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Abstract

The spin-orbital-angular-momentum (SOAM) coupling has emerged as an important

theme in the field of spinor Bose-Einstein condensates (BECs) since its experimental

realization a few years ago [Chen et al., Phys. Rev. Lett. 121, 113204 (2018), Chen

et al., Phys. Rev. Lett. 121, 250401 (2018)]. The coupling emulates the SOAM coupling

in atomic physics as it couples the spin and the orbital angular momentum of the atom;

in contrast to the spin-orbit (SO) coupling between spin and the linear momentum of the

atom [Lin et al., Nature, 471, 7336 (2011)].

This thesis studies the interplay of SO coupling and rotation in spinor BECs,

specifically at high rotation frequencies. We consider rotating SO-coupled spin-1 and

spin-2 BECs trapped in quasi-two-dimensional harmonic potentials with two types of SO

coupling, namely an equal-strength mixture of Rashba and Dresselhaus couplings and

Rasbha SO coupling. The combined effect of interactions, SO coupling with moderate to

high rotation frequencies are analyzed systematically by variational methods and exact

numerical solutions of the single-particle Hamiltonian. Using single-particle Hamiltonian,

which is exactly solvable for an equal-strength mixture of Rashba and Dresselhaus

couplings, we illustrate that a boson in these rotating SO- and coherently-coupled

condensates is subjected to effective toroidal, symmetric double-well, or asymmetric

double-well potentials under specific coupling and rotation strengths. In the presence

of mean-field interactions, using the coupled Gross–Pitaevskii equations at moderate to

high rotation frequencies, the analytically obtained effective potential minima and the

numerically obtained coarse-grained density maxima position are in excellent agreement.

In the spin-1 system, we observe that at moderate to high rotation frequencies, the spin

expectation per particle of even an antiferromagnetic spin-1 Bose-Einstein condensates

(BEC) approaches unity, indicating a similarity in the response of ferromagnetic and

antiferromagnetic SO-coupled BECs at moderate to fast rotations. Similarly, in spin-2

systems, the antiferromagnetic, cyclic, and ferromagnetic phases exhibit similar behaviour

at higher rotations.

In the second part of this thesis, motivated by the recent experiments [Chen et

al., Phys. Rev. Lett. 121, 113204 (2018), Chen et al., Phys. Rev. Lett. 121,

250401 (2018)], we investigate the low-lying excitation spectrum of the ground-state

phases of spin-orbital-angular-momentum-coupled spin-1 condensates. At vanishing

detuning, a ferromagnetic SOAM-coupled spin-1 BEC can have two ground-state

phases, namely coreless and polar-core vortex states, whereas an antiferromagnetic

BEC supports only polar-core vortex solution. The angular momentum per particle,

longitudinal magnetization, and excitation frequencies display discontinuities across the

phase boundary between the coreless vortex and polar-core vortex phases. The low-lying

excitation spectrum evaluated by solving the Bogoliubov-de-Gennes equations is marked

by avoided crossings and, hence, the hybridization of the spin and density channels. The

spectrum is further confirmed by the dynamical evolution of the ground state subjected

to a perturbation suitable to excite a density or a spin mode and a variational analysis for
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the density-breathing mode.

Furthermore, we investigate the collective excitation spectrum of the annular stripe

phase, which breaks two continuous symmetries: rotational and U(1) gauge symmetry.

Since the annular stripe phase becomes more probable in the SOAM-coupling models

corresponding to larger orbital angular momentum transfer imparted by the pair of

Laguerre-Gaussian beams, we consider the Hamiltonian corresponding to 4ℏ orbital

angular momentum transfer. The different considerations of angular-momentum transfer

to the atoms by the pair of Laguerre-Gaussian beams yield different single-particle

Hamiltonians and, consequently, different phase diagrams. In the presence of

antiferromagnetic interactions, for different values of coupling strength and detuning, we

observe the annular stripe phase along with two circular symmetric phases identified by the

charge singularities of (+4, 0,−4) and (+8,+4, 0) in the j = +1, 0,−1 spin components,

respectively, and calculate their low-lying excitation spectrum.
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Chapter 1

Introduction

In 1924, Satyendra Nath Bose [7] examined the characteristics of photons, successfully

rederiving Planck’s law for black-body radiation by considering the indistinguishability of

light quanta. Later, Albert Einstein [8] expanded on Bose’s findings in 1925, specifically

addressing the statistical properties of an ideal gas of bosons and predicting a new state of

matter known as Bose-Einstein condensate (BEC). The condensation occurs when weakly

interacting bosons, confined within an external potential, are cooled to a temperature

close to zero [9]. Under these conditions, quantum phenomena manifest themselves at

a macroscopic level, as a significant portion of bosons will autonomously fill the lowest

quantum state [10]. The collaborative work of Bose and Einstein led to the formulation of

the statistical framework (Bose-Einstein statistics) describing the distribution of identical

particles possessing integer spin, known as bosons. Later in 1938, Fritz London proposed

the idea of BEC as a mechanism for explaining superconductivity and superfluidity in

liquid helium [11]. Superfluid helium exhibits many remarkable properties, such as zero

viscosity and quantized vortices [12–16]. Later, it was found that these same properties

are observed in gaseous Bose-Einstein condensates (BECs) [17–19]. These experiments

followed the first successful experimental realization of a BEC by Eric Cornell, Carl

Wieman, and their colleagues at JILA on June 5, 1995, using vapours of 87Rb [20].

A few months later, BEC of 23Na atoms was observed by the group led by Wolfgang

Ketterle at MIT [21]. Almost at the same time, the research group of Randall Hulet

at Rice University reported the observation of condensates with 7Li atoms [22]. These

condensates of a few hundred atoms led to important experimental findings, such as the

observation of quantum mechanical interference between two different condensates [23],

realization of a pulsed atom laser [24], supernova-like expansion of the condensate [25],

etc. Hence, Cornell, Wieman and Ketterle won the 2001 Nobel Prize in Physics for their

achievements.

In 1999, a significant breakthrough was achieved at JILA when a vortex was

experimentally observed using a BEC of 87Rb atoms, incorporating two distinct hyperfine

spin states [17]. Shortly thereafter, the ENS group successfully created vortices in a

rotating, cigar-shaped BEC consisting of a single component, revealing small vortex arrays

containing four vortices [18]. Later, the MIT group achieved a milestone by creating larger

rotating condensates and observed highly ordered triangular lattices known as “Abrikosov”

lattices of vortices [19]. During the same year, Leanhardt et al. introduced an innovative

technique called “topological phase imprinting” to create a coreless vortex within a spinor

f = 1 BEC [26]. A few years later, the JILA group also studied the equilibrium
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properties of a triangular lattice of vortices [27]. Understanding the quantized vortex state

is very important to gain deeper insights into the aforementioned observations related to

rotating condensates and the phenomenon of superfluidity [28–32]. These quantized vortex

states can be routinely detected in various experimental setups, including rotating single-,

multi-component, and spinor BECs [33].

Among the various species where Bose-Einstein condensation has been experimentally

observed include 87Rb [20,34], 23Na [21,35], 7Li [22], 85Rb [25], 4He [36,37], 41K [38], 133Cs

[39], 52Cr [40], etc. To facilitate the study of BECs, the mean-field theory is extensively

employed, which involves substituting the two-particle interactions in the system with an

average or effective interaction, often referred to as a molecular field [41]. This approach

simplifies the multi-body problem into a one-body problem, enabling the calculation of

atomic interactions using an effective interaction proportional to the s-wave scattering

length(s). The mean-field model of the condensate is expressed by the Gross-Pitaevskii

(GP) equation [42–45].

1.1 Spinor BEC

The very first BEC was formed utilizing an atom in a single spin state of 87Rb [20], and

later, it was successfully created by using a single state of 23Na [21]. In these systems,

only the atoms in a week-field-seeking state were magnetically trapped, hence the freezing

of their spin degrees of freedom. In contrast, optical traps allow for the trapping all

the magnetic sublevels of a hyperfine manifold by a state-independent potential, thereby

preserving the spin degrees of freedom [46]. The spin f of the atom is the sum of the

electron spin S and the nuclear spin I, e.g. 23Na atom with S = 1/2 and I = 3/2 can have

f = 1 or f = 2. The 2f + 1 possible spin states belonging to a given f manifold can be

labelled |f,m⟩. In these optical traps, the 2f + 1 hyperfine spin states (of a spin-f atom)

associated with the spin projection quantum numberm = −f,−f+1, ..., f can interconvert

by spin-exchange collisions subject to the selection rules, which is a striking consequence of

the spin degrees of freedom. In experiments, it is possible to have spinor BEC of two spin

states, namely |f,m⟩ and |f,m− 1⟩, which is treated as a pseudospin-1/2 system [47,48].

The spinor BECs of 87Rb and 23Na can correspond to hyperfine manifolds with f = 1 or

f = 2 [49], whereas those of 52Cr [50] and 85Rb correspond to f = 3 [1]. In spinor BECs,

several phases are possible depending on the nature of the interactions [1,51–54].

The hyperfine spin states of atoms can change during two-body scattering events in

spinor Bose gases. To incorporate this in the Hamiltonian, one must consider the total

hyperfine spin of the two particles. When two identical spin-f bosonic particles collide,

they can have a total spin F = 0, 2, . . . , 2f as the odd F values are prohibited in the s-wave

limit due to symmetry considerations [1]. The scattering length, which is dependent on the

total spin F , can take up to f +1 distinct values, say a0, a2, . . . , a2f [1]. The Hamiltonian

of a Bose gas with two-body inter-boson interactions can be expressed as [44]

Ĥ = Ĥ0 + Ĥint, (1.1)
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where Ĥ0 includes the kinetic energy and trapping potential terms and Ĥint is the part for

mutual interaction between particles. For a dilute Bose gas with interparticle separation

much larger than the range of interaction, the mutual interaction between the particles

can be replaced by contact interaction, then these two constituents of the Hamiltonian in

Eq. (1.1) are defined as [1]

Ĥ0 =

∫
dr

−f∑
m=+f

ψ̂†
m(r, t)

(
− ℏ2

2M
∇2 + V (r, t)

)
ψ̂m(r, t), Ĥint =

2f∑
F=0

ĤF
int, (1.2)

where

ĤF
int =

gF
2

∫
dr

F∑
M=−F

Â†
FM (r) ÂFM (r) , (1.3)

is the interaction part of the Hamiltonian corresponding to the two bosons mutually

scattering with a total spin of F . In Eq. (1.3), gF = 4πℏ2aF/M , where ℏ is the reduced

Planck’s constant and M is the mass of the atom, and ÂFM (irreducible operator) is

defined as [1]

ÂFM (r) =

f∑
m,m′=−f

〈
F ,M | f,m; f,m′〉 ψ̂m(r)ψ̂m′ (r) , (1.4)

which annihilates a pair of bosons at r. Using Eqs. (1.3) and (1.4), Ĥint can be rewritten

as

Ĥint =
1

2

∫
dr

∑
m1m2m′

1m
′
2

Cm1m2

m′
1m

′
2
ψ̂†
m1

(r)ψ̂†
m2

(r)ψ̂m′
2
(r)ψ̂m′

1
(r), (1.5)

wherem1 andm2 are magnetic quantum number and can take a value from f, f−1, . . . ,−f
and

Cm1m2

m′
1m

′
2
≡ 4πℏ2

M

∑
F=0,2,...,2f

aF

〈
f,m1; f,m2

∣∣∣P̂F

∣∣∣ f,m′
1; f,m

′
2

〉
, (1.6)

with P̂F =
∑F

M=−F |F ,M⟩⟨F ,M| being the projection operator onto a two-body state

with the total spin angular momentum F . Using Eq. (1.2) along with Eqs. (1.5) and

(1.6), the second-quantized Hamiltonian for an interacting spin f = 1 BEC can be written

as [1,45,55,56]

Ĥ =

∫
dr

[
ℏ2

2M
∇ψ̂†

m.∇ψ̂m + V ψ̂†
mψ̂m +

c0
2
ψ̂†
mψ̂

†
mψ̂m′ψ̂m′ +

c1
2
ψ̂†
mψ̂

†
m′Sml.Sm′l′ψ̂lψ̂l′

]
,

(1.7)

where the summation over repeated indices is implied, ψ̂†
m (ψ̂m) is a creation (annihilation)

operator, and c0 and c1 are interaction parameters defined as

c0 =
4πℏ2(a0 + 2a2)

3M
, c1 =

4πℏ2(a2 − a0)

3M
, (1.8)

and S = (Sx, Sy, Sz) with Sν=x,y,z denoting the irreducible representation of the angular
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momentum operator for a spin-f particle. The (m,m′)th element of these (2f+1)×(2f+1)

matrices are

(Sx)m,m′ =
1

2

[√
(f −m+ 1)(f +m)δm−1,m′ +

√
(f +m+ 1)(f −m)δm+1,m′

]
, (1.9a)

(Sy)m,m′ =
1

2ι

[√
(f −m+ 1)(f +m)δm−1,m′ −

√
(f +m+ 1)(f −m)δm+1,m′

]
, (1.9b)

(Sz)m,m′ =mδmm′ . (1.9c)

Similarly, using Eqs. (1.2), (1.5) and (1.6), the second-quantized Hamiltonian for a spin-2

BEC is [1,51,57]

Ĥ =

∫
dr

[
ℏ2

2M
∇ψ̂†

m.∇ψ̂m + V ψ̂†
mψ̂m +

c0
2
ψ̂†
mψ̂

†
mψ̂m′ψ̂m′ +

c1
2
ψ̂†
mψ̂

†
m′Sml.Sm′l′ψ̂lψ̂l′

+
c2
2
ψ̂†
mψ̂

†
m′⟨2,m; 2,m′ | 0, 0⟩⟨0, 0 | 2, l; 2, l′⟩ψ̂lψ̂l′

]
, (1.10)

where

c0 =
4πℏ2(4a2 + 3a4)

7M
, c1 =

4πℏ2(a4 − a2)

7M
, c2 =

4πℏ2(7a0 − 10a2 + 3a4)

7M
, (1.11)

and ⟨0, 0 | 2, l; 2, l′⟩ can be expressed as [1]

⟨0, 0 | 2,m; 2,m′⟩ = δm+m′ ,0

(−1)2−m

√
2f + 1

. (1.12)

1.1.1 Mean-field approximation

In a many-body system with BEC, the field operator can be decomposed as

ψ̂m(r, t) = ψ̂0
m(r, t) + δψ̂m(r, t), (1.13)

where ψ̂0
m(r, t) is the field operator which annihilates an atom from condensate in the

hyperfine sublevel m, and δψ̂m(r, t) is the fluctuation operator, which can be thermal,

quantum, or any other fluctuation that promotes the atoms to higher energy states.

The operators ψ̂0
m(r, t) and δψ̂m(r, t) can be expressed using the orthonormalized set of

single-particle wave functions φα,m(r, t) as

ψ̂0
m(r, t) = â0,m(t)φ0,m(r, t), (1.14a)

δψ̂m(r, t) =
∑
α ̸=0

âα,m(t)φα,m(r, t), (1.14b)

where α is the index of the single particle level, âα,m (â†α,m) is the annihilation (creation)

operator, which satisfies the commutation relations

[âα,m, â
†
β,k] = δα,βδm,k, [âα,m, âβ,k] = [â†α,m, â

†
β,k] = 0. (1.15)
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The BEC occurs when one of the single-particle states, say α = 0, is macroscopically

occupied. The number operator of the condensate can be defined as N̂0,m = â†0,mâ0,m, and

then, N̂0,m|N0,m⟩ = N0,m|N0,m⟩, where (|N0,−f ⟩, |N0,−f+1⟩, . . . , |N0,f ⟩)T is the condensate

state with N0 =
∑

mN0,m number of atoms. Using the commutation relations, we can

write
(â0,mâ

†
0,m − â†0,mâ0,m)

N0,m
|N0,m⟩ =

(
1

N0,m

)
|N0,m⟩, (1.16)

which tends to approach zero in the limit of macroscopic occupation of the ground state.

This allows these two operators to be approximated by numbers, i.e. â†0,m ≈ â0,m ≈√
N0,m. This approximation is termed as Bogoliubov approximation [44,58], which can be

used in Eq. (1.14a) and then to rewrite Eq. (1.13) as

ψ̂m(r, t) ≈
√
N0,m φ0,m(r, t) + δψ̂m(r, t), (1.17a)

= ψm(r, t) + δψ̂m(r, t), (1.17b)

where ψm(r, t) = ⟨ψ̂m(r, t)⟩ with ⟨. . .⟩ denoting the ensemble average is the wave function

ofmth spin component [59]. Assuming the temperature of the gas is well below the critical

temperature, a significant fraction of the atoms will occupy the same ground state; the

fluctuation operator then can be neglected δψ̂m(r, t) = 0, leading to ψ̂m(r, t) = ψm(r, t),

which is the mean-field approximation.

1.1.2 Mean-field model for a spin-1 condensate

As discussed in the previous subsection, under the mean-field approximation, the field

operators are replaced by c-numbers, resulting in the transformation of Eq. (1.7) to the

energy functional [1,55,56,60]

E[ψm] =

∫
dr

[ −1∑
m=+1

ψ∗
m

(
− ℏ2

2M
∇2 + V

)
ψm +

c0
2
ρ2 +

c1
2
|F|2

]
, (1.18)

where ρ(r) =
∑

m |ψm(r)|2 is the total density of the system, and F = (Fx, Fy, Fz) is the

spin-density vector with three components defined as

Fx =
1√
2
[(ψ∗

1 + ψ∗
−1)ψ0 + ψ∗

0(ψ1 + ψ−1)],

Fy =
ι√
2
[(ψ∗

−1 − ψ∗
1)ψ0 + ψ∗

0(ψ1 − ψ−1)],

Fz =
∑
m

m|ψm|2.

The time evolution of the mean-field is given by [1]

ιℏ
∂ψm

∂t
=

δE

δψ∗
m

, (1.20)
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which results in the following three coupled Gross-Pitaevskii equations (CGPEs):

ιℏ
∂ψ±1

∂t
=

(
−ℏ2∇2

2M
+ V + c0ρ± c1Fz

)
ψ±1 +

c1√
2
F∓ψ0, (1.21a)

ιℏ
∂ψ0

∂t
=

(
−ℏ2∇2

2M
+ V + c0ρ

)
ψ0 +

c1√
2
F−ψ−1, (1.21b)

where F± = Fx ± ιFy.

When the parameter c1 is positive, the energy functional (1.18) achieves its minimum

value, with a zero magnetization spinor configuration, resulting in the antiferromagnetic or

polar phase as the ground-state phase, and attributed, respectively, to equal populations

in spin states with magnetic quantum numbers m = ±1 or all the atoms residing in the

spin state with m = 0 [1,55,56]. In contrast, when c1 is negative, the ground-state phase is

ferromagnetic, where the system can be considered polarized or magnetic, demonstrating

a net magnetization [1,60].

1.1.3 Mean-field model for a spin-2 condensate

Similarly, using the mean-field approximation in Eq. (1.10), the energy functional of a

spin-2 BEC is [1,51,57,61–63]

E[ψm] =

∫
dr

[ −2∑
m=+2

ψ∗
m

(
− ℏ2

2M
∇2 + V

)
ψm +

c0
2
ρ2 +

c1
2
|F|2 + c2

2
|Θ|2

]
, (1.22)

where

Fx = ψ∗
1ψ2 + ψ1

(√
3

2
ψ∗
0 + ψ∗

2

)
+

√
3

2
ψ0

(
ψ∗
1 + ψ∗

−1

)
+ ψ−1

(√
3

2
ψ∗
0 + ψ∗

−2

)
+ ψ∗

−1ψ−2,

Fy = ι

[
ψ∗
1ψ2 + ψ1

(√
3

2
ψ∗
0 − ψ∗

2

)
+

√
3

2
ψ0

(
−ψ∗

1 + ψ∗
−1

)
+ ψ−1

(
−
√

3

2
ψ∗
0 + ψ∗

−2

)
− ψ∗

−1ψ−2

]
,

Fz =

−2∑
m=+2

m|ψm|2, Θ =
1√
5
(2ψ+2ψ−2 − 2ψ1ψ−1 + ψ2

0),

is the spin-singlet pair amplitude. For a spin-1 BEC, the spin-singlet pair amplitude

Θ = (2ψ1ψ−1 − ψ2
0)/

√
3 and magnetization |F| are related, and either the former or the

latter can be independently varied in the energy functional [1]. In contrast, in a spin-2

BEC, both can be varied independently in a specific region of the (|F|, |Θ|) parameter

space [1]. The |Θ| for a spin-2 BEC attains its maximum value for a time-reversal invariant

order parameter of the antiferromagnetic phase, whereas it is zero for the ferromagnetic

phase. From Eq. (1.20) and Eq. (1.22), we get a set of five CGPEs

ιℏ
∂ψ±2

∂t
= Hψ±2 + c1(F∓ψ±1 ± 2Fzψ±2) +

c2√
5
Θψ∗

∓2, (1.24a)

ιℏ
∂ψ±1

∂t
= Hψ±1 + c1

[√3

2
F∓ψ0 + F±ψ±2 ± Fzψ±1

]
− c2√

5
Θψ∗

∓1, (1.24b)
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ιℏ
∂ψ0

∂t
= Hψ0 + c1

√
3

2
(F−ψ−1 + F+ψ+1) +

c2√
5
Θψ∗

0, (1.24c)

where

H =

(
−ℏ2∇2

2M
+ V + c0ρ

)
and F± = Fx ± ιFy. (1.25a)

Depending on the values of c1 and c2, three magnetic phases can emerge, namely

ferromagnetic, antiferromagnetic, and cyclic phase [1,63] as illustrated in Fig. 1.1. In

the case c1 < 0 and c2 > 0, the system’s energy decreases with increasing magnetization,

indicating a ferromagnetic ground state. Conversely, when c1 > 0 and c2 < 0, the system’s

lowest energy state occurs when magnetization is absent, characterizing these states as

polar or antiferromagnetic. If both c1 and c2 are positive, cyclic phase emerges as the

ground state phase [51,61,62]. The strength of interactions, as determined by scattering

lengths, can potentially be controlled through the use of optical or magnetic Feshbach

resonances, providing a means to manipulate the system’s behavior [64].

Ferro
magnetic

Cylic

Polar

    
Antiferromagnetic

and

Figure 1.1: The phase diagram in c2-c1 plane illustrating ferromagnetic, antiferromagnetic,
polar, and cyclic phases. The order parameter for the ferromagnetic, antiferromagnetic,
polar, and cyclic phases are, respectively,

√
n(r)(1, 0, 0, 0, 0)T ,

√
n(r)(1, 0, 0, 0, 1)T /

√
2,√

n(r)(0, 0, 1, 0, 0)T , and
√
n(r)(1, 0, ι

√
2, 0, 1)T /2. The polar and the antiferromagnetic

phases exhibit different symmetries but are degenerate at the mean-field level [1].

1.2 Spin-orbit coupling

Spin-orbit (SO) interaction is an interesting phenomenon that arises due to the coupling

of an elementary particle’s intrinsic angular momentum (spin) with its orbital motion.
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Here, spin is an intrinsic property of an elementary particle, such as an electron, which

does not have a classical counterpart. However, the particle’s momentum or velocity is

directly related to its classical counterpart.

The SO coupling has implications in various systems such as quantum spin Hall

states [65], topological insulators [66], spintronics [67], etc. To understand the SO coupling,

consider an electron moving with velocity v under the effect of the electric field E = E0ẑ.

The moving electron experiences a magnetic field B given as

B = −v ×E

c2
. (1.26)

This magnetic field B facilitates the coupling between the electron’s spin and its orbital

angular momentum, leading to the SO coupling. The effective SO Hamiltonian can be

defined as

HSO = −µe.B, (1.27a)

= −
(
−geµBS

ℏ

)
.

(
−v ×E

c2

)
, (1.27b)

= −ℏgeµBE0

2Mc2
(k× ẑ).σ, (1.27c)

=
ℏgeµBE0

2Mc2
(−ky, kx, 0).σ, (1.27d)

= Ω(k).σ, (1.27e)

where Ω(k).σ illustrates the coupling between spin S = ℏσ/2 and the momentum ℏk/M ,

µe is magnetic moment, ge is Landé’s factor, and µB is the Bohr magneton. The coefficient

ℏgeµBE0/2Mc2 in Eq. (1.27b) is the strength of Rashba SO coupling. These SO coupling

1

Figure 1.2: (a)-(c) represents the spin structure arising from SO coupling in a system
without an inversion center: (a) Rashba, (b) Dresselhaus, and (c) persistent spin texture
configurations. The blue and red arrows signify the spin orientation for the two electronic
subbands resulting from SO coupling corresponding to the SO coupling field Ω(k).
Reproduced from Nature Communications vol. 9, 2763, 2018 [2].

interactions typically arise from the absence of mirror symmetry in two-dimensional

systems [68], giving rise to the Rashba SO coupling. However, in bulk crystals, the lack of

inversion symmetry results in a different form of SO coupling, known as linear Dresselhaus

SO coupling [69], where Ω(k) in Eq. (1.27c) can be written as γD(ky, kx, 0). These
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Rashba and Dresselhaus SO couplings lead to a chiral spin-texture of electronic bands

in momentum space as shown in Figs. 1.2(a) and 1.2(b), respectively. The combination of

symmetric Rashbha and Dresselhaus couplings gives rise to a new SO coupling interaction

[2,70]. This can be attained when the magnitudes of γR and γD are equal, resulting in

a unidirectional SO field with Ω(k) = γD(ky, 0, 0) or Ω(k) = γD(0, kx, 0). This coupling

couples the atoms in one direction only and is known as a persistent spin texture whose

schematic representation is shown in Fig. 1.2(c).

1.2.1 Synthetic SO-coupled BECs

Both the Rashba and Dresselhaus couplings play pivotal roles in numerous physical

phenomena such as spin Hall effects [65], spintronics [67], topological insulators [66],

quantum simulations [71,72]. Exploring these fundamental phenomena in ultracold atoms

presents a fascinating avenue for research in quantum degenerate gases. However, it is

crucial to emphasize that in atomic gases, the constituent atoms are electrically neutral.

Consequently, the possibility of particles experiencing a Lorentz force in the presence of

external magnetic fields is precluded. In this context, the artificial gauge fields provide a

route for exploring the physics emanating from the Lorentz force using neutral atoms [73].

The experimental realization of artificial gauge fields [73,74] and SO coupling between

the spin and the linear momentum of electrically neutral bosons [75] has paved the

way to hitherto inaccessible research direction to the researchers. The first experimental

realization of synthetic SO coupling in cold gases was done by employing a method based

on Raman coupling [4,75].

To understand the experimentally implemented method for generating SOC through

Raman coupling, we consider a scenario where two lower-energy states are connected by

lasers to a higher-energy state as shown in Fig. 1.3. For that, we consider two laser beams

of frequencies ω1 and ω2 which are close to resonance and couple internal states through

a dipolar coupling denoted as Hdip = −d̂.E, where d̂ is the dipole operator, and

E = E1 cos (k1 · r − ω1t) +E2 cos (k2 · r − ω2t) (1.28)

is the electric field. For these two Raman lasers, the electric-dipole interaction Hamiltonian

is expressed as

H(t) =


0 0 d̂13 ·E(r, t)

0 ϵ2 d̂23 ·E(r, t)

[d̂13 ·E(r, t)]∗ [d̂23 ·E(r, t)]∗ ϵ3

 , (1.29)

where d̂ij = ⟨i|d̂|j⟩; |1⟩, |2⟩, |3⟩, are basis states with energies (0, ϵ2, ϵ3), respectively; and

d̂ij ·E(r, t) = Ω1 cos (k1 · r − ω1t) + Ω2 cos (k2 · r − ω2t) , (1.30)

here Ω1 = d̂ij .E1 and Ω2 = d̂ij .E2. To remove the time dependence of the Hamiltonian,
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Figure 1.3: The Figure shows the process of generating SO coupling using two Raman
lasers with frequencies ω1 and ω2. (ω1−ω2 ≈ ϵ2− ϵ1 ≪ ϵ3) which couple low-energy states
|1⟩, |2⟩ and |3⟩. This introduces coupling between |1⟩ and |2⟩ states as a second-order
process [3,4].

we consider a time-dependent unitary operator to move the system to a rotating frame of

reference, where ψ′ = Uψ, and H ′ = UHU † − ιU∂tU
†. The appropriate unitary operator

is

U =


1 0 0

0 e−ι(ω2−ω1)t 0

0 0 eιω1t

 , (1.31)

which results in [4]

H ′ =


0 0 d̂13 ·E eιω1t

0 δ d̂23 ·E e−ιω2t

[d̂13 ·E e−ιω1t]
∗

[d̂23 ·E e−ιω2t]
∗

∆

 , (1.32)

where δ = ϵ2 − (ω1 − ω2) and ∆ = ϵ3 − ω1. As |3⟩ is a bit far from the resonance, we may

adiabatically eliminate state |3⟩. For Eq. (1.32), the Schrödinger equation is ι∂tc = H ′c,

where c = (c1, c2, c3)
T. Using c3 ≈ − (H ′

31c1 +H ′
32c2) /∆, where H

′
ij refers to the ijth

element of matrix H
′
in Eq. (1.32), in the Schrödinger equations for c1 and c2, one gets

an effective 2× 2 Hamiltonian

H2 =

 −|H′
13|

2

∆ −H′
13H

′
23

∗

∆

−H′
23H

′
13

∗

∆ δ − |H′
23|

2

∆

 . (1.33)

After neglecting the fast-oscillating terms using the rotating-wave approximation, the

resultant Hamiltonian [4]

H2 =

(
− |Ω1|2+|Ω2|2

4∆
Ω1Ω∗

2
4∆ e−ι(k1−k2)·r

Ω2Ω∗
1

4∆ eι(k1−k2)·r δ − |Ω1|2+|Ω2|2
4∆

)
, (1.34)
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where the diagonal term (|Ω1|2 + |Ω2|2 )/4∆ is ac-stark shift, and the off-diagonal term

characterizes the spin-flipping process with a momentum transfer of (k1 − k2), which is

fundamentally responsible for the manifestation of the SO coupling effect.

For counterpropagating Raman laser beams propagating along x−direction, the

single-particle Hamiltonian is [4,75]

Ĥ0 =
ℏ2k2

2M
+

ΩR

2
[cos(2kLx)σx − sin(2kLx)σy] +

δ

2
σz, (1.35)

where ΩR = −Ω1Ω
∗
2/2∆, kL = k1 − k2, and k = −ι∇. To make the SO coupling

even more transparent, we perform a unitary transformation using a unitary operator

U = exp(−ιkLxσz), and the transformed Hamiltonian is [4,75]

Ĥ0 =
ℏ2k2

2M
+

ℏ2kLkx
M

σz +
ΩR

2
σx +

δ

2
σz, (1.36)

where the SO coupling is now evident from the term ∝ kxσz.

The remarkable achievement of the experimental realization of SO-coupled BECs [75]

provides a perfect gateway to investigating novel exotic states of ultracold quantum gases,

drawing insights from condensed matter physics [66,67]. These experimental advancements

[73–77] led to many theoretical studies in spinor systems, including spin-spiral ordering

[78], vortex and skyrmion crystal [79], ferromagnetic and antiferromagnetic phases

[80], ground-state phases like plane-wave, stripe or standing-wave, vortex-lattice,

zero-momentum phases, etc. [48,81–83]. Besides these unusual phases, self-trapped vortex

solitons [84–87], knotted vortices [88], super-stripes and super-lattices [89,90] can also

emerge as the ground-state solutions of the SO-coupled spinor BECs in different parameter

domains. The specific phases and the transitions among them in the ground-state phase

diagram depend on various factors, such as the strength and nature of the SO coupling

and the interactions between the atoms [48,91].

1.3 Rotating spinor condensates

Following the observation of a trapped BEC in 87Rb and 23Na alkali atoms at ultra-low

temperature [20,21], experiments were conducted to generate rotating trapped condensates

supporting quantized vortices [18] and extensive vortex lattices [19,27] under controlled

conditions for both small and large angular frequencies of rotation. As proposed by

Onsager [92], Feynman [13], and Abrikosov [16], these vortices exhibit quantized circulation

similar to that observed in liquid He II [33]. The quantized circulation can be expressed

as
M

2πℏ

∮
v.dr = ±l, (1.37)

where v denotes the superfluid velocity field, l is orbital angular momentum, and M is

the mass of the atom. The l ̸= 0 means a topological defect within the closed path,

manifesting as a quantized vortex line [33]. The observation of unit angular momentum
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quantized vortices was initially reported in a uniform superfluid He II within a rotating

bucket [93,94]. The curl of the velocity field, ∇×v(r, t), determines vorticity and indicates

the direction of the angular momentum vector.

