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Abstract
Mathematical modeling of spatial ecological systems has significantly contributed

to our understanding of population dynamics, species’ distribution across space,

collective behavior, and ecological stability. The theory of dynamical systems and

diverse numerical methods are instrumental in studying spatial population models.

In this thesis, we study various mathematical models of spatial ecological systems

to understand the effect of demographic and environmental stochasticity, dispersal

network topology, species movement patterns, and arrangement of landscape on

ecosystem dynamics.

Noise-induced symmetry breaking has barely been unveiled on ecological grounds,

though its occurrence may elucidate mechanisms responsible for maintaining

biodiversity and ecosystem stability. We study an ecological network model and

demonstrate that the interplay of network structure and noise intensity manifests a

transition from homogeneous steady state to inhomogeneous steady states, resulting

in noise-induced symmetry breaking. Further, we move beyond dyadic couplings

and consider the higher-order species interactions in an ecological network. We

study the synchrony patterns and observe that higher-order interactions bring about

significant changes in collective behavior compared to the conventional pairwise

interaction. We also find the region where the synchronous state is stable using

the master stability function. The ability of species to move between fragmented

landscapes is an essential factor in ascertaining the dynamics and spatial distribution

of populations. Further, the effect of resource pulses on ecological processes due

to environmental variation in the context of foraging strategies remains largely

unexplored. Considering resource pulses, we analyze the unified impact of foraging

behavior and species’ life-history traits on the structure and dynamics of ecosystems.

We find that a Lévy walk is consistently effective as a movement strategy. We also

find that the optimal foraging behavior shifts from Brownian to ballistic as the

mortality rate of grazers increases. In addition, our study comprehends how climate

warming and spatial separation between habitat patches influence species’ collective

dynamics. We find that rising habitat temperature has the potential to destabilize

ecological dynamics, and density-dependent species dispersal can mitigate these

adverse effects. Moreover, long-range dispersal works out as the driving force for

species persistence in extreme temperature conditions of habitat.

Keywords: ecological networks; habitat fragmentation; network topology;

excitable system; noise-induced symmetry breaking; higher-order interaction;

synchrony; chimera; resource pulse; foraging; Lévy walk; climate warming;

long-range dispersal
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Chapter 1

Introduction

Biological systems show complex patterns of species distribution in both space and

time. Synthesizing the relationship between connectivity, diversity, and stability of

communities is one of the goals of ecology. Over the years, several theoretical and

empirical investigations have highlighted the potential role of space in exhibiting

unexpected and intriguing dynamics (Gause, 1935; Huffaker, 1958). Hastings (1992)

considering a discrete time and space model showed that an equilibrium that would

remain stable without diffusion could become unstable, forming stationary patterns,

cyclic behaviors, or even chaotic dynamics. Yet another aspect that introduces new

levels of uncertainty in spatial populations is the presence of multiple coexisting

attractors (Sole et al, 1992; Hastings, 1993; Guttal and Jayaprakash, 2009; Pal et al,

2022). A system with the same parameter values but different initial conditions

evolves toward different dynamics, which can result in the coexistence of multiple

attractors.

The influence of spatial structure on ecological processes can be understood in a

metapopulation and landscape ecology (Hanski and Gilpin, 1991; Moilanen and

Hanski, 2001). Many species’ populations are composed of spatially separated

sub-populations rather than being continuously distributed. Dispersal plays the

primary role in connecting multiple sub-populations, forming a metapopulation.

The metapopulation approach has a long history (Levins, 1969) that focused on

highly fragmented habitats known to affect the colonization and extinction of species,

and understanding the influence of dispersal on population dynamics is a central

concern in ecology. In this context, two well-established effects of dispersal are

spatial synchrony, which involves positively correlated population dynamics across

different spatial locations, and dispersal-induced stability, a phenomenon where

populations exhibit less extinction-prone dynamics when they are connected by

dispersal compared to when they are isolated (Abbott, 2011). The field of landscape

ecology is motivated by a “need to understand the development and dynamics

of pattern in ecological phenomena, the role of disturbance in ecosystems, and

characteristic spatial and temporal scales of ecological events” (Urban et al, 1987).

It emphasizes “broad spatial scales and the ecological effects of the spatial patterning

of ecosystems” (Turner, 1989) and “deals with the effects of the spatial configuration

of mosaics on a wide variety of ecological phenomena” (Wiens et al, 1993). Thus,

1
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landscape ecology focuses on the ecological dynamics influenced by patch shape and

quality of habitat matrix (Hanski, 1998).

At the heart of spatial ecology lies a central challenge: unraveling the impact of

spatial factors on the dynamics of populations and the composition and structure

of ecological communities. Mathematical modeling is an essential tool in this quest

(Goldwasser et al, 1994; Molofsky, 1994; Tilman et al, 1997), as it plays a crucial role

in studying population dynamics, conservation biology, and a wide range of spatial

ecological phenomena. Mathematical models facilitate a deeper understanding of

how spatial factors influence population growth, distribution, and persistence in

heterogeneous landscapes.

We will now provide a brief overview of two modeling approaches employed in this

thesis and underscore their significance in the context of conservation.

1.0.1 Network models

The theory of complex networks played a pivotal role in describing and

understanding complexity sciences (Amaral et al, 2000; Albert and Barabási,

2002; Montoya et al, 2006). The study of complex networks aims to model

and understand diverse real-world systems ranging from technological networks

to ecological webs. Emerging research has focused on the suitability of network

theory to the study of spatial ecology (Fortuna et al, 2006; Rayfield et al, 2011;

Jacoby and Freeman, 2016). Majorly, spatial ecological networks are built by

graph-theoretic approaches by considering habitat patches as the nodes and species

movement as the links connecting the nodes. This approach’s significance is evident

in phenomena like chaos arising from non-linear interactions among species and

environmental factors, symmetry-breaking characterized by the emergence of new

patterns in populations transitioning from a symmetrical state, synchronization

revealing coordinated ecological processes, chimera illustrating the coexistence

of synchronized and unsynchronized dynamics within a community, or critical

transitions denoting abrupt and irreversible shifts in the state of an ecosystem

(Arenas et al, 2008; Dakos and Bascompte, 2014; Kobayashi, 2011).

1.0.2 Cellular automata

Cellular automata have been widely used to model spatial processes in ecology

(Pascual et al, 2002; Langmead and Sheppard, 2004). A key feature of cellular

automata is that the patches are identical cells on a regular grid. The dispersal

is distance-dependent, and the transitions between states are governed by rules

that may be deterministic or stochastic. The application of cellular automaton
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models in ecology has facilitated examining the role of landscape structure on species

persistence.

1.0.3 Spatial ecology and conservation

Connectivity between habitat patches has been recognized as an influential factor

in determining species distributions (With et al, 1997; Hanski, 1998; Tischendorf

and Fahrig, 2000). Habitat connectivity is defined as the degree to which the

landscape facilitates or inhibits the movement of species within it (Taylor et al,

1993; Tischendorf and Fahrig, 2000). It is an essential factor in determining a

broad spectrum of ecological phenomena, including seed dispersal, range expansion,

invasion, and biodiversity maintenance (Moilanen and Nieminen, 2002; Kareiva

and Wennergren, 1995; Moilanen et al, 2005; WF, 2006). Habitat loss and

fragmentation constitute a significant threat to Earth’s biological diversity. Habitat

loss can increase the distance between the patches by reducing connectivity (Hanski,

1998). Fragmentation results in loss of area and increasing spatial isolation,

thus escalating the extinction risk of species (Fahrig, 2003). Hence, there is a

substantial need for research to understand the factors determining the persistence

of populations and communities. Achieving this necessitates an exploration of

species interactions, dispersal patterns of a metapopulation, environmental factors,

landscape characteristics, and the role of stochasticity, which may all have a

considerable impact on species viability.

Deterministic and stochastic mathematical models used in the applied aspects of

ecology are tailored to address specific questions related to conservation, assessment,

and restoration. Bascompte and Solé (1996) used spatially explicit metapopulation

models to demonstrate the existence of extinction thresholds that occur when a

certain fraction of habitat is destroyed. As shown by Ovaskainen et al (2008), a

model parameterized using data from a reference landscape effectively predicted

the movements of clouded Apollo butterflies within a landscape that differed

significantly in structure. As highlighted by Kareiva and Odell (1987) and Moorcroft

and Lewis (2013), one of the advantages of using mechanistic models is their

potential to allow for making predictions about responses to habitat alterations

and inquiring how parameters might evolve in both current and altered landscapes.

1.1 Stochasticity in nonlinear systems

Stochasticity, or noise, is prevalent in the real world and affects a system’s dynamics.

Various factors like external noise, inherent variability, or uncertainty in initial

conditions or parameters can lead to the emergence of stochasticity (Melbourne
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and Hastings, 2008). This randomness can lead to a wide range of behaviors,

including the emergence of chaotic dynamics (Billings and Schwartz, 2002), the

presence of bistability (Biancalani et al, 2014), modulation of transients (Hastings

et al, 2021) and the unpredictability of system trajectories. Understanding and

modeling stochasticity is crucial in analyzing uncertainty and variability within

real-world systems. Another interesting phenomenon observed in natural systems

is the excitability. A common characteristic of all the excitable systems is the

unperturbed system stays in the rest state, and small perturbations result in a small

amplitude motion around a steady state. At the same time, strong perturbations

can evoke large amplitude fluctuations before relaxing to a rest state. So excitability

is a dynamic phenomenon far from equilibrium (Haken, 1975).

There is rich literature on excitability in deterministic nonlinear systems with

applications in different areas (Murray, 1993). However, the dynamics of excitable

systems are significantly influenced by the presence of noise. Stochastically

perturbed excitable systems result in the occurrence of sustained oscillations or

resonance purely under the effect of noise (Sigeti and Horsthemke, 1989; Sieber

et al, 2007; Schwabedal and Pikovsky, 2010), thus exhibiting stochastic limit cycles.

The resonance effect is often accompanied by stochastic resonance (Benzi et al, 1981;

Gammaitoni et al, 1998) or coherence resonance (Gang et al, 1993; Pikovsky and

Kurths, 1997). Coherence resonance corresponds to the noise-sustained oscillations

in the excitable regime, which are most coherent or regular at an optimal noise

intensity. A driving force in the presence of noise can result in stochastic resonance.

Therefore, the system’s behavior is enhanced to a signal by adding noise.

In addition to intriguing temporal dynamics, a large array of coupled excitable

oscillators provides a glimpse into the affluence of spatiotemporal behavior. The role

of noise in extended excitable systems is observed in the context of noise-enhanced

propagation (Lindner et al, 1998), noise-induced spiral waves (Gu et al, 2013), spiral

chaos (Garćıa-Ojalvo and Schimansky-Geier, 1999), the occurrence of chimera states

(Semenova et al, 2016; Khatun et al, 2022), noise-induced synchronization (Neiman

et al, 1999; Kurrer and Schulten, 1995) as well as spatiotemporal stochastic resonance

(Jung and Mayer-Kress, 1995), and array enhanced coherence resonance (Hu and

Zhou, 2000).

1.1.1 Noise in ecology

Fluctuations observed in species abundances are the result of intrinsic factor

(demographic stochasticity) or extrinsic factor (environmental stochasticity)

(Higgins et al, 1997; Lundberg et al, 2000). Stochasticity is often believed to obscure

the deterministic patterns (Knape and de Valpine, 2012). However, extensive
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research on stochastic ecological systems has revealed that noise can lead to many

novel phenomena. The potential effect of noise in sustaining hare–lynx cycle was

analyzed by Beninca et al (2011). The work by Stenseth et al (1996) showed that

environmental stochasticity ensued oscillations. Stochasticity can even allow the

coexistence of species in the scenario where one of them potentially becomes extinct

in the deterministic framework (Chesson and Ellner, 1989).

Further, alternative stable states in ecological communities have been a dominant

framework for decades (Lewontin, 1969). Ecologists envisage that strong fluctuations

in population densities or changing the parameters determining the population’s

behavior could shift the communities from one state to another. Thus, stochastic

switching between two regimes is a generic phenomenon due to stochasticity and

alternative stable states interplay. The work by D’Odorico et al (2005) on the

dryland plant model showed that noise could enhance stability by forming an

intermediate statistically stable state between the two alternative stable states.

Noise can even reduce the deterministic symmetry by inducing bistability in

situations where only one stable branch is present without fluctuations, thus

exhibiting noise-induced symmetry breaking (NISB) (Kobayashi, 2011). However,

there is limited research on NISB, and so far, its ecological aspect still requires

considerable attention.

1.2 Network topology and ecosystems dynamics

The dispersal network of a metapopulation governs the species’ colonization routes

between habitat patches. Therefore, the connectivity of a network is determined

by the dispersal linking the patches. Over the years, considerable attention

has been given to uncovering the effects of dispersal network structure on the

ecological dynamics (Fahrig and Merriam, 1985; Holland and Hastings, 2008). The

rationale behind the spatial structure being widely recognized in population biology

is the belief that spatial ecological interactions influence populations as much as

predation, competition, birth, and death rates. The network of interconnected

communities, facilitated by the dispersal of species, is collectively termed a

metacommunity. The maintenance of biodiversity and ecosystem functionality is

possible by the ability of the species to move across habitat patches. Therefore,

studying the degree distribution of patches (nodes of a network) that correspond

to the dispersal route is crucial in determining species persistence. Below, we have

outlined some fundamental network properties (Newman, 2018) that are essential

for comprehending the results presented in this thesis:

Degree of a node: It is the number of links (k) or neighbors connected to the
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node.

Degree distribution: The degree distribution (p(k)) is defined as the probability

that any randomly chosen node has degree k.

Clustering coefficient (Ci): It measures the connectivity between the

neighborhood of node i. Ci = 0 if there are no interconnections present, whereas,

Ci = 1 if all neighbors of the i-th node are connected.

1.2.1 An overview of the influence of the number of nodes

and interaction strength

The complexity of a network largely influences the ecological processes. Below, we

illustrate the role of node number and coupling strength on the collective dynamics

of an ecological network composed with a tri-trophic foodweb model, namely, the

Blasius-Huppert-Stone model (Blasius et al, 1999). The following equations govern

the dynamics of the ecological network:

dxi
dt

= axi − β1
xiyi

1 + k1xi
, (1.1a)

dyi
dt

= β1
xiyi

1 + k1xi
− β2yizi − dyi + ε

n∑
j=1

(yj − yi), (1.1b)

dzi
dt

= β2yizi − c(zi − z∗) + ε
n∑
j=1

(zj − zi), (1.1c)

where n is the number of interacting nodes and ε is the interaction strength

between the nodes. xi, yi, and zi represent vegetation, herbivore, and predator

populations, respectively, in the i-th patch. We take fixed values for the parameters

a, β1, k1, β2, d, c, and z∗, which regulate the local dynamics. The system exhibits

chaos for ε = 0 and a specific range of parameter values, and the corresponding

attractor is depicted in Fig. 1.1(a). In the absence of dispersal (ε = 0) and for n = 2,

the uncoupled populations remain unsynchronized both in phase and amplitude as

is seen in the time series of predator populations (Fig. 1.1(b)). In contrast, for

ε = 0.03, the two patches show phase locking, i.e., the populations are synchronized

in phase but not in amplitude (Fig. 1.1(c)), which with further increase in the

coupling strength (ε = 0.075) exhibit complete synchrony (Fig. 1.1(d)). However,

as observed from Fig. 1.1(e), increasing the network size to n = 10 induces full

synchronization even in a weak coupling limit (ε = 0.03).

1.2.2 Random pairwise interactions

Random connections allow long-distance interactions between patches (Watts and

Strogatz, 1998). The work by Holland and Hastings (2008) shows that randomizing



Chapter 1. Introduction 7

Figure 1.1. Phase portrait and time series of the model (1.1a). (a) Phase portrait depicting a chaotic
trajectory. (b)-(e) Time series exhibiting synchronous or asynchronous behavior of populations depending
upon the network size (n) and the interaction strength (ε): (b) n = 2, ε = 0: asynchrony, (c) n = 2, ε = 0.03:
phase synchrony, (d) n = 2, ε = 0.075: phase and amplitude synchrony, and (e) n = 10, ε = 0.03: phase
and amplitude synchrony. Other model parameters are a = 1, d = 1, c = 10, β1 = 0.2, β2 = 1, k1 = 0.05, and
z∗ = 0.006.

the structure of dispersal networks tends to favour asynchrony. Gilarranz and

Bascompte (2012) investigated the impact of network heterogeneity on regional

abundance under the influence of demographic patterns. The study observed

that uniform or random networks exhibit the lowest regional abundances, while

scale-free networks demonstrate the highest abundance. The following random

network topologies broadly capture real interaction patterns in higher dimensional

systems: the Watts-Strogatz (WS) model, the Erdös-Rényi (ER) model, and the

Barabási-Albert (BA) model (Bhandary et al, 2022). For the WS network, the

interactions between the nodes with regular links are replaced by the random ones

depending upon the rewiring probability p. For instance, when p = 0, the network

is regular. Increasing the likelihood p from 0 to 1 transits a network from order to

completely random, and the WS network is small-world when the value of p lies in

between 0 and 1 (Watts and Strogatz, 1998). The BA model follows power-law

distribution and generates scale-free networks, whereas the ER model develops

random networks and follows the Poisson distribution. The response of ecological

communities towards varying network structures can help determine population

dynamics and needs more attention.
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1.2.3 Higher-order interactions

NETWORK SIMPLICIAL COMPLEXHYPERGRAPH(a) (b) (c)

Figure 1.2. A system with interacting units represented as (a) a network, where the interactions occur
pairwise between nodes and depicted as edges, (b) hypergraph, which facilitates group interactions. In this
context, shaded groups of nodes represent hyperedges, (c) simplicial complex, edges correspond to 1-simplices,
and full triangles representing 2-simplices are shown in green.

Over the decades, the architecture of complex systems has been modeled by networks

where the nodes and the links encode pairwise interactions. This limitation of

networks does not provide a significant description at the system level. Yet,

interactions often occur in larger groups from human to ecological systems and

cannot be described by dyadic couplings (Battiston et al, 2020). The work

by Bairey et al (2016) shows that communities with greater diversity become

more stable under higher-order interactions. Levine et al (2017) analyzed that

incorporating higher-order interactions leads to species coexistence in competitive

networks. Higher-order interactions play a stabilizing role in the dynamics of

ecological communities, where the interactions between species are influenced by

the presence of other species (Grilli et al, 2017). Other examples include neuronal

(Schneidman et al, 2003), genetic systems (Ritz et al, 2014), and group interactions

in social networks (Sekara et al, 2016). In complex systems, such interactions are

often modeled using hypergraphs and simplicial complexes (Battiston et al, 2020). A

simplicial complex is a particular type of hypergraph (Berge, 1973), where 1-simplex

is a link, 2-simplex is a two-dimensional object made of three nodes, 3-simplex

corresponds to four-node interaction and so on. A rich literature has shown the

substantial impact of higher-order interactions on the dynamics of the networked

systems, from synchronization (Millán et al, 2019) and diffusion (Carletti et al, 2020)

to explosive transitions (Kuehn and Bick, 2021) and evolution (Alvarez-Rodriguez

et al, 2021). Despite recognizing the fundamental importance of moving beyond

dyadic couplings, there is still a substantial gap in our exploration of how many-body
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interactions within ecological systems can reveal a new panorama of dynamical

processes.

1.3 Landscape structure

Human activity often results in habitat fragmentation, which is one of the primary

reasons for the changes in patterns of diversity and spatial distribution (Pereira et al,

2010; Rands et al, 2010). The number, size, shape, and position of patches within a

landscape compose a landscape structure. Ecologists propose that these attributes of

landscape structure are essential in determining the movement of animals between

the habitats in a patchy landscape. Diffendorfer et al (1995) studied the effect

of patch size on the movement of three mammal species. The authors predicted

that animals would move farther in a more fragmented landscape to find resources.

They found that two of the three species supported the hypothesis. Hanski et al

(1994) found that the size and isolation of patches significantly affect the density of

butterfly populations. Their analysis showed that the population size increased with

the patch area. Therefore, the movement and the characteristics of populations are

considerably affected by landscape structure.

1.3.1 Foraging theory

Mounting evidence suggests that the ability of organisms to move between spatially

separated patches is a crucial factor in driving species dynamics in a fragmented

landscape (Levins, 1969; Armsworth and Roughgarden, 2005; Niebuhr et al, 2015).

Moreover, studies have shown that animals adjust their searching behavior following

the availability of food resources (Benhamou and Bovet, 1989; Newlands et al, 2004;

Nolet and Mooij, 2002; Bell, 2012). A general theory of foraging in ecology is that

animals in areas of high resource abundance displace less, thereby increasing the

usage of resources (Focardi et al, 1996; Turchin, 1991; Kareiva and Odell, 1987).

Whereas, when the density of resources is less, the faster movements resulting

in a large displacement increase the chance of food capture and thus are more

efficient than the ones with high tortuosity (Turchin, 1991; Zollner and Lima, 1999;

Bartumeus et al, 2005). Turchin (1998); Lima and Zollner (1996) consider that

realistic animal movements comprise discrete series of displacement events separated

by turning angles. Discretization of movement behavior determines the statistical

distribution of displacement or step lengths and change of direction (i.e., turning

angles). Such discretized movement paths can be examined through the techniques

of random walk theory.
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1.3.2 Random walk

The foraging path of an animal is effectively a random walk because the next

move is based on the current location/state and the transition probability to the

following location. A random walk is a stochastic process in which organisms

move along random trajectories. Search strategies are one of the most prominent

factors affecting the chances of an encounter. Lévy walk is a specific form of

random walk composed of clusters of short steps with long travels between them

(Viswanathan et al, 2011). It was Shlesinger and Klafter (1986) who first proposed

that Lévy walks could be observed in animal search strategies. Further, various

studies have reported Lévy walk searches in many animals for instance moths

(Agrotis segetum) (Reynolds et al, 2007a), honeybees (Apis mellifera) (Reynolds

et al, 2007b), and marine fish (Sims et al, 2008). Lévy walks are scale-free movements

with uniform distribution for turning angles and power-law distribution P (l) ∝ l−β

of step length (l) with 1 < β ≤ 3. The parameter β describes the range of

movement behaviors. For β ≥ 3, the random walk is similar to Brownian motion.

For 1 < β < 3, the movement becomes super-diffusive (Lévy) and reaching to

straight-line paths (ballistic motion) as β → 1. Research suggests that Lévy walks

optimize search strategies when resources are sparse and distributed in fragmented

landscapes (Viswanathan et al, 2011; Bartumeus and Catalan, 2009). In a recent

paper (Dannemann et al, 2018), the authors study the dynamics of population in

the presence of foragers for different amounts of habitat availability. The work

by Shlesinger and Klafter (1986); Dannemann et al (2018) employing analytical

and simulated results shows that random walk significantly impacts the stability

of metapopulations. The work suggests that Lévy walks optimize search in scarce

environments, whereas Niebuhr et al (2015) observed straighter paths (Ballistic) as

the optimal movement strategy in all situations.

1.3.3 Resource pulse

Another factor that profoundly affects population dynamics and communities is

the temporal environmental variations (Mysterud et al, 2001; Schmidt and Ostfeld,

2003). Temporal variation in resource availability to a species can occur in the

form of a resource pulse. Resource pulses are episodes of considerable magnitude,

short-duration events of increased resource availability (Yang et al, 2008), that

are prevalent in nature (Ostfeld and Keesing, 2000; Yang et al, 2008). Large

fluctuations in resources can significantly vary the growth and reproduction of

species (Ergon et al, 2001), which, in turn, also impacts the consumers of these

species as they experience a pulse in the availability of resources. This correlation
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between the resource pulse and consumer abundance can drastically alter the

community dynamics (Yang et al, 2008). Witman et al (2003) studied the effect

of massive sub-tidal prey recruitment on the community. The authors observed

that this episodic increase in resources boosted consumer’s abundance. However,

at a later stage, this eliminated resources over large regions, which then triggered

cannibalism in consumer species. Sommer et al (2002) reports the coexistence of

competing phytoplankton through chemostat experiments. The episodic resource

pulse was provided by diluting the medium at different intervals, facilitating the

coexistence. Moreover, according to various studies, the interplay between resource

pulse and dispersal can result in intriguing dynamics. The work by Keitt et al (2001)

shows that the interplay of resource pulses and the Allee effect could expand species’

distribution. In general, recurrent resource pulses can significantly and persistently

impact communities.

Therefore, it is essential to examine how natural communities in fragmented

landscapes, utilizing optimal foraging strategies, respond to these events. These

responses have a direct impact on the diversity and stability of the ecosystem.

