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LAY SUMMARY 

The significance of information regarding the frequency and magnitude of extreme precipitation 

is paramount in hydroclimatic studies. Understanding the magnitude and frequency of precipitation 

extremes is of broad interest to both scientific and managerial communities due to its impact on the 

design of major civil engineering infrastructure, human and aquatic habitats, and water resource 

management. This critical information can be acquired by analyzing the behavior and nature of the upper 

tail of probability distributions that are suitable to represent the daily precipitation datasets. 

The selection of the most appropriate probability distribution is of utmost importance, as an 

incorrect choice can result in either overestimating or underestimating the design precipitation for 

hydraulic infrastructure, leading to adverse consequences. Heavy-tail distributions have proven to be 

more suitable for representing precipitation extremes as opposed to distributions with exponential tails. 

A heavy-tail distribution indicates a higher likelihood of extreme events compared to distributions like 

Exponential, Gamma, and Gumbel. Analyzing tail behavior helps in assessing the likelihood of extreme 

events. 

Given the limitations of simple parametric models in equally fitting the entire range of data, 

hydrologists, climatologists, and statisticians have developed advanced approaches for distribution 

fitting. These approaches prioritize the tails of distributions over the entire dataset, contributing to a 

better understanding of the tail behavior within hydroclimatological datasets. 

However, quantifying and assessing upper tail behavior, such as tail heaviness, is a complex task. 

Typically, three main methods are employed for this purpose: 

1. Threshold-based approaches (e.g., Block Maxima, Peak-over-Threshold) 

2. Quantitative or scalar diagnostic indicators (e.g., shape parameters of common distributions like 

GEV, GP, obesity index (OB), Gini index, Upper tail ratio (UTR), and surprise factor) 

3. Graphical approach (e.g., Mean excess plots, log-log plots, and Hill ratio plots). 

The research presented in this thesis explores various aspect of the approaches mentioned and ask the 

following overarching question: How valid is the choice of the threshold in threshold-based approaches? 

Can scalar indicators help overcome the limitations of threshold-based approaches? Should we rely 

solely on a single graphical tool to diagnose tail behavior, or is a combination of tools preferable? What 

is the actual risk associated with varying tail behavior, and what is the most effective method for 

assessing tail risk information? 

The answers to these questions are explored in the context of Indian precipitation extremes.  
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ABSTRACT 

Daily precipitation extremes play a critical role in the hydrological planning and design of major 

water control structures and are expected to show a changing tendency over time due to climate change. 

The magnitude and frequency of extreme precipitation can be assessed by studying the upper tail 

behavior of probability distributions of daily precipitation datasets. These unexpected low-probability 

events lie within the tail part and have unprecedented consequences, underscoring the importance of 

their accurate estimation and prediction. The primary challenge with conventional distribution fitting 

approaches arises from the limited availability of data pertaining to extreme events. Because of this 

constraint, these methods struggle to effectively model the tails of daily precipitation data, often 

categorizing extreme precipitation events as improbable outliers. Consequently, this leads to an 

underestimation of their likelihood of occurrence. An appealing approach to overcome this impediment 

is the assessment of the tail behavior using some modern-day techniques like advanced threshold-based 

approaches, Quantitative or Scalar diagnostic tools, and Graphical approaches. The thesis concerns the 

development of novel approaches that can assess the tail behavior of precipitation extremes, thereby 

overcoming the limitations associated with old approaches. Characterizing the tail behavior of the daily 

precipitation finds use in the design and risk assessment of water control structures, economic evaluation 

of flood protection projects, flood insurance assessment, land use planning and management, and 

operation of irrigation projects. In the context of climate change, a better understanding of the climate 

extremes in terms of their frequency, magnitude, and spatial and temporal variation is necessary to 

evaluate the implications for risk and resilience. Hence, this thesis presents the study carried out to 

deliver a comprehensive assessment of extreme climatic conditions in India using some novel advanced 

approaches.  

The initial part of the thesis is devoted to the application of threshold-based approaches to 

characterize the daily precipitation datasets over India. The investigation is carried out using the 

approach proposed by Papalexiou et al. (2013), where a Probability ratio mean square error (PRMSE) 

norm, is used to identify the best-fitting distribution to the tails of daily precipitation. Analysis related 

to the spatial-temporal change in the tail behavior of daily precipitation over India from pre- to post-

1970 time periods as per the global climatic shift is done. The results indicate that the heavy-tailed 

distribution fits the tails of daily precipitation for the majority of the grids over India and an increase in 

the heaviness of tails of daily precipitation data over India from pre- to post-1970 time periods is 

observed.  

In the second part, an empirical index known as the “Obesity index” (OB) that can provide a 

quantitative comparison between two distributions by alleviating the shortcomings associated with the 

threshold-based approaches is developed. The OB-based approach is applied to discern the probability 

distribution of daily gridded precipitation data for historical (1951–2004) and future (2006–2099) 
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periods over India into light- and heavy-tailed. Future projections of daily precipitation were obtained 

by downscaling simulations of the Coordinated Regional Climate Downscaling Experiment. 

Subsequently, a comparative analysis between the OB-based approach and threshold-based approaches 

by Nerantzaki and Papalexiou and Papalexiou et al. was conducted. Finally, the application of the OB-

based approach is extended to characterize daily precipitation in Indian Meteorological subdivisions. 

Furthermore, we explored the dependence of the OB on the elevation of grids. Results indicated the 

applicability of heavy-tailed distributions in the representation of daily precipitation over India and 

suggested an OB-based approach as a good alternative diagnostic tool for assessing tail behavior. 

The development of the Comprehensive Decision support system (DSS) was uptaken in the next 

part of the work, where several advanced graphical methods like Concentration profile (CP) plot, 

Concentration adjusted expected shortfall (CAES) plot, Zenga plot, Maximum-to-Sum plot, and 

Discriminant Moment ratio plot were incorporated together. Incorporation of advanced tools alleviates 

the limitations like lack of efficient segregation of the Lognormal distribution from the Regularly 

varying and Subexponential distribution families, associated with the conventional DSS. The robustness 

of the proposed DSS is established through a simulation experiment while the application was done to 

characterize the tails of daily gridded precipitation data over India. It is observed that about 98% of grids 

over India exhibit distributions from heavy-tailed families, which is of paramount concern as this shows 

higher frequency and magnitude of extreme over the Country. 

The final portion of the study is aimed at discussing a comprehensive framework for estimating 

the risk associated with the tails of the daily precipitation datasets. Inferences from the novel approach 

like Concentration Profile (CP) are combined with the standard results from utility theory to develop a 

tool known as a Concentration Map (CM), that assesses the riskiness of datasets taking into account the 

variability of the larger and most relevant events. Risk embedded into the tails was evaluated for gridded 

precipitation datasets for the historical time period (1901–2019) from Indian Meteorological Department 

(IMD), while the simulations from 16 General Circulation Models (GCMs) participating in the Coupled 

Model Intercomparison Project phase 6 (CMIP6) under four Shared Socioeconomic Pathway (SSPs), 

namely, SSP126, SSP245, SSP370 and SSP585 are considered for future (2020-2100). The potential 

spatial and temporal variation of tail risk is done by comparing tail risk estimates from CMIP6 

experiments (SSP126, SSP245, SSP370, SSP585) with historical datasets. Results highlight an overall 

increase in tail risk, particularly in scenarios indicative of anthropogenic influences, Furthermore, the 

analysis is extended to assess the variation in the embedded tail risk associated with daily precipitation 

datasets across different meteorological subdivisions and climate zones based on a Köppen-Geiger (KG) 

climate classification system, during different periods. 

In a changing climate, understanding extreme precipitation events and their associated risks has 

become increasingly crucial. This study has employed advanced techniques and tools to illuminate the 

complexities of India's climate. The findings of this research can serve as a valuable guide for 
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policymakers in preparing for a future marked by more frequent and severe weather events. Local 

decision-makers can use the information provided in this thesis to effectively address the challenges 

presented by shifting climate patterns and formulate appropriate adaptation strategies in their respective 

regions. 
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                                                                                                 CHAPTER 1 

                                                                                           INTRODUCTION  

 

1.1 Overview 

Precipitation is a climatic phenomenon with high spatial and temporal variability. It is treated as 

a continuous random variable bounded at zero and has a Probability Density Function (PDF) comprising 

a decreasing monotonic tail. Precipitation extremes generally lie in the upper tail part of the frequency 

distribution. Often, extreme precipitation events tend to occur rarely, making it difficult to predict their 

magnitudes for higher return periods (i.e., for smaller exceedance probabilities). Several studies have 

acknowledged the shortcomings of exponentially tailed PDFs for representing the daily extreme 

precipitation (e.g., Koutsoyiannis, 2004a, 2004b; Panorska et al., 2007; Papalexiou and Koutsoyiannis, 

2013; Papalexiou et al., 2013; Serinaldi and Kilsby, 2014; Cavanaugh et al., 2015; Beskow et al., 2015; 

Papalexiou and Koutsoyiannis, 2016; Papalexiou et al., 2018). The conventional distribution fitting 

methods cannot adequately fit the tail of daily precipitation data, which results in the exemption of 

extreme precipitation events. Identifying the best-suited probability distribution is a matter of eminent 

significance, as the wrong selection may either overestimate or underestimate the design precipitation 

for hydraulic infrastructure, causing detrimental consequences like floods (e.g., Koutsoyiannis, 2004a, 

2004b; Panorska et al., 2007; Li et al., 2012; Papalexiou and Koutsoyiannis, 2013; Chen and Brissette, 

2014; Serinaldi and Kilsby, 2014; Zhanling et al., 2015; Papalexiou and Koutsoyiannis, 2016; 

Papalexiou et al., 2018). There is a growing accord that precipitation extremes can be suitably 

represented by heavy-tailed distributions, which are an alternative to the exponentially tailed PDFs 

(Wilson and Toumi, 2005; Strupczewski et al., 2011; Papalexiou et al., 2013; Cavanaugh et al., 2015; 

Beck et al., 2017; Wietzke et al., 2020; Moccia et al., 2021; Nerantzaki and Papalexiou, 2022). A heavy-

tailed distribution is one where the upper tails decay as a power law (i.e., tails tend to approach zero less 

rapidly than an exponential tail). These distributions are also referred as “fat-tailed”, “thick-tailed”, or 

“long-tailed” according to various literature (El Adlouni et al., 2008; Foss et al., 2013; Papalexiou et al., 

2013; Nerantzaki and Papalexiou, 2019). A heavy-tail distribution implies that the extremes are more 

likely than those predicted by distributions like Exponential, Gamma, and Gumbel, having exponential 

asymptotic behavior (El Adlouni et al., 2008). Commonly considered heavy-tailed distributions are the 

Pareto Type II distribution, Kappa distribution, Generalized Logistic distribution, Cauchy distribution, 

Fréchet distribution, Weibull distribution with shape parameter 1 , Lognormal distribution, and so 

on (Foss et al., 2013; Pinheiro and Ferrari, 2015; Panahi, 2016). Papalexiou et al. (2013, 2018) intuitively 

defined two broad classes of distributions based on the asymptotic property of tails, viz., (a) sub-

exponential class (heavy-tailed) with tails decreasing more slowly than any exponential tail and (b) 
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super-exponential class or hyper-exponential class (Vela and Rodríguez, 2014) having tails approaching 

zero more rapidly than the exponential tail. 

Several other studies are related to the classification or grouping of probability distribution tails 

according to their general properties and limiting behavior (Ouarda et al., 1994; Werner and Upper, 

2004; El Adlouni et al., 2008). These have reported the existence of five nested classes of distributions 

ordered from heavy to light as    A B C D E  (see Figure 1.1), here stable distributions lie in class 

A, Pareto-type tail distributions in class B, Regularly varying distributions in class C, Subexponential 

distributions in class D, and Exponential distributions in class E. Further, these studies have highlighted 

the importance of selecting a class of distributions that provide the best fit to a dataset, especially for 

the right tail, before selecting a particular model (El Adlouni et al., 2008; Wietzke et al., 2020). 

 

Figure 1.1  Distributions ordered with respect to their upper tails. Distributions are ordered from light-

tailed (from the left) to heavy-tailed (to the right (see El Adlouni et al., 2008). Given that all these classes 

are nested, the class of distributions that belong to class C2 and not to class C1, such that, will be noted 

as C2\C1. For example, the class of sub-exponential distributions that are not regularly varying is noted 

as D\C. 

Characterization of tail behavior helps in understanding the likelihood of the occurrence of 

extremes. In the wake of the inability of simple parametric models to fit the whole range of data equally 

well, hydrologists, climatologists, and statisticians have developed new and advanced approaches for 

distribution fitting required for quantile estimation in such a way that they attach greater weight to the 

tails of distributions than to the whole range of data to help with better characterization of the tails of 

the probability distributions of the hydroclimatological datasets (Coles et al., 2003; Cirillo, 2013; 

Fontanari et al., 2018a; Nerantzaki and Paplexiou, 2019; Nerantzaki and Papalexiou, 2021). However, 

the quantification and assessment of upper tail behavior (i.e., tail heaviness) are not straightforward 

(Cooke et al., 2014). Three main ways that are generally employed to do so include (1) Threshold-based 

approaches (like PMSRE, Bayesian) (Papalexiou et al., 2013; Moccia et al., 2021), (2) Quantitative or 

Scalar diagnostic tools (shape parameter of typical distributions (e.g., GEV, GP), obesity index (OB), 

Gini index, Upper tail ratio (UTR), and surprise factor) (Nieboer, 2011; Cooke et al., 2014; Sartori and 



3 
 

Schiavo, 2015, Smith et al., 2018; Wietzke et al., 2020), (3) Graphical interpretation (Mean excess plots, 

log-log plots, Hill ratio plot) (Hill, 1975; El Adlouni et al., 2008; Ghosh and Resnick, 2010; Das and 

Ghosh, 2016; Langousis et al., 2016; Konapala et al., 2017; Fontanari et al., 2018a, b, Nerantzaki and 

Papalexiou, 2019). 

 

1.2 Motivation 

1.2.1 Need to characterize the daily precipitation datasets over India using threshold-based 

approaches (Papalexiou et al., 2013, Nerantzaki and Papalexiou, 2019) 

 

The threshold-based approach provides inferences associated with the frequency and magnitude 

of extreme events by segregating the extreme events from the precipitation data and fitting a suitable 

probability distribution function to them. As per the classical extreme value theory, the block maxima 

(BM) extracted from a time series resemble one of the three limiting distributions, namely, (i) Gumbel 

distribution (i.e., Extreme Value Type I distribution); (ii) Fréchet distribution (i.e., Extreme ValueType 

II distribution); and (iii) reversed Weibull (i.e., ExtremeValue Type III distribution) (Fisher and Tippett, 

1928; Gnedenko, 1943, Jenkinson, 1955; Coles et al., 2001; Langousis et al., 2016). In the case of annual 

maximum daily precipitation (i.e., BM per year), Gumbel and Fréchet distributions were found to be 

appropriate to model the behavior of extremes as both possess unbounded upper tail behavior 

(Koutsoyiannis, 2004; Papalexiou and Koutsoyiannis, 2013; De Michele, 2019). The inferences from 

the BM approach are observed to be dependent on the selection of block size (i.e., either annual or 

seasonal maxima, etc.). The selection of the annual maxima (AM) from daily precipitation records at a 

location may distort the tail behavior of their probability distribution as it might miss a few of the largest 

daily precipitation events from a particular year. As the BM approach discards a large portion of 

information from available data, the estimated distribution parameter exhibits significant variability and 

becomes sensitive to outliers (Coles et al., 2003; Langousis et al., 2016). Another way of modeling 

extreme precipitation is based on the peak-over-threshold (POT) approach. In the POT approach, a 

sample is extracted from a daily precipitation series by selecting all observations above an arbitrary 

threshold u (Chow, 1964). As the threshold increases, such samples tend to follow generalized Pareto 

distribution (GPD) (e.g., Balkema and de Haan, 1974; Pickands, 1975). Many studies from the past 

revealed that the findings based on the POT approach are generally more efficient than the BM approach 

(Cunnane, 1973; Caires, 2009; Villarini et al., 2011; Moccia et al., 2019). Despite its advantages, the 

use of POT is less prevalent than BM due to (i) the presence of serial dependence in identified peaks 

and (ii) ambiguity in the selection of an optimum threshold for the identification of peaks (e.g., Beguería, 

2005; Mailhot et al., 2013; Serinaldi and Kilsby, 2014; Kiran and Srinivas, 2021).  

To avoid the loss of information about the extreme precipitation, as in the case of the BM 

approach and the selection of arbitrary threshold in the case of the POT approach, an annual exceedance 
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series (AES) can be used for demarcating the tail of daily precipitation data. An AES approach has the 

advantage of better representing the exact tail of the parent distribution. After finalizing the tail of daily 

precipitation data, the distribution fitting can be accomplished using the probability ratio mean square 

error (PRMSE) norm proposed by Papalexiou et al. (2013). PRMSE norm-based tail-fitting of the 

probability distributions yields unbiased estimates of the parameters of distributions and also compares 

the fits of various probability distributions (e.g., Papalexiou et al., 2013, 2018; Moccia et al., 2019). The 

discussion above signifies the need to apply the AES-based approach to find the best-suited distribution 

based on the PRMSE norm that can describe the extreme daily precipitation in India. 

1.2.2 Need for the development of an empirical index that can provide a quantitative comparison 

between two distributions and alleviate the shortcomings associated with the threshold-based 

approaches 

 

Diagnostics that are based on the graphical interpretation of distributions utilize, for instance, 

mean excess plots, log-log plots, or the generalized Hill ratio plot (Hill, 1975; Ghosh and Resnick, 2010; 

Nieboer, 2011; Cooke et al., 2014; Das and Ghosh, 2016; Roth et al., 2016) for assessing the tail behavior 

of distributions. These methods are sensitive to the selection of a threshold for segregating the tail part 

of the distribution and need visual interpretation for assessing tail behavior, making the graphical 

methods more time-consuming. Also, these graphical methods are usually restricted to certain classes 

of distributions; hence, a quantitative comparison of tail heaviness between two or more distributions 

belonging to different classes is difficult. Although there are recent attempts to make graphical tools like 

the mean excess function more objective (Nerantzaki and Papalexiou, 2019), yet graphical methods are 

hardly feasible when a high number of samples are to be compared. Hence, there is a need for 

quantitative or scalar, objective, and easily applicable indicators. Cooke and Nieboer (2011) proposed 

the concept of the obesity index (OB) to diagnose the behavior of the distribution tail. The OB is a 

quantitative, scalar, and easy-to-use indicator that measures tail heaviness (Wietzke et al., 2020). The 

concept of the OB was proposed based on the heuristic that a heavy-tailed sample usually has a few 

large values compared to the other values (Cooke and Nieboer, 2011; Cooke et al., 2014). The concept 

overcomes the limitations associated with graphical or threshold-based approaches (Wietzke et al., 

2020). The major advantage associated with the OB is that it does not require assuming any threshold 

for segregating the tail part of a distribution (i.e., it can measure the heaviness of the distribution tail 

without referring to the limiting behavior of a distribution) (Nieboer, 2011; Cookeet al., 2014). This 

approach checks how far the largest sample values occur from the main body of the probability 

distribution, which is also known as the principle of “a single big jump”. This principle can form a basis 

for determining the presence of sub-exponentiality in the data. Furthermore, the index is an empirical 

measure and can be computed directly from the data without assuming any form of distribution function. 

The above discussion signifies the need to explore and develop the OB index further and to assess its 
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utility for performing a diagnosis and characterizing the heaviness of tails of daily gridded precipitation 

data over India. 

1.2.3 Need to develop a Comprehensive Decision Support System (DSS) to characterize the tails of 

the dataset by alleviating the limitation of Conventional DSSs 

 

The scalar indices are definitely easy to use, but their application is restricted only to identifying 

the behavior of the tail as light or heavy. For example, an OB > 0.75 for a data set indicates the presence 

of a heavy tail (i.e., heavier than exponential tail) but does not identify the suitable distribution class 

(i.e., the family of distributions) or model (i.e., distribution). The importance of identifying the class of 

distributions that provides the best fit to the upper tail of a dataset before selecting a particular model 

has been highlighted by many researchers like El Adlouni et al. (2008), Ehsanzadeh et al. (2010) and 

Martel et al. (2013). A practical approach to select the appropriate class of distribution for a dataset 

considering its right tail (i.e., extreme) is termed as Decision support system (DSS). The conventional 

DSS proposed by El Adlouni et al. (2008) and Ehsanzadeh et al. (2010) utilizes various graphical 

approaches such as MEF plot, log-log plot, and the generalized Hill ratio plot to characterize the tails of 

distributions (Hill, 1975; Beirlant et al., 2004; Ghosh and Resnick, 2010; Nieboer, 2011; Cooke et al., 

2014; Roth et al., 2016; Das and Ghosh, 2016; Nerantzaki and Papalexiou, 2019). However, the 

conventional DSSs have some shortcomings like (i) consideration of LN as a part of class D due to more 

conservative results (i.e., overestimation) in the quantile estimation study and (ii) unavailability of 

suitable criteria to discriminate amongst the classes C, D, and LN (Ehsanzadeh et al., 2010; Martel et 

al., 2013). This discussion suggests the need for the development of a comprehensive DSS that can 

alleviate the shortcomings of the conventional DSS. Overall, there is a dearth of attempts to incorporate 

some advanced graphical methods into the conventional DSS to improve the characterization of tails of 

datasets.  

1.2.4 Need for a framework to assess the relative risk associated with the tails of the daily 

precipitation 

 

Extreme climatic events, such as extreme rainfall and temperature, profoundly impact human 

lives and society. The pattern of extreme precipitation has undergone substantial changes worldwide 

caused due to global warming, and these modifications are evident in terms of changes in both the 

frequency and magnitude of precipitation (Westra et al., 2014). Understanding of the altered frequencies 

and magnitude can be examined based on the assessment of the tails of the probability distributions. 

Identification of the upper tail behavior, as well as quantification of the associated risk, becomes 

important for risk mitigation. While numerous ways are present to characterize the tail of distribution 

for daily precipitation, there is a notable lack of dialogue regarding the associated risks linked with these 

tails (i.e., extreme events). Value-at-Risk (VaR) and Expected Shortfall (ES) are the common risk 

measures; however, they are not preferred when the tails of the datasets tend to follow skewed heavy-
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tailed distribution due to their inability to measure the actual risk dispersed in the tail. Several 

concentration measures, such as the Lorenz Curve and Gini index, can efficiently represent the risk for 

the skewed distributions through the construction of new risk indicators. These measures can effectively 

investigate and identify the relevant facts as well as statistical regularities of the datasets based on some 

analytical and geometrical properties (related to the Lorenz curve). The efficacy of the new risk 

indicators to quantify the tail risk of skewed distributions has not been tested yet for characterizing the 

hydroclimatic datasets. Hence, this discussion highlights the need for the development of a framework 

to assess the relative risk associated with the tails of distributions of daily precipitation over India.  

Overall, recognizing and appropriately accounting for heavy tails in precipitation datasets is 

crucial for several reasons. Firstly, it can help in the assessment of the likelihood of rare and severe 

precipitation events to equip us against the potential risks linked to floods and other hydrological 

hazards. Secondly, changes in the tail behavior of precipitation distributions can provide insight into the 

shifts in extreme event frequency and intensity under changing climate. This understanding is vital for 

assessing climate change impacts and devising effective adaptation strategies. 

1.3  Objective of the study  

The following objectives have been set for this thesis based on the motivations listed in the 

foregoing section. 

1. To characterize the daily precipitation dataset over India using a threshold-based approach 

and assess the temporal change in the tail behavior due to climatic shift in the 1970s. 

2. To characterize the tail behavior of daily precipitation probability distributions over India 

using the Empirical Indices. 

3. To develop a comprehensive Decision Support System for the characterization of 

probability distribution tails for daily precipitation.   

4. To develop a framework for assessing the embedded risk associated with the tails of the 

daily precipitation over India. 

 

1.4 Thesis Outline  

A chapter-wise breakup and the summary of the proposed thesis work as follows: 

Chapter 1: Introduction  

An introductory background about the precipitation, extreme events, heavy and light tail 

distributions, implications of underestimating tails, Classes of distributions, and different ways to assess 

the tail heaviness are discussed to provide a broader outlook on the research area. The introduction is 
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followed by stating the motivation behind carrying out the present work along with the objectives of 

this thesis.  

Chapter 2: Literature Review 

A comprehensive literature review on the fundamentals of tails, techniques or approaches used 

for the characterization of tails, and assessment of embedded tail risk in the context of this thesis, along 

with the details of the literature related to extremes under changing climate over India, has been 

discussed. Various important studies done by researchers over the past few decades reporting the 

presence of heavy tails in the precipitation datasets are put forward. Several innovative techniques used 

worldwide for assessing tail heaviness are reviewed and analyzed for the scope of further development 

of the proposed research area.  

Chapter 3: Assessment of temporal change in the tails of the probability distribution of daily 

precipitation over India due to climatic shift in the 1970s 

This chapter presents a conventional threshold-based approach given by Papalexiou et al. (2013) 

that makes use of the annual exceedance series and is used to determine the best-suited distribution 

based on the Probability Ratio Mean Square Error (PRMSE) norm. The approach is applied to the Indian 

daily gridded precipitation dataset, and an attempt is made to assess the tail behavior of the daily 

precipitation dataset and the temporal change in the tail behavior over India from pre-to post-1970 time 

periods as per the global climatic shift at the grid level and regional level. The assessment of temporal 

changes in magnitude and frequency of extreme precipitation due to climatic shifts is also taken to 

produce the severity maps over India.  

Chapter 4:  Characterizing the tail behavior of daily precipitation probability distributions over India 

using the Obesity Index 

This chapter proposes an algorithmic approach based on a novel scalar upper tail indicator known 

as the ‘Obesity Index’, that can quantitatively diagnose the heaviness of distribution tails without 

assuming any threshold for segregating the tails, thereby alleviating the limitation of previous threshold-

based approaches. The step-by-step algorithm for determining OB using the bootstrapping technique 

helpful for reliable discrimination of various distribution tails is provided. A simulation study 

recognizing the behavior of the OB for the variation in the shape and scale parameter of various 

distributions is presented by generating samples from four commonly used probability distribution 

functions, namely, Pareto, Weibull, Lognormal, and Gamma. Investigation related to adequate sample 

length and the optimum number of random samples required for the application of the algorithm is also 

presented. Investigation into the sensitivity of precipitation quantiles to the change in OB corresponding 

to various non-exceedance probabilities is also undertaken. In this study, the OB approach was used to 

discern the probability distribution of the daily gridded precipitation data for historical and future 
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periods over India into light and heavy tails. Also, a comparative analysis between the OB-based 

approach and threshold-based approach by Papalexiou et al. (2013) and Nerantzaki and Papalexiou 

(2019) is provided to examine their ability to characterize the probability distributions of the daily 

gridded precipitation over India into two broad classes of distribution that are, subexponential and 

exponential/hyper-exponential. The OB-based approach is extended to examine the change in tail 

behavior over time by considering various climate change scenarios from the Coordinated Regional 

Climate Downscaling Experiment-South Asia (CORDEX-SA). Exploration of the dependence of the 

obesity index on the amount of the annual maximum daily precipitation and the elevation of grids across 

India is also shown in the chapter. The presents the spatial variation of OB with respect to the elevation 

across India and its relation with the climatology of the country. Different results grouped for each of 

the subdivisions of India are also presented.  

Chapter 5: A comprehensive Decision Support System (DSS) for the characterization of probability 

distribution tails for daily precipitation 

In this chapter, a novel algorithmic framework of a comprehensive DSS useful for selecting the 

appropriate class of distribution, specifically focusing on the right tail of a dataset, is presented. The 

proposed DSS incorporates advanced graphical methods like concentration profile (CP) plot, 

Concentration adjusted expected shortfall (CAES) plot, Zenga plot, maximum-to-sum plot, and 

Discriminant Moment ratio plot (DMR) plot, in a precise manner, either as an identification test or a 

confirmatory test to categorizes different classes of distributions like classes B\A (Pareto type), C\B 

(regularly varying), D\C (subexponential), E (Exponential type), hyper exponential class (outside class 

E) and LN (Lognormal) distribution (the limiting case between class C and D), thereby alleviates the 

shortcomings associated with the conventional DSS. The robustness of the proposed DSS over the 

conventional approaches is established through a simulation study where sample data of different 

lengths from representative probability distributions belonging to various classes (e.g., D, C\B, B\A, E, 

etc.) and limiting case LN are generated and reclassified successfully into their respective classes. 

Furthermore, the chapter presents the evaluation of the influence of sample length on the effective 

implementation of the DSS. Finally, the utility of the proposed DSS is demonstrated through its 

application to daily gridded precipitation data over India.  

Chapter 6: Assessment of embedded risk in precipitation tails over India through Concentration 

Profiles: A multi-model assessment from CMIP6 experiments 

In this Chapter, inferences from tools like ‘Concentration Profile’, which are used to estimate the 

tail variability of any distribution, are incorporated into a risk function to construct a new risk measure, 

which can directly determine the risk associated with the tails of different probability distributions. A 2-

dimensional map, known as a ‘Concentration Map’ (CM), is utilized to assess the riskiness of different 

datasets. A simulation experiment is presented, which helps in understanding the nature and variation 
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of risk based on the risk function parameter values. Consequently, the utility of the risk function is 

demonstrated through its application to estimate the riskiness of the daily gridded precipitation datasets 

over India for historical and future time periods. The approach is used for the spatiotemporal variation 

analysis by examining the change in risk patterns over India for historical as well as future time periods 

based on the simulations from various climate change scenarios from Coupled Model Intercomparison 

Project Phase 6 (CMIP6). Furthermore, a regional scale investigation is also presented that helps 

understand the variation of tail risk within 34 meteorological subdivisions and climate zones based on 

climate classification schemes like Köppen-Geiger (KG) over India during different periods. 

Chapter 7: Summary and Conclusions  

This Chapter will provide significant conclusions from this thesis work and some inputs on the 

future scope of work possible in this area of research.  
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                                                                                                      CHAPTER 2 

                                                                                   LITERATURE REVIEW 

 

2.1 Overview 

Precipitation extremes can have significant and widespread adverse impacts on both the 

environment and human society. These impacts include flooding, erosion, landslides, water quality 

issues, agricultural impacts, inefficient water resource management for major infrastructure, 

infrastructure damage, economic costs, and ecological consequences. Extreme precipitation events are 

usually found in the upper part (often referred to as the ‘tail’) of the probability distribution function 

(PDF). They occur infrequently, which presents challenges in predicting their magnitudes for higher 

return periods. Numerous studies have recognized the limitations of exponentially-tailed probability 

density functions (PDFs) for modeling daily extreme precipitation. As an alternative, many researchers 

suggest the use of heavy-tailed distributions to represent daily precipitation extremes. Heavy-tailed 

phenomena are commonly observed in the field of hydrology and are important to be detected and 

assessed, as most risk reduction measures are based on the probability of extreme events. Numerous 

advances have been made in ways of characterizing the tails of probability distributions and examining 

the risk associated with these tails using various approaches.  

The subsequent sections in this chapter provide the necessary definitions and formulations needed 

for understanding the concept of heavy and light-tailed distributions, along with the details related to 

the concept of classes of distributions. The ultimate goal of past research has been to introduce various 

methods for accurately diagnosing the heavy-tailed behavior of hydroclimatic datasets like precipitation. 

This chapter reviews some early work related to the characterization of tail behavior using different 

approaches around the world. Additionally, it presents literature works that provide intrinsic details 

related to the different approaches like threshold-based approaches, empirical or quantitative indexes, 

and graphical approaches, which are essential for providing context and motivation as mentioned in 

Chapter 1. The chapter also includes an overview of the early work and commonly accepted definition 

of the Decision support system and Risk assessment tools. Furthermore, this Chapter discusses details 

related to climate extremes in India, potential causative factors, and the effect of global climatic shifts 

on extreme precipitation. It also delves into literature focusing on the impact of climate change on future 

extremes in India. The chapter provides different conclusions with an outlook that explains the outputs 

of the literature review in the context of the thesis objectives. 

2.2 Fundamentals on tail characterization of various classes of distributions 
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Various probability distributions can be classified based on their tail behavior into two categories: 

heavy-tailed distributions (e.g., Pareto, Lognormal, Weibull, Lévy, etc.) and light-tailed distributions 

(e.g., Gaussian, Exponential, etc.). Defining what constitutes a heavy or light tail is a topic of common 

discussion, and many studies have concluded that there is no universally accepted definition. Ambiguity 

persists as heavy-tailed distributions are also referred to as “fat-tailed”, “thick-tailed,” or “long-tailed” 

in various literature (El Adlouni et al., 2008; Foss et al., 2013; Papalexiou et al., 2013; Weitzke et al., 

2020). Most often the heavy tails are defined as the ones that have upper tails decaying as a power-law 

(i.e., tails tend to approach zero more gently than an exponential tail). A random variable X is said to 

have a heavy tail when its moment-generating function becomes infinite on R (the set of real numbers) 

given in Equation 2.1 (e.g., Bryson, 1974; Mikosch, 1999; Panorska et al., 2007; Foss et al., 2013; Panahi 

2016; Wang et al., 2018). 

( )x

R

e F x dx− =       for all  0                                   (2.1) 

Some studies define heavy tail behavior as the power-law behavior of the upper tail. The exponential 

distribution on the other hand is given by the PDF 

( ) , 0, 0 xp x e x−=           (2.2) 

which is often considered as the boundary between classes of heavy-tailed and light-tailed distributions. 

For light-tailed distributions, all moments exist and are finite. 

Typically, the heavy-tailed distributions comprise the class of sub-exponential distributions. The class 

of sub-exponential distribution was initially introduced by Chistyakov (1964), and for any distribution 

function F to be subexponential, one of the following conditions must hold. 

(a) 
*( )

lim
( )→

=
n

x

F x
n

F x
                             for some (all) n ≥ 2,                          (2.3) 

(b) 1

1

( ... )
lim 1

(max( ,..., ) )

n

x
n

P X X x

P X X x→

+ + 
=


  for some (all) n ≥ 2,                  (2.4) 

where ( )F x  denotes the exceedance probability; * *

1 21 ( ) ( ....... )= − = + + + n n

nF F x P X X X x  denotes 

the tail of n-fold convolution of F (Embrechts et al., 1997; Goldie and klüppelberg, 1998; Embrechts 

and Goldie, 1982). Definition (a) shows the absence of any exponential moments, while condition (b) 

suggested by Teguel (1975) indicates that the sum of n independent and identically distributed (iid) 

subexponential distributions are likely to exceed x if and only if its maximum value is larger x (in simple 

word it shows the presence of enormous values or rare events in the sample). Condition (b) is also known 

as the principle of “a single big jump” (Foss et al., 2013; Hill, 2019). Embrechts and Goldie (1980) 
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showed the equivalence of conditions (a) and (b). Power-law distributions like Lognormal distribution 

and regularly varying distributions such as Pareto type II distribution are sub-sets of the sub-exponential 

distributions (Feller, 1971; Bingham et al., 1987; El Adouni et al., 2008; Foss et al., 2013; Voitalov et 

al., 2018).  

Several attempts have been made to group tails of distributions according to their 

limiting/asymptotic behavior (e.g., Goldie and Klüppelberg, 1998; Ouarda et al., 1994, etc.). Werner 

and Upper (2004) classified the distributions in five nested classes from A to E such that 

A B C D E    . Here, Class A includes stable distributions (distributions with Pareto tails having 

1  ), Class B includes Pareto-type tails, Class C includes regularly varying distributions, Class D 

includes sub-exponential distributions, and Class E includes exponential distributions. Class E 

represents the broadest class whose upper tails decrease exponentially (or more slowly) and, thus, more 

slowly than the tails of normal distributions. They are characterized by the tail behavior presented in 

Equation 2.2. Class D distributions are the ones given by the conditions in Equations 2.3 and 2.4. They 

have tails that decrease slower than the exponential tail. Going one step further, Class C is applied as a 

limiting class. The main characteristic of distributions in this class is that, far out in the upper tail, the 

tails decrease similar to that of the Pareto distribution as shown in Equation 2.5 given below.   

( )
lim

( )t

F tx
x

F t

−

→
=                        (2.5) 

The exponent or parameter   is called as the ‘‘tail index’’ and is used as a measure of the tail heaviness. 

Distributions in class B have exact Pareto tails. The cumulative distribution function of the Pareto 

distribution is  

( ) 1 1 , and 0
u

F x u x x u u
x



 −  
= − = −   

 
                   (2.6) 

The tail index  can be related to the moments of a distribution with Pareto tails. Indeed, the probability 

density function of a random variable following the Pareto distribution is 
1( )Paretof x u x  − −=  and the 

k-moment is given by 

1[ ]k k

u

E X u x dx 


− −=            (2.7) 

Thus, only k-moments such that k  , are finite. This property is important to define the last class 

(class A). Note that small values of   imply heavier tails. Classes C and B are very important 

considering their connection to classical extreme value theory (Koutsoyiannis, 2004; El Adouni et al., 

2008; Ehsanzadeh et al., 2010). Furthermore, Class A contains stable (or  -stable) distributions. Stable 



13 
 

distributions have a Pareto tail with 2  , which implies infinite variance and, as a consequence, very 

fat tails. 

El Adouni et al. (2008) combined the classifications mentioned above with 5 graphical criteria 

for tail discrimination and arranged them from light to heavy-tailed where E being the lightest and A 

being the heaviest. Papalexiou et al. (2013, 2018) intuitively defined two broad classes of distributions 

based on the asymptotic tail behavior as (a) the sub-exponential class (heavy-tailed class), and (b) the 

superexponential class (Nagaev and Tsitsiashvili, 2006) or hyper-exponential class (Vela and 

Rodríguez, 2014) (light-tailed class). The practical implication of a heavy-tailed distribution such as a 

Pareto or a lognormal distribution is that the large values representing rare events are much more likely 

to occur than that of a light-tailed distribution like Gaussian or Exponential distribution. Hence, it 

becomes important for us to understand these tails in detail and depth.  

2.3 Characterization of tail behavior of probability distributions 

This section of the chapter discussed qualitative as well as quantitative techniques used to 

characterize the extremes or tails (in general). There are many methods or approaches that allow us to 

estimate the characteristics of extreme events.  

2.3.1 Conventional or Threshold based approaches 

Traditionally, data-driven methods for selecting appropriate probability density functions (PDFs) 

for daily rainfall have largely involved fitting specific PDFs to data at limited locations, as demonstrated 

by Katz et al. (2002).  Many researchers have proposed the characterization or classification problems 

of heavy vs. exponential tail problems in the context of threshold-based approaches like Block Maximas 

(or Annual Maxima) (BM) (or AM) and Peaks over threshold (POT) methodology. The BM (or AM) 

method consists of selecting maximum rainfall values, one for each year of observation. The POT 

sample is achieved by selecting all extreme values that exceed an arbitrarily fixed threshold (Chow, 

1964). Several authors provide a comparative survey on the adaptation of different theoretical 

probability distributions to hydrological empirical samples selected by these two approaches. Madsen 

et al. (1997a, 1997b) propose a regional estimation scheme for extreme events modeling by selecting 

AM and POT samples for discharge data recorded in New Zealand. Their findings reveal that the POT-

Generalized Pareto Distribution (GPD) model is generally more efficient than the AM-Generalized 

Extreme Value (GEV) model. Panorska et al. (2007) were among the pioneers in investigating high-

frequency precipitation extremes within the context of climate variability and change. They used the 

results derived from probability theory to develop an efficient automated scheme to distinguish between 

heavy and exponential precipitation probability density function (PDF) tails in hundreds of daily station 

records spanning five decades over the North American continent. They approached the heavy vs. 

exponential tail classification problem in the context of peaks over threshold (POT) methodology and 

derived a new statistical test based on the theory of maximum likelihood ratios. They verified that the 
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daily extreme precipitation data at most stations in North America comes from a Pareto distribution or 

resembles power law rather than an exponential distribution. They concluded that traditional statistical 

distributions (e.g., exponential, Weibull, Gamma, lognormal) used for modeling daily rainfall generally 

underestimate extreme probabilities, with the extent of distortion, or volatility, dependent on regional 

and seasonal climatic variations. The Pareto/exponential likelihood ratio for POT emerged as a valuable 

tool for diagnosing tail behavior and distinguishing between exponential and heavy-tailed PDF families, 

although threshold selection remains largely intuitive.  

Similarly, Cavanaugh et al. (2015) used the methodology of Panorska et al. (2007) along with the 

statistical test (likelihood ratio test of exponentiality vs Pareto) of Kozubowski et al. (2009) to 

characterize the distributions of daily precipitation exceedances over suitably high thresholds for gauge-

based station records on six continents over the globe. The probability tail structure of over 22,000 

weather stations globally is examined in order to identify the physically and mathematically consistent 

distribution type for modeling the probability of intense daily precipitation and extremes. Results 

showed the dominance of the Pareto-type tail over 65% of stations as compared to the exponential tail-

type distributions. This implies that statistical distributions most often used to model daily rainfall (e.g., 

exponential, Weibull, Gamma, and lognormal) generally underestimate the probabilities of extremes. 

They also found that the magnitudes of these discrepancies, i.e., volatility, depend on seasonal and 

regional climate characteristics over the globe. Heavy tails are most prominent in regions that experience 

high-valued precipitation from many different types of weather events that produce wildly different 

precipitation rates similar to Panorska et al. (2007).  

The application of the POT approach necessitates determining the optimal threshold, a challenge 

acknowledged by many researchers (Koutsoyiannis, 2004a; Begueria, 2005; Mailhot et al., 2013). Apart 

from threshold selection methods, another difficulty of the POT approach is the assumption of data 

series independence (Bezak et al., 2014). To address these issues, Papalexiou et al. (2013) introduced 

the annual exceedance series (AES) approach, a threshold-based method that tackles the challenges of 

conventional POT by eliminating the arbitrary selection of the threshold. Instead, it offers a way to 

indirectly determine the threshold based on the empirical distribution, ensuring that the number of values 

above the threshold matches the number of years (N) in the record (refer to, for example, Cunnane, 

1973). They then applied this approach in conjunction with a modified mean square error (MSE) norm 

known as the Probability Ratio Mean Square Error (PRMSE) norm. The approach facilitates the direct 

fitting and comparison of different theoretical distribution tails to the empirical tails estimated from 

nearly 15,137 daily rainfall records worldwide. Theoretical tails, such as those of the Pareto, Lognormal, 

Weibull, and Gamma distributions, are fitted to the empirical ones by minimizing the numerically 

PRMSE norm. The distributions were ranked from best to worst in describing the tails of the daily 

precipitation based on the PRMSE norm. The overall findings of the study suggested that heavy-tailed 

distributions provide a better description of daily rainfall extremes at most of the stations. Serinaldi and 

Kilsby (2014) used two worldwide data sets and performed a detailed investigation on how the threshold 



15 
 

selection and record length affect the right tail behavior of POT observations. They focused on the shape 

parameter of the Generalized Pareto distribution and identified two main effects: (1) as the threshold 

decreases the Generalized Pareto shape parameter variance reduces converging to positive values, yet 

the asymptotic Generalized Pareto hypothesis becomes less realistic tending to be replaced by Weibull 

stretched exponential tails, and (2) given a fixed high threshold and increasing record length the variance 

of the Generalized Pareto shape parameter decreases with its mean value converging to positive values. 

Further, Papalexiou et al. (2018) presented the climatology of the tail and quantified its heaviness 

in over 4,000 hourly precipitation records across the United States using a novel Bayesian adjustment 

approach. They compared two major types of tails based on their vast popularity across many scientific 

fields, that is, power-type, or else Pareto tails and Weibull tails which include stretched-exponential, 

exponential, and hyper-exponential tails. They defined the empirical tails using POT definitions using a 

fixed number of peaks, for example, m largest values in an m-year sample (similar to Papalexiou et al., 

2013), and investigated the impact that empirical tail have on tail fitting using PRMSE norm. They 

advocate the use of the PRMSE norm for comparing the theoretical and empirical tails as it uses relative 

errors between theoretical and empirical values, and thus, each point contributing to the sum is equally 

weighted. PRMSE can be considered a straightforward method to determine the best-fit performance 

between CDFs since the distribution that has the lowest RMSE value is the one that guarantees the best 

adaptation to the empirical sample. They stressed that identifying correctly the type of tail is not trivial 

and assessed the precision of the tail-fitting method using Monte Carlo (MC) simulations. They explored 

which distribution tail between power-type and Weibull tails better describes hourly precipitation 

extremes based on the tail indexes. Both the PII and W tail-index values showed that hourly precipitation 

has a heavy (subexponential) tail, much heavier than exponential or Gamma tails that would 

significantly underestimate precipitation over large return periods. The spatial variation of both tail 

indices shows a coherent pattern over the United States, with mountainous areas exhibiting heavier tails. 

They revealed a nonlinear increase in the tail’s heaviness with elevation and provided corresponding 

parametric functions to describe this law. Precipitation in mountainous areas was fitted especially by the 

heavier tails.  

Moccia et al. (2021) also investigated the tail behavior of the daily precipitation records for two 

Italian regions, namely Lazio and Sicily, located in central and south Italy, respectively. They employed 

two coupled methods: (i) PRMSE (Papalexiou et al., 2013) and (ii) the Kolmogorov-Smirnov test (KS; 

Keutelian, 1991) to assess the best-fitting probability distribution for samples selected with the AM and 

AES, respectively. Specifically, they tested six theoretical probability distributions (i.e. Gamma (G), 

Lognormal (LN), Weibull (W), Gumbel (Gu), Frechet (F), and Pareto type II (P)) to fit the empirical 

daily rainfall data recorded in two Italian regions. They found that for the two regional datasets (i.e. 

Sicily and Lazio), the Frechet distribution provides the best fit for the AM samples, while AES samples 

are optimally fitted by the Pareto type II. The PRMSE and the KS test were shown to be equivalent in 

terms of results. However, the PRMSE offers two main advantages as it allows the comparison and the 
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definition of the best-fitting distribution and its parameters. The difference in terms of return period and 

the related precipitation values is notable, for each of the six candidate distributions, and it increases 

dramatically for high return periods, especially for the AM samples. They showed that the sample 

selection method of extreme rainfall values leads to significantly different results and more research is 

needed to further investigate this aspect as in the engineering practice, the AM is the most widely 

adopted method. Finally, Rajulapati et al. (2021) assessed the tail heaviness using five global gridded 

precipitation products. They fitted the Pareto and Weibull tails and found discrepancies among the 

different products, strong spatial variability in tail heaviness, and significant differences in return levels 

for large return periods between the two tails. In the context of assessing the tail behavior of precipitation 

datasets, explorations of the tail behavior of daily precipitation datasets belonging to Indian landmass 

datasets are definitely needed using threshold-based approaches. 

2.3.2  Empirical (quantitative) Approaches 

 

The choice between heavy-tailed and exponentially-tailed models is qualitative in nature, and the 

approaches mentioned in section 2.3.1 are among the few popularly used methods to address the problem 

of characterizing or classifying different tail types, such as heavy or exponential tails. In addition to 

these approaches, there are a few other diagnostics based on the graphical interpretation of distributions 

that utilize tools such as MEF plot, log-log (or Zipf) plot, or the generalized Hill ratio plot for assessing 

the tail behavior of distributions (Zipf, 1949; Hill, 1975; Stanley et al., 1995; Kratz and Resnick 1996; 

De Sousa and Michailidis, 2004; Ghosh and Resnick, 2010; Nieboer, 2011; Cooke et al., 2014; Das and 

Ghosh, 2016; Roth et al., 2016). The MEF gives the expected excess of a random variable over a certain 

threshold given that this random variable is larger than the threshold. The log-log function is essentially 

a plot of the empirical survivor function on logarithmic axes, involving the fitting of a straight line above 

a specified threshold. The slope of this line is then used to estimate the tail index. Another method, the 

Hill plot, is based on the idea that if a random variable has a Pareto distribution, then the log of this 

random variable has an exponential distribution with a parameter equal to the tail index. The Hill 

estimator is an estimator of the parameter of this exponential distribution. The use of these methods in 

different fields like hydrology, actuarial science, survival analysis, environmental science, and 

economics has been acknowledged by many researchers (Resnik, 2007; Das and Resnick, 2008; Ghosh 

and Resnick, 2010; El Adlouni et al., 2008; Panahi, 2016). However, there are certain drawbacks 

associated with these methods which are identified by several researchers (Cirillo, 2013; Xie, 2017). 

Methods like MEF and log-log are sensitive to the selection of a threshold for segregating the tail part 

of the distribution and need visual interpretation for assessing tail behavior, making them time-

consuming. In the case of the MEF, it is also seen that if we consider a regularly varying distribution 

function with a tail index ( 1  ), then the excess function of this distribution function does not exist. 

