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Lay Summary
The atmosphere is polluted and warming up rapidly due to the continuous use of fossil
fuels in vehicles and to generate electricity. We need to replace the present sources of
energy and adopt cleaner and more efficient sources to provide power to transport and
energy-intensive infrastructure like data centers. Fuel cells convert electrochemical en-
ergy into usable electrical energy. Many cars, buses, trucks, trains, aircraft, drones,
and forklifts run on fuel cells these days. These use hydrogen as fuel instead of con-
ventional fossil fuels like petrol, diesel, and gasoline, and emit only water as the by-
product rather than pollutants and greenhouse gases. In this way, these are greener,
cleaner, and more efficient means of energy conversion that have a totally silent op-
eration, unlike conventional IC engines. Fuel cells have several components which
are made from different materials. The main component is the electrolyte membrane
that is made from a special class of polymers known as ionomers as they have ionic
groups along the chain. These polymers are specialized in conducting hydrogen ions
or protons from the anode side where they are generated to the cathode side where
they combine with oxygen to complete the reaction. The chemical design of electrolyte
membranes decides how good or bad these membranes are at transporting protons.
Generally, the commercially available fluorinated electrolyte membranes are good at
conducting protons but only when conditions of humidity and temperature are right,
not always. In contrast to these, hydrocarbon membranes can work efficiently over a
wide range of humidity and temperatures and even are lesser in cost than fluorinated
membranes. One such hydrocarbon ionomer class is Sulfonated Polyimides (SPIs)
which have good thermal and mechanical stability. Usually, it is seen that experimen-
tation to develop electrolyte membranes takes years and is very time-consuming and
resource-intensive. Also, there often occurs a loss of effort as researchers are not able to
get the desired levels of proton transport in these electrolyte membranes. However, in
this age of artificial intelligence, we can use machine learning to train models based on
past data to design newer materials for a targeted application. By doing that, we can
also gather insights into what makes a good electrolyte membrane. This work does
exactly that. Here tree-based simple machine learning algorithms have been trained
using the past SPI data related to its chemical structure and proton conductivity to
help in discovering newer chemical structures that can prove to be good electrolyte
membranes for fuel cells. Moreover, the findings are evaluated by popular compu-
tational techniques of materials modeling and lab-scale experimental synthesis and
testing. A good agreement was found between the results of all three techniques used
in this work which point to the usefulness of this integrated methodology in predicting
the electrolyte materials for fuel cells in other classes of hydrocarbon ionomers.
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Abstract

Polymer Electrolyte Membrane Fuel Cells (PEMFCs) are versatile energy devices

that provide useable electrical energy for a wide range of stationary and automo-

tive applications. Polymer Electrolyte Membranes (PEMs) are solid ionomeric poly-

mer membranes that conduct proton (H+) from anode to cathode. These proton-

conducting electrolyte membranes are the most important component of the fuel cell

as the rate of proton transport taking place in the water channels governs the over-

all performance of the PEMFC. Currently, the commercially available perfluorinated

membranes have limitations at higher temperatures and low humidity operations as

usually faced in automobile applications. Sulfonated Polyimides (SPIs) are a class

of versatile hydrocarbon ionomeric polymers that are being explored as a polymer

electrolyte material for fuel cells due to their superior thermal and mechanical stabil-

ity. Experimentation to discover alternative PEMs is extensive time-consuming and

resource-intensive. There often occurs a loss of effort as the proton conductivity of the

developed PEM is not able to be at par with the perfluorinated PEMs.

Also, there is a lack of investigations into the correlation of the nano-scale mor-

phology of the PEM with the behavior of proton transport in SPI PEMs. Previously,

researchers have gained some understanding of structure-property interplay through

multi-scale computational models and extensive experimental synthesis and testing of

SPI-based PEMs. However, combined efforts supported by the simulation-informed

synthesis of hydrocarbon-based PEM can provide an understanding of the hydrocar-

bon structure-property relationship that is still elusive. Moreover, data-driven polymer

discovery is a promising method of selecting polymers for target applications. Looking

at the potential of data-driven polymer discovery of novel polymers as PEM, this the-

sis combines the effort put into ML-based identification of potential novel SPI PEMs
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as an alternative to Nafion and their validation using MD simulation and extensive

experimentation. The thesis work was divided into three different objectives.

In the first objective of the present work, a data set was prepared to comprise

the physicochemical properties and proton conductivity data of SPI-based PEMs col-

lected and organized from the reported literature. The data set also included the

chemical structures of the repeat units of the SPIs in computer-parsable SMILES for-

mat. Semi-empirically calculated properties and Quantitative structure-property re-

lationships(QSPR) properties were also included in the data set. Decision trees were

trained to obtain certain rules for designing novel PEMs whose high proton conduc-

tivity could be ascertained with a high accuracy rate even before synthesizing them.

Thus, following the rules, one SPI PEM, namely 1,4,5,8-naphthalene tetracarboxylic di-

anhydride/ 4,4’-diamino stilbene-2,2-disulfonic acid/4,4’-Diaminodiphenyl methane

(NTDA/DSDSA/MDP) was designed for computational modeling using Molecular

Dynamics(MD).

In the second objective, all-atom molecular dynamics simulations were used to

model the nano-phase segregation, the morphology of the ionic domains, and the dy-

namics of proton transport in a novel hydrocarbon-based PEM identified through the

work done in the first objective. The diffusion coefficients of hydronium ions and water

molecules, radial distribution function (RDF) plots between sulfur atoms of sulfonate

groups and solvent phase (hydronium ions and water molecules), as well as polymer

solvent volume fractions and fractional free volumes, have been calculated at increas-

ing levels of hydration (λ = 1, 5, 10 and 15) to understand the proton transport in the

novel SPI PEM ionomers

In the final objective, the NTDA/DSDSA/MDP SPI membrane, identified through

data-driven and computational techniques mentioned in the first and second objec-

tives, was synthesized and proton conductivity was determined. Proton conductivity

was found to be in the range of 0.1588 - 0.28636 S·cm−1 which is exceptionally well for

a PEM while those obtained in the MD simulations were 0.03 - 0.18 S·cm−1. Thus, a

good agreement was observed between the proton conductivity values predicted using

MD simulations and the values for stable stand-alone SPI PEMs.
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1 Introduction

1.1 Background

The world is confronting the constantly rising dangers of global warming and pol-

lution caused by the continuous use of fossil fuels for over two centuries, leading to

climate change and scarcity of energy resources (Manabe and Wetherald, 1967). To

counter this, consistent research efforts are being directed to find more efficient and

cleaner alternatives to replace the conventional sources of energy, and many renew-

able sources of energy are being explored and adopted (Jacobson, Colella, and Golden,

2005). Polymer electrolyte membrane fuel cells (PEMFCs) have emerged as clean en-

ergy devices that are non-polluting and non-greenhouse gas emitting and have high

efficiency of energy conversion and silent operation (Larminie, Dicks, and McDonald,

2003). A schematic of a typical Hydrogen/Air PEM fuel cell is shown in Fig. 1.1.

PEMFC consists of a pair of bipolar plates (BPs) and Gas diffusion electrodes (GDEs)

coated with nanoparticles of Platinum/Carbon electrocatalyst. BPs have flow chan-

nels for the even distribution of gaseous reactants (fuel at the anode and oxidant at

the cathode) over the micro-porous, hydrophobic, and electrically conductive gas dif-

fusion electrodes.

PEMFC generates electrical energy from the continuous electro-chemical reactions

taking place at the anode and cathode. Oxidation of hydrogen occurs at the anode (Eq.

1.1) and oxygen reduction reaction at the cathode (Eq. 1.2) proceeds with the protons

obtained through the electrolyte membrane while electrons reach the cathode through

an external circuit.

[Anode] : 2 H2 −−→ 4 H+ + 4 e− (1.1)

[Cathode] : O2 + 4 H+ + 4 e− −−→ 2 H2 O (1.2)
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1.2 Polymer Electrolyte Membranes (PEMs)

The versatile design of PEMFCs and their potential for utilization in the wide-ranging

automobile and stationary applications depend on the solid polymer electrolyte mem-

brane (PEM), invented in the 1960s, which is the most important component of a

PEMFC (Steele and Heinzel, 2011; Rikukawa and K, 2000). Polymer electrolyte mem-

brane (PEM) is the most vital component of a PEMFC which is designed to selectively

transport an ionic species generated during the electrochemical reaction and prevents

fuel and oxidant from coming into direct contact. Specifically, a PEM is an ionomeric

polymer that conducts hydrogen ions or protons generated due to the hydrogen oxi-

dation reaction at the anode towards the cathode where it is utilized in the reduction

reaction with oxygen to produce water. Ideally, PEM behaves as an insulator for elec-

trons and also possesses high structural integrity and resistance to degradation aris-

ing owing to the harsh operating conditions. It should possess mechanical stability for

withstanding stresses arising due to varying hydration conditions (Hickner, Ghassemi,

et al., 2004).

FIGURE 1.1: A schematic showing the components of a Polymer Elec-
trolyte Membrane Fuel cell (PEMFC)

Polymer electrolyte membrane (PEM) is the most vital component of a PEM Fuel

cell (PEMFC) which is designed to selectively transport an ionic species generated dur-

ing the electrochemical reaction and prevents fuel and oxidant from coming into direct

contact. Fluorinated backbone and side chain sequences are of different lengths in two
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popular commercial Perfluorinated Sulfonic Acids (PFSAs)- Nafion® and Aquivion®

ionomers (developed by DuPont and Solvay respectively) are shown in Fig. 1.2(Zhang

and Shen, 2012). These perfluorinated ionomeric polymers possess a hydrophobic

backbone, usually derived from Polytetrafluoroethylene (PTFE), decorated with side

chains bearing hydrophilic acidic groups usually -SO3H, -PO4 (Rikukawa and K, 2000).

Usually, the long or short side chains of PFSAs comprise multiple ethers (-C-O-C) and

(-CF2) groups terminating in acidic and hydrophilic sulfonic acid (-SO3H) groups. This

chemical composition leads to a characteristic microstructure that conducts proton on

coming in contact with moisture (A., 1970). As shown in Fig. 1.2, these PFSAs are

ionomeric polymers that possess hydrophobic backbone comprising of fluorine atoms

and flexible side chains comprising ether groups and acidic sulfonate groups a the

ends of the chains which are capable of binding water molecules around them weak

and strong hydrogen bonds. This chemistry gives them unique microstructural segre-

gation and characteristic morphology around inter-connected water channels in which

large-scale proton transport takes place(Eisenberg, 1970). Thus, they have high proton

conductivity in the order of 0.1 S.cm1 in the operational temperature range of 50-80

◦C and relative humidity range of 50% to 100%(Sone, Ekdunge, and Simonsson, 1996).

The exorbitant cost and limited performance in low humidity and high-temperature

operation of perfluorinated ionomers are the main reasons for the search for non-

perfluorinated polyelectrolytes with better performance.

1.3 Interaction between PEM and water

The interaction of ionomers with water is not the same as other polymers. In non-

ionomeric polymers, there is no chemical binding site for water molecules therefore

the polymer chains interact according to Flory Huggins’s theory of polymer solutions.

However, in ionomers, the presence of acidic sites along the polymer chains alters

the interaction behavior. Mechanism of water uptake in PEMs has been theorized us-

ing techniques that reveal their morphological details such as SAXS (Essafi, Gebel,

and Mercier, 2004a). Fig. 1.3 describes the process of water uptake by PEMs. Wa-

ter molecules tend to seep into empty pockets created by the entanglement of chains,
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FIGURE 1.2: Hydrophobic and hydrophilic parts of ionomeric Per-
fluorinated Sulfonic Acid Polymer electrolyte membranes(PEMs) are
shown; Chemical structures of the two PFSAs- Nafion®, Aquivion®

and four Hydrocarbon PEMs Sulfonated Poly(Ether Ether) Ketone
(SPEEK), Sulfonated Poly(Arylene Ether) Sulfone (SPAES), Sulfonated
Poly(Benzimidazole) (SPBI) and Sulfonated Polyimide (SPI) have been

shown

getting bound to ionic sites. As there is a rise in humidity, there is a tendency to cre-

ate more water clusters in SPIs rather than enlargement of existing clusters as seen

in Nafion®. At some threshold water level, the domains become interconnected with

each other which leads to the initiation of proton transport. This is according to the

percolation theory of water cluster formation and proton conduction in ionomers.

The polymer is brought in contact with a few molecules of water initially, phase

segregation starts taking place at the nano-level. Hydrophobic and hydrophilic zones

are demarcated and as hydration increases, interconnected ionic channels are formed.

Initially, the few molecules of water are bound by the sulfonate groups but as hydration
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increases the content of bulk water increases and becomes more than the content of

bound water as shown in Fig. 1.3.

1.3.1 Mechanism of proton transport in PEMs

The characteristic chemical structure results in morphology that has overlapping water

clusters or inter-connected ionic domains that are conducive for facile proton transport

and thus demonstrates high proton conductivity with a sufficient level of hydration

(Eikerling, Kornyshev, and Spohr, 2008). Transport properties or dynamic properties

depend upon the structure of ionic domains or water domains formed around the ionic

groups with simultaneous rearrangement of the polymer matrix. Chains rearrange to

accommodate the increasing number of water molecules. Generally, aqueous ionic

domains are connected to each other through narrow channels. In PFSAs, especially

Nafion, different models have been proposed for explaining the nano-phase segregated

morphology observed through x-ray and neutron scattering techniques. According to

Small-angle X-ray Scattering (SAXS) studies, spherical ionic clusters or inverted mi-

celles are interconnected by narrow water channels of diameter 1 nm spanning to the

length of about 4-5 nm forming cluster-network morphology (Gierke, Munn, and Wil-

son, 1981). Similarly, the sandwiched core-shell model has been proposed based on

Small-angle Neutron Scattering (SANS) studies (Haubold, Vad, et al., 2001). Under-

standing the interdependence between the structural aspect of the morphology and

topological distribution of water clusters is crucial for new PEM design and develop-

ment. Phase separation and resulting water channel morphology are closely related

to the atomic-level details of the PEM architecture including the chemical structure of

the repeat unit, nature of side-chains and main chains of the PEM, immediate chemical

environment of the sulfonate groups and arrangement of the sulfonate groups with

respect to each other. Generally, water molecules and hydronium ions are present in

close vicinity of the sulfonate groups. Water molecules form hydrogen bonds of vary-

ing strength with the sulfonate groups as well as excess protons whereas hydronium

ions interact with the sulfonate groups due to electrostatic forces. In a well-developed

micro-phase segregated morphology, water clusters and channels are formed. In such

water clusters and channels, water exists in two prominent states depending on the dis-

tance from the sulfonate group towards the center of the water channels and the overall
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hydrogen bonding environment. Bound or non-freezable water is strongly bound to

the sulfonate group through strong hydrogen bonds and bulk-like or freezable wa-

ter is present in the central region of the water pore where both water molecules and

hydronium ions tend to be highly mobile (Paddison, 2003).

On the basis of experimental and computational investigations into bulk water and

ionomers, three prominent mechanisms of proton transport have been identified to be

occurring- 1) Grotthus mechanism or proton hopping which involves traveling of the

hydrogen cation or proton through continuous bond creating and breaking over a net-

work of hydrogen-bonded water molecules [aka Structural diffusion] (Agmon, 1995),

2) Transport of hydrated proton in the form of hydronium ion or water molecule with

one excess proton covalently bonded to the oxygen atom through conventional Fick-

ian or sub-Fickian diffusion regime [Vehicular or Classical diffusion], and 3) Transport

of protons along/in the interfacial region of polymer phase and solvent phase (water

channel or cluster) wherein the proton travels along the series of adjacent sulfonate

groups at low hydration conditions [Surface or en masse diffusion] (Eikerling, Korny-

shev, and Spohr, 2008; Choi, Jalani, and Datta, 2005). Proton hopping takes place on a

time scale of about 1.5 ps and is significantly faster than the time associated with vehic-

ular diffusion(Eikerling, Kornyshev, et al., 2001). Besides these mechanisms of proton

transports, fast and slow diffusive regimes have been identified to supplement the un-

derstanding based on the nano-scale confinement of protons in the water channels and

clusters formed in hydrated ionomers(Berrod, Hanot, et al., 2017).

1.4 Search for an ideal PEM material

Despite their suitable chemical architecture, PFSAs have limitations in high-temperature

and low-humidity operations. Also, there are concerns related to their high cost of

production, a high crossover of fuel across them, and their detrimental effect on the

environment (Roziere and Jones, 2003). These concerns have led researchers to de-

velop alternatives for these PFSAs. In contrast to PFSAs, these are well-suited for high

temperature and low humidity fuel cell operations and their production cost is also

much lesser than the PFSAs (Kreuer, 2010). Hydrocarbon (HC) ionomeric polymers
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FIGURE 1.3: Mechanism of formation of ionic channels with increasing
water activity in ionomers

are specialized classes of non-fluorinated or partially fluorinated polymers for con-

ducting protons (hydrogen ions) in fuel cells. The central issue in designing HC PEMs

is the successful realization of the proton conductive morphology at the micro-scale

which supports facile proton transport on a large scale which is reflected by the high

proton conductivity of the ionomer and better overall performance of the fuel cell. Re-

searchers have reported many kinds of hydrocarbon PEMs such as Sulfonated Poly

(Ether Ether Ketone) (SPEEK), Sulfonated Poly (Aryl Ether Sulfone) (SPAES), and Sul-

fonated Polybenzimidazole(SPBI) have been reported(Sambandam and Ramani, 2007;

Park, Kim, et al., 2011; Li, He, et al., 2004; Hickner and Pivovar, 2005; Maier and Meier-

Haack, 2008; Zhang and Shen, 2012). However, it is important to identify promising

PEM candidates among the plethora of HC PEMs reported over the years. Fig. 2.13

shows the general chemical structure of a PFSA ionomer and the repeat units of two

PFSA ionomers- Nafion and Aquivion and four sulfonated hydrocarbons – SPEEK,

SPAES, SPBI, and SPI.
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1.4.1 Hydrocarbon PEMs

The development of electrolyte membranes depends upon the targeted application.

PEMs are expected to function optimally over a wide range of temperatures. Automo-

bile application poses the real test on PEM performance as it is exposed to extremities

of temperature- from sub-zero in cold start conditions to 120-160 oC in high current

density conditions. Moreover, humidity conditions also vary during operation. Hy-

drocarbon ionomers offer comparable or better performance than PFSAs (Lee, Hwang,

et al., 2006; Saito, Miyatake, and Watanabe, 2008). With some modifications, their per-

formance can surpass the limits imposed by humidity and temperature conditions dur-

ing the operation (Lee, Ogawa, et al., 2010). Sulfonated polymers are predominant for

medium-temperature fuel cells (60-120 oC) while phosphoric acid (PA)-doped poly-

mers have shown promise for High-Temperature PEMFC (HT-PEMFC) (Fang, Qiao,

et al., 2015a). Hydrocarbon ionomers are typically non-fluorinated but can be semi-

fluorinated optionally (Mistri, Mohanty, and Banerjee, 2012). Polyimide is a class of

polymers that was first reported/synthesized by Dupont in the 1960s which was the

same as the time of Nafion. This class of polymer found application in NASA’s high-

temperature mission due to extremely high thermal resistance. Sulfonated Polyimides

were first reported around the 2000s.

1.4.2 Sulfonated Polyimide PEMs

One of these hydrocarbon PEMs is the class of Sulfonated Polyimide (SPI) which is

a thermally-resistant hydrocarbon polymer possessing superior mechanical proper-

ties and chemical resistance This HC PEM was first reported in the early 2000s as a

suitable candidate for PEM application(Guo, Fang, et al., 2002). SPIs also offer high

mechanical strength, thermal resistance, and good phase segregation, proton conduc-

tivity, resistance to fuel crossover upon appropriate modification (Pu, 2014; Akbarian-

Feizi, Mehdipour-Ataei, and Yeganeh, 2010a; Peighambardoust, Rowshanzamir, and

Amjadi, 2010). Chemically, an SPI copolymer repeat unit comprises two parts namely,

a dianhydride with sulfonated diamine and a dianhydride with a non-sulfonated di-

amine. These polymers imparted proton-conducting functionality by incorporating

acidic functional groups along the backbone or in the side chains. Usually, the repeat
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unit is designed by carefully selecting these chemical moieties in order to obtain favor-

able morphology with water uptake and thus high proton conductivity (Fang, Qiao, et

al., 2015b). SPIionomers show better proton conductivity, especially at higher tempera-

tures (Akbarian-Feizi, Mehdipour-Ataei, and Yeganeh, 2010b). Also, these membranes

have shown competitive performance in H2/Air fuel cells(Yin, Hayashi, et al., 2005a).

This can be attributed to the fact that SPIs have imide groups formed from the conden-

sation polymerization of dianhydride and diamine monomers. Such chemical struc-

ture favors the formation of rigid chains and the presence of Nitrogen atoms enhances

hydrogen bonding stabilization as they form charge transfer complexes(Fang, Qiao,

et al., 2019). SPIs can have a good range of proton conductivity with reduced Hydro-

gen, Oxygen, and Methanol crossover (Saito, Miyatake, and Watanabe, 2008; Yaguchi,

Chen, et al., 2010; Woo, Oh, et al., 2003; Einsla, Kim, et al., 2005; Ganeshkumar, Bera,

et al., 2014; Ito, Tanaka, and Kawakami, 2018). They are capable of delivering high

Open Circuit Voltage (OCV) 0.9 V (Yin, Hayashi, et al., 2005b) and power density of

0.764 W.cm-2 (Lin, Ho, et al., 2013) in H2/O2 and Direct Methanol fuel cells respec-

tively. The main challenges in SPI-based PEMs are related to hydrolytic stability and

processability for commercial scale (Akbarian-Feizi, Mehdipour-Ataei, and Yeganeh,

2010a).

1.5 Integration of computational and experimental effort

Extensive experimental studies have been performed and reported but at the expense

of a lot of effort and resources (Cornet, Diat, et al., 2000; Ye, Bai, and Ho, 2006b). Only

a few studies have utilized scattering techniques to investigate the structure-property

interplay (Essafi, Gebel, and Mercier, 2004b). The proton conductivity of SPIs has been

experimentally and theoretically examined in a number of studies however, the shape

and size of ion transport channels and the nature of nanophase segregation as well as

resulting morphology are still less established compared to the well-studied conven-

tional PFSAs especially Nafion (Shin, Guiver, and Lee, 2017). In general, the develop-

ment and testing of a novel PEM is a critical polymer discovery problem that requires

enormous effort. Designing, synthesis, characterization, and testing of an ionomer

is a time-consuming process and there is little certainty with regard to the final fuel
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cell performance outcome of the synthesized PEM. Computational screening of the

prospective hydrocarbon PEM candidates using Molecular Dynamics is an extensive

technique that often requires coarse-graining of the molecules due to the large number

of atoms involved in the chain(Hu, Lu, and Guo, 2018).

