one can find that the concept learning backbone comprises clustering
and dimensionality reduction techniques. These techniques can be generalized by
a mathematical framework called Matrix Factorization. As CNNs have non-linear
thresholding functions that restrict the activations to the positive subspace, Non-negative

Matrix Factorization (NMF) can be employed. It restricts itself to the positive
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subspace and can extract concepts from non-negative activations processed forward by
the Convolutional Neural Networks [145].

NMF [146, 147] decomposes a non-negative matrix into two non-negative matrices such
that the product is as close as possible to the original matrix. The decomposition identifies
latent factors (concepts) that, when combined, result in the matrix elements or features.
The feature vectors generated by the black box are assumed to be linear combinations of
these concepts.

Incremental NMF [148, 149, 150, 151] is employed to extract concepts from large
datasets like Imagenet [133], which is challenging with existing concept-based explanation
techniques.  The concepts are encouraged to be shared across classes to model
commonalities. The contribution of the concept to a class is quantified through a relevance
metric, assessed after concept extraction, and makes the training pipeline simple compared
to existing concept-based approaches [53]. The primitive aspect based on which a concept
is shared across different classes like color, shape, or texture can be assessed in terms of the
effect of its perturbation [54] on concept detection. The proposed SCE framework helps
determine the impact of certain spurious features [22] on prediction. Concept sharedness

helps uncover the reasons for the higher performance of certain architectures.

4.2 Related Work

This section traces the most related literature that motivated the proposal of the Shared
Concepts Extractor framework. Antehoc approaches incorporate explainability into the
classifier from the training stage. As explainability is incorporated from scratch, it
would be good if the explainable components closely reflect the real-world relationships
between the classes. Looking at the gap in the existing proposals [36, 104], recent antehoc
approaches [37, 38, 107] suggest the need for concepts to be shared across related classes
to closely reflect the real-world concept sharedness. Nauta et al. [38] enable sharedness
by design by proposing the use of a decision tree to process the detected characteristic
concepts and arrive at the prediction. Rymarczyk et al. [37] highlight the possibility of
negative reasoning in that framework by proposing class-specific slots that share a set
of concepts. Each slot learns to capture a distribution of concepts that discriminately
identify that class. While sharedness is incorporated by design in these frameworks, the
SCE framework aims to incorporate such sharedness in a posthoc, human-interpretable
manner.

A parallel framework proposed by Zhang et al. [144] to learn class-specific concepts like the
PACE framework in the previous chapter, was based on Non-negative Matrix Factorization
(NMF) taking insights from the previous studies [145, 148] that enlighten its capability
to extract semantically meaningful concepts from activations. SCE intends to extract
concepts that can be shared across classes, revealing the relatedness of classes from the
black box’s perspective. Incremental NMF [148] is employed to comfortably manage the

available memory to learn the concepts shared across multiple classes, thereby preventing
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the need to preprocess the features to fit in the available memory [144]. Unlike previous
approaches [53] that estimate relevance as part of the learning pipeline, SCE computes
relevance after learning the concept extractor. Nauta et al. [54] propose a mechanism to
add another layer of interpretability by unraveling the primitive aspect like color, texture,
or shape that is being encoded by a learned concept representation. This helps understand
if different concepts whose visualizations appear similar [36] capture the same or different
aspect of that image region. This may be used as a guiding tool for the prototype pruning
process, which the antehoc approaches employ to minimize the accuracy-interpretability
tradeoff. Inspired by this proposal [54], SCE assesses the primitive aspects (shape, color,
texture) encoded by a concept by perturbing that aspect and observing its impact on

concept detection.

4.3 Contributions

The key contributions of the proposed work are:

e A matrix factorization-based approach has been proposed to extract the concepts

shared across different classes from a learned CNN.

e One can faithfully estimate the relevance of these concepts towards predicting a

given class after the concept extraction process using the proposed framework.

e The SCE framework is flexible to estimate the primitive image aspect encoded by
a learned concept vector by observing the effect of the perturbation on concept

detection.

4.4 Methodology

A Convolutional Neural Network (CNN) based object recognition model can be divided
into two parts: the feature extractor and the classifier. The feature extractor, represented
by f, comprises convolutional layers that extract features from the input image. The
classifier, represented by h, comprises fully connected layers and uses the extracted features
to predict the class label for an instance x.

In most CNN architectures, positive activations are fed forward using ReLLU activation
functions. Thus, this chapter proposes to use Non-negative Matrix Factorization (NMF) to
identify a set of latent vectors, referred to as “concepts,” represented by C. These concepts,
when linearly combined with weights W, produce the features F'. The concepts are latent
vectors that can be visualized in terms of image regions to aid human understanding.
The importance of each concept in predicting the class label of an instance is determined
by the impact that perturbing the combination weights has on the prediction probability.
By examining the effect of perturbing a particular aspect of the image, such as color,
shape, or texture, one can automatically tag the concept with information about what it

represents.
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Figure 4.1: Architectural diagram illustrating concept extraction from the black box. The
feature maps from the feature extractor are decomposed into a set of concepts that can
be mapped to image sub-regions whose linear combination yields the features.

The subsequent sections will delve into each step of the explanation generation process in

more detail.

4.4.1 Mini-batch NMF

The pipeline for our proposed algorithm is shown in Figure 4.1. The feature extractor
encodes features at each spatial location as a D-dimensional vector, which is assumed to be
expressed as a linear combination of C' non-negative basis vectors, known as concepts. This
restriction on the concepts and their weights to be non-negative enhances interpretability,
as per the findings in [144].

These constraints can be mathematically satisfied using Non-negative Matrix Factorization
(NMF). Let F € RT*P represent the set of feature vectors. Based on the assumption,
F =~ WC, where C € RE*P are the C basis vectors (the concepts) and W € RT*¢ are
the weights of the linear combination. NMF solves the optimization problem £L(W,C) =
minyy ¢ [|F — WC||3 subject to W > 0 and C > 0 using the majorization-minorization
principle.

The optimization problem is solved using the Multiplicative Update solver [152]. Despite
the optimization being non-convex in both W and C, it is convex separately for each. A
block coordinate descent scheme is used, alternating between solving for W and C while
keeping the other fixed.

The gradients of the objective function £ with respect to the parameters § = {W,C} can
be deduced to be VyyL(W,C) = 2WCCT — 2FCT and Ve L(W,C) = 2WTWC — 2WTF.

As it can be seen that the gradients contain both positive and negative terms. Application
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of Vanilla Gradient descent may introduce negative elements into the decomposed
matrices, violating the non-negative constraint on the parameters W and C. Lee &
Seung [152] suggest separating positive and negative terms from the gradient so that
negative entries do not get introduced in the decomposed matrices. Let § = {W,C} be
the parameters to be learned. The update rule is given as

Vo £6)

0«0
CNEL0)

(4.1)

where, V, £(0) denotes the negative terms in the gradient and V, £(6) denotes its positive
terms.

The update rule in equation 4.1 was proposed by Lee & Seung [152], and these updates
are proven to ensure that the Fuclidean distance-based divergence corresponding to the
optimization objective remains non-increasing, thereby converging to an optimal set of
parameters.

Applying the update rule in equation 4.1 to the parameters § = {W,C},

T T
W(—W*VggcT and C(—C*%
Traditional NMF algorithms require all instances to be presented simultaneously to learn
the concepts C. But, when the dataset is large, processing all of it at once can be
challenging due to memory constraints. Hence, features are processed in mini-batches
containing B instances. This does not affect updating the linear combination weights,
but it does impact learning the concepts, which must be updated based on the current
and past batches. This is addressed by using an online NMF algorithm [149, 150, 151].
This algorithm incrementally learns the concepts, retaining the necessary information
from past instances. The modified multiplicative update equation to learn the concepts

incrementally is given in [149, 150, 151] and is as follows:

pCt + WTF

Crr = p1 + WITWc,

where, C; represents the concepts learned from the t** mini-batch. p is a scalar called
the memory parameter, which determines the extent to which concepts from previous
mini-batches should be retained while updating the concepts from the current mini-batch.
1 is a unit matrix of dimensions C'x D. Unrolling the equation shows that the memory from
the first mini-batch is carried forward, allowing the concepts C to abstract the information
learned from the entire dataset efficiently within the memory constraints.

SCE uses the online NMF algorithm for scalability and to interpret large multi-way
classifiers. The concepts are made sharable across classes by inputting mini-batches with
different classes to the online NMF routine, instead of learning class-specific concepts as

in previous works [144].
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(a) Toucan bill
, s :

(b) Peacock feathers

(c) Cock/hen head

Figure 4.2: Visualization of a few concepts with the tags describing them collected from
our human subject experiments.

4.4.2 Concept Visualizations

The concepts extracted in the previous step leveraging incremental NMF are abstract
latent vectors. A human interpretable connotation to them is given by mapping them to
image regions. Given a test image z, the first step is to extract the feature map f(x) of
height H and width W. The learned set of concepts C is kept fixed, and the weights W
to combine the concepts to obtain f(x) is estimated. Let w;j; be the weight to combine
the k™ concept ¢ to obtain the feature at spatial location (4,7). To assess the extent of
the presence of a concept in the image, the weights are added across all spatial locations,
i.e., the presence of concept ¢; in image x is given by (i(z) = Efi 1 Z]Vil w;jk. The
images in the held-out set where their presence is strong are visualized to understand
the underlying aspect encoded in the concept. While visualizing the concept in a given
image, the spatial locations with higher weights (i.e., weight exceeds a relative threshold
7) are thresholded to localize the visualization to only those regions of the image where the
concept is dominant. A few example visualizations across different black box architectures
are shown in Figure 4.2. Visually, it can be seen that the highlighted region depicts similar

parts across different example instances, and hence the concepts are stable.

4.4.3 Concept Importance

Estimating the importance of the extracted concepts towards the prediction helps
completely explain the working of a deep model using these concepts. A concept is

important to predicting a given class if its perturbation significantly impacts the prediction
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probability. The weighted combination WC yields the features at every spatial location.
By perturbing the weights W, one can perturb the combination, thereby impacting the
generated features. The weights that combine the concepts to generate features at those
spatial locations (i, j) where the presence of a concept is dominant are scaled, thereby
altering its presence. Mathematically, the perturbed linear combination weights are

obtained as shown below.

W — Wik + 0, if wijp > T

Wy, otherwise

where § is the additive factor, and 7 is the relative threshold to determine the concept
dominance. The features from the perturbed combination F =WC are passed through the
classifier h to get the prediction probability h(z). Let h(Z) denote the probability obtained
by forward propagating the reconstructed feature map F' = WC through the classifier h.
The difference in these probabilities h(&) — h(Z) yields the impact of the given concept
towards the prediction of different classes, which is termed relevance. A concept whose
stronger presence increases the prediction probability is a supporting concept (positive
relevance), and that which decreases the prediction probability is an inhibiting concept
(negative relevance). The strength of inhibition and support is known by the magnitude
of change in probability due to the perturbation. Figure 4.3 shows a few explanations
where the different concepts that are dominantly present in the image are highlighted. The
numbers within the contours show the corresponding concept relevances. Every concept
{cx €C }kczl has a presence (i in the image z. Only those concepts whose presence exceeds
the relative threshold 7 are considered to be present in the image. It can be seen that in
the cock image 4.3(b), the plants in the background seem to be inhibiting the prediction
as class cock. Similarly, the supporting concepts, namely, flowers in the cabbage butterfly
image 4.3(a), human hands in the tench image 4.3(d), highlight the spurious features
picked up by the deep models[22].

Figure 4.3: Sample explanations depicting concepts dominant in an image. Image (a) is
a Cabbage Butterfly, (b) is a Cock, (c) is a Scorpion, and (d) is a Tench. The numbers
within the contours denote the corresponding normalized concept relevance. The concepts
with positive(negative) relevance support(inhibit) the prediction.
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(b)

Figure 4.4: An example of image aspect perturbations. (a) shows the original image, (b)
color perturbation, (c) shape perturbation and (d) texture perturbation.

4.4.4 Associating Concepts to Image Aspects

While concept visualization may be one step to associating a human interpretable
connotation to the extracted latent concept vectors, finer information regarding encoding
of color, shape, or texture may not be identified from concept visualization alone. If
different concept indices map onto the same image regions, previous approaches [36]
suggest aggregating relevance. However, if the relevances have higher variances, this
suggests additional information that could not be unraveled by concept visualization to
be present in the latent concept vectors. The primitive aspect that is encoded by a latent
concept vector is determined by performing image perturbations and observing the impact
of these perturbations on concept detection. The aspect that causes the maximum drop
in the presence of the concept is said to be encoded by the concept. For instance, if the
concept ¢ has a presence (j in an image and the presence drops the most after color
perturbation, then it can be said that the concept ¢, encodes color information. This
process is repeated for each concept, and the aspects encoded by different concepts are
determined in this way.

The shape of the image is modified by warping it through a sine wave and shuffling
the pixels. To suppress the texture, a denoising algorithm [153] is applied. Color being
determined by properties like brightness, contrast, saturation, and hue, is altered by a
convex combination of the image with its greyscale counterpart as suggested by Nauta
et al. [54]. An example perturbation is shown in Figure 4.4. A few examples of the
curved shape encoded in a concept can be seen in Figure 4.5. A concept encoding the
wrinkled skin texture and another encoding the red color can be seen in Figures 4.6 and

4.7 respectively.

4.5 Experiments

The SCE framework is employed to explain two well-known CNN architectures of varying
depths, namely, VGG and ResNet using the SCE framework. Due to computational
resource limitations, a subset of 50 classes out of the 1000 Imagenet classes has been
chosen. The hyperparameters used are the number of concepts, C = 100, relative
concept dominance threshold 7 = 0.5, memory parameter p = 0.7, and the batch size

B = 128 determined by cross-validation. The additive factor ¢ is scaled relative to the
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(f) Peacock

Figure 4.5: A concept encoding the primitive aspect - Shape. The top tags human subjects
provided for this concept are - curved shape, body shape, and curved body.
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(c) Chimpanzee

Figure 4.6: A concept encoding the primitive aspect - Texture. The top tags human
subjects provided for this concept are - wrinkled skin, scaled skin, and animal skin.

