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Lay Summary
Mathematics has been an integral part of physics, to the extent that many great physicists
including Dr. Feynman has emphasized to "Shut up and calculate !". According to their
worldview, we need to focus on the importance of the mathematical calculations and predic-
tions, rather than getting too caught up in philosophical or conceptual debates. Having said
this, similar to mathematical theories, physical theories also rely on "postulates". Postulates
in short are assumptions on which a theory relies. When certain postulates are changed or
modified it can reveal new possible physics and ideas which of course need to stand the test
of empirical evidence. Once the empirical evidence is attained the change in postulates can
be considered to be fruitful.

In the light of our discussion in previous paragraph. Quantum mechanics and many
physical theories rely on the assumption that physical operators need to be Hermitian and
unitary. Over the years this assumption has been unchallenged and modifications of these
postulates have been unexplored. In this thesis we explore the modifications of this postulate
and consider a special class of non-Hermitian and non-unitary physical operators also called
as defective physical operators.

We intend to learn the physics, demonstrations and applications of such defective op-
erators through our study. We considered two different cases, that involve such operators.
In the first case, we have considered a defective Hamiltonian and discussed in details, how
this can help to enhance the precision of a quantum sensor. In the second case, a so-called
optomechanical system exhibit non-reciprocal behavior, thanks to a defective scattering ma-
trix. This happens at a single frequency of the input field. We have shown how to achieve
tunability of this non-reciprocity.
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Abstract
Operators play a crucial role in the field of physics, especially in quantum mechanics and

optics, serving as mathematical tools for describing transformations and physical quantities.
While normal operators (i.e., Hermitian and unitary operators) have received significant
attention, less is known about non-normal operators that may emerge in various physical
systems and effects. Defective operators are a particular type of non-normal operator char-
acterized by their non-diagonalizability. Recently, research has revealed the occurrence of
defective operators in systems with complete non-reciprocity of light and degeneracy of eigen-
values and eigenvectors of Hamiltonian. These systems have important applications, such as
the isolation of light and quantum sensing. This thesis aims to investigate the physics and
applications of systems where defective operators arise.

Keywords: non-reciprocity; non-unitarity; isolation; quantum sensing; exceptional points;
non-diagonalizable, quantum Fisher information; IBM Q Expeience
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Chapter 1

Introduction

Mathematics plays a fundamental role in governing physics. It provides a precise and rigorous
language for formulating physical laws, describing natural phenomena, making predictions,
and understanding the underlying principles that govern the universe.

Usually interesting avenues arise when concepts in mathematics are applied to unexplored
areas in physics. One largely unexplored area in physics is the phenomenon where defective
(non-diagonalizable) operators arise. In this thesis we are interested in exploring physics and
applications of such systems.

In this chapter we will introduce several properties and definitions related to the subject.
We will prove several theorems and lemmas, too. In section 1.1 we will discuss the Hermitian
operators and their mathematical properties. Later we will discuss Non-Hermitian matrices.
The discussion is divided into two sections section 1.2 and section 1.3. We finally conclude
the chapter, with an outline of this thesis.

1.1 Hermitian matrices
Definition 1.1.1. Hermitian operators are defined as following the relation, H = H†. Here, †

represents complex conjugation and transposition. The combined operation is also sometimes
known as "Hermitian conjugation" [2].

Let us understand the properties of Hermitian operators. Figure 1.1 provides a mind-map
of the properties and relations of Hermitian operators. We will provide proof of every property
mentioned in the mind-map. The mind-map has several types of connections/arrows. The
color and type of arrow represents the type of relation as given below:

• black double arrows represent ’iff’ condition

• red single arrow represent ’if’ condition

• green arrows represent ’types of’

This representation will be used throughout the thesis.

Theorem 1.1.1. All eigenvalues of a Hermitian operator (λ) are always real, i.e λ = λ∗.
The inverse is not true.



2 CHAPTER 1. INTRODUCTION

Figure 1.1: A mind-map showcasing the properties of Hermitian operators.

Proof. Consider a Hermitian operator following the eigenvalue equation

H |ψi⟩ = λi |ψi⟩ , (1.1)

such that H = H†. Here |ψi⟩ are the eigenvectors corresponding to eigenvalues λi. Taking
transpose conjugate on both sides of Equation 1.1 we get ⟨ψi|H = λ∗i ⟨ψi|, we have used the
fact that H is Hermitian. Multiplying by |ψi⟩ from right we get after some manipulations

(λi − λ∗i ) ⟨ψi|ψi⟩ = 0 . (1.2)

Since, |ψi⟩ is non-zero, λi = λ∗i , i.e., λ is real.
Note, the inverse, i.e. all matrices with real eigenvalues are Hermitian, is not true. It can

be proved by an example. For example, consider, a non-Hermitian matrix(
3 1
2 4

)
. (1.3)

It has real eigenvalues 5 and 2, which completes our proof of the theorem stated above, This
property is depicted in Figure 1.1.

It must be reminded here that, in quantum mechanics, the use of Hermitian operators is
essential for describing physical observables and calculating the outcomes of measurements in
experiments. The real eigenvalues of Hermitian operators and their ortho-normal eigenvectors
are crucial properties that make them an indispensable tool for studying and understanding
quantum systems.
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Theorem 1.1.2. The eigenvectors of Hermitian matrix are orthogonal.

Proof. Consider a Hermitian matrix H. All Hermitian matrices are normal, [2], i.e., HH† =
H†H. However, according to Schur decomposition any square matrix [3],

H = QTQ−1 , (1.4)

where Q is a unitary matrix and T is an upper-triangular matrix. Now, according the
property of normality we have

HH† = QTT †Q† and H†H = QT †TQ† , (1.5)

Therefore TT † = T †T , due to normality of H and by comparison. Now, as T is upper
triangular T † is lower triangular, which implies from the previous derivation that T is a
diagonal matrix.

The eigenvectors of a diagonal matrix are orthogonal; hence, the same property is followed
by eigenvectors of T as it is a diagonal matrix. Mathematically, the eigenvectors |ϕ⟩ of T
follow

⟨ϕi|ϕj⟩ = δij . (1.6)

We have considered these vectors |ϕ⟩ to be normalized. Here δij denotes the kronecker delta
function. According to Equation 1.4, the eigenvectors of T are related to eigenvectors of H
by a similarity transformation

Q |ϕ⟩ = |ψ⟩ . (1.7)

Now, it remains to explore the orthogonality property. We can also deduce from Equa-
tion 1.4 that

H† = Q−1†T †Q† = QT †Q−1 = QTQ−1 . (1.8)

As the matrix H is Hermitian, it has real eigenvalues and it leads to T = T †. Hence, if |ξ⟩
are eigenvectors of H†, then Q |ϕ⟩ = |ξ⟩, implying

⟨ϕ|Q† = ⟨ξ| . (1.9)

Now, using Equation 1.7 and Equation 1.9 we see that

⟨ϕiQ
†|Qϕj⟩ = ⟨ϕi|ϕj⟩ = δij = ⟨ξi|ψj⟩ , (1.10)

where we used the fact that Q is unitary and used the relation Equation 1.6. Now, as the
matrix is Hermitian H = H†, their eigenvectors have to be the same, |ξ⟩ = |ψ⟩, and therefore

⟨ψi|ψj⟩ = δij . (1.11)

Note that the above relation applies to the special case H = H†, i.e. the matrix being
Hermitian. For a non-Hermitian matrix, "bi-orthogonality" applies and it will be discussed
later. Check Figure 1.1.
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1.1.1 Algebraic and Geometric multiplicity

Definition 1.1.2. A matrix (A)is known as diagonalizable if it can be transformed by a
similarity transformation (S−1AS = D) into a diagonal matrix (D) with the diagonal entries
as the eigenvalues of the original matrix itself, i.e. the diagonal matrixD = diag(λ1, λ2, ....λn)
where λi are eigenvalues of the matrix. If no such transformation exists, then it is known as
non-diagonalizable or "defective".

Before we go further we need to define what is algebraic and geometric multiplicity. They
are essential quantities to know if a matrix is diagonalizable (Def. 1.1.2) or not.

Definition 1.1.3. A matrix has associated eigenvectors (|ψ⟩) which follow the rule A |ψ⟩ =
λ |ψ⟩. We can create a set of eigenvectors of a matrix. If each eigenvector of a matrix is
linearly independent of each other i.e. the size of the set is equal to the dimension of the
matrix, then the set is known as complete set of eigenvectors.

Definition 1.1.4. Algebraic multiplicity of an eigenvalue of a matrix, denoted as Algmul(λ)
, is the number of times the eigenvalue repeats itself. In short it is the degeneracy of the
eigenvalue.

Example 1.1.1. A =

2 + i 0 0
0 2 + i 0
0 0 2

 There are two distinct eigenvalues of the above

matrix. λ1 = 2 + i and λ2 = 2. Algmul(λ1) = 2 and Algmul(λ2) = 1.

The sum of all the algebraic multiplicities of all the eigenvalues of the matrix is equal to
the dimension of the matrix.

Definition 1.1.5. Geometric multiplicity of an eigenvalue is the number of linearly inde-
pendent eigenvectors of a particular eigenvalue. It is denoted by Geomul(λ) . Let us define
it as degeneracy of eigenvectors as preferred by physicists.

It is not hard to realize that if the sum of all the geometric multiplicities of all the
eigenvalues is less than the dimension of the matrix, then the set of eigenvectors of the
matrix is not complete according to Def. 1.1.3. Hence, the idea of geometric multiplicity
is intimately connected to the idea of complete set of eigenvectors. Moreover, a matrix is
diagonalizable iff it has complete set of eigenvectors. Hence, a defective matrix has incomplete
set of eigenvectors. We will show this by proof in following sections.

For example, for the matrix

A =

(
3 2
0 3

)
, (1.12)

there are two eigenvalues of A and both are equal to 3, and the linearly independent eigenvec-
tor corresponding to the same eigenvalue is (1, 0)T . No other linearly independent eigenvec-
tors exist. Therefore Algmul(3) = 2 and Geomul(3) = 1. It can also be seen that a complete
set of eigenvectors does not exist as sum of all the geometric multiplicities is equal to 1
and dimension of the matrix is 2. Moreover, this matrix cannot be diagonalized ever, as we
mentioned earlier that a matrix with incomplete set of eigenvectors cannot be diagonalized.
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Theorem 1.1.3. Prove that Algmul(λ) ≥ Geomul(λ) for a given eigenvalue λ of a matrix
A.

Proof. Let us try to prove the following in unconventional and easier way. The conventional
proof can be found at [4].

We first prove that distinct eigenvalues have linearly independent eigenvectors (Note: the
reverse is not true). We then show how for a 2x2 matrix the Algmul(λ) ≥ Geomul(λ) using
the previous result.

Suppose |ψ1⟩ and |ψ2⟩ correspond to distinct eigenvalues λ1 and λ2. To show that |ψ1⟩
and |ψ2⟩ are always linearly independent we need to show that

a1 |ψ1⟩+ a2 |ψ1⟩ = 0 , (1.13)

only when a1 = a2 = 0.
Applying the matrix A on both sides of Equation 1.13, we get

a1A |ψ1⟩+ a2A |ψ1⟩ = A0 = a1λ1 |ψ1⟩+ a2λ2 |ψ1⟩ = 0 , (1.14)

and if we multiply λ1 to Equation 1.13, then

a1λ1 |ψ1⟩+ a2λ1 |ψ1⟩ = 0 . (1.15)

Taking difference between Equation 1.14 and Equation 1.15, we get

a2(λ2 − λ1) |ψ2⟩ = 0 . (1.16)

Since the eigenvalues are distinct and |ψ2⟩ is not a zero vector, a2 = 0. Using this in
Equation 1.13 we see that a1 = 0, too. Hence, |ψ1⟩ and |ψ2⟩ are linearly independent. We
can use induction to prove the same for higher dimensions.

Having understood this let us consider a 2x2 matrix. For such a matrix several cases arise
with respect to the eigenvalues.

• λ1 ̸= λ2
As all the eigenvalues are distinct the eigenvectors |ψ1⟩ and |ψ2⟩ are linearly independent
as proven earlier. Therefore Algmul(λi) = Geomul(λi) = 1.

• λ1 = λ2 = λ
In this case two cases arise:

1. |ψ1⟩ and |ψ2⟩ are linearly independent and Algmul(λ) = Geomul(λ) = 2.

2. |ψ1⟩ and |ψ2⟩ are not linearly independent and Algmul(λ) = 2 and Geomul(λ) =
1 .

We can see that in all the above cases, the algebraic multiplicity of an eigenvalue is
always greater than its geometric multiplicity. This derivation can be generalized to higher
dimensions.
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It is also important to notice that there is no degeneracy of eigenvectors without the
degeneracy of the eigenvalues. We can also colloquially say that at such degeneracies eigen-
values and eigenvectors "coalesce". These kind of degeneracies are known as "Exceptional
points" or "Non-Hermitian degeneracies" in physics literature [5, 6, 7].

Theorem 1.1.4. A matrix is diagonalizable iff it has complete set of eigenvectors.

Proof. First let us prove that a diagonalizable matrix has a complete set of eigenvectors.
Suppose A is a diagonalizable matrix. Then there exists a transformation S−1AS = D, where
D is the matrix as defined earlier. We will first prove that S = [|ψ1⟩ , |ψ2⟩ ... |ψn⟩], where |ψi⟩
are eigenvectors of A and n is dimension of the matrix, so as we get the transformation as
above.

Consider the transformation

AS = A[|ψ1⟩ , |ψ2⟩ ... |ψn⟩] = [λ1 |ψ1⟩ , λ2 |ψ2⟩ ...λn |ψn⟩] = SD , (1.17)

where D = diag(λ1, λ2.....λn).
Hence, S−1AS transformation does the trick to achieve the diagonalization to matrix D.

Now, suppose the set is not complete in that case one of the columns of S will be a zero
vector. Hence, the matrix S will not be invertible as it will be a singular matrix. Hence, a
diagonalizable matrix has a complete set of eigenvectors.

Now we will prove the converse i.e. a matrix which has complete set of eigenvectors is
diagonalizable.

Assume a matrix A has a complete set of eigenvectors |ψ1⟩ , |ψ2⟩ ... |ψn⟩ (n is the dimension
of the matrix). Then A |ψ1⟩ = λ1 |ψ1⟩, A |ψ2⟩ = λ2 |ψ2⟩...A |ψn⟩ = λ1 |ψn⟩. If we create a
matrix S = [|ψ1⟩ , |ψ2⟩ ... |ψn⟩] , then we can show that AS = SD using the relation above,
such that D = diag(λ1, λ2.....λn). Hence, the converse is also true.

Theorem 1.1.5. A Hermitian matrix H is always diagonalizable (S−1HS = D where
D = diag(λ1...λn)) and all its eigenvalues λ have Algmul(λ) = Geomul(λ). Moreover the
similarity transformation for diagonalization is unitary i.e. S† = S−1

Proof. In Theorem 1.1.3, we already proved that for distinct eigenvalues for a general matrix
the eigenvectors are linearly independent. Now consider non-distinct eigenvalues of the matrix
H, let us denote them as |ψ1⟩ and |ψ2⟩. Let us prove that they are linearly independent for
a Hermitian matrix. By definition, two vectors are linearly independent if

a1 |ψ1⟩+ a2 |ψ1⟩ = 0 . (1.18)

iff a1 = a2 = 0.
Taking inner product with ⟨ψ1| from left on Equation 1.18, we get a1 ⟨ψ1|ψ1⟩+a2 ⟨ψ1|ψ2⟩ =

0. Using the orthogonality property Theorem 1.1.2, we get a1 ⟨ψ1|ψ1⟩ = 0, this is only possible
if a1 = 0. Substituting the value back in Equation 1.18 we get a2. Hence, the eigenvectors of
non-distinct eigenvectors of a Hermitian matrix H are all linearly independent. Hence, we
can see that both distinct and non-distinct eigenvalues of a Hermitian matrix has linearly
independent set of eigenvectors. Hence, the following properties hold true for Hermitian
matrices:
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• A complete set of eigenvectors exist for a Hermitian matrix H.

• As a complete set of eigenvectors exist for H it is always diagonalizable according to
Theorem 1.1.4

• Algmul(λ) = Geomul(λ) for all eigenvalue as a complete set of eigenvectors exist.
Note, the reverse of this statement is not true as there is no proof that only Hermitian
matrices have linearly independent eigenvectors.

These relations are equivalent and are as shown by black arrow in Figure 1.1.

Example 1.1.2. In conjunction to our statement earlier that even non-Hermitian matrices
can sometimes be diagonalizable, consider an example of a non-Hermitian matrix as given in
Equation 1.3. The matrix is clearly diagonalizable, with the similarity transformation matrix

being S =

(
−1 1
1 2

)
. We can also check that the elements of S are given as

((
|ψ1⟩

) (
|ψ2⟩

)
. . .

(
|ψn⟩

))
, (1.19)

where |ψi⟩ are eigenvectors of H and ’n’ is the dimension of the matrix.

1.2 Non-Hermitian diagonalizable matrices

As we derived earlier, all Hermitian matrices are diagonalizable. Hence a defective matrix
cannot be Hermitian. All Hermitian matrices also possess a complete set of eigenvectors
according to Theorem 1.1.4. The set of non-Hermitian matrices can hence be divided into two
types, a) Diagonalizable (NHD), possessing a complete set of eigenvectors and b) Defective or
Non-diagonalizable (NHND), not possessing a complete set of eigenvectors . This is depicted
by green arrows in Figure 1.2. Let us understand the properties of diagonalizable non-
Hermitian matrices in this section. The details of the derivations and definitions can be
found in the standard textbooks [8, 9, 10].

It can be seen from Figure 1.2 that NHD matrices can be divided into two types, one
having real eigenvalues and other having complex eigenvalues. We perform such a classifica-
tion because much attention has been paid to such operators with real eigenvalues in recent
decades by physicists [11, 12, 13, 14].

We will first prove that the eigenvalues of non-Hermitian matrices in general are complex
conjugates of each other.

Theorem 1.2.1. Consider a matrix NH s.t. NH ̸= NH† i.e. it is non-Hermitian. Let λ
and λ′ be eigenvalues of NH and NH† respectively, then λ

′
= λ∗.

Proof. We know from given information that

NH |ψi⟩ = λi |ψi⟩ , (1.20)
NH† |ξi⟩ = λ

′ |ξi⟩ , (1.21)
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Figure 1.2: A mind-map showcasing the properties of non-Hermitian diagonalizable opera-
tors.

where |ψi⟩ and |ξi⟩ are the eigenvectors of NH and NH† respectively. Taking conjugate
transpose of Equation 1.20 and then multiplying by |ξi⟩ from right we get

⟨ψi|NH† |ξi⟩ = λ∗i ⟨ψi|ξi⟩ . (1.22)

Using Equation 1.21, we get
⟨ψi|ξi⟩λ

′

i = λ∗i ⟨ψi|ξi⟩ . (1.23)

Hence, by cancelling ⟨ψi|ξi⟩ from both sides, we get

λi = λ
′∗
i . (1.24)

This proves our theorem, and it applies to any non-Hermitian matrix, irrespective of it
being diagonalizable or not.

One important property of NHD matrices is that the eigenvectors follow the criterion
of bi-orthogonality. Let us understand what is bi-orthogonality and how it differs from
orthogonality.

Theorem 1.2.2. If a non-Hermitian matrix NH has eigenvectors |ψi⟩ and its Hermitian
conjugate matrix, NH† ̸= NH has eigenvectors |ξi⟩ then the following rule is obeyed, ⟨ξi|ψj⟩ =
δij (Note: We consider the eigenvectors to be normalized). This is known as bi-orthogonality
(or bi-orthonormality).



1.3. NON-HERMITIAN NON-DIAGONALIZABLE (DEFECTIVE) MATRICES 9

Proof. As the matrixNH is diagonalizable it has complete set of eigenvectors. Let us consider
a matrix X which diagonalizes NH:

NH = XDX−1 . (1.25)

where X follows Equation 1.19. Here D is a diagonal matrix with diagonal entries being
eigenvalues (λ) of NH. Consider that Y diagonalizes NH†.

NH† = Y D∗Y −1 . (1.26)

where Y follows Equation 1.19 with |ψi⟩ being replaced by |ξi⟩. Here D∗ is a diagonal matrix
with diagonal entries being eigenvalues (λ∗) of NH†, according to Theorem 1.2.1. However
if we take Hermitian conjugate of Equation 1.25 we get

NH† = X−1†D∗X† . (1.27)

Comparing Equation 1.26 and Equation 1.27 we see that

X† = Y −1 . (1.28)

Therefore, Y †X = X−1X = I, where I is an identity matrix. However, as the elements
of X and Y are nothing but eigenvectors of NH and NH†, respectively, according to Equa-
tion 1.19, we proved that

⟨ξi|ψj⟩ = δij . (1.29)

This proves our theorem, considering the eigenvectors are normalized. The theorem ap-
plies irrespective of NHD matrix having complete set of real eigenvalues or not.

Example 1.2.1.

NH =

(
2 1
3 4

)
. (1.30)

This matrix has eigenvalues λ1 = 5 and λ2 = 1 with corresponding eigenvectors |ψ1⟩ = (1, 3)T

and |ψ2⟩ = (−1, 1)T . Its Hermitian conjugate has eigenvalues λ′
1 = 5 and λ

′
2 = 1 with

eigenvectors |ξ1⟩ = (1, 1)T and |ξ2⟩ (−3, 1)T . The normalization constant for both vectors is
1
2
. The bi-orthogonality can be easily verified, i.e. ⟨ξi|ψj⟩ = δij. Also, note that ⟨ψi|ψj⟩ ≠ δij.

This property is depicted in Figure 1.2.

Theorem 1.2.3. A NHD matrix has Algmul(λ) = Geomul(λ) for all the eigenvalues λ.

Proof. A NHD matrix has a complete set of eigenvectors by defn. Hence, according to the
same arguments in Theorem 1.1.3, the statement in the theorem is correct.

1.3 Non-Hermitian non-diagonalizable (Defective) matri-
ces

The mind map of properties of non-diagonalizable matrices is depicted in Figure 1.3. As all
Hermitian matrices are diagonalizable, all non-diagonalizable matrices are by default non-
Hermitian. As discussed in subsection 1.1.1, a non-diagonalizable matrix has Algmul(λ) >
Geomul(λ).
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Figure 1.3: A mind-map showcasing the properties of non-Hermitian non-diagonalizable op-
erators.

Definition 1.3.1. An order (Or(A, λ)) of defectiveness of an eigenvalue λ of a matrix A is
the value of [Algmul(λ)−Geomul(λ)] + 1 of the "defective eigenvalue" λ.

Example 1.3.1. Consider a defective matrix of

NH =


3 1 0 0
0 3 1 0
0 0 3 0
0 0 0 3

 . (1.31)

It has all eigenvalues λ = 3. Hence, Algmul(λ = 3) = 4 and there are 2 independent
eigenvectors possible, (0, 0, 0, 1)T and (1, 0, 0, 0)T , hence Geomul(λ = 3) = 2. Hence the
order of defectiveness in the eigenvalue according to our defn above is Or(λ,NH) = 3 or
third order. We will restrict ourselves to 2x2 matrices henceforth, for derivations.

• For a 2×2 defective matrix the highest order of defectiveness of the eigenvalue that can
be reached is 2.

• For a 2×2 matrix there is only one eigenvalue (λ) and it is defective. This leads to
Algmul(λ) = 2 and Geomul(λ) = 1, for any 2x2 defective matrix. We mention this
specifically because for higher dimension matrices, some eigenvalues can be defective
while others need not be as can be checked in 1.3.1.

General results for higher order defectiveness will be provided without proof.
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Before we proceed we need to understand the concept of generalized eigenvectors. As
already discussed this in subsection 1.1.1, defective matrices are defective because they do
not possess a complete set of eigenvectors, i.e. the number of ordinary eigenvectors is less than
the dimensions of the matrix. Specifically, generalized eigenvectors are a set of vectors that
are used in combination with eigenvectors to create a basis for a matrix A that is defective,
or does not have enough eigenvectors to form a basis on its own. Hence, the generalized
eigenvectors are used to complete the basis. These eigenvectors are not unique and there can
be several different choices of such eigenvectors that can be used to form a basis.

For example, suppose that a 2×2 matrix A which has one distinct eigenvalue with only
one corresponding eigenvector. In this case, the matrix A is defective, since it does not
have enough eigenvectors to form a basis on its own. To construct a basis, we can use the
eigenvector and a corresponding generalized eigenvector. Let us define it formally.

Definition 1.3.2. A generalized eigenvector of a 2 × 2 matrix NH is a nonzero vector |ψJ⟩
that satisfies the equation (NH − λI) |ψJ⟩ = |ψ⟩. Here λ is degenerate eigenvalue and |ψ⟩ is
its ordinary eigenvector.

Hence, we can write the equations

NH |ψ⟩ = λ |ψ⟩ , (1.32)
NH |ψJ⟩ = λ |ψJ⟩+ |ψ⟩ (1.33)

or

(NH − λI) |ψ⟩ = 0 , (1.34)
(NH − λI)2 |ψJ⟩ = 0 . (1.35)

The Equation 1.35 can be derived as follows. According to the Equation 1.33, |ψ⟩ =
(NH − λI) |ψJ⟩. Substituting it in the Equation 1.34 we get (NH − λI)[(NH − λI) |ψJ⟩] =
0 = (NH−λI)2 |ψJ⟩, which is nothing but the Equation 1.35. Note |ψJ⟩ is not an eigenvector
of NH.

The generalized eigenvectors of an eigenvalue of a matrix are linearly independent from all
other eigenvectors of the matrix. Let us prove this result for a 2 × 2 matrix for simplification.

Theorem 1.3.1. Consider a 2 × 2 matrix NH with the defective eigenvalue λ. The ordinary
eigenvector |ψ⟩ and generalized eigenvector |ψJ⟩ of this matrix are linearly independent of
each other.

Proof. Two vectors |ψJ⟩ and |ψ⟩ are linearly independent only when they follow the equation:

c1 |ψ⟩+ c2 |ψJ⟩ = 0 , (1.36)

iff c1 = c2 = 0. To check the linear independence, let us consider Equation 1.36. After
multiplying it by NH from left, we get

c1NH |ψ⟩+ c2NH |ψJ⟩ = c1λ |ψ⟩+ c2(λ |ψJ⟩+ |ψ⟩) = c1(λ+ 1) |ψ⟩+ λ |ψJ⟩ = 0 . (1.37)
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In the above, we used the Equation 1.32 and Equation 1.33. If we multiply Equation 1.36 by
λ, we get

c1λ |ψ⟩+ c2λ |ψJ⟩ = 0 . (1.38)

Taking the difference between Equation 1.37 and Equation 1.38 we get c1 |ψ⟩ = 0, which is
only possible if c1 = 0. Now substituting c1 = 0 in Equation 1.36 we get c2 |ψJ⟩ = 0 which
is only possible when c2 = 0. Hence, Equation 1.36 is only satisfied when both c1 = c2 = 0
which proves our claim of linear independence by definition.