The work presented in this thesis attempts to integrate the predictive abilities of

data analysis and machine learning techniques along with the understanding gained

from computational atomistic modeling to discover high-throughput SPI ionomers for

PEMFCs. Such an approach not only minimizes experimentation but also provides an

understanding of structure-property interdependence in SPI ionomers.

1.6 Thesis outliine

Chapter 1: Introduction: The first chapter of the thesis provides a background to the

problem addressed in this work.

Chapter 2: Polymer discovery: Chapter 2 presents details on data collection, pre-

processing of data, featurization, model training, and testing for discovering novel SPI

PEM.

Chapter 3: Atomistic study: In Chapter 3, molecular dynamics simulations have

been performed to obtain hydronium ion and water molecule diffusion behavior in

NTDA/DSDSA/HFBAPP and NTDA/DSDSA/MDP SPI membranes.

Chapter 4: Experimental study: In Chapter 4, synthesis, physicochemical character-

ization, and in-situ testing of NTDA/DSDSA/MDP SPI membranes have been done

and compared with commercial Nafion PFSA membranes.

Chapter 5: Conclusion and future outlook: In the concluding chapter, the key find-

ings and results of the present study are discussed. Also, key areas which require

further computational and experimental efforts have been elaborated.
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2 Polymer Discovery

2.1 Chapter summary

Due to the high cost and limited range of operating parameters, alternatives of per-

fluorinated ionomers-based commercial Polymer Electrolyte Membranes (PEMs) are

urgently required. Sulfonated polyimides (SPIs) based hydrocarbon PEMs have exhib-

ited better proton conductivity (an important property determining the performance of

fuel cells) even at low hydration levels and high temperatures, making them possible

candidates for replacing commercial PEMs. However, finding alternative SPI PEMs

is a critical polymer discovery problem that requires enormous experimental efforts

where Machine learning (ML) approaches can help to reduce such efforts. To this end,

both supervised and unsupervised ML approaches are developed to predict the pro-

ton conductivity of SPIs. A hybrid dataset of 81 unique SPIs is generated that consists

of collected chemical structure-properties data from reported literature and calculated

quantitative structure-property and semi-empirical quantum chemical descriptors. Us-

ing decision trees, rules that lead to a low or high class of proton conductivity labels

with high accuracy are identified. The random forest regression model, on the other

hand, provided a set of features that can predict proton conductivity with reasonable

error. These findings are key to designing novel SPI PEMs while correlating proton

transport at the ionomer level with factors such as the morphology of the microstruc-

ture and inter-chain interactions.

2.2 Introduction

Among all computational approaches, Machine Learning (ML) offers efficient tech-

niques for discovering newer materials by training models or performing statistical
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analyses on past data. Supervised ML involves the use of labeled data wherein an algo-

rithm is trained to predict the value of a target variable from data provided in the form

of a set of attributes. Broadly, all of the supervised ML problems fall in the purview of

either classification or regression. While regression is performed when the target vari-

able to be predicted is numerical, classification involves the prediction of categorical

target variables formulated in the form of two or more classes. Unsupervised learning

relies on the formation of association rules to group unlabelled but related instances

into clusters(Mueller, Kusne, and Ramprasad, 2016). Machine learning involves learn-

ing predictive and descriptive algorithms that can learn complex inter-relationships

among the multiple attributes from the patterns in the training data and then make

accurate predictions about the outcome of unseen data points(Agrawal and Choud-

hary, 2016). ML expedites the process of discovery of materials by taking into account

the structure-property relationships that might not seem apparent. With respect to HC

PEMs, ML can help in identifying polymers that are cost-effective with the same or

even better performance parameters than the state-of-the-art Nafion®.

2.2.1 Polymer discovery using Data-driven techniques

Several studies have been reported in the literature on the implementation of machine

learning for polymer discovery applications and for the identification of relevant fea-

tures for a target property. Ward et al. have emphasized why machine learning tech-

niques based on atomistic parameters derived from first principles calculation give ac-

curate predictions and help in studying cause-and-effect relationships between differ-

ent attributes(Ward and Wolverton, 2017). Afzal et al. took the SVR approach to make

predictions for refractive index using a data set of only 112 optical polymers(Afzal,

Cheng, and Hachmann, 2018). Xu et al. trained a Support Vector Classifier on the data

of 284 polymers comprising four blocks repeating units for predicting the band gap

of the polymers. Their feature space comprised 5270 descriptors derived from DFT

and Quantitative Structure-Prediction Relationship (QSPR) calculations. They identi-

fied that the band gap is related to a subset of the most relevant features selected using

the Maximum Relevance Minimum Redundancy (mRMR) techniques. These features

included the compositional formation and topological and geometrical structural in-

formation (Xu, Lu, et al., 2021).
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There are several reported studies on the successful implementation of machine

learning for polymer discovery applications and for the identification of relevant fea-

tures for a target property. Xu et. al. trained a Support Vector Classifier on the data of

284 block polymer repeating units for predicting the bandgap of the polymers. Their

feature set was derived from DFT and Quantitative Structure-Prediction Relationship

(QSPR) calculations. They selected the most relevant features using Maximum Rel-

evance Minimum Redundancy (mRMR) techniques(Xu, Lu, et al., 2021). Huang et.

al. utilized an unsupervised learning algorithm to predict the Power Conversion Effi-

ciency (PCE) of organic photovoltaic polymers from a feature set of 8 properties and

11 molecular descriptors. They used an Organic Photovoltaic (OPV) donor molecule

database and also used dimension reduction methods for feature selection. They found

that features like photon energy loss and the number of fluorine atoms are impor-

tant features that help in predicting the values of PCEs. They also observed that sub-

tle causal relationships among attributes can be found using statistical analysis tech-

niques. Also, they made observations related to certain design aspects of the OPV

donor molecules. For example, they found that polymers demonstrating high PCE

usually have 6-9 aromatic rings in their chemical structure(Huang, Zhang, et al., 2020).

Yan et al. applied a Dual Convolutional Neural Network model approach to the prob-

lem of finding efficient Thermoset Shape Memory Polymers (TSMPs). They repre-

sented polymers using BIGSMILES and validated the obtained results using MD sim-

ulations and synthesis(Yan, Feng, et al., 2021). Table 2.1 summarizes a few more ML

studies performed for predicting polymer properties.

2.2.1.1 Data-driven techniques for polymer electrolyte study

Recently, the ion transport problem in solid polymer electrolytes has also been ex-

plored through the ML route backed by MD simulations. Wheatle et al. derived pa-

rameters that represent ionic transport and mechanical properties from coarse-grained

molecular dynamics simulations of polymeric blend electrolytes (PBEs) for Lithium-

ion batteries (Wheatle, Fuentes, et al., 2020). They trained a Gaussian Process Regres-

sion model with an 80/20 train-test split for predicting anionic and cationic diffusivi-

ties in the PBEs. Bayesian Optimization was used to obtain optimal parameter vectors
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TABLE 2.1: Machine learning approaches demonstrated for the discov-
ery of novel polymers and identifying relevant features

Reference Predicted polymer
property/ Data
points / Descriptor-
generation methods

Feature selection split-
ting/ Machine Learn-
ing algorithm

Selected features

Palomba,
Vazquez,
and Díaz,
2012

Glass transition tem-
perature/ 88 High
Molecular Weight
polymers/ Novel de-
scriptors generated
using molecular mod-
eling

A combination of
Genetic algorithm,
Regression techniques
and Artificial Neural
Networks (ANNs)

Main chain surface
area, Number of
rotatable bonds,
Sidechain mass

Jabeen,
Chen, et al.,
2017

Refractive Index/ 133
polymers/ QSPR

Genetic algo-
rithm(GA)/ Random
test-train splitting (75-
25)/ Multiple linear
regression analysis

Ncsp2, ATSC2p,
GATS1p, F01[C-F]

Mercader
and
Duchow-
icz, 2016

Polyacrylates/ Glass
transition tempera-
ture/126 polyacrylates

Enhanced Replacement
Method (ERM)/ Leave-
One-Out (loo) and the
Leave-More-Out Cross-
Validation

Eight molecular
descriptors: IDDM,
piPC01, MWC06, Se,
BELv8, nRCONHR,
BEHm3, Neoplastic

Bhowmik,
Sihn, et al.,
2021

Specific heat at con-
stant Pressure (Cp)
of polymers/68 poly-
mers/Molecular dy-
namics

Decision Tree and
Principal Component
Analysis/ 5-fold cross-
validation

Bonding descriptors
related to C1–C1
and C2–O1 bonds
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that can facilitate an understanding of the ion diffusivity dependence on bulk proper-

ties like viscosity. Liu et al. applied ML approaches to the solid polymer electrolyte ap-

plication to assess device-level performance. They fitted six different regression mod-

els including DTs to data sets derived from 200 literature reports of ionic conductivity

data of PEO-LiTSFI polymer electrolytes. Their random forest model was able to cap-

ture the inverse relationship of the activation energy variation with the composition

(weight%) of LiTSFI and ionic conductivity appropriately(Liu, Clement, et al., 2021).

2.2.2 Challenges in polymer discovery

The key to the successful implementation of any ML algorithm in any field is the qual-

ity of the data set used. Generally, in materials design problems, there is a lack of qual-

ity data that can be directly used to train ML algorithms (Zhang and Ling, 2018). The

problems with the data sets include sparse data, missing values, inadequate number

of data points, multicollinear feature space, noise in the attributes, and dimensional-

ity. Generally, non-linear regression models have been used to describe the material

properties and the underlying dependencies of the properties on the structure of the

materials. Recently, several authors have reported the successful implementation of

ML algorithms to problems related to Materials Sciences. Wang et al. performed Sup-

port Vector Machine based regression (SVR) to predict Elastic constants for metals and

metallic binary alloys(Wang, Yang, et al., 2017). Jorgensen et al. employed a neural

network model to predict the HOMO-LUMO gap in molecules(Jørgensen, Mesta, et

al., 2018).

ML approaches offer efficient techniques for discovering newer materials by train-

ing models or performing statistical analyses on past data(ref). Polymer discovery has

been equally expedited with the ML intervention. Recently, several data-driven ini-

tiatives have been reported to accelerate polymer discovery for various applications.

For this purpose, a number of polymer data sets have been created. There are a few

polymer data sets available such as PolyInfo (NIMS, Japan)(Otsuka, Kuwajima, et al.,

2011) and Polymer Genome(Kim, Chandrasekaran, et al., 2018). In spite of this, poly-

mer informatics and polymer discovery still have some challenges. Firstly, the col-

lection of data related to polymers such as the chemical structure of the repeat unit

and the associated properties from reported literature is a tedious task that also results
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in sparse data. Moreover, the inclusion of conditions of measurement is also diffi-

cult to include. Secondly, the representation of information related to polymers is a

difficult task. Usually, simple monomers are represented as Simplified Molecular In-

put Line Entry System (SMILES), and IUPAC International Chemical Identifier(Inchl)

while more advanced formats for polymer data representation have been developed,

such as; Curly SMILES(Drefahl, 2011) and BIGSMILES(Lin, Coley, et al., 2019). The

encoded representation at higher length scales to describe oligomers, chains, local-

order (amorphous, semi-crystalline, and crystalline domains) and microstructure is

still a problematic issue in polymer structure representation(Wu, Yamada, et al., 2020).

Thirdly, the featurization or generation of information-rich features for training mean-

ingful predictive and descriptive algorithms is a challenge. Usually, there are fea-

ture vectors such as encoded fingerprints, Coulomb matrices(Hansen, Biegler, et al.,

2015), and Bag of Bonds(Rupp, Tkatchenko, et al., 2012). There are also Quantitative

Structure-Property Relationship (QSPR) features that quantify the chemical structure

of the monomers/oligomer/polymers such as the number of rotatable bonds, number

of aromatic rings, Topological Polar Surface Area, molecular surface area, and so on.

In addition to this, computational resources are used to derive certain computational

features that could be based on Density Functional Theory, Molecular Dynamics, and

other multiscale computations.

Feature selection is a critical step before training a model as high dimensionality (or

too many features) is not desirable for obtaining a good predictive model. There are

a few techniques to reduce dimensionality. Pearson Correlation Coefficient gives the

correlations among the features, Principal Component Analysis (PCA) uses orthogonal

linear combinations of features that show the highest variance and Recursive Feature

Elimination (RFE) assigns weights to features iteratively and gives ranking according

to their importance and eliminates the least important features.

In the present chapter, we collated the data set and characterized the data statisti-

cally by plotting histograms of collected features and their distributions and calculat-

ing statistical parameters namely mean, standard deviation, and range. We also deter-

mined correlations among the collected properties but due to sparse data, these corre-

lations can not be generalized. This way, we develop an understanding of the prop-

erties and their distribution in the collated data set. We also developed SQL queries
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to average out the values reported for different experimental and testing conditions.

Data preparation is an essential step in polymer discovery for any application, more

so when the polymer class is relatively new for the target application. The polymer

data sets that are available are not appropriate for problem formulation as the target

property as well as other features vary along with experimental conditions. Moreover,

chemical structures are collected in the form of SMILES codes which are processable by

the algorithms. Also, we reduce the dimensionality of the collected data by identifying

redundant features. Further, we use WEKA machine learning software to train Deci-

sion Tree Classifiers and iteratively eliminate lesser significant features using 10-fold

cross-validation. In particular, we use two algorithms - Relief F and Gain ratio for iter-

ative feature elimination of low-ranking features. Further, three DTCs with the highest

classification accuracy were identified to predict low proton conductivity (LPC) and

high proton conductivity (HPC) class labels. Along with the prediction of proton con-

ductivity class labels, we also discuss the physical and chemical significance of the

identified features. We also take the help of Self-organizing maps (SOMs) to visualize

the distributions of the identified features along with studying the correlation among

these features.

2.2.3 Machine Learning techniques

Among the various ML algorithms, classification provides predictive models wherein

the target variable to be predicted is a categorical variable i.e. has class labels while

other attributes could be continuous or numerical. Decision tree (DT) algorithms are

tools that convert the inter-dependence of the attributes of a data set into a set of simple

rules or ‘If-Else’ statements. Generally, DTs are white-box, non-linear classifiers pro-

vided the depth of the tree remains small. DT classifiers perform several tasks namely

classification (a data mining task), predictive analysis (a machine learning task), feature

selection (a dimensionality reduction task), and rule extraction (a task for establishing

descriptive inter-dependence among attributes).

On the other hand, the other branch of supervised ML includes regression where

the target variable is also continuous in nature similar to the input feature variables.

Usually, regressor algorithms are accurate but complex and uninterpretable which

makes them a black box and complicates their application to polymer design. Random
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forest regressor(RFR) is a tree-based regression algorithm that involves numerous de-

cision trees trained with random training subsets derived from the original training

set. RFRs are less prone to over-fitting, enable the ranking of features based on their

importance in training the trees, and offer generalized predictions as they involve a

combination of DTs.

Self-organizing maps (SOMs) are a class of unsupervised machine learning algo-

rithms and a kind of artificial neural network (ANNs) developed by T. Kohonen in

1990. SOM training involves transforming input data onto a two-dimensional lattice

or grid of cells or neurons through a distance-based iterative algorithm. SOMs offer

the ability to visualize the input feature space and obtain information related to the

importance of features in predicting the target variable and the similarities in the data

points(Kohonen, 1990).

Huang et al. utilized an unsupervised learning algorithm Self-organizing maps

(SOMs) to predict the Power Conversion Efficiency (PCE) of organic photovoltaic poly-

mers from a feature set of 8 properties and 11 molecular descriptors. They used an

Organic Photovoltaic (OPV) donor molecule database and dimension reduction meth-

ods for feature selection. They found that features like photon energy loss and the

number of fluorine atoms are important features that help in predicting the values of

PCEs. They also observed that subtle causal relationships among attributes can be

found using statistical analysis techniques. Also, they made observations related to

certain design aspects of the OPV donor molecules. For example, they found that poly-

mers demonstrating high PCE usually have 6-9 aromatic rings in their chemical struc-

ture(Huang, Zhang, et al., 2020). Yan, Feng, et al., 2021 applied a Dual Convolutional

Neural Network model approach to the problem of finding efficient Thermoset Shape

Memory Polymers (TSMPs) (Yan, Feng, et al., 2021). They represented polymers using

BIGSMILES and validated the obtained results using MD simulations and synthesis.

Moreover, Dennis et al. trained supervised and semi-supervised self-organizing maps

through the Python package SUSI to generate 15 × 15 grid size lattices for obtaining

information about glass transition temperature from the chemical structures of high

glass transition temperature polyimides. They used an extremely meager data set of

23 polyimides(Dennis and Zubarev, 2021).
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2.2.4 Proton Conductivity (Target property)

Proton conductivity is the most important property of the PEM. It depends on PEM

properties such as ion exchange capacity (IEC) of the membrane, water uptake, di-

rection of measurement (through-plane or in-plane direction), level of degradation as

well as temperature and humidity(Kim and Lee, 2015a). It is usually measured using

a four-probe method from Electrochemical Impedance Spectroscopy(EIS) which is an

ex-situ electrochemical technique(Mikhailenko, Guiver, and Kaliaguine, 2008).

2.3 Methodology

The method followed for identifying DT classifiers for SPI PEMs involved three steps/stages:

1. Collection of chemical structures and data from the literature, 2. Generation of QSPR

features from the collected chemical structures and calculation of quantum chemical

properties, and 3. Finally, the generation of DTs is based on the obtained data sets.

This workflow has been schematically shown in Fig. 2.1.

FIGURE 2.1: Workflow followed in the present study for predicting low
proton conductivity (LPC) and high proton conductivity (HPC) class la-

bels of SPI PEMs using DT classifiers
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2.3.1 Data collection of SPI PEMs repeat units and their properties from

Literature

Firstly, an extensive literature review covering 200+ journal articles that reported the

synthesis and performance of SPI PEMs for Hydrogen Fuel Cells (HFC) or Direct

Methanol Fuel cells (DMFC) from the year 2000 to 2019 was performed. The reported

data of properties (molar content of sulfonate group and proton conductivity) were col-

lected along with the chemical structures. All units were standardized for uniformity.

To eliminate the effects of measurement condition parameters such as temperature and

humidity, the values of the molar content and proton conductivity were averaged to

obtain one tuple for each unique repeat unit instead of the multiple values reported.

2.3.1.1 Representation of repeat units

The chemical structures of the reported monomers or repeat units were collected in

the form of conventional SMILES code using the IUPAC names given in the experi-

mental section of the reported literature. ACD Chemsketch was used to generate the

chemical structures from IUPAC names which were corroborated with the reported

structure in the literature(Hunter, 1997). The chemical compositions of the SPI repeat

units were named according to the following naming convention usually followed for

any condensation polymer i.e. Dianhydride/Sulfonated Diamine/Non-sulfonated Di-

amine. Based on this, for example, an SPI named NTDA/BDSA/ODA means that it

includes one unit of the BDSA (a sulfonated diamine) with one unit of NTDA (a dian-

hydride) and also one unit of ODA (a non-sulfonated diamine) with one unit of NTDA,

as shown in Fig. 2.2.

2.3.1.2 Dataset preparation

A total of 81 unique SPI monomers/repeat units and their corresponding properties

were calculated. Other properties such as IEC, water uptake, and swelling ratio were

ignored as that could have resulted in sparse data, and also since they are not truly de-

signed attributes they are measured once the polymer is synthesized. The target vari-

able i.e. proton conductivity (which was extracted as a numeric and continuous vari-

able) was formulated into binary class labels i.e. converted into a categorical variable.
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FIGURE 2.2: Naming convention for repeat units of Sulfonated poly-
imides

Data points were categorized into low proton conductivity (LPC) and high proton con-

ductivity (HPC) classes with associated proton conductivity range between 0.05-0.08

S.cm−1 and 0.11-0.26 S.cm−1, respectively. The class-wise distribution of the collected

data from the literature is shown in Fig. 2.3.

2.3.1.3 Calculation of semi-empirical descriptors

In the next step, the calculation of quantum chemical descriptors of all SPI PEM monomers

collected from literature was performed using MOPAC2016 (Molecular Orbital PACk-

age) which is a software that performs semi-empirical quantum chemical calculations

on molecules(James, 2016). It is a semi-empirical quantum chemistry program based

on Dewar and Thiel’s Neglect of Diatomic Differential Overlap (NDDO) approxima-

tion. NDDO-type semi-empirical methods use molecular orbitals to solve the Hartree-

Fock equations in which PM7 Hamiltonian was modified by Throssel and Frisch for

continuous potential energy surfaces (Stewart, 2007). MOPAC works best for any gen-

eral molecule since it makes the fewest approximations while performing calculations.

It is especially suitable for large chemical structures as the calculations are fast and

the results are of comparable accuracy as DFT calculations(Stewart, 2012; James, 2016).

Semi-empirical calculations on the obtained chemical structures were performed after

geometry optimization using the PM7 method and simple energy calculations were

performed. Semi-empirical calculations are usually carried out in a minimal basis set

and incorporate results from spectroscopy. This data set is referred as MopacD in this

paper.
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FIGURE 2.3: Class-wise distribution of proton conductivity data into
Low Proton conductivity (LPC) and High Proton Conductivity (HPC)
class with an associated range of 0.05 to 0.08 S.cm−1 and 0.11 to 0.26

S.cm−1, respectively.

Secondly, another data set (MopacW) was collected by performing the same ge-

ometry optimization and energy calculations after adding three water molecules in

the vicinity of each acidic site in the repeat units using the Avogadro chemical editor

tool(Hanwell, Curtis, et al., 2012). To be precise, the water molecules were added near

the H-atom attached to the O-atom of the sulfonate (-SO3H) group. H-bond energy and

dispersion energy were estimated after geometry optimization with the PM7 method.

All H-bonds with the strength of 1.0 kcal·mol-1 were then monitored. In MOPAC, hy-

drogen bond energy is calculated using the local charge around the bond depending

on the presence of Oxygen, Nitrogen, and H-ions in their vicinity. This approach was

taken to include the hydrogen bonding-related parameters like the number of hydro-

gen bonds and energy of hydrogen bonds around sulfonate groups in the presence of

water molecules and how the chemical structure supports the hydrogen bonds.