However, when plotting the empirical mean excess function, the slope of this plot remains finite. The 

Hill plot estimator faces challenges related to large variance and bias, depending on the number of 
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largest observations taken into account to estimate the tail index (Caeiro et al., 2005; Danielsson et al., 

2019; Németh and Zempléni, 2020). Also, Another limitation associated with the Hill ratio plot is that 

it works very well for Pareto-distributed data, but for other regularly varying distribution functions, it 

becomes less effective (Nieboer, 2011). Considering the limitations of individual graphical methods, it 

is evident that these techniques are typically constrained to specific classes of distributions, making it 

challenging to quantitatively compare the tail heaviness of distributions from different classes. The lack 

of objectivity of individual graphical methods necessitated the need for quantitative or scalar, objective, 

and easily applicable indicators (Nieboer, 2011; Cooke et al., 2014) 

Earlier research utilized various scalar upper tail indicators to investigate the upper tail behavior 

of hydroclimatic or economical variables. Upon reviewing the literature, four pertinent scalar upper tail 

indicators were identified: shape parameter (or tail index), Upper Tail Ratio (UTR), Gini Index, and 

Obesity Index (OB). Shape parameters or tail index of different distributions have been used by several 

researchers to quantify the upper tail behavior of flood and heavy precipitation distributions (Bernardara 

et al., 2008; Smith, 2010; Papalexiou et al., 2013; Gu et al., 2017; Zhou et al., 2017; Papalexiou et al., 

2018). Hobbi (2021), explores the changes in the frequency and intensity of extreme precipitation for 

different climate types (Köppen-Geiger’s climate classification) using over 8582 daily station rainfall 

records from the Global Historical Climatology Network-Daily (GHCN-D) database. The author 

estimated the magnitude and significance of trends of the annual maximum precipitation time series by 

applying non-parametric tests of Mann-Kendall and Sen’s slope estimator and measured the heaviness 

of the tail based on the shape parameter of the fitted Generalized extreme value (GEV) distribution 

estimate using the L-moments (Hosking, 1990). The findings of the study reveal a significant increasing 

trend in 9.7% of stations in the eastern USA, Asia, and northern Europe. However, only 2% of stations 

in eastern Australia and central USA had a significant decreasing trend. Largest to smallest heavy-tailed 

extremes in major climate types E (polar), A (tropical), B (dry), D (snow), and C (temperate). For climate 

subtypes, large heavy-tailed extremes were observed in Dfd, ET, and Am, while only light-tailed 

extremes were observed in Cfc. It has been seen that using shape parameter or tail index as a tool for 

characterization of the heavy-tailedness of a distribution is quite common but can have some drawbacks 

like, sometimes estimation of the tail index is difficult from a dataset as it can only be observed at infinity 

and not directly from a dataset (Ghosh, 2016). 

 Further, Villarini and Smith (2010) and Villarini et al. (2011b) introduced the UTR, calculated 

as the highest value in the sample normalized by the 10-year return level. It is a nonparametric approach 

to analyze the upper tail of distributions. Smith et al. (2018) utilized UTR to examine the annual peak 

observations from more than 8,000 U.S. Geological Survey (USGS) stream-gaging stations and found 

that the nature of flood peak distributions in the conterminous United States is unbounded and thick-

tailed. In the intervening time, the Gini index, a traditional inequality measure from economics, has also 

been recently proposed as another upper-tail indicator (Eliazar and Sokolov, 2010; Fontanari et al. 

2018a, 2018b). Gini is intuitively derived from the Lorenz curve by most researchers like Kondor et al. 
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(2014), and Konapala et al. (2017), however, the literature also mentions some other ways to determine 

it (Eliazar and Sokolov, (2010)). Originally rooted in economic contexts, the Gini index has made its 

way into hydro-meteorological sciences, proving useful for capturing inequality and temporal changes 

in the distributions of daily precipitation (Rajah et al., 2014; Lai et al., 2018), streamflow (Masaki et al., 

2014; Zhang et al., 2015), and river solute loads (Jawitz and Mitchell, 2011). Rajah et al. (2014) assess 

changes in the temporal uniformity (or lack thereof) of wet-day precipitation amounts using the Gini 

index for a data set of 12,513 land-based stations from the Global Historical Climatology Network. In 

the context of rainfall, the Gini index emerges as a crucial indicator of the uneven distribution of 

precipitation throughout a year, displaying values on a scale from 0 (indicating a uniform distribution 

across all days) to 1 (representing concentrated precipitation on a single day). Distinguishing itself from 

alternative measures of variability, such as standard deviation, the Gini index proves to be robust and 

dimensionless, facilitating clear interpretation across various geographical settings. Notably, the Gini 

index does not directly correlate with tail heaviness. Instead, it provides a quantification of the impact 

of both small and large values within a distribution (Wietzke et al., 2020).  

Another scalar indicator, known as the Obesity Index was introduced by Nieboer (2011) which 

can be used to diagnose the behavior of the distribution tail. Nieboer (2011) found OB to be an effective 

quantitative, scalar, and easy-to-use indicator that measures tail heaviness. They characterized the data 

on flood insurance claims (National Flood Insurance Program (NFIP), crop loss claims (National crop 

losses of the U.S.), hospital discharge bills (U.S. Hospital Discharge Bills), precipitation (based on 

Geographically based economic data, i.e., G-Econ database (Nordhaus et al., 2006)) and damage and 

fatalities from natural catastrophes (SHELDUS database) by using the concept of OB. They also pointed 

to the need for future research to investigate under which conditions the Obesity index increases as the 

tail index of a regularly varying distribution decreases. Sartori and Schiavo (2015) also applied the 

concept of OB for the investigation of the upper tail behavior of negative shocks in global agricultural 

production. Hill (2019) presented the Cooke-Nieboer index based on the concept of OB and used it to 

distinguish the networks in real life drawn from the ICON database (Clauset et al., 2016), having power-

law, exponential, and symmetric degree distributions.  

Although several upper-tail indicators coexisted, yet a comparative analysis was not present till 

recent times. This gap was filled by Wietzke et al. (2020) who conducted a comparative study in which 

they evaluated the performance of the shape parameter (GEV), obesity index, Gini index, and upper tail 

ratio against a novel benchmark of tail heaviness – the surprise factor. They found that UTR replicates 

the surprise factor best but is most uncertain and only comparable between records of similar length. 

For samples with symmetric Lorenz curves, shape parameters, obesity, and Gini indices provide 

consistent indications. They suggest the use of a combination of shape parameters, obesity, and the Gini 

index to characterize tail heaviness. From the literature review, various scalar indicators and their 

properties and applications in the past have been identified. However, in the pursuit of further 

exploration and development of scalar indicators tailored for hydrological variables, it is noteworthy 



19 
 

that the scalar indicator, the Obesity Index (OB), could be further enhanced and employed to assess the 

heaviness of tails in precipitation datasets. Remarkably, the OB index has seen limited application in 

the realm of hydrological extremes and presents an opportunity for further development and utilization 

in this context. 

2.3.3 Graphical Approaches 

In the literature review, various methods for tail analysis are identified, including the threshold-

based approach, graphical approach, and empirical (or scalar indicator) approaches. Among graphical 

and scalar indicators, the latter are easy to use; however, their application is restricted to identifying the 

behavior of the tail as light or heavy. For example, an Obesity Index (OB) > 0.75 for a dataset indicates 

the presence of a heavy tail (i.e., heavier than an exponential tail) but does not identify the suitable 

distribution class (i.e., the family of distributions) or model (i.e., distribution). Conventional graphical 

methods also lack the ability to diagnose multiple types of tails as mentioned in section 2.3.2; however, 

certain advancements have introduced better graphical tools that can characterize tails belonging to 

different classes simultaneously. Cirillo (2013) introduced a novel graphical plot known as the 

Discriminant moment ratio plot (DMR), which is nothing but the simpler and extended version of the 

CV-Skewness diagram (Vargo et al., 2010) can be efficient enough to scrutinize the inferences revealed 

from the log–log, and MEF plots. Cirillo (2013) also proposed the Zenga plot, which helps to 

discriminate between the lognormal and the Pareto distributions, two classes that are difficult to identify 

as both tails have similar representations on graphical plots. Zenga curve can be expressed analytically 

for any distribution via the corresponding Lorenz curve (L(u)) (Lorenz, 1905). The Zenga plot shows a 

Zenga curve (Z(u)) plotted against u (threshold varying between 0 and 1) and assumes different shapes 

for different distributions. They found that conventional graphical tools like MEF or log-log plots are 

not always reliable and only a combination of these tools can give some degree of confidence about the 

real presence of different tail types. The additional tools proposed by them showed better efficacy in 

refining the tail assessment or characterization analysis.   

Later, Cirillo and Taleb (2016) used a combination of different graphical tools to examine 

statistical pictures of violent conflicts over the last 2000 years. They make use of a novel approach to 

deal with fat-tailed random variables with a remote but nonetheless finite upper bound, by defining a 

corresponding unbounded dual distribution (given that potential war casualties are bounded by the world 

population). They analyzed the presence of a long right tail (or Paretian tail) in the distribution of victims 

using several graphical plots like Q-Q plot, MEF plot, and another interesting graphical tool which is 

the maximum-to-sum plot (MS plot or
p

nR ). MS ratio is nothing but a ratio of partial maximum (
p

nM ) 

and partial sum (
p

nS ) for p statistical moments (Herein p = 1: mean; p = 2: variance; p = 3: skewness; 

and p = 4: kurtosis). The power-law classes (Class B and Class C) are characterized by the non-existence 

of higher-order moments, while distributions belonging to LN and class D\C have the existence of all 
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their moments. The MS Plot relies on a simple consequence of the law of large numbers (Embrechts, 

2003; Cirillo and Taleb, 2020; Manz and Mansmann, 2020) and sees the non-convergence or 

convergence of 
p

nR to zero for inferences about power-tail or non-power-tail type distributions, 

respectively. Their data analysis suggests a heavy right tail for the distribution of war casualties, both 

for raw and rescaled data. They recommended using such approaches in other fields of science where 

power laws play a role in modeling, like geology, hydrology, statistical physics, and finance. Greselin 

et al. (2017) also applied Zenga's inequality curve to assess the progression, redistributive effects, and 

re-ranking effects of a personal income tax system. The Zenga curve, comparing economic conditions 

across population percentiles, offers unique insights distinct from traditional Lorenz curves. Cirillo and 

Taleb (2020) also analyzed data for pandemic outbreaks spanning over the past 2500 years using 

different graphical tools in combination and found that the related distribution of fatalities is strongly 

fat-tailed, suggesting a tail risk that is unfortunately largely ignored in common epidemiological models. 

Graphical tools enabled them to conclude that the distribution of the victims of pandemic diseases might 

be a distribution with no finite moments. Another advanced graphical approach was introduced by 

Fontanari et al. (2018a) known as concentration profile (CP) plots and Concentration adjusted expected 

shortfall (CAES) plots, which can identify the different parametric families of the loss distribution, 

especially Lognormal, Pareto, Exponential, and Weibull ( 1   and 1  ), simultaneously. These plots 

were based on concentration (or inequality) measures (e.g., the Gini index derived from the Lorenz 

curve and common risk management measures like the Expected Shortfall (ES) (Acerbi and Tasche, 

2002; McNeil et al., 2015; Cirillo and Taleb, 2016). Fontanari et al. (2018a) preferred the sequence of 

truncated Gini indices (indicated by ( )G  , where   denotes truncation level) over the conventional Gini 

index, as it measures the dispersion above the Value at Risk (VaR) (Jorion, 2001) to have a reliable 

measure of tail risk and precision of the ES. They showed that the financial data deviate from 

Gaussianity and often exhibit heavy-tailed behavior meaning that rare and disruptive events have a non-

negligible chance of happening.  

 

MEF, a conventional graphical tool, was enhanced by Das and Ghosh (2016), who constructed 

confidence intervals for MEF plots to ascertain the domain of attraction (Fréchet, Gumbel, or reversed 

Weibull) of the data. They applied their methodology to simulated and observed datasets, including 

regional ozone concentrations and flow rates. The literature also mentions recent efforts made by 

Nerantzaki and Papalexiou (2019) to develop a faster algorithmic procedure for MEF to discriminate 

between exponential and sub-exponential tails. They were the first to apply the algorithmic approach to 

nearly 21,348 daily precipitation records worldwide to assess whether the observed data can be 

described by exponential or heavier tails. They observed that nearly 75.8% of records showed the 

dominance of heavy-tail distributions across the globe, except for eastern South America. Lighter tails 

are evident in regions such as eastern South America (eastern Brazil, Uruguay, Paraguay), specific areas 

in central Africa, and central China. In contrast, heavier tails are observed in the eastern U.S., central 
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Canada, parts of India, and South Africa. The heaviest tails are found in Australia and Eurasia, with a 

notable "hot spot" located in central Russia and Kazakhstan. Despite the effectiveness of the approach, 

it did not resolve the issue of identifying and differentiating the tails from LN, class C/D, and class D/E. 

Also, this approach has limitations associated with confidence interval and sample size availability.  

 

  Researchers such as El Adlouni et al. (2008), Ehsanzadeh (2011), Cirillo (2013), and Martel et 

al. (2013) have emphasized the preference for using a combination of graphical tools rather than a single 

one, as it enhances the identification of the appropriate distribution class. They have underscored the 

importance of determining the class of distributions that best fits the upper tail of a dataset before 

selecting a specific model. A practical approach for selecting the appropriate distribution class for a 

dataset, particularly considering its right tail (i.e., extreme), is referred to as a Decision Support System 

(DSS). A detailed discussion of various aspects of DSS is provided in the subsequent subsection. 

Regarding graphical tools, the literature suggests their robustness in assessing the tail behavior of 

distributions. However, there is a lack of attempts to integrate these advanced graphical methods 

together to enhance the characterization of dataset tails. Additionally, the application of these graphical 

methods for hydrological variables could open new avenues for research. 

.  

2.4 Decision support system (DSS)  

 

A DSS utilizes various graphical methods to characterize the tails of distributions as per their 

limiting behavior and groups them into the appropriate class of distributions. Popular classes of the 

probability distributions are given by Ouarda et al. (1994) and Werner and Upper (2004) in a nested 

form as A⊂B⊂C⊂D⊂E, starting from light-tailed distributions to heavy-tailed distributions) (see Fig. 

1.1 in Chapter 1). Five nested classes of distributions include stable distributions in class A, Pareto-type 

tail distributions in class B, Regularly varying distributions in class C, Subexponential distributions in 

class D, and Exponential distributions in class E. Details for which are already mentioned in section 2.2. 

Literature reveals different versions of the DSS, the one of the conventional DSS was initially proposed 

by El Adlouni et al. (2008). El Adlouni et al. (2008) proposed to make use of a set of graphical criteria 

that are developed in the extreme value theory framework (Embrechts et al. 2003) to select the class of 

distributions that seems to adequately represent the sample extremes. They showed the application of 

the DSS to assess the tail of the observed annual peak flow time series of the Potomac River for the time 

period 1895-1986 and 1895-2000, respectively. Later, Ehsanzadeh et al. (2010) assessed the usefulness 

of the proposed DSS to characterize the tails behavior of sample data belonging to three large 

hydroclimatic databases, Hydrometric Basin Network (RHBN), precipitation, and UNESCO. They 

confirm that discriminating between classes of competing models prior to model selection is critical 

when the sample data comes from extreme events. They recommended the use of a normality test to 

detect the log-transformed data as LN3 is a transformation of the normal distribution. Their study 

highlights that choosing an inappropriate class of distributions for model selection often results in 
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underestimating the quantity of the variable under study. This underestimation poses a higher 

socioeconomic risk compared to the risk associated with overestimating a specific quantile. Further, 

Martel et al. (2013) advanced the conventional DSS by incorporating some steps prior to the 

conventional DSS. They developed a LN3 goodness-of-fit procedure, based on the coefficient of 

variation, the coefficient of skewness, and the Jarque-Bera normality test. Their study actually presented 

an effective way of discriminating between the LN3 distribution and that of Class C of regularly varying 

distributions (heavier tail) and D of subexponential distributions (lighter tail). In conclusion, while 

Decision Support Systems (DSS) appear to be effective tools for tail categorizations, existing literature 

lacks more refined DSS structures and definitions utilizing advanced tools. Furthermore, there is a 

noticeable absence of efforts to integrate advanced graphical methods into DSS, which could 

significantly enhance the characterization of tails of the hydrological datasets. 

2.5 Understanding the Tail Risk  

 

Tail risk (low-probability extreme events) technically refers to the risk associated with both the 

left and right tails. People working in the field of finance and economy are mostly concerned with losses 

(the left tail), while hydrologists or climatologists are generally concerned with extremes belonging to 

the right tail. The heavy-tailed distributions have much larger high percentiles relative to the rest of the 

data values than the exponentially-tailed ones. That implies that in places where heavy-tailed models 

are appropriate, and especially if observed and modeled trends continue, future large events may be 

much larger than those observed to date. Identification of the upper tail behavior as well as quantification 

of the associated risk becomes important as the majority of risk reduction measures are based on the 

probability of extreme events. In the past several studies have shown the use of different tools like the 

Lorenz Curve (Lorenz, 1905), Gini indices (Gini, 1912), and different indices associated with them to 

efficiently represent a risk, or to construct new risk measures, and to investigate relevant facts and 

statistical regularities of the datasets based on some analytical and geometrical properties of the tools 

(Jones and Zitikis, 2003; Methni et al., 2014; Brazauskas and Kleefeld, 2015; Furman et al., 2017; 

Fontanari, 2019; Loffredo et al., 2021; Chen and Cheng, 2022). The Lorenz curve is a transformation of 

a positive valued random variable that maps its quantile function into an increasing convex function 

space and the study of the geometry of such transformation can measure or capture different aspects of 

the variability of a random variable. The Gini index properly summarizes the information on the 

variability embedded in the Lorenz curve yet a single Gini value is not sufficient to describe the entire 

behavior of the Lorenz curve (Arnold, 2012; Eliazar, 2018). 

 

Value-at-Risk (VaR) and Expected Shortfall (ES), the common risk measure, are not preferred 

by many researchers in the case when the tails of the datasets tend to follow skewed heavy-tailed 

distribution as they fail to measure actual risk dispersed in the tail for such cases (Linsmeier and Pearson, 

2000; Jorion, 2001; Hull, 2012; Embrechts et al., 2013; McNeil et al., 2015; Cirillo and Taleb, 2016). 
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The Gini index, which is quite rooted in economics has found its way to hydro-meteorological sciences 

and was applied to capture inequality and temporal changes of distributions of daily precipitation, 

streamflow, and river solute loads as mentioned earlier. Fontanari et al. (2018a) define the truncated 

version of the Gini index, as a function of the VaR and denoted it as a Concentration Profile (CP). They 

combined CPs and standard results from utility theory to develop a tool known as a Concentration Map 

(CM) that assesses the riskiness of datasets taking into account the variability of the larger and most 

relevant events. Overall, they presented an important way of dealing with the issue of tail variability 

measurements for portfolio loss distributions using the descriptive power of the Lorenz curve. In the 

context of studies assessing the embedded tail risk of hydro-meteorological variables, such as daily 

precipitation datasets, there is a scarcity of research. Conducting these studies is crucial in the current 

scenario where changes are inevitable, and appropriate methods need to be applied.  

 

2.6 Climate Extremes over India (Past and Future)   

India recognized as a hotspot for global warming due to its diverse and intricate geography 

(Krishnan et al., 2020; Huang et al., 2022), experiences a highly varied climate influenced by numerous 

factors (Rajeevan et al., 2012; Niranjan Kumar et al., 2013). The southwest monsoon, contributing 

approximately three-fourths of the annual rainfall, plays a crucial role in sustaining the Indian 

subcontinent, supporting millions of people, and forming a cornerstone of the economy (Kumar et al., 

2005; Kumar et al., 2010; Yadav, 2013). Analysis of historical data reveals a relatively stable pattern of 

rainfall over the past century. However, the escalating global average temperature has led to an increase 

in extreme events (Goswami et al., 2006). While inter-annual variations in monsoon rainfall constitute 

only about 10% of the long-term average, the occurrence of extreme rainfall events significantly 

contributes to the occurrence of floods and droughts, resulting in substantial economic and human 

losses. It is well documented that variability of seasonal rainfall over India is associated with sea surface 

anomalies in the tropical Pacific Ocean, such as those related to El Niño and Southern Oscillation 

(ENSO), in the Indian Ocean, such as the Indian Ocean Dipole (IOD) and the Arabian sea (Rajeevan et 

al., 2012; Azad and Rajeevan, 2016). The changes in extreme precipitation can also be attributed to the 

abrupt global change of the climatic system caused by a regime shift in the 1970s in various climatic 

factors like the Arctic Oscillation (AO), East Asian summer monsoon (EASM), East Asian winter 

monsoon (EAWM), North Atlantic Oscillation (NAO), Aleutian low (AL), Western Pacific subtropical 

high (WPSH) and Indian summer monsoon rainfall (ISMR) (Biondi et al., 2001; Chowdary et al., 2006; 

Chowdary et al., 2006; Zhou et al., 2009; O’Kane et al., 2014; Chen et al., 2015a; Sahana et al., 2015; 

Hsu et al., 2016; Zuo et al., 2016; Weisheimer et al., 2017; Dai et al., 2018) or some local changes such 

as urbanization. These agents, in combination or independently affect the moisture transport dynamics, 

which in turn induces variability in precipitation patterns. In the past, the climate regime shift has 

adversely impacted the atmosphere, ecosystems, biological and many hydro-climatic variables, such as 

temperature, air pressure, wind field, and rainfall resulting in the frequent occurrence of extremes like 
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heat, drought, heavy rainfall, and flood disasters (Graham, 1994; Zhang et al., 1998, Wang, 2001; Meehl 

et al., 2008; Jacques-coper and Garreaud, 2015; Huang et al., 2017a, b).  

There have been several other studies that analyzed the changes in extreme rainfall over India at 

the national and regional scale and have drawn different conclusions (Goswami et al., 2006; Rajeevan 

et al., 2008; Dash et al., 2009; Kulkarni et al., 2012; Ghosh et al., 2012; Shastri et al., 2015; Mondal and 

Majumdar, 2015; Singh et al., 2016; Ghosh et al., 2016; Roxy et al., 2017; Bisht et al., 2018a, 2018b). 

Many researchers have demonstrated that the rainfall characteristics in the past over India,  within and 

beyond the monsoon period exhibit spatio-temporal changes due to climate regime shifts globally and 

in India (Sabeerali et al., 2012; Sahana et al., 2015). Over central India, Goswami et al. (2006) showed 

an increasing trend in both the magnitude and frequency of extreme precipitation, likely to result in 

severe property damage in the future. Ajayamohan and Rao (2008) have also shown an increased 

extreme rainfall event over central India after the 1976/1977 climate shift. Rajeevan et al. (2008) used 

104 years (1901–2004) of high-resolution daily gridded rainfall data and reported significant 

variabilities in inter-annual and inter-decadal changes in addition to a statistically significant long-term 

trend in the frequency of extreme rainfall events. Vittal et al. (2013) showed that rainfall extremes 

changed in India after 1975 and established that urbanization, in terms of change in population density, 

is a possible cause of change. They used a comprehensive POT approach with 95 and 99th percentile 

thresholds, including multiple extreme events in a year. Roxy et al. (2017) found that there has been a 

threefold increase in extreme rain events over India during 1950-2015. This indicates that extreme 

rainfall events have increased over time, and there is an urgent need to investigate the dynamics of their 

occurrence and their role in augmenting risks. Dash and Maity (2019) found that the precipitation-based 

climate change indices exhibit increasing trends over India with more spatial extent post-1975. Recently, 

Sarkar and Maity (2020) observed an increment of 35% in Probable maximum precipitation over India 

in the post-1970 (1971–2010) period as compared to the pre-1970 (1901–1970) period due to climate 

shift. Heavy rainfall extremes could be a result of external forcings which include both human-induced 

and natural activities or/and internal forcings such as internal mechanisms within the climate system 

(IPCC, 2014). However, there exists substantial debate in the recent literature about the spatio-temporal 

distribution of extreme rainfall events over India and their relationship with various aspects of global 

climate change. For instance, Kulkarni (2012) suggested that there is a rising trend in rainfall extremes 

co-occurring along with decreasing moderate rainfall causing an insignificant overall trend. However, 

percentile-based frequency and intensity analysis of extreme rainfall events showed no visible spatially 

uniform trends over India (Ghosh et al., 2012). These conflicting conclusions about extreme rainfall 

events in current research point out the necessity of a comprehensive evaluation of rainfall extremes. 

The country has also witnessed noticeable changes in climatic conditions marked by increased 

floods and droughts during the past few decades especially post-1970s (post-industrial era), which are 

likely to persist in the future. Interseasonal, Interannual, and Interdecadal climatic variations in India 

have a significant relationship with various external forcings. Simulating the historical and current 



25 
 

climatic conditions of India is, therefore, a difficult undertaking. It is also essential to forecast future 

changes in precipitation extremes so that local governments can implement adaptation and mitigation 

strategies before time. Future climate change relies heavily on reliable and accurate projections. CMIP6 

uses the new Shared Socio-economic Pathways (SSP) scenarios, enabling us to observe the probable 

changes in precipitation extremes worldwide and over different regions like India (Eyring et al., 2016; 

O’Neill et al., 2016). The latest generation of climate models has shown significant advancements to 

their previous version (CMIP3 or CMIP5) in reproducing large-scale spatiotemporal patterns of climatic 

variables. These improvements are in terms of finer horizontal resolution, enhanced cloud microphysics 

parameterizations, better representation of synoptic processes, improved agreement with the global 

energy balance, and increased participation of modeling groups (O’Neil et al., 2016; Eyring et al., 2019). 

These enhancements have been acknowledged by many researchers in the arena of hydrology and 

climate change (Gusain, 2020; Li et al., 2021; Kamruzzaman et al., 2021; Choudhary et al., 2021; 

Supharatid et al., 2021; Dutta and Maity, 2022). Many studies have assessed the variation of 

precipitation extremes in India under some scenarios of CMIP5 and CMIP6. Maity et al. (2016) 

predicted an increase in precipitation in the future, with a major increment in southern cities. They 

observed inconsistencies among different CMIP5 models. Mukherjee et al. (2017) found that the 

frequency of precipitation extremes is projected to rise more prominently in southern and central India 

in the middle and end of the 21st century under the representative concentration pathway (RCP) 8.5. 

Yaduvanshi et al. (2021) explore the potential changes in the Expert Team on Climate Change Detection 

and Indices of rainfall and temperature estimated from the coupled model inter-comparison project 

CMIP5 multi-model ensemble over different climatic zones of India at 1 oC, 1.5 oC, 2 oC, 2.5 oC and 3 

oC global temperature rise relative to pre-industrial levels under two Representative Concentration 

Pathways, RCP4.5 and RCP8.5. They found that the annual total precipitation and heavy rainfall-related 

extreme indices show statistically significant increases in the tropical, temperate, and semi-arid regions 

of India, moving from 1 oC to 3 oC warming level under the RCP8.5 scenario whereas there is generally 

no significant change in the maximum number of consecutive dry and wet days. Though several models 

in the recent phase (CMIP5) incorporated new components such as dynamic vegetation, indirect effects 

of aerosols, etc. (Taylor et al., 2012), but their coarse spatial resolution fails to capture the influence of 

local scale features (such as topography, land-surface feedback, land use changes, etc.) in reproducing 

present climatic conditions (Ghosh et al., 2016; Sharma et al., 2018; Jain et al., 2019). Several studies 

also pointed out the drawback of CMIP5 models to over- or underestimate the monsoon characteristics 

over the South Asian and Indian subcontinent inconsistently for different precipitation indices thus 

lowering the confidence in future projections (Saha et al., 2014; Sharmila et al., 2015). Various 

downscaling approaches, statistical and dynamical (Kannan and Ghosh, 2013; Salvi et al., 2013; Xue et 

al., 2014), were proposed in the last decade to alleviate the simulations at the local scale but they did 

not add any significant improvement in all cases studies and deteriorated to even worse in few (Singh 

et al., 2017; Sharma et al., 2018). To overcome these challenges, improved climate model simulations 

under the sixth phase of CMIP are released by a few modeling groups which are now used to observe 

https://link.springer.com/article/10.1007/s11356-023-25649-7#ref-CR46
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the extremes over India. Mishra et al. (2020) utilized the bias-corrected CMIP6 projections to estimate 

the frequency of rainfall and temperature extremes for an administrative region (state of Uttar Pradesh, 

India) and a river basin (Godavari, India) during near-, mid- and end-21st century and reported higher 

frequencies for the far period than the near-term climate. Saha and Sateesh (2022) showed that regions 

of Central India, North-East India, Western Ghats, and Eastern Ghats are found to be susceptible to 

extreme rainfall zones over the Indian landmass under three scenarios (SSP126, SSP245, SSP585) of 

CMIP6 models. 
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CHAPTER 3 

ASSESSMENT OF TEMPORAL CHANGE IN THE TAILS OF PROBABILITY 

DISTRIBUTION OF DAILY PRECIPITATION OVER INDIA DUE TO CLIMATIC 

SHIFT IN 1970s 

 

3.1   Overview 

The magnitude and frequency of extreme precipitation can be assessed by studying the upper tail 

behavior of probability distributions of daily precipitation. Depending on the tail behavior, the 

distributions can be classified into two categories: heavy-tailed (sub-exponential) and light-tailed 

(hyperexponential) distributions. Heavier tails indicate more frequent occurrences of extreme 

precipitation events. In this chapter, we have analyzed the temporal change in the tail behavior of daily 

precipitation over India from pre-to post-1970 time periods as per the global climatic shift. We intend 

to perform the assessment by considering 4 theoretical distributions (e.g., Pareto type II, Lognormal, 

Weibull, and Gamma distributions) which belong to different classes of distributions (i.e., sub-

exponential or hyper-exponential classes) following Papalexiou et al. (2013). Contrary to widely used 

Block Maxima (BM) and Peak-over-Threshold (POT) approaches, the Annual Exceedance Series (AES) 

approach would be considered to demarcate the tail of daily precipitation data. A modified Probability 

Ratio Mean Square Error norm (PRMSE) is used to identify the best-fit distribution to the tails of daily 

precipitation, among four theoretical distributions as mentioned in changing climate over India. A 

categorical classification of grids into two broad classes of distribution, i.e., the subexponential class 

and the hyperexponential-exponential class is also provided with consideration of the shift in the global 

climatic regime in the 1970s. Further, investigation related to the spatial and temporal changes in the 

behavior of tails of the probability distribution of daily precipitation between the two time periods, viz. 

pre-1970 (1901-1970) and post-1970 (1971-2010) is studied. The assessment is performed both at grid 

and regional scale (i.e., Meteorological Subdivisions).  

3.2   Data and Methodology 

3.2.1 Description of the study area 

India, the largest South Asian country with a wide variety of climatic regions extending from low 

rainfall arid regions to heavy rainfall receiving regions, is our study area. The climatic condition of the 

Indian mainland is influenced by various geographical and relief features like the Himalayas in the north, 

Thar Desert and Arabian Sea in west, the Bay of Bengal in the east, Western Ghats in the south-west 

and the Indian Ocean in the south. The study area covers a widespread range of variations in the rainfall 
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extremes, which motivates us to examine spatial and temporal behavior of daily extreme precipitation 

in terms of magnitude and frequency of occurrence between the two time periods corresponding to the 

shift in global climate regime in the 1970s, i.e., pre-1970 and post-1970. Further, the temporal changes 

are investigated at a regional scale in 34 out of 36 homogeneous Meteorological subdivisions (see Figure 

3.1) in this analysis (Guhathakurta and Rajeevan, 2008). 

 

 

Figure 3.1  Meteorological Subdivisions of India considered for regional analysis 

3.2.2 Description of the Data Used   
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In this study, an extensive database of daily gridded precipitation having a spatial resolution of 

0.25o procured from the India Meteorological Department (IMD) is considered. The gridded rainfall 

data was prepared for 112 years (1901-2013) by Pai et al. (2014) using a varying network of 6955 rain 

gauge stations. After performing a quality check, 4789 grids each having a record length (N) of 110 

years, i.e., from 1901-2010, were selected for analysis. No missing data were filled at any grids/stations. 

Records at each grid have been split into two parts, i.e., pre-1970 (1901-1970) and post-1970 (1971-

2010), to capture the effect of the shift in the global climate regime. Despite being an unequal division 

of the data, the records at each grid for both pre and post-1970 time period have a sufficient number of 

non-zero daily precipitation values needed to estimate the tail behavior using the threshold-based 

approach for fitting probability distributions to daily precipitation data proposed by Papalexiou et al. 

(2013). The data division fulfills the condition of availability of at least a 30-year record customary in 

the climate community (Arguez and Vose, 2011). Individual data length for both periods is sufficient to 

obtain a robust representation of the spatial pattern of the tails of the probability distribution of daily 

precipitation data over India. 

3.2.3 Threshold-Based Approach for Fitting Probability Distributions  

For the analysis, we have adopted the threshold-based approach (i.e., AES) for fitting probability 

distributions to the tail part of the probability distribution of non-zero daily precipitation data proposed 

by Papalexiou et al. (2013). Since the investigation evolves around the tail behavior, it is essential first 

to define the part of the probability distribution known as the ‘tail’. The demarcation of the tail of the 

empirical distribution for daily precipitation data by optimally selecting the threshold is a vital and 

crucial step in this approach. After demarcating the tail of the empirical distribution, fitting a theoretical 

probability distribution function to the daily precipitation data in the tail part can be accomplished by 

minimizing the difference between empirical and theoretical distributions.  

3.2.3.1   Defining Tail of Empirical Distribution of Daily Precipitation 

The upper or ‘right’ part of the empirical probability distribution function for non-zero rainfall is 

referred as the “tail”. The choice of a threshold needed for defining a tail is recognized as a difficult and 

open problem of debate till date. Hence, to avoid a priori selection of threshold, we defined samples 

using the AES method in the present study. We choose a value Lx  as a threshold such that the number 

of extreme precipitation events above it equals the number of years of record N (Cunnane, 1973; Ben-

Zvi, 2009). N largest daily values of the record are preferred over each year's maximum value as the 

latter results in the distorted tail (Papalexiou and Koutsoyiannis, 2013; Papalexiou et al., 2013).  

The total number of non-zero daily precipitation values at a station can be computed using 

( )0  1 dn p n N= −  where dn  = 365.25 is the average number of days in a year, 0p represents the 

probability of dry day. The empirical probability of exceedance ( )N iF x  is defined according to the 
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Weibull plotting position formula (Weibull, 1939; Makkonen, 2006) at each station having N-year 

record, and n number of non-zero precipitation values is defined as, 

( )
( ) 1

1

i
N i

r x
F x

n
= −

+
                      (3.1) 

where, ( )ir x  is the rank of the precipitation equal to ix  in the ordered sample as (1) .... ( )x x n   of the 

non-zero values. Thus, the empirical tail is defined by the N largest non-zero precipitation values of 

( )N iF x  with  1    n N i n− +   . Note that the threshold value for precipitation is given as

( )1
  L n N

x x
− +

= . 

3.2.3.2   Theoretical distributions considered in this study 

Four simple, popular, and frequently used theoretical distributions such as Weibull (W), 

Lognormal (LN), Pareto type II (PII), and the Gamma (G) distributions are considered in this study 

following Papalexiou et al. (2013) and Papalexiou et al. (2018). Details on these four distributions are 

provided in Table 3.1. The distributions selected have two-parameter one is the scale parameter  

( 0  ) and the other is the shape parameter ( 0  ). The decision on the heaviness of tails of daily 

precipitation data is based on fitting 4 probability distributions to the precipitation data in the tail part 

of the empirical distribution. The distributions can be divided into sub-exponential and exponential-

hyperexponential classes based on the estimates of the shape parameter,  . The former group comprises 

Pareto type II distribution, Lognormal distribution, and Weibull distribution with 1  , whereas the 

latter group includes Gamma distribution and Weibull distribution with 1  . 
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Table 3.1  Details about Probability density functions, Exceedance probability function, and, tail type 

of four commonly used distributions (Papalexiou et al., 2013) 

Distribution Probability Density Function 

(PDF) 

Exceedance Probability 

Function (EPF) 

Tail Type 

Weibull 

distribution 

(W)  

1

( ) expW

x x
f x

 


  

−     
 = −        

 ( ) expW

x
F x





  
 = −    

 

Heavier than 

exponential 

for 1   

(sub-

exponential) 

Exponential 

1 =

Lighter than 

the 

exponential 

for 1   

(hyper-

exponential) 

Gamma 

distribution 

(G) 

1

1
( ) exp

( )
G

x x
f x



   

−

   
= −   

    
 ( ) , / ( )G

x
F x  



 
=   

 
 

 

Exponential 

tail 

Lognormal 

distribution 

(LN) 

1

21
( ) exp lnLN

x
f x

x





 
  = −     

 

 

 

1

1
( ) ln

2
LN

x
F x erfc





 
  =     

 

 

Heavy 

(approaching 

power type) 

Pareto type 

II 

distribution 

(Lomax) 

1
1

1
( ) 1PII

x
f x




 

− −

 
= + 

 
 

1

( ) 1pii

x
F x






−

 
= + 
 

 

Heavy 

(Power type 

tail) 

 

Note: Each distribution has two parameter scale parameter ( 0  ) and the shape parameter ( 0  ) 

Here ( ) is a standard mathematical function called the gamma function and is defined by

1

0

( ) tt e dt


− − =  ; complementary error function is denoted as, 
21 2

0

( ) 2 terfc x e dt


− −=    
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3.2.3.3     Procedure to Fit Probability Distributions  

The theoretical distributions are fitted to the precipitation records in the tail part of the empirical 

distribution by minimizing a PRMSE norm (which is an objective function) as given in Equation (3.2) 

(Papalexiou et al., 2013). 

2

(i)

1 (i)

( )1
1

( )

n

i n N N

F x
PRMSE

N F x= − +

 
= − 

 
 

                     (3.2) 

The PRMSE norm is a function of the parameters   and   of the theoretical distributions. The norm 

is selected because (i) it is unbiased and suitable for sub-exponential distributions, (ii) it is easy to use 

and allows direct comparison of different distribution tails (iii) it gives equal weightage to each point in 

the tail which contributes to the sum as relative errors between theoretical and empirical values 

(Papalexiou et al., 2013; 2018). 

In this study, the approach proposed by Papalexiou et al. (2013) is slightly modified by using a 

genetic algorithm (Goldberg, 1989; Michalewicz et al., 1992) for parameter estimation of the 

distributions. A genetic algorithm (GA) is a heuristic, stochastic, combinatorial, optimization technique 

based on the biological process of natural evolution (reproduction, crossover, and mutation). The 

heuristic is applied probabilistically to the discrete decision variables coded into binary strings. GA has 

been utilized effectively to minimize the PRMSE given in (Equation 3.2) in two ways: (i) by fitting 

theoretical distribution to entire precipitation data observed at a grid, and (ii) by fitting theoretical 

distribution to N largest values of precipitation at a grid. Figure 3.2 depicts the approach to fit different 

probability distributions, namely Lognormal, Pareto type-II, Weibull, and Gamma distributions to the 

precipitation events in the tail part for both pre-and post-1970 periods (i.e., 1901 to 1970 and 1971 to 

2010). Grids for which the parameters change but the distribution remains unchanged are shown in 

Figure 3.2. It can be inferred from the figures that the first approach where distribution is fitted to entire 

non-zero precipitation data does not adequately describe the tail (refer to the black dashed line). On the 

other hand, the solid red line representing fitting of the distributions only to the events in the tail part 

appears to describe the tail adequately. 
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(i) Lognormal distribution (Station 

code: 26) 

(ii)  Pareto distribution (Station 

code: 14) 

(iii) Weibull distribution (Station 

code: 497) 

(iv) Gamma distribution (Station 

code: 525) 

(i) 

    

(i) Lognormal distribution (Station 

code: 26 ) 

(ii)  Pareto distribution (Station 

code: 14) 

(iii) Weibull distribution (Station 

code:497) 

(iv) Gamma distribution (Station 

code: 525) 

(ii) 

Figure 3.2  PRMSE norm based fitting approach applied to four tails, namely Lognormal, Pareto II, Weibull, and Gamma for two different periods (i) pre-1970 

(1901-1970),  (ii) post-1970 (1971-2010) 
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3.3  Results 

This chapter investigates the temporal and spatial changes in the behavior of daily extreme 

precipitation over India in terms of its frequency of occurrence due to the shift in the global climatic 

regime in the 1970s. The temporal changes are assessed between the two time periods, pre-1970 and 

post-1970, both at grid-scale and regional scale. Further, a categorical classification of grids based on 

the change in average rainfall above the threshold (increase or decrease in magnitude) and change in the 

nature of the tails (i.e., from light to heavy or heavy to light) over the two-time period is also presented 

in this study.  

3.3.1 Assessment of spatial and temporal changes in tail behavior of probability distribution of 

daily precipitation at Grid-scale 

In this section, the spatial and temporal changes in the behavior of tails of probability distributions 

of daily precipitation over India were analyzed for pre-and post-1970 periods. Following the procedure 

described earlier, Lognormal, Pareto type II, Weibull, and Gamma distributions were considered to fit 

the non-zero daily precipitation data at 4789 grids over India from 1901 to 1970 and 1971 to 2010, 

respectively. The distributions were fitted either by considering entire precipitation data at a grid or 

considering either 70 or 40 largest precipitation data values depicting the tail part of the distribution for 

the time periods of 1901 to 1970 and 1971 to 2010. Visual investigation of the fits at all 4789 grids 

indicated that the fit based on the largest values in the precipitation data adequately described the tail 

part of the empirical distribution. This shows the advantage of the threshold-based approach proposed 

by Papalexiou et al. (2013) for fitting probability distributions to daily precipitation data, especially 

while analyzing daily extreme precipitation events. To find the best-fitted distribution of the four fitted 

distributions at each grid, the PRMSE norm was considered in this study. In the case of each grid, the 

distribution function yielding the least estimate for the PRMSE norm was declared to be the best-suited 

distribution for that grid. Figure 3.3 shows the geographical or spatial variation of best-suited 

distribution over India for both pre-and post-1970 periods. For the pre-1970 period, out of 4789 grids 

over India, Lognormal distribution was found to be better suited for nearly 41.87% grids, followed by 

Pareto (32.43%), Weibull (18.56%), and Gamma (7.14%) distributions. 
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(i) 

 

(ii) 

Figure 3.3  Geographical locations of best-fitted distribution tail over India for two time periods (i) pre-

1970 (1907-1970), (ii) post-1970 (1971-2010). Different color coding has been used for different tail 

type 

For the post-1970s, the sequence remains the same with Lognormal as the best-fitted distribution 

for most grids over India. It has been observed that 45.86% of grids exhibit lognormal distribution as 

best best-suited distribution, followed by Pareto for 32.20%, Weibull for 17.06%, and Gamma for 4.88% 

grids. Given these overall percentages, one may conclude that the Lognormal and Pareto type II 

distributions (both heavy-tailed distributions) are the most suitable distributions for modeling the tails 

of probability distributions of daily precipitation data. Overall, it can be seen that there is a 4% increment 

and 2.26% decrement in the number of grids following the Lognormal distribution and Gamma 

distribution, respectively. The Weibull distribution with a shape parameter less than 1 (which is a heavy-

tailed distribution) was found to be suitable for 96.40% and 98.53% of the grids, which showed Weibull 

as the best-suited distribution for pre-and post-1970 periods, respectively. It can be concluded from the 

results that there exists a dominance of heavy-tailed distributions over light-tailed Gamma and Weibull 

distributions along with the increase in the tail heaviness of precipitation data over India due to climatic 

shifts. This indicates that extreme precipitation events in India have become more frequent. Details on 

the shape ( ) and scale (  ) parameters of the best-suited distributions are provided in Table 3.2 (i), 

(ii) for both pre- and post-1970 periods, respectively. 
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Table 3.2  Statistical summary based on fitting of the four distributions to the tails of precipitation data 

for (i) pre-1970, and (ii) post-1970 time periods 

(i) 

Pareto Lognormal 

  MSE β α MSE β α 

Min  0.0025 0.8866 0.0000 0.0026 1.5062 0.1878 

Mean  0.1014 8.1352 0.2513 0.0581 10.2748 1.2208 

Max 0.6572 25.6076 0.6910 0.8410 24.5317 2.1150 

Median 0.0438 7.6815 0.2340 0.0335 10.0345 1.1873 

SD 0.1224 4.2759 0.1206 0.0718 4.7997 0.2572 

Skew 1.8099 0.5574 0.4701 3.4391 0.2278 0.4291 

Weibull Gamma 

  MSE β α MSE β α 

Min 0.0041 0.3476 0.3087 0.0037 3.4304 0.0379 

Mean 0.1108 12.2075 0.9143 0.1339 17.3272 1.0737 

Max 0.9855 31.5581 17.7532 0.4853 30.1988 7.0028 

Median 0.0737 12.4927 0.8501 0.1199 17.6201 0.9060 

SD 0.1221 5.0817 0.7085 0.0826 4.2256 0.7182 

Skew 3.4180 -0.1809 14.4425 0.8034 -0.2213 1.9645 

 

(ii) 

Pareto Lognormal 

  MSE β α MSE β α 

Min  0.0033 0.7920 0.0033 0.0040 1.9162 0.6009 

Mean  0.0892 8.1501 0.2842 0.0551 9.6792 1.3141 

Max 0.5203 31.8910 0.7445 0.4819 24.0319 2.2519 

Median 0.0487 7.5730 0.2660 0.0377 9.1881 1.2814 

SD 0.0967 4.2906 0.1314 0.0535 4.6877 0.2856 

Skew 1.8672 0.6598 0.4807 2.6614 0.3851 0.4276 

Weibull Gamma 
 

MSE β α MSE β α 

Min 0.0030 0.3850 0.3066 0.0040 5.1253 0.1139 

Mean 0.1173 12.2138 0.8655 0.1788 18.1197 1.1743 

Max 0.9744 30.8359 19.2964 0.6899 32.7686 10.6443 

Median 0.0862 12.6215 0.8158 0.1684 18.3819 0.9731 

SD 0.1111 5.1673 0.6941 0.1021 4.3883 0.8208 

Skew 3.3131 -0.1866 16.2781 0.6251 -0.1592 2.6873 

 

The shape parameter is a scalar measure of tail behavior, and its histogram constructed based on 

estimates at all grids can be helpful in providing essential information about tail heaviness. 
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(i) (ii) 

  

  

  

  

  

Figure 3.4  Histograms of the shape parameters of 4 distributions fitted to all 4789 records over two 

time periods (i) pre-1970 (1901-1970), (ii) post-1970 (1971-2010) 
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Figure 3.4 (i), (ii) shows the empirical histograms of the shape parameters of 4 distributions 

considered in this study for pre and post-1970s periods. Modal values of the histograms represent the 

most probable values of the shape parameters for each of the distributions. For Pareto type-II 

distribution, the modes were observed as 0.19 and 0.176 for the pre- and post-1970 periods. Low modal 

values for Pareto distribution imply the non-existence of statistical moments for higher orders, i.e., 

greater than 5.26 and 5.88 (Papalexious et al., 2013). The mode value of the shape parameter for 

Lognormal distribution was about 1.1 for both the pre- and post-1970 periods. In the case of Weibull 

distribution, the modes of the histograms were observed to be around 0.84 for pre-1970 and 0.82 for 

post-1970, both implying the presence of heavier tails of the distribution as the shape parameter is less 

than 1. Histograms for the shape parameter of Gamma distribution show low modal values of 0.67, and 

0.73 for pre and post-1970s, respectively, which indicate the presence of hyper-exponential tails 

representing a lesser frequency of occurrence for extreme precipitation events. 

 Histograms of shape parameters did reveal a lot about the basic nature of the tail of four 

distributions but to further investigate the tail relevances in describing daily precipitation; the average 

ranking was also considered. All 4 distributions were ranked in the ascending order of the PRMSE norm, 

i.e., the distribution yielding the least PRMSE was declared as Rank 1 distribution while the distribution 

with the highest PRMSE was ranked as 4. Figure 3.5 illustrates the average rank of the four probability 

distributions for pre-and-post-1970 periods. A lower average rank of a probability distribution indicates 

better suitability of the distribution in describing the tails of precipitation data as compared to those with 

higher ranks. Lognormal distribution was the best-fitted distribution with an average rank of 1.9 and 1.7 

for both pre-1970 and post-1970 periods. The best-fitted distributions were ordered as Lognormal, 

Pareto type II, Weibull, and Gamma distribution based on their ranks for both pre-and post-1970 periods. 

Conventionally, Gamma distribution is the most commonly used probability distribution for 

representing daily precipitation. However, results from this study inferred that the Gamma distribution 

was the worst performer for both periods. It can be noted from Figure 3.5 that the average ranking of 

Lognormal and Pareto type II distributions is decreased from 1.9 to 1.78 and 2.31 to 2.2 over the pre-

and post-1970 periods, respectively. This shows that the gridded daily precipitation for the post-1970 

period over India exhibits heavier tails than the pre-1970 period. Additionally, an increase in the tail 

heaviness of the distributions in the post-1970 period was also evident from the increase in the average 

rank of the Gamma distribution.  
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(i) 

 

(ii) 

 

Figure 3.5  Mean ranks of 4 distributions tails for different time period (i) pre-1970 (1901-1970), (ii) 

post-1970 (1971-2010)  

Another way adopted for assessing the temporal change in the tails of probability distributions 

during the pre-and post-1970 periods is achieved by comparing the tails of the distributions in couples 

or pairs. Various pairs of distributions considered in this study are “Lognormal vs. Pareto”, “Pareto vs. 

Weibull”, “Pareto vs. Gamma”, “Lognormal vs. Weibull”, “Lognormal vs. Gamma” and “Weibull vs. 

Gamma”. The best-fitted distribution among the pair (any two distributions) was selected based on the 

PRMSE norm for each grid. The distribution with a lesser PRMSE value was considered as the best fit. 

Figure 3.6 illustrates the comparison between 2 probability distributions in couple for pre-and post-1970 

periods. The figure presents the percentage of grids found suitable for each probability distribution 

compared in pairs. It can be deduced from the figure that the Lognormal distribution (which is a heavy-
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tailed distribution) fits the extreme daily precipitation data for 58.66% and 60.51% grids in the pre-and 

post-1970 periods when compared with the Pareto type II distribution. 

 

 

(i)  

 

(ii)  

Figure 3.6  PRMSE norm-based comparison of the fitted tails in couples for two time period (i) pre-

1970 (1901-1970), (ii) post-1970 (1971-2010) 

Further, the Lognormal distribution was found to be better suited than the Weibull and Gamma 

distributions for both periods. It can be noted that the percentage of grids where daily precipitation is 

well represented by the Lognormal distribution against the Weibull and Gamma distributions has 

increased from 70.49%  to 74.23% and 81.23% to 87.7%, respectively, over the pre-and post-1970 

periods. This indicates that the probability distributions of daily precipitation in the post-1970 period 

exhibit heavier tails than the pre-1970 period. We have also compared the Pareto type II distribution 

with Lognormal, Gamma, and Weibull distribution, and it emerged as the second best-fitted distribution 
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after Lognormal distribution. Similar to Lognormal distribution, Pareto type II distribution was inferred 

as a better fitting distribution against Gamma and Weibull distributions for both pre-and post-1970 

periods. The analysis revealed that the percentage of grids where the tails of probability distributions of 

daily precipitation are better fitted by the Pareto type II distribution against the Weibull and Gamma 

distributions has increased from 58.17% to 62.98 % and 69.05% to 77.34% over the periods. Amongst 

the Weibull and Gamma distributions, the Weibull distribution was better suited for describing the tails 

of daily precipitation data over India in both pre-and post-1970 periods. Interestingly, a heavier-tailed 

distribution was better fitted in each case during both periods. These findings point out that the heavier-

tailed distributions should be preferred over their counterparts while representing the tails of daily 

precipitation data over India. 

