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Abstract

Classical thermodynamics deals with systems that contain many particles as

long as they remain in equilibrium. Because of the existence of many particles,

heat and work fluctuations are negligible with respect to their mean values. On

the other hand, in the recent few years, people have been interested in studying

the thermodynamics of quantum systems, even at the level of a single spin or an

atom, with technological advances in the control and measurement of quantum

systems and recent research interest in quantum devices. Also, apart from the

academic need, novel quantum technologies can be created by harnessing quantum

thermodynamic features. The study in quantum thermodynamics aims to develop a

novel thermodynamic framework, that goes beyond conventional thermodynamics,

the inclusion of non-equilibrium dynamics, and accounts for finite-size effects and

explores the possible advantages of non-classical features, namely entanglement and

quantum coherence, of the system. A major study in quantum thermodynamics

involves quantum thermal machines (QTMs), primarily whether these machines can

outperform their classical counterparts by exploiting quantum properties or other

quantum mechanical behaviour in QTMs’ performance.

In a so-called reciprocating heat-work cycle of a standard QTM, the coupling

between the system and the heat baths is switched off and on, during the work

extraction stage and the heating or cooling stage, respectively. In our work, we

have focused on two different types of QTMs, namely, the Stirling engine and the

Otto engine, and studied how their various stages can be implemented using a

few-spin chain. We explore how spin-spin interaction can affect the operation and

performance of these QTMs. We investigate how the cycle behaves as different

thermal machines depending on the cycle parameters.

We study the performance of quantum Stirling machines near a quantum critical

point in a two-spin working system, in which the nearest neighbour interaction of

the Heisenberg-XX type couples the spins. We show how this system can exhibit a

QPT which is examined by the measure of entanglement and correlation.

We show that at the QCP, the engine efficiency and the coefficient of performance

of the refrigerator attain corresponding values of their Carnot counterparts, along

with maximum work output. We analyze how such enhancement can be attributed

to the non-analytic behaviour of spin-spin correlation and entanglement near the

QCP.

We study quantum Otto thermal engines with a two-spin working system coupled

by anisotropic interaction. Also, we consider two scenarios of fueling the engines, one



by a heat bath and another by non-selective quantum measurements. We investigate

how a measurement-based QOE behaves differently from a standard QOE in finite

time. We introduce the case of a QOE operating with a local spin working system.

We discuss different thermodynamic figures of merit of local QOE operation. We

aim to find the role of anisotropy in the performance of various HEs operating in

various timeframes. We discuss the effect of quantum internal friction that arises

due to finite-time unitary time evolution processes. We show that for anisotropic

interaction, the efficiency of a measurement-based and local spin engine oscillates in

finite times. Therefore, for a suitable choice of timing of the unitary processes in the

short time regime, the engine can have a higher work output and less heat absorption,

such that it works more efficiently than a quasi-static engine. We analytically show

that this oscillation comes into the picture through an interference-like effect between

two probability amplitudes. Finally, we discuss the case of an always-on heat bath.

Keywords: Quantum Thermodynamics; Quantum Thermal Machine; Quantum

Stirling heat engine and refrigerator; Quantum Otto engine; Heisenberg XY model;

Quantum phase transition; Quantum Measurement; Open quantum system.
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Chapter 1

Introduction

1.1 Classical thermodynamics

Water, wind and animals could convert one form of motion into another form. In the

18th century, with the invention of the steam engine, heat could be converted into

mechanical motion. Therefore, an exciting possibility opened up that was different

from others fundamentally. It not only led to the industrial revolution in human

civilization but also created a novel area of study in science: thermodynamics.

Newtonian mechanics developed to describe heavenly bodies’ motion. Unlike that,

thermodynamics emerged for a more practical reason, to explain motion generation

from heat. Thermodynamics began with the study of heat and motion generated

by it. Later on, this merged with the larger perspective of energy studies and

the transformation of one form into another. Thermodynamics is developed into a

theory that describes changes in matter states. The motion produced by heat is

caused by certain changes in matter states [3, 4, 5].

Thermodynamics witnessed the rise and decline of many theories. It also survived

the big physics revolutions in the 19th century. Einstein’s take on thermodynamics:

“It is the only physical theory of universal content, which I am convinced,

that within the framework of applicability of its basic concepts will never

be overthrown.”

Every theory consults thermodynamics for advice and adheres to thermodynamic

concepts, so it is consistent with thermodynamic laws. The thermodynamic laws

make no hypotheses about the microscopic or small-scale details of matter. It

is concerned only with the macroscopic or large-scale properties of matter which

makes it different from other theories. Among all the physical laws, the laws

of thermodynamics affect our everyday lives the most. It finds application in

refrigerators, power plants, boats, spacecraft, aircraft, cars, wind turbines, food

processing, and the human body. Also, thermodynamic tools have been widely used

to study the physics of massive black holes.
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1.1.1 Laws of classical thermodynamics

The thermodynamic laws provide the framework for understanding thermodynamic

processes all around us. We use a part of the universe to conduct our studies,

known as the ’system’. The rest of the part, also referred to as the universe, which

excludes the system, is called the ’environment’. In thermodynamic terminology,

this environment is also known as a reservoir or bath. This bath is assumed to be

very large with an infinite heat capacity (for a heat bath), such that its property

does not change with interaction with a system.

A system can be classified as closed, open, or isolated, based on how matter

and energy are transferred between the system and its environment. In an isolated

system, neither matter nor energy can be transferred between the system and its

environment. In a closed system, energy (in the form of heat or work) can be

transferred between the system and its environment, but matter cannot enter or

leave the system. Whereas, open systems exchange matter and energy with their

environment.

In the following, we describe the four laws of classical thermodynamics.

Depending on them, we can define various physical quantities like temperature,

energy and entropy for a thermodynamic system at thermal equilibrium.

Zeroth Law :

The exchange of energy and/or matter between two or more systems eventually

leads to a thermal equilibrium of the systems. In this case, all systems have the

same temperature, and this temperature is spatially uniform within each system.

The thermal equilibrium of system A with a second system B, and the B with a third

system C, implies that C is in thermal equilibrium with A. This is often referred to

as the Zeroth Law. Hence, the systems in equilibrium have a spatially uniform and

well-defined temperature [3, 4, 5].

First Law :

In today’s world, the quest for energy is one of the most essential endeavours.

For all thermodynamic systems of different types, energy represents an extensive

property. The energy of a system can be measured against a reference state whose

energy is assumed to be zero. If a system can lift a weight that means it has a

certain amount of energy. The more energy it has, the more weight it can lift. This

criterion applies to all types of energy.

A system can store energy in three ways. The kinetic and potential energy come

under macroscopic forms. So to change them, the system must change position or
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velocity. However, all microscopic forms of energy storage are included in internal

energy. However, internal energy comes under microscopic forms of energy storage.

The change in the internal energy of a system does not arise from displacement.

Instead, it arises from changes in its temperature, pressure, and electrical state.

Also, energy can be exchanged from a system or to a system in two ways,

in the form of heat (Q) or work (W). Heat transfer is an uncontrollable form of

energy transfer, that occurs on a microscopic level, not associated with macroscopic

displacement. Work is the form of the transfer of energy due to some external control

parameters viz., for a change in magnetization M⃗ , dU = B⃗.dM⃗ where B⃗ represents

the magnetic field, or change in volume V , it becomes for a dU = −PdV , which is a

controllable form of energy transfer, without any temperature difference across the

boundary of a closed system.

In thermodynamics, the first law represents the conservation of energy. It states

that the change in the internal energy of a closed system is given by the sum of work

done and heat transferred to it. Mathematically this can be stated as

dU = δQ+ δW, (1.1)

where δQ and δW represent the heat and work, respectively, infinitesimally.

Non-exact differentials are represented here by δ and correspond to path dependence

i.e., they are not state functions. Therefore, heat and work do not represent

observables [3, 4, 5, 6].

Entropy and Second Law of thermodynamics :

The concept of a reversible cycle and heat engine was introduced by Sadi Carnot.

This cycle is known as the Carnot cycle. After a detailed investigation of a reversible

heat engine performance, he reached a conclusion, known as Carnot’s theorem. This

states that a reversible engine delivers maximum efficiency, which is given by

η = 1 − Q2

Q1

= 1 − T2
T1
, (1.2)

where T1 and T2 represent the temperatures of the cold and hot baths, respectively,

in absolute value. If an ideal reversible heat engine absorbs Q1 amount of heat from

a hot bath at temperature T1 and releases Q2 amount of heat to a cold bath at

temperature T2, we can write, from Eq. 1.2,

Q1

T1
=
Q2

T2
. (1.3)
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Actually, all real-life heat engines need to operate in finite time cycles to produce

a finite amount of power. Because of that, they operate irreversibly due to the

existence of heat flow across a temperature gradient. This makes them less efficient.

We get lower efficiency from them than from a heat engine which functions reversibly,

i.e.

η′ = 1 − Q2

Q1

≤ 1 − T2
T1
, (1.4)

which implies in the case of irreversible processes T2/T1 ≤ Q2/Q1. Therefore, the

inequality for a cycle with irreversibility is given by

Q1

T1
<
Q2

T2
. (1.5)

The generalizations of the expressions (Eq. 1.3, 1.4, 1.5) were made by

Rudolf Clausius for an arbitrary cycle. By considering an arbitrarily closed loop

as consisting of many tiny Carnot cycles, he arrived at∮
dQ

T
= 0, (1.6)

where heat absorption by the system is given by dQ ≥ 0 and heat release by the

system is given dQ ≤ 0.

From Eq. 1.6, Clausius showed that in a reversible process, a new function S

can be defined that depends only on the initial and final states. For a system if

A and B are the states before and after a process, and if SA and SB represent the

function at those states, then we have

SB − SA =

∫ B

A

dQ

T
or dS =

dQ

T
. (1.7)

In 1865, Clausius first introduced this new quantity, which he called entropy.

For a system which follows an arbitrary cycle, and also consists of irreversible

processes, Clausius got ∮
dQ

T
≤ 0, (1.8)

where equalities hold for reversible processes and inequalities hold for irreversible

processes.

Ultimately, in a cyclic process, the changes in the entropy of a system are

summarized as follows:

Cyclic reversible process: dS = dQ
T
,
∮

dS =
∮

dQ
T

= 0

Cyclic irreversible cycle: dS > dQ
T
,
∮

dS = 0,
∮

dQ
T
< 0

(1.9)
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These mathematical relations can be understood in this way, at the end of a cyclic

process, the entropy of the system does not change irrespective of the reversible or

irreversible nature of the processes because, at the end of the cycle, it returned to

its initial state. This signifies that, in an irreversible cycle the system releases more

heat to the outside. This is because, in an irreversible process, mechanical energy

is generally transformed into heat. This increases entropy on the outside of the

system.

Combining above all relations, Clausius inequality is expressed as:

dS ≥ dQ

T
, (1.10)

This is the mathematical form of the Clausius version of the second law of

thermodynamics.

In nature, no system undergoes a cyclic process and returns to its initial state

without increasing its environment’s entropy. The future is distinguished from the

past by the irreversible nature of every natural process which increases entropy.

Therefore, the second law of thermodynamics shows an arrow of time [3, 4, 5].

Third Law :

The above mathematical formalism enables us to determine only changes in

entropy. The absolute value of entropy can’t be determined, but it can only be

calculated with an additive constant. Walther Nernst formulated a law in 1906 that

states that the entropy of all systems approaches zero as the temperature becomes

zero:

S ⇒ 0 as T ⇒ 0.

This law is called the Third Law in thermodynamics. This law allows us to determine

entropy’s absolute value. However, the physical foundation of this law is in the

behaviour of matter at low temperatures, which can only be understood through

quantum mechanics [3, 4, 5].

1.1.2 Classical Thermal Machines

Heat is a form of energy that remains distributed among all degrees of freedom. In

contrast, work is a form of energy that is not distributed among all the degrees of

freedom in the system. As a result, heat cannot be used as a form of energy. On the

other hand, work remains concentrated in a few degrees of freedom, so that energy

can be utilized. Despite the different energy sources around us, we get most of our

energy in the form of heat. So, to make it useful we need heat engines [3, 4, 5, 7].
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Figure 1.1: Schematic diagram of thermal machines

A heat engine is a system that converts heat into work, whereas a refrigerator

system converts work into heat. A heat engine is a device that does some amount of

work (Wnet) on its surroundings at the cost of heat (Qin ) absorbed by it. Normally,

thermal machines operate in thermodynamic cycles, which is essential to operate

them continuously. If we supply heat or work to these thermal machines, they will

do their jobs [6]. According to Carnot’s analysis ‘a motive force can be generated if

there exists a temperature difference’. An engine that uses heat flows between two

heat baths that have different temperatures to produce work. A portion of energy,

in the form of usable energy such as mechanical work, from the flow of heat from

a hot bath to a cold bath is attracted by heat engines [5]. Whereas, a refrigerator

cools down the temperature of a targeted body with the help of a work supply from

the outside.

A thermal machine (heat engine or refrigerator) consists of a working medium

and two heat baths, one acting as a heat source and one as a heat sink. Schematic

diagrams of thermal machines are shown in Fig. 1.1. For a heat engine operation,

QH > 0 amount of heat is absorbed from a hot bath at temperature TH by the heat

engine to perform W > 0 amount of work on its surroundings. It finally releases

QL < 0 amount of heat to a heat sink at temperature TL. In that case, heat engine

efficiency can be defined as the engine’s ability to transform heat into work. An

engine’s efficiency can be mathematically represented as follows:

η =
W

QH

=
QH − |QL|

QH

. (1.11)

For the refrigerator operation, QL > 0 amount of heat is absorbed from a cold

bath at temperature TL with the help of W > 0 amount of work from the outside.

It finally releases QH < 0 amount of heat to a hot bath at temperature TH . The
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merit of the performance of a refrigerator can be defined as the ability to extract

heat from the cold body by using external work. The coefficient of performance

(COP) of a refrigerator can be mathematically presented as follows:

η =
|QL|
W

=
|QL|

QH − |QL|
. (1.12)

The other two types of operation of a thermodynamic cycle are accelerator and

heater. The cycle acts as a thermal accelerator when heat flows in the natural

direction, i.e. QH > 0 and QH < 0, with the help of work is done (W > 0) on the

system [8, 9]. The cycle operates as a heater when the system releases heat to both

the hot and cold heat baths, i.e. QH < 0 and QL < 0, with the assistance of work

done (W > 0) on the system [8, 9].

Depending on the nature of the thermodynamic cycles the working substances

go through, there are various reciprocating thermal machines. The different types

of thermodynamic cycles are described below.

Carnot Cycle

Figure 1.2: Carnot cycle on a pressure (P) versus volume (V) plane. The strokes
1 → 2 and 3 → 4 are isothermal and the 2 → 3 and 4 → 1 are adiabatic processes.

In the Carnot cycle, there are two adiabatic and two isothermal processes. Heat is

exchanged between a working substance and a heat bath in an isothermal process.

Also, an external control parameter, mainly the volume, of the system is slowly

varied such that the system maintains thermal equilibrium with the bath. So, the
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system’s temperature remains fixed in this process. In an adiabatic process, there

is no exchange of heat between a system and a heat bath, so in this process, the

system’s entropy remains constant. So, this represents an isentropic process. A

schematic diagram of the Carnot cycle is shown in Fig. 1.2. The Carnot cycle is an

idealised reversible cycle. In reality, we can’t build a heat engine that follows the

Carnot cycle.

Otto Cycle

In an Otto cycle, there are two isochoric and two adiabatic processes. In an isochoric

process, the external control parameter, here mainly the volume, remains fixed but

heat is exchanged between the system and a heat bath. The schematic diagram of

an Otto cycle is shown in Fig. 1.3. The Otto engine is a practical version of heat

engines. This is an internal combustion engine.

Figure 1.3: Otto cycle on a pressure (P) versus volume (V) plane. The strokes
1 → 2 and 3 → 4 represent adiabatic processes, while the strokes 2 → 3 and 4 → 1
represent isochoric processes.

Stirling Cycle

In a Stirling cycle, there are two isothermal and two isochoric processes. The

schematic diagram of a Stirling cycle is shown in Fig. 1.4. Stirling heat engine

is an external combustion engine.
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Figure 1.4: Stirling cycle on a pressure (P) versus volume (V) plane. The strokes
1 → 2 and 3 → 4 are isothermal and the 2 → 3 and 4 → 1 are isochoric processes.

1.2 Stochastic Thermodynamics

In classical thermodynamics, the thermodynamic behaviour of large complex

systems, consisting of many microscopic particles, is described by a few macroscopic

quantities including heat, work and entropy. With the consideration of smaller

and smaller system sizes, fluctuations in these quantities (work, heat, and entropy

fluctuate, but energy, volume, and the number of particles do not fluctuate)

can’t be neglected and become increasingly relevant. These are tackled in

stochastic thermodynamics [10]. Also, stochastic thermodynamics describes the

non-equilibrium behaviour of systems using (non-equilibrium) statistical mechanics

[11]. The study of fluctuations in thermodynamic quantities gives us the discovery

of fluctuation theorems like universal relations [10].

1.2.1 Information and Thermodynamics

The second law of thermodynamics has fallen into existential crises several times

in the past. Most notable is when its validity was challenged by a thought

experiment proposed by Maxwell. Today, this is referred to as Maxwell’s Demon

[12, 13, 14]. This created a path for discovering the link between thermodynamics

and information.

In the thought experiment [12, 13, 14, 15], Maxwell imagined a box that

contained two compartments, which were filled with gas. Gas particles are in thermal

equilibrium and move randomly, although the gas temperature fixes their mean
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Figure 1.5: Schematic diagram of Maxwell’s demon. Source: [1]

velocity. Maxwell considered that there was a partitioned wall that connected two

compartments and a window on the wall. The window had a handle to open it.

A demon, also known as Maxwell’s demon, has the ability to monitor individual

particles and is set to operate the window. It opens the window to particles moving

fast from the right side of the box and coming slowly from the left side of the box.

Consequently, the particles in the left compartment will have a higher velocity than

the average and the particles in the right compartment will have a lower velocity.

Therefore, the left compartment will have a higher gas temperature than the right

compartment. Using the temperature difference between these two compartments

a heat flow can be generated and work can be extracted from there. Therefore,

the demon can decrease the system’s total entropy and energy can be extracted

“for free”, which violates the second law. Here, it is assumed that the handle is

frictionless so that the demon can move the handle without performing any work

himself.

After several years of this paradox proposal, a significant step towards solving

this was taken by Szilard. Based on the idea of Maxwell’s demon, he proposed a

thought experiment. Today it is known as the Szilard engine [16, 12, 13, 14], which

is a minimal version of Maxwell’s proposal.

Figure 1.6: Schematic diagram of Szilard engine. Source: [2]

He considered a cylinder containing a single-molecule gas and a heat bath
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attached to the cylinder. In the beginning, to split the cylinder volume into two

equal portions, a demon puts a piston in the middle of the cylinder. Therefore,

the probability of finding the molecule on either side of the piston is 1/2. Then a

measurement is performed by the demon to determine on which side of the piston

the molecule is located. Based on the outcome of the measurement, a string is

attached to the piston on the same side of the molecule. To the open end of the

string, a hanging weight is attached. Here, the weight is small enough, therefore

collisions of the molecule drive the piston in the opposite direction of the hanging

weight. This makes lifting the weight, which does a work W against gravity. The

piston is removed when it reaches the end of the cylinder, therefore the whole volume

of the cylinder is occupied by the single-molecule gas and the cycle can be started

again. Thus, the net result of the cycle is, in the isothermal reversible expansion

there takes place a complete conversion of the heat absorbed Q from the heat bath

into work Wext as long as there is no cost associated with insertion and removal of

the piston (because these operations can be performed reversibly). The work done

in this process

W =

∫
dW =

∫ V0

V0
2

PdV =

∫ V0

V0
2

kBT

V
dV = kBT ln 2.

As the one-molecule gas returns to the same initial state after a complete cycle

i.e., ∆Sgas = 0. But, as the gas absorbs heat from the heat bath, the bath entropy

is decreased by an amount kB ln 2, which yields ∆Stotal < 0. Therefore, the machine

appears to violate the second law: ”A heat engine operating in a cycle can completely

covert the heat absorbed from a heat bath to mechanical work”.

Szilard tried to recover the second law by arguing that for the reduction in

the bath’s entropy, the entropy in other parts of the system must increase for

compensation. Later Brillouin tried to explain that it is the act of measurements,

i.e. acquisition of information [17, 12, 13, 14], which leads to an increase in entropy.

So, to extract work of a certain amount, there must be the same amount of cost

has to be compensated by increasing the entropy. This was the first proposal on the

link between thermodynamics and information.

The paradox was finally resolved by Charles Bennett, who linked Landauer’s

bound and Maxwell’s demon [18, 19]. According to him, the demon retains a memory

about the location of the one-molecule gas (left or right of the piston) in the cylinder.

Therefore, to close the cycle successfully, the memory needs to be reset (or erased).

Further, he argued that the acquisition of information by measurements i.e., any

computation can be carried out reversibly, without costing any energy[18, 19].
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In a separate study by Landauer [20, 12, 13, 14], he formulated the minimal

energy cost for memory erasing in a computer. According to this, the minimum

energy cost (which is dissipated as heat) to erase one bit of information from a

system, maintaining contact with a heat bath at temperature T, is given by kBT ln 2,

this is referred to as Landauer’s bound. To maintain a constant amount of internal

energy in the working system, this amount of energy must be compensated by an

invested work of equal amount Weras = Qeras.

Bennett introduced Landauer’s erasure principle in his proposal. To start the

next cycle we must erase the demon’s memory, as it retains information from the

preceding cycle [18, 19]. This costs energy and implies that no network is extracted

in a complete cycle. From the perspective of entropy, the reduction in bath entropy

is exactly compensated for by an increase in entropy when the demon memory is

erased. Therefore, the total entropy change in a complete cycle is ∆Stot = 0. Thus,

the second law is recovered.

1.3 Quantum Thermodynamics

The field of quantum technologies is rapidly progressing with the creation of smaller

and smaller devices. Also, state-of-the-art technology gives us ultrafast experimental

control over quantum systems. As a result of these developments, understanding

quantum thermodynamics has become increasingly important. This demand pushes

the limits of conventional thermodynamics to construct quantum thermodynamics

[21, 22, 23, 24]. In addition to that, understanding the thermodynamics of quantum

systems may also have an impact on uncovering novel technologies harnessing

quantum thermodynamic features [21, 22, 23, 24].

Quantum thermodynamics studies how thermodynamic laws emerge from

quantum mechanics and whether the laws are valid in systems which are far

from equilibrium. The study is based on two separate but consistent physical

theories, namely, thermodynamics and quantum mechanics, and shows how quantum

phenomena affect heat engines and refrigerators. Quantum mechanics provides

the dynamical framework for thermodynamics, providing a solid foundation for

finite-time thermodynamics. This framework takes into consideration different

exotic properties of the systems such as finite-size effects, non-equilibrium scenarios,

and non-classical properties of the systems (quantum correlations, coherence) which

we don’t consider in traditional thermodynamics.
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1.3.1 Quantum Version of the Laws of Thermodynamics

Zeroth Law

In macroscopic thermodynamics, the concept of thermal equilibrium is described

as an equivalence relation between states under the Zeroth Law. The parameter

temperature characterizes different equivalence classes.

A different scenario exists for thermodynamics at the microscopic level [25], due

to quantum properties, such as quantum correlation. This gives us novel insights into

thermodynamics. In general, it is considered that there is no correlation between

the system and the bath in any thermodynamic process. However, correlations may

appear during a process. System-environment correlation can violate the Zeroth

law. In that case, we need a modification to the equilibrium concept beyond the

well-known equivalence relation.

In a recent study [26], the authors showed a way to define the zeroth law in a

generalized form in the case of system-environment correlation. As per them if work

can’t be extracted under entropy-preserving operations from any of pairs in a set of

states {ρX}X then they are in mutual equilibrium with each other. This happens

only when there is no correlation among all the parties X, and a thermal state is

maintained by each of them at the same temperature.

The first law of thermodynamics under time-dependent Hamiltonians

In quantum thermodynamics, normally an external agent drives a system by an

external control parameter λ(t) of the system to extract work. Therefore, the system

becomes time-dependent represented by a Hamiltonian of a time-dependent nature,

where the control parameter’s time dependence introduces time dependence in the

system.

Now we will introduce the definition of work and heat for a time-dependent

system. Then we will discuss the quantum version of the first law of thermodynamics

with the help of these definitions.

Definition of heat, work and the first law of the thermodynamics :

Let us consider that a system is driven by an external agent, so it is represented

by a time-dependent Hamiltonian H(λ(t)). The state of the system is represented

by the density matrix ρ(t) at time t. Also U(t) = Tr[ρ(t)H(λ(t))] represents the

system’s average internal energy at an instant. Therefore, the change in average
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internal energy is given by

∆U = Tr[ρ(τ)H(λ(τ))] − Tr[ρ(0)H(λ(0))], (1.13)

for a time interval 0 ≤ t ≤ τ . Again, from the derivative of the average internal

energy U(t) with respect to time t we can rewrite the Eq. 1.13, so we get

∆U =

∫ τ

0

dt
d

dt
Tr[ρ(t)H(λ(t))]

=

∫ τ

0

dt

(
Tr

[
dρ(t)

dt
H(λ(t))

]
+ Tr

[
ρ(t)

dH(λ(t))

dt

])
.

(1.14)

Now, we know that work is the form of energy which is transferred due to

the variation of external control parameters of a system. Whereas heat transfer

is associated with the change in system entropy, without any variation in the

Hamiltonian of the system. Therefore, we can identify the contribution of work

and heat to the total change in system energy as follows.

The average value of work and the average value of heat are given by [27, 15]

⟨Q⟩ =

∫ τ

0

dtTr

[
dρ(t)

dt
H(λ(t))

]
,

⟨W ⟩ =

∫ τ

0

dtTr

[
ρ(t)

dH(λ(t))

dt

]
.

(1.15)

Now, from Eq. 1.14 and the definition of work and heat (Eq. 1.15), we can arrive

at the first law of thermodynamics for quantum systems [27, 15]

∆U = ⟨Q⟩ + ⟨W ⟩. (1.16)

Also, we can see from the definitions (Eq. 1.15, 1.13) that the variation in

system internal energy depends on the states at the beginning and final point only. In

contrast, heat and work are process-dependent, therefore, the value of heat and work

varies depending on which path is followed by the system due to the external control

from λ(0) to λ(τ). Therefore, the exact differential dU in an infinitesimal process

divides into two parts, δQ and δW , which are not exact differentials. Therefore, in a

cyclic process, where ρ0 = ρτ , and Ĥ (λ(τ)) = Ĥ (λ(0)), the change in internal energy

∆U = 0, but heat and work, in general, are nonzero, gives rise to Wcyc = −Qcyc

[27, 15].
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Second Law

Consider a system S that interacts with a heat bath B, the inverse temperature of

the bath is β. The total Hamiltonian of the system and bath is given by [27, 28]

Htot (t) = HS(t) +HB + VSB(t), (1.17)

where HS(t) represents the driven system, HB represents the bath and VSB(t)

represent the interaction between them. Work done externally drives the system

out of equilibrium, whereas a few classical parameters represent the external drive

which introduces the time dependence in HS(t) and HB is independent of time. Here

we are assuming that there is a single heat bath and the external control is operated

from the time 0 to τ .