1.4 Role of species dispersal in population

dynamics

Natural populations, functioning as complex nonlinear systems, often exhibit

oscillatory dynamics. Amongst the emergent collective dynamics, synchronization

is pervasive in a network of coupled oscillatory systems (Strogatz, 2004).

Synchronization between populations with fluctuating abundances can be attributed

to several factors, which include dispersal between populations, the Moran effect,

and trophic interactions (Liebhold et al, 2004). Species dispersal can have conflicting

consequences on population persistence. Asynchrony between the abundance of

sub-populations leads toward regional stability (Briggs and Hoopes, 2004). Dispersal

promotes stability by allowing recolonization, but it can sometimes elevate the

chance of extinction by globally synchronizing populations. Dispersal, being

sensitive to changing climatic conditions (Travis et al, 2013), patch size (Andreassen

and Ims, 2001), food availability, population size (Matthysen, 2005), considerably

varies within organisms. The partial synchronization patterns, such as the chimera

state, are a fascinating effect gaining much attention. Chimera states correspond to

a distinctive spatiotemporal pattern in which identical oscillators self-organize into

coherent and incoherent co-existing domains. Several theoretical and experimental

studies substantiate the existence of chimera in diverse fields of science and

engineering (Hagerstrom et al, 2012; Zakharova et al, 2014). Therefore, various
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processes in a metacommunity whereby dispersal can inhibit or promote synchrony

should be examined.

1.4.1 Temperature: an environmental stressor influencing

species dispersal

The rising temperature is known to lower species abundance, triggering extinction.

For instance, current estimates of biodiversity loss predict that climate warming

might lead to 3% to 78% of species extinction (Thomas et al, 2004; Thuiller et al,

2004). Temperature influences species abundance and complex interactions with

other species in a community (Connell, 1961; Harrington et al, 1999; Walther, 2007).

It is also evident from previous studies that species’ response towards changing

environmental conditions is carried out by changes in phenology and distribution

(Sparks and Carey, 1995; Dunn and Winkler, 1999; Cayan et al, 2001). Dispersal

is expressed through the interaction of an organism with its environment; therefore,

it is influenced by environmental effects (Clobert et al, 2012). Walther et al (2005);

Parmesan (2006) suggest species will disperse to a suitable climate niche responding

to changing temperature. Moreover, Kuussaari et al (2016) found an increase

in dispersal rates with increasing temperature and population abundance of the

Clouded Apollo butterfly. In contrast, a study by Jourdan et al (2019) on the crane

fly Tipula maxima reveals the negative effect of rising temperatures on their dispersal

abilities.

1.4.2 Density-dependent dispersal

Emigration and immigration dispersal rates strongly influence the population

dynamics in a patch, thus altering regional persistence. The dispersal rate is often

considered constant, but it may be condition-dependent. Specifically, it may rely on

species density in the local community. Hence, density-dependent dispersal builds

a direct interaction between population dynamics and dispersal, thus impacting

a community at a local and regional scale. Various studies have investigated the

effect of density-dependent dispersal on population dynamics (Jánosi and Scheuring,

1997; Travis et al, 1999; Poethke and Hovestadt, 2002). Local populations might

build even from low densities because of the density-dependent dispersal, which

could minimize the emigration loss. Whereas high dispersal at more densities

may restrain populations from outbreaks (Denno et al, 1994; Dixon, 1969). Ims

and Andreassen (2005) and Li et al (2005) have shown that dispersal patterns

depending upon local abundance result in diminishing synchrony compared to

density-independent dispersal. Hauzy et al (2010) considering a mathematical
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model studied the role of constant and density-dependent dispersal on the stability

of a metacommunity. They find that density-dependent dispersal, particularly

interspecific density-dependent dispersal, always results in asynchronous fluctuations

in population abundance. Hence, in biodiversity maintenance, it is imperative to

develop a mechanistic understanding of how dispersal, mediated by temperature and

population abundance, can either stabilize or destabilize population dynamics.

1.4.3 Dispersal distance

The cost of dispersal is directly related to the distance between the habitat patches

(Haddad, 1999). Studies suggest that predation risk might increase owing to large

distance (Yoder et al, 2004). Another prominent factor that plays a crucial role in

deciding how far a species can disperse is the environment. An experimental study

by Baker and Rao (2004) demonstrated that increasing dispersal distance decreases

the survival probability of desert isopods because of dehydration.

Dispersal kernel refers to a probability density function to describe the distribution

of dispersal. It is based on the belief that distance is the underlying factor in

determining the connection probability between two patches; the more distance, the

lower the probability. Comprehensive literature suggests that research on dispersal

has seen a paradigm shift from Gaussian and exponential to fat-tailed dispersal

kernels (Kot et al, 1996; Clark et al, 1999). Specifically, an inverse power-law

function, a fat-tailed distribution, is widely used as a dispersal kernel (Gupta

et al, 2017). This particular type of dispersal kernel is motivated by the fact

that long-range interaction plays a crucial role in many physical and biological

systems. For example, in the one-dimensional Ising spin model (Kuo and Wu,

2015) and spin-glass model (Kotliar et al, 1983a), interaction among the spins is

governed by long-range interaction that obeys a distance-dependent power law. In

neuronal systems, long-range interaction with a specific scaling has been found that

controls the connectivity among the neurons (Szaro et al, 1987). Dispersal, under

the influence of climate change, has an impact on species range shifts (Brooker

et al, 2007), either resulting in long-distance dispersal (LDD) or short-distance

dispersal (SDD). However, a model incorporating temperature in spatial population

movement to study dispersal-induced dynamics needs to be explored.

1.5 Objectives and Scope

This thesis aims to illustrate the impact of noise, changes in interaction topology,

the effect of landscape structure, and abiotic conditions on the dynamics of

coupled ecological systems. This thesis also studies many-body interactions between
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ecological entities and elucidates different moving patterns adopted by foragers,

which have important implications in determining ecological stability. The literature

review has revealed several knowledge gaps, and these gaps give rise to the following

questions that we aim to address in this thesis:

• Can noise break symmetry in an ecological network even when the

deterministic processes are symmetric? How do random network topologies

affect the dynamics in the presence of noise?

• How do higher-order interactions affect synchronization in different

connectivity structures?

• How does a foraging strategy and resource pulse impact population viability

in a patchy landscape?

• How does the interplay of dispersal strategies and temperature alter dynamical

processes in a metacommunity?

• How does temperature-dependent dispersal influence synchrony, and thereby,

species’ persistence in an ecological network?

Stochasticity or noise is ubiquitous in ecosystems. The persuasive role of

noise on the dynamics of excitable systems is observed in many disciplines,

including noise-induced oscillations, the phenomenon of coherence resonance, the

occurrence of chimera states, and noise-enhanced synchronization in coupled

excitable systems (Neiman et al, 1999). The maintenance of biodiversity and

ecosystem functionality is possible by the ability of the species to move across habitat

patches, which is primarily hindered by habitat destruction and fragmentation. The

prominence of spatial structure and habitat connectivity has widely been accepted

to promote species persistence. In this thesis, we consider a network of excitable

consumer-resource systems and study the interplay of network structure and noise

intensity on the system’s dynamics.

While most of the studies in networks consider only pairwise interactions,

higher-order interactions are evident in many physical, social, and ecological

systems. Research suggests that non-pairwise interactions lead to collective

synchronization of the nodes (Gambuzza et al, 2021; Kovalenko et al, 2021).

Moreover, considerable attention has been given to the interplay between the

network topology and its synchronizability, particularly in weighted, multilayer,

small-world networks. It is found that changing the connectivity by randomizing the

dispersal network lowers synchrony (Holland and Hastings, 2008). To investigate this

in the presence of higher-order interactions, we emphasize synchronization, which

corresponds to the emergent collective behavior of networked coupled oscillators.
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We consider different connectivity structures in simplicial complexes and analyze

when the higher-order interactions lead to the synchronization of populations.

Movement strategies are crucial in maintaining connectivity and increasing survival

in a fragmented landscape. Previous work (Dannemann et al, 2018) suggests

that Lévy walks optimize search in scarce environments, whereas Niebuhr et al

(2015) observed straighter paths (Ballistic) as the optimal movement strategy in all

situations. However, research suggests that an environmental variation in the form

of resource pulses can have profound consequences on the dynamics of populations

and communities. Taking this into account and considering the phenomena of

resource pulse in our stochastic framework, we analyze the unified effects the foraging

behavior and life-history traits of species have on the structure and dynamics of

natural communities.

Climate disruptions have already caused complex consequences to the distribution

of species worldwide. Species dispersal also critically influences the balance between

extinction and recolonization in a metacommunity. Hence, species may need effective

dispersal strategies to cope with the changing environmental conditions to ensure

metacommunity persistence. Motivated by this, we consider temperature-dependent

functional traits of interacting species to elucidate dispersal effects in stabilizing

population dynamics under climate warming.

Furthermore, the realization that the changing climate strongly impacts spatial

populations, communities, and whole ecosystems triggered a lot of interest in

investigating the effects of temperature-influenced dispersal on metapopulations

(Bestion et al, 2015). Range interaction in species dispersal is an essential factor

that drives interesting spatial dynamics (Banerjee et al, 2016). This motivates

our investigation into species persistence within a spatial ecological model where

dispersal is modeled as a temperature-dependent function.

1.6 Outline of the Thesis

After briefly introducing various factors, namely abiotic conditions, noise, species

interactions, and their effects on the network of ecological communities, we move to

the research questions we have addressed in this thesis.

1.6.1 Noise-induced symmetry breaking in a network of

excitable ecological systems

In Chapter 2, we consider an ecological network of excitable resource-consumer

systems. The consumers in each patch are connected with other patches via a

diffusive coupling, where the connectivity pattern varies from local to global. There
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is an additive Gaussian white noise that affects consumer abundance. We find that

the network can be driven out of the resting state, leading to different collective

dynamics, including regimes of heterogeneous steady states and asynchronous

oscillatory states mediated by noise intensity and network topology. For non-local

coupling and adequately tuning the noise intensity, we achieve an oscillatory regime

due to the resonance effect or a region of inhomogeneous steady states termed

NISB. Further, by keeping the noise intensity fixed while changing the coupling

range from local to global, we identify a transition from an oscillatory domain

to a region HSS through NISB. We also consider the effect of local heterogeneity

(induced by considering stochastic components in species birth and death processes)

and regional heterogeneity (in terms of varying node connectivity and network

structure) on ecological dynamics. Here, noise is added as an intrinsic source to the

system, arising from random fluctuations in the birth and death processes, and the

connection between habitat patches follows the WS, BA, or ER model. We find that

a noise-driven system with high habitat connectance potentially manifests symmetry

breaking in all the network structures. Our findings are essential for understanding

the mechanisms responsible for upholding biodiversity and ecosystem stability.

1.6.2 Effect of higher-order interactions on the stability of

ecological communities

In Chapter 3, we consider an ecological network of spatially separated patches

subjected not only to pairwise interactions but also to three-body higher-order

coupling. Each node consists of a chaotic three-species food chain. A two-body

interaction or a simplex of dimension 1 corresponds to a link, whereas a three-body

interaction or a 2 simplex is a collection of 3 nodes, forming a triangle in a network.

We carry forward our work up to 3 body interactions and study the collective

behavior of the system. We focus on the role of network structure in influencing

synchronous dynamics. We report that the inclusion of HOI in the dispersal network

structure of an ecological community composed of chaotic three-species systems

strongly affects the collective dynamics. We show that HOI in a random network

can suppress asynchrony but does not result in complete synchronization. However,

increasing the higher-order coupling strength in the network with all-to-all coupling

(regular network) drives the system from asynchrony to complete synchrony, thus

affecting species persistence. The observed synchronous state is stable over a range

of coupling strengths, calculated using the master stability function. Overall, our

study suggests that including HOI in species dispersal network structure can alter

well-known results of ecological communities with pairwise interactions and demands

more investigation.
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1.6.3 Resource pulses and foraging behavior shape spatial

population dynamics

In Chapter 4, we develop a stochastic vegetation-grazer model in a two-dimensional

fragmented landscape. The two-dimensional plane is considered a periodic lattice

divided into N square lattice sites. A fraction of the lattice sites are the initial

vegetation habitat. The vegetation can then reach a steady state following the

contact process model. A fraction of vegetation abundance at the steady state is

introduced as the number of initial grazers into the system. At every discrete time

step, a grazer dies with a specific rate or disperses to a new site following Lévy

movement, where the dispersal length is drawn from the power-law distribution.

The Lévy index β describes the range of movement behaviors. For β ≥ 3, the

random walk is similar to Brownian motion. For 1 < β < 3, the movement becomes

super-diffusive (Lévy) and reaching to straight-line paths (ballistic motion) as β → 1.

In our model, we consider the growth of vegetation to be seasonal. The rejuvenation

of vegetation takes place at regular time intervals through resource pulses. Our

analysis shows that the optimal foraging strategy highly depends upon the survival

conditions and the amount of resources. We find that Lévy walk is always an effective

movement strategy. However, the optimal foraging behavior changes from Brownian

to ballistic with the increase in grazers’ mortality rate. Our results demonstrate that

grazer movement and resource pulses significantly enhance population viability and

biodiversity in fragmented landscapes.

1.6.4 Climate warming and dispersal strategies determine

species persistence in a metacommunity

In Chapter 5, we consider a theoretical metacommunity model that includes

resource-consumer populations inhabited in patches. For simplicity, we start

with a 2-patch metacommunity, where each patch behaves homogeneously

in terms of resource-consumer interactions and phenotypes. The model

assumes temperature-dependent life-history traits of species, which affect the

metacommunity dynamics at the regional scale. The population in each patch

is connected by dispersal, and the dispersal propensity is considered constant,

or it depends upon the species abundance of the natal patch. We find that at

low and intermediate temperatures, different dispersal strategies synchronize or

desynchronize the population dynamics depending on dispersal rates. However, high

temperatures synchronize the population trailing constant dispersal, weakening the

stabilizing dynamics. Furthermore, density-dependent dispersal strongly affects the

stability of the metacommunity at high temperatures by increasing or decreasing
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spatial synchrony depending on dispersal rates. In metacommunities with many

patches, conditional upon temperature, species abundance exhibits the coexistence

of synchronous and asynchronous oscillations, namely the chimera state. Our

results show that rising temperature may destabilize the dynamics by synchronizing

populations; however, some dispersal mechanisms might impede the adverse

outcomes.

1.6.5 Long-range dispersal promotes species persistence in

climate extremes

Most of the results illustrating the effect of climate change on species dispersal are

based on experimental studies. At the same time, only a few studies considering

mathematical frameworks have elucidated the interplay between dispersal and

temperature. In Chapter 6, we consider a regular network where all the patches

are connected and hence accessible by the dispersing species from any patch, but the

dispersal density may vary depending upon the distance between the patches as well

as the temperature of the habitat. In the network, every patch is connected to all the

other patches via the dispersal strength, modulated by the distance between patches

and the temperature-dependent power law function. We consider the hypothesis

that dispersal is strongest at the optimal temperature. We carry out different

measures to learn the coherence/incoherence in species dynamics characterized

by their amplitude of fluctuations, density correlations, and transient dynamics.

Furthermore, we use cross-wavelet analyses to understand the long-term dynamics

of the system through transients. We find that long-range dispersal at extreme

temperatures turns out to be beneficial for the species’ persistence.

Finally, in Chapter 7, we summarize the key findings of our work. We also discuss

future research directions.
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Noise-induced symmetry breaking

in a network of excitable ecological

systems

2.1 Introduction

A principle finding in theoretical ecology suggests that even a simple population

model can manifest a range of dynamical scenarios, from stable equilibria to cyclic

oscillations, through to chaos (May, 1974). Oscillatory dynamics has a long history,

as summarized in diverse fields (Benincà et al, 2015; Elton, 1924; Rohani et al, 1999).

Elucidating various mechanisms behind these oscillations is a major challenge and

has been of persistent interest in ecology (Turchin and Ellner, 2000). As discussed in

(Kingsland and Kingsland, 1995), endogenous causes are the plausible explanation

for the generation of population cycles. Another well-studied nonlinear phenomenon

observed in dynamical systems is excitability (Meron, 1992; Olla, 2013). Excitable

dynamics are observed in a wide range of natural systems, which under strong

perturbations can evoke large-amplitude fluctuations, before relaxing to a rest state

(Izhikevich, 2007). These large amplitude transient fluctuations can sometimes turn

into sustained oscillations due to stochastic perturbations, often called noise-induced

oscillations (Nesse et al, 2008; Beninca et al, 2011). Here, by considering an

ecological network of excitable systems, we address the following questions: Do

noise-induced oscillations always directly transit from a steady state? Can other

intermediate collective dynamics exist while the system shifts from a steady state

to noise-induced oscillations?

Stochasticity or noise is ubiquitous in ecosystems. In recent years, extensive

research on stochastic ecological systems has found that noise can lead to many

novel phenomena, from population cycles to coexistence (Moran, 1953; Stenseth

et al, 1996). The persuasive role of noise on the dynamics of excitable systems

is observed in many disciplines, including noise-induced oscillations (Hillenbrand,

2002; Nesse et al, 2008), phenomenon of coherence resonance (Buldú et al, 2001;

Ganopolski and Rahmstorf, 2002), occurrence of chimera states (Semenova et al,

19
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Figure 2.1. Time series of the resource population (x) for the model (1.1a) with, σ = 0 and a = 9 (the
system is in the excitable region): (a) For zero noise intensity (D = 0) the system settles into a steady state;
inset: nullclines of the resource (x) and the consumer (y). (b) For a non-zero noise intensity (D = 0.00005)
there exist noise-induced oscillations; inset: stochastic cyclic attractor. Other model parameters are: r = 1,
b = 7, m = 1, ε = 0.01, and N = 101.

2016), and noise-enhanced synchronization in coupled excitable systems (Neiman

et al, 1999; Boschi et al, 2001). An intriguing phenomenon that has received

less attention is noise-induced symmetry breaking (NISB). NISB affirms reduced

symmetric configuration (i.e. the perfect symmetry of the deterministic equilibrium

state is distrupted) in the presence of noise, even though the underlying deterministic

processes are symmetric, thus resulting in the occurrence of multiple stable states.

There is limited research on NISB (Kobayashi, 2011; Jafarpour et al, 2017), and so

far, its ecological facet remains to be studied.

Multiple stable solutions make it possible for populations in distinct patches/nodes

to settle into different steady states. Therefore, minimizing the extinction risk

and increasing the stability of spatial population through rescue effect (Amritkar

and Rangarajan, 2006). The idea of spatial ecosystem functioning and species

interactions go hand in hand. Spatially separated populations, which through

dispersal may synchronize, are considered necessary to understand population cycles

(Ranta et al, 1997). Researchers find that large systems of interacting oscillators

have promising applications in various fluctuating systems (Izhikevich, 2007; Blasius

et al, 1999). Further, species dispersal network structure is believed to influence the

ecological dynamics strongly, as explored by recent studies (Holland and Hastings,

2008; Gupta et al, 2017). Following those lines of thought, here we report that

an interplay of network structure and noise intensity results in a transition from

homogeneous steady state to inhomogeneous steady states (multiple steady states)

via NISB; before turning into noise-induced asynchronous oscillations. These results

are explained numerically with the help of time series, spatiotemporal plots, and
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Figure 2.2. (a)-(d) Space-time (left column) and corresponding time series plots (right column) of resource
xi for P = 8, σ = 0.1 with varying noise intensities: (a) D = 0; steady state, (b) D = 0.00001; symmetry
breaking, (c) D = 0.000033; stochastic switching between two resource densities, and (d) D = 0.005;
asynchronous oscillations. (e)-(h) Space-time (left column) and corresponding time series (right column)
plots for D = 0.00001, σ = 0.6 with varying coupling range s: (e) s = 0.01 (local coupling); asynchronous
oscillations, (f) s = 0.04; symmetry breaking, (g) s = 0.25; symmetry breaking with most nodes settling at
the lower branch, and (h) s = 0.5 (global coupling); steady state. Other model parameters are r = 1, a = 9,
b = 7, m = 1, ε = 0.01, and N = 101.

phase diagrams. Further, we show that the network model’s linear stability analysis

can help to explain the observed dynamics.

2.2 Model of an ecological network

We consider an ecological network with N -patches inhabiting resource-consumer

(Truscott and Brindley, 1994) systems. The consumers in each patch are connected

with other patches via a diffusive coupling, where the connectivity pattern varies

from local to global. There is an additive Gaussian white noise ξ(t) that affects

the consumer abundance. The network model, in the presence of stochastic

perturbations, is given below:

ε
dxi
dt

= rxi(1− xi)−
a2x2i

1 + b2x2i
yi, (2.1a)

dyi
dt

=
a2x2i

1 + b2x2i
yi −myi +

σ

2P

j=i+P∑
j=i−P

(yj − yi) +
√

2Dξi(t), (2.1b)

where xi, and yi, respectively, determine resource and consumer abundance, i(=

1, 2, . . . , N) denotes the patch index (all indices are modulo N). The parameter
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ε > 0 is responsible for a timescale separation between a fast resource population

and a slow consumer population. The resource follows the logistic growth with an

intrinsic growth rate r, and the interaction of resource and consumer is characterized

by Holling’s type-III grazing with parameters a and b. m is the natural mortality of

the consumer. The parameter a describes the excitability threshold of the isolated

system; in particular, it determines whether the system is in the excitable (a >

8.975) or in the oscillatory (a ∈ [7.345, 8.975]) regime. Excitability refers to a

property of a system where a small perturbation can lead to a significant excursion

in phase space before the system eventually returns to its equilibrium state. Here, we

focus on the dynamics of the resource-consumer population in the excitable regime

(a = 9). The model assumes the movement of the consumer population between

the patches, where the interaction is governed by the coupling strength σ and the

parameter P controls the coupling range s = P/N , where 1 ≤ P ≤ (N − 1)/2 for

an odd number of patches. Increasing the value of P from 1 to (N − 1)/2 varies

the network topology from local to global via non-local. Further, ξi(t) ∈ R is the

normalized Gaussian white noise that perturbs the consumer population in each

i-th patch, i.e., 〈ξi(t)〉 = 0 and 〈ξi(t)ξj(t′)〉 = δijδ(t − t′), ∀i, j, and D is the noise

intensity. In the excitable region, the isolated system rests in a stable steady state

in the absence of noise [see Fig. 2.1(a)]. Inducing stochastic perturbations beyond

a threshold value of the noise amplitude drives the population to produce sustained

oscillations, as seen in Fig. 2.1(b).

2.3 Results

The interplay of node dynamics, network topology, and noise introduced in the model

(2.1a), gives rise to distinct dynamical regimes. We have numerically solved the

stochastic model (2.1a) using the Euler-Maruyama method with integration step size

10−3, and initial conditions are randomly generated from the uniform distribution

on the interval (0, 1). Depending upon noise intensity D, we demonstrate four

distinct space-time patterns for resource population in Fig. 2.2 (see Fig. 2.6 in

the Appendix for the corresponding consumer dynamics). In the absence of noise

(D = 0) or for a low noise intensity, all the nodes rest in the steady state, thus

giving a homogeneous steady state solution [Fig. 2.2(a)]. Now, in the presence of a

weak noise strength, the system breaks into two sub-populations having two distinct

noise-induced inhomogeneous steady states. The scenario is shown in Fig. 2.2(b)

for D = 0.00001. The time series in the right panel of Fig. 2.2(b) shows two

distinct branches of resource densities. Interestingly, the lower branch coincides

with the deterministic steady state. However, the presence of noise gives birth to
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an additional steady state, i.e., the upper branch. The spatiotemporal plot in the

left panel of Fig. 2.2(b) depicts that the upper branch randomly appears in the

background of the steady state of the lower branch. The presence of two steady

states breaks the spatial symmetry of the system, and we get a new stationary state

governed by noise-induced symmetry breaking. We find that the network exhibits

stochastic switching between the two branches for an intermediate noise intensity.

Fig. 2.2(c) demonstrates this scenario for D = 0.000033. For a large noise intensity

(D = 0.005), inhomogeneous steady states no longer exist; rather, stochastically

spiking incoherent oscillations take place [see Fig. 2.2(d)].