We have also investigated the existence of any geographical/spatial pattern of best-suited 

distributions over India. The maps shown in Figure 3.3 illustrate the spatial distribution of best-fitted 

distributions for pre-and post-1970 periods. These maps do not unveil any regular patterns; instead, they 

seem to follow a random spatial variation. Hence, to reveal some meaningful conclusions, we 

categorized the best-suited distributions into either sub-exponential or exponential-hyperexponential 

classes based on the estimates of the shape parameter ( ) , following El Adlouni et al. (2008) and 

Papalexious et al. (2013). The subexponential class includes Pareto type II distribution, Lognormal 

distribution, and Weibull distribution with shape parameter 1  , while the exponential-

hyperexponential class comprises the Gamma distribution and Weibull distribution with shape 

parameter 1  . Figure 3.7 represents maps showing the spatial distribution of sub-exponential and 

exponential-hyper-exponential distributions over India for pre-and post-1970 periods. For the pre-1970 

period, subexponential distributions were better suited for 4415 grids out of 4789 grids (i.e., about 

92.19%) over India. In comparison, the latter class was found to be applicable for merely 374 grids (i.e., 

only 7.81% of all the grids). Similarly, for the post-1970 period, subexponential distributions were found 

to be adequate to model daily precipitation data at 4543 grids (i.e., 94.86% of all the grids while 

exponential-hyperexponential tails were found to be appropriate for the remaining 246 grids (i.e., 5.14% 

of the grids). It can be observed from maps that the heaviness in the tails of probability distributions of 

daily precipitation over India has increased post-1970s climatic shift. With the dominance of heavy tails 

all over India, few pockets comprising lighter tails were observed in the northeast region and along the 

western coastal plain of the Indian Peninsular for both periods. It can very well be seen from the maps 

that the subexponential tails are much more dominant over Indian regions than the exponential-

hyperexponential tails. 

Overall, the comparison is made in terms of the difference in the percentage of the number of 

grids belonging to one category and the values of the shape parameter ( ) . The maps showing the 

distribution and the two broad classes of tail behavior (i.e., sub-exponential and exponential-

hyperexponential) are compared for both pre-and post-1970 periods to examine the impact of the global 
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shift in climate regime in the 1970s on extreme precipitation. The presence of heavy tails in the daily 

precipitation data points to the fact that extreme precipitation events over India are no longer rare.  

 

(i) 

 

(ii) 

Figure 3.7  Geographical Variation of Subexponential and Exponential-hyperexponential tails over 

India for different time period (i) pre-1970 (1901-1970), (ii) post-1970 (1970-2010) 

3.3.2 Assessment of temporal changes in tail behavior of probability distribution of daily 

precipitation at Regional Scale 

Analysis at the grid scale revealed some essential inferences about the tail behavior of daily 

precipitation over India. However, to make the analysis more interpretable and usable at the regional 

scale, the temporal changes in tail behavior of the probability distribution of daily precipitation was 

assessed over 34 Meteorological Subdivisions over India. Table 3.3 provides details about the 

percentage of grids having heavy or subexponential tails in each subdivision, considering the pre-1970 

and post-1970 periods. Figure 3.8 shows the percentage of subexponential tails in each Meteorological 

Subdivision over India for both periods using color codes. In the case of the pre-1970 period, Saurashtra 

Kutch and Diu (subdivision 22) showed a complete dominance of heavy tails, followed by Gujarat 

(subdivision 21), Gangetic West Bengal (subdivision 6), and Orissa (subdivision 7). 
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Table 3.3  Summary of percentage of the grids having heavy tails within each Meteorological 

Subdivision for the pre and post-1970 records 

ID Metrological Region  Percentage of grids having heavy tails 

  Pre-1970 (1901-1970) Post-1970 (1971-2010) 

  
   

2 Arunachal Pradesh 68.54 95.51 

3 Assam and Meghalaya 77.71 90.36 

4 Naga Mani Mizo and Tripura 88.89 90.00 

5 Sub Him W Bengal Sikkim 96.67 100.00 

6 Gangetic West Bengal 98.92 100.00 

7 Orissa 98.15 99.07 

8 Jharkhand 93.86 97.37 

9 Bihar 94.90 96.82 

10 East Uttar Pradesh 95.48 99.10 

11 West Uttar Pradesh 98.05 94.81 

12 Uttaranchal 97.59 93.98 

13 Haryana Chandigarh and Delhi 93.20 94.20 

14 Punjab 96.67 97.78 

15 Himachal Pradesh 87.64 93.18 

16 Jammu and Kashmir 93.83 93.09 

17 West Rajasthan 93.18 92.80 

18 East Rajasthan 97.09 98.06 

19 West Madhya Pradesh 95.95 98.38 

20 East Madhya Pradesh 97.45 97.45 

21 Gujarat 99.19 97.58 

22 Saurashtra  Kutch and Diu 100.00 99.36 

23 Konkan and Goa 71.43 90.00 

24 Madhya Maharastra 87.50 88.82 

25 Marathwada 93.26 92.13 

26 Vidarbha 94.89 97.08 

27 Chhatisgarh 95.00 97.78 

28 Coastal Andhra Pradesh 96.80 100.00 

29 Telangana 92.67 98.00 

30 Rayalaseema 84.44 95.56 

31 Tamil Nadu and Pondicherry 88.57 93.71 

32 Coastal Karnataka 58.97 74.36 

33 North Interior Karnataka 82.69 81.73 

34 South Interior Karnataka 78.05 78.05 

35 Kerela 86.15 95.38 

 

Nearly 22 subdivisions had more than 90% of grids showing heavy-tailed behavior. For the post-

1970 period, Sub Him West Bengal and Sikkim (subdivision 5), Coastal Andhra Pradesh (subdivision 

28), and Gangetic West Bengal(subdivision 6) have 100% heavy tails. In the post-1970s, 30 subdivisions 

were found to have more than 90% of grids showing heavy tail behavior. 
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(i) 

 

(ii) 

 

 (iii) 

Figure 3.8 Geographical variation of percentage of subexponential tails in each Meteorological 

Subdivision over India for a different period (i) Pre-1970 (1901-1970), (ii) Post-1970 (1970-2010). 

Further, changes in the percentage of grids showing heavy tails due to climate shift in the 1970s are 

presented in subfigure (iii) 

The maps showing the percentage of heavy tails in each subdivision for pre- and post-1970 were 

compared to find the change in the number of grids comprising heavy tails. The changes in the 

percentage of heavy tails over time for each subdivision are presented in Figure 3.8 (iii). In nearly 23 
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out of 34 subdivisions, the percentage of grids with heavy tails is observed to increase over time. Out of 

those 23, 9 subdivisions, namely Arunachal Pradesh, Assam and Meghalaya, Himachal Pradesh, Konkan 

and Goa, Telangana, Tamil Nadu and Pondicherry, Rayalaseema, Coastal Karnataka, and Kerela, 

showed an increase of about 5% or above. The substantially higher percentage of grids exhibiting heavy 

tails post-1970 compared to that of pre-1970 might be a possible consequence of climate change and 

global climatic shifts in the 1970s. 

3.3.3 Assessment of Temporal changes in Magnitude and Frequency of Extreme Precipitation over 

India 

The classification of grids exhibiting the severity in terms of increase in the magnitude and 

frequency of extreme precipitation events due to the climatic shift is achieved by considering the 

combined effect of change in average precipitation above threshold and change in the tail behavior. The 

rainfall values above the threshold are the ones that belong to the tail. We considered the average of 

these values at each grid, which served as an indicator of the magnitude of the extreme precipitation. 

The average rainfall values above the threshold vary from a minimum value of 25.19 mm to 287.51 mm 

for the pre-1970 period. On the other hand, average rainfall values above the threshold range from 39.65 

mm to 646.71 mm.  

Table 3.4  Eight categories of severity proposed by considering an increase or decrease of average 

rainfall above threshold and change in the nature of tail over the period from pre-1970 to post-1970 

Category 

(Severity 

decreases top to 

bottom) 

Change in average 

rainfall above the 

threshold from pre-

1970 to post-1970 

Change in tail type 

from pre-1970 to 

post-1970 

Number of 

grids (out of 

4789) 

Percentage 

of grids (%) 

Category 1 Increases Heavy to heavy 3093 64.58 

Category 2 Increases Light to heavy 260 5.42 

Category 3 Decreases Heavy to heavy 1118 23.34 

Category 4 Decreases Light to heavy 72 1.50 

Category 5 Increases Heavy to light 98 2.04 

Category 6 Decreases Heavy to light 106 2.21 

Category 7 Increases Light to light 28 0.58 

Category 8 Decreases Light to  light 14 0.29 
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Figure 3.9  Spatial pattern of grids belonging to 8 Categories describing severity in terms of change in 

increase or decrease of average extreme rainfall above threshold and change in the nature of tail over 

the period from pre-1970 to post-1970 
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(Figure 3.9 Continued…) 

  

 

Eight categories of severity were proposed by considering an increase or decrease of average 

rainfall above the threshold and a change in the nature of the tail over the period from pre-1970 to post-

1970. Table 3.4 describes the categories along with the number and percentage of grids falling in them. 

The categories are ranked from 1 to 8, with 1 being the most severe case and 8 being the least severe 

case. Figure 3.9 shows the spatial pattern of grids belonging to each category. Figure 3.9 and Table 3.4 

show that nearly 64.5% of grids belong to Category 1, representing the most severe case. Category 2 

comprises 5.42% of grids where an increase in the magnitude of extreme precipitation and transition in 

the tail behavior from light to heavy were observed. Category 3 includes nearly 23.34% grids where the 

magnitude of extreme precipitation has decreased with heavy-tailed behavior during pre- and post-1970. 

Overall, most of the grids in India show a tendency to transition towards heavier tails along with an 

increase in the magnitude of extreme precipitation. 

3.4  Summary and conclusions 

In this chapter, we have analyzed the temporal and spatial change in the tail behavior of daily 

precipitation over India from pre- to post-1970 time periods as per the global climatic shift. The tail 

behavior of precipitation data is assessed by identifying the best-fitted distribution out of 4 theoretical 

distributions to the sample obtained by the Annual Exceedance Series (AES) approach (e.g., Pareto type 

II, Lognormal, Weibull, and Gamma distributions) based on PRMSE norm. The approach is found to be 

easy to use and effective in diagnosing the tail behavior of daily precipitation data. Maps showing the 

geographical variation of the percentage of best-fitted sub-exponential tails over 34 Meteorological 

Subdivisions in India are given in this study. Also, the categorical classification of grids in terms of 

severity by considering the combined effect of an increase or decrease in average rainfall above the 

threshold and change in the nature of the tail over the period from pre-1970 to post-1970. Results from 

this study emphasize the importance of heavy-tailed distributions for reliable estimation of the frequency 

of extreme precipitation events in India. Important highlights from this study are as follows. 
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(i) Lognormal and Pareto type II distributions (both heavy-tailed distributions)  are found to be 

better suited for daily precipitation over India for both pre-and post-1970 periods. It can be 

concluded from the results that there exists a dominance of heavy-tailed distributions over 

light-tailed Gamma and Weibull distributions along with the increase in the tail heaviness of 

precipitation data over India due to climatic shifts. This directs to the fact that extreme 

precipitation events in India have become more frequent during both the pre-and post-1970 

periods. 

(ii) Gamma distribution, in general, underestimates the frequency and magnitude of extreme 

events. Hence the distribution should not be considered for modeling the extreme 

precipitation events over India.  

(iii) Histograms of shape parameters of the 4 probability distributions revealed that the tails of 

daily precipitation data have become heavier from pre- to post-1970 periods. 

(iv) Heavy-tailed distributions can describe the observed precipitation extremes more effectively 

than light-tailed distributions. About 92.19% of the records in the pre-1970s and 94.86% in 

the post-1970s are better characterized by subexponential tails. Exponential-

hyperexponential tails are found to be better suited for only 7.81% and  5.14% records for the 

pre-and-post-1970s periods. It can be seen that increasing trends of heavy tails persist in the 

later period indicating a rising trend of more frequent and ‘severe events’ of precipitation. 

(v) Twenty-three meteorological subdivisions in India show an increase in the percentage of 

heavy tails in the post-1970s compared to the pre-1970s. Further, 9 subdivisions out of those 

23, namely Arunachal Pradesh, Assam and Meghalaya, Himachal Pradesh, Konkan and Goa, 

Telangana, Tamil Nadu and Pondicherry, Rayalaseema, Coastal Karnataka, and Kerela, 

showed a substantial increase in the percentage of grids exhibiting heavy tails. 

(vi) Eight categories of severity are proposed by considering an increase or decrease in average 

rainfall above the threshold and change in the nature of the tail over the period from pre-1970 

to post-1970. Nearly 70% of grids in India belong to Category 1 and Category 2 which are 

deemed to indicate severe/critical categories in terms of increase in the magnitude of extreme 

precipitation and the presence of heavier tails over pre- to post-1970 periods. 

An important inference from this analysis is that the frequency and the magnitude of extreme 

precipitation events have generally been undervalued in the past. The use of light-tailed distributions for 

modeling daily precipitation can lead to a serious underestimation of the frequency and the magnitude 

of design extreme precipitation, which is highly undesirable for the design of water control structures. 

It can be noted that the results obtained from the present study are dependent on the length of the 

precipitation record (e.g., Arguez and Vose, 2011; Cavanaugh et al., 2015) available at each grid and 

the presence of serial dependence among the peaks/extreme precipitation events selected using the AES 

approach (e.g., Koutsoyiannis, 2008). Extended research is underway to alleviate the limitation of serial 
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dependence among the selected extreme precipitation events in the AES by exploring the strategies that 

can form a sample with independent events (e.g., Adams et al., 1986).  
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CHAPTER 4 

CHARACTERIZING THE TAIL BEHAVIOR OF DAILY PRECIPITATION 

PROBABILITY DISTRIBUTIONS OVER INDIA USING THE OBESITY INDEX 

 

4.1  Overview 

Extreme precipitation events lie in the upper part of the probability distribution of daily 

precipitation data, i.e., the tail. Prediction of extreme precipitation depends on how reliably the 

distribution tail is modeled. Tail behavior can be studied by graphical as well as threshold-based fitting 

approaches. However, the graphical methods are time-consuming and do not provide quantitative 

comparisons between two distributions, whereas the threshold-based approaches possess limitations 

such as ambiguity in selecting an optimum threshold for demarcation of the tail. There have been 

attempts in the past to define and use different upper tail indicators like Shape parameter, Gini Index, 

and Upper tail ratio (UTR) to characterize the heavy tail phenomenon. This chapter presents a novel 

index, known as “Obesity Index” (OB), which is a quantitative, scalar, and easy-to-use indicator that 

can diagnose the heaviness of distribution tails without assuming any threshold for segregating the tail. 

This indicator alleviates the limitations associated with the threshold-based and graphical approaches. 

This chapter presents the utility of the concept of OB for performing a diagnosis of the heaviness of tails 

and characterization of the daily gridded precipitation data over India for historical as well as future time 

period. A step-by-step algorithm for the determination of the OB using the bootstrapping technique for 

reliable discrimination of various distribution tails has been proposed. The robustness of the approach 

is established through a simulation study by investigating the adequate sample length and the optimum 

number of random samples required for the application of the algorithm. The OB approach as well as 

the threshold-based approach is applied to characterize the tail behavior of daily gridded precipitation 

over India. Subsequently, a comparative analysis between the OB-based approach and threshold-based 

approaches proposed by Papalexiou et al. (2013) and Nerantzaki and Papalexiou (2019) is performed to 

examine their ability to characterize the probability distributions of the daily gridded precipitation over 

India into two broad classes of distribution i.e., sub-exponential and exponential/hyper-exponential. The 

approach was also used to examine the change in OB over time by considering various climate change 

scenarios. Further, the application of the OB-based approach is extended to characterize daily 

precipitation in Indian Meteorological Subdivisions. Finally, the spatial variation of OB with respect to 

the elevation was explored and an attempt was made to relate it to the climatology of India.  

4.2  Theoretical Background on Obesity Index 
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The concept of the OB was proposed based on the heuristics that a heavy-tailed sample usually 

has a few large values compared to the other values (Cooke and Nieboer, 2011; Cooke et al., 2014). The 

concept overcomes the limitations associated with graphical or threshold-based approaches (Wietzke et 

al., 2020). The major advantage associated with the OB is that it does not require assuming any threshold 

for segregating the tail part of a distribution (i.e., it can measure the heaviness of the distribution tail 

without referring to the limiting behavior of a distribution) (Nieboer, 2011; Cooke et al., 2014). This 

approach checks how far the largest sample values (here, daily non-zero precipitation data) occur from 

the main body of the probability distribution, also known as the principle of “a single big jump”. This 

principle forms a basis for determining the presence of sub-exponentiality in the data. Further, the index 

is an empirical measure and can be computed directly from the data without assuming any form of 

distribution function. The limitation associated with the concept of OB is that it is applicable for a 

random variable that can take only positive values. Another limitation is that for a symmetric distribution 

like Normal (which is a light-tailed distribution) and Cauchy distribution (which has a heavy tail), OB 

takes the same value equal to 0.5. 

Mathematically, the OB can be defined for a positive random variable X as, 

1 4 2 3 1 2 3 4( ) ( | )OB X P X X X X X X X X= +  +                   (4.1) 

Where,  1 4,.......,X X  are independent copies of X. When 4X
 
is very large compared to others SX , 

then the probability that the sum of largest and smallest observation in a dataset of four is greater than 

the sum of the other two observations as represented by Equation 4.1. This probability tends to be higher 

for datasets having the presence of large values or extremes, especially in the case of heavy-tailed 

distributions. This property can form the basis for distinguishing between light and heavy-tailed 

distributions. Being an estimate of probability, the OB takes values from 0 to 1.  

A step-by-step algorithm for determining the OB using the bootstrapping technique (Efron, 1979; 

Daníelsson et al., 2001; Qi, 2008) is proposed below. 

1. Generate a sample of the random variable X  having a sample size equal to N 

2. Define _Max count  as the maximum number of times for which random sampling can be 

performed  

3. Initialize iteration count = 1 

4. Resample  for 1,......, 4count

iX s i =  from the generated sample which represents independent 

copies of X  

5. Sort the 
count

iX s in ascending order, i.e., 1 2 3 4

count count count countX X X X     

6. Verify whether 1 4 2 3

count count count countX X X X+  + . If 1 4 2 3

count count count countX X X X+  +  then denote 

( ) 1 else 0K count =  
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7. If, _count Max count  then increment 1count count= +  and repeat steps 4 to 6. If

_count Max count= , then proceed to step 8 

8. Determine OB of the data using Equation (4.2) 

_

1

( )

( )
_

Max count

count

K count

OB X
Max count

= =


 

9. If, ( ) 0.75OB X  , then the random variable X  has a light-tailed distribution. Otherwise (i.e.,

( ) 0.75OB X  ), X is considered to be originated from a heavy-tailed distribution  

Intuitively, the OB is an empirical estimate that can be linked to the tails of various distributions. 

The greater the value of OB, the heavier the tail of a distribution. Obesity Index behavior for various 

probability distribution functions is further investigated in sub-section 4.2.1 by analyzing its variation 

with respect to distribution shape and scale parameters. 

4.2.1 Behavior of obesity index with shape parameter of probability distributions 

In this section, the behavior of the OB for the variation in shape and scale parameters of various 

distributions is investigated. For this, a simulation study was performed by considering samples from 4 

probability distribution functions viz., Pareto, Weibull, Lognormal, and Gamma following Papalexiou 

et al. (2013, 2018), Gupta et al. (2021). Details about the distributions can be found in Table 3.1 of 

Chapter 3. Samples of size 20,000 were generated by considering the four distribution functions. 

Subsequently, for each of the distributions, the estimates of the OB were computed following the steps 

mentioned in the algorithm by considering several combinations of shape and scale parameters. Graphs 

showing the variation of OB with respect to shape and scale parameters for the distributions are provided 

in (Figure 4.1). The graphs corresponding to Lognormal and Pareto distributions illustrate a concave 

increase, while those corresponding to Weibull and Gamma distributions show a convex decrease for 

the OB with respect to an increase in shape parameter. The equations of 3rd order polynomials were 

provided in the figure depicting the nonlinear relationship between the shape parameter and OB. 

However, it can be observed from the graphs that the change in the scale parameter of distribution does 

not have much influence on OB. Figure 4.1(ii) shows that the OB for a particular case of Gamma 

distribution with shape parameter as 1 (i.e., Exponential distribution) takes a value equal to 0.75. 

Therefore, when the obesity index takes a value greater (lesser) than 0.75, the samples can be assumed 

to come from a heavy (light)-tailed distribution. Papalexiou et al. (2013) stated that the Pareto type II 

and Lognormal distributions belong to the sub-exponential class and are considered as heavy-tailed 

distributions. Weibull can belong to both classes (i.e., light as well as heavy tail), depending upon the 

values of its shape parameter, while the Gamma distribution has essentially an exponential tail. One can 

infer from Figure 4.1 that except for the Pareto type II distribution, other distributions can possess 

heavier and lighter tails depending upon the values taken by the shape parameter. The obesity/heaviness 
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of the distribution tails can be quantified based on the value taken by the OB (refer to Figure 4.1). It can 

be observed from the figure that Weibull or Lognormal distributions can possess more obese or heavy 

tails than a Pareto distribution, depending upon the choice of parameters, especially the shape parameter. 

Additionally, we investigated the sensitivity of precipitation quantiles corresponding to various 

non-exceedance probabilities (F= 0.95, 0.97, 0.99, and 0.999) to the variation in the OB. For this 

analysis, we considered three heavy-tailed distributions, viz. Pareto type II, Lognormal, and Weibull 

distributions, and the scale parameter as 0.5, 10, and 25. Obesity Index is varied from 0.75 to 0.95 with 

an increment of 0.01 as this range generally belongs to heavy-tailed distributions. For each of the 

distributions, the estimate of the shape parameter corresponding to the value of OB was interpolated 

from the plots given in Figure 4.1 (corresponding to the scale parameter under consideration). Figure 

4.2 shows the sensitivity of precipitation quantiles to the change in OB. Note that the quantiles shown 

on the y-axis are in a logarithmic scale. It can be observed from the figure that there is considerable 

variation in precipitation quantile estimates when the OB is even changed by 0.02. Precipitation 

quantiles increase exponentially when the OB estimate becomes greater than 0.85. 
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(i) Weibull Distribution 

 

(ii) Gamma Distribution 

 

(iii) Lognormal Distribution 

 

(iv) Pareto-II Distribution 

 

Figure 4.1  Variation of obesity index with respect to shape and scale parameters for (i) Weibull, (ii) Gamma, (iii) Log-Normal, and (iv) Pareto Type II distributions. 

The colored curves represent the variation of the mean of OB over shape parameter (α) 
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Pareto Distribution Lognormal Distribution Weibull Distribution 

   

   

   

Figure 4.2  Plots showing the sensitivity of precipitation quantiles corresponding to various non-exceedance probabilities (F= 0.95, 0.97, 0.99, and 0.999) to the 

variation in obesity index  
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It can also be deduced from the figure that the non-exceedance probability corresponding to a 

particular value of precipitation decreases from 0.999 to 0.95 with a small increase in OB. This indicates 

that the frequency of occurrence of a precipitation event increases considerably with an increase in the 

OB, i.e., heavier tails of the probability distribution of precipitation. Therefore, it can be inferred that 

the OB can be useful to discriminate between the tails of heavy-tailed distributions, although the range 

of the OB for heavy tails is very small (i.e., from 0.75 to 1). 

4.2.2 Selection of the optimum number of random sampling  

In the case of threshold-based approaches, the analysis is generally performed on precipitation 

data above an arbitrary threshold value. This can occasionally lead to an inadequate length of data for 

performing the analysis (Papalexiou et al., 2013; Nerantzaki and Papalexiou, 2019). Contrary to this, 

the OB-based approach considers the entire time series of daily non-zero precipitation, which ensures 

the availability of a sufficient length of data for analysis. However, to apply the algorithm for the 

determination of the OB, information on the optimum number of random sampling (denoted by 

_Max count  in the algorithm) is required. A simulation study was performed to address this, and the 

sample size N of the generated samples from the distributions was varied from 100 to 50,000. Here, we 

have varied _Max count  from 100 to 1,00,000. Subsequently, obesity indices were determined for 

each of the probability distributions following the steps in the algorithm. We studied the variation of the 

OB with respect to the number of random sampling and the sample size for each of the distributions. 

Based on the analysis performed in the previous subsection, the parameters of each distribution, except 

the Pareto type II distribution, are chosen in such a way that both heavy- and light-tailed cases of the 

distributions are selected for the analysis. For the light- (heavy-) tailed case, the scale and shape 

parameters considered for the analysis are 2 (0.6) and 5 (0.5), respectively, based on inferences from 

Figure 4.1. Graphs were prepared to study the variation of the OB with respect to the number of random 

sampling and the size of the sample (see Figure 4.3). Details about the variation of the OB with respect 

to various sample sizes and the number of random sampling considered in the simulation study are 

provided in Tables S2 to S8 of the supplementary material of Gupta and Chavan (2022). It can be 

inferred from the figure and tables that a consistent estimate (i.e., fairly constant) of OB is observed for 

a sample size greater than 1000 and a number of random sampling greater than 5000. Hence, it can be 

recommended from the simulation study that sample size and number of random sampling greater than 

1000 and 5000, respectively, are appropriate to estimate OB for a sample. 
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(i) Weibull Distribution (Shape Parameter- 

0.6, Scale Parameter- 0.5) 

 

(ii) Weibull Distribution (Shape Parameter- 

2, Scale Parameter- 5) 

 

(iii) Gamma Distribution(Shape Parameter- 

0.6, Scale Parameter- 0.5) 

 

(iv) Gamma Distribution (Shape Parameter- 

2,  Scale Parameter- 5) 

 

(v) Lognormal Distribution (Shape 

Parameter- 0.6, Scale Parameter- 0.5) 

 

(vi) Lognormal Distribution (Shape 

Parameter- 2, Scale Parameter- 5) 

 

(vii) Pareto-II Distribution (Shape Parameter- 1, Scale Parameter- 5) 

 

Figure 4.3  Variation of Obesity Index with respect to the number of random sampling and size of the 

sample for different distributions considered in this study 
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4.3 Study area and Data used 

In this chapter, daily gridded precipitation data having a resolution of 0.25° x 0.25° prepared by 

the India Meteorological Department (IMD) are used for the analysis. The gridded rainfall data product 

was prepared by Pai et al. (2014) based on a varying network of 6955 rain gauge stations from 1901 to 

2010. A record length of 53 years (1951-2004) for each grid is used for the analysis. The sample size of 

non-zero daily precipitation ranging from 1200 to 16000 for nearly 4949 grids over India was 

considered. In this study, the characterization of tails of daily precipitation was also performed at a 

regional scale. There are 36 Meteorological Subdivisions in India (Guhathakurta and Rajeevan, 2008). 

Thirty-four conterminous subdivisions were considered in the present study (see Figure 3.1 of Chapter 

3). 

Future projections of daily gridded precipitation data corresponding to two Representative 

Concentration Pathways (RCP) scenarios, namely RCP4.5 (mid-range emissions) and RCP8.5 (high-

end emissions) scenarios from the year 2006 to the year 2099, were obtained from the Coordinated 

Regional Climate Downscaling Experiment-South Asia (CORDEX-SA), using 6 Regional climate 

model (RCM) experiments which are a part of the initiatives of the World Climate Research Programme 

(WCRP) (http://www.cordex.org/) (Taylor et al., 2012; Sanjay et al., 2017; Nikulin et al., 2011; 

Choudhary et al., 2017). Details on the CORDEX-SA experiment can be found in section S2 in the 

supplementary material of Gupta and Chavan, 2022. Further, the details related to the 6 RCMs 

considered in this study are presented in Table 4.1. 

RCMs are derived by dynamically downscaling the large-scale climate variables of GCM 

simulations to yield spatially and physically consistent outputs (Sharma et al., 2011; De Sales and Xue, 

2011). However, the RCMs can have considerable biases with respect to observed data due to different 

spatial resolution, model systematic error, and inaccurate physical parameterizations (Maurer and 

Hidalgo, 2008; Christensen et al., 2008; Ghosh and Mujumdar,  2009; Chen et al., 2013; Turco et al., 

2013). Thus, the daily precipitation data from both IMD gridded data and CORDEX-SA RCMs for 

historical periods (1951 to 2004) was checked for the presence of any bias. 

  

http://www.cordex.org/
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Table 4.1  Details of CORDEX-SA experiments considered in the present study (source: 

CORDEX South-Asia Database, CCCR, IITM; http://cccr.tropmet.res.in/cordex/files/downloads.jsp) 

No Experiment 

Name 

Name Used  RCM 

Description 

Driving 

GCM 

Contributing  

CMIP5 Modeling Center 

1 ACCESS-

CSIRO 

CCAM 

ACCESS 

Commonwealth 

Scientific and 

Industrial 

Research 

Organisation 

(CSIRO), 

Conformal Cubic 

Atmospheric 

Model (CCAM; 

McGregor and 

Dix, 2001) 

ACCESS1.0 CSIRO, Australia 

2 CNRM-CM5-

CSIRO 

CCAM 

CNRM CNRM-CM5 Centre National de 

RecherchesMe´te´orolog

iques (CNRM), France 

3 CCSM4-

CSIRO 

CCAM 

CCSM4 CCSM4 National Center for 

Atmospheric Research 

(NCAR), USA 

4 GFDL-CM3-

CSIRO 

CCAM 

GFDL-CM3 GFDL-CM3 National Oceanic and 

Atmospheric 

Administration (NOAA), 

Geophysical Fluid 

Dynamics Laboratory 

(GFDL), USA 

5 MPI-ESM-LR 

CSIRO-

CCAM 

MPI MPI-ESM-

LR 

MPI-M, Germany 

6 NorESM1-M-

CSIRO 

CCAM 

NorESM1 NorESM1-M Norwegian Climate 

Centre (NCC), Norway 

 

The box plots presented in Figure 4.4 show the comparison between RCM-based daily 

precipitation and observed precipitation data for (i) a typical IMD grid (latitude 14.5° N and longitude 

74.5° E) and (ii) Arunachal Pradesh Subdivision. Herein, the bias is defined as the difference in the 

quartiles (i.e., 5th, 25th, 50th, 75th, and 95th percentile) and interquartile range (i.e., the difference between 

75th and 25th percentiles). The issue of bias in daily precipitation estimates was resolved through the 

additive multiple change factor method following Semadeni-Davies et al. (2008) and Anandhi et al. 

(2011). The description of the method is provided in section S3 of the supplementary material of Gupta 

and Chavan (2022).  
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(i) 

 

(ii) 

 
 

Figure 4.4  Box plot showing the comparison between RCM based daily precipitation and observed 

precipitation data for (i) a typical IMD grid (latitude 14.5° N and longitude 74.5° E) and (ii) Arunachal 

Pradesh Subdivision 

4.4 Results  

In this section, we characterized the tail behavior of daily gridded precipitation over India by 

using the OB-based approach and threshold-based approaches. Details regarding threshold-based 

approaches can be found in Appendix A. 

4.4.1 Characterization of tail behavior of daily gridded precipitation using obesity index 

The OB-based approach was utilized to characterize the tails of daily gridded precipitation data 

over India. Following the algorithm proposed in section 4.2, we evaluated the OB at each grid over 

India. The sample size (N) available for the analysis was always greater than 1000. The number of 

random sampling considered for the analysis was 5000. Figure 4.5 shows the variation of the OB over 

India. The estimates of OB for grids range from 0.76-0.93. It can be observed that all the grids over 

India possess OB values greater than 0.75. Hence it can be concluded that the non-zero daily gridded 

precipitation data over India exhibit heavy tails. The dominance of heavy-tailed behavior of daily 

precipitation data indicates that the extreme precipitation events over India have a high probability of 

occurrence.  

The OB values in this study varied from 0.85 to 0.95 for the western parts of Gujarat, Rajasthan, 

Punjab, North-eastern parts of Ladakh, and the coastal part of Tamil Nadu and Andhra Pradesh, 

signifying frequent occurrence of extreme precipitation events. The index varied from 0.75 to 0.85 for 

the North Eastern States of India, Northwestern parts of Jammu & Kashmir, Himachal, Uttrakhand, parts 

of the west-central region, and the west coast region of Maharashtra. 
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Figure 4.5  Spatial variation of Obesity index over India for IMD daily gridded precipitation data for 

the historical period (1951-2004) 

Similar findings over these regions were observed by previous studies (e.g., Goswami et al., 2006; 

Dash et al., 2009; Ajayamohan and Rao, 2008; Guhatakurta et al., 2011; Vittal et al., 2013; Mishra et 

al., 2014; Krishnan et al., 2016; Roxy et al., 2017; Sarkar and Maity, 2020). The high frequency of 

extreme precipitation in a different part of the country has been associated with various global and local 

causes like the abrupt global change of the climatic system caused by a regime shift in the 1970s in 

various climatic factors like the Arctic Oscillation (AO), East Asian summer monsoon (EASM), East 

Asian winter monsoon (EAWM), El Niño–Southern Oscillation (ENSO), North Atlantic Oscillation 

(NAO), Aleutian low (AL), Pacific decadal oscillation (PDO), Western Pacific subtropical high (WPSH) 

and Indian summer monsoon rainfall (ISMR) (Biondi et al., 2001; Chowdary et al., 2006; Zhou et al., 

2009; Vittal et al., 2013; O’Kane et al., 2014; Chen et al., 2015; Sabeerali et al., 2015; Sahana et al., 

2015; Vinnarasi and Dhanya, 2016; Dai et al., 2018) or some local changes such as Urbanization (Singh 

et al., 2014; Shastri et al., 2015). Along the west coast, the southern part of the coast (e.g., Kerela) has 
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relatively lighter tails (i.e., OB ranging from 0.75 - 0.80) as compared to the northern parts of the west 

coast (Konkan and Goa) for the observed period. This can be attributed to the change in regional 

precipitation behavior (such as the sporadic nature of rainfall) and climatic patterns as observed by 

Varikoden et al. (2019). 

4.4.2 Characterization of tail behavior of daily gridded precipitation using threshold-based 

approaches 

The threshold-based approaches proposed by Nerantzaki and Papalexiou (2019) and Papalexiou 

et al. (2013) were used to characterize the tails of daily precipitation data over India. Based on 

Nerantzaki and Papalexiou (2019) approach, the estimate of the MEF slope was tested against the null 

hypothesis of zero slope indicating exponential tail by considering 90% or 95% confidence interval. For 

brevity, typical plots between Threshold Precipitation vs. Empirical MEF helpful in identifying the sub-

exponential tail (i.e., large positive slope) and exponential tail (i.e., close to zero slope) of the probability 

distribution of daily precipitation are illustrated in Figure 4.6.  

 

(i) 

 

(ii) 

Figure 4.6 Typical plots between Threshold Precipitation vs. Empirical Mean Excess Function for 

identifying (i) sub-exponential tail and (ii) exponential tail of probability distribution of daily 

precipitation. For case (i), the value of the slope is found to be 0.24 with its 90% Confidence Interval as 

(−0.07, 0.07), whereas, for case (ii), the value of the slope is found to be 0.002 with its 90% Confidence 

Interval as (−0.09, 0.08). Coordinates of the grids analyzed in (i) and (ii) are (latitude 8.5° N and 

longitude 77° E) and (latitude 19° N and longitude 79° E), respectively. 
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Figure 4.7  Testing for significant slopes of plots between Threshold Precipitation vs. MEF for 4949 grids over India considering (i) 90% confidence interval and (ii) 

95% confidence interval against zero slope (i.e., case of exponential tail) 



64 
 

We found that the hypothesis of the presence of an exponential tail is rejected for nearly 80.62% 

and 75.95% of grids over India at 90% and 95% confidence intervals, respectively (refer to Figure 4.7). 

Further, analysis based on a one-tailed test revealed that nearly 99.89% grids out of 80.62% grids and 

99.79% grids out of 75.95% grids possess sub-exponential tails at 5% and 10% significance levels, 

respectively. Figure 4.8 shows the spatial distribution of the absolute values of the 4949 observed MEF 

slopes of daily precipitation over India.  

 

 

Figure 4.8  Spatial distribution of the absolute values of the 4949 observe MEF slopes of daily 

precipitation over India 

Figures 4.9 (i, ii, iii) represents the spatial distribution of sub-exponential and exponential/hyper-

exponential tails over the country assessed through threshold-based approaches given by Nerantzaki and 

Papalexiou (2019) and Papalexiou et al. (2013). Since very few grids showed the hyper-exponential 

tails, they were merged with the exponential class for representation. The figures indicated that the 

majority of grids over India show the presence of heavy tails for daily precipitation with some lighter 

tails over the West Coastal region, Southern parts Karnataka, Northern part of Tamil Nadu, and some 

parts of Kerala, Maharashtra, and the North Eastern States of India. 
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(i) 

 
 

(ii) 

 

(iii) 

 

Figure 4.9  Spatial distribution of sub-exponential and exponential–hyperexponential tails over India 

obtained based on Nerantzaki and Papalexiou (2019) at (i) 90% confidence interval, (ii) 95% confidence 

interval, and (iii) shows the spatial distribution of tails obtained based on Papalexiou et al. (2013) 

In the case of the approach given by Papalexiou et al. (2013), the decision on the heaviness of the 

tails of daily precipitation data was based on fitting four probability distributions to the precipitation 

data in the tail part. Parameters of fitted distributions are presented in Table S10 in the supplementary 

material of Gupta and Chavan (2022). Figure S3 in the supplementary material of  Gupta and Chavan 

(2022), shows the best-fitted distributions for representing tails of daily precipitation data over India. 
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The figure does not reveal any regular pattern for best-suited distributions. Thus, the distributions were 

divided into sub-exponential and exponential-hyper-exponential groups, as shown in Figure 4.9 (iii). 

The former group comprised Pareto Type II distribution, Lognormal distribution, and Weibull 

distribution with 1  , whereas the latter group included Gamma distribution and Weibull distribution 

with 1   distribution. It was found that most of the daily precipitation data over India possess heavy-

tailed distribution. Table 4.2 represents the summary of the best-suited probability distributions for daily 

precipitation over India.  

Table 4.2  Summary of the best-fitted probability distributions for daily precipitation over India 

Distribution considered for Tail Fitting Number of grids (in %) 

Lognormal 43.69 

Pareto 33.83 

Weibull 16.75 

Gamma 5.74 

It was observed that the gamma distribution, which is considered the most appropriate distribution 

for representing daily precipitation, was the least-suited probability distribution. The lognormal 

distribution is found to be the most suitable probability distribution for representing tails of daily 

precipitation data at 43.69% grids over India, followed by Pareto distribution at 33.83% grids. Further, 

the probability distributions ranked based on the minimum PRMSE criterion as shown in Figure S4 of 

the supplementary material of Gupta and Chavan, 2022. Lognormal secured the lowest rank, followed 

by Pareto and Weibull distribution in that order. The gamma distribution was ranked the highest and 

was considered as the worst performer for representing daily precipitation tails over India. Additionally, 

the suitability of probability distributions was also tested by considering their fits in pairs or couples, 

i.e., Lognormal vs. Pareto; Pareto vs. Weibull; Pareto vs. Gamma; Lognormal vs. Weibull; Lognormal 

vs. Gamma and Weibull vs. Gamma. Figure S5 in the supplementary material of Gupta and Chavan 

(2022), shows the results for fits in couples. It was once again observed that the Lognormal distribution 

was better suited than any of the three probability distributions. Pareto came out to be the second best 

fit, better than Weibull and light-tailed Gamma distributions. It should be noted that the Weibull 

distribution predominantly tends to have 1  , which is a heavy-tailed distribution. Amongst the 4949 

grids, subexponential tails were best fitted in 93.89% of the grids, while the remaining 6.11% grids were 

found to have exponential-hyperexponential tails.  

4.4.3 Comparative analysis between the OB-based approach and threshold-based approaches  

All three approaches seem to provide consistent inference regarding heavy-tailed behavior in 

many parts of the country. The relative assessment of the results revealed that around 3871 grids (i.e., 

78.21%) showed heavy-tailed behavior based on all three approaches. The assessment performed in 
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pairs revealed that approaches based on Papalexiou et al.(2013) and OB indicated the presence of heavy-

tailed behavior at 4647 grids (i.e., 93.89%), whereas similar behavior of tails was observed at 3853 grids 

(i.e., 77.85%) when the approaches based on Nerantzaki and Papalexiou (2019) and OB were 

considered.  In the case of threshold-based approaches, similar tail behavior was found at 3871 grids 

(i.e., 78.21%). Wherever light-tailed behavior is inferred by the threshold-based approaches (e.g., 

coastal parts of Maharashtra, Karnataka, and Kerala; parts of North East States), the OB-based approach 

provides comparatively lighter tails (i.e., OB ranging from 0.75 to 0.8) in those regions (as compared to 

rest of India) (please refer to Figure 4.5 and Figure 4.9). However, the three approaches might not always 

provide similar assessments as they inherently differ from each other in the way they analyze the tail 

behavior of daily precipitation data. The regions belong to various climate zones, and the local physical 

process can influence the tail in those regions (e.g., parts of peninsular India and some parts of north 

India). The differences observed in the case of threshold-based approaches, especially in the 

Northcentral part of India, can be attributed to strategies used for demarcating the tail of daily 

precipitation data. In the case of Papalexiou et al. (2013), an annual exceedance series (AES) was used 

for demarcating the tail of daily precipitation data, while the demarcation of the tail was accomplished 

by fixing the 90th (lower limit) and 99th (upper limit) percentile of the data in the case of Nerantzaki and 

Papalexiou (2019). This shows that the difference in the strategy to fix some threshold can lead to 

dissimilar conclusions (Kiran and Srinivas, 2021). Contrary to the threshold-based approaches, the OB-

based approach considers the entire probability distribution of daily precipitation data for inferring the 

tail behavior.  

4.4.4 Characterization of tail behavior of future projections of daily gridded precipitation  

In this study, future projections of daily gridded precipitation from the year 2006 to the year 2099) 

from 6 RCMs of the CORDEX-SA experiments corresponding to two scenarios (RCP4.5 and RCP8.5) 

were considered. Figure 4.10 shows the spatial distribution of OB estimates determined for the future 

climate scenarios (i.e., RCP4.5 and RCP8.5). Visual interpretation of the figure illustrates that the future 

daily precipitation data exhibits heavy-tailed distributions over the entire India except for the southern 

region of Tamil Nadu State, where light-tailed distributions were observed in the case of some RCMs 

(GFDL-CM3, NorESM1-M, ACCESS 1.0). It was observed that the tails of future projections of daily 

precipitation pertaining to the RCP4.5 scenario for all the RCMs tend to be lighter than those 

corresponding to RCP8.5. A summary of the percentages of grids having OB < 0.75, 0.75 < OB < to 

0.85, and OB > 0.85 are provided in Table 4.3. It can be noted that the percentage of grids with OB > 

0.85 (0.75 < OB < 0.85) is higher (lower) for the RCP8.5 scenario as compared to the RCP4.5 scenario 

except for CNRM-CM5. Overall, this analysis reveals that the frequency of occurrence of extreme 

precipitation events based on the RCP8.5 scenario is higher than the RCP4.5 scenario. This finding is in 

line with many studies in the past studies (e.g., Mukherjee et al., 2018; Gusain et al., 2019; Rai et al., 

2019; Rao et al., 2020).  
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CCSM4 

  

CNRM-

CM5 

  

 

Figure 4.10  Spatial distribution of obesity index under RCP4.5 and RCP8.5 scenarios obtained from 6 

RCMs for the future time period (2006-2099) 
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(Figure 4.10 Continued…) 
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Table 4.3  Percentage of grids having obesity indices less than 0.75, 0.75 to 0.85, and greater than 0.85 

for future projections of daily precipitation over India obtained from 6 RCMs 

  Percentage of Grids 

RCM  OB<0.75 0.75<OB<0.85 OB>0.85 

ACCESS1.0 
0.22 76.49 23.29 

0.12 71.52 28.36 

CNRM-CM5 
0.00 74.14 25.86 

0.24 75.22 24.54 

CCSM4 
0.12 79.61 20.27 

0.04 76.88 23.08 

GFDL-CM3 
0.30 71.74 27.96 

1.03 65.50 33.47 

MPI-ESM-LR 
0.16 75.25 24.58 

0.08 73.41 26.51 

NorESM1-M 
0.26 78.62 21.12 

0.49 78.00 21.51 

 

4.4.5 Characterization of daily precipitation over meteorological subdivisions of India  

We extended the utility of the concept of OB to investigate the heaviness of tails of daily 

precipitation data at a regional scale over India. The estimate of OB for each subdivision was determined 

by taking the average of the indices estimated for individual grids falling within that subdivision 

boundary. The OB estimates for the subdivisions were determined for both historical and future time 

periods. Figure 4.11 illustrates the obesity indices for 34 conterminous subdivisions over India for the 

historical time period. The estimates of the OB ranged from 0.8 to 0.87, which shows that the 

precipitation within the Subdivisions exhibits heavy-tailed behavior. Less heavy tails (indicating less 

frequency of occurrence of extreme daily precipitation as compared to the rest of India) were observed 

in North-East, Western coastal parts of India, West-central regions like Bihar, Jharkhand, Orrisa and 

West Bengal, and Uttranchal in North India. Nandargi et al. (2016) observed a decreasing trend in 

magnitude and number of extreme rainfall in 42% of Uttarakhand stations, especially after 1970. 
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Figure 4.11  Estimates of obesity indices for 34 Meteorological Subdivisions over India for the historical 

time period. The first number represents the Obesity Index, second number represents the subdivision’s 

Id. The estimates of OB given here are the mean of OBs of the gridded time series found inside each 

subdivision 

Heaviest tails (indicating a very high frequency of occurrence of extreme daily precipitation) were 

found in Northwestern parts (especially Saurashtra, Kutch and Diu, Gujarat, Rajasthan, Punjab, Haryana 

Chandigarh, and Delhi), followed by subdivisions in west-central India (like Madhya Maharashtra, 
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Marathwada, Rayalseema, North Interior Karnataka) and northern central states (West Uttar Pradesh, 

East Uttar Pradesh). Similar observations are also made in some previous studies. Dave and James 

(2017) showed a significant increase in intense/extreme rainfall events (rainfall corresponding to the 

95th, 98th, 99th, and 99.5th percentiles) along with the increased frequency of heavy and very heavy 

rainfall events over Gujarat State (India), especially in Saurashtra region. Dash et al (2009) observed 

significant increasing trends of heavy-intensity rainfall and found an increase in days of heavy rainfall 

over northwest India, northeast India, and central India. These studies are in line with our finding of the 

OB values for different meteorological subdivisions for the historical period.  

For RCP4.5 and 8.5 scenarios, estimates of OB were determined for each of the Subdivisions. 

Figure 4.12 shows the estimates for 34 Meteorological Subdivisions over India for future time periods 

corresponding to the 6 RCMs under study. A comparative analysis was performed to investigate the 

changes in the OB over time, i.e., historical and future time periods (see Figure 4.13). Firstly, we 

examined only the change (irrespective of increase or decrease) in the mean OB estimate for each 

subdivision over the time periods. A Z-test at a 5% significance level was considered in this study to 

test the null hypothesis that the mean OB for a meteorological subdivision has not changed from 

historical to future periods. The changes in OB over time were not consistent across the subdivisions. 

Detailed observations regarding the number of RCMs showing the change in the mean OB (based on 

the Z-test) from historical to future time periods corresponding to RCP4.5 and 8.5 scenarios are 

presented in Table S12 of the supplementary material of Gupta and Chavan (2022). Further, 

Kolmogorov-Smirnov (KS) (Massey, 1951; Marsaglia, 2003) test was used to compare the distribution 

of OB corresponding to the historical time period relative to its distribution corresponding to the future 

RCP scenarios for each of the subdivisions at a 5% significance level. Figure S6 in the supplementary 

material of Gupta and Chavan (2022), presents the cumulative distribution functions (CDFs) of OB 

estimates corresponding to both time periods for 34 subdivisions. Again, the differences in the CDFs of 

OB over time were not consistent across the subdivisions (see Table S12 in the supplementary material 

of Gupta and Chavan (2022)). It was difficult to draw a conclusion regarding the change in OB over 

time from the results obtained based on different RCMs. To overcome this difficulty, an ensemble of 6 

RCMs was considered for studying the climatic changes in mean OB estimate as it ensures a robust 

estimation of climate state by averting errors and internal variability of an individual model (Rai et al., 

2019).
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CCSM4 

  

Figure 4.12  Estimates of obesity indices for 34 conterminous Meteorological Subdivisions over India 

for future time period (2006-2099)  
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(Figure 4.12 Continued…) 
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(Figure 4.12 Continued…) 
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(i) 

 
(ii) 

 

Figure 4.13  Figure showing changes in the mean of obesity index for 34 Meteorological Subdivisions 

from historical to future time periods for two different scenarios (i) RCP4.5 and (ii) RCP8.5 

For each subdivision, an ensemble of OB estimates at individual grids was determined by taking 

the average of OB estimates obtained from 6 RCMs at those grids. Subsequently, the ensemble means 
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of OB obtained from 6 RCMs for each subdivision was tested for the significant change relative to the 

mean of OB corresponding to the historical time period based on the Z-test at a 5% significance level. 