We assume that the initial state of the driven system and the heat bath composite

system is represented by a separable state

ρ(0) = ρS(0) ⊗ ρeqB , ρeqB :=
e−βHB

Tr [e−βHB ]
,

where the heat bath is in the thermal equilibrium Gibbs state at an inverse

temperature β. The time evolution of the composite system is governed by the

Schrodinger equation. Then the composite system has the following final state:

ρSB(τ) = USBρSB(0)U †
SB, where USB = T exp

(
− i

ℏ

∫ τ

0
dtHtot (t)

)
represents the

time-evolution operator of unitary type and T represents the time-ordering operator.

Second law and relative entropy -

We consider that the von Neumann entropy S(ρ) := −Tr[ρ ln ρ] represents the

entropy (nonequilibrium) of a system. Then, in the composite system (SB), the

total entropy production in a non-equilibrium process is given by

Σ := ∆S − β⟨Q⟩, (1.18)

where in the driven system the variation in von Neumann entropy is represented by

∆S := S (ρS(τ)) − S (ρS(0)), and the heat absorption by the system is represented

by [29, 28]

⟨Q⟩ := Tr [ρeqBHB] − Tr [ρB(τ)HB] , (1.19)

and the bath entropy change is given by −β⟨Q⟩. The quantity Σ represents an

important parameter that quantifies the irreversibility in non-equilibrium processes.

Again, we know that under a unitary transformation, the von Neumann entropy



16 Chapter 1. Introduction

remains unchanged, therefore for the composite system we can write [27]

S(ρ(τ)) = S(ρ(0)) = S (ρS(0)) + S (ρeqB )

= S (ρS(0)) − Tr [ρeqB log ρeqB ] .
(1.20)

Now, the variation in the driven system entropy using the Eq. 1.20 is given by

∆S := S (ρS(τ)) − S (ρS(0))

= S (ρS(τ)) − S(ρ(τ)) − Tr [ρeqB log ρeqB ]

= −Tr [ρS(τ) log ρS(τ)] + Tr[ρ(τ) log ρ(τ)] − Tr [ρeqB log ρeqB ]

(1.21)

Again, from the Eq. 1.20, we can get

β⟨Q⟩ = β (Tr [ρeqBHB] − Tr [ρB(τ)HB])

= Tr
[
ρB(τ) log e−βHB

]
− Tr

[
ρeqB log e−βHB

]
= Tr [ρ(τ) log ρeqB ] − Tr [ρeqB log ρeqB ] .

(1.22)

Now, if we put ∆S and β⟨Q⟩ in Eq. 1.18, the total entropy production Σ can be

connected to the quantum relative entropy S(ρ∥σ) := Tr[ρ ln ρ] − Tr[ρ lnσ] [30, 31]

which as follows:

Σ = S
(
ρSB(τ)∥ρS(τ) ⊗ ρGB

)
. (1.23)

As the quantum relative entropy is non-negative [28, 32], we get

Σ = ∆S − β⟨Q⟩ ≥ 0. (1.24)

This represents the Clausius form of the second law of thermodynamics for quantum

systems. This form is similar to the classical version of the second law of

thermodynamics as shown in Eq. 1.10.

Also, we can connect entropy production to work extraction, and it is possible to

derive a work extraction bound. In order to do that, we define nonequilibrium-free

energy [33, 34, 35, 36] as

F (ρ;H) := Tr[ρH] − β−1S(ρ), (1.25)

which is analogous to the Helmholtz free energy F = E − TS in macroscopic

thermodynamics. Therefore, we have

∆F := F (ρ(τ);H(τ)) − F (ρ(0);H(0))

= ∆U − β−1∆S,
(1.26)
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where ∆S = S(ρ(τ)) − S(ρ(0)), ∆U is given in Eq. 1.13.

Again, from Eq. 1.16 and Eq. 1.18, we have

Σ = ∆S − β∆U − β⟨W ⟩, (1.27)

using a negative sign for the work extraction. Therefore, the entropy production in

terms of work extraction can be expressed as

Σ = −β(∆F + ⟨W ⟩), (1.28)

where we have used Eq. 1.16. Now, using the property that the entropy production

can’t be negative (Eq. 1.24), we have

⟨W ⟩ ≤ −∆F, (1.29)

which gives a work extraction upper bound in a thermodynamic process known as

the principle of maximum work. This represents another form of the second law of

thermodynamics [27, 24].

Third Law

If the ground state energy level of a system is non-degenerate, the decrease in

temperature of the system to zero makes its entropy tend to zero in equilibrium.

Sth → 0 if T → 0K. (1.30)

This is referred to as the third law in thermodynamics [37, 5]. For any

thermodynamic state, the theorem defines the thermodynamic entropy on an

absolute scale. Also, sometimes it is reformulated as, which was first pointed out by

Nernst [38], for any process, in a cyclic finite number of cyclic operations and also

at a finite time we can’t achieve the absolute zero temperature.

In the quantum regime, many studies have been done on the third law of

thermodynamics. The relation between two different formulations of this law has

been studied [39, 40]. Many studies have been done on the Nernst theorem based

on Ising models and lattice systems [41, 42], as well as the role of degeneracy, has

been investigated. The dynamic form of the third law also has been studied from

the perspective of quantum thermal machines [43, 44, 45, 46, 47]. Furthermore, the

amount of energy needed to perform cooling operations and the reservoir size have

been investigated from the perspective of the third law [40, 48, 49, 50, 51, 52].
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1.3.2 Quantum Thermodynamic Processes

In Sec. 1.1.2, we have discussed how the classical thermodynamic processes

are defined. There are mainly four main classical thermodynamic processes,

isothermal, adiabatic, isochoric and isobaric processes. The classification is done

depending on the different parameters viz., volume, temperature, pressure, and

entropy that remain fixed during the execution of the processes. Now we will

see how the quantum thermodynamic processes, quantum isothermal, quantum

isochoric, quantum adiabatic, and quantum isobaric [53] are defined. The quantum

thermodynamic processes are nothing but the quantum-mechanical analogue of

the classical thermodynamic processes. Quantum thermodynamic processes are

discussed briefly as follows.

Quantum Isothermal Process

In classical thermodynamics, if the temperature of a system remains constant

throughout a process then it is called a classical isothermal process [5]. It is executed

by connecting the system to a thermal bath and simultaneously changing a system

parameter very slowly. So, this allows the system to retain the same temperature

as that of the thermal bath by exchanging heat exchange with the bath throughout

the process.

A quantum isothermal process [53] is a (quasi-static) process in which a quantum

system maintains a fixed temperature with a quantum mechanical heat bath at a

temperature T throughout the process. This process is carried out by changing

an external control parameter of the system. This control parameter is changed

very slowly such that in each instant of the process, the system maintains thermal

equilibrium with the bath by exchanging heat. With changes in the external control

parameter in this process the energy gaps in the system also change, so the system

exchanges some amount of work (work is done by the system or work is done on the

system depends on the change of sign of the system energy) with a work reservoir.

The heat transfer in this process is defined as δQ = TdS and we can calculate

the work done in this process by δW = dF , under the condition of the reversible

isothermal process. Here, F represents the Helmholtz free energy defined as F =

U−TS, and using these relationships we can calculate the work done in this process.

Quantum Isochoric Process

In a classical isochoric process [5] the volume of a system remains fixed, whereas the

system exchanges heat with a heat bath. In this process, the pressure P and the

temperature T of the system change, and the system reaches thermal equilibrium
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with the heat bath at the end. As the volume is fixed throughout the process, there

is no work exchange in this process.

Similarly, in a quantum isochoric process [53], external control parameters of a

quantum system remain fixed, in other words, the energy gaps do not change. In

this process, there is no work done as the energy gaps remain fixed. But, the system

is coupled with a heat bath so it exchanges some amount of heat with the bath.

This is manifested by the change in occupation probabilities Pn of the energy levels

of the system, although the energy level spacing En remains the same:

δW =
∑
n

PndEn = 0.

But, the heat exchange of the system with the heat bath is given by

δQ =
∑
n

Endpn ̸= 0.

The entropy S of the system changes with the change in occupation probabilities

until it reaches thermal equilibrium with the heat bath. At the end of the process,

the system state is represented by the Gibbs state.

Quantum Adiabatic Process

In classical thermodynamics, if the system entropy remains fixed in a process, it is

said to be an adiabatic process. This means the classical adiabatic process is an

isentropic process [5]. Also, from the second law (Clausius’s version), we know that

system entropy is linked with heat transfer. So, if there is no heat transfer between

the system and its environment, it represents an isentropic process. In this process,

all the changes in the system’s internal energy are due to work exchange, according

to the first law of thermodynamics.

To keep an analogy with the classical adiabatic process that the process should be

isentropic, the adiabatic process in the quantum domain is defined as a unitary time

evolution process in a system in which the external control parameter of the system

is changed from one value to another value. This change should be slow enough

to satisfy the generic quantum adiabatic condition [53]. Also, the system remains

disconnected from its environment in this process. When the time evolution process

is slow enough, there will be no transitions among the instantaneous eigenstates of

the system. Let us suppose that the system initially, at time t = 0, is in an eigenstate

|n(0)⟩ of the starting Hamiltonian of the system. Then, the Hamiltonian is slowly

changed with the aid of an external control parameter with respect to time. In this

process, the system remains in the nth eigenstate |n(t)⟩ of the instantaneous system
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Hamiltonian following the quantum adiabatic theorem. This means the occupation

probability at the instantaneous eigenstate |n(t)⟩ will be the same as initially. As

the occupation probabilities of the system energy levels do not change, which leads

to no change in the system entropy in a quantum adiabatic process, like a classical

adiabatic process.

As in this process, the system remains disconnected from the heat baths, there

is no heat transfer between the system and the heat baths. But the change in the

Hamiltonian leads to the change in energy level gaps, and the system exchanges

some amount of work

δW =
∑
n

PndEn ̸= 0,

the sign signifies the work done by the system on the system.

If we consider a situation where the process is fast, this process will not be

a quantum adiabatic process. Because generally there will be internal excitations

in the system, although there is no transfer of heat between the system and heat

baths as the system is disconnected from heat baths, the process is considered to

be a classical adiabatic process. However, there is no mandatory requirement for

a classical adiabatic process that occupation probabilities should not change. In

this sense, we can say that the classical adiabatic processes are more universal than

the quantum adiabatic processes; basically, the quantum adiabatic processes are a

subset of the classical adiabatic processes [53].

Heat and Work in quantum isochoric and adiabatic processes:

As in the quantum isochoric and adiabatic processes, either heat or work is

exchanged by the system, therefore heat and work in these processes can be

calculated just by taking the difference of internal energy of the system before and

after the process.

In a thermodynamic process A → B, if ρA and ρB represent the states of the

system, and UA = Tr(HAρA) and UB = Tr(HBρB) represent the internal energies

of the system at points A and B, respectively, then the quantity UB −UA represents

the work in an adiabatic process and heat in an isochoric process. Here HA and HB

represent the Hamiltonian of the system at A and B, also in an isochoric process

HB = HA. These formulas are more general and consider the off-diagonal terms of

the density matrix.
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1.3.3 Quantum Thermal Machines:

Learning from examples has been a major theme in thermodynamic studies since

Carnot’s pioneering work [5, 6]. This is also applicable to thermodynamics

in the quantum domain, in which heat and work acquire concrete meaning.

Quantum thermal machines (heat engines and refrigerators) provide us with a

platform to study the basic principles of thermodynamics at the quantum level.

Therefore, quantum thermal machines have been a major topic of study in quantum

thermodynamics.

In Sec. 1.1.2, we have discussed the classical thermal machines where

macroscopic working substances are used to perform thermodynamic tasks. On

the contrary, in a quantum thermal machine (QTM), a well-defined quantum

system as a working substance which is coupled to heat baths, is used to perform

these thermodynamic tasks [21, 54]. Depending on the nature of the cycle the

quantum thermal machines can be classified into two categories, the continuous

cycle and the reciprocating cycle QTMs. In the continuous cycle machines, the

system-bath interaction is always-on and there are no separate strokes/stages in the

cycle, rather there is continuous coupling among the systems, heat baths and work

reservoirs [55, 56, 57]. These models are autonomous quantum thermal machines

and QTMs with periodically modulated working systems fall under this category.

Another type of thermal machine is the reciprocating cycle where discrete strokes

are present in the cycle, where the working system alternatively goes through

heating/cooling with thermal baths and manipulation by an external control for

work extraction/insertion processes [55, 56, 57]. The QHEs under these category

are basically the quantum mechanical analogue of classical Otto, Carnot, and

Stirling engines [53]. Therefore, the reciprocating cycle QTMs consist of several

basic quantum thermodynamic processes such as the quantum isothermal, quantum

adiabatic, and quantum isochoric processes. These quantum thermodynamics are

discussed in Sec. 1.3.2. QTMs can be further classified based on whether any

external driving is needed or not. QTMs with external driving or time-dependent

fields or periodically modulated working system thermal come under this category.

Another type is autonomous QTMs that operate without the help of any external

control or time-dependent fields and can be modelled using the time-independent

Hamiltonian.

Scovil and Schultz-DuBois first introduced the idea of a quantum thermal

machine in 1959. They showed that a three-level maser (i.e., microwave amplification

by stimulated emission of radiation) functions like a heat engine [58]. In their

model, they considered a three-level system, where a hot is coupled between
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the upper and lower energy levels, whereas a cold bath is coupled between the

upper and intermediate energy levels. These heat baths are able to create a

population inversion between the intermediate and ground energy levels. The

population inversion leads to amplified light as work [56]. Also, they showed that

the Carnot efficiency bound is the upper limit of the efficiency of the action of

a maser. Quantum refrigerator for the purpose of pumping heat to a hot bath

from cold by consuming power in a three-level system first proposed by Geusic,

Schulz-DuBois, De Grasse and Scovil [59]. After a long time of these proposals,

a dynamical picture of QHEs within an open quantum system framework was

proposed by Alicki [60] and Kosloff [61]. In the last decade, tremendous experimental

advances in nanoscale devices, circuit QEDs, superconducting circuits, and quantum

many-body devices have expanded the interest of quantum thermal machines

study, both theoretically and experimentally, into many areas of the modern

study of quantum mechanics, including quantum information, quantum control,

nonequilibrium quantum dynamics, quantum fluctuations, quantum many-body

systems, thermoelectric devices, quantum transport phenomena, and more [21, 57,

62, 63].

In quantum thermodynamics, we address a few essential questions, which are

described below, by analyzing various models of quantum thermal machines. These

studies help us to understand thermodynamics in the quantum domain, particularly

thermodynamic laws.

The microscopic scale raises several open questions [21]. In the field of quantum

thermal machines some of which are given below.

• How are quantum thermal machines different from their classical counterparts

in working principles?

• What is genuinely quantum about quantum thermal machines? Can quantum

properties uplift the performance of thermal machines? How does quantum

coherence or entanglement play a role?

• Is quantum supremacy possible? What advantages can we expect from the

quantum nature of quantum thermal machines?

• What limits does thermodynamics impose on quantum devices, especially

quantum thermal machines? Is the Carnot bound still valid for quantum

thermal machines?

• How is the finite-time operation of a QTM different from its classical

counterparts?
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Furthermore, quantum thermal machines provide an excellent platform for studying

the impact of quantum phenomena in non-equilibrium thermodynamics [62, 57, 55].

Also, the role of quantum fluctuation, strong coupling, and non-Markovianity in

energy conversion can be studied through quantum thermal machines (heat engines

and refrigerators).

Studying quantum thermal machines can provide many practical applications

besides their fundamental perspective. In the era of quantum technology [64], it

may find applications viz., cooling down a qubit [65], quantum state preparation

[66], quantum thermometry [67] and quantum metrology [55], and many more. It

has been shown that by analysing the work distribution in an Otto cycle we can

distinguish between left and right-handed molecules [68]. Also, a QHE can be used

for the charging purpose of a quantum battery or other work storage devices at the

quantum domain [69].

Non-classical effects in the performance of quantum thermal machines

To find whether these so-called “quantum thermal machines” have quantum

mechanical superiority, many studies have been done in this direction. QHEs

may show unusual and exotic properties because of the quantum nature of working

systems. It has been shown that in prototypical non-thermal QHEs which are fuelled

by means of non-thermal baths, i.e., whose quantum states cannot be described by

thermal Gibbs states, the efficiency can surpass known classical heat engine bounds.

Exceeding conventional efficiency bounds appears to violate the second law. After

that, several studies have shown that exceeding efficiency bounds is mainly due to

special features of non-thermal baths, which contribute to additional sources of work.

Actually, QHEs operating with these types of nonthermal baths, e.g., coherent and

squeezed baths, harness additional resources than their thermal counterparts. It was

revealed that these violations are only apparent and can be overcome by considering

additional thermodynamic resources associated with the non-equilibrium nature of

the heat baths, the performance of these machines is bounded by generalized bounds.

• Quantum internal friction - Normally QHEs function in quantum systems

that have no commuting Hamiltonians at different times [70, 71, 72, 73, 74, 75,

76, 77, 78, 79]. This leads to the generation of quantum internal friction when a

system is driven by an external control parameter in a unitarily time evolution

process. Because of that nonadiabatic transitions are induced between the

Hamiltonian instantaneous eigenstates. This results in a large amount of

entropy production and irreversibility in engine operation, which degrades

QHE performance [75, 76, 77, 78, 79].
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• Dynamical quantum lubricant - It has been shown that quantum coherence

can be used as a dynamical quantum lubricant. If a QOE is operated in a

finite time, unitary time evolution processes and the isochoric heating process

are executed in finite times. There is an interference effect between the

residual quantum coherence after the incomplete isochoric heating process

(thermalization) and the coherence generated in the next stroke of the

finite-time unitary driving process. Due to this interference, oscillatory

behaviour can be found and performance degradation due to quantum internal

friction can be overcome [74].

• Quantum Coherence as a resource - Work and the corresponding efficiency

in a QHE, assisted by Maxwell’s demon, can be improved by a coherent demon

[80]. Also, quantum coherence in a periodic feedback-driven HE can enhance

efficiency

• Non-thermal baths - Scully et al. proposed a model of a photo-Carnot

engine with a coherent bath. In this engine, a single-mode cavity field

working system undergoes a Carnot cycle, where repetitive weak interactions

of the working system with three-level identical atoms with degenerate ground

states play as a heat bath. By introducing quantum coherence between two

degenerate ground states, a thermalization temperature of the cavity field can

be obtained which depends on the coherence. Using that quantum coherence,

work is possible to extract from a single bath [81]. Also, a few studies,

theoretically and experimentally, have shown that if a squeezed thermal bath

is used for fueling a QOE instead of thermal baths, the engine efficiency can

be increased above the Carnot limit by increasing the squeezing parameter

[82, 83, 84].

• The role of quantum correlation - Entanglement can enhance cooling in

an autonomous quantum refrigerator [85]. In a Szilard engine, the quantum

mutual information of the correlated memory, consisting of two parts, can

be used to generate work [86]. Quantum correlation has been proposed as a

fuel for heat pumps. This is based on the principle that, if there is an initial

correlation then energy can flow from a cold body to a hot body [87].

1.3.4 Working systems for quantum thermal machines

In recent years with the advances in experimental techniques, different types of

quantum mechanical systems are being used to implement quantum heat engine

models experimentally. Recent theoretical proposals for quantum heat engines

include quantum dots [88, 89], spin chain [90, 63, 91], trapped ions, optomechanical



Chapter 1. Introduction 25

setups [92, 93, 94, 95, 96], and superconducting qubits, two-level system [8, 97, 98],

hybrid light-matter systems [99, 100, 100, 101, 102, 103], Josephson junction [104],

particles in a box [105, 106, 107, 101], harmonic oscillators [83, 108, 109, 110],

Bose-Einstein condensate system [111], Dirac particles [112, 113], photosynthetic

reaction center [114], coupled qubits [115, 116, 117], PT-symmetric non-Hermitian

system [118], superconducting resonator [119, 120], three-level systems [121, 122, 81],

cavity QED [123, 81, 124, 125], cold bosonic atoms [126], many body localization

[127] etc. Experimental implementation of quantum heat engines includes

trapped ions [128, 129, 130, 131, 132], ensemble of nitrogen-vacancy centers [133],

ultracold atoms [134, 135, 136], NMR setup [137, 138], tunnel field-effect transistor

(TFET) [139], quantum dots [140, 88], photonic system [141] etc. Furthermore,

nowadays quantum heat engines and refrigerators are being tested experimentally

on cloud-based quantum computers [142, 143, 144].

In this thesis, we will consider spin chain systems as the working system for

thermal machine operation.

Heisenberg coupled spin chain systems:

Let us consider a 1D spin chain system where the spins are coupled by the Heisenberg

coupling of the nearest neighbour interaction type. The most general Hamiltonian of

a 1D Heisenberg coupled spin chain system in a transverse magnetic field of strength

B is represented by [145, 146]

HXY Z =
N−1∑
j=1

(
JxS

x
j S

x
j+1 + JyS

y
j S

y
j+1 + JzS

z
jS

z
j+1

)
+B

N∑
j=1

Sz
j , (1.31)

where Ji, S
i = ℏ

2
σi, and σi (i ∈ x, y, z) represent the exchange interaction constant,

spin operators, and the Pauli matrices along the x, y and z directions respectively.

Now depending on the values of the coupling constants, the above Heisenberg spin

chain model can be classified into XXZ model if Jx = Jy ̸= Jz, XXX model if

Jx = Jy = Jz. For Jz = 0, this represents a XY model if Jx ̸= Jy and XX model

if Jx = Jy. The speciality of this type of Hamiltonian is that they can be built

in the laboratory using state-of-the-art quantum technology viz., ion trap, NMR or

superconducting qubits.

Now for Heisenberg anisotropic XY interaction, the Hamiltonian is represented
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by [145, 146]

HXY =
N−1∑
j=1

(
JxS

x
j S

x
j+1 + JyS

y
j S

y
j+1

)
+B

N∑
j=1

Sz
j

=
J

2

N−1∑
j=1

[
(1 + γ)Sx

j S
x
j+1 + (1 − γ)Sy

j S
y
j+1

]
+B

N∑
j=1

Sz
j ,

(1.32)

where the anisotropy γ ∈ (0, 1) and γJ = Jx − Jy is the ansiotropy in the in-plane

interaction, where Jx = (1 + γ)J
2

and Jy = (1 − γ)J
2
. The γ = 0 represents the

isotropic XY interaction in a transverse magnetic field and γ = 1 represents the

transverse Ising spin Hamiltonian.

In our work, we will particularly focus on the two-spin case where the number of

total spins in a spin chain is N = 2. Let’s consider a system of two-spin coupled by

an anisotropic XY interaction (with anisotropy parameter 0 ≤ γ ≤ 1) of Heisenberg

type in a transverse magnetic field B. The Hamiltonian that describes this system

can be written as (in the unit of ℏ = 1 and considering other multiplication factor

as 1) [147, 145]

Ĥ = B (σ̂z
1 + σ̂z

2) + J [(1 + γ)σ̂x
1 σ̂

x
2 + (1 − γ)σ̂y

1 σ̂
y
2 ] , (1.33)

where J represents the coupling strength two-spin. In the limiting case of γ, we

obtain the isotropic XX interaction Hamiltonian when γ = 0 and the Ising spin

Hamiltonian when γ = 1.

1.3.5 Model of a bath

Now we will describe the model of a thermal bath which consists of an infinite

number of modes with a continuum of frequencies. The dynamics of a two-spin

system coupled by anisotropic interaction under a bosonic thermal bath is described

by a Lindblad master equation, in interaction picture which can be obtained as

[148, 82, 147]

∂ρ̂

∂t
=i[ρ̂, Ĥ(t)] +

∑
i=1,2

[Γ(ni + 1)(X̂iρ̂X̂
+
i − 1

2
X̂+

i X̂iρ̂−
1

2
ρ̂X̂+

i X̂i)

+ Γni(X̂
+
i ρ̂X̂i −

1

2
X̂iX̂

+
i ρ̂−

1

2
ρ̂X̂iX̂

+
i )],

(1.34)

where we have considered only one spin of the coupled two-spin system interacting

with a heat bath at temperature T to maintain the simplicity of the master equation.

The sum over i represents the number of transitions in the system under the heat



Chapter 1. Introduction 27

bath, and the thermal photon number distribution at the transition frequencies in

the bath are n (ωi) =
[
exp

(ℏωi

kT

)
− 1

]−1
. Here, Γ is the coupling constant between

the system and the bath. Similarly, we can consider that each spin interacts with

the bath.

The jump operators associated with each system operator X [149, 148]:

X(ω) =
∑

ϵ′−ϵ=ω

|ϵ⟩ ⟨ϵ |Xβ| ϵ′⟩ ⟨ϵ′| ,

where {|ϵ⟩} is the basis of the eigenvectors of the system Hamiltonian H. Therefore,

the jump operators of the system X̂i and the respective transition frequencies, when

only the first spin interacts with the heat bath by σx operator, are given by

X̂1 = 1
2
( B+K−γJ√

K2+BK
|ψ1⟩⟨ψ3| + B−K+γJ√

K2−BK
|ψ0⟩⟨ψ2|), ℏω1 = 2K + 2J

X̂2 = 1
2
( B+K+γJ√

K2+BK
|ψ2⟩⟨ψ3| + B−K−γJ√

K2−BK
|ψ0⟩⟨ψ1|), ℏω2 = 2K − 2J.

(1.35)

These operators satisfy the relations [Ĥ, X̂i] = −ωiX̂i and [Ĥ, X̂†
i ] = ωiX̂

†
i .

1.3.6 Other topics in quantum thermodynamics

Apart from the study of quantum thermal machines, people also work on many other

important topics under which quantum thermodynamics that we discuss below.

Thermodynamic resource theories:

Fundamental laws of nature often appear as restrictions. These laws include that

nothing in a vacuum can travel faster than light, no energy can be created out

of nothing, and there is no perpetual motion. To investigate the impact of such

constraints on the physical systems evolution a mathematical framework is developed

known as the resource theory.

The resource theory of quantum entanglement is the most well-known application

of this approach [150, 151, 152]. Then it emerges that thermodynamics can

benefit from this type of theory developed to study entanglement [151, 152]. In

thermodynamics, the first and second laws act as fundamental constraints. Because

of these laws, total energy remains conserved and the complete conversion of heat

to work is forbidden in thermodynamic processes. In this context, a question to ask

is: if these laws restrict any thermodynamic process, what constitutes a resource?

Within the framework of resource theories, these questions can be addressed.

Thus, resource theories used for quantifying and managing resources are based on
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information-theoretic frameworks. All resource theories consist of three essential

components [15, 151, 152, 153]

• A set S of free states that are freely accessible,

• A set C of allowed quantum operations closed under S and

• A set R of resource states that cannot be created by S and C alone.

Therefore, the only way to access states that are not in S is through resource

states. All resource theories differ based on what is considered to be allowed

operations, free states, and resources in them.

Given the allowed operations and free states, someone can ask: what are the

states that may be reached by manipulation of a quantum state ρ, by using the

allowed operations and free states mentioned above? This puts forth another aspect

of resource theories which is the state conversion conditions, determine that by using

the allowed operations and free states which resource states can be converted into

each other. According to these conditions, if a specific function f , which obeys a

partial order, decreases f(ρ) ≥ f (ρ′) in a transition, then the transition is possible

ρ→ ρ′. These functions are known as resource monotones [15, 151, 152, 153].

