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Lay Summary

In mathematics, numbers play a pivotal role, serving as fundamental entities

that constitute the very foundation of the discipline. The numbers are abstract

entities used to represent quantities, measurements, or values. They can be broadly

classified into rational and irrational numbers. Rational numbers are those that

can be expressed as a fraction of two integers p/q, a numerator p, and a non-zero

denominator q, resulting in either repeating or terminating decimal expansions.

In contrast, irrational numbers cannot be represented as such and always have

non-repeating, non-terminating decimal expansions.

Beyond the domain of rational numbers, numbers can also be classified as

transcendental and algebraic. Algebraic numbers are solutions to polynomial

equations with rational coefficients, while transcendental numbers, such as π and e,

defy such algebraic representations. These distinctions highlight the intricate nature

of mathematical entities, paving the way for deeper explorations.

Further, in the world of mathematics, there is something called q-series, a domain

pioneered by mathematicians such as Euler, Gauss, Ramanujan, and others. The

field of q-series involves infinite series with a variable q, playing a vital role in modular

forms and related areas. Here, our primary object is to discover mathematical

counterparts that behave as the original object as q approaches 1. This exploration

leads us to the fascinating realm of q-analogues, offering new perspectives on classical

functions through the lens of these specialized series.

Moreover, there exists another significant domain known as p-adic theory,

presenting an alternative perspective on number systems. The p-adic number

system, developed for any prime number p, transcends the conventional framework

of rational numbers in a unique manner. In this system, the concept of “closeness”

is determined uniquely: two p-adic numbers are considered close if their difference

can be divided by a high power of p. This prompts an investigation into the p-adic

analogues of classical functions, opening doors to a distinctive understanding of

transcendence and irrationality in this context.

Our thesis focuses on a detailed examination of the transcendental and irrational

attributes embedded in the q-analogues and p-adic analogues of classical functions.

Through a careful analysis of these specialized mathematical structures, we aim

to contribute novel insights to the broader field of number theory, unraveling the

intricacies that define the transcendental and irrational characteristics within the

q-series and p-adic landscapes.
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Abstract

In this thesis, we explore the complex world of mathematics, uncovering a

collection of results about the q-analogues of various zeta functions and their

interesting properties. Our study is motivated by the remarkable works of Kurokawa

and Wakayama in 2003, which introduced a q-variant of the Riemann zeta function,

leading to a thorough exploration of these “q” variations.

Our exploration begins with a detailed examination of the foundational

q-analogue of the Riemann zeta function, represented as ζq(s), defined for q > 1

and ℜ(s) > 1. This function exhibits meromorphic behaviour across the complex

plane. Its Laurent series expansion around s = 1 is a main focus of our investigation

and it takes the following form:

ζq(s) =
q − 1

log q
.

1

s− 1
+ γ0(q) + γ1(q)(s− 1) + γ2(q)(s− 1)2 + γ3(q)(s− 1)3 + · · · .

The coefficients γk(q) in this expansion, referred to as q-analogue of the k-th

Stieltjes constants, become the building blocks for the subsequent mathematical

attempts. The closed-form of these coefficients is derived via intricate formulas,

involving Stirling numbers of the first kind, polynomials, and other combinatorial

entities, revealing the complexity that underlies their nature. Building upon this

foundation, we introduce some results. Few theorems demonstrate the linear

independence of the following set of numbers:

{1, γ∗0(q), γ∗0(q2), γ∗0(q3), . . . , γ∗0(qr)},

where r, q ∈ Z such that r ≥ 1, q > 1, and also involves q-analogue of the Euler’s

constant. This leads to a significant improvement on the results by Kurokawa and

Wakayama. The transcendence of infinite series involving q-analogue of the first

Stieltjes constant, γ1(2), is also established, answering a question posed by Erdős

in 1948 regarding the arithmetic nature of the infinite series
∑

n≥1 σ1(n)/t
n, for any

integer t > 1.

Continuing further, we delve into q-analogues of multiple zeta functions,

exploring their behaviour and interrelations. In particular, we calculate a

mathematical expression for γ0,0(q), which serves as a “q” version of Euler’s constant

with a height of 2. It represents the constant term in the Laurent series expansion

of q-version of the double zeta function when centered at s1 = 1 and s2 = 1.

Furthermore, we establish results related to linear independence of numbers linked

to γ′∗0 (q
i), where 1 ≤ i ≤ r, for any integer r ≥ 1. We also investigate the irrationality

of numbers associated with γ0,0(2). Further, as we compare the behaviour of the

q-double zeta function when the variables s1 → 0 and s2 → 0 with their classical
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counterpart, we gain valuable insights into the similarities and distinctions between

these functions. Our exploration then advances to introducing several q-variants

of the double zeta function, examining their algebraic identities, and uncovering

connections among them. These results open new avenues for understanding the

intricate relationships between these variants. Taking our research a step further,

we turn our attention towards the multi-variable world, introducing a q-variant of

the Mordell-Tornheim r-ple zeta function. Furthermore, we also investigate the

coefficients of the Laurent series expansion of the q-analogue of the Hurwitz zeta

function, which was introduced by Kurokawa and Wakayama in 2003.

In the last part, we present a comprehensive study of p-adic analysis, building

upon the seminal work of Chatterjee and Gun as a foundational framework. In 2014,

Chatterjee and Gun investigated the transcendental nature of special values of the

p-adic digamma function, denoted as ψp(r/p
n) + γp, for any integer n > 1. Our

objective is to extend and generalize these results concerning the transcendental

properties of p-adic digamma values. We commence by revisiting a fundamental

theorem proposed by them, assert constraints on algebraic elements within a specific

set, and highlight the distinctiveness of certain p-adic digamma values. Our research

seeks to expand upon this theorem for distinct prime powers and explore the

transcendental nature of the p-adic digamma values, with at most one exception. We

define and explore various sets, incorporating different prime numbers and scenarios.

These theorems establish the transcendental nature of the elements within these sets,

with only a limited number of exceptions. Our exploration extends to the realm

of composite numbers, specifically focusing on cases, where q ≡ 2 (mod 4). The

subsequent theorems shed light on the transcendental properties of p-adic digamma

values in this distinct scenario.

Keywords: Digamma function, Euler’s constant, Eulerian numbers,

Mordell-Tornheim zeta function, Multiple zeta functions, Nesterenko’s theorem,

Riemann zeta function, Stieltjes constants, Stirling numbers of the first kind, p-adic

theory, q-series.

2020 Mathematics Subject Classification: 33D05, 11J81, 11J72, 11M06, 11M32,

11B65, 11E95, 11J86, 11J91.
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Chapter 1

Introduction

In the ever-expanding domain of number theory, both the Riemann zeta function

and q-series stand as an enduring enigma, captivating mathematicians for ages.

These have been the subject of extensive exploration by numerous researchers across

diverse scientific disciplines. The far-reaching consequences of these investigations

have resulted in a vast mathematical literature. Moreover, over the last century, the

emergence of p-adic numbers and p-adic analysis has significantly shaped modern

number theory. In this chapter, a concise overview of the fundamental concepts

with their respective results will be detailed, with the intent of delving into notable

discussions in later chapters.

1.1 The Riemann zeta function

The harmonic series is a famous mathematical series that diverges and is defined

as the sum of the reciprocals of positive integers. In other words, it is given as:

Hn = 1 +
1

2
+

1

3
+ · · ·+ 1

n
.

When the number of terms, represented by n, approaches infinity, limn→∞Hn

becomes infinite. This specific illustration has held significant importance for

mathematicians, particularly those in the field of number theory, for a long time.

A Swiss mathematician, Leonhard Euler was intrigued by the special values of a

closely related function, known as the Riemann zeta function, denoted by ζ(s).

This function is a generalization of the harmonic series and is defined as follows:

Definition 1.1.1. For a complex number s satisfying ℜ(s) > 1, the Riemann zeta

function, ζ(s), is defined as:

ζ(s) =
∑
n≥1

1

ns
. (1.1)

Inspired by the celebrated Basel problem [4], which computes the exact value of

ζ(2), Euler considered the function ζ(s), where s is any real number greater than 1.

His achievements went beyond the Basel problem, as he not only provided its solution

but also extended it to compute ζ(2k), for every natural number k in ref. [28]. The
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relationship between the harmonic series and the Riemann zeta function is a classic

example of how seemingly simple series can lead to more profound and complex

mathematical concepts and problems. Later, Bernhard Riemann, in his memoir of

1859 [59], made significant advancements in the study of Euler’s ζ(s). He did so

by examining the function ζ(s) on the complex plane and established some of the

most remarkable findings concerning the distribution of prime numbers. Specifically,

using the principle of analytic continuation he proved the meromorphic continuation

of ζ(s) on the whole complex plane except at the point s = 1, where it has a simple

pole with residue 1. This indicates that the unique Laurent series expansion of

function ζ(s) around the point s = 1 is given as:

ζ(s) =
1

s− 1
+
∑
k≥0

(−1)k

k!
γk(s− 1)k. (1.2)

The following asymptotic representation of the constants γk was first shown in

1885 by Stieltjes in ref. [10]:

Definition 1.1.2. In the Laurent series expansion of the Riemann zeta function at

the point s = 1, the k-th coefficient, γk, is expressed as:

γk = lim
N→∞

(
N∑

n=1

logk n

n
− logk+1N

k + 1

)
. (1.3)

The constant γk is known as the k-th Euler-Stieltjes constant (or classical Stieltjes

constant). Here, note that γ0 = γ, which is the classical Euler’s constant. The

constant γ comes ahead with several distinct generalizations that may be found in

the mathematical arena. The aforementioned asymptotic representation is one of the

natural generalizations of Euler’s constant γ. The coefficients in the Laurent series

expansion of various generalizations of the Riemann zeta function are perhaps the

key ideas that will form the major part of our thesis. Indeed, it is evident that one

can acquire generalizations of these coefficients by studying suitable generalizations

of the Riemann zeta function. Specifically, we are interested in exploring some

generalizations of the Riemann zeta function within the realm of q-series. The

upcoming sections of this chapter are dedicated to elucidating these ideas in detail.

1.2 Generalizations of the Euler’s constant

In this specific section, we delve more into this topic by investigating various

generalizations of Euler’s constant. We have already considered one of the natural

generalizations: the Euler-Stieltjes constants. Another notable generalization of the
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Riemann zeta function leads to the generalized Stieltjes constants. These constants

appear as coefficients in the Laurent series expansion of a generalization, namely,

the Hurwitz zeta function which was introduced by a German mathematician, Adolf

Hurwitz in 1882 in ref. [41]. The following describes the Hurwitz zeta function:

Definition 1.2.1. For a > 0 and s ∈ C such that ℜ(s) > 1, the Hurwitz zeta

function is defined as:

ζ(s, a) =
∑
n≥0

1

(n+ a)s
. (1.4)

It is apparent that ζ(s, 1) = ζ(s), indicating that it is a generalization of the

Riemann zeta function. Hurwitz demonstrated that akin to the Riemann zeta

function, the Hurwitz zeta function also satisfies the functional equation and has a

simple pole at s = 1 with a residue 1 [2]. As a result, the function ζ(s, a) exhibits

the following unique Laurent series expansion centered at the point s = 1:

ζ(s, a) =
1

s− 1
+
∑
k≥0

(−1)kγk(a)

k!
(s− 1)k,

where the constants γk(a) are known as generalized Stieltjes constants. In 1972,

Berndt [7, Theorem 1] inferred the following asymptotic representation for these

constants:

Definition 1.2.2. (Generalized Stieltjes constants) For a > 0 and a

non-negative integer k, we have:

γk(a) = lim
N→∞

(
N∑

n=0

logk(n+ a)

n+ a
− logk+1(N + a)

k + 1

)
.

Concerning these constants in general, very little information is currently

available in the literature. Nevertheless, a closed-form expression for the first

generalized Stieltjes constant, denoted as γ1(a), when a is a rational number, has

been recently provided by Blagouchine in 2015 [8, Equation 50].

Theorem 1.2.1. For r, q ∈ N, where 1 ≤ r < q we have:

γ1

(
r

q

)
= γ1 − γ log 2q − π

2
(γ + log 2πq) cot

(
πr

q

)
+

q−1∑
l=1

cos
2πrl

q
· ζ ′′

(
0,
l

q

)

+ π

q−1∑
l=1

sin
2πrl

q
· log Γ

(
l

q

)
+ (γ + log 2πq)

q−1∑
l=1

cos
2πrl

q
· log sin

(
πl

q

)
− log2 2− log 2 · log πq − 1

2
log2 q,
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where ζ
′′
is the second order derivative of the Hurwitz zeta function ζ(s, a) and Γ is

the classical Gamma function.
Further, Briggs in ref. [10] examined the constants γ(r, q) linked with arithmetic

progressions defined by:

γ(r, q) = lim
x→∞

 ∑
0<n≤x

n ≡ r(mod q)

1

n
− 1

q
log x

 ,

where 1 ≤ r ≤ q. Clearly, γ(1, 1) = γ. These constants were further investigated by

Lehmer in 1975 [48] using discrete Fourier transforms and some basic mathematical

tools. He referred to them as Euler-Briggs-Lehmer constants. Additionally, he

deduced many properties of the constants γ(r, q) and presented a basic proof of the

well-known Gauss theorem on the digamma function ψ(z) at rational arguments.

Further, Lehmer [48] established a correlation between γ(r, q) and the class numbers

of quadratic fields Q(
√
±q), as well as certain infinite series. Moreover, Knopfmacher

in ref. [46] and later Dilcher in ref. [23] examined the Euler-Briggs-Lehmer constant

of higher order which is given by the following form:

γk(r, q) = lim
x→∞

 ∑
n≤x

n ≡ r(mod q)

logk n

n
− logk+1 x

q(k + 1)

 .

Evidently, we can observe that γ0(1, 1) = γ, γ0(r, q) = γ(r, q), and γk(1, 1) = γk.

Furthermore, in 2008, Diamond and Ford [21] examined the constants γ(℘), which

is another interesting generalization of the Euler’s constant, pertaining to a finite

set of prime numbers ℘ in the following manner:

γ(℘) = lim
x→∞

 ∑
n≤x

(n,P℘)=1

1

n
− δ℘ log x

 ,

where

P℘ =


∏
p∈℘

p, if ℘ ̸= ∅

1, otherwise

(1.5)

and
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δ℘ =


∏
p∈℘

(
1− 1

p

)
, if ℘ ̸= ∅

1, otherwise.

(1.6)

Apparently, substituting ℘ = ∅, we get γ(∅) = γ. One of their initial findings

concerning these constants is the closed-form expression for γ(℘) (see Proposition 1

in ref. [21]).

Theorem 1.2.2. Let ℘ be any finite set of primes. Then,

γ(℘) =
∏
p∈℘

(
1− 1

p

)(
γ +

∑
p∈℘

log p

p− 1

)
.

Also, Murty and Saradha in ref. [54] established various results related to the

arithmetic nature of the constants γ(r, q). In particular [54, Theorem 1], an identity

derived from Lehmer’s work [48, Theorem 1] and Baker’s theory of linear forms in

logarithms of algebraic numbers demonstrate that, in the infinite set X = {γ(r, q) :
1 ≤ r ≤ q, q ≥ 2}, at most one element can be algebraic. Consequently, if γ is an

algebraic number, then γ(2, 4) stands as the sole algebraic element in the set X,

since γ(2, 4) equals γ/4. For further study into the arithmetic properties of γ(r, q)

and its generalizations, one can refer to [35,36]. In ref. [36], Gun, Saha, and Sinha

considered the following generalizations of these constants:

Definition 1.2.3. For 1 ≤ r ≤ q and a set ℘ consisting of finitely many primes,

define:

γ(℘, r, q) = lim
x→∞


∑
n≤x

(n,P℘)=1
n≡r mod q

1

n
− δ℘

q
log x

 ,

where P℘ and δ℘ are given by Equations 1.5 and 1.6, respectively.

Then, Chatterjee and Khurana [20] indulged in the examination of generalization

of these constants and studied the behaviour of the Laurent Stieltjes constants γk(χ0)

for a principal Dirichlet character χ0. The asymptotic form for γk(χ0) is given as

follows:
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Definition 1.2.4. For k ≥ 0 and the Dirichlet character χ0 modulo q

γk(χ0) = lim
x→∞

 ∑
n≤x

(n,rad(q))=1

logk n

n
−

∏
p|rad(q)

(
1− 1

p

)
logk+1 x

k + 1

 ,

where rad(q) denotes the radical of q.

Later, Chatterjee and Khurana [19] introduced the constants γk(℘, r, q) and

explored their connections with the special values of some well-known functions.

The constants are given in the following form:

Definition 1.2.5. For any integer k ≥ 0 and a given set ℘ containing finitely many

primes, denote the limit:

γk(℘, r, q) = lim
x→∞


∑
n≤x

(n,P℘)=1
n≡r mod q

logk n

n
− δ℘

q

logk+1 x

k + 1

 ,

where P℘ and δ℘ are given by Equations 1.5 and 1.6, respectively.

These constants γk(℘, r, q) may be viewed as a generalization of various constants

discussed so far. To be more precise, the following relationship holds:

1. γ0(∅, r, q) = γ(r, q),

2. γk(∅, r, q) = γk(r, q),

3. γ0(℘, r, q) = γ(℘, r, q).

In other directions, several authors, such as Diamond in ref. [22], Murty and

Saradha in ref. [53], and Chatterjee and Gun in ref. [18], have delved into the

exploration of p-adic counterparts of these constants. In addition to this, another

well-known generalization is the q-analogue of these constants. In this thesis, we

indulge in the investigation of the arithmetic properties of the q-analogues of Euler’s

constant, presenting a closed-form expression for the q-analogues of Euler-Stieltjes

constants. Additionally, the q-analogue of the Euler-Briggs-Lehmer constants will

be analyzed. The next section is dedicated to the exploration of the q-series.

1.3 q-series

In the domain of q-series, our primary object is to discover mathematical

counterparts that behave as the original object when we have q → 1. As a result, a
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substantial amount of mathematical literature has been produced, making it tedious

to cover comprehensively in this context. For a systematic and detailed introduction

to this area of study, readers are encouraged to consult the works presented in

ref. [27,32]. Now, we proceed to examine some of the notable contributions made

by various mathematicians in this field. The origins of this field can be traced

back to the 18th century, with Euler’s initial introduction of the variable q in his

publication ‘Introductio in analysin infinitorum’ (Introduction to the Analysis of the

Infinite) [29] in the tracks of Newton’s infinite series. In the 1740s, he pioneered the

theory of partitions, commonly known as additive analytic number theory, marking

the inception of q-analysis. In the field of number theory, a partition of a positive

integer n is a method for expressing n as a sum of positive integers, up to the order

of summands. The partition function, denoted by p(n), is the possible number of

partitions of n. To demonstrate the emergence of p(n) within a q-series, let us

examine a formal series expansion of the infinite product ⟨q; q⟩−1
∞ in terms of powers

of q, as outlined below:

⟨q; q⟩−1
∞ =

∏
k≥0

(1− qk+1)−1

=
∑
k1≥0

∑
k2≥0

· · · qk1+2k2+···

=
∑
n≥0

p(n)qn,

where 0 < |q| < 1, n = k1 + 2k2 + · · ·+ nkn, p(0) = 1, and

⟨a; q⟩n =

1, if n = 0

(1− a)(1− aq) · · · (1− aqn−1), if n = 1, 2, . . .

is the q-shifted factorial. In 1829, Jacobi [45] introduced a triple product identity,

often referred to as the Gauss-Jacobi triple product identity, along with θ and elliptic

functions. This triple product identity is defined as follows:

Definition 1.3.1. For complex numbers x and y, with |x| < 1 and y ̸= 0, the triple

product identity is given as:

∏
m≥1

(1− x2m)(1 + x2m−1y2)

(
1 +

x2m−1

y2

)
=

∞∑
n=−∞

xn
2

y2n.

By substituting x = q
√
q and y2 = −√

q, the above identity becomes:

∏
m≥1

(1− qm) =
∞∑

n=−∞

(−1)nq
3n2+n

2 .
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These developments are essentially connected to the fundamentals of q-analysis.

They have applications in proving identities of the Rogers-Ramanujan type,

representing theta functions as infinite products, and verifying identities related to

integer partitions. Further, continuing in this direction, Gauss in 1812, introduced

hypergeometric series and their corresponding contiguity relations. The series

denoted by 2F1(a, b; c|q; qz), can be expressed as follows:

1 +
ab

1!c
z +

a(a+ 1)b(b+ 1)

2!c(c+ 1)
z2 +

a(a+ 1)(a+ 2)b(b+ 1)(b+ 2)

3!c(c+ 1)(c+ 2)
z3 + · · ·

as a function of a, b, c, z, where it is assumed that c ̸= 0,−1,−2, . . ., to ensure that

there are no occurrences of zero factors in the denominators of the series terms. He

also proved that the series is absolutely convergent for |z| < 1. Subsequently, he

introduced the q-binomial coefficients in ref. [33].

Definition 1.3.2. The Gaussian q-binomial coefficients are defined by:(
n

k

)
q

=
⟨1; q⟩n

⟨1; q⟩k⟨1; q⟩n−k

, k = 0, 1, . . . , n

and (
α

β

)
q

=
⟨β + 1, α− β + 1; q⟩∞

⟨1, α+ 1; q⟩∞
=

Γq(α + 1)

Γq(β + 1)Γq(α− β + 1)
,

for complex numbers α and β, if 0 < |q| < 1.

Additionally, he established an identity for these coefficients, which serves as the

foundation for q-analysis. After almost 30 years, in 1846, Heine [38,39] introduced

the q-analogue of the Gauss series which is stated as follows:

Definition 1.3.3. For |q| < 1, Heine introduced the following q-hypergeometric

series as a generalization of the hypergeometric series:

2ϕ1(a, b; c|q; z) = 1 +
(1− qa)(1− qb)

(1− q)(1− qc)
z +

(1− qa)(1− qa+1)(1− qb)(1− qb+1)

(1− q)(1− q2)(1− qc)(1− qc+1)
z2 + · · ·

=
∑
n≥0

⟨a; q⟩n⟨b; q⟩n
⟨1; q⟩n⟨c; q⟩n

zn,

where c ̸= 0,−1,−2, . . . and this series is absolutely convergent for |z| < 1.

In the notation 2ϕ1(a, b; c|q; z), the parameters to the left of “|” represent

exponents, while to the right of “|” is the basis q and the function value z. It

is important to highlight that Heine’s series can be regarded as a q-analogue of

Gauss’ series. This is evident from the fact that 2ϕ1 approaches 2F1 as q approaches
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1. This notable transition is facilitated by a simple observation made by Heine,

specifically, limq→1[(1− qa/(1− q)] = a. The field of q-series gained its significance

when Heine transformed this straightforward observation into a structured theory of

2ϕ1 q-hypergeometric series (or basic hypergeometric series), akin to Gauss’ theory

of 2F1 hypergeometric series. He also deduced the following transformation formulas

using continued fractions:

Theorem 1.3.1. For |z| < 1 and |b| < 1,

2ϕ1(a, b; c|q; z) =
⟨b, az; q⟩∞
⟨c, z; q⟩∞

2ϕ1(c/b, z; az|q; b).

Thomae, a student of Heine, in 1869 [62,63], introduced the concept of q-integral,

defined as:

Definition 1.3.4. For 0 < q < 1 and f is continuous on [0, 1],∫ 1

0

f(t)dqt = (1− q)
∑
n≥0

f(qn)qn.

He also concluded that the Heine transformation for 2ϕ1(a, b; c|q; z) represented
a q-analogue of the Euler beta integral, expressed as a quotient of the q-gamma

function. Euler and Heine employed different forms of the q-derivatives and finally

a real q-derivative was pioneered by Jackson in 1908 [43] as follows:

Definition 1.3.5. Let ϕ be a continuous real function. Then, the q-derivative is

given by:

(Dqϕ)(x) =


ϕ(x)−ϕ(qx)

(1−q)x
, if q ∈ C \ {1}, x ̸= 0

dϕ
dx
(x), if q = 1

dϕ
dx
(0), if x = 0.

The limit as q tends to 1 corresponds to the derivative

lim
q→1

(Dqϕ)(x) =
dϕ

dx
,

if ϕ is differentiable at x. Also, in 1910, Jackson [44] introduced the following general

q-integral:

Definition 1.3.6. For a, b ∈ R and 0 < |q| < 1, q-integral is given by:∫ b

a

f(t, q)dqt =

∫ b

0

f(t, q)dqt−
∫ a

0

f(t, q)dqt,
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where ∫ a

0

f(t, q)dqt = a(1− q)
∑
n≥0

f(aqn, q)qn.

Other than this, Jackson [42,44] established the following q-analogue of the

gamma function:

Γq(x) =
⟨q; q⟩∞(1− q)1−x

⟨qx; q⟩∞
, for 0 < q < 1 (1.7)

and

Γq(x) =
q(

x
2)⟨q−1; q−1⟩∞(q − 1)1−x

⟨q−x; q−1⟩∞
, for q > 1. (1.8)

He explicitly worked with the expression Γq(x)Γq(1− x) and showed that

Γq(x)Γq(1− x) =
[Γq(1/2)]

2

σq(x)
.

Furthermore, Ramanujan (see ref. [37]) determined the following bilateral

summation formula:

1ψ1(a; b; q, z) =
⟨q, b/a, az, q/az; q⟩∞
⟨b, q/a, z, b/az; q⟩∞

,

where ⟨a1, a2, . . . , am; q⟩∞ = ⟨a1; q⟩∞⟨a2; q⟩∞ · · · ⟨am; q⟩∞ and |b/a| < |z| < 1. This

formula is an extension of the q-binomial formula. Following a similar path, the

mathematician Askey [3] established various connections of the q-binomial theorem

and Ramanujan’s bilateral summation formula with q-gamma and q-beta functions.

Lastly, he provided a proof for the q-Bohr-Mollerup theorem, which is stated as

follows:

Theorem 1.3.2. The Γq function is the only function that meets the following three

conditions for x > 0:

f(x+ 1) = f(x), 0 < q < 1,

f(1) = 1,

x→ log f(x) is convex.

Further, continuing in this direction, in 2001, Alzer presented an inequality result

related to the q-gamma function. The statement of this result is given by the

following theorem:
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Theorem 1.3.3. Let 0 < q ̸= 1 and s ∈ (0, 1) be real numbers. Then, the following

inequalities: (
1− qx+α(q,s)

1− q

)1−s

<
Γq(x+ 1)

Γq(x+ s)
<

(
1− qx+β(q,s)

1− q

)1−s

hold for all positive real numbers x with the best possible values

α(q, s) =


log qs−q

(1−s)(1−q)

log q
, if 0 < q < 1

s/2, if q > 1,

and

β(q, s) =
log
[
1− (1− q)(Γq(s))

1
s−1

]
log q

.