Theorem 1.3.2. Consider a defective 2 × 2 matrix NH. Consider a 2 x 2 matrix S =
[|ψ⟩ , |ψJ⟩], where |ψ⟩ and |ψJ⟩ are ordinary eigenvector and generalized eigenvector, respec-
tively of eigenvalue λ. Then in general

NH = SJS−1 , (1.39)

where

J =

(
λ 1
0 λ

)
. (1.40)

Proof. Multiplying (NH − λI) with S from left we have

(NH − λI)S = (NH − λI)[|ψ⟩ , |ψJ⟩] = [0, |ψ⟩] = S[0, e1] = SJ
′
. (1.41)

We used the relations Equation 1.33 and e1 = (1, 0)T (as Se1 = |ψ⟩). We define [0, e1] = J
′ .

From the above relation we can see that

NHS = S(J
′ − λI) = SJ , (1.42)

where J =

(
λ 1
0 λ

)
. Hence we easily can check that Equation 1.39 is in fact correct.

Moreover, this theorem applies in general for higher dimensional matrices and more com-
plex degeneracies. Namely, in general we can state that the best we can do with diagonalizing
a defective matrix is convert it into direct sums of Jordan block matrices of the type ’J’ above.
This has been mentioned in Figure 1.3.

Definition 1.3.3. A matrix J which has all diagonal entries equal and to a particular number
and at least one supradiagonal entries being ’1’, is known as a Jordan block matrix. All other
entries of the matrix are 0.

Example 1.3.2. J =

3 1 0
0 3 0
0 0 3

 . is a type of Jordan block matrix as defined above.

Now we discuss one of the main results of the section, i.e. "self-orthogonality". When a
matrix is defective the eigenvectors follow the rule of "self-orthogonality" rather than "bi-
orthogonality" or "orthogonality".
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Theorem 1.3.3. Consider a 2 × 2 matrix NH with eigenvector |ψ⟩ and with generalized
eigenvector |ψJ⟩. Consider |ξ⟩ as eigenvector of NH† and |ξJ⟩ as generalized eigenvector.
Then

⟨ξ|ψ⟩ = ⟨ξJ |ψJ⟩ = 0 , (1.43)

and
⟨ξ|ψJ⟩ = ⟨ξJ |ψ⟩ = 1 (1.44)

(considering eigenvectors are normalized accordingly). These properties are known as "self-
orthogonality".

Notice how they are different from the rules of "bi-orthogonality", Equation 1.29.

Proof. In previous theorem Theorem 1.3.2 we saw that for a defective matrix NH, NH =

SJS−1, where J =

(
λ 1
0 λ

)
is the Jordan block matrix and S = [|ψ⟩ , |ψJ⟩]. Now for the

Hermitian conjugate of NH,

NH† = S
′
J

′
S

′−1 , S
′
= [|ξJ⟩ , |ξ⟩] , (1.45)

where |ξ⟩ and |ξJ⟩ are ordinary and generalized eigenvectors of NH† for eigenvalue λ. Notice
the arrangement of the vectors with respect to that in S. In such an arrangement J ′ is a

lower triangular matrix rather than upper: J ′
=

(
λ∗ 0
1 λ∗

)
. Moreover, the eigenvalues of

NH† are λ∗ due to the Theorem 1.2.1. Also notice

J
′
= J† . (1.46)

Taking Hermitian conjugate of Equation 1.39 we have

NH† = (S−1)†J†S† . (1.47)

Comparing Equation 1.45 and Equation 1.47 and using Equation 1.46, we get

S† = S
′−1 , (1.48)

and S†S
′
= I = [⟨ψ| , ⟨ψJ |].[|ξJ⟩ , |ξ⟩], with I as the identity matrix. Hence, we see that

⟨ψ|ξJ⟩ = ⟨ψJ |ξ⟩ = 1 and ⟨ψ|ξ⟩ = ⟨ψJ |ξJ⟩ = 0. Taking complex conjugates of the above
relations, we prove our claim in the theorem.

This can be seen in the mindmap Figure 1.3.

Definition 1.3.4. A generalized eigenvector of rank ’k’ of a matrix A is a nonzero vector
|ψ⟩ that satisfies the equation (A − λI)k |ψ⟩ = 0, where λ is an eigenvalue of A, and k is a
positive integer. In other words, a generalized eigenvector is a vector that, when raised to the
power of k and multiplied by (A− λI), yields the zero vector. When k = 1, the generalized
eigenvector is the same as the usual eigenvector. Let us denote them with a suffix ’J ’ on
top for any generalized eigenvector with k > 1. The number of such generalized eigenvectors
that exist is equal to the Or(A, λ) of the eigenvalue λ.
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The generalized eigenvectors follow the equation

(A− λI) |ψ⟩ = 0 , (1.49)
(A− λI)2 |ψJ

1 ⟩ = 0 , (1.50)
...

(A− λI)k |ψJ
k−1⟩ = 0 . (1.51)

We can also check (compare (A − λI) |ψ⟩ = 0 = (A − λI)2 |ψJ
1 ⟩) that the generalized

eigenvectors of eigenvalue λ follow the equations below:

A |ψ⟩ = λ |ψ⟩ , (1.52)
A |ψJ

1 ⟩ = λ |ψJ
1 ⟩+ |ψ⟩ , (1.53)

...
A |ψJ

k−1⟩ = λ |ψJ
k−1⟩+ |ψJ

k−2⟩ . (1.54)

Example 1.3.3. Consider the matrix

A =

1 3 0
0 1 2
0 0 1

 . (1.55)

This matrix is defective with eigenvalue λ = 1 and eigenvector |ψ⟩ = (1, 0, 0)T . It can be
seen the eigenvector |ψ⟩ easily fits in the definition of "generalized eigenvector" with k = 1.

The eigenvector |ψJ
1 ⟩ = (0, 1, 0)T follows the equation (A− λI)2 |ψJ

1 ⟩ = 0. We can check
that, (A − λI) |ψJ

1 ⟩ ̸= 0. Hence |ψJ
1 ⟩ is a generalized eigenvector of rank k = 2 for the

eigenvalue λ = 1. Similarly |ψJ
2 ⟩ = (0, 0, 1)T can be found satisfying, (A − λI)3 |ψJ

2 ⟩ = 0.
We can check that, (A− λI)2 |ψJ

2 ⟩ ≠ 0. Therefore, |ψJ
2 ⟩ is a generalized eigenvector of rank

k = 3 for the eigenvalue λ = 1.

Theorem 1.3.4. Suppose |ψJ
k ⟩ is a rank k generalized eigenvector corresponding to λ, such

that k > 1. Then (A− λI) |ψJ
k ⟩ is a rank k − 1 generalized eigenvector.

Proof. As |ψJ
k ⟩ is a rank k generalized eigenvector corresponding to λ, s.t. k > 1. We have

(A − λI)k |ψJ
k ⟩ = 0, we can manipulate the equation to (A − λI)k−1[(A − λI) |ψJ

k ⟩] = 0, we
can easily check that the vector (A−λI) |ψJ

k ⟩ = |ψJ
k−1⟩ satisfies the equation for a rank k− 1

generalized eigenvector. Hence, (A− λI) |ψJ
k ⟩ is a rank k − 1 generalized eigenvector.

A defective matrix follows "self-orthogonality", unlike "bi-orthogonality" and "orthogo-
nality" for other types of matrices.

Theorem 1.3.5. If |ψk⟩ are eigenvectors of NHND matrix NH and |ξk⟩ are eigenvectors of
its Hermitian conjugate for the defective eigenvalue λk, then ⟨ξk|ψk⟩ = 0, instead of being
non-zero as in the case of bi-orthogonality. This is known as "self-orthogonality".
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Proof. Consider a 2×2 matrix which is NHD. It has two eigenvalues λi and two eigenvec-
tors |ψi⟩ (i = 1, 2) where they follow the bi-orthogonality relation Equation 1.29. Now as
discussed in Theorem 1.1.3 as a matrix becomes non-diagonalizable (NHND) the eigenvalues
and eigenvectors both coalesce.

We see that λ1 = λ2 = λ and |ψ1⟩ = |ψ2⟩ = |ψ⟩ and vice-versa for its Hermitian conjugate
with eigenvectors |ξi⟩. According to the bi-orthogonality rule, for the matrix away from such
degeneracy, ⟨ξ1|ψ2⟩ = ⟨ξ2|ψ1⟩ = 0 and ⟨ξ1|ψ1⟩ = ⟨ξ2|ψ2⟩ = c (considering the eigenvectors are
not normalized). However, due to coalescence at degeneracy, the above relations can only be
satisfied if c = 0. This gives ⟨ξ|ψ⟩ = 0.

Hence for any 2×2 matrix at EP degeneracy, the eigenvectors follow the rule of self-
orthogonality as discussed earlier. This idea can be generalized to higher order matrices and
exceptional point degeneracies.

Definition 1.3.5. Let |ψk⟩ be a rank k generalized eigenvector of eigenvalue λ. Then

[|ψk⟩ , (A− λI) |ψk⟩ , , , , , (A− λI)k−1 |ψk⟩] (1.56)

is a chain of generalized eigenvectors corresponding to λ. The eigenvector (A − λI)k−1 |ψk⟩
is the ordinary eigenvector, if k = Or(A, λ).

Definition 1.3.6. A "k x k" matrix Jk,λ is said to be a Jordan block of dimension k and of
eigenvalue λ iff its diagonal entries are equal to λ and its supradiagonal entries are all equal
to 1 or 0, otherwise all other entries apart from them in the matrix are 0.

Example 1.3.4. Jk,λ =

2 + i 1 0
0 2 + i 1
0 0 2 + i

 is a A Jordan block of k = 3 with eigenvalue

2 + i.

Theorem 1.3.6. Let A be a n×n matrix, λ be an eigenvalue of A, and |ψJ
k ⟩ be a generalized

eigenvector of A associated to this eigenvalue. Let k be the smallest integer such that (A −
λI)k |ψJ

k ⟩ = 0. Consider Pλ = [(A − λI)k−1 |ψJ
k ⟩ , (A − λI)k−2 |ψJ

k ⟩ ... |ψJ
k ⟩]. This will be a

n× k matrix whose columns are vectors of the Jordan chain discussed above. Then we have

APλ = PλJk,λ , (1.57)

where Jk,λ is a Jordan block of dimension k and has eigenvalues λ.

Proof. Consider

(A− λI)Pλ = (A− λI)[(A− λI)k−1 |ψJ
k ⟩ , (A− λI)k−2 |ψJ

k ⟩ , ... |ψJ
k ⟩]

= [(A− λI)k |ψJ
k ⟩ , (A− λI)k−1 |ψJ

k ⟩ , ....(A− λI) |ψJ
k ⟩]

= [0, (A− λI)k−1 |ψJ
k ⟩ , ....(A− λI) |ψJ

k ⟩] ,
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where we used the definition (A − λI)k |ψJ
k ⟩ = 0. Also note that Pλe1 = (A − λI)k−1 |ψJ

k ⟩ ,
where e1 = (1, 0, 0, 0....)T and so on... Therefore,

(A− λI)Pλ = [0, Pλe1, .....Pλek−1]

= Pλ[0, e1, e2, ....ek−1]

= Pλ


0 1 0 · · · 0

0 0 1
. . . 0

0 0 0 · · · 1
0 0 0 · · · 0


= Pλ(Jk,λ − λI)

= PλJk,λ − λPλ .

From the above relation it is easy to obtain Equation 1.57.

Example 1.3.5. A =

 1 3 −2
−2 6 −2
−1 2 1

 has for eigenvalue λ = 3 (Algmul(λ = 3) = 2 and

Geomul(λ + 3) = 1), generalized eigenvector of rank k = 1, |ψ⟩ = (2, 2, 1)T and generalized
eigenvector of rank k = 2 is |ψJ

1 ⟩ = (−1, 0, 0)T . This gives us Pλ = [|ψJ
1 ⟩ , |ψ⟩]. It can be

checked that APλ =

6 −1
6 2
3 1

 and the value of PλJ2,λ =

6 −1
6 2
3 1

 where J2,λ =

(
3 1
0 3

)
.

Thus this example satisfies, Equation 1.57.

1.4 Outline of the Thesis
In this section we lay out some descriptions of each chapter in the thesis.

Chapter 2: In this chapter we discuss about the concept of non-reciprocity. We explore
the properties of non-reciprocal systems with respect to scattering matrices. We show how
at isolation, the scattering matrix is a special type of a defective matrix.Then we learn a few
examples of non-reciprocal devices (called as isolators) of light. Firstly, we understand the
Faraday Isolator, which uses the magneto-optic effect for its operation. Later we understand
Optomechanical isolator which uses a membrane in the middle setup. We showcase that it
works on the principle of "anti-resonance" and through it we showcase the issues plaguing
them w.r.t the bandwidth of operation.

Chapter 3: Here we discuss Non-Hermitian quantum sensors. We discuss how excep-
tional point degeneracy can be used to increase sensitivity of a sensor. We show how the
Hamiltonians of such systems are defective matrices. We discuss some issues raised in terms
of efficiency of using such sensors. We then discuss quantum Fisher information being a
better metric of performance and how even it is improved by a exceptional point sensor. For
this we introduce the concept of Puiseux series and perturbation from such degenerate points.
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Chapter 4: In Chapter 2 we learn that the frequency at which isolation occurs in op-
tomechanial isolators is fixed upon fabrication of the membrane in the membrane in the
middle setup. In this chapter we discuss about frequency tunable optomechanical isolator.
We propose that this can be achieved using a mechanical drive for the membrane. We discuss
the Hamiltonian and setup for such a device and showcase how this can be done.

Chapter 5: The physical realization of exceptional point sensors has been elusive. In
this chapter we showcase a method to democratize achievement of such systems using quan-
tum computers. We simulate such systems on IBM quantum computer using the Qiskit
framework. We explore the performance parameters of such sensors and try to settle certain
debates in the literature.

Chapter 6: The conclusion of the thesis is set out in chapter 6, which summarizes the
major findings of the research and also outline the scope of future studies.

Chapter 7: We had included the all the relevant sample codes that we used for simulating
the quantum sensor in cloud quantum computers.
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Chapter 2

Non-Reciprocity and Isolation

The phenomenon of reciprocity is achieved when the response of a system remains the same
regardless of the direction of an input signal. However, in certain materials and structures,
this symmetry is broken, leading to non-reciprocal transmission. Complete non-reciprocal
transmission is known as "isolation".

An electronic diode is an example of such a system. In a diode, current can flow more
easily in one direction than in the opposite direction. This property is achieved through the
use of a p-n junction, where one side of the diode is doped with a material that has an excess
of electrons (n-type), and the other side is doped with a material that has a deficiency of
electrons (p-type). When a voltage is applied in the forward bias direction (positive terminal
connected to the p-side and negative terminal connected to the n-side), the diode allows
current to flow easily due to the alignment of energy bands in the p-n junction. However,
when the voltage is applied in the reverse bias direction, the diode exhibits a high resistance
and only allows a negligible current to pass through. This non-reciprocal behavior of a diode
is essential in various electronic applications. For instance, diodes are used in rectifiers to
convert alternating current (AC) to direct current (DC) by allowing current flow only in one
direction. They also serve as protection devices by preventing the reverse flow of current and
thereby protecting other components from damage.

Another example is that of a valve, which controls the fluid flow. Non-reciprocal trans-
mission in a valve refers to the property of allowing fluid flow in one direction while blocking
or significantly restricting flow in the opposite direction. Valves are essential components in
various fluid control systems, and the incorporation of non-reciprocal transmission properties
can enhance their functionality and efficiency.

Light, with its dual nature as both a wave and a particle, has long been a subject of fasci-
nation and investigation. Its ability to propagate through different media and to interact with
matter has allowed for numerous technological advancements. One intriguing phenomenon
that challenges traditional notions of symmetry is the non-reciprocal transmission of light.
This behavior, where light propagates differently depending on its direction of propagation,
has sparked considerable interest in the field of optics.

Non-reciprocal transmission of light is fundamentally restricted by "Lorentz Reciprocity
theorem" [15, 16]. The Lorentz reciprocity theorem is a fundamental principle in classical
electromagnetism that establishes a relationship between the transmission and reception of
electromagnetic waves in reciprocal systems. It provides a powerful tool for understanding
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and analyzing the behavior of electromagnetic fields in symmetric environments. The the-
orem, named after the Dutch physicist Hendrik Lorentz, states that in a reciprocal system
which obeys the Maxwell’s equations, the response of the system to a source placed at one
point is the same as the response to an identical source placed at the same location, but with
the roles of the source and receiver interchanged. In simpler terms, it implies that the trans-
mission characteristics between two points in a reciprocal system are the same regardless of
which point is the source and which point is the receiver.

The most common example of devices which achieve non-reciprocity of light are called as
"Faraday isolators". Faraday isolators, named after the renowned physicist Michael Faraday,
are important devices used in optical systems to achieve non-reciprocal transmission of light.
They are widely employed to protect laser sources from back-reflections and to control the
directionality of light propagation. The primary function of a Faraday isolator is to allow
light to transmit in one direction while blocking or significantly attenuating its transmission
in the opposite direction. This unidirectional transmission is based on the phenomenon of
magneto-optical rotation, which occurs in certain materials under the influence of a magnetic
field.

The key component of a Faraday isolator is the Faraday rotator, typically made of a ma-
terial with strong magneto-optical properties such as a rare-earth iron garnet or a terbium
gallium garnet crystal. When a magnetic field is applied along the direction of light propa-
gation, the Faraday rotator induces a rotation of the polarization plane of the incident light.
The amount of rotation depends on the strength of the magnetic field and the properties of
the material. To complete the Faraday isolator setup, two polarizers are placed before and
after the Faraday rotator. These polarizers are oriented such that they transmit light with
a specific polarization orientation and block light with orthogonal polarization. When light
passes through the first polarizer, it acquires a polarization state that matches the transmis-
sion axis of the Faraday rotator. As it enters the Faraday rotator, the rotation induced by
the magnetic field ensures that the light’s polarization aligns with the transmission axis of
the second polarizer, allowing it to transmit through. However, when the light tries to prop-
agate in the opposite direction, the rotation induced by the magnetic field is in the opposite
direction. As a result, the light’s polarization is orthogonal to the transmission axis of the
second polarizer, causing it to be blocked or significantly attenuated Figure 2.1.

In this chapter we will first consider the "Lorentz reciprocity theorem" and understand
the basic necessities for achieving non-reciprocity of light. Next, we will explain the working
principle of a Faraday isolator, in mathematical term. Later in this chapter, we will de-
scribe in details how non-reciprocity and isolation is achieved using optomechanics. We will
interpret our results in terms of anti-resonance and discuss the factors that can affect the
optomechanical non-reciprocity.

2.1 Lorentz Reciprocity Theorem

As discussed earlier, the Lorentz Reciprocity Theorem (LRT) governs the properties of sys-
tems which will be reciprocal in transmission of light. Let us understand the theorem in
more detail. The LRT can be formally derived by initially considering a specific volume that
contains two distinct sets of sources, described by the current densities, J1 and J2. These
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0° polarizer   Faraday Rotator 45° polarizer

Rejected

Figure 2.1: A schematic diagram of Faraday isolator. The black lines represent the polar-
ization orientation of the electromagnetic field. The red solid (blue dotted) line represents
forward (backward) direction of light. The diagram showcases that light transmits in forward
direction, but not in backward direction.

sources individually generate electric and magnetic fields, denoted as E⃗1, H⃗1, and E⃗2, H⃗2,
respectively.

Recalling the Maxwell’s curl equations, we get

∇× E⃗1 = −iωµH⃗1 , (2.1)

∇× H⃗1 = iωϵE⃗1 + J⃗1 , (2.2)

∇× E⃗2 = −iωµH⃗2 , (2.3)

∇× H⃗2 = iωϵE⃗2 + J⃗2 , (2.4)

where ϵ and µ are permittivity and permeability of the material. Multiplying Equation 2.1
with H⃗2 and the time-harmonic source-less Maxwell’s equation Equation 2.2 (by putting
J⃗1 = 0) with E⃗2, from the left, gives us

H⃗2.(∇× E⃗1) + E⃗2(∇× H⃗1) = iω(E⃗2ϵE⃗1 − H⃗2µH⃗1) . (2.5)

Similarly, multiplying Equation 2.3 with H⃗1 and Equation 2.1 with E⃗1 from the left, we get
after considering J⃗2 = 0

H⃗1.(∇× E⃗2) + E⃗2(∇× H⃗2) = iω(E⃗1ϵE⃗2 − H⃗1µH⃗2) . (2.6)

Subtracting Equation 2.6 and Equation 2.5 we then have

H⃗1.(∇×E⃗2)+E⃗2.(∇×H⃗2)−H⃗2.(∇×E⃗1)−E⃗2(∇×H⃗1) = iω(E⃗1ϵE⃗2−H⃗1µH⃗2−E⃗2ϵE⃗1+H⃗2µH⃗1) .
(2.7)
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Using the relation between any two vectors a⃗ and b⃗: ∇(⃗a × b⃗) = b⃗.(∇ × a⃗) − a⃗.(∇ × b⃗) in
Equation 2.7, we get

∇.(E⃗2×H⃗1+H⃗2×E⃗1) = ∇.(E⃗2×H⃗1−E⃗1×H⃗2) = iω(E⃗1ϵE⃗2−H⃗1µH⃗2−E⃗2ϵE⃗1+H⃗2µH⃗1) . (2.8)

If ϵ and µ are symmetric matrices or are scalars, the right hand side of the above equation
vanishes and we finally get

∇.(E⃗2 × H⃗1 − E⃗1 × H⃗2) = 0 . (2.9)

Note that the above relation holds true even when the ϵ and µ are complex numbers, repre-
senting loss or gain.

Note that we have made several assumptions in the above derivation, e.g.,

• ϵ and µ are symmetric (them being matrices)

• We have considered linearity i.e. ϵ and µ are matrices or scalars

• The relation Equation 2.9 is time-independent, which is evident from the Maxwell’s
equations that are used

These are the conditions necessary for achieving reciprocity of light. If one of the assump-
tions is broken, we can achieve non-reciprocity. In the next Section, we will carry forward
with the assumptions we made earlier, explain what is a scattering matrix.

2.2 Scattering matrix

A scattering matrix, also known as an S-matrix, is a mathematical representation used pri-
marily in the field of quantum mechanics and optics to describe the scattering of particles
or waves. It provides a way to understand how particles or waves interact with each other
when they collide or propagate through a physical system. The S-matrix relates the initial
state of incoming particles or waves to the final state of outgoing particles or waves, taking
into account the scattering process that occurs in between. It characterizes the amplitude
and phase of the scattered waves for different possible outcomes of the scattering process.

In quantum mechanics, particles and waves are described by wave functions, and the
S-matrix connects the wave functions of the incoming and outgoing particles. The S-matrix
is typically represented as a matrix of complex numbers, with elements that correspond to
transition amplitudes between different states. Mathematically,

Ψout =

(
AL,out

AR,out

)
=

(
S11 S12

S21 S22

)(
AL,in

AR,in

)
= SΨin , (2.10)

where AL/R,out are outgoing wave amplitudes on left and right of the device respectively,
AL/R,in are incoming wave amplitudes on left and right of the device respectively. S is the
scattering matrix for a 1-d scattering process (Figure 2.2).

The elements of the scattering matrix are defined as given in Table 2.1.



2.3. LRT USING SCATTERING MATRIX 23

Figure 2.2: Schematic diagram showcasing a 1-d scattering process with the incoming and
outgoing waves and directions from a device or a material

S11 =
AL,out

AL,in
|AR,in=0

S12 =
AL,out

AR,in
|AL,in=0

S21 =
AR,out

AL,in
|AR,in=0

S22 =
AR,out

AR,in
|AL,in=0

Table 2.1: Definition of each element of the scattering matrix.

2.3 LRT using Scattering matrix
Let us consider an optical circuit, with boundary surface Ω as shown in Figure 2.3). The
components of electric and magnetic field are tangential to the surface.

ETµ(x, y, z) = (aµe
−iβµz + bµe

iβµz)êTµ(x, y) , (2.11)

HTµ(x, y, z) = (aµe
−iβµz + bµe

iβµz)ĥTµ(x, y) . (2.12)

Here aµ is the amplitude of the field going into the surface, bµ is that of the field coming out
of surface and βµ is the propagation constant. Note that

˜
Ω
(êµ × ĥν).n̂dS = 2δµν , as these

two unit vectors are perpendicular to each other. If we choose z = 0, then the total field is

ET =
∑
µ

(aµ + bµ)êTµ , (2.13)

HT =
∑
µ

(aµ − bµ)ĥTµ . (2.14)
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(1)

(2)

(3)

 (Ω)

a1

b1

a2

b2

a3

b3

Figure 2.3: A general form of optical circuit, with boundary surface Ω.

Let us define the relation between the amplitudes, b and a by what we call a "Scattering
matrix" Sµν :

bµ = Sµνaν . (2.15)

Next, we integrate Equation 2.9 over volume enclosed by the surface Ω, and get
˚

V

∇.(E⃗1 × H⃗2 − E⃗2 × H⃗1)dV =

‹
S

(E⃗1 × H⃗2 − E⃗2 × H⃗1).n̂dS = I1 − I2 = 0 , (2.16)

where we have used the divergence theorem (
˝

V
∇.Adv′

=
‚

S
Ads

′). The expression of I1
can be identified as, after using Equation 2.13 Equation 2.14

I1 =

‹
S

(
∑
µ

(a1µ + b1µ)ê1µ ×
∑
ν

(a2ν + b2ν)ĥ2ν).n̂dS

=
∑
µ,ν

(a1µa2ν − a1µb2ν + b1µa2ν − b1µb2ν)

˛
(ê1µ × ĥ2ν).n̂dS

= 2
∑
µ

(a1µa2µ − a1µb2µ + b1µa2µ − b1µb2µ) , (2.17)

where we have noted that the integration results into 2δµν , as seen earlier. Similarly,

I2 = 2
∑
µ

(a2µa1µ − a2µb1µ + b2µa1µ − b2µb1µ) . (2.18)
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such that
I1 − I2 = 4

∑
µ

(b1µa2µ − a1µb2µ) . (2.19)

But, according to Equation 2.16, I1 − I2 = 0. Therefore∑
µ

(b1µa2µ − a1µb2µ) = 0 (2.20)

or B1A
T
2 − A1B

T
2 = 0 . (2.21)

B1 = (b1, b2, ....) = {bµ} is a matrix, and similarly A1,2 and B2. However, as we had defined
B = SA in Equation 2.15, we have

(SA1)A
T
2 − A1(SA2)

T = a1a2(S − ST ) = 0 . (2.22)

This implies S − ST = 0, i.e.,
S = ST . (2.23)

This shows that with the assumptions and equations used for materials which obey reci-
procity, their scattering matrix is symmetric. This is another version of LRT.

