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Abstract

The spin-orbit coupling (SOC) is a central theme explored in several research endeavors due to

its fascinating effects, including quantum spin-Hall states and topological insulators. It also has

immense potential for use in various quantum devices and information processing. Among the

spin-orbit-coupled (SO-coupled) physical systems, ultracold quantum gases with synthetic SOC

are of special interest due to their pristine and tunable nature.

In this thesis, we have studied the Rashba SO-coupled spinor condensates in the continuum

as well as optical lattices. Our study explores the emergence of self-trapped supersolid-like

crystalline structures in a quasi-two-dimensional (q2D) SO-coupled spin-2 condensate. Different

strengths of SOC and interatomic interactions result in a variety of nontrivial density patterns.

For small SOC strengths, γ ≈ |c0| ≈ 0.5 where γ and c0 are (dimensionless) SOC and spin-

independent interaction strengths, the ground state is an axisymmetric multiring soliton for

polar, cyclic and weakly ferromagnetic interactions, whereas for stronger ferromagnetic interac-

tions, a circularly asymmetric soliton emerges as the ground state. Depending on the values of

interaction parameters, a stripe phase may emerge as the ground state with an increase in SOC

strength. A triangular-lattice soliton can emerge in all magnetic phases, for γ ≈ 2|c0| ≈ 1 in

addition to the aforementioned solitons. Further increases in SOC strength result in a square-

lattice and a superstripe soliton as quasidegenerate states. We have also demonstrated the

spontaneous generation of spatially periodic supersolid-like superlattice and stripe solitons in

q2D Rashba SO-coupled spin-1 and spin-2 nonmagnetic BECs, which are generally thought to

be associated with spinor interactions. The emergence of all these solitons can be inferred from

a study of solutions of the single-particle Hamiltonian.

In addition to this, we have studied quantum phase transitions of a two-dimensional two-

component Bose-Hubbard model in the presence of a Rashba SOC, both with and without

thermal fluctuations. Our analysis reveals that the interplay of single-particle hopping, the

strength of the SOC, and the interspin interaction leads to superfluid phases with distinct

properties. We have found that when the interspin interaction is weaker than the intraspin

interaction, the SOC induces two finite-momentum superfluid phases. One of these is a phase-

twisted superfluid that exists at low hopping strengths and reduces the domain of insulating

phases. At higher hopping strengths, there is a transition from the phase-twisted to a finite-

momentum stripe superfluid. On the other hand, when the interspin interaction is stronger

than the intraspin interaction, the system exhibits a phase-twisted to a ferromagnetic phase

transition. However, at finite temperatures, the thermal fluctuations destroy the phase-twisted

superfluidity and lead to a wide region of normal-fluid states.

On the dynamics front, we have studied the quench dynamics in a two-component bosonic

mixture within an optical lattice, finding qualitative differences from one-component Bose gas.

We have examined quench dynamics across both first- and second-order Mott insulator (MI) to

i



superfluid (SF) phase transitions, observing critical slowing down of dynamics near the transition

point in semblance with the Kibble-Zurek mechanism. In the case of second-order MI-SF tran-

sitions with homogeneous lattice-site distributions in the MI phase, our numerical simulations

yield dynamical critical exponents close to mean-field predictions.

ii
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3.2 Zero-temperature ground-state phase diagram in the presence of Rashba SOC
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Chapter 1

Introduction

1.1 Background

Nearly seven decades after its theoretical prediction in 1925 [7,8], the long-awaited experimental

realization of Bose-Einstein Condensate (BEC) finally occurred in 1995 [9–11]. This ground-

breaking achievement not only validated the theoretical framework but also ignited a new era of

research, leading to remarkable advancements and ongoing explorations in the field of quantum

physics to this day [12–14].

The substantial time gap between the theoretical prediction and experimental realization of

BEC is generally attributed to the refinement of quantum mechanics and the technical chal-

lenges associated with achieving the necessary conditions for condensation, such as ultra-low

temperatures and precise control over atomic interactions, requisite advancements in experi-

mental techniques, and cooling technologies [15]. The phase transition to the Bose condensed

phase is an intriguing phenomenon because it occurs even in an ideal gas without interaction,

making Bose-Einstein condensation a pure quantum-statistical effect.

To achieve a BEC, the thermal de Broglie wavelength must be comparable to the mean

interatomic distances in the quantum gas. The de Broglie wavelength can be calculated using

the equation λ =
√

2πℏ2/mkBTc, where m is the mass of the bosonic atom and Tc is the critical

temperature for Bose-Einstein condensation. The mean interatomic distance can be expressed

as ⟨r⟩ = 1/n1/3, where n denotes the number of bosons per unit volume. This overlap of the

de Broglie wavelengths means that atoms can no longer be considered as distinct particles but

1



2 1.2. Scalar BEC

rather be described as a collective quantum object known as a BEC. This requirement sets the

stage for two primary factors influencing the realization of a BEC: density and temperature.

Accordingly, one approach to realize a BEC could be to increase the density of the quantum

gas, but this can lead to the formation of molecules or a transition to a liquid or solid state,

making high-density gases impractical for achieving the desired condensed state. To overcome

this challenge, researchers have opted for the second approach, which focuses on reducing the

temperature to extremely low levels (of the order of some hundred nano-Kelvin). By decreasing

the temperature, the particles’ thermal energies decrease, reducing their momenta and, thus,

increasing the thermal de Broglie wavelengths. Consequently, the mean interatomic distances

can become comparable to the de Broglie wavelength. However, the particle density is set to

be around 1014 − 1015 cm−3 [12]. This value is significantly lower (around four to five orders of

magnitude) than the air density under standard conditions.

Alkali atoms, such as rubidium [11] and sodium [9], are commonly employed in creating

Bose-Einstein condensates (BECs) due to their favorable properties. Alkali atoms possess a

single valence electron, making them amenable to laser cooling techniques [15]. Furthermore,

they have a simple energy level structure that facilitates precise manipulation and control of

the atomic system. There are three essential steps to creating a BEC in a laboratory. Firstly,

laser cooling is used to gradually decrease the thermal energy of atoms. After that, trapping

mechanisms, predominantly magnetic traps, confine the cooled atoms within spatially localized

regions by employing magnetic fields. Finally, evaporative cooling is employed to selectively

remove high-energy atoms, enabling the attainment of ultracold temperatures required to create

a BEC [12].

1.2 Scalar BEC

BECs are fascinating systems that present a complex many-body problem. The Quantum Field

Theory framework is suitable for studying BECs as quantum fields. This theory can accom-

modate systems with an infinite number of particles and allows one to analyze the BEC as a

coherent entity, taking into account the interactions among the particles in a unified manner.



3

The Hamiltonian of a Bose gas with two-body inter-boson interactions is given by [16]

Ĥ = Ĥ0 + Ĥint, (1.1)

where Ĥ0 includes the kinetic energy and trapping potential terms and Ĥint is the part for mutual

interaction between particles. These two constituents of the Hamiltonian (1.1) are defined as

Ĥ0 =

∫
drΨ̂†(r, t)

(
− ℏ2

2m
∇2 + V (r, t)

)
Ψ̂(r, t), (1.2)

Ĥint =
1

2

∫
drdr

′
Ψ̂†(r, t)Ψ̂†(r

′
, t)U(r− r

′
)Ψ̂(r

′
, t)Ψ̂(r, t), (1.3)

where ℏ is the reduced Planck’s constant, m is the mass of an atom, and U(r − r′) is the

interatomic interaction potential. The field operator Ψ̂ [Ψ̂†] annihilates [creates] a particle at

position r and obeys the usual bosonic commutation relations:

[
Ψ̂(r), Ψ̂† (r′)] = δ

(
r− r′

)
,[

Ψ̂(r), Ψ̂
(
r′
)]

=
[
Ψ̂†(r), Ψ̂† (r′)] = 0,

(1.4)

where δ (r− r′) is the Dirac delta function. The evolution of the field operator Ψ̂(r, t) is described

by the Heisenberg equation of motion given as

iℏ
∂Ψ̂(r, t)

∂t
= [Ψ̂(r, t), Ĥ]. (1.5)

In the dilute and ultracold BEC, the low-energy interactions between particles are mostly two-

body interactions. To represent these interactions, one can use a delta function potential U(r−
r′) = gδ(r− r′), where g = 4πℏ2a/m represents the strength of the interaction [17]. The sign of

g, determined by the s-wave scattering length a, determines whether the interaction is attractive

(g < 0) or repulsive (g > 0).

1.2.1 Mean-field theory

In 1947, Bogoliubov [18] proposed a mean-field approximation to describe the BEC, treating the

field operator Ψ̂(r, t) as the sum of a mean field ψ(r, t), representing the central core of the BEC,
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4 1.2. Scalar BEC

and fluctuation operator δΨ̂(r, t) which accounts for the thermal and quantum fluctuations, i.e.

Ψ̂(r, t) ≈ ψ(r, t) + δΨ̂(r, t). (1.6)

Assuming the temperature of the gas is well below the critical temperature Tc, a significant

fraction of the particles will occupy the same ground state, forming the condensed BEC. So, the

fluctuation operator can be neglected. By incorporating the delta function interaction potential

and the mean-field approximation (1.6) in Ĥ and evaluating the commutator in the right-hand

side of Eq. (1.5), we obtain the zeroth-order model for a three-dimensional (3D) BEC known as

the Gross-Pitaevskii (GP) equation [19,20]:

iℏ
∂ψ(r, t)

∂t
= − ℏ2

2m
∇2ψ(r, t) + V (r)ψ(r, t) + g|ψ(r, t)|2ψ(r, t), (1.7)

where ψ(r, t) represents the order parameter of the BEC and |ψ(r, t)|2 represents the density of

particles at position r and time t.

The GP equation, analogous to the nonlinear Schrödinger equation, governs the evolution

of the BEC, providing insights into quantities like momentum and energy distributions, as well

as the stability of nonlinear-wave structures. This equation has earlier been extensively ex-

plored in the context of nonlinear phenomena in optics [21, 22], plasma physics [23], and fluid

dynamics [24]. However, when applied to BECs, the equation presents unique characteristics

and flexibilities that distinguish it from previous studies. These include but are not limited to

the presence of external potentials and the ability to manipulate these potentials, the effective

nonlinearity, and the dimensionality of the model. Understanding the GP equation is crucial for

gaining valuable insights into predicting and characterizing essential non-linear effects. Notably,

this includes the study of solitons [25,26] and vortices [27], which are highly relevant and exper-

imentally observable phenomena. By delving into the GP equation, researchers gain a deeper

understanding of the intricate dynamics and properties exhibited by these nonlinear entities in

various physical systems [12–14].
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1.3 Spinor BEC

Magnetic traps confine the cooled atoms within spatially localized regions by employing magnetic

fields resulting in the selective trapping of atoms in the weak-field-seeking states. The strong

Zeeman shifts caused by the magnetic field freeze out any spin-exchange collisions, resulting in

the atoms almost behaving like scalar particles in the condensate, which can now be described

by a scalar field [12]. This is in contrast to an optical trap, where all the states can be trapped

by spin-independent potential and spin-degrees of freedom are not frozen [28]. In the case of

an optical trap, the condensate can be described by a spinor with 2f + 1 components having

hyperfine spin f , rendering such systems rich in novel physics [29]. Notably, commonly observed

BEC species, such as 87Rb and 23Na, correspond to hyperfine manifolds with f = 1 and f =

2 [30]. In contrast, 52Cr [31] and 85Rb BECs possess f = 3 phases [29]. Optical traps mainly

employ laser fields, and the trapping is based on the interaction between the induced dipole

moment of the atom and spatially varying electric field [28]. Spinor condensates exhibit many

quantum phenomena with no analogue in single-component or multicomponent scalar BECs,

e.g. spin dynamics [32], spin waves [33], spin mixing [34] etc.

The hyperfine spin states of the atoms can change during the two-body scattering events

in spinor Bose gases. To properly account for this in the interaction part of the Hamiltonian,

the total hyperfine spin of the two particles must be considered. If two identical spin-f bosonic

particles collide, they may have a total spin of F = 0, 2, ..., 2f since symmetry considerations

prohibit odd F in the s-wave limit. The scattering length, which depends on the total spin F ,

can have up to f + 1 different values, denoted as a0, . . . , a2f [29].

The interatomic interaction Hamiltonian Ĥint for a spinor condensates can be written as [29]

Ĥint =
1

2

∫
dr

∑
m1m2m′

1m
′
2

Cm1m2

m′
1m

′
2
ψ̂†
m1

(r)ψ̂†
m2

(r)ψ̂m′
2
(r)ψ̂m′

1
(r), (1.8)

where m1 and m2 are magnetic quantum number and can take a value from f, f − 1, . . .− f and

Cm1m2

m′
1m

′
2
≡ 4πℏ2

M

∑
F=0,2,...,2f

aF

〈
f,m1; f,m2

∣∣∣P̂F

∣∣∣ f,m′
1; f,m

′
2

〉
, (1.9)

with P̂F =
∑F

M=−F |F ,M⟩⟨F ,M| being the projection operator onto a two-body state with
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6 1.3. Spinor BEC

the total spin angular momentum F . The interaction potential can be divided according to the

spin channel F as

Ĥint =
∑

F=0,2,....2f

ĤF
int, (1.10)

where ĤF
int is the interaction Hamiltonian corresponding to the two bosons getting scattered

with a total spin F [29]. For the contact interaction potential, ĤF
int can be written as

ĤF
int =

gF
2

∫
dr

F∑
M=−F

Â†
FM (r) ÂFM (r) , (1.11)

where gF = 4πℏ2aF/m, and ÂFM (r) is the irreducible operator that annihilates a pair of bosons

at r. The irreducible operator is related to a pair of field operators via the Clebsch-Gordan

coefficients ⟨F ,M | f,m; f,m′⟩ as follows:

ÂFM (r) =

f∑
m,m′=−f

〈
F ,M | f,m; f,m′〉 ψ̂m(r)ψ̂m′ (r) . (1.12)

The operator
∑F

M=−F Â
†
FM (r) ÂFM (r) for spin f can be expressed in terms of f +1 operators

[29].

1.3.1 Mean-field model for a spin-1 BEC

The second-quantized Hamiltonian for f = 1 is given by [29]

Ĥ =

∫
dr

[∑
j

ψ̂†
j

(
− ℏ2

2m
∇2 + V

)
ψ̂j +

g0
2
Â†

00 (r) Â00 (r)

+
g2
2

2∑
M=−2

Â†
2M (r) Â2M (r)

]
,

(1.13)

where the irreducible operators can be expressed in terms of total density operator ρ̂(r) and

spin-density operator F̂ν(r). Thus, in the mean-field approximation, the energy functional for a
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spin-1 BEC becomes

E =

∫
dr

∑
j

ψ∗
j

(
− ℏ2

2m
∇2 + V

)
ψj +

c0
2
ρ2 +

c1
2
|F|2

 , (1.14)

where

c0 =
4πℏ2(a0 + 2a2)

3m
, c1 =

4πℏ2(a2 − a0)

3m
, (1.15)

and ρ(r) =
∑

j |ψj(r)|2 is the total density of particles with j = +1, 0, or −1 as the magnetic

quantum numbers of magnetic sublevels. In Eq. (1.14), F = (Fx, Fy, Fz) is the spin-density

vector defined as

Fν(r) =
∑
j′,j

ψj′
∗(r)(fν)j′,jψj , (1.16)

where ν is (x, y, z) and fx, fy, and fz are the irreducible representations of the x, y, and z

components of the angular momentum operators for a spin-f particle, respectively. The (j, j′)th

element of these (2f + 1)× (2f + 1) matrices are

(fx)j,j′ =
1

2

[√
(f − j + 1)(f + j)δj−1,j′ +

√
(f + j + 1)(f − j)δj+1,j′

]
, (1.17a)

(fy)j,j′ =
1

2i

[√
(f − j + 1)(f + j)δj−1,j′ −

√
(f + j + 1)(f − j)δj+1,j′

]
, (1.17b)

(fz)j,j′ =jδjj′ , (1.17c)

where j and j′ can have values from f ,f − 1, . . . ,−f . The mean-field dynamics of a spinor BEC

is governed by (1.14)

iℏ
∂ψj

∂t
=

δE

δψ∗
j

, (1.18)

which for spin-1 BEC yields three coupled GP equations

iℏ
∂ψ±1

∂t
=

(
−ℏ2∇2

2m
+ V + c0ρ± c1Fz

)
ψ±1 +

c1√
2
F∓ψ0, (1.19a)

iℏ
∂ψ0

∂t
=

(
−ℏ2∇2

2m
+ V + c0ρ

)
ψ0 +

c1√
2
F−ψ−1, (1.19b)
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where

F± = Fx ± iFy, Fx =
1√
2
[ψ1

∗ψ0 + ψ0
∗(ψ1 + ψ−1) + ψ−1

∗ψ0], (1.20a)

Fz = |ψ1|2 − |ψ−1|2, Fy =
i√
2
[−ψ1

∗ψ0 + ψ0
∗(ψ1 − ψ−1) + ψ−1

∗ψ0]. (1.20b)

If c1 is positive, the energy functional in Eq. (1.14) is minimized with a non-magnetized spinor,

and the antiferromagnetic or polar phase is the ground-state phase. In the opposite case of

negative c1, the ground-state phase is ferromagnetic. The interactions in a spin-1 condensate

share similarities with those observed in condensed matter physics. The ferromagnetic state

can be considered polarized or magnetic, exhibiting a net magnetization. Conversely, the anti-

ferromagnetic and polar phases lack magnetization due to an equal distribution of populations

in spin states with magnetic quantum numbers j = ±1 or all the atoms in the spin state with

j = 0. [29].

1.3.2 Mean-field model for a spin-2 BEC

The second-quantized Hamiltonian for f = 2 is given by [29]

Ĥ =

∫
dr

[∑
j

ψ̂†
j

(
− ℏ2

2m
∇2 + V

)
ψ̂j +

g0
2
Â†

00 (r) Â00 (r)

+
g2
2

2∑
M=−2

Â†
2M (r) Â2M (r) +

g4
2

2∑
M=−4

Â†
4M (r) Â4M (r)

]
,

(1.21)

where j can take values +2,+1, 0,−1,−2 and the irreducible operators can be expressed in terms

of total density operator ρ̂(r), spin density operator F̂ν(r), and singlet-pair operator Â00 (r). In

the mean-field approximation, the energy functional for a spin-2 BEC can then be written as

E =

∫
dr

∑
j

ψ∗
j

(
− ℏ2

2m
∇2 + V

)
ψj +

c0
2
ρ2 +

c1
2
|F|2 + c2

2
|Θ|2

 , (1.22)

where

c0 =
4πℏ2(4a2 + 3a4)

7m
, c1 =

4πℏ2(a4 − a2)

7m
, c2 =

4πℏ2(7a0 − 10a2 + 3a4)

7m
, (1.23)
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ρ(r) =
∑

j |ψj(r)|2 is the total density, and Θ is the spin-singlet pair amplitude given by

Θ =
1√
5
(2ψ+2ψ−2 − 2ψ+1ψ−1 + ψ2

0). (1.24)

For the spin-2 BEC, we get the following five coupled GP equations by minimizing the energy

functional Eq. (1.22) and using Eq. (1.18)

iℏ
∂ψ±2

∂t
= Hψ±2 + c1(F∓ψ±1 ± 2Fzψ±2) +

c2√
5
Θψ∗

∓2, (1.25a)

iℏ
∂ψ±1

∂t
= Hψ±1 + c1

[√3

2
F∓ψ0 + F±ψ±2 ± Fzψ±1

]
− c2√

5
Θψ∗

∓1, (1.25b)

iℏ
∂ψ0

∂t
= Hψ0 + c1

√
3

2
(F−ψ−1 + F+ψ+1) +

c2√
5
Θψ∗

0, (1.25c)

where

H =

(
−ℏ2∇2

2m
+ V + c0ρ

)
, Fz =

∑
j j|ψj |2, (1.26a)

F− = F ∗
+ = 2ψ∗

−2ψ−1 +
√
6ψ∗

−1ψ0 +
√
6ψ∗

0ψ+1 + 2ψ+2ψ
∗
+1. (1.26b)

Depending on the values of c1 and c2, we can have three magnetic phases [29,35] − ferromagnetic,

anti-ferromagnetic, and cyclic. The scattering lengths, which determine the strength of interac-

tions, can (in principle) be manipulated using optical or magnetic Feshbach resonances [36].

To generalize, in the mean-field approximation, a spin-f BEC is described by a set of 2f +1

coupled time-dependent nonlinear partial differential equations with first-order derivative in

time and second-order derivatives in space known as coupled Gross-Pitaevskii equations (CG-

PEs) [29, 37–39]. For f = 1 and f = 2, we have derived these CGPEs in Eqs. (1.19a)-(1.19b)

and Eqs. (1.25a)-(1.25c), respectively. There is no general analytic approach to solve a set of

CGPEs, one needs to solve the equations numerically, and this has spurred many studies on the

numerical solutions of spinor BECs [3,4,40]. However, to solve these equations numerically, it is

preferable to have these CGPEs in dimensionless units. Appendix A discusses the dimensionless

formulations of these equations for quasi-one-dimensional (q1D), quasi-two-dimensional (q2D),

and 3D cases, specifically for a spin-1 BEC. A wide range of numerical techniques have been

employed in literature to study single-component scalar [41–46], multicomponent scalar [47] as
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well as spinor BECs [3,4,40,48]. One of the most widely used methods to determine the ground

state of scalar BECs is the imaginary-time method followed by an appropriate discretization

scheme to evolve the resultant gradient flow equations [42,43]. The extension of this method to

compute the ground states of spinor systems, for example for a spin-1 BEC, is not straightfor-

ward, as there are only two constraints, i.e. the conservation of the total number of atoms and

longitudinal magnetization, while one would need three projection parameters for normalization

of three components of the wave function [3, 4, 40]. However, the imaginary-time method has

been used in the literature with simultaneous conservation of norm and magnetization achieved

through the introduction of the third normalization condition [3, 4, 40]. There have been differ-

ent discretization schemes used which include, among others, centered finite difference schemes

and spectral methods for spatial discretization and forward Euler, backward Euler, and Crank-

Nicolson schemes for time discretization. The non-linear terms can be handled easily by first

using the time-splitting technique, which in the case of scalar GP equation amounts to approx-

imating the solution by successively solving two equations- one of which is just a free particle

Schrödinger equation, and the other containing the non-linear term can be solved exactly [44].

The free particle Schrödinger equation can be handled by Crank-Nicolson [45] or spectral dis-

cretization [46, 49]. In this thesis, we use the Fourier pseudospectral discretization for solving

the free particle Schrödinger equation. A couple of advantages of choosing this method: firstly,

it can be extended easily to the higher dimensional systems because of the ease of dealing with

the differential operators in the Fourier space, and secondly, its spectral accuracy. Details of this

method for the spin-1 system are discussed in Appendix B. We have implemented this method

to develop codes in FORTRAN 90/95 programming language for imaginary- and real-time prop-

agation. The details of these codes are provided in Appendix C. To ensure the reliability of our

codes, we have compared the results for various parameters with published literature, and we

have included these sample results in Appendix D.

1.3.3 Spin-orbit-coupled spinor condensates

Spin-orbit coupling (SOC) is a fundamental phenomenon in various physical systems. The

coupling of spin with momentum brings quantum mechanics to the forefront. It has important

implications in various systems, including materials. SOC can give rise to intriguing effects

like quantum spin Hall states [50] and topological insulators [51]. These exotic states of matter
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exhibit unique electronic properties and hold great potential for applications in quantum devices

and information processing [51].

In conventional atomic physics systems, the presence of SOC gives rise to atomic fine-

structure splitting. In materials, SOC arises due to symmetry breaking. A lack of mirror

symmetry in two-dimensional (2D) systems results in Rashba SOC [52], whereas a lack of inver-

sion symmetry in bulk crystals leads to linear Dresselhaus SOC [53].

Charged particles in the presence of external magnetic fields experience a Lorentz force.

In atomic gases, this possibility is ruled out because of their neutrality. In the experimental

realizations of synthetic electric [54] and magnetic fields [55], researchers engineer Hamiltonians

with spatially or time-dependent vector potentials. These engineered vector potentials produce

artificial magnetic fields B = ∇ × A or electric fields E = −∂A/∂t for neutral atoms. By

manipulating these synthetic gauge fields, Spielman’s group at the Joint Quantum Institute

achieved a breakthrough through successfully creating synthetic SOC [54–56] within ultracold

Bose gases, opening new frontiers for investigating quantum systems in this exciting domain.

1.3.3.1 Raman-coupled Hamiltonian

Consider the schematic in Fig. 1.1, where lasers couple three lower-energy states to a high-

energy state [1, 2]. The frequencies of these lasers are ω1 and ω2, which are chosen near to the

resonance, resulting in the coupling of three lower-energy states via a second-order two-photon

process. The coupling between the internal states by laser fields occur through dipolar coupling,

Hdip = −d · E, where d is the dipole operator, and E is the electric field, which for the two

Raman lasers is

E = E1 cos (k1 · r − ω1t) +E2 cos (k2 · r − ω2t) . (1.27)

Electric-dipole interaction Hamiltonian is given as

H(t) =


−Eg 0 0 d14 ·E(r, t)

0 0 0 d24 ·E(r, t)

0 0 Eg d34 ·E(r, t)

[d14 ·E(r, t)]∗ [d24 ·E(r, t)]∗ [d34 ·E(r, t)]∗ Ee

 , (1.28)
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where the basis states are |+1⟩, |0⟩, | − 1⟩, |e⟩ with energies (−Eg, 0, Eg, Ee), respectively. dij =

⟨i|d|j⟩ and
di4 ·E(r, t) = Ω1 cos (k1 · r − ω1t) + Ω2 cos (k2 · r − ω2t) , (1.29)

here Ω1 = di4.E1 and Ω2 = di4.E2. To get rid of the time dependence, we apply a time-

Figure 1.1: (Color online) Three lower energy states are coupled to the higher energy state using
two Raman lasers of nearly the same frequency. Raman lasers effectively generate spatially-
varying coupling between | − 1⟩ and |0⟩, and between |0⟩ and |+1⟩ states through second-order
process [1, 2].

dependent unitary transformation to our system, yielding transformed wavefunction ψ′ = Uψ

and transformed Hamiltonian H ′ = UHU † − iU∂tU
†. The apt unitary operator for the trans-

formation is

U =


ei(ω2−ω1)t 0 0 0

0 1 0 0

0 0 e−i(ω2−ω1)t 0

0 0 0 e−iω1t

 , (1.30)

resulting in [2]

H ′ =


δ 0 0 d14 ·E eiω2t

0 0 0 d24 ·E eiω1t

0 0 −δ d34 ·E e2iω1t−iω2t

[d14 ·E eiω2t]
∗

[d24 ·E eiω1t]
∗

[d34 ·E e2iω1t−iω2t]
∗

∆

 , (1.31)
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where δ = (ω1 − ω2)−Eg and ∆ = Ee − ω1. Since ∆ is the largest energy scale in the problem,

one can adiabatically eliminate state |e⟩ to study the low-energy physics of the system. The

Schrödinger equation of the problem can be written as i∂tc = H ′c, where c = (c1, c2, c3, c4)
T then

i∂tc4 ≪ ∆c4 and c4 ≈ − (H ′
14c1 +H ′

24c2 +H ′
34c3) /∆, which we substitute into the equations of

motion for c1, c2, and c3 resulting in an effective 3×3 Hamiltonian. We neglect the fast-oscillating

terms using the rotating-wave approximation, which gives the following Hamiltonian [2]

H
′
=


δ − |Ω1|2+|Ω2|2

4∆ −Ω1Ω∗
2

4∆ e−i(k1−k2)·r 0

−Ω2Ω∗
1

4∆ ei(k1−k2)·r − |Ω1|2+|Ω2|2
4∆ −Ω1Ω∗

2
4∆ e−i(k1−k2)·r

0 −Ω2Ω∗
1

4∆ ei(k1−k2)·r −δ − |Ω1|2+|Ω2|2
4∆

 . (1.32)

The SOC effect originates from the spin-flipping process described by the off-diagonal terms in

Eq. (1.32) with a momentum transfer of (k1 − k2); the diagonal contribution |Ω1|2 + |Ω2|2 /4∆
in Eq. (1.32) is the AC Stark shift. Redefining the Hamiltonian by changing the zero-energy

reference, we get [2, 56]

H
′
=

ℏ2k2

2m
+


3δ/2 ΩR

2 e
−ikL·r 0

Ω∗
R
2 e

ikL·r δ/2 ΩR
2 e

−ikL·r

0
Ω∗

R
2 e

ikL·r −δ/2

 , (1.33)

where ΩR = −Ω1Ω
∗
2/2∆, kL = k1 − k2, and k = −i∇.

Spielman’s group at the Joint Quantum Institute achieved a breakthrough through the suc-

cessful creation of synthetic SOC [56] within ultracold Bose gases, using a method based on

Raman coupling. In this experiment, for the F = 1 manifold, the energy difference between

|1,+1⟩ and |1, 0⟩ is quite large due to the quadratic Zeeman shift as compared to the |1, 0⟩ and
|1,−1⟩. This makes the system effectively a two-level system by adiabatic elimination of |1,+1⟩
state. The two states of this effective two-level system are labelled as |1, 0⟩ = | ↑⟩, |1,−1⟩ = | ↓⟩.
Now, considering counterpropagating Raman laser beams along x−direction, the corresponding

Hamiltonian is [2]

Ĥ0 =
ℏ2k2

2m
+

ΩR

2
[cos(2kLx)σx − sin(2kLx)σy] +

δ

2
σz. (1.34)

We now apply a unitary transformation to Eq. (1.34) defined by a unitary operator U =

1 Introduction



14 1.3. Spinor BEC

exp(−ikLxσz) to illustrate the presence of SOC more distinctly. The resultant Hamiltonian

is [2, 56]

Ĥ0 =
ℏ2k2

2m
+

ℏ2kLkx
m

σz +
ΩR

2
σx +

δ

2
σz, (1.35)

which contains an SOC term that couples kx and σz.

This generates the desired SOC, leading to the degeneracies in the energy-momentum dis-

persion. As a result, the spinor BECs with SOC exhibit a wide variety of phases and a more

intricate phase diagram than systems without SOC. The specific phases and the transitions

among them in the ground-state phase diagram depend on various factors, such as the strength

and nature of the SOC and the interactions between the atoms [57,58].

In condensed matter systems, SOC is an intrinsic property and cannot be tuned [59]. In

contrast, it is possible to vary the strength of synthetic SOC in ultracold atoms by tuning

the Raman coupling between pseudospin states, and thereby different phase transitions can

be explored [56, 60, 61]. For example, a spin-orbit-coupled (SO-coupled) pseudospin-1/2 Bose

gas undergoes two successive magnetic phase transitions as the strength of Raman coupling is

increased. The first transition is from a stripe to a magnetized plane-wave phase, and the second

is from the magnetized plane-wave to a non-magnetic zero-momentum superfluid state for the

Raman coupling of the order of the recoil energy [62].

Before the advent of synthetic SOC in ultracold atoms, studies on SO-coupled systems

were primarily constrained to the fermionic systems [51]. As many atomic species are bosonic,

the first physical realization of an SO-coupled bosonic system [56] raised many new questions,

for instance, how SOC affects the behaviour of bosonic superfluid? In contrast to spin-1/2

electrons, many atoms possess spin much larger than 1/2. How does SOC affect these gases,

especially those with high spins like Rb, Na, Cr, Er, and Dy? Making use of the tunability of

the SOC, one can also study the physics of a topological insulator and superconductor in a more

flexible and disorder-free setting. SO-coupled ultracold systems can also be used for quantum

simulations [58], opening new research directions which can lead to novel quantum states and

quantum phenomena.

Various configurations of SOC can be created by coupling different internal atomic states us-

ing additional laser beams [63]. This flexibility allows for the generation of tunable combinations

of Rashba and Dresselhaus SOCs [63]. There are several theoretical proposals for generating
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various SOC models that don’t even have analogues in any naturally occurring systems [64],

which opens the door for exploring exotic quantum phenomena and potentially harnessing them

for future technological advancements. However, there are technological challenges, such as ad-

dressing the heating caused by Raman laser beams, etc., that need to be overcome to engineer

various SOC models.