Further, in 2003, Kurokawa and Wakayama in ref. [47] studied the following

q-variant of the Riemann zeta function:

ζq(s) =
∑
n≥1

qn

[n]sq
, ℜ(s) > 1, (1.9)

where [n]q =


qn−1
q−1

, if q ̸= 1

n, if q = 1
is the q-analogue of n. They also introduced

q-analogue of the Euler’s constant, denoted by γ0(q), by expanding the above series

around s = 1. In particular, they provided proof of the irrationality of γ0(2). In

addition to this, they explored the two q-variants of the Hurwitz zeta function and

the limit formula of Lerch for the gamma function. In case q > 1, the two versions

of the q-analogue of the Hurwitz zeta function defined by them are expressed as

follows:

ζq(s, x) =
∑
n≥0

qn+x

[n+ x]sq
, ℜ(s) > 1 (1.10)

and

ζ◦q (s, x) =
∑
n≥0

1

[n+ x]sq
, ℜ(s) > 0, (1.11)

where x /∈ Z≤0. In 2005, Bradley [9] explored the generalization of q-analogue of

the Riemann zeta function, namely, q-multiple zeta functions. This is the most

investigated q-variant of the multiple zeta functions in literature and it is given as

follows:
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Definition 1.3.7. For s1 > 1 and sj ≥ 1, where 2 ≤ j ≤ m, q-analogue of the

multiple zeta functions are defined as:

ζ[s1, s2, . . . , sm] =
∑

k1>···>km>0

m∏
j=1

q(sj−1)kj

[kj]
sj
q

.

It is worth emphasizing that every function can have numerous q-analogues

and each of them highlights specific aspects of the function’s characteristics. For

instance, in 2012, Ohno, Okuda, and Zudilin [56] conducted a study on a different

q-variant of the multiple zeta functions. This variant is given by the following

expression:

zq(s1, . . . , sm) =
∑

k1>···>km>0

qk1

(1− qk1)s1 · · · (1− qkm)sm
.

It was further investigated by Medina, Ebrahimi-Fard, and Manchon in ref. [51].

In addition to this, many mathematicians have undertaken various studies related

to different forms of q-analogues of the multiple zeta functions (see ref. [5,25,61,66]).

In Chapters 3, 4, and 5, we will thoroughly explore Kurokawa and Wakayama’s

q-variant of the Riemann zeta function and its generalization in detail.

1.4 p-adic theory

In the preceding sections, we investigated the domains of the Riemann

zeta function, extended Euler’s constant, and the intricate universe of q-series.

Progressing towards the subsequent phase of our inquiry, we shall initiate a

distinctive mathematical odyssey into the realm of p-adic numbers. While the

previous sections focused on the real and complex analysis, p-adic numbers introduce

an entirely different perspective. The term “p-adic” comes from the fact that these

numbers are associated with a prime number ‘p’. Such numbers were first introduced

by German mathematician, Kurt Hensel in his paper in 1897 [40], focusing on the

development of algebraic numbers in power series. The primary motivation behind

their introduction was an attempt to bring the ideas and techniques of power series

methods into number theory. Hensel suggested a connection between the familiar

domain of complex polynomials and the recently introduced p-adic numbers (for

details, refer to [34]).

The p-adic number system for any prime number p expands upon the

conventional arithmetic of rational numbers distinctively. Here, we measure

“closeness” in a unique way: two p-adic numbers are close when their difference

can be divided by a higher power of ‘p’. The higher the power of ‘p’ that divides
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their difference, the closer the numbers are considered to be. As one transitions

from Q to R, by considering the completion of Q with respect to the usual norm, it

essentially fills in the gaps that exist. So, this poses the following question:

Question 1.4.1. In how many ways one can define a norm on Q?

The answer to this question was provided by Ostrowski in 1916 [57]. The

following result is known as the Ostrowski’s theorem:

Theorem 1.4.2. Every nontrivial norm on Q is equivalent to one of the norm | · |p,
where either p is a prime number or p = ∞ (i.e., the usual norm).

Now, to understand the definition of the p-adic norm, it is valuable to explore

another crucial concept: the p-adic valuation, denoted as νp. This valuation is

established as follows:

Definition 1.4.1. The p-adic valuation, νp : Q → Z ∪ {∞} is defined by:

νp(x) =

max{r : pr|x}, if x ∈ Z

νp(a)− νp(b), if x = a
b
∈ Q.

So, the p-adic norm is stated as follows:

Definition 1.4.2. The p-adic norm of x is defined as:

|x|p =

p−νp(x), if x ̸= 0

0, if x = 0,

where x(̸= 0) ∈ Q can be represented in the form x = pνp(x) · n
m

such that νp(x), n

∈ Z, m is a positive integer, p is a fixed prime, (p,m) = 1, and (p, n) = 1.

Note that the set of rational numbers, Q, is not a complete space when equipped

with the standard norm. Its completion yields the real numbers, denoted as R.
Consequently, this leads to the emergence of two fundamental questions.

Question 1.4.3. Is Q complete with respect to the p-adic norm?

If so,

Question 1.4.4. Is the completion of Q with respect to the p-adic norm also the set

of real numbers?

The answer to both of these questions is ‘no’. In fact, the completion of Q
with respect to the p-adic norm results in an entirely distinct mathematical space,
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namely, p-adic numbers. This space is denoted by Qp. An element a ∈ Qp possesses

a unique representation as follows:

a =
∑

n≥−m

anp
n,

where a−m ̸= 0 and an ∈ {0, 1, 2, . . . , p− 1} for n ≥ −m. Analogously, the space of

p-adic integers, denoted by Zp can be visualized as the completion of Z with respect

to the p-adic norm. In fact, the ring of p-adic integers can be thought of as the unit

disc within Qp, centered at 0, which implies Zp = {a ∈ Qp : |a|p ≤ 1}. Its canonical
expansion contains only non-negative powers of p, implying:

Zp =
{∑

i≥0

aip
i : 1 ≤ ai ≤ p− 1

}
.

Having laid the foundation by introducing the concepts of p-adic norm, p-adic

numbers, and p-adic integers, we now shift our focus in a direction aligned with our

research objectives. This direction involves the investigation of the arithmetic nature

of p-adic analogues of classical functions. Let us commence with the definition of the

p-adic analogue of the gamma function. In 1975, Morita [6] introduced the p-adic

analogue of the gamma function, denoted as Γp, for all the natural numbers. It is

defined as follows:

Definition 1.4.3. The p-adic analogue of the gamma function for all natural

numbers is given by the expression:

Γp(n) = (−1)n
∏

1≤t≤n
p∤t

t.

Furthermore, Morita extended this definition to establish a continuous function

on the set of p-adic integers, denoted as Zp. Much like its classical counterpart, the

p-adic gamma function also adheres to the following functional equation and Euler’s

reflection formula:

Γp(x+ 1)

Γp(x)
=

−x, if x ∈ Z×
p

−1, if x ∈ pZp,

Γp(x)Γp(1− x) = (−1)x0 ,

where Z×
p = {x ∈ Qp : |x|p = 1} and x0 is the first digit in the p-adic expansion

of x, unless x ∈ pZp, where x0 = p rather than 0. Further, in 1977, Diamond

[22] made significant contributions to the field by introducing the p-adic analogues

of the digamma function and the log Γ(x). These p-adic analogues exhibit several
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properties akin to their classical counterparts. Diamond also explored two distinct

approaches to the p-adic analogue of the log Γ(x). One approach involves modifying

the functional equation, which is given as:

Gp(x) = lim
k→∞

1

pk

pk−1∑
n=0

(x+ n) logp(x+ n)− (x+ n),

while the other is to construct a sequence of functions, denoted by HN . These

functions are locally holomorphic on Cp (the p-adic complex numbers) and are

defined as follows:

HN(x) = lim
k→∞

1

pk

pk−1∑
n=0

fN(x+ n), for N = 1, 2, . . . ,

where

fN(x) =

x log(x)− x, if νp(x) < N

0, if νp(x) ≥ N,

and νp(x) is the p-adic valuation. Each of the function fN is locally analytic on Cp,

making each HN locally analytic on Cp. Furthermore, HN satisfies the following

relationship:

HN(x+ 1) =

HN(x) + log(x), if νp(x) < N

HN(x), if νp(x) ≥ N.

The p-adic counterpart of the derivative of the log Γ(x) function is referred to as the

p-adic digamma function and is represented as ψp(x). It is defined as:

ψp(x) = lim
k→∞

1

pk

pk−1∑
n=0

logp(x+ n),

for any x ∈ Cp. Additionally, similar to the classical case, the p-adic analogue of

Gauss’ theorem in Cp is given as:

ψp(r/f) = − log f − γp +

f−1∑
a=1

ζ−ar logp(1− ζa), (1.12)

where γp is p-adic Euler’s constant, r, f ∈ Z+, r < f , and νp(r/f) < 0. However,
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for νp(r/f) ≥ 0 and any µ such that:

pµ ≡ 1(modf ∗), where f = pkf ∗ with (p, f ∗) = 1, (1.13)

we have the following relation:

pµ

pµ − 1
H ′

µ(r/f) = − log f − γp +

f−1∑
a=1

ζ−ar logp(1− ζa).

Moreover, the following theorem by Diamond [22] also plays a crucial role in

connecting various p-adic analogues and serves as essential components for proving

our results:

Theorem 1.4.5. If q > 1 and ζq is a primitive q-th root of unity, then

qγp(r, q) = γp −
q−1∑
a=1

ζ−ar
q logp(1− ζaq ).

These developments expand our understanding of p-adic analogues of these

essential mathematical functions. In 2008, Murty and Saradha [53] made substantial

contributions to the subject by presenting a series of results related to the p-adic

analogues of generalized Euler’s constants and the p-adic digamma function.

Specifically, both gave proofs of the following theorems:

Theorem 1.4.6. Let q be prime. Then, at most one of the numbers

γp, γp(r, q), 1 ≤ r < q,

is algebraic.

Theorem 1.4.7. Let q be prime.

� If q = p, then the numbers ψp(r/q) + γp are transcendental for 1 ≤ r < q.

� If q ̸= p and N satisfy the congruence pN ≡ 1(mod q), then the numbers

pN

pN − 1
H ′

N(r/q) + γp

are transcendental for 1 ≤ r < q.

The aforementioned results were further developed by Chatterjee and Gun in

2014 in ref. [18], which led to the following theorems:
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Theorem 1.4.8. Let P denote the set of prime numbers in N. At most one number

in the following set:

{γp} ∪ {γp(r, q) : q ∈ P , 1 ≤ r < q/2}

is algebraic.

Theorem 1.4.9. Fix an integer n > 1. At most one element of the following set:

{ψp(r/p
n) + γp : 1 ≤ r < pn, (r, p) = 1}

is algebraic. Moreover, ψp(r/p) + γp are distinct, when 1 ≤ r < p/2.

1.5 Main results

This section is dedicated to an introductory overview of our thesis, shedding

light on the motivations driving our research and introducing the primary outcomes

we have achieved. The subsequent chapters will subject these crucial findings to

rigorous and detailed examination. Our initial set of results draws inspiration from

Kurokawa and Wakayama’s work on a q-variant of the Riemann zeta function. In

their work, they introduced q-analogue of the Euler’s constant, which is the constant

term in the Laurent series expansion of the q-Riemann zeta function, ζq(s), around

s = 1. This prompted us to investigate the other coefficients of this expansion,

which led to the Theorem 1.5.1. Before we proceed further, it is essential to revisit

the q-analogue of the Riemann zeta function, which Kurokawa and Wakayama

introduced in their work [47]. This serves as the foundation for our subsequent

discussions.

Definition 1.5.1. For q > 1, the q-variant of the Riemann zeta function is defined

as follows:

ζq(s) =
∑
n≥1

qn

[n]sq
, ℜ(s) > 1. (1.14)

This function exhibits meromorphic behaviour for s ∈ C and has simple poles at

points in the set {1 + i(2πb)/(log q) : b ∈ Z} ∪ {a + i(2πb)/(log q) : a, b ∈ Z, a ≤
0, b ̸= 0}, with s = 1 being a simple pole with residue (q − 1)/(log q). Now, we can

proceed to present the theorem which gives the closed-form of all the coefficients.

Theorem 1.5.1. The q-analogue of the Riemann zeta function given by Equation

1.14 is meromorphic for s ∈ C and its Laurent series expansion around s = 1 is
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given by:

ζq(s) =
q − 1

log q
.

1

s− 1
+ γ0(q) + γ1(q)(s− 1) + γ2(q)(s− 1)2 + γ3(q)(s− 1)3 + · · ·

with

γk(q) =
k+1∑
i=1

((∑
n≥1

s(n+ 1, i)

[n]qn!

)
logk+1−i(q − 1)

(k + 1− i)!

)

+
k∑

j=1

(−1)j

(
k−(j−1)∑

i=1

(∑
n≥1

s(n+ 1, i)qnAqn(j − 1, j)

n![n]q(qn − 1)j
logj q

j!

)
log(k−(j−1)−i)(q − 1)

(k − (j − 1)− i)!

)

− (q − 1) logk(q − 1)

2(k!)
+

(q − 1) logk+1(q − 1)

(k + 1)! log q

+

⌈ k
2
⌉∑

i=1

(−1)i+1 (q − 1) log2i−1 q logk−(2i−1)(q − 1)

B(i)(k − (2i− 1))!
, (1.15)

where s(n+ 1, i) are the unsigned Stirling numbers of the first kind, Aqn(j − 1, j) is

the polynomial in qn of degree (j − 1) and coefficients from the j-th row in Eulerian

numbers triangle, B(i) is the denominator of non-zero coefficients in the series

expansion around zero of 1
2
cot(x/2) disregarding the first term, and ⌈x⌉ denotes

the smallest integer greater than or equal to x.

These coefficients are referred to as q-analogue of the Stieltjes constants.

The next theorem emphasizes the linear independence of certain numbers that

incorporate q-analogue of the Euler’s constant. It is worth noting that this

theorem serves as an improvement of the result initially presented by Kurokawa

and Wakayama (see Theorem 2.4 in ref. [47]). For better understanding, we first

introduce the normalized q-analogue of the Euler’s constant as follows:

γ∗0(q) = γ0(q)−
(q − 1) log(q − 1)

log q
.

Now, we can proceed to state the theorem, which reads as follows:

Theorem 1.5.2. For integers r ≥ 1 and q > 1, the following set of numbers:

{1, γ∗0(q), γ∗0(q2), γ∗0(q3), . . . , γ∗0(qr)} (1.16)

is linearly independent over Q.

Another result in this direction concerns the transcendence nature of some

infinite series involving the q-analogue of the first Stieltjes constant. However, before

delving into this, we will first address two lemmas that play a crucial role in proving
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Theorem 1.5.5. Notably, Lemma 1.5.3 resolves a question posed by Erdős in 1948

in ref. [26].

Lemma 1.5.3. For every integer q > 1,
∑
n≥1

σ1(n)

qn
is a transcendental number,

where σ1(n) is the sum of the divisors of n.

Lemma 1.5.4. For every integer t > 1,
∑
n≥1

tn

(tn − 1)2
=
∑
n≥1

σ1(n)

tn
.

Theorem 1.5.5. Let k = 1 and q = 2. Then,

1

log 2

(
γ1(2)−

∑
n≥1

Hn

2n − 1

)

is a transcendental number, where Hn is the n-th harmonic number.

For the subsequent results, we begin by presenting a q-analogue of multiple zeta

functions. This variant is studied in ref. [14] and serves as a generalization of the

q-Riemann zeta function defined in Equation 1.14.

Definition 1.5.2. A q-analogue of the multiple zeta functions for q > 1 is defined

as follows:

ζq(s1, s2, . . . , sm) =
∑

k1>···>km>0

m∏
j=1

qkj

[kj]
sj
q
.

Specifically, a q-double zeta function is defined by the following series:

ζq(s1, s2) =
∑

n1,n2>0

qn1+n2qn2

[n1 + n2]
s1
q [n2]

s2
q
, (1.17)

where s1, s2 are complex numbers with ℜ(s1) > 1 and ℜ(s2) ≥ 1. ζq(s1, s2) is

meromorphic for s1, s2 ∈ C and has a simple pole for s1 ∈ {1 + i(2πb)/(log q) :

b ∈ Z} ∪ {a + i(2πb)/(log q) : a, b ∈ Z, a ≤ 0, b ̸= 0} or s1 + s2 ∈
{
a + i 2πb

log q
:

a, b ∈ Z, a ≤ 0, b ̸= 0
}

∪
{
a+ i 2πb

log q
: a = 1, 2, b ∈ Z

}
. Let us now proceed with the

statement of the theorems related to the q-analogue of the double zeta function. The

first theorem addresses the coefficients in the Laurent series expansion of ζq(s1, s2)

around s1 = 1 and s2 = 1. The subsequent theorem examines the arithmetic nature

of the numbers involving γ′0(q).

Theorem 1.5.6. The q-analogue of the double zeta function given by Equation 1.17

is meromorphic for s1, s2 ∈ C and its Laurent series expansion around s1 = 1 and

s2 = 1 is presented by:

ζq(s1, s2) =
1

(s1 − 1)(s1 + s2 − 2)

(
q − 1

log q

)2

− 1

(s1 + s2 − 2)

(q − 1)2

2 log q
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+
(q − 1)2

(s1 + s2 − 2)

∑
k≥0

(−1)k log2k q

B(k)
(s1 − 1)2k+1

+
1

(s1 − 1)

∑
k≥0

γ′k(q)(s2 − 1)k +
∑

k1,k2≥0

γk1,k2(q)(s1 − 1)k1(s2 − 1)k2 ,

(1.18)

with

γ0,0(q) =
(q − 1)2

3
+
∑
k≥1

∑
n≥1

1

[n]q[n+ k]q
+

3

2

∑
n≥1

1− qn

[n]2q

+
(q − 1) log(q − 1)

log q

[∑
n≥1

1

[n]q
+

(q − 1) log(q − 1)

2 log q
− (q − 1)

]
(1.19)

and γ′k(q) =
(

q−1
log q

)
γk(q), where γk(q) is given by Equation 1.15 and B(k) is the

denominator of non-zero coefficients in the Taylor series expansion of 1
2
cot(x

2
)

around zero, disregarding the first term.

Theorem 1.5.7. Let q ≥ 2 be an integer. Then,

log q

q − 1
γ′0(q)−

(q − 1) log(q − 1)

log q

is an irrational number. In particular, log 2(γ′0(2)) is irrational.

To continue, let us define the term γ′∗0 (q) as follows:

γ′∗0 (q) =
log q

q − 1
γ′0(q)−

(q − 1) log(q − 1)

log q
. (1.20)

After that, we have the following result about the linear independence of a set

of numbers:

Theorem 1.5.8. For integers r ≥ 1 and q > 1, the set of numbers

{1, γ′∗0 (q), γ′∗0 (q2), γ′∗0 (q3), . . . , γ′∗0 (qr)}

is linearly independent over Q.

By using Theorem 1.5.6, we finally establish the irrationality of the number

involving the 2-double Euler-Stieltjes constant (γ0,0(2)).

Theorem 1.5.9. Let q = 2. Then,

γ0,0(2)−
∑
k≥1

∑
n≥1

1

(2n − 1)(2n+k − 1)



Chapter 1. Introduction 21

is an irrational number.

Establishing along this path, the upcoming finding examines a q-analogue of the

Hurwitz zeta function. Prior to that, let us revisit one of the versions of q-analogue

of the Hurwitz zeta function, as investigated by Kurokawa and Wakayama in ref. [47].

Here is the definition.

Definition 1.5.3. For q > 1, a q-analogue of the Hurwitz zeta function is described

as follows:

ζq(s, x) =
∑
n≥0

qn+x

[n+ x]sq
, ℜ(s) > 1, (1.21)

where x /∈ Z≤0.

Similar to the q-analogue of the Riemann zeta function, ζq(s, x) is meromorphic

for s ∈ C and possesses simple poles located at points in the set
{
1 + i 2πb

log q
: b ∈

Z
}
∪
{
a+ i 2πb

log q
: a, b ∈ Z, a ≤ 0, b ̸= 0

}
. Specifically, at s = 1, there is a simple pole

with a residue of q−1
log q

. The theorem associated to this function may be expressed as

follows:

Theorem 1.5.10. The q-analogue of the Hurwitz zeta function given by Equation

1.21 is meromorphic for s ∈ C and its Laurent series expansion around s = 1 is

given by:

ζq(s, x) =
q − 1

log q
.

1

s− 1
+ γ0(q, x) + γ1(q, x)(s− 1) + γ2(q, x)(s− 1)2 + γ3(q, x)(s− 1)3 + · · · ,

with

γ0(q, x) =
∑
n≥1

qn(1−x)

[n]q
+

(q − 1) log(q − 1)

log q
− q − 1

2
+ (q − 1)(1− x) (1.22)

and

γ1(q, x) =

(∑
n≥1

qn(1−x)

[n]q
+

(q − 1) log(q − 1)

2 log q
− q − 1

2
+ (q − 1)(1− x)

)
log(q − 1)

+

(
q − 1

12
−
∑
n≥1

(1 + (qn − 1)x)qn(1−x)

[n]q(qn − 1)
− (q − 1)(1− x)x

2

)
log q

+
∑
n≥1

qn(1−x)s(n+ 1, 2)

n![n]q
, (1.23)

where s(n+ 1, i) are the unsigned Stirling numbers of the first kind.
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Our next objective is to examine the asymptotic behaviour of the q-analogue

of the double zeta function as the variables s1 → 0 and s2 → 0 and to compare

this behaviour with that of the classical double zeta function. In addition, we will

explore various q-variants of the double zeta function and obtain the relationships

between them. To facilitate this endeavor, we now proceed to examine the following

definition:

Definition 1.5.4. For q > 1 and s1, s2 ∈ C with ℜ(s1) > 1 and ℜ(s2) ≥ 1, we

define several q-variants of the double zeta function as follows:

1. q-analogue of the double zeta function:

ζq(s1, s2) =
∑

k1>k2≥1

qk1qk2

[k1]
s1
q [k2]

s2
q

=
∑

k1,k2>0

qk1+k2qk2

[k1 + k2]
s1
q [k2]

s2
q
. (1.24)

2. q-analogue of the double zeta star function:

ζ∗q (s1, s2) =
∑

k1≥k2≥1

qk1qk2

[k1]
s1
q [k2]

s2
q
. (1.25)

3. Another q-variant and its star variant:

ζ◦q (s1, s2) =
∑

n1>n2≥1

qn1

[n1]
s1
q [n2]

s2
q

=
∑

n1,n2>0

qn1+n2

[n1 + n2]
s1
q [n2]

s2
q
.

ζ◦∗q (s1, s2) =
∑

n1≥n2≥1

qn1

[n1]
s1
q [n2]

s2
q
. (1.26)

We thus obtain the following theorem on the asymptotic behaviour:

Theorem 1.5.11. Let n1, n2 be two integers. Consider the q-double zeta function

ζq(s1, s2) defined in Equation 1.24. We define the following limits:

ζq(n1, n2) = lim
s1→n1

lim
s2→n2

ζq(s1, s2)

and

ζRq (n1, n2) = lim
s2→n2

lim
s1→n1

ζq(s1, s2),

whenever they exist. Then, we have:

lim
q→1

ζq(0, 0) =
5

12
= ζR(0, 0) and lim

q→1
ζRq (0, 0) =

1

3
= ζ(0, 0),
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where

ζ(n1, n2) = lim
s1→n1

lim
s2→n2

ζ(s1, s2)

and

ζR(n1, n2) = lim
s2→n2

lim
s1→n1

ζ(s1, s2).

Also, note that ζ(s1, s2) is the classical double zeta function.

Wemake further progress towards the next goal, which involves the establishment

of a range of algebraic identities concerning the several q-variants of the double zeta

function. In this context, the following set of theorems is presented:

Theorem 1.5.12. The following identities hold:

ζ◦q (3, 1) = ζq(4)− ζq(2, 2) + (q − 1)ζq(3) = (ζq(2))
2 − 3ζq(2, 2),

ζ◦q (4, 1) = ζq(5)− ζq(2, 3)− ζq(3, 2) + (q − 1)ζq(4)

= ζq(2)ζq(3)− 2ζq(2, 3)− 2ζq(3, 2),

ζ◦q (5, 1) = ζq(6)− ζq(3, 3)− ζq(4, 2)− ζq(2, 4) + (q − 1)ζq(5)

= (ζq(3))
2 − 3ζq(3, 3)− ζq(4, 2)− ζq(2, 4)

= ζq(2)ζq(4)− ζq(3, 3)− 2ζq(4, 2)− 2ζq(2, 4),

(ζq(3))
2 − 2ζq(3, 3) = ζq(2)ζq(4)− ζq(2, 4)− ζq(4, 2).

Theorem 1.5.13. For s ≥ 3, Theorem 1.5.12 can be generalized as follows:

ζ◦q (s, 1) = ζq(s+ 1)−
s−1∑
i=2

ζq(s+ 1− i, i) + (q − 1)ζq(s).

Further, depending on the parity of s, we have:

Case 1: If s is odd, then either

ζ◦q (s, 1) =
(
ζq

(s+ 1

2

))2
− 3ζq

(s+ 1

2
,
s+ 1

2

)
−

s−1∑
i=2

i ̸= s+1
2

ζq(s+ 1− i, i)

or

ζ◦q (s, 1) = ζq(r)ζq(r
′)− 2ζq(r, r

′)− 2ζq(r
′, r)−

s−1∑
i=2

i ̸=r,r′

ζq(s+ 1− i, i), (1.27)

where r ≥ 2, r′ ≥ 2, and r+ r′ = s+1. Hence, for Equation 1.27, there exist
(

s−3
2

)
possible configurations. Consequently, the total number of ways to express ζ◦q (s, 1)

is
(

s−1
2

)
.
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Case 2: If s is even, then

ζ◦q (s, 1) = ζq(t)ζq(t
′)− 2ζq(t, t

′)− 2ζq(t
′, t)−

s−1∑
i=2
i ̸=t,t′

ζq(s+ 1− i, i), (1.28)

where t ≥ 2, t′ ≥ 2, and t+ t′ = s+1. Therefore, the number of possible expressions

for ζ◦q (s, 1) in Equation 1.28 is
(

s−2
2

)
.

Proposition 1.5.14. For s ≥ 3, we have the following identities:

ζ◦∗q (s, 1) = sζq(s+ 1)−
s−1∑
i=2

ζ∗q (s+ 1− i, i) + (s− 1)(q − 1)ζq(s).

Further, depending on the parity of s, we have:

Case 1: If s is odd, then either

ζ◦∗q (s, 1) =
(
ζq

(s+ 1

2

))2
− 3ζ∗q

(s+ 1

2
,
s+ 1

2

)
+ (s+ 1)ζq(s+ 1) + (q − 1)sζq(s)

−
s−1∑
i=2

i ̸= s+1
2

ζ∗q (s+ 1− i, i)

or

ζ◦∗q (s, 1) = ζq(r)ζq(r
′)− 2ζ∗q (r, r

′)− 2ζ∗q (r
′, r) + (s+ 1)ζq(s+ 1) + (q − 1)sζq(s)

−
s−1∑
i=2

i ̸=r,r′

ζ∗q (s+ 1− i, i), (1.29)

where r ≥ 2, r′ ≥ 2, and r + r′ = s + 1. Thus, there exists
(

s−3
2

)
possible

configurations for Equation 1.29. Consequently, the total number of ways to express

ζ◦∗q (s, 1) is
(

s−1
2

)
.

