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Lay Summary

This work deals with the modeling of time series data, which are defined as

collection of random variables indexed by discrete time. The commonly used

time series models, such as Autoregressive (AR), Moving Average (MA), and

Autoregressive Moving Average (ARMA) models, assume normality in the error

terms. However, real-world phenomena often exhibit asymmetry, skewness, and

non-Gaussian behavior, which is commonly seen in financial data, meteorological

patterns, traffic flow and so on.

This thesis begins by introducing non-Gaussian innovation terms in the AR

model, specifically focusing on semi-heavy-tailed and heavy-tailed distributions.

We consider the AR model with normal inverse Gaussian innovation terms,

exhibiting semi-heavy-tail behavior. The expectation maximization (EM) algorithm

is proposed for parameter estimation, and its performance is compared with other

methods through simulations and real data applications. We further study the AR

model with Cauchy-distributed innovation terms, capturing heavy-tailed behavior

and extreme events. The mixture representation of Cauchy distribution is used

for parameter estimation using the EM algorithm. We also propose to use the

empirical characteristic function method for estimation. The geometric infinitely

divisible random variables are then explored, introducing AR models with geometric

infinitely divisible marginals, and their distributional properties are discussed.

The focus moves to modeling the non-stationary time series data using

a new model, the Humbert Fractionally Differenced Autoregressive Moving

Average (HARMA) model, which is introduced with two types of Humbert

polynomials. Stationarity and invertibility conditions are established, and the

Whittle quasi-likelihood method is employed for parameter estimation. The

effectiveness of the method is demonstrated through simulations and applied to

Spain’s 10-year treasury bond yield data.

Overall, this work contributes to the understanding of time series modeling by

incorporating non-Gaussian innovations, heavy-tailed distributions, and addressing

non-stationary data through novel models like the HARMA model. The proposed

methods are evaluated through simulations and real data applications, providing

insights into their performance and applicability in capturing the dynamics of various

phenomena.
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Abstract

The collection of random variables {Yt : t ∈ T} defined on the same sample space

with time T as the index set is known as a time series. The most fundamental and

easy-to-understand time series models in the literature are autoregressive (AR),

moving average (MA), and the mixture of AR and MA model known as the

autoregressive moving average (ARMA) model. These models are defined as the

linear combination of previous terms and error terms or innovation terms, where

these error terms are assumed to be normal with mean 0 and constant variance σ2.

However, asymmetry, skewness, and non-Gaussian behavior are commonly

observed in many real-life phenomena. For example, in financial data, stock

prices exhibit non-Gaussian behavior with extreme values, meteorological data show

asymmetry due to extreme weather events and long-term climate changes, in traffic

flow, sudden congestion, accidents, or disruptions can lead to non-Gaussian behavior

and asymmetry in data, and so on. To efficiently capture these events, different

non-Gaussian models are considered, such as the AR model with exponential,

Student’s t-distribution, Laplace, Cauchy and other distributions for innovation

terms.

In this thesis, we initiate our study of the AR model by considering non-Gaussian

innovation terms, specifically focusing on the semi-heavy-tailed and heavy-tailed

classes of distribution. First, we consider the AR(p) model with normal inverse

Gaussian innovation terms, which has semi-heavy-tail behavior. We propose using

the expectation-maximization (EM) algorithm for parameter estimation of the

model. Further, we conduct an extensive simulation study to assess the method’s

performance and compare the EM method with Yule-Walker and conditional least

squares methods. We also apply the proposed model to three real datasets, namely,

Google equity closing price, US gasoline price and NASDAQ historical data.

In the next chapter, we consider the AR(p) model with Cauchy-distributed

innovation terms. Again, this distribution is heavy-tailed with infinite mean

and variance, effectively capturing extreme events. We make use of the mixture

representation of the Cauchy distribution, and employ the EM algorithm for

estimation. We also discuss another method based on the empirical characteristic

function for parameter estimation. A simulation study is performed to compare the

EM method with maximum likelihood estimation for the Cauchy distribution. Next,

we delve into a class of geometric infinitely divisible random variables by examining

their Laplace exponents, characterized by Bernstein functions. We introduce

AR models with geometric infinitely divisible (gid) marginals, namely geometric

tempered stable, geometric gamma, and geometric inverse Gaussian. We also

provide some distributional properties and the limiting behavior of the probability



x

densities of these random variables at 0+. Further, we present parameter estimation

methods for the introduced AR(1) model, using both conditional least squares and

the method of moments. The performance of estimation methods for the AR(1)

model is assessed using simulated data. From empirical study on geometric tempered

stable, geometric gamma, and geometric inverse Gaussian distributions, we conclude

that these distributions belong to the class of semi-heavy-tailed distribution.

Until now, the focus of the work has been on one of the fundamental time

series models, namely the AR model, which is applied to stationary data.

The autoregressive integrated moving average (ARIMA) models accommodate

non-stationary time series data by employing integer order differencing. It involves

lagged innovation terms along with differencing steps. An extension of this

model is referred to as the autoregressive fractionally integrated moving average

(ARFIMA) model, which has a fractional differencing operator. Using similar

approach, we introduce a new model by considering two different types of Humbert

polynomials and call these models as type 1 and type 2 Humbert fractionally

differenced autoregressive moving average (HARMA) models. We also establish

the stationarity and invertibility conditions of these introduced models. The

focus is particularly directed towards Pincherle ARMA, Horadam ARMA, and

Horadam-Pethe ARMA processes, which are particular cases of HARMA models.

The Whittle quasi-likelihood method is employed for parameter estimation of the

introduced processes. This method yields consistent and normally distributed

estimators, and its effectiveness is further assessed through a simulation study

for the Pincherle ARMA process. Finally, the Pincherle ARMA model is applied

to Spain’s 10-year treasury bond yield data, demonstrating its effectiveness in

capturing the dynamics of the market.

Keywords: Autoregressive models; time series models;

expectation-maximization algorithm; Whittle quasi-likelihood estimation;

heavy-tailed distributions; geometric infinitely divisibility; autoregressive moving

average models.
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Chapter 1

Introduction

Time series data refers to a collection of data points collected sequentially at

regularly spaced intervals of time [27]. Mathematically, a collection of random

variables {Yt : t ∈ T} is said to be a time series, if it is defined on same

sample space with index set T as discrete time. Different time series models,

namely autoregressive (AR), moving average (MA), autoregressive moving average

(ARMA), and autoregressive integrated moving average (ARIMA) models, have

been extensively studied and explored in literature. These models aim to better

capture the properties of data, especially the economical, meteorological, biological,

and environmental data. These datasets represent time-varying random processes

where extreme events can have a substantial impact on the outcome or prediction.

Therefore, the study of time series models holds great importance. Data from

different domains exhibit different behaviors, for example, consider the daily

adjusted closing price data of Bombay Stock Exchange (BSE) for the period of

March 1, 2013 to November 24, 2023 1, the average rainfall data of the Punjab

region for the years 1901 to 20162, and the average price of avocados 3. Based
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Figure 1.1: Examples of time series data from different domains.

on these behaviors, we classify time series data as stationary and non-stationary.

Observe that the data in Fig. 1.1 have non-stationary behavior as, BSE closing

price has increasing trend, rainfall data and avocado price have spikes at random

time. When we refer to stationary, we mean weak stationarity [26], where the

statistical properties such as mean, variance, and autocovariance of the data are

1https://www.bseindia.com/Indices/IndexArchiveData.html
2https://www.kaggle.com/datasets/aksahaha/rainfall-india
3https://www.kaggle.com/datasets/shrishtitiwari04/avocado

https://www.bseindia.com/Indices/IndexArchiveData.html
https://www.kaggle.com/datasets/aksahaha/rainfall-india
https://www.kaggle.com/datasets/shrishtitiwari04/avocado
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constatnt or independent of time. For weakly stationary time series, this implies

that E[Y (t)] = µ is independent of t, and γY (t+ h, t) is independent of t for each h

[27]. The classical AR and ARMA processes are among the most foundational, easy,

and interpretable models which work on stationary data. These traditional models

are defined as the linear combination of lagged terms and innovation terms with

the assumption that the innovation terms are serially uncorrelated with zero mean

and finite variance, usually identical and independent having normal distribution.

Mathematically, ARMA model is written as [26],

Φ(B)Yt = Θ(B)ϵt, (1.1)

where ϵt is serially uncorrelated with mean 0 and variance σ2, Φ(B), Θ(B) are

stationary AR(p) and invertible MA(q) operators respectively, defined as,

Φ(B) = 1 −
p∑
j=1

ϕjB
j and Θ(B) = 1 +

q∑
j=1

θjB
j,

B is the lag operator, that is, Bj(Yt) = Yt−j. For q = 0, model in Eq. (1.1)

represents AR model of order p and p = 0 corresponds to MA model of order

q. The conventional time series models assume that the conditional variance of

innovation terms does not depend on past information. However, many real-life

phenomena exhibit time varying variance and depend on past observations. In

1982 Robert F. Engle proposed the autoregressive conditional heteroskedasticity

(ARCH) model [50], which allowed the conditional variance of a time series to be

time-varying and dependent on past observations. The model explicitly incorporated

lagged squared observations as explanatory variables. He aimed to address the issue

of volatility clustering, where instances of high volatility are followed by instances of

high volatility and vice versa. The ARCH model was also applied on inflation data

of the United Kingdom, demonstrating its effectiveness in capturing time-varying

volatility. Later in 1986 [24], generalized ARCH model known as GARCH model

was introduced. This model allow both a long memory and a more flexible lag

structure by taking the lagged conditional variances. The model very well explained

the uncertainty of inflation rate.

In a study undertaken by [113], it was found that among 21 real time series

datasets, only 6 datasets’ residuals exhibited a normal distribution. It is observed

in literature that many real data has asymmetry, skewness, and non-Gaussian

behavior, which is discussed further. Particularly in financial markets, the

recorded time series of log returns deviates from a Gaussian distribution, exhibiting

tails that are more substantial than a normal distribution but lighter than a
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power law [139]. The innovation terms or errors also contribute significantly in

observing the patterns in time series data. In a Gaussian time series model,

the innovation terms are assumed to be Gaussian, independent and identically

distributed (i.i.d.). If the distribution of innovation terms or marginal distribution

of series Yt is non-Gaussian, then it is called as non-Gaussian time series model.

Non-Gaussian observations are prevalent in various domains, including the modeling

of asset returns, climate data, binary outcomes, and more [28,76]. The study

of non-Gaussian autoregressive models have been significantly studied for several

years [14]. Lawrance [98] initially introduced AR models with exponential, gamma

and mixed exponential distributions. Subsequently, Dewald and Lewis (1985) [42]

studied AR(1) Laplace process. Then in 1989, Damsleth and El-Shaaravi [38]

developed a time series model by incorporating Laplace noise, which worked as

an alternative to normal distribution. Sim in 1990 [129], studied the AR(1) model

with gamma and exponential processes. Choi and Choi [34], assumed the innovation

terms to be Cauchy or a mixture of normal and Cauchy distribution for the AR(1)

model with a near unit root. Later, Seethalekshmi and Jose [100,101] introduced

various AR models utilizing α-Laplace and Pakes distributions. Additionally,

Jose and Abraham [85] extended the count models with Mittag-Leffler waiting

times. Some other well-considered non-Gaussian AR models are namely Student’s

t-distribution, gamma distribution, Cauchy distribution, and Laplace distribution

[34,35,112,129,134,136,138]. In 2010, Trindade et al. [138] proposed ARMA

and generalized autoregressive conditional heteroscedastic (GARCH) models driven

by asymmetric Laplace (AL) innovations and provided the marginal distribution

of proposed models. Conditional maximum likelihood based inference was also

advocated and asymptotic properties were presented.

The distributions having tails heavier than a normal distribution and lighter

than the power law are known as semi-heavy-tailed distributions. The normal

inverse Gaussian (NIG) distribution, introduced by Barndorff-Nielsen [15], falls

into this category. Note that Cauchy and Student’s t-distribution with small

degree of freedom (ν = 1) have tails heavier than the power law and are called

heavy-tailed distributions. Mathematically, the distribution of a random variable

X with distribution function F is said to have a heavy (right) tail if the moment

generating function of X, MX(t), is infinite for all t > 0 [55], that is,

MX(t) =

∫ ∞

−∞
etx dF (x) = ∞ for all t > 0.

The AR model with innovation terms from Student’s t-distribution is thoroughly

investigated for the multivariate case [134].

In the first segment of our work, we propose AR(p) model with innovations from
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semi heavy-tailed and heavy-tailed distributions as it can model large jumps in the

observed data [43,46]. Many financial data, meteorological data, biomedical data

and so on exhibit extreme values, for example, see [28,106,138]. We consider an

AR(p) model with NIG distribution and Cauchy distribution [44]. We apply the

AR(p) NIG model on Google equity price, NASDAQ stock index and USA gasoline

price data. Subsequently, we also introduce AR models using geometric infinitely

divisible distributions namely, geometric inverse Gaussian, geometric gamma and

geometric tempered stable [45]. We present the integral form for the probability

density function (pdf) of the innovation terms in the autoregressive (AR) model,

given by Yt = θYt−1 + ϵt. Empirically, it is showed that these distributions are

semi heavy-tailed. It is noteworthy to mention that, among the non-Gaussian

AR models discussed so far, most of the research work is aligned towards the AR

models with heavy-tailed distributions, which can very well handle stationary data.

Recent work of Bhootna and Kumar [22] on AR(1) model with one-sided tempered

stable marginals and innovations is the evidence of application of non-Gaussian and

heavy-tailed times series models.

Another ubiquitous characteristic of real world time series data is

non-stationarity [26]. To model the non-stationary data effectively, Box and Jenkins

[26] introduced the autoregressive integrated moving average (ARIMA) model,

which is formulated as follows:

Φ(B)(1 −B)νYt = Θ(B)ϵt, ν ∈ N, (1.2)

where ϵt is Gaussian white noise with variance σ2, B is the lag operator, ν

is differencing parameter, Φ(B), and Θ(B) are stationary AR(p) and invertible

MA(q) operators, respectively. The ARIMA model can not capture the long range

dependencies which is common in the time series data. Therefore, to overcome this

issue, autoregressive fractionally integrated moving average (ARFIMA) model was

introduced by Clive W.J. Granger and Robert Joyeux in 1980 [66] and later by

Hosking [79]. This model is a natural extension of ARIMA framework obtained by

taking a fractional differencing operator (1−B)ν , ν ∈ R in (1.2), that is, ν can take

any real value. The ARFIMA model is stationary for ν ∈ (−0.5, 0.5). This model

is proved to capture the memory effects in the time series data. It’s statistical

properties were further studied by Robinson [121], which paved the way for the

estimation of long-memory parameters. The other well studied and applied time

series model is the Gegenbauer autoregressive moving average (GARMA) model,

which is an extension of the traditional ARMA model that use Gegenbauer type
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differencing operator. GARMA model can be expressed as,

Φ(B)(1 − 2uB +B2)νYt = Θ(B)ϵt,

where ν ∈ (0, 1/2), |u| < 1, and (1 − 2uB + B2)−ν is generating function of

Gegenbauer polynomials [67]. The second segment of our work focuses on modelling

the non-stationarity and long range dependencies present in the time series data

by considering some generalized differencing operators. We use the fractional

differencing approach and the generating functions of Humbert polynomials to

define two types of Humbert generalized fractionally differenced ARMA processes

(HARMA) [21]. For m ∈ N, the HARMA model of two types use the generating

function of the form (1 −muB + Bm)−ν and (1 − 2uB + Bm)−ν , respectively. We

also study the stationarity and invertibility conditions for these introduced processes.

Specifically, we focus on Pincherle ARMA, Horadam ARMA and Horadam-Pethe

ARMA processes and their properties.

After model selection, the subsequent step is the estimation of model parameters.

For classical time series models, Yule-Walker and conditional least squares methods

are widely applied. The Yule-Walker estimation method is based on the

Yule-Walker equations calculated for the considered model, and utilizes the empirical

autocovariance function for the analyzed data. More details of Yule-Walker method

for autoregressive models can be found in [27]. The conditional least squares method

estimates the model parameters for dependent observations by minimizing the sum

of squares of deviations about the conditional expectation. Various estimation

methods have been explored with the introduced different time series models.

However, these methods can not be applied for AR models with heavy-tailed

distributions, as it is based on assumption of mean zero of error terms and also

need the existence of finite order moments, which is not possible for some of

the heavy-tailed distributions. Choi and Choi in [34], estimated the parameters

of the Cauchy AR model using maximum likelihood estimation and least square

estimation methods. Christmas and Everson [35] used variational Bayes, and Nduka

[112] recently used the expectation maximization (EM) algorithm to estimate the

parameters of the AR model with Student’s t-distribution innovations. The EM

algorithm was introduced by Dempster et al. in [40] and it is considered as an

alternative to numerical optimization of the likelihood function. It iterates between

two steps namely, expectation step and maximization step. The EM algorithm is

discussed in more details in Section 2.3. In this thesis, we consider NIG and Cauchy

distributions for innovations term in AR model. Note that NIG distribution has

Bessel function of third kind due to which the direct computation of derivative of

log likelihood function is difficult. In second case, the Cauchy distribution does not
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have finite variance, therefore we cannot apply the classical estimation methods like

method of moments or the conditional least square method in case of AR model

with Cauchy innovations. Keeping these behaviors in mind, we propose to use EM

algorithm for parameter estimation of AR(p) NIG and compare the results with

Yule-Walker and conditional least squares methods. Along with EM algorithm,

we also propose to use empirical characteristic function for estimation of AR(p)

Cauchy model and compare the same with maximum likelihood estimation method.

However, for AR(p) models with geometric infinitely divisible distributions, we use

the conditional least squares and method of moments which provide the analytical

parameter estimates. Further, in second segment of our work we have fractionally

differenced Humbert processes which are long memory processes, therefore we use

spectral density based estimation known as Whittle quasi-likelihood estimation

[125]. It was introduced by P. Whittle in 1950s [143] particularly to estimate

parameters of long-memory processes. This method is based on the spectral density

function, which characterizes the distribution of frequencies in a time series. It

involves minimizing a quasi-likelihood function derived from the theoretical spectral

density and empirical spectral density.

The subsequent chapters of the thesis are organized as follows. Chapter 2 is

dedicated to introducing the terminologies, methods and results utilized throughout

the thesis. Chapter 3 introduces to the work related to AR model with normal

inverse Gaussian innovation terms and its applications. Chapter 4 deals with AR

model with distribution of innovations as Cauchy. Chapter 5 is devoted to definitions

of geometric infinitely divisible random variables and their properties. Further,

we also define AR model of order 1 with geometric infinitely divisible marginals

and innovations. Moreover, the Humbert polynomials based fractionally differenced

ARMA models are included in Chapter 6. The last chapter concludes the work with

some future ideas.



Chapter 2

Preliminaries

In this chapter, we discuss some important definitions and results applied throughout

the thesis. This chapter also provides the classical time series models and prevalent

estimation methods.

2.1 Definitions

Definition 2.1 (Heavy-tailed distributions [55]). The distribution of a random

variable X with distribution function F is said to have a heavy (right) tail if the

moment generating function of X, MX(t), is infinite for all t > 0, that is

MX(t) =

∫ ∞

−∞
etx dF (x) = ∞, for all t > 0.

Definition 2.2 (Asymptotic functions). For large x, the functions f and g are

asymptotic, which is denoted by f ∼ g, if and only if lim
x→∞

f(x)

g(x)
= 1.

Definition 2.3 (Characteristic function [122]). For a random variable X, the

complex-valued function ϕ(s) on R is defined as characteristic function of X as,

ϕ(s) = E(exp(i sX)) =

∫ ∞

−∞
exp(i sx)f(x) dx,

where f(x) is probability density function of X.

Definition 2.4 (Bernstein function [128]). The function g : (0,∞) → (0,∞) is a

Bernstein function if g is of class C∞ and g(s) ≥ 0, for all s ≥ 0 and (−1)n−1g(n)(s) ≥
0, for all n ∈ N and s > 0.

Definition 2.5 (Infinitely divisible random variable [132]). A random variable Y is

infinitely divisible if for every n ∈ N there exist independent, identically distributed

(iid) random variables Y1n, . . . , Ynn such that, Y
d
= Y1n +Y2n + . . .+Ynn, where Y

d
=

represents equality in distributions.

Definition 2.6 (Laplace exponent). For a positive infinitely divisible random

variable Y the Laplace transform has the following form

E
(
e−sY

)
= e−ψ(s).
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The function ψ(·) is called the Laplace exponent.

Definition 2.7 (Geometric infinite divisibility [92]). The random variable Y on

(0,∞) is said to have geometric infinitely divisible marginals if its Laplace transform

is given by f(s) = 1
1+g(s)

, where g(s) is a Bernstein function which is the Laplace

exponent of some positive infinitely divisible random variable.

Definition 2.8 (Slowly varying function [52]). A positive (not necessarily

monotone) function L(x) defined on (0,∞) varies slowly at infinity if and only

if limx→∞
L(tx)

L(x)
→ 1 is true for all t > 0.

Definition 2.9 (Long memory process [48]). A stationary process {Yt : t ∈ N}
having finite second order moments is said to have long memory if the series
n−1∑
h=0

|γ(h)| → ∞ as n → ∞, where γ(h) = Cov (Y (t), Y (t+ h)) is the covariance

function.

Definition 2.10 (Seasonal long memory [36]). The stationary time series {Yt} is

said to have seasonal long memory if there exist ω0 ∈ R and α ∈ (0, 1) such that

the autocorrelation

ρ(h) ≃ h−α cos(hω0), as h→ ∞,

and cos(hω0) ̸= 1.

Definition 2.11 (Spectral density [48]). The spectral density of stationary time

series {Yt} is defined as Fourier transform of autocorrelation ρ(h), that is,

fY (ω) =
1

2π

∞∑
h=−∞

ρ(h)e−ιωh,

where −π ≤ ω ≤ π are Fourier frequencies.

2.2 Classical time series models

This section deals with some well-known time series models. These models form

the foundation for the models defined in the subsequent chapters.

Autoregressive process of order p (AR(p)): The time series {Yt} is AR process

of order p, if

Φ(B)Yt = ϵt, t = 0,±1,±2, · · · , (2.1)
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where {ϵt} is white noise with mean 0 and variance σ2, B is the lag operator, Φ(B)

is stationary AR(p) operator defined as,

Φ(B) = 1 −
p∑
j=1

ϕjB
j.

Moving average process of order q (MA(q)): The time series {Yt} is MA

process of order q, if

Yt = Θ(B)ϵt, t = 0,±1,±2, · · · , (2.2)

where {ϵt} is white noise with mean 0 and variance σ2, B is the lag operator, Θ(B)

invertible MA(q) operator defined as,

Θ(B) = 1 +

q∑
j=1

θjB
j.

Autoregressive moving average process of order (p, q) (ARMA(p, q)): The

time series {Yt} is ARMA process of order (p, q), if

Φ(B)Yt = Θ(B)ϵt, t = 0,±1,±2, · · · , (2.3)

where {ϵt} is white noise with mean 0 and variance σ2, B is the lag operator, Φ(B),

Θ(B) are stationary AR(p) and invertible MA(q) operators respectively, defined as,

Φ(B) = 1 −
p∑
j=1

ϕjB
j and Θ(B) = 1 +

q∑
j=1

θjB
j, (2.4)

where Φ(B) is called stationary operator and Θ(B) is called invertible operator if

all roots of these operators lie outside the unit circle.

Autoregressive integrated moving average process of order (p, ν, q)

(ARIMA(p, ν, q)): The time series {Yt} is ARIMA process, if

Φ(B)(1 −B)νYt = Θ(B)ϵt, t = 0,±1,±2, · · · , (2.5)

where ν is non-negative integer, {ϵt} is white noise with mean 0 and variance σ2,

B is the lag operator, Φ(B), Θ(B) are stationary AR(p) and invertible MA(q)

operators respectively, defined in Eq. (2.4).

Autoregressive fractionally integrated moving average process of order

(p, ν, q) (ARFIMA(p, ν, q)): The time series {Yt} is ARFIMA process [79], if

Φ(B)(1 −B)νYt = Θ(B)ϵt, t = 0,±1,±2, · · · , (2.6)



10 Chapter 2. Preliminaries

where ν is real number, {ϵt} is white noise with mean 0 and variance σ2, B is the

lag operator, Φ(B), Θ(B) are stationary AR(p) and invertible MA(q) operators

respectively, defined in Eq. (2.4). ARFIMA is also known as long memory process

as it can capture the long range dependence present in the data. The other well

studied and applied time series model is the Gegenbauer autoregressive moving

average (GARMA) model, which is an extension of the traditional ARMA model

that uses Gegenbauer polynomials.

Gegenbauer autoregressive moving average of order (p, ν, q)

(GARMA(p, ν, q)): GARMA model can be expressed as,

Φ(B)(1 − 2uB +B2)νYt = Θ(B)ϵt,

where ν ∈ (0, 1/2), |u| < 1 and (1−2uB+B2)−ν is generating function of Gegenbauer

polynomial [67]. The Gegenbauer polynomial has following form:

(1 − 2ux+ x2)−ν =
∞∑
n=0

Cν
n(u)xn,

where ν ̸= 0, |x| < 1 and Cν
n(u) is given by:

Cν
n(u) =

n/2∑
k=0

(−1)k
Γ(n− k + ν)(2u)n−2k

Γ(d)Γ(n+ 1)Γ(n− 2k + 1)
.

The exemplary time series plot from above discussed models are shown in Fig. 2.1.

2.3 Estimation methods

In this section, we discuss some well known parameter estimation methods for time

series models.

Expectation Maximization (EM) algorithm: This estimation method iterates

between two steps, namely the expectation step (E-step) and the maximization step

(M-step). The E-step computes the expectation of the complete data log-likelihood

with respect to the conditional distribution of the unobserved or hidden data, given

the observations and the current estimates of the parameters. Further, in the M-step,

a new estimate for the parameters is computed which maximize the complete data

log-likelihood computed in the E-step [108].

Consider the complete data as (X, Y ) with observed data as X, hidden data as
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Y and θ be the set of unknown parameters. We denote f(X, Y |θ) as the joint

density function of complete data given the parameter set θ. We find the conditional

expectation of log-likelihood of complete data with respect to the conditional

distribution of Y given X, denoted as Q(θ|θ(k)),

Q(θ|θ(k)) = EY |X,θ(k) [log f(X, Y |θ)|X, θ(k)], (2.7)

where θ(k) represents the estimates of the parameter vector at k-th iteration and

EY |X,θ(k) is the conditional expectation with respect to Y given X. Further, in the

M-step, we compute the parameters by maximizing the expected log-likelihood of

complete data found in the E-step such that

θ(k+1) = argmax
θ

Q(θ|θ(k)).

Conditional least squares: The conditional least squares method estimates the

model parameters for dependent observations by minimizing the sum of squares

of deviations about the conditional expectation [94]. For preceding data, Ft−1 =

(Yt−1, Yt−2, · · · , Y1)T and model parameter θ, the conditional least squares function

is defined as,

L(θ) =
t∑

s=1

{Ys − E[Ys|Fs−1]}2. (2.8)

The parameter θ is estimated by minimizing the function L(θ) with respect to θ.

Yule-Walker estimation method: Consider an autoregressive (AR) model of

order p, denoted as AR(p), given by the equation:

Yt = ϕ1Yt−1 + ϕ2Yt−2 + . . .+ ϕpYt−p + ϵt, (2.9)

where ϕ1, ϕ2, . . . , ϕp are the autoregressive parameters, and ϵt is the white noise error

terms. The Yule-Walker equations provide a method to estimate the autoregressive

parameters by solving a system of equations based on the sample autocorrelation

function (ACF). The sample ACF at lag k is denoted as ρ̂k. The Yule-Walker

equations for an AR(p) model are given by [146]:


ρ̂1

ρ̂2
...

ρ̂p

 =


1 ϕ1 ϕ2 . . . ϕp−1

ϕ1 1 ϕ1 . . . ϕp−2

...
...

...
. . .

...

ϕp−1 ϕp−2 . . . ϕ1 1



ϕ1

ϕ2

...

ϕp

+


ϵ1

ϵ2
...

ϵp

 .
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The solution to these equations provides estimates for the autoregressive parameters

ϕ1, ϕ2, . . . , ϕp, and the variance of the white noise term can also be estimated.

Conditional maximum likelihood estimation: Consider an AR(p) model

defined in Eq. (2.9), then the likelihood function for a time series of length n

conditional on the initial values Y1, Y2, . . . , Yp is given by:

L(ϕ, θ|Y1, Y2, . . . , Yp) =
n∏

t=p+1

f(yt|Yt), (2.10)

where ϕ = (ϕ1, ϕ2, . . . , ϕp)
⊺ is the vector of autoregressive parameters, θ is the

parameter of the white noise error term, Yt = (Yt−1, Yt−2, . . . , Yt−p)
⊺ is the vector

of lagged values, and f(yt|Yt) is the conditional distribution of time series. The

conditional maximum likelihood estimates ϕ̂ and θ̂ are obtained by maximizing the

log-likelihood function [146],

arg max
ϕ,θ

logL(ϕ, θ|Y1, Y2, . . . , Yp).

