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Lay Summary

The disaster relief operations during floods require real-time information of the ground
situation from the flooded area. Finding critical regions in flood affected area in a limited
time frame is crucial for effective relief planning. With the advent of technology, Unmanned
Aerial Vehicles (UAVs) are being deployed for active flood monitoring and area coverage
to provide support during search-and-rescue operations. Consequently, UAVs extend the
capabilities of the rescue teams in remote sensing and terrain monitoring tasks. However,
majority of the current UAV-based deployments rely on expert pilots for remotely flying
the UAVs and performing the desired task(s). This dependency on human pilots limit
the UAV’s operability in unknown and highly dynamic environments as it requires the
pilot to control the UAV(s) with limited line-of-sight range. Hence, there needs to be
correct autonomy in place for the team of UAVs to perform desirable data-gathering
tasks in unknown and unseen environments. However, it is not trivial to make UAVs
fly autonomously to execute complex tasks in critical environments, such as floods.
Recent advancements in robot control algorithms have made it possible to achieve
autonomous UAV flight. This has been achieved using algorithms like model-based
and heuristic approaches. However, applying these methods in dynamic environments
is challenging due to limited knowledge of the surroundings. Reinforcement learning (RL)
algorithms provide a framework by enabling UAVs to learn appropriate control sequences
through interactions with the environment, making it capable for autonomous flights
in dynamic environments. However, standard RL algorithms face multiple difficulties,
requiring a multi-UAV team to randomly explore before finding an effective strategy to
perform tasks such as cooperative area coverage under the constraint of limited battery.
In this thesis, Deep RL algorithms are proposed with novel exploration strategies for
generating autonomous controls for a multi-UAV system to perform tasks such as flood
area coverage, real-time path planning and object tracking.

The first objective is to identify critical regions during floods using UAVs in a cooperative
manner, aiming to maximize area coverage within a limited time-frame. The algorithms
proposed for this task can further be classified into solutions for discrete and continuous
action spaces. Additionally, decentralized trained multi-UAV policies are proposed in
contrast to centrally trained policies, enhancing their applicability. Subsequently, after
identifying critical regions, the thesis addresses the problem of identifying serviceable paths
for evacuation vehicles using autonomous UAVs to assist rescue operations. Furthermore,
this thesis also addresses the problem of tracking a moving convoy of vehicles using multiple
UAVs to enhance coverage for security and surveillance purposes.

The proposed solutions are discussed as individual chapters in this thesis, each addressing
a specific objective.  Following the Introduction and Literature review chapters,
Chapter 3, “Directed Explorations During Flood Disasters Using Multi-UAV System,”
focuses on strategies for identifying critical flood areas. Moving forward, Chapter 4,
“Continuous Multi-UAV Control with Directed Explorations during Floods,” focuses on

learning continuous multi-UAV policies to enhance control strategies in flood scenarios.
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Chapter 5, “Autonomous Flood Area Coverage using Decentralized Multi-UAV System,”
discusses the algorithm for achieving autonomous multi-UAV controls using decentralized
training. Shifting focus to Chapter 6, “Real-Time Serviceable Path Planning during
Floods,” addresses the problem of real-time path planning using UAVs, specifically for
evacuation vehicle navigation during floods. Extending the application scope, Chapter 7,
“Autonomous Multi-UAV Control for Moving Convoy Tracking,” aims to improve target
function approximation for the Deep Deterministic Policy Gradient algorithm to track a
moving convoy using multiple autonomous UAVs. Each chapter contributes uniquely to
enhance UAV capabilities for autonomous control in distinct scenarios. Finally, Chapter

8 concludes this thesis.
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Abstract

During disasters, such as floods, it is crucial to get real-time ground information for
planning rescue and response operations. With the advent of Unmanned Aerial Vehicles
(UAVs), flood monitoring capabilities have improved significantly, yet the dependency on
expert human pilots limit their operational scalability in unknown flood-like environments.
To tackle such issues, autonomous multi-UAV systems can be deployed to perform the
task of cooperative flood area coverage without human intervention. Recent advances
in robot control algorithms have attempted to deploy autonomous UAV systems for
various tasks, particularly, leveraging deep reinforcement learning (Deep RL) algorithms.
However, training Deep RL algorithms pose various challenges, such as sparse early
rewards, target approximation errors, and overestimation bias. These limitations often
leads to sub-optimal policies, especially when learning complex value functions in dynamic
and stochastic environments, like floods.

In this thesis, the focus is on learning effective autonomous multi-UAV policies for
flood area coverage, path planning, and object tracking by introducing novel exploration
strategies and target function approximators. The proposed solutions aim to mitigate
the limitations associated with training Deep RL policies for multi-UAV systems in
complex environments, such as floods. Domain knowledge based directed explorations are
introduced using water-flow algorithms, viz., D8 and D-infinity to expedite training of Deep
RL policies and to accumulate high rewards especially in initial episodes. The proposed
algorithms, D8QL (for discrete state-space) and D8DQN (for continuous state-space)
uses an €1-€9 exploration strategy, distinguishing them from purely random exploration
based e-greedy strategy. Further, D3S algorithm is presented to deal with continuous
action-spaces for smoother UAV motion. Additionally, a decentralized training paradigm
is introduced to learn multi-UAV policies, as opposed to centrally trained policies, to
perform flood area coverage and to identify critical regions. The decentralized approach
enables flexible response capabilities in scenarios where communication with the ground
control station might be restricted or limited. Further, to mitigate poor training due
to random initialization of target networks in Deep RL based actor-citric algorithms,
a Gaussian process regression (GPR) based value function approximation technique is
proposed. GPR is used as the target critic to improve the multi-UAV policy to track a
convoy of moving vehicles. This thesis also presents a multi-UAV path planning strategy
to navigate waterborne evacuation vehicles to reach critical location(s) during floods. A
minimum node expansion strategy is proposed to tackle the issue of exponential complexity
associated with the A* algorithm in large state-space environments.

All the proposed algorithms are benchmarked against established Deep RL baselines and
state-of-the-art algorithms from the recent literature. The results show that the proposed
algorithms outperform other techniques across multiple performance measures. The
proposed algorithms provide improved autonomous solutions for multi-UAV operations
in flood relief tasks, offering critical area coverage, efficient path planning, and continuous

object tracking.
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1| Introduction

Floods are one of the most critical and frequently occurring calamities across different
parts of the world. In the decade spanning from 2010 to 2019, the global monetary losses
attributed to floods are estimated to have averaged approximately 30 billion USD annually
[2, 3]. During this period, floods affected millions of people, causing over 6,000 deaths each
year and rendering more than 0.28 million people homeless [3]. Flood relief planning is a
critical task where real-time information is required at regular intervals to carry out rescue
operations effectively. With the advent of technology, Unmanned Aerial Vehicles (UAVs)
are being deployed for active flood monitoring [4] and area coverage [5, 6] to provide
support during search-and-rescue operations.

UAVs further extend the capabilities of the rescue teams in remote sensing and terrain
monitoring tasks [4, 7]. However, the majority of the current UAV-based deployments
rely on expert pilots [8, 9, 10] for providing command and control to perform the desired
task(s). This dependency limits the UAV’s operability in unknown and highly dynamic
environments as it requires the pilot to provide the UAV with appropriate actions after
perceiving the observed information. Therefore, its important to have correct autonomy in
place for a team of UAVs to perform desirable data-gathering tasks in unknown and unseen
environments. However, evolving autonomous multi-UAV policies in order to gather data
from critical regions of the flood-affected areas is not trivial.

Learning autonomous policies for UAVs has proven to be difficult because of factors
such as wind conditions, precipitation, static and dynamic obstacles, changing regulatory
restrictions, etc., making it difficult to establish pre-defined control protocols. In dynamic
and stochastic environments, the ability to adapt in real-time is crucial. Fixed control
strategies prove ineffective in such scenarios, necessitating the development of flexible
approaches for drones to cope with ever-changing conditions [11]. To enhance UAV
robustness, the incorporation of interactive algorithms (i.e., learning from trial-and-error),
particularly Reinforcement Learning (RL), has become a focal area of research [12].
Recent advancements in RL, including the application of Deep Reinforcement Learning
(Deep RL) [13], have further extended the capabilities of UAVs [14]. Deep RL has
enabled the UAVs to comprehend complex state-action functions, allowing them to
navigate intricate environments [15] with high degree of precision and intelligence. This
trail-and-error approach with continuous interactions with the environment empowers
UAVs to autonomously learn and optimize actions based on experiences and rewards.
Reinforcement learning sets itself apart from other approaches by not necessitating labeled
input /output pairs or explicit corrections for sub-optimal actions. Instead, it focuses on
finding a balance between exploration (of unknown environment) and exploitation (of
current experience). This thesis explores the applications of RL, particularly Deep RL,
for multi-UAV control. Delving into its framework, the focus is on model-free algorithms

as opposed to model-based algorithms that infer the model of the environment from its
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Figure 1.1: (a) Types of UAVs classified based on wings and rotors and (b) Its rotations
across different axis.

observations and then plan a solution using that model. For flood response applications,
the model-free Deep RL algorithms are deemed to be more suitable, enabling UAVs to
dynamically adjust and make instantaneous decisions. This adaptability is crucial in
addressing the inherent uncertainty and variability of flood conditions.

In the following sub-sections an overview of different types of UAVs and their
characteristics will be presented. Furthermore, a concise overview of Reinforcement
Learning will also be provided. Additionally, emphasis will be placed on highlighting the
primary research challenges in learning RL policies, specifically focusing on multi-UAV
policies for flood disaster response applications. To conclude this section, a summary will

be provided outlining the research objectives and the structure of the thesis.

1.1 Unmanned Aerial Vehicles (UAVs)

A UAV, commonly known as a drone, is an aircraft without a pilot onboard. As can
be seen in Figure 1.1a, UAVs come in various types, broadly categorized as multi-rotor,
fixed-wing, single-rotor and hybrid, each tailored to specific applications. Multi-rotor
drones demonstrate agility in tasks like aerial inspection, while fixed-wing drones excel
in long-range mapping and surveillance. Hybrid drones handle heavy payloads, and
single-rotor helicopters are ideal for applications where extended hovering is required.
Each type has distinct advantages and trade-offs in maneuverability, endurance and cost.
A UAV is controlled either remotely by a pilot commanding through the ground control
station or by autonomous control commands generated using computer algorithms. As
can be seen in Figure 1.1b, controlling the UAV movement involves the following actions
[16]:

1. Throttle: This action regulates the propeller’s motor power due to which an

increase in throttle increases the speed and altitude of the UAV. It determines the
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amount of thrust generated by the propulsion system.

2. Pitch: This action helps in the forward and backward movement of the UAV.
At hover/rest position (considered pitch = 0), the UAV alignment is parallel to the
ground. A forward push in reference to the lateral axis tilts the UAV head downwards
as the tail goes up resulting in a forward movement. Similarly, a backward push tilts

the UAV head upwards as the tail goes down resulting in a backward movement of
the UAV.

3. Roll: This action is responsible for the UAV’s bank or tilt from side to side, which
affects its turning ability. Rolling to the left causes the left side of the UAV’s body
(in reference to the UAV head) to go down bringing the right side upwards and
tilting the UAV in the left direction. Similarly, rolling towards the right causes the
right side of the UAV’s body to go down bringing the left side upwards and tilting
the UAV in the right direction.

4. Yaw: Yaw controls the UAV’s rotation around its vertical axis, which affects
its orientation and heading. A push in the left direction shifts the UAV head

anticlockwise whereas a push in the right direction shifts the UAV head clockwise.

1.2 Multi-UAV Systems

A Multi-UAV system [17], refers to a group of Unmanned Aerial Vehicles (UAVs)
working collaboratively towards a global objective. These UAVs work as a team, sharing
information and coordinating their actions in real-time to accomplish the objective.
For tasks like flood area coverage, employing a cooperative approach enables UAVs to
cover larger regions and accomplish complex tasks more efficiently than a single UAV
could manage alone. Autonomous policies for multi-UAV systems can be learnt using a
centralized or decentralized training methodology. In a centralized setup [18], a ground
control unit (GCU) collects global state information and coordinates the actions of all
UAVs. This approach often involves a joint policy that guides the entire fleet, making
decisions based on a holistic understanding of the environment and task requirements.
Conversely, training decentralized systems allows UAVs to learn policies based on local
experiences. Each UAV learns a local policy while sharing information with neighboring
UAVs. Decentralized systems often exhibit robustness and adaptability, as they can
continue functioning even if individual UAVs within the network are disrupted. However,
policies trained in a decentralized manner tend to converge slowly and frequently exhibit
challenges in coordination, often resulting in overlapped exploration when compared to
centrally trained systems.

This thesis introduces domain-specific solutions to address the limitations of standard
Deep RL algorithms with randomly initialized target functions, particularly in tasks with
sparse early rewards, such as flood area coverage and object tracking. The proposed Deep

RL algorithms cater to both discrete and continuous action settings of UAVs. Furthermore,
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a decentralized algorithm is proposed for training multi-UAV policies, in contract to the
centralized approach. Expanding on the application scope beyond flood area coverage,
this thesis also explores multi-UAV applications in path planning and target tracking.

Before delving into the detailed overview of the proposed research objectives, a brief
discussion about RL (Reinforcement Learning) and Deep RL (Deep Reinforcement

Learning) will be presented in the subsequent subsections.
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Figure 1.2: The UAV—-and-environment interaction in a Markov decision process.

1.3 Reinforcement Learning (RL)

RL algorithms [19] provide a general framework that helps in learning autonomous policies
for UAVs by interacting with the environment in a trial-and-error fashion, as seen in
Figure 1.2. RL algorithms aim at learning the optimal behaviour for an agent in an
environment described in the form of a Markov decision process (MDP). An MDP is a
decision process that provides the mathematical framework for modelling decision-making
in scenarios involving partially random and partially controlled outcomes. Its important
to note that the state transitions within an MDP adhere to the Markov property [19]. RL
uses the formal framework of MDPs to define the interaction between a learning agent
(i.e., a UAV in the given scenario) and its environment in terms of states, actions, and
rewards [19]. In the given context, the MDP can be formally presented as a quintuple
< S,A, Py, R, sy > where S represents the state of the UAV, A denotes its feasible action
set, P,y represents the state transition function from state s to s’, R denotes the reward
function and sy denotes the starting configuration of the UAV in the environment. A
state-action value (Q-value) function is defined as the cumulative rewards accumulated
by the UAV(s) based on its action in a given state. The idea revolves around iteratively
interacting with the environment to determine the best action for a given state. This
process balances exploration (discovering new possibilities) and exploitation (capitalizing

on experience), ultimately leading to an optimal state-action value function.

The state-action value function is given as:
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where ¢ denotes time, m represents the current policy and r denotes the rewards/incentives.
0 < < 1 is the discount factor to solve the infinite horizon problem (i.e., infinite reward
calculation as the number of time steps tends to infinity). Hence, a policy can be defined
as a mapping from the state space to a feasible action set. Various update rules are
established in different reinforcement learning algorithms to enhance the policy, aiming
to maximize the total rewards accumulated over time by adjusting the state-action value
function Q™ (s, a;) towards the optimal value function Q*(s¢, ay).

RL algorithms can be broadly categorized into model-based and model-free algorithms.
Model-based RL algorithms rely on the model of the environment (Psy) to train a
policy. These algorithms [20] are computationally more expensive as compared to
model-free algorithms. However, they often learn better value function estimates with
fewer environmental interactions and provides better interim performance as compared
to model-free algorithms. A few examples of model-based algorithms are Dyna style
algorithms [21], Imagination-Augmented Agents (I2A) [22], AlphaZero [23], Dynamic
programming [21] among others. In contrast, being computationally less expensive,
model-free algorithms can accommodate a comparatively larger state-action space given
the same computational resources. Additionally, in dynamic and stochastic environments
like floods, model-free algorithms are considered better suited than model-based
algorithms. This is because model-free methods learn directly from environmental
interactions, adapting without needing a detailed model of the environment, i.e., they do
not need an explicit transition function Psy [24]. The subsequent discussions are centered
on model-free algorithms due to their suitability and adaptability in operating effectively
within stochastic and uncertain environments, such as those encountered in scenarios like

flood area coverage, target tracking, etc.