(e) Spoonbill

Figure 4.7: A concept encoding the primitive aspect - Color. The top tags human subjects
provided for this concept are - red color, red shade, and red skin.
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image-specific weights w;j; as these weights can have any value, and a constant additive
factor may not necessarily enhance the detection of the concept. All analyses are done on
the subset of images whose explainer prediction distribution is close enough to the black
box distribution. SCE is compared with PCA, a well-known dimensionality reduction
technique, and a special case of matrix factorization. The principal components would
yield the concepts CP¥, and the projected low dimensional vectors would be the weights

WHL whose linear combination with the concepts would yield back the feature maps F.

4.5.1 Faithfulness

The explainer learns concepts that, when combined linearly, estimate the features of a given
instance. The predicted distribution, argmax, h(Z), is obtained when these estimated
features are passed through the rest of the black box. The explainer is considered faithful
to its underlying black box if it can regenerate the features such that the predictions
on the regenerated features match the predictions of the black box, arg max, h(x). The
faithfulness is measured as the agreement accuracy, which is the percentage of instances
where arg max, h(Z) equals arg max, h(x). This agreement accuracy is presented in Table
4.1. Tt can be seen that the agreement accuracies of our shared concept extractors are at

par with accuracies reported on existing class-specific concept extractors [144].

Black-box | SCE Agreement Accuracy
VGG16 78.1%
VGG19 80.5%

ResNet18 83.3%

ResNet50 86.8%

Table 4.1: Explainer agreement accuracies

The agreement accuracy seems to be affected by the model depth; however, similar
concepts are observed within the same model family, while variations are seen across
architectures. Therefore, for simplicity, the results from the shallowest and deepest models

are discussed.

4.5.2 Concept Sharedness Across Classes in Different CNN

Architectures

As SCE does not cap the number of classes that can share a concept, it is necessary to
determine the classes where a concept is dominant. The average presence of concept k on
images x of class y i.e., ayr, = Mean((x(x)), is computed for all classes y. The dominant
classes are included till 50% of the total dominance is achieved. The concepts are grouped
based on the number of classes they share, and the distribution is plotted in Figure 4.8.
The vertical red line shows the average number of classes a concept shares.

The top 8 instances ranked by concept presence are shown for different concepts in Figure
4.9.
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Figure 4.8: Concept sharedness exhibited by different CNN architectures shown in
increasing order of depths. The vertical red line shows the average number of classes
a concept shares.

In general, concepts extracted using the VGG model as the black box have smaller
receptive fields, covering smaller parts such as dog ears and muzzle, as shown in Figures
4.9a and 4.9b respectively. On the other hand, the ResNet model with a larger receptive
field encompasses larger image regions, such as entire dog faces. The ResNet model, which
considers larger regions together, distinguishes between Spaniels (Figure 4.9g) and other
furry dogs (Figure 4.9h), which may contribute to its higher performance compared to the
VGG model. Unlike the VGG model, which processes all fishes similarly (Figure 4.9f),
the ResNet model identifies shark teeth (Figure 4.9i) to distinguish sharks from other
fishes.

Different from human intuition, SCE unravels the grouping of spiders and butterflies based
on the structure of their antennae or tentacles, as seen in Figure 4.9d. Similarly, monkeys
and toucan birds are grouped based on their black-colored bodies, as shown in Figure
4.9e.

Although not constrained, it can be seen that certain concepts are exclusively dominant
in a single class as can be seen to be grouped under the leftmost bars from Figure 4.8.
The higher performance of the ResNet model might be attributed to the detection of
many distinguishing exclusive concepts, for instance, the bill structure of a spoonbill, the
elongated face of an Afghan hound, etc., as shown in Figure 4.10.

While exclusive concepts are a special case, the other extreme could be a concept being
dominant in many classes. The average number of classes dominant for all concepts serves
as a yardstick to quantify the subjective term 'many’. Any concept dominant in more than
this average number of classes is generic. This is shown by a red vertical line in Figure
4.8. The concepts which fall to the right side of this red line are termed generic concepts.
These concepts mostly encode the spurious characteristic backgrounds like leaves, iron
rods of a cage, human hands, flowers, water, grass, etc., as seen from Figure 4.11. In line
with the observation of Neuhaus et al. [22], the SCE framework helps unearth the spurious
correlations picked up by the black box, which is further ascertained by an instance of a
cabbage butterfly in Figure 4.3(a) where the presence of flowers and another instance of
tench in Figure 4.3(d) with human hands enhance the prediction probability contrary to

the human intuition.
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(b) Dog muzzle visualized across classes Chihuahua, Pekinese, Blenheim Spaniel, Shih-Tzu and
Japanese Spaniel

(¢) Dog forehead visualized across classes Papillon, Pekinese, Japanese Spaniel, Blenheim Spaniel,
and Afghan hound

W

(f) Fish body visualized acros

gt

(g) Characteristic face structure of Spaniel dogs visualized across classes Japanese Spaniel and
Blenheim Spaniel

(h) Characteristic face structure of furry dogs visualized across classes Shih-Tzu, Maltese dog, and
Pekinese

8 [ A7 A

(i) Pointed tooth structure of Sharks visualized across classes Great White Shark, and Tiger Shark

Figure 4.9: Concepts shared across different classes are shown with human-provided tags.
The last three rows show concepts extracted from ResNet50, and the other rows contain
concepts extracted from VGGI16.
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(j) Tiger face

Figure 4.10: Concepts extracted from ResNet50 that are exclusively dominant in a single
class. Tags describing the concepts are collected from human subject experiments.
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(j) Mountain

Figure 4.11: Generic concepts shared across many classes and their descriptive tags
obtained from human subject experiments. The first five rows show generic concepts
extracted from VGG16, and the last five rows show generic concepts from ResNet50.
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Figure 4.12: Sample explanations where multiple concepts highlight almost the same image
region. Image (a) is a Lorikeet, (b) is a Cock, (c) is a Shih-Tzu, and (d) is a Guenon.
Blue, yellow, and red contours mark the concepts encoding color, shape, and texture
respectively. The numbers color-coded similar to the contours denote the corresponding
concept importance. For brevity, only those concepts which share the same image region
are shown.

4.5.3 Analysing Concept Associations to Image Aspects

Figure 4.12 displays test instances where multiple concept representations highlight
similar image regions. However, the computed importance of each concept representation,
determined through perturbations, differs. This may cause confusion for users, as it does
not provide insight into the inner workings of the model. To clarify the situation, the
approach proposed by Nauta et al. [54] can be used to understand the aspect of the
image region that is encoded by the corresponding concept representation. For example,
in Figure 4.12c, the face of a Shih-Tzu is encoded by three different concept vector
representations, each contributing differently to the prediction. However, investigating
the concept associations with different image primitives, it becomes clear that the shape
of the face region has the highest contribution to the prediction, followed by texture and

color.

4.5.4 Human Subject Experiments

It is essential to evaluate the effectiveness of explanations for human understanding in
practical applications. Therefore, thorough human subject experiments are conducted to
compare the quality of explanations generated by our approach and a PCA baseline on
two CNN architectures (VGG16 and ResNet50). Our experiments consisted of four sets
of explanations, as there are two CNN architectures and two explanation methods. 100
human subjects participated in these experiments to assess the explanations’ quality. The

subjects were shown explanations for ten classes.

Stability & Interpretability

Ideally, regions that primarily contain a given concept should appear visually similar when
they are visualized across different images having a significant presence of the concept.
This property is known as stability. The user is presented with visualizations of the

concepts on images from the validation set, sorted based on their presence. The user is
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Figure 4.13: Human subject experiments - User interface. (a) denotes the concept tagging
interface, and (b) denotes the quality assessment interface

Stability

Stability %

Resnet50

Black box model

Figure 4.14: A plot of stability of concepts extracted from different architectures using
different explanation algorithms

then asked to examine the visualizations and determine if a common pattern is highlighted
across the images. If a common pattern is observed, the user is asked to provide a tag that
describes the concept. A screenshot of the user interface for the task is shown in Figure
4.13a.

To ensure that only genuine user responses are considered while assessing stability, random
insertions of repetitions of the same concept visualization were carried out, and the
participants were asked to provide their answers. Participants who consistently answered
at least 50% of the time across repetitions are considered genuine. Responses from other
participants are disregarded. The next step is then to count the number of genuine users
considering a concept unstable, meaning they cannot observe a visually common pattern.
If more than 50% of the genuine participants label a concept as unstable, it is deemed
unstable.

The stability of concepts across each architecture and explanation method is shown in
Figure 4.14. It is observed that the concepts extracted by SCE are consistently considered
stable by the participants, with a significant difference compared to the PCA baseline. For
the stable concepts, the user-provided tags are analyzed to assess their interpretability.
Examples of these tags can be seen in Figure 4.15. It is evident that the tags accurately
describe the highlighted regions. The concepts extracted by the proposed framework
that the human subjects deemed uninterpretable are shown in Figure 4.16. Similar

visualizations corresponding to the PCA explainer are shown in Figures 4.17 and 4.18.
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f) Red color, Red flowers, Flowers

) Hammerheaded sharks, Fish with hammer-like head, Fish with fins in water

X

(j) Butterfly wings, Butterfly spotted wings, White Butterfly

Figure 4.15: Top tags provided by human subjects to different concepts. The first five
rows show the concepts extracted from VGG16, and the last five rows show the concepts
from ResNet50.
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Figure 4.16: SCE concepts deemed uninterpretable by human subjects. FEach row
corresponds to a single concept. The first five rows show the concepts extracted from
VGG16, and the last five rows show the concepts from ResNet50.
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(a) Birds, White bird, Colorful birds

(j) Dog nose, Dog muzzle, Dog face

Figure 4.17: Top tags provided by human subjects to different concepts extracted by PCA.
The first five rows show the concepts extracted from VGG16, and the last five rows show
the concepts from ResNet50.
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Figure 4.18: PCA concepts deemed uninterpretable by human subjects. FEach row
corresponds to a single concept. The first five rows show the concepts extracted from
VGG16, and the last five rows show the concepts from ResNet50.
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Quality
Metric Architecture | Explainer Rating (t,p)
SCE 3.54+0.9
VGG16 (0.61,0.54)
. PCA 3.3+0.9
Understandability
SCE 3.84+0.9
ResNet50 (0.09,0.92)
PCA 3.84+0.9
SCE 3.7+0.7
VGG16 (1.39,0.16)
) ) PCA 3.34+0.9
Satisfaction
SCE 4+0.9
ResNet50 (0.79,0.43)
PCA 3.84+0.9
SCE 3.94+0.9
VGG16 (1.15,0.29)
) PCA 32409
Sufficiency
SCE 3.6+1.1
ResNet50 (0.36,0.72)
PCA 35+ 1.1
SCE 57.8 +12.5%
VGG16 (0.16,0.87)

PCA 56.8 £ 14.2%

SCE 69.5 £ 8.7%
ResNet50 (2.29,0.02)
PCA 64.7 +11.3%

SCE | 76.8 +14.9%
VGG16 (1.68,0.13)
PCA | 70.2+15.9%

SCE 84.8 +9.6%

Prediction Accuracy

Prediction Confidence

ResNet50 (1.59,0.11)
PCA 80.9 + 13.2%
SCE 3.5+09
VGG16 (0.19,0.78)
PCA 3.4+0.9
Completeness
SCE 3.94+09
ResNet50 (0.12,0.91)
PCA 3.84+0.9

Table 4.2: Quality rating - statistical significance

The quality of explanations is assessed using metrics proposed by Hoffman et al. [100].
The evaluation is performed by dividing the experiment into two phases, learning and test
phases. During the learning phase, participants are presented with images of ten animal
classes and are asked to learn to differentiate between them. In the test phase, participants
are shown an animal image and are asked to predict its class. This process whose interface
is shown in Figure 4.13b, helps us identify participants familiar with image classification
and assess the quality of the explanations.

The participants are then presented with explanations highlighting the top 3 relevant
concepts used by the model to make its predictions. The participants’ prediction for
the class label, along with their confidence in the prediction, would be recorded. If
the explanation is informative, the participant should be able to predict the correct

class confidently. After several such explanations, participants are asked to rate the
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explanation method based on various quality parameters such as understandability,
sufficiency, completeness, etc., suggested by Hoffman et al. [100]. Understandability
measures the user’s understanding of the explanation. A good explanation method should
consistently highlight informative concepts that help users understand how the prediction
was made. Satisfaction assesses the explanation quality from a psychological perspective,
measuring how the user feels regarding the helpfulness of the explanations in unearthing
the working of the deep neural networks. Sufficiency measures if the top concepts displayed
are sufficient for making the prediction. Finally, participants are asked to rate the extent
to which the explanation provides a complete picture of the black box’s workings.

It was observed that the prediction accuracy of participants based on SCE explanations
for the ResNet50 model is 69.5 + 8.7%, which is higher and statistically significant (
p-value was 0.02 and calculated t-statistic was 2.29) compared to PCA explanations on
which the recorded prediction accuracy was 64.7 + 11.3%. To prove a claim that the
proposed approach is better than the baseline, it has to pass the statistical significance
test. If the p-value is within 0.05, the claim that the proposed approach is better than the
baseline can be proved statistically. As can be seen from Table 4.2, on other metrics, the
p-value exceeds the threshold to pass the claim. Hence no statistical significance could
be established for the other metrics. This is in accordance with the findings reported in
a recent work proposed by Zhang et al. [144], which leveraged vanilla NMF to extract

class-specific concepts in a posthoc manner.

