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Lay Summary

In our everyday lives, the way things move– be it cars on the road or substances

within our bodies– plays a crucial role in shaping our experiences. Understanding and

optimizing these systems is like holding the key to a smoother, more efficient world.

In this study, we explore the importance of modeling transport systems, ranging from

vehicles on the road to biological processes, and how the totally asymmetric simple

exclusion process (TASEP) serves as a vital tool in this pursuit.

Imagine your daily commute or a package being delivered across town. Modeling

vehicular transport systems allows researchers to simulate and study traffic flow, predict

congestion, and find ways to make transportation more efficient. On a broader scale,

similar modeling principles can be applied to biological transport systems, such as the

movement of molecules within cells or the flow of blood in our circulatory systems.

These biological processes share surprising similarities with vehicular traffic, making

them intriguing subjects for study.

TASEP emerges as versatile modeling tool that enables the simulation of entity

movements, whether it be cars navigating roads or particles within a biological system.

Through this model, researchers acquire valuable insights into the dynamics of these

systems, allowing them to discern patterns and discover avenues for enhancing efficiency.

To make these models more pertinent to real-world situations, we have tried to

integrate diverse and realistic features. This involves incorporating factors such as traffic

lights, road conditions, and driver behaviors specifically tailored for vehicular transport

models. Biological transport involves mimicking adaptive behaviors and incorporating

characteristics inspired by the complexity of living systems. These enhancements aim

to create simulations that mirror the intricacies of real-world scenarios, allowing us to

refine strategies for optimizing transport in diverse contexts.

In essence, the modeling of transport systems through TASEP which involve random

motion of particles, enriched with realistic features, is a journey toward a better, more

efficient world. Whether it’s making your daily commute smoother or understanding

how substances move within living organisms, these models pave the way for innovative

solutions that can enhance transportation systems and improve the way things flow in

our interconnected world.
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Abstract

Transportation is a fundamental aspect of human and biological systems, serving

as the mechanism for the movement of people, goods, and organisms from one place to

another. Its significance lies in its ability to connect diverse locations, assist in economic

growth, cultural exchange, and ecological balance. In biological systems, intricate

mechanisms such as motor proteins traveling along microtubules play a crucial role in

cellular transport, ensuring the proper distribution of essential molecules within cells.

On a macroscopic scale, vehicular traffic and pedestrian flow are essential components of

urban life, influencing the efficiency and livability of cities. The coordinated movement

of ants, exemplifying collective behavior, showcases how transportation is vital for the

survival and thriving of social organisms. Therefore, it is important to investigate the

collective motion of the entities involved, by employing a mathematical model, with the

objective of explaining the complex dynamics that characterize their interactions.

Over the years, a discrete lattice gas model, namely totally asymmetric simple

exclusion process (TASEP), has emerged as a paradigmatic model, which is often

adopted to study the non-equilibrium stochastic motion of various physical and

biological transport processes. Treating entities such as vehicles, motor proteins, and

ants as particles, this model aptly captures their unidirectional movement along the

respective track by representing them with discrete lattice structures. Considering

the numerous scenarios involving systems with open boundaries, the terminal points

of the lattice are linked to boundary reservoirs and the dynamics of the particles

are governed by simple Poisson process. To provide a sound theoretical framework,

mean-field theory and its variants are adopted which neglects all the correlations

between neighbouring particles. A notable consistency between mean-field predictions

and Monte Carlo simulations is observed, affirming the theoretical predictions of the

stationary properties.

In this thesis, we contribute to a thorough understanding of collective behaviour

of particles by incorporating various realistic features. The first part is inspired by

the motion of a limited number of motor proteins like kinesin and dynein in opposite

directions on a microtubules. In particular, we examine the influence of individual

particle constraints on both species in a one-dimensional bidirectional transport model.

The stationary properties of the system is regulated by the entry-exit rates of the species

as well as the occupancy of the respective reservoir. Continuing our exploration in

bidirectional transport, further we analyze an exclusion model resembling the structure

of a roundabout.

The second part broadens a single-lane model to a two-lane TASEP by introducing

diverse elements such as stochastic blockages at each site, the existence of narrow

entrances, reservoir crowding, or inter-lane coupling. These incorporated features
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emulate various scenarios found in both intracellular transport and vehicular traffic.

Initially, our focus is on a system characterized by narrow two-lane entrances, where

defects can stochastically bind and unbind within a resource-constrained environment.

Despite the inherent complexity, we are able to derive theoretical expressions for

stationary properties through the usage of mean-field theory. Furthermore, we

explore a resource-limited, two-lane coupled model where simple mean-field methods

prove inadequate for obtaining explicit solutions. To conduct a thorough analysis

of this challenging problem, we utilize vertical cluster mean-field in conjunction with

singular-perturbation technique.

The last part of the thesis centers around the attachment and detachment dynamics

of motor proteins on complex structure of microtubules, known as the Langmuir

kinetics. Initially, a network junction model is investigated under conditions of infinite

resources, followed by an examination under finite resource constraints.

Overall, the objective of this work is to utilize mathematical modeling as a tool to

attain a deep comprehension of the complexities that may emerge in a transport system

where particles undergo random motion.

Keywords: Driven diffusive systems; Stochastic transport; Exclusion process;

Monte Carlo simulations; Mean-field approximation; Langmuir kinetics; Singular

perturbation technique; Steady-state.
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Chapter 1

Introduction

Statistical mechanics, an invaluable and versatile tool, seamlessly integrates

principles and methodologies of statistics to navigate through complex systems

characterized by an immense number of particles. These systems cover a range of

scenarios, including vehicular traffic flow [2], pedestrian dynamics [3], behaviour of

group of ants [4], intracellular transport in biological processes [5], and protein synthesis

[6], and numerous other scenarios. The primary goal is to anticipate and elucidate the

measurable properties inherent in macroscopic structures by probing the properties and

behaviours of the microscopic elements constituting the arrangement. For instance,

within the realm of statistical mechanics, thermal energy takes on the definition of

the potential within atomic particles in displaced states, while temperature becomes a

significant measure reflecting how energy is distributed within these particles.

Operating on a microscopic scale, the theoretical framework of statistical mechanics

aims to understand and predict the macroscopic behavior of physical systems. By

utilizing statistical methods, it bridges the gap between the microscopic properties

of individual particles (atoms, molecules, etc.) and the macroscopic observables

(temperature, pressure, etc.), analyzing the collective behavior of large ensembles of

particles. Therefore, while it deals with microscopic entities and their interactions,

its aim is to describe and predict macroscopic phenomena, making it primarily

a microscopic approach with implications for macroscopic observations. In 1902,

Josiah Willard Gibbs [7] meticulously formulated the mathematical framework and

fundamental principles of statistical mechanics. The contributions of James Clerk

Maxwell and Ludwig E. Boltzmann [8] subsequently enhanced this groundwork,

particularly in the realm of thermodynamics. The amalgamation of statistical

principles and mechanics not only offers a comprehensive framework for understanding

a broad spectrum of phenomena but also establishes a crucial connection between the

microscopic and macroscopic realms. The combined endeavours of Gibbs, Maxwell, and

Boltzmann in the early twentieth century established the bedrock for this transformative

approach, shaping a discipline that continues to play a central role in predicting

and interpreting the dynamic properties of complex transport systems across various

domains.



2 Chapter 1. Introduction

1.1 Non-equilibrium systems

In a general context, we can sort the behaviour of multi-particle systems into two

primary categories: (i) systems that are in or near equilibrium and (ii) systems that

are significantly distant from equilibrium. Figure (1.1) illustrates the classification

of systems in statistical mechanics. Within the first category, internal stability in

isolation defines equilibrium within systems. A system is deemed close to equilibrium

if it promptly returns to its balanced state after experiencing a minor perturbation. It

is important to acknowledge that while they are often conceptualized as idealized, they

may still interact with the environment. However, the defining characteristic is that

these interactions reach a steady state where macroscopic observables remain constant

over time. Additionally, these systems typically experience forces, but the net force

acting on the system is generally zero, resulting in a state of balance or equilibrium. The

comprehensive research conducted by Gibbs and Boltzmann has led to the development

of a unified theory that offers a thorough understanding of such systems [9]. By utilizing

Onsager’s theory along with linear response theory, one can elucidate the characteristics

of these systems [8,10].

 

System in statistical 

mechanics 

Near or in 

Equilibrium  

state 

Far from 

equilibrium  

Evolving towards 

Equilibrium 

Steady-state 

 

Evolving towards 

Non-equilibrium 

Steady-state 

 

Figure 1.1: Classification of the systems in statistical mechanics.

Contrastingly, several real-life systems exist that interact dynamically with their

environment, experiencing a non-zero net driving force. In systems far from equilibrium,

a constant non-zero current is sustained, frequently leading to a non-equilibrium

steady-state that challenges the applicability of Onsager’s theory. This steady-state

condition involves a continuous flow, such as heat flux or motion, without any change

in their properties over time. Examples of such non-equilibrium systems abound in

various phenomena, including vehicular traffic flow, transport processes in biological

systems, epidemic spreading, behaviour of groups of ants, gel electrophoresis, protein
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synthesis, pedestrian flow, flight of birds, and the floating progression of fish. While

the steady-state represents a relatively simpler scenario within the broader category of

non-equilibrium systems, it remains beyond the descriptive scope of the probability

distribution outlined by Boltzmann and Gibbs. Despite recent efforts, we remain

significantly distant from ascertaining whether the development of a comprehensive

general theory for steady-state is feasible, let alone subjecting it to further scrutiny

[11,12]. The lack of understanding regarding steady-states in systems operating outside

of equilibrium propels the scientific community to explore the realms of non-equilibrium

statistical mechanics. This exploration aims to delve deeply enough to uncover

previously unknown physical phenomena through thorough investigation.

1.2 Driven diffusive systems

In the expansive domain of non-equilibrium physics, driven diffusive systems

represent a distinctive class of systems that continually gain or lose energy from or

to an external field. This characteristic ensures that the system is consistently in a

non-equilibrium state, and the condition of detailed balance is not maintained. However,

a pairwise balance condition guides the system toward achieving a non-equilibrium

steady-state, where the system halts its evolution over time, maintaining a constant

current.

The continuous movement of active agents is enforced by introducing a drive that

influences the direction of their motion. In certain models such as vehicular traffic,

particle motion is initiated by external fields, earning the designation of ‘field-driven

particles’. Conversely, in systems like pedestrian flow and cellular biological transport,

particles move under internal driving forces and are termed ‘self-driven particles’. These

diffusive systems often hold greater significance in real-world physical and biological

stochastic transport mechanisms, a topic further discussed in upcoming sections.

1.2.1 Transport phenomena

Here, we try to explain certain transport mechanisms that serve as a motivation for

the thesis. It is crucial to underscore that this study goes beyond the limitations set

by these particular phenomena discussed below.

• Vehicular traffic.

Effective vehicular traffic management is a critical aspect of urban planning and

transportation infrastructure (Fig. (1.2a)). As cities continue to grow and

traffic congestion becomes a pressing issue, the need for efficient and innovative

traffic management strategies becomes paramount. Vehicular traffic management
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involves the application of various measures and technologies to regulate the flow of

traffic, enhance safety, and minimize congestion. This includes the implementation

of intelligent transportation systems, traffic signal optimization, dynamic traffic

modeling, and the use of real-time data analytics. Furthermore, sustainable practices,

such as the promotion of public transportation and the integration of smart traffic

solutions, play a pivotal role in achieving comprehensive traffic management goals.

By adopting a holistic approach that combines technology, data-driven insights, and

sustainable urban planning, vehicular traffic management aims to create safer, more

efficient, and environmentally friendly transportation systems in developing urban

areas [13].

(a) (b)

Figure 1.2: (a) Vehicular traffic on road and (b) collective motion of ants.

• Ant Trails. Ants (Fig. (1.2b)) showcase remarkable efficiency in navigating their

environment, whether foraging for food or managing various tasks, exhibiting complex

communication and organization. The formation of trails, optimization of routes,

and coordination of movements highlight decentralized decision-making processes

among ants. Their transport is vital for ecosystem functioning, biodiversity, nutrient

cycling, and pest control, making ants ecologically significant contributors to various

ecosystems.

• Intracellular transport by motor proteins. The cell, recognized as the

fundamental building block of life, operates as the cornerstone for both the structure

and function of all living organisms. Within the intricate framework of cellular

anatomy, organelles play a pivotal role by executing one or more vital tasks, each

dependent on progressive microscopic processes. These operations, fueled by a

steady energy supply, manifest as robust out-of-equilibrium systems. Sustaining

cell functionality necessitates the active transportation of essential ingredients across

diverse intracellular locations. However, due to the densely packed composition

and micro-level intricacies, diffusion alone cannot accomplish these operations.

Microtubules (MTs), the stiffest cytoskeleton filaments, form a network within the

cell, providing tracks for the long-distance intracellular transport of cargos such as

lipid droplets, endosomes, mitochondria, proteins, and viruses [14]. The coordinated
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motions along these pathways of microtubules guarantee the accurate delivery of

cellular components to designated intracellular locations.

 

 

 

 

 

 

 

  

ATP 

ADP 

Phosphate 
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linker 

Figure 1.3: Mechanism of Adenosine triphosphate (ATP) hydrolysis: a motor head
attaches to the microtubule, with the trailing head positioned behind. Upon ATP
binding, the neck linker undergoes stiffening, propelling the trailing head forward to
the subsequent binding site. After ATP hydrolysis in the now trailing head, converting
it to Adenosine diphosphate (ADP) and phosphate (Pi), the head detaches from the
track. This cycle persists, with each ATP hydrolysis correlating with a single forward
step in the process [1].

Microtubules, characterized by their stiff nature and intricate association and

disassociation progression, consist of polymers with fundamental subunits, tubulins,

forming protofilaments that assemble into helical cylinders. These microtubules serve

as the primary tracks for intracellular transport, with their polar nature dictated

by the tubulin subunits. Motor proteins, specifically from the kinesin and dynein

families, play a pivotal role in this transport system. These cytoskeleton motors

move along polar microtubules, utilizing the potential from ATP hydrolysis to

facilitate forward stepping along the filament [15,16] as shown in Fig. (1.3). Kinesins

predominantly progress towards the microtubule’s plus end, away from the nucleus,

while dyneins move towards the minus end, towards the nucleus, resulting in a

bidirectional flow. The collective behaviour of these motor proteins is crucial for

understanding the complex dynamics of cellular transport, with disruptions in this

system contributing to various diseases, including Alzheimer’s, neurodegenerative

disorders, and polycystic kidney diseases [15]. A thorough examination of the unified

dynamics of motor proteins offers a valuable understanding of the complex cellular

transport system and its importance for the overall health of the cell.

• Pedestrian Flow. This involves the movement of individuals in public spaces,

such as streets, sidewalks, and public transit hubs. Various factors influence

pedestrian transport, including crowd dynamics, pedestrian density, environmental

conditions, and architectural features. Studying pedestrian flow helps identify

patterns, bottlenecks, and potential hazards, aiding in the development of efficient

crowd management strategies.
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1.3 Totally Asymmetric Simple Exclusion Process:

A lattice-gas model

In this section, we will explore the approach used to analyze the characteristics of

the stationary states in non-equilibrium stochastic transport systems. The inherent

randomness in non-equilibrium transport processes implies that their prolonged

behaviour is unaffected by the starting conditions. Additionally, the intricacy of

studying these phenomena is heightened by the involvement of a substantial number of

particles in the system. To tackle this complexity, we have employed a stochastic model

based on the population dynamics, effectively managing both the stochastic nature

and the abundance of particles. This technique allows us to capture a comprehensive

macroscopic representation of the system under investigation.

Such systems are mainly studied using lattice-gas models [17] which were introduced

by Katz, Lebowitz, and Spohn [18]. At first glance, the terms ‘lattice’ and ‘gas’ may

seem contradictory, as a lattice is a defining characteristic of a crystalline solid, and

there is no actual lattice in the gaseous phase of matter. The concept of a lattice gas,

however, involves discretizing continuous space into a regular array of cells. These cells,

restricted to hosting only one particle at a time, collectively form a discrete lattice. At

any given moment, a fraction of these lattice sites are occupied by particles, contributing

to the dynamic nature of the system.

The Totally Asymmetric Simple Exclusion Process (TASEP) stands out as a

special class of lattice-gas model, gaining widespread recognition in recent decades.

It has established itself as an exemplary model, particularly well-suited for the study

of non-equilibrium stochastic transport systems, hence, earning the designation as

‘mother of all traffic models’. This model was first introduced by Macdonald in 1968

to study the kinetics of biopolymerization [19] (the motion of a ribosome along a

piece of mRNA during translation), which involves the diffusion of biological entities

along a one-dimensional path. Specifically, this model focuses on examining the

coordinated actions of dynamic entities, commonly referred to as particles, as they

advance unidirectionally along a one-dimensional lattice. Generally, the particles

transverse from left to right while adhering to the hard-core exclusion principle, which

ensures that a lattice site cannot accommodate more than one particle at a time. Since

its first incarnation, these models have been utilized to enhance our comprehension

of molecular transport processes across several fields [20–22]. Widely recognized as

stochastic models, they have undergone extensive scrutiny and application in exploring

various transport phenomena including vehicular traffic [23], dynamics of motor proteins

[24], protein synthesis [6], pedestrian flow [25], gel electrophoresis [26], modeling of ant

trails [5], etc.
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The stationary behaviour of the model is strongly influenced by the incorporated

boundary conditions, typically falling into two categories: (i) periodic/closed and (ii)

open boundary conditions [27,28]. In closed TASEPs, as a particle traverses the

lattice and reaches the last site, it jumps to the first site if unoccupied, creating a

ring-like structure, as illustrated in Fig. (1.4a). Under these boundary conditions, the

preservation of particle count within the system leads to a stationary state characterized

by translational invariance. Consequently, a single phase occurs, controlled by both the

number of sites and particles in the system.

On the contrary, in the presence of open boundary conditions (see Fig. (1.4b)), the

arrival and departure of the particles from the extreme ends of the lattice disrupts the

conservation of the overall particle count in the system. In this case, the system reveals

various counter-intuitive non-equilibrium phenomena such as localized shock formation,

phase transitions, phase separations, symmetry-breaking, etc [27–34]. The central focus

of this thesis lies in the exploration of open TASEP. Consequently, let’s initiate the

discussion by scrutinizing the governing dynamics and identifying key features of the

simplest version of the open TASEP model. The open model adheres to the following

rules:

         1       2                                                       L-1     L 
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Figure 1.4: Schematic representation of exclusion process with two types of boundary
conditions: (a) periodic and (b) open.

• Particles undergo diffusion on a one-dimensional lattice having L number of sites.

• Each lattice site is either vacant or contains at most one particle, adhering to the

hard-core exclusion principle, which stipulates that simultaneous occupation by two

or more particles of a single site is prohibited. Moreover, this principle is followed

along the whole lattice.

• A particle is injected into the lattice through the first site with rate α, provided the

target site is empty.
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• The particle moves in a unidirectional manner across the lattice, typically from left

to right, with a predetermined hopping rate that is set at 1.

• Finally, a particle upon reaching the Lth site escapes into the environment with an

exit rate of β.

Another crucial element in modeling stochastic transport processes is the updating

procedure, which should properly represent the dynamics of the system under

consideration. These rules have a critical impact on the system at a macroscopic level,

while the microscopic kinetics remain unchanged. The TASEP model has been broadly

investigated by four main classes of updating rule, namely, sub-lattice parallel update,

ordered sequential update, parallel update and random-sequential update [35]. The

parallel updating procedure is a discrete-time updating rule, which effectively mimics

the dynamics of vehicular traffic and pedestrian flow. However, the random-sequential

rule is a continuous-time updating procedure that is well suited for biological transport

processes.

In this thesis, our attention will be dedicated to the TASEP model and its extensions

involving open boundary conditions and a random-sequential updating procedure. The

upcoming sections will thoroughly explore the mathematical framework of open TASEP,

emphasizing significant results.

1.4 Mathematical treatment: Master equations

In non-equilibrium systems, a master equation serves as a mathematical tool

to delineate the temporal changes in the probability distribution of a system as it

experiences random transitions between distinct states. Unlike equilibrium systems,

non-equilibrium systems lack detailed balance, signifying that transition rates between

different states are not necessarily equal in both directions. Additionally, the Markovian

property is a prerequisite, meaning the occurrence of a state solely depends on its

immediate predecessor, implying the absence of memory effects.

Let the symbols τ and τ ′ designate two different microscopic states (distinct

configurations) within the system, both of which fall within a specified state space,

denoted as S. If ω (τ ′ → τ) denotes the transition rates from state τ ′ to τ and P (τ ′, t)

represents the probability for the system to be in configuration τ ′, then the time

evolution of the probability P (τ, t) to find the system in configuration τ is governed by

the master equation expressed as

∂P (τ, t)

∂t
=
∑
τ ′ ̸=τ

ω (τ ′ → τ)P (τ ′, t)︸ ︷︷ ︸
Gain

−
∑
τ ′ ̸=τ

ω (τ → τ ′)P (τ, t)︸ ︷︷ ︸
Loss

. (1.1)



1.4. Mathematical treatment: Master equations 9

In Eq. (1.1), the initial term on the right-hand side represents the possible ways

of transitioning from configuration τ ′ to τ , while the subsequent term concerns the

probability of leaving the configuration τ . Typically, in the studied model, the transition

rates ω are presumed to be constant over time and are deduced from the system’s

dynamics. Our primary focus lies in the steady-state properties of the system, and

these can be determined by solving ∂P (τ,t)
∂t

= 0 which leads to∑
τ ′ ̸=τ

ω (τ ′ → τ)P (τ ′)−
∑
τ ′ ̸=τ

ω (τ → τ ′)P (τ) = 0. (1.2)

The aforementioned expression provides a necessary condition for a system to reach a

steady-state. A potential solution to this equation is given by

ω (τ ′ → τ)P (τ ′) = ω (τ → τ ′)P (τ) . (1.3)

It implies that the system adheres to the detailed balance condition, signifying a state

where transition probabilities achieve an equilibrium.

In the context of stochastic processes and master equations, the steady-state

distribution that emerges from detailed balance conditions often resembles the

Boltzmann distribution. When the detailed balance is satisfied, the ratio of

probabilities P (τ ′) /P (τ) becomes proportional to the ratio of transition rates

ω (τ → τ ′) /ω (τ ′ → τ), which closely resembles the exponential term in the Boltzmann

distribution.

In the following sections, we delve into a comprehensive exploration of appropriate

methodologies employed for analyzing the model. Our emphasis is on elucidating how

the stationary properties of the system with the random updating rule are influenced

by the open boundary conditions .

1.4.1 Theoretical methods

The one-dimensional exclusion process with a random-sequential updating rule is

an extensively researched model in the field of statistical physics. Various methods

have been applied to scrutinize and find solutions for this model. Here are some exact

techniques employed in the study of TASEP.

1. Recursion: Utilizing a recursion relation, this approach precisely calculates

expressions for density and current through a complex generating function method,

as detailed in Ref. [31]. Furthermore, it can be extended to compute higher-order

correlation functions.

2. Matrix-Product Ansatz: This approach entails expressing configuration weights as a

product of non-commuting matrices, facilitating the derivation of precise expressions
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for density and current [32]. The methodology is inspired by the quantum inverse

scattering method.

3. Bethe Ansatz: In this approach, the process begins by defining the Hamiltonian,

expressing it using creation and annihilation operators, and suggesting a trial wave

function that adheres to the system’s symmetries [36]. The next crucial step is

to enforce the Bethe Ansatz equations, which are derived by requiring the wave

function to be an eigenstate of the Hamiltonian. Solving these equations produces

the Bethe roots, which characterize the eigenstates of the system. These roots are

then employed to compute particle densities and currents, providing precise solutions

for particular parameter configurations within the model.

The aforementioned methods involve complex, lengthy and time-consuming

calculations, rendering them quite challenging. Furthermore, adapting these methods

beyond the basic model to analyze diverse models that feature more realistic processes,

as we will explore in the subsequent sections, poses a substantial difficulty. Initially,

we elucidate the simulation techniques utilized, followed by a theoretical method that

yields exact results.

1.4.2 Stochastic simulations

Monte Carlo simulations, named after the Monaco casino, use random sampling

to model and analyze complex systems. This computational technique approximates

mathematical results and evaluates system behaviour, especially when analytical

solutions are challenging. By performing numerous random experiments, it provides

statistical estimates in fields like physics, finance, and engineering. Widely applied for

probability, optimization, and numerical integration problems, Monte Carlo simulations

[37] offer valuable insights into complex systems’ behaviour, with accuracy depending

on the number of iterations performed.

In this thesis, we have verified our theoretical findings through Monte Carlo

simulations employing random sequential update rules, which are better suited for

studying intracellular transport systems. We illustrate the procedure for performing

Monte Carlo simulations for a single-lane TASEP in Fig. (1.5)

In addition to this, we have utilized the Gillespie algorithm [38] (akin to kinetic

Monte Carlo), introduced by Joseph H. Gillespie in 1976. For a given system state, the

algorithm identifies all potential sites for a successful move, computes their kinetic

rates, and sums them up. The event probability is then determined by weighing

each rate against the total rate. The time until the next event is calculated as

∆t = −ln(r)/(sum of all kinetic rates), where r is a random number generated from

a uniform distribution between 0 and 1. The lists are updated accordingly, and the
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process is iterated until 109 number of events have occurred. To ensure the system

reaches a steady state, the initial 5% of these events are excluded.

Now, we delineate a frequently utilized theoretical approach to obtain stationary

solutions for the TASEP model. This method offers several advantages: (i) It is

straightforward to implement mathematically. (ii) It yields exact solutions. (iii) It

has demonstrated effectiveness, particularly when dealing with an enhanced system

complexity.

1.4.3 Approximate method: Mean-field theory

In this section, we briefly explore the steady-state solution of the model using simple

mean-field theory (MFT), demonstrating a strong agreement between the obtained

solution and Monte Carlo simulations.

 

 

  

 

 

 

 

 

 

 

 

  

N 

N 

 Start with  

lattice A 

A(1)=0? 

N 

Y 

𝑟 ≤ α? 
 

A(1)=1 

Y 

A(2)=0? 

A(1)=0 
A(2)=1 
 

Last  
site? 

A(L)=0? 
 

𝑟 ≤ β? 
 

N Y 

A(L)=0 

   Y N 

Y 

A(i)=0? 
 

A(i+1)=0? 
 

N Y 

A(i)=0 
A(i+1)=1 
 

   Y N    Y N    Y N 

Go to Start  

 
Choose a site 

randomly 

First  
site? 

Figure 1.5: A flow chart for conducting Monte Carlo simulations for random-sequential
updating rule. Here, ‘r’ represents a uniformly distributed random number between
0 and 1. The variable ‘i’ (1 ≤ i ≤ L) corresponds to a site on the lattice. After
repeating the above process for a sufficient time, the initial approximately 5% steps are
disregarded to establish the steady-state. The average lattice density is then computed
by taking the time average over an interval of 10L.

Let us use a binary variable denoted by τi, i ∈ {1, 2, . . . , L} to express the occupancy
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status of individual sites on the discrete lattice. Each τi is defined as:

τi =

1, if site i is occupied by a particle,

0, if site i is empty.

Thus, the configuration of the system at any time t is denoted by τ(t) = (τ1(t), τ2(t), . . . ,

τL(t)).

For any given initial configuration τ(0) = (τ1(0), τ2(0), . . . , τL(0)), we can derive

master equations governing the time evolution of the average occupancy of the bulk

sites 1 < i < L, during an elementary time interval dt, given by

d ⟨τi⟩
dt

= ⟨τi−1(1− τi)⟩ − ⟨τi(1− τi+1)⟩ (1.4)

where ⟨. . . ⟩ depicts the statistical average. The above equation characterizes the

variation in particle density at the ith site as the difference between the average influx

and out-flux of particles to and from that particular site. At the boundary sites i = 1

and L, particle densities evolve as

d ⟨τ1⟩
dt

= α⟨1− τ1⟩ − ⟨τ1(1− τ2)⟩, (1.5)

d ⟨τL⟩
dt

= ⟨τL−1(1− τL)⟩ − β⟨τL⟩. (1.6)

The incorporation of open boundary conditions is denoted by the initial term on

the right-hand side of Eq. (1.5), indicating the introduction of a particle on the lattice

at a rate of α. The subsequent term on the right-hand side in Eq. (1.6) corresponds

to the departure of a particle from the lattice at a rate of β. In the case of periodic

boundary conditions, the master equation given by Eq. (1.4) is adjusted such that for

i = 1, τi−1 = τL, and for i = L, τi+1 is replaced with τ1.

.It is apparent that the Eqs. (1.4), (1.5), and (1.6) mentioned above include

two-point correlators, rendering them intractable to handle in the current form.

Therefore, a natural approach is to decompose the correlator function into the product

of individual averages, a method known as the mean-field approximation [31]. Originally

proposed by Pierre Curie [39], this approach has been applied to solve models akin

to TASEP, where exact solutions were elusive for steady-state conditions. The core

concept of the mean-field approximation is to focus on a single particle instead of

considering many particles collectively. In essence, it simplifies a many-body system

into a one-body system, facilitating the analysis of steady-state dynamics. The key

principle of this theory is its neglect of correlations between the occupations of different

sites. For a more in-depth understanding, interested readers can refer to Refs. [31,40].

Now, utilizing mean-field approximation, we factorize the two-point correlators by
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using

⟨τiτj⟩ = ⟨τi⟩ ⟨τj⟩ , ∀i, j ∈ {1, 2, . . . , L}. (1.7)

Certainly, the set of equations given by Eq. (1.4) constitutes a many-body

problem, given its discrete nature. In case L is substantially large, dealing with a

huge number of equations is difficult. Therefore, to simplify this many-body problem

into a one-body problem, particularly in the continuum limit (thermodynamic limit),

where L approaches infinity (L → ∞), we employ coarse-graining on the discrete lattice

with a lattice constant ϵ = 1/L. Consequently, we re-scale both spatial and temporal

variables as x = i/L ∈ [0, 1] and t = t/L, respectively. Expressing the average particle

density as ⟨τi⟩ = ρi = ρ(x) ∈ [0, 1] and employing a Taylor series expansion on ρi±1

while retaining terms up to second-order derivatives, we obtain

ρi±1 = ρi ±
1

L

∂ρi
∂x

+O
(

1

L2

)
.

In the thermodynamic limit, the expansion outlined above transforms Eq. (1.4) into a

well-known continuity equation [41,42] expressed as:

∂ρ

∂t
+

∂J(ρ)

∂x
= 0. (1.8)

Note that the subscript i has been omitted, as the lattice lacks any form of

inhomogeneity. Here,

J(ρ) = ρ(1− ρ) (1.9)

represents the particle current, in the system. The subsequent analysis relies on

the existence of this unique relationship denoted by J(ρ), depicting the connection

between current and particle density. Noteworthy characteristics of this particle-density

relationship are outlined below.

• At a particle density of zero, indicating an absence of particles on the lattice, the

particle flow is also zero.

• As the number of particles on the lattice gradually increases, both the density and

particle current exhibit a gradual rise.

• The density eventually reaches the value ρmax = 0.5, representing the scenario of

maximum particle flow with Jmax = 0.25.

• When the particle density reaches one, the lattice is fully packed, rendering any

movement impossible; consequently, the current returns to a value of 0.

This relationship is visually represented by a parabolic curve, as illustrated in Fig.

(1.6b) and is referred to as the fundamental diagram.



14 Chapter 1. Introduction

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3
MFT
MCs

LD HD

(0.5,0.25)
MC

(a)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.5 1
0

0.5

1

Firs
t-O

rd
er 

tra
nsit

ion

 s
in

(
)

Second-Order transition  

0 0.5 1
0

0.5

1

0 0.5 1
0

0.5

1

LD

HD

MC

(b)

Figure 1.6: (a) Fundamental diagram representing the current-density relation. (b)
Phase diagram for open TASEP system in the α − β plane. The solid red line,
representing α = β, signifies a first-order transition line, whereas the dashed blue
lines represent second-order transitions. Insets show a typical density profile in the
corresponding region. Symbols represent the simulation results.

Since we are interested in attaining the steady-state solution for the system, we

nullify the time derivative term by setting ∂ρ/∂t = 0. This simplification transforms

Eq. (1.8) into the following form:

(2ρ− 1)
dρ

dx
= 0. (1.10)

The corresponding boundary equations, as outlined in Eqs. (1.5) and (1.6), are then

converted to:

ρ(0) = α,

ρ(1) = 1− β.
(1.11)

Upon examination of Eqs. (1.10) and (1.11), it becomes evident that we are dealing

with a first-order differential equation that must satisfy two boundary conditions,

categorizing the problem as over-determined. The potential solutions to Eq. (1.10)

are given by ρ(x) = 0.5 and ρ(x) = k where k is a constant depending upon the

boundary condition utilized. Hence, the stationary behaviour of the system is dictated

by the parameters α and β that govern the boundaries [30,43].

The α − β parameter space reveals three distinct stationary solutions for particle

densities (see Fig. (1.6)(b)). These solutions correspond to α, 1 − β, and 0.5,

denoted as the low density (LD), high density (HD), and maximal current (MC) phases,

respectively. Now, we provide a summary of the properties associated with each phase.

1. Low density (LD) phase. The bulk density in this phase is entirely determined by

the solution ρ = α, and owing to the impact of the entry rate, this phase is referred
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Phase ρ1 ρ ρL J Phase region

Low density (LD) α α J
β

α(1− α) α < min{β, 0.5}

High density (HD) 1− J
α

1− β 1− β β(1− β) β < min{α, 0.5}

Maximal current (MC) 1− 1
4α

0.5 1
4β

0.25 0.5 < min{α, β}

Table 1.1: Summary of the bulk and boundary densities, conditions of existence of
distinct stationary phases for the simplest version of TASEP model. The bulk density
of the lane is denoted by ρ and the density at boundary sites i = 1(L) is signified as
ρ1(ρL). J represents the corresponding steady-state current due to the flow of particles.

to as the entrance-dominated phase. The condition for the existence of this phase

is straightforwardly expressed as α < min{β, 0.5}. This implies that the density

in this phase remains below 0.5, earning it the designation of a low density phase.

Moreover, it implies that the entry rate α consistently remains lower than the exit

rate β, suggesting a likelihood of particles exiting the lattice at a faster pace than

their entry.

2. High density (HD) phase. In this phase, the bulk density is defined by ρ = 1−β,

which is governed by the exit rate, earning it the label of the exit-dominated phase.

The criteria for its existence can be straightforwardly derived: β < min{α, 0.5}.
The conditions β < α imply that particles enter more rapidly than they leave.

Consequently, the accumulation of a significant number of particles on the lattice

results in a density exceeding 0.5, classifying it as a high density phase.

3. Maximal current (MC) phase. Here, the density profile stabilizes at a constant

value of 0.5, irrespective of the entry-exit rates. The existence of this phase requires

min{α, β} > 0.5. Known as the maximal current phase, it is characterized by

the current reaching its peak value of 0.25, aligning with the solution of dJ
dρ

= 0.

Importantly, both α and β surpass 0.5, signifying swift entry and exit of particles

from the lattice.

Based on the above results, a phase diagram can be drawn in the α− β parameter

space, as illustrated in Fig. (1.6b), while a concise summary of the findings is outlined

in Table (1.1).

A notable aspect of the one-dimensional exclusion model with open boundaries is the

occurrence of boundary-induced phase transitions, a phenomenon absent in equilibrium

systems.

1. First-order transition. On the boundary between the LD and HD phases, the

equality of entry and exit rates creates a shock that delineates the low and high
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density segments. This shock is non-localized and moves randomly throughout the

lattice. The density undergoes a discontinuous variation across this transition line,

leading to a first-order transition.

2. Second-order transition. In contrast, the transition from both the LD and

HD phases to the MC phase, along the lines α = 0.5 and β = 0.5 respectively,

is characterized by a continuous change in both density and current. Hence, a

second-order phase transition occurs in these cases.

We want to emphasize that although the mean-field approximation has shown its

effectiveness in this thesis, it is not universally applicable in all situations. For instance,

in the simple TASEP scenario with parallel updating [43], significant correlations

between particles emerge, rendering the basic mean-field approximation inadequate.

Similarly, when examining interactions between adjacent sites [103], the limitations of

the simple mean-field approach become evident, necessitating the adoption of cluster

mean-field methods.

1.5 Extensions of the TASEP model

The simple exclusion model serves as a well-established framework that offers

valuable insights into the transport phenomena. Nevertheless, it falls short of

comprehensively representing the complexities found in realistic transport systems. To

address this limitation, substantial work has been devoted to extending the model

by integrating essential features, including narrow entrances, coupled lattices, dynamic

disorder, bidirectional transport, Langmuir kinetics, complex networks, finite resources,

and more. In the following sections, we will provide a concise overview of each of these

generalization, that are relevant to the problems addressed in this thesis.

1.5.1 Stochastic attachment-detachment

During intracellular transport, the processive motor proteins traversing along

microtubules, frequently undergo binding and unbinding events between the cytoplasm

and the filament. A similar situation can be witnessed in vehicular traffic, where vehicles

can enter and exit highways using on/off ramps. To incorporate these attachment and

detachment processes, the foundational TASEP model is modified to include the concept

of Langmuir Kinetics (LK) [44]. Under this dynamics, the particles attach with a rate

ωa and detach with rate ωd from the lattice, in addition to the unidirectional motion at

a unit rate, as shown in Fig. (1.7). Consequently, the number of particles within the

bulk is not conserved, therefore, it is also termed as non-conserving dynamics.
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Figure 1.7: Schematic representation of TASEP with LK. The entry rate of a
particle through the first site is α and the exit rate from the last site is β.
Attachment/detachment of a particle occurs with rate ωa/ωd.

The categorization of TASEP as a non-equilibrium process sets it apart from LK,

which is characterized as an equilibrium process. If we disregard the particle horizontal

movement in the stochastic attachment and detachment process, the steady-state

particle density is solely determined by the ratio of the kinetic rates, expressed as

ρ = K/(K + 1), where K = ωa/ωd represents the binding constant. As a result,

it can be stated that this steady-state remains robust with respect to the boundary

conditions and is primarily governed by bulk dynamics. In contrast, the simple exclusion

model evolves into a stationary non-equilibrium state that maintains a finite conserved

current within the bulk and is highly sensitive to alterations in boundary dynamics. To

effectively capture the interplay between these two contrasting dynamics, the LK rates

are re-scaled as Ωa = ωaL and Ωd = ωdL [45,46].

The inclusion of LK in TASEP, originally proposed to investigate a financial

market issue [47], was subsequently applied to represent the dynamics of molecular

motors [45,46,48]. The initial exploration in this direction centred on studying the

consequences of detachment in a one-dimensional exclusion process model [48]. Later,

it was expanded to encompass attachment dynamics, yielding several intriguing and

noteworthy phenomena, such as localized shocks, space-dependent bulk currents, and

phase separation [45,46]. These phenomena are not observable in isolated TASEP and

LK processes. Moreover, the existence of these localized shocks contributes to a more

intricate phase diagram compared to the simpler TASEP model.

1.5.2 Bidirectional flow

In a eukaryotic cell, the dynamic process of intracellular transport relies on

the cooperation of two essential motor proteins, kinesin and dynein [49]. Kinesin

predominantly propels cargo towards the plus end of microtubules, directing it towards

the cell’s periphery, while dynein, in contrast, moves cargo in the opposite direction,

towards the cell’s centre or minus end of microtubules [50]. This coordinated

bidirectional movement ensures the precise delivery of organelles, vesicles, and other

cellular components to their intended destinations. The balanced operation of kinesin
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and dynein, often facilitated by regulatory proteins and adaptor molecules, plays a

vital role in numerous cellular processes, supporting intracellular transport and cellular

organization with remarkable precision and efficiency. Similarly in rural regions,

single-lane roads are prevalent, enabling traffic flow in both directions, yet often

insufficient for vehicles to overtake one another safely [5,51]. This serves as the

groundwork for the investigation of minimal models in bidirectional transport, with

a focus on the interaction between two distinct species and the collective mobility of

these elements.
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Figure 1.8: (a) Sketch of a bidirectional TASEP model featuring two particle species,
represented by red triangles (moving from left to right) and green circles (hopping from
right to left) travelling unidirectionally while adhering to the exclusion principle. Two
distinct species swap their respective positions upon meeting head-on.
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Figure 1.9: Phase diagram for: (a) bidirectional TASEP model on one lane and (b)
two-lane model featuring narrow entrances, with infinite resources.

In this direction, the ‘bridge model’ was the pioneer in emphasizing the steady-state

properties of a system featuring two distinct particles navigating a single lattice [52].

The primary idea was to prevent particles from colliding by permitting them to swap

positions whenever they encounter each other (see Fig. (1.8)). The phase diagram for

a one-dimensional bidirectional lattice with infinite resources is depicted in Fig. (1.9b).

It reveals two symmetric phases: MC/MC and LD/LD, as well as two asymmetric
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phases: L/L and H/L. This illustrates phases with symmetry breaking, even under

the symmetric conditions of the dynamic process for both particle types within a

single channel. Such unexpected phenomenon is recognized as ‘spontaneous symmetry

breaking’ [34,53]. Nonetheless, the precise understanding of this phenomenon still

remains elusive. The transition to a state of broken symmetry continued to be a subject

of debate on the model [54,55]. Subsequently, the investigation was expanded to a novel

category of the bridge model that incorporated junctions [56], and to the examination

of stochastic directional switching mechanisms and lane switching processes in a

conserved TASEP multi-species model operating in two channels [57]. Many different

generalizations of the bidirectional model have been investigated by including more

complex dynamics such as resource scarcity [58], non-conserving dynamics [59], two-lane

bidirectional transport with constraint entrances [60].

1.5.3 Impact of narrow entrances

Microtubules are comprised of polymer chains made up of fundamental subunits

called α/β-tubulin, which naturally arrange themselves into protofilaments of diameter

approximately 25nm along the microtubule’s length [61]. Typically, twelve to fourteen

of these protofilaments twist together, forming a helical cylinder that serves as a

highway for long-distance intracellular transport, guided by molecular motors like

kinesin and dynein [62]. However, this twisting arrangement introduces curvature

to the microtubule, resulting in both circular and wavy pathways, which has been

observed experimentally, indicating that the protofilaments take on curved shapes [63].

The bends found in protofilaments give rise to constraint passageways that function

as links connecting the entry and exit points for multiple filaments [63]. Moreover,

in vehicular traffic, the locations where traffic congestion delays or completely halts

unrestricted directional movement, thereby obstructing bidirectional traffic flow, can

also be regarded as a narrow entrance point.
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Figure 1.10: Illustration of a two-lane bidirectional exclusion model with narrow
entrances. The two types of particle species are denoted by red and green circles.
Arrows indicate allowed transitions while crosses depict prohibited movements.

These observations initiated the exploration of two-lane exclusion processes, which
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entail the movement of two distinct particle species in opposing directions along separate

lattices, where interactions occur exclusively at the lattice boundaries [60]. In this study,

a system with two lanes and narrow entrances was examined, as depicted in Fig. (1.10).

The particles are allowed to attach from an infinite reservoir to vacant entry sites on

a lattice, provided that the corresponding site on another lattice is also unoccupied.

Importantly, a particle could exit the lattice without being influenced by the presence

or absence of a different type of particle at the corresponding site on the other lattice.

In the bulk of the system, both types of particles moved in opposite directions at a

unit rate. Since the particles only interacted at the boundaries, this system can be

conceptualized as two independent single-lane Totally Asymmetric Simple Exclusion

Processes (TASEPs) with particles moving in opposite directions. The corresponding

phase diagram is depicted in Fig. (1.9b). While both systems can be seen as interactions

between two independent lanes only at the boundaries, they differ significantly in terms

of their stationary properties. This contrast is evident in Fig. (1.9), prompting the

necessity to extend these models individually.

1.5.4 Role of limited resources

Numerous physical and biological occurrences, such as protein synthesis, motor

protein movement, pedestrian flow, and vehicular traffic, involve competition for finite

resources [64–67]. For instance, in protein synthesis, ribosomes play a crucial role in

translating messenger RNA (mRNA) sequences into proteins, but their availability may

be limited, especially during periods of rapid growth or stress, leading to competition

among different mRNA molecules for these essential resources [68]. Transcription

factors, which regulate gene transcription by binding to DNA sequences, can also

face constraints, impacting the expression of target genes and creating competition for

their binding sites. Generally, the entrance rate of particles is influenced by reservoir

occupancy. However, a crowded reservoir not only increases particle entrance rates but

may also impede their exit rates from lanes. This phenomenon is akin to the ‘parking

garage problem’, where a crowded garage can slow down vehicle exits onto the road.

Recent studies on a TASEP variant, termed ‘reservoir crowding’, consider the impact

of reservoir occupancy on both entry and exit rates [58,69,70], effectively replicating

real-world scenarios.

Figure (1.11) provides a visualization of a TASEP system with limited resources.

If Nr represents the number of particles in the reservoir at a steady state, then

in general scenarios, αeff = αf(Nr) and βeff = β [64]. In situations where the

system experiences reservoir crowding, βeff undergoes modification to βg(Nr). The

functions f and g represent increasing and decreasing functions of the reservoir density,

respectively. In situations with finite resources, a localized shock phase emerges,
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Figure 1.11: Sketch of an open TASEP model with constrained resources. The variables
αeff and βeff give the effective entrance and exit rates of the particles, respectively.

covering a substantial portion of the phase plane and diminishing as particle resources

increase [64]. Conversely, in the scenario of reservoir crowding, the shock phase

continues to persist irrespective of the particle count in the system [69].

1.5.5 Dynamic disorder

Real-world transportation is often hampered by various physical or natural barriers

that slow down or momentarily obstruct the regular flow of particles by causing

jamming-like situations. Such situations can occur in microscopic scenarios, where

the movement of RNA polymerase during gene transcription is hindered by regulatory

proteins and structures bound to DNA [71] or in macroscopic traffic situations,

where a defective vehicle or malfunctioning traffic light can lead to congestion on a

busy road. Messenger-RNA (mRNA), which comprises of a sequence of codons, is

synthesized during the transcription of DNA templates. Subsequently, it is decoded by

transfer-RNA (tRNA) within the ribosome during the translation process to generate

an amino acid chain. The speed of translation at each codon site is regulated by

the specificity of the codon and the concentration of tRNA molecules that are freely

diffusing. Interestingly, in many cases, the protein formed from amino acid chains or the

aggregation of tRNA molecules can impede the movement of the motor proteins [15].

These impurities can be categorized into two types: static and dynamic, where static

defects refer to fixed or immobile imperfections in a system that do not change over

time. On the other hand, dynamic defects are imperfections in a system that can arise

and disappear, affecting the system’s behaviour and properties intermittently. A prime

example of dynamic disorder can be observed in DNA transcription, where the DNA

structure is highly dynamic, and transiently bound proteins hinder the transcription

process [72]. Other examples include the periodic switching of traffic lights and defects

that stochastically bind and unbind at specific sites [73,74].
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1.5.6 Coupled TASEPs

Over the past few decades, there has been a noticeable increase in the inclination to

extend single-dimensional models to coupled multi-lane systems, motivated by various

real-world phenomena. In both vehicular traffic and biological transport, particles

demonstrate the capability to adhere to or deviate from their prescribed routes in

various systems [75,76]. Several instances from vehicular traffic illustrate such scenarios

few of them are: (i) Accelerating on the entrance ramp, the driver seamlessly merges into

highway traffic by changing lanes, skillfully finding a safe gap in the flow [77]. (ii) When

faced with lane closure due to construction, drivers employ zipper merging, alternately

merging from closing lanes into open ones. (iii) Faced with an obstacle or hazard in their

current lane, drivers swiftly change lanes to steer clear of the impediment, be it road

debris or a stalled vehicle [78]. Similarly, in biological transport, motor proteins can

attach and detach from microtubules and cytoplasm, allowing for adaptability in their

pathways [79]. Another example is seen in ants who optimize resource collection by

metaphorically changing lanes on foraging trails, and adjust pheromone-guided paths

based on the availability of food sources [80]. In all of these cases, the ability of particles

to switch paths is influenced by the dynamic conditions they encounter.

