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Abstract

Quantum mechanics has long been a subject of fascination and intense study, chal-

lenging our classical intuition and offering unique insights into the behavior of particles

at the smallest scales. Among its fundamental principles, the uncertainty principle, as

articulated by Heisenberg, lays the groundwork for understanding the limitations of si-

multaneous measurements of complementary observables. Quantum correlations, such as

entanglement, and the emerging concept of quantum synchronization, represent intriguing

phenomena that transcend classical boundaries and have the potential to revolutionize

information processing and communication technologies. This thesis delves into the mul-

tifaceted world of quantum correlations, entanglement and quantum synchronization, us-

ing the framework of uncertainty relations as a guiding light. The first part of this study

explores the effect of linear and quadratic coupling on the entanglement and quantum

synchronization between two indirectly coupled mechanical oscillators in a double cavity

optomechanical system. Our investigation revealed that the quadratic coupling, in partic-

ular, plays a pivotal role in preserving both entanglement and quantum synchronization

simultaneously. Following this findings, in the second part of the thesis, we do a similar

analysis in a more generic optomechanical system. This analysis is expected to provide

some insight into correlated behavior of synchronization and entanglement. By employ-

ing uncertainty-based synchronization measure and entanglement criterion, we probed

the generalized relation between entanglement and quantum synchronization. This ap-

proach unveils the intricate connections between the two independent phenomena, offering

insights into how the presence of entanglement can facilitate the complete quantum syn-

chronization. The final part of our research delves into generalized uncertainty relations

that extend beyond the traditional position-momentum pair. These extended uncertainty

inequalities serve as a foundational tool in understanding the inherent limitations gov-

erning quantum systems. Moreover, we employ these relations to formulate a stronger

uncertainty-based entanglement criterion, providing a fresh perspective on the character-

ization of entangled bipartite mixed states.

Keywords: quantum synchronization, entanglement, uncertainty relation, cavity op-

tomechanics
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Chapter 1

Introduction

The urge to explore quantum correlations has motivated physicists for many years. The

study of quantum correlations is important for advancing our understanding of quantum

mechanics, developing new quantum technologies, exploring physics at the foundational

level, and enabling practical applications that leverage the unique properties of quantum

systems. It plays a pivotal role in the ongoing development and realization of quantum

information science and technologies. It has practical implications for various real-world

applications. For example, quantum cryptography relies on the security offered by quan-

tum correlations [1], ensuring secure communication and data transmission. Quantum

sensors utilizing quantum correlations [2] can offer enhanced sensitivity for precise mea-

surements, impacting fields such as healthcare [3], and environmental monitoring [4].

In the quantum realm, the study of synchronization is relatively recent and has gained

significant attention due to its potential implications for various fields, such as quantum

information processing and communication [5, 6]. The phenomenon of spontaneous syn-

chronization was first observed by Huygens in the 17th century [7]. A nice and detailed

discussion of the generic nature of synchronization can be found in [8]. The phenomenon

of spontaneous synchronization is universal and has been widely investigated in classical

systems [9, 10, 11, 12, 13].

1



2 1.1. Cavity Quantum Optomechanics : Basic Theory

It is envisaged that quantum synchronization is a manifestation of certain correlations

which are of purely quantum origin. There are some recent studies that explore the

relation between quantum synchronization and different measures of quantum correlations

[14, 15, 16, 17].

Entanglement [18] is one of the most well-known and extensively studied forms of

quantum correlation. It lies at the heart of many intriguing and counter-intuitive phe-

nomena in quantum physics and plays a crucial role in various areas. In this thesis, we

will explore the phenomenon of quantum synchronization and its connection with entan-

glement. This thesis exclusively deals with this issue and attempts to develop a generic

understanding of their inherent relation. Exploring these connections sheds light on the

underlying mechanisms and implications of quantum synchronization. Optomechanical

systems [19], which involve coupling mechanical oscillators to electromagnetic fields inside

an optical cavity, provide a suitable platform for studying synchronization and its connec-

tion with entanglement. The coupling in these systems is nonlinear, leading to limit-cycle

oscillations known as optomechanical self-oscillations. There are a number of excellent

review articles [19] and books covering various aspects of cavity quantum optomechan-

ics. In the following, we are going to discuss briefly only those facets of cavity quantum

optomechanics that are relevant to the present thesis.

1.1 Cavity Quantum Optomechanics : Basic Theory

Cavity quantum optomechanics is a field of great research interest in physics [19, 20].

This field of research utilize the tools of quantum optics in variety of physics systems.

Optomechanics studies the interaction between light and mechanical motion in a system

consisting of a cavity that contains light and a mechanical resonator that can vibrate

at certain frequencies. There are mechanical systems, such as cantilever, beams etc, on

micro and nano scale, that can vibrate in the frequency range of kHz to GHz. The so-

called radiation pressure induced interaction between photons and mechanical motion is
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at the heart of cavity optomechanics [21]. The radiation pressure force, arising due to

the momentum carried by light, can displace a movable end mirror of the cavity. This

in turn changes the length of the cavity, resulting in the modification of the cavity fre-

quency. The interaction between light and mechanical motion is nonlinear in nature. This

nonlinear interaction has led to the exploration of a wide variety of interesting phenom-

ena, such as squeezing of the light field and mechanical motion, synchronization between

mechanical modes [14, 22, 23, 24, 25], entanglement between optical [26] and mechanical

modes [27, 28], optomechanical normal mode splitting [29, 30], optomechanically induced

transparency [31, 32], and so on, both theoretically and experimentally.

1.2 Generic Model of an Optomechanical System

Basic optomechanical system consists of an optical cavity with two mirrors, one fixed and

the other movable, separated by some distance (say L) [19] as shown in Fig. 1.1. The cavity

is driven by a laser source of amplitude E and frequency ωl. When a light field is injected

into a cavity, the cavity enhances the intensity of the light due to multiple reflections.

As the intracavity photons interact with the cavity’s mechanically-adaptable end mirror,

the radiation pressure force exerted by the photons results in a continuous transfer of

momentum to the mirror. This transfer of momentum gives rise to mechanical degrees

of freedom associated with the mirror’s motion. The mirror behaves as a mechanical

oscillator with harmonic modes of vibration. One can then focus on that single optical

mode of the cavity (say with frequency ωc = nπc
L

with mode number n) which is close

to the laser frequency. This in turn changes the length of cavity and modifies the cavity

resonance frequency. Suppose Q is the displacement made by the mechanical mirror, the

modified cavity resonance frequency is, as follows:

ωc(Q) =
nπc

L+Q
=

ωc

1 + Q
L

≈ ωc

(
1− Q

L

)
(1.1)

1 Introduction



4 1.2. Generic Model of an Optomechanical System

Figure 1.1: Schematic diagram of basic optomechanical system

1.2.1 Generic Optomechanical Hamiltonian

The generic total Hamiltonian H of the optomechanical system consists the optical con-

tribution, mechanical contribution, interaction between optics and mechanics, laser derive

and transfer of phonons and photons to and from environment. A very basic assumption

to start with, is that these optical and mechanical modes can be represented as quantum

harmonic oscillators with frequency ωc and ωm respectively. The Hamiltonian H of the

system can then be written as follows:

H = ℏωc(Q)a†a+
P 2

2m
+
mω2

m

2
Q2 (1.2)

On substituting (Eq. (1.1)), we get

H = ℏωca†a+
P 2

2m
+
mω2

m

2
Q2 − ℏgla†aQ (1.3)

where a†(a) is the creation (annihilation) operator of the optical mode, satisfying the

commutation relation [a, a†] = 1, Q and P are the position and momentum operators of

the mechanical oscillator with the commutation relation [Q,P ] = ιℏ, which are defined as

Q = qzpf
(
b+ b†

)
, P = ιmωmqzpf

(
b† − b

)
and g is the linear coupling constant between

cavity and mechanical oscillator, which is defined as gl =
∂ωc

∂Q
= ωc

L
. Here qzpf =

√
ℏ

mωm
is

the zero-point fluctuation of the mechanical mirror (of mass m). Typical order of qzpf is
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of 10−15 m. A detailed derivation of the Hamiltonian can be found in [33].

From the Hamiltonian (Eq. (1.3)), one can note the following points: Firstly, the

optomechanical coupling between optical mode and mechanical mode is essentially non-

linear in nature. Secondly, this nonlinear coupling is weak in nature i.e., gl ≪ ωm and,

therefore is not able to show the desired quantum effect. However, one can achieve the

strong effective optomechanical coupling by applying the strong drive to the cavity. To

do so, we now add the coherent laser drive to the cavity which describes the addition of

photon at laser frequency and its Hermition conjugate inside the cavity. Thus, the total

Hamiltonian takes the following form:

H = ℏωca†a+
P 2

2m
+
mω2

m

2
Q2 − ℏgla†aQ+ ιℏE

(
a†e−ιωlt − aeιωlt

)
(1.4)

Define the dimensionless position and momentum operators q and p as

q =

√
mωm
ℏ

Q ,

p =

√
1

mℏωm
P ,

(1.5)

On substituting Eq. (1.5) in Eq. (1.4), we get

H = ℏωca†a+
ℏωm
2

(
q2 + p2

)
− ℏga†aq + ιℏE

(
a†e−ιωlt − aeιωlt

)
(1.6)

where ωl and E is the frequency and amplitude of the laser derive and g = ωc

L

√
ℏ

mωm

is the scaled linear coupling constant. The driving amplitude E can also be written as,

E =
√

Plκ
ℏωl

, where Pl is the power associated with laser field and κ is the decay rate of the

cavity field. Note that the adopted mode corresponds to the ideal case of the one-sided

cavity i.e., there is only one input-output port of the cavity and there is no additional

photon loss. The explicit time-dependence in the above Hamiltonian can be removed by

1 Introduction



6 1.2. Generic Model of an Optomechanical System

switching to the rotating frame of laser frequency ωl. The Hamiltonian (Eq. (1.6)) can

be written in the following manner:

H = ℏ∆ca
†a+

ℏωm
2

(
q2 + p2

)
− ℏga†aq + ιℏE

(
a† − a

)
(1.7)

where ∆c = ωc−ωl is the detuning of cavity mode from the respective laser field. A typical

order of cavity frequency (ωc) is of 10
15 Hz, whereas the order of mechanical frequency ωm

lies in the range of MHz to GHz. Therefore, the laser frequency is adjusted in such a way

that its detuning ∆c, from the cavity frequency, is comparable to mechanical frequency

ωm. Since the order of cavity frequency is very high, the effect of the thermal photons

entering the cavity can therefore be safely neglected and the cavity can be considered to

be coupled with a reservoir at zero temperature. However, the laser field introduces the

noise into the system dynamics. On the other hand, thermal phonons plays an important

role in the dynamics of mechanical mode. We will explore these environmental effects

systematically in our thesis. Using the Hamiltonian (Eq. (1.7)), one can discuss the

underlying physics of the cavity optomechanical system.

1.2.2 Quantum Langevin Equation

Optomechanical systems, like many other quantum systems, are considered open quantum

systems. This means they interact with their surrounding environment, leading to fluctu-

ations, dissipation, and the introduction of environmental noise into the system [34, 35].

This interaction with the environment can result in several effects like decay of cavity

mode, damping of mechanical mode and insertion of noise from environment. Therefore,

understanding and characterizing these effects are crucial for optimizing the performance

of optomechanical systems and mitigating their impact on quantum correlations.
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1.2.3 Dissipation

Since the photons and phonons are coupled to the environment, they experience losses.

These losses define the cavity decay rate κ and the mechanical damping rate γ, respec-

tively. The cavity decay rate and the mechanical damping rate determines the cavity

quality factor Qc =
ωc

κ
and the mechanical quality factor Qm = ωm

γ
. The quality factor Qc

defines the total number of oscillation of a single photon inside the cavity before moving

out. Similarly, Qm defines the life time of phonon.

1.2.4 Input Fluctuation

As discussed before, environment adds noises to the the system and influences the system

dynamics. However, the environment is modelled by a thermal bath of non-interacting

harmonic oscillators. Therefore, the noise entering the system can be best approximated as

Markovian, δ− correlated and zero-mean. Note that a system can be termed as Markovian

if the present state of system does not depend on the past history. ain and ξ are the input

optical and mechanical noise operators, which in the Markovian approximation, satisfies

the following two-time correlations [34, 36]:

〈
ain(t)a

†
in(t

′)
〉

= δ(t− t′) ,〈
a†in(t)ain(t

′)
〉

= 0 ,

⟨ξ(t)ξ (t′)⟩ =
γm

2πωm

∫
ωe−ιω(t−t

′)

[
1 + coth

(
ℏω

2kBT

)]
dω , (1.8)

where kB is the Boltzmann constant. The thermal bath is assumed to be in thermal

equilibrium at a temperature T. The mechanical mode coupled to the thermal bath is

influenced by a Brownian stochastic force described by ξ(t). For the case of large quality

factor of the oscillator i.e., ωm ≫ γ, the Brownian noise operator can be approximated

1 Introduction
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as:

⟨ξ(t)ξ (t′)⟩ = γm (2n̄m + 1) δ (t− t′) , (1.9)

where n̄m = 1/ [exp (ℏωm/kBT )− 1] is the mean phonon number of the mechanical oscil-

lator at oscillator frequency ωm and bath temperature T.

1.2.5 Input-Output Theory

Input-output theory is formulated on the basis of Heisenberg equations of motion, de-

scribing the time evolution of optical field (a) inside the cavity. Assume the cavity has

only one transmitting mirror. This mirror will couple the single cavity mode with the

external multi mode filed. The interaction between the output field modes and the cavity

mode is influenced by the shape of the cavity and the properties of the mirror material

[37]. The Hamiltonian for this can be written as

Figure 1.2: Schematic diagram of the single side cavity with the cavity field, the input
and output fields

H = ℏωca†a+
∫
dωωa†ωaω + iℏ

√
κ

π

∫
dω
(
aa†ω − a†aω

)
(1.10)

Here, it is assumed that the electromagnetic environment as an infinite number of har-

monic oscillators over the entire frequency range. aω and a†ω are the annihilation and

creation operators of the environment oscillator mode at a frequency ω.
√
κ/π is the cou-
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pling between the mechanical oscillators and the cavity field. Calculate the Heisenberg

equation of motion for cavity mode and the environment mechanical mode:

ȧ = −iωca−
√
κ

π

∫
aωdω (1.11)

ȧω = −iωaω +
√
κ

π
a (1.12)

Now, integrate the equation of motion for aω, from some past time t0 to the current time

t.

aω(t) = e−iω(t−t0)aω (t0) +

√
κ

π

∫ t

t0

e−iω(t−τ)a(τ)dτ (1.13)

Enter the value of aω into the a equation of motion:

ȧ = −iωca−
√
κ

π

∫ [
e−iω(t−t0)aω (t0) +

√
κ

π

∫ t

t0

e−iω(t−τ)a(τ)dτ

]
dω (1.14)

Define the input field ain(t) =
1√
2π

∫
dωe−iω(t−t0)aω (t0) . and use the relations

∫
dωe−iωt =

2πδ(t) and
∫ t
t0
dτa(τ)δ (t− t0) =

1
2
a(t)

Using the definition of ain in the first term of equation and changing the order of integra-

tion in the second term between the τ and ω.

∫ ∫ t

t0

e−iω(t−τ)a(τ)dτdω =

∫ t

t0

a(τ)

∫
e−iω(t−τ)dωdτ = πa(t) (1.15)

Final expression can be written as:

ȧ = −iωca−
√
κ

π

(√
2πain +

√
πκa

)
(1.16)

On simplifying

ȧ = − (iωc + κ) a−
√
2κain (1.17)
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The output field is defined as aout(t) =
1√
2π

∫
dωe−iω(t−t1)aω (t1) for a distant future time

t1. In this time integrate the differential equation backward in time from t1 to t to obtain

the equation of motion for a in terms of output field aout. So, for aω(t) one have

aω(t) = e−iω(t−t1)aω (t1) +

√
κ

π

∫ t

t1

e−iω(t−τ)a(τ)dτ (1.18)

Using above equation in ȧ, we have

ȧ = −iωca−
√
κ

π

∫ [
e−iω(t−t1)aω (t1) +

√
κ

π

∫ t

t1

e−iω(t−τ)a(τ)dτ

]
dω (1.19)

Final expression can be written as:

ȧ = −iωca−
√
κ

π

(√
2πaout −

√
πκa

)
(1.20)

So

ȧ = − (iωc − κ) a−
√
2κaout (1.21)

Now equating the equations Eq. (1.17) and Eq. (1.21), we have

− (iωc − κ) a−
√
2κaout = − (iωc + κ) a−

√
2κain (1.22)

Therefore,

aout = ain +
√
2κa (1.23)

We can measure the output field to extract information about the cavity.
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1.2.6 Optomechanical Equations of Motion

Considering the Hamiltonian of the system derived in equation (Eq. (1.7)), dissipation

and fluctuation, the time evolution of system operator can be described by the Heisenberg

equation of motion with the addition of corresponding damping term and noise term as

follows [34]:

d

dt
q = − ι

ℏ
[q,H] ,

d

dt
p = − ι

ℏ
[p,H]− γp+ ξ(t) ,

d

dt
a = − ι

ℏ
[a,H]− κa+

√
2κain , (1.24)

Here, the first term on the R.H.S. describe the coherent evolution of the system operators,

the second term takes the decay κ and damping γ of optical and mechanical mode into

account and the last term describes the noise entering the system due to its coupling to

the thermal bath. On solving above equation, we got

d

dt
q = ωmp ,

d

dt
p = −ωmq + ga†a− γp+ ξ(t) ,

d

dt
a = −ι∆a+ ιgqa− κa+ E +

√
2κain , (1.25)

It can be seen from the above equations, there is a frequency shift in the optical mode

by the mechanical position and changes the optical amplitude, which in turn changes

the mechanical mode amplitude. Both these phenomenon depends upon the strength of

optomechanical coupling constant g. To understand the quantum regime of optomechanics

in a better way, let us first study the classical regime. Such a behaviour can be studied

from the Quantum Langevin equation (Eq. (1.25)) by rewriting the QLEs for the complex

field amplitudes α = ⟨a⟩, q̄ = ⟨q⟩ and p̄ = ⟨p⟩. When the cavity is strongly driven,
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the number of photons inside the cavity increases which in turn enhances the radiation

pressure. In such cases, one can use mean-field approximation i.e., the system can be

described by the linearized dynamics, even for small value of optomechanical coupling.