1.4 Deep Reinforcement Learning (Deep RL)

Deep RL combines deep learning and reinforcement learning to learn optimal strategies
by approximating the value function. The integration of deep neural networks (DNN)
has significantly advanced the capabilities of RL algorithms to learn complex value
functions for autonomous controls in various settings, including multi-agent systems. Their
deep architectures enable understanding of high-dimensional data, facilitating informed
decisions and adaptive responses to real-world problems. Deep RL techniques, such as
Deep Q-Network (DQN) [13], Double DQN [25], Dueling DQN [26], and others [27], have
achieved super human performance, revolutionizing a wide array of applications. These
advancements have significantly influenced various domains, from immersive applications
such as gaming to autonomous systems and robotics. Along with deep networks these

algorithms also use experience replay, and prioritized sampling to learn complex policy
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functions in discrete action spaces. In a specific application discussed in [28], DQN is
employed to optimize the actions of multiple UAVs for flood area monitoring, focusing on
planning UAV trajectories, including bank angles for fixed-wing UAVs, in a decentralized
flood monitoring approach. In another study [29], a Double DQN algorithm is employed
to maximize UAV coverage while efficiently managing power constraints. The proposed
model considers various landing positions and navigates no-fly zones, utilizing spatial
maps as input for training convolutional network layers. These studies merely scratch the
surface of the profound impact these algorithms can have on addressing varied real-world
challenges. Further, algorithms like Advantage Actor-Critic (A2C) [30, 31], Asynchronous
Advantage Actor-Critic (A3C) [30], Deep Deterministic Policy Gradient (DDPG) [32], Soft
Actor-Critic (SAC) [33], and Twin Delayed Deep Deterministic Policy Gradient (TD3) [34]
have significantly broadened the scope of control possibilities in continuous action spaces
[35, 36, 37].

However, training Deep RL policies, especially in complex environments like floods,
poses intricate challenges. In the following sub-sections, this thesis will delve into
these challenges and elaborate on the potential solutions, which constitute the primary

contributions of the proposed research works.

1.5 Challenges in Learning RL policies

It is important to highlight that RL policies may not always converge, particularly in
intricate environments [34, 38]. This is because, in complex and stochastic environments,
standard RL algorithms often struggle to accumulate rewards during the early stages
of training, resulting in sub-optimal control policies [34, 39]. Also, high fluctuation in
accumulated rewards from episode to episode can lead to unstable learning. Additionally,
Deep RL algorithms usually make use of fixed target networks to stabilize learning.
However, as these target network functions are randomly initialized they lead to delayed
convergence and require a substantial number of samples [40]. The poorly defined target
functions also introduce overestimation bias in the policy, causing the policy to diverge
[34]. To address the problem of overestimation bias (to some extent), multiple function
approximators can be employed to select a better estimate of the value function rather
than having a single estimate. As the function approximates are susceptible to noise, the
target Q-value tends to overshoot the true Q-value leading to sub-optimal policy learning.
This is still an open research area where the objective is to eliminate the overestimation
bias.

Further, to address the problem of poor target function approximation, domain knowledge
of the environment can be leveraged to provide more accurate target estimates that closely
align with the true value functions [41, 42]. This will assist the agent in accumulating
timely rewards, thereby steering the agent’s policy toward the optimal one [43]. With
respect to disaster response applications, integrating data such as terrain elevation levels,

weather conditions, disaster impact region, target characteristics, and human population
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information can enhance UAV decision-making. This integration can guide the UAVs
toward critical regions (the densely populated areas prone to high volume of water
accumulation), optimizing the response strategies [44]. However, the use of domain
knowledge is not straightforward and heavily depends on the dynamics of the environment.
While the incorporation of domain knowledge to enhance RL policies beyond standard
algorithms is relatively recent, this research area holds the potential to yield robust RL
models [41, 42, 43].

This thesis demonstrates the effective utilization of domain knowledge to guide the
learning of RL based policies, especially in the initial phases of training. The proposed
approaches seek to expedite reward accumulation while mitigating issues associated with
random target function approximation. In the following sub-section, the key challenges
involved in learning a multi-UAV Deep RL policy are presented, with a specific emphasis

on its application in flood response scenarios.

RL based multi-UAV policies for Flood Disaster Response: Building upon the

previous discussions, the key research challenges are outlined as following:

1. Sparse rewards in early training: Obtaining meaningful rewards during the initial
stages of training Deep RL models for UAVs in flood scenarios is challenging, often

resulting in slow convergence.

2. Initialization of target function approximators: In algorithms such as actor-critic, the
random initialization of target functions can result in sub-optimal learning, impeding

the swift training of policies.

3. Overestimation bias: Deep RL algorithms can suffer from overestimation bias, where
estimated Q-values surpass true Q-values, leading to sub-optimal policies. Mitigating

this bias is crucial for accurate learning.

4. Environment modeling: Flood environments exhibit dynamic and stochastic

behavior, posing challenges in training Deep RL policies for multi-UAV systems.

5. Lack of generalizability: The learnt policies might struggle to generalize across
diverse environments, requiring techniques to ensure learned behaviors apply

effectively to new, unseen situations.

6. Handling noisy environments: Real-world environments, including disaster-stricken
areas, are often noisy and unpredictable. RL algorithms need to robustly handle

noise in sensory inputs for reliable decision-making.

7. Incorporating Domain Knowledge: Leveraging domain knowledge of the environment
can be crucial for certain tasks. RL algorithms must effectively incorporate this

knowledge to enhance learning and decision-making.



8 Chapter 1. Introduction

8. Balancing Exploration and Exploitation: UAVs must strike a balance between
exploring new strategies (exploration) and exploiting known successful actions
(exploitation) to learn suitable policies in limited time-frame due to their finite

energy.

9. Minimizing Overlapping Errors for Area Coverage: Precision in coordinated actions

is crucial to prevent overlapping errors among UAVs to maximize joint area coverage.

10. Centralized Training Paradigms: Employing a ground control unit (GCU) for
aggregating global information enhances the management of multiple UAVs by
ensuring coordinated movements and optimized decision-making. However, this
dependency on centralized systems pose challenges in scenarios like flood disasters,
given that the data is vastly distributed over the environment, complicating its

applicability.

11. Decentralized Training Paradigms: Leveraging information sharing among UAVs,
decentralized systems facilitate the learning of robust and effective local policies.
This approach enhances adaptability and responsiveness, making UAVs well-suited
for rapidly changing flood disaster scenarios. = However, challenges of slow
convergence, lack of coordination and exploration needs to be mitigated to train

a decentralized multi-UAV policy.

1.6 Research Focus & Identified Objectives

In this thesis, the research primarily focuses on:

e Understanding the critical role of selecting an RL algorithm for learning autonomous

UAV controls depending on the application and the environment.

e Developing Deep RL algorithms for multi-UAV control for disaster response
applications, specifically emphasizing on the identification of critical regions in

flood-prone areas.

e Incorporating domain knowledge to enhance learning of directed RL policies for flood
area coverage and achieving collaborative objectives with autonomous multi-UAV

Systems.

e Further, the application scope of Deep RL based multi-UAV solutions is extended
to address path planning and target tracking problems.

Based on the key research points, specific objectives addressed in this thesis are outlined

below.

1. The first objective is to develop Deep RL algorithms enabling UAVs to operate

effectively in flood environment, considering both discrete and continuous action



Chapter 1. Introduction 9

spaces. The task is to identify critical regions in flood-prone areas, utilizing multiple

UAVs for optimal coverage.

2. The second objective is to train decentralized multi-UAV policies, enhancing UAVs’

deployment efficacy and facilitating flexible and resilient disaster response strategies.

3. The third objective is the identification of serviceable paths to these critical locations
for waterborne evacuation vehicle(s) (WBVs) to perform rescue operations during
floods.

4. This thesis also addresses the problem of real-time tracking of a moving convoy of
vehicles. The final objective is to learn multi-UAV control policies for continuous

tracking of a moving convoy.

1.7 Contribution of the Thesis

This thesis aims to demonstrate the effective utilization of domain knowledge to guide
the learning of Deep RL based policies, especially in the initial phases of training.
The proposed approaches seek to expedite reward accumulation while mitigating issues
associated with random target function approximation.

For each objective, the proposed solutions are highlighted as part of the research work,

outlined below:

1. Directed Explorations During Flood Disasters Using Multi-UAV System.
2. Continuous Multi-UAV Control with Directed Explorations during Floods.
3. Autonomous Flood Area Coverage using Decentralized Multi-UAV System.
4. Real-Time Serviceable Path Planning during Floods.

5. Autonomous Multi-UAV Control for Moving Convoy Tracking.

In the subsequent sub-sections there is a brief description of each of the proposed solutions.

1.7.1 Directed Explorations During Flood Disasters using Multi-UAV
System

This contribution proposes a Deep RL based method to learn a control policy for a
multi-UAV system in order to perform non-overlapping coverage of critical regions in
a flooded area. To guide the initial exploration, water flow estimates extracted from
the D8 algorithm [45] are used to train the UAV policy. The proposed solution helps
in managing the actions of the UAVs in accordance with the water flow dynamics to
expedite the training process. The objective of the UAVs is to find maximum number
of critical regions, i.e., densely populated areas that are prone to high volume of water

accumulation. Since a UAV can only observe partial information from the environment
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at any given point in time, the D8 flow algorithm maps the flow direction by taking
into consideration the terrain elevations of the flooded area. The reward function is
designed in such a manner so as to avoid collisions and repeated observations by the
UAVs. This encourages the UAVs to visit unobserved locations which in turn increases
the area coverage and potentially identifying a larger number of critical regions. The
proposed algorithms, named, D8-Q-learning (D8QL) and D8-Deep-Q-network (D8DQN)
are assessed in diverse environments. The performance of the proposed algorithms is
compared with various other UAV-based area coverage approaches from the literature.
Further, to test the generalizability of the proposed algorithms, the learnt multi-UAV

policies are executed in unseen flooded environments and their performances are evaluated.

1.7.2 Continuous Multi-UAYV Control with Directed Explorations during
Floods

In this contribution, an extension to the previous work [44] is presented, where the
limitation of DQN based model is addressed which limits the UAVs to a finite and discrete
set of actions. Consequently, maneuvering UAVs smoothly becomes challenging due to
the limited action space. Further, as the employed exploration algorithm (D8) in [44]
works based on the surface elevation information, the UAVs are prone to clustering at
nearby sub-regions having low elevation. Such clustering restricts the UAVs’ coverage to a
relatively smaller region rather than having a broader coverage of the environment, which
could have helped the UAVs in identifying a larger number of critical regions during floods.
To address these limitations a Deep RL algorithm, named, D3S is proposed with the
objective to learn continuous actions for the UAVs with non overlapping trajectories. The
task remains the same, that is identification of critical regions in a flooded environment.
To learn a continuous control policy for the UAVs, Deep Deterministic Policy Gradient
(DDPG) [32] algorithm is employed with an improved target Actor. The proposed target
actor guides the UAV exploration using the D-infinity (DINF) [46] water flow algorithm.
DINF maps the water flow direction from a given location to its neighbouring areas
based on the triangular facet theory. Using this information, the UAVs’ actions are
tweaked in the direction of the flow estimate. Prior to the empirical evaluation of the
proposed algorithm, it is hypothesized that these flow estimates contribute to learn a
more efficient multi-UAV policy by boosting the target actor of DDPG. Additionally, the
implementation of Path scatter (a dispersion strategy for UAVs) restricts UAV actions,
preventing clustered formations, and aids the multi-UAV system in maintaining inter-UAV

separation for enhanced coverage.

1.7.3 Autonomous Flood Area Coverage using Decentralized Multi-UAV
System

As discussed, majority of the prominent work done in the field of multi-agent reinforcement
learning (MARL) considers some form of centralized entity to make individual agents

learn from global knowledge of the environment [47, 48, 49]. The environment related



Chapter 1. Introduction 11

information is gathered from each agent and stored in a centralized unit. However, utilizing
a centralized system to train a multi-UAV policy during natural disasters could be limiting
due to the widespread distribution of data throughout the environment. Further, the
location of the centralized entity should be known by the UAVs at all times as they
need to have bi-directional communication with the central server irrespective of their
distances. This becomes very restrictive for the UAVs to operate when the environment
is large, dynamic and stochastic [18].

Considering this problem, a more flexible approach is proposed to learn a multi-UAV policy
using decentralized training paradigm. In literature, various researchers have attempted
to solve dec-POMDP problems using decentralized Deep RL approaches [50, 51, 52, 53].
Motivated from the prevalent literature work, a decentralized Deep RL algorithm is
proposed to train a multi-UAV system to operate effectively in a highly dynamic flood
environment. The objective is to gather critical ground information of a flooded area
using multiple autonomous UAVs with limited energy for relief and evacuation purposes.
Further, opportunistic communication among UAVs is enabled so as to exchange their
experiences in order to improve the local UAV policies. In addition, Coverage Maps are
introduced to gain insights into UAVs’ observation histories, encouraging them to have

non-overlapping trajectories for maximizing overall coverage.

1.7.4 Real-Time Serviceable Path Planning during Floods

After identifying critical regions in the flood-struck area, the problem of path planning is
addressed to assist the waterborne evacuation vehicles (WBVs) to reach these locations to
evacuate victims. A team of autonomous UAVs is deployed to perform cooperative sensing
and coverage of a flood-struck region to identify serviceable paths to reach these critical
regions from the location of the WBV. A path is said to be serviceable when it is clear of
obstacles and shallow water, for possible movement of WBVs. However, autonomous
navigation and formation control of multi-UAV systems pose a significant challenge
for the robotic systems that operate in partially-observable, dynamic and continuous
environments.

To address this, a Deep RL algorithm is employed to learn a cooperative multi-UAV
policy for coverage and formation control. The coverage information provided by the
UAVs capture the presence of obstacles present over the shortest path connecting the start
and target location. To provide connected coverage, the UAVs maintain an end-to-end
formation to prevent any coverage gaps. This coverage information is utilized by the
proposed path planning algorithm, named, MEA™*, to minimize the number of expansion

nodes and realize a serviceable path quickly.

1.7.5 Autonomous Multi-UAV Control for Moving Convoy Tracking

This thesis also addresses the problem of tracking a moving convoy of vehicles using
multiple autonomous UAVs, where continuous tracking is ensured by maintaining the

convoy within the joint Field-of-View (FoV) at all times. To learn an autonomous policy for
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the multi-UAV system, a Deep RL algorithm, named, GPR-MADDPG is proposed which
employs Gaussian Process Regression (GPR) to approximate the target Q-value function.
Further, the GPR model’s kernel function is adapted to address the excessive variance in
the trajectory estimation. The reward function is designed to maximize convoy coverage
by optimizing FoV overlaps while minimizing tracking errors. Experiments were performed
on road trajectories of varying complexities generated using OSRM tool [54], along with
varying convoy speeds and the number of UAVs. Further tests were performed using a
3D physics simulator, known as Gazebo [55]. The experiments show that the proposed
GPR-MADDPG model results in the least amount of overlapping error and accumulates

maximum rewards as compared to other prevalent approaches in the literature.

1.8 Outline of the Thesis

The above discussed contributions are presented as individual chapters in this thesis. An

outline of all these chapters is provided below:

« CHAPTER 1: It presents an introduction to UAVs, background on reinforcement
learning and provides a brief overview of its algorithms. It explores the motivation
behind leveraging domain knowledge and enhancing function approximators to
advance Deep RL for multi-UAV controls, particularly for the application of flood

area coverage and object tracking.

e« CHAPTER 2: In this chapter a comprehensive overview of the related literature
is provided pertaining to autonomous UAV control across diverse applications.
Additionally, the challenges and limitations in the related literature are discussed to

highlight the research gaps.

« CHAPTER 3: In this chapter, a Deep RL algorithm, named D8DQN is proposed
that leverages domain knowledge using D8 flow estimation algorithm. This method
guides Deep-Q Network (DQN) exploration, enabling autonomous multi-UAV

control for flood area coverage and identification of critical regions.

« CHAPTER 4: Extending the work proposed in Chapter 3, continuous multi-UAV
controls are learned using the proposed D3S algorithm. D3S uses D-infinity
algorithm to enable directed explorations based on the exact degrees of water flow

estimates. Additionally, Path scatter is introduced for broader area coverage.

« CHAPTER 5: To achieve multi-UAV autonomy in environments with distribution
information, a fully decentralized training paradigm is introduced to learn
autonomous multi-UAV controls. To expedite learning, inter-UAV communication
is enabled and Coverage Maps are used to prevent frequent visits of UAVs to similar

regions.