The maximization can be performed using numerical optimization techniques.

Method of moments: The method of moments is a statistical technique for

estimating the parameters by equating the theoretical moments (expectations) of a

distribution to the sample moments computed from the data. This method provides

a set of equations that can be solved to obtain estimates for the parameters [31].

Kernel density estimation method: The kernel density estimation method also

known as Parzen-Rosenblatt window method, is a non-parametric approach to find

the underlying probability distribution of data. It is a technique that lets one to

create a smooth curve given a set of data and one of the most famous method for

density estimation. For a sample S = {xi}i=1,2,...,N , having distribution function

f(x) has the kernel density estimate f̂(x) defined as [49]

f̂(x) =
1

N

N∑
n=1

Kσ(x− xi), (2.11)

where Kσ is kernel function with bandwidth σ such that Kσ(t) = ( 1
σ
)K( t

σ
).
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2.4 Goodness of fit tests

Following are some of the goodness of fit tests which are used in this thesis:

One-sample Kolmogorov-Smirnov (KS): The one-sample KS test is a

non-parametric test based on the maximum difference between an empirical and

a hypothetical cumulative distribution [107]. Consider a sample Y = (y1, y2, . . . , yn)

to test whether it comes from a specific distribution, say F (y). The null hypothesis

is that the sample comes from F (y). The one-sample KS test statistic is given by:

Dn = max

(
sup
y

|Fn(y) − F (y)|
)
,

where Fn(y) is the empirical distribution function of the sample, and F (y) is the

cumulative distribution function of the reference distribution. To perform the

KS test, you can compare the calculated test statistic Dn with the critical value

from the Kolmogorov-Smirnov distribution or use a significance level to determine

whether to reject the null hypothesis.

Two-sample Kolmogorov-Smirnov (KS): The two-sample KS test is a

non-parametric test which compares two independent samples, denoted as X =

(x1, x2, . . . , xm) and Y = (y1, y2, . . . , yn), to determine whether they are drawn from

the same distribution [107]. The test statistic for the two-sample KS test is given

by:

Dm,n = max

(
sup
x

|Fm(x) − Fn(x)|
)
,

where Fm(x) and Fn(x) are the empirical distribution functions of samples X and

Y , respectively. To perform the KS test, you can compare the calculated test

statistic Dm,n with the critical value from the Kolmogorov-Smirnov distribution or

use a significance level to determine whether to reject the null hypothesis.

Augmented Dickey Fuller (ADF): The Augmented Dickey-Fuller (ADF) test is

a statistical test used to determine whether a time series has a unit root, indicating

non-stationarity. The null hypothesis of the test is that the time series has a unit

root, while the alternative hypothesis is that the time series is stationary [47].
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Figure 2.1: The exemplary time series of length N = 500 from different time series
models with Gaussian innovations.



Chapter 3

Autoregressive model with normal

inverse Gaussian innovations

In this chapter, we introduce an autoregressive process of order p (AR(p)) with

normal inverse Gaussian innovations. Further, we apply expectation maximization

(EM) algorithm to estimate the model parameters. The proposed estimation method

is assessed on simulated data. We also present the real world applications of the

model in different domain.

3.1 Introduction

In time series modeling, the autoregressive (AR) models are used to represent

the time-varying random process in which output depends linearly on previous

terms and a stochastic term, also known as error term or innovation term. In the

classical approach, the marginal distribution of the innovation terms is assumed

to be normal. However, the application of non-Gaussian distributions in time

series allows modeling the outliers and asymmetric behavior visible in many real

data. In addition, in financial markets the distribution of the observed time

series (log-returns) are mostly non-Gaussian and have tails heavier than the normal

distribution, however lighter than the power law. These kind of distributions are also

called semi heavy-tailed, see, e.g., [37,116,118]. The AR models with non-Gaussian

innovations are very well studied in the literature. Sim [129] considered AR

model of order 1 with Gamma process as the innovation term. For AR models

with innovations following a Student’s t-distribution, see, e.g., [35,112,134,136] and

references therein. Note that Student’s t-distribution is used in modeling of asset

returns [76].

One of the semi heavy-tailed distributions with wide range of shapes is

normal inverse Gaussian (NIG), which was introduced by Barndorff-Nielsen [15].

NIG distributions were used to model the returns from the financial time-series

[6,16,20,29,88,141,142]. In practical situations, we come across the data with

skewness, extreme values or with missing values which can be easily assimilated

by the NIG distribution. The distribution has stochastic representation, i.e., it can
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be written as the normal variance-mean mixture where the mixing distribution is the

inverse Gaussian distribution and a more general distribution known as generalised

hyperbolic distribution is obtained by using generalised inverse Gaussian as the

mixing distribution [16]. Many authors proposed various methods for analysis and

estimation of NIG-distributed models, which is a testimony of their popularity, see,

e.g. [32,72,89,90]. In 2017, Angelis and Viroli[7] also discussed the Markov-switching

regression model with NIG innovations and illustrated through empirical studies

that NIG is more flexible than Student’s t-distribution and generalized error

distribution. In model based clustering[114], a mixture of multivariate normal

inverse Gaussian (MNIG) distributions is found to be a better alternative to a

mixture of Gaussian distributions as it is able to incorporate the skewness and

fatter tails of mixture components. In the recent literature we can also find various

complex models with NIG distribution, such as GARCH or GARCH-based models

[70,111], and exponential NIG model [4]. The mentioned models are especially

useful in cryptocurrencies analysis to predict their future values. In the literature,

there are also various models and stochastic processes that are based on NIG

distribution. The very first example is the NIG Lévy process, see e.g, [124] which

was also applied to financial data modeling [5]. In the recent literature, one can

also find the interesting applications of NIG Lévy process for default of company

prediction [86]. There are also numerous time series models with NIG distributed

innovations and their various applications. We mention here the interesting analysis

of heteroscedastic models [54,57,82,91,147] and autoregressive models [140], see

also [144]. However in financial markets the observed time series (log-returns)

distributions are non-Gaussian and have tails heavier than Gaussian and lighter than

power law. These kind of distributions are also called semi heavy-tailed distributions

(see e.g.[37,116,118]). For a literature survey on different innovation distributions

or marginal distributions in the AR(1) model see [69]. The AR(1) models with

non-Gaussian innovation terms are very well considered in the literature. Sim

in 1990 considered AR(1) model with Gamma process as the innovation term

[129]. For AR models with innovations following a Student’s t-distribution see e.g.

[35,112,134,136] and references therein. Note that t-distribution is used in modeling

of asset returns (see [76]). Normal inverse Gaussian (NIG) distribution introduced

by Barndorff-Nielsen [15] is a semi heavy tailed distribution with tails heavier than

the Gaussian but lighter than the power law tails. NIG distribution is defined as the

normal variance-mean mixture where the mixing distribution is the inverse Gaussian

distribution. NIG distributions and processes are used to model the returns from the

financial time-series see e.g.[16,88]. A more general distribution which is obtained

by taking normal variance-mean mixture with mixing distribution as generalised

inverse Gaussian distribution is called generalised hyperbolic distribution see [17].
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It is worth mentioning that, in addition to applications in economics and finance,

the NIG distributions have also found use in a wide range of other fields, including

computer science [126], energy markets [19], commodity markets [152], and image

analysis [150]. The multivariate NIG distributions, counterparts of univariate NIG

distributions, were considered in [33,115] and were applied in various disciplines,

see e.g.[1]. The current literature is also enriched by research papers with other

interesting applications of NIG distribution, such that epilepsy description [75], EEG

signals analysis [74] or sleep apnea detection [73]. In this chapter, we introduce an

AR(p) model with NIG innovation terms. Due to heavy-tailedness of the innovation

term it can model large jumps in the observed data. First, we show that AR(1)

process very well model the Google stock price time-series. The non-Gaussian

behaviour of the innovation terms of the Google stock price is shown using QQ

plot and Kolmogorov-Smirnov test. From a market risk management perspective

obtaining reasonable extreme observation levels is a crucial objective in modeling.

Since, it capture the market extreme movements which a Gaussian based model

doesn’t capture. The parameters of the model are estimated using EM algorithm.

Further, we extend the model to AR(p) model and perform the analysis for AR(2)

and AR(1) models. The model applications are demonstrated on NASDAQ stock

market index data and US gasoline price data.

The rest of the chapter is organised as follows. In Section 3.2, the NIG autoregressive

model is defined along with important properties of the NIG distribution. Section

3.2.1 discusses the estimation procedure of the parameters of the introduced model

using EM algorithm. The efficacy of the estimation procedure on simulated data

and the real world financial data application is discussed in Section 3.3. Section 3.4

concludes.

3.2 NIG autoregressive model

In this section, we introduce the AR(p) model having independent identically

distributed (i.i.d.) NIG residuals. However, first we remind the definition and

main properties of the NIG distribution.

Definition 3.1 (NIG distribution). A random variable X is said to have a NIG

distribution which is denoted by X follows NIG (α, β, µ, δ), if its probability density

function (pdf) has the following form

f(x;α, β, µ, δ) =
α

π
exp

(
δ
√
α2 − β2 − βµ

)
ϕ(x)−1/2K1(δαϕ(x)1/2) exp(βx), x ∈ R,

(3.1)

where ϕ(x) = 1 + [(x − µ)/δ]2, 0 ≤ |β| ≤ α, µ ∈ R, δ > 0 and Kν(x) denotes the
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modified Bessel function of the third kind of order ν evaluated at x and is defined

by

Kν(x) =
1

2

∫ ∞

0

yν−1e−
1
2
x(y+y−1)dy.

The NIG distribution belongs to the four parameter family distribution. The

parameter µ is location, β is an asymmetry parameter with β = 0 distribution is

symmetric, β > 0 is rightly skewed, and β < 0 is left skewed, α represents the

tail behavior and δ is scale parameter. We use the asymptotic properties of the

modified Bessel function, Kν(x) ∼√π
2
e−xx−1/2 [84] and the fact that ϕ(x) ∼ (x/δ)2

for large x. For definition of asymptotic functions see Def. 2.2. We get the following

expression:

f(x;α, β, µ, δ) ∼ α

π
e(δ

√
α2−β2−βµ)ϕ(x)−1/2

√
π

2
e−δα

√
ϕ(x)
(
δα
√
ϕ(x)

)−1/2

eβx

∼ α

π
e(δ

√
α2−β2−βµ)

√
π

2
(δα)−1/2ϕ(x)−3/4e−δα

√
ϕ(x)eβx

∼ α

π
e(δ

√
α2−β2−βµ)

√
π

2
(δα)−1/2δ3/4x−3/4eµαe−(α−β)x, α > β,

∼
√

α

2π
e(δ

√
α2−β2−βµ)δx−3/2e−(α−β)x, α > β.

From the above, one can conclude that the tail probability for NIG distributed

random variable X satisfies the following

P(X > x) ∼ cx−3/2e−(α−β)x,

where c =
√

α
2π

δ
(α−β)e

(δ
√
α2−β2−βµ), which shows that NIG is a semi-heavy tailed

distribution [37,116,118]. It is worth mentioning that the NIG distributed random

variable X can be represented in the following form

X = µ+ βG+
√
GZ, (3.2)

where Z is a standard normal random variable i.e. Z ∼ N(0, 1) and G has an inverse

Gaussian(IG) distribution with parameters γ and δ denoted by G ∼ IG(γ, δ), having

pdf of the following form

g(x; γ, δ) =
δ√
2π

exp(δγ)x−3/2 exp

(
−1

2

(
δ2

x
+ γ2x

))
, x > 0. (3.3)

The representation given in Eq. (3.2) is useful when we generate the NIG distributed

random numbers. Also, Z and G are independent. It is also suitable to apply

the EM algorithm for the maximum likelihood estimation (MLE) of the considered
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model’s parameters. The representation in Eq. (3.2) makes it convenient to find

the main characteristics of a NIG distributed random variable X also mentioned in

[89], namely, we have

EX = µ+ δ
β

γ
and Var(X) = δ

α2

γ3
.

Moreover, the skewness and kurtosis of X is given by

Skewness =
3β

α
√
δγ

Kurtosis =
3(1 + 4β2/α2)

δγ
.

For β = 0, the NIG distribution is symmetric. Moreover, it is leptokurtic if δγ < 1

while it is platykurtic in case δγ > 1. Note that a leptokurtic NIG distribution is

characterized by larger number of outliers than we have for normal distribution and

thus, it is a common tool for financial data description.

The following properties of NIG distribution are presented in Prop. 2.3 in [95]. Let

X ∼ NIG (α, β, µ, δ), then following holds.

(a) The moment generating function of X is

MX(u) = eµu+δ(
√
α2−β2−

√
α2−(β+u)2 .

(b) If X ∼ NIG (α, β, µ, δ), then X + c ∼ NIG (α, β, µ+ c, δ), c ∈ R

(c) If X ∼ NIG (α, β, µ, δ), then cX ∼ NIG (α/c, β/c, cµ, cδ), c > 0.

(d) If X1 ∼ NIG (α, β, µ1, δ1) and X2 ∼ NIG (α, β, µ2, δ2) are independent then the

sum X1 +X2 ∼ NIG (α, β, µ1 + µ2, δ1 + δ2).

(e) If X ∼ NIG (α, β, µ, δ), then X−µ
δ

∼ NIG (αδ, βδ, 0, 1).

NIG autoregressive model of order p: We can define the AR(p) univariate

stationary time-series {Yt}, t ∈ Z with NIG residuals

Yt =

p∑
i=1

ρiYt−i + εt = ρTYt−1 + εt, (3.4)

where ρ = (ρ1, ρ2, · · · , ρp)T is a p-dimensional column vector

Yt−1 = (Yt−1, Yt−2, · · · , Yt−p)T

is a vector of p lag terms and {ϵt}, t ∈ Z are i.i.d. residuals distributed as

NIG(α, β, µ, δ).
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The {ϵt} represents residuals of the analyzed model. The process {Yt} is a

stationary one if and only if the modulus of all the roots of the characteristic

polynomial (1 − ρ1z − ρ2z
2 − · · · − ρpz

p) are greater than one. We assume that the

error term follows a symmetric NIG distribution with mean 0 i.e. µ = β = 0. Using

properties of NIG distribution, the conditional distribution of Yt given ρ, α, β, µ, δ

and the preceding data Ft−1 = (Yt−1, Yt−2, · · · , Y1)T is given by

p(Yt|ρ, α, β, µ, δ,Ft−1) = f(yt;α, β, µ+ ρTyt−1, δ),

where f(·) is the pdf given in Eq. (3.1) and yt−1 is the realization of Yt−1. We have

E[Yt] = E[εt] = 0 and Var[Yt] = σ2
ε +

∑p
j=1 ρjγj, where σ2

ε = Var(εt) = δα2/γ3 and

γj = E[YtYt−j] = ρ1γj−1 + ρ2γj−2 + · · · + ρpγj−p, j ≥ 1.

3.2.1 Parameter estimation using EM algorithm

In this section, we provide a step-by-step procedure to estimate the parameters of the

model proposed in Eq. (3.4). The procedure is based on EM algorithm. We provide

estimates of all parameters of the introduced AR(p) with NIG distributed residuals.

It is worth to mention that EM is a general iterative algorithm for model parameter

estimation by maximizing the likelihood function in the presence of missing or

hidden data. The EM algorithm was introduced in [40] and it is considered as

an alternative to numerical optimization of the likelihood function. It is popularly

used in estimating the parameters of Gaussian mixture models (GMMs), estimating

hidden Markov models (HMMs) and model-based data clustering algorithms.

Some extensions of EM include the expectation conditional maximization (ECM)

algorithm [109] and expectation conditional maximization either (ECME) algorithm

[104]. For a detailed discussion on the theory of EM algorithm and its extensions

we refer the readers to [108]. The EM algorithm iterates between two steps, namely

the expectation step (E-step) and the maximization step (M-step). In our case, the

observed data X is assumed to be from NIG(α, β, µ, δ) and the unobserved data G

follows IG(
√
α2 − β2, δ). We find the conditional expectation of log-likelihood of

complete data (X,G) with respect to the conditional distribution of G given X. For

θ = (α, β, µ, δ, ρT ) we find

Q(θ|θ(k)) = EG|X,θ(k) [log f(X,G|θ)|X, θ(k)],

in the E-step where θ(k) represents the estimates of the parameter vector at k-th

iteration.
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θ(k+1) = argmax
θ

Q(θ|θ(k)).

The algorithm is proven to be numerically stable [108]. Also, as a consequence of

Jensen’s inequality, log-likelihood function at the updated parameters θ(k+1) will not

be less than that at the current values θ(k). Although there is always a concern that

the algorithm might get stuck at local extrema, but it can be handled by starting

from different initial values and comparing the solutions. In next proposition, we

provide the estimates of the parameters of the model defined in Eq. (3.4) using EM

algorithm.

Proposition 3.1. Consider the AR(p) time-series model given in Eq. (3.4) where

error terms follow NIG(α, β, µ, δ). The maximum likelihood estimates of the model

parameters using EM algorithm are as follows

ρ̂ =

(
N∑
t=1

wtYtY
T
t−1

)−1 N∑
t=1

(wtyt − µwt − β)Yt−1,

µ̂ =

N∑
t=1

ϵtwt −Nβ

Nw̄t
,

β̂ =

N∑
t=1

(wtϵt) −Nw̄tϵ̄t

N(1 − s̄tw̄t)
,

δ̂ =

√
s̄

(s̄w̄ − 1)
, γ̂ =

δ̂

s̄
, and α̂ = (γ̂2 + β̂2)1/2,

(3.5)

where ϵt = yt − ρTYt−1, γ =
√
α2 − β2, ϵ̄t = 1

N

∑N
t=1 ϵt, st = EG|ε,θ(k)(gt|ϵt, θ(k)),

s̄ = 1
N

∑N
t=1 st, wt = EG|ε,θ(k)(g

−1
t |ϵt, θ(k)) and w̄ = 1

N

∑N
t=1wt.

Proof. For AR(p) model, let (εt, Gt), for t = 1, 2, ..., N denote the complete data.

The observed data εt is assumed to be from NIG(α, β, µ, δ) and the unobserved data

Gt follows IG(γ, δ). We can write the innovation terms as follows:

εt = Yt − ρTYt−1, for t = 1, 2, ..., N.

Note that ε|G = g ∼ N(µ+ βg, g) and the conditional pdf is

f(ε = ϵt|G = gt) =
1√
2πgt

exp

(
− 1

2gt
(yt − ρTyt−1 − µ− βgt)

2

)
.
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Now, we need to estimate the unknown parameters θ = (α, β, µ, δ, ρT ). We find the

conditional expectation of log-likelihood of unobserved/complete data (ε,G) with

respect to the conditional distribution of G given ε. Since the unobserved data

is assumed to be from IG(γ, δ) therefore, the posterior distribution is generalised

inverse Gaussian (GIG) distribution i.e.,

G|ε, θ ∼ GIG(−1, δ
√
ϕ(ϵ), α).

The conditional first moment and inverse first moment are as follows:

E(G|ϵ) =
δϕ(ϵ)1/2

α

K0(αδϕ(ϵ)1/2)

K1(αδϕ(ϵ)1/2)
,

E(G−1|ϵ) =
α

δϕ(ϵ)1/2
K−2(αδϕ(ϵ)1/2)

K−1(αδϕ(ϵ)1/2)
.

These first order moments will be used in calculating the conditional expectation of

the log-likelihood function. The complete data likelihood is given by

L(θ) =
N∏
t=1

f(ϵt, gt) =
N∏
t=1

fε|G(ϵt|gt)fG(gt)

=
N∏
t=1

δ

2πg2t
exp(δγ) exp

(
− δ2

2gt
− γ2gt

2
− g−1

t

2
(ϵt − µ)2 − β2gt

2
+ β(ϵt − µ)

)
.

The log likelihood function will be

l(θ) = N log(δ) −N log(2π) +Nδγ −Nβµ− 2
N∑
t=1

log(gt) −
δ2

2

N∑
t=1

g−1
t

− γ2

2

N∑
t=1

gt −
1

2

N∑
t=1

g−1
t (ϵt − µ)2 − β2

2

N∑
t=1

gt + β
N∑
t=1

ϵt.

Now in E-step of EM algorithm, we need to compute the expected value of complete

data log likelihood known as Q(θ|θk), which is expressed as

Q(θ|θ(k)) = EG|ε,θ(k) [log f(ε,G|θ)|ε, θ(k)] = EG|ε,θ(k) [L(θ|θ(k))]

= N log δ +Nδγ −Nβµ−N log(2π) − 2
N∑
t=1

E(log gt|ϵt, θ(k)) −
δ2

2

N∑
t=1

wt

− γ2

2

N∑
t=1

st −
β2

2

N∑
t=1

st + β

N∑
t=1

(yt − ρTYt−1) − 1

2

N∑
t=1

(yt − ρTYt−1 − µ)2wt,

where, st = EG|ε,θ(k)(gt|ϵt, θ(k)) and wt = EG|ε,θ(k)(g
−1
t |ϵt, θ(k)). Update the
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parameters by maximizing the Q function using the following equations

∂Q

∂ρ
=

N∑
t=1

wt(yt − ρTYt−1 − µ)Y T
t−1 − β

N∑
t=1

Y T
t−1,

∂Q

∂µ
= −Nβ +

N∑
t=1

wt(ϵt − µ),

∂Q

∂β
= −Nµ+

N∑
t=1

yt − β

N∑
t=1

st −
N∑
t=1

ρTYt−1,

∂Q

∂δ
= Nγ +

N

δ
− δ

N∑
t=1

wt,

∂Q

∂γ
= Nδ − γ

N∑
t=1

st.

Solving the above equations, we obtain the following estimates of the parameters

ρ̂ =

(
N∑
t=1

wtYt−1Y
T
t−1

)−1 N∑
t=1

(wtyt − µwt − β)Yt−1

µ̂ =

−Nβ +
N∑
t=1

ϵtwt

Nw̄t
;

β̂ =

N∑
t=1

wtϵt −Nw̄tϵ̄t

N(1 − s̄tw̄t)
;

δ̂ =

√
s̄

(s̄w̄ − 1)
, γ̂ =

δ

s̄
, and α̂ = (γ2 + β2)1/2,

(3.6)

where s̄ = 1
N

∑N
t=1 st, w̄ = 1

N

∑N
t=1wt.

The following result is a classical result also discussed in [60], so we are providing

the proof for the convenience of the readers.

Proposition 3.2. For the AR(1) time-series defined Yt = ρYt−1 + ϵt, we have

E(Yt) =
µγ + δβ

γ

(
1 − ρt+1

1 − ρ

)
; Var(Yt) =

δα2

γ3

(
1 − ρ2n+2

1 − ρ2

)
.

Proof. For εt ∼ NIG(α, β, µ, δ), we have E(εt) = µγ+δβ
γ

and Var(εt) = δα2

γ3
. For an
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AR(1) time series, it follows

E(Yt) = ρE(Yt−1) + Eϵt = Eϵt + ρEϵt−1 + ρ2Eϵt−2 + · · · + ρtEϵ1

= E(ϵ1)

(
1 − ρt+1

1 − ρ

)
=
µγ + δβ

γ

(
1 − ρt+1

1 − ρ

)
.

Using law of total variance to calculate Var(Yt), yields to

Var(Yt) = E[Var(Yt|Yt−1 = yt−1)] + Var[E(Yt|Yt−1 = yt−1)]

= E[Var(ρYt−1 + εt|Yt−1 = yt−1)] + Var[E(ρYt−1 + εt|Yt−1 = yt−1)]

= E[Var(εt|Yt−1 = yt−1)] + Var[E(εt) + ρYt−1]

= Var(εt) + Var(ρYt−1) = Var(εt) + ρ2Var(Yt−1).

Recursively using the above relation and since εt are i.i.d. we can write,

Var(Yt) = Var(εt) + (ρ2 + ρ4 + ...+ ρ2t)Var(εt)

= (1 + ρ2 + ρ4 + ...+ ρ2n)Var(εt)

=
1 − ρ2t−2

1 − ρ2
Var(εt) =

δα2

γ3

(
1 − ρ2t−2

1 − ρ2

)
.

Similarly, we obtain the mean and variance of AR(p) series in the following way. We

have Yt = ρ1Yt−1 + ρ2Yt−2 + · · · + ρpYt−p + ϵt. Assuming stationarity, it follows that

EYt =
E(ϵt)

1 − ρ1 − ρ2 − · · · − ρp
=

µ+ δβ/γ

1 − ρ1 − ρ2 − · · · − ρp
.

Further, for µ = β = 0, we have E[Yt] = E[ϵt] = 0 and

Y 2
t = ρ1Yt−1Yt + ρ2Yt−2Yt + · · · + ρpYt−pYt + ϵtYt.

E[Y 2
t ] = ρ1E[Yt−1Yt] + ρ2E[Yt−2Yt] + · · · + ρpE[Yt−pYt] + E[ϵtYt]

= ρ1E[Yt−1Yt] + ρ2E[Yt−2Yt] + · · · + ρpE[Yt−pYt] + E[ϵ2t ].

Var[Yt] = σ2
ϵ +

p∑
j=1

ρjγj, (3.7)

where σ2
ϵ = Var[ϵt] and γj = E[YtYt−j]. Moreover,

γj = ρ1γj−1 + ρ2γj−2 + · · · + ρpγj−p, j ≥ 1. (3.8)
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For p = 2, using (3.7) and (3.8), it is easy to show that

Var[Yt] =
(1 − ρ2)σ

2
ϵ

1 − ρ2 − ρ21 − ρ22 − ρ21ρ2 + ρ32
,

where σ2
ϵ = δα2/γ3. Again for p = 3, using (3.7) and (3.8), it follows

Var[Yt] =

(1− ρ2 − ρ1ρ3 − ρ23)σ
2
ϵ

1− ρ2 − ρ1ρ3 − 4ρ1ρ2ρ3 − ρ21(1 + ρ2 + ρ23 + ρ1ρ3)− ρ22(1 + ρ23 − ρ2 − ρ1ρ2)− ρ23(2− ρ1ρ23 − ρ2 − ρ23)
.

3.3 Simulation study and applications

In this section, we illustrate the performance of the proposed model and the

introduced estimation technique using simulated data sets and real time series of

NASDAQ stock exchange data.

3.3.1 Simulation study

We discuss the estimation procedure for AR(2) and AR(1) models. The model

defined by Eq. (3.4) is simulated in two steps. In the first step, the NIG residuals

are simulated using the normal variance-mean mixture form defined in Eq. (3.2).

For NIG random numbers, standard normal and IG random numbers are required.

The algorithm mentioned in [41] is used to generate i.i.d. IG distributed random

numbers Gi ∼ IG(µ1, λ1), i = 1, 2, · · · , N using the following steps:

Step 1: Generate standard normal variate Z and set Y = Z2.

Step 2: Set X1 = µ1 +
µ21Y

2λ1
− µ1

2λ1

√
4µ1λ1Y + µ2

1Y
2.

Step 3: Generate uniform random variate U [0, 1].

Step 4: If U ≤ µ1
µ1+X1

, then G = X1; else G =
µ21
X1
.

Note that the substitutions for parameters as µ1 = δ/γ and λ1 = δ2 are required in

the above algorithm because the pdf taken in [41] is different from the form given

in Eq. (3.3). Again we simulate a standard normal vector of size N and use the

relation defined in Eq. (3.2) with simulated IG random numbers to obtain the NIG

random numbers of size N . In step 2, the simulated NIG residuals and the relation

given in Eq. (3.4) are used to generate AR(p) simulated series.

Case 1: In the simulation study, first we analyze the AR(2) model with NIG

residuals. In the analysis we used 1000 trajectories of length N = 1000 each. The

used parameters of the model are: ρ1 = 0.5 and ρ2 = 0.3 while the residuals were
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(a) The time series data plot.
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(b) Scatter plot of residual term.

Figure 3.1: The exemplary time series of length N = 1000 (left panel) and the
corresponding residual term (right panel) of the AR(2) model with NIG distribution.
The parameters of the model are: ρ1 = 0.5, ρ2 = 0.3, α = 1, β = 0, µ = 0, and δ = 2.

generated from NIG distribution with α = 1, β = 0, µ = 0 and δ = 2. The

exemplary time series data plot and scatter plot of residual terms are shown in Fig.

3.1.

Now, for each simulated trajectory, we apply the estimation algorithm presented

in the previous section. For EM algorithm several stopping criteria could be used.