Table 4.4 provides the Z-statistic along with the result from hypothesis testing based on the Z-test.  

Table 4.4  Statistics of Z-test and KS-test and the result from hypothesis testing based on both tests. 

Here, h=1 means to reject the null hypothesis, and h=0 means to accept the null hypothesis 

 
Z-test KS-test 

Subdivision RCP4.5 RCP8.5 RCP4.5 RCP85  
Z_stat h Z_stat h KS stat h KS stat h 

Arunachal Pradesh -3.5263 1 -4.4750 1 0.2329 1 0.2603 1 

Assam and Meghalaya -3.6269 1 -3.0338 1 0.2229 1 0.1988 1 

Naga Mani Mizo and Tripura -1.3519 0 -1.0710 0 0.1321 0 0.0943 0 

Sub Him W Bengal Sikkim -2.4206 1 -2.7413 1 0.2833 1 0.2667 1 

Gangetic West Bengal 1.6466 0 3.6265 1 0.1613 0 0.2581 0 

Orissa 3.7578 1 5.3878 1 0.1944 1 0.2454 1 

Jharkhand 1.7140 0 2.3807 1 0.1667 0 0.2018 1 

Bihar 0.5030 0 0.1945 0 0.1083 0 0.0828 0 

East Uttar Pradesh -0.0946 0 -1.1739 0 0.0633 0 0.1041 0 

West Uttar Pradesh 4.2235 1 3.6571 1 0.2013 1 0.1883 1 

Uttaranchal -2.8274 1 -5.2861 1 0.2169 1 0.3735 1 

Haryana Chandigarh and Delhi 5.7317 1 6.0772 1 0.4143 1 0.4714 1 

Punjab 5.0250 1 4.8350 1 0.2857 1 0.3187 1 

Himachal Pradesh 0.0909 0 -1.5474 0 0.1136 0 0.2045 1 

Jammu and kashmir 6.0969 1 5.1122 1 0.2190 1 0.1776 1 

West Rajasthan 11.8152 1 11.1615 1 0.3438 1 0.3312 1 

East Rajasthan 8.6378 1 7.4330 1 0.2995 1 0.2609 1 

West Madhya Pradesh 2.2041 1 1.3571 0 0.1215 1 0.0972 1 

East Madhya Pradesh -0.3142 0 -0.6276 0 0.0714 0 0.0765 0 

Gujarat 2.5983 1 2.0778 1 0.1613 0 0.1129 0 

Saurashtra Kutch and Diu 8.1894 1 7.7499 1 0.3661 1 0.3552 1 

Konkan and Goa 1.0644 0 1.4681 0 0.1429 0 0.1857 0 

Madhya Maharastra -1.1112 0 -0.7237 1 0.1250 0 0.1250 0 

Marathwada -1.0674 0 -1.0320 0 0.2135 1 0.1910 1 

Vidarbha -0.7160 0 -1.2361 0 0.0876 0 0.1314 0 

Chhatisgarh 0.2790 0 0.7284 0 0.0444 0 0.0611 0 

Coastal Andhra Pradesh 3.0396 1 3.0843 1 0.1680 1 0.2080 1 

Telangana 0.2321 0 1.3003 0 0.0600 0 0.1200 0 

Rayalaseema 1.5390 0 0.4194 0 0.1556 0 0.0778 0 

Tamil Nadu and Pondicherry 4.8499 1 3.0548 1 0.2343 1 0.1943 1 

Coastal Karnataka 0.7948 0 1.7522 0 0.2308 0 0.3077 0 

North Interior Karnataka -0.3437 0 -0.7365 0 0.0865 0 0.1346 0 

South Interior Karnataka -0.6755 0 -1.0339 0 0.1057 0 0.1220 0 

Kerela -3.4196 1 -4.6236 1 0.3175 1 0.3492 1 

Also, a KS test at a 5% significance level was performed to verify the considerable change in the 

distribution of the ensemble of OB estimates obtained from 6 RCMs with respect to the OB estimates 

corresponding to the historical time period. 
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For brevity, Figure 4.14 shows the CDF plots of the ensemble of OB estimates obtained from 6 

RCMs, and the CDF of OB estimates corresponding to the historical time period for two subdivisions 

Arunachal Pradesh and Haryana Chandigarh and Delhi. The plots for other subdivisions can be found 

in Figure S7 in the supplementary material of Gupta and Chavan (2022). Table 4.4 provides the KS 

statistic along with the result from the KS test. Based on the Z-test and KS test, the following inferences 

are drawn. 

  

Meteorological 

Region 

RCP4.5 RCP8.5 

Arunachal 

Pradesh 

  

Haryana 

Chandigarh and 

Delhi 

  

 

Figure 4.14   Plots showing the CDF of the ensemble of OB estimates obtained from 6 RCMs and CDF 

of OB estimates corresponding to the historical time period for two subdivisions, namely Arunachal 

Pradesh and Haryana Chandigarh and Delhi 

For both the climate scenarios, the eastern part of India (i.e., Arunachal Pradesh, Assam and 

Meghalaya, Sub Himalayan, West Bengal, and Sikkim); northern part (i.e., Uttaranchal) and Kerala in 

South India showed the change in the distribution of the ensemble of OB estimates with reference to the 

historical time period as well as an increase in the mean of OB for the future time period. Subdivisions 

like Orissa, West Uttar Pradesh, Haryana, Chandigarh, Delhi, Punjab, Jammu and Kashmir, Rajasthan, 

Saurashtra, Kutch, Diu, Gujarat, Tamil Nadu and Pondicherry, Coastal Andhra Pradesh showed a 

change in the distribution of the ensemble of OB estimates with respect to the historical time period and 

a decrease in the ensemble mean of OB.  
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The change in the means and CDFs of OB estimates for historical and future time periods were 

found to be insignificant for some regions like Naga Mani Mizo and Tripura, Bihar, East Uttar Pradesh, 

Himachal Pradesh, East Vidarbha, Chhattisgarh, Rayalseema, Telangana, Karnataka (Coastal, North and 

south). Regions like Madhya Maharashtra did not show a significant change in the distribution of 

ensemble OB for both RCP scenarios; however, it showed an increase in the mean of OB for the RCP8.5 

scenario. Jharkhand showed a change in the distribution and mean of OB for RCP8.5 scenario only. 

Earlier studies (e.g., Maity et al., 2016; Yaduvanshi et al., 2020; Sannan et al., 2020; Todmal et al., 

2021; Suman and Maity, 2020; Gupta et al., 2021) indicating an increase/decrease/no change in the 

frequency of occurrence of precipitation events under a different climate scenario in some of the regions 

mentioned above supports the finding of this study. Yaduvanshi et al. (2020) identified tropical, 

temperate, and semi-arid regions of India as the regions showing a significant increase in heavy rainfall-

related extreme indices of the Expert Team on Climate Change Detection and Indices (ETCCDI) under 

two scenarios, RCP4.5 and RCP8.5. Maity et al. (2016) also reported an increase in heavy rainfall in 

North-Eastern regions of India (such as Assam, Mizoram, Nagaland) under the RCP4.5 scenario. Sannan 

et al. (2020) found an enormous decrease in Northeast monsoon rainfall over the South Peninsular region 

(especially Costal Karnataka) projected by most of the CORDEX (CSIRO-CCAM) models in his study. 

However, some models used in the study showed an increase in heavy rainfall over the southern part of 

rainfall for both the climate scenario RCP4.5 and RCP8.5. Rai et al. (2020) found that the heavy 

precipitation indices over India tend to increase more frequently than mean precipitation indices and 

showed an increase in 1-day maximum precipitation and daily intensity index over some sub-divisions 

of the west coast, Hilly, and Northeast region. 

4.4.6 Spatial variation of OB and relation with elevation 

Papalexiou et al. (2018) studied the spatial variability of the Pareto and Weibull tail indices with 

elevation over the US. They reported a coherent pattern with mountainous areas exhibiting heavier tails 

in high elevations. However, they also noted several other interacting factors such as synoptic 

conditions, vertical stability, and moisture convergence, which might affect tail heaviness variation. 

They arranged the tail indices as per the ascending elevation order and considered consecutive blocks 

of n-points (where n varied from 10 to 400 with an increment of 10). Then the mean elevation (H) and 

mean tail indices were computed for each block. They observed a convex decrease and concave increase 

for Pareto and Weibull tail indices, respectively, relative to H. In the context of India, the extreme 

precipitation usually varies with topography, i.e., elevation (Chavan and Srinivas, 2015). Hence, a 

similar analysis was performed to explore the spatial variation of OB with respect to the elevation. Plots 

depicting the clouds of points related to different block sizes (i.e., n varied from 10-400) indicated a 

nonlinear decrease till a mean elevation of 2500 and showed a non-linear increase beyond that for most 

of the block sizes. For brevity plots corresponding to four block sizes i.e., 30, 90, 150, and 300 are 

shown in Figure 4.15, while plots corresponding to other block sizes can be found in Figure S8 of the 

supplementary material of Gupta and Chavan (2022)).  



80 
 

Table 4.5 presents the ranges of the Obesity Index and elevation (meters) of the grids within each 

subdivision. The elevation beyond 2500 m is usually found in the subdivision of Jammu and Kashmir, 

Himachal Pradesh, Arunachal Pradesh, Sub-Himalayan regions, which belong to the Category E (i.e., 

polar or snow region) according to the Köppen-Geiger classification system. Köppen-Geiger 

classification system considers meteorological variables like temperature and precipitation to define the 

climate class of a region. The Köppen-Geiger climate classification system over India consists of four 

main climate groups: A (tropical), B (dry), C (temperate), and E (polar). The variability in the OB values 

was observed to be sensitive to the climatic conditions or regional physical processes. Papalexiou et al. 

(2018) observed the heaviest tails for mountainous regions (belonging to the category of snow), which 

supports the findings of this study also. However, for lower elevation than 2500 m, we did not find 

similar results as Papalexiou et al. (2018) because the regions for which elevation is less than 2500 m 

comprises regions belonging to arid, temperate, and tropical zones in India (Yaduvanshi et al., 2021). 

The heaviest tails were observed in Arid and Semi-Arid (e.g., Saurashtra, Kutch and Diu, Gujarat, West 

Rajasthan, Punjab, Haryana Chandigarh and Delhi, Madhya Maharastra, parts of North Interior 

Karnataka) which have different elevations (H< 2500). Relatively heavier tails were found in Tropical 

regions comprising Southern and Southern Eastern states of India (e.g., Tamil Nadu and Pondicherry, 

Coastal Andhra Pradesh, parts of Rayalseema, Marathwada). Moreover, slightly lighter tails were 

observed in Temperate regions (e.g., Naga Manipur, Mizoram and Tripura, Assam and Meghalaya, 

Jharkhand) and Tropical regions comprising parts of Western Ghats (Konkan and Goa, Coastal 

Karnataka, Kerela) of India. Papalexiou et al. (2018) also found relatively thin tails in the coastal plains, 

just like our finding of thin tails in coastal areas (west coastal area). The difference in the heaviness of 

the tails between the Eastern coast and Western coast (both belonging to Tropical regions) might be 

attributed to many interacting factors such as synoptic conditions, moisture convergence, topography 

(see Figure S9 in the supplementary material of Gupta and Chavan, (2022)), different extreme rainfall 

characteristics such as mean annual maximum precipitation (see Figure S10 in the supplementary 

material of Gupta and Chavan, (2022)), and seasonality (see Figure S11 in the supplementary material 

of Gupta and Chavan, (2022)) (which represents the day of occurrence of extreme precipitation in a 

year) despite having similar elevation range. Interestingly, Suman and Maity (2020) also observed the 

differences in mean extreme precipitation on the eastern coast of south India than the western coast for 

the observed record. It is noteworthy that along with the relationship of OB with elevation, we found 

some spatial coherence of OB with the climate classes of the Köppen-Geiger classification system. 
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(i) Block size (n=30) (ii) Block size  (n=90) 

  

(iii) Block size (n=150) (iv) Block size (n=300) 

  

Figure 4.15   Plots showing the variation of Obesity Index vs. Elevation (H) for four different block sizes  (i) Block size n=30, (ii) Block size n=90,  (iii) 

Block size n=150 and (iv) Block size n=300
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Table 4.5 Information on obesity index and mean elevation (m) for the grids within each Meteorological 

Subdivision  

ID Meteorological Region Obesity Index Elevation  
  Minimum Maximum Minimum Maximum 

2 Arunachal Pradesh 0.779 0.858 385.32 4830.56 

3 Assam and Meghalaya 0.774 0.877 35.38 1656.50 

4 Naga Mani Mizo and Tripura 0.767 0.851 13.29 1237.83 

5 Sub Him W Bengal Sikkim 0.772 0.859 23.72 4993.52 

6 Gangetic West Bengal 0.803 0.860 2.73 313.88 

7 Orissa 0.799 0.870 3.12 984.37 

8 Jharkhand 0.789 0.861 51.64 833.95 

9 Bihar 0.804 0.870 35.38 810.67 

10 East Uttar Pradesh 0.792 0.878 62.62 810.67 

11 West Uttar Pradesh 0.811 0.871 112.48 476.00 

12 Uttaranchal 0.785 0.861 304.26 5096.27 

13 Haryana Chandigarh and Delhi 0.802 0.881 185.93 476.00 

14 Punjab 0.811 0.899 171.12 2084.49 

15 Himachal Pradesh 0.798 0.872 320.95 4918.10 

16 Jammu and kashmir 0.778 0.930 454.23 5594.08 

17 West Rajasthan 0.811 0.893 19.01 448.24 

18 East Rajasthan 0.806 0.881 134.84 803.48 

19 West Madhya Pradesh 0.796 0.883 131.51 794.98 

20 East Madhya Pradesh 0.793 0.867 157.23 842.00 

21 Gujarat 0.818 0.883 2.81 487.27 

22 Saurashtra  Kutch and Diu 0.827 0.906 0.21 279.96 

23 Konkan and Goa 0.782 0.864 8.02 751.87 

24 Madhya Maharastra 0.809 0.881 148.36 920.78 

25 Marathwada 0.819 0.869 339.86 712.00 

26 Vidarbha 0.814 0.866 131.32 809.93 

27 Chhatisgarh 0.795 0.868 133.96 900.88 

28 Coastal Andhra Pradesh 0.788 0.885 3.87 1035.36 

29 Telangana 0.799 0.862 77.76 652.08 

30 Rayalaseema 0.804 0.876 39.64 793.40 

31 Tamil Nadu and Pondicherry 0.784 0.892 2.36 4877.20 

32 Coastal Karnataka 0.783 0.842 8.00 876.67 

33 North Interior Karnataka 0.819 0.880 351.48 756.61 

34 South Interior Karnataka 0.778 0.885 68.71 1059.13 

35 Kerela 0.776 0.858 4.23 3975.00 

 

4.5 Summary  and  Conclusions 

In this chapter, an algorithmic approach based on the concept of the OB was used to characterize 

the tails of probability distributions of 0.25° daily gridded precipitation data over India. We performed 

a simulation study that recommended that the optimum sample size greater than or equal to 1000 and a 

minimum number of random sampling equal to 5000 are needed to determine a consistent OB estimate. 

A comparative analysis between the OB-based approach and recent threshold-based approaches 
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proposed by Nerantzaki and Papalexiou (2019) and Papalexiou et al. (2013) was conducted. All three 

approaches provided consistent inferences regarding heavy-tailed behavior over India. The relative 

assessment of the results revealed that around 78.21% of grids showed heavy-tailed behavior based on 

all three approaches. Further, the pairwise assessment revealed that the OB-based approach tends to 

provide comparatively lighter tails for the grids where threshold-based approaches yielded exponential 

tails. However, the three approaches might not always provide similar assessments as they inherently 

differ from each other in the way they analyze the tail behavior of daily precipitation data. Overall, all 

three approaches showed that heavy-tailed distributions provide a better fit than light-tailed for daily 

precipitation extremes over India. The major advantage of the OB-based approach lies in its ability to 

provide a quantitative measure to assess the tail behavior of daily precipitation data without assuming 

any threshold value to segregate tails. 

The application of the OB-based approach was extended to characterize tails of future projections 

of daily gridded precipitation obtained from CORDEX-SA experiments comprising 6 RCMs for RCP4.5 

and RCP8.5 scenarios of climate change. In the case of the RCP8.5 scenario, a higher frequency of 

occurrences of extreme precipitation was observed as compared to the RCP4.5 scenario. We extended 

the utility of the OB-based approach to characterize daily precipitation data of meteorological 

subdivisions over India. The subdivision-wise analysis highlights the necessity to consider heavy-tailed 

distributions for modelling extreme precipitation events for reliable planning and design of hydrological 

structures within the subdivisions. This analysis could be useful for the identification of apt regional 

frequency distributions for the meteorological subdivisions. Finally, we explored the spatial variation of 

OB with respect to the elevation over India. It was observed that the OB tends to decrease non-linearly 

with an increase in the elevation till 2500 m and then showed an increase beyond the elevation of 2500 

m. The spatial change in OB over elevation showed spatial coherence with the climate classes of the 

Köppen-Geiger classification system over India. 

In summary, the results from this study highlight the importance of considering heavy-tailed 

distributions instead of the traditional light-tailed distributions for the reliable estimation of the 

frequency of extreme precipitation events that can find use in the design of major civil engineering 

infrastructure.  
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CHAPTER 5 

A COMPREHENSIVE DECISION SUPPORT SYSTEM FOR THE 

CHARACTERIZATION OF PROBABILITY DISTRIBUTION TAILS FOR DAILY 

PRECIPITATION 

 

5.1  Overview 

A practical approach to select the appropriate class of distribution for a dataset considering its 

right tail (i.e., extreme) is termed a Decision support system (DSS). A DSS utilizes various graphical 

methods to characterize the tails of distributions as per their limiting behavior and groups them into the 

appropriate class of distributions. Popular classes of the probability distributions are given by Ouarda et 

al. (1994) and Werner and Upper (2004) in a nested form as A B C D E    , starting from light-

tailed distributions to heavy-tailed distributions) (as presented in Figure 1.1 in supplementary material). 

All distributions with tails decaying more slowly than the exponential tail are included in class D. The 

tails of distributions in class C decay asymptotically according to the power law. Class B contains the 

distributions having the exact Pareto tail. Lognormal (LN) is a limiting case with a tail between classes 

D and C (Champernowne, 1953; Martel et al., 2013).  

The conventional DSS proposed by El Adlouni et al. (2008) and Ehsanzadeh et al. (2010) utilizes 

various graphical approaches such as the Mean Excess Function (MEF) plot, log-log plot, and the 

generalized Hill ratio plot to characterize the tails of distributions. However, existing DSSs lack efficient 

segregation of the Lognormal distribution from the Regularly varying and Subexponential distribution 

families. Also, they lack the ability to identify the distributions from the hyper-exponential distributions. 

Recently developed graphical diagnostic tools, such as concentration profile, concentration adjusted 

expected shortfall, discriminant moment ratio plot, maximum-to-sum plot, and Zenga plot can classify 

the tails of distributions into various classes if used in an appropriate order in combination with tools of 

conventional DSS. This chapter presents a comprehensive DSS that is proposed to alleviate the 

shortcomings associated with the conventional DSS and characterizes the tails of distributions into 

classes B\A (Pareto type), C\B (regularly varying), D\C (subexponential), E (Exponential type), hyper-

exponential class (outside class E) and LN (Lognormal) distribution (the limiting case between class C 

and D). The robustness of the proposed DSS over the conventional DSS is established through a 

simulation experiment. Further, this study also evaluates the influence of the sample size on the effective 

implementation of the proposed DSS. Finally, the proposed DSS is applied to characterize the tails of 

daily gridded precipitation data over India 
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5.2  Shortcomings of the Conventional DSS  

Conventional DSS partitions the dataset into various classes/families of distributions. They 

assume that a probability distribution either belongs to a light or a heavy-tailed distribution class, which 

may not be valid always. Recent studies by Cooke and Nieboer (2011), Weitzke et al. (2020), and Gupta 

and Chavan (2022) have shown that a particular probability distribution can be characterized as a light 

or heavy-tailed distribution based on its shape parameter or tail index. For example, the Gamma 

distribution with shape parameter 1   and 1  , possess a “slightly lighter” and “slightly heavier” tail 

relative to the exponential tail, respectively, while it has an exact exponential tail when 1 = . Similarly, 

Cirillo and Taleb (2020) described the erratic behavior of LN distribution and compared it to the analogy 

of a wolf in sheep’s clothing. In fact, the LN distribution possesses a thin tail for the shape parameter 

1   or exhibits a very heavy tail for 1   (May et al., 2013; Cirillo, 2013; Nerantzaki and Papalexiou, 

2019; Cirillo and Taleb, 2020; Gupta and Chavan, 2022). Gupta and Chavan (2022) presented the 

relative measure of the tail heaviness for precipitation data over India based on a scalar tail index such 

as the Obesity index. They demonstrated that the Weibull, Gamma, or LN distributions could possess 

more heavy or obese tails than a Pareto distribution, depending on the choice of shape parameter or tail 

index.  

 Moreover, El Adlouni et al. (2008) and Ehsanzadeh et al. (2010) mentioned that LN distribution 

lies at the frontier of classes C and D. However, they both considered LN as a part of class D due to (i) 

more conservative results (i.e., overestimation) in the quantile estimation study and (ii) unavailability of 

suitable criteria to discriminate amongst the classes C, D, and LN (see Figure 5.1). Recently, Martel et 

al. (2013) inferred that the association of LN to class D could result in significant errors in quantile 

estimation. They illustrated the significant effect that the choice of distributions from the classes C, D, 

and LN have on estimated quantiles corresponding to the T-year return period for any hydroclimatic 

variable. Hence, they improved the conventional DSS by adding a new step to the DSS where the 

lognormality check was performed before assessing the adequacy of the classes C or D (see Figure 5.2).  
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Figure 5.1  Flow diagram of the first version of DSS (see Ehsanzadeh et al., 2010) 

 

Figure 5.2  Flow diagram of the second version of DSS using two-dimensional ( , )v sC C plot and Jarque-

Bera test (see Martel et al., 2013) 

Firstly, they considered a two-dimensional plot between the coefficients of variation ( )vC  and 

skewness ( )sC  and checked the position of the sample in the diagram. If the sample falls in the Halphen 
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Type IB (HIB) area, a subset of the LN zone, then the Jarque-Bera (JB) (a normality test) is applied to 

the log-transformed data. It was an effective procedure to discriminate the LN3 from the Classes C and 

D distributions; however, there is subjectivity associated with the use of the ( , )v sC C  plot, being a range-

bound plot ( (0,1), (1, 2.5))v sC C  , and the value of vC  and sC may exist beyond these ranges for the 

real and large database like daily precipitation. Further, the statistical tests used to test normality have 

the disadvantage of not being sensitive enough for low sample sizes or overly sensitive to large sample 

sizes (Mishra et al., 2019). Besides, using transformations, such as the log transformation, can be quite 

problematic. The researchers need to be mindful of the limitations while analyzing the transformed data 

instead of the original data (Changyong et al., 2014). In summary, various studies have highlighted the 

necessity to segregate the LN distribution from the classes C and D (it can possess either light or heavy 

tails) and characterize the probability distributions of datasets so that reliable estimation of the quantiles 

of the variables corresponding to various exceedance probabilities can be achieved. There is a need to 

characterize the tails of empirical datasets effectively into several classes/families through the 

construction of a comprehensive DSS. 

5.3  Recent Advancements in Graphical methods  

Graphical methods encompass tools that are useful for exploratory analysis and tail discrimination 

(Nerantzaki and Papalexiou, 2019) and form an essential component of the DSS. Graphical approaches 

such as MEF plot, log-log plot, and generalized Hill ratio plot were part of the conventional DSSs. 

However, lately, studies have developed more advanced ways of diagnosing the distribution tails, which 

could be useful to characterize the distributions into different classes (Zenga, 2007; Nair, 2012; Cirillo, 

2013; Fontanari et al., 2018a). Cirillo (2013) introduced the Discriminant moment ratio plot (DMR) and 

showed that a simpler version of the CV-Skewness diagram (Vargo et al., 2010) is efficient enough to 

scrutinize the inferences revealed from the log-log and MEF plots. It should be noted that the two-

dimensional ( , )v sC C  plot used by Martel et al. (2013) is a subset of the DMR plot, which, unlike the 

( , )v sC C  plot, extends over a high range of 
vC  and 

sC . In the plot, points or curves represent some 

distributions, while the generalized distribution and families of distribution are represented as zones. 

The entire plot is divided into 4 zones, namely, (i) The Paretian zone, (ii) The Gray zone, (iii) The 

Lognormal zone, and (iv) The exponential/Thin-tailed zone. The location of the couple point ( ,v sC C ) 

or 2 3( , )   with respect to the four areas and curve gives us a good idea of possible candidate 

distribution. Cirillo (2013) also proposed the Zenga plot, which helps to discriminate between the 

lognormal and the Pareto distributions. Zenga curve can be expressed analytically for any distribution 

via the corresponding Lozern curve ( ( )L u ) (Lorenz, 1905)). Zenga plot shows a Zenga curve ( ( ))Z u  

plotted against u (threshold varying between 0 and 1) and assumes different shapes for different 

distributions. For Pareto distribution ( )Z u  is a convex increasing curve on [0,1] and approaches the u-
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axis for larger shape parameters, indicating a decrease in concentration. While for an LN distribution 

( )Z u remains constant and changes with the variance ( ).  

Another interesting graphical tool to perform tail discrimination is the maximum-to-sum plot (MS 

plot or ( )nR p ) which is a ratio of partial maximum (
p

nM ) and partial sum (
p

nS ) for p statistical moments 

(Herein p=1: mean; p=2: variance; p=3: skewness; and p=4: kurtosis). The power-law classes (Class B 

and Class C) are characterized by the non-existence of higher-order moments, while distributions 

belonging to LN and class D\C have the existence of all their moments. The MS Plot relies on a simple 

consequence of the law of large numbers (Embrechet et al., 2003; Cirillio and Taleb, 2020; Manz and 

Mansmann, 2020) and sees the non-convergence or convergence of ( )nR p  to zero for inferences about 

power-tail or non-power tail type distributions, respectively.  

Subsequently, Fontanari et al. (2018a) introduced concentration profile (CP) plots along with 

Concentration adjusted expected shortfall (CAES) plots, which were used to identify the parametric 

families of the loss distribution, especially Lognormal, Pareto, Exponential, and Weibull (

1 and 1   ) behavior. These plots were based on concentration (or inequality) measures (e.g., the 

Gini index derived from the Lorenz curve and common risk management measures like the Expected 

Shortfall (ES) (Acerbi and Tasche, 2002; McNeil et al., 2015; Cirillo and Taleb, 2016). Gini index has 

been applied in the field of hydro-meteorology to capture the inequality and temporal changes in 

distributions of precipitation (Rajah et al., 2014; Monjo and Martin-Vide, 2016; Konapala et al., 2017; 

Shrestha et al., 2019), streamflow (Masaki et al., 2014; Zhang et al., 2015), and river solute loads (Jawitz 

and Mitchell, 2011; Preisendanz et al., 2020) at a different scale. Recently, the Gini index has been 

proposed as a reliable upper tail indicator to characterize the heavy tail phenomena (Fontanari et al., 

2018b; Wietzke, 2020). However, Fontanari et al. (2018a) preferred the sequence of truncated Gini 

indices (indicated by ( )G  , where   denotes truncation level) over the conventional Gini index, as it 

measures the dispersion above the Value at Risk (VaR) (Jorion, 2001) to have a reliable measure of tail 

risk and precision of the ES.  

All new graphical methods are robust in assessing the tail behavior of the distributions. However, 

there is a dearth of attempts to incorporate these advanced graphical methods into the DSS to improve 

the characterization of tails of datasets. Hence, this study is envisaged to devise a comprehensive DSS 

that would incorporate all the advanced graphical methods to characterize the tails of empirical datasets 

into various classes. If put to use in the correct order, these graphical methods can be very useful in 

identifying the true nature and behavior of the datasets and characterizing the tails of various classes, 

especially when the competing tails are present to choose from, e.g., lognormal and regularly varying 

tails. This makes the use of various graphical methods very appealing for formulating a comprehensive 

DSS. Details on the all aforementioned graphical methods used in Conventional DSS along with the one 

proposed to be used in comprehensive DSS can be found in the next section 5.4 for better understanding. 
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5.4 Details of the Graphical methods used in DSS to characterize tails   

Detailed investigation of various graphical methods incorporated in the comprehensive DSS 

along with their properties can be found in Embrechts et al. (2003), Beirlant et al. (2006), El Adlouni et 

al. (2008), Ehsanzadeh et al. (2010), Cirillo et al. (2013), Nerantzaki and Papalexiou (2019) and 

Fontanari et al. (2018a). A brief description of the methods is presented in the following sections. 

5.4.1 Mean Excess Function (MEF) 

The plot of the mean excess function (Embrechts et al., 2003) is based on the behavior of a 

function ( )e u  given as: 

( ) ( )
( ) [ | ] , 0

( )

u
F

t u dF t
e u E X u X u u x

dF t



−
= −  =  


                 (5.1) 

where X is a random variable with distribution function F and right endpoint Fx  such that

sup{ R : ( ) 1}Fx x F x=   . The function ( )e u  is called the mean excess function of X. From an 

empirical point of view, the MEF of a sample 1 2, ,....., nX X X  is easily computed as 

1

{ }1

( )
( )

1
i

n

ii
n n

X ui

X u
e u =

=

−
=



                     (5.2) 

Equation (5.2) represents the ratio between the sum and the number of exceedances over the 

threshold u. If the empirical value of  ( ) .ne u vs u  is linear and the slope is equal to zero or null, it 

indicates an exponential tail. If the plot shows a slope greater than zero, it might indicate subexponential 

tails, as the mean excess function tends to infinity for such tails (Cooke and Nieboer, 2011). If the plot 

shows a slope lesser than zero (i.e., negative), the tail is of hyper-exponential type (Nerantzaki and 

Papalexiou, 2019). Hence, in this study, this plot discriminates the distributions of class D with that of 

class E\D and also identifies hyper-exponential tails (i.e., tails outside of class E). To estimate the MEF 

slope the MEF slope the advancements suggested by  Nerantzaki and Papalexiou (2019) was 

implemented. Nerantzaki and Papalexiou (2019) considered two statistical tests in their study that are 

followed in this study also. Firstly, a two-tailed test is performed to test the null hypothesis that the tail 

of daily precipitation at a station is exponential. The test utilizes a confidence interval (CI) for the 

exponential case corresponding to sample size (n) for a specific significance level (u). If the estimated 

slope lies within the CI, then the null hypothesis cannot be rejected for the selected significance level. 

Contrary to this, if the estimated slope lies outside the CI, then the null hypothesis is rejected, indicating 

a non-exponential tail. When the null hypothesis from the two-tailed test is rejected, a one-tailed test is 

performed where the null hypothesis is Exponential tail, and the alternative is sub-exponential (or hyper-

exponential). Tails heavier than the exponential tail, i.e., the observed slope is above the CI’s upper limit 
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are designated as the sub-exponential tails, whereas the tails lighter than the exponential tail, i.e., the 

observed slope is below the CI’s upper limit are designated as the hyper-exponential tails. Finer details 

about the approach can be found in Nerantzaki and Papalexiou (2019). 

5.4.2 Concentration Profile and Concentrated Adjusted Expected Shortfall 

A CP plot is a tool based on the concept of using the concentration (or inequality) measure to 

analyze the risk dispersed in the tail. A CP is nothing but a sequence of truncated Gini indices that could 

be used to discriminate among different tail risk profiles and characterize different probability 

distributions. The truncated Gini index is defined as  

1

0

1

0

( ) 1 2 ( )

( (1 ) ) ( )
1 2

1 ( )

G L x dx

L x L
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  
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+ − −
= −

−




                   (5.3) 

Where, ( )L x  is defined as the truncated Lorenz curve and   is the truncation level (or confidence 

level). Also, the Gini index can be defined in terms of Value at Risk (VaR ) and Expected Shortfall (

ES ) for a positive Y with CDF F(y), Equation (5.3) can be re-written as  

1 2 1 2(| | )
( ) [0,1]

2

E Y Y Y Y VaR
G

ES






−  

=                     (5.4) 

As a consequence of this procedure, for a fixed , ( )G 
 
corresponds to the Gini index of a new 

random variable X with support [ )VaR c , with  c   , and expectation ES . This truncated Gini index 

measures the dispersion above VaR for a fixed confidence level   such that a reliable measure of tail 

risk can be defined along with ES  precision. The truncated Gini index ( )G   inherits all the properties 

of the usual Gini index and is, therefore, a measure of tail dispersion. However, since the main interest 

is usually the right tail where the large value (i.e. extreme) lies, the above formulation of truncated Gini 

is much better than the usual Gini index as it takes into account the support of the distribution based on 

the truncation level rather than including the support of entire distribution. A high value of ( )G  , i.e., 

closer to 1, implies that the losses in the risk subclass ( )S  are dispersed, resulting in a persistent tail 

thickness in the subclass and a lower precision of the corresponding ES . A value close to 0 suggests 

that losses are less dispersed within the risk subclass. Graphically, CP (denoted as 
[0,1]{ ( )} G  ) is 

obtained by plotting ( )G   against the increasing value of  .  

To form a CP for a sample (with sample length n), all the observations in a sample are sorted in 

increasing order, and the Gini index is computed n times recursively, each time excluding the first n 

smallest observation. For an accurate estimation using this method, a sufficient number of observations 
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is left in the right tail, denoted by k; generally, k varies between 1-5% of the originally ordered data 

points. Graphically, CP (denoted as 
[0,1]{ ( )}G  

) is obtained by plotting ( )G   against the increasing 

value of  . CP can very well characterize or identify distribution belonging to different classes and 

provide a rationale for their discrimination based on its shape. It allows the characterization of class B\A 

(i.e., a Pareto-type tail) and can also identify distribution from class E, D\C, and the limiting distribution 

like lognormal (LN). The theoretical CP for some distributions from these classes is given in Fontanari 

et al. (2018a).  

An interesting observation obtained from the CPs for different tail types is that for the fat or heavy 

tail domain, the risk does not vary much like for purely fat-tailed distribution. The Pareto distribution is 

characterized by a constant CP, where the height of the line only depends on the shape parameter of the 

distribution itself. Paretian losses maintain their inherent level of risk, which is inherently higher when 

the tail is heavier. While for the other distributions like Lognormal, Weibull, and Exponential, the CP 

exhibits a decreasing behavior (i.e., a non-increasing CP always) indicating that losses above high values 

of VaR  tend to be less dispersed. Exponential CP starts with (0) 0.5G =  at truncation level 0 =  and 

decreases towards zero first convexly and successively concavely, with a point of flex 0.63 = . A 

Weibull distribution with a shape parameter 1   has a CP below the exponential CP, without 

intersection, while for 1  , the Weibull CP lies uniquely above it. For the lognormal CP, if 1  , the 

starting point of the lognormal CP is (0) 0.5G  ; when 1  , we have (0) 0.5G  . Compared to the 

Weibull CP, the lognormal CP is flatter, indicating that its tail decreases more slowly than the latter. For 

the light-tailed domain, CP exhibits a quick decreasing behavior (quick variability) with (0) 0.5G  . All 

these heuristics makes CP an efficient goodness-of-fit tool that could be easily applied to any set of data 

for making quick as well as in-depth statistical analysis of the dataset. 

Concentration Adjusted Expected Shortfall (CAES) is the product of Expected Shortfall at a 

confidence level,   i.e., ES and the corresponding truncated Gini index ( )G  . CAES shows different 

behavior for different distributions. CAES tends to infinity for Pareto distribution for any value of shape 

or tail parameter  , Weibull distribution with 1  , and lognormal distribution with 0.3  . CAES 

shows a constant ( c R ) profile for the exponential distribution while the profile tends to zero for 

Weibull 0.3   and lognormal 0.3   as the truncation level 1 → . For Lognormal distribution, 

CAES shows three different behaviors based on the shape parameter  , giving us some idea about the 

value of the shape parameter of the distribution. For more detailed plots of CP and CAES for different 

distributions, refer to Fontanari et al. (2018a).  

5.4.3 Zenga Curve  

Lorenz curve and Gini index are popular measures of inequality used since the nineteenth century 

(Lorenz, 1905; Gini, 2014; Manz and Mansmann, 2020). As a measure of concentration, the Zenga 
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curve is an alternative measure to the well-known Lorenz curve. Zenga (2007) related the Zenga curve 

to the Lorenz curve, as shown in Equation (5.5) 

( )
( ) , 0 1

[1 ( )]

u L u
Z u u

u L u

−
=  

−
                                (5.5) 

Where ( )L u  is the Lorenz curve for the distribution above a pre-specified threshold defined as  

0

1
( ) ( ) , [0,1]

u

L u Q s ds u


=                                    (5.6) 

Equation (5.6) presents an analytical form of the Zenga curve. Differently from the Lorenz curve, the 

Zenga assumes different shapes for different distributions. For Pareto distribution, the Zenga curve is 

positively-sloped (convex increasing function) and rises as 1u → ; the higher the curve, the more heavy-

tailed the distribution becomes. For Lognormal distribution, the Zenga curve is a constant horizontal 

curve depending on the shape parameter   of the distribution (see Equation (5.7) ) 

2

( ) 1 , 0 1Z u e u−= −                        (5.7) 

Since Pareto always shows an increasing curve and lognormal a constant curve, the Zenga plot 

forms a good basis to discriminate between these two distribution (Cirillo, 2013). Hence, in this study, 

this plot is used to identify the distribution from class B\A and LN. Codes used to produce the Zenga 

curve are referred from Cirillo (2013). Note that some curvatures at extremities may appear in the Zenga 

curve for the lognormal distribution, depending on the empirical computation of the curve, and become 

less and less relevant as the number of observations increases.  

5.4.4 Discriminant moment ratio plot (DMR plot) 

The moment ratio plot, introduced by Craig (1936) and further developed by Johnson and Kotz 

(1970) and Vargo et al. (2010), provides a simple way of visualizing distributions and discriminating 

among them. Cirillo (2013) showed that the best moment ratio plot is a simpler version of the CV-

Skewness moment ratio plot in which the information related to a given distribution is summarized by 

the behavior of the couple point ( ,v sC C ) or 2 3( , )  .  In the plot, some distributions are represented as 

points, while others are shown as curves and in cases of generalized distribution and families of 

distribution as areas. The plot is divided into 4 areas, namely, (i) The Paretian zone, (ii) The Gray zone, 

(iii) The Lognormal zone, and (iv) The exponential/Thin-tailed zone. The equations of the couples 

representing different curves, thereby defining the zones, are referred from Cirillo (2013). The location 

of the couple point ( ,v sC C ) or 2 3( , )   with respect to the four areas and curve gives us a good idea of 

possible candidate distribution. If the point falls in the Paretian or lognormal zones (close to the 

lognormal curve), it is likely to be Pareto and Lognormal types, respectively. If the points fall in the 
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Exponential/Thin Tailed zone, both the lognormal and the Pareto are completely ruled out. More 

analyses are needed in cases where the point falls in the so-called Gray zone, as this area concerns 

mixtures of lognormal and power tail and lognormal with extremely large variances. A point falling out 

of the four areas may represent a symmetrical or normal distribution if it lies close to the dotted curve 

or a mixture thin-tailed distribution if it falls below the Bernoulli curve. Furthermore, the benefit of the 

discriminant moment-ratio plot is that it allows the simultaneous comparison of many different 

distributions. In this study, a DMR plot is used to identify the LN distribution distinctively along with 

other distributions from class C\B, E, and Hyper-exponential family (outside class E).  

5.4.5 The maximum-to-sum plot (MS plot) 

The “maximum-to-sum” (MS) plot is based on a simple consequence of the law of large numbers 

(Cirillio and Taleb, 2020; Manz and Mansmann, 2020). For a sequence 1 2, ,....., nX X X  of non-negative 

independent and identically distributed random variables, the maximum-to-sum ratio is given as  

 

/ 0 , 1, 0p p p

n n nR M S n p= →   ,                              (5.8) 

Where, 
1max( ,......, )p p p

n nM X X= is the partial maximum of order p and 
1

n
p p

n i

i

S X
=

= is the partial sum 

of order p. The moment of order p of the distribution exists, i.e., [ ] for 1,2,3.....,pE X p  = if and only 

if ( )nR p  converges to zero for n→ . In practice, we plot 
nR  against n for various values of p. If the 

( )nR p  jumps up and does not converge to zero for any p exceeding
0p , it indicates the presence of 

power-law type tail with tail index 0p = . For example, if for p = 1, 2, 3, 4, the ( )nR p  does not 

converge to 0, it shows the absence of existence of any finite moment for the variable, which suggests 

that the variable has such a fat right tail that even the first theoretical moment is not finite. In such cases, 

we deal with such a heavy-tailed phenomenon that even the inferences from the sample average and 

standard deviation are meaningless. These plots can help us distinguish distributions belonging to class 

C\B from lognormal and class D\C. Distributions belonging to lognormal and class D\C have all their 

moments, while the distributions of class C\B may not, depending on the shape or tail parameter of the 

distribution. Hence, if the ratio p

nR  does not converge to 0 for any plotted p, no matter how many 

observations n are used, it proposes that no finite specific moments are likely to exist. For such cases, 

the distribution will belong to class C\B (regularly varying distributions).  

5.4.6 Hill ratio plot  

A generalization of the Hill estimator by Beirlant et al. (2006) is used in this study. This method 

is based on the fact that 
na is a consistent estimator of   if the tail is Pareto type (Class B) with tail 

index . Let  
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In practice, one plots ( )n na x  as a function of 
nx  and looks for some stable region from which    ( )n na x  

can be considered as an estimator of  . In Equation (5.9) 
nx is chosen to be large such that

( ) 0 and ( )n nP X x nP X x →  → . The Hill estimator works very well in identifying the Pareto 

distributed data, but it becomes less effective for other regularly varying distribution functions (De 

Sousa and Michailidis, 2004; Cooke and Nieboer, 2011). For this study hill plot is used to identify the 

Pareto type tail (Class B); however it can also characterize the distribution of class D\C as the Hill ratio 

plot converges to zero for the subexponential tails that do not have power-law type tail (Ehsanzadeh et 

al., 2010).  

5.4.7 Log-log plot  

The log-log plot is the double logarithmic plot in which the log of the empirical survival function 

is plotted against the log of the ordered values of u. It is based on the fact that for exponential tail with 

mean   empirical survival function is 
/( ) ( ) uF u P X u e −=  = and for power-law tail with tail index 

, empirical survival function is ( )0( ) ( )F u P X u u u


=  = . Taking the logarithm, we have for 

exponential type distribution  

 log ( )P X u u   −                         (5.10) 

And for power-law distributions  

  0log ( ) log log logP X u u u C u    −  −                             (5.11) 

Equation (5.11) shows a negative linear relationship between the logarithm of the survival function and 

the logarithm of u, suggesting that the tail probability for power-law (or regularly varying distributions, 

i.e., class C\B) can be identified in the presence of a linearly decreasing behavior of the plotted curve. 

In contrast, such behavior is not observed for other classes like the subexponential (class D\C) or 

exponential (class E). To improve interpretability of the plot, a naive linear fit of the decaying tail is 

shown with the red line in the log-log plots for different distributions in this study. Also, a test on the 

associated correlation coefficient is recommended to check the linearity of the curve. This plot helps 

discriminate the distributions belonging to class C from that of Class D\C (i.e., the distribution which 

belongs only to class D and not C). However, it cannot discriminate between subexponential and 

exponential classes. 

5.5 Proposed Comprehensive Decision Support System  
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In the present study, a comprehensive DSS is proposed, which alleviates the limitations associated 

with the conventional DSS by incorporating advanced graphical methods in a well-defined order. A 

flow diagram depicting various methodological steps in the comprehensive DSS is provided in Figure 

5.3.  

Given a dataset, the first step of the proposed DSS is to construct the MEF, which can result in 3 

cases, namely, the positive, null, and negatively sloped MEF plots representing the subexponential, 

exponential, and hyper-exponential tail types, respectively. To judge whether a dataset belongs to any 

of the three categories mentioned above, the confidence interval (CI) approach of MEF suggested by 

Nerantzaki and Papalexiou (2019) was considered. In this approach, we estimated the MEF slope from 

the entire dataset sample and tested for its significance against the null hypothesis of zero slope 

(indicating an exponential tail) by considering a 90% confidence interval. If the estimated slope lies 

within the CI, distribution is considered to be exponential, while based on the location of the estimated 

slope, either above the upper limit of CI or below the lower limit of CI, it can be categorized as 

subexponential or hyper-exponential, respectively. This algorithmically applied MEF approach eases 

the identification of the datasets and makes the process faster. Further, each case that might exist after 

the categorization is described in a detailed manner in the subsequent subsections. 
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Figure 5.3  Steps involved in the proposed Decision Support System 
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5.5.1 Mean Excess Function: Positive slopes 

This case indicates that the distribution of the dataset belongs to a Subexponential class, i.e., Class 

D. Further investigation is required to categorize the distribution in subclasses such as Pareto (class 

B\A), Lognormal distribution (LN), Regularly Varying (class C\B) and Subexponential (class D\C). The 

CP and CAES plots, when used in conjunction, help to subcategorize the Class D distributions. CP for 

each subclass of class D exhibits a non-increasing ( )G   profile, with increasing truncation level (  ), in 

the range from 0 to 1. Each subclass can be identified based on the unique behavior of the CP plot, such 

as the slow decaying CP (i.e., LN and class C\B), faster decaying CP (i.e., class D\C), and constant CP 

(i.e., class B\A). Additionally, the CAES plot helps in confirming the identified subclass. Within a given 

subclass, the diverse behavior of CAES helps in confirming the subclass. 

The distribution of the dataset is identified as a Lognormal distribution (a limiting case between 

class C\B and class D\C) based on the decreasing behavior of CP and the peculiar behavior of the CAES 

plot, both governed by the shape parameter of the distribution ( ). For the LN class, CP has a starting 

point greater than 0.5 (i.e., (0) 0.5G  ), when 1   (representing the presence of heavy-tailed LN 

distribution) and the CAES plot tends to infinity as 1 → . Subsequently, confirmatory analysis for the 

LN distribution can be performed using the Zenga curve and DMR plot, as suggested by Cirillo (2013). 

For the Lognormal distribution, the Zenga curve illustrates a constant horizontal curve (i.e., 

2

( ) 1 , 0 1Z u e u−= −   ) corresponding to the variance of the LN distribution. The DMR plot can 

confirm the LN distribution based on the location of couple point 2 3( , )   within the lognormal zone.  

The distribution of the dataset can belong to class B\A, i.e., Pareto type, when the CP plot detects 

a profile characterized by a continuous horizontal line whose intercept depends only on the shape 

parameter  . The Paretian CP is immune to any change with the increasing truncation level. Further, 

for any, the Parentian CAES always tends to infinity as 1 →  
1

(i.e., lim )CAES
→

=  . After the 

identification using CP and CAES, the confirmation of the Paretian tail can be accomplished based on 

the Zenga plot in addition to the conventionally preferred Hill ratio plot. An increasing Zenga curve and 

a stable Hill ratio plot around a non-null constant (i.e., an expected shape parameter) confirm that the 

datasets come from Class B\A. For the dataset to have a distribution belonging to class D\C, the CP has 

a faster rate of decay as compared to the LN class. Further, the CAES plot for these distributions tends 

to infinity, representing heavy-tailed distributions such as Weibull 1  . Followed by this, a non-stable 

Hill ratio plot can confirm the presence of class D\C.  

It should be noted that the characterization of distributions into classes B\A and LN based on the 

simultaneous use of the CP and CAES plots can be achieved easily, as discussed above. However, the 

CP and CAES plots may not be able to discern between some distributions belonging to classes D\C and 
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C\B due to presence of mixed behavior. The CP for some distributions from class D\C (e.g., Gamma 

and Pearson type III distributions) exhibit behavior that can be represented by a mixture of CP for 

Weibull and exponential distributions. While the CP profile for distributions from class C\B (e.g., 

Inverted Gamma and Log-Pearson type III (LP3)) exhibits behavior that can be represented by a 

combination of CP for Pareto and Lognormal distributions. This situation arises due to the nested 

behavior of various classes of distributions. To resolve such a situation, firstly, the proposed DSS places 

these distributions under the category “unidentified heavy tails”. Subsequently, a log-log plot is 

suggested to classify the dataset into either class D\C or class C\B. If the log-log plot is not linearly 

decreasing, then the distribution of the dataset from the unidentified heavy tails category can be assigned 

to the class D\C and confirmed through a Hill ratio plot which shows a convergence to 0 (confirmatory 

test for class D\C). On the contrary, if the slope of the log-log plot is linearly decreasing, then the 

distribution of the dataset can be associated with class C\B and confirmed through the MS plot and DMR 

plot (which are confirmatory tests for class C\B). In the MS plot, the maximum sum ratio ( ( )nR p ), is 

plotted against the number of observations n for various p statistical moments. A jump in ( )nR p  

followed by non-convergence to zero above some threshold 
0p  belonging to p indicates the presence 

of a power-law type tail with a tail index 0p = . It is to be noted that the ( )nR p  generally converges 

to zero for the distributions belonging to the lognormal and class D\C as they possess all moments. 

Contrary to this, the ( )nR p  does not converge to zero for the distributions from class C\B as higher 

moments do not exist for them. Due to this peculiar characteristic, the ( )nR p  is suggested to be used as 

a confirmatory test for the class C\B (i.e., regularly varying distributions).  In the case of the DMR plot, 

the couple point depicting the andv sC C  estimates of the Inverted Gamma distribution dataset lies on 

or close to the Inverted Gamma curve, while for other regularly varying distributions, such as the LP3 

and Fréchet distributions, the point lies within the Gray zone representing the class C\B that are power 

tails or mixtures of lognormal and power tails and hybrid distributions. 