4.5.5 Ablations

Ablation

(o]
o

—— VGG16

VGG19
—e— ResNet18
—e— ResNet50

Agreement Accuracy
~ [e2]
o o

100 200 300 400 500
Number of concepts

Figure 4.19: Agreement accuracy Vs Number of concepts

The key hyper-parameter the user can determine in SCE is the number of concepts C.
This hyper-parameter can be varied, and the corresponding change in agreement accuracy
due to this variation has been plotted in Figure 4.19. The agreement accuracies seem to
be proportional to the model depth. Also, the agreement accuracy of the ResNet model
family is higher than that of the VGG model family. Zooming into the architecture, one
can observe that the classifier h of the ResNet model is a single linear layer, while the VGG
classifier A is a multi-layer network. The residual error when propagated across a single

layer could be less impactful compared to the case of a multi-layer classifier. However,
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on plotting the sharedness distribution as in Figure 4.8, an invariance in the distribution
with a change in the number of concepts was observed. This may indicate that SCE
explains concepts that reflect how the black box model has learned to generate features
that discriminate classification. To optimize accuracy-simplicity tradeoff [35], K = 100

has been chosen for other analyses.

4.6 Summary

SCE framework has been proposed for extracting human-interpretable concepts using
incremental NMF in a shared manner, reflecting shared concepts in nature. SCE’s
accuracy is evaluated, and qualitative visualizations offer unique insights into animal
species. SCE hints at the reasons for superior classification performance in certain
architectures and reveals the impact of spurious patterns on model predictions. Ablation
analyses highlight that the model architecture has a significant effect on the concepts’
nature. The SCE framework shall offer newer insights when applied to applications where

an already deployed model needs to be explained.



Chapter 5

Explainable Supervised Domain
Adaptation Network

Domain adaptation techniques have contributed to the success of deep learning.
Leveraging knowledge from an auxiliary source domain for learning in labeled data-scarce
target domain is fundamental to domain adaptation. While these techniques result in
increasing accuracy, the adaptation process, particularly the knowledge leveraged from
the source domain, remains unclear. This chapter proposes an explainable by design
supervised domain adaptation framework - XSDA-Net. A case-based reasoning mechanism
has been integrated into the XSDA-Net to explain the prediction of a test instance in
terms of similar-looking regions in the source and target train images. The utility of
the proposed framework is empirically demonstrated by curating the domain adaptation

settings on datasets popularly known to exhibit part-based explainability.

5.1 Introduction

Deep learning has seen great successes in the recent past [5, 6, 7] with the availability of
large datasets [133]. However, acquiring labeled data is an expensive and time-consuming
process. Harnessing a deep classifier trained on related large labeled datasets does not
generalize well on the dataset of interest where limited labeled data is available due
to the changes in data distribution, often called domain shift [154]. This shift may be
due to differences in the marginal distribution of features or class label-based conditional
distribution. Domain Adaptation encompasses techniques that help bridge the domain
shift between the source and target domains. Domain adaptation has helped to learn
accurate models in many critical situations where limited data is available in various tasks
like image classification, activity recognition, sentiment analysis, indoor localization.
Despite such state-of-the-art accuracies, the deep models are not readily adopted in all
application domains. The opaqueness of a deep network’s internal mechanism contributes
to its hesitancy in adoption [10]. Moreover, the right to explanation act by EU has made
it mandatory to provide explanations to the users involved in the decisions made by the Al
systems, leading to the development of mechanisms for explaining deep networks. Recent
work is on explaining a general-purpose classifier [21, 25, 36]. However, little attention
is given to explaining a domain-adapted classifier where knowledge from two domains is
leveraged [132, 155, 156].

This chapter proposes a framework that incorporates explainability by design into the
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domain-adapted classifier. The underlying assumption is that a set of prototypical features
describes a given class’s instances. The framework aims to learn these prototypical
features in a latent space where domain-invariance is achieved through supervised domain
adaptation. XSDA-Net looks for similar features in a test image to predict the class label
using the learned domain-invariant prototypical features. This prediction can be explained
in a case-based reasoning fashion. A sample explanation expected from the proposed
model is shown in Figure 5.1. The prototypical features detected in the test image are
shown in various colored rectangles. The top and bottom rows show the source and target
domain concepts, respectively, that are most similar to the concepts detected in the test
image. The contribution to a label’s output is computed as a linear combination of the
similarity scores, where the linear coefficients are learned during the training procedure.
Contribution to each class is calculated, and a softmax operator will be applied to obtain
the corresponding class probabilities. This helps build a model that transparently unearths

the whole reasoning pipeline.

Source
domain
concepts

(6.0)+...=67.13

Target
domain
concepts

Figure 5.1: Sample explanation

5.2 Domain Adaptation

Supervised domain adaptation refers to the umbrella of techniques that utilize a source
domain D* = {z;,4;}}", with abundant labelled examples to learn a classifier for the
target domain denoted by D! = {wi,yi}f\:l with limited labelled examples. The source
and target domains differ in the underlying marginal and conditional distributions. Most
supervised domain adaptation approaches [157, 158] perform class-wise alignment such
that the instances are clustered based on class labels ignoring domain differences which
ald a classifier to learn a decision boundary that separates them. The supervised
domain adaptation approaches can be categorized into discrepancy-based and adversarial
techniques. In Discrepancy-based techniques [159, 160, 161], a discrepancy measure
indicative of the domain gap is minimized, leading to the domains getting aligned closer.
The same classifier trained on the source domain may then be reused to classify the
target domain instances, or a new classifier can be trained using the aligned source and
target labeled instances. The adversarial techniques utilize the GAN principle to align

the domains. The feature extractor part of the network acts as a generator. A domain
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discriminator that aims to distinguish source and target domains provides feedback to
the generator to generate domain invariant features [137, 138]. These domain invariant
features generated for the target domain instances can then be passed through the classifier
learned using the labeled source domain instances to perform classification. However, all
the state-of-the-art supervised domain adaptation techniques are not interpretable. The
aspects of the source and target domains focused by the classifier remain a mystery. The
proposed work aims to demystify this process by integrating explainability into the design
of the domain adaptation framework.

Despite advancements in XAl for explaining in-domain classifiers, less focus is given to
explaining the working of domain-adapted classifiers. Szabé et al. [132] uses Activation
Maximization (AM) [134] to visualize the filters during the transfer learning process.
However, the use of AM makes the explanation less useful for non-experts. Hao &
Zheng [155] use a GAN to understand features that help achieve domain invariance.
However, using a black box to explain a black box makes the explanation less faithful.
Neyshabur et al. [135] perform a detailed analysis to unearth the role of feature reuse
and pretrained weights during the process of fine-tuning. In contrast, this framework
explains the domain-adapted classifier using class-specific prototypical parts. The concept
discovery process is tightly integrated into the domain adaptation module, thus realizing
explainability by design to leverage the model’s knowledge gained from the data to generate

the explanations.

5.3 Contributions

The main contributions of this framework are:

e A method that integrates explainability by design into a domain adaptation

framework has been proposed.

e A case-based reasoning style to explain a prediction based on class-specific
characteristic prototypical features identified in the given test image has been

adopted.

e Domain adaptation settings have been curated using datasets commonly used in

explainability literature to validate the proposed framework’s utility

e A theoretical framework that analyzes the impact of projecting the abstract concepts
of XSDA-Net to the nearest train image patches on the model’s accuracy during the

training process has been developed.
e The key assumptions of the theoretical framework are empirically verified.

e Ablation experiments investigate the impact of the different learning objectives on

the classification performance of XSDA-Net.
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Figure 5.2: XSDA-Net architecture

5.4 Methodology

The architecture of the proposed explainable supervised domain adaptation network
(XSDA-Net) is illustrated in Figure 5.2. An input image x is passed through a
convolutional backbone f. The feature map f(z) obtained from the convolutional
backbone has dimensions H x W x Q.

The feature maps f(z) are passed through the explanatory backbone g consisting of the
concept layers corresponding to the source and target domains ¢° and g, respectively.
Every class has C' concepts of dimensions 1 X 1 x @ per domain. c¢j; denotes the [th
source concept of the k" class and cfd denotes the I*" target concept of the k" class. The
procedure to classify a target test image using the trained XSDA-Net is described first.
Learning the XSDA-Net is described later.

Let C; = {c};}<, and C! = {c},}¢, denote the set of source and target concepts for
kt" class respectively. For each source concept ci;, there is a paired target concept c};j
such that ||cf, — c’,;JH% is the least among the set of target concepts, {c,;}¢ ;. Given the
feature map f(z), the Euclidean distance between each 1 x 1 x @ patch in f(z) and all the
source and target concepts are computed. Let Dj, and DZZ denote the H x W matrices
representing the distance of each of the H x W patches in f(z) from ¢f, and ¢}, concepts of
the source and target respectively. The convex combination of the distance matrices Wy, =
aD§+(1—a)Dl ; that covers information from both source and target domains is converted

into a similarity score by means of a monotonically increasing function given by Sy =

log <11//VVZE> (where € is a small non-zero value used to avoid numerical instability during
the element-wise division operation). Each element in Si; denotes the similarity of each
patch in f(x) with respect to the learned concept. The maximum similarity value obtained

through max-pool layer is passed to a fully connected linear layer h that outputs the
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classification probabilities. Max pool is used because the dominant presence of a pattern
similar to that of the learned concepts has to impact classification irrespective of the
location of the pattern. Furthermore, Sy; can be upsampled to visualize the region in the
test image with the maximum similarity. The regions in the test image with the maximum
similarity to the source and target concepts form part of the explanation. Thus, the
XSDA-Net can be represented as a composition hogo f, where f is the feature extractor, g is
the concept-based explanation backbone and h is the aggregator that performs prediction

based on the interpretable components extracted by f and g.

5.4.1 Training Procedure

A three-phase training cycle is adopted to learn the concept layer g comprising the source
and target domain concept set ¢g° and ¢', respectively. In the first phase, the aim is to
learn a latent space where class discriminativeness is achieved by employing different loss
functions and bridging the domain gap. The other two phases are initiated concurrently
at regular intervals, followed by the initial learning phase. The main aim of the second
phase is to reinforce the explainability of the framework, where the learned representations
are mapped onto a training image patch that will be visualized to understand the learned
aspect. The third phase trains the dense layer’s weights connecting the similarity vector

to the output.

5.4.2 Learning explanatory latent space

The first phase aims to learn a meaningful latent representation of the concepts. The
concepts are to be class-specific discriminative image regions that aid the classification of
any test instance. To instill class-specificity, the given class k concepts must be clustered
closer in the latent space. This is achieved through the clustering loss [36] applied to each
domain independently d € {s,t}, defined as

d
i 1 . )
L min min |z — ¢l

C Nd Pl ecgﬁ, z€patches(f(x;))

The clustering loss makes sure that the learned concept representation is closer to at least
one training image patch of the corresponding domain having the same ground truth as
that of the concept.

The overall clustering loss is given as a weighted combination of clustering loss at each
domain, as given below.

Lo= > pLt
de{s,t}
The concepts of a given class k have to be far apart from the concepts of other classes

K = k. This is enforced by means of a separation loss on the concepts of both the source
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and target domains d € {s,t}, defined as

] X
£5 =~ a 2o, min, o i e ol
The separation loss ensures that the learned concept representation is farther from all
training image patches of the corresponding domain having ground truth class labels other
than that of the concept.
The overall separation loss is given as a weighted combination of the separation loss for
each domain, given as
Ls= Y 'L
de{s,t}
Unique concepts are learned by enforcing that the representation corresponding to a given

concept is distinct and far apart from that of other concepts. This is enforced through a

distinction loss, as given below.

Nd
1
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The distinction loss ensures that all concepts of a given class are not clustered around the
same image patch.

The overall distinction loss is given as a weighted combination of distinction loss at each
domain.

Lp= > &L}
de{s,t}

Cross-entropy loss is minimized to improve the classification output. The fully connected
layer weights are initialized such that the weights connecting the concept to its
corresponding class are kept at 1, and the rest are kept at -0.5. This facilitates the
model to learn that the stronger presence of the concepts should enhance the prediction
probability for its corresponding class. The domain-specific cross-entropy loss and the

overall loss are defined as
X
Lip= N > CrsEnt(hogo f(x:),y:)
i=1
Thus the overall cross-entropy loss is given by,
Lep= Y w'Lip
de{s,t}

Minimizing domain adaptation loss Lp4 aligns the concept representations of source and
target domains in the latent space. In this framework, the d-SNE technique [162] is

leveraged to perform supervised domain alignment. The loss is applied to the concepts of
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each domain. This loss Lp4 is given in equations 5.1 and 5.2. The main idea is to separate
the classes in the latent space of concepts by minimizing the maximum distance among the
concepts belonging to the same class (i.e., minimizing the maximum intra-class concept
distance) and maximizing the minimum distance among concepts of different classes (i.e.,

maximizing the minimum inter-class concept distance) across the domains.

K C

Lpa= (5.1)

k::

where

/ /
Lpa(ck) = arg max e = ciig |13 — Vyenarg min ||y — i, 13 (5.2)

d,d € {s,t} denotes source and target domains and d # d.
The overall objective function comprising of all the loss terms discussed above as given in

equation 5.3 is minimized using an Adam optimizer [143]
L=Lco+Ls+Lp+Lcg+KLpa (5.3)

5.4.3 Projecting the Concepts

The main aim of this phase is to map the learned concept vectors to humanly
understandable train image patches. The prototypical representations learned are
assigned to the nearest patch among the train images of the corresponding class of
the domain under consideration. This can be mathematically represented as cj; <
arg Mineparches(f(x))wedy |12 — cyll2 and ¢y« argmin,cporenes(f(a))ywent 112 — cll2-
rectangular box covering the maximally activated image region yields the visualization of
the concept.