In the large mean field approximation, we can expand the system operators as a sum of

their classical mean amplitudes and quantum fluctuations around these classical values as

follows: a = α+ δa, q = q̄+ δq and p = p̄+ δp. Considering the time-averaged properties

of the noise operators, we obtain the coupled set of equations for classical amplitudes

from equations (Eq. (1.25)) as,

d

dt
q̄ = ωmp̄ ,

d

dt
p̄ = −ωmq̄ + g|α|2 − γp̄ ,

d

dt
α = − (κ+ ι∆′)α + E , (1.26)

Where ∆′ = ∆− gq̄ is the effective detuning. The classical equations of motion described

in (Eq. (1.26)) leads to many interesting phenomenon. The coupled Langevin equations

for quantum fluctuation can be obtained from equation (Eq. (1.25)) as:

d

dt
δq = ωmδp ,

d

dt
δp = −ωmδq + g

(
α∗δa+ αδa†

)
− γδp+ ξ(t) ,

d

dt
δa = − (κ+ ι∆′) δa+ ιg0δq +

√
2κain , (1.27)

Here, g0 = gα is the effective optomechanical constant. Thus, we can see that op-

tical amplitude enhances the optomechanical coupling strength. Since the amplitude

of fluctuations is small, therefore we have ignored the higher order terms in δa and

δq under the linearization approximation. By defining the fluctuation quadrature for

the optical mode
(
δX = 1√

2

(
δa† + δa

)
, δY = ι√

2

(
δa† − δa

))
and the noise operators(

Xin = 1√
2

(
a†in + ain

)
, Yin = ι√

2

(
a†in − ain

))
above equation (Eq. (1.27)) can be writ-
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ten in the matrix form as:

Ṙ(t) =MR(t) +N(t) , (1.28)

where R(t)T = (δq, δp, δX, δY ), N(t) is given by N(t)T =
(
0, ξ,

√
2κXin,

√
2κYin

)
and M

is the 4 × 4 coefficient matrix. The solution of the equation (Eq. (1.28)) can be written

as:

R(t) =MR(0) +

∫ t

0

dsF (s)N(t− s) , (1.29)

where F (t) = exp(Mt). One of the fascinating phenomena that can occur in optome-

chanical systems is the observation of macroscopic quantum behavior. In these systems,

mechanical oscillators can exhibit quantum effects at a macroscopic scale. An important

ingredient in the calculation of figure of merit defining these phenomenon is the covari-

ance matrix [38]. The time evolution of covariance matrix follows the following linear

differential equation:

Ċ =MC + CMT +D , (1.30)

where the elements of C can be defined as Cij =
1
2
⟨RiRj + RjRi⟩ and D is the diffusion

matrix given as:

D = diag[0, γ (2n̄m + 1) , κ, κ] , (1.31)

It is important to note here that stability of the solution is necessary to obtain the

dynamical form of covariance matrix. This analysis can be done by applying the Routh-

Hurwitz criterion [39], according to which the solution of equation (Eq. (1.28)) reaches

its steady state if the eigenvalues of matrix M have negative real part. With this, let us

briefly introduce the quantum phenomenon which we will study in our thesis.

1 Introduction
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1.3 Synchronization

Synchronization is a widespread phenomenon in daily life, occurring in various natural

and social systems. It can be experienced in daily life like in flashing of fireflies [40],

biological rhythms [41] and many more. It showcases the inherent tendency of systems

to synchronize their behavior or states, leading to coordination and collective dynamics.

It was first observed by Huygens in the earliest 17th century in a classical pendulum

system with a common support [7]. He noticed that when two pendulum clocks were

placed on the same wall, their swing periods would synchronize over time. Since then, it

is experienced in various aspect of physical, biological and chemical systems [7]. Different

scenario of classical synchronization can be considered in the context of self-sustaining

oscillators. Frequency locking of a self-sustained oscillator driven by a harmonic force

is a fundamental scenario in classical synchronization [7, 42]. The Van der Pol (VdP)

oscillator is the most famous known example of self-sustained oscillator. In the absence of

external driving force, dynamics of the VdP is governed by the following classical equation

of motion:

ẍ+ ω2
0x− ϵ

(
1− x2

)
ẋ = 0 (1.32)

where x represents the displacement of the oscillator, ϵ > 0 and ω0 is the natural frequency

of the VdP oscillator. The VdP is a nonlinear dynamical system with two kinds of damp-

ing terms: negative damping (−ẋ) and nonlinear damping (x2ẋ), combination of which

leads to the self-sustained oscillations (known as limit cycle) in the steady state. If the

additional harmonic drive is added to the self oscillator, there is a finite range of detuning

(difference between oscillator’s natural frequency and frequency of driving force) for which

the oscillator is frequency locked to the drive, and noise can reduce or destroy this range

of synchronization. There are also the regimes of frequency entertainment in which the

observed frequency of driven oscillator differs from both the natural frequency of oscillator
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and the force frequency. The VdP oscillator is the simplest model exhibiting these effect

[7]. The second setting consists of two coupled self oscillating systems synchronizing their

motion due to mutual interaction. For example, orbital resonances (synchronization) in

planetary motion or synchronization of muscle cells in mammal hearts. In the case of two

mutually coupled oscillators, synchronization (phase locking) occurs when the coupling

strength reaches above a critical value [7]. This critical coupling strength required for

phase locking to occur depends on frequency detuning between the oscillators. The term

”Arnold tongue” is used to describe the region of coupling and detuning values in which

phase locking occurs. A third well-studied case is of large ensemble of coupled limit-cycle

oscillators with random frequencies: Kuramoto model [43, 44]. In the Kuramoto model,

each oscillator is represented by a phase variable, denoted by θi, where i ranges from 1

to N, representing the total number of oscillators in the system. The dynamics of each

oscillator is described by the following equation:

d

dt
θi = ωi +

K

N

N∑
j=1

sin (θj − θi) (1.33)

where, K is the coupling strength, determining the influence of neighboring oscillators on

the dynamics of each oscillator. An order parameter is defined to measure the degree of

synchronization

reιψ =
1

N

N∑
j=1

eιϕj (1.34)

where ψ is the average phase. The order parameter r(t), with 0 ≤ r(t) ≤ 1, is a measure

of phase coherence or synchronization. Detained explanation of Kuramoto’s model can

be found in [44]. The model’s applicability to a wide range of systems led to its adoption

in various fields. For example, in physics, the Kuramoto model has been used to study

the synchronization of coupled oscillators in areas such as Josephson junctions [45] and
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optoelectronic devices.

While classical nonlinear dynamical systems have been extensively studied for synchro-

nization, there is a growing interest in observing similar phenomena in quantum systems.

Among theoretical models, both linear and non-linear oscillators have been considered

to study synchronization in quantum domain. The Van der Pol oscillator describes self-

sustained oscillations in systems with nonlinear dynamics and has been studied in quan-

tum regimes [46, 47, 48, 49] to understand its synchronization properties. The Van der

Pol oscillator in the quantum regime has been studied in the context of phase locking

[46] and frequency entertainment [47] under the influence of external driving forces. The

VdP oscillator exhibits self-sustained oscillations and spontaneous synchronization, which

arise due to coherent coupling [46] or dissipative coupling [48, 49]. Physical platforms op-

erating in the quantum regime, such as trapped ions [46] and optomechanical oscillators

[49], have been suggested as potential systems to realize the Van der Pol oscillator. In the

study of self-sustained oscillators, such as VdP oscillators, in the quantum regime, the

nonlinearity of these systems poses challenges for exact analysis. As a result, the analysis

is often limited to specific cases and requires various approximations to make progress.

An exact analysis can be performed in linear systems like harmonic networks [50, 17, 51].

The classical notion of synchronization, which is based on the dynamics of phase

space trajectories and classical variables, cannot be directly applied to quantum systems

due to the fundamental differences between classical and quantum mechanics. So, when

extending the concept of synchronization to microscopic domain, a first question is about

what defines this phenomenon. To answer this question, different approaches are reported

for quantum synchronization.

1.3.1 Pearson Factor

The Pearson correlation coefficient, commonly known as the Pearson factor, is a statistical

measure that quantifies the linear relationship between two variables. Calling X1 and X2,
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two variable, it is defined as

CX1,X2(t,∆t) =
δX1δX2√
δX2

1 δX
2
2

(1.35)

where δXi = Xi − X̄i and X̄i = 1
∆t

∫ t+∆t

t
Xi(t

′)dt′. The value of CX1,X2 ranges from

+1 to −1 corresponding to complete synchronization and complete anti-synchronization.

In classical synchronization problems [7, 52], the Pearson correlation coefficient is com-

monly used to quantify the temporal correlation between two classical trajectories. In

the quantum framework the classical trajectories Xi can be replaced with the expecta-

tion values of the quantum operators describing the dynamical behavior of the quantum

system. This measure was first adopted in the framework of a quantum system to study

the mutual synchronization of two linearly coupled harmonic oscillators dissipating to a

common bath using the expectation values of second-order moments of position and mo-

menta of oscillators in [50]. the same measure of synchronization was also applied to study

the synchronization behavior of an extended network of linear oscillators [17]. Pearson

correlation coefficient has been a commonly adopted measure to study synchronization in

a variety of quantum systems [53, 54, 55, 56].

1.3.2 Synchronization error

Two subsystems initialized into different states acquire identical trajectories under the

effect of mutual interaction between subsystems. The two subsystems are then said to

be completely synchronized. In a similar way, two coupled harmonic oscillators (two

continuous variable systems) characterized by the displacement qj(t) from their respec-

tive equilibrium positions and the linear momenta pj(t), where (j ∈ 1, 2), are said to be

completely synchronized if they maintain q−(t) = {q1(t) − q2(t)}/
√
2 → 0 and p−(t) =

{p1(t) − p2(t)}/
√
2 → 0, at long times. This corresponds to complete classical synchro-

nization.
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One can note that extension of the above concept to the quantum system is not possible

due to Heisenberg’s uncertainty principle. According to Heisenberg’s uncertainty princi-

ple, position and momentum quadratures cannot be measured simultaneously, so it is not

possible to make generalized positions qj(t) and linear momenta pj(t) (j ∈ 1, 2) equal at

the same time t. With this, the best estimate of the quantum synchronization therefore

corresponds to a state of two oscillators, for which the sum of uncertainty in q−(t) and

p−(t) becomes minimum.

To turn this argument into a quantitative statement, Mari et al. introduced the following

figure of merit [14]:

Sc(t) =
〈
q2−(t) + p2−(t)

〉−1
(1.36)

in terms of synchronization errors q−(t) and p−(t) to gauge the level of quantum complete

synchronization between the two coupled oscillators. Here ⟨· · · ⟩ denotes the expectation

(or mean) values of the corresponding operators. Expanding q−(t) and p−(t) around

mean values, q−(t) = q̄−(t) + δq−(t), p−(t) = p̄−(t) + δp−(t), and using the limit q̄−(t) =

0, p̄−(t) = 0 as time approaches large enough, a modified form of quantum synchronization

measure can be obtained as:

Sq =
1

⟨δq−(t)2 + δp−(t)2⟩
≤ 1 (1.37)

Note that Heisenberg uncertainty relation (⟨δq−(t)2⟩⟨δp−(t)2⟩ ≥ 1/4) sets the upper limit

of Sq and Sq = 1 corresponds to complete quantum synchronization.

1.4 Entanglement

The concept of entanglement [18] is indeed a fundamental and intriguing aspect of quan-

tum physics with profound philosophical and practical implications. Entanglement refers
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to a quantum phenomenon where two or more particles become correlated in such a way

that their properties are interdependent, regardless of the distance separating them. En-

tanglement is a captivating and complex phenomenon that underpins many aspects of

quantum physics and has the potential to revolutionize various technological fields. En-

tanglement has several intriguing properties and has been the subject of extensive research

and exploration due to its potential applications in various fields, including quantum com-

puting, quantum communication, quantum cryptography [57], quantum teleportation [58].

These applications rely on the presence of entanglement among participating subsystems.

As a result, the detection and characterization of entanglement within a quantum system’s

state hold paramount importance. Here, we discuss briefly the entanglement criteria that

are related to our thesis work.

1.4.1 Peres-Horodecki Criterion

In the past, several criterion for detection of entanglement have been proposed. One of the

most important criterion for entanglement detection is provided by Peres and Horodecki,

which is known as positive partial transpose (PPT) criterion [59]. The Peres-Horodecki

criterion is a necessary condition for the joint density matrix ρ of two systems A and B

to be separable. In the 2× 2 and 2× 3 dimensional cases the condition is also sufficient

[60]. The description and the principle underlying the criterion is given below. First, note

that for every physical system, the density matrix must be positive-semidefinite. Next,

consider a separable state,

ρ =
n∑
j=1

pjρ1j ⊗ ρ2j (1.38)

Let T be an operator performing transposition. Then to perform partial transposition on

the second subsystem is equivalent to operate I⊗T on the whole system (I is the identity
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operator). This gives,

ρT = (I ⊗ T )ρ =
n∑
j=1

pjI(ρ1j)⊗ T (ρ2j) =
n∑
j=1

pjρ1j ⊗ ρT2j (1.39)

ρ will be a separable state if all the eigenvalues are positive. In other words, according

to Peres criterion, the joint density matrix ρ of a bipartite entangled system after partial

transpose (PT) in the basis of one of the system exhibits negative eigenvalues. There are

other known entanglement criterion like computable cross norm [61] and the reduction

criterion [62]. These criteria require the reproduction of density matrix using quantum

state tomography to test experimentally. Also, the PPT criterion doesn’t provide a com-

plete characterization of all entangled states, especially in higher-dimensional systems.

1.4.2 Entanglement Witness

Let’s delve into a different class of criteria for identifying separability in quantum systems.

Above discussed criteria relies on the initial assumption that the density matrix is already

known. They rely on performing specific operations on the density matrix to determine

whether a state is entangled or not. However, there exists a comprehensive entanglement

criterion that operates in terms of directly measurable observables, known as entanglement

witness [60, 63]. In the following, we will introduce this concept In mathematical terms,

an entanglement witness is typically defined as an operator that has different expectation

values for separable states and entangled states. If the expectation value of this operator

exceeds a certain threshold, then the state is identified as entangled. This provides a

practical way to experimentally verify the presence of entanglement without necessarily

fully characterizing the quantum state itself.
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1.4.3 Peres-Horodecki Criterion for Continuous Variable

The Peres-Horodecki criterion is a well-known criterion used to test the separability of

bipartite quantum systems. It was originally formulated for discrete variable systems

but can be extended to continuous variable systems as well [64]. Quantum state ρ of a

two-mode continuous variable system can be expressed in terms of a Wigner function as:

W (x1, p1, x2, p2) =

(
1

π

)2 ∫ ∫
dy1dy2e

2ι(y1p1+y2p2) ×∑
j

pj⟨x1 − y1|ρ1j|x1 + y1⟩ ⊗ ⟨x2 − y2|ρ2j|x2 + y2⟩ (1.40)

Here x1, x2, p1 and p2 are the quadrature variables. Performing partial transposition on

second subsystem, it will become,

W PT (x1, p1, x2, p2) =

(
1

π

)2 ∫ ∫
dy1dy2e

2ι(y1p1+y2p2) ×∑
j

pj⟨x1 − y1|ρ1j|x1 + y1⟩ ⊗ ⟨x2 + y2|ρ2j|x2 − y2⟩ (1.41)

Redefining the quadrature variable y2 to be −y′2.

W PT (x1, p1, x2, p2) =

(
1

π

)2 ∫ ∫
dy1 (−dy′2) e2ι(y1p1−y

′
2p2) ×∑

j

pj⟨x1 − y1|ρ1j|x1 + y1⟩ ⊗ ⟨x2 − y′2|ρ2j|x2 + y′2⟩

=

(
1

π

)2∑
j

pj

∫
dy1
(
e2ι(y1p1)

)
⟨x1 − y1|ρ1j|x1 + y1⟩ ⊗∫

(−dy′2) e2ι(−p2)y
′
2⟨x2 − y′2|ρ2j|x2 + y′2⟩

= W (x1, p1, x2,−p2) (1.42)

Thus, it is evident from the definition of Wigner distribution that the partial transpose

operation PT, which takes every ρ to its transpose ρPT , is equivalent to a mirror reflection
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in phase space:

ρ→ ρPT ⇐⇒ W (x1, p1, x2, p2) → W (x1, p1, x2,−p2) (1.43)

Thus, according to Peres-Horodecki (PPT) separability criterion for continuous variable: if

ρ is separable, then its Wigner distribution necessarily goes over into a Wigner distribution

under the phase space mirror reflection .

1.4.4 Uncertainty Principle based Entanglement Criterion

The Uncertainty Principle, formulated by Werner Heisenberg, states that there is a fun-

damental limit to the precision with which certain pairs of physical properties, such as

position and momentum, can be known simultaneously. It implies that the more pre-

cisely one property is measured, the less precisely the other property can be known. In

other words, there is an inherent trade-off in the precision of simultaneous measurements

of certain pairs of physical quantities. For two non commuting observables A and B,

mathematical form of Heisenberg uncertainty relation takes the following form:

∆A∆B ≥ 1

2
|⟨[A,B]⟩| (1.44)

where [A,B] = AB − BA is the commutator. According to quantum mechanics, every

physical state had to satisfy the above stated uncertainty principle. In fact, Nha and

Zubairy shows in [65] that the converse is also true. Therefore, the satisfaction of the

uncertainty relation can be used as a separablility criterion in a similar way that the

positivity of a density matrix does. Uncertainty relation based entanglement criterion are

proposed [66, 67, 64, 68, 69]. Here, we review some uncertainty relation based inseparabil-

ity criterion , particularly for continuous variable, that are relevant to our thesis work. In

this direction, Simon et al [64] has derived certain separability inequalities, by employing

Peres’s criterion of separability, violation of which is sufficient to detect entanglement in
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bipartite systems.

Duan et al [68], proposed a simple entanglement criterion for two-mode continuous

variable states, which is based on the total variance of a pair of Einstein Podolsky-Rosen

(EPR) type operators. The criterion is based on the observation that entangled states

exhibit lower variances in certain combinations of observables compared to separable

states. Specifically, it focuses on the sum of the variances of the position and momentum

operators. Consider the following EPR-like operators

û = |a|q̂1 +
1

a
q̂2

v̂ = |a|p̂1 −
1

a
p̂2 (1.45)

where a is any nonzero real number. Then, according to the Duan criterion [68], for any

separable bipartite CV quantum state ρ, the total variance of the above defined EPR-like

operators with commutators [q̂i, p̂j] = ιδij satisfies the following inequality

⟨(∆û)2⟩ρ + ⟨(∆v̂)2⟩ρ ≥ a2 +
1

a2
(1.46)

If the inequality is violated, the state is considered to be entangled; otherwise, it is deemed

separable. Thus, for a two-mode CV system, the Duan’s criterion states that if the sum

of the variances of the position operators and the sum of the variances of the momentum

operators are below certain threshold values, then the system is entangled. This threshold

is determined by the Heisenberg uncertainty principle, where the product of the variances

must exceed a certain value. So, violation of this bound provides a sufficient condition

for inseparability of the state. It is then investigated how strong the bound is for the

Gaussian states (fully characterized by the first and second moments of the position and

momentum operators). And, it turns out necessary and sufficient for all CV Gaussian

continuous.

A new sufficient inseparability criterion, involving the product of second-order mo-

1 Introduction
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ments of continuous observable has been derived by Mancini et al [70]. Define two oper-

ators u = q1 + q2 and v = p1 − p2 such that [qj, pj] = ι, then, according to Mancini et al

any separable state will satisfy the following inequality,

⟨(∆u)2⟩⟨(∆u)2⟩ ≥ 1 (1.47)

Thus, any bimodal CV state can be said to be entangled if it violates the inequality

(Eq. (1.47)). Further, it was shown in [69] that the criterion proposed by Mancini et al

and Duan et al are interrelated with each other. Furthermore, by using some algebraic

identity, it is also proved that Mancini’s criterion is stronger than Duan criterion. These

inequalities are experimentally testable, since these inequalities depend on variances of

relative position and total momentum coordinates of the two subsystems.

In another pertinent study, Hillery and Zubairy derived a class of inequalities to detect

the presence of entanglement in two-mode systems, where they defined the operators as

follows [71]:

L1 = ab† + a†b

L2 = ι
(
ab† − a†b

)
L3 = a†a+ b†b (1.48)

They utilized two-mode squeezing and the Cauchy–Schwarz inequality to illustrate entan-

glement. In this context, the Lie algebra of SU(2), with Ji =
Li

2
where i = 1, 2, 3, leads

to the satisfaction of the commutation relation [J1, J2] = ιJ3. Consequently, the general

equation for the uncertainty principle of variables must adhere to the condition:

(
∆L2

1

) (
∆L2

2

)
≥ | [J1, J2] |2

4
(1.49)
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The total quadrature variance takes the form of:

(
∆L2

1

)
+
(
∆L2

2

)
= 2

[
⟨(Na + 1)Nb⟩+ ⟨Na (Nb + 1)⟩ − 2|⟨ab†⟩|2

]
≃ 2

[
⟨Na + 1⟩⟨Nb⟩+ ⟨Na⟩⟨Nb + 1⟩ − 2|⟨a⟩⟨b†⟩|2

]
(1.50)

The expectation values of the two-mode state are expressed as a product of the a

mode and b mode. The Schwarz inequality is applied, resulting in |⟨a⟩|2 ≤ ⟨Na⟩ and

|⟨b⟩|2 ≤ ⟨Nb⟩ [71]. It is found that the product state satisfies the following inequality:

(∆L1)
2 + (∆L2)

2 ≥ 2 (⟨Na⟩+ ⟨Nb⟩) (1.51)

Eq. (1.51) indicates that the state is entangled if it satisfies the condition ⟨NaNb⟩ <

|⟨ab†⟩|2. This condition is utilized in the Hillery–Zubairy method [72], using the photon

number relation in terms of annihilation and creation operators, n̂ = â†â, in two-mode

entanglement to derive the inequality ⟨n1⟩⟨n2⟩ < |⟨a1a2⟩|2. Furthermore, the inequal-

ity relation in the Hillery–Zubairy approach is applicable to detect entanglement in the

systems of more than two modes.