In light of all these situations, numerous efforts have been made to adapt the

exclusion model and explore particle dynamics, considering the particle configuration

in neighbouring lanes as a significant factor. A theoretical framework employing

vertical cluster mean-field is employed to analyze a two-channel model with symmetric

and asymmetric coupling [81,82] or a combination of both [83–86]. The research

findings indicate that robust asymmetric coupling results in seven stationary phases,

the majority of which exhibit zero particle flux in one of the channels. However, under

strong asymmetric coupling, the characteristics of the two lanes become nearly identical.

Subsequently, various adaptations of the coupling model were introduced, integrating

diverse dynamical rules, including coupling on anti-parallel lanes [87,88], multi-channel

coupled system [89,90], periodic boundaries [91], and Langmuir kinetics [92–98]. Some

of them also conducted a thorough examination of the system’s stationary properties

through a boundary layer analysis [96–98].

1.6 Aims and objectives

This thesis explores the steady-state properties of non-equilibrium stochastic

transport processes, specifically focusing on systems propelled by diffusion. Our goal

is to harness knowledge from a range of disciplines, including Mathematics, Statistics,

Biology, and Physics, in order to characterize the dynamic properties inherent in these

systems. The collective behaviour of these systems is replicated through various network
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topologies, including single, multiple, or junction-type. To bring realistic dynamics into

these systems, we include at least one dynamic element that operates in real-time, such

as (i) stochastic association and disassociation of particles (referred to as Langmuir

Kinetics), (ii) bidirectional flow, (iii) inclusion of obstacles, (iv) constrained entrances,

and (v) limited resources. As a foundational approach, we employ a discrete stochastic

Markov model TASEP, a paradigmatic framework commonly used to elucidate complex

non-equilibrium transport phenomena.

The primary goal of examining the different variants is to scrutinize the stationary

characteristics of the system. This involves analyzing key aspects such as particle

density on the lattice, the flow of particles, and the phase diagrams within the realm

defined by the governing parameters of the model’s dynamics. The examination of these

properties is conducted through a comprehensive approach that combines theoretical

techniques, particularly mean-field theory, with stochastic simulations such as Monte

Carlo technique (including the Gillespie algorithm). Outlined below are the main aims

and objectives of this thesis.

• To understand the phenomenon of spontaneous symmetry breaking (SSB) observed

in one-dimensional bidirectional transport systems. To pursue this objective, we

intend to analyze the consequences of connecting the system to two reservoirs, each

designated for particles of a single species. The motivation for this inquiry stems

from the dynamic interplay of multiple species moving in opposite directions within

various real-world transport processes.

• To scrutinize the SSB phenomena in systems involving junctions. Further continuing

our investigation into the phenomenon of SSB, we turn our attention to the intricate

dynamics of bidirectional particle flow within configurations resembling roundabouts

in the vicinity of finite resources. The overarching goal is to construct a robust

theoretical framework capable of effectively capturing and elucidating the crucial

stationary properties inherent in this complex system.

• Exploring the consequences of reservoir crowding on a two-lane narrow entrance

system in a resource-limited environment, particularly in the presence of a dynamic

defect. The inspiration for addressing this problem arises from the finite availability

of entities in real-world situations, affecting both entry and exit rates. Furthermore,

the insufficient literature addressing generalized models that incorporate dynamic

disorder contributes to the motivation behind this investigation.

• Building a model to understand the lane switching dynamics of particles in multi-lane

system. Towards this aim, we intend to investigate a resource-constrained two-lane

model with lane-changing mechanism. To the best of our knowledge, there is currently
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no existing research that theoretically examines this model and provides a universal

framework for traffic processes.

• To obtain a framework for analyzing the dynamics of Langmuir kinetics on a

junction-type topology. Complex network behaviour is a common occurrence

in biological transport phenomena, where numerous pathways merge at specific

junctions and then diverge in different directions. Stimulated by these observations,

as well as the association and disassociation of entities on these pathways, we aim to

analyze two different variants of a single junction model. In the first model, the focus

is on examining the network topology with Langmuir kinetics to study stationary

properties in a context where particle resources are unlimited. In the subsequent

model, a global constraint is introduced to restrict the overall number of particle

resources.

1.7 Outline of the thesis

This thesis introduces various generalizations of TASEP-based models that have

not been previously explored, examining them under diverse dynamical settings

that emulate real-world transportation scenarios. We predominantly employ the

mean-field approach for theoretical examination and conduct extensive Monte Carlo

simulations to rigorously validate those findings. The work of the thesis is organized

into eight chapters, with six main chapters (from Chapter 2 to 7) complemented by

the introductory (Chapter 1) and conclusive chapter (Chapter 8). The following is a

summary of the contents covered in each chapter.

Chapter 1: In this chapter, we concisely explore the basic introduction and

motivation for this thesis. It includes a relevant literature survey that underscores the

necessity to investigate more generalized models and their characteristics.

Chapter 2: Interplay of two reservoirs in a bidirectional transport system

In this chapter, driven by the interactions among multiple species in various

real-world transport processes, we introduce a bidirectional totally asymmetric simple

exclusion process. The system involves two finite particle reservoirs controlling the

influx of particles moving in opposite directions, each representing a distinct species.

To analyze the stationary characteristics of the system, such as densities and currents,

we utilize a theoretical framework based on mean-field approximation. We aim to

study the influence of individual species populations, quantified by the filling factor,

taking into account both equal and unequal conditions. It is expected that the system

will demonstrate spontaneous symmetry-breaking phenomena in case of equal filling
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factors. But can we expect such phenomena, in case the filling factors for the two

species differ?

Chapter 3: Exclusion processes on a roundabout traffic model with

constrained resources

Inspired by the traffic dynamics observed at roundabouts, we investigate the

impact of limited resources on the movement of two distinct particle types along

bidirectional lanes connected by two bridges. Each bridge is dedicated exclusively to

the transportation of a specific particle species. Utilizing a mean-field framework, we

aim to establish a theoretical foundation for our findings, providing analytical insights

into stationary properties for both symmetric and asymmetric phases. The central

focus is on understanding the significant impact of resource constraints on the system’s

quantitative and qualitative behaviour, particularly in the context of the interplay

between finite resources and bidirectional transport. Our comprehensive examination

extends to investigating system phase transitions, including symmetry-breaking

phenomena and shock dynamics.

Chapter 4: Reservoir crowding in a dynamic disordered bidirectional

system with narrow entrances

To deal with the existence of imperfections in intricate processes such as vehicular

traffic and intracellular transport, this chapter focuses on a dynamically disordered

system comprising of two lanes with narrow entrances. Particle movement encounters

hindrance due to defects that stochastically bind and unbind at each site. Global

constraints on both the number of particles and defects are introduced. Notably, the

particle reservoir experiences crowding, influencing particle entry-exit rates. The model

is analyzed within a mean-field framework, to explore phenomena such as stationary

phase diagrams, particle densities, and spontaneous symmetry breaking. Our aim is to

thoroughly examine the role of various parameters, including defect binding/unbinding

rates, particle entry-exit rates, particle hopping rates in the presence of defects, and

the number of particles/defects.

Chapter 5: Competition for resources in an exclusion model with biased

lane-changing mechanism

The content of this chapter highlights the significance of the lane-changing

mechanism evident in diverse biological and transportation phenomena. The lateral

motion of a particle decreases when there is an opportunity for changing lanes. This

mechanism gives rise to vertical interactions among entities, underscoring the necessity

to apply vertical cluster mean-field theory. Additionally, the extreme ends of the lanes

are linked to a reservoir having finite capacity. Our main concern is to examine the
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effects of the filling factor on the stationary properties of the system. The theoretical

finding reports phases involving the synchronized as well as unsynchronized presence

of domain wall in each lane. The results are validated through the Gillespie algorithm.

Chapter 6: Particle creation and annihilation in an exclusion process on

networks

This chapter explores an open network junction model of the totally asymmetric

simple exclusion process with bulk particle attachment and detachment. Using a

mean-field approach, we theoretically derive stationary system properties such as

particle density, phase transitions, and phase diagrams. We classify various stationary

phases in the system according to the phase transitions happening across the junction.

Our system dynamics encourage us to answer a few essential queries. (i) Does the

number of segments regulate the stationary properties of the system? (ii) How do the

association-dissociation rates govern the dynamics of the system?

Chapter 7: Non-equilibrium processes in an unconserved network model

with limited resources

In this chapter, we revisit the distinctive network topology involving interconnected

lanes through a junction, as previously defined in the preceding chapter. Here, the

system is enhanced with the addition of a particle reservoir with limited capacity.

Despite the considerable complexity involved, will the mean-field approximation prove

to be an effective approach to obtain the system’s stationary properties? We start

by scrutinizing the time evolution of particle density is conducted with the aim of

achieving a steady-state behaviour. Then, in the stationary state, our objective is to

investigate the qualitative and quantitative behaviour of the system in both scenarios.

This involves examining cases where the number of lanes before and after the junction

is either equal or unequal.

Chapter 8: Conclusion and Future Work

In the concluding chapter, we offer a summary of the results deliberated in the

preceding sections of this thesis. Furthermore, we present future directions to enhance

our understanding of non-equilibrium traffic phenomena.



Chapter 2

Interplay of two reservoirs in a

bidirectional transport system

In the preceding chapter, we thoroughly examined the fascinating non-trivial

characteristics exhibited by the one-dimensional totally asymmetric simple exclusion

process (TASEP) model. Motivated by the interplay of multiple species in several

real world transport processes, in this chapter1, we propose a bidirectional totally

asymmetric simple exclusion process with finite particle reservoirs regulating the inflow

of oppositely directed particles corresponding to two different species. The system’s

stationary characteristics, such as densities, currents, etc., are investigated using

a theoretical framework based on mean-field approximation and are supported by

extensive Monte Carlo simulations.

2.1 Motivation and background

As previously mentioned in the introduction, various efforts have been undertaken

to extend the TASEP model from a single-species to a multi-particle system, involving

two distinct species of particles traveling in opposite directions on a lattice. Contrary

to the single-species model, these extensions have reported various cooperative

phenomena, such as spontaneous symmetry-breaking (SSB) and phase separation

[34,53,55,58,99–101]. For two different types of propelled particles on a linear path,

the ‘bridge model’ was the first model to address the existence of the broken symmetry

under analogous dynamical conditions [52]. While the mean-field approach confirms the

persistence of one of the asymmetric phases (low-low density phase) to a narrow region,

Monte Carlo simulations reveal that this phase may not prevail in the thermodynamic

limit [54,55]. Later, this study was extended to analyze multi-species models comprised

of two lanes where particles travel in opposite directions and interact only at the

boundaries [100–102]. However, our understanding of the mechanisms of the SSB

phenomenon is very limited [34,52–55,58,99–104].

The majority of the studied TASEP models with open boundaries explore the

dynamics of the multi-species system equipped with infinite resources which are far

1The content of this chapter is published in: “Ankita Gupta, Bipasha Pal, Arvind Kumar Gupta.
Interplay of reservoirs in a bidirectional system. Physical Review E, 107(3):034103, 2023”
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from reality. Many realistic phenomena both physical and biological such as protein

synthesis, movement of motor proteins, pedestrian flow, and vehicular traffic involve

competition for limited resources on either single or multi-lane systems. In this

direction, several variants of TASEPs have evolved where the entrance rate of the

particles is regulated by the occupancy of the reservoir, which leads to an addition

of localized shock in the density profile [10,64,66,102,105–116]. In a recent study, a

bidirectional system coupled to a finite reservoir has been investigated where the exit

rate is also affected by the presence of limited resources [58]. All the research available

on such extensions have primarily focused on a global constraint on the total number of

particles in the system. In a bidirectional system connected to a unified finite reservoir

that can hold all the particles, the total occupancy of the reservoir determines the

entrance rates of the particles. Circumstantially, a scenario could develop in which the

reservoir contains no particle of a certain species and as the entry rates depend upon

the total number of particles in the reservoir rather than that of individual species, the

dynamics of the system then promote the entry of this species, which is absurd. Several

intriguing characteristics could arise if the total particle number of individual species

is regulated.

Instigated by the indispensable significance of several reservoirs in a transport

process with multispecies systems, the present study examines the dynamics of

two-particle species moving in opposite directions on a single lattice strategically

coupled to two different reservoirs. Our purpose is to investigate the impact of

constrained resources for both the species on the stationary properties and characterize

its essential features. We attempt to provide a theoretical framework for the system

by utilizing mean-field approximation for bidirectional flow on a lattice connected to

two reservoirs, each accommodating particles of a single-species only. It is interesting

to scrutinize the impact of constraints on resources available for each species on the

stationary properties of the system such as the SSB phenomenon and phase separation.

Specifically, we aim to address the following queries. (i) How does the presence of finite

resources influence the bidirectional flow? (ii) How is the SSB phenomenon affected,

when both the particle species are available in equal quantities? (iii) Does the SSB

phenomenon still prevail in the case of different capacities of the two reservoirs? (iv) If

not, what qualitative and quantitative differences arise in the complex system properties

for these two different scenarios?

2.2 Model description and theoretical framework

We consider a one-dimensional lattice comprised of L sites identified as i =

1, 2, . . . , L. The boundaries of the lattice are represented by the sites i = 1 and i = L,



2.2. Model description and theoretical framework 29

 

𝑅− 

𝑅+ 

𝟏 𝒔 𝟏 
𝜷 

𝜷 𝜶− 

 

𝜶+ 

  

Figure 2.1: Schematic diagram for a bidirectional transport model comprised of a lattice
connected to two reservoirs, each accommodating particles of a single-species only. Blue
(+) and red (−) circles denote two oppositely directed particles travelling from left to
right and right to left, respectively. The entrance rates of the two-particle species
are given by α+ and α−, which are controlled by the occupancy of the corresponding
reservoirs. The exit rates for both the particles are β. Two particles of distinct kinds
are permitted to swap their positions with a rate s if they encounter each other on
neighbouring sites.

whereas the remaining sites are referred to as bulk. Two species of particles denoted

by the symbols (+) and (−) translocate on this lattice in opposite directions depicting

the bidirectional flow as shown in Fig. (2.1). The particles interact via the hard-core

exclusion principle which guarantees that not more than one particle occupies a single

site. In particular, it is assumed that a (+) particle transverses from left to right,

whereas a (−) particle hops in the reverse direction with a unit rate whenever the

adjacent site is empty. If two different species of particles encounter each other on the

lattice, they exchange their positions at a rate s, if the direction permits.

Furthermore, it is assumed that the lattice is connected to two finite reservoirs R+

and R− having no internal dynamics. The reservoir R+ can accommodate only (+)

particles, whereas the reservoir R− solely sustains (−) particles. The total number of

particles of an individual species is taken to be constant in our system. Specifically, Nt+

and Nt− quantify the total number of (+) and (−) particles, respectively. A (+)/(−)

particle from R+/R− enters the lattice through the site i = 1/L if empty, with innate

entry rate α, hops along the lattice and then escapes through the site i = L/1 with a

removal rate β to rejoin the reservoir R+/R−.

As the lattice is coupled to two-particle reservoirs, the ingress rate of each species

of the particle will no longer be constant; instead, it is regulated according to the

number of particles in the associated reservoir. Also, a smaller number of particles in

the reservoir implies lower entrance rates and enhanced content in the reservoir will lead

to an increase in the entrance rates. Therefore, it is reasonable to modify the entrance
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rate [110] of both species as

α+ = α
Nr+

Nt+

, α− = α
Nr−

Nt−

, (2.1)

where Nr+/Nr− is the instantaneous number of (+)/(−) particles in the reservoir

R+/R−. Although the function we’ve selected is the simplest and most intuitive,

there are infinite alternatives to choose from. Our selection is based on its analytical

tractability. In different scenarios, while quantitative behaviors may differ, the

qualitative nature of the system remains constant.

Clearly, Nr+ ≤ Nt+ and Nr− ≤ Nt− imply that the modified entrance rates remain

confined between 0 and α. To scrutinize the effect of coupling the bidirectional transport

to two reservoirs, we associate a parameter namely, the filling factor defined as µj =

Ntj/L, j ∈ {(+), (−)} to each reservoir. Additionally, we define the reservoir quotient

as rj = Nrj/L.

To characterize the occupancy status of each site i, we designate two symbols

denoted by τ i+ and τ i−, which take binary value ‘1’ in case the site is occupied by

(+) and (−) particle, respectively and ‘0’ otherwise. The master equations that govern

the dynamics of both the particles in the bulk are given by

d⟨τ i+⟩
dt

= J i−1,i
+ − J i,i+1

+ ,
d⟨τ i−⟩
dt

= J i+1,i
− − J i,i−1

− , (2.2)

where ⟨· · · ⟩ represents the statistical average. The terms J i−1,i
+ and J i+1,i

− represent the

currents in the bulk arising due to (+) and (−) particles, expressed as

J i−1,i
+ = ⟨τ i−1

+ (1− τ i− − τ i+)⟩+ s⟨τ i−1
+ τ i−⟩, (2.3)

J i+1,i
− = ⟨τ i+1

− (1− τ i− − τ i+)⟩+ s⟨τ i+1
− τ i+⟩. (2.4)

The first and the second terms on the right-hand sides of the above two equations

correspond to the hopping of a particle to the adjacent vacant site and the interchange

of the two-species of particles in the appropriate direction, respectively. It can be readily

seen from Eqs. (2.3) and (2.4) that the two bulk current equations are decoupled for

s = 1 and hence we consider only this case for further study. However, some insight

about the scenarios when s ̸= 1 is given in Section (2.5).

For s = 1, Eqs. (2.3) and (2.4) can be written in simplified form as

J i−1,i
+ = ⟨τ i−1

+ (1− τ i+)⟩, J i+1,i
− = ⟨τ i+1

− (1− τ i−)⟩, (2.5)

which implies that a (+)/(−) particle does not distinguish between a hole and a

(−)/(+) particle while moving forward. Similarly, the particle evolution equations
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at the boundaries, i = 1 and i = L, can be written as

d⟨τ 1+⟩
dt

= Jenter
+ − J1,2

+ ,
d⟨τL+⟩
dt

= JL−1,L
+ − Jexit

+ , (2.6)

d⟨τ 1−⟩
dt

= J2,1
− − Jexit

− ,
d⟨τL−⟩
dt

= Jenter
− − JL,L−1

− , (2.7)

where

Jenter
+ = α+⟨(1− τ 1+ − τ 1−)⟩, Jexit

+ = β⟨τL+⟩,

Jenter
− = α−⟨(1− τL− − τL+)⟩, Jexit

− = β⟨τ 1−⟩.
(2.8)

Analyzing Eq. (2.2) along with Eqs. (2.6) and (2.7) in the present form are intractable

due to the involvement of both one-point and two-point correlators. Therefore, a simple

approach known as the mean-field approximation (MFT), which has been often used

for mathematical treatment in the bidirectional model [34,53,58], is employed. This

approximation ignores all kinds of correlations among the particles and the correlator

functions are written as a product of individual occupancy numbers, i.e.,

⟨τ i+τ k+⟩ = ⟨τ i+⟩⟨τ k+⟩, ⟨τ i−τ k−⟩ = ⟨τ i−⟩⟨τ k−⟩, (2.9)

where i, k ∈ {1, 2, . . . , L− 1, L}. Further, the mean-field densities at site i for particles

of either kind are designated as ρi+ = ⟨τ i+⟩ and ρi− = ⟨τ i−⟩. Likewise, the currents

corresponding to both particles are written as

J i−1,i
+ = ρi−1

+ (1− ρi+), J i+1,i
− = ρi+1

− (1− ρi−). (2.10)

We coarse-grain the discrete lattice by introducing a quasi-continuous variable x =

i/L ∈ [0, 1] using the lattice constant ϵ = 1/L and re-scaling time as t′ = t/L, in the

thermodynamic limit. On expanding the mean-field densities in Eq. (2.2) in powers of

ϵ and retaining the terms up to the second-order, we obtain

∂ρ±
∂t′

=
∂

∂x

(
ϵ

2

∂ρ±
∂x

∓ ρ±(1− ρ±)

)
. (2.11)

Note that, based on the spatial homogeneity, the superscript i is dropped in the

continuum limit. At steady-state, the above equation reduces to

ϵ

2

∂2ρ±
∂x2

± (2ρ± − 1)
∂ρ±
∂x

= 0. (2.12)

In the limit ϵ → 0, this equation yields (1− 2ρ±)
∂ρ±
∂x

= 0, i.e., ∂J±
∂x

= 0, where J± gives
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us the bulk current of each species of particle as

J+ = ρ+(1− ρ+), J− = ρ−(1− ρ−). (2.13)

Meanwhile, the boundary currents are expressed as

Jenter
+ = α+(1− ρ1+ − ρ1−), Jexit

+ = βρL+, (2.14)

Jenter
− = α−(1− ρL− − ρL+), Jexit

− = βρ1−. (2.15)

As evident from Eqs. (2.13), (2.14), and (2.15), the bulk currents of both species are

decoupled and the particles of different kinds effectively interacts only at the boundaries

by blocking the entry to particles of other type. Therefore, the system can be viewed as

two-independent single-species TASEP models coupled only at the boundaries. So, it

is reasonable to define the effective entrance rates αeff
+ and αeff

− similar to Refs. [34,53]

for the two-species of particles by exploiting the continuity of current in bulk and the

boundaries of the lattice as

αeff
+ =

J+
J+
α+

+ J−
β

, αeff
− =

J−
J−
α−

+ J+
β

. (2.16)

Due to the continuity of current in the bulk, J+ = Jenter
+ = Jexit

+ and J− = Jenter
− = Jexit

− .

Since the extreme ends of the lattice are coupled to two different finite reservoirs R+

and R−, we utilize the particle number conservation condition which gives

Nt+ = Nr+ +N+, Nt− = Nr− +N−, (2.17)

where N+ and N− denote the number of (+) and (−) particles on the lattice,

respectively. The above equation can also be rewritten as

µ+ = r+ +

∫ 1

0

ρ+(x) dx, µ− = r− +

∫ 1

0

ρ−(x) dx. (2.18)

Now our objective will be to calculate the effective entrance rates αeff
± and the particle

densities by utilizing Eqs. (2.13), (2.14), and (2.15) along with Eq. (2.18). These

explicitly obtained expressions for the effective rates will help to quantify the stationary

properties of the system such as phase diagrams, density profiles, particle currents, and

possible phase transitions.

2.3 Existence of phases

To explore the impact of coupling the bidirectional system to separate particle
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reservoirs corresponding to each species, we study the dynamic properties of the

system in the α − β parameter space and inspect all the stationary system properties

such as density profiles, particle currents, and phase transitions. In literature, the

one-dimensional TASEP model for open boundaries with parameters α and β has been

reported to exhibit three stationary phases, namely low density (LD), high density

(HD), and maximal current (MC) phase [32]. Incorporating constraints on the available

resources induces an additional localized shock phase (SP) as a key feature [64,105].

Furthermore, it has been observed that the bidirectional TASEP model with unlimited

resources exhibits symmetry-breaking phenomenon [34,53]. Such a model demonstrates

two symmetric (i.e., low density (LD/LD) and maximal current (MC/MC) phase) and

two asymmetric (i.e., low-low (L/L) and high-low (H/L) phase) phases. In the current

model, if the restriction on the available resources is removed, we retrieve the findings

for the model with an infinite number of particles [34,53].

Now, let us investigate the feasible stationary phases that might persist in the

homogeneous bidirectional TASEP model with two finite particle reservoirs. To clarify,

we denote a phase as A/B where A and B illustrate a phase manifest by the (+) and

(−) particles, respectively. For the proposed model, each species can be found solely in

one of the following four phases: low density, high density, maximal current, or shock.

We classify the various phases as symmetric or asymmetric based on the nature of

their observed stationary properties such as density profiles, effective entrance rates,

and particle currents. It must be noted that we have used the symbol LD (L) for low

density, HD (H) for high density, SP (S) for shock phase and MC (M) for maximal

current phase to depict symmetric (asymmetric) phases.

2.3.1 Symmetric phases

Here, we address the occurrence of various symmetric phases and the desire to

calculate the explicit effective rates, density profiles, and phase boundaries. For such

phases, the two-species of particles have identical dynamics as well as stationary

properties including effective entrance rates, densities, and currents. In particular,

µ+ = µ−, α
eff
+ = αeff

− , ρ+ = ρ−, and J+ = J−. Under these circumstances, the effective

entrance rates are reduced to

αeff
+ =

αβr+
βµ+ + αr+

, αeff
− =

αβr−
βµ− + αr−

, (2.19)

and in addition, from Eq. (2.18), we acquire r+ = r−. For the sake of simplification,

we designate the common effective entrance rate, filling factor, and reservoir quotient

by αeff , µ, and r, respectively. Our aim is to calculate the effective entrance rates by

utilizing the particle conservation criteria to theoretically obtain the expressions for the
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phase boundaries, shock position, and particle densities.

The system can be thought of as two independent single-species TASEP models

coupled only at the boundaries, so each species can be found in one of four phases,

namely LD, HD, MC, or SP. Keeping in mind the nature of the symmetric phases, only

four phases are possible, namely LD/LD, HD/HD, MC/MC, and SP/SP. However, out

of these, only two are feasible, specifically LD/LD and MC/MC. The other possibilities

such as SP/SP and HD/HD can be discarded based on analytical arguments. Precisely,

the HD/HD phase cannot exist as the total particle density cannot be greater than 1.

In the case of the SP/SP phase, the constraint αeff = β must be satisfied. However,

this condition has no feasible solutions for any value of µ. A summary of the explicit

expressions for the existential conditions, effective entrance rates, and the reservoir

quotient is given in Table (2.1). The stationary properties such as particle density, bulk

current, reservoir quotient, etc., in each symmetric phase, are detailed in Appendix

(2.7).

2.3.2 Asymmetric phases

The symmetry of the system is affected by the localized interactions between the

distinct particle species at the boundaries, leading to the SSB phenomenon when µ+ =

µ−. In the case µ+ ̸= µ−, only asymmetric phases exist where the stationary properties

of the two-species of particles are generally different. Specifically, the densities of the

(+) and (−) particles in the system are unequal i.e., ρ+ ̸= ρ−, which leads to

αeff
+ ̸= αeff

− . (2.20)

Each species can illustrate any of the four phases: low density, high density, shock,

or maximal current phase leading to the total number of possible asymmetric phases

displayed by the system being equal to 42 = 16. Keeping in view that the total particle

density is bounded above by 1, phases such as M/H, H/M, S/M, M/S, H/S, S/H, and

H/H are discarded. In the case of S/S phase, effective entry rate must equate to the exit

rate for each species, leading to αeff
+ = β and αeff

− = β. Consequently, this condition

yields αeff
+ = αeff

− , thereby contradicting the prerequisites for an asymmetric phase.

As a result, the S/S phase is disregarded.

Now, to calculate the effective entrance rates for the remaining eight feasible

phases, we need to determine the reservoir quotients by utilizing the particle number

conservation for each species. These expressions will be further employed to obtain

the phase boundaries, the position of shock, and the particle densities. Table (2.1)

summarizes the existence criteria, effective entrance rates, the position of shock, and

the reservoir quotients for each possible asymmetric phase. The theoretical computation
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Phase
Phase region/
Shock position

αeff
± r±

LD/LD αeff < min{0.5, β} µ− r
α(µ−β)−βµ+

√
4αβµ2+(α(µ−β)−βµ)2

2α

MC/MC 0.5 < min{αeff , β} αβ(2µ−1)
2µ(α+β)−1

µ− 0.5

H/L β < min{αeff
+ , 0.5}, αeff

+ = α(β−1)β2r+

αr+(αeff
− −1)αeff

− +β2µ+(β−1)
r+ = µ+ − (1− β)

αeff
− < min{β, 0.5} αeff

− =
αr−+µ−−

√
(αr−+µ−)2−4αβµ−r−

2µ−
r− = 1

2(α+µ−)

(
α(µ− − β) + µ−(2µ− − 1)+√

(α(µ− − β) + µ−(2µ− − 1)2 + 4(1− µ−)µ2
−(α + µ−)

)
M/L 0.5 < min{αeff

+ , β} αeff
+ = βαr+

βµ++4αr+J−
r+ = µ+ − 0.5

αeff
− < min{β, 0.5} αeff

− = β(µ−+αr−)
2βµ−

r− = 1
8β(α+µ−)

(
α(4β(µ− − 1) + 1) + 4βµ−(2µ− − 1)

−
√

β(αµ−r−+β(µ−−αr−)2)

2βµ−
+
√(

α
(
1 + 4β(µ− − 1)) + 4µ−β(2µ− − 1)

)2 − 64β2(µ− − 1)µ2
−(µ− + α)

))
S/L 0 ≤ xw ≤ 1 αeff

+ = βµ++αβr+
2βµ+

r+ = (β−1)β2µ+

α(αeff
− (1−αeff

− )+β(β−1))

αeff
− < min{β, 0.5} −

√
β(β(µ+−αr+)2−4(αeff

− −1)αeff
− αµ+r+)

2βµ+
r− = 1

2(α+µ−)

(
α(µ− − β) + µ−(2µ− − 1)

xw = β+µ+−r+−1

αeff
+ +β−1

αeff
− =

µ−+αr−−
√

(µ−+αr−)2−4αβµ−r−
2µ−

+

√
α2(β − µ−)2 + µ2

− + 2αµ−

(
β + µ−(1− 2β)

))
M/M 0.5 < min{αeff

+ , β} αeff
+ = αr+

βµ++αr+
r+ = µ+ − 0.5

0.5 < min{αeff
− , β} αeff

− = αr−
βµ−+αr−

r− = µ− − 0.5

Table 2.1: Summary of the existential conditions, effective entrance rates, shock position, and the reservoir quotients for the possible
symmetric as well as asymmetric phases for the proposed model. LD/LD and MC/MC represent symmetric phases while H/L, M/L, S/L,
and M/M correspond to asymmetric phases. The notations αeff

± and r±, respectively denote the effective entrance rates and the reservoir
quotients for the two-particle species, whereas xw gives the position of shock in the S/L phase.
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for the expressions of each phase in this category is explained in Appendix (2.8). We

have obtained the explicit theoretical expressions for the stationary particle densities,

phase boundaries, and reservoir quotients for feasible phases by employing a mean-field

approach. Additionally, the steady-state particle densities can also be procured from

Eq. (2.11) along with the boundary conditions given by Eqs. (2.14) and (2.15)

numerically by utilizing a finite difference scheme outlined in Appendix (2.9). Although

the approach is simple to use, the theoretical phase boundaries cannot be obtained

through this method, making it difficult to conduct a thorough analysis of how different

parameters, such as the filling factors, affect the stationary features of the system.

2.4 Results and discussion

In this section, we inquire about the effect of coupling the system with two finite

reservoirs on the steady-state properties and obtain the phase diagrams for specific

values of µ+ and µ− in the parameter space α − β. We perceive both qualitative

and quantitative changes in the topology of the phase diagram specifically in terms of

symmetry-breaking for µ+ = µ− and the emergence of other phases. The theoretical

outcomes obtained in the previous section involve several approximations; therefore, to

validate these results, we perform elementary Monte Carlo simulations (MCs) following

the random-sequential update rule for 2 × 107L time steps. At each simulation step,

a site is chosen randomly, upon which the dynamic rules described in Section (2.2)

are implemented. The initial 5% of the time steps are scraped ensuring the system

reaches a steady-state. We segregate our further analysis into two distinct categories:

(i) when the filling factors are symmetric, µ+ = µ− and (ii) when the filling factors are

asymmetric, µ+ ̸= µ−.

2.4.1 Symmetric filling factor (µ+ = µ−)

Motivated by the findings of a bidirectional TASEP model with a single infinite

reservoir where symmetry-breaking phenomena have been observed, we wish to study a

constrained system where the number of particles of both species is equal. To simplify,

we prefer to refer to the common filling factors by µ. Initially, for a very small value of

µ, the phase diagram is comprised of one symmetric phase namely LD/LD as presented

in Fig. (2.2a) for µ = 0.3. Despite the symmetry in the dynamic rates of both (+) and

(−) particles, the system reveals two asymmetric phases: S/L and L/L. The stationary

characteristics of the two-species vary in such phases. It is noteworthy to specify that a

symmetry-breaking phenomenon is observed in the system even when the total number

of particles of each species is much less. Moreover, the L/L phase remains confined

to a curve forming a boundary separating the LD/LD and the S/L phase regions. No
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Figure 2.2: Stationary phase diagrams for (a) µ = 0.3, (b) µ = 0.9, (c) µ = 1.1, and (d)
µ = 100. Symmetric phases are represented by white regions, while the coloured regions
denote asymmetric phases. Red symbols correspond to Monte Carlo simulation results.
The L/L phase remains confined to a curve and acts as a boundary separating H/L
(or S/L) and LD/LD phases, displaying a first-order phase transition taking average
current as the order parameter. The size of the system is taken to be 1500.

substantial changes are observed in the phase schema until µ = 0.5, except for the

expansion of the S/L and shrinkage in the LD/LD region. With the enhancement in µ

from 0.5, another symmetric phase namely MC/MC appears in the phase diagram in

addition to the previously existing phases, which is evident from Fig. (2.2b) for µ = 0.9.

This appearance of a symmetric maximal current phase after µ = 0.5 is affirmed by

Eqs. (2.31) and (2.32). At this stage, adequate particles are available to fill the lattice

entirely and retain the MC/MC phase.

With the further advent in µ, no other symmetrical phase is observed. As soon as

µ > 1, an asymmetric phase precisely H/L enters the phase schema next to the S/L

phase, resulting in the shrinkage of the later mentioned phase region (as prescribed in
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Fig. (2.2c)). It can also be guaranteed from Eq. (2.36) that a necessary condition

for the existence of H/L is µ > 1. Further increasing the value of µ results in the

expansion of the H/L phase region and, as µ → ∞, the S/L phase disappears altering

the topology of the phase diagram both qualitatively and quantitatively. Note that,

in the extreme case of µ → ∞, the rates α+ and α− approach the innate entrance

rates, and the global limitation on the number of particles is bygone. As expected,

the system behaves as a bidirectional two-species model with infinite resources where

two symmetric phases, LD/LD, MC/MC, and two asymmetric phases, L/L and S/L

persist [34,53]. Clearly, the number of observed phases in the stationary phase diagrams

changes from 3 → 4 → 5 → 4 as µ increases, displaying a non-monotonic trend.

2.4.1.1 Spontaneous symmetry-breaking phenomenon (SSB)

One of the most remarkable features of a bidirectional system is the spontaneous

symmetry-breaking phenomenon. To investigate this occurrence in detail through

Monte Carlo simulations, we generate particle density histograms by continuously

monitoring the instantaneous particle densities ρ+ and ρ− of the positive and the

negative species. In simulations, considering a system size of L = 1000, initial 109

time steps are discarded and then we gather data for 9× 109 time steps. If the peak in

the density histogram distribution satisfies ρ+ = ρ−, the corresponding phase is labeled

as symmetric otherwise, it is labeled as an asymmetric phase. Figure (2.3) shows the

typical density histogram plots for L/L and H/L phases in the case of the symmetric

filling factor with (α, β, µ) = (1, 0.1, 0.3) and (2, 0.1, 1.5), respectively. In the case of

the L/L phase, Fig. (2.3a) demonstrates that a peak occurs for ρ+ < ρ− < 0.5, which

means that the symmetry-breaking is observed. For the H/L phase, as anticipated, a

peak with ρ+ > 0.5 and ρ− < 0.5 is obtained as shown in Fig. (2.3b).

(a) (b)

Figure 2.3: Particle density histogram for (a) L/L and (b) H/L phases with the
parameters (α, β, µ) = (1, 0.1, 0.3) and (2, 0.1, 1.5), respectively. Insets show the
two-dimensional contour plot.
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The SSB phenomenon can also be analyzed by inspecting the nature of the currents

corresponding to the two-species of particles as well as the possible phase transitions

for a chosen set of parameters. The currents J+ and J− when plotted with respect to β

for α = 3 with filling factor µ = 1.1, as shown in Fig. (2.4a), display a sudden change

at the value β ≈ 0.326 after which they remain equal. To investigate this observation

in detail, we further plot the value of the currents (J+ + J−)/2 and |J+ − J−| for
α = 3 and µ = 1.1. The average particle current in the system along the line α = 3

also displays similar behaviour near the critical point β ≈ 0.326 (see Fig. (2.4b)).

This abrupt change is a consequence of the transition from symmetric to asymmetric

phases. Moreover, the behaviour of |J+ − J−| also changes at the point β ≈ 0.326,

after which it remains constant and takes the value zero, confirming the emergence of

the symmetric phase. Note that the phase diagram for µ = 1.1 given by Fig. (2.2c)

illustrates a phase transition from asymmetric to symmetric phases as S/L → H/L →
L/L → LD/LD → MC/MC as β varies. Further, when the particle currents for each

species are individually analyzed, it can be noted that the current associated with the

(+) particles is greater than or equal to the current associated with the (−) particles (see

Fig. (2.4b)). Mathematically, the existential conditions given by Eqs. (2.36) and (2.41)

of H/L and S/L phases, respectively, require the effective entrance rate of the negative

species to remain lower than the exit rate implying that the current J− = αeff
− (1−αeff

− )

is less than the current J+ = β(1− β). Thus one can conclude that the transition from

asymmetric phases to symmetric phases with respect to current is of the first-order.
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Figure 2.4: Plot of currents: (a) (J++J−)/2, |J+−J−|, J+, and J−, and (b)(J++J−)/2
vs β for α = 3 and µ = 1.1. Inset in (b) displays a discontinuity in (J+ + J−)/2 near
β ≈ 0.326. Solid lines represent theoretical results and symbols refer to Monte Carlo
simulations.

2.4.1.2 Shock dynamics

We now discuss the features of the localized shock that appears in the density

profile of the asymmetric S/L phase. In the thermodynamic limit, Eq. (2.11) reduces
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to the continuity equation given by ∂ρ±/∂t
′ ± ∂J±/∂x = 0 and the speed of shock

for (+) species is expressed as s = β − αeff
+ . For the existence of shock, its speed in

the corresponding lattice must be equal to zero. Using this condition, as well as the

particle number conservation, the steady-state properties of the S/L phase have been

thoroughly investigated and details are provided in Appendix (2.8).
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Figure 2.5: (a), (b) Position and height of the shock with respect to β for µ = 1.1
and α = 0.1, 1, 3. (c) Density profiles for fixed α = 1 and β = 0.1, 0.2, 0.25 with
µ = 1.1. (d), (e) Position and height of the shock with respect to α for µ = 1.1 and
β = 0.1, 0.2, 0.3. (f) Density profiles for fixed β = 0.2 and α = 0.5, 1, 2 with µ = 1.1.
(g) Effective entrance rates with respect to µ for α = 2 and β = 0.1. (h) Density profiles
for α = 2 and β = 0.1 for µ = 0.5, 0.8, 1.1. (i) Position of the shock with respect to µ
for α = 2, 20 and β = 0.1. Inset shows the change in position of the shock with respect
to µ for α = 20 and β = 0.1. In all figures, solid lines represent theoretical results and
symbols correspond to Monte Carlo simulations. The size of the lattice is taken to be
3000.

Now, we focus on the propagation of shock with respect to the exit rate as well as

the entry rate using the analytical expression of shock position given by Eq. (2.40),

which is detailed in Appendix (2.8). From Figs. (2.5a) and (2.5c), one can observe that

upon the variation of exit rate, the shock position changes continuously from 0 to 1.

It means that, with an increase in β after a certain critical value, marking the phase
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boundary S/L and H/L, the shock enters the lattice from the left end. Further increase

in β shifts the shock towards the right until it attains the value corresponding to the

phase boundary between S/L and L/L, beyond which the shock leaves the lattice. In

this case, the non-zero shock height, which depends solely on β, decreases linearly (see

Fig. (2.5b)). Similarly, upon varying the entry rate, the position of shock displays a

shift from the right end towards the left end (see Figs. (2.5d) and (2.5f)). The height of

this shock remains constant throughout the variation of entry rate due to dependence

on β that remains fixed (see Fig. (2.5e)). Thus, if one considers the position and

height of shock as order parameters, then the transitions are of second and first-order,

respectively.

The localized shock appears as a consequence of finite resources; therefore, it is

imperative to understand how the filling factor impacts the propagation of shock. In

this regard, we choose a point from α − β space and analyze the impact of varying

µ on the properties of shock. Due to the dependence of shock height only on β, one

can readily conclude that it remains constant with respect to µ. This subsequently

means that αeff
+ remains constant throughout the S/L phase. However, αeff

− is found

to increase. To support these analytical arguments, we have plotted the effective rates

in Figs. (2.5g) and (2.5h). Moreover, from Fig. (2.5h) one can observe that the shock

shifts towards the right end with respect to µ for constant (α, β) until it reaches the

left end and finally leaves the lattices. This signifies the transition from the S/L to the

H/L phase that appears as a consequence of the effective entry rate exceeding the exit

rate for (+) species (see Fig. (2.5g)). To validate it mathematically, the effective rates

for both the species have been calculated in the limit µ → ∞ and are given as

αeff
+ → 2αβ2(β − 1)

α3 + 2(β − 1)β2 − α2
(
2β − 1 +

√
(1 + α)2 − 4βα

) , (2.21)

and

αeff
− →

1 + α−
√
(1 + α)2 − 4αβ

2
, (2.22)

which satisfies the existential conditions for the H/L phase. Furthermore, the shift in

position is predominantly linear for higher values of µ, which can be viewed from Fig.

(2.5i) where the derivative approaches a linear profile with an increase in µ.

2.4.1.3 Finite-size effect on asymmetric phases

It has been observed in past studies that TASEP with symmetry-breaking

phenomenon results in rigorous size-scaling dependencies [34,52]. So, to further analyze

this effect of the finite lattice length L on the shock-low density phase in the proposed

model, we have plotted the density profiles for a point (α, β) = (1, 0.2) chosen in the S/L

region with µ = 1.1 for different values of L [see Fig. (2.6a)]. As anticipated, the shock
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profile is primarily sharpened by an increase in the value of L, while the underlying S/L

phase remains intact. The other asymmetric phase, L/L, arises in the system even for a
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Figure 2.6: (a) Effect of finite lattice length L on the S/L profile for fixed (α, β, µ) =
(1, 0.2, 1.1) and varied values of L. (b) Region width (∆) of low-low density (L/L) phase
with respect to β for fixed α = 0.5 and µ = 0.5. The solid curve is a guide to the eye
with best-fit polynomial for the discrete simulation data (shown by red markers) until
L ≈ 5000.

relatively small number of particles of each species and persists for its higher value, as

illustrated in Fig. (2.2). According to the mean-field approximation, this phase exists

on a curve while simulations reveal that it appears for a considerable domain, as also

reported earlier [55,100]. To study this effect of the system size on the L/L phase, we

plot the region width (∆) with respect to β for fixed α = 0.5 and µ = 0.5 in Fig. (2.6b).

As observed from the figure, the region width ∆ decreases with an increase in L and

almost shrinks to a restricted range at L ≈ 5000. We have plotted ∆(L) with best-fit

polynomial as a guide to the eye for the discrete simulation data, in Fig. (2.6b). As

expected, based on simulations, the L/L phase region exists for a significant range of

β for smaller values of L, while for larger system size, it shrinks to a narrow region,

thereby substantiating the theoretical observations in the thermodynamic limit.

2.4.2 Asymmetric filling factors (µ+ ̸= µ− )

Now let us inquire into the bidirectional system when the filling factors

corresponding to the two-species of particles are distinct. Even if both the particle

species demonstrate the same phase, all their stationary properties cannot be equal,

specifically, the particle density, and therefore there is no point in talking about the

SSB phenomenon in this case. The difference in the filling factor forces the system to

manifest only asymmetric phases. Without loss of generality, we choose to discuss the

crucial properties such as the density profiles, phase diagrams, and phase transitions

for the case when µ+ > µ−. The reverse scenario where µ+ < µ− can be investigated
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from the results attained for µ+ > µ− by utilizing the transformations discussed at the

end of this section.

To explore the impact of coupling the system with two different reservoirs on the

stationary properties, we analyze our system in two distinct cases: (i) taking fixed

small, intermediate, or large values of µ−; simultaneously varying µ+ and (ii) fixing µ+

and changing values of µ−.

2.4.2.1 Stationary properties: Impact of µ+

Here, we aim to focus on the structural variations that occur in the phase diagram

when µ− is kept fixed and the filling factor corresponding to positive particles µ+

changes. For the case when both the filling factors were equal, our discussion in

Section (2.4.1) reveals that important topological changes were encountered in the

phase diagram at critical points, µ = 0.5 and 1. Therefore, we consider three different

circumstances: µ− ≤ 0.5, 0.5 < µ− ≤ 1, and 1 < µ−. When the filling factor µ−
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Figure 2.7: Stationary phase diagrams for: (a) µ+ = 1 and (b) µ+ = 20 with µ− =
0.3. Solid lines represent theoretical results and symbols correspond to Monte Carlo
simulations. The length of the lattice is 1500.

is kept less than min{0.5, µ+}, varying the other filling factor strongly influences the

stationary phase diagram as presented in Figs. (2.2a) and (2.7) for µ− = 0.3. Initially

when µ+ = µ−, three phases were observed comprising one symmetric (LD/LD) and two

asymmetric phases (L/L and S/L). As soon as µ+ ̸= µ−, the LD/LD phase disappears

because the system no longer satisfies symmetric conditions for the rates. This phase is

substituted by the asymmetric L/L phase where the particle densities of the two-species

are dissimilar. The vanishing of the symmetric phases also indicates the termination

of the SSB phenomena. As µ+ increases beyond 0.5, two other phases, M/L and H/L,

emerge in the phase schema; see Fig. (2.7a). On further increment in µ+, the regions for
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M/L and H/L grow in size. This expansion is attributed to the fact that with increasing

µ+, the particle flux of the positive species becomes larger while the flux of the negative

species remains unaltered. As µ+ → ∞, the S/L phase is no longer realized, along with

H/L and M/L covering the majority of the phase diagram (see Fig. (2.7b)). Note that

the number of phases with respect to µ+ changes from three to four and then reduces

to three, which depicts a non-monotonic trend.
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Figure 2.8: Stationary phase diagrams for: (a) µ+ = 0.98, (b) µ+ = 1.5 and (c) µ+ = 15
with µ− = 0.9. Solid lines represent theoretical results and symbols correspond to Monte
Carlo simulations. The length of the lattice is set to 1500.

We now concentrate on the stationary properties of the system when µ− satisfies

0.5 < µ− ≤ µ+. The outcomes of the theoretical analysis and Monte Carlo simulations

are presented in Fig. (2.8) for µ− = 0.9 and different values of µ+. There are four

phases in the system for µ+ = µ− = 0.9 (see Fig. (2.2c)) among which LD/LD and

MC/MC are the phases which are the most sensitive to the change in the value of

µ+. These phases are replaced with L/L and M/M phases for µ+ ̸= µ− along with

the introduction of the maximal-low (M/L) region into the phase representation. The

persistence of asymmetric maximal-low phase requires either one of µ+ or µ− must

be greater than 0.5. The corresponding topological structure of the phase diagram is

illustrated in Fig. (2.8a). It is important to note that though the bulk characteristics

of the two-particle species are the same in both MC/MC and M/M phases, the particle

densities are not equal at the boundaries. Specifically, the effective entrance rates are

different in cases of M/M (as confirmed from Eq. (2.20)) implying that ρ+(0) ̸= ρ−(1).

