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Lay Summary

A time series is a sequence of data points or observations, each one being recorded
at a specified time. Time series analysis involves examining and interpreting the
patterns to understand trends and fluctuations over time. A time series typically
consists of four main components. In other words, a time series can be decomposed
into four components namely, trend, seasonality, cyclic variations, and residuals.
The trend component represents the long-term movement or direction of the time
series. Seasonality refers to regular and predictable fluctuations that occur at specific
intervals and cyclic variations involve fluctuations that may not follow a fixed time
frame. Residuals capture the random, unpredictable fluctuations in the data that
cannot be attributed to trend, seasonality, or cycle variations. This knowledge is
used to predict the future.

A time series is stationary if the data doesn’t change its statistical properties like
mean or variance with time. On the other hand, if a time series has noticeable
trends and fluctuations, or its statistical properties change over time, we say it’s
non-stationary. Time series modeling is predicting the future based on what has
been learned from the past and it is widely used in various fields such as finance,
economics, weather forecasting, and many others to make predictions, identify
patterns, and gain insights into how variables change over time. In essence, time
series helps us make sense of data that evolves over time, allowing us to extract
valuable information for decision-making and forecasting.

There are several well-known models, like AR, MA, ARMA, and ARIMA, to name
the few. In literature, these models are generalized in several directions to capture
heavytaildness, the time-varying variance of innovation terms, long memory, and
other inherent characteristics of empirical data. In this work, we extend the work
available on long memory and non-Gaussian time series models and provide the
stationarity, invertibility, and parameters estimation approach for the introduced

models.
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Abstract

This thesis endeavors to investigate and propose some generalized time series models
to extend the work available on classical and long memory models. The exploration
encompasses various aspects, including the study of stationarity, invertibility,
spectral densities, autocovariance functions, parameter estimation, and asymptotic
properties of estimators for the introduced models. In this thesis work, we extend
some classical and long memory models existing in literature to several directions.
Initial part of the study focuses on developing and exploring the TAR(1) model
by assuming tempered stable marginals for the AR(1) process, with a specific
emphasis on its behavior under stationarity assumptions. In this context, the
marginal probability density function of the error term is derived and it is shown
that the distribution of error term is infinitely divisibility. The TAR(1) process
serves as a generalization of well-established inverse Gaussian and one-sided stable
autoregressive models. Furthermore, we study an autoregressive model of order
one assuming tempered stable innovations. The subsequent step involves parameter
estimation for both processes, a crucial aspect of model validation and applicability.
Two distinct methodologies, namely conditional least squares and the method of
moments, are employed in this estimation process. These techniques are then
rigorously assessed and validated through simulated data, providing insights into
the model’s performance under various conditions. The performance of the model
is not only theoretically evaluated but also practically demonstrated through its
application to both real and simulated datasets.

Next, we introduce the Gegenbauer autoregressive tempered fractionally integrated
moving average (GARTFIMA) process, aiming to generalize the existing GARMA
and ARTFIMA models. A key motivation behind this extension is to tackle
the unbounded spectral density, observed in the GARMA process. The analysis
begins by comprehensively exploring the spectral density of the GARTFIMA
process. Understanding the frequency components and their strengths within
the time series is crucial for evaluating the model’s efficacy in capturing various
patterns and behaviors. Subsequently, the autocovariance function is obtained
using the spectral density of the process, providing insights into the temporal
dependencies and relationships inherent in the data. To estimate the parameters
of the GARTFIMA process, two distinct methodologies are employed. Firstly, a
non-linear least square (NLS) based approach is utilized, which establishes a least
square regression between empirical and theoretical spectral densities. Secondly,
the Whittle likelihood estimation method is applied, emphasizing the statistical
measure of discrepancy between the theoretical and observed spectral densities.

The asymptotic properties of the Whittle likelihood estimators are obtained.
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The performance of these techniques is assessed on simulated data, providing
their effectiveness. Additionally, the relevance and practical applicability of the
GARTFIMA process are demonstrated through its application to real-world data.
A comparative analysis against other time series models is conducted, highlighting
the slightly better performance of the introduced model.

Moreover, we extend the existing seasonal fractional ARUMA process by introducing
a tempered fractional ARUMA process. This extension involves the incorporation of
exponential tempering into the traditional seasonal fractional ARUMA model. The
initial focus lies in establishing the fundamental characteristics of the introduced
tempered fractional ARUMA process. This encompasses the conditions ensuring
the stationarity and invertibility of the model. The analysis then delves into the
spectral properties of the tempered fractional ARUMA model. To estimate the
parameters of the tempered fractional ARUMA model, we again employ the Whittle
likelihood estimation approach, which involves minimizing the contrast between
the theoretical and observed spectral densities, providing a robust framework for
parameter estimation. Additionally, the asymptotic properties of the estimators are
investigated, offering valuable insights into their reliability and consistency as the
sample size increases. Practical validation of the proposed estimation technique is
conducted through a systematic assessment of its performance on simulated data.
Lastly, the study extends to generalized ARMA processes, characterized by the
type 2 Humbert polynomials and called Horadam ARMA and Horadam-Pethe
ARMA processes. We examine the autocovariance function and its inherent
properties for these models. By leveraging the minimum contrast Whittle likelihood
estimation, we estimate the parameters of the Horadam ARMA and Horadam-Pethe
ARMA processes. In addition to the conventional minimum contrast Whittle
likelihood estimation, we also use the debiased Whittle likelihood estimation. This
computationally efficient technique is designed to reduce biases inherent in the
standard Whittle likelihood method. The incorporation of debiasing mechanisms
enhances the robustness and accuracy of parameter estimates, particularly in
scenarios where biases might distort the results. The assessment of the proposed
parameter estimation methods is conducted through the use of simulated data for the
Horadam ARMA process. This empirical evaluation serves as a crucial benchmark
to gauge the effectiveness and reliability of the Whittle likelihood and debiased
Whittle likelihood techniques.

Keywords: Stationary processes, spectral density, positive tempered stable
distribution, Humbert polynomials, fractional ARUMA processes, Gegenbauer

processes, parameter estimation.
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Chapter 1

Introduction

Time series modeling is a continuously evolving field that has applications in
different areas. A time series is a family of random variables {X; : t € T'}, where
T denotes the set of time points and X; denotes the value at time ¢. In other
words, a time series is series of observations recorded at specific times [18]. The
essence of the time series analysis lies in the analysis of historical data and the
development of a robust model capable of encapsulating the inherent characteristics
such as meaningful statistics, trends, patterns, and revealing dependencies among
observations of a given sequence. Understanding these dependencies is crucial, and
various methods and models are employed to forecast future observations [16]. A
time series is said to be strictly stationary when the joint probability distribution of
any n observations is invariant to shifts in time. In other words, joint distribution
of {Xii1, Xiio,..., X¢yn} is same as another set of n observations shifted by h
time units, that is, {Xyr14n, Xev24n,- -, Xetnan}, for all £. In weak sense, a time
series X; is deemed stationary if E(X;) = u is constant regardless of ¢, and the
autocovariance, denoted by y(h) = Cov(Xyyn, X¢), is solely a function of lag h [13].
The time series is considered to be non-stationary if the statistical properties such
as mean, variance, and autocovariance does not remain the same over time and the
series includes time trends and random walks. In the frequency domain, the spectral
density function; denoted as f,(w), for w € (—m, 7); takes center stage in elucidating
the characteristics of a time series {X;} [79]. The Wiener-Khintchine theorem
encapsulates the connection between the spectral density function and the sequence
of autocovariance, establishing a bridge between time-domain and frequency-domain
analyses [15]. The autocovariance sequence can be derived through the inverse
Fourier transform of the spectral density function, while conversely, the spectral
density function is a result of the Fourier transform of the autocovariance. The

spectral density for a time series {X;} is defined as follows:

Definition 1.1 (Spectral Density [85]). For a time series { X;} with autocovariance

function y(h), the spectral density is defined as:

fo(w) = % ;y(h)e_wh, forw € (—m,m).
-0
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The autocovariance of a process can be obtained by taking the inverse Fourier

transform of the spectral density, that is,

o) = [ faw)ed (1.1)

Transitioning from the fundamental concepts of time series analysis, we delve into
the historical development of the classical time series models. The literature on the

development of these models is outlined below.

1.1 Historical Development of Classical Time
Series Models

Classical time series models play a crucial role in understanding and analyzing the
behavior of time series data. These models serve as foundational tools in time series
analysis and provide a framework for exploring and interpreting various temporal
patterns and structures present in the data. The study of regularities and trends in
data dates back to the early 20th century, with notable contributions from G. U.
Yule and G. Walker [91,97]. They made important contributions to the theory and
practice of correlation, regression, and the autoregressive models. The autoregressive
(AR), moving average (MA), and autoregressive moving average (ARMA) models
were introduced by Yule (1926) [97], Slutsky (1937) [82], and Wold (1938) [95],
respectively, to model stationary time series data. A time series is stationary if its
statistical properties remain unchanged over time. Next, we define some classical

time series models.

Autoregressive (AR(p)) Process:

Yule aimed to model stationary time series data by demonstrating how a process
could be represented as a sum of its own lagged values and a random term. For a
time series { X, }, the autoregressive process of order p, denoted by AR(p), is defined

as follows:
d(B)X, = ¢, (1.2)

where ¢, is Gaussian white noise with variance o2, B is the backward shift operator
defined as: BY(X;) = X;—j, ®(B) = (1 = 3°7_, ¢;B7), and ¢1, ds, . . ., ¢, are model
coefficients. Here, ®(B) is also known as the characteristic polynomial of degree p
of the process, and the AR(p) process is stationary if all roots of ®(B) lie outside

the unit circle.
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Moving Average (MA(q)) Process:

Slutsky’s contributions were crucial in expanding the understanding of stochastic
processes and their applications in economics. His work addressed the study of
cyclical fluctuations and their impact on economic theories and laid the groundwork
for moving average models [82], where observed data are modeled as linear
combinations of past and current random shocks or white noise with variance 2.

The moving average process of order ¢, denoted by MA(q), is defined as follows:
Xt = @(B)Gt, (13)

where ¢; is again Gaussian white noise with variance 0®, ©(B) = 1+ ?_, 0;B7 and
61,05, ...,0, are model coefficients. Here, ©(B) is also known as the characteristic
polynomial of degree ¢ of the process, and the MA(q) process is invertible if all roots
of ©(B) lie outside the unit circle.

Autoregressive Moving Average (ARMA(p, q)) Process:

In 1938, Wold made significant contributions to the field of time series analysis
by introducing the concept of the autoregressive moving average process [95]. His
work demonstrates how the autoregressive and moving average components could
be combined to represent stationary time series. The ARMA process, denoted by
ARMA(p, q), where p and ¢ represent the order of AR and MA terms, respectively.
Let ¢; be Gaussian white noise with variance o2. Then, the ARMA(p, q) is given by:

&(B)X, = O(B)e, (1.4)

where ®(B) and O(B) are stationary AR and invertible MA operators, respectively,
defined in (1.2) and (1.3). Throughout the thesis, we will be using the same
notation for stationary AR and invertible MA operators. Wold’s research provided
a more comprehensive framework for modeling and understanding stationary time
series data, which became fundamental in many areas including econometrics, signal
processing, and engineering. These pioneering works continue to shape the field of
time series analysis and serve as the basis for more advanced models and techniques
developed in subsequent years. The above discussed classical models work on the
assumption of stationarity of the dataset. However, in real-life scenarios, observed
data often do not exhibit stationary behavior, that is, mean and variance and other
statistical properties change over time. To address this limitation, Box and Jenkins
(1976) developed the autoregressive integrated moving average (ARIMA) process,

for detailed study one can refer to [17].
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Autoregressive Integrated Moving Average (ARIMA (p,d,q))

Process:

The ARIMA process models a non-stationary time series by introducing an integer
order difference operator d into the traditional ARMA(p, q) process and is denoted
by ARIMA(p,d, q). The ARIMA process is defined as follows:

®(B)(1 — B)*X, = O(B)e, (1.5)
where ¢, is Gaussian white noise with variance 2. This process transforms a
non-stationary series into stationary ones through an integer order differencing.
Their approach allowed for accurate forecasting by incorporating historical patterns,
trends, and seasonality, thus enabling better predictions of future values based on
past data. Trajectory plots for the classical time series models are given in Fig. 1.1.
Various R libraries were employed to create these plots. The ARIMA approach is
commonly known as the Box-Jenkins methodology. Their work stimulated further
research in time series modeling and forecasting, leading to the development of more
advanced models, such as seasonal ARIMA, state-space models, and non-linear time
series models.however, the ARIMA (p, d, q) process fails to capture LRD in data with
d as an integer. The data exhibiting LRD behaviors have been found in various fields
such as Finance, Economics, Geophysics, and Agriculture [10,74]. The LRD series
evinces substantial correlation after large lags. The LRD process is essential to
study as they exhibit non-instinctive properties that may not be captured using the
traditional AR, MA, ARMA, and ARIMA time series models.

1.2 Long Memory Processes

A long memory process, also known as a LRD process, is a stochastic process
commonly found in time series data that exhibits long-term correlations or
dependencies between observations across extended time intervals. This type of
process is characterized by the presence of slow decay in autocorrelation, indicating
that the influence of past observations persists over a considerable range of time.
For seasonal long memory process {X;}, the autocorrelation function for lag h,
denoted by p(h), behaves asymptotically as p(h) ~ cos(hwy)h~®, when h — oo for
some positive a € (0,1) and wy € (0,7) [19]. An LRD process is characterized by an
autocovariance function or autocorrelation function that is not absolutely summable.
In the frequency domain, it represents a process where the power spectral density is
unbounded across all frequencies. This signifies that the process exhibits correlations

or dependencies over long ranges, extending to distant observations rather than
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Figure 1.1: Trajectory plots for the classical time series models.

decaying rapidly. Some LRD processes are discussed as follows:

Autoregressive Fractionally Integrated Moving Average
(ARFIMA(p,d,q)) Process:

The autocorrelation function for the classical time series models such as AR, MA,
ARMA, and ARIMA processes decays exponentially, making them short memory
processes. However, this characteristic does not appear to be common in many
empirical time series. Some series appear to have a long memory property,
which means that the correlation between data in a series can persist over longer
time periods. The traditional models cannot be used in such scenarios. The
ARFIMA(p,d,q) process is a generalized ARIMA(p,d,q) model defined in [46],
which aims to explain both short-term and long-term persistence in data. The
model is generalized by taking the order of differencing d to be any real value
instead of being an integer in the traditional ARIMA process. For some recent
articles with applications of the ARFIMA process in modeling of series with long
memory, see [52,57,62,68,90]. The fractional ARIMA(p,d,q) or ARFIMA(p,d,q)

process is expressed through the equation [46]:

®(B)(1 - B)*X, = O(B)e, (1.6)
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= T(k— dBk . : : o :
where (1 — = Z F—d)T(k+ 1) and ¢; is Gaussian white noise with variance
=0

o

The process is stationary and invertible for |d| < 1. Rewrite (1.6) as follows:
X; = U(B)e,

O(B) rd a —d - :

where U(B) = 5(B) ——=A%and A* = (1—B)~% Then for z = e~ the spectral density

of X; takes the following form [46]:

() = [WIP() = 5 2 (2sinio/2)

The corresponding autocorrelation function (k) for lag h can be calculated by
taking the inverse Fourier transform of spectral density. The relation between
autocovariance function and spectral density is given in (1.1). For ARFIMA process

with lags p = 0 and ¢ = 0, the autocovariance is given by [46]:

Gegenbauer Autoregressive Moving Average (GARMA(p, q))

Process:

In subsequent years, Andel [4] and Gray et al. [38] introduced the concept of the
GARMA process. This process also possesses seasonal long-range dependence [21].
GARMA is an extension of the Fractional ARIMA process which was proposed to
model long-term seasonal and periodic behaviors. It uses the properties of generating
function of Gegenbauer polynomials to model a time series. The Gegenbauer
polynomials are generalizations of the Legendre polynomials. For |u| < 1, the

Gegenbauer polynomials C%(u) are defined in terms of generating function as follows:
(1—2uzZ+ 7%~ }:cﬂ (1.7)

where d # 0, |Z| < 1, and C%(u) is represented by:

T(n—k+d)
Q%UZEZ“‘fm@Nn+DFW—2k+U

(2u)" 2, (1.8)
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The GARMA(p, q) process is defined as:

®(B)(1 —2uB + B*)?X, = O(B)e¢,

2

where ¢; is Gaussian white noise with variance o°. The process is stationary and

invertible for |u| < 1 and |d| < 1/2. The spectral density of the GARMA process,

L

for z = e, is outlined as:

folw) = — = [4 (cos(w) — u)Q} : (1.9)

The study on the usefulness of the Gegenbauer stochastic process is done by
Dissanayake et al. [23]. The limit theorems for stationary Gaussian processes and

their non-linear transformations with covariance function are defined as:

p(h) ~ ZAk cos(hwy)h ™, Z A, =1,
k=1

k=1

where A, > 0, ax > 0,and wy € [0,7), when k = 1,...,r have been considered
in [50]. For different estimation methods related to the GARMA process, see
the recent article [49]. In literature, many tempered distributions and processes
are studied using the exponential tempering in the original distribution or process
[8,36,56,75,76,88,99]. The fractionally integrated process with seasonal components
is studied and maximum likelihood estimation is done by Reisen et al. [72]. The
parametric spectral density with power-law behavior about a fractional pole at
the unknown frequency w is analyzed. Also, the Gaussian estimates and limiting
distributional behavior of estimates are studied by Giraitis et al. [32]. Later, Giraitis
and Leipus provided an extension to the fractional ARIMA process by introducing
the seasonal fractional ARUMA process [34].

Fractional ARUMA Process:

The fractional ARUMA process introduced in [34], serves as a model for time series
exhibiting long memory characteristics, characterized by persistent dependencies
over long periods. This process specifically captures long-range periodic behavior
observable at a finite number of frequencies within its spectrum. The formulation

of this process is structured as follows:

o(B)(1 - B)* [[(1 - 2u;B + B*)%(1 4+ B+ X, = ©(B)e,, (1.10)

j=1
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where ¢, is the Gaussian white noise with variance o2. The process is stationary and
invertible for |u;| < 1 and |d;| < 1/2 Vj. Also, H?Zl(l—QujB—i-BQ)dj = TB",
where the coefficients m, can be expressed in terms of Gegenbauer polynomials

{Ci(w)} as:

= Y Cnt(w) O (ug) - % (w).
0<ry..Tp<n
r1+r2+..+ry=n

For dy =0, dx+1 = 0, and z = €*“, the spectral density of the process { X;} is defined

as:

q
[N}

210(2) 2 1~

27 —d;
felw) = o B H (cos(w) — u;) }

For the parameter estimation of the ARUMA process, one can refer to [60].

Autoregressive Tempered Fractionally Integrated Moving
Average (ARTFIMA) Process:

The ARTFIMA(p, d, A, q) process defined by [76] generalizes the ARFIMA process
defined in (1.6). The model is defined by introducing a tempering parameter \ in
the ARFIMA model, that is, instead of taking the fractional shift operator (1 — B)¢,
the authors have considered a tempered fractional shift operator (1 — e *B)?, where
A > 0. The series exhibits a semi long-range dependence structure, that is, for A
close to 0, the autocovariance function of the process behaves similarly to a long

memory process and, for large A\, the autocovariance function decays exponentially
[76]. The ARTFIMA process is defined by:

®(B)(1 —e*B)'X, = O(B)e,. (1.12)
The above equation is rewritten as:
X; = ¥V (B)e,
o(B)

o(B)
takes the following form [76]:

where U(B) = ——-A% and A% = (1 — e *B)~% The spectral density of X,
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o) = P Aw) = - = e
_ ‘7_2‘@(6 MW — 9 cos(w) 4+ 2N
= b 2 s e (1

Taking Y; = A%*X,, the model takes the following form:

p q
Y, — Z OiYi_j =€+ Z i€,
=1 i=1

which is the ARMA(p, q) process. The ARTFIMA process is stationary for d ¢
Z and A > 0 (see [76]). For p = 0 and ¢ = 0, the autocovariance function of
ARTFIMA(0, d, A, 0) process is defined by:

o?T'(2d + h)
L(2d)I'(h+1)

v(h) = 2Fy(2d, h +2d; b+ 1;e72Y),

where o F(a, b; ¢; z) is Gaussian hypergeometric function such that:

ab ala+1)bb+1) ,
c.1 clc+1)2!

2F1<(l,b;C;Z> - 1+

Type 1 and Type 2 HARMA (p, v, u, q) Processes:

The type 1 Humbert ARMA (HARMA) process was introduced by Bhootna et al.
[11] using the generating function of type 1 and type 2 Humbert polynomials. The
Gegenbauer and Pincherle polynomials are the particular cases of type 1 Humbert
polynomials. The Horadam and Horadam-Pethe polynomials are the particular
cases of type 2 Humbert polynomials. The work focus on the study of Pincherle
ARMA, Horadam ARMA, and Horadam-Pethe ARMA processes. These processes
possess seasonal long memory which helps to capture autocorrelation present in the
data, leading to improved forecasting accuracy. The proposed model holds potential
applications in various domains. It can be used in sales forecasting in e-commerce
industries by effectively capturing seasonality, trends, and patterns in historical sales
data. Furthermore, due to the long memory property of the model, it can be used in
capturing autocorrelation patterns evident in financial returns, volatility, and other
key indicators. Here is an overview of the study on the type 1 and type 2 HARMA

processes.
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Type 1 HARMA(p, v,u, q) Process

To study the foundation of the type 1 Humbert ARMA or type 1 HARMA process,
it is vital to study type 1 Humbert polynomials. The definition is as follows:

Definition 1.2 (Type 1 Humbert polynomials). The Humbert polynomials of type
L {10}, o, are defined in terms of generating function as:

. 1
(1—mut+t")" = ZH;m(u)t”,m eNJt| < 1,|ul <1, and |v| < 5 (1.14)
n=0

The type 1 HARMA(p, v, u, q) process {X;} is defined by:
®(B)(1 —muB+ B™)" X, = O(B)e, (1.15)

where ¢, is Gaussian white noise with variance o2, 0 < u < 2/m, |v| < 1/2, and
®(B), O(B) are stationary AR and invertible MA operators, respectively, defined
in (1.2) and (1.3). In Def. 1.2, the polynomial II;, | (u) can be explicitly written as
[48]:

(_mu>n—mk

L]
I (u) = kZ:O (1 —=v—n)+ (m—1)k)(n—mk)k!’

n
where L—J is floor function.
m

The hypergeometric representation of II}  (u) is given by:

e (u):(y)n(mu)”mFm_l __n’—n—i—l’”‘ —n—1+m
nm n! m m ’ n ’
—v—n+1 —v—n+2 —v—n+m-—1 1
m—-1 " m-2 7 m—1 "(m — 1)ym—lym |

For m = 2, the Humbert polynomials reduces to Gegenbauer polynomials, which is
generally denoted as {C¥(u)}>2,. For m = 3, the polynomials reduce to Pincherle

polynomials, denoted as {P?(u)}5°,, (see [69]).

n=0

Remark 1.2.1. The type 1 HARMA process is stationary and invertible, for |v| <
1/2, 0 < wu < 2/m, and all roots of ®(B) = 0 and ©O(B) = 0 lie outside the unit

circle.

