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LAY SUMMARY 

 

Some clear examples of fracture problems that engineers might face: like gears, 

bearings, springs, and fasteners can break or crack. Also, parts in cars, like axles, 

connecting rods, and crankshafts, can experience a lot of stress during working. Other 

important examples are dams, power plants, pressure vessels, and offshore structures. 

Every material has imperfections or irregularities, like micro-defects or cracks. These 

imperfections can make stress in a material to accommodate at one spot. Defects during 

manufacturing, like bad welding or casting, can also make things more likely to break. 

Factors in the environment, such as rust, high heat, or radiation, can also make things 

break easier. Figuring out fracture problems can be really tough. It depends on the shape 

of the thing, how it's being used, and what it's made of. Sometimes, a part can break 

slowly over time, or it can break suddenly and cause big problems. When things break, 

it can have adverse effects on both individuals and finances. 

To this end, fracture mechanics helps engineers design things to stay strong and 

predict how long they will last before they start to crack. There are ways to test materials 

to see how strong they are under different conditions. However, once a test is done on a 

material, it can't be used again, so it's a bit wasteful. There are also computer techniques 

that can help us see where cracks might start and how they might grow. One technique 

called the "smoothed floating node method" is used in this thesis to study how 

engineering materials behave when they start to break. 
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ABSTRACT 

 

Numerical Simulations of Fracture Problems using Smoothed Floating Node Method 

Umed Singh 

 

Ensuring the safety and dependability of a wide array of engineering applications is of 

utmost importance, particularly in fields like aerospace, civil infrastructure, and 

mechanical components. It is imperative to accurately comprehend and forecast the 

onset and spread of cracks within engineering structures to prevent potentially disastrous 

failures with severe consequences. As materials are utilized in practical scenarios, their 

strength may diminish based on variables such as loading conditions, material 

composition, and environmental factors. The presence of flaws such as cracks, voids, 

holes, inclusions, discontinuities and manufacturing defects introduces complexity, thus 

requiring the utilization of fracture mechanics to tackle these complexities. Also 

changes in temperature within a material can lead to the development of thermal 

stresses, which may result in cracks and failure of the structure. Beyond cracking, 

temperature variations also result in alterations in the material's microstructure, and 

these changes significantly affect its mechanical properties and behaviour. Researchers 

have developed computational techniques, including both analytical and numerical 

methods, to tackle these challenges. In the field of computational analysis, two main 

approaches are highlighted in existing literature: Smeared Crack Approach and Discrete 

Crack Approach. Smeared or continuous methods, demonstrated by continuum damage 

mechanics, forecast material degradation by tracking the accumulation of damage in the 

material. On the other hand, discrete crack approaches consider cracks as interfaces, 

proving especially valuable for dealing with complex crack patterns. 

Linear elastic fracture mechanics simplifies the fracture behaviour analysis for 

materials that behave linearly elastic, but in practical applications, challenges frequently 

arise due to the presence of nonlinearities in the problems, such as in quasi-brittle 

materials (concrete, rock, bone, ice, and various composites) with nonlinear fracture 

process zone ahead of the crack tip. Many advanced numerical methods are reported in 

the literature to solve fracture mechanics problems involving arbitrary crack 

propagation without the use of remeshing to tackle the strong discontinuity. This thesis 

aims to develop a formulation based on discrete crack approach using floating node 



 

  

IX 

 

method in combination with strain smoothening technique to solve the fracture 

mechanics problems having strong discontinuity. The crack inside the specimen finds 

its true position with the help of floating nodes rather than tackling the crack by virtual 

nodes positioned on the standard nodes by using the special enrichment functions. 

The initial focus of this thesis is to develop a Smoothed Floating Node Method 

(SFNM) that accurately traces the crack real position by utilizing floating nodes based 

on the crack propagation direction criterion. A strain smoothing technique is employed, 

replacing area integral with a line integral to handle the integration scheme. Here, to 

mitigate challenges related to element distortion and convexity, a cell-based smoothing 

approach is adopted which eliminates the need of Jacobian matrix in the numerical 

calculations. The method's precision and convergence are thoroughly analysed, and 

error norms are calculated based on both energy and stress Intensity factors. Another 

contribution of this thesis is the incorporation of the nonlinear behaviour of the fracture 

process zone into the smoothed floating node method. The zero thickness cohesive 

element used in this work, acts as a medium to transfer the cohesive forces through the 

partially damaged materials in cohesive zone. The potential based intrinsic cohesive 

zone modelling formulation is aligned to the proposed SFNM method for the analysis 

of fracture behaviour of the quasi brittle materials. First, the numerical framework is 

validated through the patch test of a two-dimensional specimen subjected to both mode 

I and mode II loading conditions. Following this verification, the framework is further 

applied to address two-dimensional standard fracture problems considering the cohesive 

strengths of the material, both in the normal and tangential directions. The assessment 

of the SFNM coupled with CZM is conducted for scenarios involving straight and 

curved crack growth.  

Next, the formulation of the Smoothed Floating Node Method is extended to 

address fracture problems occurring within a thermally loaded environment, while 

considering the influence of mechanical boundary constraints. The analysis involves 

examining cracked specimens subjected to both isothermal and adiabatic crack thermal 

loading conditions. The fracture failure of the specimen is attributed to the thermal 

stresses induced in this setting. The cohesive zone model is employed to account for the 

combined thermo-mechanical effects. The nonlinear fracture process zone is examined 

both under thermal loading and mechanical loading separately, as well as in their 

combined state. Various homogeneous and bi-material problems are effectively solved 

using the proposed methodology, and the obtained results are compared with the 
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existing literature results. Finally, comprehensive findings are presented for cases 

involving a combination of thermal and mechanical loads, specifically focusing on 

quasi-brittle materials.  

Keywords:  

Fracture mechanics, smoothed floating node method, strain smoothing, cohesive zone 

modelling, fracture process zone, line integration, element cell, quasi-brittle materials, 

stress intensity factor. 
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Chapter 1  

Introduction 

 

In order to comprehensively assess the safety and reliability of components and 

structures, it is of utmost importance to have a fundamental understanding of material 

failure behaviour. This understanding aids in to identify and address potential weak 

points in the design or manufacturing process. Additionally, Engineers can simulate 

various conditions and assess how materials respond without the need for physical 

prototypes, enabling more efficient design iterations and optimization. As structures and 

components undergo practical usage, its material strength may decrease depending on 

factors such as the type of loading, the materials involved, and the prevailing 

environmental conditions. The presence of cracks, voids, holes, inclusions, 

discontinuities, and manufacturing defects in the material introduces complexities that 

render the application of conventional solid mechanics’ failure theories ineffective in 

analysing material and structural failure mechanisms. Some of the instances of such 

complexities include the building cracks, pressure vessel ruptures, aircraft rotor failures, 

bridge collapses, turbine blade malfunctions, and machine component breakages etc. 

Therefore, advanced evaluation criteria are required to account for these intricate 

parameters in the assessment process. 

Addressing these multifaceted challenges involves the use of both experimental 

and computational methods. Numerous experimental methodologies require both 

destructive and non-destructive procedures to scrutinize the failure characteristics of 

materials and structures. In case of destructive testing, the reusability of an individual 

specimen post-testing remains prohibited even if it successfully passes the test. 

Examples include tensile testing, 3-point bend tests etc. In contrast, non-destructive 

testing (NDT) is a valuable approach employed to assess the properties of a material, 

without causing any damage to the specimen. Various NDT methods, such as visual 

inspection, radiography, and ultrasonic testing etc. are utilized for this purpose. NDT 

ensures that the tested part remains fit for service even after undergoing the evaluation. 

It's worth noting that the introduction of human error and suboptimal calibration of the 

testing apparatus holds the potential to yield erroneous prediction. Also, Enhancing the 



 

0 by 

 

2 

 

reliability of outcomes mandates a larger number of test samples. Therefore, to ensure 

robust repeatability and precise accuracy during testing, an assessment of various factors 

is required before executing tests. 

Conversely, within the domain of computational techniques, there exists a range of 

analytical and advanced numerical methods that can effectively address complex crack 

geometries and material behaviours. Analytical solutions are available for the standard 

simple geometry problems and frequently fall short when facing complex challenges 

arising from intricate structural geometries and boundary conditions. Recently, various 

innovative methodologies for modelling fracture problems have surfaced. These 

approaches can be broadly divided into two types, distinguished by their representation 

of fracture namely, continuous and discontinuous approaches. The continuous approach 

utilizes the theoretical framework of continuum damage mechanics (CDM), while the 

discontinuous approach is based on fracture mechanics theory. A comparison between 

continuous and discontinuous technique is presented in Figure 1.1. CDM is suitable for 

micro-crack nucleation and coalescence, while discrete approaches yield more accurate 

results for finite cracks. The CDM approach perceives crack development as a gradual 

process of damage accumulation. It treats cracks as diffuse zones, and illustrates how 

materials degrade under stresses. This approach simplifies the complex nature of cracks 

and provides insights into material failure using continuum damage mechanics.  

 

 

 

Figure 1.1: Comparison between the displacement and strain profiles for (a) continuous and 

(b) discontinuous approaches. 

Strain Strain 
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Within engineering, fracture mechanics based on the discrete approach of crack 

assessment, holds a fundamental position, playing a critical role in guaranteeing the 

reliability and safety of various applications such as aerospace, civil infrastructure, and 

mechanical systems. The main assumption at the core of fracture mechanics lies that 

every engineering material inherently contains defects or manufacturing imperfections 

that can be represented as cracks. Therefore, accurate understanding and prediction of 

crack initiation and propagation within engineering structures are crucial for preventing 

catastrophic failures. 

1.1 Background and Motivation  

The Finite Element Method (FEM) can be the best suited numerical tool to carry out 

numerical simulations of fracture mechanics problems. In FEM, a mapped element takes 

part as a paired set between physical and natural coordinate systems to maintain the 

exact equivalence. Thus, exceeding the acceptable limit for element distortion is 

prohibited, as it leads to singularity issues in the inversion of the stiffness matrix. 

Moreover, in simulations of crack propagation behaviour using FEM, conformal 

meshing is required to capture the crack discontinuity [1], and singular elements are also 

required to model the crack tip singularity. In addition to this, remeshing during crack 

growth introduces errors while shifting the field variables data from the previous mesh 

to the new one. Therefore, it becomes cumbersome to model crack propagation and 

evolving discontinuity using the FEM approach alone. A more robust framework is 

desirable for the prediction of progressive failure. Various challenges arise when 

attempting to solve crack problems using computational methods. These challenges 

involve various issues, such as the need for remeshing and enrichment functions to 

precisely depict static behaviour and the propagation of cracks [2,3]. In discrete 

approaches, the incorporation of isoparametric mapping necessitates checking the 

convexity condition of elements. However, the requirement of conformal mesh and 

remeshing during crack growth can be eliminated using advanced numerical methods 

such as eXtended Finite Element Methods (XFEM), Meshless Methods, Boundary 

Element Method, Scaled Boundary Element Finite Element Method (SBFEM). For 

instance, in case of XFEM, to effectively model blending, split, and tip elements, an 

enhanced integration scheme becomes essential. Additionally, complications arise from 

the aspect ratio of sub-elements divided by the crack path, which hinders the accurate 

computation of field variables.  
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Another significant concern relates to the failure characteristics of materials. In 

a more extensive context, failures can take in diverse forms, involving brittleness, quasi-

brittleness, and ductility. For brittle materials, the fracture process zone is considerably 

smaller compared to the overall structure size, which is a key factor contributing to 

immediate fracture upon surpassing a critical load threshold. Addressing the challenge 

of failure, there exists the phenomenon of quasi-brittle failure, which poses significant 

modelling difficulties due to microstructural variations within quasi-brittle structures. 

This type of failure is observable across a diverse range of materials, including 

polycrystalline ceramics, cementitious materials like concrete, various rock types, 

wood, bones, and a variety of composites. These materials hold immense significance 

in the fields of engineering and materials science due to their extensive use, especially 

within engineering applications. 

To overcome the limitations associated with numerical methods such as FEM, 

XFEM etc., and to capture the nonlinear fracture process zone, a new approach called 

the Smoothed Floating Node Method (SFNM) is developed by combining the Floating 

Node Method (FNM) [4,5] with strain smoothing technique [6]. This thesis introduces 

a formulation and implementation of the SFNM to both brittle and quasi-brittle 

materials. The integration of cohesive zone modelling into the SFNM methodology is 

also comprehensively demonstrated across various loading scenarios for quasi-brittle 

materials. This study covers both mechanical and thermal loading, along with their 

combined impacts, to investigate material fracture utilizing a discrete approach. Further 

elaboration on this can be found in the Objectives and Thesis Outline sections. 

1.2 Fracture Behaviour of Materials 

The introduction of all-welded designs, such as the Liberty ships and T-2 tankers during 

World War II, proved to be a major factor behind accidents and structural failures. 

Among the 2,500 Liberty ships constructed during the war, 145 of them suffered 

catastrophic breakages, and nearly 700 experienced significant issues. These failures 

were particularly unexpected because they frequently happened to be in low-stress 

situations, including when a ship was stationary in a dock. This puzzling problem 

prompted extensive investigations, which determined that the fractures were brittle in 

nature, primarily attributed to flaws and areas where stress concentrated. Therefore, it 

becomes imperative, from a fracture mechanics perspective, to gain a comprehensive 

understanding of how materials respond to crack propagation and environment 
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conditions. This understanding is essential in the context of designing structures and 

components resilient enough to withstand the inherent flaws present in real-world 

materials. The fracture behaviour of a material depends on the loading and the type of 

the material. These are discussed in the following subsections. 

1.2.1 Modes of fracture 

In the area around a crack tip, all stress systems are linked to a specific way that the 

crack surface moves locally. In accordance with fracture mechanics principles, the 

fracture process is typically classified into three distinct modes of fracture. 

Mode I Fracture (Opening Mode): In this type of fracture, the surfaces of a crack tend 

to separate, creating a stretching force on the crack surfaces (Figure 1.2(a)). This is the 

most common fracture mode and used in fracture toughness testing. Linear elastic 

fracture mechanics, which relies on calculations involving the stress intensity factor (K), 

explains the connection between applied stress, crack size, and material properties. This 

relationship helps in determining the critical stress level required for a crack to start 

spreading in a brittle material. 

 

 

Figure 1.2: Modes of fracture 

 

Mode II Fracture (Sliding Mode): Mode II fracture involves the sliding movement of 

crack surfaces, causing them to shift alongside each other in a shear-like manner (Figure 

1.2(b)). The shear stress is applied normally to the leading edge of the crack but in the 

plane of the crack. The primary theory governing Mode II fracture is Elastic-Plastic 

(a) Mode I (c) Mode III (b) Mode II 
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Fracture Mechanics (EPFM). EPFM considers the plastic deformation that occurs near 

the crack's tip and takes into account how the plastic zone affects the crack's growth.  

Mode III Fracture (Tearing Mode): In Mode III fracture, the surfaces of the crack move 

parallel to the plane of the crack, resulting in a tearing motion (Figure 1.2(c)). Applied 

shear stress is parallel to the leading edge of the crack. Mode III fracture is less frequent 

and has received less comprehensive study compared to Mode I and Mode II. 

It's important to note that the fracture can involve a combination of these modes, 

depending on factors like material properties, stress conditions, temperature, loading 

rate, and the presence of defects. Engineers and materials scientists analyse these 

different modes to understand the causes of failure and develop strategies to prevent 

them, especially in critical applications such as aerospace, structural engineering, and 

manufacturing. 

1.2.2 Types of fracture 

The topic mentioned earlier explores fracture modes, which describes how materials 

react to different types of loads. Another aspect of fracture revolves around the specific 

types of fracture, which are influenced by the behaviour of the material [7]. The fracture  

 

 

Figure 1.3: Different fracture types: (a) brittle, (b) ductile and (c) quasi-brittle [1]. 

 

process reaches its conclusion when crack propagation ceases or, when the body 

completely fractures into two or more separate parts. The fracture process is categorized 

into three distinct types (see Figure 1.3). 

(a) (b) (c) 
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Brittle Fracture: Brittle fracture occurs when a material breaks suddenly and without 

much deformation. This type of fracture usually happens in brittle materials without 

significant warning and can result in catastrophic failure. Brittle materials tend to have 

limited ability to absorb energy before breaking. Examples of brittle materials include 

ceramics and certain types of glass. 

Ductile Fracture: Ductile fracture involves significant deformation before the material 

ultimately breaks. Ductile materials can absorb more energy before failing compared to 

brittle materials. This characteristic is due to the ability of ductile materials to undergo 

plastic deformation, which allows them to change shape without immediate failure. 

Common examples of ductile materials include most metals, which can bend and stretch 

before breaking. 

Quasi-Brittle Fracture: Quasi-brittle fracture is a behaviour of materials that falls 

between brittle and ductile fracture. Materials exhibiting quasi-brittle behaviour can 

undergo some deformation before breaking, but they also exhibit brittle-like 

characteristics, such as sudden failure without extensive plastic deformation. Concrete 

and certain types of composite materials are often considered quasi-brittle.  

1.3  Research Approach and Methodology  

Numerous advanced numerical techniques are documented in the literature to solve the 

fracture mechanics problems. For instance, the damage models, founded on continuum 

damage mechanics, utilize the damage variable to represent the fracture state. The 

damage variable varies from zero (undamaged) to one (completely damaged). Another, 

smeared approach based method known as Phase Field Method also utilizes a 

continuous scalar field (the phase field) to depict the fracture state. This field smoothly 

transits between phases (intact and cracked material) across a characteristic length. 

Further, in discrete method, the Phantom Node Method, enhances standard meshfree 

methods by incorporating additional nodes (phantom nodes) to effectively manage 

discontinuities such as cracks. XFEM, another notable approach, employs enrichment 

functions to alter standard element shape functions near crack tips, allowing precise 

modelling of stress singularities. Each numerical method possesses its own set of 

strengths and weaknesses. The forthcoming chapter titled Literature Review thoroughly 

explores the pros and cons of various methods rooted in continuum mechanics and 

fracture mechanics. This research study introduces a novel approach based on a Floating 
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Node and Smoothing technique, aimed at overcoming the limitations associated with 

the existing numerical methods. 

The Floating Node Method (FNM) is a numerical approach that works on the 

principles of the discrete crack approach. It introduces additional "floating" nodes that 

represent discontinuity within elements. The method assigns the position to floating 

nodes at the intersection of crack and element edges and the additional nodes get 

activated only for the elements having discontinuity. The FNM can model brittle, quasi-

brittle and ductile fracture by incorporating appropriate interface evolution laws. 

Therefore, the primary objective of this thesis is to formulate an innovative discrete 

approach by integrating the concepts of the floating node method and the strain 

smoothing technique. This study introduces a new method known as SFNM for 

analysing material fracture. SFNM combines the advantages of the floating node 

method, which positions the floating nodes at the actual crack/discontinuity locations, 

while the strain smoothing approach eliminates the issues associated with the inverse of 

Jacobian by converting the area integral into line integral. Thus, the issues associated 

with element distortion and integration are eliminated in SFNM. The detailed literature 

on FNM and SFNM is provided in Chapter-2. 

1.3.1 Cohesive Zone Modelling 

Addressing the nonlinearity inherent in the fracture process zone ahead of the crack tip 

necessitates the utilization of cohesive zone models. Cohesive zone models, also known 

as traction-separation laws or cohesive laws, are used in computational simulations to 

describe the behaviour of cracks, interfaces, and delamination in materials. These laws 

are particularly useful in situations where the behaviour of a material at the crack or 

interface plays a critical role in determining the overall response of the structure. The 

crack initiation and propagation is based on the cohesive strength, critical crack opening 

of the interfaces and the fracture energy therefore the fracture problem can be solved 

with or without the initial crack assumption. The nonlinear nature of the fracture process 

zone (FPZ) is tackled by the traction separation laws. This model was introduced in the 

early sixties for metals by Dugdale [8] and Barenblatt [9] for the perfectly brittle 

materials. The implementation of CZM clubbed with FEM was first presented by 

Hillerborg [10]. Further, a number of traction separation laws were proposed for the 

concrete based on the fracture energy. Initially, it was used for brittle materials [11,12] 

and further extended to the ductile materials [13–15]. The implementation of the 
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cohesive zone was along the elements and further embedded inside the elements [16]. 

Using the finite elements based on partition of unity the cohesive crack was 

implemented to understand the behaviour of the different materials [17–21].  

1.4 Objectives 

This thesis investigates the fracture behaviour of brittle and quasi-brittle materials 

computationally using the smoothed floating node method. The primary goal is to 

establish the numerical framework for the smoothed floating node method and 

application of it to fundamental fracture mechanics problems under mechanical and 

thermo-mechanical loading conditions. The main objectives of the thesis are 

summarized as follows: 

● To develop the smoothed floating node numerical framework for the failure 

analysis of 2-D linear elastic bodies. 

● To extend the proposed smoothed floating node method for failure analysis of 

quasi-brittle materials under mechanical loading conditions. 

● To predict the fracture behaviour of brittle materials under thermo-elastic loading 

conditions using the proposed method. 

● To develop a numerical framework for the fracture modelling of quasi-brittle 

materials under thermo-mechanical loading conditions. 

1.5 Thesis Outline 

The complete thesis is summarised in seven chapters. A brief of each chapter is 

discussed in this section.  

Chapter 1. Introduction  

The introduction chapter of this thesis serves as a gateway to the exploration of a highly 

specialized and critical area of study i.e. fracture mechanics framework for crack 

modelling using a discrete approach. This chapter is designed to establish the essential 

groundwork for the subsequent examination of this intricate subject matter. It 

comprehensively covers all the necessary details for the analysis to follow. It 

accomplishes this by addressing key components, including the background, 

motivation, and scope of the research. Furthermore, it outlines the strategic approach 

that will be adopted to investigate the crack modelling within the context of fracture 

mechanics using discrete approaches.  
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Chapter 2. Literature Review  

This chapter provides a comprehensive overview of the methods employed to 

understand and predict crack behaviour in materials. This survey considers mainly two 

fundamental strategies: the smeared and the discrete approach. The literature review 

highlights the diverse landscape of crack modelling through an examination of historical 

development, theoretical frameworks, validation techniques, applications and emerging 

trends, which offers insights into the balance between understanding theories and 

computer simulations in the fields of the mechanics of fractures. This chapter 

emphasizes various computational methods documented in the literature. 

Chapter 3. Development of SFNM to Model 2D Arbitrary Crack  

This chapter offers an in-depth exploration of the SFNM's foundational structure and 

practical application. It conducts a rigorous examination of the convergence study 

involving stress intensity factors and strain energy within diverse material contexts. 

Furthermore, it positions the SFNM as a favourable option in contrast to other advanced 

methods, emphasizing its distinct merits in the context of fracture mechanics analysis.  

Chapter 4. SFNM Implementation with CZM for Quasi-brittle Materials  

This chapter sheds light on the nonlinear fracture process zone that occurs ahead of the 

crack tip in materials with quasi-brittle characteristics. It provides a comprehensive 

understanding of the integration of the cohesive zone model with SFNM, offering 

detailed insights into this combination. First the validation of the framework is verified 

with the patch test using single element in different mode conditions. The chapter 

addresses problem-solving for various modes including Mode I, Mode II, and mixed-

mode loading conditions.  

Chapter 5. Thermo-elastic Brittle Fracture using SFNM with CZM 

This chapter focuses on assessing the effectiveness of the SFNM framework when 

subjected to thermo-elastic loading conditions. It extensively examines how cracks 

behave, particularly in isothermal and adiabatic thermal scenarios, spanning both 

homogeneous and nonhomogeneous materials.  

Chapter 6. Thermo-mechanical Quasi-brittle Fracture  

In this chapter, a combination of thermal and mechanical loading conditions is employed 

for crack analysis within the discrete approach. Furthermore, the incorporation of the 

cohesive zone model (CZM) is demonstrated, particularly in the context of quasi-brittle 

materials. The fracture process zone employs both thermal and mechanical cohesive 

zone formulations. The chapter entails a comparative assessment of crack propagation 
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paths across distinct scenarios such as mechanical, thermal, and combined mechanical 

and thermal loadings.  

Chapter 7. Conclusions and Future Scope 

This chapter presents a summary of the major conclusions drawn from the presented 

work. It also highlights the distinctive advantages of the SFNM compared to other 

advanced finite element-based methods. The possible extensions of the proposed work 

are also presented in the future scope section of the chapter. 

Finally, the references taken from papers, books, websites, etc., have been provided at 

the end of the dissertation. 
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Chapter 2   

Literature Review 

 

This chapter provides a detailed overview of some of the recent developments in the 

field of fracture mechanics, with particular emphasis on failure models based on 

continuous, and discontinuous FE frameworks. First, a brief discussion regarding the 

development of continuous approaches is presented to highlight their advantages and 

disadvantages. Thereafter, a brief introduction to discrete/discontinuous failure 

approaches is presented, emphasizing the floating node method. Finally, the last part of 

this chapter reviews the smoothing procedure and its advantages in numerical analysis 

of fracture problems. 