Now, as µ+ increases, the H/L phase enters the phase diagram next to the S/L phase

when µ+ > 1 (see Fig. (2.8b)). This critical point after which H/L appears in the

phase schema is obtained from the condition that the existence of this phase requires

αeff
+ > β. It is compelling to mention that Fig. (2.8b) corresponds to a circumstance

where the system experiences the maximum number of phases at steady-state. With

further increasing µ+, the M/L and H/L region expands followed by the shrinkage in

L/L and S/L regions. Eventually, when µ+ → ∞, the S/L phase disappears from the
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phase structure as shown in Fig. (2.8b), with the system still displaying the other four

stationary phases. In this case, initially, the number of phases displayed is 5, which

reduces to 4, then further rises to 5, and finally decreases to 4.
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Figure 2.9: Position of the shock vs (a) µ+ with µ− = 0.3, (b) β with µ+ = 1, µ− = 0.3,
and (c) α with µ+ = 1, µ− = 0.3. The rest of the parameter values are mentioned in
the respective figures. Inset in (a) shows the change in xw with respect to µ+ which is
almost linear. Inset in (b) is a zoomed figure for smaller values of β. In all figures, solid
lines represent theoretical results and symbols correspond to Monte Carlo simulations.
The length of the lattice is set to 1500.

Upon comparison of the phase diagram in the present case with that of the

symmetric filling factor, the nature of the S/L phase is expected to have distinct

behaviour. One can readily observe that the shock may move towards either of the

boundaries with respect to β depending upon the fixed α (see Fig. (2.9b)). However,

with respect to α, the shock moves towards the left for any constant value of β (see

Fig. (2.9c)). The shock height has a behaviour similar to the symmetric conditions and

remains constant with the variation of α while other parameters are unchanged, whereas

it decreases monotonically with respect to β, provided the remaining parameters are

unaltered.

Finally, we intend to analyze how the filling factor µ+ impacts the dynamics of the

S/L phase for a fixed value of µ−. Towards this direction, we have plotted Fig. (2.9a)

which depicts the variation of shock position and its change (inset) with respect to µ+.

Clearly, the shock enters from the right end and leaves the lattice from the left end

with respect to µ+ for µ− = 0.3. One can readily conclude that the variation is almost

linear revealing that the shock position is nearly proportional to the filling factor of the

concerning species.

2.4.2.2 Stationary properties: Impact of µ−

Now, let us focus on the properties of the system for fixed µ+ and varying values of

µ− such that µ+ > µ−. When µ+ < 0.5, two phases are realized in the phase diagram

namely L/L and S/L phases with the majority of the region covered by the L/L phase.

One can see from Fig. (2.10a) that, for µ− < 0.5 < µ+ = 0.55, four asymmetric phases
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Figure 2.10: Stationary phase diagrams for: (a) µ− = 0.3, (b) µ− = 0.5, and (c) µ− =
0.54 with µ+ = 0.55. Solid lines represent theoretical results and symbols correspond
to Monte Carlo simulations. The length of the lattice is taken to be 1500.

are displayed by the system (L/L, M/L, S/L, and H/L). As µ− takes the value 0.5,

the H/L phase disappears from the phase diagram along with the shrinkage of S/L and

M/L regions as shown in Fig. (2.10b). This is because, with an increase in µ−, enough

negative particles are available in the system to hinder the movement of the positive

particles. Mathematically, it is also affirmed by Eq. (2.36) that the H/L phase does

not persist for µ− = 0.5. As soon as µ− > 0.5, the maximal-maximal (M/M) phase

emerges in the phase diagram changing its topology qualitatively (see Fig. (2.10c)). It

is noteworthy to mention here that when µ+ > µ−, the density of the positive particles

always remains greater than that of the negative particles.

One of the major consequences of coupling the system with two-particle reservoirs

having distinct filling factors is the appearance of the M/L phase in the phase diagram

which has not been observed in previous studies [34,53]. For fixed α, β, and µ+ chosen

such that these parameters lie in the M/L region, we study the changes in the bulk

densities for the two-particle species. In this phase, the positive particles manifest

maximal current phase with a bulk density equal to 0.5 while the negative species

depict an entrance-dominated phase with the bulk density given by Eq. (2.42). It can

be noted that the value αeff
− is entirely expressed in terms of α, β, and µ−. As we plot

the effective entrance rate αeff
− against µ− for α = 15, β = 0.8, µ+ = 0.55, it can

be observed that αeff
− increases with increase in µ− (see Fig. (2.11a)). Eventually, at

the critical point µ− = 0.55, αeff
− takes the value 0.5 indicating the termination of low

density phase corresponding to the (−) particles. Now, to focus on the variation in

particle density corresponding to negative species with respect to change in both α and

β, we plotted ρ− vs α for different values of β in Fig. (2.11c). For fixed β, an increase

in α enhances the inflow of negative species leading to an increase in the bulk density

ρ−. Similarly, upon varying the exit rate, the density corresponding to negative species

increases with an increment in β (see Fig. (2.11b)).
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Figure 2.11: (a) Effective entrance rate αeff
− with respect to µ− for µ+ = 0.55, α = 15,

β = 0.8. (b) Particle density ρ− with respect to α for distinct values of β. (c) Density
profiles of the negative species for different values of β, α = 3, µ+ = 1, µ− = 0.3. The
rest of the parameter values are mentioned in the respective figures. In all figures, solid
lines represent theoretical results and symbols correspond to Monte Carlo simulations.
The length of the lattice is taken to be 1500.

Furthermore, it is necessary to point out the essential feature of the asymmetric

M/M phase. Even though the bulk densities for both species in the M/M phase take

the value 0.5, this phase is not identical to MC/MC, as in the former case the boundary

densities corresponding to (+) and (−) particles are different. It is also evident from

Eq. (2.45) that for µ+ ̸= µ−,

αeff
+ − αeff

− =
αβ(µ+ − µ−)∏

j∈{+,−}

(
2βµj + α(2µj − 1)

) ̸= 0. (2.23)

In the above analysis, our discussion was focused on the case µ+ ≥ µ−. The

feasible phases, density profiles, and phase diagrams for the case when µ+ < µ− can

be obtained from the results acquired when µ+ > µ− by the implementation of the

following transformation:

ρ+ ↔ ρ−

µ+ ↔ µ−

A/B phase ↔ B/A phase.

(2.24)

We summarize eleven possible distinct regimes identified for different filling factors

in Fig. (2.12). Without loss of generality, for the case when µ+ = µ−, we have assumed

that the particle density of positive particles is greater than that of the negative species,

i.e., the system displays H/L and S/L phases along the line µ+ = µ−. The density

profiles corresponding to different phases are shown in Fig. (2.13).



48 Chapter 2. Interplay of two reservoirs in a bidirectional transport system

I

II

III

VIII

IX

X

XI

V

VII

IV

VI

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

μ+

μ
-

Figure 2.12: Different dynamic regions based on the filling factors µ+ and µ−. Eleven
distinct regions numbered I to XI, have phase regimes that are qualitatively different.
Table (2.2) provides a tabular description of the phase regimes that can exist in each of
these different regions. In the table, a phase that does not exist is indicated by empty
entries.

Phase I II III IV V VI VII VIII IX X XI

S/L ✓ ✓ ✓ ✓ ✓ ✓ ✓
H/L ✓ ✓ ✓
M/L ✓ ✓ ✓

MC/MC ✓ ✓
L/L ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

LD/LD ✓ ✓ ✓
M/M ✓ ✓ ✓ ✓
L/M ✓ ✓ ✓
L/H ✓ ✓
L/S ✓ ✓ ✓ ✓

Table 2.2: The phases that exist in eleven different possible phase regions of the
bidirectional system. The empty entries denote the phase that does not exist in the
corresponding region.

2.5 Swapping rate of two-species other than 1

Our above investigation as well as previous studies [34,54], reveal that the

predictions of the mean-field approximation are consistently supported by Monte Carlo

simulations in the case of s = 1. Several attempts have been made focusing on the

case when the exchange rate of the two-particle species if they encounter each other

is not equal to 1 [34,117]. It is reasonable to anticipate that the mean-field technique

will also perform admirably for the case of s ̸= 1 as well. In this direction, if the

mean-field approximation is employed on Eqs. (2.3) and (2.4), we obtain the bulk



2.5. Swapping rate of two-species other than 1 49

currents corresponding to both the particle species as

(a)

0 0.2 0.4 0.6 0.8 1

x

0

0.2

0.4

0.6

0.8

1

+
, 

-

(b)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(c)

0 0.2 0.4 0.6 0.8 1

x

0

0.2

0.4

0.6

0.8

1

+
, 

-

(d)

0 0.2 0.4 0.6 0.8 1

x

0

0.2

0.4

0.6

0.8

1

+
, 

-
+
(0)=0.55 -

(L)=0.55

(e)

0 0.2 0.4 0.6 0.8 1

x

0

0.2

0.4

0.6

0.8

1

+
, 

-

(f)

Figure 2.13: Density profiles for (a) H/L, (b) L/L, (c) S/L phases, (d) LD/LD,
and (e) MC/MC with (α, β, µ) =(2,0.2,10),(2,0.315,1.1), (1, 0.1, 0.3), (1, 0.5, 0.9),
(3.5, 0.8, 1.1) with symmetric filling factors, and (f) M/M phase with (α, β, µ+, µ−) =
(4.5, 0.8, 15, 0.9). The lattice length is taken to be 1500. Red and blue solid lines are
mean-field results for (+) and (−) particles, respectively while filled markers correspond
to Monte Carlo simulations.

J i−1,i
+ = ρi−1

+ (1− ρi+ − ρi−) + sρi−1
+ ρi−,

J i+1,i
− = ρi+1

− (1− ρi− − ρi+) + sρi+1
− ρi+.

(2.25)

Applying a similar approach as discussed in Section (2.2), we use Taylor series expansion

for ρi±1 and, retaining the terms up to second-order, the continuum equation obtained

using a mean-field approach given by Eq. (2.25) reduces to

∂ρ±
∂t

=
∂

∂x

(
ϵ

2

∂ρ±
∂x

∓ ρ±(1− ρ±)

)
± (1− s)

(
ρ+

∂ρ−
∂x

+ ρ−
∂ρ+
∂x

)
± (1− s)

ϵ

2

(
ρ+

∂2ρ−
∂x2

− ρ−
∂2ρ+
∂x2

)
.

(2.26)

This equation can be solved numerically by using a finite difference scheme which has

been outlined in Appendix (2.9). It can be observed that this solution highly depends

upon the initial densities of the two-species and does not match with the simulation

results (see Fig. (2.14a)). While, in some cases, an agreement between simulations and

mean-field results are remarkable (see Fig. (2.14b)). This depicts the failure of the

mean-field theory in case the switching rate of the two-particle species is not equal to

1. The identical observation was also made previously in Ref. [34] for the case of an



50 Chapter 2. Interplay of two reservoirs in a bidirectional transport system

0 0.2 0.4 0.6 0.8 1

x

0

0.2

0.4

0.6

0.8

1

+
, 

-
+
 (MFT)

-
 (MFT)

-
 (MCs)

+
 (MCs)

-
 (MFT)

+
 (MFT)

Mcs

+
 = 

-
 = 0.4

+
 = 

-
 = 0.7

MCs

(a)

0 0.2 0.4 0.6 0.8 1

x

0

0.2

0.4

0.6

0.8

1

+
, 

-

(b)

Figure 2.14: (a) Density profile of the two-particle species for α = 0.7, β = 1, µ− =
µ+ = 1.1, and s = 0.8 obtained using mean-field theory. Dashed lines correspond to
solution obtained with initial condition ρ+ = ρ− = 0.4, dotted line is plotted for initial
condition ρ+ = ρ− = 0.7, and symbols correspond to Monte Carlo simulations. (b)
Density profile of the two-particle species for α = 0.5, β = 0.2, µ+ = µ− = 1.1, and
s = 0.8. Solid lines represent mean-field results and symbols correspond to Monte Carlo
simulations.

infinite reservoir. Therefore, an alternate technique needs to be used to capture the

system properties theoretically for s ̸= 1, which will require further investigation.

2.6 Summary and conclusion

To summarize, we investigate a theoretical model that mimics the bidirectional

movement of particles along a one-dimensional track, as is seen in the movement of cargo

vesicles driven by motor proteins on microtubules and vehicular traffic on narrow roads.

This model can be viewed as a two-species bidirectional totally asymmetric simple

exclusion process with distinct finite particle reservoirs for each species. The entry

of each particle species on the lattice is governed by the occupancy of the respective

particle reservoir. The total number of particles for each species remains constant

in the system and is characterized by the corresponding filling factor. Our model

significantly differs from the previous studies where only one unified reservoir is taken

into account. We theoretically examine the effect of the system dynamics on the crucial

steady-state properties, such as phase diagrams, density profiles, phase boundaries, and

phase transitions, in the framework of mean-field theory. All these theoretical outcomes

are validated through extensive Monte Carlo simulations.

To study the impact of coupling the lattice to different finite reservoirs, we have

explicitly considered two different scenarios: (i) the symmetric case when the filling

factors for both species are equal and (ii) the asymmetric case where these factors
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are different. In the former case, we observe a maximum of five stationary phases, two

symmetric phases namely low density (LD/LD), maximal current phase (MC/MC), and

three asymmetric phases: low-low density (L/L), shock-low density (S/L), and high-low

density (H/L) phase. Despite the dynamics of the two-species being identical, symmetry

breakdown is recorded in this case, which persists even for a very small magnitude of

the filling factor. Further, particle density histograms are studied to examine the effect

of this phenomenon through Monte Carlo simulation results. The S/L phase is an

asymmetric phase that has not been previously obtained in bidirectional systems with

infinite resources. The number of perceived phases in the phase diagram changes from

3 → 4 → 5 → 4 with increasing values of the common filling factor, which represents a

non-monotonic trend.

For the case when the filling factors are unequal, a maximum of 42 = 16 asymmetric

phases can be observed in the system. Out of these, only eight phases are realized in

the phase schema and the rest are discarded based on either physical or analytical

arguments. Since, in this category, the two filling factors always remain different,

the system cannot manifest a symmetric phase. The introduction of asymmetric

filling factors leads to significant changes in the phase structure both quantitatively

and qualitatively. A noteworthy feature of the phase diagrams is the presence of

maximal-low (M/L) and maximal-maximal (M/M) phases which have not been detected

in analogous systems with infinite resources. Even in this case, the variation in the

number of phases in the phase diagram shows a non-monotonic trend.

For a deeper analysis of the S/L phase, we study the position and the height of the

shock as well as the particle densities of both the species with respect to change in all

the parameters: entry-exit rates and the filling factors. The exact number, dynamic

characteristics, and region of various phases rely on the number of particles in each

reservoir. We have identified the critical points where the appearance and disappearance

of phases occur in the system.

It is important to note that the proposed model differs from the previous study [58]

in several ways. Unlike the bidirectional system with reservoir crowding and a global

constraint on the total number of particles in the system examined in the previous

study, the current model imposes a global constraint on the number of resources of

an individual species and regulates only the entrance rates based on the reservoir’s

capacity. Additionally, the present model introduces another feature: the M/L phase,

which was not observed in Ref. [58]. All the phase boundaries in the present study

exhibit a concave downward shape, in contrast to the convex upward trend, observed

in the case of a unified reservoir [58].
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2.7 Appendix: Symmetric phases

There are two feasible symmetric phases for which the explicit expressions for

the phase boundaries, particle density, and the effective entrance rate αeff can

be theoretically computed by utilizing the framework presented in Sections (2.2) and

(2.3.1). In all of these phases, the two-species of particles display identical stationary

properties, which are examined in the following discussion.

• Low density phase (LD/LD). In this phase, both the species of the particles are

in low density with bulk densities equal to αeff and the current corresponding to

both the particle species is equal to J+ = J− = αeff (1−αeff ). As a result, Eq. (2.18)

reduces to

µ = r + αeff . (2.27)

Upon solving Eqs. (2.19) and (2.27) along with the fact that αeff
+ = αeff

− , the

reservoir quotient is obtained as

r =
1

2α

(
α(µ− β)− βµ+

√
4αβµ2 + (α(µ− β)− βµ)2

)
. (2.28)

The existential conditions of this phase require the effective entrance to be less than

0.5 and β, which leads to

min{0.5, β} >
1

2α

(
α(µ+ β) + βµ−

√
4αβµ2 + (α(µ− β)− βµ)2

)
. (2.29)

Note that, in the limiting case of µ → ∞, αeff is given by αβ/(α+β) which matches

with the corresponding effective entry rate obtained for the LD/LD phase in the case

of the bidirectional model with no restriction on the number of particles in the system

[34].

• Maximal current phase (MC/MC). This case persists when both the particle

species are individually in the MC phase with bulk densities 0.5 and bulk particle

currents J+ = J− = 0.25. Such a phase is characterized by the following conditions:

αeff > 0.5, β > 0.5. (2.30)

Using Eq. (2.18), we have

r = µ− 0.5, (2.31)

which provides the existential conditions in the α− β plane as

α >
2βµ

(2µ− 1)(2β − 1)
, β > 0.5. (2.32)
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Further, it is evident from Eq. (2.31) that the MC/MC phase exists only when

µ > 0.5. (2.33)

For µ → ∞, Eq. (2.32) reduces to α > β
2β−1

which is the condition for the MC/MC

phase in the standard bidirectional TASEP with a common reservoir containing

infinite resources [34].

2.8 Appendix: Asymmetric phases

In each of the asymmetric phases discussed below, first the effective entrance rates

αeff
+ and αeff

− are computed, which are then utilized to determine particle densities,

the position of shock, and existential criteria in each phase.

• High-low density phase (H/L). It is assumed that the (+) particles exhibit high

density phase where density is greater than 0.5 and the (−) particles portray low

density phase. Employing the expressions for currents given by Eq. (2.13), we attain

J+ = β(1−β) and J− = αeff
− (1−αeff

− ). Substituting these into Eq. (2.16), the value

of effective entrance rates is procured as

αeff
− =

1

2µ−

(
αr− + µ− −

√
(αr− + µ−)2 − 4αβµ−r−

)
,

αeff
+ =

α(β − 1)β2r+

αr+(α
eff
− − 1)αeff

− + β2µ+(β − 1)
.

(2.34)

Utilizing the particle number conservation given by Eq. (2.18) provides µ+ = r+ +

1− β and µ− = r− + αeff
− , which along with Eq. (2.34) gives the reservoir quotients

as

r+ = µ+ − (1− β),

r− =
1

2(α + µ−)

(
α(µ− − β) + µ−(2µ− − 1))

+

√
α(µ− − β) + µ−(2µ− − 1

)2
+ 4(1− µ−)µ2

−(α + µ−).

(2.35)

These calculated values of the reservoir quotients can be replaced in Eq. (2.34) to

obtain the effective entrance rates. The feasible region corresponding to this phase

satisfies

β < min{αeff
+ , 0.5}, αeff

− < min{β, 0.5}, (2.36)

along with the filling factors satisfying µ+ ≥ µ− and µ+ > 0.5. Moreover, the

condition αeff
+ > β is satisfied only if µ− < 0.5 < µ+ or (0.5 < µ− and 1 < µ+).

It is worth pointing out that in case both the filling factors are equal, the SSB
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phenomenon is observed. Moreover, all the stationary properties such as particle

densities, reservoir quotients, and particle currents for the case of symmetric filling

factors can be calculated by substituting µ+ = µ− = µ in all the above obtained

expressions.

Clearly, when both µ+ → ∞ and µ− → ∞, the conditions for the existence of the

H/L phase in a bidirectional system with an infinite particle reservoir is recovered

[34].

• Shock-low density phase (S/L). We presume that the (+) particles display a

shock phase while the (−) particles are in low density phase. This phase persists

when the boundary-controlling parameters ensure the following constraints:

J+ = β(1− β) = αeff
+ (1− αeff

+ ), J− = αeff
− (1− αeff

− ),∫ 1

0

ρ+ dx =

∫ xw

0

αeff
+ dx+

∫ 1

xw

(1− β) dx,
(2.37)

where xw is the position of shock in the density profile. The effective entrance rates

for the particles can be retrieved from Eq. (2.16) as

αeff
− =

1

2µ−

(
µ− + αr− −

√
(µ− + αr−)2 − 4αβµ−r−

)
, (2.38)

αeff
+ =

µ+ + αr+
2µ+

−

√
β
(
β(µ+ − αr+)2 − 4α(αeff

− − 1)αeff
− µ+r+

2βµ+

.

Now we make use of Eq. (2.18) to calculate the reservoir quotient for (−) particles,

which yields

r− =
1

2(α + µ−)

(
α(µ− − β) + µ−(2µ− − 1)

+
√

α2(β − µ−)2 + µ2
− + 2αµ−

(
β + µ−(1− 2β)

))
.

Since the existence of such a phase requires αeff
+ = β, we have

r+ =
(β − 1)β2µ+

α
(
αeff
− (1− αeff

− ) + β(β − 1)
) . (2.39)

The position of the shock can be procured by utilizing Eqs. (2.18) and (2.37) along

with Eqs. (2.39) and (2.39), as

xw =
β + µ+ − r+ − 1

2β − 1
. (2.40)
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Finally, the boundary parameters must satisfy the following conditions for the S/L

phase to exist:

0 ≤ xw ≤ 1, αeff
− < min{β, 0.5}. (2.41)

It must be noted that when µ+ = µ−, spontaneous symmetry-breaking is observed

in the system and the corresponding results can be attained by replacing µ+ and µ−

by µ in all the above expressions. Furthermore, this phase vanishes when both µ+

and µ− tend to ∞.

• Maximal-low phase (M/L). In this phase, it is assumed that the (+) particles

manifest maximal current with density given by 0.5, whereas the average particle

density of (−) particles remains less than 0.5. Here, the particle currents are J+ =

0.25, and J− = αeff
− (1−αeff

− ). These expressions when substituted in Eq. (2.16) and

solved for the effective entrance rates provide

αeff
− =

1

2βµ−

(
β(µ− + αr−)−

√
β (αµ−r− + β(µ− − αr−)2)

)
αeff
+ =

βαr+
βµ+ + 4αr+J−

,

(2.42)

and further αeff
+ can be calculated. Moreover, from Eqs. (2.18) and (2.42), we have

r+ = µ+ − 0.5, r− =
1

8β(α + µ−)

(
X +

√
X2 − 64β2(µ− − 1)µ2

−(µ− + α)

)
,

whereX = α (4β(µ− − 1) + 1)+4βµ−(2µ−−1). Using the above obtained expressions

for the boundary parameters, the conditions of existence for this phase are framed as

min{αeff
+ , β} > 0.5 > αeff

− , µ+ > max{µ−, 0.5}. (2.43)

• Maximal-maximal phase (M/M). All the stationary properties of this phase are

similar to the MC/MC phase except the fact that here αeff
+ ̸= αeff

− , which further

implies µ+ ̸= µ−. In this phase, the reservoirs’ quotients are given by rj = µj − 0.5

for j ∈ {+,−}. Since these quotients must be non-negative, the existential criteria

for this phase are

min{µ+, µ−} > 0.5, min{αeff
+ , αeff

− , β} > 0.5, (2.44)

where

αeff
+ =

αr+
βµ+ + αr+

, αeff
− =

αr−
βµ− + αr−

. (2.45)

• Low-low density phase (L/L). This phase exists when the particle densities for
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both species are entry dominated and remain less than 0.5. Such a phase exists when

αeff
+ < min{β, 0.5}, αeff

− < min{β, 0.5}. (2.46)

The corresponding particle currents are expressed as

J+ = αeff
+ (1− αeff

+ ), J− = αeff
− (1− αeff

− ). (2.47)

Utilizing the fact that the particles are conserved along with ρ+ = αeff
+ and ρ− = αeff

− ,

we have

r+ = µ+ − αeff
+ , r− = µ− − αeff

− . (2.48)

Solving Eq. (2.16) along with Eqs. (2.47) and (2.48), the effective entrance rates

for both species can be obtained. In the case of symmetric filling factors, one can

substitute µ+ = µ− = µ in all of the above expressions.

The existential conditions of the phases such as L/S, L/M, and L/H can be obtained

by interchanging the roles of the parameters for the (+) and the (−) particles in S/L,

M/L, and H/L phases, respectively.

2.9 Appendix: Numerical Scheme

In this section, we delineate a numerical approach to obtain the density profiles

for the bidirectional system. Our system seems quite simple but it is difficult to

solve second-order differential equations Eqs. (2.11) and (2.26) analytically. The term

involving time is retained in the system and steady-state particle density for both the

species is captured in the limit t → ∞, where t is the total number of time steps

to guarantee the occurrence of steady-state. The differential equation is discretized

by choosing ∆x = 1/L and ∆t is selected so that the stability criteria ∆t/∆x2 ≤ 1

is maintained. Time and the space derivatives involved in the equation are replaced

with forward and central difference formulas. Denoting the approximation to ρj at

(i∆x, n∆t) by ρi,nj for j ∈ {+, −}, we obtain the following equations:

ρi,n+1
+ = ρi,n+ +

ϵ∆t

2
(1− s)ρi,n+

(
ρi+1,n
− − 2ρi,n− + ρi−1,n

−

∆x2

)
+

ϵ∆t

2

(
1− (1− s)ρi,n−

)
(
ρi+1,n
+ − 2ρi,n+ + ρi−1,n

+

∆x2

)
+∆t

(
2ρi,n+ − 1 + (1− s)ρi,n−

)(ρi+1,n
+ − ρi−1,n

+

2∆x

)

+∆t (1− s)ρi,n−

(
ρi+1,n
− − ρi−1,n

−

2∆x

)
, (2.49)
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for the positive particles. Since the above equation is not valid for i = 1 and i = L and

both the species interact explicitly only at the boundaries, we cannot directly include

boundary conditions in the above discretization. Instead, we utilize Eqs. (2.6) and

(2.7), which can be written as

ρ1,n+1
+ = ρ1,n+ +∆t

(
α
(
1−

∑
ρi,n+

Lµ+

)
(1− ρ1,n+ − ρ1,n− )− ρ1,n+ (1− ρ2,n+ − ρ2,n− )− sρ1,n+ ρ2,n−

)
,

ρL,n+1
+ = ρL,n+ +∆t

(
ρL−1,n
+ (1− ρL,n+ − ρL,n− ) + sρL−1,n

+ ρL,n− − βρL,n+

)
.

In the case of s = 1, Eq. (2.49) simplifies considerably and is given by

ρi,n+1
+ =ρi,n+ +

ϵ∆t

2∆x2

(
ρi+1,n
+ − 2ρi,n+ + ρi−1,n

+

)
+

∆t

2∆x

(
ρi+1,n
+ − ρi−1,n

+

)
(2ρi,n+ − 1).

Similar equations can be written for the negative particles as well.
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Chapter 3

Exclusion processes on a roundabout

traffic model with constrained

resources

In Chapter 2, we delved into bidirectional transport within a lattice confined to a

single-lane and hosting a finite number of particles. A similar transport phenomenon

is observed in network structures resembling roundabouts. This chapter1 concentrates

on exploring roundabout topologies with resource constraints, specifically highlighting

scenarios where two distinct particle species move in opposite directions. To provide a

theoretical ground for our findings, we employ a mean-field framework and successfully

validate them through kinetic Monte Carlo simulations.

3.1 Motivation and background

Networks play a vital role in the realm of traffic flow, allowing for a deep

understanding and effective management of the complex interactions and dynamics

among diverse transportation components. The rising traffic demands have led to

a significant expansion in the construction of new roads and the improvement of

existing ones. An essential feature of these road networks is the creation of numerous

points where different roads meet and cross paths with one another. In past decades,

different topologies of networks have been modelled and analyzed to enhance traffic flow

optimization, encompassing various aspects like movement at junctions, roundabouts,

shortcuts, crossroads, traffic circles, multiple lanes, etc [99,102,103,118–126]. A variant

investigates the stationary behaviour of a one-dimensional lane inserted with a double

chain section in between [120,127–129]. In other words, a single-lane road acts as

a feeder segment for two diverging branches that subsequently merge back into a

single-lane. In this model, the unidirectional movement of particles is considered and

the dynamics of the system are strongly characterized by the entrance rate of particles

to the first single-lane and the exit rate from the second single-lane. The presence of

1The content of this chapter is published in:“Ankita Gupta, Arvind Kumar Gupta. Exclusion
process on roundabout traffic model with constraint resources. Physical Review E, 108(6):064116,
2023.”
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junctions in traffic flows enhances the efficient movement of all the traffic participants.

In biological systems, microtubules form an intricate network within cells, serving as

structural elements and providing pathways for intracellular transport. Motor proteins

such as dynein and kinesin utilize these filaments as a transportation route, traversing

along them bidirectionally and towing their cargo over substantial distances. These

large networks of microtubules constitute of junctions leading to various diseases as a

consequence of motor protein crowding [130,131].

Given the significance of junctions and bidirectional flow in various natural and

man-made systems, we explore a modified version of the double chain section model

where two distinct species of particles travel in opposite directions. Simultaneously, a

global constraint on the total number of particles in the system is considered. Our aim

is to explore the novel phase transitions and nontrivial impact of the limited particle

resources on the phase plane. We exploit the idea of defining effective entrance-exit rates

through each lane and the domain wall theory, to obtain explicit expressions for the

density profiles and determine the parameter range for which we expect congestion and

symmetry-breaking. We analyze how the choice of the boundary rates of the particles

along with the number of resources available, controls the dynamics of the system. In

addition, we present a comprehensive analysis by considering suitable limiting cases to

gain insights into the steady-state behaviour of the system. Precisely, the dynamics of

our system encourage us to answer the following questions. (i) How does the number of

available particles regulate the overall dynamics of the system? (ii) Does the mean-field

framework possess sufficient competence to analyze the stationary properties, such

as phase diagrams and potential phase transitions? (iii) How does the presence of

two bridges in the middle affect both the qualitative and quantitative changes in the

complexity of the phase diagram?

3.2 Model

To understand the bidirectional movement observed in various driven diffusive

systems passing through roundabouts, we present an open system that employs an

exclusion process (TASEP) and incorporates two distinct types of particles in a

constrained environment. Specifically, the setup comprises of two distinct lanes, denoted

as P and Q, which facilitate the movement of particles in both directions. These lanes

are connected by bridges, namely B+ and B−, as clearly illustrated in Fig. (3.1). The

two species of particle moving in opposite directions are represented as (+) and (−).

Lane P acts as an input/output lane for the (+)/(−) species while lane Q acts as an

output/input lane for the (+)/(−) species. The bridge lane B+ accommodates the

(+) species, whereas B− caters to the (−) species. Each lane is composed of fixed
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Figure 3.1: Model depiction in a diagrammatic form. Arrows indicate transitions that
are permitted. Prohibited transitions are indicated by red crossed arrows. The two
distinct species of particles progressing from left to right and right to left are represented
by (+) and (−) symbols, respectively.

L sites identified as i ∈ {1, 2, . . . , L} (see Fig. (3.1)). The sites i = 1 and i = L

describe the left and right boundary whereas the rest L − 2 constitutes the bulk of

each lane. The hard-core exclusion principle is enforced to prevent more than one

particle from occupying a specific site at the same time, which mimics the physical

constraints of various transport systems. The sites i = 1 of lane P and the site i = L

of lane Q are connected to a finite pool containing Nr(t) identical particles. The total

number of particles (Nt) in the system remains constant and does not vary at any given

moment in time. Moreover, the pool is considered large enough to accommodate all the

particles present in the system. The following transition rules govern the behaviour of

the particles in each lane, which are also described in Fig. (3.1).

1. (+) particle. A positive particle is allowed to enter from the pool to the lane P

through the left boundary (i = 1) with rate αeff , provided this site is empty, i.e.,

neither occupied by (+) particle nor (−) particle. In the bulk, this particle can jump

at a unit rate to the adjacent site if the target site is unoccupied. If a positive particle

encounters a negative particle on the adjacent site, then they swap their positions

with unit rate. As soon as this particle reaches the last site (i = L), it exits lane P

to enter the first site of lane B+ with the unit rate provided it is empty.

Then, a (+) particle continues its movement along the bridge lane B+ from left to

right following the hard-core exclusion principle. On reaching the right boundary

of lane B+, it has a tendency to hop onto the first site of lane Q with unit rate,

provided the latter site is free from particles of both kinds.

In lane Q, this particle jumps along the bulk to the neighboring site if empty with
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unit rate. If the next site contains a (−) particle, then the two species exchange

their positions with a unit rate. A (+) particle finally escapes through the site i = L

of lane Q with the rate β to reenter the pool.

2. (−) particle. A particle species of this kind follows similar dynamic rules as that

of a positive species but in the opposite direction i.e., from right to left. However,

here, the bridge B− is utilized instead of B+.

It is important to note that we have assumed that the rates for both the forward

hopping and the exchange of positions are equal for the two different types of particles.

Moreover, all the lanes in the system are considered to be of identical length.

The entrance rates for the particles of both kinds, denoted by αeff , are controlled

by the occupancy of the pool. For the sake of simplicity, we have assumed these arrival

rates to be the same. To incorporate the effects of finite occupancy of the pool, we

define the effective entrance rate αeff as

αeff = αNr/Nt, (3.1)

which has already been discussed in detail in previous chapters.

Now, the proposed model is characterized by α, β, L, and Nt which act as the

controlling parameters for the steady-state properties. To reduce the number of

parameters under consideration, we define a filling factor µ as µ = Nt

4L
which keeps

track of the total number of particles (Nr(t) + count of particles on all the lanes) in the

system with respect to the total number of sites in the system. Thus the controlling

parameters for the system reduce to entrance-exit rates and the filling factor µ.

3.3 Master equations and mean-field analysis

We characterize the occupancy status of each site for every lane by the symbols τ+,i
j

and τ−,i
j for the positive and the negative species, respectively. Here, i ∈ {1, 2, . . . , L}

indicates the site number and j ∈ {P, B±, Q} represents the corresponding lane. The

governing densities of the bulk sites (1 < i < L) for the bidirectional lanes (j = P, Q)

employing the master equations can be described as follows

d⟨τ+,i
j ⟩
dt

= ⟨τ+,i−1
j (1− τ+,i

j − τ−,i
j )⟩+ ⟨τ+,i−1

j τ−,i
j ⟩

− ⟨τ+,i
j (1− τ+,i+1

j − τ−,i+1
j )⟩ − ⟨τ+,i

j τ−,i+1
j ⟩,

d⟨τ−,i
j ⟩
dt

= ⟨τ−,i+1
j (1− τ−,i

j − τ+,i
j )⟩+ ⟨τ−,i+1

j τ+,i
j ⟩

− ⟨τ−,i
j (1− τ−,i−1

j − τ+,i−1
j )⟩ − ⟨τ−,i

j τ+,i−1
j ⟩.

(3.2)
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Here, the notation ⟨. . . ⟩ denotes the statistical average. In the above equations, the

positive and the negative terms on the right-hand sides correspond to the gain and loss

of particles on the lane concerning the hopping and the swapping of the two species.

Similarly, for the bridge lanes, the particle evolution equations for the bulk can be

written as

d⟨τ+,i
B+

⟩
dt

= ⟨τ+,i−1
B+

(1− τ+,i
B+

)⟩ − ⟨τ+,i
B+

(1− τ+,i+1
B+

)⟩,

d⟨τ−,i
B−

⟩
dt

= ⟨τ−,i+1
B−

(1− τ−,i
B−

)⟩ − ⟨τ−,i
B−

(1− τ−,i−1
B−

)⟩.

After simplification, the particle evolution equations for all the lanes of the system gets

modified to

d⟨τ+,i
j ⟩
dt

= ⟨τ+,i−1
j (1− τ+,i

j )⟩ − ⟨τ+,i
j (1− τ+,i+1

j )⟩,

d⟨τ−,i
j ⟩
dt

= ⟨τ−,i+1
j (1− τ−,i

j )⟩ − ⟨τ−,i
j (1− τ−,i−1

j )⟩.
(3.3)

Now, all the equations governing the evolution of particles in each lane are decoupled,

however, these equations are intractable in their present form due to the involvement

of two-point correlators. So, we employ mean-field approximation which has worked as

a vital tool to explore the behaviour of numerous many-body systems [34,53,132,133].

Mean-field in its simplest form neglects all the spatial correlations between neighboring

particles and considers the occupancy of two adjacent sites to be independent of each

other. To obtain the continuum limit of the model, we coarse-grain the discrete lane

with constant ϵ = 1/L and re-scaled time as t′ = t/L. In the continuum limit, the

variables ⟨τ+,i
j ⟩ and ⟨τ−,i

j ⟩ are replaced with ρ+,i
j and ρ−,i

j and using the terms up to

second-order in the Taylor series expression, we obtain

∂ρ±j
∂t′

=
∂

∂x

ϵ

2

∂ρ±j
∂x

∓ ρ+j (1− ρ+j ). (3.4)

The superscript i was dropped as the lanes are free from in-homogeneity of any type.

At steady-state, the above equation reduces to

ϵ

2

∂2ρ+j
∂x2

+ (2ρ+j − 1)
∂ρ+j
∂x

= 0,
ϵ

2

∂2ρ−j
∂x2

− (2ρ−j − 1)
∂ρ−j
∂x

= 0. (3.5)

In the limit ϵ → 0, this equation yields
∂J±

j

∂x
= 0, where J±

j gives us the bulk current of

each species of particle as

J+
j = ρ+j (1− ρ+j ), J−

j = ρ−j (1− ρ−j ). (3.6)

In the following section, we intend to utilize mean-field approximation to examine the
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stationary properties of the proposed model. To appropriately connect lanes P and Q

with the bridge lanes, we must first define the effective entrance and exit rates for each

lane. Further, we make use of notations ρ+,i
j and ρ−,i

j to represent the average particle

density of the (+) and (−) particle, respectively, on site i in the jth lane. Moreover, the

average densities in the bulk will be denoted by ρ+j and ρ−j . The current induced by the

(+) and (−) particles in each lane will be denoted by J+
j and J−

j . Also, the symbol Jk,1
j

and Jk,L
j is used to describe the current at the boundary sites on each lane. Considering

that lane P(Q) operates as an input(output) lane for the positive (negative) species

and lane Q(P) as an output(input) lane for positive(negative) particles, for analytical

amenability we prefer to take that j ∈ {in, B, out} for the rest of the article, where B

stands for the respective bridge lane.

3.3.1 Dynamics of lanes P and Q

For the thorough theoretical investigation, we need to define effective entrance and

exit rates for lanes P and Q. Taking into account that lane P(Q) acts as an input

lane for positive(negative) particles and lane Q(P) behaves as an output lane for the

negative(positive) species, we define the effective exit rate of (+) and (−) particles from

the lane P and Q through the site i = L and i = 1, as β+
in and β−

in, respectively (see

Fig. (3.2)). Similarly, the effective entrance rate of (+)/(−) particles from bridge lane

B+/B− to lane Q/P is denoted by α+
out/α

−
out.
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Figure 3.2: Representation of the proposed model with the fictitious defined entrance
and exit rates through each lane required for analytical treatment.

Following mean-field approximation and the current continuity condition, the

current flowing out of lane P(Q) is equal to the current passing from lane P(Q) to

the bridge lane B+(B−), which gives

β+
in ρ+,L

in = ρ+,L
in (1− ρ+,1

B ), β−
in ρ−,1

in = ρ−,1
in (1− ρ−,L

B ), (3.7)
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and can be simplified to obtain

β+
in = 1− ρ+,1

B , β−
in = 1− ρ−,L

B . (3.8)

Similarly, the current continuity argument suggests that the current passing through

the bridge lane to lane Q/P must be equal to the inflow of current in lane Q/P, which

can be written as

α+
out (1− ρ+,1

out − ρ−,1
in ) = ρ+,L

B (1− ρ+,1
out − ρ−,1

in ),

α−
out (1− ρ+,L

in − ρ−,L
out ) = ρ−,1

B (1− ρ+,L
in − ρ−,L

out ),
(3.9)

and implies,

α+
out = ρ+,L

B , α−
out = ρ−,1

B . (3.10)

Next, we utilize the continuity of current within the bulk and at the boundaries of each

lane to further analyze lane P. Subsequently, we extend a similar treatment to lane Q.

According to the mean-field approximation, the bulk current of each species of particle

on lane P can be expressed as

J+
in = ρ+in(1− ρ+in), J−

out = ρ−out(1− ρ−out). (3.11)

Similarly, the boundary currents are given by

J+,1
in = αeff (1− ρ+,1

in − ρ−,1
out ), J+,L

in = β+
inρ

+,L
in ,

J−,L
out = α−

out(1− ρ+,L
in − ρ−,L

out ), J−,1
out = βρ−,1

out .
(3.12)

Since, in the stationary state, the current is continuous throughout the lane, one can

simply write that

J+,1
in = J+,2

in = · · · = J+,L
in = J+

in, J−,1
out = J−,2

out = · · · = J−,L
out = J−

out. (3.13)

It can be easily observed from Eqs. (3.11) and (3.12), the two bulk currents for

the different species are decoupled and they interact effectively only at the boundaries.

Therefore, lane P can be viewed as two independent single-species TASEP lanes with

are connected through the boundaries only. Under this consideration, it is reasonable

to define the modified entrance rates [34,53] for the two species to lane P by utilizing

the current continuity condition described in Eq. (3.13), as

α+
ineff

=
J+
in

J+
in

αeff +
J−
out

β

, α−
outeff

=
J−
out

J−
out

α−
out

+
J+
in

β+
in

. (3.14)

As lane Q also portrays bidirectional flow, an analogous argument can be utilized
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to define the modified entrance rates for the different particle species which results in,

α+
outeff

=
J+
out

J+
out

α+
out

+
J−
in

β−
in

, α−
ineff

=
J−
in

J−
in

αeff +
J+
out

β

. (3.15)

3.3.2 Dynamics of bridge lanes

We define that a positive particle can enter bridge lane B+ from the lane P with

an effective entrance rate α+
B and can leave this lane with an effective exit rate β+

B as

depicted in Fig. (3.2). Similarly, a negative particle from lane Q can enter the bridge

B− with rate α−
B and can exit to lane P with an effective exit rate of β−

B .

The flow of each species of particle must remain continuous, which suggests that

the current passing from the lane P/Q to B+/B− lane must be equal to the current

entering the bridge lane, and can be written as

α+
B (1− ρ+,1

B ) = ρ+,L
in (1− ρ+,1

B ), α−
B (1− ρ−,L

B ) = ρ+,1
out (1− ρ−,L

B ).

Similarly, the exit current from the bridge lane can be equated to the currents passing

from the bridge lane to lane Q/P as

β+
B ρ+,L

B = ρ+,L
B (1− ρ+,1

out − ρ−,1
in ), β−

B ρ−,1
B = ρ−,1

B (1− ρ+,L
in − ρ−,L

out ).

The above two equations can be simplified to obtain

α+
B = ρ+,L

in , α−
B = ρ−,1

out , β+
B = 1− ρ+,1

out − ρ−,1
in , β−

B = 1− ρ+,L
in − ρ−,L

out . (3.16)

3.3.3 Boundary dynamics

The first site (i = 1) of lane P and the last site (i = L) of lane Q is connected to a

pool having a finite number of particles. As the total number of particles in the system

remains conserved, one can write

Nt = Nr +NP +NQ +NB+ +NB− , (3.17)

where Nj, j ∈ {P,Q,B+, B−} signifies the count of the number of positive and negative

species on lane j. At steady-state, we can write these quantities as

NP = L
( ∫ 1

0

ρ+indx+

∫ 1

0

ρ−outdx
)
, NB+ = L

∫ 1

0

ρ+Bdx,

NQ = L
( ∫ 1

0

ρ+outdx+

∫ 1

0

ρ−indx
)
, NB− = L

∫ 1

0

ρ−Bdx.

(3.18)
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Thus, Eq. (3.17) becomes

Nt = Nr + L
( ∫ 1

0

∑
j ∈{in,B,out}

(
ρ+j + ρ−j

)
dx
)
. (3.19)

To reduce the number of parameters to be investigated, the above equation can be

rewritten as

µ = r +
1

4

( ∫ 1

0

∑
j ∈{in,B,out}

(
ρ+j + ρ−j

)
dx
)
, (3.20)

where r = Nr

4L
defines the pool quotient. Thus, the effective entrance rate is given by

Eq. (3.1) is modified to αeff = α r
µ
.

3.4 Analytic predictions

To begin, we first define the notion of labeling a possible phase in a phase diagram.

Any given density profile can be expressed asX1−X2−X3/Y1−Y2−Y3. In this notation,

X1, X2, and X3 represent the phases exhibited by the positive particles in lane P, bridge

B+, and lane Q, respectively. Similarly, Y1, Y2, and Y3 denote the phases displayed by

the negative particles in lane Q, bridge B−, and lane P, respectively. Additionally, by

observing the phase exhibited by individual particle species in each lane, we identify

whether the overall system’s phase is symmetric or asymmetric. In the case of a

symmetric phase, the bulk densities of both the particle species in their respective

lanes are equal i.e., ρ+in = ρ−in, ρ+B = ρ−B, ρ+out = ρ−out; meanwhile for asymmetric phases,

the characteristics including currents and density profiles are generally different for the

two-particle species.

The two-particle species can exhibit four possible phases in each lane, leading to a

total of 46 = 4096 phases displayed by the system. Clearly, listing all probable phases

is not admissible. Since a phase of the form, X1−X2−X3/Y1−Y2−Y3 is equivalent to

Y1−Y2−Y3/X1−X2−X3, that is the changing the role of the two species has no impact

on the phase displayed, the number of phases gets reduced to 2080. The majority of

these cases, however, cannot exist because of several constraints and are discussed in

Appendix (3.8.1). Now, based on the observed stationary properties, including density

profiles, effective entrance rates, and particle currents, we categorize the different phases

as either symmetric or asymmetric.
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3.4.1 Symmetric phases

During a symmetric phase, the system displays identical stationary properties

for both the particle species, including particle densities and currents in each lane.

This equivalence arises due to the consistency of the dynamical processes and the

behaviour of the system which is indistinguishable between the two-particle types. Such

a circumstance gives

J+
in = J−

in, J−
in = J+

out, J+
B = J−

B , ρ+in = ρ−out, ρ−in = ρ+out, ρ+B = ρ−B,

leading to β+
in = β−

in = βin, α+
B = α−

B = αB, β+
B = β−

B = βB, α+
out = α−

out = αout.

This implies that modified entrance rates described by the Eqs. (3.14) and (3.15)

alters to

α+
ineff

= α−
ineff

=
Jin

Jin
αeff + Jout

β

= αineff
, α+

outeff
= α−

outeff
=

Jout
Jout
αout

+ Jin
βin

= αouteff ,

where J+
in = J−

in = Jin and J+
out = J−

out = Jout.

Therefore, utilizing the above conditions, one can calculate the effective entrance

and exit rates of all the lanes and finally obtain the stationary density profile of a

symmetric phase. We have used abbreviations (LD, HD, MC, and SP) to indicate lane

phases in a symmetrical context: LD representing low density, HD for high density, MC

for maximal current phase, and SP for the shock phase.

As a result, there are 43 = 64 possible symmetric phases out of which there

are only four achievable phases: LD-LD-LD/LD-LD-LD, LD-SP-LD/LD-SP-LD,

SP-HD-LD/SP-HD-LD, and HD-HD-LD/HD-HD-LD. The rest of the phases are

discarded based upon either physical or mathematical argument for which the complete

explanations is detailed in Appendix (3.8.1). For the feasible phase, we provide the

explicit expressions for the particle densities, currents, position of the shock, and the

phase boundaries in Appendix (3.7).