To determine the impact of projection on classification, how the classifier’s logits are
affected by the projection operation needs to be examined. Misclassification occurs when
the logit corresponding to the ground truth class decreases and the logits of other classes
increase. Therefore, the maximum possible decrease in the logit of the correct class and
the corresponding increase in the logits of other classes would be calculated to assess the
potential for misclassification. If the difference between the logits of the top two predictions
falls within the bounds of the change in logits caused by the projection operation, then

the impact of projection on the classifier’s accuracy is likely to be insignificant.

Theorem 1. Let, CZZ denote the I concept of the k" class corresponding to the domain
d e {s,t}, bgl denote value of Czl before projection and agl denote value after projection.
Let q be the ground truth class label of x and zgl = arg min,cpqches(f(x)) ||z—bgl\|2 be nearest
training image patch among images of the domain d before projection. If 36 € (0,1) that

satisfies the following axioms:

o For all incorrect class concepts k # ¢;Vl € {1,2,...,C}, d € {s,t},

lag; — b ll2 < 0l|z — bl (5.4)
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— i 1
where, 0 = min(v/1+9d—1,1— \/ﬂ)

o For all correct class q concepts; VI € {1,2,...,C}, d € {s,t},

Haf,fz - bng2 < (V1446 - I)HZZZ - bZzH2 (5.5)
and,
28 = blle < VI=75 (5.6)

then the projection operation does mot impact the classification, provided the difference
between the highest and the second-highest logit before projection is at most 2A Lz,
where ALpq, = Clog((2 —9)(1+9)).

It is to be noted that a common ¢ is assumed to hold the bounds in both source and target

domains as the domains are aligned by the Supervised Domain Adaptation loss.

Proof. The output logits for a given class k- Ly can be expressed as the linear combination
of its concept similarities, i.e. Ly = Wygp,. But as the fully connected layer weights W},

are sparse, the logit computation expression reduced to:

C s s 12 t t 12
O‘HZkl - ck1||2 +(1— a)sz' - Ck‘||2 +1
Lk = E lo ( S J )

allz = eylz + 1 —a)llz; — c;l3 +e

=1

And thus, the change in logits due to projection can be expressed as:

allzf —ayll3 + (1 = o)llzg; — agll3 +1
allzh = opllE + (1 = ez, — bil3 + 1

C
ALy, = Z log(
1=1

allzg = b3 + (1= a)llzg; — bl13 + €

allzy — a3+ (L= a)llz; —afl3 +e

If,

Vg = allzy = ajllz + (1~ @llz1; — @il +1 (5.7)
allzf = bylls + (1= a)llzf; — b,ll5 +1

allzg = bill3 + (1= a)llzt,; — b5 + ¢
br1 = L (5.8)

allziy = ayllf + (1 = a)llz; — aj,ll; + €

Vi = Vit Okt (5.9)

ALj can be rewritten as, AL, = Zl(’;l log Uy,
One possible cause of misclassification may be a decrease in the logits of the correct class
g.- A bound on the maximum decrease in the logits of the correct class L, to quantify the

impact on the classifier’s output would be derived now.
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Note that Equation 5.7 has the lower bound,

1
allzg = byll3 + (1 — a)llzg; — beyll3 +1

Vql >

From Equation 5.6,
Hz;lz - bng% <(1-9)

Hence,

>
il =95

By applying triangle inequality in Equation 5.5,
4 —ad |3 d _d |2
2 — adill3 < (1 +0)||z5; — b3

Substituting these deductions in Equation 5.8 for the correct class g, the bound, ¢4 > 1—_}_5

Thus, the lower bound for ¥y; for the correct class q is,

1

Yo = (2= 6)(1+90)

(5.10)

The change in logits for the class ¢ can then be bounded as,
—ALg; < Clog((2—-6)(1+9))

The worst case decrease in correct class ¢ logits is ALy, = C'log((2 — 6)(1 + 9)).
Another cause of misclassification may be an increase in the logits of any class k other
than that of the correct class ¢. Now the bound of the maximum increase in the logits of
any incorrect class to assess the impact of projection on the classifier’s output has to be
obtained.

Substituting # = v/1 + 6 — 1 in Equation 5.4,

4 d 4 1d
28y — a3 < (1 + 0) ||z — ball3

1

that when applied in equation 5.7, the upper bound, Vlk <1+4+6. Whent=1— ot

1
d d 12 d d (12
2 — aillz > 2 s 5”%1 — biall2
resulting in the lower bound vy > 2715. Thus, the overall bounds for vy are,
L <+
— <y
9_4§5 = kl >

Similarly, substituting § =1 — \/2175 in equation 5.4,

Iz — bil13 < (2= 0)||28; — afyll3
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that results in the upper bound ¢x; < (2 — ). When, § = /146 — 1 we get,
125 — afall3 < (1 +0)llz8 — b3

resulting in the lower bound ¢y; > I—Jlré. Thus, the bounds for ¢y, are,

1
_ - < < (9 —
1+5_¢k1_(2 J)

The bounds on v and ¢; indicate that

1

EaTs S SR+ .

Thus, the change in logits for an incorrect class, is bounded as follows:
ALr < Clog((2—10)(1+9))

Hence the worst case increase in incorrect class logits is ALy, = C'log((2 — §)(1 + 9)).
O

The axioms and basic inequalities deduce that the worst-case difference between logits
of the highest and second highest ranked class is at most 2AL;,4,. Thus the projection

operation does not impact the performance of the domain-adapted classifier.

5.4.4 Learning the classifier

The fully connected layer will use the prototypical representations modified in the
projection phase to perform classification. Thus the main aim of the third phase, post the
projection phase, is to finetune these fully connected layer weights. The feature extractor
f and the explanatory backbone g are frozen in this phase. The fully connected layer
weights are finetuned to accommodate the changes due to the projection phase. Sparse
connection weights are encouraged employing a Lq regularizer. As the contribution to a
class is a weighted combination of the similarity scores, sparsity in weights results in fewer

concepts contributing more to the final output.

5.4.5 Gradual training

A warm-start training strategy is used, where the feature extraction backbone f is
initialized and frozen for a few epochs, initially using a standard pretrained network (VGG,
ResNet). The explanatory backbone g and the fully connected layer h of XSDA-Net are
trained, utilizing the knowledge encoded in the pretrained weights. Further, learning the
concepts is like picking a vector blindfolded in the latent space. However, in the end, the
concepts have to be mapped back to the training images for explainability. Theoretically,
the entire latent space can be searched, the search is restricted to only the subspace

containing the training image features by executing the projection phase every p epochs.
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5.5 Experiments

5.5.1 Datasets

The explanations generated by XSDA-Net are demonstrated using two datasets (Birds and
Monkeys) commonly used to study XATI algorithms. The datasets contain animal images
characterized by distinct concepts corresponding to different image regions, serving as ideal
candidates to validate the XSDA-Net. The domain differences in the prevalent domain
adaptation datasets are on finer features like color and textures [155]. Domain expertise is
required to understand such finer feature-based explanations. In contrast, our framework

generates readily interpretable explanations based on parts or regions of the image.

5.5.2 Birds Dataset

Eight bird classes present in both Imagenet [133] and CUB [163] datasets are used. A
few sample instances from the two domains are shown in Figure 5.3. The bird images
from the Imagenet and CUB are considered as source and target domains, respectively.
The Imagenet dataset has more than 1000 images per class, while the CUB dataset has
at most 180 images per class. The target domain train and validation splits each has ten

images per class, and the rest are part of the test split.

Imagenet

Figure 5.3: Birds dataset visualization. Each column depicts a class.

5.5.3 Monkeys Dataset

Seven classes that are present in both Imagenet and monkey species classification datasets
obtained from Kaggle is used. A few sample instances from the different domains are
shown in Figure 5.4. Like the previous dataset, Imagenet [133] with more than 1000
images per class serves as the source domain. The Kaggle dataset, with at most 270
images per class is the target domain. The train and validation splits of the target domain

each have ten images per class, and the rest are part of the test split.


https://www.kaggle.com/slothkong/10-monkey-species
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Imagenet

Figure 5.4: Monkeys dataset visualization. Each column depicts a class.

The hyper-parameters used to train the explainer were C' = 10, o = 0.5, 5 = 8¢ = 10,
v =t = —0.08, 6° = §' = —0.01, w® = w! = 50, K = 20, p = 10. The optimal values
were obtained through extensive cross-validation experiments involving only the train and
validation splits.

The test accuracy of the black-box domain adapted VGG16 classifier without the
explanation module is 96.2% and 98.3% for the birds and monkeys dataset, respectively. In
contrast, the explainable by design domain adaptation framework, XSDA-Net’s accuracy is
92.4% and 96.8%, respectively. The marginal drop in the performance due to architectural
modifications is tolerable considering the significant benefits of extracting interpretable

explanations.

5.5.4 Correct Classification

This subsection illustrates and discusses explanations generated by the XSDA-Net for a
few correctly classified instances from the target domain. Figure 5.5 presents explanations
for eight test instances along with the reasoning pipeline for the classification. For brevity,
the illustrated concept pairs from the source and target train set (marked by the colored
rectangles) are restricted to the top 3 concepts ranked by the similarity scores. A salient
observation is the close resemblance of the concept pairs from the source and target
domains. The contribution score of the source and target concept pair (represented using
the same colored rectangle) to a particular class computed as a weighted combination
of the calculated similarity scores is displayed using the same color. The weights of this
combination (numbers displayed in black) are learned during the training phase. In these
examples, as it can be seen, despite visual differences, the corresponding body parts are
aligned between the source and target domains due to the explicit training scheme. The
test images are correctly classified due to the high similarity with the aligned concepts
from the source and target train sets. For example, body parts such as beaks and wings are
used by the model to correctly classify bunting and other bird species. Similarly, the model
considers face, body, and limbs among the top concepts for correctly classifying patas and
other monkey species. It is also interesting to note that a concept for the merganser bird

species is the background water. While the background may not be a characteristic for
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Objective | Birds Accuracy | Monkeys Accuracy
L\ Lo 90.3% 94.4%
L\ Lg 90.2% 93.8%
L\ Lp 91.3% 94.4%
L\ Lpa 91.5% 96.1%
L 92.4% 96.8%

Table 5.1: Effect of the different components of the learning objective on accuracy

this class, the explanations highlight the bias in the dataset (all merganser images have
water in the background). Despite lowered performance due to architectural modifications,
our explainable by design framework discovers the underlying learning and case-based

reasoning process that is impossible from a black-box pipeline.

5.5.5 Misclassification

Figure 5.6 illustrates the explanations for a few misclassified examples. A justifiable visual
similarity is seen between the detected test image regions and the learned concepts of both
predicted and ground truth classes. Due to incorrect assessment of contribution scores,
misclassification has occurred. Especially for the marmoset image that is misclassified
as capuchin and bunting image that is misclassified as hummingbird, it can be seen that
the model assessed a higher similarity with the background, considering it a part of test
instance, leading to the misclassification. Also, looking at the paired concepts, one can
see that despite visual differences between species in both domains, due to our explicit
training scheme enforcing part-based alignment, the corresponding body parts are aligned.
This empirically shows the effectiveness of XSDA-Net as an explainable domain adaptation

network.

5.6 Ablation studies

Table 5.1 summarizes the effect of each component of the objective function £ thereby
quantifying its importance. It is to be noted that as the cross-entropy loss Lo g establishes
the connection between the different modules f, g and h, it cannot be removed from the

learning objective L.

5.6.1 Cluster Loss

The cluster loss L¢ is designed to bring together the concepts of the same class in the
latent space. To evaluate its effectiveness, the average intra-class concept distance is
calculated. For a given concept c%l, the distance from all other concepts cgi such that ¢ # [
is calculated. The average of these distances ,ugl is then determined. This is done for all
c%l where k € 1,2,...,K,1€1,2,...,C and d € {s,t} and the average of all resulting u‘,ﬁl
gives the desired metric, namely the average intra-class concept distance. A lower value

for this metric indicates a better-learned latent space.
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Contribution to Squirrel Monkey = 1.1(2.8)+0.9(2.4)+0.8(1.9)+...

Contribution to Merganser = 0.3(10.2)+0.3(8.9)+0.7(6.8)+....=51.31

Figure 5.5: Explanations for a few correctly classified test instances. The test image regions
(colored rectangles in the image in the first column) map to the regions in the source and
target image regions (successive image pairs with rectangles of the same color). The source
and target image concept pairs are sorted based on the similarity to the test image region.
The fully connected layer weight connecting the concept to the corresponding class is
in black. The contribution to the corresponding class is computed via this weighted
combination.
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Contribution to Capuchin =0.7(2.3)+0.7(2.0)+1.0(1.6)+....=9.56

= - S
Contribution to Pelican =0.7(6.6)+0.9(5.9)+0.3(5.6)+....

Contribution to Bunting = 1.0(7.1)+(-0.6)(6.8)+0.6(6.6)+....=17.27

Figure 5.6: Misclassified images. The explanation for each misclassified instance spans
across two rows. The first row shows the explanation corresponding to the class incorrectly
predicted by the model whose label is given in brown color. The second row shows the
explanation corresponding to the ground truth class whose label is given in green color.
The test image regions (colored rectangles in the image in the first column) map to the
regions in the source and target image regions (successive image pairs with rectangles of the
same color). The source and target image concept pairs are sorted based on the similarity
to the test image region. The fully connected layer weight connecting the concept to the
corresponding class is in black. The contribution to the corresponding class is computed
via this weighted combination.
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This metric is calculated when the cluster loss Lo was included and excluded from the
learning objective £. When Lo was excluded, the average intra-class concept distance
was 2.254 for the birds dataset and 1.354 for the monkeys dataset. In contrast, when
Lc was included, the average intra-class prototypical distance was 0.039 for the birds
dataset and 1.268 for the monkeys dataset. In both cases, the accuracy of the explainable
domain-adapted classifier dropped by around 2% when L& was excluded from the learning

objective L.