« CHAPTER 6: In this chapter, the problem of path planning is addressed to

identify serviceable paths for waterborne vehicles during floods. Autonomous UAVs
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collaborate to provide real-time data on obstacles and shallow water regions. This
information is utilized by the path planning algorithm (MEA*) to minimize the

number of expansion nodes in A* and expedite the identification of serviceable paths.

« CHAPTER 7: In this chapter, the focus is on developing autonomous control
policies for UAVs to track and maintain a moving convoy within their joint
Field-of-View (FoV). The continuous coverage is achieved by maintaining the convoy
within the joint FoV at all times. This is achieved by introducing a Gaussian Process
Regression (GPR) based value function approximator to train Deep RL multi-UAV
policies for tracking a moving convoy. GPR provides with a continuous estimate
of the target critic Q-value while adapting the kernel function to manage the high

variance.

e« CHAPTER 8: This chapter marks the conclusion of the thesis, summarizing the
contributions made throughout the research. Additionally, it provides insights into

the potential future directions for this work.
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Chapter 1.

Introduction




2| Literature Review

This chapter focuses on providing a comprehensive review of various control methodologies
to learn autonomous policies for UAVs. It delves into model-based and model-free
RL approaches, alongside non-RL methodologies such as rule-based systems, heuristic
approaches, meta-heuristic algorithms, and non-RL model-based methods. This chapter
aims to offer a thorough overview of these prominent algorithms, outlining their strengths,
weaknesses, and applications across various domains requiring autonomous multi-UAV
solutions. Additionally, the chapter discusses the challenges and limitations of these
algorithms to highlight research gaps. By comprehending the latest advancements in
control algorithms, researchers, practitioners, and policymakers can develop and apply

efficient control strategies to achieve UAV autonomy for disaster response applications.

2.1 Overview of Reinforcement Learning Algorithms

This section provides an in-depth discussion on fundamental and prominent RL algorithms
in both discrete and continuous action spaces, offering a comprehensive overview of popular
algorithms. This discussion forms the basis for understanding the potential applications
of these algorithms in multi-UAV systems. RL algorithms can be primarily categorized

into two groups: model-based and model-free algorithms [19].

2.1.1 Model-based Algorithms

The model-based algorithms infer the model of the environment from its observations and
then plan a solution using that model. The two most popular model-based RL algorithms
are policy iteration and value iteration. Both these algorithms can be directly applied to
the MDP quintuple < S, A, T, R, sy > to learn a control policy. In policy iteration, the
policy 7 is initialized arbitrarily, and the value function V'(s) is set to either zero or assigned
random values. The first step is to perform policy evaluation for the value function V(s)

under the current policy 7 [56]. This can be done using the Bellman equation, given as:

V(s) « Zp(s’, rls,m(s))[r + vV (s')] (2.1)

where 7 is the discount factor. 7 (.) outputs an action a (that could be UAV control values
for throttle, yaw, pitch and roll actions) in state s (usually given by the current location
of the UAV in the environment) and P(.,.|.,.) is the probability of transitioning to state
s’ (i.e., moving to a different location) when taking action a in state s. r is the reward
received by the UAV for taking action @ in state s and transitioning to state s’. The
reward function is usually based on the objective of the problem that is being considered

[57]. Next, the Policy Improvement step is performed to update the policy 7 by selecting
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the action that maximizes the expected value of taking that action in the current state,

given as:

m(8) < argmaz, Zp(s’, rls,a)[r + YV (s')] (2.2)

s'r
both these steps are repeated until the policy converges [58]. Another model-based
algorithm known as value iteration can be also applied to learn autonomous control
policies for agents [19]. The value iteration algorithm can be applied iteratively to realize
the optimal actions corresponding to each state of the environment. The value iteration

update equation is given by:

V(s) « maz, Zp(s’, rls,a)[r + vV (s")] (2.3)

s'r
where V (s) is the value function, a denotes the action, s’ is the next state, p(s’,r|s, a)
is the transition probability, r is received reward, and -y is the discount factor. Once the

value function has converged, the optimal policy is given by:

m(s) = argmazx, Zp(s', rls,a)[r + vV (s)] (2.4)
s'r

In the above discussed algorithms there is a significant limitation i.e., the dynamics/model
of the environment should be known a priori for their applicability. However, in a majority
of applications, like utilizing UAVs for area coverage during floods and employing them in
real-time path planning applications to assist evacuation teams in reaching victims, the
dynamics of the environment are usually unknown. For such intricate tasks, model-free
RL approaches are used, learning control policies directly for the experiences obtained by

interacting with the environment, without relying on the model of the environment.

2.1.2 Model-free Algorithms

In contrast to model-based, model-free algorithms focus on learning the consequences of
actions through experience [19]. These algorithms repeatedly perform actions, adjusting
their policy to maximize rewards based on observed outcomes. In the subsequent

discussions prominent model-free RL algorithms are explored.

Q-Learning: This is a model-free, off-policy RL algorithm that learns the optimal actions
corresponding to each state of the agent that it can attain in the environment. Off-policy
methods are the ones where the evaluated or improved policy is different from the one that
is used to generate the data (i.e., the behavioural policy). In contrast, on-policy methods
attempt to evaluate or improve the policy that is used to make decisions. Q-Learning is a
tabular algorithm [59] where the Q-values are computed corresponding to every action in

each state. Policy training is performed using an € — greedy strategy, given as:
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maz Q¢(sy,ar) with probability 1 — e
a; = { a€A (2.5)
random action with probability e
where, 0 < ¢ < 1 and A denotes the feasible action set. The € — greedy strategy is
known as the exploration-exploitation strategy where in the initial phase of training the
agent randomly explores the environment to gain experience. After enough experience
is obtained, the agent selects the greedy action in every state based on learned Q-values
to maximize its rewards in the long run. Further, ¢ — decay strategy is adopted where
at the beginning of training a high value of € is selected (i.e., close to one) to prompt
random exploration and as the estimation of the QQ-value function improves with time, the
e decays, increasing the probability of selecting an action based on max Q-value rather

than a random action.

Q-learning update equation is given as [19]:

Q" (s¢,a1) <+ Q(s¢,ar) + afr + 7y maz Q(s',a") — Q(s¢, ar)) (2.6)

where « is the learning rate and o’ denotes the action on seeing state s’ under the current
policy. However, in large state-space environments, Q-learning becomes impractical as
it becomes infeasible to generate a Q-value table containing values for every state-action
pair. To address this limitation a neural network based Q-value function approximation

technique was proposed known as Deep Q-networks.

Deep Q-networks (DQN): This is [13] is also a model-free off-policy learning algorithm
that uses a pair of neural networks known as a learning network and the target network.
Both these networks are initialized with the same weights but are updated at different
frequencies. Each network takes the state of the agent as input and approximates the
Q-value function corresponding to each feasible action that the agent can take. DQN
is also based on € — greedy strategy where initially the agent explores the environment
based on random actions. As the agent accumulates adequate experience, this gathered
information (< s;,a;, 7, si+1 > stored in a buffer) is used to train the learning network.
Random samples in form of mini-batches are extracted from the experience replay buffer
for training. During training, the mean square loss is calculated between the Q-value of
the learning network and target network and then gradient descent step is performed w.r.t.

weights of the learning network [13], given as:

Vo, Li00) = Byt tptoioar | (7 + 7m0 QL' l501m1) = Qo030 ) Vo, Qs as00)
(2.7)
where t denotes the iteration and p(.) is a probability distribution over sequences s and
actions a. However DQN works well only with discrete and finite action spaces since
it calculates the maximum Q-value by assessing all feasible actions, limiting its use in

continuous action spaces.
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Deep Deterministic Policy Gradient (DDPG): Similar to Q-learning and DQN,
DDPG [32] is also a model-free off-policy learning algorithm. DDPG is based on an
Actor-Critic framework where the actor-network generates real-numbered action values
for the agent based on its current state. The critic network takes this current state and
the action generated by the actor as input and provides a Q-value estimate defining a
quantitative measure of the suitability of the action in a given state. Target actor and
critic networks are also part of the DDPG architecture to stabilize policy learning. The
network weights are randomly initialized and before training, the agent performs random
actions to gather experience from the environment. However, unlike random exploration in
DQN where an action is selected randomly among the feasible actions using the € — greedy
strategy, DDPG uses additive noise that is added to the generated actions to achieve

random exploration. The Q-value of the target critic network is calculated as [32]:

Y = 1k + Q' (kr1, 1 (141107 )[09) (2.8)

where Q'(.,.].) denotes the target critic network and 1" denotes the target actor network.
6" denotes the target actor network weights and 9 represents the target critic network
weights. The weights of the learning actor network are updated using the sampled policy

gradient, given as:

1
VH“J ~ N Z an(‘S? a|eQ)|s:sk,a:u(sk)v9“u(s|0“)|Sk (2'9)
k

where k denotes the time-step of the transition as sampled from the experience replay

buffer < sg, ag, 7k, Sg+1 > and N denote the size of the mini-batch sampled for training.

All the above discussed algorithms are limited to the autonomous functioning of a single
agent (UAV), however, to address large-space environment challenges multi-agent systems
are employed. Below, a notable multi-agent reinforcement learning algorithm suited for

continuous state and action spaces is discussed.

Multi-agent Deep Deterministic Policy Gradient (MADDPG): This algorithm
[60] works in a manner where each agent (UAV) is controlled by a separate actor network
that learns the policy for each individual UAV and uses the sampled policy gradient
method for updating the network parameters. MADDPG trains a centralized critic
(another deep neural network) that learns the Q(s,a) for each agent. Target networks
are used to stabilize the training. In a system of n UAVs, each UAV i selects an action
a; w.r.t. to the current policy and similarly, n actions are executed a = (a1, as, ..., a,).
The UAVs’ experiences are stored in a single replay buffer (S, S, a1, a2, ..., an, 71,72, ..., Tn),
where S denotes the initial state (i.e., local observations of each UAV) and S’ denotes the
next state. In each epoch of training, a random mini-batch (m) is selected from the replay

buffer. The critic network is updated based on the following loss equation:

[60]:
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1 i 2
EZ y - Q a§7a§7”'7a2)) (210)
t

where 0; are parameters of UAVSs’ policies pp, and QL is the centralized Q function.

Y _Gt+’7Q# (Slt a‘lva‘Qv' * ;1)|a;€:u;€(oi) (211)

The actor-network parameters are updated using sampled policy gradient given as [60]:

~ 1 ¢ t t .t t
Vo, J = m zt: VQiMi(Oi)vaiQ?(S y A1, A5 -eey an)’ai:,ui(oﬁ) (2'12)

However, learning a suitable policy is not a trivial task as there are many system and
environment-related constraints and control parameters that needs to be considered. Many
recent studies [41, 42, 43] have used domain knowledge for policy learning. This form of
learning is specific to the application where it’s being applied and has shown improved
performance with better policies. With the utilization of domain knowledge, the UAVs
can learn from the available information about the environment to improve their current
policy in a brisk fashion and perform the task at hand [41]. However, exploiting domain
knowledge and utilizing it to learn an optimal control policy for multi-UAV systems is still

a rather new and ongoing research area [41, 61].

2.2 RL-driven UAV Applications

In this section, the related literature w.r.t. the application of RL and Deep RL algorithms
in the context of multi-UAV systems is discussed, particularly in response applications

such as area coverage, path planning, and target tracking.

2.2.1 Area Coverage during Disasters

Considering an MDP quintuple < S, A, T, R, sg > for area coverage problem, where S :
{s1, 82, ..., S} denotes the state containing the observations of n UAVs, where s; denotes
the information corresponding to the location and the battery level of i** UAV. Additional
information corresponding to water levels and the number of victims in the regions sensed
by the UAVs can be incorporated as part of the state to prompt the UAVs to focus more
on such critical regions. A : {a1, a2, ..,a,} denotes the actions of the UAVs, where a; lies
within a feasible action range. P,y is the transition model of the environment. R is the
reward function denoting the incentives received by the UAVs that are used as feedback to
learn an optimal policy. sq is the starting configuration of the UAVs in the environment.
To address the task of area coverage using multiple UAVs the objective function is usually
formulated around maximizing the coverage area or maximizing the coverage of target
regions in a limited time frame due to the finite battery life of UAVs. So, the reward
function can be formulated around the number of cells sensed by the multi-UAV team in

an episode or in scenarios where specific regions are more important than other regions,
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the reward function can be weighted average over the number of cells and type of cells the

UAVs cover.

Algorithms such as Q-leaning [62] (for relatively smaller area coverage tasks) and DQN
[44] (for large or continuous state-space environments) can be employed to address area
coverage problems using UAV, where UAV actions are limited to a discrete and finite set.
Authors in [29] employ a double deep Q-network (DDQN) model to learn UAV controls,
where the UAV is tasked to maximize coverage under varying power constraints. Further,
multiple options for landing positions in the simulated environment are considered along
with no-fly zones. To train the DDQN model, map-based spatial information is fed as
input to the convolutional network layers of the model. Authors in [63], address the
problem of covering vast areas using UAVs by learning autonomous controls with the
help of an actor-critic algorithm. Further, to reduce UAV energy consumption, such
actions are selected that greatly reduce energy loss. Pham et al. [64] proposed a function
approximation-based RL method for locating the missing humans in a post-disaster
scenario using UAV along with flight control. Detailed implementation of the UAV
performing a search-and-rescue task is highlighted where the UAV is able to locate the
human’s location from an arbitrary starting point. However, their work relies on a tabular
RL method to learn the Q-value functions. Such an approach would fail to generalize in

environments with continuous state and action spaces.

In case of multi-UAV systems, multiple Q-learning or DQN models (individual to each
UAV) can be employed with a centralized training unit. In [28], authors employed a
Deep RL technique known as Deep Q-Networks (DQN) for trajectory planning of multiple
UAVs for flood monitoring tasks. It was assumed that UAVs have infinite battery life and
a UAV is able to gather information related to the heading angle and bank angle of other
UAVs, however, no communication protocol was employed. For continuous action space
problems (where UAVs’ action lies over a continuous range) DDPG algorithm [35] can
be used to learn autonomous policy in case of a single UAV and to train multiple UAVs
jointly, MADDPG and MATD3 algorithms [65] can be employed.

Additionally, in the case of multiple UAVs working in the same environment, it’s important
to minimize the sensing overlap among the UAVs to maximize the coverage. This can also
be included as a key component in the reward function [44]. However, when deploying
multi-UAV systems, several challenges needs to be addressed. Controlling all the UAVs
simultaneously through a centralized server/ground control unit (GCU) proves to be a
challenging task [52]. Especially when the information is distributed throughout the
environment, it becomes difficult to maintain bi-directional communication between the
GCU and the UAVs over large state-space environments. Further, as the UAVs have
a finite flight time due to limited battery life, it becomes opposing for the UAVs to
explore the environment and stay connected with the GCU at all times due to the limited
communication range. In centrally controlled systems, it’s important that all the UAVs
send back their current state to the GCU and based on the current RL policy the action
commands are sent back to each UAV [66].



Chapter 2. Literature Review 21

To overcome this problem, decentralized multi-UAV systems are employed that are capable
of learning control policies without the intervention of GCU [18]. In such a setting,
the UAVs communicate with others to exchange coverage and trajectory information to
maximize the objective of area coverage [67]. By adopting this framework the UAVs are
not dependent on the GCU to learn its control policies and trains directly from its local
experience and the experience gained from communicating with other UAVs. However, as
the quality of control policy learned by a UAV is mostly dependent on its local experience
(as communication can only work over a limited range and the energy consumed during
communication will reduce the UAVs flight time), it usually takes much longer to train a
decent policy in a decentralized setting as compared to a centralized one. Another problem
in disaster scenarios is the continuously changing dynamics of the environment, such as in
the case of active floods. To address this problem, it’s important to generalize the state

space and incorporate the environment parameters to train a robust policy.