5.5.2  Mean Excess Function: Null slopes 

This kind of observation points towards class E, which comprises the Exponential distribution 

and Gamma distribution with 1 = . Following this, a confirmatory analysis for class E can be carried 

out by using the CP and CAES plots. The CP for such a class starts around 0.5 and has a decreasing 

behavior (first convexly and then concavely) with a point of flex corresponding to truncation level

0.63 = , while the CAES plots show a horizontal line (i.e., a constant slope). Further identification of 

Exponential distribution or Gamma distribution with 1 =  can be accomplished based on the DMR 

plot, which has an exponential zone and gamma curve in it.  

5.5.3 Mean Excess Function: Negative slopes 
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This kind of observation indicates the presence of a hyper-exponential class (Vela and Rodríguez, 

2014) which encompasses the probability distributions such as Weibull ( 1  ), LN ( 1  ), Normal, 

Gamma ( 1  ), and other unidentifiable light tails in the proposed DSS. The CP and CAES plots can 

very well identify the profiles of light-tailed versions of Weibull or Lognormal distributions. In the case 

of light-tailed distributions, the CP plot starts below 0.5 ( (0) 0.5G  ); however, the CAES plot depicts 

different behavior for the candidate distribution. The CAES plot tends to zero for Weibull ( 1  ), 

Normal, Gamma ( 1  ), and Lognormal ( 0.3  ) distributions. In the case of lognormal distribution 

with (0.3,0.7)  , the CAES plot shows a unique u-shaped behaviour. Subsequently, the lognormal 

distribution can be verified through the Zenga and DMR plots. In the case of other distributions, the 

DMR plot can be used to categorize them into Gamma ( 1  ), Normal, or Weibull ( 1  ) distributions. 

The Normal and Gamma distributions have respective curves in the DMR plot, whereas the other hyper-

exponential distributions, such as Weibull ( 1  ), can lie in the thin-tailed zone of the DMR plot. 

5.6 Efficacy evaluation of the proposed DSS through a simulation study 

In this section, the efficacy of the proposed DSS was evaluated through a simulation study. We 

generated the samples of different lengths from representative probability distributions belonging to 

various classes (e.g., D\C, C\B, B\A, etc.) and verified whether the proposed DSS could reclassify the 

samples into their respective classes or not. Herein, the samples of candidate distributions belonging to 

different classes, i.e., Pareto type I representing class B\A (i.e., Pareto type); Log Pearson type III and 

Inverted Gamma distributions representing class C\B (i.e., regularly varying distributions); 2-parameter 

lognormal distribution representing LN distribution with 1   (i.e., LN limiting case between class C\B 

and D\C ); Gamma distribution with 1   and Weibull with 1   representing class D\C (i.e., 

subexponential distributions); exponential distribution representing E\D (exponential type 

distributions); and Normal, Weibull with 1  , lognormal with 1  , and gamma with 1   

distributions representing the hyper-exponential type distributions (outside class E), are considered for 

the simulation experiment. The expressions for probability density functions (PDFs) of the 

aforementioned probability distributions are provided in Table 5.1 along with the sets of parameters 

considered for the data generation. The parameter values are selected based on past studies from the 

field of Hydroclimatology (Phien and Ajirajah, 1984; Nash, 1994; Reeve, 1996; Al-Zahrani and Husain, 

1998; Aksoy, 2000; Heo et al., 2001; De Sousa and Michailidis, 2004; Sharma and Singh, 2010; 

Bhavana et al., 2012; Papalexiou et al., 2013; Cirillo, 2013; Martel et al., 2013; Sherif et al., 2014; 

Kozubowski et al., 2009; Mayooran and Laheetharan, 2014; Babu and Hooda, 2018; Farooq et al., 2018; 

Hussain et al., 2019; Ozonur et al., 2021; Gupta and Chavan, 2021; Gupta and Chavan, 2022). Sample 

sizes (n) of 500, 1000, 5000, 10000, 12000, 15000, 20000, and 25000 are considered for the simulation 

study. Once the samples (of a particular length) are generated from each of the distributions representing 

various classes (mentioned above), they are subjected to various steps in the proposed DSS. For each 

distribution, the plots of different graphical methods involved in DSS are presented in Figures 5.4 to 
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5.14. For brevity, the plots are presented for a typical sample size of 12000. Plots pertaining to other 

sample sizes are not shown here due to space constraint; however, they can be found in the 

supplementary material of Gupta and Chavan (2023b) from Figure S4 to S80. The subsequent 

subsections demonstrate the efficacy of the proposed DSS in characterizing the distributions from Sub-

exponential type distribution (i.e., Class D), Exponential Type distributions (i.e., Class E), and Hyper-

exponential type distributions (i.e., outside Class E). 
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Table 5.1  Expressions for Probability density function (PDF) along with the detail of parameter considered for data generation 

Class of 

Distribution 

Name of 

Probability 

Distribution 

Probability density function 

 

Parameter 

 

Parameter Values 

 

Hyperexponential 

(outside Class E) 

Normal (N) 

( , )   

2
1 1

exp
22

N

x
f



 

 − − 
=   

   

 
mean ( )  

standard 

deviation ( )  

(142.48, 60.726), (64.103, 26.717), (75.265, 41.898), 

(109.09, 61.071), (62.37, 23.45), (108.76, 49.56), 

(84.66, 28.99), (89.62, 1.72), (77.57, 27.73), 

(1789.04, 1332.44), (500, 1.2), (35.9534, 54.5892), 

(3.0599, 6.3873), (66.28, 17.81), (12665, 4710), 

(76.11, 27.73), (9.3, 21), (8.4, 22), (850.7, 84.13), 

(79.637, 47.942) 

Hyperexponential 

(outside Class E) 

Weibull (W) 

( ),   

When, 1   

1

( ) expW

x x
f x

 


  

−     
 = −        

 
shape 

parameter  

( 0  ) 

scale parameter  

( 0  ) 

(1.491, 52.72), (17.7532, 31.5581), (19.2964, 

30.8359), (2.9114, 13900), (12.07339, 3.059887), 

(1.3138, 99.3311), (2.2928, 164.4540), (1.9958, 

1149.90), (3.3485, 154.8), (2.6347, 71.503), (2.3011, 

82.972), (2.8985, 110.24), (1.4832, 87.627), (2.35, 

5.63), (2.69, 6.41), (3.15, 6.65), (2.61, 6.47), (2.44, 

9.70), (3, 2), (12.16, 887.4) 

Hyperexponential 

(outside Class E) 

Lognormal  

(LN2) ( ),   

When, 1   

1

21
( ) exp lnLN

x
f x

x





 
  = −     

 

 

shape 

parameter  

( 0  ) 

scale parameter  

( 0  ) 

(0.088294, 1.0737), (0.1, 0.1), (0.1878, 1.5062), 

(0.2,0.25), (0.3,0.5), (0.4562, 10.7711), 

(0.025,4.234), (0.35, 9.6792),  (0.31, 1000.22), (0.16, 

100), (0.29, 19.162), (0.39, 100.5), (0.13, 40.314), 

(0.43, 5), (0.3704, 4.8866), (0.4617, 4.0644), (0.272, 

4.1881), (0.30778, 4.7685), (0.46, 5.158), (0.4, 

121.58) 
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Table 5.1  (continued…..) 

Class of 

Distribution  

Name of 

Probability 

Distribution 

Probability density function   Parameter 

 

Parameter Values 

 

Hyperexponential  

(outside Class E) 

Gamma (G) 

( ),   

When, 1   

 

1

1
( ) exp

( )
G

x x
f x



   

−

   
= −   

    
 

shape parameter 

( 0  ) 

scale parameter 

  ( 0  ) 

(1.737, 17.3272), (2.433, 120), (7.0028, 30.1988), 

(2.1743, 18.1197), (10.6443, 32.7686), (8.743, 97.30), 

(1.8, 28.18), (2.433, 120), (5.5048, 25.882), (5.7569, 

11.135), (3.227, 23.323), (3.191, 34.19), (4.8157, 

22.584,), (2.3215, 42.916), (6.572, 50.637), (8.195, 

38.181), (3.787, 396.11), (2.122, 33.669), (1.317, 

46.715), (2.5411, 20.484) 

Class E  Exponential 

(E)  

( ) exp( )Ef x x = −  shape parameter 

( 0  ) 

 

(0.001), (0.007), (0.0012), (0.0156), (0.0133), (0.017), 

(0.09), (0.1), (0.11), (0.12),  (0.5), (0.75), (0.8), (1), 

(1.5), (2), (3), (5), (7.5) (10)  

Class D\C Gamma (G) 

( ),   

When, 1   

1

1
( ) exp

( )
G

x x
f x



   

−

   
= −   

    
 

shape parameter 

( 0  ) 

scale parameter  

 ( 0  ) 

(0.0379, 3.4304), (0.092, 17.50), (0.010, 3.79,), (0.219, 

23.15), (0.294, 28.18), (0.9060, 17.6201), (0.1139, 

5.1253), (0.731, 18.3819), (0.5, 17.50), (0.7039, 

23.7079), (0.5913, 22.0360), (0.5934, 17.7122), 

(0.6373, 121.9516), (0.681, 16.0844), (0.7268, 

24.5152), (0.6957, 18.7077), (0.0443, 11.27), (0.561, 

10.23), (0.436, 11.05), (0.495, 6.892), (0.341, 16.87), 

(0.375, 16.72), (0.569, 13.65), (0.023, 14.760), (0.075, 

31.765), (0.084, 12.16), (0.134, 1.907), (0.10, 1.053), 

(0.231, 5.749), (0.608, 23.594) 
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Table 5.1  (continued…..) 

Class of 

Distribution  

Name of 

Probability 

Distribution 

Probability density function   

  

Parameter 

 

Parameter Values 

 

Class D\C Weibull (W) 

 ( ),   

When, 1   

1

( ) expW

x x
f x

 


  

−     
 = −        

 
shape parameter 

( 0  ) 

scale parameter  

 ( 0  ) 

(0.3, 20), (0.23, 0.02), (0.661, 4.33), (0.678, 5.91), 

(0.692, 6.88), (0.3087, 0.3476), (0.90, 12.2075), 

(0.8501, 12.4927), (0.3066, 0.3850), (0.7859, 0.1224), 

(0.2012, 0.6952), (0.8655, 12.2138), (0.8158, 

12.6215), (0.8715, 6189.6259), (0.6952, 0.2012), 

(0.6976, 0.2321), (0.0469, 0.7360), (0.434, 7.71), 

(0.8044, 0.1088), (0.7732, 0.1556), (0.21209, 1066.1), 

(0.23585, 851.73), (0.722, 2.199), (0.3, 4), (0.68, 

16.599), (0.7, 12.778), (0.82, 12.042), (0.13, 111.41), 

(0.797, 42.691), (0.8554, 18.3) 

 LN (a limiting case 

between  Class C 

and D\C) 

Lognormal  

(LN2) ( ),   

When, 1   

1

21
( ) exp lnLN

x
f x

x





 
  = −     

 

 

shape parameter 

( 0  ) 

scale parameter 

  ( 0  ) 

 (1.6097, 1.52), (1.060, 8.78), (1.087, 9.46), (1.107, 

10.59), (1.1873, 10.0345), (1.2208, 10.2748), (1.2814, 

9.1881), (1, 10),  (1.3141, 9.6792), (1.5, 15), (1.8924, 

2.6398), (2, 20), (2.115, 24.5317), (2.2519, 24.0319), 

(2.284, 76.74), (3, 25), (3.5, 3.0599),  (1.5023, 

1.9568), (1.4449, 1.6966), (1.4704, 2.0529), (1.1634, 

2.1468) , (1.6223, 3.3920), (1.1618, 1.3093), (2.6582, 

4.3432), (2.44, 4.3794,), (1.186, 2.137,),  (1.198, 

2.001), (1.118, 2.123),  (1.3192, 28.7343), (3.6, 

32.546) 
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 Table 5.1  (continued…..) 

Class of 

Distribution  

Name of 

Probability 

Distribution 

Probability density function   

  

Parameter 

 

Parameter Values 

 

Class C\B 

 

 

Inverse 

Gamma (IG) 

( ),   

1

1

0

( ) I( 0)
( )

, ( )

( )

x
IG

x

f x x e x

where is the gamma function

x e dx

 












−− −


− −

= 




 = 

 

 

~ ( , ),

1
~ ( , )

X Ga where is the rate parameter

Y IG
X

  

 =
 

shape 

parameter (

0  ) 

scale parameter 

( 0  ) 

(1, 0.1), (3, 1), (12, 2), (160, 12), (0.8, 17.50), (0.9, 50),  

(1, 23.15), (1.1, 1), (1.5, 1), (1.9, 1), (2, 15), (4, 94.72), 

(5, 15), (6, 17), (7, 3), (1.6, 0.2), (10, 0.6), (30, 1.2), (1.2, 

0.3), (2, 1)   

Class C\B 

 

Log Pearson 

type III (LP3)  

( , , )    

1

3

1 ln ( ) ln ( )
exp

| | ( )
LP

x x
f

x



 

   

−

   − −
= −   

    
 

shape 

parameter (

0  ) 

scale parameter 

( 0  ) 

lower bound or 

location 

parameter ( ) 

(41.62, 0.12, 5.17), (47.56, 0.15, 3.86),  (6.41, 0.28, 

3.67), (36.73, 0.15, 0.48), (41.62, 0.15, 3.18), (330.58, 

0.04, 8.23),  (36.73, 0.08, 0.34), (3.56, 0.41, 4.41), (16, 

0.125, 6), (82.6, 0.209, 2.82),  (90.70, 0.16, 3.33), 

(11.053, 0.21461, 4.5936), (1.2845, 0.41788, 5.5422), 

(8.91, 0.130, 3.73), (15.219, 0.1357, 6.2541), (6.6347, 

0.32385, 5.6431), (1111.11, 0.07, 2.52), (400, 0.05, 

2.33), (34.6, 0.17, -1.46), (4444.44, 0.02, 6.27) 

 

 



105 
 

Table 5.1  (continued…..) 

Class of 

Distribution  

Name of 

Probability 

Distribution 

Probability density function   

  

Parameter 

 

Parameter Values 

 

Class B  Pareto I (P) 

( ),   1
( )Pf x

x






+

=  
Shape or tail 

parameter 

 ( 0  ) 

scale parameter  

( 0  ) 

(51.5, 1.0582), (10, 2), (1, 1), (1, 1.4), (1, 1.9), (1, 2.4), 

(10, 2.5), (100, 1.5), (34.241, 2.38), (0.7920, 3.03), 

(7.54, 0.134), (8.8, 0.14), (9.51, 0.145), (10, 5), 

(7.6815, 4.27), (8.1352, 3.97), (7.5730, 3.759), 

(8.1501, 3.51), (25.6076, 1.44), (31.89, 1.34), (54.79, 

0.798), (100, 2.6), (1, 2.003), (51.5, 1.02), (12.1, 1.57), 

(7.1, 2.22), (1.5, 1.17), (1, 1.42), (8.1352, 0.5), 

(25.6076, 0.6910) 
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Figure 5.4  MEF, CP, CAES, Zenga, and Hill ratio plot for Pareto I distribution ( 10, 2) = =  with sample size n = 12000  

 

(i) MEF 

 

(ii)  CP 

 

(iii)  CAES 

 

(iv)  Zenga plot 

 

(v)  Hill ratio plot 
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 Figure 5.5  MEF, CP, CAES, Zenga, and DMR plot for Lognormal distribution ( 1.107, 10.59) = =  with sample size n = 12000  

 

(i) MEF 

 

(ii)  CP 

 

(iii)  CAES 

 

(iv)  Zenga plot 

 

(v)  DMR plot 

 



108 
 

 Figure 5.6  MEF, CP, CAES, and Hill ratio plot for Weibull distribution ( 0.692, 6.88) = =  with sample size n = 12000  

 

(i) MEF 

 

(ii)  CP 

 

(iii)  CAES 

 

 

(iv)  Hill ratio plot 
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Figure 5.7  MEF, CP, CAES, log-log, Hill ratio, and DMR plot for Gamma distribution ( 0.219, 23.15) = = with sample size n = 12000  

 

(i) MEF 

 

(ii) CP 

 

(iii) CAES 

 

(iv) Log-log plot  

 

(v) Hill ratio plot 

 

(vi) DMR plot 
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Figure 5.8  MEF, CP, CAES, log-log, MS, and DMR plot for Inverted Gamma distribution ( 2, 15) = = with sample size n = 12000  

 

(i) MEF 

 

(ii) CP 

 

(iii)  CAES 

 

(iv)  Log-log plot 

 

(v)  MS plot 

 

(vi)  DMR plot 
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Figure 5.9  MEF, CP, CAES, log-log, MS, and DMR plot for Log-Pearson type III distribution ( 6.41, 0.28, 3.67)  = = =  with sample size n=12000  

 

(i) MEF 

 

(ii) CP 

 

(iii)  CAES 

 

(iv)  Log-log plot 

 

(v)  MS plot 

 

(vi)  DMR plot 
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5.6.1  Subexponential distribution type 

The proposed DSS was applied to the generated datasets from various distributions. Firstly, the 

MEF plot, which is a popular choice for identifying Subexponential distributions, is applied to a dataset. 

The slope of MEF plots for distribution like Pareto, Lognormal, Weibull, Gamma, Inverted Gamma, 

and Log-Pearson type III distribution is found to be linear and positive (see Figures 5.4 (i), 5.5 (i), 5.6 

(i), 5.7 (i), 5.8 (i), 5.9 (i)). The outcome of the algorithmic approach of MEF indicated the Sub-

exponential tails for these samples as the estimated MEF slopes of these samples lie above the upper 

limit of the 90% CI of the Exponential tail. Identification of the subexponential class as a whole is done 

with ease using the algorithmic approach of the MEF plot. However, the distinction of Pareto (Class 

B\A), regularly varying (class C\B), LN (limiting case between Class C\B and D\C), and only 

subexponential (class D\C) required more sophisticated tools for classification.  

Firstly, the proposed DSS was applied to the datasets generated from 30 sets of Pareto type 

distribution (i.e., class B\A). The CP showed continuous horizontal lines for all 30 sets considered for 

simulation. In addition, it was observed that the (0)G  increases with the decrease in the shape parameter 

( ) of the Pareto distributions. The smaller values of   (i.e., higher constant level of ( )G  ) correspond 

to heavier and riskier Paretian tails. Further, the CAES plots for all sets of Pareto distribution indicate 

an increasing curve as 1 → . This observation is in line with the previous studies (Fontanari et al., 

2018a). A constant CP and infinitely increasing CAES for Pareto distribution indicate the sustenance of 

peaks in the Parentian tails. Finally, an increasing Zenga curve and a stable Hill ratio plot at a non-null 

constant for the generated data confirm that the data comes from Class B\A (see Figures 5.4 (iv) and 5.4 

(v)). Secondly, the application of the proposed DSS to datasets generated from 30 sets of LN distribution 

with 1   indicated decreasing CP with a flatter profile having and a diverging CAES (i.e., 

1
lim CAES
→

=  ) (refer to Figures 5.5 (b) and 5.5 (c)). This suggested that the datasets belong to the 

LN distribution class with 1  . The confirmation of the same was achieved based on the constant 

Zenga curve (except at the extremities), and the couple point 
2 3( , )   plotted in the lognormal zone 

close to the lognormal curve in the DRM plot. The CP, CAES, and Zenga plots not only help in 

identifying the lognormal distributions correctly but also give some idea about their shape parameters. 

A CP with (0) 0.5G   lying uniquely above the exponential CP, a diverging CAES, and a Zenga curve 

with a high value (i.e., ( ) 0.767)Z u   altogether suggested a large value, preferably above 1 for the 

shape parameter  , which is true in this case. Thirdly, the DSS was applied to 30 datasets generated 

from Weibull distribution with shape parameter 1  , which is a candidate of class D\C. Figures 5.6 (i), 

(ii), and (iii) show the characterization of one typical dataset with the help of MEF, CP, and CAES plots. 

The figures illustrated a decreasing CP lying uniquely above exponential CP and diverging CAES 

tending to infinity as the truncation level increases. Figure 5.6 (iv) shows that the curve of the hill ratio 

plot tends to zero, which confirms that the underlying distribution of the generated data belongs to class 
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D\C. Similar observations were noted for the remaining 29 sets of parameters belonging to the Weibull 

distribution with 1  . 

 Finally, it should be noted that some distributions belonging to classes D\C and C\B might not 

be discernible directly based on CP and CAES methods as they are represented by a combination of 

distributions. Such distributions are categorized as “unidentified heavy tails” in the proposed DSS. 

Figures 5.7 (ii), 5.8 (ii), and 5.9 (ii) show the CP plots for Gamma distribution from class D\C and 

Inverted Gamma (IG) as well as Log-Pearson type III (LP3) from class C\B, respectively. It should be 

noted that the CP for the candidate distributions from class C\B tends to be flatter than the lognormal 

distribution, while it is less flat relative to the Pareto distribution (class B\A), for which the CP is a 

horizontal line. The flatter the CP, the higher is the risk of recurrence of the extreme event within the 

tails of the distribution. To categorize the unidentified heavy tails, the DSS proposes to use the log-log 

plot to discern the distributions of classes C\B and D\C. Figure 5.7 shows the characterization of the 

dataset generated from the Gamma distribution with shape parameter 1  , which is a candidate of 

class D\C. A non-linear decreasing slope of the log-log plot was observed, which is a characteristic of 

D\C class, and the same was subsequently confirmed through the Hill ratio plot(showing convergence 

to 0). Similar observations are noted for all 30 sets of parameters belonging to the Gamma distribution 

with representing the class D\C. Figures 5.8 and 5.9 present the characterization of datasets generated 

from IG and LP3 distributions from class C\B, respectively. The log-log plot showed a linear profile for 

both datasets indicating that they belong to class C\B. To confirm the class C\B, MS plot, and DMR plot 

were constructed to categorize the datasets as shown in Figures 5.8 (v) and 5.9 (v). It can be noted from 

the figures that the MS plot does not converge to zero for 1p   ( 2p  ) in the case of IG(LP3) 

distribution which confirms that the datasets belong to class C\B. Further, the DMR plot confirms the 

class C\B through plotting andv sC C estimates (of the datasets) on or close to the IG curve. Figure 5.8 

(f) shows that the point for the generated data from IG falls on or close to the IG curve, while Figure 5.9 

(f) illustrates that the generated data from LP3 lies within the Gray zone.  

5.6.2 Exponential type distribution  

The proposed DSS was applied to the datasets generated from Exponential type distributions. 

Figure 5.10 presents the DSS-based characterization of a typical dataset. The MEF plot for the dataset 

visually showed a null or constant slope indicating the presence of Exponential type distribution (i.e., 

class E). This was also found based on the algorithmic approach of MEF, where the estimated MEF 

slope lies within the 90% confidence interval (CI) of MEF slopes resulting from the Exponential tail. 

This was further confirmed by the CP and CAES plots. The CP plot showed that (0)G  starts around 

0.5, with a decreasing profile (first convexly and then concavely) having a flex point around 7500 sample 

length value (corresponding to truncation level 0.625 = ). The CAES plots showed a horizontal line 

(i.e., a constant slope), which confirmed that the dataset belongs to class E. Further identification of 
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Exponential distribution was accomplished based on the location of the couple point  
2 3( , )   in the 

Exponential zone of the DMR plot. Similar observations are noted for the remaining 19 sets of 

parameters belonging to the Exponential distribution representing class E. 

5.6.3  Hyper-exponential type distribution 

Finally, the effectiveness of the proposed DSS is assessed for characterization of the hyper-

exponential type distributions (outside class E) (e.g., normal, weibull ( 1  ), gamma ( 1  ), and 

lognormal ( 1  )). Figures 5.11 (i), 5.12 (i), 5.13 (i), and 5.14 (i) showed negative slopes for the MEF 

plots of all these distributions. The algorithmic approach of MEF revealed that the generated datasets 

belong to the hyper-exponential type distributions as the estimated MEF slopes of these samples lie 

below the lower limit of CI for the Exponential tail. Further, the hyper-exponential type distributions 

were confirmed using the CP and CAES plots (see Figures 5.11 (ii), 5.11 (iii), 5.12 (ii), 5.12 (iii), 5.13 

(ii), 5.13 (iii), and 5.14 (ii)). The CP plots for the datasets indicated a fast-decreasing behavior with 

(0) 0.5G  . Also, the CAES plots showed rapid decay to zero for datasets generated from Weibull (

1  ), lognormal ( 0.3  ), and other light-tailed distributions. CAES profile for the dataset generated 

from a lognormal distribution with (0.3,0.7)   was found to have a unique u-shape behavior (refer to 

Figure 5.14 (iii)). Further identification of individual distributions (i.e., Normal, Weibull, and Gamma) 

from this class was performed by using the DMR plot. The DMR plots of all these distributions are 

shown in Figures 5.11 (iv), 5.12 (iv), and 5.13 (v). In the case of lognormal ( 1  ) distribution, the 

Zenga plot and the DMR plot were considered for identification (see Figures 5.14 (iv) and 5.14 (v)).   
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Figure 5.10   MEF, CP, CAES, and DMR plot for Exponential distribution ( 0.5 = ) with sample size n = 12000   
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Figure 5.11  MEF, CP, CAES, and DMR plot for Normal distribution ( 89.62, 31.72) = =  with sample size n = 12000 
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(i) MEF 
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(iii)  CAES 

 

 
(iv)  DMR plot 

 

Figure 5.12  MEF, CP, CAES, and DMR plot for Weibull distribution ( 1.491, 52.72) = =  with sample size n = 12000 
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Figure 5.13  MEF, CP, CAES, and DMR plot for Gamma distribution ( 1.8, 28.18) = =  with sample size n = 12000.  
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Figure 5.14   MEF, CP, CAES, Zenga, and DMR plot for Lognormal distribution ( 0.5, 9.6792) = =  with sample size n = 12000 
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A constant Zenga curve close to 0.27 suggested a small value of the shape parameter, preferably 

lower than 1, confirming the findings of the CAES plot in the previous step. Similar observations were 

obtained for all 20 cases considered for each distribution in the hyper-exponential distribution category.  

Overall, the simulation study revealed that the modified DSS was able to identify and characterize 

the different distributions into their respective classes. It should be noted there were some misidentified 

cases based on the CI approach of MEF usually occuring at smaller sample lengths (like n=500, 1000). 

For such cases, we recommend visual inspection of the MEF plots and the corresponding CP and CAES 

profiles. However, overall there was no ambiguity in characterizing the tails of different probability 

distributions into their respective classes based on the proposed DSS while identifying the appropriate 

class as well as confirming the class with confirmatory tests (i.e., class identified based on any test was 

never proved wrong in the confirmatory test). A significant reason behind this flawless performance of 

the proposed DSS was due to the inclusion of the state-of-the-art graphical method (e.g., CP, CAES, 

Zenga, DMR etc.) within the DSS framework. The CP and CAES are based on the sequence of the 

truncated Gini index. The Lorenz curve helps to visualize inherent heterogeneity in the datasets while 

the Gini index quantifies it. However, these methods are insufficient to completely characterize the right 

tail of the distribution (Fontanari et al., 2018a). Hence, the CP and CAES based on the truncated Gini 

index form more sophisticated methods which can provide a unique characterization of different 

distributions. These methods ease the identification of the distributions like Pareto (i.e., class B\A), LN, 

and Exponential. It also suggests the criterion that allows the discrimination of samples generated from 

LN and class C distributions. Followed by the CP and CAES, the tools like log-log plot, MEF plot, 

Zenga plot, and DMR (considered in the proposed DSS) allow the comparison of various distributions, 

simultaneously. However, combining various graphical methods in the correct order is essential to 

ensure the effective performance of any DSS. The findings of the simulation study revealed that the 

order or the combination of various graphical methods considered while framing the proposed DSS 

gives a reasonable degree of confidence when selecting the appropriate class of distribution. Overall, 

the simulation study revealed that the modified DSS is a potential tool for tail characterization.      

5.7 Minimum Sample length required for optimal performance of proposed DSS 

The conventional DSS, as well as the proposed DSS, utilizes graphical approaches to characterize 

the datasets into various classes of distributions. These graphical approaches may be sensitive to the 

sample size of the datasets considered for plotting. Thus, it becomes necessary to investigate the 

sensitivity of the DSS to the various sample sizes. To achieve this, sample sizes (n) of 500, 1000, 5000, 

10000, 12000, 15000, 20000, and 25000 are considered for the generation of datasets from various 

distributions belonging to the aforementioned classes in section 5.6. Following this, the proposed DSS 

was implemented on each dataset to examine whether the DSS could perform the characterization 

correctly or not. Table 5.2 presents the percentage of success in characterization performed by the DSS. 

It can be noted that the characterization of distributions in various classes can be efficiently achieved 
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for datasets having a sample size greater than 1000. Hence, it is recommended that the proposed DSS 

can characterize the tails of the datasets having a sample size greater than 1000, which is generally the 

case for hydro-meteorological variables such as daily precipitation.  
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Table 5.2  Percentage of samples correctly identified by the DSS for each distribution considered for this study  

  Sample Size (n) 

Class of Distribution  Name of the 

Probability 

distribution 

No. of parameter set 

considered for data 

generation 

500 1000 5000 10000 12000 15000 20000 25000 

Percentage of success in characterization (%) 

Class B\A Pareto 30 100 100 100 100 100 100 100 100 

LN  Lognormal ( 1  ) 30 80 93.33 100 100 100 100 100 100 

Class D\C Weibull ( 1  ) 30 80 86.66 100 100 100 100 100 100 

Class D\C Gamma ( 1  ) 30 83.33 86.66 96.66 100 100 100 100 100 

Class C\B Inverse Gamma 20 80 85 95 100 100 100 100 100 

Class C\B Log Pearson 3 20 70 90 95 100 100 100 100 100 

E Exponential 20 100 100 100 100 100 100 100 100 

Hyper-exponential 

(outside Class E) 

Weibull ( 1  ) 20 80 85 100 100 100 100 100 100 

Hyper-exponential 

(outside Class E) 

Lognormal ( 1  ) 20 75 80 90 100 100 100 100 100 

Hyper-exponential 

(outside Class E) 

Gamma ( 1  ) 20 75 100 100 100 100 100 100 100 

Hyper-exponential 

(outside Class E) 

Normal 20 100 100 100 100 100 100 100 100 



123 
 

5.8  Real-world application of Proposed DSS 

In this section, the proposed DSS is applied to identify an appropriate class of distributions that 

describe the tails of daily precipitation data over India.  

5.8.1 Description of the study area and data used 

 The study area considered for application of the proposed DSS is the entire India. The 

geographic location of India, along with the 34 contiguous meteorological subdivisions, is already 

shown in Figure 3.1 in Chapter 3. India is the largest South Asian country with a wide variety of climatic 

regions extending from low-precipitation arid regions to heavy precipitation receiving regions. The 

climate of India is influenced by various geographical and relief features like the Himalayas in the north, 

Thar Desert and Arabian Sea in the west, the Bay of Bengal in the east, Western Ghats in the southwest, 

and the Indian Ocean in the south. The study area experiences a wide range of variations in the 

characteristics of precipitation extremes. Thus, it is necessary to study the tail behavior of precipitation 

over India. In the present study, the daily gridded precipitation records (in mm per day)having a 

resolution of 0.25° were collected from the India Meteorological Department (IMD), Pune (Pai et al., 

2014). Nearly 4801grids were considered for the analysis. The selection of the grids was done based on 

(i) the availability of continuous daily precipitation data for over 119 years (1901-2019) and (ii) the 

presence of at least 3000 nonzero daily values at each grid (Nerantzaki and Papalexiou, 2019). The 

sample size of non-zero daily precipitation data at the grids considered in this study ranges from 3015 

to 27000. 

5.8.2 DSS based characterization of tails of probability distributions of daily precipitation over 

India 

 The simulation study in section 5.6 established the efficacy of the proposed DSS in 

characterizing the tails of probability distributions belonging to various classes. This section 

demonstrates the effectiveness of the DSS through its application to daily precipitation data over India. 

It was envisaged to characterize the precipitation data at 4801 grids into various classes, namely, Class 

B\A, Class C\B, LN (the limiting case between Class C\B and D\C), Class D\C (Subexponential 

distributions), Class E (Exponential type distributions) and Hyper- exponential family (outside Class E) 

based on their tail behavior. The daily precipitation data at each grid was subjected to the procedure 

mentioned in the flow diagram (Figure 5.3). The MEF plots were first constructed for each grid over 

India to investigate whether the tail of the observed daily precipitation data at the grid is subexponential, 

exponential, or hyper-exponential. Based on Nerantzaki and Papalexiou (2019) approach, the estimate 

of the MEF slope was tested against the null hypothesis of zero slope indicating exponential tail by 

considering a 90% confidence interval. We found that the hypothesis of the presence of an exponential 

tail is rejected for nearly 4695 (97.79%) of grids over India at a 90% confidence interval (refer to Figure 

5.15).  
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Figure 5.15  Plots of empirical MEF slope vs. the sample size n, along with the 90% CI for the 

exponential tails obtained from 4801 daily precipitation records over India  

Furthermore, analysis based on a one-tailed test revealed that all the grids where the null 

hypotheses of the exponential tail are rejected, possess sub-exponential tails at a 10% significance level 

as the MEF slope at these grids lies above the upper Confidence Interval. So overall, out of 4,801 grids 

over India, 106 (i.e., 2.18%) grids indicated the presence of exponential tails, while 4695 (97.79 %) 

grids indicated the existence of subexponential tails. No grid was observed to possess a negative MEF 

slope suggesting the inappropriateness of hyper-exponential type distributions for fitting daily 

precipitation tails over India. Subsequently, the grids that showed the exponential tails based on the 

MEF approach were subjected to the CP and CAES approaches to validate the existence of exponential 

tails. Those approaches confirmed that the daily precipitation data at all 106 grids possessed exponential 

tails, and thus, the DSS suggested using a distribution of class E for these grids. Based on the analysis, 

the distributions from class E, such as exponential and Gamma ( 1 = ), might be used to fit the 

precipitation data recorded at 106 grids over India. For brevity, the DSS-based characterization of the 

daily precipitation recorded at a grid (latitude 27° N and longitude 94° E) is shown in Figure 5.16. 

 The grids at which the MEF approach suggested the subexponential class of distribution, CP 

and CAES plots were used to further identify the subclasses (e.g., Pareto, lognormal, and other heavy 

tails, which were categorized as unidentified heavy tails). It was observed that none of the CP plots at 

any grid over India exhibited a constant behavior, i.e., horizontal line. This indicates that there is an 

absence of a Paretian tail in the daily precipitation data. Based on the CP and CAES plots, 961 grids 

(approximately 20.02% of 4801 grids) showed lognormal distribution ( 1  ) type tails. This is further 
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confirmed through the Zenga and DMR plots. The results are illustrated for a typical grid having a 

latitude 33° N and longitude 78.5° E in Figure 5.17. For this grid, the empirical CP exhibited the 

following features: it starts around the point (0) 0.6825G   (which is > 0.5); it decays towards zero; 

and has a change in the slope being slightly convex at the beginning and concave at the end. The visual 

interpretation of CP helps to eliminate the Pareto class of distribution and indicate a lognormal type 

distribution. The diverging CAES also points to the presence of lognormally distributed data and 

provides some additional information that the shape parameter of the lognormal distribution would be 

greater than 0.7 (in this case, greater than 1). Figures 5.17 (d) and 5.17 (e) show Zenga and DMR plots 

which are part of the confirmatory test. The Zenga plot showed a constant behavior except at extremities, 

and the couple point 2 3( , )   in the DMR plot was found to lie in the lognormal zone, close to the 

lognormal curve.  

After identifying the limiting cases of lognormal, the discrimination between classes C\B and D\C 

for the remaining grids was needed.It should be noted that the CP for any heavy-tailed distribution 

belonging to D\C classes tends to have (0) 0.5G  . Few distributions like Gamma ( 1)   and Weibull 

( 1)   can appear similar on a CP plot for a considerable data length; hence to avoid ambiguity, they 

are commonly categorized under the category of unidentified heavy tails. There were 3734 (77.77%) 

grids out of 4801, which were included in the category of unidentified heavy tails. After this, a log-log 

plot was employed to further categorize them following the flow diagram of DSS. A straight-line log-

log plot indicates that the data belong to class C\B instead of class D\C. Out of 3734 grids, 73 (1.52% 

grids out of 4801 grids) and 3661 (76.25% grids out of 4801 grids) grids belonged to classes C\B and 

D\C, respectively. Subsequently, the MS plot (Hill ratio plot) was used as a confirmation test for the 

grids falling in class C\B (D\C). 
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Figure 5.16   DSS-based characterization of daily precipitation recorded at a typical grid (latitude 27° N and longitude 94° E) corresponding to class E  
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Figure 5.17   DSS-based characterization of daily precipitation recorded at a typical grid (latitude 33° N and longitude 78.5° E) corresponding to LN  
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 Figure 5.18 and 5.19 illustrate the characterization of two typical grids corresponding to latitude 

37.25° N, longitude 74.5° E, and latitude 20.75° N, longitude 82.75° E representing the classes C\B and 

D\C, respectively. It can be noted from the figures that the log-log plot in Figure 5.18 (iv) is more close 

to a straight line than the plot in Figure 5.19 (iv), which does not follow a straight line. Therefore, the 

DSS suggests the use of a distribution of Class C\B for the grid shown in Figure 5.18, while it suggests 

the use of a distribution of Class D\C for the grid shown in Figure 5.19. Finally, the confirmation of the 

classes for both grids was done based on the MS plot (Figure 5.19 (v)) and Hill ratio plot (Figure 5.19 

(v)). The MS plot (see Figure 5.18 (v)) illustrates that the plot does not converge to zero for values of p 

greater or equal to 3, which means that only the 1st and 2nd raw moments exist for the data while the 

other moments do not exist. This confirms that the data belongs to class C\B (i.e., regularly varying 

distributions). Based on the analysis, the distributions from class C\B, such as Fréchet, HIB, IG, and 

LP3 might be used to model the precipitation data recorded at 73 grids over India. Figure 5.19 (v), 

showing the Hill ratio plot, indicates the convergence of the plot towards zero, which confirms that the 

underlying distribution for the data at the grid comes from a subexponential class (i.e., class D\C). 

Consequently, the distributions from class D\C, such as Halphen A, Gumbel, Gamma, or Pearson type 

III might be used to model the precipitation data recorded at 3661 grids over India. The DMR plot in 

Figure 5.19 (vi) shows that the gamma distribution can be a suitable candidate for this particular grid. 

However, the choice of suitable candidate distribution within a class can be made using classical tests 

and criteria such as the Anderson darling test, Akaike Information Criterion, Bayesian Information 

Criterion, or New Model selection test (NMST) (Akaike, 1974; Schwarz, 1978; Ehsanzadeh, 2010; 

Haddad and Rahman, 2011; Panahi, 2016; Nassa et al., 2021). 

Figure 5.20 illustrates the spatial distribution of classes providing the best fit to the non-zero daily 

precipitation data over India based on the proposed DSS. Overall, it can be inferred from the analysis 

that the majority of the precipitation data recorded at various grids over India possess heavy tails (i.e., 

4695 out of 4801). With the dominance of heavy tails all over India, few pockets comprising lighter tails 

(i.e., 106 grids out of 4801) were observedin some parts of Kerala, the northeast region (Arunachal 

Pradesh, Naga, Mani and Tripura), and along the western coastal plain of the Indian Peninsula (i.e., in 

Coastal Karnataka, Konkan and Goa). Gupta and Chavan (2022) analyzed the tails of daily precipitation 

based on the concept of obesity index and noticed similar behavior of tails along the western coastal 

plain, Kerala, and northeast region.
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Figure 5.18   DSS-based characterization of daily precipitation recorded at a typical grid (latitude 37.25° N and longitude 74.5° E) corresponding to class C\B  
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Figure 5.19  DSS-based characterization of daily precipitation recorded at a typical grid (latitude 20.75° N and longitude 82.75° E) corresponding to class D\C  
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(vi) DMR plot 
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Figure 5.20  Spatial distribution of classes providing the best fit to on-zero daily precipitation over India 

based on the DSS  

Heavy tails belonging to the lognormal class are found to be spread all over India, with maximum 

presence in regions like Saurashtra Kutch and Diu, Gujarat, West, and East Rajasthan, the western part 

of Jammu and Kashmir, Punjab, Uttaranchal, Bihar, Gangetic West Bengal, Jharkhand, Orrisa, and 

Coastal Andhra Pradesh. At the same time, the heaviest tails belonging to class C\B are found at very 

few locations in Jammu and Kashmir, Himachal, and Rajasthan. Previous studies over India 

demonstrated that the frequency of extreme precipitation over India is increasing in the regions of heavy 

tails predominantly. (e.g., Goswami et al., 2006; Ajayamohan and Rao, 2008; Dash et al., 2009; 

Guhathakurta et al., 2011; Vittal et al., 2013; Mishra et al., 2014; Krishnan et al., 2016; Roxy et al., 

2017; Sarkar and Maity, 2020; Yaduvanshi et al., 2021; Gupta and Chavan, 2022). The increased 

frequency of extreme precipitation over India can be attributed to the abrupt global change of the 

climatic system resulting from the climate shift of the 1970s in various climate phenomena like the 

Arctic Oscillation, East Asian summer monsoon, East Asian winter monsoon, North Atlantic 
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Oscillation, El Niño–Southern Oscillation, Aleutian low, Pacific decadal oscillation, Western Pacific 

subtropical high, and Indian summer monsoon rainfall (Biondi et al., 2001; Chowdary et al., 2006; Zhou 

et al., 2009; Vittal et al., 2013; O'Kane et al., 2014; Sabeerali et al., 2012; Sahana et al., 2015; Dai et al., 

2018).  

 It should be noted that the presence of a heavy-tailed class within a region does not necessarily 

mean that the region would receive high-magnitude precipitation events. For instance, the western 

coastal plain of the Indian Peninsula (like Konkan and Goa, Coastal Karnataka) tends to receive the 

highest amounts of precipitation in India, but as the amounts are consistently high, the daily precipitation 

tails are observed to be lighter. However, in the arid and semiarid parts like Rajasthan, Gujarat, 

Saurashtra, Kutch, and Diu, daily precipitation exhibits heavier tails as the extreme precipitation events 

are much larger than the average. Past studies have also shown that heavy tails are primarily found in 

regions where multiple types of synoptic systems occur, while the exponential distribution is generally 

seen in the areas dominated by a single type of weather event (Kozubowski et al., 2009; Cavanaugh et 

al., 2015). The characterization of most of the grids over India into the heavy-tailed classes (i.e., class 

C\B, D\C) and heavy-tailed distribution LN points towards the frequent occurrence of extreme 

precipitation events in most parts of the country. Similar findings were observed by Nerantzaki and 

Papalexiou (2019) when they analyzed global daily precipitation data based on algorithmic MEF. They 

found heavier tails (based on the exceedance probability of the observed MEF slopes) over the western 

U.S., south-western Canada, India, and central China. The high frequency of extreme precipitation 

events can cause severe damage to water treatment plants and sewage networks and play a key role in 

waterborne disease outbreaks, thereby impacting public health (Curriero et al., 2001). It can also affect 

the agricultural productivity of the country by damaging crops (Rosenzweig et al., 2002). Hence, such 

events are needed to be identified and modelled correctly.  

Topography or elevation also plays a critical role in shaping the local climate and weather patterns 

as it impacts temperature, moisture content, and atmospheric stability at different altitudes. These 

variations have a significant effect on the occurrence of extreme weather phenomena such as heavy 

rainfall, intense storms, and extreme temperatures. In regions with mountains or high elevations, cooler 

temperatures at higher altitudes lead to increased atmospheric stability and a higher probability of 

precipitation. This results in a greater likelihood of intense rainfall or snowfall, which can lead to 

flooding or avalanches. This observation implies a potential relationship between the heaviness of 

precipitation tails, elevation, and the Köppen-Geiger climate classification system. The Köppen-Geiger 

system utilizes various variables, including temperature, to classify the climate of specific regions 

(Köppen and Geiger, 1923; Peel et al., 2007; Rubel and Kottek, 2010; Beck et al., 2018; Hobbi et al., 

2022). 

Based on the above-mentioned observations regarding the spatial variation of tail heaviness, it 

was observed that the spatial distribution of the tail heaviness is closely related to the climate zones and 
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topography of the country. Figure S.82 in the supplementary material of Gupta and Chavan (2023b) 

shows different climate zones based on the Köppen-Geiger classification (Rubel and Kottek, 2010). The 

regions where heavy (class D) and heaviest (LN and class C) tail are observed belongs to the climate 

zone like Arid (Bwh, BSh), Polar (ET), and Tropical (Aw, As), based on the Köppen-Geiger climate 

classification over India. The grids associated with climate type Cwb and Am possess less heavy tails 

(like exponential). Earlier studies like Gupta and Chavan (2022) and Papalexiou et al. (2018) have also 

reported similar findings of tail behavior in Polar (E), Arid (B), and Tropical (A) regions. Rajulpati et 

al. (2020) examined 5 global gridded precipitation datasets and found that products like Climate 

Prediction Center, Multi-Source Weighted Ensemble Precipitation, and Water and Global Change 

(WATCH) Forcing Data–ERA-Interim indicate medium tails, while the Climate Forecast System 

Reanalysis dataset indicates heavy tails over India. They also observed heavy tails in hot, arid climates, 

medium to light tails in temperate climates, and lighter tails in coastal regions worldwide. Overall, they 

observed medium to heavy tail over Asia (which includes India) based on the tail index. Their results 

are in close correspondence with our findings. Further, we also noticed that the grids associated with 

climate-type ET and BWh have the heaviest-tails. Papalexiou et al. (2018) found that some of the 

heaviest tails are seen in the mountainous and arid regions, while Hobbi et al. (2021) in their study found 

the heaviest tails for Climate type E (Polar); our results agree with both studies as most of the ET zone 

in India comprises hilly areas. However, for more accurate insights into the spatial variation of tails and 

their relationship with elevation in specific regions detailed localized studies and analysis is important.  

5.9 Summary and Conclusions 

The present study proposes a comprehensive Decision Support System (DSS) for the 

characterization of tails of probability distributions of daily precipitation data over India. The DSS 

proposes an algorithmic way of utilizing advanced graphical methods in a particular order to ensure the 

efficient identification of classes of distributions based on tail behavior. This study shows that the 

proposed DSS can characterize the tails of probability distributions into various classes by alleviating a 

number of the limitations associated with the conventional DSS. The proposed DSS is successful in 

discerning the tails of probability distributions belonging to the hyper-exponential family, exponential 

family, subexponential family, and Lognormal distribution. The following conclusions are drawn from 

this study. 

(i) The robustness of the proposed DSS over the conventional approaches is established through 

a simulation study where datasets having various sample sizes from representative probability 

distributions belonging to various classes (e.g., D, C\B, B\A, E, etc.) and limiting case LN 

are generated, and reassigning them successfully into their respective classes. 

(ii) The proposed DSS utilizes the ability of Concentration profile and Concentration adjusted 

expected shortfall to discriminate between Pareto distribution (i.e., class B\A) and class D 
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(which include Lognormal distribution as well as distributions from classes C\B and D\C). 

Further, the DSS assists distinction between the distributions from class D through the use of 

a log-log plot, MEF plot, Zenga plot, MS plot, and DMR plot in addition to CP and CAES in 

an appropriate order. 

(iii) Based on the proposed DSS, the daily precipitation data over India was successfully 

characterized into 4categories, namely class C\B, D\C, E, and limiting case LN. Results 

indicate that out of 4801 grids, 63 (1.31%), 3671 (76.46%), 106 (2.21%), and 961 (20.01%)  

grids belong to classes C\B, D\C, E, and LN distribution, respectively. Overall, around 98% 

of the daily precipitation records are found to be exhibiting subexponential tails. The spatial 

information on these classes of distributions over India could be used as a priori information 

for regional studies to identify suitable probability distributions.  

(iv) Heavy tails belonging to the lognormal class are found to be extending all over India, with 

maximum presence in regions like Jammu and Kashmir, Saurashtra Kutch and Diu, Gujarat, 

West and East Rajasthan, Gangetic West Bengal, Punjab, Bihar, West Bengal, Uttaranchal, 

Jharkhand, Orrisa, and Coastal Andhra Pradesh. While the heaviest tails belonging to Class 

C\B are found at very few locations in Jammu and Kashmir, Himachal, and Rajasthan. 

 In summary, the correct identification of the distribution families describing the precipitation 

tails is necessary for the reliable estimation of quantiles corresponding to different return periods. An 

inappropriate model selection due to selecting a wrong class of distributions might lead to the 

underestimation or overestimation of the quantile estimates, thereby increasing the socio-economic risk. 

The proposed DSS can be considered as an effective and easy-to-use tool for exploratory analysis and 

identifying the classes of distributions that provide the best fit to a dataset, especially the right tail. 

However, It may be noted that the application of the present DSS can be a little strenuous when a large 

dataset is considered due to the visual assessments required for categorization, especially between Class 

C and Class D\C. There is a need for an algorithmic mechanism to discriminate between the distributions 

belonging to Classes C\B and D\C by developing the procedure for examining the linearity of the log-

log plots based on estimated correlation coefficient values, similar to the Mean Excess Function (MEF) 

proposed by Nerantzaki and Papalexiou (2019). To achieve this, a simulation study needs to be 

performed involving the construction of the confidence interval representative of all the distributions 

from Class C.  This can automate the analysis. Further research related to the development of such 

algorithmic mechanisms is underway. These advancements are expected to address the limitations of 

the present DSS and provide more automated and efficient methods for model selection and decision-

making for practicing engineers. 