5.6.2 Separation Loss

The separation loss Lg is a measure of how well the concepts of different classes are
separated in the latent space. To evaluate the efficacy of this loss function, the average
inter-class concept distance is calculated. For a given concept cil, its distance from all
other concepts CZZ-, where y # k is calculated. The average of these distances is called
)\zl. This calculation was performed for all cgl, ke{l,2,....K} 1,1 € {1,2,...,C} and
d € {s,t}. The average of all )‘gl values gives us the average inter-class concept distance,
which is the metric of interest. Higher values of this metric indicate better separation in
the latent space.

When Lg was included, an increase in the average inter-class concept distance (from 2.84
to 5.00 on the birds dataset) was observed, which indicates that the concepts of different
classes were more separated in the latent space. The accuracy dropped to 90.2 % when Lg
was excluded. In the case of the monkeys dataset, the exclusion of Lg reduced the average
inter-class concept distance modestly by 0.154, a significant drop (by 3%) was observed.

Overall, these results suggest that separation loss is beneficial to learning.

5.6.3 Distinction Loss

The distinction loss £p aims to map the concepts to different representations to the best
possible extent. For a given class k, in the domain d € {s,t} consider the C' x C' matrix
C,? whose elements (;; = distance(czi,cﬁj). It can be observed that C,ff is a symmetric
matrix whose diagonal elements are 0. The triangular matrix below the diagonal contains
@ values. Let xi denote the number of non-zero values among these @ values.
X = Ddefst} Zszl x% is calculated when Lp is included and excluded from the learning
objective L. It can be observed that x < KC(C —1). In the explainable domain adapted
classifier trained on the birds dataset (K = 8), excluding Lp in its learning objective £
yields x = 719. In other words, a pair of learned concepts were repeating. In a similar
scenario with the monkeys dataset(K = 7), x was observed to be 628. In other words, two
pairs of learned concepts were repeating. When Lp was included in the learning objective
L, x = KC(C — 1), the maximum possible value was achieved in both datasets. In other
words, including distinction loss £p, makes all concepts distinct. Empirically it was seen
that distinction loss Lp, which is the novel aspect of the proposed work, mitigates the

problem of repeating concepts observed in prior explainable by design approaches [36].
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The accuracy dropped to 91.3% in the birds dataset and 94.4% in the monkeys dataset

when Lp was excluded.

5.6.4 Domain Adaptation Loss

Lpa aligns the concepts of the different domains closer, bridging the domain gap. The
average inter-domain concept distance i.e. the distance between the source domain concept
¢;; and the target domain concept ¢, for k,m € {1,2,...,K} and [,n € {1,2,...,C}
is calculated for all K2C? possible combinations. The average of these values gives the
necessary metric. Lower metric values indicate the closer alignment of the domains. In
the explainable domain adapted classifier trained on the birds dataset excluding Lpa
from the learning objective L, the average inter-domain concept distance turned out to be
2.646, which fell to 0.056 on including £p 4. The accuracy dropped to 91.5% due to this
exclusion. In the case of the monkeys dataset, the average inter-domain concept distance
when Lp4 was excluded was 1.899, and the value fell to 1.661 when Lp4 was included to
L. Due to this exclusion, the accuracy dropped to 96.1%.

5.7 Summary

Thus the XSDA-Net that can unearth the reasoning pipeline in a classifier aligned
via domain adaptation has been proposed. XSDA-Net uses case-based reasoning to
explain the output of the domain adapter classifier. Specifically, it explains the model’s
output for a test image in terms of highly similar prototypical regions from source
and target train image pairs, along with the contribution of the similarity to the final
output. Experiments on curated domain adaptation datasets illustrate the XSDA-Net’s
effectiveness in explaining correct and incorrect classifications despite a marginal decrease

in the accuracy compared to its non-explainable counterparts.
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Chapter 6

Conclusion

The thesis traces the significant improvements in the object recognition task, hinting at
the opaqueness that creeps in as a side effect of the increasing complexity of the accurate
classifiers. The opaqueness that hinders the opening up of the working mechanism of the
accurate deep CNNs, like that of traditional shallow models, has been discussed. The need
to explain the working of the CNN has been motivated, and thereby the attempts of the
XAI research community to generate explanations for a CNN have been overviewed. The
supremacy of concept-based explanations [32, 33] due to their close resemblance to how
humans process images [50] has been illustrated.

Despite the supremacy of concept-based explanations and attempts to generate such
explanations, the dependence of these mechanisms on the annotated concept examples
based on which concept representations are learned acts as a bottleneck for the widespread
adoption of concept-based explainers. When the annotated concept examples are from a
different distribution than the distribution from which the training examples are sampled,
the representations need not truly reflect the learned representations of the CNN [35].
To overcome the need for annotated concept examples, Yeh et al. [53] propose to extract
concept representations automatically from the data and estimate concept relevances using
Shapley values [77]. However, that framework uses a two-layer network which is another

black box, thereby complicating the problem at hand of explaining the CNN of interest.

6.1 Summary of the Proposed Frameworks

The thesis identifies a void in the space of concept-based explanations that there needs
to be a mechanism that can automatically extract concepts learned by the CNN in a
fully interpretable manner. Two frameworks are proposed in this direction by varying
the sharedness of the concepts across different classes. Chapter 3 proposed PACE,
which learned to extract class-specific, relevant concepts automatically from the data.
Faithfulness is embedded by design by enabling approximation from the explanation
to be based on queries from the black box. The relevance estimation is tied to the
learning pipeline by enforcing the drop in prediction probability of a class when the
corresponding concept is ablated. The framework’s efficacy has been shown using different
CNN architectures and datasets. This being the first approach that automatically extracts
class-specific concepts in a posthoc manner, was compared with a curated baseline
mimicking the properties of the modules of the framework. Quantitative analyses reveal

that the proposed framework has a superior faithfulness measured by the agreement
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accuracy metric proposed exclusively for assessing the faithfulness of concept-based
explanations. Thus qualitative analyses have been carried out using results obtained
from the proposed framework only. Human subject experiments show that 71% of the
extracted concepts are humanly interpretable, that humans can tag the concept depicted
by the consistent visualizations. The tags provided by the humans are analyzed and
found to be relevant to the visually depicted aspects. The salient parts discriminative of
the category of the animals were extracted. Misclassifications were justified due to reliance
on a concept that is visually similar to the concept that is generally a characteristic of the
class incorrectly predicted.

While the PACE framework proposed in Chapter 3 encouraged learning class-specific
concepts to unravel the discriminant blueprints used by CNN to predict the given
test instances, the concepts tend to be shared, especially if relatedness between classes
exists. To reflect this perspective, several antehoc approaches which enforced real-world
concept sharedness by design were proposed. However, a void existed in the posthoc
explanation space to model such sharedness constraints. Although the proposal by Yeh
et al. [53] learns shared concepts in a posthoc manner, the framework leveraged black
boxes in its concept learning pipeline, hindering its application to faithfully unravel
the working mechanism of the black box of interest, aka the CNN. Thus a mechanism
whose working is fully interpretable and can unravel the sharedness of concepts from
the lens of the CNN being explained needs to be developed. This was the aim of the
Shared Concepts Extractor (SCE) framework proposed in Chapter 4. The framework
was based on Non-negative Matrix Factorization (NMF) technique which was known
to extract semantically meaningful concepts from the activations [144, 145, 148]. The
incremental NMF technique [148] was leveraged to learn the shared concepts utilizing
the available memory resources. The key assumption behind the explainer was that the
features could be expressed as a linear combination of a set of basis vectors called the
concepts. As most architectures used ReLLU activations to process forward only the positive
activations, NMF, which enforces a non-negative constraint on the linear combination
weights and the corresponding basis vectors, aka the concepts, was employed. The
relevance estimation was carried out after concept learning, unlike the PACE framework
proposed in Chapter 3, where relevance is a part of the learning pipeline. This shall help
unravel all concepts learned by CNN, irrespective of their relevance to predicting a specific
class. The framework is flexible to unravel the primitive aspects like color, shape, or texture
encoded by the concepts by estimating the impact of perturbing the corresponding aspect
on concept detection [54]. The incorporation of shared concepts unraveled sharedness
across classes as learned by the CNN, some in line with human intuition, some giving
newer perspectives on how classes may be grouped. The exclusive concepts seen in ResNet
architectures seem to contribute to its higher accuracy. In other words, although ResNet
recognizes shared concepts, it also detects discriminant concepts like the characteristic bill
structure of the spoonbill, face structure of a guinea pig, etc., that aids in minimizing the

misclassifications compared to the VGG models whose feature extractors detect shared
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concepts and the reliance to classify the given instance is probably higher on the fully
connected layers. This suspicion stems from the observation in the antehoc approaches
[49] where removing the multiple fully connected layers with non-linear activation function
hurts the classification accuracy. The explainer unravels the spurious correlations learned
by the CNNs in line with a recent observation [22].

While much of the XAI community’s efforts are on explaining in-domain classifiers, the
mechanism employed in cross-domain classification, which helps extend the benefits of
data-hungry deep models to data-scarce scenarios, is not explored. Particularly the domain
adaptation process, which bridges the distributional differences between the data-rich
source domain and the data-scarce target domain of interest so that a classifier trained
on the source domain can be leveraged to classify the instances sampled from the target
domain of interest. Chapter 5 proposes a supervised domain-adapted classifier that can
explain itself. Specifically, the framework learns class-specific prototypical concepts and
uses a case-based reasoning strategy to predict the class a test instance belongs to. The
concepts are enforced to be distinct and clustered based on the class whose blueprint it
encodes. The domain differences are aligned by means of maximizing the least inter-class
concept distance as well as minimizing the highest intra-class concept distance [162]. These
losses enforce the creation of tighter coalitions of concepts in the latent space such that they
are domain-invariant and class-discriminant and guide the prediction of given test instances
based on the detection of these concepts. Domain adaptation settings have been curated on
datasets that exhibit part-based explainability. The effect of incorporating interpretability
into a domain-adapted classifier has been verified theoretically and empirically. The
importance of each component of the learning objective has been reinforced through

ablation studies.

6.2 Limitations of the Proposed Frameworks

Existing concept-based explanatory frameworks depended on the concept examples to
be sampled from the same distribution from which the training data is sampled for
the explanations to be faithful. The thesis has proposed three novel frameworks that
automatically extract concepts from the data to circumvent the need for external concept
examples. However, there are a few limitations to the proposed frameworks.

An inherent challenge in any posthoc explanatory framework is establishing faithfulness
to the explained black box. This is a difficult goal to achieve because if there is a
mechanism to know the ground truth of the working of the classifier, then the need for
an explanation algorithm would become obsolete. With no gold standard to aim for,
the existing approaches propose proxy metrics to assess the faithfulness of the generated
explanation based on the perturbation effect. However, those metrics are unsuitable for
concept-based explanations due to the possibility of amalgamation of concepts covering
the whole image, thereby nullifying the perturbation process. The thesis proposes a proxy

metric to estimate the faithfulness of concept-based explanatory frameworks. The basic
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assumption of the metric is that the explainer perfectly mimics the working of the black
box. A mechanism to circumvent this over-reliance on the posthoc explainer is needed.

The antehoc explainer proposed in Chapter 5 also suffers from a limitation inherent to
explainable by design frameworks. There is a drop in accuracy due to the incorporation of
explainability compared to the black box counterpart. The proposed framework builds a
domain-adapted classifier that explains itself by design. Several frameworks were proposed
later to incorporate explainability into the allied learning paradigms [164, 165] also suffer
from this tradeoff. To circumvent this, a mechanism to explain classifiers employing allied

learning paradigms faithfully in a posthoc manner needs to be developed.

6.3 Future Work

While the thesis proposes novel frameworks that advance the field of XAI, several open
problems are available to be solved collectively by the community. Mainly, three possible
research directions are discussed.

The preliminary direction shall be to extend the fruits of explainability to allied learning
paradigms. Traditional deep learning methods were data-hungry as they leveraged
voluminous chunks of data. However, various allied learning paradigms have been
introduced to reap the fruits of deep learning to data-scarce scenarios. Transfer Learning
aims to extend a classifier trained on a related data set containing many instances to
work on the scarce data of interest by aligning the feature and label spaces. The
thesis proposes a framework that explains a supervised domain-adapted classifier by
design. In a similar fashion, there have been parallel works [136, 139] that explain
an unsupervised domain-adapted classifier. Extensions to explainable classifiers using
heterogeneous transfer learning and open-set domain adaptation paradigms can be a
possible future avenue to explore. Few Shot Learning aims to learn classifiers from fewer
examples by leveraging features learned from related classes having a larger number of
instances. For instance, a zebra can be considered as a horse-like body and tiger-like
stripes. A motivating example from the medical domain would follow to distinguish
it from Transfer Learning. Few Shot Learning aims to leverage features learned by a
pneumonia detector to detect a related disease, say COVID-19, from fewer examples.
Transfer Learning may leverage COVID-19 data collected from another country where
more examples are available to learn a robust classifier that can be adapted to classify
instances sampled from a country having fewer positive cases. Wang et al. [164] propose
an explainable by design few-shot classifier which classifies an unseen novel test instance
by matching the features detected against characteristic patterns learned in the seen
categories. Incremental Learning mimics how humans learn. For instance, a computer
scientist does not learn to build an application in a day. First, the programming principles
are learned, then he learns to implement the different data structures needed to manage
the various modules and finally learns to assemble the modules to get the end product.

While learning an intermediate skill, humans do not forget the preliminary skills acquired.
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However, this is not the case in Al systems. When new classes are expected to be learned
by a classifier trained to classify an instance into a set of classes, they tend to forget
the distinctions across older classes already learned [166]. However, the reason for such
behavior is unknown. The thesis envisions the application of explainability to help unravel
the mechanism behind the incrementally learned classifiers, thereby guiding the research
community toward building classifiers that can mimic human-level incremental knowledge
expansion. Rymarczyk et al. [165] propose building an antehoc model whose explainable
components are learned such that catastrophic forgetting is managed by design. This
model is an extension of ProtoPNet architecture [36] where the prototypes corresponding
to the novel classes are enforced to be closer to the seen classes so that catastrophic
forgetting is minimized. An extension using antehoc frameworks that encourage learning
shared concepts similar to how concepts are shared in nature may enable minimizing
catastrophic forgetting as, despite sharedness in nature, humans expand their knowledge
base without forgetting.