2.3.1.4 Calculation of QSPR descriptors

Thirdly, the QSPR data sets were generated using two open-source molecular QSPR

calculation tools namely, Mordred(Moriwaki, Tian, et al., 2018) and Babel(O’Boyle,

Banck, et al., 2011) named as Babel and Mordred data sets, respectively. A molecular
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descriptor is a way of representing different characteristics of a chemical structure,

quantitatively. These are derived from calculations that are performed on the digital

representation of chemical structures of compounds (SPI monomers in this case) so

that quantitative comparison among different monomers for any particular character-

istic, say the number of rotatable bonds, becomes easier. This way, creating a data

set becomes easier and meaningful statistics of scientific information can be obtained

through data mining. Mordred package can calculate more than 1800 2-D and 3-D

descriptors while OpenBabel can calculate 16 numerical 2D descriptors. In this work,

only 2D descriptors were calculated that do not require geometry optimization but are

based on the chemical composition of the molecule alone.

2.3.1.5 Final dataset compilation

Only one attribute namely the molar content of the sulfonate group (Molar) was col-

lected from the reported literature along with the target variable (PC). IEC as an at-

tribute had to be removed as its information content surpassed all other attributes and

prevented the formation of detailed trees with higher classification accuracy. Removal

of IEC led to the formation of this tree which demonstrated the highest classifica-

tion accuracy. In total 13 QSPR descriptors were generated using Mordred (Mordred

data set), and 10 QSPR descriptors were generated using Open Babel (Babel data set).

Using MOPAC, 7 semi-empirical descriptors were calculated for as-such repeat units

(MopacD data set) while 9 were calculated by adding three water molecules around

each acidic group of the repeat unit (MopacW data set). Combinations of these descrip-

tors are named as Babel + Molar, Mordred + Molar, Babel + Mordred + Molar, MopacD +

Molar, MopacW + Molar and MopacD + MopacW + Molar which represent a combination

of Babel and Molar descriptors, Mordred and Molar descriptors, Babel, Mordred and Molar

descriptors, MopacD and Molar, MopacW + Molar and Molar descriptors, respectively.

2.3.2 Feature selection and random forest regression model training

Similar to DT classifiers, RFR algorithms also act as a means of feature selection as

the basis for the training of DTs in RFRs is the variance among the input features.

Thus, high-variance features tend to appear as higher-ranking features in the feature

importance histogram. Similarly, training of RFR was done with all the (40 features)
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initially and the features lying below a threshold in the feature importance histogram

were removed. RFRs were obtained using the SK learn RFR function in Python. This

iterative method was repeated till the test error was minimal. Hyperparameters were

optimized each time while training RFRs.

2.3.3 Self Organizing Map train and feature visualization

SOMs transform the input vectors into a two-dimensional map wherein each neuron

in the grid is a representation of the input data and is associated with a weight vec-

tor. The process of SOM training involves initialization of the weight vector, wi, and

selection of a random data vector (xi) from the input data. As shown in Eq. 2.1, wi is

an n-dimensional randomly initialized weight vector where n is the dimensionality of

the input. On the grid, the neuron whose weight vector is closest to the input vector in

terms of the Euclidean distance is termed as the winning neuron or the best matching

unit (BMU) as shown in Eq. 2.2. The ‘self-organizing’ part of the SOM algorithm is

called so as there is iterative updating of the weight vector of the BMU and its immedi-

ate neighboring neurons to which it is connected. The updating of the weight vectors

takes place according to Eq. 2.3 till the weight vector of the BMU is closest to the input

vector.

wi = [wi1, wi2, ..., win] (2.1)

di(x) =
D

∑
i=1

[xi − wi]
2 (2.2)

wi(t + 1) = wi1(t) + α(t).Tj,I(x)(t)(xi − wji) (2.3)

where, Tj,I(x)(t)(xi − wji) is the Gaussian neighborhood function and α(t) is the

learning rate.

SOMs were generated using MINISOM python package (Vettigli, 2018)for visual-

izing individual feature planes for each of the features selected by the tree-based su-

pervised ML algorithms (DT and RFR) and also plotting a combined map wherein the

features are clustered according to their maximum weights.
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2.4 Results and Discussion

The Results and Discussion section is organized into four sub-sections. The first and

second sub-sections discuss the results of feature selection and training and testing of

DT classifiers. Further, certain decision rules have been identified that can be key in

designing newer SPI PEMs while correlating proton transport at the ionomer level with

factors including the morphology of the microstructure and inter-chain interactions.

The third sub-section discusses the relevance of the features identified from these trees,

the correlation among these features and their distribution, and the evaluation metrics

for classification. The fourth sub-section discusses the feature planes obtained from

the training of SOMs with the selected features. Features identified at each stage of the

training process are mentioned in the brackets.

2.4.1 Decision Trees using different data sets

Different combinations of feature subsets were used for feature selection and DT train-

ing to find the combination of features from different data sets with maximum classi-

fication accuracy. For example, features derived from Babel data set were used as such

for predicting class labels. Then the molar content feature (Molar) data was used along

with Babel data set features to predict the classification accuracy. Similarly, feature se-

lection and DT training procedure were repeated using feature subsets derived from

Mordred (Mordred), Semi-empirical calculations on repeat units as such (MopacD), and

after adding water molecules near acidic groups (MopacW). Classification accuracy was

recorded along with the number of features that gave that accuracy. Figure 2.4 shows

the classification accuracy obtained with different data sets individually and after hy-

bridization with other data sets. Figure 2.4 also shows the maximum classification

accuracy obtained for a particular data set along with the number of features that led

to the construction of the DT.

The Babel features provided a classification accuracy of only 67.90% with four fea-

tures (abonds, dbonds, F, TPSA) according to the Gain ratio algorithm and 71.60%

with three features (dbonds, MW, F) according to the ReliefF algorithm. Further, the

addition of the literature feature (Molar content of the repeat unit) increased the classi-

fication accuracy as among Babel+Molar features, six features (Molar, abonds, F, TPSA,
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FIGURE 2.4: Maximum classification accuracies (%) for different combi-
nations of Molar, Mordred, Babel, MopacD, MopacW data sets is obtained
from iterative feature selection and DT training process using (a) Gain
ratio algorithm (b) ReliefF algorithm, with sequential removal of the

lowest ranking feature.

sbonds, dbonds) were identified by the Gain ratio feature selection algorithm after se-

quential removal of low ranking features and training of DT after each removal. The

DT trained by these features provided a classification accuracy of 85.18%. Another

feature subset identified by the ReliefF algorithm also shows the same classification

accuracy but with a different set of features (Molar, dbonds, MW, F). Clearly, Molar

content adds important information for the prediction of the class labels.

The DTs trained using feature subset obtained from Mordred data set showed clas-

sification accuracy of 61.73% with ten features(nAromAtom, nAromBond, nHeavy-

Atom, nHetero, nN, nO, nBondsD, nBondsA, nBondsKS, nBondsKD) as identified

by Gain ratio algorithm whereas inclusion of Molar content feature Mordred+Molar

could improve it to 69.13% with fourteen features (Molar, ABC, ABCGG, nAromAtom,

nAromBond, nHeavyAtom, nHetero, nN, nO, nBondsS, nBondsD, nBondsA, nBond-

sKS, nBondsKD). Clearly, these feature subsets do not provide parsimonious and accu-

rate DTs. The ReliefF algorithm provided a classification accuracy of 65.43% with two

features (nN and nBondsD) and 71.60% with four features (Molar, nAromBond, nN,

nBondsD) among the Mordred+Molar features.
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DTs trained with only semi-empirical (SE) feature subsets (MopacD and MopacW)

showed poor accuracy and only one node (not shown in Fig. 2.4). DTs trained with fea-

ture subsets including Molar feature along with the semi-empirical features (MopacD+Molar,

MopacW+Molar and MopacD+MopacW+Molar) identified with the feature selection al-

gorithms showed moderate accuracy. Among these, MopacD+Molar showed a max-

imum classification accuracy of 61.72% with four features (Molar, Dispersion energy,

Core-core repulsion, Ionization potential) identified by Gain ratio algorithm and 65.43%

with four features (Molar, Dispersion energy, Core-core repulsion, COSMO area, COSMO

volume) identified by the ReliefF algorithm. On the other hand, MopacW+Molar per-

formed slightly better. The gain ratio algorithm identified four features (molar, Dis-

persion energy (with water molecules), COSMO volume (with water molecules), Ion-

ization potential (with water molecules)) with which DT gave the accuracy of 72.84%

and ReliefF algorithm identified six features (Molar, Dispersion energy (with water

molecules), H-bond energy (with water molecules), COSMO area (with water molecules),

COSMO volume (with water molecules), Ionization potential (with water molecules))

with which the DT showed an accuracy of 70.37%.

DTs trained with a subset of features identified by feature selection algorithms from

a combination of semi-empirical features of repeat unit as such and repeat units with

water molecules near acidic groups, showed 71.64% accuracy with eleven features

(Molar, Dispersion energy, Core-core repulsion, COSMO area, COSMO volume, H-

bond energy, number of hydrogen bonds, Core-core repulsion (with water molecules),

COSMO area (with water molecules), COSMO volume (with water molecules), ion-

ization potential (with water molecules)) in case of Gain ratio and merely 66.67% with

nine features (Molar, dispersion energy, COSMO area, COSMO volume, dispersion en-

ergy (with water molecules), Core-core repulsion (with water molecules), COSMO area

(with water molecules), COSMO volume (with water molecules), Ionization potential

(with water molecules)) in case of features identified by ReliefF algorithm.

Further, a combination of Babel and Mordred showed an accuracy of 74.07% with

four features (dbonds, F, nAromAtom, nBondsA) identified by Gain ratio algorithm

and six features (dbonds, F, ABCGG, nAromBond, nN, nBondsD) identified by Re-

liefF algorithm. Maximum classification accuracy was shown by the feature subset
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from the combination of Babel, Mordred and Molar data sets (referred in Fig. 2.4 as Ba-

bel+Mordred+Molar). According to the Gain ratio feature selection algorithm, seven

features (molar, abonds, dbonds, F, nAromAtom, nAromBond (or nBondsA)) were

identified. They showed a classification accuracy of 86.42%. ReliefF feature selection

algorithm also identified seven features but included the number of aromatic bonds

(nAromBond) instead of the number of aromatic atoms (nAromAtom). This set of fea-

tures showed a classification accuracy of 88.89%. The inclusion of the molar content

feature from the Molar data set caused a dramatic increase in the classification accuracy.

Following the principle of parsimony, the DTs that provide maximum accuracy

with the minimum number of features were selected for further evaluation as the fea-

tures involved in the construction of these DTs offer maximum information content for

the prediction of the class labels. Three high-accuracy DTs were selected for further

evaluation: 1. Babel+Molar (ReliefF) (Fig. 2.5), 2. Babel+Mordred+Molar(Gain ratio)(Fig.

2.6), and Babel+Mordred+Molar(ReliefF)(Fig. 2.7). All the DTs show a similar structure

in terms of the root node and internal nodes. The difference is in one of the leaf nodes.

All three DTs show that the molar content of the sulfonate group is the most important

attribute as it is the root node. The splitting value of 55% is reasonable as there is al-

ways a critical value for the concentration (or content) of sulfonate group sites (or acidic

sites) along the chain. Insufficient acidic sites do not provide adequate water binding

sites to reach the percolation threshold and the proton concentration remains inade-

quate for efficient proton conduction. Whereas too many acidic sites provide a lower

percolation threshold but decrease the overall mechanical properties(Knauth and Di

Vona, 2014). Thus, a value of 55% molar content of the sulfonate group per monomer

is an agreeable value. This is also indicated by the fact that there are 17 training in-

stances (rule coverage = 20.98%) that have molar content less than 55% and fall in the

LPC class. Out of these 17 instances, 16 training instances (rule precision= 94.11%)

are classified correctly as Low while one is classified incorrectly as HPC. Whether the

polymer is fluorinated or not is the next important attribute. Two branches grow out

based on whether the monomer is fluorinated or not. If the monomer is not fluoridated

then the number of double bonds present in the monomer plays an important role in

predicting the proton conductivity class. The splitting value of 12 indicates that if the

number of double bonds in the monomer is higher than 12 then a total of 19 training



2.4. Results and Discussion 29

instances (rule coverage = 23.45%) took that decision path and out of them only one

got misclassified whereas 18 (rule precision = 94.73%) of them got correctly classified

as having HPC class label. This demonstrates a strong design principle for designing

a non-fluoridated SPI monomer.

FIGURE 2.5: Pruned DT trained using four features identified by the
ReliefF algorithm from Babel+Molar features.

If the monomer is fluoridated, then again the molar content becomes a key fac-

tor in deciding the proton conductivity behavior. Molar content being a numerical

attribute got utilized again with another splitting value due to the high information

gain it brings to the tree classifier. This is proved by the fact that it is the highest-

ranking feature identified by both attribute selection algorithms. In the case of fluori-

nated monomers, a molar content of more than 70% is required for the SPI monomer

to belong to the class of highly proton-conductive monomers. This can be due to the

fact that fluorinated monomers tend to be more hydrophobic in comparison with their

non-fluorinated counterparts. Thus probably additional acidic sites are required to

attain the characteristic nano- and micro-phase segregation and thus the optimum per-

colation behavior which facilitates the facile movement of protons. There are only 11

training instances that are fluorinated and out of them, 5 have a molar content of more

than 70% while 6 (Rule coverage = 7.40%) have a molar content of less than or equal

to 70%. All 6 monomers having lesser than 70% molar content are correctly classified
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FIGURE 2.6: Pruned DT trained using four features identified by the
Gain ratio algorithm from Babel+Mordred+Molar features.

(Rule precision= 100%) as having LPC by the classifier while out of 5 training instances

(Rule coverage = 6.17%) having more than 70% molar content, 4 are correctly classified

(Rule precision = 80.00%) as having HPC and one is misclassified.

On the other hand, if the number of double bonds is lesser than 12 in a monomer,

then according to DT trained with the four features identified by the ReliefF algorithm,

MW is the next important feature as shown in Fig. 2.5. A non-fluorinated test instance

will be classified as LPC if it has less than or equal to 12 double bonds and if its molec-

ular weight is more than 1294.23 as 15 instances (rule coverage = 18.52%) follow this

rule and all of them are classified correctly as LPC (rule precision = 100.00%). On the

other hand, if the test instance has a molecular weight lesser than or equal to 1294.23

then it is more likely to be classified as HPC as 37 instances (rule coverage= 45.68%)

follow this decision path. Out of those 37 instances, only 25 instances (rule precision

= 75.67%) were identified as HPC while 9 were misclassified as LPC. The DT trained

with the featured sub-set identified by the Gain ratio algorithm from the pool of QSPR

features along with the molar content of the sulfonate group is shown in Fig. 2.6.

According to this DT, there should be lesser than or equal to 64 Aromatic atoms in the

non-fluorinated repeat unit. This can lead to the designing of a high proton conductive

SPI PEM. Here 26 training instances (Rule coverage = 32.09%) out of 81 were observed
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FIGURE 2.7: Pruned DT trained using four features identified by the
ReliefF algorithm from Babel+Mordred+Molar features.

to follow this rule and 22 (Rule precision = 84.61%) out of them were correctly classi-

fied by the tree as belonging to the HPC class. Another branch rules that if the number

of aromatic atoms increased to more than 64 in a monomer then the SPI PEM is more

likely to have a lower proton conductivity. This is shown by the terminal node in Fig.

2.6. Fifteen training instances (Rule coverage = 18.51%) followed this rule all of which

were classified as belonging to class LPC (rule precision = 100%). Also, in the case

of DT trained with the feature subset identified by the ReliefF algorithm from QSPR

features along with the molar content of the sulfonate group as shown in Fig. 2.7, it

can be seen that the terminal node is replaced by the number of aromatic bonds. This

has increased the accuracy further. Table 2.2 summarizes the rules obtained from the

decision tree shown in Fig. 2.7 i.e. the decision tree with the maximum classification

accuracy.

2.4.2 Feature selection using Random Forest Regressor

Figure 2.8 shows the residual plots generated for predicted and actual proton conduc-

tivity on the train and test sets for different feature subsets which were generated as a

result of iterative feature elimination. Firstly, RFR was trained using the full feature set

i.e. 40 features. For this subset, R2 of 0.546 on the train set with RMSE, MSE, and MAE
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TABLE 2.2: Rules derived from the DTs trained with feature subsets
identified by the feature selection algorithms show maximum classifi-

cation accuracy.

Rule Class labels
If Molar <= 55% LPC
If Molar > 55%,

F=No and dbonds >12
HPC

If Molar > 55,%
F=No, dbonds <= 12 and

nAromBonds > 68
LPC

If Molar > 55%,
F=No, dbonds <= 12 and

nAromBonds <= 68
HPC

If Molar > 55%,
F=Yes and molar > 70%

HPC

If Molar > 55%,
F=Yes and molar <= 70%

LPC

of 0.0322, 0.0010, and 0.0283 respectively while R2 of 0.2486, RMSE of 0.0402, MSE of

0.0016, MAE of 0.0325 for the test set. After the removal of features based on low vari-

ance, 16 features remained with which another RFR was trained. It showed a R2 of

0.7497, RMSE of 0.024, MSE of 0.0005, MAE of 0.0281 while for the test set R2 of 0.2532,

RMSE of 0.0401, MSE of 0.0016, and MAE of 0.0321 was obtained. At last, the top 7

features were selected which showed R2 of 0.50067, RMSE of 0.0338, MSE of 0.00114,

and MAE of 0.0296 for the train set, and R2 of 0.352, RMSE of 0.0373, MSE of 0.0014,

and MAE of 0.0301 for the test set. Clearly, the RFR is a moderate model for this data

set as shown by the moderate train and test R2 value for these data sets. Nevertheless,

since the range of the target variable is very less (0.08 to 0.22 S.cm-1), the other error

metrics can be considered important.

2.4.3 Feature visualization

2.4.3.1 Feature planes

Figure 2.9 shows the feature planes or component planes derived after training SOMs

with the feature subset with a quantization error of 0.2567 on output grid size 20 x 20.

These feature planes are based on the weights assigned to the neurons for each of the

selected features and provide information about the distribution followed by the fea-

ture. In the feature maps, red regions represent higher proton conductivity and blue
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FIGURE 2.8: Residual plots showing the predicted and actual proton
conductivity obtained using RFR for training and test sets for 40, 16,
and 7 features. Also shown are the R2, RMSE, MSE, and MAE values

obtained randomly for models.

regions have lower proton conductivity. These feature maps are also helpful in high-

lighting the correlations that exist among the features. It can be seen that feature planes

of the QSPR features namely dbonds, MW, TPSA, nAromAtom, nAromBond, and nN

are quite identical yet cannot be considered entirely correlated except for nAromAtom

and nAromBond. The feature plane of the categorical feature showing whether the

monomer is fluorinated or not has a major blue region representing LPC. Molar repre-

senting molar content of the sulfonate group in the monomer exhibits a slightly similar

pattern as the semi-empirical feature, Dispersion energy. The other semi-empirical fea-

ture shows similarity with the QSPR features.

2.4.3.2 Cluster map

Figure 2.10 shows a cluster map wherein the neurons are clustered and color-coded

according to the maximum weight associated with the features. Thus a map of regions

where individual features have higher values is obtained which enables us to visualize

the contribution of the individual features to the prediction of the target variable.
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FIGURE 2.9: Feature planes generated using MINISOM python package
with a quantization error of 0.2567 and grid size of 20 x 20 for the fea-

tures identified through DT classifier

2.4.3.3 Correlation map

A Pearson correlation analysis was done to observe the kind of interaction that ex-

ists among these features as identified by the three DTs. The Pearson correlation was

observed between these attributes and the numerical proton conductivity output vari-

able as the Proton conductivity class is a categorical variable and not appropriate for

correlation analysis. Figure 2.11 shows a color-coded matrix plot with values of the

Pearson correlation shown in the boxes and the features outlined on the sides. These

correlations have been obtained using the data set of 81 points and averaged proton

conductivity values neglecting the conditions of measurement. Therefore, it represents

the correlation obtained from the available data set. These correlations may change

upon the addition of more data points. The molar content of sulfonate groups ex-

hibits a high positive correlation (0.53) with proton conductivity whereas the number

of aromatic atoms shows the highest negative correlation (-0.47). Apart from the num-

ber of aromatic atoms, proton conductivity is negatively correlated with the molecular

weight(-0.41), number of Nitrogen atoms(-0.37), number of double bonds(-0.3), and
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FIGURE 2.10: Feature cluster map obtained using MINISOM python
package demonstrates the contribution of each feature in color-coded

form.

TPSA(-0.26). Features discovered by the RFR namely Dispersion energy and COSMO

volume also have only distant correlations with the target variable. Dispersion energy

has a mild positive (0.36) correlation with PC while COSMO volume has a negative

correlation (-0.44) with PC. However, it should be kept in mind that correlation does

not indicate causation and is merely a tool for supplementing the understanding of the

dependence of proton conductivity on the features identified by the feature selection

algorithms and DTs.

2.4.3.4 Kernel disctribution

Figure 2.12 shows the class-wise distributions of the features identified by the feature

selection algorithms through both classification (DTs) and regression (RFR) routes for

their maximum relevance in predictions of the target variable i.e. class labels (LPC

and HPC) and proton conductivity as such. It can be seen from the histograms that

these features do not follow any conventional distribution and the overall distribution

is data-driven and unknown for each of the identified features. It is important to ob-

serve that there are limitations related to the availability of sufficient data points in

Polymer informatics for training ML algorithms. The true distribution of a variable
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FIGURE 2.11: Matrix plot showing correlations among the features that
were found to be important for the construction of the DTs that show

high classification accuracy.

can be obtained only when a large number of data points are available. Therefore, the

non-parametric method of Kernel Density Estimation (KDE) was selected to obtain the

distributions for these features. KDE method is based on the calculation of probability

density function in which a linear combination of suitable kernel functions is taken

which provides a good approximation of the calculated probability density. Thus a

continuous probability density curve is obtained. These KDEs were generated using

the Gaussian kernel function in the Seaborn package of Python. Gaussian kernel func-

tion tends to provide smoother estimation than other kernel functions. These features

have been selected by the tree-based algorithms because of their information richness,

ordered structure, and variance which are relevant for the prediction of the proton con-

ductivity. The histograms and KDE plots have been color-coded according to the class

labels for ease of understanding.