Overall, even in its current form, the decision support system is believed to be valuable in assisting 

engineers with appropriate model selection and making informed decisions.  
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CHAPTER 6 

ASSESSMENT OF EMBEDDED RISK IN PRECIPITATION TAILS OVER INDIA 

THROUGH CONCENTRATION PROFILES: A MULTI-MODEL ASSESSMENT 

FROM CMIP6 EXPERIMENTS 

 

6.1  Overview 

In a country like India, changingg climate has led to increased occurrences of extreme 

precipitation events causing extensive damage to humans and nature. Understanding of the altered 

frequencies and magnitude can be done based on the assessment of the tails of the probability 

distributions that can represent them both. Researchers have explored these variations by examining the 

tail heaviness of daily precipitation datasets using different scalar and graphical methods. However, 

little is known about the actual risk associated with these extremes, especially among different climate 

zones of India. Tail risk (low-probability extreme events) technically refers to the risk associated with 

both the left and right tails. People working in the field of finance and economy are mostly concerned 

with losses (the left tail), while hydrologists or climatologists are generally concerned with extremes 

belonging to the right tail. The utilization of unconventional tools based on the concentration measures 

of distributions to quantify the tail risk of the precipitation datasets has not been done till now. Hence, 

this chapter shows the utility of a simple and novel risk assessment technique known as a Concentration 

Map (CM) that provides a single concise value after analyzing the riskiness of the time series. 

Concentration Map uses inferences from the Concentration Profile (CP), which is a novel way of 

characterizing and estimating the tail variability, based on the concentration measures (like the Gini 

Index).  

This study presents a comprehensive analysis in which we quantify the tail risk associated with 

the daily precipitation extremes for the past and future across India. Risk embedded into the tails was 

evaluated for around 4801 gridded station-based datasets for the historical time period, while the 

simulations from 16 General Circulation Models (GCMs) participating in the Coupled Model 

Intercomparison Project Phase 6 (CMIP6) under four Shared Socioeconomic Pathway (SSPs), namely, 

SSP126, SSP245, SSP370, and SSP585 are considered for future at those same stations. It is noteworthy 

that there remains a dearth of attempts to assess and identify tail risks using innovative risk assessment 

methodologies for daily precipitation datasets across India, especially considering all four SSPs, namely 

SSP126, SSP245, SSP370, and SSP585 under the new CMIP6 scenarios. 
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Furthermore, the analysis is extended to conduct a regional scale investigation on how the risk 

varies according to different meteorological subdivisions as well as for Indian Climate zones. 

Explorations related to the tail risk variation within different climate zone is done to identify the climate 

type more prone to extremes. The most widely used scheme to define the climate zone is the Köppen-

Geiger (KG) classification, which groups climate across the globe into several subtypes using multiple 

variables based on precipitation and temperature. Studies that apply the KG classification serve multiple 

purposes, like illustrating the geographical spread of climate types (or zones) and examining the 

characteristics and changes occurring within specific climate types in relation to extreme events. While 

numerous studies focusing on assessing extreme events and their tail behavior across various climate 

zones are present, there is a notable lack of discussion regarding the associated risks linked with these 

extreme events.  

6.2 Theoretical Background on Concentration Map (CM)  

The concept of the Concentration Map was proposed based on the Concentration Profile, which 

is itself based on the utilization of concentration measures. The CP is a quick heuristic that is helpful in 

not only describing the variability within the parametric family of distributions but also in identifying 

the distribution that provides the best fit to the dataset, especially to its right tail (large extreme events). 

Concentration Maps overcome limitations associated with traditional risk management measures 

(Wietzke et al., 2020). The major advantage associated with the CM is that it maps the major risk factors 

contained in CP into an easily readable plot, which can further be converted into a risk score. It is an 

easy and scale-free approach that can be used to compare the distribution or datasets with different scales 

and magnitudes in terms of their tail risk (Fontanari, 2019). A brief description of the Concentration 

Profile is already provided in section 5.4.2 in the chapter while the details of the Concentration Maps is 

provided below. 

6.2.1 Concentration Map (CM)  

The CM, initially introduced by Fontanari et al. (2018a), is a graphical way of assessing the risk 

embedded in a distribution by making use of the CP of a particular distribution. It is basically a two-

dimensional map formed by extracting the relevant information from the Concentration Profile and 

combining it with utility or risk theory (Edwards, 1992). CM identifies the main risk factors contained 

in the CP and maps them into an easily interpretable plot using a risk/utility function approach. Every 

CP has a concise risk score attached to it, which eases their comparison in terms of their tail or global 

risk.  

Given a CP  
[0,1)

( )G





, the main risk drives 
1r and 

2r  i.e., the quantities that summarize most 

of the risk, are identified. The risk driver 
1r  is the starting value of the CP, i.e., 1 (0)r G= and the risk 

driver 2r  is given by the difference between the risk driver 
1r and ( )G  , with 1 →  (i.e., 
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2
1

lim | (0) ( ) |r G G



→

= − ). The rationale behind each of the risk drivers are that in case of 
1r , a CP with 

higher G(0) among different CPs with similar behavior is considered to be riskier (or fatter/heavier) and 

for risk driver 
2r , smaller the gap between the initial and final values of the CP, larger the mass present 

in the tail, and the higher the probability of the extreme suggesting presence of a heavy tail. Once the 

risk drivers are identified from the CP, they are combined using a Cobb-Douglas risk function (Cobb 

and Douglas, 1928; Barucci and Fontana, 2003; Hassani, 2012) which provides a single concise measure 

of embedded risk, as given by Equation (6.1). 

1 2 1 2( , ) (1 )a bR r r r r= − with ,a b R+                    (6.1) 

The above-mentioned risk function provides the risk values between 0 to 1 which not only 

summarizes the riskiness of a particular CP but also helps us in ranking different CPs based on their 

embedded risk. Cobb-Douglas risk function is a preferred choice for risk assessment as it allows us to 

(1) assess the relevant risk driver based on the value of both parameters, (2) represent output elasticities 

based on the estimated coefficients, (3) derive interpretable iso-risk curves and (4) substitute the risk 

driver with ease (Theriault and Serra, 2014; Fontanari et al. 2018a; Tong et al., 2019).  

The approach of CM is a scale-free approach; hence, the comparison of multiple and different 

datasets having different scales and magnitudes is achieved with ease. However, the parameter values 

used to derive the CMs hold significant importance when assessing information about embedded risk 

for a particular distribution. Particularly, higher a value shows the relevance of the first risk driver which 

represents the global risk as it accounts for the entire distribution. While the higher value of the 

parameter b shows the relevance of the second risk driver which represents tails. The values of these 

parameters can be based on historical data or expert judgments. To have a better understanding about 

the role of the parameter values a simulation study is conducted and presented in the next section. 

6.3 Simulation study to understand the nature and variation of risk based on the parameter 

values 

To have a better understanding of the tail risk embedded in different distributions, we performed 

a simulation experiment where we generated datasets of various representative distributions from 

different classes of distribution (El Adlouni et al., 2008; Gupta and Chavan, 2023) and estimated their 

risk values based on Cobb-Douglas risk function for different combinations of a and b values. The 

datasets were generated for distributions like Weibull (Class D\C), Lognormal (limiting case between C 

and D), and Pareto (Class B). To have a better understanding of the tail risk associated with datasets of 

different distributions, we tried to keep the global risk value nearly equal. In order to do so the datasets 

were generated in such a manner that their parameter sets have similar or somewhat equal G(0) or 
1r . 

All datasets generated from different distributions were grouped into eight groups based on 
1r . Details 
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related to the distribution, their parameter, and estimated risk function values for each group derived 

from the CM for a different combination of parameter a and b values are presented in Table 6.1. Figure 

6.1 shows the concentration Maps generated based on the Cobb-Douglas risk function for four different 

combinations of parameter values a and b (for brevity only four CMs are shown). It is important to note 

that any color on the map that is equal to the one placed on the exponential cell or on the Pareto segment 

will share the same risk, due to the isorisk property of the Cobb-Douglas risk function (Edwards, 2013). 

This is an important feature of the Concentration Maps as a risk characterization tool. 

Now, we know that for higher values of a, the relevance is of the first risk driver i.e., 
1r . Since 

1r

is the same for all the distributions belonging to one group, their global risk value is also similar at high 

a. For example at a=0.9 and b=0.1, all three distributions in different groups have similar risks. 

However, for higher b the relevance is of the second risk driver 
2r  which represents tails and their risk. 

For example, in group 1 (see Table 6.1), as the value of parameter b increases risk is always higher for 

Pareto followed by Lognormal and Weibull. This finding aligns with the concept of nested classes of 

distribution, indicating that the distribution of Class B has heavier tails than that of Class C distributions, 

which in turn has heavier tails than LN. Furthermore, LN distributions have heavier tails than Class D 

and the distribution of Class D has heavier tails than Class E (El Adlouni et al., 2008). Similar 

observations are seen for other groups too. Hence, the simulation study findings collectively indicate 

that to highlight tail risk, the parameter selection should prioritize giving greater weight to parameter b. 

Consequently, guided by both the simulation results and expert recommendations, we will adopt the 

parameter values a=0.3 and b=0.7 for this study. This specific parameter combination has been deemed 

appropriate for evaluating tail risk across various datasets, and it will be useful in accurately assessing 

tail risk in daily precipitation datasets. 
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Table 6.1  Generated distribution details and their estimated risk function values from CM for various combinations of parameters a and b  

Group 

No. 

S. 

No. 

Distribution 

Name 

Parameter 

Values  

( ),   

Risk 

driver 

1r  

Risk 

driver 

2r  

Risk Function Values 

a=0.1, 

b=0.9 

a=0.2, 

b=0.8 

a=0.3, 

b=0.7 

a=0.4, 

b=0.6 

a=0.5, 

b=0.5 

a=0.6, 

b=0.4 

a=0.7, 

b=0.3 

a=0.8, 

b=0.2 

a=0.9, 

b=0.1 

I 1 Weibull  (3, 10) 0.21 0.17 0.72 0.63 0.55 0.47 0.41 0.36 0.31 0.27 0.24 

2 Lognormal (0.37,10) 0.21 0.14 0.75 0.65 0.56 0.49 0.42 0.37 0.32 0.28 0.24 

3 Pareto (2.9, 10) 0.21 0.01 0.85 0.73 0.62 0.53 0.46 0.39 0.33 0.29 0.24 

II 4 Weibull  (2.1, 10) 0.28 0.24 0.69 0.62 0.57 0.51 0.46 0.42 0.38 0.35 0.31 

5 Lognormal (0.5, 10) 0.28 0.20 0.72 0.65 0.58 0.53 0.47 0.43 0.38 0.35 0.31 

6 Pareto (2.5, 10) 0.28 0.03 0.86 0.76 0.67 0.59 0.52 0.46 0.41 0.36 0.32 

III 7 Weibull  (1.8, 10) 0.32 0.27 0.67 0.62 0.57 0.53 0.48 0.45 0.41 0.38 0.35 

8 Lognormal (0.58, 10) 0.32 0.20 0.73 0.66 0.61 0.55 0.51 0.46 0.42 0.38 0.35 

9 Pareto (2,10) 0.32 0.06 0.85 0.76 0.68 0.61 0.55 0.50 0.44 0.40 0.36 

IV 10 Weibull  (1.13, 10) 0.46 0.38 0.60 0.59 0.57 0.55 0.53 0.52 0.50 0.49 0.47 

11 Lognormal (0.87, 10) 0.46 0.28 0.68 0.65 0.63 0.60 0.57 0.55 0.52 0.50 0.48 

12 Pareto (1.4,10) 0.46 0.07 0.87 0.81 0.75 0.70 0.65 0.61 0.57 0.53 0.49 

V 13 Weibull  (0.74,10) 0.61 0.48 0.53 0.54 0.55 0.56 0.57 0.58 0.59 0.60 0.61 

14 Lognormal (1.2, 10) 0.61 0.35 0.65 0.64 0.64 0.64 0.63 0.63 0.62 0.62 0.61 

15 Pareto (1.25,10) 0.61 0.13 0.84 0.81 0.78 0.76 0.73 0.70 0.68 0.65 0.63 

VI 16 Weibull  (0.28, 10) 0.92 0.57 0.47 0.50 0.54 0.58 0.63 0.68 0.73 0.79 0.85 

17 Lognormal (2.55, 10) 0.92 0.36 0.67 0.69 0.72 0.74 0.77 0.80 0.83 0.86 0.89 

18 Pareto (0.95,10) 0.92 0.06 0.92 0.93 0.93 0.93 0.93 0.94 0.92 0.92 0.91 

VII 19 Weibull  (0.2, 10) 0.97 0.42 0.61 0.64 0.67 0.71 0.75 0.79 0.83 0.87 0.92 

20 Lognormal (3.5, 10) 0.97 0.30 0.72 0.75 0.77 0.80 0.83 0.85 0.88 0.91 0.94 

21 Pareto (0.7,10) 0.97 0.10 0.90 0.91 0.92 0.92 0.93 0.94 0.95 0.95 0.96 

• Here and  are the shape and the scale parameters, respectively  
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(i) (ii) 

  

(iii) (iv) 

  

Figure 6.1  Concentration Maps with underlying Cobb-Douglas risk functions for different 

combinations of parameters a and b like (i) a=0.3, b=0.7, (ii) a=0.5, b=0.5, (iii) a=0.7, b=0.3 and (iv) 

a=0.9, b=0.1. The different points represent theoretical Concentration Profiles of useful distributions: 

Pareto, Lognormal, and Weibull. (Refer to Table 1 for information related to the type of distribution and 

its parameter represented in these CMs) 

6.4 Study area and Data used 

6.4.1   Observed Rainfall Data 

The daily gridded observed rainfall data is obtained from the India Meteorological Department 

(IMD) for the period 1901-2020 (Pai et al., 2014). This data set of 0.25° latitude × 0.25° longitude 

resolution was developed using observed records of daily rainfall data from 6,995 rain-gauge stations 

across India. Vinnarasi and Dhanya, 2016; Mishra, et al., 2020; Gupta and Chavan, 2021; Shah and 
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Sateesh, 2022; Konda and Vissa, 2022. The entire range of data is split into two parts, viz. Pre-1970 

period (1901-1970) and Post-1970 (1971-2018) to capture the changes (if any) in precipitation extremes. 

The year 1970 is chosen as the transition year in several earlier studies which detected some abrupt, 

substantial, and persistent changes or “shifts” in the state of natural climatic systems around the mid-to 

late-1970s in different parts of the globe, as well as in India (Miller et al., 1994; Baines and Folland, 

2007; Sabeerali et al., 2012; Aadhar and Mishra, 2020; Sarkar and Maity, 2021; Gupta and Chavan, 

2021, Gupta and Chavan, 2022). This phenomenon is generally referred to as the global shift in climate 

regime in the 1970s in literature, and its impact is manifested in several hydroclimatic variables, such 

as temperature, air pressure, wind field, precipitation, etc. Hence, a comparative analysis between the 

pre-and post-1970 period by choosing the year 1970 as the change year is expected to capture the 

potential impact of this ‘global shift in climate regime in 1970s’ on precipitation extremes over India. 

6.4.2    Simulated Future Precipitation Data 

For future analysis, this study considered simulated daily precipitation datasets (2020-2100) from 

four Shared Socio-economic Pathways (SSPs) - SSP126, SSP245, SSP370, and SSP585 - obtained from 

16 GCMs participating in the Coupled Model Intercomparison Project-6 (CMIP6) (URL: https://esgf-

node.llnl.gov/search/cmip6/accessed in January 2023) (see Table 6.2) (O'Neill et al., 2016; Eyring et al., 

2016). The four distinct SSP scenarios of CMIP6 represent various levels of global development and 

greenhouse gas emissions. The SSP126 scenario envisions a sustainable world with strong climate 

policies and low population growth, while SSP245 portrays a moderate scenario with medium 

population growth and average climate policies (also termed a “middle of the road” scenario). SSP370 

describes a fragmented world with high inequality and low economic growth, whereas SSP585 

represents a world with high economic growth, high energy demand, rapid technological advances, and 

high greenhouse gas emissions. Each of these scenarios incorporates a variety of assumptions about 

future socio-economic conditions, such as population growth, scientific and technological 

advancements, consumptive energy uses, and land-use change. The SSP scenarios serve as a framework 

for understanding a range of possible climate futures based on different socio-economic pathways. 

Herein, we have selected 16 GCMs available under r1i1p1f1 initial conditions and five scenarios: 

historical, SSP126, SSP245, SSP370, and SSP585. GCM Models chosen in this study are found to 

display promising capabilities in making reliable assessments of the impacts of climate change on 

precipitation in Indian regions (Aadhar and Mishra, 2020; Gupta et al., 2020; Rajbanshi and Das, 2021; 

Chowdhuri et al., 2021; Prajeesh et al., 2022; Saha and Sateesh, 2022; Bhattacharya et al., 2022; Deepthi 

and Sivakumar, 2022; Vinod and Agilan, 2022; Konda and Vissa, 2023; Reddy and Saravanan, 2023).  

The GCM datasets have considerable biases present in them due to model structural uncertainties, 

incomplete understanding of climate processes, uncertainties in external forcings, data assimilation 

processes, and spatial and temporal resolution (Mishra et al., 2014; Ghosh and Mujumdar, 2009; Gupta 

and Chavan, 2022). Simulated precipitation datasets are needed at suitable resolution for hydrological 

https://esgf-node.llnl.gov/search/cmip6/
https://esgf-node.llnl.gov/search/cmip6/
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analysis. Several methods are available to bias correct and downscale the climate variables like linear 

scaling, Quantile-Quantile mapping, Empirical Quantile Mapping, Semi-Parametric quantile mapping, 

Change factor method, Hybrid delta method and copula-based RMPH technique (Piani et al., 2010; 

Anandhi et al., 2011; Choudhary and Dimri, 2019; Mishra et al., 2020; Suman et al., 2021; Jaiswal et 

al., 2022; Oruc, 2022; Vishnupriya and Agilan, 2022; Rajulapati and Papalexiou, 2023). In this study, 

we considered the multiplicative multiple change factor method, a standard downscaling technique for 

simulating precipitation to match the resolution of the observed dataset (i.e., 0.25°× 0.25°), for 

facilitating the multimodel analysis. The historical simulations are obtained for the base-period (1984-

2014) and future scenarios for all SSPs are obtained with respect  to this. The SSP scenarios serve as a 

framework for understanding a range of possible climate futures based on different socio-economic 

pathways. Thus, by comparing changes between these different scenarios the possible impact of higher 

anthropogenic activity and greenhouse gas emissions can be assessed.  

6.4.3 Meteorological Subdivisions of India  

The climatic variables tend to vary considerably over India due to its vast spatial extents. To 

understand the regional climatic features, the study at the meteorological subdivision level might be 

useful. Hence, the meteorological subdivisions are generally used for research and monitoring purposes. 

The India Meteorological Department (IMD) has divided the country into 36 meteorological 

subdivisions (or coherent regions) for various applications (Guhathakurta and Rajeevan, 2008). These 

subdivisions are primarily meant for generating weather forecasts for political regions like states. Out 

of 36, 34 conterminous subdivisions were considered in the present study (Gupta and Chavan, 2022). 

(See Figure 3.1 in Chapter 3) 

6.4.4 Köppen-Geiger climate classification 

The Köppen-Geiger (KG) climate classification is a widely used technique that divides the 

climate across the globe into multiple categories based on temperature and precipitation patterns. The 

five major categories of climate types include A (Tropical), B (Dry), C (Temperate), D (Snow), and E 

(Polar), which can further be categorized into different subtypes based on precipitation and temperature 

patterns within each group, denoted by a small letter at the second and third place, respectively. India 

has a diverse range of climatic subtypes according to the Köppen system (see Figure 6.2). The Köppen-

Geiger climate classification maps used in this study were prepared using data from the Climatic 

Research Unit (CRU) at the University of East Anglia and the Global Precipitation Climatology Centre 

(GPCC) at the German Weather Service and consider variables such as mean precipitation, temperature, 

and vegetation (Rubel and Kottek, 2010). India covers four of the five main climate classes: A, B, C, 

and E.  
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Table 6.2   Basic details of CMIP6 GCMs used in this study 

S. No.  Model Name  Source Institute  Actual resolution 

(latitude × longitude) 

Resolution after regridding 

(latitude × longitude) 

1 ACCESS-CM2 Commonwealth Scientific and  Industrial Research 

Organization, Australia 

1.25ᵒ × 1.875ᵒ 0.25ᵒ × 0.25ᵒ 

2 ACCESS-ESM1-5 Commonwealth Scientific and Industrial Research 

Organization, Australia 

1.25ᵒ × 1.875ᵒ 0.25ᵒ × 0.25ᵒ 

3 BCC-CSM2-MR Beijing Climate Center, China 1.11ᵒ × 1.125ᵒ 0.25ᵒ × 0.25ᵒ 

4 CESM2-WACCM National Center for Atmospheric Research, USA 0.9424ᵒ × 1.25ᵒ 0.25ᵒ × 0.25ᵒ 

5 CMCC-CM2-SR5 Fondazione Centro Euro-Mediterraneo sui 

CambiamentiClimatici, Italy 

0.9424ᵒ × 1.25ᵒ 0.25ᵒ × 0.25ᵒ 

6 CMCC-ESM2 Fondazione Centro Euro-Mediterraneo sui 

CambiamentiClimatici, Italy 

1.3° × 1° 0.25ᵒ × 0.25ᵒ 

7 EC-Earth3 European Centre for Medium-Range Weather Forecasts 0.70ᵒ × 0.70ᵒ 0.25ᵒ × 0.25ᵒ 

8 EC-Earth3-Veg European Centre for Medium-Range Weather Forecasts 0.70ᵒ × 0.70ᵒ 0.25ᵒ × 0.25ᵒ 

9 GFDL-ESM4 NOAA Geophysical Fluid Dynamics Laboratory, USA 1◦×1.3◦ 0.25ᵒ × 0.25ᵒ 

10 INM-CM4-8 Institute for Numerical Mathematics, Russian Academy of 

Science, Russia 

1.5ᵒ × 2.0ᵒ 0.25ᵒ × 0.25ᵒ 

11 INM-CM5-0 Institute for Numerical Mathematics, Russian Academy of 

Science, Russia 

1.5ᵒ × 2.0ᵒ 0.25ᵒ × 0.25ᵒ 

12 IITM Indian Institute of Tropical Meteorology Pune, India 1.9048ᵒ × 1.8750ᵒ 0.25ᵒ × 0.25ᵒ 

13 IPSL-CM6A-LR Institut Pierre Simon Laplace, France 1.2676ᵒ × 2.5ᵒ 0.25ᵒ × 0.25ᵒ 

14 MIROC6 JAMSTEC, AORI, NIES, and R-CCS, Japan 1.41◦ × 1.41◦ 0.25ᵒ × 0.25ᵒ 

15 MR1-ESM2-0 Meteorological Research Institute, Japan 1.11◦ × ~1.125◦ 0.25ᵒ × 0.25ᵒ 

16 TaiESM1 Research Center for Environmental Changes, Academia Sinica, 

Taiwan 

1ᵒ× 1.3ᵒ 0.25ᵒ × 0.25ᵒ 
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Detailed information about the type of conditions prevailing within each climate zone and the 

meteorological regions included within each climate zone is mentioned in Table 6.3. Of the major 

climate groups, a large proportion (33.03%) of stations were assigned to major climate type A, followed 

by climate type C (29.88%), B (27.76%), and least by climate type E (9.3%). Nine sub-climate zones, 

as defined using the Köppen-Geiger method, are used to subdivide the country (refer to Figure 6.2). The 

use of climate zones along with that of the meteorological region is done while conforming to the fact 

that weather and climate do not respect political boundaries, and climate zones might present a better 

understanding of the changes happening in the country (Gunwani and Mohan, 2017; Yaduvanshi et al., 

2021). 

 

Figure 6.2   Maps showing the Köppen-Geiger climate zones of India (Rubel and Kottek, 2010)  
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Table 6.3  Detail related to the climate zones prevailing over India based on the Köppen-Geiger climate 

classification  

Climate Type 

 

Climate 

Zones 

 

Regions 

Tropical Aw Tropical wet savanna dry winter region includes Southern and Southern 

Eastern states of India, Orissa, Chattisgarh, Jharkhand, Tamil Nadu, and 

some parts of Andhra Pradesh, Telangana 

Am Tropical monsoonal region, including Western Coastal Area 

As Tropical dry savanna includes Parts of Madhya Pradesh and 

Maharashtra. 

Arid BSh Semi-Arid regions with hot summers include Parts of Rajasthan, 

Gujarat, Punjab, Haryana, Delhi, Maharashtra, Karnataka, and other 

south Indian states 

BWh Arid regions with extremely hot summers include Western part of 

Rajasthan and Saurashtra, Kutch and Diu 

Temperate Cwa Temperate dry winter and hot summer includes NorthEastern and 

Eastern part of India 

Cwb Temperate dry winter and warm summer includes Eastern Part of North 

East Indian states and some part of Himachal and Uttarakhand 

Csa Temperate dry summer and hot summer includes Part of Uttar Pradesh 

and Madhya Pradesh 

Polar ET Polar tundra snowfall in winter with cool summer includes the 

Mountainous region of Jammu& Kashmir, Ladhak, Himachal Pradesh, 

and Uttarakhand 

 

6.5  Results and Discussion 

6.5.1   Observational changes in the tail risk of the daily gridded precipitation  

Using the approach of CM, this study evaluated and analyzed the risk dispersed in the tail of the 

probability distribution of the gridded precipitation dataset over India for two observational periods i.e., 

pre-1970s (1901-1969) and post-1970 period, also assessed the changes happening over time. Following 

the methodology discussed in section 6.2.1, initially, a CP is obtained for nearly 4801 gridded datasets 

and relevant information related to the risk drivers (
1r and 

2r ) is extracted from each profile. Following 

the methodology, a concise risk score is calculated for each grid based on the Cobb-Douglas risk 

function for parameter values a=0.3 and b=0.7 for pre as well as post-1970s. Figure 6.3 shows the 

Concentration Map based on the Cobb-Douglas risk function for the daily precipitation dataset for the 

pre-post 1970s. Risk function values usually lie between 0 and 1. Higher the risk function value, the 

riskier the CP. Since the approach of CM is a scale-free, non-dimensional approach, it becomes easy to 

study the spatial variation of the risk associated with datasets and compare them over geographically 

diverse environments like the Indian mainland.  
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(i)  Pre-1970s (ii) Post-1970s 

 

Figure 6.3  Risk evaluation of the daily precipitation datasets sets over India. Concentration Maps are 

shown for (i) Pre-1970s, and (ii) Post-1970s time periods. Cobb-Douglas parameters considered are a=0.3, 

b=0.7 

Figure 6.4 shows the spatial variation of the tail risk across the Indian mainland for daily gridded 

precipitation data for the pre-post-1970s period (observational). The figure also depicts the spatial 

variation of changes in tail risk after the transition in 1970, along with the nature of the risk type (i.e., 

increasing or decreasing) based on the changes (see Figure 6.4 (iii), (iv)). The estimates of risk function 

(R) for all grids range from 0.40 to 0.75 for both time periods. In the Pre-1970s period, higher values of 

tail risk were generally observed in the northern states like Jammu and Kashmir, Himachal, Uttrakhand, 

and Rajasthan along with states like Orissa, Jharkhand, West Bengal, Bihar, and Andhra Pradesh lying in 

the south-eastern part of the country. For the post-1970 period, nearly 57.57% (i.e., 2764 out of 4801) 

grids over the Indian mainland showed an increase in the risk function values, indicating a rise in the tail 

risk, which corresponds to an increase in the frequency of occurrences of precipitation extremes. Barring 

some pockets in north India (particularly in the Ladhak region, Himachal, and Punjab), the north-western 

region (Rajasthan, Gujarat), and the north-eastern region of India (Assam, Meghalaya, Tripura), the tail 

risk is found to increase in most of the places across the Indian mainland, especially in the Peninsular 

region, south-eastern coastal area (e.g., Andhra Pradesh, Orissa) and Central part of India (e.g., parts of 

Madhya Pradesh). Goswami et al. (2006) also noticed an increase in the magnitude and frequency of 

extreme rainfall events significantly over central India during the period 1951–2000.  
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(i) (ii) 

  

(iii) (iv) 

Figure 6.4  Spatial variation of (i) risk value for pre-1970, (ii) risk value for post-1970s, (iii) relative 

changes in risk in post-1970s wrt pre-1970s (%), and (iv) nature of the risk type based on the changes 

over time 

Also, Dash and Maity (2019) noticed increasing trends in indices like maximum 1-day 

precipitation (RX1day), very wet day (R95p), and extremely wet day (R99p) precipitation in the 

southern part of India (peninsular, eastern, and west central), whereas patches of decreasing trends are 

located in northern India for the duration of post-1970s (i.e., 1976-2010). Sarkar and Maity (2020) also 

showed substantially higher estimates of Probable Maximum Precipitation (PMP) (that lies in the tail 

part) post-1970 compared to pre-1970 in the area similar to the one mentioned in this study, as a possible 

consequence of climate change and global climatic shift in the 1970s. Past findings are consistent with 

the pattern of tail risk noticed during the post-1970 in this study.  
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On the whole, the findings exhibit a notable dispersion in terms of change (i.e., increase or 

decrease); Yet overall a general pattern of increasing tail risk is observed across the Indian mainland 

during the post-1970 period. To further validate this finding over the entire Indian landmass, a 

Kolmogorov–Smirnov (KS) test (Massey, 1951; Marsaglia et al., 2003; Gupta and Chavan, 2022) was 

used to compare the distribution of tail risk during the pre-1970s period with its distribution during the 

post-1970s period (over nearly 4801 grid) at a 5% significance level. Figure 6.5 shows the cumulative 

distribution functions (CDFs) of risk function values for the two time periods i.e., pre-1970 (1901-1969) 

and post-1970 (1970-2019). The KS statistic value of 0.1056 (much higher than the critical value) 

suggests a considerable change in the distribution of the tail risk in the post-1970s with respect to the 

pre-1970s period.  

 

Figure 6.5  Plots showing the CDF of the risk function values over the Indian mainland estimated from 

Cobb-Douglas risk function corresponding to pre and post-1970s time period 

Considerable changes in the tail risk show that the frequency and magnitudes of the extremes 

have changed over India in the post-1970s period which can be very well attributed to climate shifts that 

happened around the mid-to-late 1970s (Sarkar and Maity, 2020).  

6.5.2 Future-Projected changes in tail risk of the daily gridded precipitation: Multi-Model 

Assessment 

Risk function values based on the Cobb-Douglas risk function are evaluated for the downscaled 

future projections of the daily gridded precipitation datasets from 2020 to 2100 for all 16 CMIP6-GCMs. 

Further, the estimates of risk function were averaged at each grid to form a multimodel ensemble mean. 

Ensemble of the models was preferred over an individual model as it ensures a robust and more 
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homogeneous pattern of changes in climate state by for fending errors and internal variability of a single 

model (Yaduvanshi et al., 2021; Sarkar and Maity, 2022; Gupta and Chavan, 2022). These multimodel 

ensemble models have the ability to depict a more realistic pattern of future tail risk and can yield a 

more consistent pattern of changes happening over time in the future due to climate change across the 

Indian mainland. The results of the spatial distribution of the ensembled tail risk are shown in Figures 

6.6, 6.7, 6.8, and 6.9 for four scenarios namely SSP126, SSP245, SSP370, and SSP585, respectively. 

The changes in the future tail risk are assessed with respect to the historical period of post-1970s (1970–

2019). Visual interpretation of all the figures reveals that the spatial distribution of the multimodel 

ensemble mean of tail risk values in the future differs notably from the historical time period for all 

scenarios. Table 6.4 presents the summary of the number of grids over India showing either an increase 

or decrease in Relative risk (in %) for various climate change scenarios. 

Table 6.4   Summary of Relative risk difference ranges and anticipated grid counts for various ranges. 

(The relative risk difference ranges are in Percentages) 

 Relative risk difference 

Changes in future Decrease Increase 

Climate Scenarios  -30 to -10 -10 to 0 Total grids 0 to 10 10 to 30 Total grid 

SSP126 5 2060 2065 2736 0 2736 

SSP245 2 843 845 3956 0 3956 

SSP370 1 514 515 4263 23 4286 

SSP585 1 244 245 4338 218 4556 

 It can be seen that for SSP126 (see figure 6.6), barring a few grids in the western Deccan plateau, 

the northern plain, and the eastern coastal plain almost all other grids i.e., nearly 56.99% (2736 grids 

out of 4801) showed an increase in the risk value in the future. The overall change presented in the form 

of relative risk difference (%) ranges from -10% decrease to a 5% increase in the future. For scenario, 

SSP245, the spatial variation of tail risk suggests few staggered grids with decreasing tail risk along the 

western coastal areas of Karnataka, Kerala, and in the north-eastern states of Tripura, Nagaland, 

Meghalaya, and Assam. The number of grids showing an increase in future rise to nearly 82.40% (3956 

grids out of 4801) as compared to the historical period for this scenario (see Figure 6.7). Figure 6.8 

shows the variation of the tail risk under the scenario of SSP370, where an increase in the number of 

grids showing higher tail risk is evident, especially in the Northern, Northwestern, Central, and 

Southeastern parts (eastern coast) of the country. Nearly 89.27% (4286 out of 4801) grids showed an 

increase in tail risk for the future time period, out of which nearly 740 grids showed a change of more 

than 5% or up to 12% in tail risk values. Further, we noticed that the most pronounced variations are 

observed undoubtedly in the SSP585 which is the worst-case scenario in terms of changing climate. 

Nearly 94.90% (4556 out of 4801) of grids all over the country showed an increase in the risk value. A 
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relative change in the tail risk value of up to 18% can be seen especially in the northern, western, and 

central parts of the country. The finding matches well with that of Sarkar and Maity (2022), who also 

noticed an overall increasing pattern of precipitation extremes based on the CMIP6 model over India. 

They observed a two-fold and three-fold increase in the frequency of 99th percentile daily rainfall 

extremes (i.e., tail part) for SSP245 and SSP585 than the historical period (1951-2020), respectively. 

For future time period, the western and northern parts of India show a higher extent of increase in the 

tail risk than the eastern part of the country. Sarkar and Maity (2020) also noticed substantial evidence 

regarding changes in PMP estimates within west-central India and parts of north-west India, where they 

found an overall increase in PMP estimates, as well as an overall decrease in PMP in eastern and 

southern parts of India for the future time period with respect to post-1970s. These changes in tail 

behavior over different regions of India can be attributed to the overall increased air temperature 

throughout India, which can augment the possibility of an increased moisture-holding capacity of the 

atmospheric column following the Clausius-Clapeyron relationship (Trenberth 2011), resulting in more 

extreme precipitation events over the northern and western parts of India. Moreover, a recent study by 

Singh et al. (2022) has clearly identified the increased surface pressure over the Tibetan plateau as a key 

factor contributing to changes in the precipitation patterns over north-west India. 
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(i) (ii) 

 

  

(iii) (iv) 

Figure 6.6  Spatial variation of (i) risk value for post-1970s, (ii) risk value from future-projected 

ensemble models for SSP126, (iii) percentage change (%) in future risk compared to post-1970s period, 

and (iv) characterization of risk type based on changes in future, across the Indian mainland 
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(i) (ii) 

  

(iii) (iv) 

Figure 6.7  Spatial variation of (i) risk value for post-1970s, (ii) risk value from future-projected 

ensemble models for SSP245, (iii) percentage change (%) in future risk compared to post-1970s period, 

and (iv) nature of risk type based on changes in future, across the Indian mainland. 
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(i) (ii) 

  

(iii) (iv) 

Figure 6.8  Spatial variation of (i) risk value for post-1970s, (ii) risk value from future-projected 

ensemble models for SSP370, (iii) percentage change (%) in future risk compared to post-1970s period, 

and (iv) nature of risk type based on changes in future, across the Indian mainland 
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(i) (ii) 

  

(iii) (iv) 
 

Figure 6.9  Spatial variation of (i) risk value for post-1970s, (ii) risk value from future-projected 

ensemble models for SSP585, (iii) percentage change (%) in future risk compared to post-1970s period, 

(iv) nature of risk type based on changes in future, across the Indian mainland 

Further, to confirm the finding of increasing tail risk and assess whether the changes are 

significant or not for different scenarios in the future with respect to the historical period of post-1970, 

we compared the distribution of the tail risk of the historical time with that of the distribution 

corresponding to the 4 SSP scenarios (SSP126, SSP245, SSP370, and SSP585) using a KS test at 5% 

significance level. Figure 6.10 shows the plots of the CDFs of the ensemble of risk values formed from 

16 CMIP6 GCM models for four climate scenarios and the CDF of risk values for historical time series 

(i.e., post-1970s). The KS statistic for scenarios SSP126, SSP245, SSP370, and SSP585 takes the 

estimates as 0.0285, 0.1445, 0.2580, and 0.4222, respectively, which are found to be significant at a 5% 
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significance level. Overall from the visual interpretation of the spatial patterns of tail risk (Figure 6.6 – 

6.9), as well as from the CDF plots and KS statistics, it can be noted that the most pronounced variations 

are observed in the SSP585 (worst-case scenario) while the least significant changes can be seen in the 

SSP126 (sustainable scenario) at grid level over entire India. This observation is in line with the findings 

of other studies that also confirm that the role of anthropogenic forcing is more prominent for increased 

extremes in the future over India (Mukherjee et al., 2018; Reddy and Saravanan, 2023). It is to be noted 

that the absence of a study related to tail risk for the historical as well as future climate change scenarios 

over India restricts our ability to draw comparisons in our study; however, reasonably similar results 

from other studies focusing on the frequency of occurrences of extreme events (e.g., 95th or 99th 

percentiles) on India also supports the findings regarding the tail risk over India.  

 

 

Figure 6.10  Plots showing the comparison of the CDFs of risk values obtained from ensembled CMIP6 

GCMs corresponding to four climate scenarios, namely SSP126, SSP245, SSP370, and SSP585 with 

the CDF of  risk values obtained for historical time period i.e., post-1970s over Indian mainland 

6.5.3 Tail Risk assessment of gridded precipitation over the Meteorological Subdivision of India 

The application of the CM approach helps in evaluating the tail risk associated with the 

probability distribution of the gridded precipitation dataset over India for both observational as well as 

future time period. However, understanding the spatial and temporal shifts can be challenging due to 

the variable patterns emerging in different regions in different time periods. Consequently, to enhance 

the applicability of the information gained at the gridded level for local governance purposes — such as 

facilitating reliable planning for the design and maintenance of hydrological structures — we have 

undertaken an analysis at the meteorological subdivisions level.  
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6.5.3.1   Observational Changes in Meteorological Subdivisions 

The analysis at the subdivision level is performed by extracting the tail risk values at the grids 

falling within the specified meteorological region for the observational time period i.e., pre-1970s and 

post-1970s, and then comparing their distribution for changes over time. KS test was used to test the 

null hypothesis that the distribution of the tail risk for a meteorological subdivision has not changed 

from the pre-1970s to the post-1970s. For brevity, the CDF plots of risk values for two meteorological 

subdivisions namely Arunachal Pradesh and Kerela for pre and post-1970s are presented in Figure 6.11. 

Details related to the KS statistic along with the result from the KS test are also presented in Table 6.5.  

  

(i)  (ii) 

Figure 6.11  Plots showing the CDFs of the risk values over two meteorological subdivisions namely 

(i) Arunachal Pradesh and (ii) Kerela, for two observational time periods i.e., pre-1970s (1901-1969) 

and post-1970 (1970-2019) 
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Table 6.5  Statistics of KS test and the result from hypothesis testing based on KS test for meteorological 

subdivisions assessing the changes happening between the pre and post-1970s period. (Here, h=1 means 

to reject the null hypothesis, and h=0 means to accept the null hypothesis). 

Subdivision KS test  

  KS statistic h 

Arunachal Pradesh 0.4607 1 

Assam and Meghalaya 0.1018 0 

Naga Mani Mizo and Tripura 0.1222 0 

Sub Him W Bengal Sikkim 0.1935 0 

Gangetic West Bengal 0.2128 1 

Orissa 0.1682 1 

Jharkhand 0.3158 1 

Bihar 0.1346 0 

East Uttar Pradesh 0.1773 1 

West Uttar Pradesh 0.2338 1 

Uttaranchal 0.2530 1 

Haryana Chandigarh and Delhi 0.2286 1 

Punjab 0.1685 0 

Himachal Pradesh 0.2386 1 

Jammu and kashmir 0.2642 1 

West Rajasthan 0.0903 0 

East Rajasthan 0.2573 1 

West Madhya Pradesh 0.2308 1 

East Madhya Pradesh 0.0765 0 

Gujarat 0.1774 1 

Saurashtra Kutch and Diu 0.1656 1 

Konkan and Goa 0.3143 1 

Madhya Maharastra 0.1908 1 

Marathwada 0.2584 1 

Vidarbha 0.4453 1 

Chhatisgarh 0.2333 1 

Coastal Andhra Pradesh 0.2560 1 

Telangana 0.2000 1 

Rayalaseema 0.3778 1 

Tamil Nadu and Pondicherry 0.1086 0 

Coastal Karnataka 0.3077 1 

North Interior Karnataka 0.2404 1 

South Interior Karnataka 0.1301 0 

Kerela 0.1385 0 
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Based on the test results, we found that nearly 22 subdivisions out of 34 showed significant 

changes in tail risk between the pre- and post-1970s. Subdivisions like Arunachal Pradesh, Orissa, 

Jharkhand, Eastern Uttar Pradesh, Western Uttar Pradesh, Uttaranchal, Himachal Pradesh, East 

Rajasthan, West Madhya Pradesh, Konkan and Goa, Madhya Maharashtra, Marathwada, Vidharbha, 

Chhattisgarh, Coastal Andhra Pradesh, Telangana, Rayalaseema, Coastal Karnataka, and North Interior 

Karnataka showed significant increasing changes in the post-1970s period relative to pre-1970s. While 

subdivisions like Gangetic West Bengal, Haryana Chandigarh and Delhi, Jammu and Kashmir, Gujarat, 

and Saurashtra Kutch and Diu also showed a change in the distribution of tail risk; however, the changes 

were of decreasing nature. The subdivisions that showed a tendency towards an increase in the tail risk 

can be prone to frequent occurrences of precipitation extremes.  

 

6.5.3.2   Future changes corresponding to four scenarios in Meteorological Subdivisions 

Similar to the analysis performed in the historical period, the meteorological subdivision-wise 

analysis is also performed for future time periods (2020-2100) considering the climate change scenarios 

to investigate how the frequency of precipitation extremes would be in the subdivisions. Again, a  KS 

test at a 5% significance level was employed to verify the considerable change in the distribution of tail 

risk for a particular subdivision based on the estimates obtained from ensembled GCMs for estimates 

corresponding to the historical time period (herein post-1970s). Figure 6.12 shows the CDF plots of the 

risk estimates obtained from an ensemble of 16 CMIP6 GCMs, along with that of the historical time 

period (i.e., post-1970s) for all 34 subdivisions. Table 6.6 provides the KS statistics along with the result 

from the KS test for all meteorological subdivisions corresponding to SSP126, SSP245, SSP370, and 

SSP585 climate scenarios. Based on the CDF plots and KS statistics following inferences can be drawn. 

Under the climate scenario SSP126, only 3 out of 34 subdivisions showed significant changes in the 

distributions of tail risk. For climate scenario SSP245, 19 out of 34 subdivisions showed significant 

changes. Notably, the CDF for the future time period usually lies beyond the CDFs of the historical time 

periods of the 1970s indicating an increasing tendency of tail risk. The maximum increase in the tail risk 

is observed for the subdivision of Vidharbha which is followed by West Madhya Pradesh, Marathawada, 

Haryana, Chandigarh and Delhi, West Rajasthan, East Madhya Pradesh, Gujarat, East Rajasthan, 

Punjab, Himachal Pradesh, Chhattisgarh, Uttaranchal, Telangana, Arunachal Pradesh, Gangetic West 

Bengal, Jammu and Kashmir, Saurashtra Kutch and Diu, Coastal Andhra Pradesh, and Orissa. Turning 

attention to the SSP370 scenario, changes in the CDFs of tail risk for the future are observed in 30 out 

of 34 subdivisions. The maximum changes (increasing) are seen in the subdivision of West Madhya 

Pradesh followed by Vidharba, Gujarat, East Madhya Pradesh, Marathwada, Haryana Chandigarh and 

Delhi, Chhattisgarh, West Rajasthan, Saurashtra Kutch and Diu, Orissa, East Rajasthan, Jammu and 

Kashmir, Himachal Pradesh, Arunachal Pradesh, Coastal Andhra Pradesh, Rayalaseema, Jharkhand, 

Telangana, Gangetic West Bengal, Uttaranchal, West Uttar Pradesh, Punjab, East Uttar Pradesh, 

Konkan and Goa, Madhya Maharashtra, North Interior Karnataka, South Interior Karnataka, Bihar, 



159 
 

Tamil Nadu and Pondicherry and lastly Assam and Meghalaya. Further moving to the SSP585 scenario, 

all subdivision shows significant changes in the CDFs of the tail risk. Each subdivision indicated an 

increased tail risk particularly prominent in Gujarat followed by West Madhya Pradesh, Vidarbha, East 

Madhya Pradesh, Chhattisgarh, Orissa, Marathawada, Haryana Chandigarh and Delhi, Saurashtra, 

Kutch and Diu, Gangetic West Bengal, Konkan and Goa, Jammu and Kashmir, West Rajasthan, East 

Rajasthan, Jharkhand, Coastal Andhra Pradesh, North Interior Karnataka, Madhya Maharastra, Punjab, 

Himachal Pradesh, Rayalseema, Telangana, Coastal Karnataka, South Interior Karnataka, Bihar, West 

Uttar Pradesh, Arunachal Pradesh, East Uttar Pradesh, Uttaranchal, Tamil Nadu and Pondicheery, 

Kerela, Sub Him West Bengal Sikkim, Assam, and Meghalaya and Naga Mani Mizo and Tripura.
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Figure 6.12  Comparison of the CDFs of the risk values obtained from the ensemble of 16 CMIP6 GCMs corresponding to four climate scenarios, namely SSP126, 

SSP245, SSP370, and SSP585 with the CDF obtained for post-1970s for 34 meteorological subdivisions 
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(Figure 6.12 Continued…..) 
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(Figure 6.12 Continued…..) 
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(Figure 6.12 Continued…..) 
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(Figure 6.12 Continued…..) 
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(Figure 6.12 Continued…..) 
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Table 6.6  Statistics of KS test and the result from hypothesis testing based on KS test for meteorological 

subdivisions assessing the changes happening in the future corresponding to different climate scenarios 

with respect to  post-1970s period (Here, h=1 means to reject the null hypothesis and h=0 means to 

accept the null hypothesis) 

KS test 

Subdivisions 

 

SSP126 SSP245 SSP370 SSP585 

KS 

statistic 
h 

KS 

statistic 
h 

KS 

statistic 
h 

KS 

statistic 
h 

Arunachal Pradesh 0.1348 0 0.2022 1 0.3146 1 0.4157 1 

Assam and Meghalaya 0.0479 0 0.0898 0 0.1737 1 0.3054 1 

Naga Mani Mizo and Tripura 0.0889 0 0.0778 0 0.1889 0 0.3000 1 

Sub Him W Bengal Sikkim 0.1613 0 0.1129 0 0.1774 0 0.3226 1 

Gangetic West Bengal 0.1915 0 0.2021 1 0.2872 1 0.5532 1 

Orissa 0.1542 1 0.1776 1 0.3551 1 0.5888 1 

Jharkhand 0.0965 0 0.1667 0 0.2982 1 0.4737 1 

Bihar 0.0962 0 0.0833 0 0.2051 1 0.4295 1 

East Uttar Pradesh 0.0636 0 0.1182 0 0.2091 1 0.4091 1 

West Uttar Pradesh 0.0519 0 0.1429 0 0.2662 1 0.4286 1 

Uttaranchal 0.1566 0 0.2169 1 0.2771 1 0.3976 1 

Haryana Chandigarh and 

Delhi 
0.1143 0 0.3000 1 0.4000 1 0.5714 1 

Punjab 0.1685 0 0.2360 1 0.2584 1 0.4607 1 

Himachal Pradesh 0.1477 0 0.2273 1 0.3182 1 0.4545 1 

Jammu and Kashmir 0.0938 0 0.1951 1 0.3333 1 0.5160 1 

West Rajasthan 0.1155 1 0.2924 1 0.3935 1 0.5162 1 

East Rajasthan 0.0874 0 0.2379 1 0.3350 1 0.5049 1 

West Madhya Pradesh 0.1417 1 0.3077 1 0.5142 1 0.6883 1 

East Madhya Pradesh 0.0969 0 0.2908 1 0.4592 1 0.6378 1 

Gujarat 0.0645 0 0.2742 1 0.4839 1 0.7097 1 

Saurashtra Kutch and Diu 0.0382 0 0.1911 1 0.3631 1 0.5669 1 

Konkan and Goa 0.0714 0 0.1286 0 0.2429 1 0.5286 1 

Madhya Maharastra 0.0855 0 0.1382 0 0.2368 1 0.4671 1 

Marathwada 0.1124 0 0.3034 1 0.4157 1 0.5730 1 

Vidarbha 0.1314 0 0.3431 1 0.5036 1 0.6496 1 

Chhatisgarh 0.0556 0 0.2222 1 0.3944 1 0.6056 1 

Coastal Andhra Pradesh 0.0560 0 0.1840 1 0.3120 1 0.4720 1 

Telangana 0.0533 0 0.2067 1 0.2933 1 0.4400 1 

Rayalaseema 0.0667 0 0.1778 0 0.3000 1 0.4556 1 

Tamil Nadu and Pondicherry 0.0800 0 0.1086 0 0.2000 1 0.3714 1 

Coastal Karnataka 0.2308 0 0.1026 0 0.1538 0 0.4359 1 

North Interior Karnataka 0.1058 0 0.1538 0 0.2308 1 0.4712 1 

South Interior Karnataka 0.1382 0 0.0813 0 0.2114 1 0.4309 1 

Kerela 0.2308 0 0.0769 0 0.1231 0 0.3692 1 
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6.5.4 Tail Risk assessment of the tails of gridded precipitation over the Köppen-Geiger regions of 

India 

While administrative boundaries are important for a country to take action necessary for 

protection against the risk of precipitation extremes, an understanding of tail risk is also needed for 

different climate zones as the climate does not respect political boundaries. Thus, an understanding of 

tail risk was evaluated for the Köppen-Geiger (KG) classification which were formed based on the 

climatology (i.e., variability in precipitation and temperature) of the country. Figure 6.13 illustrates the 

variations in the risk values across all stations associated with each KG climate subtype encompassing 

India's mainland for the historical (1970-2019) and future (2020-2100) time periods corresponding to 

four different climate scenarios. The box plots were constructed to represent the ensemble spread of tail 

risk corresponding to each climate scenario for all 9 climate zones relative to spread for the historical 

time period (i.e., post-1970s). The statistical significance of change based on the distributions of 

ensembles for their respective climate scenario at a 5% significance level is evaluated using the KS test. 