One of the examples is the criterion based on change in the log-likelihood function

which utilizes the relative change in the parameters’ values. We terminate the

algorithm when the following commonly used criterion for the relative change in the

parameters’ values is satisfied

max

{
|α

(k+1) − α(k)

α(k)
|, |δ

(k+1) − δ(k)

δ(k)
|, |ρ

(k+1)
1 − ρ

(k)
1

ρ
(k)
1

|, |ρ
(k+1)
2 − ρ

(k)
2

ρ
(k)
2

|
}
< 10−4. (3.9)

The parameters’ estimates obtained from the simulated data are shown in the

boxplot in Fig. 3.2. Moreover, we compared the estimation results with the

classical YW algorithm, CLS method for model parameters. We remind that the YW

algorithm is based on the YW equations calculated for the considered model, and

utilizes the empirical autocovariance function for the analyzed data. More details

of YW algorithm for autoregressive models can be found, for instance in [27] and

2.9. We remind, the CLS method estimates the model parameters for dependent

observations by minimizing the sum of squares of deviations about the conditional

expectation (refer 2.10). Fig. 3.2(a) and Fig. 3.2(b) represent the estimates of

the model parameters ρ1 and ρ2 using YW, CLS and EM methods, respectively.

Furthermore, using the estimated ρ1 and ρ2 parameters with YW and CLS methods

the residuals or residual terms are obtained and then again EM algorithm is used

to estimate the remaining α and δ parameters which are plotted in Fig. 3.2(c)

and 3.2(d). Moreover, the estimates for α and δ using EM algorithm given in
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(3.5) and the MLE by Newton-Raphson of simulated NIG residuals are also plotted

in Fig. 3.2(c) and 3.2(d) for comparison. From boxplots presented in Fig. 3.2

we observe that the estimates of ρ1 and ρ2 parameters using the EM algorithm

have less variance in comparison to the YW and CLS algorithms. Moreover, for α

and δ parameters, we see that the means of the estimates for the three presented

methods are close to the true values, but the range of outliers for the EM algorithm

is comparatively less. Also, observe that the MLE of α and δ parameters by EM

and Newton-Raphson method have the similar behavior with lesser outliers by EM

as both iterative methods maximize the likelihood function to find the estimates.

The convergence of EM algorithm is tested on simulated data of different sample

size and results are shown in Table 3.1. The sensitivity of EM algorithm to initial

guess is shown in Table 3.2 and we conclude that the proposed method is robust to