Let us now explore an example of a system where non-reciprocity is achieved, namely
Faraday isolator.

Definition 2.3.1. A system is reciprocal iff the scattering matrix of the system obeys S =
ST .

2.4 Faraday Isolator

As discussed earlier, the Faraday isolators work on the principle of "Faraday rotation". Fara-
day rotation describes the rotation of the polarization plane of light as it passes through a
material in the presence of a magnetic field. The amount of rotation is given by the following
equation:

θ = V BL . (2.24)

where θ is the rotation angle, V is the Verdet constant (a material-specific property), B is
the magnetic field strength, and L is the length of the material traversed by the light.

Let us consider two scenarios: one for light traveling in forward direction (i.e. left to
right) and the other for light traveling in backward direction (i.e. right to left).

a) Forward direction only (AR,in = 0)

• An unpolarized light enters from left |ΨL,in⟩ = |V ⟩, where |V ⟩ represents vertically
polarized light. Therefore, its amplitude is normalized as AL,in = 1.

• This light then enters the Faraday rotator and it is changed to cos(θ) |V ⟩+eiϕ sin(θ) |H⟩,
where θ follows the Equation 2.24 and |H⟩ denotes horizontally polarized light. We
assume that ϕ = 0, always. If the setup is such that θ = 450 then the output is
|D⟩ = 1√

2
(|H⟩+ |V ⟩) .
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• The light then passes through another polarizer which can be represented by the oper-
ator |D⟩ ⟨D|, where |D⟩ denotes diagonal polarization and this gives us the final output
state |ΨR,out⟩ = |D⟩. The output amplitude is AR,out = 1.

• According to the definitions of S, this gives us S11 = 0 and S21 = 1, considering no
back-reflections.

a) Backward direction only (AL,in = 0)

• An unpolarized light enters from right |ΨR,in⟩ = |D⟩, where |D⟩ is diagonally polarized
light. Thus the input field is AR,in = 1 in normalized form.

• This light then enters the Faraday rotator and it is changed to cos(θ) |D⟩+eiϕ sin(θ) |A⟩.
Here |A⟩ denotes anti-diagonally polarized light. For θ = 450 (this can be achieved
without changing anything in the previous case, even keeping the direction of the
magnetic field in the same direction), the output is |H⟩ .

• The light then passes through another polarizer which can be represented using an
operator |V ⟩ ⟨V |, and this gives us the final output state |ΨL,out⟩ = 0. The output
amplitude is then AL,out = 0.

• This leads to S12 = S22 = 0, considering no back reflections.

Finally, the scattering matrix therefore in this case is

S =

(
0 0
1 0

)
. (2.25)

We can see that light travels in only one direction and not the another. Similarly we can

change the direction of the magnetic field to achieve the scattering matrix to be S =

(
0 1
0 0

)
,

such that the transmission is in opposite direction to previous case only.
We can see that S ̸= ST in both cases and hence the system is non-reciprocal. Moreover, it

is not only non-reciprocal, it is achieving complete non-reciprocity, also known as "isolation".

Definition 2.4.1. A system is known as non-reciprocal iff its scattering matrix obeys S ̸= ST .
For a 1-d system (also known as a two port system) a system obeys complete non-reciprocity

if S =

(
0 1
0 0

)
or S =

(
0 0
1 0

)
.

It should be noted that in both cases of isolation the scattering matrix is defective as
discussed in chapter 1

2.5 Time-reversibility, Non-Reciprocity and Unitarity
The ideas of time-reversibility, non-reciprocity and unitarity of a system are closely related
to each other. In this chapter we explore the relation between them. Physical systems which
possess the property that they are symmetric with respect to inversion of time, are known
as time-reversible systems. A time reversal operation exchanges the roles of the incident and
scattered waves, and this exchange corresponds to the following property of the scattering
matrix [17]:
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Definition 2.5.1. A system is time-reversible if S∗ = S−1, where ∗ denotes complex conju-
gation.

Now, for a lossless system the incident power must equal the scattered power. In this
case the scattering matrix is defined as follows:

Definition 2.5.2. A system is lossless (Unitary) if S† = S−1, where † denotes Hermitian
conjugation.

Theorem 2.5.1. If a system is time reversible and lossless, it is reciprocal.

Proof. If a system is time reversible, then according to Def. 2.5.1, S∗ = S−1 and also as
the system is lossless, S† = S−1. As both the relations are satisfied, we have S∗ = S†

which gives us S = ST . However, this is the form of the scattering matrix for a reciprocal
system according to Def. 2.3.1. Therefore, if a system is time reversible and lossless, it is
reciprocal.

We should note however, that the reverse is not true. There are systems which are
lossy, but are reciprocal [16]. A simple example would be a system which equally attenuates
amplitudes of the electromagnetic wave in forward and backward direction, in that S† ̸= S−1

but S = ST . Such systems are also time irreversible, which can be easily derived.

Theorem 2.5.2. When a system is lossless (S† = S−1) and it is also non-reciprocal (S ̸=
ST ), then it has to be time reversal asymmetric (S∗ ̸= S−1)

Proof. As the system is lossless, the scattering matrix follows (ST = S∗,−1). We just ma-
nipulated the complex conjugation to take it on the right hand side. Now, as the system is
non-reciprocal ST ̸= S. Combining the relations we get S∗,−1 ̸= S which gives us the relation
S∗ ̸= S−1. However, according to the Def. 2.5.1, this means the system is time irreversible.
This is in fact derived in [16].

2.5.1 Non-Reciprocity and Thermodynamics

Initially, it may appear that a device enabling the passage of light in a single direction con-
tradicts the second law of thermodynamics. This is because it seemingly allows light energy
to move from a colder object to a hotter one while blocking its flow in the opposite direction.
However, this violation is usually misunderstood. In fact, an isolator (non-reciprocal) system
is not closed, the energy is either redirected to some another port (consider a 3-port circula-
tor, for example) or emitted into the environment. Suppose we consider a 3-port circulator,
a part of it can be considered as a non-reciprocal device (port 1 and 2), where the mode is
redirected to port 3. An example of complete scattering matrix of an isolator (the red part)
in such a case is 0 1 0

0 0 1
1 0 0

 , (2.26)

where the first 2× 2 submatrix corresponds to the port 1 and port 2.



28 CHAPTER 2. NON-RECIPROCITY AND ISOLATION

2.6 Applications of non-reciprocity of light
There are many applications of non-reciprocity of light. Let us enlist a few. The applications
can be found in Chapter 13 of [18], Chapter 9 of [19], and in [20, 21, 22, 23, 24, 25]

• Quantum Metrology: Non-reciprocal light-matter interactions can be used to enhance
the sensitivity and precision of quantum metrology applications. Quantum metrol-
ogy aims to measure physical quantities with high precision beyond classical limits.
Non-reciprocal effects can be employed to create non-reciprocal interferometers or to
enhance the sensitivity of sensing schemes by exploiting the asymmetric behavior of
light propagation.

• Optical Communications: Non-reciprocal devices play a crucial role in optical com-
munication systems. Optical isolators, which allow light to transmit in one direction
while blocking it in the opposite direction, prevent signal reflections and ensure efficient
and reliable data transmission. Non-reciprocal components such as Faraday rotators
and circulators are commonly used in optical fiber networks and other communication
systems.

• Laser Systems: Non-reciprocal elements are essential for the stable operation of laser
systems. Laser cavities often incorporate optical isolators to prevent back-reflections
from disrupting the laser’s output. By allowing light to propagate only in one direction,
these devices maintain the laser’s stability and prevent unwanted feedback.

• Microwave Engineering: Non-reciprocal devices find applications in microwave engi-
neering and radiofrequency systems. Non-reciprocal components such as circulators
and isolators are used in radar systems, satellite communication, and wireless tech-
nologies. They enable the efficient control and management of microwave signals in
complex transmission and reception systems.

• Antennas and Antenna Arrays: Non-reciprocity can be leveraged in antenna designs to
enhance their performance. By incorporating non-reciprocal components or techniques,
antenna arrays can achieve improved signal transmission and reception characteristics,
such as enhanced directivity, improved impedance matching, and reduced interference.

These are just a few examples of the applications of non-reciprocity of light. The use of
non-reciprocal devices and systems extends across multiple domains, including telecommu-
nications, laser technology, microwave engineering, sensing, and more.

2.7 Optomechanical Non-Reciprocity
Let us understand another example of non-reciprocal device in this section. Optomechanical
nonreciprocity is a phenomenon in which the interaction between light and mechanical mo-
tion exhibits a directional dependence, breaking the principle of reciprocity. Devices which
implement optomechanical non-reciprocity are known as "optomechanical isolators" (or OM
isolators). These isolators offer several advantages compared to Faraday isolators, which are
traditionally used for optical isolation, e.g.,
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• Compactness and Integration: OM isolators can be designed in a compact form factor,
allowing for easy integration into various optical systems. They can be fabricated
using micro- or nanofabrication techniques, enabling on-chip integration with other
photonic components. In contrast, Faraday isolators typically consist of bulky magneto-
optical materials and strong magnetic fields, making them larger and less amenable to
integration.

• Low Optical Loss: OM isolators can achieve low insertion loss, minimizing the loss
of optical power during transmission. The direct mechanical modulation of the op-
tomechanical interaction allows for efficient control of the transmission and isolation
without significant loss. In contrast, Faraday isolators inherently introduce some level
of insertion loss due to the polarization rotation induced by the magneto-optical effect.

• High Isolation Ratio: OM isolators can provide high isolation ratios, effectively block-
ing light from propagating in the reverse direction. The directional dependence of the
optomechanical interaction allows for efficient suppression of back-reflections, prevent-
ing them from interfering with the desired optical signals. Faraday isolators also offer
high isolation, but their performance can be limited by factors such as polarization-
dependent losses and temperature variations.

• Compatibility with Non-Magnetic Environments: OM isolators do not rely on magnetic
fields or magneto-optical materials for their operation. This makes them suitable for
applications in non-magnetic environments or in situations where magnetic fields are
undesirable or impractical. Faraday isolators, on the other hand, require magnetic fields
and can be sensitive to external magnetic interference.

While OM isolators offer these advantages, it is important to note that Faraday isolators
still have their own strengths and are widely used in many applications. They are
especially well-suited for high-power and high-extinction-ratio applications, where their
robustness and polarization-dependent characteristics are advantageous. OM isolators
also have their disadvantages which we will discuss in later section. Nonetheless, the
unique features of OM isolators make them an attractive alternative, particularly for
compact and integrated optical systems that require low optical loss.

2.7.1 Cavity Optomechanics

Optomechanics is an interdisciplinary field of research that combines the principles of optics
and mechanics to study the interaction between light and mechanical systems Figure 2.4. It
explores the intricate interplay between the motion of mechanical objects and the behavior of
light, enabling the manipulation and control of mechanical systems through optical means.

In optomechanical systems, light interacts with the mechanical motion of objects, such
as nanomechanical resonators or micro-mirrors. This interaction arises from the radiation
pressure exerted by light, which can induce mechanical motion or modulate the mechan-
ical properties of the system. Conversely, the mechanical motion can affect the behavior
of light, leading to phenomena such as cavity optomechanics or optomechanically induced
transparency.
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Figure 2.4: Schematic diagram of an optomechanical setup. It contains an input laser driving
of frequency ω (or ωd). There is a partially reflective fixed mirror and a movable, completely
reflective mirror. We call it as mechanical oscillator, which has a mass m, natural frequency
ωm and dissipative constant γm. The length of the cavity is L and the displacement of the
moving mirror from its equilibrium position is x.

One of the fundamental ingredients in optomechanics is the optomechanical coupling,
which describes the strength of the interaction between light and mechanical motion. This
coupling can be enhanced by using devices with high-quality factors (Q factors) [26, 27] or by
engineering structures that have strong light confinement. By manipulating the optomechan-
ical coupling, researchers can achieve a wide range of effects, including cooling of mechanical
resonators to their quantum ground state, amplification or control of mechanical motion, and
even the generation of squeezed or entangled states of light.

These systems involve a Fabry-Perot cavity comprising two mirrors . One of the mirrors
remains fixed and has partial transparency, while the other mirror is highly reflective and
capable of moving around its equilibrium position. We introduce a laser field to the fixed and
transmittive mirror, leading to the presence of circulating photons within the cavity. These
photons exert a pressure on the movable mirror, and the force experienced by the mirror
depends on the number of photons within the cavity.

The equilibrium position of the movable mirror undergoes a shift due to the radiation
pressure from the laser field, causing the mirror to oscillate. These oscillations result in
a change in the length of the cavity, which, in turn, alters the resonance frequency of the
cavity. This change in resonance frequency leads to a variation in the number of photons
present within the cavity. A laser, operating at frequency ωp, passes through a mirror that
allows transmission. The cavity mode represents a standing wave with a frequency of ωc.
The length of the cavity when the mirror is at rest is denoted by L. The natural frequency
of the moving mirror is represented by ωm. The mass of the moving mirror is denoted by
m. The size of the zero-point fluctuation of the mirror is given by xzpt =

√
h̄

mωm
. Suppose
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the movable mirror is fixed, the optomechanical system is like a Fabry Perot cavity and the
Hamitonian for such a system is simply given as

Hc = h̄ωcâ
†â , (2.27)

where â and â† are the annihilation and the creation operators, respectively, ωc is the resonant
frequency of the cavity. Now, as the second mirror is movable, its Hamiltonian will be that
of a mechanical oscillator, given by

Hm =
p̂2

2m
+

1

2
ω2
mx̂

2 , (2.28)

where we can define the momentum operator p̂ and position operator x̂ in terms of annihila-
tion and creation operators of mechanical oscillator (b̂ and b̂†) as

x̂ =

√
h̄

2mωm

(b̂+ b̂†) , (2.29)

and

p̂ = −i
√

2mωm

h̄
(b̂− b̂†) . (2.30)

Using the above definition, the Hamiltonian of the mechanical oscillator can be rewritten as

Hm = h̄ωmb̂
†b . (2.31)

The total Hamiltonian of the opetomechanical system is however incomplete without
considering the effect of radiation pressure force from the cavity field on the mechanical
oscillator. The resonant frequency of the cavity in terms of the length of the cavity L is given
as

ωc =
2πnc

L
, (2.32)

where c is speed of light in vacuum, n = 1, 2, 3.... is the mode number of the resonance of
the cavity field inside the cavity. The radiation pressure exerted on the mirror induces its
displacement, leading to a change in the length of the cavity from L to L + x. This now
affects ωc and it becomes dependent on the position of the second mirror. Therefore,

ωc(x) =
2πnc

L+ x
. (2.33)

As the radiation pressure is negligible, the displacement x is much smaller than L and we
can expand the above expression using the Taylor’s series as

ωc(x) =
2πnc

L+ x
=

2πnc

L

(
1− x

L

)
= ωc −

ωc

L
x̂ = ωc −

ωc√
2L
xzpt

(
b̂+ b̂†

)
. (2.34)

We have used Equation 2.30 and the definition of xzpt.
Then Equation 2.33 modifies the Equation 2.27 to

Hc = h̄ωcâ
†â− h̄g0

(
b̂+ b̂†

)
â†â , (2.35)
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where g0, as given below, is known as single-photon “optomechanical coupling" constant.

g0 =
ωc√
2L
xzpt =

√
h̄

2mωm

ωc

L
. (2.36)

The above parameter g0 has dimensions of frequency and can be used to compare other
frequencies in the system.

Moreover, if the system is driven by an input laser field, the Hamiltonian of the laser term
with driving field frequency ωd is

Hl = −ih̄
(
ε∗eiωdtâ− εe−iωdtâ†

)
, (2.37)

where ϵ =
√

2κP
h̄ωp

is the coupling strength between laser and optical mode, P is the power of
the driving field and κ is the photon decay rate. We can define the κ as

κ =
πc

2FL
, F =

π(1− T )1/4

1− (1− T )1/2
, (2.38)

where F is the finesse of cavity and the T is the transmissivity of the mirror.
Combining all the Hamiltonian parts, Equation 2.35, Equation 2.31 and Equation 2.37

we have the total Hamiltonian of the optomechanical system to be

Ĥ = h̄∆câ
†â+ h̄ωmb̂

†b̂− h̄g0

(
b̂+ b̂†

)
â†â− ih̄

(
ε∗eiωdtâ− εe−iωdtâ†

)
. (2.39)

Let us now understand the setup of a generic optomechanical isolator.

2.7.2 Generic Optomechanical Isolator

We learnt about a simple optomechanical setup in previous section. Let us now understand,
how such systems, where there can be coupling between optical and mechanical parts, can
be used to create the phenomenon of isolation.In this context, we will need to modify the
system to be that of a "membrane-in-middle" (MIM) setup, as shown in Figure 2.5. The
setup contains two fixed partially reflective mirrors with a dielectric membrane in the mid-
dle. The Hamiltonian of the setup with laser driving is slightly modified from the previous
Equation 2.39 and is given by

H = ω1a
†
1a1 + ω2a

†
2a2 + ωbb

†b+ J(a†1a2 + a†2a1)

+g1a
†
1a1(b

† + b) + g2a
†
2a2(b

† + b)

+i[ϵ1e
−i(ωda,1t−ϕ1)a†1 + ϵ2e

−i(ωda,2t−ϕ2)a†2 − h.c.] , (2.40)

where ai (i = 1, 2) represents intracavity optical mode of the either side of the membrane,
with the corresponding fundamental frequency ωi, when the membrane is fully reflective.
These modes couple with the mechanical mode b with the corresponding optomechanical
coupling constants gi. In addition, the term with J describes the direct coupling between
these two cavity modes, arising due to tunneling through the membrane. The ith cavity
mode is driven by a field of amplitude ϵi, frequency ωda,i and phase ϕi.
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Figure 2.5: Schematic diagram of membrane in the middle setup for optomechanical isolation.
The physical setup consists of a cavity optomechanical system with linear optomechanical
coupling, along with a time-harmonic mechanical drive for the membrane. The ain,1 is the
annihilation operator of the probe or input field entering into the cavity coupling to its ith
mode. The other notations are explained after the Equation 2.40.
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Upon rotating the frame with respect to the driving field frequency ωda,i, we get the
modified version of the Hamiltonian:

H ′ = ∆1a
†
1a1 +∆2a

†
2a2 + ωbb

†b+ J(a†1a2 + a†2a1)

+g1a
†
1a1(b

† + b)

+g2a
†
2a2(b

† + b)

+i
[
ϵ1e

iϕ1a†1 + ϵ2e
iϕ2a†2 − h.c.

]
. (2.41)

Here, ∆i = ωi − ωda,i (i ∈ 1, 2) are the detunings. In deriving the above Hamiltonian, we
have used the following transformation: upon the transformation H ′ = UHU †−iU ∂U†

∂t
, where

U = exp[i(ωda,1ta
†
1a1 + ωda,2ta

†
2a2)].

By inserting the Hamiltonian (Equation 2.41) into the Heisenberg equation, while consid-
ering the effects of damping and associated noise terms, we arrive at the quantum Langevin
equations (QLEs) governing the behavior of the optical and mechanical motion operators.

d

dt
a1 =

{
−γ1

2
− i [∆′

1]
}
a1 − iJa2

+ϵ1e
iϕ1 +

√
γ1ain,1 , (2.42)

d

dt
a2 =

{
−γ2

2
− i [∆′

2]
}
a2 − iJa1

+ϵ2e
iϕ2 +

√
γ2ain,2 , (2.43)

d

dt
b =

(
−γb

2
− iωm

)
b

−i(g1a†1a1 + g2a
†
2a2) +

√
γbbin . (2.44)

where γi and (γb) are the damping rates of the ith optical mode ai and the mechanical mode
b. The input quantum fields with zero mean values are ain and bin.

When the control field amplitude is significantly greater than the probe field amplitude,
in what is known as the strong driving limit, we can make the factorization assumption. This
assumption involves separating any two annihilation operators a and c, while calculating their
joint expectation values, as ⟨ac⟩ = ⟨a⟩⟨c⟩. Under this assumption, the average number of
excitations in the cavity modes and the membrane can be determined at the steady state.

⟨a1⟩ = α1 =

(
γ2
2
+ i∆′′

2

)
ε1e

iϕ1 − iJε2e
iϕ2(

γ1
2
+ i∆′′

1

) (
γ2
2
+ i∆′′

2

)
+ J2

,

⟨a2⟩ = α2 =

(
γ1
2
+ i∆′′

1

)
ε2e

iϕ2 − iJε1e
iϕ1(

γ1
2
+ i∆′′

1

) (
γ2
2
+ i∆′′

2

)
+ J2

,

⟨b⟩ = β =
−i (g1|α1|2 + g2|α2|2)(

γb
2
+ iωm

) .

(2.45)

where ∆
′′
1 = ∆1 + g1(β + β∗) and ∆

′′
2 = ∆2 + g2(β + β∗) are the effective detuning which

includes frequency shifts caused by the optomechanical interaction.
To solve the Equation 2.43 to Equation 2.44, we linearize the equations in strong driving

condition (ϵ1 ≫ γ1 and ϵ2 ≫ γ2). We can then write the operators as sum of mean values
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and small quantum fluctuation terms i.e. a1 = α1 + δa1, a2 = α2 + δa2 and b = β + δb.
Substituting them into the Equation 2.43 to Equation 2.44 and keeping only the first order
terms in the quantum fluctuations (δa1, δa2, δb), we obtain the quantum Langevin equations:

d

dt
δa1 =

(
−γ1

2
− i∆′′

1

)
δa1 − iG1

(
δb+ δb†

)
−iJδa2 +

√
γ1ain,1 , (2.46)

d

dt
δa2 =

(
−γ2

2
− i∆′′

2

)
δa2 − iG2

(
δb+ δb†

)
−iJδa1 +

√
γ2ain,2 , (2.47)

d

dt
δb =

(
−γb

2
− iωm

)
δb− i(G1δa

†
1 +G∗

1δa1)

−i(G2δa
†
2 +G∗

2δa2) +
√
γbbin . (2.48)

where G1 = g1α1 = |G1|eiθ1 and G2 = g2α2 = |G2|eiθ2 are the effective optomechanical
coupling rates with phase difference θ = θ2 − θ1. These phases can be easily related to those
ϕi of the driving fields, and hence controllable using the driving field.

The equations Equation 2.47 to Equation 2.48 can be solved in Fourier domain. We first
write them in the index notation,

V̇i = −MijVj + ΓijVj,in , (2.49)

where i, j = 1, 2, ..., 2n (n = 3 being the number of distinct modes in the system, namely,
a1,2 and b). Here the elements of fluctuation and input field vectors are arranged as V =(
δa1, δa2, δb, δa

†
1, δa

†
2, δb

†
)T

and Vin =
(
ain,1, ain,2, bin, a

†
in,1, a

†
in,2, b

†
in

)T
, respectively. The ma-

trix Γ is given by
diag(

√
γ1,

√
γ2,

√
γb,

√
γ1,

√
γ2,

√
γb) . (2.50)

By introducing the Fourier transform of any arbitrary operator ô, as

õ(ω) =
1√
2π

ˆ +∞

−∞
o(t)eiωtdt , (2.51)

õ(ω)† =
1√
2π

ˆ +∞

−∞
o(t)†eiωtdt , (2.52)

and by using the properties of Fourier transformation, we can find the solution to the quantum
Langevin equations (Equation 2.49), in frequency domain, given by

Ṽi(ω) = (M − iωI)−1
ij ΓjkṼin,k(ω) , (2.53)

where I is the identity matrix. According to the input-output formalism [28], the relationship
between internal, input and output fields under the first Markov approximation is given as

oout + oin =
√
γoδo , (2.54)

where, o ≡ a1, a2, b and the γo are the damping rates for the respective o. The output field
vector in the frequency domain is then given by

Ṽout ,i(ω) =
2n∑
l=1

Ui,lṼin,l(ω) , (2.55)
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where

Ui,l = [Γij(M − iωI)−1
jk Γkl − δil] , (2.56)

Ṽout =
(
aout,1, aout,2, bout, a

†
out,1, a

†
out,2, b

†
out

)T
. (2.57)

To obtain the spectrum of scattering probabilities, we now invoke the two-frequency
correlation of various elements of the V -matrices. Let us start with

Ṽ †
out,iṼout,j =

2n∑
l,m=1

U∗
i,lUj,mṼ

†
in,lṼin,m . (2.58)

Now, as ⟨Ṽ †
in,iṼin,j⟩ are non-zero only for i = j, we find that

⟨Ṽ †
out,iṼout,j⟩ =

2n∑
l=1

U∗
i,lUj,l⟨Ṽ †

in,lṼin,l⟩ . (2.59)

.
Defining Si,out(ω) =

´
dω′
〈
Ṽ †
out,i (ω

′) Ṽout,i(ω)
〉

and Si,in(ω) =
´
dω′
〈
Ṽ †
in,i (ω

′) Ṽin,i(ω)
〉

(i ∈ 1, 2, 3), we now obtain following expression, relating the frequency correlations at the
input and output ports:

Sout (ω) = T (ω)Sin (ω) + Svac (ω) , (2.60)

where Sin, Sout, and Svac(ω) = (sa1,vac(ω), sa2,vac(ω), sb,vac(ω))
T are the n-component column

matrices. The T denotes the scattering probability matrix.
The element Tij of this matrix represents the probability to scatter from the ith mode to

the jth mode, and is given by

Tij = |Ui,j|2 + |Ui,j+n|2 , (2.61)

for i, j ∈ 1, 2, 3. Similarly, the elements of Svac(ω) can be written in terms of the elements of
the U -matrix, as

Si,vac(ω) = |Ui,i+n(ω)|2 + |Ui,i+n+1(ω)|2 + ..+ |Ui,i+2n(ω)|2 . (2.62)

In Figure 2.6 we display the variation of the scattering probabilities T with respect to
ω/γ (Ratio of the signal frequency and the damping rate). Here, T12 represents scattering
probability from mode a1 to a2 and T21 represents the vice-versa. One of them reaching
zero and the other reaching 1 simultaneously for same parameters gives rise to isolation.
The scattering matrix in this case is that of Equation 2.25 or the other. Specifically, optical
isolation occurs for θ = (2k + 1)π/2, for all integers k, while for θ ≡ π/2(mod 2π), the
transmission vanishes from the mode a1 to a2 and for θ ≡ 3π/2(mod 2π), the reverse situation
is achieved. This asymmetry in transmission profile can be understood in terms of interference
phenomenon which will be discussed in later section. The signal frequency ω also needs to
exactly match the natural frequency of the membrane (or the mechanical oscillator) ωm.