In the thermodynamic resource theory, the Gibbs thermal states at temperature

T represent the free states. and allowed operations which, are called thermal

operations, are represented by partial traces and energy-preserving unitaries, all

non-thermal states represent the resources. Therefore, under the allowed operations

[15, 151, 152, 153]

T (ρ) = TrB (UAB (ρA ⊗ ρB,β)UAB) ,

where a thermal state is represented by ρB,β at an inverse temperature β = 1/kBT

and also [UAB, H] = 0, where UAB represents an energy preserving unitary.

Also, the monotones in the thermodynamic resource theory are determined by

the quantum free energy [153, 154]:

F (ρ) = Tr [HSρ] − kTBS(ρ)

We define the free energy difference between a general state ρ and a thermal

state by ρβ ∆F (ρ) := F (ρ) − F (ρβ). Then it can be shown that ∆F (ρ) is a

monotone under thermal operations. In order to show that we can check that

∆F (ρ) = kTBS (ρ∥ρβ), where the quantum relative entropy is represented by

S (ρ∥ρβ) = Tr [ρ (log ρ− log ρβ)]. Under quantum operations the contractiveness
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of relative entropy and the relation T (ρβ) = ρβ gives

∆F (T (ρ)) = kTBS (T (ρ)∥ρβ) = kTBS (T (ρ)∥T (ρβ)) ≤ kTBS (ρ∥ρβ) = ∆F (ρ)

Using the mathematical framework, mentioned above, of resource theory of

quantum thermodynamics, developed in quantum information theory, the basic

questions of thermodynamics are revisited [152, 154].

Quantum fluctuation relations:

The classical laws of thermodynamics, which apply to large systems, are ignorant

of the constituent particles of the systems of interest. For these large systems,

there can be variations in thermodynamic quantities viz., heat or work. However,

typically the fluctuations in these quantities are so small with respect to the mean

values that those fluctuations are negligible. These laws hold on average. But,

when the system size scales down to the microscopic scale e.g., a stretched RNA

molecule, the thermodynamic quantities will also scale down. Their thermodynamic

quantities (work and heat) become stochastic quantities. In that case, fluctuations

in thermodynamic quantities are non-negligible compared to their mean values [21,

155].

To describe such situations, fluctuations must be included in non-equilibrium

thermodynamic descriptions. This was first achieved in stochastic thermodynamics.

In this framework, at the stochastic trajectory level, it is also possible to state

a first law like energy conservation for microscopic systems. Also, entropy can be

defined at this level. Furthermore, fluctuation theorems (FT) like universal relations

were discovered through the study of fluctuations in thermodynamic quantities

such as work, heat and entropy. These theorems pose constraints on fluctuating

quantities statistics. FT generalizes the second law, which applies to equilibrium

and out-of-equilibrium systems, and to systems of a few particles that are not within

the thermodynamic limit. Based on the detailed FT, different types of FT can be

obtained in a unified manner. Particularly, by measuring nonequilibrium work we

can determine equilibrium free energy through Jarzynski equality and the Crooks

FT. These fluctuation theorems apply to classical small systems viz., molecular

motors, biomolecules, and colloidal particles.

In the quantum regime, with thermal fluctuation quantum fluctuation is also

present due to quantum systems’ inherent randomness. Various fluctuation theorems

have been reformulated for quantum systems in quantum thermodynamics. Serious

issues arise when we deal with quantum systems regarding the quantum nature
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of work and heat. Here we can also define quantum trajectories, but to monitor

quantum systems we require measurements of the system. Quantum measurements

cause back-actions in the system. Projective measurements at the beginning and

end of a process of interest are used in most extensions of fluctuation theorems to

the quantum domain. This framework is known as the two-measurement protocol

(TMP).

1.4 Structure of the thesis

In Chapter 1 we present the introduction of thermodynamics and quantum

thermodynamics. First, we discuss the laws of classical thermodynamics and

different classical thermal machines. We explore the role of information in

thermodynamics. Then, we discuss how the laws of thermodynamics emerge from

a quantum mechanical context. This discussion introduces some fundamental

thermodynamic quantities viz., heat, work and entropy. Also, we discuss different

subtopics of quantum thermodynamics. In our work, we explore quantum

thermodynamics through the study of different QTM models. Therefore, we

elaborately discuss what are QTMs and different quantum thermodynamic processes

viz., isothermal, adiabatic, isochoric and isobaric, to explore various models of QTMs

viz., quantum Carnot, Stirling and Otto thermal machines. Finally, we introduce

coupled spin systems as a working substance for thermal machines.

In Chapter 2 we study the performance of quantum Stirling machines near a

quantum critical point in a two-spin working system, in which the nearest neighbour

interaction of the Heisenberg-XX type couples the spins. We show how this system

can exhibit a QPT which is studied by the measure of entanglement and correlation.

We investigate how the cycle behaves as different thermal machines depending on

the parameters of the cycle. We study how these thermal machines behave near

the QCP. Further, we explore how two spins perform as a thermal machine in the

presence of a third spin, when all three spins are in thermodynamic equilibrium and

exhibit a quantum Stirling cycle.

In chapter - 3, we explore a quantum Otto thermal engine with a two-spin

working system coupled by anisotropic interaction, defined by a parameter γ. We

study how anisotropy plays a fundamental role in the performance of the quantum

Otto engine (QOE) operating in different timeframes. We discuss the effect of

quantum internal friction that arises due to the finite-time unitary time evolution

processes. We also discuss the effects of incomplete thermalization on engine

performance. Further, we study the QOE with a local spin working system. We

discuss different thermodynamic figures of merit of the local operation of a QOE.
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Specifically, in finite-time operation, we show that the efficiency oscillates with

respect to the time of the unitary processes of the global system.

In chapter 4, we study the performance of a measurement-based quantum Otto

engine (QOE) with the same working system as the chapter. Non-selective quantum

measurements fuel the engine. We investigate how a measurement-based QOE

behaves differently from a standard QOE in finite time. We show that for anisotropic

interaction, the efficiency of the engine oscillates in a finite time. Therefore, for a

suitable choice of timing of the unitary processes in the short time regime, the engine

can have a higher work output and less heat absorption, such that it works more

efficiently than a quasi-static engine. We find a connection between a local spin QOE

and a measurement QOE by showing that the oscillatory nature of the efficiency

comes from the same origin of interference-like effects. Finally, we discuss the case

of an always-on heat bath.

In chapter - 5, we conclude our work and try to give the future direction of

work.
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Chapter 2

Critical point behaviour of a

quantum Stirling machines

In the previous chapter, we discussed the basic ideas and tools of quantum

thermodynamics and various aspects of the subject. More specifically, we have

discussed in detail about QTMs and their implementation. In this chapter, we show

the implementation of a reciprocating cycle quantum sterling engine in a coupled

spin system.

2.1 Motivation

In this chapter, we focus on the quantum thermal machines using Stirling cycles.

Classical Stirling engines are of external combustion type, in which the working

fluid is heated passively using a combustion-based heat source. In last few years,

the quantum version of the Stirling cycle is also getting attention [156, 157, 158,

159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170]. This becomes interesting,

as the size of the machines does not matter any more, at the quantum level. It has

been shown [159, 160] that the energy level degeneracy can be used as a resource

to generate work and the engines can achieve the Carnot efficiency under specific

conditions of temperatures of the baths. Quantum Stirling cycle has been studied

from the perspective of the uncertainty relation as well [169]. Its efficiency can be

enhanced beyond that of a quantum Carnot engine, with the aid of a regenerator

[156]. A model of an endoreversible entangled quantum Stirling engine using two

coupled spins as a working medium has been investigated for finite-time operation

[157]. Also in various studies, finite-time analysis of the quantum Stirling cycle has

been done [171, 172, 173, 174].

We first investigate whether any sharp nonanalytic behaviour can be found in a

few-spin systems, which is far away from the thermodynamic limit, as one approaches

absolute zero. Here we will consider the level crossing of the ground states as a

signature of QPT which follows from the extended Ehrenfest classification of phase

transitions [175, 176, 177]). This is an example of the first-order transition as
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the first-order derivative of the ground state energy with respect to the control

parameter becomes discontinuous at the critical point. Next, we will explore if such

nonanalyticity can enhance the performance of thermal machines near the QCP for

few-spin systems, similar to that obtained for systems in thermodynamic limit (e.g.,

as described in [178, 158, 179, 180, 181, 182, 183, 184]).

A few-spin systems can show a QPT when it remains in thermal equilibrium.

In this chapter, we focus on a few spin-based quantum thermal machines using the

Stirling cycle which consists of two isothermal and two isochoric processes. Classical

Stirling engines are of external combustion type, in which the working fluid is heated

passively using a combustion-based heat source. Despite the size limitation, the

Stirling engines are more versatile in nature as they can be used with any heat

source, and also deliver heat-to-work conversion with comparably high efficiency

[185]. This becomes interesting, as the size of the machines does not matter any

more, at the quantum level. We aim to investigate how such an engine behaves

near a quantum critical point in a two-spin working system, in which the spins are

coupled by the nearest neighbour interaction of Heisenberg XX-type and show a

QPT when it remains in thermal equilibrium. Further, we explore how coupling to

a third spin affects the performance of these cycles.

2.2 Model of working System

Let us consider two spin-1/2 particles that are coupled to each other by the

Heisenberg XX exchange interaction, with a strength J . In the presence of a

homogeneous external magnetic field B, applied along the z axis. The Hamiltonian

of this system is given by (in the unit of ℏ = 1):

H = J(σx
1 ⊗ σx

2 + σy
1 ⊗ σy

2) +
B

2
(σz

1 ⊗ 1 + 1⊗ σz
2) , (2.1)

Please note that the Hamiltonian is time-independent here. In this chapter, we will

study the system in antiferromagnetic configuration, i.e., for J > 0. The eigenvalues

En and corresponding eigenvectors |ψn⟩ (n ∈ 1, 2, 3, 4) for this Hamiltonian can be

written in the two-qubit computational basis {|11⟩ , |10⟩ , |01⟩ , |00⟩} as

E1 = −B |ψ1⟩ = |00⟩ ,
E2 = −J |ψ2⟩ = 1√

2
(|01⟩ − |10⟩),

E3 = J |ψ3⟩ = 1√
2
(|01⟩ + |10⟩),

E4 = B |ψ4⟩ = |11⟩ .

(2.2)



Chapter 2. Quantum Stirling machines 35

Please note that depending on the relative value of B and J , either |ψ1⟩ (if B > J) or

|ψ2⟩ (for B < J) becomes the ground state. Therefore, by controlling the magnetic

field externally, one can change the ground-state properties of the system.

2.2.1 Internal energy and entropy of the system in the

thermal state:

At thermal equilibrium with a heat bath at a temperature T , the state of the system

can be represented by the Gibbs State which is given by (in the unit of kB = 1)

ρ =
e−H/T

Z
=

∑
n

Pn |ψn⟩ ⟨ψn| ,

where Pn = exp(−En/T )/Z is the occupation probability of the eigenstate |ψn⟩ and

Z =
∑

n exp(−En/T ) is the partition function.

The internal energy of the system is given by the expectation value of the

Hamiltonian and can be calculated as

U = Tr(ρH) =
∑
n

PnEn = − 2

Z

(
B sinh

B

T
+ J sinh

J

T

)
, (2.3)

where Z = 2
(
cosh B

T
+ cosh J

T

)
is the partition function. The von Neumann entropy

of the system is given by

S = −Tr(ρ ln ρ) = −
∑
n

Pn lnPn =
U

T
+ lnZ . (2.4)

2.2.2 Quantum Phase Transition

Quantum phase transition (QPT) in a system refers to a nonanalyticity in the ground

state properties at absolute zero (T → 0) in the thermodynamic limit, which signifies

here the number N of constituent particles is infinitely large. The QPT involves

changes in the ground-state properties at a critical value of a non-thermal control

parameter (e.g., the strength of the control field) at absolute zero temperature [186].

This critical value of the external control parameter is known as the quantum critical

point (QCP). In QPTs, it is the quantum fluctuations which are responsible for

taking the system from one phase to another, in contrast to the thermal fluctuations

at a finite temperature that are responsible for the classical phase transitions

(CPT), which dominate in the above-absolute-zero phase transitions. Typically,

nonanalyticity emerges when the number of particles in the system is increased i.e.

when one approaches the thermodynamic limit [187, 188, 189, 190, 191, 192, 193].
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In fact, at such a limit, correlations among these particles become long-range and

sharp features in the phase transition profile are observed [189].

Please refer to Eq. 2.2, where it can be seen that, at a critical value of the

magnetic field (BC = J), there occurs a ground state energy level crossing. As this

gives rise to a discontinuity in the first-order derivative of the ground state energy,

it can referred to as a QPT of first-order [186, 194, 195, 196].

Figure 2.1: Variation of the xx-correlation function of two spins at thermal
equilibrium as a function of temperature T and magnetic field B. We have chosen
the coupling constant J = 1 throughout this chapter.
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Figure 2.2: Variation of the first order derivative of the xx-correlation of thermal
equilibrium state at the temperatures T = 0.0033 (solid line, brown), T = 0.2033
(dashed line, light blue), T = 0.4033 (dotted line, pink), and T = 0.6033
(dash-dotted line, violet), respectively. For the solid line, the scale of the y-axis
is shown on the right side, while for the remaining plots, it is shown on the left side.

2.2.3 Spin-spin correlation and entanglement: Quantum

Phase Transition

Due to the coupling between the two spins, spin-spin correlations and entanglement

arise, even at thermal equilibrium [197, 198, 199, 200]. At a critical point,

the correlation among the participating subsystems becomes long-range in the
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thermodynamic limit. This suggests that spin-spin correlation can be a marker

of the QPT in our model also. On the other hand, in the information-theoretic

approach to QPT, different measures of entanglement are used for the identification

of quantum phase transition [201, 198, 202, 203, 197, 200, 199, 204]. Below, we

investigate how entanglement and correlation can be used to detect a quantum

critical point when the system is in thermal equilibrium.

Correlations:

The correlation function of two spins is defined as [198]

Ckk
R =

〈
σk
1σ

k
2

〉
−
〈
σk
1

〉 〈
σk
2

〉
,

where k ∈ x, y, z. The expectation value is taken over the state of the system. For

the state of the system in thermal equilibrium, these functions take the forms

Cxx
R = Cyy

R =
− sinh J

T

cosh B
T

+ cosh J
T

.

Czz
R =

sinh B
T
− cosh J

T

cosh B
T

+ cosh J
T

−

[
sinh B

T

cosh B
T

+ cosh J
T

]2

. (2.5)

A plot of the xx-correlation function as a function of the magnetic field (B)

and temperature (T ) is shown in Fig. 2.1. In this plot, any non-zero value of

the correlation functions represents a correlated state. It is clear from this plot

that as T → 0, the correlation exhibits a very sharp change around the critical

point B = J . This signals the existence of a first-order QPT. We found that the

yy- and zz-correlation also exhibit similar behaviour in the neighbourhood of the

critical point. The transition becomes sharper as the temperature decreases and the

first order derivative of the correlation functions with respect to the external control

parameter (here the magnetic field) diverges at the critical point [see Fig. 2.2] [203].

Mathematically, at the quantum critical point (T = 0, B = Bc = J), the correlation

functions become nonanalytic functions of B and a quantum phase transition takes

place [200].

Entanglement:

Similar behaviour can also be found in the variation of the entanglement between

the spins in terms of concurrence [200, 205], which is given by

c(ρ) = max
{

0,
√
λ1 −

√
λ2−

√
λ3 −

√
λ4

}
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Figure 2.3: Variation of concurrence of two spins at thermal equilibrium as a function
of temperature (T ) and magnetic field (B). We have chosen J = 1.

where λi are the eigenvalues of the matrix ρ (σy
1 ⊗ σy

2) ρ∗ (σy
1 ⊗ σy

2) arranged in

descending order and ρ∗ is the complex conjugate of ρ. We get the expression

of the concurrence as

c =
sinh J

T
− 1

cosh J
T

+ cosh B
T

. (2.6)

If c = 0, this refers to a separable state, while for the maximally entangled Bell

states, c becomes unity. A plot of concurrence as a function of the magnetic field B

and the temperature T is displayed in Fig. 2.3. It is clear that as T decreases, the

concurrence exhibits a faster decrease in the neighbourhood of B = J (the critical

point). This means that the concurrence exhibits nonanalytical behaviour around

this critical point, as T → 0. Such a sharp change in concurrence from 1 to 0

(i.e., from a maximally entangled state to a separable state) is a signature of the

first-order QPT. In fact, this can be attributed to the change in the ground state

from |ψ2⟩ to |ψ1⟩.

Thus, the concurrence and the correlation can be considered as order parameters

(which distinguish between two phases in a phase transition) to identify QPT in the

two-spin system, described via the Hamiltonian (Eq. 2.1) [198].

2.3 Implementation of different stages of the

quantum Stirling cycle

The quantum Stirling cycle, in analogy with its classical counterpart, consists of

four stages: two quantum isothermal and two quantum isochoric processes (see

Fig. 2.4). A description of the four stages of the cycle is given below. Note the

coupling constant J is kept fixed, as it depends upon the distance between the two

spins and cannot be dynamically changed in a given spin architecture.
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Figure 2.4: Schematic diagram of the different stages of a Stirling cycle on the
entropy-magnetic field plane. A description is added to the text.

Isothermal stage (A → B): The system is coupled with a heat bath at a

temperature TH and the magnetic field is changed quasistatically from BH to BL

such that the system maintains thermal equilibrium with the bath at each point in

that process. During this process, heat is exchanged between the system and the

bath, while the system also exchanges a certain amount of work with an external

work reservoir. The heat exchanged can be calculated in terms of the change in

entropy of the system, which is, in turn, associated with the change in energy of the

system, and is given by

QAB = TH(SB − SA) = UB − UA + TH ln
ZB

ZA

, (2.7)

where SA and SB represent the entropies of the system at points A and B

respectively. UA and UB represent the internal energies at A and B respectively.

Also, ZA = 2( coshBH

TH
+ cosh J

TH
) and ZB = 2( coshBL

TH
+ cosh J

TH
) are the partition

functions at points A and B respectively.

Isochoric stage (B → C): In the second stage, the coupling to a heat bath of

lower temperature TL(< TH) is switched on, while the magnetic field is kept fixed

at BL. During this stage, heat is exchanged between the system and the bath and

at the end of the stage, the system reaches thermal equilibrium with the cold bath

at the temperature TL. No work is done on or by the system, as the magnetic field

remains fixed. Therefore, the change in the internal energy of the system contributes

to the heat transfer between the system and the bath contributes only. This is given

by

QBC = UC − UB , (2.8)
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where UC represent the internal energy of the system at point C.

Isothermal stage (C → D): The third stage is similar to the first one. The

only differences are that in this case, the system is coupled with another heat bath

at the temperature TL and the magnetic field is reversed from BL to BH . The heat

transfer between the system and the bath can be written as

QCD = TL(SD − SC) = UD − UC + TL ln
ZD

ZC

, (2.9)

where SD and SC represent the entropies of the at points D and C. UD represents

the internal energy at D. Also, ZC = 2( cosh BL

TL
+ cosh J

TL
) and ZD = 2( cosh BH

TL
+

cosh J
TL

) are the partition functions at points C and D of Fig. 2.4.

Isochoric stage (D → A): In the final stage, the system is coupled to the

hotter heat bath at a temperature TH again, while the magnetic field is kept fixed

at BH . No work is done on or by the system, as the magnetic field remains fixed.

Similar to the previous isochoric process (the second stage), the heat transfer is

given by

QDA = UA − UD . (2.10)

Thermodynamic quantities in a complete cycle:

In a complete cycle, heat transfer between the system and the hot bath at the

temperature TH is therefore given by

QH = QAB +QDA = UB − UD + TH ln
ZB

ZA

. (2.11)

Similarly, the heat exchange with the cold bath at the temperature TL becomes

QL = QBC +QCD = UD − UB + TL ln
ZD

ZC

. (2.12)

According to the first law of thermodynamics, the total change of energy of the

system in a complete cycle is zero WAB + WCD + QH + QL = 0, where WAB and

WCD represent the works in the AB and CD isothermal processes. So, the work

done in a complete cycle can be written as

W = −(WAB +WCD) = QH +QL = TH ln
ZB

ZA

+ TL ln
ZD

ZC

. (2.13)

We are using the following sign convention of the thermodynamic quantities:

a positive (negative) value of Q refers to the absorption (release) of heat by the

system and a positive (negative) value of W corresponds to work done by (on) the
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system. Therefore, for a heat engine, we have QH > 0, QL < 0, and W > 0, i.e.,

the system absorbs some amount of heat QH from the hot bath, a part QL of which

is released to the cold bath and the rest is used to deliver a certain amount of work

W . Similarly, when performing as a refrigerator, QH < 0, QL > 0, and W < 0,

such that QL amount of heat is absorbed by the system and W amount of work is

done on the system. This energy input is released as QH amount of heat to the hot

bath. Here we assumed that the internal energy of a system does not change in a

complete heat cycle.

The efficiency of the heat engine cycle is given by

η =
W

QH

=
QAB +QBC +QCD +QDA

QAB +QDA

, (2.14)

while the coefficient of performance (COP) of the refrigeration cycle is given by

ϵ =
QL

| W |
=

QBC +QCD

| QAB +QBC +QCD +QDA |
. (2.15)

2.4 Performance analysis of thermal machines

2.4.1 Numerical observations

Operation of the cycle as various thermal machines:

To identify the operation of the cycle as different thermal machines, we plot the

thermodynamic quantities heat QH exchanged with the hot bath, that QL with the

cold bath, and the work done W in Fig. 2.5 and Fig. 2.6.
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Figure 2.5: Variation of heat exchange by the system with the hot bath, QH (solid
line, green), that with the cold bath, QL (dotted line, red) and the work done W
(dashed line, blue) as a function of BL when J = 1, BH = 2, TH = 0.166 and
TL = 0.1. In all the figures, we have used a unit system where ℏ = 1, kB = 1 and
all parameters are made dimensionless with respect to J for the two-spin system.
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Figure 2.6: Variation of the heat exchange by the system with the hot bath, QH

(dash-dotted line, green), that with the cold bath, QL (dotted line, red) and the
work done W (dashed line, blue) as a function of BH when J = 1, BL = 0.066,
TH = 0.166 and TL = 0.1. The solid black line represents the zero line.

It can be seen from Fig. 2.5 that the system works as a heat engine over the

entire range of the parameter BL (< BH), as QH ,W > 0, QL < 0 in this range.

More importantly, it delivers maximum work when BL becomes nearly equal to the

coupling constant J . On the other hand, from Fig. 2.6, it is clear that the system

works as a refrigerator, though not over the entire range of the parameterBH (> BL).

Rather, there exists a narrower range of values BH for such an operation. In this

case, also, the cycle gives better performance in terms of heat absorption, heat

release and work done when BH becomes equal to the coupling constant J . This

range of BH for the operation of the refrigerator cycle decreases with the increase in

BL. Note that all the quantities QH , QL and W are negative, when the BH becomes

nearly equal to 0.5 and 1.5 (see Fig. 2.6). This means that work is to be done

on the system to drive heat flows into both the heat baths. This type of thermal

machine therefore does not become useful due to high energy cost and we will only

focus on the parameter domain in which the thermal machine works either as a heat

engine or a refrigerator.

Clearly, the two-spin system can be made through a heat engine cycle or a

refrigerator cycle by a suitable choice of the parameters BL, BH and J of the cycle.

For BL ≈ J , the system delivers maximum work as a heat engine, while for BH ≈ J ,

it performs as a refrigerator.

Performance of the heat engine and refrigerator:

Now we will study the performance of the thermal machines. We find that the

efficiency of the heat engine reaches Carnot efficiency at BL = J for very low

temperatures of the heat baths. The Carnot efficiency for the present choice of the

bath temperatures is given by ηC = 1 − TL/TH = 0.4. The efficiency gradually falls



Chapter 2. Quantum Stirling machines 43

0 0.5 1 1.5 2 2.5 3

B
L

0

0.1

0.2

0.3

0.4

E
ff
ic

ie
n
c
y

Figure 2.7: Variation of the efficiency as a function of BL for different values of BH

and bath temperatures: TH = 0.25, TL = 0.15 and BH = 3 (solid line, light blue);
TH = 0.19, TL = 0.11 and BH = 2.3 (dashed line, brown); TH = 0.15, TL = 0.09
and BH = 1.87 (dash-dotted line, red) when J = 1. Note that the Carnot efficiency
for all the cases is ηC = 0.4, which is achieved when BL = J = 1.
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Figure 2.8: Variation of the COP as a function of BH for different values of BL and
bath temperatures: TH = 0.125, TL = 0.075 and BL = 0.05 (solid line, light blue);
TH = 0.114, TL = 0.068 and BL = 0.045 (dotted line, pink); TH = 0.104, TL = 0.06
and BL = 0.04 (dashed line, red) for J = 1. Note that the Carnot COP for all the
cases is ϵC = 1.5, which is achieved when BH = J = 1.

when BL deviates from its critical value J [see Fig. 2.7]. Similarly, the COP of the

refrigerator reaches that for a Carnot refrigerator, given by COPC = TL/(TH−TL) =

1.5, when BH becomes equal to a critical value J [see Fig. 2.8]. Note that according

to the first law of thermodynamics, the COP can be greater than unity.

2.4.2 Theoretical analysis of obtaining the Carnot limit of

efficiency and COP

Now we will theoretically analyze how the efficiency and the COP can reach the

respective Carnot limits at the QCP point.

For heat engine:
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Figure 2.9: Variation of the entropy at the point B of the cycle SB (dashed line,
pink) and at C of the cycle SC (dotted line, violet) as a function of BL when BH = 2,
J = 1, TH = 0.166 and TL = 0.1. Variation of the population of the energy levels
P (−J, T ) (solid line, red) and the P (−BL, T ) (dash-dotted line, light blue) as a
function of BL are also shown.

Now in the DA arm of the cycle, when BH ≫ J , under low temperature population

of the ground state |ψ1⟩ is obtained as

P1(BH , T ) =
exp(BH/T )

exp(BH/T ) + exp(−BH/T ) + exp(−J/T ) + exp(J/T )
≈ 1 .

Most of the population remains in the ground state. This means that the von

Neumann entropies of the system, at the points A and D of the cycle become

negligible: SA(BH , TH), SD(BH , TL) ≈ 0. Therefore, the heat transfer of the system

with the hot bath in the isochoric process from D to A is given by

QDΛ = UA − UD =
4∑

i=1

PA
i E

A
i −

4∑
i=1

PD
i E

D
j ≈EA

1 − ED
1 = 0. (2.16)

With all these, the efficiency of the heat engine becomes

η =
THSB + UC − UB − TLSC

THSB

. (2.17)

Now if the BC arm of the cycle is placed at the QCP, BL = J , the entropies

of the system at points B and C of the cycle become equal: SB ≈ SC ≈ ln 2 (see

Fig. 2.9). Also, the internal energies of the system at these points become equal:

UB ≈ UC ≈ −BL. Using these values, from the Eq. 2.17) we retrieve the efficiency

of the heat engine at the QCP, which is the same as the Carnot efficiency:

η = 1 − TL
TH

. (2.18)
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Figure 2.10: Variation of the entropy at the point D of the cycle SD (dotted line,
pink) and at A of the cycle SA (dashed line, violet) as a function of BH when
BL = 0.05, J = 1, TH = 0.125 and TL = 0.075. Variation of the population of
the energy levels P (−J, T ) (solid line, red) and P (−BH , T ) (dash-dotted line, light
blue) as a function of BH are also shown.