The spinor BECs can exhibit a diverse range of topological excitations [1,95–97],

which are not achievable in scalar BECs. Depending upon the nature of spin-exchange

interactions, values of longitudinal magnetization fz and rotational frequency Ωrot,

a wide assortment of topological structures can appear in the ground states of the

spin-1 BEC [95,96,98]. Among these are thermodynamically stable Mermin-Ho and

Anderson-Toulouse coreless vortices in a ferromagnetic spin-1 BEC [95,96]. The phase

diagram in fz-Ωrot plane reveals that the spin-1 BECs can host different types of both

axisymmetric as well as asymmetric vortices [95]. The stability of former types with a

phase-winding number of individual components between −1 to 1 has also been studied in

fz-Ωrot plane [99]. The two distinct vortex-lattice phases of a rotating ferromagnetic spin-1

BEC are a lattice of coreless vortices with non-singular spin-texture and a lattice with

polar cores [98]. Coreless axisymmetric and non-axisymmetric vortices with spin-texture,

respectively, corresponding to a skyrmion and a meron-pair also emerge in pseudospin-1/2

BECs under rotation [100]. As the rotation frequency approaches the trapping frequency,

the BEC enters into a regime where the non-interacting part of the Hamiltonian becomes

equivalent to the Hamiltonian of a charged particle with mass M and charge q in a

magnetic field of magnitude B = 2MΩrot/q [101]. In this regime, where mean-field

interaction energy is smaller than 2ℏΩrot and coherence length is of the order of inter-vortex

separation; the bosons occupy the single-particle states corresponding to the lowest Landau

level [101–103] and the GP approximation is valid [45]. With a further increase in rotation

frequency, mean-field interaction energy becomes much smaller than ℏΩrot, resulting in

highly correlated vortex-liquid states which are no longer described by the mean-field GP

equation [102–105]. An important parameter which characterizes the transition between

these two regimes is the ratio of the number of bosons to the number of vortices termed

as filling fraction [104]. In a single-component scalar BEC, a zero-temperature phase

transition corresponding to the transition from vortex-lattice phase to an incompressible

vortex-liquid phase occurs when the filling fraction approximately falls below six [104]. On

the experimental front, the interlaced square vortex lattice in a rotating two-component

pseudospin-1/2 BEC has been experimentally observed [106]. The experiment also

confirmed the stability of the square vortex lattice by exciting Tkachenko modes [16] and

their subsequent relaxation [106]. Spin-1 bosons under fast rotations in the lowest Landau

level regime have been theoretically investigated [107,108], and it has been demonstrated

that, similar to scalar BECs, a transition from vortex-lattice phase to quantum Hall liquid

states at ultra-fast rotations occurs [107,108].

As discussed in Sec. 1.2.1, realization of SO coupling in spin-1 BECs, results in

various ground-state phases like plane-wave, stripe or standing-wave, vortex-lattice,

zero-momentum phases, etc [48,81–83,109]. The realization of the SO coupling has made

it possible to explore the interplay of synthetic non-Abelian and Abelian gauge potential
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arising due to rotation [110,111], e.g. in the two-component SO-coupled [112–116]

or coherently-coupled pseudospin-1/2 BECs [117]. In spin-1 BECs, the interaction

between Rashba SO coupling and rotation under rapid quenching leading to half-skyrmion

excitations [118], hexagonal lattice of skyrmions and a square lattice of half-quantized

vortices [119] has already been theoretically investigated. It has also been shown

numerically that a rotating spin-1 BEC with anisotropic SO coupling can support

vortex-chain solutions [120], whereas the presence of an isotropic Rashba SO coupling

may result in a vortex lattice with a hexagonal or an approximate square-lattice pattern

[121].

1.4 Spin-orbital-angular-momentum-coupled spinor

condensates

Spin-orbital-angular-momentum (SOAM) coupling, which represents the interaction

between the spin and the orbital motion, is a fundamental phenomenon in nature. In

the field of atomic physics, the relativistic interaction between spin and orbital angular

momentum contributes to the fine structure observed in energy levels within hydrogen

atoms [122]. A similar effect is observed for protons and neutrons as they move within

the atomic nucleus, causing shifts in their energy levels within the nuclear shell model

[123]. In condensed-matter physics, a similar interaction arises between the electron spin

and its velocity, known as the spin-linear-momentum or SO coupling, which has already

been discussed in Sec. 1.2. Although SO coupling has been extensively investigated in

the ultra-cold atoms’ field [109,111,124–126], it differs from the actual meaning of SO

coupling in atomic physics, which signifies the interaction between spin and orbital angular

momentum. During the second half of the last decade, a novel coupling, namely the

SOAM coupling, which does couple the spin with the orbital angular momentum of the

atom, was theoretically proposed in cold atoms, significantly enhancing our understanding

of quantum many-body physics [127–134]. These proposals inspired the experimental

realization of SOAM coupling in the spin-1 spinor BEC of 87Rb atoms [135,136], using

a Gaussian and a Laguerre-Gaussian beam co-propagating along the z-direction (which

leads to an orbital angular-momentum transfer of ℏ to the atoms) [135,136]. This was

followed by the experimental demonstration of spin-polarized and zero-momentum phases

in an SOAM-coupled pseudospin-1/2 BEC of 87Rb atoms [5]; the work also demonstrated

that Raman-induced gauge fields can lead to an effective rotation.

To understand the SOAM coupling, which connects the two hyperfine states of atoms

by copropagating Laguerre-Gaussian beams, we consider a scenario illustrated in Fig. 1.4.

The distinct orbital angular momentum carried by these beams induces a change in

the orbital angular momentum of atoms during the transition between the two ground

hyperfine states. The Hamiltonian describing an atom influenced by a pair of Raman

Laguerre-Gaussian beams as per the semiclassical theory of atom-light interaction is
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Figure 1.4: Figure illustrates two hyperfine states of atoms | ↑⟩, | ↓⟩ which are connected
to the excited state |3⟩ via a pair of copropagating Laguerre-Gaussian beams E±. The ∆
is representing single-photon detuning and δ is two-photon detuning [5,6].

written as [6,127]

HAL =


ℏω↑ 0 V↑3

0 ℏω↓ V↓3

ℏω↓ V↓3 ℏω3

 , (1.38)

where | ↑⟩, | ↓⟩, and |3⟩ are the basis states associated with energies ℏω↑, ℏω↓, and ℏω3,

respectively. In Eq. (1.38), Vj,j′ = ⟨j|d̂.E±|j
′⟩, where j, j′ =↑, ↓, and 3, d̂ is the dipole

operator, and E± are electric fields, which can be expressed as

E±(r, t) =
1

2
ê±[ε±(r)e

−ιω±t + ε∗±(r)e
ιω±t], (1.39)

where ê± represents the unit vectors indicating the polarization direction of light, ε±

corresponds to the spatial complex amplitudes, and ω± denote the angular frequencies

of the Raman beams. Next, we apply a time-dependent unitary transformation to our

system to move to the rotating frame of reference, where

ψ′ = Uψ, H ′ = UHALU
† − ιU∂tU

†, (1.40)

for

U =


exp (ιη↑t) 0 0

0 exp (ιη↓t) 0

0 0 exp (−ιη3t)

 . (1.41)
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This results in

H ′ =


ℏω↑ − ℏη↑ 0 V13 e

ι(η↑−η3)t

0 ℏω↓ − ℏη↓ V23 e
ι(η↓−η3)t

ℏω↓e
ι(η3−η↑)t V23 e

ι(η3−η↓)t ℏω3 − ℏη3

 , (1.42)

where ηj can be considered as [6]

η↑ =
1

2
(−ω+ + ω− + ω↑ + ω↓), (1.43a)

η↓ =
1

2
(ω+ − ω− + ω↑ + ω↓), (1.43b)

η3 =
1

2
(ω+ + ω− + ω↑ + ω↓). (1.43c)

For the Hamiltonian in Eq. (1.42), the Schrödinger equation is ι∂tc = H ′c, where c =

(c↑, c↓, c3)
T, and under rotating-wave approximation [137], we obtain [6]

ιℏ
∂c↑
∂t

=
δ

2
c↑ +

1

2
ρ∗+ε

∗
+(r)c3, (1.44a)

ιℏ
∂c↓
∂t

= −δ
2
c↓ +

1

2
ρ∗−ε

∗
−(r)c3, (1.44b)

ιℏ
∂c3
∂t

= ρ+ε+(r)c↑ +
1

2
ρ−ε−(r)c↓ −∆c3, (1.44c)

where ρ+ = ⟨3|−d.ê+| ↑⟩ and ρ− = ⟨3|−d.ê−| ↓⟩ represent the matrix elements of the

electric dipole moment, δ = ℏ[(ω+ − ω−) − (ω↓ − ω↑)] is two-photon detuning, and ∆ =

ℏ(ω++ω−+ω↓+ω↑−ω3)/2 is single-photon detuning. As the excited state |3⟩ is far from
the resonance, we can adiabatically eliminate it by considering ∂c3/∂t ≈ 0 in Eq. (1.44a)

to obtain [6]

c3 ≈
ρ+ε+(r)

2∆
c↑ +

ρ−ε−(r)

2∆
c↓. (1.45)

Using Eq. (1.45), Eqs.(1.44a) and (1.44b) can be written as

iℏ
∂

∂t

(
c↑

c↓

)
=

(
χ+(r) + δ/2 Ω(r)

Ω∗(r) χ−(r)− δ/2

)(
c↑

c↓

)
, (1.46)

where

χ±(r) ≡
|ρ±ε±(r)|2

4∆
, Ω(r) ≡

ρ∗+ρ−ε
∗
+(r)ε−(r)

4∆
.

The diagonal terms χ±, which represent the ac-stark shift in Eq. (1.46), can be eliminated

by properly choosing a wavelength of Legurre-Gaussian beams in the experiment

[5,138,139]. The off-diagonal ac-stark shift term Ω(r) leads to a space-dependent coupling

between two hyperfine states | ↑⟩ and | ↓⟩, resulting in an SOAM coupling of atoms.

To make the connection with the experiment [5], we consider the pair of Raman beams

applied along the z−direction with the amplitudes

ε±(r) =
√
2I0e

−ιl±ϕ
( r
w

)|l±|
e

−r2

w2 eιkz, (1.47)
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where (r, ϕ, z) are the cylindrical coordinates, w is the width of the beam, and I0 is the

intensity of the beam. The phase winding of e−ιl±ϕ reflects the orbital angular momentum

of −l± carried by the beam. The single-particle Hamiltonian for the spin-1/2 system can

be described as [5]

Ĥ0 = − ℏ2

2M
∇2 + V (r) + VLG(r), (1.48)

where V (r) is the external trapping potential, and VLG denotes the interaction between

the Laguerre-Gaussian beam and the atoms, which can be represented as [129]

VLG =

(
χ(r) + δ/2 Ω(r)e−ιlϕ

Ω(r)eιlϕ χ(r)− δ/2

)
. (1.49)

The l = (l+ − l−) is the angular momentum transfer to the atom and Ω(r) =

ΩR

(
r
w

)|l+|+|l−|
e

−2r2

w2 is coupling strength, where ΩR = |ρ∗+ρ−|I0/2∆ is Rabi frequency.

For simplicity, we have χ(r) = χ+(r) = χ−(r). By introducing a unitary transformation

Û = exp(ιlϕσ̂z), the single-particle Hamiltonian is transformed to

Ĥ0 =

[
− ℏ2

2Mr

∂

∂r
r
∂

∂r
− ℏ2

2M

∂2

∂z2
+ V (r) + χ(r)

]
I+

(L̂z − lℏσ̂z)2

2Mr2
+Ω(r)σ̂x+

δ

2
σ̂z, (1.50)

where L̂z = −ιℏ∂/∂ϕ and σ̂x,z are Pauli matrices.

In spin-1 BEC, SOAM coupling has been realized by considering copropagating

Gaussian and Laguerre-Gaussian laser beams with an angular momentum transfer of

l = ℏ [135,136]. The single-particle Hamiltonian for an SOAM-coupled spin-1 BEC in

the cylindrical coordinate system can be written as [135]

Ĥ0 =

[
− ℏ2

2M

∂

r∂r

(
r
∂

∂r

)
+

L2
z

2Mr2
− ℏ2

2M

∂2

∂z2
+ V (r)

]
I

+ ℏΩ(r) cos(ϕ)Sx − ℏΩ(r) sin(ϕ)Sy + ℏδSz, (1.51)

where I is a 3×3 identity matrix, Ω(r) = ΩR
√
e(r/r0)e

−r2/2r20 , and r0 is the radius of

maximum-intensity (cylindrical) surface [135,136], respectively, δ is the Raman detuning,

and Sx, Sy, and Sz are spin-1 matrices.

Both SOAM and SO couplings can yield effective rotations or synthetic magnetic fields

which can result in the ground-state with vortices. The ground states obtained with SOAM

coupling usually have the cylindrical symmetry of the Hamiltonian and are characterized

by angular momentum quantum numbers [135]. With SOAM coupling, the spin-textures

of coreless vortices, skyrmions, monopoles, etc. exhibit cylindrical symmetry because the

unit vector F̂ completes a full rotation of 2π as ϕ varies from 0 to 2π, whereas with SO

coupling, F̂ projected on the x − y plane helically precesses along the x-direction and

hence, cannot result in cylindrical symmetry [135].

Among the theoretical studies on the SOAM-coupled pseudospin-1/2 BECs, a stripe,

an annular-stripe, a two-vortex molecule, and a vortex-antivortex molecule ground-state
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phases [130,140–142] and the effects of the ring-trapping potential on the annular-stripe

phase have been studied [129,143]. The ground-state phases of an SOAM-coupled spin-1/2

BEC has also been studied in a toroidal trap [143]. Furthermore, the angular stripe phase

in SOAM-coupled systems started gaining attention [140–144]. However, due to the narrow

range of parameters, this stripe phase has not yet been observed experimentally [142].

Along with the studies on equilibrium ground-state phase diagrams, spectroscopic

studies have been carried out on the SOAM-coupled pseudospin-1/2 BECs [133,141,144].

In particular, the low-lying excitation spectrum, including breathing and dipole modes,

have been studied for the half-skyrmion and vortex-antivortex phases [133,141]. The

ground-state phases and excitation spectrum have also been studied for a pseudospin-1/2

BEC with higher order SOAM couplings [130,144]. The different considerations of

angular-momentum transfer to the atoms by the pair of Laguerre-Gaussian beams yield

different single-particle Hamiltonians and, consequently, different phase diagrams. In this

context, considering a theoretical SOAM-coupled spin-1 model with an angular-momentum

transfer of 2ℏ rather than ℏ realized in the experiment [135,136], the ground-state phase

diagram and the dynamics ensuing on sudden quench of the quadratic Zeeman terms have

been studied [132].

1.5 Collective Excitations

Low-energy excitations of quantum gases, known as collective excitations, can provide

crucial insight into aspects such as ground-state phase stability, fluctuations, and

superfluidity [45,145]. However, this can be done by analyzing collective excitations, which

aid in mapping out the phase boundaries [45,145].

The experimental investigation of BECs started by subjecting the condensate to

extremely low temperatures, eliminating the thermal cloud associated with it. The

collective oscillations were induced through the modulation of the external trapping

potential [146–150], especially a small time-dependent perturbation to the trapping

potential was used to excite the shape oscillations of the condensate [146,147].

Innovative theoretical approaches have been formulated to describe the collective

modes of confined BECs to substantiate the progress in experimentation. Within the

mean-field model, a study was conducted on the linearised GP equation around the

ground state [151]. Remarkably, the experimentally measured frequencies [146,147,152]

demonstrated excellent agreement with theoretical predictions [151,153–156], representing

significant achievements in the field. Collective oscillations can be induced not only by

modulating the external trapping potential [146,147,157–161] but also by modulating

the s−wave scattering length [162–165] In the Thomas-Fermi limit, the frequencies

of collective excitations can be calculated analytically [153]. Due to the inherent

nonlinearity of the equation of motion, various interesting phenomena are observed

in the collective excitations of BECs, including frequency shifts [159,163,166,167],

mode coupling [159,166,167], damping [148,168], as well as the collapse and revival of



18 Chapter 1. Introduction

oscillations [159,169,170]. The collective excitations of a system can be calculated by using

the Bogoliubov-de-Gennes (BdG) equations. To introduce BdG equations, we consider

the SOAM-coupled pseudospin-1/2 BEC as discussed in Sec. 1.4. Under the mean-field

approximation, an interacting SOAM-coupled pseudospin-1/2 BEC can be described by

following two dimensionless CGPEs

i
∂ψ↑
∂t

=

(
− 1

2r

∂

∂r
r
∂

∂r
+
r2

2
+ χ(r) +

(L̂z − l)2

2r2

)
ψ↑ +Ω(r)ψ↓ + g |ψ↑|2 ψ↑ + g↑↓ |ψ↓|2 ψ↑,

(1.52a)

i
∂ψ↓
∂t

=

(
− 1

2r

∂

∂r
r
∂

∂r
+
r2

2
+ χ(r) +

(L̂z + l)2

2r2

)
ψ↓ +

1

2
Ω(r)ψ↑ + g |ψ↓|2 ψ↓ + g↑↓ |ψ↑|2 ψ↓.

(1.52b)

where g = g↑↑ = g↓↓ and g↑↓ are intraspecies and interspecies interaction strengths,

respectively, and ψ↑ (ψ↓) is the component wavefunction corresponding to ↑ (↓) spin.

Under the Bogoliubov approach, we consider the fluctuations in the ground state by writing

the perturbed order parameter as

ψj(r, t) =
[
Rj(r) + uj(r)e

ι(lqϕ−ωt) + v∗j (r)e
ι(lqϕ+ωt)

]
eι(lzϕ−µt), (1.53)

where j =↑, ↓, µ is the chemical potential, u and v are the Bogoliubov quasi-particle

amplitudes, ω is collective excitation frequency, lz = ⟨L̂z⟩ is the magnetic quantum number

of the ground state, and lq = 0,±1,±2, · · · , is the magnetic quantum number of the

excitation. Linearization Eqs. (1.52a) and (1.52b) and the conjugate set of equations

using perturbed order parameter (1.53) yields the following four coupled BdG equations

ωu↑ =

[
− 1

2r

∂

∂r
r
∂

∂r
+
r2

2
+ χ(r) +

(lq + lz − l)2

2r2
+ 2g(R↑)

2 + g↑↓(R↓)
2 − µ

]
u↑ (1.54a)

+
r2

2
Ω(r)u↓ + g (R↑)

2 v↑ + g↑↓R↑R↓u↓ + g↑↓R↑R↓v↓,

−ωv↑ =
[
− 1

2r

∂

∂r
r
∂

∂r
+
r2

2
+ χ(r) +

(lq + lz − l)2

2r2
+ 2g(R↑)

2 + g↑↓(R↓)
2 − µ

]
v↑ (1.54b)

+
r2

2
Ω(r)v↓ + g(R↑)

2u↑ + g↑↓R↑R↓v↓ + g↑↓R↑R↓u↓,

ωu↓ =

[
− 1

2r

∂

∂r
r
∂

∂r
+
r2

2
+ χ(r) +

(lq + lz + l)2

2r2
+ g↑↓(R↑)

2 + 2g(R↓)
2 − µ

]
u↓ (1.54c)

+
r2

2
Ω(r)u↑ + g(R↓)

2v↓ + g↑↓R↑R↓v↑ + g↑↓R↑R↓u↑,

−ωv↓ =
[
− 1

2r

∂

∂r
r
∂

∂r
+
r2

2
+ χ(r) +

(lq + lz + l)2

2r2
+ g↑↓(R↑)

2 + 2g(R↓)
2 − µ

]
v↓ (1.54d)

+
r2

2
Ω(r)v↑ + g↑↓R↑R↓u↑ + g↑↓R↓R↑v↑ + g(R↓)

2u↓.

This coupled set of BdG equations can be solved by employing the finite-difference method

to discretize the equations over the spatial radial grid [171] or by using the basis expansion
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method where the BdG amplitudes are written as linear superpositions in terms of a

complete set of suitably chosen orthonormal basis states [172].

1.6 Aims and Objectives

The realization of SO-coupling paved the way to explore the interplay of an artificial

non-Abelian gauge field resulting in SO-coupling and rotation, which itself is equivalent

to an Abelian gauge potential. In the literature on rotating SO-coupled spin-1 and spin-2

BECs, the rotation frequencies considered mostly have been within the range of small to

moderate values. This thesis aims to investigate the combined effect of interactions and SO

couplings, particularly at high rotation frequencies for spin-1 BECs with ferromagnetic or

antiferromagnetic interactions and then broaden the investigation to a rotating SO-coupled

spin-2 system with antiferromagnetic, cyclic, or ferromagnetic interactions. Specifically,

we wish to investigate the various effective potentials an atom in these SO-coupled spinor

BECs may experience under the combined effect of SO coupling and rotation.

As discussed in Sec. 1.4, the experimental realization of SOAM coupling represents

a significant milestone in spinor BECs. For an SOAM-coupled spin-1 BEC with an

angular-momentum transfer of l = 2ℏ [132], the ground-state phase diagram and the

dynamics ensuing on sudden quench of quadratic Zeeman terms have been studied as

mentioned in Sec. 1.4. In this context, considering the experimentally realized SOAM

coupling with l = ℏ [135,136], the detailed phase diagrams and excitation spectrums

of SOAM-coupled spin-1 BECs with polar and ferromagnetic spin-exchange interactions

have not been yet theoretically studied. More importantly, collective excitations of

the SOAM-coupled spin-1 BEC have not been studied, irrespective of the theoretical

models employed. We aim to bridge the research gap by investigating the low-lying

excitation spectrum of ground-state phases, specifically focusing on the coreless and

polar-core vortex states of SOAM-coupled spin-1 condensates. We also aim to explore the

annular-stripe phase and its excitation spectrum, which can appear as the ground-state

phase in an SOAM-coupling model with a larger angular momentum transfer (say 4ℏ) to
the condensate atoms. We study the ground-state phases for the model with a larger value

of l = 4ℏ and their excitation spectrum using the Bogoliubov approach.

The main objectives of the thesis are listed below:

• To study the effective potentials experienced by a boson in rotating SO-coupled

spinor condensates.

• To study the vortex-lattice formation in SO-coupled spin-1 and spin-2 BECs under

rotation.

• To study the quantum phases and spectrum of collective modes in a spin-1 BEC

with SOAM coupling.

• To study the collective excitation spectrum of an annular-stripe phase of an

SOAM-coupled spin-1 BEC.
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To achieve these goals of the thesis, we have to numerically solve the mean-field model

for an SO-coupled spin-f BEC, a set of 2f +1 coupled time-dependent partial differential

equations with first-order time-derivative and first- and second-order spatial-derivative

terms. These coupled equations cannot be solved analytically without relying on

approximations, and hence one needs to solve the equations numerically. Various numerical

techniques have been employed in the literature to investigate spinor BECs [173–175]. This

necessitates the exploration of numerical techniques to study the ground states and/or

the dynamics of homogeneous or trapped spin-f BECs with SO coupling using (a) Fourier

pseudospectral method and (b) Time-splitting (implicit or semi-implicit) finite-difference

methods (in the first chapter of this thesis). The Fourier pseudospectral method is ideally

suited for systems with periodic boundary conditions, whereas the finite difference methods

offer more flexibility to implement alternative boundary conditions.

1.7 Outline of the thesis

In the first part ofChapter 2, we discuss the time-splitting Fourier pseudospectral method

to numerically solve the CGPEs (for SO-coupled spin-1 or spin-2 BECs) which can be

employed to study the ground state solutions and/or the dynamics of homogeneous or

trapped condensates. As the Fourier pseudospectral method implements the periodic

boundary conditions, we discuss a couple of time-splitting finite-difference methods to

study the SO-coupled spinor BECs in the second part of this chapter.

In Chapter 3, we investigate the combined effects of rotation and SO couplings in

spin-1 and spin-2 BECs systematically using the non-interacting model. By using the

single-particle Hamiltonian, which is exactly solvable for one-dimensional coupling, we

illustrate that a boson in these rotating SO- and coherently-coupled condensates are

subjected to various effective potentials under specific coupling and rotation strengths.

In the presence of mean-field interactions, using the CGPEs at moderate to high rotation

frequencies, we investigate a variety of vortex-lattice structures emerging as ground-state

solutions as a result of the interplay between rotation frequency, SO couplings, and

interatomic interactions. Furthermore, we gain insights into the behavior of both

antiferromagnetic and ferromagnetic interacting spin-1 BECs by examining the spin

expectation per particle at moderate to high rotation frequencies. Similarly, we investigate

antiferromagnetic, cyclic, and ferromagnetic phases under rotation for spin-2 BEC.

In Chapter 4, we investigate the low-lying excitation spectrum of the ground-state

phases of SOAM-coupled spin-1 condensates. Here, we observe that at vanishing detuning,

a ferromagnetic SOAM-coupled spin-1 BEC can have two ground-state phases, namely,

coreless and polar-core vortex states, whereas an antiferromagnetic BEC supports only

polar-core vortex solutions. The phase boundary between the coreless and polar-core

vortex phases is demarcated by changes in angular momentum per particle, longitudinal

magnetization, and excitation frequencies. The low-lying excitation spectrum is evaluated

by solving the BdG equations. The spectrum is further confirmed by the dynamical
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evolution of the ground state subjected to a perturbation suitable to excite a density or

a spin mode and a variational analysis for the density-breathing mode. Additionally, we

discuss the effect of detuning in the excitation spectrum.

In Chapter 5, we introduce the SOAM-coupled spin-1 system with a larger angular

momentum transfer (l = 4ℏ) to the atoms. We explore the ground state phases of this

model with antiferromagnetic interaction and incorporate detuning to obtain an annular

stripe solution. We calculate and analyze the collective excitation spectrum of these

solutions, with a particular emphasis on the annular stripe phase. To further understand

the nature of low-lying collective excitations, we utilize the time evolution of relevant

observables after suitably perturbing the Hamiltonian and validate our calculations of the

excitation spectrum using the BdG equations.

Finally, inChapter 6, we summarize the main results of the thesis and discuss possible

future research directions.

The thesis has three appendices. In Appendix A, we discuss time-splitting finite

difference methods to solve the CGPEs for an SO-coupled spin-1 BEC. In Appendix B, we

outline the details of the finite difference scheme [171] to solve the (circularly-symmetric)

BdG equations for an SOAM-coupled spin-1 BEC. Lastly, in Appendix C, we provide

the essential details to numerically solve the two-dimensional BdG equations in Cartesian

coordinates using the basis expansion method [172].
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Chapter 2

Numerical Methods

In the absence of thermal and quantum fluctuations at T = 0 K, the mean-field

approximation allows one to describe an SO-coupled spin-f BEC by a set of 2f + 1

coupled nonlinear Schrödinger equations [1,51,55–57]. In general, this coupled set of

equations, termed as the mean-field model, is not analytically solvable without resorting to

approximations. In this context, in the absence of SO coupling, a wide range of numerical

techniques have been employed in the literature to study spinor BECs [175–179]. In the

following thesis chapters, we need to solve the coupled Gross-Pitaevskii equations (CGPEs)

for SO-coupled spin-f BECs. This necessitates exploring numerical techniques to study

the ground states and/or the dynamics of homogeneous or trapped spin-f BECs with SO

coupling.

In this chapter, first, we discuss the time-splitting Fourier pseudospectral (TSFP)

method, in which we first split the CGPEs into four sub-sets of equations, where each set

consists of 2f + 1 equations, using Lie operator splitting [180]. The method then involves

solving the aforementioned four sets of equations one after the other over the same time

interval, with a solution to each set serving as the input to the following set of equations.

As the Fourier pseudospectral method implements the periodic boundary conditions, we

discuss a couple of time-splitting finite-difference methods to study the SO-coupled spinor

BECs, which offer more flexibility to implement the alternative boundary conditions.

The chapter is organized as follows. In Sec. 2.1, we present a generalized mean-field

model matrix equation for an SO-coupled spin-f BEC. Sec. 2.2 provides a detailed

discussion of Fourier pseudospectral method employed to solve the CGPEs for spin-2

BECs in three-dimensional (3D), quasi-two-dimensional (q2D), and quasi-one-dimensional

(q1D) settings. Moreover, this section discusses the important conserved quantities of

a spin-2 BEC in the presence and absence of SO coupling. In Sec. 2.3, we employ

a time-splitting Backward–Euler (TSBE) or a time-splitting Crank–Nicolson (TSCN)

finite-difference methods to solve the split equations corresponding to the kinetic energy

and SO coupling operators for a pseudospin-1/2, spin-1, and spin-2 BECs. Furthermore,

Sec. 2.4 presents a few sample results for comparing finite-difference methods with the

Fourier pseudospectral method.

23
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2.1 Mean-field model for a spin-f BEC

A generic spin−f condensate with Rashba SO coupling at T = 0 K can be modelled with

a matrix equation of the form [1,48]

ι
∂Ψ

∂t
= (HSP +HSE +HSOC +HKE)Ψ, (2.1)

where Ψ is a 2f + 1 component order parameter. In this chapter, we consider f = 1/2, 1,

and 2 corresponding, respectively, to pseudospin-1/2, spin-1, and spin-2 condensates. In

Eq. (2.1), HKE is a diagonal matrix consisting of kinetic energy operators, HSOC is matrix

operator corresponding to SO coupling, HSE consists of off-diagonal interaction terms, and

HSP is a diagonal matrix consisting of trapping potential plus diagonal interaction terms.

Eq. (2.1) is split into four equations by using the standard Lie splitting [180]. Solution to

Eq. (2.1) after time step δt is given as

Ψ(t+ δt) = ÛΨ(t), (2.2)

which describes the evolution of the wave function by a unitary propagator Û given as

Û = exp [−ιδt(HSP +HSE +HSOC +HKE)] . (2.3)

The split-operator technique approximates the propagator as

Û ≈ exp (−ιδtHSP) exp (−ιδtHSE) exp (−ιδtHSOC) exp (−ιδtHKE) . (2.4)

Using (2.4), Eq. (2.2) is equivalent to solving following equations successively

ι
∂Ψ

∂t
= HKEΨ, (2.5a)

ι
∂Ψ

∂t
= HSOCΨ, (2.5b)

ι
∂Ψ

∂t
= HSEΨ, (2.5c)

ι
∂Ψ

∂t
= HSPΨ, (2.5d)

over the same period of [t, t+ δ].

2.2 Fourier pseudospectral method

We discuss the Fourier pseudospectral method for an SO-coupled spin-2 BEC, which

can be described by five CGPEs, and for a spin-1 BEC the method has been discussed

in Ref. [181]. In our discussion, we transform the CGPEs into dimensionless form,

where physical quantities such as length, time, energy, etc., are expressed in terms of

natural scales within the system. This dimensionless representation aids in eliminating
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cumbersome constants inherent in the CGPEs, enhancing both the aesthetic simplicity

and computational efficiency of the numerical solver through less intensive floating-point

operations [182].