Moreover, to provide an insight into the effects of network topology on the dynamics

of the system, we fix the noise intensity D = 0.00001, coupling strength σ = 0.6

and vary the connectivity from local (s = 0.01) to global (s = 0.5) via non-local

(s = 0.03, s = 0.25) coupling [see Figs. 2.2(e)-2.2(h)]. We find notable differences

between dynamics with the changing network topology. Increasing the coupling

range of the network not only reduces the number of solutions but also changes

the dynamics from oscillatory to steady state. As observed from Fig. 2.2(e), local

coupling favors oscillating populations with spatial incoherence, whereas increasing

the coupling range shows a transition from oscillating populations [Fig. 2.2(e)] to

inhomogeneous steady states [Figs. 2.2(f)-2.2(g)], through to homogeneous solutions

[Fig. 2.2(h)]. Interestingly, in the presence of non-local coupling, as depicted in the

space-time plot in Fig. 2.2(f), oscillators randomly rest at the lower or the upper

branch; however, with the increasing network connectivity to global coupling, all

the oscillators settle at the lower branch [Fig. 2.2(h)], which also incites towards

homogeneous population densities. Thus, for a fixed noise intensity D and coupling

strength σ, the network model (2.1a) experiences NISB while moving from global

to local coupling.

The observed transition from oscillatory dynamics to inhomogeneous states impels

us to investigate our system’s qualitative behavior in these respective regimes.

We analyze the features of the oscillatory region through phase portrait in

Figs. 2.3(a)-2.3(b) for noise intensity D = 0.005. We observe that the density of

phase points of stochastic limit cycle attractor for one oscillator [see Fig. 2.3(a)] and

correspondingly for all the oscillators [see Fig. 2.3(b)] is larger around two population

densities, i.e., xi = 0.1 and xi = 0.55. To further elaborate on the phenomenon of

symmetry breaking observed in Fig. 2.2, we calculate the center of mass defined as

(Zakharova et al, 2014):

xc.m. =
1

T

∫ T

0

xi(t)dt, (2.2)

where xi is the resource density in each i-th patch, and T is taken sufficiently

large. Resource population settles exactly into two branches as is characterized
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Figure 2.3. Phase portraits exhibiting the long stay of attractor in the two domains around xi = 0.1 and
xi = 0.55 for (a) one oscillator (15th node), and (b) all the oscillators, at noise intensity D = 0.005. (c)
Center of mass (xc.m.), and (d) phase portrait at a particular time along with density distribution of yi
corresponding to NISB for non-local coupling (P = 8) at noise intensity D = 0.00001. The histogram in the
right panel of (d) represents the number of oscillators in either of the two states. Other model parameters
are r = 1, a = 9, b = 7, m = 1, ε = 0.01, σ = 0.1, and N = 101.

by two distinct values of center of mass [Fig. 2.3(c)], where for one part of the

population xc.m. ≈ 0.15 and for the other sub-population xc.m. takes the value around

0.5, therefore exhibiting two nonuniform states. A relevant observation illustrated

in the phase space [Fig. 2.3(d)] suggests an underlying mechanism for symmetry

breaking, specifically NISB, clearly indicating the coexistence of two steady states

in the network. We observe that wide distributions show up for two density values

(≈ 0.15 and ≈ 0.5), thus settling the system solely around these two states.

To gain a comprehensive view of the spatiotemporal dynamics in the network, we

compute phase diagrams in the (s,D) and (s,σ) parameter planes [see Figs. 2.4(a)

and 2.4(b), respectively]. Keeping the value of coupling strength σ fixed to 0.1, we

vary s and D in Fig. 2.4(a). For stronger noise intensity D, in the entire range

of s, the system resides in the asynchronous oscillatory regime. For weaker values

of D, we observe either asynchronous oscillations or NISB, along with a region

of stochastic switching, depending upon the coupling range s. NISB occurs for

a certain threshold value of s > 0.07, i.e., when the coupling is non-local with

around 8 nodes connected and persists up to s = 0.5 (globally coupled). However,

local coupling (s = 0.01) and less connected nodes (up to 6) maintain the oscillatory
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Figure 2.4. Phase diagrams in the (a) (s,D) plane for σ = 0.1, and (b) (s,σ) plane for D = 0.00001, where
NIO: noise-induced oscillations, SS: Stochastic switching, NISB: noise-induced symmetry breaking, and HSS:
Homogeneous steady state. (c)-(e) Distribution of the eigenvalues for different values of s for σ = 0.6 and
D = 0. Other model parameters are the same as in Fig. 2.2.

behavior. Moreover, a narrow zone of stochastic switching is observed between these

two regimes. Oscillations in stochastic excitable systems are known to occur due

to noisy perturbations (Hillenbrand, 2002). Noise-driven excitable systems possess

noise-induced eigenfrequency and thus can exhibit stochastic oscillations. The work

by Hidalgo et al (2012) describes the phenomenon of “stochastic amplification of

fluctuations”. The mechanism is associated with the resonance amplification of some

frequencies when the corresponding steady state equilibrium of the deterministic

system has complex eigenvalues. Therefore, we infer that the transition from a

steady state (D = 0) to an oscillatory state or a region of SS (D 6= 0) in our work

is due to stochastic amplification of fluctuations. In Fig. 2.4(b), we explore the

interplay of s and σ, with value of D being fixed to 0.00001. The oscillatory region

observed for a large number of connected nodes s = 0.21, narrows down to s =

0.02 with increasing coupling value σ, clearly determining the persisting oscillatory

pattern for local coupling in the whole range of σ. Moreover, for a large value of

σ (≈ 0.53), a transition from oscillations to NISB via stochastic switching takes

place for a lower coupling range. In contrast, with decreasing coupling strength,

more connected nodes are required for the transition. In the direction of global

coupling, beyond a threshold value of σ, the system traverses a synchronous steady

state (HSS).
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Our results can have significant implications for understanding the positive effects

of noise on species diversity. Metapopulation is essential as it supports the

persistence of many species under the events of local extinctions and re-colonization.

Understanding the ecological effects of population cycles on ecosystem processes

is also challenging. Studies (Armstrong and McGehee, 1980; Dutta et al, 2014,

2017) suggest that cycles promote the coexistence of several consumers competing

for shared resources. The work by Eveleigh et al (2007) shows that cyclic species

can enhance biodiversity through the “bird-feeder effect”. Therefore, oscillatory

dynamics may significantly contribute towards biodiversity maintenance (Chesson,

2000). Further, ecologists predict that large population fluctuations could shift

communities from one state to another. The presence of alternative stable equilibria

allows populations in different patches to settle in any stable states depending upon

the initial conditions. Thus there is no spatial synchronization, which impedes

extinction (Amritkar and Rangarajan, 2006) (local synchrony between a small

number of patches may be possible, resulting in the formation of multi-cluster

solutions).

The noise intensity D considered for our analysis is in the order of 10−5 [see Fig. 2.2].

Thus, a careful investigation of the model (2.1a) in the deterministic limit can give an

insight to explain the observed dynamics. Therefore, considering the deterministic

framework, i.e., D = 0 in (2.1a), we carry the linear stability analysis. We calculate

eigenvalues of the linearized system using the equilibrium points based upon the

changing network topology (Logofet, 2018). Let (x∗, y∗) = (x∗1, y
∗
1, x

∗
2, y
∗
2, . . . , x

∗
N , y

∗
N)

be a non-trivial equilibrium point of the system (2.1a) when D = 0. Linearization

of the deterministic system in the neighborhood of the equilibrium point (x∗, y∗)

yields the following block-structured matrix:

J =



J1(x
∗
1, y
∗
1)− diag{0, 2P} ... diag{0,mj}

... · · · ... diag{0,mj}

diag{0,mj}
... J2(x

∗
2, y
∗
2)− diag{0, 2P} ... diag{0,mj}

... · · ·

...
...

...
...

...
...

...

diag{0,mj}
... diag{0,mj}

... · · · ... JN(x∗N , y
∗
N)− diag{0, 2P}


,

where Ji is the Jacobian of the isolated i-th patch at an equilibrium point (x∗i , y
∗
i )

(i = 1, 2, . . . , N) given as:

Ji =

[
ji11 ji12

ji21 ji22

]
,

with ji11 = 1
ε
− 2x∗i

ε
− 1

ε

2a2x∗i yi∗
1+b2x∗i

, ji12 = −1
ε

a2x∗2i
1+b2xi∗2

, ji21 =
2a2x∗2i y∗i
(1+b2x∗2i )2

, and ji22 =
a2x∗2i

1+b2x∗2i
−1.

Further, mj = 1 if i-th and j-th nodes are connected, and mj = 0 otherwise.
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The coupling strength σ = 0.6 and noise intensity D = 0.00001 manifest four distinct

regimes based upon the value of s, as can be seen in Fig. 2.4(b). The transition

from oscillatory dynamics to NISB via SS occurs for s = 0.05, further traversing

HSS around s = 0.41. Here we intend to investigate whether the node dynamics

and network structure determine the dominant pattern of NISB in the limiting

value of D tending to 0. Figs. 2.4(c)- 2.4(e) show the distribution of eigenvalues

with varying coupling range s. We observe complex conjugate eigenvalues (λi) for

s ranging from 0.01 to 0.04 as shown for s = 0.03 in Fig. 2.4(c). It is ascertained

from Fig. 2.4(c) that the fixed point obtained at D = 0 for s = 0.03 is a stable spiral

since Real(λi) < 0 ∀i. However, as analyzed from Fig. 2.4(b) for the same coupling

range (s = 0.03), the presence of noise in the system results in the occurrence of

oscillations or SS. A recent study (Hutt et al, 2016) demonstrated the impact of

additive noise on networks, tuning their spectral properties. The work showed that

increasing noise intensity could coerce the eigenvalues to cross the imaginary axis.

The impact of noise on the eigenvalue spectrum that resulted in destabilizing the

equilibrium point by crossing the imaginary axis, and hence the occurrence of Hopf

bifurcation. Moving further to s = 0.05, we observe the emergence of a few real

eigenvalues [see Fig. 2.4(d)], which also eventually tend towards 0 with increasing

coupling range (s = 0.1), as observed from Fig. 2.4(e). We also notice that the

number of real eigenvalues increases in the passage of global coupling. Thus, we

infer that the presence of noise in the network (2.1a) can lead the real eigenvalues

to cross the origin, henceforth inducing NISB via a pitchfork bifurcation.

2.4 Conclusion

In conclusion, we have shown that an ecological network of identical excitable

systems can be driven out of the resting state leading to different collective dynamics,

including regimes of heterogeneous steady states and asynchronous oscillatory states,

mediated by noise intensity and network topology. For non-local coupling and

adequately tuning the noise intensity, we achieve an oscillatory regime due to the

resonance effect (Beninca et al, 2011) or a region of inhomogeneous steady states

(NISB). Further, by keeping the noise intensity fixed while changing the coupling

range from local to global, we identify a transition from an oscillatory domain to

a region HSS through NISB. While oscillatory and inhomogeneous steady states

support the survival of species, the emergence of HSS during the transition to global

coupling hinders biodiversity (Gupta et al, 2017). Our results are robust across a

large region in the parameter space, as demonstrated via phase diagrams. Therefore,

our findings could be important for understanding the mechanisms responsible for
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upholding biodiversity and ecosystem stability. Finally, deriving the Fokker-Planck

equation of stochastic ecological networks for the analytical tractability of the

observed collective dynamics is an important future direction.

2.5 Appendix 1: Stochastic consumer dynamics

In each node of the network, we consider an ecological consumer-resource system

whose dynamics are governed as:

ε
dx

dt
= rx(1− x)− a2x2

1 + b2x2
y, (2.3a)

dy

dt
=

a2x2

1 + b2x2
y −my, (2.3b)
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Figure 2.5. Species dynamics of the uncoupled deterministic model: (a) One-parameter bifurcation diagram
with variation in the parameter a. (b) Two-parameter bifurcation diagram in the (a, ε)-plane. Shaded
regions: [A] corresponds to the region where the system exhibits steady state dynamics. [B] is the region
where species abundance depicts oscillatory behavior. (c-d) Time series of the resource (x) for a = 8, and
a = 9, respectively. Other parameter values are ε = 0.01, b = 7, r = 1, and m = 1.

Depending upon the value of the parameter a, the model shows the transition

between cyclic and equilibrium dynamics. The underlying dynamics are depicted

in Fig. 2.5, where the one parameter bifurcation diagram (see Fig. 2.5(a)) and the

two-parameter bifurcation diagram (see Fig. 2.5(b)) show that the system remains

in the steady state dynamics for a < 7.345 and a > 8.975, however, a ∈ [7.345, 8.975]

determines the oscillatory region (the fixed point becomes unstable) for the isolated

system. Two representative time series are presented in Figs. 2.5(c)-2.5(d). As

the time-scale separation parameter (ε) is known to significantly impact population

dynamics, to analyze its sensitivity we plot the two-parameter bifurcation diagram

in the (a, ε)-plane.

In Fig. 2.6, we demonstrate the effect of noise intensity and network topology on

consumer (y) dynamics (corresponding to Fig. 2.2). For a fixed coupling range P = 8

and in the absence of noise (D = 0) we observe that all the nodes rest in the steady

state [Fig. 2.6(a)]. Adding noise into the system (D > 0), although with weak
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intensity, results in two inhomogeneous steady solutions, as shown in Fig. 2.6(b) for

D = 0.00001. However, due to the low population density maintained by consumers,

the upper and the lower steady state branches do not have a large difference, as was

in the case of resource (x) densities [see Fig. 2.2(b)]. Further, increasing noise

intensity results in the switching between the two branches of consumer densities

[Fig. 2.6(c)]. For a large noise intensity (D = 0.005), frequent spiking is noticed

[see Fig. 2.6(d)]. Moving ahead, for a fixed noise intensity D = 0.00001 and local
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Figure 2.6. (a)-(d) Space-time (left column) and corresponding time series plots (right column) of consumer
yi for P = 8, σ = 0.1 with varying noise intensities: (a) D = 0; steady state, (b) D = 0.00001; symmetry
breaking, (c) D = 0.000033; stochastic switching between two consumer densities, and (d) D = 0.005;
frequent spiking. (e)-(h) Space-time (left column) and corresponding time series (right column) plots for
D = 0.00001, σ = 0.6 with varying coupling range s: (e) s = 0.01 (local coupling); asynchronous oscillations,
(f) s = 0.04; symmetry breaking, (g) s = 0.25; most nodes settling at the lower branch, and (h) s = 0.5
(global coupling); steady state. Other model parameters are r = 1, a = 9, b = 7, m = 1, ε = 0.01, and
N = 101.

coupling (s = 0.01), we observe oscillating dynamics of the consumer population

from Fig. 2.6(e). Increasing the coupling range results in symmetry breaking as is

exhibited by the consumer population settling in the two branches [see Fig. 2.6(f)],

where the densities of the upper and the lower branches are not very significantly

apart. Therefore, any further increase in connectivity leads to the collision of the

two states, thus resulting in a single steady-state solution [Figs. 2.6(g)-2.6(h)].

2.6 Appendix 2: Ecological network with

stochastic birth and death rates

The noise in (2.1a) is incorporated extrinsically (additive), we now investigate how

an ecological network of stochastic excitable systems responds toward heterogeneity
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in network structure (due to varying degree distribution) and habitat patches (due

to stochasticity in the birth and death rates). Noise is added as an intrinsic source

to the system, arising from random fluctuations in the birth and death processes.

The dynamics of species in the i-th patch can be read as:

ε
dxi
dt

= r(1 +Dζi(t))xi(1− xi)−
a2x2i

1 + b2x2i
yi, (2.4a)

dyi
dt

=
a2x2i

1 + b2x2i
yi −m(1 +Dζi(t))yi + σ

j=N∑
j=1

Aij(yj − yi). (2.4b)

The species interaction across patches in a network occurs through the consumer

movement, where σ determines the coupling strength and Aij is the entry of

adjacency matrix A (representative of the network structure). Here, we consider

three different network topologies: the Watts-Strogatz (WS) (Watts and Strogatz,

1998) model, the Barabási-Albert (BA) (Barabási and Albert, 1999) model, and

the Erdős-Rényi (ER) model (Erdős and Rényi, 1959). For the WS network, the

interactions between the nodes with regular links are replaced by the random ones

depending upon the rewiring probability p. Increasing the probability p from 0

to 1 transits a network from order to completely random, and the WS network is

small-world when the value of p lies in between 0 and 1. The BA model follows

power-law distribution and generates scale-free networks, whereas, the ER model

generates random networks and follows the Poisson distribution.

2.6.1 Effect of habitat connectance in a regular network

(p = 0)

The effect of changing the average degree k (patch connectance) on population

dynamics (2.4a) is depicted in Fig. 2.7. We fix the noise intensity D = 1 and

coupling strength σ = 1 and increase the average degree. As observed from

Fig. 2.7(a), the system with a low average degree or less habitat connectance (k = 2)

exhibits asynchronous oscillatory solutions. On increasing the spatial connectivity

(Figs. 2.7(b)-2.7(c)), we observe that the underlying symmetry of the deterministic

skeleton breaks with the occurrence of alternative steady states. It is noticed that

for k = 10 (see Fig. 2.7(b)), the population keeps shifting between the two states

giving rise to stochastic switching (SS), whereas, the average degree k = 40 (see

Fig. 2.7(c)) completely settles the resource densities in the respective two branches,

thus resulting in noise-induced symmetry breaking (NISB). Further, as noticed from

Fig. 2.7(d), the global connectivity (k = 100) between the habitat patches also

results in symmetry breaking.

To further comprehend the observed scenarios, namely oscillatory, SS, and NISB
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Figure 2.7. Space-time plot (left column) and time series plot (right column) in a regular network (p = 0)
for D = 1 and, σ = 1 with varying average degree k: (a) k = 2 (nearest neighbor connections); asynchronous
oscillations, (b) k = 10; stochastic switching, (c) k = 40; symmetry breaking, and (d): k = 100 (global
connectivity); symmetry breaking. Other parameters are r = 1, a = 9, b = 7, m = 1, ε = 0.01, and N = 101.

by the changing average degree we calculate the center of mass (2.2). The low

average degree resulting in incoherent oscillating dynamics is depicted from the

rapid fluctuations between the values of the center of mass and the corresponding

stochastic limit cycle as observed in Fig. 2.8(a). Resource densities occasionally

fluctuate between the two branches for k = 20 as can be seen from Fig. 2.8(b),

whereas, the population completely resides in the respective states for global

connectivity, suggesting NISB (see Fig. 2.8(c)). The value of xc.m.(i) ≈ 0.55 for

one resource sub-population and the other sub-population settles at xc.m ≈ 0.12,

which is also clearly exhibited in the phase space that shows the wide distribution

of resource population wholly around two densities xi ≈ 0.12 and ≈ 0.55.
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2.6.2 Effect of increasing habitat connectance in different

network topologies (WS, BA, and ER)

Next, we explore the effect of increasing patch connectivity (k) in changing network

topologies. As observed in Fig. 2.9(a) and Fig. 2.9(d), WS and BA networks

result in noise-induced oscillating solutions, whereas ER model exhibits switching

between the alternate stable states (see Fig. 2.9(g)), when the connections between

habitat patches are less (k = 4). Increasing the average degree to k = 10 transits
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WS, and BA models from oscillatory dynamics to a regime of stochastic switching

(see Fig. 2.9(b) and Fig. 2.9(e)), and in ER network, the system gives rise to

inhomogeneous steady-state solutions, as seen in Fig. 2.9(h). Moving towards more

habitat connections (k = 40), under all three network topologies (WS, BA, and

ER), the system breaks into sub-populations resulting in symmetry breaking (see

Fig. 2.9(c), Fig. 2.9(f), and Fig. 2.9(i)). Therefore, remarkably, the occurrence of

NISB can easily be achieved for a higher average degree irrespective of the properties

of a random network.
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Figure 2.9. Time series of resource xi in WS ((a)-(c)) with p = 0.4, BA ((d)-(f)), and ER ((g)-(i))
networks with varying average degree k: [(a), (d), (g)] k = 4, [(b), (e), (h)] k = 10, [(c), (f), (i)] k = 40.
Other parameters are r = 1, a = 9, b = 7, m = 1, ε = 0.01, N = 101, σ = 1, and D = 1.
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Chapter 3

Effect of higher-order interactions

on the stability of ecological

communities

3.1 Introduction

In the study of complex networks, recent years have been of scientific growth,

successfully providing new insights into the organization and functioning of nonlinear

systems of interacting entities. An underlying assumption in representing networks

is that they capture only pairwise interactions (Boccaletti et al, 2006). However,

in complex systems comprising many units, any pairwise interaction is likely to

be influenced by the presence of other nodes. Growing evidence suggests that

in human dynamics (Cencetti et al, 2021), ecological systems (Grilli et al, 2017),

brain networks (Petri et al, 2014), and many physical and social systems, the

interactions cannot be decomposed into pairwise couplings (Battiston et al, 2020),

hence, the higher-order interactions are considered for the proper characterization

of the system.

Higher-order interactions are known to impact the collective dynamics of the

networked systems substantially, from synchronization (Millán et al, 2019), diffusion

(Carletti et al, 2020), explosive transitions (Kuehn and Bick, 2021) and evolution

(Alvarez-Rodriguez et al, 2021). In complex systems, such interactions are often

modeled using the simplicial complexes (Salnikov et al, 2018), which describe

different kinds of mathematical structures present in the network, including not

only nodes and links but also triangles, tetrahedron, etc. (see Fig. 3.1). The

consideration of three-way interactions in the context of species migration between

patches introduces a nuanced perspective that extends beyond the standard pairwise

connections. The movement of species depends on the collective conditions of

multiple neighboring patches concurrently. Some species exhibit spatial memory

that involve considering multiple patches in their decision-making process, for

instance, the availability of resources or suitable habitats in distant patches might

influence the migration choices of a species. Despite the recognition of the

35
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NETWORK SIMPLICIAL COMPLEX(a) (b)

Figure 3.1. Networks representing pairwise and higher-order interactions between nodes. (a) A network
with pairwise interactions between nodes connected by edges. (b) Higher-order interaction between nodes in
a network is modeled using simplicial complexes, where edges correspond to 1-simplices, and full triangles
represent 2-simplices (shown in green).

fundamental importance of moving beyond the dyadic couplings (Salnikov et al,

2018; Gong and Pikovsky, 2019; Arnaudon et al, 2022), a study of how the

many-body interactions in spatial ecological communities can lead to new dynamical

processes still needs to be explored. To investigate this, we focus on synchronization,

a nonlinear collective phenomenon observed in coupled oscillators (Shahal et al,

2020; Boccaletti et al, 2018). Considerable attention has been given to studying

the interplay between the network topology and its synchronizability, particularly

in weighted (Chavez et al, 2005), multilayer (Del Genio et al, 2016), small-world

networks (Barahona and Pecora, 2002). The work by Holland and Hastings (2008)

revealed that changing the connectivity by randomizing the dispersal network in

a spatial predator-prey model reduces synchrony. Moreover, recently, a stream of

research has shown that the inclusion of HOI can lead to collective synchronization

of the nodes (Gambuzza et al, 2021; Kovalenko et al, 2021; Parastesh et al, 2022).

Therefore, a careful investigation of synchronization for different structures of

connectivity with higher-order interactions is of great interest in ecology. This

is because complete synchronization in population abundance between spatially

separated patches can trigger global extinction and, hence, reduce ecosystem

stability.

In this chapter, we study the collective behavior of an ecological network within

simplicial complexes and analyze when the higher-order interactions can promote

synchronization. In particular, we observe that moving from a regular to an

irregular network topology (formed by randomizing the connectivity) results in

asynchronous solutions as reported in Holland and Hastings (2008). However,

incorporating higher-order interactions into the system favors synchrony, but
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complete synchronization does not exist when the considered network is random. We

then use the concept of clustering frequency to analyze the coherence or incoherence

in species dynamics. Further, we find that for all-to-all coupling, the network

with HOI exhibits global synchrony in a bounded region, which we have calculated

using the master stability function (MSF). Finally, we corroborate our results by

measuring the synchronization error which depending upon the interaction strengths

decreases to zero in the case of all-to-all coupling but remains high with a random

network topology.

3.2 Model and Methods

3.2.1 An ecological dispersal network with higher-order

interactions

Here, we consider an ecological network of N spatially separated patches subjected

not only to pairwise interactions but also to three-body higher-order interactions.

Each node in the network inhabits a food chain with a basal resource (x), an

intermediate consumer (y), and a top predator (z) (Hastings and Powell, 1991).