Case 2: If s is even, then

ζ◦∗q (s, 1) = ζq(t)ζq(t
′)− 2ζ∗q (t, t

′)− 2ζ∗q (t
′, t) + (s+ 1)ζq(s+ 1) + (q − 1)sζq(s)

−
s−1∑
i=2
i ̸=t,t′

ζq(s+ 1− i, i), (1.30)

where t ≥ 2, t′ ≥ 2, and t + t′ = s + 1. Hence, the number of possible ways to

represent ζ◦∗q (s, 1) in Equation 1.30 is
(

s−2
2

)
.

To have a thorough understanding of the next theorem, it is necessary to study

the definition of the multi-variable version of the Mordell-Tornheim zeta function,
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as introduced by Matsumoto in ref. [49,50].

Definition 1.5.5. For s1, . . . , sr+1 ∈ C,

ζMT (s1, s2, . . . , sr; sr+1) =
∑
m1≥1

· · ·
∑
mr≥1

1

ms1
1 · · ·msr

r (m1 + · · ·+mr)sr+1

and the series converges absolutely when ℜ(sj) > 1 (1 ≤ j ≤ r) and ℜ(sr+1) > 0.

Matsumoto referred to it as the Mordell-Tornheim r-ple zeta function and

demonstrated its meromorphic continuation over the entire Cr+1 space. It exhibits

singularities only on subsets of Cr+1 defined by equations like:

sj + sr+1 = 1− l (1 ≤ j ≤ r, l ∈ N0),

sj1 + sj2 + sr+1 = 2− l (1 ≤ sj1 < sj2 ≤ r, l ∈ N0),

· · · · · ·

sj1 + · · · sjr−1 + sr+1 = r − 1− l (1 ≤ sj1 < · · · < sjr−1 ≤ r, l ∈ N0),

s1 + · · ·+ sr + sr+1 = r,

where N0 denotes the set of non-negative integers. Now, we introduce q-variant of

the Mordell-Tornheim r-ple zeta function, denoted as:

ζMT,q(s1, s2, . . . , sr; sr+1) =
∑
m1≥1

· · ·
∑
mr≥1

qm1 · · · qmrqm1+···+mr

[m1]
s1
q · · · [mr]srq [m1 + · · ·+mr]

sr+1
q

,

where s1, . . . , sr+1 ∈ C and q > 1. We refer to it as the q-Mordell-Tornheim r-ple

zeta function. For r = 2, we have

ζMT,q(s1, s2; s3) =
∑
m1≥1

∑
m2≥1

qm1qm2qm1+m2

[m1]
s1
q [m2]

s2
q [m1 +m2]

s3
q
. (1.31)

This q-variant of the Mordell-Tornheim r-ple zeta function is eventually the subject

of the following theorem:

Theorem 1.5.15. Let s ≥ 2 and r ≥ 3 be any two integers. Then, we have the

following identity:

ζq(s, r) = ζq(s)[ζq(r) + (q − 1)ζq(r − 1)]−
s−1∑
j=0

ζMT,q(r − 1, j + 1; s− j),

where ζq(s) is the q-analogue of the Riemann zeta function given by Equation 1.14.

In the concluding section of the thesis, we delve into results related to p-adic

analysis, which serves as an extension and generalization of the research conducted
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by Chatterjee and Gun in their notable work [18]. To pave the way for our

contributions in the context of the transcendental properties of p-adic digamma

values, we first revisit the theorem put forth by Chatterjee and Gun that served as

our initial motivation. The theorem is stated as follows:

Theorem 1.5.16. Fix an integer n > 1. At most one element of the following set:

{ψp(r/p
n) + γp : 1 ≤ r < pn, (r, p) = 1}

is algebraic. Moreover, ψp(r/p) + γp are distinct, when 1 ≤ r < p/2.

Now, we are ready to state our final set of results, which serve as an extension

of the aforementioned theorem. Let P be the set of rational primes. We have the

following theorem in this regard:

Theorem 1.5.17. Let p be a prime and n > 1 be an integer. Consider the sets S1

and S2, where

S1 = {ψp(r/p
n) + γp : 1 ≤ r < pn, (r, p) = 1} and

S2 =

{
pµ

pµ − 1
H ′

µ(r/q
n) + γp : 1 ≤ r < qn, (r, q) = 1, q ̸= p, q ∈ P

}
,

and µ as defined in Equation 1.13. Then, all the elements of S1 ∪ S2 are

transcendental with at most one exception. Moreover, the numbers pµ

pµ−1
H ′

µ(r/q)+γp

are distinct, when 1 ≤ r < q/2 and q ∈ P.

Continuing, we move on to derive the result for the product of two different

primes, provided that these primes meet the criteria outlined in “Property II”.

This property can be summarized as follows:

Property I: Let m be a natural number such that m = pα1
1 p

α2
2 with

(α1, ϕ(p
α2
2 )) = 1 = (α2, ϕ(p

α1
1 )), where p1, p2 are odd primes, α1, α2 ∈ N, and

satisfies the following:

1. p1 ≡ p2 ≡ 3 (mod 4) : p1 and p2 are semi-primitive roots (mod pα2
2 ) and

(mod pα1
1 ), respectively, or

2. p1, p2 are primitive roots mod pα2
2 and mod pα1

1 , respectively.

Property II: Let M be a finite set of odd natural numbers with |M| = n,

containing pairwise co-prime integers mi, where 1 ≤ i ≤ n such that mi satisfies

Property I. Let us assume

mi = pbii q
ci
i ,
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where pi and qi are odd primes for all 1 ≤ i ≤ n.

Let J consists of prime factors of {mi}ni=1, where mi ∈ M. The theorems are

then stated as follows:

Theorem 1.5.18. Let p, q ∈ J be any two primes such that m = pq ∈ M. Then,

the elements of the following set:

S3 = {ψp(r/pq) + γp : 1 ≤ r < pq, (r, pq) = 1}

are transcendental with at most one exception. Moreover, the numbers ψp(r/pq)+γp

are distinct, when 1 ≤ r < pq/2 and (r, pq) = 1.

Theorem 1.5.19. Let p be a prime. Then, the elements of the following set:

S4 =

{
pµ

pµ − 1
H ′

µ(r/mi) + γp : 1 ≤ r < mi, 1 ≤ i ≤ n, (r,mi) = 1, p ∤ mi, mi ∈ M

}
,

where µ as defined in Equation 1.13, are transcendental with at most one exception.

An essential consequence is derived from the results of Theorem 1.5.18 and

Theorem 1.5.19, which can be phrased as the following corollary:

Corollary 1.5.20. All the elements of S3 ∪ S4 are transcendental with at most one

exception.

We have thoroughly investigated the scenario concerning composite numbers,

particularly when q ̸≡ 2(mod 4). Now, we direct our focus to the situation where

q ≡ 2(mod4), making use of the insightful proposition presented by Chatterjee and

Dhillon in ref. [12]. The statement of the proposition is given as:

Proposition 1.5.21. For any composite number q ≡ 2(mod 4), the system{
1− ζhq
1− ζq

: (h, q) = 1, 1 < h < q/2

}

is multiplicatively independent if and only if q satisfies one of the following

conditions:

1. q = 2pn, where p is an odd prime,

2. q = 2m, where m satisfies the following conditions:

� m = pα1
1 p

α2
2 ; and

– When p1 ≡ p2 ≡ 3 (mod 4): p1 is a semi-primitive root mod pα2
2 and

p2 is a semi-primitive root mod pα1
1 , or vice versa.
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– Otherwise: p1 and p2 are primitive root mod pα2
2 and mod pα1

1

respectively.

� m = pα1
1 p

α2
2 p

α3
3 ;

– p1 ≡ p2 ≡ p3 ≡ 3 (mod 4): (pi − 1)/2 (1 ≤ i ≤ 3) are co-prime to

each other; and

– p1, p2, and p3 are primitive root mod pα2
2 , mod pα3

3 , and mod pα1
1 ,

respectively and semi-primitive root mod pα3
3 , mod pα1

1 , and mod

pα2
2 , respectively.

Following that, the theorem is articulated as follows, delving into this alternative

scenario:

Theorem 1.5.22. Let p be any prime and q be an element of H, where elements of

H satisfy conditions of Proposition 1.5.21. Then, we have the following statements:

1. If p | q, then the set of elements

S5 = {ψp(r/q) + γp : 1 ≤ r < q, (r, q) = 1}

are transcendental with at most one exception.

2. If p ∤ q, then the set of elements

S6 =

{
pµ

pµ − 1
H ′

µ(r/q) + γp : 1 ≤ r < q, (r, q) = 1

}

are transcendental with at most one exception.

1.6 Organization of thesis

For the convenience of the reader, we provide a concise summary of the content

covered in each chapter.

� Chapter 1: In this chapter, we give a brief study of the Euler-Stieltjes

constants and their generalizations. Additionally, we provide a concise

overview of q-series and p-adic theory. In order to provide motivation,

we include a discussion on classical background as well as contemporary

observations that have contributed to the development of this research.

� Chapter 2: In this chapter, we provide the essential prerequisites that are

vital for comprehending the results statement and their proofs. Additionally,

we revisit recent contributions by other researchers that were incorporated to

make our discussion more detailed and worthy.
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� Chapter 3: In this chapter, we improve the results of Kurokawa and

Wakayama [47] related to q-analogue of the Euler’s constant and the

irrationality of certain numbers involving q-Euler constant. We derive the

closed-form of a q-analogue of the k-th Euler-Stieltjes constant, γk(q) and

establish a linear independence result involving q-analogue of the Euler’s

constant. Further, we use a result of Nesterenko to resolve a question posed by

Erdős regarding the arithmetic nature of the infinite series
∑

n≥1 σ1(n)/t
n, for

any integer t > 1. Finally, we study the transcendence nature of some infinite

series involving γ1(2).

� Chapter 4: In this chapter, we derive a closed-form expression for a

q-analogues of Euler’s constant of height 2 (γ0,0(q)), which is the constant

term in the Laurent series expansion of a q-analogue of the double zeta function

around s1 = 1 and s2 = 1. Moreover, we examine the linear independence of a

set of numbers involving the constant γ′∗0 (q
i), where 1 ≤ i ≤ r for any integer

r ≥ 1 and discuss the irrationality of certain numbers involving a 2-double

Euler-Stieltjes constant (γ0,0(2)).

Additionally, we examine a specific variant of q-analogue of the Hurwitz zeta

function, as initially presented by Kurokawa and Wakayama in ref. [47]. Our

goal is to extend their findings, particularly the coefficients in the Laurent

series expansion of a q-analogue of the Hurwitz zeta function in the vicinity of

s = 1.

� Chapter 5: In this chapter, we use a q-analogue of the Nielsen Reflexion

Formula for q > 1 and apply it to explore identities involving different versions

of q-analogues of the Riemann zeta function and the double-zeta function. We

also investigate the limiting values of ζq(s1, s2) as s1 → 0 and s2 → 0, and

compare these limits to those of the classical double-zeta function. Finally, the

q-analogue of the Mordell-Tornheim r-ple zeta function and its relation with

the q-double zeta function was made a part of the discussion.

� Chapter 6: In this chapter, we generalize the results of Chatterjee and Gun

[18] concerning the special values of the p-adic digamma function, denoted as

ψp(r/p)+γp, for distinct prime powers. With one exception, we also investigate

the transcendental nature of the p-adic digamma values. Additionally, we

examine the multiplicative independence of cyclotomic numbers satisfying

certain conditions. Using this, we study the transcendental nature of p-adic

digamma values corresponding to ψp(r/pq)+γp, where p, q are distinct primes.
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Chapter 2

Preliminaries

To provide a comprehensive foundation for our upcoming discussions, we will

recall fundamental definitions and related results that will serve as building blocks

for the main chapters. Additionally, we provide specific notations that will be

consistently used throughout the thesis. We will refer to the works of [1,27,34,60]

for most of the definitions introduced in this chapter. This will ensure that our

exploration remains self-contained and coherent.

2.1 q-analogues

In this particular section, we recall various notations and definitions associated

with q-analogues. To facilitate this exploration, we commence with a set of necessary

definitions, followed by a list of necessary theorems.

Definition 2.1.1. Let a be a complex number. The q-analogue of a is given by:

[a]q =
qa − 1

q − 1
, q ̸= 1.

Definition 2.1.2. The q-factorial is articulated as:

[n]q! = [1]q · [2]q · · · [n− 1]q · [n]q =
q − 1

q − 1
· q

2 − 1

q − 1
· · · q

n − 1

q − 1

= 1 · (1 + q) · · · (1 + q + q2 + · · ·+ q(n−1)).

Definition 2.1.3. The expression for q-shifted factorial of a is as follows:

⟨a; q⟩0 = 1, ⟨a; q⟩n =
n−1∏
m=0

(1− aqm), n = 1, 2, . . .

⟨a; q⟩∞ = lim
n→∞

⟨a; q⟩n =
∏
n≥0

(1− aqn).

Remark 2.1.1. The q-analogue of numbers satisfies the following identities:

[−a]q = −q−a[a]q and [a] 1
q
= q−a+1[a]q.
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Definition 2.1.4. (q-gamma function) The q-analogue of the gamma function

which was introduced by Jackson in ref. [44] is described as follows:

Γq(x) =
⟨q; q⟩∞(1− q)1−x

⟨qx; q⟩∞
, for 0 < q < 1

and

Γq(x) =
q(

x
2)⟨q−1; q−1⟩∞(q − 1)1−x

⟨q−x; q−1⟩∞
, for q > 1.

Definition 2.1.5. (q-digamma function) The q-analogue of the digamma function

is defined as the logarithmic derivative of q-analogue of the gamma function. As a

result, we have:

ψq(x) =
d

dx
log Γq(x).

Hence,

ψq(x) = − log(1− q) + log q
∑
n≥0

qn+x

1− qn+x
, for 0 < q < 1

and

ψq(x) = − log(q − 1) + log q

(
x− 1

2
−
∑
n≥0

q−n−x

1− q−n−x

)

= − log(q − 1) + log q

(
x− 1

2
−
∑
n≥1

q−nx

1− q−n

)
, for q > 1.

Definition 2.1.6. The Nielsen Reflexion Formula is given by the following

expression:

ζ(s)ζ(s′) = ζ(s, s′) + ζ(s′, s) + ζ(s+ s′),

where s, s′ ≥ 2.

Definition 2.1.7. A q-analogue of the Nielsen Reflexion Formula for q > 1

corresponding to Equations 1.24 and 1.25, respectively, can be stated as:

ζq(s)ζq(s
′) = ζq(s, s

′) + ζq(s
′, s) + ζq(s+ s′) + (q − 1)ζq(s+ s′ − 1)

= ζ∗q (s, s
′) + ζ∗q (s

′, s)− ζq(s+ s′)− (q − 1)ζq(s+ s′ − 1), (2.1)

where s, s′ ≥ 2.



Chapter 2. Preliminaries 33

Next, we give a partial fraction expression that plays a crucial role in proving

Theorems 1.5.12 and 1.5.13. The expression is defined as follows:

1

(1− u)(1− uv)s
=

1

(1− u)(1− v)s
−

s−1∑
i=0

v

(1− v)i+1(1− uv)s−i
, (2.2)

where u, v ∈ R.
In Chapter 1, we established the definition of q-analogue of the Riemann

zeta function and q-analogue of the Hurwitz zeta function, which serves as the

foundational framework for our current exploration. We revisit these definitions to

reinforce their significance.

Definition 2.1.8. For q > 1, a q-variant of the Riemann zeta function is defined as

follows:

ζq(s) =
∑
n≥1

qn

[n]sq
, for ℜ(s) > 1. (2.3)

Definition 2.1.9. For q > 1, a q-analogue of the Hurwitz zeta function is given by:

ζq(s, x) =
∑
n≥0

qn+x

[n+ x]sq
, for ℜ(s) > 1, (2.4)

where x /∈ Z≤0.

Further, we bring into focus the critical results that have been thoroughly

studied. These results, carefully introduced here, are poised to play a pivotal role

in the forthcoming discussions and analyses within the realms of Chapters 3, 4, and

5. The initial result, articulated by Kurokawa and Wakayama in 2003, pertains to

the analytic characteristics of ζq(s). The theorem is outlined as follows:

Theorem 2.1.1. Suppose q > 1. Then, the following statements hold:

1. ζq(s) is meromorphic for s ∈ C.

2. Around s = 1, we have the Laurent expansion

ζq(s) =
q − 1

log q
.

1

s− 1
+ γ(q) + c1(q)(s− 1) + · · ·

with

γ(q) =
∑
n≥1

1

[n]q
+

(q − 1) log(q − 1)

log q
− q − 1

2
.

Proof. For the proof, see Theorem 2.1 in ref. [47].
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The authors of ref. [47] also conducted research on the analytical properties

of q-analogue of the Hurwitz zeta function. This investigation resulted in the

formulation of the following theorem:

Theorem 2.1.2. Let q > 1. Then, ζq(s, x) is meromorphic for s ∈ C.

Proof. Using classical binomial expansion, we have:

ζq(s, x) =
∑
n≥0

qn+x

[n+ x]sq

= (q − 1)s
∑
n≥0

qn+x(qn+x − 1)−s

= (q − 1)s
∑
n≥1

qn+x(1−s)(1− q−(n+x))−s

= (q − 1)s
∑
n≥1

qn+x(1−s)
∑
k≥0

(
−s
k

)
(−1)kq−(n+x)k

= (q − 1)s
∑
k≥0

s(s+ 1) · · · (s+ k − 1)

k!

∑
n≥1

q−(n+x)(s+k−1)

= (q − 1)s
∑
k≥0

s(s+ 1) · · · (s+ k − 1)

k!

q−x(s+k−1)

1− q−(s+k−1)

= (q − 1)s
∑
k≥0

s(s+ 1) · · · (s+ k − 1)

k!

q(s+k−1)(1−x)

qs+k−1 − 1
.

Thus, it is evident that ζq(s, x) exhibits meromorphic behaviour for s ∈ C. The
set of points comprising

{
1 + i 2πb

log q
: b ∈ Z

}
∪
{
a + i 2πb

log q
: a, b ∈ Z, a ≤ 0, b ̸= 0

}
constitutes the locations of simple poles, with s = 1 being a simple pole with residue
q−1
log q

.

Further, the theorem by Nesterenko in ref. [55] about the algebraic independence

of the Eisenstein series holds significant importance in proving some of our results.

Below, we present the formal statement of this crucial theorem.

Theorem 2.1.3. For any q with | q |< 1, the transcendence degree of the field

Q (q, E2(q), E4(q), E6(q))

is at least 3. Thus, for q algebraic, E2(q), E4(q), and E6(q) are algebraically

independent and hence transcendental.

In addition to this, the work of Duverney and Tachiya, as documented in ref. [24],

represents a noteworthy refinement of the methods originally proposed by Chowla

and Erdős, particularly in the context of establishing the irrationality of Lambert
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series. They proved the following theorem on linear independence for various types

of Lambert series:

Theorem 2.1.4. Let σ0(n) be the divisor function and {an}n≥1 be a sequence of

non-zero integers satisfying log |an| = O(log log n). Then, for every integer h ≥ 1,

the following numbers:

1,
∑
n≥1

σ0(n)an
qn

,
∑
n≥1

σ0(n)an
q2n

, · · · ,
∑
n≥1

σ0(n)an
qhn

are linearly independent over Q.

2.2 Certain results from analysis

In this section, we revisit and elucidate essential principles and findings stemming

from the domains of real and complex analysis.

2.2.1 Analytic function

Consider a non-empty connected open subset of the complex plane, commonly

known as a region, and denote it as Ω.

Definition 2.2.1. Let f be a complex function defined in the region Ω. For z0 ∈ Ω,

consider the following limit

f (1)(z0) = lim
z→z0

f(z)− f(z0)

z − z0
.

Then, f is said to be analytic in Ω if f is single valued and f (1)(z0) exists for every

z0 ∈ Ω. It is referred to as the derivative of f at z0.

Remark 2.2.1. A function is entire if it is analytic in the whole complex plane.

Definition 2.2.2. A locally analytic function is a complex function that is

analytic in a neighbourhood of each point in its domain.

2.2.2 Taylor series

Consider a complex number z0 and let D(z0; r) represent the set {z ∈ C : |z −
z0| < r}. Utilizing the Cauchy integral formula and principles from the theory of

analytic functions, one can establish the following significant outcome:
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Theorem 2.2.1. Let f be an analytic function on an open set A ∈ C and a be

any point of A. Then, all derivatives f (n)(a) exist, and f can be represented by the

following convergent power series:

f(z) =
∑
n≥0

f (n)(a)

n!
(z − a)n,

in every disc D(a;R), whose closure lies in A. Moreover, for every n ≥ 0, we have:

f (n)(a) =
n!

2πi

∫
C

f(z)

(z − a)n+1
dz, (2.5)

where C is any positively oriented circular path with center at a and radius r1 < R <

r.

Proof. For the proof see ref. [1, Theorem 16.20].

2.2.3 Laurent series

Consider a complex number z0 along with non-negative real values r1 and r2.

We can denote the set A(z0; r1, r2) as:

A(z0; r1, r2) = {z ∈ C : r1 ≤ |z − z0| ≤ r2}.

The set A(z0; r1, r2) is commonly referred to as an annulus.

Theorem 2.2.2. Let f be an analytic function on an annulus A(a; r1, r2) for some

fixed a ∈ C. Then, for every interior point z of this annulus, we have:

f(z) = f1(z) + f2(z),

where

f1(z) =
∑
n≥0

cn(z − a)n

and

f2(z) =
∑
n≥1

c−n(z − a)−n.

The coefficients are given by the formula:

cn =
1

2πi

∫
C

f(z)

(z − a)n+1
dz, (2.6)
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where C is any positively oriented circular path with center at a and radius r, with

r1 < r < r2. The function f1 is analytic on the disk B(a; r2). The function f2 is

analytic outside the closure of the disk B(a; r1).

Proof. For the proof see ref. [1, Theorem 16.31].

The function f1 is called the regular part of f at a while the function f2 is called

the principal part of f at a.

Remark 2.2.2. It is evident that the Taylor series expansion and the Laurent series

expansion of a function f centered at a point a possess uniqueness, due to the

existence of formulas given by Equations 2.5 and 2.6, respectively.

2.2.4 Big O notation

The Big O notation, denoted as O(·), is a mathematical notation used to describe

the upper bound or asymptotic behaviour of a function.

Definition 2.2.3. Let f(x) be a real or complex-valued function and g(x) be a

positive real-valued function. Then, f(x) = O(g(x)) (read as “f(x) is Big O of

g(x)”), if there exists a positive real number M and a real number x0 such that

|f(x)| ≤Mg(x), for all x ≥ x0.

2.3 Fundamentals of p-adic theory

The purpose of this section is to investigate thoroughly the definitions and

theorems related to p-adic theory that serve as an essential component for the

results in Chapter 6. In our pursuit, we will begin by revisiting basic definitions

and subsequently introduce a series of theorems that have direct relevance to our

research outcomes.

Definition 2.3.1. The p-adic logarithm of x ∈ U1 is defined as follows:

logp(x) = logp(1 + (x− 1)) =
∑
n≥1

(−1)n+1 (x− 1)n

n
,

where U1 = B(1, 1) = {x ∈ Cp : |x− 1|p < 1}.

Definition 2.3.2. The p-adic digamma function ψp(x) is given by the following

expression:

ψp(x) = lim
k→∞

1

pk

pk−1∑
n=0

logp(x+ n)

for any x ∈ Cp.
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The theorem introduced by Diamond in ref. [22] holds the utmost importance in

supporting our research outcomes. It is fundamental to our endeavours to establish

the results that we are aiming to convey. Here is the statement of this essential

theorem:

Theorem 2.3.1. If q > 1 and ζq is a primitive q-th root of unity, then

qγp(r, q) = γp −
q−1∑
a=1

ζ−ar
q logp(1− ζaq ).

Further, our conclusions are supported by the p-adic counterpart of Gauss’

theorem in Cp which is presented as:

ψp(r/f) = − log f − γp +

f−1∑
a=1

ζ−ar logp(1− ζa),

where r, f ∈ Z+, r < f , and νp(r/f) < 0. However, for cases where νp(r/f) ≥ 0 and

for any µ such that pµ ≡ 1(modf ∗), where f = pkf ∗ with (p, f ∗) = 1, we have the

following relation:

pµ

pµ − 1
H ′

µ(r/f) = − log f − γp +

f−1∑
a=1

ζ−ar logp(1− ζa).

In the classical context, Baker’s theorem assumes a crucial role in formulating

assertions concerning the logarithms of algebraic numbers. This significance becomes

apparent through the following statement:

Theorem 2.3.2. (Baker’s theorem) If α1, α2, . . . , αn are non-zero algebraic

numbers such that logα1, . . . , logαn are linearly independent over the field of rational

numbers, then 1, logα1, . . . , logαn are linearly independent over the field of algebraic

numbers.

Similarly, in p-adic theory, the theorem put forth by R. Kaufman stands out to

be of significant importance.

Theorem 2.3.3. (R. Kaufman) Let α1, α2, . . . , αm be fixed algebraic numbers that

are multiplicatively independent over Q with height at most h. Let β0, β1, . . . , βm be

arbitrary algebraic numbers with height at most H (assumed greater than 1) and

β0 ̸= 0. There exists a constant c1 > 0 which depends only on the degree of the

number field generated by α1, α2, . . . , αm, β0, β1, . . . , βm such that the following holds:

Let K = Q(α1, α2, . . . , αm, β0, β1, . . . , βm) and |αi−1|p < p−c1, for 1 ≤ i ≤ m. Then,

|β0 + β1 logp α1 + · · ·+ βm logp αm|p > p−c logp H ,
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where c is a constant depending only on p, h, m, and [K : Q].

As a consequence of this theorem, the following conclusion was drawn by Murty

and Saradha in ref. [53]:

Theorem 2.3.4. Suppose that α1, α2, . . . , αm are non-zero algebraic numbers that

are multiplicatively independent over Q and β1, β2, . . . , βm are arbitrary algebraic

numbers (not all zero). Further, suppose that

| αi − 1 |p< p−c, for 1 ≤ i ≤ m,

where c is a constant that depends only on the degree of the number field generated

by α1, α2, . . . , αm, β1, β2, . . . , βm. Then,

β1 logp α1 + · · ·+ βm logp αm

is transcendental.

The theorems presented in Chapter 6 rely strongly on the forthcoming

propositions and lemmas. The initial proposition of this nature pertains to the

multiplicative independence of cyclotomic numbers, as established by Chatterjee

and Gun in ref. [18].