Remark 1.2.2. For a type 1 HARMA(p, v, u, q) process the spectral density takes
the following form.:

2 ]e()P
2 [9(2)P

fu(w) (2 + m*u? — 2mu(cos(w) + cos((1 — m)w)) + 2 cos(mw)) ™,
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where z = e, for w € (—m,m).

To delve into the examination of the process’s seasonal long memory and

singularities, it is essential to study the following definitions:

Definition 1.3 (Singular point [28]). The point w = wy is said to be singular point

of function f, if at w = wy, f fails to be analytic, that is, f(wg) = oo.

Definition 1.4 (Seasonal long memory). The stationary time series {X;} is said to

have seasonal long memory if there exist wy € R and a € (0,1) such that
p(h) ~ h™ cos(hwy), as h — oo,

and cos(hwy) # 1.

Remark 1.2.3. Let {X;} be the stationary type 1 HARMA(p, v, u, q) process. Then,
under the assumptions of stationarity the spectral density of type 1 HARMA (p, v, u, q)

has singular spectrum [11]
1. atu=0 andw:%,for—mTﬂ <n<%17

2. at u=2(—1)"cos(:2%) and w = £ 2" for m # 2 and —@ <n< —(m4_2),

and
3. at w = cos~H(u), form = 2.

Remark 1.2.4. The stationary type 1 HARMA(p,v,0,q) process has seasonal long
memory, for 0 <v < 1/2 (see [11]).

Type 2 HARMA process

The definition of the type 2 HARMA process involves the utilization of the

generating function of type 2 Humbert polynomials, which is outlined below:

Definition 1.5 (Type 2 Humbert polynomials). The type 2 Humbert polynomials
{Q} . (u) }72, are defined by the following generating function:

(L=2ut+t")™" =" Q4 (wt", [t| <1, |v| <1/2, |u] < 1. (1.16)
n=0

Here, Q% . (u) = I1%  (2%) (see 1.14).

The type 2 HARMA process is established utilizing the generating function outlined

in (1.16) in the following manner [11]:

®(B)(1 - 2uB + B™)"X, = O(B)e, (1.17)
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where ¢, is Gaussian white noise with variance o2 and 0 < u < 1. The explicit form

of the polynomials @7, ,,(u) is defined by:

0] = YD

where vy = 1 and (v), =v(v+1)---(v+n—1). For m = 2, the above polynomials
in (1.16) is Gegenbauer polynomials and @} ,(u) = C}/(u). Also, for m = 3, the
polynomials in (1.16) are known as Horadam-Pethe polynomials {Q}, ;}72,, and for

m = 1, they are known as Horadam polynomials {Q7, ;}5%,, see Gould (1965) [35],
Horadam (1985) [44] and Horadam and Pethe (1981) [45].

Remark 1.2.5. The type 2 HARMA process is stationary and invertible for |v| <
1/2 and 0 < u < 1 and all roots of ®(B) = 0 and ©(B) = 0 lies outside the unit

circle.

Remark 1.2.6. For a type 2 Humbert ARMA(p,v,u,q) process the spectral density
takes the following form:

fo(w) = — 5(2+ 4u? — 4u(cos(w) + cos((1 — m)w)) + 2 cos(mw)) ™, (1.18)

where z = e~ .

Remark 1.2.7. Under the assumption of stationarity the spectral density of
HARMA((p, v, u, q) process has singularities [11]

1. atu:()andw:%,for mi1<n<iand

2. atu=(—1)"cos(-2%) and w = 2" for m # 2 and — m=2) <(m 2

For the detailed study of the above defined processes and parameter estimation,
refer to [11]. The trajectory plots for various long memory processes are given in
Fig. 1.2.

1.3 Spectral Density Based Parameter Estimation

The spectral density based estimation methods use the theoretical spectral density
fz(w) and empirical spectral density (periodogram), denoted by I(w), to construct
the contrast or likelihood function D(f,(w),I(w)). The empirical spectral density
provides a representation of the distribution of frequencies in the time series data.

The estimation process starts by calculating the empirical spectral density. This
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Figure 1.2: Trajectory plots for various long memory processes.

involves computing the periodogram, which is a commonly used estimator of the

spectral density of a process {X;} and is expressed as:

I(wj) = { —i—ZR cos sw])} (1.19)

where R(s) = EL}S(XF?(X”S*X), for s = 0,1,...,(n — 1) is the sample
autocovariance function with sample mean X, and w; = 2mj/n, for j =

0,1,...,[n/2]. The function D(f.(w),I(w)) acts as a measure of dissimilarity or
proximity between the theoretical and empirical spectral densities. The criteria to

measure the nearness of f,(w) and I(w) is given by [87] :

D(f,(w / K(I(@)/ fo(w)) dw

where K (z) is three times continuously differentiable function on (0,00) and has

unique minima at x = 1. The contrast function D(f,(w),I(w)) can take different
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forms based on the assumption of the function K (x) as discussed in [87], that is,
e K(z)=ux,
« K(z) =z —log(z),

o K(z)=log(x)+ %

« K(z) = (log(x))%,
o K(x)=xlog(zr) — x,
o K(z)= (z“—1)2, where 0 < a < .

Using the above-defined method, we study the Whittle likelihood and the debiased
Whittle likelihood methods for parameter estimation. Both methods use the
likelihood functions, which act as a measure of dissimilarity between true and

empirical spectral density.

Whittle Likelihood Approach:

The Whittle estimation procedure, introduced by Whittle in 1951 [93,94], has
significantly influenced parametric estimation within the frequency domain. Over
time, substantial findings have been amassed, leading to the development of a
comprehensive theory that incorporates diverse models exhibiting either short
or long-range dependence. The asymptotic properties, that is, consistency and
asymptotic normality of the Whittle likelihood estimators can be proved using
the assumptions defined by Hannan in 1973 (see conditions A and B in [41]) and
applying Theorem 8.2.1 in [33]. In 1986, Fox and Taqqu [26] adapted the approach
of Whittle for parameter estimation of strongly dependent stationary time series. In
2008, Shitan and Peiris [81] used the Whittle likelihood estimation for a generalized
autoregressive model of order 1. Several scholarly works have investigated the
asymptotic behavior of the Whittle estimator, concluding a functional central
limit theorem. For instance, Dahlhaus [20] presents this aspect in the context of
weakly dependent time series. Expanding on theoretical properties, Heyde and
Gay [42] as well as Hosoya [47], delve into the discussion of Whittle likelihood
estimators for multivariate long memory processes, emphasizing their applicability
beyond Gaussian processes. Addressing parameter estimation issues within the
stable FARIMA (p, d, q) process, Kokoszka and Taqqu [54] have successfully employed
a modified version of Whittle’s method. Furthermore, Whittle estimation has
garnered attention in studies by Anh et al. [6], Casas and Gao [21], Gao [29],
Gao et al. [30], and Leonenko and Sakhno [59], which also serve as sources for

additional references on this subject.
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The Whittle likelihood technique leverages the empirical spectral density and
theoretical spectral density to estimate the model parameters of the time series
{X;}. The process of estimation involves the minimization of a likelihood function,
which centers around a set of harmonic frequencies denoted as w;, where j =
0,1,...,[n/2]. These frequencies play a pivotal role in defining the empirical
spectral density critical to Whittle likelihood estimation. This empirical spectral
density serves as a depiction of frequency distribution within the time series
data. The estimation procedure commences with the computation of this empirical
spectral density, achieved through the calculation of the periodogram, a widely used
estimator for spectral density. The formulation of the periodogram is represented
by (1.19). The objective of the Whittle likelihood estimation method is to
determine model parameters that minimize the disparity between the empirical
(I(w;)) and theoretical (f,(w;)) spectral densities. This is accomplished through

the optimization of the following likelihood function:

"L [ I(w))
l,(0) = ( I+ log(fe w), 1.20
=3 (f iy * st (1.20
where 6 represents a vector of unknown parameters. The estimates of the parameters
are obtained by minimizing the likelihood function [,(f) with respect to 6 and

depend on the sample size n, that is,

~

0,, = argmin(l,,(0),0 € ),

where  C R3 and Qq C Q is compact set. To prove the consistency and asymptotic
normality of the Whittle likelihood estimator the following conditions, namely,
Conditions A and Conditions B defined by Hannan [41] are required to establish,

which are as follows:

Conditions A:

(a) The time series {X,} has the following moving average representation:

X, = Zaket,k,, where Zaz < oo and a9 = 1. (1.21)
k=0 k=0

(b) The spectral density (f,(w)) of the process {X;} can be written as:

and is a continuous function, for w € (=7, 7), V a > 0.

1
K(w)+a
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(c¢) Assuming the parameter space (§2) is compact. Then the parameter vector

0 € )y defines the spectral density uniquely.
Conditions B:
(a) K(w) >0, for all w € (—m, ) and 0 € .
(b) K(w) twice differentiable of all the parameters in parameter vector 6.
(¢) The condition in (1.21) holds.

To prove the consistency of the Whittle likelihood using Conditions A, Fox and
Taqqu gave a theorem (see Theorem 8.2.1 [26]), which is as follows:

Theorem 1.3.1. Suppose an observable moving-average process {X;,t € Z}, of

(1.21) is ergodic and has the spectral density f.(w) = %K(w) , and suppose the

functions K(w), 0 € Qo satisfy Conditions A. Further, if additionally, 1/ f.(w) is

continuous on (—m, ), then,
A a.s.
0, — 0, asn — .

The asymptotic normality of the Whittle likelihood can be proved using Theorem 2
defined by Hannan [41], which is as follows:

Theorem 1.3.2. Under Conditions B, \/ﬁ(é — 0) converges in distribution to

Gaussian random vectors with zero mean and covariance matrix W=, where

’

1 [T ] OlogK(w) | ) 0log K(w)
W_E/_W{ 90 }{ B }dw'

Debiased Whittle Likelihood:

The debiased Whittle likelihood method is an improved computationally efficient
method based on spectral density. Recently, the method was introduced by
Sykulski et al. [85] to reduce the bias in the Whittle likelihood method. They
present a pseudo-likelihood derived from the Whittle likelihood that promises
remarkable reductions in bias and mean-squared error in practical applications.
This improvement comes without imposing a significant increase in computational
expense or compromising consistency and convergence rates. They term this
pseudo-likelihood as the “de-biased Whittle likelihood”. The method’s performance
in both simulation studies and its application to a vast oceanographic dataset is
demonstrated. It has been further substantiated that the method yields consistent

estimates even under less stringent assumptions. Importantly, there is no necessity
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for the power spectral density to be continuous across frequencies. In both the
scenarios, the debiased approach significantly reduces bias by up to two orders
of magnitude. Dahlhaus’s work [20] elucidated that the bias observed within the
Whittle likelihood could be attributed to a phenomenon recognized as the leakage
effect. This effect is alternatively termed as spectral blurring or spectral leakage.
When a time series model is defined in continuous time but sampled at specific time
intervals, there arises a potential issue known as aliasing. Aliasing occurs when
high-frequency components in the continuous signal are incorrectly interpreted as
lower frequencies in the discrete observations due to insufficient sampling rates [85].
In the context of Whittle estimation, aliasing introduces additional complexities. If
not appropriately addressed or adjusted, aliasing can exacerbate the bias in Whittle
estimates. Assuming f,(w;6) to be the theoretical spectral density of the process,
the pseudo-likelihood function defined by Sykulski [85] has the form:

TP (()
1a(0) = S_{logfulwi0)) + 75

w

where

fn<w; 9)

/ﬂ f(W';0)Fp(w — w')do'

is the expected periodogram, here,

2mn sin? (nw/2)

Falw) = sin?(w/2)

and I (w) is the periodogram. The estimates are obtained by maximizing the function
la(0) as:

~

0, = argmax(l4(0),0 € Q). (1.22)

From [85], it is evident that the debiased estimator is computationally efficient and
provides consistent estimates, and f,(w;#) is the expected spectral representation,
obtained by convolving the actual modeled spectrum with the Fejér kernel. However,
the challenge lies in achieving this replacement of f,(w) with f,(w;6), while
ensuring computational efficiency as this replacement would often necessitate
numerical approximation methods, which is efficient but can lead to computational
inefficiencies and increased computational costs. In a study conducted in 2021,
Grainger et al. [37] demonstrated, via numerical simulation, that the debiased
Whittle likelihood method surpasses alternative techniques like least squares fitting
in terms of both parameter recovery accuracy and precision. The consistency of
the debiased whittle likelihood estimators can be proved using Prop. 1 defined by
Sykulski et al. [85], which is as follows:
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Proposition 1.3.1. Assume that {X;} is an infinite sequence obtained from
sampling a zero-mean continuous-time real-valued process X (t;0), which satisfies

the following assumptions:

1. The parameter set Qy € RP is compact with a non-null interior, and the true

length-p parameter vector 0 lies in the interior of €.

2. Assume that for all 6§ € Qg and w € [—7,w|, the spectral density of the
sequence { X} is bounded below by f(w;0) > fuin > 0, and bounded above by

f(w;e) < fmaz-

3. If 0 # 0, then there is a space of non-zero measure such that for all w in this

space f(w;6) # f(w;0).
4. The f(w;0) is continuous in 0 and Riemann integrable in w.

5. The expected periodogram f,(w : 0) has two continuous derivatives in 6 which
are bounded above in magnitude uniformly for all n, where the first derivative

in 0 also has Qo(n) frequencies in (—m, ) that are non-zero.

Then, the estimator

~

0, = argmax(ly(0),0 € Q),
for a process {X;}, satisfies

0, =6, asn — oo.

1.4 Aims and Objectives

The motive of this thesis is to study and introduce generalized time series models
to extend the work available on classical and long memory time series models which
are based on the assumptions of normality of the error terms, non-summability of
the autocovariance (in case of long memory models), unbounded spectral densities,
etc. We aim to study the properties such as stationarity, invertibility, form of
spectral densities, autocovariance functions, parameter estimation, and asymptotic
properties of the estimated parameters inherent in these generalized models. The
examination of the stationarity and invertibility properties is conducted through
a comprehensive approach that contains theoretical techniques. Also, the thesis
focuses on parameter estimation of the generalized models using the empirical
spectral densities of the processes and the likelihood functions, which measure the
discrepancy between actual and empirical spectral densities. Outlined below are the

main objectives of the thesis.
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o Usually classical models such as AR, MA, and ARMA work on the assumptions
of normality of the innovation terms. In many real-life scenarios, this might
not be true. Many real-life time series probability distributions display
heavy-tailed behavior or semi heavy-tailed behavior. Semi heavy-tailed
probability density functions are those where tails are heavier than the
Gaussian and lighter than the power law. In this thesis, our initial step
involves defining a tempered stable autoregressive model of order 1 and
denoting it by TAR(1) and AR(1) process with tempered stable distribution
to overcome the issue of heavy-tailed datasets by assuming marginals and
innovation distribution to be positive tempered stable. The TAR(1) process
is a generalization of the inverse Gaussian autoregressive process discussed
by Abraham and Balakrishna [1]. These models can give more flexibility in

modeling datasets encountering extreme outcomes.

o Another generalization of long memory time series is done by introducing the
Gegenbauer autoregressive tempered fractionally integrated moving average
(GARTFIMA) process by introducing exponential tempering in the long
memory GARMA process. The autocovariance function of the GARMA
process is not absolutely summable and in finite variance cases, the spectral
density becomes unbounded at some frequencies. It is more convenient
to study the GARTFIMA model as the model overcomes these issues and
the process can be used to model datasets with periodic behaviors having
a bounded spectrum for frequencies near 0. Subsequently, we present
an innovative generalization of the seasonal fractional ARUMA models,
introducing the concept of “tempered fractional ARUMA model”. This
extension involves incorporating tempered fractional differencing within the
traditional seasonal ARUMA framework, significantly enriching the model’s
flexibility and dynamics. The fundamental purpose of this extension is to
address the inherent issue of a unit root within the classical ARUMA model.
We feel a strong motivation to study these processes since tempering plays
a pivotal role in circumventing the issue of the unit root within the classical
and long memory models. Additionally, while the spectral density of seasonal
fractional ARUMA is not bounded everywhere, tempering serves as a remedy,
ensuring that the spectral density of the tempered processes remains bounded
across all scenarios. The tempering transforms the spectral characteristics,
conferring stability and control over the spectral properties of these models in

various contexts.

o Further, we study the Horadam ARMA and Horadam-Pethe ARMA processes,
which are the particular cases of type 2 Humbert ARMA processes. The type
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2 Humbert ARMA process is defined by using type 2 Humbert polynomials.
The type 1 and type 2 Humbert polynomials based on the type 1 and type
2 HARMA(p, v, u, q) processes are studied in [11]. The Gegenbauer and the
Pincherle polynomials are particular cases of type 1 Humbert polynomials.
The Horadam and Horadam-Pethe polynomials are a particular case of type
2 Humbert polynomials. The Gegenbauer polynomials based time series
model, namely, the GARMA process, has already been studied and applied
in several real-world applications emanating from different areas. These
processes possess seasonal long memory which helps to capture autocorrelation
present in the data, leading to improved forecasting accuracy. Bhootna et al.
[11] introduced the Pincherle ARMA, Horadam ARMA, and Horadam-Pethe
ARMA processes and discussed the spectral density, stationarity, and
invertibility conditions of the process. In this thesis, we propose to use
the Whittle likelihood and the debiased Whittle likelihood techniques for
the parameter estimation of Horadam ARMA and Horadam-Pethe ARMA
processes. The debiased Whittle is an improved computationally efficient
method based on spectral density. Recently, the method was introduced
by Sykulski et.al [85] to reduce the bias in the Whittle likelihood method
introduced by P. Whittle [94]

These new classes of time series models generalize the existing models like ARMA,
ARIMA, ARFIMA, ARTFIMA, and GARMA in several directions. The possible
areas of applications of the proposed model include sales forecasting in e-commerce
industries as it can capture seasonality, trends, and other patterns in historical
sales data. Also, the long memory property can capture autocorrelation patterns
observed in financial returns, volatility, and other indicators. These models can
be applied to analyze environmental monitoring data, such as water quality
parameters, air pollution levels, and ecosystem dynamics. Overall, our study
contributes to the advancement of time series analysis by introducing different
generalized models, investigating their properties, providing parameter estimation
techniques, and showcasing their efficacy through simulations and real data

applications. The rest of the thesis is organized as follows:

In Chapter 2, we introduce and study a one-sided tempered stable first-order
autoregressive model called TAR(1) and an autoregressive model featuring tempered
stable innovations. Chapters 3 and 4 focus on the study of tempered processes
namely, the Gegenbauer autoregressive tempered fractionally integrated moving
average (GARTFIMA) process and the tempered fractional ARUMA process. These
processes generalize the ARTFIMA, GARMA, and ARUMA processes, studied in
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[34,38,63], respectively. In Chapter 5, we study the parameter estimation of type 1
and type 2 HARMA processes, using the spectral density based Whittle likelihood
approach and the debiased Whittle likelihood approach. The last Chapter concludes

the thesis and discusses some future directions.
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Chapter 2

Tempered Stable Autoregressive
Models

In this chapter, we introduce and study a one-sided tempered stable first order
autoregressive model called TAR(1). Under the assumption of stationarity of the
model, the marginal probability density function of the error term is obtained. It
is shown that the distribution of the error term is infinitely divisible. Parameter
estimation of the introduced TAR(1) process is done by adopting the conditional
least square and method of moments based approach and the performance of the
proposed methods is evaluated on simulated data. Also, we study an autoregressive
model of order one with tempered stable innovations. Using appropriate test statistic
it is shown that the model fits very well on real and simulated data. Our models
generalize the inverse Gaussian and one-sided stable autoregressive models existing

in the literature.

2.1 Introduction

Autoregressive models serve as eminent approach of modelling among different
time-series methods. Many real life time-series data exhibits autoregressive
behaviour. Classical autoregressive time series models are based on the assumption
of normality of the innovation term. However, this assumption may not be true for
all the real life scenarios. Many real life time series probability distributions display
heavy-tailed behaviour or semi-heavy tailed behaviour. Semi-heavy tailed pdf are
those where tails are heavier than the Gaussian and lighter than the power law,
(see [65]). It is well known that series of counts, proportions, binary outcomes or
non-negative observations are some examples of non-normal real life time-series data
[39]. The autoregressive model of order 1, denoted by AR(1), is a simple, useful and
interpretable model in a wide range of real life applications. Several AR(1) models
with different marginal distributions are considered in literature. For example,
Gaver and Lewis [31] considered linear additive first-order autoregressive scheme
with gamma distributed marginals. The authors show that error distribution is same

as the distribution of a non-negative random variable which has a point mass at 0 and
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which is exponential if positive [31]. A more general exponential ARMA (p, ¢) model,
called EARMA(p, q), is considered in [58]. A second order autoregressive model is
considered by Dewald and Lewis, where Laplace distributed marginals are considered
[22]. Abraham and Balakrishna considered inverse Gaussian autoregressive model,
where the marginals are inverse Gaussian distributed [1]. The authors show that
after fixing a parameter of the inverse Gaussian to 0 the error term is also inverse
Gaussian distributed. The transition laws of tempered stable Ornstein-Uhlenbeck
processes are discussed in [98].