2.1 Continuous Approach 

Continuum damage mechanics is centred on the comprehension and simulation of 

progressive material degradation caused by internal microstructural damage. It provides 

a structured framework for analysing the development of damage within a material 

while considering its mechanical responses. This approach avoids the necessity to model 

the physical damage in a realistic way. The main advantage of it is that it can include 

gradual changes in damage within a complex simulation of the failure of a component 

or structure. Damage is assumed to be a function of local stress or strain, and of time or 

number of cycles, so it is possible to incorporate the effects of both fatigue and creep, 

as well as gradual damage accumulation under increasing monotonic loads in quasi-

brittle materials. At its core is the introduction of a damage variable which quantifies 

the extent of material damage on a scale from 0 (undamaged) to 1 (complete failure), 

capturing the transition from intact to fully damaged states. 

The evolution of this damage variable over time, driven by loading and 

deformation, is governed by an evolution law derived from experimental observations 

or microstructural considerations. This evolution is incorporated into the material's 

constitutive equations, enabling the reduction in stiffness and strength due to damage. 

As the damage variable increases, the material's load-carrying capacity diminishes. 

Failure criteria are established to define conditions under which failure occurs, often 

relying on the damage variable surpassing a critical threshold or specific mechanical 
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properties dropping to defined levels. CDM's predictive capability extends to localizing 

damage within a material, identifying areas where damage accumulates, leading to crack 

initiation and propagation. It also seeks to establish the relationship between 

microstructure, damage evolution, and macroscopic mechanical behaviour by 

considering factors like voids, inclusions, and micro-cracks. Finally, real-world material 

behaviour under various loading conditions is validated to ensure accuracy and 

reliability. Finite Element Analysis (FEA) combined with damage mechanics models 

enables us to create simulations that closely mimic real-world scenarios. Nevertheless, 

these models come with certain drawbacks. They often oversimplify damage by 

representing it as a single value. Yet, in actual situations, different types of damage, like 

delamination or micro-cracking, can have intricate behaviour and effects. Their 

responsiveness to factors in the numerical model, such as mesh density, adds another 

layer of complexity. Typically, these models are applied locally, where the extent of 

damage in each element is solely influenced by its stress and strain history. Due to their 

limitations in handling cracking processes, damage mechanics models are generally not 

used to predict such phenomena. 

The preceding explanation offers a comprehensive overview of CDM, and 

researchers have expanded upon this concept in diverse ways, leading to the 

development of various techniques aimed at understanding damage mechanics. The 

subsequent section highlights a subset of these techniques collected from the existing 

literature. 

2.1.1 Gradient Damage Models 

In the gradient damage model, the material's response is characterized by both the 

displacement field and the damage field [22–25]. The damage field represents the extent 

of material degradation at different points within the material. This model is particularly 

useful for capturing phenomena such as crack initiation, propagation, and branching, 

which occur in materials under extreme loading conditions. The interaction domain 

dealing with micro-cracks and fracture process zone introduces a length scale parameter 

into the formulation, which serves as a localization limiter during strain softening [26]. 

Gradient damage models introduce a length scale parameter to capture the interaction 

between intact material and damage, allowing for smoother damage evolution and crack 

initiation. A length scale parameter relation with damage, in order to satisfy the 

thermodynamics requirement was suggested in ref. [27]. The gradient damage model 
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introduces additional governing equations to describe the evolution of the damage field, 

typically involving partial differential equations. These equations take into account 

factors such as the stress and strain fields, as well as the gradient of the damage field 

itself [28]. The model's parameters are determined based on experimental data and 

physical considerations related to the material being studied. This model finds 

application in various fields, including solid mechanics, fracture mechanics, and 

structural engineering, where accurately predicting the failure behaviour of materials is 

crucial.  

Calibrating model parameters can be challenging and relies heavily on 

experimental data, especially for complex materials. Accurate results may require fine 

meshes and appropriate mesh configurations to capture localized damage effectively. 

The model might exhibit numerical instabilities, particularly when abrupt changes in the 

damage field need to be captured. Incorporating the model into multiscale simulations 

introduces challenges in data transfer between different scales. Gradient damage models 

can represent micro-cracks and discontinuities by varying the damage parameter within 

the material. The length scale parameter in gradient damage models can be used to 

handle the presence of inclusions and voids, influencing the damage evolution in their 

vicinity. 

2.1.2 Peridynamics 

Peridynamics presents a computational modelling paradigm that distinguishes itself 

from conventional continuum mechanics. It centres on the interactions among material 

points over finite distances, departing from reliance on local derivatives and differential 

equations [29,30]. This unique perspective allows peridynamics to effectively handle 

problems involving crack initiation, propagation, and complex material behaviours that 

are challenging for classical methods. Peridynamics theory can be broadly divided into 

two types: bond-based, and state-based peridynamics [31]. Peridynamics was 

introduced as an extension of continuum mechanics to address challenges associated 

with cracks and discontinuities. Unlike the local nature of partial differential equations, 

peridynamics employs integral equations to describe the interactions between material 

points, which can span considerable distances. This nonlocal behaviour inherently 

captures long-range interactions, making it an attractive choice for modelling crack 

propagation and complex material responses. Since its inception, it has been employed 

in diverse domains. For instance, it finds utility in studying composite materials [32,33] 
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to predict damage and stress distribution, visco-plasticity [34], thermo-visco-plasticity 

[35] as well as in the analysis of concrete structures [36]. Notably, peridynamics doesn't 

require a structured mesh, opting to represent materials via assemblies of material 

points. This simplifies mesh generation, particularly for intricate geometries. 

Nonetheless, the computational demand of peridynamics calculations, stemming from 

nonlocal interactions, restrict its application to specific problems. 

2.1.3 Phase Field Method 

The Phase Field Method (PFM) has emerged as an alternative approach to model 

fracture problems. PFM, the discontinuity represented by a crack is depicted as damage 

spread across a regularized region. Various models have been developed within this 

framework, including physics-based models employing the Ginsberg-Landau phase 

evolution [37,38], and mechanics-based models grounded in the variational theory of 

fracture [39]. The latter has proven instrumental in overcoming the limitations of 

Griffith's approach, particularly in addressing crack nucleation, curvilinear crack path, 

branching, and other aspects. 

The variational approach within PFM involves minimizing the total potential 

energy concerning the displacement field and a scalar phase variable that governs crack 

topology evolution [40–44]. To ensure distinct behavior in tensile and compressive 

fields, literature introduces an additive decomposition of elastic energy density based 

on volumetric and deviatoric contributions [45,46]. An important contribution to phase-

field modeling is Miehe’s thermodynamically compatible model, which incorporates 

principles of continuum mechanics and thermodynamics along with an anisotropic split 

in strain energy density [47,48]. This model introduces crack irreversibility through the 

inclusion of a local history field variable. Additionally, Wu et al. have presented a 

similar anisotropic model featuring a positive-negative decomposition of the effective 

stress tensor [49]. Phase-field models have found applications in a wide array of fracture 

scenarios including dynamic problems [50,51], and cohesive fracture problems [52]. 

Most recently, the hybrid approach, integrating phase field and machine learning, excels 

in accurately predicting precise structural residual useful life. This is achieved through 

a phase field and deep-learning based methodology using convolutional neural network 

(CNN) [53]. A framework for non-deterministic damage prediction in 2D and 3D 

fracture problems is created, employing a recently developed machine learning 

technique, specifically the extended support vector regression (X-SVR) [54]. 
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Additionally, adaptive mesh refinement techniques have been devised to enhance both 

the computational accuracy and efficiency of the phase-field method (PFM) 

concurrently aiming to refine the elements associated with crack propagation [55–58]. 

The effectiveness of phase field modelling lies in its ability to simulate a wide 

range of complex processes, such as solidification, melting, coarsening, and grain 

growth, across multiple length and time scales [59–61]. It enables the study of intricate 

microstructural evolution and pattern formation in materials without requiring explicit 

tracking of interfaces. However, its accuracy is subjected to the careful calibration of 

parameters and mesh resolution, and large-scale simulations can still be computationally 

demanding. Despite these challenges, phase field modelling stands as a valuable tool for 

researchers and engineers to gain insights into the behaviour of materials undergoing 

phase transitions and evolving interfaces. 

2.2 Discontinuous Approaches 

The other state-of-the-art approach to model the failure is a discrete/discontinuous 

approach, which gives an explicit representation of failure through discontinuous 

displacement fields. In this approach, a crack is usually defined as a discrete topological 

discontinuity represented over a surface, which is introduced separately in the domain. 

To address failure within a discrete/discontinuous framework, various contributions can 

be found in the literature based on the fundamentals of linear elastic fracture mechanics 

and elastic plastic fracture mechanics. The fracture mechanics approaches are briefly 

discussed in the following paragraphs. 

1. Linear Elastic Fracture Mechanics 

Linear Elastic Fracture Mechanics (LEFM) is a fundamental framework used to analyse 

and understand the behaviour of cracks and fractures in solid materials. It provides a 

systematic approach for studying the mechanics of brittle materials under the influence 

of external loads, with a focus on linear elasticity. LEFM is particularly useful for 

predicting the conditions under which cracks in materials will propagate or remain 

stable. 

The foundation of LEFM lies in the principles of linear elasticity, which assumes 

that materials deform linearly under small loads and the stress and strain are directly 

proportional within this elastic range. In the context of fracture mechanics, LEFM 

introduces concepts like stress intensity factor (K), which quantifies the stress field at 

the crack tip, and fracture toughness (Kc), which characterizes a material's resistance to 
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crack propagation. The critical value of K for a material represents the point beyond 

which crack growth becomes unstable. It is a material-specific parameter that indicates 

the stress intensity factor required to initiate or propagate a crack. It is important to note 

that LEFM has limitations, particularly its applicability to brittle materials and small-

scale yielding problems. It is less suitable for ductile materials that experience 

significant plastic deformation. Despite these limitations, LEFM remains a valuable tool 

in understanding and predicting crack behaviour in a wide range of engineering and 

materials science applications. 

2. Elastic-Plastic Fracture Mechanics 

Most engineering materials show nonlinear elastic or inelastic behaviour under the 

operating conditions. The elasto-plastic behaviour of the material makes the fracture 

analysis complex as this implies the existence of two zones; namely, the plastic zone 

near the crack tip and the elastic zone surrounding the plastic zone. Thus, linear elastic 

fracture mechanics may not hold good for such materials. The elasto-plastic fracture 

mechanics is intended to analyse these materials in the presence of large plastic zones. 

Elasto-plastic crack problems are characterized by other fracture parameters such as 

crack tip opening displacement and J-integral. 

a) Crack Tip Opening Displacement 

The measurement of fracture toughness by assessing the opening at the crack tip is 

referred to as Critical Tip Opening Displacement (CTOD). In materials that undergo 

significant plastic deformation, it is common for the surfaces of cracks to separate prior 

to fracturing, which is a consequence of the plastic deformation process. The material 

near the crack tip undergoes plastic deformation in the plastic zone, the square root 

singularity of stress field does not exist. As the stresses near the crack tip reach a critical 

value, the crack faces move apart from each other. The CTOD is a measure of the 

separation of crack faces and quantifies the severity of plastic deformation. 

b) J-Contour Integral 

Rice (1968) [62] established a path-independent contour integral to calculate the crack-

tip energy release rate, idealizing elastic-plastic deformation as nonlinear elastic. 

Furthermore, Rice and Rosengren (1968) [63] derived a solution for crack-tip stress and 

displacement components for materials described by the Ramberg-Osgood relation, 

representing nonlinear behaviour. The concept of J-integral received enormous success 

in modelling the fracture behaviour of ductile materials exhibiting significant plastic 
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behaviour. In this approach, a generalized energy release rate for nonlinear elastic 

materials is evaluated. J-integral is evaluated along an arbitrary line around the crack 

tip and can be expressed in the form of energy release rate. This fracture parameter is 

competent enough to analyse both linear elastic and nonlinear elasto-plastic cracked 

problems.  

The preceding explanation provides a comprehensive overview of fracture 

mechanics approaches, and researchers have extended these concepts in diverse ways, 

leading to the development of various techniques aimed at understanding fracture 

mechanics. The subsequent section discusses the applications of fracture mechanics 

concepts in different numerical techniques for solving fracture problems. 

2.2.1 Phantom Node Method 

Phantom Node Method (PNM) is a mesh-based approach that introduces additional 

"phantom" nodes to represent cracks and interfaces, enabling the modelling of evolving 

discontinuities. PNM can represent evolving micro-cracks and discontinuities by 

assigning additional nodes to describe their shapes and paths. The method updates these 

nodes as cracks grow. Within this approach, it becomes possible to position a crack tip 

within an element, enabling nearly independent propagation of cracks regardless of the 

finite element mesh [64]. To simulate cohesive cracks in quasi-brittle materials, extra 

displacement degrees of freedom at existing nodes are introduced, enabling the 

propagation of discontinuities within the elements. This is achieved through the 

utilization of two distinct sets of standard basis functions. One set is zero on one side of 

the discontinuity and retains typical values on the opposite side, while the opposite 

behaviour applies to the other set [65]. PNM, equivalent to standard XFEM, employs 

the partition of unity concept. It uses a rearrangement of finite element basis and nodal 

degrees of freedom to represent discontinuities with superimposed elements and 

phantom nodes. To handle cracks, phantom nodes and superimposed elements are added 

to the original mesh, while shear bands are addressed by introducing phantom degrees 

of freedom. This method simplifies the treatment of element-by-element crack and shear 

band propagation in explicit simulations [66]. Reference [67,68] provides information 

on the development of PNM and its impressive achievements in modelling the quasi-

static failure of composite materials. The qualitative and quantitative investigation of 

matrix cracking-induced delamination in composite laminates is conducted within a 

finite element framework, utilizing the phantom node method [69]. In Reference [70], 



 

2.2 Discontinuous Approaches 

 

20 

 

the investigation of predicting fatigue crack initiation is carried out through the 

utilization of the extended finite element method employing phantom nodes. Recently, 

a framework for modelling large deformation contact-impact problems is presented 

using the phantom-node extended finite element method. This framework incorporates 

large sliding through a master-slave approach and accounts for large deformations and 

strains using an updated Lagrangian scheme [71]. 

However, in this method numerical stability concerns may arise, particularly when 

simulating dynamic or highly nonlinear scenarios. Furthermore, the incorporation of 

phantom nodes and the associated increase in degrees of freedom can substantially 

elevate computational demands, rendering it less suitable for extensive simulations [66]. 

Consequently, although effective in specific contexts, the phantom node method may 

not be the ideal selection for all finite element problems. 

2.2.2 Extended Finite Element Method 

The extended Finite Element Method (XFEM), developed by Belytschko and Black 

[72], is a numerical technique employed to effectively simulate problems characterized 

by complex discontinuities, such as cracks and interfaces, within finite element analysis. 

The XFEM approach is particularly advantageous as it obviates the need of conformal 

remeshing and the fine meshing along the discontinuity, thereby significantly reducing 

computational costs [73]. Further, the enrichment functions were suggested by Dolbow 

for a discontinuity to solve 2D elastic problem. Level set method was clubbed with 

XFEM for the tracking of the discontinuity inside the domain [74–76]. The mechanism 

of the XFEM approach involves enriching the standard finite element approximation 

space with additional functions, known as enrichment functions or branch functions 

[77–80]. These enrichment functions are designed to capture the behaviour of the 

solution near the discontinuity, enabling accurate representation of stress and 

displacement fields. 

The key parameters in XFEM approach include the choice of enrichment 

functions, integration schemes for evaluating integrals involving these functions, and 

the shape of the elements used in the simulation. Enrichment functions are selected 

based on the type of discontinuity present, and these functions introduce additional 

degrees of freedom (dofs) associated with the discontinuity. The interface computational 

analysis is executed using these additional virtual nodes dofs. Further the blending 

elements enhancing methods were developed to optimise the accuracy and the 



 

 Chapter 2 Literature Review 

 

21 

 

convergence rate [81]. XFEM finds application in inhomogeneous materials and 

composites [82–85], quasi-brittle materials [86], biomaterials [87,88] etc. A detailed 

overview of the method and its applications can be found in literature [89,90]. 

However, the accurate treatment of singularities, particularly singularities at the 

crack tip, remains a challenge in FEM. Special techniques, such as crack tip enrichment 

functions, are used to address these singularities and improve the accuracy of stress 

intensity factor calculations in XFEM. However, it introduces in general an error in the 

representation of the geometry of discontinuities, when mapping the discontinuities 

from the physical to the natural space [89][64].  

2.2.3 Element-Free Galerkin Method with geometric discontinuity 

The Element-Free Galerkin Method (EFGM) is a numerical technique employed for 

solving partial differential equations (PDEs) within a computational framework that 

operates without a predefined mesh [91,92]. Different discontinuity tracking schemes 

such as visibility criterion, XFEM etc. are employed along with EFGM to solve fracture 

mechanics problems. Unlike traditional finite element methods, EFGM employs a 

meshless approach, which eliminates the need for complex mesh generation and 

refinement processes [93]. In EFGM, the domain is discretized using scattered nodes, 

often based on a cloud-like distribution, allowing for flexible and adaptive resolution. 

Only nodal data is required to compute the field variables. Integration in EFGM is 

typically achieved using techniques such as radial basis functions or moving least 

squares, enabling efficient handling of spatial derivatives and integrals [94]. The 

selection of influence areas around nodes plays a crucial role, influencing solution 

accuracy and stability. Addressing 3D fracture problems with EFGM, involves utilizing 

a visibility criterion to detect the presence of boundary or geometric discontinuities, 

while the penalty method is applied to enforce the boundary conditions [95,96]. 

Simulations of quasi-static fatigue crack growth in both homogeneous and bi-material 

interfacial cracks are conducted utilizing the Element-Free Galerkin Method (EFGM) 

under both mechanical and thermo-elastic loading conditions [97,98]. The references 

[99–101] contain examples of additional fracture problems that have been modeled 

using both the meshfree method and the extended finite element method. 

The meshless approach finds application in various fields, including fluid dynamics, 

solid mechanics, and heat transfer, offering a promising alternative to conventional 

numerical methods [95,98,102]. A limitation of the EFGM arises when employing a 
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single integration point within a domain, as this choice could potentially result in 

instability due to the presence of higher-order shape functions. Moreover, the 

computation of shape functions is time consuming, hence makes it computationally 

inefficient.   

2.2.4 Crack Particle Method  

The Crack Particle Method (CPM) is a mesh-free approach that represents a crack as a 

set of cracked particles. Cracked segments model discrete cracks, employing a 

discontinuous enrichment that can be aligned arbitrarily at each node within the body. 

To account for displacement discontinuity, additional unknowns are introduced in the 

variational formulation [103]. An additional enhancement in this method involves the 

detection of cracking, where particles are divided into two, positioned on opposite sides 

of the crack. To accurately depict the jump in the displacement field, the shape functions 

of particles adjacent to cohesive crack segments are intersected across the crack 

boundary, similar to the visibility method. CPM is developed further to incorporate the 

Configurational Forces(CF) approach instead of using  maximum circumferential stress 

criterion for crack propagation [104]. The method has been expanded to address cracks 

with significant curvatures through the incorporation of bilinear segments in the two-

dimensional framework [105]. The CPM is employed in various fields, including 

dynamic fracture, ductile fracture, and the simulation of multiple cracks. 

2.2.5 Floating Node Method 

The floating node method represents a refined advancement over the XFEM and 

phantom node method with respect to simulating structural discontinuities. Unlike the 

XFEM and PNM, where supplementary nodes align with the standard nodes' 

coordinates within the cracked element, the FNM takes a different approach. In the case 

of the FNM, each element incorporates standard nodes alongside dormant floating 

nodes, which do not possess specific coordinate positions within the element. During 

instances involving an un-cracked structure, these additional nodes remain inactive, 

causing the element to behave comparably to a typical finite element. However, when a 

discontinuity arises within a specific element, the corresponding floating nodes become 

active and dynamically assume positions based on the crack's orientation. This 

adaptation allows the FNM to effectively model the development of structural failures 

in composite materials [4,106,107], brittle fracture [5,108] showcasing its relevance in 

progressive failure analysis. A novel numerical framework utilizing the floating node 

https://www.sciencedirect.com/topics/engineering/circumferential
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method is introduced for investigating delamination migration problems. This approach 

involves the insertion of discrete cohesive cracks into a single element to provide 

multiple potential crack paths [109]. Thereafter, an implementation of a floating node 

method with strong discontinuities in laminated composites under large deformations is 

also introduced where enriched solid and cohesive elements are employed to handle 

matrix cracking and delamination through a mixed-mode cohesive model [110]. 

Recently, a numerical approach for analysing multiple fatigue-induced delamination 

cracks is developed, which includes a cohesive zone model along with an Adaptive 

Refinement Scheme (ARS) and an Adaptive Floating Node Method (A-FNM). This 

integrated approach effectively refines the model during the analysis process [111]. 

2.2.6 Strain Smoothening Approach 

Chen et al. [112] originally introduced the concept of strain smoothing within meshfree 

methods, which was subsequently extended into the framework of FEM [113–116]. The 

technique of strain smoothing offers the potential for enhancing accuracy and 

convergence rates in comparison to the conventional finite element approach. This 

advantage becomes particularly pronounced in scenarios involving singularities or 

distorted meshes, and all of this is achieved at a reduced computational expense. This 

innovative technique circumvents the necessity of computing and inverting the Jacobian 

matrix for each element or sub-element, thereby contributing to its computational 

efficiency. The strategy for applying strain smoothing presents various options, 

including node-based smoothing [117], cell-based smoothing [118,119], face-based 

smoothing [120], and edge-based smoothing [121]. These options allow for flexible 

adaptation to different problem scenarios. This approach has been successfully 

employed to address problems featuring singular stress fields of arbitrary order [122]. 

Moreover, the technique is seamlessly integrated with the phase field method to analyse 

brittle fracture through dedicated subroutines [123]. Two distinct Smoothed Finite 

Element Methods (SFEMs), referred to as NS-FEM and CS-FEM, are developed to 

address topology optimization challenges involving both compressible and 

incompressible materials [124]. The extension of a cell-based smoothed three-node 

Mindlin plate element (CS-FEM-MIN3) is implemented for the geometrically nonlinear 

analysis of laminated composite plates [119]. Furthermore, the application of this 

concept extends to the enhancement of performance in standard three-noded constant 

strain triangular elements [125]. 
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Based on the literature, the continuum damage mechanics approach is recognized 

for its effectiveness at the micro-level but it encounters limitations at the macro-level, 

prompting the utilization of discrete crack approaches. The preceding sections explore 

numerous advanced discrete methods. Despite significant progress in advanced discrete 

approaches, there remains a challenging research gap in developing advanced numerical 

models capable of addressing diverse brittle, quasi-brittle fracture scenarios and 

complex thermo-mechanical loading conditions. Therefore, additional research 

contributions in this direction are still required. 

2.2.7 Boundary Element Method 

The Boundary Element Method, also referred to as the Boundary Integral Equation 

Method, is a numerical approach that focuses on the domain's boundary instead of 

partitioning the entire domain into elements. This method is applicable to linear partial 

differential equations (PDEs), wherein the solution within a specific region's interior is 

entirely determined by values at the boundary. In contrast to finite element methods, 

which transform PDEs into linear algebra problems by dividing the domain into 

elements, boundary element methods operate on elements situated on the domain's 

boundary. BEM proves particularly advantageous in scenarios involving infinite 

domains or situations where the solution is only required along the boundary. By 

reducing the dimensionality of the problem, BEM enhances computational efficiency 

for specific types of applications. Application of BEM for fracture mechanics problems 

in orthotropic bodies [126] and anisotropic composite laminates [127] is presented for 

stress intensity factor calculation. BEM formulation for 2-D problems is presented in 

the field of magnetoelectroelastic to analyse crack problems [128,129]. 

Another technique rooted in the BEM is the Scaled Boundary Finite Element Method 

(SBFEM) that combines the features of both the boundary element method (BEM) and 

the finite element method (FEM). The Scaled Boundary Finite Element Method is 

particularly useful for solving problems related to elastic wave propagation, structural 

dynamics, and acoustics. In SBFEM, the domain of interest is divided into two regions: 

an inner region, where the problem is solved using traditional finite elements, and an 

outer region or boundary, where the problem is addressed using the boundary element 

method. The finite element mesh is confined to the interior of the domain, while the 

boundary elements are employed along the domain's boundary. 

 



Chapter 3  

Development of SFNM to Model 2D Arbitrary Crack  

 

In this chapter, Floating Node Method (FNM), is coupled with cell-wise strain 

Smoothed Finite Element Method (SFEM) for modelling 2D linear elastic fracture 

mechanics problems. The proposed method is termed as Smoothed Floating Node 

Method (SFNM), where FNM is used to represent the kinematics of crack and the crack 

front inside the domain without the requirement of remeshing and discontinuous 

enrichment functions during crack growth. For smoothing, a constant smoothing 

function is considered over the smoothing domains through which classical domain 

integration changes to line integration along each boundary of the smoothing cell, thus 

derivative of shape functions are not required in the computation of the field gradients. 