Although, entanglement is well-established in scientific theory and experimental obser-

vations, its underlying mechanisms and implications are still subjects of ongoing research

and exploration in the field of quantum physics.

1.5 Outline of Thesis

In the following, we present the outline of the thesis by giving the brief description of the

problems tackled in the form of different chapters of the thesis. There are a total five

chapters. We present a brief summery about the content of each chapter below.

Chapter 1: This chapter starts with the introduction and motivation of the thesis, with

1 Introduction
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a brief literature review of the recent developments in the cavity optomechanical systems.

It is then followed by a brief discussion of the basic theory of cavity optomechanics. It is

then guided through the fundamentals of the current work.

Chapter 2: It is said that synchronization and entanglement are two independent

properties which two coupled quantum system may not exhibit simultaneously. In this

chapter, we present a systematic study on the interplay between quantum synchroniza-

tion and entanglement between two indirectly coupled mechanical oscillators in a double

cavity optomechanical system. Each mechanical oscillator is suspended inside a cavity

and is coupled with the cavity mode via linear and quadratic dependence on its displace-

ment from the equilibrium position. Based on these realizations, first, we show that when

both the mechanical oscillators are linearly coupled to the cavity mode, the oscillators

are synchronized without entanglement. Also, the level of quantum synchronization is

poor. Further, we show that when we consider quadratic coupling as well in our simula-

tion, quantum synchronization increases beyond what was achieved without it. Moreover,

entanglement between the oscillators starts appearing with non-zero quadratic coupling.

To be more clear, we show that appropriate choice of parameters in the presence of both

type of coupling leads to the greatly enhanced quantum synchronization and entanglement

between the indirectly coupled oscillators. At the end, we explore the effect of system

parameters on quantum synchronization and entanglement.

Chapter 3: This chapter address the issue of generalization of relation between en-

tanglement and quantum synchronization. In this chapter, we present an optomechanical

model to show that entanglement can act as booster to achieve near complete quantum

synchronization between two mechanical oscillators. In this model, one of oscillator makes

the cavity while the other is kept suspended inside the cavity. Both the oscillators are

coupled to the same cavity mode via linear and quadratic dependence on their displace-
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ment from their respective equilibrium positions. An indirect always-on coupling between

the two is also mediated via the same cavity mode. With this realization, we first demon-

strate classical synchronization between the oscillator via limit cycle trajectories, which

is a precondition for quantum synchronization. Further, we show that when the cavity is

strongly amplitude-modulated, the two coupled oscillators are nearly complete quantum

synchronized and entangled simultaneously.

Chapter 4: The content of this chapter is motivated by the several proposed entangle-

ment criterion to detect entanglement of mixed states. We observed that these criterion

correctly detect the entanglement in pure as well as in mixed states, but they can not

reveal the correct domain of the relevant parameters as identified by the Positive Par-

tial Transpose (PPT) criterion. In this chapter, we will address this issue and propose

a strong entanglement criterion for bipartite mixed states, which correctly identifies the

correct domain of relevant parameters for entanglement. We will show by explicit analysis

that our criterion successfully detects entanglement not only in pure states, but also in

several generalized mixed states including Werner state. We further show that our crite-

rion reduces to the SRPT inequality for the pure state.

Chapter 5: This chapter contains the summary of the results discussed in the afore-

mentioned main chapters of the thesis. We also consider some future scopes that might

aid in gaining a deeper understanding of quantum correlations.

1 Introduction
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Chapter 2

Quantum synchronization and

entanglement between two indirectly

coupled oscillators

In the previous chapter, we introduced the cavity optomechanical system and discussed

the interaction between the optical field and the mechanical system. In this chapter, we

study the simultaneous entanglement and the synchronization between the two indirectly-

coupled mechanical oscillators. As a result of quadratic coupling, we show that these

oscillators can be quantum synchronized and entangled simultaneously.

2.1 Motivation

Synchronization refers to the ability of a group of self-oscillators to adjust their intrinsic

rhythms spontaneously and oscillate in unison. This concept has a long history, dating

back to Huygens’s observation of synchronized maritime pendulum clocks in the 17th

century [7]. After the introduction of the synchronization phenomenon by Huygens, it

has been observed in a wide range of classical systems. It has practical applications in

29
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high-precision clocks [73] and information processing [5].

In the last decade, many efforts have been devoted to extending this interesting phe-

nomenon to the quantum regime. As discussed in Chapter 1, Mari et al [14] gave an

effective measurement scheme and proposed a figure of merit to measure the degree of

quantum synchronization and quantum phase synchronization between the two coupled

quantum harmonic oscillators. Recent experiments have demonstrated quantum phase

synchronization in spin-1 atoms [74]. This discovery has generated significant interest

in exploring quantum synchronization in other quantum systems. Quantum-mechanical

self-sustained oscillators are synchronized to the external harmonic drive [47] or a different

mechanical oscillator [46]. Marquardt and his coworkers have demonstrated that an array

of optomechanical systems can exhibit synchronization [75] that can be described by an

effective Kuramoto-type model [76]. Quantum synchronization has also been studied in

trapped ions, ensembles of atoms [77, 78, 79], qubits, Van der Pol oscillators [80, 48], and

Josephson junctions [81, 82].

One of the distinctive features of quantum correlations is nonlocality, which does not

have any classical analog. This refers to the possibility that the measurement of one

of the two coupled systems can affect the probability distributions of the other, which

may be at a distance apart. There are various prescriptions for identifying nonlocality,

including Bell’s inequalities and EPR steering. To advocate for the local realism between

two particles, Einstein, Podolsky, and Rosen (EPR) proposed that their position and

momentum quadratures would maintain the relation q1 = q2 and p⃗1 = −p⃗2 at all times, as

these particles are coupled to each other in the stationary center-of-mass limit. In fact, in

the classical sense, these particles may be considered synchronized. Moreover, the states

of these two particles have been shown to exhibit nonlocality in terms of suitable Bell’s

inequality violation [83, 84] and to correspond to an ideal quantum correlation - called

EPR-correlation.

The local measurement of probability distributions is closely related to the concept of
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separability. If a local operation on one of the subsystems changes the quantum probability

distributions, then it signals a quantum correlation. For a coupled bosonic system (like

that of two harmonic oscillators), the joint variables q− and p− (which have been used

to quantify synchronization in [14]) satisfy the following uncertainty relation: ⟨(δq−)2⟩+

⟨(δp−)2⟩ ≥ 1. If the state of this coupled system is separable, the following inequality is

also satisfied, as shown by Duan and his coworkers (DC) [68]:

⟨(δq−)2⟩+ ⟨(δp+)2⟩ ≥ 1 , (2.1)

where the transformation p− → p+ is made using partial transposition, using Peres’s pre-

scription [59]. This means that violation of this inequality Eq. (2.1) refers to inseparability.

Such an inseparable state is referred to as being entangled.

As clear from the above, both the quantum synchronization and the nonlocality are

certain manifestations of quantum correlations and can be described or identified in terms

of uncertainties of a set of joint EPR-like quadratures. The Heisenberg uncertainty re-

lation has been used to suitably quantify the quantum synchronization [14] as well as to

establish conditions for inseparability (or, entanglement [64]). Therefore, it is natural to

expect certain interconnection between them. At least, there must exist a certain regime

of parameters, in which two oscillators can simultaneously exhibit quantum synchroniza-

tion and entanglement. This could happen when ⟨(δq−)2⟩ ̸= 0 and ⟨(δp−)2⟩ > ⟨(δp+)2⟩.

In this chapter, we will explore a coupled oscillator system in this regard.

We note that such interaction has been explored before, as well. For example, it

was shown by Manzano et al. that two indirectly coupled oscillators, initially prepared

in a separable state, can be both classically synchronized and entangled at long times

[17]. This could be done by suitably tuning the coupling strength to the rest of the

oscillators in the network. It was pointed out that synchronization helps in maintaining

the entanglement even in the presence of decoherence. How classical synchronization

triggers the entanglement in many-body systems has been studied in [85]. Lee and Cross

2 Quantum synchronization and entanglement between two indirectly
coupled oscillators
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have investigated both synchronization and quantum correlation between the two cavities

with nonlinear crystals [46]. They have shown in the classical limit that two cavities can

exhibit synchronization, while in the quantum limit, they get entangled. However, these

works primarily focused on classical synchronization.

To study quantum synchronization and entanglement of two harmonic oscillators in-

directly coupled with each other, we can look forward to a cavity optomechanical setup,

in which a mechanical oscillator is coupled to a cavity mode. The mesoscopic oscillator

can be quantized at low temperatures. So quantum-classical crossover can be studied in

such a system, once the temperature is varied. In this chapter, we will investigate if we

can entangle such oscillators as well as quantum-synchronize them, at the same time.

In an optomechanical system, the leading order of coupling between the cavity mode

and the mechanical mode is proportional to the displacement q of the mechanical oscillator

from its equilibrium position - a case of the so-called ’linear coupling’. That such a

coupling can lead to cooling the mechanical oscillator to its ground state using dynamical

back action has been shown in [86] and demonstrated in [87, 88]. This can also generate

cavity-oscillator entanglement [89, 38] and quadrature squeezing of mechanical mode [90,

91]. On the other hand, for specific configurations of the mechanical oscillators, when the

quadratic dependence of the cavity-mechanical oscillator coupling on q dominates, one

can measure the energy eigenstate of the mechanical mode [92]. Cooling and squeezing

of the mechanical oscillator [93] and cavity-mechanical oscillator entanglement [94] have

also been explored in such cases. It is further shown that quadratic coupling between a

cavity mode and the motional degree of freedom of an atomic ensemble within the cavity

can give rise to cavity nonlinearity at high probe laser power [95].

To achieve only the quadrature coupling in an optomechanical system, one is required

to carefully place a membrane in the middle of the cavity, at one of the extrema of the

cavity mode frequency. If such a constraint is relaxed, both the linear and the quadratic

coupling can coexist in the same system. In such situations, one could also demonstrate
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squeezing of cavity quadratures [96], cooling of microspheres [97] and of the mechanical

oscillator to its ground state [98], and self-sustained oscillations of mechanical oscillator

[99]. In this chapter, we show that to attain the quantum synchronization between two

oscillators, along with entanglement, one is required to consider the coexistence of both

types of coupling, and that quadratic coupling enhances the synchronization.

The chapter is organized as follows. In Section 2.2, we present the model and derive

the effective Hamiltonian. In Section 2.3, the relevant equations of motion are derived for

the fluctuation terms. In Section 2.4, we present the relevant quantities and numerically

investigate how both entanglement and synchronization can be simultaneously achieved

between the oscillators. In Section 2.5, we conclude our chapter.

2.2 Model

We consider two optomechanical systems, in each of which a membrane is suspended

inside a cavity. In addition, the two optical cavities (with resonance frequency ωcj, j ∈

1, 2) are directly coupled by an optical fiber between the inside mirrors, with a coupling

constant J . We assume that the fundamental frequencies of the cavity modes are equal to

wcj,n = nπc/Lj, where Lj is the length of the jth cavity (j ∈ 1, 2), n is a positive integer,

and c is the speed of light in vacuum. The leading order of coupling between the cavity

mode and the mechanical oscillator is proportional to the displacement of the oscillator

from its equilibrium position. We consider, in addition, a coupling quadratically varying

with this displacement. One can achieve both orders of coupling in the membrane-in-the-

middle setup, as we are considering if the cavity frequency does not exhibit any extremum

at the equilibrium position of the membrane [100]. That the suitable position and tilt

of the membrane can generate both linear and enhanced quadratic coupling has been

demonstrated in experiments with optical cavity [101, 102].

2 Quantum synchronization and entanglement between two indirectly
coupled oscillators
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The Hamiltonian of the system can be written as follows:

Hac = H0 +Hg +Hi +Hp, (2.2)

H0 =
∑
j=1,2

ℏωcja†jaj +
P 2
j

2mj

+
mjω

2
mj

2
Q2
j ,

Hg =
∑
j=1,2

[
−ℏg(j)L a†jajQj + ℏg(j)Q a†jajQ

2
j

]
,

Hi = −ℏJ(a†1a2 + a†2a1) ,

Hp = iℏE [1 + ηD cos (ΩDt)]
∑
j=1,2

(
a†je

−iωljt − aje
iωljt
)
, (2.3)

where H0 represents the unperturbed Hamiltonian, aj is the annihilation operator for

the jth cavity mode, Qj and Pj refer to the position and momentum operators for the

jth mechanical oscillator with the commutation relation [Qj, Pj] = ιℏ, Hg represents the

optomechanical coupling between the mechanical oscillator and the cavity mode, g
(j)
L and

g
(j)
Q are the linear and the quadratic coupling constant between cavity and mechanical

resonator. They are defined as g
(j)
L =

∂ωcj

∂Qj
and g

(j)
Q = 1

2

∂2ωcj

∂Q2
j
, where all the derivatives

are calculated at the equilibrium position Qj = 0. The term J is the coupling constant

of cavity modes through an optical fiber. The driving of the cavity mode with external

laser field of magnitude E and frequency ωlj is described via the Hamiltonian Hp. Both

the cavity are driven by laser fields with frequency ωlj and time-modulated amplitude

ϵ(t) = E[1+ηD cos (ΩDt)], where E is the amplitude of the laser without any modulation,

ηD and ΩD are the amplitude factor and the frequency of the modulating field. In the

rotating frame of laser frequencies, the total Hamiltonian Hac takes the following form:

H =
∑
j=1,2

[
ℏ∆cja

†
jaj +

P 2
j

2mj

+
mjω

2
mj

2
Q2
j − ℏg(j)L a†jajQj + ℏg(j)Q a†jajQ

2
j + iℏϵ(t)

(
a†j − aj

)]
−ℏJ(a†1a2 + a†2a1) , (2.4)

where ∆cj = ωcj − ωlj is the detuning of the jth cavity mode from the respective driving
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Figure 2.1: Schematic diagram of the two coupled cavity optomechanical systems. Each
mechanical oscillator is suspended inside its respective cavity. The two cavity modes are
externally coupled with each other via a coupling constant J .

field.

2.3 Langevin equations

Define the dimensionless position and momentum operators qj and pj as

qj =

√
mjωmj

ℏ
Qj ,

pj =

√
1

mjℏωmj
Pj ,

(2.5)

On substituting Eq. (2.5) in Eq. (2.4), we get

H =
∑
j=1,2

[
ℏ∆cja

†
jaj +

ℏωmj
2

(
q2j + p2j

)
− ℏg(j)1 a†jajqj + ℏg(j)2 a†jajq

2
j + iℏϵ(t)

(
a†j − aj

)]
−ℏJ(a†1a2 + a†2a1) , (2.6)

where g
(j)
1 =

∂ωcj

∂Qj

√
ℏ

mjωmj
and g

(j)
2 = 1

2

∂2ωcj

∂Q2
j

ℏ
mjωmj

are the scaled linear and quadratic

optomechanical coupling constants. We will study the time evolution and the dissipation

dynamics of the cavity and mechanical modes. From the above Hamiltonian, the Langevin

2 Quantum synchronization and entanglement between two indirectly
coupled oscillators
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equations for the operators in the Heisenberg picture can be obtained as follows:

dqj
dt

= ωmjpj , (2.7)

dpj
dt

= −ωmjqj + g
(j)
1 a†jaj − 2g

(j)
2 a†jajqj − γmjpj + ξj(t) , (2.8)

daj
dt

= −(κj + i∆cj)aj + ig
(j)
1 ajqj − ig

(j)
2 ajq

2
j + iJa3−j + ϵ(t) +

√
2κja

(j)
in ,

(2.9)

In the large mean field limit [19], we can expand the operators as a sum of their mean

values and fluctuations as follows: aj → αj + δaj, qj → q̄j + δqj, pj → p̄j + δpj, here

αj = ⟨aj⟩, q̄j = ⟨qj⟩ and p̄j = ⟨pj⟩. From the above equations Eq. (2.7)-Eq. (2.9), the

Langevin equations for the mean values can be obtained as follows:

dq̄j
dt

= ωmj p̄j ,

dp̄j
dt

= −ωmj q̄j + g
(j)
1 |αj|2 − 2g

(j)
2 |αj|2q̄j − γmj p̄j ,

dαj
dt

= −(κj + i∆cj)αj + ig
(j)
1 αj q̄j − ig

(j)
2 αj q̄

2
j + iJα3−j + ϵ(t) , (2.10)

The corresponding noise operators of the above equations satisfy the following correlation

relations for all j [36]:

〈
a
(j)
in (t)a

†(j)
in (t′)

〉
= δ(t− t′) ,〈

a
†(j)
in (t)a

(j)
in (t

′)
〉

= 0 ,

⟨ξj(t)ξj (t′)⟩ =
γmj

2πωmj

∫
ωe−iω(t−t

′)

[
1 + coth

(
ℏω

2kBT

)]
dω , (2.11)

where kB is the Boltzmann constant. The mechanical mode, coupled to the thermal bath,

is affected by a Brownian stochastic force described by ξj(t) with zero mean. The ther-

mal bath is assumed to be a thermal equilibrium at a temperature T . For the case of
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a large quality factor of the mechanical oscillator, the Brownian noise operator can be

approximated in Markov approximation as ⟨ξj(t)ξj (t′)⟩ = γmj (n̄mj + 1) δ (t− t′), where

n̄mj = 1/ [exp (ℏωmj/kBT )− 1] is the mean occupation number of the mechanical oscilla-

tors.

Similarly, the Langevin equations for the fluctuations can be obtained as follows:

d

dt
δqj = ωmjδpj ,

d

dt
δpj = −ωmjδqj + g

(j)
1

(
αjδa

†
j + α∗

jδaj

)
− 2g

(j)
2 q̄j

(
α∗
jδaj + αjδa

†
j

)
− 2g

(j)
2 |αj|2 δqj

−γmjδpj + ξj(t) ,

d

dt
δaj = −i[∆cjδaj − g

(j)
1 (q̄jδaj + αjδqj) + g

(j)
2 q̄j (2αjδqj + q̄jδaj)]

−κjδaj + iJδa3−j +
√

2κja
(j)
in . (2.12)

In the next section, we will show that the oscillators do not only get entangled but

also get quantum-synchronized. This result further strengthens the fact that quantum

synchronization and entanglement are interlinked.

2.4 Simultaneous Entanglement and Synchronization

It is known that the violation of the DC criterion is sufficient to detect entanglement

for continuous-variable states. For the variable q− = {q1(t) − q2(t)}/
√
2 and p+ =

{p1(t) + p2(t)}/
√
2, Mancini criterion Eq. (1.47), which is derived from the DC crite-

rion, for separability takes the following form:

ED = ⟨(δq−)2⟩⟨(δp+)2⟩ ≥
1

4
, (2.13)

the violation of which indicates entanglement. As was shown in [103], the relation

Eq. (2.13) is stronger than the DC criterion. To investigate how the system gets en-

tangled with time, we will study the temporal dynamics of ED. Similarly, to investigate

2 Quantum synchronization and entanglement between two indirectly
coupled oscillators
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the quantum synchronization between two mechanical oscillators, we choose to investigate

the behavior of the figure of merit Sq given by Eq. (1.37).