In the case of the molar content of the sulfonate group (Molar) in the monomer, the

distribution tends to be skewed normal for the LPC class while for the HPC class, it
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is a bimodal distribution with an edge peak present towards the value 100%. Also, it

was observed that in the case of repeat units associated with LPC class labels, there

are two prominent peak counts of Molar content. The first highest peak count is be-

tween 60-70% molar content and the second highest is between 40-50%. In the case

of HPC, the prominent peak count of molar content is between 90-100%. This repre-

sents homopolymers as there is no non-sulfonated part of the repeat unit. The second

peak is between 70-80%. The histogram for the distribution of the number of double

bonds (dbonds) is a scattered one but the KDE plot shows the near-normal distribu-

tion for the LPC class with a prominent peak at 12.5. For the HPC class, a bimodal

KDE distribution is obtained with a prominent peak around 8. Then again another

peak area is obtained between 12.5 and 15. Molecular weight(MW) for LPC is near

normally distributed around 1250 - 1500 g.mol-1 with a slight edge peak towards 2000

g.mol-1. For HPC, MW shows bimodal distribution with a prominent peak at 1500

g.mol-1. TPSA shows a sharp/centered normal distribution for LPC class labels be-

tween 300-400Å3 while its distribution for HPC class labels is slightly merged bimodal

and spread over 200-300Å3 and around 400Å3. Though threshold value could not be

achieved from pruned DT, LPC distribution tends to give a threshold value for TPSA

at around 350Å3. The number of Nitrogen atoms shows bimodal distributions in the

case of both LPC and HPC classes. HPC class labels are majorly associated with three

and 5-6 Nitrogen atoms while LPC class labels are associated with 5-6 class labels. This

indicates that a lesser number of N-atoms is somewhat related to higher proton con-

ductivity while more number of N-atoms may or may not help in increasing proton

conductivity. Graovac-Ghorbani atom-bond connectivity index (ABCGG) shows near-

normal distribution with a slight edge peak towards the right for LPC and a slight

bimodal distribution with a slightly higher peak between 40 and 50. In the case of the

LPC class, the number of aromatic atoms shows a slightly normal distribution with

the major peak centering around the values 60-80%. The number of aromatic atoms

in the HPC shows a bimodal distribution with merged densities means the two peaks

are not well-separated. The peaks are centered around 40 and 70-80 aromatic atoms.

For the number of aromatic bonds in the repeat units, the distributions for both LPC

and HPC follow distribution trends of the number of aromatic atoms. The peak for

LPC appears at around 80 and the peak for HPC appears at around 40 and 80-90. The
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number of kekulized double bonds (nBondsKD) show a normal distribution for LPC

centered around 40 and 50 while a merged bimodal for HPC with high peak counts be-

tween 25-30 and 45-50. Dispersion energy has an edge peak towards the lower value

of -100 kcal.mol-1. The rest of the distribution is slightly skewed towards the higher

end for both LPC and HPC. COSMO volume shows a skewed normal distribution cen-

tered around 15 Å3 for LPC while a clear bimodal distribution with peaks around 7.5

Å3 and 12.5 Å3 for HPC. Detailed discussion on the features identified and the possi-

ble scientific basis for their relevance in the prediction of proton conductivity has been

discussed in the ’Discussion on identified features’ subsection.

FIGURE 2.12: Class-wise univariate distribution and Kernel Density
Estimation (KDE) plots of molar content of the sulfonate group(%),
dbonds, MW, TPSA, nN, ABCGG, nAromAtom, nAromBond, Presence

of Fluorine atoms; Blue represents LPC, Orange represents HPC.

2.4.4 Discussion on identified features

A total of 12 features namely Molar, dbonds, MW, TPSA, nN, ABCGG, nAromAtoms,

nAromBonds, nBondsKD, Dispersion energy, COSMO volume, and presence of fluo-

rine atoms have been identified to be important for the prediction of proton conduc-

tivity in SPI PEMs by the supervised learning in the form of tree-based ML algorithms
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TABLE 2.3: Mean, standard deviation, and range of the selected features

Feature Mean Std deviation Range
Molar fraction of the sulfonate group (%) 70.26 % 17.54 % 27.5% to 100.00%

Number of Nitrogen atoms 4.83 1.16 2.00 to 8.00
Topological Polar Surface Area [Å2] 350.95 70.46 157.96 to 612.93

Molecular weight 1268.72 317.21 593.54 to 2105.57
Number of double bonds 12.41 2.82 7.00 to 22.00

Number of aromatic atoms 64.74 19.59 20 to 108
Number of aromatic bonds 69.85 21.20 22 to 117

ABCGG 43.143 8.84 24.37 to 68.74
nBondsKD 40.34 10.387 18 to 70

Dispersion energy [kcal.mol-1] -57.21 19.607 -114.62 to -21.34
COSMO volume [Å3] 1311.22 338.027 577.64 to 2170

DT classifier and RFR.

These features have been identified from the number of points available in the

present data set and thus may not provide a complete picture of how proton con-

ductivity is related to these empirically. However, even if more data points are made

available, ML algorithms can only identify the non-parametric and statistically sig-

nificant features related to the target variable rather than the parametric and empiri-

cally related features. Therefore, features identified by ML algorithms for any chem-

ical physics variable can only point in the direction of the more reliable empirical yet

unexplored dimensions. Moreover, only a few attributes appear in the pruned DT clas-

sifier, nonetheless, all the identified features are important for the construction of this

tree classifier. Removal of any of these led to decreased classification accuracy. Since

proton conductivity is a compound effect of many factors, the scope of this work is

limited to discussing what differences can be made at the monomer designing level so

that there are good chances of obtaining a higher proton conductivity in the final SPI

polymer regardless of other factors.

On exploring the relevance of these features, we find that these features can be di-

vided into two broad categories. Firstly, the features that are directly related to the

chemical structure of the repeat unit i.e. MW, dbonds, nN, nAromAtoms, nArom-

Bonds, nBondsKD, ABCGG, and the presence of fluorine atoms play a role in deciding

the shape of the microstructure or morphology of the polymer electrolyte membrane

which in turn is responsible for determining the nature of proton transport. Morphol-

ogy can be controlled by carefully designing the monomer molecule and incorporating
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design principles obtained by the DT. Functional groups, terminal groups, and bridg-

ing linkages determine the kind of microstructure or morphology that will be formed

by the polymer chains by interacting with each other and also with water molecules.

QSPR features provide quantitative values for these functional groups and chemical

moieties.

Apart from the feature related to the chemical structures, there are features that are

related to the prominent interfacial region that exists between the polymer chain, water

molecules, and protons. This interfacial region has many interesting properties which

determine the extent of proton transport in the short as well as long range. Dispersion

energy, COSMO volume, Molar, and TPSA are the features that can have a significant

effect on the interfacial region. The interface brings about some structural changes in

the water and its hydrogen bond network and also affects the proton transport proper-

ties because of the confinement of water in a nanoscopic volume or pore which could

have any shape- cylindrical, slab-like, spherical, or lamellar. The properties of the in-

terfacial region are also determined by the molar content of sulfonate groups in PFSAs

as well as SPIs. The distribution of partial charges over the acidic sulfonate group de-

termines the pKa or acidic potential of the sulfonate group. Dissociation of the proton

takes place in the interfacial region thus readiness of the acidic group to donate the

proton to the surrounding water molecules.

2.4.4.1 Molar content of the sulfonate group

The molar content of the sulfonate group (Molar) is perhaps the most critical factor in

designing a PEM. On a broad level, insufficient sulfonate groups result in lesser bound

water. More water molecules will be required to make the solvation shells grow and

formation of bulk water domains. The polymer matrix may or may not have sufficient

free volume to accommodate that much water and thus overlapping solvation shells

and proper bulk water domains may never exist in such SPIs which have molar con-

tent lesser than 55%. The interconnectedness of the water domains and the presence

of adequate proton concentration in those domains depends on the interplay of the

Molar content of acidic groups in the polymer, IEC, and water uptake. The rest of the

chemical structure may not be too useful if an adequate number of water molecules

is not bound by the ionic groups. Moreover, even if there is sufficient free volume to
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accommodate excess water around sulfonate groups such that bulk water channels are

formed, there may not be a sufficient concentration of protons that travel in the bulk

water. As Berrod et al. have pointed out in the study of PFSAs, there are three slow

diffusing protons in the form of interfacial hydronium ions bound to each sulfonate

group in Nafion(Berrod, Hanot, et al., 2017). Similar slow diffusing bound hydronium

ions are not enough to provide facile proton transport as happens in the bulk wa-

ter through the Grotthus mechanism. Also, the surface diffusion of the proton which

happens when solvation shells of adjacent sulfonate groups overlap becomes difficult

when the sulfonate groups are located far away from each other.

2.4.4.2 Double bonds

The number of double bonds and kekulized double bonds (kBondsKD) was found to

be important for the prediction of proton conductivity by the DT classifier and RFR

respectively. The share of double bonds comes from imide groups and some from

aromatic rings and the remaining from any ketone or sulfone groups present in dian-

hydrides and diamines. The Sulfonate group (-SO3H) itself has double bonds. These

possibly play important roles in molecular ordering by governing the interaction of

one chain with the other as they are rigid in nature. Kekulization of double bonds is

related to the localization of the electron density in aromatic rings and gives an idea

about the distribution of charge density only at double bond regions. The QSPR fea-

ture nBondsKD calculated by Mordred provides the number of the kekulized double

bonds as opposed to the delocalized double bonds in aromatic rings. Another factor

identified by the DT classifier algorithm is the aromaticity quantified in terms of nAro-

mAtoms (number of Aromatic atoms) and nAromBonds (number of Aromatic bonds).

Aromatic atoms are present in the form of Phenyl or Phenylene components of dian-

hydrides and diamines. The phenyl group is known to be hydrophobic in nature. The

presence of biphenylene rings contributes to the rigidity of the SPI chains. Generally,

due to the rigid nature of SPI chains, a rigid polymer matrix is formed around ionic do-

mains which resist drastic rearrangement upon filling and defiling of water molecules.

Observations made by the Essafi group were for NTDA/BDSA/ODA in which naph-

thalene rings tend to make chains rigid and increase the interchain spacings. These

results cannot be generalized for all the SPIs(Essafi, Gebel, and Mercier, 2004b).
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2.4.4.3 Nitrogen atoms

Thirdly, the presence of Nitrogen atoms in the repeat units in the form of imide groups

and heterocyclic diamines provides electronegative centers. Nitrogen atoms have a

higher electron density than the adjoining carbonyl groups thus intra-chain and inter-

chain charge transfer complexes can form. Also, Nitrogen atoms are basic in nature

and hence they tend to act as proton acceptors near sulfonic acid sites and hence lead-

ing to the stabilization of the Hydrogen bond network. These two factors play a major

role in the formation of the morphology of the polymer matrix around the ionic do-

main. A negative correlation indicates that too many nitrogen atoms along the chain

may lead to a decrease in the overall proton conductivity of the SPI. This could be due

to the fact that too many Nitrogen atoms tend to divert the protons away from the

water domains and decrease the concentration of protons in the channels. It is perti-

nent to add here that fluorination is an important factor in the design of a PEM as the

presence of fluorinated groups results in a dramatic change in the overall properties

of SPIs. This is due to the combination of electronic and steric effects which reduce

the ability for interchain interactions and hinder the formation of charge-transfer com-

plexes. These are major factors in the packing of the polymer chains arising from the

molecular design. These introduce intractability in aromatic SPIs. C-F bond is a high

energy bond and SPIs containing fluorine in general result in low moisture absorption

and a well-segregated morphology.

2.4.4.4 Topological Polar Surface Area (TPSA

TPSA is an important attribute as it is calculated by the presence of polar atoms namely

Oxygen and Nitrogen atoms along with their attached Hydrogen atoms. Such polar

atoms have high electronegativity and are known to form Hydrogen bonds with Hy-

drogen atoms of water molecules. In SPIs, Nitrogen, and Oxygen atoms are present

in the imide group and contribute to the polarity of the dianhydride part of the repeat

unit. The sulfonate group also has oxygen atoms that have enough polarity to stabi-

lize the water molecule network around them which helps in the facile dissociation of

protons. The presence of polar atoms in the monomer other than the sulfonate group

can have effects that may or may not promote proton transport through hydrogen



2.4. Results and Discussion 43

bonding. If the polar atoms are placed such that they tend to stabilize the Hydrogen

bonding network away from the sulfonate group, then they are in a way taking up the

water molecules that could have formed a solvation shell around the ionic group. Such

an effect will decrease the proton conductivity. More polar atoms can be incorporated

into the repeat unit through careful selection of diamines. Due to its role in forming hy-

drogen bonding, TPSA also contributes to the formation of interfacial regions between

hydrophilic and hydrophobic regions and thus is an important parameter. The critical

(or threshold) value of TPSA could not be known from the DTs as these are pruned

trees and it is possible that TPSA appeared as a terminal node and got removed in the

post-pruning process but its removal caused a decrease in accuracy.

2.4.4.5 Dispersion energy and COSMO volume

Dispersion energy originates from the intermolecular dispersion forces that arise from

the correlated fluctuations in the electron density of the molecules. Both proton disso-

ciation and proton transport phenomena can be considered as a many-body problem

involving acidic groups, water molecules, hydrogen cation, and hydronium ions. Thus

polarizabilities of the interacting molecules i.e. repeat units and water (solvent) play

an important role in determining the nature of the interaction between repeat units

of adjacent chains and repeat units and water molecules. Polarization arises due to

the coupling of charge environments of the interacting molecules and the formation of

instantaneous dipoles. This charge density on the repeat unit and hence the polariz-

ability that arises due to the accumulation of water molecules around the acidic groups

plays a role in proton dissociation. As a rule, a more polarizable repeat unit tends to

bind the solvent more strongly. Repeat units with more aromatic rings are usually

highly polarizable. COSMO volume is calculated by MOPAC by constructing a con-

ducting polygonal surface around the ion or molecule at van der Waals distance and

is related to the surface polarity distribution. Together dispersion energy and COSMO

volume can be considered to influence the interfacial region and hydrogen bonding

significantly.
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FIGURE 2.13: A sample fluorinated SPI repeat unit showing the identi-
fied features at the monomer level

2.5 Conclusion

In the present study, a combination of supervised and unsupervised machine learning

approaches was utilized to predict the proton conductivity of sulfonated polyimide

polymer electrolyte membranes using data sets generated from properties collected

from reported literature, QSPR descriptors, and semi-empirical quantum chemical de-

scriptors. Using DT classifiers, simplistic and interpretable models were obtained in

the form of If-else statements from a data set of just 81 unique SPI monomers. Random

forest regression models were also trained which made low-error predictions. To the

best of our knowledge, this is the first demonstration of the prediction of class labels

for estimating proton conductivity of novel monomers belonging to a specific class of

hydrocarbon polymer electrolyte membrane i.e. sulfonated polyimide in this case.

Also, a subset of the most relevant features was selected by manually including

the features that increased the prediction accuracy of the DT classifier. Best predic-

tion accuracy was obtained from the data set which included QSPR features - Presence



2.5. Conclusion 45

of Fluorine atoms (F), Number of double bonds (dbonds), Topological Polar Surface

Area (TPSA), Molecular weight (MW), number of Nitrogen atoms (nN), number of

aromatic atoms (nAromAtoms), number of aromatic bonds (nAromBonds) along with

the literature feature related to the monomer design feature molar content of the sul-

fonate group(Molar). 10-fold cross-validation ensures that despite the less number

of data points reliable predictions, feature importance, and monomer design insights

can be obtained. RFR identified some additional QSPR features namely a number of

kekulized double bonds (nBondsKD) and Graovac-Ghorbani atom-bond connectivity

index (ABCGG) as well as dispersion energy and COSMO volume which are the fea-

tures obtained from semi-empirical quantum chemical calculations.

The rules obtained encompass different descriptors or monomer designing crite-

ria like the critical number of double bonds, number of Nitrogen atoms, and number

of aromatic atoms and bonds which make a difference at the monomer level to im-

prove inter-chain interactions, polymer chain stacking and micro-phase segregation so

that high proton conductivity is obtained at the material level as the cumulative effect.

The critical value of the molar content of the sulfonate group in the monomer/repeat

unit determines the water-binding behavior of the polymer and also is indicative of

how much proton concentration can be expected to be present in the polymer with in-

creasing levels of hydration. Thus, using open-source descriptor calculators and data

mining/machine learning approaches, rich insights have been gained into designing

newer Sulfonated Polyimide Polymer Electrolyte Membranes.
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3 Atomistic study

3.1 Chapter summary

Two novel hydrocarbon-based PEM belonging to the Sulfonated Polyimide (SPI) class

of PEM ionomers- a partially fluorinated SPI and a non-fluorinated SPI have been

designed in-silico and their properties compared with commercially available Nafion

PFSA ionomer. In the present work, detailed all-atomistic Molecular Dynamics (MD)

simulations have been used to investigate the state of nanophase segregation, the mor-

phology of the ionic domains, and dynamics of proton transport with increasing hy-

dration level (λ = 1, 5, 10 and 15). The diffusion coefficients of hydronium ions and wa-

ter molecules and corresponding proton conductivity owing to the transport of hydro-

nium ions in water channels were calculated. Proton conductivity values were found

to be highest for non-fluorinated SPI lying within the range 0.03-0.18 S·cm−1 for (λ =

1 to 15). Also, structural analyses have been done using radial distribution function

(RDF) plots between sulfur atoms of sulfonate groups and solvent phase (hydronium

ions and water molecules) along with polymer and solvent volume fractions have been

calculated.

3.2 Introduction

Multi-scale Molecular Dynamics (MD) simulations have revealed rich molecular-level

insights into the mechanisms of nano-phase segregation and proton transport in PF-

SAs. In PFSAs, MD studies have led to the well-established understanding that the

nano-segregated morphology is significantly influenced by the equivalent weight, length

of the side chain, and water content of the membrane. Devanathan et. al. have shown

using mean residence time studies that there is an active movement of the hydro-

nium ions and water molecules in water channels formed and their dynamics change
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with increasing hydration levels. Usually, at lower hydration levels, hydronium ions

are surrounded by more sulfonate groups acting as bound bridges between sulfonate

groups. With increasing water content, more water molecules surround hydroniums

instead of sulfonate groups. Moreover, hydronium tends to move from the first solva-

tion shell around the sulfonate groups to the center of the pore or water cluster (De-

vanathan, Venkatnathan, and Dupuis, 2007a). Karo et. al. compared the structural and

transport properties of Nafion PFSA ionomer with shorter side chain PFSA ionomer

namely, Hyflon using all-atomistic studies. They found that there is slightly greater

sulfonate-group clustering in Hyflon compared to Nafion. Moreover, diffusion coeffi-

cients of water and hydronium were more in Hyflon (6.5 × 10−6 cm2·s−1 and 25.2 ×

10−6 cm2·s−1 respectively) compared to that in Nafion (6.1 × 10−6 cm2·s−1 and 21.3 ×

10−6 cm2 ·s−1 respectively) because of the presence of more hydronium ions in the cen-

ter of the water channel rather than bound to the sulfonate group as in case of longer

side chain PFSA (Karo, Aabloo, et al., 2010). Cui et. al. studied Nafion PFSA ionomer

with an equivalent weight (EW) of 1143 with a degree of hydration varying from 5 to

20 wt% of water. They found that the distribution of water clusters is more dispersed

(Cui, Liu, et al., 2007).

It is pertinent to mention the limitation of MD simulations in describing the pro-

ton conductivity of PEMs. In conventional MD simulations, diffusivities of hydronium

ions and water molecules are studied which contribute only a fraction to the total dif-

fusivity of proton in bulk water and also in PEM ionomers. Structural diffusion or

the Grotthus mechanism occurs through the hopping of the proton from one water

molecule to the adjacent water molecule. Several researchers have incorporated bond-

creating and bond-breaking provisions through Multi-state- Empirical Valence Bond

(MS-EVB) in conventional MD simulations to characterize the extent of structural dif-

fusion taking place in PFSA ionomers (Tse, Herring, et al., 2013).

3.2.1 Molecular dynamics studies of SPI PEMs

Nevertheless, insights gathered from MD simulations could help in designing more

efficient hydrocarbon PEMs with predictable morphology that offers a conducive en-

vironment for facile vehicular and structural diffusion of the protons. These compu-

tational tools have also been utilized to study the structural and dynamic properties
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of SPI-based PEM. For instance, Park et. al. utilized atomistic simulations to model

NTDA/ODADS/ODA SPI PEM model with the COMPASS II force field. With these

simulations, they observed the effect of the level of hydration on the morphology of the

hydrated SPI PEM. They observed that too many water clusters and channels observed

were not formed in hydrated SPI, unlike the Nafion PFSA ionomer. The critical thresh-

old level of hydration in the studied SPI PEM was identified between 6 to 8.5 (Park,

Kim, et al., 2019). In a previous study, block copolymers of NTDA/ODADS/ODA

were studied and it was concluded that SPI ionomers have generally distributed wa-

ter molecules and hydronium ions in the free volumes rather than an ordered lamel-

lar cluster formation like that observed in Nafion majorly due to the rigid nature of

SPI polymer chains. Hu et. al. conducted a mesoscale study wherein different se-

quence arrangements of block copolyimide namely NTDA/BSPA/DMDA comprising

blocks of different lengths of hydrophilic and hydrophobic repeat units were modeled

(1,4,5,8-Naphthalenetetracarboxylic dianhydride (NTDA) and 3,3’-Bis(sulfopropoxy)-

4,4’-diamino diphenyl (BSPA) and hydrophobic repeat unit synthesized by NTDA and

1,10-decamethylenediamine (DMDA)). They found that a uniform arrangement of hy-

drophobic and hydrophilic segments/blocks along the SPI chain led to the formation

of a homogeneous microphase structure. This ensured rapid water transport in the

channels, high dimensional stability, and better mechanical properties of the SPI PEM

(Hu, Lu, and Guo, 2018).

In some elaborate efforts, experimental synthesis backed by computational efforts

has also been reported. Garrido et. al. studied the diffusion coefficients of pro-

tons using PFG-NMR in NTDA/ODADS/ODA membranes at different hydration lev-

els ranging from minimal hydration to high levels of hydration and also performed

MD simulations on corresponding all-atomistic models. They found that these naph-

thalenic imide membranes were able to hold water molecules and diffusible protons

even at minimal hydration conditions (Garrido, Pozuelo, et al., 2009). In sum, experi-

mentation to discover alternative PEMs is extensive and time-consuming which often

results in wasted efforts as the proton conductivity of the developed PEM is not able

to be at par with the perfluorinated PEMs nor is there any understanding of the ex-

act nano-scale morphology of the PEM and behavior of proton transport in them. To
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this end, a combined effort toward the simulation-informed synthesis of SPI PEM pro-

viding an understanding of the structure-property relationship is still elusive. Still,

an elaborate discussion on the formation of ionic domains and the dependence of the

proton transport dynamics on the morphology in SPI PEMs is still required.