So, the efficiency of the quantum Stirling engine approaches the Carnot efficiency at

the quantum critical point, BL is equal to J , under the condition that BH is much

larger than J at very low temperatures of the baths compare to J .

For refrigerator:

Similarly, for the refrigerator cycle, in the BC arm of the cycle, when J ≫ BL, under

low-temperature population in the ground state, |ψ2⟩ is obtained as

P2(J, T ) =
exp(J/T )

exp(BL/T ) + exp(−BL/T ) + exp(−J/T ) + exp(J/T )
≈ 1 .

Thus, when the magnetic field is maintained at a constant value BL (the evolution

from B to C in Fig. 2.4), the system is prepared in the ground state. Therefore,

it possesses negligible entropy and the heat exchanged during this isochoric stage is

also negligible. Then the COP of the refrigerator cycle becomes

ϵ =
TLSD

|TLSD − THSA + UA − UD|
. (2.19)

Now if the DA arm of the cycle is placed at the QCP BH = J , similar to the

case of the heat engine, the entropies of the system at points D and A of the cycle

become equal, i.e., SD ≈ SA ≈ ln 2 (see Fig. 2.10). Also, the internal energies of

the system at points D and A become equal: UD ≈ UA ≈ −BH , such that QBC ≈ 0.

With all these values, the COP of the refrigerator cycle at the QCP is obtained as

ϵ =
TL

TH − TL
, (2.20)
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which is the same as the Carnot COP. So, the COP of the Stirling refrigerator

approaches the Carnot COP at the QCP BH = J under the conditions BL ≪ J at

very low bath temperatures compared to J .

Work and efficiency extremization:

As we mentioned, the work and the efficiency become maximized at the QCP.

However, for larger bath temperatures, this is not true. As long as these

temperatures are much lower than the strength of the coupling constant J , the

effect of the quantum phase transition dominates. In this situation, the population

in each of the degenerate ground states |E1,2⟩ remains at 50%. However, for larger

temperatures (TL,H ∼ J), the excited states |E3,4⟩ also get populated, Then, the

work and the efficiency do not get maximized at the QCP. This can be understood

from the condition of zeros of the derivatives of W and η with respect to BL. We

get the following conditions at the QCP (BL = J) from the derivative of work

tanh
(

J
TL

)
= tanh

(
J
TH

)
, (2.21)

and from the derivative of efficiency[
tanh

(
J
TH

)
− tanh

(
J
TL

)]
×[

TH ln
(

ZB

ZA

)
− J tanh

(
J
TH

)
+ 2

ZD

{
BH sinh

(
BH

TL

)
+ J sinh

(
J
TL

)}]
= ( J

TH
)
[
TL ln

(
ZC

ZD

)
− TH ln

(
ZB

ZA

)]
sech2( J

TH
) .

(2.22)

Since, for BL = J and TL, TH ≪ J both the above equalities are satisfied [as

tanh(J/TL), tanh(J/TH) → 1], the work and the efficiency become maximum at

the QCP BL = J . However, for larger TL, TH , such that TL, TH ∼ J , they exhibit

maximum at different values of BL. This becomes clear from the work-efficiency

plot in Fig. 2.11. As can be seen in Fig. 2.11(c) for TL = 0.4 and TH = 0.666,

the efficiency becomes maximum at BL = 0.7747 and the work becomes maximum

at BL = 0.9807, both far from the QCP.

Similar conditions can be obtained for the relation between the work W on the

system during the refrigeration cycle and the corresponding COP at the critical point

BH = J . We find that the condition to minimize the W is the same as Eq. (2.21),

while that to maximize COP can be written as (2.22), however with the following

replacements: TL ↔ TH and BH ↔ BL, with different expressions of the partition

functions, namely, ZA = 4 cosh(J/TH), ZB = 2 {cosh(BL/TH) + cosh(J/TH)}, ZC =

2 {cosh(BL/TL) + cosh(J/TL)}, and ZD = 4 cosh(J/TL).
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Figure 2.11: Variation of the efficiency with respect to the work, when BL changes
from 0 to 2 and the bath temperatures are (a) TH = 0.166 and TL = 0.1, (b)
TH = 0.33 and TL = 0.2, (c) TH = 0.666 and TL = 0.4, (d) TH = 1 and TL = 0.666.
The other parameters are BH = 2 and J = 1. Black dot and red circles in the
corresponding zoomed figures (in the inset) indicate the maximum efficiency and
work, for (a) the same value BL = 0.9997 (b) BL = 0.9947 and BL = 1.0127,
respectively, (c) BL = 0.7747 and BL = 0.9807, respectively, and (d) the same value
of BL = 0.0667.

2.4.3 Relation of the thermodynamic quantities with

correlation and entanglement

We will show now how the maximization of the work and efficiency at low

temperatures of the baths are related to the entanglement at the QCP for the heat

engine operation. Concurrences at points B and C of the cycle can be found as

cB =
sinh J

TH
− 1

cosh J
TH

+ cosh BL

TH

, and cC =
sinh J

TL
− 1

cosh J
TL

+ cosh BL

TL

. (2.23)

These two expressions become equal, for the low temperatures of the baths,

J ≫ TL, TH and at the QCP BL = J , as tanh(J/TL) ∼ tanh(J/TH) → 1 and

sech(J/TL) ∼ sech(J/TH) → 0 in this limit. As we discussed before, in this limit,

the work and the efficiency of the heat engine also get maximized. We have found

that the concurrences become equal to 0.5 at the QCP [199]. This is because, in

the process B→ C the state of the system does not change, therefore, there is no

heat exchange of the system with the bath in that process. This in turn gives rise

to the maximization of work and efficiency at the quantum critical point. Further,
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as we have seen from the Fig. 2.3, the concurrence sharply changes from one to

zero across the QCP at T → 0, corresponding to a change in the ground state

of the system (from a maximally entangled state |ψ2⟩ to a separable state |ψ1⟩).
This leads to a large derivative of the concurrences and to the enhancement of

efficiency. On the contrary, at higher temperatures of the baths, the concurrences

cB and cC do not become equal at the critical point, which in turn reduces the work

and efficiency of the heat engine operation. Moreover, the system never becomes

maximally entangled or fully separable, as clear from the values of concurrence at

BL = 0 and BL = 2 [199] at higher temperatures.

Similar to the QHE operation, we can relate the maximization of COP with the

equality of the concurrences at points D and A of the cycle:

cD =
sinh J

TL
− 1

cosh J
TL

+ cosh BH

TL

, and cA =
sinh J

TH
− 1

cosh J
TH

+ cosh BH

TH

, (2.24)

which become equal at the critical point [199], as there is no heat generation during

the isochoric process D→A. This leads to the maximum COP. This also is related

to the nonanalytic behaviour of the derivative of the correlation near the QCP when

T → 0.

Therefore we can conclude that for the Stirling cycle thermal machines, the sharp

changes and equalization of the correlation functions near the QCP can similarly be

related to the enhancement of efficiency and the COP.

2.4.4 Use of a regenerator in the cycle

The Stirling cycle generally operates with a regenerator, which is a substance that

stores a non-zero heat output from the isochoric cooling process and is reused in

the next isochoric heating process [206]. These heat inputs and outputs need to be

accounted for in the calculation of efficiency.

In our case, the heat release and absorption in the two isochoric processes (QBC

and QDA) remain zero under the physical conditions the cycle is being operated at

the QCP, so there is no heat imbalance. Therefore, one does not require a heat

regenerator in our case and the quantum Stirling cycle works reversibly at the QCP.

Thus, we emphasize that a quantum Stirling cycle should be best operated at the

QCP of the working system to achieve the best performance.
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2.4.5 Experimental feasibility

Now to explore the possible experimental implementation of the present model

of thermal machines using a coupled two-spin system we have to look at the

state-of-the-art quantum technology [193]. We have to find a system where the

coupling constant should be much larger than the possible achievable temperature

in that system. The most suitable choice for this can be the superconducting circuits,

in which the Heisenberg type of interaction between the qubits can be constructed.

In this system, the coupling constant between two qubits can be a few hundred

MHz and the external magnetic field can also be of the same order of magnitude

[193, 207, 208]. Moreover, we can make the temperature of a superconducting circuit

of the order of a few mK [209].

In order to have numerical estimates of potential work output and performance

figures of merits, let us consider the temperature of the hot bath as TH = 0.2 mK and

that of the cold bath as TH = 0.1 mK. Also, we consider that the coupling constant

between two qubits is J = 150 MHz and the external magnetic fields are given by

BL = J and BH = 2J for the cycle operation at the critical point. Using these

parameters, we get the following values of the thermodynamic variables, namely,

the total work done W = 0.6867kBTL = 9.4768 × 10−28 Joule and heat transfer

QH = 1.38kBTL = 19.044×10−28 Joule, QL = 0.6932kBTL = −9.5669×10−28 Joule,

and the efficiency η = 0.4976, which is very close to the Carnot efficiency 0.5.

2.5 Thermal machines with three spins

Next, we consider a three-spin chain, in which each spin interacts with its nearest

neighbour spin via Heisenberg XX exchange interaction. Such a model can be useful

to understand the thermodynamic behaviour of the two spins when all three spins

are in thermal equilibrium and undergo a quantum Stirling cycle. This kind of

scenario also helps us to understand how a subsystem of a total system behaves as

a thermal machine when the total system is operated in a Stirling cycle. In this

Section, we will first analyze the performance of the three spins and then that of

the first two spins.

It is expected that the two spins will exchange energy with both the baths

and the third spin, therefore will not be in thermal equilibrium with the bath.

So, it is a joint interplay of coupling to the baths and the third spin, that affects

the thermal machine performance of the two spins as a working system. This is

strictly different from other models, where the working system itself is in thermal

equilibrium, and its interaction with any additional spin brings it out of equilibrium.
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We note that this model can be extended to study internal heat current, work

imbalance, and microscopic heat management. Such types of performance analysis

of heat engines for a subsystem have been done previously for other engine cycles

also [210, 211, 212, 213, 214, 184, 179].

2.5.1 Case of three spins

The Hamiltonian describing the evolution of three spins can be written as

Htot = B
2

(σz
1 + σz

2 + σz
3) + J1(σ

+
1 σ

−
2 + σ−

1 σ
+
2 ) + J2(σ

+
2 σ

−
3 + σ−

2 σ
+
3 ) , (2.25)

where Ji represents the coupling strength between the ith and the (i + 1)th spin

(i ∈ 1, 2). The eigenvalues and the corresponding normalized eigenstates of this

Hamiltonian are given by

Etot
1 = −x−, Etot

2 = x+, E
tot
3 = −x+, Etot

4 = x−,

Etot
5 = −B

2
, Etot

6 = B
2
, Etot

7 = −3B
2
, Etot

8 = 3B
2
,

(2.26)

and
ketϕ1 = 1√

2(J2
1+J2

2 )
(J1 |100⟩ +

√
J2
1 + J2

2 |010⟩ + J2 |001⟩) ,

|ϕ2⟩ = 1√
2(J2

1+J2
2 )

(J2 |110⟩ +
√
J2
1 + J2

2 |101⟩ + J1 |011⟩) ,

|ϕ3⟩ = 1√
2(J2

1+J2
2 )

(J1 |100⟩ −
√
J2
1 + J2

2 |010⟩ + J2 |001⟩) ,

|ϕ4⟩ = 1√
2(J2

1+J2
2 )

(J2 |110⟩ −
√
J2
1 + J2

2 |101⟩ + J1 |011⟩) ,

|ϕ5⟩ = 1√
J2
1+J2

2

(−J2 |100⟩ + J1 |001⟩) ,

|ϕ6⟩ = 1√
J2
1+J2

2

(−J1 |110⟩ + J2 |011⟩) ,

|ϕ7⟩ = |000⟩ , |ϕ8⟩ = |111⟩ ,

(2.27)

where x± = B
2
±
√
J2
1 + J2

2 . In such a case, the QCP can be found when Etot
7 = Etot

3 ,

i.e., when B = Bc =
√
J2
1 + J2

2 . As the magnetic field increases from B < Bc to

B > Bc, the ground state changes from |ϕ3⟩ to |ϕ7⟩, indicating a QPT.

The state of the system, when in thermal equilibrium with a heat bath at a

temperature T , can be written as (in a unit of kB = 1)

ρtot =
∑
n

P tot
n |ϕn⟩ ⟨ϕn| ,

where the occupation probabilities of the eigenstates |ϕn⟩ are Pn = exp(−Etot
n /T )/Z

and Z =
∑

n exp(−Etot
n /T ) is the partition function.

Now, let us first choose all the three coupled spins as the working system which
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Figure 2.12: Variation of the efficiency of a 3-spin Stirling heat engine as a function
of J2, at the corresponding critical point BL =

√
J2
1 + J2

2 . The parameters chosen
here are J1 = 1, BH = 2, TH = 0.166 and TL = 0.1. All the parameters are made
dimensionless with respect to J1 for three-spin system.

follows the same standard Stirling cycle as described for the two spins in the Sec.

4.2.1. We show in Fig. 2.12 how the efficiency at the QCP behaves in a nonlinear

fashion with change in J2. It is clear that for larger J2, both the work and the

efficiency get reduced. More interestingly, when J2 = 0, the 3-spin working system

can be considered as if there are two coupled spins, along with a third spin, which

is not directly coupled with the first two. In such a case, BL = J1 still represents

the QCP and the system behaves as a heat engine, albeit with a reduced efficiency

than a two-spin heat engine (without the presence of the third spin as in Sec.2.2).

This reduction in the efficiency to a value below the Carnot limit at QCP can thus

be attributed to the mere presence of the third spin, which is not directly coupled

with two coupled spins. We found that due to the presence of the third spin, the

heat absorbed from the hot bath gets reduced, without changing the amount of work

done. It must be borne in mind that this uncoupled spin still remains coupled to

the common heat baths, as the two other spins are, during the isochoric processes

of the cycle. Thus, a third spin, even if not directly coupled, affects the engine

performance of the three-spin working system.

2.5.2 Case of two spins as a working system

The above analysis is valid when we consider all the three spins constituting the

working system of the heat engine. But, if we choose only the first two spins as

the working system, while the third spin acts as an auxiliary one (but coupled to

the common bath), the present model can be considered as a suitable test bed

to understand the effect of this additional spin. A similar kind of work has been

reported in [179], where two coupled ions play the role of the working system that

undergoes a quantum Otto cycle. The performance of this engine is studied in the
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presence of a third ion. Also, a non-conventional heat cycle has been studied using

a two-level system as the working medium, which is coupled to a cavity mode. The

dynamics of the qubit is obtained by taking the partial trace on the cavity’s degrees

of freedom [210]. There are also reports on engine performance of a single-qubit

system, namely, for the quantum Otto cycle [211, 212, 213, 214] and quantum

Brayton cycle [184], where the single qubit has been a part of a larger system.

Let us start with the three coupled spins. In the following, at each stage of the
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Figure 2.13: Variation of the efficiency of the heat engine with J2, when (i) three
spins are considered as a working system (solid line, red) and (ii) two-spin chosen
to be the working system coupled with an auxiliary third spin (dashed line, black).
The parameters chosen here are BL = J1 = 1, BH = 2, TH = 0.166 and TL = 0.1.

quantum Stirling cycle, we will analyze the heat and work for the first two spins

only. In order to assess the effect of the auxiliary system A, we need to find out how

these first two spins evolve during the process. Therefore, we trace out the third

spin partially from the joint density matrix of the three spins.

ρS =Tr3(ρtot) = ρ11 |11⟩ ⟨11| + ρ22 |10⟩ ⟨10| + ρ23 |10⟩ ⟨01|

+ ρ32 |01⟩ ⟨10| + ρ33 |01⟩ ⟨01| + ρ44 |00⟩ ⟨00| ,
(2.28)

where the density matrix elements ρ11, ρ22, ρ23, ρ32, ρ33, and ρ44 depend on the

parameters J1, J2, B and T . This reduced density matrix ρS describes the behaviour

of the subsystem (S) (i.e., first two spins coupled by the interaction J1). Finally, the

generalized form of the density matrix of the system S based on the first two spins

can thus be written as

ρS =
∑
n

P S
n |ψn⟩ ⟨ψn| , (2.29)

where P S
n is the occupation probability of the energy eigenstates |ψn⟩ [see Eq. 2.2]

of the subsystem S.

We consider that the three-spin system maintains a thermal equilibrium. But

when we focus on the first two spins (as a part of a bigger system), they would not
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necessarily maintain the equilibrium (with the heat baths) at different stages of the

cycle. If the coupling J2 is not zero, then the local temperature of this subsystem

S will not be equal to the bath temperature and will change with a change in the

local magnetic field at a finite coupling constant. Thus the stages A→ B and C→
D will not remain isothermal for the two-spin subsystem S. In such a case, the

heat exchanged by the subsystem S with the baths at temperatures TH and TL,

respectively, during those two stages can be calculated as [210]

QAB
S =

∫ BL

BH

Tr

{(
∂ρAB

S

∂B

)
HS (B)

}
dB ,

QCD
S =

∫ BH

BL

Tr

{(
∂ρCD

S

∂B

)
HS (B)

}
dB ,

(2.30)

where ρAB
S and ρCD

S are the reduced density matrices of the subsystem S that evolve

with the changing magnetic fields during the stages A→ B and C→ D, respectively.

Here HS is the part of the Hamiltonian H, relevant to the subsystem S, as given by

B

2
(σz

1 + σz
2) + J1(σ

+
1 σ

−
2 + σ−

1 σ
+
2 ) . (2.31)

The heat transfer of the subsystem S when all the three spins undergo an isochoric

stage (B→ C and D→ A), are given by

QBC
S = UC

S − UB
S , and QDA

S = UA
S − UD

S , (2.32)

where Uµ
S = Tr(ρµSH

µ
S), µ ∈ A,B,C,D are the internal energies of the subsystem S

at the points µ of the cycle, respectively. So, the work done by the subsystem in a

complete cycle is given by

WS = QAB
S +QBC

S +QCD
S +QDA

S . (2.33)

The expressions of the efficiency (for heat engine) and the COP (for refrigerator)

thus can be written as

ηS =
WS

QAB
S +QDA

S

, and ϵS =
QBC

S +QCD
S

|WS|
, (2.34)

where the denominator in the expression of the efficiency represents the total heat

input to the subsystem S and the numerator in the expression of the COP refers to

the total heat released by S.

Now to find the effect of the auxiliary system on the performance of the cycle
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performed by the subsystem we choose that the cycle is working at the QCP (i.e.,

BL = J1 for the heat engine operation and BH = J1 for the refrigerator operation).

The interaction of the working system with an auxiliary system A affects the heat

exchange of the working system with the heat baths.

We plot the efficiency as a function of J2 in the Fig. 2.13 when the subsystem

works as a heat engine. Here, all the quantities are calculated numerically as

their analytic expressions are too large to write down here. The efficiency of the

thermal machine is reduced as the coupling constant J2 with the third spin increases.

Similarly, when the subsystem works as a refrigerator, we can also see that its

performance degrades as J2 increases. A similar result was reported by one of us

[179] in the case of an ion-based Otto engine operating at QCP. Interestingly, we find

that the efficiency at the QCP in a three-spin heat engine is more robust against the

change in the coupling J2 than that in a two-spin heat engine (see Fig. 2.13). This

means that the coupling with an external spin affects substantially the performance

of the thermal machines, when the two spins are not in thermal equilibrium.

2.6 Summary

In this work, we have investigated the performance of a quantum Stirling cycle based

on two coupled spins as a working system, near QCP. Quantum phase transition

in the system has been studied in terms of entanglement and correlation. One can

implement a heat engine cycle or a refrigerator cycle by a suitable choice of the

cycle parameters BL, BH , J , TH , and TL, at very low temperatures and over a

large range of the magnetic field. Near the critical point BL = J , the Stirling heat

engine cycle reaches the Carnot efficiency for BH ≫ J . Similarly, the refrigerator

cycle attains the Carnot limit of coefficient of performance for BL ≪ BH near the

critical point BH = J . However, for larger temperatures ∼ J , the maximum values

of these performance markers deviate substantially from their respective Carnot

limits. Moreover, the maximum achievable work output also does not get associated

with the maximum efficiency.

We have also analysed the behaviour of three spins as a thermal machine. We

have found that as the coupling to a third spin increases, the performance of the

quantum machine near the quantum critical point gets degraded. If we view the

system of three spins as a combination of two spins and one additional spin, the

performance of the two-spin thermal machine gets degraded. This can be attributed

to the fact that the machine does not undergo ideal Stirling stages. For example,

the machine cannot maintain its equilibrium temperature and thus does not have

an isothermal stage, when coupled to the auxiliary spin.



Chapter 3

Effect of anisotropy on the

performance of a quantum Otto

machine

In the previous chapter, we discussed the quasistatic operation of quantum Starling

machines. In this chapter, we will focus on the finite-time operation of QTM,

specifically, we will show the implementation of a quantum Otto engine, and discuss

the role of anisotropy and the finite-time effect on its performance.

3.1 Motivation

Finite power is required in various practical applications of quantum technologies.

Operating a quantum heat engine (QHE) quasistatically leads to null power

generation, which may not be useful in practice. Furthermore, the finite-time

operation of the QTMs may exploit genuine non-classical properties in their

performances [147, 215]. In fact, various QHE models have been studied for finite

times. It has been shown that the non-Markovian character of dynamics can speed

up the control of a quantum system and improve the power output of a thermal

machine [216, 217]. In other studies, it is found that quantum coherence can be

harnessed to increase the power of QHEs [121, 218, 96, 81, 219] and the efficiency at

maximum power (EMP) [122], as well. Furthermore, the role of quantum internal

friction on the work extraction and performance of the QHEs has been investigated

[75, 76, 77, 78, 79, 215].

Coupled spin systems play an important role as a working system for QTMs

[116, 220, 212, 221, 213, 222, 76, 214, 223, 224, 147, 225]. The coupling strength

between the spin can serve as an additional control parameter for the cycle [226].

The anisotropy in the coupling between the spins adds further flexibility. The effect

of such anisotropy on entanglement [200, 227, 228, 229, 230], teleportation [231, 232,

233] and the tripartite uncertainty bound [234] has been studied. Recently, the role

of anisotropy in quantum batteries has been studied [235, 236, 237]. It was shown
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that the maximum power output of this battery can be enhanced by maintaining

the anisotropy at low values.

In this chapter, we study the performance of a QOE with a two-spin working

system coupled to each other via Heisenberg’s anisotropic XY interaction. Our

investigation focuses on different time limits of the cycle: firstly, the quasistatic

operation; then, the nonadiabatic unitary processes; and finally, the incomplete

thermalization in the hot isochoric process. Due to the anisotropy in the interaction

between the spin, the Hamiltonian does not commute at two times and due to this

non-commutation, a genuine quantum feature appears in the finite time operation

of the cycle [238]. We will investigate how the anisotropy affects the engine’s

performance both for the quasistatic and finite-time operation of the engine.

Then we will consider one of the two spins, as the working system. The heat

engine performance of this single spin (the ’local’ spin) in the presence of the other

will be analyzed. Primarily, we aim to investigate how it differs from a single-spin

QHE which does not couple to any other spin. We ask the following question: Can

we get any thermodynamic advantage in such a local scenario? We want to explore

how the anisotropic interaction (and, therefore, the non-commuting nature of the

Hamiltonian affects the performance of a local spin QHE.

In this chapter, we present our QHE model and implementation of the cycle. We

discuss the various limiting cases of the duration of the QHE operation. Further,

we explore the QHE operation of the ‘local’ spin. Then, we discuss potential

experimental implementations of our QHE model.

3.2 Implementation of the quantum Otto cycle

3.2.1 System model

Let’s consider a system of two-spin coupled by an anisotropic XY interaction (with

anisotropy parameter 0 ≤ γ ≤ 1) of Heisenberg type in a transverse time-dependent

magnetic field B(t). The Hamiltonian that describes this system can be written as

(in the unit of ℏ = 1 and considering multiplication factor as 1) [147, 145]

Ĥ(t) = Ĥ0(t) + ĤI , (3.1)

where,

Ĥ0(t) = B(t) (σ̂z
1 + σ̂z

2)

ĤI = J [(1 + γ)σ̂x
1 σ̂

x
2 + (1 − γ)σ̂y

1 σ̂
y
2 ] .
,
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Here Ĥ0 represents the free part, and ĤI represents the interaction between two-spin

with the coupling strength J . Various spin systems are represented by the Pauli

spin operators σ̂x,y,z
i with the subscript i ∈ (1, 2). In the limiting case of γ, we

obtain the isotropic XX interaction Hamiltonian when γ = 0 and the Ising spin

Hamiltonian when γ = 1. The fact is that [Ĥ0, ĤI ] ̸= 0 when γ ̸= 0, which results

in [Ĥ(t1), Ĥ(t2)] ̸= 0, brings in a true quantum feature in the operation of the

finite-time QHE [238, 147].

The eigenvalues and the corresponding eigenvectors of the total Hamiltonian

(Eq. 4.1) are given by

|ψ0⟩ = 1√
2
(a |11⟩ + b |00⟩), E0 = −2K

|ψ1⟩ = 1√
2
(− |10⟩ + |01⟩), E1 = −2J

|ψ2⟩ = 1√
2
(|10⟩ + |01⟩), E2 = 2J

|ψ3⟩ = 1√
2
(c |11⟩ + d |00⟩), E4 = 2K,

(3.2)

where k =
√
B2 + γ2J2, a = B−K√

K2−BK
, b = γJ√

K2−BK
, c = B+K√

K2+BK
and d = γJ√

K2+BK
.

The energy eigenstates (see Eq. 3.2) of the Hamiltonian can be divided into

two categories. The states that are dependent on the system parameters B(t) and

J , namely, |ψ0⟩ and |ψ3⟩, evolve with time. The other ones which are independent

of the system parameters, namely |ψ1⟩ and |ψ2⟩ are the standard Bell states that

remain unchanged with time.

3.2.2 Quantum Otto Cycle and thermodynamic quantities

Figure 3.1: Schematic diagram of the quantum Otto cycle on the entropy (S) Vs
magnetic field (B) plane when it functions as a heat engine. In other types of
thermal machines, the direction of heat flows and work differ.
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In the following, we will discuss the implementation of the four strokes of the

quantum Otto cycle. The schematic diagram of the cycle is shown in Fig. 3.1.

Unitary expansion (A → B) : We assume that the cycle begins with the

working system in thermal equilibrium with the cold bath at temperature TL =

1/βL (kB = 1) at point A. The corresponding thermal state of the system is ρ̂A =

e−βLĤ1/Z1, with Ĥ1 = Ĥ(0) and Z1 = Tr(e−βLĤ
exp
1 ). In this stroke, the working

medium is disconnected from the cold heat bath, and the external magnetic field

is changed from BL to BH (BL < BH) following the protocol B(t) = BL + (BH −
BL)(t/τ), where 0 ≤ t ≤ τ and τ is the timescale of changing the magnetic field from

BL to BH or vice versa. So at point B, the state of the system can be obtained as

ρ̂B = Û(τ)ρ̂AÛ
†(τ), where Û(τ) = T e−i

∫ τ
0 dtĤexp(t) is the time evolution operator, T

indicates the time-ordering. The amount of work done by the system in this process

is given by W1 = ⟨EB⟩ − ⟨EA⟩, where ⟨EA⟩ = Tr(ρ̂AĤ1) and ⟨EB⟩ = Tr(ρ̂BĤ2),

represent the internal energies of the system at A and B, and Ĥ2 = Ĥ(τ) represents

the Hamiltonian of the system at B.