The dynamics of the food chain in each patch are described by the logistic growth

and Holling’s type-II functional response. We make the assumption that when

three patches, denoted as i, j,and k are interconnected in a manner where both

j and k are neighbors of i, and they are also neighbors of each other. Then in

addition to considering standard pairwise dispersal among the patches, there is also

the presence of a linear (or nonlinear) diffusion process connecting these patches

(HOI). The considered ecological network, with HOI between the nodes, is given by

the following model:

dxi
dt

= xi(1− xi)−
a1xiyi

1 + b1xi
, (3.1a)

dyi
dt

=
a1xiyi

1 + b1xi
− a2yizi

1 + b2yi
−m1yi + σ1

N∑
j=1

a
(1)
ij (yj − yi)

+ σ2

N∑
j=1

N∑
k=1

a
(2)
ijk(yj + yk − 2yi), (3.1b)

dzi
dt

=
a2yizi

1 + b2yi
−m2zi + σ1

N∑
j=1

a
(1)
ij (zj − zi)

+ σ2

N∑
j=1

N∑
k=1

a
(2)
ijk(zj + zk − 2zi), (3.1c)
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Figure 3.2. Phase portrait and time series of the food-chain model (3.1) in the absence of coupling
(i.e., when σ1 = σ2 = 0). (a) Phase portrait exhibiting a chaotic attractor. Time series representing
the abundances of (b) the resource, (b) the consumer, and (c) the top predator. Model parameters are
a1 = 5, a2 = 0.1, b1 = 3, b2 = 2,m1 = 0.4, and m2 = 0.01.

where i(= 1, 2....., N) denotes the node index. The mortality of consumers and

top predators is determined by the rates m1 and m2, respectively. σ1 and σ2 are

the coupling strengths corresponding to two-body and three-body interactions. A

two-body interaction or a simplex of dimension-1 corresponds to a link. Whereas a

three-body interaction or a 2 simplex is a collection of 3 nodes, forming a triangle in

a network and representing HOI in a network. a
(1)
ij are entries of a N ×N adjacency

matrix A(1), which takes the value 1 if i-th and j-th nodes are connected, and which

is 0 otherwise. For a two-dimensional object we define a N×N×N adjacency tensor

A(2) whose entry a
(2)
ijk = 1 if the nodes i, j, k form a triangle, otherwise a

(2)
ijk = 0.

The Laplacian matrix L = lij for a graph is defined as L = D − A, where D

is the diagonal matrix with degree of each node as its diagonal entries and A is

the adjacency matrix. Therefore, for simplicial complexes, the first-order Laplacian

matrix L(1) is the standard Laplacian matrix with:

d
(1)
i =

N∑
j=1

a
(1)
ij , (3.2)

denoting the degree of node i. d
(2)
i counts the number of triangles in which i belongs,
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given as:

d
(2)
i =

1

2

N∑
j=1

N∑
k=1

a
(2)
ijk, (3.3)

and d
(2)
ij characterizes the degree of the link (i, j), i.e, the number of 2-simplices to

which (i, j) participates:

d
(2)
ij =

N∑
k=1

a
(2)
ijk. (3.4)

The second-order Laplacian matrix L(2) is thus defined as:

L
(2)
ij =


0 for i 6= j and a

(1)
ij = 0,

−d(2)ij for i 6= j and a
(1)
ij 6=, 0

2d
(2)
i for i = j.

(3.5)

Here, we focus on the role of network structure in influencing synchronous dynamics

of model (3.1). We begin the modeling of a dispersal network by considering a regular

network of degree eight (each patch or node is connected to its four neighbors on

either side of a ring). We then randomize the structure by rewiring the edges, i.e., we

replace the existing connection between two patches with a new random connection

and analyze the effect the heterogeneity in the dispersal network has on the system’s

behavior. We further investigate the influence of HOI on synchronization in the

random network. To investigate the effect of connections between the nodes, we

also analyze how HOI shapes the population dynamics when the network is globally

coupled (i.e., the degree of each node is considered (N − 1) - all to all coupling).

3.2.2 Linear stability analysis of synchronized solution with

higher-order interactions

Apart from the nodal dynamics and network topology, the interaction strength

between spatially separated nodes of the coupled oscillators plays a crucial role

in governing the collective dynamics of a network. We now investigate the

synchronization in global network for two-body and three-body interaction strengths

using the master stability function (MSF) approach (Pecora and Carroll, 1998).

Considering simplicial complexes up to order two, a network of identical oscillators

with HOI can be written in general form as:

Ẋi = F (Xi) + σ1

N∑
j=1

a
(1)
ij H

(1)(Xi, Xj)

+ σ2

N∑
j=1

N∑
k=1

a
(2)
ijkH

(2)(Xi, Xj, Xk), i = 1, 2.....N

(3.6)
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where Xi is the m-dimensional state vector and F : Rm → Rm describes the

dynamics of the i-th node. H(1) and H(2) are the coupling functions defining the

interactions between different nodes in 1 and 2 simplex structures, respectively.

The existence of the synchronous solution X1 = X2 = · · · = XN = Xs is guaranteed

because the considered coupling functions are non-invasive (i.e. Hd(x, x, ..., x) ≡
0∀d), where Xs is the synchronization manifold (Gambuzza et al, 2021). To

investigate the stability of the synchronous solution, a tiny perturbation δXi is

added to the synchronous manifold Xs as δXi = Xi −Xs. Thus, the perturbation

equation corresponding to Eqn. (3.6) is as follows:

˙δXi = DF (Xs)δXi

+ σ1

N∑
j=1

a
(1)
ij

[
DH(1)(Xs, Xs)δXi +DH(1)(Xs, Xs)δXj

]
+ σ2

N∑
j=1

N∑
k=1

a
(2)
ijk

[
DH(2)(Xs, Xs, Xs)δXi

+DH(2)(Xs, Xs, Xs)δXj +DH(2)(Xs, Xs, Xs)δXk

]
,

(3.7)

where DF (Xs) is the m ×m Jacobian matrix of F , evaluated at the synchronous

manifold Xs. Therefore, we have

˙δXi =



˙δxi = Df(Xs)δXi,

˙δyi = Dg(Xs)δXi + σ1
∑N

j=1 a
(1)
ij [δyj − δyi]

+ σ2
∑N

j=1

∑N
k=1 a

(2)
ijk[δyj + δyk − 2δyi],

˙δzi = Dh(Xs)δXi + σ1
∑N

j=1 a
(1)
ij [δzj − δzi]

+ σ2
∑N

j=1

∑N
k=1 a

(2)
ijk[δzj + δzk − 2δzi] .

(3.8)

The Laplacian L(d) of an adjacency matrix A(d) is defined as L(d) = D(d) − A(d).
Furthermore from Eqn. (3.2) and Eqn. (3.3) one has d

(1)
i =

∑N
j=1 a

(1)
ij and d

(2)
i =

1
2

∑N
j=1

∑N
k=1 a

(2)
ijk, respectively. Since in model (3.1) we have considered dispersal in
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the intermediate consumer and the top predator, we here formulate ˙δyi as:

˙δyi = Dg(Xs)δXi + σ1

[ N∑
j=1

D
(1)
ij δyj −

N∑
j=1

L
(1)
ij δyj − δyi

N∑
j=1

a
(1)
ij

]

+ σ2

[ N∑
j=1

N∑
k=1

D
(2)
ijk[δyj + δyk]−

N∑
j=1

N∑
k=1

L
(2)
ijk[δyj + δyk]− 2δyi

N∑
j=1

N∑
k=1

a
(2)
ijk

]

= Dg(Xs)δXi − σ1
N∑
j=1

L
(1)
ij δyj − σ2

[ N∑
j=1

δyj

N∑
k=1

L
(2)
ijk +

N∑
k=1

δyk

N∑
j=1

L
(2)
ijk

]

= Dg(Xs)δXi − σ1
N∑
j=1

L
(1)
ij δyj − σ2

[ N∑
j=1

L
(2)
ij δyj +

N∑
k=1

L
(2)
ik δyk

]

= Dg(Xs)δXi − σ1
N∑
j=1

L
(1)
ij δyj − 2σ2

N∑
j=1

L
(2)
ij δyj,

(3.9)

˙δzi can be extended on the same lines. Henceforth, Eqn. (3.8) can be considered as:

˙δXi =


˙δxi = Df(Xs)δXi,

˙δyi = Dg(Xs)δXi − σ1
∑N

j=1 L
(1)
ij δyj − 2σ2

∑N
j=1 L

(2)
ij δyj,

˙δzi = Dh(Xs)δXi − σ1
∑N

j=1 L
(1)
ij δzj − 2σ2

∑N
j=1 L

(2)
ij δzj,

(3.10)

Eqn. (3.7) can thus be written as:

˙δXi = DF (Xs)δXi − σ1
N∑
j=1

L
(1)
ij DH

(1)(Xs, Xs)δXj

− σ2
N∑
j=1

L
(2)
ij DH

(2)(Xs, Xs, Xs)δXj,

(3.11)

Now writing Eqn. (3.11) in block form we get the variational equation of the system

(Eqn. (3.6)) as:

˙δX =
[
IN ⊗DF − σ1L(1) ⊗DH(1) − σ2L(2) ⊗DH(2)

]
δX, (3.12)

where IN is the N×N identity matrix, ⊗ symbolises the Kronecker product. For the

all to all network configuration, we have L(2) = (N − 2)L(1). Therefore, Eqn. (3.12)

reduces to

˙δX =
[
IN ⊗DF − σ1L(1) ⊗DH(1) − σ2(N − 2)L(1) ⊗DH(2)

]
δX. (3.13)
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Figure 3.3. Space-time plots (left column) and corresponding time series plots (right column) of the top
predator z in a network with average degree 8 for σ1 = 0.004: (a) a regular network exhibiting complete
synchrony for σ2 = 0; (b) a random network with asynchronous oscillations for σ2 = 0; and (c) a random
network with suppressed asynchrony for σ2 = 0.002. Other parameters are a1 = 5, a2 = 0.1, b1 = 3, b2 =
2,m1 = 0.4,m2 = 0.01, and N = 21.

Hence,

˙δXi = DF (Xs)δXi − (σ1 + 2σ2(N − 2))
N∑
j=1

L
(1)
ij δXj . (3.14)

Considering new variables ξ = (Q−1⊗Im)δX and taking into account the eigenvalue

of L(1), i.e., λ1 = 0 and λ2 = ..... = λN = N . Hence, for i ∈ {2, 3, ....., N} we get

ξ̇i =
[
DF − σ1NDH(1) − σ2N(N − 2)DH(2)

]
ξi. (3.15)

The first eigenvalue, denoted as λ1 = 0, signifies that the system evolves along the

synchronization manifold. In contrast, for the remaining eigenvalues λ2, ....., λN , the

system’s evolution is transverse to the synchronization manifold. The stability of

the synchronous state is examined by computing the maximum Lyapunov exponent

(Λ), which in this case is a function of σ1, σ2 and N . Negative values of Λ, i.e.,

Λ < 0 for λ = N , indicate the stability of the synchronization manifold.
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3.3 Results

3.3.1 Role of random network topology on synchronization

in the presence of higher-order interaction

We find notable differences between the collective dynamics depending upon the type

of interactions among the nodes. For different network topologies, we demonstrate

different space-time patterns for the population of top-predators in Fig. 3.3. In

the absence of higher-order interactions (σ2 = 0) and for a regular network with a

nodal degree 8, we observe complete synchrony even for a weak two-body interaction

strength σ1 = 0.004 (see Fig. 3.3(a)). On randomizing the network (with the average

degree 8), asynchronous oscillations are observed, as shown in Fig. 3.3(b). However,

considering three-body interactions in the random network in the presence of weak

coupling strength (σ2 = 0.002), the system settles into two cluster solutions (all

the oscillators settle into two branches) (see Fig. 3.3(c)). Hence, for a random

network, the inclusion of HOI is capable of reducing the degree of asynchrony

through multi-cluster solutions.

3.3.2 Cluster analysis

The above-mentioned results show a transition from complete synchrony to the

asynchronous solution through to the system exhibiting two oscillatory solutions

with the changing network topology and interaction type. Therefore, to gain

information on the system’s collective dynamics, we analyze the distribution of

clusters (see Fig. 3.4). We calculate the correlation coefficient (ρij) to study the

coherence between predator species (z) abundances of i-th and j-th patches, which

is given as:

ρij =
〈zizj〉 − 〈zi〉〈zj〉√

〈zi2〉 − 〈zi〉2
√
〈zj2〉 − 〈zj〉2

, (3.16)

where zi is the predator density in the i-th patch and 〈...〉 is the average over the

time interval [t, t+ t], and t is a large time-period. The set of patches is considered

to form a 1-cluster when ρij ≈ 1. Out of the N patches, the network can exhibit

1 ≤ k ≤ N cluster solutions where 1− cluster represents complete synchrony, and

N− clusters correspond to complete asynchrony. The frequency of k clusters is

determined as:

Frequency =
No. of ≤ k-clusters

No. of simulations
. (3.17)

The 1-cluster solution shown in Fig. 3.4(a) for a regular network and σ2 = 0

corresponds to complete synchrony. Randomization of the network increases
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Figure 3.4. Frequency of cluster states for different network topologies when σ1 = 0.004: (a) regular
network exhibiting one cluster solution for σ2 = 0; (b) random network exhibiting a high number of clusters
for σ2 = 0; and (c) random network exhibiting two to three clusters for σ2 = 0.01. The frequency of each
cluster is shown using 102 independent simulations. Other parameters are a1 = 5, a2 = 0.1, b1 = 3, b2 =
2,m1 = 0.4,m2 = 0.01, and N = 21.

the proportion of solutions from a moderate to a high number of clusters (see

Fig. 3.4(b)). However, by introducing higher-order interaction into the network,

the frequency of getting 2-cluster solution increases (see Fig. 3.4(c)).

3.3.3 Effect of higher-order interaction strength on

synchrony in a network with all-to-all coupling

Our analysis from Fig. 3.3 and Fig. 3.4 shows that once a network with degree

eight results in asynchronous solutions from complete synchrony (due to rewiring

edges), introducing many-body interactions with any range of coupling strength

(even σ2 = 0.01) does not ensure complete synchrony. This compels us to investigate

the collective dynamics of a network with a higher degree of connectivity under

many-body interactions. Therefore, by increasing the degree of each node to N − 1

leading to all-to-all or global coupling, we study the effect of HOI strength (σ2) on

the collective dynamics. For coupling values of σ1 = 10−6 and σ2 = 10−6, we observe

many cluster solutions, representing strong asynchrony (see Fig. 3.5(a)). However,

with increasing the value of σ2 (σ1 is kept fixed) even to a very weak coupling limit

we perceive from Fig. 3.5(b) the suppression of asynchrony which on further increase

in σ2 (=10−4) leads to one cluster solution (see Fig. 3.5(c)).
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Figure 3.5. Space-time plots (left column) and corresponding time series plots (right column) of the top
predator z in a regular network with all-to-all coupling for σ1 = 10−6 with varying higher-order coupling
strength σ2: (a) σ2 = 10−6 results in strong asynchrony between the nodes; (b) σ2 = 10−5 results in
asynchrony with many cluster solutions; and (c) σ2 = 10−4 results in complete synchrony. Other parameters
are a1 = 5, a2 = 0.1, b1 = 3, b2 = 2,m1 = 0.4,m2 = 0.01, and N = 21.
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3.3.4 Using the master stability function approach to

determine the coupling range of stable synchronous

solution in a global network with higher-order

interactions

We now use the MSF approach to calculate the coupling range for pairwise

interaction and HOI, aiming to analyze the stability of the synchronous solution.

Fig. 3.6(a) illustrates the maximal Lyapunov exponent (MLE) for combinations of

σ1 and σ2 in the case of global coupling. It shows that in the presence of second-order

interactions, synchronization can be achieved even with a weak coupling value of σ1

(characterized by a negative MLE). The curves of Λ plotted in Fig. 3.6(b) exhibit

the effect of second-order interaction strength (σ2) on synchronization for different

values of σ1. We observe that even for a very low value of σ1 (=10−6), a critical

value of HOI strength σ2 can stabilize the synchronous solution, evident by the MLE

crossing the zero line. However, the threshold value for achieving stability decreases

with an increase in the value of σ1.
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Figure 3.6. Master stability function for the model (3.1) in the context of global coupling. The maximum
Lyapunov exponent (MLE) is calculated to analyze the stability of synchronous solution: (a) MLE depicted
in (σ1, σ2) parameter space. (b) The MLE (Λ) plots exhibiting variation along σ2 for different values of σ1.
On increasing second-order interaction strength (σ2), a stable synchronous state is achieved even for the
lower value of σ1.

3.3.5 Synchronization error

We investigate the synchronization of a random and global network with N patches

for different pairwise and non-pairwise interaction strengths. We calculate the

averaged synchronization error to evaluate the degree of synchrony, which is given

as (Gambuzza et al, 2021):

E =

〈(
1

N(N − 1)

N∑
i,j=1

‖xj(t)− xi(t)‖2
) 1

2
〉
T

. (3.18)
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We find that for a random network, low values of σ1 and σ2 result in a wide region

exhibiting high synchronous error (E ≈ 7), as can be seen in Fig. 3.7(a). As

perceived, the value of E keeps on decreasing with an increase in σ2. However,

even a large value of σ2 does not lead toward complete synchrony, and the system

exhibits an asynchronous solution, with a minimum value of E reaching 4. On the

contrary, for a network with global coupling (see Fig. 3.7(b)), we notice a transition

from a narrow region with high synchrony error to a broad region with complete

synchrony (E = 0). The observed outcome is completely in line with the results of

linear stability analysis (Fig. 3.6).

Figure 3.7. Synchronization error E in (σ2, σ1) plane for different network topologies: (a) random network,
the value of E varies from 7 to 4 with increasing σ2, and (b) after a region of asynchrony, the global network
exhibits a completely synchronous solution (E = 0).

3.4 Conclusions

The study of collective behavior in networks of coupled oscillators has always been

a central issue in nonlinear dynamics. Synchronization is a prevalent phenomenon

in natural systems that can be understood by analyzing the interactions in spatially

extended systems. Here, considering an ecological network composed of tri-trophic

food chains, we elucidate the effect of network structure and HOI on collective

ecological dynamics. Our results illustrate that the interacting units in a network,

along with non-pairwise coupling, influence population dynamics and can thus

impact the stability of a community.

Synchrony has fundamental but conflicting implications for the persistence and

stability of metapopulations at local and regional scales. Synchrony amplifies

the risk of global extinction and consequently diminishes species persistence.

Synchronization dynamics on complex networks has been widely studied in the

literature, and it is known to be very significantly affected by the spectral properties

of a dispersal network (Holland and Hastings, 2008; Gupta et al, 2017). In the

presence of HOI, a regular network with a low average degree exhibits synchronous



48 Chapter 3. Higher-order interactions in ecological commnunities

behavior even in a weak coupling limit. Randomizing the network structure

by rewiring the links induces asynchrony. However, incorporating three-body

interactions in the system suppresses asynchrony and results in the system exhibiting

two clusters. On the contrary, in global coupling (high node degree), the system

with increasing higher-order coupling strength shows a transition from a region of

asynchronous oscillations to a synchronous regime (one cluster solution).

In this chapter, we explore the stability of collective population dynamics within

simplicial structures using the master stability function approach to analyze global

synchrony scenarios. Our investigation shows that the synchronous manifold

exhibits stability within a defined bounded region. We find that higher-order

interaction suppresses asynchrony and leads to synchronous solutions. However,

considering random network topology prevents complete synchrony, thus impeding

global extinction risk. Overall, our results illustrate that the interacting units in

a network and non-pairwise coupling influence population dynamics and can thus

impact the stability of a community.



Chapter 4

Resource pulses and foraging

behavior shape spatial population

dynamics

4.1 Introduction

The recognition of the biodiversity effects on ecosystem stability has a long history

in ecology (Tilman, 1996; Naeem et al, 1994). However, anthropogenic stressors,

abiotic conditions, and trophic structure have led to significant changes in the

composition of ecological communities. Mounting evidence (Chapin Iii et al, 2000;

Hooper et al, 2005; Balvanera et al, 2006; Cardinale et al, 2006) report that the loss of

species resulting in declining biodiversity has raised concern about its consequences

on the functioning and services of ecosystems. Human domination over Earth’s

system has essentially altered biotic structure (Vitousek et al, 1997) concerning

the number of coexisting species (species richness) and their relative abundance.

Degradation and conversion of natural ecosystems are imperiling the species at

an accelerating rate (Steffen et al, 2007; Vitousek et al, 1997). Habitat loss and

fragmentation are the underlying reasons for the changes in the population and

distribution of organisms (Pereira et al, 2010; Rands et al, 2010). Fragmentation

results in loss of area and increasing spatial isolation, thus increasing the extinction

risk of species due to demographic stochasticity (Fahrig, 2003; Lindenmayer and

Fischer, 2013). Therefore, understanding how species interactions and spatial change

influence population dynamics is a longstanding issue in spatial ecology.

Ecologists find that the ability of organisms to move between spatially separated

patches is a crucial factor in driving species dynamics in a fragmented landscape

(Levins, 1969; Armsworth and Roughgarden, 2005; Niebuhr et al, 2015). However,

increased fragmentation strongly impacts animal movements, leading to more

considerable distances between the habitat patches, thus lowering the connectivity

and the recolonization rates (Brown and Kodric-Brown, 1977; Hanski et al, 2004).

Hence, the movement pattern that animals adapt during foraging is essential in

determining their survivability (Viswanathan et al, 1999; Zollner and Lima, 1999).

49
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Considerable attention has been paid to quantifying the movement strategies of

foragers (Viswanathan et al, 1999; Turchin, 1998; Kareiva and Shigesada, 1983;

Crist et al, 1992; Bartumeus et al, 2003; Austin et al, 2004). However, investigating

the impact of demographic rates and movement behavior concerning the resource

abundance to maintain ecological stability still needs to be explored.

Studies have shown that animals adjust their searching behavior following the

availability of food resources (Benhamou and Bovet, 1989; Newlands et al, 2004;

Nolet and Mooij, 2002; Bell, 2012). A general theory of foraging in ecology is that

animals in areas of high resource abundance displace less, thereby increasing the

usage of resources (Focardi et al, 1996; Turchin, 1991; Kareiva and Odell, 1987).

Whereas, when the density of resources is less, the faster movements resulting

in a large displacement increase the chance of food capture and thus are more

efficient than the ones with high tortuosity (Turchin, 1991; Zollner and Lima, 1999;

Bartumeus et al, 2005). Turchin (1998); Lima and Zollner (1996) consider that

realistic animal movements comprise discrete series of displacement events separated

by turning angles. Discretization of movement behavior determines the statistical

distribution of displacement or step lengths and change of direction (i.e., turning

angles). Such discretized movement paths can be examined through the techniques

of random walk theory.

Lévy walk is a particular form of random walk composed of clusters of short steps

with long travels between them (Viswanathan et al, 2011). It was Shlesinger and

Klafter (1986) who first proposed that Lévy walks could be observed in animal

search strategies. Further, various studies have reported Lévy walk searches in many

animals, for instance moths (Agrotis segetum) (Reynolds et al, 2007a), honeybees

(Apis mellifera) (Reynolds et al, 2007b), and marine fish (Sims et al, 2008). Lévy

walks are scale-free movements with uniform distribution for turning angles and

power-law distribution P (l) ∝ l−β of step length (l) with 1 < β ≤ 3. Research

suggests that Lévy walks optimize search strategies when resources are sparse and

distributed in fragmented landscapes (Viswanathan et al, 2011; Bartumeus and

Catalan, 2009). In a recent paper (Dannemann et al, 2018), the authors report the

population dynamics in the presence of foragers for different amounts of habitat

availability. Further, Nauta et al (2022) analyzes the effect of varying habitat

fragmentation on the system’s dynamics in fragmented landscapes. However, the

resource pulse is an essential environmental factor that has not yet been studied

much in landscape ecology theory in the context of foraging strategies. Resource

pulses are episodes of considerable magnitude, short-duration events of increased

resource availability (Yang et al, 2008), that are prevalent (Ostfeld and Keesing,

2000; Yang et al, 2008). Resource pulses are characterised by sudden and temporary

increase in the availability of a resource. This increase is often short-lived with
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a rapid but temporary change in the environment. An event of resource pulse

substantially increases the proportion of resource availability in the system, and

studies (Ostfeld and Keesing, 2000) report that rare events can have significant and

persistent impacts on communities. Hence, how the natural communities in the

fragmented landscapes with optimal foraging strategies respond to these events will

directly influence the diversity and stability of the system and needs to be examined.

To study the interplay between foraging behavior, resource pulse, and the survival

rates of species, we consider a spatially explicit stochastic vegetation-grazer model

in a fragmented landscape. Resources are restricted to occupied sites, and grazers

can disperse according to a power law kernel (Lévy random walk). By considering

different demographic rates and movement strategies, we examine their effect on the

persistence of populations. Our findings indicate that adopting an optimal foraging

strategy, depending upon the demographic rates of species and the availability of

resources has the potential to mitigate the effects of unfavorable conditions and

promote species coexistence.