The implementation of SOC has led to many studies on spinor BECs. For instance, in an op-

tical lattice potential, a 2D SOC exhibits inversion and C4 symmetries, opening up new avenues

for studying topological band structures and quantum effects. A recent experiment explored

the interaction-driven quantum phase transition (QPT) and topological region of such a 2D

system [65]. These experimental advances have led to several theoretical studies on magnetic

ordering, including spin-spiral ordering [66], vortex and Skyrmion crystal [67], and ferromag-

netic and antiferromagnetic phases [68]. Additionally, several investigations have examined

the effects of SOC strength and symmetry on the ground state [69], crystal momentum dis-

tributions [70], and SOC-driven Mott insulator (MI) to superfluid (SF) phase transition [71].

Moreover, in the continuum, combining mean-field nonlinearities with SOC has attracted signif-

icant attention, giving rise to remarkable phenomena, including vortices [72–76], monopoles [77],

skyrmions [78, 79], multidomain patterns [80], structures induced by nonlocal interactions [81],

tricritical points [82], solitons [83–85], and many more. The interest in multidimensional self-

trapped structures has been renewed, particularly after the prediction of stable 2D and 3D

bright solitons in an SO-coupled pseudo-spinor system without any confining potential in free

space [86, 87]. Recently, quantum droplets, a self-trapped phase unlike a bright soliton, have

been experimentally realized in dipolar BECs [88–90] and two-component BECs [91, 92], where

beyond mean-field interactions inhibit the mean-field collapse. In the following section, we will

introduce one of the self-trapped solutions, namely bright solitons, in the context of this thesis.

1.4 Solitons

Solitons [93, 94], remarkable phenomena observed in various nonlinear systems such as shallow

water, plasmas, and optical fibers, have been the subject of extensive theoretical and experi-

mental investigations. While true solitons are mathematically the solutions of exactly integrable

models [93, 95], physical systems that closely approximate integrable models are often referred

1 Introduction
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to as solitons, especially in experimental contexts. Solitons are characterized by their non-

dispersive nature, retaining their initial shape for all time and exhibiting localization properties.

They can also pass through other solitons while preserving their size and shape [96]. These can

be attributed to the interplay between nonlinearity and dispersion. Nonlinearity compensates

for the dispersive effects, enabling solitons to maintain their shape over time. In the realm of

BECs, the mean-field equation (1.7) has a term corresponding to external potential. In the

theoretical scenario of one dimension and without trapping, Eq. (1.7) simplifies to the one-

dimensional (1D) nonlinear Schrödinger equation that features exact analytical solutions in the

nonlinear regime, known as solitary waves or solitons. Solitons exhibiting density depressions

are referred to as “dark” solitons. This category further distinguishes between “black” solitons,

with a minimum density of zero, and “grey” solitons, with a minimum density greater than zero.

Conversely, solitons with a density maximum are termed “bright” solitons [12]. For the existence

of bright solitons, attractive interactions are needed in the system, whereas for the occurrence

of dark solitons, repulsive interactions are needed. In the context of nonlinear optics, these can

be described as focusing and defocusing Kerr-type nonlinearities, respectively. These so-called

“solitons” in physical systems can survive collisions and propagate over long distances, although

they do display dispersion and attenuation over sufficiently large distances, e.g. in fiber-optic

systems. In the context of ultracold atomic gas experiments, the controlled creation of bright

solitary matter waves is made possible through the use of magnetically tunable Feshbach res-

onances [36]. These resonances enable precise control over interatomic interactions by varying

the magnetic field, allowing for manipulation of the s-wave scattering length over a wide range

of positive and negative values.

In higher-dimensional systems, the nonlinear Schrödinger equation loses its integrability

[93,95]. Generating 2D and 3D bright solitons is a significantly more difficult task compared to

1D. The primary challenge arises from the presence of a cubic local self-attractive nonlinearity,

which leads to critical and supercritical collapse (blowup) in 2D and 3D geometry, respectively.

This collapse arises due to the interplay between attractive forces and kinetic energy, leading to

a breakdown of the condensate’s stability [97].

Multicomponent BECs have further enriched the study of solitons in the matter waves.

These introduce additional tunable parameters, such as interspecies interaction, and give rise

to novel nonlinear structures that are not observed in scalar BECs. As an example, a two-
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component BEC introduces new nonlinear structures, including dark-bright solitons (combining

dark and bright components) [98–100], dark-dark solitons [101], bright-bright solitons [102,103],

and domain walls [104, 105]. The studies on solitons in multicomponent BECs have expanded

our understanding of nonlinear phenomena in matter waves. However, even in multicomponent

BEC, stable bright solitons in two or three dimensions have not been reported in free space,

solely relying on contact interactions.

Various theoretical approaches have been developed for stabilizing 2D and 3D solitons. These

approaches involve utilizing trapping potentials, advanced nonlinear interactions, or nonlocal

nonlinearity. [97,106]. After the successful generation of synthetic SOC, a fascinating possibility

is to stabilize bright solitons (including vortex solitons) with an interplay of SOC and mean-field

nonlinearity [86,87]. Stabilization by SOC introduces new features in these solitons differing from

a conventional BEC. For example, the shape of a soliton does not change with velocity due to

the Galilean invariance of the conventional system, whereas there is a lack of Galilean invariance

due to SOC [84,107]. One of the most remarkable outcomes of the investigations on SO-coupled

BECs in 2D and 3D geometries is the stabilization of vortex-bright solitons [86, 87, 107, 108].

These solitons not only possess localized states but also incorporate vorticity, allowing for the

embedding of vortex structures. The vorticity within these solitons is characterized by an

integer phase winding number, also known as the topological charge denoted by w. This charge

corresponds to a total phase change (∆ = 2πw) that accumulates as one traverses a closed

trajectory surrounding the pivot or phase singularity. A distinctive feature of the vortex soliton

is the presence of a hole in the density of the component with a phase singularity. In addition

to the stabilization of vortex solitons, another interesting theoretical proposal has been made

to realize self-trapped supersolid-like structures in SO-coupled BECs [109]. In the next section,

we will introduce the concept of a supersolid, its experimental realization, and the self-trapped

supersolid-like structures.

1.5 Supersolid-like structures

A supersolid [110–112] is a captivating quantum state that defies our conventional understand-

ing of matter. It combines the characteristics of a crystalline solid with its ordered structure

and stable arrangement of particles and a superfluid with its remarkable ability to flow without

1 Introduction



18 1.5. Supersolid-like structures

friction or resistance. This unique state breaks two fundamental symmetries in physics: contin-

uous translational invariance, which is responsible for the solid-like properties, and continuous

gauge invariance, which governs the superfluid behaviour [113, 114]. Both diagonal long-range

and off-diagonal long-range orders (ODLRO) exist simultaneously and appear spontaneously in

a supersolid [114].

Supersolidity, an idea initially proposed as a theoretical concept [110–112], have been the sub-

ject of significant scientific research. Despite decades of exploration, a supersolid state in helium

remains elusive [115]. However, scientists have recently revisited the concept in relation to ultra-

cold atoms. Theoretical suggestions have explored the possibility of creating supersolids using

finite-range and dipolar interactions [116], followed by exciting experimental developments and

culminating in the realization of a supersolid phase in dipolar BECs [117–120]. By fine-tuning

the ratio between dipolar and contact interactions, these systems undergo a phase transition,

first entering a supersolid phase. Subsequently, with a further decrease in the strength of contact

interactions [117–120], a crossover to an insulating phase occurs. The observation of the excita-

tion spectrum provides further confirmation of the supersolid phase, as it reveals a simultaneous

and spontaneous breaking of both continuous translational and global gauge symmetries. An-

other candidate to realize supersolidity is an SO-coupled spinor BEC, where a supersolid stripe

phase, characterized by both diagonal and off-diagonal orders, has been experimentally observed

in a pseudospin-1/2 spinor condensate [121]. Recently, this system has been claimed to be a

paradigmatic supersolid which is demonstrated by the nonrigidity of the density stripes [122].

This discovery has further confirmed that SO-coupled spinor BECs are an enticing playground

to uncover many exciting physics.

The three necessary hallmarks of a supersolid are periodic density modulation, global phase

coherence and phase rigidity [123]. Different experiments have claimed the existence of super-

solidity in these ultracold systems by identifying spatial modulations of the density profile and

simultaneous global phase coherence [118–121]. The experimental realization of a state that

simultaneously shows all these three properties was first shown by Pfau’s group [123] for dipolar

dysprosium atoms.

Combining the themes of self-trapping and supersolidity, an interesting theoretical proposal

has been made to realize self-trapped supersolid-like structures in SO-coupled spin-1 BECs [109],

where periodic spatial patterns in total density are expected to possess supersolid-like proper-
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ties. ‘Supersolid-like’ terminology is a reference to the fact that these structures manifestly

share one of the three properties of a supersolid. Moreover, these supersolid-like structures

are found to be self-trapped, hence termed as supersolid-like solitons. We have explored these

self-trapped structures, having square-lattice- and triangular-lattice-like spatial structures in

the total density, in this thesis. A supersolid-like soliton represents a remarkable phenomenon

of spontaneous 2D crystallization within a quantum degenerate gas. Further studies on these

can provide valuable insights into the fundamental mechanisms underlying crystal formation in

solids under controlled conditions. One of the aims of this thesis is to explore the properties

and behaviour of 2D bright solitons and other self-trapped structures that emerge in SO-coupled

spinor condensates.

1.6 Optical lattice

Optical lattices have an important role in studying many-body physics. These lattices are

composed of light that creates an artificial crystal through the interference patterns generated

by two or more coherent laser beams travelling in opposite directions [124]. If the laser beams are

incoherent, the light intensity with no interference pattern is dictated by the beam profiles that

create an optical trapping potential used for the generation of spinor condensates. The spatial

periodicity of the lattice is defined by the wavelengths λi of the laser beams. When two lasers

with equal wavelengths propagate along the x-axis but in opposite directions, they produce a

standing wave with an intensity pattern that exhibits spatial periodicity. The periodicity of

the intensity pattern is equal to half of the wavelength of the lasers. Optical lattices use the

AC Stark effect of detuned laser light to create periodic potentials that trap neutral atoms.

By far-detuning the lasers from atomic resonances, the electric field of the laser induces dipole

moments in the atoms, leading to a force caused by the gradient of the inhomogeneous light

field. Laser light is used for creating deep potential wells that trap the atoms strongly at the

lattice sites [124].

The optical lattices are effective in limiting atomic motion, resulting in a greater emphasis

on interaction energy in comparison to kinetic energy. These lattices can be tailored to create

diverse single-particle dispersions, and the balance between interaction and kinetic energies can

be fine-tuned by adjusting the lattice depth. By simulating solid-state systems with cold gases,
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optical lattices offer access to properties and processes that are typically difficult to observe

in real materials. Researchers are able to establish a direct correlation between systems found

in solid-state materials by modelling electrons with atoms in quantum simulators. The tight-

binding model is often used to establish a direct correspondence between optical lattices and

ionic lattices in solid-state systems. Optical lattices offer several advantages over traditional

condensed matter systems, such as parameter control, defect-free systems, and the ability to

achieve different lattice geometries and dimensions. Furthermore, the simplified interactions,

primarily through isotropic scattering [125], make it easier to study. These experimental controls

have led to the use of cold atoms in optical lattices as quantum simulators [126], allowing for the

replication of the physical behaviour of specific models from condensed matter. These innovative

concepts draw inspiration from Feynman’s original ideas [127].

1.6.1 Bose-Hubbard model

In the regime of full coherence, where a single macroscopically occupied matter wave accurately

describes the system, the GP treatment is well suited [128]. However, as the field of BECs

advanced, the need to “go beyond GP” became apparent. This was driven by both theoretical

interest and experimental opportunities to explore the strongly correlated regime. Strong in-

teractions, ultrafast rotations, and unique trapping potentials like optical lattice potentials can

challenge the validity of the GP equation.

To capture the essential characteristics of a Bose gas in an optical lattice, the Bose-Hubbard

model (BHM) is commonly used [129,130]. This model captures the competition between kinetic

energy, which promotes particle delocalization and uniform spatial distribution, and potential

energy, which localizes particles on lattice sites by minimizing repulsion. BHM provides a simple

yet powerful framework for understanding the behaviour of Bose gases in optical lattices.

The grand canonical many-body Hamiltonian for a system of interacting bosonic neutral

atoms confined in optical lattice potential is

Ĥ =

∫
drΨ̂†(r)

(
− ℏ2

2m
∇2 + V (r)

)
Ψ̂(r)− µ

∫
drΨ̂†(r)Ψ̂(r)

+
1

2

∫
drdr

′
Ψ̂†(r)Ψ̂†(r

′
)U(r− r

′
)Ψ̂(r

′
)Ψ̂(r),

(1.36)

where Ψ̂(r) is the time-independent bosonic field operator, which creates an atom at position
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r. The confining potential V is an optical lattice potential, and the interatomic interaction

U(r− r
′
) can be approximated by the contact pseudopotential. We work in the grand canonical

ensemble wherein chemical potential µ fixes the total number of particles.

In a periodic potential, the energy spectrum of a single particle exhibits bands of allowed

energies and energy gaps [131]. The corresponding wave functions can be described using Bloch

functions uα,p(r), which are characterized by a band index α and quasi-momentum p. For deep

periodic potentials, a tight-binding limit is applicable. In this limit, the width of energy bands

becomes smaller than the gap energy, and the Wannier functions localized at the lattice wells

become the convenient basis to expand the wave functions of the system. The Wannier functions

are defined as Fourier transform of Bloch functions as

wi,α(r) =
∑

p∈BZ

e−ipℏ (r−Ri)uα,p(r), (1.37)

where Ri is a lattice vector pointing at site i. In low-temperature systems with weak inter-

particle interactions, transitions between different bands can be neglected. Consequently, the

system’s dynamics are restricted to the lowest Bloch band, also referred to as the single-band

approximation. This can only occur when the energy gap between the first and second bands

exceeds the thermal and interaction energies per atom. In this scenario, we can expand the field

operators in relation to the Wannier functions linked to the lowest band as

Ψ̂(r) =
∑
i

wi,0(r)b̂i, (1.38)

where the subscript 0 of wi,0 denotes the lowest band, and b̂i corresponds to the annihilation

operator for the atoms at the ith lattice site. Substituting Eq. (1.38) in Eq. (1.36), and then

keeping terms corresponding to nearest neighbor (NN) tunnelling and onsite interaction, we can

obtain

ĤBHM = −
∑
⟨i,j⟩

Jij b̂
†
i b̂j +

U

2

∑
i

n̂i (n̂i − 1)−
∑
i

µin̂i, (1.39)

where ⟨i, j⟩ denotes the sum over the nearest neighbors. The operator n̂i = b̂†i b̂i represents the
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number of particles at site i. The hopping strength is

Jij = −
∫
drw∗

i,0(r)

[
−ℏ2∇2

2m
+ V (r)

]
wj,0(r), (1.40)

and the strength of the onsite interaction is

U =
4πℏ2a
m

∫
dr|wi,0(r)|4. (1.41)

It is justifiable to limit the hopping term to NN sites and the interaction term to onsite in the

BHM when the offsite Wannier functions have negligible overlap. This is especially true for deep

optical lattices. Eq. (1.39) is the lowest band Hamiltonian of the BHM, which is expressed using

bosonic creation and annihilation operators, b̂†i and b̂i, which satisfy usual canonical commutation

relations.

At zero temperature, there are two ground-state phases in BHM (1.39): MI and SF phases.

These phases arise from the competition between kinetic energy (considering Jij = J) and on-

site inter-atomic interaction energy (U). The SF phase is characterized by the dominance of

kinetic energy over the on-site interaction energy (J ≫ U), allowing atoms to move between

nearest neighbour sites. This leads to delocalization and ODLRO in the system. Conversely,

the MI phase is characterized by the dominance of on-site interaction energy over the kinetic

energy (J ≪ U), resulting in localized atoms that cannot move between lattice sites. As a result,

there are fixed number of atoms across the lattice sites but no phase coherence, leading to the

absence of ODLRO. Among the two quantum phases, the MI phase corresponds to the strongly

interacting regime and the SF phase corresponds to the weakly interacting regime. A QPT from

MI to SF was experimentally first realized in a pioneering work by Greiner et al. in 2002 [132].

1.6.2 Quantum quench dynamics

The study of the dynamical evolution of the quantum state is of great importance and has been

extensively studied in the field [133–135]. The equilibrium conditions are often an idealization,

it is crucial to study the out-of-equilibrium dynamics of quantum systems. An important insight

can be gained by understanding the route to equilibrium of a non-equilibrium initial quantum

state. Understanding the dynamics of these quantum systems is crucial for developing quantum
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technologies like quantum computing [136]. There are various ways to take a system out of

equilibrium, such as connecting it to a bath and pumping energies and particles into the system,

as in transport studies. Due to the presence of the bath, the system is not a closed one, and

hence, its dynamics is not unitary. One other possibility is by changing one of the parameters

of the underlying Hamiltonian of the system, which causes the initial quantum state to go out

of equilibrium and try to approach the eigenstate of the final Hamiltonian corresponding to the

changed parameter value under unitary evolution. This process is called a quantum quench and

can be of two types: sudden quench or slow quench [134]. There are several research pursuits in

this broad field, including thermalization and relaxation of quantum systems after a quench [133],

spontaneous symmetry breaking and associated universal scaling laws [134,135,137,138], phase-

ordering kinetics and domain growth laws [139,140].

Ultracold atoms in optical lattices have been utilized in experimental advancements to study

quantum states. These atoms are particularly suitable for research on closed quantum systems

due to their minimal environmental interaction. Initial investigations were focused on studying

dynamics around the BEC transition to study the associated defect production [141–144], phase-

ordering kinetics and domain growth [145]. A recent experiment [146] has revealed an exciting

study on the dynamics of QPT from the MI to the SF phase and studied the critical exponent of

the correlation length. Motivated by this, in this thesis, we have studied the out-of-equilibrium

dynamics of various MI to SF phase transitions in two-component Bose Hubbard model (TBHM).

1.7 Outline of the thesis

The thesis is structured into five chapters. In this chapter, we have discussed a brief review

of the literature relevant to the thesis to provide the state-of-the-art in the field of SO-coupled

spinor BECs and related research directions. In the subsequent chapters, we elaborate on how

we contribute to the field by addressing some of the open questions. The overview of the chapters

in the rest of the thesis is as follows.

In the first part of Chapter 2, we introduce and discuss the eigenfunctions of the single-

particle Rashba SO-coupled Hamiltonian for a spin-2 BEC. For an attractively interacting SO-

coupled spin-2 BEC, we solve homogeneous CGPEs numerically to obtain the ground-state phase

diagram. The characteristic self-trapped solutions for small, medium, and large SOC strengths
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in cyclic, ferromagnetic, and polar domains are identified. Later, we introduce the Galilean-

transformed mean-field model to study the moving bright soliton solutions. In the second part

of the chapter, we extend the study to nonmagnetic SO-coupled spin-1 and spin-2 BECs

In Chapter 3, we introduce the TBHM for an SO-coupled pseudospinor BEC in a square

optical lattice. We discuss the single-site Gutzwiller mean-field (SGMF) theory to solve the

TBHM and investigate the zero- and finite-temperature phase diagrams in the presence and

absence of synthetic SOC.

Chapter 4 discusses the quantum quench dynamics across MI-SF QPTs of the TBHM.

We first discuss the equilibrium phase diagrams for three different values of the interspecies

interactions that correspond to the miscible-immiscible phase transition. We then study the

quantum quench dynamics across MI-SF QPTs using the dynamical Gutzwiller equations for

both the first- and second-order phase transitions and obtain the Kibble Zurek scaling laws.

The concluding chapter (Chapter 5) summarizes the results discussed in the aforementioned

chapters of the thesis. We also consider some future directions that might aid in gaining a deeper

understanding of SO-coupled spinor BECs and their properties.

The thesis contains four appendices. In Appendix A, we discuss the dimensionless formu-

lation of CGPEs for q1D, q2D, and 3D spin-1 BECs, as well as important conserved quantities.

Appendix B details the numerical methods we used to solve the CGPEs in our thesis. In Ap-

pendix C, we describe our numerical codes in-depth, including modules, functions, subroutines,

and other parameters declared in the code. In Appendix D, we compare our codes’ results

with existing literature to verify their reliability and compare energy, chemical potential, and

density profiles against existing results.



Chapter 2

Supersolid-like solitons in

spin-orbit-coupled condensates

A vector-bright soliton is a self-bound multicomponent solitary wave that maintains its shape

while moving with a constant velocity. As discussed in Sec. 1.4, it has been theoretically demon-

strated that the SOC leads to a stabilization of self-trapped solutions like bright solitons in

q2D [86,107] and 3D [87,108] spinor BECs. Vector-bright solitons have been studied extensively

in SO-coupled q1D [84, 85], q2D [86, 147, 148], and 3D pseudospin-1/2 BECs [87]. These self-

trapped solitary waves have also been predicted to emerge in SO-coupled q1D [5], q2D [107,109],

and 3D spin-1 BECs [108]. In an SO-coupled q2D spin-1 BEC, the existence of square-lattice

solitons with a square-lattice modulation in the total density has also been demonstrated [109].

However, these self-trapped solitons are still unexplored in the case of q2D SO-coupled spin-2

condensates, and we undertake a comprehensive study of the same in this chapter. The SO-

coupled spin-2 BEC exhibits more complex symmetry properties compared to the spin-1 case

and the interplay of spin-independent and two spin-dependent interactions with SOC leads to a

richer variety of emergent patterns in a spin-2 BEC [75,149]. In this chapter, our aim is to look

for supersolid-like solitons in SO-coupled spinor condensates. We have termed these structures

as supersolid-like because there are spatial modulations in the total density, which is one of the

properties of a supersolid. It is to be mentioned here that we have not calculated the superfluid

fraction or confirmed the phase rigidity of these structures.

This chapter is organized as follows. In Sec. 2.1, we present the mean-field CGPEs of an SO-
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coupled spin-2 BEC and establish the allowed phase winding numbers for the system in Sec. 2.1.1.

In Sec. 2.1.2, we demonstrate the solutions of the noninteracting system. In Sec. 2.2, we discuss

numerical results for small, medium, and large SOC strength γ and their dynamical stability

in Sec. 2.2.4. The Galilean-transformed mean-field model for the condensate is introduced in

Sec. 2.2.8, which we use to study the moving solitons and collisions between them. Sec. 2.3

provides the description of nonmagnetic spinor condensates. In Sec. 2.4, we discuss the mean-

field model for nonmagnetic spin-1 and spin-2 condensates. In Sec. 2.5, we discuss the numerical

results for nonmagnetic spin-1 and spin-2 condensates. We summarize the chapter in Sec. 2.6.

2.1 Mean-field model for spin-orbit-coupled spin-2 BEC

We consider an SO-coupled spin-2 spinor BEC free in the x-y plane and confined by a harmonic

trap V (r) = mωz
2z2/2 along the z direction to its Gaussian ground state. The trapping fre-

quency ωz is strong enough to freeze the dynamics along the z direction. The single-particle

Hamiltonian of this system in the presence of Rashba SOC is given by [58,150]

H0 =
p2x + p2y
2m

+ γ(pyfx − pxfy), (2.1)

where px = −iℏ∂x ≡ −iℏ∂/∂x and py = −iℏ∂y ≡ −iℏ∂/∂y are the momentum operators along x

and y axes, respectively; γ is the strength of SOC; fx and fy are the irreducible representations of

the x and y components of angular momentum operators for the spin-2 particle, respectively and

are given by Eqs. (1.17a)-(1.17b) for general f . Spinor BEC for f = 2 can be described by the

five CGPEs (1.25a)-(1.25c) in the absence of Rashba SOC. Eqs. (1.25a)-(1.25c) after including

SOC are then converted into a dimensionless form for a q2D setting by following the procedure

described in Appendix A for spin-1 BEC, which can be extended to a spin-2 BEC. The q2D

SO-coupled spin-2 BEC is, thus, described by the following set of CGPEs in the dimensionless
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form [29,35]:

i∂tϕ±2 = (H+ c0ρ)ϕ±2 + c1(F∓ϕ±1 ± 2Fzϕ±2) +
c2√
5
Θϕ∗∓2 + Γ±2, (2.2a)

i∂tϕ±1 = (H+ c0ρ)ϕ±1 + c1

[√3

2
F∓ϕ0 + F±ϕ±2 ± Fzϕ±1

]
− c2√

5
Θϕ∗∓1 + Γ±1, (2.2b)

i∂tϕ0 = (H+ c0ρ)ϕ0 + c1

√
3

2
(F−ϕ−1 + F+ϕ+1) +

c2√
5
Θϕ∗0 + Γ0, (2.2c)

where

H = −1
2

(
∂x

2 + ∂y
2
)
, Θ = 1√

5
(2ϕ+2ϕ−2 − 2ϕ+1ϕ−1 + ϕ20), (2.3a)

F− = F ∗
+ = 2ϕ∗−2ϕ−1 +

√
6ϕ∗−1ϕ0 +

√
6ϕ∗0ϕ+1 + 2ϕ+2ϕ

∗
+1, Fz =

∑
j j|ϕj |2. (2.3b)

∂t ≡ ∂/∂t; ρj(x, y) = |ϕj(x, y)|2 are component densities; ρ(x, y) ≡ ∑
j ρj(x, y) is the total

density; F± = Fx ± iFy; |F|2 = F 2
x + F 2

y + F 2
z ≡ F+F− + F 2

z , where Fx, Fy, and Fz are the

three components of the spin-density vector F; and Θ is the spin-singlet pair amplitude. In Eqs.

(2.2a)-(2.2c), the interaction parameters and SOC terms are defined as

c0 =
2
√
2πN(4a2 + 3a4)

7aosc
, c1 =

2
√
2πN(a4 − a2)

7aosc
, c2 =

2
√
2πN(7a0 − 10a2 + 3a4)

7aosc
, (2.4)

Γ±2 = −iγ (∂y ± i∂x)ϕ±1, Γ±1 = −i
√

3
2γ (∂y ± i∂x)ϕ0 − iγ (∂y ∓ i∂x)ϕ±2, (2.5a)

Γ0 =− i
√

3
2γ[(∂y − i∂x)ϕ+1 + (∂y + i∂x)ϕ−1], (2.5b)

where a0, a2, and a4 are s-wave scattering lengths in the total spin channels 0, 2 and 4, re-

spectively, for a spin-2 BEC, and N is the total number of bosons. In this chapter, we will

consider a self-attractive (c0 < 0) system. Depending on the values of c1 and c2, we can have

three magnetic phases [29,35] − ferromagnetic, antiferromagnetic, and cyclic − as illustrated in

Fig. 2.1. The units of length, density, time, and energy considered in Eqs. (2.2a)-(2.2c) are os-

cillator length aosc =
√
ℏ/mωz, a

−2
osc, ω

−1
z , and ℏωz, respectively. The dimensionless formulation

of the mean-field model for the condensate has the normalization condition
∫
ρ(x, y)dxdy = 1.

2 Supersolid-like solitons in spin-orbit-coupled condensates
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Figure 2.1: (Color online) The c2 vs c1 phase plot (not to scale) illustrating ferromagnetic,
antiferromagnetic, and cyclic phases in the absence of SOC.

The number of particles along with the energy

E =

∫
dxdy

 +2∑
j=−2

ϕ∗jHϕj +
c0
2
ρ2 +

c1
2
|F|2 + c2

2
|Θ|2 +

+2∑
j=−2

ϕ∗jΓj

 , (2.6)

are two conserved quantities of an SO-coupled BEC. In the presence of SOC (γ ̸= 0), magneti-

zation (≡
∫
Fzdxdy =

∫
dxdy[2ρ+2(x, y)− 2ρ−2(x, y)+ ρ+1(x, y)− ρ−1(x, y)]) is not a conserved

quantity, although it is conserved for γ = 0.

2.1.1 Phase requirement

Exotic ground states have been predicted to emerge in SO-coupled spinor condensates includ-

ing vortex-bright solitons. Vortex-bright solitons have been studied extensively in SO-coupled

pseudospin-1/2 [86,87,147,148] and spin-1 BECs [107–109]. In this context, the permitted vortex

configurations in a spinor BEC depend on the intercomponent phase relationships. Considering

a circular symmetry, the spinor order parameter for a vortex configuration in circular polar
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coordinates (r, θ) can be written in terms of amplitude and phase parts as

ϕj(r, θ) = Rj(r)e
i(wjθ+αj), (2.7)

where Rj = |ϕj(r, θ)| ≥ 0 and j = 0,±1,±2. The phases of the component wave functions

have contributions from the winding number wj of the phase singularity which is an integer and

any other constant phase αj . For a spin-2 BEC, the spin-dependent interaction energy is given

as [29,35]

Eint =

∫ (c1
2
|F|2 + c2

2
|Θ|2

)
rdrdθ. (2.8)

Using ansatz in Eq. (2.7), the contribution of phase-dependent terms in the spin-dependent

interaction energy in Eq. (2.8) can be written as

Ephase
int =

(
6c1 −

2c2
5

)∫
R2

0R+1R−1rdr

∫
cos[(w+1 + w−1 − 2w0)θ + k]dθ

+ 2
√
6c1

∫
R0R+1R+2R−1rdr

∫
cos[(w+2 + w−1 − w0 − w+1)θ + l]dθ

+ 2
√
6c1

∫
R0R+1R−1R−2rdr

∫
cos[(w+1 + w−2 − w0 − w−1)θ +m]dθ

+ t

∫
R+1R+2R−1R−2rdr

∫
cos[(w+2 + w−2 − w+1 − w−1) + n]dθ

+ 2
√
6c1

∫
R0R

2
+1R+2rdr

∫
cos[(w0 − 2w+1 + w+2)θ + o]dθ

+ 2
√
6c1

∫
R0R

2
−1R−2rdr

∫
cos[(w0 + w−2 − 2w−1)θ + p]dθ

+
2c2
5

∫
R+2R−2R

2
0rdr

∫
cos[(2w0 − w+2 − w−2)θ + q]dθ,

(2.9)

where

k = α+1 + α−1 − 2α0, l = α+2 + α−1 − α0 − α+1, m = α+1 + α−2 − α0 − α−1, (2.10a)

n = α+2 + α−2 − α1 − α−1, o = α0 − 2α+1 + α+2, p = (α0 + α−2 − 2α−1), (2.10b)

q = (2α0 − α+2 − α−2), t =
[
4c1 −

4c2
5

]
. (2.10c)

A typical θ-dependent term in Eq. (2.9) can be written as [151]

∫ 2π

0
cos(wsθ + αs)dθ =

sin(2πws + αs)

ws
− sinαs

ws
, (2.11)

2 Supersolid-like solitons in spin-orbit-coupled condensates
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where ws and αs, represent any of the linear combinations of wjs and αjs appearing as arguments

of cosine, respectively. As ws can only be an integer including zero, the absolute value of integral

in Eq. (2.11) is 2π if ws = 0 and αs is an integer multiple of π. The exact values of αs have

to be determined by minimizing energy (2.9) with ws = 0. The permitted independent winding

number relations thus are

w+1 + w−1 − 2w0 = 0, w+2 + w−2 − w+1 − w−1 = 0, w0 + w−2 − 2w−1 = 0. (2.12)

The energy contribution from SOC terms, obtained by using ansatz (2.7), is

Esoc =

∫
dxdy

∑
j

ϕ∗jΓj

= γ

∫
dr

{
R+2e

i[(w+1−w+2−1)θ+(α+1−α+2)]

[
∂R+1

∂r
+ w+1

R+1

r

]
+R−1e

i[(w−2−w+1−1)θ+(α−2−α−1)]

[
∂R−2

∂r
+
w−2R−2

r

]
+R+1e

i[(w+2−w+1+1)θ+(α+2−α+1)]

[−∂R+2

∂r
+
w+2R+2

r

]
+R−2e

i[(w−1−w−2+1)θ+(α−1−α−2)]

[−∂R−1

∂r
+ w−1

R−1

r

]}
+

√
3

2
γ

∫
dr

{
R+1e

i[(w0−w+1−1)θ+(α0−α+1)]

[
∂R0

∂r
+
w0R0

r

]
+R−1e

i[(w0−w−1+1)θ+(α0−α−1)]

[−∂R0

∂r
+
w0R0

r

]
+R0e

i[(w−1−w0−1)θ+(α−1−α0)]

[
∂R−1

∂r
+
w−1R−1

r

]
+R0e

i[(w+1−w0+1)θ+(α+1−α0)]

[−∂R+1

∂r
+
w+1R+1

r

]}
. (2.13)

where r ≡ {x, y} ≡ {r, θ}. Again, a minimization of Esoc requires that

w+2 − w+1 + 1 = 0, w+1 − w0 + 1 = 0, (2.14a)

w−2 − w−1 − 1 = 0, w−1 − w0 − 1 = 0, (2.14b)

and linear combinations of αjs appearing in Eq. (2.13) are integer multiple of π. The winding

number relations in Eq. (2.12) are not independent as all can be obtained from winding num-
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ber relations in Eqs. (2.14a)-(2.14b). The following are independent relationships among the

permitted winding numbers:

w+2 − w+1 + 1 = 0, w+1 − w0 + 1 = 0, (2.15a)

w−2 − w−1 − 1 = 0, w−1 − w0 − 1 = 0. (2.15b)

The allowed winding number combinations are (−2,−1, 0,+1,+2), (−1, 0,+1,+2,+3),

(0,+1,+2,+3,+4), and higher. It is to be also noted that an axisymmetric configuration without

any phase singularity in any of the components, i.e., with a winding number combination of

(0,0,0,0,0), is not allowed as per Eqs. (2.15a)-(2.15b). Using Eq. (2.7), the phase-dependent part

of the kinetic energy (KE) of the condensate is

KE =

+2∑
j=−2

w2
j

∫
πϕ2j
r
dr, (2.16)

which indicates that the system might end up favoring small winding numbers.