The values of stress intensity factor are obtained from the SFNM solution using domain 

based interaction integral approach. Few standard fracture mechanics problems are 

considered to check the accuracy and effectiveness of the proposed method.  

3.1 Introduction 

Defects such as cracks and voids are inevitable in the engineering materials and are 

mainly responsible for the fracture and failure of materials during the service. Therefore, 

it is important to study the amalgamation of the inherent micro cracks and voids, crack 

initiation and propagation of cracks in the structural components to predict the life span. 

The FEM can be the best suited numerical tool to carry out such simulations of fracture 

mechanics problems. In FEM, mapped element takes part as a paired set between 

physical and natural coordinate system to maintain the exact equivalence. Thus, element 

distortion is not permitted as it causes singularity in the inversion of stiffness matrix. 

Moreover, in simulations of crack propagation behaviour using FEM, conformal 

meshing is required to capture the crack discontinuity [72]. This mesh update in the 

crack tip vicinity corresponding to crack growth makes the simulation complex and time 

consuming. In addition to this, remeshing during crack growth introduces error while 

transferring the field variables data from the previous mesh to the new one. Therefore, 

it becomes cumbersome to model crack propagation and evolving discontinuity using 
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FEM approach alone. A more robust framework is desirable for the prediction of 

progressive failure. To this end, efforts have been made by researchers to establish 

different advanced numerical methods, such as the meshfree method, extended finite 

element method, phantom node method, boundary element method, isogeometric 

analysis, floating node method, continuum damage models, Phase Field Method etc. 

The detailed review of these numerical approaches is provided in Chapter-2. 

Recently, floating node method is proposed based on the development of PNM, 

which has similar computational architecture to PNM, but the locations of additional 

nodes do not need to be fixed. These additional nodes are called floating nodes that 

move to the crack-edge intersections to form the crack by partitioning the original 

element into sub-elements. The complex crack networks can be modelled in an element 

by forming sub-elements that are conformal to the cracks. So far, FNM has been 

extended for numerous fracture problems, ranging from single crack to multiple crack 

problems on isotropic [130] and composite materials [4,131]. The FNM alleviates the 

limitations such as remeshing during crack propagation, enrichment functions 

requirement, error during mapping the discontinuity from physical to natural space etc. 

Despite its success in fracture problems, there exists some limitations during integration 

where during mapping a basic requirement is that the element has to be convex and 

severe distortion is not acceptable so that a one-to-one coordinates correspondence 

between physical and natural space associated with element can be guaranteed. More 

precisely, no interior angle should be greater than 180o for a 2D four node element and 

the positivity of the Jacobian determinant should be ensured in numerical 

implementation [132], which increases the computational cost. Moreover, the modelling 

of arbitrary crack in FNM is cumbersome as in FNM a crack divides the intact element 

into sub-elements. Sometimes these sub-elements may have poor aspect ratio depending 

on the crack direction, which deteriorates the convergence rate during the simulations. 

To alleviate this issue, Kumar et al. [14] considered one additional floating node in each 

standard element to maintain the aspect ratio of the sub-elements within the acceptable 

limit. To overcome these issues of integration, Liu et al. [6] proposed a smoothed finite 

element method by combining the FEM with strain smoothing technique of meshfree 

methods. In this approach, smoothing operations are performed over the elements, 

which eliminates the requirement of Jacobian determinant during numerical integration. 

The strain smoothing concept is further extended with FEM [133] and XFEM [134,135] 
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for solving fracture problems. Though, by combining the smoothing procedures with 

FEM and XFEM, the requirement of mapping and positive Jacobian determinant during 

numerical integration is eliminated, the methods still suffer with the limitations 

associated with their basic framework, discussed in respective sections. 

To overcome the limitations associated with FEM, XFEM, XIGA, PNM, FNM, a 

new approach called as Smoothed Floating Node Method (SFNM) is proposed by 

combining the FNM with strain smoothing technique. In SFNM, FNM is used to 

represent the kinematics of crack, and the system stiffness matrix is calculated by using 

the strain smoothing technique over the domain of the smoothing cell associated with 

the element. The values of stress intensity factor (SIF) are obtained from the SFNM 

solution using domain based interaction integral approach. The major features of the 

proposed method are as follows: 

 No requirement of remeshing and enrichment functions to model the static and 

crack propagation behaviour. 

 Less sensitive to the element distortion due to the absence of isoparametric 

mapping. 

 Unlike XFEM, no mixed terms of stiffness occur, that results in better conditioning. 

 Simplify integration by transforming domain integration on Gauss points into line 

integration along the edges. 

 Shape function derivatives are not required for the field variable gradient matrix. 

 Element convexity restriction is less sensitive to the computational procedure, and 

maintaining the aspect ratio of the sub-divided elements in SFNM becomes 

redundant. 

To implement the proposed method, certain assumptions are considered, as outlined 

below. 

 Discretization of the domain into elements is a common practice in simulations, 

with the assumption of a uniform structural mesh. 

 Simulations assume small deformations, where the strains remain within the 

elastic range. 

 The material is considered to be homogeneous and isotropic, indicating uniform 

properties in all directions. 
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 Fracture mechanics simulations assume either plane stress or plane strain 

conditions, simplifying the problem by reducing it from three dimensions to two. 

 Problem-solving focuses on a specified initial crack, neglecting interactions 

between multiple cracks in the simulations. 

 Material properties are assumed to remain constant throughout the simulation. 

 The proposed method assumes the capture of the crack tip on any one edge of 

the element. 

To demonstrate the effectiveness of the proposed approach, three benchmark 

fracture mechanics problems are solved, and the results obtained by SFNM are 

compared with the available literature/theoretical results. In the first problem, an edge 

cracked plate under mode-I loading is considered and the relative error in SIF and strain 

energy are obtained. The second problem deals with an edge cracked plate under mode-

II loading condition. The error in SIF and strain energy are obtained and compared. In 

the third problem, a bi-material specimen having interfacial edge crack subjected to 

mode-I loading is solved.  

The chapter is organized as follows: Section 3.2 describes the governing equations 

and mathematical formulation of SFNM and smoothing technique. Section 3.3 and 

Section 3.4 contain the SIF computation and crack growth criterion respectively. The 

numerical problems are presented in Section 3.5 to demonstrate the effectiveness of the 

SFNM framework. Finally, the conclusions obtained through numerical simulations are 

provided in Section 3.6. 

3.2 Numerical Formulation 

In this section, the governing equations for the static analysis of an elastic medium 

containing a traction free crack are briefly discussed. A brief review of FNM and SFEM 

is also presented for completeness. Further, the shape function generation, numerical 

integration procedure in SFNM and its implementation procedure is discussed. 

3.2.1 Governing equations for elasto-statics  

Consider a linear elastic body with a discontinuity as shown in Figure 3.1. The domain 

Ω is divided into three parts 𝛤𝑢 where the displacement boundary conditions are applied, 

𝛤𝑡  where the traction boundary conditions are applied and 𝛤𝑐𝑟 which is the traction free 

surface representing the discontinuity.    
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Figure 3.1: A cracked domain with boundary conditions 

The strong form of the static equilibrium equation along with the boundary conditions 

are given as, 

∇. 𝛔 + 𝐛 = 𝟎 in Ω (3.1) 

𝛔 .  𝐧̂ = 𝐭 ̅   on 𝛤𝑡 (3.2a) 

𝛔 .  𝐧̂ = 𝟎   on 𝛤𝑐𝑟  (3.2b) 

𝐮 = 𝐮̅     on 𝛤𝑢 (3.2c) 

where ∇ is the gradient operator, 𝛔 is the Cauchy stress tensor, b is the body force vector 

per unit volume, 𝐧̂ is the unit outward normal and 𝐭 ̅is the applied traction vector. For 

small strains and displacements, the strain-displacement relation can be written as, 

where ∇𝐬 is the symmetric part of the gradient operator. The constitutive relation for 

linear elastic material is given by Hooke's law, 

where D is the material elasticity tensor.  

By substituting the constitutive relation and the strain-displacement relation, the weak 

form of the equilibrium equation can be expressed as, 

∫𝛔(𝐮): 𝛆(𝐯) 𝑑Ω

 

𝛺

= ∫𝐛. 𝐯 𝑑𝛤

 

𝛺

+ ∫𝐭.̅ 𝐯 𝑑𝛤

 

𝛤𝑡

 
(3.5) 

𝛆 =  𝛆(𝐮)  =  ∇s 𝐮 (3.3) 

𝛔 = 𝐃𝛆 (3.4) 
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where u and v are the displacement trial and the test functions, respectively. Upon 

discretization of u and v, the above weak form can be transformed into the following 

discrete set of equations, 

𝐊𝐝 = 𝐟 (3.6) 

where K is the global stiffness matrix, d is the nodal displacements vector and f is the 

external applied force vector.  

3.2.2 Basic formulation of FNM 

In FNM, each real node is characterized by its nodal coordinates and its associated dofs, 

and each element in the domain also contains a suitable number of floating dofs. Thus, 

discretized mesh contains of either intact element, or elements that encompasses a 

crack/discontinuity. The floating nodes in the intact element are dormant and the 

element thus identical to the standard finite element. Once a crack appears inside the 

intact element, the floating nodes get activated to model the crack in the element. The 

nodal position vectors of the floating nodes are defined by the crack position coordinates 

(points with coordinates xr and xs), refer Figure 3.2. Hence, the cracked element is split 

into two sub-elements Ω𝐴 and Ω𝐵, depending on the direction of the crack [106]. The 

vectors of nodal coordinates of sub-elements are defined as, 

                                𝐱Ω𝐴
T = [𝐱𝑟

T, 𝐱𝑠
T, 𝐱3

T, 𝐱4
T]       and       𝐱Ω𝐵

T = [𝐱1
T, 𝐱2

T, 𝐱𝑠
T, 𝐱𝑟

T] (3.7) 

Now, each sub-element ( A and B ) has a separate Jacobian given as, 

𝐉A =
d𝐱

dξ
=  
d𝐍

dξ
𝐱ΩA         and        𝐉B =

d𝐱

dξ
=  
d𝐍

dξ
𝐱ΩB 

(3.8) 

The displacement 𝐮A and 𝐮B in the sub-elements are interpolated separately from the 

respective degrees of freedom 𝐝A and 𝐝B of the sub-element 𝛺𝐴 and 𝛺𝐵 respectively, 

𝐮A = 𝐍𝐝A         and         𝐮B = 𝐍𝐝B (3.9) 

where  𝒅A
T = [𝐝7

T, 𝐝8
T, 𝐝3

T, 𝐝4
T]     and      𝒅B

T = [𝐝1
T, 𝐝2

T, 𝐝5
T, 𝐝6

T] 

The stiffness matrices and force vectors of the sub-elements are thus defined as, 

𝐊A = ∫𝐁A
T 𝐃 𝐁A 𝑑Ω

 

𝛺𝐴

      and     𝐊B = ∫𝐁B
T 𝐃 𝐁B 𝑑Ω

 

𝛺𝐵

 (3.10) 
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Figure 3.2: A schematic representation of strong discontinuity modelling in an element 

using floating node method.   

𝐟A = ∫𝐍T 𝐛 𝑑Ω

 

𝛺𝐴

   +  ∫ 𝐍T 𝐭 ̅𝑑𝛤

 

𝛤𝑡∩𝛤Ω𝐴

    (3.11a) 

𝐟B = ∫𝐍T 𝐛 𝑑Ω

 

𝛺𝐵

 + ∫ 𝐍T 𝐭 ̅𝑑𝛤

 

𝛤𝑡∩𝛤Ω𝐵

 (3.11b) 

The equilibrium equations for both sub-elements are written as, 

𝐊A𝐝A = 𝐟A      and      𝐊B 𝐝B = 𝐟B (3.12) 

Finally, the equilibrium equation of the floating node element is the assembly of the two 

sub-elements, and given as, 

𝐊𝐝 =  𝐟 (3.13) 

where 𝐊 = [
𝐊A   
 𝐊B

], 𝐝T = [𝐝𝐴
𝑇 , 𝐝𝐵

𝑇] and 𝐟T = [𝐟A
T, 𝐟B

T] when the two sub- 
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elements are fully separated.  

 

The crack tip modelling in FNM is very important aspect for failure analysis of a 

structure. In FNM, each individual element has the floating nodes either dormant or 

activated. The crack is modelled by splitting the intact element into two sub-elements 

by activating the floating nodes, and positioning them to the points obtained from the 

intersection of crack with the element edge. The split element has two floating nodes at 

the edge E2 of the intact element, where the crack terminates, refer Figure 3.3(a). 

Therefore, the crack tip remains open at the edge E2 as shown in Figure 3.3(b). Though 

the crack tip can be modelled by considering two sets of dofs from both floating nodes 

at the crack tip to be identical, this procedure may lead to an artefact at the crack tip as 

shown in Figure 3.3(c), i.e. the split elements at the crack tip do not have adequate 

topology for connecting with the adjacent intact element, resulting in a lack of 

displacement compatibility at the element edge E2. To alleviate this issue, the dofs at 

the crack tip are interpolated from the neighbouring dofs as illustrated in Figure 3.3(d). 

Hence, the intact element adjacent to crack tip is considered as a transition element (refer 

Figure 3.3(e)) to maintain the displacement compatibility between the split element and 

intact element. The detailed procedure can be found in literature [14]. The transition 

 

Figure 3.3: Crack tip modelling in floating node 
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element is considered at the crack tip which is further divided into triangular elements 

to improve the accuracy of the results. 

3.2.3 Strain smoothing technique 

The strain smoothing was first introduced by Chen et al. [112] for meshfree methods, 

and later extended in the framework of FEM [113–116,133]. The strain smoothing 

technique can achieve higher accuracy and convergence rates than the standard finite 

element method, especially in the presence of singularities or distorted meshes, for a 

slightly smaller computational cost. In the meshfree method based on nodal integration 

form, the integration in Eq. (3.5) is performed over representative cells of nodes in the 

problem domain. To guarantee the convergence of the solution, the linear exactness in 

the solution of the weak form should be ensured. To meet this requisite, the following 

integration constraint should be satisfied [112,136],  

∫𝐁𝐼
𝑇(𝐱)𝑑𝛺 = ∫𝐍𝐼

𝑇(𝐱)𝑑𝛤

Γ𝑡𝛺

 
(3.14) 

With                  𝐁𝐼 = [

𝑁𝐼,1 0

0 𝑁𝐼,2
𝑁𝐼,2 𝑁𝐼,1

],   𝐍𝐼 = [
𝑁𝐼𝑛1 0
0 𝑁𝐼𝑛2

𝑁𝐼𝑛2 𝑁𝐼𝑛1

] 

(3.15) 

where 𝐁I is the standard gradient matrix of node I, 𝑁I is the shape function of node I, 

𝑛1and 𝑛2 are the first and second components of the outward boundary normal vector 

of the smoothing cell. This condition is met by applying strain smoothing techniques for 

each representative nodal cell.  

The motivation of this work is to develop a Smoothed FNM (SFNM) by incorporating 

the strain smoothing technique in the framework of FNM. In SFNM, sub-elements are 

formed as in the FNM, but they are further subdivided into several smoothing subcells 

(see Figure 3.4) and integrated using the smoothing technique to elevate distortion 

sensitivity. When choosing a constant smoothing function, area integration over the 

subcell becomes line integration along its boundaries, and no gradient of shape functions 

is required in computing the field gradients or in forming the stiffness matrix. The 

integration along the edges of each subcell is done numerically using 1D Gauss 

integration scheme. Figure 3.5 shows the field nodes and integration points 

corresponding to different number of subcells. A smoothing operation is performed to 

the gradient of displacement for all the subcells in an element.  
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Figure 3.4: Schematic of subcells formation for integration in SFNM: (a) crack growth in 

domain (b) intact element subcells (c) 2 sub-elements with inclined crack path and further 

subdivision into triangular subcells and (d) 2 quadrilateral sub-elements with inclined crack 

path and further subdivision into quadrilateral subcells. 

Let 𝑢 represent the displacement along a certain direction, the smoothing 

operation for its gradient at a point 𝐱𝑐 (belonging to a subcell domain ΩC) is given as, 

∇̃𝑢(𝐱𝑐) = ∫∇𝑢(𝐱)𝜙(𝐱 − 𝐱𝑐)𝑑Ω

Ω

 
(3.16)   

Using Integration by parts, the right-hand side of Eq. (3.16) becomes 

∇̃𝑢(𝐱𝑐) = ∫𝑢(𝐱)𝐧(𝐱)𝜙(𝐱 − 𝐱𝑐)𝑑Γ −

Γ

∫𝑢(𝐱)∇𝜙(𝐱 − 𝐱𝑐)𝑑Ω

Ω

 (3.17) 

where 𝜙 is a smoothing function. A piecewise constant smoothing function is 

considered here, which is constant within ΩC and vanish everywhere else,    

𝜙(𝐱 − 𝐱𝑐) =  {
1
𝐴𝐶
⁄       𝐱 ∈ 𝛺𝐶

0             𝐱 ∉ 𝛺𝐶
 

(3.18) 

where 𝐴𝐶 = ∫ 𝑑Ω
𝛺𝐶

.  

The second term of the right hand side of Eq. (3.17) vanishes with the chosen 𝜙. 

Substituting 𝜙 into Eq. (3.17), we get the smoothed gradient of displacement as,     

∇̃𝑢(𝐱𝑐) = ∫𝑢(𝐱)𝐧(𝐱)𝜙(𝐱 − 𝐱𝑐)𝑑Γ

Γ𝐶

=
1

𝐴𝐶
∫𝑢(𝐱)𝐧(𝐱)𝑑Γ

Γ𝐶

 (3.19) 

(a) 
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Figure 3.5: Quadratic element division into smoothing subcells and integration scheme: (a)  

1-subcell (b) 2-subcells (c) 3-subcells and (d) 4-subcells. 

where Γ𝐶 is the boundary of the smoothing subcell. Here, the choice of piece-wise 

constant smoothing function 𝜙 converts the area integration (Eq. (3.16)) into line 

integration along the edges of the subcell. The smoothed displacement gradient becomes 

independent of 𝐱𝑐, i.e., constant within 𝛺𝐶 . Repeating the above procedure for the 

displacement vector 𝐮 and substituting the smoothed gradients into Eq. (3.3), the 

smoothed strain at 𝐱𝑐 can be obtained as,       

𝛆̃(𝐱𝑐) =  ∑𝐁̃𝐼(𝐱𝑐)𝐝𝐼

𝑛

𝐼=1

 
(3.20) 

 where n is the number of nodes and 𝐁̃𝐼 is the smoothed strain matrix of node I. For 2D, 

it is written as,  

𝐁̃𝐼(𝐱𝑐) =  [

𝑏̃𝐼1(𝐱𝑐) 0

0 𝑏̃𝐼2(𝐱𝑐)

𝑏̃𝐼2(𝐱𝑐) 𝑏̃𝐼1(𝐱𝑐)

] 

(3.21) 

 

where    𝑏̃𝐼𝑘(𝐱𝑐) =  
1

𝐴𝐶
∫ 𝑁𝐼(𝐱)𝑛𝑘(𝐱)Γ𝐶

 𝑑Γ,       (𝑘 = 1, 2)  
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If one Gaussian point is used for line integration along each segment of the boundary 

Γ𝑖
𝐶 of  Ω𝐶, the above equation can be transformed to its algebraic form as,    

𝑏̃𝐼𝑘(𝐱𝑐) =  ∑𝑁𝐼(𝐱𝑖
𝐺𝑃)𝑛𝑖𝑘

𝐶 𝑙𝑖
𝐶

𝑀

𝑖=1

 

 (3.22) 

where M is the number of boundary segments, 𝐱𝑖
𝐺𝑃 is the Gaussian point of the ith 

boundary segment Γ𝑖
𝐶 , 𝑙𝑖

𝐶 is the length and 𝑛𝑖
𝐶 the outward unit normal vector of Γ𝑖

𝐶, 

respectively. Once the smoothed gradient matrix over each subcell is evaluated, the 

smoothed element stiffness matrix of the sub-element 𝑒 of SFNM can be obtained by 

assembly from all the subcells in the element as, 

𝐊𝑒
SFNM = ∑ 𝐁̃𝐶

T

∀𝐶 ∈ 𝑒

𝐃𝐁̃𝐶𝐴𝐶 
(3.23) 

where 𝐁̃𝐶 (i.e., [𝐁̃𝐼(𝐱𝑐),… , 𝐁̃𝑛(𝐱𝑐)]) is the smoothed gradient matrix of the subcell C. 

Now, the final discretized algebraic system of equation for the split elements can be 

written as, 

𝐊A
SFNM𝐝A = 𝐟A      and      𝐊B

SFNM𝐝B = 𝐟B (3.24) 

Finally, the algebraic equation of SFNM is the assembly of the two sub-elements, 

𝐊SFNM 𝐝 = 𝐟 (3.25) 

where 𝐊SFNM = [
𝐊A
SFNM   

 𝐊B
SFNM] 

3.2.4 Shape function construction and numerical integration scheme  

In this section, we focus on the construction of the shape functions and integration 

scheme for the elements used in SFNM. In SFNM, both 4-node quadrilateral and 3-node 

triangular elements are used for the numerical simulations as shown in Figure 3.4. The 

number of subcells in an element depends on the required accuracy. In this work during 

smoothing procedure, 4-node quadrilateral element is divided into 4-subcells, however 

the procedure for dividing the quadrilateral element from 1-subcell to 4-subcells is 

discussed and illustrated in Figure 3.5. Similarly, the 3-node triangular element is 

divided into 1-subcell during the simulations, but the procedure to divide it into 1-
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subcell and 4-suncells is illustrated in Figure 3.6. For generalization. It is observed that 

SFEM solution using 1-subcell is equivalent to the FEM reduced integration [133]. The 

explicit shape functions themselves are used at the nodal points. The shape functions 

are interpolated simply by a linear function at any point on the boundary. For example, 

in Figure 3.5(b) the element is divided into 2-subcells and the nodal points (1, 2, 3, 4)  

 

Figure 3.6:  Triangular element division into smoothing subcells and integration scheme, (a) 

1-subcell (b) 4-subcells.  

SITE NODE 1 NODE 2 NODE 3 NODE 4 DESCRIPTION 

1 1 0 0 0 Field node 

2 0 1 0 0 Field node 

3 0 0 1 0 Field node 

4 0 0 0 1 Field node 

5 0.5 0.5 0 0 Edge midpoint 

6 0 0.5 0.5 0 Edge midpoint 

7 0 0 0.5 0.5 Edge midpoint 

8 0.5 0 0 0.5 Edge midpoint 

9 0.25 0.25 0.25 0.25 
Intersection of two bi-

medians 

have the shape function values as node-1 (1, 0, 0, 0), node-2 (0, 1, 0, 0), node-3 (0, 0, 1, 

0) and node-4 (0, 0, 0, 1) for a quadrilateral element. At intermediate midpoints 5 and 

6, the shape functions are calculated through linear shape functions of two related nodes 

on the edge and obtained as (0.5, 0.5, 0, 0) and (0, 0, 0.5, 0.5) respectively. In the same 

manner, we can write the shape functions for the edges of 3-subcells and 4-subcells 

Table 3.1: Shape function value at different sites within SC4Q4 element (Figure 3.5(d)) 

(a) (b) 

       Real Nodes           Integration Points            Sub-cell corner 

point     

1 2 

3 

Ω
C
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6 5 

1 2 
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Ω
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Ω
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Ω
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Ω
C1
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shown in Figure 3.5(c) and Figure 3.5(d) respectively. Detailing of shape function 

values corresponding to 4-subcells of quadrilateral (SC4Q4) element is given in Table 

3.1. Though the 4-node quadrilateral elements are used for meshing the problem 

domain, the element inside the domain may have triangular sub-elements at the split 

element cut by arbitrary crack (see Figure 3.4(c)) and inside the transition element (see 

Figure 3.3). Therefore, a set of nodal shape function values for triangular element may 

be taken as [(1, 0, 0), (0, 1, 0), (0, 0, 1)]. Table 3.2 represents the shape function values 

of 4-smoothing subcells of triangular element (SC4T3) as shown in Figure 3.6(b). For 

simplicity, 1-subcell (Figure 3.6 (a)) of triangular element is considered for the 

computational purpose in the current chapter.  

To compute the smoothed strain-displacement gradient matrix, the shape function 

is required only along the boundary of the subcells. The stiffness matrix is obtained from 

linear integration along the boundaries of each subcell. The division of the cracked 

element and intact element along with subcells formation is shown in Figure 3.4. A 

crack separates element into two sub-elements and each sub-element further qualify for 

the number of subcells for the boundary integration. In case the crack makes a partition 

such that intact element is divided into 1-triangle and 5-sided polygon, then that element 

is divided into the number of triangular subcells as shown in Figure 3.4(c) and line 

integration is performed along each boundary of the triangular subcell. Crack touching 

any standard node of FE element may lead to the development of triangular as well as 

quadrilateral sub-elements. Smooth stiffness matrix is computed using Eq. (3.23) for 

smooth domain of subcell and global stiffness is calculated with the assemblage of the 

elemental stiffness. In the same way, smooth strain-displacement matrix and strain are 

computed corresponding to each subcell by using Eq. (3.21) and Eq. (3.20) respectively. 