Definition 2.7.1. The signal frequency at which isolation occurs is known as “isolation" (or
central) frequency.
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Figure 2.6: Plot for the scattering probabilities (T ) with respect to normalized input fre-
quency ω/γ for various θ. T12(blue), T21(red), (a) θ = 0, (b) θ = π/2, (c) θ = π and (d)
θ = 3π/2. The other parameters chosen are J = |G1| = |G2| = γ1/2 = γ2/2 = γb/2 = γ/2
and ωm = ∆′′

1 = ∆′′
2 = ∆ = 10γ. Plots (b) and (d) showcase the isolation feature in opposite

directions. Moreover, it is to be noted the isolation occurs exactly at the signal frequency
ω = 10γ, which is the mechanical oscillators natural frequency (ωm). This means that the
isolation frequency of the isolator is fixed according to the natural frequency of the mechan-
ical oscillator.

The role of the phase of modified optomechanical coupling is very well explained in [29].
Note that we have used a parameter domain, as ∆ = ωm = 10γ; J, g = γ/2, satisfying a large
detuning limit ∆ ≫ J, γ, g. Hence, from Equation 2.45, we have, for ϵ1 = ϵ2 = ϵ,

α1 ≈ ∆ϵ

D
ei(ϕ1+π/2−ζ) ,

α2 ≈ ∆ϵ

D
ei(ϕ2+π/2−ζ) . (2.63)

Here, the denominator in the expressions of α1 and α2 [see Eqs. (Equation 2.45)] is written
as Deiζ , and the phase π/2 appears in the numerator. Clearly, the phase difference between
α1 and α2 is given by ϕ1−ϕ2. This is exactly the same as θ1−θ2, as used in the expressions of
the effective optomechanical coupling: G1 = (gβ)α1 = |G1|eiθ1 and G2 = (gβ)α2 = |G2|eiθ2 ,
while the optomechanical coupling g is a real quantity. The driving fields therefore create
an effective phase-difference in the optomechanical couplings, which in turn, leads to non-
reciprocity.
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Figure 2.7: A schematic diagram of a coupled pendulum with driving forces F1 cos(ωd1t+ϕ1)
and F2 cos(ωd2t+ ϕ2).

2.7.3 OM non-reciprocity and Anti-resonance

Usually, a pair of simple pendulums (each of angular frequency ω), linearly coupled with the
corresponding constant g can have two independent eigenmodes of oscillation - the in-phase
mode at a frequency ω and the out-of-phase mode at a frequency

√
ω2 + g2. The intensity

spectrum of such a system therefore exhibits a doublet, with a peak separation ∼ g in weak
coupling limit.

Anti-resonance occurs when one of these pendulums is driven by an oscillating field. The
amplitude spectrum of the driven oscillator exhibits a deep minimum at a frequency half-way
between the two normal-mode frequencies. More importantly, this is associated with a sharp
change in phase across this anti-resonance point.

Here we consider both the pendulums to be driven with oscillating fields [see Fig. 2.7].
Generalizing to the case, when the pendulums are of different natural frequencies ω1 and
ω2, we can write down the corresponding equations of motion of the amplitudes xi of these
pendulums, as follows:

ẍ1 + γ1ẋ1 − 2gω1x2 + ω2
1x1 = 2F1 cos(ωd,1t− ϕ1) ,

ẍ2 + γ2ẋ2 − 2gω2x1 + ω2
2x2 = 2F2 cos(ωd,2t− ϕ2) ,

(2.64)

where, γi denotes the damping rate of the ith pendulum (i ∈ 1, 2), the g denotes the coupling
constant between the two pendulums, and Fi denotes the amplitude of the ith driving force
with frequency ωd,i and phase ϕi.

These equations (Equation 2.64) involve second-order derivatives of xi’s. Next, we choose
a suitable change of variables as α1 = ω1x1 + iẋ1 and α2 = ω2x2 + iẋ2. Assuming that the
driving fields have the same frequencies, i.e., ωd,1 = ωd,2 = ωd and making a transformation
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to the rotating frame with respect to the driving field frequency ωd, i.e., αi → αie
−iωdt, we

get

α̇1 = −i∆1α1 − γ1/2(α1 − α∗
1e

2iωdt)− i
gω1

ω2

(α2 + α∗
2e

2iωdt)

+ iF1(e
iϕ1 + e−2iωdte−iϕ1) ,

α̇2 = −i∆2α2 − γ2/2(α2 − α∗
2e

2iωdt)− i
gω2

ω1

(α1 + α∗
1e

2iωdt)

+ iF2(e
iϕ2 + e−2iωdte−iϕ2) .

(2.65)

Neglecting the counter-rotating terms containing e2iωdt (which corresponds to using the
rotating wave approximation), we get the final set of equations, as follows:

α̇1 = i(−∆1 + iγ1/2)α1 − i
gω1

ω2

α2 + F1e
iϕ1 ,

α̇2 = i(−∆2 + iγ2/2)α2 − i
gω2

ω1

α1 + F2e
iϕ2 ,

(2.66)

where a transformation ϕi → ϕi + π/2 is considered and ∆i = ωi − ωd is the detuning of the
ith pendulum from the driving field.

In steady state, i.e., when α̇1 = α̇2 ≈ 0, the steady state values of the αi = αi,ss can be
found as

α1,ss =
(γ2/2 + i∆2)F1e

iϕ1 − igF2e
iϕ2

(γ1/2 + i∆1)(γ2/2 + i∆2) + g2
,

α2,ss =
(γ1/2 + i∆1)F2e

iϕ2 − igF1e
iϕ1

(γ2/2 + i∆2)(γ1/2 + i∆1) + g2
.

(2.67)

We note that the amplitudes are complex. Hence, we plot in Figs. 2.8 magnitude and
phase spectrum of these steady state amplitudes of the oscillators, where we have chosen
∆i = ∆. We see that there is a sharp dip in the amplitude of the first oscillator [Fig. 2.8(c)],
that is associated with a singular phase-change of π [Fig. 2.8(d)], when the two driving
fields have a phase difference (ϕ1 − ϕ2 = π/2). This phenomenon is called anti-resonance.
Such a spectral feature is clearly analogous to non-reciprocity, in which the energy content
of the input mode vanishes and that of the output mode becomes maximum. However, for
a given phase-difference ϕ1 − ϕ2, one cannot achieve the reverse situation, namely, vanishing
(maximum) energy content of the output (input) mode. This means that the system behaves
as an isolator. We find that The physics of anti-resonance is discussed in [30, 31], where only
one of the oscillators is driven by an external harmonic field.

More importantly, when the phase-difference between the driving fields is changed to
ϕ1−ϕ2 = −π/2, we see such anti-resonance behavior in the spectrum of the second oscillator,
instead of the first one [Figs. 2.8(e) and 2.8(f)]. Such a reversal of the spectral behavior of
two oscillators can also be seen in the context of optomechanical nonreciprocity [1, 32], in
which such reversal of the directions of the field can be done by changing the phase differences
of the two cavity driving fields. These phenomenon are analogous. We emphasize that by
driving only one oscillator, the reversal of the spectral behavior cannot be obtained.
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Figure 2.8: Plots (a), (c), (e) on the left panel represent the variation of magnitudes of the
αi,ss with respect to ∆ for various combinations of ϕ1 and ϕ2. Plots (b), (d), (f) on the
right panel represent the phases (argument) of the αi,ss with respect to ∆, corresponding to
the same combinations of values of ϕ1 and ϕ2. The other parameters chosen are γ1 = γ2 = γ,
F1 = F2 = γ, and g = γ/2.



2.8. CONCLUSION 41

We have outlined how the anti-resonance phenomenon can be analogous to optomechan-
ical nonreciprocity. However the anti-resonance occurs only at a certain frequency ∆ = 0
[see Figure 2.8], that depends upon the natural frequency of the mechanical oscillator (ωi).
Analogously, in optomechanical isolators, the isolation occurs only at a certain frequency
([1]) is dependent on natural frequency of the membrane). In such a narrow-band isolator,
one is limited with the natural frequency of the membrane itself, that is fixed in a given
architecture and cannot be manipulated externally. This means that one does not have any
dynamical control to make it useful for isolation at other frequencies.

2.7.4 Issues plaguing OM non-reciprocity

Challenges affecting optomechanical nonreciprocity are:

1. Imbalanced Coupling: Achieving nonreciprocal behavior requires a significant difference
in the optical and mechanical coupling strengths. However, in practical systems, it can
be challenging to maintain a large and stable imbalance in the coupling strengths over
a wide range of operating conditions.

2. Loss and Damping: Nonreciprocal devices are susceptible to losses and damping, which
can degrade the performance and efficiency of optomechanical nonreciprocal effects.
Mitigating losses and minimizing damping mechanisms are crucial for achieving robust
nonreciprocal behavior.

3. Thermal Noise: The presence of thermal noise can limit the effectiveness of nonrecip-
rocal devices. The random thermal fluctuations can introduce noise into the system,
reducing the signal-to-noise ratio and affecting the overall performance of optomechan-
ical nonreciprocity.

4. Frequency and Bandwidth Limitations: Optomechanical nonreciprocal devices often
operate within specific frequency ranges and exhibit limited bandwidth. Expanding
the operational bandwidth and achieving nonreciprocity over a broader frequency range
remain significant challenges in the field.

5. Fabrication and Integration: Fabricating and integrating complex optomechanical struc-
tures with precise control over device parameters can be challenging. Ensuring consis-
tent and reliable fabrication techniques while maintaining device performance is crucial
for the widespread implementation of optomechanical nonreciprocity.

Addressing these issues requires advancements in fabrication techniques, improved mate-
rials, novel device designs, and effective strategies for mitigating losses, noise, and thermal
effects in optomechanical systems. In this thesis, we will later present a technique to address
the frequency and bandwidth limitations.

2.8 Conclusion
In our exploration, we delved into the phenomenon of non-reciprocity and isolation, focusing
on its understanding through scattering matrices. By studying the scattering properties of
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systems, we gained insights into the conditions necessary to achieve non-reciprocity of light.
This investigation led us to the Lorentz Reciprocity Theorem, which outlines the prerequi-
sites for the realization of non-reciprocity. Moreover, we discovered the intriguing connection
between non-reciprocity and thermodynamics, highlighting the thermodynamic aspects un-
derlying the phenomenon. Expanding our knowledge, we examined the Faraday isolator,
a device commonly used to achieve non-reciprocal light transmission. Additionally, we ex-
plored an optomechanical isolator configuration that employs a membrane positioned in the
middle, leveraging optomechanical interactions. Throughout our exploration, we encountered
challenges and limitations associated with optomechanical isolators, gaining a comprehensive
understanding of the issues that currently impact their practical implementation.



Chapter 3

Non-Hermitian Quantum Sensing

Non-Hermitian quantum sensing [33, 34, 35, 36, 37, 38] is a fascinating and emerging field
within quantum physics that explores the use of non-Hermitian systems for sensitive measure-
ments and sensing applications. Traditionally, Hermitian Hamiltonians, which correspond to
observable quantities in quantum mechanics, have been the cornerstone of quantum sens-
ing. However, recent developments have shown that non-Hermitian systems can offer unique
advantages in terms of sensitivity, precision, and robustness in certain sensing scenarios.

In quantum mechanics, Hermitian operators represent physical observables, such as po-
sition, momentum, and energy, and their corresponding eigenvalues represent the possible
outcomes of measurements. Hermiticity ensures that the eigenvalues are real, reflecting
physically measurable quantities. However, in non-Hermitian systems, the Hamiltonian ma-
trix is not Hermitian, meaning it does not satisfy the condition H† = H, where H† denotes
the Hermitian conjugate of H.

Non-Hermitian quantum sensing harnesses the distinctive properties of non-Hermitian
systems, such as the presence of complex eigenvalues and non-orthogonal eigenvectors, to
enable novel sensing strategies. One intriguing aspect of non-Hermitian systems is the concept
of exceptional points (EPs). An exceptional point occurs when two or more eigenvalues
and their corresponding eigenvectors coalesce, leading to a nontrivial geometric phase and
enhanced sensitivity to perturbations [37, 39, 40, 41, 42, 43, 44, 45].

The unique behavior of EPs in non-Hermitian systems can be exploited for various sensing
applications, for example, in the detection of small changes in physical parameters, such as
temperature, pressure, or electric fields, with increased precision compared to conventional
sensing techniques. The measurement sensitivity gets enhanced near the EP, so that even
tiny changes can cause significant variations in the system’s response. Moreover, such systems
can also be applied to quantum state estimation and metrology. By leveraging the intricate
structure of non-Hermitian systems, it becomes possible to obtain precise information about
the unknown quantum states or to estimate parameters that characterize quantum systems
accurately.

Non-Hermitian quantum sensing is still a rapidly evolving field, with ongoing research
focused on exploring the fundamental properties of non-Hermitian systems, developing new
sensing protocols, and identifying practical applications. As scientists delve deeper into the
realm of non-Hermitian quantum mechanics, they continue to unveil the potential of these
systems for pushing the boundaries of quantum sensing and measurement technology.
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In this chapter we explore the concept of non-Hermitian sensing. First, we present a
two-level prototype of an EP sensor. In this system a non-Hermitian system at EP degen-
eracy is perturbed and the strength of the splitting is used for sensing purpose. Next, we
discuss in detail the metrics that are used to assess the sensor performance, with a brief
introduction to the concerns raised about the EP sensing in recent literature. Later, we will
explain how Quantum Fisher Information (QFI) and Quantum Cramer Rao Bound (QCRB)
become relevant in defining the limits achievable in sensing protocols. Finally, we study the
perturbation theory at EPs and derive the QFI at EPs and study its implications on QCRB.

QCRB is a fundamental principle in quantum estimation theory that places a limit on
the precision with which certain physical quantities can be estimated in quantum systems.
It is an extension of the classical Cramér-Rao bound to the quantum realm. According
to this bound, the uncertainty in estimating a parameter in a quantum system is inversely
proportional to QFI. The QCRB bound plays a crucial role in understanding the fundamental
limits of precision in quantum measurements and has implications in various fields, including
quantum metrology, quantum information theory, and quantum sensing.

3.1 Exceptional point sensing
Several modern sensor devices are based on the detection of frequency (energy-level) split-
tings, e.g., magnetic field sensors, nanomechanical mass sensors etc. The system, say, a two
level system (TLS) is a degenerate system at equilibrium. Detection of the target creates
a perturbation which lifts this degeneracy. The amount of splitting or lifting enables to
determine the strength of the target, Figure 3.1. Below, we explain this in mathematical
terms.

Consider a two-level Hermitian degenerate sensor which is subjected to a perturbation of
strength ϵ:

HDP =

(
E0 0
0 E0

)
+ ϵ

(
E1 A1

B1 E1 +∆E1

)
. (3.1)

The eigenvalues for such a system are

Λ− =
1

2
(−ϵ
√

4A1B1 +∆E2
1 + ϵ∆E1 + 2E0 + 2ϵE1) , (3.2)

Λ+ =
1

2
(ϵ
√

4A1B1 +∆E2
1 + ϵ∆E1 + 2E0 + 2ϵE1) . (3.3)

Now consider a two-level defective sensor subjected to the same perturbation. The cor-
responding Hamiltonian is therefore as follows:

HEP =

(
E0 A0

0 E0

)
+ ϵ

(
E1 A1

B1 E1 +∆E1

)
, (3.4)

the eigenvalues of which are given by

Λ−,EP =
1

2
(−√

ϵ
√

4A0B1 + 4ϵA1B1 + ϵ∆E2
1 + ϵ∆E1 + 2E0 + 2ϵE1) , (3.5)

Λ+,EP =
1

2
(
√
ϵ
√

4A0B1 + 4ϵA1B1 + ϵ∆E2
1 + ϵ∆E1 + 2E0 + 2ϵE1) . (3.6)
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Figure 3.1: A schematic diagram of a two level system exhibiting energy degeneracy. When
an external perturbation is applied, the degeneracy is generally broken.

The splitting in these two cases can be found as

• Hermitian case:

∆EDP = Λ+ − Λ− = ϵ
√

4A1B1 +∆E2
1 , (3.7)

• Defective Case:

∆EEP = Λ+ − Λ− =
√
ϵ
√

4A0B1 + 4ϵA1B1 + ϵ∆E2
1 . (3.8)

To compare their sensitivities, we can set ∆E1 = 0, leading to

∆EDP = 2ϵ
√
A1B1 , ∆EEP = 2

√
ϵ
√
A0B1 + ϵA1B1 . (3.9)

Choosing A0 = A1, their ratio can be obtained as

∆EEP

∆EDP

=

√
1 +

1

ϵ
. (3.10)

Therefore, for 0 < ϵ < 1, the above ratio is always greater than 1, referring to more sensitivity
Figure 3.2. It can be observed that the ratio never reaches 1, i.e. the splitting at exceptional
point due to perturbation is always higher than that for Hermitian system for the same
perturbation strength.

We find that there exist some experimental demonstrations of EP sensors in literature
[42, 43, 46, 47, 48, 49, 50, 51, 52, 53] as well.
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Figure 3.2: Plot of the ratio between the splitting for a perturbed exceptional point system
and that for a perturbed Hermitian system, with respect to the perturbation strength ϵ.

3.2 Metrics for measuring sensor performance

Let us discuss about various metrics for performance of a standard sensor.

3.2.1 Sensitivity

The sensitivity S of a measurement device is typically defined as the ratio of the change in
the output signal amplitude to the corresponding change in the input signal amplitude.

S =
(Change in output)
(Change in input)

. (3.11)

It quantifies the instrument’s ability to distinguish and measure small differences or incre-
ments in the measured parameter.

High sensitivity is desirable in many metrological applications because it allows for the
detection of subtle changes and improves the precision and accuracy of measurements. A
sensitive instrument can provide more detailed and precise information about the quantity
being measured, enabling better control, analysis, and decision-making. It is important to
note that sensitivity alone does not guarantee the accuracy or reliability of measurements.
Other factors such as calibration, resolution, linearity, repeatability, and environmental con-
ditions also play significant roles in the overall performance of a measuring instrument.

In the EP sensor setup we discussed earlier, it is easy to see that the frequency splitting
due to perturbation is directly proportional to the sensitivity of the system.
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However, it has been pointed out that merely having larger sensitivity is not a good
measure of a better sensor [54, 55, 56]. This is because a more sensitive sensor may not
distinguish between noise and signal and will amplify both simultaneously.

3.2.2 Signal-to-noise ratio

The signal-to-noise ratio (SNR) measures the ratio of the desired signal strength to the level
of background noise or unwanted interference in the measurement. It indicates the quality
of the measured signal relative to the noise present in the system. A higher SNR indicates a
stronger, more reliable signal compared to the noise level. The SNR is usually expressed in
decibels (dB) and can be calculated in terms of the ratio of signal power to noise power.

SNR(dB) = 10 log10
Signal Power
Noise Power

. (3.12)

While the sensitivity focuses on the ability to detect small changes in the input signal,
SNR assesses the quality and reliability of the measured signal in the presence of noise. A
high sensitivity sensor can respond to small changes, but if the noise level is also high, it may
lead to a low SNR and reduced accuracy of the measurement. Conversely, a sensor with a
low sensitivity might not be able to detect small changes, regardless of the noise level. Hence,
sensitivity reflects the responsiveness of a sensor to changes in the input quantity, while the
SNR evaluates the quality of the measured signal relative to the background noise.

In [54, 56], the SNR has been used as a performance metric to study the effect of noise
on EP sensors, while criticizing the use of sensitivity as a parameter in [38] and other earlier
related articles.

3.2.3 Quantum Fisher Information

The concept of QFI is related to the precision of measurements through the (Quantum)
Cramer-Rao bound.

The precision of a measurement refers to the degree of consistency, repeatability, or re-
producibility of the measured results when multiple measurements are taken under similar
conditions. It provides information about the scatter or spread of the data points around the
average or expected value, Figure 3.3. Precision is distinct from accuracy. While precision
refers to the consistency of measurements, accuracy refers to the proximity of the measured
values to the true or accepted value. A measurement can be precise but not accurate if it
consistently deviates from the true value, or it can be accurate but not precise if it shows a
large spread of measurements around the true value.

The goal of quantum parameter estimation is to determine the value of a continuous
parameter γ that is encoded within the state of a quantum system ργ. This can be achieved
by interacting the quantum system with an external signal that we aim to characterize. The
process of parameter estimation involves two steps. First, the state ργ is measured, and then,
in the second step, the estimate of γ is obtained by processing the measurement outcomes
using data-processing techniques.

In fact, we aim to determine a reliable approximation for a specific parameter of interest,
such as the population mean (µ), by utilizing a sample. This approximation, referred to as a
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Figure 3.3: Difference between precision and accuracy.

point estimate or estimation, is computed by calculating a statistic, such as the sample mean
(X̄) or sample standard deviation (σ). The objective is to derive a numerical value that can
be considered a plausible estimate for the true value of the parameter.

When discussing general concepts and inference methods, it is useful to have a generic
symbol that represents the parameter of interest. In this case, we will use the letter γ for
that purpose. The goal of estimation is to choose a single number, based on sample data,
that serves as a reasonable value for γ. To obtain an estimate for the parameter γ, we select
an appropriate statistics and calculate its value using the provided sample data. The chosen
statistic is referred to as the estimator of γ which is denoted by γ̂.

Ideally, we would like to have an estimator γ̂ that always equals the true value γ. However,
since γ̂ is based on the sample Xi’s, it is actually a random variable. Consequently, there will
be instances where γ̂ produces a value larger than γ for a particular sample, while in other
samples, γ̂ will underestimate γ. If we express this situation in mathematical terms, we can
write:

γ̂ = γ + error . (3.13)
Therefore an accurate estimator would be one resulting in small estimation errors, so that
estimated values will be near the true value. Mathematically, if we denote the estimator as
γ̂ and consider it as a random variable, the variance of the estimator, denoted as Var(γ), is
calculated as the average of the squared differences between the estimated values and their
mean. It represents the average squared deviation from the expected value of the estimator.
A lower variance indicates that the estimator tends to produce estimates that are closer to
the true parameter value on average, implying higher precision. Converse is true for a higher
variance.

Let us now establish the relation of the variance with the QFI. To understand QFI, we
first need to introduce fidelity. In quantum mechanics, fidelity is a measure of the similarity
or closeness between two quantum states or quantum operations. It quantifies how well
a quantum state or operation can be preserved or reproduced. Let us consider a state
parametrized by the parameter to be estimated and denote it by |ψ(γ)⟩. The overlap between
the states at γ and γ + δγ is then given by

f(γ, γ + δγ) = ⟨ψ(γ)|ψ(γ + δγ)⟩ , (3.14)

where the state |ψ(γ + δγ)⟩ can be expanded in Taylor series as

|ψ(γ + δγ)⟩ = |ψ⟩+ δγ |∂γψ⟩+ |∂2γψ⟩
δγ2

2!
+ . . . (3.15)
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This leads to an explicit form of the overlap as

f(γ, γ + δγ) = 1 + δγ ⟨ψ(γ)|∂γψ(γ)⟩+
δγ2

2!
⟨ψ(γ)|∂2γψ⟩+ . . . (3.16)

The fidelity is therefore given by

|f |2 = 1 + δγ(⟨ψ|∂γψ⟩+ ⟨∂γψ|ψ⟩) + δγ2(⟨∂γψ|ψ⟩+
1

2
⟨ψ|∂2γψ⟩+

1

2
⟨∂2γψ|ψ⟩) + ... (3.17)

Using the following identities

⟨ψ|∂γψ⟩+ ⟨∂γψ|ψ⟩ =
∂ ⟨ψ|ψ⟩
∂γ

= 0

⟨∂2γψ|ψ⟩+ ⟨ψ|∂2γψ⟩ = −2(⟨∂γψ|∂γψ⟩) , (3.18)

we finally get

|f |2 = 1 +
δγ2

2
(⟨ψ|∂γψ⟩ ⟨ψ|∂γψ⟩ − ⟨∂γψ|∂γψ⟩) = 1− δγ2

2
(χγ) (3.19)

Here χγ is known as the fidelity susceptibility, and can be expressed as

χγ =
2− 2|f |2
δγ2

. (3.20)

where the numerator 2− 2|f |2 is also known as Bures distance [57, 58]. The QFI is defined
as

QFI =
1

4
χγ = lim

δγ→0

1

4

(⟨∂γψ|∂γψ⟩ − | ⟨ψ|∂γψ⟩ |2
δγ2

)
. (3.21)

It is to be noted that in [59, 60], the QFI is defined as just the numerator of the above
relation. We choose to use Equation 3.21 in our work, as this suits numerical studies.

The Quantum Cramer Rao Bound (QCRB) as discussed in [57, 61] is given by

Var(γ) =
1

nQFI(γ)
, (3.22)

where n is the number of measurements performed. This bound sets the minimum possible
variance of γ in the estimation protocol concerned. We can see that higher the QFI, lesser
the variance and better the estimation and sensing. In fact, in literature [54, 55, 56] QFI is
often considered as a measure of performance.

3.3 Concerns with EP sensing
Two major concerns arise with EP sensors. One is the systems with non-Hermitian Hamil-
tonians have remained elusive and second the effect of noise. Effect of noise on EP sensors
has recently been studied, though there has not been any consensus among researchers on
whether the EP sensors can provide any sensing advantage in presence of noise.
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As discussed in section 3.1, the sensitivity is increased when a sensor is kept at an ex-
ceptional point degeneracy rather than Hermitian degeneracy. However, using sensitivity as
a performance metric for sensors is dubious as a more sensitive sensor not only amplifies
required signal but also amplifies noise.