Vegetation Dynamics
(Resource Pulse)

Dispersal of grazer Consumption by grazer Reproduction of grazer

Figure 4.1. A schematic representation of different stages of vegetation and grazers incorporated in the
model. A resource pulse is incorporated periodically after every tv time (upper panel) in which vegetation
can either die naturally (pink circle) or reproduce in the nearest empty cell (yellow circle). The lower panel
corresponds to the three stages of a grazer. A randomly selected grazer (blue square) disperses to a new
site, as shown by an arrow. It attacks and consumes vegetation (red circle), making the cell vacant. It then
reproduces at the site.
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4.2 A stochastic vegetation-grazer model in

fragmented landscapes
Here, we develop a stochastic vegetation-grazer model in a two-dimensional

fragmented landscape. The two-dimensional space is a periodic lattice divided into

N square lattice sites. The initial vegetation habitat is a fraction φ ∈ [0, 1] of

the lattice sites. The vegetation is then allowed to reach a steady state following

the contact process model, which has widely been used in epidemiology (Harris,

1974; Levin and Durrett, 1996), and also applied in ecology for modeling spatial

dynamics of plant species (Barkham and Hance, 1982; Majumder et al, 2021). At

each time step, vegetation reproduces with a probability p or may naturally die with

a probability 1− p, and the following model governs the dynamics:

dv

dt
= pv(1− v)− v(1− p). (4.1)

Further, a fraction ρ ∈ [0, 1] of vegetation abundance at the steady state is

introduced as the number of initial grazers into the system. At every discrete

time step, a grazer dies with a rate m or disperses to a new site following Lévy

movement, where the dispersal length l > 1 is drawn from the power-law distribution

P (l) = cl−β, where β is the power-law exponent and c the normalization constant.

The parameter β describes the range of movement behaviors. For β ≥ 3, the

random walk is similar to Brownian motion. For 1 < β < 3, the movement becomes

superdiffusive (Lévy) and reaching to straight-line paths (ballistic motion) as β → 1.

In our model, we consider that the encounter of grazer-vegetation results in the

decay of vegetation with a probability µ, and vegetation growth is seasonal. The

rejuvenation of vegetation takes place at regular time intervals through resource

pulses. We simulate the grazer-vegetation model on a 2D regular lattice of length

L = 100, with the power-law exponent 1 < β ≤ 3.5. The spatially averaged grazer

and vegetation densities are denoted by g and v, respectively. We initialize the

simulations with g0 = ρ×vs number of grazers randomly distributed into the matrix

after the vegetation has reached a steady state abundance vs.

4.3 Results

4.3.1 Population dynamics with different movement

strategies

We analyze the population dynamics for different adapted movement strategies by

the grazers. Allowing the vegetation to reach its equilibrium density for a fixed
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reproduction rate (p), grazers-vegetation dynamics is determined for a range of

movement varying from ballistic (β ∼ 1) to Brownian (β ≥ 3) motion. We observe

different vegetation and grazer interaction scenarios for a fixed rate of grazers’

mortality (m), we observe different vegetation and grazer interaction scenarios.
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Figure 4.2. Evolution of the spatially averaged densities v(t) (vegetation) and g(t) (grazers) where the
mortality rate of grazers are considered as m = 0.07 (in (a)-(c)), and m = 0.2 (in (d)-(f)). Time series
and the corresponding power spectrum illustrate three different population scenarios: extinction of grazers,
steady state coexistence, or oscillatory coexistence, depending upon the value of β, which determines the
range of movement: (a), (d) β = 1.1; (b), (e) β = 2.2; and (c), (f) β = 3.5. Other parameters are p = 0.7,
µ = 0.2, and L = 100.

As observed from Fig. 4.2(a), for an intermediate mortality rate (m = 0.07), the

highly superdiffusive grazers (β ∼ 1) in the initial time surpass the vegetation,

which leads to the decay of vegetation (see Fig. 4.3(a) left). The random diffusion

of grazers in space leads to the exploitation of vegetation to the extent that decreases

grazers’ density, which in the long term goes to zero. On the extinction of grazers,

vegetation proliferates as a result of resource pulse and thus reaches its maximum

abundance obtained from the contact process (see Fig. 4.3(a) right). In contrast,

with the same parameter values, for the Brownian motion (β > 3), our model

predicts oscillatory species coexistence, clearly illustrated by the time-series and the

corresponding spectral analysis in Fig. 4.2(c) and its configuration is depicted in

Fig. 4.3(b).

Grazer-vegetation encounter shows drastically different dynamics in environments

not favorable for grazers. The preceding results signify that the Brownian motion

stabilizes coexistence compared to ballistic motion. However, in adverse conditions,

when the mortality of grazers is high (m = 0.2), we perceive the extinction of grazers

for β > 3 (see Fig. 4.2(f)). Due to its slow diffusion, a Brownian grazer has a high

probability of staying in the vicinity of a focal cell, leading to poor utilization of the

vegetation and, hence, the collapse of grazers. On the contrary, ballistic movements

induce steady-state coexistence as observed from Fig. 4.2(d). Random motion of
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Figure 4.3. Initial (left panel) and final (right panel) time configurations of grazers (in red) and vegetation
(in green) at an intermediate rate of mortality (m = 0.07). (a) β ∼ 1 (highly superdiffusive grazers): the
left panel shows the initial time density configuration when grazers have outreached vegetation. This leads
to the extinction of grazers on reaching the final time (right panel) and the rejuvenation of vegetation due
to resource pulse, (b) β = 3.5 (Brownian grazers): grazers and vegetation coexist in the final time (right
panel). Other parameters are p = 0.7, µ = 0.2, and L = 100.

the grazers increases its encountering probability with the vegetation. However,

due to high mortality, grazers’ abundance cannot exceed that of the vegetation,

leaving time for vegetation to rejuvenate. Thus, resulting in species’ coexistence

(steady-state) of species, the spatial configuration is illustrated in Fig. 4.7. For the

intermediate range of Lévy exponent (β ∼ 2), our model shows the coexistence of

species determined by grazers adopting Lévy walk and the rate of mortality. We

observe the oscillatory coexistence of vegetation and grazers for an intermediate rate

of mortality (see Fig. 4.2(b)), whereas, at high mortality, population densities settle

down to steady-states (coexisting) as shown in Fig. 4.2(e). Therefore, as analyzed

from the dynamics, our model suggests that at the intermediate β value, mortality

does not adversely affect the population abundance.

As observed, ballistic movements (β ∼ 1) can prevent extinction at high rates of

grazers’ mortality, which is not the case whenm = 0.07, where the Brownian foragers
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Figure 4.4. Cluster size distribution of vegetation (red) and grazers (green) for different values of m and
β. Left ((a)-(c)) and right panels ((d)-(f)) show the trends corresponding to m = 0.07, and m = 0.2,
respectively, where in (a), (d) β ∼ 1; (b), (e) β ∼ 2.2; and (c), (f) β > 3. Other parameters are µ = 0.2,
p = 0.7, and L = 100.

are more likely to promote coexistence (see Fig. 4.2). Therefore, to investigate

this, we analyze the population distribution in the landscape for different foraging

strategies β and mortality rates (m) through the cluster size distribution (CSD).

We calculate inverse cumulative distribution function (CDF) for m = 0.07, and

m = 0.2 at different values of β ranging from straight line paths (β ∼ 1) to Brownian

movements (β > 3) in Fig. 4.4. The CDF shows a declining trend, indicating

the relatively small probability of the species being distributed in large clusters.

However, the probability of the formation of large clusters increases as the value of

β rises from 1.1 (see Fig. 4.4(a) and Fig. 4.4(d)) to β = 3.5 as shown in Fig. 4.4(c)
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and Fig. 4.4(f), which reflects the fact that the large β values makes the foragers

sessile, restricting their movements to the nearby sites, hence, resulting in more

particles in a cluster. Moreover, the effect of m on the distribution of grazers in

the landscape is also well depicted in Fig. 4.4(a) and Fig. 4.4(f). As noticed, when

m = 0.07, ballistic motion results in the complete elimination of grazers from the

landscape (see Fig. 4.4(a)), and interestingly, this goes for the Brownian foragers

when the morality rate is increased to m = 0.2 (see Fig. 4.4(f)).
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Figure 4.5. Phase diagrams in the (β, p)-plane depicting various dynamical regimes corresponding to (a)
m = 0.04, (b) m = 0.07, and (c) m = 0.2. Other parameters are µ = 0.2, and L = 100.

4.3.2 Vegetation’s reproduction rate and foraging behavior

We here analyze the simultaneous effect of vegetation growth and Lévy exponent

on spatiotemporal dynamics for which we compute the phase diagrams in (p, β)

parameter planes. Keeping the mortality m fixed to 0.04, 0.07 and 0.2, we vary p

and β correspondingly in Fig. 4.5(a), Fig. 4.5(b), and Fig. 4.5(c). We observe that

the movement strategy (β) does not affect the system’s behavior for a low p value

(meager resources), resulting in grazer extinction at all the considered mortality

rates. However, increasing the value of p gives rise to different dynamical regimes

depending upon the mortality rate m and the Lévy exponent (β). As shown in the

phase diagrams (see Fig. 4.5), the ballistic movements (β ∼ 1) and the Brownian

grazers (β > 3) show diverse outcomes in line with mortality m. According to

Fig. 4.5(a), increasing vegetation growth enhances the chance of encountering grazers

with vegetation. However, a very low mortality rate of grazers (m = 0.04) leads

to over-exploitation of vegetation, thus eventually resulting in global extinction.

Further, higher p values increase the chance of vegetation survival, and hence,

vegetation-grazer coexistence is observed. Further, Fig. 4.5(b) illustrates that for

an intermediate rate of mortality (m = 0.07) and the value of β > 3, the system

transitions from a region of grazer extinction to the oscillatory regime for a much

lower value of p (∼ 0.65), which however increases to ∼ 0.88 as the foraging strategy

changes from the Brownian to Ballistic movement. Further, increasing the value of
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p results in the transition from oscillatory coexistence to a region of steady-state

coexistence. On the contrary, as analyzed, at a high rate of mortality (m = 0.2),

gazers with ballistic movements show a transition from extinction to a steady-state

coexistence at a lower p value (∼ 0.65), whereas, for the Brownian grazers, higher

resource abundance (p ∼ 0.72) is required to promote the survivability.
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Figure 4.6. Average grazer density as a function of p at (a) m = 0.07, and (b) m = 0.2 for three different
values of β. The shaded region corresponds to the oscillatory population dynamics and is represented by the
95% confidence interval. Other parameters are µ = 0.2, and L = 100.

To gain a comprehensive understanding, we calculate the average grazer abundance

as a function of p for different values of β and m (see Fig. 4.6). We observe that

beyond a threshold value of p, all the movement strategies effectively maintain

the grazer’s abundance; however, the effect of the Lévy exponent on the systems’

dynamics largely depends upon the value of m. As shown in Fig. 4.6(a), for

m = 0.07, the threshold value of p required for the transition to oscillatory

state and the maintenance of abundance is high for the Ballistic grazers (also see

Fig. 4.5(a)). We here observe that up to p ∼ 0.92, the Brownian strategy leads

to a relatively higher average abundance of grazers than Lévy and the ballistic

movements. However, ballistic foragers result in high average density (irrespective

of p), in contrast to Lévy and Brownian movement for m = 0.2, as illustrated in

Fig. 4.6(b). High mortality does not allow grazers to surpass vegetation, while

ballistic motion increases the chances of an encounter, thus maintaining species

richness. Another exciting result observed through this analysis is that after a

certain threshold of p ∼ 0.96, the grazer’s abundance in the coexisting domain

(steady state) drops somewhat, irrespective of the foraging strategy. Moreover, at

a low growth rate (p ∼ 7), when resource density is less, Fig. 4.6(b) suggests that,

at a high rate of mortality (m = 0.2), ballistic movements (β ∼ 1), characterized by

random large displacements can increase the probability of food capture and hence

are more efficient than the Brownian foraging (β > 3). However, the opposite results

are observed in the case of a low rate of mortality (m = 0.07) (see Fig. 4.6(a)).
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4.4 Discussion

Although resource pulse promotes species coexistence (Chesson and Warner, 1981;

Warner and Chesson, 1985), it does not avert the significant impacts the other

mechanisms might have on ecosystems. Here, considering resource pulse in our

stochastic vegetation-grazer model, we analyze the unified effects of foraging

behavior and life-history traits on the dynamics of spatial ecosystems. When the

vegetation has attained a state of equilibrium density, the adaptability of grazers to

the landscape and the evolution of vegetation and grazers is determined primarily

by the foraging strategy (β) and the mortality rate of grazers (m).

Movement strategies are vital in maintaining connectivity and increasing species

survival in a fragmented landscape. The work by Shlesinger and Klafter (1986);

Dannemann et al (2018) suggests that Lévy walks optimize search in scarce

environments, whereas Niebuhr et al (2015) observed straighter paths (Ballistic) as

the optimal movement strategy in all situations. Our study finds that the efficient

search strategy changes depending on the species’ mortality rate. As analyzed from

Fig. 4.2(a-c), the overexploitation of vegetation at the initial time due to the lower

mortality rate (higher grazing risk) leads to a significant drop in resource abundance

(also see Fig. 4.3(a) (left panel)). The grazers of pulsed vegetation show an adaptive

response through movement strategies, which affects their evolution. Lévy walk and

Brownian foraging result in oscillatory species coexistence. However, straight search

paths due to the high probability of missing an encounter with the vegetation,

especially when the resources are scarce, result in the extinction of grazers (see

Fig. 4.2(a)).

Results regarding the optimal search behavior are likely to reflect what happens

when the mortality risk of grazers is increased. In contrast to low mortality, a high

mortality rate decreases the grazing risk, due to which grazer’s density does not

exceed the vegetation abundance. Therefore, contrary to our previous findings where

Lévy and Brownian searches happened to be effective search strategies by promoting

species coexistence, here we observe that the optimal movement behavior changes

from the Brownian to ballistic walk (see Fig. 4.2(d-f)). This reflects that under

the risk of high mortality, the only way would be to increase the rate of finding a

resource, which is only possible because of a straight-line search (Zollner and Lima,

1999). The long displacement in superdiffusive walk (β ∼ 1) counterbalances the

effect of high mortality, which is not possible in the case of Brownian foragers.

Our analysis of an effective movement strategy at different mortality rates across a

range of vegetation growth p aligns with Fig. 4.2. The results show that the Lévy

walk can be an optimal foraging strategy in the discussed scenarios of m = 0.07 and

m = 0.2. However, as observed in Fig. 4.6, the Brownian movement at m = 0.07
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and the ballistic strategy at m = 0.2 are relatively more effective in maintaining

the population size with the amount of vegetation availability. Increasing the value

of p to the maximum probability accelerates vegetation growth in the landscape.

Because of the limited space, the abundance of vegetation cannot increase further

in the absolute sense. However, it can increase if the abundance of the other

species (grazers) relatively decreases (Chesson and Warner, 1981). Thus, due to

the prominent effect of growth rate p on the vegetation abundance, we observed a

sufficient decrease in the grazer abundance.

In summary, this chapter unveils the interdependence of movement behavior and

species’ survival rate. It reports the significant aspect of resource pulse on the

persistence and stability of populations in the fragmented landscape. Our analysis

shows that the optimal foraging strategy highly depends upon the survival conditions

and the amount of resources. We observe that Lévy walk is always an effective

movement strategy; however, the optimal foraging behavior changes from the

Brownian to ballistic with the increase in the rate of mortality of grazers. However,

considering the higher trophic interactions in a heterogeneous landscape, which

incorporates the dispersal costs, is an important future direction to investigate the

effect of movement on landscape connectivity and ecological stability.

4.5 Appendix

4.5.1 Spatial configuration at m = 0.2

The spatial distribution of the species clearly illustrates the evolution of vegetation

and grazers subject to the movement behavior (see Fig. 4.7). The figure shows the

configuration at initial and large time corresponding to Ballistic (Fig. 4.7(a)) and

the Brownian grazers (Fig.4.7(b)). As observed for β ∼ 1 in Fig. 4.7(a), our model

predicts vegetation-grazer coexistence (also see Fig. 4.2(d)), whereas we perceive the

extinction of grazers at large time for β > 3 (see Fig. 4.7(b) and Fig. 4.2(f)).

4.5.2 Stochastic lattice vegetation-grazer model

Stochastic rules We consider the space to be a 2D lattice of N = L × L square

sites with periodic boundary conditions where the position of each site is labeled by

a vector n ∈ Z2. L2/4 initial vegetation is randomly distributed in the landscape,

where each site is then empty (φ), or vegetation occupied (V ). The state transitions

for the vegetation corresponding to (4.1) are given as:
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Figure 4.7. Initial (left panel) and final (right panel) time configurations of grazers (in red) and vegetation
(in green) at a high rate of mortality (m = 0.2) for (a) highly superdiffusive grazers (β ∼ 1), (b) Brownian
grazers (β = 3.5). Other parameters are p = 0.7, µ = 0.2, and L = 100.

V φ
p−→ V V ,

V φ
1−p−−→ φφ,

V V
1−p−−→ φV ,

where p is the reproduction rate of vegetation. The system is allowed to reach an

equilibrium density where V0 is the total number of vegetation in the landscape of

size N . Later, V0/4 initial grazers are randomly introduced in the lattice. Now, each

site can be either empty (φ), vegetation occupied (V ), with vegetation and grazer

(V G), or with grazer reproduction (GG). The stochastic state transitions governing

the dynamics are then modeled as follows:

G
m−→ φ,

Gφ
λ0−→ φG,

GV
µ−→ Gφ,

GV
µ̃−→ GG,

V φ
p−→ V V ,

V φ
1−p−−→ φφ,

V V
1−p−−→ φV ,
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where m,λ0, µ, µ̃(= eµ) are the grazer mortality rate, grazer dispersal rate, grazer

attack rate, and grazer reproduction rate, respectively.

The average abundance of grazer (g) and vegetation (v) is defined as v = V/L2 and

g = G/L2, where V and G is the total number of vegetation and grazer in the L2

sites, respectively.

4.5.3 Detailed model description

Monte Carlo simulation of the stochastic model: We simulate the stochastic

dynamics using the Monte Carlo method. A Monte Carlo time step corresponds to

selecting all individuals on the lattice once on average.

An occupied site is chosen randomly at each elementary step and updated as follows:

Vegetation dynamics in the absence of grazers

We update the site using the contact process (Sankaran et al, 2019) by the rules:

• One of the four nearest neighbors of the chosen site (focal cell) is selected

randomly. If that site is empty, vegetation reproduces there with the

probability p; else, the vegetation in the focal cell dies (the probability for

which is (1− p)).

• If the randomly selected cell of the four nearest neighbors of the chosen site is

occupied, the vegetation in the focal cell dies with probability (1− p).

The above rules are iterated L2 times in every discrete time step until the system

reaches steady vegetation density.

Vegetation-grazer dynamics

Once the vegetation reaches an equilibrium density, its fraction ρ is introduced as the

initial grazer density. Each grazer is assigned some random energy Eg in the range

[1, Et], where Et is the threshold energy, then the dynamics are given as follows:

• Grazer death: If the chosen site has a grazer, it dies with probability m.

* If a grazer survives at the selected site,

• Grazer movement: The selected grazer moves to a new site at a distance

l > 1, where l is drawn from a power law distribution P (l) = cl−β, with β as

an exponent and c the normalization constant.



62 Chapter 4. Resource pulses and foraging behavior in population dynamics

• Grazer energy and resource consumption: The total number of

vegetation (Vc) from the new site and the four nearest neighbors of the new

site results in the energy gain of grazer, thus the energy of grazer is increased

by Nc, i.e., Eg = Eg + Vc. One site is chosen randomly from the Vc vegetation

inhabited sites. The grazer consumes the vegetation in that site with the

probability µ.

• Grazer reproduction: The selected grazer reproduces with the probability

µ̃ =
E2

i

E2
t +E

2
i

in the new site. The energy of the reproduced grazer and the

newborn grazer is updated to Eg
2

.

The update rules are iterated for total time T , in which after every tv = 50

discrete time steps, vegetation rejuvenates (resource pulse) as per the rules of

the contact process.



Chapter 5

Climate warming and dispersal

strategies determine species

persistence in a metacommunity

5.1 Introduction

Biological diversity is fundamental for the functioning of life on Earth, and

rapid anthropogenic climate warming is likely to exacerbate the loss of global

biodiversity. Extensive evidence suggests that climate disruptions have already

caused complex consequences to the distribution of species all over the world (Pimm,

2009; Thomas et al, 2004; Walther et al, 2002). Changing climate outside the

extent of species adaptability results in the collapse of ecosystem-level diversity.

The rising temperature is known to lower species abundance which in turn triggers

extinction. For instance, current estimates of biodiversity loss predict that climate

warming might lead to 3% to 78% of species extinction (Thomas et al, 2004;

Thuiller et al, 2004). Biodiversity supports the functioning of ecosystems needed for

human subsistence, which is now being affected by the rising temperature. Thus,

anticipating species’ response to climate warming to mitigate future extinction risks

is important (Dillon et al, 2010; McMahon et al, 2011). However, the resistance

and resilience of biological communities to rising temperature and their possible

implications on ecosystems remain uncertain.

Ecologists are trying to anticipate and assimilate what effect the rising temperature

can have on species. This is a challenging question because increasing temperature

does not only influence species abundance but also the complex interactions with

other species in a community (Connell, 1961; Harrington et al, 1999; Walther, 2007).

It is also evident from previous studies that the response of species towards changing

environmental conditions is carried out by changes in phenology and distribution

(Sparks and Carey, 1995; Dunn and Winkler, 1999; Cayan et al, 2001). Further

evidence (Walther et al, 2005; Parmesan, 2006) suggests species will disperse to

63
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a suitable climate niche as a response to changing temperature. Nevertheless,

it is also certain that any change in local conditions determines the efficacy of

dispersal at the population level. (Milne and Guichard, 2021) study the dynamics

of phase locking and frequency modulation in predator-prey metacommunity with

heterogeneity in the carrying capacity. They find that increasing coupling strength

led to phase-locked synchrony and constant coupling strength with increasing

heterogeneity drives the dynamics from phase-locked synchrony to phase asynchrony

and to phase drift, hence illustrating the effect of habitat heterogeneity on

dispersal-driven synchrony. Thus, it is critical to understand the role of local species

dynamics which indirectly influence dispersal via population abundance.

Species dispersal can have conflicting consequences on population persistence.

Asynchrony between the abundance of sub-populations leads towards regional

stability (Briggs and Hoopes, 2004). Dispersal promotes stability by allowing

recolonization, but at times it can elevate the chance of extinction by globally

synchronizing populations. Dispersal, being sensitive to changing climatic conditions

(Travis et al, 2013), patch size (Andreassen and Ims, 2001), food availability,

population size (Matthysen, 2005), considerably varies within organisms. Moreover,

emigration and immigration rates strongly influence the population dynamics in

a patch and thus alter the chances of regional persistence. Therefore, various

processes in a metacommunity whereby dispersal can inhibit or promote synchrony

should be examined. Ims and Andreassen (2005) and Li et al (2005) have shown

that dispersal patterns depending upon local abundance result in diminishing

synchrony in comparison with density-independent dispersal. Likewise, there is

mounting theoretical and empirical evidence accentuating the effect of temperature

on metacommunity dynamics. de Boer et al (2014) demonstrated that dispersal

reinforced recovery in the biomass of communities subjected to heat stress. Narang

et al (2019) found that long-range dispersal at extreme temperatures maintains

species’ persistence by reducing spatial synchrony. An experimental study by

Thompson et al (2015) shows that dispersal promotes asynchronous fluctuations

under ambient conditions, but synchrony among species increases with warming.

Therefore, the dependency of dispersal on population size and temperature drives

us to examine their combined effects in stabilizing or destabilizing the dynamics.

Following the previous investigations, species interactions and density dependence

are imperative in determining population abundance under climate warming (Ives

and Gilchrist, 1993; Ives, 1995). Hauzy et al (2010) have studied the role of constant

and density-dependent dispersal on the stability of a metacommunity. They find that

density-dependent dispersal, particularly interspecific density-dependent dispersal,

always results in asynchronous fluctuations in population abundance. However,

whether dispersal can induce stability under changing environmental conditions is
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still unclear. Can rising temperature promote synchrony and erode the stabilizing

dynamics by dispersal?