Table 3.2: Shape function values at different sites within SC1T3 element (Figure 3.6(b)) 

SITE  NODE 1 NODE 2 NODE 3 DESCRIPTION 

1 1 0 0 Field node 

2 0 1 0 Field node 

3 0 0 1 Field node 

4 0.5 0.5 0 Edge midpoint 

5 0 0.5 0.5 Edge midpoint 

6 0.5 0 0.5 Edge midpoint 
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For the comparison purpose, conventional Gauss quadrature integration procedure 

is also applied with FNM, and the obtained results are compared with the SFNM results. 

Kumar et al. [5] discussed the integration scheme with respect to the aspect ratio for 

curved crack problems. A crack passing close to one of the standard nodes of the element 

may lead to a skewed aspect ratio. It shows the division of the element into a triangular  

and pentagon sub-elements. Integration of triangular sub-element using Gauss 

quadrature is straightforward but the pentagon sub-element is further divided into 3 

triangles in case of the element is restricted to 4 floating nodes. To compensate the poor 

aspect ratio, instead of 4 floating nodes, 5 floating nodes are used to maintain the 

appropriate aspect ratio in accordance to Gauss quadrature integration. The 5th floating 

node inside the domain is inserted iteratively. The procedure to insert extra float node 

and creating the triangular sub-elements is available in [5]. To tackle the poor aspect 

ratio, inserting extra floating node adds the complexity in the computation. This 

 

Figure 3.7: Detailed procedure in SFNM for modelling crack initiation to final failure. 
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drawback may be resolved precisely by using the smoothing integration approach as 

shown in Figure 3.5 and Figure 3.6.   

3.2.5 SFNM outline 

FNM formulation is explained in Section 3.2.2. Detailing of the division of an intact 

element into sub-elements due to discontinuity and the activation and positioning of the 

floating nodes is also demonstrated in the same section. In the continuation of this, 

strain-displacement matrix according to the smoothing approach is required. 

Displacement gradient for the calculation of smoothed domain given in Eq. (3.23) can 

be recalled from the Eq. (3.21). The explicit shape functions as mentioned in Table 3.1 

and normal unit vectors are sufficient to proceed for the line integration approach. The 

steps required in SFNM to model crack propagation is detailed in flow chart given in 

Figure 3.7. 

3.3 SIF Computation 

The stress intensity factor is a critical parameter that has frequently been used in fracture 

mechanics problems of brittle materials. The virtual crack closure technique (VCCT) 

and interaction integral approach are the commonly used approach in literature for 

calculating the SIF values. However, the VCCT approach is cumbersome to implement 

in generic crack propagation problems as it generally requires uniform mesh. Therefore, 

a domain based interaction integral approach is used in conjunction with SFNM to 

compute the values of SIF. For two independent equilibrium states of a cracked body, 

the domain form of interaction integral can be written as, 

𝐼(1,2) =  ∫ [𝛔ij
(1) ∂𝑢𝑖

(2)

∂𝑥1
+ 𝛔ij

(2) ∂𝑢𝑖
(1)

∂𝑥1
− 𝐖(1,2)δ1j]

 

A

∂𝑞

∂𝑥j
dA 

(3.26) 

where 𝐖(1,2) is the interaction strain energy term associated with actual and auxiliary 

states, q is a smoothing weight function, 𝝈𝑖𝑗 is the stress field, 1 and 2 signify the actual 

and auxiliary state respectively. For the bi-material interface cracked body, the 

interaction integral form can be written as, 

𝐼(1,2) =  ∑ ∫ [𝛔ij
(1) ∂𝑢𝑖

(2)

∂𝑥1
+ 𝛔ij

(2) ∂𝑢𝑖
(1)

∂𝑥1
− 𝐖(1,2)δ1j]

 

𝐴𝑚

∂𝑞

∂𝑥j
dA

2

𝑚=1

 

(3.27) 



 

 Chapter 3 Development of SFNM to Model 2D Arbitrary Crack 

 

41 

 

where m represents a particular material in the bi-material domain. In LEFM, the 

relationship between interaction integral and SIF is given as,  

𝐼(1,2) = 
2(𝐾𝐼

(1)𝐾𝐼
(2) + 𝐾𝐼𝐼

(1)𝐾𝐼𝐼
(2)
)

𝐸∗ 𝑐𝑜𝑠ℎ2(𝜋ϵ)
 

(3.28) 

 where 

2

𝐸∗
=
1

𝐸1
+
1

𝐸2
          

For bi-material interfacial cracks, the auxiliary fields [137] can be written as, 

ui = 

{
 

 

     

1

4μ1 cosh(πϵ)
√

r

2π
fi(r, θ, ϵ, κ1)              for upper half plane

1

4μ2 cosh(πϵ)
√

r

2π
fi(r, θ, ϵ, κ2)               for lower half plane

                          (3.29) 

where μ is the shear modulus, (𝑟, 𝜃) are the polar coordinates. The details of computing 

the functions f1 and f2 can be found in literature [138]. The parameters 𝜖 and κ are bi-

material constants and defined as, 

ϵ =
1

2π
log (

1 − β̅

1 + β̅
) 

where, β̅ is the second Dundurs parameter and defined as,    

β̅ =
μ1(κ2 − 1) − μ2(κ1 − 1)

μ1(κ2 + 1) + μ2(κ1 − 1)
 

  

 and 

𝜅𝑖 = {     

3 − 4𝜐𝑖               plane strain
3 − 𝜐𝑖 

1 + 𝜐𝑖 
                plane stress

 

where 𝜐 is Poisson’s ratio.  

The mixed mode SIF values can be obtained from Eq. (3.28) using K𝐼
(2)

=1 and K𝐼𝐼
(2)

=0 

and vice versa.  

𝐾𝐼 = 
𝐸∗ 𝑐𝑜𝑠ℎ2(𝜋ϵ)

2
𝐼(1)  

(3.30a)     
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𝐾𝐼𝐼 = 
𝐸∗ 𝑐𝑜𝑠ℎ2(𝜋ϵ)

2
𝐼(2)  

(3.30b) 

3.4 Crack Propagation Criterion  

To determine the crack growth direction, a particular requisite criterion needs to be 

prescribed.  Due to the cyclic loading, crack may reach to the critical length which 

causes severe fracture failure of the structural components. To avoid the fracture failure, 

crack growth rate and propagation direction are predicted. The discrete set of equations 

are solved to obtain the displacements, and the stress intensity factor values are extracted 

from Eq. (3.30). The range of SIF for both mode-I and mode-II under constant 

amplitude cyclic loading is defined as, 

∆𝐾 = 𝐾max − 𝐾min (3.31) 

where Kmax and Kmin are the SIF values corresponding to maximum and minimum 

applied loads respectively. In this study, the maximum circumferential stress criterion 

is employed to obtain the direction of crack growth. The equivalent SIF and the direction 

of crack growth 𝜃c, at each crack increment are obtained using the following 

expressions, 

∆𝐾𝐼𝑒𝑞 = ∆𝐾𝐼𝑐𝑜𝑠
3 (
θc
2
) − 3∆𝐾𝐼𝐼𝑐𝑜𝑠

2 (
θc
2
) 𝑠𝑖𝑛 (

θc
2
) 

(3.32) 

𝜃𝑐 = 2 arctan
1

4
{ 
𝐾𝐼
𝐾𝐼𝐼

± 𝑠𝑖𝑔𝑛(𝐾𝐼𝐼)√(
𝐾𝐼
𝐾𝐼𝐼
)
2

+ 8    } 

(3.33) 

Failure takes place whenever (∆𝐾𝐼𝑒𝑞)𝑚𝑎𝑥 > 𝐾𝐼𝐶, where (∆𝐾𝐼𝑒𝑞)𝑚𝑎𝑥 is the equivalent 

stress intensity factor corresponding to maximum load and 𝐾𝐼𝐶 is the fracture toughness 

of the material.  

3.5 Numerical Examples 

In this section to illustrate the accuracy and effectiveness of the proposed SFNM, both 

static and crack propagation examples are considered for simulations and the results 

obtained by SFNM are compared with the FNM and available literature results. All the 

simulations are performed under plane strain condition. In all the problems, uniform 
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initial mesh of quadrilateral elements is used in the entire domain. The LEFM theory is 

considered in the simulations, where the crack tip is singular at the crack tip. Thus, 

special crack tip elements are required to model the crack tip singularity. However, in 

the present work, special transition element within the SFNM framework is used just 

ahead of the crack tip (see Figure 3.3(e)), which improves the accuracy of the results. 

Moreover, the values of SIF are obtained using domain based interaction integral 

approach, which considers the global quantities far from the crack tip for SIF 

computation and reduces the effect of singularity on the numerical results.  

3.5.1 Static crack examples 

In this section, the accuracy and convergence properties of the proposed SFNM are 

numerically studied within the LEFM framework in 2D static crack problems under 

mode-I and mode-II loading conditions. The numerical results from the proposed SFNM 

formulation are compared with the FNM and literature results. The strain energy and 

error in SIF are used to estimate the error and convergence properties of the proposed 

SFNM. 

 Plate with an edge crack under mode-I loading 

In this example, a rectangular plate with an edge crack is analysed under tension loading 

(𝜎 = 10 MPa). The basic geometry along with the dimensions (a = 4 mm, H = 16 mm, 

W = 8 mm) and boundary conditions are shown in Figure 3.8. The thickness of the plate 

is taken as 1 mm. The material properties are taken from Ref. [116]. They are given as: 

Young’s modulus E = 1 MPa; Poisson’s ratio 𝜈 = 0.3. The strain energy and the error 

in the SIF are given as, 

𝐸(Ω) = 
1

2
∫𝛜T 𝐃𝛜

 

Ω

d𝛺 
(3.34) 

 

𝑒𝑘 = |
𝐾𝑆𝐼𝐹
𝑛𝑢𝑚 − 𝐾𝑆𝐼𝐹

𝑟𝑒𝑓

𝐾𝑆𝐼𝐹
𝑟𝑒𝑓

|

1/2

× 100%,      SIF = 𝐼, 𝐼𝐼 

(3.35) 

 where the superscript “ref” denotes the reference solution and “num” denotes the 

numerical solution. 

For the simulation purpose, the domain is discretized by a structured mesh with 4-node 

quadrilateral (Q4) elements for both FNM and SFNM. Different mesh sizes i.e. 242 

nodes (11×22), 882 nodes (21×42), 1922 nodes (31×62), 3362 nodes (41×82), 5202 
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nodes (51×102) and 7442 nodes (61×122) are considered for checking convergence 

properties of the proposed approach. The strain energy and relative error in SIF values 

Figure 3.8  A rectangular plate with an edge crack under mode-I loading 

 

are computed and plotted with respect to mesh size, then SFNM results are compared 

with the FNM and literature results. Figure 3.9 shows the comparison of strain energy 

values obtained through SFNM and FNM with the literature in mode-I loading. From 

the figure, it is apparent that the convergence of SFNM is slightly better than FNM.  

Figure 3.9  The convergence in strain energy for the rectangular plate with edge 

crack under mode-I loading. 

 

Further, the relative error in SIF values is plotted with the mesh size in log scale for 

SFNM and FNM as shown in Figure 3.10. From the comparison, it is evident that 

SFNM technique is more accurate and gives better convergence rate than the FNM.  The  
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SIF relative error using SFNM is significantly less in comparison to SIF relative error 

using FNM as shown in Figure 3.10. The stress contours are also plotted for illustration 

purpose in Figure 3.11. 

 

Figure 3.10  Comparison of convergence rate between FNM and SFNM in the SIF 

 

Figure 3.11 Static edge crack plate stress contours under mode-I loading: (a) 𝜎𝑥𝑥 (b) 

𝜎𝑥𝑦  (c) 𝜎𝑦𝑦 . 

 

 Plate with an edge crack under shear 

Next, to illustrate the ability of the SFNM, we consider a rectangular plate with an edge 

crack subjected to pure shear traction on the top surface as shown in Figure 3.12. The 

bottom of the plate is fixed and plane strain condition is assumed for simulation. The 

geometry parameters used in the computation are: width W = 7 mm, height H=16 mm, 

crack length a = 3.5 mm. The material properties; Young’s modulus E and Poisson’s 

ratio ν are taken as 3 × 107 Pa and 0.25 respectively. The reference values of SIFs for  

(a) (b) (c) 
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Figure 3.12 : A rectangular plate with an edge crack under shear (mode-II) loading, 

dimensions are in mm. 

this case are taken from the literature [139] and given as 𝐾𝐼 = 34 𝑃𝑎√𝑚𝑚, 𝐾𝐼𝐼 =

4.55 𝑃𝑎√𝑚𝑚. Different mesh sizes i.e. 882 nodes (21×42), 1922 nodes (31×62), 

3362 nodes (41×82), 5202 nodes (51×102), 7442 nodes (61×122) and 10082 nodes  

 

Figure 3.13:  The convergence in strain energy for the rectangular plate with edge crack 

under mode-II loading. 

(71×142) are considered to analyse the convergence properties of the proposed 

framework. The strain energy convergence with respect to mesh refinement is shown in 

Figure 3.13, which depicts that the strain energy convergence is better in SFNM than 

in FNM. In addition, the mesh convergences of stress intensity factors KI and KII are  

a = 3.5 

W = 7 

H
 =

 1
6

 

𝜏 = 1 MPa 
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presented in Figure 3.14 (a) and Figure 3.14 (b) respectively. In both cases, it is evident 

that a significant reduction of error is achieved in SFNM as compared to FNM.  

Figure 3.14:  Comparison of convergence rate of SIF vs mesh size (h) between FNM 

and SFNM; (a) convergence in SIF KI  (b) convergence in SIF KII. 

3.5.2 Crack propagation examples 

After verifying the accuracy and convergence properties of SFNM for static crack 

problems under mode-I and mode-II loading conditions, here we extend it for simulating 

the crack propagation problems. Three 2D problems are considered in this section for 

verifying the accuracy of the proposed SFNM. In the first problem, an edge crack plate 

is simulated under mode-I cyclic loading. In the second problem, an edge crack plate is 

considered under mode-II cyclic loading. Finally, a plate with a bi-material interfacial 

edge crack is simulated under mode-I cyclic loading.  

 Plate with an edge crack under tensile loading 

In this section, we revisit the problem of an edge crack as mentioned in Section 5.1.1 

under cyclic loading condition. The initial crack length is considered as 
𝑎

𝑊
= 0.2. The 

crack is considered to propagate under mode-I condition and analysed in the range of 

𝑎

𝑊
= 0.2 to 

𝑎

𝑊
= 0.6. The plate is subjected to a tensile load of intensity σ = 10 MPa at 

the top edge of the plate as shown in Figure 3.8. The material properties and other 

geometric conditions are given in Section 3.5.1.1. It is well known that the numerical 

results are strongly mesh size dependent, hence a converged uniform initial mesh of 

7442 nodes (61 and 122 nodes in x- and y- directions respectively), is adopted for the 

simulation, refer Section 3.5.1.1 for more detail. To compare the SFNM results, the 

stress intensity values are also calculated theoretically. Further, the SIF values obtained 

(b) 
(a) 
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by SFNM are compared with the analytical (theoretical) solutions. They are found to be 

in good agreement as shown in Figure 3.15. Finally, the normal stress contour plots 

obtained by smoothed FNM are shown in Figure 3.16 for different crack lengths. From 

the results, it is observed that the SFNM captures the crack propagation behaviour 

effectively without the requirement of remeshing and additional enrichment terms. 

 

Figure 3.16: Normal stress contour of edge crack plate under normal load; (a) a/W=0.2,  (b) 

a/W=0.3  and (c)  a/W=0.45. 

 Plate with an edge crack under shear loading 

A rectangular plate with an edge crack under pure shear, shown in Figure 3.12, is 

considered for the simulation. The geometry parameters used in the computation are: 

width W = 7 mm, height H =16 mm, initial crack length is taken as 
𝑎

𝑊
= 0.2 where a is 

the crack length. The material properties Young’s modulus E and Poisson’s ratio 𝜈 are 

Figure 3.15: SIF variation with crack length under mode-I loading for edge crack 

plate. 
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 taken as 3 × 107 Pa and 0.25 respectively. The specimen is subjected to shear load 𝜏 = 

1 MPa at the top edge of the plate. A converged initial mesh with 7442 nodes (61 and 

122 nodes in x- and y- directions respectively), is considered for the simulation as 

discussed in section 5.1.2. For the simulations, crack propagation range is taken as 
𝑎

𝑊
=

0.2 to 
𝑎

𝑊
= 0.6. The SIF values obtained by SFNM using interaction integral approach  

Figure 3.18: Stress contour plots of edge crack plate under shear load at 
𝑎

𝑊
= 0.5: (a) 𝜎𝑥𝑥  

(b) 𝜎𝑥𝑦  (c) 𝜎𝑦𝑦 . 

 

are plotted against crack length and compared with FEM results, shown in Figure 3.17. 

Further, the stress contour plots obtained through SFNM are also shown in Figure 3.18 

under pure shear loading. Due to pure shear all three stress components variation is 

plotted at a crack to width ratio of 0.5. From these results, it is observed that the SFNM 

 

Figure 3.17: SIF variation with crack length under mode-II loading for edge crack plate 
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captures the crack propagation behaviour effectively even for the curved crack growth 

problems. Finally, the crack trajectory obtained through SFNM and FEM are compared 

in Figure 3.19 and found in good agreement. 

 

Figure 3.19: Crack growth trajectory comparison of an edge crack plate under mode-II 

loading. 

 Bi-materials edge crack under normal load 

A bi-material plate of size 50 mm × 100 mm with an interfacial edge crack of initial 

length a = 10 mm (
𝑎

𝑊
 = 0.2) is taken for the simulation as shown in Figure 3.20(a). The 

thickness of the plate is assumed to be 1 mm. A tensile load of intensity   = 50 MPa is 

applied at the top edge of the plate, while the bottom edge of the plate is constrained. 

An initial uniform mesh of 7442 nodes (61 and 122 nodes in x- and y- directions 

respectively), is taken for simulations. There is a difference in the elastic properties of 

the two materials on either side of the interface and symmetry is disrupted even though 

the geometry of the body is symmetric. The material properties of both the base 

materials are taken from literature [5] and given in Table 3.3.  

 Young’s Modulus, 

E (GPa) 
Poisson’s ratio,   

Fracture toughness, 

KIC ( 0.5MPa.m ) 

Material-1 74 0.30 40 

Material-2 200 0.30 60 

 

The fracture toughness of the interface is considered higher than both the base materials 

for simulation purpose, hence the crack may propagate into either of the material  

Table 3.3: Properties of the constituents of bi-materials rectangular plate. 
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Figure 3.20: (a) Bi-material plate with an interfacial edge crack under mode-I loading; (b) 

Crack growth trajectory comparison of a bi-material interface edge crack. 

 

 Figure 3.21: SIF vs crack length plot for bi-materials edge crack plate under mode-I. 

depending on their material properties. The computed equivalent SIF (∆K𝐼𝑒𝑞) is 

compared with the local fracture toughness of both materials to determine the crack 

trajectory. For this purpose, two ratio R1 and R2 are calculated as [140],  

𝑅1 =
(∆K𝐼𝑒𝑞)𝑚1

(K𝐼𝐶)𝑚1
   and   𝑅2 =

(∆K𝐼𝑒𝑞)𝑚2

(K𝐼𝐶)𝑚2
 

where m1 and m2 represent the material-1 and material-2 respectively. If the R1 > R2, 

the crack will propagate into the first material along the predicted angle 𝜃 = 𝜃𝑐. 

Otherwise, it will propagate into the second material. The obtained crack path through 

SFNM is compared with the literature in Figure 3.20(b). Further, the obtained SIF 
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Figure 3.22: Deformed configuration with element subdomains for bi-material edge 

crack plate under mode-I loading 

 

values using SFNM are compared with the literature results and a good agreement is 

obtained as shown in Figure 3.21. The angle of crack propagation is computed using 

the maximum circumferential stress theory as discussed in Section 3.4. The 

advancement of crack divides the element into several sub-elements. The final deformed 

configuration at enlarged scale along with sub-elements is depicted in Figure 3.22. A  

 

Figure 3.23: Stress and Strain contour plot at failure condition; (a) strain contour plot in y-

direction (b) stress contour plot in y-direction. 

 

small portion of the growth path is magnified and shown in the same figure to illustrate 

the split and transition elements. From the zoomed view, it can be observed that some 

(a) (b) 
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of the sub-elements in the split element and transition element maintain poor aspect 

ratio, lead to error during integration and may deteriorate the convergence rate in FNM. 

However, in the smoothed FNM such kind of issue does not occur as the domain integral 

is converted into line integral using the smoothing procedure. The SFNM could be more 

effective for large deformation problems, where an element distortion is a major 

problem which reduce the accuracy and convergence rate. The normal stress and normal 

strain contours at final crack length are shown in Figure 3.23.  

3.6 Conclusions 

In this chapter, a smoothed floating node numerical framework for the 2D linear elastic 

problem is developed by combining FNM with the smoothed FEM. The cell-based 

smoothening procedure is adopted for the sub-element integration. The proposed 

framework is easy to implement and can be applied to triangular or quadrilateral or any 

distorted elements. Field gradients are computed directly using shape functions at 

midpoints of the boundary segments of the smoothing cells. The combination of SFNM 

with interaction integral approach offers accurate and path independent evaluation of 

SIFs. The issue of (sub-)element distortion can be avoided as it does not require the 

inverse of Jacobian during integration. Moreover, SFNM’s convergence rate is better 

than FNM, hence computationally more efficient. From the simulations, it is observed 

that the SFNM combines the advantages of SFEM and FNM, making it an attractive 

method for solving fracture mechanics problems.  

This chapter investigates the convergence and accuracy of FNM and SFNM when 

dealing with 2D arbitrary crack. This comparison is particularly significant when the 

fracture process zone is disregarded in comparison to the crack. However, for quasi-

brittle materials, where managing singularity and the nonlinear fracture process zone 

becomes a challenge, special treatment of this zone is imperative. To tackle this 

challenge, we introduce cohesive law capable of addressing both the singularity at the 

crack tip and the nonlinear characteristics of micro-crack accumulation ahead of the 

crack tip. The subsequent chapter features the implementation of the cohesive zone 

modelling framework, utilizing the developed SFNM methodology.  
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Chapter 4  

SFNM Implementation with CZM for Quasi-Brittle Materials  

 

This chapter presents a numerical framework for implementation of cohesive zone 

model with smoothed floating node method for failure analysis of quasi-brittle 

materials. The nonlinear behaviour of material inside the fracture process zone in front 

of the crack tip is modelled with a potential-based intrinsic cohesive zone approach. A 

strain smoothing technique is adopted over the domain through which classical domain 

integration changes to line integration along each boundary of the smoothing cell, hence 

derivative of shape functions are not required in the computation of the field gradients, 

thus resolves the issue of element distortion. The proposed numerical framework is 

firstly verified using the patch test of the 2D specimen under mode I and mode II loading 

conditions and subsequently extended for solving the 2D standard fracture problems. 

The effectiveness of the proposed framework is checked by comparing the 

computational results with the available literature results.  

4.1 Introduction 

In quasi-brittle materials, the nonlinear nature of fracture process zone (FPZ) in front of 

an open crack induces an analytical challenge. The region ahead of the crack tip has 

micro-cracks or voids but still cohesive stress can be transferred across the discontinuity. 

Negligence of this small nonlinear behaviour region can lead to errors in crack 

propagation calculations and inaccurate predictions of life of the structures. Many 

researchers have studied the crack propagation mechanism in different types of 

problems. The basis for all the theories developed is Griffith's innovative work in this 

field, which discusses the energy-based crack propagation criterion [141]. This criterion 

was further improved by taking the stress intensity factor for crack propagation, but 

suffers with the issue of stress singularity at the crack tip. Later, cohesive zone model 

(CZM) formulation was developed by Brenblatt which introduced the criterion to 

eliminate the singularity at the crack tip by fixing the computed stresses to a finite value 

[142]. Dugdale, further, modified the maximum value of the stress at the crack tip as 

equivalent to the strength of the material [8]. In the same context, Hillerborg [10] has 
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proposed the so-called ‘fictitious crack model’ for the analysis of crack propagation in 

concrete structures. 