FIGURE 3.1: Chemical structures of the repeat units of Nafion perfluori-
nated sulfonic acid ionomer modeled in the present study

(a)

(b)

FIGURE 3.2: Chemical structures of the repeat units of (a)
NTDA/DSDSA/HFBAPP (fluorinated SPI) ionomer, and (b)
NTDA/DSDSA/MDP (non-fluorinated SPI) ionomer modeled in
the present study; NTDA= 1,4,5,8-naphthalene tetracarboxylic dian-
hydride, DSDSA = 4,4-diamino stilbene-2,2-disulfonic acid, HFBAPP
= 2-bis[4-(4-amino phenoxy) phenyl] hexafluoro propane, and MDP =

4,4’- Diaminodiphenyl methane
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3.3 Computational details

The selection of these particular SPIs namely the semi-fluorinated SPI i.e. NTDA/ DS-

DSA/HFBAPP and the non-fluorinated SPI i.e. NTDA/DSDSA/MDP was based on a

previous study conducted by the authors which are reported elsewhere. The study in-

volved the utilization of decision trees trained on datasets derived from previously

reported proton conductivity data and Quantitative structure-property relationship

(QSPR) and semi-empirical descriptors calculated from the chemical structures of SPI

repeat units. The data-driven approach provided certain rules for designing SPI repeat

units that provide PEMs with high proton conductivity. These rules are provided in

Table 3.1 in the Supporting Information. The repeat units modeled in the present work

conform to these rules.

TABLE 3.1: Rules for designing high proton conductivity SPI PEMs ob-
tained by training Decision trees with previous data on SPI PEMs

Number
of double
bonds
(dbonds)

Molecular
weight
(MW)
[gm·mol−1]

Number of
aromatic
atoms (nAro-
mAtoms)

Number
of aro-
matic bonds
(nArom-
Bonds)

FSPI 13 1370.18 68 74
NFSPI 13 1034.98 56 62

All-atom molecular dynamics simulations were performed to investigate the pro-

ton transport behavior in FSPI, NFSPI, and Nafion. Related analyses were performed

to characterize the local morphology of the ionic domains. The local structure was

derived using RDF analysis while structural diffusion was characterized using dif-

fusion coefficients obtained from MSD of hydronium ions and water molecules. Con-

nolly surface analysis was performed to characterize the overall morphology and inter-

connectedness of the ionic domains.

3.3.1 Simulation framework

3.3.1.1 Initial geometry/Model construction

Repeat units of the novel FSPI, NFSPI, and Nafion were created in the Material Stu-

dio visualizer according to the chemical structures shown in Fig. 4.1. Three chains of



52 Chapter 3. Atomistic study

the polymer each comprising four repeat units were packed into simulation cells with

an increasing number of water molecules. The sulfonate groups were considered to

be completely deprotonated and the excess protons were considered hydronium ions.

Simulation cells of FSPI were prepared in the Amorphous cell module of the Accelrys

Material Studio. PCFF91, a class II force field for polymer modeling, was applied to

the polymer chains, water molecules, and hydronium ions. PCFF has been previously

used for modeling polyelectrolytes - Nafion, SPEEK, SPI, water, and hydronium. Table

3.2 provides the details related to the Molecular weight of the chain [gm · mol−1], Num-

ber of sulfonate groups or degree of sulfonate, Equivalent weight [gm·mol−1] and Ion

Exchange capacity [milliequiv.·gm−1 of dry polymer] for Nafion PFSA ionomer, FSPI,

and NFSPi modeled in the present work. An amorphous cell module was used for

generating the FSPI, NFSPI, and Nafion PFSA ionomer models at different hydration

numbers represented by the values of λ = 1,5,10, and 15. Partial charges were assigned

according to the Gasteiger method.

TABLE 3.2: Physico-chemical details of the modeled PEMs- Nafion
PFSA, NTDA/ DSDSA/HFBAPP (FSPI) and NTDA/DSDSA/MDP

(NFSPI)

Molecular
weight of
the chain
[gm·mol−1]

Number of
sulfonate
groups (de-
gree of sul-
fonation[%])

Equivalent
weight (EW)
[gm·mol−1 of
SO3

−]

Ion Exchange
Capacity (IEC)
[milliequiv.
·gm−1 of dry
polymer]

Nafion 4610.8 4 (100%) 1152.7 0.867
FSPI 5414.6 8 (75%) 676.83 1.477
NFSPI 4125.8 8 (75%) 515.73 1.939

3.3.1.2 Minimization and Equilibration

Molecular dynamics protocol as followed for simulating NTDA/ODADS/ODA(3/1)

by Garrido et. al. (Garrido, Pozuelo, et al., 2009). All MD simulations and correspond-

ing analyses related to RDF and MSD were done in the Forcite module of Accelrys

Material Studio. Energy minimization was performed using the Conjugate Gradient

algorithm with maximum iterations keeping the maximum derivative smaller than 0.1
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kcal·(Å−1·mol−1) and a limit of 5,000 steps. The criteria for stopping the minimiza-

tion run was set at 0.1 kcal·(Å−1·mol−1). In order to obtain realistic geometries, the

energy-minimized geometries were subjected to a 300ps run of Constant temperature,

constant pressure (NPT) (McDonald, 1972) ensemble at 300K and 1bar maintained by

the Berendsen barostat. The simulation cells attained densities in the realistic density

range for Nafion. Constant temperature, constant volume (NVT) (Panagiotopoulos,

1987) simulation was performed at 300K maintained by Andersen thermostat. The

simulation cells were run for 300ps for NVT equilibration such that minimized total

energy remains approximately constant with respect to the simulation time. The final

data collection run was done for 3ns in the NVT ensemble. A timestep of 1fs was taken

for the integration of the equations of motion. The coulombic interactions were calcu-

lated using the Ewald summation method (Veld, Ismail, and Grest, 2007) with Verlet

method(Grubmüller, Heller, et al., 1991). NVT and NPT thermostat relaxation param-

eters were kept at 1ps and 0.1ps respectively while the NPT barostat relaxation time

parameter was kept at 0.3ps. van der Waals and Coulombic non-bonding interactions

were calculated by the Cell Multipole method (CMM).

3.3.2 Analysis studies

3.3.2.1 Mean Square Displacement (MSD) and Diffusion Coefficient (DC)

Diffusion coefficients of water molecules provide information about the self-diffusivity

of water molecules in the ionic domains formed in the ionomer membrane. Mean-

square displacement (MSD) data collected over adequate simulation time provides

information regarding the nature of the movement of particles diffusing through a

medium. MSD data of the oxygen atoms of water molecules (OH2O) and the oxygen

atoms of the hydronium ions (OH3O+) were collected at the interval of every 0.5 ps i.e.

at every 500 steps with each step of 1 fs. A total simulation time of 3 ns was used

for each sample for calculating the diffusion coefficients for increasing water content

represented by the values of λ = 1, 5, 10, and 15. MSD data was used in the Einstein

equation [Eq. 3.1].

MSD =
1
N

N

∑
j=1

[(rj(t)− rj(O))2] (3.1)
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D =
1

6N
lim
t→∞

d
dt

N

∑
j=1

[|rj(t)− rj(O)|2] (3.2)

where rj(O) = initial coordinates of the particle; rj(t) = coordinates of the particle at

time t; N = total number of particles in the system

3.3.2.2 Proton conductivity

Proton conductivity was calculated from the diffusion coefficient of the hydronium

ions according to the Einstein equation Eq. 3.3.

σ =
N.z2.e2.DH3O+

V.k.T
(3.3)

where e =Electron Charge, N = Number of charged ions in the system, Boltzmann

constant (K) = 1.38 × 10−23 J·K−1, T = 298K, DH3O+ = Diffusion coefficient of hydronium

ions [cm2·s−1], V = Volume of the cell [Å3].

3.3.2.3 Radial Distribution Function (RDF)

Radial Distribution Function (RDF) denoted by gA−B(r) is proportional to the proba-

bility of finding an atom B at a distance r from a reference atom A inside a shell of

thickness dr as given in Eq. 3.4.

gA−B(r) =
V
NB

.
nB

4πr2dr
(3.4)

where NB = Number of B particles in the system; nB = Number of atoms B located at

the distance r from atom A in a shell of thickness dr; V = total volume of the system.

Coordination Numbers (CN) for the polymer and solvent phases were calculated

by integrating the peaks of RDF plots.

3.3.2.4 Volume analysis

FFV is the volume of the simulation cell not occupied by the polymer. Water-channel

structure influences proton transport properties. Analyzing the volume of water gives

information on the nano-phase structure. Connolly surfaces were calculated with a

probe radius of 0 Å.



3.4. Results and discussion 55

FFV =
Vtotal − 1.3VvdW

Vtotal
(3.5)

3.3.2.5 Visual analysis

Snapshots of the simulations were captured and represented using OVITO (Stukowski,

2009). As the dimensions of features (ionic domains and channels) are roughly in Å and

nm scale, the structure of water channels formed due to sequential rearrangement of

polymer matrix with increasing water content could be estimated.

3.4 Results and discussion

3.4.1 Equilibrium validation

Table 3.3 lists the densities obtained after equilibrating the samples in unprotonated

form and in protonated form with hydronium ions and an increasing number of wa-

ter molecules to represent increasing water content. In the dry state or unprotonated

state, the density of Nafion was found to be 2.227 g.cm−3. The experimental density of

Nafion 117 (EW =1100) at 300 K has been reported to be 2 g.cm−3 (Eikerling, Korny-

shev, et al., 2001). The densities for FSPI and NFSPI in dry/unprotonated state were

1.334 g.cm−3and 1.35 g.cm−3. The equilibration steps are thus providing the equi-

librated samples for Nafion and novel SPIs. Moreover, for increasing water content,

density was found to decrease for Nafion, FSPI, and NFSPI. This is due to an increase

in the volume with an increasing number of water molecules. The density of Nafion is

higher than both of the novel SPIs due to the presence of bulky fluorine atoms in the

backbone and side chains. Fig. 3.3 shows the variation in density of the equilibrated

models for dry and increasingly hydrated Nafion PFSA, FSPI, and NFSPI ionomers.

TABLE 3.3: Density [g·cm−3] obtained after equilibration

Level of hydration (λ) Nafion
PFSA

FSPI NFSPI

0 2.227 1.334 1.35
1 2.107 1.391 1.328
5 2.019 1.333 1.263
10 1.914 1.244 1.17
15 1.79 1.12 1.080
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FIGURE 3.3: Densities of the equilibrated systems

3.4.2 Proton transport

Proton transport in hydrated ionomer membranes is a complex/cumulative/compound

phenomenon and is subject to many factors including the formation of water channels

and clusters with increasing water content, the presence of ionic species formed from

different combinations of water molecules, and excess protons which aid in the trans-

port of proton namely hydronium, Zundel and Eigen ions. Table. 3.4 in the Supporting

Information presents the values of diffusivities of hydronium ions and water molecules

in different ionomers at 300 K and different levels of hydration and also in bulk water

as reported in the literature. It is pertinent to mention the limitations of atomistic sim-

ulations which usually span only a few nanoseconds. Despite best efforts to model the

systems as closely and reasonably as possible, there are limitations related to length

and time scale and there may be over- or under-estimation of dynamic properties such

as diffusion behavior.

3.4.2.1 Diffusion coefficients of water molecules

Fig. 3.4 shows the variation of self-diffusion coefficient of water molecules in the water

channels formed in the polymer matrices of Nafion PFSA (Blue), FSPI (Red) and NFSPI

(Black) ionomers with increasing levels of hydration. In Nafion, there is a negligible
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TABLE 3.4: Values reported in the literature for diffusion coefficients of
hydronium ions (DH3O+ ) [cm2·s−1]] and diffusion coefficients of water

molecules (DH2O) [cm2·s−1] for increasing levels of hydration (λ)

Ionomer Level of
hydration
(λ)

DH3O+

[cm2·s−1]
DH2O
[cm2·s−1]

Reference

SPI-8
(NTDA/ODADS/
ODA)

2
6
16.4

3.87 ×10−7

6.3 ×10−7

9.93 ×10−7

Park, Kim,
et al., 2019

SPI-8
(NTDA/ODADS/
ODA)

23 2.6 ×10−5 Garrido,
Pozuelo,
et al., 2009

Nafion PFSA
(QENS)

5
11
13.5

0.14 ×10−6

0.63 ×10−6

1.13 ×10−6

0.96 ×10−6

3.46 ×10−6

5.27 ×10−6

Devanathan,
Venkat-
nathan,
and
Dupuis,
2007b

Bulk water 5.98 ×10−5 Agmon,
1995

Nafion PFSA
(PFG-NMR)

3
6

0.73 ×10−6

3.6 ×10−6
Zawodzinski
Jr, Neeman,
et al., 1991

Nafion PFSA 1143
EW
(Simulation)

4.4
9.6

0.2 ×10−6

1.9 ×10−6
1.02 ×10−6

6.39 ×10−6
Cui, Liu, et
al., 2007

Nafion 117 PFSA
(Experiment)

4.4
9.6

0.8 ×10−6

5 ×10−6
0.5 ×10−6

4.4 ×10−6
Cui, Liu, et
al., 2007

Nafion 117 PFSA
(Experiment)

4.4
9.6

0.8 ×10−6

5 ×10−6
0.5 ×10−6

4.4 ×10−6
Cui, Liu, et
al., 2007

Nafion PFSA 10
14
16

3.38 ×10−6

5.49 ×10−6

5.88 × 10−6

Ozmaian
and
Naghd-
abadi, 2014

Nafion PFSA 3.5
7
10
13
16
25

1.0 ×10−6

5.0 ×10−6

1.0 ×10−5

1.3 ×10−5

1.6 ×10−5

2.3 × 10−5

3.5 × 10−7

2.21 ×10−6

6.32 × 10−6

9.41 ×10−6

1.65 × 10−5

Zhang,
Yang, et al.,
2021

diffusion coefficient (4.18 × 10−8 cm2·s−1) at low hydration level as hydrophobic poly-

mer backbone is densely packed, and thus the movement of water molecules is hin-

dered in the absence of unobstructed pathways. Also, since hydrophilic sulfonic acid

sites are inaccessible to water molecules there is no accumulation of water molecules

and they are scattered in the simulation cell. At a moderate hydration level (λ = 5),
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an increase in the level of diffusion can be observed (3.84 × 10−6 cm2·s−1). The per-

colation threshold for Nafion has been reported in the literature to be λ = 5 (Laporta,

Pegoraro, and Zanderighi, 1999; Devanathan, Venkatnathan, et al., 2010; Liu, Cava-

liere, et al., 2018). At optimal hydration level (λ = 10), the value obtained (1 × 10−5

cm2·s−1) is in good agreement with the value reported in the literature (0.909 × 10−5

cm2·s−1) (Zhang, Yang, et al., 2021) [refer Fig. 3.4 in the Supplementary Information].

This represents a facile proton transport regime where the water molecules are mo-

bile in the water channels developed due to nano-phase segregation. Increasing water

content facilitates the rearrangement of the polymer matrix and widens the water chan-

nels/pathways. At a higher level of water content (λ = 15), the diffusion behavior of

water molecules starts to resemble bulk-water-like diffusion behavior. The diffusion

coefficient of 1.508 × 10−5 cm2·s−1 is observed which is about 1.8 times more than the

experimental value for almost the same hydration level(Cui, Liu, et al., 2007). Hence

the equilibrated model for Nafion can be considered reliable and the choice of force

field can be considered valid. Thus these MD models for the novel SPIs can be relied

upon to provide a close estimation of information regarding diffusion behavior and

water channel morphology.

We observed that the diffusion of water molecules in both novel SPIs tends to be

slightly different on the following accounts. As seen from Table ??, the value of DCH2O

for FSPI at (λ = 1) is 6.28 × 10−7 cm2·s−1 which is about 15 times higher than that

observed in Nafion at the same hydration level. Similarly, for NFSPI, the diffusiv-

ity of water molecules is 5.81 × 10−6 cm2·s−1 at the lowest hydration level which is

about 63 times higher than Nafion. Similar to Nafion, there seems to exist a percola-

tion threshold level of hydration above which a drastic increase in the diffusivity of

water molecules is observed. High levels of water molecule diffusion coefficients can

be ascribed to various molecular details of the SPIs. Firstly, it is a general observation

that naphthalenic SPIs have rigid chains packed in a planar arrangement which leads

to the presence of large empty pockets or free volumes (Essafi, Gebel, and Mercier,

2004b; Park, Kim, et al., 2019). FSPI and NFSPI comprise higher free volumes com-

pared to Nafion [discussed later in later sections]. The higher free volume provides

more space for water molecules to occupy with increasing hydration levels and the

large water-filled pores provide broad pathways for the diffusion of water molecules.
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FIGURE 3.4: Variation observed in the diffusion coefficients of the water
molecules with increasing hydration level

Usually, it is observed that the mobility of water molecules is more in the central region

of the pore than near the wall. The diffusion coefficients tend to be higher if there is a

sizeable central region in a water cluster.

3.4.2.2 Diffusion coefficients of hydronium ions

Fig. 3.5 represent the diffusion coefficients of hydronium ions (DCH3O+) for Nafion

(Blue), FSPI (Red) and NFSPI (Black) for various hydration levels (or increasing water

contents). The diffusion coefficient of hydronium describes the rate of vehicular dif-

fusion of the hydrated proton. The range of diffusion coefficient of hydronium ions

(DH3O+) obtained for Nafion in our simulated model is in good agreement with those

reported in the literature (Zhang, Yang, et al., 2021) [Table 3.4]. Also, there is an agree-

ment with the experimentally obtained diffusion coefficients for Nafion at varying wa-

ter contents (Devanathan, Venkatnathan, and Dupuis, 2007b; Zawodzinski Jr, Neeman,

et al., 1991). Evidently, at λ = 1 hydration level which denotes extremely low hydra-

tion conditions, no large-scale proton transport through vehicular mechanism is taking

place. Only surface (en masse) diffusion can be considered to exist in this low hydra-

tion region but the movement or diffusion of the hydronium ions does not describe

that. It can be seen that in extremely low hydration conditions (1 ≤ λ ≤ 5) FSPI and

Nafion demonstrate almost similar diffusion behavior. In the moderate water content
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FIGURE 3.5: Variation observed in the diffusion coefficients of the hy-
dronium ions with increasing hydration level

range (5 ≤ λ ≤ 20), DH3O+ increases dramatically for both FSPI and NFSPI while the

increase is more for the non-fluorinated SPI. This is ascribable to the fact that fluori-

nation causes hydrogen bond formation between hydronium ions and fluorine atoms

which hinders the movement of the former. At low and moderate hydration levels,

values of DH3O+ are highest for NFSPI. The values are much higher not only among

SPIs but also more than that observed in Nafion PFSA.

Notably, the confinement effect is absent in SPIs i.e. large water clusters do not

involve the confinement of water molecules and protons in nanoscopic volumes. Thus

confinement effect can be considered negligible and there is a negligible impediment

to the flow of hydrated protons due to this phenomenon which is prominent in PFSA

(Berrod, Hanot, et al., 2017). The most notable observation here is that there is non-zero

diffusivity of DH3O+ in the NFSPI even at minimal hydration conditions. With increas-

ing levels of hydration, the dramatic rise in the diffusivities is ascribed to the presence

of larger water clusters and lesser bonding interaction between the Sulfonate groups

and the hydronium ion as revealed by RDF plots in Fig. ??. Moreover, the diffusion

of hydronium ions is impeded by the presence of a strong hydrogen bonding network

around sulfonate groups in PFSAs whereas there seems a lack of stable hydrogen bond

network in the first solvation shell in NFSPI thus the movement of hydronium ions is

unimpeded.
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3.4.2.3 Proton conductivity

Figure 3.6 shows the proton conductivity derived from the diffusivities of the hydro-

nium ions (DH3O+) at different hydration levels in the three ionomers FSPI, NFSPI, and

Nafion according to the Eq.3.3. At the lowest hydration level, Nafion is out of sufficient

water molecules and hence does not conduct protons at all. FSPI also does not pro-

vide many levels of proton transport despite having double the number of sulfonate

groups and water molecules than Nafion. On the other hand, the non-fluorinated NF-

SPI has non-zero proton conductivity at the lowest hydration level. This supports the

argument that hydrocarbon-based PEMs are able to hold sufficient water molecules

at lower humidity conditions thus preventing total dry condition which develops in

fluorinated PEMs at higher temperatures. This also makes these PEMs well-suited for

automobile applications. After the threshold value of percolation level is achieved at

about λ = 5 for Nafion, there is a drastic increase in the proton conductivity of NF-

SPI whereas there is only a moderate increase in the conductivity of Nafion. FSPI also

shows a drastic increase but proton transport in NFSPI surpasses the values of FSPI

and Nafion. This is due to the ability of NFSPI to hold more bound water along the

chain and not only around the anionic groups. This has been supported by the volume

analysis studies also. At moderate level, hydration (λ = 10), the value proton conduc-

tivity of NFSPI lies in the range of 0.1-0.15 S·cm−1 which is an acceptable operating

range for a PEM. It is to be noted that these values of proton conductivity only rely

on the contribution of hydronium ions and not the movement of the proton through

the Grotthus mechanism. Corresponding values for FSPI and Nafion are around 0.07

and 0.05 S·cm−1 respectively which are moderate values considering the contribution

of hydronium ions only. Table 3.5 provides the values of proton conductivity for the

modeled systems at different hydration levels.

Such a high rate of proton transfer in NFSPI is attributable to the high water volume

fraction in the polymer. The movement of hydronium is most favored in the freezable

bulk water. SPIs generally provide broad water pathways as close packing of poly-

mer chains is prevented by the rigid nature of the binaphthalenic moieties. At a high

level of hydration (λ = 15), the proton conductivity of NFSPI reaches the value of 0.18

S.cm−1 which is quite high. The vehicular mechanism of proton transport is favored
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TABLE 3.5: Proton conductivity(S · cm−1) values determined from the
diffusion coefficients of hydronium ions DOH3O+ for increasing levels of

hydration (λ)

Level of hydration (λ) Nafion PFSA FSPI NFSPI
1 0.00 (4.68%) 0.01 (7.99%) 0.03 (10.48%)
5 0.03 (23.44%) 0.02 (39.93%) 0.06 (104.80%)
10 0.05 (46.88%) 0.07 (79.85%) 0.14 (104.80 %)
15 0.07 (70.33%) 0.12 (119.78%) 0.18 (157.19%)

Values in parentheses represent Water uptake (%)

FIGURE 3.6: Proton conductivity calculated for Nafion PFSA, FSPI, and
NFSPI from diffusion coefficient of hydronium ions with increasing hy-

dration level

by increasing hydration levels.