2.2.1 CGPEs for an SO-coupled spin-2 BEC: Mean-field model

The quantum and thermal fluctuations in an SO-coupled spin-2 BEC at T = 0 K can

be neglected, and the system is very well described by the following set of CGPEs in

dimensionless form [1,68]

ι
∂ψ±2(x, t)

∂t
= Hψ±2(x, t) + c0ρ(x, t)ψ±2(x, t) + c1[F∓(x, t)ψ±1(x, t)

±2Fz(x, t)ψ±2(x, t)] + c2
Θ(x, t)ψ∗

∓2(x, t)√
5

+ Γ±2(x, t), (2.6a)

ι
∂ψ±1(x, t)

∂t
= Hψ±1(x, t) + c0ρ(x, t)ψ±1(x, t) + c1

[√
3

2
F∓(x, t)ψ0(x, t)

+F±(x, t)ψ±2(x, t)± Fz(x, t)ψ±1(x, t)

]
− c2

Θ(x, t)ψ∗
∓1(x, t)√
5

+Γ±1(x, t), (2.6b)

ι
∂ψ0(x, t)

∂t
= Hψ0(x, t) + c0ρ(x, t)ψ0(x, t) + c1

√
3

2
[F−(x, t)ψ−1(x, t)

+F+(x, t)ψ1(x, t)] + c2
Θ(x, t)ψ∗

0(x, t)√
5

+ Γ0(x, t), (2.6c)

where suppressing the explicit dependence of component wavefunction ψj on x and t,

H = −∇2

2
+ V (x), Θ =

2ψ2ψ−2 − 2ψ1ψ−1 + ψ2
0√

5
, Fz =

2∑
j=−2

j|ψj |2, (2.7a)

F− = F ∗
+ = 2ψ∗

−2ψ−1 +
√
6ψ∗

−1ψ0 +
√
6ψ∗

0ψ1 + 2ψ2ψ
∗
1, (2.7b)

and ρ =
∑2

j=−2 |ψj |2 is the total density. In 3D setting, x, Laplacian, trapping potential

V (x), interaction parameters (c0, c1, c2), and SO-coupling terms Γ are defined as

x ≡ (x, y, z), ∇2 =

(
∂

∂x2
+

∂

∂y2
+

∂

∂z2

)
, V (x) =

α2
xx

2 + α2
yy

2 + α2
zz

2

2
, (2.8a)

c0 =
4πN(4a2 + 3a4)

7aosc
, c1 =

4πN(a4 − a2)

7aosc
, c2 =

4πN(7a0 − 10a2 + 3a4)

7aosc
,(2.8b)

Γ±2 = −ι
(
γx
∂ψ±1

∂x
∓ ιγy

∂ψ±1

∂y
± 2γz

∂ψ±2

∂z

)
, (2.8c)

Γ±1 = −ι

(
γx
∂ψ±2

∂x
+

√
3

2
γx
∂ψ0

∂x
± ιγy

∂ψ±2

∂y
∓ ι

√
3

2
γy
∂ψ0

∂y
± γz

∂ψ±1

∂z

)
, (2.8d)

Γ0 = −ι

(√
3

2
γx
∂ψ1

∂x
+

√
3

2
γx
∂ψ−1

∂x
+ ι

√
3

2
γy
∂ψ1

∂y
− ι

√
3

2
γy
∂ψ−1

∂y

)
, (2.8e)
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where αν and γν with ν = x, y, z are the anisotropy parameters of trapping potential and

SO coupling, respectively; N is the total number of atoms; aosc (oscillator length) is chosen

as a unit of length; and a0, a2, a4 are the s-wave scattering lengths in total spin 0, 2 and

4 channels, respectively.

When a spin-2 BEC is strongly confined along one direction, say z, as compared

to other two, i.e. ωz ≫ ωx ≈ ωy, then one can approximate Eqs. (2.6a)-(2.6c) by

two-dimensional equations which can obtained by substituting [183]

x ≡ (x, y), ∇2 =

(
∂

∂x2
+

∂

∂y2

)
, V (x) =

α2
xx

2 + α2
yy

2

2
, (2.9a)

c0 =

√
αz

2π

4πN(4a2 + 3a4)

7aosc
, c1 =

√
αz

2π

4πN(a4 − a2)

7aosc
, (2.9b)

c2 =

√
αz

2π

4πN(7a0 − 10a2 + 3a4)

7aosc
, Γ±2 = −ι

(
γx
∂ψ±1

∂x
∓ ιγy

∂ψ±1

∂y

)
, (2.9c)

Γ±1 = −ι

(
γx
∂ψ±2

∂x
+

√
3

2
γx
∂ψ0

∂x
± ιγy

∂ψ±2

∂y
∓ ι

√
3

2
γy
∂ψ0

∂y

)
, (2.9d)

Γ0 = −ι

(√
3

2
γx
∂ψ1

∂x
+

√
3

2
γx
∂ψ−1

∂x
+ ι

√
3

2
γy
∂ψ1

∂y
− ι

√
3

2
γy
∂ψ−1

∂y

)
. (2.9e)

Similarly, if the BEC is strongly confined along two directions, say y and z, as compared

to third one, i.e. ωy = ωz ≫ ωx, then one can approximate Eqs. (2.6a)-(2.6c) by

one-dimensional equations which can be obtained by substituting [183]

x ≡ x, ∇2 =
∂

∂x2
, V (x) =

α2
xx

2

2
, (2.10a)

c0 =
√
αyαz

2N(4a2 + 3a4)

7aosc
, c1 =

√
αyαz

2N(a4 − a2)

7aosc
, (2.10b)

c2 =
√
αyαz

2N(7a0 − 10a2 + 3a4)

7aosc
, Γ±2 = −ιγx

∂ψ±1

∂x
, (2.10c)

Γ±1 = −ι

(
γx
∂ψ±2

∂x
+

√
3

2
γx
∂ψ0

∂x

)
, (2.10d)

Γ0 = −ι

(√
3

2
γx
∂ψ1

∂x
+

√
3

2
γx
∂ψ−1

∂x

)
. (2.10e)

The energy of an SO-coupled spin-2 BEC is given as

E =

∫
dx


+2∑

j=−2

ψ∗
j

(
−1

2
∇2 + V

)
ψj

+
c0
2
ρ2 +

c1
2
|F|2 + c2

2
|Θ|2 +

+2∑
j=−2

ψ∗
jΓj

 , (2.11)
where |F|2 = F+F− +F 2

z . The energy, along with the norm N =
∫
ρdx are two conserved

quantities of an SO-coupled spin-2 BEC. The dimensionless formulation of the mean-field

model, i.e. Eqs. (2.6a)-(2.6c), ensures that N is set to unity. In the absence of SO

coupling, one more quantity longitudinal magnetization fz =
∫
Fzdx is also conserved. The

time-independent variant of Eqs. (2.6a)-(2.6c) can be obtained by substituting ψj(x, t) =
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ψj(x)e
−iµjt, where µj are the chemical potentials of the individual components.

2.2.2 Fourier pseudospectral methods for a spin-2 BEC

The CGPEs (2.6a)-(2.6c) can be written in matrix form and four operators in Eq. ( 2.1)

are defined as

HSOC = −iγx∂xSx − iγy∂ySy, HSE =



0 H12 H13 0 0

H∗
12 0 H23 0 0

H∗
13 H∗

23 0 H34 H35

0 0 H∗
34 0 H45

0 0 H∗
35 H∗

45 0


, (2.12a)

HSP = diag (H+2, H+1, H0, H−1, H−2) , (2.12b)

HKE = diag

(
− ∇2

2
− 2ιγz∂z,−

∇2

2
− ιγz∂z,−

∇2

2
,−∇2

2
+ ιγz∂z,

−∇2

2
+ 2ιγz∂z

)
, (2.12c)

where Sx and Sy are irreducible representations of spin-2 matrices, H±2 = V + c0ρ ±
2c1Fz+(2/5)c2|ψ∓2|2, H0 = V +c0ρ+(1/5)c2|ψ0|2, H±1 = V +c0ρ±c1Fz+(2/5)c2|ψ∓1|2,
H12 = c1F− − (2/5)c2ψ−1ψ

∗
−2, H13 = (1/5)c2ψ0ψ

∗
−2, H23 = (

√
6/2)c1F− − (1/5)c2ψ0ψ

∗
−1,

H34 = (
√
6/2)c1F− − (1/5)c2ψ1ψ

∗
0, H35 = (1/5)c2ψ2ψ

∗
0, and H45 = c1F− − (2/5)c2ψ2ψ

∗
1.

To solve the equations Eqs. (2.5a)-(2.5d) employing the Fourier pseudospectral method,

split equations involving kinetic energy and SO-coupling operators are dealt with in the

Fourier space. The Eq. (2.5a) can be expressed as the following set of decoupled equations

ι
∂ψj(x, y, z, t)

∂t
=− ∂2ψj(x, y, z, t)

2∂x2
− ∂2ψj(x, y, z, t)

2∂y2
− ∂2ψj(x, y, z, t)

2∂z2

+ jιkz
∂ψj(x, y, z, t)

∂z
, (2.13)

where j = +2,+1, 0,−1,−2. Solution of Eq. (2.13) in Fourier space is given as

ψ̂±2(kx, ky, kz, t+ δt) = ψ̂±2(kx, ky, kz, t) exp[−ι(k2x + k2y + k2z ± 2γzkz)δt],(2.14a)

ψ̂±1(kx, ky, kz, t+ δt) = ψ̂±1(kx, ky, kz, t) exp[−ι(k2x + k2y + k2z ± γzkz)δt], (2.14b)

ψ̂0(kx, ky, kz, t+ δt) = ψ̂0(kx, ky, kz, t) exp[−ι(k2x + k2y + k2z)δt], (2.14c)

where ψ̂j is the Fourier transform of ψj and kx, ky, kz are the corresponding Fourier

frequencies. Now ψ̂j(kx, ky, kz, t + δt), the transient wave function in Fourier space is

the initial value of the wave function for the Fourier transform of Eq. (2.5b), which in the

Fourier space is given as

ι
∂Ψ̂(kx, ky, kz, t)

∂t
= ĤSOCΨ̂(kx, ky, kz, t), (2.15)
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where

ĤSOC =



0 γxkx − ιγyky 0 0 0

γxkx + ιγyky 0
√

3
2(γxkx − ιγyky) 0 0

0
√

3
2(γxkx + ιγyky) 0

√
3
2(γxkx − ιγyky) 0

0 0
√

3
2(γxkx + ιγyky) 0 γxkx − ιγyky

0 0 0 γxkx + ιγyky 0


,

(2.16)

and the formal solution of Eq. (2.15) is

Ψ̂(kx, ky, kz, t+ δt) = exp(−ιδtĤSOC)Ψ̂(kx, ky, kz, t),

= exp(−ιδtP̂ D̂P̂−1)Ψ̂(kx, ky, kz, t),

= P̂ exp(−ιδtD̂)P̂−1Ψ̂(kx, ky, kz, t), (2.17)

where P̂ is 5×5 matrix defined as P̂ = (A1, A2, A3, A4, A5) and D̂ is a diagonal matrix.

The Aj with j = 1, 2, 3, 4, 5 are normalised eigenvectors defined as

A1 =

{
1

4
e−2ιβ,−1

2
e−ιβ,

√
3

2
√
2
,−e

ιβ

2
,
1

4
e2ιβ

}T

, (2.18a)

A2 =

{
−1

2
e−2ιβ,

e−ιβ

2
, 0,−e

ιβ

2
,
1

2
e2ιβ

}T

, (2.18b)

A3 =

{
1

2

√
3

2
e−2ιβ, 0,−1

2
, 0,

1

2

√
3

2
e2ιβ

}T

, (2.18c)

A4 =

{
−1

2
e−2ιβ,−1

2
e−ιβ, 0,

eιβ

2
,
1

2
e2ιβ

}T

, (2.18d)

A5 =

{
1

4
e−2ιβ,

e−ιβ

2
,

√
3

2
√
2
,
eιβ

2
,
1

4
e2ιβ

}T

, (2.18e)

and D̂ = diag (−2α, − α, 0, α, 2α) where

α =
√
(γxkx)2 + (γyky)2 and β = tan−1

(
γyky
γxkx

)
. (2.19)

For a q1D condensate, α and β reduce to γxkx and 0, respectively. The solution of split

equation for HSE is approached similarly with one difference that HSE is time-dependent.

Taking this into account, solution to equation for HSE is [177]

Ψ(x, t+ δt) = exp

(
−ι
∫ t+δt

t
HSE(x, t)dt

)
Ψ(x, t),

≈ exp

−ιδt
{
HSE(x, t) +HfE

SE (x, t+ δt)
}

2

Ψ(x, t),
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= exp(−ιδtBQB−1)Ψ(x, t),

= B exp(−ιδtQ)B−1Ψ(x, t), (2.20)

where HfE
SE (x, t+δt) is estimated by the forward Euler (fE) method, and Q is the diagonal

matrix. The diagonalization of HSE(x, t) +HfE
SE (x, t+ δt) is performed numerically using

the external subroutine ZHEEV of LAPACK software package [184]. In the case of the

Intel compiler, LAPACK libraries are included in the Intel Math Kernel Library (MKL)

and can be linked from there also. HSP being diagonal, the solution to Eq. (2.5d) can be

calculated analytically as

Ψ(x, y, z, t+ δt) = exp (−ιδtHSP)Ψ(x, y, z, t). (2.21)

This final wave function is the solution of Eq. (2.2) after time δt for this system. For a

q2D and q1D condensates, the four operators are defined similarly.

2.2.3 Conservation/Non-conservation of Magnetization

In the absence of spin-orbit coupling, Γ±2(x, t) = Γ±1(x, t) = Γ0(x, t) = 0,

dfz
dt

=

∫ (
2|ψ+2(x, t)|2 + |ψ+1(x, t)|2 − |ψ−1(x, t)|2 − 2|ψ−2(x, t)|2

)
dx,

=

∫ (
2
∂ψ+2

∂t
ψ∗
+2 + 2ψ+2

∂ψ∗
+2

∂t
+
∂ψ+1

∂t
ψ∗
+1 + ψ+1

∂ψ∗
+1

∂t
− ∂ψ−1

∂t
ψ∗
−1

−ψ−1
∂ψ∗

−1

∂t
− 2

∂ψ−2

∂t
ψ∗
−2 − 2ψ−2

∂ψ∗
−2

∂t

)
dx. (2.22)

Using Eqs. (2.6a)-(2.6c) in Eq. (2.22), we obtain

dfz
dt

= −ιc1
∫ (

F−ψ+1ψ
∗
+2 − F+ψ

∗
+1ψ+2 − F+ψ−1ψ

∗
−2 + F−ψ

∗
−1ψ−2 +

√
3

2
F−ψ0ψ

∗
+1

−
√

3

2
F+ψ

∗
0ψ+1 −

√
3

2
F+ψ0ψ

∗
−1 +

√
3

2
F−ψ

∗
0ψ−1

)
dx,

= −ιc1
∫ [

F−

(
ψ+1ψ

∗
+2 + ψ∗

−1ψ−2 +

√
3

2
ψ∗
0ψ−1 +

√
3

2
ψ0ψ

∗
+1

)

−F+

(
ψ∗
+1ψ+2 + ψ−1ψ

∗
−2 +

√
3

2
ψ∗
0ψ+1 +

√
3

2
ψ0ψ

∗
−1

)]
dx,

= −ιc1
∫ (

F−
F+

2
− F+

F−
2

)
dx

= 0. (2.23)

In the presence of SO coupling, combining Eqs. (2.6a)-(2.6c) with Eq. (2.22) leads to

dfz
dt

= −ι
∫ (

2ψ∗
+2Γ+2 + 2ψ+2Γ

∗
+2 + ψ∗

+1Γ+1 + ψ+1Γ
∗
+1 − 2ψ∗

−2Γ−2 + 2ψ−2Γ
∗
−2

+ψ∗
−1Γ−1 + ψ−1Γ

∗
−1

)
dx,
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̸= 0, (2.24)

in general. Therefore, fz is conserved in the absence of SO coupling but not so generally

in the presence of SO coupling.

Simultaneous conservation of Norm and Magnetization

We use the imaginary time propagation method, where t is replaced by −ιτ in CGPEs

(2.6a)-(2.6c), to determine the stationary states of the system. As the imaginary time

propagation is used to calculate the system’s ground state under the constraint of fixed

norm and magnetization, it conserves neither of the two; one needs to renormalize the

component wavefunctions after each time iteration. This means after each imaginary-time

step δτ , the component wavefunctions are rescaled as ψj(x, τ + δt) = σjψj(x, τ), where

σj are renormalization factors. These renormalization factors σj satisfy the following

relationships among them [185]

σ1σ−1 = σ20, (2.25a)

σ2σ−2 = σ20, (2.25b)

σ2σ
2
−1 = σ30, (2.25c)

and

u4N2 + u3vN1 + u2v2N0 + uv3N−1 + v4N−2 = Nu2v, (2.26a)

2u4N2 + u3vN1 − uv3N−1 − 2v4N−2 = fzu
2v, (2.26b)

with norm and magnetization, where u = σ21 and v = σ20 and Nj =
∫
|ψj(x, τ)|2dx are the

component norms at (imaginary) time τ . In this thesis, we solve Eqs. (2.26a) and (2.26b)

using Newton-Raphson method after each iteration in imaginary time. The σ1 and σ0

so obtained can be substituted back in Eqs. (2.25a)-(2.25c) to determine the remaining

renormalization factors σ. The simultaneous fixing of norm and magnetization is only

implemented in the absence of SO coupling.

2.3 Time-splitting finite-difference methods

To enhance the mean-field model’s generality for a spin-f spinor BEC, we incorporate the

coherent coupling strength absent in the discussion of the Fourier pseudospectral method.

Hence, the set of Eqs. (2.5a)-(2.5d) can be redefined as

ι
∂Ψ

∂t
= HpΨ = (HKE +HSOC)Ψ, (2.27a)

ι
∂Ψ

∂t
= HSE+Ψ = (HSE +Hcoh)Ψ, (2.27b)

ι
∂Ψ

∂t
= HSPΨ. (2.27c)
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The Hp in Eq. (2.27a) and Hcoh in Eq. (2.27b) are 2f + 1 × 2f + 1 matrix operators

defined as

Hp = 1
p̂2x + p̂2y + p̂2z

2
+ γ(Sxp̂y − Syp̂x), (2.28)

Hcoh =
Ωcoh

2
Sx, (2.29)

where 1 represents a 2f + 1× 2f + 1 identity matrix, γ and Ωcoh are the strengths of SO

and coherent couplings, respectively, p̂ν = −ι∂/∂ν with ν = x, y, z, and and Sx and Sy

are spin matrices in Eqs. (1.9a)-(1.9c). As the Hcoh = ΩcohSx/2 also includes off-diagonal

terms, we merge it into the HSE matrix in Eq. (2.27b).

The matrixHSE andHSP in Eqs. (2.27b) and (2.27c), respectively, for a pseudospin-1/2

condensate are [48]

HSP =

(
V +

∑2
l=1 g1l|ψl|2 0

0 V +
∑2

l=1 g2l|ψl|2

)
, HSE = 0, (2.30)

where

V =
1

2

∑
ν

α2
νν

2, gll =
4πNall
aosc

, gl,3−l =
4πNal,3−l

aosc
,

where gll and gl,3−l with l = 1, 2 are intra- and inter-species interaction strengths,

respectively. The intra-species interaction strengths g11 and g22 are proportional,

respectively, to intra-species s-wave scattering lengths a11 and a22, and the total number

of condensate atoms. Similarly, the inter-species interaction strength g12 is proportional

to inter-species s-wave scattering length a12 and the total number of condensate atoms.

The equality a12 = a21 implies that g12 = g21.

The order parameter for three spin systems is normalized to unity as∫ ∑
l

|ψl(x, t)|2dx =
∑
l

Nl = N = 1. (2.31)

The order parameter’s norm, along with the energy of these SO-coupled spinor condensate,

which is defined as

E =

∫ ∑
l,m

ψ∗
l (Hp +HSP +HSE+)lm ψm

 dx, (2.32)

where l,m run over species’ labels, are the two conserved quantities for an SO-coupled

condensate.

2.3.1 TSBE and TSCN methods for spin-1/2 BEC

We describe the (semi)-implicit finite-difference schemes to numerically solve the CGPEs

for SO-coupled spinor condensates. We use TSBE and TSCN methods to solve the coupled

sets of non-linear partial differential equations describing SO-coupled pseudospin-1/2
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BECs. The implementation is explained in detail for an SO-coupled pseudospin-1/2

condensate and then extended to higher spin condensates in Appendix A. The results

obtained with these finite difference schemes are compared with results from the Fourier

pseudospectral method.

2.3.2 Quasi-one-dimensional SO-coupled pseudospin-1/2 BEC

We consider a two-component pseudospin-1/2 BEC confined by a harmonic trapping

potential with Rashba SO and coherent couplings. We first elaborate the method for

solving one-dimensional CGPEs, which describe an SO-coupled pseudospin-1/2 BEC

trapped by a q1D trapping potential. In such a trap, the y and z coordinates can be

integrated out and after a rotation by π/2 about z-axis in spin-space, which changes Sy

to −Sx, the resultant matrix operator Hp is

Hp = 1
p̂2x
2

− γSyp̂x ≡ 1
p̂2x
2

+ γSxp̂x, (2.33)

where 1 is a 2 × 2 identity matrix. The form of Hcoh, HSP, and HSE remain same as in

Eqs. (2.29) and (2.30) with

x = x, V =
1

2
α2
xx

2, gll =
2Nall

√
αyαz

aosc
, gl,3−l =

2Nal,3−l
√
αyαz

aosc
,

where the terms have the same meanings as described in the previous section, and x = x

is in the units of aosc. The order parameter for this system is Ψ(x, t) = [ψ1(x, t), ψ2(x, t)]
T

with T denoting the transpose. Using Eq. (2.33), the matrix Eq. (2.27a) in terms of

coupled component equations are

ι
∂ψl(x, t)

∂t
= −1

2

∂2ψl(x, t)

∂x2
− ιγ

∂ψ3−l(x, t)

∂x
, (2.34a)

where l = 1, 2 is species’ label. The spatial domain x ∈ [−Lx/2, Lx/2) is discretized via Nx

uniformly spaced points with a spacing of ∆x. The resulting one-dimensional space grid

is xi = −Lx/2 + (i− 1)∆x where i = 1, 2, . . . , Nx. Using ∆t as the time-step to discretize

time, the discrete analogue of ψl(x, t) is ϕ
n
(i,l) which represents the value of lth component

of the order parameter at a spatial coordinate xi at time n∆t. The discretization scheme

employs either (a) the periodic boundary condition

ϕn(1,l) = ϕn(Nx+1,l), ϕn(0,l) = ϕn(Nx,l)
, (2.35)

or (b) homogeneous Dirichlet boundary condition

ϕn(0,l) = ϕn(Nx+1,l) = 0. (2.36)

In this chapter, from this point forward, indices l andm are exclusively used for species’

labels, indices i, j, and k are used to denote only space-grid points, n is the index used
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for time, and ν = x, y, z. With periodic boundary condition (2.35), the discrete analogue

of Eq. (2.34a) using Forward-Euler or Backward-Euler or Crank-Nicolson discretization

schemes [186] is

ϕn+1
(i,l) − ϕn(i,l) =

ι∆t

4∆x2

[
α
(
ϕn+1
(i+1,l) − 2ϕn+1

(i,l) + ϕn+1
(i−1,l)

)
+ β

(
ϕn(i+1,l) − 2ϕn(i,l) + ϕn(i−1,l)

)]
− γ∆t

4∆x

[
α
(
ϕn+1
(i+1,3−l) − ϕn+1

(i−1,3−l)

)
+ β

(
ϕn(i+1,3−l) − ϕn(i−1,3−l)

)]
, (2.37)

where α = 0, β = 2 for Forward-Euler, α = 2, β = 0 for Backward-Euler, and α = β = 1 for

Crank-Nicolson discretization. The local truncation error incurred in Backward-Euler and

Crank-Nicolson discretizations are, respectively, of the order O(∆x2 +∆t) and O(∆x2 +

∆t2), and the methods are unconditionally stable [186]. The explicit Forward-Euler

discretization scheme with the same local truncation error as the implicit Backward-Euler

is trivial to implement but is only conditionally stable [186]. The solution of Eq. (2.34a)

using Forward-Euler is

ϕn+1
(i,l) =

ι∆t

2∆x2

[
ϕn(i+1,l) − 2ϕn(i,l) + ϕn(i−1,l)

]
− γ∆t

2∆x

[
ϕn(i+1,3−l) − ϕn(i−1,3−l)

]
+ ϕn(i,l). (2.38)

The conditional stability of the Forward-Euler method makes it the least desirable among

the three methods. Now, considering Backward-Euler discretization, Eq. (2.37) is

ι
ϕn+1
(i,l) − ϕn(i,l)

∆t
= −

ϕn+1
(i+1,l) − 2ϕn+1

(i,l) + ϕn+1
(i−1,l)

2∆x2
− ιγ

ϕn+1
(i+1,3−l) − ϕn+1

(i−1,3−l)

2∆x
.

For l = 1, 2, the time evolution as per Backward-Euler is equivalent to[
ϕn+1
(i,1)

ϕn+1
(i,2)

]
= (1+ ιHp∆t)

−1

[
ϕn(i,1)

ϕn(i,2)

]
, (2.39)

where

Hp

[
ϕn+1
(i,1)

ϕn+1
(i,2)

]
=

−ϕn+1
(i+1,1)

−2ϕn+1
(i,1)

+ϕn+1
(i−1,1)

2∆x2 − ιγx
ϕn+1
(i+1,2)

−ϕn+1
(i−1,2)

2∆x

−
ϕn+1
(i+1,2)

−2ϕn+1
(i,2)

+ϕn+1
(i−1,2)

2∆x2 − ιγx
ϕn+1
(i+1,1)

−ϕn+1
(i−1,1)

2∆x

 . (2.40)

As Hp is a Hermitian operator, the time evolution operator (1 + ιHp∆t)
−1 in

Backward-Euler discretization is not unitary, leading to the norm not being conserved.

Similarly, time evolution using Forward-Euler discretization in (2.38) is equivalent to[
ϕn+1
(i,1)

ϕn+1
(i,2)

]
= (1− ιHp∆t)

[
ϕn(i,1)

ϕn(i,2)

]
, (2.41)

corresponding to a non-Hermitian operator (1− ιHp∆t). In contrast to this, the time

evolution as per Crank-Nicolson is equivalent to[
ϕn+1
(i,1)

ϕn+1
(i,2)

]
=

1− ιHp∆t

1+ ιHp∆t

[
ϕn(i,1)

ϕn(i,2)

]
, (2.42)
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which corresponds to a unitary operator (1− ιHp∆t)/(1+ ιHp∆t). The Backward-Euler

method is, therefore, not suitable for realtime evolution in contrast to the Crank-Nicolson

method. Nonetheless, in imaginary time evolution, a non-unitary time evolution used to

obtain the stationary state solutions, both Backward-Euler or Crank-Nicolson methods

can be used. Rewriting Eq. (2.37) as

− ια∆t

4∆x2

[
ϕn+1
(i−1,l) + ϕn+1

(i+1,l)

]
+

(
1 +

ια∆t

2∆x2

)
ϕn+1
(i,l) +

γα∆t

4∆x

(
ϕn+1
(i+1,3−l) − ϕn+1

(i−1,3−l)

)
=
ιβ∆t

4∆x2

[
ϕn(i−1,l) + ϕn(i+1,l)

]
+

(
1− ιβ∆t

2∆x2

)
ϕn(i,l)

− γβ∆t

4∆x

(
ϕn(i+1,3−l) − ϕn(i−1,3−l)

)
, (2.43)

and then using Eq. (2.35) in Eq. (2.43) with i = 1, 2, . . . , Nx and l = 1, 2, the resulting set

of 2Nx coupled linear algebraic equations can be written in matrix form as

AΦn+1
l +BΦn+1

3−l = Dl, (2.44)

where A, B are circulant Nx × Nx matrices and Φn+1
l , Dl are Nx × 1 matrices. These

matrices can be expressed as

A(i, :) =

(
1 +

ια∆t

2∆x2
, − ια∆t

4∆x2
, 0, · · · , 0, − ια∆t

4∆x2

)
(Ci−1)T , (2.45a)

B(i, :) =

(
0,

α∆tγ

4∆x
, 0, · · · , 0, − α∆tγ

4∆x

)
(Ci−1)T , (2.45b)

Φn+1
l =

(
ϕn+1
(1,l), ϕn+1

(2,l), ϕn+1
(3,l), · · · ϕn+1

(Nx,l)

)T
, (2.45c)

dl(i) =

[
ιβ∆t

4∆x2

{
ϕn(i−1,l) + ϕn(i+1,l)

}
+

(
1− ιβ∆t

2∆x2

)
ϕn(i,l)

−γβ∆t
4∆x

(
ϕn(i+1,3−l) − ϕn(i−1,3−l)

)]
, (2.45d)

where A(i, :) and B(i, :) are the ith rows of A and B, respectively, dl(i) is the ith element

of column matrix Dl, and C is defined as

C =


0 0 . . . 1

1 0 . . . 0
...

. . .
...

0 . . . 1 0

 . (2.46)

For l = 1, 2, Eq. (2.44) represents two coupled matrix equations which can be decoupled

to yield

(B2 −A2)Φn+1
l = BD3−l −ADl, (2.47)
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which for l = 1 and 2 represents two decoupled linear circulant systems of equations. Now,

B2 −A2 being a circulant matrix can be diagonalised using Fourier matrix as [187]

B2 −A2 = F−1ΛF, where (2.48a)

Fi,j =
1√
Nx

exp

[
−2πι

Nx
(i− 1)(j − 1)

]
, and (2.48b)

Λ = diag[
√
NxF{B2(:, 1)−A2(:, 1)}]. (2.48c)

The product of the Fourier matrix (F ) with a one-dimensional array is equal to the

discrete Fourier transform of the array, and hence the solution to Eq. (2.47) using Eqs.

(2.48a)-(2.48c) is [187]

Φn+1
l = IDFT

(
DFT(BD3−l −ADl)./DFT(B2(:, 1)−A2(:, 1))

)
, (2.49)

where DFT and IDFT stand for discrete forward Fourier and inverse discrete Fourier

transforms, respectively, A2(:, 1) and B2(:, 1) denote the first columns of A2 and B2, and

./ indicates the element-wise division.

With homogeneous Dirichlet boundary condition (2.36), the discretization of

Eq. (2.34a) using Backward-Euler or Crank-Nicolson schemes yields

ϕn+1
(1,l) − ϕn(1,l) =

ι∆t

4∆x2

[
α
(
ϕn+1
(2,l) − 2ϕn+1

(1,l)

)
+ β

(
ϕn(2,l) − 2ϕn(1,l)

)]
− γ∆t

4∆x

[
αϕn+1

(2,3−l) + βϕn(2,3−l)

]
, (2.50a)

ϕn+1
(i,l) − ϕn(i,l) =

ι∆t

4∆x2

[
α
(
ϕn+1
(i+1,l) − 2ϕn+1

(i,l) + ϕn+1
(i−1,l)

)
+ β

(
ϕn(i+1,l) − 2ϕn(i,l)

+ϕn(i−1,l)

)]
− γ∆t

4∆x

[
α
(
ϕn+1
(i+1,3−l) − ϕn+1

(i−1,3−l)

)
+ β

(
ϕn(i+1,3−l)

−ϕn(i−1,3−l)

)]
, for i = 2, 3, . . . Nx − 1, (2.50b)

ϕn+1
(Nx,l)

− ϕn(Nx,l)
=

ι∆t

4∆x2

[
α
(
−2ϕn+1

(Nx,l)
+ ϕn+1

(Nx−1,l)

)
+ β

(
−2ϕn(Nx,l)

ϕn(Nx−1,l)

)]
+
γ∆t

4∆x

[
αϕn+1

(Nx−1,3−l) + βϕn(Nx−1,3−l)

]
. (2.50c)

Defining ι∆t/(4∆x2) = η and γ∆t/(4∆x) = κ, Eqs. (2.50a)-(2.50c) can be written as a

matrix equation (
A B
B A

)(
Φn+1
1

Φn+1
2

)
=

(
D1

D2

)
, (2.51)

where A and B are defined as

A =



1 + 2αη −αη 0 · · · 0

−αη 1 + 2αη −αη · · · 0
...

...
. . .

...
...

0 · · · −αη 1 + 2αη −αη
0 · · · 0 −αη 1 + 2αη


, (2.52)
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B =



0 ακ 0 · · · 0

−ακ 0 ακ · · · 0
...

...
. . .

...
...

0 · · · −ακ 0 ακ

0 · · · 0 −ακ 0


, (2.53)

and Φn+1
l is defined in Eq. (2.45c). The elements of column vectors Dl with l = 1, 2 in

Eq. (2.51) are defined as

d̃l(1) = (1− 2βη)ϕn(1,l) + βηϕn(2,l) − βκϕn(2,3−l), (2.54)

d̃l(i) = βη
[
ϕn(i+1,l) + ϕn(i−1,l)

]
+ (1− 2βη)ϕn(i,l) − βκ

[
ϕn(i+1,3−l) − ϕn(i−1,3−l)

]
for i = 2, 3 . . . Nx − 1, (2.55)

d̃l(Nx) = βηϕn(Nx−1,l) + (1− 2βη)ϕn(Nx,1)
+ βκϕn(Nx−1,3−l), (2.56)

where d̃l(i) denotes the ith element of Dl. The Eq. (2.51) is a sparse linear system

of 2Nx equations and can be solved by iterative solvers [186,188] or direct solvers

like Intel® oneAPI Math Kernel Library PARDISO [189]. The ease of applying

different boundary conditions is one of the advantages of the finite difference method

over the Fourier pseudospectral method. The Fourier pseudospectral method used to

solve mean-field models of SO-coupled spinor BECs [181] naturally implements periodic

boundary condition (2.35). To the best of our knowledge, the implementation of

homogeneous Dirichlet boundary condition (2.36) is not available with the Fourier

pseudospectral method when applied to SO-coupled spinor BECs. The homogeneous

Dirichlet boundary conditions are the apt boundary for the BEC in an optical box trapping

potential, which has already been experimentally realized [190]. Now, Eq. (2.27b) is

evolved in time from tn = n∆t to tn+1 = (n+ 1)∆t considering Eq. (2.49) as the solution

at tn if periodic boundary conditions are used; with homogeneous Dirichlet boundary

conditions the input solution at tn is the solution to Eq. (2.51). The exact analytic

solution to Eq. (2.27b) is

Ψ(x, tn+1) = exp[−ιHSE+∆t]Ψ(x, tn) =

[
1 cos

(
Ωcoh∆t

2

)
− ιSx sin

(
Ωcoh∆t

2

)]
Ψ(x, tn).