The FEM-based numerical methods for determining the fracture behaviour of 

the materials are typically classified into two groups: smeared crack approach and the 

discrete crack approach. The discrete crack approaches are an efficient tool for the 

numerical approximation of fracture analysis and have been widely employed to study 

the macroscopic fracture behaviour of the quasi-brittle materials [86,143]. In this 

context, the cohesive zone modelling has been reported as a powerful concept to tackle 

the nonlinearity in the FPZ that depicts the traction separation law (TSL). Particularly, 

FPZ is a partially damaged zone with stress transferring capability, where the stresses 

applied on the crack surfaces decrease with the increase in the crack opening. The 

interface stresses resist the opening of the crack and prevents crack propagation until 

the crack interface displacement reaches the decohesive displacement. TSL is 

independent of the externally applied stress and can be calibrated from the experimental 

characterization or the micromechanics analysis. The TSLs are implemented with the 

help of zero-thickness interface elements inserted in the bulk elements. Different 

traction separation laws have been proposed in the literature with variations in 

maximum traction, maximum separation, and shapes. These laws mainly include the 

linear softening cohesive law [144], the exponential cohesive law [145], Xu and 

Needleman law [146], the trapezoidal cohesive law [147], and the polynomial cohesive 

law [148]. These cohesive laws correlate failure load, fracture energy, and crack growth 

of the cracked structures.  

As outlined in the previous chapter, the SFNM technique amalgamates the 

advantages of FNM and strain smoothing, effectively mitigating challenges like 

remeshing during crack propagation, and the problem of significant element distortion 

during integration. Therefore, in this chapter, smoothed floating node method 

framework is applied with intrinsic CZM for modelling the nonlinear fracture process 

zone in quasi-brittle materials. Generally, special treatment functions or higher order 

shape functions induced to the blending elements of the crack discontinuity may lead to 

the ill conditioned systems [149,150]. The proposed framework removes the 

shortcomings of the blending elements without using any enrichment functions. It also 

avoids the isoparametric mapping and simplifies the numerical integration scheme by 

suppressing the integration of singular terms. Moreover, the implement of CZM into 
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SFNM is straight forwarded and easy to implement. To demonstrate the effectiveness 

of the proposed approach, first two patch test under mode I and mode II loading 

conditions are solved and results are validated with the available literature data. Further, 

three benchmark fracture mechanics problems, taken from the literature, are examined 

under mode I and mixed mode loading conditions. In the first problem, a three-point 

bending test with an edge cracked plate under mode I loading is considered and the 

force-displacement curves are compared. The second problem deals with an eccentric 

edge cracked plate under mixed mode loading conditions. In the third problem, an L-

shaped panel is also analysed under mixed mode loading conditions.  

This chapter is organized as follows: Section 4.2 describes the governing 

equations and mathematical formulation of SFNM and smoothing technique. Section 

4.3 illustrates the CZM formulation and its implementation in to SFNM. Sections 4.4 

contains the SIF computation and crack growth criterion. The numerical problems are 

presented in Section 4.5 to demonstrate the effectiveness of the SFNM framework. 

Finally, the conclusions are drawn in Section 4.6.  

4.2 Numerical Formulation 

In this section, the governing equations for the static analysis of an elastic medium 

containing a traction-free crack are briefly discussed. A brief review of FNM and SFEM 

is also presented for completeness. Further, the shape function generation, numerical 

integration procedure in SFNM, and its implementation procedure are discussed. 

4.2.1 Governing equations for elasto-statics  

Consider a linear elastic body with a discontinuity as shown in Figure 4.1. The domain 

Ω is divided into three parts; 𝛤𝑡  where the traction boundary conditions are applied, 𝛤𝑢 

where the displacement boundary conditions are applied and 𝛤𝑐𝑟 which is the traction-

free surface representing the discontinuity. The strong form of the static equilibrium 

equation along with the boundary conditions are given as, 

∇. 𝛔 + 𝐛 = 𝟎 in Ω (4.1) 

𝛔 .  𝐧̂ = 𝐭 ̅   on 𝛤𝑡 (4.2a) 

𝛔 .  𝐧̂ = 𝟎   on 𝛤𝑐𝑟  (4.2b) 
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𝐮 = 𝐮̅     on 𝛤𝑢 (4.2c) 

where ∇ is the gradient operator, 𝛔 is the Cauchy stress tensor, b is the body force vector 

per unit volume, 𝐭 ̅is the applied traction vector and 𝐧̂ is the unit outward normal. For 

small strains and displacements, the strain-displacement relation can be written as, 

where ∇𝐬 is the symmetric part of the gradient operator. The constitutive relation for 

linear elastic material is given by Hooke's law, 

where D is the material elasticity tensor.  

 

Figure 4.1: A cracked domain with boundary conditions 

After substituting the constitutive relation and the strain-displacement relation, the weak 

form of the equilibrium equation can be expressed as, 

∫𝛔(𝐮): 𝛆(𝐯) 𝑑Ω

 

𝛺

= ∫𝐛. 𝐯 𝑑𝛤

 

𝛺

+ ∫𝐭.̅ 𝐯 𝑑𝛤

 

𝛤𝑡

 (4.5) 

where u and v are the displacement trial and the test functions, respectively. Upon 

discretization of u and v, the above weak form can be transformed into the following 

discrete set of equations, 

𝐊𝐝 = 𝐟 (4.6) 

𝛆 =  ∇s 𝐮 (4.3) 

𝛔 = 𝐃𝛆 (4.4) 
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where K is the global stiffness matrix, d is the nodal displacements vector and f is the 

externally applied force vector.  

4.2.2 Basic formulation of FNM 

Initially, each element in the domain contains suitable number of floating nodes and 

their corresponding degrees of freedom (dofs). These floating nodes are dormant in the 

intact element, thus intact element is identical to the standard finite element. As the 

discontinuity appears inside the element, the floating nodes get activated to model the  

 

 

Figure 4.2: (a) Schematic representation of strong discontinuity modelling in an element 

using FNM, (b) Schematic representation of crack tip modelling in FNM 

 

discontinuity in the element. The diagrams detailing the FNM is redrawn for the 

reference purpose. The nodal position vectors of the floating nodes are defined by the 

crack position coordinates (points with coordinates xr and xs), as shown in Figure 4.2(a). 

As the crack occurs inside the element, the cracked element is split into two sub-

elements Ω𝐴 and Ω𝐵, depending on the direction of the crack [106]. The description 

concerning the floating nodes within the deformation domain can be found in the 
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preceding chapter. The final results of stiffness matrices and force vectors of the sub-

elements are defined as, 

𝐊A = ∫𝐁A
T 𝐃 𝐁A  𝑑Ω

 

𝛺𝐴

      and     𝐊B = ∫𝐁B
T 𝐃 𝐁B  𝑑Ω

 

𝛺𝐵

 (4.7) 

𝐟A = ∫𝐍T 𝐛  𝑑Ω

 

𝛺𝐴

   +  ∫ 𝐍T 𝐭 ̅𝑑𝛤

 

𝛤𝑡∩𝛤Ω𝐴

    (4.8a) 

𝐟B = ∫𝐍T 𝐛 𝑑Ω

 

𝛺𝐵

 + ∫ 𝐍T 𝐭 ̅𝑑𝛤

 

𝛤𝑡∩𝛤Ω𝐵

 (4.8b) 

The equilibrium equations for both sub-elements are written as, 

𝐊A𝐝A = 𝐟A      and      𝐊B 𝐝B = 𝐟B  (4.9) 

In FNM framework, the split elements, tip element and transition element are 

the most prevalent. Tip element is the one in which the crack segment intersects the 

ahead standard element edge, while split elements are fully stress-free and detached. 

The floating node that is situated on the crack tip is unattended, therefore the transition 

element is required for the integration purpose as shown in Figure 4.2(b). The detailed 

procedure for crack modelling using FNM can be found in literature [5,106,108].       

4.2.3 Strain smoothing technique 

 In this section, we present a concise overview of the strain smoothing technique to 

ensure a comprehensive understanding of the topic. Strain smoothing enhances accuracy 

and convergence, especially with irregular meshes, at a slightly lower computational 

cost. It was first introduced in meshfree methods and later extended to FEM [113–

116,133]. Linear exactness in the weak form is vital for convergence in nodal 

integration-based meshfree methods. The elements are divided into smoothing cells for 

strain smoothing. Using a constant smoothing function simplifies area integration to line 

integration along cell boundaries, negating the need for shape function gradients in 

stiffness matrix formation or field gradient computation. Linear integration is applied at 

cell edges following the given formulation. The formulation for strain smoothing is 

explained in the previous chapter, and the final equations are presented below.         



 

 Chapter 4 SFNM implementation with CZM for Quasi-Brittle Materials 

 

61 

 

𝛆̃(𝐱𝑐) =  ∑𝐁̃𝐼(𝐱𝑐)𝐝𝐼

𝑛

𝐼=1

 (4.10) 

where n is the number of nodes and 𝐁̃𝐼 is the smoothed strain matrix of node I. For 2D, 

it is written as,  

𝐁̃𝐼(𝐱𝑐) =  [

𝑏̃𝐼1(𝐱𝑐) 0

0 𝑏̃𝐼2(𝐱𝑐)

𝑏̃𝐼2(𝐱𝑐) 𝑏̃𝐼1(𝐱𝑐)

] (4.11) 

where 

 𝑏̃𝐼𝑘(𝐱𝑐) =  
1

𝐴𝐶
∫𝑁𝐼(𝐱)𝑛𝑘(𝐱)

Γ𝐶

 𝑑Γ,       (𝑘 = 1, 2) (4.12) 

It can be transformed to its algebraic form as,    

𝑏̃𝐼𝑘(𝐱𝑐) =  ∑𝑁𝐼(𝐱𝑖
𝐺𝑃)𝑛𝑖𝑘

𝐶 𝑙𝑖
𝐶

𝑀

𝑖=1

 (4.13) 

where x𝑖
𝐺𝑃 is the Gaussian point of the ith boundary segment Γ𝑖

𝐶 , 𝑙𝑖
𝐶 is the length of Γ𝑖

𝐶, 

M is the number of boundary segments, and 𝑛𝑖
𝐶 the outward unit normal vector of Γ𝑖

𝐶. 

 

Figure 4.3: Quadratic element division into smoothing cells and integration scheme: (a) Q4, 

1-cell (b) Q4, 2-cells (c) Q4, 3-cells (d) Q4, 4-cells and (e) T3, 1-cell. 
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In SFNM, though the quadrilateral elements (Q4) are used for meshing the 

problem domain, the element inside the domain may also have 3-node triangular 

elements (T3) at the split element cut by an arbitrary crack and inside the transition 

element. Therefore, both 3-node triangular and 4-node quadrilateral elements are used 

for modelling the crack discontinuity. In this analysis, 4-node quadrilateral elements or 

4-node sub-elements are divided into 4 smoothing cells and T3 element is considered as 

single cell for numerical integration. Detailing of shape function values corresponding 

to 1 cell of T3 element and 4 cells of Q4 element is given in Table 4.1 and Table 4.2 

respectively.  

Site Node 1 Node 2 Node 3 Description 

1 1 0 0 Field node 

2 0 1 0 Field node 

3 0 0 1 Field node 

Site Node 1 Node 2 Node 3 Node 4 Description 

1 1 0 0 0 Field node 

2 0 1 0 0 Field node 

3 0 0 1 0 Field node 

4 0 0 0 1 Field node 

5 0.5 0.5 0 0 Edge midpoint 

6 0 0.5 0.5 0 Edge midpoint 

7 0 0 0.5 0.5 Edge midpoint 

8 0.5 0 0 0.5 Edge midpoint 

9 0.25 0.25 0.25 0.25 Intersection of 

two bi-medians 

4.3 Cohesive Zone Interface Model 

The inelastic region in the vicinity of the crack tip is approximated by the cohesive zone 

model, which accounts for the nonlinear region and considered as a straight line along 

the crack propagation path. The remaining domain is considered an elastic medium. 

Figure 4.4 illustrates different zones around the fictitious crack tip, such as traction free 

zone, fracture process zone, and elastic domain. The implementation of cohesive zone 

Table 4.1: Shape functions values at different sites (refer Figure 4.3) within T3 element  

 

Table 4.2: Shape functions values at different sites (refer Figure 4.3) within Q4 element 
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in the proposed SFNM framework is straightforward. By neglecting the body forces, the 

equilibrium Eq. (4.5) can be modified to Eq. (4.14), as given below. Now, the weak 

form of the governing equation is a combination of strain energy, cohesive fracture 

energy, and external work done. 

∫𝛔(𝐮): 𝛆(𝐯) 𝑑Ω

 

𝛺

+ ∫𝒕𝒄. 𝜟 𝑑𝛤

 

𝛤𝑐

= ∫𝐭.̅ 𝐯 𝑑𝛤

 

𝛤𝑡

 (4.14) 

where 𝐭𝑐 is the cohesive traction vector and 𝛥 is the displacement jump along the crack 

surface. 

 

Figure 4.4: Schematic representation of fracture process zone; (a) crack with traction free, 

FPZ and intact elastic domain, (b) stress transfer inside the nonlinear FPZ. 

In cohesive zone modelling, the traction separation law defines the mechanism 

of the failure of the fracture process zone. The peak value of traction transferred by the 

material in the fracture process zone is equal to the cohesive strength of the material. 

Intrinsic and extrinsic cohesive zone modelling are the extensively reported approaches 

in the literature to study the fracture behaviour in quasi-brittle and composite materials 

[151–154]. In this chapter, intrinsic cohesive zone model, based on the PPR approach 

[155,156], is considered for the numerical analysis. This model describes both the 

tangential and normal cohesive tractions along the FPZ interface. The potential function 

(𝛹) depends on the fracture energies and separation variables in normal and tangential 

directions, and is given as, 

(a) 
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Ψ(Δ𝑛, Δ𝑡) = min(𝜙𝑛, 𝜙𝑡)

+ [Γ𝑛 (1 −
Δ𝑛
𝛿𝑛
)
𝛼

 (
𝑚

𝛼
+
Δ𝑛
𝛿𝑛
)
𝑚

+ 〈𝜙𝑛 − 𝜙𝑡〉] [Γ𝑡 (1 −
|Δ𝑡|

𝛿𝑡
)

𝛽

 (
𝑛

𝛽
+ |Δ𝑡|𝛿𝑡)

𝑛

+ 〈𝜙𝑡 − 𝜙𝑛〉] 

(4.15) 

where 〈 . 〉 is the Macauley bracket. 𝜙𝑛 , Γ𝑛, 𝛿𝑛, Δ𝑛 represent the fracture energy, energy 

constant, crack opening width and separation at crack interface respectively, in the 

normal direction. The same variables with subscripts ‘t’ means the variables in the 

tangential direction. Exponents m and n are associated with the initial slope, whereas 

𝛼, 𝛽 act as shape parameters constants. The first derivative of the PPR potential provides 

cohesive tractions under the softening region. 

t𝑐(Δ𝑛, Δ𝑡) =  {
∂Ψ ∂Δ𝑡⁄

∂Ψ ∂Δ𝑛⁄
} =  {

𝑇𝑡(Δ𝑛, Δ𝑡)
𝑇𝑛(Δ𝑛, Δ𝑡)

} (4.16) 

The second derivative of the PPR potential results in the tangent stiffness matrix, 

D𝑐(Δ𝑛, Δ𝑡) =  [
𝐷𝑡𝑡 𝐷𝑡𝑛
𝐷𝑛𝑡 𝐷𝑛𝑛

]  =  [
∂2Ψ ∂Δ𝑡

2⁄ ∂2Ψ ∂Δ𝑡 ∂Δ𝑛⁄

∂2Ψ ∂Δ𝑛 ∂Δ𝑛𝑡⁄ ∂2Ψ ∂Δ𝑛
2⁄

] (4.17) 

The considered cohesive zone model works for four stages: contact condition, softening 

condition, unloading-reloading, and complete failure. The complete failure separation 

is evaluated by equating the fracture energy to the area under the traction–separation 

curve. 

4.3.1 Kinematics of the interfacial surface 

The displacement fields are computed from the nodal displacement with the help of 

shape functions as, 

𝐮 =  𝐍𝐝 (4.18) 

𝐮̅ = 𝐑𝐝 (4.19) 

𝚫̅ = 𝐋𝐮̅ (4.20) 

𝚫 = 𝐍𝚫̅ (4.21) 
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where 𝐝 denotes the nodal displacements, N is the shape function matrix, 𝐮̅ is the local 

nodal displacements and 𝚫̅ is the local displacement jump or local separation. 𝚫 denotes 

the separation along the cohesive surface element. The rotational matrix R is given by, 

𝐑 =  [

Υ 0 0 0
0 Υ 0 0
0 0 Υ 0
0 0 0 Υ

] (4.22) 

where transformation matrix (𝚼) is given as, 

𝚼 =  [
cos𝜃 sin𝜃
−sin𝜃 cos𝜃

] (4.23) 

Local separation is given in Eq. (4.24) which can be calculated with the help of the L 

operator given in Eq. (4.25). The L operator is the local displacement-separation 

relation matrix. N is the shape function matrix of 2 node linear elements given by Eq. 

(4.26). 

Δ̅1 = 𝑢̅7 − 𝑢̅1,  Δ̅2 = 𝑢̅8 − 𝑢̅2,   Δ̅3 = 𝑢̅5 − 𝑢̅3,  Δ̅4 = 𝑢̅6 − 𝑢̅4. (4.24) 

𝐋 =  [

−1 0 0 0 0 0 1 0
0 −1 0 0 0 0 0 1
0 0 −1 0 1 0 0 0
0 0 0 −1 0 1 0 0

] (4.25) 

𝐍 = [
𝑁1 0 𝑁2 0
0 𝑁1 0 𝑁2

] (4.26) 

Finally, the relation between global nodal displacement and the separation along the 

cohesive surface can be written in a form as given in Eq. (4.27). 

𝚫 = 𝐁𝐜𝐝 (4.27) 

where 𝐁𝐜 = 𝐍𝐑𝐋. The internal force vector and cohesive stiffness matrix are given by 

Eq. (4.28) and Eq. (4.29) respectively for the cohesive surface elements. 

𝐟𝐜 = ∫𝐁𝑐
𝑇𝐓𝑐  𝑑Ω

 

Γc

 (4.28) 
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𝐊𝑐 =
𝜕𝐟𝑐
𝜕𝐝

=  ∫𝐁𝑐
𝑇
𝜕𝐓𝑐
𝜕𝚫

𝜕𝚫

𝜕𝐝
 𝑑Ω

 

Γc

= ∫𝐁𝑐
𝑇
𝜕𝐓𝑐
𝜕𝚫

𝐁𝑐 𝑑Ω

 

Γc

 (4.29) 

4.3.2 Implementation of a cohesive element in SFNM 

 The implementation of cohesive element in SFNM is shown in Figure 4.5 for a 

quadrilateral element. In SFNM, the quadrilateral element having 4 standard nodes at 

the corners is divided into two sub-elements along the direction of the crack growth with 

the help of floating nodes. Then, a line element ‘AB’ (cohesive element) is inserted 

between these two sub-elements using floating nodes. The node numbering is 

considered counter clockwise for the sub-elements as well as for the cohesive element, 

and the nodal connectivity matrix for sub-elements and cohesive elements is defined as; 

first sub-element [1 2 5 6], second sub-element [7 8 3 4] and cohesive element [6 5 8 7]. 

For 2D analysis, each standard and the floating node has 2 degrees of freedom. 

Therefore, an intact element has 8 nodal displacement quantities, hence global nodal 

displacement quantities for an intact Q4 element are represented by 𝑑1, 𝑑2, 𝑑3, 𝑑4, 𝑑5, 

𝑑6, 𝑑7, 𝑑8 and the local nodal displacement quantities as 𝑢̅1,  𝑢̅2,  𝑢̅3,  𝑢̅4,  𝑢̅5,  𝑢̅6,  𝑢̅7, 

 𝑢̅8. Similarly, the cohesive surface element has 8 global nodal displacements quantities 

as 𝑑9, 𝑑10, 𝑑11, 𝑑12,  𝑑13, 𝑑14, 𝑑15, and 𝑑16. The points ‘A’ and ‘B’ shown in Figure 

4.5 are taken as the midpoints of the floating node coordinates along the vertical edge 

 

Figure 4.5: Representation of the cohesive element inside FPZ as per the crack propagation 

direction. Dotted line defines the linear cohesive element to calculate displacement 

separation. Two hexagonal points on the linear  cohesive element denotes integration 

points. 
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side. Two integration points are considered and shown with hexagon along the 1D 

element for the integration purpose. The local coordinate system (n-t) is shown in 

Figure 4.5 in tangential and normal directions. Using Eq. (4.15) to Eq. (4.29) the 

cohesive stiffness matrix and the cohesive force vector can be calculated for the 

cohesive element. 

4.4 Crack Growth and Direction Criterion  

 To determine the crack propagation direction, a particular requisite criterion needs to 

be prescribed. The crack propagates when the crack driving forces exceed the crack 

resisting forces in the FPZ. Hence, correct estimation of the induced stresses at crack tip 

becomes extremely important. The stresses at local points computed inside the FPZ may 

have a significant variation and may lead to the unreliable prediction of the stresses at 

tip. In order to avoid the influence of the local stress values near the crack tip, a nonlocal 

equivalent stress value can be calculated [157]. In this analysis, the nonlocal von Mises 

stress is calculated at the crack tip using the averaging technique. The equivalent stress  

is determined by applying the weighted average technique by using Eq. (4.30) [17]. The 

local stresses calculated in the region behind the fracture tip have little impact on the 

equivalent stress calculation because of the stress-free crack space. Additionally, the 

crack does not advance in the reverse direction. A symmetric area sector is consequently 

taken into consideration for the accurate assessment of the stresses at the vicinity of the 

 

Figure 4.6: Illustration of crack growth criterion. A 90o sector considered for the 

computation of nonlocal stresses at crack tip using weighted average method 
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tip. Thus, a 90o circular sector is considered as shown in Figure 4.6 for calculating the 

equivalent stress. The weight function is given in Eq. (4.31), where length l determines 

how fast the weight function decay from the crack tip and 𝐴𝑖 is the associated area. The 

length is taken as 4 times the size of the element for the weighted averaging. 𝜎 represents 

the nonlocal weighted average stress. The calculated stress is compared with the tensile 

strength of the material. If the computed value is greater than the tensile strength of the 

material, then the crack segment is added else the applied load is further increased. 

𝜎 =  
∑ 𝜎𝑖𝑤𝑖𝐴𝑖
𝑛𝐺
𝑖=1

∑ 𝑤𝑖𝐴𝑖
𝑛𝐺
𝑖=1

 (4.30) 

w(r) =  
1

(2𝜋)3/2𝑙3
exp (−

𝑟2

2𝑙2
) (4.31) 

The direction in which the crack propagates is required after the crack growth criterion 

is fulfilled. The crack growth length is added in the currently existing crack. One such 

criterion based on the energy conservation principle [158], asserts that a crack 

propagates when the strain  energy release rate is greater than the energy dissipation rate 

in FPZ. The other most extensively adopted criterion is the stress intensity factor (SIF) 

based criterion [2,159] used for the quasi brittle material for mode I and mixed mode 

applications. To implement this criterion, the discrete set of equations is solved to obtain 

the displacements, and the stress intensity factor values are extracted. In this study, the 

maximum circumferential stress criterion is employed to obtain the direction of crack 

growth. The direction of crack growth 𝜃c, at each crack increments are obtained using 

the following expression, 

𝜃𝑐 = 2 arctan
1

4
{ 
𝐾𝐼
𝐾𝐼𝐼

± 𝑠𝑖𝑔𝑛(𝐾𝐼𝐼)√(
𝐾𝐼
𝐾𝐼𝐼
)
2

+ 8    } (4.32) 

where 𝐾𝐼 and 𝐾𝐼𝐼 are the mode I and mode II SIFs, and are obtained using interaction 

integral approach [160]. 

4.5 Numerical Examples 

In this section, to illustrate the accuracy and effectiveness of the proposed SFNM, first 

mode I, mode II patch problems are considered for the simulation. Once the method is 
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verified, the versatility and adaptability of the proposed approach are assessed by 

solving the standard fracture problems taken from the literature and the outcomes of the 

simulations are compared with the available results. For this purpose, first three-point 

bending problems under mode I and mixed mode are solved. Finally, the L-shaped panel 

problem is analysed under the mixed mode loading condition. All the simulations are 

performed under plane strain conditions, and a uniform initial mesh of quadrilateral 

elements is used for all the problems. 

4.5.1 Patch test validation of SFNM 

First, the proposed framework is tested by implementing it on a single-element patch 

test. To check the robustness of the method, both tensile and shear loading cases are 

considered and results are compared with the literature. The cohesive element insertion 

is flexible in the proposed framework and depends on the nature of the problem. It can 

be inserted along the edge of the element and also across the element in any arbitrary 

direction. 