2.2.2 Path Planning

Path planning is a well-known and extensively studied application where an agent
(UAV) needs to navigate through the environment to reach the target location(s). The
most prominent path-planning algorithms are A* and RRT and their variants that
are extensively applied to realize cost-effective paths for UAVs through obstacles and
obstacle-free environments [68, 69]. However, in the context of dynamic environments that
are continuously changing, it’s not feasible to pre-determine the trajectory of the UAVs.
To address this problem, UAV-based real-time sensing of the environment is adopted in
many path-planning applications [70, 71]. However, relying on pilot-controlled UAVs may
be ineffective, as it is not always possible to keep the flying UAV in the line of sight
[72]. Hence, autonomous UAVs are employed to cooperatively survey /monitor the region
from a start location to the target location to warn against any foreseen obstacles or
unserviceable regions in case of disasters, such as floods [73]. Considering the same MDP
quintuple as defined in subsection 2.2.1, the reward function can be tweaked to provide
incentives corresponding to covering connected regions between start and target locations
to identify a serviceable path. Further, the additional incentive can correspond to UAVs
maintaining an interleaved formation without collision to prevent coverage gaps.

However, the use of autonomous UAVs brings along challenges such as energy management,
cooperative sensing and training, non-overlapped coverage and most importantly,
achieving the objective in a short time-frame due to energy limitations. In [74], authors
introduce an enhanced Q-Learning algorithm employing Artificial Neural Networks
(ANNSs) for the optimization of UAV swarm path planning. They encode the action space
as a discrete list of values, encompassing all feasible movements. The reward function
is designed to promote increased exploration of unobserved regions while discouraging
frequent revisits to similar areas. In [70], authors propose a Deep RL based approach
for UAV path planning using global observation information. A set of observed global
maps are provided as input to the dueling double deep Q-network (D3QN) algorithm to
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approximate the value function corresponding to all feasible actions. The ¢ — greedy
strategy of D3QN is integrated with heuristic search rules to select the appropriate
action. In [75], author investigated vision-based UAV navigation in GPS-denied virtual
environments. A Variational Autoencoder (VAE) is employed to enhance sample efficiency
and a Proximal Policy Optimization (PPO) agent is used that is capable of tracing rivers
in realistic photo simulations. The reward function is structured to incentivize the UAVs
to maintain proximity to the center of the river while flying. The proposed approach
is compared with another agent trained with Imitation learning (IL). Authors in [76],
addresses the problem of guiding a UAV along desired paths using modified DDPG
algorithm. A double experience replay buffer (DERB) is used to expedite the training
process. The reward function is deigned to minimize the cross-track error. Extensive
experiments are carried out to emphasize the effectiveness of the proposed DERB-DDPG
approach.

2.2.3 Object Tracking and Formation Control

Active object tracking using a UAV concerns with maintaining the target object within the
field of view (FoV) of the UAV at all times [47]. Analysing the change in the orientation
and speed of the object and controlling the UAV actions accordingly is generally the
process followed to achieve this objective [77]. However, not knowing the trajectory of the
moving object a priori leads to failure as the object moves out of the FoV of the UAV
and it becomes difficult for the UAV to relocate the object. Resolving the problem of
relocating the object is usually achieved by adjusting the altitude of the UAV to enlarge
the FoV. However, this approach leads to image-resolution problems, along with high
energy consumption, and if multiple UAVs are involved, it could lead to the dissolution
of their cooperative formation. Another challenge lies in the complexity of learning the
trajectory of a moving object. There are few studies in the literature focused on estimating
the UAV trajectory by utilizing the observed path of a moving object. However, depending
on the change in the speed of the object and sharp changes in orientation (maybe due to
curves in the path), the estimation can be very challenging. The reward function for an
RL algorithm for such a problem can be designed in a manner where the incentive is
proportional to the distance between the center of the FoV of the UAV and the position of
the target, so as to maximize the amount of time during which the object is in the sight of
the UAV [78]. An extended application of this is to track multiple objects moving in some
formation using multiple UAVs where the objective is to maintain all the objects in the
joint FoV at all times [47, 78]. This brings in the additional challenge of how to manage
multiple UAVs simultaneously and also prevent them from colliding.

In [47], authors propose a MADDPG based model where the UAVs are tasked with tracking
of moving objects while maintaining an optimal formation. A well-designed reward
function is formulated to incorporate tracking, formation control and collision avoidance
objectives in policy learning. In [77] authors propose a multi-agent deep reinforcement

learning algorithm to learn cooperative tracking policies for UAVs using a reciprocal reward
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strategy to track moving targets. The proposed approach reshapes the UAV reward to a
regularized value depending on the rewards of the neighbouring UAVs. A UAV is assumed
to have bi-directional communication with its neighbouring UAVs. Further, UAVs are
assumed to have infinite energy for maneuvering and performing communication. Li et
al. [79] addresses the problem of deficient learning of a Deep RL model due to the lack
of knowledge for initial parameter setting and the incapability of the model to generalize
in different environments. To tackle this, a Deep RL based Meta Twin Delayed DDPG
(Meta-TD3) model is proposed to obtain parameters of the neural network and use it
as prior knowledge for UAV maneuvering and target tracking. By employing TD3, the
authors were able to eliminate the overestimation bias in DDPG to some degree, but
TD3 further brings underestimation bias into the picture which is not addressed in [79].
Authors do aim at learning a UAV policy that is well suited to multiple tasks but fails
to examine the scalability of their algorithm and also the robustness of the model, as no
physical parameters of real-world environment are considered. Authors in [80] present a
UAV based model for persistent target tracking in the presence of obstacles using a Deep
RL based technique called Target Following Deep Q-Network (TF-DQN) implemented in
an urban setting. The proposed work [80] lacks scalability when there are multiple targets
to track using multiple UAVs. Further, the actions of the UAV are limited to a discrete

set which limits the applicability of such models when it comes to deployment.

2.3 Non-RL Approaches

This section discusses the non-RL approaches that are proposed and adopted in the
literature to optimize autonomous control policies for UAVs.

Rule-Based Systems: Rule-based systems define UAV actions through predefined rules
based on their observations [81, 82, 83]. Behavior trees are utilized for hierarchical
organization of rules and have proven to be effective in applications such as UAV coverage
strategies and area mapping [84, 85]. Further, Expert systems, resembling human
decision-making are adopted in the literature for UAV patrolling and emergency response
tasks [86, 87]. Furthermore, Fuzzy logic systems are utilized for managing uncertainty
present in the data captured by UAVs|[88, 89].

Meta-heuristic Approaches: These approaches, especially the evolutionary algorithms
like Genetic Algorithm (GA) [90, 91], Differential Evolution (DE) [92], Particle Swarm
Optimization (PSO) [6, 93], and Ant Colony Optimization (ACO) [94, 95] are extensively
employed to optimize UAV control parameters and learn optimal actions. These techniques
address trajectory optimization problems and can handle constraints such as UAV(s)
altitude, bank-angle, and energy. They have also been employed for tasks like target
localization [96], collision-free path planning [97], and coordinated disaster inspection using
multi-UAV systems [6].

Model-Based Approaches: Model-based techniques like PID controllers [47, 98, 99], regulate

UAV movement by utilizing parameters such as location, velocity, and heading angle, along
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with sensor feedback. Relying on sensor data aids the PID controller in comprehending the
environmental dynamics, and to make real-time corrections. The Model Predictive Control
(MPC) approach [100, 101, 102] uses mathematical models to predict future behavior and
optimize control signals over a time horizon. Another approach, named, Model Reference
Adaptive Control (MRAC) [103, 104] is employed to adjust UAV action commands based
on its current state and aligning w.r.t. a reference model. These methods are applied
for tasks such as trajectory planning, target tracking, and swarm-based exploration in

GPS-denied environments.

2.4 Chapter Summary

In this chapter, the existing literature on autonomous Unmanned Aerial Vehicles (UAVs)
is explored, with a specific focus on disaster response applications. The primary
emphasis is on identifying techniques used for learning autonomous control policies for
UAVs, particularly Reinforcement Learning (RL) algorithms, due to their applicability in
stochastic and dynamic environments. The discussions are centered around model-based
and model-free RL algorithms, along with non-RL approaches. This chapter aims to
help researchers, practitioners, and policymakers in implementing effective strategies
for autonomous multi-UAV control in disaster response applications. Additionally, it
identifies research gaps, guiding further exploration and development in UAV autonomy

for disaster management.
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3| Directed Explorations During Flood
Disasters Using Multi-UAV System

To effectively execute disaster relief operations during floods, quick and accurate
information about the flooded areas is crucial. However, to perform data-gathering tasks
using autonomous UAVs in unknown environments, it is important to ensure that correct
autonomy is in place. Reinforcement learning (RL) algorithms, specifically Deep RL
methods, provide suitable control policies by learning complex value functions over large
state and action spaces.

In this chapter, a domain knowledge-based exploration strategy is proposed to expedite
the training process of a Deep RL algorithm and to accumulate high rewards especially in
initial episodes. By adopting this approach, random exploration is restricted, guiding
the UAVs toward critical regions during floods. Domain-specific knowledge such as
population density, water flow dynamics, and terrain’s digital elevation model is encoded
as part of the observed state to improve the UAV policy. The proposed approach
enables the multi-UAV system to perform non-overlapping coverage of critical regions,
integrating domain knowledge of water flow estimates of the flooded area to direct
UAV explorations. Further, the reward function is designed to encourage UAVs to
visit unobserved locations by preventing repeated observations. The proposed solutions,
D8-Q-learning and D8-Deep-Q-network, are evaluated across multiple environments and
compared with prevalent approaches in the existing literature. These comparisons

highlights the models robustness and improved performance across various metrics.

The rest of the chapter is organized as follows. In section 3.2, the environment description
is provided, followed by section 3.1 presenting the system model. section 3.3 introduces
the proposed DS8QL and D8DQN algorithms for multi-UAV based flooded area coverage.
section 3.4 covers the discussion on experiments and results. Finally, in section 3.5, a

concise summary of the chapter is provided.

3.1 Environment Description

The environment is a 2D terrain as seen in Figure 3.1(a). It is visualized as a grid with
(my x mg) cells, where the number of cells in the grid depends on the altitude of the
UAVs. The size of each cell is equal to field of view (FoV) of the UAV as shown in
Figure 3.2. A 2D grid mask representing water is defined over the environment grid to
simulate floods (see Figure 3.1). There are two parameters that define the surface water,
one being the water level h and the other being the water flow rate f,qt.. These parameters
help in properly defining the flood water that is in motion. The water level is sensed by

preforming bathymetry [105]. Further, a Critical Level Z, is defined for each location/cell
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(a) 2D Map imagery of Chennai region before and after induced floods (b)

Figure 3.1:
Inundation map of the Chennai region (validated with OSM [1])

¢ in the environment, given as:
Ze = he X P, (3.1)

where P, represents the population density level of that cell. Both h. and P, are defined

over a discrete and finite range.

3.2 System Model
s {uwli € {1,2,...,n}} that are

In the system model, there exists a group of n UAVs(U)
tasked to perform optimal area coverage of the flood region

The area coverage denotes the number of unique grid cells that are covered by the
multi-UAV system until their battery runs-out. The UAVs are positively rewarded based
on the amount of new information they collect. Hence, the objective of the multi-UAV

system is to maximize the overall information gain under the constraint of limited energy

of the UAVs. The energy depletion of the UAV is based on its flight time

Il
Population Density : P,

Water Level : h;
Population Density : P, /|
Water Level : h;

T ——
¢s Population Density : P,
Water Level : h
' ]

Population Density : P,

FoV(vy)|/
G4 oVt Water Level : hy,
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W ater Level : hy

Figure 3.2: Field of view of i*» UAV on the 2D grid.
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The energy ¢, of a UAV at any time ¢, is calculated as:

it =¥ - Ay (3.2)

where At represents the energy depletion per unit of time.

The underlying idea is to encourage the UAVs to capture unobserved cells rather than
revisiting the same cells observed earlier. Hence, the total information received by the
UAV from a location/cell is a combination of the Z. of that cell and the penalty imposed
due to any repeated observations. The penalty is calculated based on the time elapsed
since the last observation of that particular cell. The information gain from a cell ¢ by a

UAV u; is given as:

v Lo ti—to
4 max(Z) tj

(3.3)

where, I g;y is the information gain from cell ¢ at the current time-step ¢;. t. denotes the

last time-step at which the cell ¢ was observed. Z. is the critical level of location c.

Next, the proposed solution is described to learn the multi-UAV policy for maximizing

the information gain using the D8 flow algorithm.

3.3 Proposed Methodology

This section begins with the presentation of the MDP, followed by the D8 flow estimation
method. Subsequently, the proposed solution is discussed to learn a multi-UAV policy

through directed explorations.

3.3.1 MDP Formulation

An RL model can be described using a Markov Decision Process (MDP) quintuple :
< S8,A, Py, R, sg >, where S represents the set of states of the system, A represents the
set of allowed actions of the UAVs in any state s € S, P,y represents the model of the
environment with transition from one state to another, R is the reward function and s is
the starting configuration of the UAVs.

A state s € S of a UAV u; is represented as:

s Py

byt Cork ks ¥ KL k2 € {=1,0,1}}

where P, , corresponds to the population density of the grid cell ¢ : {z,y} and e;,
corresponds to the terrain elevation of that cell captured from the elevation maps (refer
Figure 3.4(a)). The set {—1,0, 1} represents the elevations and population densities of the
8 neighbouring cells to cell ¢ (the cells at the border have only 3 neighbouring cells).

A feasible action a" € A of a UAV w; is either the movement to one of the neighbouring
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Figure 3.3: D8 flow algorithm example (a) Elevation exemplary data (b) D8 based flow
directions (c) Single cell in-flow and out-flow.

cells or to stay in the same location, given as
a“ : {N,S,E,2W,NE,NW,SE, SW, hover}

where, N is north, S is south, F is east and W is west movement. Each UAV chooses one
action in a time-step.

The reward function encodes the objectives of the system into the policy. The UAVs aim
to acquire a policy that maximizes the long-term accumulation of rewards. The reward

function R;" is formulated based on transition-derived information, represented as:

R;Li(stmv aq;i7 Sﬁl) = Iz;j - /B(Stuilv U) (3'4)

where, IZ;J_ is the information gain as given by Equation 3.3. (s, ;, U) returns a collision
penalty if more than one UAV takes an action to arrive at the same state s;11 at time
t+ 1. U is the set of UAVs in the system.

3.3.2 Water Flow Direction Estimation

The standard D8 method [45] maps the direction of water flow for each grid cell to its
steepest neighbour. Figure 3.3(a) and Figure 3.3(b) illustrates the D8 methodology. In
the considered scenario, the input to the D8 model is the state vector (s"¢) of the UAV w;.
The D8 method then generates a water flow direction (refer Figure 3.3(c), Figure 3.4(c))
which is mapped to a feasible action a%“ for the UAV w;.

Governing Equations

The distributed hydrological model for flowing water is generally based on the Saint
Venant conditions [106] which are composed by the continuity and momentum equations,

conditioned as following:

Ooh  Ow
N + e I, (3.5)

ow 0 [w? oh
B + Py <h> —g.h <sg — (90) +g.hsp=0 (3.6)
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Figure 3.4: D8 flow algorithm in simulation (a) Elevation data of the region (b) Water
accumulation in the region (c¢) D8 based flow directions.

where, h is the water depth. I, is the intensity of excess rainfall (encoded using prior data
of the region [107]). s, is the ground slope and sy is the friction slope. w is the water
discharge per unit/cell at the current time-step ¢. g is the value of gravity.

The discharge of water at each cell is derived by applying Manning’s equation as following
(for more details see [106, 108]):

(3.7)

w =

S\|§:’\‘m

where, ¢ is the Manning roughness coefficient.

Numerical Scheme

Based on the concept of the backward-finite-difference scheme, the continuity equations

can be represented as (for more details see [106]):

esae€) = ha(e) + (") — w7 () (3.8)

where, wi"(c) is the inward discharge for cell ¢ at time ¢ and wf"*(c) denotes the outward

discharge, considering only the immediate neighbouring cells. The discharge of cell ¢ at

time-step t + At is derived by applying the discretized momentum equation as following:

ansaile) = L2t (3.9)

up X(Cui7c')'frate
1t =orgmas (S ) 619
X(ue,;, ¢j) = (Wirar(c™) — wiraeleg)) - (3.11)

where, ¢ denotes the cell occupied by a UAV u;. ¢; denotes one of the neighbouring cells
to the cell ¢* from the set of 8 possible neighbours given by ¢i. Distance between two cells
d(.,.) is calculated by finding the minimum number of cells between them. The diagonal
cells next to each other have a distance of v/2 between them and the horizontally /vertically
aligned cells next to each other have a distance of 1 between them. L,(.,.) calculates the

cell having the lowest relative discharge in the neighbourhood of u;. The cell experiencing
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the lowest discharge tends to accumulate more water (refer Figure 3.4(b)), making it more
likely to be considered the most critical cell within its surrounding neighborhood. The
UAV wu; may also decide to hover at the same cell without moving if the current cell itself
has the lowest discharge at time t. When a UAV has found a neighbouring cell with the

lowest discharge, it moves one step in that direction and the procedure is repeated.