(2.57)

The last step involves solving Eq. (2.27c) over the same period treating the solution in

Eq. (2.57) as the solution at tn = n∆t. The exact solution of Eq. (2.27c) is

Ψ(x, tn+1) = exp[−ιHSP∆t]Ψ(x, tn). (2.58)

In the rest of this chapter, we will assume periodic boundary conditions to apply TSBE

and TSCN discretization schemes.
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2.3.3 Quasi-two-dimensional SO-coupled pseudospin-1/2 BEC

In a q2D trap with tight confinement along the z axis, the form of matrix operator Hp

after integrating out the z coordinate becomes

Hp = 1
p̂2x + p̂2y

2
+ γ(Sxp̂y − Syp̂x), (2.59)

and the form Hcoh, HSP, again remain unchanged from those in Eqs. (2.29) and (2.30)

with

x ≡ (x, y), V =
1

2
(α2

xx
2 + α2

yy
2), glm =

2Nalm
√
2παz

aosc
. (2.60)

For this q2D system, Eq. (2.27a) is further split into following two subequations

ι
∂Ψ

∂t
= HpxΨ, (2.61a)

ι
∂Ψ

∂t
= HpyΨ, (2.61b)

where Hpx and Hpy are defined as

Hpx = 1
p̂2x
2

− γSyp̂x, Hpy = 1
p̂2y
2

+ γSxp̂y. (2.62)

The time evolution of the condensate from tn to tn+1 is approximated by successive

solutions to the Eqs. (2.27b), (2.27c), (2.61a), and (2.61b) over the same period. Here,

we consider a two-dimensional spatial grid defined as νi = −Lν/2 + (i − 1)∆ν, where

i = 1, 2, . . . , Nν , ν = x, y in units of aosc, and ∆ν is spatial-step size. The discrete analogue

of component wavefunction is ϕn(i,j,l) which is equal to value of the lth wavefunction at a

space point (xi, yj) at tn time. Similar to q1D condensates, finite difference equivalents of

each of Eqs. (2.61a) and (2.61b) can be simplified to two decoupled matrix equations

(Bx
2 +Ax

2)Xn+1
l = AxD

x
l + (−1)lBxD

x
3−l, (2.63a)

(By
2 −Ay

2)Y n+1
l = ByD

y
3−l −AyD

y
l , (2.63b)

where Aν , Bν (with ν = x, y), Xn+1
l , Y n+1

l , Dν
l are defined

Aν(i, :) =

(
1 +

ια∆t

2∆ν2
, − ια∆t

4∆ν2
, 0, · · · , 0, − ια∆t

4∆ν2

)
(Ci−1)T , (2.64a)

Bx(i, :) =

(
0,

ια∆tγ

4∆x
, 0, · · · , 0,− ια∆tγ

4∆x

)
(Ci−1)T , (2.64b)

By(i, :) =

(
0,

α∆tγ

4∆y
, 0, · · · , 0, − α∆tγ

4∆y

)
(Ci−1)T , (2.64c)

Xn+1
l =

(
ϕn+1
(1,j,l) ϕn+1

(2,j,l) ϕn+1
(3,j,l) · · · ϕn+1

(Nx,j,l)

)T
, (2.64d)

Y n+1
l =

(
ϕn+1
(i,1,l), ϕn+1

(i,2,l), ϕn+1
(i,3,l), · · · ϕn+1

(i,Ny ,l)

)T
, (2.64e)
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dxl (i) =

[
ιβ∆t

4∆x2

{
ϕn(i−1,j,l) + ϕn(i+1,j,l)

}
+

(
1− ιβ∆t

2∆x2

)
ϕn(i,j,l)

+
(−1)lιγβ∆t

4∆x

(
ϕn(i+1,j,3−l) − ϕn(i−1,j,3−l)

)]
, (2.64f)

dyl (i) =

[
ιβ∆t

4∆y2

{
ϕn(i,j−1,l) + ϕn(i,j+1,l)

}
+

(
1− ιβ∆t

2∆y2

)
ϕn(i,j,l)

−γβ∆t
4∆y

(
ϕn(i,j+1,3−l) − ϕn(i,j−1,3−l)

)]
, (2.64g)

where Aν(i, :) and Bν(i, :) are the ith row of Aν and Bν , respectively, d
ν
l (i) is the ith

element of column matrix Dν
l , and C is defined in Eq. (2.46). For a fixed value of j

(y-index) and l (species index), Eqs. (2.63a) is a linear circulant system of equations

which can be solved by the same procedure as discussed to solve Eq. (2.47). The solution

to Eq. (2.61a) is obtained by solving Eq. (2.63a) for all j and l values following the same

procedure as discussed in Sec. 2.3.2. This solution, then, is considered as an input solution

at tn while solving another set of linear circulant systems of Eqs. (2.63b) over the same

period, from tn to tn +∆t. The solutions to the Eqs. (2.27b) and (2.27c) for this case are

again given as in Eqs. (2.57) and (2.58) with Ψ(x, tn) = [ψ1(x, y, tn), ψ2(x, y, tn)]
T where

T stands for transpose.

2.3.4 Three-dimensional SO-coupled pseudospin-1/2 BEC

Here, we illustrate the extension of the TSBE and TSCN to a three-dimensional

SO-coupled pseudospin-1/2 BEC. In this case, the form of matrix operators Hp, Hcoh,

HSP are defined in Eqs. (2.28)-(2.30) and Eq. (2.27a) is further split into following three

subequations

ι
∂Ψ

∂t
= HpxΨ, (2.65a)

ι
∂Ψ

∂t
= HpyΨ, (2.65b)

ι
∂Ψ

∂t
= HpzΨ, (2.65c)

Hpx , Hpy , and Hpz are defined as

Hpx = 1
p̂2x
2

− γSyp̂x, Hpy = 1
p̂2y
2

+ γSxp̂y, Hpz = 1
p̂2z
2
. (2.66)

The time evolution of the condensate from tn to tn+1 is approximated by successive

solutions to the set of Eqs. (2.27b), (2.27c), (2.65a), (2.65b), and (2.65c) over the same

period. The 3D spatial grid is defined as νi = −Lν/2 + (i− 1)∆ν, where i = 1, 2, . . . , Nν ,

ν = x, y, z, and ∆ν is the spatial-step size along ν direction. The discrete analogue

of component wavefunctions is ϕn(i,j,k,l), which is equal to value of the lth wavefunction

at a spatial point (xi, yj , zk) at tn time. Similar to a q1D condensate, finite difference

equivalents of Eqs. (2.65a)-(2.65c) can be simplified to two decoupled matrix equations



Chapter 2. Numerical Methods 39

corresponding to l = 1, 2

(Bx
2 +Ax

2)Xn+1
l = AxD

x
l + (−1)lBxD

x
3−l, (2.67a)

(By
2 −Ay

2)Y n+1
l = ByD

y
3−l −AyD

y
l , (2.67b)

AzZ
n+1
l = Dz

l , (2.67c)

where Aν (with ν = x, y, z), Bx and By are same as given in Eqs. (2.64a)-(2.64c),

respectively, and Xn+1
l , Y n+1

l , Zn+1
l , Dν

l are defined as

Xn+1
l =

(
ϕn+1
(1,j,k,l) ϕn+1

(2,j,k,l) ϕn+1
(3,j,k,l) · · · ϕn+1

(Nx,j,k,l)

)T
, (2.68a)

Y n+1
l =

(
ϕn+1
(i,1,k,l), ϕn+1

(i,2,k,l), ϕn+1
(i,3,k,l), · · · ϕn+1

(i,Ny ,k,l)

)T
, (2.68b)

Zn+1
l =

(
ϕn+1
(i,j,1,l), ϕn+1

(i,j,2,l), ϕn+1
(i,j,3,l), · · · ϕn+1

(i,j,Nz ,l)

)T
, (2.68c)

dxl (i) =

[
ιβ∆t

4∆x2

{
ϕn(i−1,j,k,l) + ϕn(i+1,j,k,l)

}
+

(
1− ιβ∆t

2∆x2

)
ϕn(i,j,k,l)

+
(−1)lιγβ∆t

4∆x

(
ϕn(i+1,j,k,3−l) − ϕn(i−1,j,k,3−l)

)]
, (2.68d)

dyl (i) =

[
ιβ∆t

4∆y2

{
ϕn(i,j−1,k,l) + ϕn(i,j+1,k,l)

}
+

(
1− ιβ∆t

2∆y2

)
ϕn(i,j,k,l)

−γβ∆t
4∆y

(
ϕn(i,j+1,k,3−l) − ϕn(i,j−1,k,3−l)

)]
, (2.68e)

dzl (i) =

[
ιβ∆t

4∆z2

{
ϕn(i,j,k−1,l) + ϕn(i,j,k+1,l)

}
+

(
1− ιβ∆t

2∆z2

)
ϕn(i,j,k,l)

]
, (2.68f)

here dνl (i) is the ith element of column matrix Dν
l . The solution of Eq. (2.65a) is obtained

by solving Eq. (2.67a) for all j, k, and l values following exactly the same procedure as

discussed Sec. 2.3.2. Then, this solution is considered as an input while solving another set

of linear circulant systems Eq. (2.67b), and then Eq. (2.67c). The solutions to Eqs. (2.27b)

and (2.27c) for this system are again given as in Eqs. (2.57) and (2.58) with Ψ(x, tn) =

[ψ1(x, y, z, tn), ψ2(x, y, z, tn)]
T .

We have considered standard Rashba coupling in the present chapter. The theoretical

scheme to realize 3D analogue of Rashba coupling has also been proposed [191], and

the finite difference method discussed in this section can be trivially extended to such a

coupling.

2.4 Numerical Results

Here, we present the numerical results with TSFP, TSBE and TSCN methods for

pseudospin-1/2, BECs in the presence as well as the absence of coherent coupling. The

ground-state solution of an SO-coupled BEC can be achieved by considering an initial

guess solution to the CGPEs and replacing t by −ιt = t̃ to solve CGPEs. The resultant

imaginary time evolution is not norm preserving, and hence, the total norm needs to be

fixed to unity after each time iteration. The quantity τ = max|ϕn+1
(i,j,l) − ϕn(i,j,l)|/∆t̃ serves
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Table 2.1: Comparison of ground state energies of a pseudospin-1/2 BEC of 87Rb obtained
with TSFP, TSBE, and TSCN for different values of γ in the absence of coherent coupling
Ωcoh. The interaction strength parameters are g11 = 446.95, g22 = 402.26, and g12 = g21 =
491.65 for the q1D BEC, whereas the same for q2D BEC are g11 = 250.52, g22 = 225.47,
and g12 = g21 = 275.57.

∆x = 0.1,∆t̃ = 0.01 ∆x = 0.1,∆t̃ = 0.005

γ TSFP TSBE TSCN TSFP TSBE TSCN

q1D 0.5 21.4357 21.4357 21.4357 21.4357 21.4357 21.4357
1.0 21.4186 21.4186 21.4186 21.4186 21.4186 21.4186
1.5 21.3333 21.3334 21.3333 21.3324 21.3324 21.3324
2.0 20.7018 20.7035 20.7022 20.7001 20.7014 20.7011

q2D 0.5 5.7201 5.7201 5.7201 5.7201 5.7201 5.7201
1.0 5.4707 5.4707 5.4707 5.4707 5.4707 5.4707
1.5 4.8520 4.8520 4.8520 4.8518 4.8518 4.8518
2.0 3.9783 3.9786 3.9787 3.9883 3.9786 3.9786

as the convergence criterion to quantify convergence in imaginary time propagation. The

stationary state solutions reported in this section have been obtained with τ = 10−6. In

contrast to imaginary time evolution, realtime dynamics of the spinor BECs can be studied

with TSCN and not with TSBE, as the latter does not conserve norm as was discussed in

Sec. 2.3.2.

Pseudospin-1/2 BEC

We choose an experimentally realizable 87Rb pseudospinor-1/2 BEC with scattering length

a11 = 101.8aB, interaction strengths g12 = 1.1g11, g22 = 0.9g11 and g12 = g21 [192], where

aB is the Bohr radius. We consider 5000 atoms trapped in a q1D trapping potential with

ωx = 2π × 20Hz, ωy = 2π × 400Hz and ωz = 2π × 400Hz. The interaction strengths in

dimensionless units are given as

(g11, g22, g12) = (446.95, 402.26, 491.65), (2.69)

with g12 = g21. As a q2D BEC, we consider 5000 atoms of 87Rb in a trap with trapping

frequencies ωx = ωy = 2π×20Hz, ωz = 2π×400Hz. In this case, the interaction strengths

g22 = 0.9g11, g12 = 1.1g11, and g12 = g21 for a11 = 101.8aB are given as

(g11, g22, g12) = (250.52, 225.47, 275.57). (2.70)

In both these cases, we compare the results from TSFP, TSBE and TSCN in the presence as

well as the absence of coherent coupling and find an excellent agreement. The comparison

of the ground state energies obtained with three methods for different values of γ are

given in Table-2.1 for Ωcoh = 0 and Table-2.2 for Ωcoh = 0.5. The results with TSBE

and TSCN are in very good agreement with those from TSFP. The component densities
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Table 2.2: Comparison of ground state energies of a pseudospin-1/2 BEC obtained with
TSFP, TSBE, and TSCN for Ωcoh = 0.5 and different values of γ. The results have been
obtained with ∆x = 0.1 and ∆t̃ = 0.01. The interaction strength parameters considered
for the q1D BEC are g11 = 446.95, g22 = 402.26, and g12 = g21 = 491.65, whereas the
same for q2D BEC are g11 = 250.52, g22 = 225.47, and g12 = g21 = 275.57.

γ TSFP TSBE TSCN

q1D 0.5 21.4231 21.4231 21.4231
1.0 21.4002 21.4002 21.4002
1.5 21.3033 21.3034 21.3033
2.0 20.6711 20.6727 20.6715

q2D 0.5 5.6457 5.6457 5.6457
1.0 5.3339 5.3339 5.3339
1.5 4.7181 4.7181 4.7181
2.0 3.8434 3.8438 3.8438

corresponding to the ground state solutions obtained with TSBE and TSCN methods for

q1D 87Rb BEC are also in excellent agreement (not shown here).

We also study the variation of the convergence criterion as a function of t̃ in

imaginary-time propagation with TSBE, TSCN, and TSFP to obtain the ground-state

solution. As an example, in the imaginary-time propagation to obtain the ground state

of the q1D pseudospin-1/2 BEC of 87Rb starting with normalized Gaussian initial guess

wavefunctions for the two components, the variations of τ as a function of t̃, obtained with

three methods, are shown in Fig. 2.1(a) for ∆x = 0.1 and ∆t̃ = 0.01 and in Fig. 2.1(b) for

∆x = 0.2 and ∆t̃ = 0.02. It is evident that TSFP and TSCN shows faster convergence

than TSBE. As discussed in Sec. 2.3.2, the TSBE does not lead to a unitary time evolution
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Figure 2.1: The variation of convergence criterion during an imaginary-time propagation
to calculate the ground state of a q1D pseudospin-1/2 87Rb BEC with g11 = 446.95,
g22 = 402.26, and g12 = g21 = 491.65. In (a), we have chosen ∆x = 0.1 and ∆t̃ = 0.01,
whereas for (b) ∆x = 0.2 and ∆t̃ = 0.02.

in contrast to TSCN. In order to confirm this, we consider the real-time evolution of the

ground state solution of the q1D 87Rb with TSFP, TSCN and TSBE. For this we consider

the ground state solution corresponding to interaction parameters in Eq. (2.69) with
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Figure 2.2: (a) Norm N as a function of time and (b) energy E as a function of time for the
ground state solution of pseudospin-1/2 BEC of 87Rb with γ = Ωcoh = 0.5. (c) Norm N
and Nl as a function of time in realtime obtained for non-stationary initial solution using
TSCN. The real-time evolution of the initial solution has been obtained using TSFP,
TSBE, and TSCN with ∆x = 0.1, ∆t = 0.005, and the interaction parameters of the
pseudospin-1/2 BEC are g11 = 446.95, g22 = 402.26, and g12 = g21 = 491.65.

γ = Ωcoh = 0.5 as the initial solution at t = 0 in real-time evolution. The variation of total

norm and energy as a function of time obtained using TSFP, TSBE, and TSCN are shown

in Fig. 2.2(a) and 2.2(b), respectively. The non-conservation of norm and hence energy in

TSBE makes the method unsuitable to study any real-time dynamics. The dynamics of

the ground state, a stationary state, is trivial in the sense that besides norm and energy,

the expectation values of various operators are also conserved. Next, we consider the

dynamics of a non-stationary state using TSCN. We first obtain a non-stationary state by

solving CGPEs for the q1D 87Rb with interaction strengths as defined in Eq. (2.69) and

γ = Ωcoh = 0.5 under the constraint of zero polarization. The solution thus obtained is

non-stationary and is then evolved in realtime (without any additional constraint) using

TSCN. The variation of component norms and total norm as a function of time is shown

in Fig. 2.2(c). The total norm N in TSCN is again conserved, illustrating the unitary

time evolution.

2.5 Summary

In the first part of this chapter, we discussed the numerical algorithm using the Fourier

pseudospectral method to solve the CGPEs for an SO-coupled spin-2 BEC which can

be used to calculate the ground state solutions and/or the dynamics of homogeneous

or trapped condensates. In the second part of the chapter, we discussed time-splitting

Backward-Euler and Crank-Nicolson methods to study the SO-coupled CGPEs for

pseudospinor BEC. Depending on the nature of the problem, without any loss of generality,

we employed the Cartesian grid spanning either three-, two-, or one-dimensional space for

numerical discretization. For some cases, we compared the ground state energies and the

component density profiles calculated using the TSFP, TSBE, and TSCN methods. The

numerical results for stationary states obtained with the three methods agree very well.

In imaginary-time propagation, TSFP and TSCN exhibit faster convergence compared to

TSBE. Moreover, the time evolution per TSCN is unitary, consistent with the underlying

Hermitian Hamiltonian. This is not the case with TSBE, which results in non-unitary time
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evolution and thus renders the method unsuitable for studying any real-time dynamics.

The numerical methods developed in this chapter can be easily extended to higher spin

systems. The numerical methods provided in this chapter are discussed in Refs. [193,194].
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Chapter 3

Rotating spin-orbit-coupled spinor

BECs

As discussed in Sec. 1.2.1, one of the most important advances in the field of cold atom

physics in the last decade has been an experimental demonstration of synthetic SO coupling

in a spinor quantum gas [73–77], which has opened up new research direction in the field

of quantum degenerate gases. The realization of SO-coupling paved the way to explore

the interplay of an artificial non-Abelian gauge field resulting in SO-coupling and rotation,

which itself is equivalent to an Abelian gauge potential. For an SO-coupled BEC, merely

rotating the trapping potential will result in a time-dependent Hamiltonian, which can

not have stationary vortex-lattice solutions [4]. This can be remedied by rotating both

the (anisotropic) trap and the laser fields responsible for the creation of SO and coherent

couplings, in which case the Hamiltonian in the rotating frame is time-independent [4].

In the literature on rotating SO-coupled spin-1 and spin-2 BECs discussed in Sec. 1.3,

the rotation frequencies considered mostly have been within the range of small to moderate

values. In this chapter, we aim to investigate the combined effect of interactions and

SO couplings, particularly at high rotation frequencies for these higher spin systems. We

examine systematically the combined effect of rotation and SO coupling in the spin-1 BECs

with ferromagnetic or antiferromagnetic interactions and then broaden the investigation

to a rotating SO-coupled spin-2 system with antiferromagnetic, cyclic, or ferromagnetic

interactions. Specifically, we investigate the various effective potentials an atom in these

SO-coupled spinor BECs may experience under the combined effect of SO coupling and

rotation.

This chapter is organized as follows. The analytic solutions of the single-particle

Hamiltonian corresponding to the SO-coupled spin-1 and spin-2 BECs under rotation are

provided in Sec. 3.1. We present the mean-field CGPEs for a rotating SO-coupled spin-1

BEC in Sec. 3.2. The stationary-state solutions for the interacting SO-coupled 87Rb and
23Na spin-1 BECs in a rotating frame are discussed in Sec. 3.2.1. The response of the

system is further explored through the computation of the spin expectation per particle as

a function of rotation frequency in Sec. 3.3. The CGPEs for an SO-coupled spin-2 BEC in

the rotating frame and the numerical solutions have been discussed in Sec. 3.4. In Sec. 3.5,

we present a summary of the chapter.
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3.1 Single-particle Hamiltonian

Under a q2D harmonic confinement, the Hamiltonian of an SO-coupled spin-f boson in

the rotating frame in the dimensionless form is given by [113]

H0 =

[
p̂2x + p̂2y

2
+ V (x, y)− ΩrotLz

]
I+ γxSxp̂x + γySyp̂y +ΩcohSx, (3.1)

where p̂ν = −ι∂/∂ν with ν = (x, y), V (x, y) = (x2 + y2)/2 is an isotropic harmonic

trapping potential, Ωrot is the angular frequency of rotation around z axis, γx and γy are

the SO-coupling strengths, Ωcoh is the coherent-coupling strength, Lz = (xp̂y − yp̂x) is the

z component of the angular-momentum operator, I is a (2f+1)×(2f+1) identity matrix,

and Sν is the irreducible representations of the angular momentum operator for a spin-f

system. The units of length, time, energy, and energy eigenfunctions are considered to be

aosc =
√
ℏ/(Mωx), ω

−1
x , ℏωx, and a

−1
osc, respectively, whereM is the mass of the boson and

ωx is the harmonic oscillator frequency along x-direction. To delineate the combined effect

of rotation, SO, and coherent couplings, we calculate the minimum-energy eigenfunctions

and eigenenergies of the Hamiltonian for two analytically tractable cases:

γx ̸= 0, Ωcoh ̸= 0, (3.2a)

γx = γy = γ ̸= 0, Ωcoh = 0, (3.2b)

where (3.2a) represents an experimentally realizable equal-strength mixture of Rashba and

Dresselhaus couplings [75,76], which couples the spin with the linear momentum along the

x-direction and the latter (3.2b) employs the Rashba SO coupling [68,195] which couples

the spin with linear momentum along x-y plane.

3.1.1 Equal-strength mixture of Rashba and Dresselhaus couplings

The calculation of the eigen-spectrum of H0 in the former case (3.2a) is facilitated by a

unitary transformation, H0 → U †H0U with

U =
1

2


1 −

√
2 1

√
2 0 −

√
2

1
√
2 1

 and (3.3a)

U =
1

4



1 −2
√
6 −2 1

2 −2 0 2 −2
√
6 0 −2 0

√
6

2 2 0 −2 −2

1 2
√
6 2 1


, (3.3b)

for spin-1 and spin-2 systems, respectively. The operator U rotates the spin state about

y axis in an anticlockwise direction by an angle π/2 [196]. The transformed Hamiltonian
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U †H0U = diag (hf , hf−1, . . . , h−f ) , where diag (. . .) stands for a 2f + 1× 2f + 1 diagonal

matrix (operator). The operators hj are

hj =
(p̂x +

jγx
1−Ω2

rot
+Ωrotȳ)

2

2
+

(p̂ȳ − Ωrotx)
2

2
+ (1− Ω2

rot)
(x2 + ȳ2)

2

− j2γ2x
2(1− Ω2

rot)
+ jΩcoh, (3.4)

where j = f, f − 1, . . . ,−f , ȳ = y − jγxΩrot/(1 − Ω2
rot) and p̂ȳ = −ι∂/∂ȳ is

the canonical conjugate momentum of ȳ. The decoupled eigenvalue equation for

hj is hjϕj(x, ȳ) = Ejϕj(x, ȳ) which can be simplified by substituting ϕj(x, ȳ) =

ϕ̄j(x, ȳ) exp[−ιjγxx/(1− Ω2
rot)] to obtain

[ p̂2x + p̂2ȳ
2

+
x2 + ȳ2

2
− Ωrot(xp̂ȳ − ȳp̂x) + jΩcoh

]
ϕ̄j(x, ȳ) = Ejϕ̄j(x, ȳ). (3.5)

The Hamiltonian on the left-hand side of Eq. (3.5), barring the constant terms, is that

of a two-dimensional isotropic harmonic oscillator under rotation. It is to be noted that

the eigenfunctions of this Hamiltonian are also the eigenfunctions of the Hamiltonian

representing an isotropic harmonic oscillator in the absence of rotation, which commutes

with Lz [196]. The ground state eigenenergy is, therefore, given by

Ej =
2(1 + jΩcoh)(1− Ω2

rot)− j2γ2x
2(1− Ω2

rot)
, (3.6)

and the corresponding eigenstate is ϕ̄j(x, ȳ) = exp[(−x2 − ȳ2)/2]/
√
π. On the x-y plane,

we thus obtain

ϕj(x, y) =
1√
π
exp

−x2 +
(
y − jγxΩrot

1−Ω2
rot

)2
2

− ι
jγx

1− Ω2
rot

x

 . (3.7)

The 2f + 1 minimum-energy vector eigenfunctions of the original Hamiltonian H0 with

eigenenergies Ej can now simply be written as Φj(x, y) = ϕj(x, y)Uζj , where U and

ϕj(x, y) are defined in Eqs. (3.3a), (3.3b) and (3.7), respectively. Here ζj are the 2f + 1

eigenvectors of Sz. In the absence of coherent coupling, Ωcoh = 0, the eigenfunctions

Φ−f (x, y) and Φ+f (x, y) become degenerate having the least energy. Under these

considerations, the principle of linear superposition further admits c+Φ+f + c−Φ−f to

be a possible degenerate eigenfunction subject to the constraint |c+|2 + |c−|2 = 1. In the

presence of infinitesimally small repulsive interactions, say spin-independent interactions,

the interaction energy is minimized if |c+| = |c−| = 1/
√
2 resulting in a equal-strength

mixture of Φ±f (x, y). The resultant density,
[
|ϕ+f (x, y)|2 + |ϕ−f (x, y)|2

]
/2, is bimodal

with equal-height peaks at (0,±γxfΩrot/(1−Ω2
rot)); this is indeed reflective of an effective

two-well potential experienced by the boson. The presence of coherent coupling Ωcoh ̸= 0,

however, results in the lifting of the degeneracy between Φ−f (x, y) and Φ+f (x, y) with
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∆E = E+f − E−f = 2fΩcoh.

The exact effective potential experienced by the boson can also be computed through

vector and scalar potentials [112]. To identify these potentials for the former case (3.2a),

we rewrite hj in Eq. (3.4) as

hj =
(px −Aj

x)2

2
+

(py −Aj
y)2

2
+Wj(x, y) + V (x, y), (3.8)

where Aj
x = −jγx−Ωroty, Aj

y = Ωrotx are the x and y components of the vector potential,

and the scalar potential Wj(x, y) =
[
2jΩcoh − j2γ2 − 2jγΩroty − Ω2

rot

(
x2 + y2

)]
/2. With

these definitions, the effective potentials [112] for j = f, f − 1, . . . ,−f magnetic sublevels

are given as

V j
eff(x, y) =

1

2

[
(1− Ω2

rot)(x
2 + y2)− j2γ2x + 2jΩcoh − 2jγxΩroty

]
. (3.9)
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Figure 3.1: Sketch of the effective potential V j
eff (experienced by the three eigenvectors

of Sz), viz. Eq. (3.9), along y-axis: (a) γx = 1, γy = 0, Ωcoh = 0, and Ωrot = 0.5, (b)
γx = 1, γy = 0, Ωcoh = 0, and Ωrot = 0.95, (c) γx = 0, γy = 0, Ωcoh = 1, and Ωrot = 0.95,
and (d) γx = 1, γy = 0, Ωcoh = 1, and Ωrot = 0.95.

From Eq. (3.9), for f = 1, the V +1
eff (x, y) and V −1

eff (x, y) cross at y = Ωcoh/γxΩrot

for γx ̸= 0 and Ωrot ̸= 0. In the region, y < Ωcoh/γxΩrot, V
−1
eff is lower than than the

other two and with a minima at γxΩrot/(1 − Ω2
rot), whereas for y > Ωcoh/γxΩrot, V

+1
eff

is the low lying potential curve with a minima at −γxΩrot/(1 − Ω2
rot). Which are also

the positions of the density maxima of |Φ±1(x, y)|2, as discussed earlier. We illustrate

the effective potential energy curves for the two representative cases with γx = 1 and
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γy = Ωcoh = 0: under a moderate rotation frequency (Ωrot = 0.5) in Fig. 3.1(a) and a high

rotation frequency (Ωrot = 0.95) in Fig. 3.1(b) . The potentials thus experienced by the

boson are effectively equivalent to symmetric double-well potentials with minima occurring

at (x = 0, y = ∓0.67) and (x = 0, y = ∓9.74), respectively. Depending on the values of γx

and γy, the presence of the coherent coupling modifies the effective potential landscape in

different ways, for example, with Ωcoh = 1 it is harmonic potential for γx = γy = 0 with

minima at origin and an asymmetric double-well potential for γx = 1 and γy = 0 with a

global minima at (x = 0, y = −9.74). These are, respectively, shown in Figs. 3.1(c) and

(d). From Eq. (3.9), for f = 2, V +2
eff (x, y) and V −2

eff (x, y) overlap at (x = 0, y = 0) for
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Figure 3.2: Effective potentials V ±2
eff (0, y) for γx = 1, Ωcoh = 0: (a) Ωrot = 0.5, (b) Ωrot =

0.7, and (c) Ωrot = 0.9. The potentials incurred by boson are effectively equivalent to
symmetric double-well potentials with minima at (x = 0, y = ∓1.33), (x = 0, y = ∓2.74),
and (x = 0, y = ∓9.47) for Ωrot = 0.5, 0.7, and 0.9, respectively.

Ωcoh = 0 as shown in Figs. 3.2(a)-(c) for Ωrot = 0.5, 0.7, and 0.9, respectively.

3.1.2 Rashba SO coupling

For the latter case (3.2b), namely γ ̸= 0 and Ωcoh = 0, the eigenvalue problem for the

Hamiltonian H0 is not exactly solvable. We, therefore, use the variational method to

calculate an approximate minimum-energy solution. For that, we consider the following

variational ansatz in polar coordinates for the spin-1 system

Φvar(r, ϕ) =
exp

(
− r2

2σ2

)
√
πσ2n+4Γ(n+ 2)

× (ιA1r
|n|eιnϕ,−A2r

|n+1|eι(n+1)ϕ, ιA3r
|n+2|eι(n+2)ϕ)T ,

(3.10)

where A1, A2, A3 are the variational amplitudes, σ is the variational width of the ansatz,

and n is a variational integer. In the absence of rotation, the ground state of the single

particle Hamiltonian is a circularly symmetric (−1, 0,+1) type multi-ring solution with

±1 components hosting ∓1 phase-singularities [81,82]. This allows us to fix the integer

n >= −1. The normalization condition imposes the constraint[
A2

1Γ(|n|+ 1)

σ2(1−|n|+n)Γ(n+ 2)

]
+
[
A2

3(n+ 2)σ2 +A2
2

]
= 1, (3.11)
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on the variational parameters A1, A2, A3, n, and σ. The variational energy in this case is

Evar(A1, A2, A3, n, σ) =
σ−2(n+2)

2Γ(n+ 2)
[(
√
2A1A2γ(−|n|+3n+2)σ|n|+n+2Γ

(
1

2
{n+ |n|+ 2}

)
+A2

1σ
2|n|Γ(|n|+ 1){(σ4 + 1)|n| − 2nσ2Ωrot + σ4 + 1}+ (n+ 1)σ2n+2Γ(n+ 1)

{−2
√
2A2A3γ(n+ 2)σ2 +A2

3(n+ 2)σ2(nσ4 − 2nσ2Ωrot + n+ 3σ4 − 4σ2Ω+ 3)

+A2
2(nσ

4 − 2nσ2Ωrot + n+ 2σ4 − 2σ2Ωrot + 2)}]. (3.12)

This energy can be minimized with respect to all variational parameters subject to the

constraint in Eq. (3.11) to fix the variational parameters. To illustrate the validity of the

variational method in this case, we consider three sets of parameters

γ = 0.5, Ωcoh = 0, Ωrot = 0.95, (3.13a)

γ = 1, Ωcoh = 0, Ωrot = 0.5, (3.13b)

γ = 1, Ωcoh = 0, Ωrot = 0.95. (3.13c)

The minimization of (3.12) results in (A1, A2, A3, n, σ) =
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Figure 3.3: Total single-particle densities corresponding to variational (ρvar) and exact
numerical solution (ρnum) of the eigen-value problem for (a) γ = 0.5, Ωcoh = 0, Ωrot =
0.95; (b) γ = 1, Ωcoh = 0, Ωrot = 0.5; and (c) γ = 1, Ωcoh = 0, Ωrot = 0.95. The charges
of phase singularities in the component wavefunctions corresponding to the total densities
in (a), (b) and (c) are (+24,+25,+26), (0,+1,+2), and (+98,+99,+100), respectively.