The secondary direction shall be to develop quantitative metrics to assess the goodness of
the learned concepts. In saliency map based methods, the goodness of the explanations
is quantitatively assessed by simulating the effect on perturbation of the regions deemed
salient. Union of regions comprising the concepts may be unfair to assess the goodness
of the concepts as the union may cover up the entire image, nullifying the assessment.
The thesis proposes a new metric called agreement accuracy which assesses how well the
concept-based explainer approximates the working of the CNN to be explained. Leemann
et al. [167] propose using natural language models to assess the goodness of the concepts.
However, interpreting the language models [45] is needed on top of the evaluation process to
make it transparent. Zarlenga et al. [168] proposed metrics to assess if the learned concept
representations are pure with respect to a known oracle and suggests using inter-concept
disentanglement to measure if the learned representations capture dissimilar concepts.
When explainability is reaped to allied learning paradigms, metrics have to be developed
to assess the correctness of the peculiar aspects of those paradigms as encoded by the
explainer. For instance, if a posthoc explanatory approach is developed to unravel the
mapping of features across different domains, an evaluation is needed to assess if what is
being unraveled is true.

The tertiary direction suggests the cross-pollination of ideas from Neural Architecture
Search, which aims to identify the best architecture and parameters to model the
distribution from which the dataset of interest is sampled and XAI. There have been
recent proposals in this direction. Liu et al. [169] suggest using intrinsically explainable
components like regressors to search for optimal configurations to achieve black-box
level accuracy. Hosseini & Xie [170] propose updating the search for a suitable neural
architecture based on feedback from posthoc saliency maps [21]. The thesis envisions
applying the principles of neural architecture search to identify the optimal number of
concepts so that the accuracy interpretability tradeoff inherent to antehoc frameworks

can be minimized eventually. This, when possible, shall have a greater impact on
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recent classifiers employing allied learning paradigms [164, 165] where explainability is
incorporated by design.

While these are the possible future avenues with potential impact on the XAI field, an
alternate route that has been started and an active area of research currently [171, 172, 173]
is using the feedback from the explanation algorithm and introducing humans in the loop
to edit the erroneous classifier. This can be an interesting direction one can focus on,
especially when working in safety-critical applications; where necessary to adhere to the

working mechanism laid by experts is essential.

6.4 Implications of the Thesis

The motivations of this thesis and the problems addressed are very relevant to the
current scenario in the domain of machine learning, where explainability is becoming
increasingly sought after to enable the pervasive application of artificial intelligence,
especially in safety-critical applications like healthcare, finance, judiciary systems, etc., A
human-friendly way of explanations is preferred as ultimately the Al systems would be used
by humans. Studies suggest that humans process images in terms of individual constituent
concepts. Hence, concept-based explanations can help users better understand the working
of Al systems. This thesis proposes three novel concept-based explanatory frameworks in
successive chapters that deal with progressive levels of complexity and challenges faced
under different image-classification scenarios. One major outcome of this thesis is to lay
the foundations for developing a general framework for automatically extracting concepts
that explain the working of a CNN. The proposed explainable cross-domain classifying
framework, which marks the beginning of extending the fruits of explainability to classifiers
learned using allied learning paradigms, can be easily extended to other learning paradigms
whose possibilities are discussed in the previous section.

Besides, this thesis provides a complete description of the XAI research area. It
also summarizes the state-of-the-art contributions to the different types of explanations
of a CNN that performs image classification. The underlying principle, limitations,
and improvements made to these seminal contributions have also been highlighted.
Furthermore, this thesis also presents some future research directions that can be taken
based on the work done in this thesis, along with some unexplored avenues in the XAI
field.



References

1]

N. K. Sarkar, M. M. Singh, and U. Nandi, “Recent researches on image classification
using deep learning approach,” International Journal of Computing and Digital
Systems, vol. 12, no. 1, pp. 1357-1374, 2022.

D. G. Lowe, “Object recognition from local scale-invariant features,” in Proceedings
of the seventh IEEE International Conference on Computer Vision, vol. 2,
pp. 1150-1157, IEEE, 1999.

N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in
IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
vol. 1, pp. 886-893, 2005.

S.S. A. Zaidi, M. S. Ansari, A. Aslam, N. Kanwal, M. Asghar, and B. Lee, “A survey
of modern deep learning based object detection models,” Digital Signal Processing,
p. 103514, 2022.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with
deep convolutional neural networks,” Communications of the ACM, vol. 60, no. 6,
pp. 84-90, 2017.

K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition,” International Conference on Learning Representations, vol. 7,
2015.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770-778, 2016.

A. Gonzalez-Garcia, Image context for object detection, object context for part
detection. PhD thesis, The University of Edinburgh, March 2018.

B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, “Object detectors
emerge from training cnns for scene recognition,” in The &rd International

Conference on Learning Representations, San Diego, CA, USA, pp. 1-12, 2015.

Z. C. Lipton, “The doctor just won’t accept that! interpretable ML symposium,” in

Neural Information Processing Systems, 2017.

Z. Salahuddin, H. C. Woodruff, A. Chatterjee, and P. Lambin, “Transparency of deep
neural networks for medical image analysis: A review of interpretability methods,”
Computers in Biology and Medicine, vol. 140, p. 105111, 2022.

93



94

References

[12]

[14]

[19]

[20]

[21]

23]

S. Bonicalzi, “A matter of justice. the opacity of algorithmic decision-making and
the trade-off between uniformity and discretion in legal applications of artificial
intelligence,” Teoria. Rivista di filosofia, vol. 42, no. 2, pp. 131-147, 2022.

Council of FEuropean Union, “2018 reform of eu data protection rules,” 2018.
https://ec.europa.eu/commission/sites/beta-political/files/

data-protection-factsheet-changes_en.pdf.

F. D. Martino and F. Delmastro, “Explainable Al for clinical and remote health
applications: a survey on tabular and time series data,” Artificial Intelligence Review,
pp- 1-55, 2022.

L. Zhu, Z. Zhu, C. Zhang, Y. Xu, and X. Kong, “Multimodal sentiment analysis

based on fusion methods: A survey,” Information Fusion, 2023.

W. Saeed and C. Omlin, “Explainable AI (XAI): A systematic meta-survey of current
challenges and future opportunities,” Knowledge-Based Systems, p. 110273, 2023.

P. Weber, K. V. Carl, and O. Hinz, “Applications of explainable artificial intelligence
in finance—a systematic review of finance, information systems, and computer

science literature,” Management Review Quarterly, pp. 1-41, 2023.

E. Owens, B. Sheehan, M. Mullins, M. Cunneen, J. Ressel, and G. Castignani,
“Explainable artificial intelligence (XAI) in insurance,” Risks, vol. 10, no. 12, p. 230,
2022.

A. J. Barnett, F. R. Schwartz, C. Tao, C. Chen, Y. Ren, J. Y. Lo, and C. Rudin,
“A case-based interpretable deep learning model for classification of mass lesions in
digital mammography,” Nature Machine Intelligence, vol. 3, no. 12, pp. 1061-1070,
2021.

M. T. Ribeiro, S. Singh, and C. Guestrin, “Why should I trust you?: Explaining the
predictions of any classifier,” in Proceedings of the ACM International Conference
on Knowledge Discovery and Data Mining, pp. 1135-1144, 2016.

R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and
D. Batra, “Grad-CAM: Visual explanations from deep networks via gradient-based
localization,” in Proceedings of the IEEE International Conference on Computer
Vision, pp. 618-626, 2017.

Y. Neuhaus, M. Augustin, V. Boreiko, and M. Hein, “Spurious features
everywhere—large-scale detection of harmful spurious features in ImageNet,” arXiv
preprint arXiw:2212.04871, 2022.

A. Chattopadhyay, A. Sarkar, P. Howlader, and V. N. Balasubramanian,
“Grad-CAM++: Generalized gradient-based visual explanations for deep


https://ec.europa.eu/commission/sites/beta-political/files/data-protection-factsheet-changes_en.pdf
https://ec.europa.eu/commission/sites/beta-political/files/data-protection-factsheet-changes_en.pdf

References 95

[24]

[26]

[31]

[34]

b

convolutional networks,” in IEEE Winter Conference on Applications of Computer

Vision, pp. 839-847, IEEE, 2018.

H. Wang, Z. Wang, M. Du, F. Yang, Z. Zhang, S. Ding, P. Mardziel, and X. Hu,
“Score-CAM: Score-weighted visual explanations for convolutional neural networks,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, pp. 24-25, 2020.

S. Desai and H. G. Ramaswamy, “Ablation-CAM: Visual explanations for
deep convolutional network via gradient-free localization,” in The IEEE Winter

Conference on Applications of Computer Vision, pp. 983-991, 2020.

M. T. Ribeiro, S. Singh, and C. Guestrin, “Anchors: High-precision model-agnostic
explanations,” in Proceedings of the AAAI Conference on Artificial Intelligence,
2018.

R. Sharma, N. Reddy, V. Kamakshi, N. C. Krishnan, and S. Jain, “MAIRE-a
model-agnostic interpretable rule extraction procedure for explaining classifiers,”
in International Cross-Domain Conference for Machine Learning and Knowledge
Ezxtraction, pp. 329-349, Springer, 2021.

P. F. Felzenszwalb and D. P. Huttenlocher, “Efficient graph-based image
segmentation,” International Journal of Computer Vision, vol. 59, pp. 167-181,
2004.

A. Vedaldi and S. Soatto, “Quick shift and kernel methods for mode seeking,” in
FEuropean Conference on Computer Vision, pp. 705-718, Springer, 2008.

T. Hartley, K. Sidorov, C. Willis, and D. Marshall, “SWAG: Superpixels weighted
by average gradients for explanations of CNNs,” in Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision, pp. 423-432, 2021.

Y. Goyal, Z. Wu, J. Ernst, D. Batra, D. Parikh, and S. Lee, “Counterfactual visual
explanations,” in International Conference on Machine Learning, pp. 23762384,
PMLR, 2019.

B. Kim, M. Wattenberg, J. Gilmer, C. Cai, J. Wexler, F. Viegas, et al.,
“Interpretability beyond feature attribution: Quantitative testing with concept
activation vectors (TCAV),” in International Conference on Machine Learning,
pp. 2668-2677, PMLR, 2018.

A. Ghorbani, J. Wexler, J. Y. Zou, and B. Kim, “Towards automatic
concept-based explanations,” in Advances in Neural Information Processing Systems,
pp- 9277-9286, 2019.

M. Yuksekgonul, M. Wang, and J. Zou, “Post-hoc concept bottleneck models,”
in ICLR Workshop on PAIR2Struct: Privacy, Accountability, Interpretability,

Robustness, Reasoning on Structured Data, 2022.



96

References

[35]

[40]

[41]

[42]

[43]

[44]

[45]

V. V. Ramaswamy, S. S. Kim, R. Fong, and O. Russakovsky, “Overlooked
factors in concept-based explanations: Dataset choice, concept salience, and human
capability,” in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2023.

C. Chen, O. Li, D. Tao, A. Barnett, C. Rudin, and J. K. Su, “This looks like
that: deep learning for interpretable image recognition,” in Advances in Neural
Information Processing Systems, pp. 8928-8939, 2019.

D. Rymarczyk, . Struski, M. Goérszczak, K. Lewandowska, J. Tabor, and
B. Zielinski, “Interpretable image classification with differentiable prototypes
assignment,” in Furopean Conference on Computer Vision, pp. 351-368, Springer,
2022.

M. Nauta, R. van Bree, and C. Seifert, “Neural prototype trees for interpretable
fine-grained image recognition,” in Proceedings of the IEEE/CVFE Conference on
Computer Vision and Pattern Recognition, pp. 14933-14943, 2021.

L. A. Hendricks, Z. Akata, M. Rohrbach, J. Donahue, B. Schiele, and T. Darrell,
“Generating visual explanations,” in Furopean Conference on Computer Vision,
pp- 3-19, Springer, 2016.

L. A. Hendricks, R. Hu, T. Darrell, and Z. Akata, “Grounding visual explanations,”
in Proceedings of the European Conference on Computer Vision, pp. 264-279, 2018.

L. A. Hendricks, A. Rohrbach, B. Schiele, T. Darrell, and Z. Akata, “Generating
visual explanations with natural language,” Applied AI Letters, vol. 2, no. 4, p. €55,
2021.

Y. Yang, S. Kim, and J. Joo, “Explaining deep convolutional neural networks via
latent visual-semantic filter attention,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 8333-8343, 2022.

Y. Kim, S. Mo, M. Kim, K. Lee, J. Lee, and J. Shin, “Explaining visual biases as
words by generating captions,” arXiv preprint arXiv:2301.11104, 2023.

S. Wickramanayake, W. Hsu, and M. L. Lee, “Comprehensible convolutional neural
networks via guided concept learning,” in International Joint Conference on Neural
Networks, pp. 1-8, IEEE, 2021.

S. Gurrapu, A. Kulkarni, L. Huang, I. Lourentzou, L. Freeman, and F. A. Batarseh,
“Rationalization for explainable NLP: A survey,” arXiv preprint arXiv:2301.08912,
2023.

L. A. Hendricks, R. Hu, T. Darrell, and Z. Akata, “Generating counterfactual
explanations with natural language,” in ICML Workshop on Human Interpretability
in Machine Learning, pp. 9598, 2018.



References 97

[47]

[50]

[51]

[52]

[53]

[54]

[55]

[58]

D. H. Park, L. A. Hendricks, Z. Akata, A. Rohrbach, B. Schiele, T. Darrell, and
M. Rohrbach, “Multimodal explanations: Justifying decisions and pointing to the
evidence,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 8779-8788, 2018.