2.1.2 Single-particle Hamiltonian

The emergence of the axisymmetric solutions to Eqs. (2.2a)-(2.2c) in the form of a (−2,−1, 0,+1,+2)-

type multiring state can be inferred from the eigenfunction of the single-particle (or noninter-

acting) Hamiltonian in Eq. (2.1). One eigenfunction of the single-particle Hamiltonian with

(minimum) energy −2γ2 is

Φ =
1

4



e−2iφ

−2e−iφ

√
6

−2eiφ

e2iφ


eixkx+iyky ≡ ζ(φ)eixkx+iyky , (2.17)

where φ = tan−1(ky/kx) and k2 = k2x + k2y = (2γ)2, which corresponds to the minimum of

eigenenergy

E(kx, ky) =
1

2

(
k2x + k2y − 4γ

√
k2x + k2y

)
. (2.18)

2 Supersolid-like solitons in spin-orbit-coupled condensates
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The 2D contour plot of eigenenergy E(kx, ky) for γ = 1 is shown in Fig. 2.2. The eigenenergy

is minimum along a circle of radius 2, i.e., for k2x + k2y = 4. Hence a typical k ≡ (kx, ky)

which minimizes the eigenenergy is as shown in Fig. 2.2, where φ can vary from 0 to 2π. The

eigenfunctions with different orientations of the vector k ≡ {kx, ky} in the kx − ky plane, as

shown in Fig. 2.2, are all degenerate. Another solution to the single-particle Hamiltonian can

be obtained by considering an equal-weight superposition of eigenfunctions in Eq. (2.17) with k

allowed to point along all the directions in 2D plane. The solution so obtained is

ΦMR =
1

8π

∫ 2π

0



e−2iφ

−2e−iφ

√
6

−2eiφ

ei2φ


ei2γr cos(φ−θ)dφ =

1

4



−e−2iθJ2(2γr)

−2ie−iθJ1(2γr)
√
6J0(2γr)

−2ieiθJ1(2γr)

−e2iθJ2(2γr)


, (2.19)

where θ = tan−1 y/x, and Jn(2γr) with n = 0, 1, 2 is the Bessel function of first kind of order

n and where ΦMR has the phase singularities of a multiring soliton. Solution (2.19) agrees with

the permissible winding number combination of (−2,−1, 0,+1,+2) obtained earlier based on en-

ergetic considerations, viz., Eqs. (2.15a)-(2.15b), and corresponds to a (−2,−1, 0,+1,+2)-type

multiring soliton. As the component densities, ρj ∼ |J|j||2, the densities would have a long undu-

lating tail and in the asymptotic region with r → ∞, ρj ∼
√

2/(2πγr) cos (2γr − π|j|/2− π/4).

Besides superposition of an infinite number of plane waves, viz., Eq. (2.19), one can also

have a superposition of (a) two counterpropagating plane waves, (b) three plane waves the

propagation vectors of which make an angle 2π/3 with each other, or (c) four plane waves the

propagation vectors of which make an angle π/2 with each other. Choosing the x direction

as the direction for one of these wave vectors, these superpositions, representing a stripe (ST),

triangular lattice (TL), and square lattice (SL), respectively, are

ΦST = 1√
2

[
ζ(0)ei2γx + ζ(π)e−i2γx

]
, (2.20a)

ΦTL = 1√
3

[
ζ(0)ei2γx + ζ(2π/3)ei(−γx+γ

√
3y) + ζ(4π/3)ei(−γx−γ

√
3y)

]
, (2.20b)

ΦSL = 1
2

[
ζ(0)ei2γx + ζ(π/2)ei2γy + ζ(π)e−i2γx + ζ(3π/2)e−i2γy

]
. (2.20c)



33

Figure 2.2: (Color online) Contour plot of eigenenergy E(kx, ky) in Eq. (2.18) for γ = 1. The
minimum corresponding to k2x+k

2
y = 4 is a circle of radius 2. A typical k with magnitude 2 and

oriented at a polar angle φ is also shown.

The component densities and corresponding total density for these degenerate solutions corre-

sponding to |ΦST|2, |ΦTL|2, |ΦSL|2, and |ΦMR|2 are shown in Figs. 2.3(a)-(d), 2.3(e)-(h), 2.3(i)-(l),

and 2.3(m)-(p), respectively. If one examines the total density corresponding to these superposi-

tions in Eqs. (2.19)-(2.20c) as plotted in Figs. 2.3(d), 2.3(h), 2.3(l), and 2.3(p), then in the total

density corresponding to |ΦMR|2 and |ΦST|2 there is no spatially periodic modulation, whereas

the total density |ΦTL|2 and |ΦSL|2 will have a hexagonal and a square-lattice crystallization,

respectively. The localized solitons for Eqs. (2.2a)-(2.2c) can be qualitatively approximated by

the single-particle solutions in Eqs. (2.19)-(2.20c) multiplied by a localized Gaussian function.

In the numerical solution by an imaginary-time propagation such approximations can be used

as the initial functions for different solitons with appropriate symmetry.

2 Supersolid-like solitons in spin-orbit-coupled condensates
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Figure 2.3: (Color online) 2D contour plots of densities of the components j = ±2, ±1, and 0
and total density corresponding to ΦST (stripe) are shown in panels (a)-(d) for SOC strength
γ = 1. The same for ΦTL (triangular lattice), ΦSL (square lattice), and ΦMR (multiring) are
shown in (e)-(h), (i)-(l), and (m)-(p), respectively.

2.2 Numerical results

We numerically solve the CGPEs (2.2a)-(2.2c) using split time-step Fourier pseudospectral

method. Details of this method are discussed in Appendix B. For SOC strengths up to γ

= 1, we consider the spatial step sizes ∆x = ∆y = 0.1. Here the 2D box size for solving the
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CGPEs is 60 × 60. For γ > 1, the step sizes and box size considered are ∆x = ∆y = 0.05,

∆t = 0.00025 and 40 × 40, respectively. The time steps for imaginary- and real-time propaga-

tion are ∆t = 0.1×∆x2 and 0.05×∆x2, respectively. The imaginary-time propagation method

is used for finding the lowest-energy state of a specific symmetry, whereas real-time propagation

is used to study the dynamics. The initial guesses for an order parameter to obtain the stripe,

triangular-lattice, and square-lattice solitons are considered as solutions to the noninteracting

condensate, viz., Eqs. (2.20a)-(2.20c), multiplied by a localized Gaussian state, and the same for

the multiring soliton is a 2D Gaussian function with appropriate vortices phase imprinted on dif-

ferent components. As magnetization is not conserved, during time propagation magnetization

is allowed to evolve freely and attain a final converged value independent of the magnetization

of the initial state. The dynamic stability of the solutions is demonstrated by real-time evo-

lution with a small random noise added to the order parameter at t = 0, wherein they retain

their structure for long periods of up to 400 units of time. For any solution obtained through

imaginary-time propagation, evolving it sufficiently long in real-time propagation is advisable

to check its stability.

Our numerical studies reveal that an SO-coupled spin-2 BEC with attractive interactions can

have a variety of self-trapped stationary solutions including the cases where the total density of

the condensate exhibits regular hexagonal or square patterns. The ground-state phase diagrams

of a ferromagnetic BEC with c0 = −0.5 and c1 = −0.025 and polar and cyclic BECs with

c0 = −0.5 and c1 = 0.025 in c2-γ planes are shown in Figs. 2.4(a) and 2.4(b), respectively. For

the ferromagnetic BEC, as the strength of the SOC is increased, the ground state changes from

an axisymmetric multiring soliton to an asymmetric soliton. For the polar and cyclic BECs, the

ground-state phase changes from a multiring soliton to a stripe soliton above a critical SOC for

the chosen set of interaction parameters. In a narrow strip near γ = 1, a triangular-lattice soliton

appears as one of the quasidegenerate ground states in all three magnetic phases as shown by

shaded regions in Figs. 2.4(a)-(b). It is also pertinent to point out that the energy difference

between the quasidegenerate states decreases (increases) with a decrease (increase) in |c0|.

2 Supersolid-like solitons in spin-orbit-coupled condensates
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Figure 2.4: (Color online) The c2 vs γ phase plots for the ground states are shown (a) for the
ferromagnetic phase with c0 = −0.5 and c1 = −0.025 and (b) for the cyclic and polar phases
with c0 = −0.5 and c1 = 0.025. In subfigure (a) for small SOC strengths the axisymmetric
(−2,−1, 0,+1,+2) state is the ground state similar to the state shown in Figs. 2.5(a)-2.5(d),
whereas for larger SOC strengths the asymmetric soliton state is the ground state similar to the
state shown in Figs. 2.6(f)-2.6(j). In subfigure (b) for small SOC strengths the axisymmetric
(−2,−1, 0,+1,+2) state is the ground state similar to the state shown in Figs. 2.5(a)-2.5(d),
whereas for larger SOC strengths the ST (stripe) soliton state is the ground state similar to
the state shown in Figs. 2.9(a)-2.9(d). Difference in energy of other quasidegenerate solitons
from these ground states is ⪆ 10−4. As an illustration, one of the quasidegenerate states is the
TL (triangular lattice) state similar to the state shown in Figs. 2.7(a)-2.7(d), which occupies a
narrow region near γ = 1 and is shown by a red shaded strip. The energy differences between
the TL state and the (−2,−1, 0,+1,+2)-type multiring ground state in plots (a) and (b) are
10−4-10−3. The energies have been obtained by using Eq. (2.6) in Sec. 2.1.
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Figure 2.5: (Color online) Contour plot of density of the components (a) j = ±2, (b) j = ±1, (c)
j = 0, and (d) total density of an axisymmetric (−2,−1, 0,+1,+2)-type multiring soliton with
c0 = −0.5, c1 = −0.025, c2 = 0.25 (ferromagnetic phase), and γ = 0.5 with energy E = −0.4992.
The energy has been obtained by using Eq. (2.6) in Sec. 2.1.

2.2.1 Small SOC strength

2.2.1.1 Ferromagnetic phase

In an SO-coupled spin-2 BEC with specific interaction parameters, namely c0 < 0, c
(1)
1 ≤ c1 < 0,

and c2 > 0, the system can exhibit weak ferromagnetism as depicted in Figure 2.1; here c
(1)
1

is a constant. The system’s ground state is characterized by an axisymmetric density pattern

corresponding to a (−2,−1, 0,+1,+2)-type multiring soliton. On the other hand, higher energy

states can display either axisymmetric or circularly asymmetric density patterns. For smaller

c1, i.e., c1 < c
(1)
1 , the interactions become (relatively) strongly ferromagnetic, and the ground

state corresponds to a circularly asymmetric soliton. The (−2,−1, 0,+1,+2)-type axisymmetric

multiring soliton continues to exist in this case but is no longer the ground state. With a further

decrease of c1 below another constant c
(2)
1 an increase of attractive interaction leads to a collapse

of the condensate and no solution exists. The explicit values of the constants c
(1)
1 and c

(2)
1 are

dependent on the parameters c0, c2, and γ.

a. Axisymmetric multiring soliton. As an example in the ferromagnetic phase, we consider

c0 = −0.5, c1 = −0.025 > c
(1)
1 = −0.05, c2 = 0.25, and γ = 0.5. The ground-state solution for

this set of parameters is an axisymmetric (−2,−1, 0,+1,+2)-type multiring soliton with energy

E = −0.4992 as exhibited in Fig. 2.5 through a contour plot of the component densities (a) ρ±2,

(b) ρ±1, and (c) ρ0, and (d) the total density ρ. The densities of components ±j with j = 1, 2
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are equal. This state has the same rotational symmetry as the ground state of the noninteract-

ing SO-coupled condensate governed by Eq. (2.19) and has a long undulating tail of decreasing

amplitude consistent with the asymptotic behavior of Bessel functions. If the wave function in

Eq. (2.19) is multiplied by a localized Gaussian function, the resultant function qualitatively pro-

duces the density of the state displayed in Fig. 2.5. Hence the density and symmetry properties

of the actual physical state can be inferred from a study of the eigenfunctions of the single-

particle Hamiltonian. The total density has no core at the center as the vortex cores of j = ±2

and ±1 components are filled by a nonzero density at the center of the j = 0 component. The

first zeros of J0(r), J1(r), and J2(r) are 2.40483, 3.83171, and 5.13562, respectively, and these

agree very well with the results presented in Fig. 2.5. Numerically, this solution is obtained

by evolving Eqs. (2.2a)-(2.2c) in imaginary time and using, as an initial guess, a 2D Gaussian

function multiplied by an appropriate phase factor of exp(−ijφ) for the jth component. For the

same set of parameters, we also have a (−1, 0,+1,+2,+3)-type multiring soliton with an energy

-0.4991 as shown in Figs. 2.6(a)-(e) through a contour plot of component densities (a) ρ+2, (b)

ρ+1, (c) ρ0, (d) ρ−1, and (e) ρ−2. The quasidegeneracy between the two solutions shown in Figs.

2.5(a)-(d) and 2.6(a)-(e) is lifted with an increase in |c0|. The winding number combinations for

these axisymmetric solutions are in accordance with relations given in Eqs. (2.15a)-(2.15b).

b. Circularly asymmetric soliton: For the relatively stronger ferromagnetic interaction, the

ground state is a circularly asymmetric soliton, e.g. for c0 = −0.5, c1 = −0.1, c2 = 0.25, and

γ = 0.5, contour plots of circularly-asymmetric component densities are shown in Figs. 2.6(f)-

(j). For the same set of parameters, the excited state is a (−2,−1, 0,+1,+2)-type multiring

soliton. Asymmetry of the ground state solution arises, in this case, as different from the

(−2,−1, 0,+1,+2)-type soliton displayed in Figs. 2.5(a)-(d), the phase singularities in ±j com-

ponents of the circularly asymmetric soliton exhibited in Figs. 2.6(f)-(j) do not overlap. When

we keep on decreasing c1 further, then these singularities in ±j components move further apart

along the y axis. For c0 = −0.5, c1 = −1.3, c2 = 0.25, and γ = 0.5, phase singularities lie in the

region where the condensate density is quite small (not shown here) and hence no perceptible

density hole is visible in the component densities ρj . If we decrease c1 below c
(2)
1 = −1.3, while

keeping c0, c2, and γ fixed, then the condensate collapses.
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Figure 2.6: (Color online) Contour plot of density of components (a) j = +2, (b) j = +1,
(c) j = 0, (d) j = −1, and (e) j = −2 of an axisymmetric (−1, 0,+1,+2,+3)-type multiring
soliton with c0 = −0.5, c1 = −0.025, c2 = 0.25 (ferromagnetic phase), γ = 0.5, and energy
E = −0.4991, and the same of a circularly asymmetric soliton with c0 = −0.5, c1 = −0.1,
c2 = 0.25 (strongly ferromagnetic phase), γ = 0.5, and energy E = −0.4996 in panels (f)-(j).
The energies have been obtained by using Eq. (2.6) in Sec. 2.1.

2.2.1.2 Cyclic and polar phases

For small SOC strengths, in both cyclic and polar phases, similar to the ferromagnetic phase, the

axisymmetric (−2,−1, 0,+1,+2)-type multiring soliton emerges as the ground state, whereas the

axisymmetric (−1, 0,+1,+2,+3)-type soliton appears as a metastable state (result not shown

here). For example, with c0 = −0.5, c1 = 0.025, c2 = 0.25, and γ = 0.5 corresponding to the

cyclic phase, viz., Fig. 2.1, the axisymmetric (−2,−1, 0,+1,+2)-type and (−1, 0,+1,+2,+3)-

type multiring solitons have energies −0.4992 and −0.3864, respectively. Similarly, with c0 =

−0.5, c1 = 0.025, c2 = −0.25, and γ = 0.5, corresponding to the polar phase, the respective

energies of axisymmetric (−2,−1, 0,+1,+2)-type and (−1, 0,+1,+2,+3)-type multiring solitons

are −0.4994 and −0.3855. In both cases, the (−2,−1, 0,+1,+2)-type multiring soliton is the

ground state.
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Figure 2.7: (Color online) Contour plot of density of components (a) j = ±2, (b) j = ±1, (c)
j = 0, and (d) total density of a triangular-lattice soliton with c0 = −0.5, c1 = 0.025, c2 = 0.25
(cyclic phase), γ = 1, and energy E = −1.9989, and the same of a (−2,−1, 0,+1,+2)-type
multiring soliton for the same parameters and E = −1.9990 in panels (e)-(h). The energies have
been obtained by using Eq. (2.6) in Sec. 2.1.

2.2.2 Intermediate SOC strength

For intermediate SOC strengths, we get a triangular-lattice soliton, with a hexagonal-lattice

crystallization in components and total densities, in all three magnetic phases − ferromagnetic,

polar, and cyclic. Although a square-lattice soliton has been earlier identified in Ref. [109], a

triangular-lattice soliton was not found in the spin-1 case. For example, in the cyclic phase with

c0 = −0.5, c1 = 0.025, c2 = 0.25, and γ = 1, the triangular-lattice soliton is shown in Fig. 2.7

through a contour density plot of component densities (a) ρ±2, (b) ρ±1, (c) ρ0, and (d) total

density. The triangular-lattice structure is a result of the superposition of three plane waves and

corresponds to a solution of the noninteracting system given by Eq. (2.20b). However, to get a

localized hexagonal structure as in Figs. 2.7(a)-2.7(d), the function (2.20b) has to be multiplied

by a localized Gaussian function. For the same parameters, an axisymmetric (−2,−1, 0,+1,+2)-



41

Figure 2.8: (Color online) Contour plot of density of a square-lattice soliton of components (a)
j = ±2, (b) j = ±1, (c) j = 0, and (d) total density for c0 = −0.5, c1 = −0.025, c2 = 0.25
(ferromagnetic phase), γ = 4, and E = −31.9988; for the same parameters, we show the
component and total densities of a (−2,−1,−0,+1,+2)-type multiring soliton in panels (e)-(h)
with E = −31.9999. The energies have been obtained by using Eq. (2.6) in Sec. 2.1.

type multiring soliton corresponding to the single-particle solution (2.19) is also a solution as

illustrated in Figs. 2.7(e)-2.7(h). Both these states, the multiring and the triangular-lattice

solitons, have approximately the same numerical energy (E = −1.9990 and −1.9989) and are

quasidegenerate. This degeneracy between the two solutions is removed with an increase in |c0|
resulting in the (−2,−1, 0,+1,+2)-type multiring soliton as the ground state.

2.2.3 Large SOC strength

When γ is increased further, different types of degenerate states appear with approximately

the same energy in the three different magnetic phases. As an example, in the ferromagnetic

phase with c0 = −0.5, c1 = −0.025, c2 = 0.25, and γ ⪆ 4, we get the following five types

of quasidegenerate solitons: (1) a square-lattice soliton, where as shown in Figs. 2.8(a)-2.8(d)
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the component as well as the total densities show square-lattice crystallization consistent with

the single-particle order parameter (2.20c); (2) a multiring soliton, corresponding to the single-

particle order parameter (2.19), as shown in Figs. 2.8(e)-2.8(h); (3) a circularly asymmetric

soliton; (4) a stripe soliton with stripe modulation in component densities corresponding to the

single-particle order parameter (2.20a); and (5) a superstripe soliton which has stripe patterns

in component densities ρ±1 and square-lattice crystallization in component densities ρ±2, ρ0,

and total density. The three latter solitons are not shown here. In the case of the square-

lattice soliton, viz., Figs. 2.8(a)-2.8(d), the square-lattice crystallizations in components j =

±2 and 0 are quite similar, whereas the square-lattice pattern in the components j = ±1 is

different. The lattice in components j = ±2 and 0 makes an angle of 45◦ with the lattice in

component j = ±1, and this is consistent with a density pattern corresponding to ΦSL as shown

in Figs. 2.3(i)-2.3(l). The prominent square lattice in total density has the same alignment

as in components j = ±2 and 0. A similar square-lattice soliton was predicted in an SO-

coupled spin-1 spinor BEC [109]. The densities of components j = ±2 and 0 (j = ±1) of

the square-lattice soliton of Figs. 2.8(a)-2.8(d) are quite similar to the densities of components

j = ±1 (j = 0) of the same in an SO-coupled spin-1 spinor BEC [109]; the total densities in

the two cases are also quite similar. The energies of these five different types of solitons are,

respectively, −31.9988,−31.9999,−32.0071,−31.9998, and −32.0020, and hence these solitons

are quasidegenerate.

In the cyclic phase, with c0 = −0.5, c1 = 0.025, c2 = 0.25, and γ ⪆ 4, we again obtain

four of the aforementioned quasidegenerate solitons except the circularly asymmetric soliton.

The component and total densities corresponding to stripe soliton and square-lattice soliton are

shown in Figs. 2.9(a)-2.9(d) and 2.9(e)-2.9(h), respectively. The stripe soliton of Figs. 2.9(a)-

2.9(d) is quite similar to the one in an SO-coupled spin-1 spinor BEC [109] for γ = 4 in both

ferromagnetic and polar phases. In both cases, the stripe pattern appears only in the component

densities with the total density showing no modulation. The respective energies of the stripe

and the square-lattice solitons are −32.0006 and −31.9990. The superstripe soliton with energy

−32.0002 and multiring soliton with energy −31.9999 are not shown here.

In the polar phase, with c0 = −0.5, c1 = 0.025, c2 = −0.25, and γ ⪆ 4, we get the

same four quasidegenerate solitons as in the cyclic phase discussed above. Two of these, the

square-lattice soliton with energy −31.9987 and superstripe soliton with energy −32.0023, are
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Figure 2.9: (Color online) Contour plot of the density of a stripe soliton of components (a)
j = ±2, (b) j = ±1, (c) j = 0, and (d) total density with c0 = −0.5, c1 = 0.025, c2 = 0.25
(cyclic phase), γ = 4, and E = −32.0006; the same of a square-lattice soliton for the same
parameters in panels (e)-(h) with E = −31.9990. The energies have been obtained by using
Eq. (2.6) in Sec. 2.1.

shown in Figs. 2.10(a)-2.10(d) and 2.10(e)-2.10(h), respectively. The superstripe soliton has

a square-lattice-type spatial modulation superposed on stripes in components j = ±2 and 0

and a stripe modulation in component j = ±1, whereas total density has a square-lattice-type

pattern. The square-lattice soliton is quite similar to the same of Figs. 2.8(a)-2.8(d) and 2.9(e)-

2.9(h). However, the superstripe soliton of Figs. 2.10(e)-2.10(h) has now acquired a square-lattice

pattern in total density quite similar to a superstripe soliton of an SO-coupled spin-1 spinor BEC

for γ = 8 [109] in both ferromagnetic and polar phases. The stripe soliton with energy −32.0044

and multiring soliton with energy −32.0009 are not shown here.
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Figure 2.10: (Color online) Contour plot of the density of a square-lattice soliton of components
(a) j = ±2, (b) j = ±1, (c) j = 0, and (d) total density with c0 = −0.5, c1 = 0.025, c2 = −0.25
(polar phase), γ = 4, and E = −31.9987, and the same of a superstripe soliton for the same
parameters in panels (e)-(h) with E = −32.0023. The energies have been obtained by using
Eq. (2.6) in Sec. 2.1.

2.2.4 Dynamical stability

We confirm the dynamical stability of the stationary states of the SO-coupled spin-2 BEC

discussed in Sec.(2.2.1)-(2.2.3) via a real-time propagation over an extended period of time up

to t = 500. In addition to this, we have also tested the stability of these solutions by adding an

initial random noise δϕj
noise to the respective order parameters at t = 0 and then studying their

real-time dynamics. We consider the random noise as

δϕj
noise(x, y) = 10−3

√
NjRg(x, y)e

iRu(x,y), (2.21)

whereNj =
∫
ρj(x, y)dr. The amplitude of this noise is randomized by random numbers Rg(x, y)

which follow the Gaussian distribution, whereas phase of the noise is randomized by Ru(x, y)
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Figure 2.11: (Color online) Contour plot of component densities of the triangular-lattice soliton
of Figs. 2.7(a)-(d) for components (a) j = ±2, (b) j = ±1, (c) j = 0, and (d) total density after
100 units of time, and the same of the square-lattice soliton of Figs. 2.8(a)-(d) for components
(e) j = ±2, (f) j = ±1, (g) j = 0, and (h) total density, after real-time simulation over 100 units
of time. The initial state used in real-time propagation is obtained by adding a random noise
(2.21) to the stationary-state imaginary-time solutions shown in Figs. 2.7(a)-(d) for panels (a)-
(d) and Figs. 2.8(a)-(d) for panels (e)-(h). The energies have been obtained by using Eq. (2.6)
in Sec. 2.1.

which follows a uniform probability distribution over the interval [0, 2π]. As an illustration,

we consider the triangular-lattice soliton of Figs. 2.7(a)-2.7(d) and the square-lattice soliton

of Figs. 2.8(a)-2.8(d). At t = 0, δϕj
noise is added to the respective order parameters and the

resultant order parameters are considered initial solutions to Eqs. (2.2a)-(2.2c), which are now

solved (evolved) in real time up to t = 100. The resultant component and total densities at

t = 100 are displayed in Figs. 2.11(a)-2.11(d) and 2.11(e)-2.11(h), respectively. The periodic

density patterns survive with slightly different peak densities compared to the t = 0 solutions,

demonstrating the dynamical stability of the solitons.
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2.2.5 Bifurcations

In the noninteracting system, various solutions are completely degenerate, whereas on the in-

troduction of interactions, solutions of Eqs. (2.2a)-(2.2c) exhibit a bifurcating behavior. As the

energies of these solutions are very close, to make the nature of these bifurcations clear, we cal-

culate the difference ∆E between total energy of the solution and the single-particle solution’s

energy, i.e., −2γ2 as discussed in Sec. 2.1.2. A cut is now considered in the phase diagram

in Fig. 2.4(a) at an appropriate c2, say c2 = 0.15, for the ferromagnetic phase, and ∆E as a

function of SOC strength γ is evaluated for the various solutions. Similarly, a cut at c2 = 0.15

for the cyclic phase in Fig. 2.4(b) and at c2 = −0.15 for the polar phase in Fig. 2.4(b) are

considered. The resultant bifurcation plots showing ∆E as a function of the SOC strength γ

are shown in Figs. 2.12(a)-2.12(c) for the three magnetic phases. Bifurcation points agree with

the critical points in the phase diagrams shown in Figs. 2.4(a)-(b).

Figure 2.12: (Color online) (a) The bifurcation diagram in the ∆E-γ plane for the ferromagnetic
phase corresponding to a cut in the phase diagram in Fig. 2.4(a) at c2 = 0.15. The same for the
cyclic phase is shown in panel (b) by taking a cut at c2 = 0.15 in the phase diagram in Fig. 2.4(b).
In the polar domain of the phase diagram in Fig. 2.4(b), a cut is taken at c2 = −0.15, and the
bifurcation picture is shown in panel (c). ∆E = E + 2γ2, where E is the energy of the state
obtained from Eq. (2.6) in Sec. 2.1 and −2γ2 is the single-particle solution’s energy, correspond-
ing to various quasidegenerate states, is plotted by using different symbols as well as different
colors. SST corresponds to the superstripe similar to the state shown in Figs. 2.10(e)-(h), SL
corresponds to the square lattice similar to the state shown in Figs. 2.8(a)-(d), TL corresponds
to the triangular lattice similar to the state shown in Figs. 2.7(a)-(d), MR corresponds to the
(-2, -1, 0, +1, +2)-type multiring solution similar to the state shown in Figs. 2.5(a)-(d), EMR
corresponds to the (-1, 0, +1, +2, +3)-type excited-state multiring solution similar to the state
shown in Figs. 2.6(a)-(e), ST corresponds to the stripe solution similar to the state shown in
Figs. 2.9(a)-(d), and ASYMM corresponds to the circularly asymmetric solution similar to the
state shown in Figs. 2.6(f)-(j).
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2.2.6 Experimentally feasible bright solitons

One must tune two of the three scattering lengths to get the supersolid-like bright solitons

for the spin-2 BEC. Although tuning one scattering length is possible through Feshbach reso-

nance, tuning multiple scattering lengths is an experimental challenge that has still not been

achieved. Notwithstanding, by tuning one of the scattering lengths, supersolid-like bright soli-

tons have been predicted [109] and could be realized experimentally in lower spin systems like

pseudospinor-1/2 and spin-1 BECs. To illustrate this, we consider 1000 atoms of 23Na spin-1

BEC free in the x-y plane and confined by a harmonic trap along the z direction with trapping

frequency ωz = 2π×100 Hz. It results in aosc = 2.1 µm, where aosc =
√
ℏ/mωz. Interaction

strengths c0 and c1 for the q2D spin-1 BEC in the dimensionless units are

c0 =
√
8π
N(a0 + 2a2)

3aosc
, c1 =

√
8π
N(a2 − a0)

3aosc
, (2.22)

where a0 = 50aB and a2 = 55.01aB for experimentally realizable 23Na spin-1 BEC [152]. We keep

a2 fixed and tuned a0 to −130aB. This results in c0 = −0.84 and c1 = 7.80. The ground-state

(−1, 0,+1)-type multiring soliton obtained by solving the CGPEs (A.13a)-(A.13b) is shown in

Fig. 2.13. These parameters c0 = −0.84, c1 = 7.80, and γ = 1 corresponds to the phase diagram

Figure 2.13: (Color online) Contour plot of density ρj of a (−1, 0,+1)-type multiring SO-coupled
BEC soliton for components (a) ρ±1, (b) ρ0, and (c) total density ρ for c0 = −0.84, c1 = 7.80,
and γ = 1.

in Ref. [109] which also predicts (−1, 0,+1) multiring soliton. Similarly, all other supersolid-like
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solitons depicted in the Ref. [109] for SO-coupled spin-1 BEC can be related to the realistic set

of parameters.

2.2.7 Spin texture

We examine the spin texture of the ground state phases by calculating the spin-density vector

F(x, y) in Eq. 1.16. The spin-density vector is normalized to 2. We have shown the spin-texture

for (−2,−1, 0,+1,+2) multiring soliton in Fig. 2.14(a), for the circularly asymmetric soliton in

Fig. 2.14(b) and stripe soliton in Fig. 2.14(c). The arrows in the spin texture represent the

transverse spin vector (Fx, Fy) and the colour of each arrow indicates the magnitude of Fz.