3.4.2 Asymmetric phases

In our model, the two species of particles interact effectively at the boundaries of

lane P as well as lane Q which is the sole factor affecting the symmetry between the

distinct particle species. This leads to the emergence of the asymmetrical phases and

subsequently, spontaneous symmetry-breaking phenomena. In an asymmetric phase,

each species exhibits distinctive properties in terms of current and density, and this

section examines the likelihood of the occurrence of such phases. To simplify the

analysis, it is assumed that the positive particles outnumber the negative ones. To

distinguish an asymmetrical phase from a symmetrical phase, we have used the notation
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Figure 3.3: Stationary phase diagrams for different values of µ: (a) µ = 0.1, (b)
µ = 0.45, (c) µ = 0.6, (d) µ = 0.7, (e) µ = 1.5 and (f) µ → ∞. Solid lines represent
theoretical findings while red circles denote Monte Carlo simulation results. The blue
dashed curves indicate the L-L-L/L-L-L phase. The phases L-L-L/L-L-L, L-L-S/L-L-L,
L-L-H/L-L-L, L-S-H/L-L-L, and L-H-H/L-L-L, all converge in a narrow region which
is presented by black squares in panels (d) and (e).

of L for low density, H for high density, M for the maximal current phase, and S for the

shock phase.

Theoretical investigation of such phases reveals that there are 11 attainable

asymmetric phases for which the existence criteria, expressions of shock position,

and effective entrance rates wherever possible are explained in Appendix (3.8). The

remaining phases are eliminated based on theoretical reasoning, which is presented in

Appendix (3.8.1).

3.5 Results: analysis and implications

To explore the dynamics of the system in the steady-state, we create phase diagrams

in the parameter space (α, β) based on our theoretical investigations explained in the

previous section as well as Appendices (3.7) and (3.8). The objective is to examine how

the system’s complex dynamics are affected by the global constrained on the resources

available which is quantified by the variable µ. To verify our theoretical findings,

we conduct Monte Carlo simulations (MCs) utilizing the Gillespie Algorithm (akin to

kinetic Monte Carlo simulations) as discussed in Chapter (1). It has been observed that

the consistency between simulation data and analytical predictions holds true across all
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regimes. Alternatively, we can employ numerical techniques (refer to Appendix (2.9))

on the continuum version of the particle evolution equation, represented by Eq. (3.4),

to obtain density profiles for any given phase. There are several advantages of adopting

this approach. First, it is easier to implement compared to the analytical methods

outlined in Appendices (3.7) and (3.8). Second, unlike the theoretical approach, this

method can be readily adapted to more generalized models by incorporating changes in

the master equation. Last, this approach allows for obtaining solutions in cases where

the choice of functions in Eq. (3.1) leads to analytically intractable forms.

3.5.1 Role of filling factor

Using the analytical findings presented in Sections (3.4.1) and (3.4.2), we proceed

to explicitly establish the mathematical expressions for the phase boundaries, whenever

feasible, that distinguish the two phases. These phase boundaries are vital in discerning

various phase configurations.

1. The boundary separating the LD-LD-LD/LD-LD-LD phase from

LD-SP-LD/LD-SP-LD as obtained from Eq. (3.24) is

β =
α(2µ− 1)

3α(µ− 1)− 2µ
. (3.21)

2. For the LD-SP-LD/LD-SP-LD phase to LD-HD-LD/LD-HD-LD, the boundary is

expressed as

β =
α(3µ− 2)

3 (α(3µ− 2)− µ)
, (3.22)

which is calculated from Eq. (3.25) by solving xw = 0.

3. For the symmetric LD-LD-LD/LD-LD-LD to L-L-L/L-L-L, we have

α−
outeff

= β,

where α−
outeff

is given by Eq. (3.26).

4. The boundary between the L-L-S/L-L-L and L-S-H/L-L-L phases can be identified

from Eq. (3.30) by setting xw = 0 which can be realized as L-L-H/L-L-L phase.

5. Boundary separating the L-S-H/L-L-L and S-H-H/L-L-L phases, as determined by

Eq. (3.31) with xw = 0, corresponds to the L-H-H/L-L-L phase.
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6. For the S-H-H/L-L-L and H-H-H/L-L-L phase the boundary is represented as

α+
ineff

= β, (3.23)

for α+
ineff

given in Eq. (3.27).

To perform a comprehensive analysis, we present phase diagrams for specific values

of µ spanning from 0 to ∞. These diagrams exhibit significant topological changes in

the parameter space (α, β) and are visually represented in Fig. (3.3). The figures are

generated using carefully selected values of µ to highlight noteworthy modifications in

the structure of the phase diagrams.

When the system contains only a small number of particles, approximately µ ≈
0.001, a single symmetric phase, namely LD-LD-LD/LD-LD-LD, is observed. The

scarcity of particles limits the effective particle influx into the lane, resulting in the

manifestation of a low density phase in each lane. With the addition of more particles

to the system, the number of phases increases to three. The phase diagram then

consists of one symmetric phase (LD-LD-LD/LD-LD-LD) and two asymmetric phases

(L-L-L/L-L-L and L-L-S/L-L-L), which disrupt the symmetry of the system as evident

from Fig. (3.3a) for µ = 0.1. This observation can be explained as follows: For lower

values of β, there is a tendency for particles to accumulate primarily at the right end

of the output lane. Consequently, the boundary layer at the right boundary infiltrates

into the bulk region, resulting in the occurrence of a boundary-induced shock in the

output lane.

Further increasing the particle count in the system reveals the emergence of two

additional asymmetric phases: L-L-H/L-L-L and L-S-H/L-L-L, as depicted in Fig.

(3.3b) for µ = 0.45. The L-S-H/L-L-L phase appears adjacent to L-L-S/L-L-L,

with L-L-H/L-L-L serving as a boundary curve that separates the L-L-S/L-L-L and

L-S-H/L-L-L phase regions. When the value of µ exceeds 0.5, two new asymmetric

phases, namely L-H-H/L-L-L and S-H-H/L-L-L, emerge alongside the L-S-H/L-L-L

phase. Additionally, a symmetric phase (LD-SP-LD/LD-SP-LD) appears adjacent to

the LD-LD-LD/LD-LD-LD phase, in addition to the already existing phases. Physically,

the emergence of the high density (HD) phase in a lane is expected, as it cannot occur

in the system for µ < 0.5 due to an insufficient number of particles in the system to

achieve the high density state. The critical value of µ at which the bulk-induced shock

phase (LD-SP-LD/LD-SP-LD) emerges is 0.5 and is theoretically justified from Eq.

(3.21). Furthermore, the L-H-H/L-L-L phase acts as a boundary curve that separates

the S-H-H/L-L-L and L-S-H/L-L-L phase regions (see phase diagram given by Fig.

(3.3c) for µ = 0.6).

Beyond µ = 0.5, the topology of the phase diagram undergoes substantial

qualitative and quantitative changes. The phase plane becomes more intricate due
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to the emergence of new symmetrical and asymmetrical phases as evident from

Fig. (3.3d) for µ = 0.7. Consequently, the phase diagram undergoes changes

such as the translation of phase boundaries and contraction of existing phases.

Notably, four new asymmetrical phases, specifically H-H-H/L-L-L, H-H-H/L-S-L,

S-H-H/L-S-L, and L-H-H/L-S-L appear in the phase plane. Additionally, two

symmetrical phases, LD-HD-LD/LD-HD-LD and SP-HD-LD/SP-HD-LD, emerge.

The symmetric phase SP-HD-LD/SP-HD-LD appears adjacent to the symmetric

LD-SP-LD/LD-SP-LD phase, and the boundary separating these two phases represents

the LD-HD-LD/LD-HD-LD phase. The Eq. (3.22) provides the curve indicating the

existence of the LD-HD-LD/LD-HD-LD phase. In the lower half region, when α takes on

large values, a significant portion of the region is dominated by the H-H-H/L-L-L phase,

which is adjacent to the S-H-H/L-L-L phase. Figure (3.3d) illustrates that for α ≈ 5.5,

the boundary curves corresponding to L-L-L/L-L-L, L-L-H/L-L-L, and L-H-H/L-L-L

all converge within a very narrow region of width approximately 0.02 with respect to β.

Consequently, this narrow region is represented by ‘black square’ symbols in the phase

diagram. The coordinates (α, β) in the α − β plane, where the two curves represent

the boundary of the H-H-H/L-L-L region given by Eq. (3.28) intersect, can be easily

determined. This intersection occurs at the points where α−
ineff

+α−
outeff

= α+
ineff

. For a

fixed value of α ≥ α, an increase in the value of β leads to a phase transition sequence:

H-H-H/L-L-L → H-H-H/L-S-L → S-H-H/L-S-L → L-H-H/L-S-L → L-S-H/L-L-L →
L-L-H/L-L-L → L-L-S/L-L-L → L-L-L/L-L-L → LD-LD-LD/LD-LD-LD.

Once µ exceeds the value 1, a new symmetric phase emerges in the phase diagram,

referred to as HD-HD-LD/HD-HD-LD (see Fig. (3.3e)). In this phase, the HD (high

density) region always maintains a maximal particle density of 1, while the low density

region remains at 0. This phase can be interpreted as a congestion region, where there is

no particle movement whatsoever. It is positioned adjacent to SP-HD-LD/SP-HD-LD

in the upper half plane and is also neighbouring the H-H-H/L-S-L phase in the

lower half plane. Finally, as µ → ∞, the phase diagram undergoes a substantial

simplification. It displays only four distinct stationary phases: two symmetric phases,

namely LD-LD-LD/LD-LD-LD and HD-HD-LD/HD-HD-LD, and two asymmetric

phases, L-L-L/L-L-L and H-H-H/L-L-L as evident from Fig. (3.3f).

The aforementioned observations demonstrate that the presence of limited resources

has a substantial impact on the phenomenon of symmetry-breaking. This effect occurs

even with a relatively small number of particles in the system. In the forthcoming

sections, we will elucidate the significant and abrupt phase transitions discussed earlier,

as well as delve into the dynamics of shocks both boundary-induced and bulk-induced.
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3.5.2 Shock dynamics

In this section, we will explore the characteristics of two distinct types of shocks

that have been observed in the previous section. A shock that enters through either

the left end of the input lane or the right end of an output lane is referred to as a

boundary-induced shock. A bulk-induced shock refers to the occurrence of localized

congestion within the interior of the system, away from the boundaries. It originates

from the internal dynamics of the system rather than external influences at the

boundaries. To delve into a detailed study of the phase transitions that lead to the

formation of these types of shocks, we have selected a filling factor value and vary the

boundary-controlling parameters α and β.
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Figure 3.4: Phase transitions exhibited for µ = 0.8 and β = 1 for varying values
of α. The system evolves from LD-LD-LD/LD-LD-LD → LD-SP-LD/ LD-SP-LD →
SP-HD-LD/SP-HD-LD. Since in the symmetric phase, the density profiles for the two
species are identical, we plot the density profile only for the positive species. Solid
lines give mean-field results while symbols correspond to Monte Carlo simulations. The
shaded region for x ∈ [1, 2] represents the bridge lane.

A bulk-induced shock in the symmetric LD-SP-LD/LD-SP-LD and

SP-HD-LD/SP-HD-LD appears in the phase diagram, as evident from Fig. (3.3d).

In the LD-SP-LD/LD-SP-LD, a discontinuity in the density profile is observed in

the bridge lane for both particle species. While for the SP-HD-LD/SP-HD-LD, this

discontinuity appears in the input lane, where the density profile connects a region of

low density having constant particle density at 0 to a region of high density with density

1. The explicit expression for the location of the shock in LD-SP-LD/LD-SP-LD is

computed in Eq. (3.25) which suggest that for fixed values of β and µ, an increase in

α leads to an increase in the number of particles feed into the system which in turn

sweeps the shock toward the left. This is affirmed by Fig. (3.4), which clearly shows

that for β = 1 and µ = 0.8, the high density region of the shock enhances and with an

increase in α, the shock vanishes from the bridge lane. To validate it mathematically,

we employ Eq. (3.25), which gives us the shock position in the LD-SP-LD/LD-SP-LD
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phase as

xw =
6βµ

α(3β − 1)
− 2(3µ− 2).

The shock position clearly demonstrates that an increase in α causes the shock to

shift toward the left, indicating the disappearance of the LD-SP-LD/LD-SP-LD phase.

With further enhancement in α, this shock enters the input lane leading to an occurrence

of the SP-HD-LD/SP-HD-LD phase. As already been examined theoretically, in this

phase, a density profile connecting a region of density 0 to 1 is observed in the input

lane, density 1 in the bridge lane, and the output lane has a constant density of 0 (see

Appendix (3.7)).
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Figure 3.5: Phase transitions with respect to β for fixed values of the other parameters
as α = 2, and µ = 0.6 representing evolution of the system from S-H-H/L-L-L →
L-S-H/L-L-L → L-L-S/L-L-L → L-L-L/L-L-L → LD-LD-LD/LD-LD-LD. (a) and (b)
shows the density profile for the (+) and the (-) species, respectively. Solid lines give
mean-field results while symbols correspond to Monte Carlo simulations. The shaded
region for x ∈ [1, 2] represents the bridge lanes. The dotted arrow indicates the direction
of increasing β.

Now, let us examine some key aspects of the localized shock induced by the

boundary in the phase diagram for µ = 0.6, as shown in Fig. (3.3c). When a particular

lane undergoes a shock phase, we can determine the speed of the shock by calculating

the difference between the exit rate and the entrance rate of that specific lane. For the

system to exhibit a localized shock, the speed of the shock must be zero. To analyze

the behaviour of the shock, we fix µ = 0.6 and α = 2, and examine the position of

the shock relative to the exit rate parameter β. Figure (3.5a) illustrates the phase

transitions of the positive species as β increases. We can observe the following sequence

of transitions for the positive species: S-H-H → L-H-H → L-S-H → L-L-H → L-L-S

→ L-L-L. Throughout these transitions, the negative species consistently exhibit a low

density phase in each lane. These transitions can be explained through the following
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Figure 3.6: Dynamics of the phase involving shock for µ = 0.7, α = 12 and different
values of β. (a) → (b) → (c) → (d) → (e) → (f) gives the order of the phase transition.
Solid lines give mean-field results while symbols correspond to Monte Carlo simulations.
The shaded region for x ∈ [1, 2] represents the bridge lanes.

reasoning. For smaller values of β, a shock enters the input lane of the positive particles

from the left end. The position of this shock can be determined using Eq. (3.31). As

β increases, the effective entrance rate α+
ineff

also increases, causing the shock to move

towards the right. With further increments in β, the shock travels from lane P to

the bridge lane and then to lane Q, ultimately leaving the system and resulting in the

positive particles displaying a low density phase in each lane. Meanwhile the entrance

rate of the negative species through lane Q which is α−
ineff

also continues to increase

with respect to β (see Fig. (3.5b)). Thus, if one considers the position of shock as the

order parameter, then these transitions are of second-order.

Here, we will explore the changes occurring in the α − β plane for µ = 0.7 by

selecting a point within the H-H-H/L-L-L region, ensuring that α is large enough. Our

focus will be on examining the density profile at various values of β (see Fig. (3.6)).

To begin, we set β = 0.25 in this region and present Fig. (3.6a), where we observe an

enhancement in the modified entrance rates of the two-particle species, given by α±
ineff

,

as β increases. Initially, a bulk-induced shock phase, referred to as H-H-H/L-S-L,

emerges in the system, characterized by a discontinuous density profile in the bridge

lane for the negative species. As β further increases, a shock enters from the left end

corresponding to the positive particles. This leads to a transition from the H-H-H/L-L-L

phase to a bulk-induced shock phase H-H-H/L-S-L and finally to a boundary-induced
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shock phase S-H-H/L-S-L. Importantly, as β increases, both shocks progressively shift

from the left to the right. Around the critical value of β ≈ 0.332, the shock in lane P

reaches the right boundary, causing the shock in the bridge lane to reverse its direction.

As β further increases, the latter shock moves back towards the left boundary, resulting

in the system transitioning into the L-H-H/L-L-L phase. After attaining this phase

the system evolves to L-S-H/L-L-L → L-L-H/L-L-L → L-L-S/L-L-L → L-L-L/L-L-L,

whose details have already been discussed.

3.5.3 Back-and-forth transitions

We now examine a special characteristic in the phase diagram known as the

back-and-forth transition, which emerges when observing the phase diagram for µ = 0.7

(see Fig. (3.3d)) and in the limit as µ approaches infinity (see Fig. (3.3f)). The term

‘back-and-forth transition’ is defined as follows. When examining a particular phase

diagram, if the system undergoes a transition from phase X to phase Y and then returns

back to phase X, denoted as X→Y→X while adjusting a single parameter and keeping

the remaining parameters constant, we refer to this phenomenon as the back-and-forth

transition [58,107,134].
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Figure 3.7: (a) Density profiles displaying back-and-forth transition for µ = 0.7 and
α = 4 with β = 0.05 (S-H-H/L-L-L), 0.2 (H-H-H/L-L-L) and 0.3 (S-H-H/L-L-L). (b)
Effective entry-exit rates and the position of shock xw (given by Eq. (3.31)) of the
positive particles for lane P for fixed µ = 0.7 and α = 4. Solid lines denote theoretical
results and round symbols show Monte Carlo simulation results.

Upon closer examination of the phase diagram for µ = 0.7, an interesting boundary

emerges between the S-H-H/L-L-L and H-H-H/L-L-L regions. When we analyze the

system’s behaviour by fixing α = 4, µ = 0.7 and only varying the exit rate β, we observe

a transition from the S-H-H/L-L-L phase to the H-H-H/L-L-L phase. Surprisingly, as β
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continues to increase, the system transitions back to the S-H-H/L-L-L phase. Equation

(3.23) provides us with the phase boundary between the S-H-H/L-L-L and H-H-H/L-L-L

phases, clearly indicating that, when α and µ are held constant, the phase boundary

follows a non-monotonic pattern with respect to β. This causes the phase boundary

to take a turn around as can be seen in Fig. (3.3d). To illustrate these transitions

in detail, we have plotted Fig. (3.7) to display various density profiles while keeping

α = 4, µ = 0.7, and employing different values of β. The unusual behaviour of the

system can be elucidated through the following intuitive explanation. When we fix

α = 4, initially increasing β results in a raised exit rate for both species of particles

from their respective output lane. Consequently, a greater number of particles become

available in the pool to be pushed onto the lanes. This leads to an enhancement in

the modified entrance rates, i.e., α±
ineff

, for the two species of particles. As a result,

the positive species starts accumulating on lane P, causing a hindrance to the exit of

the negative species. This accumulation gives rise to a shock in lane P for the positive

species, which moves towards the left as β continues to increase. During this stage,

the system maintains equal entrance-exit rates in lane P for the positive species, but

this equilibrium is disrupted as β further increases. Eventually, the shock reaches the

left end, causing a phase transition from S-H-H/L-L-L to H-H-H/L-L-L at the critical

value of β = 0.1063. Subsequently, the entrance rate of the positive species onto lane

P remains higher than the exit rate from lane P, as confirmed by the theoretical Eq.

(3.27). The modified entrance rate α+
ineff

is a diminishing slope function of β, which

eventually reaches the value β+
in. At the critical value of β = 0.2764, the system once

again exhibits the S-H-H/L-L-L configuration.

Similarly, the phase diagram depicted in Fig. (3.3e) also illustrates a

recurring pattern of transitions. It begins with a movement from the symmetric

HD-HD-LD/HD-HD-LD and the asymmetric L-L-L/L-L-L phases, followed by a shift

to the symmetric LD-LD-LD/LD-LD-LD phase, and ultimately returning to the

HD-HD-LD/HD-HD-LD phase. This progression can be explained as follows:

Consider the case where α = 1 and µ tend towards infinity. In situations where

resources are abundant, the entrance rate through the input lane remains fixed and is

represented by the parameter α, which is smaller than β in this scenario. Consequently,

a greater number of particles enter the system than exit, resulting in an accumulation

of particles in the input and bridge lane, which leads to the HD-HD-LD/HD-HD-LD

phase where the system shows a 1-1-0 density profile for each of the particle species.

However, as the value of β increases, more particles start leaving through the output

lanes. This leads to a transition towards the L-L-L/L-L-L phase, and subsequently to

the LD-LD-LD/LD-LD-LD phase. In the case of larger values of β, the increased

particle exit rate from the output lane causes a low density phase to emerge in this

lane. As a result, the other lanes experience a high density phase. If one considers the
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Figure 3.8: (a) Variation of region width ∆ of L-L-L/L-L-L phase with increasing β
for fixed α = 0.4 and µ = 0.45 obtained through simulations. (b) Variation of phase
boundary separating LD-SP-LD/LD-SP-LD region from SP-HD-LD/SP-HD-LD region
for β = 0.9 and µ = 0.8. The MCs results (symbols) approach the boundary obtained
through a theoretical framework (dotted line) for larger values of L.

particle density as the order parameter, then these transitions are of first-order.

3.5.4 Finite-size effect

The exploration of the TASEP model incorporating bidirectional dynamics has

provided insights into the impact of finite system size on the asymmetric low density

phase. In our study, the asymmetric phase, L-L-L/L-L-L, emerges even at extremely

small values of the filling factor µ and continues to persist as µ increases. Based on the

theoretical investigation revealed by the mean-field framework, it has been observed

that this phase remains confined to a curve in the phase plane as shown in Fig. (3.3).

However, numerical simulations conducted using the Gillespie Algorithm for L = 100

demonstrate that this phase exists over a substantial region, rather than just a curve.

Nevertheless, as the lattice length of each lane increases, the region encompassing this

asymmetric phase shrinks, suggesting its disappearance in the thermodynamic limit and

validating the theoretical findings. To examine this effect caused by finite lane size, we

plot the region width ∆ with respect to β of the L-L-L/L-L-L region displayed by the

system while keeping α = 0.4 and µ = 0.45, as illustrated in Fig. (3.8a). As observed

from the figure, the width of the L-L-L/L-L-L region decreases as the size of each lane,

denoted by L, increases. Therefore, for sufficiently large systems, the observed region

contracts, which aligns with our theoretical observations. It is important to mention

that the size of the symbols depicted in Fig. (3.3) representing the simulation results

have been appropriately chosen to reflect the impact of finite lane length.

The theoretical analysis of our model heavily relies on the assumption of a

thermodynamic limit, where the number of sites in each lane (L) tends to infinity.
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However, in Monte Carlo simulations, the length of each lane, denoted as L, is a finite

value. This finite length effect is also noticeable in the boundary that separates the

LD-SP-LD/LD-SP-LD phase from the SP-HD-LD/SP-HD-LD phase, which is identified

as the LD-HD-LD/LD-HD-LD phase. It has been observed that as the value of L

increases, the boundary predicted by the Monte Carlo simulations approaches the one

obtained through theoretical analysis. In other words, we graph the position where

this transition occurs for fixed values of µ = 0.8 and β = 0.9 while increasing L. It is

found that the deviation from the theoretically derived phase boundary decreases as L

increases and for L ≈ 3000, this deviation approaches the value obtained analytically

(refer Fig. (3.8b)). Beyond this point, no further changes are observed in this position.

A similar effect can be witnessed in the phase boundary between LD-SP-LD/LD-SP-LD

and HD-HD-LD/HD-HD-LD phase. Thus we have refrained from plotting these phase

boundaries through MCs in the phase diagram given by Fig. (3.3).

3.6 Conclusion

In this chapter, we study a particular variant of the exclusion model about

roundabouts, consisting of two bridge lanes in the middle with particles travelling in

opposite directions. These bridge lanes are intricately linked to a bidirectional TASEP

lane on each side. A global constraint on the total number of particles in the system

is considered and is characterized by a filling factor. The interactions of the bridge

lanes with the side lane induce an inhomogeneity in the system which is dealt with

by defining appropriate effective entrance and exit rates. Mean-field approximations

are employed to calculate critical stationary characteristics, such as phase diagrams,

significant density profiles, and phase transitions, to comprehend the impact of finite

resources on the system dynamics. The theoretical findings are validated through

dynamic Monte Carlo simulations performed by utilizing the Gillespie Algorithm.

The main goal of our theoretical analysis is to probe the effect of coupling the system

to a finite pool on the spontaneous symmetry-breaking phenomenon. With an increase

in the particle count, significant qualitative and quantitative changes are observed in

the phase diagram. The exact location of the phases, the phase boundaries as well as

the density profiles are governed by the entrance and exit rates from the extreme ends

in addition to the filling factor. The complexity of the phase diagram is highly sensitive

to the filling factor µ which controls the number of resources in the system. Though

the phase diagram is comparatively simplified for smaller and larger values of µ, but

for intermediate values the complexity is enhanced. This leads to a non-monotonic

variation in the number of phases portrayed with increasing µ. Moreover, we found

two congested phases where the particles are stuck in a jammed state and no further
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movement is possible. The most striking property of the proposed study is the advent

of a back-and-forth phase transition which exists even when there is no scarcity of

particles available to the lanes. In addition to this, the system attains phases that

display boundary-induced shock corresponding to one and bulk-induced shock with

respect to the other particle species. To obtain insight into the nature of transitions

across the phase boundaries, we have considered the position of shock as the order

parameter. We present explicit calculations for phase boundaries and density profiles in

both symmetric and asymmetric phases. Furthermore, we offer straightforward physical

explanations to elucidate the theoretical observations.

3.7 Appendix: Symmetric phases

1. LD-LD-LD/LD-LD-LD phase. In this phase, both the particle species display

a low density phase in all the lanes. Each lane is entry-dominated and the

corresponding particle density is equal to the effective entrance rates of the respective

lanes. So, the bulk and the boundary densities of each lane is given by

ρ1in = αineff
, ρin = αineff

, ρ+,L
in = Jin/βin,

ρ+,1
B = αB, ρB = αB, ρ+,L

B = JB/βB,

ρ+,1
out = αouteff , ρout = αouteff , ρLout = Jout/β.

The bulk currents in each lane is given by

Jin = αineff
(1− αineff

), JB = αB(1− αB), Jout = αouteff (1− αouteff ).

Necessary conditions for the existence of this phase are given by

αineff
< min{βin, 0.5}, αB < min{βB, 0.5}, αouteff < min{β, 0.5}.

Inserting the boundary as well as bulk densities stated above in Eqs. (3.8), (3.10)

and (3.16) to obtain

αineff
= αouteff =

αeffβ

αeff + β
, βin = 1− αB,

αB = αineff , βB = 1− αouteff − αineff
.

All these above-attained expressions for the effective entrance and exit rates when

plugged in Eq. (3.20) yields

µ = r +
6

4
αineff

,
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which provides us with the pool capacity as

r =
1

4α

(
2µ(α− β)− 3αβ +

√
16αβµ2 +

(
2µ(α− β)− 3αβ

)2)
.

Under these circumstances, the existential condition for this phase is

αineff
< βB. (3.24)

2. HD-HD-LD/HD-HD-LD phase. We assume that in this symmetric phase both

the particle species manifest high density phase in their input as well as bridge lanes

while the output lane displays LD phase. The specifications that support the extant

of this asymmetric phase are

ρin = 1− βin, ρB = 1− βB, ρout = αouteff .

One solves Eqs. (3.8) and (3.16) to get

βB = βin = 1− αB, αouteff = 0.

Physically it implies that the density of positive species in lane Q given by αouteff

is 0. This means that there is no particle movement from the bridge onto lane Q,

suggesting that βin = βB = 0. Thus, we have that, the particle density in the input

as well as the bridge is 1 while in the output lane, it is 0. As particle movement is

not possible in this scenario, this phase can also be referred to as a congested phase.

Utilizing the particle number conservation given by Eq. (3.20), we have r = µ − 1.

So, it is evident that the HD-HD-LD/HD-HD-LD phase persists only when µ > 1

and continues to exist as µ → ∞. As the particle density is independent of the

boundary-controlling parameters, the phase boundaries for this region can only be

calculated numerically.

3. LD-SP-LD/LD-SP-LD phase. The particle density, in this case, displays a

constant density of αineff
in the input lanes, a shock in the bridge lanes where a

constant density of αB is connected to density 1 − βB on the right and again low

density phase in the output lanes with density αouteff . In this case, one can compute

the relation between the rates as

αB = αineff
, αout = 1− βB, βin = 1− αB, βB = 1− αouteff − αB.

Utilizing the above equations to solve Eqs. (3.14) and (3.15) gives
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αineff
=

αeff (4β − 1)

αeff + 4β
, αouteff =

αeff + 2β(1− αeff )

αeff + 4β
.

Since the existence of the shock phase in the bridge lane requires αB = βB, we obtain

the capacity of the pool as

r =
βµ

α(3β − 1)
.

To calculate the position of the shock xw, one needs to solve the Eq. (3.20), which

gives

xw =
6βµ− 2α(3β − 1)(3µ− 2)

α(3β − 1)
. (3.25)

Thus, one can write the existential condition for this phase as 0 < xw < 1.

4. SP-HD-LD/SP-HD-LD phase. In this case, Eqs. (3.10), (3.8) and (3.16) reduces

to

αB = 1− βin, βB = 1− αouteff − αB, αout = 1− βB, βin =
βB(1− βB)

αB

,

along with the modified entrance rates given by

αineff
=

αineff
(1− αineff

)
αineff

(1−αineff
)

αeff +
αouteff

(1−αouteff
)

β

, αouteff =
αouteff (1− αouteff )

αouteff
(1−αouteff

)

αout
+ βin(1−βin)

βin

.

From the above equations, we can deduce that βin = βB which further implies that

αouteff = 0. This indicates that the entrance of particles to the output lane is

restrained, forcing the exit rate βB from the bridge lane to take the value 0. As,

βin = βB = αouteff = 0, there are no positive particles in the output lane while the

bridge lane is fully packed with particle density 1. Now, the input lanes display a

shock phase where a density profile connects a region of low density to high density

region with particle density changing from αineff
to 1 − βin. The existence of this

phase requires αineff
to remain equal to βin, which implies that αineff

= 0. Last, one

can obtain the existential criteria for this phase numerically. As particle movement

is not possible in this scenario, this phase is also referred to as a congested phase.

3.8 Appendix: Asymmetric phases

1. L-L-L/L-L-L phase. During the L-L-L/L-L-L phase, all lanes experience a low

density phase, but the current and bulk density differ between the two types of

particles. Upon calculating the effective rates for each lane, they are found to satisfy

a simple relation expressed as
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α+
ineff

= α+
B = α+

outeff
= 1− β+

in = 1− β+
B + α−

ineff
,

along with α−
ineff

= α−
B = α−

outeff
= 1− β−

in = 1− β−
B +α+

ineff
. Here, α+

ineff and α−
ineff

are obtained by solving Eqs. (3.14) and (3.15) as

α±
ineff

=
1

2(αeff − β)2(αeff + β)

(
β3 + αeff (β − 1)

(
β2 − (αeff )2

)
− (αeff )2β

∓ {(αeff − β)2
(
β4 + 2(αeff )3(1− β)β2 − 2αeffβ4)

+ (αeff )4(1− 2β − 3β2 + (αeff )2β2(β2 + 2β − 2)
)
}
)

(3.26)

The above expressions are used to determine the pool capacity as

r =
1

8α

(
4µ(α + β) + 3α(β − 1) +

√
16αβ(3− 4µ)µ+

(
4βµ+ α(4µ+ 3β − 3)

)2)
.

Thus, the constrained on the parameters to attain this phase is

α−
outeff

< β.

2. H-H-H/L-L-L phase. In this phase, the positive species portray the HD phase

while the negative species display the entrance dominant phase in all the lanes. In

such a scenario, the bulk currents are given by

J+
in = β+

in(1− β+
in), J+

B = β+
B(1− β+

B), J+
out = β(1− β),

J−
in = α−

ineff
(1− α−

ineff
), J−

B = α−
B(1− α−

B), J−
out = α−

outeff
(1− α−

outeff
)

which assists us in writing the boundary densities for each lane. Again one can solve

Eqs. (3.8), (3.10), and (3.16) along with Eqs. (3.14) and (3.15) to obtain the values

of the effective entrance and exit rates for the positive species as

β+
B = 1− α+

out = 1− α+
B = β+

in = β, α+
outeff

=
β(1− β)

β + α−
ineff

,

α+
ineff

=
β(1− β)

µβ(1−β)
αr

+
α−
outeff

(1−α−
outeff

)

β

, (3.27)

while for the negative species,

α−
B = 1− β−

in = α−
ineff

, β−
B = β − α−

outeff
.

α−
ineff

=
1

2

((
1 + αeff

)
−
√(

1 + αeff
)2 − 4αeffβ

)
,
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α−
out =

α−
ineff

(1− α−
ineff

)

β − α−
ineff

,

α−
outeff

=
1

2

(
(1 + α−

out)−
√
(1 + α−

out)
2 − 4α−

outβ

)
,

Here, the equation for the pool dynamics given by Eq. (3.20) gets converted to

µ = r +

(
3(1− β) + 2α−

ineff
+ α−

outeff

)
4

,

which gives the value of the pool capacity as

r =
1

8(3α + 4µ)

(
3α(4µ− 3) + 4µ(6β + 8µ− 9)

+ 3
√

α2(3− 4µ)2 + 16µ2 − 8αµ(3 + 6β2 − 4µ+ 4β(2µ− 3))

)
.

Thus, one can identify the relevant region for this phase as

α−
ineff

+ α−
outeff

≤ β ≤ α+
ineff

. (3.28)

3. L-L-S/L-L-L phase. During this phase, we make an assumption that the (+)

particles are in a low density (LD) phase in lanes P and the bridge, while lane Q

exhibits a discontinuity in the density profile, connecting a region of low density to

high density. However, the (−) particles represent a low density phase in all the

lanes. This phase persists when the boundary-controlling parameters satisfy the

following conditions:

α+
ineff

< min{β+
in, 0.5}, α−

ineff
< min{β−

in, 0.5},

α+
B < min{β+

B , 0.5}, α−
B < min{β−

B , 0.5},

α+
outeff

= β < 0.5, α−
outeff

< min{β, 0.5}.

(3.29)

The effective boundary rates as retrieved from Eqs. (3.8), (3.10) and (3.16) is α+
ineff

=

α+
B, α−

ineff
= α−

B, and

α+
out =

α+
ineff

(1− α+
ineff

)

β+
B

, α−
out =

α−
ineff

(1− α−
ineff

)

β−
B

,

along with β+
B = 1− α−

ineff
− α+

outeff
, β−

B = 1− α+
ineff

− α−
outeff

.

These values can now be substituted in Eqs. (3.14) and (3.15) to get

α−
ineff

=
(1 + αeff )−

√
(1 + αeff )2 − 4αeffβ

2
,
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α+
ineff

=
1

2β

(
β(1 + αeff )−

√
β2(1− αeff )2 + 4α−

ineff
αeffβ(1− α−

ineff
)

)
.

Since the flow of particles is continuous throughout the system, we have α+
ineff

=

α+
B = α+

outeff
and α−

ineff
= α−

B = α−
outeff

. To acquire the value of pool capacity,

one can solve the condition that α+
outeff

= β which is the requirement for lane Q to

remain in the S phase for the positive species.

Now, the only variable that is left to be calculated is xw, the position of shock. Note

that ∫ 1

0

ρ+outdx =

∫ xw

0

α+
outeff

dx+

∫ 1

xw

(1− β)dx,

and finally one can revisit Eq. (3.20) to obtain the value of the shock position as

xw =
4(µ− r)− 3α−

ineff
− 2α+

ineff
− 1 + β

2β − 1
. (3.30)

Thus, one needs to identify the region where Eq. (3.29) as well as the condition

0 < xw < 1 is obeyed. As xw → 1, we reach the L-L-L/L-L-L phase whereas when

xw takes the value 0, the shock position shifts towards the left end of lane Q and the

system exhibits the L-L-H/L-L-L phase. In the limiting case of µ → ∞, this phase

does not exist.

4. L-L-H/L-L-L phase. The sole distinction between this phase and the L-L-S/L-L-L

phase lies in the location of the shock within lane Q for the positive species. In the

previous scenario, the shock had to be positioned away from the boundaries, whereas

in this case, the value of xw needs to be precisely 0 to achieve the L-L-H/L-L-L phase.

It is important to note that the L-L-H/L-L-L phase does not exist in the limit where

µ approaches infinity. Furthermore, this phase serves as a boundary that separates

the region of L-L-S/L-L-L from the region of L-S-H/L-L-L.

5. L-S-H/L-L-L phase. Once again, we follow a similar procedure as we did for the

previous phases. The continuous flow of particles within the system implies that

α+
ineff

= α+
B, β

+
B = β, and α−

ineff
= α−

B = α−
outeff

. To determine the values of these

modified entrance rates, we utilize Eqs. (3.14) and (3.15), resulting in:

α−
ineff

=
1

2

((
1 + αeff

)
−
√(

1 + αeff
)2 − 4αeffβ

)
,

α+
ineff

=
1

2β

(
β(1 + αeff )−

√
β2(1− αeff )2 + 4α−

ineff
αeffβ(1− α−

ineff
)

)
.

By solving α+
B = βB, the necessary condition for the existence of S phase in the

bridge lane, we can determine the pool capacity. Furthermore, the position of the
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shock can be obtained using Eq. (3.20) as

xw =
4(µ− r)− 2(1− β)− 3α−

ineff
− α+

ineff

α+
ineff

+ β − 1
.

When the value of xw approaches 1, the system manifests the L-L-H/L-L-L phase.

Conversely, as xw tends to 0, L-H-H/L-L-L is attained. Additionally, this phase

disappears as µ approaches infinity.

6. S-H-H/L-L-L phase.The continuous flow of particles leads to significant

implications, particularly regarding the bulk densities of lane P, bridge, and Q.

Specifically, the bulk density corresponding to the negative species is given by α−
ineff

,

which remains consistent across all the three lanes. Similarly, for the positive species,

we can establish the requirement that β+
in = β+

B = β to maintain a continuous flow.

By utilizing these conditions in Eqs. (3.14) and (3.15) we obtain the following

expressions

α−
ineff

=
1

2

((
1 + αeff

)
−
√(

1 + αeff
)2 − 4αeffβ

)
,

α+
ineff

=
1

2β

(
β(1 + αeff )−

√
β2(1− αeff )2 + 4α−

ineff
αeffβ(1− α−

ineff
)

)
.

To acquire the capacity of the pool, one can solve α+
ineff

= β. Additionally, the

position of the shock can be calculated from Eq. (3.20) as

xw =
4(µ− r)− 3(α−

ineff
+ 1− β)

2β − 1
. (3.31)

The region of existence for this phase can be expressed in a similar manner as

demonstrated for other cases.

7. L-H-H/L-L-L phase. Here, the positive species display the LD phase in lane P

while the other two lanes are in high density phase whereas the negative species of

all the lanes are in entrance dominated phase. Similar to the previous scenario, we

can derive the following expressions

α−
ineff

=
1

2

(
1 + αeff +

√
(1 + αeff )2 − 4αeffβ

)
,

α−
outeff

= α−
ineff

= α−
B,

α+
ineff

=
1

2β

(
β(1 + αeff )−

√
β2(1− αeff )2 + 4α−

ineff
αeffβ(1− α−

ineff
)

)
.

The existence of this phase is determined by the position of xw in S-H-H/L-L-L

reaching the right boundary of lane P, specifically when xw = 1. This condition
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defines the curve that represents the existence of this phase.

8. H-H-H/L-S-L phase. During this phase, the positive species display exit

dominated phase in the input, bridge, and output lane, whereas the other species

of particles are in entrance dominated phase in the input and output lane, with the

bridge lane exhibiting a shock phase. The modified and effective entry-exit rates for

the different lanes can be derived similarly to the previous phase which provides us

with

α−
ineff

=
1

2

(
1 + αeff +

√
(1 + αeff )2 − 4αeffβ

)
, α−

outeff
=

β

2
,

α+
outeff

=
β(1− β)

β + α−
ineff

, α+
ineff

=
8α2(1− β)

(4(1− β)− α2)(2− β)
, β−

B = β − α−
outeff

,

along with the conditions β+
in = β+

B = β and α−
ineff

= α−
B. The condition for the

existence of the shock phase in the bridge lane corresponding to the negative species,

α−
B = β−

B , is utilized to determine the pool capacity and is given by

r =
µ(2− β)

2α
. (3.32)

The position of the shock can be determined from Eq. (3.20) as

xw =
8(µ− r − 1) + 5β

2(β − 1)
. (3.33)

Thus, the necessary condition for the existence of this phase can be written as

0 < xw < 1, β < min{α+
outeff

, α−
ineff

}.

This phase no longer exists in the limiting case of µ tends to infinity.

9. H-H-H/L-H-L phase. The main distinction between this phase and the

H-H-H/L-S-L phase is the specific location of the shock within the bridge lane for

the negative species. Unlike the previous scenario where the shock needed to be

positioned away from the boundaries; the value of xw in the H-H-H/L-S-L must be

precisely 0 for the system to achieve the H-H-H/L-H-L phase. As µ tends towards

infinity, the H-H-H/L-H-L phase becomes nonexistent.

10. S-H-H/L-S-L phase. The same analytical approach can be employed for this phase

as in the other cases. However, due to the limited number of equations available,

it is not possible to calculate the exact location of the shock or derive an explicit

formulation for the phase boundaries.

11. S-H-H/L-H-L phase. In this phase, the effective entrance and exit rates can be
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obtained analogously as done for the S-H-H/L-L-L phase. These expressions can

further be utilized to calculate the position of the shock as well as the pool capacity.

3.8.1 Discarded phases

• The total particle density of the bidirectional lanes cannot be greater than one i.e.,

ρ+in+ρ−out ≯ 1 and ρ+out+ρ−in ≯ 1. So, all the phases of the formX1−X2−X3/Y1−Y2−Y3

where X1, Y3 ∈ {H/HD, S/SP, M/MC} cannot persists.

• If X1 ∈ {LD/L, HD/H}, then X2 ̸= MC/M.

• If X1 = MC/M, then X2 /∈ {LD/L, HD/H, MC/M}.

• The remaining phases pose a challenge when attempting to evaluate Eqs. (3.8),

(3.10), (3.16), as well as Eqs. (3.14) and (3.15), as their simultaneous resolution

leads to a state of self-inconsistency.



Chapter 4

Reservoir crowding in a dynamic

disordered bidirectional system with

narrow entrances

In the previous chapters, we have examined a version of the exclusion process

involving two-particle species moving on a one-dimensional lane. In the current

chapter1, we will discuss a bidirectional model where particles travel in opposite

directions on different lanes and their movement is influenced by impurities, both of

which are limited in the system. Specifically, the particle reservoir features reservoir

crowding, which affects the entry-exit rates of particles. The movement of the particles

is obstructed by the presence of defects that stochastically bind/unbind from each site.

4.1 Motivation and background

We have already examined the narrow entrances feature observed in diverse

transportation phenomena in Section (1.5.3). Aside from extending the classic exclusion

model to multi-channel transport, the dynamics of lanes in certain scenarios depend on

competing for a pool of limited resources. These models have demonstrated broad

relevance in a variety of physical and biological systems, including protein synthesis,

motor protein movement, parking garage difficulties, and traffic [64–67]. Such dynamics

observed in diverse real-world phenomena have been incorporated in various single as

well as multi-lane systems [64,66,102,105,132,135,136]. In these variants, the entrance

rate of particles is regulated by the occupancy of the reservoir, resulting in the addition

of localized shock region in the phase plane, which is in contrast to the situation when

infinite resources are available. However, it is reasonable to expect that a crowded

reservoir not only increases the entrance rate of particles but may also hinder their

escape rate from the lanes. For instance, in the ‘parking garage problem’, a crowded

garage can slow down the exit rate of vehicles from the road into the garage. Few

recent studies have examined a variant of TASEP known as ‘reservoir crowding’, which

1The content of this chapter is published in “Ankita Gupta, Arvind Kumar Gupta. Reservoir
crowding in a dynamically disordered bidirectional system with narrow entrances. Chaos, Solitons &
Fractals, 178:114318, 2024.”
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incorporates the impact of reservoir occupancy on exit as well as the entry rates

[58,69,70]. This variant effectively replicates situations similar to those observed in

real-world scenarios.

Considering the characteristics of the disorder discussed in Section (1.5.5), several

studies have focused on incorporating different type of defects such as slower hopping

rate [6,72,98,106,137–144], binding/unbinding of defect from single site [70,103,145–147]

and extended objects [148] along with features such as Langmuir kinetics [149–152].

Recent investigation has been conducted on a scenario in which defects can adhere to

and detach from each site [153,154]. In this direction, many studies have sought to

incorporate diverse features such as finite resources [155], coupling between two-lanes

[156,157] and Langmuir kinetics [149] to mimic different real-life situations. However,

in our opinion, the role of dynamic disorder which stochastically binds and unbinds has

not been explored much in a multi-channel framework.

In the majority of the literature, these impurities are considered to be abundant

in nature, which is a bit far from reality. Inspired by the diverse applications of the

dynamics described above in various physical and biological systems, we investigate

a two-lane TASEP system with narrow entrances that incorporate the binding and

unbinding of a defect on each site. Our purpose is to investigate the impact of global

constraints on the resource availability of both the particles and the defects. The

entry exit of the particle to the lanes features the reservoir crowding phenomenon,

while for the defect only the entry rate is affected. Our aim is to explore the impact

and interplay between two different dynamics involved in the system. We would

like to inspect, how the addition of dynamic defects alters the overall dynamics of

the system, in particular the stationary particle currents. The primary goal is to

scrutinize whether the basic mean-field theory is capable of capturing the steady-state

properties of a system with reservoir crowding. Subsequently, we intend to scrutinize

the impact of constrained resource availability on intricate dynamic processes, assessing

both qualitative and quantitative aspects, with a specific focus on the emergence of

spontaneous symmetry-breaking (SSB) phenomena.

4.2 Stochastic model with dynamic defects

To study the impact of defects and bidirectional mobility aided by motors in a

limited environment, this section intends to extend the two-lane transport system with

narrow entrances described in Refs. [60,102]. These models have been previously

utilized to describe the motion of single as well as multiple motor systems in various

realistic physical and biological systems. The present model mimics the movement of

particles travelling in opposite directions along two one-dimensional lanes with dynamic
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defects. In particular, we consider two parallel open lanes, denoted as lane A and

lane B, each comprising exactly L sites labelled as i = 1, 2, . . . , L. The sites 1, L of

each lane are known as the boundary sites while the rest are referred to as the bulk.

In the illustrated system shown in Fig. (4.1), particles (depicted by circles) exhibit

unidirectional horizontal movement, travelling from left to right in lane A and from right

to left in lane B. The system adheres to the general TASEP paradigm, wherein each

site within the lanes can accommodate only one particle at most due to the exclusion

principle.

To introduce dynamic disorder into the system, we introduce another species known

as defects, visually represented by squares in Fig. (4.1). These defects are constrained

to move only vertically on each site. As a result, they can hinder the movement of

particles along the horizontal direction, causing disruptions and reducing the overall flow

of particles through the lanes. To restrict the presence of particles and defects within

the system, we implement a global constraint on their quantities. This constraint is

implemented through the introduction of reservoirs labelled as Rp and Rd, designated to

contain particles and defects, respectively. We assume the reservoir Rp/Rd has sufficient

capacity to accommodate all the particles/defects in the system. In Fig. (4.1), we

present a schematic representation of a bidirectional system with dynamic disorder in a

constraint environment. The diagram showcases two-lanes with narrow entrances and

includes the transition rates for all possible scenarios within the system.