Proposition 2.3.5. Let P be the set of rational primes. For pi ∈ P, let qi = pmi
i ,

where mi ∈ N and ζqi be a primitive qi-th root of unity. Then, for any finite subset

K of P, the numbers

1− ζqi ,
1− ζaiqi
1− ζqi

, where 1 < ai <
qi
2
, (ai, qi) = 1, and pi ∈ K

are multiplicatively independent.

Moreover, by employing Theorem 2.3.4 and Proposition 2.3.5, they derived these

two significant lemmas:

Lemma 2.3.6. Let K be any finite subset of P. For q ∈ K and 1 < a < q/2, let sq,

taq be arbitrary algebraic numbers, not all zero. Further, let taq be not all zero when

p ∈ K. Then,

∑
q∈K

sq logp(1− ζq) +
∑
q∈K,

1<a<q/2

taq logp

(
1− ζaq
1− ζq

)

is transcendental.
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Lemma 2.3.7. Let q1, q2 be two distinct prime numbers and 1 ≤ ri < qi, for i = 1, 2.

Then,

q2−1∑
b=1

ζ−br2
q2

logp(1− ζbq2)−
q1−1∑
a=1

ζ−ar1
q1

logp(1− ζaq1)

is transcendental.

In 1980, Pei and Feng [58] introduced a crucial finding concerning a necessary

and sufficient condition for the multiplicative independence of cyclotomic units

involving prime powers and a product of distinct primes. The following constitutes

the statement of the result:

Proposition 2.3.8. For a composite number q ̸≡ 2(mod4), the following system:{
1− ζhq
1− ζq

: (h, q) = 1, 2 ≤ h < q/2

}
of cyclotomic units of the field Q(ζq) is independent if and only if one of the following

conditions are satisfied (here α0 ≥ 3; α1, α2, α3 ≥ 1; p1, p2, p3 are odd primes):

1. q = 4pα1
1 ; and

� 2 is a primitive root mod pα1
1 ; or

� 2 is a semi-primitive root mod pα1
1 and p1 ≡ 3(mod 4).

2. q = 2α0pα1
1 ; the order of p1(mod 2α0) is 2α0−2, 2α0−3p1 ̸≡ −1(mod 2α0), and

� 2 is a primitive root mod pα1
1 ; or

� 2 is a semi-primitive root mod pα1
1 and p1 ≡ 3(mod 4).

3. q = pα1
1 p

α2
2 ; and

� when p1 ≡ p2 ≡ 3(mod 4): p1 is a semi-primitive root mod pα2
2 and p2

is a semi-primitive root mod pα1
1 , or vice versa.

� otherwise: p1 and p2 are primitive root mod pα2
2 and mod pα1

1 ,

respectively.

4. q = 4pα1
1 p

α2
2 ; (p1 − 1, p2 − 1) = 2 and

� when p1 ≡ p2 ≡ 3(mod 4): 2 is a primitive root for one p and a

semi-primitive root for another p; p1 is primitive root mod 2pα2
2 and p2

is a semi-primitive root mod 2pα1
1 or vice versa.
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� when p1 ≡ 1, p2 ≡ 3(mod 4): 2 is a primitive root mod pα2
2 ; p1 and p2

are primitive root mod pα2
2 and mod pα1

1 , respectively.

5. q = pα1
1 p

α2
2 p

α3
3 ; p1 ≡ p2 ≡ p3 ≡ 3(mod 4): (pi− 1)/2 (1 ≤ i ≤ 3) are co-prime

to each other; and

� p1, p2, p3 are primitive root mod pα2
2 , mod pα3

3 , mod pα1
1 , respectively

and semi-primitive root mod pα3
3 , mod pα1

1 , mod pα2
2 , respectively.

Property I: Let m be a natural number such that m = pα1
1 p

α2
2 with

(α1, ϕ(p
α2
2 )) = 1 = (α2, ϕ(p

α1
1 )), where p1, p2 are odd primes, α1, α2 ∈ N, and

satisfies the following:

1. p1 ≡ p2 ≡ 3 (mod 4) : p1 and p2 are semi-primitive roots mod pα2
2 and mod

pα1
1 , respectively or

2. p1, p2 are primitive roots mod pα2
2 and mod pα1

1 , respectively.

Property II: LetM be a finite set of natural numbers with |M| = n, containing

pairwise co-prime integers mi, where 1 ≤ i ≤ n such that mi satisfies Property I.

Let us assume

mi = pbii q
ci
i ,

where pi and qi are odd primes, for all 1 ≤ i ≤ n.

Following this, Proposition 2.3.5 was extended by Chatterjee and Dhillon (see

ref. [11]) in 2020 with the help of the aforementioned properties. The formulation of

the result is presented below as Proposition 2.3.9.

Proposition 2.3.9. Assuming Property II and let ζmi
be a primitive mi-th root

of unity. Then, the numbers

1− ζpi , 1− ζqi ,
1− ζaimi

1− ζmi

,

where 1 < ai <
mi

2
, with (ai,mi) = 1 and 1 ≤ i ≤ n are multiplicatively independent.

In another article [12], Chatterjee and Dhillon provided the requisite condition,

both necessary and sufficient, for the multiplicative independence of cyclotomic

numbers when q ≡ 2 (mod 4). The outcome is stated as follows:

Proposition 2.3.10. For any composite number q ≡ 2 (mod 4), the system{
1− ζhq
1− ζq

: (h, q) = 1, 1 < h < q/2

}
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is multiplicatively independent if and only if q satisfies one of the following

conditions:

1. q = 2pn, where p is an odd prime,

2. q = 2m, where m satisfies condition III and V in Proposition 2.3.8.

2.4 Miscellaneous results

In this section, we present pivotal findings and noteworthy observations that hold

significant importance in the context of our work. These results serve as integral

components, shaping and influencing the outcomes explored in our study.

2.4.1 Arithmetic results

Definition 2.4.1. An arithmetic function is a complex or real-valued function

defined on the set of natural numbers.

Definition 2.4.2. For any two arithmetic functions f and g, the Dirichlet

convolution of f and g is denoted by f ∗ g and is defined as:

(f ∗ g)(n) =
∑
d|n

f(d)g
(n
d

)
.

Definition 2.4.3. For any real or complex α, the divisor functions σα(n) is an

arithmetic function that can be expressed as follows:

σα(n) =
∑
d|n

dα,

for all n ∈ N.

It is essential to note the following significant points:

� When α = 0, σ0(n) is the number of divisors of n.

� When α = 1, σ1(n) is the sum of divisors of n.

Definition 2.4.4. A number n is defined as a primitive root mod q, if the order

of n(mod q) is ϕ(q).

Definition 2.4.5. A number n is defined as a semi-primitive root mod q, if the

order of n(mod q) is ϕ(q)/2.
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Theorem 2.4.1. For q > 1, prove that

∑
n≥1

1

qn − 1
=
∑
n≥1

σ0(n)

qn
.

Proof. Consider

∑
n≥1

1

qn − 1
=
∑
n≥1

1

qn

(
1

1− 1
qn

)

=
∑
n≥1

1

qn

(
1 +

1

qn
+
( 1

qn

)2
+
( 1

qn

)3
+ · · ·

)
=
∑
n≥1

( 1

qn
+

1

q2n
+

1

q3n
+ · · ·

)
=
∑
n≥1

∑
k≥1

1

qnk
.

Now, substituting nk = m and using Dirichlet convolution, we obtain:

∑
n≥1

1

qn − 1
=
∑
m≥1

σ0(m)

qm
,

where σ0(m) =
∑
d|m

1 is the number of divisors of m.

2.4.2 Stirling numbers of the first kind

Definition 2.4.6. The Stirling numbers of the first kind count permutations

according to their number of cycles (counting fixed points as cycles of length one).

The number of permutations on n elements with k cycles is denoted by s(n, k).

For example, consider a symmetric group with 4 objects. So, we are interested

in finding the number of permutations for these 4 objects with 2 cycles, that is, we

have n = 4 and k = 2. We can observe the following:

� There are 3 permutations of the form (••)(••) with 2 orbits, each of size 2.

� Additionally, there are 8 permutations of the form (• • •)(•) with 1 orbit of

size 3 and 1 orbit of size 1.

Thus, in this case s(4, 2) = 11.

These values also adhere to the recurrence relation presented below

s(n+ 1, k) = ns(n, k) + s(n, k − 1).
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Below is a table illustrating the initial values of s(n, k) for the first few values of n

and k.

n

k
0 1 2 3 4 5 6 7

0 1

1 0 1

2 0 1 1

3 0 2 3 1

4 0 6 11 6 1

5 0 24 50 35 10 1

6 0 120 274 225 85 15 1

7 0 720 1764 1624 735 175 21 1

2.4.3 Eulerian numbers triangle

Definition 2.4.7. The classical Eulerian number A(n,m) is the number of

permutations of the set of numbers {1, . . . , n} in which exactly m elements are

greater than the previous element.

For example, for n = 1, 2, 3, we have:

n m Permutations A(n,m)

1 0 id A(1,0) = 1

2
0 id A(2,0)= 1

1 (1 2) A(2,1) = 1

3

0 id A(3,0)= 1

1 (1 2), (1 3), (2 3), (1 3 2) A(3 1) = 4

2 (1 2 3) A(3,2)= 1

When dealing with larger values of n, A(n,m) can be computed using the

following recursive relation:

A(n,m) = (n−m)A(n− 1,m− 1) + (m+ 1)A(n− 1,m).

Consequently, this leads to the creation of an Euler’s number triangle for some

values of n and m.
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n

m
0 1 2 3 4 5 6 7 8

1 1

2 1 1

3 1 4 1

4 1 11 11 1

5 1 26 66 26 1

6 1 57 302 302 57 1

7 1 120 1191 2416 1191 120 1

8 1 247 4293 15619 15619 4293 247 1

9 1 502 14608 88234 156190 88234 14608 502 1

2.5 Notations

1. The classical Pochhammer symbol (s)t is given by: (s)t =
s(s+ 1) · · · (s+ t)

(t+ 1)!
.

2. The q-Pochhammer symbol ⟨a; q⟩n is given as:

⟨a; q⟩n =

n−1∏
k=0

(1− aqk) = (1− a)(1− aq)(1− aq2) · · · (1− aqn−1).

3. The symbol

(
n

m

)
represents the value

n!

m!(n−m)!
.

4. Notations ζ(s), ψ(s), and ζ(s, x) denote the Riemann zeta function, the

digamma function, and the Hurwitz zeta function, respectively.

5. Notations ζq(s), ψq(s), and ζq(s, x) denote q-analogues of the Riemann zeta

function, the digamma function, and the Hurwitz zeta function, respectively.

6. Notations Γp(x), ψp(s), and logp(x) denote p-adic analogue of the gamma

function, the digamma function, and the logarithm function, respectively.

7. The p-adic valuation in Cp is denoted by νp(x) with νp(p) = 1.

8. The p-adic norm is represented as | · |p and |p|p = 1/p.

9. Z×
p = {x ∈ Qp : |x|p = 1} denotes the ring of p-adic integers with norm equal

to 1.

10. U1 = B(1, 1) = {x ∈ Cp : |x − 1|p < 1} denotes the open unit ball centred at

1 in p-adic theory.
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11. The numbers s(n+1, i) denotes the unsigned Stirling numbers of the first kind.

12. For q > 1, Aqn(j − 1, j) represents the polynomial in qn of degree (j − 1) and

coefficients from the j-th row in Eulerian numbers triangle.

13. The symbol B(i) is the denominator of non-zero coefficients in the series

expansion around zero of 1
2
cot(x/2) disregarding the first term.

14. For any real number x, {x} represent the fractional part of x, ⌊x⌋ denote the

greatest integer less than or equal to x, and ⌈x⌉ denote the smallest integer

greater than or equal to x.

15. The n-th harmonic number, denoted as Hn, is given by the following

expression:

Hn = 1 +
1

2
+

1

3
+ · · ·+ 1

n
.

16. A sequence s = (s1, s2, . . . , sk) is said to be admissible sequence, if s1 > 1.

17. O(·) denotes the Big O notation.

18. For a positive integer m, the symbol ζm denotes the complex m-th root of

unity e
2πi
m . It is easy to verify that

m∑
a=1

ζanm =

m, if m|n

0, otherwise.

19. For any finite set S, the cardinality of S is given by |S|.

20. To facilitate ease of use, the below table provides a reference for the symbols

frequently employed in our discussion.

No. Symbol Reference in the text

1 γk(q) Equation 1.15
2 ζq(s) Definition 1.5.1
3 ζq(s1, s2) Definition 1.5.4
4 ζ∗q (s1, s2) Definition 1.5.4
5 ζ◦q (s1, s2) Definition 1.5.4
6 ζ◦∗q (s1, s2) Definition 1.5.4
7 ζMT,q(s1, s2; s3) Equation 1.31



Chapter 3

A q-analogue of Euler-Stieltjes

Constants

In this chapter, we formulate a closed-form expression for a q-analogue of the

Euler-Stieltjes constants. These constants serve as coefficients in the Laurent series

expansion of the q-analogue of the Riemann zeta function which was introduced by

Kurokawa and Wakayama in 2003 [47]. Additionally, we indulge in the discussion

on the linear independence of a set of numbers related to the q-analogue of Euler’s

constant, thereby extending the findings of Kurokawa and Wakayama. Finally,

we establish the transcendental nature of a specific number associated with the

2-analogue of the first Euler-Stieltjes constant. The work present in this chapter is

published and accessible in ref. [13].

3.1 Introduction

In the classical number theory, the Riemann zeta function has been generalized in

many different ways, with each generalization becoming a focal point of investigation

in the realm of mathematics. The Laurent series expansion for each of these

generalizations gives rise to corresponding generalizations of the Euler-Stieltjes

constants, which are the coefficients in the Laurent series expansion of the

Riemann zeta function. Here, we explore the Laurent series expansion of one such

generalization known as the q-analogue of the Riemann zeta function. To assist the

reader, let us revisit key definitions from Chapters 1 and 2 that will be useful in

laying the groundwork for our results.

Definition 3.1.1. (Riemann zeta function) For a complex number s satisfying

ℜ(s) > 1, the Riemann zeta function, ζ(s), is defined as:

ζ(s) =
∑
n≥1

1

ns
.

It is extended to the whole complex plane except at a point s = 1, where it has

a simple pole with residue 1. So, the Laurent series expansion at s = 1 is given as
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follows:

ζ(s) =
1

s− 1
+
∑
k≥0

(−1)k

k!
γk(s− 1)k,

where γk is the Euler-Stieltjes constant and is given by:

γk = lim
N→∞

(
N∑

n=1

logk n

n
− logk+1N

k + 1

)
.

Then, Kurokawa and Wakayama in 2003 introduced the following q-analogue of

the Riemann zeta function:

Definition 3.1.2. (q-Riemann zeta function) For q > 1, a q-variant of the

Riemann zeta function is defined as follows:

ζq(s) =
∑
n≥1

qn

[n]sq
, ℜ(s) > 1.

They introduced a q-analogue of the Euler’s constant by expanding the

aforementioned series around s = 1 and established some irrationality results related

to them. We further extend their results and study other coefficients in the Laurent

series expansion of the q-analogue of the Riemann zeta function defined above.

3.2 q-analogue of the Euler-Stieltjes constants

In ref. [47], Kurokawa and Wakayama gave the following theorem for the

q-Riemann zeta function given in Definition 3.1.2.

Theorem 3.2.1. Suppose q > 1. Then, the following statements hold:

1. ζq(s) is meromorphic for s ∈ C.

2. Around s = 1, we have the Laurent expansion

ζq(s) =
q − 1

log q
.

1

s− 1
+ γ(q) + c1(q)(s− 1) + · · ·

with

γ(q) =
∑
n≥1

1

[n]q
+

(q − 1) log(q − 1)

log q
− q − 1

2
.

Consequently, we further extend Theorem 3.2.1 by establishing the following

result for the aforementioned q-Riemann zeta function:
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Theorem 3.2.2. The q-analogue of the Riemann zeta function is meromorphic for

s ∈ C and its Laurent series expansion around s = 1 is given by:

ζq(s) =
q − 1

log q
.

1

s− 1
+ γ0(q) + γ1(q)(s− 1) + γ2(q)(s− 1)2 + γ3(q)(s− 1)3 + · · ·

with

γk(q) =
k+1∑
i=1

((∑
n≥1

s(n+ 1, i)

[n]qn!

)
logk+1−i(q − 1)

(k + 1− i)!

)

+
k∑

j=1

(−1)j

(
k−(j−1)∑

i=1

(∑
n≥1

s(n+ 1, i)qnAqn(j − 1, j)

n![n]q(qn − 1)j
logj q

j!

)
log(k−(j−1)−i)(q − 1)

(k − (j − 1)− i)!

)

− (q − 1) logk(q − 1)

2(k!)
+

(q − 1) logk+1(q − 1)

(k + 1)! log q

+

⌈ k
2
⌉∑

i=1

(−1)i+1 (q − 1) log2i−1 q logk−(2i−1)(q − 1)

B(i)(k − (2i− 1))!
,

where s(n+ 1, i) are the unsigned Stirling numbers of the first kind, Aqn(j − 1, j) is

the polynomial in qn of degree (j − 1) and coefficients from the j-th row in Eulerian

numbers triangle, B(i) is the denominator of non-zero coefficients in the series

expansion around zero of 1
2
cot(x/2) disregarding the first term, and ⌈x⌉ denotes

the smallest integer greater than or equal to x.

Proof. The binomial expansion of the q-Riemann zeta function yields the expression:

ζq(s) = (q − 1)s
∑
n≥1

qn(qn − 1)−s

= (q − 1)s
∑
n≥1

qn(1−s)(1− q−n)−s

= (q − 1)s
∑
n≥1

qn(1−s)
∑
k≥0

(
−s
k

)
(−1)kq−nk

= (q − 1)s
∑
k≥0

s(s+ 1) · · · (s+ k − 1)

k!

∑
n≥1

q−n(s+k−1)

= (q − 1)s
∑
k≥0

s(s+ 1) · · · (s+ k − 1)

k!

1

qs+k−1 − 1
. (3.1)

Then, from Theorem 3.2.1, we see that ζq(s) is meromorphic for s ∈ C and has simple

poles at points in the set
{
1 + i 2πb

log q
: b ∈ Z

}
∪
{
a + i 2πb

log q
: a, b ∈ Z, a ≤ 0, b ̸= 0

}
,

with s = 1 being a simple pole with residue q−1
log q

. Now expanding Equation 3.1, we

get:
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ζq(s) = (q − 1)s

{
1

qs−1 − 1
+ s

1

qs − 1
+
s(s+ 1)

2

1

qs+1 − 1

+
s(s+ 1)(s+ 2)

6

1

qs+2 − 1
+ · · ·

}
. (3.2)

Note that around s = 1, we have:

(q − 1)s = (q − 1) + {(q − 1) log(q − 1)}(s− 1) +
1

2
{(q − 1) log2(q − 1)}

(s− 1)2 +
1

6
{(q − 1) log3(q − 1)}(s− 1)3 + · · · ,

1

qs−1 − 1
=

1

log q(s− 1)
− 1

2
+

1

12
log q(s− 1)− 1

720
log3 q(s− 1)3

+
1

30240
log5 q(s− 1)5 + · · · ,

s
1

qs − 1
=

1

(q − 1)
+

(q − 1− q log q)

(q − 1)2
(s− 1) +

{
− q log q

(q − 1)2

+
(q + q2) log2 q

2(q − 1)3

}
(s− 1)2 +

{(q + q2) log2 q

2(q − 1)3

− (q + 4q2 + q3) log3 q

6(q − 1)4

}
(s− 1)3 + · · · ,

s(s+ 1)

2

1

qs+1 − 1
=

1

q2 − 1
+

−3 + 3q2 − 2q2 log q

2(q2 − 1)2
(s− 1)

+
1− 2q2 + q4 + 3q2 log q − 3q4 log q + q2 log2 q + q4 log2 q

2(q2 − 1)3
(s− 1)2

+ · · · .

A similar expansion of the other terms in Equation 3.2 leads to the following

expression:

ζq(s) =

[
(q − 1) + {(q − 1) log(q − 1)}(s− 1) +

1

2
{(q − 1) log2(q − 1)}(s− 1)2

+
1

6
{(q − 1) log3(q − 1)}(s− 1)3 + · · ·

][
1

log q

1

s− 1
+

(
− 1

2
+

1

q − 1
+

1

q2 − 1

+
1

q3 − 1
+

1

q4 − 1
+ · · ·

)
(s− 1)0 +

(
log q

12
+

{
1

q − 1
+

3

2!(q2 − 1)
+

11

3!(q3 − 1)

+ · · ·

}
−

{
q log q

(q − 1)2
+

q2 log q

(q2 − 1)2
+

q3 log q

(q3 − 1)3
+ · · ·

})
(s− 1) +

({
1

2(q2 − 1)

+
6

3!(q3 − 1)
+

35

4!(q4 − 1)
+ · · ·

}
−

{
q log q

(q − 1)2
+

3q2 log q

2(q2 − 1)2
+

11q3 log q

3!(q3 − 1)3
+ · · ·

}
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+

{
q(q + 1) log2 q

2(q − 1)3
+
q2(q2 + 1) log2 q

2(q2 − 1)3
+
q3(q3 + 1) log2 q

2(q3 − 1)3
+ · · ·

})
(s− 1)2

+

(
− log3 q

720
+

{
1

3!(q3 − 1)
+

10

4!(q4 − 1)
+

85

5!(q5 − 1)
+ · · ·

}
−

{
q2 log q

2!(q2 − 1)2

+
6q3 log q

3!(q3 − 1)3
+

35q4 log q

4!(q4 − 1)2
+ · · ·

}
+

{
q(q + 1) log2 q

2(q − 1)3
+

3q2(q2 + 1) log2 q

2 ∗ 2!(q2 − 1)3

+
11q3(q3 + 1) log2 q

2 ∗ 3!(q3 − 1)3
+ · · ·

}
−

{
q(q2 + 4q + 1) log3 q

3!(q − 1)4
+
q2(q4 + 4q2 + 1) log3 q

3!(q2 − 1)4

+
q3(q6 + 4q3 + 1) log3 q

3!(q3 − 1)4
+ · · ·

})
(s− 1)3 + · · ·

]

=

[
(q − 1)

∑
n≥0

1

n!
logn(q − 1)(s− 1)n

][
1

log q

1

s− 1
+

(
− 1

2
+
∑
n≥1

1

qn − 1

)

+

(
log q

12
+
∑
n≥1

s(n+ 1, 2)

n!(qn − 1)
−
∑
n≥1

qn log q

(qn − 1)2

)
(s− 1) +

(∑
n≥2

s(n+ 1, 3)

n!(qn − 1)

−
∑
n≥1

s(n+ 1, 2)qn log q

n!(qn − 1)2
+
∑
n≥1

qn(qn + 1)

(qn − 1)3
log2 q

2!

)
(s− 1)2 +

(
− log3 q

720

+
∑
n≥3

s(n+ 1, 4)

n!(qn − 1)
−
∑
n≥2

s(n+ 1, 3)qn log q

n!(qn − 1)2
+
∑
n≥1

s(n+ 1, 2)qn(qn + 1)

2(qn − 1)3
log2 q

n!

−
∑
n≥1

qn(q2n + 4qn + 1)

(qn − 1)4
log3 q

3!

)
(s− 1)3 +

(∑
n≥4

s(n+ 1, 5)

n!(qn − 1)
−
∑
n≥3

s(n+ 1, 4)qn log q

n!(qn − 1)2

+
∑
n≥2

s(n+ 1, 3)qn(qn + 1)

2(qn − 1)3
log2 q

n!
−
∑
n≥1

s(n+ 1, 2)qn(q2n + 4qn + 1)

6(qn − 1)4
log3 q

n!

+
∑
n≥1

qn(q3n + 11q2n + 11qn + 1)

(qn − 1)5
log4 q

4!

)
(s− 1)4 + · · ·

]
. (3.3)

Therefore, we have:

ζq(s) =
q − 1

log q

1

s− 1
+

[
− q − 1

2
+

(q − 1) log(q − 1)

log q
+ (q − 1)

{
1

q − 1
+

1

q2 − 1

+
1

q3 − 1
+

1

q4 − 1
+ · · ·

}]
+

[
(q − 1)

{
− 1

2
+

1

q − 1
+

1

q2 − 1
+

1

q3 − 1
+

1

q4 − 1

+ · · ·

}
log(q − 1) +

(q − 1) log2(q − 1)

2 log q
+ (q − 1)

{
log q

12
+
q − 1− q log q

(q − 1)2

+
−3 + 3q2 − 2q2 log q

2(q2 − 1)2
+

−11 + 11q3 − 6q3 log q

6(q3 − 1)2
+ · · ·

}]
(s− 1) +

[
1

2
(q − 1)
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{
− 1

2
+

1

q − 1
+

1

q2 − 1
+

1

q3 − 1
+

1

q4 − 1
+ · · ·

}
log2(q − 1) +

(q − 1) log3(q − 1)

6 log q

+ (q − 1)

{
log q

12
+
q − 1− q log q

(q − 1)2
+

−3 + 3q2 − 2q2 log q

2(q2 − 1)2
+

−11 + 11q3 − 6q3 log q

6(q3 − 1)2

+ · · ·

}
log(q − 1) + (q − 1)

{
− q log q

(q − 1)2
+

(q + q2) log2 q

2(q − 1)3

+
1− 2q2 + q4 + 3q2 log q − 3q4 log q + q2 log2 q + q4 log2 q

2(q2 − 1)3

+
6− 12q3 + 6q6 + 11q3 log q − 11q6 log q + 3q3 log2 q + 3q6 log2 q

6(q3 − 1)3
+ · · ·

}]
(s− 1)2

+ γ3(q)(s− 1)3 + · · · (3.4)

We consequently examine that:

γ0(q) = γ(q) =
∑
n≥1

1

[n]q
+

(q − 1) log(q − 1)

log q
− q − 1

2
,

γ1(q) =

(∑
n≥1

1

[n]q
+

(q − 1) log(q − 1)

2 log q
− q − 1

2

)
log(q − 1) +

(
q − 1

12

−
∑
n≥1

qn

[n]q(qn − 1)

)
log q +

∑
n≥1

s(n+ 1, 2)

n![n]q
,

γ2(q) =

(∑
n≥1

1

[n]q
+

(q − 1) log(q − 1)

3 log q
− q − 1

2

)
log2(q − 1)

2!
+

(
(q − 1) log q

12

−
∑
n≥1

(qn) log q

[n]q(qn − 1)
+
∑
n≥1

s(n+ 1, 2)

n![n]q

)
log(q − 1) +

(∑
n≥1

qn(qn + 1)

[n]q(qn − 1)

)
log2 q

2

−

(∑
n≥1

s(n+ 1, 2)qn

n![n]q(qn − 1)

)
log q +

∑
n≥2

s(n+ 1, 3)

n![n]q
.