(−2.463, 0.707, 0.099, 24, 0.975) for parameters’ set (3.13a), (A1, A2, A3, n, σ) =

(0.517, − 0.675, − 0.336, 0, 0.828) for (3.13b), and (A1, A2, A3, n, σ) =

(−4.861, 0.707, 0.051, 98, 0.975) for (3.13c). The comparison of variational,

ρvar(r) = |Φvar(r, ϕ)
2|, and exact numerically evaluated single-particle density profiles,

ρnum(r), for (3.13a), (3.13b), and (3.13c) are shown in Figs. 3.3(a), 3.3(b), and 3.3(c),

respectively. The charges of phase singularities in the component wavefunctions obtained

with the variational analysis, i.e., (+24,+25,+26) for set (3.13a), (0,+1,+2) for set

(3.13b) and (+98,+99,+100) for (3.13c) match with the exact numerical results. For

the sets (3.13a), (3.13b), and (3.13c), the peaks of total variational densities lie along

circles of radii 4.88, 0.40 and 9.70, respectively, and are reflective of the effective toroidal
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potential experienced by the boson.

For a spin-2 BEC, we consider Rashba SO coupling as γ(Sxp̂y − Syp̂x), which under

a unitary transformation transforming Sx → −Sy and Sy → Sx is equivalent to the

γ(Sxp̂x + Syp̂y) [109]. The suitable variational ansatz in polar coordinates is

Φvar(r, ϕ) =
exp

(
r2

2σ2

)
√
πσ2n+4Γ(n+ 2)

× (A1r
|n|eιnϕ, A2r

|n+1|eι(n+1)ϕ, A3r
|n+2|eι(n+2)ϕ,

A4r
|n+3|eι(n+3)ϕ, A5r

|n+4|eι(n+4)ϕ)T , (3.14)

where the various symbols have the same meaning as in Eq. (3.10).

The normalization condition and the variational energy are

(n + 2)σ2[(n + 3)σ2{A2
5(n + 4)σ2 + A2

4} + A2
3] + A2

2 +
A2

1

(n+ 1)σ2
= 1, (3.15)

Evar(A1, A2, A3, A4, A5, n, σ) =
1

2(n+ 1)σ4
[4A1A2γ(n+1)σ2+(n+1)σ2{2

√
6A2A3γ(n+2)σ2

+ (n+ 2)σ2(2
√
6A3A4γ(n+ 3)σ2 + (n+ 3)σ2(4A4A5γ(n+ 4)σ2 +A2

5(n+ 4)σ2({n+ 5}

(σ4 +1)− 2(n+4)σ2Ωrot) +A2
4{(n+4)(σ4 +1)− 2(n+3)σ2Ωrot}) +A2

3{(n+3)(σ4 +1)−

2(n+2)σ2Ωrot})+A2
2({n+2}(σ4+1)−2(n+1)σ2Ωrot)}+A2

1{(n+1)(σ4+1)−2nσ2Ωrot}].
(3.16)

As an example, to check the validity of the variational method, we choose (γ =

1,Ωrot = 0.9), and the minimization of (3.16) gives (A1, A2, A3, A4, A5, n, σ) =

(−2.3728, 0.5012,−0.0645, 0.0055,−0.0002, 98, 0.9491). The variational ρvar(r), and exact

single-particle density profile ρnum(r) agree with each other; the peak of total variational

density lies along a circle of radius 9.47 (not shown here).

Although, the variational ansatz are reminiscent of the vortex-bright solitons which

emerge as the ground states of SO-coupled spinor BECs with attractive mean-field

interactions [84,85], the nature of the mean-field interactions (whether attractive or

repulsive) and the emergent solutions (whether self-trapped or confined by a net trapping

potential) are starkly different. In this chapter, we consider the SO-coupled spin-f BECs

interacting with net repulsive mean-field interactions under net harmonic confinement.

Hence, the single-particle solutions discussed in this section and the multi-particle solutions

of the CGPEs in the following Section are not self-trapped or bright solitons.

3.2 Rotating SO-coupled spin-1 BEC

In a typical experiment, the BEC can have atom numbers ranging from a few thousand

to up to a few tens of a million, which primarily interact via s-wave scattering. At

temperatures very close to absolute zero, this ultra-dilute quantum degenerate system
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is usually studied using a mean-field approximation that neglects quantum and thermal

fluctuations. In the mean-field approximation, a rotating SO-coupled spin-1 BEC in a

q2D harmonic trapping potential V (x, y) can be described by three CGPEs [1,81], which

in the dimensionless form are

ι
∂ψ±1

∂t
= Hψ±1 + c1(ρ0 ± ρ−)ψ±1 + c1ψ

∗
∓1ψ

2
0 −

ι√
2
(γx∂xψ0∓ιγy∂yψ0)

+
Ωcoh√

2
ψ0, (3.17a)

ι
∂ψ0

∂t
= Hψ0 + c1ρ+ψ0 + 2c1ψ+1ψ−1ψ

∗
0 − ι

γx√
2
∂x (ψ+1 + ψ−1) +

γy√
2
∂y (ψ+1 − ψ−1)

+
Ωcoh√

2
(ψ+1 + ψ−1), (3.17b)

where

H =
∑
ν=x,y

p̂2ν
2

+ V (x, y) + c0ρ− ΩrotLz, ρ =
∑

j=±1,0

ρj , ρj = |ψj |2, ρ± = ρ+1 ± ρ−1,

(3.18)

c0 and c1 are interaction parameters defined as

c0 =
√
8πα

N(a0 + 2a2)

3aosc
, c1 =

√
8πα

N(a2 − a0)

3aosc
, (3.19)

where α is the ratio of trapping frequency along the axial direction to the radial x direction,

N is the total number of atoms in the BEC, and a0 and a2 are the s-wave scattering lengths

in total spin 0 and 2 channels, respectively. The CGPEs, viz. (3.17a) and (3.17b), can be

numerically solved using, for instance, time-splitting methods discussed in the previous

chapter.

3.2.1 Numerical solutions of CGPEs

We consider 105 atoms of spin-1 BECs like 87Rb and 23Na in an isotropic q2D harmonic

trap with α = 10. The trapping frequencies are ωx = ωy = 2π × 10 Hz resulting in

aRb
osc = 3.41 µm and aNa

osc = 6.63 µm, respectively, for 87Rb and 23Na spinor BECs. The

ferromagnetic 87Rb has a0 = 101.8aB and a2 = 101.4aB [197], and anti-ferromagnetic
23Na has a0 = 50aB and a2 = 55.01aB [198], where aB is the Bohr radius. The resultant

dimensionless interaction strengths for 87Rb are c0 = 2482.21 and c1 = −11.47, and the

same for 23Na are c0 = 674.91 and c1 = 21.12. As c0 ≫ c1, both the systems are repulsively

interacting spinor BECs. We solve CGPEs (3.17a) and (3.17b) on a two-dimensional

512×512 spatial grid with a spatial-step size ∆x = ∆y = 0.1 and a temporal step size

∆t = 0.005 using a time-splitting Fourier pseudospectral method discussed in the previous

chapter. We calculate the stationary-state solutions by solving the CGPEs in imaginary

time with an apt initial guess solution. In order to study the vortex-lattice states that

can emerge as the minimum energy solutions of an SO-coupled spin-1 BEC in a rotating
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frame, we consider the following SO-coupling strengths

γx = 1, γy = 0; γ = 0.5; γ = 1, (3.20)

where as defined earlier γ = γx = γy.

We first study the rotating SO-coupled 87Rb and 23Na spinor BECs with these

SO-coupling strengths without coherent coupling. For this, we use the non-rotated ground

states as the apt initial guess solutions to evolve the CGPEs (3.17a) and (3.17b) in

imaginary time with Ωrot ̸= 0. For γx = 1, γy = 0, the ground state is a plane-wave

phase [81] for 87Rb and a stripe phase for 23Na [199]. The plane-wave phase, whose

phase structure is identical to a single plane-wave is the ground state phase for c1 < 0

as it ensures |f(r)|2 = 1, where f(r) = F(r)/ρ(r). In contrast to the plane-wave phase

the stripe phase corresponds to the superposition of the two plane waves yielding zero

magnetization, i.e. |f(r)|2 = 0 [81]. At small rotation frequencies for γx = 1 and γy = 0,

the phase-singularities (vortices) in the component wave functions exclusively align along

the x-axis. The central chain of holes in the individual component densities arising due to

these phase-singularities with Ωrot = 0.5 is evident in Fig. 3.4(A) for 87Rb and Fig. 3.4(C)

for 23Na.

At still higher rotation frequency of Ωrot = 0.95, the majority of vortices arrange

themselves on both sides of the central chain of vortices as shown in Figs. 3.4(B) and

3.4(D) for 87Rb and 23Na, respectively. The appearance of central chain of vortices,

which appears along the line of the intersection of V +1
eff (x, y) and V −1

eff (x, y), is a generic

feature of these systems with a sufficiently strong one-dimensional SO coupling [120,200].

The density is lower along this line of intersection of the effective potential curves,

and it is energetically favorable for the vortices to align along this line, especially at

the lower rotation frequencies. In both systems, the symmetric effective double-well

potential leads to the condensate occupying the pairs of potential minima at (x =

0, y = ±0.67) and (x = 0, y = ±9.74), respectively, when rotated with Ωrot = 0.5

and 0.95. This can be seen more vividly in the coarse-grained total density defined as

ρ̃(r) =
∫
C(r− r′)ρ(r′)dr′, where C(r− r′) is a normalized Gaussian with a width larger

than the average inter-vortex separation. The coarse-grained total density peaks at the

minima of the effective potentials. To illustrate, we refer the reader to ρ̃(r) in Figs. 3.5(A)

and 3.5(B) corresponding to the total density in Figs. 3.4(A) and 3.4(B), respectively.

The ρ̃(r) peaks at (x = 0, y = ±0.6) and (x = 0, y = ±9.7), respectively, in the two cases.

The role of effective potential on the ground-state solution, say (ψ+1, ψ0, ψ−1)
T , becomes

obvious if one considers the unitary transformation (ϕ+1, ϕ0, ϕ−1)
T = U †(ψ+1, ψ0, ψ−1)

T ,

where component wave-function ϕj is subjected to an effective potential V j
eff(x, y) as

discussed in Sec. 3.1. The component densities obtained by transforming the solutions

shown in Figs. 3.4(C) and 3.4(D) for 23Na, for instance, are shown in Figs. 3.6(A) and

3.6(B), which as discussed in the Sec. 3.1 are the solutions corresponding to γxSzpx

coupling in the mean-field model. The coarse-grained peak values of densities of j = ±1

components (which are not shown here) occur at (0,±0.6) and (0,±9.7) when rotated with



54 Chapter 3. Rotating spin-orbit-coupled spinor BECs

1

Figure 3.4: Equilibrium density profiles of the individual components of the SO-coupled
87Rb spin-1 BEC with c0 = 2482.21, c1 = −11.47, γx = 1, and γy = Ωcoh = 0: (A) with
Ωrot = 0.5 and (B) with Ωrot = 0.95. Similarly, (C) and (D) show the component densities
for 23Na with c0 = 674.91 and c1 = 21.12. The spatial coordinates and densities are in the
units of aosc and a−2

osc, respectively, where aosc = 3.41 µm for 87Rb and 6.63 µm for 23Na.

Ωrot = 0.5 and 0.95 are in agreement with the effective potentials in Figs. 3.1(a) and 3.1(b),

respectively. In the absence of rotation, γxSzpx SO coupling favors miscibility of j = ±1

components for anti-ferromagnetic interactions, whereas it leads to phase-separation if

the coupling strength is above a critical value for ferromagnetic interactions [199]. In the

presence of rotation, the effective potential can lead to the phase-separation not only for a

ferromagnetic 87Rb (not shown here) but also for an antiferromagnetic 23Na as is seen in

the component density profiles in Figs. 3.6(A) and 3.6(B) for 23Na. The j = 0 component
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Figure 3.5: (a) and (b), respectively, show the coarse-grained densities ρ̃(r) corresponding
to the total densities in Figs. 3.4(A) and (B); the peak values of the coarse-grained densities
at (x = 0, y = ±0.6) and (x = 0, y = ±9.7) are marked by dots. Similarly, (c) and (d),
respectively, show ρ̃(r) corresponding to the solutions in Figs. 3.7(B) and (D) and the
respective peaks of ρ̃(r) are marked by dashed circles of radii 4.7 and 9.7. The spatial
coordinates and densities are in the units of aosc and a−2

osc, respectively, where aosc =
3.41 µm.

occupies the cores of vortices in j = ±1 component at Ωrot = 0.5 in Fig. 3.6(A). With

an increase in rotation frequency, the number of atoms in j = ±1 components keeps on

increasing at the cost of atoms in j = 0 component. Hence, at a larger rotation frequency

of Ωrot = 0.95 in Fig. 3.6(B), there are no atoms in the j = 0 component. Another

consequence of the phase-separation is that the spin expectation per particle (which is

independent of rotation in spin space) tends to approach one for all the results shown

in Fig. 3.6 and consequently in Fig. 3.4. Thus, γxSzpx SO coupling provides a simpler

description of the results in Fig. 3.4.

Next for isotropic SO coupling with γ = 0.5 and Ωrot = 0.5, the small number of

vortices which nucleate are unable to crystallize in a triangular vortex-lattice pattern as

shown in Figs. 3.7(A) and 3.7(E) for 87Rb and 23Na, respectively, which are consistent with

the observations in Refs. [19,121]. The vortex patterns in the component densities near
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Figure 3.6: (A) and (B) are the individual component densities of the stationary
SO-coupled spin-1 BECs of 23Na corresponding to HSOC = γxpxSz for γx = 1 with
Ωrot = 0.5 and Ωrot = 0.95, respectively. The j = 0 component is fully absent in (B). These
solutions have been obtained by operating U † on the solutions corresponding to HSOC =
γxpxSx shown in Figs. 3.4(C) and Figs. 3.4(D) for 23Na BEC. The spatial coordinates and
densities are in the units of aosc and a−2

osc, respectively, where aosc = 6.63 µm for 23Na.

the center in Fig. 3.7(E) resemble square lattices consistent with a similar observation

in Ref. [121]. The two condensates rotated at a high rotation frequency Ωrot = 0.95

are shown in Figs. 3.7(B) and 3.7(F); here, the phase profiles of both the condensates

(which are not shown) reveal that the center of the condensates have phase singularities of

charges (0,+1,+2) in j = +1, 0, and −1 components, respectively. At this large rotation

frequency, more vortices are created in condensates, which relax in a triangular lattice

pattern. The coarse-grained peak value of the total densities for the two condensates

lie along a circle of radius 4.7, e.g. ρ̃(r) corresponding to the solution in Figs. 3.7(B) is

shown in Fig. 3.5(C), which is in a decent agreement with the variational single-particle

density maxima position at 4.88 in Fig. 3.3(a). The circle encloses approximately 24

phase singularities, which agrees with phase-winding numbers calculated using variational

analysis of the single-particle Hamiltonian. Next with γ = 1 and Ωrot = 0.5, the component

ground-state densities are shown in Figs. 3.7(C) and 3.7(G). The centers of both the

condensates, in this case, have phase singularities of charges (0,+1,+2), respectively, in
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Figure 3.7: Equilibrium density profiles of the individual component densities of the
SO-coupled spin-1 BECs: (A)-(D) 87Rb with c0 = 2482.21, c1 = −11.47 and (E)-(H)
23Na spin-1 BEC with c0 = 674.91 and c1 = 21.12. (A) and (B) have been obtained with
Ωrot = 0.5, 0.95, respectively, and SO-coupling strength of γ = 0.5. Similarly, (C) and
(D) correspond to SO-coupling strength of γ = 1 with Ωrot = 0.5, and 0.95, respectively.
For SO-coupled 23Na, the plots (E) and (F) correspond to γ = 0.5 and Ωrot =0.5,0.95,
respectively, and (G) and (H) correspond to γ = 1 with Ωrot = 0.5, 0.95, respectively. Blue
circles in (B), (F), (D) and (H) correspond to the peak in coarse-grained total density ρ̃(r).
The spatial coordinates and densities are in the units of aosc and a

−2
osc, respectively, where

aosc = 3.41 µm and 6.63 µm for 87Rb and 23Na, respectively.
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j = +1, 0, and −1 components, respectively. When rotated with a higher frequency

of Ωrot = 0.95, the condensate densities acquire a giant hole at the center as shown

in Figs. 3.7(D) and 3.7(H) with an annulus of triangular vortex-lattice pattern in each

component. The coarse-grained peak values of the total densities in this case, too, are along

a circle of radius 9.7 as is seen in Fig. 3.5(D) for 87Rb, which agrees well with the variational

single-particle density peak in Fig. 3.3(c). The circle contains approximately 100 phase

singularities in each component in agreement with the single particle. The appearance of

a giant vortex at the trap center in the component densities surrounded by singly charged

vortices arranged in an annulus for sufficiently strong isotropic SO-coupling strengths at

fast rotations is a generic feature of these systems [113,116]. The quantitative differences

in respective component densities of 87Rb and 23Na when rotated with Ωrot = 0.95 is

primarily a consequence of c0 for the two BECs being 2482.21 and 674.91, respectively.

3.2.2 Effect of coherent coupling

To highlight the effects which can solely be attributed to an interplay of rotation,

coherent coupling, and interactions, we first consider 23Na BEC without and with coherent

coupling at a rotation frequency of Ωrot = 0.95 in the absence of SO coupling. Here,

without coherent coupling, the BEC supports an array of double-core vortices [30]

in each component, which arrange themselves in a square-lattice pattern as is shown

in Figs. 3.8(A). Each double-core vortex core consists of two non-overlapping phase

singularities of unit charge, each marked with white dots in Fig. 3.8(A). With coherent

coupling of Ωcoh = 1, the system at the same rotation frequency of Ωrot = 0.95 hosts

a triangular-lattice pattern in each component as shown in Fig. 3.8(B), where a typical

vortex core in each component consists of a single phase singularity. Here the effective

potential is an isotropic harmonic potential V −1
eff as shown in shown in Fig. 3.1(c).

Next, we consider the combined effect of SO and coherent couplings on the ground-state

vortex configurations. Here, we consider two parameter sets- first with γx = γy = 1,

Ωcoh = 1, and second with γx = 1, γy = 0, Ωcoh = 1. In the former case, the ground state

density has a hole whose center is shifted along +y direction as shown in Fig. 3.8(C). In

the latter, the component densities distribute in two unequal triangular lattice patterns

above and below the x-axis, as shown in Fig. 3.8(D), and with an increase in Ωcoh, the

size of the smaller triangular lattice pattern in the upper-half plane decreases further

with a corresponding increase in the size of one in the lower-half plane. The splitting

of the component densities into two unequal parts can be attributed to the effective

potential experienced by the system, which is an asymmetric double-well potential created

by V −1
eff (x, y) and V +1

eff (x, y) with a global minima at (x = 0, y = −9.7) and a local minima

at (x = 0, y = +9.7) as shown in Fig. (3.1)(d). We obtain similar results for 87Rb spin-1

BEC at Ωrot = 0.95 which have not been shown here.
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Figure 3.8: Equilibrium density profiles of the individual components of 23Na spin-1 BEC
with interaction parameters c0 = 674.91, c1 = 21.12, when rotated with Ωrot = 0.95. (A)
has been obtained for Ωcoh = γx = γy = 0 and Ωrot = 0.95, whereas (B), (C), and (D)
have been obtained with coherent-coupling strength Ωcoh = 1 and SO-coupling strengths
of γx = γy = 0, γx = γy = 1, and γx = 1, γ = 0, respectively. The spatial coordinates and

densities are in the units of aNa
osc and

[
aNa
osc

]−2
respectively, where aNa

osc = 6.63 µm.
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3.2.3 Stability and expansion dynamics

All the stationary states discussed in the present work correspond to repulsively interacting

spinor BECs subjected to rotation and SO coupling and are dynamically stable in the

rotating frame. As an illustration of this, we consider the real-time dynamics of the

solutions in Figs. 3.4(C) and 3.4(D) with a random (complex) Gaussian noise δψj(x, y)

added to each component wavefunction ψj(x, y) at t = 0, which then are taken as initial

solutions to solve CGPEs. (3.17a) and (3.17b) in real time. We consider δψj(x, y) =

10−2ηj(x, y), where ηj(x, y) is a distribution of complex Gaussian random numbers. We

observe that the condensates retain their structure including the lattice patterns during

the real-time evolution. This is evident from the component densities in Figs. 3.9(A) and

3.9(B) corresponding to solutions in Figs. 3.4(C) and 3.4(D), respectively. It is to be

noted that anomalous flux created by SO coupling plays an important role in stabilising

the q2D SO-coupled spinor BEC interacting with attractive mean-field interactions against

collapse instability [201]. The condensates considered in the present work are interacting

by net repulsive mean-field interactions and hence are not expected to have any collapse

instability. Nonetheless, in the experiments, the vortex lattice in the BECs are imaged

after releasing the condensate from the trap, and in this context, for the solutions in the

present work, such an expansion dynamics on switching off the trap in the lab frame

will be dictated primarily by an interplay of the anomalous flux and the centrifugal flux

due to the angular momentum in the system. As an example, we consider the expansion

dynamics of the solution in Fig. 3.6(B) with γSzpx SO coupling, when V (x, y) and Ωrot

are both set to zero at t = 0, thus mimicking the expansion dynamics in the experiments.

The ensuing evolution of the total density is shown via the images of the total density at

three instants in Fig. 3.10, where j = +1 (j = −1) component contributes to the density

above (below) y axis. In this case, the center of mass of j = ±1 component moves with

velocity v = ∓9.3x̂ in the dimensionless units. Using the minimum energy single particle

solutions Φ = (ϕ+1, 0, 0)
T and Φ = (0, 0, ϕ−1)

T , where ϕj are defined in Eq. (3.7), the

velocity [201]

v =
1

Φ†Φ

[ ι
2

(
Φ∇Φ† − Φ†∇Φ

)
+Φ†(γSz)Φ

]
,

=

(
∓ γ

1− Ω2
rot

+ γ

)
x̂, (3.21)

where − sign corresponds to (ϕ+1, 0, 0)
T and + to (0, 0, ϕ−1)

T . The anomalous velocity

contribution to the velocity is γ, which is consistent with Ref. [201], and the remaining is

arising as an interplay of coupling and rotation. For γ = 1 and Ωrot = 0.95, Eq. (3.21)

yields v = ∓9.25x̂ in agreement with results in Fig. 3.10. Similarly, we observe that

with two-dimensional Rashba SO coupling too the centrifugal flux during the expansion

dynamics (results not shown here) is created by an interplay of SO coupling and rotation.
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Figure 3.9: Realtime evolution of the stationary states perturbed with an addition of a
random complex (Gaussian) noise at t = 0: (A) ρj(x, y, t) corresponding to the solution in
Fig. 3.4(C) with c0 = 674.91, c1 = 21.12, γx = 1 and Ωrot = 0.5 at t = 0 and t = 100, and
(B) corresponding to the solution in Fig. 3.4(D) with Ωrot = 0.95 with same interaction
and SO coupling.

3.3 Spin-expectation per particle and spin-texture for

spin-1 BECs

As noted in Sec. 3.2.1, the ground state solutions of the rotating SO-coupled 87Rb and
23Na BECs at moderate to high rotation frequencies are qualitatively similar, and the

quantitative differences stem from the different magnitudes of c0. To ascertain this further,

here we consider SO-coupled 87Rb and 23Na spin-1 BECs with γ = 0.5 or 1, Ωcoh = 0 and
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Figure 3.10: Expansion dynamics of the solution in Fig. 3.6(B) with c0 = 674.91, c1 =
21.12, and γx = 1 in absence of trapping potential and rotation: (a) ρ(x, y, t = 0), (b)
ρ(x, y, t = 0.5) and (c) ρ(x, y, t = 1). The component densities ρ±1(x, y, t) are moving
with speed 9.3 along ∓x directions.

(approximately) same c0 but with different atom numbers. For 87Rb, we again consider

c0 = 2482.21 and c1 = −11.47 corresponding to 105 atoms, whereas for 23Na we consider

3.68×105 atoms resulting in c0 = 2482.35 and c1 = 77.68. We define the spin-density

vector F = (Fx, Fy, Fz) where

Fν(x, y) =
∑
m,m′

ψ∗
m(x, y)(Sν)mm′ψm′(x, y), (3.22)

and f =
∫
|F(x, y)|dr/

∫
ρ(x, y)dr, which serves as a measure of spin-expectation per

particle for an inhomogeneous system. We examine the angular momentum per particle,

f , and spin-texture [1] f(x, y) = F(x, y)/ρ(x, y) as a function of rotation frequency. In the

absence of rotation, the 87Rb and 23Na spin-1 BECs have f = 1 and 0, respectively [1].

The f as a function of rotation frequency Ωrot for the two systems is shown in Fig. 3.11,

which illustrates that with increase in Ωrot, f → 1 for 23Na whereas it remains close

to 1 for 87Rb. We also analyse spin-expectation per particle using the single-particle

variational solution Φvar in Eq. (3.14) to evaluate f . The variational analysis predicts

f ≈ 1 for γ = 0.5 (1) and Ωrot ⩾ 0.6 (0.4), which is consistent with the numerical results

for 87Rb and 23Na BECs at moderate to high rotations as is shown in Fig. 3.11. The

differences in numerical and variational f values for Ωrot ⩽ 0.6 (0.4) are mainly because of

spin-dependent interactions, which expectedly become increasingly less important with an

increase in rotation frequency. Next, we consider the spin-texture of 87Rb and 23Na BEC

with γ = 0.5,Ωcoh = 0 when rotated with Ωrot = 0.1 and 0.95. The component densities

for 87Rb and 23Na when rotated with Ωrot = 0.1 are shown in Figs. 3.12(A) and 3.12(B),

respectively, and the corresponding spin textures are in Figs. 3.12(a) and 3.12(b). At

this frequency 87Rb hosts three skyrmions in Fig. 3.12(a) as compared to two for 23Na in

Fig. 3.12(b) (near the center of the trap). The generation of skyrmion and half-skyrmion
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Figure 3.11: Variation of spin-expectation per particle f with rotation frequency obtained
from the variational method discussed in Sec. 3.1 and the numerical solutions of the
CGPEs for the SO-coupled 87Rb and 23Na BECs.

excitations in rotating SO-coupled BECs is discussed in Refs. [115,118]. The spin-textures

at Ωrot = 0.95 are shown in Fig. 3.13(a) for 87Rb and Fig. 3.13(b) for 23Na, here both

the systems have a skyrmion at the center surrounded by a lattice of half-skyrmions. The

spin-texture of 87Rb corresponds to the component densities shown in Fig. 3.7(B), whereas

the component densities of 23Na which are indistinguishable 87Rb are not shown here. The

similarity of the two systems at faster rotation is also reflected in the spin-textures. The

similarity in the response of the two systems at fast rotations has also been confirmed

based upon their mass and spin currents.

3.4 Rotating SO-coupled spin-2 BEC

Under a q2D harmonic confinement, a rotating SO-coupled spin-2 BEC under mean-field

approximation can be described by a set of five CGPEs [1]

ι
∂ψ±2

∂t
= Hψ±2 + c1(F∓ψ±1 ± 2Fzψ±2) + c2

Θψ∗
∓2√
5

+ Γ±2, (3.23a)

ι
∂ψ±1

∂t
= Hψ±1 + c1

(√
3

2
F∓ψ0 + F±ψ±2 ± Fzψ±1

)
− c2

Θψ∗
∓1√
5

+ Γ±1, (3.23b)

ι
∂ψ0

∂t
= Hψ0 + c1

√
3

2
(F−ψ−1 + F+ψ1) + c2

Θψ∗
0√
5

+ Γ0, (3.23c)

where Ψ = (ψ+2, ψ+1, ψ0, ψ−1, ψ−2)
T is a five component order parameter, H is same

in Eq. (3.18). In Eqs. (3.23a)-(3.23c), Γj for an equal-strength mixture of Rashba and
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Figure 3.12: (A) displays the component density of the SO-coupled 87Rb BEC with
γx = γy = 0.5 when rotated with Ωrot = 0.1 and (B) displays the same for 23Na
BEC. The interaction strengths for 87Rb and 23Na are c0 = 2482.21, c1 = −11.47 and
c0 = 2482.35, c1 = 77.68, respectively. The locations and signs of phase-singularities
in each component are marked with ± signs. (a) and (b), respectively, show the
spin-textures corresponding to the densities in (A) and (B), where (a) has the three
skyrmions (marked by red dots), and (b) has two near the center of the trap in addition
to two cross-disgyrations in spin-texture along x-axis coinciding with +1 phase singularity
in j = 0 component. The spatial coordinates and densities are in the units of aosc and
a−2
osc, respectively, where aosc = 3.41 µm and 6.63 µm for 87Rb and 23Na, respectively.

Dresselhaus couplings are

Γ±2 = −ιγx
∂ψ±1

∂x
, Γ±1 = −ι

(
γx
∂ψ±2

∂x
+

√
3

2
γx
∂ψ0

∂x

)
,

Γ0 = −ι

(√
3

2
γx
∂ψ1

∂x
+

√
3

2
γx
∂ψ−1

∂x

)
,
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Figure 3.13: (a) shows the spin-texture for 87Rb system and (b) shows the same for 23Na
system at rotation frequency Ωrot = 0.95. Both figures have a skyrmion at the centre
(marked by a red dot) and in the rest of the regions, half-skyrmion lattice (black dot
marks the center of one such half-skyrmion). The respective interaction parameters are
the same as those considered in Fig. 3.12.

for Rashba coupling are

Γ±2 = −ιγ
(
∂ψ±1

∂y
± ι

∂ψ±1

∂x

)
,

Γ±1 = −ιγ

(
∂ψ±2

∂y
+

√
3

2

∂ψ0

∂y
∓ ι

∂ψ±2

∂x
± ι

√
3

2

∂ψ0

∂x

)
,

Γ0 = −ιγ

(√
3

2

∂ψ1

∂y
+

√
3

2

∂ψ−1

∂y
− ι

√
3

2

∂ψ1

∂x
+ ι

√
3

2

∂ψ−1

∂x

)
,

and rest of the quantities have the same definitions as in Eqs. (2.7a), (2.7b), (2.9a)-(2.9c).

3.4.1 Numerical Results for spin-2 BEC

We consider 50, 000 atoms of spin-2 BECs like 23Na and 87Rb in an isotropic q2D trap

with ωx = ωy = 2π × 10 Hz and ωz = 2π × 100 Hz. The oscillator lengths are 4.69µm

and 2.41µm for 23Na and 87Rb, respectively. The three scattering lengths for 23Na are

a0 = 34.9aB, a2 = 45.8aB, and a4 = 64.5aB [61] and the same for 87Rb are a0 = 87.93aB,

a2 = 91.28aB, and a4 = 99.18aB [202]. The triplet of dimensionless interaction strengths

are (c0, c1, c2) = (340.45, 16.90, − 18.25) and (c0, c1, c2) = (1164.80, 13.88, 0.43)

for 23Na and 87Rb, respectively. The SO-coupled spin-2 BEC can exhibit various

ground-state solutions depending on the interaction parameters and the strength of the

SO coupling in the absence of a rotation [185,203,204]. For example, the axisymmetric

solution characterized by (−2,−1, 0,+1,+2) charge phase singularities in the component

wavefunction can arise from the equal-weight superposition of an infinite number of plane

waves [90,203]. Additionally, other patterns such as stripe [90,203], square lattices [90,203],

or triangular lattices [90,203] can arise through the superposition of counter-propagating
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Figure 3.14: Ground-state component densities of an SO-coupled 23Na BEC with c0 =
340.45, c1 = 16.90, and c2 = −18.25 for (A) γx = 1, γy = 0 and (B) γ = 1. (C) and (D)
show the same for 87Rb with c0 = 1164.80, c1 = 13.88, and c2 = 0.43.

plane waves, four plane waves with propagation vectors at a right angle to each other, or

three plane waves with propagation vectors at an angle of 2π/3 to each other, respectively.