Other quasi-degenerate supersolid-like bright solitons exhibit exotic spin-textures (not shown

here). .

Figure 2.14: (Color online) Spin-texture for (a) (-2,-1,0,+1,+2) multiring soliton, (b) circularly
asymmetric soliton, and (c) stripe soliton. In (a) Fz(x, y) is zero throughout and in (c) F has a
reflection symmetry about x = 0 line. The spin textures in (a), (b), and (c) correspond to the
densities shown in Fig. 2.5, Figs. 2.6(f)-(j), and Figs. 2.9(a)-(d), respectively.

2.2.8 Moving (−2,−1, 0,+1,+2)-type soliton

The SOC breaks the Galilean invariance of the mean-field model of the spinor BECs [84,107,153].

Explicitly, considering the Galilean transformation x′ = x, y′ = y − vt, t′ = t, where v is the

relative velocity along the y axis of a primed coordinate system with respect to an unprimed

coordinate system, along with the following transformation of the wave function

ϕj(x, y, t) = ψj
′(x′, y′, t′)eivy

′+iv2t′/2, (2.23)
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we get from Eqs. (2.2a)-(2.2c)

i∂t′ψ
′
±2 =Hψ′

±2 + c0ρψ
′
±2 + c1(F

′
∓ψ

′
±1 ± 2F ′

zψ
′
±2) +

c2√
5
Θψ′

∓2

− iγ∂∓ψ
′
±1 + γψ′

±1v, (2.24a)

i∂t′ψ
′
±1 =Hψ′

±1 + c0ρψ
′
±1 + c1

(√
3
2F

′
∓ψ

′
0 + F ′

±ψ
′
±2 ± F ′

zψ
′
±1

)
− c2√

5
Θψ′

∓1

− iγ
√

3
2∂∓ψ

′
0 − iγ∂±ψ

′
±2 + γ

(√
3
2ψ

′
0 + ψ′

±2

)
v, (2.24b)

i∂t′ψ
′
0 =Hψ′

0 + c0ρψ
′
0 + c1

√
3
2(F−ψ

′
−1 + F+ψ

′
+1) +

c2√
5
Θψ′

0

− i
√

3
2γ∂+(ψ

′
+1 + ψ′

−1) + γ
√

3
2

(
ψ′
+1 + ψ′

−1

)
v, (2.24c)

where ∂± = (∂x′ ± i∂y′). These equations are distinct from Eqs. (2.2a)-(2.2c) indicating a

breakdown of the Galilean invariance. For an SO-coupled spin-2 BEC, the moving solitons are

the stationary solutions of Eqs. (2.24a)-(2.24c) multiplied by a factor of eivy. The structure of

the moving soliton depends on the magnitude as well as the direction of velocity. Here we study

the fate of a moving (−2,−1, 0,+1,+2)-type multiring soliton by solving Eqs. (2.24a)-(2.24c)

numerically, for small SOC strength, as the velocity is increased. For example, considering

c0 = −2.5, c1 = −0.025, c2 = 0.25, and γ = 0.5 with (a) v = 0.03 and (b) v = 0.1, the

component densities of the moving solitons are shown in Figs. 2.15(a)-2.15(e) and 2.15(f)-2.15(j),

respectively. The structures of the moving soliton at two different velocities are quite distinct

as can be seen in Fig. 2.15. With the increase of velocity along the y axis, the component phase

singularities move along the x axis to the region of low density away from the center, resulting

in component densities without any vortex core at velocity v = 0.1. For c0 = −2.5, c1 =

−0.025, c2 = 0.25, and γ = 0.5, a self-trapped moving soliton with v > 0.3 does not exist.

We have also studied the head-on collision of these solitons. At low velocities, the collision is

inelastic while the solitons come close to each other, interact, and form a bound entity and never

come out. On the other hand, at large initial velocities, the collision is quasi-elastic. In this

case, the solitons tend to pass through each other without any change of velocity; nonetheless,

solitons undergo minor changes in shape and a perceptible change in the peak densities after the

collision. In contrast in an elastic collision, the colliding solitons pass through each other without

any change either in their shape or velocities. For example, the head-on collision between the

solitons moving with |v| = 0.03 and c0 = −2.5, c1 = −0.025, c2 = 0.25, and γ = 0.5 is shown
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Figure 2.15: (Color online) Contour plot of density of components (a) j = +2, (b) j = +1, (c)
j = 0, (d) j = −1, and (e) j = −2 with c0 = −2.5, c1 = −0.025, c2 = 0.25, and γ = 0.5 moving
with v = 0.03 along +y, and the same densities for velocity v = 0.1 in panels (f)-(j).

Figure 2.16: (Color online) Contour plot of time evolution of total density ρ(0, y, t) as a function
of y and t during the head-on collision between the two solitons with c0 = −2.5, c1 = −0.025,
c2 = 0.25, and γ = 0.5 moving with velocity (a) |v| = ±0.03 and (b) |v| = ±0.1 along the y axis
in the opposite direction.
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in Fig. 2.16(a) through a contour plot of time evolution of total density ρ(0, y, t) in the t − y

plane. Similarly, a quasi-elastic collision between two solitons moving with velocity |v| = 0.1

is shown in Fig. 2.16(b). The collision dynamics is consistent with similar observations for two

SO-coupled spin-1 BECs [107].

2.3 Non-magnetic spinor condensates

Distinct periodic structures are obtained in different magnetic phases of SO-coupled spin-1 or

spin-2 BECs as discussed in the previous sections [109, 154, 155]. Trapped spin-1 spinor BEC

under rotation or azimuthal gauge potential also have similar states with vorticity as the ground

states [156,157]. Hence, the spatially periodic structures are generally thought to be associated

with these magnetic phases. Hence, one may conclude that the complicated spinor interactions in

spin-1 and spin-2 BECs are necessary for generating these states with intrinsic vorticity. In view

of this, it is interesting to see if these periodic structures survive in the SO-coupled nonmagnetic

spin-1 and spin-2 BECs. The scattering lengths, corresponding to different permissible total

spin channels, are close to one another in many spinor BECs [158, 159]. A nonmagnetic phase

of a spinor BEC corresponds to the case where these scattering lengths are equal. This can be

achieved by tuning the scattering lengths by manipulating an external electromagnetic field in

the neighborhood of a Feshbach resonance(s) [36, 160]. We consider a0 = a2 = a4, while, in the

absence of SOC, a spin-1 or spin-2 BEC becomes nonmagnetic with no magnetic behavior. The

resultant systems are SO-coupled three- (spin-1) and five-component (spin-2) BECs without any

spinor interactions. The appearance of these spatially periodic states in a much simpler model

will allow the study of these supersolid-like states easily, without the complications of spinor

interactions and provide a better understanding of the origin of these states.
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2.4 Mean-field model for nonmagnetic case

The CGPEs of the q2D SO-coupled nonmagnetic spin-1 BEC considering (a0 = a2) are [29,109]

i∂tϕ0 = Hϕ0−i
γ√
2
[∂−ϕ+1 + ∂+ϕ−1], (2.25a)

i∂tϕ±1 = Hϕ±1 − i
γ√
2
∂±ϕ0, (2.25b)

and those of the SO-coupled spin-2 BEC, obtained by substituting c1 = c2 = 0 in Eqs. (2.2a)-

(2.2c), are

i∂tϕ0 =Hϕ0 − i
√

3
2γ[∂−ϕ+1 + ∂+ϕ−1], (2.26a)

i∂tϕ±1 =Hϕ±1 − iγ
[√

3
2∂±ϕ0 + ∂∓ϕ±2

]
, (2.26b)

i∂tϕ±2 =Hϕ±2 − iγ∂±ϕ±1. (2.26c)

In Eqs. (2.25a)-(2.25b) and Eqs. (2.26a)-(2.26c), H = −1
2

(
∂x

2 + ∂y
2
)
+ c0ρ; c0 = 2N

√
2πa0;

∂t = ∂/∂t; ∂± = ∂y ± i∂x; whereas the rest of the symbols and units are defined in Sec. (2.1).

The order parameter satisfies the normalization condition

∫
ρ(x, y)dxdy = 1. (2.27)

Although, spin-exchange spinor interaction is absent in nonmagnetic spin-1 and spin-2 con-

densates, the SOC interaction will allow the mixing of different components, and the number of

atoms in each component will not be conserved in this case. The energy functional corresponding

to the mean-field CGPEs (2.25a)-(2.25b) for a spin-1 case is

E =

∫
dxdy

[∑+1
j=−1ϕ

∗
jHϕj +

1

2
c0ρ

2 − iγ√
2

{
ϕ∗+1∂+ϕ0 + ϕ∗0∂−ϕ+1 + ϕ∗0∂+ϕ−1 + ϕ∗−1∂−ϕ0

}]
,

(2.28)

whereas for spin-2 BEC it is given in Eq. (2.6) with c0 = c2 = 0.

In the absence of interactions, Eqs. (2.25a)-(2.25b) for f = 1 or Eqs. (2.26a)-(2.26c) for

f = 2 reduce to an eigenvalue problem for the single-particle Hamiltonian H0 in Eq. (2.1) which
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is exactly solvable. The minimum energy eigenfunction and eigenenergy of H0 for f = 1 are

Φf=1 =
1

2


−e−iφ

−
√
2i

eiφ

 eixkx+iyky ≡ ζ(φ)eixkx+iyky , (2.29)

E(kx, ky) =
1

2

(
k2x + k2y − 2γ

√
k2x + k2y

)
, (2.30)

respectively, where φ = tan−1(ky/kx) denotes the orientation of propagation vector k = (kx, ky).

The magnitude of the propagation vector is fixed by minimizing the dispersion in Eq. (2.30)

which gives k2x + k2y = γ2. All the plane-wave eigenfunctions in Eq. (2.29) with different φ are

degenerate. The equal weight superposition of these degenerate plane-wave states yields

Φf=1
MR =

1

4π

∫ 2π

0


−e−iφ

−
√
2i

eiφ

 eiγr cos(φ−θ)dφ =
1

2


−ie−iθJ1(γr)

−
√
2iJ0(γr)

ieiθJ1(γr)

 , (2.31)

where polar coordinate θ = tan−1 y/x; J0(γr) and J1(γr) are the Bessel functions of the first

kind of order 0 and 1, respectively. The function Φf=1
MR carries the phase singularities with the

same winding numbers as a (−1, 0,+1)-type multiring soliton. Rather than considering the

superposition of infinite plane waves as in Eq. (2.31), the superpositions of a finite number of

plane waves like a pair of counter-propagating plane waves, or of three plane waves propagating

at mutual angles of 2π/3, or of two pairs of counter-propagating plane waves with propagation

vectors of one pair perpendicular to the other are

Φf=1
ST = 1√

2

[
ζ(0)eiγx + ζ(π)e−iγx

]
, (2.32a)

Φf=1
TL = 1√

3

[
ζ(0)eiγx + ζ(2π/3)eiγ(−x+

√
3y)/2 + ζ(4π/3)eiγ(−x−

√
3y)/2

]
, (2.32b)

Φf=1
SL = 1

2

[
ζ(0)eiγx + ζ(π/2)eiγy + ζ(π)e−iγx + ζ(3π/2)e−iγy

]
, (2.32c)

respectively. The total density corresponding Φf=1
ST , Φf=1

TL , and Φf=1
SL have stripe, triangular-

lattice, and square-lattice patterns, respectively. For a spin-2 BEC, solutions are discussed in

Sec (2.1.2). We see in our numerical study that these three types of states − stripe, triangular

lattice and square lattice − indeed appear in the spin-2 case. However, in the spin-1 case, we
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could only identify stripe and square-lattice states.

2.5 Numerical results for nonmagnetic condensates

As discussed earlier in Sec (2.2) for numerical solution of Eqs. (2.2a)-(2.2c) for magnetic case,

here also we numerically solve Eqs. (2.25a)-(2.25b) for f = 1 and Eqs. (2.26a)-(2.26c) for f = 2

for nonmagnetic case, over a finite spatial domain, given an initial solution and boundary con-

ditions, using Crank-Nicolson [45, 161–163] or Fourier pseudospectral methods [37–39] compli-

mented with time-splitting to treat the nonlinear terms more efficiently. To calculate stationary

state solutions, Eqs. (2.25a)-(2.25b) and Eqs. (2.26a)-(2.26c) are first transformed by changing

t → −it̄ and then solved by imaginary-time propagation [37–39, 164] using appropriate initial

guesses. In order to confirm the dynamical stability of a solution, we study its real-time prop-

agation [37–39, 164] as governed by the CGPEs. The space step used in the calculation was

typically ∆ ∼ 0.05 and the time step was ∼ 0.1∆2 in the imaginary-time propagation and

∼ 0.05∆2 in the real-time propagation. The SOC will allow mixing between different spin com-

ponents and, hence, the number of atoms in different components will not be conserved during

imaginary-time propagation in numerical calculations. Nevertheless, the total number of atoms

will be preserved, and we impose condition (2.27) during the time propagation. As the number

of atoms in each component is not conserved, the final conserved result is independent of the

initial choice of number of atoms in each component.

2.5.1 Nonmagnetic q2D solitons in an SO-coupled spin-1 BEC

To obtain q2D solitons with a self-attractive (c0 < 0) nonmagnetic SO-coupled spin-1 BEC

for different SOC strengths γ, we consider a BEC with c0 = −0.6 and vary γ. We consider

c0 = −0.6, because this value gives an adequate size of the soliton. A decrease in c0 results

in more attraction, hence a reduced system size, and below a critical c0 = c0,crit the BEC will

collapse as displayed in Fig. 2.17. For γ = 0, the spin-1 and spin-2 systems become essentially

identical and also equivalent to a scalar nonspinor BEC of N atoms. The nonlinearities in the

mean-field equations in these three cases are also identical. For a nonspinor spin-0 BEC, the

critical c0 for collapse was obtained previously as c0,crit ∼ −5.85 [165, 166]. We find that, for

spin-0, spin-1, and spin-2 cases if γ = 0, then c0,crit = −5.86, which is quite close to the previous
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Figure 2.17: The c0-γ phase plot illustrating the collapse and soliton formation.

spin-0 result. The c0,crit for collapse for nonzero γ for spin-1 and spin-2 cases are slightly different

as illustrated in Fig. 2.17. On the other hand, an increase in c0 leads to an increased system size

and, for positive (self-repulsive) values of c0, the system is no longer self-trapped. For negative

(self-attractive) values of c0 above the critical value (c0 > c0,crit), the SO-coupled BEC remains

self-trapped. We demonstrate in Fig. 2.18 how different types of solitons appear as SOC strength

is varied for a fixed c0 through a phase plot of energy δE ≡ (E+γ2/2) against γ, where E denotes

the energy of the soliton and −γ2/2 corresponds to the energy of single-particle Hamiltonian

(2.1) for a spin-1 BEC. We find five different types of q2D solitons for different γ: (a) (−1, 0,+1)

and (0,+1,+2) multiring solitons, (b) stripe soliton with a stripe pattern in component densities

only, (c) a supersolid-like soliton with component and total densities having the square-lattice

pattern, and (d) asymmetric soliton. From Fig. 2.18, we find that for small γ (γ ⪅ 1 ∼ 2) only

(−1, 0,+1)- and (0,+1,+2)-type multiring solitons are possible with the (0,+1,+2) soliton being

an excited state. For medium γ (3 ⪆ γ ⪆ 1.5), two new types of excited states appear: stripe

and asymmetric solitons; of these the stripe soliton has a smaller energy than the asymmetric

soliton. For large γ (γ ⪆ 3), the square-lattice excited state appears with an energy larger

than the asymmetric soliton. For the Rashba SOC, we first investigate the formation of

two quasidegenerate multiring vector solitons of (−1, 0,+1)- and (0,+1,+2)-type generated by

solving Eqs. (2.25a)-(2.25b) in imaginary time using initial guesses where appropriate vortices

2 Supersolid-like solitons in spin-orbit-coupled condensates
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Figure 2.18: The δE ≡ E+γ2/2 vs γ phase plot for Rashba SO-coupled (−1, 0,+1)-, (0,+1,+2)-
type multiring, asymmetric, stripe, and square-lattice solitons. E is the energy of various states
calculated using Eq. (2.28) in Sec. 2.4

.

are imprinted in the components. We show the contour plots of the densities (a) ρ±1, (b) ρ0, and

(c) ρ (total density) in a (−1, 0,+1)-type multiring soliton of the spin-1 BEC with c0 = −0.6 and

γ = 4 in Figs. 2.19(a)-(c). For the same parameters, we show the densities of three components,

ρj , in a (0,+1,+2)-type multiring soliton in Figs. 2.19(d)-(f). The energies of these (−1, 0,+1)-

and (0,+1,+2)-type solitons are E = −8.001 and E = −7.998, respectively; the latter is an

excited state. The phase distributions of ϕ+1 and ϕ−1 of the (−1, 0,+1)-type multiring soliton

shown in Figs. 2.19(g) and 2.19(h) reflect the phase shifts of −2π and 2π, respectively, under

a full rotation around the center. Similarly, phase shifts by 2π and 4π, respectively, under a

full rotation around the center of ϕ0 and ϕ−1 of the (0,+1,+2)-type multiring soliton can be

seen in Figs. 2.19(i) and (j). These phases agree with the vortex/anti-vortex structure of the

(−1, 0,+1) and (0,+1,+2)-type solitons.

Besides the two circularly-symmetric solitons, asymmetric, stripe and square-lattice solitons

are other stationary states of the BEC with c0 = −0.6 and γ = 4. The component densities ρj

of the asymmetric, stripe, and square-lattice solitons are shown, respectively, in Figs. 2.20(a)-

(c), 2.20(d)-(f), and 2.20(g)-(i). The energies of these three are −8.000, −8.000, and −7.999,
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Figure 2.19: Top row: (a) component density of j = ±1, (b) j = 0, and (c) total density
ρ of a (−1, 0,+1)-type multiring soliton of the SO-coupled spin-1 BEC with c0 = −0.6 and
γ = 4. Similarly, middle row: (d) component density of j = +1, (e) j = 0, and (f) j =
−1 of a (0,+1,+2)-type multiring soliton of the BEC with the same interaction and coupling
strengths. Bottom row: phase distributions of wave-function components (g) ϕ+1, (h) ϕ−1 of
the (−1, 0,+1)-type multiring BEC soliton and those of wave-function components (i) ϕ0, (j)
ϕ−1 of the (0,+1,+2)-type multiring BEC soliton. E is calculated using Eq. (2.28) in Sec. 2.4

.

respectively. The stripe soliton has a stripe pattern in the density ρj of each component, whereas

the total density ρ is devoid of this pattern. The square-lattice soliton, on the other hand, has a

square-lattice pattern in each component density ρj and also in the total density ρ. The energies

of the different solitons for γ = 4 satisfy E(0,+1,+2) > E(square lattice) > E(asymmetric)

> E(stripe) > E(−1, 0,+1). The stripe and the square-lattice solitons are efficiently obtained

2 Supersolid-like solitons in spin-orbit-coupled condensates
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Figure 2.20: Top row: (a) component density of j = +1, (b) j = 0, and (c) j = −1 of an
asymmetric soliton of the SO-coupled spin-1 BEC with c0 = −0.6 and γ = 4. Middle row: (d)
component density of j = ±1, (e) j = 0, and (f) total density ρ of a stripe soliton and bottom
row: (g) component density of j = ±1, (h) j = 0, and (i) total density ρ of a square-lattice
soliton for the same interaction and coupling strengths. E is calculated using Eq. (2.28) in
Sec. 2.4

.

in the numerical calculation if such periodic patterns are imprinted on the initial state [109,167].
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Figure 2.21: The δE ≡ E + 2γ2 vs γ phase plot for Rashba SO-coupled (−2,−1, 0,+1,+2)-
and (−1, 0,+1,+2,+3)-type multiring, asymmetric, triangular-lattice, stripe, and square-lattice
solitons. E is calculated using Eq. (2.6) in Sec. 2.1.

2.5.2 Nonmagnetic q2D solitons in an SO-coupled spin-2 BEC

Similar to a nonmagnetic SO-coupled spin-1 BEC, for a nonmagnetic SO-coupled spin-2 BEC,

several self-trapped stationary states are possible, including those in which the density ρ of the

condensate displays spatially periodic patterns. As in the spin-1 BEC, there are two types of

multiring solitons as well as spatially periodic stripe and square-lattice solitons. In addition, we

observed a triangular-lattice soliton that was absent in the spin-1 BEC. For f = 2, we consider

c0 = −0.2. Again, for large |c0| the system collapses as shown in Fig. 2.17. Here the phase

plot of δE = (E + 2γ2) versus γ in Fig. 2.21 shows how different types of solitons emerge for

Rashba SOC, where E again is the energy of the soliton and −2γ2 is that of the single-particle

Hamiltonian (2.1) for a spin-2 BEC. We find six different types of q2D solitons for different

γ: (a) (−2,−1, 0,+1,+2)- and (−1, 0,+1,+2,+3)-type multiring solitons, (b) stripe soliton

with stripe patterns in component densities only, (c) square-lattice soliton having square-lattice

patterns in total and all component densities, (d) asymmetric soliton, and (e) triangular-lattice

soliton where a triangular-lattice pattern is present in the component and total densities, similar

to a supersolid. According to Fig. 2.21, multiring solitons of the types (−2,−1, 0,+1,+2) and

(−1, 0,+1,+2,+3) are possible for small γ (γ ⪅ 1). For intermediate strengths of γ (γ ≈

2 Supersolid-like solitons in spin-orbit-coupled condensates



60 2.5. Numerical results for nonmagnetic condensates

Figure 2.22: Upper row: (a) component density ρ±2, (b) ρ±1, (c) ρ0, and (d) total density ρ of
a (−2,−1, 0,+1,+2)-type multiring soliton of the SO-coupled spin-2 BEC with c0 = −0.2 and
γ = 4. Lower row: phase distributions of wave-function components (e) ϕ+2, (f) ϕ+1, (g) ϕ−1,
and (h) ϕ−2 in the same soliton. E is calculated using Eq. (2.6) in Sec. 2.1

.

1), triangular-lattice soliton also appears as a quasidegenerate state. For larger γ (γ ⪆ 2),

asymmetric, stripe and square-lattice solitons appear. These excited states in the spin-2 BEC

appear in the same order as the corresponding states in the spin-1 case shown in Fig. 2.18.

The only difference in the spin-2 case is the appearance of the triangular-lattice soliton which

is absent in the spin-1 case. We illustrate the formation of a (−2,−1, 0,+1,+2)-type multiring

soliton for c0 = −0.2 and γ = 4 having energy −31.9966 in Figs. 2.22(a)- 2.22(d), where we

display the contour plots of component densities in panels (a) ρ±2, (b) ρ±1, (c) ρ0, and (d)

total density ρ of this soliton. The charge of phase singularities in ϕ±2 and ϕ±1 are ascertained

from Figs. 2.22(e)- 2.22(h), where we display the contour plots of the phases of wave-function

components of the (−2,−1, 0,+1,+2)-type Rashba SO-coupled soliton. The phases correspond

to phase changes of ∓4π and ∓2π in j = ±2 and j = ±1 components, respectively, under a

complete rotation around the center. As discussed earlier, we also have (−1, 0,+1,+2,+3)-

type multiring soliton that continues to be the solution of Eqs. (2.26a)-(2.26c) for large SOC

strengths. In Fig. 2.23, we show its emergence for c0 = −0.2 and γ = 4 via contour plots of
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Figure 2.23: Upper row: (a) component density ρ+2, (b) ρ+1, (c) ρ0, (d) ρ−1, and (e) ρ−2

of a (−1, 0,+1,+2,+3)-type multiring soliton of the SO-coupled spin-1 BEC with c0 = −0.2
and γ = 4. Bottom row: (f) component density ρ+2, (g) ρ+1, (h) ρ0, (i) ρ−1, and (j) ρ−2 of
an asymmetric soliton for the same interaction and coupling strengths. E is calculated using
Eq. (2.6) in Sec. 2.1.

Figure 2.24: (a) Component density ρ±2, (b) ρ±1, (c) ρ0, and (d) total density ρ of a triangular-
lattice soliton of the SO-coupled spin-2 BEC with c0 = −0.2 and γ = 1. E is calculated using
Eq. (2.6) in Sec. 2.1

densities (a) ρ+2, (b) ρ+1, (c) ρ0, (d) ρ−1, and (e) ρ−2 with energy −31.9930. Next in Fig. 2.23,

we show the contour densities (f) ρ+2, (g) ρ+1, (h) ρ0, (i) ρ−1, and (j) ρ−2 of the asymmetric

soliton for c0 = −0.2 and γ = 4 and with energy −31.9956. For an intermediate SOC strength of

γ = 1, contour plots of densities (a) ρ±2, (b) ρ±1, (c) ρ0, and (d) total density ρ of the triangular-

lattice soliton for c0 = −0.2 and with energy −7.9950 are shown in Figs. 2.24(a)-2.24(d). This

soliton has a hexagonal-lattice crystallization in component and total densities. Besides the
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asymmetric soliton, two other solitons, which appear explicitly for large SOC strengths, are

stripe and square-lattice solitons. In Fig. 2.25, we present the contour plots of (a) ρ±2, (b)

ρ±1, (c) ρ0, and (d) total density ρ of the stripe soliton of energy −31.9962 for c0 = −0.2 and

γ = 4. Similar to the stripe soliton in the SO-coupled spin-1 BEC, the component densities

have a stripe pattern which is not present in their sum. The scenario is different in the case of

a square-lattice soliton. For example, the component and total densities of the square-lattice

soliton of energy −31.9950 for c0 = −0.2 and γ = 4 are shown in Fig. 2.25: (e) ρ±2, (f) ρ±1, (g)

ρ0, and (h) total density ρ, where the square-lattice pattern in the total density as well as the

component densities is explicit.

Figure 2.25: Upper row: (a) component density ρ±2, (b) ρ±1, (c) ρ0, and (d) total density ρ of
a stripe soliton with c0 = −0.2 and γ = 4. Lower row: (a) component density ρ±2, (b) ρ±1, (c)
ρ0, and (d) total density ρ of a square-lattice soliton with the same c0 and γ. E is calculated
using Eq. (2.6) in Sec. 2.1

.

2.6 Summary

We have demonstrated the emergence of various self-trapped stable solitons with supersolid-like

crystallization in a q2D SO-coupled spin-2 BEC employing analytic consideration and numerical
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solution of the underlying mean-field GP equation. The minimization of interaction and SOC

energies lead to the permissible winding number combinations for axisymmetric solitons. In

the absence of interactions, we consider the eigenfunctions of the single-particle Hamiltonian

to construct the order parameters consistent with multiring, stripe, triangular-, and square-

lattice density profiles. In the presence of (attractive) interactions, we find that various types of

solitons with spatially periodic modulation in density appear, including the ones inferred from

a study of the eigenfunctions of the single-particle Hamiltonian, due to an interplay of SOC and

interactions.

The ground state for a small SOC strength (γ ≈ |c0| ≈ 0.5) is a radially symmetric multi-

ring soliton for weakly ferromagnetic, cyclic, and polar interactions, whereas for a sufficiently

strong-ferromagnetic interaction a circularly asymmetric soliton emerges as the ground state.

For intermediate SOC strengths (γ ≈ 2|c0| ≈ 1), in addition to the axisymmetric soliton, there

could exist a triangular-lattice soliton with a hexagonal crystallization of matter in the soliton,

explicit in both component and total densities. On increasing the SOC further, one could have

five quasidegenerate solitons, e.g., a multiring soliton, a square-lattice soliton, a stripe soliton,

and a superstripe soliton, in all the magnetic phases, and also a circularly asymmetric soliton in

the ferromagnetic phase. The quasidegeneracy between the states is in general lifted with either

a decrease in the SOC strength γ or an increase in the attractive spin-independent interaction

strength |c0|. We also introduced the Galilean-transformed model to study the moving solitons

and the head-on collision dynamics between two such solitons. A head-on collision between the

two solitons is inelastic at low velocities, and the two solitons can form a bound entity. At

large velocities, the collision is quasi-elastic, and the solitons pass through each other without a

substantial change of velocity. We considered another scenario in which we investigated sponta-

neous spatial order in a Rashba SO-coupled nonmagnetic trapless q2D spin-1 and spin-2 BECs

for various SOC strengths γ without spinor interactions by numerically solving the CGPEs.

For small SOC, (−1, 0,+1) and (0,+1,+2)-type solitons are found for a spin-1 BEC, whereas

(−2,−1, 0,+1,+2) and (−1, 0,+1,+2,+3)-type solitons are found for a spin-2 BEC, which de-

velops multiring structure with an increase in SOC strengths. For intermediate strengths of

SOC (γ ≈ 1), in spin-2 BEC, triangular-lattice soliton having hexagonal crystallization in com-

ponent as well as total density appears as quasidegenerate state. For relatively larger SOC

strengths, asymmetric, stripe and square-lattice solitons appear as quasidegenerate solitons for
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spin-1 and spin-2 BECs. We also established the dynamical stability of these solitonic states by

stable real-time simulation over 400 units of time (result not shown here). In conclusion, it is

strongly suggestive that the spatially-periodic supersolid-like states found in SO-coupled pseudo

spin-1/2 [121,168,169], spin-1 [109,167], and spin-2 [155] spinor BECs are not a consequence of

spinor interactions but are a consequence of multicomponent nature of these states in presence

of SOC. The results reported in this chapter are discussed in Refs. [155,170].



Chapter 3

Spin-orbit-coupling-driven superfluid

phases in optical lattices

In this chapter and the following one, we will discuss spinor condensates in optical lattices, in

contrast to the previous chapter where we considered spinor condensates without any external

trap. As we discussed earlier in the introduction to the optical lattice in Sec. 1.6 and the

BHM in Sec. 1.6.1, the lattice potential restricts the movement of the atoms, leading to a

reduction in kinetic energy and a shift towards a strongly interacting regime. The BHM is the

apt model to describe the physics of these systems [129,130], and we will be using it to describe

the ground-state properties of bosonic atoms in a strongly correlated regime. We have also

discussed the various effects arising from the SOC in Sec. 1.3.3. However, most of the studies on

spinor condensates with SOC have been focused on the continuum case, and the exploration of

these systems in optical lattices is still lagging behind. Recent advances in ultracold quantum

gas experiments have allowed for the implementation of SOC and competing interactions in

strongly correlated many-body systems [65, 171, 172]. These experimental developments afford

the possibility to study novel states of matter, phase transitions, and exotic spin models which

are not accessible in conventional condensed matter systems [67,173]. Despite this, the parameter

regimes of the superfluid states in SO-coupled BHM, and the effects of thermal fluctuations on

the transition between finite-momentum superfluids have not yet been investigated. At finite

temperatures, the melting of the stripe superfluid phase leads to a wide domain of stripe normal-

fluid (NF) phase [174]. More recently, it has been shown that the SOC leads to the lowering
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of the critical temperature for the superfluid to NF phase transition, and reduces the coherence

and spatial orders of magnetic textures [175].

In order to address this, we investigate the ground-state phase diagrams of a Bose-Bose

mixture in an optical lattice under the influence of Rashba SOC, both at zero and finite temper-

ature. Our study focuses on the QPTs and the various SOC-driven finite-momentum superfluid

states that occur in two different regimes based on interspin interactions.

The chapter is structured as follows. We introduce the Hamiltonian of the SO-coupled

pseudo-spinor BECs in optical lattices and give a brief description of the mean-field Gutzwiller

approach in Sec. 3.1. We provide a characterization of the superfluid states of the model consid-

ered in Sec. 3.2. Moving on to Sec. 3.3, we first examine the zero-temperature phase diagrams

of the two-component Bose Hubbard mode (TBHM) in the presence of synthetic SOC. Then,

we discuss the effects of finite temperature on the SOC-driven superfluid states. Finally, we

conclude with a summary of our findings in Sec. 3.5.