3.4.3 Local structure of water molecules and hydronium ions

3.4.3.1 RDF plot of OH3O+-OH2O

Fig. 3.7 (a) to (c) shows the RDF plots between the oxygen atoms of hydronium ions

(OH3O+) and the oxygen atoms of water molecules (OH2O) for Nafion, FSPI, and NFSPI

with increasing levels of hydration. As observed from Fig.3.7(a) for Nafion, at a lower

hydration level (λ = 1), the first solvation shell appears at a distance of about 5 Å as

a broad peak of suppressed intensity. Notably, hydrogen bonds do not exist at such
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large distances so these water molecules cannot be considered strongly bound to the

hydronium ions. At higher hydration levels (λ = 5, 10, and 15 ), there is an intense peak

at a distance of 3 Å and a slight second peak at about 6-7 Å. This information provides

an idea about the immediate environment of hydronium ions in the water clusters

or pores. With increasing water content, the number of water molecules around hy-

dronium ions seems to be almost constant. In the case of novel SPIs, almost similar

RDF plots were obtained at all levels of hydration. In both FSPI and NFSPI, peaks

of varying intensities appear at a distance of 3 Å suggesting that hydronium ions are

surrounded by a solvation shell of water molecules at this distance with a number of

water molecules varying with water content (Fig. (3.7 (b) and (c)). Notably, in both

HC PEMs, FSPI, and NFSPI, even at extremely low hydration (λ = 1) conditions, there

seem to be existing hydrogen-bonded overlapping shells of water molecules around

hydronium ions.

3.4.4 Local structure of sulfonate group

Generally, the immediate environment of the hydrophilic sulfonate groups in an ionomer

comprises shells of water molecules and hydronium ions arranged in the form of over-

lapping shells bound by hydrogen bonds and electrostatic forces. RDF plots obtained

from MD simulations provide information regarding these shells, particularly the first

and the second solvation shells. Following RDF plots were obtained in the present

study to obtain information on the local structure of the sulfonate groups:

• RDF plots between sulfur atoms of the sulfonate groups (S) and sulfur atoms of

other sulfonate groups (S) [S − S]

• RDF plots between sulfur atoms of the sulfonate groups (S) and oxygen atoms of

water molecules (OH2O) [S- OH2O]

• RDF plots between sulfur atoms of the sulfonate groups (S) and oxygen atoms of

hydronium ions (OH3O+) [S − OH3O+]
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(a)

(b)

(c)

FIGURE 3.7: Radial distribution plots of sulfur atom of the oxygen atom
of the hydronium ions (Oh) and the oxygen atom of the water molecules

(Ow) for (a) Nafion, (b) FSPI, and (c) NFSPI

3.4.4.1 RDF plot of S-OH3O+

Fig. 3.8 (a) to (c) presents the RDF plots between sulfur atoms of the sulfonate groups

and oxygen atoms of hydronium ions (S- OH3O+) for Nafion, FSPI and NFSPI with in-

creasing levels of hydration. In Fig. 3.8(a), it can be seen that the nearest hydronium

ions are located at a distance of about 5 Å from the sulfur atom of the sulfonate group
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at the lowest hydration level (λ = 1). This suggests that only weak or negligible elec-

trostatic interaction with the sulfonate group can exist given the distance. As the level

of hydration increases, hydronium ions move to the closer vicinity of the sulfonate

groups and become strongly bound to sulfonate groups through electrostatic interac-

tion as suggested by the broad peak at the distance of about 4 Å for hydration levels λ

=5, 10 and 15. This is consistent with the cutoff distance of 4.3 Å for the first solvation

shell around the sulfonate group for hydronium ions (Devanathan, Venkatnathan, and

Dupuis, 2007b; Cui, Liu, et al., 2007; Kwon, Kang, et al., 2019; Zhang, Yang, et al., 2021).

In the case of FSPI, a broad first peak of suppressed intensity appears at a distance of

about 4 Å along with a flattened second peak extending to about 7 Å for the low level

of hydration (λ = 1) (Fig. 3.8(b)). At higher levels of hydration (λ = 5, 10, and 15 ), the

first coordination shell of hydronium ions strongly bound to sulfonate groups appears

at a distance of about 4 Å, and a second peak indicating weakly bound hydronium

ions appears at a distance of 7-8 Å. Similarly, in NFSPI, the first and second coordina-

tion shells appear at distances similar to FSPI, the only difference is observed in the

intensity of the second peak being more pronounced in the case of NFSPI (Fig. 3.8(c)).

3.4.4.2 RDF plot pf S-OH2O

Fig. 3.9 (a) to (c) presents the RDF plots between sulfur atoms of the sulfonate groups

and oxygen atoms of water molecules (S- OH2O) for Nafion, FSPI, and NFSPI with

increasing levels of hydration. As seen in Fig.3.7(a), the first solvation shell of water

molecules appears around sulfonate groups at a distance of about 5 Å at a low level of

hydration (λ = 1). Clearly, these are weakly bound water molecules and no hydrogen

bonding can be considered to exist, and no possibility of clustering of water molecules.

As the water content in the ionomer increases, more water molecules move nearer to

the sulfonate groups, and the intensity of the peak increases as more water molecules

accumulate closer to the sulfonate group at a distance of about 4 Å. As in the case of

hydronium ions, this finding is also consistent with the cutoff distance of 4.3 Å for

the first solvation shell around the sulfonate group for water molecules (Devanathan,

Venkatnathan, and Dupuis, 2007b; Cui, Liu, et al., 2007; Zhang, Yang, et al., 2021). The

appearance of a slight second peak indicates the presence of a second solvation shell

of weakly bound freezable water. Noticeably, in the novel SPIs, even at a lower level
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(a)

(b)

(c)

FIGURE 3.8: Radial distribution plots of sulfur atom of the sulfonate
group (S) and the oxygen atom of the hydronium ions (OH3O+ ) for (a)

Nafion, (b) FSPI, and (c) NFSPI

of hydration (λ = 1), there is a first solvation shell comprising strongly bound water

molecules at a distance of about 4 Å from the sulfur atoms of the sulfonate groups

(Fig. 3.8(b) and (c)). There is also a second solvation shell which is of lesser intensity in

FSPI compared to NFSPI. This prominent second peak in NFSPI apparently indicates

a weakly bound shell of water molecules which acts as a buffer zone between strongly
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bound water molecules around the sulfonate groups and the bulk water molecules in

the center of the water cluster or pore.

(a)

(b)

(c)

FIGURE 3.9: Radial distribution plots of sulfur atom of the sulfonate
group (S) and the oxygen atom of the water molecules (OH2O) for (a)

Nafion, (b) FSPI, and (c) NFSPI

Here it is relevant to discuss the significant role of second peaks in the RDF plots

between sulfur atoms of sulfonate groups and oxygen atoms of hydronium, shown in

Fig. 3.9 and Fig. 3.8. The second peak represents an interfacial region wherein water
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molecules are bound to the sulfonate groups through hydrogen bonds and hydronium

ions are bound to sulfonate groups through electrostatic interaction. This interfacial

zone facilitates the transition from bound water molecules and hydronium ions near

the sulfonate groups to freely moveable water molecules and hydronium ions in the

center of the water cluster pore filled with bulk water.

3.4.4.3 RDF plot pf S-S

Fig. 3.10(a) to (c) presents the RDF plots between inter-molecular and intra-molecular

sulfur atoms of the sulfonate groups (S-S) for Nafion, FSPI, and NFSPI with increas-

ing levels of hydration. This RDF plot provides significant information related to the

arrangement of the hydrophilic sulfonate groups along the walls of the water clus-

ters and channels. As shown in Fig. 3.10 (a), there appears a single extended peak at

about 5 Å suggesting that sulfonate groups are located close to each other. This is in

agreement with the pair correlation for sulfonate groups in Nafion ionomer at 300 K

reported in literature (Cui, Liu, et al., 2007). It is an expected trend considering the

sulfonate groups are located at the end of the flexible side chain and nanophase seg-

regation ensures close placement of sulfonate groups. While such close proximity of

hydrophilic groups is significant for the relay transport of hydronium ions, it can also

be considered to be an impediment due to the electrostatic interaction between hydro-

nium ions and sulfonate groups. The second peak is completely missing in Nafion

PFSa ionomer while it is quite prominent in SPI ionomers (Fig. 3.10 (b) and (c)).

It should be noted that the number of sulfonate groups in FSPI and NFSPI is double

that of Nafion. Fig. 3.10 (b) and (c) shows the RDF plots between intermolecular and

intra-molecular sulfur atoms of the sulfonate groups (S − S) for FSPI and NFSPI. At

lower hydration levels, (λ = 1 and 5), almost three coordination shells are clearly visible

with the first peak appearing at about 5 Å. A well-ordered arrangement of sulfonate

groups suggested by a clearly distinct second peak at about 7 Å appears only at higher

hydration levels (λ = 10 and 15). In NFSPI, the first peak occurs at about 5 Å while

the second peak appears at about 7 Å. Apparently, it turns out that a symmetrical

long-range order of sulfonate groups is conducive for proton transport considering the

fact that NFSPI displays the highest proton conductivity and water and hydronium

diffusivities among the studied ionomer systems.
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(a)

(b)

(c)

FIGURE 3.10: Radial distribution plots of sulfur atoms of the sulfonate
group (S) for (a) Nafion, (b) FSPI, and (c) NFSPI

3.4.4.4 RDF plot pf S-F

In the case of Nafion and FSPI, RDF plots of S-F were also obtained from the trajectories

to investigate the distribution of the fluorinated (hydrophobic) group with respect to

the hydrophilic sulfonate group (refer Fig. 3.11 and Fig. 3.12).
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FIGURE 3.11: Radial Distribution Function (RDF) plot between the Sul-
fur atom of the sulfonate group (S) and the fluorine atoms for Nafion

PFSA ionomer

FIGURE 3.12: Radial Distribution Function (RDF) plot between the Sul-
fur atom of the sulfonate group (S) and the fluorine atoms for FSPI

ionomer

3.4.5 Coordination Number analysis

Table 3.6 presents the coordination numbers and respective cutoff distances (given in

parentheses) for Oxygen atoms of Hydronium ions around Sulfur atoms of Sulfonate

groups. There are optimal numbers of hydronium ions and water molecules in the

vicinity of sulfonate groups even at minimal hydration level represented by λ = 1. The

hydronium ions are located at a distance of 4 Ådistance while water molecules are



3.4. Results and discussion 71

placed at 3.5 Å. There is an absence of such arrangement in Nafion at minimal hydra-

tions whereas there are adequate numbers at higher levels of hydration, unlike the SPI

ionomers. There is a minimal level of water molecules around the sulfonate groups

of the SPI membranes at a distance of 3.5 Åas shown in Table 3.7. In the case of the

solvation shell of water molecules around the hydronium ions, it can be seen in Table

3.8, that there are sufficient water molecules at even minimal hydration conditions.

TABLE 3.6: Coordination number and respective cutoff distances (given
in parentheses) for Oxygen atoms of Hydronium ions around Sulfur

atoms of Sulfonate groups

Level of hydration (λ) Nafion PFSA FSPI NFSPI
1 0.85 (4.0 Å) 0.71 (3.5 Å) 0.60 (3.5 Å)
5 1.49 (3.5 Å) 0.77 (3.5 Å) 0.81 (3.5 Å)
10 2.06 (3.5 Å) 0.76 (3.5 Å) 0.61 (3.5 Å)
15 1.83 (3.5 Å) 0.44 (3.5 Å) 0.59 (3.5 Å)

TABLE 3.7: Coordination number and respective cutoff distances (given
in parentheses) for Oxygen atoms of Water molecules around Sulfur

atoms of Sulfonate groups

Level of hydration (λ) Nafion PFSA FSPI NFSPI
1 0.85 (4.0 Å) 0.95 (3.5 Å) 1.12 (3.5 Å)
5 1.97 (3.0 Å) 0.88 (3.5 Å) 0.83 (3.5 Å)
10 1.99 (3.0 Å) 0.82 (3.5 Å) 0.74 (3.5 Å)
15 1.90 (3.0 Å) 0.50 (3.5 Å) 0.69 (3.5 Å)

TABLE 3.8: Coordination number and respective cutoff distances (given
in parentheses) Oxygen atoms of Water molecules around Oxygen

atoms of Hydronium ions

Level of hydration (λ) Nafion PFSA FSPI NFSPI
1 0.85 (4.0 Å) 0.71 (3.0 Å) 0.84 (3.5 Å)
5 1.97 (3.0 Å) 0.85 (3.0 Å) 0.80 (3.5 Å)
10 1.99 (3.0 Å) 0.74 (3.0 Å) 0.68 (3.5 Å)
15 1.90 (3.0 Å) 0.60 (3.0 Å) 0.59 (3.5 Å)

3.4.6 Volume analysis

Generally, there is an increase in the volume of the simulation cell with an increas-

ing content of water or an increasing number of water molecules. Absolute volumes

do not provide complete information about the distribution of water molecules and
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polymer matrix as different simulation cells have different volumes. Information on

free volumes provides an idea of how the structural features of the chains influence

the packing of the chains and also the extent of cavities and voids for the collection of

water molecules. Volume analysis is a useful technique for understanding the basis of

differences in the proton transport properties of ionomers which are direct results of

nano-phase segregation (Kwon, Kang, et al., 2019). Polymer volume fractions, solvent

(water molecules and hydronium ions) volume fractions, and fractional free volumes

have been obtained by calculating van Der Waals volumes of the atoms using a probe

of 0 Å radius. To obtain solvent volume fractions (and thus polymer volume fractions),

volumes occupied by individual water molecules and hydronium ions were calculated

and subtracted from the total volume according to the number of hydronium and wa-

ter molecules present in the simulation cells. FFVs for the membranes have been cal-

culated from total volumes and van der Waals volume using Eq.3.5.

Fig. 3.13(a) and (b) show the effect of increasing levels of hydration on the poly-

mer and solvent (water molecules and hydronium ions) volume fraction in Nafion

PFSA (Blue), FSPI (Red) and NFSPI (Black) ionomers. There are several features to ob-

serve in these systems. Firstly, Nafion and FSPI have similar volume fractions of the

polymer and solvent phase although their chemical structures and absolute number

of water molecules are different in this system (the level of hydration is the same but

the number of water molecules is double in FSPI compared to Nafion due to a double

number of sulfonate groups present). This similarity in polymer and solvent volume

fraction is ascribable to the presence of fluorinated groups (-CF2-) in Nafion and (-CF3-)

in FSPI as well as ether linkages (C-O-C) in side chain Nafion and in the main chain

in FSPI. Secondly, the solvent volume fraction of NFSPI is the highest among the three

modeled polymers even though the water content is similar to FSPI. Apparently, oxy-

gen and nitrogen atoms in the imide groups (O=C—N—C=O) have electronegative

nature and thus are capable of forming hydrogen bonds with water molecules. So,

water molecules have more sites to form hydrogen bonding (however weaker) other

than the hydrophilic sulfonate groups. Moreover, in Nafion and FSPI ionomers, the

presence of fluorine (hydrophobic) atoms prevents the bonding of water molecules at

sites other than sulfonate groups.

Fig. 3.13(c) shows the effect of an increased level of hydration on the fractional
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free volume (FFV) of Nafion PFSA(Blue), FSPI(Red), and NFSPI(Black) ionomers. FFV

is the volume that is not occupied by the polymer matrix and solvent phase (water

molecules and hydronium ions). It can be seen that Nafion PFSA ionomer has consis-

tent and low FFV whereas FFVs of FSPI and NFSPI steadily increase with the increas-

ing water content values even though these are already higher than Nafion. Moreover,

FFV seems to be inversely related to the equivalent weight (EW) of the ionomer (Ta-

ble 3.2). The EW of Nafion is higher and thus it is observed to be occupying a higher

volume in the simulation cell. On the other hand, FSPI and NFSPI have lesser EWs

hence they are seen to be occupying lesser space in their respective cells. Moreover,

NFSPI shows the highest FFV and solvent volume fraction which is probably due to

the presence of Nitrogen and oxygen atoms and sulfonate groups which are able to

bind water molecules and thus leave empty spaces. Also, the MDP non-sulfonated

dianhydride has an angular ethylene component which breaks the linearity of chains

and prevents close packing of the adjacent chains. Thirdly, the rigid main chain of SPIs

allows parallel packing of chains and there are large empty pockets along the chains

which allow the formation of elongated water channels. Thus, it can be considered

that a higher solvent volume fraction of NFSPI facilitates better proton dynamics and

proton conductivity. As seen in earlier sections, it was observed that proton transport

is taking place in FSPI and NFSPI even at the lowest hydration levels, it can be consid-

ered that even at lower water fractions, the water molecules are rather freely dispersed

than confined in a closed space as in Nafion. Free dispersion of the water molecules

allows the existence of loosely overlapping networks through which hydronium can

diffuse. At moderate hydration level (λ =5), the polymer volume fraction of Nafion

ionomer is about 1.25% lesser than FSPI but 5.3% more than NFSPI whereas the wa-

ter volume fraction of FSPi is the same as Nafion ionomer and that of NFSPI is 16%

more than Nafion. Compared with FSPI, NFSPI has the presence of more water phases

despite the same number of water molecules.

3.4.7 Visual analysis

Though visual analysis of a simulated model sample of the order of 2nm is insuffi-

cient to gather information on the distribution of water domains, overall water chan-

nel topology, and transport of protons within the channels. Nevertheless, a general
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(a)

(b)

(c)

FIGURE 3.13: Variations in (a) Polymer volume fractions (b) Water vol-
ume fractions (c) Fractional free volumes observed with increasing lev-

els of hydration for Nafion(Blue), FSPI(Red), and NFSPI(Black)

estimate of the form, structure, and distribution of ionic domains can be obtained from

such oligomer-level all-atomistic MD studies.

Fig. 3.14(a) to (d) show the change in morphology of the water channels and re-

arrangement of polymer matrix upon increasing hydration level values from 1, 5, 10,

and 15 in Nafion PFSA ionomer. Here Fluorine atoms are represented by sky blue,
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Oxygen atoms are red, Hydrogen atoms are white, Sulfur atoms are yellow and Car-

bon atoms are gray. Clearly, there are significant changes in the morphology with

increasing levels of hydration as the number of water molecules increase and gets ac-

commodated initially in the empty pockets or free volume and gradually there is an

elastic rearrangement of polymer chains for accommodating excess solvent phase wa-

ter molecules.

Fig. 3.14(a) shows the state of the polymer at the lowest hydration level (λ = 1).

At such low hydration levels, the sulfonate groups are inaccessible to water and hy-

dronium due to hydrophobic Fluorine atoms in the polymer backbone. Hydropho-

bic perfluorinated backbone shields the hydrophilic sulfonate groups from whatever

water molecules are present. Water domains and connecting channels are not well-

formed due to an inadequate number of water molecules. At moderate water level (λ

= 5), narrow channels can be observed to be beginning to form and an interconnected

network is evident/visible [Fig. 3.14(b)]. Clearly, the percolation threshold is reached

and transport of the proton begins to occur through vehicular and surface diffusion

mechanisms. Fig. 3.14(c) shows the hydration level which represents the normal op-

erating conditions (λ = 10), small water clusters begin to be apparent and the proton

transport tends to be more facile. Fig. 3.14(d) shows that at high hydration level (λ =

15), sizeable water domains exist which are interconnected with other water domains

through narrow channels. Such morphology is consistent with the ionomeric cluster

and channel model proposed by Gierke et. al. for hydrated PFSA ionomers (Gierke,

Munn, and Wilson, 1981).

Fig. 3.14(e) to (h) shows the snapshots collected from the simulation of the hydrated

FSPI with increasing levels of hydration values λ = 1, 5, 10, and 15. Here Fluorine

atoms are represented by sky blue, Oxygen atoms are red, Hydrogen atoms are white,

Sulfur atoms are yellow, and Carbon atoms are gray. At a low hydration level (λ = 1),

most of the volume of the simulation cell is seen to be occupied by the polymer matrix

and there are only merely visible water molecules and hydronium ions. As the water

content increases to λ = 5 [Fig. 3.14(f))], small, irregular clusters of the solvent phase

(water) begin to appear in flattened free-volume spaces. Well-formed, narrow, and

connected water channels appear at λ = 10 which connect a few larger water clusters
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

FIGURE 3.14: Snapshots of Nafion PFSA after equilibration (a) λ =
1, (b)λ = 5, (c)λ = 10, (d)λ = 15; FSPIionomer(e)λ = 1, ( f )λ =
5, (g)λ = 10, (h)λ = 15; NFSPIionomer(i)λ = 1, (j)λ = 5, (k)λ =

10, (l)λ = 15;

(Fig. 3.14(g)). These water clusters appear to be comparatively larger in size than those

formed in the Nafion PFSA ionomer but are not exactly spherical as in Nafion [Fig.

3.14(c)]. As shown in Fig. 3.14(h), at a high hydration level, the solvent phase increases

and takes a flattened shape.

Fig. 3.14(i) to (l) show the snapshots from the simulations of hydrated NFSPI as

the water content increases λ = 1, 5, 10, and 15. The polymer matrix is composed

of NTDA/DSDSA/MDP backbone and sulfonate groups are present on the backbone

itself. At a minimal hydration level (λ = 1), some pathways of water molecules are vis-

ible [Fig. 3.14(i)]. The molecular design prevents close packing of the polymer chains

hence several empty pockets remain present which can be filled with water molecules.

At λ = 5, numerous scattered flat water domains exist that provide a continuous path-

way[Fig. 3.14(j)]. At a working hydration level of λ = 10, large nearly spherical pock-

ets filled with water and hydronium appear lined by sulfonate groups [Fig. 3.14(k)].

At high hydration levels (λ = 5), irregular water domains or clusters are visible [Fig.

3.14(l)]. These are interconnected through narrow water channels. The irregular shape
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of hydrophilic domains is probably due to the presence of N-atoms along the main

chain which is also responsible for holding water molecules through hydrogen bond-

ing.

3.5 Conclusion

To sum up, MD is an informative tool for exploring the structure-property interplay in

ionomers and this study provides encouraging results for the novel SPI ionomers. Our

atomistic simulations have revealed interesting insights into several aspects through

which molecular design affects the structural and dynamic properties of an ionomer.

The study involved molecular dynamics simulations of Nafion PFSA ionomer and

two novel SPI membrane materials namely - NTDA/DSDSA/HFBAPP (partially flu-

orinated SPI) and NTDA/DSDSA/MDP (non-fluorinated SPI)) at different levels of

hydration (λ = 1, 5, 10 and 15). Diffusion coefficients of water molecules and hydro-

nium ions were found to be drastically affected by the level of hydration in all three

ionomers. Maximum differences among the dynamic properties of these ionomers ap-

peared at higher levels of hydration when the water clusters and channels became

well-developed. Partially fluorinated SPIs were found to have better proton conduc-

tivity than Nafion PFSA but fully hydrocarbon (non-fluorinated SPI) was found to be

still better than the partially-fluorinated SPI.

RDF plots, analyses of polymer, solvent phase, and free volume, and visual analy-

ses through snapshots of equilibrated models were also performed to gather informa-

tion related to the structure of water clusters and channels. Particularly, RDF plots of

Sulfur atoms revealed that a symmetrical arrangement can be correlated with higher

proton conductivity as in NFPSI. Unlike Nafion, irregular-shaped, flattened, and more

dispersed water clusters were found to be present in the novel SPIs. Spherical water

clusters connected through narrow channels were clearly observed in Nafion.
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4 Experimental study

4.1 Chapter summary

Non-fluorinated SPI PEM (NTDA/DSDSA/MDP) with 50% degree of sulfonation was

developed through condensation polymerization and consequent solvent casting method.