In the absence of rotation, for an equal-strength mixture of Rashba and Dresselhaus

couplings with γx = 1 and Ωcoh = 0, the ground-state density profiles for both

antiferromagnetic and cyclic interactions have vertical stripe patterns [see Figs. 3.14(A)

and 3.14(C)]. For Rashba SO coupling with γ = 1 and Ωcoh = 0, the ground-state density

profiles for the two interactions are qualitatively different with a horizontal stripe for the

antiferromagnetic and a triangular lattice for the cyclic interaction [cf. Figs. 3.14(B) and

3.14(D)].

Antiferromagnetic interactions

In the rotating frame, the component density profiles with rotation frequencies Ωrot =

0.5, 0.7, and 0.9 are shown in Figs. 3.15(A)-3.15(C), respectively. With the increase
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Figure 3.15: Ground-state component densities of an SO-coupled 23Na BEC with c0 =
340.45, c1 = 16.90, c2 = −18.25, γx = 1, γy = 0: (A) Ωrot = 0.5, (B) Ωrot = 0.7, and (C)
Ωrot = 0.9.

in rotation frequency, the asymmetric double-well potential experienced by the boson

becomes apparent in Fig. 3.15(B) and 3.15(C), as was discussed in Sec. 3.2.1 for spin-1

BEC.

For Rashba SO coupling, the component density profiles for Ωrot = 0.5, 0.7, and 0.9 are

shown in Fig. 3.16. When rotated with Ωrot = 0.7, the central region of the condensate has

phase singularities with charges (0,+1,+2,+3,+4), respectively [see Fig. 3.16(B)]. The

charges of these singularities have been determined from the phase of the order parameter

(not shown here). At a larger rotation frequency Ωrot = 0.9, the component densities

acquire a ring-type structure with a giant vortex at the center, which again is reminiscent

of an effective toroidal potential as discussed in Sec. 3.2.1.

Cyclic interactions

The density profiles for different Ωrot are shown in Fig. 3.17 for the equal-strength mixture

of Rashba and Dresselhaus couplings and in Fig. 3.18 for Rashba coupling. The density

profiles for moderate to high rotation frequencies are qualitatively similar to 23Na with

antiferromagnetic interactions; the minor differences in density profiles may be attributed

to different values of c0.

The rotational energy of a scalar BEC (with a large number of vortices) in the rotating

frame, E(Ωrot ̸= 0) − E(Ωrot = 0), is comparable to the energy of a rigid body under
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Figure 3.16: Ground-state component densities of an SO-coupled 23Na with c0 =
340.45, c1 = 16.90, c2 = −18.25, γ = 1: (A) Ωrot = 0.5, (B) Ωrot = 0.7, and (C) Ωrot = 0.9.

rotation, i.e. −IΩ2
rot/2, where I is the moment of inertia of the condensate [33,121]. We

illustrate in Fig. 3.19 the rotational energy as a function of Ωrot for SO-coupled BECs with

both antiferromagnetic and cyclic interactions. The rotational energy for both systems

decreases as −Ω2
rot.

The SO-coupled BEC with realistic ferromagnetic interactions under moderate to

high rotation frequencies behaves similarly to the BECs with antiferromagnetic/cyclic

interactions and has similar equilibrium density profiles (not shown here).

3.5 Summary

We have studied the stationary-state vortex lattice configurations of rotating SO-coupled

spin-1 and spin-2 BECs trapped in q2D harmonic potentials. Using exact numerical

solutions complemented by a variational analysis, we have shown that the non-interacting

part of the Hamiltonian can be translated to the rotating effective potentials with

symmetric, asymmetric double-well, and toroidal structures. We have illustrated

using the mean-field GP formalism, employing the realistic experimental parameters,

at moderate to high rotation frequencies, the analytically obtained effective potential

minima and the numerically obtained coarse-grained density maxima’s position are in

excellent agreement. The effects of rotation are further elucidated by computing the

spin expectation per particle for the ferro- as well as the antiferromagnetic BECs. For

the former, the spin expectation is always close to unity, irrespective of the rotation
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Figure 3.17: Ground-state component densities of an SO-coupled 87Rb BEC with c0 =
1164.80, c1 = 13.88, c2 = 0.43, γx = 1, γy = 0: (A) Ωrot = 0.5, (B) Ωrot = 0.7, and (C)
Ωrot = 0.9.

frequency. Meanwhile, for the latter, the spin-expectation value increases with an increase

in rotation frequency and tends to approach one. For the simpler one-dimensional coupling

(∝ γSzpx), spatial segregation between the j = ±1 components results in spin-expectation

per particle approaching one for the antiferromagnetic BEC; similarly, single-particle

variational analysis with Rashba SO coupling also indicates the spin-expectation per

particle approaching one irrespective of the spin-exchange interactions with increasing

rotational frequency. The similarity in the response of the fast-rotating spin-1 BECs

with ferromagnetic and antiferromagnetic interactions, and similarly, the response of

spin-2 BECs with ferromagnetic, antiferromagnetic, and cyclic interactions highlights

the much-diminished role of the spin-exchange interactions vis-à-vis the other competing

terms in the system’s Hamiltonian. The results reported in this chapter are discussed in

Refs. [205,206].
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Figure 3.18: Ground-state component densities of an SO-coupled 87Rb BEC with c0 =
1164.80, c1 = 13.88, c2 = 0.43, γ = 1: (A) Ωrot = 0.5, (B) Ωrot = 0.7, and (C) Ωrot = 0.9.
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Figure 3.19: Rotational energy E(Ωrot ̸= 0)−E(Ωrot = 0) as a function of Ωrot for Rashba
SO-coupled 23Na and 87Rb BECs.



Chapter 4

Quantum phases and the excitation

spectrum of an SOAM-coupled

spin-1 BEC

As discussed in Sec. 1.4, the experimental realization of SOAM coupling represents

a significant milestone in the research field of spinor BECs [6]. In this chapter, we

calculate the low-lying excitation spectrum of ground-state phases, specifically focusing

on the coreless and polar-core vortex states of SOAM-coupled spin-1 condensates. These

two solutions are circularly symmetric and have been experimentally realized [136]

by employing a Gaussian and a Laguerre-Gaussian beam that co-propagate along the

z-direction, resulting in an angular momentum transfer of ℏ to the atom.

The chapter is organized as follows. In Sec. 4.1, we present the Hamiltonian describing

an SOAM-coupled spin-1 BEC in cylindrical coordinates and the reduction to a q2D

formulation through a set of CGPEs. In Sec. 4.2, we discuss the ground-state phases

of SOAM-coupled ferromagnetic and polar BECs in the limit of vanishing detuning. In

Sec. 4.3.1, we discuss the spectrum of the noninteracting SOAM-coupled spin-1 BEC, and

follow it with the collective excitations of the interacting SOAM-coupled spin-1 BECs

in 4.3.2. In Sec. 4.3.3, we explore the effect of detuning on the ground-state phases

and excitation spectrum. In Sec. 4.3.4, starting with the ground state solution, we

study the low-lying collective excitations which are excited with the addition of suitable

perturbations to the Hamiltonian at t = 0. In Sec. 4.3.5, the variational method to study

a few low-lying modes is discussed, which is followed by the summary of key results in

Sec. 4.4.

4.1 Mean-field model for an SOAM-coupled spin-1 BEC

In this chapter, we consider SOAM-coupled spin-1 BECs in which the orbital angular

momentum of the center of the mass of the atoms is synthetically coupled to their

internal spin states [5,135]. In the cylindrical coordinate system, the non-interacting

(single-particle) part of the Hamiltonian for the spinor BEC is [135,136]

Hs =

[
− ℏ2

2M

∂

r∂r

(
r
∂

∂r

)
+

L2
z

2Mr2
− ℏ2

2M

∂2

∂z2
+ V (r)

]
I

+Ω(r)[cos(ϕ)Sx − sin(ϕ)Sy] + δSz, (4.1)
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where I is a 3×3 identity matrix, V (r) = M(ω2
0r

2/2 + ω2
zz

2)/2 constitutes the external

harmonic potential to trap the atoms of mass M , Lz = −ιℏ∂/∂ϕ is the angular

momentum operator, Ω(r) = Ω0
√
e(r/r0) exp[−r2/2r20] is the Raman-coupling strength

with Ω0 and r0 as the Rabi frequency and the radius of the maximum-intensity

(cylindrical) surface [135,136], respectively, δ is the Raman detuning, and Sx, Sy and Sz are

irreducible representations of the spin-1 angular momentum operators. Under mean-field

approximation, the interacting part of the Hamiltonian Hint is given by [1]

Hint =
c0
2
ρ+

c1
2
F.S (4.2)

with c0 and c1 as the mean-field interaction parameters. The total density of the system

is given by ρ, F = (Fx, Fy, Fz) is the spin-density vector, and S = (Sx, Sy, Sz). Since the

SOAM coupling is restricted to the radial plane, and we consider ωz ≫ ω0, the dominant

dynamics is constrained to the same plane with frozen axial degrees of freedom. We can

then integrate out the z degree of freedom from the condensate wave function and describe

the system as q2D on the radial r-ϕ plane. Starting from the Hamiltonian H = Hs+Hint,

in polar coordinates, we obtain the following coupled q2D CGPEs in dimensionless form

ι
∂ψ±1

∂t
= Hψ±1 + c1(ρ0 ± ρ−)ψ±1 + c1ψ

∗
∓1ψ

2
0 ± δψ±1 +

Ω(r)√
2
e±ιϕψ0, (4.3a)

ι
∂ψ0

∂t
= Hψ0 + c1ρ+ψ0 + 2c1ψ+1ψ−1ψ

∗
0 +

Ω(r)√
2
(e−ιϕψ+1 + eιϕψ−1), (4.3b)

where

H = −1

2

∂

r∂r

(
r
∂

∂r

)
+
L2
z

2r2
+
r2

2
+ c0ρ, ρ =

∑
j=±1,0

ρj , ρj = |ψj |2, ρ± = ρ+1 ± ρ−1.

Under geometric renormalization, in terms of s-wave scattering lengths a0 and a2 in the

total spin 0 and 2 channels, respectively, c0 and c1 take the form

c0 =
√
8πα

N(a0 + 2a2)

3aosc
, c1 =

√
8πα

N(a2 − a0)

3aosc
, (4.4)

denoting the spin-independent and spin-dependent interactions, respectively. The

anisotropy parameter α = ωz/ω0 is defined to be the trapping frequency ratio along

the axial to the radial direction, and N is the total number of atoms. The units of length,

time, energy, and energy eigenfunctions are considered to be aosc =
√

ℏ/(Mω0), ω
−1
0 , ℏω0,

and a−1
osc, respectively, and

∫
rρ(r)drdϕ = 1.

4.2 Ground-state quantum phases of SOAM coupled spinor

BEC

To understand the intercomponent phase relationship imposed by various competing

terms in the Hamiltonian, we consider a generic circularly symmetric ansatz, ψj =
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fj(r)e
ι(wjϕ+βj), for the component wavefunctions, where wj and βj are, respectively,

the phase-winding number and constant phase associated with the radially-symmetric

real function fj . The phase-dependent part of the interaction energy is minimized,

provided [99]

w+1 − 2w0 + w−1 = 0, (4.5a)

β+1 − 2β0 + β−1 =

2nπ for c1 < 0,

(2n′ + 1)π for c1 > 0,
(4.5b)

where n and n′ are integers. Similarly, the SOAM-part of the energy is minimized if

w+1 − w0 = 1, w0 − w−1 = 1, (4.6a)

β+1 − β0 = (2p+ 1)π, β0 − β−1 = (2p′ + 1)π, (4.6b)

where p and p′ are again integers. If the conditions on the winding numbers in Eq. (4.6a)

are satisfied, the condition in Eq. (4.5a) is satisfied too. On the other hand, conditions

between the constant phase factors in Eqs. (4.5b) and (4.6b) can be simultaneously satisfied

for c1 < 0 only.

To further substantiate the intercomponent phase relationships imposed by

SOAM-coupling, we extract S = Sx cosϕ − Sy sinϕ [140] from the single-particle

Hamiltonian Hs. In the limit when Ω0 is large, c1-dependent part of the Hamiltonian

can be neglected, and the phase structure of the emergent ground-state solution is mainly

determined by S via its minimum energy eigen spinor. The normalized eigen spinor of

S with minimum eigen energy −1 can be written as (eι(m+1)ϕ, −
√
2eιmϕ, eι(m−1)ϕ)T /2

with m being any integer. The phase structure of this eigenspinor is consistent with

phase relations in Eqs. (4.6a) and (4.6b). With an increase in m, there is an energy

cost from the phase-dependent part of the kinetic energy, suggesting that only small

values of phase-winding numbers may emerge. Numerical results confirm this, where

we obtain a solution corresponding to m = 0 in large Ω0 limit irrespective of the nature

of spin-exchange interactions. The spinor part of the ground state in this limit tends to

approach the aforementioned eigenstate of S with m = 0.

Various numerical techniques have been employed in the literature to study spinor

BECs in q1D, q2D, and 3D settings as discussed in Chapter 2 [172,181,207]. In practice,

we choose the time-splitting finite-difference method and choose different initial guess

solutions as an input to Eqs. (4.3a) and (4.3b) to arrive at ground-state solutions. As

an example, we take initial states Ψ ∼ e−r2/2 × (eι(m+1)ϕ, −
√
2eιmϕ, eι(m−1)ϕ)T /2, with

different values of m. Besides these initial states, we consider a random initial guess where

ψj(r) are complex Gaussian random numbers.

At the outset, motivated by the experimental realization of the SOAM-coupled

BECs [135,136] using spin-1 87Rb atoms, we validate our numerical simulations to study

and emulate the observed ground-state quantum phases of the ferromagnetic system in
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the absence of detuning δ = 0 first and later with δ ̸= 0. It is to be noted that in

the experiments [136], both zero and non-zero values of detuning have been considered.

Similar to the experiment, we consider the 87Rb atoms confined in an anisotropic harmonic

trap with ω0 = 2π × 140 Hz and r0 = 15 µm [136]. However, we take ωz = 2π × 2400

Hz, enabling us to perform q2D simulations. Here a0 = 101.8aB and a2 = 101.4aB with

aB as the Bohr radius [197]. The ground-state densities and phase distributions, obtained

numerically by solving the CGPEs (4.3a) and (4.3b) with imaginary-time propagation,

for given Ω0 and N , are in qualitative agreement with the experimental results. The

ground-state densities calculated for a pair of Ω0 values with N = 5000 are shown in

Figs. 4.1(a) and 4.1(b). For Ω0 = 0.25, the solutions with (+2,+1, 0) and (0,−1,−2)
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Figure 4.1: Ground-state densities of the SOAM-coupled 87Rb spin-1 BEC with c0 =
121.28 and c1 = −0.56 corresponding to N = 5000 for (a) Ω0 = 0.25 and (b) Ω0 = 1.
The j = +1, 0, and −1 spin components carry phase winding numbers of +2,+1, and 0,
respectively, in (a) and +1, 0, and −1, respectively, in (b). As discussed in the text, the
various quantities in this and the rest of the figures are dimensionless.

phase-winding numbers are two degenerate ground states, and with Ω0 = 1, (+1, 0,−1)

state is obtained as the ground state solution. As we vary Ω0 from 0 to 20, at small Ω0, due

to the co-action of spin-dependent interaction term and SOAM coupling, (+2,+1,0)-type

solution appears as the ground state. After a critical value of coupling strength (say Ωc
0),

ΩS primarily dictates the nature of the solution to result in (+1, 0,−1)-type phase. The

condition ⟨S⟩ ≈ −1 is satisfied in this latter phase for sufficiently large Ω0 as shown in

Fig. 4.2(a), which indicates that no further phase can be expected with higher Ω0. We

term these two phases I and II. In contrast to 87Rb, (+1, 0,−1)-type is the single ground

state phase for 23Na with c1 > 0. In this case too, ⟨S⟩ ≈ −1 at large Ω0 as shown in

Fig. 4.2(a).

Longitudinal magnetization per particle fz =
∫
Fzdr, spin expectation per particle

f =
∫
|F|dr where |F| =

√
F 2
x + F 2

y + F 2
z , and angular momentum per particle ⟨Lz⟩ can
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Figure 4.2: (a) ⟨S⟩ as a function of SOAM-coupling strength Ω0 for 87Rb with c0 = 121.28
and c1 = −0.56 and 23Na with c0 = 121.35 and c1 = 3.80. Inset in (a): ⟨Lz⟩ for 87Rb as
a function of Ω0. (b) |fz| and f for 87Rb and 23Na as a function of SO coupling strength
Ω0. The c0 and c1 for 87Rb and 23Na are the same as those in (a).

be used to characterize these ground-state phases. In the ferromagnetic domain with

c0 = 121.28 and c1 = −0.56, for Ω0 <= Ωc
0 = 0.3, i.e. in phase I, ⟨Lz⟩ ̸= 0 and increases

continuously as shown in the inset of Fig. 4.2(a), whereas |fz| ≈ 1 and f = 1 as shown in

Fig. 4.2(b). For Ω0 > Ωc
0, the transition to phase II is accompanied by discontinuities in

⟨Lz⟩, |fz|, and f , where the former two reduce to zero, the latter becomes less than one.

In the antiferromagnetic domain, e.g. with c0 = 121.35 and c1 = 3.8, there is no phase

transition with an increase in Ω0 resulting in smooth behaviour of the same quantities.

Here f asymptotically approaches one, whereas |fz| and ⟨Lz⟩, expectantly, remain zero.

Furthermore, we calculate the ground state phase diagrams in c1/c0-Ω0 plane, where

we fix c0 = 121.28 and vary c1, and N -Ω0 plane for fixed c1/c0 = −0.0046 which

corresponds to 87Rb. The ratio c1/c0 may be manipulated experimentally by tuning one

of the scattering lengths by optical Feshbach resonance [208]. These two are respectively

shown in Figs. 4.3(a) and 4.3(b), thus again illustrating that an antiferromagnetic BEC

has one ground-state phase in contrast to the ferromagnetic one. It can be seen that

with a decrease in c1 (keeping c0 fixed) in the ferromagnetic phase, the domain of phase

I increases, whereas with an increase in the number of atoms (keeping c1/c0 fixed), it

decreases. Phase I and II also have distinctive topological spin textures F = (Fx, Fy, Fz).

For the solutions in Figs. 4.1(a) and 4.1(b) spin-textures are shown in Figs. 4.4(a) and

4.4(b), respectively. The spin-textures in Figs. 4.4(a) and 4.4(b) are in agreement with

those reported in Ref. [136]; at the centre, F points along negative z direction in Fig. 4.4(a),

whereas it is zero in Fig. 4.4(b). The details of the spin-textures allow the identification

of phases I and II with the coreless vortex and polar-core vortex states, respectively. It is

to be noted that in Ref. [132], the two reported circularly symmetric phases correspond

to (−4,−2, 0)- and (−2, 0,+2)-type solutions distinct from phases I and II in the present

work.
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Figure 4.3: The ground-state phase diagrams in (a) c1/c0-Ω0 and (b) N -Ω0 planes. In (a)
c0 was kept fixed at 121.28 while varying c1. In (b) c1/c0 = −0.0046 corresponding to
87Rb.

4.3 Collective excitation spectrum

To study the excitation spectrum, we exploit the innate circular symmetry of the

Hamiltonian. To this end, we perform a local spin rotation about ẑ by the azimuthal

angle -ϕ to remove the ϕ dependence from the Hamiltonian. As a result, the order

parameter Ψ = (ψ+1, ψ0, ψ−1)
T is transformed to e−ιSzϕΨ = (e−ιϕψ+1, ψ0, e

ιϕψ−1)
T , and

the transformed Hamiltonian takes form

H =

[
−1

2

∂

r∂r

(
r
∂

∂r

)
+

(Lz + Sz)
2

2r2
+ V (r)

]
I+Ω(r)Sx +Hint, (4.7)

where Hint = c0ρ/2+ c1F.S/2. The Hamiltonian in Eq. (4.7) is circularly symmetric, and

one can seek the simultaneous eigenfunctions of H and Lz with fixed angular momentum

lz = 0, 1, . . .. For example, the solutions presented in Figs. 4.1(a) and 4.1(b) can now be

seen as corresponding to lz = 1 and 0, respectively. The single-particle Hamiltonian in Eq.

(4.1) is symmetric under the transformation defined by an operator R = exp(−iSxπ)K,

where K is complex-conjugation operator. This implies that for any lz ̸= 0, there will

be two degenerate solutions connected by R. For example, for lz = 1, the degenerate

counterpart with lz = −1 corresponds to (0,−1,−2) phase-winding numbers in the

component wavefunctions.

We use the Bogoliubov approach to study the excitation spectrum. In which we

consider the fluctuations to the ground state by writing the perturbed order parameter as

Ψ(r, ϕ, t) = e−ιµt+ι(lz+Sz)ϕ[Ψeq(r) + δΨ(r, t)eιlqϕ], (4.8)

where Ψeq(r) = [R+1(r), R0(r), R−1(r)]
T is the radial part of the order parameter with

Rj as the radial wavefunction corresponding to the jth spin component, µ is the chemical
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Figure 4.4: (a) and (b) show the spin-texture for 5000 atoms of 87Rb system with the
coupling strength Ω0 = 0.25 and Ω0 = 1, respectively. The length of the arrows shows the
projection of F(x, y) on the x-y plane, and the colour bar indicates its component along
z axis; F(x, y) vector field lies on the x-y plane in (b).

potential, and lq = 0,±1,±2, . . . is the magnetic quantum number associated with the

angular momentum of the quasiparticle excitations. The details of the BdG analysis are

given in Appendix B.

4.3.1 Non-interacting system

To understand the effect of coupling strength, we first study the single-particle excitation

spectrum. The ground-state solution has phase-winding numbers (±1, 0) in j = ±1, 0 spin

states, respectively. The excitation spectrum is shown in Fig. 4.5. For Ω0 = 0, the nth

energy level is 3(n + 1)-fold degenerate, as the single-particle Hamiltonian is identical to

a system of three decoupled isotropic two-dimensional harmonic oscillators. For example,

excitations with energies 0 and 1 are three- and six-fold degenerate, respectively. The

SOAM-coupling lifts the degeneracies partially. For example, for Ω0 ̸= 0, there is only one

zero-energy excitation; similarly, the red lines in the spectrum in Fig. 4.5 correspond to

non-degenerate excitations, whereas the black ones to two-fold degenerate modes. The

non-degenerate modes have the magnetic quantum number of the excitation lq = 0,

whereas modes with two-fold degeneracy have lq ̸= 0.

4.3.2 Interacting spin-1 BEC

Here we study the excitation spectrum (a) as a function of Ω0 for fixed c0 and c1 and

(b) as a function of N for fixed Ω0 and c0/c1 ratio. Both Ω0 and N can be varied in

an experiment [135,136]. As was discussed in Sec. 4.2, for c1 < 0, both phases I and II

can appear as the ground-state phases with a variation of either Ω0 or N . We primarily

consider 87Rb BEC in the following discussion.
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Figure 4.5: (Color online) Single particle excitation spectrum for spin-1 BEC as a function
of SOAM coupling strength ω0.

Phase I: Here we consider c0 = 121.18 and c1 = −0.56 and vary Ω0. The excitation

spectrum for phase I is shown in Fig. 4.6(a) for lq = 0,±1 and (b) for |lq| ≥ 2. The

modes with frequencies 1 and 2 are, respectively, dipole and density-breathing modes in

Fig. 4.6(a) . This identification of a mode is based on the real-time evolution of the

expectation of a suitably chosen observable, as will be discussed in the next subsection.

The presence of ferromagnetic interactions further aids the lifting of the degeneracy, in this

case between the modes with magnetic quantum numbers ±lq, which are degenerate at the

single-particle level. We have confirmed this, for example, by examining the excitation

spectrum of a system with c0 = 121.18 and c1 = −0.6c0 ≪ −0.56 (not shown here),

where the non-degenerate nature of the spectrum is clearly seen. In phase I, there are two

zero-energy Goldstone modes corresponding to two broken continuous symmetries, namely

gauge and rotational symmetry. The latter corresponds to the symmetry transformation

generated by Lz.

Phase II: As already mentioned in Sec. 4.2, the transition from phase I to II occurs

at Ω0 > 0.3 for c0 = 121.18 and c1 = −0.56. The transition is accompanied by

the discontinuities in the excitation spectrum. The excitation spectrum for phase II is

shown in Fig. 4.6(c). Here, among the low-lying modes are dipole and breathing modes

corresponding to both density and spin channels. Both density- and spin-dipole modes

are doubly degenerate, corresponding to magnetic quantum number lq = ±1. On the

other hand, both density- and spin-breathing modes are non-degenerate with lq = 0.
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Figure 4.6: Low-lying excitation spectrum of 87Rb SOAM-coupled spin-1 BEC with c0 =
121.18 and c1 = −0.56 as a function of coupling strength Ω0 of phase I with lq = 0,±1
in (a) and lq = ±2,±3,±4, . . . in (b); among the named modes, lq = 0 for density-
and spin-breathing, lq = +1 for density-dipole, lq = −1 for spin-dipole, lq = +2 for
density-quadrupole, and lq = −2 for spin-quadrupole modes. (c) shows the same for phase
II, where lq = 0 for density- and spin-breathing, lq = ±1 for density- and spin-dipole, lq =
±2 for density- and spin-quadrupole modes. In (a) and (c), the dashed magenta-colored
line is the variational estimate for the density-breathing mode.

At small values of Ω0, the energies of the spin modes are less than their density-mode

analogues. There is a single zero-energy mode due to the broken gauge symmetry in this

phase. Besides these modes, the density- and spin-quadrupole modes are also marked in

the excitation spectrum in Figs. 4.6(a)-4.6(c). As the collective excitations characterize a

system’s response to small perturbations, these can be experimentally studied using Bragg

spectroscopy [209,210].

Additionally, the variation in SOAM-coupling strength leads to avoided crossings

between the pairs of excitations, a few of which are identified by the black circles in

Fig. 4.6(c). We observe that the avoided crossing occur between the density and spin

oscillations associated with the same magnetic quantum number lq. In the vicinity of the

avoided crossing, the roles of the density and spin modes are interchanged as shown in

Fig. 4.6(c). We study this mode mixing by examining the density (δρ) and spin fluctuations
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(δFx, δFy, δFz) yielded by the perturbed order parameter and defined as

δρ =2Re
∑
j

ψjδψ
∗
j , (4.9a)

δFx =
√
2Re(ψ+1δψ

∗
0 + ψ0δψ

∗
+1 + ψ−1δψ

∗
0 + ψ0δψ

∗
−1), (4.9b)

δFy =−
√
2Im(−ψ+1δψ

∗
0 + ψ0δψ

∗
+1 + ψ−1δψ

∗
0 − ψ0δψ

∗
−1), (4.9c)

δFz =2Re(ψ+1δψ
∗
+1 − ψ−1δψ

∗
−1), (4.9d)

where ‘Re’ and ‘Im’ denote the real and imaginary part, respectively. For a pure density

mode, one would expect that δρ ̸= 0 and δFν = 0, similarly for a pure spin mode

one would expect that δρ = 0 and at least one of the δFν ̸= 0. The order-parameter

fluctuation δΨ(r, ϕ, t), and hence density and spin fluctuations, can be constructed with

the Bogoliubov quasiparticle amplitudes u and v corresponding to the frequency ω of the

mode as δψj(r, ϕ, t) ∝ eι(lz+j+lq)ϕ
[
uj(r)e

−ιωt − v∗j (r)e
ιωt
]
. In the excitation spectrum in

1

Figure 4.7: (A) shows the density fluctuations, δρ(r, ϕ = 0, t), and spin-density
fluctuations, δFν(r, ϕ = 0, t), with ν = x, y, z corresponding to ωD = 1. (B)-(D) present
the same for ωSD = 0.08, ωB = 1.97, ωSB = 0.37, respectively. The radial and time
extents, along horizontal and vertical directions, respectively, in each subfigure are 4aosc
and 5T , respectively, where T = 2π/ω is the time period of the corresponding mode with
ω frequency. The presence of both density and spin fluctuations in (A)-(C) is an outcome
of the avoided crossing between the pairs of modes in the excitation spectrum shown in
Fig. 4.6(c).
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Fig. 4.6(c) at Ω0 = 1, the density- and spin-dipole modes’ frequencies are ωD = 1 and

ωSD = 0.08, respectively, and the density- and spin-breathing modes’ frequencies are ωB =

1.97 and ωSB = 0.37, respectively. One can see that the density-dipole, density-breathing,

and spin-dipole modes encounter avoided crossings, whereas the spin-breathing mode does

not. This observation agrees with the density and spin-density fluctuations evaluated

along the ϕ = 0 line and shown in Figs. 4.7(A)-4.7(D). For the density-dipole mode with

ωD = 1, both density and spin channels are excited as is seen from δρ(r, ϕ = 0, t) and

δFν(r, ϕ = 0, t) in Fig. 4.7(A), where ν = x, y, z. Similarly, number density, longitudinal

(Fz), and transverse magnetization (Fx, Fy) densities oscillate in time, corresponding to

the spin-dipole mode in Fig. 4.7(B), and density-breathing mode ends up exciting both

the number and transverse magnetization densities in Fig. 4.7(C). On the other hand,

the spin-breathing mode excites the spin channel alone in Fig. 4.7(D). The density and

spin-quadrupole modes also excite the density and spin fluctuations, which are not shown.

This mode mixing indicated by both density and spin fluctuations is absent in q1D

SO-coupled BECs where any collective excitation yields either density or spin fluctuations

[211]. The nomenclature of the modes in Figs. 4.6(a)-4.6(c) is consistent with the density,

δρ(x, y, t), and longitudinal magnetization density, δFz(x, y, t), fluctuations corresponding

to density, breathing, and quadrupole modes in Fig. 4.8 shown at t = 0, T/4, T/2, 3T/4,

and T instants, where T is the period of the collective excitation.

Next, we study the excitation spectrum as a function of N for c1/c0 = −0.0046. Here

first, we fix Ω0 to 0.3, where a phase transition from phase I to II occurs at N = 5700.

The excitation spectrum, in this case, for phase I and II are shown in Figs. 4.9(a) and

4.9(b). The same for Ω0 = 3 is shown in Fig. 4.9(c), where phase II is the ground state

phase with no phase transition. The modes in phase II are, again, either non-degenerate

or with two-fold degeneracy. For SOAM-coupled 23Na BEC with c0 = 121.35 and c1 = 3.8

the excitation spectrum, which is not shown here, is similar to the spectrum in Fig. 4.9(c)

with some quantitative differences attributable to different c1 values.

4.3.3 Non-zero detuning

In this subsection, we consider the effects of the detuning on the phase diagram and

excitation spectrum. In Fig. 4.10, we show the phase diagram in the number of atoms

versus the detuning (N -δ) plane for a constant coupling strength of Ω0 = 5 and c1/c0 =

−0.0046 corresponding to 87Rb. We observe for a small value of δ, the polar-core vortex

(phase II) emerges as the ground-state solution. However, at a critical detuning δc, a

phase transition from (+1,0,-1)-type solution (phase II) to (+2,+1,0)-type solution (phase

I) occurs. For example, for Ω0 = 5 and N = 5000 corresponding to c0 = 121.18, c1 =

−0.56, the phase transition occurs at δc = 0.3. Phase II at smaller detuning and phase

I at larger detuning values in Fig. 4.10 is in qualitative agreement with the experimental

findings [136]. It is worth noting that the presence of δ in the Hamiltonian leads to

the breakdown of the symmetry defined by R. As a result, (+2,+1,0) and (0,-1,-2)-type

solutions corresponding to lz = 1 and −1, respectively, are no longer degenerate. To
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1

Figure 4.8: Density and longitudinal magnetization density fluctuations at t =
0, T/4, T/2, 3T/4, and T where T = 2π/ω with ω as the mode-frequency: (A) δρ(x, y, t)
for the density-dipole mode with ωD = 1, (B) δFz(x, y, t) for the spin-dipole mode with
ωSD = 0.08, (C) δρ(x, y, t) for the density-breathing mode with ωB = 1.97, (D) δFz(x, y, t)
for the spin-breathing modes with ωSB = 0.37, (E) δρ(x, y, t) for the density-quadrupole
mode with ωQ = 1.46, and (F) δFz(x, y, t) for the spin-quadrupole mode with ωSQ = 0.46.
The box size in each subfigure is 6.4aosc × 6.4aaosc.

illustrate the effect of detuning on the excitation spectrum, we contrast the collective

excitation spectrum of the condensate with N = 5000, Ω0 = 5 for (a) δ = 0 and (b)

δ = 0.2. The ground-state phase in both these cases is phase II, as can be seen from the

phase diagram in Fig. 4.10. The excitation frequencies as a function of lq for these two

cases are shown in Figs. 4.11(a) and 4.11(b). As discussed in Appendix B, the presence of

detuning leads to the lifting of the degeneracies in the excitation spectrum about lq = 0.