3.1 The Model and the method

We consider an SO-coupled pseudospinor system of ultracold bosons loaded into a square op-

tical lattice. The two different atomic hyperfine levels of the same atomic species act as two

pseudospin states. The TBHM well describes the system in the presence of Rashba SOC on a

2D optical lattice. The Hamiltonian of the system is [71]

Ĥ = − J
∑
⟨i,j⟩

Ψ̂†
i Ψ̂j +

∑
i,α

(ϵiα − µα)n̂
α
i +

1

2

∑
i,α

Uαα n̂
α
i (n̂

α
i − 1) + U↑↓

∑
i

n̂↑i n̂
↓
i

+ iγ
∑
⟨i,j⟩

Ψ̂†
i ẑ ·

(
σ⃗ × d⃗ij

)
Ψ̂j +H.c., (3.1)

where i is a unique combination of lattice-site indices in two dimensions, i.e., i ≡ (p, q) with p

and q site indices in the x and y directions, respectively, and j ≡ (p′, q′) is a neighboring site of

the ith lattice site. Here Ψi = (b̂↑i , b̂
↓
i )

T is a two-component bosonic annihilation operator at the

ith lattice site, α = ↑, ↓ denotes the pseudospin components, J is the spin-independent hopping

amplitude of atoms, and for the present case, we consider equal hopping amplitudes for both

components and along both directions, ϵiα is the energy offset of atoms with α spin due to the
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envelope confining potential and is considered to be zero, µα is the chemical potential, n̂αi = b̂†αi b̂
α
i

is the number operator, and Uαα(U↑↓) is intraspin (interspin) on-site interaction. The last term

represents the SOC generated by Raman lasers which can be tuned in experiments using coherent

destructive hopping methods [176] and represents the hopping between neighboring sites with a

spin flip. Here γ is the Rashba SOC strength, σ⃗ = (σx, σy, σz) is a vector of Pauli spin matrices,

d⃗ij is a lattice unit vector between two neighboring sites, and ẑ is a unit vector perpendicular

to the lattice plane. Eq. (3.1) then can be written in the expanded form as

Ĥ = −
∑
p,q,α

[(
Jb̂†αp+1,q b̂

α
p,q +H.c.

)
+
(
Jb̂†αp,q+1b̂

α
p,q +H.c.

)
− Uαα

2
n̂αp,q(n̂

α
p,q − 1) + µαn̂

α
p,q

]
+
∑
p,q

U↑↓n̂
↑
p,qn̂

↓
p,q +

[
iγ

∑
p,q

(
−ib̂†↑p,q b̂↓p−1,q + ib̂†↓p,q b̂

↑
p−1,q + ib̂†↑p,q b̂

↓
p+1,q

−ib̂†↓p,q b̂↑p+1,q − b̂†↑p,q b̂
↓
p,q−1 − b̂†↓p,q b̂

↑
p,q−1 + b̂†↑p,q b̂

↓
p,q+1 + b̂†↓p,q b̂

↑
p,q+1

)
+H.c.

]
. (3.2)

To study the ground-state properties of the system in both strong- and weak-coupling lim-

its, we use the single-site Gutzwiller mean-field (SGMF) theory [177–184]. We decompose

annihilation (b̂αp,q) and creation (b̂†αp,q) operators into the mean-field and fluctuation part as

b̂αp,q = ϕαp,q + δb̂αp,q and b̂†αp,q = ϕα∗p,q + δb̂†αp,q, where ϕαp,q (ϕα∗p,q) is the superfluid order parameter. As

an example, the first term b̂†αp+1,q b̂
α
p,q after the mean-field approximation results in

b+α
p+1,qb

α
p,q = ϕ∗αp+1,qϕ

α
p,q + ϕ∗αp+1,qδbp,q + ϕp,qδb

+α
p+1,q + δb+α

p+1,qδb
α
p,q. (3.3)

Neglecting the terms like δb+α
p+1,qδbp,q which are second order in the fluctuation operator and

substituting δb̂αp,q = b̂αp,q − ϕαp,q and δb̂†αp,q = b̂†αp,q − ϕ†αp,q in Eq. (3.3), we get

b+α
p+1,qb

α
p,q = ϕ∗αp+1,qb

α
p,q + ϕαp,qb

†α
p+1,q − ϕαp,qϕ

∗α
p+1,q. (3.4)

As a result, the mean-field approximation decouples the Hamiltonian [Eq. (3.2)] as Ĥ =
∑

p,q ĥp,q,
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where

ĥp,q = −
∑
α

[(
J(b̂†αp,qϕ

α
p−1,q + ϕα∗p+1,q b̂

α
p,q − ϕα∗p,qϕ

α
p−1,q − ϕα∗p+1,qϕ

α
p,q) + H.c.

)
+
(
J(b̂†αp,qϕ

α
p,q+1 + ϕα∗p,q−1b̂

α
p,q − ϕα∗p,qϕ

α
p,q+1 − ϕα∗p,q−1ϕ

α
p,q) + H.c.

)
+
Uαα

2
n̂αp,q

(
n̂αp,q − 1

)
− µαp,qn̂

α
p,q

]
+ U↑↓n̂

↑
p,qn̂

↓
p,q

+iγ

[
b̂†↑p,q(iϕ

↓
p+1,q − iϕ↓p−1,q − ϕ↓p,q−1 + ϕ↓p,q+1) + b̂†↓p,q(iϕ

↑
p−1,q − iϕ↑p+1,q

−ϕ↑p,q−1 + ϕ↑p,q+1) + ϕ↑∗p,q(iϕ
↓
p−1,q − iϕ↓p+1,q + ϕ↓p,q−1 − ϕ↓p,q+1)

+ϕ↓∗p,q(−iϕ↑p−1,q + iϕ↑p+1,q + ϕ↑p,q−1 − ϕ↑p,q+1)

]
+H.c., (3.5)

is the local Hamiltonian at the (p, q)th site. To obtain the ground state, we self-consistently

diagonalize the Hamiltonian at each lattice site. The many-body Gutzwiller wave function for

the ground state at the (p, q)th site is

|Ψ⟩ =
∏
p,q

|ψ⟩p,q =
∏
p,q

∑
n↑,n↓

c(p,q)n↑,n↓
|n↑, n↓⟩p,q, (3.6)

where |ψ⟩p,q is the single-site ground state; |n↑⟩ and |n↓⟩ are Fock states with nα ∈ [0, Nb − 1];

Nb is the dimension of the Fock space, and the c-numbers c
(p,q)
n↑,n↓s are the complex coefficients

that satisfy the normalization condition
∑

n↑,n↓
|c(p,q)n↑,n↓ |2 = 1. The superfluid order parameters

of the two components are

ϕ↑p,q = p,q⟨ψ|b̂↑p,q|ψ⟩p,q =
∑
n↑,n↓

√
n↑c

(p,q)∗
n↑−1,n↓

c(p,q)n↑,n↓
, (3.7a)

ϕ↓p,q = p,q⟨ψ|b̂↓p,q|ψ⟩p,q =
∑
n↑,n↓

√
n↓c

(p,q)∗
n↑,n↓−1c

(p,q)
n↑,n↓

. (3.7b)

The atomic occupancies of the components at a lattice site (p, q) are the expectation of the

number operators and are given by

n↑p,q = p,q⟨ψ|n̂↑p,q|ψ⟩p,q =
∑
n↑,n↓

n↑|c(p,q)n↑,n↓
|2, (3.8a)

n↓p,q = p,q⟨ψ|n̂↓p,q|ψ⟩p,q =
∑
n↑,n↓

n↓|c(p,q)n↑,n↓
|2. (3.8b)
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3.1.1 Weakly interacting limit

We analyze the system in the weakly interacting limit, where Uαα ≪ J . For this regime, the

Hamiltonian (3.1) in the momentum space can be written as

Ĥkin =
∑
k

(
b̂†↑k b̂†↓k

)
Hk

 b̂↑k

b̂↓k

 (3.9)

with

Hk =

 −2J(cos kx + cos ky) 2iγ(sin kx − i sin ky)

−2iγ(sin kx + i sin ky) −2J(cos kx + cos ky)

 .

The diagonalization of the above Hamiltonian Hk yields two energy branches

Ek± = −2J (cos kx + cos ky)± 2γ
√
sin2 kx + sin2 ky, (3.10)

where k = (kx, ky) and the first term on the right-hand side is the spin-independent dispersion

relation in a 2D square lattice. The energy spectrum Ek± remains invariant under the parity

transformation (kx → −kx, ky → −ky) or permutation of kx and ky, (kx → ky, ky → kx).

The noninteracting lowest band structure is shown for two different regimes in Fig. 3.1. In the

absence of SOC (γ = 0), the lower branch of the band has one minimum at k = (0, 0). The

SOC term modifies the band structure, where the lower branch has four degenerate minima.

The presence of SOC breaks the rotational symmetry in k space and shifts the minima of the

lower branch along the diagonals of the first Brillouin zone.

The four degenerate minima in the lower branch are q1 = (k0, k0),q2 = (−k0, k0),q3 =

(−k0,−k0), and q4 = (k0,−k0), where k0 = arctan(γ/
√
2J). Hence, the locations of the minima

are determined by the strength of SOC.

3.2 Quantum phases and order parameters

The ground states of ultracold bosons with SOC exhibit insulating and various SF phases. The

nature of the SF phase depends on the competition between single-particle hopping and SOC-

induced spin-dependent hopping. At lower J , the incompressible insulating phases are identified

by the sum and difference of the expectations of the number operators, ⟨n̂±⟩ ≡ ⟨n̂↑⟩ ± ⟨n̂↓⟩. For

3 Spin-orbit-coupling-driven superfluid phases in optical lattices
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Figure 3.1: Noninteracting band structure of the 2D square optical lattice for two regimes. (a)
The case γ/J = 0 represents the single minimum at k = 0 in the absence of SOC. The other case
in (b) is shown for finite SOC of γ/J = 8, where the competition between γ and J determines
the band structure. Here the SOC breaks the rotational symmetry and the minima occur at four
finite wave vectors in the lower branch. This is evident from the projection of the lower-energy
branch onto the kx-ky plane. As γ/J decreases, the minimum of the lower branch tends to
approach k = 0.
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the MI phase ⟨n̂±⟩ is an integer, while the SF phases are characterized by real ⟨n̂±⟩ and a finite

value of the compressibility κ = ∂⟨n̂⟩/∂µ. The SF order parameter ⟨b̂αi ⟩ is used to distinguish

the MI and SF phases as it is non-zero in the SF and zero in the MI phase. In the absence of

SOC, the amplitude and phase of the order parameter ϕ↑(ϕ↓) are homogeneous in the miscible

domain.

Striking features appear when the spin-dependent hopping due to the SOC is finite. This

is a complex hopping; it flips the atomic spin while hopping and causes variations in the phase

of SF states. To classify the various SF states which feature distinct phase distributions of the

order parameter, we examine the spin-dependent momentum distributions at the wave vector k,

⟨ρ↑,↓(k)⟩ = L−2
∑
i,j

⟨b̂†↑i b̂
↓
j ⟩eik·(ri−rj), (3.11)

where L is the system size and ri (rj) is the location of ith (jth) lattice site. When the interspin

interaction is weaker than the intraspin interaction, the SF state can be of three types. (i) The

homogeneous superfluid has a uniform amplitude and phase of the order parameter. For this

state, the condensation occurs at zero momentum (ZM) and is also referred to as a ZM-SF state.

(ii) The phase-twisted (PT) superfluid state has an amplitude of ⟨b̂αi ⟩ that is uniform, but the

phase varies diagonally across the lattice. (iii) The stripe (ST) superfluid state has stripe-like

variation in the phase of ⟨b̂αi ⟩ across the lattice. Thus, we distinguish superfluid states based

on their phase variation and momentum distributions. It is worth mentioning that similar SF

states have been previously discussed in the continuum where the phases were characterized

using the properties of collective excitations [185].

The interplay of spin-dependent hopping (SOC) and single-particle hopping leads to the

exotic SF states. We examine the spin-dependent momentum distributions ⟨ρ↑,↓(k)⟩ at k = 0,

⟨ρ↑,↓(±k0, 0)⟩, ⟨ρ↑,↓(0,±k0)⟩, and ⟨ρ↑,↓(qi)⟩. Here qi and k0 depend on the ratio of the hopping

to the SOC strength, as discussed in Sec. 3.1. For the PT superfluid, the momentum distribution

at ⟨ρ↑,↓(qi)⟩ is finite either at all the qi or only at one of the qi. This is due to the variation in

phase distributions along the diagonal. Hence, this state shows a peak along the diagonal of the

Brillouin zone in the k space. On the other hand, for the ST superfluid states, depending on

whether the phase variation is horizontal or vertical, the state exhibits a peak at ⟨ρ↑,↓(±k0, 0)⟩
or ⟨ρ↑,↓(0,±k0)⟩, respectively. We define Φ = ⟨ρ↑,↓(k0, 0)⟩ + ⟨ρ↑,↓(−k0, 0)⟩ + ⟨ρ↑,↓(0, k0)⟩ +

3 Spin-orbit-coupling-driven superfluid phases in optical lattices



72 3.3. Results and discussion

⟨ρ↑,↓(0,−k0)⟩, which serves as an order parameter to identify the PT-ST phase transition. Here

Φ is zero for the PT superfluid and finite for the ST state. As both PT and ST are SOC-

driven finite-momentum superfluid states, ⟨ρ↑,↓(0, 0)⟩ = 0. In the next section, we characterize

the various phase transitions and the finite-momentum superfluids based on the aforementioned

classification while spanning J/U -axis for each µ. Furthermore, when the interspin interaction

is strong U↑↓ > 1, we also report a ferromagnetic phase where the spins orient along the ±z
axis. This is referred to as the z-polarized ferromagnetic (zFM) superfluid state where ⟨b̂↑i ⟩ (⟨b̂

↓
i ⟩)

remains finite and homogeneous but ⟨b̂↓i ⟩ (⟨b̂
↑
i ⟩) vanishes throughout the lattice. This phase can

be easily distinguished from other superfluid states with finite ϕ↑ or ϕ↓.

3.3 Results and discussion

We study the mean-field ground-state phase diagram of the ultracold bosons and investigate

the different SF phases emerging from the competition between the SOC and single-particle

hopping. We choose the intraspin interactions to be the same, U↑↑ = U↓↓ = U . We consider U

as the scaling parameter for the tunnelling amplitude, chemical potential, interspin interaction,

and energy of the system. In particular, we examine the system for weak (U↑↓/U < 1) and

strong (U↑↓/U > 1) interspin interactions. We then employ the finite-temperature Gutzwiller

theory to probe the effects of thermal fluctuations on the SF phases of the bosons. To generate

the phase diagrams, we consider a system size of 8× 8; the Fock state dimension at each lattice

site is Nb = 6. The latter is sufficient to represent the quantum phases of the system up to

µ = 3U [177–180]. It is important to note that the initial states play a key role in determining

the ground states. We have performed numerical simulations with different initial states and

found that a random SF order parameter as the initial state gives the global minimum. The

uniform ϕ is not a good choice for the initial state because for some values of the parameters the

converged solution corresponds to a local minimum. This is due to the fact that the uniform ϕ

does not contribute to the SOC energy as this depends on the relative phase between the ϕ of both

pseudospinor components. To obtain the mean-field phase diagrams, we start with a complex

random distribution of Gutzwiller coefficients across the lattice, and then the corresponding

SF order parameter is computed. Hence, our initial state has a random SF order parameter

with random amplitude and phase. Our algorithm is based on the self-consistent approach. We
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diagonalize the single-site Hamiltonians and compute the updated ϕiα at each iteration. This

process is repeated until the energy and superfluid order parameter converge up to a tolerance

of 10−12. Moreover, we repeat the procedure with 50 random configurations of the initial state

to ensure that the ground state has been obtained. We have checked explicitly that the larger

number of random configurations does not modify the ground states.
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Figure 3.2: Zero-temperature ground-state phase diagram in the presence of Rashba SOC for
various SOC strengths: (a) γ = 0U , (b) γ = 0.02U , (c) γ = 0.03U , and (d) γ = 0.04U . The Mott
insulator regime is represented by MI(n), where n = n↑ + n↓ is the total filling or occupancy
of the lobe. The interspin interaction U↑↓ = 0.5U . At γ = 0, the system exhibits an MI-SF
transition, where the SF phase Bose condenses at zero momentum and hence is referred to as
the ZM-SF state. The finite γ results in finite-momentum superfluid phases. Here as J is varied,
the system undergoes the PT-ST superfluid phase transition, shown by blue dashed lines. The
phase diagrams are obtained using random complex initial states with 50 random configurations.
The system size L = 8× 8 and periodic boundary conditions are considered.

3.3.1 U↑↓ = 0.5

We first examine the quantum phases of the 2D TBHM in the presence of the SOC at zero

temperature. The plots in Fig. 3.2 show the ground-state phase diagrams at different values of

the SOC strengths γ with U↑↓ = 0.5U .
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3.3.1.1 No SOC (γ = 0)

In the absence of SOC, the system supports two quantum phases, the incompressible MI phase

and the compressible ZM-SF phase. The MI phase occurs in lobes of different integer commen-

surate densities. It should be noted that the MI lobes with odd-integer occupancies are smaller

than those with even occupancies [186]. As U↑↓ increases, the size of the odd-integer Mott lobes

grows, whereas even-integer lobes remain the same in size but shift to higher µ/U until U↑↓ = U .

In the absence of SOC, the phase diagram shown in Fig. 3.2(a) agrees well with previous studies

on the TBHM [186–189].

3.3.1.2 Finite SOC (γ ̸= 0)

The ground-state phase diagrams for finite SOC are shown in Figs. 3.2(b)- 3.2(d). Considering

the phase diagram at γ = 0.02U , a prominent feature is the shrinking of the MI lobes. At

higher µ, the MI(3) lobe vanishes and is replaced by the SOC-induced SF phase. Thus, even

in the atomic limit J/U = 0, for certain ranges of µ, the system is in the SF phase due to the

SOC. This is evident from the phase diagram in Fig. 3.2(b), where the SF phase is present at

J/U = 0 for µ/U ⩽ 0.07, 0.43 < µ/U < 0.57, 1.38 < µ/U < 2.14, and 2.8 < µ/U ⩽ 3.0. In

the absence of single-particle hopping, i.e., J = 0, the superfluidity is due to the transport of

atoms in the presence of spin-dependent hopping (SOC). As we increase γ, the MI lobes shrink

further, and the SF phase is enhanced. For γ = 0.04U , only the MI(2) lobe survives, and the

system is in the SOC-generated SF phases in the remaining parameter domain. This is due

to the larger region covered by the MI(2) lobe even at γ = 0. Our computations for larger

γ show that the MI(2) lobe also vanishes at γ ≈ 0.06U . Hence, the MI lobe with a larger

insulating domain and higher Jc will require larger SOC strengths to result in superfluid states

occupying the whole domain of the J/U−µ/U plane. The vanishing of insulating lobes with the

formation of SOC-induced SF states is in agreement with the previous studies [71, 190]. Using

site-decoupling approximation and second-order perturbation theory, the critical hopping of the

MI-SF transition in the presence of SOC is

(
zJc
U

)
=

1

2

(zJ0
U

)
+

√(
zJ0
U

)2

− 8
( γ
U

)2

 , (3.12)
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where J0 is the critical hopping of the MI-SF transition in the absence of SOC (γ = 0). The value

of J0 depends on the occupation number of the species [191]. Here z = 2d is the coordination

number of the d-dimensional optical lattice. The value of Jc decreases with γ, which confirms our

numerical results in the phase diagrams shown in Fig. 3.2. As an illustration, for the MI(2)-SF

phase transition, the above expression yields values of Jc as 0.0418 and 0.0402 for γ/U = 0.02

and 0.03, respectively, which are in close agreement with the numerical values in the phase

diagrams in Figs. 3.2(b) and 3.2(c). Using Eq. (3.12), the critical SOC strengths where the

MI(2) and MI(4) lobes are destroyed are 0.061 and 0.035, respectively, and these are consistent

with our numerical results.

At γ = 0, the only superfluid phase of the system is the ZM superfluid, whereas, at a nonzero

γ value, it is replaced by finite-momentum superfluids. The nature of superfluid phases near the

MI-SF transition can be understood by analyzing the mean-field energies [190]. The hopping

energy depends on the relative phase between the same spin state, while the SOC energy depends

on the relative phase between different components. For the γ = 0 case, the minimization of

hopping energy leads to a zero phase difference between the states, which corresponds to the

ZM superfluid [Fig. 3.2(a)]. For finite γ, the energies depend on γ/J , relative phases, and the

ratio of the amplitudes of ϕ↓ and ϕ↑. For fixed γ/J and assuming a uniform amplitude of order

parameters, the minimization of energies with respect to relative phases corresponds to finite

but uniform relative phases [190], which are identified as the PT superfluid state.

The characteristic properties of the finite-momentum and ZM-superfluid states are shown

in Fig. 3.3. The phase variations and the momentum distributions of the finite-momentum

superfluids are shown for fixed γ = 0.02U , µ = 1.5U , and two different J values corresponding

to PT and ST superfluids. For the PT superfluid state, the random initial state yields a uniform

amplitude and twisted diagonal site variation in the phase, as evident from Fig. 3.3(a). The

phase variation is shown for one of the components, although it should be noted that the other

component also follows similar distributions. However, the relative phase of the ϕ between

the components is finite, i.e., θ↑i ̸= θ↓i [190]. In the presence of the interactions, the fourfold

symmetry of the lower branch of the lowest-energy band is spontaneously broken. For the PT

superfluid phase, the system chooses to be in one of the minima, and therefore we observe a

single peak at k ̸= 0 in the momentum distribution. In particular, the peak in the k space

appears at the diagonal of the Brillouin zone, as represented in Fig. 3.3(d).

3 Spin-orbit-coupling-driven superfluid phases in optical lattices



76 3.3. Results and discussion

Figure 3.3: The lattice-site distributions of the phase variation and spin-dependent momentum
distributions of various superfluid states. The upper panel represents the phase distributions
for (a) PT, (b) ST, and (c) ZM superfluid whereas the lower panel (d)-(f) the corresponding
momentum distributions. The finite-momentum superfluids are obtained using the Gutzwiller
mean-field approach for γ = 0.02U and µ = 1.5U . The hopping amplitude in terms of U
corresponding to PT and ST are 0.015 and 0.04, respectively. The (c) ZM superfluid is plotted
for γ = 0, µ = 1.5, and J = 0.04U . The spatial variation of phase and momentum distributions
are shown for one of the components, as the other component also has the similar distributions.
The peak in the spin-dependent momentum distributions appears at k ̸= 0 for (d) PT and (e)
ST states, whereas for (f) ZM superfluid it appears at k = 0. Here, a is the lattice constant.

As J is increased, the PT phase undergoes a transition to the ST phase. In the ST superfluid

phase obtained with the SGMF approach, the amplitude of ϕαi remains spatially uniform and

phase distributions exhibit stripelike variation [Fig. 3.3(b)]. The momentum peak is located at

k ̸= 0 and in particular it lies on x or y axis, depending on the variation in phase [Fig. 3.3(e)].

To examine the quantum phase transition between the phase-twisted and the ST superfluid

states, we analyze the properties of ⟨ρ↑↓(k)⟩. Since both states are finite-momentum superfluids,

the location of their momentum peaks in k space can serve as an order parameter to identify

them. As mentioned earlier in Sec. 3.2, we in particular analyze the evolution of the order

parameter Φ, which is the sum of ⟨ρ↑↓(k)⟩ at k = (±k0, 0) and (0,±k0), as a function of J . For
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each µ value, we have spanned along the J/U axis, and whenever Φ takes a nonzero value, the

critical hopping strength for the PT-ST transition is determined. The error involved in analyzing

the phase transition is 10−3, which is the step size (∆J) used to span J/U in the numerical

computations. Hence, we find that the PT-ST phase transition is sharp. As a representative

case, the evolution of Φ at µ/U = 1.8 for three different γ values is shown in Fig. 3.4. At

lower hopping strengths, the ground state is either the MI phase or the finite-momentum PT

superfluid and hence Φ remains zero. This is due to the fact that the PT state corresponds

to the condensation in k = qi along diagonals of the first Brillouin zone. As J/U increases, a

striped ordering of the phase develops with finite Φ, which characterizes the PT-ST superfluid

phase transition of the spin-orbit coupled bosons. The critical hopping strength of the PT-ST

transition increases as the value of the SOC strength increases. As shown in Fig. 3.4, the Jc

of the PT-ST transition is 0.02, 0.03, and 0.04 for γ = 0.02, 0.03, and 0.04, respectively. The

behavior of Φ and the corresponding transitions for U↑↓ = 0.5 (Fig. 3.2) suggest that the PT

to ST superfluid phase transition occurs when γ/J ≈ 1. In addition, the PT phase is expected

for γ/J ⪆ 1, whereas the ST phase appears for γ/J ⪅ 1. Our computations using random

configurations of complex ϕαp,q suggest an increase in Jc as the system size increases. Since

the real cold-atom experiments are with the trapped finite-size systems, the transition between

finite-momentum superfluids can be observed near the trap center [71].

The SGMF approach fails to capture the density oscillations that should ideally be there in

a stripe phase; the reason is that the SGMF theory does not include the intersite atomic cor-

relations. In order to overcome this limitation of the SGMF theory and obtain the nonuniform

magnetic ordering and the resulting inhomogeneous superfluidity, one has to use the diagonal-

ization of the cluster of lattice sites as suggested in Ref. [67]. Considering this, we probe the

parameter space of the stripe superfluid state obtained from the SGMF theory with the cluster

Gutzwiller approach (CGA). The latter improves the intersite correlations and incorporates the

effects of the quantum fluctuations. In this approach, the lattice sites are partitioned into a

finite number of clusters, where the model terms within the lattice sites of a cluster are treated

exactly. A detailed description of the approach is given in these works [157, 184, 186, 192, 193].

To examine the parameter domain corresponding to the stripe superfluid, we use a 2× 2 cluster

and Nb = 3. The size of the cluster is sufficient to probe the effects of the atomic correlations

on the magnetic ordering of the SOC-driven superfluids. Like in the case of the SGMF theory,

3 Spin-orbit-coupling-driven superfluid phases in optical lattices
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Figure 3.4: Evolution of the order parameter Φ, characterizing the finite-momentum PT and ST
superfluid states, as a function of the hopping strength J/U . The chemical potential µ/U = 1.8
and interspin interaction U↑↓ = 0.5U . The Φ is defined in Sec. 3.2. The variation in Φ from zero
to a finite value shows the PT(MI)-ST phase transition.

sometimes the solution obtained from the CGA is a metastable state corresponding to a local

minimum. To avoid this we consider several random configurations of the SF order parameters

as the initial states with the CGA and choose the global minimum-energy state as the ground-

state phase. The lattice-site distributions of the occupancy and the amplitude and phase of the

SF order parameter are shown in Fig. 3.5. The profiles are shown for one of the components | ↑⟩;
however, the other component also follows similar distributions. We observe stripe variation in

the number occupancy ⟨n̂αi ⟩ and |ϕαi | and hence refer to it as the STden phase. The amplitudes of

the variations remain smaller, which we expect can be enhanced by considering a larger cluster

of sites.

We further investigate the parameter domain of the stripe superfluid (using the CGA) and

find that the STden phase persists for larger hopping strengths. It continues to the domain

where one would get the ZM superfluid transition using the SGMF theory. As an example, for
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the parameters L = 8 × 8, γ = 0.02U , µ = 1.8U , and J = 0.1U , the SGMF theory predicts

ZM superfluidity, whereas the CGA gives the STden phase for these parameters. Hence, the

latter extends the parameter space of the STden phase by taking into account the quantum

correlations. This suggests the applicability of the SGMF theory to describe the QPTs usually

for J/U → 0 [67,71,190]. Therefore, in this chapter, we investigate the phase transitions in the

range from J = 0 to J ≈ 0.08U . The stability of the STden superfluid in a wider parameter

regime is consistent with the observation of this state in the presence of a weak lattice potential

in a recent experiment [194]. In this thesis, the CGA is used to ascertain the nature of the ST

and ZM phases obtained from the SGMF theory.
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Figure 3.5: Lattice-site distributions in the STden phase obtained using the cluster Gutzwiller
approach. The (a) occupancy, (b) amplitude of the order parameter, and (c) phase of a STden

state are shown. The parameters are γ = 0.02U , µ = 1.8U , and J = 0.05U . These distributions
are shown for interspin interaction U↑↓ = 0.5U .

3.3.2 U↑↓ = 1.5

Here we discuss the quantum phases generated due to the effects of SOC when the interspin

interaction is stronger than the intraspin one (U↑↓/U > 1). In this parameter regime, we

first review the phase diagram of the two-component interacting bosonic system in the absence

of SOC. The phase diagram for U↑↓ = 1.5U at γ = 0 is shown in Fig. 3.6(a). Above the

phase separation criterion, at J = 0, the width of all MI lobes is ∆µ/U = 1. Moreover, the

critical hopping of the MI(1)-SF transition in Fig. 3.6(a) becomes identical to the MI(2)-SF for

U↑↓ < U case as shown in Fig. 3.2(a). Details of the quantum phase transitions as a function

of U↑↓ for the two-component interacting scalar-bosonic system are reported in Sec. 4.1.1. In

the phase-separated superfluid, the condensation occurs in one of the components only, and

it resembles the zFM phase [67, 175]. We further examine the SOC-driven superfluid phases
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Figure 3.6: Zero-temperature ground-state phase diagram in the presence of Rashba SOC for
various SOC strengths: (a) γ = 0U , (b) γ = 0.02U , (c) γ = 0.03U , and (d) γ = 0.04U . The
filling or occupancy of the Mott lobe is represented by n in MI(n). The interspin interaction
U↑↓ = 1.5U . The superfluidity near the MI lobes is twisted in character, while at higher J the
system is in the zFM state.

and their parameter space as γ varied. The phase diagrams for three representative cases are

shown in Figs. 3.6(b)-3.6(d). At γ = 0.02U , for lower hopping strengths, the phase-modulated

PT superfluid emerges between the insulating lobes as shown in Fig. 3.6(b). For the phase-

separated regime, the uniform occupancy of the PT state is observed for ni = n↑i + n↓i and the

phase of each component varies diagonally as shown in Fig. 3.3(a). A further increase in J results

in a transition to the zFM superfluid. The effects of SOC at higher strengths γ = 0.03U and

0.04U are shown in Figs. 3.6(c) and 3.6(d), respectively. At γ = 0.03U , the MI(3) completely

vanishes, and the parameter regime of the PT superfluid phase is enhanced. This is also evident

from the SF region between the MI(1) and MI(2) lobes. At γ = 0.04U , the destruction of Mott

lobes is enhanced as indicated by the absence of MI(2). As SOC strength increases, the melting

of insulating lobes occurs first for higher-density lobes and then continues to the lower-density



81

ones. In addition, the Jc of the MI-SF transition also decreases with γ. We find that at higher

γ ≈ 0.065U , the MI(1) phase gets completely destroyed and the system exhibits a superfluid

phase transition between the PT and zFM states. In the PT phase, both ϕ↑i and ϕ↓i are finite

while in the zFM superfluid only one of them is finite [as mentioned earlier in Sec (3.2)]. Starting

from within the PT phase and spanning the J/U axis for a particular µ, we note the J/U value

when either ϕ↑i or ϕ↓i becomes ≤ 10−3; this is the J/U value at the PT-zFM phase boundary.

After repeating this for all the µ values considered, we do a nonlinear least-squares fitting of

all the critical J/U values for the PT-zFM transition with the residual of the order of 10−3

to smoothen the phase boundary. The transition between the PT and zFM states is broad

compared to other zero-temperature phase transitions discussed in this chapter. It is important

to note that for a stronger interspin interaction U↑↓/U > 1, we do not observe the ST phase.

This is consistent with the quantum phases of the continuum system with SOC where the tuning

of Raman coupling for a strong interspin interaction does not lead to the ST phase [185].