To characterize the micro-state of the system, we defined two sets of Bernoulli

numbers: one for the particle denoted by τ = τ ij and another for the defects denoted

by ν = νi
j at the ith site on the jth lane where i ∈ {1, 2, . . . , L} and j ∈ {A, B}. Each

of these variables can take on values of either ‘0’ or ‘1’, with 1 indicating the presence

of a particle or defect and 0 indicating the absence of a particle or defect. At each time

step, a lane site is chosen stochastically and updated according to its dynamical rules.

The sub-processes that govern the movement of particles and defects on each site are

as follows:

• Bulk Dynamics.

1. Particle dynamics. At sites i = 2, . . . , L − 1, the movement of particles in lane

A is governed by the conditions τ iA = 1 and τ i+1
A = 0. In other words, a particle

situated at the ith site in lane A can move to the adjacent site (i+ 1) with a rate

of pi if the latter site is unoccupied. The value of pi depends on the presence or

absence of a defect at the latter site and is defined as follows

pi =

1, if νi+1
A = 0,

pd, if νi+1
A = 1.

(4.1)
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Figure 4.1: (a) A schematic of the two-lane TASEP with narrow entrances and dynamic
defects competing for finite resources is shown. Particles (Defects) are depicted by
circles (squares). Arrows represent allowed transitions, while crosses indicate prohibited
ones. The effective injection and removal rates of the particles are denoted as α̃∗, and
β̃ respectively. (b) Narrow entrance implementation: For a particle to enter a lane,
both the target site and the exit site of the other lane must be empty, and particle
interactions are limited to the boundaries. (c) Dynamic behaviour of defects: Binding

occurs with rate k̃+, while unbinding happens with the constant rate k−.

Here, pd, (0 ≤ pd ≤ 1), represents the slow forward moving rate of a particle when

a defect is present at the target site. Lane B exhibits similar dynamics, albeit in

the opposite direction.

2. Defect dynamics. The lanes facilitate the binding and unbinding of a defect on

each site following the defect-defect exclusion principle, with rates k̃+ and k−,

respectively. The presence of a particle at the target site does not affect the

binding process. Additionally, it is important to note that defects do not undergo

horizontal movement along the lanes. Thus, their motion is solely restricted to

vertical transitions between sites and the reservoir Rd. The conservation of the

number of defects in the closed environment impacts the effective binding rate k̃+,

which is dynamically influenced by the occupancy of the reservoir Rd. By denoting
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the total number of defects in the system as Nd and the instantaneous number of

particles in the reservoir by Nrd(t), we can express this binding rate as follows:

k̃+ = k+f(Nrd(t)). (4.2)

Here, k+ is the intrinsic binding rate in the presence of an infinite number of

defects. This function f must be an increasing function of Nrd whose details

will be discussed at the end of this section. Moreover, in this study, we have

set k+, k− ≳ 1, as simple mean-field approximation has been reported to work

effectively, in this case [153].

• Boundary Dynamics: Here, we explore the impact of constrained entrances and

limited availability of resources on the transition rates of particles at the sites i = 1

and i = L. The defects adhere to the same dynamical rules on the boundary sites as

they do in the bulk.

1. Constraint entrances. Particles can enter lane A through site i = 1 with an

effective rate α̃∗ if both the target site and the exit site i = L on lane B are

unoccupied. This effective entrance rate depends on the status of the defect at

the first site and is defined as follows:

α̃∗ =

α̃, if ν1
A = 0,

α̃pd, if ν1
A = 1.

(4.3)

Similarly, the effective entrance rate α̃∗ for a particle to enter lane B from the

site i = L relies on the vacancy of the exit site in lane A and is influenced by

the presence or absence of defects at the target site. The hopping criteria for a

particle from the entrance site to the neighbouring site is the same as that in the

bulk.

2. Reservoir Crowding. The entry and exit rates of the particles through the sites

i = 1 and i = L of each lane are parameterized by α̃ and β̃, each of which can

take any positive values. These rates are dynamically controlled by the reservoir

Rp and can be written as

α̃ = αg(Nrp(t)), β̃ = βh(Nrp(t)), (4.4)

where Nrp(t) is the occupation of the reservoir Rp at any instance of time t.

The rate functions g(Nrp(t)) and h(Nrp(t)) regulate the inflow and outflow of

particles onto the lanes, respectively. In a general setting, when there are more particles

in the reservoir, not only does it increase the influx of particles into the lanes, but it
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also hinders the out-flux of particles from the lanes back to the reservoir. Conversely,

when the reservoir holds fewer particles, the opposite effect occurs, allowing for easier

outflow of particles from the lanes to the reservoir. Thus, the function g and h must

be assumed to be monotonically increasing and decreasing functions of the Nrp . Due

to the monotonic nature and positive definiteness of their dependencies on Nrp , the

coupling between g and h should be designed in such a way that an increase in one

leads to a decrease in the other. So, we defined these as g(Nrp(t)) = Nrp(t)/Np and

h(Nrp(t)) = 1 −Nrp(t)/Np [69] where Np refers to the total number of particles in the

system. Similarly, the rate function f(Nrd(t)) can be taken as f(Nrd(t)) = Nrd(t)/Nd

which regulates the binding of the defect onto the lanes. While there are infinite possible

ways to choose these functions, the selection is made based on analytical amenability.

In other scenarios, although the quantitative behaviour may vary, the qualitative nature

of the system remains consistent.

We have now completely defined the model and our objective is to investigate the

impact of a global constraint on both the number of particles and defects in the system.

To delve deeper into the dynamics of this constrained system, we introduce parameters

known as filling factors, defined as µk =
Nk

2L
, k = p, d. These ratios define the population

of particles and defects of the whole model (lane and reservoirs combined) relative to

the total number of sites 2L, thus 0 ≤ µk < ∞, k = p, d. In the limiting case of

µp → ∞ which signifies an abundance of particles, the effective entry-exit rates, α̃

and β̃ converges to the intrinsic entry rate α and 0. If we set pd = 1, indicating that

the presence of a defect does not affect particle dynamics, our model deviates from the

two-lane constrained entrances TASEPs with infinite resources [60]. Instead, this model

converges to a specific scenario of the system considered in Ref. [60], with the exit rate

approaching 0.

4.3 Theoretical analysis: Master equations

In this section, we will provide a detailed theoretical framework to analyze the

system’s behaviour by deriving time evolution equations for particles and defects.

4.3.1 Particle density evolution

The evolution of particle density is governed by the following master equations,

which describe the mean-site occupation density for lanes A and B at each bulk site

(2, 3, . . . , L− 1) given by

d⟨τ iA⟩
dt

= J i−1,i
A − J i,i+1

A ,
d⟨τ iB⟩
dt

= J i+1,i
B − J i,i−1

B , (4.5)
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where the notation ⟨. . . ⟩ represents the statistical average. Here, J i,i+1
A /(J i,i−1

B )

corresponding to the bulk current passing from the ith site to (i + 1)/(i − 1)th site

in lane A/B defined as

J i−1,i
A = ⟨(1− νi

A)τ
i−1
A (1− τ iA)⟩+ pd⟨νi

Aτ
i−1
A (1− τ iA)⟩,

J i,i−1
B = ⟨(1− νi−1

B )τ iB(1− τ i−1
B )⟩+ pd⟨νi−1

B τ iB(1− τ i−1
B )⟩.

In the above equations, the first term of the right-hand side represents the hopping of a

particle to a neighbouring empty site in the absence of a defect at the target site, while

the second term accounts for the presence of a defect at the target site. It is important to

note that the particles as well as the defects adhere to the hard-core exclusion principle,

meaning that each site can accommodate a maximum of one particle and a maximum

of one defect or both. At the boundaries of each lane, one can express the bulk currents

as

Jentry
A = α̃⟨(1− ν1

A)(1− τ 1A)(1− τ 1B)⟩+ ⟨pdν1
A(1− τ 1A)(1− τ 1B)⟩,

Jentry
B = α̃⟨(1− νL

B)(1− τLB)(1− τLA)⟩+ ⟨pdνL
B(1− τLB)(1− τLA)⟩,

Jexit
A = β̃⟨τLA⟩,

Jexit
B = β̃⟨τ 1B⟩. (4.6)

It should be noted that the Eqs. (4.3.1) and (4.6) involve one-point and three-point

correlations which may be intractable in the present form.

4.3.2 Defect density evolution

The master equation governing the evolution of the average occupation number of

defects on each site in the system is expressed as follows:

d⟨νi
j⟩

dt
= k̃+⟨(1− νi

j)⟩ − k−⟨νi
j⟩. (4.7)

This equation is valid for all sites i (i = 1, 2, . . . , L) and j = A,B. Notably, we have

taken into account the binding and unbinding of defects at the boundary sites as well.

4.3.3 Discrete to continuum mean-field equations

The master equation for defects described in Eq. (4.7) is amenable to analysis due

to its dependence solely on one-point correlators. Additionally, this equation satisfies

the principle of detailed balance, which implies that the defect density will ultimately

reach a stable equilibrium state.

However, the particle dynamics given by Eqs. (4.5), (4.3.1), and (4.6) involves terms
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with one-point and three-point correlators, making the system difficult to solve directly

in its present form. To tackle these challenges, we adopt the mean-field theory (MFT),

a widely used technique in bidirectional models [60,102], to simplify the mathematical

treatment. Factorizing the correlation functions as the product of their averages using

mean-field approximation, we get ⟨νa
q τ

b
r τ

c
s ⟩ = ⟨νa

q ⟩⟨τ br ⟩⟨τ cs ⟩, for q, r, s ∈ {A,B} and

a, b, c ∈ {1, 2, . . . , L}.

Further, we define the mean-field densities at each site of either lane as ρij = ⟨τ ij⟩
and σi

j = ⟨νi
j⟩. In order to obtain a continuum description of the model in the

thermodynamic limit L → ∞, we coarse-grain the discrete lanes with constant ϵ = 1/L

and rescale the time as t′ = t/L. Applying Taylor series expansion and retaining terms

up to second-order, we get

ρi±1
j = ρij ± ϵ

∂ρij
∂x

+
ϵ2

2

∂2ρij
∂x2

+O(ϵ3). (4.8)

Since the system’s transition rules are site-independent, each site in the bulk follows

the same dynamics. As a result, we can drop the subscript ‘i’ to represent the bulk

sites collectively. Thus, the continuum mean-field densities of the bulk sites of each

lane evolve as follows

∂

∂t′

[
ρA

ρB

]
+

∂

∂x

[
JA

−JB

]
=

ϵ

2

[
(1− σA(1− pd))

∂2ρA
∂x2

(1− σB(1− pd))
∂2ρB
∂x2

]
. (4.9)

Here,

JA = (1− σA(1− pd)) ρA(1− ρA), JB = (1− σB(1− pd)) ρB(1− ρB), (4.10)

gives the bulk currents of particles in each lane. In the steady-state, the above equation

is translated to

(1− σj(1− pd))

(
ϵ

2

∂2ρj
∂x2

± (2ρj − 1)
∂ρj
∂x

)
= 0, (4.11)

where +(−) in the above equation corresponds to the particles on lane A(B). In the limit

ϵ → 0, this equation yields
∂Jj
∂x

= 0. Similarly, the boundary currents at a steady-state

translate to

Jentry
A = α̃

(
1− pd(1− σ1

A)
)
(1− ρ1A)(1− ρ1B),

Jentry
B = α̃

(
1− pd(1− σL

B)
)
(1− ρLB)(1− ρLA),

Jexit
A = β̃ρLA,

Jexit
B = β̃ρ1B.

(4.12)

Furthermore, by performing a similar coarse-graining for the defect density ⟨νi
j⟩ by σi

j,
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the defect evolution equation expressed in Eq. (4.7) simplifies to

dσj

dt
= k̃+(1− σj)− k−σj, j = A,B. (4.13)

Note that the subscript ‘i’ is dropped as the defect dynamics do not involve

inhomogeneity of any kind throughout the lanes. The steady-state defect density σj

is solely determined by the binding and unbinding rates of the defects and reaches a

constant value σ for both the lanes expressed as

σ =
k̃+

k̃+ + k−
. (4.14)

For the special case of k+ = 0, no defect can bind onto the lanes, hence, the defect

density σ → 0. Consequently, particle movement becomes unhindered, simplifying the

governing equations of the system (given by Eqs. (4.3.1) and (4.6)) for a two-lane

bidirectional narrow entrances model with reservoir crowding, which has not been

investigated in the existing literature.

Now, the aspect that remains to be addressed in the defect dynamics is the

inclusion of finite resources. A global constraint on the number of defects in the system

affects their binding rate while the unbinding rate remains unaffected. To determine

the effective binding rates given by Eq. (4.2), we utilize the Principle of Number

Conservation for defects in the system which states that Nrd + 2L
∫ 1

0
σ dx = Nd. We

define the density of the reservoir Rd by rd = Nrd/(2L). Thus, one can establish a

relationship between the reservoir density and the filling factor for defects as follows

µd = rd + σ. (4.15)

By substituting the defect density provided by Eq. (4.14) into the above expression,

we obtain

rd =
1

2k+

(
µd(k+ − k−)− k+

√(
µd(k+ − k−)− k+

)2
+ 4k−k+µ2

d

)
, (4.16)

which can be further used to retrieve the density of the defects. Note that the binding

and unbinding of defects onto the lanes do not have a direct impact on the particle

densities; however, they are implicitly related through the defect density. Henceforth,

our attention is directed towards analyzing the defect dynamics as a whole, rather than

considering the binding and unbinding rates separately. This approach reduces the

number of parameters in our system while maintaining a comprehensive analysis of its

behaviour.

Let us now shift our focus back to the particle dynamics. The expression for the
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steady-state bulk current, as described by Eq. (4.10), the parameters σ and pd represent

the impediment caused to the particles due to the presence of defects in the system.

Moreover, it is evident from Eq. (4.10) that the factor (1− σ(1− pd)) scales the overall

particle current of the lanes. Thus, we refer to this term as the scaling factor which

quantifies the impact of defects on the system and is denoted by ‘c’. From here onward,

we will employ this parameter for two advantageous purposes. Firstly, it helps in

reducing the complexity of the parameter space. Secondly, it simplifies subsequent

expressions encountered during our analysis. Also, for pd → 1, the defects do not

impede the movement of particles on the lanes and the hindrance caused by defects

becomes negligible. Consequently, the steady-state current on the lattice is reduced

to that of a conventional two-lane TASEP system with narrow entrances. However, in

case σ → 1 and pd → 0, the maximum hindrance is observed in the particle movement,

leading to a complete absence of steady-state current throughout the lanes.

To account for the influence of coupling the system to a finite pool of particles, we

apply the Principle of Number Conservation (PNC), similar to how it was utilized for

defects. This allows us to establish a relationship between the filling factor µp and the

reservoir density rp given by

µp = rp +
1

2

∫ 1

0

(ρA + ρB)dx. (4.17)

From Eqs. (4.10) and (4.12), it is evident that the interaction between particles from

both lanes takes place solely at the boundaries. Therefore, the proposed system can

be viewed as two-independent single-lane TASEPs associated with a common finite

reservoir, having the same exit rate β̃. The effective entry rates of particles in both

lanes can be obtained by applying the current continuity principle in the bulk and at

the boundaries of the lanes [60]. This approach yields the following expressions for the

effective entry rates

αeff
A = α̃(1− ρ1B), αeff

B = α̃(1− ρLA), (4.18)

along with β̃ = β
(
1− rp

µp

)
and α̃ = α rp

µp
.

Now, our aim is to calculate the effective rates αeff
A , αeff

B , and β̃, as well as the

particle densities, by utilizing Eqs. (4.14), (4.15), and (4.17) along with Eq. (4.18).

These explicitly derived expressions for the effective rates will enable us to quantify the

stationary properties of the system, such as phase diagrams, density profiles, particle

currents, and potential phase transitions.
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4.4 Mean-field theory

The particle input and output at the boundaries play a crucial role in governing

the transport state within both lanes. So, it becomes highly important to examine all

conceivable phase transitions and significant steady-state properties, such as density

profiles and particle currents, with respect to their intrinsic entry and exit rates in

the system. Even though the dynamics of the particles in both lanes are identical,

the stationary properties of the system may not necessarily be the same for particles

moving in different directions. Hence, the system’s ability to exhibit both symmetric

and asymmetric phases forms the basis for our further discussion [60,102]. In the absence

of reservoir crowding, dynamic defects, and any constraints on available resources, our

model simplifies to a well-studied two-lane system with narrow entrances [60], which

exhibits spontaneous symmetry-breaking in the form of H/L and L/L phases. By

limiting the number of resources in the system while maintaining a constant exit rate,

a different asymmetric phase known as S/L emerges [102].

In the proposed model, effective interactions between the lanes occur exclusively

at the boundary sites, allowing us to consider each lane as a one-dimensional TASEP

lane with dynamic defects and reservoir crowding. This one-lane model has not yet

been studied to the best of our knowledge. As seen earlier, the introduction of a defect

into the system resulted in a scaling of the bulk current with the parameter ‘c’. As

a result, this parameter exerts an influence on the particle density of the system in

different phases when it reaches a stationary state. In this case, the particle currents at

each site can be written as Jenter = cα̃ (1− ρ(0)) , J bulk = cρ(1− ρ), and Jexit = β̃ρ(1).

By equating the entry and exit currents with the bulk current for the LD and HD

phases, respectively, we can determine the steady-state particle densities. This yields

the following expressions:

ρ(0) = α̃, ρ(1) = 1− β̃/c. (4.19)

In the entrance-dominated LD phase, the particle density is equal to ρ(0), while in

the exit-dominated HD phase, it is given by ρ(1). The bulk-dominated maximal

current (MC) phase is specified by the condition ∂Jbulk

∂ρ
= 0 which yields ρ = 1/2.

The shock phase is characterized by a region of density ρ(0) on the left and ρ(1)

on the right. Finally, to calculate the effective entry-exit rates, the particle number

conservation criteria is utilized. Table (4.1) provides a summary of the results obtained

from studying a one-dimensional system with dynamic defects under the influence of

reservoir crowding.

Provoked by these notable dynamics we investigate a two-lane TASEP with

constrained entrances and dynamic defects under the effect of reservoir crowding. In
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Phase ρ1 ρbulk ρL Phase Region r

LD α̃ α̃ cα̃(1−α̃)

β̃
α̃ < min{0.5, β̃/c} µ2

µ+α

HD 1− β̃
cα̃

(
1− β̃

c

)
1− β̃

c
1− β̃

c
β̃/c < min{0.5, α̃} µ(β−c(1−µ))

β+cµ

MC 1− 1
4α̃

1
2

c

4β̃
0.5 < min{α̃, β̃/c} µ− 1

2

S α̃ α̃(u(t)− u(t− xw)) 1− β̃
c

0 < xw < 1 βµ
β+cα

1−
(

β̃
c

)
u(t− xw)

Table 4.1: Summary of the results for the particle densities, existence conditions
and reservoir density of a reservoir crowding featured dynamically disordered
one-dimensional lane with L sites. Here, ρ1, ρbulk, and ρL give the particle density
at entry site, bulk, and exit site, respectively. The position of the shock is denoted by
xw, the filling factor by µ and the scaling factor by ‘c’. Also, u is the unit step function.

the proposed model, each lane can exhibit one of the four possible stationary states:

LD, HD, MC, or SP. Considering the nature of the phases, there are a total of eleven

possible phases, but not all of them exist due to various restrictions. For example, the

possibility of having the M phase in one-lane and the L, H or S phase in the other

lane can be easily discarded because their existence conditions are inconsistent with

each other. The S/H phase can be easily discarded through mathematical arguments.

The remaining phases require further theoretical analysis to determine their existence

conditions.

4.5 Feasible phases

This section outlines the process for obtaining the effective rates and the position

of shock, wherever applicable for all the probable phases. As already discussed, in

symmetrical phases, both lanes exhibit similar characteristics, as indicated by the

following conditions: αeff
A = αeff

B , ρA = ρB, JA = JB. Since, the effective entrance

rates, bulk densities and currents are equal for the two-lanes, we use the common

notation αeff , ρ, and J to represent these quantities, respectively.

On the other hand, in asymmetrical phases, usually, αeff
A ̸= αeff

B , ρA ̸=
ρB, JA ̸= JB. Here, α

eff
j gives the effective entrance rate, while, ρj and Jj are the

bulk particle densities and currents in the jth lane.

4.5.1 Symmetrical phases

• Low density phase (LD/LD). We assume that both the lanes are in an

entry-dominated phase with bulk current written as J = cαeff (1 − αeff ). Equating
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this to the boundary current at the exit site of lane B gives

ρ1B =
cαeff (1− αeff )

β̃
. (4.20)

Substituting this expression into Eq. (4.18), we can determine the effective entry rate

of particles as

αeff =
β̃ + cα̃−

√
(β̃ + cα̃)2 − 4cα̃2β̃

2cα̃
. (4.21)

We can then plug this value into Eq. (4.17) to calculate the density of the particle

reservoir, expressed by

rp =
1

2

(
µp − 1 +

β(α + µp)

cαµp

−

√(β(α + µp)

cαµp

− 1 + µp

)2
− 4

βµp

cα

)
. (4.22)

Since the expressions in terms of intrinsic rates are quite complex, we present the

conditions for the existence of this phase using effective rates as follows

αeff <
{
0.5, β̃/c

}
. (4.23)

• Maximal current phase (MC/MC). In this phase, each lane exhibits the

maximum particle flow, given by J = c/4, with a density of ρ = 1/2. Using Eq.

(4.12), the exit current through Lane B can be expressed as J1
B = β̃ρ1B. Applying the

principle of current continuity, the bulk current must be equal to the exit current,

leading to the relation ρ1B = c/4β̃. Substituting this expression into Eq. (4.18), we

obtain the effective entry rate of the particles as

αeff = α̃

(
1− c

4β̃

)
. (4.24)

To determine the reservoir density of the pool, we utilize the Principle of Number

Conservation (PNC) given by Eq. (4.17), which gives us rp = µp−1/2. The conditions

for the existence of this phase (αeff > 1/2 and β̃/c > 1/2) can be rewritten as

β > cµp, α >
2βµp

(2µp − 1)(2β − cµp)
. (4.25)

• High density phase (HD/HD). This phase occurs when both lanes are in an

exit-dominated phase with the bulk particle density equal to the density at the exit

site of Lane A. Consequently, in this phase, the effective entry rate can be expressed

as

αeff =
α̃β

c

(
1− rp

µp

)
. (4.26)
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The reservoir density can be calculated by using Eq. (4.17) as

rp =
µp (β − c(1− µp))

β + cµp

. (4.27)

The feasible region corresponding to this phase satisfies

β < min

{
cµp,

c (α(µp − 1)− µp)

1− α

}
. (4.28)

• Shock phase (SP/SP). In the symmetric shock phase (SP/SP), both lanes exhibit

a discontinuity in the bulk, characterized by a transition from a low density region

to a high density region. The currents at the boundary sites are described by the

equations:

J1
A = JL

B = cαeff (1− αeff ), JL
A = J1

B = β̃(1− β̃

c
).

By utilizing the exit current of lane A in Eq. (4.18), we obtain the expression for

αeff as

αeff =
αβrp
cµp

(
1− rp

µp

)
. (4.29)

The existence of a shock phase in a lane requires αeff = β̃/c, which implies that the

reservoir density is equal to µp/α. Let xw denote the location of the shock within

this phase. We can express the integral of ρ over the range from 0 to 1 as

∫ 1

0

ρdx =

∫ xw

0

αeffdx+

∫ 1

xw

(
1− β̃

c

)
dx. (4.30)

This can be further substituted in Eq. (4.17) to retrieve the position of shock as

xw =
β(1− α) + c (α + µp(1− α))

cα + 2β(1− α)
. (4.31)

Finally, the boundary parameters must satisfy the following conditions for the SP/SP

phase to exist:

β̃ < 0.5c, 0 < xw < 1. (4.32)

4.5.2 Asymmetrical phases

• High-low density phase (H/L). Without loss of generality, we assume that the

particles of lane A are in a high density phase while those of lane B display a low

density phase. Since the particle flow is continuous in each lane, we have the following

boundary currents JL
A = β̃ρLA, J

1
B = β̃ρ1B = cαeff

B (1 − αeff
B ). By substituting these
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expressions into Eq. (4.18), we obtain

αeff
B = α̃

β̃

c
, αeff

A = α̃

(
1− J1

B

β̃

)
. (4.33)

The particle number conservation, Eq. (4.17), can be rewritten as:

µp = rp +

(
αeff
B + 1− β̃/c

)
2

, (4.34)

which allows us to calculate the reservoir density as

µp

2αβ

(
β(1 + α) + 2cµp −

√
β2(α− 1)2 + 4cβ(α + µp − αµp) + 4c2µ2

p

)
.

By using the expressions for the boundary parameters and the reservoir density

obtained above, the existence conditions for this phase can be formulated as:

αeff
B < β̃/c < αeff

A . (4.35)

• Shock-low density phase (S/L). When this scenario occurs, the particles of lane

A portray a shock phase while those of lane B are in low density phase. This phase

persists when the boundary-controlling parameters ensure the following constraints:

JA = β̃(1− β̃/c) = cαeff
A (1− αeff

A ), JB = αeff
B (1− αeff

B ).

Let xw is the position of shock in the density profile on lane A. Then, we have∫ 1

0
ρA dx =

∫ xw

0
αeff
A dx +

∫ 1

xw
(1 − β̃/c) dx. The effective entrance rates for the

particles can be retrieved from Eq. (4.18) as

αeff
B = α̃

β̃

c
, αeff

A = α̃

(
1− cαeff

B (1− αeff
B )

β̃

)
.

To calculate the reservoir density, we utilize the criteria for a lane to display shock

phase which states that the αeff
A must be equal to β̃/c. To procure the position of

the shock, we utilize PNC given by Eq.(4.17) which in this case reduces to

µp = rp +
1

2

(
xw

β̃

c
+ (1− xw)

(
1− β̃

c

)
+ αeff

B

)
, (4.36)

and the position of shock is given by

xw =
β̃ − c(1 + αeff

B − 2µp + 2rp)

2β̃ − c
. (4.37)
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Thus, for this phase to persist, the boundary-controlling parameters must satisfy the

following conditions

0 < xw < 1, αeff
B < min{0.5, β̃/c}. (4.38)

• Low-low density phase (L/L). In this phase, although both the lanes are in

entry-dominated phase, their particle densities differ. By using the bulk and

boundary currents of each lane, we can determine the densities at the exit sites

of both lanes:

ρLA = α̃

(
1− cαeff

A (1− αeff
A )

β̃

)
, ρ1B = α̃

(
1− cαeff

B (1− αeff
B )

β̃

)
. (4.39)

These expressions can be substituted into Eq. (4.18) and solved to obtain the explicit

values of αeff
A and αeff

B as

αeff
j =

1

2

1− β̃

cα̃
±

√√√√1− β̃

c

(
4 + 2

1

α̃
− 3

β̃

cα̃2

) ,

where + corresponds to lane A and − for lane B. Upon utilizing these values in Eq.

(4.17), the reservoir density rp can be obtained as

rp =
1

4cα

(
2cµpα− β − cα +

√
(β + cα− 2cµpα)2 + 8cαβµp

)
. (4.40)

The feasible region corresponding to this phase must satisfy

max{αeff
A , αeff

B } < min{0.5, β̃/c}. (4.41)

4.6 Results and discussions

Our objective is to investigate how the constraints placed on the number of particles

and defects, represented by the filling factors µk, as well as the dynamics of defects

quantified by the scaling factor, affect the stationary properties of the system. To

achieve this goal, we utilize the analytical techniques discussed in Section (4.4) to

analyze the behaviour of the system across the α − β plane. Within our theoretical

framework, we make the simplifying assumption of neglecting particle correlations and

the outcomes are obtained in the thermodynamic limit (L → ∞) which necessitates the

validation of our theoretical predictions through computer simulations. To validate the

accuracy of our theoretical outcomes, we utilize Monte Carlo simulations by considering

the size of the lanes as L = 1000.
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Now, we specifically study the role of various parameters and their qualitative as

well as quantitative effects on the system properties of the proposed model. Firstly,

we analyze the impact of reservoir crowding, followed by the investigation of defect

dynamics.

4.6.1 Effect of reservoir crowding

To conduct a thorough analysis, we present phase diagrams that illustrate significant

topological changes in the parameter space (α, β) for specific values of µp ∈ (0,∞) and

c = 1 (refer to Fig. (4.2)). These phase diagrams offer a comprehensive understanding

of the system’s behaviour across different values of the controlling parameters.
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Figure 4.2: Stationary phase diagram for: (a) µp = 0.3, (b) µp = 0.49, (c) µp = 0.5, (d)
µp = 0.8, (e) µp = 2, and (f) µp = 50 with c = 1. White regions represent symmetric
phases, while coloured regions indicate asymmetric phases. The red symbols correspond
to results from Monte Carlo simulations and solid lines are theoretical findings.

Initially, when the system has significantly less number of particles in the system, the

phase diagram consists of three distinct phases namely one symmetric phase (LD/LD)

and two asymmetric phases (L/L and S/L), as depicted in Fig. (4.2a) for µp = 0.3. It

is important to highlight that these three phases persist even for extremely small values

of µp (µp → 0+), underscoring their significance in influencing the system’s behaviour.

Consequently, the system exhibits a symmetry-breaking phenomenon even for very
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small values of the filling factor µp. This argument can be further supported by Eqs.

(4.38) and (4.23), which delineate the phase boundaries from S/L to L/L and L/L to

LD/LD regions, respectively. These boundaries intersect at the point (α, β) = (0, 2µp)

which exists for any value of µp.

We encounter only these three phases in the phase diagram until the critical value

µC1
p ≈ 0.31 as theoretically computed from Eq. (4.32). Beyond this critical threshold

of µp, a new symmetric phase, referred to as SP/SP, emerges in the phase diagram

alongside the S/L phase. The boundary separating the S/L and SP/SP phases can

be determined using Eq. (4.38). There are no significant qualitative alterations in

the phase diagram until we reach another critical point at µC2
p ≈ 0.43, except for the

expansion of the SP/SP and S/L phases and the contraction of the L/L phase. This

critical value µC2
p is determined from Eq. (4.35).

After µC2
p , the system exhibits the emergence of the H/L phase in the phase diagram

(see Fig. (4.2b)). At this stage, the system displays a total of five phases: two symmetric

and three asymmetric phases. One observation that can be made based on Fig. (4.2b)

is that the phase boundary between the H/L phase and the S/L phase does not cross

the α-axis. However, precisely at µC3
p = 0.5 (calculated from Eq. (4.28)), this phase

boundary intersects the α-axis as evident from Fig. (4.2c). Moreover, beyond µC3
p ,

the phase diagram exhibits the emergence of two symmetric phases namely MC/MC

and HD/HD, as shown in Fig. (4.2d) for µp = 0.8. The critical value after which

HD/HD and MC/MC phases emerge in the phase diagram is µC3
p and can be affirmed

from Eq. (4.25) as well as Eq. (4.28). Here, the boundary that separates the MC/MC

phase from the HD/HD phase can be derived by utilizing Eq. (4.28), which yields

β = µp. Moreover, the phase boundary that distinguishes the H/L phase from the

SP/SP phase can be computed from Eq. (4.35) by solving αeff
B − β̃ = 0 which yields

α = 2µp/(2µp − 1).

Now a further increment in µp results in the expansion of MC/MC, HD/HD and S/L

phase regions, while the region corresponding to H/L, SP/SP and S/L phases shrinks

(see Fig. (4.2e)). Finally, at the critical value of µC4
p ≈ 50, the SP/SP phase disappears

from the phase diagram. It is significant to mention here that for µp ∈ (µC3
p , µC4

p )

the system manifest all the probable feasible phases. After µC4
p < µp, no topological

changes are realized in the phase diagram except for repositioning the phase boundaries.

Finally, the system exhibits three asymmetric and three symmetric phases, which persist

for larger values of µp. In the limiting case of µp → ∞, the invariant structure of the

phase diagram can be retrieved as the exit parameter β tends to infinity.

To summarize, Fig. (4.3) provides an overview of the potential phase transitions

within the phase diagram as a function of the system’s particle count. It is evident that

the system can exhibit a maximum of four symmetric phases (LD/LD, SP/SP, HD/HD,

and MC/MC) and three asymmetric phases (L/L, S/L, and H/L), which are attainable
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for different values of µp. The number of phases observed in the system follows a

non-monotonic pattern concerning µp. As illustrated in Fig. (4.3), the number of

achievable phases initially increases from 3 to 4, then to 5, reaches 7, and subsequently

decreases to 6 once µp > µC4
p . Within the range of µp ∈ (C3, C4), the topology of the

phase diagram becomes complex and the system manifests all seven potential phases.

A significant outcome arising from the incorporation of the reservoir crowding effect
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Figure 4.3: Possible phase transitions observed in the system with increasing values of
µp. The values Ci indicate critical values of µp at which difference phases appear and
disappear. In particular, C1 ≈ 0.31, C2 ≈ 0.43, C3 ≈ 0.5, and C4 ≈ 50. In the shaded
region µp ∈ (C3, C4), all the seven phases persists in the system.

into particle dynamics is the manifestation of a localized shock in the density profile, a

feature that does not occur in the presence of an infinite number of particles [60,102].

Similar consequences have been reported in various models, attributed to the influence

of reservoir crowding [58,69]. This insight is supported by examining the coordinates of

the quintic point given by (1, µp), where the phase boundaries of five phases - S/L, L/L,

LD/LD, MC/MC, and HD/HD intersect. It signifies that as µp increases, this point

consistently shifts upward, indicating the persistence of the S/L phase in the phase

diagram.

In the forthcoming sections, we intend to provide a brief discussion of the important

features that can be derived from the analysis of Fig. (4.2).

4.6.2 Back and forth transition

Let us now delve into one of the prominent characteristics of the proposed model,

which arises from the intricate relationship between limited resources and narrow

entrances, specifically for µp < 0.5 i.e., for a smaller number of particles. The topology of

the phase diagram, in this case, is peculiar (see Fig. (4.2b)), resulting in a unique type of

phase transition known as the back-and-forth, which is solely obtained by manipulating

the intrinsic removal rate β and keeping all the other parameters constant. Notably,

there is a transition from the shock phase (S) to the high density (H) phase and then
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returns to the shock (S) phase in lane A, while the particle of lane B remains in the L

phase. This forms a back-and-forth phase transition in the system from S/L → H/L

→ S/L as affirmed from Fig. (4.4a). To support this argument, we study the density

profiles and the position of shock for a fixed value of µ = 0.45, α = 7, c = 1 and vary

β (see Fig. (4.4)). This can be explained intuitively by the following argument. The
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Figure 4.4: (a) Density profile for (α, c, µp) = (7, 1, 0.45) and different values of β. (b)

Effective entrance rate (αeff
A ) , effective exit rate (β̃) and the position of the shock (xw)

with respect to β for (α, c, µp) = (7, 1, 0.45). Lines denote theoretical findings while
symbols correspond to simulation results.

system initially displays S/L for smaller values of β and fixed α. It is observed that

the position of shock described by the variable xw in lane A initially decreases with

respect to β and tends towards 0 (as evident from Fig. (4.4b)). Physically it means

that with an increment in β, the effective exit rates of particles are enhanced which in

turn results in an increased effective entry rate of the species leading to accumulation

of the particles on lane A. Accordingly the shock moves towards the left, resulting in

the manifestation of H/L phase by the system.

Furthermore, the effective entrance rate αeff
A and the exit rate β̃ remain unequal,

implying that the system does not support the criteria for the persistence of the shock

phase in lane A. Specifically, it can be confirmed from Fig. (4.4b) that αeff
A remains

greater than β̃ in the H/L phase. Now, the phase boundary of this phase for µ = 0.45,

as theoretically calculated by Eq. (4.35) is given as β̃ = αeff
A . Analyzing the behaviour

of this boundary in the α − β plane reveals that α is a non-monotonic, multivalued

function of β. Initially, α decreases, then exhibits a u-turn at approximately α ≈ 1.607,

and subsequently increases.

Moreover, when the system is in the H/L phase and β continues to increase, the

peculiar behaviour of the phase boundary drives the system back to the S/L phase. The

shock once again begins to enter from the left end at β ≈ 0.332 resulting in xw ∈ (0, 1).

This finding is confirmed by Fig. (4.4), which displays the density profiles for various

β values and illustrates the position of the shock.
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(a) (b)

(c) (d)

Figure 4.5: Particle density histogram plotted through Monte Carlo simulations for (a)
LD/LD, (b) MC/MC, (c) H/L, and (d) S/L phases. The parameters are (α, β, µp) =
(3, 1, 0.49), (3, 4, 2), (1, 0.5, 2), and (2, 0.2, 0.3) in (a–d) with c = 1.

4.6.3 Spontaneous symmetry-breaking

A noteworthy characteristic of a bidirectional system is the occurrence of

spontaneous symmetry-breaking. Our previous analysis reveals the presence of three

asymmetric phases: S/L, H/L, and L/L analogous to the findings of Refs. [60,102].

This symmetry-breaking arises due to the stochastic nature of particle movements

and interactions between them at the boundaries. To conduct a comprehensive

exploration of this phenomenon using Monte Carlo simulations, we create particle

density histograms by continuously monitoring the instantaneous densities of the species

of the two-lanes, ρA and ρB. In our simulations, we use a system size of L = 1000,

excluding the initial 109 time steps and collecting data over the subsequent 9×109 time

steps. While examining the density histogram distribution, if the peak corresponds to

ρA = ρB, we categorize the phase as symmetric; otherwise, it is labelled as asymmetric.

Typical density histograms for LD/LD, MC/MC, H/L, and S/L phases are displayed

in Fig. (4.5). One can clearly observe from Figs. (4.5a) and (4.5b) that the peak is

attained for ρA = ρB. For LD/LD phase ρA = ρB < 1/2 whereas for MC/MC phase

this value is exactly equal to 0.5. In Fig. (4.5c) - (4.5d), an off-diagonal peak appears

which validates the existence of asymmetric phases in the system. Specifically, in Fig.

(4.5c), the peak in distribution is achieved at ρA > 1/2, ρB < 1/2 for H/L phase and

in case of S/L phase, the peak occurs at 0 < ρA < 1, ρB < 1/2 as shown in Fig. (4.5d).
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4.6.4 Size-scaling dependencies of phases

To corroborate the finite-size effect, we investigate into how varying the system size,

denoted by L, influences the density profiles while keeping the parameter µp fixed at

0.8. The results, as depicted in Fig. (4.6a), clearly demonstrate that as L increases, it

primarily leads to the sharpening of shock profiles within the S/L phases. Importantly,

the underlying phase remains unaffected despite these changes. Similar findings can be

extended to the case of the MC/MC phase where only the boundary is affected (see

Fig. (4.6b)).
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Figure 4.6: Finite-size effect on density profile of (a) shock in S/L phase for (α, β, µp) =
(0.5, 0.5, 0.5) and (b) MC/MC phase for (α, β, µp) = (4, 1.5, 0.8). (c) Variation of region
width ∆ of L/L phase with increasing lane length L for fixed α = 1 and µp = 0.5.

Another effect of the finite-size of the lanes is seen in the L/L phase. It has been

noted that as the system size increases, the region exhibiting asymmetric LD phase

diminishes, indicating that this region either becomes confined to a line or completely

vanishes in the thermodynamic limit. To illustrate this, we have graphed the width of

the L/L phase (∆) while keeping α = 1 and µp = 0.5 fixed and varying β in Fig. (4.6c).

As depicted in the figure, the width of the L/L region decreases as the system size L

increases. Thus, for sufficiently large systems, the L/L region contracts, aligning with

findings from earlier research where similar observations were documented [58,102].

4.6.5 Influence of defects

As elucidated in previous sections, the introduction of dynamic defects at every site

within the two-lanes (bulk and boundary) leads to a translation of the particle current,

characterized by the scaling factor ‘c’. The expression for this parameter and the defect

density can be explicitly derived by employing Eqs. (4.14) and (4.16), yielding

σ =
P +

√
Q2 + 4k−k+µ2

d

Q+
√

Q2 + 4k−k+µ2
d

, c = 1− (1− pd)σ, (4.42)
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where the value of P = (k+(µd − 1)− k−µd) and Q = (k+(µd − 1) + k−µd). Note that

the scaling factor is a non-linear complex function of four parameters: the defect binding

and unbinding rates (k+, k−), the strength of the defect (pd), and the filling factor (µd).

Moreover, this factor has an impact on the stationary particle current (denoted by JA

and JB), subsequently affecting the particle densities, ρA and ρB. Hence, it becomes

essential to analyze the impact of each parameter separately.

• Limited availability of defects.

Here, we explore the effects of implementing a global constraint on the overall quantity

of available defects within the system. For fixed values for k+, k−, and pd, it becomes

evident from Fig. (4.7), the defect density σ consistently rises, while the scaling factor

‘c’ decreases monotonically as a function of µd. Physically, this trend indicates that

with an increasing number of defects, there is a higher accumulation of sites bound to

defects within the lanes. Consequently, it results in an enhanced defect density and a

subsequent decrease in the overall particle flow. In the absence of any constraint on

c

σ
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Figure 4.7: Plot for the defect density and the scaling factor ‘c’ vs the filling factor
µd with k+ = k− = 1, pd = 0.1, and µp = 0.8. Solid lines depict theoretical findings
whereas symbols denote Monte Carlo simulation results.

the number of available defects (i.e., when µd → ∞), both the defect density and the

scaling factor ‘c’ converge towards fixed values, which can be expressed as follows:

σ =
k+

k+ + k−
, c = 1− k+(1− pd)

k+ + k−
. (4.43)

The defect density is solely dictated by the defect binding rate k+ and the unbinding

rate k−. Specifically, for the specified parameter values of (k+, k−, pd) = (1, 1, 0.1), σ

approaches 0.5, and c tends towards 0.55 as also evident from Fig. (4.7).

To investigate the influence of alterations in µd on the phase diagram, we assess

the changes occurring in the phase boundaries while maintaining the parameters

(k+, k−, pd) = (1, 1, 0.1) and considering different values of α (see Fig. (4.8)). The

particle filling factor µp is set at 0.8, taking into consideration Fig. (4.2d), which
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Figure 4.8: Variation in the phase boundaries between different values with increasing
values of µd and k+ = k− = 1, pd = 0.1, µp = 0.8 for: (a) α = 1 and (b) α = 5.
Solid lines depict theoretical findings whereas symbols denote Monte Carlo simulation
results.

illustrates the maximum number of attainable phases in a single phase diagram. It

can be observed that for µd = 0, the scaling factor attains its maximum value 1 while

the scarcity of defects leads to 0 defect density. Consequently, the defects do not

impede the particle movement at all, leading to the maximum particle flow. This

allows us to achieve the results for a two-lane system with constrained entrances,

along with the inclusion of reservoir crowding which has not been investigated yet.

With an increase in µd, we observe a reduction in the regions corresponding to H/L,

S/L, SP/SP, and HD/HD phases, while the LD/LD and MC/MC regimes expand.

Moreover, as anticipated for µd → ∞, the boundaries separating S/L from H/L and

LD/LD region and HD/HD from SP/SP and MC/MC region approaches constant

values.

• Strength of the defect.

This section explains the influence of the hopping rate of particles in the presence of

a defect, denoted by pd, (which signifies the strength of the defect) on the system’s

stationary properties. The motion of particles relies on whether the adjacent site

contains a defect or not. When there is no defect present, particles move unhindered

with a probability of 1. However, if the next site is occupied by a defect, the hopping

rate is altered to pd and falls within the range of [0, 1]. Consequently, a reduction in

the magnitude of pd leads to an elevated obstruction in the movement of particles.

As expressed in Eq. (4.42), it is important to note that the hopping rate pd does not

influence the defect density σ. However, when holding the other parameters constant,

the scaling factor ‘c’ demonstrates a linear relationship with pd, leading to only the

translation of the phase boundaries.

• Effect of binding/unbinding of defect.

Another set of parameters influencing the system properties are the binding and

the unbinding rates characterized by the variables k+ and k−. In the limiting case
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of k+ → ∞, one can determine from Eq. (4.42) that the defect density converges

to a constant value when the other parameters such as k− and µp are fixed. This

convergence can be theoretically expressed as

σ →

µd, if 0 ≤ µd < 1,

1, if 1 < µd.

This can be physically understood by the following argument. When 0 ≤ µd < 1, it

signifies that there are fewer defects in the system than the total number of available

sites, i.e., Nd < 2L. As k+ takes significantly large values, all defects tend to stay

associated with the lanes, resulting in the defect density equating to µd. Conversely,

when µd > 1, the number of defects surpasses the total site count, which is 2L. In

this scenario, the defect density reaches its maximum value of 1, since each site can

only accommodate one defect, adhering to the exclusion principle.

If all the parameters except the binding constant remain constant and k− approaches

infinity, defects cease to attach to any site within the system. Consequently, defects

no longer slow down the particle’s movement on any lane, enabling particles to flow

freely along the lanes without any hindrance.

4.7 Conclusion

In this work, we have attempted to study the non-equilibrium dynamics of a

two-lane TASEP model with dynamic disorder under constrained entrances where

particles travelling in opposite directions interact only at the boundaries. This disorder

is incorporated in the form of defects that can appear and disappear stochastically from

each site irrespective of the presence or absence of a particle on the respective sites.

These defects when attached to a site, they act as an inhomogeneity by slowing down

the movement of particles. The total number of particles and defects remains constant

in the system and is characterized by the corresponding filling factors. The feature of

reservoir crowding for the particles is incorporated which regulates the entry and exit

of particles onto the lanes, while for the defects only the entry rate is affected.

The system has been analyzed by utilizing the continuum mean-field framework

which neglects all kinds of correlations such as particle-particle, defect-defect and

particle-defect. An important element of our theoretical approach is the reduction

of the parameters associated with defect dynamics from four to one. The parameters

that previously described binding, unbinding, defect quantity, and slowdown rate, all

of which collectively governed the defect kinetics in the model, have been combined

into a single parameter referred to as the scaling factor. This scaling factor effectively

influences the overall particle flow within the system. Interestingly, it does not affect
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the dynamics of the defect, which greatly reduces the complexity of the mathematical

treatment.

Further, the incorporation of the narrow entrances at the entry-exit sites is dealt

with by defining the effective entrance of particles to the lanes. This assists us in

obtaining the explicit expressions for the particle densities, particle current and the

corresponding phase boundaries for both symmetric as well as asymmetric phases. Our

theoretical analysis uncovers the presence of up to seven attainable phases, including

four symmetric and three asymmetric phases. Moreover, the impact of the global

constraint on the number of particles is discussed, particularly on the qualitative

topology of the stationary phase diagram. It has also been observed that the number of

phases displayed shows a non-monotonic trend with increasing the number of particles

in the system. The critical values at which the phases appear and disappear have also

been calculated theoretically. Despite the symmetry in the dynamics of the two-lanes,

the system manifests a spontaneous symmetry-breaking phenomenon that exhibits for

all values of the filling factor. To thoroughly understand this phenomenon, a detailed

analysis of the particle density histogram is conducted. An important consequence of

including reservoir crowding in the model is the existence of a back-and-forth transition

which is obtained by varying the intrinsic exit rate and keeping all other parameters

fixed. Another remarkable feature is the sustained presence of a localized domain wall

in the density profile since it persists for a very small number of particles in the system

and continues to endure even for abundant particle resources.

Finally, incorporating defect dynamics into the system impacts not only the

behaviour of defects themselves but also influences particle densities. As a consequence,

the scaling factor translates the particle current, with no substantial impact on the

system’s stationary properties. Nevertheless, the system’s characteristics are affected

primarily in quantitative terms, leading to a shift in the phase boundaries. A brief

discussion is provided on the effect of each parameter related to defect dynamics on the

stationary system properties. Lastly, a random-sequential update method is employed

for conducting Monte Carlo simulations of the system. The computational outcomes

are in good agreement with the numerical results.