 Patch test under mode I loading 

 To verify the implementation of the SFNM coupled with cohesive TSL, here, we 

consider a patch test (an element) and perform the pull test analysis by applying uniaxial 

loading on the upper edge and fixing the bottom edge of the element. Specimen size of 

0.1m × 0.1m is considered for the mode I test. The analysis is performed by using in-

house generated Matlab code. The material properties such as modulus of elasticity and 

 

Figure 4.7: Geometry and boundary conditions of mode I specimen with cohesive 

element inserted horizontally at the centre. 
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Poison’s ratio are taken as 32 GPa and 0.2 respectively. Here the displacement-

controlled approach is adopted and the displacement is applied at the top edge in the 

vertical direction. The geometry with boundary conditions shown in Figure 4.7 

demonstrates the element discretization into two quadrilateral sub-elements (nodal 

connectivity: [1 2 5 6] and [7 8 3 4]) and one cohesive element (nodal connectivity: [6 

5 8 7]). Here 1,2,3 and 4 are the standard field nodes, whereas 5,6,7 and 8 are the inserted  

floating nodes which are located at the intersection point of the cohesive crack segment 

with the element edges. The intersection points are computed based on the crack  

Property Name/Parameters Symbol Value Unit 

Young’s modulus E 32 GPa 

Poisson’s ratio ν 0.2 - 

Fracture energy (normal) 𝜙𝑛 100 N/m 

Fracture energy (tangential) 𝜙𝑡 200 N/m 

Tensile strength 𝜎𝑚𝑎𝑥 4 MPa 

Shear strength 𝜏𝑚𝑎𝑥 3 MPa 

Shape parameter normal 𝛼 5 - 

Shape parameter tangential 𝛽 1.6 - 

Normal initial Slope indicator 𝜆𝑛 0.005 - 

Tangential initial Slope indicator 𝜆𝑡 0.005 - 

 

Figure 4.8: Comparison of stress vs displacement curve of proposed method and literature 

[49] results under mode I test 

 

Table 4.3: Material properties and fracture parameters for mode I test 
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propagation criterion as discussed in Section 4.4. In this case, the cohesive element is 

inserted in the mid-plane of the element along the x-direction i.e. at 0o angle which is 

assumed as the crack propagation direction in the cohesive zone ahead of the crack tip 

for given boundary conditions. This angle may be taken as nonzero depending on the 

boundary conditions. The material properties and fracture parameters are given in Table 

4.3. The variation of stress with displacement is plotted in Figure 4.8. From the figure, 

it can be observed that the stress increases until it reaches the cohesive strength (tensile 

strength) of the material followed a softening behaviour after the peak value equal to 

the cohesive strength. The obtained response is similar to the literature results of PPR 

[156]. The sub-element displacement separation and normal stress contour 

corresponding to the crack growth for this test are shown in Figure 4.9. The stress 

contour illustrates the cohesive stress variation acting in the sub-elements due to 

cohesive element. The stress variation from zero to peak and subsequently drop to zero 

in the softening region, depicts the variation of the stresses with the increase in 

displacement separation. Finally, there is no change in the stresses after the 

displacement separation exceeds the decohesive value. From the test, it can be observed 

that the proposed framework is able to model the fracture behaviour in quasi-brittle 

material under mode I loading. 

 Patch test under mode II loading              

In this section, the patch test problem under mode II loading is considered. The specimen 

size of 0.1m × 0.1m is subjected to both tensile and compressive loadings. The geometry 

 

Figure 4.9: Displacement (separation) and normal stress distribution in sub-elements during 

mode I specimen test 
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and boundary conditions are shown in Figure 4.10, where δ is the applied displacement 

in the negative x- and positive y-direction. The specimen is initially discretized with one 

quadrilateral (Q4) element. To model the cohesive crack, it is further divided into 2 

triangular sub-elements (nodal connectivity: [1 2 6] and [8 3 4]) and one cohesive 

element (nodal connectivity: [6 2 8 4]) inserted along the diagonal of the specimen with  

 

Figure 4.10: Geometry and boundary conditions of mode II specimen with cohesive element 

along the diagonal 

 

Figure 4.11: Comparison of stress vs displacement curve of proposed method and literature 

[49] results under mode II test 

the help of additional floating nodes. In this case, only 2 floating nodes are sufficient to 

form the cohesive element, and the remaining floating nodes are condensed for the 

computational purposes due to the inactiveness nature of these nodes. The material 
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properties and fracture parameters remain the same as given in Table 4.3. The stress-

displacement variation of the analysis is plotted in Figure 4.11 along with the literature 

results [156] and it shows that the obtained results trace the exact reference curve. From 

the plot, one can predict the decohesive displacement separation as approximate 0.075 

mm and beyond that, there is no resistance from the cohesive element side. From the 

test, it can be observed that the proposed framework is also able to model the fracture 

behaviour in quasi-brittle material under mode II loading condition. 

4.5.2 Three-point bending test   

To further check the effectiveness of the proposed framework, it is extended for 

simulating the three-point bending beam test. A specimen of size 0.3048m × 0.762m is 

considered for mode  I analysis. The geometry and boundary conditions of the specimen 

 

Figure 4.12: Geometry and boundary conditions of three-point beam specimen with an edge 

crack under mode I loading. 

  

Property/Parameter Name Symbol Value Unit 

Young’s modulus E 27413 MPa 

Poisson’s ratio ν 0.18 - 

Fracture energy 𝐺𝑓 40.29 N/m 

Tensile strength 𝑓𝑡 2.886 MPa 

Out plane thickness t 38.1 mm 

 

Table 4.4: Material properties and parameters for the three-point bending test 
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 are shown in Figure 4.12. The thickness of specimen is taken equal to 0.0381m. An 

initial crack of length 0.051m is considered for the analysis. The displacement is applied 

at the middle point on the right edge of the specimen as shown in the figure. The beam 

is initially discretized with only Q4 elements under plane strain condition. The material 

properties and numerical parameters are taken from the literature [161] and given in 

Table 4.4. The obtained results are plotted as a structural force-displacement curve 

shown in Figure 4.13 and compared with the literature results. From the figure, it can 

be observed that the softening behaviour of the material starts just after the peak of the 

tensile strength of the material and is driven by the fracture energy. The problem is 

solved under mode I loading hence the crack propagation is straight i.e. at zero degrees 

 

Figure 4.13: Comparison of Force vs displacement curve of proposed method and literature 

[55] results of three-point bending test under mode I loading 

 

Figure 4.14: Stress contour of three-point bending test specimen. 
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angle from the initial crack length. Figure 4.14 displays the normal stress contour for 

the three-point bending test at final stage of loading. Thus, from the simulation we can 

conclude that the proposed framework is able to model the crack growth behaviour of 

quasi-brittle materials effectively and accurately.  

4.5.3 Mixed mode fracture in eccentrically notched beam 

 In this section, a three-point bending problem of eccentrically notched concrete beam 

is considered to capture the cohesive effects using SFNM [162,163]. The center-to-

center distance between the supports is taken as 2.5d, and the length of the beam is equal 

 

Figure 4.15: Geometry and boundary conditions of three-point beam specimen with 

eccentric crack under mixed mode loading 

 

Figure 4.16: Comparison of Force vs CMOD curve of three-point bending test of proposed 

method with literature [56] results for eccentric crack under mixed mode loading 
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to 3.125d. The analysis is performed by considering the beam depth (d) value equal to 

160 mm. The out-of-plane thickness (t) is set to 50 mm. The specimen is subjected to 

mixed mode loading. The geometry and boundary conditions of the eccentrically 

notched beam are shown in Figure 4.15. The eccentricity of the initial notch is 0.3125d. 

The detailed material properties and parameters associated with this numerical study are 

provided in Table 4.5. The points marked as A and B on the specimen are considered to 

record the crack mouth opening displacement (CMOD). The obtained force versus 

CMOD curve is plotted for this case and compared with the experimental one [162,163] 

as shown in Figure 4.16. The comparison of force versus CMOD shows that the peak 

load lies within the range of experimental data. Further, a normal stress contour obtained 

through proposed approach is also shown in Figure 4.17. The crack propagates towards 

the point of application of load, similar to the literature observations. From these results, 

it is observed that the proposed framework captures the crack propagation behaviour 

accurately even for curved crack growth problems.  

 

Figure 4.17: Stress contour of eccentrically loaded   three-point bending specimen 

Property/Parameter Name Symbol Value Unit 

Young’s modulus E 33.8 GPa 

Poisson’s ratio ν 0.2 - 

Fracture energy 𝐺𝑓 0.06 N/mm 

Tensile strength 𝑓𝑡 3.5 MPa 

Out plane thickness t 50 mm 

Table 4.5: Material properties and parameters for three-point bending eccentrically notched 

beam test 
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4.5.4 Mixed mode failure of an L-shaped panel 

Finally, a mixed mode problem of the L-shaped panel is considered for numerical 

simulation. The geometry and boundary conditions of the L-shaped panel are shown in 

Figure 4.18. The bottom surface of the specimen is fixed and a vertical displacement 

(δ) is applied at point ‘A’ positioned 30 mm from the left vertical face. Point B is 

considered the crack initiation point.  The L-shaped panel is discretized with an initial 

uniform mesh of Q4 element size of 5 mm. The material properties and numerical 

parameters are given in Table 4.6. 

 

Figure 4.18: L-shape panel geometry with boundary conditions (all dimensions are in mm). 

 

 

 

 

 

 

The L-shaped panel is considered without initial crack for the simulation under mixed 

loading. The maximum circumferential stress criterion is applied for finding out the 

initial fracture process zone direction and inserting the cohesive element in the domain. 

Similar to this, when the crack propagation criterion is met, the crack segment is 

extended further from the fictitious tip. The structural response of the L-shape panel 

Table 4.6: Material properties and parameters for L-shaped panel 

Property/Parameter Name Symbol Value Unit 

Young’s modulus E 20 GPa 

Poisson’s ratio ν 0.18 - 

Fracture energy 𝐺𝑓 0.13 N/mm 

Tensile strength 𝑓𝑡 2.9 MPa 

Out plane thickness t 100 mm 
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using the proposed SFNM framework is obtained and compared with the literature 

results in Figure 4.19. Further the deformed shape of the L-shape panel is shown in 

Figure 4.20(a) using a magnification factor of 25. Also the comparison of the obtained 

crack path with the available literature is shown in Figure 4.20(b). From the Figure 

4.20, it can be observed that the crack initiates exactly from the corner, similar to the 

 

experimental observations. Finally, a normal stress contour is plotted for the L-shaped 

panel in Figure 4.21. Based on the comparison, it can be concluded that the proposed 

cohesive SFNM framework is able to reproduce the experimentally obtained structural 

response and crack pattern with good accuracy for mixed mode problems. 

 

Figure 4.19: Comparison of force vs displacement curve of proposed method and literature 

[23] results of L-shaped panel under mixed mode loading. 

 

Figure 4.20: (a) L-shaped panel deformed shape (magnification factor 25), (b) Comparison 

of the crack path with experimental [23]. 

(a) 

 

(b) 
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Figure 4.21:  Stress Contour plot of L-shaped panel 

4.6 Conclusions 

In this chapter, smoothed floating node method is coupled with cohesive zone approach 

for modelling crack growth behaviour in quasi-brittle materials. The cell-based 

smoothening procedure is adopted for the integration of sub-elements and standard 

elements, and a potential-based intrinsic cohesive zone model is implemented to capture 

the nonlinear fracture behaviour of the material ahead of the crack tip. The SFNM 

combines the benefits of strain smoothening and the floating node method, making it an 

attractive method for solving fracture mechanics problems without the requirement of 

additional enrichment functions and remeshing during crack growth. The 

implementation of cohesive zone nonlinear behaviour in SFNM is straight forward. The 

assessment of the SFNM coupled with CZM is carried out for the straight and curved 

crack growth problems. The method is tested for the cohesive strengths of the material 

in the normal and tangential directions. The simulated examples have shown the 

robustness and effectiveness of the proposed numerical framework for solving generic 

fracture mechanics problems.  

In this chapter, we conducted the analysis of nonlinearity within the fracture 

process zone of quasi-brittle materials under the influence of external mechanical loads. 

This analysis employs the SFNM technique coupled with cohesive zone modelling. In 

practical scenarios, thermal-induced stress is recognized as an influential factor, 

especially when the specimen faces thermal loads in conjunction with boundary 

constraints. These circumstances can greatly influence the crack growth behaviour. To 

address these factors, a comprehensive evaluation of these conditions will be conducted 

in the upcoming chapter. 
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Chapter 5  

Thermo-elastic Brittle Fracture using SFNM with CZM  

 

This paper presents an extension of the recently developed smoothed floating node 

method with cohesive zone approach to model crack growth in elastic materials under 

thermo-elastic loading conditions. The SFNM utilizes floating nodes to accurately 

model the crack by activating dormant nodes at intersection points of crack path and the 

corresponding element edges. Through the activation of floating nodes, the cracked 

element transforms into sub-elements, facilitating separate integration of each sub-

element. A smoothing cell-based integration technique is employed to convert the area 

integral to line integral which mitigates the element distortion issues. The temperature 

distribution is initially determined across the entire domain, and then imposed as thermal 

loads in the 2D domain. The thermal stress intensity factor is calculated for both 

homogeneous and bi-material specimens using the interaction energy integral approach, 

and the crack propagation is predicted using circumferential stress criterion. The 

accuracy of the proposed framework is demonstrated with several benchmark problems 

of fracture mechanics. The develop framework yields comparable results with the 

available literature with less modelling complexity.  

5.1 Introduction 

In engineering, the behaviour of materials under various loading conditions is of great 

interest. These materials can be subjected to different types of loads, such as mechanical, 

thermal, or a combination of both. Thermo-mechanical loading can occur in many 

engineering applications, such as in aerospace, fuel cells, automotive, and power 

generation industries. One of the key challenges in analysing materials under thermo-

mechanical loading is the presence of thermal stresses. These stresses arise due to the 

difference in thermal expansion coefficients between different materials, or due to 

changes in temperature within the material itself. In addition to causing cracks in 

materials, the temperature fluctuations also induce changes in the material's 

microstructure, which in turn have a significant impact on its mechanical properties and 

behaviour. Mechanical characteristics, such as weight, strength, and stiffness, primarily 

in concrete, start to deteriorate at temperatures beyond 300 °C, which causes the material 
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to fracture [164]. Thermal stresses act in addition to the mechanical stresses, and 

significantly affect the propagation of cracks in the material. To properly analyse 

materials under thermo-mechanical loading, it is important to take into account the 

presence of thermal stresses. This requires a comprehensive understanding of the 

material properties, as well as accurate modelling techniques that can capture the 

behaviour of the material under these conditions. As a result, numerous analytical and 

numerical techniques have been developed by researchers to evaluate steady state 

thermo-mechanical fracture problems. In order to get rid of drawbacks posed by 

discontinuity by using FEM only, advanced numerical methods are necessary to analyse 

the fracture behaviour of the growing cracks. In the context of the advanced numerical 

technique, this study aims to investigate the behaviour of a cracked specimen under 

steady state thermo-elastic loading conditions using the smoothed floating node method 

in conjunction with CZM. The employed method avoids the use of the virtual or 

enriched nodes to represent the crack discontinuity and ensures the real positioning of 

the floating nodes as per the crack growth orientation.  

The chapter is structured as follows: In Section 5.2, smoothed floating node 

method formulation with implementation is described. In Section 5.3, governing 

equations, and temperature framework is discussed. Further, the implementation of 

cohesive zone approach into SFNM is described in Section 5.4. The extraction of the 

SIFs for homogeneous and inhomogeneous materials is presented in Section 5.5. Crack 

growth evaluation scheme is also provided in the same section. Section 5.6, illustrates 

the method through numerical examples involving static and crack propagation under 

different thermo-elastic loading conditions. Section 5.7, summarizes the findings and 

conclusions drawn from the study. 

5.2 Smoothed Floating Node Method  

In this section, the formulation and implementation of the smoothed floating node 

method is presented in reference to the cracked domain. Figure 5.1 illustrates the 

utilization of the floating node method (FNM), which demonstrates the presence of 

discontinuity within the element. The domain's discretized mesh includes various types 

of elements such as intact, split, tip, and transition elements. Each element possesses 

floating nodes and real nodes with their corresponding dofs as shown in Figure 5.2. 

When there is no crack present, the floating nodes within each element remain inactive, 

resulting in a structure that resembles a regular finite element with only the real nodes. 
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However, as soon as a crack appears, these floating nodes become active to accurately 

represent the crack discontinuity [5,106,108]. In contrast to XFEM, the floating nodes 

in this model precisely depict their position along the path of crack growth. The element 

containing the crack is divided into two or more sub-elements depending on the location 

of the crack, and their nodal coordinate vectors are defined accordingly. The vectors of 

nodal coordinates for the element that is split into two sub-elements ΩA and ΩB (Figure 

5.1) are defined as follows:  

𝐱Ω𝐴
T = [𝐱𝑟

T, 𝐱𝑠
T, 𝐱3

T, 𝐱4
T]       and       𝐱Ω𝐵

T = [𝐱1
T, 𝐱2

T, 𝐱𝑠
T, 𝐱𝑟

T] (5.1) 

     

Figure 5.1: Schematic representation of strong discontinuity of an element dividing into 

sub-elements. 

These nodal vectors of the sub domains ΩA and ΩB are further used to calculate the 

stiffness matrix and force vectors individually. 

𝐊A = ∫𝐁A
T 𝐃 𝐁A det(𝐉A) 𝑑Ω

 

𝛺𝐴

      and     𝐊B = ∫𝐁B
T 𝐃 𝐁B det(𝐉B) 𝑑Ω

 

𝛺𝐵

 (5.2) 

𝐟A = ∫𝐍T 𝐛 det(𝐉A) 𝑑Ω

 

𝛺𝐴

   +  ∫ 𝐍T 𝐭 ̅det(𝐉A)𝑑𝛤

 

𝛤𝑡∩𝛤Ω𝐴

    (5.3a) 
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𝐟B = ∫𝐍T 𝐛 det(𝐉𝐵)𝑑Ω

 

𝛺𝐵

 + ∫ 𝐍T 𝐭 ̅det(𝐉B)𝑑𝛤

 

𝛤𝑡∩𝛤Ω𝐵

 (5.3b) 

[𝐊A]{𝐮A} = {𝐟A}     and      [𝐊B ]{𝐮B} = {𝐟B} (5.4) 

Finally, the equilibrium equation of the floating node element is the assembly of the two 

sub-elements, and is given as, 

[𝐊]{𝐮} = {𝐟} (5.5) 

where 𝐊 = [
𝐊A   
 𝐊B

], 𝐮T = [𝐮𝐴
𝑇 , 𝐮𝐵

𝑇] and 𝐟T = [𝐟A
T, 𝐟B

T] when the two sub-elements are 

fully separated. 

 

Figure 5.2: Representation of different types of elements in domain under strong 

discontinuity. 

 

 

Figure 5.3: Quadrilateral and Triangular elements division into smoothing cells and 

integration scheme: (a) Q4, 4-cells and (b) T3, 1-cell. 

The floating node method is implemented by utilizing the equations mentioned earlier. 

Further, the smoothing procedure employs a strain smoothing technique [40,41] for each 

smoothing cell within an element, as shown in Figure 5.3. In this process, the area 

integration for each cell is transformed into line integration along its boundaries using a 
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constant smoothing function. This eliminates the need to compute the gradient of shape 

functions while determining field gradients and forming the stiffness matrix. Figure 5.3 

illustrates the integration points and field nodes for a specified number of cells. The 

gradient of displacement for each smoothing cell within an element, utilizing the 

smoothing function, is presented as follows [133,134,165] 

∇𝑢ℎ(𝐱𝐶) = ∫∇𝑢ℎ(𝐱)𝜙(𝐱 − 𝐱𝐶)𝑑Ω

Ω

 (5.6) 

After simplifying Eq. (5.6) and substituting the constant area function, the smoothed 

strain can be obtained and given as, 

𝛆̃ℎ(𝐱𝐶) =  ∑𝐁̃𝐼(𝐱𝐶)𝑢𝐼

𝑛

𝐼=1

  (5.7) 

 where 𝐁̃𝐼 is the smoothed strain matrix. For 2D, it is written as,  

𝐁̃𝐼(𝐱𝐶) =  [

𝑏̃𝐼1(𝐱𝐶) 0

0 𝑏̃𝐼2(𝐱𝐶)

𝑏̃𝐼2(𝐱𝐶) 𝑏̃𝐼1(𝐱𝐶)

] 
(5.8) 

 

where    𝐛̃Ik(𝐱C) =  
1

𝐴𝐶
∫𝐍I(𝐱)nk(𝐱)

ΓC

 𝑑Γ,       (𝑘 = 1, 2)  

where 𝐴𝐶 = ∫ 𝑑𝛺
𝛺𝐶

  and Ω𝐶 is the smoothing cell. If one Gaussian point is used for line 

integration along each segment of the boundary Γ𝑖
𝐶 of  Ω𝐶, the above equation can be 

transformed to its algebraic form as,    

𝐛̃Ik(𝐱C) =  ∑𝐍𝐼(𝐱𝑖
𝐺𝑃)𝑛𝑖𝑘

𝐶 𝑙𝑖
𝐶

𝑀

𝑖=1

 (5.9) 

where 𝐱𝑖 is the Gaussian point of the piecewise boundary segment of  Γ𝑖
𝐶 , 𝑙𝑖

𝐶 is the length 

of boundary segment, 𝐍I is the shape function of node I and 𝑛𝑖
𝐶 is the outward unit 

normal vector of the boundary segment. Once the smoothed gradient matrix over each 

smoothing cell is evaluated, the smoothed element stiffness matrix can be obtained by 

assembly from all the sub-cells in the element and is given as, 
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Figure 5.4: Flow chart of SFNM to model crack propagation under thermo-elastic loading 

conditions. 
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𝐊e = ∑𝐁̃C
T

C

𝐂 𝐁̃CAC (5.10) 

where 𝐁̃C smoothed gradient matrix of the single sub-cell. Figure 5.4 presents a 

comprehensive step-by-step process for applying the SFNM method to simulate crack 

discontinuity. The procedure is outlined specifically for thermo-mechanical loading 

conditions in a steady state. The use of SFNM enhances both accuracy and convergence 

rate. Details regarding errors in L2 norm and convergence analysis utilizing SFNM can 

be found in the reference [108]. 

5.3 Governing Equations 

The planar domain, as depicted in Figure 5.5, is divided into different parts denoted as 

𝛤𝑢, 𝛤𝑡,  𝛤𝑇 and 𝛤𝑐. On the boundary 𝛤𝑢, displacement boundary conditions are applied, 

while tractions are enforced on 𝛤𝑡. The boundary 𝛤𝑇 is subjected to temperature fields 

while the boundary 𝛤𝑐 is kept traction free. The steady-state heat conduction in a cracked 

domain, along with thermo-elastic equilibrium considering small displacements, can be 

described as follows [166], 

−∇.𝐪 + 𝑄 = 0 (5.11) 

𝐪 = −𝑘∇𝑇    (5.12) 

∇. 𝛔 + 𝐛 = 𝟎 in Ω (5.13) 

𝛔 = 𝐂: (𝛆 − 𝛆𝑇) (5.14) 

where, 𝛔 and 𝜺 represent the second order stress and strain tensors respectively, q, k, Q 

and b are the heat flux, thermal conductivity, heat source and body force vector 

respectively, and C is the fourth order elastic tensor.  

𝛆 = 𝛁𝒔 𝐮 (5.15) 

𝛆T = 𝛼 (𝑇 − 𝑇𝑟𝑒𝑓)I (5.16) 

The thermal and mechanical boundary conditions for the domain can be expressed in 

the following manner: 

𝑇 =  𝑇̅ on   𝛤𝑇  (5.17a) 

𝐪. 𝐧 =  𝑞̅  on 𝛤𝑞   (5.17b) 
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𝛔. 𝐧 =  𝐭 ̅on 𝛤𝑡  (5.17c) 

𝐮 =  𝐮̅ on 𝛤𝑢 (5.17d) 

where the displacement and temperature field variables are denoted as u and T, 

respectively. The thermal expansion coefficient is represented by α. The operator 𝛁𝒔  

refers to the symmetric gradient operator on a vector field, while I denotes the second-

order identity tensor. Within the domain Ω, it is assumed that there exists a crack 

denoted by 𝛤𝑐. The following conditions are followed: for adiabatic crack 𝛤𝑐  ⊂  𝛤𝑞 , 𝑞̅ =

0 on 𝛤𝑐 and for isothermal crack 𝛤𝑐  ⊂  𝛤𝑇 , 𝑇̅ =  𝑇̅ 𝑐 on 𝛤𝑐. 

 

Figure 5.5: Two dimensional cracked domain with loading and boundary conditions. 