In [37] the author discusses the effect of classical noise on EP sensors. Some work has
been done where the effect of classical noise on such sensors is shown to be ameliorated.
For example, in a class of electronic circuits, it has been shown theoretically [62] that the
additional noise caused by the gain in PT-symmetric arrangements can be made very small.

On the other hand, the effect of quantum noise has been studied theoretically in [63,
54, 55, 56].Some of the claims in these articles have been contradictory. The authors of
[63] showed that the field changes at both DPs (i.e. Hermitian degeneracy) and EPs are
proportional to the perturbation parameter ϵ. This means that the response at an EP is
not parametrically larger than at a DP. In fact, the response at an EP can be even larger in
absolute value. However, this does not mean that EP-based sensors have a superior scaling
behavior in terms of the quantum-limited signal-to-noise ratio. This is because this ratio is
not only determined by the response of the sensor, but also by the noise that is present in
the system. It is argued that the noise that is present in real systems will likely mask any
advantage that EP-based sensors may have in terms of response.

In [54], the authors focus on analyzing the parametric-sensing properties of linear coupled-
mode systems that are described by effective non-Hermitian Hamiltonians. It explores the
potential of non-Hermitian systems, specifically the existence of exceptional points, as a re-
source for sensing applications. The impact of noise and utility in both classical and quantum
regimes is investigated to gain a comprehensive understanding of the system’s behavior. The
analysis takes into account noise effects in both these regimes and considers a realistic and op-
timal measurement protocol based on coherent driving and homodyne detection. By studying
two-mode devices, they derive fundamental bounds on the signal power and signal-to-noise
ratio for any sensor based on non-Hermitian systems. These bounds provide insights into the
fundamental limits of such sensors. These results demonstrate that enhanced signal power
can be achieved by incorporating gain in the system, without necessarily requiring proximity
to an EP. This finding indicates that EP physics is not the sole factor determining the signal
power enhancement in these sensors.

Moreover, when considering the effects of noise, the researchers show that non-reciprocity
plays a crucial role in sensing. Non-reciprocity allows the sensor to surpass the fundamen-
tal bounds that constrain conventional reciprocal sensors. In other words, non-reciprocity
becomes a valuable resource for achieving parametrically-enhanced sensing capabilities. The
analysis also explores simple two-mode non-reciprocal sensors that enable this parametrically-
enhanced sensing without relying on EP physics. These sensors offer a promising approach
to surpass the limits of conventional reciprocal sensing systems, highlighting the potential of
non-Hermitian systems in sensing applications.

The sensitivity of parameter estimation near exceptional points has been further ex-
plored using the precise framework of quantum Fisher information [55]. By utilizing the
exact formalism of quantum Fisher information, one can determine the maximum sensitiv-
ity attainable without specifying a particular measurement approach. However, contrary to
expectations, the study finds that exceptional points do not exhibit a significant enhance-
ment of sensitivity. Instead, the merging of eigenstates precisely counteracts the divergence
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of eigenvalue susceptibility at the exceptional point. This counteraction results in a smooth
relationship between sensitivity and the perturbative parameter. In other words, the sensi-
tivity does not show any dramatic changes or enhancements at the exceptional point; rather,
it behaves as a continuous function of the perturbative parameter.

A quantum noise theory has also been developoed that allows one to calculate the signal-
to-noise performance of an EP sensor [56]. The concept of quantum Fisher information (QFI)
is employed to establish a lower bound for the signal-to-noise ratio (SNR). By utilizing this
framework, it is demonstrated that parametrically enhanced SNR is indeed possible in EP
sensors, which is in contradiction to [63, 54, 55].

Furthermore, the researchers devise a specific experimental protocol for sensing using an
EP amplifier operating close to its lasing threshold, coupled with heterodyne signal detection.
This protocol is designed to achieve the optimal scaling predicted by the Fisher bound. The
results obtained from this experimental setup can be generalized to higher order EPs in any
bosonic non-Hermitian system with linear interactions.

In comparison of recent articles exploring the performance of EP sensors, we see that the
results in [63, 54, 55] are contradictory to the findings of [56]. In chapter 5 we explore the
argument by simulating the system on an actual quantum computer and measure the QFI
at EPs.

3.4 QFI for non-Hermitian Hamiltonians

3.4.1 Calculating QFI for non-Hermitian Hamiltonians

As the Hermitian systems follow orthogonality rules, the systems with complex Hamiltonians
do not follow the same criteria. We had discussed this in chapter 1, that the eigenstates of
non-Hermitian Hamiltonians follow "bi-orthogonality" and "self-orthogonality" rules. This
leads to change in expression of the QFI and other quantities. Moreover around EP we will
assume that eigenvalues and eigenvectors of perturbed Hamiltonians expand with fractional
order powers of the perturbation parameter γ rather than integer, as in case of Taylor and
Laurent series. This expansion is known as "Puiseux series" expansion, which is an artifact
of expansion at algebraic singularities. We will give explanation for this expansion in next
section. As we consider a two-level system, only the first order EP can be obtained in such a
system. Hence, the perturbed eigenvalues and eigenvectors expand in the fractional powers
of γ1/2. Let us understand it further in this section.

The QFI in non-Hermitian case is given as

QFI = lim
δγ→0

1

4

(⟨∂γχ|∂γϕ⟩ − | ⟨ϕ|∂γχ⟩ |2
δγ2

)
. (3.23)

Note here |ϕ⟩ is the eigenstate of H and |χ⟩ is the eigenstate of H†. Note that the above
definition is different from the Equation 3.21.

3.4.2 Quantum Fisher Information around EP

We will consider a two-level system parameterized by γ (Hp(γ)) with EP at γ = 0. Let us
consider a small perturbation around exceptional point. This gives us the eigenvalue equation
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Hp |ϕp⟩ = λp |ϕp⟩ for non-Hermitian Hamiltonian around EP.

(H + γH
′
+ ...)(|ϕ⟩+ γ1/2 |ϕ′⟩+ ....) = (λ+ γ1/2λ

′
+ ....)(|ϕ⟩+ γ1/2 |ϕ′⟩+ ....) . (3.24)

Here we have used the concept of Puiseux series expansion as EP are square root singularities
in parameter space [64, 65]. Expanding the brackets and comparing the powers of γ, we get

H |ϕ⟩ = λ |ϕ⟩ , (3.25)

H |ϕ′⟩ = λ |ϕ′⟩+ λ
′ |ϕ⟩ , (3.26)

H |ϕ′′⟩+H
′ |ϕ⟩ = λ |ϕ′′⟩+ λ

′ |ϕ′⟩+ λ
′′ |ϕ⟩ . . . . (3.27)

Now consider the inner product ⟨|χJ⟩ |((|ϕ⟩+ γ1/2 |ϕ′⟩+ ....)⟩ where |χJ⟩ is the Jordan normal
vector for H†. As ⟨χJ |ϕ⟩ = 1 according to self-orthogonality rule defined in chapter 1, we
have

⟨χJ |ϕi⟩ = 0 , (3.28)

where i = 1, 2, .... (i.e. higher order perturbations). Multiplying the second equation in
Equation 1.33 with λ′ and comparing it with Equation 3.26, we have

|ϕ′⟩ = λ
′ |ϕJ⟩ . (3.29)

Let us now substitute this in Equation 3.27, to obtain

H |ϕ′′⟩+H
′ |ϕ⟩ = λ |ϕ′′⟩+ λ

′2 |ϕJ⟩+ λ
′′ |ϕ⟩ . (3.30)

Multiplying by ⟨χ| (i.e., the eigenvector of H†) from left, we get

⟨χ| (H − λ) |ϕ⟩ = λ
′2 ⟨χ|ϕJ⟩+ λ

′′ ⟨χ|ϕ⟩ − ⟨χ|H |ϕ⟩ . (3.31)

As ⟨χ|H = λ ⟨χ|, the left hand side of the above equation identically vanishes, and
therefore, the from the right hand side, we get

λ
′2 ⟨χ|ϕJ⟩+ λ

′′ ⟨χ|ϕ⟩ − ⟨χ|H |ϕ⟩ = 0 . (3.32)

Finally, using the self-orthogonality rules ⟨χ|ϕJ⟩ = 1 and ⟨χ|ϕ⟩ = 0, we get the following
expressions of the eigenvalues:

λ
′

± = ±
√

⟨χ|H |ϕ⟩ . (3.33)

Hence the perturbed eigenvector can be written as

|ϕp±⟩ = |ϕ±⟩+ γ1/2λ
′

± |ϕJ
±⟩+ ... (3.34)

Now let us find the normalization constant N for |ϕp⟩. To calculate this, we note that
N2 = (⟨χ|+γ1/2λ′

± ⟨χJ |)(|ϕ⟩+γ1/2λ′
± |ϕJ⟩). Using the bi-orthogonality and self-orthogonality

rules, we have
N2 = 2γ1/2λ

′

± , (3.35)
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leading to the following form of the normalization constant:

N =
1√

2γ1/2λ
′
±
. (3.36)

This gives us

|ϕp±⟩ =
1√
2λ

′
±

[
γ−1/4 |ϕ±⟩+ γ1/4λ

′

± |ϕJ
±⟩
]
, (3.37)

|χp±⟩ =
1√
2λ

′
±

[
γ−1/4 |χ±⟩+ γ1/4λ

′

± |χJ
±⟩
]
, (3.38)

where |χp⟩ is the perturbed eigenvector from an EP for H†. Let us differentiate Equation 3.37
with respect to γ. This leads to

|∂γϕp+⟩ =
1√
2λ

′
+

[−1

4
γ−5/4 |ϕ+⟩+

1

4
γ−3/4λ

′

+ |ϕJ
+⟩
]
. (3.39)

Note we have taken only one of the eigenstates (i.e. +) to study further. We multiply
and divide the right hand side by γ and using the fact that λ′

+ = −λ′
−, we get

|∂γϕp+⟩ =
i

4γ

[
1√
2λ

′
−

(
γ−1/4 |ϕ+⟩+ γ1/2λ

′

− |ϕJ
+⟩
)]

=
i

4γ
|ϕp−⟩ . (3.40)

and similarly (|∂γϕp+⟩)† = −i
4γ

⟨χp−|. We used the fact that (|ϕp−⟩)† = ⟨χp−| from the bi-
orthogonality rules.

Now if we calculate the QFI for complex Hamiltonians Equation 3.23, we get,

QFI ∝
[

1

16γ2
⟨χp−|ϕp−⟩+

i

4γ
⟨χp−|ϕp+⟩

]
∝ 1

γ2
. (3.41)

We have used the bi-orthogonality rules ⟨χp−|ϕp−⟩ = 1 and ⟨χp−|ϕp+⟩ = 0. This shows us
that the QFI diverges at EP which is at γ = 0.

3.4.3 Why Puiseux series expansion ?

Let us understand why we need Puiseux series expansion for a two-level system around EP
in fractional power of perturbation parameter, γ1/2.

Consider the equation

(H + γH
′
)(|ϕ⟩+ |ϕ̄′⟩+ |ϕ̄′′⟩+ ...) = (λ+ λ̄′ + λ̄′′)(|ϕ⟩+ |ϕ̄′⟩+ |ϕ̄′′⟩+ ...) . (3.42)

Note that unlike in Equation 3.24, we have not written the powers of γ here and as-
sumed that it is absorbed in the eigenvector and eigenvalue terms. Taking inner product of
Equation 3.42 with ⟨χ| and using the self-orthogonality rules, we get

γ ⟨χ|H ′ |ϕ⟩ = λ̄′ ⟨χ|ϕ̄′⟩ , (3.43)
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Assuming that the left hand side does not vanish, the above equation implies that λ̄′ |ϕ̄′⟩
is proportional to γ as |ϕ⟩, |χ⟩, and H ′ are independent of it at EP. This means each λ̄′ and
¯|ϕ′⟩ is proportional to fractional power of γ. Now it remains to find the power. Combining

the first order equations in Equation 3.42 we have

(H − λ) |ϕ̄′⟩ = λ̄′ |ϕ⟩ . (3.44)

This shows that using the arguments earlier, we have |ϕ̄′⟩ amd λ̄′ to have the same powers.
Therefore, combining the results of Equation 3.43 and Equation 3.44, we conclude that the
both |ϕ̄′⟩ and λ̄′ are both proportional to γ1/2. Similarly, we can find the proportionality for
higher orders.

Hence, we have for the perturbed eigenvalues and eigenvectors

λp± = λ± γ1/2λ
′ ± γλ

′′
+ .... (3.45)

|ϕp±⟩ = |ϕ⟩ ± γ1/2 |ϕ′⟩ ± γ |ϕ′′⟩+ .... (3.46)

For comparison let us consider degenerate eigenvalue away from EP. In this case, the
self-orthogonality does not apply and we have

γ ⟨χ|H ′|ϕ⟩ = λ̄′ ⟨χ|ϕ⟩ , (3.47)

(H − λ) ¯|ϕ′⟩ = −γH ′ |ϕ⟩ , (3.48)

instead of Equation 3.43 and Equation 3.44. Using above expressions we see that λ̄′ and ¯|ϕ′⟩
in this case is are proportional to γ and hence we have integer power expansions in this case
with respect to γ.

A more rigorous and concise proof is found in [64].

3.5 Experimental demonstrations

There are several experimental demonstrations of EP sensors. Most of the demonstrations
are in optics domain and a very few are in quantum domain or do explore quantum sensing.
We would like to enumerate a few with a short description:
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article description
[46] The experimental verification of [38] prediction regarding the in-

creased splitting was successfully achieved within an optical micro-
cavity.

[66] A particle sensor based on an integrated exceptional surface system
has been successfully implemented.
The results showcased an observable improvement in the frequency
splitting due to minor perturbations.

[42] A higher order EP had been successfully demonstrated believed to
achieve higher sensitivity.

[47] The concept of EP-based sensing has been applied in a modified
fashion to thermal mapping

[48,
49,
50,
51]

Classical wireless EP sensor demonstrations. The inductive cou-
pling between the sensor and a reader is the basis for operation.
The quantity being measured detunes the capacitive or inductive
components of the sensor, causing frequency shifts that the reader
may detect externally.

[52,
53]

These articles consider demonstration of ring laser gyroscopes with
EP enhancement

[67] This article demonstrates EP based sensors in plasmonic domain.
[68] This article exploits the phenomenon of stochastic resonance to

overcome the sensitivity of EP to noise.

Some interesting proposals worth mentioning are [69] where the authors suggested a con-
cept that involved leveraging exceptional surfaces to amplify the sensitivity of a particle
sensor while minimizing the impact of unwanted disturbances. In [70] an anti-PT-symmetric
device was proposed for particle sensing. In [71] a novel concept of utilizing a spinning res-
onator, rotating at its center, was put forward to attain exceptional points for nanoparticle
detection and sensing capabilities. In [72] it was proposed that EP present in an optomechan-
ical cavity can be utilized to enhance the sensitivity of a mass sensor. This can be achieved
by manipulating the cavity’s operation through the use of a blue-detuned laser to induce
gain or a red-detuned laser to induce loss. There is rapid progress in realizing the sensors,
however there are still many conceptual and theoretical difficulties in understanding them.

3.6 Conclusion

In our exploration, we began by providing a general overview of the initial proposals for EP
(Exceptional Point) sensors. These sensors utilize the unique properties of EPs, which are
points of non-Hermitian degeneracy in physical systems. Moving forward, we delved into
various metrics used to assess the performance of any sensor. Specifically, we discussed sensi-
tivity, signal-to-noise ratio (SNR), and quantum Fisher information (QFI) as key evaluation
criteria.

Continuing our discussion, we addressed concerns related to EP sensors, considering po-
tential challenges and limitations associated with their implementation. Moreover, we ex-
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plored the QFI for non-Hermitian Hamiltonians, broadening our understanding of the fun-
damental principles involved in EP sensing.

In a significant development, we derived a form of QFI specifically around the vicinity
of EPs and demonstrated that, in general, it diverges around these points of non-Hermitian
degeneracy. This finding highlighted the intricate nature of EPs and their impact on the
sensitivity and precision of EP sensors.

Finally, we provided an overview of several experimental realizations of EP sensors, show-
casing their practical applications. Additionally, we discussed intriguing proposals that have
emerged in the field, further expanding the potential of EP sensing in various domains. By
exploring the theoretical foundations, concerns, and practical implementations of EP sensors,
we gained valuable insights into the advancements and challenges within this exciting field.



Chapter 4

Isolation Frequency Tunable
Optomechanical Isolator

An optical isolator can be treated as an optical analog of an electronic diode. As the diodes
allow the electrons to move predominantly along one direction and not in the opposite direc-
tion, an optical isolator lets the photons transmit in only one direction. The system becomes
transparent for only one direction of the field, and opaque in another direction. Quantita-
tively, the input and output mode of an ideal two-port optical isolator can be related via a
scattering matrix S, as

Āout = SĀin where S =

(
0 1
0 0

)
or
(
0 0
1 0

)
, (4.1)

and Āin and Āout are the column vectors representing the input and output modes of the
device. In such scenarios the scattering matrix of the isolator is not unitary as discussed in
[73, 74].

However, it is challenging to construct an isolator for light (or photons) due to the Lorentz
reciprocity theorem. According to this theorem, a device with linear, isotropic, and time-
independent dielectric constant [74, 73] cannot be non-reciprocal and hence cannot be used for
isolation. In addition, an ideal optical diode (a) should function for any arbitrary frequency of
light, i.e., the matrix S should be frequency-independent, (b) should not require an external
control field or a bias (note that the Faraday isolators, on the other hand, require an external
magnetic field to operate [75]), (c) should not modify the transmitted light in the direction in
which the device is transparent. An OM (optomechanical) isolator exploits the OM coupling
between light and a mechanical resonator to generate the non-reciprocity and isolation.

To understand the functioning of OM isolators let us look at the following discussion.
An atomic system which behaves like an opaque medium for an input probe light field with
certain frequency, in the presence of a suitable control field will appear transparent for the
same probe field. Such quantum optical phenomenon is often referred to as the electromag-
netically induced transparency (EIT)[76]. The control field modifies the atomic system such
that there is resonance in the transmission profile of the system at the input probe field fre-
quency [77]. Alternatively, EIT can be mimicked in Optomechanical systems and is known
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Figure 4.1: A schematic diagram of the OM isolator. This depicts that OM isolator acts as
Bandpass filter for an input from right to left direction and Band stop in another. The arrows
depict input and output on both sides. The plots represent transmission (T) v/s frequency of
the input (ω). The center frequency of both processes should be same and we call it isolation
frequency. It is to be noted that filters are resonant systems and hence OM isolator is also a
resonant system.

as optomechanically induced transparency (OMIT) [78]. The obverse phenomenon of EIT is
electromagnetically induced absorption (EIA) [79, 80, 81] where absorption can be induced
by a control light field, thus making a medium which was transparent for an input light field
at a certain frequency, to become opaque for it. Here, the control field modifies the atomic
system such that there is anti-resonance (dip) in the transmission profile of the system at
the input probe field frequency. Its optomechanical analogue is known as optomechanically
induced absorption (OMIA) which has been experimentally verified by [82, 83, 84, 85, 86].
It should be noted that these phenomenon work only for certain input probe frequency be-
cause it is an interplay of resonance and anti-resonances. Usually, EIT/EIA is explained as
the phenomena where a quantum destructive/constructive interference between the different
excitation pathways to atomic levels enhances/reduces light transmission over a narrow spec-
tral region in a coherently driven atomic system. Hence, EIT/EIA have been proposed for
bandpass/band reject filtering as it works for narrow spectral region [87, 88, 89].

Anti-resonance occurs when at least one of the oscillator in coupled oscillators is driven.
This system is not usually explored in standard textbooks. They are pronounced minimum
in the amplitude of one of the coupled oscillator for a particular driving frequency (they
are the exact opposite of what resonance is). Unlike resonance, coupling is essential for
anti-resonance [90, 31]. In the quantum domain it has been discussed recently in [30]. Anti-
resonance plays a major role in OM non-reciprocity and OM isolation, by creating a dip in
the amplitude of one of the outputs at a particular frequency.

In recent years, OM isolators have emerged as possible candidates for achieving isolation
[1, 91, 32, 92, 93]. It was seen that in these systems for particular input signal frequency,
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and phase difference between the control fields, the scattering matrix of the isolator is as
given by Eq. (4.1). It is to be noted that OM isolators work only for particular input signal
frequency like all resonant systems (i.e. there is resonance or antiresonance only for certain
driving frequency) [91]. Hence, they are proposed primarily for filtering purpose [91]. In
brief, Bandpass filters are devices which encounter resonance at a particular frequency of the
signal, on the other hand Bandstop or Notch filters encounter anti-resonance for a particular
frequency of the signal [94]. Hence, an OM isolator is a Bandpass filter in one direction and
a Bandstop filter in another Fig. 4.1. The frequency at which the filter operates is known
as center frequency. In an OM isolator, the center frequency of the Bandpass and Bandstop
process, has to be the same and we would call it "isolation frequency" . This is a limitation
for any broadband application of OM isolator. We try to circumvent this issue by providing
tunability to the isolation frequency of the OM isolator.

The structure of this chapter is as follows : In section 4.1, we explore the requirements of
OM coupling term for the tunability of the OM isolation frequency. In Section 4.2, we discuss
a tunable model of OM isolators with a mechanical drive attached to a quadratically OM
coupled membrane. In Section 4.3, we discuss the non-reciprocal features of such a device.
Finally, in Section 5, we discuss experimental proposals and conclude. In the section 4.4, we
discuss the requirement of the phase difference of the cavity driving fields, for isolation. For
the theory and preliminaries related to this chapter the reader can refer to chapter 2.

4.1 Requirements for Tunable OM isolator

It has been observed in previous works on OM isolators, that the center (or isolation) fre-
quency depends on the natural frequency of the mechanical mode (ωb1), i.e. isolation is
observed only when the signal frequency is equal to the natural frequency of the mechanical
mode. This has been discussed in the following commentary [91]. It is also mentioned that
the Bandwidth limitation of these OM isolators make them suitable for filtering applications.
Hence, we can achieve tunability of the center frequency by having control over ωb1.

One possible way is by driving the mechanical mode. There are research articles discussing
the addition of driving to mechanical mode, however its’ application for tunability of OM
isolators has not yet been explored. We discuss these articles in detail in Sec. 5. By driving
the mechanical mode it can be observed that in the certain rotating frame ωb1 → ∆b1 where
∆b1 = ωb1 − ωdb1, i.e. the difference between natural mechanical frequency and the driving
frequency of the mechanical drive. This is similar to the case where the natural frequency
of the cavities needs to be replaced by the optical detunings, inside the Hamiltonian. We
can use this control over the frequency of the mechanical drive, to control the detuning and
indirectly control the isolation frequency of the device.

Quantitatively, for an OM isolator with an Hamiltonian of an MIM setup, the Hamiltonian
is
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Figure 4.2: Variation of scattering probabilities T12 and T21 with the normalized input
frequency ω/γ for (a) θ = 0, (b) θ = π/2, (c) θ = π, and (d) θ = 3π/2. The
other parameters chosen are J = |G11| = |G21| = γa1/2 = γa2/2 = γb1/8 = γ/2 and
∆

′′

b1 = ∆
′′
a1 = ∆

′′
a2 = ∆ = 10γ. Clearly, with suitable choice of θ, one can achieve non-

reciprocity of in either direction, i.e., either T12 = 0 or T21 = 0.
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Figure 4.3: Complete profile of T v/s signal frequency ω and modified Optomechanical
coupling phase θ. (a) Ta1−>a2 for |G11| = |G21| = γa1/4 = γa2/4 = γb1/4 = γ/4 . (b) Ta2−>a1

for |G11| = |G21| = γa1/4 = γa2/4 = γb1/4 = γ/4. (c) Ta1−>a2 for |G11| = |G21| = γa1/2 =
γa2/2 = γb1/8 = γ/2. (d) Ta2−>a1 for |G11| = |G21| = γa1/2 = γa2/2 = γb1/8 = γ/2. Black
dotted line depicts ω = 10γ. Red (Blue) line depicts θ = π/2 (3π/2). Here, (a) and (b)
profiles are as observed in [1], however it is to be noted that the parameters are different in
this case.
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H = ωa1a
†
1a1 + ωa2a

†
2a2 + ωb1b

†
1b1 + J(a†1a2 + a†2a1)

+g11a
†
1a1(b

†
1 + b1) + g21a

†
2a2(b

†
1 + b1)

+i
[
ϵa1e

−i(ωda1t−ϕa1)a†1 + ϵa2e
−i(ωda2t−ϕa2)a†2

+ϵb1e
−i(ωdb1t)−ϕb1b†1 − h.c.

]
, (4.2)

where ai (for i =1,2) are the optical modes of the cavities, ωai and ωb1 are the optical and
mechanical natural frequencies. J is the optical coupling constant. ’gij’ are the OM coupling
constants, ’i’ denoting the index for the optical mode and ’j’ denoting the phonon mode. ωdai

and ωdb1 are the driving frequencies. ϵai and ϵb1 are the amplitudes of the driving. ϕai and
ϕb1 are the phases of the driving.

The first two terms describe the bare Hamiltonian of the cavities and the third term
describes the membrane (neglecting the constant terms of 1/2). The fourth term describes
the optical coupling term between the two cavities. The fifth and sixth terms are known as
the OM coupling terms, they denote the photon-phonon coupling for the cavities. The last
term describes the driving part and includes the term for periodic driving of the mechanical
membrane.

Upon rotating the frame using U = exp[i(ωda1ta
†
1a1+ωda2ta

†
2a2+ωdb1tb

†
1b1)] i.e. upon the

transformation H ′ = UHU † − iU ∂U†

∂t
. It can be observed that the transformed Hamiltonian

is

H ′ = ∆a1a
†
1a1 +∆a2a

†
2a2 +∆b1b

†
1b1 + J(a†1a2 + a†2a1)

+g11a
†
1a1(b

†
1e

iωdb1t + b1e
−iωdb1t)

+g21a
†
2a2(b

†
1e

iωdb1t + b1e
−iωdb1t)

+i
[
ϵa1e

iϕa1a†1 + ϵa2e
iϕa2a†2 + ϵb1b

†
1e

iϕb1 − h.c.
]
. (4.3)

We consider both cavities are driven by same frequency, ωda1 = ωda2 = ωda. This makes
the fourth term time independent, however it does not make the fifth and sixth term time
independent. Note, ∆ai = ωai − ωda (i ∈ 1, 2) are the detunings of the ith cavity mode and
∆b1 = ωb1 − ωdb1 is the detuning of the membrane mode, from their respective driving field.