In this chapter, we consider tempered stable autoregressive model of order 1 and
denote it by TAR(1). This model generalizes the work discussed in Abraham and
Balakrishna [1]. One parameter inverse Gaussian (also called Lévy distribution) is a
particular case of the one-sided tempered stable distribution. We derive the explicit
form of the error density. Further, we show that if the AR(1) series marginals
are stable distributed, the error is also stable distributed with some scaling. A
step-by-step procedure of the estimation of the parameters of the proposed model
is given. Moreover, we consider an AR(1) model with one-sided tempered stable
innovations. This model is different from the TAR(1) model where marginals are
one-sided tempered stable, and here the innovations are positive tempered stable
distributed. The application of this model is shown on real life power consumption
data and drinking water treatment data. In particular, the introduction of the
tempered stable autoregressive model of order 1 (TAR(1)) and AR(1) process
with tempered stable innovation represent a novel contribution. Additionally, the
introduction of an autoregressive model with positive tempered stable innovations
presents another original contribution. While building upon prior research on inverse
Gaussian autoregressive models, we extend the framework to incorporate one-sided
tempered stable distributions, offering explicit formulations for error densities. The
rest of the chapter is organized as follows: Section 2 defines the TAR(1) model where
the explicit form of the density of the error term, infinite divisibility, moments,
and parameter estimation methods of TAR(1) model are discussed. In Section
3, an AR(1) model with positive tempered stable innovations is introduced. The
estimation procedure of the parameters of the introduced model is given based on
the method of moments and conditional least square. The simulations study, where
efficacy of the estimation procedure is discussed based on simulated data and real

life application are discussed in this last section of the chapter.
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2.2 Tempered Stable Autoregressive Model

In this section, we introduce the tempered stable autoregressive model and discuss

the main properties. Consider an autoregressive process of order 1, defined as:
Xt = pXt—l + €, (21)

where |p| < 1 and {¢,t > 1} is sequence of i.i.d. random variables. Assuming
marginals X; s to be stationary positive tempered stable distributed. Then,
there exist a distribution of ¢; s. The class of stable distributions is denoted by
Stable(,v, u, o), with parameter § € (0,2] is the stability index, v € [—1,1] is
the skewness parameter, p € R is the location parameter, and o > 0 is the shape
parameter. The stable class probability density functions do not possess closed-form
except for three cases (Gaussian, Cauchy, and Lévy). Generally stable distributions
are represented in terms of their characteristic functions or Laplace transforms.
Stable distributions are infinitely divisible. The one-sided stable random variable S

has following Laplace transform (see [78]):

B

E(e ) =™, s> 0, € (0,1).

The right tail of the S behaves (see [78]) as:

—B
x
P(S >z) ~ ——, as x — 0. (2.2)
I'(1-p)
Next, we introduce the positive tempered stable distribution. The positive tempered
stable random variable 7', with tempering parameter A > 0, and stability index

p € (0,1), has the Laplace transform (LT) (see [55,63]):
E(e*) =e" ((SJ’)‘)L’\B). (2.3)

Note that tempered stable distributions are obtained by exponential tempering in
the distributions of a-stable distributions [75]. The advantage of tempered stable
distribution over an a-stable distribution is that it has moments of all order and its
density is also infinitely divisible. The probability density function for 7' is given
by:

foa(x) = e fo(z), X>0, B (0,1),

where fz(z) is the PDF of an a-stable distribution [89]. The tail probability of

tempered stable distribution has the following asymptotic behavior:
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ef)m

P(T > Z’) ~ CB’)\LU_67

as r — 00, (2.4)

where ¢z, = Biﬂf‘(l + B)sin(rB)e"’. The first two moments of tempered stable

distribution are given by:
E(T) = 61, E(T) = B(1 - BIN2 + (BN )2
A pdf u(z) is called a semi-heavy tailed pdf if
u(x) ~ e “v(x), ¢ >0,

where v is a regularly varying function [65]. Recall that a positive function v is

regularly varying with index v if

lim v(dx)

s ()

=d’, d>0.

Using (2.4), it is straightforward to show that
far(@) ~ Aegar™Pe ™ as o — oo,

and hence the tempered stable density function is semi-heavy tailed.

2.2.1 Distributional Properties

In this subsection, we discuss about the distributional properties related to the
introduced TAR(1) process. If each X; in (2.1) is positive tempered stable, then the

Laplace transform of X; is given by:
Dy, (s) = E(exp(—sX;)) = E(exp(—s(pX;1 + €))) = Px, , (ps)P,(s).  (2.5)
Assuming X; s to be stationary distributed, it follows:

dx(s) =exp{—((A+5)° =N}, A>0, 8¢€(0,1), (2.6)

and

Dx(ps) = exp{—((A+ps)? = A}, A>0, 3€(0,1). (2.7)

Using (2.5)

Dx(s) = Pe(s)Px(ps),



Chapter 2. Tempered Stable Autoregressive Models 27

which implies
q)X (8)
®x(ps)

Putting values from (2.6) and (2.7), yields

D (s) =

D.(s) = exp{(ps + N)? — (s + N)}. (2.8)

The k-th order moment, for the innovation term, can be extracted by taking the

k-th order derivative of Laplace transform as follows:

dk
k1 _ k
Ele’] = (=1)" 5 de(s)ls=0, k €N,
which yields

E(e) = BN (1 = p), (2.9)

and

E(e?) = (BN~ (p— 1))? + B(8 — UN2(p? — 1). (2.10)

Remark 2.2.1. For A\ = 0, in (2.8), we have ®.(s) = e~ which is the Laplace
transform of a positive stable random variable (1 — p®)Y/8S. Hence, it shows that
the if the AR(1) series is stable the error term is also stable.

Proposition 2.2.1. The error distribution with Laplace transform (2.8) is infinitely

divisible.

Proof. By Feller (1971), a pdf f(x), = > 0 is infinitely divisible iff its Laplace
transform is of the form F(s) = e¢=®(), for s > 0, where ¢(s) has a completely
monotone derivative. Further, a function (-) is completely monotone if it possesses
derivatives (™ (-) of all orders and (—1)"(™(s) > 0, s > 0, n = 0,1,... (see
[25], p. 439). For ®.(s), we have ¢(s) = (s + A)® — (ps + \)?, which gives ¢/(s) =
B(s+N)P1—Bp(ps+)P~L. Consider ¥ (s) = (s+A)?~1, which yields to ™ (s) = (8-
D(B—2)---(B8—n)(s+ N7t Thus (=1)"p™(s) >0, n=0,1,2,.... Similarly,
considering ((s) = (ps + A\)P~L, we can show that ((s) is completely monotone.
Moreover, (—1)"¢"(s) = (—=1)"¢"(s) — (—=1)"¢"(s) and " (s) is always greater than
("(s) as 0 < p < 1, this implies (—1)"¢"(s) > 0. So, ¢(s) has completely monotone

derivative. OJ

Remark 2.2.2. Using (2.8), it follows that the random variable € can be written
as the difference of two independent but not identically distributed tempered stable

random variables. Hence the error distributions are infinitely divisible since, the
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difference of two infinitely divisible random variables is infinitely divisible (see [8/],
Prop. 2.1, p. 94).

Next, we provide the explicit form of the pdf of the error term using complex

inversion formula, which generalize the corresponding results in [1].

Theorem 2.2.1. For the stationary tempered stable autoregressive model defined in
(2.1) with Laplace transform defined as:

E (%) = ¢~ ((+37=3), (2.11)

the pdf of the innovation term has following integral form:

1 0 e BB o=t _ (oot 1 X A\B Az BB et™B _ (wet™ 4 A— 2B
g(x) _ o e o e wrr we (we™ T+ p) e p pwrplwle (we'™+ A p) dw
i | Jo

AN
+ /p ( . efA:vefwxe(f)\p+pwe_L”+)\)ﬁf(we_”)ﬂ . eAxewze()\erpwe”Jr)\)ﬁ(we”")5> dw,]
0
(2.12)

where A\ > 0 and 5 € (0,1).

Proof. Inverse Laplace transform corresponding to ®.(s) provides the density of
innovation term. The density for innovation can be computed using complex

inversion formula for Laplace transform given by

1 [mo+ios
g(x) = - /mo_ioo e T (s)ds, (2.13)
where point xy > a for some a is taken in such a way that the integrand is analytic
for Re(s) > a. Note that the integrand e**®.(s) is an exponential function which is
analytic in whole complex plane. However, due to fractional power in the exponent
the integrand e**®.(s) has branch points at s = —\ and s = —\/p. Thus we take a
branch cut along the non-positive real axis and consider a (single-valued) analytic
branch of the integrand. To calculate (2.13), consider a closed double-key-hole
contour C: ABCDEFGHIJA (Fig. 2.1) with branch points at O = (—=\,0) and
O = (=\/p,0). The contour consists of following segments: AB and 1J are arcs of
radius R, BC, DE, FG, and HI are line segment parallel to xz-axis, CD, EF, and GH
are arcs of circles with radius r, and JA is the line segment from xy — iy to z¢ + iy

(see Fig. 1). The integrand is analytic within and on the contour C' so that by
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Cauchy’s residue theorem (see [80])

1
— | D (s)ds = 0.
2m Jo

P(x0,0)

Figure 2.1: The double key hole contour

Using (Lemma 4.1 Schiff (1999), p. 154), the integral on circular arcs AB and 1J
tend to 0 as R — oo. The integral over CD, EF, and GH are also zero as r goes to
infinity. Thus, as » — 0 and R — 0o, we have

1 [rotees 1 1
— e (s) = —— e (s)ds — — T, (s)ds
2700 J iy —ioo 2m Jpo T JpE
1
- — esx(be(s)ds—/ e**d.(s)ds. (2.14)
21 J HI

A
Along BC', put s = —— + we'™, which implies ds = —dw, and hence
p

R=X/p
/ e exp((ps + )7 — (s +A)7))ds = / e/ pemwz gpfwle ™ —(we AN p) 1y,
BC r
(2.15)
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A
Along HI, s = —— +we™"" and ds = —dw
P

R=2/p BB e—imB - 8
/ e* exp((ps+A)P—(s+X1)?))ds = —/ e AE/PemwE ot Wl e TR (we T THA=N )" o)y
HI r

(2.16)
Along DE, s = =X + we'™ and ds = —dw

—r+(A/p)=A g i
/ e exp((ps+N)°—(s+N)7))ds :/ e e W (T Aptpwe TN = (we ™) g )
DFE T
(2.17)
Along F'G, s=—X+we "™ and ds = —dw

—r+(A/p)—A g s
/ e exp((ps+A)? —(s+X)?))ds = —/ e MW p(FAptpwe TN = (we T ) gy
FG r

(2.18)
Substituting (2.15), (2.16), (2.17), and (2.18) in (2.14), the result follows as r — 0
and R — o0o. [

1
Remark 2.2.3. For the special case A =0 and § = 5 (2.12) reduces to:

1/2 )
g(z) = (1 ?/%/ﬁ> (273:]63) exp (%) ol <1,

and is called Lévy probability density function see [7], which is a special case of the

inverse Gaussian density. Abraham and Balakrishna [1] show that if the inverse
Gaussian autoregressive model is stationary the error term is also inverse Gaussian

distributed. Our results complement their findings.
Remark 2.2.4. For A\ =0, the error density function in (2.12) reduces to:

1 o
g(r) = —/ vz w? (1=p7) cos(mh) iy (0’ (1 = p%)sin(nB)), = > 0. (2.19)
T™Jo
Proposition 2.2.2. For A = 0, the innovation term has the following fractional

q-th order moment:

E(Eq) — F(l _ Q/ﬂ)

1-p9"% 0<qg<p<l.
F(l—Q)< )

Proof. For a positive random variable X with a Laplace transform ®(s), and for

p > 0, it follows:

oo qn oo qn oo qn
d p—1 — E —sX pfld — ]E/ —sX pfld
J A A E e e A T G Bl
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— (-1)"E

/ X”e“xuplds] = (=1)"T'(p)E(X"P).
0
Thus for g € (n — 1,n), for an integer n, we have:

B(xr) = D" /0 T )] s,

dsn

Using the relationship for ¢ € (0, 1), it follows:

-1 *d B_(stnf] —
F(e?) — [(psm <s+A)] a4
(€) I'(1—q) /o ds ‘ s
1 /OO (psH2)7 —(5+3) g1 f1y
== e\’? 5 s+ A — pB(ps + A s 4ds,
N ((s+) pB(ps + A7)

which gives the g-th order fractional moment of the innovation term. For A\ = 0, it

can be written in the explicit form as follows:

1 1BV Ba
E(ef) = (1=p")s” B=a=1p31 A\d
(6 ) F(l q)/o e S B( p ) s
1 / —(1-p%)u, —q/B B
= e “u 1—p%)du (put P =u
F(l - Q) 0 ( ) ( )

(1— 5) I'(1—gq/B) I'(1-q/B) .
= I'(1 _pq) (1— pﬁ)(ql—q/ﬁ) - I _qq) (1—p"8 0<q<B.

]

Proposition 2.2.3. For the stationary TAR(1) model, defined in (2.1) the

autocorrelation for r-th lag p, has the following recursive form

7

Pr=p-

Proof. For the given TAR(1) process X; = pX;_1 + €, multiplying both the side by
X, we get:
XeXir = pXe 1 Xy r + 66X

Here X, is independent of ¢; for j > n. Taking expectation on both the sides, yields

E(X:Xi—,) = pE(Xi1 Xi—y) + E(e X—,),
which gives

E(XiXi—r) = B(X)E(X;—r) = pE(Xi-1 X)) — pE(Xi-1)E(Xi—y) + pE(X-1)E(X, )
— E(X)E(X:—) + E(e) E(X—,).
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Thus,

Cov(Xp, Xo_) = pCov(Xe 1 X s) + E(Xe 1)E(X)(p — 1) + E(e)E(Xo)
= pCov(X1 Xi—r) + E(X;— ) (E(Xy) (p — 1) + E(er)).

Since, E(e;) = (1 — p)BA*~1 and E(X;) = BA?~L, it follows:

Cov(Xy, Xy_) = pCov(Xy_1, Xi—p) + E(X,_ ) (BN (p— 1) + (1 — p)pA°Y)
= pCov(Xy_1, Xi—p).

Dividing both side by y/Var(X;)Var(X,_,), yields

Cov(X; X—,) _ Cov(X;_1X;—)
\/Var(Xt)Var(Xt_r) \/Var(Xt_l)Var(Xt_T) ’

Using, Var(X;)=Var(X;_;)=Var(X;_,), leads to

Pr=ppr—1 => pr=17p",

where pg =1 and p; = p.

2.2.2 Parameter Estimation

Here, we discuss the estimation procedure of the parameters of the tempered stable
autoregressive model. We consider conditional least square and moments based

estimation methods.

Parameter estimation by conditional least square: The conditional least
square method provides a straightforward procedure to estimate the parameters
for dependent observations by minimizing the sum of square of deviations about
conditional expectation [9,53]. To estimate the parameter p of process (2.1) the
conditional least square (CLS) method is used. The CLS estimator of parameter

vector 0 = (p, A, B) is obtained by minimizing

n

Qn(0) =D [Xis1 — B(Xia| Xy, Xiog, -+, X0) P (2.20)

=1

with respect to 6. For an AR(1) sequence, due to Markovian property

E(Xi+1|Xi7 X’i—l? e JXl) - E(XZ+1|X1)7 (221>
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which yields
E(Xin1]Xi) = pX; + E(e), (2.22)

where E(¢;) = BAP71(1 — p). Using (2.20) and (2.21), we can write

n

Qu(0) = 3" [Xig1 — pX; — (1 - p)BN1]7, (2.23)

=1

Minimising (2.23) w.r.t p, 3, and A gives the following relation for 5 and A:

)\5—1 _ Z?:I(Xi-i-l - ﬁXz)

B - 2.24
n(l—p) (2:24)
and estimate for p using above equation (2.24) is
(X - X) (X — X

Z?:1(Xi - X)Q ’

The estimate p can be easily calculated from the observed sample using (2.25).
However, some numerical method which minimizes the squared difference between
left and right hand sides is required to estimate 5 and A from (2.24). Next, we prove
the asymptotic normality of the estimator p,, which is otherwise denoted by p for

ease of notation.

Proposition 2.2.4. The CLS estimator p, for p is asymptotically normal, that is,
Vi(pn = p) == N(0,1 = p?), asn — oo,

Proof. TAR(1) process satisfies the regularity conditions defined by Klimkov and
Nelson [53], so one can say that the CLS estimator of p is consistent and normal,
that is,

Vi(pn — p) == N(0,D),

where D = % and the value of W and V' can be calculated using the method defined
by Klimkov and Nelson [53]. Define:

9(0, Xi21) = pXo1 + (1 — p)BAPY,

2
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where
Up=X,—pX, 1 — (1= p)BAFD = ¢, — (1 - p)BAED,
This implies that

W = El(e, — (1 - p)BAP ) (X,_y — BACD)?]
— El(en — (1 — p) AP D)2E[(Xioy — BACDYY.

Thus,

W El(e, — (1= p)BAF=D)2
V2 E[XZ, — BAG-D)?
— E[(e,)? — (1 — p)BAE=D)2 — 2¢, (1 — p)(BAPY)]
E[X? ] — (BAB-D)?
_ E[e2] - (1 p)*(BAPD)?
E[XtQ—ﬂ - (5)\@_1))2
(BX (1= p))* + B = HN'2(1 = ) — (1= p)IN')?

- B(1 — B)AB=2 4 (BAB~1)2 — (BAB~1)2 = (1-p7).

Using (2.24), it is evident that for parameters § and A, the estimators are not in
closed-form and hence the estimates are obtained by optimization. Thus, in our
opinion, the asymptotic properties of the estimators for g and A are not possible
to established. To check the asymptotic property of estimator p, we simulate 1000
datasets, each with length n = 5000, for p = 0.9 and find out the simulated values
of p, for each simulation. For \/n(p, — p), the sample mean is 0 and sample variance
is 0.194, which shows the convergence discussed in Prop. 2.2.4. The histogram for
simulated values of \/n(p, — p) is given in Fig. 2.2.

Moments based estimation: The parameters of positive tempered stable
distribution cannot be estimated by classical maximum likelihood estimation
methods due to non-availability of closed from probability density function. Also,
the CLS estimator provides an estimate for p only. Here, we use method of moments
to estimate the parameters § and A. The general idea used by Pearson [67] is the
population moments about the origin are equal to the corresponding moments of
the sample data. In case of TAR(1) process, moments for innovation distribution
can be extracted using the corresponding Laplace transform as the density (2.12) is
in complex form. The idea is to apply the method of moments on the error sample,

which can be easily obtained from the original series by first estimating the p using
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250

Figure 2.2: Histogram plot for /n(p, — p)

CLS method. The sample estimates for E(¢;) and E(e?) are given by:

Z?:l €i Z?:l(Xi-H — pX;)

my = =L = p 7 (2.26)
noe2 " (X — pX;)?
My = Zz;l & _ Zz:l( "T‘ll P ) . (2.27)

Takingzzzzzl( 11— pXi) Zz:l( 41— pX;)

n n
(2.26), and (2.27) we get the following relations:

and r =

and using (2.9), (2.10),

BN (22 —1)A

=TTy

BN =
L—p

After some manipulation, the above two equations leads to following non-linear

(B-1)
-1 z
() ()

We use sequential least square optimization technique (SLSQP) to solve these

equations:

equations, which is an iterative method to optimize a non-linear model using the
non-linear least square model and sequential quadratic programming model [27].
We use “scipy.optimize”, which use “SLSQP” as an inbuilt method in python to

solve non-linear equations that gives the estimates for 5 and .
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Parameter estimation by tail index: The parameter estimation, for the case
A = 0 (corresponding density given by (2.19)) is done by using the right tail
behaviour of S, for the TAR(1) process. For the TAR(1) process, we have a positive
stable innovation random variable (1—p®)'/#S with corresponding Laplace transform
—(1—pP)sB

e Note that the innovation terms are independent and hence the estimation

can be done using empirical and theoretical tails. Using (2.2), it follows:

(1= ) VPa)

P((L— )17 > 2) = B(S > (1= ")) o o

as r — Q.

(2.28)

Taking log on both sides of (2.28) and replacing P(S > (1 — p?)~"Y8z) = G.(z),

where G(z) represents the empirical tail for €, we get

log(G.(z)) = —Blog(x) 4 log(1 — p°) = log(I'(1 — B)), 0 < B < 1. (2.29)

Consider Y = log(G.(x)) and X = —log(x), which yields g as slope of the regressing
Y on X.

2.2.3 Simulation Study

To check the efficacy of the estimation procedure, we perform simulation. Here,
we have considered an AR(1) model with marginals to be distributed as one-sided
tempered stable distribution and the corresponding Laplace transform for error term
€ is given in (2.8). In order to simulate a tempered stable AR(1) series, first we
simulate data for innovation using the Laplace transform (see [73]). Ridout discussed
the simulation of a continuous distribution function using its Laplace transform
which turns out to be very helpful if the probability density function is not in
closed-form. We consider 1000 simulations each with length n = 10,000, for three
different different parameter combinations. For each case single trajectory is used

for estimation and the results are summarized in the following Table 2.1.

Actual Estimated

Case 1 p=09 A=1 8=05 p=0.895 A =1.13, § = 0.489
Case 2 p=08 A=2 =07 p=0.795 A =193, 5 =0.70
Case 3 | p=0.75, A=1.5,5=09 | p=0.755, A =1.60, 5 = 0.90

Table 2.1: Actual and estimated parameter values for single trajectory with different
choices of parameters.

The sample trajectory for an AR(1) process for positive tempered stable distribution

with parameters p = 0.9, A = 2, and § = 0.5 is given in Fig. 2.3a. Next, we generate
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1000 samples of TAR(1) process with size 10,000 each to assess the performance of
the estimation method. To ensure the stationarity, here, we assume AR(1) process
with parameter p < |1|. Consider p = 0.9 and take tempered stable distribution
parameters as = 0.5 and A = 2. The parameters A and [ are estimated using
method of moments. On the other hand, the conditional least square is used to
estimate p, considering different samples. The corresponding box-plots for estimated

parameter values are shown in Fig. 2.3b. For the particular case A\ = 0, which
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Figure 2.3: Sample path of TAR(1) process (left panel) and the box plot of estimated
parameters using method of moments (right panel).

leads to one-sided positive stable autoregressive model, simulation is again done
by the method given in [73], and parameter estimation is done by the tail index
method using (2.29). We simulate a sample of 10,000 observations for p = 0.5
and f = 0.5. By taking values greater than a particular threshold such that we
have some percentage of the sorted dataset greater than that threshold value, we
get regression based estimate for 8. Taking a cutoff value of 0.009 gives the 30%
of observation greater than the cutoff and gives the corresponding estimate of 0.36
for 8. For cutoff value 0.019, we get almost 20% of the observation greater than
threshold value and corresponding estimate is 0.41 for 5, which is more close to true
parameter value. Further, for £ = 0.06 the estimated S is 0.49, which is even more
closer to the actual value. This clearly indicates that the accuracy of the estimated
parameter depend on the threshold selected. The results are summarized in Table

2.2, where k represents the threshold value.
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Threshold | Actualf | Estimated(
Case 1 || k=0.009 0.5 0.36
Case 2 || k=0.019 0.5 0.41
Case 3 k=0.06 0.5 0.49

Table 2.2: Actual and estimated parameter values for single trajectory with different
choices of parameters based on tail index, for A = 0.