Therefore, from Equation 3.4, collecting all the coefficients of (s−1)k and rearranging

them, we obtain:

γk(q) =
k+1∑
i=1

[(∑
n≥1

s(n+ 1, i)

[n]qn!

)
logk+1−i(q − 1)

(k + 1− i)!

]

+
k∑

j=1

(−1)j

[
k−(j−1)∑

i=1

(∑
n≥1

s(n+ 1, i)qnAqn(j − 1, j)

n![n]q(qn − 1)j
logj q

j!

)
log(k−(j−1)−i)(q − 1)

(k − (j − 1)− i)!

]

− (q − 1) logk(q − 1)

2(k!)
+

(q − 1) logk+1(q − 1)

(k + 1)! log q
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+

⌈ k
2
⌉∑

i=1

(−1)i+1 (q − 1) log2i−1 q logk−(2i−1)(q − 1)

B(i)(k − (2i− 1))!
. (3.5)

This completes the proof.

Remark 3.2.1. For k ≥ 1, γk(q) can also be reformulated as follows:

γk(q) =
(q − 1) logk+1(q − 1)

(k + 1)! log q
+

k−1∑
i=0

(
ak−i log

k−i(q − 1)

(k − i)!
+

(−1)ibk−i log
k−i q

(k − i)!

)

+
∑
n≥k

s(n+ 1, k + 1)

n![n]q
+

⌈ k
2
⌉∑

i=1

(−1)i+1 (q − 1) log2i−1 q logk−(2i−1)(q − 1)

B(i)(k − (2i− 1))!
,

(3.6)

where ak−i and bk−i are the coefficients of logk−i(q − 1) and logk−i q, respectively in

Equation 3.5.

Note that the representation in Equation 3.6 has an advantage in coherently deriving

the next Stieltjes constant. For instance, γk+1(q) can be written as:

γk+1(q) =
(q − 1) logk+2(q − 1)

(k + 2)! log q
+

k−1∑
i=0

ak−i log
k+1−i(q − 1)

(k + 1− i)!

+

(
k−1∑
i=0

(−1)ibk−i log
k−i q

(k − i)!
+
∑
n≥k

s(n+ 1, k + 1)

n![n]q

)
log(q − 1)

+
k+1∑
j=1

(−1)j

(∑
n≥1

s(n+ 1, k + 2− j)

n![n]q(qn − 1)j
qnAqn(j − 1, j)

)
logj q

j!

+
∑

n≥k+1

s(n+ 1, k + 2)

n![n]q
+

⌈ k+1
2

⌉∑
i=1

(−1)i+1 (q − 1) log2i−1 q logk+1−(2i−1)(q − 1)

B(i)(k + 1− (2i− 1))!
.

(3.7)

Observe that Equation 3.7 can again be rearranged in the form of Equation 3.6 as

follows:

γk+1(q) =
(q − 1) logk+2(q − 1)

(k + 2)! log q
+

k∑
i=0

(
a′k+1−i log

k+1−i(q − 1)

(k + 1− i)!
+

(−1)ib′k+1−i log
k+1−i q

(k + 1− i)!

)

+
∑

n≥k+1

s(n+ 1, k + 2)

n![n]q
+

⌈ k+1
2

⌉∑
i=1

(−1)i+1 (q − 1) log2i−1 q logk+1−(2i−1)(q − 1)

B(i)(k + 1− (2i− 1))!
,

where
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a′1 =
k−1∑
i=0

(−1)ibk−i log
k−i q

(k − i)!
+
∑
n≥k

s(n+ 1, k + 1)

n![n]q

and

a′k+1−i = ak−i, ∀ i ∈ {0, 1, 2, · · · , k − 1}.

Now, let us consider the case k = 1. From Equation 3.5, we have:

γ1(q) =
(q − 1) log2(q − 1)

2 log q
+

(∑
n≥1

1

[n]q
− q − 1

2

)
log(q − 1)

−

(∑
n≥1

qn

[n]q(qn − 1)

)
log q +

∑
n≥1

s(n+ 1, 2)

n![n]q
+

(q − 1) log q

12
.

So here, a1 =
∑
n≥1

1

[n]q
− q − 1

2
and b1 = −

(∑
n≥1

qn

[n]q(qn − 1)

)
. Using Equation 3.7,

we obtain γ2(q) as follows:

γ2(q) =
(q − 1) log3(q − 1)

3! log q
+

(∑
n≥1

1

[n]q
− q − 1

2

)
log2(q − 1)

2!

+

(
−
∑
n≥1

(qn) log q

[n]q(qn − 1)
+
∑
n≥1

s(n+ 1, 2)

n![n]q

)
log(q − 1)

+

(∑
n≥1

qn(qn + 1)

[n]q(qn − 1)2

)
log2 q

2
−

(∑
n≥1

s(n+ 1, 2)qn

n![n]q(qn − 1)

)
log q

+
∑
n≥2

s(n+ 1, 3)

n![n]q
+

(q − 1) log q log(q − 1)

12
,

which again can be rewritten in the form of Equation 3.6 with

a2 =
∑
n≥1

1

[n]q
− q − 1

2
and a1 = −

∑
n≥1

qn log q

[n]q(qn − 1)
+
∑
n≥1

s(n+ 1, 2)

n![n]q
,

b2 =
∑
n≥1

qn(qn + 1)

[n]q(qn − 1)
and b1 = −

(∑
n≥1

s(n+ 1, 2)qn

n![n]q(qn − 1)

)
.

We may find other q- Stieltjes constants by using the same procedure.
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3.3 Arithmetic results concerning γ0(q) and γ1(2)

In ref. [47], Kurokawa and Wakayama also established the irrationality results

involving q-analogue of the Euler’s constant. In this regard, they gave the following

theorem:

Theorem 3.3.1. Let q ≥ 2 be an integer. Then,

γ0(q)−
(q − 1) log(q − 1)

log q

is an irrational number. In particular, γ0(2) is irrational.

Motivated by their result, we extend this to the linear independence of a set of

numbers involving γ0(q) in ref. [13]. However, before indulging into the details of

the theorem, let us first define the normalized q-analogue of the Euler’s constant as

follows:

γ∗0(q) = γ0(q)−
(q − 1) log(q − 1)

log q
.

Remark 3.3.1. γ∗0(2) = γ0(2), which is an irrational number from Theorem 3.3.1.

We can now present the result, articulated as follows:

Theorem 3.3.2. For integers r ≥ 1 and q > 1, the set of numbers

{1, γ∗0(q), γ∗0(q2), γ∗0(q3), . . . , γ∗0(qr)}

is linearly independent over Q.

Proof. From Equation 3.5, we have:

γ0(q) =
(q − 1) log(q − 1)

log q
+
∑
n≥1

1

[n]q
− q − 1

2
,

which further imply

γ0(q)−
(q − 1) log(q − 1)

log q
=
∑
n≥1

1

[n]q
− q − 1

2
,

γ∗0(q) =
∑
n≥1

q − 1

qn − 1
− q − 1

2
.

Thus, by using Theorem 2.4.1, we have:

γ∗0(q) = (q − 1)
∑
n≥1

σ0(n)

qn
− q − 1

2
,
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where σ0(n) denotes the number of divisors of n.

Similarly, for any integer r > 1, we have:

γ∗0(q
r) =

∑
n≥1

1

[n]qr
− qr − 1

2

= (qr − 1)
∑
n≥1

σ0(n)

qrn
− qr − 1

2
.

For c0, c1, c2, . . . , cr ∈ Q, let us consider the following equation:

c0 + c1γ
∗
0(q) + c2γ

∗
0(q

2) + · · ·+ crγ
∗
0(q

r) = 0.

Now, substituting the value of γ∗0(q
i), for i ∈ {1, 2, . . . , r}, we get:

c0 + c1

(∑
n≥1

σ0(n)(q − 1)

qn
− q − 1

2

)
+ c2

(∑
n≥1

σ0(n)(q
2 − 1)

q2n
− q2 − 1

2

)

+ · · ·+ cr

(∑
n≥1

σ0(n)(q
r − 1)

qrn
− qr − 1

2

)
= 0.

A rearrangement of the terms then yields:(
c0 + c1

(
− q − 1

2

)
+ c2

(
− q2 − 1

2

)
+ · · ·+ cr

(
− qr − 1

2

))
+

c1

(∑
n≥1

σ0(n)(q − 1)

qn

)
+ c2

(∑
n≥1

σ0(n)(q
2 − 1)

q2n

)
+ · · ·+ cr

(∑
n≥1

σ0(n)(q
r − 1)

qrn

)
= 0.

From Theorem 2.1.4, we have ci = 0, for all i ≥ 1 and

c0 + c1

(
− q − 1

2

)
+ c2

(
− q2 − 1

2

)
+ · · ·+ cr

(
− qr − 1

2

)
= 0,

which further imply c0 = 0 and thus the set {1, γ∗0(q), γ∗0(q2), . . . , γ∗0(qr)} is linearly

independent over Q.

In particular, each γ∗0(q
i) is irrational, for i ∈ {1, 2, . . . , r} and Theorem 3.3.1 follows

from the case for r = 1.

Finally, we establish the transcendence of a number involving 2-analogue of the

first Euler-Stieltjes constant in ref. [13]. But first, we must address two essential

lemmas that are important for the proof. The first lemma serves as a response to a

question posed by Erdős in 1948 [26], which is stated as follows:

Question 3.3.3. What is the arithmetic nature of
∑
n≥1

σ1(n)

qn
, where q > 1 and σ1(n)
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is the sum of the divisors of n?

The following lemma answers this question, which can be stated as follows:

Lemma 3.3.4. For every integer q > 1,
∑
n≥1

σ1(n)

qn
is a transcendental number,

where σ1(n) is the sum of the divisors of n.

Proof. Recall that the Eisenstein series of weights 2, 4, and 6 for the full modular

group is given by (see ref. [55]):

E2(q) = 1− 24
∑
n≥1

σ1(n)q
n,

E4(q) = 1 + 240
∑
n≥1

σ3(n)q
n,

E6(q) = 1− 504
∑
n≥1

σ5(n)q
n.

By Theorem 2.1.3, the transcendence degree of Q (q, E2(q), E4(q), E6(q)) is at least

3. Because each integer q > 1 implies that 1
q
< 1 and is an algebraic number, we

find that E2(1/q), E4(1/q), and E6(1/q) are algebraically independent and hence,

transcendental numbers.

Thus,

∑
n≥1

σ1(n)

qn
=

1− E2(1/q)

24

is a transcendental number.

Lemma 3.3.5. For every integer t > 1,
∑
n≥1

tn

(tn − 1)2
=
∑
n≥1

σ1(n)

tn
.

Proof. From Definition 2.1.5, we have:

ψq(x) = − log(q − 1) + log q

(
x− 1

2
−
∑
n≥1

q−nx

1− q−n

)

and thus,

ψ′
q(x) = log q

(
1 + log q

∑
n≥1

nq−nx

1− q−n

)
.

Simple computation and using Dirichlet Convolution then yield:

∑
n≥1

tn

(tn − 1)2
=

− log t + ψ′
t(1)

log2 t
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=
∑
n≥1

n

tn − 1

=
∑
n≥1

bn
tn
, where bn =

∑
m|n

m

=
∑
n≥1

σ1(n)

tn

and the proof is completed.

Now, the theorem is given as follows:

Theorem 3.3.6. Let k = 1 and q = 2. Then,

1

log 2

(
γ1(2)−

∑
n≥1

Hn

2n − 1

)

is a transcendental number, where Hn is the n− th harmonic number.

Proof. From Theorem 3.2.2, we have:

γ1(q) =

(∑
n≥1

1

[n]q
+

(q − 1) log(q − 1)

2 log q
− q − 1

2

)
log(q − 1) +

(
q − 1

12

−
∑
n≥1

qn

[n]q(qn − 1)

)
log q +

∑
n≥1

s(n+ 1, 2)

n![n]q
.

Now, substituting k = 1 and q = 2 in the above expression, we get:

γ1(2) =

(
1

12
−
∑
n≥1

2n

(2n − 1)2

)
log 2 +

∑
n≥1

s(n+ 1, 2)

n!(2n − 1)
.

Using Lemma 3.3.5, we obtain:

∑
n≥1

2n

(2n − 1)2
=
∑
n≥1

σ1(n)

2n
,

which is a transcendental number by using Lemma 3.3.4. Then, the desired

conclusion immediately follows by using the fact that Hn = 1
n!
s(n + 1, 2), where

Hn is the n− th harmonic number.

3.4 Concluding remarks

The outcomes presented herein underscore the significance of the q-analogue of

Euler-Stieltjes constants in the field of number theory. This sheds light on their
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arithmetic nature, particularly focusing on γ0(q) and γ1(2). As we conclude this

chapter, we anticipate that similar arithmetic results can be investigated for other

coefficients in the Laurent series expansion of the q-Riemann zeta function. In

particular, one can ask the following question:

Question 3.4.1. What is the arithmetic nature of γk(q), where k ≥ 2 and q ̸= 2?
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Chapter 4

Generalizations of q-Riemann Zeta

Function

In this chapter, we aim to build upon the results of Chapter 3, extending

them to a q-analogue of the double zeta function, which is a generalization of the

q-Riemann zeta function. Specifically, we aim to derive a closed-form expression for

γ0,0(q), which represents a q-analogue of Euler’s constant of height 2. It appears

as the constant term in the Laurent series expansion of a q-analogue of the double

zeta function around s1 = 1 and s2 = 1. Moreover, we examine the arithmetic

properties of numbers involving the constant γ′∗0 (q
i), where 1 ≤ i ≤ r, for any

integer r ≥ 1, that appears in the Laurent series expansion of a q-double zeta

function. Finally, we discuss the irrationality of certain numbers involving a 2-double

Euler-Stieltjes constant, i.e., γ0,0(2). Furthermore, we also engage in an exploration

of the coefficients in the Laurent series expansion of another generalization of the

q-Riemann zeta function, namely, q-Hurwitz zeta function. The work present in this

chapter is available in ref. [14,16].

4.1 Introduction

In classical number theory, the Riemann zeta function exhibits several

generalizations. The generalizations that are of relevance to our study are the

multiple zeta functions and the Hurwitz zeta function. Our inquiry begins by

scrutinizing the multiple zeta functions, specifically its q-analogue, followed by an

examination of the q-analogue of the Hurwitz zeta function.

The multiple zeta functions are defined as follows:

ζ(s1, . . . , sr) =
∑

n1>n2>···>nr>0

1

ns1
1 · · ·nsr

r

=
∑

n1>n2>···>nr>0

r∏
i=0

1

nsi
i

, (4.1)

where s1 > 1 and sk ≥ 1, for 2 ≤ k ≤ r. The multiple zeta functions, similar to the

Riemann zeta function, are meromorphic and can be continued analytically in Cr.

The sums in Equation 4.1 are known as multiple zeta values (MZVs) or Euler sums

when s1, . . . , sr are all positive integers (with s1 > 1). Set s = s1 + s2 + · · · + sr,
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then r and s denotes the “depth” and “weight” in Equation 4.1, respectively. Its

star variant, namely, the multiple zeta star functions is given by:

ζ∗(s1, . . . , sr) =
∑

n1≥n2≥···≥nr≥1

1

ns1
1 · · ·nsr

k

=
∑

n1≥n2≥···≥nr≥1

r∏
i=1

1

nsi
i

. (4.2)

It is interesting to point out that a variety of definitions of q-analogues of the

multiple zeta functions exist. Bradley in ref. [9] gives the most researched q-analogue

of the multiple zeta functions for 0 < q < 1 with the following formula:

ζ[s1, s2, . . . , sm] =
∑

k1>···>km>0

m∏
j=1

q(sj−1)kj

[kj]
sj
q

,

where s1 > 1 and sj ≥ 1, for 2 ≤ j ≤ m. In ref. [56], Ohno, Okuda, and Zudilin

studied another q-analogue which is defined as follows:

zq(s1, . . . , sm) =
∑

k1>···>km>0

qk1

(1− qk1)s1 · · · (1− qkm)sm
. (4.3)

But, in our study, we define a variant different from these two which can be

expressed as follows:

ζq(s1, s2, . . . , sm) =
∑

k1>···>km>0

m∏
j=1

qkj

[kj]
sj
q
, (4.4)

where q > 1, s1 > 1, and sj ≥ 1, for 2 ≤ j ≤ m. Correspondingly, its star variant,

namely, q-multiple zeta star functions are expressed as:

ζ∗q (s1, s2, . . . , sm) =
∑

k1≥···≥km≥1

m∏
j=1

qkj

[kj]
sj
q
.

In particular, we investigate the multiple zeta functions of depth 2, so the

q-double zeta function is defined by the series:

ζq(s1, s2) =
∑

n1>n2≥1

qn1qn2

[n1]
s1
q [n2]

s2
q

=
∑

n1,n2>0

qn1+n2qn2

[n1 + n2]
s1
q [n2]

s2
q
, (4.5)

where s1, s2 are complex numbers with ℜ(s1) > 1 and ℜ(s2) ≥ 1. Moreover, the

q-double zeta star function can be represented as:

ζ∗q (s1, s2) =
∑

k1≥k2≥1

qk1qk2

[k1]
s1
q [k2]

s2
q
.
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4.2 q-Euler-Stieltjes constant of height 2

After introducing the q-analogue of the double zeta function, we are now ready

to expand upon the results discussed in Chapter 3. The initial theorem addressing

the q-analogue of the double zeta function, outlined in Equation 4.5, is studied in

ref. [14]. The theorem is presented in the following manner:

Theorem 4.2.1. The q-analogue of the double zeta function is meromorphic for

s1, s2 ∈ C and its Laurent series expansion around s1 = s2 = 1 is given by:

ζq(s1, s2) =
1

(s1 − 1)(s1 + s2 − 2)

(
q − 1

log q

)2

− 1

(s1 + s2 − 2)

(q − 1)2

2 log q

+
(q − 1)2

(s1 + s2 − 2)

∑
k≥0

(−1)k log2k q

B(k)
(s1 − 1)2k+1 +

1

(s1 − 1)

∑
k≥0

γ′k(q)(s2 − 1)k

+
∑

k1,k2≥0

γk1,k2(q)(s1 − 1)k1(s2 − 1)k2

with

γ0,0(q) =
(q − 1)2

3
+
∑
k≥1

∑
n≥1

1

[n]q[n+ k]q
+

3

2

∑
n≥1

1− qn

[n]2q

+
(q − 1) log(q − 1)

log q

[∑
n≥1

1

[n]q
+

(q − 1) log(q − 1)

2 log q
− (q − 1)

]

and γ′k(q) =
(

q−1
log q

)
γk(q), where γk(q) is given by Equation 3.5 and B(k) is the

denominator of non-zero coefficients in the Taylor series expansion of 1
2
cot(x

2
)

around zero, disregarding the first term.

Proof. The binomial expansion of the function yields the following expression:

ζq(s1, s2) =
∑

n1,n2≥1

qn1+n2qn2

[n1 + n2]
s1
q [n2]

s2
q

=
∑

n1,n2≥1

qn1+n2(q − 1)s1

(qn1+n2 − 1)s1
qn2(q − 1)s2

(qn2 − 1)s2

= (q − 1)s1+s2
∑

n1,n2≥1

qn1+n2(qn1+n2 − 1)−s1qn2(qn2 − 1)−s2

= (q − 1)s1+s2
∑
n2≥1

qn2(qn2 − 1)−s2
∑
n1≥1

qn1+n2(qn1+n2 − 1)−s1

= (q − 1)s1+s2
∑
n2≥1

qn2(1−s2)(1− q−n2)−s2
∑
n1≥1

qn1+n2(1−s1)(1− q−(n1+n2))−s1

= (q − 1)s1+s2
∑
n2≥1

qn2(1−s2)
∑
k2≥0

(
−s2
k2

)
(−1)k2q−n2k2

∑
n1≥1

qn1+n2(1−s1)

∑
k1≥0

(
−s1
k1

)
(−1)k1q−(n1+n2)k1
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= (q − 1)s1+s2
∑
k2≥0

(
−s2
k2

)
(−1)k2

∑
n2≥1

qn2(1−s2−k2)
∑
k1≥0

(
−s1
k1

)
(−1)k1∑

n1≥1

qn1+n2(1−s1−k1)

= (q − 1)s1+s2
∑
k2≥0

s2(s2 + 1) · · · (s2 + k2 − 1)

k2!

∑
k1≥0

s1(s1 + 1) · · · (s1 + k1 − 1)

k1!∑
n2≥1

qn2(1−s2−k2)
∑
n1≥1

qn1+n2(1−s1−k1)

= (q − 1)s1+s2
∑
k2≥0

s2(s2 + 1) · · · (s2 + k2 − 1)

k2!

∑
k1≥0

s1(s1 + 1) · · · (s1 + k1 − 1)

k1!∑
n2≥1

q−n2(s2+k2−1+s1+k1−1)
∑
n1≥1

q−n1(s1+k1−1)

= (q − 1)s1+s2
∑
k2≥0

s2(s2 + 1) · · · (s2 + k2 − 1)

k2!

∑
k1≥0

s1(s1 + 1) · · · (s1 + k1 − 1)

k1!(
1

q(s2+k2−1+s1+k1−1) − 1

)(
1

q(s1+k1−1) − 1

)
.

This shows that ζq(s1, s2) is meromorphic for s1, s2 ∈ C and has a simple pole for

s1 ∈
{
1+ i 2πb

log q
: b ∈ Z

}
∪
{
a+ i 2πb

log q
: a, b ∈ Z, a ≤ 0, b ̸= 0

}
or s1+ s2 ∈

{
a+ i 2πb

log q
:

a, b ∈ Z, a ≤ 0, b ̸= 0
}

∪
{
a + i 2πb

log q
: a ∈ {1, 2}, b ∈ Z

}
. Further, expanding the

above equation, we get:

ζq(s1, s2) = (q − 1)s1+s2

[
1

qs1−1 − 1

{
1

qs1+s2−2 − 1
+

s2
qs1+s2−1 − 1

+
s2(s2 + 1)

2(qs1+s2 − 1)
+ · · ·

}

+ s1
1

qs1 − 1

{
1

qs1+s2−1 − 1
+

s2
qs1+s2 − 1

+
s2(s2 + 1)

2(qs1+s2+1 − 1)
+ · · ·

}

+
s1(s1 + 1)

2

1

qs1+1 − 1

{
1

qs1+s2 − 1
+

s2
qs1+s2+1 − 1

+
s2(s2 + 1)

2(qs1+s2+2 − 1)

+ · · ·

}
+ · · ·

]
. (4.6)

Note that around s1 = 1 and s2 = 1, we have:

(q − 1)s1+s2 =
(
(q − 1)2 + (q − 1)2 log(q − 1)(s2 − 1) +

1

2
(q − 1)2 log2(q − 1)(s2 − 1)2

+O[b− 1]3
)
+
(
(q − 1)2 log(q − 1) + (q − 1)2 log2(q − 1)(s2 − 1)

+
1

2
(q − 1)2 log3(q − 1)(s2 − 1)2 +O[b− 1]3

)
(s1 − 1) +O[s1 − 1]2.
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1

qs1−1 − 1

(
1

qs1+s2−2 − 1

)
=

1

s1 − 1

(
1

log2 q(s2 − 1)
− 1

2 log q
+
s2 − 1

12
+O[s2 − 1]3

)

+

(
− 1

log2 q(s2 − 1)2
− 1

2 log q(s2 − 1)
+

1

3
− 1

24
log q(s2 − 1)

+O[s2 − 1]2

)
+

(
− 1

log2 q(s2 − 1)3
+

1

2 log q(s2 − 1)2

+
1

12(s2 − 1)
− log q

12
+O[s2 − 1]2

)
(s1 − 1) +O[s1 − 1]2.

s1
1

qs1 − 1

(
1

qs1+s2−1 − 1

)
=

(
1

(q − 1)2
− q log q(s2 − 1)

(q − 1)3
+

(
q log2 q

2(q − 1)4

+
q2 log2 q

2(q − 1)4

)
(s2 − 1)2 +O[s2 − 1]3

)
+

(
−1 + q + 2q log q

(q − 1)3

+
(q log q − q2 log q + q log2 q + 2q2 log2 q)(s2 − 1)

(q − 1)4

+O[s2 − 1]2

)
(s1 − 1) +O[s1 − 1]2.

s1(s1 + 1)

2

1

qs1+1 − 1

(
1

qs1+s2 − 1

)
=

(
1

(q2 − 1)2
− q2 log q(s2 − 1)

(q2 − 1)3
+

(
q2 log2 q

2(q2 − 1)4

+
q4 log2 q

2(q2 − 1)4

)
(s2 − 1)2 +O[s2 − 1]3

)

+

(
−3 + 3q2 − 4q2 log q

2(q2 − 1)3

+
(3q2 log q − 3q4 log q + 2q2 log2 q + 4q2 log2 q)(s2 − 1)

2(q2 − 1)4

+O[s2 − 1]2

)
(s1 − 1) +O[s1 − 1]2.