initial guess.
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Figure 3.2: Boxplots of the estimates of the AR(2) model’s parameters with
theoretical values: ρ1 = 0.5, ρ2 = 0.3, δ = 2 and α = 1 represented with blue dotted
lines. The boxplots are created using 1000 trajectories each of length 1000.
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Table 3.1: Estimates of parameters with different sample size generated from AR(2)
model. The initial guess used for EM algorithm is ρ1 = 0.1, ρ2 = 0.1, δ = 0.1 and
α = 0.1. The theoretical values of the parameters are: ρ1 = 0.5, ρ2 = 0.3, δ = 2 and
α = 1.

``````````````̀Sample size
Parameters

ρ̂1 ρ̂2 δ̂ α̂

100 0.399 0.328 1.961 0.952
250 0.447 0.279 2.291 1.218
500 0.499 0.272 1.934 0.952
750 0.499 0.291 1.863 0.904
1000 0.511 0.294 2.008 1.104

Table 3.2: Estimates of parameters (EP) with different initial guess (IG) using EM
algorithm.

Parameters ρ1 ρ2 δ α
True values 0.5 0.3 2 1

IG 1 0.001 0.001 0.005 0.005
EP 1 0.503 0.296 2.154 1.092

IG 2 0.1 0.1 0.5 0.5
EP 2 0.503 0.296 2.154 1.092

IG 3 0.1 0.1 0.001 0.001
EP 3 0.503 0.296 2.154 1.092

IG 4 0.1 0.001 0.1 0.05
EP 4 0.503 0.296 2.154 1.092

IG 5 0.001 0.001 0.5 0.5
EP 5 0.503 0.296 2.154 1.092

IG 6 2 2 5 2
EP 6 0.503 0.296 2.172 1.102

Case 2: As the second example, we analyze the AR(1) model with NIG residuals.

Here we examine the trajectories of 579 data points. The same number of data

points are examined in the real data analysis demonstrated in the next subsection.

This exemplary model is discussed to verify the results for the segmented data 2 from

the NASDAQ stock exchange data. The simulated errors follow NIG distribution

with parameters α = 0.0087, β = 0, µ = 0 and δ = 70.3882 while the model’s

parameter is ρ = 0.9610. In Fig. 3.3, we present the exemplary simulated trajectory

and the corresponding residual terms.
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(a) Time series data plot.
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(b) Scatter plot of residual terms.

Figure 3.3: The exemplary time series plot of the first trajectory of length N = 579
from AR(1) model (left panel) with the corresponding scatter plot of residual terms
NIG distribution (right panel). The parameters of the model are ρ = 0.961, α =
0.0087, β = 0, µ = 0 and δ = 70.3882.

Similarly as in Case 1, the introduced EM algorithm was applied to the simulated

data with the stopping criteria based on the relative change in the parameter values

defined in Eq. (3.9). The boxplots of the estimated parameters for 1000 trajectories

each of length 579 are shown in Fig. 3.4. Similar as in the previous case, we compare

the results for EM, YW and CLS algorithms.

YW CLS EM
0.88

0.90

0.92

0.94

0.96

0.98

(a) Boxplot for ρ estimate.

YW CLS MLE EM

60

70

80

90

100

(b) Boxplot for δ estimates.

YM CLS MLE EM

0.006

0.008

0.010

0.012

0.014

0.016

0.018

(c) Boxplots for α estimates.

Figure 3.4: Boxplots of the estimates of the AR(1) model’s parameters with
theoretical values: ρ = 0.9610, δ = 70.3883 and α = 0.00872 represented with blue
dotted lines. The boxplots are created using 1000 trajectories each of length 579.
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From Fig. 3.4 one can observe that although the estimate of ρ has more

variance compared to YW and CLS methods, but the estimates δ and α have

less variance and the spread of outliers is also slightly less when compared to

MLE by Newton-Raphson method. The means of the estimated parameters from

1000 trajectories of length N = 579 using EM algorithm are ρ̂ = 0.9572, δ̂ =

71.8647 and α̂ = 0.0091. We can conclude that the EM algorithm, also in this case,

gives the better parameters’ estimates for the considered model.

3.3.2 Real data applications

In this section, we assess the proposed model on three different datasets namely,

Google equity price, NASDAQ index data and US gasoline price data.

Google equity price

The historical financial data of Google equity is collected from Yahoo finance 1.

The whole data set covers the period from December 31, 2014 to April 30, 2021.

Initially, the data contained 1594 data points with 6 features having Google stock’s

open price, closing price, highest value, lowest value, adjusted close price and volume

of each working day end-of-the-day values. In order to apply the proposed NIGAR(1)

model, we take the univariate time series yt to be the end-of-the-day closing prices.

The Google equity closing price is demonstrated as time series data in Fig. 3.5.
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Figure 3.5: The closing price (in$) of Google equity.

We assume that the innovation terms εt of time series data yt follows NIG. We

use ACF and PACF plot to determine the appropriate time series model components

1https://finance.yahoo.com/quote/GOOGL?p=GOOGL&.tsrc=fin-srch

https://finance.yahoo.com/quote/GOOGL?p=GOOGL&.tsrc=fin-srch
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for closing price. Fig. 3.6 shows the ACF and PACF plot of time-series data yt.

We observe that in PACF plot there is a significant spike at lag 1, also we ignore
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(a) ACF Plot.
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Figure 3.6: The ACF and PACF plot of closing price of Google equity.

the spike at lag 0 as it represents the correlation between the term itself which will

always be 0. PACF plot indicates that the closing prices follow AR model with lag

1. In ACF plot, all the spikes are significant for lags upto 30 which implies that

the closing price is highly correlated. Therefore, from ACF and PACF plot the

assumed NIGAR(1) model is expected to be good fit for data. First we estimate the

ρ parameter using the conditional least square method as mentioned in (2.8) and

obtain,

ρ̂ =

∑n
t=0(yt − y)(yt+1 − y)∑n

t=0(yt − y)2
.

The estimated value is ρ̂ = 0.9941. Using the estimated value of ρ and relation

εt = yt − ρyt−1 we will get the innovation terms εt. The distribution plot of

innovation terms is shown in Fig. 3.7.

The Kolmogorov-Smirnov (KS) normality test and Jarque–Bera (JB) test are

performed on εt to test if the innovation terms are Gaussian. The p-value in

both the tests was 0, which indicates that the εt may not be from Gaussian

distribution. Therefore, we fit the proposed NIGAR(1) model on Google closing

price dataset. The ML estimates of parameters using EM algorithm are α̂ =

0.0202, β̂ = 0.0013, µ̂ = 0.226, δ̂ = 9.365, and γ̂ = 0.0201 with initial guesses as

α̂(0) = 0.0141, β̂(0) = 0.01, µ̂(0) = 0.01, δ̂(0) = 0.01, and γ̂(0) = 0.01. The relative

change in the log-likelihood value with tolerance value 0.0001 is used as stopping

criterion. It is worthwhile to mention that the estimated β is close to 0 and the

estimated µ can be interpreted as intercept term in the AR(1) model. Based on

the Google equity prices data and estimated parameters, an equivalent model to
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Yt = ρYt−1 + ϵt can be described as

Yt = µ+ ρYt−1 + ϵt,

where ϵt =
√
GZ with G ∼IG(γ, δ), with ρ̂ = 0.9941, µ̂ = 0.226, δ̂ = 9.365, and γ̂ =

0.0201.
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Figure 3.7: Plot of error terms distribution and QQ plot between simulated and
actual values.

To test the reliability of the estimated results, we used the simulated data with

true parameter values as α = 0.02, β = 0, µ = 0.23, δ = 9.5, and γ = 0.02. The

QQ-plot (Fig. 5(b)) between the error terms ε of data and the NIG simulated data

indicates that the innovation terms are significantly NIG with few outliers. Also,

we performed the 2-sample KS test which is used to check whether the two samples

are from same distribution. The 2-sample KS test on the simulated data and the

innovation terms resulted in the p-value= 0.3413. Therefore, we failed to reject the

null hypothesis that the samples are from same distribution and conclude that both

samples follow the same distribution i.e. NIG(α = 0.02, β = 0, µ = 0.23, δ = 9.5).

NASDAQ index data

Initially we explored the four different stock market indices namely NSEI, Nikkei225,

S&P/ASX200 and NASDAQ. The PACF plots of the log returns for these indices

are shown in Fig. 3.8. From the charts, it is evident that there is no significant

correlation across different lags of the log returns data. The empirical study on log

returns of financial data also says that there may be slow decay in autocorrelation of

absolute or squared log returns but there it is absent in log returns (see Section 7.1,

[37]). In the following subsection, we apply the introduced model on the adjusted

closed price of the NASDAQ index, which is one of these four indices.
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(a) PACF plot for Nasdaq data.
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(b) PACF plot for NSEI data.
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(c) PACF plot for Nikkei 225 data.
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(d) PACF plot for Australia S&P/ASX
data.

Figure 3.8: The PACF plots of the log returns of four different stock market indices.

In this part, the considered AR(p) model with NIG distribution is applied to the

NASDAQ stock market index data, which is available on Yahoo finance 2. It covers

the historical prices and volume of all stocks listed on NASDAQ stock exchange from

the period March 04, 2010 to March 03, 2020. The data consists of 2517 data points

with features having open price, closing price, highest value, lowest value, adjusted

closing price and volume of stocks for each working day end-of-the-day values. We

choose the end-of-the-day adjusted closing price as a univariate time series for the

analysis purpose. The residual terms of time series data is assumed to follow NIG

distribution as the general one. In Fig. 3.9 we represent the adjusted closing price

of NASDAQ index. Observe that the original time series data has an increasing

trend. Moreover, one can easily observe that the data exhibit non-homogeneous

behavior. Thus, before further analysis the analyzed time series should be segmented

in order to obtain the homogeneous parts. To divide the vector of observations into

homogeneous parts, we applied the segmentation algorithm presented in [58], where

authors proposed to use the statistics defined as the cumulative sum of squares

of the data. Finally, the segmentation algorithm is based on the specific behavior

of the used statistics when the structure change point exists in the analyzed time

2https://finance.yahoo.com/quote/%5EIXIC/history?period1=1267660800&period2=

1583193600&interval=1dfilter=history&frequency=1d&includeAdjustedClose=true

https://finance.yahoo.com/quote/%5EIXIC/history?period1=1267660800&period2=1583193600&interval=1dfilter=history&frequency=1d&includeAdjustedClose=true
https://finance.yahoo.com/quote/%5EIXIC/history?period1=1267660800&period2=1583193600&interval=1dfilter=history&frequency=1d&includeAdjustedClose=true
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Figure 3.9: The adjusted closing price (in$) of NASDAQ index from the period
March 04, 2010 to March 03, 2020 with 2517 data points.

series. More precisely, in [58] it was shown that the cumulative sum of squares

is a piece-wise linear function when the variance of the data changes. Because in

the considered time series we observe the non-stationary behavior resulting from

the existence of the deterministic trend, thus, to find the structure break point,

we applied the segmentation algorithm for their logarithmic returns. Finally, the

algorithm indicates that the data needs to be divided into two segments, the first

1937 observations are considered as data 1 and rest all observations as - data 2.
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Figure 3.10: The segmented data 1 (left panel) and data 2 (right panel) together
with the fitted polynomials.

The trends for both data sets were removed by using the degree 6 polynomial

detrending. The trend was fitted by using the least squares method. The original

data sets with the fitted polynomials are shown in Fig. 3.10. Next, for data 1

and data 2 we analyze the detrending time series and for each of them we use

the partial autocorrelation function (PACF) to recognize the proper order of AR

model. It is worth mentioning the PACF is a common tool to find the optimal

order of the autoregressive models [27]. We select the best order that is equal

to the lag corresponding to the largest PACF value (except a lag equal to zero).
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Table 3.3: Estimated parameters of data 1 and data 2 using EM algorithm.

ρ̂ δ̂ α̂

Data 1 0.9809 34.5837 0.0226
Data 2 0.9610 70.3883 0.0087

We use the PACF plots to determine the components of AR(p) model. Fig. 3.11

shows the stationary data (after removing the trend) and corresponding PACF plots

indicating the optimal model - AR(1). After above-described pre-processing steps,
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(c) Stationary data 2.
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(d) PACF of data 2.

Figure 3.11: The time-series plot of stationary data 1 and data 2 (after removing
the trend) - left panel and corresponding PACF plot - right panel.

the EM algorithm is used to estimate the model’s parameters. The mean of NIG

distribution is EX = µ + δ β
γ
. In the proposed model, we fit the data to symmetric

distribution therefore, we fixed the parameters to µ = 0 and β = 0. Although EM

algorithm can be applied to asymmetric NIG distribution also, we tried the same on

simulated data but did not include in this work as we need to compare the proposed

method with Yule-Walker and conditional least squares method. The estimated

values of parameters for data 1 and data 2 are summarised in Table 3.3.

As the final step, we analyze the residual terms corresponding to data 1 and data

2 to confirm they can be modeled by using NIG distribution. The scatter plots of
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the residuals from the AR(1) model corresponding to data 1 and data 2 are shown

in Fig. 3.12. The Kolmogorov-Smirnov (KS) test is used to check the normality

of the residuals corresponding to data 1 and data 2. For details of KS tests refer

Section 2.4. First, we use the one-sample KS test to reject the hypothesis of normal

distribution of the residuals. The p-value of the KS test is 0 for both cases, indicating

that the null hypothesis (normal distribution) is rejected for both series. Thus,

we applied two-sample KS test for both residual terms with the null hypothesis

of NIG distribution. The tested NIG distributions have the following parameters:

µ = 0, β = 0, δ = 34.5 and α = 0.02 - for residuals corresponding to data 1; and

µ = 0, β = 0, δ = 70.5 and α = 0.008 - for the residuals corresponding to data

2. The p-values for 2-sample KS test are 0.565 and 0.378 for data 1 and data 2,

respectively, which indicates that there is no evidence to reject the null hypothesis.

Therefore, we assume that both the residual series follow the same distribution,

implying that data 1 follows NIG(α = 0.02, β = 0, µ = 0, δ = 34.5) and data 2

has NIG(α = 0.008, β = 0, µ = 0, δ = 70.5).
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Figure 3.12: The scatter plots of residuals of data 1 from AR(1) model with NIG(α =
0.02, β = 0, µ = 0, δ = 34.5) distribution (left panel) and data 2 with NIG(α =
0.008, β = 0, µ = 0, δ = 70.5 (right panel).

To confirm that NIG distributions (with fitted parameters) are acceptable for

the residual series, in Fig. 3.13 and Fig. 3.14 we demonstrate the QQ plot for the

residuals of AR(1) models for data 1 and data 2 and the simulated data from normal

(left panels) and corresponding NIG distributions (right panels). Observe that the

tail of both data 1 and data 2 deviates from the red line on the left panels, which

indicates that the data does not follow the distribution.

The correspondence with NIG distribution is also demonstrated in Fig. 3.15,

where the kernel density estimation (KDE) plot is presented for the residual series

and compared with the pdf of the normal and corresponding NIG distributions. A

brief description of KDE method is given in Eq. 2.11. As one can see, the KDE
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(a) QQ plot between residuals of data 1
and normal distribution.
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(b) QQ plot between residuals of data 1
and NIG distribution.

Figure 3.13: QQ plots of residual terms of data 1 compared with (a) normal
distribution and (b) NIG(α = 0.02, β = 0, µ = 0, δ = 34.5) distribution.
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(a) QQ plot between residuals of data 2
and normal distribution.
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(b) QQ plot between residuals of data 2
and NIG distribution.

Figure 3.14: QQ plots of residual terms of data 2 compared with (a) normal
distribution and (b) NIG(α = 0.008, β = 0, µ = 0, δ = 70.5) distribution.
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(a) KDE plot for data 1.
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(b) KDE plot for data 2.

Figure 3.15: Kernel density estimation plots for comparing the residual terms of data
1 with NIG(α = 0.02, β = 0, µ = 0, δ = 34.5) distribution and normal distribution
N(µ = −0.1170, σ2 = 1513.0754) (left panel) and data 2 with NIG(α = 0.008, β =
0, µ = 0, δ = 70.5) and normal distribution N(µ = −1.6795, σ2 = 89.2669) (right
panel).

plots clearly indicate the NIG distribution is the appropriate one for the residual
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(b) Data 2.

Figure 3.16: The adjusted closing price of NASDAQ index for both segments (blue
lines) along with the quantile lines of 10%, 20%, ..., 90% constructed base on the
fitted AR(1) models with NIG distribution with added trends.
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(a) Gasoline price data.
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(b) Stationary data.

Figure 3.17: The time series plot of US gasoline price data (left panel) and the
corresponding stationary data after first order differencing (right panel).

series. Finally, to confirm that the fitted models are appropriate for data 1 and data

2, we constructed the quantile plots of the data simulated from the models for which

the removed polynomials were added. The quantile lines are constructed based on

1000 simulated trajectories with the same lengths as data 1 and data 2. In Fig. 3.16

we present the constructed quantile lines on the levels 10%, 20%, · · · , 90% and the

adjusted closing price of the NASDAQ index.

The presented results for the real data indicate that the AR(1) model with

residual terms corresponding to NIG distribution can be useful for the financial

data with visible extreme values.

US gasoline price data

In this subsection, we fit the AR(p) model with NIG residuals on US gasoline weekly

price data collected from R dataset repository 3. The data is collected for period

1990 to 2000 with 513 data points. The Augmented Dickey Fuller (ADF) test

3https://vincentarelbundock.github.io/Rdatasets/datasets.html

https://vincentarelbundock.github.io/Rdatasets/datasets.html
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Figure 3.18: PACF plot of the stationary time series (left panel) and kernel density
estimation plots for comparing the residual terms of data with NIG(α = 0.4860, β =
0, µ = 0, δ = 0.7413) distribution and normal distribution N(µ = 0.02, σ2 = 1.88)
(right panel).

[47] and the time plot of the price data in Fig. 3.17(a) suggests that the series is

non-stationary. For details about ADF test Section 2.4. The stationary series is

obtained by using the first order differencing as shown in Fig. 3.17(b). The PACF
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Figure 3.19: The scatter plot of NIG(α = 0.4860, β = 0, µ = 0, δ = 0.7413)
distributed residuals from AR(1) model with ρ = 0.48 for US gasoline price data.

plot in Fig. 3.18(a) implies that the AR(1) can be a good choice. The p value of the

one sample KS test for the residuals of the data is 0.00077 (less than 0.05), therefore

we reject the null hypothesis of normal distribution and assume the data to be from

NIG distribution. The EM algorithm is applied to estimate the parameters of AR(1)

model with NIG residuals with fixed µ = 0 and β = 0 parameters. The estimated

parameters for the model are ρ̂ = 0.48, α̂ = 0.4860 and δ̂ = 0.7413. The scatter

plot of the NIG(µ = 0, β = 0, α = 0.486, δ = 0.7413) residuals from AR(1) model is

shown in Fig. 3.19. Again the KDE plot on residual series is used along with the

NIG(α = 0.4860, µ = 0, β = 0, δ = 0.7413) distribution and normal distribution to

validate the assumption of residuals. From Fig. 3.18(b) we observe that the NIG

distribution is better fit than the normal distribution for the residuals of the data.
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Therefore, we conclude that the AR(p) model with NIG residuals is a simple and

better model for different data with extreme values.

3.4 Conclusion

The heavy-tailed and semi heavy-tailed distributions are at the heart of the financial

time-series modeling. NIG is a semi-heavy tailed distribution which has tails

heavier than the normal and lighter than the power law tails. The AR models

with NIG distributed residuals are also discussed. We have demonstrated the main

properties of the analyzed systems. The main part is devoted to the new estimation

algorithm for the considered models’ parameters. The technique incorporates the

EM algorithm which is widely used in the time series analysis. The effectiveness of

the proposed algorithm is demonstrated for the simulated data from model AR(2)

and AR(1). It is shown that the new technique outperforms the classical approaches

based on the YW and CLS algorithms. Also, for NIG distributed residuals the

comparison of the estimation of parameters α and δ with ML estimate by Newton

method and EM algorithm is also shown. Finally, we have demonstrated that an

AR(1) model with NIG residuals explain well the Google equity price and NASDAQ

stock market index data. The AR(1) model with NIG residuals also very well

captures the behavior of data from another domain namely, US gasoline price

data. The satisfactory results on two different datasets show the universality of

the proposed model. We believe that the discussed model is universal and can be

used to describe various real-life time series ranging from finance and economics to

natural hazards, ecology, and environmental data. Also, the residuals with non-zero

mean can be considered for further study.



Chapter 4

Autoregressive model with Cauchy

innovations

This chapter deals with the AR(p) model with Cauchy distributed innovations. The

closed form estimates of the parameters of the model with Cauchy innovations

are derived using expectation-maximization (EM) algorithm. The efficacy of the

estimation procedure is shown on the simulated data. Moreover, we also discuss the

joint characteristic function of the AR(1) model with Cauchy innovations, which can

also be used to estimate the parameters of the model using empirical characteristic

function.

4.1 Introduction

Autoregressive (AR) models with stable and heavy-tailed innovations are of great

interest in time series modeling. These distributions can easily assimilate the

asymmetry, skewness and outliers present in time series data. The Cauchy

distribution is a special case of stable distribution with undefined expected value,

variance and higher order moments. For the definition of heavy-tailed distribution

refer Def. 2.1, which implies that Cauchy distribution is also heavy-tailed.

The Cauchy distribution and its mixture has many applications in field of

economics [105], seismology [87], biology [23] and various other fields but only

few study has been done with time series models with Cauchy errors. In [34],

the maximum likelihood (ML) estimation of AR(1) model with Cauchy errors is

studied. The standard estimation techniques for the AR(p) model with Cauchy

innovations, particularly the Yule-Walker method and conditional least squares

method, cannot be used due to the infinite second order moments of the Cauchy

distribution. Therefore, it is worthwhile to study and assess the alternate estimation

techniques for AR(p) model with Cauchy innovations. In the literature, several

estimation techniques are proposed to estimate the parameters of AR models with

infinite variance errors, see e.g. [83,102,133]. We propose to use the EM algorithm

to estimate the distribution’s and model’s parameters simultaneously. It is a general

iterative algorithm for model parameter estimation which iterates between two steps,
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namely the expectation step (E-step) and the maximization step (M-step) [40]. It is

an alternative to numerical optimization of the likelihood function which is proven

to be numerically stable [108]. We also provide the formula based on characteristic

function (CF) and empirical characteristic function (ECF) of Cauchy distribution

for AR(p) model estimation. The idea to use ECF in time series stable ARMA

model has been discussed in [148].

The remaining chapter is organized as follows: In Section 4.2, we present a brief

overview of the Cauchy AR(p) model, followed by a discussion of estimation

techniques namely the EM algorithm and estimation by CF and ECF. Section

4.3 checks the efficacy of the estimation procedure on simulated data. We also

present the comparative study, where the proposed technique is compared with ML

estimation for Cauchy innovations. Section 4.4 concludes the chapter.

4.2 Cauchy autoregressive model

We consider the AR(p) univariate stationary time-series {Yt}, t ∈ N with Cauchy

innovations defined as

Yt =

p∑
i=1

ρiYt−i + εt = ρTYt−1 + εt, (4.1)

where ρ = (ρ1, ρ2, · · · , ρp)T is a p-dimensional column vector, Yt−1 =

(Yt−1, Yt−2, · · · , Yt−p)T is a vector of p lag terms, {ϵt}, t ∈ N are i.i.d. innovations

distributed as Cauchy(α, γ). The pdf of Cauchy(α, γ) [52] is

f(x;α, γ) =
γ

π

[
1

γ2 + (x− α)2

]
, γ > 0, α ∈ R, x ∈ R. (4.2)

The conditional distribution of Yt given the preceding data Ft−1 =

(Yt−1, Yt−2, · · · , Y1)T is given by [34]

p(Yt|Ft−1) = f(yt − ρTyt−1;α, γ) =
γ

π

[
1

γ2 + (yt − ρTyt−1 − α)2

]
,

where yt−1 is the realization of Yt−1. In the next subsection, we propose the

methods to estimate the model parameters ρ and innovation parameters α and

γ simultaneously.

4.2.1 Parameter estimation using EM algorithm

We estimate the parameters of AR(p) model using EM algorithm which maximizes

the likelihood function iteratively. Further, we discuss about the time series {Yt}
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using the characteristic function (CF) and estimation method using CF and ECF.

For definition of CF see Def. 2.3. Recently, [133] the exponential-squared estimator

for AR model with heavy-tailed errors is introduced and proved to be
√
n-consistent

under some regularity conditions, similarly self-weighted least absolute deviation

estimation method is also studied for the infinite variance AR model [103]. The ML

estimation of AR models with Cauchy errors with intercept and with linear trend is

studied and the AR coefficient is shown to be n3/2-consistent under some conditions

[34]. For AR(p) model with Cauchy innovations with n samples, the log likelihood

is defined as,

l(Θ) = n log(γ) − n log(π) −
n∑
t=1

log(γ2 + (yt − ρTYt−1 − α)2),

where Θ =
(
α, γ, ρT

)
.

Proposition 4.1. Consider the AR(p) time-series model given in Eq. (4.1) where

error terms follow Cauchy(α, γ). The maximum likelihood estimates of the model

parameters using EM algorithm are as follows:

ρ̂T =

(
n∑
t=p

(yt − α)Y T
t−1

st

)(
n∑
t=p

Yt−1Y
T
t−1

st

)−1

,

α̂ =

n∑
t=p

(yt − ρTYt−1)

st∑n
t=1

1
st

, and

γ̂ =

√
n

2
∑n

t=1
1
st

,

(4.3)

where st = (yt − ρTYt−1 − α)2 + γ2.

Proof. Consider the AR(p) model

Yt = ρTYt−1 + εt, t = 1, 2, · · · , n,

where εt follows Cauchy distribution Cauchy(α, γ). Let (εt, Vt) for t = 1, 2, · · · , n
denote the complete data for innovations ε. The observed data εt is assumed to be

from Cauchy(α, γ) and we also assume that the unobserved data Vt is from inverse

gamma IG(1/2, γ2/2) distribution. A random variable V ∼ IG(a, b) if the pdf is

given by

fV (v; a, b) =
ba

Γ(a)

e−b/v

va+1
, a > 0, b > 0, v > 0.
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We can rewrite εt as εt = Yt − ρTYt−1, for t = 1, 2, · · · , n. The stochastic relation

ε = α+
√
V Z with Z ∼ N(0, 1) i.e. standard normal and V ∼ IG(1/2, γ2/2) is used

to generate Cauchy(α, γ) distribution. First we show that this relation holds. The

conditional distribution ϵ|V has following form:

f(ε = ϵt|V = vt) =
1√
2πvt

exp

(
− 1

2vt
(ϵt − α)2

)
.

The density function of fϵ(e) =
∫∞
0
fϵ|V (e|v)f(v) dv, where fV (v) =

γ√
(2π)v3/2

exp(−γ2/2v).

fϵ(e) =

∫ ∞

0

fϵ|V (e|v)f(v) dv

=

∫ ∞

0

exp
(
− (ϵ− α)2

2v

)
√

(2πv)

γ√
(2π)

exp(−γ2/2v)

v3/2
dv

=

∫ ∞

0

γv−2 exp(− (e−α)2−γ2
2v

)

2π
dv

We substitute t = −1
2v

in the above integral and solve to obtain the following form:

fϵ(e) =

∫ 0

−∞

γ

2π
exp

( t
2

((e− α)2 + γ2)
)
dt

=
γ

π

[ 1

(e− α)2 + γ2

]
.

Therefore, we say that the stochastic relation ε = α +
√
V Z with Z ∼ N(0, 1)

and V ∼ IG(1/2, γ2/2) holds. Now, we need to estimate the unknown parameters

Θ = (α, γ, ρT ). To apply the EM algorithm for estimation we first find the

conditional expectation of log-likelihood of complete data (ε, V ) with respect to

the conditional distribution of V given ε. Since the unobserved data is assumed

to be from IG(1/2, γ2/2) therefore, the posterior distribution is again an inverse

gamma i.e.,

V |ε = e,Θ ∼ IG

(
1,

(e− α)2 + γ2

2

)
.

The following conditional inverse first moment and E(log(V )|ε = e) will be used in

calculating the conditional expectation of the log-likelihood function:

E(V −1|ε = e) =
2

(e− α)2 + γ2
,

E(log(V )|ε = e) = log((e− α)2 + γ2) − log 2 + 0.5776.
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The complete data likelihood is given by

L(Θ) =
n∏
t=1

f(ϵt, vt) =
n∏
t=1

fε|V (ϵt|vt)fV (vt)

=
n∏
t=1

γ

2πv2t
exp

(
−(ϵt − α)2 + γ2

2vt

)
.

The log likelihood function will be

l(Θ) = n log(γ) − n log(2π) − 2
n∑
t=1

log(vt) −
n∑
t=1

(ϵt − α)2 + γ2

2vt
.

We use the relation ϵt = Yt − ρTYt−1 in further calculations. In the first step

(E-step) of EM algorithm, we need to compute the expected value of complete data

log likelihood known as Q(Θ|Θ(k)), which is expressed as,