2.3 AR(1) Process with Tempered Stable

Innovations
Consider the stationary AR(1) process
Xt = PXt—l + €¢, |p| < ]_, (230)

where ¢, s are i.i.d positive tempered stable random variables defined in (2.3) and
independent of X; ;. Let ®y,(s) and ®,(s) are Laplace transform of X; and ¢,
respectively. Now, assuming X 4 €0 and recursively writing (2.30), we get a moving

average representation of AR(1) process as follows:

Xt = Zpiet—ia A > 07 6 S (07 1)

1=0

The Laplace transform of X is

Oy, (s) = [ @e(p's) = [[ ¥~ O+79)" = e -Eimolteta)”,
=0 1=0

Proposition 2.3.1. For A =0, the g-th order moment of X, is given by:

E(X{) = %(2#’3)% 0<g<pB<l

Proof. Using Prop. 2.2.2, for a positive random variable X with corresponding

Laplace transform ®(s), and for p > 0, it follows:

< dm — n n—

| @)t = () TEEC )
o ds

Thus, for ¢ € (m — 1,m), for an integer m, we have:

E(X?) = —— /Ooo i—mm [®(s)] s" 7 ds.
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For ¢ € (0, 1), it follows:

—1 < d B_sn (i8] —
E(X9) = it [ nAP =371 o (p*s+A) } ad
) F(l—q)/o ds | v
: /OO NS (! Nzn () —1g-
= e" izo(p's+A) Bp’(p’s—i—)\)ﬂ o=
I'(1—=q) Jo i—0

For A =0, it yields

1 ® BB g .
E(X9) = PieopPs? B—q-1 i8) d
%) F(l—Q)/o ’ ’ ﬁ(;p )

Y T
= e~ Xizo Uyl ) du (put s# = u)
I'(1—4q) Jo (; )

B Z?:opw L'(1-gq/B) I'(1—gq/pB) (zn:piﬁ)q/ﬁ’ 0<q<p.

F(L—q) (yr, o)) T(-q)

=0
[

Remark 2.3.1. Using same argument as in Prop. 2.2.1, we show that the marginal
distributions of X; are infinitely divisible. It is easy to show that for e"AB*Z?:O(HPiS)ﬁ,
the exponent ¢(s) = > v (A4 p's)? —nA® has completely monotone derivative, that

is (=1)"¢"(s) >0, n=0,1,2,....

Var(X
Remark 2.3.2. The index of dispersion for X; is ID(X;) = %. Using the
¢
B—1
mean and variance of the process X, given by E(X;) = 1 and Var(X;) =
—p
1 — BINB—2) —
pa—5) , yields ID(X,) = b , where 0 < p < 1,8 € (0,1) and A > 0.

1—p? A1+ p)
For A > 1 the ID(X,) < 1, which implies that the marginal distributions of X; are

under-dispersed for A > 1.

2.3.1 Parameter Estimation

To estimate the parameter p of the process (2.30), the conditional least square
method discussed in previous section is used, which minimize (2.20) with respect to
6. Using the mean of ¢ and (2.20), (2.21), and (2.22), we can write

n

Qn(0) = Z [(Xit1 — pXi — 5)\’871]2 : (2.31)

i=1
Minimizing (2.31) w.r.t p gives the following estimate:

b= > (Xi = X)(Xis — X)
Y (XX
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The parameter estimation for # and A is done again using method of moments for

€;, which leads to
my = BN my = (BN 4 B(1 - B)N

where m; and msy are first and second order sample moments for ¢, respectively.

After some manipulation, we get the following non-linear equations:
_ A
Ble(B— 1) —my =0, (— + 1) AN =,
c

where ¢ = . Using the optimization technique SLSQP, discussed in Section

2
ms — ml
2.2.2, these equations are solved in python to obtain the estimates A and 5. The

estimate of A can also be obtained using the estimate B , denoted by:

2.3.2 Simulation Study and Real Data Application

To check the performance of the estimation method, we use simulated dataset. Using
the method discussed in [73], we simulate an independent sample of size 10,000 for
error term using the Laplace transform of positive tempered stable random variable
defined in (2.3). Then, we recursively simulate AR(1) series by using fixed value of
p and letting ¢g = Xy. The performance of the estimation method for three different
sets of parameters is summarized in Table 2.3. For each case single trajectory
is used for estimation. The sample trajectory for AR(1) process with tempered
stable innovations is given in Fig. 2.4a. Further, to assess the performance of the
estimation method, box plots of the estimated parameters p, B , and )\ are plotted by
taking multiple simulated random samples of innovations and generating multiple
AR(1) time-series. Here, we generate 1000 samples each of length n = 10,000 for
p=0.98=0.5 and A = 2 and estimate parameters for each sample. The box plot
of estimated parameters is shown in Fig. 2.4b.

Real data application for power consumption data: The power consumption
data during the time of COVID-19 is extracted from Kaggle. The data contains the
daily state-wise power consumption in India during the time period Jan 2, 2019 to
May 23, 2020 that is for a period of 17 months and each data-point represents the
power consumption at that time in Mega Units (MU). We work on the data during
the period Apr 14, 2019 to Apr 29, 2020 for the Indian state Arunachal Pradesh.
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Actual Estimated

Case 1| p=09,A=1,8=05 | p=0.8909, \=1.01, 3= 0.5002
Case 2| p=08X1=28=07 | p=0.804, \=2.037, 3=0.69

Case 3| p=075,A=15,8=09| p=0.75131, A\ = 1.56, 3 = 0.89

Table 2.3: Actual and estimated parameter values for single trajectory with different
choices of parameters.
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(a) Sample trajectory AR(1) process with
tempered stable innovations (b) Box plot of parameters using MoM

Figure 2.4: Sample path of AR(1) process with tempered stable innovations (left
panel) and the box plot of estimated parameters (right panel).

The sample path of the data is plotted in Fig. 2.5a.

By simply looking at the data we can visualize the stationarity with some
sharp spikes suggesting non-Gaussian behavior. We have applied Augmented
Dickey—Fuller (ADF) test to check the stationarity of the data and the p-value
comes out to be less than 0.05, which indicates that the null hypothesis of ADF
test is rejected at 5% significance level and implies that the data is stationary. To
determine the appropriate time series model, ACF and PACF plots are given in Fig.
2.5b and Fig. 2.6a, respectively, which determines the appropriate time series model

with significant lag.

Clearly, PACF plot for the dataset is significant till lag 1 and the ACF plot tails
off, this means that AR(1) model would be a good fit for this data. We assume
that the innovation term ¢; follows one-sided tempered stable distribution. We fit
the proposed AR(1) model with tempered stable distribution on the dataset. The
estimated parameters using the above described methods are ﬁ =091, A= 2.9, and
p = 0.60. Using these estimated values, we simulate a dataset to assess the accuracy
of the results. We simulate a data sample for A =2.8and B = 0.92. Considering the
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Figure 2.5: Time series plot of the power consumption data (left panel) and the
corresponding ACF plot (right panel).

relation ¢, = X; — pX;_1, we generate a dataset for the innovation term. To check
whether both the simulated data using estimated parameters values and the actual
data set follow same distribution or not we use two sample Kolmogorov—Smirnov
(K-S) test and Mann-Whitney U test. The two sample K-S and Mann-Whitney U
test both are non-parametric tests which compare the distribution of two datasets.
The two sample K-S test applied on actual error dataset and simulated error dataset,
gives a p-value 0.056, and Mann—-Whitney U test gives the p-value 0.377. Thus the
null hypothesis for both the tests are accepted at 5% level of significance. This
indicates that both the samples are from same distributions. Hence, it is appropriate
to model the considered power consumption time-series using AR(1) model with

positive tempered stable innovations.

Using the estimated parameters from empirical power consumption dataset, we
generate synthetic tempered stable errors series of same length as of empirical
dataset. Also, we generate another synthetic errors series by assuming the
innovations to be Gaussian with mean p and variance o2, where pu and o? are
estimated using empirical errors. The estimated parameters for tempered stable
innovations are A = 2.89 and # = 0.92, and the estimated parameters for Gaussian
innovation are u = 0.84 and 0% = 0.049. The KDE plots for empirical errors,

tempered stable errors, and Gaussian errors are given in Fig. 2.6b.

It is clearly evident that the density plot for Gaussian innovations does not matches
with the density plot for empirical innovations. However, the density plot for
tempered stable innovations better model the empirical innovations. Moreover,
the K-S test and Mann Whitney U test is accepted at 5% level of significance,

which justify to use AR(1) model with tempered stable innovations. To measure
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Figure 2.6: PACF plot of the power consumption data (left panel) and the KDE
plots of the empirical errors, simulated Gaussian errors, simulated tempered stable
errors (right panel).

the model performance, Theil’s U test is applied, which measures the accuracy based
on distance between actual values and predicted values [14]. The model is said to
performs well if the statistic value is close to 0. The two types of Theil’s U statistics
are defined below.

The type 1 statistic is defined as:

NESS R
NSNS

where F; is the forcasted value at time ¢t = ¢ and X, is the corresponding actual

value. Further, the type 2 statistic is defined as:

1/2
> i (Fi = Xi)2]

1/2
B2

By allocating 80% of the power consumption data to training set and 20% data to

U =

testing set, and using the forcasted values from AR(1) model with tempered stable
innovations the U; and U, statistics, respectively are 0.04 and 0.2, which indicates

that the proposed model performs well for this dataset.

Real data application for drinking water treatment data: We study another
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dataset that is drinking water treatment plant (DWTP) data, which has a daily
frequency. The dataset is extracted from Data World. We study daily Turbidity
data which is a measure of water clarity for a time period of 1000 days, that is ,
from May 15, 2008 to Feb 09, 2011. The sample path of the data is given in Fig.
2.7a. The ACF and PACF of the data are shown in Fig. 2.7b and 2.8a, respectively.
One can observe that the PACF is significant for lag 1 and the ACF plot tails off
indicating that the AR(1) would be a good fit for the data.
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(a) Water turbidity series (b) ACF plot

Figure 2.7: Time series plot of the water turbidity data (left panel) and the
corresponding ACF plot (right panel).

The p-value for the ADF test statistic is less than 0.05 indicating the stationarity of
the data. The estimated parameters for the proposed AR(1) model with tempered
stable innovations are p = 0.69, @ = 0.49, and A = 0.04. These estimated parameters
are further used to simulate tempered stable innovations for KDE plot. Assuming
the error distribution to be Gaussian the estimated parameters are p = 2.68 and
0% = 28.64. The KDE plots for empirical errors, simulated tempered stable errors

and simulated Gaussian errors are given in Fig. 2.8b.
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Figure 2.8: PACF plot of the power consumption data (left panel) and the KDE
plots of the empirical errors, simulated Gaussian errors, simulated tempered stable
errors (right panel).
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Chapter 3

GARTFIMA Process: Empirical
Spectral Density Based Estimation

In this chapter, we introduce a Gegenbauer autoregressive tempered fractionally
integrated moving average (GARTFIMA) process. We work on the spectral density
and autocovariance function for the introduced process. The parameter estimation
is done using the empirical spectral density with the help of the non-linear least
square technique and the Whittle likelihood estimation technique. The performance
of the proposed estimation techniques is assessed on simulated data. Further, the
introduced process is shown to better model the real-world data in comparison to

other time series models.

3.1 Introduction

In Chapter 1, we extensively explored the foundational concepts of time series
modeling, particularly focusing on the ARIMA(p,d,q) and ARFIMA(p,d,q)
processes. While these models offer valuable insights into non-stationary time
series, their effectiveness diminishes when confronted with data exhibiting long-range
dependence. This phenomenon, characterized by substantial correlation persisting
over large lag intervals, is prevalent in diverse fields such as finance, economics,
geophysics, and agriculture [10,74]. To address the limitations of ARIMA and
ARFIMA processes in capturing LRD, we turn our attention to the innovative
approach introduced by Hosking in [46]. He extended the Box and Jenkins
framework by incorporating a fractional differencing operator, giving rise to the
Autoregressive Fractionally Integrated Moving Average (ARFIMA(p, d, q)) process.
This process, with d € R, emerges as stationary for |d| < 1/2 and exhibits LRD
characteristics for d € (0,0.5). An LRD process is a process whose autocovariance
function or autocorrelation function is not absolutely summable or in the frequency
domain and power spectral density is not everywhere bounded. In recent years,
tempered processes have been studied in great detail [12,40,56,75,77]. These
processes are obtained by exponential tempering in the original process. The
ARTFIMA models were introduced as a generalization of the ARFIMA model in
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[76]. According to [76], it is more convenient to study ARTFIMA time series as the
covariance function is absolutely summable in finite variance cases and the spectral
density converges to zero [38]. Also, the spectral density of the ARFIMA process
is unbounded as the frequency approaches 0. In many scenarios, there exist many
datasets for which the power spectrum is bounded as the frequency approaches 0
and these types of datasets cannot be modelled using the ARFIMA process. An
extension of the Fractional ARIMA process is proposed to model long-term seasonal
and periodic behaviors and is referred to as the Gegenbauer autoregressive moving
average (GARMA) process [38]. The GARMA process uses the properties of the
Gegenbauer generating function to model a time series. For the Gegenbauer random
fields, one can refer to [24].

In this chapter, we introduce and study the Gegenbauer autoregressive tempered
fractionally integrated moving average (GARTFIMA) process, which is a further
extension to the GARMA process as well as the ARTFIMA process by including
the tempering parameter A and Gegenbauer shift operator in ARFIMA process.
The GARTFIMA process can be used to model datasets with periodic behaviors
having a bounded spectrum for frequencies near 0. Our contribution involves
both the introduction of a new model namely GARTFIMA model and the
development of a novel parameter estimation techniques, namely non-linear least
square approach. Additionally, we investigate an existing parameter estimation
technique for GARTFIMA process, namely Whittle likelihood estimation method.
The rest of the chapter is organized as follows:

Section 3.2 includes a new parameter estimation technique for the ARTFIMA process
which is inspired from the non-linear regression technique introduced by Reisen [71].
A simulation study is also done to check the performance of the estimation method.
In Section 3.3, the GARTFIMA process is introduced and the corresponding form
of spectral density is obtained. Further, the autocovariance of the process is found
by taking the inverse Fourier transform of the spectral density which does not have
an explicit closed-form expression and can be represented using the coefficients of
Gegenbauer polynomials. Moreover, the stationarity and invertibility conditions are
also discussed for the GARTFIMA process. The parameter estimation techniques for
the GARTFIMA process are provided in Section 3.4. To estimate the parameters
of the process first approach is based on non-linear regression and the second is
based on the Whittle likelihood estimation and the performance is assessed by
doing a simulation study for both the methods, where the comparison of actual
and estimated parameters are demonstrated using the box plots. The comparison
of the defined model with ARFIMA and ARTFIMA models is also presented in this

section.
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3.2 Parameter Estimation for ARTFIMA Process

The parameter estimation for the ARTFIMA process is discussed in [76] using the
Whittle likelihood based estimation technique. Here, we provide an alternative
estimation technique based on empirical spectral density using the non-linear least
square approach to estimate the parameters d and A. We establish a non-linear
regression equation between empirical and actual spectral densities to estimate the
unknown parameters. In (1.12), assuming (1 — e *B)X; = U, the spectral density
for the ARMA(p, q) process ®(B)U; = O(B)e,, is given by:

fulwy) = T2 I (3.1)

Using (3.1) and (1.13), the spectral density of X; can be written as:

Folws) = fulw;)(1 — 2™ cos(w;) + ) 7" (3.2)

o
Consider w; = L‘], j=0,1,...,|n/2] to be a set of Harmonic frequencies. Here, n
n

is the sample size and wj is the set of harmonic frequencies. Taking natural logarithm

on both sides of (3.2) and with some manipulation, it follows:

log{ fa(w;)} = log{£u(0)} + log{ fu(w;)} — dlog{(1 — 2¢™* cos(w;) + e**)} — log{f.(0)}

= log{f.(0)} — dlog{(1 — ¢ A cos(wj) + 6*2/\)} + log { ?‘u(é‘a])) }

Adding log{/(w;)} on both sides yields

log{I(w;)} = log{ f.(0)} — dlog{(1 — 2™ cos(w;) + e~*")} + log { LI}((CBJ-)) }

+10g{ uCh) }, (3.3)

fa(wj)

where I(w;) is known as the periodogram or empirical spectral density of the process
{X;} stated as:

I(w;) = i{R(O) + i: R(s) cos(swj)} w € [—m, 7, (3.4)

1
where R(s) = => " (X; — X)(Xips — X), s = 0,1,...,(n — 1) is the sample
n
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autocovariance function with sample mean X. Using (3.1), we have:

0 (1— 0, — - —0,)

fu(o)zg(l_@_..._%)z'

Assuming log(/(w;)/ fz(w;)) to be the error term for the non-linear equation given
in (3.3) and minimizing the sum of squared errors for the equation, the parameters
d and A are estimated. Also, choosing the w; near 0, the term log( f,(w;)/ f.(0)) will
be negligible. So, another way for the estimation is to choose the upper limit of j
such that the w; is small or near zero. Considering w; close to 0, the (3.3) can be

rewritten as:

log{I(w;)} = log{f,(0)} — dlog{(1 — 2" cos(w;) + e ")} + log { J{;ij)) } (3.5)

The above equation can be expressed in form of a non-linear regression equation,
where log(I(w;)/ fz(w;)) can be expressed as error term log{ f,,(0)} can be expressed
as intercept and the parameters d and A can be estimated by applying the non-linear
least square regression or minimizing the sum of squared errors using generalized

simulated annealing with “GenSa” package in R.

Simulation study

A simulation study is carried out to assess the performance of the stated estimation
approach. Assuming the innovation distribution to be Gaussian with mean py = 0
and variance 02 = 2, a sample with size 1000 is simulated for an ARTFIMA (p, d, A, q)
process. The simulations are carried out using the artfima package available in R. For
each case single trajectory is used for estimation. We run two distinct simulations
using different parameter combinations to test the performance of the specified

estimation approach. The results are summarized in Table 3.1.

Actual Estimated
Case 1 | d=04,A=02 |[d=041, X\ =0.18
Case2 | d=05A=04 || d=052 \=0.39
Case3 | d=0.3,A=025]d=029, \=0.30
Case 4 | d =025 A=0.11d=024, \=0.16
Case5 || d =035, A=03 ] d=031,\=0.34

Table 3.1:

parameter d and tempering parameter \.

Furthermore, using the ARTFIMA(1,0.4,0.2,1) process, we simulate 1000 samples

Actual and Estimated values for single trajectory with differencing
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each with size 1000 and construct box-plots of estimated parameters using simulated
data. The plot is shown in the left panel of Fig. 3.1. From Fig. 3.1, it is evident
that the median of the estimated parameters is equal to the true values with some
outliers also. Similarly, using the ARTFIMA(1,0.5,0.4,1) another simulation is
performed and the box plot for the same is given in the right panel of Fig. 3.1. The
performance of the estimation method also depends on the optimization method
used in minimizing the errors in the non-linear optimization and the initial guess

used for the parameters.

(a) (b)

Figure 3.1: Box plot of parameters using 1000 samples for d = 0.4 and A = 0.2 (left
panel) and for d = 0.5 and A\ = 0.4 (right panel).

3.2.1 Gegenbauer process

The Gegenbauer polynomials are generalizations of the Legendre polynomials. For
lu| < 1, the Gegenbauer polynomials C%(u) are defined in terms of generating

function as follows:
(1—2uZ+ 2% =) Clu)z", (3.6)
n=0

where d # 0, |Z| < 1 and C%(u) is given by:
2 T(n—k+d)

A,y _ 1k -
Calw) =3 _(=1) T(d)T(n+ 1) (n — 2k + 1)

k=0

(2u)" 2k, (3.7)

The concept of the Gegenbauer process was developed by Andel [4]. The Gegenbauer
process is defined using the generating function of Gegenbauer polynomials. For a

general linear process {X;}, the Gegenbauer process is given by:
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Xi =Y Ci(u)ern, (3.8)
n=0

where ¢, is white noise with mean 0 and variance ¢2. In terms of backward shift

operator B, (3.8) can be written as:
X, = (1 —2uB + B*) %,

Remark 3.2.1. The Gegenbauer process is stationary for |u| < 1 and d < 1/2 or
lu| = £1 and d < 1/4.

The spectral density or the power spectrum of the Gegenbauer process is given by
[38]:

2
folw) = = {4(cos(w) — u)?}™,
i
and the autocovariance function of the Gegenbauer process takes the following form:

2172d0.2

v(h) =

T sin” 2 (wy)sin(dm)T(1 - 2d) cos(hwo)%.

An extension to the Gegenbauer process is known as the Gegenbauer autoregressive
integrated moving average (GARMA) process. The GARMA process is a class
of stationary long memory processes which generalize the ARIMA and ARFIMA
processes. For the usefulness of generalized fractionally differenced Gegenbauer
processes in time series modelling, see [23] and for different estimation methods
related to the GARMA process, see the recent article [49]. The process is defined as

follows:
®(B)(1 - 2uB + B*)‘X, = O(B)e¢,

where ¢; is Gaussian white noise with variance o2, B is the lag operator, |u| < 1, and
|d| < 1/2. Again, ®(B) and ©(B) are stationary AR and invertible MA operators
defined in (1.2) and (1.3).

3.3 Gegenbauer ARTFIMA Process

In this section, we introduce a new stochastic process, namely, the Gegenbauer

autoregressive tempered fractionally integrated moving average (GARTFIMA)
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process which is defined as follows:

®(B)(1 —2ue™*B + e ?B%)’X, = O(B)e, (3.9)

where ¢; is Gaussian white noise with variance o2, B is the lag operator, |u| < 1,
A >0, |d <1/2, and ®(B), ©(B) are stationary AR and invertible MA operators
defined in (1.2) and (1.3), respectively. This process generalizes the ARIMA,
ARFIMA, ARTFIMA, and GARMA processes. In short, this process is denoted
by the GARTFIMA(p,d, A\, u, q).