The low-lying modes have been identified in Figs. 4.11(a) and 4.11(b). In Fig. 4.11(a),

the density-dipole, spin-dipole, density-quadrupole, and spin-quadrupole exhibit two-fold

degeneracies corresponding to ±lq. However, in the presence of δ, all these modes become

non-degenerate and are highlighted in Fig. 4.11(b).
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Figure 4.9: Low-lying excitation spectrum for 87Rb spin-1 BEC with c1/c0 = −0.0046
as a function of the number of atoms N : (a)-(b) for Ω0 = 0.3 with a phase transition
from phase I to II at N = 5700 and (c) Ω0 = 3. (a) corresponds to the spectrum of
phase I, whereas (b) and (c) correspond to the spectrum of phase II. The different point
styles in (a) signify non-degenerate modes with different lq, while in (b) and (c), ’red
circle’, ’black right-pointing triangle, ’green down-pointing triangle’, and ’blue square’
correspond, respectively to the modes with lq = 0,±1,±2, ±3, and so on.

4.3.4 Dynamics

We examine the nature of low-lying collective excitations through the time evolution of

the expectation of physical observables, which also serves to validate our calculation of the

excitation spectrum from the BdG equations. Here, we consider the Hamiltonian with an

appropriately chosen time-independent perturbation, say H ′
s added to its single-particle

part Hs. This modifies the CGPEs (4.3a) and (4.3b) with an added term corresponding

to H ′
sΨ(r, ϕ, t) in each equation. We then solve these resultant CGPEs over a finite period

of time by considering previously obtained ground-state solutions as the initial solutions

at t = 0. Numerically, one needs to consider a two-dimensional spatial grid over here, for

which we choose the Cartesian x-y grid.

We consider c0 = 121.28, c1 = −0.56, and Ω0 = 1, which yielded the ground-state

phase in Fig. 4.1(b) as an example set of parameters to study the dynamics. To

excite the density-dipole mode, we take the perturbation H ′
s = λx, where λ ≪ 1.

We then examine the dynamics of the center of mass of the BEC via xcm(t) = ⟨x⟩ =∑
j=±1,0

∫
xρj(x, y, t)dxdy which is plotted in Fig. 4.12(a). We also compute its Fourier

transform x̂cm(ω) to demonstrate that the dominant frequency resonates at ω = 1 as can

be seen in Fig. 4.12(b) and matches with ωD = 1 in the BdG spectrum in Fig. 4.6(c).

We could have chosen H ′
s = λy and then calculated ycm(t) giving us the same excitation

frequency. This is a consequence of the two-fold degeneracy in the density-dipole mode.

We have checked that this mode can also be excited by shifting the minima of the external

trapping potential. This particular way of exciting this mode has direct relevance from an

experimental point of view, where the minima of potential can be easily shifted. Similarly,

to examine the excitation of the density-breathing mode with H ′
s = λ(x2 + y2), where

the relevant observable is r2 = x2 + y2, we calculate mean square radius r2ms(t) = ⟨r2⟩
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Figure 4.10: The ground-state phase diagrams in N -δ plane for c1/c0 = −0.0046
corresponding to 87Rb spin-1 BEC and Ω0 = 5.
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Figure 4.11: Collective excitation spectrum for ferromagnetic 87Rb spin-1 BEC with
interaction parameters c0 = 121.28, c1 = −0.56, and coupling stength Ω0 = 5 for (a)
δ = 0 and (b) δ = 0.2. The ’black down-pointing triangles’ and ’green crosses’ denote the
density and spin modes, respectively.

as a function of time, which is plotted in Fig. 4.12(c). The Fourier transform r̂2ms(ω)

of r2ms(t) reveals a dominant peak at ω = 1.99 in Fig. 4.12(d) which is close to BdG

result of ΩB = 1.97. This mode, again, can be excited by perturbing the trap strength,

which can be achieved in an experiment with ease and thus giving access to this mode.

Similarly, the spin-dipole mode can be excited by adding a perturbation H ′ = λxSz

or λySz with xSz or ySz as the pertinent observable corresponding to the spin-dipole

mode. The two possible observables again reflect the two-fold degeneracy of spin-dipole
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Figure 4.12: (a) shows the center of mass oscillations, i.e. xcm(t) as a function of time and
(b) corresponding Fourier transform with a dominant peak at ω = 1 for 87Rb spin-1 BEC
with c0 = 121.28, c1 = −0.56, and Ω0 = 1. (c) shows the oscillations in the mean square
size of the system r2ms(t) and (d) the corresponding Fourier transform with a dominant
peak at ω = 1.99 for the same interaction and coupling strengths.

modes. The time-variation of dx(t) = ⟨xSz⟩ =
∑

j=+1,−1

∫
xρj(x, y, t)dxdy is shown in

Fig. 4.13(a) and its Fourier transform in Fig. 4.13(b) has a dominant peak at ω = 0.1, which

corresponds to the spin-dipole mode labelled in Fig. 4.6(c) with ωSD = 0.08. Similarly,

the spin-breathing mode corresponds to observable r2Sz. In Figs. 4.13(c) and 4.13(d),

we show the dynamics of d2r(t) = ⟨r2Sz⟩, i.e. the relative difference in the mean-square

radii of the j = ±1 components and the associated Fourier transform, respectively, with

a dominant peak at ω = 0.37, in agreement with ωSB in Fig. 4.6(c). The very small

secondary peaks present in Fig. 4.12(b) and 4.12(d) correspond to the spin-dipole and

spin-breathing modes, respectively. These peaks become prominent when subjected to

appropriate perturbations and are observed through relevant observables, as shown in

Fig. 4.13. Likewise, the small peaks appearing in Fig. 4.13(b) and 4.13(d) also signify

modes present in the BdG spectrum. Finally, the density- and spin-quadrupole modes’

frequencies calculated from the time evolution of ⟨xy⟩ and ⟨xySz⟩ are in agreement with

the numbers in Fig. 4.6(c).

4.3.5 Variational analysis

For an SOAM-coupled spin-1 system, a few low-lying modes can be studied using a

time-dependent variational method [212]. For example, to calculate the density-breathing



86
Chapter 4. Quantum phases and the excitation spectrum of an SOAM-coupled spin-1

BEC

-0.18

0.02

d
x

(a)

0

3.5

d̂
x
(ω

)

(b)

0 50 100 150 200

t

-0.46

0.04

d
2 r

(c)

0 0.5 1 1.5
ω

0

3.5

d̂
2 r
(ω

)

(d)

Figure 4.13: (a) shows dx(t) as a function of time and (b) corresponding Fourier transform
with a dominant peak at ω = 0.1 for 87Rb spin-1 BEC with c0 = 121.28, c1 = −0.56, and
Ω0 = 1. Similarly, (c) and (d) show the d2x(t) and its Fourier transform with a dominant
peak at ω = 0.37 for the same interaction and coupling strengths.

mode in the absence of detuning, we consider the following variational ansatz

Ψ =
r

2
√
πσ(t)2

exp

[
− r2

2σ(t)2
+ ια(t)r2

]
×


eι(m+1)ϕ

−
√
2eιmϕ

eι(m−1)ϕ,

 (4.10)

where σ(t) and α(t) are time-dependent variational parameters used to denote the width

of condensate and chirp of Gaussian pulse, respectively, and m = ±1 for phase I or 0 for

phase II. The Lagrangian of the system is given by

L =
∑
j

∫
drdϕ

ι

2

(
ψ∗
j

∂ψj

∂t
− ψj

∂ψ∗
j

∂t

)
− E, (4.11)

where energy E is defined as

E =

∫∫ [∑
j

ψ∗
j

{
− 1

2r

∂

∂r

(
r
∂

∂r

)
+
L2
z

2r2
+
r2

2

}
ψj +

c0
2
ρ2 +

c1
2
(ρ+1 + ρ0 − ρ−1)ρ+1

+
c1
2
(ρ+1 + ρ−1)ρ0 +

c1
2
(ρ−1 + ρ0 − ρ+1)ρ−1 +

√
2Ω(r)Re(ψ∗

+1e
iϕψ0 + ψ∗

−1e
−iϕψ0)

+ 2c1Re(ψ
∗
−1ψ

2
0ψ

∗
+1)

]
drdϕ. (4.12)
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For m = ±1, the (coupled) Euler-Lagrange equations are

¨σ(t) =
σ

2

6
√
2π

√
eΩ0

√
1
r20

+ 2
σ2

(
r70 − 2r50σ

2
)

(
2r20 + σ2

)4 − 2

+
c0 + c1 + 10π

8πσ3
, (4.13a)

α =
σ̇

2σ
, (4.13b)

where ˙ denotes the time derivative. The equilibrium width σ0 of the condensate satisfies

c0 + c1 + 10π

4πσ40
+

6
√
2π

√
eΩ0

√
1
r20

+ 2
σ2
0

(
r70 − 2r50σ

2
0

)
(
2r20 + σ20

)4 = 2.

The frequency of the oscillation in width calculated by linearizing Eq. (4.13a) about

equilibrium width σ0 is

ωI
B =

[
15
√
2πr40

√
eσ0Ω0(3r

2
0 − 2σ20)

√
2r20 + σ20 + 1

(2r20 + σ20)
5

+
3(c0 + c1 + 10π)

8πσ40

]1/2
. (4.14)

Similarly, for m = 0 in Eq. (4.10), the density breathing mode is

ωII
B =

[
15

√
2πr40

√
eσ0Ω0(3r

2
0 − 2σ20)

√
2r20 + σ20 + 1

(2r20 + σ20)
5

+
3(c0 + c1 + 6π)

8πσ40

]1/2
. (4.15)

The variationally calculated density-breathing mode’s frequency agrees with the values

in the BdG spectrum as demonstrated in Figs. 4.6(a) and 4.6(c) for phases I and II,

respectively. As mentioned in Sec. 4.3.4, density breathing mode can be easily excited by

modulating the trapping potential strength in an experiment.

4.4 Summary

We have investigated the low-lying collective excitations of the coreless and the polar-core

vortex phases supported by the spin-1 BECs with SOAM coupling. The existence of

the two phases is seen in the full phase diagrams in the ratio of interaction strengths

versus coupling strength and also the number of atoms versus coupling strength planes.

We have studied the excitation spectrum as a function of two experimentally controllable

parameters, namely coupling strength and the number of atoms. The excitation spectrums

are characterized by the discontinuities across the phase boundary between the two

phases and within a phase by avoided crossings between the modes with the same

magnetic quantum number of excitations. The avoided crossings signal the hybridization

of the density and spin channels; the nature of spin and density fluctuations has indeed

confirmed this. Among the low-lying modes, we identify dipole, breathing, and quadrupole

modes for density and spin channels. The frequencies of these named modes are further

validated from the time evolution of the expectations of the physical observables when
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an apt time-independent perturbation is added to the system’s Hamiltonian. An analytic

estimate for the density-breathing modes has also been obtained using the variational

analysis. Our results can serve as a benchmark to compute the finite-temperature

phase diagram and spin dynamics. With the experimental observation of collective

excitation, dispersion (excitation energies as a function of wavenumber) in Raman-induced

SO-coupled BECs [209,210], we expect that our results can also be verified in future

SOAM-coupled experiments. The results reported in this chapter are discussed in

Ref. [213].



Chapter 5

Excitation spectrum of an

annular-stripe phase in an

SOAM-coupled spin-1 BEC

With the SOAM-coupling models corresponding to larger orbital angular momentum

imparted by the pair of Laguerre-Gaussian beams to the BEC atoms, the annular

stripe phase can emerge as one of the ground state phases [142,143]. With such an

SOAM-coupling model, in this chapter, we study the ground-state phases and their

collective excitation spectrums with a special focus on the the annular stripe phase, which

spontaneously breaks two continuous symmetries: rotational and U(1) gauge symmetry.

The chapter is organized as follows. In Sec. 5.1, we discuss the ground-state solutions

and excitation spectrum of the single particle Hamiltonian for an SOAM-coupled spin-1

system. In Sec. 5.2, we describe the interacting mean-field model and discuss ground-state

phases of an SOAM-coupled antiferromagnetic BEC. In Sec. 5.3, we discuss collective

excitations of the interacting SOAM-coupled spin-1 BEC and calculate some low-lying

modes by using real-time dynamics, which is followed by the summary of key results in

Sec. 5.4.

5.1 Single-particle Hamiltonian

For an orbital angular momentum transfer of l by the Laguerre-Gaussian beams, the

single-particle SOAM-coupled Hamiltonian is [135,136]

H0 =

[
−1

2

∂

r∂r

(
r
∂

∂r

)
+
L̂2
z

2r2
+

∂2

∂z2
+ V (r)

]
I+Ω(r)[cos(lϕ)Sx − sin(lϕ)Sy] + δSz, (5.1)

where Ω(r) = Ω0e
l/2(r/w)l exp[−lr2/2w2], is the Raman-coupling strength [142] with Ω0

and w as the Rabi frequency and beam waist, respectively, and rest of the quantities

having the same definitions as in Eq. (4.1). As was done in Chapter 4 to obtain Eq. (4.7),

we consider the unitary transformation with unitary operator e−ιlSzϕ for arbitrary l. The

transformed Hamiltonian is

H
′
0 =

[
−1

2

∂

r∂r

(
r
∂

∂r

)
+

(L̂z + lSz)
2

2r2
+ V (r)

]
I+Ω(r)Sx + δSz, (5.2)

89
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with the transformed order parameter (e−ιlϕψ+1, ψ0, e
ιlϕψ−1)

T . The simultaneous

eigenstates of (5.2) and L̂z are characterized by orbital angular momentum quantum

number lz, whose value is related to the angular momentum of each spin component

lj in the laboratory frame as lj = lz + jl [6,132] in the presence of δ. The eigenstate of a

single-particle Hamiltonian (5.2) can be defined as

Ψ(r, ϕ) = eιlzϕΨeq(r), (5.3)

where Ψeq(r) = [ψ+1(r), ψ0(r), ψ−1(r)]
T with ψj(r) as the radial wavefunction

corresponding to the jth spin component. In order to obtain an annular stripe, we consider

the orbital angular momentum transfers to the atoms l = 4 and beam waist w = 5. The

energy spectra of the single-particle Hamiltonian (5.2) are shown in Figs. 5.1(a)-(d) for

four pairs of coupling strengths and detuning. In the absence of detuning, the lz = 0 is the
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Figure 5.1: The single-particle energy spectrum for (a) Ω0 = 4, δ = 0; (b) Ω0 = 10, δ = 0;
(c) Ω0 = 10, δ = 1; and (d) Ω0 = 10 and δ = −1.

ground state corresponding to the (±4, 0) charge singularities in component wavefunctions

j = ±1, 0, respectively, [see Figs. 5.1(a) and 5.1(b)]. With non-zero detuning (however

small it may be), the ground states correspond to lz = +4 or −4, depending on whether

δ is positive or negative; e.g. with Ω0 = 10, δ = 1 and Ω0 = 10, δ = −1, the ground

state has lz = 4 and −4, respectively [see Figs. 5.1(c) and 5.1(d)]. Like Hamiltonian (4.1),

Hamiltonian (5.1) for δ = 0 is symmetric under the transformation defined by the operator

R = exp(−ιSxπ)K, explaining the degeneracy of ±lz solutions with lz ̸= 0; in the presence

of detuning, the symmetry is no longer present, as evidenced by the non-degenerate ±lz
pair of solutions.

We use the Bogoliubov approach to study the excitation spectrum of these

circular-symmetric solutions, as discussed previously in Sec. 4.3. Fig. 5.2(a) shows the
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Figure 5.2: The single-particle excitation spectrum of an SOAM-coupled spin-1 BEC with
(a) Ω0 = 4, δ = 0 and (b) Ω0 = 4, δ = 1. The ground state corresponds to lz = 0 in (a)
and lz = 4 in (b).

excitation spectrum of the ground-state solution lz = 0 obtained for Ω0 = 4 and δ = 0,

and (b) shows the same for lz = +4 obtained with Ω0 = 4 and δ = 1. For δ = 0, all modes

corresponding to lq ̸= 0 are doubly degenerate. However, with the introduction of δ, this

degeneracy is lifted, and no mode remains degenerate [cf. Figs. 5.2(a) and 5.2(b)].

5.2 Ground-state phases of interacting system

Under mean-field approximation, the interacting system is described by the following set

of three CGPEs

ι
∂ψ±1

∂t
= Hψ±1 + c1(ρ0 ± ρ−)ψ±1 + c1ψ

∗
∓1ψ

2
0 ± δψ±1 +

Ω(r)√
2
e±ι4ϕψ0, (5.4a)

ι
∂ψ0

∂t
= Hψ0 + c1ρ+ψ0 + 2c1ψ+1ψ−1ψ

∗
0 +

Ω(r)√
2
(e−ι4ϕψ+1 + eι4ϕψ−1), (5.4b)

where r =
√
x2 + y2, ϕ = tan−1(y/x), and various other terms have the same definitions

as in Eqs. (4.3a) and (4.3b).

0 104.4 0 0.60.26

Figure 5.3: The ground-state phase diagrams of an SOAM-coupled spin-1 BEC with c0 =
10 and c1 = 3 (a) as a function of Ω0 for δ = 0.1 and (b) as a function of δ for Ω0 = 5.
In (a), a phase transition from an annular stripe to lz = 0 phase occurs when Ω0 exceeds
4.4, and in (b), a phase transition from the annular stripe to lz = 4 phase occurs when δ
exceeds 0.26. In (a) and (b), Ω0 and δ ranges are not-to-scale.

In the previous chapter, we focused on investigating the excitation spectrum of the

emergent circularly-symmetric solutions of the mean-field model, which did not permit the
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1

Figure 5.4: Ground states of the SOAM-coupled spin-1 BEC with c0 = 10, c1 = 3: (A)
and (D) the component densities and phases, respectively, for δ = 0.1 and Ω0 = 2; (B)
and (E) the densities and phases, respectively, for δ = 0.1 and Ω0 = 6; and (C) and (F)
the densities and phases, respectively, for δ = 0.3 and Ω0 = 5. In (E), +1, 0, and −1
components have phase singularities of charges +4, 0, and −4, respectively, and in (F),
the corresponding charges are +8,+4, and 0.

annular-stripe phase as the ground-state solution. To achieve the annular-stripe phase with

the mean-field model in Eqs (5.4a) and (5.4b), we consider the BEC with antiferromagnetic

interactions with c0 = 10 and c1 = 3. We first calculate the ground-state phases for a

fixed detuning value of δ = 0.1. While varying the SOAM-coupling Ω0 from 0 to 10, a

phase transition from an annular-stripe phase to lz = 0 phase occurs at Ω0 = 4.4. For

an alternate set of parameters, we fixed Ω0 to 5 and varied δ from 0 to 0.6. In this

case, the phase transition from the annular-stripe phase to lz = 4 occurs at δ = 0.26

[see Figs. 5.3(a) and 5.3(b) for schematic illustrations of the phase diagrams]. We also

examine the longitudinal magnetization fz =
∫
Fzdxdy and spin expectation per particle

f =
∫
|F|dxdy, where |F| =

√
F 2
x + F 2

y + F 2
z , to ascertain the transition points between

the annular-stripe and circularly-symmetric phases.

Annular-stripe phase

The interatomic interaction in the spinor BEC is one of the most important parameters

to affect the parameter space in which the annular stripe phase is the ground state. This

phenomenon closely resembles the emergence of the stripe phase in a linear SO-coupled

BEC [214]. Fig. 5.4(A) displays the ground-state densities for a typical annular-stripe

phase calculated with Ω0 = 2 and δ = 0.1. In this phase, the orbital angular momentum

is not a good quantum number, as evidenced by the absence of rotational symmetry [see

top row of Fig. 5.4]. The longitudinal magnetization |fz|, and and spin expectations per
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Figure 5.5: |fz| and f , as a function SOAM-coupling strength Ω0, for a SOAM-coupled
spin-1 BEC c0 = 10, c1 = 3, and δ = 0.1.

particle f are both non-zero, as shown in Fig. 5.5.

Circular-symmetric phases

As discussed previously, a phase transition from the annular-stripe phase to lz = 0 or 4

phase occurs above a critical coupling strength or detuning. The component densities and

corresponding phases for a typical rotationally-symmetric lz = 0 phase, which has (±4, 0)

charge singularities in j = ±1, 0 components, respectively, are shown in the middle row

of Fig. 5.4. As Ω0 exceeds the critical coupling strength, the transition to l = 0 phase is

characterized by the discontinuities in |fz| and f as shown in Fig. 5.5. Similarly, a typical

rotationally-symmetric lz = +4 phase is shown in the bottom row of Fig. 5.4. The three

phases, namely annular-stripe, lz = 0, and lz = +4, are characterized by distinctive spin

textures [cf. Figs. 5.6(a)-5.6(c)]. The spin-texture of the annular-stripe phase has spins

pointing in opposite directions in the adjacent density petals (lobes); Fz(x, y) = 0 in the

spin-texture of lz = 0 phase; and Fz(x, y) ̸= 0 in lz = +4 phase.

5.3 Collective excitation spectrum

Using the Bogoliubov approach, we write the perturbed order parameter as

Ψ(x, y, t) = e−ιµt[Ψeq(x, y) + δΨ(x, y, t)], (5.5)

where Ψeq(x, y) = [ψ+1(x, y), ψ0(x, y), ψ−1(x, y)]
T is the equilibrium order parameter with

ψj(x, y) as the wavefunction corresponding to the jth spin component, µ is the chemical

potential. The fluctuation δΨ(x, y, t) to the equilibrium order parameter in Eq. (5.5)

is written as δΨ(x, y, t) = u(x, y)e−ιωt + v∗(x, y)eιωt, where u and v are Bogoliubov
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Figure 5.6: The spin-texture of SOAM-coupled spin-1 BEC for (a) δ = 0.1 and Ω0 = 2, (b)
δ = 0.1 and Ω0 = 6, and (c) δ = 0.3 and Ω0 = 5. In (a)-(c) c0 = 10, c1 = 3. The arrows
show the projection of F(x, y) on the x-y plane, and the color indicates its component
along z axis; F(x, y) vector field lies on the x-y plane in (b).

amplitudes and ω is the excitation frequency. Here, unlike in Chapter 4, Ψeq(x, y),

Ψ(x, y, t), u(x, y), and v(x, y) are not presumed to be circularly symmetric to accommodate

the BdG analysis for the annular-stripe phase. The linearization of the three CGPEs

(5.4a) and (5.4b) and the corresponding conjugate equations, using the perturbed order

parameter as defined in Eq. (5.5), results in the set of coupled BdG equations; the details

of the BdG analysis in this case are discussed in the Appendix C.

We study the collective excitation spectrum (a) as a function of Ω0 for fixed interaction

parameters and δ, and (b) as a function of δ for fixed interaction parameters and

Ω0. The collective excitation spectrum as a function of Ω0 for c0 = 10, c1 = 3, and

δ = 0.1 is shown in Fig. 5.7. In the excitation spectrum, a few low-lying modes have

been identified and labelled, such as density-dipole mode (ωD) highlighted by filled red

circles and density-breathing mode (ωB) with asterisks. The methodology to identify the

collective modes has been discussed previously in Chapter 4. In the annular-stripe phase,

two continuous symmetries, namely gauge and rotational symmetry, are broken, which

manifest as two zero-energy Goldstone modes in the excitation spectrum (see Fig. 5.7).

When Ω0 > 4.4, the transition to phase lz = 0 is accompanied by the discontinuities in

the excitation spectrum in Fig. 5.7. There is a single zero-energy mode due to the broken

gauge symmetry in this phase.

The collective excitation spectrum as a function of δ for c0 = 10, c1 = 3, and Ω0 = 5

is shown in Fig. 5.8. The transition from annular-stripe to lz = 4 phase is discernible by

the appearance of a roton mode, similar to the roton in the plane-wave phase with linear

momentum SO coupling [209,210,215–217]. Within lz = 4, phase the roton mode is softens

with a decrease in δ and vanish at the transition point [141]. A few low-lying modes are

marked in both the phases in the excitation spectrum in Fig. 5.8.

As discussed in Sec. 4.3, in this chapter, too, we validate our calculations of excitation
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Figure 5.7: The excitation spectrum of the SOAM-coupled spin-1 BEC with c0 = 10, c1 =
3, and δ = 0.1 as a function of Ω0. The blue “circles” and black “triangles” correspond,
respectively, to annular-stripe and lz = 0 phases. For Ω0 > 4.4, there is a phase transition
from the annular stripe to the circularly symmetric lz = 0 phases. The density-dipole and
density-breathing modes are, respectively, marked by red circles and stars.
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Figure 5.8: The excitation spectrum of the SOAM-coupled spin-1 BEC with c0 = 10,
c1 = 3, and Ω0 = 5 as a function of δ. The blue “circles” and red “triangles” correspond,
respectively, to the annular-stripe and lz = 4 phases. For δ > 0.26, there is a phase
transition from the annular stripe phase and the circular symmetric lz = 4 phase. The
density-dipole and density-breathing modes are, respectively, marked by black circles and
stars. The roton mode is highlighted by a black circle and labelled as ωR.

spectrum and identify a few low-lying modes by adding a suitable time-independent

perturbation H
′
to the Hamiltonian.

To excite the density-dipole mode, we choose H
′
= λx, where λ ≪ 1, and study
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Figure 5.9: (a) shows the center of mass oscillations, i.e. xcm(t) as a function of time
and (b) corresponding Fourier transform with a peak at ω = 0.98 for antiferromagnetic
spin-1 BEC with c0 = 10, c1 = 3, δ = 0.1, and Ω0 = 2. (c) shows the oscillations in the
mean square size of the system r2ms(t) and (d) the corresponding Fourier transform peaks
at ω = 1.95 for the same interaction and coupling strengths.

the time evolution of the center of mass of the BEC. The time evolution of xcm(t) =

⟨x⟩ for c0 = 10, c1 = 3, δ = 0.1, and Ω0 = 2 is shown in Fig. 5.9(a) and its Fourier

transform in Fig. 5.9(b) peaks at 0.98, which matches with ωD in Fig. 5.7. Similarly, we

excite the density-breathing mode with H
′
= λ(x2 + y2), and examine the mean square

radius r2ms(t) = ⟨x2 + y2⟩ as a function of time and its Fourier transform r̂2ms(ω) [see

Figs. 5.9(c) and 5.9(d)]. The oscillation frequency of r2ms(t) matches with the frequency of

density-breathing mode (ωB = 1.95).

5.4 Summary

We have investigated the ground-state phases and the low-lying excitation spectrum

of an SOAM-coupled spin-1 BEC with antiferromagnetic interactions. We use the

SOAM-coupled model corresponding to an angular momentum transfer of l = 4ℏ to the

atoms, which permits the annular stripe phase as one of the ground state phases. For the

chosen set of interaction parameters (c0 = 10 and c1 = 3), we observed a phase transition

from an annular stripe phase to a circularly symmetric lz = 0 (or lz = +4) phase as

coupling strength (or detuning) exceeds a critical value. The circularly symmetric lz = 0

phase is characterized by phase singularities of order (+4, 0,−4) in j = (+1, 0,−1) spin

components, respectively. Similarly, for lz = +4 phase, (+8,+4, 0) are the respective

charges of the phase singularities. Using the Bogoliubov approach, we have studied the

excitation spectrum (a) as a function of Ω0 for fixed interaction parameters and δ and (b)

as a function of δ for fixed interaction parameters and Ω0. For (a), the excitation spectrum
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shows discontinuities across the phase boundary between the annular stripe and lz = 0

phases, and in (b), collective modes vary smoothly across the phase boundary between the

annular stripe and lz = +4 phases. We also identify a couple of low-lying density modes

in the excitation spectrum using the perturbative dynamics discussed in Chapter 4.
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Chapter 6

Summary and future directions

6.1 Thesis summary

In summary, we have studied the SO-coupled spin-1 and spin-2 BECs under rotation with

an emphasis on moderate to high rotations using mean-field models. Our analysis of the

eigenfunctions and eigenenergies of the non-interacting part of the Hamiltonian, using

variational analysis and exact numerical solutions, shows that a boson in such BECs can

be subjected to a variety of rotating effective potentials including symmetric, asymmetric

double-well, and toroidal potentials.

For an SO-coupled spin-1 BEC under rotation, the shape of these effective potentials

is consistent with the component density profiles for 87Rb and 23Na BECs with

experimentally realizable interaction parameters. We show the spin expectation per

particle for a ferromagnetic BEC stays close to one as a function of rotation frequency,

whereas for an antiferromagnetic BEC it starts increasing with an increase in rotation

frequency and tends to approach one at high rotations. For an SO coupling between the

spin and the linear momentum along one direction, i.e., γxSxpx, spatial segregation of the

eigenfunctions (Φ±
var) of the single particle Hamiltonian in the presence of moderate to high

rotations, which translates to a spatial segregation between mj = ±1 components in an

equivalent γxSzpx coupling, can result in spin-expectation per particle approaching one for

an antiferromagnetic BEC. For an isotropic SO coupling without coherent coupling, our

variational analysis also predicts spin expectation per particle approaching one at moderate

to high rotations. This results in a similar response of the two systems at moderate to large

rotations, as exemplified in similar spin-texture, mass-current, etc., and component-density

profiles of the two systems. Similarly, for SO-coupled spin-2 BECs under rotation, we

illustrated using the mean-field CGPEs, employing the realistic experimental parameters,

the spatial distribution of 87Rb, 23Na, and 85Rb are consistent with the inhomogeneity

of the effective potentials. The similarity in response of the fast-rotating cyclic phase
87Rb, antiferromagnetic 23Na and ferromagnetic 87Rb highlights the much-diminished

role of the spin-exchange interactions vis-à-vis the other competing terms in the system’s

Hamiltonian.

Motivated by the recent experiments [Chen et al., Phys. Rev. Lett 121, 113204

(2018), Chen et al., Phys. Rev. Lett. 121, 250401 (2018)], which demonstrated the

coupling between the spin and orbital angular momentum of the atoms, we investigated

the ground-state phases and low-lying excitation spectrum of the SOAM-coupled spin-1

condensates with both ferromagnetic and antiferromagnetic interactions. Without
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detuning with ferromagnetic interaction, the ground-state phase is either a coreless or

a polar-core vortex state. In contrast, with antiferromagnetic interaction, it is the

polar-core vortex. We calculated the phase diagrams in the ratio of interaction strengths

versus coupling strength (c1/c0 − Ω0) and the number of atoms versus coupling strength

(N − Ω0) planes. We studied the excitation spectrum of the system as a function of

two experimentally controllable parameters, namely coupling strength and the number

of atoms. The excitation spectrum of the coreless vortex phase is non-degenerate,

whereas in the polar-core vortex phase, ±lq modes with lq ̸= 0 are degenerate. The

excitation spectrum is characterized by the discontinuities across the phase boundary

between the two phases and within a phase by avoided crossings between the modes with

the same magnetic quantum number of excitations. The avoided crossings signal the

hybridization of the density and spin channels; the nature of spin and density fluctuations

has confirmed this. Among the low-lying modes, we identify dipole, breathing, and

quadrupole modes for density and spin channels. The frequencies of these named modes

are further validated from the time evolution of the expectations of the physical observables

when an apt time-independent perturbation is added to the system’s Hamiltonian. For

the density-dipole, density-breathing, and density-quadrupole modes, the perturbations

considered are λx, λx2, and λxy, respectively. For the spin-dipole, spin-breathing, and

spin-quadrupole modes, the apt perturbations are λSzx, λSzx
2, and λSzxy, respectively.

The corresponding physical observables are ⟨x⟩, ⟨x2⟩, and ⟨xy⟩ for density modes and

⟨xSz⟩, ⟨x2Sz⟩, and ⟨xySz⟩ for spin modes. An analytic estimate for the density-breathing

modes has also been obtained using variational analysis. In the presence of detuning, ±lq
modes become non-degenerate in the polar-core vortex phase.