Q(Θ|Θ(k)) = EV |ε,Θ(k) [log f(ε, V |Θ)|ϵt,Θ(k)] = EV |ε,Θ(k) [l(Θ|Θ(k))]

= n log γ − n log 2π −
n∑
t=p

E(log vt|ϵt,Θ(k))

− γ2

2

n∑
t=p

E(v−1
t |ϵt,Θ(k)) − 1

2

n∑
t=p

(ϵt − α)2E(v−1
t |ϵt,Θ(k))

= n log γ − n log 2π − n log 2 + 0.5776n−
n∑
t=p

log((ϵt − α(k))2 + γ(k)
2
)

− γ2

2

n∑
t=p

1

(ϵt − α(k))2 + γ(k)
2 −

n∑
t=p

(ϵt − α)2

(ϵt − α(k))2 + γ(k)
2

= n log γ − n log 2π − n log 2 + 0.5776n−
n∑
t=p

log(s
(k)
t )

− γ2

2

n∑
t=p

1

s
(k)
t

−
n∑
t=p

(ϵt − α)2

s
(k)
t

.

where, st = (yt−ρTYt−1−α)2 +γ2. In the next M-step, we estimate the parameters

α, γ and ρT by maximizing the Q function using the equations below:

∂Q

∂ρ
= 4

n∑
t=p

(yt − ρTYt−1 − αY T
t−1)

s
(k)
t

,

∂Q

∂α
=

n∑
t=p

(yt − ρTYt−1 − α)

s
(k)
t

,

∂Q

∂γ
=
n

γ
− 2γ

n∑
t=p

1

s
(k)
t

.
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Solving the above equations, we get the following closed form estimates of the

parameters:

ρ̂T =

(
n∑
t=p

(yt − α)Y T
t−1

st

)(
n∑
t=p

Yt−1Y
T
t−1

st

)−1

,

α̂ =

n∑
t=p

(yt − ρTYt−1)

st∑n
t=1

1
st

, and

γ̂ =

√
n

2
∑n

t=1
1
st

,

(4.4)

where st = (yt − ρTYt−1 − α)2 + γ2.

4.2.2 Characteristic function for estimation

So far, we have considered the conditional distribution of Yt given the preceding data

Ft−1. Now, we include the dependency of time series {Yt} by defining the variable

dj = (yj, · · · , yj+p) for j = 1, · · · , n − p. In each variable {dj} there are p terms

same as adjacent variable. The distribution of {dj} will be multivariate Cauchy

with dimension r = p + 1 [53]. The CF of each dj is c(Θ, s) = E(exp(i sTdj)) and

the ECF is cn(s) = 1
n

∑n−p
j=1 exp(i sTdj), where s = (s1, · · · , sp+1)

T .

To estimate the parameters using CF and ECF we make sure that the joint CF

of AR(p) model has closed form. In the next result the closed form expression for

the joint CF of the AR(1) model with Cauchy innovations is given.

Proposition 4.2. The joint CF of stationary AR(1) model with Cauchy innovations

is

c(s1, s2; Θ) = exp

[
iα(s1 + s2)

(
1

1 − ρ

)]
×exp

[
−γ
(
|s2| + |s1 + ρs2|

(
1

1 − |ρ|

))]
.

Proof. For stationary AR(1) model yt = ρyt−1 + εt, we can rewrite it as,

yt = εt + ρεt−1 + ρ2εt−2 + ρ3εt−3 + · · · .

Note that {εt} are i.i.d from Cauchy(α, γ) distribution and CF of Cauchy(α, γ) is

E(exp(i sεt)) = exp(i αs− γ|s|) [52]. Then the joint CF of (yt, yt−1) is calculated as
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follows:

c(s1, s2; Θ) = E[exp(i s1yt−1 + i s2yt)]

= E[exp(i s1(εt−1 + ρεt−2 + ρ2εt−3 + · · · )) + i s2(εt + ρεt−1 + ρ2εt−2 + · · · )]
= E[exp(i s2εt + i(s1 + s2ρ)εt−1 + iρ(s1 + ρs2)εt−2 + · · · )]
= exp(iαs2 − γ|s2|) × exp(iα(s1 + ρs2) − γ|s1 + ρs2|)
× exp(iα(ρs1 + ρ2s2) − γ|ρs1 + ρ2s2|) × · · · .
= exp(iα(s1 + s2)(1 + ρ+ ρ2 + ρ3 + · · · ))
× exp(−γ(|s2| + |s1 + ρs2| + |ρ||s1 + ρs2| + |ρ2||s1 + ρs2| + · · · ))

= exp(iα(s1 + s2)

(
1

1 − ρ

)
× exp(−γ(|s2| + |s1 + ρs2|(1 + |ρ| + |ρ2| + · · · )))

= exp

[
iα(s1 + s2)

(
1

1 − ρ

)]
× exp

[
−γ
(
|s2| + |s1 + ρs2|

(
1

1 − |ρ|

))]
.

The joint CF for higher dimension can be obtained in similar manner. The model

parameters can be estimated by solving the following integral with CF and ECF as

defined in [148]: ∫
· · ·
∫
wΘ(s)(cn(s) − c(s; Θ))ds = 0. (4.5)

where optimal weight function

w∗
Θ(s) =

1

2π

∫
· · ·
∫

exp(−i sTdj)
∂ log f(yj+p|yj, · · · , yj+p−1)

∂Θ
dyj . . . dyj+p. (4.6)

Remark 4.1. For stationary AR(l) process {Yt} with p = l the ECF estimator defined

by Eq. (4.5) with optimal weight function defined in Eq. (4.6) is a conditional ML

(CML) estimator and hence asymptotically efficient. The conditional log pdf for

Cauchy distribution is:

log f(yj+p|yj, · · · , yj+p−1) = log γ − log π − log
(
γ2 + (yt − ρTYt−1 − α2)2

)
.

The proof is similar to the proof of Proposition 2.1 in [148].

4.3 Simulation study

In this section, we assess the proposed model and the introduced estimation

technique using simulated data set. We discuss the estimation procedure for AR(2)

model with Cauchy innovations. The AR(2) model defined by Eq. (4.1) is simulated
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with ρ1 and ρ2 as model parameters. We generate 1000 trajectories each of size

N = 500 of Cauchy innovations using the normal variance-mean mixture form

ε = α +
√
V Z with Z ∼ N(0, 1) i.e. standard normal and V ∼ IG(1/2, γ2/2).

Use the following simulation steps to generate the Cauchy innovations:

Step 1: Generate standard normal variate Z;

Step 2: Generate inverse gamma random variate IG(1/2, γ2/2) with γ = 2;

Step 3: Using the relation ε = α+
√
V Z, we simulate the Cauchy innovations

with α = 1;

Step 4: The time series data yt is generated with model parameters ρ1 = 0.5

and ρ2 = 0.3.
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(a) The time series data plot.
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(b) Scatter plot of innovation terms.

Figure 4.1: The exemplary time series of length N = 500 (left panel) and the
corresponding innovation terms (right panel) of the AR(2) model with Cauchy
innovations. The chosen parameters of the model are: ρ1 = 0.5, ρ2 = 0.3, α = 1,
and γ = 2.

The exemplary time series data plot and scatter plot of innovation terms are

shown in Fig. 4.1. We apply the discussed EM algorithm to estimate the model

parameters and distribution parameters. The relative change in the parameters is

considered to terminate the algorithm. Following is the stopping criteria which is

commonly used in literature:

max

{
|α

(k+1) − α(k)

α(k)
|, |γ

(k+1) − γ(k)

γ(k)
|, |ρ

(k+1)
1 − ρ

(k)
1

ρ
(k)
1

|, |ρ
(k+1)
2 − ρ

(k)
2

ρ
(k)
2

|
}
< 10−4. (4.7)

We compare the estimation results of Cauchy(α, γ) with EM algorithm and

maximum likelihood (ML) estimation. The ML estimates are computed using

the inbuilt function “mlcauchy” in R which uses the exponential transform of

the location parameter and performs non-linear minimization by Newton-type
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(b) Boxplot for γ estimate.

Figure 4.2: Boxplots of the estimates of the AR(2) model’s parameters with
theoretical values: α = 1 and γ = 2 represented with blue dotted lines. The boxplots
are created using 1000 trajectories each of length 500.

algorithm. The comparison of estimates of Cauchy(α, γ) are shown in boxplot in

Fig. 4.2. From the boxplots, we find that the EM algorithm converges near to

the true value of the Cauchy(α, γ) as compared to the ML estimation. There is

possibility of getting better result from ML method if different algorithm or inbuilt

function for optimization are used for estimation.

4.4 Conclusion

We derive the closed form of estimates of AR model with Cauchy innovations using

EM algorithm. The performance of the proposed algorithm is compared with the

ML method using simulated data. The ML estimation is found using inbuilt function

in R. Another benefit of using EM algorithm is that it calculates the model as well

as the innovation parameters simultaneously. It is evident from the boxplot that

EM algorithm outperforms the ML method. Further, we discuss another approach

based on CF to estimate the AR model parameters with stable distribution. In the

future, we study and compare the proposed algorithm and ECF based estimation

method with the existing techniques in [83,102,133] for AR model with infinite

variance. Further, the real life phenomena can be studied using the proposed model

and methods.



50 Chapter 4. Autoregressive model with Cauchy innovations



Chapter 5

Geometric infinitely divisible

autoregressive models

This chapter focuses on defining AR(1) processes using the Laplace transform. First,

we introduce the geometric infinitely divisible (gid) distributions and study their

properties. Specifically, we consider geometric tempered stable, geometric gamma,

and geometric inverse Gaussian distributions. For AR(1) model defined by Eq.

(5.2) with assumption of gid marginals, the integral form of the density function

of innovation terms is obtained. Further, we also provide the estimation of AR(1)

model defined in Prop. 5.9 using conditional least squares (CLS) and method of

moments (MOM) and provide the simulation study for the same.

5.1 Introduction

Classical autoregressive (AR) processes are the most popular time series models

because these models are easy to understand, interpret, and have applications in

different fields. In the AR process, the present value is a linear combination of

the past values plus some innovation term. The distribution of innovation terms

plays an important role in capturing extreme events. The classical AR model

assumes that the innovation term has Gaussian distribution, which further leads

to the marginals becoming Gaussian. However, many real life time series data

exhibit heavy-tailed or semi-heavy-tailed behaviours. Various AR models have

been introduced with non-Gaussian innovations and marginals. The data with

non-negative observations, binary outcomes, series of counts, and proportions are

some examples of non-Gaussian real life time series (see e.g. [68]). The first order

AR models with different marginal distributions have been extensively studied in

literature. In 1980, Gaver and Lewis [61] considered an AR(1) model with marginals

having gamma distribution. The authors discussed that the innovation terms have

the same distribution as a non-negative random variable, which is exponential for

positive values and has a point mass at 0. Later, Dewald and Lewis [42] studied

a second order autoregressive model in which Laplace distributed marginals are

assumed. An inverse Gaussian autoregressive model in which the marginals are
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inverse Gaussian distributed was also studied [2]. The authors show that after

fixing the parameter of the inverse Gaussian to 0 the innovation term is also

inverse Gaussian distributed. Recently, [22] studied the AR(1) model with one-sided

tempered stable marginals and innovations, and demonstrated that the model fits

very well real-world data. The first order AR processes were also studied by Lekshmi

and Jose [100,101] with geometric α-Laplace and geometric Pakes generalized Linnik

marginals. For a literature survey on unified view of AR(1) models, see [69].

In this study, we use the concept of geometric infinitely divisible (gid) distributions

to define a new class of generalized AR(1) processes. We first define a class of

geometric infinitely divisible random variables with a Laplace transform of the form
1

1+g(s)
, where g(s) is a Bernstein function which is also known as Laplace exponent

of general subordinators. A large class of distributions, for example, the geometric

α-stable (or Mittag Leffler), geometric tempered stable, geometric gamma, geometric

inverse Gaussian, and one-sided geometric Laplace distributions, come under this

umbrella. This class of generalised AR(1) models have ability to handle intricate

and versatile time series patterns. These models can accommodate more complex

underlying dynamics of time series data. Earlier work related to AR(1) models

primarily focused on specific distributions of innovation terms or assumed particular

forms for the marginals see [100,101]. We discuss the AR(1) model within a general

class of geometric infinitely divisible distributions. We mainly focus on geometric

tempered stable, geometric inverse Gaussian and geometric gamma distributions

and corresponding AR models. These distributions have different properties which

make them interesting. We empirically show that these distributions fall under

the category of semi heavy-tailed or heavy-tailed distributions. We plot the

log(P(X > x)), where P(X > x) is survival function. The survival function is

the probability that an event has not occurred by a threshold x which is essentially

a tail probability [93]. To study the tail behavior of these three distributions, we

compare them with stable, standard normal and standard exponential distributions.

All the three distributions lies between standar normal and stable distribution, which

imply that they belong to the class of semi heavy-tailed distributions. This property

make them suitable for modeling data with extreme events and outliers, particularly

relevant in finance and risk management. The corresponding time series models

derived from this distribution can effectively capture temporal dependencies. The

study of the general AR(1) model based on geometric infinitely divisible distributions

provides a unified platform to address the behaviors of wide range of data.

To the best of our knowledge these models and corresponding AR processes have not

been explored in the literature. First, the properties of gid marginals are studied

in Section 5.2. Section 5.3 describes the AR(1) model with gid marginals. We

also obtain the distribution of innovation terms, which are from the class of gid
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distributions. We then evaluate the pdf of innovation terms in integral form for

the geometric tempered stable, geometric gamma, and geometric inverse Gaussian

cases. Further, we generalize the results obtained in this section to the kth order

autoregressive processes. In Section 5.4, the conditional least square (CLS) and

method of moments (MOM) are used to estimate the parameters of the AR(1) model

defined in Prop. 5.9 and provide the simulation study for two different datasets.

Section 5.5 concludes the chapter.

5.2 Geometric infinitely divisible distributions

In this section, we discuss gid distributions. Infinitely divisible random variables (or

distributions) with positive supports play a crucial role in the study of subordinators,

see [11] and Def. 2.5. The subordinators are real-valued non-decreasing stochastic

processes having independent and stationary increments. The properties of

subordinators are well studied in the literature (e.g. see, [11,96,97]). Bernstein

functions play a crucial role in the theory of non-decreasing Lévy processes or

subordinators. The Bernstein functions are defined in Def. 2.4. For a subordinator

S(t), it follows that E[e−sS(t)] = e−tϕ(s), where ϕ(s) is also called the Laplace

exponent. Next we define the gid’ marginals.

Consider a positive random variable Y with Laplace transform f(s) that is E[e−sY ] =

f(s). Let X be a positive infinitely divisible random variable with Laplace transform

E[e−sX ] = e−g(s), where g(s) is a Bernstein function ([128]). The Laplace transform

of X can be written as,

ϕX(s) = e−g(s) = e1−g(s)−1 = e
1− 1

(1+g(s))−1 = e1−
1

f(s) , s > 0. (5.1)

It is known from [92] that a distribution with Laplace transform f(s) is geometrically

infinitely divisible if and only if the distribution with Laplace transform e1−
1

f(s) is

infinitely divisible. One can define a class of geometrically infinitely divisible random

variables by choosing g(s) as the Laplace exponent of general subordinators and we

call these random variables as the gid based random variables. We introduce a

class of random variables Y on (0,∞) with Laplace transform of the form f(s) =
1

1+g(s)
, where g(s) is the Laplace exponent of positive infinitely divisible random

variables and study the relevant properties for time series autoregressive models.

Additionally, we extend the concept of geometric α-Laplace ([100]), geometric Pakes

generalized Linnik marginals ([101]) based autoregressive models to general class of

autoregressive models with gid marginals.

Definition 5.1. The random variable Y on (0,∞) is said to have gid marginals if

its Laplace transform is given by f(s) = 1
1+g(s)

, where g(s) is a Bernstein function
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and the Laplace exponent of a positive infinitely divisible random variable.

In particular, we consider different functions for g(s) and define the Laplace

transform of corresponding gid marginals:

(a) Geometric tempered stable: The Laplace transform of tempered stable random

variable is e−g(s) with g(s) = (s + λ)β − λβ, then f(s) = 1
1+(s+λ)β−λβ , λ >

0 and β ∈ (0, 1).

(b) Geometric gamma: The Laplace transform of gamma random variable is e−g(s)

with g(s) = α log(1 + s
β
), then f(s) = 1

1+α log( s+β
β )

, α > 0 and β > 0.

(c) Geometric inverse Gaussian: The Laplace transform of inverse Gaussian

random variable is e−g(s) with g(s) = δγ
{√

1 + 2s
γ2

− 1
}

, then f(s) =
1

1+δγ

{√
1+ 2s

γ2
−1

} , δ > 0 and γ > 0.

Proposition 5.1. Consider the identically and independently distributed random

variables X1, X2, . . . , with gid marginals defined in Def. 5.1. Also consider N(θ)

be a geometric random variable with mean 1
θ
and P[N(θ) = r] = θ(1 − θ)r−1, r =

1, 2, · · · , 0 < θ < 1. Then Y =
∑N(θ)

i=1 Xi also have gid marginals with f(s) = 1

1+
g(s)
θ

.

Proof. Let the Laplace transform of each Xi for i = 1, 2, . . . is denoted by ϕX(s).

Then, the Laplace transform of random variable Y can be written as,

ϕY (s) =
∞∑
r=1

[ϕX(s)]rθ(1 − θ)r−1 =
∞∑
r=1

[ 1

1 + g(s)

]r
θ(1 − θ)r−1 =

θ
1+g(s)

1 −
(

1−θ
1+g(s)

)
=

1

1 + g(s)
θ

.

Hence, Y is also a gid random variable.

Next, we study the limiting behavior of the densities of gid random variables near 0+

using Laplace transform. As the pdf of gid random variables lack closed forms and

are expressed through integral representations, we employ the Tauberian theorem

defined in [52] (pp. 446, Theorem 4). The Tauberian theorem is stated as follows:

Theorem 5.2. Let 0 < ρ < ∞. If U has ultimately monotone derivative u then as

λ→ 0 and x→ ∞, respectively,

ω(λ) ∼ 1

λρ
L(1/λ) iff u(x) ∼ 1

Γ(ρ)
xρ−1L(x).

In the following theorem, we apply the Tauberian theorem to the geometric

tempered stable and geometric inverse Gaussian distributions.
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Theorem 5.3. LetW (s) be the Laplace transform and f(x) be the probability density

function for a gid random variable, then we obtain the asymptotic behavior of f(x)

at 0+.

(a) For geometric tempered stable, W (s) = 1
1+θ((s+λ)β−λβ) , then as x → 0+ density

f(x) ∼ xβ−1

θΓ(β)
, where λ > 0 and 0 < β < 1.

(b) For geometric inverse Gaussian, W (s) = 1

1+θδ{
√
γ2+2s−γ}

, then as x → 0+

density f(x) ∼ x−1/2

θδ
√
2π
, where δ > 0, and γ > 0.

Proof. (a) The Laplace transform of geometric tempered stable is W (s) =
1

1+θ((s+λ)β−λβ) , where λ > 0, 0 < β < 1. For large s, W (s) ∼ 1
θsβ
. We apply

Tauberian theorem with exponent β and the slowly varying function L(1/s) = 1
θ
.

Thus, the density f(x) ∼ xβ−1

θΓ(β)
, as x→ 0+.

(b) The Laplace transform of geometric inverse Gaussian is W (s) = 1

1+θδ{
√
γ2+2s−γ}

,

where δ > 0, γ > 0. Again for large s, W (s) ∼ 1
θδ

√
2s
. The slowly varying function

L(1/s) = 1
θδ

√
2

and exponent 1/2. By Tauberian theorem, f(x) ∼ x−1/2

θδ
√
2π
, as x→

0+.

The density plots of the gid distributions, including geometric tempered stable and

geometric inverse Gaussian, align with the results obtained in the above theorem.

We apply the Laplace transform method, as described in [120], to generate datasets

of length 1000 using the R programming language. The density plots for gid with

various parameter values are illustrated in Fig. 5.1.

5.2.1 Mixture of gid random variables

In this subsection, we introduce a new random variable M which is a mixture of two

independent gid random variables denoted as Y1 and Y2. The definition of mixture

random variable is given in [52] (pp. 53) as follows:

Definition 5.2. The random variable X is said to be mixture random variable if the

density of X has the following form: w(x) =
∑

k f(x, θk)pk, where pk ≥ 0,
∑

k pk = 1,

and f(x, θk) are component densities.

We define g(s) = cg1(s) + (1 − c)g2(s), where 0 < c < 1, g1 and g2 are Laplace

exponent functions for Y1 and Y2 respectively. We compute ϕM(s) the Laplace for

each case as follows:

e−g(s) = e−(cg1(s)+(1−c)g2(s)) = e1−1−(cg1(s)+(1−c)g2(s)) = e
1− 1

(1+cg1(s)+(1−c)g2(s))
−1 .
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Figure 5.1: The density plot of (a) geometric tempered stable with parameters
β = 0.6 and different λ = 1, 5, 10, 0.5 (b) geometric gamma with parameters β = 5
and different α = 0.1, 1, 5, 10 (c) geometric inverse Gaussian with parameters γ = 1
and different δ = 0.5, 1, 5, 10.

The Laplace exponent of gid mixture M is,

ϕM(s) =
1

1 + cg1(s) + (1 − c)g2(s)
=

1

1 + g2(s) + c(g1(s) − g2(s))
,

for 0 < c < 1. We substitute the values of functions g1(s) and g2(s) to obtain the

Laplace transform of the following:

(a) Geometric mixture tempered stable: for 0 < β1, β2 < 1, and λ1, λ2 > 0,

ϕM(s) =
1

1 + (s+ λ2)β2 − λβ22 + c((s+ λ1)β1 − λβ11 − (s+ λ2)β2 + λβ22 )
.

(b) Geometric mixture gamma: for β1, β2 > 0 and α1, α2 > 0,

ϕM(s) =
1

1 + α2 log( s+β2
β2

) + c{α1 log( s+β1
β1

) − α2 log( s+β2
β2

)}
.
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(c) Geometric mixture inverse Gaussian: for δ1, δ2 > 0 and γ1, γ2 > 0,

ϕM(s) =
1

1 + δ2

(√
2s+ γ22 − γ2

)
+ c
(
δ1

(√
2s+ γ21 − γ1

)
− δ2

(√
2s+ γ22 − γ2

)) .
Remark 5.1. One can study the asymptotic behavior of gid mixture as done in

Theorem 5.3. Also, further these gid mixtures can be used to define autoregressive

models as discussed in following section.

5.3 Autoregressive models

In this section, we develop two type of processes namely the switching AR(1)

process and AR(1) process with {Yn} as gid based marginals. Consider the following

switching AR(1) process:

Yn =

ϵn, with probability θ,

Yn−1 + ϵn, with probability 1 − θ,
(5.2)

where 0 < θ < 1.

Theorem 5.4. Consider a stationary switching AR(1) process {Yn} as defined in

Eq. (5.2). If {Yn} has gid marginals, then {Yn} and {ϵn} have similar distribution.

Proof. Assume that the marginal distribution of {Yn} is gid. Then the Laplace

transform of {Yn} is ϕYn(s) = 1
1+g(s)

and innovation terms {ϵn} is denoted by ϕϵn(s).

We can write Eq. (5.2) in terms of Laplace transform as,

ϕYn(s) = θϕϵn(s) + (1 − θ)ϕYn−1(s)ϕϵn(s).

Using the stationarity condition and the Laplace transform ϕY (s) = 1
1+g(s)

, we

rewrite above equation as,

ϕY (s) = θϕϵ(s) + (1 − θ)ϕY (s)ϕϵ(s) = ϕϵ(s){θ + (1 − θ)ϕY (s)} (5.3)

ϕϵ(s) =
ϕY (s)

θ + (1 − θ)ϕY (s)
=

1

1 + θg(s)
. (5.4)

Hence, we conclude that innovation terms {ϵn} are gid with Laplace transform as
1

1+θg(s)
.

We find the joint Laplace transform of Yn and Yn−1 and check for time reversibility

of the process in the following result. The definition of time reversible time series is
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defined in [99]. A time series, modelled by random variables Xt, t = 0,±1,±2, . . .,

is said to be reversible when, for all r = 1, 2, · · · and t = 0,±1,±2, . . .,

the joint distribution of Xt, Xt+1, · · · , Xt+r is equal to the joint distribution of

Xt+r, Xt+r−1, · · · , Xt. Using the joint Laplace transform to time series data, we can

analyze the frequency-domain characteristics and dependencies between different

variables.

Proposition 5.5. Consider the stationary switching AR(1) process as defined in

Eq. (5.2). Yn can be written as Yn = InYn−1 + ϵn, where P [In = 0] = θ = 1−P [In =

1], 0 < θ < 1. Then the AR(1) process is not time reversible.

Proof. The Laplace transform of joint variables (Yn, Yn−1) is calculated as follows:

ϕYn−1,Yn(s1, s2) = E[exp(−s1Yn−1 − s2Yn)] = E[exp(−s1Yn−1 − s2[InYn−1 + ϵn]]

= E[exp(−(s1 + s2In)Yn−1 − s2ϵn)] = E[exp(−(s1 + s2In)Yn−1)]ϕϵn(s2)

=
1

1 + θg(s2)

[ θ

1 + g(s1)
+

1 − θ

1 + g(s1 + s2)

]
.

Since the joint Laplace transform is not a symmetric function, the process is not

time reversible.

To simulate the switching AR(1) model, first generate the i.i.d. innovation terms

{ϵt} using the Laplace transform as discussed in [120]. Then generate {Yt} from

AR(1) model defined in Eq. (5.2) with θ = 0.3. The plot of innovation terms {ϵt}
for geometric tempered stable marginals, geometric gamma marginals and geometric

inverse Gaussian are shown in Fig. 5.2. The time series {Yt} from switching AR(1)

model with θ = 0.3 for all the three cases are shown in Fig. 5.3. In the next results,

we discuss the form of the pdf of innovation terms using Laplace transform and

complex inversion formula. The Cauchy inversion formula is a tool for computing

the Laplace inverse of F (s). For a continuous function f possessing a Laplace

transform F (s), the Laplace inverse f(t) is given by

f(t) = lim
y→∞

1

2πι

∫ x+ιy

x−ιy
estF (s) ds,

where s = x + ιy. For theory of complex inversion formula, one can refer Chap. 4

of [127].

Theorem 5.6. Consider a stationary switching AR(1) process {Yn} as defined in

Eq. (5.2). If {Yn} is marginally distributed as geometric tempered stable with Laplace

transform ϕY (s) = 1
1+(s+λ)β−λβ , for β = 1

m
,m = 2, 3, · · · , then the innovation

terms {ϵn} also follow geometric tempered stable distribution with Laplace transform
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Figure 5.2: The plot of innovation terms {ϵt} from AR(1) model with θ = 0.3 for
(a) geometric tempered stable with parameters β = 0.6 and λ = 1 (b) geometric
gamma with parameters β = 5 and α = 10 (c) geometric inverse Gaussian with
parameters γ = 1 and δ = 0.5.

ϕϵ(s) = 1
1+θ((s+λ)β−λβ) . Moreover, the pdf of innovation terms has the following

integral form:

fϵ(x) =
e(s0−λ)x

θβsβ−1
0

+
1

π

∫ ∞

0

θe−x(y+λ)yβ sin(πβ)

1 + 2θ(yβ cos(πβ) − λβ) + θ2(y2β − 2λβyβ cos(πβ) + λ2β)
dy.

(5.5)

where s0 = (λβ − 1/θ)β−1, β ∈ (0, 1), β = 1
m
,m = 2, 3, · · · and λ > 0.

Proof. We substitute g(s) = 1
1+(s+λ)β−λβ in Eq. (5.4) to obtain the Laplace transform

of innovation terms ϕϵ(s) = 1
1+θ((s+λ)β−λβ) , β = 1

m
, m = 2, 3, 4, . . ..

Consider the function G(s) = 1
1+θ(sβ−λβ) . For the function G(s), with β = 1

m
, m =

2, 3, . . ., it follows that s0 = (λβ − 1/θ)1/β is a simple pole and s1 = (0, 0) is the

branch point. We use complex inversion formula to compute the Laplace inverse of

G(s) which in turn gives the pdf fϵ(x) of innovation terms

fϵ(x) =
1

2πι

∫ x0+i∞

x0−i∞
esxϕϵ(s) ds,
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Figure 5.3: The plot of time series {Yt} of length 1000 from AR(1) model with
θ = 0.3 for (a) geometric tempered stable with parameters β = 0.6 and λ = 1 (b)
geometric gamma with parameters β = 5 and α = 10 (c) geometric inverse Gaussian
with parameters γ = 1 and δ = 0.5.

where x0 > a is chosen such that the integrand is analytic for Re(s) > a. Consider

the contour ABCDEF in Fig. 5.4 with branch point s1 = (0, 0), circular arcs AB

and EF of radius R, arc CD of radius r, line segments BC and DE parallel to

x−axis and AF is line segment from x0− iy to x0 + iy. For closed curve C and poles

si inside C, Cauchy residue theorem states that,

1

2πι

∮
C

esxG(s) ds =
n∑
i=1

Res(esxG(s), si).

In limiting case, for contour ABCDEF , the integral on circular arcs AB and EF

tend to 0 as R → ∞. The integral over CD also tends to 0 as r → 0. We need to

compute the following integral:

1

2πι

∫ x0+ι∞

x0−ι∞
esxG(s) ds = Res(esxG(s), s0)−

1

2πι

∫
BC

esxG(s) ds− 1

2πι

∫
DE

esxG(s) ds.

(5.6)



Chapter 5. Geometric infinitely divisible autoregressive models 61

A

F

B

E

C

D

R

r

(x0, 0)
P (0, 0)

Figure 5.4: Contour plot with branch point at P = (0, 0) in anti-clockwise direction

Now, along BC, let s = yeιπ, then ds = −dy and,

1

2πι

∫ −r

−R

esx

1 + θ(sβ − λβ)
ds =

1

2πι

∫ R

r

e−xy

1 + θ(yβeιπβ − λβ)
dy =

1

2πι

∫ ∞

0

e−xy

1 + θ(yβeιπβ − λβ)
dy.

(5.7)

Along DE, let s = ye−ιπ, then ds = −dy and,

− 1

2πι

∫ −R

−r

esx

1 + θ(sβ − λβ)
ds = − 1

2πι

∫ R

r

e−xy

1 + θ(yβe−ιπβ − λβ)
dy (5.8)

Now substitute Eq. (5.7) and (5.8) in Eq. (5.6).

1

2πι

∫ x0+ι∞

x0−ι∞
esxG(s) ds = Res(esxG(s), s0)−

1

2πι

[ ∫ ∞

0

e−xy

1 + θ(yβeιπβ − λβ)
dy

−
∫ ∞

0

e−xy

1 + θ(yβe−ιπβ − λβ)
dy
]

= Res(esxG(s), s0)−
1

2πι

∫ ∞

0

e−xy(θyβ(e−ιπβ − eιπβ))

(1 + θ(yβeιπβ − λβ))(1 + θ(yβe−ιπβ − λβ))
dy

= Res(esxG(s), s0) +
1

π

∫ ∞

0

e−xyθyβ sin(πβ)

1 + 2θ(yβ cosπβ − λβ) + θ2(y2β − 2λβyβ cosπβ + λ2β)
dy.

Now we find the Res(esxG(s)) for poles at s0 = (λβ − 1/θ)m, β = 1/m, m =

2, 3, 4, · · · . Also, note that all the poles s0 < 0 are outside the analytic region,

therefore we will calculate the residue at all those s0 where (λβ − 1/θ)m > 0 i.e.

λ > 1
θm

. We evaluate the residue as,

lim
s→s0

(s− s0)e
sx

1 + θ(sβ − λβ)
=

es0x

θβ(s0)β−1
,

where s0 = (λβ − 1/θ)m. The inverse Laplace of G(s) is

L−1{G(s)} =
es0x

θβ(s0)β−1
+

1

π

∫ ∞

0

e−xyθyβ sin(πβ)

1 + 2θ(yβ cosπβ − λβ) + θ2(y2β − 2λβyβ cosπβ + λ2β)
dy.
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We obtain the pdf by using the first translational property of inverse Laplace.

fϵ(x) = L−1{G(s+ λ)} = e−λxL−1G(s)

= e−λx
[ es0x

θβ(s0)β−1
+

1

π

∫ ∞

0

e−xyθyβ sin(πβ)

1 + 2θ(yβ cosπβ − λβ) + θ2(y2β − 2λβyβ cosπβ + λ2β)
dy
]
.

Hence, we obtain the form of pdf as mentioned in Eq. (5.5).

Remark 5.2. For λ = 0, ϕY (s) = 1
1+sβ

and ϕϵ(s) = 1
1+θsβ

, which is the Laplace

transform of one side geometric stable distribution also known as Mittag-Leffler

distribution. For θ = 1, poles will be s0 = (−1)m, m = 2, 3, 4 · · · . The residue for

the pole corresponding to s0 = 1 is ex. Then, the pdf becomes,

fϵ(x) = ex +
1

π

∫ ∞

0

e−xyyβ sin(πβ)

1 + 2yβ cos(πβ) + y2β
dy, where s0 = 1. (5.9)

Remark 5.3. In Eq. (5.9), we take β = 1/2 or equivalently m = 2 and obtain the

density using the results from [3](pp. 303-304),

fϵ(x) = ex +
1

π

∫ ∞

0

e−xy
√
y

1 + y
dy = ex +

1√
πx

− ex + exErf(
√
x) =

1√
πx

+ exErf(
√
x).

As x → 0, Erf(
√
x) → 0 and fϵ(x) ∼ 1√

πx
, which match with the asymptotic

behaviour discussed in Theorem 5.3.

Proposition 5.7. For a stationary AR(1) process with {Yn} defined as in Eq. (5.2)

with marginals distributed as geometric gamma with Laplace transform ϕY (s) =
1

1+α log( s+β
β

)
, then the innovation terms {ϵn} also follow geometric gamma with

Laplace transform ϕϵ(s) = 1

1+αθ log( s+β
β

)
. Moreover, the pdf of innovation terms has

the following integral form:

fϵ(x) =
es0x(s0 + β)αθ

βαθ
− e−βx

∫ ∞

0

αθe−xy

1 + 2αθ log(y/β) + π2α2θ2 + α2θ2(log(y/β))2
dy,

where s0 = β(e−1/αθ − 1), α > 0 and β > 0.

Proof. Again we substitute g(s) = 1

1+α log( s+β
β

)
in Eq. (5.4) and get the Laplace

transform of innovation terms ϕϵ(s) = 1

1+αθ log( s+β
β

)
. Again we use the complex

inversion formula to obtain the pdf of innovation terms. We consider the function

G(s) = 1

1+θα log( s+β
β

)
and the pole for G(s) at s0 = β(e−1/αθ − 1) and branch point at

s = −β. The residue corresponding to s0 is es0x(s0+β)αθ

βθα . Using a similar contour as

given in Fig. 5.4 and the same steps to obtain the pdf as

fϵ(x) =
es0x(s0 + β)αθ

βαθ
− e−βx

∫ ∞

0

αθe−xy

1 + 2αθ log(y/β) + π2α2θ2 + α2θ2(log(y/β))2
dy.
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Proposition 5.8. For a stationary AR(1) process with {Yn} defined as in Eq. (5.2)