The other terms in Equation 4.6 also expand similarly, resulting in:

ζq(s1, s2) =

[(
(q − 1)2 + (q − 1)2 log(q − 1)(s2 − 1) +

1

2
(q − 1)2 log2(q − 1)(s2 − 1)2

+O[s2 − 1]3
)
+
(
(q − 1)2 log(q − 1) + (q − 1)2 log2(q − 1)(s2 − 1)

+
1

2
(q − 1)2 log3(q − 1)(s2 − 1)2 +O[[s2 − 1]3

)
(s1 − 1) +O[s1 − 1]2

]
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[
1

s1 − 1

(
1

log2 q

1

(s2 − 1)
− 1

2 log q
+

1

12
(s2 − 1) +O[s2 − 1]3

)

+

(
− 1

log2 q

1

(s2 − 1)2
− 1

2 log q

1

(s2 − 1)
+

1

3
− 1

24
log q(s2 − 1)

+O[s2 − 1]2

)
+

(
− 1

log2 q

1

(s2 − 1)3
+

1

2 log q

1

(s2 − 1)2
+

1

12

1

(s2 − 1)

− log q

12
+O[s2 − 1]2

)
(s1 − 1) +O[s1 − 1]2 + · · ·

(
1

(q − 1)2
− q log q

(q − 1)3
(s2 − 1)

+

(
q log2 q

2(q − 1)4
+

q2 log2 q

2(q − 1)4

)
(s2 − 1)2 +O[s2 − 1]3

)
+

(
−1 + q + 2q log q

(q − 1)3

+
(q log q − q2 log q + q log2 q + 2q2 log2 q)

(q − 1)4
1

(s2 − 1)
+O[s2 − 1]2

)
(s1 − 1)

+O[s1 − 1]2 + · · ·

(
1

(q2 − 1)2
− q2 log q

(q2 − 1)3
1

(s2 − 1)
+

(
q2 log2 q

2(q2 − 1)4

+
q4 log2 q

2(q2 − 1)4

)
(s2 − 1)2 +O[s2 − 1]3

)
+

(
−3 + 3q2 − 4q2 log q

2(q2 − 1)3

+
(3q2 log q − 3q4 log q + 2q2 log2 q + 4q2 log2 q)

2(q2 − 1)4
1

(s2 − 1)

+O[s2 − 1]2

)
(s1 − 1) +O[s1 − 1]2 + · · ·

]

=

(
q − 1

log q

)2
[∑
n≥1

(−1)n+1 (s1 − 1)n−2

(s2 − 1)n

]
+

(q − 1)2

2 log q

[∑
n≥1

(−1)n
(s1 − 1)n−1

(s2 − 1)n

]

+
(q − 1)2

12

[∑
n≥1

(−1)n+1

(
s1 − 1

s2 − 1

)n
]
+

(q − 1)2 log2 q

720

[∑
n≥1

(−1)n
(s1 − 1)n+2

(s2 − 1)n

]

+ · · ·+ 1

(s1 − 1)

[∑
k≥0

γ′k(q)(s2 − 1)k

]
+
∑

k1,k2≥0

γk1,k2(q)(s1 − 1)k1(s2 − 1)k2

=

(
q − 1

log q

)2
1

(s1 − 1)(s1 + s2 − 2)
− (q − 1)2

2 log q

1

(s1 + s2 − 2)

+
(q − 1)2

(s1 + s2 − 2)

∑
k≥0

(−1)k
log2k(q)

B(k)
(s1 − 1)2k+1 +

1

(s1 − 1)

[∑
k≥0

γ′k(q)(s2 − 1)k

]
+
∑

k1,k2≥0

γk1,k2(q)(s1 − 1)k1(s2 − 1)k2 , (4.7)

such that

γ′k(q) =
(q − 1

log q

)
γk(q), (4.8)
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where γk(q) is given by Equation 3.5 and

γ0,0(q) =
(q − 1)2

3
+
∑
k≥1

∑
n≥1

1

[n]q[n+ k]q
+

3

2

∑
n≥1

1− qn

[n]2q

+
(q − 1) log(q − 1)

log q

[∑
n≥1

1

[n]q
+

(q − 1) log(q − 1)

2 log q
− (q − 1)

]
. (4.9)

Remark 4.2.1. Rearranging the terms of Equation 4.9, we obtain:

γ0,0(q) =
(q − 1)2

3
+
∑
k≥1

∑
n≥1

1

[n]q[n+ k]q
+

3

2

∑
n≥1

1

[n]2q
− 3

2
ζq(2)

+
(q − 1) log(q − 1)

log q

[
γ0(q)−

(q − 1) log(q − 1)

2 log q
− (q − 1)

2

]

and thus establishing the relation between γ0,0(q), ζq(2), and γ0(q).

4.3 Arithmetic results regarding γ′0(q) and γ0,0(2)

In this section, we present a series of theorems associated with the coefficients

found in the Laurent series expansion of the q-double zeta function. Specifically,

we establish an irrationality result concerning the coefficients γ′0(q) and γ0,0(2).

However, for a better understanding of the proof, we rely on a result by Erdős

regarding the irrationality of certain infinite series [26]. The corresponding theorem

is outlined as follows:

Theorem 4.3.1. Let |t| > 1 be any integer. Then, f(1/t) is irrational, where

f(x) =
∑
n≥1

xn

1− xn
.

Now, we present the theorems about the coefficient γ′0(q) as follows:

Theorem 4.3.2. Let q ≥ 2 be an integer. Then,

log q

q − 1
γ′0(q)−

(q − 1) log(q − 1)

log q

is an irrational number. In particular, log 2(γ′0(2)) is irrational.

Proof. From Equation 3.5, we have:

γ0(q) =
∑
n≥1

1

[n]q
+

(q − 1) log(q − 1)

log q
− q − 1

2
.
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Also, from Equation 4.8

γ′0(q) =

(
q − 1

log q

)(∑
n≥1

1

[n]q
+

(q − 1) log(q − 1)

log q
− q − 1

2

)
,

which further implies:(
log q

q − 1

)
γ′0(q)−

(q − 1) log(q − 1)

log q
=
∑
n≥1

1

[n]q
− q − 1

2
.

Now, by using Theorem 2.4.1, we obtain:(
log q

q − 1

)
γ′0(q)−

(q − 1) log(q − 1)

log q
= (q − 1)

∑
n≥1

σ0(n)

qn
− q − 1

2
,

where σ0(n) =
∑
m|n

1 is the number of divisors on n. The irrationality of the left-hand

side follows from Theorem 4.3.1. Hence, the proof is complete.

Next, let us define:

γ′∗0 (q) =
log q

q − 1
γ′0(q)−

(q − 1) log(q − 1)

log q
.

Then, we have the following linearly independence result, which is the extension

of Theorem 4.3.2:

Theorem 4.3.3. For integers r ≥ 1 and q > 1, the set of numbers

{1, γ′∗0 (q), γ′∗0 (q2), γ′∗0 (q3), . . . , γ′∗0 (qr)}

is linearly independent over Q.

Proof. From Equation 4.8, we get:

γ′0(q) =

(
q − 1

log q

)(∑
n≥1

1

[n]q
+

(q − 1) log(q − 1)

log q
− q − 1

2

)
.

Hence, we have:(
log q

q − 1

)
γ′0(q)−

(q − 1) log(q − 1)

log q
=
∑
n≥1

1

[n]q
− q − 1

2
.



Chapter 4. Generalizations of q-Riemann Zeta Function 69

Then, using Theorem 2.4.1, we get:

γ′∗0 (q) = (q − 1)
∑
n≥1

σ0(n)

qn
− q − 1

2
,

where σ0(n) denotes the number of divisors of n.

Similarly, for any integer r > 1, we have:

γ′∗0 (q
r) =

∑
n≥1

1

[n]qr
− qr − 1

2

= (qr − 1)
∑
n≥1

σ0(n)

qrn
− qr − 1

2
.

For c0, c1, c2, . . . , cr ∈ Q, let us consider the following equation:

c0 + c1γ
′∗
0 (q) + c2γ

′∗
0 (q

2) + · · ·+ crγ
′∗
0 (q

r) = 0.

Substitute the value of γ′∗0 (q
i) in the above equation, for i ∈ {1, 2, . . . , r}. Then, we

have:

c0 + c1

(∑
n≥1

σ0(n)(q − 1)

qn
− q − 1

2

)
+ c2

(∑
n≥1

σ0(n)(q
2 − 1)

q2n
− q2 − 1

2

)

+ · · ·+ cr

(∑
n≥1

σ0(n)(q
r − 1)

qrn
− qr − 1

2

)
= 0.

After rearranging the terms, we get:[
c0 + c1

(
− q − 1

2

)
+ c2

(
− q2 − 1

2

)
+ · · ·+ cr

(
− qr − 1

2

)]
+

c1

(∑
n≥1

σ0(n)(q − 1)

qn

)
+ c2

(∑
n≥1

σ0(n)(q
2 − 1)

q2n

)
+ · · ·+ cr

(∑
n≥1

σ0(n)(q
r − 1)

qrn

)
= 0.

Now, using the theorem by Duverney and Tachiya regarding the linear independence

of certain Lambert series (see Theorem 2.1.4), we get that ci = 0, for all i ≥ 1 and

c0 + c1

(
− q − 1

2

)
+ c2

(
− q2 − 1

2

)
+ · · ·+ cr

(
− qr − 1

2

)
= 0,

which further implies c0 = 0 and hence, the linear independence of the set

{1, γ′∗0 (q), γ′∗0 (q2), . . . , γ′∗0 (qr)} is established over Q.

Finally, we present a theorem addressing the irrationality of a number associated

with the 2-analogue of the Euler-Stieltjes constant of height 2. The theorem is stated
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as follows:

Theorem 4.3.4. Let q = 2. Then,

γ0,0(2)−
∑
k≥1

∑
n≥1

1

(2n − 1)(2n+k − 1)

is an irrational number.

Proof. From Equation 4.9, we have:

γ0,0(q) =
(q − 1)2

3
+
∑
k≥1

∑
n≥1

1

[n]q[n+ k]q
+

3

2

∑
n≥1

1− qn

[n]2q

+
(q − 1) log(q − 1)

log q

[∑
n≥1

1

[n]q
+

(q − 1) log(q − 1)

2 log q
− (q − 1)

]
.

Substituting q = 2 in the above equation, we obtain:

γ0,0(2) =
1

3
+
∑
k≥1

∑
n≥1

1

[n]2[n+ k]2
+

3

2

∑
n≥1

1− 2n

[n]22
,

which further implies that

γ0,0(2)−
∑
k≥1

∑
n≥1

1

(2n − 1)(2n+k − 1)
=

1

3
− 3

2

∑
n≥1

1

2n − 1

=
1

3
− 3

2

∑
n≥1

σ0(n)

2n
,

where σ0(n) =
∑
m|n

1 is the number of divisors on n. So, the irrationality of the

left-hand side follows from Erdős argument given by Theorem 4.3.1, and the proof

is completed.

4.4 q-Hurwitz zeta function

After establishing results related to the q-analogue of the double zeta function,

our attention turns towards an exploration of the coefficients in the Laurent series

expansion of the q-analogue of the Hurwitz zeta function. This function represents

another generalization of the q-Riemann zeta function and is already formally defined

in Chapter 2 (refer to Definition 2.1.9). Kurokawa and Wakayama, in ref. [47],

demonstrated that this q-variant of the Hurwitz zeta function is meromorphic for

s ∈ C (see Theorem 2.1.2). In our work [16], we delve into the examination of the

following theorem concerning the coefficients in the Laurent series expansion:
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Theorem 4.4.1. The q-analogue of the Hurwitz zeta function is meromorphic for

s ∈ C and its Laurent series expansion around s = 1 is given by:

ζq(s, x) =
q − 1

log q
.

1

s− 1
+ γ0(q, x) + γ1(q, x)(s− 1) + γ2(q, x)(s− 1)2 + γ3(q, x)(s− 1)3 + · · ·

with

γ0(q, x) =
∑
n≥1

qn(1−x)

[n]q
+

(q − 1) log(q − 1)

log q
− q − 1

2
+ (q − 1)(1− x)

and

γ1(q, x) =

(∑
n≥1

qn(1−x)

[n]q
+

(q − 1) log(q − 1)

2 log q
− q − 1

2
+ (q − 1)(1− x)

)
log(q − 1)

+

(
q − 1

12
−
∑
n≥1

(1 + (qn − 1)x)qn(1−x)

[n]q(qn − 1)
− (q − 1)(1− x)x

2

)
log q

+
∑
n≥1

qn(1−x)s(n+ 1, 2)

n![n]q
,

where s(n+ 1, i) are the unsigned Stirling numbers of the first kind.

Proof. The binomial expansion of the q-analogue of the Hurwitz zeta function results

in the following expression:

ζq(s, x) = (q − 1)s
∑
n≥0

qn+x(qn+x − 1)−s

= (q − 1)s
∑
n≥1

qn+x(1−s)(1− q−(n+x))−s

= (q − 1)s
∑
n≥1

qn+x(1−s)
∑
k≥0

(
−s
k

)
(−1)kq−(n+x)k

= (q − 1)s
∑
k≥0

s(s+ 1) · · · (s+ k − 1)

k!

∑
n≥1

q−(n+x)(s+k−1)

= (q − 1)s
∑
k≥0

s(s+ 1) · · · (s+ k − 1)

k!

q(s+k−1)(1−x)

qs+k−1 − 1
. (4.10)

Then, clearly ζq(s, x) is meromorphic for s ∈ C and has simple poles at points in

the set
{
1 + i 2πb

log q
: b ∈ Z

}
∪
{
a+ i 2πb

log q
: a, b ∈ Z, a ≤ 0, b ̸= 0

}
, with s = 1 being a

simple pole with residue q−1
log q

.

Now, expanding Equation 4.10, we get:

ζq(s, x) = (q − 1)s

{
q(s−1)(1−x)

qs−1 − 1
+ s

qs(1−x)

qs − 1
+
s(s+ 1)

2

q(s+1)(1−x)

qs+1 − 1
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+
s(s+ 1)(s+ 2)

6

q(s+2)(1−x)

qs+2 − 1
+ · · ·

}
. (4.11)

Note that around s = 1, we have:

(q − 1)s = (q − 1) + {(q − 1) log(q − 1)}(s− 1) +
1

2
{(q − 1) log2(q − 1)}(s− 1)2

+
1

6
{(q − 1) log3(q − 1)}(s− 1)3 + · · · ,

q(s−1)(1−x)

qs−1 − 1
=

1

log q(s− 1)
+

(
1

2
− x

)
+

1

12
(1− 6x+ 6x2) log q(s− 1)

+
1

12
(−x+ 3x2 − 2x3) log2 q(s− 1)2

+
1

720
(−1 + 30x2 − 60x3 + 30x4) log3 q(s− 1)3 + · · · ,

s
qs(1−x)

qs − 1
=

q1−x

(q − 1)
− q1−x(1− q + log q − x log q + qx log q)

(q − 1)2
(s− 1)

+

(
(2− 2q − 2x+ 4qx− 2q2x)

2(q − 1)3

)
q1−x log q(s− 1)2

+
(1 + q − 2x+ 2qx+ x2 − 2qx2 + q2x2)

2(q − 1)3
q1−x log2 q(s− 1)2 + · · · .

A similar expansion of the other terms in Equation 4.11 gives:

ζq(s, x) =

[
(q − 1) + {(q − 1) log(q − 1)}(s− 1) +

1

2
{(q − 1) log2(q − 1)}(s− 1)2

+
1

6
{(q − 1) log3(q − 1)}(s− 1)3 + · · ·

][
1

log q

1

s− 1
+

(
1

2
− x+

q1−x

q − 1

+
q2−2x

q2 − 1
+

q3−3x

q3 − 1
+ · · ·

)
(s− 1)0 +

(
log q

12
(1− 6x+ 6x2)

− q1−x(1− q + log q − x log q + qx log q)

(q − 1)2
+ · · ·

)
(s− 1) + · · ·

=
q − 1

log q(s− 1)
+

(∑
n≥1

qn(1−x)

[n]q
+

(q − 1) log(q − 1)

log q
− q − 1

2
+ (q − 1)(1− x)

)

+

(∑
n≥1

qn(1−x) log(q − 1)

[n]q
+

(q − 1) log2(q − 1)

log q
− q − 1

2
log(q − 1)

+ (q − 1)(1− x) log(q − 1) +
q − 1

12
log q −

∑
n≥1

(1 + (qn − 1)x)qn(1−x)

[n]q(qn − 1)
log q
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− (q − 1)(1− x)x

2
log q +

∑
n≥1

qn(1−x)s(n+ 1, 2)

n![n]q

)
(s− 1) + · · · .

(4.12)

Therefore, we can conclude that

γ0(q, x) =
∑
n≥1

qn(1−x)

[n]q
+

(q − 1) log(q − 1)

log q
− q − 1

2
+ (q − 1)(1− x),

γ1(q, x) =

(∑
n≥1

qn(1−x)

[n]q
+

(q − 1) log(q − 1)

2 log q
− q − 1

2
+ (q − 1)(1− x)

)
log(q − 1)

+

(
q − 1

12
−
∑
n≥1

(1 + (qn − 1)x)qn(1−x)

[n]q(qn − 1)
− (q − 1)(1− x)x

2

)
log q

+
∑
n≥1

qn(1−x)s(n+ 1, 2)

n![n]q
,

which completes the proof.

4.5 Concluding remarks

The results highlighted in this chapter unveiled the closed-form expression for

γ0,0(q), a q-analogue of Euler’s constant of height 2. Additionally, we examined the

irrationality of specific numbers incorporating this constant, especially in the case

of q = 2. We expect to obtain a comprehensive closed-form expression for γk1,k2(q),

when k1, k2 ̸= 0 simultaneously and hence some transcendence and irrationality

results of these constants.
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Chapter 5

Algebraic Identities among q-Euler

Double Zeta Values

In this chapter, our focus is to explore algebraic identities among different

q-variants of the double zeta function and the q-Riemann zeta function. We

accomplish this goal with the help of the q-variant of the Nielsen Reflexion Formula

for q > 1. Additionally, we investigate the asymptotic behaviour of the q-analogue of

the double zeta function given by Equation 4.5, as s1 → 0 and s2 → 0 and compare

this behaviour with that of the classical double zeta function. Finally, we discuss

the q-analogue of the Mordell-Tornheim r-ple zeta function and its relation with the

q-double zeta function. The work present in this chapter can be found in ref. [15].

5.1 Introduction

The study of identities among multiple zeta values has been an active and ongoing

area of research for several decades. These identities describe how multiple zeta

values of a given weight and depth can be expressed in terms of multiple zeta values

of lower weight and lower depth. Various mathematicians have explored diverse

identities related to multiple zeta values. In 1775, Euler [30] proved the following

identity:

ζ(n) =
n−2∑
j=1

ζ(n− j, j),

which holds for any integer n ≥ 3. In particular, he proved that:

ζ(2, 1) = ζ(3).

In 2000, Hoffman and Ohno presented an identity that holds for an admissible

sequence of positive integers s = (s1, s2, . . . , sl) (with s1 > 1), which is expressed as

follows:

l∑
k=1

ζ(sk+1, sk+1, . . . , sl, s1, . . . , sk−1) =
l∑

k=1
sk≥2

sk−2∑
j=0

ζ(sk−j, sk+1, . . . , sl, s1, . . . , sk−1, j+1).
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Further, Gangl, Kaneko, and Zagier in ref. [31] proved the following identities for

n > 1:

n−1∑
m=1

ζ(2m, 2n− 2m) =
3

4
ζ(2n),

n−1∑
m=1

ζ(2m+ 1, 2n− 2m− 1) =
1

4
ζ(2n).

In addition to these, various other identities for different weights have been

studied in the literature, including:

ζ(2)ζ(2) = 2ζ(2, 2) + ζ(4),

2ζ(2, 2, 1) + ζ(2, 1, 2) + ζ(4, 1) = ζ(3, 2) + ζ(5),

ζ(5, 1) + ζ(4, 2) = ζ(4, 1, 1) + ζ(3, 2, 1) + ζ(2, 3, 1),

ζ∗(4, 1, 2) = ζ(4, 1, 2) + ζ(5, 2) + ζ(4, 3) + ζ(7),

ζ(2, 5, 3) = ζ∗(2, 5, 3)− ζ∗(7, 3)− ζ∗(2, 8) + ζ∗(10).

Moving into the domain of the q-analogues, similar algebraic identities exist,

establishing connections among various q-variants of the double zeta function. These

identities shed light on the intricate relationships between q-double zeta values of

a particular weight and depth, expressed in terms of q-double zeta values of lower

weight and lower depth. In 2003, Zudilin in ref. [66] presented a q-analogue of Euler’s

formula which is given as:

2ζq(2, 1) = ζq(3),

where

ζq(2, 1) =
∑

n1>n2≥1

qn1

(1− qn1)2(1− qn2)
and ζq(3) =

∑
n≥1

qn(1 + qn)

(1− qn)3
.

Furthermore, several mathematicians, including Ebrahimi-Fard, Manchon, and

Singer [25], Bachmann [5], and Singer [61] have studied various versions of q-analogue

of the multiple zeta functions. In particular, they explored the q-analogue of the

double zeta function and algebraic identities associated with these special functions.

Here, we explore similar types of identities among different q-analogues of the double

zeta function for higher weights. Let us revisit the definition of a variant which has

been previously introduced in Chapter 4.

Definition 5.1.1. The q-double zeta function is defined by the series:

ζq(s1, s2) =
∑

n1>n2≥1

qn1qn2

[n1]
s1
q [n2]

s2
q

=
∑

n1,n2>0

qn1+n2qn2

[n1 + n2]
s1
q [n2]

s2
q
,
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where s1, s2 are complex numbers with ℜ(s1) > 1 and ℜ(s2) ≥ 1. The corresponding

star variant can be represented as:

ζ∗q (s1, s2) =
∑

k1≥k2≥1

qk1qk2

[k1]
s1
q [k2]

s2
q
.

We have introduced another q-analogue of the double zeta function which is akin

to the q-analogue defined by Ohno, Okuda, and Zudilin [56] (also, see Equation 4.3).

It is defined as follows:

Definition 5.1.2. The q-double zeta function is defined by the series:

ζ◦q (s1, s2) =
∑

n1>n2≥1

qn1

[n1]
s1
q [n2]

s2
q

=
∑

n1,n2>0

qn1+n2

[n1 + n2]
s1
q [n2]

s2
q
,

where q > 1 and s1, s2 are complex numbers with ℜ(s1) > 1 and ℜ(s2) ≥ 1. Its star

variant is given by:

ζ◦∗q (s1, s2) =
∑

n1≥n2≥1

qn1

[n1]
s1
q [n2]

s2
q
.

Remark 5.1.1. ζ◦q (s1, s2) is variant of the q-analogue of double zeta function which is

meromorphic for s1, s2 ∈ C with simple pole for s1 ∈
{
1+i 2πb

log q
: b ∈ Z

}
∪
{
a+i 2πb

log q
:

a, b ∈ Z, a ≤ 0, b ̸= 0
}
or s1 + s2 ∈

{
a+ i 2πb

log q
: a, b ∈ Z, a ≤ 0, b ̸= 0

}
∪
{
1 + i 2πb

log q
:

b ∈ Z
}
.

Now equipped with a comprehensive understanding of these functions, we are

ready to proceed and articulate the results.

5.2 Asymptotic behaviour of ζq(s1, s2)

We begin by first examining the limiting behaviour of ζq(s1, s2) as s1 and s2

approaches 0. In this regard, we gave the following theorem in ref. [15]:

Theorem 5.2.1. Let n1, n2 be two integers and consider the q-double zeta function

ζq(s1, s2) defined in Definition 5.1.1. We define the following limits:

ζq(n1, n2) = lim
s1→n1

lim
s2→n2

ζq(s1, s2)

and

ζRq (n1, n2) = lim
s2→n2

lim
s1→n1

ζq(s1, s2),
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whenever they exist. Then, we have:

lim
q→1

ζq(0, 0) =
5

12
= ζR(0, 0) and lim

q→1
ζRq (0, 0) =

1

3
= ζ(0, 0),

where

ζ(n1, n2) = lim
s1→n1

lim
s2→n2

ζ(s1, s2)

and

ζR(n1, n2) = lim
s2→n2

lim
s1→n1

ζ(s1, s2).

Also, note that ζ(s1, s2) is the classical double zeta function.

Proof. The binomial expansion of the function yields the expression:

ζq(s1, s2) =
∑

m1,m2≥1

qm1+m2qm2

[m1 +m2]
s1
q [m2]

s2
q

=
∑

m1,m2≥1

qm1+m2(q − 1)s1

(qm1+m2 − 1)s1
qm2(q − 1)s2

(qm2 − 1)s2

= (q − 1)s1+s2
∑
k2≥0

s2(s2 + 1) · · · (s2 + k2 − 1)

k2!

∑
k1≥0

s1(s1 + 1) · · · (s1 + k1 − 1)

k1!(
1

q(s2+k2−1+s1+k1−1) − 1

)(
1

q(s1+k1−1) − 1

)
.

Further, expanding the above equation, we get:

ζq(s1, s2) = (q − 1)s1+s2

[
1

qs1−1 − 1

{
1

qs1+s2−2 − 1
+

s2
qs1+s2−1 − 1

+
s2(s2 + 1)

2(qs1+s2 − 1)
+ · · ·

}

+ s1
1

qs1 − 1

{
1

qs1+s2−1 − 1
+

s2
qs1+s2 − 1

+
s2(s2 + 1)

2(qs1+s2+1 − 1)
+ · · ·

}

+
s1(s1 + 1)

2

1

qs1+1 − 1

{
1

qs1+s2 − 1
+

s2
qs1+s2+1 − 1

+
s2(s2 + 1)

2(qs1+s2+2 − 1)

+ · · ·

}
+ · · ·

]

Clearly, for n1 = 0 and n2 = 0 we have:

ζq(0, 0) = lim
s1→0,s2→0

ζq(s1, s2)

=
1

(q−1 − 1)(q−2 − 1)
+

1

(q−1 − 1) log q
+

1

2(q − 1) log q

ζRq (0, 0) = lim
s2→0,s1→0

ζRq (s1, s2)
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=
1

(q−1 − 1)(q−2 − 1)
+

3

2(q−1 − 1) log q
+

1

log2 q
.

Now, we use some asymptotic formulas:

1

x+ 2
=

1

2
− x

4
+
x2

8
+O[x3] (x→ 0)

1

log(1 + x)
=

1

x
+

1

2
− x

12
+
x2

24
+O[x3] (x→ 0)

1

log2(1 + x)
=

1

x2
+

1

x
+

1

12
+ 0 · x+O[x2] (x→ 0)

and conclude that:

lim
q→1

ζq(0, 0) =
5

12
= ζR(0, 0) and lim

q→1
ζRq (0, 0) =

1

3
= ζ(0, 0).

5.3 Algebraic identities

To advance towards our next objective of establishing results regarding algebraic

identities, we revisit the Nielsen Reflexion Formula and its q-analogue. This formula

holds significant importance in the outcomes we aim to achieve.

Definition 5.3.1. For integers s, s′ ≥ 2, the Nielsen Reflexion Formula is given by:

ζ(s)ζ(s′) = ζ(s, s′) + ζ(s′, s) + ζ(s+ s′).

Definition 5.3.2. The q-analogue of the Nielsen Reflexion Formula is defined as:

ζq(s)ζq(s
′) = ζq(s, s

′) + ζq(s
′, s) + ζq(s+ s′) + (q − 1)ζq(s+ s′ − 1)

= ζ∗q (s, s
′) + ζ∗q (s

′, s)− ζq(s+ s′)− (q − 1)ζq(s+ s′ − 1).

Now, we can state the set of theorems, specifically addressing the algebraic

identities related to the q-double zeta function as defined in Definitions 5.1.1 and

5.1.2.

Theorem 5.3.1. The following identities hold:

ζ◦q (3, 1) = ζq(4)− ζq(2, 2) + (q − 1)ζq(3) = (ζq(2))
2 − 3ζq(2, 2),

ζ◦q (4, 1) = ζq(5)− ζq(2, 3)− ζq(3, 2) + (q − 1)ζq(4)

= ζq(2)ζq(3)− 2ζq(2, 3)− 2ζq(3, 2),

ζ◦q (5, 1) = ζq(6)− ζq(3, 3)− ζq(4, 2)− ζq(2, 4) + (q − 1)ζq(5)
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= (ζq(3))
2 − 3ζq(3, 3)− ζq(4, 2)− ζq(2, 4)

= ζq(2)ζq(4)− ζq(3, 3)− 2ζq(4, 2)− 2ζq(2, 4),

(ζq(3))
2 − 2ζq(3, 3) = ζq(2)ζq(4)− ζq(2, 4)− ζq(4, 2).