In an attempt to answer these questions, here we consider a metacommunity model

with temperature-dependent traits and study how the rising temperature governing

species’ local dynamics alters dispersal response at the regional scale. We consider

different dispersal rates of resource and consumer and analyze the effect of constant

and density-dependent dispersal on the stability of metacommunity under changing

temperatures. For this, we study spatial synchrony and analyze how coherence or

incoherence in species abundance is affected by different dispersal mechanisms and

thermal traits. The two aspects: rising temperature and dispersal abilities, together

are observed to affect the stability, measured by the coefficient of biomass variation.

Our results show that density-dependent dispersal could modify metacommunity

stability by affecting spatial synchrony at high temperatures. We then extend

our study to a larger spatial scale and determine the coexistence of coherent and

incoherent dynamics.

5.2 Models and Methods

5.2.1 A two patch metacommunity model

We consider a theoretical metacommunity model that includes resource-consumer

populations inhabited in patches. Local dynamics of resource and consumer

are governed by the Rosenzweig-MacArthur model (Rosenzweig and MacArthur,

1963), where resource follows the logistic growth rate, and the dynamical

evolution of consumer is based upon Holling type-II functional response. For

simplicity, we start with a 2-patch metacommunity, where each patch behaves

homogeneously in terms of resource-consumer interactions and phenotypes. The

model assumes temperature-dependent life-history traits of species, which affect

the metacommunity dynamics at the regional scale. The population in each patch

is connected by dispersal, and the dispersal propensity depends upon the species

abundance of the natal patch. In the i-th patch, the dynamics of resource (Ni) and

consumer (Pi) abundances are governed by the following equations:

dNi

dt
= r(T )Ni(1−

Ni

K
)− a(T )NiPi

N0 +Ni

−NiDn(Ni, Pi) +NjDn(Nj, Pj), (5.1a)

dPi
dt

=
a(T )NiPi
N0 +Ni

−m(T )Pi − PiDp(Ni, Pi) + PjDp(Nj, Pj), (5.1b)

where i, j = 1, 2 determine the patch index and i 6= j, K is the carrying

capacity of resource and N0 is the half-saturation constant, Dn(Ni, Pi) and
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Dp(Ni, Pi) are respectively per capita dispersal rates of resource and consumer

depending upon either resource (Ni) or consumer (Pi) abundance. To examine

the effects of temperature on resource-consumer interactions, we consider the

growth rate of resource r, attack rate a, and mortality m of the consumer as

the temperature-dependent parameters. These functional traits of species represent

their performance with changing temperatures. Previous research has shown that

the thermal response of metabolic traits of ectotherms follows characteristic shapes.

The intrinsic growth rate of resource r and attack rate of consumer a show a

hump-shaped relationship with temperature (Englund et al, 2011; Thomas et al,

2012; Amarasekare, 2015), and mortality of consumer m increases exponentially

with increasing temperature (Savage et al, 2004). Moreover, various studies consider

thermal performance curves of ectotherms to be asymmetric (Izem and Kingsolver,

2005; Gilchrist, 1995). Here, temperature-dependent intrinsic resource growth rate

r and consumer attack rate a are formulated following Gompertz-Gaussian function

(Martin and Huey, 2008; Fey and Vasseur, 2016) as:

r(T ) = ropt × exp
[
−exp (0.75× (T − Tn)− 8)− (T − Tn)2

300

]
, (5.2)

and

a(T ) = aopt × exp
[
−exp (0.75× (T − Tp)− 8)− (T − Tp)2

400

]
, (5.3)

where ropt, aopt are the scaling parameters, and Tn, and Tp are the optimum

temperature of resource and consumer, respectively.

We consider the temperature dependent consumer mortality m as (Vasseur and

McCann, 2005; Kaur and Dutta, 2020):

m(T ) = mopt × exp
[
Ap ×

(
1

Tp
− 1

T

)]
, (5.4)

mopt is the scaling parameter, and Ap is the Arrhenius constant. These

temperature-dependent traits take the form as exhibited in Fig. 5.1.

To explore spatial population dynamics, we broadly categorize dispersal in two ways,

i.e., constant dispersal (CD) and density-dependent dispersal (DD) (intraspecific

and interspecific) (see Fig. 5.2). The model assumes CD in both species, whereas

intraspecific DD and interspecific DD in either resource or consumer. Thus per

capita dispersal rate for resource and consumer in the i-th patch correspondingly

takes the form (Hauzy et al, 2010):

Dn(Ni) = dn
Nxnn
i

Sxnn
nn +Nxnn

i

or Dn(Pi) = dn
P
xnp

i

S
xnp
np + P

xnp

i

, and (5.5)
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Figure 5.1. Temperature-dependent species biological traits: (a) Intrinsic growth of resource with varying
temperature (T ). (b) Thermal response of consumer’s attack rate. (c) Temperature-dependent mortality of
consumers.

Dp(Ni) = dp
N
xpn
i

S
xpn
pn +N

xpn
i

or Dp(Pi) = dp
P
xpp
i

S
xpp
pp + P

xpp
i

, (5.6)

where dn and dp determine the maximal per capita dispersal rates of resource and

consumer, respectively. Sαβ (α = n, p; β = n, p) is close to the mean species

abundance of the isolated population (varies with temperature). xαβ specifies shape

of dispersal: xαβ = 0 signifies CD with rate
dα
2

, xαβ > 0 implies positive relation

of species abundance and dispersal, whereas xαβ < 0 justifies negative effect of

species abundance on dispersal. Thus, we consider xnn > 0, xnp > 0, xpp > 0, and

xpn < 0. Jenkins et al (2007) emphasize the role of body size on dispersal abilities

of species, thus suggesting, different dispersal rates of resource and consumer can

lead to important dynamics of a system. In this chapter, we focus on two instances,

i.e, the maximal dispersal rate dn of resource is greater than the maximal dispersal

rate dp of consumer (i.e., dn > dp) and otherwise (i.e., dn < dp).

To measure the effect of changing temperature and dispersal strengths on spatial

synchrony, we calculate Pearson correlation coefficient rij between species abundance

in two patches which is defined as:

rij =
〈xixj〉 − 〈xi〉〈xj〉√

〈xi2〉 − 〈xi〉2
√
〈x2j〉 − 〈xj〉

2
, (5.7)

where x is either resource or consumer abundance, 〈....〉 denotes the average over a

given time t, denoted as:

〈....〉 =
1

t′ − t0 + 1

t=t′∑
t=t0

a(t), (5.8)

where a(t) is species abundance at time t and i, j ∈ {1, 2}. The more the coefficient

to 1, the more the system exhibits synchronous solutions. rij = 1 represents complete



68 Chapter 5. Effects of Climate warming and dispersal strategies

Dispersal

Constant

Density
Dependent

Intras
pecifi

c

resou
rce

N

P

+

Interspecific
resource

N

P

N

P

Intraspecificconsumer

Inte
rsp

ecif
ic

con
sum

er

+

-
N

P
+

N

P

Figure 5.2. Schematic representation of different types of dispersal mechanisms, where N and P are
the resource and consumer abundance, respectively. ′+′ sign describes the positive effect of resource
abundance (N) or consumer abundance (P ) on dispersal, and ′−′ sign symbolizes the negative effect of
resource abundance (N) on dispersal of consumer from the patch.

synchrony.

We also determine the persistence of species by analyzing temporal variability and

the mean of regional resource and consumer abundance at different temperatures.

The temporal variability is calculated by coefficient of variation as:

C.V. =

√
〈z − µz〉2
µz

, (5.9)

where z is the average of species time series at time t in two patches, µz denotes the

mean regional abundance, and 〈....〉 is the average over a given time t. Moreover,

for the robustness of our results, we carry out sensitivity analysis for the parameters

N0 (half saturation constant) and K (carrying capacity), along with changing

temperature (see Figs. 5.10(a)-(b)).

5.2.2 Metacommunity with a large number of patches

We also study the collective dynamics of a metacommunity model with many

patches, i.e., n = 100 patches. Here, we consider a regular network with the

nearest neighboring coupling; specifically, the neighboring patches are accessible

by dispersal, which we have particularly taken as CD. The metacommunity model
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is written as:

dNi

dt
= r(T )Ni(1−

Ni

K
)− a(T )NiPi

N0 +Ni

+
dn
2

(Ni+1 +Ni−1 − 2Ni), (5.10a)

dPi
dt

=
a(T )NiPi
N0 +Ni

−m(T )Pi +
dp
2

(Pi+1 + Pi−1 − 2Pi), (5.10b)

where patch indices i+1 and i−1 correspond to modulo n (total number of patches).

A fascinating collective dynamics of complex systems that has emerged as an active

research area is the chimera states. A chimera state results in the coexistence

of synchronous and asynchronous oscillators in a network of coupled identical

oscillators (Zakharova et al, 2014; Dutta and Banerjee, 2015). Depending upon

the coupling strength of oscillators strong synchronous groups evolve, while some

individual oscillators refuse to synchronize, thus resulting in chimera. (Vandermeer

et al, 2021) using the Kuramoto model to study the emergence of one or more

synchrony groups, referred to as chimeric elements depending upon the coupling

strength of oscillators. Here we take into account CD in both resource and consumer

with dn < dp and study the spatiotemporal dynamics at different temperatures. To

analyze the effect of these patterns on phase dynamics, we compute mean phase

velocity wi for each node (Zakharova et al, 2014):

wi = 2πMi/4t, (5.11)

where Mi are the number of oscillations in time 4t. Throughout this work we

consider the following parameter values: K = 25, N0 = 5, ropt = 1, aopt = 0.85,

mopt = 0.4, Ap = 6 × 103, Tn = 27◦C, and Tp = 25◦C, xnn = xnp = xpp = 4, and

xpn = −4.

5.3 Results

Ectotherms can thrive in a specific thermal range, and it is believed that temperature

rising above their thermal optimum would result in their overheating and thus

reduce their fitness. Here, we vary the temperature from 0◦C to 40◦C and

observe that rising temperature above 31◦C leads to consumer extinction, and

resource abundance saturates at their maximum capacity. However, for a range

of temperature from 0◦C to 29◦C consumer-resource model exhibits oscillatory

coexistence. Hence, we explore collective dynamics in the oscillatory range

(Vandermeer, 2006) at three different temperatures, low (10◦C), intermediate

(20◦C), and high (29◦C).
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5.3.1 Spatial synchrony

We observe different collective population dynamics depending upon: first, the kind

of dispersal exhibited, second, the relative dispersal rate of resource and consumer,

and third, the change in local conditions due to varying temperatures.

Figure 5.3. Species collective dynamics when dn < dp: Spatial synchrony with changing dispersal rates
of resource (dn) and consumer (dp = 100dn) at different temperatures (T ): For (a), (d), (g) T = 10◦C;
(b), (e), (h) T = 20◦C; (c), (f), (i) T = 29◦C, in two distinct patches. (a)-(c) correspond to the dynamics
for CD where xαβ = 0. Intraspecific (dots) and interspecific (triangles) DD in resource and consumer follow
the dynamics depicted in (d)-(f) and (g)-(i), respectively.

For constant species dispersal, as in Figs. 5.3(a)-5.3(c) where consumer dispersal

is higher than a resource (dn < dp), and in Figs. 5.4(a)-5.4(c) where resource

dispersal is higher than consumer (dn > dp), we observe that for all the three

ranges of temperature, i.e., T = 10◦C, T = 20◦C, T = 29◦C for higher dispersal

values, dynamics remain completely synchronous. However, for low and intermediate

dispersal strengths, and for T = 10◦C and T = 20◦C (see Figs. 5.3(a)-5.3(b),

and Figs. 5.4(a)-5.4(b)), system exhibits two alternative collective dynamics, one

with complete synchrony and other with strong asynchrony, as characterized by

the Pearson Correlation Coefficient. Despite that, at T = 29◦C, dynamics

remain perfectly synchronous for low and intermediate dispersal rates, as is seen

in Fig. 5.3(c) and Fig. 5.4(c).

When the resource adopts DD, we notice that interspecific and intraspecific DD

follow the same dynamics as CD when dn < dp as in Figs. 5.3(d)-5.3(f). Whilst,

dynamics are seen to be affected when resource dispersal is more than that of the

consumer (dn > dp). We discern from Fig. 5.4(d) and Fig. 5.4(e), i.e., at low and

intermediate temperatures, though low and high dispersal values maintain similar
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Figure 5.4. Species collective dynamics when dn > dp: Spatial synchrony of two patch metacommunity
with changing dispersal rates of resource (dn) and consumer (dp = 0.01dn) at different temperature (T ).
For (a), (d), (g) T = 10◦C; (b), (e), (h) T = 20◦C; (c), (f), (i) T = 29◦C, in two distinct patches. (a)-(c)
correspond to the dynamics for CD where xαβ = 0. Intraspecific (dots) and interspecific (triangles) DD in
resource and consumer follow the dynamics depicted in (d)-(f) and (g)-(i), respectively.

dynamics as CD, synchronization decreases at intermediate dispersal values for both

inter and intraspecific DD. Moreover, at T = 29◦C, where intraspecific DD shows

perfect synchronization for all dispersal values (see Fig. 5.4(f)), interspecific DD

leads the system to manifest both synchronous and asynchronous states for low and

intermediate dispersal rates.

Further, the influence of temperature and relative dispersal rates is also clearly

evident when consumers trail DD. Inter and intraspecific DD in the consumer does

not affect the dynamics when dn > dp (see Figs. 5.4(g)- 5.4(i)). However, when

dn < dp, we observe different synchronization behavior for all three temperature

ranges. At T = 10◦C, for intraspecific DD in consumers, we perceive complete

synchrony (i.e., rij = 1) at high dispersal rates and coexistence of synchronous

and asynchronous states at low and intermediate dispersal values (Fig. 5.3(g)).

However, interspecific DD shows strong asynchrony at low dispersal rates. With

an increase in dispersal rates, synchronization increases, and the system eventually

reaches perfect synchrony. Next, at T = 20◦C, we get to see from Fig. 5.3(h)

that for all dispersal rates, dynamics show complete synchrony in the case of

intraspecific DD. However, synchronization changes from strong asynchrony to

complete synchrony with increased dispersal values when the consumer follows

interspecific DD. Continuing, T = 29◦C seems to alter the effect of inter and

intraspecific DD on the dynamics of the system (see Fig. 5.3(g)). We observe that

intraspecific DD preserves perfect synchrony for all dispersal values. Whereas for
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interspecific DD, depending upon the initial conditions the system can exhibit both

synchrony and asynchrony for low and intermediate dispersal rates, and complete

synchrony for higher dispersal rates. A summary of the observed collective dynamics

of species is given in Table 5.1.

Table 5.1. Species collective dynamics in two patch system for low to intermediate values of dn. For large
dn values system dynamics synchronize completely (rij = 1).

dn < dp

Dispersal Mechanisms T = 10◦C T = 20◦C T = 29◦C

Constant Coexistence of synchronous
and asynchronous states.

Coexistence of synchronous
and asynchronous states.

Complete synchrony.

Intraspecific
Resource

Coexistence of synchronous
and asynchronous states.

Coexistence of synchronous
and asynchronous states.

Complete synchrony.

Intraspecific
Consumer

Coexistence of synchronous
and asynchronous states.

Complete synchrony. Complete synchrony.

Interspecific
Resource

Coexistence of synchronous
and asynchronous states.

Coexistence of synchronous
and asynchronous states.

Complete synchrony.

Interspecific
Consumer

Strong asynchrony tending to
perfect synchrony with dispersal.

Strong asynchrony tending to
perfect synchrony with dispersal.

Coexistence of synchronous
and asynchronous states.

dn > dp

Constant Coexistence of synchronous
and asynchronous states.

Coexistence of synchronous
and asynchronous states.

Complete synchrony.

Intraspecific
Resource

Coexistence of synchronous
and asynchronous states.

Coexistence of synchronous
and asynchronous states.

Complete synchrony.

Intraspecific
Consumer

Coexistence of synchronous
and asynchronous states.

Coexistence of synchronous
and asynchronous states.

Complete synchrony.

Interspecific
Resource

Coexistence of synchronous
and asynchronous states.

Coexistence of synchronous
and asynchronous states.

Coexistence of synchronous
and asynchronous states.

Interspecific
Consumer

Coexistence of synchronous
and asynchronous states.

Coexistence of synchronous
and asynchronous states.

Complete synchrony.

5.3.2 Variance and mean of regional abundance

We observe that different dispersal rates and dispersal strategies alter the species

collective dynamics depending upon varying temperatures. As observed from

Figs. 5.5 and 5.6 (see Appendix Figs. 5.8 and 5.9), for the synchronous state we get

to see high regional variability in resource and consumer abundance, as calculated

from the coefficient of variation (Eq. 5.9). However, for the asynchronous state, when

dn < dp and dispersal is constant or DD in resource, we notice that at T = 10◦C

(Figs. 5.5(a), 5.5(d) and Figs. 5.6(a), 5.6(d)) and T = 20◦C (Figs. 5.5(b), 5.5(e)

and Figs. 5.6(b), 5.6(e)), consumer abundance rises, and variability decreases with

increasing dispersal values up to the intermediate range, whereas resource abundance

shows a simultaneous drop.

The model exhibits different dynamics when consumer dispersal is

density-dependent. At T = 10◦C we observe that for lower and intermediate

dispersal rates, consumer variability decreases and abundance increases with a

parallel decrease in resource abundance for both inter and intraspecific DD (see

Figs. 5.5(g) and 5.6(g)). Whereas, at T = 20◦C (Figs. 5.5(h), 5.6(h)) and

T = 29◦C (Figs. 5.5(i), 5.6(i)) we get to see that simultaneous increase or decrease

in consumer and resource abundance occurs only for interspecific DD. Moreover, at
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Figure 5.5. Mean and CV of resource abundance when dn < dp: Temporal mean (upper sub-graph)
and coefficient of variation (lower sub-graph) of regional resource abundance as a function of maximal
resource dispersal rates (dn) at different temperatures (T ). Consumer dispersal rates dp = 100dn. For
(a), (d), (g) T = 10◦C; (b), (e), (h) T = 20◦C; (c), (f), (i) T = 29◦C, in two distinct patches. (a)-(c)
correspond to the dynamics for CD where xαβ = 0. Intraspecific (dots) and interspecific (triangles) DD in
resource and consumer follow the dynamics depicted in (d)-(f) and (g)-(i), respectively.

the intermediate dispersal range, we notice a drop in consumer abundance and a

rise in resource abundance.

As dispersal increases, dynamics become completely synchronized, leading towards

high regional variability. Figs. 5.5 and 5.6 (see Appendix Figs. 5.8 and 5.9) show that

for a range of dispersal rates, the resource abundance decreases while the consumer’s

abundance increases, thus insinuating towards top-down control. However, we find

that the effectiveness of top-down control varies with increasing temperature and

dispersal strengths. At T = 10◦C and T = 20◦C, when the dispersal of resource

is less than consumer dispersal (i.e. dn < dp) (see Figs. 5.5 and 5.6), more attack

rate and less mortality rate of consumer (Fig. 5.1), increases the impact of control

of consumer on a resource at intermediate dispersal rates for constant and DD. This

is governed by increasing consumer abundance and decreasing variability.

5.3.3 Spatiotemporal dynamics for a metacommunity with

many patches

Amongst the emergent collective dynamics, synchronization is pervasive in a network

of coupled oscillators (Strogatz, 2004). A fascinating effect gaining much attention

is the partial synchronization patterns, such as the chimera state. Chimera states

correspond to a distinctive spatiotemporal pattern, in which identical oscillators
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Figure 5.6. Mean and CV of consumer abundance when dn < dp: Temporal mean (upper sub-graph)
and coefficient of variation (lower sub-graph) of regional consumer abundance as a function of maximal
resource dispersal rates (dn) at different temperatures (T ). Consumer dispersal rates dp = 100dn. For
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self-organize into coherent and incoherent co-existing domains. Several theoretical

and experimental studies substantiate the existence of chimera in diverse fields of

science and engineering (Hagerstrom et al, 2012; Zakharova et al, 2014).

We find the chimera state by considering both constant and DD in species; however,

we show the results for CD. In Fig. 5.7(a), we show phase chimera in the presence of

CD between nearest neighbors. We observe that the system splits into two coexisting

domains: in the coherent domain, where species in several patches oscillate in

complete synchrony, whereas, in the incoherent domain, species in the rest of the

patches exhibit asynchronous oscillations. Moreover, from Fig. 5.7(b) we find that

the mean phase velocity is constant in some nodes, thus, corresponding to coherent

regions. In the incoherent regions, the neighboring nodes are not phase-locked,

resulting in different mean phase velocities (wi) for each oscillator i. Different

temperature values (T = 10◦C and T = 29◦C ) result in different spatiotemporal

dynamics (see Appendix Fig. 5.11 and Fig. 5.12).

5.4 Discussion

Climate warming is one of the decisive factors for the apparent range shifts and local

extinctions of species (Wilson et al, 2005; Franco et al, 2006). Species dispersal also

critically influences the balance between species extinction and recolonization in
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a metacommunity. Hence, species may need effective dispersal strategies to cope

with the changing environmental conditions to ensure metacommunity persistence.

Here, we emphasize the importance of considering temperature-dependent functional

traits of interacting species to anticipate their temporal and spatial associations. We

quantify the effects of changing temperature on the dispersal behavior of species.

We show that the thermal sensitivity of life-history traits and DD that affect a

community at a local and regional scale demands more explorations for ecosystem

conservation and management.

Understanding factors influencing ecosystem stability at temporal and spatial

scales is critical. Recent years have witnessed increased attention been paid

to investigate the relationship between biodiversity and ecosystem stability (Ives

and Carpenter, 2007; Hector et al, 2010). While stability has various definitions

(Loreau et al, 2002), one of which defines metacommunity stability as long-term

species persistence, avoiding extinction (Holling, 1973; Connell and Sousa, 1983).

The metacommunity concept suggests that dispersal rates of species (Loreau

et al, 2003; Holt, 2004) and resource-consumer interactions (McCann et al, 2005;

France and Duffy, 2006) have important consequences on ecosystem stability. Our

study highlights how temperature-influenced resource-consumer interactions affect

metacommunity persistence depending upon the type of species dispersal.
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Synchronization in spatial ecology has always been of great interest (Abbott,

2011). Previous studies suggest that dispersal can influence population synchrony

depending on the factors affecting local dynamics. High dispersal rates triggers

synchronized dynamics (Bjørnstad et al, 1999), however, for oscillating populations

with intrinsic nonlinearities, weak dispersal can also promote population synchrony

(Jansen, 1999; Bjørnstad, 2000). Our results show that increasing temperature

reduces the stabilizing effect of dispersal that was facilitated by spatially

asynchronous dynamics for low and intermediate temperature ranges. As appears

for 10◦C and 20◦C, low and intermediate dispersal rates lead to the coexistence of

synchronous and asynchronous states. However, this pattern was not observed at

high temperature, T = 29◦C (except for a particular DD, see Table 5.1), because

increased mortality of consumers at this temperature decreases the amplitude of

fluctuations which lead to the reduced collective differences between the patches.

High temperature in combination with interspecific DD in consumers, with maximal

per capita dispersal of consumers being relatively higher than resources (i.e. dn <

dp) contributes towards the stability of metacommunity. Due to dn < dp and

interspecific DD in consumers more consumers will disperse from the patch with

lower resource abundance to the one with higher abundance, in comparison to

resource. The high mortality rate of consumers, and the growth rate of resource

being lower than consumer’s attack rate at high temperature, increases the rate

of increase of resource abundance, relative to that of consumers. Therefore, at

this temperature per capita growth rate of resources increases and the emigration

of consumers from the low resource abundance patch to the other patch increases

consumers’ abundance in the dispersed patch, hence, accelerating their growth. This

slows down resource growth in that patch, and consequently, here the difference

between the abundance of the two patches increases due to high mortality and

interspecific DD. Whereas, this is not true for intraspecific DD, where consumers

would emigrate from the patch with more consumers due to increasing competition.

The effect of this dispersal is neutralized due to the high mortality of consumers at

29◦C. The dynamics are altered by interspecific DD in the resource when dn > dp.

Hence, in an unfavorable condition, we perceive that interspecific DD can effectively

preserve metacommunity stability. We measure the metacommunity stability using

temporal variance and the mean of regional species abundance. Variability in

population abundance affects the persistence of species. Ecosystems with more

variability are known to be less stable (Wang and Loreau, 2014). Our results show

that species temporal variability and mean regional abundance are interceded by

dispersal strength, dispersal type, and thermal traits.