Theorem 3.3.1. Let {X,;} be the GARTFIMA(p,d, \,u,q) process and all
roots of ®(B) = 0 and ©(B) = 0 lie outside the unit circle.  Then, the
GARTFIMA(p, d, A\, u, q) process is stationary and invertible for |d| < 1/2 and X\ > 0,
when |u| < 1.

Proof. Using (3.9), it follows:

o(B) - —2) 2\ —d
Xi=|—=|(1-2 B B
t <®(B) > ( ue +e ) €t,
where we can write
(1 —2ue ™z +e 22274 = Z Cu)(e™*2)" and Var(e,) = o2 (3.10)
n=0

For large n, the Gegenbauer polynomials C%(u) can be approximated as:

cos ((n + d)¢ — dmr/2) n®!
['(d) sin?(¢)

Cu) ~ (3.11)

Here, ¢ = cos™!(u) and % = U(B) = Y72 ¥;B’. The variance of the process is

given by:
Var(X,) = o) 47 (Calw)e ™"
j=0  n=0

and the variance will converge for d < 1/2 and A > 0, when |u| < 1. To prove the

invertibility condition, we define the process (3.9) as:

€t = W(B)Xt,
where 7(z) = (1 — 2ue ™z + 6_2>‘22)d%, and again using the same argument

discussed above the, 7(z) will converge for d > —1/2 and A > 0, when |u| < 1. O
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Theorem 3.3.2. For a GARTFIMA(p,d, \, u, q) process defined in (3.9), the spectral
density takes the following form:

9 g D 2p
o Pj 1 2 —d
fo(w) = — (D) ZHPE J - - A — Bcos(w) + C cos®(w)) ™,
9= 5 20 D09 | 1 s | (4 Bt + Coos

where A = (1 + 4u’e™ — 272 + ™) B = due M1 + e ), C = de™?,

max|q,q+1]
¢(l> = Z Qses—l
s=min|[0,l]
, and
o? E -
G=oz | IIO=rie) T (o= pw)
i=1 mj, 1<m<p
Proof. Rewrite (3.9) as follows:
X; = ¥V (B)ey,
O(B) ran X - 2\—d -
where U(B) = WA A and A = (1 — 2ue "B + B*)~% Then, using the

definition of the spectral density of linear process, we have:

falw) = [T (2)[*fe(w),

where z = e7 and f.(w) is spectral density of the innovation term. The spectral

density of the innovation process ¢ is given by o2 /27, which implies

o? a2 |0(z)[? ~2d
2(w) = —|¥(2)]> = — 1 — 2ue~ M) 4 gm2(Auw)y 750, 3.12
) = NP = LT (1 = 2ue ) 00 (3.12)
Note that ®(z) can be written as:

p

®(z) = [J(1 = psa), (3.13)
j=1

where p1, pa, ..., pp are complex numbers such that [p;| < 1, for j = 1,2,...,p.

Using (3.13) in (3.12), it follows:
B o2|0(e) 2 ’(1 — Que~(w) 4 6—2(>\+Lw))‘*2d

2r [ [(1 = pi2) (1 = pz7)

fr(w)

<.
Il
—
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Using the results from [83], the spectral density is given by:

2p
H—p Pj . 1 1—-92 —(Aw) —2(Aw) —2d

o %l_zq;w @[ S 1_pw]n e ) 4 g2 2.
where

max|[q,q+I]

Z eses—l

s=min[0,]]

and

G = g [pj [ =pe)  II o= pm)] :

m#j, 1<m<p

The spectral density takes the following form:

2p
0 1
l+p J _
x Qﬂ- Z Zw Cj [ _ pje—Lw 1— p—le—bw

l=—q j=1

(A — Bcos(w) + C cos*(w)) ™4,

where A = (1 +4u?e ™ —2e P +e ™), B=4due M1 +e ), and C = 4e 2. [

Theorem 3.3.3. For the GARTFIMA(p,d,\,u,q) process defined in (3.9), the

autocovariance function is given by:

= >0 3w

l=—q j=1

2”2/} Yoo (h — mdw+2p Yw(h+n)|,

m=0 n=1

where y,(h —m) = 02307 CHu)CL, (t)e~Crth=mIN gnd Cd(u) are defined in
(3.7).

Proof. The autocovariance function can be calculated by taking the inverse Fourier

transform of the spectral density of the process X; using the following form:

- / " @)

S| (=)
- pje " 1— pj_le—‘“’

l=—q j=1

’(1 _ oue~ ) 672()\+Lw))‘_2d Zerl] oh

We can write another form using the following expansions:
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1 o0
1-— ,0_16 w -1+ Z Z(pew)n'

n=1

The spectral density of GARTFIMA(0,d, A\, u,0) process, defined by, W, = (1 —
2ue B + e 2 B?)~de, is given by:

fuw(w) = p (1 — 2ue~ ) ¢ 672(>\+M))|_2d.

We can write

=7 [ [ PIPILULS (pf.p (pye )" + Z<pje“”>") (3.14)

l=—q j=1

|(1 _ oue~ ) o 672(/\+Lw))|_2d szrl] ol i

/ )0] Z pie LUJ 2u€7(>\+w) + 672(/\+Lw))|_2d e“"hdw

+ / (pje )" |(1 — Que~Wtw) 6*2()\+Lw))‘_2d eLwhdw]

T p=1
2T - 2w
2 t(h—m n t(h+n
5 9) SUCI IO Si I TRERCEVS oy AR
l*—q] 1 n=1
- Z Z b(1)¢ [pip > ol —m)dw + > ply(h+n)|. (3.15)
l=—q j=1 m=0 n=1

The autocovariance function for GARTFIMA (0,d, A\, u,0) process Wy = (1 —
2ue B + e B?)7d¢, is given as:

() = / cos (k) fi () dw = / cos(kw) |(1 — 2ue=O+) 4 20wy~ g

2
:—/ cos(hw) ZC’d e ATw)n

dw. (3.16)
For ease of notation, let C%(u) = a,. Then,

ch —)\ Lw n

— (CLO + ale—)\—bw + a26—2)\—2Lw 4. .)(ao + ale—)\—i—bw + a26—2)\+2u,u 4.

o

oo
_ 2 —2n) —(2n+1)X
= E ae + 2 E Untpyre” 2T cos(w)

n= n=0
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+2 Z (o€ @2 cos(2w) + - - -

n=0
= Z aze " +2 Z Z iy re” P cos(wr). (3.17)
n=0 r=1 n=0

Using (3.17) and (3.16), it follows:

2
Ywl(k) = 7 / cos(kw) ZZananHe @A cos(wr) dw

r=1 n=

02 & .
= Z Z (pQpgr€ 2"”)’\/ cos(kw) cos(wr)dw = o E nnppe” BT,
r=1 n=0 =

(3.18)

Finally, taking k = h—m and k = h+n in (3.18) and putting the values of ,,(h—m)
and 7y, (h +n) in (3.14), one gets the desired result. O

Proposition 3.3.1. For u = 1, the GARTFIMA(p,d, \,u,q) process reduced to
ARTFIMA(p,2d, A, q) process.

Proof. For u = 1 the process defined in (3.9) can be rewritten as:
®(B)(1 —e*B)*X, = O(B)e¢,.

For u = 1, the autocovariance function +,,(h) for GARTFIMA(0, d, A, u, 0) takes the

following form:
k) =0 Cl1)C,,(1)e A,

where C2(1) = (*"*"1) and C4(1) = (2d+£:kk_1). Now,

Yu(k) = *(CHLCRDM)e™ + CTMCE (1)e™ I + GO (e F2 )

2d+k—1 2d\ [(2d + k
2 —kX —(k+2)A
C ) GO

=0

(2d +k — 1)le ™™ 2d(2d + k)leR+DA (24 + 1)1(2d + k + 1)le~(k+HA
U

2d+ 1\ [2d+k+1
e~ (R 4 ...
e >( Ca e
d
2d—1 (k+1)1(2d - 1)! 21(2d — 1)I(k + 2)!(2d — 1)!
_|_
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2d(2d + k)e=*
(k+1)

2d(2d + 1)(k +2d)(k +2d + De™ ]

1+

A2ol(2d+1)...(2d+k:—1)[
k!

(k+1)(k+2)2!

o’T'(2d + k)
= Y RQ2d k+2dk+1;e 3.19
F(?d)r(k‘+1)2 1( B + y + ;€ ), ( )

which is the autocovariance function for ARTFIMA(0,2d, A\,0) process defined
in [76]. According to Sabzikar et al. [76], the autocovariance function of
ARTFIMA(p, 2d, A, q) process is given by:

2WZZ¢ )¢ 2PZP vwh m+Zﬂ 2vw(h+n)

l=—q j=1 n=1

where v, (k) for kK = h —m and k = h + n is defined in (3.19). Using the 7, (k)
from (3.19), the autocovariance of ARTFIMA (p,2d, A, q) takes a similar form to
GARTFIMA(p, d, A\, u, q) process for u=1.

N

Proposition 3.3.2. For A\ = 0, the GARTFIMA(p,d, \,u,q) process reduce to
GARMA(p,d,u,q) process.

Proof. For A =0, (3.9) can be written as:
®(B)(1 —2uB + B*)?X, = O(B)e,

and for A = 0 in (3.18) the autocovariance for GARMA(0, d, u, 0) process W; takes
the following form [96]:

k)=o) Ci(u)Cry(u)

With the help of (3.14), one can write the autocovariance function of
GARMA(p,d,u,q) in terms of autocovariance function of GARMA(0,d, u,0)
denoted by 7y, (h). O

Theorem 3.3.4. For a GARTFIMA(p,d, \,q) process, Y p—o |v(h)| < oo, if |d| <
2 A>0, and |u| < 1.

Proof. Note that the process is stationary, when |d| < 5 )\ > 0, and |u| < 1. We

have:

S ) = 0?30 Clwpe O, (wpe N
h=0 n=0

h=0
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Hence,

> ) <0733 (G we I (we Y,
h=0

h=0 n=0
For large n, C%(u) can be approximated by:

cos ((n + d)¢ — dmr/2) nd1

Calu) ~ T(d) sin()

, ¢ =cos (u). (3.20)

Note that

C1(d)n?T=2e72"A " as n — oo, and h finite,
Cg(U)C’erh(U)e*(%M)’\ ~ ¢ Co(d)hdte ™™ as h — oo, and n finite,  (3.21)

Cs(d)n?=2e=3"\ | as n — oo, and h — oo,

for constants Ci(d),Ca(d),Cs(d) > 0. Thus, > -, |v(h)] < oo, for all d which
completes the proof. O

3.4 Parameter Estimation and Real-World
Application

In this section, the methodology for parameter estimation of the GARTFIMA
process is discussed. The parameter estimation of the GARTFIMA process is
done by adopting the non-linear least square (NLS) based approach discussed for
the ARTFIMA process in Section 3.2. Further, the parameter estimation is done
using the Whittle likelihood method. These methods are adopted for estimating
parameters d, A\, and u. Firstly, we will discuss the estimation using the NLS

approach.

Non-linear least square (NLS) approach:
Similar to the procedure discussed for ARTFIMA process, let (1 — 2ue B +

B
e~ B%)?X, = U, and the spectral density of this process U, = EEB)) € is given
by:
0.2 |@(67w.))|2
() = 219 22
f (UJ) 27T |CI)(€_“’J)|2 (3 )

Substituting (3.22) in (3.12), the spectral density of X; can be written as:
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Jol) = Fulw) |(1 = 2ue™0H) 4 72050y |7 f () (A — B eos(w) + Ceos®(w)) ™,

(3.23)

where A = (1 + 4u?e ™ — 2¢72 + ™)) B = due (1 + e), and C = de 2\,
o

Consider w; = ﬂ, where 7 = 0,1,...,[n/2]. Here, n is the sample size and w;
n

is the set of harmonic frequencies. Taking natural logarithm on the both sides of

(3.23) with some manipulation leads to

log{fz(w;)} = log{fu(0)} + log{ fu(w;)}
— dlog{(A — Bcos(w;) + C cos*(w;))} — log{ £.(0)}

= log{f.(0)} — dlog{(A — B cos(w;) + C cos*(w;))} + log {]}u(—égj))}
Adding log{/(w;)} on the both sides, it follows:
log{I(w;)} = log{f.(0)} — dlog{(A — B cos(w;) + C cos®(w;))} (3.24)

Ju (wj) 1 (wj>
+ log + log : (3.25)
{ 7.0 Fole)
where I(w;) is the periodogram or empirical spectral density of the process stated

in (3.4). Using (3.22), f,(0) can be written as:

A0
(L= — e — )%

fu(0)

Now, the estimation is done by minimizing the sum of squared errors in (3.24), where
the error is given by: log(I(w;)/ fz(w;)) and log{ f,(0)} is the intercept term for the
fU(wj)
fu(0)

So, the upper limit of j should be chosen such that the w; is small or near zero.
From (3.24), we have:

equation. Also, choosing the w; near 0, the term log will be negligible.

log{I(w;)} = log{f.(0)} — dlog{(A — B cos(w;) + C cos*(w;))} + log {%}

(3.26)

One can estimate the parameters d, \, and u by using (3.24) or (3.26). Generally,
the estimates using (3.24) are better since it uses all the terms. In this chapter,

we have done the parameter estimation by minimizing the squared error based
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on (3.24), by using the R package nloptr which uses nizb function for non-linear

optimization.

Whittle likelihood estimation: To estimate the parameters of the process the
Whittle likelihood technique is employed which is a spectral density based approach
defined in Chapter 1. The Whittle likelihood estimation is a periodogram based
technique. It employs spectral techniques to approximate the spatial likelihood
which can be calculated using the Fast Fourier transform or spectral density of
the time series {X;}. The idea is to minimize the likelihood function defined in
(1.20), which uses both the empirical and actual spectral densities. The approach
is also implemented by Sabzikar et al. to estimate the parameters of ARTFIMA
time series [76]. In this chapter, the methods are considered without any prior
assumptions on spectral densities of the processes. The methods are applied directly
on simulated series and the results appear to be promising. Consider the set of

harmonic frequencies w;, j =0, 1,...,n/2, recall the empirical spectral density

I (w;) = %{R(O) + i R(s) Cos(swj)},

where w; = 2mj/n, 7 = 0,1,...,[n/2]. The spectral density of the
GARTFIMA(0, d, A\, u, 0) process is:

o’ o® [0(2)

faolw) = -9 (2)]* =

— %W(A — Bcos(w) + C cos“(w))™“. (3.27)

The whittle likelihood denoted by [,,(0) is defined as:

l,(0) = Z % + log( fu(wy)),

where 6 is the unknown parameters vector given by 6 = (d, A, u). The estimates of
the parameters d, A, and u are obtained by minimizing the likelihood function [,,(6)

with respect to #. That is,
0 = argmin(l,,(0),0 € ),

where Q = {d, \,u: |d| <1/2,\ >0, |u| < 1} C R3. Let Qg C Q is compact set and
0= (d, )\,u) S Qo.

Theorem 3.4.1. Under the assumptions of theorem 3.3.1, the Whittle likelihood
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estimators are consistent. That is,

lim 6 = 6.

n—oo
Proof. The consistency of the Whittle likelihood estimator can be proved using the
result by Hannan (see Theorem 1 in [41]). We assume that the parameter vector
belong to a compact parametric space €y and the spectral density defined in (3.12)

is written as follows:

fo(w) = ;K(w), where K (w) = |@(Z)|z (A — Bcos(w) + C cos?(w)) ™.

We need to verify the following conditions to prove the result:

(a) The time series defined in 3.9 can be written as: Xy =

Zzozo AkCt—k, Z;ozo lax| < oo, and ag = 1

(b) &7 is a continuous function for w € (—m, ), for all a > 0.
(¢) The parameter vector 6 € €y define the spectral density uniquely.

First, we prove Condition (a). Using (3.9), the series {X;} can be written as:

@(B> A 2 - d —n\ pn
XtZ(I)—B)(l—Que B+ e B = ZI/)JB] ;C’n(u)(e B") | &
[eS) k
= Z ai€i—i, where a; = Z e MPp_sC4(u),
k=0 5=0

which is a moving average representation of the GARTFIMA time series. Now, we
know that the ©(B) and ®(B) are stationary autoregressive and invertible moving
2(; = > 2otz where Y77 4 < oo, for
|z| <1+ e This implies [¢;] < C(1+ €)77, for some constant C. Further,

average operators, respectively

Z |ax| < ZZ [Wr—slle™*CLu)| = ) " |tslle™C (u)] (3.28)

k=0 s=0 s=0 k=s

= Z Z [ lle™*CY (w)]. (3.29)
s=0 r=0
Since using (3.11) it can be proved that the series > > e~**C%(u) is finite, which
implies Y.~ Jag| < oo. This proves Condition (a).
The function K(w) is continuous, for |u| < 1, |d| < 1/2, and A > 0, since the
function does not have any singularity. Thus, it can easily be shown that part (b)

is true. The parameter |d| < 1/2, which justifies Condition (c).
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[
Theorem 3.4.2. For the Whittle likelihood estimators, \/n(f — 0) ~ N(0,W~1),

where W1 represents the variance covariance matriz having the following form:

1 (™ | 0log K(w) 0log K (w) l
W:E/,r{ 00 }{ 06 }d“'

Proof. Using the results defined by Hannan (see Theorem 2 in [41]), we need to

verify the following conditions to verify the asymptotic normality of the parameters:

(a) K(w) >0, for all w € (—m, ) and 0 € .
(b) K(w) twice differentiable of parameters d, A, and u.

(c) The time series defined in (3.9) can be written as: X, =
> o Uty D g 7 < 00, and ag = 1.

Condition (a) can be proved by rewriting K (w) as follows:

@ 2
| (Z)’ (1_|_€4A+4u€2,\+2 2)

cos(2w) — due (1 + ™) cos(w))

(1+e™ 4+ Que™ — (1+e ) cos(w))? — (1 + e ) cos(w))?)

(sin?(w) + e + 27 cos(2w) — e cos? (w)

|q>(Z)|2
+ (Que™ — (1 4+ e ) cos(w))?) ™
_19()P

(@)

(sin®(w) + e + 3¢ cos?(w) — 27 + (2ue™ — (1 + e ) cos(w))?) ™

(3.30)

The term (2ue ™ — (1 + e~ cos(w))?) in (3.30) is positive. Now, we only need to
prove that the term K;(w) = (sin®(w) + e™** + 3e~* cos?(w) — 2¢~2) > 0, which
can be proved by showing that K;(w) has positive value at the extreme points. By
taking derivative of the function K;(w) with respect to w, the extreme points are
w=Fnm, w = (nr£7%), and A = (—=1/2)log(1/3) and the function K;(w) > 0
at these values, which implies that K(w) > 0. The part (b) is easy to check that
the function K (w) is twice differentiable of parameters d, A, and u. Condition (c) is

similar to Condition (a) of Theorem 3.4.1. This proves the desired result. O

3.5 Simulation Study

To assess the performance of the introduced parameter estimation techniques, we

use simulated data. The simulation study is done to obtain empirical evidence
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regarding the effectiveness of statistical techniques. Using an appropriate simulation
technique a synthetic series is generated for an initial set of parameters and the
parameters are estimated from the simulated series using the defined estimation
techniques. For each case single trajectory is used for estimation. The performance
of the applied techniques can be simply assessed by comparing the estimated and

actual parameters.

Procedure of simulation:
The GARTFIMA process defined in (3.9) can be written as:

®(B)X; = O(B)(1 — 2ue B + e > B?) ™. (3.31)

To simulate a series from the GARTFIMA process, first we simulate an innovation
series €, ~ N(u,0?). Then, we generate another series 7, = (1 — 2ue B +
e 22B%)~d¢, by taking the binomial expansion of (1 — 2ue™*B + e 2*B?)~? and
ignoring higher order terms. The series 17, = (1 —2ue™*B +e~2*B?)~%, is generated
using the simulated innovation series ¢, ~ N(0,0%) and approximating 7; by
considering first 4 terms in the binomial expansion of (1 — 2ue B + e B?%)74,
which is

n = (1 — 2ue B + 6—2>\BQ)—d6t _ Z (_l)j (V)n (n> <2ue—)\)n—ij+n€t (332)
n=0
4

J

~3°y (-1)]‘%(?) (2ue™)" e, (3.33)

Now, by generating the series 7, the process (3.31) takes the following form:

o(B)
CID(B) s

Xt:

which is an ARMA(p,q) process. Then, using the package arima in R the
GARTFIMA process can be simulated.

Results:

We generate two series using different parameter combinations and evaluate the
model performance using the parameter estimation based on non-linear regression.
Assuming the innovation ¢ ~ AN(0,2) and taking d = 0.4, A\ = 0.2, and v = 0.1
the series 7, is simulated and then taking lags p = 1 and ¢ = 0 we generate
a synthetic GARTFIMA(1,0.4,0.2,0.1,0) series. We also consider a synthetic
GARTFIMA(1,0.5,0.3,0.2,0) series. The actual and estimated parameters are
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shown in Table 3.2.

Actual Estimated
Case 1 d=04,A=02, u=0.1 d=041, A=0.18, 4 = 0.11
Case 2 d=05\A=03,u=0.2 d=0.51, A\=0.30, & = 0.19

Case3 | d=0.3,A=0.05 u=0.1 d=0.36, A\ =0.09, @ = 0.13
Case 4 | d=025, =015, u=03 | d=0.22, A\ =0.06, @ =0.17
Case5 | d=-025,2=0.09, u=08| d=—-027, \=0.07, @ = 0.75
Case 6 | d=—0.4, A\=0.5, u=0.9 d=—0.46, A =0.55, 4 = 1
Case7 | d=—-038, A=04,u=08 | d=—-0.34, \=0.46, @ = 0.78
Case 8 | d=028,A=0.01,u=0.7 | d=0.22, X\ =0.01, @ = 0.39
Case9 | d=017, =018, u=028 | d=02 A=0.17,a=0.25
Case 10 || d=—-02,A=06,u=02 || d=—-0.17, A=0.58, & =0.195

Table 3.2: Actual and estimated parameter values for single trajectory with different
choices of parameters using NLS approach.

Moreover, to measure the effectiveness of the NLS technique based on empirical
spectral density, box plots for different parameters are constructed. To construct
the box plots a simulation of 1000 series assuming the parameters d = 0.4, A = 0.2,
and u = 0.1 is done each with 1000 observations and the parameters d, A\, and u are
estimated using the NLS based estimation and the corresponding box plot for these
estimated parameters from each simulation are shown in Fig. 3.2 (left panel). Also,
a simulation is performed for another combination of parameters, that is, d = 0.5,
A = 0.3, and u = 0.1, and the box-plots for 1000 simulations are given in Fig. 3.2
(right panel).
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Figure 3.2: Box plot of parameters using 1000 samples for d = 0.4, A = 0.2, and
u = 0.1 (Fig. 3.2a) and for d = 0.5, A = 0.3, and v = 0.2 (Fig. 3.2b) based on NLS
approach.