3.4 Finite temperature

To study the effects of thermal fluctuations at finite temperature, we use the finite-temperature

Gutzwiller theory. At finite temperature, the superfluid states are characterized similarly to

the case of zero temperature, although we incorporate the effects of the thermal fluctuations at

finite temperature by considering the thermal average of the observable quantities.

To compute the thermal average, we first get the full set of eigenspectra obtained from the

diagonalization of the mean-field Hamiltonian. We further use the single-site energy spectrum

El
i and the eigenstates |ψ⟩li to evaluate the partition function of the system

Zi =

Nb∑
l=1

e−βEl
i , (3.13)

where l is the eigenstate index, Nb is the Fock space dimension, β = (kBT )
−1, and T is the

temperature of the system. At finite T , the region of the phase diagram with a vanishing SF

order parameter and the real number occupancy ⟨n̂αi ⟩ is defined as the normal-fluid (NF) state.

3 Spin-orbit-coupling-driven superfluid phases in optical lattices
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From the definition of the partition function, the thermal average of the SF order parameter is

⟨ϕαi ⟩ =
1

Zi

Nb∑
l=0

l
i⟨ψ|b̂αi e−βEl

i |ψ⟩li, (3.14)

where α = ↑, ↓ is the spin-component index and ⟨· · · ⟩ represents the thermal averaging of ϕ.

Similarly, the atomic occupancy at finite T is defined as

⟨n̂αi ⟩ =
1

Zi

Nb∑
l=0

l
i⟨ψ|n̂αi e−βEl

i |ψ⟩li. (3.15)

The average occupancy is ⟨nα⟩ = ∑
i⟨n̂αi ⟩/L. At finite T , the spin-dependent momentum distri-

butions ⟨ρ↑,↓(k)⟩ are computed from the thermally averaged SF order parameters.

The NF state at finite temperature is identified in the incompressible phases based on the

compressibility κ. In the present chapter, we consider |n−nth| ⩾ 10−3 as the criterion to identify

MI to NF crossover. Here, n and nth are the lattice occupancies at zero and finite temperature,

respectively. Such a criterion has been previously used to distinguish the NF phase of the BHM

at finite temperatures [195].

3.4.1 Finite-temperature results for U↑↓ = 0.5

At finite temperatures, the Mott lobe melts into the NF phase due to thermal fluctuations. The

NF phase has no long-range order, but it is compressible (κ ̸= 0). Therefore, this phase can be

distinguished from the insulating MI phases by finite κ. We examine the melting of the MI phase

as a function of temperature for various SOC strengths. In Fig. 3.7 we plot the width of the

first Mott lobe MI(1) at J = 0.01U for different values of γ. For γ = 0, at lower temperatures,

the width of the MI lobe first increases for kBT/U < 0.004.

At kBT/U ≈ 0.004 the Mott lobe starts melting, and the width of the lobe decreases with

temperature. At kBT/U ≈ 0.046, the MI phase is completely replaced by the NF phase. How-

ever, for finite γ there is a combined effect of SOC and finite temperature on the width of

the Mott lobe. For γ = 0.02U , at low temperatures, the width first increases and then at

kBT/U ≈ 0.009 the thermal fluctuations overcome the SOC effects; and this leads to a decrease

in the width. The effects of SOC are prominent at larger values of γ, as evident for the γ = 0.03U

and 0.04U cases in Fig. 3.7. At higher temperatures, the melting of the MI phase is independent
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of γ, and the decrease in the width of the MI lobe is similar to the γ = 0 case.
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Figure 3.7: Width of the first Mott lobe MI(1) at J = 0.01U as a function of temperature for
various SOC strengths. The values of γ in units of U are shown in the legend. Here the interspin
interaction U↑↓ = 0.5U . At lower temperatures, the melting of the MI lobe depends on the value
of γ, and at higher kBT the width remains similar to the γ = 0 case. For all cases, with and
without SOC, the MI(1) phase completely melts and replaced by NF phase at kBT/U ≈ 0.046.

We further discuss the finite-temperature phase diagram at kBT/U = 0.03, shown in Fig. 3.8.

At γ = 0, the thermal fluctuations destroy the ODLRO of the SF phase and extend the parameter

space of the NF phase. Odd Mott lobes stretch along the J/U axis. For example, at kBT = 0,

the critical hopping of the MI(1)-SF transition is 0.0268 in Fig. 3.2(a) and at kBT/U = 0.03, it

increases to 0.0422, as evident from Fig. 3.8(a). Similar enhancement is also apparent for MI(3)

from a comparison of Figs. 3.8(a) and 3.2(a). In the presence of SOC, there is an interplay of

the effects of SOC and finite temperature. For smaller SOC strengths (γ = 0.02 and 0.03), the

remarkable feature of the reemergence of MI lobes at the cost of finite-momentum superfluids at

finite temperature is observed. In particular, the SOC-induced PT phase near the atomic limit

in Fig 3.2(b) melts into MI(3) and NF phases as shown in Fig. 3.8(b). The destruction of the

PT superfluidity in a wide region of the NF state at finite temperature is consistent with the

3 Spin-orbit-coupling-driven superfluid phases in optical lattices
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Figure 3.8: Finite-temperature phase diagram of the TBHM for different values of γ at kBT/U =
0.03: (a) γ = 0U , (b) γ = 0.02U , (c) γ = 0.03U , and (d) γ = 0.04U . The interspin interaction
U↑↓ = 0.5U . The shaded green bands are the insulating MI regions which are distinguished from
the NF phase present at finite T . The reemergence of insulating regimes and destruction of PT
superfluidity at finite temperatures are observed. The constant width of MI(1) for both zero
and finite SOC confirms the behavior reported in Fig. 3.7. The blue dashed line represents the
PT-ST superfluid phase transition obtained using the finite-temperature Gutzwiller mean-field
approach.

previous Monte Carlo study of strongly correlated bosons with SOC [174]. The reemergence of

insulating domains at finite temperature is in agreement with our analysis of the width of the

MI lobe with SOC, which is shown in Fig. 3.7. While increasing the SOC strengths from 0.02

[Fig. 3.8(b)] to 0.03 [Fig. 3.8(c)], the PT state is favored by melting the NF and MI phases. At

γ = 0.04U , the phase boundary of the PT to ST superfluid transition, as in the case of zero

temperature, remains unchanged and independent of the average particle densities or µ at finite

temperatures.
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Figure 3.9: Finite-temperature phase diagram of the TBHM for different values of SOC strengths
at U↑↓ = 1.5U : (a) γ = 0U , (b) γ = 0.02U , (c) γ = 0.03U , and (d) γ = 0.04U . The shaded
green bands represent the residual insulating domains in the presence of thermal fluctuations.
Outside the bands tiny white regions show the NF phase. The thermal energy corresponding to
temperature is kBT/U = 0.03. The finite temperature stabilizes the MI phases against the SOC
and suppress the finite-momentum superfluidity. This is evident from (c) and (d), as compared
to the corresponding zero temperature cases shown in Figs. 3.6(c)-3.6(d).

3.4.2 Finite-temperature results for U↑↓ = 1.5

Like in the case of U↑↓ = 0.5U , we examine the finite-temperature phase diagram in the phase-

separated regime with SOC. In particular, we explore the stability of the finite-momentum

superfluids with the thermal fluctuations arising from finite T . To gain additional insight, we

briefly review the γ = 0 case. As expected, the insulating lobes melt to the NF phase at

kBT/U = 0.03, which is discernible from the phase diagram shown in the Fig. 3.9(a). The

phase diagrams of γ ̸= 0 at kBT/U = 0.03 are shown in Figs. 3.9(b)-3.9(d). At γ = 0.02U , the

thermal fluctuations favor the insulating domains, and the emergence of the NF phase between

the MI lobes reduces the PT superfluidity, as is evident from a comparison of Fig. 3.9(b) with

Fig. 3.6(b). The reemergence of MI lobes at finite T is also seen in this case, as can be confirmed

3 Spin-orbit-coupling-driven superfluid phases in optical lattices



86 3.5. Conclusions

by comparing Figs. 3.9(c) and 3.9(d) with Figs. 3.6(c) and 3.6(d). At the phase boundaries,

the critical hopping of the MI-zFM and PT-zFM transitions is shifted to higher J at finite

temperature as compared to the critical J at zero temperature. The effect of the increase in

SOC strength leading to the increase in the PT superfluid phase is also evident in the phase

diagrams shown in Figs. 3.9(c)-3.9(d) which are similar to U↑↓/U < 1 case.

3.5 Conclusions

We have studied the parameter domain of various finite-momentum superfluids of SO-coupled

ultracold bosonic atoms in 2D optical lattices. To examine various superfluid states with different

atomic densities and phase ordering, we have used spin-dependent momentum distributions, a

routinely measured observable in cold-atom experiments. For U↑↓ < U , with γ/J ⪆ 1 the favored

superfluid phase is the PT phase, whereas with γ/J ⪅ 1 the system is in the ST phase. Starting

with the PT phase, the increase in J results in the PT to ST superfluid phase transition. We

have shown that the inclusion of quantum fluctuations via the CGA results in the STden phase

corresponding to the parameter domain of the ST phase obtained with the SGMF theory. In

the limit U↑↓ > U , the stripe superfluid is absent and the PT to zFM transition is observed

as J is varied. We have further shown that the thermal fluctuations destroy the phase-twisted

superfluidity and favor the insulating and normal states. The results reported in this chapter

are pertinent to the ongoing quantum gas experiments with SOC and offer a parameter space

in the J − µ plane to observe the finite-momentum superfluids. The results reported in this

chapter are discussed in Ref. [196].



Chapter 4

Out-of-equilibrium dynamics of

Bose-Bose mixtures in optical

lattices

In the previous chapter 3, we discussed various phases of the two-component Bose-Hubbard

model (TBHM) with and without SOC. The BHM has underpinned our understanding of quan-

tum phase transitions (QPTs) [130, 197]. As discussed in the introduction to the quantum

quench dynamics in Sec. 1.6.2, the study of out-of-equilibrium dynamics in interacting quantum

systems in search of an adiabatic quantum state for quantum computation is an active research

area [136]. The controllability of parameters in cold atom systems, especially over time, naturally

sparks interest in the out-of-equilibrium dynamics of the BHM, particularly in the proximity of

quantum critical points.

The Kibble-Zurek mechanism (KZM) [137, 138] offers a comprehensive theoretical frame-

work to understand the non-equilibrium dynamics across continuous phase transitions. When

an external parameter of the system is quenched with a finite rate across the critical point, non-

adiabatic effects set in. This breakdown of the adiabaticity near the critical point is inevitable

due to the critical slowing down, which refers to the divergence of the relaxation time of the

system near the critical point. The KZM describes spontaneous symmetry breaking and the for-

mation of broken symmetry domains based on the non-adiabatic regime in the dynamics. The

theory predicts universal scaling laws with respect to the quench rate [137, 138, 198–200]. The
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roots of this theory are in Tom Kibble’s [137] studies on predicting the formation of topological

defects as a result of local choices of broken-symmetry state during the cooling of the early

universe. Zurek tested the ideas of Kibble in non-relativistic condensed matter systems and

demonstrated that the competition between the relaxation time and the quenching rate deter-

mines the size of the broken-symmetry domains and predicted a universal power-law scaling of

these defects in relation to the quench rate, with an exponent directly related to the equilibrium

critical exponents [137,138,198–200]. Initially proposed to explain the evolution of the early uni-

verse [137], the KZM has been experimentally explored in various classical and QPTs. Its appli-

cation has been demonstrated in numerous systems such as cosmic microwave backgrounds [201],

liquid helium [202], superconductors [203], and liquid crystals [204]. More recently, the studies

on the KZM have been extended to ultracold quantum gases [141, 142, 146, 205–222]. A recent

experiment [146] has explored the dynamics of QPT from the MI to the SF phase and observed

a power-law behavior of the coherence length, reminiscent of the KZM. This has led to a surge

of interest in exploring QPTs of BECs loaded into an optical lattice to confirm the applicability

of the KZM to QPTs. Multicomponent BECs offer a rich variety of QPTs when loaded into

an optical lattice which has not been explored in the literature. We theoretically examine the

quench dynamics of the MI to SF phase transition in the TBHM without SOC in this chapter.

A two-component Bose mixture in an optical lattice is not just an extension of a one-

component Bose gas in a lattice as the phases of the multicomponent and spinor systems in

such scenarios are considerably more intricate [223–226]. The MI-SF transition in the one-

component BHM is a continuous transition, whereas the TBHM exhibits a tricritical point after

which the MI-SF transition changes to a first-order transition [227]. Although the KZM pre-

dicts the breakdown of adiabaticity for continuous transitions, both experimental [228,229] and

theoretical studies [219,221,230] confirm the critical slowing down for the first-order phase tran-

sitions also. Motivated by these studies, we explore both the first-order and second-order MI-SF

transitions of the TBHM in this chapter. We study the effects of the inhomogeneity of phases

and order of transitions on the impulse regime and scaling exponents.

This chapter is organized as follows. In Sec. 4.1, we introduce the TBHM and describe the

mean-field approach to determine the equilibrium phase diagram for three different values of

the inter-species interactions corresponding to the miscible-immiscible phase transition. The

dynamical Gutzwiller equations and the KZM are presented in Sec. 4.2. Sec. 4.3 discusses the
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quantum quench dynamics across the MI(2)-SF and MI(1)-SF transitions of the TBHM. Finally,

we summarize our findings in Sec. 4.4.

4.1 Two-component Bose-Hubbard Hamiltonian

We consider a Bose-Bose mixture of two spin states from the same hyperfine-spin manifold in

a 2D square optical lattice at zero temperature. The TBHM (3.1) describing the system in the

absence of SOC is [231]

Ĥ = −
∑
p,q,α

[(
Jb̂†αp+1,q b̂

α
p,q +H.c.

)
+
(
Jb̂†αp,q+1b̂

α
p,q +H.c.

)
− Uαα

2
n̂αp,q(n̂

α
p,q − 1) + µαn̂

α
p,q

]
+
∑
p,q

U↑↓n̂
↑
p,qn̂

↓
p,q, (4.1)

where the symbols have the same meaning as discussed in Sec. 3.1 of Chapter 3. The superfluid

order parameters ϕαp,q and atomic occupancies nαp,q are similarly defined in Eqs. (3.7a)-(3.7b)

and Eqs. (3.8a)-(3.8b), respectively.

4.1.1 Equilibrium phase diagrams

In this chapter, we consider identical chemical potentials µα = µ and intraspecies interactions

Uαα = U . We scale all energies with respect to U . Following the phase separation criterion of the

two components, determined by the strength of the interspecies interaction, we investigate the

two regimes: U↑↓ < 1 and U↑↓ > 1. We use the SGMF approach discussed in Sec. 3.1 to obtain

phase diagrams of the TBHM. We considered a lattice size of 8 × 8 and Nb = 6 and checked

that by increasing the system size or Nb, phase diagrams do not alter. The model exhibits two

phases: MI and SF [232–235].

4.1.1.1 Interspecies interaction U↑↓ < 1

We first consider U↑↓ = 0.5 and 0.9 in the miscible regime of the TBHM. In the MI phase,

ϕαp,q is zero, but it is nonzero in the SF phase. We use this criterion to determine the phase

boundary between the MI and SF phases in the J-µ plane. Figs. 4.1(a) and 4.1(b) show the

phase diagrams for U↑↓ = 0.5 and 0.9.

4 Out-of-equilibrium dynamics of Bose-Bose mixtures in optical lattices
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Figure 4.1: Phase diagrams of the TBHM in J-µ plane for (a) U↑↓ = 0.5 and (b) U↑↓ = 0.9. The
number in parentheses is the total average atomic occupancy. The phase transitions across all
boundaries are of second order except for the green curve in (b) across which the MI(2) to SF
transition is of the first order in nature. For U↑↓ = 0.9, the |Φ| as a function of J are shown for
(c) the MI(1)-SF transition at µ = 0.39 and (d) the MI(2)-SF transition at µ = 1.32. In the
panels (e)-(h), sample atomic occupancy distributions (nαp,q) of both components on an 8 × 8

square lattice are shown. (e) and (g) correspond to n↑p,q and n↓p,q, respectively, in the MI(1)
phase. The same for the MI(2) phase are shown in (f) and (h).
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The phase diagram depicts two kinds of MI lobes based on the average total occupancy.

These are even-integer and odd-integer MI lobes. In J = 0 limit, the size of the MI regions

on the µ-axis for odd and even total fillings are U↑↓ and 1, respectively. As we increase U↑↓,

the sizes of odd Mott lobes along J-axis increases while those of even Mott lobes remain the

same. For the MI(1) phase, the average occupancies nα =
∑

p,q n
α
p,q/Nlattice are 0 < n↑ < 1 and

n↓ = 1−n↑ and for the even-integer MI(2) phase, n↑ = n↓ = 1 [232]. Here Nlattice is the number

of lattice sites.

At U↑↓ = 0.5, the MI-SF QPTs for both odd- and even-occupancy Mott lobes are second-

order transitions. However, at U↑↓ = 0.9, the MI-SF transitions are not entirely second order.

We find that the change in the order-of-transition, near the tip of the MI(2) lobe, occurs at

U↑↓ = 0.65. For U↑↓ = 0.9, as shown in Fig. 4.1(b), the tricritical points on µ-axis exist

at 0.99 and 1.67 [189, 233, 234]. For the regime between these two µ values, the MI(2)-SF

transition is of the first order and marked by green points in Fig. 4.1(b). To confirm the order

of these transitions, we have calculated the amplitude of the superfluid order parameter as a

function of J for a fixed µ across the critical hopping strength. The continuous variation of

|Φ| = ∑
p,q,α |ϕαp,q|/Nlattice with J represents a second-order phase transition as illustrated in

Fig. 4.1(c) for the MI(1)-SF phase transition with µ = 0.39 and U↑↓ = 0.9. On the other hand,

a discontinuity in |Φ| across MI(2)-SF phase boundary in Fig. 4.1(d) for µ = 1.32 and U↑↓ = 0.9

is indicative of the first-order phase transition.

The sample atomic occupancy distributions nαp,q in MI(1) and MI(2) phases confined in

Nlattice = 8 × 8 square lattice are shown in Figs. 4.1(e), 4.1(g) and Figs. 4.1(f), 4.1(h), respec-

tively. The atomic occupancy distributions in the SF phase are uniform and identical for both

components with real average occupancy.

4.1.1.2 Interspecies interaction U↑↓ > 1

For U↑↓ > 1, phase separation of the mixture of bosonic species occurs. We have shown the

phase diagram for U↑↓ = 1.5 in Fig. 4.2(a) which does not change with an increase in U↑↓. The

continuous nature of the amplitude of the average superfluid order parameter Φ as a function of

J for µ = 0.415 and 1.45 in Fig. 4.2(b) and Fig. 4.2(c), respectively, confirms the second-order

nature of the MI-SF phase transitions. In this regime, only one of the components, chosen

randomly, occupies the lattice site. The occupancy of the other component remains zero at that

4 Out-of-equilibrium dynamics of Bose-Bose mixtures in optical lattices
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site. This applies to both the MI and SF phases. However, for the latter, the occupancy of one

component is a real number and for the other is zero.

Figure 4.2: (a) The phase diagram of the TBHM in J − µ plane in the immiscible regime. (b)
The variation of |Φ| as a function of J with µ = 0.415, corresponding to the MI(1)-SF phase
transition and (c) with µ = 1.45 corresponding to the MI(2)-SF transition; these are plotted

for U↑↓ = 1.5. The sample n↑p,q distributions in (d) MI(1), (e) MI(2), and (f) SF phases for

U↑↓ = 1.5. Similarly, corresponding n↓p,q distributions are in (g), (h), and (i).

The sample atomic occupancy distributions for MI(1), MI(2), and SF phases are presented

in Figs. 4.2(d) and 4.2(g); Figs. 4.2(e) and 4.2(h); and Figs. 4.2(f) and 4.2(i), respectively.

4.2 Quench dynamics

4.2.1 Time-dependent Gutzwiller approach

To study the out-of-equilibrium dynamics, we quench the hopping parameter in time, J −→ J(t),

whereas all other model parameters remain steady in time. This results in the time dependence
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in the TBHM. As J is ramped up in the quench, the system is expected to undergo the MI-SF

phase transition. The time evolution of the single-site Gutzwiller wave function is governed by

the time-dependent Gutzwiller equation given as

iℏ∂t|ψ(t)⟩p,q = ĥp,q|ψ(t)⟩p,q. (4.2)

The single-site Hamiltonian in (4.2) can be written as

ĥp,q = ĥ1p,q + ĥ2p,q + ĥ3p,q + ĥ4p,q + ĥ5p,q, (4.3a)

= C1b̂↑p,q + C2b̂↓p,q + C3b̂†↑p,q + C4b̂†↓p,q + C5, (4.3b)

where

C1 = −
(
Jϕ↑∗p+1,q + J∗ϕ↑∗p−1,q + Jϕ↑∗p,q−1 + J∗ϕ↑∗p,q+1

)
, C∗

1 = C3, (4.4a)

C2 = −
(
Jϕ↓∗p+1,q + J∗ϕ↓∗p−1,q + Jϕ↓∗p,q−1 + J∗ϕ↓∗p,q+1

)
, C∗

2 = C4, (4.4b)

C5 = −ϕ↑∗p,qC∗
1 − ϕ↓∗p,qC∗

2 − ϕ↑p,qC1 − ϕ↓p,qC2 +
U↓↓
2
n̂p,q

(
n↓p,q − 1

)
(4.4c)

+
U↑↑
2
n̂↑p,q

(
n̂↑p,q − 1

)
− µ↑p,qn

↑
p,q − µ2p,qn

↓
p,q + U↑↓n̂

↑
p,qn̂

↓
p,q.

The time-dependent Gutzwiller equation can be cast into a set of coupled first-order differential

equations for c
(p,q)
n↑,n↓(t) using the single-site Lagrangian

Lp,q = ip,q⟨ψ(t)|∂t|ψ(t)⟩p,q − p,q⟨ψ(t)|ĥp,q|ψ(t)⟩p,q. (4.5)

The first and second terms on the right-hand side of Eq. (4.5), respectively, are

ip,q⟨ψ(t)|∂t|ψ(t)⟩p,q = ic∗(p,q)m↑m↓
∂tc

(p,q)
n↑n↓

⟨m↑,m↓|n↑, n↓⟩ = ic∗(p,q)n↑n↓
∂tc

(p,q)
n↑n↓

(4.6a)

p,q⟨ψ(t)|ĥp,q|ψ(t)⟩p,q = c∗(p,q)m↑,m↓
c(p,q)n↑,n↓

[C1√n↑δm↑,n↑−1δm↓,n↓ + C2√n↓δm↑,n↑δm↓,n↓−1

+ C∗
1

√
n↑ + 1δm↑,n↑+1δm↓,n↓ + C∗

2

√
n↓ + 1δm↑,n↑δm↓,n↓+1

+ C5δm↑,n↑δm↓,n↓ ], (4.6b)
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where explicit time dependence of c
(p,q)
n↑n↓ has been suppressed to compactify the notation. Using

the Lagrange’s equation of motion

∂t

 ∂L

∂
(
∂tc

(p,q)
n↑,n↓

)
 =

[
∂L

∂c
(p,q)
n↑,n↓

]
, (4.7)

the following set of first-order coupled differential equations for c
(p,q)
n↑,n↓(t) is then obtained:

i∂tc
(p,q)
n↑,n↓

=
[
C3
√
n1c

(p,q)
n↑−1,n↓

+ C4√n↓c(p,q)n↑,n↓−1 + C1
√
n↑ + 1c

∗(p,q)
n↑+1,n↓

+C2
√
n↓ + 1c

∗(p,q)
n↑,n↓+1 + C∗

5c
∗(p,q)
n↑,n↓

]
,

(4.8)

where coupling is through C1, C2, . . . , C5. To solve these coupled equations, we use the fourth-

order Runge-Kutta method to compute the wave function of the system at a specific time

instant t, where the requisite Gutzwiller coefficients at the start of quench are obtained from the

static Gutzwiller approach. However, to derive the QPT, quantum fluctuations are needed. To

generate the effects of quantum fluctuations, we add an initial random noise to the equilibrium

coefficients c
(p,q)
n↑,n↓ of the state at the start of the quench. We first generate univariate random

phases within the range of [0, 2π] and add them to the (phases of) non-zero coefficients. Next, we

add density fluctuations by applying noise to the amplitudes of the coefficients. This is achieved

by generating univariate random numbers within the range of [0, δ], where δ is set to be 10−4

in this chapter. To ensure reliable results, we consider 10 initial states that are randomized

using the methods described previously. Each of these initial states is then evolved in time by

performing the appropriate parameter quench. We further calculate the physical observables

of interest averaged over all these 10 samples. Additionally, for each sample, the observable is

averaged across the entire lattice.

4.2.2 Kibble-Zurek mechanism

In this thesis, we consider a linear quench protocol given as

J(t) = Ji +
(Jc − Ji)

τQ
(t+ τQ). t ∈ [−τQ, t], (4.9)
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which involves a quench time τQ to determine the quench rate. The critical value of J , denoted

by Jc, is crossed at t = 0. It is assumed that the quench is initiated at time t = −τQ such that

J(−τQ) = Ji. The system’s relaxation time determines the fate of the evolving state.

The relaxation time is short when the quenched parameter is far from the critical point.

This results in an adiabatic evolution where the evolving state is close to the actual ground

state. However, as the critical point is approached, the divergence of relaxation time breaks the

adiabaticity, leading to a frozen state. This state does not change for some time near the critical

point. The time interval during which the state remains frozen is termed the impulse regime. It

starts evolving after a time instant t̂ that is delayed time or transition time after which evolution

is again adiabatic. Thus, the two adiabatic regimes are separated by a non-adiabatic regime

near the critical point. The transition between these regimes is a significant aspect of the KZM.

The non-adiabatic evolution of the system during the quench inevitably leads to excitations and

defects in the evolved state.

In the Kibble-Zurek hypothesis, for a second-order phase transition, the scaling relation

between the quench time τQ and the transition time t̂ is defined by t̂ ∝ τ
νz/(1+νz)
Q , where ν is the

critical exponent of the equilibrium correlation length and z is the dynamical critical exponent.

Additionally, the scaling relation between the density of defects (Nd) and τQ in two dimensions

is given by Nd(t̂) ∝ τ
−2ν/(1+νz)
Q . These relations predict the critical behavior of the system near

the phase transition and the formation of topological defects during the non-adiabatic evolution

of the system. In our case, i.e. during the transition from the MI to SF phase, the global U(1)

symmetry spontaneously breaks and gives rise to the vortices. The density of vortices in an

optical lattice system can be computed as [216–218,221]

Nα
v =

∑
p,q

|Ωα
p,q|, (4.10)

with

Ωα
p,q =

1

4

[
sin(θαp+1,q − θαp,q) + sin(θαp+1,q+1 − θαp+1,q)

− sin(θαp+1,q+1 − θαp,q+1)− sin(θαp,q+1 − θαp,q)
]
. (4.11)

Here θαp,q is the phase of the SF order parameter ϕαp,q. Another quantity that serves as an analogue
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to the defect density is the excess energy above the ground state. This quantity is termed residual

energy [236–238]. This residual energy Eres is given by Eres(t̂) = Efin(t̂)−Egs(t̂), where Efin(t̂) =

⟨Ψ(t̂)|Ĥ(t̂)|Ψ(t̂)⟩ denotes the energy of the system at time t, while Egs(t̂) = ⟨Ψgs|Ĥ(t̂)|Ψgs⟩ is

the ground-state energy for Hamiltonian at time t̂. Slower is the evolution, smaller is the

residual energy. The scaling relation for the residual energy is Eres(t̂) ∝ −τ2ν/(1+νz)
Q [236–238].

The scaling relations are valid at t̂, but it is very difficult to estimate t̂ from the numerical

simulations. Prior works are based on determining t̂ based on Φ [216–220]. The growth time of

the superfluid order parameter depends on the amount of random fluctuations as pointed out

in Ref. [239]. We choose the protocol of Ref. [221] to determine t̂. We calculate the overlap

O(t) = |⟨Ψ(0)|Ψ(t)⟩|. Since the dynamics are frozen in the impulse regime, O(t) would be equal

to unity until the state is in the impulse regime, as soon as it deviates from unity, it indicates

that the adiabatic regime has begun and that time instant is t̂. The observables Φ, Nα
v , Eres, and

O(t) relevant to the quench dynamics are obtained by averaging over 10 initial states perturbed

by different random noise distributions.

4.3 Results and discussion

4.3.1 U↑↓ = 0.5

4.3.1.1 MI(2) to SF phase transition

Considering µ = 1, we start a quench of the hopping parameter from Ji = 0.02 that lies deep

within the MI lobe. We end the quench at Jf = 0.064 within the SF phase. We confirm the

slowing down of transition from the growth of the superfluid order parameter that starts after

the critical value Jc is passed. We have shown one such dynamics for τQ = 100 in Fig. 4.3. |Φ|
is close to zero until J passes the critical Jc at t = 0. After t = t̂ = 31, |Φ| shows a sudden

increase followed by rapid oscillations. Quench is stopped at t = τQ = 100. At a longer time,

the |Φ| stabilizes after small oscillatory transients. For illustration, the stable |Φ| is marked at

t = 160 in Fig. 4.3. Due to the random noise added to the initial Gutzwiller coefficients, there

are many vortices at the beginning of the quench. During the MI to SF phase transition, when

the system enters the SF phase, one expects a coherent phase throughout the system. This is

due to the breaking of U(1) global gauge symmetry. However, the quench dynamics leads to
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Figure 4.3: The time evolution of |Φ| for the MI(2)-SF transition with U↑↓ = 0.5, µ = 1, and
τQ = 100. Blue points indicate temporal markers referred to in the main text. In the inset, we
show the enlarged view of the dynamical evolution at shorter times from t = 20 to t = 200. |Φ|
is nearly zero for t < t̂ = 31.

the formation of domains in the system which indicates the existence of local choices of broken

symmetry in the SF phase. This results in a domain structure as predicted by the KZM. The

phase singularities at the domain boundaries correspond to the vortices, as confirmed by the

phase variations. As the system enters into the deep SF phase, the size of domains increases

through domain merging. This results in a decrease in the number of topological defects due to

pair annihilation, and the system attains phase coherence after long-time evolution.

To illustrate the domain formation and merging in the quench dynamics starting with a

single randomized initial state at t = −τQ = −100, we have presented the snapshots of |ϕαp,q(t)|
and the respective phases at various times. At the beginning of the quench the |ϕ↑p,q| and |ϕ↓p,q|
have random lattice-site distributions with peak values nearly zero as shown in Figs. 4.4(a) and

4.4(e), respectively. The phases of the order parameters for both components are also random,

as shown in Figs. 4.4(i) and 4.4(m), respectively. As time evolves, at t = t̂ = 31, |ϕ↑p,q| and |ϕ↓p,q|
acquire relatively large peak values accompanied by domain formation. This is presented in

Figs. 4.4(b) and 4.4(f); the corresponding phases are illustrated in Figs. 4.4(j) and 4.4(n). The

hopping parameter quenching is stopped at t = 100 as stated earlier. At t = 160, |ϕ↑p,q| and |ϕ↓p,q|
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Figure 4.4: |ϕ↑p,q| at (a) t = −100, (b) t = 31, (c) t = 160, and (d) t = 2000 for the MI(2)-SF

phase transitions corresponding to the time evolution in Fig. 4.3. Similarly, |ϕ↓p,q| at the same

instants are in panels (e)-(h). Phases corresponding to |ϕ↑p,q| in panels (a)-(d) are shown in

panels (i)-(l), and the same for |ϕ↓p,q| in panels (e)-(h) are in panels (m)-(p).

acquire almost uniform distributions as shown in Figs. 4.4(c) and 4.4(g), and their respective

phases 4.4(k) and 4.4(o) still have phase singularities. After a very long time of evolution at

t = 2000, the system relaxes into an almost uniform state where the component densities and

phases are quasi-uniform as in Figs. 4.4(d) and 4.4(h); and Figs 4.4(l) and 4.4(p), respectively.

To study the scaling laws, we consider a range of quench times from τQ = 30 to τQ = 400.