J. Wu and R. Mooney, “Faithful multimodal explanation for visual question
answering,” in Proceedings of the ACL Workshop BlackboxNLP: Analyzing and
Interpreting Neural Networks for NLP, pp. 103-112, 2019.

B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, “Learning deep
features for discriminative localization,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2921-2929, 2016.

B. M. Lake, T. D. Ullman, J. B. Tenenbaum, and S. J. Gershman, “Building
machines that learn and think like people,” Behavioral and Brain Sciences, vol. 40,
p. €253, 2017.

S. L. Armstrong, L. R. Gleitman, and H. Gleitman, “What some concepts might not
be,” Cognition, vol. 13, no. 3, pp. 263-308, 1983.

I. Biederman, “Recognition-by-components: a theory of human image

understanding.,” Psychological Review, vol. 94, no. 2, p. 115, 1987.

C.-K. Yeh, B. Kim, S. Arik, C.-L. Li, T. Pfister, and P. Ravikumar, “On
completeness-aware concept-based explanations in deep neural networks,” in
Advances in Neural Information Processing Systems, pp. 20554-20565, 2020.

M. Nauta, A. Jutte, J. Provoost, and C. Seifert, “This looks like that,
because... explaining prototypes for interpretable image recognition,” in Joint
FEuropean Conference on Machine Learning and Knowledge Discovery in Databases,
pp- 441-456, Springer, 2021.

X. Zhu, “Machine teaching: An inverse problem to machine learning and an approach
toward optimal education,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 29, 2015.

M. Sundararajan, A. Taly, and Q. Yan, “Axiomatic attribution for deep networks,”
in International Conference on Machine Learning, pp. 3319-3328, PMLR, 2017.

J. Zhang, S. A. Bargal, Z. Lin, J. Brandt, X. Shen, and S. Sclaroff, “Top-down
neural attention by excitation backprop,” International Journal of Computer Vision,
vol. 126, no. 10, pp. 1084-1102, 2018.

J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, “Striving for
simplicity: The all convolutional net,” Workshop at International Conference on

Learning Representations, 2015.



98

References

[59]

[66]

K. Simonyan, A. Vedaldi, and A. Zisserman, “Deep inside convolutional networks:
Visualising image classification models and saliency maps,” in Workshop at

International Conference on Learning Representations, 2014.

Y. Wang, H. Su, B. Zhang, and X. Hu, “Learning reliable visual saliency for model
explanations,” IEEE Transactions on Multimedia, 2019.

J. Adebayo, J. Gilmer, M. Muelly, I. Goodfellow, M. Hardt, and B. Kim, “Sanity
checks for saliency maps,” in Advances in Neural Information Processing Systems,
pp- 9505-9515, 2018.

L. Sixt, M. Granz, and T. Landgraf, “When explanations lie: Why modified BP

attribution fails,” International Conference on Machine Learning, 2020.

A. Salama, N. Adly, and M. Torki, “Ablation-CAM++: Grouped recursive visual

9

explanations for deep convolutional networks,” in IEEFE International Conference

on Image Processing, pp. 2011-2015, 2022.

R. Fong, M. Patrick, and A. Vedaldi, “Understanding deep networks via extremal
perturbations and smooth masks,” in Proceedings of the IEEE International
Conference on Computer Vision, pp. 2950-2958, 2019.

R. C. Fong and A. Vedaldi, “Interpretable explanations of black boxes by meaningful

i

perturbation,” in Proceedings of the IEEE International Conference on Computer

Vision, pp. 3429-3437, 2017.

S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Miiller, and W. Samek,
“On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance
propagation,” PloS One, vol. 10, no. 7, p. e0130140, 2015.

A. Shrikumar, P. Greenside, and A. Kundaje, “Learning important features
through propagating activation differences,” in International Conference on Machine

Learning, pp. 3145-3153, PMLR, 2017.

J. R. Lee, S. Kim, I. Park, T. Eo, and D. Hwang, “Relevance-CAM: Your model
already knows where to look,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 14944-14953, 2021.

H. Jung and Y. Oh, “Towards better explanations of class activation mapping,”
in Proceedings of the IEEE/CVF International Conference on Computer Vision,
pp. 1336-1344, 2021.

S. Sattarzadeh, M. Sudhakar, K. N. Plataniotis, J. Jang, Y. Jeong, and H. Kim,
“Integrated grad-CAM: Sensitivity-aware visual explanation of deep convolutional
networks via integrated gradient-based scoring,” in IEEE International Conference
on Acoustics, Speech and Signal Processing, pp. 1775-1779, IEEE, 2021.



References 99

[71]

[76]

[79]

[80]

[83]

P. Wang, X. Kong, W. Guo, and X. Zhang, “Exclusive feature constrained
class activation mapping for better visual explanation,” IEFE Access, vol. 9,
pp- 61417-61428, 2021.

P. Dabkowski and Y. Gal, “Real time image saliency for black box classifiers,” in

Advances in Neural Information Processing Systems, pp. 6967-6976, 2017.

C. Rudin, “Stop explaining black box machine learning models for high stakes
decisions and use interpretable models instead,” Nature Machine Intelligence, vol. 1,
no. 5, pp. 206-215, 2019.

M. R. Zafar and N. Khan, “Deterministic local interpretable model-agnostic
explanations for stable explainability,” Machine Learning and Knowledge Extraction,
vol. 3, no. 3, pp. 525-541, 2021.

D. Collaris, P. Gajane, J. Jorritsma, J. J. van Wijk, and M. Pechenizkiy, “LEMON:
Alternative sampling for more faithful explanation through local surrogate models,”
in Advances in Intelligent Data Analysis XXI, (Cham), pp. 77-90, Springer Nature
Switzerland, 2023.

H. Lakkaraju, E. Kamar, R. Caruana, and J. Leskovec, “Faithful and customizable
explanations of black box models,” in Proceedings of the AAAI/ACM Conference on
Al, Ethics, and Society, pp. 131-138, 2019.

S. M. Lundberg and S.-I. Lee, “A wunified approach to interpreting model
predictions,” in Advances in Neural Information Processing Systems, pp. 4765-4774,
2017.

S. M. Lundberg, G. G. Erion, and S.-I. Lee, “Consistent individualized feature

9

attribution for tree ensembles,” in ICML Workshop on Human Interpretability in

Machine Learning, 2017.

J. H. Friedman and B. E. Popescu, “Predictive learning via rule ensembles,” The
annals of applied statistics, pp. 916-954, 2008.

C. Harris, R. Pymar, and C. Rowat, “Joint shapley values: a measure of joint feature

importance,” in International Conference on Learning Representations, 2022.

X. Huang and J. Marques-Silva, “The inadequacy of shapley values for
explainability,” arXiv preprint arXiv:2502.08160, 2023.

P. Rasouli and I. Chieh Yu, “CARE: Coherent actionable recourse based on sound
counterfactual explanations,” International Journal of Data Science and Analytics,
pp. 1-26, 2022.

M. Pawelczyk, C. Agarwal, S. Joshi, S. Upadhyay, and H. Lakkaraju, “Exploring

counterfactual explanations through the lens of adversarial examples: A theoretical



100

References

[87]

(3]

[89]

[90]

9

and empirical analysis,” in International Conference on Artificial Intelligence and

Statistics, pp. 4574-4594, PMLR, 2022.

A. Abid, M. Yuksekgonul, and J. Zou, “Meaningfully debugging model mistakes
using conceptual counterfactual explanations,” in International Conference on
Machine Learning, pp. 6688, PMLR, 2022.

S. Singla and B. Pollack, “Explanation by progressive exaggeration,” in International

Conference on Learning Representations, 2020.

P. Wang and N. Vasconcelos, “SCOUT: Self-aware discriminant counterfactual
explanations,” in Proceedings of the IEEE/CVFE Conference on Computer Vision
and Pattern Recognition, pp. 8981-8990, 2020.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial nets,” Advances in Neural

Information Processing Systems, vol. 27, 2014.
Y. Zhao, “Fast real-time counterfactual explanations,” 2020.

Y. Choi, M. Choi, M. Kim, J.-W. Ha, S. Kim, and J. Choo, “StarGAN: Unified
generative adversarial networks for multi-domain image-to-image translation,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 8789-8797, 2018.

O. Lang, Y. Gandelsman, M. Yarom, Y. Wald, G. Elidan, A. Hassidim, W. T.
Freeman, P. Isola, A. Globerson, M. Irani, et al., “Explaining in style: Training
a GAN to explain a classifier in stylespace,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 693-702, 2021.

P. W. Koh, T. Nguyen, Y. S. Tang, S. Mussmann, E. Pierson, B. Kim, and P. Liang,
“Concept bottleneck models,” in International Conference on Machine Learning,

pp. 5338-5348, PMLR, 2020.

J. Pfau, A. T. Young, J. Wei, M. L. Wei, and M. J. Keiser, “Robust semantic
interpretability: Revisiting concept activation vectors,” in ICML Workshop on

Human Interpretability in Machine Learning, 2020.

P. Arendsen, D. Marcos, and D. Tuia, “Concept discovery for the interpretation of
landscape scenicness,” Machine Learning and Knowledge Extraction, vol. 2, no. 4,
p- 22, 2020.

M. Hassanin, S. Anwar, I. Radwan, F. S. Khan, and A. Mian, “Visual attention
methods in deep learning: An in-depth survey,” arXiv preprint arXiv:2204.07756,
2022.



References 101

[95]

[98]

[99]

[100]

[101]

[102]

103]

[104]

[105]

[106]

A. K. Mohankumar, P. Nema, S. Narasimhan, M. M. Khapra, B. V. Srinivasan,
and B. Ravindran, “Towards transparent and explainable attention models,” in
Proceedings of the Annual Meeting of the Association for Computational Linguistics,
pp. 42064216, 2020.

W. Xu, J. Wang, Y. Wang, G. Xu, D. Lin, W. Dai, and Y. Wu, “Where is the
model looking at —concentrate and explain the network attention,” IEEE Journal of

Selected Topics in Signal Processing, pp. 1-1, 2020.

K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov, R. Zemel, and
Y. Bengio, “Show, attend and tell: Neural image caption generation with visual

attention,” in International Conference on Machine Learning, pp. 2048-2057, 2015.

S. Jain and B. C. Wallace, “Attention is not explanation,” in Proceedings of the
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers),
pp. 3543-3556, 2019.

A. R. Akula and S.-C. Zhu, “Attention cannot be an explanation,” arXiv preprint
arXiw:2201.11194, 2022.

R. R. Hoffman, S. T. Mueller, G. Klein, and J. Litman, “Metrics for explainable Al:
Challenges and prospects,” arXiv preprint arXiv:1812.04608, 2018.

Q. Zhang, Y. Nian Wu, and S.-C. Zhu, “Interpretable convolutional neural
networks,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 8827-8836, 2018.

O. Li, H. Liu, C. Chen, and C. Rudin, “Deep learning for case-based reasoning
through prototypes: A neural network that explains its predictions,” in AAAI
Conference on Artificial Intelligence, 2018.

P. Hase, C. Chen, O. Li, and C. Rudin, “Interpretable image recognition with
hierarchical prototypes,” in Proceedings of the AAAI Conference on Human

Computation and Crowdsourcing, vol. 7, pp. 32-40, 2019.

J. Wang, H. Liu, X. Wang, and L. Jing, “Interpretable image recognition by
constructing transparent embedding space,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 895-904, 2021.

A. Hoffmann, C. Fanconi, R. Rade, and J. Kohler, “This looks like that... does it?
shortcomings of latent space prototype interpretability in deep networks,” arXiv
preprint arXiv:2105.02968, 2021.

Q. Huang, M. Xue, H. Zhang, J. Song, and M. Song, “Is ProtoPNet really
explainable? evaluating and improving the interpretability of prototypes,” arXiv
preprint arXiv:2212.05946, 2022.



102

References

107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117)

18]

D. Rymarczyk, t.. Struski, J. Tabor, and B. Zielinski, “ProtoPShare: Prototypical
parts sharing for similarity discovery in interpretable image classification,” in
Proceedings of the ACM SIGKDD Conference on Knowledge Discovery € Data
Mining, pp. 1420-1430, 2021.

O. Vinyals, A. Toshev, S. Bengio, and D. Erhan, “Show and tell: A neural image
caption generator,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 3156-3164, 2015.

I. Tiddi and S. Schlobach, “Knowledge graphs as tools for explainable machine
learning: A survey,” Artificial Intelligence, vol. 302, p. 103627, 2022.

N. E. Maillot and M. Thonnat, “Ontology based complex object recognition,” Image
and Vision Computing, vol. 26, no. 1, pp. 102-113, 2008.

K. Marino, R. Salakhutdinov, and A. Gupta, “The more you know: Using knowledge
graphs for image classification,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 2673—-2681, 2017.

M. Alirezaie, M. Langkvist, M. Sioutis, and A. Loutfi, “A symbolic approach for
explaining errors in image classification tasks,” in International Joint Conference on
Artificial Intelligence, 2018.

Z. A. Daniels, L. D. Frank, C. J. Menart, M. Raymer, and P. Hitzler, “A framework
for explainable deep neural models using external knowledge graphs,” in Artificial
Intelligence and Machine Learning for Multi-Domain Operations Applications 11,
vol. 11413, pp. 480499, SPIE, 2020.

Q. Liao and T. Poggio, “Object-oriented deep learning,” tech. rep., Center for Brains,
Minds and Machines (CBMM), 2017.

V. Ordonez, W. Liu, J. Deng, Y. Choi, A. C. Berg, and T. L. Berg, “Predicting
entry-level categories,” International Journal of Computer Vision, vol. 115,
pp. 29-43, 2015.

R. T. Icarte, J. A. Baier, C. Ruz, and A. Soto, “How a general-purpose commonsense
ontology can improve performance of learning-based image retrieval,” in Proceedings
of the International Joint Conference on Artificial Intelligence, pp. 1283-1289, 2017.