Next, we apply the Whittle likelihood technique on the same generated
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series with the same parameters combinations given above, that is,
GARTFIMA(1,0.4,0.2,0.1,0) and GARTFIMA(1,0.5,0.3,0.2,0), and the

corresponding estimates are summarized in Table 3.3.

Actual Estimated

Case 1 d=04,A=0.1,u=02 d=0.37,\=0.08, 4 =02
Case 2 d=0.5A=03,u=0.1 d=0.49, X = 0.33, @ = 0.08
Case3 | d=03,A=0.05u=0.1 | d=028 \=0.08, a=0.16
Cased | d=025,A=0.15,u=03 || d=021,A=0.1,4d=0.34
Case 5 || d=—0.25,A=0.09, u=0.8 || d = —0.29, A = 0.08, @ = 0.70
Case 6 | d=—-04,A=05u=09 || d=—044, \=0.56, & = 0.85
Case7 | d=-038, A=04,u=08 | d=—04, A =045, @ = 0.78
Case8 | d=028 A=001,u=0.7 || d=024, A =0.01, 4 =0.65
Case9 || d=0.17,A=0.18, u=10.28 || d=021, \=0.15, 4 = 0.22
Case 10 || d=—-02,A=06,u=02 | d=—0.18, A\=0.57, 4 =0.14

Table 3.3: Actual and estimated parameter values for single trajectory with different
choices of parameters based on the Whittle likelihood.

Further, similar to the NLS estimation technique, the parameters are estimated
for 1000 simulations and each sample with 1000 observations using the Whittle
likelihood approach and box-plots are constructed for the same. The box-plots are

shown in Fig. 3.3.

) i
o] B S R
s +
E3¢ 1
6 o 4 == i
— = s =

Figure 3.3: Box plot of parameters using 1000 samples for d = 0.4, A = 0.1, and
u = 0.2 (Fig. 3.3a) and for d = 0.5, A = 0.3, and u = 0.2 (Fig. 3.3b) based on the
Whittle likelihood.
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3.6 Real Data Application

To compare the performance of the introduced GARTFIMA process with existing
time series models, two real-world datasets are considered. In this section, the
comparison of the introduced model is done with existing time series models
namely ARIMA, ARFIMA, ARTFIMA, and GARMA. We use two datasets for
the comparison task and the first is the “Nile annual minima” dataset which is
a dataset of the annual minimum flow of the Nile river from 622 AD to 1284
AD. The “Nile annual minima” dataset is already defined in R containing 663
observations. The dataset was recorded over the centuries and was given by an
Egyptian prince Omar Toussoun in 1925 in a book named “Mémoire sur 1’Histoire
du Nil”. Beran, Percival, and Walden (2000) analyzed that the dataset from 622
AD to 1284 AD is more homogeneous than the full dataset. The observations were
recorded by a tool called Nilometer, which measures the height reached by the Nile
River. The observations were taken and measured at the Roda gauge near Cairo.
In this chapter, we are working on the dataset scaled by 1/100 containing 663
observations. Another dataset is Spain’s 10-year treasury bond daily percentage
yield data from July 2nd, 2012 to Feb 16th, 2017. The study of treasury bond daily
percentage yield data is important to comprehend how present-day yields measure
up to historical rates. The dataset is a daily dataset containing 1443 observations.
Financial markets commonly use the 10-year maturity as a benchmark, which is

why it is selected. The comparison study is given as follows:

Nile river data

The GARTFIMA model is applied to the “Nile Annual Minima” dataset which is a
dataset of the annual minimum flow of the Nile river from the sample path of data
is plotted in Fig. 3.4a. Also, the ACF and PACF plots are given in Fig. 3.4b and
3.4c. The ACF plot is significant for large lag values, this indicates the presence of
long memory property in the dataset. The AR and MA lags are p = 3 and ¢ = 0,
respectively.

We apply the ARFIMA, ARTFIMA, and GARTFIMA models to the Nile minima
dataset and check the performance of each model on the dataset by looking at
the root mean squared errors for each model. By taking almost 75% of the
data for the training set and 25% of data in the test set we will train ARIMA,
ARFIMA, and ARTFIMA model using the R packages “auto.arima”, “arfima”, and
“artfima”, respectively and check the performance on the test set using root mean
square error (RMSE), mean absolute error(MAE), mean absolute percentage error
(MAPE), and root mean square percentage error (RMSPE) values. Further, using
the non-linear least square estimation technique for the GARTFIMA process the
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Figure 3.4: Annual minimum flow series, ACF, and PACF plot for Nile annual

minima data from left

to right, respectively.

results are summarized in Table 3.4.

Estimated parameters | RMSE | MAE | MAPE | RMSPE
ARIMA process d=0 0.73 0.59 0.05 0.06
ARFIMA process d=10.39 0.72 0.55 0.05 0.06
ARTFIMA process d=0.35 A\ =0.007 0.69 0.54 0.046 0.06
GARMA process d=0.2,u=0.99 0.74 0.60 0.051 0.07
GARTFIMA process || d = —0.16, A =0, & = 0.89 0.68 0.52 0.045 0.05

Table 3.4: Model performance comparison where ARFIMA, ARTFIMA and
GARMA are estimated using inbuilt R packages and GARTFIMA parameters are
estimated using NLS estimation.

This indicates that the GARTFIMA process with NLS estimation approach fits the
model equivalent to ARFIMA and ARTFIMA processes. Further, the white noise

can be plotted using actual and predicted values of the time series, and to look for

the normality of the white noise series, we plot the density of actual white noise
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with a synthetic white noise series. A synthetic random series of noise is generated
from using the mean and variance of the actual series, which are 0.063 and 0.47,
respectively. The density plots for both the series are given in Fig. 3.5, where the
blue plot is for the actual and the black is for the synthetic dataset.
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Figure 3.5: Density plot for actual and synthetic white noise series of the Nile annual
minima dataset.

Spain’s 10-year treasury bond data

The other dataset used for comparison is the 10-year bond yield of Spain which
contains 1443 observations. The trajectory, ACF, and PACF plots of the dataset
are given in Fig. 3.6a, 3.6b, and 3.6c. We get the AR and MA lags denoted by p
and ¢ using the Akaike information criterion (AIC) which comes out to be p = 3
and ¢ = 2.

Similar to the previous approach defined for Nile annual minima data, we use R
to compare the performance of ARIMA, ARFIMA, ARTFIMA, and GARTFIMA
It indicates that the GARTFIMA

models. The results are summarized in Table 3.5.

Estimated parameters RMSE | MAE | RMSPE
ARIMA process d=0 3.25 2.35 33.713
ARFIMA process d=—0.03 3.24 2.36 88.7
ARTFIMA process d=-0.23, A =0.27 3.26 2.35 68.263
GARMA process d= 0.07, u = 0.27 3.24 2.35 138.36
GARTFIMA process || d =0.06, A =0.21, u = 0.41 3.20 2.29 31.99

Table 3.5:
estimation.

Model performance comparison for GARTFIMA using the NLS

process using the NLS technique for estimation performs slightly better than the
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Figure 3.6: Treasury yield series, ACF, and PACF plots for Spain’s 10-year bond
data from left to right, respectively.

ARFIMA and ARTFIMA processes. Moreover, a synthetic white noise series is
generated using the mean and variance of actual white noise, which are 0.48 and
12.19, respectively. Also, the density plots for both the actual and synthetic white
noise series are given in Fig. 3.7, where the blue plot is for the actual and the black

is for the synthetic dataset.
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Figure 3.7: Density plot for actual and synthetic white noise series of Spain’s 10-year
treasury bond dataset.
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Chapter 4

Tempered Fractional ARUMA

Process

In this chapter, we introduce a new variation of the seasonal fractional ARUMA
process, which we call the tempered fractional ARUMA process. This is achieved
by introducing exponential tempering in the seasonal fractional ARUMA model.
The stationarity and invertibility conditions of the introduced model are given
and derive its spectral density. To estimate the model parameters, we utilize
minimum contrast based Whittle likelihood estimation approach and investigate the
asymptotic properties of the estimators of the model parameters. The estimation

technique’s performance is assessed on simulated data.

4.1 Introduction

The spectral density of a time series represents the distribution of its frequency
components. By extending the ARMA framework, GARMA models offer flexibility
in capturing various types of seasonality, including periodic and non-periodic
patterns [38]. Researchers have utilized these models effectively in economics,
finance, meteorology, and social sciences. Giraitis and Leipus provided an extension
to the fractional ARIMA process, utilizing the GARMA framework, by introducing
the seasonal fractional ARUMA process [34]. To study the parameter estimation for
the ARUMA process one can refer to [60]. Meerschaert et al. in [64], proposed
the ARTFIMA process with exponential tempering for improved flexibility and
convenience in estimation and analysis. It is more convenient to study the tempered
process rather than the original process as the covariance function is absolutely
summable in finite variance cases and the spectral density converges to 0. Further,
the tempering parameter provides modelling flexibility. Motivated by the work
of [64], We present an innovative extension of the existing seasonal fractional
ARUMA models, introducing the concept of “tempered fractional ARUMA models.”
This introduced extension involves incorporating tempered fractional differencing
within the traditional seasonal ARUMA framework, significantly enriching the

model’s flexibility and dynamics. Tempering serves a crucial role in addressing
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the unit root challenge inherent in the classical ARUMA model. Furthermore, in
cases where the spectral density of seasonal fractional ARUMA is not universally
bounded. Tempering acts as an effective remedy, ensuring that the tempered
fractional ARUMA process maintains bounded spectral density in all scenarios.
The distinctive feature of tempering brings about a transformation in the spectral
characteristics and control to the spectral properties of the ARUMA model across
diverse contexts. We discuss the stationarity and invertibility conditions of the
introduced models to ensure their reliability and feasibility. Furthermore, we derive
the spectral density of the tempered fractional ARUMA models, allowing us to
gain deeper insights into the frequency components and their strengths within the
time series. Estimating the model parameters is accomplished using minimum
contrast based the Whittle likelihood estimation approach, which minimizes the
contrast between the theoretical and observed spectral densities. Additionally, we
investigate the asymptotic properties of the estimators to understand their reliability
and consistency as the sample size increases. In summary, the novel contributions
in this study lie in the introduction of tempered fractional ARUMA model. Other
aspects, such as the, parameter estimation, theoretical framework, methodology,
and empirical evaluation through simulation study, are likely built upon existing
literature and standard practices in time-series analysis. The chapter is organized as
follows. Section 2 introduces the tempered fractional ARUMA model and establishes
its stationarity and invertibility conditions. In Section 3, the parameter estimation
procedure is discussed. Further, Section 4 deals with the simulation study to assess

the performance of the estimation method.

4.2 Tempered Fractional ARUMA Process

The fractional ARUMA process introduced by [34] is discussed in Chapter
1 and is given by (1.10). In this chapter, we introduce the concept of
exponential tempering by incorporate the the tempering paramtere into the
fractional ARUMA process, leading to the development of the tempered fractional
ARUMA(p,dy, ..., dgs1, A\, uq, ..., ug,q) process. By introducing the concept of
tempering, we introduce an additional parameter that controls the decay rate within
the fractional differencing process. The tempered fractional ARUMA process takes

the given form:

®(B)(1 — e *B)®

J

(1—2uje*B+e *B*)%(1+e*B)%1X, = O(B)e, (4.1)

k
=1
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where ¢, is Gaussian white noise with variance o2, B is the lag operator, |u;| < 1,
A>0andd; ¢ Z, i =0,....k+ 1. Again, &(B) and O(B) are stationary AR
and invertible MA operators with lag order p and ¢, respectively. The Gegenbauer

polynomials can be expressed in terms of generating functions as: (1—2uz+22)"% =

>0 o C4(w)2™ where d # 0, |z| < 1 and C¢(u) is given by

ke I'(n—k+d) oon cos((n+d)¢—dr/2)ndt
Chlw) = kz:; (_1)kI‘(d)F(n +1)T(n — 2k + 1) (2u)™* ~ I'(d) sin’(g)

(4.2)

where n — 0o and ¢ = cos™!(u). The tempered fractional ARUMA process is a

generalization of the following existing processes.

Remark 4.2.1. For dy =0, dyy1 =0,k =1, and X\ = 0, the tempered fractional
ARUMA process with lags p = 0 and q = 0 takes the form (1 — 2u; B + B*)" X, =
€, which is a Gegenbauer process defined by [19]. The Gegenbauer process is
stationary and long memory for |uy| < 1 and 0 < dy < 1/2 or |u| = 1 and
0 < dy < 1/4. The spectral density of the Gegenbauer process is given by

folw) = 2 {4]cos(w) — cos(¢)]*} "

Remark 4.2.2. Fordy =0, dp.1 =0, and X\ =0, the tempered fractional ARUMA
process for p =0 and q = 0 takes the following form.:

k
[[(-2uB+ B X, =, (4.3)

j=1
which is a k factor Gegenbauer process defined by [96]. The k factor Gegenbauer
process is stationary and long memory for |u;| < 1 and 0 < d; < 1/2 or |uj| =1

and 0 < d; < 1/4, for each j = 1,2,...,k. The spectral density of the k factor

Gegenbauer process is given by

9 k
o —d;
folw) = o~ [ [{4lcos(w) — cos(e;)]*} %,
j=1
where ¢; = cos ' (u) is known as Gegenbauer frequencies for j = 1,2,...,k which

implies that the spectral density has k unbounded peaks. For k = 1 the k factor

Gegenbauer process reduces to the Gegenbauer process.

Y

Theorem 4.2.1. The tempered fractional ARUMA(p, do, ..., dpy1, A, U1, -.., Uk, q)

process { Xy} is stationary and invertible if all roots of ®(B) and ©(B) lie outside
the unit circle, do, diy1, d;j € Z, and X\ > 0, for |u;| <1 for each j =1,2,... k.
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Proof. Using (4.1) the process can be rewritten as follows:

O(B) i
_ f)\ | | - =2\ p2\—d; —A —dg11
Xt = (@)( B : 1—2U]€ B+€ B ) (1+€ B) k+ €t.

(4.4)

We can write EBi Sy ¥rB" and (1 —e*B) o (1+eB) ~hen Yoo B,
where

s

i _ F(S—l—i—d()) F(l+d +1)
@ = ;6 ZAr(azo)r(s I+ 1) r(dkﬂ)r@ 1) (45)

—d;

Further, HJ (T =2ujeB4e B = 3> 7, B", where

Tn = Z 6_(T1+T2+"‘+T’“))‘C;d1 (u1) Cr % (us) -+ O™ (uy) (4.6)

Tk
0<ri..rg<n
r1+rot..4rp=n

Now (4.4) can be written as:

Z Z Z Yrasm, B e, = Z Z Z Ur QT €4 (r4s4n)- (4.7)
r=0 s=0 n=0 r=0 s=0 n=0

The variance of the process is given by

Var(X;) :a2§:§:

r=0 s=0 n

o0

2 2
ra/sﬂ—n
=0

The variance of the process will converge if > °° 9?2 < oo, > o2 a? < oo and
> o2y < 0o. Now according to the assumption all roots of ®(B) = 0 and O(B) =

lie outside the unit circle which implies Y 2, [1),| < oo and for large s using Stirling’s

approximation

I'(s—1+do) T (I + dis1)
I'(s—1+4+1) I'(l+1)

~ (Bl (g ydo=T) (4.8)

which implies Y 72 a? < oo for dy, dyy1 ¢ Z. Further, for large n the Gegenbauer

polynomials can be approximated as defined in (4.2). Thus for large 1, 79,...,7) in
(4.6) the series sum Y~ |m,| is finite for doy,dy+1,d; ¢ Z, A > 0 and \u]| < 1 for
j=1,...,k, which further implies that Var(X;) < oc. N

Remark 4.2.3. In (1.10), the characteristic polynomials (1 — 2)% and (1 — 2uz +
2?) exhibit a unit root when dy = 1. However, the introduction of tempering in

the tempered fractional ARUMA process circumvents the issue of the unit root by
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A

incorporating the term e~ within the characteristic polynomial (1—e=*2)% as given

in (4.1).

Theorem 4.2.2. Under the assumptions of theorem 4.2.1, the spectral density
for the tempered fractional ARUMA(p, dy, . .., dgy1, A\, u1, . . ., ug, q) process takes the

following form.:

folw) = 7 1OEF (1+e 2 — 2 cos(w)) ™ ﬁ(A — Bjcos(w) + O cos®(w)) ™%
* 27 |®(2)]? Pl ’ !
x (14 e 2 4 2e7 cos(w)) "+, (4.9)

where z = e, w € (—m,m) and A; = (1+4uje > —2e " +e~) B; = duje (14
e ), O = de .

Proof. Rewrite (4.1) as follows:
X; = ¥V (B)ey,

where U(B) = %(1 —e*B)™% H;f:l(l —2uje B+ e B4 (1 + e B) ",

Then using the definition of spectral density of linear process, we have:

fow) = [¥(2)[*fe(w), (4.10)

where z = e and f.(w) is spectral density of the innovation term. The spectral

density of the innovation process ¢ is 02/27. Then (4.10) becomes,

o’ a2 0(2)F [(1— e )2 £ ol
fx(w) = (z)‘2 - ——— 1 — Qu e W 4 o 2A2uw i

2 27T|q)(2)’2|(1+6 A Lw)| 2][[1‘ J ‘
Here, |1 — 2uje "% + e‘2A—2W|_2dj = (A; — Bjcos(w) + Ccos?(w))™% and A; =

(I+4ule —2e 2 +e ), B; = duje(1+e ), C = 4e”?*. The spectral density
takes the following form:

o2 [0(2)]2 (14 e 2 — 2e* cos(w)) ™%

faolw) = o DI (L F 2 T 2e cos(w)) o H(Aj — Bj cos(w) + C cos®(w))™%.

j=1
0

Remark 4.2.4. In the spectral density defined in (4.9) let us assume that U(w) =
Hle(Aj—Bj cos(w)+C cos?(w)). Let k =1, then observing the behavior of U(w) for
different values of X it can be easily demonstrated that for A > 0, U(w) > 0 and for
A = 0, which is the case of spectral density of seasonal fractional ARUMA process,
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U(w) =0 at w = cos™ (u) (see [19]) and the spectral density becomes unbounded
at these points. The following figure 4.1 observes the behavior of U(w) for different

values of \.

For A =0.4

re)
re)

)
1
U(w)

Figure 4.1: Plot of the function U(w) for different values of A\ € {0,0.3,0.4,0.8,1.3,2}
and 0 <u <1.

Similarly, letting U'(w) = (1 4+ e=2* — 2e *cos(w)) in (4.9), the spectral density
becomes unbounded at w = 0 for A\ = 0. For A\ > 0, the spectral density is
bounded everywhere in w € (—m,m). Under the assumptions of stationarity and
invertibility, the introduced tempered fractional ARUMA process guarantees that the

spectral density of the process maintains its bounded characteristics.

4.3 Parameter Estimation

In our study, we employ the Whittle likelihood method, discussed in Chapter
1, to estimate the parameters of interest. This method, introduced by [94],
involves minimizing a theoretical distance measure to obtain reliable parameter
estimates.  For applications of the Whittle likelihood method in parameter
estimations of ARTFIMA process and Humbert generalized ARMA process see
[11,76]. The performance of the proposed methods is assessed on a simulated time
series. Encouragingly, the results obtained from these simulations show promising
outcomes, indicating the potential effectiveness of the Whittle likelihood method in
accurately estimating the parameters of interest. In the next section, we investigate

the theoretical aspects of our approach. This includes studying the asymptotic
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normality and consistency properties of the estimated parameters. Understanding
the asymptotic behavior of the estimates is crucial for assessing their reliability
and establishing the statistical properties of the proposed method. We recall the
Whittle likelihood method from Chapter 1, which is a periodogram based technique
for estimation. Consider a set of harmonic frequencies denoted as w;, where
j =0,1,..., [n/2], and we recall the empirical spectral density of the process,
which is defined as:

R(0) + i R(s)cos(swj)}, wj = ?, j=0,1,...,[n/2|, (4.11)

s=1

1

1
(w]) 27_[.
where R(s) = 3" (X; — X)(Xis — X), s = 0,1,...,(n — 1), is the sample
autocovariance function with sample mean X. We recall the Whittle likelihood

function from Chapter 1, denoted by [,,(6), is defined as follows:

n

0=X %

j=1 a

() |

where in the context of this discussion 6 stands for a vector that
encompasses unknown parameters, which can be denoted as 6 =
(do,dy, -+ ydgr1, \yug,ug, -+ ug).  Let Q@ = {do,dy, -, dgy1, A, ur, ug, - uy -
A > 0,dy,dpy1,d; & Z,|uj| < 1,5 =1,---,k} and Qp C Q is compact set. Also,
0 = (do,dr,--+ ,dks1, N\, ur,ug, -+ ,u) € §y. Moreover, f,(w;) is the spectral
density defined in (4.9), (see [47]). Then estimates are achieved by minimizing the
likelihood function [,,(0) with respect to 6, that is

~

0, = argmin ,(0), 6 € Q.
0

The likelihood method is the minimum contrast estimator, which will be further

applied for the class of fractional ARUMA processes using ideas from work done in
[5,6,23,24,66].

Theorem 4.3.1. The Whittle likelihood estimator s consistent under the

assumptions of Theorem 4.2.1. This implies lim 0,, = 0 almost surely.
n—oo

Proof. To prove the consistency of the Whittle likelihood estimator, we can rely
on Hannan’s result (see Theorem 1.3.1) using the assumption that the parameter

vector 6 belongs to a compact parametric space {2y and the spectral density defined
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2

in (4.9) is written as f,(w) = §-K(w), where

2)1? e~ — 2 cos(w)) "% L

Jj=1

(4.12)

We need to verify the following conditions to prove the result

(a) The time series as represented in (4.1) has a moving average representation as
Xy =3 0 Tobtozy e T2 < o00and 15 = 1.
(b) m is a continuous function for w € (—m,7) for all @ > 0.

(¢) The parameter vector 6 € €y define the spectral density uniquely.