(3.12)

Ct

CLD8 o m(Lt(uCi)aCui) Zf X(uciacj) >0
hover otherwise

where, a8 represents the D8 generated action for an individual UAV. The function m(.,.)
maps the correct action from the feasible action set (refer subsection 3.3.1). For example,
let say the output of function L(.,.) is cell c¢o and currently the UAV is at cell ¢5, then

output of function m(.,.) is N denoting north (assuming a virtual 3x3 grid centered at

65).

3.3.3 Directed Explorations: D8 flow based Action Selection

The action selection process in RL helps to manage the dual objectives of exploration and
exploitation in the best possible manner. In RL, a state-action value function (Q(s,a)) is
defined as a quantitative measure that judges how good an action is in any given state.
Higher the Q-value, better is the action in that state. Most of RL algorithms use an
e-greedy exploration-exploitation strategy for the selection of actions during the training
phase. The e-greedy action selection method selects a random action with probability
e € [0,1] for exploration in the state-space while it selects the action having maximum

Q(s, a) value with 1 — € probability for the exploitation of the already acquired experience.

As this exploration is random, it leads to poor rewards in early stages. This form
of exploration is even more detrimental when the task is time-sensitive as in the case
of flooded area coverage. By using the governing equations and numerical scheme of
water flow (refer subsection 3.3.2), the most probable action for exploration is estimated
to accumulate higher information gain. Still some randomness is maintained in action

selection to avoid over-fitting and learning more robust and generalized policies.

The proposed action selection strategy for directed explorations is given as:

argmaz Q(sy*,a’) with 1 — (€1 + €2) probability

a
Ui __

ay = a8 with €, probability (3.13)

Ct

random action with es probability

where, 0 < €; < 0.5, 0 < €2 < 0.5. Further, the € probabilities are decayed as training
progresses with ey decaying faster than e;. A shift from random actions to D8 based
actions is made as the latter produces better action sequences which help in achieving the

overall objective in an efficient and quicker manner.



Chapter 3. Directed Fxplorations During Flood Disasters Using Multi-UAV System 31

3.3.4 Learning Action Values

The state-action value function Q™(s¢ a;) under the policy 7 defines the long term

desirability of an action in a particular state [19], given as:

QW(St, at) =Eq~r

(o]
Z YR st at] (3.14)
=0

where 0 < v < 1 is the discount factor.

The proposed directed exploration strategy can be included in any Q-value based RL
algorithm. Here, two algorithms are proposed, namely, D8-Q-Learning (D8QL) and
D8-Deep-Q-Network (D8DQN) that implement the proposed action selection strategy in
the baseline Q-learning [19] and DQN [13] algorithms, respectively.

The Q-value update equations in the proposed D8QL and D8DQN remain the same as
their baseline versions with the change in the way states are explored during training.

Q-learning update equation is given as:
Q" (styar) = Q(st, ar) + (R + . mac/L:cQ(stH, a') — Q(st,at)) (3.15)

DQN [13] uses two deep neural networks - Q network and target network with parameters

0 and 0~ respectively. DQN loss for training the deep model is calculated as:

L(0) =E [(y — Qs1,a150))?] (3.16)
y=R"+7- Iﬁif@(swrbatﬂs 07) (3.17)

In D8QL, each UAV learns its own separate policy using replay buffer to query the stored
information. As Q-learning is a tabular method that maintains a table entry for all
the possible state action pairs, it doesn’t scale well to large state spaces with increasing
number of grid cells. Deep neural network based DS8DQN can cater to complex large-scale
state-spaces. In the purposed D8DQN, the experience of all the UAVs is stored in a single
replay buffer that can be used to train the Q network for each UAV’s policy from the
joint experience. The collision-free multi-UAV movements and non-repeated explorations
of the grid cell are ensured by the reward function (see Equation 3.4) during training.

The proposed D8DQN approach is depicted in algorithm 1. The action value functions
Q" and Q“l are initialized randomly for each UAV wu;. The algorithm executes episodes
for each UAV adhering to specified limits on time-steps and energy consumption. During
each episode, actions based on exploration rate probabilities €; and €9 are performed or an
action giving the maximum Q-value for the current state is selected. After executing
an action, rewards are received and transition information is stored in replay buffer
Z. Mini-batches from Z are sampled and a gradient descent step is performed w.r.t.
Equation 3.16. Periodically, the target action value function Q% is updated to match the

current action value function QQ“:.
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Algorithm 1: DS8DQN Algorithm

1 Input: H, ~, 8, Ay, number of UAVs n
2 Initialize action value function Q% with random weights % for each UAV i € U

3 Initialize target action value function Q% with weights = = 6% for each UAV
ieU
4 for UAV = u;,uj,...,u, do
5 for episode=1,2,... do
6 Initial observation s*“
7 while t < maz_time_step and vy > Ay do
8 With probabilities €; and ea select exploratory action a;* or otherwise
select max. Q-value action, as per:
9
argmaz Q(s;*,a’) with 1 — (€1 + €2) probability
. a’
ai’ = agg with €1 probability
random action with eo probability
10 Execute action a;"
11 UAV u; makes the next observation s;f, and receives reward R} from
the environment.
12 Store transition < s;",a;", Ry, s/t > in replay buffer Z
13 Sample a random mini-batch of B transitions (s;', a;’, R}’, s, ;) from
Z
14 Calculate: y,* = R, + 7 - maxy Q" (spy1,0’;07)
15 Perform gradient decent step on (y," — Q(s;*, a;’;6)) w.r.t. network
parameter 6
16 In every C' steps, reset Qui = QU
17 end
18 end
19 end

3.4 Experimentation and Results

In this section, the performances of the proposed algorithms DS8QL for discrete state-space
and D8DQN for continuous and/or large state-space is evaluated. The following baselines
and state-of-the-art techniques are considered for comparison, namely, Q-Learning (QL),
DQN, Random Walk (RW), Genetic Algorithm (GA) and A* algorithm. The difference
between the baseline QL and the proposed D8QL is the directed exploration using D8 flow
algorithm. A simple baseline of randomized actions is also implemented to analyze how
other algorithms perform. Authors in [109] implement a mobility model for a convoy of
UAVs. The baseline mobility model employed in [109] is called Random Mobility Model
where each UAV chooses its next orientation based on the output of a random value
function. The Random Walk (RW) model is applied in reference to this Random Mobility
Model for implementation. Another algorithm used for comparison is Genetic algorithm
(GA) [110] in reference to the literature. In [110], authors try to optimize the path of
the UAV by formulating it as an optimization problem for energy consumption. They

address this issue by applying GA as an optimizer in their model. The A* algorithm is
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implemented based on [111]. The authors in [111] suggest a greedy A* technique as an
online coverage approach for multi-robot systems. This approach assists the robots in
moving closer to the unvisited regions.

The elevation grid over Chennai City of India is used to generate the training environment
(this city had a devastating flood in December 2015 and is seen as a flood prone region
upto date). Different inundated areas corresponding to different water levels are generated
over the elevation grid using Mapbox API [112]. There are 8 levels that define the water
level in each of grid cell. These levels are: {1ft,2ft,3ft,4ft,5ft,6ft,7ft,8ft}. The data
corresponding to population density is collected using World flood mapping tool [113].
There are 5 levels of population density ranging from P; to P5. P; denotes population
density of 5 to 10 people in 100 square meter area, Py denotes population density of 10 to
25 people, P3 denotes population density of 25 to 50 people, P4 denotes population density
of 50 to 100 people and P35 that denotes population density of more than 100 people in 100
square meter area. For each experiment, the UAVs are randomly initialized over different
grid cells. A ground control station is assumed to be in place that communicates with
the UAVs to process the collected data. Implementation is done on Google Colab having,
Intel(R) Xeon(R) CPU, 1xTesla K80 GPU, 2.30GHz CPU frequency, and 12GB RAM.
As there is no communication among the UAVs, each UAV operates independently of
the others. The rewards accumulated by the UAVs is used as a performance metric.
Additionally, the joint area coverage and the number of collisions among the UAVs
during training are analyzed. The policies trained using the proposed algorithms are

also evaluated in an unseen test environment.

3.4.1 Performance in Small Discrete State-Space

Experiments were performed over the course of 10000 episodes, where each episode was of
1000 time-steps. Average cumulative reward (per UAV) in each episode has been recorded
for comparison. A total of 5 UAVs were used for this experiment. The altitude of the UAVs
was fixed at 50 meters above sea level. Considering a standard UAV camera, having half
angles of 30° and 45°, results in an FoV coverage of approximately 6000 m?. Considering
a small sub-region of Chennai city area of 2.5x10° m? approximately, a grid size of 20 x
20 is possible where each cell is equal to the size of the UAV’s FoV.

With each episode, the latitude and longitude is slightly shifted to gather evaluation data
of nearby regions in order to generalize the trend of water flow in the broader region.
The rate of water flow is kept constant at 2 m/s throughout the episodes and its intensity
changes based on the ratio of elevation of the considered grid cells. Each cell has underlying
real-world data of elevation values, encoded using Mapbox API [114]. Using Mapbox.js, a
terrain DEM (digitally elevated model) is created. By overlaying the UAV captured FoV
on top of the DEM layer, the data behind the map is queried using the Surface API.

As can be seen from Figure 3.5a, RW is not able to evolve its performance with the
increasing number of training episodes. This corresponds to the lack of learning capability

of RW that only uses randomized action function. The GA method shows some gain
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Figure 3.5: (a) Average Cumulative Rewards observed by RW, GA, A* QL and D8QL
over a small discrete state-space. (b) Average Cumulative Rewards observed by DQN and

D8DQN in a city scale flooded region.

in rewards after 5000 episodes, however it’s still very low in comparison to Q-learning
methods. This highlights the effectiveness of reinforcement learning methods when applied
to dynamic and unknown environments. A* performs at par with Q-learning in early
episodes but is unable to accumulate more rewards in later episodes. Q-learning method

0" episode and shows significant rise

shows an impressive jump in rewards around 500
in cumulative rewards after that. This significant change highlights the effectiveness
of the exploration-exploitation strategy (e-greedy) of Q-Learning. The proposed D8QL
outperforms all and is able to accumulate maximum rewards from the initial episode
onwards. This high accumulation of rewards especially in the initial episodes corresponds
to directed explorations based on the D8 flow estimates within the Q-learning algorithm

that helps in better action selection than e—greedy strategy.

3.4.2 Performance in Large State-Space

Experiments are conducted over a larger grid size of 260x260 cells considering the complete
area of Chennai city of approximately 425 x10° m?, with the same altitude for the UAVs
as before. As Q-table becomes too large to accommodate the whole state-action space, the
proposed D8DQN algorithm is implemented in this scenario. This technique is compared
with the baseline DQN method [28] to analyze the effect of directed explorations using
D8 flow estimates. As can be seen in Figure 3.5b, DSDQN and DQN both shows similar
trend of rise in rewards as episodes go by. However, DS8DQN is able to acquire higher
cumulative rewards from first episode itself and is also able to achieve highest rewards
by 9000%" episode. This highlights the fact that the multi-UAV trained using DSDQN is
able to perform non-repeated observations of the grid cell with high information gain in a
better fashion. Hence, the directed explorations induced by the D8 flow estimates help in

an improved performance of DSDQN method as compared to its baseline.
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Figure 3.6: (a) Performance comparison between RW, GA, A* QL and D8QL over the
number of cells covered. (b) Performance comparison between DS8DQN and DQN over the
number of cells covered.

3.4.3 Comparing Cell Coverage during Training

In this experiment, the coverage of grid cells observed by various algorithms is analyzed.
The grid cell coverage is defined as the number of cells covered by the UAVs until their
battery is completely drained. A total of 5 UAVs with 50 energy units each are considered
in this experiment. A linear energy depletion rate is considered which implies, at maximum
50 cells can be covered by a UAV in a single episode if in each time-step it decides to change
its location. Figure 3.6a depicts the performance observed in smaller discrete state-space
among D8QL, QL, RW, GA and A*. As observed, GA and A* sees a similar rise in area
coverage throughout the episodes with A* performing better. GA is eventually able to
outperform RW around 5000*" episode. QL and D8QL both show logarithmic rise in area
coverage that somewhat flattens at around the 10000*” episode.

Figure 3.6b depicts the performance of DQN and D8DQN for cell coverage over large city
scale state-space. Similar to D8QL, D8DQN also shows a logarithmic pattern in terms of
coverage that flattens at around 10000 episode. DQN performs rather poorly with no
considerable rise in area coverage. This signifies that area and critical region coverage are
not equivalent and even when DQN doesn’t observe higher area coverage it still is able to

gather significant rewards by covering the critical regions.

3.4.4 Number of Collisions Observed during Training

Another metric considered to analyze the performance of the proposed algorithms is the
number of collisions observed by each algorithm during training. As per Equation 3.4, each
UAV receives a penalty whenever two or more UAVs are in the same cell. This experiment
helps in analyzing whether the proposed techniques learn to avoid these penalties in the
long run or not. From Figure 3.7a, it can be observed that RW makes close to zero
progress in reducing the number of collisions with increasing number of episodes. Similar
performance is observed in case of GA. This highlights that RL based methods learn to
avoid these penalties in more constructive manner as compared to other methods. Still,

A* is able to perform much better than GA and shows similar pattern as compared
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Figure 3.7: (a) Number of collisions observed by RW, GA, A* QL and D8QL over the
duration of training period. (b) Number of collisions observed by D8DQN and DQN over
the duration of training period.

to Q-learning in terms of fall in number of collisions with the increasing number of
episodes. However, as can be observed, the D8QL algorithm outperforms all other methods
showcasing a better multi-UAV policy. Considering the neural network based techniques
for large state-spaces i.e. DQN and D8DQN, D8DQN performs significantly better than

DQN in number of collisions as can be seen in Figure 3.6b.

3.4.5 Policy Generalization in Unseen Test Environment

Both of the proposed methods D8QL and DS8DQN are tested against other baselines in
a new unseen environment to evaluate the generalizability of the proposed approaches
for multi-UAV based area coverage. A similar coastal region of approximately 2.5x106
m? area is selected (from Mumbai city coastal region) having roughly 20 x 20 size grid,
where each cell is equal to the size of the UAV’s FoV. Figure 3.8a depicts the average
cumulative rewards accumulated by different methods in the unseen test region over a
single episode with 1000 time-steps. It can observed that the DSDQN model is able to
generalize its performance better in the unseen test environment as compared to the other
methods. This can be attributed to the fact that Deep-Q-Network based technique learns
by adjusting the weights and biases in a deep neural network in order to approximate
the best policy. The D8QL is still able to generalize better than other methods due
to the robust state representation having the elevation information of the neighbouring
cells. Standard DQN slightly outperforms D8QL highlighting the effectiveness of Deep RL

algorithms in unseen and unknown environments.

3.4.6 Time-step to First Collision in Unseen Test Environment

Further, observations are recorded regarding the duration after which the multi-UAV
system encounters their first collision. This is observed in the unseen test region which
is performed over a single episode with 1000 time-steps. Figure 3.8b highlights these

results and provides with a similar order of performance as observed in other experiments.
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Figure 3.8: (a) Average Cumulative Rewards observed by RW, GA, A* QL, D8QL, DQN
and D8DQN in an unseen test region. (b) Comparison between RW, GA, A*, QL, D8QL,
DQN and DS8DQN over the number of time-steps to record first collision.

GA RW

D8QL, DQN and D8DQN perform significantly well as compared to RW, GA, A* and
QL techniques. As higher penalties depict more number of collisions observed by the
system, this result highlights that D8QL, DQN and D8DQN are relatively better than

other techniques in handling penalties observed in the environment.