Polymerization was confirmed by confirming the chemical structure of the synthesized

polymer using Fourier Transform infrared (FTIR) and Nuclear Magnetic Resonance

(NMR) spectroscopies. Physico-chemical properties namely Ion Exchange Capacities

(IEC), water uptake, and swelling ratio along length and thickness were measured and

it was found that there was good agreement with the water uptake values modeled in

the MD simulations according to the hydration numbers. In-plane proton conductivity

values were found using an in-house developed four-probe setup and Electrochemical

Impedance Spectroscopy (EIS). The proton conductivity values found for the synthe-

sized SPI membranes were in the range of 0.1588-0.28636 S·cm−1 which is exceptionally

well for a PEM while those obtained in the MD simulations were 0.03-0.18 S·cm−1. A

good agreement was observed between the proton conductivity values predicted us-

ing MD simulations in which only the proton conductivity was determined using the

hydronium ion diffusivities representing only one of the three operational mechanisms

of proton diffusion. The SPI membranes were found to be stable in the harsh oxidative

environment represented by the 30% Ferrous Sulphate solution in the Fenton reagent

during oxidative testing as well as in the hydrolytic stability testing.
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4.2 Introduction

4.2.1 Synthesis of SPI PEMs

One of the first reports of naphthalaneic co-SPI was presented by Genies et al (Genies,

Mercier, et al., 2001). Though the rigid structure does not allow much room for flexibil-

ity and polymer chain rearrangement, they are found to have better hydrolytic stability

(Essafi, Gebel, and Mercier, 2004a; Jang, Lee, et al., 2005). 4,4’-diamino stilbene-2,2’-

sulfonic acid (DSDSA), a Type 1 sulfonated diamine was used in the synthesis of SPI

along with bulky fluorenylidene group containing diamine. The bulky group created

enough free volume to retain water even at high temperatures and offer good proton

conductivities even at temperatures as high as 140 oC (Ye, Bai, and Ho, 2006a). Sev-

eral groups have reported the experimental synthesis of SPI-based ionomers Einsla,

Kim, et al., 2005; Ganeshkumar, Bera, et al., 2014; Chen, Chen, et al., 2009; Chen, Yin,

et al., 2006a; Chen, Chen, et al., 2010; Einsla, Hong, et al., 2004; Feng, Kondo, et al.,

2018; Pandey and Shahi, 2015. The general route of Polyimide synthesis involves two-

step- Polycondensation of dianhydrides (-(CO)2-O) and diamines ((-NH2)2) followed

by chemical or thermal imidization (Mittal, 2005). PI copolymers with controlled IEC

are fabricated by careful consideration of comparative molar amounts of sulfonated

diamines (bearing –SO3H group) and non-sulfonated diamines.

Polyimides are known for their rigid backbone which imparts thermal and me-

chanical stability to them but at the same time makes their processability difficult by

increasing their glass transition temperature. The backbones of the polyimides also

govern the symmetry, crystalline/amorphous behavior and the glass transition tem-

perature (Akbarian-Feizi, Mehdipour-Ataei, and Yeganeh, 2012). Dianhydrides (DAs)

make up a major fraction of the PI main chain. Usually, their rigid structure and in-

teraction between basic imide N-atoms and acidic sulfonated group are responsible

for limited solubility but flexible DAs make these interactions weaker and lead to im-

proved solubility (Chen, Chen, et al., 2010). Benzoic acid (BA) is used as a catalyst

in the polycondensation reaction, especially in the reactions of naphthalenic dianhy-

drides to enhance their reactivity towards diamines Sk, Pijet, and Wanic, 1992. BA

aids in formation of trans-isoimide (Sek, Wanic, and Schab-Balcerzak, 1995). In addi-

tion, an organic base Triethylamine (TEA) is also added to these reactions. This base
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deprotonates the sulfonated groups in the polymer chain thus an additional step of re-

protonation of these acidic sites is performed. Acid treatment by immersing the films

in an acid solution usually leads to good proton conductivity but can cause a decrease

in the mechanical properties while protonation using ion exchange resins led to good

proton conductivity (14.4 × 10-2 S.cm-1 at 80 oC) membrane with an IEC of 1.98 mEq

g-1) (Blázquez, Iruin, et al., 2005).

4.2.2 Properties of SPI PEMs

The properties of the PEMs are evaluated using various spectroscopic, gravimetric,

and imaging methods (Kim and Lee, 2015b). Physical properties originating from

the chemical composition are categorized as physicochemical properties. In ionomers,

properties such as IEC, water uptake, swelling ratio, and ion conductivity are primary

physicochemical properties that are directly related to the acidic content of the mem-

branes.

4.2.2.1 Ion exchange capacity (IEC)

IEC, expressed in mEq.g-1, is the ability of an ionomer to bind the counter-ion. It de-

pends directly upon the content of the acidic group in the polymer and inversely on

the non-ionomeric hydrophobic content in the polymer (i.e. the relative content of the

rest of the polymer with respect to the acidic component). Proton conductivity is gov-

erned by IEC but is not solely dependent on it. It depends on polymer composition,

morphology, the direction of measurement, temperature, and humidity. Effective IEC

observed in the fully processed PEM is often different from the value calculated from

the molar ratio of the ionic and neutral content of the polymer. This is due to fabri-

cation processes and also due to the final resulting structure where the ionic groups

could be less accessible. Effective IEC is calculated using the back titration method

and NMR-H1. The back titration method is based on neutralizing the acidic content

of the known weight of the PEM specimen with a base of known molarity and then

determining the concentration of the residual base. This method includes two steps

after the conversion of membranes from TEA form (SO3-N+H-(CH2CH3)3) to proton

form (-SO3H).
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4.2.2.2 Proton Conductivity

Proton conductivity is the most important property of the PEM. It depends on IEC,

water uptake, proton mobility, the direction of measurement, level of degradation, and

temperature and humidity. It is usually derived from an ex-situ electrochemical tech-

nique of Electrochemical Impedance Spectroscopy using the four-probe method. EIS

or AC impedance Spectroscopy is a technique in which the sample is perturbed with

a small AC signal of known frequency and its response is captured and plotted in

the form of Nyquist plots. An equivalent circuit is derived to evaluate the behavior

of the different components contributing to the impedance faced by H+ in the mem-

brane. These measurements are carried out in a specially designed setup using the

four-probe method. This method ensures accuracy, especially in the lower frequency

region. Usually, a rectangular strip of a specimen of known dimensions is immobi-

lized in a cell such that it is in contact with two current-carrying electrodes and two

voltage-measuring electrodes. Since proton conductivity is sensitive to temperature

and humidity, provisions for accurate temperature and humidity control are made in

this cell and proton conductivity is determined with respect to these parameters.

4.2.2.3 Water uptake

Uptake of water is a measure of the maximum capacity of the PEM to hold water.

It depends on the content of acidic groups in the polymer sample and is evaluated

using the gravimetric method after the conversion of the membrane sample to proton

form. Membrane specimens are kept immersed in deionized water for a certain time

(usually 6-24 hours). After careful wiping and vacuum drying, a percentage rise in

their weight is calculated. Apart from acidic groups, the water uptake behavior of

the electrolyte membrane is also dependent on temperature. At high temperatures

(>100oC), the mobility of polymer chains and water molecules gives rise to a different

water uptake behavior of the membrane than at lower temperatures. Usually, the water

uptake is seen to rise with the increase in temperature. However, this rise may be linear

or nonlinear. Even for lower IEC values, WU increases with temperature, and a sharp

increase is observed at 100oC.
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4.2.2.4 Swelling

Swelling is the dimensional change that the PEM undergoes upon absorption of water.

Usually, it is isotropic in the case of PFSA PEMs that are similar in planar as well as

transverse direction. It is tested by measuring the dimensions before and after soaking

PEM samples in water for a certain time period. The interaction of SPI with water is

closely related to the swelling ratio of the membrane which is another important de-

sign consideration. SPIs have rigid polymer chains aligned in the in-plane direction.

Upon absorbing water, swelling is observed more in the thickness direction than plane

direction. Such anisotropic swelling is a characteristic feature of SPI-based PEMs but

unfortunately, this behavior tends to have detrimental effects on the membrane’s me-

chanical integrity in the fuel cell.

4.2.2.5 Oxidative stability

Lee et. al. observed that flexible crosslinkers improved OS but only at a high degree

of crosslinking (Lee, Hwang, et al., 2006). Chemically, oxidative stability is governed

by the basic tertiary nitrogen groups having high electron density. Similar products

of degradation were observed in real FC effluents and the Fenton test. Usually, the

durability of the PEM material is inversely proportional to the time when degradation

is observed in this test but still other factors also control the durability of PEMs.

4.2.2.6 Hydrolytic stability

SPIs comprise imido rings in their main chains which make them susceptible to hydrol-

ysis. The hydrolytic stability of the membranes is determined by electron density over

imido rings. Lesser electron density amounts to more positive charge over imido car-

bonyl groups and thus lesser hydrolytic stability. Imido rings are formed from the di-

anhydride monomers. Thus, essentially dianhydride monomers decide the hydrolytic

stability. NTDA has four carbonyl groups and thus distributed positive charge thus de-

creasing electron-withdrawing characteristics of the carbonyl group (Chen, Yin, et al.,

2006b; Zhang, Li, et al., 2008; Zhang, Li, et al., 2010). The electron density over imido

rings should be lesser and the carbonyl group should be more to prevent an attack on
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the imido rings. Hydrolysis takes place in two stages initiating with the breaking of

imide rings and eventually complete dissolution.

4.3 Methodology

4.3.1 Materials

1,4,5,8-Naphthalene tetracarboxylic anhydride (NTDA), 4,4-diamino stilbene-2,2-sulfonic

acid (DSDSA), and 4,4-diamino diphenyl methane (MDP) were supplied by Tokyo Ka-

sei (TCI), Japan. Triethyl amine (TEA) (>98%) was received from Spectrochem Chemi-

cals, India, and purified using molecular sieves (4 Å). m-Cresol (LOBA Chemie, India),

acetone (LOBA Chemie, India), methanol (FINAR Chemicals, India), and benzoic acid

(SDFCL India) were used as received.

FIGURE 4.1: Chemical structures of the dianhydride, sulfonated and
non-sulfonated diamines

4.3.2 Synthesis of NTDA/DSDSA/MDP SPI

First of all, a 250 mL round bottom flask, kept in a vessel containing silicon oil was

fitted with a condenser over a magnetic stirrer connected with a thermocouple for ac-

curate temperature measuring. Then, 0.345 g (0.5 mmol) of DSDSA, 20 mL of m-cresol,

and 0.5 mL of triethylamine (TEA) were added sequentially to the thoroughly dried

round bottom flask. After DSDSA was completely dissolved, and then 0.185 g (0.5

mmol) MDP and 0.5 g (1.0 mmol) NTDA were added. After 10 minutes, 0.16 g benzoic

acid was added as a catalyst to start the polymerization. The mixture was stirred at

room temperature for a couple of minutes and then heated at 80 ◦C for 4 h to obtain

polyamic acid (PAA). The resulting PAA was further heated at 180 ◦C for 24 h. The
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obtained highly viscous and thick solution was diluted with 10 mL m-cresol before

cooling at room temperature. Then SPI solution was transferred into a beaker filled

with acetone to obtain SPI precipitate. Next, the SPI precipitate was washed with ace-

tone several times and dried at 80 ◦C overnight in a vacuum oven to produce pure and

dry SPI (Chhabra and Choudhary, 2009; Dhra, Balasubramanian, and Kannan, 2021).

4.3.3 Membrane preparation and proton exchange reaction

An adequate amount of as-prepared SPI was dissolved in m-cresol to produce a ho-

mogeneous viscous solution. The SPI solution was spread on a flat glass container

and spread uniformly using a film applicator of known thickness. Then the glass con-

tainer was kept in a vacuum oven at 60 ◦C for 24 h to remove the solvent. The dried

membrane was soaked in methanol for 2 h to remove the remaining m-cresol. The

dried membrane was immersed in 1.0 M hydrochloric acid (HCl) at ambient tempera-

ture in order to implement a proton reaction exchange reaction for 48 h. The resulting

proton-exchanged membrane was then washed thoroughly with double distilled wa-

ter. Finally, the membrane was dried at 100 ◦C for 12 h in a vacuum oven (Chhabra

and Choudhary, 2009; Dhra, Balasubramanian, and Kannan, 2021).

FIGURE 4.2: Picture of the synthesized SPI membrane
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4.3.4 Structure characterization

Nuclear Magnetic Resonance (NMR) spectra (1H) were recorded with JEOL JNMECS

400 MHz NMR Spectrometer using Deuterated DMSO D6 as solvent. FT-IR (Fourier

Transform Infrared) spectra were recorded on the IRAffinity-1S instrument. The mor-

phology of the synthesized membranes was observed using Scanning Probe Microscopy

(Multimode 8, Bruker, USA) in tapping mode.

4.3.5 Physicochemical properties

4.3.5.1 Ion-exchange capacity (IEC) (meq·g−1)

Theoretical IEC was calculated from molar fractions of the reactant feeds. IEC was also

calculated using the back titration method.

IECw =
VNaOH · NNaOH

mwp
(4.1)

where IECw is the Ion exchange capacity by weight (meq·g−1), VNaOH is the volume of

NaOH consumed during titration (ml), NNaOH is the Normality of NaOH, and mdp is

the mass of dry (g).

4.3.5.2 Water uptake (%)

Water uptake, Swelling ratio, and Dimensional stability were evaluated by immersing

membrane samples of known weight and dimensions in deionized water for 12 hours

at room temperature and using these

WU% =
mwp − mdp

mdp
· 100 (4.2)

where mwp is the mass of polymer equilibrated with water (g), mdp is the mass of

polymer equilibrated with water (g).

4.3.5.3 Dimensional stability

Dimensional stability was determined along the thickness and longitudinal direction

according to Eq.4.3 and Eq.4.4.
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∆t =
twp − tdp

tdp
(4.3)

where twp is the thickness of polymer equilibrated with water (mm) and tdp is the thick-

ness of dry polymer (mm).

∆l =
lwp − ldp

ldp
(4.4)

where lwp is the length of polymer equilibrated with water (mm) and ldp is the length

of dry polymer (mm).

4.3.6 Hydrolytic and oxidative stability

Hydrolytic stability was assessed by immersing the membranes in deionized water

at 80 ◦C. Oxidative stability was assessed by keeping the membranes immersed in

Fenton’s reagent (30% H2O2 solution with 30 ppm FeSO4) at 90 ◦C. The time taken for

the samples to completely dissolve or break down is monitored.

4.3.7 Proton conductivity

Proton conductivity was determined in the in-plane direction using an in-house de-

veloped four-probe apparatus. Using Electrochemical Impedance Spectroscopy (EIS)

according to Eq. 4.5 as

σ|| =
l

R.A
(4.5)

where σ|| is the proton conductivity (S·cm−1), l = distance between electrodes, R =

is the Resistance observed in the direction parallel to the plane (Ohm), derived from

Nyquist plot (), A = Area of the sample (cm2). Temperature dependence of proton

conductivity follows an Arrhenius equation given by Eq.4.6 and the activation energy

for proton conduction is also obtained from this equation:

σ = σo.exp
Ea

R.T
(4.6)
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where σo is the pre-exponential factor, Ea is the activation energy for proton con-

duction (kJ.mol-1), R is the Universal Gas constant (= 8.314 J.mol-1.K-1), and T is the

absolute temperature (K).

4.3.8 Single cell PEMFC testing

Membrane Electrode Assemblies (MEAs) were prepared with Nafion (NR212) and NF-

SPI SPI ionomer PEMs using Toray Carbon paper as Gas Diffusion Layers(GDLs). Pt/C

electrocatalyst loading of 0.25 mg.cm−2 on the Anode and 0.50 mg.cm−2 on the Cath-

ode. The I-V characteristics or polarization behavior of the synthesized membrane was

measured using a single cell of H2/Air PEMFC having an effective area of 7.29 cm2 (2.7

cm X 2.7 cm). The temperature of reactant gases maintained at 80◦C was used. Hu-

midified Hydrogen and Air were supplied to the cell with a 50% RH level at flow rates

of 80 ml.min−1 H2 and 100 ml.min−1 respectively. The pressure was maintained at 2.5

bar for both reactants.Fig. 4.3 shows the schematic of the single-cell PEMFC testing

apparatus.

FIGURE 4.3: Schematic of the single cell PEMFC test apparatus
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4.4 Results and discussion

4.4.1 Chemical structure characterization

4.4.1.1 FTIR

Fig. 4.4 shows two strong absorption bands corresponding to asymmetric and sym-

metric stretching vibrations are observed between 1178 cm−1 and 1085-1095 cm−1 re-

spectively. The absorbed water shows a band around 3500 cm−1. -C-N asymmet-

ric stretching occurs at 1347 cm−1, -C=O bond symmetric stretching appears as peak

around 1664 cm−1, and -C=O bond asymmetric stretching occurs at 1709 cm−1.

FIGURE 4.4: FTIR spectrum of the synthesized SPI ionomer

4.4.1.2 NMR

Fig. 4.5 shows the NMR shifts observed in the SPI samples. Naphthalene (Aromatic H-

atoms (8.736)), Benzene (Aromatic H-atoms (6.963, 7.091), Sulfonate group [-S(=O)(=O)OH]

(8.306)), Stilbene (Aromatic H-atoms (7.444, 7.501, 7.845, 7.913), Ethylene H-atoms

(7.218)). No unreacted amine groups were found to be present as there is no shift

around 5 ppm.
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FIGURE 4.5: NMR spectrum of the synthesized SPI ionomer

*

FIGURE 4.6: Scanning Probe Microscope image (Above) of the synthe-
sized SPI ionomer, height images: z = 16 nm

4.4.2 Morphology

Fig. 4.6 shows the topology of the synthesized ionomer observed through Atomic

Force Microscopy (AFM) or Scanning Probe Microscopy (SPM) on a 1-micron length

scale. Seemingly well-defined morphology of parallel arrangement of polymer chains

is visible in the dry ionomer samples. Fig. 4.7(a,c) shows notable clusters of water

distributed within the solid phase polymeric matrix while the overall topography is

visible in the 3D height images as seen in Fig 4.7(b,d).
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(a) (b)

(c) (d)

FIGURE 4.7: Scanning Probe Microscope image showing phase contrast
between water clusters and NFSPI ionomer segments
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4.4.3 Physicochemical properties and Dimensional stability

Table 4.1 provides a comparison of the physicochemical properties namely IEC, water

uptake, and hydration number along with proton conductivity for different SPI mem-

branes reported in the literature as well as the SPI membrane synthesized in this study.

Also, the dimensional stability in terms of swelling ratio along the length and thick-

ness direction has been shown. There is only marginal change in the swelling ratio in

both directions which suggests high dimensional stability of the synthesized SPI mem-

brane. Also, even at comparatively lower IEC and moderate water uptake, high proton

conductivity could be observed.

TABLE 4.1: Comparison of physicochemical properties of the synthe-
sized SPI membrane with other PEMs

Ionomer IECa

(meq.g−1)
WUb

(%)
λc SRTd

(%)
SRLe

(%)
PC f

(S·cm−1)
(In-plane)

Refer-
ence

NTDA/
ODADS/
MPDA

2.40 78 18 0.19 0.15 0.105 (20 ◦C)
0.184 (80 ◦C)

Li, Cui, et
al., 2007

BTDA/
2,2’-BSBB/
BAHF

1.80 18.8 37.5 0.13 0.01 0.175 (80 ◦C) Li, Cui, et
al., 2007

NTDA/
BAPBDS

2.43 107 22 0.26 0.22 0.2 Watari,
Fang, et
al., 2004

NTDA/
3,3’-BSPB/
TAPB

2.49 114 NR 0.68 0.02 0.13 (50 ◦C) Yin,
Hayashi,
et al.,
2005a

[NTDA/
DSDSA]
-DABA-QA]
- DQDN

2.29 23.66 5.7 0.110 0.01 0.0649 (30 ◦C)
0.1364 (90 ◦C)

Mistri,
Mohanty,
and
Banerjee,
2012

NTDA/
DSDSA/
BATh

1.98 27 7.2 15 2 0.047 (30 ◦C)
0.077 (90 ◦C)

Mistri,
Banerjee,
et al.,
2015

NTDA/
DSDSA/
MDP

1.54 21.98 8 0.06 0.0048 0.1588 (30 ◦C) This
work

a IEC = Ion Exchange Capacity (meq·g−1), b WU = Water Uptake (%), c λ = Hydration Number, d SRT =
Swelling ratio (thickness direction) (%), e SRL = Swelling ratio (length direction) (%), f PC = Proton

Conductivity (S·cm−1)
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4.4.4 Hydrolytic and oxidative stability

Table 4.2 gives a comparison of hydrolytic and oxidative stability values for Nafion

PFSA membranes and SPI membranes as reported in the literature and obtained for the

synthesized SPI membrane. The synthesized SPI membranes show moderate stability

in hydrolytic and oxidative environments.

TABLE 4.2: Comparison of Hydrolytic and Oxidative Stability of the
synthesized SPI membrane with other PEMs

Hydrolytic
Stability

Oxidative
Stability

Reference

Nafion 117 240 h Sundar, Jang, et al.,
2005

NTDA/ODADS/ODA 25 h 24 h Fang, Guo, et al., 2002
BTDA/2,2’-BSBB/BAHF 160 h 52 h Li, Cui, et al., 2007
NTDA/S-DHPZDA/ODA 38 h 51 h Zhu, Pan, et al., 2008
NTDA/DSDSA/MDP SPI 51 h 42 h This work

4.4.5 Proton conductivity

Proton conductivity is the most important property of the PEM. It depends on IEC, wa-

ter uptake, proton mobility, the direction of measurement, temperature, humidity, and

level of degradation. Proton conductivity was measured in the in-plane or longitudi-

nal direction measured at for a temperature range of 30 ◦C - 80 ◦C using an in-house

developed four-probe apparatus. As shown in Fig. 4.8, values in the range of 0.15 - 0.28

S·cm−1 were observed. The phenomenon of proton conduction incorporates two dom-

inant mechanisms of proton diffusion namely proton hopping or structural diffusion

and vehicular diffusion of hydronium ions. Fig. 4.8 shows the variation of the activa-

tion energy of proton transport with increasing temperature. At 30 ◦C, an activation

energy of 9.9144 kJ.mol−1 was observed.