However, it can be observed that in the rotated frame the standard OM coupling terms
become time dependent and the system will not reach a steady state. This makes the setup
useless as an OM isolator. Hence, it can be deduced that for a tunable OM isolator, non-
standard OM coupling should be used. We can deduce the form of the necessary conditions
of the OM coupling terms to render them useful for isolation frequency tunable OM isolation.

Consider a general OM coupling term Gi for membrane in middle setup, which is function
of ai, a†i , b1, b

†
1, and t, (for i=1,2). If G′

i = eiλXGie
−iλX . Here, X(ai, a

†
i , b1, b

†
1, t), is Hermitian

operator and λ is some real number. Then, it is easy to prove using Baker-Campbell-Hausdorff
formula that dG

′
i

dt
= 0 (i.e. the transformed term is time-independent) if [Gi, X] = 0 and

dGi

dt
= 0. It can be seen that for the standard linear OM term [Gi, X] ̸= 0 forX = (ωda1ta

†
1a1+

ωda2ta
†
2a2+ωdb1tb

†
1b1) hence, it does not satisfy the condition needed. A term, Gi = ga†iaib

†
1b1
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satisfies the conditions and hence can be termed suitable for a tunable OM isolation. Such
coupling is explored for QND measurement of phonons (after approximation using RWA
(Under resolved-sideband limit) on quadratic coupling term) [95, 96]. Hence, we need to
consider a quadratic OM coupling term as discussed in [95, 96]. We will explore this in
further sections.

4.2 Tunable model with Quadratic Coupling
Optomechanical (OM) isolators with linear coupling have been studied theoretically [97, 1,
98, 99, 92, 100, 101, 102, 93] and also experimentally demonstrated in [103, 29, 104, 105,
106, 107, 108, 109]. Our physical setup for achieving OM isolation with tunable isolation
frequency is that of a quadratically coupled optomechanical system with Hamiltonian similar
to that used in a membrane-in-the middle (MIM) configuration. The system is driven by
a strong optical coupling field with amplitude ϵi, frequency ωda,i, and phase ϕi and a weak
coherent mechanical driving with amplitude ϵb, frequency ωdb, and phase ϕb for the membrane.
In a MIM setup with optical cavities, a thin partially reflecting dielectric membrane with
frequency ωb, effective mass m, and finite reflectivity R is suspended inside the cavity which is
formed by two fixed mirrors separated from each other by a distance L. When the membrane
is placed at the anti-node of the cavity frequency (such that ∂ωa/∂x = 0, x being the
displacement of the membrane from its equilibrium position) the linear OM term ∝ a†iai(b

†+b)
(where ai and b refer to optical and mechanical modes, respectively) can be neglected [95, 110].
Thus the leading order OM coupling becomes quadratic in membrane displacement, with a
coupling constant g = 8π2c

Lλ2[R/(1−R)]1/2
[111, 112], where c is the speed of light in a vacuum and

λ is the wavelength of the control field.
The relevant Hamiltonian can then be written as

Hq = ω1a
†
1a1 + ω2a

†
2a2 + ωbb

†b+ J(a†1a2

+a†2a1) + g1a
†
1a1(b

† + b)2 + g2a
†
2a2(b

† + b)2

+i[ϵ1e
−i(ωda,1t−ϕ1)a†1 + ϵ2e

−i(ωda,2t−ϕ2)a†2
+ϵbe

−i(ωdbt−ϕb)b† − h.c.] . (4.4)

This Hamiltonian is similar to Equation 4.2, exception being in the fifth and sixth term,
where we consider quadratic coupling instead of linear coupling. This coupling has been
experimentally achieved in MIM setup [95, 113, 110].

We transform the Hamiltonian Hq, in a frame co-rotating with the drive frequency, to
H ′

q = UHqU
† − iU ∂U†

∂t
where U = exp[i(ωda,1ta

†
1a1 + ωda,2ta

†
2a2 + ωdbtb

†b)], as mentioned
before. Using the Baker-Campbell-Hausdorff formula and the commutation properties of the
bosonic operators, we find the following form of the Hamiltonian:

H ′
q = ∆′

1a
†
1a1 +∆′

2a
†
2a2 +∆′

bb
†b+ J(a†1a2 + a†2a1) + 2g1a

†
1a1(b

†b) + 2g2a
†
2a2(b

†b)

+ i
[
ϵ1e

iϕ1a†1 + ϵ2e
iϕ2a†2 + ϵbb

†eiϕb − h.c.
]
. (4.5)

Here, ∆′
i = ωi −ωda,i + g and ∆′

b = ωb −ωdb are the modified detunings. In the following, we
consider that the cavity driving frequencies are equal, i.e., ωda,1 = ωda,2 and the OM coupling
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constant are also equal, i.e., g1 = g2 = g, such that we can identify Gi = ga†iai(b
†+b)2. For the

same transformation matrix U as described before, we now have U(Gi)U
† = ga†iai(b

†2e−2iωdbt+
b†b+ bb† + b2e2iωdbt) = 2ga†iaib

†b+ ga†iai, where we used rotating wave approximation (RWA)
and normal ordering. The RWA is applicable when cavity damping is small compared to the
natural mechanical frequency, as discussed in [95, 114, 115].

To study how isolation works in such a system, we first obtain the Heisenberg-Langevin
equations of the relevant field operators, taking into account the damping and corresponding
noise terms:

d

dt
a1 =

{
−γ1

2
− i
[
∆′

1 + 2gb†b
]}
a1 − iJa2

+ϵ1e
iϕ1 +

√
γ1ain,1 , (4.6)

d

dt
a2 =

{
−γ2

2
− i
[
∆′

2 + 2gb†b
]}
a2 − iJa1

+ϵ2e
iϕ2 +

√
γ2ain,2 , (4.7)

d

dt
b =

(
−γb

2
− i[∆′

b + 2g
(
a†1a1 + a†2a2

)
]
)
b

+ϵbe
iϕb +

√
γbbin . (4.8)

Here, ain,1, ain,2 and bin are the input noise fields with mean values equal to zero, γi and γb
are the damping rates of ith cavity mode and the membrane mode, respectively.

In the strong driving limit (i.e., when the control field amplitude is very large compared
to the probe field amplitude), we can consider factorization assumption (i.e. ⟨ca⟩ = ⟨c⟩⟨a⟩)
of two annihilation operators a and c. In such a scenario, the mean number of excitation in
cavity modes and the membrane, at the steady state, are:

⟨a1⟩ = α1 =

(
γ2
2
+ i∆′′

2

)
ε1e

iϕ1 − iJε2e
iϕ2(

γ1
2
+ i∆′′

1

) (
γ2
2
+ i∆′′

2

)
+ J2

,

⟨a2⟩ = α2 =

(
γ1
2
+ i∆′′

1

)
ε2e

iϕ2 − iJε1e
iϕ1(

γ1
2
+ i∆′′

1

) (
γ2
2
+ i∆′′

2

)
+ J2

,

⟨b⟩ = β =

(
ϵbe

iϕb
)(

γb
2
+ i∆′′

b

) .
(4.9)

Here, ∆′′
i = ∆′

i + 2g⟨b†b⟩ and ∆′′
b = ∆′

b + 2g
(
⟨a†1a1 + a†2a2⟩

)
(detunings and frequency shifts

due to the optomechanical interaction). We have assumed ∆′′
i ≈ ∆′′

b (analogous to that used
in the resolved sideband limit) and γi, γb, g ≪ ∆′

b (i ∈ 1, 2). Note that β is complex, and
with a proper choice of phase of the mechanical drive, we can make β ∈ IR.

4.3 Non-Reciprocity and control of isolation frequency

To investigate the nonreciprocity at the steady state, we need to obtain the fluctuation
dynamics of all the subsystems involved, namely, two cavity modes and the membrane.
We consider that the driving field amplitudes are larger than the relevant decay rates. In
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Figure 4.4: Plot for the scattering probabilities (T ) with respect to normalized input fre-
quency ω/γ for various θ. θ = 0(blue), θ = π/2(red), θ = π(black) and θ = 3π/2(green). The
figure (a) depicts the scattering probability from the optical mode a1 to a2, Ta1→a2, and (b)
depicts the scattering probability from the optical mode a2 to a1, Ta2→a1. The other parame-
ters chosen are J = |G1| = |G2| = γ1/2 = γ2/2 = γb/8 = γ/2 and ∆′′

b = ∆′′
1 = ∆′′

2 = ∆ = 10γ.
Red and green curves in both subfigures showcase the non reciprocity. It is to be noticed
when one is equal to 1 at 10γ the other is approximately 0 at 10γ.
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this limit, we can linearize the (Equation 4.7-Equation 4.8), by expanding the annihilation
operators as a sum of its steady state averages and the fluctuation operators, namely, a1 =
α1 + δa1, a2 = α2 + δa2, b = β + δb. Substituting them in the (Equation 4.7-Equation 4.8),
the linearized quantum Langevin equations can be written as:

d

dt
δa1 =

(
−γ1

2
− i∆′′

1

)
δa1 − iG1

(
δb+ δb†

)
−iJδa2 +

√
γ1ain,1 , (4.10)

d

dt
δa2 =

(
−γ2

2
− i∆′′

2

)
δa2 − iG2

(
δb+ δb†

)
−iJδa1 +

√
γ2ain,2 , (4.11)

d

dt
δb =

(
−γb

2
− i∆′′

b

)
δb+

√
γbbin . (4.12)

Here, G1 = gα1β = |G1|eiθ1 = |G1| and G2 = gα2β = |G2|eiθ2 = |G2|eiθ (Note, that we have
considered β as a real number considering particular phase of the driving field ϕb ). Here
θ = θ2 − θ1 is the phase difference between G1 and G2. These phases can be easily related to
those ϕi of the driving fields, and hence controllable using the driving field, discussed later
(see in section 4.4).

The Equation 4.11-Equation 4.12 can be solved in Fourier domain. We first write them
in the index notation,

V̇i = −MijVj + ΓijVj,in , (4.13)

where i, j = 1, 2, ..., 2n (where n = 3 is the number of distinct modes in the system). Here the

elements of fluctuation and input field vectors are arranged as V =
(
δa1, δa2, δb, δa

†
1, δa

†
2, δb

†
)T

and Vin =
(
ain,1, ain,2, bin, a

†
in,1, a

†
in,2, b

†
in

)T
, respectively. The matrix Γ is given by

diag(
√
γ1,

√
γ2,

√
γb,

√
γ1,

√
γ2,

√
γb).

By introducing the Fourier transform of the operators ô, as

õ(ω) =
1√
2π

ˆ +∞

−∞
o(t)eiωtdt , (4.14)

õ(ω)† =
1√
2π

ˆ +∞

−∞
o(t)†eiωtdt , (4.15)

the matrix Eq. (4.13) can be rewritten in the frequency domain as,

Ṽi(ω) = (M − iωI)−1
ij ΓjkṼin,k(ω) , (4.16)

where I is the identity matrix.
According to the input-output formalism [28], the relationship between internal, input

and output fields under the first Markov approximation is given as

oout + oin =
√
γoδo , (4.17)
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where, o ≡ a1, a2, b and the γo are the damping rates for the respective o. Using this in

(4.16), and defining Ṽout =
(
aout,1, aout,2, bout, a

†
out,1, a

†
out,2, b

†
out

)T
, we find that

Ṽout ,i(ω) =
2n∑
l=1

Ui,lṼin,l(ω) ,

Ui,l = [Γij(M − iωI)−1
jk Γkl − δil] .

(4.18)

To obtain the spectrum of scattering probabilities, we now invoke the two-frequency
correlation of various elements of the V -matrices. Let us start with

Ṽ †
out,iṼout,j =

2n∑
l,m=1

U∗
i,lUj,mṼ

†
in,lṼin,m , (4.19)

or, ⟨Ṽ †
out,iṼout,j⟩ =

2n∑
l=1

U∗
i,lUj,l⟨Ṽ †

in,lṼin,l⟩ , (4.20)

where we have used the fact that ⟨Ṽ †
in,iṼin,j⟩ are non-zero only for i = j.

Defining Si,out(ω) =
´
dω′
〈
Ṽ †
out,i (ω

′) Ṽout,i(ω)
〉

and Si,in(ω) =
´
dω′
〈
Ṽ †
in,i (ω

′) Ṽin,i(ω)
〉

(i ∈ 1, 2, 3), we now obtain following expression, relating the frequency correlations at the
input and output ports:

Sout (ω) = T (ω)Sin (ω) + Svac (ω) , (4.21)

where Sin, Sout, and Svac(ω) = (sa1,vac(ω), sa2,vac(ω), sb,vac(ω))
T are the n-component column

matrices, with the number of modes in n = 3. The T denotes the scattering probability
matrix. The element Tij of this matrix represents the probability to scatter from the ith
mode to the jth mode, and is given by

Tij = |Ui,j|2 + |Ui,j+n|2 , (4.22)

for i, j ∈ 1, 2, 3. Similarly, the elements of Svac(ω) can be written in terms of the elements of
the U -matrix, as

Si,vac(ω) = |Ui,i+n(ω)|2 + |Ui,i+n+1(ω)|2 + ..+ |Ui,i+2n(ω)|2 . (4.23)

In Fig. 4.2(a), we display the spectra of scattering probability T12, i.e. from the cavity
mode a1 to a2 for various values of the phase difference θ between the effective optomechanical
coupling strengths G1 and G2. In Fig. 4.2(b), we display the same for T21. We have assumed
that ∆′′

b = ∆′′
1 = ∆′′

2 = ∆.
It is to be noticed that for θ = π/2, the scattering probability T12 = 0 when the frequency

of the signal to be isolated becomes ω = ∆, while T21 becomes unity for the same (Compare
Red curves in both subfigures). This means that for a certain frequency, one can achieve a
complete transmission of the field from the mode a2 to a1, but zero transmission vice versa.
This is the signature of optical isolation. This scenario can be reversed by changing the
phase difference θ to 3π/2 (one may compare green curves in the subfigures). Generally,
optical isolation occurs for θ = (2k + 1)π/2, for all integers k, while for θ ≡ π/2(mod 2π),
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the transmission vanishes from the mode a1 to a2 and for θ ≡ 3π/2(mod 2π), the reverse
situation is achieved. This asymmetry in transmission profile can be understood in terms
of interference phenomenon. At a particular input signal frequency (here 10ω/γ) and a
particular phase difference of the control (driving) fields as given in section 4.4, one of the
output optical modes exhibits anti-resonance while the other displays resonance. The driving
acting on one of the cavity interferes destructively with the feedback due to coupling from
another cavity and anti-resonance occurs for the output optical mode from it. While, in
opposite direction there is constructive interference or resonance on the output mode from
it. This is the reason for isolation in OM isolator [30]. As the signal is weak, it does not
cause any additional mode oscillation.

In Fig. 4.3 complete transmission profiles for a large range of signal frequency ω and
the modified optomechanical coupling phase θ are compared for the device with different
parameter sets. It should be noted that the profile shown in Fig. 4.3 (a)-(b) is similar to
that reported in [1]. However, by increasing the decay rate, we can easily see in Fig. 4.3
(c)-(d) that the isolation profile is highly suppressed. This makes our proposal better suited
for isolation, due to the enhanced suppression compared to [1].

The very fact that the membrane mode is driven by an external field provides us an
additional handle to control the isolation frequency at which one achieves non-reciprocity in
either direction. We show in Fig. 4.5, how the isolation frequency varies with change in ∆ for
θ = π/2. It is clearly seen that one can achieve optical isolation at ω = ∆, for any chosen value
of ∆. In previous proposals, the isolation frequency was fixed during fabrication of the OM
isolator. The mechanical drive along with the quadratic coupling (under the RWA) provides
us an extra advantage to control the mechanical mode frequency (technically speaking, the
detuning ∆). Choosing different values of ∆ for our proposal corresponds to just setting up
the frequencies of the driving fields externally. Theoretically, the frequency can be tuned
until the resolved sideband regime is not violated. It is to be noted that, in this scenario,
the dependence of the isolation profile on θ remains the same, as displayed in Fig. 4.4. It
is further emphasized that it is possible to tune the isolation frequency and direction, by
suitable choices of phase and frequency of the external driving fields of cavities as well as the
membrane.

It was indicated that the isolation can be better obtained in systems with larger decay
rates [see Fig. 4.3]. However there is an optimum value of of the decay rate, beyond which the
isolation does not become complete. We show in Fig. 4.6 how the isolation gets maximized
at a certain decay rate γb, for θ = π/2 or 3π/2 and the signal frequency ω = ∆. We must
emphasize here that the isolation happens when the condition Gi = γ1/2 = γ2/2 is satisfied.
Thus for a fixed value of the fundamental decay rates γi, one can change the values of |Gi|,
such that the above condition is satisfied. This can be be done, for example, using, by
suitably controlling αi, i.e., by choosing suitable values of the amplitudes ϵi and phases ϕi of
the cavity control fields [see Eq. (4.9)].

4.4 Phase difference in optomechanical couplings

The role of the phase of modified optomechanical coupling is very well explained in [29]. Note
that we have used a parameter domain, as ∆ = 10γ; J, g = γ/2, satisfying a large detuning
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Figure 4.5: Plot of Scattering probability T with respect to ω/γ for various ∆. ∆ = 8γ(Blue),
∆ = 10γ(Red) and ∆ = 12γ(Black).(a) Depicts the scattering probability from optical mode
a1 to a2, Ta1→a2 and (b) Depicts the scattering probability from optical mode a2 to a1, Ta2→a1.
The other parameters chosen are J = |G1| = |G2| = γ1/2 = γ2/2 = γb/8 = γ/2, θ = π/2 and
∆′′

b = ∆′′
1 = ∆′′

2 = ∆. The reader is advised to compare same colors. It demonstrates that
the device is frequency-tunable.
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Figure 4.6: Variation of absolute difference of scattering probabilities |T21−T12| with respect
to γb/γ. The other parameters chosen are J = |G1| = |G2| = γ1/2 = γ2/2 = γ/2, θ =
π/2 or 3π/2 and ω = ∆′′

b = ∆′′
1 = ∆′′

2 = ∆. Note that these are the parameters which are
the requirement for isolation as depicted in Fig. 4.4. Maximum isolation occurs at γb/γ = 4.



4.5. CONCLUSION 71

limit ∆ ≫ J, γ, g. Hence, from Eq. (4.9), we have, for ϵ1 = ϵ2 = ϵ,

α1 ≈ ∆ϵ

D
ei(ϕ1+π/2−ζ) ,

α2 ≈ ∆ϵ

D
ei(ϕ2+π/2−ζ) . (4.24)

Here, the denominator in the expressions of α1 and α2 [see Eqs. (4.9)] is written as Deiζ , and
the phase π/2 appears in the numerator. Clearly, the phase difference between α1 and α2 is
given by ϕ1−ϕ2. This is exactly the same as θ1−θ2, as used in the expressions of the effective
optomechanical coupling: G1 = (gβ)α1 = |G1|eiθ1 and G2 = (gβ)α2 = |G2|eiθ2 , while the op-
tomechanical coupling g is a real quantity. The notations are as discussed in section 4.3. The
driving fields therefore create an effective phase-difference in the optomechanical couplings,
which in turn, leads to non-reciprocity.

4.5 Conclusion

Proposal Q MD RD

[116, 117](E)
[118](TP)
[119](TP)

[120, 121, 122, 123, 124, 125, 126](E)
[127, 128, 129](TP)

[86, 130, 131, 132](TP)

Table 4.1: Table listing the experiments (E) and theoretical proposals for the experiment
(TP) which could be useful to achieve the physical system depicted in this article. Q stands
for quadratic coupling, MD stands for mechanical driving, RD stands for reversed dissipation.

The dissipation rate of optical cavity mode is usually larger than that of the mechanical
one (γi > γb). The reversed dissipation regime considers the inverse regime, i.e., γb > γi. It
inverts the roles of photons and phonons in the OM system. It can be seen in Fig. 4.6 that
a particular value of the mechanical decay rate greater than the optical decay rate is needed
to achieve optimal isolation. Moreover, the requirement is stringent as revealed in Fig. 4.6.
In fact, such a reversed dissipation regime is a non-standard requirement for achieving op-
tomechanical non-reciprocity and isolation [1, 92, 106]. Reversed dissipation regime has been
experimentally achieved in [116, 117] and experimental proposals to achieve them are found
in [119, 118]. In addition to reversed dissipation, one needs quadratic coupling and coherent
mechanical driving to implement our proposal, as can be seen from the previous section. Note
that optical non-reciprocity using piezo-optomechanical systems has been recently discussed
[133], where the mechanical mode is driven and the isolation has been controlled using piezo-
electric coupling coefficient, instead of a coherent drive of the membrane. In Table. 4.1 we
summarize different theoretical proposals and experiments which would lead to the direction
of achieving the tunable-frequency isolator device discussed in this article. In summary, it was
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shown that the isolation frequency, (i.e., the frequency of the input field at which maximum
non-reciprocity occurs) is limited to a small window which is dependent on inherent system
parameters, namely, the fundamental frequency of the membrane. This frequency could not
be dynamically manipulated because it is fixed during fabrication of the membrane. We here
have shown that this issue can be resolved by driving the membrane by an external field
and using a quadratic OM coupling in the resolved sideband limit (ωb ≫ γi). The suitable
detuning of the mechanical drive allows the control of isolation frequency. Moreover, it can
be seen from Fig. 4.3, that we achieve enhanced suppression due to the quadratic coupling,
compared to [1] which considers linear coupling and does not consider a mechanical driving
of the membrane. Note that we can use this device as OMIT or OMIA as required, by just
changing the phase difference and keeping other parameters as given in this paper. This
device has potential applications for quantum communication and sensing, where tunability
of isolation frequency (wavelength) is required.



Chapter 5

Simulation of Exceptional Point Sensors
on Quantum Computer

Quantum operations can be classified as either unitary or non-unitary. Much attention has
been given to unitary operations in physics. In fact, in a quantum computer, quantum gates
are made up of unitary operations. However, there are several reasons to consider non-unitary
transformations. Open quantum systems exhibit non-unitary dynamics [134, 135, 136, 137,
136]. In quantum chemistry, as well, non-unitary evolutions are often studied [138, 139, 140].
Quantum speedups have also been proposed in nonlinear quantum computing through non-
unitary Abrams-Lloyds gate [141, 142]. Quantum machine learning needs non-unitarity and
non-linearity [143, 144, 145, 146] too.

Consider a transformation, represented by e−iA. If A is Hermitian, this transformation
becomes unitary and vice-versa. However, for e−iA to be non-unitary, its generator A must be
non-Hermitian. This requires one to study the behaviour non-Hermitian matrices. Usually,
non-hermiticity does not guarantee that its eigenvalues would be real, unlike the Hermitian
ones. In 1998, [147] showcased that there exist certain non-Hermitian Hamiltonians that
have real eigenvalues. This sparked a debate around postulates of quantum mechanics and
explorations of such systems in quantum domain. It was shown in [12] that all such Hamil-
tonians, if diagonalizable, are related to Hermitian ones by similarity transformations, and
hence are “pseudo-Hermitian". On the other hand, the non-Hermitian Hamiltonians, which
are non-diagonalizable, lie at degeneracy called the non-Hermitian degeneracy or exceptional
points (EP) in literature. Such an operator has degeneracy in both eigenvalues and eigen-
vectors of the operator. In this paper, we will consider these non-diagonalizable systems in
the context of quantum sensing, particularly for estimation of an unknown parameter.

For the best possible estimate of any parameter γ, there exists the so-called Quantum
Cramer-Rao Bound (QRCB) [58, 57] which is given by the inverse of the quantum Fisher
information (QFI). This can be represented as

∆γ ≤ 1√
QFIγ

. (5.1)

It can be observed that higher the QFI, less the variance (∆γ2) and hence more precise the
estimation. Hence, a very high QFI shows promise in its exploitation for precise sensing.
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It was first theoretically pointed out in [148] that the EPs can be utilized for parameter
estimation as QFI may diverge at EP of a non-Hermitian non-diagonalizable Hamiltonian,
in absence of noise. Note that the divergence of QFI does not violate Heisenberg’s uncer-
tainty principle as the latter is concerned with simultaneous measurement of two canonically
conjugate physical variables while QRCB is concerned with precision of measurement of a
particular physical variable [149, 150]. Later, it was deduced in [55] that QFI does not neces-
sarily exhibit any divergence at EP, and this result was negated by a more accurate analysis
in [56] that shows that the QFI indeed diverges. This debate of divergence is also highlighted
in [151, 37]. In fact, the divergence of QFI is related to the expansion of a perturbed eigen-
functions and eigenvalues in Puiseux series rather than Taylor series for any perturbations
at EPs, as was already shown in [64] and which was often overlooked in literature.

The possibility of divergence of the QFI at EP motivates us to explore how to implement
non-Hermitian dynamics in real quantum computers. Till recent times, the non-Hermitian
systems have been mostly explored in optical systems through an analogous connection be-
tween Helmholtz equation and Schrodinger equation [40]. There have been a few experimental
considerations of EPs in certain quantum systems too [43, 152]. Here, we democratize ac-
cess to such exotic systems using quantum computers. Note that these computers, which
are accessible via cloud, operate unitarily. In this paper, we show that it is indeed possible
to implement the nonunitary dynamics, generated by non-Hermitian Hamiltonian, in the
existing architecture itself. We propose use of ancillary qubits in this regard. We employ
post-selection strategy to extract the state of the EP system, that will be used to calcu-
late the QFI and to evaluate the performance of the system for parameter estimation. We
also provide a circuit model that we use in our cloud experiments in the IBM Q Experience
platform.

The achievable precision of a quantum parameter estimation protocol is limited by the
noise in the system, which could degrade the QFI. The early EP sensing protocols did
not consider the effect of noise. Later, various studies related to impact of noise on such
sensors were reported [63, 54, 55, 56]. In [54], the authors showed that a non-Hermitian non-
reciprocal system delivers an unbounded signal-to-noise ratio (SNR) and thereby a better
sensing performance compared to the reciprocal ones, even when it operates away from the
EP. On the contrary, in this paper, we focus on studying the behavior of the QFI, and not
the SNR, in presence of noise. Note that, though for certain parameter domain, the QFI
becomes numerically identical to the SNR, they are fundamentally different quantities. While
theQFI is related to the amount of information that can be extracted from a quantum system
about a particular parameter of interest, the SNR is a measure of the relative strength of a
signal to the level of background noise. Thus, in the context of quantum sensing, the QFI
is a more suitable quantity than the SNR to characterize the performance of the quantum
sensor, more so when the quantum noise dominates over the classical noise and when their
sensitivity to changes in a parameter is governed by the quantum rules, e.g., the Heisenberg
uncertainty principle.