3.5 Chapter Summary

This chapter introduces D8QL and D8DQN algorithms, for autonomous multi-UAV
control to perform area coverage during floods. A novel exploration strategy using D8
water flow algorithm is proposed to expedite the training process. Both the algorithms
D8QL and D8DQN depict significant improvement in terms of rewards, area coverage,
and UAV collision avoidance, as compared to other techniques discussed in the literature.
However, limitations exist concerning discrete action spaces and UAV clustering, resulting
in stiff UAV motion and less effective coverage of critical regions. The clustering problem
arises from the D8 algorithm, causing all the UAVs to converge in close proximity to one
another, thereby hindering coverage and increasing the risk of collisions. The next chapter
thus focuses on exploring techniques for continuous UAV actions in flooded environments

and mitigating the clustering effect.
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4| Continuous Multi-UAV Control with
Directed Explorations during Floods

This chapter extends the previous work presented in chapter 3 on Deep RL based
multi-UAV area coverage during floods. In this chapter, a continuous action space
algorithm is proposed for learning the UAV control policies for smoother motion. The
proposed approach addresses the limitations of the previous work, which uses Deep Q
Networks (DQN) having discrete action set and an exploration strategy that leads to
clustered formations of UAVs. In this work, the Deep Deterministic Policy Gradient
(DDPG) algorithm with an improved target actor is presented, incorporating domain
knowledge using the D-infinity (DINF) algorithm. The water flow estimates obtained
from DINF are used to guide the UAVs’ actions especially in the early phases of training.
In addition, Path scatter is introduced to inhibit clustered formations and maintain
inter-UAV separation for better area coverage. The objective remain the same, i.e.,
to identify densely populated areas that are susceptible to a large volume of water
accumulation. The task is time-sensitive in nature due to the limited battery of the
UAVs.

The rest of the chapter is organized as follows. section 4.1 contains the preliminary
information highlighting the environment description and the basics of the DINF flow
estimation algorithm. section 4.2 describes the multi-UAV system with collision avoidance
and UAV energy model. In section 4.3, the proposed Deep RL approach is presented with
a novel target actor based on DINF. section 4.4 discusses the experiments and results.

Finally, in section 4.5, a concise summary of the chapter is provided.

4.1 Preliminaries

In this section, the flood environment and its characteristics are discussed. Additionally,

the underlying idea behind the functioning of the DINF algorithm is presented.

4.1.1 Environment Description

The environment consists of a 2D terrain, similar to the one considered in chapter
3, section 3.1. Real-world data corresponding to the elevation levels of the terrain is
encoded while rendering the environment using Mapbox Terrain-DEM [114]. A 2D mask
representing the water layer is defined over the terrain to simulate floods. There are two
parameters that define the surface water, one being the water level h and the other being
the speed of the water current f,q.. The population density levels (IP) are encoded based
on the regional map that is generated using the World Flood Mapping tool [113], depicting

the varied population levels over a 100x100 m? area.
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The population density level along with the water level defines a Critical level (Z) of a

location ¢ given as:

Ze = he x P, (4.1)

Critical level Z. of a sensed location ¢, defines the risk at that particular location
highlighting the high population density regions that are under an immediate threat of
large accumulation of flood water. Both h. and P, are discretized over a range to give a

finite number of critical levels.

4.1.2 D-Infinity based Water Flow Estimation

The working of the D-Infinity (DINF) algorithm is based on the hydrological model for
flowing water. It is generally based on the Saint Venant conditions [108] which are
composed of the continuity and momentum equations (for more details refer to chapter 3,
subsection 3.3.2). DINF flow estimation [115] algorithm, determines the direction of water
flow based on the slope of triangular facets geometrized over the environment (centred at
the location of interest). This flow-partition approach uses elevation information (i.e.,
encoded in the environment) to determine the fractional flow of water draining to the
downslope neighbouring locations. DINF is a multi-flow direction (MFD) algorithm, that
provides: (1) continuous flow angles, and (2) flow partitioning between the neighbouring
locations. The output of DINF is set to a floating point value depicting an angle in degrees
going counter-clockwise from 0° to 360°. The water accumulation at a particular location
is the aggregation of its current water level and the contribution from upslope neighbouring
locations. The flow from each location either contributes to just one neighbour (when all
the other neighbours are at a higher elevation) or is on an angle falling between the direct

angle of two adjacent neighbours.

The location with the highest water accumulation (denoted as L¢/) in the neighbourhood
of " (where " is the location that is currently being sensed by the UAV u;,) is calculated

as (for more details refer to subsection 3.3.2):

wp X(Cui7 cj)-frate .
Lct = maxr <d(cuz’c]) A JEec (42)
A (uc;s ¢5) = (Wryar(c™) = wipad(e)) - (4.3)

where, t denotes the time-step and c¢; represents the 8 neighbouring regions
surrounding location c¢%i. d(.,.) is the Euclidean distance between two locations and

wirat(c), wirae(cj) denotes the water discharge at location ¢, ¢; respectively.

In the subsequent section system model is described.
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4.2 System Model

In the system model, there is group of n quadrotor UAVs(U) = {wi € 1,2,..,n} that
are tasked to perform optimal area coverage of an unknown flooded region. The task
is time-sensitive due to UAV’s limited battery. As the dynamics of the environment are
unknown, the UAV’s actions are realized using a policy gradient based Deep RL algorithm,
known as, Deep Deterministic Policy Gradient (DDPG) [32]. The altitude of the UAVs is
fixed at H meters above the ground to have the same resolution images from all the UAVs
for further processing, such as survivor detection, image mosaicking, etc. Each UAV is
equipped with ventral cameras that provide a rectangular field of view (FoV). The FoV
of each UAV forms a pyramid having half angles (01,02) as shown in Figure 4.1. In the
group of n UAVs, each UAV acts individually with distinctive control policies. Each UAV
is assumed to have Full-duplex communication with a ground control station that handles

the processing overload.

Location Specific Information (Gain

The information gain from a location is defined based on the critical level (Z) of that
location w.r.t. the environment, as defined in Chapter 3, section 3.2. The UAVs are
rewarded highly if the information gain from a particular location is high at the observation
time. The actual information gain (Ig ;J) for a given location ¢ sensed by UAV u; is

calculated as:

Z ti —t;
u c j i
ot max(Z) x t (44)

where, t; denotes the last time-step at which the location ¢ was observed and ¢; denotes
the current time-step. The primary aim of introducing information gain is to prompt the
UAVs to capture more unobserved regions/locations rather than re-visiting the observed

ones. The observed location is the one that has already been sensed by a UAV recently.

4.2.1 Multi-UAV Collision Avoidance

Given the multi-UAV setup, a collision avoidance protocol has been established among the
UAVs, incorporating a system penalty to address potential collisions. A collision (C) is
recorded whenever two or more UAVs violate the separation threshold AD (A < 1), where

D is the minimum separation between the UAVs to avoid overlap.

B if df"" <AD VYi,jeEn

0 otherwise

(Ct(ui,uj) == { (4'5)

where [ is a scalar denoting a collision penalty and AD is the minimum separation required

between the UAVs such that they do not incur collision penalties, as seen in Figure 4.1.

d?iv“j _ Z \/(qu — x%i)2 4 (yui — yti)2 (4.6)

i jeU,i#]
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Figure 4.1: Two UAVs u; and u; maintaining some threshold distance to avoid collision
penalty.

irUj

where d? is the Euclidean distance between the 2D projected positions of the UAVs u;
and u; as seen in Figure 4.1. As the UAV positions are defined in latitude and longitude
coordinates, the output provided by the function d(.,.) is expressed in degrees. To convert
this angular measurement to meters, the output should be multiplied by the approximate
factor of 1.11 x 10°, where each degree corresponds to approximately this distance in

meters [116].

4.2.2 Energy Depletion

The flight time of a UAV is restricted due to its limited battery. Expanding upon the
energy model introduced in Chapter 3, section 3.2, the consideration involves the rate
at which energy depletes for the UAV based on whether it is in motion or stationary
while hovering. The energy depletion for a UAV is directly proportional to the number of
time-steps during which the UAV has been in flight. The UAV’s energy 1, at any given

time ¢ is given as:

i1 — Ady  if action = hover
b = (4.7)
i1 — Ads otherwise

where, Ad; and Adsy are two positive scalars, where Ads > Ad;. The energy depletion is
higher in the case when the UAV is moving as to when it’s hovering [117]. Energy affects
the flight time of the UAV based on the UAV’s action at each time-step however, energy

is not an intrinsic part of the objective as an optimization problem.
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4.2.3 Expanding Coverage with Path scatter

To broaden the coverage of UAVs over the environment, Path scatter (O) is introduced for
the model that impacts the model’s reward formulation. In some scenarios, the starting
configuration of the UAVS’ or their actions may lead to a clustered formation. To mitigate
that, the Path scatter helps the UAVs to maintain some minimum dispersion over the
region. The Path scatter is calculated based on the distance between the UAVs at time-step

t (refer to Equation 4.6) and is given as:

1 if d"" >2D
Or(uisuj) =<6 if D<d/"" <2D (4.8)
3 if AD<d,"" <D

where 0 < £ < § < 1and d? "% is the pairwise Euclidean distance between the 2D projected
positions of the UAVs w;, u;Vi,j € U,i # j.

4.3 Proposed Methodology

In this section, the considered multi-UAV area coverage problem is discussed as an MDP,
along with the DINF based control policy for the multi-UAV system.

4.3.1 MDP Formulation

An RL model can be described using a Markov Decision Process (MDP) quintuple: <
S, A, Pyy, R, sy >, where S represents the set of states. A is the feasible set of actions that
a UAV can execute in a given state. P,y represents the model of the environment, R is

the reward function and sq is the starting configuration of the UAVs in the environment.

State

A state s% of " UAV is represented as:

st P

kL e tk2) egikl,chkl’ he|VE1, k2 € {—1,0,1}}

where, c¢ is the current location of UAV wu;. P, denotes the population density level of a
location ¢ and e, represents the terrain elevation of that location. h. is the sensed water
level at location ¢. The set {—1,0, 1} denotes the elevation and population density of eight
neighbouring locations to location c. The water level of the neighbouring locations is not

available a priori and hence it is not a part of the observable state.

Actions

The feasible action set for a UAV w; is given as A : {pitch", yaw", hover"}. Figure 4.2
depict these actions as angular rotations across different axes. The pitch"i helps the UAV
in forward and backward movement. The yaw" rotates the UAV along the vertical axis
which helps the UAV to change its heading direction. The pitch" value lies within the
range of [-45°,45°], where 0° depicts the parallel alignment of the UAV with the horizontal



44 Chapter 4. Continuous Multi-UAV Control with Directed Explorations during Floods

Z (Yaw)

A

J

AN S
C Y (Pitch)

X (UAV heading direction)

Figure 4.2: Yaw and Pitch rotations/actions of a Quadrotor UAV.

axis. A value less than 0° tilts the UAV where the head goes up and moves the UAV
in a backward direction. A positive value of pitch" means that the head goes down and
the UAV moves in the forward direction. yaw™ lies in the range [-180°,180°], where 0°
corresponds to the head of the UAV in the north direction. A value lower than 0° means
shifting the head of the UAV wu; in an anti-clockwise direction while a positive value of

yaw" means shifting the UAV head in a clockwise direction.

Rewards

The reward function encodes the objectives of the system into policy learning. The aim
of UAV is to learn a policy that maximizes the long-term accumulation of rewards. The
reward function R} is formulated based on the information obtained from a transition

given as:

Ry (s, a;",57%,) = Ig%j.(’)(ui, U) — Ci(u;,U) (4.9)

where, Ié‘}j is the information gain as given by Equation 4.4. O is the value of Path
scatter as given by Equation 4.8. C(u;,U) returns a positive scalar value corresponding
to collision penalty (see Equation 4.5). The reward function represents the objective of
the system in a quantitative manner, where the aim is to maximize this quantity in the
long run by learning an optimal policy. Further to compare and improve policies in RL,
the Q-value function Q™ (s, a¢) defines the long-term desirability of a state-action pair as

the expectation of the discounted cumulative sum of rewards, given as:

Qﬂ-(sh at) = Eatww

o0
DR st at] (4.10)
1=0

where 0 < v < 1 is the discount factor.
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Figure 4.3: Working of D-infinity algorithm over a 3x3 grid space, centered at location P;.

4.3.2 DINF based Actions

As UAVs have a continuous action space, knowing the exact degree of orientation is crucial
to shifting the UAV’s head such that it moves in the direction of the steepest water flow.
In case of fractional discharge (as depicted in Figure 4.3), a triangular facet is formed
with three vertices. The first vertex Pi(w¢i,y:i, ep?) is the one where the UAV w; is
currently present. The second vertex Ps (:ch s Yej s ecj) is the location with the lowest relative
discharge in the u;’s neighbourhood n*¢ (calculated using Equation 4.2). The third vertex
Ps(zc, , Yo, s €c,,) is an adjacent location to the second vertex with relatively lower discharge.
If the slope vector (see Figure 4.3 the steepest downslope direction) is outside the facet,
the steepest flow direction is taken along the steepest edge. To determine the DINF based

action, first the slope (downward) vectors (a1, as) are calculated, as:

(eei —ec;)

\/("L‘g%1 - ij)Q + (yg: - ij)2

0 — (€ — Car) (1.12)

\/(xcj —2¢,)% + e, — Yer)”

The aspect (a.) of the facet w.r.t. the current cell ¢ can then be derived as:

ae = tan™! <a2> (4.13)

ay = (4.11)

al

If the slope vector is outside the facet:

ac:{o if <0 (4.14)

(4.15)
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Figure 4.4: Illustrating actor-critic architecture of DINF based DDPG.

Finally, a DINF policy P’V for the i*" UAV can be given as:

PINE(585) = ae (4.16)

Scy

1

where c is the cell occupied by the UAV wu; at time .

4.3.3 Learning the Multi-UAV Policy

For learning a control policy for the UAV, a policy gradient based Deep RL algorithm is
employed, known as Deep Deterministic Policy Gradient (DDPG), which is well suited for
problems with continuous state-action spaces [32]. However, it has been reported in the
literature that DDPG is susceptible to poor learning if significant rewards are not received
in the initial phases of policy exploration [118]. In order to mitigate this problem, DINF
based target actor is proposed to achieve directed explorations during early phases of
training. The idea is to accumulate high rewards in the initial episodes itself for boosting
the policy gradient in the correct direction. The effect of DINF is eventually diminished
using € decay as the aim is to learn a more robust and generalized policy.

Figure 4.4 depicts the flow of influence of the DINF exploration over the DDPG
architecture. The DINF based Deep Deterministic Policy Gradient with Path scatter
(D3S) model consisting of actor pu(s;"|6*) (or simply written as a;*) and critic
Q(s;",a;"|69) networks and also have target networks for both actor fi(s;,) and critic
Q' (s, ﬂ(s;ﬁl)\HQl). DINF based target actions are used to realize a better policy by
affecting the target actor which in turn improves the critic network by minimizing the
critic loss. The enhanced critic contributes to improving the actor network’s training
process.

The loss function used to update the critic network in the proposed model in reference to
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Figure 4.5: Illustrating proposed architecture of D3S algorithm.

UAV u; currently at location ¢, is given as:
1 _ . .
Leritic = 5 D (W - Qs ap169))? (4.17)
t
vt = B+ Q (s sy )10 (4.18)

//(SZEFIW‘/) with 1 — e probability
Ast) = (4.19)

pPINF( SZ+ ) with e probability

where, 0 < e < 1. fi(.) represents the policy of target actor. Unlike the DDPG algorithm

[32], the proposed model makes use of target actions based on DINF flow estimates

(1PN ()
The learning actor network then gets updated using sampled policy gradient ([32]) as given

. € decays as the training progresses.

in Equation 4.20.