We consider an SOAM coupling model corresponding to an angular momentum transfer

of l = 4ℏ to the atoms, which permits the symmetry-breaking annular stripe phase as one

of the ground state phases. For a chosen set of interaction parameters, we observed an

annular-stripe phase along with two circular symmetric phases, namely lz = 0 and lz = +4

phase characterized by the charge singularities (+4, 0,−4) and (+8,+4, 0), respectively.

We observed a phase transition from an annular stripe phase to a circularly symmetric

lz = 0 (or lz = +4) phase as coupling strength (or detuning) exceeds a critical value.

Using the Bogoliubov approach, we studied the excitation spectrum (a) as a function of

Ω0 for fixed interaction parameters and δ and (b) as a function of δ for fixed interaction

parameters and Ω0. For (a), the excitation spectrum shows discontinuities across the

phase boundary between the annular stripe and lz = 0 phases, and in (b) collective modes

vary smoothly across the phase boundary between the annular stripe and lz = +4 phases.

6.2 Future directions

In the near future, we aim to study the low-lying excitation spectrum and ground-state

phase diagram of Raman-induced SO-coupled spin-1 BECs at zero and finite temperatures;

the existing literature on this theme is primarily on pseudospin-1/2 BECs [218–220].
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On the theme of SOAM-coupled spinor BECs the annular stripe phase has a semblance

with the supersolid stripe phase in an SO-coupled BEC [81,214,216,221–224]; just like

the supersolid stripe phase annular stripe breaks two continuous symmetries, namely

rotational and gauge symmetry. Our work in this thesis also shows that the roton

mode vanishes at the boundary of annular-stripe and lz = +4 phases. Recently, a

temperature-induced supersolidity has been proposed in an SO-coupled pseudospin-1/2

BEC [225]. This motivates us to study the fate of the annular-stripe phase at finite

temperatures in future.

The single-particle SOAM-coupled Hamiltonians considered in this work are

rotationally symmetric. If this rotational symmetry is explicitly broken by replacing the

isotropic harmonic trapping potential with a box-trapping potential, the ground state

phase diagram will change drastically. In this context, it will be interesting to study such

a system’s ground state phase diagram in the future, especially since the box-trapping

potential is now experimentally realizable [190].
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Appendix A

Time-splitting finite-difference

methods for an SO-coupled spin-1

BEC

The HSP and HSE matrices in Eqs. (2.27b) and (2.27c) for a 3D spin-1 condensate are

[1,55,56]

HSP =


V + c0ρ+ c1(ρ0 + ρ−) 0 0

0 V + c0ρ+ c1ρ+ 0

0 0 V + c0ρ+ c1(ρ0 − ρ−)

 , (A.1a)

HSE =c1


0 ψ0ψ

∗
−1 0

ψ∗
0ψ−1 0 ψ∗

0ψ1

0 ψ0ψ
∗
1 0

 , (A.1b)

where ρl = |ψl|2 with l = 0,±1, ρ =
∑

l ρl, ρ± = ρ+1 ± ρ−1, and dimensionless interaction

strength parameters are

c0 =
4πN(a0 + 2a2)

3aosc
and c1 =

4πN(a2 − a0)

3aosc
. (A.2)

In Eqs. (A.1a) and (A.1b), the x dependence of trapping potential, densities, and

component wavefunctions has been suppressed.

A.1 Quasi-one-dimensional SO-coupled spin-1 BEC

In a q1D trap, Hp matrix in Eq. (2.27a) for SO-coupled spin-1 BEC takes the form

Hp = 1
p̂2x
2

+ γSxp̂x, (A.3)

where 1 is a 3×3 identity matrix, and Sx is the 3×3 spin-1 matrix. The form of Hcoh, HSP,

and HSE, respectively, in Eqs. (2.29), (A.1a), and (A.1b) remain unchanged, provided

x = x, V =
1

2
α2
xx

2, c0 =
√
αyαz

2N(a0 + 2a2)

3aosc
, c1 =

√
αyαz

2N(a2 − a0)

3aosc
.
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Using the first-order time-splitting, the solution of the Eq. (2.1) is equivalent to solving

the set of Eqs. (2.27a)-(2.27c) successively. The Ψ(x, t) = [ψ1(x, t), ψ0(x, t), ψ−1(x, t)]
T

is the order parameter for spin-1 system. We solve Eq. (2.27a) using finite difference

schemes described in detail for pseudospin-1/2 BEC. Using Backward-Euler (and/or

Crank-Nicolson) discretization schemes along with periodic boundary conditions, viz. Eq.

(2.35), Eq. (2.27a) reduces to three coupled matrix equations

AΦn+1
±1 +BΦn+1

0 = D±1, (A.4a)

AΦn+1
0 +B(Φn+1

1 +Φn+1
−1 ) = D0. (A.4b)

Eqs. (A.4a)-(A.4b), can be decoupled into following three independent matrix equations,

(2B2A−A3)Φn+1
±1 = (B2 −A2)D±1 +ABD0 −B2D∓1, (A.5a)

(A2 − 2B2)Φn+1
0 = AD0 −B(D1 +D−1), (A.5b)

whereA and Φn+1
l with l = 1, 0,−1 are same as in Eq. (2.45a) and Eq. (2.45c), respectively,

whereas rows of B and elements of Dj are now defined as

B(i, :) =

(
0,

α∆tγ

4
√
2∆x

, 0, · · · , 0, − α∆tγ

4
√
2∆x

)
(Ci−1)T , (A.6a)

d±1(i) =

[
ιβ∆t

4∆x2

{
ϕn(i−1,±1) + ϕn(i+1,±1)

}
+

(
1− ιβ∆t

2∆x2

)
ϕn(i,±1)

− γβ∆t

4
√
2∆x

(
ϕn(i+1,0) − ϕn(i−1,0)

)]
, (A.6b)

d0(i) =

[
ιβ∆t

4∆x2

{
ϕn(i−1,0) + ϕn(i+1,0)

}
+

(
1− ιβ∆t

2∆x2

)
ϕn(i,0)

− γβ∆t

4
√
2∆x

(
ϕn(i+1,1) − ϕn(i−1,1) + ϕn(i+1,−1) − ϕn(i−1,−1)

)]
. (A.6c)

The decoupled matrix Eqs. (A.5a) -(A.5b) are linear circulant systems of equations

which can be solved by using the method described for pseudospin-1/2 BEC. The analytic

solution to Eq. (2.27b) is [181]

Ψ(x, tn+1) ≈
(
1+

cos ζ − 1

ζ2
∆t2H2

SE+ − ι
sin ζ

ζ
∆tHSE+

)
Ψ(x, tn), (A.7)

where ζ = ∆t
√

|c1ψ0ψ∗
−1 +

Ωcoh

2
√
2
|2 + |c1ψ0ψ∗

1 +
Ωcoh

2
√
2
|2. Finally, the solution to Eq. (2.27c)

is again given as in Eq. (2.58) with the caveat that the various quantities are identified as

those corresponding to spin-1 BEC.

A.2 Quasi-two-dimensional SO-coupled spin-1 BEC

Here the form of matrix operator Hp is same as in Eq. (2.59) with 1 representing a 3× 3

identity matrix, and Sν with ν = x, y denoting the spin-1 matrices. Also, the form of Hcoh,
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HSP, and HSE in Eqs. (2.29), (A.1a), (A.1b), respectively, remain unchanged, provided

x ≡ (x, y), V =
∑
ν=x,y

α2
νν

2

2
, (A.8)

c0 =
√
2παz

2N(a0 + 2a2)

3aosc
, c1 =

√
2παz

2N(a2 − a0)

3aosc
. (A.9)

The CGPEs of a q2D spin-1 BEC with Rashba SO coupling, where Hp is further split into

Hpx +Hpy , where Hpx and Hpy are defined in Eq. (2.62) with 1 and Sν being identified as

3×3 identity and spin-1 matrices, respectively. Similar to a q2D pseudospin-1/2 BEC, each

of Eq. (2.61a) and Eq. (2.61b) can be discretized into three decoupled matrix equations,

such as

(A3
x + 2AxB

2
x)X

n+1
±1 = (A2

x +B2
x)D

x
±1 ∓AxBxD

x
0 +B2

xD
x
∓1, (A.10a)

(A2
x + 2B2

x)X
n+1
0 = AxD

x
0 +Bx(D

x
1 −Dx

−1) (A.10b)

for Eq. (2.61a), and

(2B2
yAy −A3

y)Y
n+1
±1 = (B2

y −A2
y)D

y
±1 +AyByD

y
0 −B2

yD
y
∓1, (A.11a)

(A2
y − 2B2

y)Y
n+1
0 = AyD

y
0 −By(D

y
1 +Dy

−1), (A.11b)

for Eq. (2.61b). Here, Aν (with ν = x, y), Xn+1
l , Y n+1

l , are defined as in Eq. (2.64a),

Eq. (2.64d) and Eq. (2.64e) respectively, whereas Bν , D
ν
l are now defined as

Bx(i, :) =

(
0,

ια∆tγ

4
√
2∆x

, 0, · · · , 0, − ια∆tγ

4
√
2∆x

)
(Ci−1)T , (A.12a)

By(i, :) =

(
0,

α∆tγ

4
√
2∆y

, 0, · · · , 0, − α∆tγ

4
√
2∆y

)
(Ci−1)T , (A.12b)

dx±1(i) =

[
ιβ∆t

4∆x2

{
ϕn(i−1,j,±1) + ϕn(i+1,j,±1)

}
+

(
1− ιβ∆t

2∆x2

)
ϕn(i,j,±1)

∓ ιγβ∆t

4
√
2∆x

(
ϕn(i+1,j,0) − ϕn(i−1,j,0)

)]
, (A.12c)

dx0(i) =

[
ιβ∆t

4∆x2

{
ϕn(i−1,j,0) + ϕn(i+1,j,0)

}
+

(
1− ιβ∆t

2∆x2

)
ϕn(i,j,0)

+
ιβ∆tγ

4
√
2∆x

(
ϕn(i+1,j,1) − ϕn(i−1,j,1) − (ϕn(i−1,j,−1) − ϕn(i+1,j,−1))

)]
, (A.12d)

dy±1(i) =

[
ιβ∆t

4∆y2

{
ϕn(i,j−1,±1) + ϕn(i,j+1,±1)

}
+

(
1− ιβ∆t

2∆y2

)
ϕn(i,j,±1)

− γβ∆t

4
√
2∆y

(
ϕn(i,j+1,0) − ϕn(i,j−1,0)

)]
, (A.12e)

dy0(i) =

[
ιβ∆t

4∆y2

{
ϕn(i,j−1,0) + ϕn(i,j+1,0)

}
+

(
1− ιβ∆t

2∆y2

)
ϕn(i,j,0)

− γβ∆t

4
√
2∆y

(
ϕn(i,j+1,1) − ϕn(i,j−1,1) + ϕn(i,j+1,−1) − ϕn(i,j−1,−1)

)]
. (A.12f)
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Eqs. (A.10a) and (A.10b), and (A.11a) and (A.11b) are linear circulant systems of

equations, and thus can be solved as described for a pseudospin-1/2 condensate in Sec.

2.3.2. The solution to Eqs. (2.27a)-(2.27c) is also similar as described for a q1D spin-1

condensate.

A.3 Sample numerical results

We consider (1) 23Na and (2) 87Rb spin-1 BECs corresponding to antiferromagnetic and

ferromagnetic phases. The scattering lengths corresponding to systems (1) and (2) are

a0 = 50.00aB, a1 = 55.01aB [198] and a0 = 101.8aB, a1 = 100.4aB [192], respectively.

We consider 10000 atoms trapped in a q1D trapping potential with ωx = 2π × 20 Hz and

ωy = ωz = 2π × 400 Hz. The interaction strengths c0 and c2 in dimensionless units for

Table A.1: Comparison of ground state energies of SO- and coherently-coupled spin-1
BECs using TSFP, TSBE, and TSCN methods with ∆x = 0.1 and ∆t̃ = 0.005. The
energies correspond to different values γ. The coherent coupling used for q1D and q2D
systems are 0.5 and 0.1, respectively. The interaction strength parameters considered for
the q1D BECs are c0 = 240.83, c1 = 7.54 for 23Na and c0 = 885.72, c1 = −4.09 for 87Rb,
whereas the same for q2D BECs are c0 = 134.98, c1 = 4.22 and c0 = 248.22, c1 = −1.15,
respectively.

γ 23Na 87Rb
TSFP TSBE TSCN TSFP TSBE TSCN

0.5 15.0623 15.0623 15.0623 35.7812 35.7812 35.7812
q1D 1.0 14.6873 14.6873 14.6873 35.4062 35.4062 35.4062

1.5 14.0623 14.0623 14.0623 34.7812 34.7812 34.7812
2.0 13.1873 13.1876 13.1876 34.9062 33.9062 33.9065

0.5 4.3797 4.3797 4.3797 8.2638 8.2638 8.2638
q2D 1.0 3.9602 3.9602 3.9601 7.8747 7.8747 7.8747

1.5 3.3303 3.3303 3.3303 7.2435 7.2435 7.2435
2.0 2.4486 2.4489 2.4489 6.3658 6.3661 6.3661

aforementioned two systems are

(1) (c0, c1) = (240.83, 7.54), (A.13a)

(2) (c0, c1) = (885.72,−4.09). (A.13b)

The same number of atoms trapped in a q2D trapping potential with ωx = ωy = 2π × 20

Hz and ωz = 2π × 400 Hz leads to following interaction strengths

(1) (c0, c1) = (134.98, 4.22), (A.14a)

(2) (c0, c1) = (248.22,−1.15), (A.14b)

for 23Na and 87Rb spin-1 BECs, respectively. The oscillator lengths for systems (1) and

(2) are 4.69 µm and 2.41 µm, respectively. For these two cases, the comparison of ground



Appendix A. Time-splitting finite-difference methods for an SO-coupled spin-1 BEC 107

state energies obtained from TSFP, TSBE and TSCN shows an excellent agreement as

reported in Table-(A.1). The numerically obtained component densities in the ground

states of harmonically trapped q1D 23Na and 87Rb spin-1 BECs with different values of γ

and Ωcoh are (not shown here) in an excellent agreement.
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Appendix B

Solving BdG equations using finite

difference method

The fluctuation δΨ(r, t) = [δψ+1(r, t), δψ0(r, t), δψ−1(r, t)]
T to the equilibrium order

parameter in Eq. (4.8) is δψj(r, t) = uj(r)e
−iωt + v∗j (r)e

iωt, where uj(r) and vj(r) are

Bogoliubov quasi-particle amplitudes for jth spin component and ω is the excitation

frequency. Linearization of CGPEs (4.3a) and (4.3b) and the conjugate set of equations

using the perturbed order parameter in Eq. (4.8) yields following six-coupled BdG

equations:

ωu+1 =

[
− ∇2

r

2
+
r2

2
+ δ +

(lq + lz + 1)2

2
− µ+ c0(2R

2
+1 +R2

0 +R2
−1)

+c1(2R
2
+1 +R2

0 −R2
−1)

]
u+1 +

[
Ω(r)√

2
+R+1R0(c0 + c1) + 2c1R0R−1

]
u0

+R2
+1(c0 + c1)v+1 +R+1R0(c0 + c1)v0 +R+1R−1(c0 − c1)u−1

+[R+1R−1(c0 − c1) + 2c1R
2
0]v−1, (B.1a)

−ωv+1 =

[
− ∇2

r

2
+
r2

2
+ δ +

(lq + lz + 1)2

2
− µ+ c0(2R

2
+1 +R2

0 +R2
−1)

+c1(2R
2
+1 +R2

0 −R2
−1)

]
v+1 +

[
Ω(r)√

2
+R+1R0(c0 + c1) + 2c1R0R−1

]
v0

+R2
+1(c0 + c1)u+1 +R+1R0(c0 + c1)u0 +R+1R−1(c0 − c1)v−1

+[R+1R−1(c0 − c1) + 2c1R
2
0]u−1, (B.1b)

ωu0 =

[
−∇2

r

2
+
r2

2
+

(lq + lz)
2

2
− µ+ c0(R

2
+1 + 2R2

0 +R2
−1)− c1(R

2
+1 +R2

−1)

]
u0

+

[
Ω(r)√

2
−R2

+1(c0 + c1)

]
u+1 +R+1R0(c0 + c1)v+1 + (c0R

2
0 + 2c1R+1R−1)v0

+

[
Ω(r)√

2
+R0R−1(c0 + c1)− 2c2R+1R0

]
u−1 +R+1R−1(c0 + c1)v−1, (B.1c)

−ωv0 =

[
−∇2

r

2
+
r2

2
+

(lq + lz)
2

2
− µ+ c0(R

2
+1 + 2R2

0 +R2
−1)− c1(R

2
+1 +R2

−1)

]
v0

+

[
Ω(r)√

2
−R2

+1(c0 + c1)

]
v+1 +R+1R0(c0 + c1)u+1 + (c0R

2
0 + 2c1R+1R−1)u0

+

[
Ω(r)√

2
+R0R−1(c0 + c1)− 2c1R+1R0

]
v−1 +R+1R−1(c0 + c1)u−1, (B.1d)
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ωu−1 =

[
− ∇2

r

2
+
r2

2
− δ +

(lq + lz − 1)2

2
− µ+ c0(R

2
+1 +R2

0 + 2R2
−1)

+c1(2R
2
−1 +R2

0 −R2
+1)

]
u−1 +

[
Ω(r)√

2
+R0R−1(c0 + c1) + 2c1R+1R0

]
u0

+(c0 − c1)R+1R−1u+1 + [R+1R−1(c0 − c1) + 2c1R
2
0]v+1

+R2
−1(c0 + c1)v−1 +R+1R0(c0 + c1)v0, (B.1e)

−ωv−1 =

[
− ∇2

r

2
+
r2

2
− δ +

(lq + lz − 1)2

2
− µ+ c0(R

2
+1 +R2

0 + 2R2
−1)

+c1(2R
2
−1 +R2

0 −R2
+1)

]
v−1 +

[
Ω(r)√

2
+R0R−1(c0 + c1) + 2c1R+1R0

]
v0

+(c0 − c1)R+1R−1v+1 + [R+1R−1(c0 − c1) + 2c1R
2
0]u+1

+R2
−1(c0 + c1)u−1 +R+1R0(c0 + c1)u0, (B.1f)

where∇2
r/2 = ∂2/(2∂r2)+∂/(2r∂r) and lz = 1 for phase I (coreless vortex) and 0 for phase

II (polar-core vortex). To solve coupled Eqs. (B.1a)-(B.1f), we use the finite-difference

method to discretize these equations over the radial grid ri consisting of Nr points with

i = 1, 2, . . . , Nr [171]. To discretize the terms involving the kinetic energy operator, say

∇2
rf(r) = f

′′
(r), we employ the finite difference approximation as follows

f
′′
(ri) ≈


f(ri+2)−2f(ri+1)+f(ri)

∆r2
+ f(ri+1)−f(ri)

ri∆r if i = 1

f(ri+1)−2f(ri)+f(ri−1)
∆r2

+ f(ri+1)−f(ri−1)
2ri∆r if i = 2 to Nr − 1

f(ri)−2f(ri−1)+f(ri−2)
∆r2

+ f(ri)−f(ri−1)
ri∆r if i = Nr,

(B.2a)

where f(r) is either uj(r) or vj(r), and ∆r is radial step size. The discretization of

each of the six BdG equations yields Nr equations corresponding to each grid point.

These equations can now be combined as a single matrix eigenvalue equation, where the

dimension of the matrix is 6Nr × 6Nr with the eigenvector of the form

[u+1(r1), u+1(r2), . . . , u+1(rNr), v+1(r1), v+1(r2), . . . , v+1(rNr),

u0(r1), u0(r2), . . . , u0(rNr), v0(r1), v0(r2), . . . , v0(rNr),

u−1(r1), u−1(r2), . . . , u−1(rNr), v−1(r1), v−1(r2), . . . , v−1(rNr)]
T . (B.3)

In this thesis, we used a radial grid consisting of Nr = 256 points with a radial step-size of

∆r = 0.05, which results in a 6Nr × 6Nr matrix eigenvalue problem, which can be solved

using standard matrix diagonalization subroutines.

It is to noted that Eqs. (B.1a)-(B.1f) for lz = 0 and δ = 0, remain invariant if lq ̸= 0 is

changed to −lq with simultaneous interchange of the j = +1 and j = −1 components. It

implies that for non-zero magnetic quantum number of excitation (lq ̸= 0), ±lq excitation

modes in the single-particle excitation spectrum, viz. Fig. 4.5, will be degenerate. For

the same reason, ±lq modes with lq ̸= 0 of a polar-core vortex phase are also degenerate,
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for example in Fig. 4.6(c). In the presence of detuning (δ ̸= 0) or angular momentum

(lz ̸= 0), this invariance is not there, and as a result, ±lq excitations with lq ̸= 0 are no

longer degenerate in the coreless vortex phase.
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Appendix C

Solving two-dimensional BdG

equations using basis expansion

method

The linearization of the CGPEs (5.4a) and (5.4b) and the corresponding conjugate

equations, using the perturbed order parameter as defined in Eq. (5.5), results in the

following set of six-coupled two-dimensional BdG equations:

(
P1 P2

−P ∗
2 −P ∗

1

)(
uλ

vλ

)
= ωλ

(
uλ

vλ

)
, (C.1)

where

P1 =


h+1,+1 h+1,0 (c0 − c1)(ψ−1ψ

∗
+1)

h∗+1,0 h0,0 h0,−1

(c0 − c1)(ψ
∗
+1ψ−1) h∗0,−1 h−1,−1

 ,

P2 =


(c0 + c1)ψ

2
+1 (c0 + c1)ψ0ψ+1 (c0 − c1)ψ−1ψ+1 + c1ψ

2
0

(c0 + c1)ψ+1ψ0 c0ψ
2
0 + 2c1ψ+1ψ−1 (c0 + c1)ψ−1ψ0

(c0 − c1)ψ+1ψ−1 + c1ψ
2
0 (c0 + c1)ψ0ψ−1 (c0 + c1)ψ

2
−1

 ,

with

h0 =

(
−1

2
∂2x −

1

2
∂2y − µ+ V (x, y) + c0ρ

)
, h+1,+1 = h0 + c0ρ+1 + c1(2ρ+1 + ρ0 − ρ−1),

h0,0 =h0 + c0ρ0 + c1(ρ+1 + ρ−1), h−1,−1 = h0 + c0ρ−1 + c1(n0 − ρ+1 + 2ρ−1),

h+1,0 =(c0 + c1)ψ
∗
0ψ+1 + 2c1ψ

∗
−1ψ0 + hcc, h0,−1 = (c0 + c1)ψ0ψ

∗
−1 + 2c1ψ+1ψ

∗
0 + hcc,

hcc =
Ω(r)√

2
eιlϕ, ρj = |ψj |2, uλ = (uλ+1, u

λ
0 , u

λ
−1)

T , vλ = (vλ+1, v
λ
0 , v

λ
−1)

T .

where the x, y dependence of various quantities has been suppressed. The BdG equations

Eq. (C.1) can be solved using the finite difference method, as we discussed in Appendix B.

The finite-difference method, in this case, yields a matrix eigenvalue problem of size

6(NxNy + 1) × 6(NxNy + 1), where Nx and Ny are the numbers of grid points along

113
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x and y directions on a rectangular spatial grid. As the matrix size is very large, solving

it using standard matrix diagonalization subroutines is time-consuming. To avoid large

matrix eigenvalue problems, we use the basis expansion method to solve the coupled BdG

equations [172], where we first express uj(x, y) and vj(x, y) as a linear combination of

the two-dimensional harmonic oscillator eigenstates, say ϕp(x, y). Specifically we write

uj(x, y) =
∑

pm
j
pϕp(x, y) and similarly vj(x, y) =

∑
p n

j
pϕp(x, y), where m

j
p and njp are the

coefficients of the linear superposition. The resultant BdG equations are then successively

projected on the Nb basis states. While implementing the projection, one typically needs

to evaluate the following matrix elements:

Mpq
11 =

∫∫
ϕp(x, y)

[
− 1

2
∂2x −

1

2
∂2y − µ+ V (x, y) + c0(ρ+ ρ1)

+ c1(2ρ+1 + ρ0 − ρ−1)

]
ϕq(x, y)dxdy,

Mpq
12 =

∫∫
ϕp(x, y)(c0 + c1)ψ

2
+1ϕq(x, y)dxdy,

Mpq
13 =

∫∫
ϕp(x, y)

[
(c0 + c1)ψ

∗
0ψ+1 + 2c1ψ

∗
−1ψ0 + hcc

]
ϕq(x, y)dxdy,

Mpq
14 =

∫∫
ϕp(x, y)(c0 + c1)ψ0ψ+1ϕq(x, y)dxdy,

Mpq
15 =

∫∫
ϕp(x, y)(c0 − c1)(ϕ+1ψ

∗
−1)ϕq(x, y)dxdy,

Mpq
16 =

∫∫
ϕp(x, y)

[
(c0 − c1)ψ−1ψ+1 + c1ψ

2
0

]
ϕq(x, y)dxdy,

Mpq
21 =−

∫∫
ϕp(x, y)(c0 + c1)ψ

2∗
+1ϕq(x, y)dxdy,

Mpq
22 =−

∫∫
ϕp(x, y)

[
− 1

2
∂2x −

1

2
∂2y − µ+ V (x, y) + c0ρ+ c0ρ1

+ c1(2ρ+1 + ρ0 − ρ−1)

]
ϕq(x, y)dxdy,

Mpq
23 =−

∫∫
ϕp(x, y)

[
(c0 + c1)ψ

∗
0ψ

∗
+1

]
ϕq(x, y)dxdy,

Mpq
24 =−

∫∫
ϕp(x, y)

[
(c0 + c1)ψ

∗
0ψ

∗
+1 + 2c1ψ

∗
0ψ

∗
−1 + cc∗

]
ϕq(x, y)dxdy,

Mpq
25 =−

∫∫
ϕp(x, y)

[
(c0 − c1)ϕ

∗
0ψ

∗
−1 + c1ψ

2∗
0

]
ϕq(x, y)dxdy,

Mpq
26 =−

∫∫
ϕp(x, y)(c0 − c1)ψ−1ψ

∗
+1ϕq(x, y)dxdy,
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Mpq
31 =

∫∫
ϕp(x, y)

[
(c0 + c1)ψ0ψ

∗
+1 + 2c1ψ−1ψ

∗
0 + hcc∗

]
ϕq(x, y)dxdy,

Mpq
32 =

∫∫
ϕp(x, y)(c0 + c1)ψ+1ψ0ϕq(x, y)dxdy,

Mpq
33 =

∫∫
ϕp(x, y)

[
− 1

2
∂2x −

1

2
∂2y − µ+ V (x, y) + c0(ρ+ ρ0)

+ c1(ρ+1 − ρ−1)

]
ϕq(x, y)dxdy,

Mpq
34 =

∫∫
ϕp(x, y)

[
c0ψ

2
0 + 2c1ψ−1ψ1

]
ϕq(x, y)dxdy,

Mpq
35 =

∫∫
ϕp(x, y)

[
(c0 + c1)ψ

∗
−1ψ0 + 2c1ϕ

∗
0ψ1 + cc

]
ϕq(x, y)dxdy,

Mpq
36 =

∫∫
ϕp(x, y)(c0 + c1)ψ−1ψ0ϕq(x, y)dxdy,

Mpq
41 =−

∫∫
ϕp(x, y)(c0 + c1)ψ

∗
0ψ

∗
+1ϕq(x, y)dxdy,

Mpq
42 =−

∫∫
ϕp(x, y)

[
(c0 + c1)ψ1ψ

∗
0 + 2c1ψ

∗
−1ψ0 + cc

]
ϕq(x, y)dxdy,

Mpq
43 =−

∫∫
ϕp(x, y)

[
c0ψ

2∗
0 + 2c1ψ

∗
−1ψ

∗
1

]
ϕq(x, y)dxdy,

Mpq
44 =−

∫∫
ϕp(x, y)

[
− 1

2
∂2x −

1

2
∂2y − µ+ V (x, y) + c0(ρ+ ρ0)

+ c1(ρ+1 − ρ−1)

]
ϕq(x, y)dxdy,

Mpq
45 =−

∫∫
ϕp(x, y)(c0 + c1)ψ

∗
−1ψ

∗
0ϕq(x, y)dxdy,

Mpq
46 =−

∫∫
ϕp(x, y)

[
(c0 + c1)ψ

∗
0ψ−1 + 2c1ψ

∗
1ψ0 + cc∗

]
ϕq(x, y)dxdy,

Mpq
51 =

∫∫
ϕp(x, y)(c0 − c1)ψ

∗
1ψ−1ϕq(x, y)dxdy,

Mpq
52 =

∫∫
ϕp(x, y)

[
(c0 − c1)ψ−1ψ+1 − c1ψ

2
0

]
ϕq(x, y)dxdy,

Mpq
53 =

∫∫
ϕp(x, y)

[
(c0 + c1)ψ−1ψ

∗
0 + 2c1ψ

∗
1ψ0 + cc∗

]
ϕq(x, y)dxdy,

Mpq
54 =

∫∫
ϕp(x, y)(c

∗
0 + c∗1)ψ0ψ−1ϕq(x, y)dxdy,

Mpq
55 =

∫∫
ϕp(x, y)

[
− 1

2
∂2x −

1

2
∂2y − µ+ V (x, y) + c0(ρ+ ρ−1)



+ c1(2ρ−1 + ρ0 − ρ1)

]
ϕq(x, y)dxdy,

Mpq
56 =

∫∫
ϕp(x, y)(c0 + c1)ψ

2
−1ϕq(x, y)dxdy,

Mpq
61 =−

∫∫
ϕp(x, y)

[
(c0 − c1)ψ

∗
−1ψ

∗
+1 + c1ψ

2∗
0

]
ϕq(x, y)dxdy,

Mpq
62 =−

∫∫
ϕp(x, y)(c0 − c1)ψ

∗
−1ψ1ϕq(x, y)dxdy,

Mpq
63 =−

∫∫
ϕp(x, y)(c0 + c1)ψ

∗
0ψ

∗
+1ϕq(x, y)dxdy,

Mpq
64 =−

∫∫
ϕp(x, y)

[
(c0 + c1)ψ0ψ

∗
−1 + 2c1ψ

∗
0ψ1 + cc

]
ϕq(x, y)dxdy,

Mpq
65 =−

∫∫
ϕp(x, y)(c0 + c1)ψ

2∗
−1ϕq(x, y)dxdy,

Mpq
66 =−

∫∫
ϕp(x, y)

[
− 1

2
∂2x −

1

2
∂2y − µ+ V (x, y) + c0(ρ+ ρ−1)

+ c1(2ρ−1 + ρ0 − ρ1)

]
ϕq(x, y)dxdy.

The projection implementation allows one to cast the BdG equations as a 6Nb × 6Nb

matrix eigenvalue problem with the eigenvector of form

[m+1
1 ,m+1

2 , . . . ,m+1
Nb
, n+1

1 , n+1
2 , . . . , n+1

Nb
,m0

1,m
0
2, . . . ,m

0
Nb
,

n01, n
0
2, . . . , n

0
Nb
,m−1

1 ,m−1
2 , . . . ,m−1

Nb
, n−1

1 , n−1
2 , . . . , n−1

Nb
].T (C.2)

The 6Nb × 6Nb matrix is a sparse matrix, and one can employ the sparse matrix

representation in the ARPACK library for diagonalization [226]. For small Nb, LAPACK

subroutines [184] can also efficiently handle the diagonalization of the matrix. This thesis

considers Nb = 900, corresponding to 30 one-dimensional harmonic oscillator basis states,

each along x and y direction; the matrix eigenvalue problem can be solved using the

LAPACK software package.
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[37] F. P. Dos Santos, J. Léonard, J. Wang, C. Barrelet, F. Perales, E. Rasel,

C. Unnikrishnan, M. Leduc, and C. Cohen-Tannoudji, “Bose-Einstein condensation

of metastable helium,” Phys. Rev. Lett., vol. 86, p. 3459, 2001.

[38] G. Modugno, G. Ferrari, G. Roati, R. J. Brecha, A. Simoni, and M. Inguscio,

“Bose-Einstein condensation of potassium atoms by sympathetic cooling,” Science,

vol. 294, p. 1320, 2001.

[39] T. Weber, J. Herbig, M. Mark, H.-C. Nagerl, and R. Grimm, “Bose-Einstein

condensation of cesium,” Science, vol. 299, p. 232, 2003.
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