The structure of the chapter is as follows. In section 5.1 we will describe the theory related
to simulation of non-unitary dynamics using ancilla based method [153]. In section 5.2 we
describe the gate based quantum computing model. In the section 5.3, we will present the
results of our simulation of dynamics of non-Hermitian systems using IBM Q Experience.
We will explicitly show the divergence of QFI at exceptional points. Then in section 5.4,
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we discuss effects of various noise models on EP sensors. We will discuss in section 5.6 the
limitations of the ancilla-based method used in this paper. Finally, in section 5.7 we conclude
the chapter. For the theory and preliminaries related to this chapter the reader can refer to
chapter 3.

5.1 Simulating non-unitary dynamics
Consider Non-Hermitian Hamiltonians, where the adjoint of the Hamiltonian is not equal to
the Hamiltonian itself ((NH)† ̸= NH).

The objective of this simulation is to determine the resulting state, denoted as 1
N |ϕ⟩,

which is obtained by applying the operator exp[−i(NH)t
h̄

] to the input state |ξ⟩. Here, |ξ⟩
represents the initial state, N is a normalization constant, and t is the time parameter. It
is important to note that although the evolution is non-unitary, both the input and output
states are pure states under our consideration.

Let us consider the following steps:
(a) Singular value decomposition: Our initial step is to compute the non-unitary time

evolution matrix (referred to as NUTE), which is defined as NUTE = exp[−i(NH)t
h̄

]. For
the purpose of simulation, we will adopt the values t = 1 and h̄ = 1 from now on. This
time evolution matrix can be expressed as a sequence of three distinct evolutions using the
singular value decomposition (SVD), namely NUTE = UΣV †. Here U and V † are unitary
matrices and can easily be used as gates in gate based quantum computer. However, as the
operation Σ is a diagonal matrix with non-negative entries (also called singular values), this
matrix is not necessarily unitary and simulation of such an evolution is not possible on a
quantum computer using unitary gates. Moreover, the singular values need not always be
less than one. The requirement of singular values to be less than or equal to 1 arises from the
fact that they are used to parameterize unitary gate in the required circuit. Consider a to
be a singular value of Σ. Then the corresponding parameterized unitary gate can be written
in the following form, iff a ≤ 1:

U(a) =

(
a −

√
1− a2√

1− a2 a

)
. (5.2)

(b) L2-normalization: We will next L2-normalize the NUTE matrix using the maximum
singular value, max(Σ). We denote this normalized form as NUTEN . The singular values of
a such a L2-normalized matrix (of 2 dimensions) are always 1 and m. where m ≤ 1 (equality
arising when NUTE is unitary). Note that such a normalization does not affect the output
state as the output is not affected when the transformation is multiplied by a scalar constant.

(c) Introduction of an ancilla: Simulating the NUTEN in its current form still may not
be possible in a quantum computer. To circumvent this issue, we next dilate the Hilbert
space of the system by using an ancillary system. Note that the joint operation of the system
and ancilla can be unitary, while that for the system itself remains non-unitary. We start
with the joint state |ξ⟩|0⟩ of the system and the ancilla.

(d) Two-qubit operation: We create a two-qubit gate CΣ = U(1)⊕U(m), where U(1) = I
(I is an identity matrix) and U(m) is also a unitary matrix. Note that CΣ is unitary because
the direct sum of unitary matrices is always unitary.
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Now we consider the operation

(U ⊗ I)[CΣ](V † ⊗ I) (5.3)

acting on the state |ξ⟩|0⟩. This is described in Fig. 5.1(a). This operation can be written as
(U ⊗ I)[(Σ⊗ I) + (Σ

′ ⊗ ZX)](V † ⊗ I), because,

CΣ = U(1)⊕ U(m) =


1 0 0 0
0 1 0 0

0 0 m −
√
1−m2

0 0
√
1−m2 m

 = (Σ⊗ I) + (Σ
′ ⊗ ZX) , (5.4)

where
Σ

′
=

(
0 0

0
√
1−m2

)
. (5.5)

Here Z and X are usual Pauli spin operators.
In presence of the ancilla, the operator NUTEN can then be revised as U(CΣ)V †. The

output of this operation on |ξ⟩|0⟩ is then given by

(UΣV †|ξ⟩)|0⟩ − (UΣ
′
V †|ξ⟩)|1⟩ = |ϕ, 0⟩+ |ϕ′

, 1⟩ , (5.6)

where |ϕ′⟩ = −UΣ′
V †|ξ⟩.

(e) Post-selection: We apply a post-selection protocol on the above output state such
that the ancilla is projected into |0⟩. This can be represented by the following expression:

(I ⊗ P0)(|ϕ, 0⟩+ |ϕ′
, 1⟩) = |ϕ, 0⟩ , (5.7)

where P0 = |0⟩⟨0|. Upon normalization (which is performed by the measurement operation
itself), we have the state 1

N |ϕ, 0⟩ which is the required output from this non-Hermitian
evolution. Here N is given by

N =
√
(⟨ϕ, 0|+ ⟨ϕ′ , 1|)(I ⊗ P0)(|ϕ, 0⟩+ |ϕ′ , 1⟩) =

√
⟨ϕ, 0|ϕ, 0⟩ . (5.8)

The probability of success of the post-selection protocol can be calculated as∣∣∣∣∣ ⟨ϕ|ϕ⟩√
|⟨ϕ|ϕ⟩|2 + |⟨ϕ′|ϕ′⟩|2

∣∣∣∣∣
2

. (5.9)

We apply the repeat-until-success strategy to extract out the |ϕ′
, 1⟩ state through post-

selection.
(f) Calculation of the QFI: We intend to find the QFI for parameter estimation using a

two-level non-Hermitian sensor. We choose one of the eigenstates, denoted by |ϕ+(γ)⟩, of the
two-level system. To calculate QFI, we first obtain the expression of the fidelity as

F = |⟨ϕ̃+(γ + δγ)|ϕ+(γ)⟩|2 , (5.10)

where ⟨ϕ̃+(γ + δγ)| = ⟨χ+(γ + δγ)| is the left eigenvector, corresponding to the right eigen-
vector |ϕ+(γ+ δγ)⟩, according to the bi-orthogonality rules [see section 1.2]. The fidelity can
be found on the actual quantum computing hardware using a SWAP test, as described in
Fig. 5.1(b) [154]. The QFI is then calculated numerically by using the equation

QFI = lim
δγ→0

D2
b

4(δγ)2
, (5.11)

where D2
b = 2− 2F is known as Bures distance [58, 57].
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(a)

|0 > :
V† CΣ U |ψ>

|ξ > : ≡

cr : /
2

RUS

��

|0 > :
NU-UNIT

|0>

|ξ > :
1
N |ϕ>

cr :/
2

RUS

��

(b)

|01 > : H • H

|02 > :
NU-UNIT (RUS)

|ξ1 > : 1
N1

|ϕ1⟩ ×
1
N2

|ϕ2 > : ×
cr : /

1
0

��

Figure 5.1: (a) The circuit diagram for simulating non-unitary evolution. We decompose the
non-unitary transformation using SVD transform into UΣV †. Then using the procedure as
mentioned in the text, we apply the operations on the input state |ξ, 0⟩ to obtain |ψ⟩. This
is followed by a post-selection protocol applied on the output using "Repeat until success"
(RUS) method. Here we discard all measurements results which project the ancilla in the
state |1⟩, and repeat the procedure till we get the ancilla to be in the state |0⟩. This collapses
the state to 1

N |ϕ, 0⟩ which contains the required state due to non-unitary evolution. On the
right hand side, we schematically represent the non-unitary gate. Note that ’cr’ in the circuit
refers to classical register. (b) The circuit diagram for the SWAP test to measure fidelity
between two states i.e. F = 1

|N1N2|2 |⟨ϕ2|ϕ1⟩|2. We can consider 1
N1

|ϕ1⟩ and 1
N 2

|ϕ2⟩ to be
the states as given in Eq. 5.10. The circuit between the dashed vertical barriers represents
SWAP test. We specifically mention N in denominator to show that non-unitary circuits
un-normalize input states and we need to consider normalization of such output states.
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5.2 Gate based Quantum Computing
In this section we will discuss the gate based model of quantum computing as it will be used
later in this chapter. Before we go forward, for a wider picture let us know about models
of classical computation. There are several models of classical computing that have been
developed over the years. Here are some of the most common models:

• Turing Machine: Proposed by Alan Turing in 1936, the Turing machine is a theoretical
model of a computing device that manipulates symbols on an infinite tape according to
a set of rules. It is considered the foundation of classical computing and can simulate
any algorithmic computation.

• Von Neumann Architecture: This model, also known as the von Neumann machine,
is the basis for most modern computers. It was proposed by John von Neumann in
the late 1940s and consists of a central processing unit (CPU), memory, input/output
devices, and a stored program. The von Neumann architecture allows instructions and
data to be stored in the same memory, enabling the sequential execution of instructions.

• Random Access Machine (RAM): The RAM model is a theoretical abstraction of a
computer that performs computations by executing a sequence of instructions. It as-
sumes a machine with an unlimited number of registers and allows direct access to any
memory location. RAM is used to analyze the time complexity of algorithms and is a
common model for theoretical computer science.

there are many other models of classical computation, but it is out of scope of this thesis.
Now, having learned about the classical models of computation, let us note down quantum
models of computation.

• Gate based Model: This is the most widely used model of quantum computation.
It represents computations as a sequence of quantum gates, which are analogous to
classical logic gates. Quantum circuits operate on quantum bits, or qubits, which can
exist in superpositions of 0 and 1, allowing for parallel computation and quantum
entanglement.

• Quantum Turing Machine: The quantum Turing machine (QTM) is a theoretical model
that extends the classical Turing machine to include quantum operations. QTM consists
of an infinite tape and a quantum head that can read, write, and manipulate quantum
states. It serves as a theoretical framework for studying the limits and capabilities of
quantum computation.

• Quantum Annealing: Quantum annealing is a specific approach to solving optimization
problems using quantum systems. It leverages the phenomenon of quantum tunneling
to find the lowest energy state of a given problem’s landscape. Quantum annealing
machines, such as D-Wave systems, are designed to perform this type of computation.

• Measurement-Based Quantum Computation: In this model, quantum computations
are carried out by applying a sequence of measurements to an entangled quantum
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state, known as a cluster state. By performing measurements in a specific order, the
computation unfolds deterministically. Measurement-based quantum computation has
the advantage of being resilient to certain types of quantum errors.

For the simulation of EP dynamics in this chapter we will be focusing on the gate based
model of quantum computation. In current day and age we are able to access quantum
computing hardware through cloud. We will avoid the details of gate based model of quantum
computation, and suggest the reader to refer to [155].

5.3 Simulating EP sensing dynamics

5.3.1 Single EP

In this Section, we show how to implement the different steps to simulate a non-unitary
evolution based on a non-Hermitian Hamiltonian, as mentioned in the previous Section,
using the IBM Q Experience. We will investigate two different Hamiltonians for EP sensing.
We start with the following Hamiltonian:

NH1 =

(
0 0.5 + γ

0.5− γ 0

)
, (5.12)

where γ is the parameter that is to be estimated in this protocol. Therefore, the protocol
in section 5.1 becomes more relevant when the non-unitary operation, that the state of the
system is subjected to, is unknown, or in other words, the single-parameter Hamiltonian is
rather unknown.

The matrix (5.12) is non-Hermitian as NH1 ̸= (NH1)
†. The eigenvectors of NH1

are (after using normalization condition for bi-orthogonal systems: ⟨ϕ|χ⟩ = 1) |ϕ±⟩ =

1√
2

[
±
√

1−4γ2

2γ−1
, 1

]T
and those of (NH1)

† are |χ±⟩ = 1√
2

[
∓
√

1−4γ2

2γ+1
, 1

]T
, where T represents

transposition. It should also be noted that ⟨ϕ±|ϕ∓⟩ ≠ 0 unlike in the case of Hermitian
operators (the same applies for eigenvectors of (NH1)

†, as well). However ⟨ϕ±|χ∓⟩ = 0. This
is further elaborated in the section 1.3. We observe that this system exhibits the exceptional
point degeneracy at γ = 0.5. Note that the eigenvalues of NH1 are given by ±

√
0.25− γ2.

The QFI for a single parameter γ in a bi-orthogonal system is defined as

QFIγ = 4(⟨∂γϕ̃+|∂γϕ+⟩ − |⟨∂γϕ̃+|ϕ+⟩|2) = 4(⟨∂γχ+|∂γϕ+⟩ − |⟨∂γχ+|ϕ+⟩|2) , (5.13)

where |∂γϕ⟩ = ∂|ϕ(γ)⟩
∂γ

and |∂γχ⟩ = ∂|χ(γ)⟩
∂γ

. Note that this equation matches the QFI equation
used in step (f) of section 5.1.

It can be calculated using (5.13) that for the Hamiltonian 5.12,

QFIγ = 4/(4γ2 − 1)2 . (5.14)

We can easily see that the QFIγ diverges at γ = 0.5, which is the same value of the parameter
γ, at which the EP is attained in the system, Fig. 5.2. As mentioned in the Introduction,
this divergence is achieved generally at EPs [64, 148], despite some converse result [55]. We
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emphasize that at the EP degeneracies, the perturbed eigenvalues and eigenvectors must be
expanded in terms of Newton-Puiseux series [64] with fractional exponents of the perturbation
strengths rather than Taylor series, to get the required divergence [see chapter 3].

We have performed simulation of the above system using “state_vector simulator" [156]
and compared its results with the theoretical result of the QFIγ of the system. We show in
Fig. 5.2 how log(QFIγ) varies with γ. It can be seen that the QFIγ indeed diverges at the
EP γ = 0.5.

Figure 5.2: The variation of log(QFIγ) with respect to γ for the Hamiltonian NH1 (5.12).
The QFIγ diverges at the EP, which appears at γ = 0.5. Blue curve represents theoretical
plot and red dots indicate simulation values at various γ values.

We next simulate the second Hamiltonian as in [55]:

NH2 =

(
1
2
(γ − iϵ) g
g 1

2
(−γ + iϵ)

)
. (5.15)

There exists an EP at γ = 0, when g = |ϵ|/2. It can be seen that the QFIγ diverges at γ = 0.
The plot of log(QFIγ) with respect to γ is given in Fig. 5.3. If we consider ϵ = 2 and g = 1
and use the perturbation methods mentioned in [148] we find that QFIγ ≈ 1

4γ2 . It diverges
at γ = 0 which leads us to an EP of NH2.

The results for both the Hamiltonians (5.12) and (5.15) demonstrate the claim that the
QFIγ diverges at EPs.
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Figure 5.3: The variation of log(QFI) with respect to γ for the Hamiltonian NH2 (5.15).
The QFI diverges at the EP, which appears at γ = 0 when g = |ϵ|/2. Blue curve represents
theoretical plot and red dots indicate simulation values at various γ values.

5.3.2 Multiple EP

There are several articles which explore generation of multiple exceptional points [157, 158,
159]. Let us simulate a two-level system with multiple exceptional points. Consider the
Hamiltonian

NH3 =

(
1 sin(10γπ)

cos(10γπ) 1

)
. (5.16)

The eigenvalue of the system are λ+,− = 1
2
(2 ±

√
2 sin(20πγ)), the normalized eigenvec-

tors of the system are |ϕ+,−⟩ = 1√
2

(
±

√
2 sin(10πγ)√
sin(20πγ)

1

)
. The eigenvalues of NH†

3 are complex

conjugates and the normalized eigenvectors are |χ+,−⟩ = 1√
2

(
±

√
2 cos(10πγ)√
sin(20πγ)

1

)
. The calculated

QFI is thus

QFIγ =
200π2

sin2(20πγ)
. (5.17)

The system is simulated and the QFI plotted in Figure 5.4. It can seen that there are multiple
EP points at γ = a x 0.05 where a ∈ I.
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Figure 5.4: The variation of log(QFI) with respect to γ for the Hamiltonian NH3 (5.16).
The QFI diverges at the EP, which appears at γ = 0.05a, where the integer a varies from
8 to 12. Blue curve represents theoretical plot and red dots indicate simulation results or
various values of γ.

5.4 Noise models on EP sensors

Even though the QFI diverges at EP, it still remains to be explored how noise affects the
QFI. Let us consider various noise models and calculate the maximum QFI that can
be attained for various parameters controlling the noise. In this Section, we will use the
Hamiltonian 5.12.

Considering the amplitude damping noise that is parameterized with a decay probability
b, a noiseless density matrix ρ transforms into the following matrix:

NAD(ρ) =

(
ρ00 + bρ11

√
1− bρ01√

1− bρ10 (1− b)ρ11

)
. (5.18)

We show the variation of max[log(QFI)] (i.e., the maximum of natural logarithm of QFI)
with respect to the decay rate b at the EP γ = 0.5 for NH1 (Fig. 5.5 (a)) and γ = 0 for NH2

(Fig. 5.5 (b)). It can be observed that the max[log(QFI)] remains significantly high for a
wide range of b: 0 ≤ b < 1, except at b = 1, where the function suddenly drops to a negative
value, i.e., where QFI becomes less than unity. Thus, b = 1 leads to a large upper bound of
the error of parameter estimation [see Eq. (5.1)].

Next we consider the Pauli noise, which can be characterized by three types of errors,
namely, the bit-flip, bit-phase-flip, and phase-flip errors, represented by the Pauli matrices
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Figure 5.5: The variation of max[log(QFI)] at EP with respect to the amplitude damping
parameter b (a) for NH1 and (b) for NH2 .

X, Y, and Z, respectively. In presence of Pauli error, a noiseless density matrix ρ transforms
into the following form:

NPauli(ρ) = (1− p)ρ+ p1XρX + p2Y ρY + p3ZρZ , (5.19)

where p is the probability of no error, pi (i = 1, 2, 3) is that of X, Y, and Z error, respectively,
and the condition

∑3
i=1 pi = p preserves the normalization of the density matrix.

We show in Fig. 5.6 how the max[log(QFI)] varies with p, at the EP γ = 0.5 for NH1.
We can clearly see from Fig. 5.6(a) that the bit-flip error affects the maximum achievable
QFI to a large extent. The minimum value reached at p = 0.5 is 0. On the other hand, the
Y and Z errors do not effect the QFI at all, as can be seen in Figs. 5.6(b) and (c). In the
case of the equal probability p/3 of all three errors, however, the value of p is asymmetrically
located at 0.75 in the range [0,1], where the maximum value of the QFI becomes unity and
its logarithm vanishes. For other values of p, in this case, the QFI can reach a much larger
value leading to a far better EP-assisted sensing.

In Fig. 5.7, we show the variation of max[log(QFI)] with p, at the EP γ = 0 for NH2.
It is obvious from the Figs. 5.7(a) and (c) that the bit-flip and phase flip errors have a
minimal effect on the maximum achievable QFI. Interestingly, unlike the case for NH1, the
max[log(QFI)] does not vanish for any p. In both these cases, the value of parameter p at
which it reaches minima is 0.5, but in the case of NH2, it remains as high as 13.35. On
the other hand, the Y error does not effect the QFI at all, as can be seen in Fig. 5.7(b).
Therefore, our protocol stays robust against these errors. When all the three errors affect the
system equally probably, the dependence of max[log(QFI)] on p exhibits the similar behavior
as in the case of NH1 [see Fig. 5.7(d)].

Comparing Fig. 5.6 and 5.7 it can be deduced that in presence of noise with a parameter
a, we need to choose the non-Hermitian system NH such that the QFIγ(a0)) ≫ 0, where a0
is the value of the noise parameter at which the QFI reaches minima, and γ is the parameter
to be estimated.



84CHAPTER 5. SIMULATION OF EXCEPTIONAL POINT SENSORS ON QUANTUM
COMPUTER

Figure 5.6: The variation of max[log(QFI)] with respect to p for different Pauli errors for
NH1. (a) Bit-Flip error: p1 = p, p2 = 0, p3 = 0. (b) Bit-Phase-Flip error: p1 = 0, p2 = p,
p3 = 0. (c) Phase flip error: p1 = 0, p2 = 0, p3 = p. (d) All errors with equal probability:
p1 = p2 = p3 = p/3.
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Figure 5.7: The variation of max[log(QFI)] with respect to p for different Pauli errors for
NH2. (a) Bit-Flip error: p1 = p, p2 = 0, p3 = 0. (b) Bit-Phase-Flip error: p1 = 0, p2 = p,
p3 = 0. (c) Phase flip error: p1 = 0, p2 = 0, p3 = p. (d) All errors with equal probability:
p1 = p2 = p3 = p/3.
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Figure 5.8: A three level system used to describe the relation between the non-unitary
dynamics discussed in the thesis to the Lindbladian formalism. The effective hamiltonian
of the two level sub-system (involving |e > and |f >) is given by Eq.5.20. In the Lindblad
formalism the evolution of the density state of the sub-system is given by Eq. 5.23.

5.5 Understanding the simulation from perspective of stan-
dard quantum formalisms

It is important to question how the description of these non-hermitian systems defined until
now relate to standard formalism of Lindblad [160, 161] ? Are there some insights on the
relation between these standard Lindblad formalisms to the work discussed in this thesis
? How is that, such non-unitary dynamics does not showcase mixing of the quantum states
(i.e. loss of normalization) and why is a density matrix approach not a necessity in describing
them ?

Let us understand this using a physical example as demonstrated in [43]. Consider a
three level system with states |g >, |e > and |f >.

By focusing on the sub-system |e >,|f > and the interaction of |e > with |g > as part of
loss (Fig. 5.8). We propose that the effective hamiltonian (using heuristics) of this scenario
is

Heff = Hbare+Hcoupling +Hloss = ∆|e >< e|+J(|e >< f |+ |f >< e|)− i
γe
2
|e >< e| (5.20)

where Heff is the effective non-unitary hamiltonian, γe is the occupation-number loss
rate from state |e > to state |g >, ∆ = ωd − ωq (ωd is driving frequency and ωq is transition
frequency between the states |e > and |f >) is the detuning in the drive of the states |e >
and |f > while J is the coupling strength between |e > and |f >. Note, it is important
to consider that the occupation-number loss rate from state |f > to |e > (γf ) is such that
γe >> γf . This hamiltonian is non-unitary and has exceptional point at ∆ = 0 and J = γe/4.

Even after describing such an effective hamiltonian our description does not encompass
the description of non-unitary evolution from one pure state to another as described by the
quantum circuit in the general work on non-hermitian hamiltonians. When we evolve from
one pure state to another the total population of system has to remain constant over time.
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However, in our sub-system the population Pe+Pf would not remain constant over time due
to its interaction with the |g > (Infact Pe+Pf +Pg will remain constant over time). However
we can make the sum Pe + Pf constant over time by adding an extra step of post-selection.
Post-selection effectively normalizes the populations of the sub-system in consideration, s.t.
P n
e + P n

f always remains constant. Where

P n
e = Pe/(Pe + Pf ) (5.21)

P n
f = Pf/(Pe + Pf ) (5.22)

.
Using this extra step of post-selection we are able to transform from one pure state to

another without mixing, even if the system is open as described above. We call this post-
selection because in the post-selection process too, we keep the ancilla ("|g>") in a constant
state by measuring it everytime and accepting the dynamics of the system only when it is in a
particular state. This keeps the flow of probabilities (or population) out of the sub-system to
ancilla at constant, in turn keeping the total populations in the subsystem constant. Compare
this normalization of the population with the post-selection process in the quantum circuit
in Sec. 5.5. In the circuit too, we effectively ignore the presence of ancilla by post-selection.
Infact, such a wavefunction approach to such open quantum systems with post-selection has
been described in [162, 163](The post-selection process in the article is called as "gedanken
measurement process" and the approach mentioned in the article is named as "Monte carlo
wavefunction approach").

Now let us understand this from the perspective of Lindblad formalism. The time evolu-
tion of density matrix (ρS(t)) of the reduced 2 level system can be written as

ρ̇S(t) = − i

h̄
[Hc, ρS] +

∑
i

γi

(
LiρSL

†
i −

1

2

{
L†
iLi, ρS

})
= LρS(t) (5.23)

where the total hamiltonian of the 3-level system is HT = HS ⊗ IE + IS ⊗HE +αHI . HS

denotes the density matrix of the 2 level system. Here Hc = HS +HLS where HLS is called
as Lamb shift hamiltonian. Upon calculation with above considerations Hc = J(|e >< f | +
|f >< e|)−∆

2
(|f >< f |−|e >< e|). Note that Hc is hermitian and called as free hamiltonian.

The Lindblad dissipation operators are Le =
√
γe|g >< e| and Lf =

√
γf |e >< f | accounting

for energy decay from level |e > to |g > and from |f > to |e >. This gives us

˙ρff = −iJ(ρef − ρfe)− γfρff (5.24)
˙ρee = iJ(ρef − ρfe)− γeρee + γfρff (5.25)

˙ρef = −iJ(ρff − ρee)− (γe + γf + 2i∆)/2ρef (5.26)
˙ρfe = iJ(ρff − ρee)− (γe + γf − 2i∆)/2ρfe (5.27)

(5.28)

Considering the system initialized in state |f > and in the limit of γf << γe and consid-
ering ∆ = 0, the populations in levels e and f can be found by diagonalization are
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Pe = ρee = e−γet/2(J/α)2sin2(αt) (5.29)
Pf = ρff = e−γet/2(J/α)2cos2(αt− θ) (5.30)

where α =
√
J2 − (γe/4)2 and θ = arcsin(γe/4J). It can be checked that the sum of these is

not equal to constant, i.e. the population is not normalized or dependent on the sub-system
parameters and this description would lead to mixing of states. This is because the decay
term from the reduced two-level system (γe) is not equal to zero. if it is zero than θ = 0
as well as e−γet/2 = 1. In that case Pe + Pf = (J/α)2. However, we can normalize these
populations (even in the presence of the dissipation) by considering the equations Eq. 5.22
such that the total population of sub-system remains constant over time. This is equivalent to
having a transformation from one pure state to another even when the system is non-unitary,
without invoking the density matrix formalism and mixing of states. Such a normalization
is nothing but equivalent to post-selection process as discussed in [43]. The population upon
normalization is

P n
e =

Pe

Pf + Pe

=
sin2(αt)

sin2(αt) + cos2(αt− θ)
(5.31)

P n
f =

Pf

Pf + Pe

=
cos2(αt− θ)

sin2(αt) + cos2(αt− θ)
(5.32)

These populations are found to be same as the populations found in the description of
the subsystem using Heff (Eq. 5.20) in [43]. Hence, this example gives an idea on connection
between Lindbladian approach and the approach used in the research involved on non-unitary
evolutions. The standard Lindbladian approach cannot explain these process involving post-
selection. A Hybrid Louivillian formalism incorporating the post-selection process has been
proposed recently [164] to incorporate the methods used by [43].