Table 6.7 provides the KS statistics along with the results from the KS test for different Köppen regions.  

Historically, the maximum tail risk values were observed for climate type Cwb and ET, followed 

by Aw, Cwa, Csa, BWh, Am, As, and BSh, respectively, based on their median values. The grids within 

Cwb and ET regions have higher elevations (hilly or mountainous regions), and receive a good amount 

of rainfall (see Figure S9 in supplementary material of Gupta and Chavan, 2022). Higher elevations are 

usually associated with the presence of some of the heaviest tails of daily or hourly precipitation datasets 

in several parts of the world as shown by Papalexiou et al. (2018), Hobbi et al. (2021), Gupta and Chavan 

(2022). Heavy tails usually suggest the higher frequency of extreme  precipitation events thereby 

reflecting higher tail risk. 

 For the future time period, for different climate zones, the largest to the smallest value of tail 

risk was observed in BWh, followed by Aw, As, BSh, ET, Csa, Cwa, Cwb, and Am for all four SSP 

scenarios. A clear difference in the spatial pattern of future tail risk for precipitation over India can be 

seen as compared to the historical pattern. For the observational time period, Cwb and ET zones 

occupying some parts of northern and north-eastern India exhibited higher tail risks. However, in the 

future, BWh, Aw, As, and BSh, occupying the western, central, and south-eastern part of the country 

exhibits higher tail risk. Suman and Maity (2020), through their analysis, revealed an intensified 

eastward moisture flux over the Indian Ocean and Arabian Sea region resulting in an overall increase in 

extreme precipitation events in the southern part of the country in the future. Further, we also noticed 

that the grids associated with climate type Aw have the maximum inter-quantile range, which suggests 

a large dispersion or variability of tail risk within this region.  
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Figure 6.13  Variation of the tail risk value for daily precipitation time series associated with each climate type across India for both the historical (1970 to 2019) as 

well as future (2020-2100) period for different climate scenarios  
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Table 6.7  Statistics of KS test and the result from hypothesis testing based on KS test for Köppen-

Geiger Regions assessing the changes happening in the future corresponding to different climate 

scenarios with respect to the post-1970s period (Here, h=1 means to reject the null hypothesis, and h=0 

means to accept the null hypothesis) 

 KS test 

Köppen-

Geiger 

Regions 

SSP126 SSP245 SSP370 SSP585 

KS 

statistic 
h 

KS 

statistic 
h KS statistic h 

KS 

statistic 
h 

Aw 0.0613 1 0.1650 1 0.3021 1 0.4581 1 

Am 0.1020 0 0.0561 0 0.1531 1 0.3673 1 

As 0.1246 1 0.2918 1 0.4413 1 0.6192 1 

BSh 0.0425 0 0.1454 1 0.2572 1 0.4273 1 

BWh 0.0994 0 0.2391 1 0.3168 1 0.4503 1 

Csa 0.0718 0 0.2348 1 0.3729 1 0.5773 1 

Cwa 0.0332 0 0.1240 1 0.2292 1 0.3865 1 

Cwb 0.0882 0 0.1765 1 0.2353 1 0.3412 1 

ET 0.0515 0 0.1454 1 0.2617 1 0.4251 1 

 

Further, Table 6.7 provides the KS statistics along with the results from the KS test for different 

Köppen regions. Results indicate statistically significant changes for climate zones As, and Aw for the 

SSP126 scenario. For scenario SSP245 all zones except Am showed significant changes from the 

historical time period and are ordered as As followed by BWh, Csa, Cwb, Aw, ET, BSh, and Cwa. For 

climate scenarios, SSP370 and SSP585 all climate zones showed significant changes in the future wrt 

historical time period. The climate zones for SSP370 are ordered such that As is followed by Csa, Bwh, 

Aw, ET, BSh, Cwb, Cwa, and Am in terms of changes from the post-1970s period. For, SSP585 the 

climate zones are ranked as As followed by Csa, Aw, BWh, BSh, ET, Cwa, Am, and Cwb from largest 

to smallest changes. It is to be noted that the biggest changes (increase) in the tail heaviness is seen 

primarily for the SSP585 scenario for most climate subtypes.  

Based on the observed values of tail risk in the future and the changes in tail risk over time, we 

found that the Tropical (Aw, As), Arid zones (BWh, BSh), and Temperate (Csa) are found to be more 

susceptible to higher precipitation extremes in term of frequency and magnitude as these region not only 

showed higher tail risk values in but also showed high changes in tail risk values over time. The findings 

of these studies match with Yaduvanshi et al. (2021) to some extent, where their study made a similar 

observation using CMIP5 data and showed that rainfall extremes such as PRCPTOT, R20MM, R95P, 

R99P, RX1day, and RX5day are projected to rise significantly in tropical, temperate and semi-arid 

regions of India, under RCP4.5 and RCP8.5 scenario.  

A deeper and more comprehensive analysis is necessary to understand the zone-specific 

predictions of extreme precipitation events, taking into account various factors like air temperature, 
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precipitable water, moisture flux, and convergence. In terms of the underlying physics guiding the 

simulations, our reliance is primarily on the methodologies employed by various climate models to 

replicate these mentioned variables. Nevertheless, it's important to acknowledge that these 

methodologies may not always be flawless. Therefore, as a standard procedure, we incorporate 

simulations from multiple models when forming our conclusions. 

6.6 Summary and Conclusions 

This study evaluates the nature and behavior of risk embedded in the probability distribution of 

the daily precipitation datasets especially in the tail part. Using the novel concept of the Concentration 

Profile and Concentration Map, the risk maps are prepared for the observed daily precipitation records 

and model-simulated daily precipitation records for future time periods over the Indian mainland that 

provide a comprehensive picture of risk related to extremes over India. This study helps us understand 

the changes caused by climate change being reflected in the frequency and magnitude of the extremes 

in the future in a relatively more straightforward manner. Tail risk is evaluated for the past, mainly 

focusing on the period from 1901 to 2019, which is subdivided into two parts i.e. pre-1970s (1901-1969) 

and post-1970s (1970-2019) to understand the effect of global climate shift over India. For the future, 

simulations were obtained for 16 GCMs from CMIP6 for 2020 to 2100, and estimates of tail risk were 

determined, which were then ensembled to have a multimodel ensemble analysis for different SSP 

scenarios, namely SSP126, SSP245, SSP370, and SSP585. An incremental change in the tail risk in the 

future with respect to the historical period indicates both more precipitation days as well as a less 

uniform distribution of precipitation events with more frequent extremes. Tail risk is our prime concern 

and accurate assessment based on the data series helps in providing various useful insights. The spatial 

maps presented in the study illustrate the tail risk on a grid-by-grid, meteorological region-by-region, 

and Koppen-Geiger Climate zone-by-zone basis, which can be useful for local and regional assessments. 

The study yields the following explicit conclusions: 

(i) Based on the risk maps for historical periods, a considerable change (increase) in the tail risk 

is found in the post-1970s with respect to the pre-1970s period. This is true for more than 

57% of the grids over India, which can be very well attributed to climate shifts that happened 

around the mid-to-late 1970s. 

(ii) Similar to the historical period, an increasing trend in tail risk persists in the future time 

period. All four climate scenarios show an overall increase in the tail risk values (i.e., risk of 

precipitation extremes), but to different extents relative to the historical time period (i.e., post-

1970s). However, a gradual increase in tail risk from SSP126 to SSP245 to SSP70 to SSP585 

can be very well observed. Overall, the tail risk for the SSP585 scenario surpasses all other 

scenarios, indicating its correlation with anthropogenic influences. 
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(iii) From the observational analysis of the post-1970 period (with respect to the pre-1970 period), 

it was noticed that the eastern coast of South India predominantly exhibits an increase in tail 

risk while the northern and north-western parts of the country showed decreasing tail risk. 

However, in the future, the western and northern parts of the country show a higher extent of 

increase in the tail risk than the eastern part of the country 

(iv) The Meteorological subdivision-wise analysis for the historical period revealed that nearly 

22 subdivisions out of 34 showed significant changes in the post-1970s period. However, for 

the future time period, almost all the 34 subdivisions showed significant changes in the tail 

risk relative to the post-1970s for the climate scenarios of SSP370, and SSP585, respectively.  

(v) The analyses also yielded that subdivisions of Northwestern parts of India (like Gujarat, 

Vidarbha, Marathwada, West Rajasthan, East Rajasthan, Haryana Chandigarh, and Delhi, 

Saurashtra, Kutch and Diu, Punjab, Himachal Pradesh), Central part (like West Madhya 

Pradesh, East Madhya Pradesh, West Uttar Pradesh, Uttaranchal, Chhattisgarh, Orissa) and 

Southeastern part (like Jharkhand, Coastal Andhra Pradesh, North Interior Karnataka, 

Rayalseema, Telangana) of India show more increase in tail risks in the future compared to 

other subdivisions. 

(vi) Climatologically, Tropical (Aw, As), Arid (BWh, BSh), and Temperate (Csa) regions are 

found to be more susceptible to higher precipitation extremes in terms of frequency and 

magnitude as these regions not only showed higher tail risk values but also showed high 

changes in tail risk values over time. This increasing pattern tail risk (i.e., increased frequency 

and magnitude of extreme precipitation) in these regions will severely impact society as these 

regions are among the ones that host the major section of the population of the country and 

are responsible for major agricultural produce.  

Assessing and understanding the potential changes in the extreme tail behavior of daily 

precipitation distributions, encompassing both the intensity and frequency of rainfall extremes, is crucial 

for informed policy-making at the national or regional level. It is essential to obtain accurate and reliable 

information on the relative variation in future risks of extreme events. This easily interpretable risk map 

provided in this study for precipitation extremes considering the geographical variability can be used in 

risk financing mechanisms for resource allocation by the government. By allocating resources 

strategically the government agencies associated with the construction or management of water-based 

infrastructure can minimize the losses and damages associated with climate change. Currently, India has 

5334 completed large dams and 411 large dams are under construction (Available on 

https://cwc.gov.in/sites/default/files/nrld06042019.pdf accessed in July 2023). These dams will 

experience future changes in climate owing to their long life spans. Hence, the knowledge related to tail 

risk will enable local decision-makers to effectively address the challenges posed by shifting climate 
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patterns and develop suitable adaptation strategies in the concerned areas. While our current analysis 

holds significance, it's important to acknowledge its limitations. Specifically, we have not explored the 

causes behind the changes in tail risk. Therefore, we recommend future research to investigate regime 

shifts under different climate scenarios more thoroughly. 
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CHAPTER 7 

SUMMARY AND CONCLUSIONS  

 

This thesis proposes novel and advanced approaches to characterize the tail behavior of the daily 

precipitation datasets over India by alleviating the limitations associated with the conventional 

approaches. The following conclusions are drawn from the analyses performed in this thesis.  

1. Based on the threshold-based approach introduced by Papalexiou et al. (2013), it is observed that the 

Lognormal and Pareto type II distributions (both known for their heavy-tailed characteristics) are 

best suited for fitting the daily precipitation tails over India for both the pre-and post-1970 time 

periods. This finding underscores the prevalence of heavy-tailed distributions over light-tailed ones, 

such as the Gamma and Weibull distributions, while modelling precipitation extremes. Furthermore, 

the research revealed an increase in the tail heaviness of precipitation data from the pre- to post-

1970s, indicating the potential influence of global climatic shifts that occurred during the 1970s. 

Notably, the Gamma distribution consistently underestimates the occurrence and magnitude of 

extreme events, highlighting its inadequacy in modelling extreme precipitation events within India. 

2. The proposed algorithmic approach, based on a novel scalar upper tail indicator known as the 

‘Obesity Index’ (OB), offers advantages in terms of objectivity, robustness, and reproducibility over 

the traditional threshold-based approaches. The robustness of the proposed approach is established 

through a simulation study where datasets from four distributions, namely Pareto, Weibull, 

Lognormal, and Gamma, are generated. Further, the investigations regarding the adequate sample 

size, as well as the optimum number of random sampling required for the application of the proposed 

algorithm, are performed. The findings of these investigations suggest that an optimal sample size of 

1,000 or greater, along with a minimum of 5,000 random sampling, is sufficient to determine a 

consistent estimate of OB. Overall, the investigation demonstrates the reliability and effectiveness 

of the proposed algorithmic approach for upper tail analysis. 

3. A comparative analysis is performed between the threshold-based approach (conventional approach) 

and OB-based approach for effective characterization of the tails of the daily precipitation datasets 

over India in Chapter 4. All three approaches provided consistent inferences, indicating the presence 

of heavy-tailed behavior in approximately 78.21% of grid locations across India. At a few grids over 

India, the OB-based approach is noticed to yield lighter tails, whereas the threshold-based methods 

tend to suggest exponential tails. It is very important to acknowledge that while these approaches 

generally align in identifying heavy-tailed behavior, they may diverge in their assessments due to the 
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inherent differences in their methodologies. Overall, the analysis highlights the suitability of heavy-

tailed distributions for modeling daily precipitation extremes over India. The OB-based approach 

stands out for its ability to provide a quantitative measure for assessing the tail behavior in daily 

precipitation data without the need for assuming specific threshold values to categorize tails. This 

feature enhances the precision and versatility of tail analysis in hydroclimatology and presents it as 

a good alternative diagnostic tool for assessing tail behavior.  

4. Characterization of the tail behavior in the projections of daily precipitation datasets for future time 

periods reveals a notable increase in the frequency of occurrence of extreme precipitation events, 

particularly under the RCP8.5 scenario compared to the RCP4.5 scenario for simulated datasets from 

the Coordinated Regional Climate Downscaling Experiment (CORDEX). The notable rise in the 

frequency of extreme precipitation events under the RCP8.5 scenario is primarily attributed to the 

anthropogenic forcings, driven by higher greenhouse gas emissions and greater radiative forcings, 

resulting in rising temperatures. These findings highlight the broader impacts of climate change on 

precipitation extremes over India. Additionally, the analysis of OB in relation to the topography of 

India unveiled a non-linear decrease in OB with elevations up to 2500 meters, followed by an 

increase beyond this elevation. Importantly, this elevation-related variation in OB is found to be 

spatially correlated with the Köppen-Geiger climate classification system of India. This correlation 

suggests that the climate type and elevation have a discernible influence on the tail heaviness of 

precipitation datasets, further emphasizing the complex interplay of factors shaping the extreme 

precipitation patterns over India. 

5. Failing to select the appropriate class/family of distributions that can provide the best fit to the upper 

tail of the dataset before selecting a model can lead to either underestimation or overestimation of 

the quantiles. In an effort to address this issue, a comprehensive Decision support system (DSS) is 

proposed in Chapter 5 of this thesis, which can characterize the tails of the probability distributions 

into various families. The conventional DSSs have limitations in (i) efficient segregation of 

Lognormal distribution from the regularly varying and subexponential distribution families and (ii) 

identifying the distributions from hyper-exponential class. Advanced graphical tools such as 

Concentration Profile, concentration adjusted expected shortfall, discriminant moment ratio plot, 

maximum to sum plot, and Zenga plot can effectively identify different distributions simultaneously 

if used in an appropriate order. This formed the basis for proposing the comprehensive DSS in this 

thesis. The proposed comprehensive DSS is found to be more capable and robust than the 

conventional DSS in respect of its ability to categorize the tails of distributions into Classes B\A 

(Pareto type), C\B (regularly varying), D\C (subexponential), E (Exponential type), hyper-

exponential type (outside class E). The robustness of the proposed comprehensive DSS over the 

conventional DSSs is established through a simulation study by generating datasets having various 

sample sizes from various representative probability distributions belonging to various classes and 

reassigning them successfully to their respective classes. The percentage of success in the 
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characterization of distributions in various classes is found to be appreciable at smaller sample sizes 

(<1000) and quite high for sample sizes (>1000). This indicates the validity of the proposed approach 

for the characterization of the tails of the precipitation datasets.  

6. The application of the proposed DSS for characterizing the tails of the daily precipitation over India 

revealed a successful categorization into 4 classes, namely class C\B, D\C E, and limiting case LN. 

Results indicate that out of 4801 grids, 63 (1.31%), 3671 (76.46%), 106 (2.21%), and 961 (20.01%) 

grids belong to classes C\B, D\C, E, and LN distribution, respectively. The findings from the study 

revealed that around 98% of the daily precipitation records are found to exhibit subexponential tails. 

Overall, it is concluded that the probability distribution tails for daily precipitation are heavy-tailed, 

and the spatial information on these classes of distributions over India could be used as a priori 

information for regional studies to identify suitable probability distribution. 

7. The development of a framework for assessing the embedded risk associated with the tails of the 

daily precipitation is performed based on the concept of the Concentration Profile (CP) and 

Concentration Map (CM). The graphical framework of CM presented in Chapter 7 of this thesis is 

intended to provide useful insights into the tail risk of the precipitation datasets and to compare the 

distribution of datasets having different scales and magnitudes as the proposed framework is an easy 

and scale-free approach which is the major advantage associated with CM.  

8. The application of the proposed framework revealed a considerable increase at more than 57% of the 

grids over India in the tail risk in the post-1970s relative to the pre-1970s period. Results are very 

well attributed to climate shifts that happened around the mid-to-late 1970s. Similar to the historical 

period, the increasing trend in tail risk persists in the future. All four climate scenarios show an 

overall increase in the tail risk values (i.e., risk of precipitation extremes), but to different extents 

with respect to the historical (Relative changes%) and spatial variation. However, a gradual increase 

in tail risk from SSP126 to SSP245 to SSP70 to SSP585 scenarios for simulations from 16 General 

Circulation Models (GCMs) participating in the Coupled Model Intercomparison Project Phase 6 

(CMIP6) can very well be observed. Overall, SSP585 surpasses all other scenarios in terms of tail 

risk, indicating that such an increase in future precipitation extremes is especially due to 

anthropogenic influences. 

9. Climatologically, Tropical (Aw, As), Arid (BWh, BSh), and Temperate (Csa) regions are found to 

be more susceptible to higher precipitation extremes in terms of frequency and magnitude as these 

regions not only showed higher tail risk values but also showed high changes in tail risk values over 

time. This increasing pattern tail risk (i.e., increased frequency and magnitude of extreme 

precipitation) in these regions will severely impact society as these regions are among the ones that 

host the major section of the population of the country and are responsible for major agricultural 

produce.  
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In summary, the approaches proposed in this thesis alleviate most of the limitations associated 

with the conventional approaches to characterize daily precipitation tails. From a practical standpoint, 

these approaches are straightforward, user-friendly, and have the potential for wide application across 

diverse hydroclimatological regions of the globe.  

7.1  Scope for Future Work  

The present research is devoted to understanding the frequency of occurrence of daily 

precipitation extremes through the assessment of tail behavior. This thesis describes novel and 

comprehensive ways to assess tail behavior and estimate the embedded risks associated with it. 

However, there is still considerable scope for extending the research work presented in this thesis. Future 

work should explore the effectiveness of the proposed approaches on various other hydroclimatic 

regions in various parts of the world to strengthen the conclusions drawn based on the present study. 

Future scope exists for: 

1. Investigating the causes of heavy tails in precipitation extremes within various parts of India through 

detection and attribution. Understanding the underlying mechanisms behind heavy tails in different 

regions is crucial in the current scenario of changing climate.  

2. Exploring the relationship between different physical processes and corresponding tail behavior   

3. Exploring the potential of other upper tail indicators in the characterization of tail behavior, 

especially when the data lengths are limited 

4. Developing an automated algorithmic mechanism to discriminate between distributions belonging to 

the Classes C\B and D\C by devising efficient procedures for examining the linearity of log-log plots 

based on estimated correlation coefficient values, similar to the Mean Excess Function (MEF) 

proposed by Nerantzaki and Papalexiou (2019). This can automate the analysis and alleviate the 

limitation of the present DSS by providing an efficient algorithmic method for model selection and 

decision-making for practicing engineers.  

5. Developing frameworks utilizing different threshold-based, graphical, and scalar approaches that can 

incorporate the non-stationarity associated with hydroclimatic datasets, while assessing the tail 

behavior. 

6. Exploring the variations in tail behavior of daily precipitation over India by using different global 

precipitation products as well as by considering various climate classifications apart from the Köppen 

Geiger classification used in this thesis. This investigation can help in addressing the ambiguity 

associated with different datasets. Additionally, the remarkably extensive observational dataset, 

characterized by a substantial number of stations, extended time series, and numerous explanatory 
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variables, provides a unique opportunity to gain deeper insights into the upper tail behavior of 

precipitation over India—an endeavor rarely feasible with conventional observational datasets. 

7. Understanding the propagation of risks from extreme precipitations to subsequent floods within the 

Indian watersheds with the help of the tail characterization frameworks proposed in this thesis. 

8. Application of the risk assessment tool in scenarios such as PMP (Probable Maximum Precipitation) 

estimation, flood assessment of dams, or other related studies 

9. Developing a framework for integrating the tail risks of daily precipitation in hazard evaluations by 

considering factors such as exposure to population, human establishments, etc. 



178 
 

REFERENCES 

• Aadhar, S., & Mishra, V. (2020). On the projected decline in droughts over South Asia in 

CMIP6 multimodel ensemble. Journal of Geophysical Research: Atmospheres, 125(20), 

e2020JD033587. 

• Acerbi, C., & Tasche, D. (2002). On the coherence of expected shortfall. Journal of banking & 

finance, 26(7), 1487-1503. 

• Adams, B. J., Fraser, H. G., Howard, C. D., & Sami Hanafy, M. (1986). Meteorological data 

analysis for drainage system design. Journal of environmental Engineering, 112(5), 827-848. 

• AghaKouchak, A., & Nasrollahi, N. (2010). Semi-parametric and parametric inference of 

extreme value models for rainfall data. Water resources management, 24, 1229-1249. 

• AghaKouchak, A., Chiang, F., Huning, L. S., Love, C. A., Mallakpour, I., Mazdiyasni, O. & 

Sadegh, M. (2020). Climate extremes and compound hazards in a warming world. Annual 

Review of Earth and Planetary Sciences, 48, 519-548. 

• Ajayamohan, R. S., & Rao, S. A. (2008). Indian Ocean dipole modulates the number of extreme 

rainfall events over India in a warming environment. Journal of the Meteorological Society of 

Japan. Ser. II, 86(1), 245-252. doi:10.2151/jmsj.86.245. 

• Akaike, H. (1974). A new look at the statistical model identification. IEEE transactions on 

automatic control, 19(6), 716-723. https://doi.org/10.1109/TAC.1974.1100705. 

• Aksoy, H. (2000). Use of gamma distribution in hydrological analysis. Turkish Journal of 

Engineering and Environmental Sciences, 24(6), 419-428. 

• Al-Zahrani, M., & Husain, T. (1998). An algorithm for designing a precipitation network in the 

south-western region of Saudi Arabia. Journal of Hydrology, 205(3-4), 205-216. 

• Ali, H., & Mishra, V. (2018). Increase in subdaily precipitation extremes in India under 1.5 and 

2.0 C warming worlds. Geophysical Research Letters, 45(14), 6972-6982. 

• Anandhi, A., Frei, A., Pierson, D.C., Schneiderman, E.M., Zion, M.S., Lounsbury, D., & 

Matonse, A.D. (2011) Examination of change factor methodologies for climate change impact 

assessment. Water Resources Research, 47, W03501.  https://doi.org/10.1029/2010WR009104. 

• Arguez, A., & Vose, R. S. (2011). The definition of the standard WMO climate normal: The 

key to deriving alternative climate normals. Bulletin of the American Meteorological 

Society, 92(6), 699-704. doi:10.1175/2010BAMS2955.1. 

• Arnold, B. C. (2012). On the Amato inequality index. Statistics & Probability Letters, 82(8), 

1504-1506. 

• Babu, V. B., & Hooda, B. K. (2018). Fuzzy majority approach for modeling spatial and temporal 

distributions of daily rainfall in western zone of Haryana. Int. J. Agricult. Stat. Sci, 14(1), 57-

67. 

• Balkema, A. A., & De Haan, L. (1974). Residual life time at great age. The Annals of 

probability, 2(5), 792-804. 

https://doi.org/10.1109/TAC.1974.1100705
https://doi.org/10.1029/2010WR009104


179 
 

• Baines, P. G., & Folland, C. K. (2007). Evidence for a rapid global climate shift across the late 

1960s. Journal of Climate, 20(12), 2721-2744. 

• Barucci, E., & Fontana, C. (2003). Financial markets theory. London: Springer-Verlag. 

• Beck, H. E., Vergopolan, N., Pan, M., Levizzani, V., van Dijk, A. I. J. M., Weedon, G. P., 

Brocca, L., Pappenberger, F., Huffman, G. J., & Wood, E. F., (2017). Global-scale evaluation 

of 22 precipitation datasets using gauge observations and hydrological modelling. Hydrology 

and Earth System Sciences, 21, 6201–6217, https://doi.org/10.5194/hess-21-6201-2017. 

• Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A., & Wood, E. F. 

(2018). Present and future Köppen-Geiger climate classification maps at 1-km 

resolution. Scientific data, 5(1), 1-12.  

• Bernardara, P., Schertzer, D., Sauquet, E., Tchiguirinskaia, I., & Lang, M. (2008). The flood 

probability distribution tail: how heavy is it?. Stochastic Environmental Research and Risk 

Assessment, 22, 107-122. 

• Beirlant, J., Goegebeur, Y., Teugels, J., Segers, J., De Waal, D., & Ferro, C., (2004). Statistics 

of extremes: Theory and applications, Statistics of Extremes: Theory and Applications. Wiley. 

https://doi.org/10.1002/0470012382. 

• Beguería, S. (2005). Uncertainties in partial duration series modelling of extremes related to the 

choice of the threshold value. Journal of Hydrology, 303(1-4), 215-230. 

• Ben-Zvi, A. (2009). Rainfall intensity–duration–frequency relationships derived from large 

partial duration series.  Journal of Hydrology,  367(1-2), 104-114. 

doi:10.1016/j.jhydrol.2009.01.007. 

• Beskow, S., Caldeira, T. L., de Mello, C. R., Faria, L. C., & Guedes, H. A. S. (2015). 

Multiparameter probability distributions for heavy rainfall modeling in extreme southern 

Brazil. Journal of Hydrology: Regional Studies, Volume 4, Part B, 123-133, ISSN 2214-5818. 

https://doi.org/10.1016/j.ejrh.2015.06.007. 

• Bhavana, C., Munirajappa, R., Surendra, H., & Rathod, S. (2012). Modeling of daily rainfall 

using gamma probability distribution. Environment and Ecology, 30(3B), 884-887. 

• Bhattacharya, B., Mohanty, S., & Singh, C. (2022). Assessment of the potential of CMIP6 

models in simulating the sea surface temperature variability over the tropical Indian Ocean. 

Theoretical and Applied Climatology, 148(1-2), 585-602. 

• Bingham, N. H., Goldie, C. M., & Teugels, J. L. (1987). Regular variation (No. 27). Cambridge 

university press.. 

• Biondi, F., Gershunov, A., & Cayan, D. R. (2001). North Pacific decadal climate variability 

since 1661. Journal of climate, 14(1), 5-10. https:// doi.org/10.1175/1520-

0442(2001)014,0005:NPDCVS.2.0.CO 

• Bisht, D. S., Chatterjee, C., Raghuwanshi, N. S., & Sridhar, V. (2018a). Spatio-temporal trends 

of rainfall across Indian river basins. Theoretical and applied climatology, 132, 419-436.  

https://doi.org/10.5194/hess-21-6201-2017
https://doi.org/10.1002/0470012382
https://doi.org/10.1016/j.ejrh.2015.06.007


180 
 

• Bisht, D. S., Chatterjee, C., Raghuwanshi, N. S., & Sridhar, V. (2018b). An analysis of 

precipitation climatology over Indian urban agglomeration. Theoretical and Applied 

Climatology, 133, 421-436. https://doi.org/10.1007/s00704-017-2200-z. 

• Brazauskas, V., & Kleefeld, A. (2016). Modeling severity and measuring tail risk of Norwegian 

fire claims. North American Actuarial Journal, 20(1), 1-16. 

• Bryson, M. (1974). Heavy-Tailed Distributions: Properties and Tests. Technometrics, 16(1), 61-

68. Doi:10.2307/1267493 

• Caires, S. (2009). A comparative simulation study of the annual maxima and the peaks-over-

threshold methods. Deltares report 1200264-002 for Rijkswaterstaat, Waterdienst.  

• Cavanaugh, N. R., Gershunov, A., Panorska, A. K., & Kozubowski, T. J. (2015). The probability 

distribution of intense daily precipitation. Geophysical Research Letters, 42(5), 1560-1567. 

doi:10.1002/2015GL063238. 

• Caeiro, F., Gomes, M.I., Pestana, D. (2005). Direct reduction of bias of the classical Hill 

estimator. Revstat – Statistical Journal, 3, 113-136. 

• Changyong, F. E. N. G., Hongyue, W. A. N. G., Naiji, L. U., Tian, C. H. E. N., Hua, H. E., & 

Ying, L. U. (2014). Log-transformation and its implications for data analysis. Shanghai archives 

of psychiatry, 26(2), 105. 

• Champernowne, D. G. (1953). A model of income distribution. The Economic 

Journal, 63(250), 318-351. 

• Chowdary, J. S., Gnanaseelan, C., Vaid, B. H., & Salvekar, P. S. (2006). Changing trends in the 

tropical Indian Ocean SST during La Nina years. Geophysical research 

letters, 33(18).https://doi.org/10.1029/2006GL026707. 

• Chen, J., & Brissette, F. P. (2014). Stochastic generation of daily precipitation amounts: review 

and evaluation of different models. Climate Research, 59(3), 189-206. Doi:10.3354/cr01214 

• Chavan, S. R., & Srinivas, V. V. (2021). Evaluation of three approaches to probable maximum 

precipitation estimation: a study on two Indian river basins. Theoretical and Applied 

Climatology, 144, 731-749.  

• Choudhary, A., & Dimri, A. P. (2019). On bias correction of summer monsoon precipitation 

over India from CORDEX‐SA simulations. International Journal of Climatology, 39(3), 1388-

1403. 

• Choudhury, B. A., Rajesh, P. V., Zahan, Y., & Goswami, B. N. (2021). Evolution of the Indian 

summer monsoon rainfall simulations from CMIP3 to CMIP6 models. Climate Dynamics, 1-

26. 

• Chen, J., Brissette, F.P., Chaumont, D., & Braun, M. (2013). Finding appropriate bias correction 

methods in downscaling precipitation for hydrologic impact studies over North America. Water 

Resources Research, 49, 4187–4205. Doi:10.1002/wrcr.20331. 

https://doi.org/10.1007/s00704-017-2200-z


181 
 

• Chen, S., Yu, B., & Chen, W. (2015). An interdecadal change in the influence of the spring 

Arctic Oscillation on the subsequent ENSO around the early 1970s. Climate Dynamics, 44, 

1109-1126. https://doi.org/10.1007/s00382-014-2152-2. 

• Chistyakov, V.P. (1964) A theorem on sums of independent positive random variables and its 

applications to branching process. Theory of Probability and its Application, 9, 640-648. 

• Chow, V. T. (1964). Handbook of applied hydrology: a compendium of water-resources 

technology. In Handbook of applied hydrology: a compendium of water-resources 

technology (pp. 1525-1525). 

• Chen, K., & Cheng, T. (2022). Measuring tail risks. The Journal of Finance and Data 

Science, 8, 296-308. 

• Chavan, S.R. & Srinivas, V.V. (2015). Effect of DEM Source on Equivalent Horton Strahler 

Ratio based GIUH for Catchments in Two Indian River Basins. Journal of Hydrology, Elsevier, 

Netherlands, 528, Issues 1-4, pp.463-489. Doi: 10.1016/j.jhydrol.2015.06.049. 

• Choudhary, A., Dimri, A. P., & Maharana, P. (2017). Assessment of CORDEX-SA experiments 

in representing precipitation climatology of summer monsoon over India. Theoretical and 

Applied Climatology, 134, 283-307.  

• Christensen, J. H., Boberg, F., Christensen, O. B., & Lucas‐Picher, P. (2008). On the need 

for bias correction of regional climate change projections of temperature and 

precipitation. Geophysical research letters, 35(20). Doi:10.1029/2008GL035694. 

• Chowdary, J. S., Gnanaseelan, C., Vaid, B. H., & Salvekar, P. S. (2006). Changing trends in the 

tropical Indian Ocean SST during La Nina years. Geophysical research letters, 33(18). 

• Cirillo, P. (2013). Are your data really Pareto distributed?. Physica A: Statistical Mechanics 

and its Applications, 392(23), 5947-5962. 

• Cirillo, P., & Taleb, N. N. (2016a). On the statistical properties and tail risk of violent 

conflicts. Physica A: Statistical Mechanics and its Applications, 452, 29-45. 

• Cirillo, P., & Taleb, N. N. (2016b). Expected shortfall estimation for apparently infinite-mean 

models of operational risk. Quantitative Finance, 16(10), 1485-1494. 

• Cirillo, P., & Taleb, N. N. (2020). Tail risk of contagious diseases. Nature Physics, 16(6):606-

613. 

• Clauset, A., Shalizi, C. R., & Newman, M. E. (2009). Power-law distributions in empirical 

data. SIAM review, 51(4), 661-703. 

• Cooke, R. M., & Nieboer, D. (2011). Heavy-tailed distributions: Data, diagnostics, and new 

developments. Resources for the Future Discussion Paper, (11-19), Washington. 

https://doi.org/10.2139/ssrn.1811043. 

• Cooke, R. M., Nieboer, D., & Misiewicz, J. (2014). Fat-Tailed Distributions: Data, Diagnostics 

and Dependence, Volume 1 (Vol. 1). John Wiley & Sons, Inc., Hoboken, NJ. 

https://doi.org/10.1007/s00382-014-2152-2
https://doi.org/10.1029/2008GL035694


182 
 

• Coles, S., Bawa, J., Trenner, L., & Dorazio, P. (2001). An introduction to statistical modeling 

of extreme values (Vol. 208, p. 208). London: Springer. 

• Coles, S., Pericchi, L. R., & Sisson, S. (2003). A fully probabilistic approach to extreme rainfall 

modeling. Journal of Hydrology, 273(1-4), 35-50. 

• Cooke, R. M., Nieboer, D., & Misiewicz, J. (2014). Fat-Tailed Distributions: Data, Diagnostics 

and Dependence, Volume 1 (Vol. 1). John Wiley & Sons. 

• Cools, M., Moons, E., & Wets, G. (2010). Assessing the impact of weather on traffic intensity. 

Weather, Climate, and Society, 2(1), 60-68. 

• Cobb, C. W., & Douglas, P. H. (1928). A theory of production. 

• Curriero, F. C., Patz, J. A., Rose, J. B., & Lele, S. (2001). The association between extreme 

precipitation and waterborne disease outbreaks in the United States, 1948–1994. American 

journal of public health, 91(8), 1194-1199.  

• Cunnane, C. (1973). A particular comparison of annual maxima and partial duration series 

methods of flood frequency prediction. Journal of hydrology, 18(3-4), 257-271. 

• Dai, T., Dong, W., Guo, Y., Hong, T., Ji, D., Yang, S., ... & Zhu, X. (2018). Understanding the 

abrupt climate change in the mid-1970s from a phase-space transform perspective. Journal of 

Applied Meteorology and Climatology, 57(11), 2551-2560. https://doi.org/10.1175/JAMC-D-

17-0345.1. 

• Davies, A. S., Hernebring, C., Svensson, G., & Gustafsson, L. G. (2008). The impacts of climate 

change and urbanisation on drainage in Helsingborg, Sweden: Suburban stormwater.  Journal 

of Hydrology, 350 (1-2), 114-125. doi:10.1016/j.jhydrol.2007.11.006. 

• Dash, S., & Maity, R. (2019). Temporal evolution of precipitation-based climate change indices 

across India: contrast between pre-and post-1975 features. Theoretical and Applied 

Climatology, 138(3-4), 1667-1678. https://doi.org/10.1007/s00704-019-02923-8. 

• Dash, S., Kulkarni, M.A., Mohanty, U., & Prasad, K. (2009). Changes in the characteristics of 

rain events in India. Journal of Geophysical Research: Atmosphere, 114, D10. 

• Das, B., & Ghosh, S. (2016). Detecting tail behavior: mean excess plots with confidence bounds. 

Extremes, 19, 325–349. https://doi.org/10.1007/s10687-015-0238-9 

• Das, S., Sarkar, S., & Kanungo, D. P. (2022). Rainfall-induced landslide (RFIL) disaster in 

Dima Hasao, Assam, Northeast India. https://doi.org/10.1007/s10346-022-01962-z. 

• Dash, S. K., Kulkarni, M. A., Mohanty, U. C., & Prasad, K. (2009). Changes in the 

characteristics of rain events in India. Journal of Geophysical Research: 

Atmospheres, 114(D10). 

• Daníelsson, J., Haan, de L., Peng, L., & Vries, de C.G. (2001). Using a bootstrap method to 

choose the sample fraction in tail index estimation. Journal of Multivariate Analysis, 76, 226–

248.  

https://doi.org/10.1175/JAMC-D-17-0345.1
https://doi.org/10.1175/JAMC-D-17-0345.1
https://doi.org/10.1007/s00704-019-02923-8
https://doi/
https://doi.org/10.1007/s10346-022-01962-z


183 
 

• Danielsson, J., Jorgensen, B. N., Sarma, M., & Vries, de, C. G. (2006). Comparing downside 

risk measures for heavy tailed distributions. Economics letters, 92(2), 202-208. 

• Daníelsson, J., Ergun, L.M., Haan, de L., & Vries, de C.G. (2019). Tail Index Estimation: 

Quantile Driven Threshold Selection. Staff Working Papers 19-46, Bank of Canada. 

• Dave, H., & James, M. E. (2017). Characteristics of intense rainfall over Gujarat State (India) 

based on percentile criteria, Hydrological Sciences Journal, 62(12), 2035-2048. DOI: 

10.1080/02626667.2017.1357818. 

• De Michele, C., & Avanzi, F. (2018). Superstatistical distribution of daily precipitation 

extremes: A worldwide assessment. Scientific reports, 8(1), 14204. 

• De Michele, C. (2019). Advances in deriving the exact distribution of maximum annual daily 

precipitation. Water, 11(11), 2322. 

• De Sousa, B., & Michailidis, G. (2004). A diagnostic plot for estimating the tail index of a 

distribution. Journal of Computational and Graphical Statistics, 13(4), 974-995. 

• DeNicola, E., Aburizaiza, O. S., Siddique, A., Khwaja, H., & Carpenter, D. O. (2015). Climate 

change and water scarcity: The case of Saudi Arabia. Annals of global health, 81(3), 342-353. 

• Deepthi, B., & Sivakumar, B. (2022). General circulation models for rainfall simulations: 

Performance assessment using complex networks. Atmospheric Research, 278, 106333. 

• Dikshit, A., Sarkar, R., Pradhan, B., Segoni, S., & Alamri, A. M. (2020). Rainfall induced 

landslide studies in Indian Himalayan region: a critical review. Applied Sciences, 10(7), 2466. 

• Diakakis, M. (2020). Types of behavior of flood victims around floodwaters. Correlation with 

situational and demographic factors. Sustainability, 12(11), 4409. 

• Dutta, R., & Maity, R. (2022). Value addition in coupled model intercomparison project phase 

6 over phase 5: global perspectives of precipitation, temperature and soil moisture fields. Acta 

Geophysica, 70(3), 1401-1415. 

• Edwards, W. (1992). Utility Theories: Measurements and Applications. Springer 

• Efron, B. (1979). Bootstrap methods: Another look at jackknife. Annals of Statistics, 7, 1-26. 

• Ehsanzadeh, E., El Adlouni, S., & Bobée, B. (2010). Frequency analysis incorporating a 

decision support system for hydroclimatic variables. Journal of Hydrologic 

Engineering, 15(11), 869-881. 

• El Adlouni, S., Bobée, B., & Ouarda, T. B. (2008). On the tails of extreme event distributions 

in hydrology. Journal of hydrology,  355(1-4), 16-33. doi:10.1016/J.JHYDROL.2008.02.011  

• Eliazar, I. I., & Sokolov, I. M. (2010). Gini characterization of extreme-value statistics. Physica 

A: Statistical Mechanics and its Applications, 389(21), 4462-4472. 

• Eliazar, I. (2018). A tour of inequality. Annals of Physics, 389, 306-332. 

• Embrechts, P. & Goldie, C. (1980). On Closure and factorization properties of subexponential 

and related distributions. Journal of Australian Mathematical Society. Series A. Pure 

Mathematics and Statistics, 29(2), 243-256.doi:10.1017/S1446788700021224 



184 
 

• Embrechts, P., & Goldie, C. M. (1982). On convolution tails. Stochastic Processes and their 

Applications, 13(3), 263-278. 

• Embrechts, P., Klüppelberg, C., Thomas, M. (1997) Embrechts, P., Klüppelberg, C., & 

Mikosch, T. (2013). Modelling extremal events: for insurance and finance (Vol. 33). Springer 

Science & Business Media. 

• Embrechts, P. (2003). Extremes in economics and the economics of extremes. Extreme values 

in finance, telecommunications, and the environment, 169-83. Chapman and Hall/CRC. 

• Embrechts, P., Klüppelberg, C., & Mikosch, T. (2013). Modelling extremal events: for 

insurance and finance (Vol. 33). Springer Science & Business Media. 

• Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., & Taylor, K. E. 

(2016). Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) 

experimental design and organization. Geoscientific Model Development, 9(5), 1937-1958. 

• Eyring, V., Cox, P. M., Flato, G. M., Gleckler, P. J., Abramowitz, G., Caldwell, P., et al. (2019). 

Taking climate model evaluation to the next level. Nature Climate Change, 9(2), 102–110. 

https://doi.org/10.1038/s41558-018-0355-y. 

• Farooq, M., Shafique, M., & Khattak, M. S. (2018). Flood frequency analysis of river swat using 

Log Pearson type 3, Generalized Extreme Value, Normal, and Gumbel Max distribution 

methods. Arabian Journal of Geosciences, 11, 1-10.  

• Feller, W. (1971). An Introduction to Probability Theory and Its Applications. Vol. 2, J. Willey 

and Sons, New York, 766. 

• Fisher, R. A., & Tippett, L. H. C. (1928). Limiting forms of the frequency distribution of the 

largest or smallest member of a sample. In Mathematical proceedings of the Cambridge 

philosophical society (Vol. 24, No. 2, pp. 180-190). Cambridge University Press. 

https://doi.org/10.1017/S0305004100015681. 

• Foss, S., Korshunov, D., & Zachary, S. (2013). An introduction to heavy-tailed and 

subexponential distributions (Vol. 6, pp. 0090-6778). New York: Springer. doi: 10.1007/978-

1-4419-9473-8. 

• Fontanari, A., Cirillo, P., & Oosterlee, C. W. (2018a). From concentration profiles to 

concentration maps. New tools for the study of loss distributions. Insurance: Mathematics and 

Economics, 78, 13-29. 

• Fontanari, A., Taleb, N. N., & Cirillo, P. (2018b). Gini estimation under infinite 

variance. Physica A: Statistical Mechanics and its Applications, 502, 256-269. 

• Fontanari, A. (2019). Lorenz-based quantitative risk management. Doctoral dissertation, Delft 

University of Technology. https://doi.org/10.4233/uuid:0c5b50a5- 4514-431d-a31a-

b1f4ae2c0713. 

• Furman, E., Wang, R., & Zitikis, R. (2017). Gini-type measures of risk and variability: Gini 

shortfall, capital allocations, and heavy-tailed risks. Journal of Banking & Finance, 83, 70-84. 

https://doi.org/10.1038/s41558-018-0355-y
https://doi.org/10.1017/S0305004100015681


185 
 

• Geiger, R. (1954). Landolt-Börnstein–Zahlenwerte und FunktionenausPhysik, Chemie, 

Astronomie, Geophysik und Technik, alteSerie Vol. 3. Ch. Klassifikation der Klimatenach W. 

Köppen.–Springer, Berlin, 603-607. 

• Ghosh, S. and Resnick, S. (2010) A discussion on mean excess plots. Stochastic Processes and 

their Applications, Volume 120, Issue 8, pages 1492-1517, ISSN 0304-4149. 

https://doi.org/10.1016/j.spa.2010.04.002. 

• Ghosh, S., Vittal, H., Sharma, T., Karmakar, S., Kasiviswanathan, K. S., Dhanesh, Y., ... & 

Gunthe, S. S. (2016). Indian summer monsoon rainfall: implications of contrasting trends in the 

spatial variability of means and extremes. PloS one, 11(7), e0158670. 

doi:10.1371/journal.pone.0158670. 

• Ghosh, S., Das, D., Kao, S. C., & Ganguly, A. R. (2012). Lack of uniform trends but increasing 

spatial variability in observed Indian rainfall extremes. Nature Climate Change, 2(2), 86-91. 

doi:10.1038/nclimate1327. 

• Ghosh, S. & Mujumdar, P.P. (2009). Climate change impact assessment: Uncertainty modeling 

with imprecise probability. Journal of Geophysical Research, 114. 10.1029/2008JD011648. 

• Gini, C. (1912). Variabilità E Mutabilità. Reprinted in: Variabilità e Mutabilità, E Pizetti and T 

Salvemini, Memorie di MetodologicaStatistica, LibreriaEredi Virgilio Veschi, Rome. 

• Giorgi, F., Im, E. S., Coppola, E., Diffenbaugh, N. S., Gao, X. J., Mariotti, L., & Shi, Y. (2011). 

Higher hydroclimatic intensity with global warming. Journal of Climate, 24(20), 5309-5324. 

doi:10.1175/4092011JCLI3979.1. 

• Giorgi, F., Coppola, E., & Raffaele, F. (2014). A consistent picture of the hydroclimatic 

response to global warming from multiple indices: Models and observations. Journal of 

Geophysical Research: Atmospheres, 119(20), 11-695. https://doi.org/10.1002/2014JD022238 

• Gnedenko, B. (1943). Sur la distribution limite du terme maximum d'une serie aleatoire. Annals 

of mathematics, 423-453. https://doi.org/10.2307/1968974. 

• Goldie, C. M., & Klüppelberg, C. (1998). Subexponential distributions. A practical guide to 

heavy tails: statistical techniques and applications, 435-459. Cambridge, MA: Birkhauser 

Boston Inc. 

• Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning (p. 

126). New York: Addison-Wesley. Reading, Mass. 

• Goswami, B. N., Venugopal, V., Sengupta, D., Madhusoodanan, M. S., & Xavier, P. K. (2006). 

Increasing trend of extreme rain events over India in a warming 

environment. Science, 314(5804), 1442-1445.  

• Groisman, P. Y., Karl, T. R., Easterling, D. R., Knight, R. W., Jamason, P. F., Hennessy, K. J., 

... & Zhai, P. M. (1999). Changes in the probability of heavy precipitation: important indicators 

of climatic change. Weather and climate extremes: changes, variations and a perspective from 

the insurance industry, 243-283. Springer, Dordrecht. 

https://doi.org/10.1016/j.spa.2010.04.002
https://doi.org/10.1038/nclimate1327
https://doi.org/10.2307/1968974


186 
 

• Graham, N. E. (1994). Decadal-scale climate variability in the tropical and North Pacific during 

the 1970s and 1980s: Observations and model results. Climate Dynamics, 10, 135-162. 

• Greselin, F., Pellegrino, S., & Vernizzi, A. (2017). Lorenz versus Zenga Inequality Curves: a 

New Approach to Measuring Tax Redistribution and Progressivity (No. 046). 

• Guhathakurta, P., & Rajeevan, M. (2008). Trends in the rainfall pattern over India. International 

Journal of Climatology: A Journal of the Royal Meteorological Society, 28(11), 1453-1469. 

• Guhathakurta, P., Sreejith, O. P., & Menon, P. A. (2011). Impact of climate change on extreme 

rainfall events and flood risk in India. Journal of earth system science, 120, 359-373. 

• Gu, X., Zhang, Q., Singh, V. P., Liu, L., & Shi, P. (2017). Spatiotemporal patterns of annual 

and seasonal precipitation extreme distributions across China and potential impact of tropical 

cyclones. International Journal of Climatology, 37(10), 3949-3962. 

• Gusain, A., Ghosh, S., & Karmakar, S. (2020). Added value of CMIP6 over CMIP5 models in 

simulating Indian summer monsoon rainfall. Atmospheric Research, 232, 104680. 

• Gunwani, P., & Mohan, M. (2017). Sensitivity of WRF model estimates to various PBL 

parameterizations in different climatic zones over India. Atmospheric research, 194, 43-65. 

• Gupta, S.K. (2011). Modern Hydrology and Sustainable Water Development. John Wiley & 

Sons. https://doi.org/10.1002/9781444323962. 

• Gupta, V., Singh, V., & Jain, M. K. (2020). Assessment of precipitation extremes in India during 

the 21st century under SSP1-1.9 mitigation scenarios of CMIP6 GCMs. Journal of Hydrology, 

590, 125422. 

• Guhathakurta, P. & Rajeevan, M. (2008). Trends in the rainfall pattern over India. International 

Journal of Climatology, 28. 1453 – 1469. 10.1002/joc.1640. 

• Gu, X., Zhang, Q., Singh, V. P., Liu, L., & Shi, P. (2017). Spatiotemporal patterns of annual 

and seasonal precipitation extreme distributions across China and potential impact of tropical 

cyclones. International Journal of Climatology, 37(10), 3949-3962. 