1
VuJ = B zt: VGQ(Sv an)‘s:st,a:u(St)Vm‘/‘(s‘eu)’St (4'20)

The architecture of the proposed D3S algorithm is illustrated in Figure 4.5. The proposed
D3S presented in algorithm 2 highlights how the target actions are generated using the
DINF flow estimation algorithm and how these estimates are used to improve the critic
network of the DDPG algorithm. This improved critic shifts the gradient of learning
actor-network in the correct direction and helps in learning an overall improved policy. As

depicted in algorithm 2, the system-related hyperparameters are initialized, such as the
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Algorithm 2: D3S Algorithm

1 Input: H, v, D, Adl, Ad2, soft-update n, max-time-step T

2 Randomly initialize critic Q(s,a|6?) and actor u(s|6*) with weights #9 and 6
3 Initialize target network @’ and p/ with weights 69 « 09, 9# «+ g~

4 Initialize Replay Buffer Z

5 for episode=1,2,... do

6
7

10

11

12

13

14

15

16

17

18
19

20

21
22

Randomly initialize starting position of the UAVs: u; Vi € U

Receive initial observation state of each agent s, Vi € U (corresponding to
observed location c)

while ¢t < T do

Select action a;* = pu(s|6*) + N; according to the current policy 7 and
exploration noise N (0, 1)

Execute action a;" and observe reward R;" and observe new state s,

Store transition (s;",a;", R;",s}t,) in Z

Sample a random mini-batch of B transitions (s;’,a;’, R}, ;" ;) from Z,
where k£ denotes the index of B

Set y,," = Ry, + Q' (s} 1 ﬂ(strl)\HQ') (as given by Equation 4.18 in
subsection 4.3.3)

The action given by target actor policy is based on directed — € strategy

(as given by Equation 4.19 in subsection 4.3.3):

u’(s}éjrlwul) with 1 — € probability
ﬂ(Slkfjd) =
DINF(

1 1) with e probability

Update critic by minimizing the loss (as given by Equation 4.17 in
subsection 4.3.3)

Update the actor policy using the sampled policy gradient (as given by
Equation 4.19 in subsection 4.3.3)

Update the target networks:

09 o9 + (1 —n)o?

O — not + (1 — )"

end

end

number of UAVs (n), UAV altitude H, value of v, number of time-steps T, etc. For each

time-step ¢ within an episode, an action a;* is selected for each individual UAV w; based

on its current state s;*. Subsequently, the reward received by the UAV and its next state

as perceived from the environment are observed. Tuple (s;*, a;*, R;",s/i) is stored in the

replay buffer Z. After the initial experience gathering, the proposed D3S approach is used

to learn the control policy for each individual UAV. Random mini-batches of experiences

are extracted from the buffer and used to realize the target Q-value y,* based on the state

s41 and the action received from target actor ji(sy’ ) (see Equation 4.18). Next, the

critic loss is calculated using the learning critic Q-value Q(s;’, a;” 16%) and target Q-value

g
Yk

(see Equation 4.17). To learn the optimal policy the learning actor weights are updated
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in the direction of the policy gradient, as given in Equation 4.20.

The computation cost of the D3S algorithm as seen from algorithm 2 is O(E x T), where
FE is the number of episodes and T is the max_time_step of each episode.

As a Multi-UAV model, the collective information captured by the UAVs is processed at
the ground control station to calculate the information gain, system rewards and collision
penalty. The proposed D3S algorithm runs individually for each UAV, and hence n
different policies are generated by the system. The information processing is done centrally

and no UAV-to-UAV communication/information transfer is presumed.

4.4 Experimentation and Results

In this section, the discussion includes the specifications of the environment, details

regarding hyperparameters, and the presentation of results.

4.4.1 Training and Test Environment Specifications

As discussed in Chapter 3, section 3.4, the city of Chennai is selected as the training
environment. The water level (L) is discretized into 8 flood levels, ranging from 0 to 8
feet. Population density data is obtained using the World Flood Mapping Tool [113]. For
the test environment, a grid covering Mumbai city, another coastal city in India [119], is

considered. The inundated areas are visualized using the Mapbox API [112].

4.4.2 Hyperparameter Specifications

In all the experiments, the actor network learning rate is set to le™* and the critic
network learning rate to le™® [19, 120]. 5 quadrotor UAVs are considered that are
randomly initialized at distinctive locations in the environment in each episode. The
proposed algorithm can be easily extended to more number of UAVs as each UAV learns
an individual control policy. The € decay factor is set to 0.9999 having an initial value of
e set to 1. The altitude of the UAVs is fixed at 100 meters above the ground. Varying the
altitude of the UAV will add another dimension to the action space of the UAVs. Hence,
the complexity of learning the control policy for flood area coverage will increase with
the change in action dimension. However, the D3S algorithm can still be applied as the
proposed strategies of directed exploration and Path scatter are not affected by the varying
altitude of the UAVs. The UAVs were assumed to be equipped with identical cameras
with half angles 61 and 0 equal to 30 and 45 degrees respectively. Each experiment is
run over 15000 episodes, where each episode is 1000 time-steps long. With each episode,
the latitude and longitude data of the environment is slightly altered in order to realize a
generalized trend of elevation in the given region. The speed of the water current (Vyqter)
is kept constant at 2 m/s throughout the episodes. A digital elevated model (DEM) of the
environment is generated using Mapbox.js, and the vector data behind it is queried using
the Surface API.

When initializing UAV-related parameters, the following condition is always ensured:
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Terrain area
FoV area

where, n is the number of UAVs and ey corresponds to the UAV energy at t=0 (i.e.

>n Xep (4.21)

maximum energy/fully charged). The value of ey should be less than or equal to the
number of time-steps in an episode. Equation 4.21 must always hold, or else the multi-UAV
system will incur large penalties as UAVs will be more prone to collisions due to insufficient
movement space.

The performance of the proposed D3S algorithm is compared with various other algorithms

including coverage algorithms from the literature, namely:
1. Simpler variant, D3G (DINF-DDPG without scatter)
2. Standard DDPG [32] model
3. Random Walk Exploration for Swarm Mapping [121] and

4. Coverage Path Planning of UAVs based on Particle Swarm Optimization (PSO)
[122].

In [121], the authors introduce swarm mapping, where agents initially explore the
environment individually using Random Walk (RW), then merge gathered information
into a global map. Five RW variants are discussed, namely, Brownian motion, correlated
random walk, L’evy walk, L’evy taxis, and ballistic motion. Step-length and turning
angle are the two parameters used to generate UAV action sequences. In [122], the
authors propose a PSO-based method to optimize yaw-angle and flight altitude for UAVs,
addressing area coverage. Fach particle represents a configuration i.e., <yaw-angle, flight
altitude> that is updated iteratively based on position velocity. The fitness function
corresponds to the difference in observed and desired information gain based on the
selected actions. Both the techniques, RW and PSO were adapted to generate pitch and
yaw angles for comparison with the proposed model. All the experiments are performed on
Google Colab having, Intel(R) Xeon(R) CPU, 1xTesla K80 GPU, 2.30GHz CPU frequency,
and 12GB RAM.

The results are obtained over 5 different random seeds and the deviation around the mean

is also highlighted in the plots. The following performance metrics are used for evaluation:
1. Average cumulative rewards accumulated by the multi-UAV system.
2. Number of collisions observed among the UAVs.
3. Path scatter among the UAVs.

4. UAV path trace where the flight trajectories of the UAVs are analyzed during

training.
5. Percentage FoV overlap among the UAVs.

6. Performance on unseen test environment.
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Figure 4.6: (a) Performance comparison during training based on average cumulative
rewards observed by D3S, D3G, DDPG, PSO and RW in a city-scale flooded region. (b)
Number of collisions observed by D3S, D3G, DDPG, PSO and RW during training.

4.4.3 Cumulative Rewards Observed during Training

Figure 4.6a depicts the average cumulative rewards observed by various models over
the training environment. As seen in Figure 4.6a, RW suffers from the lowest reward
accumulation with no noticeable progress in cumulative rewards throughout the episodes.
PSO based model also shows little to no progress in terms of reward accumulation until
9000 episodes. However, in later stages, the PSO model is able to achieve relatively larger
rewards, that are equivalent to the rewards achieved by DDPG to some degree. This
reflects the poor action generation using PSO in the initial episodes and also highlights
the fact that PSO easily falls into local optima. The DDPG model observes a significant
positive change after 8000 episodes but no further noticeable improvements are observed.
DDPG also suffers from poor performance if low rewards are observed in initial episodes
which lead to policy updates around poor targets that are far from the global optimum.
The proposed algorithms D3S and its lower variant D3G shows significantly improved
performances in comparison to other algorithms, especially in initial episodes. This
improvement signifies the importance of domain knowledge based learning in realizing
improved RL policies. Further, D3S performs the best overall throughout the episodes,
highlighting the importance of Path scatter. It helps the model in maintaining a broader
coverage over the environment due to which the model is successfully able to visit a larger

number of unique locations, hence achieving higher rewards.

In terms of deviation around the mean rewards, D3S results in the lowest deviation, but
experiences higher fluctuation in the initial episodes. D3G and DDPG models observe
similar deviations followed by PSO, while RW experiences relatively highest deviations
around the mean. Such poor performance by the RW model is justified to some degree
as random actions are selected at each time-step without any learning. PSO observes
relatively higher rewards in later stages but the deviations are still on the higher side.

This reflects that higher rewards do not essentially mean stable learning.
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Figure 4.7: Path scatter observed by D3S, D3G, DDPG, PSO and RW during training.

4.4.4 Number of Collisions Observed during Training

In this experiment, second performance metric considered for comparing the models is the
number of collisions. As given in Equation 4.5, a collision is recorded whenever two or
more UAVs violate the separation threshold D. Figure 4.6b shows the comparison plot
highlighting the number of collisions observed by each algorithm during training. As can
be seen, the proposed model D3S is able to achieve close to zero collisions in the long
run and observes the least number of collisions from the initial episodes itself. There is
a logarithmic decrease in the number of collisions in case of D3S. Relatively, a higher
number of collisions are observed by D3G even though it performs the second best overall,
highlighting the impact of Path scatter in D3S. The Path scatter prompts the UAVs to
have broader coverage rather than forming clusters in neighbouring locations which in
turn reduces the collision probability.

The impact of Path scatter is more noticeable here than in the results observed in the
previous section. DDPG shows a similar trend as D3G but observes a higher number of
collisions and larger deviation around the mean. The mean number of collisions in case
of RW seems to remain almost similar throughout the episodes with the largest deviation
as compared to other algorithms. This performance is justified as the UAVs were having
random movements with no learning in such a dynamic environment. PSO shows the
most varied pattern in the case of collisions where the number of collisions are decreasing

linearly, starting as bad as RW and improving to the performance level of DDPG.

4.4.5 Path scatter during Training

Figure 4.7 depicts the observed Path scatter by various algorithms. RW shows the worst
performance with the highest deviations across the mean. PSO and DDPG depict a
similar trend, but PSO mean values for @ are as bad as the lowest values of O of the
DDPG algorithm. D3G and D3S show a rather stable and improved Path scatter as the
episodes progress. D3S has the least deviation across the mean values of O and records
the highest mean value of O overall. Hence, the Path scatter helps the model to disperse

over the region in an efficient manner and avoid their clustered formation.
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Figure 4.8: Path traced by each UAV under (a) D3G (b) D3S policies over the training
environment (where different color markers represent the trace and the red pin markers
denote the starting positions of the UAVs).

Along with Path scatter observed among the UAVs, the path of each UAV observed over
an episode is also highlighted at the end of training. Figure 4.8a and Figure 4.8b depict
the path taken by each UAV in the environment when controlled using D3G and D3S
respectively. This helps in visualising the effect of Path scatter introduced in D3S. In
both scenarios, the starting configuration of the UAVs was kept the same. A noticeable

spread can be observed in the trajectories of the UAVs in case of D3S as compared to that
of D3G.

4.4.6 Percentage FoV Overlap among UAVs

Overlap among the UAVs is also observed by calculating the mean overlap among the FoV
pairs during training. An overlap is recorded whenever the distance (d"#7) between the 2D
projected positions of UAVs u; and u; goes below the ideal distance D (see Equation 4.5)

and is calculated as::

f(ui,uj) if d¥% < D

(4.22)
0 otherwise

overlap""i = {
where F(.,.) is the intersection area of two FoVs centered at (z%,y") and (z%,y"7) [123].
The side lengths of the FoVs are calculated based on the UAV camera half angles 61 and 6-.
This overlap is observed as an error recorded over the training episodes using symmetric
Mean Absolute Percentage Error (sM APE), calculated as:

ZT Z |overlap™i"i | if d“ < D
e s Ly, LT t
0 ug,uj €U u;#u; dtl I4D (423)

0 otherwise

sMAPE =

where T is the total number of time-steps in a single episode. As can be seen in Figure 4.9a,
the overlapping error is significantly lower in case of D3S as compared to other algorithms.
D3S shows approximately 48% lower overlap than D3G, 43% lower than DDPG, 61% lower
than PSO and 67% lower than RW. Even though D3G shows a relatively lower number of
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Figure 4.9: (a) Percentage FoV overlap among UAVs corresponding to D3S, D3G, DDPG,
PSO and RW during training. (b) Observed average cumulative rewards corresponding to
different initializations of e for D3S.

collisions and higher reward accumulation as compared to DDPG, the percentage overlap is
still higher. This highlights the fact that DINF does not prevent the UAVs from clustering
together, but it does address the problem of low reward accumulation seen in DDPG by

exploiting the domain knowledge.

4.4.7 Effect of epsilon (¢)

In this experiment, the focus is on examining how the initial value of € can influence the
overall performance of D3S. This analysis facilitates a deeper understanding of the role
and impact of the DINF algorithm within the proposed model. Figure 4.9b depicts the
average cumulative rewards observed by D3S during training corresponding to different
initializations of €. As given by Equation 4.19, a DINF based target action is selected with
€ probability and a standard DDPG based target action is selected with 1 — € probability.
As can be observed from Figure 4.9b, it’s better to start with a higher value of € (i.e., close
to 1) in the beginning so as to utilize DINF based directed actions. Critic loss calculated
using this target helps to boost the policy gradient in the correct direction by improving
the learning actor. The decay factor for € is set to 0.9999 which decays the value of € to

approximately 0.22 in 15000 episodes.

4.4.8 Policy Generalization in Unseen Test Environment

This experiment is performed to examine the robustness and generalization capabilities
of the learnt policies by various algorithms. RW model generates random values for yaw
and pitch within the provided feasible range and PSO based model uses the yaw angles
and pitch values for each UAV that provides the best fitness. Each Deep RL based model
uses the same policies learnt during training and no additional learning is performed in
this experiment. Figure 4.10a depicts the average accumulated rewards as observed by
each model over 100 episodes. Proposed algorithms D3S and D3G performs significantly

well as compared to standard DDPG model. Such a noticeable difference in rewards
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Figure 4.10: (a) Performance comparison based on average cumulative rewards observed
by D3S, D3G, DDPG, PSO and RW in an unseen test environment. (b) Path scatter
observed over an unseen test environment by D3S, D3G, DDPG, PSO and RW.

highlights the impact of domain knowledge based learning via DINF and in general, the
usefulness of domain centric learning to vastly improve the policies learnt by the standard
RL algorithms. PSO performing the worst corresponds to the poor generalization ability
of the standard PSO algorithm over an unseen environment. The learnt fitness values by
PSO corresponding to a very limited number of environment-related parameters may have

lead to poor training, especially in case of such highly dynamic environments.

4.4.9 Path Scatter over Unseen Test Environment
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Figure 4.11: Path traced by each UAV under (a) D3G (b) D3S policies over the unseen test
environment (where different color markers represent the trace and the red pin markers
denote the starting positions of the UAVs).

In this experiment the Path scatter observed by each algorithm is analyzed over the
unseen test environment averaged over 100 episodes, as seen in Figure 4.10b. A significant
difference can be observed, where, the D3S algorithm records approximately 16% higher
Path scatter as compared to D3G. D3S observed around 23% higher Path scatter than the
standard DDPG algorithm and about 39% higher Path scatter than PSO. As compared
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to RW, D3S observed a noticeable 48 (approx.)% higher Path scatter. The UAVs’
trajectories over the unseen test environment are also observed corresponding to the two
best performing algorithms, i.e., D3S and D3G. Some noticeable differences can be seen
from the illustrations given in Figure 4.11a and Figure 4.11b. The initial positions of the
UAVs remain the same for both algorithms. The trace trajectories can be seen as stretched
out over the terrain in case of D3S as compared to D3G. This highlights the impact of

Path scatter as observed visually.

4.5 Chapter Summary

This chapter presents the D3S algorithm, which utilizes the D-infinity water flow estimates
to learn the target actions by calculating the exact degree of water flow. Further, D3S
prevents UAV clustering using Path scatter. However, the centralized training paradigm
followed by D3S (see section 4.2) and DSDQN (see Chapter 3, section 3.4), assume seamless
full-duplex communication with a ground control station. This assumption may impose
restrictions on efficiently gathering distributed data during disaster scenarios. Issues such
as the necessity of a known centralized entity’s location in dynamic environments and
maintaining bi-directional communication over vast distances might restrict the scale
of response operations. Thus, in the next chapter, the discussions are focused on a

decentralized training paradigm to learn multi-UAYV policies without relying on the ground

. mm*mm .
hd N\ ) N J -

control station.