To verify the above condition, we calculate the Sq and ED, by using the covariance matrix

of fluctuations. Let us start with the fluctuations equations Eq. (2.12) in the following

matrix form by defining the quadrature basis δqaj =
(δa†j + δaj)√

2
, δpaj =

i(δa†j − δaj)√
2

:

˙U(t) = BU(t) + V (t) , (2.14)

where U(t)T = (δq1, δp1, δqa1, δpa1, δq2, δp2, δqa2, δpa2) and

V (t)T =

(
0, ξ1,

√
2κ1δq

in
a1,

√
2κ1δp

in
a1, 0, ξ2,

√
2κ2δq

in
a2,

√
2κ2δp

in
a2

)
(2.15)

is the noise vector. Here δqinaj = (a
(j)†
in +a

(j)
in )/

√
2 and δpinaj = i(a

(j)†
in −a(j)in )/

√
2, for j = 1, 2.

The solution of this equation can be written as: U(t) = B(t)U(0) +
∫ t
0
dsF (s)V (t − s),

where F (t) = exp(Bt) and the matrix B takes the following form:

B =

 B1 B0

B0 B2

 , (2.16)

with

Bj =


0 ωmj 0 0

−ω′
mj −γmj

√
2G′

j Re (αj)
√
2G′

j Im (αj)

−
√
2G′

j Im (αj) 0 −κj ∆′
j

√
2G′

j Re (αj) 0 −∆′
j −κj

 ,

(2.17)
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for j = 1, 2. The matrix B0, as given below, describes the coupling between the cavities:

B0 =


0 0 0 0

0 0 0 0

0 0 0 −J

0 0 J 0

 . (2.18)

Here G′
j = g

(j)
1 − 2g

(j)
2 q̄j, ω

′
mj = ωmj + 2g

(j)
2 |αj|2, and ∆′

j = ∆cj − g
(j)
1 q̄j + g

(j)
2 |q̄j|2 .

To calculate the entanglement in any two subsystems, we can now calculate the co-

variance matrix C(t), as a solution of the following linear differential equation,

Ċ(t) = B(t)C(t) + C(t)B(t)T +D , (2.19)

where the elements of C can be identified as Cij = (⟨Ui(∞)Uj(∞) + Uj(∞)Ui(∞)⟩) /2

and the diffusion matrix D is given by

D = diag
[
0, (2n̄m1 + 1)γm1, κ1, κ1, 0, (2n̄m2 + 1)γm2, κ2, κ2

]
, (2.20)

In the matrix C, every diagonal element represents the 2 × 2 matrix for the respective

mode, and every non-diagonal element Cij represents the 2 × 2 matrix of inter-mode

covariance.

The complete quantum synchronization Sq(t) can be expressed in a concise form as

Sq(t) =

{
1

2
[C11(t) + C55(t)− C15(t)− C51(t) + C22(t) + C66(t)− C26(t)− C62(t)]

}−1

.(2.21)

Similar expressions can be found for ED as well.

2 Quantum synchronization and entanglement between two indirectly
coupled oscillators
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(a) (b)

(c) (d)

Figure 2.2: Variation of (a) the mean values of q̄1 (red) and q̄2 (blue), (b) the mean values
of p̄1 (red) and p̄2 (blue), (c) complete synchronization Sq, (e) entanglement ED, with
respect to time (in the units of τ = 1/ωm1). Parameters chosen are ωm1 = −∆c1 = 1,
ωm2 = −∆c2 = 1.005, n̄mj = 0 , g1 = 0.005, g2 = 0, γmj = 0.005, κj = 0.15, E = 100,
ηD = 1, ΩD = 1 and J = 0.04. The inset shows the steady-state behavior of the oscillation
of Sq and ED.
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(a) (b)

(c) (d)

Figure 2.3: Variation of (a) the mean values of q̄1 (red) and q̄2 (blue), (b) the mean values
of p̄1 (red) and p̄2 (blue), (c) synchronization Sq, and (e) entanglement ED, with respect
to time (in the units of τ = 1/ωm1). Here we have chosen g2/g1 = 1× 10−2, while all the
other parameters are the same as in Fig. 2.2. The inset shows the steady-state behavior
of the oscillation of Sq and ED.

2 Quantum synchronization and entanglement between two indirectly
coupled oscillators
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(a) (b)

Figure 2.4: (a) A parametric plot of the variation of time-averaged values of synchroniza-
tion S̄q with the entanglement ĒD, when the number of thermal phonons n̄m varies from
0 to 5. The inset shows the zoomed version of the same plot in the regions of parame-
ters when ĒD ≤ 0.25. (b) Variation of time-averaged values of synchronization S̄q and
entanglement ĒD between the mechanical oscillators with respect to frequency difference
δm = ωm2 − ωm1 of the mechanical oscillators. The other parameters are the same as in
Fig. 2.3.

2.4.1 Numerical Results and Discussion

In this section, we will show how this entanglement is built up with time and will in-

vestigate whether these oscillators get synchronized, as well. We choose here that the

optomechanical couplings for both the mechanical oscillators are equal, i.e., g
(j)
1 = g1 and

g
(j)
2 = g2 for all j.

We first consider the case when there is no quadratic coupling, i.e., g2 = 0. As shown

in the Fig. 2.2a and Fig. 2.2b, the system will reach a steady state at long times, when

the mean values of the position and momentum vary periodically. This corresponds to

the onset of the limit cycles in phase space. In the Fig. 2.2c we show the time evolution

of synchronization Sq between the oscillators. The Sq ∼ 0.39 at the steady state signifies

the existence of incomplete quantum synchronization. The small oscillations appearing in

this figure are due to sinusoidal variation of the fluctuations in position and momentum

at long times. It has been observed that there is no entanglement between the mechanical
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oscillators in this case of zero quadratic coupling. This is supported by the Fig. 2.2d,

which shows that at long times, the separability criterion Eq. (2.13) is satisfied, as ED

remains greater than 0.25.

When we consider the quadratic coupling as well in our simulation, the synchronization

increases beyond what was achieved without it. In the Fig. 2.3a and Fig. 2.3b, we first

show the time evolution of limit-cycle trajectories of the mean values q̄1, q̄2, p̄1, and p̄2.

This shows that the mechanical oscillators are classically completely synchronized. In

the Fig. 2.3c, we display the time evolution of quantum synchronization Sq. Even for a

value of g2 as small as ∼ 10−2g1, the synchronization increases to a value close to unity,

and therefore the mechanical oscillators become nearly completely quantum synchronized.

More importantly, the entanglement between the mechanical oscillators starts appearing

with g2 ̸= 0. The system also violates the standard inseparability criterion Eq. (2.13),

as ED becomes less than 0.25 [see Fig. 2.3d]. A comparison between the Fig. 2.3d and

Fig. 2.3c clearly shows that the entanglement and synchronization are achieved, at a time

scale of a similar order, and retain their values at long times, even in the presence of decay

[refer to Eq. (2.12) and Eq. (2.20)].

The numerical results for g2 ̸= 0 suggest that one can get a significant enhancement of

quantum synchronization and entanglement simultaneously between mechanical oscilla-

tors by choosing appropriate parameters. The direct coupling between the cavity (with

a coupling constant J ) and the linear coupling mediated by the cavity modes is pro-

portional to q1 and q2, while the effective quadratic coupling between them varies as q21

and q22. Thus, the coupling proportional to g2 imparts additional nonlinearity into the

fluctuation dynamics, leading to the synchronization. That higher order terms are useful

in obtaining synchronization has also been shown in [85].

2 Quantum synchronization and entanglement between two indirectly
coupled oscillators
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2.4.2 Effect of indirect coupling and quadratic coupling

From Eq. (2.12), we can notice that the nonlinearity, arising due to coupling constant g2,

can suppress the oscillation of the two cavities as well as the photon exchange between

them. Therefore, the oscillations of the positions and the momenta of the two mechanical

oscillators are frozen, unlike the linear cases. This can be attributed to the opposite signs

of the terms containing g1 and g2 in Eq. (2.12). In this situation, the term containing g2

tends to reduce the effect of that containing g1 and the dynamics of the oscillators be-

come more synchronized with each other (albeit with a g2-dependent effective frequency).

Therefore, the Sq is enhanced and ED becomes less than 0.25 since the oscillation of the

oscillators is suppressed, even for small values of g2. Thus, it is the joint effect of the linear

coupling and the quadratic coupling of mechanical oscillators with their respective cavity

modes, that leads to the simultaneous appearance of synchronization and entanglement

between the oscillators. We emphasize that quadratic coupling is essential to build up

entanglement and to attain near-complete quantum synchronization for this particular

optomechanical system.

Further note that for g2 = 0, one can still have quantum synchronization, albeit not

even near-complete and without entanglement. It must be borne in mind that the classical

synchronization (and the limit cycle) remains a necessary condition in any case. The above

results are valid for a suitable direct coupling constant J . An interesting observation can

be made when J = 0. In such a case, one cannot have any synchronization between the

oscillators (and no limit cycle), as they are not coupled. Indeed, this has been previously

noted by Mari et al. [14].

We show in the parametric plot Fig. 2.4a, how the synchronization and the entan-

glement change with the increase in thermal excitation. Clearly, the system remains

maximally synchronized (1− S̄q is minimum) when it maximally violates Eq. (2.13) [i.e.,

when 1/4 − ĒD is maximum, see Eq. (2.13)]. This happens at absolute zero, i.e., for

n̄m = 0. For larger excitation, the synchronization deteriorates and the entanglement
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decreases too, as ĒD tends to 1/4 (see Fig. 2.4a). However, the synchronization remains

more robust to temperature (or equivalently, the number of thermal phonons n̄m) as com-

pared to the entanglement. The entanglement vanishes (when ĒD becomes larger than

1/4), for n̄m ≳ 0.2, while the system still maintains a residual quantum synchronization

∼ 0.15 even for n̄m as large as 5. We further show in the inset of the Fig. 2.4a the domain

of simultaneous occurrence of synchronization and entanglement.

We further show in Fig. 2.4b that with the increase in frequency difference δm =

ωm2 − ωm1, the synchronization and entanglement decreases similarly up to δm ∼ 0.2.

This means that both synchronization and entanglement are retained even when the

frequency of the second oscillator, ωm2, is as large as 20% more than that of the first

oscillator, ωm1.

2.5 Conclusion

In conclusion, we have presented a theoretical scheme to study the interplay between quan-

tum synchronization and entanglement of two mechanical oscillators in a double-cavity

optomechanical system. As both the criterion for entanglement [70] and the measure

of the quantum synchronization [14] can be derived from the same uncertainty principle

(in terms of their joint quadratures), we expected that there could be the possibilities

of their simultaneous occurrence in the same system. In our model, each mechanical

oscillator is suspended inside a cavity and is coupled with the cavity mode via a linear

and a quadratic dependence on its displacement from the equilibrium position. Our nu-

merical results show that two coupled harmonic oscillators satisfy both the criteria at

the same time and therefore, can be both quantum-synchronised and entangled simul-

taneously. To be more specific, an appropriate choice of parameters in the presence of

quadratic coupling can lead to greatly enhanced quantum synchronization (Sq > 0.85) and

entanglement between coupled oscillators, at a time much longer than the cavity decay

time scale. We have demonstrated classical synchronization via limit cycle trajectories

2 Quantum synchronization and entanglement between two indirectly
coupled oscillators
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of the mean quadratures at long times, as a precondition to achieve quantum synchro-

nization. We also investigated the robustness of synchronization and the entanglement

against thermal noise and frequency difference.

Though quantum synchronization can be considered to arise out of certain quantum

correlation, which could be related to quantum discord [14, 104], there can be certain

parameter regimes at which the quantum synchronization can also exist without entangle-

ment (possibly, with nonzero discord). More importantly, the two phenomena (quantum

synchronization and entanglement) can be related to quantum fluctuations of a common

set of quadrature variables (EPR variables). Precisely speaking, the entanglement criteria

based on position and momentum quadratures can provide a suitable marker for quantum

synchronization. As discussed in detail in this chapter, entanglement is associated with

an enhanced degree of quantum synchronization between two coupled oscillators. Note

that entanglement refers to a nonclassical property of coupled bosonic systems, with a

close equivalence to the nonlocality. Interestingly, any classical mixture with a bosonic

entangled state even exhibits quantum correlation, based on entanglement, as mentioned

in the motivation. Thus entanglement can stand, in its merit, as closely related to quan-

tum synchronization, as both arise out of quantum correlations in the quadratures. The

existence of entanglement may be considered a stronger criterion for near-complete quan-

tum synchronization. We emphasize that we have put forward a common prescription to

relate the two properties. The criteria that we have used can also be verified in experi-

ments, based on quadrature measurements, contrary to quantum discord that cannot be

directly verified in experiments.

We also emphasize that our results of quantum synchronization and entanglement

are consistent with complete classical synchronization, as both q̄− and p̄− tend to zero,

corresponding to a time-asymptotic limit cycle in classical phase space. Contrary to what

Mari et al. conjectured, this is not equivalent to mixed synchronization [105, 106] (that

corresponds to q̄−, p̄+ → 0). Though the partial transpose (used to derive the Mancini
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criteria) refers to a local time-reversal (and hence counter-rotating trajectory in phase

space), our results do not involve any anti-synchronization (i.e., p̄+ → 0), as we have

p̄− → 0 instead.

2 Quantum synchronization and entanglement between two indirectly
coupled oscillators
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Chapter 3

Entanglement boosts quantum

synchronization between two

oscillators

In the previous chapter, we studied the simultaneous occurrence of quantum synchro-

nization and entanglement between two indirectly coupled oscillators in a double cavity

optomechanical system. In this chapter, we present a more generic optomechanical model

to explore how the entanglement can be related to the quantum synchronization of two

mechanical oscillators. We show that entanglement delivers a catalytic effect on the quan-

tum synchronization in the specific system we considered.

3.1 Motivation

Spontaneous synchronization is a natural phenomenon that can be often experienced in

avian flight and flashing of fireflies [40]. It has been explored in many different areas,

namely, neuron networks [107, 108, 109], chemical reaction [110], nonlinear dynamics

[111, 47, 112], and electrical circuits and communications [113, 114].

49
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Classical synchronization between two nonlinearly coupled oscillators occurs due to a

rephasing and energy redistribution of their motions. This refers to a limit cycle in phase

space, where their respective generalized positions qj(t) and generalized linear momenta

pj(t) (j ∈ 1, 2) become equal. In quantum regimes, however, one cannot measure these

quadratures with certainty at the same time t, according to Heisenberg’s uncertainty

principle. The best estimate of the quantum synchronization therefore corresponds to a

state of two oscillators, for which the total uncertainty of their joint quadratures becomes

minimum. In this regard, Mari et al. proposed the figure of merit to measure the quantum

synchronization in continuous variables [14] in terms of the synchronization errors q−(t)

and p−(t). Expanding these operators around their mean values, q−(t) = Q−(t) + δq−(t),

p−(t) = P−(t)+δp−(t), and using the limit of zero mean of these quadrature differences, a

modified form of the measure of quantum synchronization can be obtained as introduced

in the chapter 1 (Eq. (1.37)).

Based on the measure proposed by Mari [14], a more generalized measure of quantum

synchronization is introduced, called quantum ϕ synchronization [25], in which the pair

of variables have the same amplitude and possess the same phase shift ϕ. We note that

a generalized information-theoretic measure of synchronization for quantum systems has

also been proposed [115] in terms of the trace distance to the limit cycle.

On the other hand, quantum correlation between the interacting systems can also

manifest itself as entanglement. In the context of two oscillators (two bosonic modes),

entanglement has been characterized in terms of uncertainties of the joint quadratures.

The criterion for entanglement can be derived starting from the uncertainty relation of q−

and p− and then applying Peres’s separability criterion [59] based on the partial transposi-

tion. Any bimodal state can be said to be entangled if it violates the partially transposed

uncertainty relation Eq. (2.1), as given by [68]. We investigate the entanglement in terms

of the well-known Mancini criterion of entanglement which is given by Eq. (2.13).

It can be observed from the above, that both the quantum synchronization measure Sq



51

and the entanglement criterion ED are derived from the Heisenberg uncertainty principle

for a pair of EPR-like variables. This suggests that both these seemingly different features

originate purely from the same class of quantum correlation (namely, the EPR-type)

and therefore can appear in the same system at a similar time scale. In fact, in our

recent work [116], we have shown that it is indeed possible to both quantum-synchronize

and entangle two oscillators in a certain parameter regime, by coupling them with two

different cavities. In this chapter, we will explore if such a relation between quantum

synchronization and entanglement also exists in a different system. With an always-on

nonlinear coupling between two oscillators, we will show that they remain quantum-

synchronized as long as they are entangled. More importantly, without the entanglement,

the quantum synchronization degrades. Thus, the entanglement can be considered a

booster towards complete quantum synchronization.

We note that whether two coupled systems can be simultaneously synchronized and

entangled has been investigated in several systems. Manzano et al. showed that any two

coupled oscillators in a network, initially prepared in a separable state, can be both syn-

chronized and entangled [17], for a suitable choice of the interaction strength to the other

oscillators in the network. They further showed that in the presence of synchronization,

the entanglement is retained despite the decoherence. It was further shown in [85, 46]

that many-body systems can be entangled in the presence of synchronization. In the clas-

sical (quantum) limit, two single-mode cavities get synchronized (entangled). However,

all the above works dealt only with classical synchronization. On the contrary, it is more

meaningful to focus on quantum synchronization, when one looks for its relationship with

entanglement, which has no classical analogy. In this chapter, we specifically investigate

if there is any inherent quantum correlation that can lead to both quantum synchroniza-

tion and entanglement. Previous attempts in this regard include the study of quantum

discord [117, 17], linear entropy [118], mutual information based on von Neumann entropy

[15] and Renyi entropy [119]. Very recently, the relationship between the synchronization

3 Entanglement boosts quantum synchronization between two oscillators
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phase, detuning, and quantum correlations has been investigated in a bio-inspired quan-

tum system in [120]. It is shown that quantum discord must be greater than classical

information at all times for the emergence of spontaneous quantum synchronization. A

minimal model for the emergence of synchronization and possible buildup of quantum

correlations during synchronization in the absence of any nonlinear effects, external forc-

ing, or dissipation is introduced in [56]. In this model, two indirectly coupled oscillators,

initially prepared in an unentangled state, can get entangled during synchronization. In

all of the above works, similar steady-state behavior of these measures of quantum cor-

relation and quantum synchronization was reported. However, their numerical studies

could not essentially relate them as arising from the same physical origin. The present

work addresses this exact loophole of the earlier reports.

To do the relevant analysis, an optomechanical system poses as a suitable platform. In

our model, two mechanical oscillators indirectly interact with each other, via their common

coupling to the same cavity mode. One of the oscillators is suspended inside the cavity,

while the other is a usual movable mirror of the same cavity. Clearly, their interaction is

always on and weakly nonlinear but still leads to near-complete quantum synchronization

and entanglement between them. We will specifically show that the quantum correlation

manifests itself in the simultaneous existence of the two. This happens at the modulation

frequency of the driving field. It is recently reported that the continuous measurement

of a single bosonic system can enhance its phase synchronization with the external drive

[121], when it is subjected to a squeezed driving field and both negative and nonlinear

damping. A feedback control of the system based on the continuous measurement of

an additional bath can also enhance synchronization [122]. In this chapter, we however

consider a coupled system (not a single system entrained with a drive), and our result

suggests an opposite effect upon measurement. If one of the oscillators is measured, it

destroys the entanglement and hence the complete quantum synchronization (note that

we do not study the phase synchronization in this chapter). In addition, the dynamics of
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the oscillators do not involve any two-photon processes, either driving or damping, unlike

the van der Pol oscillators considered in [121, 122].