The main objective of this study was to elucidate the dynamic characteristics of the

two-lane system under investigation, and the findings we presented successfully describe

the impact of dynamic defects. We utilized a generic model that can be applied to gain

insights into the behaviour of some non-equilibrium transportation processes, including

both natural phenomena and human-made systems under the influence of reservoir

crowding, constraint entrances and dynamic defects. This study can be further extended

to incorporate a more realistic scenario involving a diffusive reservoir, where the entry

and exit site serve as a sink and source for the particle concentration.



Chapter 5

Competition for resources in

an exclusion model with biased

lane-changing mechanism

In this chapter1, inspired by the inclination of particles to adhere and separate from

filaments and pathways, we introduce a two-lane TASEP model. One lane functions

as a feeder, while the other operates as a receiver. We analyze this model within

a constrained setting, where the influx of particles is controlled by the reservoir’s

density. We establish a theoretical framework by using vertical mean-field theory with

singular perturbation technique. The analytical findings are supported by numerical

and stochastic validation using a finite-difference scheme and the Gillespie algorithm.

5.1 Introduction

Despite the considerable research devoted to biased lane-changing mechanisms in

the multi-lane exclusion model, there remains a notable gap in the literature regarding

studies focused on limited particle resources. Our objective is to establish a theoretical

framework for the system and explore the influence of restricted particle resources on

stationary properties, while also characterizing its fundamental features. We employ the

concept of boundary layer analysis to derive a comprehensive solution for the density

profiles as well as the phase boundaries. These findings are then employed to construct

a phase diagram that elucidates both bulk and surface transitions. The present research

distinguishes itself from previous investigations in several ways. (i) A global constraint

on particle resources is introduced. (ii) Lane-changing takes precedence over forward

movement, with the former being a certain event. This means that the lane-changing

mechanism is biased towards a specific lane. (iii) We provide explicit theoretical

expressions for the stationary properties of the system. (iv) Validation of the results

is carried out through numerical and stochastic approaches, utilizing finite difference

methods and simulations. (v) Finally, boundary layer analysis is also performed.

1The content of this chapter is published in: “Ankita Gupta, Arvind Kumar Gupta. Competition
for resources in an exclusion model with biased lane-changing mechanism. Physical Review E,
109(3):034132, 2024.”
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5.2 Description of the model

To mimic the transportation of entities along different pathways, we formulate a

model that consists of two parallel one-dimensional lattices, identified as lane A and lane

B, with each lane comprising of L sites. The sites are enumerated as i = 1, 2, . . . , L,

where the boundaries of each lane are represented by i = 1 and i = L, while the

remaining sites constitute the bulk. In strict accordance with the hard-core exclusion

principle, each lattice site is constrained to accommodate no more than a single particle.

Particles experience horizontal drifting as they engage in unidirectional motion

from the left to the right along the lanes. Moreover, these lanes allow vertical mobility

of particles; specifically, lane A facilitates desorption, while lane B functions as an

absorption pathway as shown in Fig. (5.1). The extreme boundaries of the lanes (at

site i = 1 and i = L) are connected to a reservoir with a finite capacity. This naturally

imposes a restriction on the overall number of particles in the system. Let us use the

notation Nt to signify the total number of particles in the system and Nr(t) to represent

the number of particles in the reservoir at any instant of time. Note that the reservoir

has abundant capacity to contain all the particles present in the system. Moreover, this

restriction influences the rates at which particles flow from the reservoir into the lanes,

which will be elucidated later on. This arrangement creates a regulated environment

in which the total number of particles on the lanes is determined by the interaction

between the dynamics of interconnected lanes and the particle reservoir. At each time

step, a site is chosen randomly and updated in accordance with the system’s dynamic

rules, which are delineated as follows:
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Figure 5.1: Illustration of the two-lane exclusion model with open boundaries. Lane A
functions as a feeder lane, while lane B serves as an absorber lane. Arrows represent
permissible transitions, while crosses indicate restricted transitions. The variables α∗

and β represent the entry and exit rates, respectively.

• Bulk sites: For lane A, the displacement of a particle from the ith site relies on the

status of the ith site on lane B. In case, site i on lane B is vacant, a particle from
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the ith site of lane A is compelled to depart and then reconnects to the ith site on

lane B at a unit rate. If the intended site on lane B is not vacant, the particle is then

required to continue its horizontal movement along the lane with a unit rate, given

that the neighbouring site is unoccupied. This indicates that a particle on lane A

tends to prefer detachment over unidirectional movement.

• Entrance site: A particle from the reservoir has the potential to enter through the

first site i = 1 of lane A at a rate of α∗, given that the respective site is unoccupied.

In the presence of a particle at this site, it initially attempts to attach to the first

site of lane B. If this attachment is not achievable, the particle then proceeds with

its unidirectional movement along lane A.

• Exit site: A particle positioned at the Lth site on lane A, first tries to detach from

its lane and attach to the last site of lane B, given that the target site is unoccupied.

If no successful attachment occurs, the particle exits lane A at a rate of β to rejoin

back the reservoir.

In lane B, particles enter from the initial site with a rate of α∗ and move along the lane

from left to right at a unit rate, following the exclusion principle. Upon reaching the

final site, they return to the reservoir with a rate of β. Additionally, each unoccupied

site in lane B can absorb incoming particles from the corresponding vertical site in lane

A at a unit rate.

The extreme ends of the lanes are connected to a limited particle reservoir,

indicating that the total particle count remains conserved in the system. This

conservation is expressed by

Nt = Nr(t) +NA(t) +NB(t), (5.1)

where NA(t) and NB(t) denote the number of particles on lanes A and B, respectively.

Now, implementing a global constraint on the total particle count results in the

regulation of the inflow rate of particles into the lanes based on the number of particles

present in the reservoir. Generally, a diminished particle count in the reservoir suggests

lower entry rates, while an increased reservoir content corresponds to elevated entrance

rates. Therefore, it is rational to consider the entrance rate [110] as

α∗ = α
Nr(t)

Nt

. (5.2)

Here, α represents the inherent entrance rate of particles in the absence of any

restrictions on the particle number. It is evident that Nr(t) ≤ Nt, indicates that entry

rates are bounded between 0 and α. As Nt tends towards infinity, the ratio Nr/Nt

approaches 1, resulting in the convergence of α∗ to α. In this scenario, our model
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reduces to a well-examined two-lane coupled model with infinite resources [81,85]. If

one eliminates the horizontal mobility of particles in lane B within the present model, it

transforms into the model discussed in Ref. [158] under specific conditions. Moreover,

the current model can be conceptualized as two parallel exclusion lanes where lane

A exhibits diffusive dynamics and serves as a feeder for lane B, meanwhile, lane B

exclusively involves the one-dimensional transport of particles.

5.3 Theoretical approach

The occupancy status of any site in the system can be expressed through a set of

binary numbers denoted by τ iA and τ iB for lanes A and B, respectively, where i signifies

the site number. This variable τ iA(τ
i
B) is assigned a ‘0’ if the ith site on lane A(B) is

unoccupied and a ‘1’ if it contains a particle.

The temporal variations in particle occupancy in the bulk sites (1 < i < L) of both

the lanes, as outlined by the master equations, can be stated as follows:

˙⟨τ iA⟩ = J i−1
A − J i−1

A − V i, ˙⟨τ iB⟩ = J i−1
B − J i

B + V i.

Here, J i
j is the current passing from the site i to i + 1 in lane j, (j ∈ {A, B}) and V i

is the vertical transverse current from lane A to B. Also, the symbol ⟨. . . ⟩ represents

the statistical average. The values of these particle currents involving one or two-point

correlators can be expressed as

J i−1
A = ⟨τ iA(1− τ i+1

A )τ iB⟩, J i
B = ⟨τ iB(1− τ i+1

B )⟩, V i = ⟨ωτ iA(1− τ iB)⟩, (5.3)

where ω = 1 is the detachment/attachment rate from/to lane A/B. At the boundary

sites (i = 1, L), we have

˙⟨τ 1A⟩ = α∗⟨(1− τ 1A)⟩ − J1
A − V1, ˙⟨τLA⟩ = JL−1

A − β⟨τLB⟩ − VL,

˙⟨τ 1B⟩ = α∗⟨(1− τ 1B)⟩ − J1
B + V1, ˙⟨τLB⟩ = JL−1

B − β⟨τLB⟩+ VL. (5.4)

To analyze this system further, it is often satisfactory to apply simple mean-field theory

[159] in which, the n-point correlation function is substituted with the product of n

individual 1-point correlator functions neglecting all possible correlations.

5.3.1 Continuum limit

We derive the continuum version of the proposed model by coarse-graining the

discrete lattice with a lattice constant ϵ = 1/L and transforming both space and time

as x = i/L ∈ [0, 1] and t′ = t/L, respectively. Replacing the discrete variables τ iA and
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τ iB with continuous variables ρiA(x) and ρiB(x), respectively, and retaining terms up to

second-order in the Taylor series expansion, we obtain

∂ρA
∂t′

=
ϵρB
2

∂2ρA
∂x2

+ JA
ϵ

2

∂2ρB
∂x2

+ ϵ(1− ρA)
∂ρA
∂x

∂ρB
∂x

− ρB(1− 2ρA)
∂ρA
∂x

− JA
∂ρB
∂x

− LρA(1− ρB), (5.5)

∂ρB
∂t′

=
ϵ

2

∂2ρB
∂x2

+
∂JB
∂x

+ LρA(1− ρB). (5.6)

Note that the subscript i is dropped as each lane is free from inhomogeneity of any kind.

The symbols JA and JB describe the bulk mean-field particle currents in lanes A and B

given by JA = ρA(1−ρA) and JB = ρB(1−ρB), respectively. The last term in both the

Eqs. (5.5) and (5.6) is a result of vertical coupling between the lanes. It is important to

note that this term involves multiplication by the lattice length L, indicating the need

to re-scale the coupling rates for observing competition between vertical and horizontal

movements.

As the boundaries of each lane exhibit distinct behaviour compared to the bulk,

it is necessary to examine their evolution discretely, as outlined in Eq. (5.4). At the

steady state and in the continuum limit (L → ∞), the density evolution equations at

the boundaries simplify to ρA(0) = ρB(0) = α∗ and ρA(1) = ρB(1) = 1− β.

The quantity of our interest is the solution of the system at steady-state which can

be achieved by setting the time derivative equal to zero. Doing so leads to a set of

singularly perturbed differential equations given by

ϵρB
2

∂2ρA
∂x2

+ JA
ϵ

2

∂2ρB
∂x2

+ ϵ(1− ρA)
∂ρA
∂x

∂ρB
∂x

− ρB(1− 2ρA)
∂ρA
∂x

− JA
∂ρB
∂x

− LρA(1− ρB) = 0,

ϵ

2

∂2ρB
∂x2

+
∂JB
∂x

+ LρA(1− ρB) = 0.

(5.7)

Roughly speaking in a singular perturbation problem [160], the transition as the

limit ϵ → 0 is not gradual but rather abrupt. As the perturbation parameter ϵ

diminishes, there is a sudden change in the nature of the problem. Typically, a singular

perturbation problem arises when the perturbation parameter ϵ is introduced into a

differential equation to scale the highest derivative in the equation. Consequently, as ϵ

approaches 0, the order of the differential equation decreases, and the solution to the

lower-order differential equation fails to satisfy all the boundary conditions or initial

conditions at the same time. Thus, the solution experiences an abrupt cessation as ϵ

tends to 0 indicating the formation of boundary layers. To find a global solution to the

system, valid on the whole domain, we need to find two solutions: the inner-solution and

the outer-solution. The outer-solution captures the behaviour away from the boundary
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layer, while the inner-solution provides a detailed description of the boundary layer.

Finally, it is essential to match these solutions effectively to derive the particle density

at each site. We begin by exploring analytical and numerical methods to derive the

outer-solutions.

5.4 Bulk solution

Here, we present two approaches for obtaining the outer-solution or the bulk particle

density for each lane.

5.4.1 Numerical technique

In this context, we outline an approach to deduce the density profile of the system

by numerically solving the continuum formulations of the partial differential equations

as presented in Eqs. (5.5) and (5.6). This technique offers two primary benefits. Firstly,

it is straightforward to implement and can be readily adapted for generalizations of the

current model. Secondly, it proves valuable in situations where analytical treatment

of the problem is unfeasible, providing an alternative means to derive solutions. The

initial step involves discretizing the partial differential equation using a finite difference

operator, following a similar approach as demonstrated in previous chapters (refer to

Appendix (2.9)).

In the following section, we derive explicit expressions for the particle densities and

currents at each site within both lanes. These expressions will simplify our task and

facilitate a more comprehensive analysis of the stationary properties.

5.4.2 Cluster mean-field theory

To obtain explicit expressions for essential stationary properties in the current

model, it is crucial to employ a theoretical framework that adequately accounts for

correlations. An example of such a theory is the vertical cluster mean-field, which

specifically addresses the behaviour of particles along the vertical direction. This

methodology has proven to be valuable in accurately capturing the properties of various

two-lane transport systems [81–85].

The current system allows for three types of vertical clusters: fully occupied,

half-filled, and fully empty as shown in Fig. (5.2a). In the case of a fully filled vertical

cluster, denoted as (11), both sites are occupied. On the other hand, scenarios (01)

and (10) represent half-filled situations, with particles located in either lane A or lane

B, respectively. Finally, an empty cluster is designated by (00). Let us define the

probabilities for these potential configurations of a vertical cluster by P11, P01, P10,
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and P00. For the conservation of probabilities, it is necessary that

P00 + P10 + P01 + P11 = 1, (5.8)

which is also called as the normalization condition. Thus, the bulk particle densities on

each lane can be expressed by utilizing these vertical cluster probabilities as

ρA = P11 + P10, ρB = P11 + P01. (5.9)

The absence of any form of inhomogeneity in the bulk indicates a reasonable assumption

that the cluster probabilities remain unaffected by the spatial position of the vertical

cluster. Thus, the master equation governing the evolution of these vertical clusters

can be expressed as

dP11

dt
= P01P10 + P11P01 + P11P10 − 2P11P00 − P11P01 − P11P10, (5.10)

dP10

dt
= 2P11P00 + P11P10 − P10. (5.11)
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Figure 5.2: (a) Possible states of a vertical cluster in the two-lane system. (b)Feasible
transitions in a vertical cluster. (i) P10P01, (ii) P10P00, (iii) P10, (iv) P11P00, (v) P11P10,
and (vi) P11P01.

Each expression on the right-hand side can be easily comprehended through the

visual representations depicted in Fig. (5.2b). The master equation corresponding

to P01 can be formulated using a similar approach and deriving the equation for P00

becomes straightforward by applying the normalization condition outlined in Eq. (5.8).

Our primary objective is to discern the solutions corresponding to the long-term

behaviour of the system. Consequently, we establish the following conditions:

dP00

dt
=

dP10

dt
=

dP01

dt
=

dP11

dt
= 0. (5.12)
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By utilizing Eq. (5.8) as well as Eqs. (5.10) - (5.11) in Eq. (5.12), we derive the

following set of equations written as

2P11P00 = P01P10, 2P11P00 + P11P10 = P10. (5.13)

These equations can be solved concurrently, leading to two distinct scenarios:

(i) P10 = P11 = 0, (ii) P10 = P00 = 0. (5.14)

By applying the particle density expression for each lane as outlined in Eq. (5.9) to

the above equations, we can draw two conclusions: In scenario (i) lane A displays zero

particle density, whereas in (ii) lane B is entirely occupied with a particle density of 1.

Before proceeding with further analysis, it is essential to highlight that the system

is subject to open boundary conditions. To conduct a comprehensive examination of

the system, one must account for both the entry and exit currents from the system,

represented by the following equations

JA(0) = α∗(1− P11 − P10), JA(1) = βP11,

JB(0) = α∗(1− P11 − P01), JB(1) = β(P11 + P01). (5.15)

Similarly, the bulk current for each lane can be stated by

JA = P11(1− P11 − P10), JB = P11 + P01(1− P11 − P01). (5.16)

As the particle current remains consistently continuous across the system, it allows us

to establish a relationship between the bulk and boundary currents:

JA(0) + JB(0) = JA + JB = JA(1) + JB(1). (5.17)

Now, we can leverage the fact that the system is connected to a finite particle reservoir

with a reservoir occupancy of Nr. Returning to the particle number conservation (PNC)

equation, as expressed in Eq. (5.1), we can restate it as

µ = r +
1

2

(∫ 1

0

ρA(x)dx+

∫ 1

0

ρB(x)dx

)
. (5.18)

In this context, µ = Nt/(2L) signifies the filling factor, which is a measure of the ratio

of the total number of particles to the total number of sites in a system. Furthermore,

we employ the variable r to denote the reservoir density.

Now, with all the essential components in hand, our attention shifts to a

comprehensive analysis of the important stationary properties of the system. The
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objective is to derive explicit expressions for both particle densities and reservoir density.

This will be achieved by leveraging the solutions obtained from the vertical master

equation, as indicated by Eq. (5.14), and by incorporating the principles of current

continuity, as expressed in Eq. (5.17) and particle number conservation, as given in

Eq. (5.18). These explicit expressions will subsequently be employed to quantify the

stationary characteristics of the system, encompassing phase diagrams, density profiles,

particle currents, and potential phase transitions.

Now, let us explore the possible stationary phases that could endure in the two-lane

strongly coupled system with constrained resources. To begin, we employ the notation

P/Q to represent a phase of the system, where P and Q signify a phase manifested by

lanes A and B, respectively. Derived from the two solutions to vertical probabilities

outlined in Eq. (5.14), two distinct scenarios emerge. (i) lane A exhibits zero particle

density, whereas in case (ii) lane B is completely filled with a maximum particle density

of 1. Both of these cases depict a condition of zero particle current, leading us to label

the corresponding phases in the respective lanes as ZC0 and ZC1, where the subscript

indicates the particle density. In each of these situations, the opposing lane can manifest

any of the four phases: LD, HD, MC, and S. Now, we examine each of these situations

individually.

5.4.2.1 Zero particle current in lane A: (ZC0/Q)

Let us start by considering the scenario where P10 = P11 = 0. According to Eq.

(5.9), we get ρA = 0, signifying the case of zero particle density in lane A. Consequently,

the particle currents given by Eqs. (5.15) and (5.16) are simplified to

JA(0) = α∗, JA = 0, JA(1) = 0,

JB(0) = α∗(1− P01), JB = P01(1− P01), JB(1) = βP01.
(5.19)

With P10 = 0 and P11 = 0 in this system, the vertical cluster (01) can be interpreted as

particles, and the corresponding holes are denoted by (00). Thus, the two-lane system

can be viewed as one-lane system with some entrance rate αeff and exit rate β. Here,

lane A is in the ZC0 phase and the other lane can assume one of the following phases:

LD, HD, MC, or S. Now, we scrutinize each of these phases individually.

1. ZC0/LD phase. In this entrance dominated phase, the particle current is governed

by the entry parameter implying that P01 = αeff . By utilizing the continuity of

current across the lanes, we can write

αeff (1− P01) = α∗ + α∗(1− P01).

The above can be solved to calculate the expression for the effective entrance rate



124 Chapter 5. Limited resources in a model with biased lane-changing mechanism

as

αeff =
1

2

(
1 + α∗ −

√
(1 + α∗)2 − 8α∗

)
, (5.20)

which is valid for α∗ < 1
6
We must recall that the parameter α∗ is regulated by the

reservoir density r and the filling factor µ. Thus, we exploit the particle conservation

criteria given by Eq. (5.18), which can be restated as µ = r+αeff/2 and then solved

to determine the value of reservoir density as

r =
1

2(α + 2µ)

(
α(µ− 1) + µ(4µ− 1) +

√
α2(µ− 1)2 + 2α(1− 3µ)µ+ µ2

)
.

The existential criteria for this phase can be written as follows

αeff < β, α∗ <
1

6
. (5.21)

In the limit, µ → ∞, α∗ tends to converge to α. This results in the effective rate

αeff matching the calculated effective rate for this phase when resources are infinite,

as detailed in Ref. [81].

2. ZC0/HD phase. Here, lane A remains in the zero current phase while lane B

displays high density phase. The current continuity equation in this case takes a

simplified form

P01(1− P01) = βP01 =⇒ P01 = 1− β. (5.22)

Utilizing PNC, we retrieve the reservoir density r = 2µ−1+β
2

. The feasible region

corresponding to phase requires β to remain less than 0.5 and the effective entrance

rate which leads to

2µβ(1− β)

(2− β)(2µ− 1 + β)
< α <

2βµ

(2µ− 1 + β)
. (5.23)

Clearly, when µ → ∞, the condition for the existence of a (0/HD) phase in a system

with no constraint on particle resources is recovered [81].

3. ZC0/MC phase. Let us assume that lane B exhibits maximal current phase with

particle density given by 0.5 and current equal to 0.25. In such a scenario, we get

P00 = P01 = 0.5. By particle number conservation, the value of reservoir density can

be procured as

r = µ− 0.25. (5.24)

Moreover, the other parameters are αeff = 3α∗ and α∗ = α(4µ−1)
4µ

. Using all these

expressions, the condition for the existence of this phase can be framed by

max

{
α∗,

1

2

}
< β,

1

6
< α∗ <

1

2
. (5.25)
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As µ approaches infinity, the expression for the effective entry rate coincides with

the scenario involving infinite resources, as documented in Ref. [81].

4. ZC0/S phase. Presume that lane A displays particle density 0, while lane B exhibit

a discontinuity in the density profile connecting a section of low density on the left

to a section of high density on the right. We prefer to denote the position of this

sudden transition in lane B by xB.

As lane B is in the low density phase on the left, we observe that P01 = αeff near

the left boundary, and the effective entrance rate remains the same, as indicated by

Eq. (5.20). The criteria for the persistence of the shock phase require that the entry

rate must be equal to the exit rate, thus leading to

r =
βµ(1− β)

α(2− β)
. (5.26)

The only variable remaining to be determined is the position of the shock, which can

be derived from the conservation of particles and expressed in a simplified form as

xB =
1− β − 2(µ− r)

α(2− β)
. (5.27)

Finally, the boundary parameters must satisfy the following to display this phase:

0 < xB < 1, β < 0.5. (5.28)

This phase ceases to exist in case µ → ∞.

5.4.2.2 Zero particle current in lane B: (P/ZC1)

Now, let’s consider the alternate scenario where P00 = P10 = 0. As a consequence,

the particle density in lane B reaches its maximum value of 1, resulting in zero particle

current. The revised value of the particle currents are detailed as follows:

JA(0) = α∗(1− P11), JA = P11(1− P11), JA(1) = βP11,

JB(0) = 0, JB = 0, JB(1) = β.
(5.29)

In this situation, particles in lane B are represented by the fully filled vertical cluster

(11), while a vacancy corresponds to (10). Consequently, in this case, the two-lane

system can be conceptualized as a one-dimensional TASEP system with an entry rate

of α∗ and an effective exit rate denoted by βeff . Also, lane B remains in the ZC1 phase,

while lane A can exhibit any of the four phases: LD, HD, MC, and S.

1. HD/ZC1 phase. The stationary particle density of lane A is given by 1 − βeff ,
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while that of lane B is 0. This relationship implies that P11 = 1 − βeff . Applying

the current continuity principle, we have

P11(1− P11) = βP11 + β = βeffP11. (5.30)

Solving this equation yields the value of the effective exit rate as

βeff =
1

2

(
1 + β −

√
(1 + β)2 − 8β

)
. (5.31)

Now we make use of Eq. (5.18) to calculate reservoir density expressed as

r =
1

4

(
β − 3 + 4µ−

√
1− 6β + β2

)
. (5.32)

Finally, the conditions fulfilled by this phase are delineated as

βeff < α∗, β <
1

6
. (5.33)

2. LD/ZC1 phase. During this phase, we assume that lane A portray the LD phase.

In such scenarios, P11 = α∗ and the reservoir density is given by

r =
µ(2µ− 1)

α + 2µ
. (5.34)

Under these circumstances, the existential condition for this phase is

α∗(1− α∗)

2− α∗ < β < α∗ <
1

2
. (5.35)

3. MC/ZC1 phase. During this phase, lane A experiences a maximal current phase

with particle density given by 0.5. So, we have P11 = P01 = 0.5. The resulting

reservoir density is given by r = µ − 0.75. The effective exit rate can be obtained

straightforwardly as βeff = 1− β. Therefore, this phase persists only when

1

6
< β <

1

2
< α∗. (5.36)

4. S/ZC1 phase. In this scenario, a shock persists in lane A, linking a segment with

particle density α∗ on the left to a region with particle density 1−βeff on the right,

separated at the point denoted by xA. The effective exit rate retains the same value

as expressed in Eq. (5.31). For lane A to display the shock phase, it must adhere to
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the condition α∗ = βeff , providing us with the reservoir density expressed as

r =
µ
(
1 + β −

√
1− 6β + β2

)
2α

. (5.37)

Revisiting Eq. (5.18) allows us to calculate the shock position in this case, given by

xA =
2− α∗ − 2(µ− r)

1− 2α∗ . (5.38)

Hence, the determined region for this phase must meet the criteria of 0 < xA < 1 in

conjunction with α∗ < 0.5. This phase vanishes when µ tends to 0.

In addition to the aforementioned phases, several other phases are observed, arising

from the combination of the two scenarios. During these phases, certain region of

the system exhibit P/ZC1, while the remaining part displays ZC0/Q. Considering that

particle current must remain continuous across each lane, these two scenarios can be

appropriately aligned.

5.4.2.3 Other phases

We choose to represent these phases as R-S/M-N, where R(S) indicates the type of

stationary phase on the left(right) of lane A, while M(N) denotes the stationary phase

on the left(right) of lane B. The stationary properties for such phases are discussed

below.

1. LD-ZC0/ZC1-HD phase. In this phase, we observe a LD/ZC1 phase on the left

connected to a ZC0/HD region on the right, and the position of the domain wall in

each lane is represented by xA and xB. As mentioned previously, this phase can be

visualized as two single-lane TASEP models. The first has an entry rate of α∗ and an

exit rate of βeff , while the other subsystem has αeff -β as the boundary parameters.

To ensure current continuity in the system, the shock position must be synchronized

between both lanes. Therefore, we employ the notation xs to represent the common

shock position. Additionally, for the system to maintain the shock phase, we must

have αeff = βeff , which leads to the condition α∗ = β, enabling us to derive the

reservoir density as r = βµ/α. To determine the position of the shock in this phase,

we use the conservation of particles, transforming Eq. (5.18) into:

µ = r +
1

2

[∫ xs

0

(α∗ + 1)dx+

∫ 1

xs

(0 + 1− β)dx

]
(5.39)

which yields

xs =
2(µ− r)− (1− β)

2β
. (5.40)
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Thus, the identified region in the phase diagram corresponding to this phase is

0 < xs < 1, β < 0.5. (5.41)

In the presence of an infinite supply of particles, this phase does not persist.

2. MC-ZC0/ZC1-MC phase. Here, the left bulk of the system remains in MC/ZC1

phase while the right bulk displays ZC0/MC phase. As elaborated in the preceding

case, the synchronization of the shock position between two lanes is evident.

Specifically, the particle density in each lane can be written as

ρA =

0.5, if 0 < x < xs,

0, if xs < x < 1,
ρB =

1, if 0 < x < xs,

0.5, if xs < x < 1,
(5.42)

where xs gives the common shock position. Therefore, this phase is entirely

dominated by the bulk. The position of the shock can be determined by applying

particle-hole symmetry.

In the limit as µ approaches infinity, the shock position stabilizes at 0.5 [81], leading

us to characterize this phase as a Meissner phase.

The analysis presented thus far yields the outer-solution, representing the bulk particle

density for both lanes. Now, we will explore the methodology for calculating the

inner-solutions associated with each phase.

5.5 Inner-solution: Boundary layer analysis

To elucidate the characteristics of the boundary layer, we first analyze the behaviour

of the system in the thermodynamic limit. Under this condition, Eq. (5.7) transforms

into a set of first-order differential equations, each accompanied by two boundary

conditions, resulting in an over-determined system. In such cases, a boundary layer

is observed either within the bulk or at the boundaries. The solution of the first-order

differential equations is called the outer or bulk solution and delineates the major

portion of the density profile, whose thorough analysis has been conducted in the

preceding section. Such a solution will be denoted by ρbA and ρbB for the two lanes.

Here, we provide a summary of the methodology associated with obtaining the

boundary layer solution. For a comprehensive understanding, readers can refer to Ref.

[161]. The outer-solution satisfies a first-order differential equation, accommodating at

most a single boundary condition. To address the other condition, a boundary layer

emerges within the density profile. This layer must adhere to two essential criteria: (i) It

must fulfill the other boundary condition, and (ii) it must asymptotically approach the
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outer-solution. Generally, the boundary layer satisfies one boundary condition, while

the outer-solution addresses the other. Nevertheless, in certain scenarios, a boundary

layer within the system’s bulk can separate two outer-solutions, each of them meeting

one of the boundary conditions. Therefore, it can be concluded that the presence of

this layer is not confined solely to the peripheries or boundaries of the system. This

boundary layer solution is referred to as the inner-solution and is denoted by ρinA /ρinB .

In the preceding section, we have successfully determined the outer-solution by

examining two distinct situations: the first involving zero particle current along with

density zero in lane A, and the second featuring zero particle current in lane B but

with a maximum particle density set at 1. Since the boundary layer solution must

asymptotically align with the outer-solution, it is crucial to compute the inner-solution

while taking into account the characteristics of the outer-solution.

1. Zero particle current in lane A. As elucidated earlier, the stationary

characteristics in this scenario are dictated by Eq. (5.19), where both the particle

current and density in the bulk as well as at the exit sites of lane A are precisely

zero, but a non-zero particle current is present at the entrance site. Consequently,

we expect the existence of a boundary layer merely at the left boundary in lane A.

Our primary objective now is to compute the boundary layer or the inner-solution

pertaining to lane B. We have the following continuum system at the steady state

ϵ

2

∂2ρB
∂x2

+ (1− 2ρB)
∂ρB
∂x

= 0. (5.43)

To derive a boundary layer solution, it is convenient to introduce a re-scaled variable,

denoted as a = (x− x0)/ϵ, where x0 signifies the location of the boundary layer. If

there is a boundary layer at the left end, x0 is set at 0, and with ϵ approaching 0,

the variable a tends towards ∞. Similarly, in case x0 = 1, then a → −∞ as ϵ → 0.

Now, in terms of the re-scaled position, the differential equation given by Eq. (5.43)

gets modified to
1

2

d2ρinB
da2

+ (2ρinB − 1)
dρinB
da

= 0, (5.44)

which on integrating once yields

1

2

dρinB
da

− ρinB (1− ρinB ) = k0, (5.45)

where k0 is the constant of integration. Calculating the value of this constant using

the criteria that the inner-solution must saturate to the outer-solution gives k0 =
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ρbB(ρ
b
B − 1). Further integration yields:

ρinB (a) =
1

2
+

|2ρbB − 1|
2

coth
(
a|2ρbB − 1|+ k2

)
,

ρinB (a) =
1

2
+

|2ρbB − 1|
2

tanh
(
a|2ρbB − 1|+ k2

)
.

(5.46)

Here, 1
|2ρbB−1| is the width of the boundary layer with respect to a and the constant

k2 gives the centre of the boundary layer. Moreover, these constants depend on the

boundary condition that the inner-solution satisfy.

We adopt the notation Tk/Ck to describe a boundary layer of tanh / coth type as

given by Eq. (5.46) for the different phases of the system. Here, k can take the values

l, b, or r indicating the presence of a boundary layer at the left end, in the bulk, or

at the right end, respectively. In the following discussion, we scrutinize each of the

previously mentioned scenarios regarding the outer-solution for their corresponding

boundary layer solutions.

• ZC0/LD phase. In this particular case, the outer-solution for lane B satisfies

the left boundary condition at x = 0, clearly indicating the manifestation of a

boundary layer at the right end. Here, the corresponding bulk densities are ρbA = 0

and ρbB = αeff , where αeff is determined by Eq. (5.20).

In lane A, only the entry current is non-zero, giving rise to a boundary layer of

Cl type characterized by a positive slope. On the other lane, two distinct types of

boundary-layer solutions appear in the vicinity of the boundary at x = 1 depending

upon the entry-exit parameters. When αeff < 1− β, the boundary layer exhibits

a positive slope, and the corresponding inner-solution follows a tanh-type profile.

Conversely, when αeff > 1− β, the boundary layer displays a negative slope, and

the inner-solution takes on a coth-type profile. Thus the two types of boundary

layers in this case are denoted by Cl/Tr and Cl/Cr which are separated by the

boundary αeff = 1−β. We prefer to use the term ‘surface transitions’ to describe

such changes occurring within a specific phase.

• ZC0/HD phase. Similar to the previous case, a boundary layer of Cl type emerges

in lane A. The outer-solution in lane B is an exit-dominated phase and adheres

to the right boundary condition, while the inner-solution satisfies the condition at

x = 0. When 1−β < αeff , the boundary layer must have a positive slope, making

it necessary to employ a coth-type inner-solution. Conversely, when 1−β > αeff ,

the boundary layer, featuring a negative slope, is associated with a tanh-type

solution. Therefore, the boundary layer solution Cl/Tl is distinguished from Cl/Cl

by the line αeff = 1− β.

• ZC0/S phase. In this context, a stationary shock emerges in the density profile
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of lane B, connecting a region of LD phase with a particle density of αeff = α∗ to

an HD phase with density 1− β. The position of this shock is denoted as xB and

is determined by Eq. (5.27). Consequently, the outer-solution comprises of two

segments: one with a density less than 0.5 (on the left) and the other greater than

0.5. This gives rise to a boundary layer of the tanh-type, thus labelled as Cl/Tb.

• ZC0/MC phase. Here, lane B exhibits a maximal current phase where the bulk

density is precisely equals 0.5. To satisfy the two boundary conditions, specifically

ρB(0) = α∗ and ρB(1) = 1 − β, a boundary layer must be present at each end.

The conditions for the existence of this phase are α∗ > 0.5 and β > 0.5, implying

that ρB(1) < 0.5 < ρB(0). Consequently, a boundary layer of coth-type appears

at both ends and can be denoted as Cl/Cl,r.

2. Zero particle current in lane B. The stationary particle currents in this instance

are determined by Eq. (5.29), indicating the emergence of a boundary layer on the

right boundary of lane B. Following a similar procedure as in the previous case, two

types of boundary layers are identified, labelled as tanh-type and coth-type.

• HD/ZC1 phase. In this case, two distinct types of boundary conditions are

observed: Tl/Cr and Cl/Cr which are distinguished by the line α∗ = 1− βeff .

• LD/ZC1 phase. A tanh-type boundary layer is observed in lane A when α∗ <

1− βeff , whereas it is of coth-type when α∗ > 1− βeff .

• S/ZC1 phase. A stationary shock phase manifests in the density profile with the

shock position denoted as xA. The corresponding boundary layer is characterized

by Tb/Cr.

• MC/ZC1 phase. In this case, a boundary layer of the type Cl,r/Cr emerges in

the density profile.

3. Other phases. As previously explained, in such phase, lane A exhibits the P-ZC0

phases, while the other displays the ZC1-Q phase.

• LD-ZC0/ZC1-HD phase. In this phase, the boundary layer is not limited to the

boundaries; rather, it manifests in the bulk in the form of a shock at the position

xs, thus taking on the form of Cb/Cb.

• MC-ZC0/ZC1-MC phase. Applying a similar approach, in this case, a

boundary layer of the type Cl,b/Cb,r emerges.

5.6 Results and discussion

In this section, we conduct a thorough exploration of the steady-state characteristics

within the proposed model, with a particular emphasis on the stationary phase
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diagrams. To validate the theoretical findings, we perform Kinetic Monte Carlo

simulations (akin to Gillespie Algorithm) with the lattice size of each lane L = 1000.

These simulation points are graphed with an accuracy of less than 2% in each figure, a

precision reflected by the size of the symbols employed in the plots.

5.6.1 Stationary phase diagrams

We examine the stationary behaviour of the system under different filling factors

in the α − β phase plane. The values of µ are selected such that they explain all the

possible and crucial structural changes in the phase diagrams.

Figure (5.3) presents stationary phase diagrams for various filling factor values,

capturing topological changes and providing a comprehensive characterization of phases

through their boundary layers. Solid lines denote bulk transitions, while dashed

lines indicate surface transitions. Theoretical critical values for µ that correspond to

qualitative changes can be obtained from Eqs. (5.24), (5.35), and (5.33) and are given

by

µc1 = 0.25, µc2 = 0.5, and µc3 = 0.75. (5.47)

For µ ≤ µc1 , the phase diagram is characterized by only two stationary phases: ZC0/LD

and ZC0/S (refer to Fig. (5.3a)). As µ increases within the range µc1 ≤ µ ≤
µc2 , four distinct phases emerge, namely ZC0/HD, ZC0/MC, LD-ZC0/ZC1-HD, and

MC-ZC0/ZC1-MC, as evident from Fig. (5.3b). Beyond the critical value µc2 , the

system undergoes substantial topological changes both qualitatively and quantitatively,

with the addition of LD/ZC1 and S/ZC1 phases. So, the phase schema now exhibits

a total of 8 phases, as depicted in Fig. (5.3d). The domain occupied by the

MC-ZC0/ZC1-MC phase can be classified into two types. In one, the position of the

shock is contingent upon the boundary parameters α−β, while in the other, the position

is consistently fixed at 0.5, no longer influenced by the rates α and β. Thus, the latter

case can be categorized as a Meissner phase. After the critical value µc3 , two new phases

emerge in the phase diagram namely, MC/ZC1 and HD/ZC1 as shown in Fig. (5.3e).

At this point, the phase diagram displays the maximum number of phases and includes

all possible phases for the system. A further increase in the value of µ results in the

shrinkage and expansion of the phase regions (see Fig. (5.3f) - Fig. (5.3h)). Finally, in

the limit µ → ∞, the phase diagram becomes much simpler, consisting of only seven

phases as shown in Fig. (5.3i) and the results of Ref. [81] are recovered.

Now, we would like to emphasize a few observations that can be derived from these

phase diagrams. In all the phases of the form ZC0/Q where Q ∈ {LD, HD, MC, S}, as
confirmed by Eq. (5.19), particles enter both lanes, but exit exclusively from lane B.

The detachment(attachment) of particles from(to) lane A(B) compels the particles to

swiftly shift to lane B upon entry through lane A. Consequently, particle progression
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Figure 5.3: Phase diagrams for stationary states for different values of µ: (a) µ = 0.1,
(b) µ = 0.4, (c) µ = 0.5, (d) µ = 0.6, (e) µ = 0.9, (f) µ = 1, (g) µ = 1.5, (h)
µ = 3, and (i) µ → ∞. Each diagram delineates both bulk and surface transitions,
categorized through boundary layer analysis. Solid lines denote bulk transitions, while
dashed (thick red) lines describe surface transitions. M designates the Meissner phase
phase corresponding to MC-ZC0/ZC1-MC phase which is independent of the boundary
parameters.

occurs solely along lane B. In phases exhibiting zero particle current in lane B and

density equal to 1 (P/ZC1 form), particles enter exclusively through lane A, yet they

exit through both lanes. It is evident from Fig. (5.3) that these phases exist primarily

for smaller values of β, indicating that a slow exit rate results in the accumulation

of particles in lane B until a point is reached where no particle movement becomes
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possible. Thus, the mobility of the particles is only possible in lane A.

A noteworthy observation in the current system is the identification of two phases

characterized by downward shocks. Typically a downward shock refers to a sudden

and significant decrease in the particle density. Such types of shocks are observed

in LD-ZC0/ZC1-HD phase and MC-ZC0/ZC1-MC phase. In LD-ZC0/ZC1-HD phase,

the position of the downward shock is given by Eq. (5.40) which depends upon two

parameters µ and β. This shock links a segment in the low density phase on the left

to the zero density phase on the right in lane A. Simultaneously, in lane B, it connects

a region with particle density 1 on the left to the high density phase on the right.

Furthermore, the location of this downward shock is coordinated in both lanes. A

similar observation applies to the MC-ZC0/ZC1-MC phase, but the downward shock

remains within the interval [0, 0.5]. When this position is precisely equals 0.5, we prefer

to characterize the phase as the Meissner phase, as in this case, the density profiles

are independent of the boundary parameters α − β. In these phases, the entry of the

particles is limited solely through lane A. However, owing to the attachment-detachment

mechanism, their exit is exclusively facilitated through lane B. Now, we will discuss each

of these shock phases in detail in the upcoming section.

5.6.2 Shock dynamics and phase transitions

In this section, we commence our discussion by scrutinizing the characteristics of

the diverse types of shocks present in the system. There are four phases involving

a discontinuity in the density profiles, namely ZC0/S, S/ZC1, LD-ZC0/ZC1-HD, and

MC-ZC0/ZC1-MC. In the former two phases, there is an upward shock confined to only

one lane. Conversely, the latter two phases display a synchronized downward shock in

both lanes.

5.6.2.1 Upward unsynchronized shock

Initially, our attention is directed towards examining how the shock propagates in

ZC0/S and S/ZC1 phase concerning variations in both the entry and exit rates. This

analysis relies on the analytical expression derived in Sections (5.4.2.1) and (5.4.2.2).

The shock’s velocity in ZC0/S and S/ZC1 phases is given by

V =

β − αeff , for ZC0/S phase,

βeff − α∗, for S/ZC1 phase,

where αeff and βeff is given by Eq. (5.20) and (5.31), respectively. To achieve a

stationary shock, the velocity must be zero, indicating that β = αeff and βeff = α∗.
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The position of the shock can be represented as

xB =
1− β − 2(µ− r)

α(2− β)
, xA =

2− α∗ − 2(µ− r)

1− 2α∗ ,

corresponding to ZC0/S and S/ZC1 phase, respectively. To analyze the behaviour of
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Figure 5.4: (a) Density profiles of particles in lane A with α = 2, µ = 0.4, and β =
0.01, 0.05, 0.1, 0.15, and β = 0.24. (b) Position and height of the shock in ZC0/S phase
with respect to β for fixed α = 2 and µ = 0.4. The variable ∆ = 1− β −αeff gives the
height of the shock. Symbols describe Monte Carlo results, while solid/dashed/dotted
lines correspond to theoretical findings.

the shock in the ZC0/S phase, we fix µ = 0.4 and α = 2 and systematically vary the

exit rate β. In Fig. (5.4), we present density profiles, shock position, and shock height

for different values of β, providing a visual representation of the shock’s dynamics. The

observation reveals that with increasing β, the shock moves from the left towards the

right and eventually reaches the left boundary of lane B, as depicted in Fig. (5.4).

Furthermore, the shock height decreases linearly with respect to β. The corresponding

value of height of the shock is ∆ = 1 − β − αeff = 1 − 2β and maintains a positive

value as xB approaches 0. This phenomenon suggests the existence of a tanh-type

boundary layer at the left end, signifying a transition from the ZC0/S phase to the

ZC0/HD phase. Physically, this can be understood as follows. When β = 0, signifying

a zero exit rate, particles tend to accumulate near the right end of lane B. As a result,

the particle number in the reservoir increases, ultimately enhancing the effective entry

rate. Consequently, the particle density at the left end rises while at the right end, it

decreases, resulting in a reduction in the height of the shock. Conversely, in investigating

the propagation of the shock with fixed µ = 0.4 and β = 0.2, while varying α, it is noted

that the rapid movement of xA inversely correlates with α, causing the shock height

to shift swiftly from 1 to 0 (see Fig. (5.5)). Meanwhile, the shock height maintains a

steady value of 1− 2β.

Comparable analyses can be employed to investigate the S/ZC1 phase. When
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Figure 5.5: (a) Density profiles of particles in lane A with β = 0.2, µ = 0.4, and
α = 0.1, 0.2, 1, and β = 8. (b) Position and height of the shock in ZC0/S phase with
respect to α for fixed β = 0.2 and µ = 0.4. The variable ∆ = 1 − β − αeff gives the
height of the shock. Symbols describe Monte Carlo results, while solid/dashed/dotted
lines correspond to theoretical findings.

(µ, β) is fixed at (0.9, 0.1), the shock consistently moves towards the left and its height

stabilizes at a constant value of −β+
√

1− 6β + β2 which can be computed by utilizing

Eq. (5.38).

5.6.2.2 Downward synchronized shock

Now, we explore the shock dynamics for the phases involving synchronized shocks

in both lanes. Employing µ = 1 and β = 0.4, we continuously increase the entry rate

of the particles (refer to Fig. (5.6)). The position and the height of the shock in this

category is given by

xs =
2(µ− r)− (1− β)

2β
, ∆ = β. (5.48)

The system enters this phase at α ≈ 0.58 just before which the system manifests the

ZC0/HD phase. As the value of α increases, the position of the boundary layer starts

shifting from the left end of the lanes to enter the bulk of both the lanes and thus

the system exhibits the LD-ZC0/ZC1-HD phase constituting a downward shock in each

lane. At the critical value of α ≈ 1.34, this downward shock reaches the right end of the

lanes and the system transitions into LD/ZC1 phase. However, no change in the height

of the shock occurs, finally, a boundary layer of coth-type is detected in LD/ZC1 for

both lanes. From the above analysis, one can conclude that a second-order transition

occurs from ZC0/HD to LD-ZC0/ZC1-HD to LD/ZC1 phase if one considers particle

density as the order parameter.

Upon investigation of the other scenario, i.e., fixing α = 0.8, and changing

β, we observe a continuous phase transition from LD-ZC0/ZC1-HD phase to

MC-ZC0/ZC1-MC phase as shown in Fig. (5.7). At (α, β) = (0.8, 0.28), the system is in
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Figure 5.6: (a) Density Profile and (b) position as well as the height of the shock in
LD-ZC0/ZC1-HD phase for fixed (µ, β) = (1, 0.4). The variable ∆ = β gives the height
of the shock. Symbols describe Monte Carlo results, while solid/dashed lines correspond
to theoretical findings.

LD/ZC1. If one monitors the position and the height of the shock, they monotonically

decrease and increase, respectively with an increasing exit rate up till β = 0.5. Both

of these values saturate at the point ∆ = 0.5, thus violating the condition of existence

of LD-ZC0/ZC1-HD phase. So, the system transitions into MC-ZC0/ZC1-MC phase

indicating a second-order continuous transition.
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Figure 5.7: (a) Density Profile and (b) position as well as the height of the shock
in LD-ZC0/ZC1-HD phase for fixed (µ, α) = (1, 0.8) and different values of β. The
variable ∆ gives the height of the shock. Symbols describe Monte Carlo results, while
solid/dashed lines correspond to theoretical findings.

5.7 Summary and conclusion

To summarize, we offer a thorough overview of two totally asymmetric simple

exclusion lanes: one characterized by particle detachment and the other by particle
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attachment. In particular, the particles of a specific lane are compelled to move

vertically once the corresponding vertical site becomes vacant. If this vertical movement

is not feasible, they simply pursue horizontal motion along their designated lane.

Investigation of this interconnected system occurs within a constrained resource setting,

where the filling factor defines the number of particles in the system. This restriction

influences the entry rate of particles into the lanes.

The particle movement relies significantly on the vertical site in the adjacent lane, so

we employ the vertical cluster mean-field technique to establish a theoretical framework.