C.-H. H. Yang, Y.-C. Liu, P.-Y. Chen, X. Ma, and Y.-C. J. Tsai, “When
causal intervention meets adversarial examples and image masking for deep neural

b

networks,” in IEEFE International Conference on Image Processing, pp. 3811-3815,

IEEE, 2019.

P. Panda, S. S. Kancheti, and V. N. Balasubramanian, “Instance-wise causal feature
selection for model interpretation,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 1756—1759, 2021.



References 103

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

M. Prabhushankar and G. AlRegib, “Extracting causal visual features for limited
label classification,” in IEEE International Conference on Image Processing,
pp- 3697-3701, IEEE, 2021.

M. T. Bahadori and D. Heckerman, “Debiasing concept-based explanations with

causal analysis,” in International Conference on Learning Representations, 2021.

S. S. Kancheti, A. G. Reddy, V. N. Balasubramanian, and A. Sharma, “Matching
learned causal effects of neural networks with domain priors,” in International
Conference on Machine Learning, pp. 10676-10696, PMLR, 2022.

S. Dash, V. N. Balasubramanian, and A. Sharma, “Evaluating and mitigating bias in

”

image classifiers: A causal perspective using counterfactuals,” in Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 915-924,

2022.

C. Frye, C. Rowat, and 1. Feige, “Asymmetric shapley values: incorporating causal
knowledge into model-agnostic explainability,” Advances in Neural Information
Processing Systems, vol. 33, pp. 1229-1239, 2020.

C. Reimers, J. Runge, and J. Denzler, “Determining the relevance of features for
deep neural networks,” in FEuropean Conference on Computer Vision, (Cham),

pp- 330-346, Springer International Publishing, 2020.

M. Watson, B. A. S. Hasan, and N. Al Moubayed, “Learning how to mimic:
Using model explanations to guide deep learning training,” in Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1461-1470,
2023.

D. Lopez-Paz, R. Nishihara, S. Chintala, B. Scholkopf, and L. Bottou, “Discovering
causal signals in images,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 6979-6987, 2017.

W. Qin, H. Zhang, R. Hong, E.-P. Lim, and Q. Sun, “Causal interventional training

for image recognition,” IEEE Transactions on Multimedia, 2021.

S. Singla, S. Wallace, S. Triantafillou, and K. Batmanghelich, “Using causal
analysis for conceptual deep learning explanation,” in Medical Image Computing

and Computer Assisted Intervention, pp. 519-528, Springer, 2021.

Y. Goyal, A. Feder, U. Shalit, and B. Kim, “Explaining classifiers with causal concept
effect (CaCE),” arXiv preprint arXiv:1907.07165, 2019.

P. Singhal, R. Walambe, S. Ramanna, and K. Kotecha, “Domain adaptation:
Challenges, methods, datasets, and applications,” IEFEE Access, vol. 11,
pp- 6973-7020, 2023.



104

References

[131]

[132]

[133]

[134]

[135]

[136]

[137]

138

[139]

[140]

[141]

[142]

[143]

A. Zunino, S. A. Bargal, R. Volpi, M. Sameki, J. Zhang, S. Sclaroff, V. Murino,
and K. Saenko, “Explainable deep classification models for domain generalization,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 3233-3242, 2021.

R. Szabé, D. Katona, M. Csillag, A. Csiszarik, and D. Varga, “Visualizing transfer
learning,” ICML Workshop on Human Interpretability in Machine Learning, 2020.

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, et al., “ImageNet large scale visual
recognition challenge,” International Journal of Computer Vision, vol. 115, no. 3,
pp. 211-252; 2015.

A. Nguyen, A. Dosovitskiy, J. Yosinski, T. Brox, and J. Clune, “Synthesizing the
preferred inputs for neurons in neural networks via deep generator networks,” in

Advances in Neural Information Processing Systems, pp. 3387-3395, 2016.

B. Neyshabur, H. Sedghi, and C. Zhang, “What is being transferred in transfer
learning?,” Advances in Neural Information Processing Systems, vol. 33, pp. 512-523,
2020.

Y. Zhang, T. Yao, Z. Qiu, and T. Mei, “Explaining cross-domain recognition with
interpretable deep classifier,” arXiv preprint arXiw:2211.08249, 2022.

E. Tzeng, J. Hoffman, K. Saenko, and T. Darrell, “ Adversarial discriminative domain
adaptation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 7167-7176, 2017.

Z. Pei, Z. Cao, M. Long, and J. Wang, “Multi-adversarial domain adaptation,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32, 2018.

W. Xiao, Z. Ding, and H. Liu, “Visualizing transferred knowledge: An interpretive
model of unsupervised domain adaptation,” arXiv preprint arXiv:2303.02302, 2023.

F. Schroff, D. Kalenichenko, and J. Philbin, “FaceNet: A unified embedding for face
recognition and clustering,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 815823, 2015.

Y. Xian, C. H. Lampert, B. Schiele, and Z. Akata, “Zero-shot learning—a
comprehensive evaluation of the good, the bad and the ugly,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 41, no. 9, pp. 2251-2265, 2018.

C. Fellbaum, WordNet: An Electronic Lexical Database. Bradford Books, 1998.

D. P. Kingma and J. L. B. Adam, “A method for stochastic optimization,”

International Conference on Learning Representations, vol. 7, 2015.



References 105

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

R. Zhang, P. Madumal, T. Miller, K. Ehinger, and B. Rubinstein, “Improving
interpretability of CNN models using non-negative concept activation vectors,” in
AAAI Conference on Artificial Intelligence, 2021.

C. Olah, A. Satyanarayan, I. Johnson, S. Carter, L. Schubert, K. Ye, and
A. Mordvintsev, “The building blocks of interpretability,” Distill, 2018.

D. D. Lee and H. S. Seung, “Learning the parts of objects by non-negative matrix
factorization,” Nature, vol. 401, no. 6755, pp. 788-791, 1999.

N. Li, S. Wang, H. Li, and Z. Li, “SAC-NMF-Driven graphical feature analysis

and applications,
pp- 630-646, 2020.

Machine Learning and Knowledge Extraction, vol. 2, no. 4,

J. Sun, Z. Wang, H. Li, and F. Sun, “Incremental nonnegative matrix factorization
with sparseness constraint for image representation,” in Pacific Rim Conference on
Multimedia, pp. 351-360, Springer, 2018.

A. Lefevre, F. Bach, and C. Févotte, “Online algorithms for nonnegative matrix
factorization with the Itakura-Saito divergence,” in 2011 IEEE Workshop on
Applications of Signal Processing to Audio and Acoustics, pp. 313-316, IEEE, 2011.

A. Cichocki and A.-H. Phan, “Fast local algorithms for large scale nonnegative
matrix and tensor factorizations,” IEICE Transactions on Fundamentals of
Electronics, Commumnications and Computer Sciences, vol. 92, no. 3, pp. 708-721,
2009.

C. Févotte and J. Idier, “Algorithms for nonnegative matrix factorization with the
B-divergence,” Neural Computation, vol. 23, no. 9, pp. 2421-2456, 2011.

D. Lee and H. S. Seung, “Algorithms for non-negative matrix factorization,”

Advances in Neural Information Processing Systems, vol. 13, 2000.

A. Buades, B. Coll, and J.-M. Morel, “Non-local means denoising,” Image Processing
On Line, vol. 1, pp. 208-212, 2011.

S. Kumar, V. K. Kurmi, P. Singh, and V. P. Namboodiri, “Mitigating uncertainty
of classifier for unsupervised domain adaptation,” arXiv preprint arXiv:2107.00727,
2021.

Y. Hou and L. Zheng, “Visualizing adapted knowledge in domain transfer,” in
Proceedings of the IEEE/CVFE Conference on Computer Vision and Pattern
Recognition, pp. 13824-13833, 2021.

V. K. Kurmi, S. Kumar, and V. P. Namboodiri, “Attending to discriminative
certainty for domain adaptation,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pp. 491-500, 2019.



106

References

[157]

[158]

[159)]

160

[161]

[162]

163]

164]

[165]

[166]

167]

B. Kulis, K. Saenko, and T. Darrell, “What you saw is not what you get: Domain
adaptation using asymmetric kernel transforms,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 1785-1792, IEEE,
2011.

K. Saenko, B. Kulis, M. Fritz, and T. Darrell, “Adapting visual category models to
new domains,” in Furopean Conference on Computer Vision, pp. 213-226, Springer,
2010.

A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Scholkopf, and A. Smola, “A
kernel two-sample test,” The Journal of Machine Learning Research, vol. 13, no. 1,
pp. 723-773, 2012.

B. Sun and K. Saenko, “Deep coral: Correlation alignment for deep domain

Y

adaptation,” in Furopean Conference on Computer Vision, pp. 443-450, Springer,

2016.

W. Zellinger, B. A. Moser, T. Grubinger, E. Lughofer, T. Natschldger, and
S. Saminger-Platz, “Robust unsupervised domain adaptation for neural networks

via moment alignment,” Information Sciences, vol. 483, pp. 174-191, 2019.

X. Zhou, X. Xu, R. Venkatesan, G. Swaminathan, and O. Majumder, “d-SNE:
Domain adaptation using stochastic neighborhood embedding,” in Domain

Adaptation in Computer Vision with Deep Learning, pp. 43-56, Springer, 2020.

P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff, S. Belongie, and P. Perona,
“Caltech-UCSD Birds 200,” Tech. Rep. CNS-TR-2010-001, California Institute of
Technology, 2010.

B. Wang, L. Li, M. Verma, Y. Nakashima, R. Kawasaki, and H. Nagahara, “Match
them up: visually explainable few-shot image classification,” Applied Intelligence,
pp- 1-22, 2022.

D. Rymarczyk, J. van de Weijer, B. Zielinski, and B. Twardowski,
“ICICLE: Interpretable class incremental continual learning,” arXiv preprint
arXw:2303.07811, 2023.

M. Masana, X. Liu, B. Twardowski, M. Menta, A. D. Bagdanov, and J. van de
Weijer, “Class-incremental learning: survey and performance evaluation on image
classification,” IFEE Transactions on Pattern Analysis and Machine Intelligence,
2022.

T. Leemann, Y. Rong, S. Kraft, E. Kasneci, and G. Kasneci, “Coherence evaluation
of visual concepts with objects and language,” in ICLR2022 Workshop on the
Elements of Reasoning: Objects, Structure and Causality, 2022.



References 107

[168]

[169]

[170]

[171]

[172]

[173]

M. E. Zarlenga, P. Barbiero, Z. Shams, D. Kazhdan, U. Bhatt, A. Weller, and
M. Jamnik, “Towards robust metrics for concept representation evaluation,” in
Proceedings of the AAAI Conference on Artificial Intelligence, 2023.

C.-H. Liu, Y.-S. Han, Y.-Y. Sung, Y. Lee, H.-Y. Chiang, and K.-C. Wu, “FOX-NAS:
Fast, on-device and explainable neural architecture search,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 789-797, 2021.

R. Hosseini and P. Xie, “Saliency-aware neural architecture search,” Advances in
Neural Information Processing Systems, vol. 35, pp. 14743-14757, 2022.

S. Santurkar, D. Tsipras, M. Elango, D. Bau, A. Torralba, and A. Madry, “Editing
a classifier by rewriting its prediction rules,” Advances in Neural Information
Processing Systems, vol. 34, pp. 23359-23373, 2021.

R. Tanno, M. F Pradier, A. Nori, and Y. Li, “Repairing neural networks by leaving
the right past behind,” Advances in Neural Information Processing Systems, vol. 35,
pp- 13132-13145, 2022.

J. Wang, R. Hu, C. Jiang, R. Hu, and J. Sang, “Counterexample contrastive learning
for spurious correlation elimination,” in Proceedings of the 30th ACM International
Conference on Multimedia, pp. 4930-4938, 2022.



	Declaration
	Acknowledgement
	Certificate
	Lay Summary
	Abstract
	List of Publications
	List of Figures
	List of Tables
	Introduction
	What is Explainable AI (XAI)?
	Types of Explanation
	Explainable AI Approaches

	Automated Concept-based Explanations
	Research Problems
	Notations
	Contributions
	Organization of the Thesis

	Literature Review
	Posthoc Methods
	Class Activation Maps
	Model-agnostic Explanations
	Counterfactual Explanations
	Concept-based Explanations

	Antehoc Explanations
	Visual Explanations
	Natural Language Explanations
	Neuro-symbolic methods

	Causal Explanations
	Explaining Cross-domain Classification

	Posthoc Class-specific Automatic Concept Extractors
	Introduction
	Related Work
	Contributions
	Methodology
	Experiments
	Comparison with Principal Component Analysis (PCA) and Clustering Baseline
	Human Subject Experiments
	Qualitative Concept Analysis
	Explaining Misclassifications

	Summary

	Shared Concepts Extractor
	Introduction
	Related Work
	Contributions
	Methodology
	Mini-batch NMF
	Concept Visualizations
	Concept Importance
	Associating Concepts to Image Aspects

	Experiments
	Faithfulness
	Concept Sharedness Across Classes in Different CNN Architectures
	Analysing Concept Associations to Image Aspects
	Human Subject Experiments
	Ablations

	Summary

	Explainable Supervised Domain Adaptation Network
	Introduction
	Domain Adaptation
	Contributions
	Methodology
	Training Procedure
	Learning explanatory latent space
	Projecting the Concepts
	Learning the classifier
	Gradual training

	Experiments
	Datasets
	Birds Dataset
	Monkeys Dataset
	Correct Classification
	Misclassification

	Ablation studies
	Cluster Loss
	Separation Loss
	Distinction Loss
	Domain Adaptation Loss

	Summary

	Conclusion
	Summary of the Proposed Frameworks
	Limitations of the Proposed Frameworks
	Future Work
	Implications of the Thesis

	References