with marginals distributed as geometric inverse Gaussian with Laplace transform

ϕY (s) = 1

1+γδ

{√
1+ 2s

γ2
−1

} , then the innovation terms {ϵn} also follows geometric

inverse Gaussian with Laplace transform ϕϵ(s) = 1

1+θγδ

{√
1+ 2s

γ2
−1

} . Moreover, the

pdf of innovation terms has the following integral form:

fϵ(x) =
es0x
√

2s0 + γ2

θδ
+
γ2e−x

2π

∫ ∞

0

θδ
√
ye

− 2xy

γ2

1 − 2θδγ + θ2δ2(y + γ2 − 2γ
√
y cos θ)

dy,

where s0 = γ2

2
(1 − 1

θγδ
)2 − γ2

2
, δ > 0 and γ > 0.

Proof. The Laplace transform of innovation terms ϕϵ(s) = 1

1+θγδ

{√
1+ 2s

γ2
−1

} is

straight forward from Eq. (5.4). Now we use the complex inversion formula to

obtain the pdf of innovation terms as done in previous theorem. We consider the

function G(s) = 1

1+θδγ

{√
1+ 2s

γ2
−1

} and the pole for G(s) is s0 = γ2

2

{
1 − 1

θδγ

}
− γ2

2
.

The residue corresponding to s0 is
es0x

√
2s0+γ2

θδ
. We use the same steps to obtain the

pdf as

fϵ(x) =
es0x
√

2s0 + γ2

θδ
+
γ2e−x

2π

∫ ∞

0

θδ
√
ye

− 2xy

γ2

1 − 2θδγ + θ2δ2(y + γ2 − 2γ
√
y cos θ)

dy.

We know that for a random process, the moments (if exist) uniquely describe the

properties of the random variable X. In the following result, we provide the kth

order moments using the Laplace transform. The kth order moment of random

variable X is evaluated as: E(Xk) = (−1)kϕ(k)(s) for s = 0 and k ∈ N. We obtain

the first and second order moments for these cases as follows:

(a) Geometric tempered stable innovations: ϕϵ(s) =
1

1 + θ{(s+ λ)β − λβ} . Then,

E(ϵ) = θβλβ−1, E(ϵ2) = θβ(β − 1)λβ−2 − 2θ2β2(λ)2β−2, λ > 0.

(b) Geometric gamma innovations: ϕϵ(s) =
1

1 + αθ log

(
s+ β

β

) . Then,

E(ϵ) =
θα

β
, E(ϵ2) =

θα + 2θ2α2

β2
.
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(c) Geometric inverse Gaussian innovations: ϕϵ(s) =
1

1 + θγδ
{√

1 + 2s
γ2

− 1
} .

Then,

E(ϵ) =
θδ

γ
, E(ϵ2) =

2θ2δ2

γ2
+
θδ

γ3
.

5.3.1 Generalisation to kth order autoregressive processes

We define the generalized form of the process developed in previous section by Eq.

(5.2) as follows:

Yn =



ϵn, with probability θ,

Yn−1 + ϵn, with probability 1 − θ1,
...

Yn−k + ϵn, with probability 1 − θk,

, (5.10)

where
∑k

i=1 θi = 1 − θ, 0 < θ < 1, i = 1, 2, . . . , k. Also, {ϵn} are independent of

{Yn−1, Yn−2, · · · , }. We write the Laplace transform ϕYn(s) for the model defined in

Eq. (5.10),

ϕYn(s) = θϕϵn(s) + θ1ϕYn−1(s)ϕϵn(s) + · · · + θkϕYn−k
(s)ϕϵn(s)

= ϕϵn(s){θ + θ1ϕYn−1(s) + · · · + θkϕYn−k(s)}.

Since series is stationary, we get,

ϕY (s) = ϕϵ(s)θ +
k∑
i=1

θiϕY (s) = ϕϵ(s){θ + (1 − θ)ϕY (s)} =⇒ ϕϵ(s) =
ϕY (s)

θ + (1 − θ)ϕY (s)
.

Hence, we obtain the similar form for innovation terms {ϵn}. Next, we define

the stationary AR(1) process with |θ| < 1 and find the Laplace transform of the

innovation terms.

Proposition 5.9. Consider the AR(1) process Yn = θYn−1 + ϵn, |θ| < 1 is strictly

stationary with Laplace transform of marginals as ϕY (s) = 1
1+g(s)

then the Laplace

transform of innovation terms {ϵn} is ϕϵ(s) = 1+g(θs)
1+g(s)

.

Proof. We have stationary AR(1) process with |θ| < 1, then Laplace is defined as

ϕYn(s) = ϕYn−1(θs)ϕϵ(s); ϕϵ(s) =
ϕY (s)

ϕY (θs)
=

1 + g(θs)

1 + g(s)
.

The Laplace transform of innovation terms {ϵn} for three cases are as follows:
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(a) Geometric tempered stable: for g(s) = (s + λ)β − λβ, then ϕϵ(s) =
1+(θs+λ)β−λβ
1+(s+λ)β−λβ , λ > 0, β ∈ (0, 1).

(b) Geometric gamma: for g(s) = α log(1 + s
β
), then ϕϵ(s) =

1+α log

(
θs+β

β

)
1+α log

(
s+β
β

) , α >

0 and β > 0.

(c) Geometric inverse Gaussian: for g(s) = δγ
{√

1 + 2s
γ2

− 1
}

, then ϕϵ(s) =

1+δγ

{√
1+ 2θs

γ2
−1

}
1+δγ

{√
1+ 2s

γ2
−1

} , δ, γ > 0.

5.4 Parameter estimation and simulation study

In this section, we estimate the parameters of the model defined in Prop. 5.9 using

conditional least square (CLS) and method of moments (MOM). We first apply the

CLS method to estimate the parameter θ and then use the MOM for the parameters

of marginals in next subsection.

5.4.1 Estimation by conditional least squares and method

of moments

The function for conditional least square is given by,

L(θ, λ, β) =
n∑
t=1

(Yt − E(Yt|Yt−1))
2, where E[Yt|Yt−1] = θYt−1 + E(ϵt).

(a) Geometric tempered stable: For the model defined in Prop. 5.9, first we

assume that innovations are from distribution with Laplace transform ϕϵ(s) =
1+(θs+λ)β−λβ
1+(s+λ)β−λβ , λ > 0 and β ∈ (0, 1). The first order and second order theoretical

moments of innovation terms {ϵt} are approximated by the empirical moments,

which are given by

m̂1 =

n∑
t=1

ϵt
n

= (1− θ)βλβ−1; m̂2 =

n∑
t=1

ϵ2t
n

= β(β − 1)(θ2 − 1)λβ−2 − 2β2λ2β−2(θ − 1).

(5.11)

We substitute m̂1 from Eq. (5.11) to the function L(θ, λ, β) and obtain,

L =
n∑
t=1

(Yt − θYt−1 − (1 − θ)βλβ−1)2.
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Take derivative with respect to unknown parameters θ, λ and β and obtain the

following relation,

∂L

∂λ
=

n∑
t=1

2(Yt − θYt−1 − (1 − θ)βλβ−1)((1 − θ)βλβ−1), (5.12)

∂L

∂β
=

n∑
t=1

2(Yt − θYt−1 − (1 − θ)βλβ−1)((1 − θ)λβ−1 + (1 − θ)βλβ−1 log (β − 1)),

(5.13)

∂L

∂θ
=

n∑
t=1

2(Yt − θYt−1 − (1 − θ)βλβ−1)(βλβ−1 − Yt−1). (5.14)

Solving the above equations, we get the estimate, θ̂ =

∑n
t=1 YtYt−1 − nȲ 2

t−1∑n
t=1(Yt−1 − Ȳt−1)2

,

where Ȳt−1 =

∑n
t=1 Yt−1

n
. Now we use first and second order moments to estimate

the remaining parameters λ and β.

m̂1 = (1 − θ̂)βλβ−1; m̂2 = β(β − 1)(θ̂2 − 1)λβ−2 − 2β2λ2β−2(θ̂ − 1).

After rearranging the terms we get the following non-linear relation between λ

and β,

β = 1 − λ
m̂2(1 − θ̂) − 2m̂2

1

m̂1(1 − θ̂2)
.

To solve it further we use fsolve() function available in python scipy package.

Also, note that the estimate for θ using CLS will be same for all the cases.

(b) Geometric gamma: For this case the Laplace transform of innovation terms are

ϕϵ(s) =
1 + (log(θs+ β/β))α

1 + (log(s+ β/β))α
, α > 0 and β > 0. The first and second order

moments of innovation terms will be,

m̂1 = (1 − θ̂)
α

β
; m̂2 =

α(1 − θ̂2)

β2
+

2α2(1 − θ̂)

β2
.

Using these moments we get the the estimates as β̂ =
m̂1(1 − θ̂2)

m̂2(1 − θ̂ − 2m̂2
1)

and

α̂ =
m̂1β̂

1 − θ̂
.

(c) Geometric inverse Gaussian: The Laplace transform of innovation terms are

ϕϵ(s) =
1 + δ(

√
2θs+ γ2 − γ)

1 + δ(
√

2s+ γ2 − γ)
, γ > 0 and δ > 0. The first and second order
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moments of innovation terms will be,

m̂1 = (1 − θ̂)
δ

γ
; m̂2 = 2(1 − θ̂)

δ2

γ2
+ (1 − θ̂2)

δ

γ3
.

Using these moments we get the the estimates as γ̂ =

√
m̂1(1 − θ̂2)

m̂2(1 − θ̂) − 2m̂2
1

and

δ̂ =
m̂1γ̂

1 − θ̂
.

In the next subsection we observe the tail behavior of geometric tempered stable,

geometric gamma and geometric inverse Gaussian empirically. We also present the

simulation study for AR(1) model with these distributions.

5.4.2 Simulation study

We first generate the random variables from stable, standard normal and standard

exponential distribution each of size 1000. We generate 1000 random variables from

all the proposed three distributions. We compare the log of tail probability of these

distribution with the stable, standard normal and standard exponential distribution.

Observe from Fig. 5.5 that geometric tempered stable and geometric inverse

Gaussian and geometric gamma distributions lie between standard normal and

stable distribution. This behavior depicts that all the three distributions are from

semi heavy-tailed distributions. Also, observe that geometric gamma distribution is

heavy-tailed as it lies above standard normal and standard exponential distribution.

Therefore, we can empirically conclude that geometric gamma, geometric tempered

stable and geometric inverse Gaussian belong to the class of semi heavy-tailed

distribution.
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(a) Geo tempered stable.
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Figure 5.5: The plot of log(P(X > x)), where X is random variables of length 1000
(a) geometric tempered stable with parameters β = 0.6 and λ = 1 (b) geometric
gamma with parameters β = 1 and α = 1 (c) geometric inverse Gaussian with
parameters γ = 1 and δ = 0.5.
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Figure 5.6: The boxplots for model parameter estimates from AR(1) model with
true value of θ = 0.3 for (a) geometric tempered stable with true parameter values
of β = 0.6 and λ = 1 (b) geometric gamma with true parameter values of β = 1 and
α = 2 (c) geometric inverse Gaussian with parameters γ = 1 and δ = 2

Table 5.1: Case 1: Estimation of parameters using CLS and MOM for AR(1) model
with three distributions.

Distributions parameter
1

parameter
2

parameter
3

Geometric
tempered stable

True
values

β = 0.6 λ = 1 θ = 0.3

Est. values β̂ = 0.206 λ̂ = 0.917 θ̂ = 0.297

Geometric gamma True
values

β = 1 α = 2 θ = 0.3

Est. values β̂ = 1.189 α̂ = 2.422 θ̂ = 0.298

Geometric inverse
Gaussian

True
values

γ = 1 δ = 2 θ = 0.3

Est. values γ̂ = 1.028 δ̂ = 2.054 θ̂ = 0.296

We use simulation to further assess the performance of the estimation method.
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Figure 5.7: Case 2: The boxplots for model parameter estimates from AR(1) model
(a) geometric tempered stable with true parameter values of θ = 0.8, β = 0.3 and
λ = 3 (b) geometric gamma with true parameter values of θ = 0.7, β = 2.5 and
α = 1.3 (c) geometric inverse Gaussian with parameters θ = 0.6, γ = 1.6 and
δ = 0.5.

We simulate the 500 trajectories each of length 1000 for geometric tempered stable,

geometric gamma and geometric inverse Gaussian. We simulate two sets of data

for assessment. We use the method of Laplace transform to simulate the innovation

terms {ϵn} as described in [120] and then generate the time series {Yn} from AR(1)

model. The true values for the parameters of both the cases are tabulated in Table

5.1 and 5.2. For case 1, the Table 5.2 and boxplots in Fig. 5.6 we observe that

the CLS method gives good estimate for parameter θ, whereas the estimation of

other parameters by MOM has variance. The estimated value of β from geometric

tempered stable is not good. The relation of β and λ is non-linear therefore we solved

it by using fsolve function defined in python’s scipy library. The method to solve

non-linear relationship amongst parameters are based on numerical methods. For

case 2, the simulated data do not have randomness which results in poor estimation

of parameters. The results using boxplots are shown in Fig. 5.7 and numerical
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Table 5.2: Case 2: Estimation of parameters using CLS and MOM for AR(1) model
with three distributions.

Distributions parameter
1

parameter
2

parameter
3

Geometric
tempered stable

True
values

β = 0.3 λ = 3 θ = 0.8

Est. values β̂ =
−0.362

λ̂ = 1.085 θ̂ = 0.797

Geometric gamma True
values

β = 2.5 α = 1.3 θ = 0.7

Est. values β̂ = 2.870 α̂ = 1.531 θ̂ = 0.697

Geometric inverse
Gaussian

True
values

γ = 1.6 δ = 0.5 θ = 0.6

Est. values γ̂ = 2.734 δ̂ = 0.859 θ̂ = 0.599

values are also given in Table 5.2. We observe that for geometric inverse Gaussian

distribution, the estimates are not satisfactory.

The reason for these outcomes may depend on the simulated data because

the simulation technique is based on the inversion method using a modified

Newton-Raphson method. The values of the distribution and density functions

are obtained by numerical transform inversion. Therefore, there is non randomness

in the simulated data which results in poor estimates for some of the parameters.

From the simulation study we conclude that we can rely on the estimation techniques

for modeling AR(1) model with these distributions. Further, we also need another

simulation method for these distributions for future use.

5.5 Conclusion

We use the Bernstein function g(s) which is the Laplace exponent of a positive

infinitely divisible random variable to define gid random variables with Laplace

transform of the form 1
1+g(s)

. We also find the Laplace transform of mixtures of

some particular gid random variables which is a new class of marginals to study. A

new autoregressive process of order 1 with gid distribution is considered. We deduce

that if marginals of AR(1) defined in Eq. (5.2) are gid then the innovation terms

are also gid. We find the integral form of the pdf of innovation terms using the

Laplace transform and complex inversion method for three cases namely, geometric

tempered stable, geometric gamma, and geometric inverse Gaussian subordinators.

Further, we have also calculated the first and second order moments for these three

gid random variables which play an important role in studying the characteristics of

pdf. Next, we generalized the AR process to kth order and also proposed the AR(1)
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model defined in Prop. 5.9 with marginals having Laplace transform of the form
1

1+g(s)
. At last, we have estimated the parameters of the model defined in Prop.

5.9 using CLS and MOM and the simulation study for two cases implies that the

estimates are satisfactory.
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Chapter 6

Humbert generalized fractional

differenced ARMA processes

In this chapter, we use the generating functions of Humbert polynomials to define

two categories of Humbert generalized fractional differenced ARMA processes. We

establish conditions for stationarity and invertibility for the introduced models.

Additionally, we explore the singularities in the spectral densities of these models,

with a specific focus on Pincherle ARMA, Horadam ARMA, and Horadam-Pethe

ARMA processes. It is shown that the Pincherle ARMA process exhibits long

memory properties when u = 0. Furthermore, we use the Whittle quasi-likelihood

technique to estimate the parameters of the introduced processes, yielding results

on the consistency and normality of the parameter estimators. To validate the

efficacy of our estimation technique, particularly for the Pincherle ARMA process,

we conduct a comprehensive simulation study. Moreover, we apply the Pincherle

ARMA model to real data namely, Spain’s 10-year treasury bond yield data, to show

its utility in capturing market dynamics.

6.1 Introduction

The study of fractionally differenced time series by Granger and Joyeux (1980)

[66] and Hosking in 1981 [79] provided an impetuous to a new research direction

in time series modelling. The fractionally differenced time series called the

autoregressive fractionally integrated moving average (ARFIMA) model generalizes

the autoregressive (AR), moving average (MA) and autoregressive moving average

(ARMA) models defined respectively by Yule (1926) [149], Slutsky (1937) [130] and

Wold (1938) [145]. Also, the ARFIMA model is an extension of the autoregressive

integrated moving average (ARIMA) process defined by Box and Jenkins (1976) [25]

to model non-stationary time series by assuming the order of differencing ν ∈ R. The

fractionally differenced time series is useful to model the data exhibiting long-range

dependence (LRD). The data exhibiting LRD behaviours or long memory have a

high correlation after a significant lag. For large sample inference for long-memory

processes see Giraitis et al. [63]. Anh et al. [9] proposed some continuous
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time stochastic processes with seasonal long-range dependence and these kinds of

long memory processes have spectral pole at non-zero frequencies. In subsequent

years, Andel (1986); Gray, Zhang and Woodward (1989, 1994) introduced the

concept of Gegenbauer ARMA (GARMA) process. GARMA process also possesses

seasonal long-range dependence [39]. The study on the usefulness of the Gegenbauer

stochastic process is done by Dissanayake et al. [48]. The limit theorems for

stationary Gaussian processes and their non-linear transformations with covariance

function

ρ(h) ≃
r∑

k=1

Ak cos(hωk)h
−αk ,

r∑
k=1

Ak = 1,

where Ak ≥ 0, αk > 0, ωk ∈ [0, π), k = 1, · · · , r have been considered in [81]. For

seasonal long memory process Xt, the autocorrelation function for lag h denoted by

ρ(h) behaves asymptotically as ρ(h) ≃ cos(hω0)h
−α as h → ∞ for some positive

α ∈ (0, 1) and ω0 ∈ (0, π) (see [36]). In literature, many tempered distributions and

processes are studied using the exponential tempering in the original distribution or

process see e.g. and references therein [12,65,97,123,125,137,151]. The fractionally

integrated process with seasonal components are studied and maximum likelihood

estimation is done by Reisen et al. [119]. The parametric spectral density with

power-law behaviour about a fractional pole at the unknown frequency ω is analysed

and Gaussian estimates and limiting distributional behavior of estimate is studied

by Giraitis and Hidalgo [62]. The autoregressive tempered fractionally integrated

moving average (ARTFIMA) process is obtained by using exponential tempering in

the original ARFIMA process [125]. The ARTFIMA process is semi LRD and has

a summable autocovariance function. In ARIMA process the fractional differencing

operator (1 − B)ν , |ν| < 1 is considered instead of (1 − B), where B is the shift

operator. In defining ARTFIMA model the tempered fractional differencing operator

(1−e−λB)ν is used where λ > 0 is the tempering parameter. The Gegenbauer process

uses (1−2uB+B2)ν , |u| ≤ 1, |ν| < 1
2

as a difference operator, which can be written

in terms of Gegenbauer polynomials.

In this chapter, we study Humbert polynomials based time series models. The

Gegenbauer and Pincherle polynomials are the particular cases of Humbert

polynomials. The Gegenbauer polynomials based time series model, namely

GARMA process, is already studied and has been applied in several real world

applications emanating from different areas. These processes possess seasonal long

memory which helps to capture autocorrelation present in the data, leading to

improved forecasting accuracy. We introduce and study two types of Humbert

autoregressive fractionally integrated moving average (HARMA) models which are
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defined by considering Humbert polynomials. We also obtain the spectral density,

stationarity and invertibility conditions of the process. In particular, Pincherle

ARMA, Horadam ARMA and Horadam-Pethe ARMA processes are studied. These

new class of time series models generalizes the existing models like ARMA, ARIMA,

ARFIMA, ARTFIMA and GARMA in several directions. The possible areas of

applications of proposed model includes sales forecasting in e-commerce industries

as it can capture seasonality, trends, and other patterns in historical sales data

[135]. Also, the long memory property can capture autocorrelation patterns observed

in financial returns, volatility and other indicators. These models can be applied

to analyze environmental monitoring data, such as water quality parameters, air

pollution levels, and ecosystem dynamics [30]. Further, we also provide the Whittle

quasi-likelihood estimation for HARMA processes and applied on simulated data.

Also, we applied the Pincherle ARMA model to Spain’s 10-year treasury bond yield

data.

The rest of the chapter is organized as follows. In Section 6.2, we introduce the

Type 1 HARMA (p, ν, u, q) process, where p and q are autoregressive and moving

average lags respectively and ν is a differencing parameter. This section includes the

study of the stationarity property and spectral density of the introduced processes.

Section 6.2 also includes the study of a particular case of type 1 HARMA(p, ν, u, q)

process by taking m = 3, which is Pincherle ARMA (p, ν, u, q) process. Moreover,

the spectral density of the Pincherle ARMA (p, ν, u, q) process is obtained and

it is shown that for u = 0 the model exhibits seasonal long memory property.

Section 6.3 deals with the type 2 HARMA process (p, ν, u, q). In this section,

the particular cases namely, the Horadam ARMA process and the Horadam-Pethe

ARMA process are discussed. In Section 6.4, we provide the Whittle quasi-likelihood

method to estimate the parameters of type 1 and type 2 HARMA processes and it

is shown that the estimators are consistent. The simulation study of Pincherle

ARMA and its applications are discussed in Section 6.5. Overall, our study

contributes to the advancement of time series analysis by introducing novel Humbert

generalized fractional differenced ARMA models, investigating their properties,

providing parameter estimation techniques, and showcasing their efficacy through

simulations and real data applications.

6.2 Type 1 HARMA(p, ν, u, q) process

In this section, we introduce a new time series model namely type 1

HARMA(p, ν, u, q) process with the help of Humbert polynomials which we call

hereafter type 1 Humbert polynomials. For Humbert polynomials and related
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properties see e.g. [64,80,110]. A detailed discussion on special functions including

Humbert polynomials is given in [64,131].

Definition 6.1 (Type 1 Humbert polynomials). The Humbert polynomials of type

1 {Πν
n,m}∞n=0 are defined in terms of generating function as

(1 −mut+ tm)−ν =
∞∑
n=0

Πν
n,m(u)tn,m ∈ N, |t| < 1, |u| ≤ 1 and |ν| < 1

2
. (6.1)

For the table of special cases of Eq. (6.1), including Gegenbauer, Legendre,

Tchebysheff, Pincherle, Kinney polynomials, see Gould (1965) [64]. In above

definition, polynomial Πν
n,m(u) is explicitly can be written as follows [80]:

Πν
n,m(u) =

⌊ n
m
⌋∑

k=0

(−mu)n−mk

Γ((1 − ν − n) + (m− 1)k)(n−mk)!k!
, where

⌊ n
m

⌋
is floor function.

The hypergeometric representation of Πν
n,m(u) is given as follows:

Πν
n,m(u) =

(ν)n(mu)n

n!
mFm−1

[
−n
m
,
−n+ 1

m
, · · · , −n− 1 +m

n
;

−ν − n+ 1

m− 1
,
−ν − n+ 2

m− 2
, · · · , −ν − n+m− 1

m− 1
;

1

(m− 1)m−1um

]
.

For more properties and results on hypergeometric functions see Srivastava and

Manocha (1984) [131]. The type 1 Humbert polynomial satisfies the following

recurrence relation

(n+ 1)Πν
n+1,m(u) −mu(n+ ν)Πν

n,m(u) − (n+mν −m+ 1)Πν
n−m+1,m(u) = 0.

For m = 2 the Humbert polynomials reduces to Gegenbauer polynomials generally

denoted as {Cν
n(u)}∞n=0 and for m = 3 the polynomials reduce to Pincherle

polynomials {P ν
n (u)}∞n=0, see Pincherle (1891) [117]. The generating function of

Pincherle polynomials have the following form

(1 − 3ut+ t3)−ν =
∞∑
n=0

P ν
n (u)tn,

where P ν
n (u) has the following representation in terms of hypergeometric function

[117]
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P ν
n (u) =

(ν)n(3x)n

n!
3F2

[
−n
3
,
−n+ 1

3
,
−n+ 2

3
;
−n− ν + 1

2
,
−n− ν + 2

2
;
−1

4x3

]
,

where 3F2(a1, a2, a3; b1, b2;x) =
∞∑
k=0

(a1)k(a2)k(a3)k
(b1)k(b2)k

xk

k!
and (a1)k = Γ(a1+k)

Γ(a1)
see e.g.

[3].

Definition 6.2 (Type 1 HARMA process). The type 1 HARMA(p, ν, u, q) process

Xt is defined by

Φ(B)(1 −muB +Bm)νXt = Θ(B)ϵt, (6.2)

where ϵt is Gaussian white noise with variance σ2, B is the lag operator, 0 ≤ u <

2/m, and Φ(B), Θ(B) are stationary AR and invertible MA operators respectively,

defined as,

Φ(B) = 1 −
p∑
j=1

ϕjB
j,Θ(B) = 1 +

q∑
j=1

θjB
j, and Bj(Xt) = Xt−j.

In next result, the stationarity and invertibility conditions of the type 1 HARMA

process are given. Also, the Abel’s test which will be used in next theorem is stated

below as proposition.

Proposition 6.1 (Abel’s tests [18]). If the series
∞∑
n=0

an is convergent and {bn} is

monotone and bounded sequence then series
∞∑
n=0

anbn is also convergent.

Theorem 6.2. Let {Xt} be the type 1 HARMA(p, ν, u, q) process defined in Eq.

(6.2) and all roots of Φ(B) = 0 and Θ(B) = 0 lie outside the unit circle then the

HARMA(p, ν, u, q) process is stationary and invertible for |ν| < 1/2 and 0 ≤ u ≤
2/m.

Proof. Using Eq. (6.2), one can write

Xt =
Θ(B)

Φ(B)
(1 −muB +Bm)−νϵt, where

Θ(B)

Φ(B)
=

∞∑
j=0

ψjB
j.

Further,

(1 −muB +Bm)−ν =
∞∑
n=0

(ν)n
n!

(muB −Bm)n .
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Then Eq. (6.2) can be written as,

Xt =
∞∑
j=0

∞∑
n=0

ψj
(ν)n
n!

(muB −Bm)nϵt−j−n

=
∞∑
j=0

∞∑
n=0

ψj
(ν)n
n!

n∑
r=0

(−1)r
(
n

r

)
(mu)n−rBmrϵt−n

=
∞∑
j=0

∞∑
n=0

ψj
(ν)n
n!

(mu− 1)nϵt−n−mj.

The variance of the process Xt is given by

Var(Xt) = σ2

∞∑
j=0

ψ2
j

∞∑
n=0

(
(ν)n
n!

)2

(mu− 1)2n = σ2

∞∑
j=0

ψ2
j

∞∑
n=0

(
Γ(ν + n)

Γ(ν)Γ(n+ 1)

)2

(mu− 1)2n.

Let an = (mu − 1)2n and {bn} =
(

Γ(ν+n)
Γ(ν)Γ(n+1)

)2
, then using Abel’s test

∞∑
n=0

an

converges for 0 < u < 2
m

and using Stirling’s approximation, for large n, bn ≃ n2ν−2

(Γ(ν))2
,

which implies that the sequence is bounded for ν < 1
2
. We can write bn =

(
ν+n−1
n

)
and it is known that

(
n
x

)
is decreasing for x ≥ ⌊n

2
⌋ this implies that {bn} is decreasing

for ν ≤ 1. This indicates that the sequence is bounded and monotone for ν < 1/2.

Also,
∑∞

j=0 ψ
2
j is convergent, hence the Var(Xt) converges for the defined range.

Similarly to prove the invertibility condition we define the process Eq. (6.2) as,

ϵt = π(B)Xt,

where π(B) = Φ(B)
Θ(B)

(1−muB +Bm)ν and again using the same argument discussed

above the π(z) will converge for −1
2
< ν < 1 and 0 < u < 2

m
. For u = 0 and u = 2

m

the variance can be defined as follows:

Var(Xt) = σ2

∞∑
n=0

(
Γ(ν + n)

Γ(ν)Γ(n+ 1)

)2

= σ2

N∑
n=0

(
Γ(ν + n)

Γ(ν)Γ(n+ 1)

)2

+
∞∑

n=N+1

(
Γ(ν + n)

Γ(ν)Γ(n+ 1)

)2

.

In the above equation, the first summation is finite and the terms inside the second

summation behave like n2ν−2

Γ(ν)2
for large n and it is bounded for ν < 1

2
. The Var(Xt)

converges for |ν| < 1/2 and 0 ≤ u ≤ 2
m

. Hence, the HARMA process is stationary

and invertible for |ν| < 1/2 and 0 ≤ u ≤ 2
m

.

In the next result, we derive the spectral density of the type 1 HARMA(p, ν, u, q)

process. The spectral density of process is defined in Def. 2.11.
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Theorem 6.3. For a type 1 HARMA(p, ν, u, q) process defined in Eq. (6.2), under

the assumptions of Theorem 6.2, the spectral density takes the following form

fx(ω) =
σ2

2π

|Θ(z)|2
|Φ(z)|2 (2 +m2u2 − 2mu(cos(ω) + cos((1 −m)ω)) + 2 cos(mω))−ν ,

where z = e−ιω, ω ∈ (−π, π).

Proof. Rewrite Eq. (6.2) as follows:

Xt = Ψ(B)ϵt,

where Ψ(B) = Θ(B)
Φ(B)

(1−muB+Bm)−ν . Then using the definition of spectral density

of linear process, we have

fx(ω) = |Ψ(z)|2fϵ(ω), (6.3)

where z = e−ιω and fϵ(ω) is spectral density of the innovation term. The spectral

density of the innovation process ϵt is σ2/2π. Then Eq. (6.3) becomes,

fx(ω) =
σ2

2π
|Ψ(z)|2 =

σ2

2π

|Θ(z)|2
|Φ(z)|2

∣∣1 −mue−ιω + e−mιω
∣∣−2ν

=
σ2|Θ(e−ιω)|2 |1 −mue−ιω + e−mιω|−2ν

2π|Φ(e−ιω)|2 .

Here, |1 −mue−ιω + e−mιω|−2ν
= (2 + m2u2 − 2mu(cos(ω) + cos((1 − m)ω)) +

2 cos(mω))−ν and the spectral density takes the following form

fx(ω) =
σ2

2π

|Θ(z)|2
|Φ(z)|2 (2 +m2u2 − 2mu(cos(ω) + cos((1 −m)ω)) + 2 cos(mω))−ν .

(6.4)

Definition 6.3 (Singular point [59]). The point ω = ω0 is said to be singular point

of function f if at ω = ω0, f fails to be analytic, that is f(ω0) = ∞.

Next, the definition of seasonal or cyclic long-memory is given in 2.9, which is

characterized by having a spectral pole at a frequency κ ∈ R different from 0, see,

e.g., [9,39].

Theorem 6.4. Let {Xt} be the stationary type 1 HARMA(p, ν, u, q) process and all

the assumptions of Theorem 6.2 hold then the spectral density of HARMA(p, ν, u, q)

{Xt} has singular spectrum
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(a) at u = 0 and ω = 4nπ±π
m

for −m±1
4

< n < m∓1
4

;

(b) at u = 2
m

(−1)n cos( 4nπ
m−2

) and ω = ± 2nπ
m−2

for m ̸= 2 and − (m−2)
4

< n < (m−2)
4

;

(c) at ω = cos−1(u) for m = 2.

Proof. From Eq. (6.4), the spectral density of the process {Xt} is

fx(ω) =
σ2

2π

|Θ(z)|2
|Φ(z)|2 (2+m2u2+2 cos(mω)−2mu(cos(ω)+cos((m−1)ω)))−ν , where z = e−ιω.

We consider the denominator and find the zeros as follows,

2 +m2u2 + 2 cos(mω) − 2mu(cos(ω) + cos((m− 1)ω))

= 2 + 2 cos(mω) + [mu− {cos(ω) + cos((m− 1)ω)}]2 − [cos(ω) + cos((m− 1)ω)]2

= 4 cos2
[mω

2

]
+ [mu− {cos(ω) + cos((m− 1)ω)}]2 − 4 cos2

[mω
2

]
cos2

[
(m− 2)ω

2

]
= 4 cos2

[mω
2

]
sin2

[
(m− 2)ω

2

]
+

[
mu− 2 cos

(mω
2

)
cos

(
(2 −m)ω

2

)]2
.

We have the following two cases.

(a) The first term, 4 cos2
[
mω
2

]
sin2

[
(m−2)ω

2

]
≥ 0 for all m and −π < ω < π.

4 cos2
[mω

2

]
sin2

[
(m− 2)ω

2

]
= 0

if cos2
(mω

2

)
= 0 or sin2

(
(m− 2)ω

2

)
= 0 or both

⇒ cos
(mω

2

)
= 0 for ω1 = (4n± 1)

π

m
, for all m ∈ N and

n = 0,±1,±2, · · · .

We find the condition of singularity by solving the second term,[
mu− 2 cos

(
mω
2

)
cos
(

(2−m)ω
2

)]2
at ω1, which yields u = 0.

Also, the singular point ω1 ∈ (−π, π) for −m±1
4

< n < m∓1
4
.

Therefore, the type 1 HARMA(p, ν, u, q) process {Xt} will have singular points

for u = 0 and ω1 = (4n± 1) π
m

for all m and −m±1
4

< n < m∓1
4
.

This proves the part (a).

(b) Again the term

4 cos2
(mω

2

)
sin2

(
(m− 2)ω

2

)
= 0

when

sin2

(
(m− 2)ω

2

)
= 0
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sin

(
(m− 2)ω

2

)
= 0 for ω2 =

±2nπ

m− 2
for all m ∈ N−{2}, and n = 0,±1,±2, · · · .

At ω2, the second term will become zero if and only if,[
mu−

(
2 cos

(mω2

2

)
cos

(
(2 −m)ω2

2

))]2
= 0

⇒ mu− 2(−1)n cos

(
± 4nπ

m− 2

)
= 0

⇒ u =
2(−1)n

m
cos

(
4nπ

m− 2

)
.

This proves the part (b).

(c) In Eq. (6.4) let U(ω) = (2 +m2u2− 2mu(cos(ω) + cos((1−m)ω)) + 2 cos(mω)).

For different values of m = 1, 2, 3, 4 and 0 ≤ u < 2/m in Fig. 6.1, we observe

that the function U(ω) does not attain 0 for ω ∈ (−π, π). This signifies that

the spectral density defined by Eq. (6.4) has no singularity for m = 1, 3, 4 and

0 ≤ u < 2/m. For m = 2, the spectral density is unbounded since U(ω) takes

value 0 at ω = cos−1(u). Therefore, we conclude that for m = 2 the singularities

are at ω = cos−1(u).

In Fig. 6.1, observe the behaviour of function U(ω) for ω ∈ (−π, π) and for different

values of m and u. For m = 2, the function U touches the x-axis for all values of

u. Further, for m = 1 it touches the x-axis only for u = 0. For other cases, see

Theorem 6.4.

Definition 6.4 (Slowly varying function [67]). A function b(ω) is said to be slowly

varying at ω0 if for δ > 0, (ω−ω0)
δb(ω) is increasing and (ω−ω0)

−δb(ω) is decreasing

in some right-hand neighborhood of ω0. Also, (ω − ω0)
δb(ω) is decreasing and (ω −

ω0)
−δb(ω) is increasing in some left-hand neighbourhood of ω0.

We need the following lemma which is given in [67] to prove our next result.

Lemma 6.5 (Gray et al.[67]). Let R(τ) =
∫ π
0
P (ω) cos(τω)dω where τ is an integer

and P (ω) is spectral density. Suppose P (ω) can be expressed as

P (ω) = b(ω)|ω − ω0|−β (6.5)

with 0 < β < 1
2