We measured t̂ corresponding to each τQ following the overlap protocol. t̂ increases with an

increase in τQ as is evident in Fig. 4.5(a). On the other hand, the residual energy Eres decreases

with τQ as reported in Fig. 4.5(b) as J(t̂) approaches the critical tunneling strength Jc with

an increasing τQ, [cf. Table-4.1]. Both observables follow power-law scaling with the critical

exponents ν = 0.45 and z = 2.13. It is pertinent to note that the critical values obtained in our
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scaling analysis are in very close agreement with the values predicted by the mean-field theory

(ν = 0.5 and z = 2).

Figure 4.5: For the MI(2)-SF transition with U↑↓ = 0.5: (a) t̂ as a function of τQ on a log-log
scale with the critical exponent of 0.49 ± 0.01 and (b) Eres as a function of τQ on the log-log
scale with −0.46 ± 0.02 as the critical exponent. (c) and (d) are, similarly, the t̂ and Eres as
functions of τQ on the log-log scale for MI(1)-SF transition with U↑↓ = 0.5.

Table 4.1: The J(t̂) for different τQs during quench dynamics from MI(2) to SF phase with
µ = 1 and U↑↓ = 0.5. The critical value of hopping strength Jc is 0.042.

τQ 30 50 80 100 150 200 300 400

J(t̂) 0.055 0.052 0.050 0.049 0.048 0.047 0.046 0.045

4.3.1.2 MI(1) to SF phase transition

The key difference between MI(2) and MI(1) of the TBHM is the density inhomogeneity as

shown in the equilibrium lattice-site distributions [see Figs. 4.1(e)-(h)]. This results in a number

of differences in the quench dynamics. One is that the impulse regime size increases compared

to MI(2)-SF transition for each τQ. This is supported by the fact that, for MI(2)-SF transition,

4 Out-of-equilibrium dynamics of Bose-Bose mixtures in optical lattices



100 4.3. Results and discussion

J(t̂) always lies between Jc to 2Jc−Ji, but here it is not the case. Fixing µ at 0.25, we quench J

from Ji = 0.01 to a sufficiently high hopping strength Jf = 0.0604, so that J(t̂) lies in between

Ji and Jf . The critical value Jc of MI(1)-SF transition is 0.0268. For smaller τQ up to about

τQ = 150, J(t̂) is greater than 2Jc − Ji = 0.0436. Even for the largest value of τQ = 400

considered in this chapter, J(t̂) is 0.041 as reported in Table 4.2.

Table 4.2: The J(t̂) for different τQ’s during the quench dynamics from MI(1) to SF phase with
µ = 0.25 and U↑↓ = 0.5. The critical hopping strength is Jc = 0.0268.

τQ 30 50 80 100 150 200 300 400

J(t̂) 0.054 0.05 0.047 0.046 0.044 0.043 0.042 0.041

Figure 4.6: |Φ| as a function of time t for the MI(1)-SF transitions at U↑↓ = 0.5, µ = 0.25, and
τQ = 100. Blue points are the temporal markers referred to in the main text. |Φ| remains nearly
zero for t < t̂ = 116. The hopping quench is performed until t = 130. The exponential increase
in |Φ| followed by oscillations are shown in the inset with t varying from t = 0 to t = 200.

Another difference is that due to the absence of particles of at least one species at each lattice

site, vortex density does not give a fair idea about the actual number of vortices. Due to the

increase in transition time compared to the MI(2)-SF case, the exponent of transition time with

τQ is higher, whereas the exponent of residual energy is lower. However, transition time and
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residual energy still follow power-law scaling with τQ as shown in Figs. 4.5(c) and 4.5(d).

Figure 4.7: |ϕ↑p,q| at (a) t = −100, (b) t = 116, (c) t = 155, and (d) t = 2000 for the MI(1)-SF

phase transitions corresponding to the time evolution in Fig. 4.6. Similarly, |ϕ↓p,q| at the same

instants are in panels (e)-(h). Phases corresponding to |ϕ↑p,q| in panels (a)-(d) are shown in

panels (i)-(l), and the same for |ϕ↓p,q| in panels (e)-(h) are in panels (m)-(p).

We have shown the evolution of the superfluid order parameter for τQ = 100 in Fig. 4.6.

Quench is stopped at t = 130 in this case. |Φ| is close to zero till t = t̂ = 116, after which it

increases rapidly followed by oscillations persisting over long periods during which it increases

gradually. This is in stark contrast to the MI(2)-SF transition, where the order parameter

stabilizes over a longer time. To see how differently the state relaxes after the quench, we

provide snapshots of the amplitude and corresponding phases of ϕαp,q at various time instants

in Fig. 4.7. Randomized |ϕ↑p,q|, |ϕ↓p,q| and the corresponding phases at the start of the quench

at t = −100 are shown in Figs. 4.7(a), 4.7(e), 4.7(i), and 4.7(m), respectively. Next at
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t = t̂ = 116, these quantities are shown in the second column of Fig. 4.7, where a few superfluid

domains have started to appear. The number of superfluid domains has increased, and phases

of the order parameters also exhibit domain formation in the third column at t = 155; this is

when oscillations in |Φ| are triggered. Even after a long period of evolution at t = 2000, the ϕαp,q

do not achieve homogeneous distributions, unlike for MI(2)-SF transition.

4.3.2 U↑↓ = 0.9

We further discuss quench dynamics at higher interspecies interaction strength close to the

immiscibility criterion but still in the miscible domain. The phase transition for µ = 1.33 is first

order in nature as compared to the MI(2)-SF and MI(1)-SF for U↑↓ = 0.5. Although some traits

of second-order MI(2)-SF transition, discussed in Sec. 4.3.1.1 like slowing down of the transition,

oscillations of |Φ| about a fixed value, order parameter relaxing into an almost complete uniform

state after free evolution, and power law scaling of t̂ and Eres with τQ are present, the striking

difference appears in the exponents in Fig. 4.8.

Figure 4.8: For the first-order MI(2)-SF phase transition at U↑↓ = 0.9 and µ = 1.33: (a) t̂ as
a function of τQ with the critical exponent of 0.36 ± 0.02 and (b) Eres as a function of τQ on
log-log scale with −0.35± 0.02 as the critical exponent.

The quench dynamics and the exponents in the scaling laws of the second-order MI(1)-SF

transition for U↑↓ = 0.9 remain almost similar to the MI(1)-SF transition for U↑↓ = 0.5 as

discussed in Sec. 4.3.1.2 and are not shown here for brevity.
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4.3.3 U↑↓ = 1.5

Finally, we discuss quench dynamics for the phase-separated regime, where one of the two

components occupies the lattice site. Starting from µ = 1.45 and J = 0 which corresponds to

Figure 4.9: The evolution of |Φ| with t for the MI(2)-SF transitions at U↑↓ = 1.5, µ = 1.45, and
τQ = 100. Blue points indicate the temporal markers referred to in the main text. |Φ| is close
to zero until t̂ = 67. The exponential increase in |Φ| followed by oscillations are shown in the
inset with t varying from t = 0 to t = 150.

the MI(2) lobe, we perform a quench that terminates at J = 0.0516, lying well within the SF

phase. The transition is indicated by the growth of the superfluid order parameter and occurs

after crossing the critical Jc = 0.0258, as demonstrated in Fig. 4.9 for τQ = 100. |Φ| remains

close to zero until t = t̂ = 67, followed by a rapid increase period. The quench is halted at

t = τQ = 100, but we freely evolve the system up to t = 2000 to confirm the ground state of

the system. Figs. 4.10(a)-(p) provide snapshots of |ϕαp,q| and the corresponding phase of ϕαp,q

at different times. At t = t̂ = 67, domain formation begins as indicated in Figs. 4.10(b) and

4.10(f); the respective phases are shown in Figs. 4.10(j) and 4.10(n). At t = 130, both |ϕ↑p,q|
and |ϕ↓p,q| have acquired many domains, as indicated in Figs. 4.10(c) and 4.10(g), while the

respective phases in Figs. 4.10(k) and 4.10(o) start exhibiting domain merging. The component

4 Out-of-equilibrium dynamics of Bose-Bose mixtures in optical lattices
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Figure 4.10: |ϕ↑p,q| at (a) t = −100, (b) t = 67, (c) t = 130, and (d) t = 2000 for MI(2)-SF phase

transitions corresponding to the time evolution in Fig. 4.9. Similarly, |ϕ↓p,q| at the same instants

are in panels (e)-(h). Phases corresponding to |ϕ↑p,q| in panels (a)-(d) are shown in panels (i)-(l),

and the same for |ϕ↓p,q| in panels (e)-(h) are in panels (m)-(p).

order parameters at t = 2000 show no discernible difference from those at t = 130, as shown in

Figs. 4.10(d) and 4.10(h).

Similar to the dynamics at the other two U↑↓ values discussed previously, t̂ and Eres follow

power-law scaling as shown in Figs. 4.11(a)-(b) and with the critical exponents similar to those

for the MI(1)-SF transition in the miscible domain. This is evident from Figs. 4.5(c)-(d) and

Figs. 4.11(a)-(b). Since the system is in the immiscible phase, the nature of MI(1) and MI(2) is

similar. This was concluded while studying the static properties of these systems. The quench

dynamics of MI(1)-SF for U↑↓ = 1.5 is similar to that of MI(2)-SF transition and therefore not

presented here.
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Figure 4.11: For MI(2)-SF phase transition at U↑↓ = 1.5: (a) t̂ as a function of τQ with the
critical exponent of 0.76±0.01 and (b) Eres as a function of τQ on log-log scale with −0.29±0.01
as the critical exponents. The critical exponents are similar to those displayed in Figs. 4.5(c)-(d).

4.4 Conclusions

We have studied the out-of-equilibrium dynamics of the TBHM when the tunnelling strength

J is quenched across the MI-SF criticality. The equilibrium phase diagram and related phase

transitions depend on interspecies interaction strength. We observed that the average filling

of the MI lobes and the order of the phase transitions lead to different dynamics from what

is observed in a single-component BHM. The MI-SF phase transitions, in the miscible regime,

from the Mott lobes with an average occupancy of 1 or 2 are of second order for U↑↓ less than

a critical strength above which the transitions at and around the tip of the MI(2) lobe are first

order. The critical exponents of the second-order phase transition from homogeneous MI to

superfluid phase, calculated using scaling analysis, are in good agreement with the mean-field

predictions. Due to the inhomogeneity of the atomic occupancy in MI(1), the impulse regime is

extended across MI(1)-SF phase transition at U↑↓ = 0.5. In the immiscible regime, the power-

law scaling of the exponents is maintained with exponents similar to those for MI(1)-SF phase

transition in the miscible regime. Although the KZM is not suitable for the first-order quantum

phase transition, defining scaling relations is possible. However, the nature of the dynamical

evolution is very different. We hope the phenomena discussed in this chapter can be realized

in cold-atom experiments on strongly correlated bosonic mixtures in optical lattices. Our study

serves as a route to understand the dynamics of QPTs in SO-coupled condensates in optical

lattices. The exploration in this direction may unveil the role of coupling in quantum mixtures

4 Out-of-equilibrium dynamics of Bose-Bose mixtures in optical lattices
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and the applicability of the KZM to two-component Bose-Hubbard models. The results reported

in this chapter are discussed in Ref. [240].



Chapter 5

Summary and future outlook

5.1 Thesis summary

In summary, we have investigated the self-trapped, stable solitons, and their crystalline structure

in a quasi-2D spin-2 BEC under the influence of SOC. By employing a combination of analyt-

ical insights and numerical solutions of the CGPEs, our research has shed light on the certain

aspects of bright solitons. The minimization of interaction and SOC energies demonstrated the

permissible winding number combinations for the emergence of axisymmetric solitons. In the

absence of interactions, the order parameter constructed from the eigenfunctions of the single-

particle Hamiltonian corresponds to various periodic density profiles, including multiring, stripe,

triangular-, and square-lattice patterns. In the presence of attractive interactions, the study has

revealed the formation of different bright solitons with spatially periodic density modulations.

The ground-state phase diagram of the system depends on the strength of SOC. For a weak SOC

strength, ground state is a radially symmetric multiring soliton for certain interaction parame-

ters, while sufficiently strong ferromagnetic interactions lead to circularly asymmetric solitons.

At intermediate SOC strengths, a triangular-lattice soliton featuring hexagonal crystallization in

both component and total densities can also emerge. Further increase in the SOC strength gives

rise to multiple quasidegenerate solitons. We have also introduced a Galilean-transformed model

to study the moving solitons and their collision dynamics. Depending on the velocities involved,

collisions between two solitons can be either inelastic, resulting in the formation of a bound

entity, or quasi-elastic, where the solitons pass through each other. We have also considered two
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special cases of nonmagnetic spin-1 and spin-2 condensates by considering the spin-dependent

interactions as zero. Our studies on the nonmagnetic systems suggest that the spatially periodic

supersolid-like states observed in spinor BECs are a consequence of SOC rather than being solely

driven by spinor interactions.

Next, we have explored the parameter space for the various finite-momentum superfluids

of an SO-coupled two-component spinor BEC confined by a 2D optical lattice. We employed

spin-dependent momentum distributions to examine the diverse superfluid phases characterized

by different atomic densities and phase ordering. Notably, when U↑↓ < U and γ/J ⪆ 1, the

favored superfluid phase is the PT phase. Conversely, when γ/J ⪅ 1, the system transitions to

the ST superfluid phase. Commencing with the PT phase in a numerical simulation, we have

demonstrated that increasing the tunnelling parameter induces a transition from the PT to the

ST phase. We have shown that the inclusion of the quantum fluctuations via the CGA can lead

to the STden phase instead of the ST phase obtained with the SGMF theory. In cases where

U↑↓ > U , the ST superfluid phase is absent, and the study reveals a transition from the PT

phase to the zFM phase as J is varied. We also studied the influence of thermal fluctuations

on the superfluid behavior. These fluctuations diminish the PT superfluidity, while favoring the

insulating and normal states.

Finally, we have explored the dynamics of the TBHM, focusing on the MI-SF transitions.

The equilibrium phase diagram and the associated phase transitions in the TBHM are strongly

influenced by U↑↓. In the miscible regime, where MI lobes have an average occupancy of 1 or

2, the MI-SF phase transitions exhibit second-order behavior when the interspecies interaction

strength U↑↓ is below a critical threshold. Beyond this threshold, transitions at and around the

tip of the MI(2) lobe become first-order. Unlike the dynamics observed in the single-component

BHM, the average filling of the MI regions and the order of phase transitions introduce differ-

ent features in the TBHM dynamics. The calculated critical exponents for the second-order

transition from a homogeneous MI to the superfluid phase, based on the scaling analysis, align

closely with the mean-field predictions. Due to the non-uniform atomic occupancy in the MI(1)

lobe, the impulse regime extends across the MI(1)-SF phase transition when U↑↓ = 0.5. In the

immiscible regime, the power-law scaling of the exponents is similar to those observed for the

MI(1)-SF phase transition in the miscible regime. Although the KZM may not be directly ap-

plicable to the first-order quantum phase transitions, defining scaling relations remains feasible.
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However, the dynamics under first-order transitions differ significantly from the second-order

transitions.

5.2 Future directions

The studies on the SO-coupled spinor condensates can be extended in various directions. One

immediate extension is to employ the Bogoliubov theory and calculate the collective excitation

spectrum by solving the Bogoliubov-de Gennes equations to study the stability of various self-

trapped structures discussed in Chapter 2. The low-lying modes will give a good understanding

of the stability of these q2D solitons, besides providing valuable information about the supersolid

character of these structures. Experiments commonly study the low-energy Goldstone mode as

well as its oscillations etc., to classify the system as a supersolid. Attractive BECs can host

two types of macroscopic self-bound states of different nature: bright solitons and quantum

liquid droplets. Bright solitons and quantum droplets are a priori distinct states which can exist

in different parameter space within the same system with the possibility of crossover between

them [241]. Since, we have studied bright solitons in this thesis, it would be interesting to

examine an SO-coupled system that can host both bright solitons as well as quantum droplets.

An SO-coupled pseudospin-1/2 system with beyond mean-field corrections could be a potential

candidate for the same [241].

In Chapter 3, we investigated the phase diagrams of a SO-coupled pseudospinor BEC in a 2D

optical lattice. It would be interesting to study these phase diagrams using cluster Gutzwiller

mean-field methods to account for the fluctuations. These studies can also be extended to other

lattice geometries like triangular and hexagonal optical lattices. Another possible direction

could be to study an SO-coupled spin-1 system in an optical lattice and study various possible

superfluids and the underlying quantum phase transitions. Our studies on the quantum quench

dynamics of the MI-SF transition as discussed in Chapter 4 can be extended to study the

quench dynamics across the phases that occur in the presence of SOC. Moreover, one can study,

in general, the dynamics of first-order quantum phase transitions in view of the Kibble-Zurek-

like mechanism. One can also use beyond mean-field methods, such as the projection operator

method [242], to study the quench dynamics and related scaling relations. Cluster Guzwiller

mean-field approach can also be used which enhances the inter-site atomic correlations and may

5 Summary and future outlook



110 5.2. Future directions

further advance the critical exponents towards the equilibrium values [243].



Appendix A

Coupled Gross-Pitaevskii equations

for an SO-coupled spin-1 BEC

The single-particle Hamiltonian of a spin-1 BEC in the presence of anisotropic [52,244] SOC is

given by [80,150]

H0 =
p2x + p2y + p2z

2m
+ γxpxfx + γypyfy + γzpzfz, (A.1)

where px = −iℏ∂/∂x, py = −iℏ∂/∂y, and pz = −iℏ∂/∂z correspond to the momentum operators

along x, y, and z directions, respectively, and γx, γy, and γz are the strengths of SOC. Also, m

is the mass of each atom and fx, fy, and fz are the irreducible matrix representations of the

x, y, and z components of the spin-1 angular momentum operators, respectively, as given in

Eqs. (1.17a)-(1.17c) for f = 1. In a standard isotropic SOC, γx = γy = γz = ℏkr/m is realized

by using two counterpropagating Raman lasers of wavelength λr aligned at an angle βr and kr

is given by kr = (2π sinβr/2)/λr.

For a weakly interacting SO-coupled spin-1 BEC, the properties of the system are well

described under mean-field approximation by the following coupled Gross–Pitaevskii equations
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(CGPEs) [40,80,245,246]

iℏ
∂ψ±1

∂t
= [H+ c1(ρ0 ± ρ−)]ψ±1 + c1ψ

∗
∓1ψ

2
0

− iℏ√
2

(
γx
∂ψ0

∂x
∓ iγy

∂ψ0

∂y
±
√
2γz

∂ψ±1

∂z

)
, (A.2a)

iℏ
∂ψ0

∂t
= (H+ c1ρ+)ψ0 + 2c1ψ+1ψ−1ψ

∗
0

− iℏ√
2

[
γx

(
∂ψ+1

∂x
+
∂ψ−1

∂x

)
+ iγy

(
∂ψ+1

∂y
− ∂ψ−1

∂y

)]
, (A.2b)

where

H =

(
− ℏ2

2m
∇2 + V (r) + c0ρ

)
, r = (x, y, z), (A.3)

and Ψ = (ψ+1(r, t), ψ0(r, t), ψ−1(r, t))
T with ψ+1, ψ0, and ψ−1 as the component wave functions,

and V (r) = m(ω2
xx

2 + ω2
yy

2 + ω2
zz

2)/2 is a 3D harmonic trap. Also,

c0 =
4πℏ2(a0 + 2a2)

3m
, c1 =

4πℏ2(a2 − a0)

3m
, ∇2 =

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
, (A.4)

where a0 and a2 correspond to the s-wave scattering lengths in total spin 0 and 2 channels,

respectively; ωx, ωy, and ωz are the confining trap frequencies along x, y, and z directions,

respectively; ρ± = ρ+1 ± ρ−1 where ρj = |ψj |2 with j = +1, 0,−1 are the component densities

and ρ =
∑1

j=−1 |ψj |2 is the total density.

A.1 Important conserved quantities of a spin-1 BEC

Three important conserved quantities of a spin-1 BEC are the total number of particles N ,

longitudinal magnetizationM (which is conserved on the time scale of spin-1 BEC experiments),

and total energy E. These are given as

N =

∫ ∞

−∞
dr

1∑
j=−1

|ψj(r)|2, (A.5a)

M =
1∑

j=−1

∫
j|ψj(r, t)|2dr, (A.5b)
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E =

∫
dr

[
1∑

j=−1

ψ∗
j

(
−ℏ2∇2

2m
+ V

)
ψj +

c0
2
ρ2 +

c1
2
(ρ+1 + ρ0 − ρ−1)ρ+1 +

c1
2
(ρ0 + ρ−1 − ρ+1)ρ−1

+c1(ψ
∗
−1ψ0

2ψ∗
+1 + ψ−1ψ0

2∗ψ+1) +
c1
2
(ρ+1 + ρ−1)ρ0 −

iℏγx√
2
ψ0

∗
(
∂ψ+1

∂x
+
∂ψ−1

∂x

)
+

ℏ√
2
ψ0

∗
(
γy
∂ψ+1

∂y
− γx

∂ψ−1

∂x

)
− iℏγx√

2
(ψ+1

∗ + ψ−1
∗)
∂ψ0

∂x
− ℏγy√

2
(ψ+1

∗ − ψ−1
∗)
∂ψ0

∂y

−iℏγz
(
ψ+1

∗∂ψ+1

∂z
− ψ−1

∗∂ψ−1

∂z

)]
. (A.6)

A.2 Chemical potential

For stationary states, the wave functions have a trivial time dependence ψj(r, t) = e−iµjtψj(r).

By plugging this into Eqs. (A.2a)-(A.2b), the time-independent CGPEs are

µ±1ψ±1 = [H+ c1(ρ0 ± ρ−)]ψ±1 + c1ψ
∗
∓1ψ

2
0

− iℏ√
2

(
γx
∂ψ0

∂x
∓ iγy

∂ψ0

∂y
±
√
2γz

∂ψ±1

∂z

)
, (A.7a)

µ0ψ0 = (H+ c1ρ+)ψ0 + 2c1ψ+1ψ−1ψ
∗
0

− iℏ√
2

[
γx

(
∂ψ+1

∂x
+
∂ψ−1

∂x

)
+ iγy

(
∂ψ+1

∂y
− ∂ψ−1

∂y

)]
, (A.7b)

where µ+1, µ0, and µ−1 are the chemical potentials of the three components. These equations

can be used to define the chemical potential functionals analogous to the energy functional.

A.3 Dimensionless formulation of three-dimensional CGPEs

Before solving CGPEs, they are usually written in dimensionless form, wherein one expresses the

physical quantities like length, time, energy, etc., in terms of natural scales within the system.

This allows one to eliminate cumbersome constants appearing in the CGPEs, which, besides

being aesthetically appealing, allows for computationally less intensive floating point operation

while numerically solving the equations. Additionally, dimensionless formulation can reveal

the inherent equivalence of seemingly disparate systems, e.g. two harmonically trapped scalar

BECs with different N, a (s-wave scattering length), and aosc (oscillator length) are equivalent

if Na/aosc for them are equal. Eqs. (A.2a)-(A.2b) can be transformed into dimensionless form

A Coupled Gross-Pitaevskii equations for an SO-coupled spin-1 BEC
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by introducing the following dimensionless variables

t̃ = ωxt/2, r̃ =
r

aosc
, ϕj(r̃, t̃) =

aosc
3/2

√
N

ψj(r̃, t̃), (A.8)

where aosc =
√

ℏ/(mωx). This basically fixes the units of length, time, density, and energy

as aosc, (ωx/2)
−1, a−3

osc, and ℏωx, respectively. After substitution of these new parameters and

removing all tildes for notational simplicity, we get the following three-dimensional (3D) dimen-

sionless CGPEs [40,108]:

i
∂ϕ±1

∂t
= [H+ 2c1(ρ0 ± ρ−)]ϕ±1 + 2c1ϕ

∗
∓1ϕ

2
0

−
√
2i

(
γx
∂ϕ0
∂x

∓ iγy
∂ϕ0
∂y

±
√
2γz

∂ϕ±1

∂z

)
, (A.9a)

iℏ
∂ϕ0
∂t

= (H+ 2c1ρ+)ϕ0 + 4c1ϕ+1ϕ−1ϕ
∗
0

−
√
2i

[
γx

(
∂ϕ+1

∂x
+
∂ϕ−1

∂x

)
+ iγy

(
∂ϕ+1

∂y
− ∂ϕ−1

∂y

)]
, (A.9b)

where

H = −∇2 + 2V (r) + 2c0ρ, V (x) = (αx
2x2 + αy

2y2 + αz
2z2)/2, (A.10)

αη = ωη/ωx with η = x, y, z and new c0, c1, and γ are given by

c0 =
4πN(a0 + 2a2)

3aosc
, c1 =

4πN(a2 − a0)

3aosc
, γx = γy = γz = kraosc. (A.11)

Also, ρj = |ϕj |2 with j = +1, 0,−1 are the component densities, ρ =
∑1

j=−1 |ϕj |2 is the total

density, and now it is normalized to unity, i.e.
∫
ρdr = 1.

A.4 Dimensionless CGPEs for a q2D spin-1 BEC

If the trapping frequencies along any direction, let us say z, is much larger than the geometric

mean of frequencies along the other two directions, i.e. x and y, then αx = 1, αy ≈ 1 and

αz ≫ αx [40]. In this case, the dimensionless generalized CGPEs in 3D can be approximated by
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two-dimensional (2D) equations by choosing [247]

ϕj(x, y, z, t) = ϕj(x, y, t)ϕho(z), ϕho(z) = (αz/π)
1/4 exp

(
−αzz

2/2
)
. (A.12)

Generalized dimensionless 2D CGPEs are given by [40,107]

i
∂ϕ±1

∂t
= [H+ 2c1(ρ0 ± ρ−)]ϕ±1 + 2c1ϕ

∗
∓1ϕ

2
0 −

√
2i
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γx
∂ϕ0
∂x

∓ iγy
∂ϕ0
∂y

)
, (A.13a)

i
∂ϕ0
∂t

= (H+ 2c1ρ+)ϕ0 + 4c1ϕ+1ϕ−1ϕ
∗
0

−
√
2i

[
γx

(
∂ϕ+1
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+
∂ϕ−1

∂x

)
+ iγy

(
∂ϕ+1

∂y
− ∂ϕ−1

∂y

)]
, (A.13b)

where

H = −∇2
xy + 2V (r) + 2c0ρ, ∇2

xy =
∂2

∂x2
+

∂2

∂y2
, r = (x, y). (A.14)

The trapping potential V (r) and interaction parameters c0 and c1 are now defined as

V (r) =
1

2
(αx

2x2 + αy
2y2), c0 =

√
αz

2π

4πN(a0 + 2a2)

3aosc
, c1 =

√
αz

2π

4πN(a2 − a0)

3aosc
. (A.15)

A.5 Dimensionless CGPEs for a q1D spin-1 BEC

If the trap is much stronger along two directions, say y and z compared to the x direction, then

αx = 1, αy ≫ αx, αz ≫ αx, and by assuming [247]

ϕj(x, y, z, t) = ϕj(x, t)ϕho(y, z), ϕho(y, z) = (
√
αyαz/π)

1/2 exp[−(αyy
2 + αzz

2)/2], (A.16)

Eqs. (A.9a)-(A.9b) can be reduced into one-dimensional (1D) equations [5, 40]

i
∂ϕ±1

∂t
= Hϕ±1 + 2c1(ρ0 ± ρ−)ϕ±1 + 2c1ϕ

∗
∓1ϕ

2
0 −

√
2iγx

(
∂ϕ0
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)
, (A.17a)

i
∂ϕ0
∂t

= Hϕ0 + 2c1ρ+ϕ0 + 4c1ϕ1ϕ−1ϕ
∗
0 −

√
2iγx

(
∂ϕ1
∂x

+
∂ϕ−1

∂x

)
, (A.17b)

where

H = − ∂2

∂x2
+ 2V (x) + 2c0ρ, V (x) =

1

2
γ2xx

2, (A.18)
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c0 =

√
αyαz

2π

4πN(a0 + 2a2)

3aosc
, c1 =

√
αyαz

2π

4πN(a2 − a0)

3aosc
. (A.19)



Appendix B

Fourier pseudospectral method to

solve CGPEs

B.1 Solution of q1D CGPEs

Starting with the simplest case of a q1D spin-1 BEC, Eqs. (A.17a)-(A.17b) can be written in a

simplified form as

i
∂Φ

∂t
= HΦ. (B.1)

Here Φ = (ϕ+1, ϕ0, ϕ−1)
T and Hamiltonian H consists of different terms involving kinetic energy

operator HKE, trapping potential plus terms resulting from spin-preserving collisions HSP, terms

corresponding to spin-exchange collisions HSE, and SOC terms HSOC. Eq. (B.1) can then be

written as

i
∂Φ

∂t
= (HKE +HSP +HSE +HSOC)Φ, (B.2)

where HKE, HSP, HSE, and HSOC are 3× 3 matrix operators defined as

HKE =


−∂xx 0 0

0 −∂xx 0

0 0 −∂xx

 , HSOC = −
√
2iγx


0 ∂x 0

∂x 0 ∂x

0 ∂x 0

 , (B.3a)
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HSE =


0 2c1ϕ0ϕ

∗
−1 0

2c1ϕ
∗
0ϕ−1 0 2c1ϕ

∗
0ϕ1

0 2c1ϕ0ϕ1
∗ 0

 , (B.3b)

HSP = 2


V + c0ρ+ c1(ρ0 + ρ−) 0 0

0 V + c0ρ+ c1ρ+ 0

0 0 V + c0ρ+ c1(ρ0 − ρ−)

 . (B.3c)

To solve Eq. (B.2), we use operator splitting which has been extensively used in the numerical

solutions of nonlinear Schrödinger equation including the GP [45,248] and coupled GP equations

[40]. Here we use first-order time splitting known as Lie splitting. Solution to Eq. (B.2) after

time step δt is given as

Φ(t+ δt) = ÛΦ(t), (B.4)

which describes the evolution of the wave function by a unitary propagator Û given as

Û = exp [−iδt(HSP +HSE +HSOC +HKE)] . (B.5)

The propagator can be approximated by the split-operator technique as

Û ≈ exp (−iδtHSP) exp (−iδtHSE) exp (−iδtHSOC) exp (−iδtHKE) . (B.6)

Using (B.6), Eq. (B.4) is equivalent to solving following equations successively

i
∂Φ

∂t
= HKEΦ, (B.7a)

i
∂Φ

∂t
= HSOCΦ, (B.7b)

i
∂Φ

∂t
= HSEΦ, (B.7c)

i
∂Φ

∂t
= HSPΦ. (B.7d)
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Eq. (B.7a) can be written as the following set of decoupled equations

i
∂ϕj(x, t)

∂t
= −∂

2ϕj(x, t)

∂x2
, j = −1, 0, 1. (B.8)

Solution of Eq. (B.8) in Fourier space is given as

ϕ̂j(kx, t+ δt) = ϕ̂j(kx, t) exp(−ik2xδt), (B.9)

where ϕ̂j is the Fourier transform of ϕj and kx is known as Fourier frequency. Now ϕ̂j(kx, t+δt),

the transient wave function in Fourier space, is the initial value of the wave function for the

Fourier transform of Eq. (B.7b), i.e.,

i
∂Φ̂(kx, t)

∂t
= ĤSOCΦ̂(kx, t). (B.10)

Here ĤSOC is given as

ĤSOC = −
√
2iγx


0 ikx 0

ikx 0 ikx

0 ikx 0

 , (B.11)

and Φ̂(kx, t) is the Fourier transforms of Φ(x, t). The solution of Eq. (B.10) is given as [107,108]

Φ̂(kx, t+ δt) = e−iĤSOCδtΦ̂(kx, t) = e−iĜΦ̂(kx, t)

=

(
I +

cosβ − 1

β2
Ĝ2 − i

sinβ

β
Ĝ

)
Φ̂(kx, t),

(B.12)

where β =
√
2Aδt with A =

√
2γxkx and Ĝ is defined as

Ĝ = δt


0 A 0

A 0 A

0 A 0

 . (B.13)

Wave function in Eq. (B.12) is in Fourier space and is inverse Fourier transformed to obtain the

transient wave function in coordinate space which serves as the initial solution for Eq. (B.7c).