This approach aids in deriving explicit expressions for the bulk stationary properties of

each lane. However, to thoroughly analyze the system, we utilize singular perturbation

theory to explore the stationary properties of the system in detail. To corroborate

our analytical findings, we conduct kinetic Monte Carlo simulations (equivalent to the

Gillespie algorithm) for validation, complemented by a numerical approach involving a

finite difference scheme applied to the continuum version of the system.

By employing a combination of analytical and numerical methods, we investigate

the influence of limited particle resources on critical stationary properties of the system,

including phase diagrams, particle densities, and phase transitions. Our analysis reveals

two types of stationary phases: (i) one lane displays zero particle density, while (ii) the

other lane exhibits maximum particle density, each implying no particle flow. The

phase diagram undergoes notable qualitative and quantitative changes as the particle

count in the system varies. Initially less complex, the phase diagram becomes more

intricate with an intermediate particle count, eventually settling again into a simpler

form. Specifically, the number of phases transitions from 2 to 6 to 8 to 10, where it

reaches its maximum before decreasing to 7 in the case of infinite particle resources.

This implies that the number of phases that can persists follows a non-monotonic trend

with increasing particles in the system. Each phase diagram exhibits both bulk and

surface transitions, the latter arising from the presence of a boundary layer in the

system. Precisely, two types of surface transitions, tanh and coth, are observed in the

system.

A salient feature of our study is the manifestation of both upward and downward

shock in the system. The bulk solution to the left of an upward shock exhibits a smaller

magnitude compared to the bulk solution on the right side. Conversely, in the scenario

of a downward shock, this trend is reversed. The system manifests two phases marked

by an upward shock and two phases defined by a downward shock. Under a specific set of

parameters, the upward shock is localized to one lane within the system. Conversely, in

the case of a downward shock, both lanes experience this phenomenon, and the shocks in

both lanes are synchronized. We analyze the propagation of shocks concerning changes

in both entrance and exit rates, aiming for a comprehensive understanding of the phase

transitions occurring in the system.



Chapter 6

Particle creation and annihilation in

an exclusion process on networks

So far, we’ve addressed the implications of finite resources on both single and

multiple-lane structures. However, various scenarios involve complex network topologies

where the entities perform attachment and detachment, a phenomenon known as

Langmuir Kinetics. This chapter1 is dedicated to exploring a junction-type structure

wherein certain segments converge at the junction and subsequently diverge, forming

multiple segments, each integrated with Langmuir Kinetics.

6.1 Motivation and background

The key to rationalizing the stochastic dynamics on a network is to understand

the processes at the junction. Junctions can be thought of as locations where traffic

changes its route or directions. Several generalizations of the TASEP network with

junctions have been employed. For example, the quantitative characterization of a

single-lane road that bifurcates into two equivalent branches and subsequently merges

again into a single lane has been well examined [127]. This can be seen as a model

of two consecutive junctions on a single TASEP segment. In literature, a network of

m incoming and n outgoing segments connected via a junction has been labelled as

V (m : n). Theoretical investigation of V (2 : 1) has been explored using mean-field

approximation and extensive computer simulations [162]. Inspired by real phenomena,

the study of junctions was extended for multiple input multiple output systems as well

as to multiple junctions [119]. Owing to the extensive body of TASEP, the dynamics of

traffic flow on V (2 : 2) with parallel updating rules has also been studied [99,163–165].

The behaviour of all possible fourfold junctions (V (2 : 2), V (1 : 3), V (3 : 1)) has been

thoroughly investigated with explicit vertex framework [166] and further extended to

V (m : n) with interacting particles. Recently, the aspects of the temporal evolution in

the initial particle density of V (1 : 2) and V (2 : 1) junctions are studied [167]. Another

variant has shown the multiplex structure of the closed networks affects the global traffic

flow in a non-trivial way [123,168]. All these studies have focused on the minimal model

1The content of this chapter is published in: “Ankita Gupta, Arvind Kumar Gupta. Particle
creation and annihilation in an exclusion process on networks. Journal of Physics A: Mathematical
and Theoretical, 55(10):105001, 2022.”
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of TASEP adopted random updating rules where particles do not interact with the

surrounding environment. Such studies are very well suited for understanding stochastic

transport on networks such as vehicles on roads or motor proteins on bio-filaments, etc.

Further, various studies have focused on coupling the exclusion processes to a bulk

reservoir where attachment-detachment of particles prevails on bulk sites known as

Langmuir kinetics (LK). The importance of studying TASEP with LK (TASEP-LK) lies

in its application to intracellular dynamics, where motor proteins exhibit microscopic

reversibility between the cytoplasm and the molecular filaments. This inclusion leads to

rich stationary behaviour such as non-constant linear density profiles, localized shocks,

and continuous phase transitions [45,46,169,170]. Closed networks coupled with LK

have been studied comprehensively and it is found that the particle non-conserving

dynamics affect the steady-state properties of the system significantly [123].

As discussed earlier, one-segment open systems display several interesting

phenomena as compared to closed counterparts, in this work, we explore a network

of open TASEP-LK consisting of m incoming segments connected via a junction to

n outgoing segments represented as V (m : n). To explore the overall dynamics of

the proposed model, we compute theoretical expressions for particle density, phase

diagrams, and phase transitions. Our system dynamics encourage us to answer a few

essential queries. (i) Does the number of segments regulate the stationary properties of

the system? (ii) How do the association-dissociation rates govern the dynamics of the

system?

6.2 Network model

To mimic the stochastic transport of particles on a network such as vehicular

traffic on a road, the motion of molecular motors along microtubules, etc, the present

work explores the collective dynamics over a complex network which comprises of m

independent incoming segments interacting with n outgoing segments at a junction.

We propose a network V (m : n) of open TASEPs composed of two sub-systems: the

left (L) sub-system consists of m incoming segments L1, L2, . . . , Lm and the right (R)

sub-system comprises of n outgoing segments R1, R2, . . . , Rn connected via a junction

with particle creation and annihilation (see Fig. (6.1)). Each Lk and Rk segment

represents a uniform open TASEP consisting of N sites and the complete network can

be regarded as a system with (m + n)N sites. The sites i = 1 and i = N constitute

the boundaries whereas 1 < i < N represents the bulk of an individual segment. The

system is connected to an infinite reservoir of indistinguishable particles which move in

a preferred direction (left to right) following a random sequential update rule. Particles

are distributed under the hard-core exclusion principle which ensures that not more than
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one particle can occupy a segment site. It is assumed that neither intra-sub-systems nor

inter-sub-systems particle-particle interactions are permitted directly and the particles

of the two sub-systems are only allowed to interact at the junction.
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Figure 6.1: Schematic demonstration of the model where m incoming segments and
n outgoing segments are connected via a junction. The particle can enter the first
vacant site of incoming segments with rate α and exit from the last site of outgoing
segments with rate β. To the right, the zoomed version of a segment is shown where
attachment(detachment) of particles can occur in the bulk of each segment with rate
ωA/(ωD).

• Dynamics on an individual segment. Particles are injected into the system

through the first site (i = 1) of each Lk segment with a rate α if empty. A particle

from this site can hop with a unit rate to the empty neighbouring site. In the bulk,

a particle first tries to leave the system with detachment rate ωD. If it fails, then

it attempts to jump to the site i + 1 with a unit rate if the target site is empty,

obeying the hard-core exclusion principle. Furthermore, if the ith site is vacant, then

a particle can enter the system with rate ωA. A particle finally exits from the last

site (i = N) of each Rk segment with rate β.

• Dynamics at the junction. Particle on the site i = N of any Lk segment, can

jump to the vacant site i = 1 of each Rk segment with equal rate. In the case of

competition, where more than one particle is available to jump across the junction,

then they have equal chances of hopping onto the first site of any of the Rk segments.

In the absence of LK dynamics, Ref. [119] can be considered a specific case of our

model with n = 1 and further for m = 2 and n = 1, this model reduces to Ref. [167].

6.3 Theoretical description

In the presented network model, all the individual segments are homogeneous and

the system dynamics will entirely be governed by the behaviour of each segment at
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the steady-state. It is worth here to recall the dynamic properties of a single-segment

homogeneous TASEP with open boundaries coupled with LK for random updating rule

which has been thoroughly examined in the literature [45,46] and analyzed utilizing a

very generic approach known as mean-field Approximation or mean-field theory (MFT).

The mean-field approximation assumes that the probability of occupancy of any site is

independent of the occupancy of other sites and it also ignores all kinds of interactions

in the system.

One-segment TASEP with particle creation and annihilation: To determine

the overall state of the system, the master equation for a one-dimensional segment of N

sites has been examined at the steady-state [46]. The equation exhibits the temporal

evolution of the particle densities on each site of the segment. The continuum limit of

this system can be obtained by coarse-graining the discrete lattice with lattice constant

ϵ = 1/N and re-scaling the time as t′ = t/N . Introduce the re-scaled attachment,

detachment rates and the binding constant as ΩA = ωAN, ΩD = ωDN , and K =

ΩA/ΩD. The hydrodynamic behaviour is governed by the continuity equation

∂ρ

∂t′
= ∂x

( ϵ
2
∂xρ
)
+ ρ(1− ρ) + ωA(1− ρ)− ωDρ, (6.1)

where x = i/N, 0 ≤ x ≤ 1 denotes the re-scaled position variable and ρ gives the

average particle density. We focus on the special case when ΩA = ΩD = Ω, for which

Eq. (6.1) at steady-state reduces to

ϵ

2

d2ρ

dx2
+ (2ρ− 1)

dρ

dx
+ Ω(1− 2ρ) = 0, (6.2)

along with the boundary conditions ρ(0) = α and ρ(1) = 1 − β. In the continuum

limit ϵ → 0+, it has been predicted [45,46] that the system dynamics is specified by

the entrance rate α, exit rate β and the attachment-detachment rate Ω. The obtained

density profiles are piece-wise linear and continuously dependent upon Ω. The bulk

particle density at the steady-state is given by Ωx + C where the constant C depends

on the boundary condition satisfied. Another solution obtained is ρl(x) = 1/2 identical

to the Langmuir isotherm and also the density of the MC phase of TASEP which

remains unaffected by Ω.

For reference, the particle steady-state densities and phase boundaries have been

summarized in Table (6.1). In the table, ρα(x) = Ωx + α, ρl(x) = 0.5, and ρβ(x) =

Ω(x− 1) + 1− β corresponds to densities of low density phase (LD), maximal current

phase (MC) and high density phase (HD), respectively. The points separating the

LD phase from the MC phase, and the MC phase from the HD phase are given by

xα = (1 − 2α)/2Ω and xβ = (2β + 2Ω − 1)/2Ω, respectively. Density discontinuity is

located at the point xw = (Ω − α + β)/2Ω in shock phase (S), where the currents for
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Phase Phase Boundaries ρ(x)

LD α + Ω < 0.5, xw > 1 ρα(x)

LD-MC
β > 0.5,

0.5− Ω < α < 0.5

{
ρα(x) 0 ≤ x ≤ xα

0.5 xα ≤ x ≤ 1

LD-MC-HD
α < 0.5, β < 0.5,

xα < xβ


ρα(x) 0 ≤ x ≤ xα

0.5 xα ≤ x ≤ xβ

ρβ(x) xβ ≤ x ≤ 1

MC-HD
α > 0.5,

0.5− Ω < β < 0.5

{
0.5 0 ≤ x ≤ xβ

ρβ(x) xβ ≤ x ≤ 1

S
α < 0.5, β < 0.5,
xα > xβ,0 < xw < 1

{
ρα(x) 0 ≤ x ≤ xw

ρβ(x) xw ≤ x ≤ 1
HD β + Ω < 0.5, xw < 0 ρβ(x)
MC α > 0.5, β > 0.5 0.5

Table 6.1: Summary of the results for one-dimensional open TASEP coupled with LK.

the left and the right solutions matches, Jα(xw) = Jβ(xw).

6.4 Unconserved V (m : n) network of TASEP

In the proposed network model V (m : n), the absence of inter-segment interactions

between Lk
′s, forces all the m incoming segments to behave identically, and thus they

have the same phase among the seven possible phases (see Table (6.1)). Similarly,

all the n outgoing segments have identical dynamics and hence all of them behave

together having the same phase. Thus, the total number of phases cannot be greater

than 72 = 49.

We denote the particle current in any of the incoming segments Lk
′s (k ∈ {1, 2, · · · ,

m}) by J in whereas in any outgoing segments Rk
′s (k ∈ {1, 2, · · · , n}), the current is

denoted by Jout. It is assumed that the particles can leave any incoming segments Lk
′s

from the last site with effective exit rate βeff . Similarly, the effective entry rate of

particles to the first site of the Rk
′s segment is taken to be αeff . Since the total current

at the steady-state is conserved throughout the system, we have

J =
m∑
i=1

Jin =
n∑

i=1

Jout =⇒ J = mJin = nJout, (6.3)

where J denotes the overall current of the whole system. Also, the current that leaves

the left sub-system is equal to the current across the junction which yields

mβeffρNin = mρNin(1− ρ1out), (6.4)

where ρNin and ρ1out denotes the particle density on the last site of Lk
′s and the first site
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of Rk
′s, respectively. Similarly, the current across the junction must be equal to the

current entering the right sub-system which gives

mρNin(1− ρ1out) = nαeff (1− ρ1out). (6.5)

From Eqs. (6.3), (6.4), and (6.5), we get

J = mρNin(1− ρ1out) = mβeffρNin = nαeff (1− ρ1out). (6.6)

Thus, using the above equation, one can obtain the value of effective rates as

αeff =
m

n
ρNin, βeff = 1− ρ1out. (6.7)

Utilising the current continuity condition given by Eq. ((6.3)), we have

lim
x→1−

mJin = lim
x→0+

nJout. (6.8)

We adopt the effective entrance rate αeff and exit rate βeff for the Lk and Rk

segments along with Eq. (6.8) to investigate the possible structures of the system in

terms of these rates. Our system has a large number of possible phases, so the dynamics

of the whole system can be understood by the phase transitions occurring across the

junction. Thus, we categorize the phases into different sub-classes based upon the

nature of the phases near the junction. In each sub-class, the methodology will be

similar and hence the value of the effective rates, αeff and βeff will remain the same.

Without loss of generality, we restrict our discussion to m ≥ n. Depending upon

how the topology changes near the junction, the phases can be divided into different

categories. We designate the notation A → B to describe a sub-class which denotes

that the region just upstream to the junction in all the incoming segments is in A phase

and the region just downstream to the junction of all the outgoing segments is in the

B phase.

Among the possible cases, there are certain cases which appear only for a particular

relation between the number of segments in the L sub-system and the number of

segments in the R sub-system. For example, the cases MC → HD, MC → LD, and MC

→ MC cannot exist when m > n. This is because if MC phase exists just upstream

to the junction in Lk segments, then Eq. (6.3) implies that nJout = m/4 which is

not possible as m > n. Moreover, the MC → LD junction does not even exist for

m = n. In this case, the bulk densities around the junction are given by ρin = 0.5 and

ρout(x) = Ωx + αeff . Plugging these densities into Eq. (6.8) gives αeff = 0.5, which

violates the existence condition of the phases in this sub-class.

Now, for the case HD → LD, ρNin = 1 − βeff and ρ1out = αeff and using these in
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Eq. (6.7) yields αeff = 0 and βeff = 1, which violates the conditions required for the

existence of such phases when m > n (βeff < 1/2). For m = n, Eqs. (6.7) and (6.8)

gives αeff = βeff = 0.5 which is again not possible. Analogous argument gives that

LD → MC, MC → HD and HD → MC cannot exist for m = n. We use the notation

C:D to identify a phase in V (m : n) network, where C and D describe a phase in all the

incoming and outgoing segments, respectively. We now discuss the stationary phases

and existence conditions in each sub-class, explicitly.

General case: We analyze the sub-classes which exist for all possible values of m

and n.

1. LD → LD. In this case, the region just upstream to the junction as well as the

region just downstream to the junction displays LD phase. Since the upstream

region to the junction is in LD phase, so the entire incoming segment can exhibit

only the low density phase. The possible choices for such phases are LD:LD,

LD:LD-HD, LD:LD-MC, and LD:LD-MC-HD. These phases are governed by the

following common conditions

Ω + α < min
{
βeff , 0.5

}
, αeff < 0.5. (6.9)

Here, the bulk density in each of the incoming segments is ρin(x) = Ωx+ α whereas

the bulk density in the outgoing segments near the junction is ρout(x) = Ωx+ αeff .

To determine the explicit particle densities in such phases, the effective rates can be

calculated by utilizing the above expressions of density and Eq. (6.9) in Eq. (6.8),

that yields

αeff =


1
2

(
1−

√
1− 4m(Ω+α)(1−Ω−α)

n

)
, if m > n,

Ω + α, if m = n.

(6.10)

This equation holds only when Ω + α ≤ γ where

γ =


1

2

(
1−

√
1− n

m

)
, if m > n,

1

2
, if m = n.

(6.11)

The density at the first site of the Rk segments is ρ1out = αeff and by Eq. (6.7),

βeff = (1 − αeff ). Table 6.2 shows the various phases in this case along with the

conditions for the existence of the corresponding dynamic regime.

2. LD → HD. The only possible phase in this sub-class is LD:HD. This phase occurs

when all the Lk segments are in LD phase and all the Rk segments are in HD phase.

Such a phase is specified by the conditions,

Ω + α < min
{
βeff , 0.5

}
, β + Ω < min

{
αeff , 0.5

}
. (6.12)
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The corresponding equations for bulk densities are ρin(x) = Ωx + α and ρout(x) =

Ω(x− 1) + 1− β. Utilising Eq. (6.8), we obtain

β =


1

2

(
1−

√
1− 4m(Ω + α)(1− Ω− α)

n

)
− Ω, if m > n,

α, if m = n.

(6.13)

The above equation is valid only when

Ω + α ≤


1

2

(
1−

√
1− n

m

)
, if m > n,

1

2
, if m = n.

(6.14)

Phase Phase Boundary

LD:LD Ω + αeff < min{β, 0.5}
LD:S β − Ω < αeff < min{β + Ω, 1− β − Ω}

LD:LD-MC Ω + α < γ, 0.5 < Ω + αeff , 0.5 < β
LD:LD-MC-HD Ω + α < γ, 1− Ω− αeff < β < 0.5

Table 6.2: Phases with LD to LD (LD → LD) transition at the junction.

3. HD → HD. Here, all the segments Lk as well as Rk portray HD phase. The

phases that fall under this category are HD:HD, MC-HD:HD, LD-MC-HD:HD, and

LD-HD:HD phase. The HD phase in the outgoing segments can exist when

Ω + β < min
{
αeff , 0.5

}
. (6.15)

By Eq. (6.8), the boundary parameters must satisfy

βeff =


1

2

(
1−

√
1− 4n(Ω + β)(1− Ω− β)

m

)
, if m > n,

Ω + β, if m = n.

(6.16)

Moreover, ρLin = 1 − βeff and utilizing Eq. (6.7) to obtain the value of αeff =
m

n
(1 − βeff ). All the desirable phases of this case with the parameter ranges are

summarized in Table 6.3.

Special cases: Now we will discuss the possibility of the existence of the phases which

exist for specific relation between the number of incoming and the number of outgoing

segments. The sub-classes LD → MC and HD → MC exist only when m > n whereas
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Phase Phase Boundary
m > n m = n

LD-MC-HD:HD 1− βeff − Ω < α < 0.5, β < 0.5− Ω
S:HD α− Ω < βeff < Ω + α

β < 0.5− Ω βeff < 1− Ω− α
MC-HD:HD 0.5 < α 0.5 < α

β < 0.5− Ω β < 0.5− Ω < βeff

HD:HD Ω + βeff < α Ω + βeff < min{α, 0.5}
Ω + β < 0.5

Table 6.3: Phases with HD to HD (HD → HD) transition at the junction.

the sub-class MC → MC prevail only for m = n. We explore the existence conditions

and phase boundaries for these sub-classes.

1. LD → MC. As discussed earlier this case only exists when m > n. We assume that

all the Lk segments are in low density phase whereas the Rk segments show maximum

current phase at the upstream boundary provided the boundary parameters satisfy

the following common relations,

Ω + α < min {βeff , 0.5} , αeff > 0.5. (6.17)

The feasible choices for phases, in this case, are LD:MC and LD:MC-HD. The

Phase Phase Boundary

LD:MC Ω + α =
1

2

(
1−

√
1− n

m

)
, β >

1

2

LD:MC-HD Ω + α =
1

2

(
1−

√
1− n

m

)
,
1

2
− Ω < β <

1

2

Table 6.4: Phases with LD to MC (LD→MC) transition at the junction for m > n.

particle densities near the junction are given by ρin(x) = Ωx+ α and ρout(x) = 0.5.

By current continuity condition Eq. (6.8), we get

Ω + α =
1

2

(
1−

√
1− n

m

)
. (6.18)

The various phases in this case for m > n are shown in Table 6.4 along with the

conditions for the existence of the corresponding dynamic regime.

2. HD → MC. As mentioned earlier, this sub-class does not exist for m = n. Here,

the downstream part of all the Lk segments are exit-dominated and the upstream

portion of the Rk segments manifests maximal current. So, the possible phases in this

category are HD:MC, LD-HD:MC, MC-HD:MC, LD-MC-HD:MC, LD-HD:MC-HD,
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Phase Phase Boundary

HD:MC Ω + βeff < α, β > 0.5
S:MC α− Ω < βeff < Ω + α, β > 0.5

S:MC-HD α− Ω < βeff < Ω + α
0.5− Ω < β < 0.5

HD:MC-HD Ω + βeff < α, 0.5− Ω < β < 0.5
MC-HD:MC-HD 0.5− Ω < β < 0.5, α < 0.5
MC-HD:MC β > 0.5, α > 0.5

LD-MC-HD:MC 1− βeff − Ω < α < 0.5, β > 0.5
LD-MC-HD:MC-HD 1− βeff − Ω < α < 0.5

0.5− Ω < β < 0.5

Table 6.5: Phases with HD to MC (HD→MC) transition at the junction for m > n.

HD:MC-HD, MC-HD:MC-HD, and LD-MC-HD:MC-HD. The density of particle in

the bulk around the junction in each incoming segment is ρin(x) = Ω(x− 1) + 1− β

and in that of outgoing segments is ρout(x) = 0.5. The effective rates αeff and βeff

can be determined by substituting the above values of particle densities in Eq. (6.8)

to obtain

βeff =
1

2

(
1−

√
1− n

m

)
. (6.19)

Furthermore, in this case, ρNin = 1 − βeff and by Eq. (6.7), αeff =
m

n

(
1− βeff

)
.

Summary of all the desirable phases of this case with the parameter ranges for m > n

is given in Table 6.5.

As the maximal current phase can exist both upstream and downstream to the junction

only when m = n, so MC → MC phase transition occurs only for an equal number of

incoming and outgoing segments.

1. MC → MC. In this phase, the downstream boundaries of all the Lk
′s and the

upstream boundaries of all the Rk
′s are in maximal current phase. The probable

phases here can be LD-MC:MC, MC:MC, LD-MC:MC-HD, and MC:MC-HD.

Table 6.6 summarises all the desirable phases of this case with the parameter ranges

for m = n.

Phase Phase Boundary

LD-MC:MC 0.5− Ω < α < 0.5, β > 0.5
MC:MC α > 0.5, β > 0.5

LD-MC:MC-HD 0.5− Ω < α < 0.5, 0.5− Ω < β < 0.5
MC:MC-HD α > 0.5, 0.5− Ω < β < 0.5

Table 6.6: Phases with MC to MC (MC → MC) transition at the junction.
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The theoretical observations based upon the mean-field argument predict that out of

the 49 possible phases, 30 phases are not realized in the system and for the remaining

19 phases the existing conditions have been thoroughly discussed above for m > n.

When the number of segments in both sub-systems is equal i.e., m = n, the number of

admissible phases is reduced to 13 and the remaining 37 phases cease to exist.

6.5 Results and discussions

In this section, we exploit the general conditions of existence discussed in the

previous section to address the behaviour of the system in the α− β plane. Our main

aim is to explore the effect of the LK rates on the stationary properties of the system.

Furthermore, we intend to investigate the effect of the number of segments in each

sub-system on the topology of the phase diagram. The theoretical outcomes have been

extensively validated through Monte Carlo simulations (MCs). We have adopted the

random-sequential updating rule and the number of sites in each segment is considered

to be N = 1000. To ensure the occurrence of a steady-state, the first 5% of the time

steps are discarded and the average density of particles is computed over an interval

of 10N . The phase boundaries are computed within an estimated error of less than

2%. For the thorough discussion, we analyze the system dynamics for two different

categories: (i) when the number of segments in both sub-systems is equal (m = n) and

(ii) when the number of segments in both sub-systems is different (m ̸= n).

6.5.1 Equal number of segments: m = n

We begin our analysis for the case when the number of segments in each sub-system

is equal and investigate the non-trivial effects on the topology of the phase diagram

with the governing parameter Ω in the α− β plane. For the inspection, we specifically

consider m = n = 2 which can be generalized for any values of m and n. For the

limiting case Ω = 0, the phase diagram consists of only three phases namely, LD:LD,

MC:MC, and HD:HD which resembles the phase diagram for single-segment TASEP

as illustrated in Fig. (6.2a). As soon as LK dynamics is introduced in the system,

the number of feasible phases increases drastically with the emergence of thirteen

stationary phases namely, LD:LD, LD:LD-MC-HD, LD:S, LD:HD, S:HD, HD:HD,

LD:LD-MC, LD-MC:MC, LD-MC:MC-HD, MC:MC, MC:MC-HD, MC-HD:HD, and

LD-MC-HD:HD as shown in Fig. (6.2b) for Ω = 0.1. It is interesting to note that

among these phases, the system can sustain maximal current in both the upstream and

downstream of the junction as the number of segments in both the L and R sub-systems

is equal. With an increase in Ω, only the re-positioning of the phase boundaries takes

place till a critical value Ωc1 = 0.25. This value of Ωc1 can be theoretically obtained
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Figure 6.2: Stationary phase diagrams for different value of Ω: (a) Ω = 0, (b) Ω = 0.1,
(c) Ω = 0.25, and (d) Ω = 0.5 for m = n = 2 . Note that, the phase diagrams as well
as the density profiles will remain unaffected for any values of m (n = m). The phase
transformations are continuous for boundaries between all observed phases. Solid blue
lines represent theoretical results and dotted red symbols correspond to Monte Carlo
simulation.

from Eq. (6.9) and after this value LD:LD and HD:HD no longer persist in the system

as shown in Fig. (6.2c) for Ω = 0.25. The remaining eleven phases continue to persists

until a critical value ΩC2 = 0.5, as evident from Eq. (6.18). Beyond this critical value,

the topology of the phase diagram becomes most simplified where only four phases are

realized namely, LD-MC:MC, MC:MC, LD-MC:MC-HD, and MC:MC-HD as illustrated

in Fig. (6.2d) for Ω = 0.5. Now, as Ω → ∞, LK rates dominate the overall dynamics

of the system and only these four phases continue to exist.

To understand how the phase transitions occur with an increase in Ω, we have

plotted the density profiles keeping fixed the boundary-controlling parameters α = 0.2

and β = 0.35 (see Fig. (6.3)). For these values of α and β, the system exhibits LD:LD

phase for Ω = 0. With an increase in Ω, the density profile transits from LD:LD to LD:S

then to LD:LD-MC-HD and finally to LD-MC:MC-HD. This can be explained by the

following arguments. With an increase in Ω, the value of αeff increases whereas βeff

decreases. The system is governed by the LK dynamics leading to the accumulation of

particles in the outgoing segments and hence LD:S phase is observed. At Ω = 0.225,
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the density in the outgoing segments becomes a simple linear profile, continuously

matching the density induced by αeff and β. Consequently, the shock phase vanishes

and LD-MC-HD phase emerges in the outgoing segments. As Ω is increased until 0.3,

αeff → 0.5− and βeff → 0.5+, thus maximal current is observed around the junction

and the system manifest LD-MC:MC-HD phase.

0 0.5 1 1.5 2
x

0

0.2

0.4

0.6

0.8

1
=0
=0.1
=0.225
=0.3

Figure 6.3: Density profiles for different value of Ω when m = n = 2. The vertical line
at x = 1 shows the position of the junction.

Though we have provided the results for m = n = 2 but the findings will remain

unaffected for any values of m and n (m = n). This is because of the reason that all the

phase boundaries are independent of the number of incoming segments and the outgoing

segments. Attributable to this fact the topology of the phase diagram obtained for

V (m : m) network closely resembles that of a single-segment TASEP-LK model. This

can be easily verified by considering the following phase boundary transformations.

V(m:m) network ↔ Single-segment TASEP-LK

Ω + αeff = min{β, 0.5} ↔ Ω + α = min{β, 0.5}

α = 0.5 ↔ α = 0.5

2Ω + β + α = 1 ↔ Ω + β + α = 1

Ω + βeff = min{α, 0.5} ↔ Ω + β = min{α, 0.5}

β = 0.5 ↔ β = 0.5

whereas, for the phases

LD:LD ↔ LD

LD:LD-MC

LD-MC:MC

}
↔ LD-MC
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MC:MC-HD

MC-HD:HD

}
↔ MC-HD

LD:S

S:HD

LD:HD

↔ LD-HD

LD:LD-MC-HD

LD-MC:MC-HD

LD-MC-HD:HD

↔ LD-MC-HD

HD:HD ↔ HD

MC:MC ↔ MC.

6.5.2 Unequal incoming and outgoing segments: m ̸= n

Now let us investigate the case when the number of segments in each sub-system

is unequal and for simplicity, we choose m = 2 and n = 1 which can be generalized

for other values of m and n (m > n). In the absence of the non-conserving dynamics

(Ω = 0), this case has been well studied [162] and for the sake of completeness, we have

reproduced its phase diagram as presented in Fig. (6.4a). The phase diagram exhibits

5 distinct stationary phases, namely, LD:LD, LD:HD, LD:MC, HD:MC, and HD:HD.

To investigate the effect of LK dynamics on the network, we study the phase diagram

by varying Ω in the parameter space of α − β. As soon as LK dynamics is introduced

in the system, even for a very small value of Ω, the phase composition of the stationary

phase diagram is strongly modified. Eight new phases emanate in the system: LD:S,

S:HD, LD:LD-MC-HD, S:MC-HD, HD:MC-HD, LD:LD-MC, LD:MC-HD, and S:MC

along with the five pre-existing phases. For convenience, we have shown the phase

diagram for Ω = 0.1 capturing these thirteen phases in Fig. (6.4b).

Further increasing Ω from 0.1, results in the shrinkage of LD:LD, LD:S, and LD:HD

phase and the expansion of S:MC, S:MC-HD, and S-HD phases. Besides, no significant

change is observed in the topology of the phase diagram till a critical value ΩC3 = 1−
√
3/2, as computed from Eq. (6.9) at which LD:LD phase disappears. To demonstrate

the phase schema at this critical value, we have plotted the phase diagram as shown in

Fig. (6.4c) for ΩC3 = 1−
√
3/2.

With the increase in the value of Ω from ΩC3 , the phase boundary of LD:MC phase

approaches the β axis and at a critical value ΩC4 = (1/2)(1− 1/
√
2), the feasibility of

LD phase in all the incoming segments is disrupted. As a consequence, the possibility

of the phases LD:LD-MC, LD:MC, LD:LD-MC-HD, LD:MC-HD, LD:S, and LD:HD

completely vanishes. Now, the phase diagram becomes simplified and consists of only

six phases namely, S:MC, S:MC-HD, S:HD, HD:MC, HD:MC-HD, and HD:HD as shown
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in Fig. (6.4d) for ΩC4 = (1/2)(1− 1/
√
2).
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Figure 6.4: Stationary phase diagrams for different value of Ω: (a) Ω = 0, (b) Ω = 0.1,

(c) Ω = 1 −
√
3
2
, (d) Ω = 1

2

(
1− 1√

2

)
, (e) Ω = 1

2
√
2
, (f) Ω = 0.42, (g) Ω = 0.5, and (h)

Ω = 1
2

(
1 + 1√

2

)
for m = 2 and n = 1 . The phase transformations are continuous for

boundaries between all observed phases. Solid blue lines represents theoretical results
and dotted red symbols correspond to Monte Carlo simulation.

Considering the further increase in Ω from ΩC4 to ΩC5 = 1/2
√
2, the phases with
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HD → MC phase transition at the junction no longer exists. The existence of such

phases requires Ω + βeff < 0.5 which is only valid when Ω < ΩC5 . As a result,

the LK dynamics dominates and the HD → MC phase transition changes to MC-HD

→ MC phase transition i.e., HD:MC, HD:MC-HD, and HD:HD phases transform to

MC-HD:MC, MC-HD:MC-HD, and MC-HD:HD in the system as presented in Fig.

(6.4e) for ΩC5 = 1/(2
√
2).

Beyond ΩC5 , the three-phase coexistence region LD-MC-HD in all the incoming

segments is observed in the system. Three new phases LD-MC-HD:MC,

LD-MC-HD:MC-HD, and LD-MC-HD:HD emanate in the system as illustrated in Fig.

(6.4f) for Ω = 0.42. As Ω reaches the value ΩC6 = 0.5, the HD phase is no longer

observed in all the Rk segments as the phase boundaries of S:HD, LD-MC-HD:HD,

and MC-HD:HD phases tends to the line β = 0. The phase diagram at the critical

value ΩC6 = 0.5 is shown in Fig. (6.4g). Now the region for LD-MC-HD:MC and

LD-MC-HD:MC-HD phases expand and as a result the phases S:MC and S:MC-HD

perishes at the value ΩC7 = (1 +
√
2/2)/2, as plotted in Fig. (6.4h). Finally, after

this critical value ΩC7 , an increase in Ω does not produce any topological change in the

phase boundaries nor the phase diagram and it remains unaltered even for Ω → ∞.

Hence, the phase diagram remains invariant and portrays only four phases namely,

LD-MC-HD:MC, LD-MC-HD:MC-HD, MC-HD:MC, and MC-HD:MC-HD. Clearly, the

stationary phase diagrams show non-monotonic behaviour with respect to the equal

attachment-detachment rate Ω on the number of phases in the V (2, 1) network.

Now, we analyze the possible phase transitions that occur for a fixed Ω and study

the phase diagram for Ω = 0.1. Choosing fixed β ∈ (αeff −Ω, αeff +Ω), where αeff is

given by Eq. (6.10) depending upon α and Ω, we can clearly visualize that when α is

increased, the phase changes from LD:S to LD:HD then to S:HD and finally to HD:HD

(see Fig. (6.4b)). This behaviour can be easily understood by the following arguments.

With an increment in α, αeff increases and, hence the influx of particles increases in the

outgoing segments. Consequently, the shock vanishes from all the outgoing segments

and HD phase emerges in all these segments. Further, increasing α, the values of αeff

and βeff (Eq. (6.16)) no longer vary which means that the system dynamics will now be

governed by only varying parameter α in L sub-system and thus, S:HD phase emerges

in the system. This is because, with the increase in the entry rate, the junction-induced

shock absorbs the incoming particles and travels towards the left side in all the incoming

segments. Finally, with a further increase in the entry rate, the HD phase is observed

in all the segments of the network. Similarly, for any fixed β ∈ (0, 1) and varying α, an

analogous argument holds for the phase transitions in the system.

In the above discussion, our analysis was restricted to the case when the number

of segments in the L sub-system is greater than the number of segments in the R

sub-system (m > n). For m < n, the phase transitions occurring at the junction and
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Phase Transition at the junction m > n m = n m < n

LD → LD
√ √ √

LD → MC
√

× ×
LD → HD

√ √ √

MC→ LD × ×
√

MC → MC ×
√

×
MC → HD × ×

√

HD → LD × × ×
HD → MC

√
× ×

HD → HD
√ √ √

Table 6.7: The possible phase transitions that can occur across the junction for different
values of m and n.

the corresponding phase diagram can be examined on similar lines. Moreover, the phase

regimes that exist for different values of m and n are described in tabular form in Table

(6.7).

6.6 Conclusion

To summarize, we have presented a detailed study of a V (m : n) network consisting

of m incoming segments and n outgoing segments connected via a junction. This

network is equipped with an additional feature of particle creation and annihilation

where a particle can bind to an empty site or unbind from an occupied one with given

rates. Our theoretical method is based on the idea that each segment can be viewed

as a one-dimensional TASEP incorporated with LK. This allows us to implement the

simple mean-field approximation to investigate the crucial steady-state properties of the

system such as density profiles, phase diagrams and phase transitions. In support of

mathematical investigations, the theoretical outcomes are obtained for all the observed

phases for equal attachment-detachment rates. Our findings are theoretically examined

for the different numbers of the incoming and the outgoing segments and numerically

by extensive Monte Carlo simulations.

We specifically consider two distinct scenarios for the system dynamics: when the

number of segments in both the sub-systems is different and when these values are

the same. The study reports the explicit expressions for the phase boundaries of all

the possible feasible phases and also provides valid arguments for the non-existence of

certain phases in the system. Among the 49 possible phases, 19 different stationary

phases have been observed in the system for varied values of Ω when m ̸= n. For

the case when m = n, the number of perceived phases reduces to 13. The analysis

found that the system displays a large number of stationary phases, so for a systematic
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study, the potential phases have been divided into various sub-classes based upon the

dynamics happening at the junction. We observed that when the number of incoming

and outgoing segments is equal, the maximal current phase can persist in all the

segments.

Further, we study the effects of LK rates and the number of segments in each

sub-system on the system dynamics. It has been seen that the effect of Ω on the

number of phases is non-monotonic. Introducing the LK dynamics in the system, for

m ̸= n, firstly increases the number of phases from 4 to 13, which reduces to 6, then

further rises to 9 and finally decreases to 4 as Ω increases. Whereas for m = n, with an

increase in Ω, the number of phases escalates from 3 to 13 and then drops to 4 phases.

After a certain value of Ω, the topology of the phase diagram remains unaltered and the

phases boundaries, as well as the observed phases, are no longer modified and hence, the

number of observed phases remains 4 as Ω → ∞. The critical values of Ω are computed

where the appearance or disappearance of phases is observed. We also found that when

the number of incoming and outgoing segments are equal, the obtained phase diagram

is the analogue of a single-segment TASEP-LK model [45,46].

The proposed model is an attempt to provide an intrinsic means to interpret the

steady-state properties of transport phenomenon on roads, molecular filaments, etc

under the influence of LK dynamics. A further extension of this study can deal with

the scenario where particle exchange is permitted in both sub-systems. Our results can

also be extended to networks with various junctions.



Chapter 7

Non-equilibrium processes in an

unconserved network model with

limited resources

In the preceding chapter, we explored complex collective phenomena resembling

transport in both man-made and natural systems. This exploration involved an

examination of an open network junction model of TASEP with the inclusion of bulk

particle attachment and detachment. Driven by the necessity to thoroughly scrutinize

more realistic scenarios within the contexts of biological transportation and traffic flow,

the current chapter1 seeks to explore a network featuring a non-conserved TASEP model

coupled with a finite pool of resources.

7.1 Introduction

In recent years, many generalizations of TASEP have been contemplated wherein

the particles are injected from a limited source of particles [110]. Such phenomenon

effectively embraces many physical and biological systems such as parking garage

problems, protein synthesis and vehicular traffic [64,65,67]. Incorporating the real-time

dynamics invoked by the limited availability of resources, TASEP studies have

been conducted on a single-lane as well as to network models with multiple lanes

[64,92,99,105,109,110]. These extensions reveal the regulatory effects of the finite

reservoir of motor proteins on the onset of jams and other traffic features. However,

the literature on limited resources is still deprived of the study of finite resources on a

network junction model.

Motivated by the non-trivial effect of limited resources on the system properties, we

wish to explore a network of non-conserved TASEP model coupled with a finite pool of

resources. Our model corresponds to a modified version of Ref. [171], where the entrance

and attachment rates are independent of the reservoir density. Firstly, we consider a

non-conserved one-dimensional TASEP lane with limited resources. The method of

1The content of this chapter is published in: “Ankita Gupta, Arvind Kumar Gupta.
Non-equilibrium processes in an unconserved network model with limited resources. The European
Physical Journal Plus, 138(2):108, 2023.”
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characteristics along with the mean-field framework is adopted to theoretically analyze

the transient solution of the particle densities and the corresponding phase boundaries.

Further, the consequences of supplying limited resources in our network model and its

interplay with the LK dynamics are explored. Several results and discussions based

on significant parameters such as the number of lanes downstream and upstream to

the junction and the total number of particles in the system, based on theoretical and

numerical computation are presented.

7.2 Model and dynamic rules

We characterize the transport trails: biological networks, highways, etc., as

lanes/lattices and entities advancing along these lanes as particles. In particular,

assuming individual road or bio filaments as independent lanes, we consider a m × n

network model of open TASEPs. The network consists of two subsystems: Left (L)

and Right (R), involving m and n lanes, denoted by L1, L2, . . . , Lm and R1, R2, . . . , Rn,

respectively, each with N sites. Following the hard-core exclusion principle, which

prevents more than one particle from occupying a single site, the particles drift

unidirectionally from the leftmost site in a lane to the rightmost site (see Fig.(7.1)).

The network is coupled to a single reservoir having a finite number of identical particles

denoted by Nr. The dynamical conduct of the proposed system can be expressed in

terms of the permissible movements of the particles as per the following dynamical

rules.
_
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Figure 7.1: Illustration of m×n network model with LK. Arrows (crosses) indicate the
allowed (prohibited) hopping. Here, αeff and β correspond to injection and removal
rates whereas ωeff

A and ωD are attachment and detachment rates, respectively.

(i) For lanes Li, 1 ≤ i ≤ m, a particle is allowed to enter the left end (site k = 1) from

the reservoir with an effective entrance rate αeff provided the target site is empty.

(ii) In the bulk of any lane, a particle present on the site k (1 < k < N), firstly seeks to

detach itself with the rate ωD. In case of unsuccessful detachment, it attempts to jump

forward to the vacant site i+ 1 with unit rate. Moreover, a particle attaches from the
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reservoir R to any empty bulk site with an effective attachment rate ωeff
A .

(iii) A particle located at the Nth site of any Li lattice can jump to the first site in

either of the Rj, 1 ≤ j ≤ n lattice with equal probability and will then continue its

one-dimensional dynamics along the new lane.

(iv) At the exit site N of each Rj lane, a particle escapes with the constant rate β to

the reservoir R, where it is free to rejoin any of the lattices.

It is to be noted that in our model, particles move in a random-sequential manner

and explicit lane changing of particles is forbidden. Such an assumption allows obtaining

an explicit description of the dynamic properties of the system. This model has been

adopted to study a network V (m : n) with infinite resources to analyze physical as well

as biological transport systems [171].

Since the total number of particles Nt are conserved in the system at any instance

of time

Nt = Nr(t) +
m∑
i=1

NLi
(t) +

n∑
j=1

NRj
(t),

where NLi
(t) and NRj

(t) denotes the number of particles on lattices Li(1 ≤ i ≤ m)

and Rj(1 ≤ j ≤ n), respectively. Furthermore, we define the effective entrance and

attachment rates to be controlled by the reservoir density Nr/Nt, as follows

αeff = α
Nr

Nt

, ωeff
A = ωA

Nr

Nt

, (7.1)

where α and ωA are the intrinsic entry and attachment rates, respectively [110]. This

relationship indicates that the entrance rate of particles is directly proportional to the

particle concentration in the reservoir. If there are no particles in the reservoir, then

αeff takes the value zero and for a large number of particles in the reservoir, Nr/Nt → 1

and αeff tends to α. Furthermore, we retrieve Nr ≈ Nt, resulting in a network system

containing a single junction having a constant entrance and attachment rates as α and

ωA, respectively [171].

7.3 Single-lane TASEP-LK with limited resources

To successfully analyze the role of the network conformation and the presence of

limited resources, it is necessary to thoroughly investigate the dynamical properties of a

one-dimensional TASEP coupled to a reservoir with a finite number of particles. Firstly,

we will discuss the non-stationary bulk properties which depend on the controlling

parameters, entry rate (α), exit rate (β), attachment rate (ωA), detachment rate (ωD),

and the reservoir density (Nr). The micro-state of each site is characterized by a set

of occupation numbers τ k, each of which is either ‘0’ (vacant site) or ‘1’ (occupied

site). The evolution of the bulk particle densities (1 < k < N) in terms of the average
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occupation number is governed by

d⟨τ k⟩
dt

= ⟨τ k−1(1− τ k)⟩+ ωeff
A ⟨1− τ k⟩ − ⟨τ k(1− τ k+1))⟩ − ωD⟨τ k⟩. (7.2)

Here, ⟨· · · ⟩ denotes the statistical average whereas the positive and the negative terms

on the right side of the equation depict the gain and loss terms, respectively, arising

from the incorporated dynamic rules. Further for the boundaries, the particle densities

evolve according to the following equations

d⟨τ 1⟩
dt

= αeff⟨(1− τ 1)⟩ − ⟨τ 1(1− τ 2)⟩, d⟨τN⟩
dt

= ⟨τN−1(1− τN)⟩ − β⟨τN⟩,

where αeff and β denote the effective injection rate and the exit rate, respectively.

Similarly, the master equation for the reservoir density r can be computed as

dr

dt
= ωD

(
⟨τ 2⟩+ ⟨τ 3⟩+ · · · ⟨τN−1⟩

)
+ β⟨τN⟩ − αeff⟨1− τ 1⟩

− ωeff
A

(
⟨1− τ 2⟩+ ⟨1− τ 3⟩+ · · · ⟨1− τN−1⟩

)
. (7.3)

Ignoring all particle spatial correlations and factorizing the corresponding correlation

function as a product of their averages utilizing the mean-field approximation, we have

⟨τ iτ j⟩ = ⟨τ i⟩⟨τ j⟩.

The continuum limit of this model can be obtained under the mean-field limit by

coarse-graining the discrete lattice with lattice constant ϵ = 1/N and re-scaling the time

as t′ = t/N . Besides, to observe competition between boundary and the bulk dynamics,

we re-scale ωA and ωD such that they decrease with the increasing system size N [45,46].

Therefore, we consider ΩA = ωAN and ΩD = ωDN . Defining the reservoir density by

r = Nr/N , the filling factor µ = Nt/N , and utilizing Eq. (7.1), the effective entrance

and the attachment rates are given by, αeff = α r
µ
and ΩA∗ = ΩA

r
µ
.

Based on the spatial homogeneity in the system, we replace ⟨τ k⟩ with the continuous

variable ρ(x). On expanding the average density ρ(x) in powers of ϵ and retaining the

terms up to the second order, we get

∂ρ

∂t′
+

∂

∂x

(
− ϵ

2

∂ρ

∂x
+ ρ(1− ρ)

)
= Ωeff

A (1− ρ)− ΩDρ. (7.4)

Without loss of generality, we denote t′ by t and in the continuum limit ϵ → 0+, Eq.

(7.4) reduced to
∂ρ

∂t
+

∂J

∂x
= ΩD(Kz − (1 +Kz)ρ), (7.5)

where the bulk current J is given by ρ(1−ρ), K = ΩA/ΩD is the binding constant, and



7.3. Single-lane TASEP-LK with limited resources 161

z = r/µ. Similarly, Eq. (7.3) is equivalent to

dr

dt
= β(1− β) + ΩD(µ− r)− αz (1− αz)− ΩAz(1− µ+ r). (7.6)

7.3.1 Transient solution

We now investigate the evolution in particle density by analyzing the master

equation as stated in Eq. (7.5) and further utilize it to acquire the corresponding

steady-state solution. A comprehensive study on the transient solution is presented in

Appendix (7.7). Here, we briefly summarize the discussion on these solutions. We begin

by examining the characteristic equations concerning Eq. (7.5) and an initial density

step comprising of a single discontinuity. To completely scrutinize the possible density

solutions, a re-scaled density given by

σ =
(Kz + 1)(2ρ− 1)

Kz − 1
− 1, (7.7)

is defined which does not exist at Kz = 1. Therefore, further study is categorized based

on the value of Kz. For Kz = 1, the acquired density solution is a piecewise linear

continuous function. For Kz ̸= 1, the thorough investigation yields that the density

solution is given by the various branches of the Lambert-W function chosen suitably.