We organize the chapter in the following way. In Section 3.2, we introduce the model

and the Hamiltonian and derive all the equations of motion for the fluctuation operators

to study how both entanglement and quantum synchronization between the oscillators

can arise at a similar time scale. We obtain the analytic expressions of the fluctuations

and numerically solve the dynamics of the system in Section 3.3. Finally, we conclude the

chapter in Section 3.4.

Figure 3.1: Schematic illustration of a driven optical cavity with one oscillating end mirror
(acting as a mechanical oscillator) and a membrane in the middle (acting as the second
mechanical oscillator). The two oscillators indirectly interact with each other through
their common coupling to the same cavity field via radiation pressure force. The optical
cavity is driven by a strong amplitude-modulated blue-detuned laser drive to achieve self-
sustained oscillations and synchronization of these oscillators.

3.2 Theoretical Model

The optomechanical system under consideration is shown in Fig. 3.1. This system con-

sists of an optical cavity with one mirror fixed, while the other is movable, acting as a

mechanical oscillator (with resonance frequency ωm1). Another oscillating membrane is

also suspended inside the cavity. The cavity is driven by a laser with frequency ωl and

3 Entanglement boosts quantum synchronization between two oscillators
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time-modulated amplitude ϵ(t) = E[1 + ηD cos (ΩDt)], where E is the amplitude of the

laser without any modulation, ηD and ΩD are the amplitude factor and the frequency

of the modulating field. This model is quite different from the other optomechanical se-

tups in which two membranes (or mirrors) are optically coupled to two different cavities

[123, 25], while an additional mechanical coupling between them has to be externally in-

troduced to facilitate the synchronization [24, 23]. In our model, the coupling between the

mirror and the membrane is always on and there is no need to introduce any additional

coupling. Their interaction with the same cavity mode generates an effective photon-

number-dependent mirror-membrane coupling, which leads to their synchronization and

entanglement as well. Recently, the synchronization effect in this type of optomechanical

system where both the mechanical oscillators couple to the same cavity mode has been

explored experimentally [124, 125].

The coupling between the optical cavity and membrane depends upon the position of

the membrane, placed relative to the nodes and antinodes of the cavity mode. A one-

dimensional calculation gives the frequency of the cavity as a function of the mirror

displacement q1 and the membrane displacement q2, as follows [92]:

ωcav(q1, q2) =

(
c

L+ q1

)
cos−1

(
rc cos

4πq2
λ

)
. (3.1)

Here L is the length of the cavity in equilibrium, rc is the reflectivity of the membrane

and λ is the wavelength of the laser field. Expanding ωcav(q1, q2) about the equilibrium

positions q10 = 0 and q20 of the respective cavity, up to second order in Taylor series, we

have:

ωcav(q1, q2) = ωc − g
(1)
1 q1 − g

(2)
1 q2 + g

(1)
2 q21 + g

(2)
2 q22 − g3q1q2 , (3.2)
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where we can identify

ωc = ωcav(0, q20)−
∂ωcav
∂q2

∣∣∣∣
(0,q20)

q20 +
1

2

∂2ωcav
∂q22

∣∣∣∣
(0,q20)

q220 ,

and

g
(1)
1 =

(
− ∂ωcav

∂q1

∣∣∣∣
(0,q20)

+
1

2

∂2ωcav
∂q1∂q2

∣∣∣∣
(0,q20)

q20

)
qzpf ,

g
(2)
1 =

(
− ∂ωcav

∂q2

∣∣∣∣
(0,q20)

+
∂2ωcav
∂q22

∣∣∣∣
(0,q20)

q20

)
qzpf ,

g
(j)
2 =

1

2

∂2ωcav
∂q2j

∣∣∣∣
(0,q20)

q2zpf , j = 1, 2

g3 = −1

2

∂2ωcav
∂q1∂q2

∣∣∣∣
(0,q20)

q2zpf . (3.3)

The Hamiltonian of the system then takes the following form (ℏ = 1):

H = ωcav(q1, q2)a
†a+

∑
j=1,2

ωmj
2

(
q2j + p2j

)
+ ιϵ (t)

(
a† − a

)
, (3.4)

where ωmj qj, and pj are the frequency, dimensionless position and momentum operators,

respectively, of the jth oscillator, a†(a) is the creation (annihilation) operator of cavity

mode, satisfying the commutation relation
[
a, a†

]
= 1, and ηD and ΩD are the ampli-

tude and the frequency of the modulating field. The quadratures satisfy the following

commutation relation: [qj, pj′ ] = ιδjj′ .

On putting the expression Eq. (3.2) of ωcav(q1, q2), the Hamiltonian in the frame

rotating with the laser frequency ωl can be written as

H = ∆a†a+
∑
j=1,2

[ωmj
2

(
q2j + p2j

)
+
(
−g(j)1 qj + g

(j)
2 q2j

)
a†a
]
− g3q1q2a

†a+ ιϵ (t)
(
a† − a

)
(3.5)

Here ∆ = ωc − ωl denotes the cavity mode detuning. Considering the dissipation of the

3 Entanglement boosts quantum synchronization between two oscillators
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system, we can now obtain the following quantum Langevin equations for the relevant

operators

dqj
dt

= ωmjpj ,

dpj
dt

= −ωmjqj + g
(j)
1 a†a− 2g

(j)
2 a†aqj + g3a

†aq3−j − γmjpj + ξj(t) ,

da

dt
= −(κ+ ι∆)a+ ι

∑
j=1,2

(
g
(j)
1 qj − g

(j)
2 q2j

)
a+ ιg3q1q2a+ ϵ (t) +

√
2κain , (3.6)

where we have used the Hamiltonian Eq. (3.5). Here κ is the decay rate of cavity mode,

γmj is the damping rate of jth mechanical oscillator, and ain is the input noise operator

with the following two-time correlation functions: [36]:

〈
ain(t)a

†
in(t

′)
〉
= δ(t− t′) ,

〈
a†in(t)ain(t

′)
〉
= 0 . (3.7)

On the other hand, the thermal bath at an equilibrium temperature T is described by a

Brownian noise ξj(t) with zero mean and the following two-time correlation function:

⟨ξj(t)ξj (t′)⟩ =
γmj

2πωmj

∫
ωe−ιω(t−t

′)

[
1 + coth

(
ℏω

2kBT

)]
dω , (3.8)

where kB is the Boltzmann constant. For the case of a large quality factor of the mechani-

cal oscillator, the expression above reduces to the following Markovian-approximated form

[126]:

⟨ξj(t)ξj (t′)⟩ = γmj (2n̄mj + 1) δ (t− t′) , (3.9)

where n̄mj = 1/ [exp (ℏωmj/kBT )− 1] is the mean phonon number of the jth mechanical

oscillator.
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3.2.1 Solution in mean-field approximation

Since it is difficult to solve equation Eq. (3.6) analytically, we use the mean-field approx-

imation to simplify the calculation by rewriting the operators as the sum of their mean

values and quantum fluctuation near mean value, i.e., a → A + δa, qj → Qj + δqj, and

pj → Pj + δpj, where A = ⟨a⟩, Qj = ⟨qj⟩. and Pj = ⟨pj⟩. Thus, the quantum Langevin

equations can be split into two sets of equations, namely, (i) the nonlinear equations for

the mean values:

dQj

dt
= ωmjPj ,

dPj
dt

= −ωmjQj +
(
g
(j)
1 + g3Q3−j

)
|α|2 − 2g

(j)
2 Qj|α|2 − γmjPj ,

dA

dt
= −(κ+ ι∆)A+ ι

∑
j=1,2

(
g
(j)
1 Qj − g

(j)
2 Q2

j

)
A+ ιg3Q1Q2A+ ϵ(t) , (3.10)

and (ii) the linearized equations for the quantum fluctuations:

d

dt
δqj = ωjδpj ,

d

dt
δpj = −

(
ωmj + 2g

(j)
2 |A|2

)
δqj + g3|A|2δq3−j +Gj

(
Aδa† + A∗δa

)
− γmjδpj + ξj(t) ,

d

dt
δa = −ιFδa+ ιG1Aδq1 + ιG2Aδq2 − κδa+

√
2κain , (3.11)

where

Gj = g
(j)
1 − 2g

(j)
2 Qj + g3Q3−j ,

F = ∆− g
(1)
1 Q1 − g

(2)
1 Q2 + g

(1)
2 Q2

1 + g
(2)
2 Q2

2 − g3Q1Q2 . (3.12)

Here, we have ignored the second and higher-order terms in fluctuations.

In order to calculate the desired markers, Sq and ED, respectively for quantum synchro-

nization and entanglement, we need to obtain the solutions for the quadrature fluctuations

3 Entanglement boosts quantum synchronization between two oscillators
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of the oscillators. Solving the Eq. (3.11) will be convenient if we replace the intra-cavity

field and the input noise operators by their quadratures, as well: δx = 1√
2

(
δa† + δa

)
,

δy = ι√
2

(
δa† − δa

)
, δxin = 1√

2

(
δa†in + δain

)
, and δyin = ι√

2

(
δa†in − δain

)
. Therefore,

the Eq. (3.11) takes a simpler form, as given by

ṙ(t) = Sr(t) + n(t) , (3.13)

where r(t)T = (δq1, δp1, δq2, δp2, δx, δy), the vector n(t) as given below contains the noise

terms:

n(t)T =

(
0, ξ1, 0, ξ2,

√
2κδxin,

√
2κδyin

)
, (3.14)

and

S =



0 ωm1 0 0 0 0

−ωm1 − 2g
(1)
2 |A|2 −γm1 g3|A|2 0

√
2G1Re (A)

√
2G1 Im (A)

0 0 0 ωm2 0 0

g3|A|2 0 −ωm2 − 2g
(2)
2 |A|2 −γm2

√
2G2Re (A)

√
2G2 Im (A)

−
√
2G1 Im (A) 0 −

√
2G2 Im (A) 0 −κ F

√
2G1Re (A) 0

√
2G2Re (A) 0 −F −κ


(3.15)

is a 6× 6 time-dependent coefficient matrix.

The initial states of the oscillators can be best approximated as Gaussian states with

the peak at the mean position of the respective oscillators, along with minimum uncer-

tainties in position quadratures. The fluctuation dynamics of the system is governed by a

set of linearized equations, and this ensures that the evolved states also remain Gaussian.

Since the Gaussian state can be fully characterized by its covariance matrix C(t), we use

it to calculate the correlation between the quantum fluctuations of the system variables

and to compute all the relevant measures, namely, Sq and ED. The temporal dynamics
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(a) (b)

(c) (d)

(e) (f)

Figure 3.2: (a) Limit-cycle trajectories in the Q1 ⇋ P1 (red) and Q2 ⇋ P2 (blue) spaces,
Variation of (b) the mean values Q1 (red) and Q2 (blue), (c) the mean values P1 (red)
and P2 (blue), (d) synchronization Sq, (e) entanglement ED, with respect to time (in the
units of τ = 1/ωm1). The parameters chosen are ωm1 = −∆ = 1, ωm2 = 1.005, n̄mj = 0.5
, g1 = 5 × 10−5, g2 = g1 × 10−2, g3 = 10−6, γmj = 0.009, κ = 0.1, E = 250, ηD = 4
and ΩD = 1. All frequencies are normalized with respect to ωm1. (f) Evolution of time-
averaged values of synchronization S̄q (blue) and entanglement ĒD (red) with respect to
the frequency difference δm = ωm2 − ωm1 of the mechanical oscillators. [all the other
parameters are the same as in (a)-(e) above].
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of C(t) is governed by the following linear differential equation:

Ċ(t) = S(t)C(t) + C(t)S(t)T +D , (3.16)

where the elements of C are given by Cij = [⟨ri(∞)rj(∞) + rj(∞)ri(∞)⟩] /2 The matrix

D, as below, describes the diffusion of the system:

D = diag
[
0, (2n̄m1 + 1)γm1, 0, (2n̄m2 + 1)γm2, κ, κ

]
. (3.17)

In the matrix C, the diagonal (off-diagonal) element represents the variance of the respec-

tive mode (covariance of two modes). The quantum synchronization quantifier Sq(t) can

then be expressed as

Sq(t) =

{
1

2
[C11(t) + C33(t)− C13(t)− C31(t) + C22(t) + C44(t)− C24(t)− C42(t)]

}−1

.(3.18)

and entanglement marker ED(t) as

ED(t) =
1

4
[C11(t) + C33(t)− C13(t)− C31(t)]× [C22(t) + C44(t) + C24(t) + C42(t)] .(3.19)

3.2.2 Numerical results

We show in Fig. 3.2, the time-evolution of the quadratures of the oscillators, as obtained

by simultaneously solving Eq. (3.10). In Fig. 3.2a, we show how the evolution of Q1 ⇌ P1

and Q2 ⇌ P2 of the two oscillators tend to an asymptotic periodic orbit and the two limit

cycles tend to be consistent with each other. This becomes apparent from the Fig. 3.2b

and Fig. 3.2c, as the mean positions Q1 and Q2 and also the mean linear momenta P1 and

P2 are found to oscillate exactly in phase at the long times. This refers to the complete

classical synchronization between mechanical oscillators.

With the classical limit cycle as a pre-condition, we next analyze how the Sq and ED
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vary with time. From the Fig. 3.2d, we can see that Sq reaches a stable value close to

unity that refers to complete quantum synchronization. More importantly, we find that

this is associated with entanglement. From the Fig. 3.2e, we can see that ED becomes

less than 0.25. This shows that entanglement criterion Eq. (2.13) is violated by the state

of the two oscillators. By comparing Fig. 3.2e and Fig. 3.2d, it can be observed that the

generation of entanglement and synchronization between the oscillators occur at a similar

time scale. This indicates a possible relation between the onset of quantum synchroniza-

tion and the generation of entanglement between the oscillators. In fact, the long-time

behavior, as displayed in the insets of Fig. 3.2d and Fig. 3.2e, clearly reveals that when

ED becomes minimum, the Sq also becomes less than unity and minimum. While the Sq

oscillates sinusoidally with an amplitude less than 1, the ED has two different sinusoidal

components, which have the same frequency as Sq, but with a relative phase and differ-

ent amplitudes. Therefore, ED exhibits two minima, one of which (the global minimum)

appears at the same instances as that of Sq.

We further show in Fig. 3.2f, how the quantum synchronization and entanglement behave

with the increase in frequency difference δm = ωm2 − ωm1. The time-averaged values of

the respective markers Sq and ED for quantum synchronization and the entanglement

deteriorates with the rise in frequency difference δm. One can observe that the quantum

complete synchronization (i.e., S̄q = 1) and the maximal violation of entanglement insep-

arability (i.e., ĒD − 1/4 is minimum) occur around the resonance condition δm = 0, i.e.,

for a pair of identical mechanical oscillators (i.e., ωm1 = ωm2). Interestingly, they stay

robust (i.e., Sq remains less than 1 and ED less than 0.25) and therefore maintain both

quantum synchronization and entanglement, against the asymmetry in the oscillator fre-

quencies, as large as δm ∼ 3.2. As δm ≳ 3.2, the oscillators no longer remain entangled (as

ED exceeds 0.25) and quantum-synchronized (as Sq becomes 0) and both these features

vanish together. This further strengthens our conjecture that quantum synchronization

and entanglement must originate from the same type of quantum correlation.

3 Entanglement boosts quantum synchronization between two oscillators
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3.3 Analytic solution of fluctuations

In order to have a deeper insight into entanglement and synchronization behavior, we next

obtain an analytical solution of the mean square fluctuations in the relative displacement

q−, the total momentum p+, and relative momentum p−. We start with the Eq. (3.6),

which can be rewritten for these variables as

dq−
dt

= ωmp− ,

dq+
dt

= ωmp+ ,

dp−
dt

= −ωmq− − 2g2a
†aq− − g3a

†aq− − γmp− +
1√
2
(ξ1 − ξ2) ,

dp+
dt

= −ωmq+ +
√
2g1a

†a− 2g2a
†aq+ + g3a

†aq+ − γmp+ +
1√
2
(ξ1 + ξ2) ,

da

dt
= −(κ+ ι∆)a+ ι

[√
2g1q+ − g2(q

2
1 + q22) + g3q1q2

]
a+ ϵ(t) +

√
2κain ,(3.20)

where we have assumed ωm1 = ωm2 = ωm, g
(j)
1 = g1 and g

(j)
2 = g2 for all j, for simplicity.

3.3.1 Asymptotic solutions of first moments

We next expand the operators q± and p± as a sum of their mean values and fluctuations

as follows: q± = Q± + δq±, p± = P± + δp±. The Langevin equations Eq. (3.20) can then

be split into two sets: one for the mean values, as listed below, and the other one for the
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fluctuation operators, to be discussed later.

dQ−

dt
= ωmP− ,

dQ+

dt
= ωmP+ ,

dP−

dt
= −ωmQ− − 2g2|A|2Q− − g3|A|2Q− − γmP− ,

dP+

dt
= −ωmQ+ +

√
2g1|A|2 − 2g2|A|2Q+ + g3|A|2Q+ − γmP+ ,

dA

dt
= −(κ+ ι∆)A+ ι

[√
2g1Q+ − g2(Q

2
1 +Q2

2) + g3Q1Q2

]
A+ ϵ(t) . (3.21)

Since the cavity is driven by a modulating field ϵ(t), which can be rewritten as E0 +

E1e
iΩDt + E−1e

iΩDt. Therefore, the amplitudes of the cavity mode and the mechanical

modes would also follow the dynamics of this field at a long-time limit, according to

the Floquet theorem, i.e., limt→∞A(t) = A(t + τ), limt→∞Q1,2(t) = Q1,2(t + τ) and

limt→∞ P1,2(t) = P1,2(t + τ) [127]. We therefore redefine these classical amplitudes in

terms of Fourier components to the first harmonic of the modulating frequency ΩD, as

follows.

A = A−1e
iΩDt + A0 + A1e

−iΩDt ,

Q− = Q−
−1e

iΩDt +Q−
0 +Q−

1 e
−iΩDt ,

P− = P−
−1e

iΩDt + P−
0 + P−

1 e
−iΩDt ,

Q+ = Q+
−1e

iΩDt +Q+
0 +Q+

1 e
−iΩDt ,

P+ = P+
−1e

iΩDt + P+
0 + P+

1 e
−iΩDt . (3.22)

3.3.1.1 Obtaining the Fourier coefficients of Q− and P−

To find the time-independent coefficients Q−
−1,0,1, we first substitute A, Q−, and P− from

Eq. (3.22) into the Langevin equations Eq. (3.21) for Q− and P−. This leads us to the

3 Entanglement boosts quantum synchronization between two oscillators
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following set of three coupled nonlinear equations, when ΩD = ωm:

(ωm +W )Q−
0 +W0Q

−
1 +W ∗

0Q
−
−1 = 0 ,

W0Q
−
0 +W1Q

−
1 + (ιγm +W )Q−

−1 = 0 ,

W ∗
0Q

−
0 + (−ιγm +W )Q−

1 +W ∗
1Q

−
−1 = 0 , (3.23)

where

W0 = (2g2 + g3)(A0A
∗
1 + A∗

0A−1) ,

W1 = (2g2 + g3)(A
∗
1A−1) ,

W = (2g2 + g3)(|A0|2 + |A1|2 + |A−1|2) . (3.24)

The trivial solution of the above set of equations Eq. (3.23) is Q−
−1,0,1 = 0, so that Q−

vanishes. From the equation of P−, we also have P−(t) = exp(−γmt)P−(0), which vanishes

as t→ ∞. Both the results Q− = 0, P− = 0 are expected in a synchronized system. This

further implies that Q1 = Q2 = Q+/
√
2.