Isochoric heating (B → C): In this stroke, the working medium is connected

with a heat bath at temperature TH (TH > TL), and the external magnetic

field remains fixed at a value BH , so the Hamiltonian of the system remains

fixed. Therefore, there is no work exchange in this stroke. Also, if the process

is carried out for a time th and the relaxation time of the system is trelax, then

the case th >> trelax represents the system is completely thermalized, otherwise,

the system is incompletely thermalized in this process. At the end of this process,

the state of the system, in the case of complete thermalization, can be represented

by ρ̂C = e−βHĤ2/Z2 at temperature TH = 1/βH (kB = 1), with Ĥ2 = Ĥ(τ) and

Z2 = Tr(e−βHĤ2). In the case of incomplete thermalization, the state of the system

can be obtained by solving Eq. 4.30. The system absorbs some amount of heat in

this process which can be calculated as, QH = ⟨EC⟩−⟨EB⟩, where ⟨EC⟩ = Tr(ρ̂CĤ2)

is the internal energy of the system at C.

Unitary compression (C → D): In this stroke, again the working system is

disconnected from the hot heat bath and the external magnetic field is changed from

BH to BL following the protocol B(τ−t), where 0 ≤ t ≤ τ . In this process, the state

of the working system changes to ρ̂D = V̂ (τ)ρ̂C V̂
†(τ), where V̂ (τ) = T e−i

∫ τ
0 dtĤcom(t)

is the time evolution operator with Ĥcom(t) = Ĥexp(τ − 1). The amount of work

done on the system in this process can be obtained as W2 = ⟨ED⟩ − ⟨EC⟩, where

⟨ED⟩ = Tr(ρ̂DĤ1), represent the internal energy of the system at D.

Isochoric cooling (D → A): In this stroke, the working system is connected

with a cold heat bath at temperature TL, and the external magnetic field remains
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Figure 3.2: Variation of the thermodynamic quantities W , QH and QL as a function
of temperature (TH) of the hot bath for different values of the anisotropy parameter
(a) γ = 1, and (b) γ = 0. The other parameters are BL = 1, BH = 4, J = 1, TL = 1.

fixed at BL. If the process is carried out for a time tc, then the case tc >> trelax

represents that the system reaches thermal equilibrium with the heat bath at the

end of this process. The state of the system comes back to the initial state ρA, and

the system releases some amount of heat in this process, which can be obtained as,

QL = ⟨EA⟩ − ⟨ED⟩.

3.2.3 Operation of the quantum Otto cycle as different

thermal machines

In this part, we will study the parameter regimes of different thermal machines’

operation of the cycle [239, 8]. To do that, we have studied the thermodynamic

quantities of the cycle, which are shown in Fig. 3.2. We observed that with the

different choices of the parameters, specifically TH and γ, the cycle can act in a

QHE, a refrigerator, an accelerator, or a heater cycle.

The cycle acts as an engine when the system absorbs some amount of heat from

the hot bath (QH > 0) and releases a portion of it to the cold bath (QL > 0), while

the remaining portion is converted to work (W < 0) in a complete cycle. It acts as

a refrigerator when heat flows in the opposite direction, i.e., QL > 0 and QH < 0,

with the help of a certain amount of work done on the system (W > 0). It acts

as a thermal accelerator when heat flows in the natural direction, i.e., QH > 0 and

QL < 0, as work is done on the system (W > 0). It operates as a heater when the

system releases heat to the hot and cold heat baths, i.e., QH < 0 and QL < 0, with

the assistance of work done on the system (W > 0). From Fig. 3.2, we can see

that the operation regime of different thermal machines varies with the anisotropy

parameter γ.

In our work, we will mainly focus on the heat engine operation. The

thermodynamic quantities of the QHE are as follows. Total work in a complete
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cycle can be obtained as W = W1 + W2 = −(QH + QL). So, the efficiency of the

heat engine is defined as

η = −W1 +W2

QH

=
QH +QL

QH

.

3.3 Operation of the heat engine in different time

limits

In this section, we will focus on the various limiting cases of duration over which

the QHE can be operated.

3.3.1 Quasi-static operation

We first consider that two unitary processes (expansion and compression) in the

cycle are carried out over a long time such that these processes are adiabatic, i.e.,

there is no transition between two energy eigenstates. Furthermore, two isochoric

processes are carried out for long times, so the system is fully thermalized at the end

of these processes. For such long-duration stages, the cycle becomes quasi-static.

The analytical expressions of the internal energies of the working system at A, B,

C, and D for a quasistatic cycle are given below.

At A:

The Hamiltonian at point A of the cycle can be expressed as

HA = H1 =
3∑

n=0

E(1)
n |ψ(1)

n ⟩⟨ψ(1)
n |,

where {|ψ(1)
n ⟩} are the eigenstates of the Hamiltonian H1. As we consider that the

system at A is in thermal equilibrium with the heat bath, the thermal density matrix

is given by

ρA =
e−βH1

Z
=

3∑
n=0

PL
n |ψ(1)

n ⟩⟨ψ(1)
n | (3.3)

where PL
n = e−βLE

(1)
n /Z1 is the thermal occupation probability of the nth eigenstate,

Z1 = 2[cosh(2KLβL) + cosh(2JβL)] is the relevant partition function and βL = 1/TL

is the inverse temperature of the cold bath. So, the average internal energy at point
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A is given by

⟨EA⟩ = Tr(H1ρA) =
3∑

n=0

PnE
(1)
n

= −4KL
sinh 2KLβL

Z1

− 2J
sinh 2JβL

Z1

,

(3.4)

where KL =
√
B2

L + γ2J2.

At B:

The Hamiltonian at point B of the cycle can be expressed as

HB = H2 =
3∑

n=0

E
(2)
i |ψ(2)

n ⟩⟨ψ(2)
n |,

where {|ψ(2)
n ⟩} are the eigenstates of the Hamiltonian H2. We consider that the

unitary time evolution process A → B is carried out adiabatically i.e. the system

follows the instantaneous energy eigenstates. Thus, the state of the system at B can

be written as

ρB =
3∑

n=0

P L
n |ψ(2)

n ⟩⟨ψ(2)
n |. (3.5)

The average internal energy at the point B can be obtained as

⟨EB⟩ = Tr(H2ρB) =
3∑

n=0

PL
n E

(2)
n

= −4KH
sinh 2KLβL

Z1

− 4J
sinh 2JβL

Z1

,

(3.6)

where KH =
√
B2

H + γ2J2.

At C:

As in the isochoric heating process C → D, the system reaches thermal equilibrium

with the bath, so the thermal density matrix at C is given by

ρC =
e−βH2

Z2

=
3∑

n=0

PH
n |ψ(2)

n ⟩⟨ψ(2)
n |, (3.7)

where PH
n = e−βHE

(2)
n /Z2 is the thermal occupation probability of the nth eigenstate,

and Z2 = 2[cosh(2KHβH)+cosh(2JβH)] is the relevant partition function and βH =

1/TH is the inverse temperature of the hot bath.

Similarly, to point A, we can derive the expression of average energy at C which
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is given by

⟨EC⟩ = Tr(H2ρc) = −4KH
sinh 2KHβH

Z2

− 4J
sinh 2JβH

Z2

, (3.8)

At D:

Similarly, to the unitary time evolution process A→ B, we consider that the unitary

time evolution process C → D is also carried out adiabatically. Therefore, the

density matrix at the point D can be written as

ρD =
3∑

n=0

PH
n

∣∣ψ(1)
n

〉 〈
ψ(1)
n

∣∣ . (3.9)

Similarly, to point B, we can derive the average internal energy at point D which is

given by

⟨ED⟩ = Tr(H1ρD) = −4KL
sinh 2KHβH

Z2

− 4J
sinh 2JβH

Z2

, (3.10)

Thermodynamic quantities in a complete cycle for the quasistatic

operation:

The thermodynamic quantities of the cycle can be obtained using the expression of

the internal energies at A, B, C and D [Eq. 3.4, Eq. 3.6, Eq. 3.8, Eq. 3.10]. The

work in a complete cycle is given by

W = W1 +W2 = 4(KL −KH)

[
sinh 2KLβL

Z1

− sinh 2KHβH
Z2

]
. (3.11)

Also, the heat absorbed by the system during the isochoric heating process is given

by

QH = 4KH

[
−sinh 2KHβH

Z2

− sinh 2KLβL
Z1

]
+ 4J

[
−sinh 2JβH

Z2

+
sinh 2JβL

Z1

]
.(3.12)

Therefore, the efficiency becomes

η =
−W
QH

= 1 − KL[sinh(2KLβL) − sinh(2KHβH)] + J [sinh(2JβL) − sinh(2JβH)]

KH [sinh(2KLβL) − sinh(2KHβH)] + J [sinh(2JβL) − sinh(2JβH)]
,

(3.13)

From the above equation, we clearly observe that the efficiency depends on the

temperatures of both hot and cold baths, TH and TL, and also on the magnetic

fields BL and BH and the anisotropy parameter γ. Also, two intermediate energy

levels |ψ1,2⟩ (Eq. 3.2) participate in the engine operation. To compare with

the measurement-based QOE in a coupled two-spin system [147], the quasistatic
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efficiency does not depend on the temperature of the cold bath, and also |ψ1,2⟩ do

not participate in the engine operation.

Now, from Fig. 3.3a, we can observe that the quasistatic efficiency increases

gradually and reaches a steady value at higher values of TH . In the rest of this

Chapter, we consider TH = 10. Further, from the plot of the efficiency as a function

of work (Fig. 3.3b), we find that both the work and the efficiency increase with the

anisotropy parameter γ, which is contrary to the measurement-based QOE where

the quasistatic efficiency decreases with the increase of γ [147]. So, we can adjust

the parameters of the cycle to achieve a higher efficiency performance of the engine.

Figure 3.3: (a) Variation of efficiency (η) as a function of the temperature (TH)
of the hot bath. (b) The parametric plot of the variable anisotropy (γ) on the
work-efficiency plane when TH = 10. γ varies from 0 to 1, the left side of the graph
represents γ = 0 and the right side represents γ = 1. The other parameters are
BL = 1, BH = 4, J = 1, TL = 1. The normalization parameter is J = 1 throughout
this work; therefore, all the quantities are in units of J .

3.3.2 Unitary time evolution for finite times

We next consider that the cycle’s unitary stages (expansion and compression) are

run for finite times. For a larger duration, these stages become adiabatic, while for a

shorter duration, the non-adiabatic features start to appear. We further assume that

during each of the two isochoric stages, the system attains a thermal equilibrium

with the baths.

We next obtain the expressions of the internal energies of the system at B and

D of the cycle. The expressions of the internal energies at A and C will be the same

as written in Sec. 3.3.1.

At B:

The density matrix at point B after the unitary process A→ B can be obtained as

ρB = U(τ)ρAU
†(τ) =

3∑
i=0

PiU(τ)|ψ(1)
i ⟩⟨ψ(1)

i |U †(τ) . (3.14)
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The average internal energy at the point B can be obtained as

⟨EB⟩ = Tr(H2ρB) =
∑

i,j=0,3

PiE
(2)
j ⟨ψ(2)

j |U(τ)|ψ(1)
i ⟩⟨ψ(1)

i |U †(τ)|ψ(2)
j ⟩ + P1E

(2)
1 + P2E

(2)
2

= P0E
(2)
0 (1 − ξτ ) + P3E

(2)
0 ξτ + P1E

(2)
1 + P2E

(2)
2 + P0E

(2)
3 ξτ + P3E

(2)
3 (1 − ξτ )

= −4KH(1 − 2ξτ )
sinh 2KLβ

Z1

− 4J
sinh 2Jβ

Z1

,

(3.15)

where we have used the microreversibility condition |⟨ψ(2)
i |U(τ)|ψ(1)

j ⟩|2 = ξτ for i ̸= j

and |⟨ψ(2)
i |U(τ)|ψ(1)

i ⟩|2 = 1 − ξτ .

Proof of the relation |⟨ψ(2)
3 |U(τ)|ψ(1)

0 ⟩|2 = |⟨ψ(2)
0 |U(τ)|ψ(1)

3 ⟩|2:

|⟨ψ(2)
3 |U(τ)|ψ(1)

0 ⟩|2 = ⟨ψ(2)
3 |U(τ)|ψ(1)

0 ⟩⟨ψ(1)
0 |U †(τ)|ψ(2)

3 ⟩

= ⟨ψ(2)
3 |U(τ)(I− |ψ(1)

1 ⟩⟨ψ(1)
1 | − |ψ(1)

2 ⟩⟨ψ(1)
2 | − |ψ(1)

3 ⟩⟨ψ(1)
3 |)U †(τ)|ψ(2)

3 ⟩ ,

where we have used the completeness relation
∑3

i=0 |ψ
(1)
i ⟩⟨ψ(1)

i | = I. The above

relation can then be rewritten as

⟨ψ(2)
3 |U(τ)U †(τ)|ψ(2)

3 ⟩ − |⟨ψ(2)
3 |U(τ)|ψ(1)

3 ⟩|2

= 1 −
(

1 − |⟨ψ(2)
0 |U(τ)|ψ(1)

3 ⟩|2
)

= |⟨ψ(2)
0 |U(τ)|ψ(1)

3 ⟩|2 .

where in the last line we have used the conservation of probability

|⟨ψ(2)
0 |U(τ)|ψ(1)

3 ⟩|2 + |⟨ψ(2)
3 |U(τ)|ψ(1)

3 ⟩|2 = 1.

In unitary stages for a short time interval τ , nonadiabatic transitions occur

between energy eigenstates that are coupled [240]. In the present case, such

transitions will be induced between the levels |ψ0⟩ and |ψ3⟩. So, the terms

like ⟨ψ(2)
i |U(τ)|ψ(1)

j ⟩ = 0 for i ̸= j and i, j take values from any of the group

(0, 1, 2) or (1, 2, 3).

At D: The density matrix at point D after the unitary process C → D is given

by

ρD =V (τ)ρCV
†(τ) . (3.16)

As done at point B, we can derive the average internal energy at point D as

⟨ED⟩ = Tr(H1ρD) = −4KL(1 − 2ξτ )
sinh 2KHβH

Z2

− 4J
sinh 2JβH

Z2

, (3.17)
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where we have used the microreversibility condition |⟨ψ(2)
i |V (τ)|ψ(1)

j ⟩|2 = ξτ for i ̸= j

and |⟨ψ(2)
i |V (τ)|ψ(1)

i ⟩|2 = 1 − ξτ . Here ξτ = |⟨ψ(2)
i |Û(τ)|ψ(1)

j ⟩|2 = |⟨ψ(1)
i |V̂ (τ)|ψ(2)

j ⟩|2

represents the transition probability between the energy levels. The relation

|⟨ψ(1)
3 |V (τ)|ψ(2)

0 ⟩|2 = |⟨ψ(1)
0 |V (τ)|ψ(2)

3 ⟩|2 can be proven in the same way, as was done

for the previous microreversibility relation after Eq. 3.15.

From the definitions of the unitary time evolution operators (see Sec. 4.2.1) for

the expansion and compression stages [241, 240], we have

U(τ) = T exp

[
−i

∫ τ

0

Hexp(t)dt

]
= T exp

[
−i

∫ 0

τ

Hexp(τ − t′)d(τ − t′)

]
= T exp

[
−i

∫ τ

0

Hexp(τ − t)dt

]
= T exp

[
−i

∫ τ

0

Hcom(t)dt

]
= V (τ).

Clearly, the two-time evolution operators U(τ) and V (τ), in the unitary

compression and expansion stages, respectively, are equivalent.

Thermodynamic quantities in a complete cycle in terms of transition

probability:

Thermodynamic quantities of the cycle can be calculated using the expressions of

the internal energies at A, B, C and D following Sec. 4.2.1. If the system remains

decoupled from the heat bath in a unitary driving process (work extraction process),

the work done in that process is given by

⟨W ⟩ =

∫ τ

0

dtTr

[
ρ(t)

dH(λ(t))

dt

]
= Tr(Hτρτ ) − Tr(H0ρ0) = ⟨E⟩τ − ⟨E⟩0,

which is essentially the difference between the internal energies of the system before

and after the process. The associated heat in this process can be calculated as

⟨Q⟩ =

∫ τ

0

dtTr

[
dρ(t)

dt
H(λ(t))

]
= 0.

because, the diagonal elements of the density matrix remain constant during these

adiabatic (isentropic) stages.

Therefore, the work in the unitary expansion and the compression processes are
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given by

W1 = −4KH(1 − 2ξτ )
sinh 2KLβL

Z1

+ 4KL
sinh 2KLβL

Z1

,

W2 = −4KL(1 − 2ξτ )
sinh 2KHβH

Z2

+ 4KH
sinh 2KHβH

Z2

.

So, the work in a complete cycle is given by

W =4KL

[
sinh 2KLβL

Z1

− (1 − 2ξτ )
sinh 2KHβH

Z2

]
+ 4KH

[
−(1 − 2ξτ )

sinh 2KLβL
Z1

+
sinh 2KHβH

Z2

]
.

(3.18)

Also, the heat absorption during the isochoric heating can be written as

QH = 4KH

[
−sinh 2KHβH

Z2

− (1 − 2ξτ )
sinh 2KLβL

Z1

]
+ 4J

[
−sinh 2JβH

Z2

+
sinh 2JβL

Z1

]
.

(3.19)

Therefore, the expression of efficiency is given by

ητ = −W/QH =

1 − KL [sinh(2KLβL) − (1 − 2ξτ ) sinh(2KHβH)] + J [sinh(2JβL) − sinh(2JβH)]

KH [(1 − 2ξτ ) sinh(2KLβL) − sinh(2KHβH)] + J [sinh(2JβL) − sinh(2JβH)]
.

(3.20)

Figure 3.4: Variation of (a) transition probability (ξτ ) between two instantaneous
energy eigenstates (b) irreversible work W Ir

τ (a) work (Wτ ) in a complete cycle and
(c) efficiency ητ with respect to the duration τ of the unitary processes, for different
values of γ. The other parameters are the same as in Fig. 3.3.

The plots of the transition probability ξτ efficiency ητ (Eq. 3.20 are displayed
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in Fig. 3.4(a)) and Fig. 3.4(d), respectively. In Fig. 3.4 (b), we have shown

how the work in a complete cycle, Wτ , varies with τ for different values of γ. These

plots are produced using QuTip [242] package. The plots indicate that the engine’s

work output and efficiency strongly depend on τ . The work and the efficiency both

degrade for a very small τ and then gradually increase with increasing values of τ

before eventually reaching the adiabatic (quasistatic) value.

As the Hamiltonian does not commute at different times, the system cannot

follow the instantaneous energy eigenstates. This induces a nonadiabatic transition

between the instantaneous eigenstates of the Hamiltonian when the system is driven

by an external control parameter [here, B(t)], for a finite time. Therefore, the

relevant unitary dynamics becomes nonadiabatic. In this case, the work extractable

in a complete cycle gets reduced. An extra amount of work needs to be performed in

order to derive the system in finite time, which can be defined by irreversible work,

given by

W Ir
τ = Wτ→∞ −Wτ , (3.21)

whereWτ→∞ is the work as given by Eq. 3.11. Once the driving process is completed

and the system is coupled with the cold bath, the system dumps more amount of

heat into the cold bath. This degrades the overall performance of the engine in

finite-time unitary processes which can be seen in Fig. 3.4(c), 3.4(d). This is

referred to as the quantum internal friction [75, 76, 77, 78, 79] and is quantified

by W Ir
τ . The irreversible work (W Ir

τ ) is also linked with entropy production in the

system in the finite-time driving process.

The plot of W Ir
τ with respect to τ is shown in Fig. 3.4(b). The plot indicates

that in the short time limit (nonadiabatic regime), the more the anisotropy (γ) is,

the more the irreversible work. Therefore, we can say that irreversibility increases

with the increase of anisotropy (γ). For γ = 1, the system becomes an Ising spin

model, which gives rise to maximum irreversibility in finite time operation, and for

γ = 0, the system becomes a Heisenberg XX model which gives rise to reversible

operation of the cycle irrespective of the time duration of the unitary processes.

In the adiabatic limit, i.e., τ → ∞, there is no transition between the

instantaneous energy eigenstates. Therefore, in the limit τ → ∞, we can write

ξτ = |⟨ψ(2)
0 |Û(τ)|ψ(1)

3 ⟩|2 τ→∞
= 0, which gives rise to Wτ = W , W Ir

τ = 0, and ητ = η.

Therefore, the expression of the quasistatic efficiency (Eq. 3.13) is recovered by

putting ξτ = 0 in the expression of the finite time efficiency (Eq. 3.20).
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3.3.3 Isochoric heating for finite duration

We now consider that the hot isochoric stage is performed for a finite duration

[215, 241]. This leads us to different thermalization scenarios of the working system

depending on the time scale chosen. In the case th ≫ trelax, the system is completely

thermalized; otherwise, the system is partially thermalized. We will investigate

how the different time scales, particularly for incomplete thermalization, affect the

performance of the QHE. We also consider that the time for the unitary processes

is long enough so that these processes are adiabatic in nature.

With the above-mentioned conditions, the states of the working system at points

A and B can be represented by the states as given in Eq. 3.3 and Eq. 3.5

respectively. But, to determine the state at point C, we need to solve the master

equation (Eq. 4.30), and after that, to determine the state at D, we need to solve the

von Neumann equation, which is similar to the situation when there is no dissipative

part in Eq. 4.30.

To understand the thermalization of the working system, the trace distance

between two states, the reference state represented by Eq. 3.7 and the time-evolved

state obtained by solving Eq. 4.30, can be a suitable marker. This is defined as

D(ρ, σ) = 1
2

Tr |ρ− σ| [241]. The plot of the trace distance D with respect to the

duration of the isochoric process th is shown in Fig. 3.5(c). We found that the

thermalization time increases with the increase in the anisotropy γ [147].

The plots of the heat absorption (QHt) of the working system from the hot bath

and the work done in a complete cycle as a function of th are displayed in Fig. 3.5(a),

3.5(b). These plots show that the QHt increases with the increase of th and then

reaches a steady value when the system is completely thermalized. Also, with the

increase in QHt, the system receives more amount of energy to perform work in a

complete cycle. Therefore the work done increases with th, and reaches a steady

state at long times.

The plot of the efficiency (ηt) with respect to th is shown in Fig. 3.5(d). For the

lower value of γ, with the time th, work (Wt) increases slowly than the significant

increase of heat absorption (QHt), which gives rise to a slow increase in ηt. With

increasing γ, for very short values of th, Wt increases significantly rather than the

QHt, which gives rise to a sudden increase in efficiency. In the larger value of th,

both QHt and Wt become steady, ηt becomes steady for all values of γ, which is the

quasistatic value of the efficiency (see Sec. 3.3.1).
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Figure 3.5: Variation of (a) heat absorption of the system (QHt) (b) work in a
complete cycle (c) trace distance (D) between two states, one is for incomplete
thermalization and another is the thermal state at C (d) efficiency of the QHE as a
function time of the isochoric heating process (th) for different values of anisotropy
parameter (γ). For γ = 0, D is around 75, whereas, for γ = 1, D is around 100, in
the unit of J , if the accuracy in the trace distance is considered of the order 10−5.
Other parameters are the same with Fig. 3.3 and Γ = 0.1.

3.3.4 Effect of different cycle forms

So far, we considered only the conventional form of the Otto cycle, in which the

magnetic field is changed only during the times between two isochoric stages,

corresponding to the so-called reciprocating cycle. An alternative approach could

be a continuous (say, sinusoidal) variation of the magnetic field, even during the

isochoric stages. We will next investigate the effect of a hybrid temporal profile of

the magnetic field, which is a mix of both these types [243].

We consider the magnetic field modulation B(k, t) of the working system,

parameterized by a variable k, called a smoothness parameter. So, by changing k

the cycle’s form can be changed. In [244], the amplitude modulation of the coupling

to the baths has also been used - however, this is beyond the scope of this thesis.

We have used the following protocol for the cycle form: In the A→ B stage,

B(t) = [BL + (BH −BL)(t/τ)] exp(−1/k) +ωcon(t) exp(−k) for 0 ≤ t ≤ τ. (3.22)
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In the B → C stage,

B(t) = BH exp(−1/k) + ωcon(τ + t) exp(−k) for 0 ≤ t ≤ tiso. (3.23)

In the C → D stage,

B(t) = [BH +(BL−BH)(t/τ)] exp(−1/k)+ωcon(τ+tiso+t) exp(−k) for 0 ≤ t ≤ τ.

(3.24)

In the D → A stage,

B(t) = BL exp(−1/k) + ωcon(2τ + tiso + t) exp(−k) for 0 ≤ t ≤ tiso. (3.25)

where ωcon(t) = λ∆m sin (∆mt) is a continuous periodic modulation of the magnetic

field. The component of B(t) with the coefficient exp(−1/k) is the one used in

a standard Otto cycle, in which we have used a linear ramp for variation of the

magnetic field from BL → BH or vice versa. We consider ∆mtiso = nπ (n is even)

to make the field the same at B and C, and ∆m(2τ + 2tiso) = lπ (l is an integer) to

make the field the same at D and A. Also, tiso should be large enough to completely

thermalize the system in the isochoric processes.

Based on the above protocol, we studied the performance of the heat engine for

various cycle forms depending on the smoothness parameter k. In this regard, the

plot of the efficiency as a function of anisotropy (γ) is shown in Fig. 3.6. From the

Figure 3.6: Efficiency of the heat engines for various cycles depending on the
smoothness parameter k values as a function of anisotropy parameter γ. We have
chosen ∆m = 0.1, BL = 1, B4 = 4, τ = 10π, tiso = 400π, λ = 1.

plot, it can be seen that for larger k, the efficiency varies with γ in the same way, as

it does without periodic modulation ωcon(t). For other values of k, the performance

of the heat engine degrades. This means that the standard Otto cycle form is the

optimum to get maximum efficiency for a system with a fixed anisotropy. In any
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case, for a fixed value of k, the engine performs better for larger anisotropy.

3.4 Heat engine operation with a local spin

Figure 3.7: Schematic diagram of the quantum Otto cycle on the entropy (S) vs
magnetic field (B) plane when it functions as a heat engine. We consider a single
local spin as a working system when the coupled two-spin global system is operated
in the Otto cycle.

In the previous section, we have considered that the coupled two-spin, let’s say a

global system, operated in the quantum Otto cycle as illustrated in Sec. 4.2.1. In

this section, we will consider a single spin which is a part of the global system, let’s

call it a local system, as a working system. We will study the QOE operation with

such a local spin under the effect of another spin. The primary aim is to investigate

how the QHE operation in a local spin differs from an engine operating with a

single-spin working system which is not under the effect of another spin. We want

to illustrate the thermodynamic benefits of a local approach in the QHE operation.