Fig. 4.9 shows the Nyquist plots for SPI ionomer at increasing temperatures. With

an increase in temperature, there is a decrease in the resistance due to the lowering

of the activation energy of proton transport. At higher temperatures(333K, 343K, and

353K), the polymer chains undergo substantial rearrangement, and better connectivity

among the hydrophilic domains is achieved hence lesser resistance is observed. It can
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FIGURE 4.8: Proton conductivity (Left) and Activation energy (Right)
values for SPI PEM observed at temperatures from 30 ◦C - 80 ◦C synthe-

sized SPI ionomer

also be observed that at lower temperatures (303K, 313K, 323K), the high-frequency re-

gion is dominated by the H+ diffusion-limited processes in the membrane whereas

at high temperatures (333K, 343K, 353K), there is improvement in kinetics though

diffusion-limited processes still exist but decrease in intensity.

FIGURE 4.9: Nyquist plots observed for temperatures from 30 ◦C-80 ◦C
synthesized SPI ionomer

Table 4.3 gives a comparison of the activation energy values for Nafion PFSA mem-

branes and SPI membranes as reported in the literature and obtained in the present
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TABLE 4.3: Comparison of Activation energy of the synthesized SPI
membrane with other PEMs

Activation
energy (Ea)

Reference

Nafion 212 4.9 Lin, Chang, and Wang,
2013

Nafion 117 7.02 Yao, Shi, et al., 2016
NDTA/BDSA/ODA 12.3 Lin, Chang, and Wang,

2013
BTDA/BAPBDS/DAB 4.54 Pandey and Shahi, 2013
NTDA/ODADS/TFVBPA 9.52 Yao, Shi, et al., 2016
NTDA/DSDSA/MDP 9.91 This work

study. The activation energy of proton conduction is on the higher side compared to

Nafion and some other SPIs.

4.4.6 Single cell PEMFC performance

Fig. 4.10 shows the current density-voltage (j-V) characteristic plot for Nafion MEA(Green)

and 50% DS NTDA/DSDSA/MDP SPI MEA(Blue) for the single cell PEMFC operated

at 80 ◦C. The activation characteristics of the PEMFC for Nafion and SPI PEM are com-

parable with the O.C.P. values of 0.85 V for Nafion and 0.80 V for the SPI PEM. As

the current density increases, the kinetics losses increase drastically in both cases as

shown by the decrease in the cell potential. In the ohmic region of the j-V plot, the

SPI membrane shows higher resistance than Nafion despite having higher proton con-

ductivity. At higher current density, the mass transport losses take over in both cases,

however, the power density is marginally high in the SPI MEA. This is attributed to

the bound water in minimal hydration conditions in NFSPI. The j-V characteristic plot

is consistent with a similar SPI reported in the literature (Pan, Chen, et al., 2015).
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FIGURE 4.10: Current density-Voltage (j-V) characteristic plot for
Nafion(Green) and 50% DS NTDA/DSDSA/MDP SPI(Blue) observed

at 80◦C

4.5 Conclusion

Non-fluorinated SPI PEM (NTDA/DSDSA/MDP) with 50% degree of sulfonation was

developed through condensation polymerization and consequent solvent casting method.

Polymerization was confirmed by confirming the chemical structure of the synthe-

sized polymer using Fourier Transform infrared (FTIR) and Nuclear Magnetic Reso-

nance (NMR) spectroscopies. Physico-chemical properties namely Ion Exchange Ca-

pacities (IEC), water uptake, and swelling ratio along length and thickness were mea-

sured. There was good agreement with the water uptake values modeled in the MD

simulations according to the hydration numbers. In-plane proton conductivity val-

ues were found using an in-house developed four-probe setup and Electrochemical

Impedance Spectroscopy (EIS). The proton conductivity values found for the synthe-

sized SPI membranes were in the range of 0.1588-0.28636 S·cm−1 which is exceptionally

well for a PEM while those obtained in the MD simulations were 0.03-0.18 S·cm−1. A

good agreement was observed between the proton conductivity values predicted us-

ing MD simulations in which only the proton conductivity was determined using the
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hydronium ion diffusivities representing only one of the three operational mechanisms

of proton diffusion. The SPI membranes were found to be stable in the harsh oxidative

environment represented by the 30% Ferrous Sulphate solution in the Fenton reagent

during oxidative testing as well as in the hydrolytic stability testing.
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5 Conclusion and future outlook

5.1 Concluding remarks

Broadly, this work integrates the three realms of polymer discovery using data-driven

techniques, polymer modeling using molecular dynamics, and polymer synthesis and

testing for the targeted application of electrolyte membrane development for PEMFC.

Herein, this integrated methodology has been successfully implemented for the Sul-

fonated Polyimides class of hydrocarbon PEMs. In fact, this is the first report of a data-

based approach taken for designing novel polymer electrolyte membranes for fuel cells

and it can be extended to other classes of prospective hydrocarbon PEM materials as

well. Also, it was found that SPIs hold promise as electrolyte membrane materials

showing a high range of proton conductivity.

Specifically, through this work, a data set of SPI-based ionomer membranes has

been created to identify suitable SPI candidates for computational modeling and ex-

perimental synthesis based on insights obtained from data-driven approaches. Also,

a combination of QSPR, machine learning, and data mining approaches was utilized

to predict the proton conductivity of novel sulfonated polyimide polymer electrolyte

membranes. Using decision tree classifiers, simplistic and interpretable Machine Learn-

ing models were obtained in the form of If-else statements using 81 unique SPI monomers.

Also, a subset of the most relevant features was selected by manually including the fea-

tures that increased the prediction accuracy of the decision tree classifier.

Further, our atomistic simulations have revealed interesting insights into several

aspects through which molecular design affects the structural and dynamic properties

of an ionomer. The study involved molecular dynamics simulations of Nafion PFSA

ionomer and two novel SPI membrane materials namely - NTDA/DSDSA/HFBAPP

(partially fluorinated SPI) and NTDA/DSDSA/MDP (non-fluorinated SPI) at different

levels of hydration (λ = 1, 5, 10 and 15). Diffusion coefficients of water molecules and
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hydronium ions were found to be drastically affected by the level of hydration in all

three ionomers.

Finally, NTDA/DSDSA/MDP membrane was developed through condensation

polymerization and solvent casting methods. The proton conductivity values found

for the synthesized SPI membranes were in the range of 0.1588-0.28636 S·cm−1 which

is exceptionally well for a PEM while those obtained in the MD simulations were

0.03-0.18 S·cm−1. A good agreement was observed between the proton conductivity

values predicted using MD simulations in which only the proton conductivity was

determined using the hydronium ion diffusivities representing only one of the three

operational mechanisms of proton diffusion.

5.2 Future outlook

Through this work, certain areas have been identified where future research and de-

velopment work can be targeted:

• The data set can be expanded by a collection of data spanning across other classes

of hydrocarbon PEMs.

• Advanced machine learning algorithms can be explored for polymer discovery

with the increased number of datapoints in the data set.

• Molecular Dynamics studies can be designed to include the proton hopping mech-

anism of diffusion by making suitable modifications in the code or through use

of additional packages suited for bond breaking and bond creation.

• There is a need for more in-depth studies into the structure-properties relation-

ship especially the effect of morphology on hydrolytic stability and fuel cell per-

formance.

• Moreover, it is important to study the role of acidic sites, nano-sized ionic do-

mains, presence of bound and bulk water in the ionomer with regard to the dif-

fusion of fuel (Hydrogen) and oxidant.

• Long-term durability studies are indispensable in creating robust SPI PEMs.
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A Descriptor information/details

A1 QSPR and Semi-empirically calculated attributes:

The following attributes were considered for feature selection and model training in

the next step.

• Literature attributes (Molar): Molar content of the sulfonate group

• Mordred descriptors (Mordred): ABC (Atom-bond connectivity index descriptor,

a degree–base descriptor), ABCGG (Graovac-Ghorbani atom-bond connectivity

index descriptor, a distance-based topological descriptor), nAromAtom (Aro-

matic atoms count), nAromBond (Aromatic bonds count), nheavyAtom (Number

of heavy atoms, a heavy atom is any atom other than Hydrogen), nhetero (Num-

ber of hetero atoms, any atom that is not a Carbon atom or a Hydrogen atom)),

nN (Number of Nitrogen atoms), nO (Number of Oxygen atoms), nbondsS (Num-

ber of single bonds in non-kekulized structure), nbondsD (Number of double

bonds in non-kekulized structure), nbondsA (Number of aromatic bonds in non-

kekulized structure), nbondsKS (Number of single bonds in kekulized struc-

ture Kekulization, refers to localization of the bond over an aromatic structure),

nbondsKD (Number of double bonds in kekulized structure)

• Babel descriptors (Babel): nAromBond, dbonds (Number of double bonds), HBA1

(Number of Hydrogen Bond Acceptors), HBD (Number of Hydrogen Bond Donors),

LogP (Partition coefficient, generally refers to the concentration ratio of nonion-

ized species of a compound in two solvents e.g. when one of the solvents is

water and the other is a non-polar solvent, then the logP value is a measure of
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lipophilicity or hydrophobicity), molar refractivity (a measure of the total polar-

izability of a mole of a substance which is dependent on the temperature, index of

refraction, and pressure), Molecular Weight, nF or Fluorinated (Number of Fluo-

rine Atoms, initially a numeric descriptor but converted to categorical attribute),

sbonds (Number of single bonds), TPSA(Topological polar surface area)

• MOPAC semi-empirical descriptors (MopacD): Dispersion Energy [kcal.mol-1]

(van der Waals or VDW interaction arising from the instantaneous correlation

of electrons), Core-core repulsion [eV] (Correction term added to compensate for

approximations in calculating energies as only valence electrons are considered

and the core electrons are treated together with the nuclei as one effective core

potential), COSMO area [Å2] and COSMO Volume [Å3] (Conductor-like Screen-

ing Model, which is a continuum approach to generates a conducting polygonal

surface around the ion or molecule at the van der Waals’ distance to determine

the electrostatic interaction of a molecule with a solvent), Ionization Potential

[eV] (energy needed to remove an electron and create a positive ion), HOMO En-

ergies [kcal.mol-1], LUMO Energies [kcal.mol-1]

• MOPAC semi-empirical descriptors after adding three water molecules around

each sulfonate (MopacW): Dispersion Energy (with water molecules) [kcal.mol-1],

H-bond Energy [kcal.mol-1], Number of Hydrogen bonds, COSMO area (with

water molecules) [Å2] and COSMO Volume (with water molecules) [Å3], Ion-

ization Potential (with water molecules) [eV], Core-core repulsion (with water

molecules) [eV], HOMO energies (with water molecules) [kcal.mol-1], LUMO en-

ergies (with water molecules) [kcal.mol-1]

A2 Feature selection

A2.1 Gain ratio

DT induction in WEKA machine learning platform is based on C4.5 algorithm of In-

formation theoryQuinlan, 1996; Holmes, Donkin, and Witten, 1994. According to this,
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information content (In f o(D)) is calculated by the potential information produced by

splitting the training data D into n partitions according to the outcomes or class labels

as shown in Eq.A1. Net gain of information is obtained by subtracting the information

content of the individual attribute (In f oA(D)) i.e. potential information obtained if

the data points are partitioned according to the m outcomes or class labels of a test on

attribute A from the total information content of the data set as shown in Eq.A2.

In f o(D) = −
n

∑
i=1

pi log2(pi) (A1)

Gain(A) = In f o(D)− In f oA(D) (A2)

where pi is the probability of a data instance belonging to a class label (total in-

stances of a class label divided by all the instances); D = total number of instances; A

= Attribute.

Split information takes into account all possible splits of an attribute (Split In f oA(D))

and the occurrence of the data points lying in these split intervals as shown in Eq.A3.

Split In f oA(D) =
m

∑
i=1

Dj

D
log2(

|Dj|
|D| ) (A3)

where Dj is the number of instances belonging to a particular class label in an at-

tribute.

Gain Ratio is obtained by normalizing the gain by split information value so that

the bias for more heterogeneous attributes or the attributes with multiple outcomes is

removed as shown in Eq.A4.

Gain Ratio(A) =
Gain(A)

Split In f oA(D)
(A4)

A2.2 ReliefF algorithm

The feature weight vector is predicted based on the Manhattan nearest neighbor dis-

tance method from a randomly selected initial instance Kononenko, Šimec, and Robnik-

Šikonja, 1997. Using this, the distance between the nearest five same class instances
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and the different class labels instances is calculated. The vector is updated with every

ith iteration as mentioned below in as shown in Eq.A5:

Wi = Wi − (xi − y2
same) + (xi − y2

di f f ) (A5)

where Wi is the weight vector whose elements represent the weights associated

with each feature; xi is the randomly selected data point; ysame is the nearest data point

belonging to the same class label as xi; ysame is the nearest data point belonging to the

class label different from xi.

A3 Classification metric/evaluation scores

The performance of a classifier is evaluated on the basis of how accurately it classifies

the data instances according to the class labels to which they belong. There are many

evaluation criteria based on which different characteristics of the classifier are drawn.

These evaluators are derived from the confusion matrix that is a representation of true

class labels and predicted class labels. The number of rightly and wrongly predicted

class labels is given in the columns and actual numbers of the class labels are given in

rows. It represents how many misclassification errors were performed by the classifier.

If an HPC class label is predicted as ‘HPC’ then it is termed as True positive(TP) and

if an LPC class label is predicted as ’LPC’ then it is termed as True Negative(TN).

On the contrary, if the HPC class label is predicted as ’LPC’ then it is considered as

False Negative(FN) and if an LPC class label is predicted as ’HPC’ then it is a False

Positive(FP) count. Based on this,the following classification metric/evaluation scores

are evaluated:

A3.1 Accuracy

Accuracy for the classification algorithm is defined by the number of correctly clas-

sified instances whether they are HPC or LPC labels divided by the total number of

predictions. In terms of SPI PEM repeat units, accuracy determines the percentage of

all the repeat units corresponding to HPC and LPC which are classified as such among
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all the classifications. The relationship of accuracy with TP, TN, FN and FP is given

as

Accuracy =
(TP + TN)

(TP + FP + TN + FN)
(A6)

A3.2 True Positive Rate or Recall or Sensitivity

It represents the proportion of the labels which are actually HPC among the total num-

ber of HPC predictions. It indicates the completeness of the classifier and how exactly

the classifier predicts the HPC cases as HPC. The low value of recall indicates that there

are many HPC class label cases that were predicted as LPC and the high value of this

parameter indicates that most of the HPC repeat units were identified and predicted

correctly. The relationship of True Positive Rate (TPR) with TP, and FN is given as

TPR =
TP

TP + FN
(A7)

A3.3 Precision

Precision is a measure of retrieved relevant instances e.g it represents actual HPC class

labels among the total number of predicted HPC class labels. This value provides a

measure of how much relevant the classifier is in predicting HPC as HPC. High preci-

sion indicates that only a small number of LPC repeat units are getting falsely predicted

as HPC class labels whereas high precision indicates that a large number of repeat units

that are associated with LPC class labels are getting classified as HPC which is not an

ideal case. The relationship of TPR with TP and FP is given as

Precision =
TP

TP + FP
(A8)

A3.4 Cohen’s Kappa Statistics

It is the measure of the level of agreement between the ground reality and the predicted

class labels. The higher the Cohen’s Kappa statistic (K) the better it is as K = 1 means

perfect agreement and K = 0 means chance agreement. The value between 0.80 − 0.90

represents a strong classification model. The relation of K is given as follows
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K =
po − pe

1 − pe
(A9)

where po is the percentage agreement between classifier and ground truth, and pe

is the percentage of chance agreement.

A3.5 F1 measure

F1 measure combines precision and recall by taking the harmonic mean of these pa-

rameters. We want the repeat unit in the test case to be rightly predicted whether it

is HPC or LPC (precision) such that the right predictions should be done for as many

repeat units in the test case as possible (recall). The F1 measure balances this trade-off.

F1 = 2 ∗ precision.recall
precision + recall

(A10)

A3.6 False Positive Rate

False Positive Rate (FPR) measure represents the proportion of the wrong predictions

i.e. actual LPC predicted as HPC among all actual negatives or LPC class labels. The

high value of this measure indicates that a large number of actual LPC repeat units

are classified as HPC which is an undesirable scenario as LPC repeat units might get

screened for further processing.

FPR =
FP

FP + TN
(A11)

A3.7 Specificity or TNR

Specificity relates to the classifier’s ability to identify LPC or negative class labels. A

higher value of this measure indicates that a large number of actual LPC repeat units

are classified as LPC and misclassification of LPC as HPC (i.e. FP) is low. The relation-

ship of TNR with FP and TN is given as

TNR =
TN

FP + TN
(A12)
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A3.8 Receiver Operating Characteristics

The area under the Receiver Operating Characteristics (ROC) graph is the area under

the graph of the FPR on the x-axis and TPR on the y-axis. This value indicates the

quality of the classifier for both class labels individually. The perfect classifier lies on

or nearer to the y-axis and the value is closer to 1. Its value determines the frequency

with which a class label is predicted.

A4 Regression metrics/evaluation scores

Similar to classification evaluation scores, there are several criteria based on which RFR

algorithms are evaluated, as mentioned below:

A4.1 Mean squared error (MSE)

Mean Squared Error (MSE) represents the average absolute value of the squared dif-

ference between the original and predicted values.

MSE =
1
N

N

∑
i=1

[yi − ŷ]2 (A13)

A4.2 Root mean squared error (RMSE)

Root Mean Squared Error (RMSE) is the square root of the Mean Squared error. It is

always a positive value and is sensitive to outliers in the data set.

RMSE =
1
N

√√√√ N

∑
i=1

[yi − ŷ]2 (A14)

A4.3 R-squared (R2)

The coefficient of determination or R-squared (R2) represents the goodness of fit for

the predicted value.

R2 = 1 − ∑N
i=1[yi − ŷ]2

∑N
i=1[yi − ȳ]2

(A15)
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A4.4 Mean absolute error (MAE)

Mean absolute error (MAE) represents the averaged absolute difference between the

original and predicted values in the dataset.

MAE =
1
N

N

∑
i=1

[yi − ŷ] (A16)
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B Force field details

A1 Polymer Consistent Force Field

Bonded and non-bonded parameters were assigned according to the PCFF (Polymer

Consistent Force Field) force field.

The total energy of all the bonded and non-bonded interactions is given by Eq. A1.

E = Eb + Eθ + Eϕ + Eχ + Ebb′ + Ebθ + Ebϕ + Eθϕ + Eθθ′ + Eθθ′ϕ + Eq + EvdW (A1)

• The energy contribution of quartic bond-stretching is determined by Eq. A2 with

bo representing the equilibrium bond length:

Eb = Kb2(b − b0)
2 + Kb3(b − b0)

3 + Kb4(b − b0)
4 (A2)

where coefficients Kb2, Kb3 and Kb4 are constants.

• The energy contribution of quartic angles is determined by Eq. A3 with θo repre-

senting the equilibrium angle:

Eθ = Kθ2(θ − θ0)
2 + Kθ3(θ − θ0)

3 + Kθ4(θ − θ0)
4 (A3)

where coefficients Kθ2, Kθ3 and Kθ4 are constants.

• The term for torsion is given by Eq. A4:

Eϕ = ∑
ϕ

[Kϕ1(1 − cosϕ) + Kϕ2(1 − cos2ϕ) + Kϕ3(1 − cos3ϕ)] (A4)

where coefficients Kϕ1, Kϕ2 and Kϕ3 are constants.
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• The term for Wilson out-of-plane interactions is given by Eq. A5

Eχ = ∑
χ

Kχχ2 (A5)

where Kχ is constant.

The cross-term parameters are included as:

• The bond-bond parameters are given by Eq. A6:

Ebb′ = Kbb′(b − b0)(b′ − b′0) (A6)

where Kbb′ is constant

• The bond-angle parameters are given by Eq. A7:

Ebθ = Kbθ(b − b0)(θ − θ0) (A7)

where Kbθ are constants.

• The middle bond-torsion parameters are given by Eq. A8:

Ebϕ = (b − b0)[Kbϕ1 cos ϕ + Kbϕ2 cos 2ϕ + Kbϕ3 cos 3ϕ] (A8)

where Kbϕ1, Kbϕ2 and Kbϕ3 are constants.

• The end bond-torsion and middle bond-torsion parameters are given by Eq. A9:

Eb′ϕ = (b′ − b′0)
[
Kb′ϕ1 cos ϕ + Kb′ϕ2 cos 2ϕ + Kb′ϕ3 cos 3ϕ

]
+

(b′′ − b′′0 )
[
Kb′′ϕ1 cos ϕ + Kb′′ϕ2 cos 2ϕ + Kb′′ϕ3 cos 3ϕ

] (A9)

where Kb′ϕ1, Kb′ϕ2, Kb′ϕ3, Kb′′ϕ1, Kb′′ϕ2 and Kb′′ϕ3 are constants.

• The angle-torsion parameters are given by Eq. A10:

Eθϕ = ∑
θ,ϕ

(θ − θo)[Kθϕ1(1 − cosϕ) + Kθϕ2(1 − cos2ϕ) + Kθϕ3(1 − cos3ϕ)] (A10)

where Kθϕ1, Kθϕ2 and Kθϕ3 are constants.
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• The angle-angle parameters are given by Eq. A11:

Eθϕ = (θ − θ0)
[
Kθϕ1 cos ϕ + Kθϕ2 cos 2ϕ + Kθϕ3 cos 3ϕ

]
+

(θ′ − θ′0)
[
Kθ′ϕ1 cos ϕ + Kθ′ϕ2 cos 2ϕ + Kθ′ϕ3 cos 3ϕ

] (A11)

where Kθϕ1, Kθϕ2, Kθϕ3, Kθ′ϕ1, Kθ′ϕ2 and Kθ′ϕ3 are constants.

• The angle-angle-torsion parameters are given by Eq. A12:

Eθθ′ϕ = Kθθ′ϕ(θ − θ0)(θ
′ − θ′0) cos ϕ (A12)

where Kθθ′ϕ are constants.

• The electrostatic interactions are defined by the Coulombic term according to Eq.

A13

Eq = ∑
ij

qiqj

rij
(A13)

• The non-bonded or van der Waals interactions are governed by Eq. A14 where

an inverse 9th-power term is used for the repulsive part as:

EvdW = ∑
ij

ϵij[2(
ro

ij

rij
)9 − 3(

ro
ij

rij
)6] (A14)

• The Waldman-Hagler combining rules are used calculating ro
ij and ϵij as given by

Eq. A15 and Eq. A16:

ro
ij = (

(ro
i )

6 + (ro
j )

6

2
)

1
6 (A15)

ϵij = 2
√

ϵi · ϵj[
(ro

i )
3 · (ro

j )
3

(ro
i )

6 + (ro
j )

6 ] (A16)
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