3.3.1.2 Obtaining the Fourier coefficients A−1,0,1

Putting the above results of Q1,2 in the Langevin equation of A in Eq. (3.21), we find that

this reduces to the following equation:

dA

dt
= −(κ+ ι∆)A+ ι

[√
2g1Q+ −

(
2g2 − g3

2

)
Q2

+

]
A+ ϵ(t) , (3.25)

which contains only Q+. Substituting A and Q+ from the Eq. (3.22) into Eq. (3.25) and

separating the different Fourier components, we obtain the following coupled equations of



65

the time-independent coefficients A−1,0,1:

UA0 + U−1A1 + U1A−1 = E0 ,

U1A0 + [−ιωm + U ]A1 +
[ ι
2
(2g2 − g3)(Q

+
1 )

2
]
A−1 = E1 ,

U−1A0 + [ιωm + U ]A−1 +
[ ι
2
(2g2 − g3)(Q

+
−1)

2
]
A1 = E−1 , (3.26)

where

U = (κ+ ι∆)− ι
√
2g1Q

+
0 + ι(2g2 − g3)

(
1

2
Q+2

0 +Q+
1 Q

+
−1

)
,

U1 = −ι
√
2g1Q

+
1 + ι(2g2 − g3)

(
Q+

0 Q
+
1

)
,

U−1 = −ι
√
2g1Q

+
−1 + ι(2g2 − g3)

(
Q+

0 Q
+
−1

)
. (3.27)

Here we consider the weak optomechanical coupling regime, i.e., |gi| ≪ ωm, κ (i ∈ 1, 2, 3),

such that U ≈ (κ+ ι∆) and U±1 may be neglected. Therefore, in the long-time limit, we

have

A0 =
E0

κ+ ι∆
, A1 =

E1

κ+ ι(∆− ωm)
, A−1 =

E−1

κ+ ι(∆ + ωm)
. (3.28)

3.3.1.3 Obtaining the Fourier coefficients of Q+ and P+

So far, we have obtained the expressions of the Fourier components of Q− and A. To find

out Q+, we again substitute A, Q+, and P+ from Eq. (3.22) into the Langevin equation

Eq. (3.21) for Q+ and P+, that leads us to the following set of three coupled nonlinear

equations of Q+
−1,0,1:

(ωm + V )Q+
0 + V0Q

+
1 + V ∗

0 Q
+
−1 =

√
2g1(|A0|2 + |A1|2 + |A−1|2) ,

V0Q
+
0 + V1Q

+
1 + (ιγm + V )Q+

−1 =
√
2g1(A0A

∗
1 + A∗

0A−1) ,

V ∗
0 Q

+
0 + (−ιγm + V )Q+

1 + V ∗
1 Q

+
−1 =

√
2g1(A0A

∗
−1 + A∗

0A1) , (3.29)
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where

V0 = (2g2 − g3)(A0A
∗
1 + A∗

0A−1) ,

V1 = (2g2 − g3)(A
∗
1A−1) ,

V = (2g2 − g3)(|A0|2 + |A1|2 + |A−1|2) . (3.30)

Using Eq. (3.28), we can find the time-independent coefficients Q+
−1,0,1 by algebraically

solving the above equations. The expressions of P+ can then be easily obtained using the

equation for Q+ in Eq. (3.21).

3.3.2 Frequency spectrum of fluctuations

To investigate the quantum synchronization and entanglement between mechanical oscil-

lators, we need to calculate the mean square fluctuations in q− and p±. The dynamical

behavior of these fluctuations can be described by the following Langevin equations, as

obtained from Eq. (3.20) [see Section 3.3.1]:

d

dt
δq− = ωmδp− ,

d

dt
δp− = −

[
ωm + (2g2 + g3)

(
|A0|2 + |A1|2 + |A−1|2

)]
δq− − γmδp− +

ξ1 − ξ2√
2

,

d

dt
δq+ = ωmδp+ ,

d

dt
δp+ = −F0δq+ + F1δa

† + F2δa− γmδp+ +
ξ1 + ξ2√

2
,

d

dt
δa = − (κ+ ι∆′) δa+ ιF1δq+ +

√
2κδain ,

d

dt
δa† = − (κ− ι∆′) δa† − ιF2δq+ +

√
2κδa†in , (3.31)
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where

F0 = ωm + (2g2 − g3)
(
|A0|2 + |A1|2 + |A−1|2

)
,

F1 =
√
2g1A0 − (2g2 − g3)

(
Q+

0 A0 +Q+
1 A−1 +Q+

−1A1

)
,

F2 =
√
2g1A

∗
0 − (2g2 − g3)

(
Q+

0 A
∗
0 +Q+

1 A
∗
1 +Q+

−1A
∗
−1

)
,

∆′ = ∆−
√
2g1Q

+
0 +

(
2g2 − g3

2

)(
Q+2

0 + 2Q+
1 Q

+
−1

)
. (3.32)

These equations explicitly depend upon the Fourier components of A and Q+. Intro-

ducing the cavity field quadratures δx = δa+δa†√
2

and δy = i(δa†−δa)√
2

, and the input noise

quadratures δxin =
δain+δa

†
in√

2
and δyin =

i(δa†in−δain)√
2

, the Eq. (3.31) can be reduced to the

following matrix form:

ḟ(t) = Hf(t) +G(t) , (3.33)

where f(t) is the fluctuation vector and G(t) is the noise vector, with the respective

transposes given by,

f(t)T = (δq+, δp+, δx, δy) , G(t)
T =

(
0,
ξ1 + ξ2√

2
,
√
2κδxin,

√
2κδyin

)
, (3.34)

and the matrix H is given by

H =


0 ωm 0 0

−F0 −γm F1+F2√
2

i(F2−F1)√
2

−i(F2−F1)√
2

0 −κ ∆′

F1+F2√
2

0 −∆′ −κ

 . (3.35)

Taking the Fourier transformation of each operator in Eq. (3.31) and solving them in
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the frequency domain, the fluctuations spectrum of the q− and p− can be obtained as

δq−(ω) =
−ωm
d(ω)

(
ξ1(ω)− ξ2(ω)√

2

)
,

δp−(ω) =
ιω

d(ω)

(
ξ1(ω)− ξ2(ω)√

2

)
, (3.36)

where d(ω) = ω2 + ιωγm − ω2
m − ωm(2g2 + g3) (|A0|2 + |A1|2 + |A−1|2). Similarly, the

fluctuation in the total momentum has the following spectrum:

δp+(ω) =
ιω

D(ω)

[√
2κ
{
F1[κ+ ι(∆′ − ω)]δa†in(−ω) + F2[κ− ι(∆′ + ω)]δain(ω)

}]
+

ιω

D(ω)

[{
(κ− ιω)2 +∆′2} ξ1(ω) + ξ2(ω)√

2

]
, (3.37)

where D(ω) = 2∆′ωmF1F2+[ω2+ ιωγm−ω2
m−ωm(2g2−g3) (|A0|2 + |A1|2 + |A−1|2)][(κ−

ιω)2 + ∆′2] . We must emphasize here that the stability of such a system is essential to

achieve any synchronization. If all the eigenvalues of the matrix H have negative real

parts, the stability can be ensured at long times. Using the Routh-Hurwitz criterion [39],

the corresponding conditions can be derived as follows:

κγm

[(
∆′2 + κ2

)2
+ (F0ωm + γmκ)

2 + 2γmκ
(
κ2 +∆′2)

+2F0ωm
(
κ2 −∆′2)+ γ2m∆

′2]+ F1F2∆
′ωm (γm + 2κ)2 > 0 ,

F0ωm
(
κ2 +∆′2)− 2F1F2ωm∆

′ > 0 . (3.38)

We assume that the system satisfies these stability conditions.

3.3.2.1 Derivation of mean square fluctuations

The mean square fluctuation of an operator O(t) is determined by [128]

⟨δO(t)2⟩ =
1

4π2

∫∫ ∞

−∞
dωdΩe−ι(ω+Ω)t⟨δO(ω)δO(Ω)⟩ (3.39)
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where the ⟨δO(ω)δO(Ω)⟩ refers to two-frequency correlation function of the operator O.

In the present case, we use Eq. (3.36) and Eq. (3.37) into Eq. (3.39) to obtain the following

forms of mean square fluctuations:

⟨δq−(t)2⟩ =
1

2π

∫ ∞

−∞
[ω2
mµ]dω , (3.40)

⟨δp−(t)2⟩ =
1

2π

∫ ∞

−∞
[ω2µ]dω , (3.41)

⟨δp+(t)2⟩ =
1

2π

∫ ∞

−∞
[ω2ν]dω , (3.42)

where

µ =
γm(2n̄m + 1)

d(ω)d(−ω)
,

ν =
1

D(ω)D(−ω)
{
2κF1F2[κ

2 + (∆′ + ω)2] + γm(2n̄m + 1)[(∆′2 + κ2 − ω2)2 + 4κ2ω2]
}
.

(3.43)

In the above derivation of µ and ν, we have used the following non-vanishing frequency-

domain correlation functions of the input noise operators, as obtained by Fourier trans-

formation of the Eq. (3.8) and Eq. (3.9):

⟨δain(ω)δa†in(−Ω)⟩ = 2πδ(ω + Ω) ,

⟨ξj(ω)ξk (Ω))⟩ = 2πδjkγm (2n̄m + 1) δ (ω + Ω) . (3.44)

Here we have assumed n̄mj = n̄m for all j, for simplicity.

According to Wiener-Khintchine theorem [129], the functions ω2
mµ, ω

2µ and ω2ν rep-

resent the spectral density of the random fluctuation of q−, p− and p+, respectively. We

find that they are even and converging functions of ω, and therefore lead to finite values

when integrated over frequencies.
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(a) (b)

(c)

Figure 3.3: Variation of (a) K from Eq. (3.48), (b) quantum synchronization Sq, (c) en-
tanglement ED between the mechanical oscillators as a function of modulation amplitude
ηD and modulation frequency ΩD with E = 250 and n̄m = 0.5. The other parameters are
the same as in Fig. 3.2.
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3.3.3 Generic relation between entanglement and quantum syn-

chronization

As seen in Eq. (1.37), Sq always remains less than unity according to the uncertainty

principle, and therefore, we find a lower limit for ⟨δq−(t)2⟩, as given by

⟨δq−(t)2⟩ ≥ 1− ⟨δp−(t)2⟩ . (3.45)

that corresponds to a state with quantum synchronization. In a similar way, we can

find out from Eq. (2.13) that there is an upper limit, as well, for ⟨δq−(t)2⟩, to achieve

entanglement. This is given by

⟨δq−(t)2⟩ <
1

4⟨δp+(t)2⟩
. (3.46)

Therefore, to make the entanglement and quantum synchronization, we must have

1

4⟨δp+(t)2⟩
> 1− ⟨δp−(t)2⟩ , (3.47)

which can be simplified to the following analytical condition:

K =
1

4⟨δp+(t)2⟩
+ ⟨δp−(t)2⟩ − 1 > 0 . (3.48)

When K = 0, the two limits of ⟨δq−(t)2⟩ become equal, and it suggests a critical set of

parameters, that are required for simultaneous occurrence of entanglement and quantum

synchronization.

Further, using Eq. (3.46) in Eq. (1.37), we can introduce an upper limit of Sq as

Sq =
1

⟨(δq−)2 + (δp−)2⟩
<

4⟨(δp+)2⟩
4ED − 1 + 4⟨(δp+)2⟩

. (3.49)

This upper bound becomes less than unity when ED > 1/4. This means that the oscil-
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(a) (b)

Figure 3.4: Variation of (a) quantum synchronization Sq and (b) entanglement ED
between the mechanical oscillators as a function of the driving field intensity E and the
average number of thermal phonons n̄m with ηD = 4 and ΩD = 1. The other parameters
are the same as in Fig. 3.2.

lators can never have complete quantum synchronization if they are not entangled. As

ED becomes less than 1/4, this bound becomes more than unity, referring to the fact

that Sq can reach its maximum value of 1, which is otherwise defined by the uncertainty

principle. In the present context, this refers to the complete quantum synchronization in

the presence of entanglement. Therefore, the entanglement acts as a booster of quantum

synchronization. The expression Eq. (3.49) is valid irrespective of any specific details of

the systems of interest and therefore poses as a generalized characterization of quantum

synchronization in terms of entanglement in coupled bosonic systems.

3.3.4 Numerical results

As noted in Section 3.2.2 and Section 3.3.3, there exists a correlation between quantum

synchronization and entanglement. To test this conjecture, we present further numerical

results based on the analytical results in Sec. Section 3.3. We choose all the parameters

such that they maintain stability in the system, following Eq. (3.38). We first show in

Fig. 3.3b and Fig. 3.3c, the variation of the quantum synchronization Sq and entanglement

ED, respectively, as a function of modulation amplitude ηD and modulation frequency ΩD.
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It is observed that both the quantum synchronization and the entanglement trace the clas-

sic ’Arnold tongue-like structure’, yielding a range of values of ηD and the corresponding

values of ΩD for which synchronization and entanglement are simultaneously achievable.

We further find that the tongue is symmetric about ΩD = ωm = 1. The synchronization

Sq tends to one and the entanglement ED decreases further below the upper limit of

0.25, as the modulation strength ηD increases. We note that a similar tongue associated

with classical phase synchronization was reported for two dissipatively coupled Van der

Pol oscillators [130]. In the quantum regime, frequency entertainment between two such

oscillators is however prevented due to quantum noise [49].

We show in Fig. 3.3a the variation of K [Eq. (3.48)] as a function of ηD and ΩD. This

plot also exhibits the classic ’Arnold tongue-like structure’ around modulation frequency

ΩD = 1. For larger ηD at ΩD = 1, the term K increases further. By comparing with

the Fig. 3.3b and Fig. 3.3c, we can conclude that with the increase in K the system

approaches nearly complete quantum synchronization (i.e., Sq ≲ 1) and larger violation

of the inseparability inequality Eq. (2.13) (i.e., ED ≪ 0.25). It is also interesting to

see that K remains positive for a large range of ηD and ΩD. Thus, both the quantum

synchronization (albeit partial) and entanglement stay robust over a large variation of

modulation parameters.

To get further insight into the correlated behavior of synchronization and entangle-

ment, we plot them with respect to the driving field amplitude E and the average number

of phonons n̄m, respectively, in the Fig. 3.4a and Fig. 3.4b, for a fixed modulation ampli-

tude factor ηD = 4 and modulation frequency ΩD = 1. It can be seen, for higher E and at

lower temperatures of the bath (n̄m = 0.5), the oscillators are nearly complete quantum

synchronized, along with maximal violation of separability inequality Eq. (2.13). With the

increase in thermal excitation, the synchronization deteriorates and the entanglement de-

creases too. However, the synchronization stays more robust to temperature as compared

to entanglement. This indicates that though some residual synchronization may still ex-
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ist without entanglement, the entanglement is always associated with the synchronization

and therefore becomes a signature of the latter. In fact, this can also be intuitively under-

stood from the definition Eq. (1.37) of quantum synchronization, which always remains

less than unity due to the uncertainty principle, though the quantum state of the system

may not exhibit entanglement [i.e., may not violate the Eq. (2.13)]. Moreover, without

entanglement (i.e., when ED > 0.25), Sq remains much less than unity, referring to partial

synchronization. The above discussion thus suggests that entanglement plays the role of

a quantum synchronization booster, as also noted in Section 3.3.3. It must be borne in

mind that the entanglement would indicate the existence of quantum synchronization,

only in the presence of a limit cycle of mean values of the joint quadratures.

3.4 Conclusion

In conclusion, we have explored the interconnection between quantum synchronization

and entanglement between two mechanical oscillators in an optomechanical system. In

our model, both mechanical oscillators are coupled with the same cavity mode via lin-

ear and quadratic dependence on their displacement from their respective equilibrium

positions. An indirect always-on coupling, proportional to g3a
†a also arises between the

oscillators, which is the key to the generation of the synchronization between them. Since

the same uncertainty relation sets the upper limit for quantum synchronization Sq and the

lower limit for entanglement marker ED, so we expected that there could be a correlation

between the two. In this regard, we have first demonstrated the classical synchronization

via limit cycle trajectories of the mean quadratures at long times, which is a precon-

dition to achieve quantum synchronization. Our numerical results show that the two

coupled mechanical oscillators exhibit entanglement and quantum synchronization when

the cavity is strongly amplitude-modulated. A nearly complete quantum synchronization

and entanglement between the coupled oscillators can be achieved for a large range of

modulation parameters. This result leads us to a strong conjecture that they arise from
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the same EPR-type correlation. We further show that the entanglement manifests itself

as a booster to achieve near-complete quantum synchronization. One can express the

quantum synchronization as a function of entanglement when defined in terms of vari-

ances of quadratures. We have provided all the relevant analysis, supported by numerical

results in this context. Our results open up a newer perspective to interpret quantum

synchronization and entanglement on the same footing.

3 Entanglement boosts quantum synchronization between two oscillators
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Chapter 4

Strong entanglement criteria for

bipartite mixed states

In the previous chapter, we studied the relation between quantum synchronization and

entanglement. In this chapter, we will propose another aspect of quantum correlation

in mixed states. Precisely speaking, we propose an entanglement criterion for bipartite

mixed states by using the Peres-Horodecki partial transposition on a suitable uncertainty

relation. This criterion is stronger than any known criteria in this regard, as it correctly

detects the entanglement because it can predict the same parameter range for entangle-

ment, as identified by the partial transpose criterion.

4.1 Motivation

Entanglement [18] between two or more subsystems is considered as a resource to deal

with quantum information. Several applications like quantum teleportation, quantum

metrology, quantum cryptography, and super-dense coding require that the participating

subsystems be entangled. Identifying whether these subsystems are entangled or not is

therefore an essential step toward quantum information processing.

77
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In the past two decades, several criteria for the detection of entanglement [67] have

been developed. The positive partial transpose (PPT) criterion by Peres and Horodecki

[59] has been one of the most important ones, which poses a necessary and sufficient

condition in certain cases. Peres had proposed that the density matrix of a bipartite

entangled state when partially transposed in the basis of one of the parties, exhibits neg-

ative eigenvalues. The other criteria include those based on reduction [62], entanglement

witness [60, 63] and the computable cross norm [61]. However, to test these criteria in

experiments, one would ideally need to reproduce the density matrix using quantum state

tomography.

As an alternative approach more suitable for experimental detection of entanglement,

criteria based on measurement outcomes of the relevant observables have been derived.

For example, the PT criterion has been mapped into uncertainty relations of the relevant

quadratures, violation of which would indicate the existence of entangled states [69, 131].

There exist methods based on Bell-type inequalities [132], local uncertainty relations [66],

the Schrondinger-Robertson partial transpose (SRPT) inequality [131], as well. These

measurement-dependent criteria are often expressed in terms of inequalities, which are

satisfied by separable states, and any state violating these inequalities must be entangled.

These criteria are useful to detect entanglement in pure as well as in mixed states.

Unfortunately, they cannot reveal the correct domain of the relevant parameters, as pre-

scribed by the PPT criterion, to detect entanglement in mixed states. This can be at-

tributed to the fact that the mixed states involve both classical and quantum probability

distributions and the above criteria do not differentiate between these two for evaluation

of the expectation values. As the entanglement is a property purely of a quantum nature,

to detect this, we need a criterion that considers only the quantum uncertainties of the

relevant variables.

In addition to the criteria based on partial transposition, quantum uncertainty of

local observables has also been used to characterize non-classical correlations like quantum
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discord [133]. Quantum discord can distinguish between classical and quantum probability

distributions, inherent in the system. However, it is rather quite cumbersome to calculate

the discord, as it requires optimization over many measurements and for the systems with

more than two qubits, it becomes more intractable. In this work, we use an alternative

strategy.