Quantum heat engines and refrigerators that function with local systems have

received significant attention in recent studies [116, 212, 213, 214, 245, 246, 247,

248, 249]. These studies primarily focused on analyzing the quasistatic operation of

the cycle and also employed the Hamiltonian that commutes at different times. In

contrast, our Hamiltonian does not commute at different times (see Eq. 4.1) which

may give rise to some unique characteristics [147] in the finite time behaviour of

the QHE operating with a local spin working system. The primary objective is to

explore how the non-commuting nature of the Hamiltonian impacts the performance

of a local spin QHE.

Now to study the thermodynamics of a local spin, we will trace out one spin

from the states of the global two-spin system at A, B, C, and D of the cycle (see
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Sec. 4.2.1), which will give us the states of the local spin. If the states of the

global two-spin system are represented by ρj, where j ∈ A,B,C,D (see Sec. 3.3.1,

Sec. 3.3.2), then the reduced density matrices for the first local spin are given by

ρjL = ⟨02|ρj|02⟩ + ⟨12|ρj|12⟩,

where subscript 2 represents tracing out the second spin (any spin can be traced

out). Therefore, the internal energies of the local spin can be obtained as ⟨Ej⟩L =

tr(HjLρjL), where H1L = BLσz for j ∈ A,D, and H2L = BHσz for j ∈ B,C represent

the Hamiltonian of the local spin.

Thermodynamic quantities of a local spin can be defined in a similar way as

that of the global system (see Sec. 4.2.1). Heat absorption in the isochoric heating

process is given by QHL = ⟨EC⟩L − ⟨EB⟩L, work in the unitary expansion is defined

as W1L = ⟨EB⟩L − ⟨EA⟩L, and that in the unitary compression is defined as W2L =

⟨ED⟩L − ⟨EC⟩L, so the work in a complete cycle is WL = W1L +W2L.

3.4.1 Quasistatic operation of the cycle -

Let’s consider that the cycle (see Sec. 4.2.1) for the global system is carried out

quasistatically, therefore, two unitary processes are adiabatic, and the system is

completely thermalized in two isochoric processes. So, the expressions of the internal

energies for the local spin can be derived as follows.

At A:

The density matrix of the local spin at A is given by

ρAL = ⟨02|ρA|02⟩ + ⟨12|ρA|12⟩

=
1

2
[pL0 (b2L |0⟩ ⟨0| + a2L |1⟩ ⟨1|) + pL1 (|1⟩ ⟨1| + |0⟩ ⟨0|)

+ pL2 (|1⟩ ⟨1| + |0⟩ ⟨0|) + pL3 (d2L |0⟩ ⟨0| + c2L |1⟩ ⟨1|)] ,

(3.26)

where PL
0 = exp(2KL/TL)

ZL
, PL

3 = exp(−2KL/TL)
ZL

are the thermal probabilities of the 0th

and 3rd energy levels at A. The average internal energy at point A can be obtained

as
⟨EA⟩ = Tr(HL1ρAL)

=
∑
j=0,1

⟨j|(−BL |0⟩ ⟨0| +BL |1⟩ ⟨1|)ρLA|j⟩

=
BL

2

[
PL
0 (a2L − b2L) + PL

3 (c2L − d2L)
]

= BL

[
(PL

3 − PL
0 )(1 − a2L)

]
,

(3.27)
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where we have used a2L = d2L, b2L = c2L, and a2L + b2L = 2.

At B:

The density matrix of the local spin at B is given by

ρBL =⟨02|ρA|02⟩ + ⟨12|ρA|12⟩

=
1

2
[pL0 (b2H |0⟩ ⟨0| + a2H |1⟩ ⟨1|) + pL1 (|1⟩ ⟨1| + |0⟩ ⟨0|)

+ pL2 (|1⟩ ⟨1| + |0⟩ ⟨0|) + pL3 (d2H |0⟩ ⟨0| + c2H |1⟩ ⟨1|)] .

(3.28)

The average internal energy at point B can be obtained as

⟨EB⟩L = Tr(HL2ρBL)

=
∑
j=0,1

⟨j|(−BH |0⟩ ⟨0| +BH |1⟩ ⟨1|)ρLB|j⟩

=
BH

2

[
PL
0 (a2H − b2H) + PL

3 (c2H − d2H)
]

= BH

[
(PL

3 − PL
0 )(1 − a2H)

]
,

(3.29)

where we have used a2H = d2H , b2H = c2H , and a2H + b2H = 2.

At C:

Similarly to point A, we can derive the average internal energy at point C given by

⟨EC⟩L = Tr(HL2ρCL)

=
BH

2

[
PH
0 (a2H − b2H) + PH

3 (c2H − d2H)
]

=BH

[
(PH

3 − PH
0 )(1 − a2H)

]
,

(3.30)

where PH
0 = exp(2KH/TH)

ZH
, PH

3 = exp(−2KH/TH)
ZH

are the thermal probabilities 0th and

3rd energy levels at C.

At D:

Similarly, to point B, we can derive the average internal energy given by

⟨ED⟩L = Tr(HL1ρDL)

=
BL

2

[
PH
0 (a2L − b2L) + PH

3 (c2L − d2L)
]

=BL

[
(PH

3 − PH
0 )(1 − a2L)

]
.

(3.31)
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Thermodynamic quantities of the local spin are given by

WLq =2
[
BL(1 − a2L) −BH(1 − a2H)

](sinh 2KLβL
Z1

− sinh 2KHβH
Z2

)
QLHq =2BH(1 − a2H)

(
sinh 2KLβL

Z1

− sinh 2KHβH
Z2

)
.

(3.32)

Figure 3.8: Variation of the work difference WG − 2WL as a function of anisotropy
parameter γ. The figure in the inset represents the variation of efficiency for a local
system as a function of the anisotropy parameter (γ). The efficiency of a single spin
QOE is 0.75 for BL = 1, BH = 4. The other parameters are the same as in Fig. 3.3.

Comparison between global and local work extraction:

Now to find the potential figure of merit of the local approach, we will compare the

local work extraction with the global work extraction for the two-spin system. To

do that, we will study the quantity WG − 2WL, where WG (Eq. 3.11) represents

the work for the global two-spin system and WL (Eq. 3.32) represents the work for

a local spin and the multiplication factor 2 comes to consider the contribution from

the two local spins. The quantity WG − 2WL can be calculated as

WG − 2WL =4
[
(KH −BH) − (KL −BL) + (BHa

2
H −BLa

2
L)
]

×
(

sinh 2KLβL
Z1

− sinh 2KHβH
Z2

)
.

(3.33)

The variation of WG − 2WL with respect to γ is shown in Fig. 3.8. The plot

shows that WG < 2WL if the two-spin is coupled by anisotropic interaction. For the

isotropic interaction, i.e. in the limit of γ → 0, KH → BH , KL → BL, a2H → 0, and

also a2L → 0, so WG−2WL = 0. The case γ > 0 gives rise to (KH−BH) < (KL−BL)

and also a2H < a2L, so WG − 2WL < 0 i.e., the sum of the local work from each local

spin surpasses the global work from the global system. Therefore, we can say that

extracting work locally is better than globally in the OOE operation with a two-spin
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system coupled by anisotropic interaction.

Comparison between the efficiencies of a local spin and a single QOE:

The efficiency of the QOE cycle followed by the local spin is given by

ηLq = − WL

QHL

= 1 − BL (1 − a2L)

BH (1 − a2H)
. (3.34)

The expression of the efficiency of the local spin shows that it depends on γ through

aL,H .

If a QOE operates with a single spin working system under the same physical

conditions of BL and BH (or the same compression ratio BL/BH), then the

expression of the efficiency of a single spin working system QOE is given by [8, 97]

ηS = 1 − BL

BH

. (3.35)

We can see that γ ≥ 0 makes the quantity (1 − a2L)/(1 − a2H) ≤ 1, which gives

rise to ηLq ≥ ηS. Therefore, as γ increases the quantity (1 − a2L)/(1 − a2H) becomes

more and more less than 1, which makes ηL (Eq. 3.34) is more and more larger

than ηS (Eq. 3.35), and for γ = 0, we get ηLq = ηS. All of these can be seen in

the plot of efficiency (Fig. 3.8) of the local spin QOE as a function of γ. The local

spin system QOE outperforms the single spin system QOE for γ > 0. Therefore, we

can say that the efficiency of the QOE operating with a local spin working system

in conjunction with another spin with an anisotropic interaction between the spin

can surpass the standard quantum Otto limit.

It can be emphasized that a single spin, in the presence of a second spin, performs

better than a single isolated spin. For N non-interacting spins, each independently

interacting with the bath, the thermodynamic quantities in a complete cycle can

be represented by Q
(N)
H = NQ

(1)
H , Q

(N)
L = NQ

(1)
L and W (N) = NW (1). Then the

efficiency becomes η = 1 − BL

BH
, which is the same as the efficiency of a single-spin

QOE (Eq. 3.35). The interacting spins, on the other hand, exhibit larger efficiency

(for nonzero γ), as can be seen from Eq. 3.34 and the Fig. 3.8.

3.4.2 Finite time operation: unitary processes are time

dependent

In this section, we consider that two unitary processes in the cycle (see Sec. 4.2.1)

for the global two-spin system are carried out in a finite time τ i.e., they are

nonadiabatic in nature. However, the thermalization of the working system in the



76 Chapter 3. Quantum Otto machines with two heat baths

hot isochoric process is complete. The expressions of the internal energies of the

local spin at B and D in terms of transition probabilities are given below. The

internal energies at A and C will be the same with Sec. 3.4.1.

At B:

The density matrix at B is given by

ρBLt =⟨02|ρA|02⟩ + ⟨12|ρA|12⟩

=
1

2
[pL1 (|1⟩ ⟨1| + |0⟩ ⟨0|) + pL2 (|1⟩ ⟨1| + |0⟩ ⟨0|)]

+ PL
0 ⟨02|U(τ)|ψ(1)

0 ⟩⟨ψ(1)
0 |U †(τ)|02⟩ + PL

3 ⟨02|U(τ)|ψ(1)
3 ⟩⟨ψ(1)

3 |U †(τ)|02⟩

+ PL
0 ⟨12|U(τ)|ψ(1)

0 ⟩⟨ψ(1)
0 |U †(τ)|12⟩ + PL

3 ⟨12|U(τ)|ψ(1)
3 ⟩⟨ψ(1)

3 |U †(τ)|12⟩ .
(3.36)

The average internal energy is given by

⟨EB⟩Lτ = Tr(HL2ρBLt)

=
∑
j=0,1

⟨j|(−BH |0⟩ ⟨0| +BH |1⟩ ⟨1|)ρLB|j⟩

= − PH
0 BH |⟨00|U(τ)|ψ(1)

0 ⟩|2 − PH
3 BH |⟨00|U(τ)|ψ(1)

3 ⟩|2

+ PH
0 BH |⟨11|U(τ)|ψ(1)

0 ⟩|2 + PH
3 BH |⟨11|U(τ)|ψ(1)

3 ⟩|2

=BH(PL
3 − PL

0 )(1 − 2λτ ) ,

(3.37)

where we have used the microreversibility conditions |⟨00|U(τ)|ψ(1)
0 ⟩|2 = 1 − λτ ,

|⟨00|U(τ)|ψ(1)
3 ⟩|2 = λτ , |⟨11|U(τ)|ψ(1)

0 ⟩|2 = λτ , |⟨11|U(τ)|ψ(1)
3 ⟩|2 = 1 − λτ .

Proof of the relation |⟨00|U(τ)|ψ(1)
3 ⟩|2 = |⟨11|U(τ)|ψ(1)

0 ⟩|2:

|⟨00|U(τ)|ψ(1)
3 ⟩|2 = ⟨00|U(τ)|ψ(1)

3 ⟩⟨ψ(1)
3 |U †(τ)|00⟩

= ⟨00|U(τ)(I− |ψ(1)
0 ⟩⟨ψ(1)

0 | − |ψ(1)
1 ⟩⟨ψ(1)

1 | − |ψ(1)
2 ⟩⟨ψ(1)

2 |)U †(τ)|00⟩ ,

where we have used the completeness relation
∑3

i=0 |ψ
(1)
i ⟩⟨ψ(1)

i | = I. The above

relation can then be rewritten as

⟨00|U(τ)U †(τ)|00⟩ − |⟨00|U(τ)|ψ(1)
0 ⟩|2

= 1 −
(

1 − |⟨11|U(τ)|ψ(1)
0 ⟩|2

)
= |⟨11|U(τ)|ψ(1)

0 ⟩|2 .

In the last line, we have used the conservation of probability

|⟨00|U(τ)|ψ(1)
0 ⟩|2 + |⟨11|U(τ)|ψ(1)

0 ⟩|2 = 1,

whereas other two terms |⟨01|U(τ)|ψ(1)
0 ⟩|2 = 0, and |⟨10|U(τ)|ψ(1)

0 ⟩|2 = 0.
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At D:

Similarly, to point B, we can derive the expression of the average internal energy at

D given by

⟨ED⟩Lτ = Tr(HL1ρDLτ ) = BL(PH
3 − PH

0 )(1 − 2δτ ) , (3.38)

where we need to use the microreversibility conditions |⟨00|V (τ)|ψ(2)
0 ⟩|2 = 1 − δτ ,

|⟨00|V (τ)|ψ(2)
3 ⟩|2 = δτ , |⟨11|V (τ)|ψ(2)

0 ⟩|2 = δτ , and |⟨11|V (τ)|ψ(2)
3 ⟩|2 = 1 − δτ .

Proof of the relation |⟨00|V (τ)|ψ(2)
3 ⟩|2 = |⟨11|V (τ)|ψ(2)

0 ⟩|2:

Similarly to the above microreversibility condition, we can prove that

|⟨00|V (τ)|ψ(2)
3 ⟩|2 = |⟨11|V (τ)|ψ(2)

0 ⟩|2, where we need to use the conservation of

probability

|⟨00|V (τ)|ψ(2)
0 ⟩|2 + |⟨11|V (τ)|ψ(2)

0 ⟩|2 = 1.

Here λτ = |⟨00|Û(τ)|ψ(1)
3 ⟩|2 = |⟨11|Û(τ)|ψ(1)

0 ⟩|2, and δτ = |⟨11|V̂ (τ)|ψ(2)
0 ⟩|2 =

|⟨00|V̂ (τ)|ψ(2)
3 ⟩|2 represent the non-zero overlap between the basis states of a two-spin

system and the instantaneous energy eigenstates. In the adiabatic limit i.e. τ → ∞,

λτ and δτ become λτ→∞ = a2H/2 and δτ→∞ = a2L/2 respectively, illustrating that

finite time average internal energies approach quasistatic average internal energies

(see Sec. 3.4.1).

Thermodynamic quantities in a complete cycle for the finite time

operation of a local spin QOE:

Thermodynamic quantities of the local spin are given by

WLτ = − 2[
sinh 2KLβL

Z1

[BH(1 − 2λτ ]) −BL(1 − 2δτ→∞)]

+
sinh 2KHβH

Z2

[BL(1 − 2δ) −BH(1 − 2λτ→∞)]],

QLHτ = − 2BH

[
sinh 2KHβH

Z2

(1 − 2λτ→∞) − sinh 2KLβL
Z1

(1 − 2λτ )

]
.

So, the efficiency of the heat engine cycle experienced by the local spin is given by

η = − WL

QLH

= 1 − BL [sinh(2KHβH)(1 − 2δ) − sinh(2KLβL) (1 − 2δτ→∞)]

BH [sinh(2KHβH) (1 − 2λτ→∞) − sinh(2KLβL)(1 − 2λ)]
(3.39)

It can be seen that the finite-time local efficiency depends on the temperatures of

the heat baths as the coefficients u1, u2 depend on the temperatures, whereas the

quasistatic local efficiency does not depend on the temperatures of the heat baths.

Plots of the transition probabilities (λτ , δτ ) with respect to τ are shown in



78 Chapter 3. Quantum Otto machines with two heat baths

Fig. 3.9. If we put the value of λτ and δτ in the expression of efficiency (Eq. 3.39),

we get the plot of efficiency with respect to τ which is shown in Fig. 3.9. This

plot shows an oscillatory dependence of efficiency on τ for γ ̸= 0. Depending on

the exact value of τ in the short time duration, a local spin system QHE can either

underperform or outperform the counterpart which operates in the adiabatic limit.

Thus, by adjusting the time of the unitary processes, the efficiency of a local spin

system QOE can be enhanced beyond its quasistatic limit. In a long time duration

i.e. in the adiabatic limit (τ → ∞), efficiency gradually approaches the adiabatic

(quasistatic) value (see Sec. 3.4.1). In that case, the local spin system efficiency

which is represented by Eq. 3.39 will be reduced to Eq. 3.34.

In the sudden quench limit i.e. τ → 0, the external magnetic field is changed BL

to BH or vice-versa suddenly, in this case, both the δτ and λτ attain their sudden

value which can be obtained as λτ→0 = |⟨00|ψ(1)
3 ⟩|2 = |⟨11|ψ(1)

3 ⟩|2, and δτ→0 =

|⟨11|ψ(2)
3 ⟩|2 = |⟨00|ψ(2)

3 ⟩|2, as in this case Û(τ), V̂ (τ) → 1. The engine’s performance

degraded in this case (see Fig. 3.9). Also, in the adiabatic limit i.e. τ → ∞, both

λτ and δτ reach their adiabatic value λτ→∞ and δτ→∞. In between these two limiting

cases of time, there is an oscillation in δτ , λτ with respect to τ . The oscillation in the

efficiency is mainly because of the oscillation in the transition probabilities δτ , λτ in

finite times of the unitary processes, which can be attributed to the interference-like

phenomena that happen between two probability amplitudes, which can be seen if

we rewrite the λτ , δτ in the form given in Eq. 3.40.

δτ =

∣∣∣∣∣
√

2aL
aLdL − bLcL

⟨ψ(2)
3 |V̂ (τ)|ψ(1)

3 ⟩ −
√

2cL
aLdL − bLcL

⟨ψ(2)
0 |V̂ (τ)|ψ(1)

3 ⟩

∣∣∣∣∣
2

,

λτ =

∣∣∣∣∣
√

2aH
aHdH − bHcH

⟨ψ(2)
3 |Û(τ)|ψ(1)

3 ⟩ −
√

2cH
aHdH − bHcH

⟨ψ(2)
0 |Û(τ)|ψ(1)

3 ⟩

∣∣∣∣∣
2

,

(3.40)

where aH = BH−kH√
k2H−BHkH

, bH = γJ√
k2H−BHkH

, cH = BH+kH√
k2H+BHkH

, dH = γJ√
k2H+BHkH

, and

for aL, bL, cL, dL we need to replace the subscript H by L. Although the oscillation

in δτ is less prominent here compare to λτ in the parameter value we are using for

the engine operation (see Fig. 3.9), in other regions of the parameter, particularly

BH , the oscillation in δτ can be found significant. From Fig. 3.9 we can see that

when λτ goes below the λτ→∞, the finite time QHE outperforms the counterparts

operating in the adiabatic limit (τ → ∞). Also, it can be shown that for γ = 0

efficiency does not change with τ , which is because there is no interference-like effect

in this case [147].

The plot of the efficiency of the local spin QHE with respect to the anisotropy
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Figure 3.9: Variation of the transition probability λτ and δτ on the left axis, and
efficiency of a local spin on the right axis as a function of time of the unitary
processes. The solid line on the top represents the quasistatic value of δτ , at
the bottom represents the quasistatic value of λτ , and in the middle represents
the quasistatic value of the local efficiency respectively. Other parameters γ = 1,
remaining are the same with Fig. 3.3.

parameter γ is shown in Fig. 3.10. It shows that the outperformance increases with

the increase of anisotropy (γ) for the finite time operation of the engine, which is

similar to the measurement-based QOE [147].

Figure 3.10: Variation of efficiency of the local spin heat engine as a function of
anisotropy parameter (γ) for different values of the unitary process time (τ). τ = 20
represents the adiabatic and τ = 0.3 represents the non-adiabatic cases of the unitary
time evolution. The other parameters are the same with Fig. 3.3.

Power Analysis:

As we are studying the finite-time performance of the engine, it is imperative to

explore the power of the engine and its relation to efficiency in this type of local
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spin QHE. The power of the local spin QHE can be defined as

PL =
|WL|

th + tc + 2τ
, (3.41)

where it is assumed that two isochoric processes are carried out over a long time,

but not infinite time so that the states of the working system reach very close to

the reference thermal states in two isochoric processes. The 3D plot of efficiency as

a function of power and the time of the unitary processes is shown in Fig. 3.11.

From this plot, it can be seen that we can have improved efficiency even at maximum

power.

The power can also be boosted if one considers collective dissipation of N

(an even number) non-interacting spins. In terms of the collective spin operators

Jα = 1
2

∑N
i=1 σ

(i)
α , α = x, y, z, we can write the Hamiltonian of such system as

H(t) = −λ(t)ωJz. The collective dissipation, described in terms of the relevant

ladder operators J± = Jx ± iJy, is governed via the following master equation:

ρ̇ = iλ(t)ω [Jz, ρ] + γ (1 + nb)D [J+] ρ+ γnbD [J−] ρ.

The collective dissipation significantly speeds up the thermalization process and

so can boost the power output compared to the case when the spins dissipate

independently [250, 251]. This cooperative boost in power represents a close analog

of the Dicke superradiance (i.e., the collective enhancement of coherent spontaneous

emission from a dense ensemble of atoms).

3.4.3 Experimental Implementation

Heisenberg’s anisotropic XY interaction between two-spin can be constructed using

state-of-the-art technologies [193], particularly in NMR systems or trapped ion

systems. In a typical trapped ion system, the coupling constant J can range from a

few hundred Hz to one kHz [252, 253]. Also, the external magnetic field can be of

the order of a few kHz[253, 254, 255]. Therefore, depending on the value of J , the

time for the unitary processes τ can range from 2µs to a few ms. Also, the working

system needs to be cooled at TL = 50 nK and TH = 500 nK.

3.5 Operation of the cycle as a Refrigerator

A similar type of analysis can be done for the refrigerator operation of the cycle.

In contrast to the heat engine operation, it can be shown that the COP of the

refrigerator degrades as the anisotropy (γ) increases for the quasistatic operation of
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Figure 3.11: Variation of efficiency (ηLτ on the z-axis) of the local spin heat engine as
a function of power and the time of the unitary processes (τ) for γ = 1. Parameters
for the isochoric processes are th = 100, tc = 220, Γ = 0.1. Other parameters are
the same with Fig. 3.3.

the cycle. The COP also declines when the refrigerator is operated for a finite time,

which is similar to an engine.

Also, using the local analysis as that of the heat engine mentioned above, we

can show that the COP of a local spin refrigerator can be enhanced in finite-time

unitary processes, which is similar to the local spin HE operation.

3.6 Summary

We have studied the quantum Otto cycle with a two-spin working system coupled

by anisotropic interaction. The cycle can be operated in different thermal machine

cycles, including a heat engine, refrigerator, accelerator and heater depending on

different temperatures of the hot bath, for a fixed value of the coupling constant

and the cold bath temperature. Among all thermal machines, the quantum Otto

engine (QOE) is studied in different time frames. The role of anisotropy on engine

performance has been investigated. We found that the engine’s efficiency increases

with the increase of the anisotropy parameter (γ) for the quasistatic operation of

the cycle. But, efficiency decreases for finite-time engine operation due to quantum

internal friction. We found that the decrease in efficiency increases with the increase
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of γ, which signifies irreversibility in engine operation which increases with the

increase of γ. In the isochoric heating process, the case of incomplete thermalization

of the working system on the thermodynamic quantities is also discussed. We

observed that heat absorption and work in a complete cycle both increase with

the increase in the time of the process and reach a steady value after a long time.

Further, we studied the QOE performance with a local spin working system,

which is obtained by tracing out one spin from the global two-spin system. We

found that the combined local work extraction from all the spin is larger than the

global work extraction in the two-spin system and the difference between these two

types of work extraction increases with γ. Also, for anisotropic interaction between

two-spin (γ > 0), a local spin QOE outperforms, in terms of efficiency, a single spin

QOE when both function quasistatically with the same cycle parameters. We found

that the efficiency of the local spin heat engine oscillates for the finite time unitary

processes of the global two-spin system. Therefore, a local spin OQE can outperform

the same operating in a long time limit and this outperformance in efficiency is also

associated with the maximum power output by the engine. We have shown that the

oscillation in efficiency of the local spin QOE comes due to the same origin of an

interference-like effect between two probability amplitudes as that of a non-selective

measurement-based QOE.



Chapter 4

Effect of anisotropy on a

measurement-based quantum Otto

engine at finite times

In the previous chapter, we discussed the finite-time operation of a standard QOE,

where the engine operates between two heat baths. In this chapter, we want to

explore how a measurement based-QOE operates in finite time and how it differs

from the finite-time operation of a standard QOE. Also, we will discuss the role of

anisotropy in its performance.

4.1 Motivation

From the time of Maxwell, it was known that work could be extracted from a

single-temperature heat bath using information gained from measurements. This

type of engine is known as Szilard’s engine, in which results of selective measurement

are used to provide feedback on engine operation [14, 256, 257]. Recently, it was also

shown that projective measurement of the ground state can be used to mimic the

release of heat from a system to a cold bath during an isochoric process [215, 223, 258]

in an ion-based QHE. In later works, quantum measurement has been used to fuel

the working system in a QHE, in which the isochoric heating stage in a standard

quantum Otto engine (QOE) is replaced by a non-selective quantum measurement

[214, 257, 259, 260]. Therefore, the engine works with a single heat bath as a heat

shrink and non-selective quantum measurement as a heat source.

A finite-time analysis is also an important aspect of studying QHE, as for

practical applications we need a finite amount of power. Moreover, a QHE in finite

time may show true quantum nature in its performance which may not be possible

to observe in the quasistatic performance.

While the measurement processes and finite-time operation can individually

have substantial effects on the performance of the QHEs, there have been very
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few studies when both protocols are used together. It has recently shown that it is

possible to improve the performance of a single-qubit QHE by suitably choosing the

measurement basis such that the degradation effect due to coherence production

in a standard QOE can be overcome [261]. In this chapter, we will investigate

the finite-time performance of a two-spin QOE by using a non-selective quantum

measurement to fuel the engine.

In this chapter, we will investigate the finite-time performance of a two-spin

QOE by using non-selective quantum measurements to fuel the engine. We aim to

investigate if a measurement-based engine operating in finite time performs better

than when operated quasistatically. We will also discuss the case that if the spins

remain coupled with a heat bath throughout the cycle (including the stages, when

the magnetic fields are varied), how it will affect the engine’s performance.

In this chapter, we introduce the two-spin model of the working system. We

describe different stages of the quantum Otto cycle and the relevant thermodynamic

quantities. Next, we describe the finite-time performance of the cycle. We provide

a theoretical analysis of the thermodynamic quantities in terms of the transition

probabilities. We also compare them with the quasistatic and the sudden limit of

work and efficiency. Also, we study the case when the thermal bath continuously

interacts with the spins, even when the magnetic field is changed.