To prove the condition (a), we can proceed as follows. We can write

@(B) _ —d, _ —dp41 - r - s C m
@(1—6 *B) " (L4+eB) ™ Z;@w ;%B zmzoamB . (4.13)

where a, = > /" Ym—ta; and oy takes the form defined in (4.5) and ap = 1. To

demonstrate that >~ a2 < co we can show that Y ~_ |an,| < oo as follows:

Dodaml <D il =D 0D il =Y ) ol las] . (4.14)
m=0

m=0 t=0 t=0 m=t t=0 w=0

Now, we know that the ©(B) and ®(B) are stationary autoregressive and invertible

O(z o0 w )
5 = T Yuz", where $0 [l <

oo and ¥y = 1, for |z| < 14 . This implies |1,| < C(14¢€)~* for some constant C.
Also, in theorem 4.2.1, it is proved that ) ,°  |a| is finite for A > 0 and dy, dy+1 ¢ Z.
This, in turn, implies that >~ |am,| < oo and ay = 1. Therefore, we conclude that

D o Uy < 00. Further [T, (1 — 2u;e b + 6_2>‘B2)7dj = > ,mB", where 7,

m=0 ""m

moving average operators, respectively and

is given by (4.6) and

o(B) u
— 2|1 —e?B)™® H(l —2uje B+ e B4 (1 4 e AB) %0
3(5)
= ZamBmZWnB” = ZTZBZ, (4.15)
m=0 n=0 2=0

where 7, = >~ _,a,_,m,. It can be demonstrated that Y .- |7.| < as follows:

@zl || = ZZ || || = Z Z |aw | |7l (4.16)

=0 v=0 z=v v=0 v'=0

o0

0o
LD
z2=0 v

z=0

z
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Now, we know that g)((z))(l — e 2)Th(1 + ez) et = % q,,z2™, where

Yoo olam| < oo for |z| < (1 +€). This implies |a,| < C(1 + €)™ for some

constant C' and in theorem 4.2.1 it is proved that >~ |m,| is finite, which implies

322017 < oo implying Y02 72 < 00 and 19 = 1. Since, K (w) does not have any

2=0 "z

singularity for w € (—m, 7) and continuous hence the function — is continuous

1
K(w)+
for a > 0 and the condition (c) can be easily verified. O

Theorem 4.3.2. For the tempered fractional ARUMA process, the Whittle likelihood
estimators satisfy the asymptotic normality property, that is /n(6, —6) < N(O,W)

as n — oo. Here, W represents the variance-covariance matriz, which takes a

1 [T ] OlogK(w) | ) 0log K(w)
W‘47r/_ﬁ{ 0 }{ 0 deo
Olog K (w)

o0

with respect to all the parameters dy, dy, - -+ ,dgi1, A\, Uy, ug, - - - ug. On the other hand

{Blogafa((w) }' represents the transpose of a (2k + 3) x 1 column vector.

specific form:

and the (2k 4+ 3) x 1 column vector represents the derivative of log K(w)

Proof. To prove the asymptotic normality of the parameters using the results defined

by Hannan (refer to Theorem 1.3.2), it is sufficient to verify the following conditions.

(a) We first examine the condition K(w) > 0 for all w € (=7, 7) and 6 € Q. In

the decomposition of K (w), let us assume K;(w) = (14+e72* —2e* cos(w)) ™%,
Kyw) = (1 + e + 2e*cos(w)) %+ and Kj;(w) = (A; — B;cos(w) +
C cos?(w))~% for j = 1,--- , k. By looking at the function values K (w), Ky(w)
and K3 j(w) with the help of their extreme points it can be easily verified that

Ki(w) >0, K3(w) > 0 and K3 ;(w) > 0 implying K (w) > 0.

(b) The second condition requires verifying that K (w) is twice differentiable with
respect to the parameters. This verification is straightforward, as the function

K (w) can be shown to be twice differentiable for these parameters.

(c) Lastly, we note that condition (c¢) is proved in theorem 4.3.1 and we can
establish that the time series defined in Equation (1) can be written as X; =
> o T€t—z, Where Y 00 72 < 0o and 79 = 1. By satisfying these conditions,

we have successfully demonstrated the desired result regarding the asymptotic

normality of the parameters.
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4.4 Simulation Study for Tempered Fractional
ARUMA Process

To evaluate the proposed estimation technique, a simulation study is conducted in
this section. Synthetic data is generated based on a predetermined set of parameters
from the introduced model. For each case single trajectory is used for estimation.
These parameters are then estimated using the defined estimation technique and
compared with the actual parameters. The simulation based evaluation allows
to validate the robustness and efficacy of the parameter estimation techniques
under controlled conditions ensuring their reliability in real-world applications.
To generate data for the tempered fractional ARUMA process, we begin by
simulating independent and identically distributed (i.i.d.) innovations, denoted as
e; ~ N(0,0%) with the help of R programming language. Use the relation between
X, and ¢, defined in (4.1) as

k
X, = (—) (1—e?B)™ [[(1 - 2uje B + e B4 (1+ e *B) %+1¢
=1
(4.17)

First we generate the series 7, = (1 —e*B)~% Hle(l —2u;e *B+e P B?) 74 (1 +
e *B)~%+1¢, using the simulated innovation series ¢; in (4.17). The generation of
the series is done by taking the binomial expansion of (1 — 2uje B + e 2*B?)~¢

(1—e?B)™® and (1 4 ¢ *B)~%+! up to 4 terms, which is given as follows:

k k oo n
H (1 — 2uje *B+e 2’\B2 H Z ?n (2) (2Uj€_)\)n_r€t_n_27»
j=1

7=1n=0 r:()

(4.18)

and (1 —e*B) —h (1+eB) TRl _ > 00, asB®, where ay takes the form defined
in (4.5). The process in (4.17) is an ARMA process defined as X; = é ;Ut and can be
generated using the “arima” library in R for any lag values. We conduct a simulation
involving the generation of three series using different parameter combinations. We
assume that the innovation ¢; follows a normal distribution with mean 0 and variance
1, ie ¢ ~ N(0,1), Vt. For k = 1, we set some initial values for the parameters
dy, dy, da, A\, up and simulate the series X, for §; = 0 and ¢; = 0.6 accordingly. The
actual and estimated parameters for all the simulated series are presented in Table
4.1.

From the above table, it is evident that the Whittle likelihood technique performs

well on the simulated dataset. Further, to evaluate the effectiveness of the Whittle
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Case 1 Case 2 Case 3
dy = 0.45,d, = 0.35, dy =0.5,d; = 0.2, dy =0.2,d; =04,
Actual dy =0.25,A =0.1, dy = 0.1, = 0.4, dy = 0.45, A = 0.3,
Uy = 0.2 Uy = 0.3 Uy = 0.5
do = 0.42,d; = 0.37, | dy = 0.52,d; = 0.24, | dy = 0.19,d; = 0.41,
Estimated | dy = 0.235, A = 0.08, || do = 0.13,\ = 0.38, || do = 0.43, \ = 0.28,
= 0.22 u; = 0.27 = 0.5

Table 4.1: Actual and estimated parameter values for single trajectory with different
choices of parameters using the Whittle likelihood approach.

likelihood technique, which is based on empirical spectral density, a comprehensive
analysis is conducted using box plots. These box plots provide insights into the
estimation performance of the technique for different parameter settings.

To begin, a simulation is carried out, generating 1000 series, each comprising 1000
These series are simulated assuming two combinations of specific
parameter values: (dy = 045,dy = 0.3,dy = 02,A = 0.2, u3 = 0.1) and
(dy = 0.49,dy = 0.4,dy = 0.35,\ = 0.3, u; = 0.2). Subsequently, the estimation is

employed to estimate the values of the parameters for each simulated series. The

observations.

resulting estimated parameters from each simulation are then used to construct
the box plots, which visually represent the distribution of the estimated parameter

values. These box plots can be observed in Figure 4.2 By examining the box plots

0.8

0.6
I

|
4

0.0
L

-0.2
I

Figure 4.2: Box plot of parameters using 1000 samples for dy = 0.45,dy = 0.3, dy =
0.2,A = 0.2 and u; = 0.1 (4.2a) and d; = 0.49,dy = 0.4,ds = 0.35, X = 0.3 and
u; = 0.2 (4.2b) based on Whittle quasi-likelihood approach

from both simulations, valuable insights can be gained regarding the accuracy and
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variability of the estimated parameters. This analysis aids in understanding the
behavior of the Whittle likelihood technique and its effectiveness in capturing the

underlying characteristics of the time series under different parameter settings.



Chapter 5

Horadam ARMA and Horadam-Pethe
ARMA Processes

This chapter explores time series ARMA models characterized by the type
2 Humbert polynomials discussed in Chapter 1, specifically the Horadam
ARMA(p, v, u,q) and Horadam-Pethe ARMA((p, v, u, q) processes. The main focus
is to investigate the autocovariance function and its properties for both of these
processes. The chapter utilizes the minimum contrast Whittle likelihood parameter
estimation technique, which employs a contrast function involving the actual and
empirical spectral densities for both processes. Another technique known as the
debiased Whittle likelihood estimation is also used for estimation purposes. The

effectiveness of these estimation methods is evaluated using simulated data.

5.1 Introduction

In Chapter 1, we have discussed the importance of fractionally differenced time
series for modeling LRD data. The Autoregressive Tempered Fractionally Integrated
Moving Average (ARTFIMA) process, derived from ARFIMA, exhibits semi-LRD
characteristics with a summable autocovariance function, ensuring stability and
reliability. The Gegenbauer process, introduced by Hosking, further extends the
long memory modeling capabilities with Gegenbauer ARMA (GARMA) models,
utilizing Gegenbauer polynomials. The estimation methods for time series models
with their asymptotic properties are extensively studied in the literature. Some
of the well-known methods are maximum likelihood estimation, Whittle likelihood
estimation, minimum contrast estimation, and so on [5,6,19]. The generalized
spectral density based approach was proposed by Hong in [43], which is suitable for
both linear and non-linear time series models. The empirical characteristic functions
(ECFs) and their derivatives are used in a time series framework for estimation.
The ECF based estimation was first proposed by Press in 1972 by providing
several methods of estimation for univariate and multivariate stable distributions
[70]. Similarly, we use the true spectral density and empirical spectral density to

estimate the model parameters by minimizing the contrast function between the
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two. The Whittle likelihood is one of the widely used estimation methods which
provide computationally efficient likelihood. However, it is known to produce biased
parameter estimates for finite samples. Recently, Sykulski et al. proposed modified
pseudolikelihoods by reducing the bias in Whittle likelihood, and hence, known as
the debiased Whittle likelihood. This method effectively offer substantial reductions
in bias and mean-squared error without imposing notable computational cost [86].
In summary, new properties like autocovariance function, infinite autoregressive
representation are studied for type 2 Horadam ARMA processes. Additionally,
the proposal to use existing debiased Whittle likelihood contrast functions for
parameter estimation may represent new contributions to the field. Other aspects,
such as the overview of fractionally differenced time series modeling, utilization
of the generalized spectral density-based approach, and application of empirical
characteristic functions for parameter estimation, are likely drawn from existing
literature on time series analysis and modeling methodologies.

In this chapter, we study the particular cases of type 2 Humbert ARMA processes
which are defined by using type 2 Humbert polynomials. In Section 5.2, we provide a
brief introduction of Horadam and Horadam-Pethe ARMA (p, v, u, q) processes. We
also find the autocovariance function of these processes and study the summability of
autocovariance. Section 5.3 contributes to the parameter estimation of Horadam and
Horadam-Pethe ARMA (p, v, u,q) processes using contrast function D(f,(w),I(w))
with f,(w) as true spectral density and I(w) being the empirical spectral density.
We also propose to use the debiased Whittle likelihood method to estimate the
parameters. The estimation results are analyzed on simulation data for both models.

Further, we study the consistency of the estimators.

5.2 Horadam and Horadam-Pethe ARMA (p, v, u, q)

Processes

In this section, we present the Horadam ARMA(p,v,u,q) process and the
Horadam—Pethe ARMA (p, v, u,q) processes, which are specific cases of the type 2
Humbert ARMA (HARMA (p.v, u,q)) process. For more in-depth information, one
can refer to [11]. The type 2 HARMA process is characterized by its use of the type 2
Humbert polynomials. Here, we recall Def. 1.5 of type 2 Humbert polynomials and
type 2 Humbert ARMA process from Chapter 1. The type 2 Humbert polynomials

have the following generating function representation:

(L=2ut+ ™)™ => Q4 (wt" for|t| <1, || <1/2, and [u] <1,  (5.1)
n=0
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where
& V) (n—(m=1k) (o \n-mk
—— (2
kz:: k' (n — mk)! (2u) ’
for vy =1 and (v), = %
Definition 5.1 (Type 2 Humbert ARMA(p, v, u, q) process). The type 2 Humbert

ARMA process is defined by using the generating function of type 2 Humbert

polynomials in the following manner:
®(B)(1 —2uB + B™)"X; = ©(B)e, (5.2)

where ¢, is Gaussian white noise with variance 02, 0 < u <1, |v| < 1/2, and B is
the lag operator defined as BX; = X; 1. ®(B) and ©(B) are stationary AR and
invertible MA operators with lags p and ¢, respectively.

The characteristics of the type 2 Humbert ARMA process have been examined in a
study in [11], which shows that the process is stationary and invertible, for |v| < 1/2
and |u| < 1. The Horadam ARMA(p, v, u,q) process is derived when m is set to 1
n (5.2).

Definition 5.2 (Horadam ARMA (p, v, u, q) process). The Horadam ARMA process

has the following form:
®(B)(1 —2uB + B)"X; = O(B)e;, (5.3)

where ¢; is Gaussian white noise with variance 02, 0 < u < 1, |v| < 1/2, and B is
the lag operator. ®(B) and ©(B) are stationary AR and invertible MA operators
with lags p and q, respectively.

Remark 5.2.1. In [11], it is proved that the spectral density of the Horadam
ARMA (p,v,u,q) process is:

o’ 18(z))*
2m [ (2)[?

folw) = (2 + 4u? — 4u — ducos(w) + 2cos(w)) ™, z = e . (5.4)

For the processes’ properties and details, see [11].

Now, we discuss another process referred to as the Horadam-Pethe ARMA(p, v, u, q)
process by setting m = 3 in (5.2).

Definition 5.3 (Horadam-Pethe ARMA(p,v,u,q) process). The Horadam-Pethe
ARMA process has the following form:

®(B)(1 — 2uB + B*)" X, = O(B)¢,, (5.5)
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where (1 —2uB + B?)~ Z Qs " € is Gaussian white noise with variance

02, 0<u<1,and |v| < 1/2 ( ) and ©(B) are stationary AR and invertible MA
operators defined in (1.2) and (1.3), respectively.

Remark 5.2.2. Again, in [11], it is proved that the spectral density of the
Horadam-Pethe ARMA (p,v,u,q) process is:

o® 10(2)?

) = 3 R

5(2+ 4u” — 4u(cos(w) 4 cos(2w)) 4 2cos(3w)) ™", z = e .

For the processes’ properties and more details, see [11].

The focus of this work is to provide the estimation methods for the discussed

models using spectral density. In the next results, we provide the autocorrelation
function of the Horadam ARMA(p, v, u,q) and Horadam-Pethe ARMA(p, v, u,q)

process.

Some notations and preliminaries:

We state some relevant results that will be required in subsequent sections.
Using the spectral density of the Horadam ARMA((p, v, u, q) process defined in (5.4)
assuming ®(z) = [[}_(1 — p;x), where pi,ps,...,p, are complex numbers such

that |p;| < 1for j =1,2,...,p, we can write

(2) S pip 1
Z Z Zw C] ,0'6“” B 1 — p—lem ) (56)

l=—q j=1
where
max|q,q+1]
E esgs—l
s=min[0,l]
and

2

G = ; [pg 1T = pien) [T (s - pm)] :

i=1
For more details, one can refer to [76]. We will also require the following integral
formula (see [51]):

us
2

/ cos' wcos(kw)dw = [1+ (—1)*] / cos' w cos(kw)dw =
0 0
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ST (= ll-:-2) Ty forl <k,
=[1+ (D] 7)) for k <landl—k =2y,
s fork <land l—k=2y+1,
(5.7)
0, fork—1=2y,
where s = 1, fork—1l=4y+1,

-1, fork—1=4y—1.

Also,
nn—2)---5 1, if n >0, odd,
=< nn—2)---6-4-2, if n >0, even,
1, if n=0,—1.

Theorem 5.2.1. For the Horadam ARMA(p,v,u,q) process, the autocovariance

function is given by:

SOV SHERISATRS S aniee

l=—q j=1
where
02 = (V) (2 — du)™ i "
=5 - 2—|—4u2 ) /_7r cos(kw) cos™(w)dw

n=

and the integral [*_cos(kw) cos™(w)dw is defined in (5.7).

Proof. Using (5.4) and (5.6), the spectral density of Horadam ARMA process takes
the following form:

£.( Qﬁzzw c[ e = (5.8)

1—p.ew
l=—q j=1 p]

X (24 4u® — 4u — 4ucos(w) + 2 cos(w)) . (5.9)

The autocovariance function, denoted as «y(h), of a stochastic process X; can be

computed by performing the inverse Fourier transform of its spectral density f,(w)

[ e

using the following relationship:
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Using the spectral density defined in (5.8), the «(h) can be calculated as:

1
Fy( /_ Z Zw zp—HCJ [ pjer N 1-— pj—leLw]

l=—q j=1
x (2 + 4u® — 4u — 4u cos(w) + 2 cos(w))_”] e“hde.

Alternatively, we can write

7(h) /_7r Z Zw Z”“( Zo(pe‘“”)mrzl(pew)”)

l=—q j=1
X (24 4u® — 4u — 4ucos(w) + 2 cos(w))_”] e,

Now, let us assume the process W, = (1 —2uB + B) “¢;. Then, the spectral density
of the process W; is
2

7 — (2 + 4u* — 4u — ducos(w) + 2 cos(w)) . (5.10)

fult) = -

Then, v(h) takes the following form:

ZZ@/J QWIQPZP / fw Lwh m)dW—i—Zp/ fw Lwh+n ]

l—fq j=1

_ZZ@Z’ CJIQPZP ’Ywh mdw+2p'ywh_|_n

l=—q j=1

(5.11)

In the above equation, we can calculate 7, (h — m) and ~,(h + n) by taking the

inverse Fourier transform of the spectral density of the process W; as follows:

Yw(k) = /7r cos(kw) fu(w)dw = ; ’ cos(kw) (2 + 4u? — 4u — 4u cos(w) + 2 cos(w)) "V dw.

—T

(5.12)

We can write (2 + 4u? — 4u — ducos(w) + 2cos(w))™ = (a + beos(w))™, where
= (24 4u* — 4u) and b = (2 — 4u). Now, above integration takes the following

form:

Y (k) = ;—2 /7r cos(kw)(a + bcos(w)) ™" dw

T J_x
g~ a

_ o / " cos(kw) (1 + b/a cos(w)) " dw

2 ) .
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cos(kw) cos™(w)dw.

o247V = (V) (2 —4u)" /’r

27 n! (2 + 4u? — 4u)”

n=0 -

Substitute the value of v, (k), for k =h —m and k = h +n in (5.11) and using the
integral defined in (5.7), the desired result is obtained. O

Theorem 5.2.2. The autocovariance function for the particular cases of type 2
HARMA process is discussed as follows:

(a) The autocovariance function for Horadam ARMA(O, v,u,0) process is given by:
0 &
(k) = o= D Qi (W)Qr 1 (),
n=0

where Qy, 1 (u) is defined in (5.1) with m = 1.
(b) The autocovariance function for Horadam-Pethe ARMA(O,v,u,0) process is
given by:

2 o
Y (k) = ;_W ZQZ?;(“) ;/L+k,3(u)7
n=0

where Q}, 3(u) is defined in (5.1) with m = 3.

Proof. (a): The Horadam ARMA (0, v, u, 0) process is defined as follows:
W, = (1 - 2uB + B) e, (5.13)
Rewrite (5.13) as follows:
X; = ¥(B)e;, where ¥(B) = (1 —2uB+ B)™".

Then, using the definition of spectral density of linear process, we have:

0.2

fu(lw) = %](1 — 2ue™™ + e’”’)\’Q”.

For the process W, the autocovariance function -, (k) can be computed by taking

the inverse Fourier transform of spectral density as follows:

Yw(k) = /7r cos(kw) fi(w)dw

—T

2 ™
=7 cos(kw)|(1 — 2ue™ + )| dw
2m ) .
2
0-2 " S 12 —Llw\n
=5 B cos(kw) ;Qnyl(u)(e )" dw.
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Let @} 1(u) = ay, then

o
e )" E Zem2mA 1 9 E E Ay gy COS(WT).
n=0 r=1 n=0

Using the above relation, we can show

o
Yu(k) = ?/ cos(kw) Z Zananﬂn cos(wr)dw

- r=1 n=0

= % Z Z Ayt /_w cos(kw) cos(wr)dw = o Z QniQuinai.  (5.14)

r=1 n=0 n=0

(b) The Horadam-Pethe ARMA (0, v, u,0) process is defined as follows:
W, = (1 —2uB + B*) ¢, (5.15)
Similar to case (a), rewrite (5.15) as follows:
Xy = ¥(B)e,

where ¥(B) = (1 — 2uB + B?)™" and we have spectral density as follows:

0.2

Fulw) = |1 = 2ue™ + e75) 2.

Similar to the above case for the process W;, we can compute the autocovariance

function v, (k), which comes out to be

2

dw

Z Q —3Lw

(Q1 (W) (@) e / " cos(hw) cos(wr)de = 0* S QuaQuins

n=0 - n=0

27

2
Yu(k) = 0—/ cos(kw)

]

Theorem 5.2.3. For Horadam ARMA(0,v,u,0) process with |v| < 1/2 and 0 <
w<1, Y2 (k)| < oc.