In this chapter, we consider a Schrodinger-Robertson-type uncertainty relation pro-

posed by Furuichi [134], which includes the Wigner-Yanase skew information. This skew

information is known to give a measure of the quantum uncertainty of an operator X

with respect to a given state ρ. As mentioned above, for a joint state of two subsystems,

the quantum uncertainty of a local variable provides an alternative estimate of the dis-

cord. Here, we consider both local and non-local variables of the two subsystems and

apply the partial transposition (PT) criterion to the uncertainty relation to detecting

entanglement between them. When using the nonlocal variables, we essentially consider

the nonlocal correlation of the subsystems. Moreover, the uncertainty relation used for

employing the entanglement criterion involves only the terms that do not contain the clas-

sical mixing uncertainty. It implies that this criterion is particularly suitable for mixed

states. We emphasize that the skew information represents quantum (rather than total)

uncertainty which considers both incompatibility and correlation between the relevant

observables. Thus our criterion is of purely quantum nature and turns out to be stronger

for the mixed states considered in this work. Note that this uncertainty relation reduces

to the Schrodinger-Robertson inequality for the pure state. We will apply the inequality

to several generalized mixed states including the Werner states. We show that our in-

equality reveals an ideal domain of the relevant parameter for entanglement, unlike the

other criteria based on the Bell inequalities [135, 136], uncertainty relations [137], and

the Schrodinger-Robertson inequality [131]. It must be borne in mind that the proposed

inseparability inequality requires the full knowledge of the density matrix to be evaluated.

So we need quantum state tomography to reproduce the density matrix.

4 Strong entanglement criteria for bipartite mixed states
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The chapter is organized as follows. In Section 4.2, we review some basic properties of

skew information and highlight its relation with variance. In Section 4.3, we will present

the entanglement criterion in the form of the Schrodinger-Robertson type inequality in

terms of the skew information. In Section 4.4, We demonstrate how the violation of

this inequality can detect entanglement for a large class of mixed states, including the

two-qubit Werner states and two-qutrit mixed states. In Section 4.5, we conclude the

chapter.

4.2 Wigner-Yanase Skew Information

In their seminal paper on quantum measurement, Wigner and Yanase introduced the

quantity, the skew information, [138] as

I(ρ,X) = −1

2
Tr[

√
ρ,X]2 . (4.1)

This corresponds to a measure of the amount of information on the values of observable,

which is skew to the operator X. Here X is a conserved quantity like Hamiltonian,

momentum, etc. of the relevant quantum system, which is in a state described by the

density matrix ρ. Note that I(ρ,X) accounts for the non-commutativity between ρ and

X.

The skew information satisfies several criteria, suitable for a valid information-theoretic

measure, which are as follows:

1. Non-negativity: I(ρ,X) ≥ 0.

2. Convexity: It is convex with respect to ρ in the sense that

I(p1ρ1 + p2ρ2, X) ≤ p1I(ρ1, X) + p2I(ρ2, X) , (4.2)

where p1 + p2 = 1, p1, p2 ≥ 0. This suggests that the skew information decreases
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when two density matrices are mixed.

3. Additivity: This is represented by

I(ρ1 ⊗ ρ2, X1 ⊗ I2 + I1 ⊗X2) = I(ρ1, X1) + I(ρ2, X2) , (4.3)

where ρ1 and ρ2 are two density operators describing the two systems, I i are the

density matrices in their respective subspace (i ∈ 1, 2), and X1 and X2 are their

corresponding conserved quantities.

4. Let U be a unitary operator, then

I(UρU−1, X) = I(ρ,X) , (4.4)

where U = e−ιθX commutes with X.

i.e., when the state changes according to the Landau-von Neumann equation, the skew

information remains constant for isolated systems.

Wigner-Yanase skew information has been used to construct measures of quantum

correlations [139] and quantum coherence [140], to detect entanglement [141], to study

phase transitions [142] and uncertainty relations [143, 144, 145], and so on.

Skew information is related to the conventional variance, through the following rela-

tion:

I(ρ,X) = Tr(ρX2)− Tr(
√
ρX

√
ρX) . (4.5)

This is equal to the variance only if the state ρ is a pure state, i.e., if ρ = |ψ⟩⟨ψ|:

I(ρ,X) = V (ρ,X) , (4.6)

where V (ρ,X) = TrρX2 − (TrρX)2. On the other hand, for any mixed state ρ, the skew

4 Strong entanglement criteria for bipartite mixed states
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information is always dominated by the variance:

I(ρ,X) ≤ V (ρ,X) . (4.7)

A mixed state can be considered a classical mixture of quantum states. The variance

does not differentiate between the quantum uncertainty (arising out of purely quantum

probability distribution) and the classical uncertainty (associated with the classical mix-

ing) in the mixed state. On the contrary, the skew information can be interpreted as

equivalent to quantum uncertainty and does not account for the classical mixing. It van-

ishes if ρ and X commute with each other. Also, the convexity property of I, as mentioned

above, suggests that classical mixing cannot increase quantum uncertainty.

The fact that the skew information can be interpreted as a form of quantum uncer-

tainty [146, 147] and the relation Eq. (4.7) above were used to construct an uncertainty

relation, which is stronger than the usual Heisenberg uncertainty relation to detecting

entanglement in a mixed state. We will discuss this in the next Section.

4.3 Entanglement criteria based on the uncertainty

relations

In this Section, we will first discuss the modified uncertainty relations and then will

propose how this can be useful as an entanglement criterion.

4.3.1 Modified uncertainty relations

Usual uncertainty relation, due to Heisenberg, sets a fundamental limit on the simulta-

neous measure of two non-commuting observables [148]. For the measurement of any two
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observables A and B in a quantum state ρ, this is given by

V (ρ,A)V (ρ,B) ≥ 1

4
|Tr(ρ[A,B])|2 , (4.8)

where V (ρ,A) and V (ρ,B) are the variances of A and B, as defined above, and Tr(ρ[A,B])

is the average of commutator [A,B] = AB − BA in the state ρ. It is noticeable that the

commutator, which is so fundamental in quantum mechanics, makes its appearance in

Heisenberg’s relation. In addition to this commutator, one also considers the correlation

between the observables, which is usually expressed in terms of anti-commutator in quan-

tum mechanics. This was included by Schrodinger [149] into the following canonical form

of the uncertainty relation:

V (ρ,A)V (ρ,B) ≥ 1

4
|Tr(ρ[A,B])|2 + 1

4
|Tr(ρ{A0, B0})|2 . (4.9)

Here Tr[ρ{A0, B0}] denotes the average of the anti-commutator {A0, B0} = A0B0+B0A0,

where A0 = A−⟨A⟩ρI and B0 = B−⟨B⟩ρI can be interpreted as the fluctuation operators

about their respective expectation values, calculated for the state ρ.

As discussed in the Section 4.2, the skew information can be considered as quantum

uncertainty. Luo therefore proposed [143] that Heisenberg’s uncertainty relation might

be modified, as follows, in terms of the skew information, for any two observables A,B

and the quantum state ρ:

I(ρ,A)I(ρ,B) ≥ 1

4
|Tr(ρ[A,B])|2 . (4.10)

This relation is defined in the spirit of the relation 0 ≤ I(ρ,A) ≤ V (ρ,A). However,

this does not distill the right essence of the uncertainty relation, as when the quantum

uncertainties I vanish for two non-commuting operators A and B, the above inequality

Eq. (4.10) gets violated, even if the state ρ has non-classical correlations.

4 Strong entanglement criteria for bipartite mixed states
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It was later observed that the Heisenberg uncertainty relation is of purely quantum

nature for the pure state and is of ”mixed” flavor for the mixed state because V (ρ,A) is

a hybrid of classical and quantum uncertainty for these states. Motivated by this simple

observation, Luo then introduced [145] the quantity U(ρ,A), as follows, by decomposing

the variance into classical and quantum parts i.e., V (ρ,A) = C(ρ,A) + I(ρ,A):

U(ρ,A) =
√
V 2(ρ,A)− C2(ρ,A)

=
√
V 2(ρ,A)− [V (ρ,A)− I(ρ,A)]2 . (4.11)

Luo then successfully introduced a new Heisenberg-type uncertainty relation based on

U(ρ,A) (which suitably takes care of the exclusion of classical mixing, especially for

mixed state) as follows:

U(ρ,A)U(ρ,B) ≥ 1

4
|Tr(ρ[A,B])|2 . (4.12)

The three quantities V (ρ,A), I(ρ,A), and U(ρ,A) have the following ordering:

0 ≤ I(ρ,A) ≤ U(ρ,A) ≤ V (ρ,A) . (4.13)

Clearly, for pure states, we have the classical correlation C = 0 and thus, U = V and the

above relation Eq. (4.12) becomes the same as the original uncertainty relation Eq. (4.8).

The above uncertainty relation Eq. (4.12) is improved by Furuichi [134], who proposed

a stronger Schrodinger-type uncertainty relation, by improving the upper bound, for the

quantity U , as

U(ρ,A)U(ρ,B)− |Re{Cρ(A,B)}|2 ≥ 1

4
|Tr(ρ[A,B])|2 , (4.14)

where Cρ(A,B) is called the Wigner-Yanase correlation between two observables and can
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be written as

Cρ(A,B) = Tr(ρA∗B)− Tr(
√
ρA∗√ρB) , (4.15)

where A∗ is the complex conjugate of the operator A. Note that, if A = B are self-adjoint,

this simplifies to

Cρ(A,A) = Tr(ρA2)− Tr(
√
ρA

√
ρA) , (4.16)

which becomes the same as the skew information. It can be shown that

|Im{Cρ(A,B)}|2 = 1

4
|Tr(ρ[A,B])|2 . (4.17)

So the inequality Eq. (4.14) can be finally written as

U(ρ,A)U(ρ,B) ≥ |Cρ(A,B)|2 . (4.18)

4.3.2 Relation to the entanglement criteria

As mentioned in the motivation, entanglement criteria based on partial transpose in the

uncertainty relations do not differentiate between the quantum and classical probabilities

and also the correlations of the observables. Thus they fail to indicate the correct domain

of the relevant variables for the states to be entangled, as prescribed by the PPT criteria,

in the mixed states. As the uncertainty relation Eq. (4.18) includes both the quantum

uncertainty and correlations while excluding the classical uncertainty, it is expected that

the entanglement criterion based on Eq. (4.18) would prove to be much stronger compared

to the older versions of such criteria when mixed states are involved. In the following,

we therefore propose a new criterion, particularly useful for detecting entanglement in

bipartite mixed states.

U(ρPT , A)U(ρPT , B) ≥ |CρPT (A,B)|2 , (4.19)

4 Strong entanglement criteria for bipartite mixed states
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where A and B are the operators in the joint Hilbert space and ρPT represents the

partial transpose of the joint density matrix ρ in terms of one of the subsystems. Violation

of the above inequality is a sufficient condition for entanglement because Peres criterion

is sufficient to detect entanglement in a bipartite system.

4.4 Examples

4.4.1 Two qubit pure states

In this Section, we first consider a case of two-qubit non-maximally pure entangled state

|ψ⟩ of the following form:

|ψ⟩ = c0|00⟩+ c1|11⟩ , (4.20)

where c0, c1 are the complex coefficients and unequal in magnitude. Note that when

c0 = c1, the state becomes one of the Bell states, which are maximally entangled. For

A = σz ⊗ σz and B = σx ⊗ σx, the inequality Eq. (4.9) with ρPT leads to

0 ≥ |c∗0c1 + c0c
∗
1|2 , (4.21)

which is always violated for any nonzero c0 and c1. This is maximally violated when c0 =

c1. Thus, the violation of inequality Eq. (4.9) can be reliably used to detect entanglement

in this state.

But for mixed states, this is not true. For different classes of mixed states, the in-

equality Eq. (4.9) indicates separability for a large range of parameters, for which these

states are known to be entangled. We show below all these cases, where, the criterion

Eq. (4.19) turns out to be useful.
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4.4.2 Two qubit mixed states

4.4.2.1 Werner state

To illustrate the utility of the criterion Eq. (4.19), we start with a two-qubit Werner state,

which is a mixture of a maximally entangled state and a maximally mixed state. The

Werner state for a two-qubit system is given by

ρ =
1− p

4
I1 ⊗ I2 + p|ψ−⟩⟨ψ−| , (4.22)

where |ψ−⟩ = 1√
2
(|01⟩ − |10⟩) is a maximally entangled state (one of the four celebrated

Bell states) and 0 ≤ p ≤ 1. In the computational basis (|00⟩, |01⟩, |10⟩, |11⟩) of two qubits,

we can write ρ as follows:

ρ =
1

4


1− p 0 0 0

0 1 + p −2p 0

0 −2p 1 + p 0

0 0 0 1− p

 . (4.23)

With the partial transpose with respect to the second qubit, this transforms into

ρPT =
1

4


1− p 0 0 −2p

0 1 + p 0 0

0 0 1 + p 0

−2p 0 0 1− p

 , (4.24)

the eigenvalues of which are (1 + p)/4 (triply degenerate) and (1 − 3p)/4. The Werner

state is entangled (inseparable) for p > 1
3
(as one of the eigenvalues becomes negative),

according to the PT criterion and maximally entangled when p = 1. But, if we use the

uncertainty relation Eq. (4.9) with ρPT , we find the following condition for separability:

p ≤ 1, which is always satisfied. Thus, the violation of this inequality cannot be reliably

4 Strong entanglement criteria for bipartite mixed states
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used to detect entanglement in this state. If one would perform the partial transposition

on the relevant observables A and B, instead of on ρ, the relation Eq. (4.9) becomes the

SRPT inequality. However, not all observables are suitable to demonstrate the violation

of the SRPT inequality. They have to satisfy a general condition to be eligible. The SRPT

inequality detects the entanglement of Werner state for a particular choice of observables

A and B when p > 1
2
. This lower bound is however larger than p = 1

3
. We show below

that the present criterion Eq. (4.19) reveals the entanglement even in the domain (1
3
, 1
2
).

In this regard, we first obtain

√
ρPT =


P 0 0 Q

0 R 0 0

0 0 R 0

Q 0 0 P

 , (4.25)

where P =
√
1 + p/2, Q = [

√
1− 3p−

√
1 + p]/4, and R = [

√
1 + p+

√
1− 3p]/4.

It is now important to suitably choose the observables A and B, such that they do

not commute with ρPT .

Case I: Following [133], we first choose a set of local observables A = σz ⊗ I2 and

B = I1 ⊗ σz. For these operators, we found that

V (ρPT , A) = V (ρPT , B) = 1 ,

I(ρPT , A) = I(ρPT , B) =
1

2
(1− p−

√
1 + p

√
1− 3p) ,

U(ρPT , A) = U(ρPT , B) =

√
1

2

{
1 + p2 − (1 + p)3/2

√
1− 3p

}
,

CρPT (A,B) =
1

2

(
1− p−

√
1 + p

√
1− 3p

)
. (4.26)

For 0 ≤ p ≤ 1
3
, the state ρPT is positive, which implies that it describes some physical

state and therefore satisfies the inequality Eq. (4.19). For p > 1
3
, however, the term
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√
1− 3p is complex. Therefore, we can rewrite U(ρPT , A) and U(ρPT , B) as

√
1

2

{
1 + p2 − ι(1 + p)3/2

√
3p− 1

}
. (4.27)

There are several forms of the square root Eq. (4.27). By choosing U(ρPT , A) =

ι
√
b− a +

√
a+ b, and U(ρPT , B) = ι

√
b− a −

√
a+ b (where a = (1 + p2)/4 and

b = p
√
p2 + 2p+ 2/2), and by using Eq. (4.26), we have the following condition from

Eq. (4.19):

p[
√
p2 + 2p+ 2 + p] ≤ 0 . (4.28)

It should be remembered that the above condition is obtained in the domain p > 1/3

and is obviously violated for all p ∈ (1/3, 1].

Case II: Usually, measurement of local observables bypasses the issue of nonlocal

correlations that exist between two subsystems when they are entangled. Accordingly, if

we choose a set of global observables A = σz ⊗ σz and B = σx ⊗ σx, we find that they

commute with ρPT , and thus the skew information vanishes, i.e., I(ρPT , A) = I(ρPT , B) =

0. The correlation between these operators also vanishes CρPT (A,B) = 0. Clearly, for

such choices of global observables, we cannot clearly say anything about the inseparability

of the Werner state using Eq. (4.19).

But if we choose a different set of operators, say, A = σx⊗σy and B = σy⊗σx, which

do not commute with ρPT , we have the same expressions of V , I, and U as in Eq. (4.26),

and the correlation term becomes

CρPT (A,B) =
1

2
(−1 + p+

√
1 + p

√
1− 3p) . (4.29)

Using these expressions, we find that, for p > 1
3
, the condition Eq. (4.19) for separabil-

ity is violated, i.e., the Werner state is entangled for p > 1
3
. This result indicates that the

criterion Eq. (4.19) identifies the same lower bound as obtained from the PPT criteria,

unlike all the other known criteria for entanglement. For example, the Bell’s inequalities

4 Strong entanglement criteria for bipartite mixed states



90 4.4. Examples

[135, 136] lead to p > 1√
2
for entanglement, while the uncertainty relation in [137] sets the

lower limit as p > 1√
3
and the Schrodinger-Robertson inequality based on local variables

[131] suggests p > 1
2
. Thus, the criterion Eq. (4.19) turns out to be stronger than all

other known criteria based on uncertainties and Bell’s inequalities for the Werner state

and gives the same lower bound as obtained using the PPT criterion.

As clear from the two cases discussed above, the separability criterion Eq. (4.19)

affirms the correct limit for entanglement, which is the same as that obtained from the

Peres criteria. Interestingly, both local and global sets of operators can reveal this limit.

One only needs to choose the set of operators that do not commute with the ρPT .

4.4.2.2 Werner derivative

An important generalized class of Werner states is Werner derivative [150], which is a

mixture of non-maximally pure entangled states and the maximally mixed state. This

can be written in the form

ρWD =
1− p

4
I1 ⊗ I2 + p|ψ⟩⟨ψ| , (4.30)

where |ψ⟩ =
√
a|00⟩+

√
1− a|11⟩ is the Schmidt decomposition of the state obtained by

a nonlocal unitary rotation of the Bell state |ψ−⟩, and 1
2
≤ a ≤ 1. It is worth noting the

difference between the states Eq. (4.30) and Eq. (4.22). In the computational basis of two

qubits, ρWD takes the following form:

ρWD =
1

4


1− p+ 4ap 0 0 4p

√
a(1− a)

0 1− p 0 0

0 0 1− p 0

4p
√
a(1− a) 0 0 1 + 3p− 4ap

 , (4.31)
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According to the PT criterion, the state described by Eq. (4.30) is entangled if

1

2
≤ a <

1

2

(
1 +

1

2p

√
(3p− 1)(p+ 1)

)
, (4.32)

which further restricts p as 1
3
≤ p ≤ 1. Clearly, for different values of p, the parameter a

has an upper and a lower bound, such that the state ρWD parameterized by a becomes

entangled. But when using the standard uncertainty relation Eq. (4.9), one finds that

the state is separable for all p ∈ [0, 1]. This can be seen by using ρPTWD along with the

observables, A = σz ⊗ I2 and B = I1 ⊗ σz in the inequality Eq. (4.9), which leads to

p ≤ 1. This means, according to Eq. (4.9), the state ρWD should be always separable,

which is not the case. We show below, how the inequality Eq. (4.19) can successfully

detect entanglement in this state.