• Gupta, N., & Chavan, S. R. (2021). Assessment of temporal change in the tails of probability 

distribution of daily precipitation over India due to climatic shift in the 1970s. Journal of Water 

and Climate Change, 12(6), 2753-2773. 

• Gupta, N., & Chavan, S. R. (2022). Characterizing the tail behaviour of daily precipitation 

probability distributions over India using the obesity index. International Journal of 

Climatology, 42(4), 2543-2565. 

• Gupta, N., & Chavan, S. R. (2023a). Investigating the tail behaviour and associated risk with 

daily discharges in South Indian Rivers. Stochastic Environmental Research and Risk 

Assessment, 1-17. 

• Gupta, N. & Chavan, S. R. (2023b). A comprehensive decision support system for 

characterization of tails of probability distributions of daily precipitation. Journal of Hydrology. 

https://doi.org/10.1016/j.jhydrol.2023.130282. 



187 
 

• Gusain, A., Vittal, H., Kulkarni, S., Ghosh, S., & Karmakar, S. (2019). Role of vertical velocity 

in improving finer scale statistical downscaling for projection of extreme 

precipitation. Theoretical and Applied Climatology, 137, 791-804. 

https://doi.org/10.1007/s00704-018-2615-1. 

• Haddad, K., & Rahman, A. (2011). Selection of the best fit flood frequency distribution and 

parameter estimation procedure: a case study for Tasmania in Australia. Stochastic 

Environmental Research and Risk Assessment, 25, 415-428. https://doi.org/10.1007/s00477-

010-0412-1. 

• Hassani, A. (2012). Applications of Cobb-Douglas Production Function in Construction Time-

Cost Analysis. 

• Heo, J. H., Salas, J. D., & Boes, D. C. (2001). Regional flood frequency analysis based on a 

Weibull model: Part 2. Simulations and applications. Journal of hydrology, 242(3-4), 171-182. 

• Hill, B. M. (1975). A simple general approach to inference about the tail of a distribution. The 

annals of statistics, 3, 1163-1174. 

• Hill, S. A. (2019). A measure for characterizing heavy-tailed networks. arXiv preprint 

arXiv:1907.04808. 

• Hobbi, S. (2021). Global characteristics of extreme precipitation and variation of climate types 

from Köppen-Geiger classification using different datasets (Doctoral dissertation, University of 

Saskatchewan). 

• Hobbi, S., Papalexiou, S. M., Rajulapati, C. R., Nerantzaki, S. D., Markonis, Y., Tang, G., & 

Clark, M. P. (2022). Detailed investigation of discrepancies in Köppen-Geiger climate 

classification using seven global gridded products. Journal of Hydrology, 612, 128121. 

• Hosking, J. R. (1990). L-moments: analysis and estimation of distributions using linear 

combinations of order statistics. Journal of the Royal Statistical Society Series B: Statistical 

Methodology, 52(1), 105-124. 

• Hsu, P. C. (2016). Global monsoon in a changing climate. The Monsoons and Climate Change: 

Observations and Modeling, LM Véspoli de Carvalho and C. Jones, Eds., Springer, 7–24. 

• Huang, J., Yu, H., Dai, A., Wei, Y., & Kang, L. (2017a). Drylands face potential threat under 2 

C global warming target. Nature Climate Change, 7(6), 417-422, 

https://doi.org/10.1038/nclimate3275. 

• Huang, J., Li, Y., Fu, C., Chen, F., Fu, Q., Dai, A., ... & Wang, G. (2017b). Dryland climate 

change: Recent progress and challenges. Reviews of Geophysics, 55(3), 719-778. 

• Huang, J., Mondal, S. K., Zhai, J., Fischer, T., Wang, Y., Su, B., ... & Jiang, T. (2022). Intensity-

area-duration-based drought analysis under 1.5 C–4.0 C warming using CMIP6 over a climate 

hotspot in South Asia. Journal of Cleaner Production, 345, 131106. 

• Hussain, T., Bakouch, H. S., & Chesneau, C. (2019). A new probability model with application 

to heavy-tailed hydrological data. Environmental and Ecological Statistics, 26, 127-151. 

https://doi.org/10.1007/s00477-010-0412-1
https://doi.org/10.1007/s00477-010-0412-1
https://doi.org/10.1038/nclimate3275


188 
 

• Hull, J. (2012). Risk management and financial institutions,+ Web Site (Vol. 733). John Wiley 

& Sons.  

• IPCC 2013 Climate Change (2013). The Physical Science Basis. Contribution of Working 

Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. 

Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, et al., editors Cambridge, United 

Kingdom and New York, NY, USA. Cambridge University Press.  

• Jaiswal, R., Mall, R. K., Singh, N., Lakshmi Kumar, T. V., & Niyogi, D. (2022). Evaluation of 

bias correction methods for regional climate models: Downscaled rainfall analysis over diverse 

agroclimatic zones of India. Earth and Space Science, 9(2), e2021EA001981. 

• Jawitz, J. W., & Mitchell, J. (2011). Temporal inequality in catchment discharge and solute 

export. Water Resources Research, 47(10), 1–16. doi:10.1029/2010WR010197. 

• Jacob, D. A. N. I. E. L. A., & Hagemann, S. T. E. F. A. N. (2007). Intensification of the 

hydrological cycle: an important signal of climate change. In Global change: Enough water for 

all? (pp. 170-173). Wissenschaftliche Auswertungen. 

• Jacques‐Coper, M., & Garreaud, R. D. (2015). Characterization of the 1970s climate shift in 

South America. International Journal of Climatology, 35(8), 2164-2179. 

https://doi.org/10.1002/joc.4120. 

• Jenkinson, A. F. (1955). The frequency distribution of the annual maximum (or minimum) 

values of meteorological elements. Quarterly Journal of the Royal Meteorological 

Society, 81(348), 158-171. https://doi.org/10.1002/qj.49708134804. 

• Johnson, N. I., & Kotz, S., (1970). Continuous Univariate Distributions. 1–2. New York: Wiley. 

• Johnson, N. L., Kotz, S., & Balakrishnan, N. (1994). Continuous univariate distributions, 

volume 2 (Vol. 289). John wiley & sons.  

• Jorion, P. (2007). Value at risk: the new benchmark for managing financial risk. The McGraw-

Hill Companies, Inc. 

• Jones, B. L., & Zitikis, R. (2003). Empirical estimation of risk measures and related 

quantities. North American Actuarial Journal, 7(4), 44-54. 

• Katz, R. W., Parlange, M. B., & Naveau, P. (2002). Statistics of extremes in 

hydrology. Advances in water resources, 25(8-12), 1287-1304. doi:10.1016/S0309-

1708(02)00056-8. 

• Katz, R. W. (2010). Statistics of extremes in climate change. Climatic change, 100(1), 71-76. 

• Kamruzzaman, M., Shahid, S., Islam, A. T., Hwang, S., Cho, J., Zaman, M. A. U., ...& Hossain, 

M. B. (2021). Comparison of CMIP6 and CMIP5 model performance in simulating historical 

precipitation and temperature in Bangladesh: a preliminary study. Theoretical and Applied 

Climatology, 145, 1385-1406. 

https://doi.org/10.1002/qj.49708134804


189 
 

• Kiran, K. G., & Srinivas, V. V. (2021). A Mahalanobis distance‐based automatic threshold 

selection method for peaks over threshold model. Water Resources Research, 57(1), 

e2020WR027534. 

• Klüppelberg, C. (1988). Subexponential distributions and integrated tails. Journal of Applied 

Probability, 25(1), 132-141. https://doi.org/10.2307/3214240. 

• Kotz, S., & Nadarajah, S. (2000). Extreme value distributions: theory and applications. world 

scientific. Imperial College Press, London. https://doi.org/10.1142/p191. 

• Koutsoyiannis, D. (2004a). Statistics of extremes and estimation of extreme rainfall: I. 

Theoretical investigation/Statistiques de valeurs extrêmes et estimation de précipitations 

extrêmes: I. Recherche théorique. Hydrological sciences journal, 49(4). 

• Koutsoyiannis, D. (2004b). Statistics of extremes and estimation of extreme rainfall: II. 

Empirical investigation of long rainfall records/Statistiques de valeurs extrêmes et estimation 

de précipitations extrêmes: II. Recherche empirique sur de longues séries de 

précipitations. Hydrological Sciences Journal, 49(4). 

• Koutsoyiannis, D. (2008). Probability and statistics for geophysical processes. Athens: National 

Technical University of Athens. https://doi.org/10.13140/RG.2.1.2300.1849/1. 

• Kozubowski, T. J., Panorska, A. K., Qeadan, F., Gershunov, A., & Rominger, D. (2008). Testing 

exponentiality versus Pareto distribution via likelihood ratio. Communications in Statistics-

Simulation and Computation, 38(1), 118-139. doi:10.1080/03610910802439121. 

• Konapala, G., Mishra, A., & Leung, L. R. (2017). Changes in temporal variability of 

precipitation over land due to anthropogenic forcings. Environmental Research Letters, 12(2), 

024009. 

• Kottek, M., Grieser, J., Beck, C., Rudolf, B., & Rubel, F. (2006). World map of the Köppen-

Geiger climate classification updated. 

• Köppen, W. P., & Geiger, R. (1923). Klimakarte der erde. Justus Perthes. 

• Konda, G., & Vissa, N. K. (2023). Evaluation of CMIP6 models for simulations of 

surplus/deficit summer monsoon conditions over India. Climate Dynamics, 60(3-4), 1023-1042. 

• Krishnan, R., Sanjay, J., Gnanaseelan, C., Mujumdar, M., Kulkarni, A., & Chakraborty, S. 

(2020). Assessment of climate change over the Indian region: a report of the ministry of earth 

sciences (MOES), government of India (p. 226). Springer Nature. 

• Krishnan, R., Sabin, T. P., Vellore, R., Mujumdar, M., Sanjay, J. et al. (2016) Deciphering the 

desiccation trend of the South Asian monsoon hydroclimate in a warming world. Climate 

Dynamics, 47 (3), pp.1007-1027. ff10.1007/s00382-015-2886-5ff. ffhal-01322856f. 

• Kratz, M., & Resnick, S. I. (1996). The QQ-estimator and heavy tails. Stochastic Models, 12(4), 

699-724. 

• Kulkarni, M. A., Singh, A., & Mohanty, U. C. (2012). Effect of spatial correlation on regional 

trends in rain events over India. Theoretical and Applied Climatology, 109, 497-505. 

https://doi.org/10.2307/3214240
https://doi.org/10.1142/p191


190 
 

• Langousis, A., Mamalakis, A., Puliga, M., & Deidda, R. (2016). Threshold detection for the 

generalized Pareto distribution: Review of representative methods and application to the NOAA 

NCDC daily rainfall database. Water Resources Research, 52(4), 2659-2681. 

https://doi.org/10.1002/2015WR018502. 

• Lai, W., Wang, H., & Zhang, J. (2018). Comprehensive assessment of drought from 1960 to 

2013 in China based on different perspectives. Theoretical and Applied Climatology, 134, 585-

594. 

• Lehmann, E.L. (1997). Testing Statistical Hypotheses. 2nd edition, Springer, New York 

• Li, C., Singh, V. P., & Mishra, A. K. (2012). Simulation of the entire range of daily precipitation 

using a hybrid probability distribution. Water resources research, 48(3). W03521. 

doi:10.1029/2011WR011446. 

• Lorenz, M. O. (1905). Methods of measuring the concentration of wealth. Publications of the 

American statistical association, 9(70), 209-219.  

• Malamud, B. D. (2004). Tails of natural hazards. Physics World, 17(8), 25. 

• Manz, K., & Mansmann, U. (2020). Distributional challenges regarding data on death and 

incidences during the SARS-CoV-2 pandemic up to July 2020. medRxiv, 2020-07. 

• May, W., Joseph, K. K., & Nkomoki, J. The variability and extremes of daily precipitation at 

38 meteorological stations operated by the. Danish Climate Centre Report 13-03.  

• Martel, B., El Adlouni, S., & Bobée, B. (2013). Comparison of the power of lognormality tests 

with different right-tail alternative distributions. Journal of Hydrologic Engineering, 18(1), 1-

9. 

• Madsen, H., Rasmussen, P. F., & Rosbjerg, D. (1997). Comparison of annual maximum series 

and partial duration series methods for modeling extreme hydrologic events: 1. At‐site 

modeling. Water resources research, 33(4), 747-757. 

• Mailhot, A., Lachance-Cloutier, S., Talbot, G., & Favre, A. C. (2013). Regional estimates of 

intense rainfall based on the Peak-Over-Threshold (POT) approach. Journal of Hydrology, 476, 

188-199. https://doi.org/10.1016/j.jhydrol.2012.10.036. 

• Makkonen, L. (2006). Plotting positions in extreme value analysis. Journal of Applied 

Meteorology and Climatology, 45(2), 334-340. https://doi.org/10.1175/JAM2349.1. 

• Masaki, Y., Hanasaki, N., Takahashi, K., & Hijioka, Y. (2014). Global‐scale analysis on future 

changes in flow regimes using Gini and Lorenz asymmetry coefficients. Water Resources 

Research, 50(5), 4054-4078. 

• Massey, F. J. (1951). The Kolmogorov-Smirnov Test for Goodness of Fit. Journal of the 

American Statistical Association, 46(253), 68–78. 

• Maurer, E. P., & Hidalgo, H. G. (2008). Utility of daily vs. monthly large-scale climate data: an 

intercomparison of two statistical downscaling methods. Hydrology and Earth System 

Sciences, 12(2), 551-563. 10.5194/hessd-4-3413-2007.  

https://doi.org/10.1002/2015WR018502
https://doi.org/10.1016/j.jhydrol.2012.10.036
https://doi.org/10.1175/JAM2349.1


191 
 

• Marsaglia, G., Tsang, W. & Wang, J. (2003). Evaluating Kolmogorov’s Distribution. Journal 

of Statistical Software, 8(18). 

• Martha, T. R., Roy, P., Govindharaj, K. B., Kumar, K. V., Diwakar, P. G., & Dadhwal, V. K. 

(2015). Landslides triggered by the June 2013 extreme rainfall event in parts of Uttarakhand 

state, India. Landslides, 12, 135-146. 

• Mayooran, T., Laheetharan, A., (2014). The statistical distribution of annual maximum rainfall 

in Colombo district. Sri Lankan Journal of Applied Statistics, 15(2), 107-130. 

• McNeil, A. J., Frey, R., & Embrechts, P. (2015). Quantitative risk management: concepts, 

techniques and tools-revised edition. Princeton university press. 

• Methni, J. E., Gardes, L., & Girard, S. (2014). Non‐parametric estimation of extreme risk 

measures from conditional heavy‐tailed distributions. Scandinavian Journal of Statistics, 41(4), 

988-1012. 

• Meehl, G. A., Hu, A. & Santer, B. D. (2008). The Mid-1970s Climate Shift in the Pacific and 

the Relative Roles of Forced versus Inherent Decadal Variability. Journal of Climate, 22, 780–

792. https://doi.org/10.1175/2008JCLI2552.1 

• Michalewicz, Z., Janikow, C. Z., & Krawczyk, J. B. (1992). A modified genetic algorithm for 

optimal control problems. Computers and mathematics with applications, 23(12), 83-94. 

• Mielke Jr, P. W. (1973). Another family of distributions for describing and analyzing 

precipitation data. Journal of Applied Meteorology and Climatology, 12(2), 275-280. 

• Mishra, P., Pandey, C. M., Singh, U., Gupta, A., Sahu, C., & Keshri, A. (2019). Descriptive 

statistics and normality tests for statistical data. Annals of cardiac anaesthesia, 22(1), 67. 

• Mishra, V., Kumar, D., Ganguly, A. R., Sanjay, J., Mujumdar, M., Krishnan, R., & Shah, R. D. 

(2014). Reliability of regional and global climate models to simulate precipitation extremes over 

India. Journal of Geophysical Research: Atmospheres, 119(15), 9301-9323. 

• Miller, A. J., Cayan, D. R., Barnett, T. P., Graham, N. E., & Oberhuber, J. M. (1994). The 1976-

77 climate shift of the Pacific Ocean. Oceanography, 7(1), 21-26. 

• Mishra, S. K., Sahany, S., & Salunke, P. (2017). Linkages between MJO and summer monsoon 

rainfall over India and surrounding region. Meteorology and Atmospheric Physics, 129, 283-

296. 

• Mishra, V., Bhatia, U., & Tiwari, A. D. (2020). Bias-corrected climate projections for South 

Asia from coupled model intercomparison project-6. Scientific data, 7(1), 338. 

• Mlyński, D., Wałęga, A., Petroselli, A., Tauro, F. & Cebulska, M. (2019). Estimating maximum 

daily precipitation in the Upper Vistula Basin, Poland. Atmosphere (Basel) 10, 43. 

https://doi.org/10.3390/atmos10020043. 

• Moccia, B., Mineo, C., Ridolfi, E., Russo, F., & Napolitano, F. (2021). Probability distributions 

of daily rainfall extremes in Lazio and Sicily, Italy, and design rainfall inferences. Journal of 

Hydrology: Regional Studies, 33, 100771. 

https://doi.org/10.1175/2008JCLI2552.1
https://doi.org/10.3390/atmos10020043


192 
 

• Mondal, A., & Mujumdar, P. P. (2015). Modeling non-stationarity in intensity, duration and 

frequency of extreme rainfall over India. Journal of Hydrology, 521, 217-231. 

• Monjo, R., & Martin‐Vide, J. (2016). Daily precipitation concentration around the world 

according to several indices. International Journal of Climatology, 36(11), 3828-3838. 

• Mukherjee, S., Aadhar, S., Stone, D., & Mishra, V. (2018). Increase in extreme precipitation 

events under anthropogenic warming in India. Weather and climate extremes, 20, 45-53. 

• Nagaev, A., & Tsitsiashvili, G. (2006). Tail asymptotics of the nth convolution of super-

exponential distributions. Statistics & probability letters, 76(9), 861-870. 

• Nair, N. U., Nair, K. M., & Sreelakshmi, N. (2012). Some properties of the new Zenga curve (p. 

43). Vita e pensiero.  

• Nash, D. B. (1994). Effective sediment-transporting discharge from magnitude-frequency 

analysis. The Journal of Geology, 102(1), 79-95.  

• Nassa, R. A. K., Kouassi, A. M., & Toure, M. L. (2021). Sensitivity of Statistical Models for 

Extremes Rainfall Adjustment Regarding Data Size: Case of Ivory Coast. Journal of Water 

Resource and Protection, 13(8), 654-674. 

• Nandargi, S., Gaur, A., & Mulye, S. S. (2016). Hydrological analysis of extreme rainfall events 

and severe rainstorms over Uttarakhand, India. Hydrological Sciences Journal, 61(12), 2145-

2163. DOI: 10.1080/02626667.2015.1085990 

• Németh, L., & Zempléni, A. (2020). Regression estimator for the tail index. Journal of 

Statistical Theory and Practice, 14(3), 48. https://doi.org/10.1007/s42519-020-00114-7. 

• Nerantzaki, S. D., & Papalexiou, S. M. (2019). Tails of extremes: Advancing a graphical method 

and harnessing big data to assess precipitation extremes. Advances in Water Resources, 134, 

103448. doi: https://doi.org/10.1016/j.advwatres.2019.103448. 

• Nerantzaki, S., & Papalexiou, S. M. (2021). Assessing Extremes in Hydroclimatology: A 

Review on Probabilistic Methods, Journal of Hydrology, doi: https://doi.org/10.1016/j.jhydrol. 

2021.127302 

• Nerantzaki, S. D., & Papalexiou, S. M. (2022). Assessing extremes in hydroclimatology: A 

review on probabilistic methods. Journal of Hydrology, 605, 127302. 

• Nikulin, G., Kjellstro¨ M, E., Hansson, U. L. F., Strandberg, G., Ullerstig, A. (2011). Evaluation 

and future projections of temperature, precipitation and wind extremes over Europe in an 

ensemble of regional climate simulations. Tellus A: Dynamic Meteorology and Oceanography, 

63(1), 41-55. 

• Nieboer, D. (2011). Heuristics of heavy-tailed distributions and the Obesity index. Dissertation. 

Delft University of Technology. 

• Nordhaus, W., Azam, Q., Corderi, D., Hood, K., Victor, N. M., Mohammed, M.,  Miltner, A., 

& Weiss, J. (2006). The g-econ database on gridded output: Methods and data. Yale university. 

https://doi.org/10.1007/s42519-020-00114-7
https://doi.org/10.1016/j.advwatres.2019.103448
https://doi.org/10.1016/j.jhydrol


193 
 

• O'Kane, T. J., Matear, R. J., Chamberlain, M. A., Oke, P. R. (2014). ENSO regimes and the late 

1970's climate shift: The role of synoptic weather and South Pacific ocean spiciness. Journal of 

Computational Physics, 271, 19-38. 

• O'Neill, B. C., Tebaldi, C., Van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., ... & 

Sanderson, B. M. (2016). The scenario model intercomparison project (ScenarioMIP) for 

CMIP6. Geoscientific Model Development, 9(9), 3461-3482. 

• Oruc, S. (2022). Performance of bias corrected monthly CMIP6 climate projections with 

different reference period data in Turkey. ActaGeophysica, 70(2), 777-789. 

• Ouarda, T.B.M.J., Ashkar, F., Bensaid, E., & Hourani, I. (1994) Statistical distributions used in 

hydrology. Transformations and asymptotic properties. Scientific Report, 31 pp., Department of 

Mathematics, Univ. of Moncton, New Brunswick. 

• Ozonur, D., Pobocikova, I., & de Souza, A. (2021). Statistical analysis of monthly rainfall in 

Central West Brazil using probability distributions. Modeling Earth Systems and 

Environment, 7, 1979-1989.  

• Pai, D., Sridhar, L., Rajeevan, M., Sreejith, O., Satbhai, N., & Mukhopadhyay, B. (2014). 

Development of a new high spatial resolution (0.25 × 0.25) long period (1901–2010) daily 

gridded rainfall data set over India and its comparison with existing data sets over the region. 

Mausam, 65: 1–18. http://www.imd.gov.in/advertisements/ 20170320_advt_34. 

• Panahi, H. (2016). Model selection test for the heavy-tailed distributions under censored 

samples with application in financial data. International Journal of Financial Studies, ISSN 

2227-7072, M.D.P.I., Basel, Vol. 4, Iss. 4, pp 1-14. doi:10.3390/ijfs4040024. 

• Panorska, A.K., Gershunov, A., & Kozubowski, T.J. (2007). From diversity to volatility: 

probability of daily precipitation extremes. Nonlinear dynamics in geophysics. Springer, New 

York, pp 465–484. 

• Papalexiou, S.M., Koutsoyiannis, D., & Makropoulos, C. (2013). How extreme is extreme? An 

assessment of daily rainfall distribution tails. Hydrology and Earth System Sciences, 17(2), 851–

862. doi: org/10.5194/hess-17-851-2013. 

• Papalexiou, S.M., &  Koutsoyiannis, D. (2013). Battle of extreme value distributions: A global 

survey on extreme daily rainfall. Water Resources Research, 49, 187–201. 

doi:10.1029/2012WR012557. 

• Papalexiou, S.M., & Koutsoyiannis, D. (2016). A global survey on the seasonal variation of the 

marginal distribution of daily precipitation. Advances in Water Resources, 94, 131–145. 

https://doi.org/10.1016/J.ADVWATRES.2016.05.005. 

• Papalexiou, S.M., AghaKouchak, A., & Foufoula-Georgiou, E. (2018). A Diagnostic 

Framework for Understanding Climatology of Tails of Hourly Precipitation Extremes in the 

United States. Water Resources Research, 54, 6725–6738. 

https://doi.org/10.1029/2018WR022732. 

https://doi.org/10.5194/hess-17-851-2013
https://doi.org/10.1029/2018WR022732


194 
 

• Papalexiou, S. M., & Montanari, A. (2019). Global and regional increase of precipitation 

extremes under global warming. Water Resources Research, 55(6), 4901-4914. 

• Peel, M. C., Finlayson, B. L., & McMahon, T. A. (2007). Updated world map of the Köppen-

Geiger climate classification. Hydrology and earth system sciences, 11(5), 1633-1644. 

• Phien, H. N., Ajirajah, T. J., (1984). Applications of the log Pearson type-3 distribution in 

hydrology. Journal of hydrology, 73(3-4), 359-372. 

• Pickands, J. I. (1975). Statistical Inference Using Extreme Order Statistics. Annals of Statistics3, 

119-131. 

• Piani, C., Haerter, J. O., & Coppola, E. (2010). Statistical bias correction for daily precipitation 

in regional climate models over Europe. Theoretical and applied climatology, 99, 187-192. 

• Preisendanz, H. E., Veith, T. L., Zhang, Q., Shortle, J., (2020). Temporal inequality of nutrient 

and sediment transport: a decision-making framework for temporal targeting of load reduction 

goals. Environmental Research Letters, 16(1), 014005. 

• Prajeesh, A. G., Swapna, P., Krishnan, R., Ayantika, D. C., Sandeep, N., Manmeet, S., ...& 

Sandip, I. (2021). The Indian summer monsoon and Indian Ocean dipole connection in the IITM 

Earth system model (IITM-ESM). Climate Dynamics, 1-21. 

• Qi, Y. (2008). Bootstrap and empirical likelihood methods in extremes. Extremes, 11, 81–97. 

https://doi.org/10.1007/s10687-007-0049-8. 

• Rajeevan, M., Bhate, J., & Jaswal, A.K. (2008). Analysis of variability and trends of extreme 

rainfall events over India using 104 years of gridded daily rainfall data. Geophysical Research 

Letters, 35, L18707. 

• Rajbanshi, J., & Das, S. (2021). The variability and teleconnections of meteorological drought 

in the Indian summer monsoon season: Implications for staple crop production. Journal of 

Hydrology, 603, 126845. 

• Rajah, K., O'Leary, T., Turner, A., Petrakis, G., Leonard, M., & Westra, S. (2014). Changes to 

the temporal distribution of daily precipitation. Geophysical Research Letters, 41(24), 8887-

8894. 

• Rajulapati, C. R., Papalexiou, S. M., Clark, M. P., Razavi, S., Tang, G., & Pomeroy, J. W. 

(2020). Assessment of extremes in global precipitation products: How reliable are they?.Journal 

of Hydrometeorology, 21(12), 2855-2873. 

• Rajulapati, C. R., & Papalexiou, S. M. (2023). Precipitation Bias Correction: A Novel Semi‐

parametric Quantile Mapping Method. Earth and Space Science, 10(4), 

e2023EA002823.https://doi.org/10.1029/2023EA002823. 

• Rai, P., Choudhary, A., & Dimri, A. P. (2019). Future precipitation extremes over India from 

the CORDEX-South Asia experiments. Theoretical and Applied Climatology, 137(3), 2961-

2975. 

https://doi.org/10.1007/s10687-007-0049-8


195 
 

• Rai, P. K., Singh, G. P., & Dash, S. K. (2020). Projected changes in extreme precipitation events 

over various subdivisions of India using RegCM4. Climate Dynamics, 54(1), 247-272. 

• Rao, K.K., Patwardhan, S.K., Kulkarni, A., Kamala, K., Sabade, S.S., & Kumar, K.K. (2014). 

Projected changes in mean and extreme precipitation indices over India using PRECIS. Global 

and Planetory Change, 113, 77–90. 

• Rao, K. K., Kulkarni, A., Patwardhan, S., Kumar, B. V., & Kumar, T. L. (2020). Future changes 

in precipitation extremes during northeast monsoon over south peninsular India. Theoretical 

and Applied Climatology, 142(1), 205-217. 

• Reddy, N. M., & Saravanan, S. (2023). Extreme precipitation indices over India using CMIP6: 

a special emphasis on the SSP585 scenario. Environmental Science and Pollution 

Research, 30(16), 47119-47143. 

• Resnick, S. I. (2007). Heavy-tail phenomena: probabilistic and statistical modeling. Springer 

Science & Business Media. 

• Reeve, D. E. (1996). Estimation of extreme Indian monsoon rainfall. International Journal of 

Climatology: A Journal of the Royal Meteorological Society, 16(1), 105-112. 

• Roxy, M.K., Ghosh, S., Pathak, A., Athulya, R., Mujumdar, M., Murtugudde, R., Terray, P., & 

Rajeevan, M. (2017). A threefold rise in widespread extreme rain events over central India. 

Nature Communication, 8, 1–11. https://doi.org/ 10.1038/s41467-017-00744-9. 

• Rosenzweig, C., Iglesius, A., Yang, X. B., Epstein, P. R., & Chivian, E. (2001). Climate change 

and extreme weather events-Implications for food production, plant diseases, and pests.NASA 

Publications, 24. 

• Rosenzweig, C., Tubiello, F. N., Goldberg, R., Mills, E., & Bloomfield, J. (2002). Increased 

crop damage in the US from excess precipitation under climate change. Global Environmental 

Change, 12(3), 197–202. https://doi.org/10.1016/S0959‐3780(02)00008‐0. 

• Roth, M., Jongbloed, G., & Buishand, T.A. (2016). Threshold selection for regional peaks-over 

threshold data. Journal of Applied Statistics, 43, 1291–1309. 

https://doi.org/10.1080/02664763.2015.1100589. 

• Rolski, T., Schmidli, H., Schmidt, V., & Teugels, J. L. (2009). Stochastic processes for 

insurance and finance. John Wiley & Sons. 

• Rubel, F., & Kottek, M. (2010). Observed and projected climate shifts 1901-2100 depicted by 

world maps of the Köppen-Geiger climate classification. MeteorologischeZeitschrift, 19(2), 

135. 

• Sabeerali, C. T., Rao, S. A., Ajayamohan, R. S., & Murtugudde, R. (2012). On the relationship 

between Indian summer monsoon withdrawal and Indo- Pacific SST anomalies before and after 

1976/1977 climate shift. Climate Dynamics, 39(3), 841–859. https://doi.org/10.1007/s00382-

011-1269-9.  

https://doi.org/
https://doi.org/10.1080/02664763.2015.1100589


196 
 

• Sabeerali, C. T., Ajayamohan, R. S., Bangalath, H. K., & Chen, N. (2019). Atlantic zonal mode: 

an emerging source of Indian summer monsoon variability in a warming world. Geophysical 

Research Letters, 46(8), 4460-4467. 

• Sahana, A. S., Ghosh, S., Ganguly, A., & Murtugudde, R. (2015). Shift in Indian summer 

monsoon onset during Shift in Indian summer monsoon onset during 1976/1977. Environmental 

Research Letters, 10(5), 054006. https:// doi.org/10.1088/1748-9326/10/5/054006. 

• Sarkar, S. & Maity, R. (2020) Increase in Probable Maximum Precipitation in a Changing 

Climate over India. Journal of Hydrology. doi: https://doi.org/10.1016/j.jhydrol.2020.124806. 

• Sarkar, S., & Maity, R. (2021). Global climate shift in 1970s causes a significant worldwide 

increase in precipitation extremes. Scientific reports, 11(1), 1-11. 

• Sarkar, S., & Maity, R. (2022). Future Characteristics of Extreme Precipitation Indicate the 

Dominance of Frequency Over Intensity: A Multimodel Assessment From CMIP6 Across India. 

Journal of Geophysical Research: Atmospheres, 127(16), e2021JD035539. 

• Saha, A., Ghosh, S., Sahana, A. S., & Rao, E. P. (2014). Failure of CMIP5 climate models in 

simulating post-1950 decreasing trend of Indian monsoon. Geophysical Research Letters, 

41(20), 7323-7330. 

• Saha, U., & Sateesh, M. (2022). Rainfall extremes on the rise: Observations during 1951–2020 

and bias-corrected CMIP6 projections for near-and late 21st century over Indian 

landmass. Journal of Hydrology, 608, 127682. 

• Sartori, M., & Schiavo, S., (2015). Connected we stand: a network perspective on trade and 

global food security. Food Policy, 57, 114–127. https://doi.org/10.1016/j.foodpol.2015.10.004. 

• Sannan, M. C., Nageswararao, M. M., & Mohanty, U. C. (2020). Performance evaluation of 

CORDEX-South Asia simulations and future projections of northeast monsoon rainfall over 

south peninsular India. Meteorology and Atmospheric Physics, 1-28. 

• Sanjay, J., Ramarao, M. V. S., Mujumdar, M., & Krishnan, R. (2017). Regional climate change 

scenarios. Observed climate variability and change over the Indian region, 285-304. 

doi:10.1007/978-981-10-2531-0. 

• Schwarz, G. (1978). Estimating the dimension of a model. The annals of statistics, 461-464. 

• Serinaldi, F. & Kilsby, C.G. (2014). Rainfall extremes: Toward reconciliation after the battle of 

distributions. Water Resources Research, 50, 336–352. 

https://doi.org/10.1002/2013WR014211. 

• Shastri, H., Paul, S., Ghosh, S. & Karmakar S. (2015). Impacts of urbanization on Indian 

summer monsoon rainfall extremes. Journal of Geophysical Research: Atmospheres 120,495–

516, doi:10.1002/2014JD022061. 

• Sharma, P. J., Patel, P. L., & Jothiprakash, V. (2020). Hydroclimatic teleconnections of large-

scale oceanic-atmospheric circulations on hydrometeorological extremes of Tapi Basin, India. 

Atmospheric Research, 235, 104791. 

https://doi.org/10.1016/j.jhydrol.2020.124806
https://doi.org/10.1016/j.foodpol.2015.10.004


197 
 

• Sharma, M. A., & Singh, J. B. (2010). Use of probability distribution in rainfall analysis. New 

York Science Journal, 3(9), 40-49. 

• Sharma, M., Coulibaly, P., & Dibike, Y. (2011). Assessing the need for downscaling RCM Data 

for Hydrologic Impact Study. Journal of Hydrologic Engineering, 16, 534-539. 

10.1061/(ASCE)HE.1943-5584.0000349. 

• Sharmila, S., Joseph, S., Sahai, A.K., Abhilash, S., & Chattopadhyay, R. (2015). Future 

projection of Indian summer monsoon variability under climate change scenario: An assessment 

from CMIP5 climate models. Global and Planetary Change, 124, 62-78, ISSN 0921-8181. 

https://doi.org/10.1016/j.gloplacha.2014.11.004. 

• Shastri, H., Paul, S., Ghosh, S., & Karmakar S. (2015). Impacts of urbanization on Indian 

summer monsoon rainfall extremes. Journal of Geophysical Research: Atmospheres, 120,495–

516, doi:10.1002/2014JD022061. 

• Shrestha, S., Yao, T., Kattel, D. B., & Devkota, L. P. (2019). Precipitation characteristics of two 

complex mountain river basins on the southern slopes of the central Himalayas. Theoretical and 

Applied Climatology, 138(1), 1159-1178. 

• Sherif, M., Almulla, M., Shetty, A., & Chowdhury, R. K. (2014). Analysis of rainfall, PMP and 

drought in the United Arab Emirates. International journal of climatology, 34(4), 1318-1328. 

• Smith, J. A., Cox, A. A., Baeck, M. L., Yang, L., & Bates, P., 2018. Strange floods: The upper 

tail of flood peaks in the United States. Water Resources Research, 54(9), 6510-6542. 

• Stanley, M. H., Buldyrev, S. V., Havlin, S., Mantegna, R. N., Salinger, M. A., & Stanley, H. E. 

(1995). Zipf plots and the size distribution of firms. Economics letters, 49(4), 453-457. 

• Strupczewski, W. G., Kochanek, K., Markiewicz, I., Bogdanowicz, E., Weglarczyk, S., & 

Singh, V. P., 2011. On the tails of distributions of annual peak flow. Hydrology Research, 42(2-

3), 171-192. 

• Singh, J., Vittal, H., Karmakar, S., Ghosh, S., & Niyogi, D. (2016) Urbanization causes non-

stationarity in Indian summer monsoon rainfall extremes. Geophysical Research 

Letters, 43(21), 11-269. 

• Singh, D., Tsiang, M., Rajaratnam, B., & Diffenbaugh, N.S. (2014) Observed changes in 

extreme wet and dry spells during the south Asian summer monsoon season. Nature Climate 

Change, 4, 456–461. https://doi.org/10.1038/nclimate2208. 

• Suman, M., & Maity, R. (2020). Southward shift of precipitation extremes over south Asia: 

Evidences from CORDEX data. Scientific reports, 10(1), 1-11. 

• Supharatid, S., Nafung, J., & Aribarg, T. (2021). Projected changes in temperature and 

precipitation over mainland Southeast Asia by CMIP6 models. Journal of Water and Climate 

Change, 13, 1–20. https://doi.org/10.2166/wcc.2021.015. 

• Suman, M., Maity, R., & Kunstmann, H. (2022). Precipitation of Mainland India: Copula‐based 

bias‐corrected daily CORDEX climate data for both mean and extreme values. 

https://doi.org/10.1016/j.gloplacha.2014.11.004
https://doi.org/10.1038/nclimate2208
https://doi.org/10.2166/wcc.2021.015


198 
 

• Taylor, K. E., Stouffer, R.J., & Meehl, G.A. (2012). An overview of CMIP5 and the Experiment 

Design. Bulletin of the American Meteorological Society, 93, 485-498. 

https://doi.org/10.1175/BAMS-D-11-00094.1. 

• Tabari, H. (2020). Climate change impact on flood and extreme precipitation increases with 

water availability. Scientific reports, 10(1), 1-10. 

• Teugels, J.L. (1975). The Class of Subexponential Distributions. The Annals of Probability. 

doi:10.2307/2959204. 

• Theriault, V., & Serra, R. (2014). Institutional environment and technical efficiency: A 

stochastic frontier analysis of cotton producers in West Africa. Journal of Agricultural 

Economics, 65(2), 383-405. 

• Tong, Q., Swallow, B., Zhang, L., & Zhang, J. (2019). The roles of risk aversion and climate-

smart agriculture in climate risk management: Evidence from rice production in the Jianghan 

Plain, China. Climate Risk Management, 26, 100199. 

• Todmal, R.S. (2021). Future Climate Change Scenario over Maharashtra, Western India: 

Implications of the Regional Climate Model (REMO-2009) for the Understanding of 

Agricultural Vulnerability. Pure and Applied Geophysics,  178, 155–168. 

https://doi.org/10.1007/s00024-020-02642-6. 

• Trenberth, K. E. (2011). Changes in precipitation with climate change. Climate research, 47(1-

2), 123-138. 

• Turco, M., Antonella, S., Herrera, G., Sixto, Maria, L., & Gutiérrez, J. (2013). Large biases and 

inconsistent climate change signals in ENSEMBLES regional projections. Climatic Change, 

120. 859-869. 10.1007/s10584-013-0844-y. 

• Varikoden, H., Revadekar, J. V., Kuttippurath, J., & Babu, C. A. (2019). Contrasting trends in 

southwest monsoon rainfall over the Western Ghats region of India. Climate Dynamics, 52(7), 

4557-4566. 

• Vargo, E., Pasupathy, R., & Leemis, L. M., (2010). Moment-ratio diagrams for univariate 

distributions. Journal of Quality Technology, 42,  276-286. 

• Vela, A.C. & Rodríguez, G. (2014). Extreme Value Theory: An Application to the Peruvian 

Stock Market Returns. Documentos de Trabajo / Working Papers. 

• Villarini, G., Smith, J. A., Ntelekos, A. A. & Schwarz U. (2011a). Annual maximum and peaks‐

over‐threshold analyses of daily rainfall accumulations for Austria. Journal of Geophysical 

Research, 116, D05103. doi:10.1029/2010JD015038. 

• Villarini, G., Smith, J. A., Baeck, M. L., Marchock, T., & Vecchi, G. A. (2011b). 

Characterization of rainfall distribution and flooding associated with U.S. landfalling tropical 

cyclones: Analyses of Hurricanes Frances, Ivan, and Jeanne (2004). Journal of Geophysical 

Research, 116, D23116. https://doi.org/10.1029/2011JD016175. 

https://doi.org/10.1175/BAMS-D-11-00094.1


199 
 

• Villarini, G. (2012). Analyses of annual and seasonal maximum daily rainfall accumulations for 

Ukraine, Moldova, and Romania. International Journal of Climatology, 32(14), 2213-2226. 

• Vittal, H., Karmakar, S., & Ghosh, S. (2013). Diametric changes in trends and patterns of 

extreme rainfall over India from pre‐1950 to post‐1950. Geophysical Research Letters , 40(12), 

3253-3258. 

• Vinnarasi, R., & Dhanya, C. T. (2016). Changing characteristics of extreme wet and dry spells 

of Indian monsoon rainfall. Journal of Geophysical Research: Atmospheres, 121(5), 2146-2160. 

doi:10.1002/2015JD024310 

• Vinod, D., & Agilan, V. (2022). Impact of Climate Change on Precipitation Over India Using 

CMIP-6 Climate Models. In  Innovative Trends in Hydrological and Environmental Systems: 

Select Proceedings of ITHES 2021 (pp. 155-164). Singapore: Springer Nature Singapore. 

• Villarini, G., & Smith, J.A., (2010). Flood peak distributions for the eastern United States. Water 

Resources Research, 46 (6), 1–17. doi:10.1029/2009WR008395. 

• Vishnu Priya, M. S., & Agilan, V. (2022). Evaluation of change factor methods in downscaling 

extreme precipitation over India. Journal of Hydrology, 614, 128531. 

• Voitalov, I., Van Der Hoorn, P., Van Der Hofstad, R., & Krioukov, D. (2019). Scale-free 

networks well done. Physical Review Research,  1(3), 033034. 

https://arxiv.org/abs/1811.02071. 

• Wang, B., Wu, R. & Lau, K. M. (2001). Interannual Variability of the Asian Summer Monsoon: 

Contrasts between the Indian and the Western North Pacific – East Asian Monsoons. Journal 

of Climate, 14, 4073–4090. 

• Wang, H. (2001). The weakening of the Asian monsoon circulation after the end of 1970’s. 

Advances in Atmospheric Sciences, 18(3), 376–386. https://doi.org/10.1007/BF02919316. 

• Wang, Y., Xu, H., Cheng, D. & Yu, C. (2018). The local asymptotic estimation for the 

supremum of a random walk with generalized strong subexponential summands. Statistical 

Papers, 59(1), 99-126. 

• Westra, S., Fowler, H. J., Evans, J. P., Alexander, L. V., Berg, P., Johnson, F., ... & Roberts, N. 

(2014). Future changes to the intensity and frequency of short‐duration extreme 

rainfall. Reviews of Geophysics, 52(3), 522-555. 

• Weibull, W. (1939). A statistical theory of strength of materials.  Ing. Vetensk. Akad. Handl, 

151, 1–45. 

• Weisheimer, A., Schaller, N., O’Reilly, C., MacLeod, D. A. & Palmer, T. (2017). Atmospheric 

seasonal forecasts of the twentieth century: Multi-decadal variability in predictive skill of the 

winter North Atlantic Oscillation (NAO) and their potential value for extreme event attribution. 

Quarterly Journal of Royal Meteorological Society, 143, 917–926. 

https://doi.org/10.1002/qj.2976. 

https://arxiv.org/abs/1811.02071
https://ideas.repec.org/a/spr/stpapr/v59y2018i1d10.1007_s00362-016-0754-y.html
https://ideas.repec.org/a/spr/stpapr/v59y2018i1d10.1007_s00362-016-0754-y.html
https://ideas.repec.org/s/spr/stpapr.html
https://ideas.repec.org/s/spr/stpapr.html
https://doi.org/10.1002/qj.2976


200 
 

• Werner, T., & Upper, C. (2004). Time variation in the tail behavior of Bund future returns. 

Journal of Futures Markets, 24(4): 387–398. doi:10.1002/fut.10120. 

• Wilson, P. S., & Toumi, R., (2005). A fundamental probability distribution for heavy 

rainfall. Geophysical Research Letters, 32(14). 

• Wietzke, L. M. , Merz , B., Gerlitz , L., Kreibich , H., Guse , B.,  Castellarin A. & Vorogushyn 

S. (2020) Comparative analysis of scalar upper tail indicators. Hydrological Sciences Journal, 

65(10): 1625-1639. doi: 10.1080/02626667.2020.1769104. 

• Xie, X. (2017). Analysis of Heavy-Tailed Time Series (Doctoral dissertation, University of 

Copenhagen, Faculty of Science, Department of Mathematical Sciences). 

• Yaduvanshi, A., Bendapudi, R., Nkemelang, T., & New, M. (2021). Temperature and rainfall 

extremes change under current and future warming global warming levels across Indian climate 

zones. Weather and Climate Extremes, 31, 100291. https://doi. 

org/10.1016/j.wace.2020.100291. 

• Zarrin, A., & Dadashi-Roudbari, A. (2021). Projection of future extreme precipitation in Iran 

based on CMIP6 multi-model ensemble. Theoretical and Applied Climatology, 144, 643-660. 

• Zenga, M., (2007). Inequality curve and inequality index based on the ratios between lower and 

upper arithmetic means. Statistica & Applicazioni, 5(1), 3-27. 

• Zhang, Q., Gu, X., Singh, V. P., Xu, C. Y., Kong, D., Xiao, M., & Chen, X. (2015). 

Homogenization of precipitation and flow regimes across China: changing properties, causes 

and implications. Journal of Hydrology, 530, 462–475. doi:10.1016/j.jhydrol.2015.09.041. 

• Zhang, R. H., Rothstein, L. M. & Busalacchi, A. J. (1998). Origin of upper ocean warming and 

El Niño change on decadal scales in the tropical Pacific Ocean. Nature 391, 879–83. 

• Zhou, T., Gong, D., Li, J. & Li, B. (2009). Detecting and understanding the multi-decadal 

variability of the East Asian Summer Monsoon–Recent progress and state of 

affairs. Meteorologische Zeitschrift , 18(4), 455-467. 

• Zhanling, Li., Zhanjie, Li., Zhao, W., & Wang, Y. (2015). Probability Modeling of Precipitation 

Extremes over Two River Basins in Northwest of China. Advances in Meteorology. Article ID 

3374127. http://dx.doi.org/10.1155/2015/374127. 

• Zuo, J., Ren, H.-L., Li, W., & Wang, L. (2016). Interdecadal variations in the relationship 

between the winter North Atlantic oscillation and temperature in south-central China. Journal 

of Climate, 29, 7477–7493. https://doi.org/10.1175/JCLI-D-15-0873.1. 

  

https://doi.org/10.1002/fut.10120
https://doi/
http://dx.doi.org/10.1155/2015/374127
https://doi.org/10.1175/JCLI-D-15-0873.1


201 
 

APPENDIXES 

Appendix A: Papalexiou et al. (2013) and Nerantzaki and Papalexiou (2019) proposed threshold-

based approaches to characterize the tail behavior of daily precipitation.  A brief description of 

the threshold-based approach is presented below 

A.1 Threshold-based approach proposed by Papalexiou et al. (2013) 

In this approach, the annual exceedance series (AES) (e.g., Chow 1964; Ben-Zvi, 2009) comprising N 

extreme precipitation events above some threshold  Lx is extracted from the non-zero daily 

precipitation data recorded at a station, where N equals the number of recording years. Then, the 

empirical probability of exceedance ( )N iF x  is calculated using the Weibull plotting position formula 

(Weibull, 1939; Makkonen, 2006) as given by Equation A.1. 

( )
( ) 1

1

i
N i

r x
F x

n
= −

+
                    (A.1) 

Where ( )ir x  is the rank of the precipitation value ix  in the ordered sample and n number of non-zero 

precipitation values. The empirical tail of daily precipitation data is represented by the N largest non-

zero precipitation values (i.e., AES series) and denoted by ( )N iF x  from  1    n N i n− +    (note that 

( )1
  L n N

x x
− +

= ). Subsequently, the theoretical tail represented by the probability of exceedance ( )iF x  

is determined for each of the four representative distributions given in Table 3.1 of Chapter 3.1. Finally, 

a PRMSE norm given by Equation A.2 is used to evaluate the fit and compare the performance of 

different theoretical tails to the empirical tails.  
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The distribution yielding the least PRMSE is chosen as the best-suited probability distribution for the 

tail of precipitation data (Papalexiou et al., 2013; Moccia et al., 2021). A detailed description of the 

approach can be found in Papalexiou et al. (2013). 

A.2 Threshold-based approach proposed by Nerantzaki and Papalexiou (2019) 

Nerantzaki and Papalexiou (2019) proposed the advancement of a popular graphical method known as 

the mean excess function (MEF) to discriminate the tails of daily precipitation at 21,348 stations from 

all over the globe. For a random variable X with a distribution function, XF the mean excess function 

( )pe x is given by 
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= −  = −                 (A.3) 

where,
1( )p Xx F p−=  is the lower threshold value corresponding to probability p and 

1( )XF p−
 is the 

quantile function.  

In this approach, empirical ( )pe x is estimated for various threshold values 
0.9 0.99( , )px x x  at each 

station. The non-exceedance probabilities from 0.9 to 0.99 were considered as the tail of precipitation 

probability. The plot between px  and ( )pe x  are then constructed, and the linear slope of the plot is 

determined. The slope of the plot forms the basis to determine whether the tail is exponential (i.e., slope 

close to zero) or not. Nerantzaki and Papalexiou (2019) considered two statistical tests in their study 

that are followed in this study also. Firstly, a two-tailed test is performed to test the null hypothesis that 

the tail of daily precipitation at a station is exponential. The test utilizes a confidence interval (CI) for 

the exponential case corresponding to sample size (n) for a specific significance level (u). If the 

estimated slope lies within the CI, then the null hypothesis cannot be rejected for the selected 

significance level. Contrary to this, if the estimated slope lies outside the CI, then the null hypothesis is 

rejected, indicating a non-exponential tail. When the null hypothesis from the two-tailed test is rejected, 

a one-tailed test is performed where the null hypothesis is Exponential tail, and the alternative is sub-

exponential (or hyper-exponential). Tails heavier than the exponential tail, i.e., the observed slope is 

above the CI’s upper limit are designated as the sub-exponential tails, whereas the tails lighter than the 

exponential tail, i.e., the observed slope is below the CI’s upper limit are designated as the hyper-

exponential tails. Finer details about the approach can be found in Nerantzaki and Papalexiou (2019). 

 

 