7.3.2 Steady-state solution

The steady-state solution for a non-conserved one-dimensional TASEP model with

finite resources can be obtained by applying t → ∞ in all the results of the previous

subsections. We first consider the case Kz = 1 which admits the linear solutions for

the density profiles and then for Kz ̸= 1, where the density profiles are recognized by

the various branches of the Lambert W function.

(a) Kz=1. As t → ∞, ρI(x, t) → 1/2, whereas the relative positions xα → (1 −
2αeff )/(2ΩD) and xβ → (2β + 2Ω − 1)/(2ΩD), respectively, whose methodology

is detailed in Appendix (7.7). Utilizing these relative positions, we discuss the

possible stationary phases that emerge for the density profiles. It is evident from

the discussion outlined in Appendix (7.7) that the lattice can exhibit seven possible

stationary states: low density (LD), high density (HD), maximal current (MC),

two-phase coexistence phases (shock (S), LD-MC, and MC-HD) and a three-phase

coexistence (LD-MC-HD) [45,46] as already summarized in Table. (6.1).

(b) Kz ̸= 1. With the advancement of time, the solution ρI(x, t) approaches ρl, which is

the constant density of the Langmuir isotherm. At steady-state, the solutions ρα(x)

and ρβ(x) being independent of t, do not modify.
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Further, the density profiles are attained depending upon the matching of the two

solutions ρα(x) and ρβ(x), respectively. For this, we utilize the current continuity

principle and obtain the position xw ∈ [0, 1] at which the discontinuity in the density

profile appears given by ρα(xw) = 1 − ρβ(xw) and whose details can be found

in Appendix (7.7). We now evaluate the solutions in the various regimes of the

parameter space (α, β) of the phase diagram for Kz > 1. The corresponding results

for Kz < 1 can be obtained from particle-hole symmetry.

1. αeff < 1/2 and β < 1/2. For lower values of αeff and β, one can expect either

LD, S, or HD phase. In low density phase (LD), the density profile is purely

expressed in terms of ρα(x) whereas, for high density(HD), the entire density

profile is given by ρβ(x). When xw ∈ (0, 1), the density is prescribed by a

section of density ρα(x) on the left and ρβ(x) on the right distinguished at the

position xw.

The transition line between different phases is given by the sign of 1− ρα(x)−
ρβ(x). Any shock will be driven out if the system satisfies ρα(1) < 1 − ρβ(1)

and the system will be dominated by the solution corresponding to the left

boundary. Thus, the transition line between LD and S phase is obtained by

employing the condition ρα(1) = 1− ρβ(1) = β which yields

1

ΩD(1 +Kz)

(
2(β − α) +

Kz − 1

Kz + 1
ln

∣∣∣∣Kz − (1 +Kz)β

Kz − (1 +Kz)α

∣∣∣∣
)

= 1. (7.8)

Similarly, the system is in high density phase if ρα(0) > 1−ρβ(0) and we deduce

1

ΩD(1 +Kz)

(
2(αeff − β̄) +

Kz − 1

Kz + 1
ln

∣∣∣∣ Kz − (1 +Kz)(1− β̄)

Kz − (1 +Kz)(1− αeff )

∣∣∣∣
)

= 1, (7.9)

as the phase boundary between S and HD phases.

2. αeff > 1/2 and β < 1/2. In this region, the lattice remains in the high density

phase only.

3. αeff < 1/2 and β > 1/2. Here, one can have LD, S, or HD phase based upon xw.

In HD phase, the particle density is independent of the boundary parameters

αeff and β, and the density is solely given by ρβ(x) for β = 1/2. This phase is

also recognized as the Meissner (M) phase [46]. When the lattice is in the shock

phase, the solution corresponding to the right boundary is given by ρβ(x) with

the value of β = 1/2, which is independent of the rate β.

4. αeff > 1/2 and β > 1/2. The lattice remains in the MC phase and the particle

density is given by setting β = 1/2 in ρβ(x).

Note that a particular scenario of a TASEP-LK model on a single lane with constrained

resources has been examined in Ref. [109] where α is taken to be 0.
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7.4 Network model

Now, we generalize the results acquired in the Section (7.3) for single-lane

TASEP-LK model with limited resources to thoroughly explore the m × n network

model. The fundamental aspect of our approach is that we have partitioned the network

model into two subsystems specifically lattices L′
is (1 ≤ i ≤ m) and R′

js (1 ≤ j ≤ n)

connected directly through the last sites of L′
is and the first site of each Rj. A particle

present at the last site of any of the Li lattice exits with an effective rate βL. Similarly,

the particles can enter the lattices R′
js with an effective entry rate αR.

Following the mean-field approach, we introduce ρLi
and ρRj

as the particle densities

of each lattice in both the subsystems and ignoring all spatial correlations to obtain

JLi
= ρLi

(1− ρLi
), JRj

= ρRj
(1− ρRj

), (7.10)

where JLi
(i ∈ {1, 2, . . . ,m}) denotes the steady-state bulk current for any Li lattice

and JRj
(j ∈ {1, 2, . . . , n}) corresponds to the steady-state bulk current in a Rj lattice.

Along with these equations, the current at the boundaries is given by

JLi
(0) = αeff (1− ρLi

(0)), JLi
(1) = βLρLi

(1),

JRj
(0) = αR(1− ρRj

(0)), JRj
(1) = βρRj

(1).

The presence of uniform rates in all the homogeneous lattices L′
is forces all of them to

behave identically. So, we have JL1 = JL2 = · · · = JLm = JL. Analogously, the particle

current in all the right lanes is equal and we denote the corresponding current by JR.

Now the conservation of current in the steady-state throughout the system yields the

total current J as

J =
m∑
i=1

JLi
=

n∑
j=1

JRj
, (7.11)

which gives J = mJL = nJR.

In the system, the condition of current continuity suggests that the exit current

from lattices L′
is is equal to the current passing across the junction, given by

mβLρL(1) = mρL(1)
(
1− ρR(0)

)
, (7.12)

which results in

βL = 1− ρR(0), (7.13)

where ρL and ρR signifies average bulk density in any of the lane Li and Rj, respectively.

Analogously, the current passing from Nth site of any lattice in the L subsystem to the
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first site in the R subsystem is equal to the current entering the Rj lattices in the R

subsystem, which can be written as

mρL(1)
(
1− ρR(0)

)
= nαR

(
1− ρR(0)

)
, (7.14)

that leads to

αR =
m

n
ρL(1). (7.15)

Now, we discuss the conditions for the existence of different phase regimes in the (α, β)

plane for the proposed network model. The particle densities and the phase boundaries

are theoretically obtained utilizing the framework adopted in Section (7.3) along with

the procured expressions and the concept of current continuity discussed above. A

possible phase in the network model is labelled as P:Q where P and Q describe a

phase in all the lanes of the L and the R subsystem, respectively. In addition, a phase

transition across the junction is characterized by the notation C → D, where C and D

represent a phase just upstream and downstream of the junction.

For further discussion, we denote the particle density in each Li lane by ρlL(x) and

ρrL(x) corresponding to the boundary conditions ρL(0) = αeff and ρL(1) = 1 − βL.

Also, in the right subsystem, ρlR(x) and ρrR(x) describe the solution agreeing with the

boundary conditions ρR(0) = αR and ρR(1) = 1− β, respectively. Moreover, we fix the

notation αL = min{αeff , 0.5} and βR = min{β, 0.5} which will be used throughout the

rest of the chapter. Also, note that for this network junction model, the filling factor

gets modified to

µ =
Nt

(m+ n)N
. (7.16)

As already discussed in Section (7.3), the presence of a phase in a lane is specified by

the value of Kz which is controlled by the reservoir density r and the filling factor µ.

Therefore, we break down our further analysis of the network model according to the

value of Kz.

7.4.1 Kz ̸= 1

In this section, the theoretical calculations forKz ̸= 1 are performed and we provide

expressions for the density profiles as well as the phase boundaries by utilizing the

discussion outlined in Appendix (7.7).

1. LD → LD transition.

We assume the lattices in the left subsystem as well as the left end of the lattices

R′
js exhibit LD phase. The possible choices for such scenarios are LD:LD and LD:S

(see Appendix (7.7.2)). For these phases, the particle density in all L′
is lattices

corresponds to ρlL and is calculated by setting α = αL in Eq. (7.38). Now to find
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ρlL(1), set x = 1 and α = αL in Eq. (7.38) which gives

1

ΩD(1 +Kz)

{
2(ρlL(1)− αL) +

Kz − 1

Kz + 1
ln

∣∣∣∣Kz − (1 +Kz)ρlL(1)

Kz − (1 +Kz)αL

∣∣∣∣
}

= 1. (7.17)

The obtained value of ρlL(1) is then utilized to compute αR from Eq. (7.15). For

LD:LD phase, the density ρlR(x) in Rj lattices can be determined by the substitution

of α = αR in Eq. (7.38) and the system remains in LD:LD phase until ρlR(1) < β.

In LD:S phase, the lattices Rj exhibit shock phase i.e., a part of the lattice is in the

LD phase and the rest is in the HD phase. The density of the left section, ρlR(x)

in any Rj lattice is calculated by setting α = αR in Eq. (7.38) whereas the density

of the remaining section ρrR is obtained from Eq. (7.39). The shock position xw is

computed from ρlR(xw) = 1 − ρrR(xw). The boundary separating LD:LD and LD:S

can be determined from ρlR(1) = β.

2. LD → HD transition.

The only possible phase in this category is LD:HD. Each lattice in the left subsystem

exhibits low density, while the lattices in the right subsystem are in the high density

phase. The density of particles in the bulk of each Li is given by ρlL(x) as calculated

in the previous case. The densities in each Rj lattice is written as ρrR(x) acquired

from Eq. (7.39).

3. HD → HD transition.

In this case, we assume that all the region just upstream and downstream of the

junction is in high density phase. So, the feasible choices for such scenarios are

HD:HD and S:HD. From Eq. (7.39), we obtain the density ρrR(x) in any Rj lane.

Also, the current continuity argument near the junction leads to

βL(1− βL) =
n

m
ρrR(0)

(
1− ρrR(0)

)
. (7.18)

For HD:HD, L′
is are exit dominated and we can calculate the density ρrL(x) from

Eq. (7.39) on replacing β̄ by βL. The system remains in HD:HD phase for ρrL(0) >

1−αeff . For S:HD, the lattices Li are in the shock phase, i.e., a part of these lattices

are in LD phase and the rest is in HD phase. The density to the left of the shock

position xw is given by ρlL(x) calculated from Eq. (7.38) by setting α = αL and to

the right, the density is written as ρrL(x) obtained by the substitution of β̄ = βL in

Eq. (7.39). The system must satisfy ρrL(0) < 1− αeff to remain in S:HD phase. So,

the boundary between HD:HD and S:HD phase is determined by ρrL(0) = 1− αeff .

4. HD → LD transition.

In each Li lattice, the particles on the right end are in the high density phase, while,
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in Rj lattices, the particles are in the low density phase at the left end. The phases

that support the existence of this category are HD:LD, HD:S, S:LD, and S:S. The

density profile can be calculated analogously to the previously discussed transition.

7.4.2 Kz = 1

In this case, each lane can exhibit any of the seven possible phases, discussed in

Section (7.3.2). As stated earlier, the bulk densities in each of the Li lanes, as well

as Rj lanes, remain the same, leading to 72 = 49 feasible phases. It has already been

exposed in Ref. [171] that, for m ̸= n, out of these 49 phases, the perceived number of

phases is only 19 and for m = n, the number of observed phases reduced to 13. The

stationary particle density and the corresponding phase boundaries can be discovered

from Ref. [171].

7.5 Results and discussions

To explore the effect of finite resources on the stationary system properties, we

exploit the theoretical results discussed in Section (7.4) to study the emerging dynamics

for specific values of µ and K in the parameter space (α, β). To validate our theoretical

outcomes we perform Monte Carlo simulations for system size N = 500 following

a random sequential updating rule. The density profiles, phase boundaries, and

shock positions computed utilizing the mean-field approach very well agree with the

simulations. The phase boundaries are calculated within an estimated error of less than

1%. We would like to mention that the notation Aq is adopted in the phase diagrams

where A represents the corresponding phase in a lane and the subscript q ∈ {l, r}
indicates the presence of a boundary layer at the left /right end of the stationary

density profile. Since our focus is mainly on the inspection of the stationary bulk

particle density, this notation is not employed in the text, rather it is restricted to the

phase diagrams. Additionally, we have used the symbol M for the Meissner phase in

the phase diagram to represent a phase independent of both the boundary controlling

parameters αeff and β.

As the number of lanes in both subsystems will significantly affect the stationary

system properties, we analyze the system dynamics in two categories, namely, m ̸= n

and m = n.

7.5.1 Equal number of lanes in both the subsystems (m = n)

Now we analyze the effect of the finite supply of particles on the topology of the

phase diagram when the number of lanes in both subsystems is equal. The phase
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diagram is derived for different values of µ and K in the parameter space α and β. To

commence, we consider the intrinsic attachment and detachment rates to be equal, i.e.,

K = 1.

For a very small value of µ, the number of particles in the system is scarce and only

one phase namely LD:LD appears in the entire phase regime. This behaviour can easily

be understood as follows: due to the deficiency of particles in the reservoir, the effective

entrance and attachment rates are very low and hence leading to the occurrence of only

low density in each lane. The phase diagram exhibits only this phase till µC1 = 0.01.

This critical value µC1 complies with the condition that the existence of LD phase in the

right subsystem requires ρlR(1) < β. With an increase in µ, for lower values of β, the exit

of particles is hindered leading to an accumulation of particles in the right subsystem,

and thus, the emergence of LD:S phase is observed. As we keep on increasing µ, the

value of αeff and Ωeff
A keeps on increasing which results in more particles being fed onto

the lanes. In addition to this, for smaller values of β, the boundary induced shock in

LD:S phase absorbs the incoming particles and travels toward the junction. Therefore,

a new phase LD:HD emerges in the system at the critical value µC2 ≈ 0.59, near to

LD:S phase. This LD:HD phase is confined only to a curve. On further increasing µ,

the junction induced shock enters the left lanes, and S phase arises in all these lanes as

prescribed in Fig. (7.2b) for µ = 0.75. The LD:HD phase acts as a boundary separating

LD:S and S:HD regions. No significant changes are observed in the phase diagram till

µC3 , except the expansion of S:HD and the shrinking of LD:LD phase region. From Eq.

(7.9), the existence of S phase in the left subsystem requires the boundary controlling

parameters to satisfy ρrL(0) < 1 − αeff , which yields the critical value of µC3 ≈ 1.14.

At this critical value, the junction induced shock on the Li lattices shifts towards the

left boundary resulting in the HD phase in all the lanes of the system. Till now the

phase diagram comprises of only five phases namely, LD:LD, LD:S, LD:HD, S:HD, and

HD:HD as shown in Fig. (7.2c).

Now, the particle density in the system continues to increase with µ and it achieves

the value ρl which is the Langmuir isotherm given by ρl = z/(z + 1). As µ → ∞, the

Langmuir isotherm reaches the value 0.5 and the region corresponding to the density

0.5 is renamed with the MC phase. Hence, seven new phases emanate in the system

namely, LD-MC-HD:HD, MC-HD:HD, LD:LD-MC-HD, LD-MC:MC-HD, MC:MC-HD,

LD:LD-MC, LD-MC:MC, and MC:MC as depicted in Fig. (7.2d) for µ = 200. In the

limit, µ → ∞, the topology of the phase diagram remains preserved, and as expected,

the phase diagram for the m × n network model with unlimited resources for m = n

has been retrieved [171].

To further inspect, we examine the scenario when the ratio of intrinsic attachment

and detachment rates is not equal to 1 (K ̸= 1). In particular, for K < 1, only two

phases namely LD:LD and LD:S are observed in the phase diagram for µ < 1. With
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Figure 7.2: Stationary phase diagrams for different value of µ: (a) µ = 0.2, (b) µ = 0.75,
(c) µ = 2.5, and (d) µ = 200 for m = n, K = 1 and ΩD = 0.1. Note that, the phase
diagrams will remain unaffected for any values of m, (m = n). Green solid/dotted lines
represent mean-field results and red symbols correspond to the Monte Carlo simulations.
The subscripts ‘l’ and ‘r’ signify the presence of a boundary layer forming in the density
profile at the left and the right end respectively. M represents the Meissner phase where
the bulk density is independent of the boundary parameters.

an increase in the filling factor µ, LD:HD, S:HD and HD:HD phases gradually enter

the phase diagram. Unlike the case when K = 1, here no MC phase is encountered,

neither in any section nor the complete lattice of the system. Mathematically, the MC

phase is achieved when Kz reaches the value 1, which is impossible as K < 1. Hence,

as µ → ∞ the phase diagram remains invariant and portrays only five phases namely,

LD:LD, LD:S, LD:HD, S:HD, and HD:HD, respectively. Moreover, the phase diagrams

obtained for K = 1 qualitative remain unaffected for K < 1. Also, all lines represent

continuous transitions between different regions of the phase diagram.

Though in the above discussion, our analysis was restricted to the case when the

intrinsic attachment rate is greater than the detachment rate (K < 1). For K > 1,

the phase diagrams, as well as the phase transitions, can be examined utilizing the

particle-hole symmetry. It is worthwhile to note that, when the number of lanes in both

subsystems is taken to be identical, the network system behaves as a one-dimensional

TASEP-LK model. The findings will remain unaffected for any values of m and n
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(m = n). This is because of the reason that all the phase boundaries are independent

of the number of lanes in the left and the right subsystem.

7.5.2 Number of lanes in both the subsystems are different

(m ̸= n)

In this section, we aim to discuss a special case when the number of lanes in the left

subsystem is different from the number of lanes in the right subsystem. For simplicity,

we fix m = 2 and n = 1, which can be easily generalized for other values of m and n

(m > n). To investigate the effect of limited resources on the phase schema, we begin

by studying the phase diagram for the varying parameter µ keeping fix ΩD = ΩA = 0.1,

i.e., K = 1 in the parameter space of α − β. As soon as µ is increased from 0, due to

the availability of a very less number of particles in the system, only two phases LD:LD

and LD:S appear in the phase diagram. The LD:LD region contracts and LD:S region

expands with increasing µ. This continues till µ ≈ 0.29 where two new phases namely

S:S and S:LD emerge in the system (see Fig. (7.3a)).

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

LD
r
:S

S:LD
l,r

S:S
l

LD
r
:LD

r

(a)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

S:HD
l

L
D

r:L
D

r S:LD
l,r

L
D r

:S

LD
r
:HD

l

S:S
l

(b)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

LD
r
:HD

l

L
D r

:S
S:LD

l,r
L

D
r:L

D
r

S:HD
l

HD
l
:LD

l,r
   (M)

S:S
l

HD
l
:HD

l

HD
l
:S

l

(c)

Figure 7.3: Stationary phase diagrams for different value of µ: (a) µ = 0.33, (b)
µ = 0.67, and (c) µ = 3.33 for m = 2, n = 1, K = 1 and ΩD = 0.1. Dotted green
line denotes LD:HD phase. Green solid/dotted lines represent mean-field results and
red symbols correspond to the Monte Carlo simulations. The subscripts ‘l’ and ‘r’
signify the presence of a boundary layer forming in the density profile at the left and
the right end, respectively. M represents the Meissner phase where the bulk density is
independent of the boundary parameters.

Afar µ ≈ 0.36, LD:HD and S:HD phase appears in the phase diagram along with

the existence of LD:LD, LD:S, S:LD, and S:S phases, as evident from Fig. (7.3b).

Observe that LD:HD phase acts as a boundary separating LD:S and S:HD region. To

analyze the possible phase transition, we study the phase diagram (see Fig. (7.3b)) for

a value of β. One can visualize that with an increase in α, as more particles are fed

into the system through the left end, particles start accumulating in the right lanes and

the boundary induced shock in LD:S phase travels towards the junction. Consequently,

the shock completely vanishes from the right lanes as it reaches the junction leading
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to LD:HD phase. On further, increasing α, the junction induced shock absorbs the

incoming particles and hence, S phase is observed in the left system.

With further increase µ, at a critical value µ ≈ 1.08, three new phases HD:HD, HD:S

and HD:LD appear to alter the phase diagram due to the expansion and contraction

of the existing phases. Now, the phase diagram consists of nine phases as shown in

Fig. (7.3c). It can be observed that for β > 0.5, the right lanes demonstrate low

density phases while for β < 0.5, these lanes are either in shock or high density phase.

Studying the phase transition that occurs in the left subsystem, with an increase in

α, the density changes from low density to shock phase and finally to high density

phase. The topology of the phase diagram remains preserved with a further increase

in the parameter µ. In the limiting case of a large number of particles, i.e., µ → ∞,

we retrieve the phase diagram obtained for the network junction model for m ̸= n with

infinite resources [172].

According to the analysis revealed in Section (7.3), the number of feasible phases

in each lane strongly depends on the value of Kz. For K ≤ 1, the value of Kz always

remains less than 1. So, the phase diagrams for K < 1 will be qualitatively analogous

to that for K = 1. While considering the case when K > 1, clearly the attachment rate

ΩA will be greater than the detachment rate ΩD and the value of decisive parameter

Kz can attain any value in (0, K). To investigate the phase diagram in this case, we

fix K = 3 and ΩD = 0.01, respectively.

As discussed above, for µ < 1, only two phases namely LD:LD and LD:S are

observed in the entire phase diagram. We encounter only these phases until the critical

value µC1 ≈ 0.31, where a new phase S:LD appears along with the existing phases. This

critical value is calculated in accordance with the condition that the existence of LD

phase in the left subsystem requires ρlL(1) < βL. Further, after this critical value, as

can be seen from Fig. (7.4a), both qualitative and quantitative changes are viewed with

the emergence of S:S phase in the phase diagram, leading to the shrinking of LD:LD

region and expansion of S:LD region. At the critical value µC2 ≈ 0.4, LD:HD and S:HD

phases enter the phase schema whereas the S:S phase remains confined only to a curve

(see Fig. (7.4b)). Apart from shifting of phase boundaries, no significant changes are

discovered until µ reaches the value µC3 ≈ 1. At this critical value, the phase diagram

comprises a total of nine phases. For α < 0.5 the phases LD:LD, LD:S, LD:HD, and

S:HD continue to appear whereas for α > 0.5, the S:HD and S:LD regions shrink and

the arrival of three new phases namely, HD:LD, HD:S, and HD:HD phases is observed as

displayed in Fig. (7.4c). After the critical value µC4 ≈ 1.07, the phases S:LD, HD:LD,

S:S, and HD:S vanish resulting in the expansion of HD:HD phase and contraction of

S:HD phase. Additionally, it is notable that HD:HD region appears for a significant

range of β, as evident from Fig. (7.4d). As expected, in the limit of µ → ∞, the phase

diagram for a standard nonconserved network junction model has been recovered [172].
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Figure 7.4: Stationary phase diagrams for different value of µ: (a) µ = 0.33, (b)
µ = 0.67, (c) µ = 1, and (d) µ = 3.33 for m = 2, n = 1, K = 3 and ΩD = 0.01.
Dashed green line denotes LD:HD phase. Green solid/dashed lines represent mean-field
results and red symbols correspond to Monte Carlo simulations. The subscripts ‘l’ and
‘r’ signify the presence of a boundary layer forming in the density profile at the left and
the right end respectively. M represents a region where the bulk density is independent
of the boundary parameters.

The above analysis divulges that for K > 1, a maximum of nine phases are observed in

the entire phase diagram with varied values of the filling factor. The complexity of the

phase diagram concerning the number of phases reveals non-monotonic behaviour with

an increase in the total number of particles. Initially, there exist only two phases and

when the total number of particles is equal to the total number of sites in the system,

i.e., µ = 1, the dynamics become complex and the system can exhibit all the possible

nine phases observed for K ̸= 1. To study the unusual topology of the phase diagram

revealed in Fig. (7.4c), we observe the change in the value of the reservoir density

r with respect to an increase in α for a fixed β. As α increases, more particles are

fed into the system through the left end, which in turn decreases the reservoir density

and Kz remains greater than 1. With further increase in α, the reservoir density goes

on decreasing and Kz becomes less than 1, hence, a different topology of the phase

diagram is identified.

In a one-lane TASEP-LK system with infinite resources, it has been observed that
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the particle-hole symmetry leads to invariance between the situations K > 1 and K < 1

[45,46]. However, in this model, as already discussed above, the results obtained of

K < 1 are quantitatively different from those of K > 1. Nevertheless, the particle-hole

symmetry can be utilized to investigate the phase diagram for m < n from those of

m > n with the simultaneous exchanges, m ↔ n, αeff ↔ β, ρ ↔ 1−ρ, and ωeff
A ↔ ωD,

respectively. Furthermore, all the phase transitions involved in the phase diagrams are

of second order. We have included various density profiles corresponding to different

phases observed for the model in Appendix (7.8).

7.6 Conclusion

In this chapter, we have studied a specific variant of the network TASEP model

consisting of m lanes in the left subsystem interacting at a junction with n lanes in the

right subsystem. A reservoir with a limited number of particles is connected to the left

end of the m lanes and the right end of the n lanes. Particles are allowed to attach

in the bulk from the reservoir and can unbind from a lane to rejoin the reservoir. Due

to the presence of limited resources, the attachment and entrance rates are regulated

by the occupancy of the reservoir and the filling factor. Interactions at the junction

are dealt with by considering suitable effective rates upstream and downstream of the

junction. Even though the particle interacts at the junction, mean-field approximation

works well to investigate the crucial stationary state properties such as density profiles,

phase diagrams, and phase boundaries.

By inspecting the characteristics of the mean-field equations, the steady-state

density is studied utilizing the time-dependent density solutions. The stationary

densities are computed by two distinct methods: first, by integrating the characteristics

to obtain implicit solutions and then, by applying an appropriate transformation to

determine the explicit solution in terms of the Lambert-W function. These approaches

have been used alternately to trace and carefully examine the phase diagram’s

attributes.

We observed that the stationary phase diagram exhibits quite different topologies

in the case of equal and unequal numbers of lanes in each subsystem. It is found

that if the number of lanes is equal in both subsystems, there exists a maximum of

thirteen phases when the intrinsic attachment and detachment rates are equal. On the

contrary, when these rates are different, the phase diagram is established to attain a

simpler structure with only five phases. The MC phase can prevail in the system only

when intrinsic attachment rate and the detachment rate are equal. When the number

of lanes in both subsystems is different, the maximum number of observed phases is

nine. The study reports that in the presence of very few particles, only LD:LD and
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LD:S are realized whereas for any value of the filling factor, LD:HD phase is confined

to a curve in the phase plane. In the case of m = n, it can be observed from the

phase diagrams that LD:LD phase covers most of the region when limited resources

are available. Furthermore, the complexity of the phase diagram shows monotonic

behaviour with increasing values of µ for m = n. For m ̸= n and K ≤ 1, the decisive

parameterKz always remains less than 1, leading to a monotonic increase in the number

of phases with respect to µ. However, when K > 1, the number of phases first increases

from two to nine and then reduces to five. Due to the complex calculations involved, the

critical values of µ where new phases appear are numerically determined. Considering

the phase diagram for larger values of µ, our results converge to the limiting case of

infinite resources. Also, we describe the phase transitions as more particles are allowed

to enter, by monitoring the movement of shock in each subsystem. All the findings

have been supported with intuitive observations of finite resources as well as examined

through theoretically computed phase boundaries and Monte Carlo simulations.

7.7 Appendix A

Here, we investigate the transient solution i.e., the evolution in particle density

by analyzing the master equation as stated in Eq. (7.5) and further utilize it to

acquire the corresponding steady-state solution. To completely understand the first

order differential equation in Eq. (7.5), one needs to study its characteristics which are

given by

dρ

dt
= ΩD[Kz − (1 +Kz)ρ], (7.19)

dρ

dx
=

ΩD[Kz − (1 +Kz)ρ]

1− 2ρ
, (7.20)

where Kz = Ωeff
A /ΩD. We consider the density profile ρ(x, t) that develops for an

initial density step

ρ0(x, 0) =

αeff , if 0 ≤ x < 0.5,

1− β, if 0.5 < x ≤ 1,
(7.21)

where the left (x = 0) and the right (x = 1) boundaries are fixed at αeff and 1 − β,

respectively. Integrating Eq. (7.19) and utilizing the initial density profile given by Eq.

(7.21), we obtain the solution ρI(x, t) given by

ρI(x, t) =

Kz −
((

Kz − (1 +Kz)ρ0(x, 0)
)
e−ΩD(1+Kz)t

)
1 +Kz

. (7.22)
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For the study of Eq. (7.20), we introduce a re-scaled density of the form

σ =
(Kz + 1)(2ρ− 1)

Kz − 1
− 1, (7.23)

where Langmuir isotherm ρl = Kz/(Kz + 1) eventuate for σ = 0 and is similar to that

in Ref. [46] . It is evident that the above equation is not defined for Kz = 1. Depending

upon the values of Kz, different scenarios are possible. Therefore, we categorize our

analysis into two cases, i) Kz = 1 and ii) Kz ̸= 1.

7.7.1 Kz = 1

Let us first discuss the case when Kz = 1, for which Eqs. (7.19) and (7.20) simplify

considerably and lead to

dρ

dt
= ΩD(1− 2ρ),

dρ

dx
= ΩD. (7.24)

Solving the above equations, we obtain the general solution of Eq. (7.5) as

(1− 2ρ)e2ΩDt = f(ρ− ΩDx), (7.25)

where f is an arbitrary function to be calculated. Utilizing the initial and boundary

conditions, we obtain three solutions

ρα(x) = ΩDx+ αeff ,

ρI(x, t) =
1− (1− 2ρ0)e

−2ΩDt

2
,

ρβ(x) = ΩD(x− 1) + 1− β,

where ρα(x) and ρβ(x) denote the solutions satisfying the left and the right boundary

conditions, respectively. Depending upon how ρα(x), ρI(x, t), and ρβ(x) can be

matched, different scenarios for the density profile occur [46]. The density profile ρα(x)

is separated from ρI(x, t) at xα and ρI(x, t) is separated from ρβ(x) at xβ whose values

are given by

xα =
1− (1− 2ρ0)e

−2ΩDt − 2αeff

2Ωd

, xβ =
1− (1− 2ρ0)e

−2ΩDt − 2(1− β)

2Ωd

+ 1. (7.26)

According to the relative positions of xα and xβ, the density profile is obtained as

follows:

1. When xα > xβ, there is necessarily a density discontinued at the point xw where the

currents corresponding to ρα(x) and ρβ(x) matches. The density profile is expressed
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as

ρ(x, t) =

ΩDx+ αeff , if 0 ≤ x ≤ xw,

ΩD(x− 1) + 1− β, if xw ≤ x ≤ 1,
(7.27)

where xw = (Ωd − γ + β)/(2ΩD).

2. When xα ≤ xβ, the density profile is given by

ρ(x, t) =


ΩDx+ αeff , if 0 ≤ x ≤ xα,

1− (1− 2ρ0)e
−2ΩDt

2
, if xα ≤ x ≤ xβ,

ΩD(x− 1) + 1− β, if xβ ≤ x ≤ 1.

(7.28)

7.7.2 Kz ̸= 1

In this case, the transformation given by Eq. (7.23) is well defined and Eq. (7.20)

in the re-scaled form reduces to(
σ + 1

σ

)
∂σ

∂x
=

ΩD(Kz + 1)2

Kz − 1
. (7.29)

Integrating the above equation yields

|σ(x)|exp(σ(x)) = Y (x), (7.30)

where Y (x) is

Y (x) = |σ(x0)| exp
{
ΩD

(Kz + 1)2

Kz − 1
(x− x0) + σ(x0)

}
, (7.31)

and x0 is the reference point. In particular, x0 can take the values 0 and 1 corresponding

to the two boundaries. The re-scaled Eq. (7.30) is known to have an explicit solution

in the form of a special function known as Lambert-W function [45,46,173] and can be

written as

σ(x) =


W−1(−Y (x)), if σ(x) < −1,

W0(−Y (x)), if − 1 ≤ σ(x) < 0,

W0(Y (x)), if 0 < σ(x).

(7.32)

Using the properties of the Lambert-W function and the values of αeff and β, a specific

branch of the Lambert-W function can be chosen to obtain the solution to Eq. (7.30).

The re-scaled solution satisfying the left boundary condition is the left re-scaled solution

denoted by σα(x), while the one obeying the right boundary condition is represented by

σβ(x) called as the right re-scaled solution. Therefore, the particle densities ρα(x) and
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ρβ(x) can be obtained by substituting back σα(x) and σβ(x) in Eq. (7.23). Employing

the suitable solution to σα(x) and σβ(x), the complete solution is constructed from the

possible combination of the three solutions, i.e.,

ρ(x, t) =


ρα(x), if 0 ≤ x ≤ xα,

ρI(x, t), if xα ≤ x ≤ xβ,

ρβ(x), if xβ ≤ x ≤ 1,

(7.33)

where ρI(x, t) is given by Eq. (7.22). The two solutions ρα(x) and ρI(x, t) are matches

at the position xα for which the current for both the solutions is equal. Similarly, the

currents for ρI(x, t) and ρβ(x) are equated to calculate the value of xβ.

7.7.3 Explicit solution

Analogous to the homogeneous single-lattice TASEP model with LK coupled to an

infinite reservoir [45,46], the solution ρα(x) corresponding to the left boundary condition

is stable only if αeff ≤ 0.5. The entry rate 0 ≤ αeff ≤ 0.5 implies that 0 ≤ ρα(x) ≤ 0.5.

Utilizing re-scaled density Eq. (7.23), one has σα ∈ [−2Kz/(Kz − 1),−1] for Kz > 1

and σα ∈ [−1,−2Kz/(Kz − 1)] for Kz < 1. Hence, the left re-scaled solution is given

as follows:

(a) If Kz > 1, then σα(x) = W−1(−Yα(x)).

(b) If Kz < 1, then

σα(x) =


W0(Yα(x)), if 0 ≤ α ≤ ρl,

0, if α = ρl,

W0(−Yα(x)), if ρl ≤ α ≤ 0.5.

(7.34)

Similarly, the solution ρβ(x) matching the right boundary is stable only for β ≤ 0.5 and

is always in high density regime (ρβ(x) ≥ 0.5). For the right re-scaled solution σβ(x),

employing β ≤ 0.5 and ρβ(x) ≥ 0.5 transforms to σβ(x) ∈ [−1, 2/(Kz − 1)], if Kz > 1

and σβ(x) ∈ [2/(Kz − 1),−1] for Kz < 1. Hence, by choosing the suitable branch of

the Lambert W-function, one obtains

(a) If Kz > 1, then

σβ(x) =


W0(Yβ(x)), if 0 ≤ β ≤ 1− ρl,

0, if β = 1− ρl,

W0(−Yβ(x)), if 1− ρl ≤ β ≤ 0.5,

(7.35)

where ρl is the Langmuir isotherm.
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(b) If Kz < 1, then σβ(x) = W−1(−Yβ(x)).

For thorough exploration, it is essential to perceive the phase boundaries separating

the different phases in the phase diagram, in addition to the particle densities. The

following section supplies a different method to calculate the density profiles as well as

the phase boundaries.

7.7.4 Implicit solution

An alternative method for obtaining the particle densities ρα(x) and ρβ(x) is

through direct integration of Eq. (7.20). This equation can be rewritten as

dx =
1− 2ρ

ΩD[Kz − (1 +Kz)ρ]
dρ. (7.36)

Upon integration, we have

1

ΩD(1 +Kz)

(
2ρ+

Kz − 1

Kz + 1
ln |Kz − (1 +Kz)ρ|

)
= x+ const. (7.37)

In the low density situation, the density of the left end αeff is employed, to find the

profile ρα(x) through

1

ΩD(1 +Kz)

(
2(ρα − α) +

Kz − 1

Kz + 1
ln

∣∣∣∣Kz − (1 +Kz)ρα
Kz − (1 +Kz)α

∣∣∣∣
)

= x, (7.38)

where α = min{αeff , 0.5}. The high density solution ρβ(x) corresponding to the right

boundary condition is obtained from

1

ΩD(1 +Kz)

(
2(1− β̄ − ρβ) +

Kz − 1

Kz + 1
ln

∣∣∣∣Kz − (1 +Kz)(1− β̄)

Kz − (1 +Kz)ρβ

∣∣∣∣
)

= 1− x, (7.39)

for β̄ = min{β, 0.5}.
Now, the solutions procured for the densities ρα(x) and ρβ(x) in the Section (7.7)

can be deployed in Eq. (7.33) to finally compute the overall density of the lattice. Both

the implicit and the explicit solutions are equivalent and can be used interchangeably.

For the sake of completeness, we will be utilizing the explicit solutions to calculate the

density profiles while the implicit solution will provide the phase boundaries.

7.8 Appendix B

Density profiles corresponding to different phases of the phase diagrams are depicted

in Fig. (7.5).
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Figure 7.5: Typical density profiles for m = n, K = 1, ΩD = 0.1 ((a)-(c) with µ = 2.5
and (d)-(j) with µ = 200), m = 2, n = 1, K = 1, ΩD = 0.1 ((k)-(m) with µ = 1) and
m = 2, n = 1, K = 3, ΩD = 0.01 ((n)-(o) with µ = 1). Solid blue curves and red
symbols denote mean-field and Monte Carlo simulations respectively.



Chapter 8

Conclusion and future outlook

This thesis primarily centres on exploring the collective behaviour of particles

navigating single, multiple, or network topologies. The research questions tackled in this

work draw inspiration mainly from the intracellular transport of motor proteins along

microtubules and vehicular traffic. To model these driven diffusive systems, we employ

a well-established class of non-equilibrium models, specifically the Totally Asymmetric

Simple Exclusion Process (TASEP), to investigate the dynamic properties of the system.

Various forms of the mean-field approximation are adopted to establish a theoretical

basis for the addressed problems. Subsequently, thorough numerical validation is

conducted through finite difference schemes and stochastic approaches, utilizing Monte

Carlo simulations in conjunction with the Gillespie algorithm. The content of the

thesis is categorized systematically into six chapters (excluding the introduction and

the conclusive chapter) based on the nature of the problem.

8.1 Summary of the results

In the first problem presented as chapter 2 of the thesis, we examine a theoretical

model capturing bidirectional particle movement along a one-dimensional track,

reflecting phenomena such as cargo vesicle transport by motor proteins on microtubules

and vehicular traffic on narrow roads. This track is coupled with distinct finite

particle reservoirs corresponding to each species. Utilizing mean-field theory, we explore

the system’s impact on steady-state properties like phase diagrams, density profiles,

boundaries, and transitions. Monte Carlo simulations validate our theoretical findings.

Considering scenarios with equal and unequal filling factors, we observe up to five

stationary phases in the symmetric case and up to sixteen phases in the asymmetric

case, revealing non-monotonic trends. Notably, our model introduces new phases, such

as the shock-low density and maximal current phase, and features concave downward

phase boundaries, distinguishing it from previous studies.

Continuing our exploration further on bidirectional transport in the second problem,

we investigate a distinctive variant of the exclusion model centred on roundabouts,

featuring two bridge lanes in the middle with particles moving in opposing directions.

These bridge lanes intricately connect to bidirectional TASEP lanes on each side,

introducing system inhomogeneity addressed through effective entrance and exit rates.

179
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Our main objective is to explore the influence of coupling the system to a finite pool

on spontaneous symmetry-breaking. Increasing particle count brings qualitative and

quantitative changes to the phase diagram, with the complexity being highly sensitive

to the filling factor. The phase diagram exhibits non-monotonic variation, featuring

congested phases, a back-and-forth phase transition, and boundary- and bulk-induced

shocks. Explicit calculations for phase boundaries, phase transitions and density profiles

are presented and are explained by giving physical arguments. Theoretical groundwork

is laid through mean-field approximations, and is subsequently verified via simulations

utilizing the Gillespie Algorithm.

The third problem deals with the non-equilibrium dynamics of a two-lane TASEP

model with dynamic disorder, where particles moving in opposite directions interact

solely at the boundaries. The dynamic disorder is introduced through stochastic

appearance and disappearance of defects at each site, slowing down particle movement

when present. Reservoir crowding regulates particle entry and exit, while for defects,

only the entry rate is affected. The model is inspired by intracellular transport

processes and traffic situations with dynamic obstacles. Employing the continuum

mean-field framework, we reduce the parameters associated with defect dynamics to a

single scaling factor, simplifying mathematical treatment. Effective entrance definitions

address narrow entrances at entry-exit sites, yielding explicit expressions for particle

densities, currents, and phase boundaries. Spontaneous symmetry-breaking occurs

despite symmetry in lane dynamics. Reservoir crowding introduces a back-and-forth

transition and sustains a localized domain wall in density profiles. Monte Carlo

simulations validate computational outcomes, demonstrating agreement with numerical

and analytical results.

The problem in chapter 5 is based on a two-lane exclusion model with distinct

particle attachment and detachment characteristics. The system operates in a

constrained resource environment, regulated by the filling factor determining the

particle count. Employing a vertical cluster mean-field technique and singular

perturbation theory, we derive theoretical insights into bulk stationary properties for

each lane. Kinetic Monte Carlo simulations and numerical approaches validate our

analytical findings. Investigating the impact of limited particle resources, we unveil

distinct phases characterized by zero or maximum particle density in each lane. The

phase diagram exhibits non-monotonic trends with varying particle counts, featuring

up to ten phases before stabilizing at seven for infinite resources. Moreover, the study

uncovers the emergence of both upward and downward shocks in the system.

The sixth chapter covers a general network comprising of m incoming segments

and n outgoing segments connected through a junction, featuring particle creation

and annihilation with specified rates. We adopt a theoretical approach considering
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each segment as a one-dimensional TASEP with LK, enabling the application of a

simple mean-field approximation to investigate steady-state properties like density

profiles, phase diagrams, and phase transitions. Theoretical outcomes, supported by

mathematical analyses, cover all observed phases for equal attachment-detachment

rates. Two distinct scenarios are explored: when the number of segments in both

subsystems is different and when they are the same. The study identifies explicit

expressions for phase boundaries, provides valid arguments for the non-existence

of certain phases, and classifies potential phases into sub-classes based on junction

dynamics. The influence of LK rates and the number of segments in each subsystem on

system dynamics is examined. Moreover, when the number of incoming and outgoing

segments is equal, the phase diagram aligns with a single-segment TASEP-LK model.

Finally, the sixth problem expands on the prior model by introducing a constraint

on particle resources, quantified through the filling factor. Mean-field approximation

effectively investigates stationary state properties like density profiles, phase diagrams,

and boundaries at the junction. We explore steady-state density using time-dependent

solutions, obtaining implicit and explicit solutions employing Lambert-W function

transformations. Distinct topologies emerge in the stationary phase diagram for equal

and unequal lane numbers in each subsystem. Equal lane numbers result in a maximum

of thirteen phases with equal attachment and detachment rates, reduced to five when

rates differ. The study reveals unique phase occurrences for specific conditions and

explores the impact of critical parameters on phase diagram complexity. Theoretical

calculations and Monte Carlo simulations support the phase boundaries and shock

dynamics, offering a comprehensive insight into the impact of finite resources on the

system.

8.2 Future scope

While this thesis tries to comprehend essential physical phenomena in various

lattice-based transport systems, it represents a preliminary effort. Recognizing that the

proposed models are not exhaustive, there is considerable room for further exploration.

Nevertheless, our aim is to explore distinctive aspects of the field, addressing important

concerns for researchers in this domain. There are numerous potential directions

for further exploration of the discussed model. These may involve aspects like

examining the lattice’s flexibility, exploring the coupling between lanes, investigating

site-dependent hopping rates, studying interactions among neighboring particles, and

considering the dynamic length of the lattice, among other possible features.

Traditionally, TASEP assumes a uniform particle speed, simplifying the analysis

and facilitating the derivation of key properties. However, considering variable particle
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speeds introduces a dynamic dimension to the system, allowing for a more realistic

representation of particle behaviour in diverse scenarios. It would be interesting to

incorporate site-depending hopping rates in the models investigated in this thesis.

The issue explored in the thesis assumes a fixed lattice length, but in reality,

the situation differs. Take microtubules, for instance, composed of thirteen tubulin

protein subunits that undergo polymerization and depolymerization at their ends—a

phenomenon known as dynamic instability. This length regulation, coupled with

particles exhibiting Langmuir kinetics, has been observed to exhibit bistability under

specific parameter values. Though it is very challenging, one can explore dynamic

length effects in network junction models which is incorporated with Langmuir

kinetics. Moreover, this flexible length of the lane can also be investigated in case

of one-dimensional bidirectional transport.

We have broadened the scope of investigation from a single-lane Totally Asymmetric

Simple Exclusion Process (TASEP) to a more intricate two-lane system featuring a

dynamic lane-changing mechanism. It’s noteworthy that this lane-changing attribute is

not limited to the two-lane setup alone; but can also be included in the network junction

model as well. One can expect novel phases, both qualitatively and quantitatively.

Extending the Markovian Totally Asymmetric Simple Exclusion Process (TASEP)

to a non-Markovian framework represents a compelling frontier in research. While

traditional Markovian models assume memory-less transitions between states, the non

Markovian TASEP introduces a more nuanced perspective by considering the influence

of past events and history on the system’s dynamics. This extension allows for a

richer representation of real-world scenarios where memory effects play a crucial role in

governing particle movements.

Lastly, we would like to integrate data-driven tools into addressing the underlying

problems, as these tools are expected to deliver more effective solutions.
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Asymmetric exclusion model with two species: spontaneous symmetry breaking.

Journal of statistical physics, 80(1):69–102, 1995.

[35] Nikolaus Rajewsky, Ludger Santen, Andreas Schadschneider, and Michael

Schreckenberg. The asymmetric exclusion process: Comparison of update

procedures. Journal of statistical physics, 92(1):151–194, 1998.

[36] Bernard Derrida and MR Evans. Bethe ansatz solution for a defect particle in the

asymmetric exclusion process. Journal of Physics A: Mathematical and General,

32(26):4833, 1999.

[37] Kurt Binder. Monte carlo simulations in statistical physics. In Statistical and

Nonlinear Physics, pages 85–97. Springer, 2022.

[38] Daniel T Gillespie. Exact stochastic simulation of coupled chemical reactions.

The journal of physical chemistry, 81(25):2340–2361, 1977.



186 References

[39] Pierre Curie. Propriétés magnétiques des corps a diverses températures.

Number 4. Gauthier-Villars et fils, 1895.

[40] Richard A Blythe and Martin R Evans. Nonequilibrium steady states of

matrix-product form: a solver’s guide. Journal of Physics A: Mathematical and

Theoretical, 40(46):R333, 2007.

[41] Michael James Lighthill and Gerald Beresford Whitham. On kinematic waves ii.

a theory of traffic flow on long crowded roads. Proceedings of the royal society of

london. series a. mathematical and physical sciences, 229(1178):317–345, 1955.

[42] Paul I Richards. Shock waves on the highway. Operations research, 4(1):42–51,

1956.

[43] Ankita Gupta, Bipasha Pal, Akriti Jindal, Nikhil Bhatia, and Arvind Kumar

Gupta. Modelling of transport processes: Theory and simulations. MethodsX,

10:101966, 2023.

[44] Jonathon Howard. Mechanics of motor proteins. In Physics of bio-molecules and
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