5.3.1 Weak formulation for thermo-elastic loading 

For an adiabatic crack scenario, the weak form of the governing Eq. (5.11 & 5.13) using 

the constitutive equation can be expressed as follows [166], 

∫𝐪(𝑆)k 𝐪(𝑇) dΩ

 

𝛀

+ ∫  SQ dΩ

 

𝛀

   − ∫𝑆 𝑞 ̅𝑑Γ −  δ𝑊𝑇(𝑇,𝑊∇𝑠𝜆)

 

𝛤𝑞

= 𝟎 (5.18) 

∫𝛆(𝐮): 𝐂: 𝛆(𝐯) dΩ

 

𝛀

− ∫  𝐛. 𝐯 dΩ

 

𝛀

 − ∫  𝐭.̅ 𝑣 𝑑Γ − ∫𝛆𝐓(u): 𝐂: 𝛆(v) dΩ

 

𝛀

 

𝛤𝑡

= 𝟎 (5.19) 

Above equations are satisfied for ∀ (S, 𝐯) ∈ (T0, u0)   where the subscript denotes 

homogeneous essential boundary conditions. The term δ𝑊𝑇(𝑇,𝑊∇𝑠𝜆) is due to the 

enforcement of the essential boundary condition by using the Lagrange multiplier. The 

thermal boundary conditions are imposed using Lagrange multiplier approach coupled 
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with FEM shape function. A set of discrete equation using temperature and nodal 

approximations, trial and test functions can be written as [97,167], 

[
𝐊thermal 𝐆

𝐆′ 0
] {
𝐓
𝛌
} =  {

𝐟thermal
𝐪thermal

} (5.20) 

[𝐊𝑒𝑙𝑎𝑠𝑡𝑖𝑐]{𝐮} = {𝐟} (5.21) 

where u and T are nodal displacement and temperature nodal unknowns, and K and f 

are the global stiffness matrix and external force vector respectively. Thermo-elastic 

fracture problems are dissociated into thermal and mechanical problems. First, the 

temperature distribution has been computed throughout the domain by solving the heat 

conduction discrete equations and structural field variables are computed using the 

temperature as input loading parameter. 

Discrete set of equations from the weak form is given by 

𝐆IJ = − ∫𝜙𝐼𝐍𝐽 dΓ

 

Γ𝒖

 (5.22) 

(𝐪J)thermal = − ∫𝐍JT̅ dΓ

 

Γ𝑻

 (5.23) 

𝛌(s) =  𝐍J(s)λI (5.24) 

where 𝛌 is Lagrange multiplier, 𝐍J(s) is Lagrange interpolant and s is the arc length 

along the boundary. 

(𝐊ij
e)thermal = ∫(𝐁i

 )thermal
𝑇 Cond (𝐁j

 )thermaldΩ

 

Ω𝒆

 (5.25) 

(𝐊ij
e)elastic = ∫(𝐁i

 )elastic
𝑇 𝐂 (𝐁j

 )elasticdΩ

 

Ω𝒆

 (5.26) 

(𝐟i
 )thermal = ∫𝐍i 𝐪 dΓ

 

Γ𝑖

+ ∫𝐍i 𝑄 dΩ

 

Ω𝒆

 (5.27) 
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(𝐟i
 )elastic = ∫𝐍i 𝐭 ̅dΓ

 

Γ𝑖

+ ∫𝐍i 𝐛 dΩ

 

Ω𝒆

 (5.28) 

where 𝐍i is finite element shape function. 

The thermal conductivity matrix ‘Cond’ for 2D isotropic materials is given by, 

Cond = [
𝑘 0
0 𝑘

] (5.29) 

The thermal and elastic stiffness matrix discussed in Eq. (5.25) and Eq. (5.26) 

respectively, can be calculated using Eq. (5.10). In the case of an isothermal crack, the 

heat flux is discontinuous across the crack surface instead of the temperature field. The 

crack region is considered as part of  𝛤𝑇, where the minimum heat flux is introduced. On 

the other hand, for an adiabatic crack, the heat flux along the crack surface is set to zero, 

and the temperature field exhibits a discontinuity across the crack surface due to the 

insulation condition. 

5.4 Thermal Cohesive Zone 

As the crack appears in the material, the interfaces of the crack act as obstacles to the 

conduction of heat, causing changes in the evolving temperature distribution within the 

solid material. This phenomenon distinctly impacts the thermal stresses and has the 

potential to induce significant changes in the subsequent mechanical response. The 

fracture process zone near the tip of a crack in brittle materials is extremely small and 

can often be disregarded. However, the singularity remains present at the crack tip, 

which can be effectively addressed by incorporating the cohesive zone model. The 

implementation of cohesive zone in the SFNM framework is straightforward. By 

neglecting the heat source, the Eq. (5.18) can be modified to Eq. (5.30), as given below.  

∫𝐪(𝑆)k 𝐪(𝑇) dΩ

 

𝛀

+ ∫  S 𝑞𝑐 dΓ

 

𝛤𝑐

   − ∫𝑆 𝑞 ̅𝑑Γ −  δ𝑊𝑇(𝑇,𝑊∇𝑠𝜆)

 

𝛤𝑞

= 0 (5.30) 

In a manner analogous to applying the mechanical cohesive law, the calculation of crack 

separation occurring at the interface within the cohesive zone is performed [168,169] as 

provided in the following formulation. This separation within the cohesive elements 

results from thermal stresses induced by the external application of heat.  
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𝒖̅𝑳 = 𝐑𝐮 (5.31) 

𝚫̅ = 𝐋𝒖̅𝑳 (5.32) 

𝚫 = 𝐍𝚫̅ (5.33) 

where 𝐮 denotes the nodal displacements, N is the shape function matrix, 𝒖̅𝑳 is the local 

nodal displacements and 𝚫̅ is the local displacement jump or local separation. 𝚫 denotes 

the separation along the cohesive surface element. The rotational matrix R is given by, 

𝐑 =  [

Υ 0 0 0
0 Υ 0 0
0 0 Υ 0
0 0 0 Υ

] (5.34) 

where transformation matrix (𝚼) is given as, 

𝚼 =  [
cos𝜃 sin𝜃
−sin𝜃 cos𝜃

] (5.35) 

Local separation is given in Eq. (5.36) which can be calculated with the help of the L 

operator given in Eq. (5.37). The L operator is the local displacement-separation 

relation matrix. N is the shape function matrix of 2 node linear elements given by Eq. 

(5.38). 

Δ̅1 =  𝑢̅𝐿7 − 𝑢̅𝐿1,  Δ̅2 = 𝑢̅𝐿8 − 𝑢̅𝐿2,   Δ̅3 = 𝑢̅𝐿5 − 𝑢̅𝐿3,  Δ̅4 = 𝑢̅𝐿6 − 𝑢̅𝐿4. (5.36) 

𝐋 =  [

−1 0 0 0 0 0 1 0
0 −1 0 0 0 0 0 1
0 0 −1 0 1 0 0 0
0 0 0 −1 0 1 0 0

] (5.37) 

𝐍 = [
𝑁1 0 𝑁2 0
0 𝑁1 0 𝑁2

] (5.38) 

Finally, the relation between global nodal displacement and the separation along the 

cohesive surface can be written in a form as given in Eq. (5.39). 

𝚫 = 𝐁𝐜𝐮 (5.39) 

where 𝐁𝐜 = 𝐍𝐑𝐋. 

 

Figure 5.6: Cohesive zone crack interfaces separation with floating nodes along tangential 

and normal directions. 
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The parameter 𝚫 provides the tangential (𝛿𝑡) and normal (𝛿𝑛) separation and using this, 

the resultant separation of length δ is calculated as shown in Figure 5.6. The heat flow 

via radiation within the partially damaged Fracture Process Zone (FPZ) is neglected in 

this model, while the heat conduction through the interconnected material patches is 

accounted by using Fourier's law. In thermal cohesive zone, it is assumed that the heat 

flux 𝑞𝑐 through the cohesive crack can be determined by multiplying the cohesive 

conductance coefficient ℎ𝑐 by the temperature difference ∆θ𝑐 across the cohesive crack 

[170]. 

𝑞𝑐 = ℎ𝑐 ∆θ𝑐 (5.40) 

The temperature jump (∆θ𝑐) across the cohesive zone is calculated as the difference of 

the upper and lower nodal temperature. Using the linear cohesive law depicted in Figure 

5.7, the cohesive conductance coefficient ℎ𝑐 that corresponds to this specific resultant 

separation δ is established. Here, δmax represents the critical resultant separation within 

the thermal cohesive zone. The correlation between cohesive thermal conductance and 

the separation at the interface clarifies the decline in heat transfer within the cohesive 

zone. This critical resultant separation can be computed using either the materials 

parameters [168] or through the damage analysis [169,171]. Subsequently, employing 

Eq. (5.40), the computation of the heat flux within the cohesive zone is determined. 

 

Figure 5.7: Normal separation law for heat transfer across a thermal cohesive crack. 

5.5 SIF Computation and Crack Propagation Criterion 

The interaction integral approach is used to determine the crack propagation. It applies 

to both homogeneous materials and bi-materials, involving the evaluation of interaction 

energy. Bi-material analysis requires considering additional factors due to different 

ℎ𝑐 

δ 

𝛿𝑚𝑎𝑥 
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mechanical properties of the materials involved. For a cracked body subjected to 2D 

deformation fields, the individual stress intensity factors (𝐾𝐼 𝑎𝑛𝑑 𝐾𝐼𝐼) are calculated 

using the domain form of interaction integral [77,82]. 

𝐼(1,2) =   ∫ [𝛔ij
(1) ∂𝑢𝑖

(2)

∂𝑥1
+ 𝛔ij

(2) ∂𝑢𝑖
(1)

∂𝑥1
− 𝐖(1,2)δ1j]

 

A

∂𝑔

∂𝑥j
dA (5.41) 

In a similar way, thermal interaction integral can be defined as [172] 

𝐼(1,2) =  ∫ [𝛔ij
(1) ∂𝑢𝑖

(2)

∂𝑥1
+ 𝛔ij

(2) ∂𝑢𝑖
(1)

∂𝑥1
− 𝐖(1,2)δ1j]

 

A

∂𝑔

∂𝑥j
dA +

α∫  
𝜕T

𝜕𝑥1
 𝛔𝑘𝑘
(2) 𝑔𝑑𝐴

 

𝐴
  

(5.42) 

In this context, 𝐖(1,2) represents the interaction strain energy term related to the actual 

and auxiliary states, g denotes a smoothing weight function, and 𝛔ij denotes the stress 

field. Here, 1 and 2 indicate the actual and auxiliary state, respectively. When 

considering a cracked body with a bi-material interface, the interaction integral form 

can be expressed as [138,173], 

𝐼(1,2) =  ∑ ∫ [𝛔ij
(1) ∂𝑢𝑖

(2)

∂𝑥1
+ 𝛔ij

(2) ∂𝑢𝑖
(1)

∂𝑥1
− 𝐖(1,2)δ1j]

 

𝐴𝑚

∂𝑔

∂𝑥j
dA

2

𝑚=1

 (5.43) 

where m represents a specific material in the bi-material domain. In a similar fashion, 

the thermal interaction integral for a crack along an interface in Bi-materials can be 

written as 

𝐼(1,2) =  ∑ ∫ [𝛔ij
(1) ∂𝑢𝑖

(2)

∂𝑥1
+ 𝛔ij

(2) ∂𝑢𝑖
(1)

∂𝑥1
− 𝐖(1,2)δ1j]

 

𝐴𝑚

∂𝑔

∂𝑥j
dA

2

𝑚=1

+ ∑ α∫  
𝜕𝑇

𝜕𝑥1
 𝛔kk
(2) 𝑔𝑑𝐴

 

𝐴𝑚

2

𝑚=1

 

(5.44) 

The crack growth is simulated by introducing small linear increments to the crack tip in 

the updated model. The direction of crack propagation is determined using maximum 

circumferential stress criterion. Hence, the crack direction is determined for each 

increment using the following equation. 
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𝜃𝑐 = 2 arctan
1

4
{ 
𝐾𝐼
𝐾𝐼𝐼

± 𝑠𝑖𝑔𝑛(𝐾𝐼𝐼)√(
𝐾𝐼
𝐾𝐼𝐼
)
2

+ 8    } (5.45) 

Corresponding to this 𝜃𝑐, equivalent mode-I SIF is computed as, 

∆𝐾𝐼𝑒𝑞 = ∆𝐾𝐼𝑐𝑜𝑠
3 (
θc
2
) − 3∆𝐾𝐼𝐼𝑐𝑜𝑠

2 (
θc
2
) 𝑠𝑖𝑛 (

θc
2
) (5.46) 

5.6 Numerical Results 

Heat flux refers to the rate at which heat flows across a surface per unit area. It is 

analogous to the tractions that are exerted on a boundary. In the context of studying 

steady state heat conduction in a cracked specimen, researchers have solved a number 

of related problems. These problems include examining the behaviour of the crack under 

both isothermal and adiabatic thermo-elastic loading conditions, as well as investigating 

the mechanics of crack growth. In all of these scenarios, it is assumed that there is no 

heat source or external force acting on the specimen. In the present work, four thermal 

problems are examined under steady state thermo-elastic loading in order to validate the 

SFNM technique. First two thermal problems are pertaining to the static crack analysis 

while the other two deal with the crack propagation based on thermal SIF. The 

temperature distribution inside the domain is computed by enforcing the temperature 

boundary conditions. To impose the Dirichlet boundary conditions, Penalty method 

[174,175] in the framework of FEM and Lagrange multiplier [176] in framework of 

XFEM is available in the literature. Here, Lagrange multiplier is utilized in the 

framework of SFNM for all the thermal fracture problems. The obtained temperature is 

used as an input parameter to compute the forces for the elastic part. Finally, the domain 

is solved for the nodal deformations. The predefined crack regime is represented by the 

floating nodes as per the crack orientation. The elements and sub-elements are further 

divided into the cells for the boundary integration of each cell. The stress, strain data of 

the cell is transferred to the nodes as per their corresponding cell areas [177,178] for 

plotting purpose. The plane strain condition is utilized for simulating the problems. 

5.6.1 Isothermal centre crack 

Thermo-elastic analysis of a square plate with a horizontal centre crack subjected to 

pure opening mode (mode I) is studied in this section. The size of the square plate is 
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2W, where W is taken equal to 100 mm. The study is carried out on the half-plate due 

to the symmetry of the problem. The right half specimen is considered for the analysis 

and the left edge is constrained in x-direction for the computation of displacement fields. 

The geometry and boundary conditions of the plate are illustrated in Figure 5.8 taken 

from literature [166,179]. The specimen details are as follows: specimen size 100 mm 

× 200 mm, modulus of elasticity (E) 218.4 GPa, thermal expansion coefficient 1.67 × 

10-6 /oC and Poisson’s ratio 0.3. The domain is discretized uniformly, and the analysis 

makes use of 50 nodes in x-direction and 100 nodes in y-direction. The boundary edges 

of the plate are subjected to temperatures of 100°C and 0°C at the crack.  

 

 

Figure 5.8: Geometry of homogeneous square plate with a centre crack under isothermal 

load. 

 

 

Figure 5.9: Temperature contour for a symmetrical half plate subjected to isothermal loads 

considering half of centre crack as an edge crack for a/W = 0.4. 
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The temperature distribution contour for symmetrical half plate is displayed in Figure 

5.9. The distributed thermal load in the corresponding elements is utilized to compute 

the nodal deformation occurring in the specimen domain. The stress contours in 

different directions are plotted for the plane strain conditions in Figure 5.10. The 

thermal stress intensity factor (SIF) is computed using the interaction integral approach,  

 

and path independency is verified. The convergence of SIF values is assessed at various 

numbers of nodes along the crack growth path as shown in Figure 5.11. Finally, it is 

normalized using 𝐸𝛼ΔΤ√𝑊, where ΔΤ is the difference between the crack temperature 

and the applied temperature at the boundary. The SIF values are calculated at different 

crack values, primarily a/W varying from 0.1 to 0.6. The obtained results are plotted in  

 

Figure 5.10: Stress contour plots for a symmetrical half plate subjected to isothermal loads 

considering half of centre crack as an edge crack. (a) 𝜎𝑦𝑦; (b) 𝜎𝑥𝑥; (c) 𝜎𝑥𝑦. 

 

Figure 5.11: SIF Convergence analysis of the Isothermal centre crack in a square plate with 

varying of number of nodes. 

(a) (b) (c) 
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Figure 5.12 for comparison with the literature, where in literature [179] the extended 

meshfree method is used to analyse the thermo-elastic crack problem while [166] used 

the XFEM approach by enriching the thermal and mechanical fields. The results 

obtained in this study are in good agreement with the literature results. 

 

Figure 5.12: Normalized SIF comparison of the Isothermal centre crack in a square plate 

with Literature1 [166] and Literature2 [50]. 

5.6.2 Adiabatic centre crack 

In this problem, a square specimen with a centre crack of size 2a and dimensions of 2W 

is examined, as demonstrated in Figure 5.13. The boundary conditions enforced in this 

instance cause pure sliding mode (mode II) to occur at the crack tip. Also, due to 

symmetry, the adiabatic simulation of the crack considers only half of the geometry. 

 

Figure 5.13: Geometry of homogeneous square plate with a centre crack under adiabatic 

thermal load. 
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The half specimen dimensions are 100 mm × 200 mm, with a modulus of elasticity of 

218.4 GPa, a thermal expansion coefficient of 1.67× 10-6 /oC, and a Poisson's ratio of 

0.3. A uniformly distributed mesh of nodes 50 × 100 in x- and y-direction respectively 

is utilized for the simulations. The temperature applied to the edges normal to the crack  

 

 

varies from -100°C to 100°C, while the heat flux along the crack is of zero magnitude 

owing to insulation. Temperature and stress distribution contours for the specimen are 

plotted and displayed in Figure 5.14 and Figure 5.15 respectively corresponding to a/W 

= 0.4. The stress contours exhibited in the results closely align with the findings reported 

in the literature [179]. SIF values are calculated for the a/W varying from 0.1 to 0.6 in 

the step of 0.1 interval. The analysis findings of normalized SIFs are compared to 

 

Figure 5.14: Temperature contour plot for a symmetrical half plate subjected to adiabatic 

thermal load considering half of centre crack as an edge crack for a/W = 0.4. 

 

Figure 5.15: Stress contour plots for a symmetrical half plate subjected to adiabatic thermal 

loads considering half of centre crack as an edge crack. (a) 𝜎𝑦𝑦; (b) 𝜎𝑥𝑦; (c) 𝜎𝑥𝑦. 

(a) (b) (c) 
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literature results and are presented in Figure 5.16. From the figure, it is observed that 

the SFNM provides results with good accuracy. 

 

Figure 5.16: Normalized SIF comparison of the Adiabatic centre crack in a square plate 

with Literature1 [22] and Literature2 [50]. 

 

5.6.3 Adiabatic edge crack propagation 

The problems described earlier dealt with the stationary crack that had a central position, 

while the current problem focuses on the implementation of SFNM for crack growth. 

The crack is allowed to expand until the material's fracture strength is reached. The 

adiabatic edge crack analysis involves a specimen size of 200 mm × 200 mm. Figure 

5.17 includes the geometry details and initial edge crack. The thermo-elastic properties  

 

Figure 5.17: Square homogeneous plate with an edge crack under adiabatic thermal load. 
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considered for the present simulation are: modulus of elasticity  E = 200 GPa, thermal 

expansion coefficient 𝛼 = 15e-6 /oC and Poisson’s ratio 𝜈 = 0.3. This example 

considers the following boundary conditions: a constant maximum cyclic heat flux 

applied perpendicular to the crack surface with temperatures varying from 500°C at the  

 

 

Figure 5.18: Temperature contour plot for homogeneous square plate with an edge crack 

under adiabatic thermal load. 

 

 

Figure 5.19:  Stress contour plots for homogeneous square plate with an edge crack under 

adiabatic thermal load : (a) 𝜎𝑦𝑦; (b) 𝜎𝑥𝑥; (c) 𝜏𝑥𝑦. 
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top edge to -500°C at the bottom edge of the specimen. Deformation is limited in the y-

direction at the boundaries that are normal to the pre-defined crack. The problem is 

sourced from [97], where it was numerically solved using the element-free Galerkin 

method. A minimum thermal load is applied at the crack surface, causing the 

temperature to drop to 0°C. The temperature and displacement fields are discontinuous  

across the crack surface. The temperature contour in the domain is displayed in the 

Figure 5.18 for the critical crack length under adiabatic thermal loading conditions. 

Additionally, Figure 5.19 illustrates the contour for normal and shear stress at the 

critical length of the crack. The crack increments suggest that the angle of propagation 

continuously increases and strives to incline vertically before reaching the critical stage. 

The SIF values are measured at various stages of crack growth, ranging from the initial 

crack length to the critical stage. A plot is generated to compare the SIF values against 

the corresponding crack lengths, and then compared with the XFEM results in Figure 

5.20. The XFEM results incorporate the Heaviside step function for elements that are 

completely cut by the crack and asymptotic enrichment functions for elements at the 

crack tip that are only partially intersected.  

 

Figure 5.20: SIF vs crack length variation for edge crack of homogeneous square plate 

under adiabatic thermal load. 

5.6.4 Bi-material adiabatic interfacial crack propagation 

A bi-material edge crack refers to a fracture that occurs specifically at the interface 

between two distinct materials with varying mechanical properties. To investigate this 

phenomenon, a square plate containing an edge crack located at the interface of two 

distinct materials is analysed, as shown in Figure 5.21. The specimen is characterized 

by the following material properties: E1= 200 GPa, 𝜈1 = 0.3, 𝛼1= 15 × 10-6 /oC for 
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material-1, and E2 = 400 GPa, 𝜈2 = 0.25, 𝛼2= 8 × 10-6 /oC for material-2. In this context, 

E represents the elastic modulus, ν denotes the Poisson's ratio and 𝛼 symbolizes the 

thermal expansion coefficient. A maximum heat flux is applied perpendicular to the 

crack surface, while a zero heat flux is applied along the crack surface.  

 

Figure 5.21: Bi-material plate with an edge crack under adiabatic thermal load. 

 

 

Figure 5.22: Temperature contour plot for bi-material plate with an edge crack under 

adiabatic thermal load. 

The temperature is set to a maximum of 50 oC at the top edge and a minimum of 

-50 oC at the bottom edge. The resulting temperature profile and stress contours in the 

normal and shear-directions are plotted in Figure 5.22 and Figure 5.23 respectively, 

which confirms the findings reported in the study [97] using the EFGM method. It is 

observed that the edge crack deviates slightly towards the soft material side. 

Furthermore, the stress contour plot shows a continuous contour across the interface of  
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Figure 5.23: Stress contour plot for bi-material plate with an edge crack under adiabatic 

thermal load: (a) σ_yy; (b) σ_xx; (c) τ_xy. 

 

 

Figure 5.24: SIF variation with respect to crack length of an adiabatic edge crack of a bi-

material plate. 

the two materials. The stress intensity factor variation with respect to crack length is 

plotted in Figure 5.24, and compared with the XFEM results for verification. 
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5.7 Conclusions 

This paper demonstrates the successful application of the smoothed floating node 

method with cohesive zone model to solve thermo-elastic fracture problems, 

encompassing both homogeneous and inhomogeneous materials considering isothermal 

and adiabatic thermal conditions. The method decouples thermo-elasticity problem into 

its thermal and elastic components, and temperature boundary conditions imposed 

through Lagrange multipliers which are then utilized to compute the displacements. The 

discontinuity of the displacement and heat flux are modelled in the framework of 

SFNM. The analysis includes determining temperature distributions and stress contours 

in static crack problems, with results compared to those in existing literature. The stress 

intensity factor is also verified for different lengths of the static crack. The SFNM 

method is further applied to edge crack problems, where the crack propagates up to 

fracture strength under steady-state thermal loading conditions. The proposed approach 

proves effective without the use of enrichment functions for discontinuity. Additionally, 

the inversion of the Jacobian used for isoparametric mapping is eliminated by using the 

line integration of the edges of the elements through smoothing procedure. The results 

demonstrate the effectiveness and capabilities of SFNM in solving thermo-elastic 

fracture problems with less complexity in implementation. 

In this chapter, we model the steady-state heat conduction problem while 

considering mechanical constraints. However, it is also important to study problems that 

are exposed to both thermal and mechanical loads. After exploring into thermal loads, 

the subsequent chapter investigates the integration of thermo-mechanical loads. 

 



Chapter 6   

Thermo-mechanical Quasi-brittle Fracture 

 

This chapter explores the fracture failure of quasi brittle materials subjected to thermo- 

mechanical loading conditions. The micro-cracks ahead of the crack tip possess the 

nonlinear nature of stress variations. The fracture process zone nonlinear behaviour is 

addressed by using the traction separation law. The intrinsic separation law is clubbed 

with the smoothed floating node method to assess the fracture behaviour of the crack. 

Domain based interaction integral is used to compute SIF by adding the thermal effect. 

To check the robustness of the method, a few problems of fracture mechanics are solved, 

and obtained results are compared with the literature. 

6.1 Introduction 

Quasi-brittle materials are substances that display a blend of both brittle and ductile 

qualities. Their defining characteristics involve a distinct shift from elastic to plastic 

behaviour, often accompanied by significant energy dissipation during the propagation 

of cracks. Notable examples of quasi-brittle materials encompass concrete, ceramics, 

rocks, and masonry etc. Thermo-mechanical crack analysis investigates the behaviour 

of cracks in quasi-brittle materials when subjected to both mechanical loading and 

temperature fluctuations. This analytical approach holds critical significance in 

examining the failure mechanisms of structures constructed from quasi-brittle materials 

operating in service environments prone to temperature-related stress. The mechanical 

attributes of quasi-brittle materials are susceptible to alteration by temperature 

variations. A prime illustration of this is the reduction in concrete's tensile strength and 

fracture toughness as the temperature rises. This phenomenon arises from the thermal 

expansion-induced formation of micro-cracks within the material, subsequently 

diminishing its structural integrity. Quasi-brittle materials contain an array of 

microstructural features, including pores, inclusions, and grain boundaries, each 

exerting a substantial influence on the process of crack propagation and coalescence. 