B Fourier pseudospectral method to solve CGPEs
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The solution of Eq. (B.7c) is now given by

Φ(x, t+ δt) = e−iHSEδtΦ(x, t) = e−iÔΦ(x, t)

=

(
I +

cosΩ− 1

Ω2
Ô2 − i

sinΩ

Ω
Ô

)
Φ(x, t),

(B.14)

where HSE is given in Eq. (B.3b) and Ô is defined as

Ô = δt


0 A 0

A∗ 0 B∗

0 B 0

 (B.15)

with Ω = δt
√

|A|2 + |B|2, A = 2c1ϕ0ϕ−1
∗, and B = 2c1ϕ0ϕ1

∗.

The transient wave function we get from here is in configuration space and is used as an

input wave function for remaining Eq. (B.7d). HSP being diagonal, the solution to Eq. (B.7d)

can be calculated analytically as

Φ(x, t+ δt) = exp (−iδtHSP) Φ(x, t). (B.16)

This final wave function is the solution of Eq. (B.4) after time δt.

B.2 Solution of q2D CGPEs

The method discussed in the previous subsection can be extended to q2D and 3D systems with

some modifications which we will elaborate on in the rest of this section. In q2D spin-1 BECs,

Eqs. (A.13a)-(A.13b) can again be written in simplified form as Eq. (B.1). Here too H can be

considered as consisting of, aptly defined, HKE, HSOC, HSE, and HSP. Now, HKE and HSOC for

q2D SO-coupled BECs are given as

HKE =


−∇2

xy 0 0

0 −∇2
xy 0

0 0 −∇2
xy

 , (B.17a)
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HSOC = −
√
2i


0 γx∂x − iγy∂y 0

γx∂x + iγy∂y 0 γx∂x − iγy∂y

0 γx∂x + iγy∂y 0

 , (B.17b)

whereas HSE and HSP are again defined by Eqs. (B.3b) and (B.3c), respectively, where V , c0 and

c1 are now given by Eq. (A.15). Again as in q1D systems, the solution of Eqs. (A.13a)-(A.13b)

is approximated by solving Eqs. (B.7a)-(B.7d) successively. Solution to Eq. (B.7a) with HKE

defined by Eq. (B.17a) in this case is given in Fourier space as

ϕ̂j(kx, ky, t+ δt) = ϕ̂j(kx, ky, t) exp[−i(k2x + k2y)δt]. (B.18)

Fourier transform of Eq. (B.7b) corresponding to HSOC given by Eq. (B.17b) is given as

i∂Φ̂(kx, ky, t)

∂t
= ĤSOCΦ̂(kx, ky, t), (B.19)

where ĤSOC in Fourier space is given as

ĤSOC = −
√
2i


0 iγxkx + γyky 0

iγxkx − γyky 0 iγxkx + γyky

0 iγxkx − γyky 0

 . (B.20)

Solution to (B.19) is given as [107,108]

Φ̂(kx, ky, t+ δt) = e−iĤSOCδtΦ̂(kx, ky, t) = e−iĜΦ̂(kx, ky, t)

=

(
I +

cosβ − 1

β2
Ĝ2 − i

sinβ

β
Ĝ

)
Φ̂(kx, ky, t),

(B.21)

where β =
√
2|A|δt, A =

√
2(γxkx − iγyky), A∗ =

√
2(γxkx + iγyky), and Ĝ is defined as

Ĝ = δt


0 A 0

A∗ 0 A

0 A∗ 0

 . (B.22)

Eqs. (B.7c) and (B.7d) are solved similarly as in q1D case.

B Fourier pseudospectral method to solve CGPEs
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B.3 Solution of 3D CGPEs

In 3D case too, forms of HSE and HSP are same as defined in (B.3b) and (B.3c) where V (r), c0

and c1 are defined in Eqs. (A.10)-(A.11) allowing us to use the methods discussed in the q1D

case to solve Eqs. (B.7c)-(B.7d). On the other hand, HKE and HSOC are given as

HKE =


−∇2 0 0

0 −∇2 0

0 0 −∇2

 , (B.23a)

HSOC = −
√
2i


√
2γz∂z γx∂x − iγy∂y 0

γx∂x + iγy∂y 0 γx∂x − iγy∂y

0 γx∂x + iγy∂y −
√
2γz∂z

 . (B.23b)

Since HSOC can be considered to consist of the sum of two commuting Hamiltonians, i.e.,

HSOC = −
√
2i




0 γx∂x − iγy∂y 0

γx∂x + iγy∂y 0 γx∂x − iγy∂y

0 γx∂x + iγy∂y 0

+
√
2γz


∂z 0 0

0 0 0

0 0 −∂z


 ,

= Hxy +Hz. (B.24)

With this division of HSOC in 3D case, Hxy becomes identical to HSOC defined in Eq. (B.17b)

for q2D case. The second Hamiltonian Hz being diagonal can be combined with HKE. In other

words, we can redefine HSOC as simply Hxy and HKE as follows

HKE =


−∇2 − 2iγz∂z 0 0

0 −∇2 0

0 0 −∇2 + 2iγz∂z

 . (B.25)

The advantage of this redefining HSOC making it identical to HSOC in q2D case is that solution

to Eq. (B.7b) is again given by Eq. (B.21) in the Fourier space, whereas solution to Eq. (B.7a)
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with HKE defined in Eq. (B.25) is given by

ϕ̂±1(kx, ky, kz, t+ δt) = ϕ̂±1(kx, ky, kz, t) exp[−i(k2x + k2y + k2z ± 2γzkz)δt], (B.26a)

ϕ̂0(kx, ky, kz, t+ δt) = ϕ̂0(kx, ky, kz, t) exp[−i(k2x + k2y + k2z)δt]. (B.26b)

B.4 Discretization scheme

Spinor BECs can be either confined by external trapping potential or are self-localized by the

interplay of the interactions and SOC. This suggests that we can truncate our system from

infinite space to some finite domain. In order to solve any equation computationally, we need to

discretize our variables. We start by first truncating the spatial domain of the condensate along

η = x, y, z direction to Lη. Now, we choose Lη = Nη × ∆η, where ∆η is the space-step size

chosen to discretize the spatial variable η ∈ [−Lη/2, Lη/2] by setting ηp = −Lη/2 + (p − 1)∆η

with p = 1, 2, . . . , Nη + 1. The point ηNη+1 is excluded from the set of grid points due to the

periodicity of the wave function, ϕ(ηNη+1, tq) = ϕ(η1, tq). Similarly, time is discretized using

∆t as temporal step size. The discretization in the Fourier space which avoids the aliasing

condition can be achieved by discretizing kη in Nη equispaced kη points ∈
[
−Nηπ
Lη

, . . . ,
(Nη−2)π

Lη

]
with a spacing of 2π/Lη. The resultant discretized wave function ϕj(ηp, tq) (ϕ̂j(k

p
η, tq)) in real

(Fourier) space, where p is the spatial (Fourier frequency) index and q is the time index, make

these amenable to be discrete Fourier transformed by FFTW software library (where “In forward

Fourier transform, positive frequencies are stored in the first half of the output and the negative

frequencies are stored in backwards order in the second half of the output”) [249], if kpη are

indexed as

kη(i) = (i− 1)
2π

Lη
, i = 1, ....

Nη

2
+ 1, (B.27a)

kη(i+ 1 +
Nη

2
) = −kη(1− i+

Nη

2
), i = 1, ....

Nη

2
− 1. (B.27b)

To summarize, the discrete analogues of the various continuous variables are as follows:

η ≡ ηp, kη ≡ kη
p, t ≡ tq, (B.28a)

ϕj(η, t) ≡ ϕj(ηp, tq), ϕ̂j(kη, t) ≡ ϕ̂j(kη
p, tq). (B.28b)

B Fourier pseudospectral method to solve CGPEs
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The Nη is chosen to be the multiple of 2 to have the best performance from the FFTW subrou-

tines [249].

B.5 Imaginary-time propagation

We use imaginary-time propagation, wherein δt is replaced by −iδt, to compute the ground

state of spin-1 BEC. This method neither preserves the norm N and the magnetization M . To

simultaneously fix the norm and magnetization, the component wave functions are redefined as

ϕj(x
p, tq) ≡ σjϕj(x

p, tq), (B.29)

after each iteration in imaginary time, where σj are three projection parameters defined as [3]

σ0 =

√
1−M2

[N0 +
√
4(1−M2)N1N−1 + (MN0)2]1/2

, (B.30a)

σ1 =

√
1 +M − (σ0)2N0

2N1
, σ−1 =

√
1−M − (σ0)2N0

2N−1
. (B.30b)

This simultaneous fixing of the norm and magnetization is not implemented in the presence

of SOC rather only the total norm is fixed. The reason being the existence of a ground-state

solution with arbitrary magnetization is not guaranteed in this case.



Appendix C

FORTRAN programs for solving the

CGPEs for spin-1 BECs

Here we describe the FORTRESS software package consisting of a set of three codes writ-

ten in FORTRAN 90/95 programming language associated with [37] and available here [6].

These three programs, namely imretime spin1 1D.f90, imretime spin1 2D.f90, and imre-

time spin1 3D.f90, correspond to solving 1D Eqs. (A.17a)-(A.17b), 2D Eqs. (A.13a)-(A.13b)

and 3D Eqs. (A.9a)-(A.9b), respectively, using the time-splitting Fourier pseudospectral method

described in Appendix B. Each of these programs can solve the aforementioned equations with

user-defined option of either imaginary- or real-time propagation.

The basic structure of the three codes is the same; thus allowing us to describe the parame-

ters, variables, modules, functions, and subroutines using 1D code as a prototypical example.

C.1 Modules

First, we provide the description of the four modules: BASIC DATA, CGPE DATA, SOC DATA,

FFTW DATA.

BASIC DATA

The input parameters like the number of iterations (NITER), number of spatial grid points

(NX), spatial, and temporal step sizes (DX and DT) are defined at the top of each program in

125



126 C.1. Modules

this module. Besides these parameters, number of OpenMP/FFTW threads, constants like π

(PI), i =
√
−1 (CI), atomic mass unit (AMU), ℏ (HBAR), and spatial domain Lx (LX) are also

defined in this module.

CGPE DATA

The FORTRAN variables corresponding to kx (KX), x (X), V (x) (V), aosc (AOSC), ωx (OMEGAM),

c0 (C0), c1 (C2), M (MAG), ϕj(x) (PHI), ϕ̂j(kx) (PHIF) are declared in this module. The scat-

tering lengths a0 (A0), a2 (A2); anisotropy parameters αx (ALPHAX), αy (ALPHAY), and αz

(ALPHAZ); mass m (M) and total number of atoms N (NATOMS) are defined in this module.

In addition to this, there are two user-defined integer options: (a) SWITCH IM which has to

be set equal to 1 for imaginary-time propagation or 0 for real-time propagation and (b) OP-

TION FERRO POLAR which has to be set equal to 1, 2 or 3. OPTION FERRO POLAR =

1, 2 correspond to suitable initial guess wave functions for ferromagnetic and antiferromagnetic

systems, respectively; whereas OPTION FERRO POLAR = 3 implies that the Gaussian initial

guess wave functions would be used.

SOC DATA

The strength of SOC γx (GAMMAX) is defined in this module. SWITCH SOC defined in

this module has to be set equal to 1 if γx ̸= 0 or equal to 0 if γx = 0. The parameters and

variables not listed in the aforementioned three modules do not need to be modified

by the user.

FFTW DATA

The variable types of the input and output arrays used in the FFTW subroutine to calculate

discrete Fourier transform, requisite plans, and thread initialization variables are declared in

this module. The module uses the FFTW3 module from the FFTW software library [249] and

is not required to be modified by the user.
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C.2 Functions and subroutines

Now, we will describe the functions and subroutines which have been used in the programs.

SIMPSON: This function evaluates the 1D integral of the form
∫
f(x)dx using Simpson’s 1/3

rule adapted for even number of grid points.

DIFF: This function evaluates ∂f(x)/∂x using nine point Richardson’s extrapolation formula.

INITIALIZE: This subroutine initializes the initial guess wave functions PHI, space mesh X,

trapping potential V, and Fourier frequencies KX.

NORMT: The subroutine normalizes the total density to 1.

NORMC: The subroutine calculates the norms of the individual components, i.e.
∫
|ϕj(x)|2dx.

RAD: The subroutine calculates the root mean square (rms) sizes of the three components.

ENERGY: The subroutine calculates the component chemical potentials µj (MU), E (EN),

and M (MAG).

FFT: The subroutine calculates the discrete forward Fourier transform using freely available

FFTW software library [249]. The subroutine uses the module FFTW3.

BFT: Similarly, the subroutine calculates the discrete backward Fourier transform using FFTW

software library [249].

KE: The subroutine evaluates Eq. (B.9) in Fourier space.

SOC: The subroutine implements Eq. (B.12) with ĤSOC given by Eq. (B.11).

SE: The subroutine implements Eq. (B.14) for HSE consisting of spin-exchange terms.

C FORTRAN programs for solving the CGPEs for spin-1 BECs



128 C.3. 2D and 3D programs

SP: The subroutine implements Eq. (B.16) for HSP consisting of spin-preserving terms.

C.3 2D and 3D programs

As compared to the 1D program which has NX grid points with spacing of DX, the 2D program

requires NX × NY grid points with uniform spacing of DX and DY along x and y directions,

respectively. This translates into spatial domain along the two directions as LX = DX × NX, LY

= DY × NY. Similarly, the 3D program requires NX× NY× NZ grid points with corresponding

space steps of DX, DY, and DZ. The spatial domain along three directions here is LX = DX ×
NX, LY = DY × NY, LZ = DZ × NZ. The additional space variables Y and/or Z would also

require corresponding Fourier frequencies KY and/or KZ in the 2D and 3D codes. The role of

various subroutines is the direct extension of the roles played by them in the 1D codes as per

the discussion in Secs. B.2 and B.3.

C.4 Running the programs

One has to install the FORTRAN compiler(s) and FFTW software library on the computer.

If the user is interested in finding the ground state of the spin-1 BEC, the imaginary-time

propagation has to be used. The dynamics on the other hand can be studied by real-time

propagation using the initial wave function which needs to be supplied by the user in the file

‘initial sol.dat’. The compilation commands are listed at the top of each program file and also

in the ‘README.txt’ file provided with the codes.

C.5 Description of output files

Data is written in four files during and after the execution of the 1D or 2D programs are

complete. In the imaginary-time propagation, total norm, rms sizes of the components, energy,

absolute values of component wave functions at origin, and magnetization are written after every

NSTP iterations, which is defined in the BASIC DATA module, in the file “file1 im.dat”. In file

“file2 im.dat”, energy, chemical potentials, and rms sizes corresponding to each component are
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written after every STP iterations which is equivalent to 0.1 (dimensionless) time period. In the

file “tmp solution file.dat”, which is updated after each NSTP iterations, component densities ρj

and corresponding phases are written at every space point. The final ρj and corresponding phases

are written in “solution file im.dat”. In real-time-propagation, the corresponding file names are

‘file1 re.dat’, ‘file2 re.dat’ and so on. There is another file, namely “convergence.dat” which is

written only in imaginary-time propagation. In this file max |ϕj(xp, tq)− ϕj(xp, tq −∆t)|/(2∆t)
where −Lx/2 ≤ xp < Lx/2, j = −1, 0,+1 and tq is the discrete imaginary time is written after

each iteration. This quantity serves as a suitable convergence parameter, and the execution of the

program is stopped if it falls below a user-defined tolerance (TOL) defined in the CGPE DATA

module. For all the results presented in Appendix D, a convergence tolerance of 10−6 has been

met.

In the 3D codes, besides the aforementioned four files, reduced densities in x-y and x-

z planes and the corresponding phases are written in the files “tmp solution file xy.dat” and

“tmp solution file xz.dat”, respectively.

C.6 Output samples from the codes

Here we present the details of sample output files ‘file1 im.dat’ and/or ‘file1 re.dat’ obtained

from the three codes. The contents of this file written in successive lines are (1) time stamp

at the time of start; (2) number of OpenMP and FFTW threads used in the run; (3) values of

SWITCH IM, OPTION FERROPOLAR, SWITCH SOC, SOC strengths (GAMMAX, GAM-

MAY, GAMMAZ), and tolerance (TOL) used; (4) values of anisotropy parameters (ALPHAX,

ALPHAY, ALPHAZ) chosen; (5) number of space grid points (NX, NY, NZ); (6) values of

NITER and NSTP; (7) value of space step(s) (DX, DY, DZ), (7) time step DT, space domain

(LX, LY, LZ), and magnetization (MAG); (8) frequency used in scaling (OMEGAM), corre-

sponding oscillator length (AOSC), and values of interaction parameters (C0, C2). Then total

norm, rms sizes of the component wave functions, energy, absolute values of component wave

functions at the origin, and magnetization are written for the initial solution, for the transient

solution obtained after NSTP time iterations, and for the converged solution (this third entry

in the real-time codes will simply correspond to the solution after NITER iterations). The time

stamp at the end of the run and execution time are the last two entries in this file. The varied

C FORTRAN programs for solving the CGPEs for spin-1 BECs
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nature of the contents of this file can be used to ascertain the success of the run of the code

by verifying the input parameters selected and various output parameters. The sample output

files obtained with the test runs of imretime spin1 1D.f90, imretime spin1 2D.f90, and imre-

time spin1 3D.f90 are presented in the Electronic Appendix associated with [37]. In all the test

runs, harmonic trapping potential as per the trapping potential corresponding to anisotropy pa-

rameters listed in these files has been used. For these test runs, the codes were compiled with the

Intel’s FORTRAN compiler and the jobs were run on a server with two Intel® Xeon® Platinum

8180 CPU @ 2.50GHz. The samples of all the data files, both input and output, corresponding

to the current set of parameters in the codes are available on Mendeley data [250].

C.7 OpenMP parallelization

We have tested the efficiency of OpenMP parallelization of the three codes for both imaginary-

and real-time propagations. The tests were done on a 28-core Intel® Xeon® Platinum 8180

CPU @ 2.50GHz processor. The parallelization tests were performed with NX = 106 for 1D code,

NX = NY = 3000 for 2D code, and NX = NY = 256, NZ = 128 for 3D code. The execution time

was measured for 1000 iterations starting from the call to INITIALIZE subroutine and did not

include the time spent in reading/writing and opening/closing the data files. The execution times

T (n) for the three codes compiled with both GNU Fortran 5.4.0 and Intel Fortran 19.1.0.166

compilers are shown as a function of number of threads n in Fig. C.1. It is evident from Fig.

C.1 that the codes compiled with the Intel Fortran compiler are faster than those compiled with

the GNU Fortran compiler for both the imaginary- and real-time propagations; nonetheless the

difference in the execution times for codes compiled with these two compilers is less for real-time

propagation. The execution times in all cases shown in Fig. C.1 first decrease very sharply with

the increase in the number of threads and then tend to saturate with an increasing number of

threads.

To quantify the performance gain with OpenMP parallelization, we have calculated the

speedup and efficiency for all these codes compiled with the aforementioned two compilers.

Here speedup is defined as the ratio of execution time with 1 thread to the execution time with
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Figure C.1: (Color online) (a) Execution times for 1000 iterations (in seconds) as a function of
the number of threads for 1D code compiled with GNU Fortran 5.4.0 and Intel Fortran 19.1.0.166
compilers for imaginary- and real-time propagation. (b) and (c) are the same for 2D and 3D
codes.

n threads, i.e. T (1)/T (n), whereas the efficiency is defined as the ratio T (1)/[nT (n)]. For all the

codes, speedup and efficiency as a function of a number of threads are much better for real-time

propagation as compared to imaginary-time propagation. The real-time speedup achieved with

28 threads was more than 9 for both 1D and 2D codes, and more than 11 for 3D code using both

the compilers; whereas the corresponding imaginary-time speedup values are more than 5 for 1D,

more than 6 for 2D and more than 7 for 3D with both the compilers as is shown in Fig. C.2. The

best-performing real-time 3D code has more than 40% efficiency with 28 threads. The better

performance of real-time variants is due to the fact that the imaginary-time propagation has to

fix the norm and also has to check the convergence criterion during each iteration. Real-time

propagation corresponds to the unitary evolution of a converged solution and hence does not

need to fix the norm or check the convergence. The results in Figs. C.1 and C.2 were performed

for the non-zero value of SOC strength.

C FORTRAN programs for solving the CGPEs for spin-1 BECs
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Figure C.2: (Color online) Speedup and efficiency as a function of number of threads n are
shown for imaginary- (left column) and real-time propagation (right column). The top, middle,
and bottom row figures show the results for 1D, 2D, and 3D codes, respectively.



Appendix D

Sample numerical results

We present the results for energy, chemical potentials, and densities of the ground states in q1D,

q2D and 3D spin-1 condensates in continuum using the imaginary-time propagation method

with the emphasis on the comparison with the previously published results in the literature

[3–5, 107, 108]. We report the results in the presence as well as absence of SOC. To check the

accuracy of the numerical method employed by us, we compare our results in the absence of

SOC with those in Ref. [3,4]. In the presence of SOC, we compare our results for q1D, q2D and

3D spin-1 BECs with those in Refs. [108], [107], and [5] respectively. It needs to be emphasized

that the method used in Ref. [4] is not applicable to SO-coupled spin-1 BECs.

D.1 Results for q1D spin-1 BECs

D.1.1 Without SOC, γx = 0

We choose our computational domain L = [−16, 16] having spatial step size as ∆x = 1/64 for

q1D condensates. We first consider (a) ferromagnetic spin-1 BEC of 87Rb confined in a cigar-

shaped trapping potential having interaction parameters in dimensionless units as c0 = 0.0885N

and c1 = −0.00041N [3] and (b) antiferromagnetic spin-1 condensate of 23Na confined in a cigar-

shaped trapping potential having interaction parameters in dimensionless units as c0 = 0.0241N

and c1 = 0.00075N [3, 4] for our computations in the 1D case. We consider N = 104 as the

total number of atoms in each of these two cases. The comparison of the ground-state energies

obtained [3, 4] is excellent as is shown in the table D.1 for ∆x ≤ 1/64 and ∆t ≈ 0.1∆x2.
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Table D.1: Ground-state energies for 87Rb and 23Na q1D BECs obtained using FORTRESS [6]
with ∆x ≤ 0.015625 and ∆t ≈ 0.1∆x2 along with the same from Ref. [3] for the various values
of magnetization M .

87Rb 23Na

M E in Ref. [3] E (present work) E in Ref. [3, 4] E (present work)

0 36.1365 36.1365 15.2485 15.2485

0.1 36.1365 36.1365 15.2513 15.2513

0.2 36.1365 36.1365 15.2599 15.2599

0.3 36.1365 36.1365 15.2743 15.2743

0.4 36.1365 36.1365 15.2945 15.2945

0.5 36.1365 36.1365 15.3209 15.3209

0.6 36.1365 36.1365 15.3537 15.3537

0.7 36.1365 36.1365 15.3933 15.3933

0.8 36.1365 36.1365 15.4405 15.4405

0.9 36.1365 36.1365 15.4962 15.4962

For q1D 87Rb, we also consider an alternative set of interaction parameters of c0 = 0.08716N ,

c1 = −0.001748N , and N = 10000 for our computations [4]. In this case, again, the ground-state

energy obtained is in excellent agreement with the value reported in Ref. [4] as is shown in table

D.2 for the same interaction parameters set.

Table D.2: Comparison of the ground-state energy of q1D 87Rb condensate reported in Ref. [4]
with the value obtained using FORTRESS [6] with ∆x ≤ 0.015625 and ∆t ≈ 0.1∆x2.

87Rb

M E in Ref. [4] E (present work)

0-0.9 35.4007 35.4007[7]

The chemical potential values obtained are in very good agreement with those reported in

Ref. [3] as is shown in table D.3.

The ground-state wave functions are also in excellent agreement with Ref. [3]. The absolute

values of ground-state wave functions for 87Rb and 23Na with M = 0 and 0.5 are shown in Fig.

D.1.

D.1.2 With SOC, γx ̸= 0

In the presence of SOC with harmonic trapping potential, for 87Rb and 23Na, we again consider

(c0, c1) equal to (0.08716N,−0.001748N) and (0.0241N, 0.00075N), respectively, where N =
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Table D.3: Comparison of the chemical potential values for 87Rb and 23Na condensate reported
in Ref. [3] with the values obtained using FORTRESS [6] with ∆x = 0.0025, ∆t = 0.0000095.
For 23Na, µ = (µ+1 + µ−1)/2, whereas for

87Rb µ = µ0 = µ±1.

87Rb 23Na

M µ in Ref. [3] µ (present work) µ in [3] µ (present work)

0 60.2139 60.2136 25.3857 25.3857

0.1 60.2139 60.2136 25.3847 25.3838

0.2 60.2139 60.2136 25.3815 25.3804

0.3 60.2139 60.2136 25.3762 25.3749

0.4 60.2139 60.2137 25.3682 25.3668

0.5 60.2139 60.2137 25.3572 25.3557

0.6 60.2139 60.2137 25.3423 25.3406

0.7 60.2139 60.2138 25.3220 25.3203

0.8 60.2139 60.2138 25.2939 25.2921

0.9 60.2139 60.2139 25.2527 25.2509

10000. The ground-state energy values in these cases are given in table D.4 for multiple values

of γx. The component densities for the two systems with γx = 0.5 and 1 are shown in Fig. D.2.

Table D.4: Ground-state energies of 87Rb and 23Na condensates in the presence of harmonic trap
and SOC with ∆x = 0.015625 , ∆t ≈ 0.1(∆x)2. The (c0, c1) values are (0.08716N,−0.001748N)
and (0.0241N, 0.00075N) with N = 10000 for 87Rb and 23Na, respectively.

87Rb 23Na

γx Energy Energy

0 35.4007 15.2485

0.1 35.3958 15.2435

0.2 35.3808 15.2285

0.3 35.3558 15.2035

0.4 35.3208 15.1685

0.5 35.2758 15.1235

0.6 35.2208 15.0685

0.7 35.1558 15.0035

0.8 35.0808 14.9285

0.9 34.9958 14.8435

1 34.9008 14.7485

Next, we consider ferromagnetic and antiferromagnetic systems with (c0, c1) equal to (−1.5,−0.3)

and (−1.2, 0.3), respectively in the absence of any trapping. The ground-state energies of the

D Sample numerical results
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Figure D.1: (Color online) Absolute values of component wave functions |ϕj(x)| in the ground
state of 87Rb for (a) M = 0 and (b) M = 0.5. (c) and (d) are the same for 23Na with M = 0
and M = 0.5, respectively. These are in agreement with [3, 4].

self-trapped solutions obtained in these cases are shown in table D.5. The self-trapped nature

of the solutions is evident from the ground-state densities shown in Fig. D.3 for γx = 1.

D.2 Real-time check

To check the stationary nature of the solutions one can evolve these solutions using real-time

propagation. As an example, we consider the real-time evolution of a self-trapped solution of

q1D 87Rb condensate with c0 = −1.5, c1 = −0.3 and γx = 0.5, which has E = −0.2600 as

indicated in table D.5. The rms size of the three components of the vector soliton as a function

of time is shown in Fig. D.4(a). Similarly, energy E as a function of t is shown in Fig. D.4(b)
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Figure D.2: (Color online) Ground-state density of SO-coupled 87Rb for (a) γx = 0.5, (b) γx = 1.
(c) and (d) are the same for 23Na with γx = 0.5 and γx = 1.0, respectively. M = 0 in all the
cases.

D Sample numerical results
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Table D.5: Ground-state energies for self-trapped ferromagnetic and antiferromagnetic conden-
sates in the presence of SOC obtained with ∆x = 0.015625, ∆t ≈ 0.1(∆x)2.

(c0, c1) = (−1.5,−0.3) (c0, c1) = (−1.2, 0.3)

γx Energy Energy

0 -0.1350 -0.0600

0.1 -0.1400 -0.0650

0.2 -0.1550 -0.0800

0.3 -0.1800 -0.1050

0.4 -0.2150 -0.1400

0.5 -0.2600 -0.1850

0.6 -0.3150 -0.2400

0.7 -0.3800 -0.3050

0.8 -0.4550 -0.3800

0.9 -0.5400 -0.4650

1 -0.6350 -0.5600

which agrees with the reported value of −0.2600 at all times. All the results reported in this

Appendix confirm this real-time evolution check.

D.3 Results for q2D and 3D spin-1 BECs

Here we first consider 104 atoms of 87Rb with (a0, a2) = (5.387, 5.313) nm in a q2D trap with

αx = αy = 1, αz = 20, ωx/(2π) = 20 Hz. Secondly, we consider 104 atoms of 23Na with

(a0, a2) = (2.646, 2.911) nm in a q2D trap with same trapping frequencies as that for 87Rb. This

leads to (c0, c1) = (496.4428,−2.2942) and (134.9838, 4.2242) for 87Rb and 23Na, respectively.

The ground-state energies (in the units ℏωx) for various magnetizations are given in the table

D.6.

For q2D case, we also consider c0 = −4, c1 = −0.6 with γx = γy = 0.5, i.e. isotropic SOC,

in the absence of trapping. The ground state in this case is a self-trapped vortex-bright soliton

as is shown in Fig. D.5. The ground-state solution corresponds to an asymmetric antivortex

and vortex in the mf = +1 and mf = −1 components, respectively as is illustrated in Fig.

D.5(d)-(f) [107].

Similarly in the 3D case, we consider c0 = −10, c1 = 0.1 with γx = γy = γz = 1 in the absence

of trapping. Again, the ground-state solution in this case is a self-trapped vortex-bright soliton.

To illustrate this vortex-bright soliton, we plot the 2D contour densities and corresponding phase
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Figure D.3: (Color online) (a) Ground-state density of an SO-coupled spin-1 BEC with c0 =
−1.5, c1 = −0.3 in the absence of trap and γx = 1. (b) The same for c0 = −1.2, c1 = 0.3. These
results are in agreement with Ref. [5] and correspond to M = 0.
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Figure D.4: (Color online) (a) Root-mean-square sizes of the three components of 87Rb with
c0 = −1.5, c1 = −0.3 and γx = 0.5 in the absence of trap as a function of time. (b) The energy
of the vector soliton as a function of time.
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Table D.6: Ground-state energies for 87Rb and 23Na q2D BECs obtained with ∆x = 0.05,
∆y = 0.05 and ∆t = 0.1∆x∆y/2 for the various values of magnetization M . 104 atoms of each
species were considered in trap with αx = αy = 1, αz = 20, ωx/(2π) = 20 Hz. Together with
scattering lengths (a0, a2), these parameters define c0 and c1 as per Eq. (A.15).

87Rb 23Na

M Energy Energy

0 8.4629 4.5355

0.1 8.4629 4.5361

0.2 8.4629 4.5380

0.3 8.4629 4.5412

0.4 8.4629 4.5457

0.5 8.4629 4.5515

0.6 8.4629 4.5586

0.7 8.4629 4.5671

0.8 8.4629 4.5771

0.9 8.4629 4.5885

Figure D.5: The 2D contour plot of densities of (a) mf = +1 , (b) mf = 0, and (c) mf = −1
components of an asymmetric vortex-bright soliton with c0 = −4, c1 = −0.6, and γx = γy = 0.5.
The corresponding phases are shown in (d) for mf = +1, (e) for mf = 0, and (f) for mf = −1
components.

profiles in the z = 0 plane in Fig. D.6. These results are in agreement with [108]. The results

reported in this appendix are given in Ref. [37].
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Figure D.6: The 2D contour plots of densities of components in z = 0 plane for (a) mf = +1,
(b) mf = 0, and (c) mf = −1 of an asymmetric vortex-bright soliton with c0 = −10, c1 = −1,
and γx = γy = γz = 1. The corresponding phases are shown in (d) for mf = +1, (e) for mf = 0,
and (f) for mf = −1 components.
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