[43] mentions that post-selection is the only method known to achieve such non-unitary
(and exceptional point) dynamics preserving the purity in quantum systems, but a general
proof is lacking to legitimize this fact. In fact in later work by [165], a method is shown
which circumvents the post-selection. However, this discussion is beyond the scope of this
thesis, but is worthwhile exploring in future works using quantum circuits.

5.6 Limitations of ancilla-based method for quantum sens-
ing

Let us now discuss the limitations in the ancilla-based method for EP sensing. In the follow-
ing, we will also propose how one can ameliorate them.

First, we should mention the necessity to normalize the non-unitary operator to implement
it on a quantum computer. As discussed in step (b) in section 5.1, the normalized non-unitary
time evolution operator NUTEN is related to the original time evolution operator NUTE
as:

NUTEN =
1

max(Σ)
NUTE , (5.33)
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where max(Σ) is the maximum of the singular value of the matrix. This means the actual
transformation is:

NUTEN |ξ⟩ = |ϕ′′⟩ = 1

max(Σ)
|ϕ⟩ Norm−−−→ 1

N |ϕ⟩, (5.34)

where 1
N |ϕ⟩ is the required state from the original non-unitary time evolution.

Second, the post-selection puts a resource overhead on the simulation of the system being
studied. The probability of success of finding the ancilla to be in |0⟩ state is uncontrollable,
as it can be seen from the previous Section. For every unsuccessful attempt, the depth of
the circuit is increased by a factor of 3. There are various methods to reduce the resource
overhead, e.g., ancilla thermalization [166]. There are some proposals where non-unitary
evolutions can be performed using dissipation engineering and without post-selection [167,
168]. However we believe that due to conservation of probability, post-selection cannot
be avoided. A study of link between weak measurements and sensing at EPs of the non-
Hermitian systems is promising [169, 170, 171, 172].

Third, note that these methods only apply to second-order exceptional point systems. For
higher-dimensional systems including qutrits and qudits, the circuits need to be modified.
Higher order EPs have been shown to have higher sensitivity and being more robust [42].

5.7 Conclusion

In this chapter, our focus was on simulating non-unitary dynamics on gate-based quantum
computers, which typically operate using unitary dynamics. We began by exploring various
gate-based quantum computing platforms that serve as the foundation for our simulations.

Next, we delved into simulating the dynamics of EP sensors. Initially, we examined
systems with a single EP and then expanded our exploration to systems with multiple EPs.
By studying these dynamics, we aimed to gain a deeper understanding of the behavior and
properties of EPs in quantum systems.

To make our simulations more realistic, we introduced noise models into these systems.
We investigated the effects of noise on the quantum Fisher information (QFI), which is a
crucial metric for quantifying the performance of EP sensors. This analysis provided insights
into how noise influences the accuracy and precision of EP sensor measurements.

Lastly, we discussed the limitations of the method used to generate non-unitary dynamics
on gate-based quantum computers. We addressed the challenges and constraints associated
with simulating non-unitary processes on platforms designed primarily for unitary compu-
tations. Understanding these limitations is essential for further advancing the field and
developing more robust and efficient techniques for simulating non-unitary dynamics.

It will be interesting to compare the resources it would take to simulate the exceptional
point quantum system using Quantum Monte Carlo techniques. Quantum Monte Carlo
techniques use classical randomness to simulate quantum systems. There are few articles
which employ these techniques to simulate exceptional point systems, however the simulations
cannot be called as truly quantum as they do not employ quantum systems [173, 174].
However, such simulations are only useful as it is not feasible to use actual quantum systems
for simulations. However, with the advent of cloud quantum computing the process of using
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quantum systems for quantum simulations has become very easy. In fact our work is one of
the few research articles which exploit the access to quantum systems through cloud.

Throughout this chapter, we gained valuable knowledge about simulating non-unitary
dynamics on gate-based quantum computers, explored the behavior of EP sensors, investi-
gated the impact of noise, and reflected on the limitations of the simulation method. This
knowledge serves as a foundation for future research and development in the field of quantum
simulations and non-unitary dynamics.



Chapter 6

Future Work and Conclusion

6.1 Future Work

6.1.1 Optomechanical Isolators

Let us explore a few avenues of research and problems in the field of developing optomechan-
ical isolators.

Enhanced performance of optomechanical isolators is one avenue which needs to be ex-
plored. Researchers are continually working towards improving the performance of optome-
chanical isolators. This includes achieving higher isolation ratios, broader operating band-
widths, lower insertion losses, and reduced power consumption. Future developments may
lead to optomechanical isolators with enhanced performance characteristics, making them
more versatile and suitable for a wider range of applications.

Integration with other technologies is of utmost importance. Optomechanical isolators
can be integrated with other photonic components and systems to create more advanced
functionalities. For example, combining optomechanical isolators with photonic integrated
circuits (PICs) can enable on-chip isolation and protection. Integration with other technolo-
gies like MEMS (Micro-Electro-Mechanical Systems) and nanophotonics may also open up
new possibilities for optomechanical isolators.

Applications of OM isolators can also be explored. Optomechanical isolators may find
applications in emerging fields such as quantum information processing and quantum commu-
nication. These areas require precise control over the transmission and isolation of individual
photons. Optomechanical isolators could play a role in enabling efficient and reliable quantum
information transfer.

6.1.2 Non-Hermitian quantum sensors

For the case of Non-Hermitian quantum sensors there are various problems which need to be
addressed.

Non-Hermitian systems are also plagued with noise. By carefully engineering the non-
Hermitian properties of a system, it may be possible to mitigate the effects of decoherence and
environmental noise. Future directions could involve developing novel techniques to actively
control and utilize the non-Hermitian features for noise reduction in quantum sensors.
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Non-Hermitian quantum sensing techniques can potentially be applied to imaging and
spectroscopy tasks. By exploiting the unique properties of non-Hermitian systems, it may be
possible to achieve higher-resolution imaging or more precise spectroscopic measurements.
Future directions may involve the development of non-Hermitian quantum sensors tailored
specifically for imaging and spectroscopy applications. Hence, Quantum imaging and spec-
troscopy is another avenue to explore.

We had explored non-unitary quantum circuits in the thesis. There are some potential
benefits of using such circuits for certain applications like creating Quantum neural networks
(QNN) and also in the context of Abrams-Llyods concept of non-linear quantum computing.
It will be worthwhile exploring these ideas. Exploring such non-unitary sensors may also lead
to our understanding of non-unitary quantum gates.

The field has many avenues unexplored and it is worth exploring.

6.2 Conclusion of thesis

In Chapter 1 we discussed the mathematical preliminaries and the foundations required
for understanding the thesis. Namely, we first discuss the Hermitian operators and their
properties. Then it is contrasted with properties of Non-Hermitian diagonalizable and non-
diagonalizable (defective) operators. Finally, we also made the case for exploring defective
operators in physics which have still being largely ignored.

Chapter 2 explores what is non-reciprocity. Non-reciprocal systems allow light to flow
in different directions, differently. Special cases of non-reciprocal systems are called as iso-
lators, which allow light to flow in only one direction and not another. We first discuss the
conventional method to achieve isolation, and then limitations in achieving them. We review
various other methods to sort out these limitations, namely, optomechanical isolation. We
also explore the issues plaguing these isolators.

Chapter 3 discusses the Non-Hermitian quantum sensors. Namely, the exceptional point
quantum sensors. We first derive the eigenvalue sensitivity of a system at EP due to perturba-
tion and contrast it with Hermitian degeneracy case. However, such a metric of performance
cannot be used to know if an sensor is efficient. We discuss another metric known as Quantum
Fisher Information (QFI) and discuss its relation to variance of estimation through Quantum
Cramer Rao Bound (QCRB). Finally we lay down the various experimental demonstrations
of exceptional points found in literature.

In Chapter 4 we present our work on tunable optomechanical isolators. Optomechanical
isolators are limited by bandwidth of operation. Theory shows that the frequency at which
isolation occurs is decided by the natural frequency of the mechanical isolator of the mem-
brane in the optomechanical isolator. However this is fixed during fabrication and cannot be
changed. We showcase that using quadratic optomechanical coupling and mechanical drive
we can achieve tunability of isolation frequency. We finally discuss experimental proposals
for realization of such a tunable isolation frequency optomechanical isolator.
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Chapter 5 presents our work on simulation of exceptional point sensors on quantum
computers. Most of the demonstrations of exceptional point sensors have been in classical
optical regime. There are very few demonstrations of such systems in quantum regime. This
also restricts us from exploiting various phenomenon like entanglement with exceptional point
sensors. Our work enables us to realise these systems using non-unitary circuit model using
ancilla and post-selection on cloud-based quantum computers like IBM Q Experience. We
explore the effects on QFI around EP and showcase the divergence at EP. This is because the
EPs are algebraic singularities in parameter space and lead to expansion of eigenvalues and
eigenvectors in Puiseux series rather than Taylor series. We also explore the effects of noise
at EPs. We also explore the systems with multiple EPs. We finally discuss the limitations
of the methods discussed.
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Chapter 7

Appendix

7.1 Code sample for simulating an exceptional point on
IBM Q Experience Quantum Lab

Let us include the code samples for simulating exceptional point sensors and calculating QFI
on IBM Q Experience. First we include the important libraries for proper functioning of the
code.

1 import numpy as np
2

3 # Importing standard Qiskit libraries
4 from qiskit import QuantumCircuit , transpile , Aer , IBMQ , execute ,

QuantumRegister , ClassicalRegister
5 from qiskit.tools.jupyter import *
6 from qiskit.visualization import *
7 from ibm_quantum_widgets import *
8 from qiskit.providers.aer import QasmSimulator
9 from qiskit.extensions import UnitaryGate

10 from math import pow , pi, cos , sin
11 from cmath import exp , sqrt
12 from scipy import linalg
13 from scipy.linalg import svd , eig , norm
14 from numpy import array , polyfit , gradient , diff , abs
15 from cmath import sqrt
16 from qiskit.quantum_info import state_fidelity
17 import matplotlib.pyplot as plt
18

19 # Loading your IBM Quantum account(s)
20 provider = IBMQ.load_account ()

Listing 7.1: Import required libraries

Next we define the parameter range and other important values
1 p=10 #number of points
2 bound1 =0.3
3 bound2 =0.7 #Bound around which the QFI needs to be sampled
4 nsteps =(bound2 -bound1)/p #Number of steps between the bound
5 epsarr =[] #define the parameter array we use eps and gamma interchangebly
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6 deps =0.0000001 #Amount of perturbation given equal to \delta \gamma in the
thesis

7 print(’Program has started ’)

Listing 7.2: Define values

We then define the Hamiltonian and create the gates required for the non-unitary circuit.
The Hamiltonian used is as defined in Equation 5.12.

1 def gates(eps ,j):
2 H=np.matrix ([[0 ,0.5+ eps],[0.5-eps ,0]]) #Hamiltonian as discussed in

thesis
3 if j==0:
4 H=H # Find H
5 #Find the time evolution matrix
6 timeev = np.matrix(linalg.expm(-1j*H))
7 #Normalize the time evolution by highest singular value
8 #Singular value decomposition
9 U, s, VT = np.linalg.svd(timeev)

10 Norm =1/s.max() #Frobenius normalizing tiem evolution matrix
11 Normtimeev=np.matrix(Norm*timeev)
12 U,s,VT=np.linalg.svd(Normtimeev)
13 I=np.matrix ([[1 ,0] ,[0 ,1]])
14 UxI=np.kron(U, I)
15 VTxI=np.kron(VT ,I)
16 #Define the unitary gates for U and V+ in Fig. 5.1 in thesis
17 UxI = UnitaryGate(UxI , label=’U’)
18 VTxI=UnitaryGate(VTxI , label=’VT’)
19 return UxI ,s,VTxI ,H;

Listing 7.3: Define hamiltonian and gates

Now we execute and find the fidelity between unperturbed and perturbed state around
EP.

1 Fidarr =[] #Define Fidelity array
2 initialstatevectorNH =[] #Define array to enter initial state vector to the

non -unitary circuit
3 cr=ClassicalRegister (2)
4 qr=QuantumRegister (2)
5 qc=QuantumCircuit(qr ,cr)
6 for i in range(p):
7 eps=bound1+nsteps*i #Slowly increase the parameter at which QFI is to

be evaluated
8 for j in range (2):
9 # Evaluate fidelity exactly at eps

10 if j==0:
11 U,s,VT, H=gates(eps ,j)
12 #v1 is the set of eigenvalues and v2 is set of eigenvectors
13 v1 ,v2 = eig(H)
14 initialstatevectorNH=v2[:, 0]/ norm(v2[:, 0])
15 qc.initialize ([ initialstatevectorNH [0],0, initialstatevectorNH

[1] ,0])
16 #Create the C\Sigma gate as defined in Fig. 5.1 in thesis
17 Cs=array ([[1,0,0,0],[0,-1,0,0],[0,0,s[1],sqrt(1-pow(s[1],2))

],[0,0,sqrt(1-pow(s[1] ,2)),-s[1]]])
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18 Cs=UnitaryGate(Cs , label=’Cs’)
19 qc.append(VT ,[0 ,1])
20 qc.append(Cs ,[0 ,1])
21 qc.append(U,[0 ,1])
22 #Procedure for post -selection
23 qc.measure (0,0)
24 counts ={’01’: 1}
25 while counts == {’01’: 1}:#Repeat until success
26 # choose the statevector simulator
27 simulator = Aer.get_backend(’statevector_simulator ’)
28 # get the statevector
29 result = execute(qc, simulator).result ()
30 statevector1 = result.get_statevector ()
31 counts = result.get_counts(qc)
32 if j==1:
33 # Evaluate fidelity slightly perturbed from eps by deps

defined above
34 U,s,VT, H =gates(eps+deps ,j)
35 #v3 is the set of eigenvalues and v4 is set of eigenvectors
36 v3 ,v4 = eig(H)
37 initialstatevectorNH2=v4[:, 0]/ norm(v4[:, 0]) #Note the state

has changed to 0 instead of 1 in the AnotherEP case
38 qc.initialize ([ initialstatevectorNH2 [0],0,

initialstatevectorNH2 [1] ,0])
39 #Create the C\Sigma gate as defined in Fig. 5.1 in thesis
40 Cs=array ([[1,0,0,0],[0,-1,0,0],[0,0,s[1],sqrt(1-pow(s[1],2))

],[0,0,sqrt(1-pow(s[1] ,2)),-s[1]]])
41 Cs=UnitaryGate(Cs , label=’Cs’)
42 qc.append(VT ,[0 ,1])
43 qc.append(Cs ,[0 ,1])
44 qc.append(U,[0 ,1])
45 #Procedure for post -selection
46 qc.measure (0,0)
47 counts ={’01’: 1}
48 while counts == {’01’: 1}:#Repeat until success
49 # choose the statevector simulator
50 simulator = Aer.get_backend(’statevector_simulator ’)
51 # get the statevector
52 result = execute(qc, simulator).result ()
53 statevector2 = result.get_statevector ()
54 counts = result.get_counts(qc)
55 Fid=state_fidelity(statevector2 ,statevector1) #Note this is the usual

fidelity of the Hermitian case compared to the Another EP , all the crux
lies in making statevector (1) to (0) for intialstatevector2.

56 epsarr.append(eps)
57 Fidarr.append(Fid)

Listing 7.4: Execute and find fidelity

Now we calculate Bures distance using the Fidelity values obtained from above experiment

1 #Calculate Bures distance
2 Fidarrtwo =[]
3 Bd22 =[]
4 Fidarrtwo = [i * 2 for i in Fidarr]
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5 Bd22 = [2 - i for i in Fidarrtwo]

Listing 7.5: Calculate Bures distance from Fidelity values

Now we calculate QFI using the Bures distance obtained from above code

1 #Quantum Fisher information
2 QFI =[]
3 QFI = [i * (1/(2* deps)**2) for i in Bd22]

Listing 7.6: Calculate QFI

Now the QFI is plotted with respect to the parameter to be estimated i.e. γ. Refer to
chapter 5 for more information on theory. We then also calculate the theoretical value and
plot them together.

1 #Theoretical QFI
2 plt.rcParams[’text.usetex ’] = True
3 x = np.linspace (0.4 ,0.6 ,3500)
4 y = 1/(8*(4*x**2-1) **2)
5

6 #Numerical QFI
7 plt.figure(facecolor=’white’)
8

9 fig2 = plt.plot(epsarr , np.log(QFI),’o’, color=’r’)
10 fig3 = plt.plot(x,np.log(y))
11

12 #naming x axis
13 plt.xlabel(’gamma’)
14 # naming the y axis
15 plt.ylabel(’Log( QFI )’)
16

17 #Plot legends
18 plt.legend ([’state_simulator ’,’theoretical ’])
19 #NOTE THE DIVERGENCE IS VERY SENSITIVE SO CHOOSE x range etc above

properly
20 # giving a title to my graph
21 #plt.title(’EP-Sensor ’)
22

23 # function to show the plot
24 plt.show()

Listing 7.7: Plot theoretical and experimentally obtained QFI

The plot obtained is as in Figure 5.2.

7.2 Code sample for understanding impact of noise on
QFI at exceptional points on IBM Q Experience Quan-
tum Lab

Let us discuss the code to add Amplitude damping noise (Equation 5.18) on EP sensor
simulation. The system is same as considered in Equation 5.12.
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We evaluate the QFI at EP. We have seen that in Figure 5.2 and Figure 5.3, QFI is
maximum; hence we denote it by max[log(QFI)]. This max[log(QFI)] is plotted with respect
to the amplitude damping noise parameter b by the code.

1 import numpy as np
2

3 # Importing standard Qiskit libraries
4 from qiskit import QuantumCircuit , transpile , Aer , IBMQ , execute ,

QuantumRegister , ClassicalRegister
5 from qiskit.tools.jupyter import *
6 from qiskit.visualization import *
7 from ibm_quantum_widgets import *
8 from qiskit.providers.aer import QasmSimulator
9 from qiskit.extensions import UnitaryGate

10 from math import pow , pi, cos , sin
11 from cmath import exp , sqrt
12 from scipy import linalg
13 from scipy.linalg import svd , eig , norm
14 from numpy import array , polyfit , gradient , diff , abs
15 from cmath import sqrt
16 from qiskit.quantum_info import state_fidelity , DensityMatrix ,

partial_trace
17 import matplotlib.pyplot as plt
18

19 # Loading your IBM Quantum account(s)
20 provider = IBMQ.load_account ()

Listing 7.8: Import required libraries

Now we write code to define gate for Hamiltonian (Equation 5.12) at EP.

1 #Hamiltonian at EP
2 H1=np.matrix ([[0 ,0.5+ eps],[0.5-eps ,0]])
3 print(H1)
4 #Find the time evolution
5 timeev1 = np.matrix(linalg.expm(-1j*H1))
6 #Normalize the time evolution by highest singualr value
7 #Singular value decomposition
8 U1 , s1 , VT1 = np.linalg.svd(timeev1)
9 Norm1 =1/s1.max() #Frobenius normalizing tiem evolution matrix

10 Normtimeev1=np.matrix(Norm1*timeev1)
11 U1 ,s1 ,VT1=np.linalg.svd(Normtimeev1)
12 #Define the unitary gates for U and V+ in Fig. 5.1 in thesis
13 I=np.matrix ([[1 ,0] ,[0 ,1]])
14 UxI1=np.kron(U1 , I)
15 VTxI1=np.kron(VT1 ,I)
16 UxI1 = UnitaryGate(UxI1 , label=’U’)
17 VTxI1=UnitaryGate(VTxI1 , label=’VT’)
18 #Create the C\Sigma gate as defined in Fig. 5.1 in thesis
19 Cs1=array ([[1,0,0,0],[0,1,0,0],[0,0,s1[1],sqrt(1-pow(s1[1],2))],[0,0,sqrt

(1-pow(s1[1],2)),-s1 [1]]])
20 Cs1=UnitaryGate(Cs1 , label=’Cs1’)

Listing 7.9: Code to define gates at EP of the hamiltonian
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Now we write code to define gate for hamiltonian (Equation 5.12) slightly perturbed from
EP.

1 #Hamiltonian slightly perturbed from EP
2 H2=np.matrix ([[0 ,0.5+( eps+deps)],[0.5-(eps+deps) ,0]])
3 print(H2)
4 #Find the time evolution
5 timeev2 = np.matrix(linalg.expm(-1j*H2))
6 # print (" timeev = ", timeev)
7 #Normalize the time evolution by highest singualr value
8 #Singular value decomposition
9 U2 , s2 , VT2 = np.linalg.svd(timeev2)

10 Norm2 =1/s2.max() #Check eq(46) of "Non -Normal Hamiltonian dynamics ...."
Nakagawa

11 Normtimeev2=np.matrix(Norm2*timeev2)
12 # print (" NormTimeev = ", Normtimeev)
13 U2 ,s2 ,VT2=np.linalg.svd(Normtimeev2) #Here Vt is vdagger itself unlike in

Mathematica , note the mathematica and this will not match as U and V
are not unique

14 #print("s = ",s)
15 #print("U = ", U)
16 #print("VT = ",VT)
17 I=np.matrix ([[1 ,0] ,[0 ,1]])
18 UxI2=np.kron(U2 , I)
19 VTxI2=np.kron(VT2 ,I)
20 UxI2 = UnitaryGate(UxI2 , label=’U’)
21 VTxI2=UnitaryGate(VTxI2 , label=’VT’)
22 Cs2=array ([[1,0,0,0],[0,1,0,0],[0,0,s2[1],sqrt(1-pow(s2[1],2))],[0,0,sqrt

(1-pow(s2[1],2)),-s2 [1]]])
23 Cs2=UnitaryGate(Cs2 , label=’Cs2’)

Listing 7.10: Code to define gates at a value slightly perturbed from EP of the hamiltonian

Now we create a circuit for the first case discussed above, i.e. Hamiltonian at EP.
1 # Create circuit for system at EP
2 qc=QuantumCircuit (2,2)
3 v1 ,v2 = eig(H1)
4 initialstatevectorNH1=v2[:, 0]/ norm(v2[:, 0])
5 qc.initialize ([ initialstatevectorNH1 [0],0, initialstatevectorNH1 [1] ,0])
6 qc.append(VTxI1 ,[0 ,1])
7 qc.append(Cs1 ,[0 ,1])
8 qc.append(UxI1 ,[0 ,1])
9 qc.measure (0,0)

10 counts ={’01’: 1}
11 while counts == {’01’: 1}:#Repeat until success
12 # choose the statevector simulator
13 simulator = Aer.get_backend(’statevector_simulator ’)
14 # get the statevector
15 result = execute(qc, simulator).result ()
16 statevector1 = result.get_statevector ()
17 counts = result.get_counts(qc)
18 # print(counts)
19 if counts == {’00’: 1}:
20 print(statevector1)

Listing 7.11: Code to create circuit at EP of the hamiltonian
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Now we create a circuit for the second case discussed above, i.e. Hamiltonian at value
slightly perturbed from EP.

1 # Create circuit for system at slightly perturbed from EP
2 qc2=QuantumCircuit (2,2)
3 w1 ,w2 = eig(H2)
4 initialstatevectorNH2=w2[:, 0]/ norm(w2[:, 0])
5 qc2.initialize ([ initialstatevectorNH2 [0],0, initialstatevectorNH2 [1] ,0])
6 qc2.append(VTxI2 ,[0 ,1])
7 qc2.append(Cs2 ,[0 ,1])
8 qc2.append(UxI2 ,[0 ,1])
9 qc2.measure (0,0)

10 counts2 ={’01’: 1}
11 while counts2 == {’01’: 1}:#Repeat until success
12 # choose the statevector simulator
13 simulator2 = Aer.get_backend(’statevector_simulator ’)
14 # get the statevector
15 result2 = execute(qc2 , simulator2).result ()
16 statevector2 = result2.get_statevector ()
17 counts2 = result2.get_counts(qc2)
18 # print(counts)
19 if counts2 == {’00’: 1}:
20 print(statevector2)

Listing 7.12: Code to create circuit at value slightly perturbed from EP of the Hamiltonian

We obtain the density matrices, then calculate the max[log(QFI)] after adding noise
through Equation 5.18 with noise parameter b.

1 #Obtain density matrix of the system at EP
2 Dm1=np.matrix(partial_trace(DensityMatrix(statevector1) ,[0]))
3 print(Dm1)
4

5 #Obtain density matrix of the system slightly perturbed from EP
6 Dm2=np.matrix(partial_trace(DensityMatrix(statevector2) ,[0]))
7 print(Dm2)
8

9 #Adding Noise and embedding it in QFI
10 QFIarr =[]
11 gammaarr =[]
12 for i in range (101):
13 gamma =0.01*i #Decay probability
14 NDm1=np.matrix ([[Dm1 [0,0]+ gamma*Dm1[1,1],sqrt(1-gamma)*Dm1[0,1]],[ sqrt

(1-gamma)*Dm1[1,0],(1- gamma)*Dm1 [1 ,1]]])
15 NDm2=np.matrix ([[Dm2 [0,0]+ gamma*Dm2[1,1],sqrt(1-gamma)*Dm2[0,1]],[ sqrt

(1-gamma)*Dm2[1,0],(1- gamma)*Dm2 [1 ,1]]])
16 Fid=state_fidelity(NDm1 ,NDm2)
17 Bd=2-2*np.sqrt(Fid)
18 QFI=Bd/(2* deps **2)
19 print(QFI)
20 QFIarr.append(QFI)
21 gammaarr.append(gamma)

Listing 7.13: Obtaining max[log(QFI)

Finally plot the max[log(QFI)] v/s the amplitude noise parameter b
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1 #Plot the MAX[QFI] i.e. QFI at EP for various values of noise plotted on x
-axis

2 plt.figure(facecolor=’white’)
3

4 fig2 = plt.plot(gammaarr , np.log(QFIarr),’o’, color=’red’)
5

6

7 # naming the x axis
8 plt.xlabel(’b’)
9 # naming the y axis

10 plt.ylabel(’Max -log(QFI)’)
11

12 plt.text (0.8, 10, ’(a)’, fontsize = 20)
13 plt.savefig(’AD’)
14

15 # function to show the plot
16 plt.show()

Listing 7.14: Plot the result

The plot is as obtained in Figure 5.5.
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