Hence, it is imperative to develop a more effective approach to examine the intricate 

attributes of engineering structures capable of withstanding the demands imposed by 

elevated temperatures and mechanical loading. To this end, the reference [180] explores 



 

6.1 Introduction 

 

106 

 

ceramics' thermal fracture mechanics with temperature-sensitive properties, confirming 

the persistence of the square-root singular field near the crack tip. It proceeds to 

calculate the steady thermal stress intensity factor for an edge-cracked strip. Numerical 

analysis has explored the steady-state, dynamically advancing crack in a heat-

conducting elastic body with temperature-dependent cohesive zone properties [181]. 

Further, ref [182] describes thermo-mechanical analysis of laminates with delamination 

cracks under a temperature gradient using a cohesive zone model. A specific traction-

separation law is presented, considering breakdown of load transfer mechanisms. Load 

transfer behaviour is linked to heat conduction across the delamination crack. A method 

for analysing thermo-mechanical coupling in composite structures with bridged cracks 

is described in ref [183]. It introduces a crack bridging law considering load and heat 

transfer breakdown as crack opening increases. 

In the direction of solving thermo-mechanical fracture problems, linear elastic 

fracture mechanics (LEFM) has been the conventional method for predicting interface 

failure, but it has certain constraints related to the overall material response and the 

proportion of the fracture process zone relative to the crack's size. LEFM fails to provide 

an accurate representation of the stress distribution in the vicinity of the crack tip. To 

address these limitations, the cohesive zone concept is employed. This concept mitigates 

the singularity at the crack tip by incorporating a traction-opening law that accounts for 

the material's finite strength and the mechanisms of load transfer within the fracture 

process zone. Typically, the intricate details of the interface are not explicitly modeled, 

and the load transfer mechanisms are followed within cohesive zone constitutive 

relationships. This approach has proven effective in predicting interface failure across 

various boundary conditions. The FPZ, partially damaged zone, is where the 

coalescence of micro-cracks occurs. In this zone, the material that remains in contact 

without complete separation at the interface functions as a pathway for heat conduction 

from one side to the other. Similarly, stress is transferred through the partially bridged 

material at the interface. As the crack progresses, both stress and heat flux transfer 

through the FPZ diminish, aligning with the principles described in the traction-

separation law. Several types of approaches are reported in the literature like damage 

based methods [184–186], phase field methods [42,47,187,188], meshfree methods 

[189], discontinuity approach [190] for modelling the failure behaviour of different 

materials under thermo-mechanical loading conditions. 
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This chapter is structured as outlined below: Section 6.2 elaborates on the 

numerical formulation in the context of both thermal and mechanical loading conditions. 

Section 6.3 investigates cohesive zone modelling. Section 6.4 details the description of 

the crack growth direction. Section 6.5 offers insights into numerical simulation 

problems. Finally, Section 6.6 presents the concluding remarks. 

6.2 Numerical Formulation 

Mechanical equilibrium equation can be written as 

∇. 𝛔 + 𝐛 = 𝟎 in Ω (6.1) 

where σ is the Cauchy stress tensor and b is the body force vector.  

 

Figure 6.1: (a)Two dimensional cracked domain with loading and boundary conditions, (b) 

domain division as per discontinuity interface. 

 

Similarly, in the absence of the internal heat source, the thermal equilibrium equation 

can be written as 

∇. 𝐪 +  𝜌𝑐𝑣𝜃̇ = 𝟎  (6.2) 

and 𝐪 = −𝑘∇𝑇 (6.3) 

Where 𝜌 is the density , 𝑐𝑣 is the heat capacity of the material and q is the heat flux 

vector. 

𝛔 = 𝐂: (𝛆 − 𝛆𝑇) (6.4) 

𝛆T = 𝛼 (𝑇 − 𝑇𝑟𝑒𝑓)I 
(6.5) 
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The thermal expansion coefficient is denoted by α. I represents the second-order identity 

tensor. 

Along the cohesive crack the following continuity equations should be satisfied. 

𝑡𝑐
+ =  𝑡𝑐

−   and  𝑞𝑐
+ =  𝑞𝑐

−. The superscripts ‘+’  and ‘-’ represents the +ve and –ve side 

of the crack interface. The strong form of mechanical equilibrium equation in the 

absence of body force along with boundary conditions are given by Eq. (6.6). Also Eq. 

(6.6) shows the thermal equilibrium equation with boundary conditions under steady 

state heat conduction flow [170]. 

 

Mechanical Domain Thermal Domain 

(6.6) 

𝜵. 𝝈+/− = 0                      in  Ω+/− 𝛻. 𝐪+/− = 0                     𝑖𝑛  Ω+/− 

𝝈 +/− . 𝒏+/− = 𝒕̅+/−         on 𝛤𝑡
+/-  𝐪 +/− . 𝒏+/− = 𝑞̅+/−        on 𝛤𝑞

+/-  

𝒖 +/− = 𝒖̅+/−                     on 𝛤𝑢
+/- 𝜽 +/− = 𝜽̅+/−                    on 𝛤𝜽

+/- 

𝑡𝑐
+/- =  𝝈 +/−. 𝒏+/−       on 𝛤𝑐

+/- 𝑞𝑐
+/- = 𝐪 +/−. 𝐧+/−       on 𝛤𝑐

+/- 

 

6.2.1 Weak formulation of equilibrium equations 

For an adiabatic crack scenario, the weak form of the governing Eq. (6.6) using the 

constitutive equation can be expressed as follows [166], 

∫𝜌𝑐𝑣𝜃̇𝛿𝛉 dΩ

 

𝛀

+ ∫  𝐪.𝜵𝛿𝛉 dΩ

 

𝛀

  = ∫  𝑞 ̅𝛿𝛉𝑑Γ

 

𝛤𝑞

+ ∫𝑞𝑐
 (𝛿𝛉+ − 𝛿𝛉−)𝑑Γ

 

𝑞𝑐

 (6.7) 

∫𝛔:𝜵𝛿𝐮 dΩ

 

𝛀

= ∫  𝐛. 𝛿𝐮 dΩ

 

𝛀

+ ∫  𝐭.̅ 𝛿𝑢 𝑑Γ + ∫ 𝑡𝑐
 (𝛿𝐮+ − 𝛿𝐮−)𝑑Γ

 

𝛤𝑐

 

𝛤𝑡

 (6.8) 

The thermal boundary conditions are imposed using Lagrange multiplier approach 

coupled with FEM shape function. A set of discrete equation using temperature and 

nodal approximations, trial and test functions can be written as [167], 

[
𝐊thermal 𝐆

𝐆′ 0
] {
𝐓
𝛌
} =  {

𝐟thermal
𝐪thermal

} (6.9) 

[𝐊𝑒𝑙𝑎𝑠𝑡𝑖𝑐]{𝐮} = {𝐟} (6.10) 
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where u and T are nodal displacement and temperature nodal unknowns, and K and f 

are the global stiffness matrix and external force vector respectively. Thermo-elastic 

fracture problems are dissociated into thermal and mechanical problems. First, the 

temperature distribution has been computed throughout the domain by solving the heat 

conduction discrete equations and therefore, the structural field variables are computed 

using the temperature as input loading parameter. 

The discrete set of equations from the weak form is given by 

𝐆IJ = − ∫𝜙𝐼𝐍𝐽 dΓ

 

Γ𝒖

 (6.11) 

(𝐪J)thermal = − ∫𝐍JT̅ dΓ

 

Γ𝑻

 (6.12) 

𝛌(s) =  𝐍J(s)λI (6.13) 

where 𝛌 is Lagrange multiplier, 𝐍J(s) is Lagrange interpolant and s is the arc length 

along the boundary. The stiffness matrices and force vectors given in Eq. 6.9 & Eq. 6.10 

are defined as, 

(𝐊ij
e)thermal = ∫(𝐁i

 )thermal
𝑇 Cond (𝐁j

 )thermaldΩ

 

Ω𝒆

 (6.14) 

(𝐊ij
e)elastic = ∫(𝐁i

 )elastic
𝑇 𝐂 (𝐁j

 )elasticdΩ

 

Ω𝒆

 (6.15) 

(𝐟i
 )thermal = ∫𝐍i 𝐪 dΓ

 

Γ𝑖

+ ∫𝐍i 𝑄 dΩ

 

Ω𝒆

 (6.16) 

(𝐟i
 )elastic = ∫𝐍i 𝐭 ̅dΓ

 

Γ𝑖

+ ∫𝐍i 𝐛 dΩ

 

Ω𝒆

 (6.17) 

where 𝐍i is finite element shape function. 

The thermal conductivity matrix ‘Cond’ for 2D isotropic materials is given by, 
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Cond = [
𝑘 0
0 𝑘

] (6.18) 

In the case of an isothermal crack, the heat flux is discontinuous across the crack surface 

instead of the temperature field. The crack region is considered as part of  𝛤𝑇, where the 

minimum heat flux is introduced. On the other hand, for an adiabatic crack, the heat flux 

along the crack surface is set to zero, and the temperature field exhibits a discontinuity 

across the crack surface due to the insulation condition. 

6.3 Cohesive Crack Modelling 

In a uniaxial case, it's clear that traction should match the strength. However, in a mixed 

mode formulation, traction can be equivalent to the normal strength without shear 

traction, the shear strength without normal traction, or a combination of the two. The 

cohesive law utilized in this context is potential function based and valid for mode I, 

mode II, and a combination of both. It is integrated with the proposed method. The 

potential function (𝛹) depends on the fracture energies and separation variables in 

normal and tangential directions, and is given as [156], 

 

Ψ(Δ𝑛, Δ𝑡) = min(𝜙𝑛, 𝜙𝑡)

+ [Γ𝑛 (1 −
Δ𝑛
𝛿𝑛
)
𝛼

 (
𝑚

𝛼
+
Δ𝑛
𝛿𝑛
)
𝑚

+ 〈𝜙𝑛 − 𝜙𝑡〉] [Γ𝑡 (1 −
|Δ𝑡|

𝛿𝑡
)

𝛽

 (
𝑛

𝛽
+ |Δ𝑡|𝛿𝑡)

𝑛

+ 〈𝜙𝑡 − 𝜙𝑛〉] 

(6.19) 

where 〈 . 〉 is the Macauley bracket. 𝜙𝑛 , Γ𝑛, 𝛿𝑛, Δ𝑛 represent the fracture energy, energy 

constant, crack opening width and separation at crack interface respectively, in the 

normal direction. The same variables with subscripts ‘t’ means the variables in the 

tangential direction. Exponents m and n are associated with the initial slope, whereas 

𝛼, 𝛽 act as shape parameters constants. The first derivative of the PPR potential provides 

cohesive tractions under the softening region. 

t𝑐(Δ𝑛, Δ𝑡) =  {
∂Ψ ∂Δ𝑡⁄

∂Ψ ∂Δ𝑛⁄
} =  {

𝑇𝑡(Δ𝑛, Δ𝑡)
𝑇𝑛(Δ𝑛, Δ𝑡)

} (6.20) 

The second derivative of the PPR potential results in the tangent stiffness matrix, 
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D𝑐(Δ𝑛, Δ𝑡) =  [
𝐷𝑡𝑡 𝐷𝑡𝑛
𝐷𝑛𝑡 𝐷𝑛𝑛

]  =  [
∂2Ψ ∂Δ𝑡

2⁄ ∂2Ψ ∂Δ𝑡 ∂Δ𝑛⁄

∂2Ψ ∂Δ𝑛 ∂Δ𝑛𝑡⁄ ∂2Ψ ∂Δ𝑛
2⁄

] (6.21) 

These equations pertain to the cohesive crack within the fracture process zone and are 

integrated with the SFNM approach. For a thorough understanding and application of 

the cohesive zone model, one can refer to the details provided in the Chapter-4.  

𝑞𝑐 = ℎ𝑐 ∆θ𝑐 (6.22) 

The temperature jump (∆θ𝑐) across the cohesive zone is calculated as the difference of 

the upper and lower nodal temperature. Using the linear thermal cohesive law, the 

cohesive conductance coefficient ℎ𝑐 that corresponds to cohesive element separation is 

computed using the Eq.(6.22). The detailed thermal part of the cohesive zone is 

presented in chapter-5.  

6.4 Adiabatic edge crack propagation 

The analysis of the specimen focuses on an adiabatic crack, with boundary conditions 

applied accordingly. The direction of crack propagation, under thermo-mechanical 

boundary conditions, is determined using the maximum principal stress theory. Crack 

increments are introduced at the fictitious crack tip once the fracture process zone 

achieves complete stress relaxation. 

6.5 Numerical Simulations 

The fracture problems are solved under the mechanical and the steady state heat 

conduction loading conditions. The problems are solved for the crack path and stress 

contour and temperature distribution. The principle of heat conduction, often referred to 

as Fourier's law, is applied in order to model the temperature distribution within the 

domain. The plane strain condition is utilized for simulating the problems. The detailed 

implementation of crack growth criterion and direction calculation is provided in 

Section 4.4 of Chapter-4. 

6.5.1 Cruciform Specimen 

A cruciform plate is investigated under the different loading conditions taken from ref. 

Firstly, it is analysed under the pure mechanical loading and then under pure thermal 

loading conditions. Finally, the specimen is checked under the combined effect of the 

thermal and mechanical loading conditions. The cruciform geometry along with 

boundary conditions is shown in Figure 6.2. An initial crack of size a = 0.2L oriented 
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at an angle of 45⁰ counter clockwise to the horizontal direction. The material properties 

used for the specimen are given in Table 6.1. Here, the length designated as L, with a 

specified value of L=100 mm is taken for the fracture analysis with a mesh size of 5 

mm. 

 

 

Figure 6.2: Cruciform Plate geometry with boundary conditions 

Three types of cruciform cases are discussed with the SFNM formulation. The detail is 

provided in Table 6.2.  

 Temperature (oC) Displacement (mm) 

Case AB CD EF GH AB 

1. Pure Mechanical 0 0 0 0 0.4 

2. Pure Thermal 10 0 -10 0 0 

3.Thermo-Mechanical 10 0 -10 0 0.4 

Table 6.1: Material properties and parameters for cruciform plate 

Property Name/Parameters Symbol Value Unit 

Young’s modulus E 218400 Pa 

Poisson’s ratio ν 0.3 - 

Fracture energy  𝐺𝑓 2e-4 N/m 

Tensile strength 𝑓𝑡 120 N/m2 

Thermal expansion coefficient 𝛼 0.167e-5 oC-1 

Table 6.2: Different cases of thermo-mechanical loading conditions.  

a 

u 

B A 

H C 

D 

E F 

G 
L 

L 
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 Cruciform Specimen (Case-I: Pure Mechanical) 

First case is the pure mechanical case in which left and right edges are constrained in 

the x-direction while the bottom edge is constrained in the y-direction as shown in 

Figure 6.2. The top edge is elongated using displacement controlled method. Initial 

crack with boundary conditions is subjected to minimum load and the conditions for the 

crack propagation is checked without using any cohesive zone model as the initial crack 

condition provides the stress free condition. Once the crack propagation criterion is 

fulfilled, the cohesive zone is inserted in the fracture process zone lumped as a straight 

crack length at the orientation computed from the crack growth criteria. 

 

Figure 6.3: Cruciform plate crack path under pure mechanical loading conditions (Literature 

[170]). 

 

 

Figure 6.4: Cruciform plate displacement contour (displacement in m) under pure 

mechanical loading conditions. 
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Using the first case of the problem, the crack path is traced by using the intrinsic 

potential based cohesive law applied to the fracture process zone and compared with the 

literature results. The crack path direction as shown in Figure 6.3 can be seen as 

perpendicular to the applied load i.e. along horizontal direction. The nodal displacement 

contour plot is shown in Figure 6.4. Further the normal and shear stresses are computed 

and stress distribution in the y-direction is shown in the Figure 6.5. Constitutive relation 

of the nonlinear cohesive zone follows a dropping nature of stress with the increase in 

the crack opening. This softening behaviour can be seen in the structural response in the 

form of load displacement curve as shown in Figure 6.6. Finally, the deformed shape 

of the cruciform plate at an arbitrary state is shown in Figure 6.7.  

 

Figure 6.5: Cruciform plate stress (N/m2) contour in y-direction under pure mechanical 

case. 

 

Figure 6.6: Structural Response of the cruciform plate 

 



 

 Chapter 6 Thermo-mechanical Quasi-brittle Fracture 

 

115 

 

 

Figure 6.7: Deformed Shape under mechanical loading conditions. 

 

 Cruciform Specimen (Case-II: Pure Thermal) 

The second case of the cruciform plate follows the loading condition as given in Table 

6.2. In this case no mechanical load is applied, only thermal load at top and bottom 

edges are applied and the specimen boundary conditions remain the same. First of all, 

the temperature distribution is calculated using the Lagrange multiplier and the induced 

thermal stresses are used to check the crack propagation path. The results of crack path 

calculated and of literature are compared as shown in the Figure 6.8. Corresponding to 

the crack growth path the temperature distribution is displayed in Figure 6.9.  

 

Figure 6.8: Crack path comparison under pure thermal loading conditions (Literature 

[170]). 
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Figure 6.9: Temperature distribution profile under pure thermal loading conditions. 

 

 Cruciform Specimen (Case-III: Thermo-Mechanical) 

Third case deals with the combination of the mechanical and thermal loads keeping the 

constraints same. Here also the crack trajectory is obtained and compared with the 

literature as shown in Figure 6.10. The combination of two loads effects can be seen in 

the crack path compared to the individual one. The stresses are computed including the 

thermal stresses effects and the stress contour plot is shown in Figure 6.11.  

 

Figure 6.10: Crack path comparison under thermo-mechanical loading conditions 

(Literature [170]). 
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Figure 6.11: Stress Contour profile under thermo-mechanical loading conditions. 

 

6.6 Conclusions 

This chapter demonstrates the successful application of the smoothed floating node 

method with CZM to solve fracture problems subjected to thermo-mechanical loading 

conditions. The method utilises the SFNM feature to represent the discontinuity without 

the requirement of remeshing as in case of FEM and special enrichment functions in 

advanced methods i.e. XFEM etc. The numerical framework effectively implements the 

induced thermal stresses from the thermal boundary conditions. The results obtained 

through proposed framework are in good agreement with the results of literature. The 

application of a mechanical load in the y-direction causes the crack to extend in a 

direction perpendicular to the applied force. When thermal loads are applied at the top 

and bottom, the crack's propagation shifts towards the direction of the thermal load. 

Ultimately, the direction of crack growth becomes a result of the combined influence of 

both the applied mechanical load and the thermal load, dependent on the magnitude of 

each individual load as clearly demonstrated in the third case.  
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Chapter 7  

Conclusions and Future Scope 

 

This chapter examines various findings extracted from the preceding chapters of the thesis. It 

highlights key conclusions derived from the analysis of mechanical and thermal loads under 

varying boundary conditions. The research primarily focuses on brittle and quasi-brittle 

materials. Moreover, considering the effectiveness of the suggested approach, potential 

opportunities for implementing the proposed method in fracture analysis across various 

applications have been suggested. 

7.1 Conclusions 

The thesis investigates the advanced approaches in fracture mechanics to model the strong 

discontinuity in the structures. A novel approach, called smoothed floating node method, is 

developed that uses the floating nodes to model the crack in the domain and strain smoothing 

concept for the numerical integration. The proposed method effectively addresses the 

challenges of conformal meshing, remeshing, element distortion and singularity problems.  

In elements where a crack emerges, previously dormant floating nodes become active. 

These activated floating nodes directly engage at the actual crack location and address the 

discontinuity. Further, the smoothing approach is also incorporated, wherein the element is 

partitioned into smooth cells, and integration is carried out along the edges of each cell. The 

results from these cells are combined to ascertain the behaviour of the element. Implementing 

line integration along the edges of the cell elevates both accuracy and convergence rate, as 

explained in Chapter-3. An isoparametric study and Jacobian calculations impose constraints 

on the choice of element and the nature of the study, whether it involves small or large 

deformation problems. Furthermore, it mandates that the element be convex in shape during 

the numerical simulations. These concerns have been tackled in the research work by 

incorporating the SFNM.  

Based on this thesis work, the following key observations and conclusions have been 

made: 

 A refined numerical framework for 2D linear elastic problems, known as the Smoothed 

Floating Node Method (SFNM), has been developed. This framework features explicit 
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shape function computation, eliminating the need for field variable gradient matrix 

derivatives and adhering to the properties of the Kronecker delta. 

 SFNM's convergence rate has been assessed under both mode I and mode II loading 

conditions, revealing superior performance compared to the Floating Node Method. 

This framework is highly adaptable and can be applied to triangular, quadrilateral, or 

distorted elements. 

 No remeshing or enrichment functions are required to model static crack and crack 

propagation behaviour. 

 Issues related to artifacts at element edges near the crack tip in the FNM have been 

resolved by employing a single common float node instead of two separate nodes for 

adjacent elements. 

 A cell-based smoothening approach has been adopted for integrating sub-elements and 

standard elements. An optimized approach includes four cells per quadrilateral element 

and a single cell for triangular elements for numerical integration. 

 Stress and strain computations directly utilize cell area instead of weight and integration 

points, resembling reduced integration for quadrature integration. 

 The method's insensitivity to element distortion, due to the absence of isoparametric 

mapping, eliminates the need for the inverse of Jacobian during integration, ensuring 

robustness in practical applications. 

 SFNM has been combined with a cohesive zone approach to model crack growth 

behaviour in quasi-brittle materials. An intrinsic cohesive zone model based on 

potential is implemented to capture nonlinear fracture behaviour, including contact 

conditions, softening regions, and complete failure. 

 Implementing nonlinear cohesive zone behaviour in SFNM is straightforward and 

adaptable for both homogeneous and nonhomogeneous materials using real positioned 

floating nodes.  

 The effectiveness and robustness of SFNM are confirmed through the utilization of a 

single cohesive element in the patch test for both mode I and mode II analyses. This 

validation is then extended to address standard fracture problems. 

 SFNM has successfully handled a variety of scenarios based on segment-based crack 

propagation. This includes straight and curved cracks positioned along edges, 

diagonally, and at different angles within elements. 
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 The research work illustrates the utilization of SFNM in addressing thermo-elastic 

fracture challenges in brittle materials, highlighting its versatility in managing diverse 

thermal loading and boundary conditions along with thermal cohesive modelling. 

 In the domain of thermo-mechanical fracture simulations, the SFNM approach 

demonstrates its compatibility and effectiveness under various mechanical and thermal 

loading conditions. 

7.2 Future Scope 

The development and successful implementation of the SFNM under various boundary and 

loading conditions have been achieved. This approach has been effectively applied to address 

a variety of standard fracture problems. Moreover, there is potential for further exploration and 

expansion in various directions. 

 In the context of material types, the SFNM has been rigorously tested for both brittle 

and quasi-brittle materials. For quasi-brittle materials, the model accounts for nonlinear 

behaviour within the FPZ. Expanding the scope of SFNM, it can be applied to 

computational analysis of ductile materials. This approach opens up the potential for 

modelling the nonlinear fracture process zone in ductile materials without relying on 

enrichment functions.  

 The scope of this study can be broadened to encompass fatigue and dynamic loading 

scenarios. Throughout the dissertation, four floating nodes per element have been 

consistently utilized for fracture analysis, specifically to capture discrete single cracks. 

It's worth noting that the SFNM can be adapted to accommodate multiple cracks, 

including intersecting, non-intersecting cracks and branching crack patterns. 

 The smoothening approach employed in this thesis primarily focuses on discrete 

fracture analysis. However, this same approach can be applied in conjunction with the 

concept of continuum damage mechanics for a broader range of applications. 

 While the entire analysis in this thesis is based on 2D problems, the methodology can 

be extended and implemented to tackle 3D fracture mechanics challenges. 

 Lastly, the proposed method scheme holds promise for application in diverse materials 

and structural scenarios, such as composites, laminates, functionally graded materials, 

and hyperelastic materials. Its adaptability allows for addressing a wide array of real-

world engineering problems. 
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7.3 Method Limitation 

The analyses are carried out with respect to the specified initial crack length. Taking into 

account the geometry mesh, the crack tip may reside on any of the four edges of the element 

or within the element. In the proposed method, the crack tip is modeled at the edge of the 

element. If the crack tip is found inside the element, it is captured on the adjacent closer edge 

of the element. The drawback of the method arises from the need to adjust the crack tip to the 

element edge. Nevertheless, this limitation can be mitigated by utilizing a finer mesh, reducing 

the gap between the element edge and the crack tip. 
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