To employ the criterion Eq. (4.19), we choose the same set of local operators, as above

and we obtain the following inequality:

[
3 + p− 4(2a− 1)2p2 +D

2

]
×
(
1− p−D

2

)
≥
∣∣∣∣(1− p−D

2

)∣∣∣∣2 ,
where

D =
√

16p2a2 − 16p2a+ (1− p)2 . (4.33)

We find that the above inequality is violated in the domain when D is imaginary. This

happens in the following range of a:

1

2
− 1

4p

√
(3p− 1)(p+ 1) ≤ a ≤ 1

2
+

1

4p

√
(3p− 1)(p+ 1) . (4.34)

The upper limit of a thus matches with the one obtained by directly applying the PT

criterion [see Eq. Eq. (4.32)]. By definition of the Schmidt decomposition, one further

requires a to be real positive, and therefore p ≥ 1/3 [else, a would be complex; see

Eq. (4.34)]. Note that p cannot be greater than unity, as it defines the probability of the

4 Strong entanglement criteria for bipartite mixed states
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state |ψ⟩ in the mixture ρWD. Interestingly, for p = 1/3, the state ρWD is entangled only

for a = 1/2. For higher values of p, the Werner derivative is entangled for a range of

values a, including a = 1/2 (corresponding to the maximally entangled Bell state) and

a ̸= 1/2 (corresponding to a non-maximally entangled state |ψ⟩).

4.4.2.3 An example of mixed non-maximally entangled state

Finally, we consider a non-maximally entangled mixed state ρnew [151], which is a con-

vex combination of a separable density matrix ρG12 = Tr3(|GHZ⟩123) and an inseparable

density matrix ρW12 = Tr3(|W ⟩123). Here |GHZ⟩123 and |W ⟩123 are the GHZ state and

W-state, respectively, of three qubits 1, 2, and 3. The state ρnew can be explicitly written

as

ρnew = (1− p)ρG12 + pρW12 , (4.35)

where 0 ≤ p ≤ 1. Note that the Werner state is also a convex sum of a maximally

entangled pure state and a maximally mixed state. On the contrary, the state ρW12 is

not a pure state (though entangled) and the ρG12 is also not maximally mixed (though

separable).

In the computational basis of two qubits, ρnew and ρPTnew take the following forms:

ρnew =


3−p
6

0 0 0

0 p
3

p
3

0

0 p
3

p
3

0

0 0 0 1−p
2

 (4.36)

and

ρPTnew =


3−p
6

0 0 p
3

0 p
3

0 0

0 0 p
3

0

p
3

0 0 1−p
2

 . (4.37)
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According to the PT criterion, that ρnew is entangled for p > 0.708 can be easily

verified by finding the eigenvalues of the ρPTnew. But this cannot be revealed by using the

Eq. (4.9) with ρPTnew and the following set of local operators: A = σz⊗ I2 and B = I1⊗σz.

This leads to the following inequality: p ≥ 0, which means that, according to Eq. (4.9),

the state ρnew is separable for all p. On the contrary, as we show below, the inequality

Eq. (4.19) can successfully detect the entanglement in this state, as well.

To evaluate the condition Eq. (4.19), we choose the same set of local operators, as

above and obtain the following inequality:

(
−18− 2p2 + 24p+ 12E

9

)
×
(
12− 8p− 4E

3

)
≥
∣∣∣∣12− 8p− 4E

3

∣∣∣∣2 .

E =
√

−p2 − 12p+ 9 . (4.38)

We find that this is always violated for p > 0.708, which correctly matches with the result

obtained by directly using the Peres criterion.

4.4.3 Two qutrit mixed states

While the PT criterion is a necessary and sufficient condition for the detection of entangle-

ment for two-qubit and qubit-qutrit states, for higher-dimensional systems, this criterion

is only sufficient. To illustrate the utility of the criterion Eq. (4.19), we now consider

two-qutrit Werner state [152].

4.4.3.1 Two-qutrit Werner state

This state is a mixture of a maximally entangled state and the maximally mixed state,

which can be expressed for two-qutrits as

ρ =
1− p

9
Iab + p|ψ⟩ab⟨ψ| (4.39)

4 Strong entanglement criteria for bipartite mixed states
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where Iab is 9×9 identity matrix; |ψ⟩ab = 1√
3
(|00⟩+ |11⟩+ |22⟩) is the Bell state composed

of subsystems A and B and 0 ≤ p ≤ 1. In the computational basis of two qutrit, ρ and

ρPT takes the following forms:

ρ =



1+2p
9

0 0 0 p
3

0 0 0 p
3

0 1−p
9

0 0 0 0 0 0 0

0 0 1−p
9

0 0 0 0 0 0

0 0 0 1−p
9

0 0 0 0 0

p
3

0 0 0 1+2p
9

0 0 0 p
3

0 0 0 0 0 1−p
9

0 0 0

0 0 0 0 0 0 1−p
9

0 0

0 0 0 0 0 0 0 1−p
9

0

p
3

0 0 0 p
3

0 0 0 1+2p
9



(4.40)

ρPT =



1+2p
9

0 0 0 0 0 0 0 0

0 1−p
9

0 p
3

0 0 0 0 0

0 0 1−p
9

0 0 0 p
3

0 0

0 p
3

0 1−p
9

0 0 0 0 0

0 0 0 0 1+2p
9

0 0 0 0

0 0 0 0 0 1−p
9

0 p
3

0

0 0 p
3

0 0 0 1−p
9

0 0

0 0 0 0 0 p
3

0 1−p
9

0

0 0 0 0 0 0 0 0 1+2p
9



. (4.41)

The eigenvalues of ρPT are 1+2p
9

(six times) and 1−4p
9

(three times). According to the

PT criterion, the two-qutrit Werner state is entangled for p > 1
4
and maximally entangled

when p = 1. Using Eq. (4.9) with ρPT and the following set of local operators A = I1⊗Sz
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and B = Sz ⊗ I2, where

Sz =


1 0 0

0 0 0

0 0 −1

 , (4.42)

the following inequality is obtained: p ≤ 1, which implies that, according to Eq. (4.9), the

state ρ is separable for all p. On the other hand, we show below, the inequality Eq. (4.19)

can successfully detect the entanglement in this state.

To evaluate the condition Eq. (4.19), we choose the same set of local operators as

above and obtain the following inequality in the domain p > 1
4
:

3p+
√

9p2 + 8p+ 8 ≤ 0 . (4.43)

which is violated for all p ∈ (1/4, 1]. As clear from above, the separability criterion

Eq. (4.19) detects the correct domain for entanglement, as one gets from PT criteria.

4.4.4 Discussions

It is worth noting that the usefulness of the criterion Eq. (4.19) becomes more prominent

when the state under consideration is mixed in nature. In fact, when ρ is pure, the

classical mixing is zero, and therefore I(ρ,A) = V (ρ,A) and similarly for B. So, we have

U(ρ,A) = V (ρ,A) and U(ρ,B) = V (ρ,B). The left-hand side of Eq. (4.18) becomes the

same as that in Eq. (4.9). On the right-hand side also, Cρ(A,B) becomes equal to the

covariance Covρ(A,B) for the pure state, which is defined by, for any ρ,

Covρ(A,B) = Tr(ρAB)− (TrρA)(TrρB) . (4.44)

In this way, the criterion Eq. (4.9) becomes enough to identify the entanglement in two-

qubit pure states. But it fails to identify the entanglement in the two-qubit and two-qutrit

mixed state as we have shown above that it is satisfied by all the two-qubit and two-qutrit

4 Strong entanglement criteria for bipartite mixed states



96 4.5. Conclusions

mixed states, considered in this chapter.

Note that if the partial transpose is taken on the operators A and B instead of on ρ,

the inequality Eq. (4.18) reduces to the SRPT inequality [131], as given by

(∆APT )2(∆BPT )2 ≥ 1

4
|⟨[A,B]PT ⟩|2 + 1

4
|⟨{A,B}PT ⟩ − 2⟨APT ⟩⟨BPT ⟩|2 .

This inequality can detect entanglement in any pure entangled state of bipartite and

tripartite systems, by experimentally measuring mean values and variances of different

observables [131]. For mixed states, however, the above inequality cannot detect the

entanglement of bipartite Werner states, for the entire range of the probability p, though

works better than the Bell inequalities.

Note that, the criterion Eq. (4.19) cannot be experimentally verified, as it involves

terms like Tr(
√
ρA

√
ρA), which cannot be measured by usual quantum measurements.

However, it is possible to set a nontrivial lower bound, that is experimentally measurable.

For all ρ and A, we have 1
2
Tr[ρ,A]2 ≥ Tr[

√
ρ,A]2[153]. This implies that I(ρ,A) ≥

IL(ρ,A) ≥ 0, i.e., the skew information has a non-negative lower bound. For the spectral

decomposition, ρ =
∑

i λi|ϕi⟩⟨ϕi|, putting Aij = ⟨ϕi|A|ϕj⟩, we have I(ρ,A) = 1
2

∑
ij(
√
λi−√

λj)
2|Aij|2, with the lower bound IL(ρ,A) = 1

4

∑
ij(λi − λj)

2|Aij|2.

4.5 Conclusions

In conclusion, we have formulated a strong entanglement criterion for mixed states. This

criterion uses the Peres-Horodecki partial transposition applied to a suitable uncertainty

relation. We show by explicit analysis that this criterion can be useful for not only

the pure states but also several generalized forms of mixed states. For example, it can

correctly reveal the lower bound of the mixing probability (i.e., p > 1/3) of the Bell state

in the Werner state. Thus it turns out to be stronger, for the Werner state, than any

other known criteria, based on, e.g., the Bell inequality, the uncertainty relation proposed
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in [137] or the Schrodinger-Robertson inequality. More interestingly, this has been useful

for two-qutrit mixed states as well. The strength of our criterion lies in the fact that it

suitably takes care of the quantum share of the uncertainties (the Wigner-Yanase skew

information) and correlations of the relevant observables. We further conjecture that the

results could also be valid for all the two-qubit and two-qutrit mixed states as it has

applied to certain canonical forms of these states, as shown in this chapter.

4 Strong entanglement criteria for bipartite mixed states
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Chapter 5

Summary and Outlook

This thesis primarily focuses on the study of quantum correlations. The issues raised in

this thesis are principally inspired by the conjecture that quantum synchronization and

entanglement are two independent properties that are not exhibited simultaneously by two

coupled quantum systems. The phenomenon of spontaneous synchronization is universal

and only recent advances have been made in the quantum domain. Being synchroniza-

tion a kind of temporal correlation between subsystems, it is interesting to understand

its connection with other quantum correlations, specifically entanglement. It has also

been observed that both the quantum synchronization measure and entanglement crite-

rion for continuous variables are derived from the Heisenberg uncertainty principle for

a set of EPR-like pairs of joint quadrature. So it is natural to expect that there can

be a correlation between the two. An optomechanical system is best suited to address

this issue. In this thesis, we have systematically explored the interplay between entan-

glement and quantum synchronization in optomechanical systems. The models that are

proposed in Chapters 2 and 3 provide extensive information about the interconnection

between quantum synchronization and entanglement. In Chapter 3, we have proposed a

strong entanglement criterion for bipartite mixed states. In the following, we provide a

comprehensive chapter-wise summary of our results.
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In Chapter 1, we introduced the readers to the basics of cavity optomechanics with a

brief literature survey and discussed a little bit about the various aspects of entanglement

and quantum synchronization which are relevant to our thesis work.

In Chapter 2, we proposed a double cavity optomechanical model to study the inter-

connection between quantum synchronization and entanglement between two indirectly

coupled mechanical oscillators. Each mechanical oscillator is coupled with cavity mode

via a linear and quadratic dependence of their displacement from the equilibrium posi-

tion. In this work, two sets of numerical results are discussed, one when the oscillators are

coupled only via linear coupling to the cavity mode i.e., the quadratic coupling constant

is zero, and the second when the oscillators are both linearly and quadratically coupled to

their respective cavity mode. It has been found that depending on these configurations,

both quantum synchronization and entanglement behave in a very distinctive manner.

For instance, in the linear coupling case, we found that the oscillators are quantum syn-

chronized with a poor degree of quantum synchronization but without entanglement. In

the presence of both coupling (linear as well as quadratic), we found that the oscillators

became nearly complete quantum synchronized Sq > 0.85 and more importantly, entan-

glement between the oscillators starts appearing (as ED becomes less than 0.25) even

for a very small value of quadratic coupling constant. We have also demonstrated clas-

sical synchronization, via limit cycle trajectories of the mean quadratures at long times,

between the oscillator, which is a precondition to achieve quantum synchronization. We

found that synchronization is more robust than entanglement with the increase in thermal

excitation. We further showed that both synchronization and entanglement decrease in a

similar way up to a frequency difference of 0.2 between the oscillators.

In Chapter 3, we have shown that both oscillators can be synchronized and entangled

at the same time, but this feature depends on the choice of configuration of the system.

In Chapter 3, we further investigated such a possibility in a different optomechanical sys-

tem. We presented a more generic optomechanical system in which both the mechanical
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oscillators are coupled to the same cavity mode via linear and quadratic dependence on

their displacement from their respective equilibrium positions and an indirect always-on

coupling also arises between the oscillators. With this realization, it has been found that

when the cavity is strongly amplitude modulated with the same frequency as that of the

oscillators, oscillators are nearly completely quantum synchronized and entangled at the

same time. Moreover, we found that both the synchronization and entanglement exhibit

a tongue, which is a quantum analog of classic Arnold tongue-like behavior. We fur-

ther showed that the entanglement manifests itself as a booster to achieve near-complete

quantum synchronization. We provided an analytic expression of the generalized char-

acterization of quantum synchronization in terms of entanglement in coupled bosonic

systems. This expression is valid irrespective of any specific details of the systems of

interest.

In Chapter 4, we proposed a strong entanglement criterion for bipartite mixed states.

Our criterion uses Peres-Horodecki partial transposition applied to a suitable uncertainty

relation. The variances in this uncertainty relation do not involve any classical mixing

uncertainty and are therefore purely of a quantum mechanical nature. Using the proposed

criterion, we detected entanglement in pure as well as in several generalized mixed states

and we found that the proposed criterion correctly reveals the parameter, as identified

by the PPT criterion, detecting the entanglement of considered state. Moreover, the

proposed criterion is reduced to the SRPT inequality for pure states.

Cavity optomechanics is a highly interdisciplinary field that deals with the interaction

between optical and mechanical systems. The hybrid optomechanical system is created

from an optomechanical system by coupling mechanical systems in the quantum regime to

atoms, qubits, and ions. Such hybrid systems offer new avenues for quantum control and

sensing. Probing quantum correlations in a hybrid optomechanical system is an emerging

field and constantly opens up new opportunities for applications in quantum information

processing. Further, this has implications for quantum information processing, precision

5 Summary and Outlook
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measurement, and quantum-enhanced technologies. Spin is an intrinsic property of quan-

tum particles, like electrons or nuclei, and it can be thought of as a quantum analog

of angular momentum. When multiple quantum particles with spin are coupled, their

collective behavior can exhibit unique and non-classical characteristics. This can lead

to intriguing phenomena such as entanglement and quantum correlations. So another

important aspect could be the study of synchronization in coupled spin-chain systems

which has no classical analogy. Exploring quantum synchronization in coupled spin-chain

systems provides a platform for investigating many-body quantum dynamics.
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[7] C. Huygens, Oeuvres complètes, vol. 7. M. Nijhoff, 1897.

[8] A. Pikovsky, M. Rosenblum, and J. Kurths, “Synchronization: a universal concept

in nonlinear science,” 2002.

[9] S. Strogatz, “Sync: The emerging science of spontaneous order,” 2004.

[10] S. Bregni et al., Synchronization of digital telecommunications networks. John Wiley

& Sons, 2002.

[11] T. Womelsdorf, J.-M. Schoffelen, R. Oostenveld, W. Singer, R. Desimone, A. K.

Engel, and P. Fries, “Modulation of neuronal interactions through neuronal syn-

chronization,” science, vol. 316, no. 5831, pp. 1609–1612, 2007.

[12] J. Buck and E. Buck, “Mechanism of rhythmic synchronous flashing of fireflies:

Fireflies of southeast asia may use anticipatory time-measuring in synchronizing

their flashing,” Science, vol. 159, no. 3821, pp. 1319–1327, 1968.
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A. Zeilinger, and M. Aspelmeyer, “Optomechanical entanglement between a mov-

able mirror and a cavity field,” Physical review letters, vol. 98, no. 3, p. 030405,

2007.

[39] E. X. DeJesus and C. Kaufman, “Routh-hurwitz criterion in the examination of

eigenvalues of a system of nonlinear ordinary differential equations,” Physical Review

A, vol. 35, no. 12, p. 5288, 1987.

[40] S. Strogatz, “Nonlinear dynamics and chaos: with applications to physics, biology,

chemistry, and engineering (cambridge, ma,” 1994.

[41] S. J. Aton and E. D. Herzog, “Come together, right. . . now: synchronization of

rhythms in a mammalian circadian clock,” Neuron, vol. 48, no. 4, pp. 531–534,

2005.

[42] R. Adler, “A study of locking phenomena in oscillators,” Proceedings of the IEEE,

vol. 61, no. 10, pp. 1380–1385, 1973.



[43] Y. Kuramoto, “Cooperative dynamics of oscillator communitya study based on lat-

tice of rings,” Progress of Theoretical Physics Supplement, vol. 79, pp. 223–240,

1984.

[44] J. A. Acebrón, L. L. Bonilla, C. J. P. Vicente, F. Ritort, and R. Spigler, “The

kuramoto model: A simple paradigm for synchronization phenomena,” Reviews of

modern physics, vol. 77, no. 1, p. 137, 2005.

[45] K. Wiesenfeld, P. Colet, and S. H. Strogatz, “Frequency locking in josephson arrays:

Connection with the kuramoto model,” Physical Review E, vol. 57, no. 2, p. 1563,

1998.

[46] T. E. Lee and H. Sadeghpour, “Quantum synchronization of quantum van der pol

oscillators with trapped ions,” Physical review letters, vol. 111, no. 23, p. 234101,

2013.

[47] S. Walter, A. Nunnenkamp, and C. Bruder, “Quantum synchronization of a driven

self-sustained oscillator,” Physical review letters, vol. 112, no. 9, p. 094102, 2014.

[48] T. E. Lee, C.-K. Chan, and S. Wang, “Entanglement tongue and quantum syn-

chronization of disordered oscillators,” Physical Review E, vol. 89, no. 2, p. 022913,

2014.

[49] S. Walter, A. Nunnenkamp, and C. Bruder, “Quantum synchronization of two van

der pol oscillators,” Annalen der Physik, vol. 527, no. 1-2, pp. 131–138, 2015.

[50] G. L. Giorgi, F. Galve, G. Manzano, P. Colet, and R. Zambrini, “Quantum corre-

lations and mutual synchronization,” Physical Review A, vol. 85, no. 5, p. 052101,

2012.

[51] G. Manzano, F. Galve, and R. Zambrini, “Avoiding dissipation in a system of three

quantum harmonic oscillators,” Physical Review A, vol. 87, no. 3, p. 032114, 2013.



[52] S. Boccaletti, J. Kurths, G. Osipov, D. Valladares, and C. Zhou, “The synchroniza-

tion of chaotic systems,” Physics reports, vol. 366, no. 1-2, pp. 1–101, 2002.

[53] S. Lorenzo, B. Militello, A. Napoli, R. Zambrini, and G. M. Palma, “Quantum

synchronisation and clustering in chiral networks,” New Journal of Physics, vol. 24,

no. 2, p. 023030, 2022.

[54] G. L. Giorgi, F. Plastina, G. Francica, and R. Zambrini, “Spontaneous synchroniza-

tion and quantum correlation dynamics of open spin systems,” Physical Review A,

vol. 88, no. 4, p. 042115, 2013.

[55] G. L. Giorgi, F. Galve, and R. Zambrini, “Probing the spectral density of a dis-

sipative qubit via quantum synchronization,” Physical Review A, vol. 94, no. 5,

p. 052121, 2016.

[56] C. Benedetti, F. Galve, A. Mandarino, M. G. Paris, and R. Zambrini, “Minimal

model for spontaneous quantum synchronization,” Physical Review A, vol. 94, no. 5,

p. 052118, 2016.

[57] A. K. Ekert, “Quantum cryptography based on bell’s theorem,” Physical review

letters, vol. 67, no. 6, p. 661, 1991.
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