The role of non-selective measurements:

The heating of a system can be generally understood to be associated with an

increase in its entropy. Usually, a system is heated using a heat bath. This can

be alternatively achieved by applying non-selective quantum measurements on the

working system. In order to ensure that the energy supplied by this measurement is

nonzero, the measurement operator M̂ should not commute with the Hamiltonian,

i.e. [Ĥ(B2), M̂ ] ̸= 0. If ρ̂ is the state before the measurement, the post-measurement

state is usually written as
∑

α M̂αρ̂M̂α, where M̂α = |Mα⟩⟨Mα| is the projection

operator associated to the non-degenerate eigenvalues of the observable M with

eigenstates |Mα⟩, satisfying M̂ †
α = M̂α and

∑
α M̂

2
α = 1. The entropy of the system

increases due to its interaction with the measurement apparatus and this increase

can be considered equivalent to heating. Therefore, the engine works with a single

heat bath as a heat shrink and non-selective quantum measurements as a heat source.
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4.2 System model

We consider a system of two spins coupled by Heisenberg anisotropic XY interaction

in a transverse time-dependent magnetic field B(t) ≥ 0. The Hamiltonian is

represented by (see Eq. 4.1)

Ĥ(t) = B(t) (σ̂z
1 + σ̂z

2) + J [(1 + γ)σ̂x
1 σ̂

x
2 + (1 − γ)σ̂y

1 σ̂
y
2 ] , (4.1)

the Hamiltonian is the same as the previous chapter.

The energy eigenstates (see Eq. 3.2) of the Hamiltonian can be divided into

two categories. The states that are dependent on the system parameters B(t) and

J , namely, |ψ0⟩ and |ψ3⟩, evolve with time. The other ones which are independent

of the system parameters, namely |ψ1⟩ and |ψ2⟩ are the standard Bell states that

remain unchanged with time. We will show in this work that the former ones play

a fundamental role in the behaviour of the measurement-based cycle. Note that in

the limit of γ = 0, the eigenstates |ψ0,3⟩ take the form of product (i.e., disentangled)

states, with the respective eigenvalues ∓2B.

Figure 4.1: Schematic diagram of the Otto cycle with quantum measurements

4.2.1 Quantum Otto cycle and thermodynamic quantities

We consider that the working system undergoes an Otto cycle. The schematic

diagram of the cycle is shown in the Fig. 4.1. The strokes of the cycle are described

below.

Unitary expansion (A to B): The working system is initially prepared in

a thermal state ρ̂A = e−βĤ1/Z at inverse temperature β = 1/T (kB = 1), with
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Ĥ1 = Ĥ(0) and Z = Tr(e−βĤ1). During this stage of the cycle, the system is

decoupled from the heat bath and the external magnetic field is changed from B1

to B2 during a finite time-interval τ . We choose a linear ramp for this change:

B(t) = B1+(B2−B1)(t/τ), where 0 ⩽ t ⩽ τ . The state of the working system at the

end of this stage changes to ρ̂B = Û(τ)ρ̂AÛ
†(τ), where Û(τ) = T exp

[
−ι

∫ τ

0
dtĤ(t)

]
is the relevant time evolution operator, with T indicating the time-ordering. Also,

a certain amount of work, W1 is done by the system, which can be calculated as

W1 = ⟨EB⟩ − ⟨EA⟩, where ⟨EA⟩ = Tr(ρ̂AĤ1) and ⟨EB⟩ = Tr(ρ̂BĤ2) indicate the

expectation values of the internal energies of the system at the start and the end of

this stage. Note that Ĥ2 = Ĥ(τ).

Isochoric heating (B to C): In this stroke, we perform global measurements

of the state of the system [259], in the Bell basis {|ψ±⟩ = 1√
2
(|00⟩ ± |11⟩),

|ϕ±⟩ = 1√
2
(|01⟩ ± |10⟩)}. The leads to a post-measurement state given by ρ̂C =∑4

α=1 M̂αρ̂BM̂α. where M̂α describes the relevant projection operators as follows:

M̂1,2 = |ψ±⟩⟨ψ±| and M̂3,4 = |ϕ±⟩⟨ϕ±|. The heat absorption in this process can be

calculated as QM = ⟨EC⟩ − ⟨EB⟩, where the internal energy ⟨EC⟩ = Tr(ρ̂CĤ2).

Unitary compression (C to D): The working system remains decoupled from

the heat bath in this stage. The magnetic field is driven from B2 to B1 in a finite

time τ using the protocol B(τ − t). The state of the working system at the end

of this stage becomes ρ̂D = V̂ (τ)ρ̂C V̂
†(τ), where V̂ (τ) = T exp

[
−ι

∫ τ

0
dtĤ(τ − t)

]
is the time evolution operator. A certain amount of work, W2, is done on the

system, which can be calculated as W2 = ⟨ED⟩ − ⟨EC⟩, where the internal energy

⟨ED⟩ = Tr(ρ̂DĤ1).

Isochoric cooling (D to A): During this final stage of the cycle, the system

is now coupled with a heat bath at the temperature T , whereas the magnetic field

remains fixed at B1. The system releases some amount of heat QL to the bath, which

can be calculated as QL = ⟨EA⟩ − ⟨ED⟩. We assume that this process is carried out

over a long time so that the system reaches thermal equilibrium with the bath.

Total work done in a complete cycle can be calculated as W = (W1 + W2) =

−(QM + QL). If W < 0, then the total work in a complete cycle is done by the

working system. Also, the working system absorbs some amount of heat in the

measurement process, if QM > 0. Then, the working system in a complete cycle

works as a heat engine. So, the efficiency of the engine is given by η = |W |/QM .
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4.3 Finite time operation of the engine

Usually, quantum heat engines are studied quasistatically. If we allow different

stages of the engine cycle only for finite times, the performance of the engine is

expected to deviate substantially from the steady state. We show in Fig. 4.2, how

the efficiency varies with respect to the duration of the unitary stages. We assume

that each of these stages (unitary expansion and compression) occurs for the same

duration τ . All simulations are done using QuTip [242] software package.

Figure 4.2: Efficiency as a function of duration τ of the unitary stages, for
different values of the anisotropy parameter γ = 0 (dash-dotted red line), γ = 0.3
(point-marked magenta line), γ = 0.6 (dotted green line), γ = 1 (solid blue
line). The other parameters are B1 = 1, B2 = 2, T = 1. All the quantities are
dimensionless with respect to J and also we have used kB = ℏ = 1.

As seen in the Fig. 4.2, the efficiency oscillates at the transient time-scale for

γ ̸= 0. This means that if the unitary stages are executed for a very short time

τ ≳ 0, the efficiency can be larger or smaller than that obtained for a large value

of τ . If the unitary processes are prolonged, the oscillation in efficiency disappears.

Thus, a finite-time measurement-based engine can perform better than the same

engine operating for a longer duration, for a suitable selection of the duration τ for

unitary processes.

Note that, if one would use a local measurement, instead of global ones, similar

oscillatory behaviour in the efficiency of the engine could be seen, for finite-time

operation [214, 262]. Also in these cases, the engine performs better than its

quasistatic counterpart at finite times for specific choices of the local basis.
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4.3.1 Thermodynamic quantities in terms of transition

probabilities

The results as mentioned above can further be analyzed in terms of the transition

probabilities between the instantaneous eigenstates of the Hamiltonian.

The internal energies of the system at four vertices of the QHE diagram in

Fig. 4.1, are derived below.

At A:

The Hamiltonian at point A of the cycle can be expressed as

HA = H1 =
3∑

i=0

E1
i |ψ

(1)
i ⟩⟨ψ(1)

i |

where {|ψ(1)
i ⟩} are the eigenstates of the Hamiltonian H1. As we consider that the

system at A is in thermal equilibrium with the heat bath, the thermal density matrix

is given by

ρA =
e−βH1

Z
=

3∑
i=0

Pi|ψ(1)
i ⟩⟨ψ(1)

i | (4.2)

where Pi = e−βE1
i

Z
is the thermal occupation probability of the ith eigenstate. So,

the average internal energy at point A is given by

⟨EA⟩ = Tr(H1ρA) =
3∑

i=0

PiE
1
i = −2K1

2 sinh 2K1β

Z
− 2J

sinh 2Jβ

Z
. (4.3)

At B:

The Hamiltonian at the point B of the cycle can be expressed as

HB = H2 =
3∑

i=0

E2
i |ψ

(2)
i ⟩⟨ψ(2)

i |

where {|ψ(2)
i ⟩} are the eigenstates of the Hamiltonian H2. The density matrix at

point B after the unitary processes AB can be obtained as

ρB = U(τ)ρAU
†(τ) =

3∑
i=0

PiU(τ)|ψ(1)
i ⟩⟨ψ(1)

i |U †(τ) = P0U(τ)|ψ(1)
0 ⟩⟨ψ(1)

0 |U(τ)†

+ P1|ψ(1)
1 ⟩⟨ψ(1)

1 | + P2|ψ(1)
2 ⟩⟨ψ(1)

2 | + P3U(τ)|ψ(1)
3 ⟩⟨ψ(1)

3 |U †(τ)

(4.4)

where we have used U(τ)|ψ(1)
i ⟩ = |ψ(1)

i ⟩ and ⟨ψ(1)
i |U †(τ) = ⟨ψ(1)

i | for i ∈ (1, 2), as
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these two energy eigenstates remain unchanged with respect to time. The average

internal energy at the point B can be obtained as

⟨EB⟩ = Tr(H2ρB)

=
∑

i,j=0,3

PiE
2
j ⟨ψ(2)

j |U(τ)|ψ(1)
i ⟩⟨ψ(1)

i |U(τ)†|ψ(2)
j ⟩ + E2

1P1 + E2
2P2

=P0E
2
0 |⟨ψ

(2)
0 |U(τ)|ψ(2)

0 ⟩|2 + P3E
2
0 |⟨ψ

(2)
0 |U(τ)|ψ(1)

3 ⟩|2 + E2
1P1 + E2

2P2

+ P0E
2
3 |⟨ψ

(2)
3 |U(τ)|ψ(1)

0 ⟩|2 + P3E
2
3 |⟨ψ

(2)
3 |U(τ)|ψ(1)

3 ⟩|2

=P0E
2
0(1 − ξ) + P3E

2
0ξ + P1E

2
1 + P2E

2
2 + P0E

2
3ξ + P3E

2
3(1 − ξ)

= − 2K2(1 − 2ξ)
2 sinh 2K1β

Z
− 2J

2 sinh 2Jβ

Z
,

(4.5)

where we have used the microreversibility condition |⟨ψ(2)
i |U(τ)|ψ(j)

j ⟩|2 = ξ for

i ̸= j (proof is given below) and |⟨ψ(2)
i |U(τ)|ψ(1)

i ⟩|2 = 1 − ξ. During execution a

unitary stroke in a short interval τ led to a nonadiabatic transition between energy

eigenstates that are coupled [240]. In the present case, such transitions will be

induced between the levels |ψ0⟩ and |ψ3⟩. So, the terms like ⟨ψ(2)
i |U(τ)|ψ(1)

j ⟩ = 0 for

i ̸= j and i, j take values from any of the group (0, 1, 2) or (1, 2, 3).

Proof of the condition |⟨ψ(2)
0 |U(τ)|ψ(1)

3 ⟩|2 = |⟨ψ(2)
3 |U(τ)|ψ(1)

0 ⟩|2:

|⟨ψ(2)
3 |U(τ)|ψ0⟩1|2 = ⟨ψ(2)

3 |U(τ)|ψ(1)
0 ⟩⟨ψ(1)

0 |U †(τ)|ψ(2)
3 ⟩

= ⟨ψ(2)
3 |U(τ)(I− |ψ(1)

1 ⟩⟨ψ(1)
1 | − |ψ(1)

2 ⟩⟨ψ(1)
2 | − |ψ(1)

3 ⟩⟨ψ(1)
3 |)U †(τ)|ψ(2)

3 ⟩

= ⟨ψ(2)
3 |U(τ)U †(τ)|ψ(2)

3 ⟩ − |⟨ψ3|U(τ)|ψ(1)
3 ⟩|2

= 1 − (1 − |⟨ψ(2)
0 |U(τ)|ψ(1)

3 ⟩|2) = |⟨ψ(2)
0 |U(τ)|ψ(1)

3 ⟩|2,
(4.6)

where the identity matrix is given by

I = |ψ(1)
0 ⟩⟨ψ(1)

0 | + |ψ(1)
1 ⟩⟨ψ(1)

1 | + |ψ(1)
2 ⟩⟨ψ(1)

2 | + |ψ(1)
3 ⟩⟨ψ(1)

3 |

⇒ |ψ(1)
0 ⟩⟨ψ(1)

0 | = I− |ψ(1)
1 ⟩⟨ψ(1)

1 | − |ψ(1)
2 ⟩⟨ψ(1)

2 | − |ψ(1)
3 ⟩⟨ψ(1)

3 |,
(4.7)

and also, we have used the conservation of probability

|⟨ψ(2)
0 |U(τ)|ψ(1)

3 ⟩|2 + |⟨ψ(2)
3 |U(τ)|ψ(1)

3 ⟩|2 = 1.

At C:
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Again, the density matrix after the measurement stage can be written as

ρC =
4∑

k=1

MkρBMk

=
∑

i=(0,3),j=(+,−)

Pi|⟨ψj|U(τ)|ψ(1)
i ⟩|2|ψ+⟩⟨ψj| + P1|ψ(1)

1 ⟩⟨ψ(1)
1 | + P2|ψ(1)

2 ⟩⟨ψ(1)
2 |

=P0δ|ψ+⟩⟨ψ+| + P0(1 − δ)|ψ−⟩⟨ψ−| + P1|ψ(1)
1 ⟩⟨ψ(1)

1 | + P2|ψ(1)
2 ⟩⟨ψ(1)

2 |

+ P3(1 − δ)|ψ+⟩⟨ψ+| + P3δ|ψ−⟩⟨ψ−|,
(4.8)

where M †
k = Mk and we have used the microreversibility condition

|⟨ψ+|U(τ)|ψ(1)
0 ⟩|2 = |⟨ψ−|U(τ)|ψ(1)

3 ⟩|2 = δ (proof is given below) and

|⟨ψ−|U(τ)|ψ(1)
0 ⟩|2 = |⟨ψ+|U(τ)|ψ(1)

3 ⟩|2 = 1 − δ.

Proof of the condition |⟨ψ+|U(τ)|ψ(1)
0 ⟩|2 = |⟨ψ−|U(τ)|ψ(1)

3 ⟩|2:

|⟨ψ+|U(τ)|ψ(1)
0 ⟩|2 = ⟨ψ+|U(τ)|ψ(1)

0 ⟩⟨ψ(1)
0 |U †(τ)|ψ+⟩

= ⟨ψ+|U(τ)(I− |ψ(1)
1 ⟩⟨ψ(1)

1 | − |ψ(1)
2 ⟩⟨ψ(1)

2 | − |ψ(1)
3 ⟩⟨ψ(1)

3 |)U †(τ)|ψ+⟩

= ⟨ψ+|U(τ)U †(τ)|ψ+⟩ − |⟨ψ+|U(τ)|ψ(1)
3 ⟩|2

= 1 − (1 − |⟨ψ−|Uτ |ψ(1)
3 ⟩|2) = |⟨ψ−|Uτ |ψ(1)

3 ⟩|2,

(4.9)

where we used the conservation of probability

|⟨ψ+|Uτ |ψ3⟩1|2 + |⟨ψ−|Uτ |ψ3⟩1|2 = 1.

The average internal energy at the point C can be obtained as

⟨EC⟩ = Tr(H2ρC)

= E2
0P0δ|⟨ψ(2)

0 |ψ+⟩|2 + E2
0P0(1 − δ)⟨ψ(2)

0 |ψ−⟩|2 + E2
0P3(1 − δ)|⟨ψ(2)

0 |ψ+⟩|2

+ E2
0P3δ|⟨ψ(2)

0 |ψ−⟩|2 + E2
1P1 + E2

2P2 + E2
3P0δ|⟨ψ(2)

3 |ψ+⟩|2

+ E2
3P3(1 − δ)|⟨ψ(2)

3 |ψ−⟩|2 + E2
3P3(1 − δ)|⟨ψ(2)

3 |ψ+⟩|2 + E2
3P3δ⟨ψ(2)

3 |ψ−⟩|2

= E2
0P0δχ + E2

0P0(1 − δ)(1 − χ) + E2
0P3(1 − δ)χ + E2

0P3δ(1 − χ) + E2
1P1

+ E2
2P2 + E2

3P0δ(1 − χ) + E2
3P3(1 − δ)χ + E2

3P3(1 − δ)(1 − χ) + E2
3P3δχ

= −2K2(1 − 2δ)(1 − 2χ)
2 sinh 2K1β

Z
− 2J

2 sinh 2Jβ

Z
,

(4.10)

where we have used the condition |⟨ψ(2)
0 |ψ+⟩|2 = |⟨ψ(2)

3 |ψ−⟩|2 = χ (proof is given

below) and |⟨ψ(2)
0 |ψ−⟩|2 = |⟨ψ(2)

3 |ψ+⟩|2 = 1 − χ.

Proof of the condition |⟨ψ(2)
0 |ψ+⟩|2 = |⟨ψ(2)

3 |ψ−⟩|2:
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|⟨ψ(2)
0 |ψ+⟩|2 =⟨ψ(2)

0 |ψ+⟩⟨ψ+|ψ(2)
0 ⟩

=⟨ψ(2)
0 |(I − |ψ−⟩⟨ψ−| − |ϕ+⟩⟨ϕ+| − |ϕ−⟩⟨ϕ−|)|ψ(2)

0 ⟩

=1 − ⟨ψ(2)
0 |ψ−⟩⟨ψ−|ψ(2)

0 ⟩ = 1 − |⟨ψ(2)
0 |ψ−⟩|2 = |⟨ψ(2)

3 |ψ−⟩|2,

(4.11)

where we have used the conservation of probability

|⟨ψ(2)
0 |ψ−⟩|2 + |⟨ψ(2)

3 |ψ−⟩|2 = 1.

At D:

Density matrix at point D after the unitary process C → D is given by

ρD = V (τ)ρCV
†(τ)

= P0δV (τ)|ψ+⟩⟨ψ+|V †(τ) + P0(1 − δ)V (τ)|ψ−⟩⟨ψ−|V †(τ) + P1|ψ(1)
1 ⟩⟨ψ(1)

1 |

+ P2|ψ(1)
2 ⟩⟨ψ(1)

2 | + P3(1 − δ)V (τ)|ψ+⟩⟨ψ+|V †(τ) + P3δV (τ)|ψ−⟩⟨ψ−|V †(τ)

(4.12)

The average internal energy at the point D can be obtained as

⟨ED⟩ = Tr(H1ρD)

=
3∑

i=0

⟨ψ(1)
i | {P0δE

1
0 |ψ

(1)
0 ⟩⟨ψ(1)

0 |V (τ)|ψ+⟩⟨ψ+|V †(τ)

+ P0(1 − δ)E1
0 |ψ

(1)
0 ⟩⟨ψ(1)

0 |V (τ)|ψ−⟩⟨ψ−|V †(τ)

+ P3(1 − δ)E1
0 |ψ

(1)
0 ⟩⟨ψ(1)

0 |V (τ)|ψ+⟩⟨ψ+|V †(τ)

+ P3δE
1
0 |ψ

(1)
0 ⟩⟨ψ(1)

0 |V (τ)|ψ−⟩⟨ψ−|V †(τ) + E1
1P1

+ E1
2P2 + P0δE

1
3 |ψ

(1)
3 ⟩⟨ψ(1)

3 |V (τ)|ψ+⟩⟨ψ+|V †(τ)

+ P0(1 − δ)E1
3 |ψ

(1)
3 ⟩⟨ψ(1)

3 |V (τ)|ψ−⟩⟨ψ−|V †(τ)

+ P3(1 − δ)E1
3 |ψ

(1)
3 ⟩⟨ψ(1)

3 |V (τ)|ψ+⟩⟨ψ+|V †(τ)

+ P3δE
1
3 |ψ

(1)
3 ⟩⟨ψ(1)

3 |V (τ)|ψ−⟩⟨ψ−|V †(τ) }|ψ(2)
i ⟩

= P0δE
1
0 |⟨ψ

(1)
0 |V (τ)|ψ+⟩|2 + P0(1 − δ)E1

0 |⟨ψ
(1)
0 |V (τ)|ψ−⟩|2

+ P3(1 − δ)E1
0 |⟨ψ

(1)
0 |V (τ)|ψ+⟩|2 + P3δE

1
0 |⟨ψ

(1)
0 |V (τ)|ψ−⟩|2 + E1

1P1

+ E1
2P2 + P0δE

1
3 |⟨ψ

(1)
3 |V (τ)|ψ+⟩|2 + P0(1 − δ)E1

3 |⟨ψ
(1)
3 |V (τ)|ψ−⟩|2

+ P3(1 − δ)E1
3 |⟨ψ

(1)
3 |V (τ)|ψ+⟩|2 + P3δE

1
3 |⟨ψ

(1)
3 |V (τ)|ψ−⟩|2

= P0E
1
0δλ + P0E

1
0(1 − δ)(1 − λ) + P3E

1
0(1 − δ)λ + P3E

1
0δ(1 − λ) + E1

1P1

+ E1
2P2 + P0E

1
3δ(1 − λ) + P0E

1
3(1 − δ)λ + P3E

1
3(1 − δ)(1 − λ) + P3E

1
3δλ

= −2K1(1 − 2δ)(1 − 2λ)
2 sinh 2K1β

Z
− 2J

2 sinh 2Jβ

Z
,

(4.13)

where we have used the microreversibility condition |⟨ψ(1)
0 |V (τ)|ψ+⟩|2 =
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|⟨ψ(1)
3 |V (τ)|ψ−⟩|2 = λ and ⟨ψ(1)

3 |V (τ)|ψ+⟩|2 = |⟨ψ(1)
0 |V (τ)|ψ−⟩|2 = 1 − λ.

Proof of the condition |⟨ψ(1)
0 |V (τ)|ψ+⟩|2 = |⟨ψ(1)

3 |V (τ)|ψ−⟩|2:

|⟨ψ(1)
0 |V (τ)|ψ+⟩|2 = ⟨ψ(1)

0 |V (τ)|ψ+⟩⟨ψ+|V (τ)|ψ(1)
0 ⟩

= ⟨ψ(1)
0 |V (τ)(I − |ψ−⟩⟨ψ−| − |ϕ+⟩⟨ϕ+| − |ϕ−⟩⟨ϕ−|)V †(τ)|ψ(1)

0 ⟩

= ⟨ψ(1)
0 |V (τ)V †(τ)|ψ0⟩ − |⟨ψ(1)

0 |V (τ)|ψ−⟩|2 = |⟨ψ3|V (τ)|ψ−⟩|2,

(4.14)

where the identity matrix is given by

4∑
k=1

M2
k = I

⇒ I = |ψ+⟩⟨ψ+| + |ψ−⟩⟨ψ−| + |ϕ+⟩⟨ϕ+| + |ϕ−⟩⟨ϕ−|

⇒ |ψ+⟩⟨ψ+| = I − |ψ−⟩⟨ψ−| − |ϕ+⟩⟨ϕ+| − |ϕ−⟩⟨ϕ−|,

(4.15)

and we have used the conservation of the probability

|⟨ψ(1)
0 |V (τ)|ψ−⟩|2 + |⟨ψ(1)

3 |V (τ)|ψ−⟩|2 = 1.

Here Z = 2 cosh(2K1β) + 2 cosh(2Jβ) is the partition function, K1 =√
B2

1 + γ2J2, K2 =
√
B2

2 + γ2J2, ξ = |⟨ψ(2)
0 |Û(τ)|ψ(1)

3 ⟩|2, δ = |⟨ψ+|Û(τ)|ψ(1)
0 ⟩|2,

χ = |⟨ψ(2)
0 |ψ+⟩|2, and λ = |⟨ψ(1)

3 |V̂ (τ)|ψ−⟩|2. Clearly, ξ accounts for the transition

probability between two different eigenstates |ψ3⟩ and |ψ0⟩ during the unitary

expansion. Also, because the instantaneous energy eigenstates |ψ0,3⟩ do not truly

coincide with the measurement basis states |ψ±⟩, their nonzero overlap gives rise

to certain transition between them during measurement and unitary compression

stages of the cycle. This can be seen by rewriting the states |ψ±⟩ in terms of the

instantaneous energy eigenstates, as

|ψ+⟩ = − c2 − d2
a2d2 − b2c2

|ψ(2)
0 ⟩ +

a2 − b2
a2d2 − b2c2

|ψ(2)
3 ⟩

|ψ−⟩ = − c2 + d2
a2d2 − b2c2

|ψ(2)
0 ⟩ +

a2 + b2
a2d2 − b2c2

|ψ(2)
3 ⟩,

(4.16)

where

a2 =
B2 −K2√
K2

2 −B2K2

, b2 =
γJ√

K2
2 −B2K2

, c2 =
B2 +K2√
K2

2 +B2K2

, d2 =
γJ√

K2
2 +B2K2

.(4.17)
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Then the relevant transition probabilities can be written as

δ =

∣∣∣∣− c2 − d2
a2d2 − b2c2

⟨ψ(2)
0 |U(τ)|ψ(1)

0 ⟩ +
a2 − b2

a2d2 − b2c2
⟨ψ(2)

3 |U(τ)|ψ(1)
0 ⟩

∣∣∣∣2 ,
λ =

∣∣∣∣− c2 + d2
a2d2 − b2c2

⟨ψ(1)
3 |V (τ)|ψ(2)

0 ⟩ +
a2 + b2

a2d2 − b2c2
⟨ψ(1)

3 |V (τ)|ψ(2)
3 ⟩

∣∣∣∣2 ,
(4.18)

and

χ =

∣∣∣∣ c2 − d2
a2d2 − b2c2

∣∣∣∣2 . (4.19)

The expressions of the work can be obtained using the expression of the internal

energies as

W1 = 4[K1 −K2(1 − 2ξ)]
sinh 2K1β

Z
, and

W2 = 4(K2 −K1)(1 − 2δ)(1 − 2λ)
sinh 2K1β

Z

Thus, the total work in a complete cycle is given by

W = W1+W2 = −4[K2{(1−2ξ)−(1−2δ)(1−2χ)}−K1{1−(1−2δ)(1−2λ)}]
sinh 2K1β

Z
.

(4.20)

Also, the heat absorption in the measurement stroke is given by

QM = 4K2[(1 − 2ξ) − (1 − 2δ)(1 − 2χ)]
sinh 2K1β

Z
. (4.21)

The efficiency of the heat engine cycle is therefore given by

η =
|W |
QM

= 1 − K1[1 − (1 − 2δ)(1 − 2λ)]

K2[(1 − 2ξ) − (1 − 2δ)(1 − 2χ)]
. (4.22)

The plot of the transition probabilities ξ, δ, χ, and λ with respect to the duration

τ of the individual unitary processes are shown in the Fig. 4.3. Note that δ

and λ exhibit oscillatory dependence on τ , χ remains constant, while ξ displays

a monotonic decay, as τ increases. Though the transition probabilities δ and λ

are the same, for our choice of the measurement basis and the eigenstates of the

Hamiltonian, it is, generally speaking, not a universal feature [261].

The oscillation in the finite time efficiency is primarily due to the oscillation in

the transition probabilities δ and λ. The oscillation in the transition probabilities

δ can be attributed to the interference between the probability amplitudes for the

transitions |ψ(1)
0 ⟩ → |ψ(2)

0 ⟩ and |ψ(1)
0 ⟩ → |ψ(2)

3 ⟩ (see Eq. 4.18). Similarly, oscillation

in λ is due to the transition |ψ−⟩ → |ψ(1)
3 ⟩. The other transition probability ξ, also

known as quantum internal friction [263, 79], is negligible with respect to the δ, χ
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and λ in a measurement-based QHE. As the unitary stages are prolonged, oscillation

in the finite time efficiency disappears and the efficiency approaches the quasistatic

limit (see Sec. 4.3.2).