(20— 1)
Proof. For Horadam polynomials, using the relation Q%(u) = Wa(2u = 1)" u' ) ; we
n!
obtain:

)=0 E:Q” (1
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200 V)n(2u — 1)" Vn+k2u—1(”+k)
Z()( )" ()i )

- n=0 n! (n + k‘)'
— o i I'(v+n)2u—1)"T(v+n+h)(2u—1)"*F
=0 — T)I(n+1) T(C(n+k+1)

2 i T(v+n) D(v+n+tk)(2u— 1)@k
- TW)L(n+1) T@)T(n+k+1)

I'(v+n) v—1 I'(v+n+k) v—1
For large n, Tt ) ~Tn and T (ntk+1) ~ (n + k’) . ThU.S,

le )~ o Z\n” k)| (2u = 1)), (5.16)
We consider the following cases:

( ©OC
Z In? 72| (2u — 1) if n — oo and k is finite,

I’ (k)| (2u—1) 2R | ~ Z |C1 k"7 |(2u — 1)¥|  if k — oo and n is finite,

Z|C’ n®2||(2u — 1)**| if k — oo and n — oo.
\ n=0
From all the cases, we get Z |7(k)| < oo, for 0 < u < 1. O

k=0
Theorem 5.2.4. For the Horadam-Pethe ARMA(p,v,u,q) process, the

autocovariance function is given by:

et g[ (O IVSNTRNOTINS S SRIR

l=—q j=1
(V)n n r " n+r+s
cos (kw) cos(w) dw and
n=0 r=0 s=0 n! r s -
8" (du + 6)" " (u)"*

(4u? + 4u + 2)"
Proof. Using (5.5) and (5.6), the spectral density of Horadam-Pethe ARMA process
X, takes the following form:

1
m 27‘(‘ Z Zw p+l<j [ —p; plw B 1— p—lew)]

l=—q j=1

where v, (k) =

constant C' =

x (2 + 4u® — 4u(cos(w) + cos(2w)) + 2 cos(3w)) ™.

The autocovariance of the process is computed using the inverse Fourier transform
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of the spectral density as follows:

= /Tf fo(w)e " dw
_271'

-= [ [ Z Zﬂj(l)ﬂﬂé} (p2p Z(P "+ Z (pe' ) (2 4 4u* — 4u(cos(w)

l:—q j:1 m=0 —

+ cos(2w)) + 2 cos Sa))_”] e“Mdw

ZD@ @[2’)21) / “(=m) (2 4 du® — du(cos(w) + cos(2w))

s

+ 2 cos(3w)) dw + Z p”/ e (2 1 4® — 4u(cos(w) + cos(2w)) 4 2 cos(3w)) "V dw | .

n=1 -

Assume the process, W; = (1 —2uB + B3)™"¢,. Then, the spectral density of W; will
be

fuw(w) = ;ZT (2 + 4u® — 4u(cos(w) + cos(2w)) + 2 cos 3w) .

We compute the autocovariance of W; as follows:

™ 2
Yu(k) = / ;— cos(kw)(2 + 4u? — 4u(cos(w) + cos(2w)) + 2 cos 3w) " dw
7
02 ™

=5 cos(kw)(a + bcos(w) + ccos?(w) + 8 cos®(w)) ™ dw,
s

where a = (2 + 4u + 4u?),b = (—6 — 4u), and ¢ = —8u. Now, we write the above
equation as follows:
o2

- / cos(kw)a™" (1 4 by cos(w) + by cos®(w) + bz cos® (w)) ™ dw,

'Vw(k:) = or

where by = b/a, by = c/a, and b3 = 8/a. Since, |(b;cos(w) + by cos?(w) +

b3 cos®(w))| < 1, we use the binomial expansion and obtain:

o0 T

= 2SS v 92 () (1) [ conth) costw

n=0 r=0 s=0 -

Now, «(h) can be written as:

— Z Z @/J(l)cj p2p Z o /7r fw(W)eLW(h_m)dw + Z o /7r fw<w)ew(h+n)dw]
m=0 o n=1 -

l=—q j=1

=Y ) DG 0 Pl =m) + > p (b +n) |,
m=0 n=1

l:—q ]:l B
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02 A e — V) (0 [T i
where 7,(k) = o Z Z Z C (n)' (T) (S) / cos (kw) cos(w)™ " *dw and
n=0 r=0 s=0 -

constant

— 1) (du + 6)7 ()

_(
¢= (4u? + 4u +2)n

Substitute the value of ~,(k), for k = h — m and k£ = h + n in the above equation
and use the integral defined in (5.7) to get the desired result. ]

Theorem 5.2.5. For the Horadam and Horadam-Pethe ARMA(p,v,u,q) process,
the equivalent AR(c0) has the form:

(a) For Horadam ARMA(p,v,u,q), ¢ = Zath,s, where as =Y 0 o Us—mbBm

s=0
and
— I(=v+m) k(M —k
= ~1 2u)™
p ];r(—u)r(mﬂ)( ) (k)< v)
(b) For Horadam-Pethe ARMA(p,v,u,q), € = Zath,s, where ay; =

s=0

> o Us—mCm and

P(—v+m)2u)™ T(-—v+m—2)2u)"*

o= P m+ 1) T(—)T(m —1)

Proof. (a): We rewrite the Horadam ARMA (p, v, u, q) defined in (5.3) as

sy

“)(1-2uB + B)X,

€t =

O(z)
L) om pe
LB o

()¢
<

.

&
\_3/

> I( l/—}—j . )
B (2u — 1) X
> Fm

/~ /~
3
I
o

)3 e ? DS (2 e,

=0

NE

m=0 j k=0
0
We get, ¢, = g asXi—s, where ag = > _ Vs pmfm and
s=0

N T(—v+m) m e
B =2 T(—)T(m + 1) (_1)k(k) (2u)"~".

k=0
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o

We also need to show that Z las| < oo, where a; = Y0 _ Vs—mBm. We
s=0

rewrite above as:

_ (Z mem) 3 o LEvtd) o, —1ypix, (5.17)

— prs I'(j+1)
(S o

[e.9]

D(—v+m) .
where p,, = mEZ:O Tl m + 1) (2u — 1)™.

The operators ©(B) and ®(B) can be characterized as stationary

autoregressive and invertible moving average operators, respectively. The
28 = Y 2o¥;#’, where the series
> o ¥l < oo, for [2] < 1+ e We deduce that the absolute values of

the coefficients 1; decrease exponentially with increasing j, bounded by the

inequality [¢;] < C(1 4+ €)™, where C represents a constant. Also, in (5.17)

using Stirling’s approximation for large m, p,, is approximated as follows:

I'(—v+m)

T 4 1 2~ D7~ (e =,

which indicates that Z |pm| < o0, for 0 < u < 1 and v > 0. Further,

m=0
Z |a5| < Z Z |¢s mpm|
s=0 m=0
< Z Z [Gsmllpml = DD [nllpm-
m=0m=s m=0 r=0

Since, we have proved that Y *_, |p,| is finite, we get Y oo as| < oo.

(b): We rewrite the Horadam-Pethe ARMA (p, v, u, q) defined in (5.5) as

€ = 38 (1-2uB+ B*'X, =(1— B(2u— B%)"X,
_(D(Z)OO F(]_V) 2\j RJ
=60 jzol“(—y)l“j+1)<2 BysX
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The above series can be written as:

(S m\ (S~ ¢ Bi ~ T(=v+19)(2u)" T(-v+i—2)(2u)?
€ = <mZ:0 me ) <; Cz'B )Xt, where Cz = F(—V)F(@' mn 1) — I‘(_V)I‘<Z' — 1) )

Again we write, ¢ = Zath_s, where a, = Zws_mgm. The proof of

s=0 m=0
oo
E las| < oo is similar as done above.
s=0

Theorem 5.2.6. For Horadam ARMA(0, v, u,0) process {X;}, let X,, = % Yo X

Then, for |u| < 1 the Var(X,,) is given as follows:

B o0 v),0q" rm(2n)!
Var(X,) = ;(—1)r7§pr)+ungﬂ 22n(n1)g(27)~ —1)
+ (r? =n) (=1)"r

r(1+2r)(1—=2r)22B(1+n+r,1—n+r)|

Proof. The spectral density of Horadam ARMA(0,v,u,0) can be written using

(5.10) as:
fw) = —(a+beos(w)) ™,

where a = (2 + 4u? — 4u) and b = (2 — 4u). Using (3.4c) in [3], we get

\ " 1 . itw
E[Xﬂ—/ ~>
- t=1

_0_2 T sin?(nw/2) " cos(w)~di
Cor ) n? (sinz(w/Z))( +beos(w))d

f(w)dw

2 s

= — —7) (c+ dsin*(w/2)) " dw where ¢c=a+b and d = —2b

o2c™v [T sin? (TW) 0 W), (d r
27rn2 /_7r Gin? (%) ;( ) -l (Csm (w/ )) dw
- T (V)TOQdT " . . r

=) (=1) e sin?(nx) sin~*"?"(2)dx

The integral of [ sin®(nz)sin™>**"(z)dz can be calculated using Theorem 6.6
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defined in [4] which is given as follows:
" s 2 s —2—a 1 -1 s—a 1 -1 s —a
sin”(nx) sin (x)dx = 5(1 +a)"a [ sin”*xdr — 5(1 +a) "a [ sin™®xcos 2nzdx
0
—(14+a)  coszsin ' " zsin’ nz + (1 + a) 'nK,(a),

where taking a = —2r, we have:

(—1)"mn
(=1 =2r222r)B(1+n+r,1—n+r)

K, (=2r) =

and

(=D"x
227 (1+2r)Bl+n+nr,1—n+r)

/ sin®"(x) cos(2nz)dr =
0

The integral is given as follows:

"o —242r _ rm(2n)! (r* =n?) (=1)"n
/0 sin(ne) sin ™ @)de = s e, 1) Y A R 2 = 202 B T sl —n 1)

]

Theorem 5.2.7. For Horadam-Pethe ARMA(0,v,u,0) process, let X, =
%Z’;l X;. Then, for lu| < 1, the Var(X,,) is given as follows:

Sy o | rw(2n)!
Var(X,) —z;(—l) aprrnel | 22 (a2 (2r — 1)

(2 =) (-1'm
r(1+2r)(1—2r)2"B(l+n+rl1—n+r)

Proof. Using the same approach defined in Theorem 5.2.6, the following relation is
used to establish the result:

v, 2

o1 a Vot [T sin?(nw/2) ) . .
E [Xn] = o2 /7r (SinQ(w/Q)) (1 4+ by cos(w) + by cos®(w) + bz cos®(w)) ™" dw

oS3 [ O () o) 4 o) ot

- ; > [T S B () ety tr st
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(1 + Z—Qcos( ))

S S S (B (7 e [T

k=0 r=0 s=0
b —2b
where p' =1+ — and ¢ = 3,
by by
The integral of [ S;ln ) sin?(z)da is given in Theorem 5.2.6. O

5.3 Parameter Estimation

The minimum contrast Whittle likelihood approach:

In this section, we discuss the estimation methods based on the contrast function
defined by Whittle [94]. For Horadam ARMA(p,v,u,q) and Horadam-Pethe
ARMA (p, v, u, q) processes, the estimation based on the minimum contrast Whittle
likelihood is discussed by Sabzikar et al. [77], where they use the true spectral
density f,(w) and empirical spectral density I(w) to construct the contrast function
D(fy(w),I(w)). This function acts as a measure of dissimilarity or proximity
between the true and empirical spectral densities. Let us recall the empirical spectral

density of the process from Chapter 1, which is given as follows:

I(w;) = 2177 {R(O) + i R(s) Cos(swj)},

s=1

where R(s) = —Z” J(Xi — X)(Xips — X), s = 0,1,...,(n — 1) is the sample
autocovariance functlon with sample mean X, and w; = 27j/n, j =0,1,...,|n/2].
Let us assume Q = {v, v : |v| < 1/2, 0 < u < 1}, and Qy C 2 is a compact set,
then the criteria to measure the nearness of f,(w) and I(w) is defined in 1.3, which

is as follows:

D(, / K(I(w)/ fo(w)) dw

The contrast function defined by Sabzikar et al. [77] has the following representation:

1L(60) = §égl)(j;0u),10u))—klogcn (5.19)

2 is variance of innovation term and 0=(v,u) is a vector of true parameters

where o
value. The minimum contrast estimator (én)7 for the process is defined by minimizing

the contrast function () as follows:

0 = argmin(l,,(0), 60 € Q). (5.20)
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The debiased Whittle likelihood:

We propose to use the debiased Whittle likelihood method, which is an improved
computationally efficient method based on spectral density. Recently, the method
is introduced by Sykulski et.al [85] with the aim of reducing the bias in the Whittle
likelihood method. The Whittle likelihood method introduced by P. Whittle [93]
estimates the model parameters by maximizing the following likelihood function

defined with parametric spectral density f,(w) and empirical spectral density I(w):

l,(0) = argmin (Z{log(fx(w, 0)) + fxl((:)e) }, 0 e Qo>,

where [ (w) is the periodogram. Recall from Chapter 1, the pseudolikelihood function
defined by Sykulski [85] has the following form:
I(w)

1a0) = S {loslFules0)) + = 2}

where i
fo(w;0) = / f(w'0)Fr(w — w)dw'
is the expected periodogram, here,

2mn sin?(nw/2)

Fulw) = sin?(w/2)

and [ (w) is the periodogram. The estimates are obtained by maximizing the function
l4(0) as:

~

0, = argmax(l4(6),0 € Qo). (5.21)

We optimize [4(f) using the numerical scheme and the Simpson integral is used to
compute the integral in the pseudo likelihood function. Also, from [85] it is evident
that the debiased estimator is computationally efficient and provides consistent
estimates. In the next section, we perform an extensive simulation study to assess

the methods of estimation for the discussed models.

Theorem 5.3.1. For Horadam ARMA(p,v,u,q) and Horadam-Pethe
ARMA(p,v,u,q) process, let us assume S = {v, u : |v] < 1/2, 0 < u < 1},
and Sy C S is a compact set such that the parametric space 0 = (u,v) € Sy. Then,

the estimator

0 = argmax(ly(6),0 € Sp)
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satisfies 050,

Proof. The consistency of the debiased Whittle likelihood can be proved by using

the conditions defined in [85] (see Prop. 1.3.1), which are as follows:

(a) The parameter set © € RP is compact with a non-null interior, and the true

length p parameter vector @ lies in the interior of ©.

(b) For all § € ©, and w € [—m, 7|, the spectral density of the sequence {X,} is
bounded below by f(w;0) > fnin > 0, and bounded above by f(w;0) < fiaz-

(c) If @ # 6, then there is a space of non-zero measure such that for all w in this

space f(w;0) # f(w;0).
(d) The f(w;#) is continuous in # and Riemann integrable in w.

(e) The expected periodogram f,(w : #), as defined in (6), has two continuous
derivatives in € which are bounded above in magnitude uniformly for all n,

where the first derivative in 6 also has ©(n) frequencies in €2 ihat are non-zeno.

Here, we have assumed that the parametric space 6 = (u, ) € Sy, which is compact
and over this parametric space the function is continuous. A continuous function on
a compact metric space is bounded, which clearly satisfies Conditions (a) and (b).
The continuous function f(w : #) over the compact parametric space is Riemann
integrable. For Condition (c), we assume that 6; # 0y and let f(w,6;) = f(w,0s).

The spectral density can be written as:

1 1

(2 + 4u? — duy — duy cosw + 2cosw)t (2 + dud — duy — dug cosw + 2 cosw)V2

But by the properties of exponents, we get that 14 = vy, which is a contradiction
to our assumption that 6; # 6. Hence, Condition (c¢) is proved. Similarly, we can
prove these conditions for the Horadam-Pethe ARMA(p, v, u, q) process also.

O

5.4 Simulation Steps

To rigorously evaluate the performance of our estimation procedure, we executed an
extensive and systematic simulation study. Simulation studies provide a controlled
environment for testing and benchmarking estimation methods. By generating

synthetic data with known properties, we can assess how well our estimation
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procedure recovers the true model parameters. We can vary parameters, sample
sizes, and other factors to assess the robustness and reliability of our procedure. We
can compare the estimated parameters with the known true parameters to ensure
that our method produces accurate results. Our primary objective was to model
the Horadam and Horadam-Pethe ARMA (p, v, u, q) processes using simulated data.

The simulation process involved the following key steps:

e Generation of Innovation Data: Our simulation methodology commenced
with the generation of innovation data, where each ¢; was drawn from a normal
distribution with mean p and variance o2. Specifically, we simulated an error
series with a standard normal distribution N(0,2) using the programming

language R.

« Model Formulation: To simulate the Horadam ARMA(p, v, u, q) processes,
we employed the relation defined in (5.3). This equation was then reformulated

as follows:

_ o) -
Xt_ (I)(—B(1—2U3+B) €¢.

~—

Now, using the binomial expansion of (1 — 2uB + B)™" and truncating the
series up to 4th term, the series n, = (1 — 2uB + B) "¢, is generated and the

process takes the following form:

« ARMA Representation: The above representation transformed the original
problem into an ARMA process with the innovation term 7;. Notably, this
ARMA process could be conveniently simulated using the“arima” library in
R, making it amenable to further analysis and assessment of our estimation

procedure.

Minimum contrast Whittle likelihood estimation results:

By considering distinct sets of initial parameters, we generated different time series.
For each case single trajectory is used for estimation. Subsequently, we applied
our simulation procedure to create two distinct series for Horadam ARMA process,
following the previously described methodology. The outcomes of parameter
estimation, employing the minimum contrast Whittle likelihood approach, are
summarized in the Table 5.1:

The information in Table 5.1 clearly demonstrates that the estimated parameters

closely match the actual values. This observation indicates that our estimation
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Case 1 Case 2 Case 3
Actual u=0.15rv=0.3 u=01,vr=04 |u=0.25v=0.35
Estimared | « =0.16,2 =0.28 | . =0.13, 2 =0.37 | « = 0.18,0 = 0.27

Table 5.1: Actual and estimated parameter values for single trajectory with different
choices of parameters based on the minimum contrast Whittle likelihood approach.

technique performs well when applied to synthetic datasets. Also, in our analysis,
we delve into the examination of violin plots generated from a dataset comprising
1000 simulations. Violin plots offer a tool that combines elements of both box plots
and kernel density estimation (KDE). These plots not only display key summary
statistics, such as medians and quartiles (akin to box plots) but also provide a
continuous representation of the data’s probability density through the incorporation
of KDE. However, the true power of the violin plot lies in its “violin” shape, which
mirrors a KDE curve on either side of the box plot. This curve represents the
probability density of the data across its range, allowing us to visualize not only
central tendencies but also the distribution’s modes, peaks, and density variations.
These simulations are executed using the method described earlier and are based
on two distinct sets of parameters for Horadam ARMA process: one with u =
0.15,v = 0.3 and the other with u = 0.4, = 0.1. We construct violin plots
to gain insights into the characteristics of this dataset and better understand the
behaviour of the system under the specified parameter conditions. For each iteration,
500 observations are generated and recorded, resulting in a substantial dataset.
Consequently, wider sections of the violin indicate regions of higher data density,
whereas narrower sections represent areas of lower density. Any asymmetry in the
violin may also be indicative of skewness in the data distribution. The violin plots
corresponding to each parameter combination are given in Fig. 5.1.

Debiased Whittle likelihood results

We consider the same set of simulated data for Horadam ARMA process and apply
the debiased Whittle likelihood method to estimate the parameters. The estimated

parameters are shown in Table 5.2. Again, we construct the violin plots for two

Case 1 Case 2 Case 3
Actual u=0.15,r =04 u=01v=03 |u=02,v=048
Estimated | « = 0.16,7 =0.45 | « =0.08,0 =0.25 | « = 0.22, 7 = 0.5

Table 5.2: Actual and estimated parameter values for single trajectory with different
choices of parameters based on the debiased Whittle likelihood approach.

different sets of parameter combinations, that is, u = 0.1, v = 0.4 and the other

with © = 0.2, v = 0.3. The plots are given in Fig. 5.2, which clearly indicates that
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Figure 5.1: Violin plot of parameters using 500 samples for v = 0.3, u = 0.15 (left
panel), and for v = 0.4, uw = 0.1 (right panel) based on minimum contrast Whittle
likelihood approach.

the debiased Whittle likelihood works well for the simulated dataset.
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Figure 5.2: Violin plot of parameters using 500 samples for v = 0.4, uv = 0.1
(left panel), and for v = 0.3, u = 0.2 (right panel) based on the debiased Whittle
likelihood approach.



Chapter 6

Conclusions and Future Work

The thesis is focused on some generalizations of classical and long memory time
series processes. In conclusion, this thesis has navigated through various realms of
time series modeling, by introducing generalized models which in some situations
can better capture the complexities inherent in real-world data due to the model
flexibility. The initial chapters delved into the historical evolution of time series
models, starting from the foundational works of Yule, Slutsky, and Wold, paving
the way for Box and Jenkins’ ARIMA model, which facilitated the modeling of
non-stationary data.

The journey continued through the concepts of long memory data and the
introduction of fractional differencing by Hosking, expanding our understanding of
non-stationary series exhibiting long-range dependence behaviors. Further chapters
explored newer extensions in time series models. The introduction of ARTFIMA
and tempered processes represented crucial advancements, offering models capable of
addressing covariance function summability and spectral density convergence issues,
vital for handling datasets previously unmanageable with traditional ARFIMA
models. The GARTFIMA and Humbert polynomial based ARMA models were
also introduced, focusing on their autocovariance properties and spectral density
based parameter estimation techniques, broadening the spectrum of models available
for time series analysis. The empirical evaluation showcased the potential of
tempered stable autoregressive models in effectively capturing semi heavy-tailed
behavior observed in real-world datasets. The novel extensions, such as the
tempered fractional ARUMA process and the utilization of the type 2 Humbert
polynomials, signify innovative strides towards more flexible, adaptive, and robust
time series modeling. Estimation techniques like Whittle likelihood estimation and
empirical spectral density comparison have shown promise in accurately estimating
parameters, as validated through thorough evaluations with simulated data.

The research presented in this thesis is poised to contribute to various fields
reliant on time series analysis, including economics, finance, geophysics, and others.
In conclusion, the introduced models and estimation techniques showcased their
potential in time series modeling, offering enhanced flexibility, reliability, and
applicability to real-world datasets. The contributions made in this thesis lay the

foundation for future explorations and advancements in the ever-evolving field of



106 Chapter 6. Conclusions and Future Work

time series analysis.

However, the introduced models work on the assumption of constant volatility and
cannot model heteroscedastic datasets having persistence in the conditional variance
of innovation term. There is some work in the literature extending the classical
time series processes to the GARCH process to model persistence in data. In the
future, we will try to extend the notion of the GARTFIMA, type 1, and type 2
HARMA processes to the GARCH process to capture the volatility in data. We
are interested in investigating the application of machine learning techniques for
parameter estimations in order to obtain more robust estimates for the generalized
processes under discussion. Notably, numerous researchers have delved into this
field, and for additional insights, interested individuals can refer to the following
articles: [2,61,92]. These sources provide in-depth exploration and analysis of the

topic.
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