Proof. To attain the result, we make use of the following partial fraction:

1

(1− u)(1− uv)s
=

1

(1− u)(1− v)s
−

s−1∑
i=0

v

(1− v)i+1(1− uv)s−i
, (5.1)

where u, v ∈ R. For s = 3, multiply the above identity by uv, then substitute u = qm

and v = qn, and finally sum over all positive integers m and n. Consequently, this

yields an equality with the double sum on the left-hand side as follows:

∑
m≥1

∑
n≥1

qn+m

(1− qm)(1− qn+m)3
=
∑
n≥1

∑
m≥1

qn+m

(1− qn)(1− qn+m)3

and the double sum on the right-hand side as:

∑
n≥1

∑
m≥1

(
qn+m

(1− qn)3(1− qm)
− q2n+m

(1− qn)(1− qn+m)3
− q2n+m

(1− qn)2(1− qn+m)2

− q2n+m

(1− qn)3(1− qn+m)

)

=
∑
n≥1

qn

(1− qn)3

∑
m≥1

(
qm

(1− qm)
− qm+n

(1− qm+n)

)
−
∑
n≥1

∑
m≥1

q2n+m

(1− qn)2(1− qn+m)2

−
∑
n≥1

∑
m≥1

q2n+m

(1− qn)(1− qn+m)3
. (5.2)

Taking the last double sum of Equation 5.2 to the left-hand side and multiplying

both the sides by (1− q)4, we have:

(1− q)4
∑
n≥1

∑
m≥1

qn+m + q2n+m

(1− qn)(1− qn+m)3

= (1− q)4

(∑
n≥1

qn

(1− qn)3

n∑
m=1

qm

(1− qm)

)
− ζq(2, 2)

= (1− q)4

(∑
n≥1

q2n

(1− qn)4
+
∑
n≥1

n−1∑
m=1

qn+m

(1− qn)3(1− qm)

)
− ζq(2, 2).

Here, note that
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∑
n≥1

q2n

[n]4q
=
∑
n≥1

qn

[n]4q
+ (q − 1)

∑
n≥1

qn

[n]3q

= ζq(4) + (q − 1)ζq(3).

Now, using Definition 5.3.2, we obtain:

∑
n≥1

q2n

[n]4q
= ζq(2)ζq(2)− ζq(2, 2)− ζq(2, 2).

Thus,

∑
n≥1

∑
m≥1

qn+m + q2n+m

[n]q[n+m]3q
= ζq(4)− ζq(2, 2) + (q − 1)ζq(3) +

∑
n>m≥1

qn+m

[n]3q[m]q
,

= ζq(2)ζq(2)− 3ζq(2, 2) +
∑

n>m≥1

qn+m

[n]3q[m]q
.

Setting the variables m+ n = t on the left-hand side, we get:

∑
n≥1

∑
m≥1

qn+m + q2n+m

[n]q[n+m]3q
=
∑
n≥1

∑
t≥n+1

qt + qn+t

[n]q[t]3q

=
∑

t>n≥1

qt + qn+t

[n]q[t]3q
.

Finally, taking n = n1, m = n2 on the right-hand side and t = n1, n = n2 on the

left-hand side, we get:

∑
n1>n2≥1

qn1

[n1]3q[n2]q
= ζq(4)− ζq(2, 2) + (q − 1)ζq(3)

= ζq(2)ζq(2)− 3ζq(2, 2).

Thus,

ζ◦q (3, 1) = ζq(4)− ζq(2, 2) + (q − 1)ζq(3) = (ζq(2))
2 − 3ζq(2, 2).

This completes the proof of the first identity. Working on similar lines, all the other

identities can be proved as well.

Theorem 5.3.2. For s ≥ 3, Theorem 5.3.1 can be generalized as follows:

ζ◦q (s, 1) = ζq(s+ 1)−
s−1∑
i=2

ζq(s+ 1− i, i) + (q − 1)ζq(s).
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Further, depending on the parity of s, we have:

Case 1: If s is odd, then

ζ◦q (s, 1) =
(
ζq

(s+ 1

2

))2
− 3ζq

(s+ 1

2
,
s+ 1

2

)
−

s−1∑
i=2

i ̸= s+1
2

ζq(s+ 1− i, i)

or,

ζ◦q (s, 1) = ζq(r)ζq(r
′)− 2ζq(r, r

′)− 2ζq(r
′, r)−

s−1∑
i=2

i ̸=r,r′

ζq(s+ 1− i, i), (5.3)

where r ≥ 2, r′ ≥ 2, and r + r′ = s+ 1. Hence, for Equation 5.3, there exist
(
s−3
2

)
possible configurations. Consequently, the total number of ways to express ζ◦q (s, 1)

is
(
s−1
2

)
.

Case 2: If s is even, then

ζ◦q (s, 1) = ζq(t)ζq(t
′)− 2ζq(t, t

′)− 2ζq(t
′, t)−

s−1∑
i=2
i ̸=t,t′

ζq(s+ 1− i, i), (5.4)

where t ≥ 2, t′ ≥ 2, and t+ t′ = s+1. Therefore, the number of possible expressions

for ζ◦q (s, 1) in Equation 5.4 is
(
s−2
2

)
.

Proof. Consider the following partial fraction:

1

(1− u)(1− uv)s
=

1

(1− u)(1− v)s
−

s−1∑
i=0

v

(1− v)i+1(1− uv)s−i
,

where u, v ∈ R. For s ≥ 3, multiply both the sides of this expression by uv and

then set u = qm and v = qn. By summing over all positive integers m and n, the

double sum on the left-hand side is given as:

∑
m≥1

∑
n≥1

qn+m

(1− qm)(1− qn+m)s
=
∑
n≥1

∑
m≥1

qn+m

(1− qn)(1− qn+m)s

and the double sum on the right-hand side is given as:

∑
n≥1

∑
m≥1

(
qn+m

(1− qn)s(1− qm)
− q2n+m

(1− qn)(1− qn+m)s
− q2n+m

(1− qn)2(1− qn+m)s−1

− q2n+m

(1− qn)3(1− qn+m)s−2
− · · · − q2n+m

(1− qn)s(1− qn+m)

)
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=
∑
n≥1

qn

(1− qn)s

∑
m≥1

(
qm

(1− qm)
− qm+n

(1− qm+n)

)
−
∑
n≥1

∑
m≥1

q2n+m

(1− qn)2(1− qn+m)s−1

−
∑
n≥1

∑
m≥1

q2n+m

(1− qn)3(1− qn+m)s−2
− · · · −

∑
n≥1

∑
m≥1

q2n+m

(1− qn)s−1(1− qn+m)2

−
∑
n≥1

∑
m≥1

q2n+m

(1− qn)(1− qn+m)s
. (5.5)

Taking the last double sum of Equation 5.5 to the left-hand side and multiplying

both the sides by (1− q)s+1, we get:

(1− q)s+1

(∑
n≥1

∑
m≥1

qn+m + q2n+m

(1− qn)(1− qn+m)s

)

= (1− q)s+1

(∑
n≥1

qn

(1− qn)s

n∑
m=1

qm

(1− qm)

)
− ζq(s− 1, 2)− · · · − ζq(2, s− 1)

= (1− q)s+1

(∑
n≥1

q2n

(1− qn)s+1
+
∑
n≥1

n−1∑
m=1

qn+m

(1− qn)s(1− qm)

)
− ζq(s− 1, 2)

− ζq(s− 2, 3)− · · · − ζq(2, s− 1).

Here, note that:

∑
n≥1

q2n

[n]s+1
q

=
∑
n≥1

qn

[n]s+1
q

+ (q − 1)
∑
n≥1

qn

[n]sq

= ζq(s+ 1) + (q − 1)ζq(s).

Thus,

∑
n≥1

∑
m≥1

qn+m + q2n+m

[n]q[n+m]sq
= ζq(s+ 1) + (q − 1)ζq(s) +

∑
n>m≥1

qn+m

[n]sq[m]q

−
s−1∑
i=2

ζq(s+ 1− i, i).

Changing the variables m + n = t on the left-hand side and finally setting n = n1,

m = n2 on the right-hand side along with t = n1, n = n2 on the left-hand side, we

get:

ζ◦q (s, 1) = ζq(s+ 1)−
s−1∑
i=2

ζq(s+ 1− i, i) + (q − 1)ζq(s). (5.6)

Now, depending on whether s is odd or even, we have the following two cases:

Case 1: If s is odd, this implies s+1 is even. Now, using q-analogue of the Nielsen
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Reflexion Formula for r = r′ = s+1
2
, we obtain:

∑
n≥1

q2n

[n]s+1
q

=
(
ζq

(s+ 1

2

))2
− 2ζq

(s+ 1

2
,
s+ 1

2

)
.

Substituting this in Equation 5.6, we get:

ζ◦q (s, 1) =
(
ζq

(s+ 1

2

))2
− 3ζq

(s+ 1

2
,
s+ 1

2

)
−

s−1∑
i=2

i ̸= s+1
2

ζq(s+ 1− i, i).

When r ̸= r′, the number of possible pairs (r, r′) that satisfy r, r′ ≥ 2 and r+r′ = s+1

(where the order of addends does not matter) is given by
(
s−3
2

)
. So, again using

q-analogue of the Nielsen Reflexion Formula for each such pair, we get:

ζ◦q (s, 1) = ζq(r)ζq(r
′)− 2ζq(r, r

′)− 2ζq(r
′, r)−

s−1∑
i=2

i ̸=r,r′

ζq(s+ 1− i, i).

Hence, when s is an odd number, the total number of ways to express ζ◦q (s, 1) is(
s−1
2

)
.

Case 2: If s is even, this implies s+1 is odd, then the number of possible pairs for

the following equation:

ζ◦q (s, 1) = ζq(t)ζq(t
′)− 2ζq(t, t

′)− 2ζq(t
′, t)−

s−1∑
i=2
i ̸=t,t′

ζq(s+ 1− i, i),

where t, t′ ≥ 2 and t+ t′ = s+ 1 are (s−2)
2

.

Hence, the result follows.

Continuing our examination of the q-double zeta function variants, the next

proposition establishes algebraic identities specifically for the star variants of both

the q-double zeta functions.

Proposition 5.3.3. For s ≥ 3, we have the following identities:

ζ◦∗q (s, 1) = sζq(s+ 1)−
s−1∑
i=2

ζ∗q (s+ 1− i, i) + (s− 1)(q − 1)ζq(s).

Further, depending on the parity of s, we have:

Case 1: If s is odd, then either

ζ◦∗q (s, 1) =
(
ζq

(s+ 1

2

))2
− 3ζ∗q

(s+ 1

2
,
s+ 1

2

)
+ (s+ 1)ζq(s+ 1) + (q − 1)sζq(s)
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−
s−1∑
i=2

i ̸= s+1
2

ζ∗q (s+ 1− i, i)

or,

ζ◦∗q (s, 1) = ζq(r)ζq(r
′)− 2ζ∗q (r, r

′)− 2ζ∗q (r
′, r) + (s+ 1)ζq(s+ 1) + (q − 1)sζq(s)

−
s−1∑
i=2

i ̸=r,r′

ζ∗q (s+ 1− i, i), (5.7)

where r ≥ 2, r′ ≥ 2, and r+r′ = s+1. Thus, there exist
(
s−3
2

)
possible configurations

for Equation 5.7. Consequently, the total number of ways to express ζ◦∗q (s, 1) is(
s−1
2

)
.

Case 2: If s is even, then

ζ◦∗q (s, 1) = ζq(t)ζq(t
′)− 2ζ∗q (t, t

′)− 2ζ∗q (t
′, t) + (s+ 1)ζq(s+ 1) + (q − 1)sζq(s)

−
s−1∑
i=2
i ̸=t,t′

ζq(s+ 1− i, i), (5.8)

where t ≥ 2, t′ ≥ 2, and t + t′ = s + 1. Hence, the number of possible ways to

represent ζ◦∗q (s, 1) in Equation 5.8 is
(
s−2
2

)
.

Proof. The proof of this proposition is based on the following two observations:

1. From Definition 5.1.1, we obtain:

ζ∗q (s
′, s) = ζq(s

′, s) + ζq(s
′ + s) + (q − 1)ζq(s

′ + s− 1).

2. From Definition 5.1.2, we obtain:

ζ◦∗q (s′, s) = ζ◦q (s
′, s) + ζq(s

′ + s).

Now, the proof of the proposition follows by employing the above two observations

together with Theorem 5.3.2.

5.4 q-Mordell-Tornheim r-ple zeta function

This section examines another variant, namely, q-Mordell-Tornheim r-ple zeta

function. In 1950, Tornheim [64] examined the following double series:
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∑
m≥1

∑
n≥1

1

ms1ns2(m+ n)s3
, (5.9)

where s1, s2, and s3 are non-negative integers satisfying s1+s3 > 1, s2+s3 > 1, and

s1 + s2 + s3 > 2, which he referred to as the harmonic double series. A special case

of the series in Equation 5.9 was studied by Mordell in ref. [52], where he considered

s1 = s2 = s3 and also investigated the following multiple sum:

∑
m1≥1

· · ·
∑
mr≥1

1

m1 · · ·mr(m1 + · · ·+mr + a)
,

where a > −r. In ref. [49,50], Matsumoto referred to the series given in Equation

5.9 as Mordell-Tornheim zeta function and introduced its multi-variable version as

follows:

ζMT (s1, s2, . . . , sr; sr+1) =
∑
m1≥1

· · ·
∑
mr≥1

1

ms1
1 · · ·msr

r (m1 + · · ·+mr)sr+1
, (5.10)

where s1, . . . , sr+1 ∈ C and the series converges absolutely when ℜ(sj) > 1 (1 ≤
j ≤ r) and ℜ(sr+1) > 0. Matsumoto termed it as the Mordell-Tornheim r-ple zeta

function. Then, in ref. [15], we introduced the following q-analogue of the series in

Equation 5.10:

ζMT,q(s1, s2, . . . , sr; sr+1) =
∑
m1≥1

· · ·
∑
mr≥1

qm1 · · · qmrqm1+···+mr

[m1]
s1
q · · · [mr]srq [m1 + · · ·+mr]

sr+1
q

,

where s1, . . . , sr+1 ∈ C and q > 1. We call it q- Mordell-Tornheim r-ple zeta function.

In particular, we study that case when r = 2. So, we have:

ζMT,q(s1, s2; s3) =
∑
m1≥1

∑
m2≥1

qm1qm2qm1+m2

[m1]
s1
q [m2]

s2
q [m1 +m2]

s3
q
.

Before introducing the theorem related to this q-variant, we present a lemma

pivotal to the proof, generalizing the partial fraction given by Equation 5.1. The

statement of the lemma is as follows:

Lemma 5.4.1. Let s, r ≥ 1 be two integers. Then,

1

(1− u)r(1− uv)s
=

1

(1− u)r(1− v)s
−

s−1∑
i=0

v(1− u)1−r

(1− v)i+1(1− uv)s−i
, (5.11)

where u, v ∈ R.
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Proof. Consider the right-hand side,

1

(1− u)r(1− v)s
−

s−1∑
i=0

v(1− u)1−r

(1− v)i+1(1− uv)s−i

=
1

(1− u)r(1− v)s
− v(1− u)1−r

(
1

(1− v)(1− uv)s
+

1

(1− v)2(1− uv)s−1

+ · · ·+ 1

(1− v)s(1− uv)

)

=
1

(1− u)r(1− v)s
− v(1− u)1−r

(
1

(1− v)(1− uv)s

(
1− (1−uv

1−v
)s

1− 1−uv
1−v

))

=
1

(1− u)r(1− v)s
− v(1− u)1−r

(
1− v

(1− v)s+1(1− uv)s

(
(1− v)s − (1− uv)s

(1− v)− (1− uv)

))

=
1

(1− u)r(1− v)s
+

v(1− u)1−r

(1− v)s(1− uv)s

(
(1− v)s − (1− uv)s

v(1− u)

)

=
(1− uv)s + (1− v)s − (1− uv)s

(1− u)r(1− v)s(1− uv)s
,

which is equal to the left-hand side. Thus, the proof is complete.

Remark 5.4.1. For r = 1, this result reduces to the identity given by Equation 5.1.

Theorem 5.4.2. Let s ≥ 2 and r ≥ 3 be any two integers. Then, we have the

following identity:

ζq(s, r) = ζq(s)(ζq(r) + (q − 1)ζq(r − 1))−
s−1∑
j=0

ζMT,q(r − 1, j + 1; s− j),

where ζq(s) is the q-analogue of the Riemann zeta function.

Proof. Multiply the identity stated in Equation 5.11 by u2v, substitute u = qm,

v = qn, and sum over all positive integers m and n. This results in an equality with

the double sum on the left-hand side as:∑
m≥1

∑
n≥1

qmqn+m

(1− qm)r(1− qn+m)s
=
∑
n≥1

∑
m≥1

qnqn+m

(1− qn)r(1− qn+m)s

and the double sum on the right-hand side as:

∑
n≥1

∑
m≥1

(
qmqn+m

(1− qn)s(1− qm)r
− qnqmqn+m

(1− qm)r−1(1− qn)(1− qn+m)s

− · · · − qnqmqn+m

(1− qm)r−1(1− qn)s(1− qn+m)

)
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=
∑
n≥1

qn

(1− qn)s

∑
m≥1

q2m

(1− qm)r
−
∑
n≥1

∑
m≥1

(
qnqmqn+m

(1− qm)r−1(1− qn)(1− qn+m)s

+ · · ·+ qnqmqn+m

(1− qm)r−1(1− qn)s(1− qn+m)

)

Multiplying both sides of the equation by (1− q)s+r and using

∑
n≥1

q2m

[m]rq
=
∑
m≥1

qm

[m]rq
+ (q − 1)

∑
m≥1

qm

[m]r−1
q

= ζq(r) + (q − 1)ζq(r − 1),

we get the desired result.

5.5 Concluding remarks

The algebraic identities between two distinct versions of the q-double zeta

functions, specifically ζ◦q (s1, s2) and ζq(s1, s2), are established by Theorem 5.3.2.

Additionally, Proposition 5.3.3 illustrates analogous identities for the starred

versions of both variants. It is reasonable to expect comparable identities for these

variants at a depth greater than 2, that is, r > 2. This expectation opens the door

to anticipating the algebraic properties of a specific set of multiple zeta values based

on another set of multiple zeta values. This inference is particularly valuable for

understanding the underlying arithmetic natures of multiple zeta values and their

interconnections.



Chapter 6

Transcendence of p-adic Digamma

Values

In this chapter, our focus revolves around examining the transcendence

properties of p-adic analogues of the digamma function. The initial exploration into

the transcendental nature of specific values of the p-adic digamma function, denoted

as ψp(r/p) + γp, was conducted by Murty and Saradha in 2008 [53]. Continuing in

this direction, Chatterjee and Gun extended this in 2014 [18] to include the case of

ψp(r/p
n)+γp, where n is any integer greater than 1. We further extend their results

to cover distinct prime powers, investigating the transcendental characteristics of

p-adic digamma values with at most one exception.

Additionally, we explore the multiplicative independence of cyclotomic numbers

that satisfy certain conditions. Based upon these insights, we establish the

transcendental nature of p-adic digamma values corresponding to ψp(r/pq) + γp,

where p and q are distinct primes. The details of this work can be found in ref. [17].

6.1 Introduction

Here, we move on to the next part of our investigation and shall initiate a

distinctive mathematical journey into the domain of p-adic numbers. Before delving

into the results, let us revisit the foundational aspects that lay the groundwork for

our upcoming discussions. We commence with the concept of p-adic logarithms, an

important aspect in this context.

Definition 6.1.1. For the elements included within the open unit ball centered at

1, that is,

U1 = B(1, 1) = {x ∈ Cp : |x− 1|p < 1},

the p-adic logarithm of an element x ∈ U1 is given as:

logp(x) = logp(1 + (x− 1)) =
∑
n≥1

(−1)n+1 (x− 1)n

n
.

This definition can be extended to cover the entire C×
p . Given any element
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β ∈ C×
p , it can be uniquely written as:

β = prωx,

where r ∈ Q, x ∈ U1, and ω is a root of unity of order prime to p. Consequently,

one defines:

logp(β) = logp(x).

As a result, the p-adic logarithm is zero for roots of unity, leading to the following

equality:

logp(1− ζ−t
q ) = logp(1− ζtq). (6.1)

For a more comprehensive understanding, the reader may refer to Chapter 5 of

Washington’s work [65]. Further, for the convenience of the readers, let us recall

the definitions of the p-adic counterparts of the gamma function and the digamma

function from Chapter 1. The p-adic gamma function was given by Morita in ref. [6]

for all the natural numbers, by the following expression:

Γp(n) = (−1)n
∏

1≤t≤n
p∤t

t.

Then, he further extended it to a continuous function on Zp. Apart from

this, Diamond in ref. [22], introduced the p-adic digamma function and the Euler’s

constant. He discussed two different approaches to the p-adic analogue of log Γ(x).

One of them is to change the functional equation, which is given as:

Gp(x) = lim
k→∞

1

pk

pk−1∑
n=0

(x+ n) logp(x+ n)− (x+ n),

and other is to define the sequence of functions, HN , as follows:

HN(x) = lim
k→∞

1

pk

pk−1∑
n=0

fN(x+ n), for N = 1, 2, . . . ,

where

fN(x) =

x log(x)− x, if νp(x) < N

0, if νp(x) ≥ N,
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and νp(x) is the p-adic valuation. Also, note that for x ∈ Cp \ Zp, the sequence

HN(x) with N ≥ 1 eventually becomes constant with the value Gp(x). Similar to

the classical case, the derivative of p-adic analogue of log Γ(x) function is known as

p-adic digamma function ψp(x) and is given by the expression:

ψp(x) = lim
k→∞

1

pk

pk−1∑
n=0

logp(x+ n),

for any x ∈ Cp. Next, the p-adic analogue of Euler-Briggs-Lehmer constant for

r, q ∈ Z with q ≥ 1 and νp(r/q) < 0 is given by:

γp(r, q) = − lim
k→∞

1

qpk

qpk−1∑
m=0

m≡r(mod q)

logpm.

If νp(r/q) ≥ 0, write q = pkq1 with (p, q1) = 1, then

γp(r, q) =
pφ(q1)

pφ(q1) − 1

∑
n∈N(r,q)

γp(r + nq, pφ(q1)q),

where N(r, q) = {n : 0 ≤ n < pφ(q1), nq + r ̸≡ 0(modpφ(q1)+k)}.

Also, the p-adic analogue of the Euler’s constant, γp, is given as:

γp = γp(0, 1) = − p

p− 1
lim
k→∞

1

pk

pk−1∑
m=1

(m,p)=1

logpm.

Like in the classical case, the p-adic analogue of Gauss theorem in Cp is given

as:

ψp(r/f) = − log f − γp +

f−1∑
a=1

ζ−ar logp(1− ζa), (6.2)

where r, f ∈ Z+, r < f , and νp(r/f) < 0. However, for νp(r/f) ≥ 0 and any µ such

that:

pµ ≡ 1(modf ∗), where f = pkf ∗ with (p, f ∗) = 1, (6.3)

we have the following relation:

pµ

pµ − 1
H ′

µ(r/f) = − log f − γp +

f−1∑
a=1

ζ−ar logp(1− ζa). (6.4)
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Now that we have thoroughly explored the preliminaries concerning the p-adic

theory, we are well-equipped to discuss the findings of our study.

6.2 Transcendental nature of special values of the

p-adic digamma function for distinct prime

powers

The first result, addressing the transcendental characteristics of p-adic digamma

values for distinct prime powers, is motivated by the result presented by Chatterjee

and Gun in ref. [18]. Their result is stated as follows:

Theorem 6.2.1. Fix an integer n > 1. At most one element of the following set:

{ψp(r/p
n) + γp : 1 ≤ r < pn, (r, p) = 1}

is algebraic. Moreover, ψp(r/p) + γp are distinct when 1 ≤ r < p/2.

Now, we are prepared to broaden the findings mentioned above for the set of

rational primes P , advancing our understanding in the following manner:

Theorem 6.2.2. Let p be a prime and n > 1 be an integer. Consider the sets S1

and S2, where

S1 = {ψp(r/p
n) + γp : 1 ≤ r < pn, (r, p) = 1} and

S2 =

{
pµ

pµ − 1
H ′

µ(r/q
n) + γp : 1 ≤ r < qn, (r, q) = 1, q ̸= p, q ∈ P

}
,

with µ as defined in Equation 6.3. Then, all the elements of S1∪S2 are transcendental

with at most one exception. Moreover, the numbers pµ

pµ−1
H ′

µ(r/q) + γp are distinct

when 1 ≤ r < q/2 and q ∈ P.

Proof. Let S = S1 ∪ S2. Suppose that a, b ∈ S are distinct and algebraic. Then,

possibilities of (a, b) are:

1. (a, b) = (ψp(r1/p
n) + γp, ψp(r2/p

n) + γp),

2. (a, b) =
(

pµ1

pµ1−1
H ′

µ1
(r1/q

n
1 ) + γp,

pµ2

pµ2−1
H ′

µ2
(r2/q

n
2 ) + γp

)
,

3. (a, b) = (ψp(r1/p
n) + γp,

pµ

pµ−1
H ′

µ(r2/q
n) + γp).

The case for a, b ∈ S1 has been proved by Chatterjee and Gun in ref. [18] as follows:

Consider the instance where a and b represent distinct algebraic elements within S1.
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Then, using Equation 6.2, we obtain:

ψp(r1/p
n) + γp − (ψp(r2/p

n) + γp) =

pn−1∑
a=1

ζ−ar1
pn logp(1− ζapn)−

pn−1∑
a=1

ζ−ar2
pn logp(1− ζapn)

=
∑

1<a<pn/2
(a,p)=1

αa logp

(1− ζapn

1− ζpn

)
,

where αa’s are algebraic numbers. But by Lemma 2.3.6, this is a transcendental

number, thus leading to a contradiction.

Now consider the case when a, b ∈ S2. Then, using Equation 6.4, we have:

pµ1

pµ1 − 1
H ′

µ1
(r1/q

n
1 ) + γp −

( pµ2

pµ2 − 1
H ′

µ2
(r2/q

n
2 ) + γp

)
= − logp q

n
1 +

qn1−1∑
a=1

ζ−ar1
qn1

logp(1− ζaqn1 ) + logp q
n
2 −

qn2−1∑
t=1

ζ−tr2
qn2

logp(1− ζtqn2 ).