Note that the two energy eigenstates |ψ1⟩ and |ψ2⟩ are the same as two Bell

states |ϕ±⟩. As these states have been used in measurement basis, their occupation

probabilities do not change in the measurement process, and therefore, these states

do not contribute to the calculation of heat [see Eq. (4.18), (4.19), and (4.21)].

Moreover, the eigenvalues of these eigenstates are independent of the external control

parameter B(t), and thus the contribution of these states to work is also zero [see

Eq. (4.20)]. The only contribution to the engine performance arises from the two

other eigenstates |ψ0⟩ and |ψ3⟩.

Figure 4.3: Transition probabilities as a function of the duration τ of each unitary
stage. We have used the left y-axis for transition probabilities δ and λ (solid black
line), and χ (dash-dotted black line) and the right y-axis for transition probability
ξ (point-marked red line). The other parameters are B1 = 1, B2 = 2, γ = 1.

4.3.2 Quasistatic (adiabatic) limit of the thermodynamic

quantities

In order to calculate the quasistatic value of the efficiency, we consider that the

unitary processes are performed quasistatically, i.e., for an infinite time interval.

Therefore, there are no nonadiabatic transitions between two instantaneous energy

eigenstates, and the unitary processes become adiabatic. So, in such limit, we can

write, ξ = |⟨ψ(2)
0 |Û(τ)|ψ(1)

3 ⟩|2 τ→∞
= 0 (Fig. 4.3). Also, the transition probabilities

between the instantaneous energy eigenstates and the basis states of measurement

take the following forms for very large τ :

δ
τ→∞
= | c2 − d2

a2d2 − b2c2
|2 , λ

τ→∞
= | a2 + b2

a2d2 − b2c2
|2.
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Using the expressions of a2, b2, c2, d2 (see Eq. 4.17) we can indeed find that δ =

χ = λ = 1
2
− γJ/2K2, at the quasistatic limit (see also Fig. 4.3).

Thus, the expressions of the work and heat absorption of the cycle can be

obtained as

Wq = −16(K2 −K1)χ(1 − χ)
sinh 2K1β

Z
,

QMq = 16K2χ(1 − χ)
sinh 2K1β

Z
,

(4.23)

and the quasistatic value of the efficiency is given by

ηq = |Wq|/QMq = 1 − K1

K2

. (4.24)

Clearly, the expression of this efficiency is independent of the temperature of the

heat bath used in the cold isochoric process. This indicates that the performance

of the engine does not depend upon the temperature of the heat bath in the case

of global measurement, which we have used in the isochoric heating stage. We

emphasize that this is unlike the case for a local measurement where the performance

of an engine depends upon the temperature of the heat bath [214]. Also, it can

be seen from the Eq. 4.24 that for nonzero γ, the expression of the efficiency is

very much similar to the efficiency of a single-spin QHE with two heat baths [71]

or a single heat bath and a non-selective quantum measurement at the isochoric

heating stage [264]. This similarity arises as only two intermediate energy levels

(|ψ0,3⟩, as mentioned in Sec. 4.2) contribute to the engine performance, due to

our specific choice of the measurement basis. Therefore, a measurement-based heat

engine with a coupled two-spin working system for global measurement acts like a

two-level (single-spin) heat engine, which is evident in the expression of the efficiency

(Eq. 4.24). Interestingly, even a two-stroke QHE made up of two different working

systems with two different frequencies can lead to the same form of efficiency [265].

However, the expression of efficiency will differ if one uses a coupled two-spin working

system along with two heat baths or with a single bath plus local measurement

instead of global measurement.

4.3.3 Sudden quench limit of the thermodynamic quantities

In order to calculate the sudden limit of the thermodynamic quantities, we consider

that the external magnetic field is changed suddenly (τ → 0) from B1 to B2 or

vice versa. In this case Û(τ), V̂ (τ) → 1, therefore the state of the system does not

change over unitary processes. So, in this limit, the transition probabilities can be
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written as

δ
τ→0
=

∣∣∣∣− c2 − d2
a2d2 − b2c2

⟨ψ(2)
0 |ψ(1)

0 ⟩ +
a2 − b2

a2d2 − b2c2
⟨ψ(2)

3 |ψ(1)
0 ⟩

∣∣∣∣2
=

∣∣∣∣− c2 + d2
a2d2 − b2c2

(a2c1 + b2d1) +
a2 + b2

a2d2 − b2c2
(c1c2 + b1b2)

∣∣∣∣2
= − (B1 −K1 + γJ)2

4K1(B1 −K1)
,

λ
τ→0
=

∣∣∣∣− c2 + d2
a2d2 − b2c2

⟨ψ(1)
3 |ψ(2)

0 ⟩ +
a2 + b2

a2d2 − b2c2
⟨ψ(1)

3 |ψ(2)
3 ⟩

∣∣∣∣2
=

∣∣∣∣− c2 + d2
a2d2 − b2c2

(a2c1 + b2d1) +
a2 + b2

a2d2 − b2c2
(c1c2 + b1b2)

∣∣∣∣2
=

(B1 +K1 − γJ)2

4K1(B1 +K1)
,

ξ
τ→0
= |⟨ψ(2)

0 |ψ(1)
3 ⟩|2

=

∣∣∣∣12(a2c1 + b2d1)

∣∣∣∣2 = −γ
2J2 + (B1 +K1)(B2 −K2)

4K1K2(B2 −B1)(B1 +K1)
.

(4.25)

Also from the Eq. 4.19, we get

χ =
(B2 −K2)(B2 +K2 − γJ)2

4γJ2K2

. (4.26)

Using (4.25) and (4.26) in the expressions of work (Eq. 4.20) and heat absorption

(Eq. 4.21), we obtain the sudden limits of work and heat absorption which are given

by

Ws = −4
B1(B2 −B1)

K1

sinh 2K1β

Z
,

QMs = 4
B1B2

K1

sinh 2K1β

Z
.

(4.27)

Therefore, the efficiency at this limit is given by

ηs =
|Ws|
QMs

= 1 − B1

B2

. (4.28)

Interestingly, the efficiency does not depend on the anisotropy parameter in the

sudden limit. This means that the QOE has the same efficiency for all γ when

τ → 0. This can be seen in the Fig. 4.2 that for our choices of B1 = 1 and

B2 = 2, this is equal to 0.5, irrespective of the values of γ, whereas for large τ ,

the efficiency saturates to a lower value. Therefore, with two spins coupled by

anisotropic interaction as the working system, a measurement-based QHE operating

in the sudden limit performs better than an engine operating in the adiabatic limit.
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4.3.4 Analysis of the heat engine performance

For the quasistatic operation of the cycle, we show the variation of the efficiency

as a function of work in the Fig. 4.5. It is clear from this plot that the engine

performance degrades with the increase of the anisotropy parameter γ. This is

because, as γ increases, the heat absorption in the measurement process increases

and the work output decreases after a slow increase in the lower range of γ. We also

observed that there exists a certain value of γ ∼ 0.46, for which the work output

gets maximized.

Figure 4.4: Variation of the absolute value of the work done Wt (solid black line,
labelled on the left y-axis) and heat absorbed QMt (point-marked red line, labelled
on the right y-axis) as a function of duration τ of the unitary stage. The other
parameters are B1 = 1, B2 = 2, T = 1, and γ = 1.

The variation of the work and heat absorption with respect to the duration τ of

the unitary processes are shown in the Fig. 4.4. Also, the plots of the efficiency

with respect to work are shown in the Fig. 4.5. From these plots, we can see

that a finite-time engine can deliver more work than the same engine operating

in the quasistatic limit with a proper choice of the time interval τ of the unitary

processes. In addition to that, the finite-time engine absorbs less amount of heat

in the measurement process than the same engine operating in the quasistatic

limit. Consequently, when operated for finite times, the engine requires less energy

resource, and still can perform better than its quasistatic counterpart.

Interestingly, this outperforming is further improved for larger anisotropy

parameter γ. When γ = 0, no transition takes place between two instantaneous

energy eigenstates, and the unitary stages remain adiabatic, irrespective of their

duration. Also, there is no interference-like effect between two transition probability

amplitudes as for the anisotropic case, which can be seen below.
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Figure 4.5: The parametric plot of the variable γ on the work-efficiency plane. We
have taken the absolute value of the work. Here the point-marked red line represents
the finite-time value (for τ = 0.1) and the solid black line represents the quasistatic
value. The anisotropy parameter γ varies from 0 to 1. The point 0.5 on the solid
black line corresponds to γ = 0, while the left end of the plot corresponds to γ = 1.
The other parameters are B1 = 1, B2 = 2, and T = 1.

In the limit of γ → 0, the eigenstates and corresponding eigenvectors of the

Hamiltonian Ĥ(t) take the following forms:

|ψ0⟩ = |00⟩ , E0 = −2B

|ψ1⟩ = 1√
2
(− |10⟩ + |01⟩), E1 = −2J

|ψ2⟩ = 1√
2
(|10⟩ + |01⟩), E2 = 2J

|ψ3⟩ = |11⟩ , E3 = 2B.

(4.29)

Clearly, the states |ψ0,3⟩ are no longer entangled, though they differ from the

Bell states |ψ±⟩. Also in this limit, it can be shown using the above eigenstates,

that the transition probabilities as mentioned in the Sec. 4.3.1, are reduced to

δ = λ = χ = 1/2 and ξ = 0, where we used: ⟨ψ(2)
0 |Û(τ)|ψ(1)

3 ⟩ = ⟨ψ(2)
3 |Û(τ)|ψ(1)

0 ⟩ =

⟨ψ(1)
0 |V̂ (τ)|ψ(2)

3 ⟩ = ⟨ψ(1)
3 |V̂ (τ)|ψ(2)

0 ⟩ = 0, and ⟨ψ(2)
0 |Û(τ)|ψ(1)

0 ⟩ = ⟨ψ(1)
3 |V̂ (τ)|ψ(2)

3 ⟩ = 1.

Therefore, for the isotropic case, the efficiency becomes η = 1 −B1/B2, which does

not depend on τ . Thus, the efficiency does not change with respect to τ , as displayed

in the Fig. 4.2. Therefore, operating the engine even for a finite time would lead

to the same efficiency as for the case when operated quasistatically.
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4.4 Always-on coupling to the heat bath

It may not always be possible to decouple a quantum system from its bath, which

acts as a heat bath for the HE operation, depending upon the architecture of the

working system and the bath. Also, there is a cost associated with coupling and

decoupling the working system from a heat bath [55, 266]. In the previous section,

we assumed that the working system is completely isolated from its bath during the

work-delivering stages, so that the stages AB and CD remain unitary. We consider

here that the HE operation is implemented in a type of realistic architecture in

which the working system cannot be decoupled from its bath [266]. It is therefore

necessary to take into account the dissipation of energy from the working system

to the bath during the stages AB and CD. The schematic diagram of the Otto

cycle for always-on bath interaction is shown in Fig. 4.6. This requires solving the

master equation, which is given below, with a time-dependent Hamiltonian under

a dissipative bath. Here, we assume that the remaining two isochoric stages of the

cycle are identical to those mentioned in the Sec. 4.2.1. Furthermore, since the

measurement process is assumed to be instantaneous, the bath will not have any

effect on the system during measurement.

Figure 4.6: Schematic diagram of a quantum Otto cycle with quantum
measurements for always-on bath interaction case.

We consider that the temperature of the heat bath is T and a single spin decays

to the bath. Then the master equation in the interaction picture for two spins can
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therefore be written as [82]

∂ρ̂

∂t
=ι[ρ̂, Ĥ] +

∑
i=1,2

[Γi(t){n(ωi(t)) + 1}(X̂iρ̂X̂
†
i −

1

2
X̂†

i X̂iρ̂−
1

2
ρ̂X̂†

i X̂i).

.+ Γi(t)n(ωi(t))(X̂
†
i ρ̂X̂i −

1

2
X̂iX̂

†
i ρ̂−

1

2
ρ̂X̂iX̂

†
i )] ,

(4.30)

where Γi(t) = 0.1ωα
i (t)e−ωi(t)/ωc is a time-dependent dissipation rate at T = 0,

n(ωi(t)) = [exp
(

ℏωi(t)
kT

)
− 1]−1 is the average number of photons in the bath at the

transition frequencies ωi(t), and ωc is the cut-off frequency of the bath spectral

density. Here α = 1 corresponds to the Ohmic bath spectrum. We have chosen

α = 0.5 (< 1) for the sub-Ohmic spectrum and α = 2 (> 1) for the super-Ohmic

spectrum [267, 268], These rates are time-dependent because of the time-dependence

of the Hamiltonian Ĥ(t) [267, 269]. Note that we are assuming that the Eq. 4.30

remains valid for the time scales involved with the system and the bath dynamics.

This is possible if the bath time scale 1/ωc is much smaller than the system timescale

1/minj(Ej) [where Ej is given by Eq. 4.1] and the duration τ during which the

magnetic field is changed [267].

The jump operators are given in Sec. 1.3.5. Note that K and |ψ0,3⟩ are

functions of B(t), and are therefore time-dependent, which also gives rise to the time

dependence of the jump operators in Eq. 1.35. Such a time dependence of the jump

operators and the bath spectrum makes the evolution of the system non-Markovian.

The heat and work in an open quantum system in the presence of an external drive

are defined by Eq. 1.15 [266]. The total change in the average energy of the system

in a process is given by ∆E(t) = E(t) − E(0), where E(t) = Tr[ρ̂(t)Ĥ(t)] is the

average energy at a time t. As the bath is connected with the system during the

driving stage, the change in energy of the system contains both the heat and the

work:

∆E(t) = W (t) +Q(t). (4.31)

During the stages A→ B and C → D, the working system remains coupled with

the heat bath, therefore, the work during these stages can be calculated as

W1(τ) =

∫ τ

0

Tr[ρ̂A→B(t′)
˙̂
HA→B(t′)]dt′

W2(τ) =

∫ τ

0

Tr[ρ̂C→D(t′)
˙̂
HC→D(t′)]dt′. (4.32)
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Figure 4.7: Heat transfer (QAB) as a function of duration τ of the unitary stages
for Γi(t) = 0 (for the isolated system: solid blue line) α = 0.5 (sub-Ohmic: dashed
maroon line), α = 1 (Ohmic: dotted purple line), and α = 2 (super-Ohmic: dash -
dotted yellow line). . The other parameters are B1 = 1, B2 = 2, T = 1, ωc = 1000,
and γ = 1.
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Figure 4.8: Efficiency (η) as a function of duration τ of the unitary stages for
Γi(t) = 0 (for the isolated system: solid blue line), α = 0.5 (sub-Ohmic: dashed
maroon line), α = 1 (Ohmic: dotted purple line), and α = 2 (super-Ohmic: dash -
dotted yellow line). The other parameters are B1 = 1, B2 = 2, T = 1, ωc = 1000,
and γ = 1.

Similarly, the heat transferred can be calculated as

QAB(τ) =

∫ τ

0

Tr
[

˙̂ρA→B (t′) ĤA→B (t′)
]
dt′

QCD(τ) =

∫ τ

0

Tr
[

˙̂ρC→D (t′) ĤC→D (t′)
]
dt′.

(4.33)

Also, we can calculate the heat in the driving process by using Q(t) = ∆E(t)−W (t)

(Eq. 4.31) if we know the change in internal energy ∆E(t) and work W (t) in these

processes. The heat transfer in the driving process A → B is shown in Fig. 4.7.

Also, the heat transfer QCD in the driving process C → D can be calculated in a

similar way.

So, the total work is given by W = W1 + W2. We calculated the heat transfer
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between the system and the heat bath using the Eq. 4.31. The numerical solution

of the master equation has been done using the 4th-order adaptive Runge-Kutta

method and the numerical integration to calculate the work is done using the

Trapezoidal rule. The heat absorption in the measurement process is calculated

as discussed in the Sec. 4.2.1.

We show in the Fig. 4.8 how the efficiency varies with the duration τ of the

unitary stages, for different values of α. It is clear from this plot that the presence

of the bath has a negligible effect on its performance in a very short time. We

can, therefore, employ such a measurement-based heat engine model whenever one

requires a finite amount of power. One does not have to decouple the working system

ever to obtain a finite amount of power, if the engine runs for a finite duration.

However, the longer the duration τ , the engine efficiency decreases, due to the

dominant effects of the bath over the external control parameter. The dissipative

part of the master equation dominates over the unitary part and therefore, the

system releases more energy to the bath as heat than it releases as the work. Also,

the spins absorb more energy during the measurement stage as τ increases. We

must emphasize that if both the spins are considered to individually interact with

the heat bath [270, 271], the main results will remain the same. Further the efficiency

deteriorates as α increases. This is because, with larger α, the spins decay faster,

and delivers less work in finite τ .

In this section, we have considered the QOE with an always-on single bath along

with a measurement protocol. On the other hand, it is possible for a QOE that

operates with two heat baths to maintain such an always-on coupling, while still

achieving a reciprocating cycle by periodically changing the interaction strength

with the baths. However, as the performance of these QOEs deteriorates in a short

time, such an always-on interaction cannot give us operational advantages over a

measurement-based engine.

4.4.1 Power analysis of the engine

The isochoric cooling process of the system with a thermal bath is not an

instantaneous process, and ideally takes infinite time. To make a power analysis, we

assume that the state of the system becomes very close to a thermal state ρA at a

finite time tc. In order to make an estimate of this closeness we have calculated the

trace distance between two states ρ̂ and ρ̂A, defined as D(ρ̂, ρ̂A) = 1
2

Tr |ρ̂− ρ̂A| [74],

where the state ρ̂ is obtained by solving by the master equation (Eq. 4.30), with

time-independent dissipation rate coefficients, as the magnetic field is kept constant

at B = B1 during this cooling process. Also, as defined in Sec. 4.2.1, ρA represents
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the thermal state at a temperature T (that of the cold bath) when the magnetic field

is maintained at B = B1 (also see Fig. 4.1). We estimated tc, as a time when the

trace distance D(ρ̂, ρ̂A) becomes ∼ 10−2. Such a finite-time analysis of the cooling

process helps us in defining the power of the engine as P = W/(2τ + tc), where τ is

the duration of each unitary stage, and we have assumed that the measurement is

an instantaneous process. The plot of the power as a function of the anisotropy is

shown in Fig. 4.9.

Figure 4.9: Variation of the absolute value of work (black solid line, labelled on
the left y-axis) and power (point-marked red line, labelled on the right y-axis) as a
function of anisotropy parameter γ in the limit of τ → 0. A moderate thermalization
time ranges from 61 to 191 for anisotropy 0 ≤ γ ≤ 1 when the trace distance
D(ρ̂, ρ̂A) ∼ 10−2. The other parameters are B1 = 1, B2 = 2, T = 1.

We found that in the limit of τ → 0, the work does not change substantially

with respect to γ, as compared to the quasistatic limit, which is discussed in

the Sec. 4.3.4. However, the thermalization time increases with the increase in

anisotropy, leading to a reduction of power. Further, if we consider that both spins

interact with the bath, thermalization of the system during the isochoric cooling

process can be achieved at a much faster pace, and hence more power would be

generated by the engine.

4.5 Similarity between a measurement-based

QOE and a local spin QOE

In Chapter 2, we have seen that the transition probability ξτ = |⟨ψ(2)
0 |Û(τ)|ψ(1)

3 ⟩|2 =

|⟨ψ(2)
3 |Û(τ)|ψ(1)

0 ⟩|2 = |⟨ψ(1)
3 |V̂ (τ)|ψ(2)

0 ⟩|2 = |⟨ψ(1)
0 |V̂ (τ)|ψ(2)

3 ⟩|2 between the energy

eigenstates is non-zero in finite time, therefore responsible for the decrease in

performance of a heat engine.
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In Chapters 2 and 3, we have seen the transition probabilities or non-zero

overlap λτ = |⟨00|Û(τ)|ψ(1)
3 ⟩|2 = |⟨11|Û(τ)|ψ(1)

0 ⟩|2, and δτ = |⟨11|V̂ (τ)|ψ(2)
0 ⟩|2 =

|⟨00|V̂ (τ)|ψ(2)
3 ⟩|2 between the instantaneous energy eigenstates and the bare basis

states of the system, and the transition probability or non-zero overlap δ =

|⟨ψ+|Û(τ)|ψ(1)
0 ⟩|2, λ = |⟨ψ(1)

3 |V̂ (τ)|ψ−⟩|2 between the energy eigenstates and

measurement basis states oscillate with respect to time, therefore can give better

performance in finite times.

It will be worth mentioning if we are able to construct a QHE model with a

transition probability between the energy eigenstates and bare basis states of the

working system, then we may see an oscillation in the transition probability in finite

times. This oscillation allows us to improve the performance of QHEs in finite

times than the quasistatic limit. Also, this will be independent of the type of QHE

model. The prescribed type of transition probabilities here are obtained from the

perspective of non-selective measurements protocol and also from a heat engine with

a local working system. Therefore, we can say that the QOE with a local working

system can function like a measurement-based engine for the finite-time operation

of both of them.

4.6 Summary

We have studied the performance of a measurement-based QOE in a two-spin

working system coupled by the Heisenberg anisotropic XY interaction. A

non-selective quantum measurement is used to fuel the engine. The non-commuting

nature of the Hamiltonian at two different times initiates transitions between the

instantaneous energy eigenstates at finite time unitary processes. Furthermore,

the instantaneous energy eigenstates do not coincide with the measurement basis

states which causes some transition between them. The relevant thermodynamic

quantities are calculated in terms of these transition probabilities. We found that

the efficiency oscillates largely at short times when the two-spin system is coupled

by an anisotropic interaction, while for isotropic interaction there is no oscillation.

This oscillation in efficiency is explained in terms of interference between different

transition probabilities at finite times. It is observed that the oscillation in efficiency

dies out as the unitary processes extend for a longer time and eventually the

efficiency approaches the quasistatic limit. Thus, proper control of the duration

of unitary processes during transient times can lead to higher work output and

less heat absorption. As a result, a finite-time engine can be more efficient than

a quasi-static engine. The efficiency further increases with increasing anisotropy

while in the quasistatic limit, it is observed that the performance deteriorates with
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an increase in anisotropy.

Also, we studied the performance of the HE under the condition of always-on

coupling to the heat bath. We found that the presence of the bath has a negligible

effect on its performance in a very short time limit. However, for a longer duration

of the stages AB and CD, its performance degrades. This is primarily due to the

dominance of the bath interaction over external control during these stages.
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Chapter 5

Discussions - Conclusions and

Future directions

In conclusion, we explored the behaviour of QTMs, particularly the heat engines and

refrigerators, in coupled spin systems. We have primarily studied thermal machines

based on Stirling and Otto cycles. We have shown that by suitably choosing the

system and cycle parameters, one can make the cycle work as a heat engine or

a refrigerator. We have shown that the quantum Stirling heat engine and the

refrigerator can function at the Carnot limit of efficiency and COP, respectively,

at the quantum critical point at low temperatures of the baths.

The role of anisotropy in the interaction between the spins is investigated.

We found that the quasistatic efficiency increases with the anisotropy for the

operation of the quantum Otto engine (QOE) with two heat baths. However,

for a measurement-based model, it decreases. For the finite-time operation of

the engines, on the other hand, the efficiencies of a local-spin Otto engine and a

measurement-based one oscillate with respect to the duration of the unitary stages.

Therefore, by selecting this duration suitably, the performance of the engine can

be enhanced more than that of an engine operating in the quasistatic limit. This

behaviour is contrary to the standard Otto engine, which operates between two

heat baths, where efficiency decreases with the duration of the unitary stages. We

demonstrated that the oscillation originates from the interference effect between two

probability amplitudes. We also find that in the case of always-on bath interaction,

the bath has a negligible effect on the performance of a measurement-based QOE in

finite-time operation, which gives it an operational advantage over a standard QOE

which operates between two heat baths.

Our studies show that the coupling between the spin can play various important

roles in the operation and the performance of QTMs. These are summarized as

follows: A quantum thermodynamic cycle can be operated in various QTMs (heat

engine or refrigerator) depending on the value of the coupling constant. A coupling

between the spins leads to a quantum phase transition which in turn causes a

better performance of QTMs. A single-spin QOE can break the standard quantum
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Otto limit of efficiency when the spin is coupled with another auxiliary spin by an

anisotropic interaction. Also, the anisotropic nature of the coupling between the spin

played an important role in the finite-time performance of QTMs. An oscillation

in the efficiency was found due to the anisotropic nature of the coupling which can

also provide better efficiency at finite times. In our studies, we found how and in

what parameter regimes we can get better performance from QTMs. The effect

of anisotropic interaction, measurement-based heating protocols, and the quantum

phase transitions, are the key issues that are addressed in this thesis.

Future directions: In recent years, quantum stochastic thermodynamics has

gained interest, where the quantum version of work statistics, fluctuation theorems

etc. are being studied [32]. Thermodynamic variables become random (stochastic)

at the microscopic level owing to the presence of non-negligible thermal fluctuations

and additional quantum fluctuations at low enough temperatures. A central

question is then to determine their probability distributions (statistics) to assess

their stochastic properties.

In future work, we want to study the work fluctuation (work statistics) [263] in

our measurement-based finite time QOE model as mentioned in Chapter 3. The

main interesting point is that, in our model, there remains quantum coherence in

the energy eigenbasis when γ ̸= 0. But, when γ = 0, there is no coherence in

the energy eigenbasis. Our main goal is to show how coherence plays a role in

work statistics [272]. We are also interested in seeing how the work statistics of

a measurement-based QOE differs from a QOE that operates between two heat

baths [263]. We will also explore the fundamental difference between two strategies

of fueling a quantum heat engine: a heat bath vs the non-selective quantum

measurement.

Also, a many-body Tavis Cummings model represents the interaction of a

single-mode field with N number of two-level systems [273, 274]. This model shows

a QPT at a critical coupling constant value. We want to study QHE operation with

this model as a working system. We will investigate how the many-body working

system plays a role and also what is the impact of the QPT on the QHE behaviour.

In recent years, simulations of QHE on quantum computers have gained attention

because they provide a kind of experimental verification of the QHE models [142,

144, 275]. We want to simulate QHE operation on a quantum computer. We will

consider our measurement-based QOE model where non-selective measurements are

used for the isochoric heating process [147]. The isochoric cooling process is based

on the concept that selective measurement leads the system to its ground state,

which causes it to cool rapidly [223]. In this model, we don’t require any heat bath
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for the operation of the engine. So, this will help us to simulate the heat engine on

a quantum computer.
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second-order quantum phase transition. Physical Review A, 69(2):022107,

2004.

[203] Roya Radgohar and Afshin Montakhab. Global entanglement and quantum

phase transitions in the transverse xy heisenberg chain. Physical Review B,

97(2):024434, 2018.

[204] AA Zvyagin. Thermal entanglement of spin chains with quantum critical

behavior. Physical Review B, 80(14):144408, 2009.



128 References

[205] XL Huang, Huan Xu, XY Niu, and YD Fu. A special entangled quantum heat

engine based on the two-qubit heisenberg xx model. Physica Scripta, 88(6):

065008, 2013.
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