and ω0 ∈ (0, π). Further, suppose that b(w) is non-negative and of

bounded variation in (0, ω0 − ϵ) ∪ (ω0 + ϵ, π) for ϵ > 0. Also suppose that b(ω) is

slowly varying at ω0, then as τ → ∞

R(τ) ≃ τ 2β−1cos(τω0).
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Figure 6.1: Plot of the function U(ω) for different values of m ∈ {1, 2, 3, 4, 8, 9} and
0 ≤ u ≤ 2/m.

Theorem 6.6. The stationary type 1 HARMA(p, ν, 0, q) process has seasonal long

memory for 0 < ν < 1/2.

Proof. The spectral density of type 1 HARMA(0, ν, u, 0) process is given by

fx(ω) =
σ2

2π
(2 +m2u2 − 2mu(cos(ω) + cos((1 −m)ω)) + 2 cos(mω))−ν .

For u = 0 the spectral density has the form

fx(ω) =
σ2

2π
(2 + 2 cos(mω)). (6.6)

Also, the spectral density is unbounded at ω0 = (4n±1) π
m
,−m±1

4
< n < m∓1

4
. which

implies that the covariance is not absolutely summable for u = 0 at frequency ω0.

To prove the process is seasonal long memory we use lemma 6.5 defined by Gray et

al. [67]. Now Eq. (6.6) can be rewritten as

fx(ω) =
σ2(2 + 2 cos(mω))−ν |ω − ω0|−2ν

2π|ω − ω0|−2ν
.

Comparing the above equation with Eq. (6.5)

b(ω) =
σ2(2 cos(mω) + 2)−ν

2π|ω − ω0|−2ν
.



Chapter 6. Humbert generalized fractional differenced ARMA processes 83

Now to show b(ω) is slowly varying at ω0, consider the case ω > ω0 and for δ > 0

define,

l(ω) = b(ω)(ω − ω0)
δ =

σ2

2π
(2 + 2 cos(mω))−ν(ω − ω0)

δ+2ν

and

l′(ω) =
σ2

2π
(ω − ω0)

δ+2ν−1(2 + 2 cos(mω))−ν−1((δ + 2ν)(2 + 2 cos(mω)

+ 2νm sin(mω)(ω − ω0)).

For ω > ω0 the terms (ω − ω0)
δ+2ν−1, (δ + 2ν) and (2 + 2 cos(mw)) are positive. It

can be easily shown that

lim
ω→ω0

(2νm sin(mω)(ω − ω0) + (δ + 2ν)(2 + 2 cos(mω))) > 0.

Thus in some right hand neighbourhood of ω0, i.e. for ω → ω+
0 , l′(ω) > 0 and

(ω−ω0)
δb(ω) is increasing and similarly (ω−ω0)

−δb(ω) is decreasing when ω → ω+
0 .

Similarly, it can be easily shown that for ω < ω0, (ω − ω0)
δb(ω) is decreasing and

(ω − ω0)
−δb(ω) is increasing in some left hand neighbourhood of ω0. Thus the

function is slowly varying at ω0.

Also, it can be easily verified that the function b(w) has bounded derivative in

(0, ω0 − ϵ) ∪ (ω0 + ϵ, π), hence it is of bounded variation in (0, ω0 − ϵ) ∪ (ω0 + ϵ, π).

Using the above two results and the lemma 6.5 the autocorrelation function R(h)

of the type 1 Humbert ARMA process takes the following asymptotic form

R(h) ≃ h2ν−1 cos(hω0), as h→ ∞. (6.7)

The result in Eq. (6.7) implies that the process is seasonal long memory for 0 <

ν < 1/2.

6.2.1 Pincherle ARMA (p, ν, u, q) process

This section deals with the special case of the type 1 HARMA process for m = 3.

The Pincherle polynomials are polynomials introduced by Pincherle (1891) [117].

The Pincherle polynomials were generalized to Humbert polynomials by Humbert

(1920) [80].

Definition 6.5 (Pincherle polynomials). The Pincherle polynomials P ν
n (u) are

defined as the coefficient of t in the expansion of (1 − 3ut + tn)−ν . The Pincherle
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polynomials are defined by taking m = 3 in type 1 Humbert polynomials that is

P ν
n (u) = Πν

n,3(u). Also, the generating function relation for Pincherle polynomials

is given by

(1 − 3ut+ tn)−ν =
∞∑
n=0

Pn(u)tn, |t| < 1, |ν| < 1/2, |u| ≤ 1.

The polynomials satisfy the following difference equation [13]

(n+ 1)P ν
n+1(u) − 3u(n+ ν)P ν

n (u)u+ (n+ 3ν − 2)P ν
n−2(u) = 0.

The coefficient of Pincherle polynomials can be written as P ν
0 (u) = 1, P ν

1 (u) =

3ν, P ν
2 (u) = 9ν(ν + 1)u2/2 and the nth coefficient takes the form [13]

Γ(n+ ν)Γ(1/3)Γ(2/3)

Γ(ν)Γ((n+ 1)/3)Γ((n+ 2)/3)Γ((n+ 3)/3)
.

Definition 6.6 (Pincherle ARMA process). The Pincherle ARMA (p, ν, u, q) process

is defined by taking m = 3 in type 1 HARMA process defined in Eq. (6.2) and the

process has the form defined below

Φ(B)(1 − 3uB +B3)νXt = Θ(B)ϵt, (6.8)

where ϵt is Gaussian white noise with variance σ2, 0 ≤ u < 2/3 and B, Φ(B) and

Θ(B) are lag, stationary AR and invertible MA operators, respectively defined in

Def. 6.2.

Theorem 6.7. Let {Xt} be the Pincherle ARMA(p, ν, u, q) process defined by Eq.

(6.8) and all roots of Φ(B) = 0 and Θ(B) = 0 lie outside the unit circle then the

Pincherle ARMA(p, ν, u, q) process is stationary and invertible for |ν| < 1/2 and

0 ≤ u ≤ 2/3.

Proof. The proof can be easily done by taking m = 3 in the proof of Theorem

6.2.

Theorem 6.8. The stationary Pincherle HARMA(p, ν, 0, q) process has seasonal

long memory for 0 < ν < 1/2 at ω0 = π/3.

Proof. According to Theorem 6.4 the spectral density of the Pincherle ARMA

process has singularity at u = 0 for ω0 = π/3. Also, similar to the proof of

Theorem 6.6 the autocovariance function of Pincherle ARMA process γ(h) has the

asymptotic form R(h) ≃ h2ν−1 cos(hω0). This proves that the process has a seasonal

long memory for 0 < ν < 1/2 at ω0 = π/3.
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Theorem 6.9. For a Pincherle ARMA(p, ν, u, q) process defined by Eq. (6.8), the

spectral density takes the following form

fx(ω) =
σ2

2π

|Θ(z)|2
|Φ(z)|2 (8 cos3(ω) − 12u cos2(ω) − C cos(ω) +D)−ν ,

where z = e−ιω, C = 6 + 6u, and D = 2 + 6u+ 9u2.

Proof. Taking m = 3 in Eq. (6.4) gives us the desired spectral density.

Theorem 6.10. The autocovariance function for the Pincherle ARMA process takes

the following form

γ(h) = σ2

∞∑
j=0

∞∑
n=0

ψjψj+hP
ν
n (u)P ν

n+h(u).

Proof. For lag h the autocovariance of the process {Xt} and {Xt+h} using the Eq.

(6.8) is given by

Cov(XtXt+h) = E[XtXt+h],

where Xt can be written as

Xt =
∞∑
j=0

∞∑
n=0

ψjP
ν
n (u)ϵt−j−n

and

E[XtXt+h] = σ2

∞∑
j=0

∞∑
n=0

ψjψj+hP
ν
n (u)P ν

n+h(u).

6.3 Type 2 HARMA(p, ν, u, q) process

Milovanovic and Dordevic in 1987 [110] considered the following generalization of

Gegenbaur polynomials, which we call type 2 Humbert polynomials and are used to

define the type 2 HARMA process.

Definition 6.7 (Type 2 Humbert polynomials). The type 2 Humbert polynomials

are defined by considering the polynomials Qν
n,m(u) defined by the following
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generating function

(1 − 2ut+ tm)−ν =
∞∑
n=0

Qν
n,m(u)tn, |t| < 1, |ν| < 1/2, |u| ≤ 1. (6.1)

Here Qν
n,m(u) = Πν

n,m(2u
m

) (see Eq.(6.1)).

The explicit form of the polynomials Qν
n,m(u) is defined by

Qν
n,m(u) =

[ n
m
]∑

k=0

(−1)k
(ν)(n−(m−1)k)

k!(n−mk)!
(2u)n−mk,

where ν0 = 1 and (ν)n = ν(ν + 1) · · · (ν + n− 1).

Definition 6.8 (Type 2 HARMA process). The type 2 HARMA process is defined

by using the above-defined generation function as follows

Φ(B)(1 − 2uB +Bm)νXt = Θ(B)ϵt, (6.2)

where ϵt is Gaussian white noise with variance σ2, 0 ≤ u < 1, and B, Φ(B), Θ(B)

are lag, stationary AR and invertible MA operators, respectively defined in Def. 6.2.

For m = 2 the above polynomials in Eq. (6.1) is Gegenbauer polynomials and

Qν
n,2(u) = Cν

n(u). Also, for m = 3 the polynomials in Eq. (6.1) are known

as Horadam-Pethe polynomials and for m = 1 they are known as Horadam

polynomials, see Gould (1965) [64], Horadam (1985) [77] and Horadam and Pethe

(1981) [78].

Theorem 6.11. Let {Xt} be the type 2 HARMA(p, ν, u, q) process and all roots of

Φ(B) = 0 and Θ(B) = 0 lies outside the unit circle then the HARMA(p, ν, u, q)

process is stationary and invertible for |ν| < 1/2 and 0 ≤ u ≤ 1.

Proof. The process is stationary and invertible for |ν| < 1/2 and 0 ≤ u ≤ 1 can be

easily proved using the proof for the stationarity of type 1 HARMA process defined

in Theorem 6.2.

Theorem 6.12. For a type 2 Humbert ARMA(p, ν, u, q) process defined in Eq. (6.2),

under the assumptions of Theorem 6.11 the spectral density takes the following form

fx(ω) =
σ2

2π

|Θ(z)|2
|Φ(z)|2 (2 + 4u2 − 4u(cos(ω) + cos((1 −m)ω)) + 2 cos(mω))−ν , (6.3)

where z = e−ιω.
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Proof. Rewrite Eq. (6.2) as follows

Xt = Ψ(B)ϵt,

where Ψ(B) = Θ(B)
Φ(B)

∆ν and ∆ν = (1 − 2uz + zm)−ν . The spectral density of the

innovation process ϵt is given by σ2/2π, which implies

fx(ω) =
σ2

2π
|Ψ(z)|2 =

σ2

2π

|Θ(z)|2
|Φ(z)|2 |1 − 2uz + zm|−2ν ,

where z = e−ιω. Furthermore,

∣∣1 − 2ue−ιω + e−mιω
∣∣−2ν

= (2 + 4u2 − 4u(cos(ω) + cos((1 −m)ω)) + 2 cos(mω))−ν ,

and the spectral density takes the following form

fx(ω) =
σ2

2π

|Θ(z)|2
|Φ(z)|2 (2 + 4u2 − 4u(cos(ω) + cos((1 −m)ω)) + 2 cos(mω))−ν .

Theorem 6.13. Under the assumption of Theorem 6.11 let {Xt} be the type 2

HARMA(p, ν, u, q) process then the spectral density of HARMA(p, ν, u, q) process

has singularities

(a) at u = 0 and ω = 4nπ±π
m

for −m±1
4

< n < m∓1
4
.

(b) at u = (−1)n cos( 4nπ
m−2

) and ω = ± 2nπ
m−2

for m ̸= 2 and − (m−2)
4

< n < (m−2)
4

.

Proof. The spectral density of the type 2 HARMA process is

fx(ω) =
σ2

2π

|Θ(z)|2
|Φ(z)|2 (2 + 4u2 − 4u(cos(ω) + cos((1 −m)ω)) + 2 cos(mω))−ν .

Similar to the proof in Theorem 6.4, we find the zeros by writing the denominator

as follows

2 + 4u2 − 4u(cos(ω) + cos((1 −m)ω)) + 2 cos(mω) =

4 cos2
[mω

2

]
sin2

[
(m− 2)ω

2

]
+

[
2u− 2 cos

(mω
2

)
cos

(
(2 −m)ω

2

)]2
(6.4)

The proof of part (a) is the same as the part (a) of Theorem 6.4. To prove the

part (b) the term 4 cos2
[
mω
2

]
sin2

[
(m−2)ω

2

]
= 0 at ω0 = ±2nπ

m−2
. For this ω0, the
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second term of Eq. (6.4) is zero for u = (−1)n cos( 4nπ
m−2

) for all m ∈ N−{2} and

− (m−2)
4

< n < (m−2)
4

.

The particular cases of the type 2 Horadam ARMA process is discussed as follows:

6.3.1 Horadam ARMA(p, ν, u, q) process

Definition 6.9 (Horadam polynomials). In Eq. (6.1) by taking m = 1 the reduced

polynomials are known as Horadam polynomials. The Horadam polynomials are

defined as the coefficient of t in the expansion of (1 − 2ut + t) and the generating

function relation is given as follows:

(1 − 2ut+ t)−ν =
∞∑
n=0

Qν
n,1(u)tn, |t| < 1, |ν| < 1/2, |u| ≤ 1.

Definition 6.10 (The Horadam ARMA process). The time series process defined

using the generating function of Horadam polynomials are defined by the Horadam

ARMA process, which is a special case of type2 HARMA process for m=1 and the

process takes the following form:

Φ(B)(1 − 2uB +B)νXt = Θ(B)ϵt, (6.5)

where ϵt is Gaussian white noise with variance σ2, 0 ≤ u ≤ 1, and B, Φ(B), Θ(B)

are lag, stationary AR and invertible MA operators, respectively defined in Def. 6.2.

Theorem 6.14. For a Horadam ARMA(p, ν, u, q) process defined in Eq. (6.5), the

spectral density takes the following form

fx(ω) =
σ2

2π

|Θ(z)|2
|Φ(z)|2 (2 + 4u2 − 4u− 4u cos(ω) + 2 cos(ω))−ν , z = e−ιω. (6.6)

Proof. This can be easily proved by taking m = 1 in the spectral density of type 2

HARMA process defined in Eq. (6.3).

6.3.2 Horadam-Pethe ARMA(p, ν, u, q) process

Taking m = 3 in Eq. (6.1) the reduced form of the polynomials is known as

Horadam-Pethe polynomials and the corresponding time series defined using the

generating function of Horadam-Pethe polynomials is known as Horadam-Pethe

ARMA process defined as follows

Φ(B)(1 − 2uB +B3)νXt = Θ(B)ϵt, (6.7)
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where (1 − 2uB +B3)−ν =
∑∞

n=0Q
ν
n,3(u)tn.

Theorem 6.15. Under the assumptions of Theorem 6.11 for a Horadam-Pethe

ARMA(p, ν, u, q) process defined in Eq. (6.7), the spectral density takes the following

form

fx(ω) =
σ2

2π

|Θ(z)|2
|Φ(z)|2 (2 + 4u2 − 4u(cos(ω) + cos(2ω)) + 2 cos(3ω))−ν ,

where z = e−ιω.

Remark 6.1. Taking m = 2 the polynomials in Eq. (6.1) reduced to Gegenbauer

polynomials and Qν
n,2(u) = Cν

n(u). Moreover, the corresponding time series

using the generating function of Gegenbauer polynomials namely the Gegenbauer

Autoregressive Moving Average (GARMA) process is studied by Gray and Zhand

in 1989 (see [67]).

Remark 6.2. The stationarity and invertibility condition for Horadam ARMA and

Horadam-Pethe ARMA process is the same as the type 2 HARMA process, which

is the process is stationary and invertible if all roots of Φ(B) = 0 and Θ(B) = 0 lies

outside the unit circle and |ν| < 1/2 and 0 ≤ u < 1.

The time-series plots for simulated Pincherle, Horadam, Horadam-Pethe and

Gegenbauer ARMA processes are given in Fig. 6.2. We simulated time-series of

size 1000 from each process. All these series have in theory infinite differencing

terms. We consider only finite terms by truncating the binomial expansions of the

different shift operators. For Pincherle ARMA process, the relation defined in Eq.

(6.8) is used, that is

Xt =
Θ(B)

Φ(B)
(1 − 3uB +B3)−νϵt. (6.8)

The series Zt = (1 − 3uB + B3)−νϵt is generated using the simulated innovation

series ϵt ∼ N (0, σ2). Further, we approximate Zt by considering first 4 terms in the

binomial expansion of (1 − 3uB +B3)−ν , which is

Zt = (1 − 3uB +B3)−νϵt =
∞∑
n=0

n∑
j=0

(−1)j
(ν)n
n!

(
n

j

)
(3u)n−jB2j+nϵt

≈
4∑

n=0

n∑
j=0

(−1)j
(ν)n
n!

(
n

j

)
(3u)n−jϵt−n−2j.

Now by generating the series Zt the Eq. (6.8) takes the following form

Xt =
Θ(B)

Φ(B)
Zt,
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which is nothing but the ARMA process which is simulated using the “nloptr”

library in R by passing the Zt as innovation series. Using the same approach, we

simulate the Horadam, Gegenbauer and Horadam Pethe ARMA processes by taking

the binomial expansion of (1 − 2uB +Bm)−ν , for m = 1, 2 and 3, respectively.
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Figure 6.2: Trajectory plots for Pincherle, Horadam, Horadam-Pethe and
Gegenbauer ARMA processes for p = 1, q = 0, ν = 0.3 and u = 0.1.

6.4 Parameter estimation

In this section, we introduce the Whittle quasi-likelihood estimation method for

the type 1 and type 2 Humbert ARMA Processes. The Whittle quasi-likelihood

technique leverages the empirical spectral density and theoretical spectral density

to estimate the model parameters of the time series Xt, where t ∈ {0, 1, . . . , n}
and n denotes the sample size. The estimation process involves minimizing the

likelihood function. Consider the set of harmonic frequencies ωj, j = 0, 1, . . . , n/2.

These frequencies are selected to define the empirical spectral density, which plays

a crucial role in the Whittle quasi-likelihood estimation. The empirical spectral

density provides a representation of the distribution of frequencies in the time series

data. The estimation process starts by calculating the empirical spectral density.

This involves computing the periodogram, which is a commonly used estimator of
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the spectral density expressed as follows

Ix(ωj) =
1

2π
{R(0) +

n−1∑
s=1

R(s) cos(sωj)}, ωj =
2πj

n
, j = 0, 1, . . . , n/2, (6.9)

where R(s) = 1
n

∑n−s
i=1 (Xi − X̄)(Xi+s − X̄), s = 0, 1, . . . , (n − 1), is the sample

autocovariance function with sample mean X̄. The Whittle quasi-likelihood

estimation method aims to find the model parameters that minimize the discrepancy

between the empirical and theoretical spectral densities that is Ix(ωj) and fx(ωj)

respectively [143]. This is achieved by optimizing the likelihood function

Wn(θ) =
n∑
j=1

(
Ix(ωj)

fx(ωj)
+ log(fx(ωj)

)
,

where θ represents unknown parameters θ = (ν, u), which is a row vector for both

type 1 and type 2 HARMA processes. We estimate the parameters by minimizing

the likelihood function Wn(θ) with respect to unknown parameter θ.

Pincherle ARMA Process: Let us assume S = {ν, u : |ν| < 1/2, 0 ≤ u ≤ 2/3}
and S0 ⊂ S is a compact set. From Theorem 6.9, the spectral density of Pincherle

ARMA process is

fx(ω) =
σ2

2π

|Θ(z)|2
|Φ(z)|2 (8 cos3(ω) − 12u cos2(ω) − C cos(ω) +D)−ν ,

where z = e−ιω, C = 6 + 6u, and D = 2 + 6u + 9u2 and empirical spectral density

can be calculated using Eq. (6.9). The estimate of θ is given by

θ̂n = argmin
θ

Wn(θ), θ ∈ S0.

Horadam and Horadam-Pethe ARMA Process: To estimate the parameters

of Horadam and Horadam-Pethe ARMA processes we assume S ′ = {ν, u : |ν| <
1/2, 0 ≤ u ≤ 1} and S ′

0 ⊂ S ′ is a compact set. From Theorem 6.12, the spectral

density for the Horadam process takes the following form:

fx(ω) =
σ2

2π

|Θ(z)|2
|Φ(z)|2 (2 + 4u2 − 4u− 4u cos(ω) + 2 cos(ω))−ν , z = e−ιω.

From Theorem 6.15 the spectral density for the Horadam-Pethe ARMA process has

the following form:

fx(ω) =
σ2

2π

|Θ(z)|2
|Φ(z)|2 (2 + 4u2 − 4u(cos(ω) + cos(2ω)) + 2 cos(3ω))−ν .
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The estimate of θ is obtained by minimizing the likelihood

θ̂n = argmin
θ

Wn(θ), θ ∈ S ′
0.

To prove the consistency and asymptotic normality of the Whittle quasi-likelihood

estimators for the defined processes, we use the following results discussed by Hannan

[71]:

Conditions A:

1. The time series {Xt} has the following moving average representation:

Xt =
∞∑
k=0

akϵt−k, , where
∞∑
k=0

a2k <∞ and a0 = 1. (6.10)

2. The spectral density (fx(ω)) of the process {Xt} can be written as:

fx(ω) =
σ2

2π
K(ω)

and 1
K(ω)+a

is a continuous function, for ω ∈ (−π, π), ∀ a > 0.

3. Assuming the parameter space (Ω0) is compact. Then the parameter vector

θ ∈ Ω0 defines the spectral density uniquely.

Conditions B:

1. K(ω) > 0, for all ω ∈ (−π, π) and θ ∈ Ω0.

2. K(ω) twice differentiable of all the parameters in parameter vector θ.

3. The condition in (6.10) holds.

To prove the consistency of the Whittle quasi-likelihood using Conditions A, Fox

and Taqqu gave a theorem (see Theorem 8.2.1 [56]), which is as follows:

Theorem 6.16. Suppose an observable moving-average process {Xt, t ∈ Z}, of

(6.10) is ergodic and has the spectral density fx(w) = σ2

2π
K(ω) , and suppose the

functions K(ω), θ ∈ Ω0 satisfy Conditions A. Further, if additionally, 1/fx(ω) is

continuous on (−π, π), then,

θ̂n
a.s.−→ θ, as n→ ∞.

The asymptotic normality of the Whittle quasi-likelihood can be proved using

Theorem 2 defined by Hannan [71], which is as follows:
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Theorem 6.17. Under Conditions B,
√
n(θ̂ − θ) converges in distribution to

Gaussian random vectors with zero mean and covariance matrix W−1, where

W =
1

4π

∫ π

−π

{
∂ logK(ω)

∂θ

}{
∂ logK(ω)

∂θ

}′

dω.

We use the above theorems to prove the properties of the Whittle likelihood

estimators.

Theorem 6.18. Assume the conditions of Theorem 6.7 holds, then the Whittle

quasi-likelihood estimators for the Pincherle ARMA process are consistent. That is,

lim
n→∞

θ̂n = θ a.s.

Proof. To prove the consistency of the Whittle quasi-likelihood method we use the

result defined by Hannan (see theorem 1 in [71]). Assume that the parameters lie in

the compact space S0. We can rewrite the spectral density of the Pincherle ARMA

process defined in Theorem 6.9 as, fx(ω) = σ2

2π
K(ω) and K(ω) is given as follows:

K(ω) =
|Θ(z)|2
|Φ(z)|2 (8 cos3(ω) − 12u cos2(ω) − C cos(ω) +D)−ν ,

where z = e−ιω, C = 6 + 6u, and D = 2 + 6u + 9u2. First, we prove that the

time series defined in Eq. (6.8) can be represented as Xt =
∑∞

k=0 akϵn−k, where∑∞
k=1 a

2
k <∞ and a0 = 1. The Eq. (6.8) can be stated as

Xt =

(
∞∑
j=0

ψjB
j

)(
∞∑
n=0

∞∑
r=0

(−1)r
Γ(ν + n)

Γ(n+ 1)Γn

(
n

r

)
(3v)n−rBn+2r

)
ϵt

=

(
∞∑
j=0

ψjB
j

)(
∞∑
i=0

ρiB
i

)
ϵt,

where

ρi =
Γ(ν + i)(3u)i

Γ(ν)Γ(i+ 1)
− Γ(ν + i− 2)(3u)i−3

Γ(ν)Γ(2)Γ(i− 2))
. (6.11)

In the following way, Xt can be reformulated as

Xt =
∞∑
k=0

akB
kϵt =

∞∑
k=0

akϵt−k,

where ak =
∑k

s=0 ψk−sρs and a0 = 1. To prove
∑∞

k=0 a
2
k < ∞ we can

show
∑∞

k=0 |ak| < ∞. The operators Θ(B) and Φ(B) can be characterized as
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stationary autoregressive and invertible moving average operators, respectively.

Their corresponding polynomial representations Θ(z)
Φ(z)

=
∑∞

j=0 ψjz
j, where the series∑∞

j=0 |ψj| < ∞ for |z| ≤ 1 + ϵ. Consequently, we can deduce that the absolute

values of the coefficients ψj decrease polynomially with increasing j, bounded by

the inequality |ψj| < C(1 + ϵ)−j, where C represents a constant. Also, in Eq. (6.11)

for large i using Stirling’s approximation ρi can be approximated as follows

ρi ∼ iν−1(3u)i − (i− 2)ν−1(3u)i−3,

which clearly indicates that the
∑∞

i=0 |ρi| < ∞ for |ν| < 1/2 and 0 ≤ u ≤ 2/3.

Further,

∞∑
k=0

|ak| ≤
∞∑
k=0

k∑
s=0

|ψk−s||ρs| =
∞∑
s=0

∞∑
k=s

|ψk−s||ρs| =
∞∑
s=0

∞∑
r=0

|ψr||ρs|. (6.12)

Since, we have proved that
∑∞

i=0 |ρi| is finite which implies
∑∞

k=0 |ak| <∞.

Next we show 1
a+K(ω)

is continuous for ω ∈ (−π, π) and for all a > 0. Observe that

1

a+K(ω)
=

|Θ(z)|2
|Φ(z)|2 (8 cos3(ω) − 12u cos2(ω) − C cos(ω) +D)ν

a |Θ(z)|2
|Φ(z)|2 (8 cos3(ω) − 12u cos2(ω) − C cos(ω) +D)ν + 1

.

It is easy to see that (8 cos3(ω) − 12u cos2(ω) − C cos(ω) + D)ν is continuous for

0 < ν < 1/2. Hence, 1
a+K(ω)

is continuous ω ∈ (−π, π), |ν| < 1/2 and 0 ≤ u ≤ 2/3

for all a > 0. Also, for θ ∈ S0 and ω ∈ (−π, π), the spectral density fx(ω) is

uniquely defined. Therefore, we conclude the Whittle quasi-likelihood estimators

for the Pincherle ARMA process are consistent.

Theorem 6.19. Assuming the conditions of Theorem 6.11 holds, then the Whittle

quasi-likelihood estimators for the Horadam ARMA process are consistent. That is,

lim
n→∞

θ̂n = θ a.s.

Proof. Assume that the parameter vector lies in the compact space S ′
0. Similar

to the previous theorem, taking Θ(B)
Φ(B)

=
∑∞

j=0(ψjB
j) and (1 − 2uB + B) =∑∞

k=0

∑k
r=0(−1)r Γ(ν+k)

Γ(ν)Γ(k+1)
(2u)k−rBk in Eq. (6.7), the process Xt can be expressed

as follows:

Xt =
Θ(B)

Φ(B)
(1 − 2uB +B)ϵt =

∞∑
j=0

(ψjB
j)

∞∑
n=0

n∑
r=0

(−1)r
Γ(ν + n)

Γ(ν)Γ(n+ 1)
(2u)n−rBnϵt

=
∞∑
j=0

(ψjB
j)

∞∑
n=0

(βnB
n),
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where βn =
∑n

r=0(−1)r Γ(ν+n)
Γ(ν)Γ(n+1)

(
n
r

)
(2u)n−r. Further, the Xt can have following

representation

Xt =
∞∑
j=0

akϵt−k,

where ak =
∑k

s=0 ψk−sβs. Similar to the previous theorem using Stirling’s

approximation, it can be easily proved that
∑∞

k=0 |ak| < ∞ and a0 = 1 for |u| ≤ 1

and |ν| < 1/2. Also, the spectral density for the Horadam ARMA process using Eq.

(6.6) can be written as

fx(ω) =
σ2

2π
K(ω),

where K(ω) = |Θ(z)|2
|Φ(z)|2 (2 + 4u2 − 4u − 4u cos(ω) + 2 cos(ω))−ν , z = e−ιω. To prove

that 1
K(ω)+a

is continuous for a > 0 we have

1

K(ω) + a
=

|Θ(z)|2
|Φ(z)|2 (2 + 4u2 − 4u− 4u cos(ω) + 2 cos(ω))ν

a |Θ(z)|2
|Φ(z)|2 (2 + 4u2 − 4u− 4u cos(ω) + 2 cos(ω))ν + 1

,

here (2 + 4u2−4u−4u cos(ω) + 2 cos(ω))ν is continuous for 0 < ν < 1/2 and |u| < 1

implying 1
K(ω)+a

is continuous for |ν| < 1/2 and |u| ≤ 1. Moreover, the parameter

space θ ∈ S ′
0 defines the spectral density uniquely. These conditions satisfy the

results given by Hannan [71] and hence prove the consistency.

Theorem 6.20. Assuming the conditions of Theorem 6.11 holds, then the Whittle

quasi-likelihood estimators for the Horadam-Pethe ARMA process are consistent.

That is, lim
n→∞

θ̂n = θ a.s.

Proof. Assume that the parameter vector lies in the compact space S ′
0. The

Horadam-Pethe ARMA process Xt has the following moving average representation

Xt =

(
∞∑
j=0

ψjB
j

)(
∞∑
n=0

∞∑
r=0

(−1)r
Γ(ν + n)

Γ(n+ 1)Γn

(
n

r

)
(2u)n−rBn+2r

)
ϵt

=

(
∞∑
j=0

ψjB
j

)(
∞∑
i=0

ζiB
i

)
ϵt,

where

ζi =
Γ(ν + i)

Γ(ν)Γ(i+ 1)
(2u)i − Γ(ν + i− 2)(2u)i−3

Γ(ν)Γ(2)Γ(i− 2))
. (6.13)
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We can rewrite Xt as follows

Xt =
∞∑
k=0

akB
kϵt =

∞∑
k=0

akϵt−k,

where ak =
∑k

s=0 ψk−sζs. The proof for
∑∞

k=0 |ak| < ∞ is similar to Theorem 6.18.

Also, it can be proved that 1
K(ω)+a

is continuous for a > 0, here it can be expressed

as

1

K(ω) + a
=

|Θ(z)|2
|Φ(z)|2 (2 + 4u2 − 4u(cos(ω) + cos(2ω)) + 2 cos(3ω))ν

a |Θ(z)|2
|Φ(z)|2 (2 + 4u2 − 4u(cos(ω) + cos(2ω)) + 2 cos(3ω))ν + 1

.

Again using the same argument as Theorem 6.18 it can be proved that 1
K(ω)+a

is

continuous for a > 0 and the parameter vector θ defines the spectral density uniquely.

These all conditions satisfies the results defined by Hannan (1973) [71] hence prove

the consistency of the Whittle quasi-likelihood estimators.

Remark 6.3. In order to establish the normality of the estimators, we exclude the

scenario where the spectral density is unbounded that is at u = 0 and u = 1. For a

detailed examination of the unbounded spectral density case at these points, refer

to the paper by Fox and Taqqu [56].

In the next results, ∂ logK(ω)
∂θ

is 2 × 1 column vector which represents the derivative

of logK(ω) with respect to both the parameters ν and u and
{∂ logK(ω)

∂θ

}{∂ logK(ω)
∂θ

}′

will be a 2× 2 matrix, where
{∂ logK(ω)

∂θ

}′
represents the transpose of a 2× 1 column

vector.

Theorem 6.21. Let the Whittle quasi-likelihood estimate for the Pincherle ARMA

process be defined as follows

θ̂n = argmin
θ

Wn(θ), θ ∈ Ω0,

where Ω0 ⊂ Ω = {ν, u : |ν| < 1/2, 0 < u < 2/3} is a compact set then for the

Whittle quasi-likelihood estimators for Pincherle ARMA process the n1/2(θ̂n − θ) ∼
N (0,W−1), where W represents the variance-covariance matrix having the following

form

W =
1

4π

∫ π

−π

{
∂ logK(ω)

∂θ

}{
∂ logK(ω)

∂θ

}′

dω.

Proof. Using the results defined by Hannan (1973) (see theorem 2 in [71]) we need to

verify the following conditions to check the asymptotic normality of the parameters.
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(a) K(ω) > 0 for all ω ∈ (−π, π) and θ ∈ Ω0.

(b) K(ω) twice differentiable of parameters ν and u.

(c) The time series defined in Eq. (6.8) can be written as Xt =∑∞
k=0 akϵt−k,

∑∞
k=0 ak <∞ and a0 = 1.

The condition (a) can be proved by rewriting K(ω) as follows

K(ω) =
|Θ(z)|2
|Φ(z)|2 (2 + 9u2 + 2 cos(3ω) − 6u(cos(ω) + cos(2ω))−ν

=
|Θ(z)|2
|Φ(z)|2 ((2 + 2 cos(3ω) + [3u− {cos(ω) + cos(2ω)}]2) − [cos(ω) + cos(2ω)]2)−ν

=
|Θ(z)|2
|Φ(z)|2

(
4 cos2

[
3ω

2

]
+ [3u− {cos(ω) + cos(2ω)}]2 − 4 cos2

[
3ω

2

]
cos2

[ω
2

])−ν

=
|Θ(z)|2
|Φ(z)|2

(
4 cos2

[
3ω

2

]
sin2

[ω
2

]
+

[
3u− 2 cos

(
3ω

2

)
cos
(ω

2

)]2)−ν

.

This indicates that K(ω) > 0 for 0 < u < 2/3 and |ν| < 1/2. The condition (b) can

be easily verified as the function does not have any singularity for 0 < u < 2/3 hence

continuous and differentiable. Moreover, the condition (c) is proven in the Theorem

6.18. Thus the Whittle quasi-likelihood estimates for |ν| < 1/2 and 0 < u < 2/3 are

asymptotically normal.

Theorem 6.22. Let the Whittle quasi-likelihood estimate for the Horadam ARMA

process be defined as follows

θ̂n = argmin
θ

Wn(θ), θ ∈ Ω′
0,

where Ω′
0 ⊂ Ω′ = {ν, u : |ν| < 1/2, 0 < u < 1} is a compact set then for the

Whittle quasi-likelihood estimators for Horadam ARMA process the n1/2(θ̂n − θ) ∼
N (0,W−1), where W represents the variance-covariance matrix having the following

form

W =
1

4π

∫ π

−π

{
∂ logK(ω)

∂θ

}{
∂ logK(ω)

∂θ

}′

dω.

Proof. This can be proved again using the conditions defined in Theorem 6.21. The

K(ω) for the Horadam ARMA process can be written as follows

K(ω) =
|Θ(z)|2
|Φ(z)|2 (2 + 4u2 − 4u− 4u cos(ω) + 2 cos(ω))−ν

=
|Θ(z)|2
|Φ(z)|2

(
4 cos2

[ω
2

]
sin2

[ω
2

]
+
[
2u− 2 cos2

(ω
2

)]2)−ν

,
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From this expression, it is evident that K(ω) is strictly greater than zero and that

K(ω) is twice differentiable for all values of θ ∈ Ω′
0. Furthermore, the moving

average representation for the Horadam process is provided in Theorem 6.19. By

establishing this moving average representation, we have successfully proven the

desired result.

Theorem 6.23. Let the Whittle quasi-likelihood estimate for the Horadam-Pethe

ARMA process be defined as follows

θ̂n = argmin
θ

Wn(θ), θ ∈ Ω′
0,

where Ω′
0 ⊂ Ω′ = {ν, u : |ν| < 1/2, 0 < u < 1} is a compact set then for the Whittle

quasi-likelihood estimators for Horadam-Pethe ARMA process the n1/2(θ̂n − θ) ∼
N (0,W−1), where W represents the variance-covariance matrix having the following

form

W =
1

4π

∫ π

−π

{
∂ logK(ω)

∂θ

}{
∂ logK(ω)

∂θ

}′

dω.

Proof. The K(ω) for the Horadam-Pethe ARMA process can be written as follows

K(ω) =
|Θ(z)|2
|Φ(z)|2 (2 + 4u2 − 4u(cos(ω) + cos(2ω)) + 2 cos(3ω))−ν

=
|Θ(z)|2
|Φ(z)|2

(
4 cos2

[
3ω

2

]
sin2

[
(ω

2

]
+

[
2u− 2 cos

(
3ω

2

)
cos
(ω

2

)]2)−ν

.

This expression indicates that K(ω) is greater than zero and possesses two

continuous derivatives for all values of θ ∈ Ω′
0. Furthermore, Theorem 6.20 provides

the moving average representation for the Horadam-Pethe ARMA process. Thus,

by establishing the aforementioned moving average representation and considering

the expression for K(ω), the desired result has been successfully demonstrated.

6.5 Simulation study for Pincherle ARMA

process and its application

In order to evaluate the efficacy of the parameter estimation techniques introduced,

we employ simulated data. The simulation study serves as a valuable tool in the

evaluation of parameter estimation techniques. It enables us to empirically examine

the accuracy and reliability of the estimation method by comparing the estimated

parameters to the actual parameters obtained from synthetic data. The use of
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simulated data provides several advantages for performance assessment. Firstly, it

allows us to create controlled experiments where the true parameters are known,

facilitating a direct comparison. Secondly, simulations provide the flexibility to

generate data with specific properties or characteristics, allowing us to investigate

the behavior of estimation techniques under different scenarios. Finally, by

repeating the simulation process multiple times, we can obtain statistical measures

of performance, such as average estimation error, providing a more comprehensive

evaluation. By conducting a simulation study, we can gather empirical evidence

that sheds light on the effectiveness of these statistical techniques. Through the

utilization of appropriate simulation methods, we generate a synthetic time series

based on an initial set of parameters. Subsequently, we apply the defined parameter

estimation techniques to the simulated series, aiming to estimate the underlying

parameters.

By comparing the estimated parameters with the actual parameters used in

the simulation, we can assess the performance of the applied techniques. This

comparison serves as a fundamental metric to evaluate the accuracy and reliability

of the estimation methods. If the estimated parameters closely align with the

actual parameters, it indicates that the techniques effectively capture the underlying

characteristics of the data. On the other hand, significant discrepancies between the

estimated and actual parameters may indicate limitations or potential areas for

improvement in the estimation techniques.

The data from the Pincherle ARMA process is simulated by first simulating the

i.i.d. innovations ϵt ∼ N (0, σ2). The simulation and estimation study is done using

R. Now we use the relation defined in Eq. (6.8) as,

Xt =
Θ(B)

Φ(B)
(1 − 3uB +B3)−νϵt. (6.14)

The series Zt = (1 − 3uB + B3)−νϵt is generated using the simulated innovation

series ϵt in Eq. (6.14). The generation of the series is done by taking the binomial