Our results are in accordance with (Hauzy et al, 2010) on the effect of synchrony

on stability. High dispersal rates tend to synchronize dynamics, leading towards
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high regional variability, thus decreasing stability. We also found that interspecific

DD has a stabilizing effect on metacommunity in agreement with (Hauzy et al,

2010). However, a critical difference is that in (Hauzy et al, 2010), intermediate

dispersal rates lead to the emergence of chaotic dynamics, which is in contrast with

our results. Moreover, the synchronizing dynamics observed in our study differ

based on the changing temperature. Considering, dn < dp and CD, our result of

coexisting two periodic attractors is in line with (Hauzy et al, 2010) for T = 10◦C

and T = 20◦C, whereas, at T = 29◦C the asynchronous attractor vanishes, trailing

the system towards completely synchronized dynamics. Furthermore, for dn > dp

and CD, T = 10◦C and T = 20◦C exhibit coexisting attractors and T = 29◦C

shows perfect synchrony, which is in contrast to (Hauzy et al, 2010), where, spatial

synchrony increases monotonically with dispersal rates, maintaining high value of

synchrony. Our study shows the influence of climate warming on the dispersal

strategies adapted by species. Dispersal promotes species persistence by maintaining

balance in population abundance, whereas synchrony aggravates the chances of

extinction. However, dispersal is known to impel population stability by breaking

synchrony in ecological networks and thus result in producing chimera states.

Emergence of chimera reduces the synchronization domain, thereby enhancing

survival probabilities of populations (Dutta and Banerjee, 2015). In this study, we

also analyze the role of temperature in the emergence of spatiotemporal patterns as

shown in Fig. 5.7. We observed that at intermediate temperature (T = 20◦C) and for

low dispersal strength, the population splits into coherent and incoherent domains.

We find that high temperature drives all the oscillators towards complete synchrony,

thus weakening population persistence (see Fig. 5.13). Our results suggest that

intermediate temperatures potentially enhance the chance of survivability of a

metacommunity. Thus, in this chapter, we elucidate the importance of considering

the biotic interactions of species by taking into account the thermal response of

life-history traits of interacting species. These temperature-dependent key traits

indicate the effect of rising temperature on community interactions and dispersal

patterns. We have shown that DD and relative dispersal are crucial in understanding

metacommunity stability under the effect of global warming.

5.5 Appendix

5.5.1 Variance and mean of regional abundance for dn > dp

Here we discuss the case of resource dispersal strength being more than consumer

dispersal rate (dn > dp).

We perceive a change in dynamics when resources carry out DD, for the other kind
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Figure 5.8. Mean and CV of resource abundance when dn > dp: Temporal mean (upper sub-graph)
and coefficient of variation (lower sub-graph) of regional resource abundance as a function of maximal
resource dispersal rates (dn) at different temperature (T ). Consumer dispersal rates dp = 0.01dn. For
(a), (d), (g) T = 10◦C; (b), (e), (h) T = 20◦C; (c), (f), (i) T = 29◦C, in two distinct patches. (a)-(c)
Correspond to the dynamics for CD where xαβ = 0. Intraspecific (dots) and interspecific (triangles) DD in
resource and consumer follow the dynamics depicted in (d)-(f) and (g)-(i), respectively.

of dispersal behavior regional abundance is by variations in temperature. When

dispersal is constant or when consumers follow DD, we notice that at T = 10◦C

(Figs. 5.8((a), (g)) and Figs. 5.9((a), (g))) and at T = 20◦C (Figs. 5.8((b), (h))

and Figs. 5.9((b), (h))), for lower dispersal values, consumer variability decreases

as regional abundance of consumer increases, however, resource temporal variability

decreases following the same trend as resource regional abundance up to certain

dispersal range. Nevertheless, a substantive change in abundance is observed here,

when resource abundance rises with a fall in consumer abundance, correspondingly

affecting the regional variability. At T = 29◦C we see from Figs. 5.8((c), (i)) and

Figs. 5.9((c), (i)) that no change in mean and variability of regional resource and

consumer abundances, respectively.

Now, looking at the variations in abundance when resource adopts DD, we find

that at T = 10◦C (see Figs. 5.8(d), 5.9(d)) and T = 20◦C (see Figs. 5.8(e), 5.9(e)),

for lower dispersal values inter and intra-specific DD leads to decrease in resource

abundance and a simultaneous increase in consumer abundance. Here again, we

notice that at intermediate dispersal values resource abundance and variability

rise, and consumer abundance witnesses a drop with rising variability. However,

then with a further increase in dispersal rates, while inter-specific DD moves

towards constant regional abundance, intraspecific DD repeats the behavior and

then maintains sustained abundance. Next, at T = 29◦C, we observe that inter
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Figure 5.9. Mean and CV of consumer abundance when dn > dp: Temporal mean (upper sub-graph)
and coefficient of variation (lower sub-graph) of regional consumer abundance as a function of maximal
resource dispersal rates (dn) at different temperature (T ). Consumer dispersal rates dp = 0.01dn. For
(a), (d), (g) T = 10◦C; (b), (e), (h) T = 20◦C; (c), (f), (i) T = 29◦C, in two distinct patches. (a)-(c)
correspond to the dynamics for CD where xαβ = 0. Intraspecific (dots) and interspecific (triangles) DD in
resource and consumer follow the dynamics depicted in (d)-(f) and (g)-(i), respectively.

and intra-specific DD maintain the same regional abundance as CD, whereas, for

inter-specific DD, consumer abundance increases with increasing dispersal values and

then drops at intermediate dispersal rate, and contrariwise for resource abundance

(see Fig. 5.8(f) and Fig. 5.9(f)).

As noticed, the strength of consumer control weakens at the same dispersal

range when dispersal of resource is greater than consumer dispersal (dn > dp).

Moreover, as the dispersal rate increases from low to intermediate values, we see

a direct relationship between resource mean abundance and variability. Declining

resource abundance comes along with decreasing variability due to the effect of

temperature. However, further increase in dispersal rates leads to higher variability

in regional resource abundances, but weakening consumer control as observed from

increasing resource abundance. Thus, relatively high dispersal rates of the resource

may increase the chances of their survival from consumers. High temperatures

(T = 29◦C), where the growth rate of resource and attack and mortality rate of

the consumer is significantly higher (see Fig. 5.1), affect the top-down control.

We perceive that for both instances, i.e. for a lower dispersal rate of resource

than the dispersal rate of consumer (dn < dp) and another way (dn > dp), only

interspecific DD in consumer and resource, respectively, amplifies consumer control

on the resource while moving from low to intermediate dispersal values. Consumers

are the most vulnerable species at high temperatures that could stabilize at lower
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dispersal rates due to interspecific DD.

5.5.2 Temperature sensitivity of the half-saturation

constant (N0) and the carrying capacity (K)

We perform sensitivity analysis (Kaur and Dutta, 2020) for the half-saturation

constant (N0) and the carrying capacity (K) together with the temperature variation

(T ). Figure 5.10 shows steady state, oscillatory, and extinction regions of species at

different temperatures. HB corresponds to the Hopf bifurcation boundary beyond

which the system does not exhibit oscillatory dynamics and TB is the transcritical

bifurcation curve beyond which species fail to co-exist. We observe that at higher

temperatures (above 31◦C), irrespective of the parameter values, species do not

coexist. As can be seen from Fig. 5.10(a), for a small range of N0 the system shows

oscillatory behavior up to a certain temperature extent. Moderate to high N0 values,

lead towards steady state dynamics across a range of temperature gradients, beyond

which the system fails to exhibit the co-existence of species equilibrium abundance.
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Figure 5.10. Thermal sensitivity of species half-saturation constant (N0) and carrying capacity (K):
Two-parameter bifurcation diagram in the (a) T − N0 plane, and (b) T − K plane. Shaded regions: [A]
corresponds to the region where species abundance shows oscillatory behavior. [B] determines the region
where the system exhibits steady state dynamics, and [C] is the region where stability fails and consumers
become extinct. HB, and TB represent the Hopf bifurcation and the transcritical bifurcation, respectively.

Moderate to high K values manifest oscillatory dynamics (see Fig. 5.10(b)), whereas,

with lowering K values oscillations disappear, yet stabilizing dynamics from low to

temperature up to 31◦C. However, increasing temperature beyond this threshold

does not favor the coexistence of species and results in the extinction of consumers.

Therefore, the metacommunity dynamics that we have reported for the specific

choice of parameters are quite robust and can be found in a larger region of the

parameter space.
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5.5.3 Spatiotemporal dynamics for different choices of

temperature
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Figure 5.11. Interplay of coherence and incoherence in population abundance at T = 10◦C: (a)
Spatiotemporal plot of consumer Pi, (b) snapshot of Pi at t = 9500 (red (dotted) lines are for visual
guidance), and (c) mean phase velocity (wi), for n = 100 patches. Coupling strength dn = 10−6 and
dp = 10−4.

Here, considering a large metacommunity of n = 100 interacting patches with CD

(constant dispersal) we illustrate the effect of temperature on species spatiotemporal

dynamics. We find the occurrence of chimera patterns (Abrams and Strogatz, 2004)

illustrated by the coexistence of coherent and incoherent domains for T = 10◦C and

T = 20◦C, as can be seen from Fig. 5.11(a) and Fig. 5.12(a), respectively. However,

on changing the temperature to T = 29◦C all the oscillators converge to the coherent

state (see Fig. 5.13(a)). These results have a resemblance with the dynamics of two

patch metacommunity which is also evident from Table 1 (main draft).
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Figure 5.12. Interplay of coherence and incoherence in population abundance at T = 20◦C: (a)
Spatiotemporal plot of consumer Pi, (b) snapshot of Pi at t = 9500 (red(dotted) lines are for visual guidance),
and (c) mean phase velocity (wi), for n = 100 patches. Coupling strength dn = 10−6 and dp = 10−4.
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Figure 5.13. Global synchronized oscillations at T = 29◦C: (a) Spatiotemporal plot of consumer Pi, (b)
snapshot of Pi at t = 9500 (red(dotted) lines are for visual guidance), and (c) mean phase velocity (wi), for
n = 100 patches. Coupling strength dn = 10−6 and dp = 10−4.



Chapter 6

Long-range dispersal promotes

species persistence in climate

extremes

6.1 Introduction

The study of spatial ecological systems has a strong significance in our understanding

of large-scale population dynamics concerning the evolutionary outcomes (Tilman

and Kareiva, 2018; Williams, 2018). Spatial ecologists often find metapopulation

theory of utmost importance to understand the processes of regional extinction and

recolonization of species. The metapopulation approach adopts the view that local

populations interact via dispersal and gene flow (Hanski et al, 2004). Dispersal is

expressed through the interaction of an organism with its environment, therefore

it is likely to be influenced by environmental effects (Clobert et al, 2012). One of

the major environmental factors responsible for altering the costs and benefits of

dispersal is climate warming. Climate change has a considerable impact on species

composition (Walther et al, 2002; Foden et al, 2009) and current global warming

is expected to cause an irreparable change to ecosystems (Tylianakis et al, 2008).

Eventually, dispersal will become a central subject to predict species responses to

environmental change (Travis et al, 2013). Therefore, it is of natural interest to

explore the effect of temperature on species dispersal. According to earlier studies,

dispersal, which is considered to be an impelling cause for the persistence and

stability of metapopulations could also drive the population towards extinction by

increasing the degree of spatial synchrony (Tanaka et al, 1997; Jansen, 1999; Hopson

and Fox, 2019). Population stability means that the minimum density of populations

in all patches is not too low, and the probability of extinction is less in a given

time (Briggs and Hoopes, 2004). Other than dispersal, environmental factors are

also one of the reasons for dynamical connection (GRøTAN et al, 2005; Post and

Forchhammer, 2004), which results in the synchronization of spatial populations.

If dispersal, induces synchrony, then the synchronized populations will continue to

remain in synchrony until and unless any large external perturbation drives them

83
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away (Goldwyn and Hastings, 2011). Spatial asynchrony in density fluctuations is

known to strengthen the metapopulation persistence. This indicates the importance

of examining species dynamics due to dispersal and the extrinsic factor, which we

consider to be temperature, on synchrony.

Range interaction in species dispersal is an important factor that drives interesting

spatial dynamics (Banerjee et al, 2016). Dispersal, under the influence of climate

change, has an impact on species range shifts (Thomas and Lennon, 1999; Battisti

et al, 2006; Brooker et al, 2007), either resulting in long-distance dispersal (LDD)

or short-distance dispersal (SDD). We incorporate dispersal kernels which refer to

the probability to disperse to certain distances. Several different functions are used

for dispersal kernels in theoretical models of dispersal including the inverse power

law (Banerjee et al, 2016), for the present study we consider that the network of

spatially separated patches is connected by a long-range interaction that obeys a

distance-dependent power law. Our choice of this particular type of dispersal kernel

is also motivated by the fact that long-range interaction plays a crucial role in

many physical and biological systems. For example, in the one-dimensional Ising

spin model (Aizenman et al, 1988) and spin-glass model (Kotliar et al, 1983b)

interaction among the spins is governed by long-range interaction that obeys a

distance-dependent power law. In neuronal systems, long-range interaction with

a specific scaling has been found that controls the connectivity among the neurons

(Szaro and Tompkins, 1987).

An appreciable amount of work has been done to study the effects of climate change

and dispersal on ecosystems (Eklöf et al, 2012; Lande et al, 1999; Kendall et al, 2000;

Peltonen et al, 2002; Travis et al, 2013; Bestion et al, 2015; Urban et al, 2012; Levy

et al, 2016; Nevai and Van Gorder, 2012; Shen and Van Gorder, 2017; Bani et al,

2019; Hutchison et al, 2020). A mathematical model (predator-prey subsidy model)

involving temperature to study seasonal fluctuations (Levy et al, 2016), and also to

measure the impact of global warming and seasonality (Nevai and Van Gorder,

2012) has been investigated. Further, the influence of network structures was

examined on the predator-prey subsidy system (Shen and Van Gorder, 2017). It

was observed that in spatial structures with food scarcity, an increase in migration

rates would result in the possibility of extinction of predators. Investigating delayed

migration to study spatial dynamics has also been an important perspective (Levy

et al, 2016; Eide et al, 2018). Consequently, considerable research has been done

to examine the effect of dispersal on predator-prey dynamics (Levin, 1976; Kareiva,

1990; Yaari et al, 2012). However, a direct approach that incorporates temperature

in spatial population models to study dispersal-induced dynamics is yet to be

explored. Models that investigate migratory effects are generally classified into

one of three categories: Island models, Stepping-Stone models, and Continuum
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models (Shen and Van Gorder, 2017). The key feature of the “Island” model (Levin,

1976; Kareiva, 1990) is the inclusion of a set of patches. It involves instantaneous

migration between patches without explicitly including spatial dimensions. The

“Stepping-Stone” models again consider populations being divided into patches but

the patches are now assigned fixed spatial coordinates. In such models, spatial

structures significantly contribute towards determining predator-prey dynamics

(Shen and Van Gorder, 2017). The ”Continuum” models involve partial differential

equations to elucidate migration of populations in the continuous domain (Levin,

1976). In this chapter, we link changing global mean temperature with the

dispersal behavior of species by considering an ecological system, namely a spatial

Rosenzweig-MacArthur model (Rosenzweig and MacArthur, 1963; Holland and

Hastings, 2008) or a “Stepping-Stone” model. We demonstrate that the natal

dispersal tendency depends upon the changing temperature, which further will

have an impact on the species’ survival. We consider that at very low and

high-temperature ranges, species dispersal within patches is low; this arises mainly

as a consequence of species ‘Thermal Performance Curves’ (TPCs) (Amarasekare

and Savage, 2011). These curves show an exponentially inclining trend at low

temperatures, attain a maximum at the thermal optimum and then decline with

further increase in the temperature. Hence, as the species’ thermal performance

is low at extreme temperatures, this suppresses the species’ ability to move and

thus disperse within patches. In this chapter, we try to address the following

questions: How does the temperature-dependent dispersal influence the dynamics of

a metapopulation? Can dispersal promote the persistence of species by reducing the

degree of spatial synchrony, even in the least favorable environmental conditions?

Can transient state work as an indicator of species behavior in their final dynamics?

To address the above questions, we begin by analyzing the fluctuations in

species density, over time. We carry out different measures to learn the

coherence/incoherence in species dynamics characterized by their amplitude of

fluctuations, density correlations, and transient dynamics. Furthermore, we use

cross-wavelet analyses to understand the long-term dynamics of the system through

transients. Temperature variations that influence species dispersal lead to interesting

spatiotemporal dynamics. We observe that the amplitude of fluctuations in species

density averaged over a large number of the system replicates, and suppresses along

the thermal axis up to optimum temperatures. These findings are conserved while

investigating the cluster count, depicting relatively similar responses of a large

number of species along the changing temperatures. Further, the robustness of

observations is rooted in the increasing synchrony measure and decreasing transients

of the system. Importantly, we also find that the transient phase of the system

can trace the long-term synchronous or asynchronous distance-dependent dynamics.
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In all, our study reveals that the synchrony is minimal at the extreme conditions

and comparatively more synchronized behavior is observed around the optimum

temperatures, which may also be hinted by the transient state, using cross wavelet

analyses.

The chapter is organized as follows: In Subsec. 6.2A, we introduce the

temperature-dependent metapopulation model. The measures used to analyze the

model are defined in Subsec. 6.2B. In Sec. 6.3, we first discuss cluster analysis and

transients which are related to the collective dynamics of the model. Then, we

present the cross-wavelet analysis which depicts the effects of different temperature

together with the distance between patches in Subsec. 6.3E. Finally, in Sec. 6.4 we

discuss the importance of our results and future directions.

6.2 Materials and Methods

To study the influence of temperature-dependent dispersal on spatial population

dynamics, we consider prey-predator interactions within a patch and between

n-spatially distributed patches. Each patch exhibits homogeneous behavior in the

sense of species interactions and phenotypes. Spatial heterogeneity is introduced

into the system due to temperature-dependent dispersal phenomenon as well as by

accounting short-range and long-range interactions of species between the patches.

6.2.1 A metapopulation model

We start with the dimensionless form of a spatial Rosenzweig-MacArthur model

(Goldwyn and Hastings, 2008; Rosenzweig and MacArthur, 1963). The dynamics

of a prey density (hi) and a predator density (pi) in the i-th patch (node) are given

as:

dhi
dt

= hi(1− θhi)−
pihi

1 + hi
+ εh

(
1

ζ(f(T ))

m∑
d=1

hi−d + hi+d
df(T )

− hi

)
, (6.1a)

dpi
dt

=
φpihi
1 + hi

− ηpi + εp

(
1

ζ(f(T ))

m∑
d=1

pi−d + pi+d
df(T )

− pi

)
, (6.1b)

where i (= 1, 2, ..., n) determines the index of a patch. All the indices with modulo

the number of patches in the network (i.e. n). θ is the self-regulation of prey, φ

is the conversion efficiency of the predator to convert and assimilate acquired food

into energy and η determines the predator’s natural mortality. These factors govern

the local dynamics of the interaction network. Spatiotemporal dynamics of the

metapopulation are characterized by dispersal strengths of prey and predator as εh
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and εp, respectively. d is the distance between i-th and j-th patches, defined by the

minimum number of edges required to disperse from the i-th to the j-th patch. We

consider a regular network where all the patches are connected and hence accessible

by the dispersing species from any patch (i.e. m=(n− 1)/2, when the total number

of patches is odd), but the dispersal density may vary depending upon the distance

between the patches as well as the temperature of the habitat.
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Figure 6.1. Thermal dependence of dispersal of spatially separated species. At extreme temperatures
(either very low or high) species are less likely to disperse.

In the network, every patch is connected to all the other patches via the dispersal

strength εh or εp, which is modulated by the distance between patches and

temperature-dependent power law function d−f(T ), where T is the temperature.

ζ(f(T )) = 2
m∑
d=1

d−f(T ) is the normalization constant. We consider the hypothesis

that dispersal is strongest at the optimal temperature (see Fig. 6.1). This is because

the intermediate temperature being a favorable temperature for the growth and

survival (Pellerin et al, 2019) of species results in the active biological traits of

species (Amarasekare and Savage, 2011; Amarasekare and Johnson, 2017). For

example, species attack rate follows an increasing trend, attains a maximum at

the optimum temperature, and then declines, moreover, handling time also attains

an optimum value at the intermediate temperature (Amarasekare, 2015). The

temperature-dependent power law exponent f(T ) governing the distance-dependent

interaction strength is represented by a Gaussian function (Amarasekare, 2015):

f(T ) = fopt × e
(T−Topt)

2

2s2 , (6.2)
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where fopt is the value of f at the optimal temperature Topt. Temperature sensitivity

of the function f(T ) is determined by the parameter s, which also determines the

performance breadth of the dispersal between the coupled patches. Throughout

this chapter, we have considered fopt = 0.27, Topt = 20◦C and s = 11.5. The

function f(T ) holds relatively large values at extreme temperatures as compared to

intermediate temperatures. Furthermore, large values of f(T ) imply fewer chances

of species to disperse to the further habitat as compared to lower values of f(T )

(except the nearest neighboring patches, i.e. for d = 1) as prey-predator dispersal

strengths are modulated via d−f(T ) (see Fig. 6.1). Therefore, species dispersal is

more likely to further patches at intermediate temperatures in comparison with the

extreme temperatures.

6.2.2 Characteristic measures

We study the spatiotemporal dynamics of the system (see Eqn. (6.1)) for a

fragmented land of 11 patches. When there is no dispersal of species from one

patch to another (i.e. with εh = εp = 0), species dynamics are determined by

their local interaction and they exhibit oscillatory behavior. Setting it up as a

benchmark for spatiotemporal interaction, first, we examine the time series of the

species in the 11 patches and observe the impact of changing temperature on the

species dynamics. Our major concern is to understand, what role dispersal plays in

the survival of species under different thermal conditions. For this we compute the

total predator amplitude (Holland and Hastings, 2008), defined as:

Total predator amplitude = log10

max(
n∑
i=1

pi)

min(
n∑
i=1

pi)

 , (6.3)

over a window of 4Mp, with Mp as the mean period of the population cycle which is

averaged over a sufficiently long time period. A synchronous system signifies more

possibility of obtaining high values of predator amplitude compared to asynchrony.

To analyze the same, we also calculate the cumulative probability of various predator

amplitudes for different values of T .

Likewise, to explore the outcomes of interactions between patches, we calculate

the correlation coefficient ρij of a species time series at time t, between the i-th

and the j-th patch for different values of the temperature T . Thereafter, a set of

patches having identical behavior are considered to form a cluster. Here, for identical

behavior, we refer to patches having ρij > 0.999. Out of the n patches, we can have a

k-cluster solution, where 1(global synchrony) ≤ k ≤ n(complete asynchrony). The
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Figure 6.2. Time series of predator species, predator amplitude, and cumulative distributions of predator
amplitude along the thermal gradient T : for (a), (f), (k) T = 0◦C; (b), (g), (l) T = 5◦C; (c), (h), (m)
T = 10◦C; (d), (i), (n) T = 15◦C; and (e), (j), (o) T = 20◦C. Local dynamics are governed by θ = 0.3, η = 1
and φ = 3. Dispersal strengths are: εh = 2−5 and εp = 2−6. k denotes clusters count at different values of
T .

correlation coefficient is calculated at each time and is given by (Gupta et al, 2017):

ρij =
〈xixj〉 − 〈xi〉〈xj〉√

〈xi2〉 − 〈xi〉2
√
〈xj2〉 − 〈xj〉2

, (6.4)

where x is the species density and 〈...〉 is the average over the window [t, t + 4Mp].

Using the correlation coefficient ρij, the frequency of the occurrence of a k-cluster

solution with time evolutions is calculated as:

Frequency of k-cluster =
No. of ≤ k-clusters

No. of simulations
. (6.5)

Due to the possibility of the occurrence of multiple stable attractors in higher

dimensional dynamical systems, here we perform large ensembles of simulations

for a set of randomly chosen initial conditions.

For the permanence of our results, we carry forward our investigation by calculating

the synchrony measure σ (Komin et al, 2010) concerning the changing temperature

T . The synchrony order parameter σ measures the amount of change in synchrony

between patches along the temperature gradient and is defined as:

σ =

√√√√√√√1−

〈 n∑
i=1

[xi(t)− x(t)]
2

n∑
i=1

xi(t)
2

〉
, (6.6)
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where x(t) = 1
n

n∑
i=1

xi(t) and 〈...〉 represents the average over a given time. The

quantity σ varies at intervals 0 and 1, i.e. from no synchrony to perfect synchrony

of the populations. Any intermediate value of σ accounts for partial synchronization

of populations in the system.