This can be further simplified using Equation 6.1 along with the fact that for p = qn

and ζ is the qn-th primitive root of unity, we have q =
∏
(1− ζ), where the product

runs over all the primitive qn-th root of unity. So, we have:

− logp q
n
1 +

qn1−1∑
a=1

ζ−ar1
qn1

logp(1− ζaqn1 ) + logp q
n
2 −

qn2−1∑
t=1

ζ−tr2
qn2

logp(1− ζtqn2 )

= −n logp
( qn1−1∏

b=1
(b,q1)=1

(1− ζbqn1 )
)
+ logp(1− ζqn1 ) + n logp

( qn2−1∏
s=1

(s,q2)=1

(1− ζsqn2 )
)
− logp(1− ζqn2 )

+
∑

1<a<qn1 /2

(ζ−ar1
qn1

+ ζar1qn1
) logp

(1− ζaqn1
1− ζqn1

)
−

∑
1<t<qn2 /2

(ζ−tr2
qn2

+ ζtr2qn2
) logp

(1− ζtqn2
1− ζqn2

)

= logp(1− ζqn1 )− nlogp(1− ζqn1 )− n

qn1−1∑
b=2

(b,q1)=1

logp(1− ζbqn1 )− logp(1− ζqn2 ) + nlogp(1− ζqn2 )

+ n

qn2−1∑
s=2

(s,q2)=1

logp(1− ζsqn2 ) +
∑

1<a<qn1 /2
(a,q1)=1

αa logp

(1− ζaqn1
1− ζqn1

)
−

∑
1<t<qn2 /2
(t,q2)=1

βt logp

(1− ζtqn2
1− ζqn2

)

= δ logp(1− ζqn1 ) + η logp(1− ζqn2 ) +
∑

1<a<qn1 /2
(a,q1)=1

α′
a logp

(
1− ζaqn1
1− ζqn1

)

−
∑

1<t<qn2 /2
(t,q2)=1

β′
t logp

(
1− ζtqn2
1− ζqn2

)
,
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where δ, η, α′
a’s, and β′

t’s are algebraic numbers. By Lemma 2.3.6, this is a

transcendental number, which is a contradiction.

Now, again using Equations 6.2 and 6.4 for a ∈ S1 and b ∈ S2, respectively, we have:

ψp(r1/p
n) + γp −

( pµ

pµ − 1
H ′

µ(r2/q
n) + γp

)
= − logp p

n +

pn−1∑
a=1

ζ−ar1
pn logp(1− ζapn) + logp q

n −
qn−1∑
t=1

ζ−tr2
qn logp(1− ζtqn).

Working on the similar lines and using logp(p) = 0, we get:

∑
1<a<pn/2
(a,p)=1

αa logp

(1− ζapn

1− ζpn

)
− logp(1− ζpn) + n logp

( qn−1∏
b=1

(b,q)=1

(1− ζbqn)
)

−
∑

1<t<qn/2

(ζ−tr2
qn + ζtr2qn ) logp

(1− ζtqn

1− ζqn

)
− logp(1− ζqn)

= − logp(1− ζpn) + δ logp(1− ζqn) +
∑

1<a<pn/2
(a,p)=1

α′
a logp

(1− ζapn

1− ζpn

)

−
∑

1<t<qn/2
(t,q)=1

β′
t logp

(1− ζtqn

1− ζqn

)
,

where δ, α′
a’s, and β′

t’s are algebraic numbers. Finally, using Lemma 2.3.6, we

conclude that it is transcendental, hence we arrive at a contradiction.

For the second part of the proof, we take into account two scenarios - (i) q is fixed

and (ii) q varies.

Case 1: For fixed q:

pµ

pµ − 1
H ′

µ(r1/q)−
pµ

pµ − 1
H ′

µ(r2/q)

=

q−1∑
a=1

ζ−ar1
q logp(1− ζaq )−

q−1∑
t=1

ζ−tr2
q logp(1− ζtq)

=
∑

1<a<q/2

(ζ−ar1
q + ζar1q − ζ−ar2

q − ζar2q ) logp

(
1− ζaq
1− ζq

)
.

Since 1 ≤ r1, r2 < q/2, the above linear form in logarithms is transcendental by

Lemma 2.3.6.

Case 2: When q varies, we have:

pµ1

pµ1 − 1
H ′

µ1
(r1/q1)−

pµ2

pµ2 − 1
H ′

µ2
(r2/q2)
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= − logp q1 +

q1−1∑
a=1

ζ−ar1
q1

logp(1− ζaq1) + logp q2 −
q2−1∑
t=1

ζ−tr2
q2

logp(1− ζtq2)

= −
q1−1∑
b=1

logp(1− ζbq1) + logp(1− ζq1) +
∑

1<a<q1/2

(ζ−ar1
q1

+ ζar1q1
) logp

(
1− ζaq1
1− ζq1

)

+

q2−1∑
s=1

logp(1− ζsq2)− logp(1− ζq2)−
∑

1<t<q2/2

(ζ−tr2
q2

+ ζtr2q2
) logp

(
1− ζtq2
1− ζq2

)

= δ logp(1− ζq1) + η logp(1− ζq2) +
∑

1<a<q1/2

α′
a logp

(
1− ζaq1
1− ζq1

)

−
∑

1<t<q2/2

β′
t logp

(
1− ζtq2
1− ζq2

)
,

where δ, η, α′
a’s, and β

′
t’s are algebraic numbers and it is transcendental by Lemma

2.3.6. This completes the proof.

6.3 Transcendental nature of special values of

the p-adic digamma function for product of

primes

Here, we proceed to establish the result for the product of two distinct primes,

wherein these primes satisfy Property II, as elucidated below:

Property I: Let m be a natural number such that m = pα1
1 p

α2
2 with

(α1, ϕ(p
α2
2 )) = 1 = (α2, ϕ(p

α1
1 )), where p1, p2 are odd primes, α1, α2 ∈ N, and

satisfies the following:

1. p1 ≡ p2 ≡ 3 (mod 4) : p1 and p2 are semi-primitive roots mod pα2
2 and mod

pα1
1 , respectively or

2. p1 and p2 are primitive roots mod pα2
2 and mod pα1

1 , respectively.

Property II: LetM be a finite set of natural numbers with |M| = n, containing

pairwise co-prime integers mi, where 1 ≤ i ≤ n such that mi satisfies Property I.

Let us assume

mi = pbii q
ci
i ,

where pi and qi are odd primes for all 1 ≤ i ≤ n.

Using these properties, Chatterjee and Dhillon gave Proposition 2.3.9 in ref. [11].

We expand upon their proposition by incorporating Property II, resulting in the

following modification:
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Proposition 6.3.1. Let {mi}ni=1 be a set of natural numbers that satisfies Property

II and ζmi
be a primitive mi-th root of unity. Then, the following numbers:

1− ζpi , 1− ζqi ,
1− ζaimi

1− ζmi

,
1− ζbipi
1− ζpi

,
1− ζciqi
1− ζqi

,

where 1 < ai <
mi

2
, with (ai,mi) = 1, 1 < bi <

pi
2
, 1 < ci <

qi
2
, and 1 ≤ i ≤ n are

multiplicatively independent.

Proof. Let αi, ρi, βbi , βci , and δai be integers, if possible, such that:

∏
1≤i≤n

(1− ζpi)
αi

∏
1≤i≤n

(1− ζqi)
ρi

∏
1<ai<mi/2
(ai,mi)=1
1≤i≤n

(
1− ζaimi

1− ζmi

)δai

∏
1<bi<pi/2
1≤i≤n

(
1− ζbipi
1− ζpi

)βbi ∏
1<ci<qi/2
1≤i≤n

(
1− ζciqi
1− ζqi

)βci

= 1. (6.5)

Taking the norm on both sides, for Ai, Bi ∈ N, we obtain:∏
1≤i≤n

pαiAi
i

∏
1≤i≤n

qρiBi

i = 1.

This imply that αi = 0 and ρi = 0, for 1 ≤ i ≤ n as p′is and q′is are distinct primes.

Consequently, Equation 6.5 reduces to

∏
1<ai<mi/2
(ai,mi)=1
1≤i≤n

(
1− ζaimi

1− ζmi

)δai ∏
1<bi<pi/2
1≤i≤n

(
1− ζbipi
1− ζpi

)βbi ∏
1<ci<qi/2
1≤i≤n

(
1− ζciqi
1− ζqi

)βci

= 1.

Rewriting the aforementioned equation, we get:

∏
1<ai<mi/2
(ai,mi)=1
2≤i≤n

(
1− ζaimi

1− ζmi

)δai ∏
1<bi<pi/2
2≤i≤n

(
1− ζbipi
1− ζpi

)βbi ∏
1<ci<qi/2
2≤i≤n

(
1− ζciqi
1− ζqi

)βci

=
∏

1<a1<m1/2
(a1,m1)=1

(
1− ζa1m1

1− ζm1

)−δa1 ∏
1<b1<p1/2

(
1− ζb1p1
1− ζp1

)−βb1 ∏
1<c1<q1/2

(
1− ζc1q1
1− ζq1

)−βc1

.

(6.6)

The right-hand side of the aforementioned equation belongs to the number field

Q(ζm1), whereas the left-hand side belongs to Q(ζr), with
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r =
∏

2≤i≤n

mi.

Also, it is known that Q(ζm1) ∩ Q(ζr) = Q. As a result, the two sides of Equation

6.6 are rational numbers having norm 1 and hence

∏
1<ai<mi/2
(ai,mi)=1
2≤i≤n

(
1− ζaimi

1− ζmi

)δai ∏
1<bi<pi/2
2≤i≤n

(
1− ζbipi
1− ζpi

)βbi ∏
1<ci<qi/2
2≤i≤n

(
1− ζciqi
1− ζqi

)βci

=
∏

1<a1<m1/2
(a1,m1)=1

(
1− ζa1m1

1− ζm1

)−δa1 ∏
1<b1<p1/2

(
1− ζb1p1
1− ζp1

)−βb1 ∏
1<c1<q1/2

(
1− ζc1q1
1− ζq1

)−βc1

= ±1.

After squaring both the sides, we obtain:

∏
1<ai<mi/2
(ai,mi)=1
2≤i≤n

(
1− ζaimi

1− ζmi

)2δai ∏
1<bi<pi/2
2≤i≤n

(
1− ζbipi
1− ζpi

)2βbi ∏
1<ci<qi/2
2≤i≤n

(
1− ζciqi
1− ζqi

)2βci

=
∏

1<a1<m1/2
(a1,m1)=1

(
1− ζa1m1

1− ζm1

)−2δa1 ∏
1<b1<p1/2

(
1− ζb1p1
1− ζp1

)−2βb1 ∏
1<c1<q1/2

(
1− ζc1q1
1− ζq1

)−2βc1

= 1.

Now, consider

∏
1<a1<m1/2
(a1,m1)=1

(
1− ζa1m1

1− ζm1

)−2δa1 ∏
1<b1<p1/2

(
1− ζb1p1
1− ζp1

)−2βb1 ∏
1<c1<q1/2

(
1− ζc1q1
1− ζq1

)−2βc1

= 1.

(6.7)

Thus, we have:

∏
1<a1<m1/2
(a1,m1)=1

(
1− ζa1m1

1− ζm1

)−2δa1 ∏
1<b1<p1/2

(
1− ζb1p1
1− ζp1

)−2βb1

=
∏

1<c1<q1/2

(
1− ζc1q1
1− ζq1

)2βc1

.

Note that the right-hand side of the above equation belongs to Q(ζq1), while the

left-hand side belongs to Q(ζm1). Furthermore, it is essential to emphasize that the

left side should also belong to Q(ζq1). Finally, using coprimality condition (a1,m1) =
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1, it follows that βb1 = 0, for all 1 < b1 < p1/2. Again rewriting Equation 6.7 as

follows:

∏
1<a1<m1/2
(a1,m1)=1

(
1− ζa1m1

1− ζm1

)−2δa1 ∏
1<c1<q1/2

(
1− ζc1q1
1− ζq1

)−2βc1

=
∏

1<b1<p1/2

(
1− ζb1p1
1− ζp1

)2βb1

and proceeding in the similar manner, we get βc1 = 0, for all 1 < c1 < q1/2. Now,

from Equation 6.7, we have:

∏
1<a1<m1/2
(a1,m1)=1

(
1− ζa1m1

1− ζm1

)−2δa1

= 1.

Then, by utilizing Proposition 2.3.8, we have δa1 = 0, for all 1 < a1 < m1/2 with

(a1,m1) = 1. Similarly, we get δai = 0, for all 1 < ai < mi/2 with (ai,mi) = 1,

βbi = 0, for all 1 < bi < pi/2 and βci = 0, for all 1 < ci < qi/2 and 1 ≤ i ≤ n. This

completes the proof.

Now using Theorem 2.3.4 and Proposition 6.3.1, we have the following lemma

which served as the extension of Lemma 2.3.6 and plays an important role in the

proof of Theorem 6.3.3.

Lemma 6.3.2. Assuming Property II and let ζmi
be a primitive mi-th root of

unity. Let rqi,u
bi
qi
, taimi

be arbitrary algebraic numbers, not all zero. Further, let ubiqi,

taimi
be not all zero when p ∈ J . Then,

∑
qi∈J

rqi logp(1− ζqi) +
∑
qi∈J ,

1<bi<qi/2

ubiqi logp

(
1− ζbiqi
1− ζqi

)
+

∑
mi∈M,

1<ai<mi/2

taimi
logp

(
1− ζaimi

1− ζmi

)

is transcendental.

Proof. Let θ =
∏

mi∈M

mi. For any α ∈ Z[ζθ], with (p, α) = Z[ζθ] and K ∈ N, one has

|αT − 1|p < p−K ,

for some T ∈ N. By choosing K sufficiently large and using Theorem 2.3.4 as well

as Proposition 6.3.1, we get the desired result.

Having introduced the above lemma, next, we discuss the results concerning the

product of two distinct primes. Let J consists of prime factors of {mi}ni=1, where

mi ∈ M. Then, some related theorems can be stated as follows:
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Theorem 6.3.3. Let p, q ∈ J be any two primes such that m = pq ∈ M. Then,

the elements of the following set:

S3 = {ψp(r/pq) + γp : 1 ≤ r < pq, (r, pq) = 1}

are transcendental with at most one exception. Moreover, the numbers ψp(r/pq)+γp

are distinct when 1 ≤ r < pq/2 and (r, pq) = 1.

Proof. Consider two distinct algebraic elements in the set. Then, by using Equation

6.2 we have:

ψp(r1/pq) + γp − (ψp(r2/pq) + γp)

= − logp pq +

pq−1∑
a=1

ζ−ar1
pq logp(1− ζapq) + logp pq −

pq−1∑
t=1

ζ−tr2
pq logp(1− ζtpq)

=

pq−1∑
a=1

(a,pq)=1

ζ−ar1
pq logp(1− ζapq) +

pq−1∑
a=1

(a,pq)=p

ζ−ar1
pq logp(1− ζapq)

+

pq−1∑
a=1

(a,pq)=q

ζ−ar1
pq logp(1− ζapq)−

pq−1∑
t=1

(t,pq)=1

ζ−tr2
pq logp(1− ζtpq)

−
pq−1∑
t=1

(t,pq)=p

ζ−tr2
pq logp(1− ζtpq)−

pq−1∑
t=1

(t,pq)=q

ζ−tr2
pq logp(1− ζtpq)

=
∑

1<a<pq/2
(a,pq)=1

αa logp

(
1− ζapq
1− ζpq

)
+

∑
1<b<q/2

βb logp

(
1− ζbq
1− ζq

)
+

∑
1<c<p/2

δc logp

(
1− ζcp
1− ζp

)
,

where αa’s, βb’s, and δc’s are algebraic numbers and it is transcendental by

Lemma 6.3.2. This is a contradiction to our assumption that both are algebraic.

Additionally, the proof also establishes the distinctness of the numbers ψp(r/pq)+γp,

where 1 ≤ r < pq/2 and (r, pq) = 1. This completes the proof.

Theorem 6.3.4. Let p be a prime. Then, the elements of the following set:

S4 =

{
pµ

pµ − 1
H ′

µ(r/mi) + γp : 1 ≤ r < mi, 1 ≤ i ≤ n, (r,mi) = 1, p ∤ mi, mi ∈ M

}
,

where µ satisfies Equation 6.3, are transcendental with at most one exception.

Proof. Let us consider two distinct algebraic elements of S4. Then, by using

Equation 6.4 we have:

pµ1

pµ1 − 1
H ′

µ1
(r1/q

a1
1 q

a2
2 ) + γp −

pµ2

pµ2 − 1
H ′

µ2
(r2/q

a3
3 q

a4
4 )− γp
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= − logp(q
a1
1 q

a2
2 ) +

q
a1
1 q

a2
2 −1∑

a=1

ζ−ar1
q
a1
1 q

a2
2
logp(1− ζa

q
a1
1 q

a2
2
) + logp(q

a3
3 q

a4
4 )

−
q
a3
3 q

a4
4 −1∑

t=1

ζ−tr2
q
a3
3 q

a4
4
logp(1− ζt

q
a3
3 q

a4
4
)

= −a1 logp q1 − a2 logp q2 +

q
a1
1 q

a2
2 −1∑

a=1
(a,q1q2)=1

ζ−ar1
q
a1
1 q

a2
2
logp(1− ζa

q
a1
1 q

a2
2
)

+

q
a1
1 q

a2
2 −1∑

a=1
(a,q1q2 )̸=1

ζ−ar1
q
a1
1 q

a2
2
logp(1− ζa

q
a1
1 q

a2
2
) + a3 logp q3 + a4 logp q4

−
q
a3
3 q

a4
4 −1∑

t=1
(t,q3q4)=1

ζ−tr2
q
a3
3 q

a4
4
logp(1− ζt

q
a3
3 q

a4
4
)−

q
a3
3 q

a4
4 −1∑

t=1
(t,q3q4 )̸=1

ζ−tr2
q
a3
3 q

a4
4
logp(1− ζt

q
a3
3 q

a4
4
)

= −a1 logp

(
q1−1∏
b=1

(1− ζbq1)

)
− a2 logp

(
q2−1∏
d=1

(1− ζdq2)

)
− logp(1− ζqa11 q

a2
2
)

+
∑

1<a<q
a1
1 q

a2
2 /2

(a,q1q2)=1

αa logp

(
1− ζa

q
a1
1 q

a2
2

1− ζqa11 q
a2
2

)
+

∑
1<a<q

a1
1 q

a2
2 /2

(a,q1q2 )̸=1

δa logp

(
1− ζa

q
a1
1 q

a2
2

1− ζqa11 q
a2
2

)

+ a3 logp

(
q3−1∏
r=1

(1− ζrq3)

)
+ a4 logp

(
q4−1∏
s=1

(1− ζsq4)

)
+ logp(1− ζqa33 q

a4
4
)

−
∑

1<t<q
a3
3 q

a4
4 /2

(t,q3q4)=1

βa logp

(
1− ζt

q
a3
3 q

a4
4

1− ζqa33 q
a4
4

)
−

∑
1<t<q

a3
3 q

a4
4 /2

(t,q3q4) ̸=1

γa logp

(
1− ζt

q
a3
3 q

a4
4

1− ζqa33 q
a4
4

)

= a1 logp(1− ζq1) + a2 logp(1− ζq2)− a3 logp(1− ζq3)− a4 logp(1− ζq4)

− logp(1− ζqa11 q
a2
2
) + logp(1− ζqa33 q

a4
4
)−

∑
1<b<q1/2

αb logp

(
1− ζbq1
1− ζq1

)

−
∑

1<d<q2/2

δd logp

(
1− ζdq2
1− ζq2

)
+

∑
1<r<q3/2

βr logp

(
1− ζrq3
1− ζq3

)
+

∑
1<s<q4/2

γs logp

(
1− ζsq4
1− ζq4

)

+
∑

1<a<q
a1
1 q

a2
2 /2

(a,q1q2)=1

αa logp

(
1− ζa

q
a1
1 q

a2
2

1− ζqa11 q
a2
2

)
+

∑
1<a<q

a1
1 q

a2
2 /2

(a,q1q2 )̸=1

δa logp

(
1− ζa

q
a1
1 q

a2
2

1− ζqa11 q
a2
2

)

−
∑

1<t<q
a3
3 q

a4
4 /2

(t,q3q4)=1

βa logp

(
1− ζt

q
a3
3 q

a4
4

1− ζqa33 q
a4
4

)
−

∑
1<t<q

a3
3 q

a4
4 /2

(t,q3q4) ̸=1

γa logp

(
1− ζt

q
a3
3 q

a4
4

1− ζqa33 q
a4
4

)
,

(6.8)

where a1, a2, a3, a4, αb’s, δd’s, βr’s, γs’s, αa’s, δa’s, βa’s, and γa’s are algebraic
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numbers. By applying Theorem 2.3.4 to the maximal linearly independent set of

the logarithm of algebraic terms in Equation 6.8, we find that it is transcendental,

which leads to a contradiction.

Corollary 6.3.5. All the elements of S3 ∪ S4 are transcendental with at most one

exception.

Proof. Let S ′ = S3 ∪ S4. Suppose that a, b ∈ S ′ are distinct and algebraic. Then,

the possibilities for (a, b) are:

1. a ∈ S3 and b ∈ S3,

2. a ∈ S4 and b ∈ S4,

3. a ∈ S3 and b ∈ S4.

The 1st and 2nd cases are already addressed in Theorem 6.3.3 and 6.3.4, respectively.

So, consider the scenario when a ∈ S3 and b ∈ S4. Using Equation 6.2 and 6.4, we

have:

ψp(r1/pq) + γp −
( pµ

pµ − 1
H ′

µ(r2/q
m
1 q

n
2 ) + γp

)
= − logp pq +

pq−1∑
a=1

ζ−ar1
pq logp(1− ζapq) + logp q

m
1 q

n
2 −

qm1 qn2−1∑
t=1

ζ−tr2
qm1 qn2

logp(1− ζtqm1 qn2
)

= − logp q +

pq−1∑
a=1

(a,pq)=1

ζ−ar1
pq logp(1− ζapq) +

pq−1∑
a=1

(a,pq)=p

ζ−ar1
pq logp(1− ζapq)

+

pq−1∑
a=1

(a,pq)=q

ζ−ar1
pq logp(1− ζapq) +m logp q1 + n logp q2 −

qm1 qn2−1∑
t=1

(t,q1q2)=1

ζ−tr2
qm1 qn2

logp(1− ζtqm1 qn2
)

−
qm1 qn2−1∑

t=1
(t,q1q2 )̸=1

ζ−tr2
qm1 qn2

logp(1− ζtqm1 qn2
).

After simplification of the terms, we get:

− α1 logp(1− ζq) + logp(1− ζpq) +
∑

1<a<pq/2
(a,pq)=1

αa logp

(
1− ζapq
1− ζpq

)

+
∑

1<b<q/2

βb logp

(
1− ζbq
1− ζq

)
+

∑
1<c<p/2

δc logp

(
1− ζcp
1− ζp

)
+ α2 logp(1− ζq1)

+ α3 logp(1− ζq2)− logp(1− ζqm1 qn2
) +

∑
1<b<q1/2

αb logp

(
1− ζbq1
1− ζq1

)
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+
∑

1<d<q2/2

δd logp

(
1− ζdq2
1− ζq2

)
−

∑
1<t<qm1 qn2 /2
(t,q1q2)=1

αt logp

(
1− ζaqm1 qn2

1− ζqm1 qn2

)

+
∑

1<t<qm1 qn2 /2
(t,q1q2 )̸=1

δt logp

(
1− ζtqm1 qn2

1− ζqm1 qn2

)
, (6.9)

where α1, α2, α3, αa’s,αb’s, αt’s, βb’s, δc’s, δd’s, and δt’s are algebraic numbers. By

applying Theorem 2.3.4 to the maximal linearly independent set of the logarithm of

algebraic numbers in Equation 6.9, we find that it is transcendental, which leads to

a contradiction.

6.4 Transcendence when q ≡ 2(mod 4)

Theorem 6.4.1. Let p be any prime and q be an element of H where elements of

H satisfy conditions of Proposition 2.3.10. Then, we have the following statements:

1. If p | q, then the set of elements:

S5 = {ψp(r/q) + γp : 1 ≤ r < q, (r, q) = 1}

are transcendental with at most one exception.

2. If p ∤ q, then the set of elements:

S6 =

{
pµ

pµ − 1
H ′

µ(r/q) + γp : 1 ≤ r < q, (r, q) = 1

}

are transcendental with at most one exception.

Proof. Firstly, we discuss the case when p | q. Let there be two distinct algebraic

elements of the set S5. Then, by Equation 6.2, we have:

ψp(r1/q) + γp − (ψp(r2/q) + γp)

= − logp q +

q−1∑
a=1

ζ−ar1
q logp(1− ζaq ) + logp q −

q−1∑
t=1

ζ−tr2
q logp(1− ζtq)

=
∑

1<a<q/2
(a,q)=1

αa logp

(
1− ζaq
1− ζq

)
,

where αa’s are algebraic numbers. Then, using Proposition 2.3.10 along with

Theorem 2.3.4, we conclude that this is a transcendental number and hence it gives

us a contradiction.
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For the second case when p ∤ q, using Equation 6.4, we have:

pµ

pµ − 1
H ′

µ(r1/q) + γp −
(

pµ

pµ − 1
H ′

µ(r2/q) + γp

)
= − logp q +

q−1∑
a=1

ζ−ar1
q logp(1− ζaq ) + logp q −

q−1∑
t=1

ζ−tr2
q logp(1− ζtq)

=
∑

1<a<q/2
(a,q)=1

αa logp

(
1− ζaq
1− ζq

)
,

where αa’s are algebraic numbers. Upon revisiting the argument and incorporating

Proposition 2.3.10 together with Theorem 2.3.4, we deduce that the given number

is transcendental, consequently resulting in a contradiction.

6.5 Concluding remarks

Theorem 6.3.3 can be extended for the following set:

S7 = {ψp(r/p
aqb) + γp : 1 ≤ r < paqb, (r, pq) = 1}

where p, q ∈ J and m = paqb ∈ M. The proof of this follows a similar approach

as of Theorem 6.3.3 and eventually the result is obtained by taking the maximal

linearly independent set of logarithms of algebraic terms.
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[26] P. Erdős. On arithmetical properties of lambert series. J. Indian Math.

Soc.(NS), 12:63–66, 1948.

[27] T. Ernst. A comprehensive treatment of q-calculus. Springer Science & Business

Media, 2012.

[28] L. Euler. De summis serierum reciprocarum. Commentarii academiae

scientiarum Petropolitanae, 7:123–134, 1740.



References 107

[29] L. Euler. Introductio in analysin infinitorum, volume 2. Apud

Marcum-Michaelem Bousquet & Socios, 1748.

[30] L. Euler. Meditationes circa singulare serierum genus. Novi commentarii

academiae scientiarum Petropolitanae, pages 140–186, 1776.

[31] H. Gangl, M. Kaneko, and D. Zagier. Double zeta values and modular forms.

Automorphic forms and zeta functions: proceedings of the conference in memory

of Tsuneo Arakawa, pages 71–106, 2006.

[32] G. Gasper and M. Rahman. Basic hypergeometric series, volume 96. Cambridge

university press, 2004.

[33] C. F. Gauss. Summatio quarundam serierum singularium, volume 1.

Dieterich(Gottingae), 1808.
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