expansion of (1 − 3uB +B3)−ν up to 4 terms, which is given as follows

Zt = (1 − 3uB +B3)−νϵt =
∞∑
n=0

n∑
j=0

(−1)j
(ν)n
n!

(
n

j

)
(3u)n−jB2j+nϵt

=
∞∑
n=0

n∑
j=0

(−1)j
(ν)n
n!

(
n

j

)
(3u)n−jϵt−n−2j.

Now by generating the series Zt the Eq. (6.14) takes the following form

Xt =
Θ(B)

Φ(B)
Zt,
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which is nothing but the ARMA process which is simulated using the inbuilt R

library by passing the Zt as innovation series. Further to check the effectiveness of

the model the parameter estimation is done on the simulated series. By assuming

two different combinations of the initial set of parameters that is u = 0.2, ν = 0.4

and u = 0.1, ν = 0.3 the series Zt is generated and the two series Pincherle

ARMA(1, 0.2, 0.15, 0) and Pincherle ARMA(1, 0.3, 0.1, 0) is generated using the

above-defined procedure. The results of parameter estimation using the Whittle

quasi-likelihood approach are summarized in the following Table 6.1.

Actual Estimated
Case 1 ν = 0.2, u = 0.15 ν̂ = 0.21, û = 0.13
Case 2 ν = 0.3, u = 0.1 ν̂ = 0.32, û = 0.07

Table 6.1: Actual and estimated parameter values for two different choices
of parameters estimated by the Pincherle ARMA process using the Whittle
quasi-likelihood approach.

From the above Table 6.1 it is clearly shown that the estimate of ν and u from the

Whittle quasi-likelihood approach is good. In order to assess the effectiveness of the

Whittle quasi-likelihood technique based on empirical spectral density, we construct

box plots for different parameters. To create these box plots, we perform a simulation

of 1000 series, assuming fixed values for the parameters ν = 0.4 and u = 0.1. Each

simulated series consists of 1000 observations. Using the Whittle quasi-likelihood

estimation method, we estimate the parameters ν and u from each simulated series.

By repeating this process for all 1000 simulated series, we obtain a distribution of

estimated parameters for each parameter. we construct box plots. Each box plot

represents the variability and central tendency of the estimated parameters across

the 1000 simulations. The box plot displays the median value, the interquartile

range (IQR), and any potential outliers for each parameter. The box plots provide

a comprehensive visual representation of the estimated parameters’ variability and

the overall performance of the Whittle quasi-likelihood technique. The following

Fig. 6.3 displays the box plots for the estimated parameters obtained from each

simulation, allowing for a visual assessment of their distribution and variability.

To assess the asymptotic normality of the estimates, we performed a comprehensive

simulation analysis, which consists of 1000 datasets. Each dataset consisted of

a sequence of length 1000, with the parameter values set at ν = 0.45 and ν =

0.2. The estimated parameters were denoted as ν̂ and û. In order to visualize the

results, we constructed QQ plots for the standardized differences, namely
√
n(ν̂−ν)

and
√
n(û − u). These plots provide a graphical representation of the comparison

between the observed quantiles and the theoretical quantiles of the standard normal
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Figure 6.3: Box plot of parameters using 1000 samples for ν = 0.45 and u = 0.2 (left)
and for ν = 0.35 and u = 0.1 (right) based on Whittle quasi-likelihood approach

distribution. The QQ plots for
√
n(d̂− d) and

√
n(û− u) are depicted in Fig. 6.4.
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Figure 6.4: QQ plots using 1000 samples for
√
n(ν̂− ν) (left) and

√
n(û−u) (right)

Furthermore, we demonstrate the normality of the estimated parameters by

conducting the Shapiro-Wilk normality test. The resulting p-values for both

parameters, ν and u are found to be greater than 0.05. This indicates that the

variables
√
n(d̂− d) and

√
n(û− u) follow a normal distribution.

Real Data Application: We conduct an analysis using the Pincherle ARMA

model on the daily percentage yield data of Spain’s 10-year treasury bond. The

data covers the period from October 7th, 2011 to June 7th, 2018. The Pincherle

ARMA model is compared with other existing models, namely autoregressive

integrated moving average (ARIMA), autoregressive fractionally integrated moving

average (ARFIMA), autoregressive tempered fractionally integrated moving

average(ARTFIMA), and Gegenbauer autoregressive moving average(GARMA).
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The daily percentage yield is a commonly used metric in financial markets to

measure the return on investment for fixed-income securities, such as government

bonds. It represents the change in the bond’s yield, expressed as a percentage,

from one day to the next. This yield data is of particular interest to investors,

traders, and policymakers as it provides insights into the performance and

market dynamics of long-term government debt. By analyzing this dataset, we

can gain valuable insights into the behavior and patterns of Spain’s 10-year

treasury bond yield over the given time frame. The objective of applying various

models, including the Pincherle ARMA model, is to accurately capture and

forecast the future movements and trends in the bond yield, thereby assisting in

decision-making processes related to investment strategies, risk management, and

financial planning. The trajectory plot for the introduced dataset is given in Fig. 6.5
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Figure 6.5: Trajectory plot for Spain’s 10-year treasury yield series dataset.

To evaluate the accuracy of these models, we utilize two common metrics: the

root mean square error (RMSE) and the mean absolute error (MAE). These metrics

provide measures of the deviation between the predicted values and the actual values

of the bond yield data.

Table 6.2 presents the results of the accuracy assessment for each model. From the

table, we observe that the RMSE of the Pincherle ARMA process is lower than

that of the other models. This indicates that the Pincherle ARMA model performs

better in terms of capturing the overall variability in the bond yield data. However,
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it is worth noting that the MAE for the Pincherle ARMA process is slightly higher

compared to the ARFIMA and ARTFIMA models. The MAE represents the average

magnitude of the errors made by the models, regardless of their direction. In this

case, the slightly higher MAE suggests that the Pincherle ARMA model may have a

slightly larger average error in its predictions when compared to the ARFIMA and

ARTFIMA models.

Based on these findings, we can conclude that the Pincherle ARMA process

demonstrates good accuracy in predicting Spain’s 10-year treasury bond yield when

compared to the other models evaluated in this study. This suggests that the

Pincherle ARMA model can be a valuable tool in other fields where accurate

forecasting is required. It may be particularly useful in financial applications where

predicting bond yields is crucial for investment decisions and risk management.

Models RMSE MAE
ARIMA 2.588 1.972

ARFIMA 2.476 1.831
ARTFIMA 2.463 1.801
GARMA 2.584 1.962

Pincherle ARMA 2.406 1.840

Table 6.2: The goodness-of-fit measures of different models using RMSE and MAE
metrics.

6.6 Conclusion

We study the general Humbert polynomials based autoregressive moving average

called here HARMA (p, ν, u, q) time series models. Initially, type 1 HARMA

(p, ν, u, q) process defined in Eq. (6.2) and it’s stationarity and invertibility

conditions are derived. We also compute the spectral density of the above process.

For m = 3 in Eq. (6.8), we focus on a particular case Pincherle ARMA (p, ν, u, q)

process, by obtaining the spectral density and also prove that for u = 0 and

0 < ν < 1/2, the process also exhibits seasonal long memory property. In the

subsequent section, we study similar properties of particular cases of type 2 HARMA

(p, ν, u, q) process defined in Eq. (6.2) for m = 1 and m = 3 named as Horadam

ARMA process and Horadam-Pethe ARMA process respectively. We also provide

the Whittle quasi-likelihood estimation method to estimate the parameters of the

HARMA process. We also provide the results for the consistency and normality of

the estimators. The simulation study on 1000 series each of length 1000 is performed

and real data of Spain’s 10-year treasury bond daily percentage yield is used to show

the application of the Pincherle ARMA model.



104 Chapter 6. Humbert generalized fractional differenced ARMA processes

Further, we believe that the proposed time series models will be helpful in the

modeling of real-world data from other fields. Also, the estimation techniques

for example minimum contrast estimation [8,10] will be applied for the discussed

models. This technique estimates the parameters by minimizing the spectral density

and empirical spectral density of the process. Maximum likelihood estimation is

the particular case of minimum contrast estimation. Apart from this, Pincherle,

Horadam and Horadam-Pethe random fields will be interest of study on the line of

Gegenbauer random fields [51].



Chapter 7

Conclusion and Future Work

This thesis majorly revolves around the autoregressive (AR) models with

non-Gaussian innovation terms. Amongst the non-Gaussian distributions, we

focus on semi-heavy-tailed and heavy-tailed distributions for innovation terms.

This class of distributions form the foundational basis of modeling financial time

series. Normal inverse Gaussian is a semi-heavy tailed distribution which has

tails heavier than the normal and lighter than the power law tails. First, the

AR models with normal inverse Gaussian distributed residuals are studied. We

have illustrated the key properties of the examined models. The main part

is devoted to the estimation algorithm for the considered models’ parameters.

The technique incorporates the EM algorithm which is widely used in the time

series analysis. The effectiveness of the proposed algorithm is showcased through

simulations using data generated from AR(2) and AR(1) models. Our results

suggest that EM estimation approach outperforms traditional methods based

on the YW and CLS algorithms. Additionally, we compare the estimation of

parameters α and δ for NIG-distributed residuals using the ML estimate by the

Newton method and the EM algorithm. Finally, we demonstrate that an AR(1)

model with NIG residuals explain well the Google equity price and NASDAQ stock

market index data. The AR(1) model also effectively captures the behavior of

another data namely, US gasoline price data. The satisfactory results on three

distinct datasets show the versatility of the proposed model. We believe that

the discussed model can be used to describe various real-life time series ranging

from finance and economics to natural hazards, ecology, and environmental data.

Furthermore, residuals with non-zero mean can be considered for future exploration.

Further, we consider the heavy-tailed distribution for innovation terms of AR(p)

model, that is Cauchy distribution. We obtain the closed-form estimates for the

model using the EM algorithm. We evaluate the performance of EM algorithm

by comparing it to the maximum likelihood method, implemented through an R

inbuilt function, on simulated data. An added advantage of the EM algorithm is its

simultaneous computation of both model and innovation parameters. The boxplot

analysis clearly demonstrates the superior performance of the EM algorithm over

the ML method. The ML estimates also depend on the underlying numerical
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optimization method used. Furthermore, we explore an alternative approach based

on the empirical characteristic function to estimate the parameters of the AR model

with Cauchy distribution.

Moreover, we extend the work by considering the other class of distributions

known as geometric infinitely divisible. We use the Bernstein function g(s),

representing the Laplace exponent of a positive infinitely divisible random variable,

to define geometric infinitely divisible random variables. The Laplace transform

of these variables takes the form 1
1+g(s)

. Additionally, we determine the Laplace

transform of mixtures involving specific geometric infinitely divisible random

variables, establishing a new class of marginals for exploration. The autoregressive

process of order 1 with geometric infinitely divisible distribution is introduced. We

derive that if the marginals of the AR(1), as defined in Eq. (5.2), are geometric

infinitely divisible, then the innovation terms also exhibit geometric infinitely

divisible characteristics. The integral form of the probability density function

for innovation terms is obtained using the Laplace transform and the complex

inversion method. This analysis is conducted for three cases, namely, geometric

tempered stable, geometric gamma, and geometric inverse Gaussian. Furthermore,

we calculate the first and second order moments for these three geometric infinitely

divisible random variables, crucial for studying characteristics of distribution. Next,

we extend the AR process to the kth order and propose the AR(1) model defined in

Prop. 5.9, with marginals having a Laplace transform of the form 1
1+g(s)

. Finally,

we estimate the parameters of the model defined in Prop. 5.9 using conditional

least squares and method of moments. The simulation study for two cases indicates

that the estimates are satisfactory. Empirically it is observed that these three

distributions also have semi-heavy-tailed behavior.

We further extend the work available in literature on fractionally integrated

autoregressive moving average processes. We utilize the generating functions of

Humbert polynomials and define two types of Humbert generalized fractional

differenced ARMA processes (HARMA), with a specific emphasis on Pincherle

ARMA, Horadam ARMA, and Horadam-Pethe ARMA processes. Then, we

establish stationarity and invertibility conditions for these processes. Also, the long

memory property of the Pincherle ARMA process is achieved when the fractionally

differencing parameter u = 0. Parameter estimation is carried out using the Whittle

quasi-likelihood method, yielding consistent and normally distributed estimators.

The method is validated through a simulation study focusing on the Pincherle

ARMA process. Further, the Pincherle ARMA model is applied to Spain’s 10-year

treasury bond yield data which effectively capture the market dynamics.
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In conclusion, we believe that the proposed models will significantly contribute to

the field of statistical modeling with ability to better capture and incorporate the

dynamics of real-life data.

In the future, we plan to delve into a comprehensive study and comparison of EM

algorithm and the empirical characteristic function based estimation method with

existing techniques presented in [83,102,133] for AR models with infinite variance.

Additionally, the applicability of the AR model to real-life phenomena will be

explored in detail. Moreover, we can explore tempered variations of Humbert,

Pincherle, Horadam, and Horadam-Pethe ARMA processes, akin to the approach

taken by Sabzikar et al. [125]. The presence of singularities in the spectral

density of HARMA models adds complexity to the implementation of estimation

techniques. It is crucial to acknowledge that the HARMA processes in this study

assume constant volatility. Consequently, these models may not be well-suited

for capturing heteroscedastic data that demonstrates persistence in the conditional

variance of the innovation term. In the future, it would be interesting to extend the

concept of the Humbert processes to incorporate volatility modeling, specifically

by developing a Humbert-GARCH process. Further, the heavy-tailed time series

models can be extended to regime switching modeling where the innovation terms

have different distribution parameters across different regimes. Also, the application

of EM algorithm can be explored to estimate the parameters of distributions which

lack analytic form of probability density function.
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Appendix A

Python and R Codes

A.1 EM algorithm for AR(2) model with NIG

innovations

Following is the Python code to implement EM algorithm on the simulated data

from AR(2) model with NIG innovations with fixed µ = 0, β = 0 parameters.

The file NIGError data.csv is the error data simulated from NIG distribution and

X AR2 Errordata.csv is the simulated time series data. The estimated parameter

values are saved in Para est MBfix.csv file.

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import scipy.special as sp

################### 1. Initializations of parameters. ##############

E = pd.read_csv('NIGError_data.csv', header=None )

Y = pd.read_csv('X_AR2_Errordata.csv')

E.drop([0], axis=0, inplace=True)

E = E.reset_index(drop=True)

est_values = []

for k in range(1000):

y = E.iloc[:,k]

y = y.to_numpy()

y.reshape((1000,1))

n = len(y)-1

y = y.ravel()

N = len(y)

Y1 = Y.iloc[:,k]

#### 2. y array has Error data which follows NIG distribution.####

109
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rho = [0.001, 0.001]

p = len(rho)

mu = 0.0 # actual mu = 0 fix

beta = 0.0 # actuual beta = 0 fix

delta = 0.005 # actual delta = 2

gamma = 0.005 # gamma = 1

alpha = np.sqrt(gamma**2+beta**2)

def phi_update(mu, delta, y):

phi = []

for i in range(N):

phi.append(1 + ((y[i]-mu)/delta)**2)

phi = np.array(phi)

return phi

############# 3.Function to define Y_(t-1) p-vector. ##########

Y1 = Y1.to_numpy()

Y1.resize((N, ))

def y_vector(Y, p):

B=[]

for i in range(len(Y1)-p+1):

l=[]

for j in range(i, i+p):

l.append(Y1[j])

B.append(l)

return B

B1 = y_vector(Y1, p)

B1 = np.array(B1)

B = B1[:, [1,0]]

phi = phi_update(mu, delta, y)

################# 4. Functions to implement E-step ##########

def exp_G(delta, mu, beta, alpha, gamma, y):

phi = []
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s = []

for i in range(N):

phi.append(1 + ((y[i]-mu)/delta)**2)

s.append(delta*(np.sqrt(phi[i]))*sp.k0(delta*alpha*\

np.sqrt(phi[i]))/(alpha*sp.k1(delta*alpha*np.sqrt(phi[i]))))

phi = np.array(phi)

s = np.array(s)

s_b = np.average(s)

return s, s_b

def inv_exp_G(delta, mu, beta, alpha, gamma, y):

phi = []

w = []

for i in range(N):

phi.append(1 + ((y[i]-mu)/delta)**2)

w.append((alpha*(sp.k0(delta*alpha*np.sqrt(phi[i])) + \

(2/(delta*alpha*np.sqrt(phi[i])))*\

sp.k1(delta*alpha*np.sqrt(phi[i]))))/(delta\

*(np.sqrt(phi[i]))* sp.k1(delta*alpha*np.sqrt(phi[i]))))

w = np.array(w)

w_b = np.average(w)

return w, w_b

############### 5. Function to update parameters ##############

def terms(delta, mu, beta, alpha, gamma, rho, y):

s, s_b = exp_G(delta, mu, beta, alpha, gamma, y)

w, w_b = inv_exp_G(delta, mu, beta, alpha, gamma, y)

d_new = np.sqrt(s_b/(s_b*w_b-1))

g_new = d_new/s_b

a_new = np.sqrt(g_new**2)

C = []

sum1 = 0

sum2 = 0

for i in range(N-p):

C = B[i].reshape(p,1)

term1 = w[i+p]*np.dot(C, C.T)

term2 = (w[i+p]*Y1[i+p]-mu*w[i+p]-beta)*C

sum1 = sum1 + term1
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sum2 = sum2 + term2

inv_sum = np.linalg.inv(sum1)

rho_est = (inv_sum)@sum2

return d_new, g_new, a_new, rho_est

d_new, g_new, a_new, rho_est = terms( delta, mu, beta, alpha,\

gamma, rho, y)

while (max(abs(delta-d_new)/abs(delta), abs(gamma-g_new)/\

abs(gamma),abs(rho[0]-rho_est[0])/abs(rho[0]), \

abs(rho[1]-rho_est[1])/abs(rho[1]))) > 0.0001:

mu = 0

beta = 0

delta = d_new

gamma = g_new

alpha = a_new

rho = rho_est

d_new, g_new, a_new, rho_est = terms(d_new, mu, beta, a_new,\

g_new, rho, y)

l = [d_new, g_new, rho_est[0], rho_est[1]]

est_values.append(l)

print("Output:\ndelta", d_new, "\ngamma", g_new, "\nalpha", a_new,\

"\nrho", rho_est)

########################## 6. Estimated data to csv #############

df = pd.DataFrame(est_values)

df.to_csv('Para_est_MBfix.csv', index=False, header=False)

A.2 EM algorithm for AR(2) model with Cauchy

innovations

Following is the Python code to implement EM algorithm on the simulated data

from AR(2) model with Cauchy innovations and ρ1 = 0.5, ρ2 = 0.3. File

Cauchy Errors EE1.csv has the error data simulated from Cauchy with parameters
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α = 1, γ = 2.

############## Code to implement EM algorithm.###########

import numpy as np

import pandas as pd

import scipy.special as sp

from statsmodels.graphics.tsaplots import plot_acf, plot_pacf

from statsmodels.tsa.ar_model import ar_select_order

import matplotlib.pyplot as plt

import datetime as dt

########### 1. Initializations of parameters. ##############

start_time = dt.datetime.now()

Y = pd.read_csv('yy_seriesAR2_try1.csv')

y1 = Y.iloc[:,0]

N = Y.shape[0]

M = len(Y.columns)

est_values = []

############ 2. Loop for each trajectory ##################

for k in range(M):

Y1 = Y.iloc[:,k]

rho = [0.1, 0.1]

p = len(rho)

rho = np.array(rho)

rho = rho.reshape((1,2))

gamma = 0.02

alpha = 0.01

####### 3. Function to define Y_(t-1) p-vector.##################

Y1 = Y1.to_numpy()

Y1.resize((N, ))

def y_vector(Y, p):



114 Appendix A. Python and R Codes

B=[]

for i in range(len(Y1)-p+1):

l=[]

for j in range(i, i+p):

l.append(Y1[j])

B.append(l)

return B

B1 = y_vector(Y1, p)

B1 = np.array(B1)

B = B1[:, [1,0]]

def AR_residuals(Y1, rho, B):

s_vec = []

for i in range(N-p):

s = Y1[i+p] - np.sum((rho*B[i,:]))

s_vec.append(s)

return s_vec

def inv_exp_G(alpha, gamma, Y1, rho, B):

y = AR_residuals(Y1, rho, B)

w = []

for i in range(N-p):

s = (y[i] - alpha)**2 + gamma**2

w.append(2/s)

w = np.array(w)

return w

############ 4. Function to get estimates ##################

def terms(alpha, gamma, rho, Y1):

y = AR_residuals(Y1, rho, B)

w = inv_exp_G(alpha, gamma, Y1, rho, B)

a_new = (np.sum(y*w))/(np.sum(w))

g_new = np.sqrt((N-p)/np.sum(w))

C = []

sum1 = 0

sum2 = 0

for i in range(N-p):
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C = B[i].reshape(p,1)

term1 = w[i]*np.dot(C, C.T)

term2 = (w[i]*Y1[i+p]-alpha*w[i])*(C.T)

sum1 = sum1 + term1

sum2 = sum2 + term2

inv_sum = np.linalg.pinv(sum1)

#print(inv_sum)

rho_est = sum2@(inv_sum)

return a_new, g_new, rho_est

a_new, g_new, rho_est = terms(alpha, gamma, rho, Y1)

############ 5. Using the relative change in the parameters as

##stopping criterion. ###########

while (max(abs(alpha-a_new)/abs(alpha),abs(gamma-g_new)/abs(gamma),

abs(rho[0,0]-rho_est[0,0])/abs(rho[0,0]),

abs(rho[0,1]-rho_est[0,1])/abs(rho[0,1]))) > 0.0001:

gamma = g_new

alpha = a_new

rho = rho_est

s_vec=[]

a_new, g_new, rho_est = terms(a_new, g_new, rho, Y1)

l = [a_new, g_new, rho_est[0,0], rho_est[0,1]]

est_values.append(l)

print("Output:\nalpha", a_new, "\ngamma", g_new, "\nrho", rho_est)

end_time = dt.datetime.now() - start_time

print("Execution time:\t", end_time)

############### 6. Estimated data to csv file #######################

df = pd.DataFrame(est_values)

df.to_csv('EM_Para_est_Cauchyerror1.1.csv', index=False, header=False)
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A.3 R Code to generate geometric infinitely

divisible random variables

Following is the R code to simulate geometric tempered stable random variables

using Laplace transform.

# ==================================================

# To simulate geometric tempered stable random variables with

#parameters \beta=0.6 and \lambda=1.

# ==================================================

#---------------------

# Define the transform

#---------------------

lt.gammapdf <- function(s, alpha, beta) {

1/(1+((s+alpha)^(beta)-alpha^beta))

}

#---------------------

# Set parameter values

#---------------------

beta <- 0.6

alphavals = c(1)

#-------------------

# Get the generators

#-------------------

source("/home/monika/Documents/WORK/Work_Bernstein/rcode/rlaptrans.r")

#-----------------------------------

# Initialise random number generator

#-----------------------------------

set.seed(682)

#---------------------------------------

# Generate 500 trajectories of geometric tempered stable

#distribution each of size 1000.

#---------------------------------------

par(mfrow=c(2,2))

df_traj = list()
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for (i in 1:500){

for (alpha in alphavals) {

x.rlap <- rlaptrans(1000, lt.gammapdf, alpha, beta)

df_traj[[i]] = x.rlap

w.rlap <- density(log(x.rlap)) # kernel density estimation

u.rlap <- exp(w.rlap$x)

v.rlap <- w.rlap$y / u.rlap

df_u = as.data.frame(u.rlap)

df_u$vrlap = c(v.rlap)

}

}

df_x = data.frame(df_traj)

names(df_x) = NULL

write.csv(df_x,file = "/home/monika/Documents/WORK/Work_Bernstein/

rcode/AR1_Y_traj_ts.csv")

# ==================================================

# Generate error terms of AR(1) model with geometric tempered stable

#marginal with parameters rho =0.5, beta = 1, and lambda = 2.

# ==================================================

#---------------------

# Define the transform

#---------------------

lt.gammapdf <- function(s, alpha, beta) {

(1+(0.5*s+alpha)^beta-alpha^beta)/(1+(s+alpha)^beta-alpha^beta)

}

#---------------------

# Set parameter values

#---------------------

beta <-1 #beta >0

alphavals = c(2) #lambda > 0

#-------------------

# Get the generators

#-------------------

source("/home/monika/Documents/WORK/Work_Bernstein/rcode/rlaptrans.r")



118 Appendix A. Python and R Codes

#-----------------------------------

# Initialise random number generator

#-----------------------------------

#set.seed(602)

par(mfrow=c(2,2))

df_traj = list()

for (i in 1:500){

for (alpha in alphavals) {

x.rlap <- rlaptrans(1000, lt.gammapdf, alpha, beta)

df_traj[[i]] = x.rlap

w.rlap <- density(log(x.rlap)) # kernel density estimation

u.rlap <- exp(w.rlap$x)

v.rlap <- w.rlap$y / u.rlap

df_u = as.data.frame(u.rlap)

df_u$vrlap = c(v.rlap)

}

}

df_x = data.frame(df_traj)

names(df_x) = NULL

write.csv(df_x,file = "/home/monika/Documents/WORK/Work_Bernstein/

rcode/AR1_traj_df_x_ts1.2.csv")

A.3.1 Python code to estimate parameters of AR(1) model

with geometric tempered stable marginals.

"""

Parameter estimation for rho = 0.8, beta = 0.3, and lambda = 3 from

geometric tempered stable errors 1000x500.

"""

from scipy.optimize import fsolve

import math

import numpy as np

from scipy.optimize import minimize

import pandas as pd

from scipy.optimize import Bounds
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E = pd.read_csv('AR1_traj_df_x_ts1.3.csv', header = None)

E[E<0.000000001] = 0

E = E.iloc[:,1:501]

E_arr1 = np.array(E) #error series with beta=0.3 and lambda=3.

shape = E_arr1.shape

n = shape[0]

rho_est_list = []

beta_est_list = []

lamda_est_list = []

df_est = pd.DataFrame()

def generate_yseries(E,n, rho = 0.8):

Y =[]

Y.append(E[0])

for i in range(1,n):

Y.append(rho*Y[i-1] + E[i])

return Y

def rho_estimation_CLS(Y):

Y = np.array(Y)

Y_t = Y[1:1000]

Y_t_1 = Y[0:999]

Yt_bar = np.mean(Y_t)

Yt1_bar = np.mean(Y_t_1)

Yt_sum = np.sum(Y_t)

Yt1_sum = np.sum(Y_t_1)

rho_est = (np.sum(Y_t*Y_t_1)-n*(Yt1_bar)**2)/(np.sum((Y_t_1)**2)-\

n*(Yt1_bar)**2)

return rho_est

def obj(p,*args): ###in terms of beta.

(b) = p #theta=0.3, beta=0.6, lambda=1,

m_1 = np.mean(E_arr)

m_2 = np.mean(E_arr**2)

A = (2*(m_1)**2-m_2*(1-rho_est))/(m_1*(1-rho_est**2))

term = (m_1/1-rho_est) - b*(((b-1)*(1-rho_est**2)*m_1)/(2*m_1**2-

(1-rho_est)*m_2))**(b-1)
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return term

def lambda_para_estimate(E_arr, r, rho_est):

m_1 = np.mean(E_arr)

m_2 = np.mean(E_arr**2)

A = (2*(m_1)**2-m_2*(1-rho_est))/(m_1*(1-rho_est**2))

return 1+r*A

for i in range(shape[1]):

E_arr = E_arr1[:,i]

Y = generate_yseries(E_arr, n, rho = 0.8)

rho_est = rho_estimation_CLS(Y)

rho_est_list.append(rho_est)

initial_point = np.random.random_sample(size = 500)

beta = fsolve(obj, 0.7, args=(E_arr, rho_est))

lamda = lambda_para_estimate(E_arr, beta, rho_est)

beta_est_list.append(beta[0])

lamda_est_list.append(lamda[0])

df_est['beta'] = beta_est_list

df_est['lambda'] = lamda_est_list

df_est['rho'] = rho_est_list

df_est.to_csv('Para_est_ts_500.3.csv')

1

1https://drive.google.com/drive/folders/1kbE4ghyfsr5I8UdQGuQCm9AddgF3S1ry?usp=

drive_link

https://drive.google.com/drive/folders/1kbE4ghyfsr5I8UdQGuQCm9AddgF3S1ry?usp=drive_link
https://drive.google.com/drive/folders/1kbE4ghyfsr5I8UdQGuQCm9AddgF3S1ry?usp=drive_link
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expectation-maximization algorithm for autoregressive models with normal

inverse Gaussian innovations. Commun. Stat. Simul. Comput. (2023), 1–21.

[47] Dickey, D. A., and Fuller, W. A. Distribution of the estimators for

autoregressive time series with a unit root. J. Am. Stat. Assoc. 74, 366a

(1979), 427–431.

[48] Dissanayake, G., Peiris, M. S., and Proietti, T. Fractionally

differenced Gegenbauer processes with long memory: A review. Statist. Sci.

33 (2018), 413–426.

[49] Elgammal, A., Duraiswami, R., Harwood, D., and Davis, L.

Background and foreground modeling using non-parametric kernel density

estimation for visual surveillance. Proceedings of the IEEE 90, 7 (2002),

1151–1163.

[50] Engle, R. F. Autoregressive conditional heteroscedasticity with estimates

of the variance of United Kingdom inflation. Econometrica 50, 4 (1982),

987–1007.



References 125

[51] Espejo, R. M., Leonenko, N. N., and Ruiz-Medina, M. D. Gegenbauer

random fields. Random Operators and Stochastic Equations 22, 1 (2014), 1–16.

[52] Feller, W. An Introduction to Probability Theory and Its Applications, 2nd

Ed., vol. 2. Wiley, 1991.

[53] Ferguson, T. S. A Representation of the Symmetric Bivariate Cauchy

Distribution. The Annals of Mathematical Statistics 33, 4 (1962), 1256 –

1266.

[54] Forsberg, L., and Bollerslev, T. Bridging the gap between the

distribution of realized (ECU) volatility and ARCH modelling (of the Euro):

the GARCH-NIG model. J. Appl. Econom. 17, 5 (2002), 535–548.

[55] Foss, S., Korshunov, D., and Zachary. An introduction to heavy-tailed

and subexponential distributions, vol. 6. New York: Springer, 2011.

[56] Fox, R., and Taqqu, M. S. Large sample properties of parameter estimates

for strongly dependent stationary Gaussian time series. Ann. Stat. 14, 2

(1986), 517–532.

[57] Gajda, J., Bartnicki, G., and Burnecki, K. Modeling of water usage

by means of ARFIMA–GARCH processes. Physica A 512 (2018), 644–657.

[58] Gajda, J., Sikora, G., and Wy lomańska, A. Regime variance testing-
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