The study of asymptotic or long-term dynamics is influential in understanding a

natural system. The asymptotic dynamics may display a constant or a periodic

phase evolution or even chaos. However, while considering the large-scale dynamics

it is of great importance to realize how the population evolves with time. Another

important aspect of ecological time scales is the transients, i.e. the dynamics far

from the final state of a system. A lot of attention has been given to the study

of transient dynamics (Saravia et al, 2000; Hastings, 2001) and it is believed that

the final behavior of a system may be quite different from the transient dynamics

(Hastings et al, 2018). Therefore, it is essential to study the variations in both the

transient and asymptotic dynamics.

We also split the total predator amplitude into transient and asymptotic time series,

and take the median of these time series called the median predator amplitude (MPA)

for transient and asymptotic states. To estimate the transient time, we first used the

low pass filter on the time series obtained by numerically integrating the Eqn. (6.1)

following an algorithm as described in (Holland and Hastings, 2008). MPA is taken

to be an ensemble average of 100 simulations for different sets of randomly chosen

initial conditions to avoid uncertainty. We also calculate the mean fraction of time

spent in the transient state along with changing global mean temperature to estimate

the time taken by the populations to reach a steady state under different warming

conditions.

Also, there is a possibility of long transients, i.e. the system reaches asymptotic

behavior after a very long time (Schreiber, 2003), and it is even possible that the

system never attains an asymptotic state within a given time frame. Therefore, to

understand how a system evolves with time, it is important to study the behavior of

the system away from its final asymptotic dynamics. Here, we use wavelet analysis

to study synchronization and phase relations between interacting species when the

system is in a transient state. Wavelet analysis is a commonly used statistical tool

for investigating nonstationary time series (Torrence and Compo, 1998). Usually,

periodic signals are analyzed by spectral analysis, which uses stationary time series.

This sometimes works as a limitation since the majority of ecological time series are

nonstationary in nature and hence it may not be able to characterize signals whose

frequency content changes with time. It is possible to overcome this hindrance by

wavelet analysis, which is now regularly being used for the investigation of ecological

time series (Grenfell et al, 2001; Keitt and Fischer, 2006). In the interest of studying
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the relative behavior of two-time series, here we use cross-wavelet analysis. It

examines the fluctuations of two-time series and also estimates the phase difference

between these fluctuations (Grinsted et al, 2004). The cross-wavelet analysis is a

powerful tool for testing the possibility of linkages between two-time series (Becks

and Arndt, 2013). To study the effect of temperature and distance on species

dynamics, we perform the cross-wavelet analysis by considering n = 33 patches.

We use the 4th order Runge-Kutta method with 10−2 step size to numerically

integrate the Eqn. (6.1). Initial conditions of prey are independently and identically

distributed, with log10(hi(0)) following a uniform distribution on the interval

(−5, 1 + log10 ĥ). Parallelly, predator initial conditions are independently and

identically distributed, with log10(pi(0)) uniformly distributed on the interval

(−5, 1 + log10 p̂). ĥ = η
φ−η and p̂ = (1 + ĥ)(1 − θĥ) are the respective equilibrium

densities of prey and predator.

6.3 Results

As per the choice of f(T ) and the associated thermal optimum (Eqn. (6.2)), the

system has a reflection symmetry on either side of the thermal optimum Topt =

20◦C (see Fig. 6.1). For example, the results that hold for T = 0◦C will also hold

for T = 40◦C. Hence, in general, we carry out the numerical experiments for the

temperature ranging from T = 0◦C to T = 20◦C.

6.3.1 Time series analyses and predator amplitude

We observe diverse species dynamics for different values of the temperature T .

Examining the time series of predator density as well as total predator amplitude

(Eqn. (6.3)), we find that increasing temperature T up to the line of symmetry (i.e.

the line at T = 20◦C in Fig. 6.1), moves the system from low to high amplitude values

and, hence, less number of clusters k. Figure 6.2 shows the amplitude fluctuations

with time for different values of temperature and it is visible by analyzing cumulative

probability (see Figs. 6.2(k)-6.2(o)) that the expectation of getting high amplitude

values increases with the increasing temperature.

6.3.2 Cluster analysis

The total predator amplitude reveals the oscillatory behavior of populations

indicating that the solutions of Eqn. (6.1) can result in different synchronous states

of spatially connected species depending upon the number of clusters. Hence, we

perform the cluster analysis using the Eqns. (6.4) and (6.5). We observe different
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Figure 6.3. Frequency of cluster states for different values of T : (a) T = 0◦C, (b) T = 5◦C, (c) T = 10◦C,
(d) T = 15◦C, and (e) T = 20◦C. The system converges to high or low number of clusters depending upon
the temperature. The number of clusters decreases with the increasing temperature. Local dynamics are
governed by θ = 0.3, η = 1 and φ = 3. Dispersal strengths are: εh = 2−5 and εp = 2−6. Each panel is the
result of 100 independent simulations.

k-cluster solutions for different warming conditions of the habitat patch, k ranging

from 1 to n cluster(s).

Analyzing the distribution of clusters (see Fig. 6.3) with changing temperature

reveals important information about the collective dynamics of the system. We

observe that an increase in the temperature up to the thermal optimum converges

the system from a high to a low number of clusters.

6.3.3 Interpatch synchrony

Synchrony is highly influenced by species interaction strength. High interaction

strength between patches drives more synchronous behavior, when compared to low
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Figure 6.4. Synchrony measure σ with changing T . The triangles represent the estimated value of σ
at different values of T . The solid line is the best curve fit to the estimations. The other parameters are
εh = 2−10, εp = 2−10, φ = 2, η = 1, and θ = 0.3.

interaction strength. We calculate the synchrony order parameter σ (Eqn. (6.6))

to measure the change in synchrony between patches with variations in T , which

explains the qualitative synchronous dynamics of the interaction network. Figure 6.4

depicts that the value of σ increases with the increasing temperature up to

the thermal optimum. In fact, synchrony is strongest at the thermal optimum

and weakest at both the temperature extremes (extreme low and extreme high

temperatures).

6.3.4 Median predator amplitude and mean transient

fraction

The MPA depicts the fluctuations in total population density, a low value of MPA

implies lower fluctuations and hence high chances of species persistence. It is

observed from Fig. 6.5(a) that both transient and asymptotic MPA hold lower values

at low temperatures and comparatively higher values at intermediate temperatures.

On a related note, we also calculate the mean transient fraction (see Fig. 6.5(b)), the

high value of transient time corresponds to asynchronous solutions. We notice that
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the transient time is high around low temperatures and decreases with the increasing

temperature. Hence, increasing temperature up to the thermal optimum drives the

system from long transients and low amplitude solutions to lower transients and

higher amplitude solutions.
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Figure 6.5. Median predator amplitude and transient duration. (a) Median predator amplitude for the
transient (red) and asymptotic (blue) solution values of T . (b) The mean fraction of the total time duration
the system remains in the transient solutions concerning temperature T . Parameter values are: θ = 0.3,
η = 1, φ = 3, εh = 2−5, and εp = 2−6.

6.3.5 Cross wavelet analysis

Wavelet analysis can be helpful to quantify and interpret powerful information

stored in the transient state (Torrence and Compo, 1998). To study the interactions

between different time series and to understand how the behavioral state changes

in a given period we perform cross wavelet analysis (see Fig. 6.6). Black contour

lines enclose a region of 95% confidence level. Wavelet transform at any point at a

given time also contains information on the nearby data points and since we have

considered time series of finite length, there are chances of error at the beginning

and end of the time series, known as the edge effects. Cone of influence is the

region of the power spectrum where edge effects might distort the signal, and which

is represented by the shaded region on both sides of the contour. Therefore, we

confine our study to the non-shaded regions.

By the cross-wavelet analysis, the density fluctuations between predator species

of two distinct patches with high common power (yellow band) are observed at a

considerable periodicity of 8− 16 units of time. To study the coordination between

predator species of two distinct patches we analyze the phase shift between them.

At the extreme temperature T = 0◦C, the arrows in the eloquent common power
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Figure 6.6. Time series (left panels) and cross wavelet spectra (right panels) of the predator pi. For two
distinct temperatures: (a)-(c) T = 0◦C and (f)-(h) T = 20◦C, are the time series of predator density pi,
where i = 1, 3, 16 is the patch index, in three distinct patches. (d), (i) Cross-wavelet spectra of the predator
in two nearest patches p1 and p3. (e), (j) Cross-wavelet spectra of the predator in two farthest patches p1
and p16. At T = 0◦C, in case of nearest patches ((a), (b); (d)) the predator species oscillates in phase angle
of ≈ 30◦; for the farthest patches ((b), (c); (e)) interactions lead to different phase angles (≈ 90◦). At T =
20◦C, species, in the nearest patches oscillate in phase i.e 0◦ ((f), (g); (i)); in case of farthest patches ((g),
(h); (j)) predator species show a phase drift of ≈ 45◦. The black contour in cross-wavelet spectra encloses
a significant region (95% confidence level) of consideration. The color code follows a pattern from blue to
yellow; the blue color indicates the region with low power whereas the yellow region is with high power.
Other parameter values are: n = 33, θ = 0.3, η = 1, φ = 3, εh = 2−5, and εp = 2−6.

(yellow band) reflect a phase difference of ≈ 30◦ between the fluctuations in predator

density of the two nearest patches, i.e. p1 and p3 (we consider those nearest patches

where d is not equal to 1) (see Fig. 6.6(d)). On the other side, a phase shift of≈ 90◦ is

observed between the fluctuations of predator species of two farthest patches, i.e. p1

and p16 (see Fig. 6.6(e)). When analyzed the dynamics at the thermal optimum

T = 20◦C, the phase angle is centred around 0◦ for the predator species of nearest

patches (see Fig. 6.6(i)), whereas, the fluctuations between two predator species of

farthest patches show a phase drift of ≈ 45◦ (Fig. 6.6(j)).

6.4 Discussion

Understanding the effects of dispersal on population dynamics is one of the major

issues in spatial ecology. Dispersal is considered to be a “double-edged sword”

(Hudson and Cattadori, 1999), since dispersal not only contributes towards species
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persistence by preventing local extinctions due to recolonization, but at some time

it can also be responsible for synchronizing the populations which can trigger the

possibility of global extinction. The realization that the changing climate has a

strong impact on spatial populations, communities, and whole ecosystems, triggered

a lot of interest in investigating the effects of temperature-influenced dispersal

on metapopulations (Bestion et al, 2015; Watkinson and Gill, 2002). Here, we

have presented a mathematical framework elucidating the effects of temperature

on species dispersal. This framework illustrates how the dispersal strength that

promotes synchrony at temperature results in some form of ecological stability at

different extreme temperatures via asynchrony.

Range or habitat shifts are one of the natural ecological responses to climate change.

When the temperature is not favourable, i.e. at extreme temperatures, we have

claimed interaction strength to be low which corresponds to low species dispersal,

hence the intensity of LDD is low. This persuades the asynchronous behavior of the

population at the extreme temperatures. Whereas, at the intermediate temperatures

due to active biological traits of species, dispersal is more prompt, which makes a

species efficient in going to any habitat patch. Thus, resulting in high intensity of

SDD as well as moderate LDD. For instance, at the extreme temperatures, we get

comparatively more clusters and a lower value of predator amplitude than at the

intermediate temperatures, which depicts variations in the spatial dynamics. For

different values of the temperature sensitivity s, the results are qualitatively similar.

We have also observed the change in the measure of synchrony with the changing

temperature. Our study indicates that the synchrony order parameter holds a

low value at extreme temperatures when compared with the value at intermediate

temperatures, including the thermal optimum.

These results hold important implications for understanding how temperature

variations affect dispersal, which further has an impact on population persistence.

We find that long-range dispersal at extreme temperatures turns out to be beneficial

for the species’ persistence. The asynchronous behavior of populations at extreme

temperatures signifies that the minimum densities of species occur at different time

instances for most of the patches, thus making the dispersing species more persistent

by reducing their vulnerability towards environmental perturbation.

We also emphasize the importance of understanding dynamics during the transient

time. Corresponding to this we study the behavior of MPA differently for transient

as well as asymptotic phase. The lower amplitude asymptotic solutions with higher

transient duration at low temperatures (see Fig 6.5(a) and Fig 6.5(b)) reveals the

asynchronous behavior of the system. Our study demonstrates how dispersal in

a regular network under the influence of increasing global temperature drives the

system from asynchrony to synchrony and asynchrony.
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Further, our study interprets the effects of climate warming on species dispersal,

influencing their persistence. In view of a better understanding of the evolution of

such dynamics, we figure out the interactions between species of distinct patches

at different temperatures through cross-wavelet analysis of a few transient time

series. At the extreme temperature T = 0◦C, the cross wavelet analysis explores

the asynchrony between the species oscillations of two nearer patches, however, the

degree of asynchrony becomes stronger when we consider two further patches. This

is because the dispersal strength becomes weaker between furthest patches which

results in stronger asynchrony, in comparison with the asynchrony between nearer

patches. Similarly, at the optimum temperature T = 20◦C, we see almost synchrony

in species oscillations between two nearer patches and the degree of synchrony

reduces when we consider the two furthest patches. In conformity with the phase

shifts observed at T = 0◦C between the fluctuations of predator species of nearer and

farthest patches, we state that the intensity of SDD is much more than that of LDD.

On another note, based on the analysis of phase shifts at T = 20◦C by examining

our results (Fig. 6.3 and Fig. 6.6), we claim that at intermediate temperatures, the

species are resilient towards long-distance dispersal as well.

In conclusion, our study demonstrates the dispersal-temperature relationship from

the perspectives of dynamical systems. We have considered a uniform model with

a difference in dispersal strengths of prey and predators in each patch. Developing

more mechanistic models elucidating temperature effects on dispersal by taking

into account heterogeneity in the structure, and also considering intra-specific

competition, which are equally substantial for the survivorship of species, is an

important future direction. Further, the assumption that different species have

different temperature sensitivity may reveal interesting results. It is also important

to study the dynamics of the spatial system where temperature is a function of

time. This can be done by considering the increase in temperature at a very slow

rate (global warming (Wieczorek et al, 2011)) or by assuming a periodic function

(to model seasonality (Levy et al, 2016)). Moreover, there is a need to understand

the influence of climate change on both the local and spatial ecological processes

simultaneously and the long-term dynamics driven by their mutual interactions.
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Chapter 7

Conclusions

7.1 Key findings

This thesis focuses on different factors that determine the stability and functioning

of spatial ecological systems. In particular, from the mathematical modeling

perspective, we demonstrate how the movement patterns of metapopulations,

changes in network structure, landscape layout, and ecosystem stochasticity can

greatly influence complex communities’ dynamics.

After extensive research on stochastic ecological systems, the genesis and robustness

of noise-induced symmetry breaking (NISB) remains challenging. To fill this gap, we

study the simultaneous effect of network structure and noise on an ecological network

of excitable systems. We find that while in the absence of noise, the system resides

in a single steady state, the presence of noise drives the system out of the resting

state, leading to various collective dynamics. Varying noise intensity and network

topology results in a transition from a homogeneous steady state to inhomogeneous

steady states via NISB, before turning into noise-induced asynchronous oscillations.

The system exhibits oscillatory dynamics for adequate noise intensity and non-local

coupling, or it breaks into two sub-populations with two distinct (inhomogeneous)

noise-induced steady states. Further, for fixed noise intensity and changing the

coupling range from local to global, we identify a transition from an oscillatory

domain to a region of homogeneous steady state through inhomogeneous steady

states. Overall, our results can have significant implications for understanding the

positive effects of noise on species diversity. We thus emphasize the need to study

the interplay between noise and deterministic mechanisms, which have significance

for biological conservation.

The study on networks has focused on the interactions between the node states

mediated by links. However, including higher-order interactions can alter the

behavior of complex networks. We consider an ecological network of spatially

separated patches subjected to pairwise interactions and three-body higher-order

interactions using simplicial complexes to investigate this. We study the collective

behavior and elucidate the effect of network structure and higher-order interactions

on ecological dynamics. We find that where, in the presence of only dyadic
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couplings, a random network could increase the stability of a metacommunity by

inducing asynchronous oscillations, higher-order interactions suppress asynchrony

and pave the way to synchronous solutions (two clusters). On the contrary, in

all-to-all coupling (high node degree), the system with increasing higher-order

coupling strength results in a transition from a region of asynchronous oscillations

to a complete synchrony (one cluster solution). In all, our results illustrate how

higher-order interactions impact the characteristics and dynamics of a system

depending upon the interacting units of the network, which thus hold important

implications in the stability and persistence of a community.

Further, habitat loss and fragmentation have raised major concerns about its

consequences on the functioning and services of ecosystems. Movement strategies are

key in maintaining connectivity and increasing survival in a fragmented landscape.

We consider a spatially explicit stochastic vegetation-grazer model in a fragmented

landscape and study the interplay between foraging behavior, resource pulse, and

the survival rates of species. Our work unveils the important interdependence of

movement behavior and species’ survival rate. It highlights the significant aspect

of resource pulse on the persistence and stability of populations in a fragmented

landscape. Our analysis shows that the optimal foraging strategy highly depends

upon the survival conditions and the amount of resources. We observe that Lévy

walk is always an effective movement strategy; however, the optimal foraging

behavior changes from the Brownian to ballistic with the increase in the rate of

mortality of grazers. Overall, our study shows that a movement may counterbalance

the effect of adverse conditions and promote species coexistence.

Climate warming is one of the decisive factors for the apparent range shifts and

local extinctions of species. Species may need effective dispersal strategies to cope

with the changing environmental conditions to ensure metacommunity persistence.

We investigate how the rising temperature governing species’ local dynamics alters

dispersal response at the regional scale. We study spatial synchrony and analyze

how coherence or incoherence in species abundance is affected by different dispersal

mechanisms and thermal traits. High dispersal rates tend to synchronize dynamics,

leading towards high regional variability, thus decreasing stability. Whereas, for

low dispersal rates, at low and intermediate temperatures, the existence of two

alternative collective dynamics, one with complete synchrony and the other with

strong asynchrony, enhances the chances of persistence of species. However, high

temperatures completely synchronize the population trailing constant dispersal, thus

weakening the stabilizing dynamics. It is also observed that density-dependent

dispersal (DD) could modify metacommunity stability by inducing asynchronous

fluctuations in population abundance at high temperatures. We also demonstrate

the role of temperature in the emergence of chimera (coexistence of coherent
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and incoherent solutions) in constant dispersal. We observe that at intermediate

temperature and for low dispersal strength, the population splits into coherent

and incoherent domains, thus resulting in chimera. In contrast, high temperature

drives all the oscillators towards complete synchrony, thus weakening population

persistence. Our results elucidate that DD and relative dispersal are crucial in

understanding metacommunity stability under the effect of global warming.

Finally, we study a spatial consumer-resource model where the distance between

patches and the temperature-dependent power law function modulates the dispersal

strengths of species. Our study yields how the temperature influences species’

decision of dispersal, resulting in either short-range or long-range dispersal.

We examine species’ synchronous or asynchronous behavior under their thermal

dependence of dispersal. The dispersal strength that promotes synchrony at a

specific temperature is observed to result in some form of ecological stability at

different extreme temperatures via asynchrony. We also emphasize the importance

of understanding species dynamics during the transient time. We determine the

interactions between species of nearest and farthest patches at different temperatures

through cross-wavelet analysis using transient time series. In conformity with

the phase shifts observed at extreme temperatures between the fluctuations of

species, we state that the intensity of short-distance dispersal is much more than

that of long-distance dispersal. On another note, we claim that at intermediate

temperatures, the species are resilient towards long-distance dispersal as well.

Overall, our work develops a better understanding of various dynamic processes

persuaded by different factors in spatial ecological networks.

7.2 Future directions

Our research findings center on investigating the impacts of noise, network

topology, dispersal patterns, and landscape structure within complex ecological

systems. Nonetheless, various factors that dictate the persistence of populations

and communities necessitate a thorough comprehension of their repercussions on

ecosystems. There are still many unknowns about this topic. Here are some

questions that could be considered for future research:

We analyzed the influence of noise on an ecological network and explored how

changes in the network structure impact the system’s dynamics. Further, it could be

intriguing to understand the extent to which these criteria remain valid if the network

inhabits temporal structural change. Additionally, an essential future exploration

could involve examining a two-dimensional lattice of excitable systems and analyzing

how spatiotemporal dynamics are influenced when demographic noise is introduced.
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Exploring the Fokker-Planck equation for stochastic ecological networks is essential

for future research. This analytical approach has the potential to enhance our

understanding of the observed collective dynamics.

We’ve noticed that higher-order interactions incorporated result in distinct collective

behavior compared to the standard pairwise approach. Numerous unresolved

challenges must be addressed when exploring higher-order interactions in spatial

ecological systems. We have focused on studying simplicial complexes. It’s unclear

how our results would change if we consider different higher-order structures, like

hypergraphs. Furthermore, exploring multilayer and temporal networks has the

potential to unveil new phenomena and insights.

Our research uncovers how movement behavior impacts ecological systems and

emphasizes the significant role of resource pulses in maintaining the persistence

and stability of populations within a fragmented landscape. We introduced resource

pulses into the system following a regular pattern. Examining how dynamics change

when the resource pulse becomes aperiodic could reveal intriguing and diverse

patterns. Considering the higher trophic interactions in a heterogeneous landscape,

which incorporates the dispersal costs, is an important future direction to investigate

the effect of movement on landscape connectivity and ecological stability.

We emphasize that considering temperature and distance when studying dispersal

patterns is crucial for comprehending metacommunity stability. Further, considering

different species’ climate niches in understanding their response, i.e., either adapt or

disperse (Berg et al, 2010), is much needed. Moreover, Kuussaari et al (2016) found

an increase in dispersal rates with increasing temperature and population abundance

of the Clouded Apollo butterfly. In contrast, a study by Jourdan et al (2019) on

the crane fly Tipula maxima reveals the negative effect of rising temperatures on

their dispersal in dealing with changing climatic conditions. Moreover, the analysis

done by Pärn et al (2012) on the house sparrow Passer domesticus demonstrates

the effect of temperature on dispersal rates depending upon the habitat quality.

They found that dispersal rates increased with temperature on islands that lacked

food resources; however, they are independent of temperature on islands with farms.

Therefore, analyzing how species’ dispersal abilities can vary following their thermal

tolerance is crucial for conserving a metacommunity.
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flight patterns of male agrotis segetum moths over landscape scales. Journal of

Theoretical Biology 245(1):141–149

Reynolds AM, Smith AD, Reynolds DR, Carreck NL, Osborne JL (2007b)

Honeybees perform optimal scale-free searching flights when attempting to locate

a food source. Journal of Experimental Biology 210(21):3763–3770

Ritz A, Tegge AN, Kim H, Poirel CL, Murali T (2014) Signaling hypergraphs. Trends

in Biotechnology 32(7):356–362

Rohani P, Earn DJ, Grenfell BT (1999) Opposite patterns of synchrony in sympatric

disease metapopulations. Science 286(5441):968–971

Rosenzweig ML, MacArthur RH (1963) Graphical representation and

stability conditions of predator-prey interactions. The American Naturalist

97(895):209–223

Salnikov V, Cassese D, Lambiotte R (2018) Simplicial complexes and complex

systems. European Journal of Physics 40(1):014,001



122 References

Sankaran S, Majumder S, Viswanathan A, Guttal V (2019) Clustering and

correlations: Inferring resilience from spatial patterns in ecosystems. Methods

in Ecology and Evolution 10(12):2079–2089

Saravia LA, Ruxton GD, Coviella CE (2000) The importance of transient’s dynamics

in spatially extended populations. Proceedings of The Royal Society of London

Series B: Biological Sciences 267(1454):1781–1785

Savage VM, Gillooly JF, Brown JH, West GB, Charnov EL (2004) Effects of

body size and temperature on population growth. The American Naturalist

163(3):429–441

Schmidt KA, Ostfeld RS (2003) Songbird populations in fluctuating environments:

predator responses to pulsed resources. Ecology 84(2):406–415

Schneidman E, Still S, Berry MJ, Bialek W, et al (2003) Network information and

connected correlations. Physical Review Letters 91(23):238,701

Schreiber SJ (2003) Allee effects, extinctions, and chaotic transients in simple

population models. Theoretical Population Biology 64(2):201–209

Schwabedal JT, Pikovsky A (2010) Effective phase dynamics of noise-induced

oscillations in excitable systems. Physical Review E 81(4):046,218

Sekara V, Stopczynski A, Lehmann S (2016) Fundamental structures of

dynamic social networks. Proceedings of the National Academy of Sciences

113(36):9977–9982

Semenova N, Zakharova A, Anishchenko V, Schöll E (2016) Coherence-resonance
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