5| Autonomous Flood Area Coverage
using Decentralized Multi-UAV
System

As discussed in the literature review, majority of the prominent work done in the field of
multi-agent reinforcement learning (MARL) considers some form of centralized entity to
make individual agents learn from global knowledge of the environment [47, 52, 60, 124].
This centralized unit collects information from individual UAVs to expedite training and
mitigate the non-stationary effect w.r.t. the multiple agents (UAVs) in the environment.
However, deploying such a centralized system to train a multi-UAV policy during disasters
might be less effective due to the distributed nature of the data in the environment. In
addition, bi-directional communication between UAVs and the central server is required,
regardless of their distance, which is usually difficult to achieve in large, dynamic, and
stochastic environments such as floods. Decentralized Deep RL approaches have been
explored previously in the literature, but limited attention has been given to learning
decentralized multi-UAV policies using domain knowledge. In this chapter, a Deep
RL algorithm (dec-DQNCS) is proposed to train a decentralized multi-UAV policy for
autonomous area coverage in flood environments. Additionally, the D8 algorithm is
utilized for directed explorations. Further, communication among UAVs is enabled to
exchange their experiences and improve local UAV policies and make them more robust.
Coverage maps are also used to make the UAV’s aware of the other agents in their vicinity
and encourage segregated trajectories for better coverage.

The rest of the chapter is organized as follows. section 5.1 contains the preliminary
information highlighting the environment description and the basics of the D8 flow
estimation algorithm. section 5.2 presents the system model along with collision avoidance
and UAV energy description. section 5.3 presents the proposed methodology, which
includes the reward function, action selection, UAV-to-UAV communication, and Coverage
Maps. section 5.4 discusses the experiments and results. In section 5.5, a concise summary

of the chapter is provided.

5.1 Preliminaries

This section provides a description of the flood environment and the water flow estimation

algorithm used to learn exploration strategies for UAVs’ policies.

Environment Description

The environment is considered as a 2D terrain divided into n x m number of cells of equal
size (similar to the one considered in Chapter 3, section 3.1). The dimension of a cell is
equal to the Field-of-View (FoV) of the UAV. The FoV of a UAV is a rectangular area



58 Chapter 5. Autonomous Flood Area Coverage using Decentralized Multi-UAV System

captured by the UAV’s ventral camera and its dimension depends on the UAV’s altitude
and camera angles. To simulate flood, a 2D water mask is overlayed over the terrain layer.
A critical level Z,. is assigned to each cell based on its water level and population density

(for more details, refer to Chapter 3, section 3.1).

Water Flow Estimation

The D8 algorithm [45] is employed that generates the flow estimates based on the
estimation of water discharge directions as discussed in Chapter 3, subsection 3.3.2). D8
estimates the cell with the largest water accumulation in the neighbourhood of the cell that
is under a UAV’s observation. In the considered scenario, the input to the D8 model is the
state of the UAV containing the elevation and the water level information of the current
and neighbouring cells (8 adjacent neighbours). The cell with the lowest water discharge
is usually the one with the highest water accumulation which puts it relatively at a higher
risk than others. Once, a neighbouring cell with the lowest water discharge is identified
using D8, this information is used to generate an exploration action for the UAV to move in
the estimated flow direction (refer to Chapter 3, subsection 3.3.2)). Equation 5.1 denotes
the exploration action given by D8 flow estimation technique:

al® =m(LY, ") (5.1)

D8
Ct

maps the appropriate action from the feasible action set. Lgi denotes the cell with the

where a, ° represents the D8 generated action for an individual UAV. The function m(.,.)

lowest relative water discharge in the neighbourhood of ¢*:.

5.2 System Model

Having a multi-UAV system of n UAVs U : {u;|i = 1,2,...,n}, the objective is to capture
as many critical regions as possible by performing area coverage under the constraint of
limited batteries of the UAVs with minimum overlapping trajectories. UAVs maintain
a consistent altitude of H meters for uniform image resolution. Equipped with ventral
cameras each UAV captures a rectangular field-of-view of the surface (refer to Figure 4.1).
Each UAV is only able to perceive its local surroundings and the information exchanged
by other UAVs through opportunistic communication. They operate without awareness
of the global state.

5.2.1 Collision Avoidance

To implement the protocol for collision avoidance among the UAVs, an overlapping
constraint (C) is defined to discourage the UAVs from getting into the collision-prone

range of each other. The overlapping constraint is given as:

1 if  df"" <AD Yuj,u; €U

(5.2)
0 otherwise

(Ct(ui, Uj) = {
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where, d?i’uj is the observed Euclidean distance between the 2D projected positions of
the UAVs. AD is the threshold distance below which the UAVs are prone to collision. A
penalty is imposed on the UAV when its action leads it into a collision prone range with
other UAV(s). The collision prone areas are calculated in reference to the coverage maps
(CM’s) communicated among the UAVs (discussed in subsection 5.3.5). Future locations
of the UAVs are estimated based on their CM’s, to realize a static path foreseeing a

possible collision course with other UAVs (the ones with which it has communicated).

5.2.2 UAYV Energy Model

A UAV requires energy for various manoeuvres such as take-off, hovering and flying in
addition to the energy required for transmission. Authors in [125] derived an analytical
model for propulsion power consumption W of quadrotor UAVs moving/flying at a speed of
V. In [126], authors discuss the energy required to realize the communication transmission
between UAVs. Adopting the energy consumption model from [125] and [126], a UAV’s

energy v; at any given time ¢ can be derived as:

Y=g — w{hover,moving,comm} (53)

wmoving - W(V) X Tmoving (54)

where Toving is the number of time-steps during which the UAV is in motion.

¢hover = W(O) X r]I‘hover (55)

where T}oper is the number of time-steps during which the UAV hovers.

1/}comm = x Tcomm (56)

where € is the transmission power of the UAV and T,y is the number of time-steps

during which the UAV is transmitting data.

Energy is not part of the reward formulation as the objective is focused on coverage

only, however, it plays a crucial role by affecting the episode length/UAV flight time. It

limits the UAV actions based on the current energy level of the UAV. For example, if
) < Yeomm the UAV w; cannot perform communication anymore, similarly for other

actions {hover, moving}.

5.3 Proposed Methodology

In this section, the considered multi-UAV area coverage problem is discussed, along with

the action selection strategy, coverage maps and reward function.
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5.3.1 MDP Formulation

For a multi-UAV system, the dec-POMDP is given by a tuple <
n,S,{A%}, PT {O%},{R%}, PO T > where n is the number of UAVs and S denotes a
finite set of hidden states. A" = {N,S,E,W,NE, NW,SE, SW, hover, hover + comm}
(comm is the abbreviation for communication) is the finite action set. P7 is the state
transition probability that provide the distribution P7 (s;y1|ss, a;) of transitioning to the
next state s;41 given the current state s; and joint action a; = {a"!,a"2,...,a""} € A. A
is the joint action space of all the UAVs. O" = {0]", 05", ...} is the finite observation set
for each UAV w;, where a single observation is represented as:

oyt {P

ctky,ctko? egikl,ﬁ»kg’ hC| v kl) k? € {_17 07 1}}

where P¥¢ corresponds to the human population density level of cell ¢ and el* corresponds
to the terrain elevation. h. is the water level at the sensed location c¢. The k1,k2 €
{—1,0,1} set represents the elevations and human population density levels of the
neighbouring 8 cells of c¢. PY is the observation probability given the conditional
probability PO (o0s41|si41,a:). Set R% defines the accumulated rewards earned by each
UAV V ¢ € U present in the system. At each time-step t, the UAV takes an action a“i
based on its local observation history Oﬁi;t} and receives the next observation o}fil and
rewards R;" from the environment. As the complete state of the environment is unknown
to the UAV, the observation history is useful in realizing a local policy 7%¢. So, 7% can be
defined as the mapping from local histories to agent-specific actions and the joint policy

IT: {m¥, %2, 7% ..} is the set of local policies corresponding to each UAV w; € U.

5.3.2 The Value and Reward Functions

The objective is to find the optimal policy 7 that achieves the maximum cumulative
rewards in the long run. The state-action value function Q™ (s¢, a;) under the policy m

defines the long-term desirability of an action in a particular state, given as

QW(SM at) = EatNW

T
> V' Reyigalse, at] (5.7)

1=0
where 0 < v < 1 is the discount factor (used to maintain finite sum over the infinite
horizon). In the considered scenario, as the UAVs are unaware of the global state, the

Q-value is defined in terms of the global expected utility as the sum of the local utilities
of each UAV.

QO ar) = > QU(ofy a,a,) (5.8)

ui,u; €U

Uj

[1:¢]
observation history of UAV w; up until time ¢. a; corresponds to the local action of ith

UAV at time t and a;” denotes the action of UAV (u; € U) that interacted with the u; at

where O} is the joint observation set at time ¢, a; is the joint action. o is the local
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time ¢ (a UAV can communicate with only a single agent at any given time).

The formulation of the proposed reward function is based on the information gained by the
UAV from the environment. The other parameter is whether the UAV is communicating
or not and whether it’s on a collision course with another UAV or not. The information
gain is a quantitative measure that defines the importance of the cell ¢ captured by the
UAV. Higher the risk level of a cell, higher is the information gain. Hence the information

gain (I}*) from a cell ¢ as observed by a UAV w; is given as:

_Ze
maz(Z)

wp
1) =

(5.9)

where Z is the risk level of cell ¢. The reward R, corresponding to an individual UAV

u; at time ¢t is calculated as:

R (s, ai, si1) = L+ O — au(ui, uj)-Colui, uj)

v UjGN,j#’L'

(5.10)

where CY is a positive scalar incentive given to u; provided that it is successfully able
to build a communication link with another UAV at time ¢. «(.,.) is a function that
outputs a scalar penalty when a UAV wu;’s action leads it into a collision-prone range. The
penalty associated with the function a(.,.) exceeds C due to the emphasis on collision
prevention rather than prioritizing communication. Function C(.,.) denotes whether two
UAVs are within the collision range or not (the communication range is greater than the

collision range).

5.3.3 Action Selection

In the standard DQN model [13], the action selection is based on the e-greedy strategy.
As initially, the environment is completely unknown, random actions are performed to
explore the value of different actions from various states. In later stages of training, the
agent exploits the already gathered information to perform the given task in an optimal
manner. However, random exploration can lead to a sub-optimal policy as it is the least
efficient exploration method when it comes to limited energy models [127]. In the proposed
approach nicknamed dec-DQNCS, a better exploration strategy is adopted based on the
D8 flow estimation algorithm [45]. The employed action selection strategy (for more details

refer to Chapter 3, subsection 3.3.3) is given as:

argmazx Q(oﬁ?t], a')  1— (e + e2) probability
a’ '

a;t = D8
t a,

€9 probability (5.11)

random action €1 probability

where, 0 < €1,62 < 0.5 u; denotes the it UAV and & denotes the action given by

the target network. ag8 denotes the action based on D8 flow estimation algorithm.
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Algorithm 3: dec-DQNCS8 Algorithm

1 Input: n, Q, f., V, v
2 Initialize action value function Q% with random weights % for each UAV i € U

3 Initialize target action value function Q% with weights = = 6% for each UAV
1eU

4 for UAV = u;,uj,...,u, do

5 for episode=1,2,... do

6 Initial observation o% and coverage map mui

7 while t < maxz_time_step and Y1 > Y{nover,moving,comm) 4O

8 Select action ay" as given in Equation 5.11

9 Decay UAV’s energy as given in Equation 5.3

10 UAV w; makes the next observation o;%, and receives reward R;" from
the environment.

11 Store transition < 0", a;", Ry, 0, > in replay buffer Z*

12 if a}'" == hover + comm then

13 Z" .append(Z*) [/ Considering u; and u; communicated at time

t

14 Update the input state as given in Equation 5.16

15 end

16 Sample a random mini-batch of B transitions (OZi, aZ", RZi,OZfH) from

Z"i where k denotes the index of B and u} denotes the experience of
u; or the experience of any other UAV that communicated with ;.

17 Calculate target Q value: y," = Rzg + 7 mazx Q(ozg, a';07)
a
18 Perform gradient decent step on (y," — Q(ozé, az,;; 0)) w.r.t. network
parameter 6
19 In every C' steps, reset Q“l = Q"
20 end
21 end
22 end

Figure 5.1: Illustrating proposed architecture of dec-DQNCS8 algorithm.

Oﬁi:t] is the local observation history of UAV w; up until time ¢t. UAV’s action (a;")
is subjected to its available energy (refer subsection 5.2.2). The proposed dec-DQNCS8
is depicted in algorithm 3. As can be noted from line number 1-3,the system related
hyperparameters and the network weights are randomly initialized. Next, within each
episode, the observations of each UAV w.r.t. the captured image of the environment is
recorded and marked in individual coverage maps (refer to line number 4-6). Then an
action is performed by the UAV(s) based on its current policy, as depicted in line number
8. Later, when enough experience is gathered by local movements and experience gained
from communication, the policy network is updated by minimizing the loss and shifting
the gradient in the correct direction (refer to line number 11-18). The model’s architecture

is illustrated in Figure 5.1.
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5.3.4 UAV-to-UAV Communication

A UAV wu; can transmit the replay buffer Z% and coverage map m" in form of packets to
another UAV u; if the UAVs are within a transmission range D of one another [128]. It is
assumed that the UAVs are equipped with radio transmitters and work on 2.4 GHz to 5.8

GHz frequency. This range is calculated as:

D= 10—[10xlogm(<“i*“j Y /)+28+20xlog1o(fe)]/22 (5.12)

where (“©"i is the threshold SNR. € is the transmission power of the UAV and T denotes
the thermal noise described as the Gaussian white noise [129]. f. is the carrier frequency
of the communication signal [130]. A packet is successfully received if the mean SNR f Wirty
is greater than the threshold SNR, (%%,

_ 28+422xlogyq (R ) +20x10g1g (fe)

gty = % x 10 0 (5.13)

where A" is the fading coefficient of communication link between UAV u; and u; based
on Nakagami-m distributions [131]. Whenever two UAVs (u;,u;) are within a distance
D of each other, both the UAVs perform hover + comm action to transmit the replay
buffer information and their coverage maps to each other (conditioned on whether enough
energy is left for transmission or not). After transmission completes, UAV w;’s replay
buffer becomes equal to Z%.append(Z"/) (and similarly for UAV w;). This increase in
information helps the dec-DQNCS8 model to converge early and the resultant policy is
more robust as it is learnt from a more diverse and distributed form of data. As the replay
buffer data is shared among UAVs over communication, the individual policies learnt by
the UAVs could be overlapping to some extent. However, it is highly unlikely for two or
more UAVs to conclude training with very similar weights. This is primarily due to the
differences in their initial weights, that are randomly initialized, and the rarity of these

UAVs having precisely the same data to train from in each episode.

5.3.5 Coverage Maps

In this section, the use of Coverage Map (C'M) is discussed that contains the local trace of
the UAV based on its local observation history. This map is also shared among the UAVs
when they communicate. A coverage map contains the information corresponding to the
locations that a UAV has visited during its flight and also the recent time-step at which
that particular cell was observed. The data contained in the map is used to update the
information gain, effectively altering the rewards that a UAV can accumulate from a cell
(this is applicable to the time steps after the communication has occurred). The updated

information gain is calculated as:

w; 445
v L Yt

7 maz(Z) Y

(5.14)

In reference to the UAV wu; currently observing cell ¢, the updated information gain I
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is calculated corresponding to % (the current time-step) and ¢’ (uj € U, the UAVs that
have communicated and transferred their coverage maps to u; up until time ¢). te? denotes
the last time-step at which the cell ¢ was observed, as recorded in the CM. The idea is
to diminish the rewards of a UAV for the cells that have been previously visited by the
other UAVs. This helps to learn a local policy by a UAVs to emphasizes on visiting more
unobserved cells rather than revisiting the observed ones.

Further, the future locations of a UAV are estimated (in reference to u;) based to its map

A Uj
m,”, calculated as:

C1y = argmax (M, | i) (5.15)
ij
where, C,' 7, represents the location of UAV wu; at time-step ¢ + 1. GTQTGI('|‘) depicts
i

the cell with the highest water accumulation (usually the lowest eleva‘;ion cell) in the
neighbourhood (c¢;”) of u;. To make sure that the communicated trace information is
available to the UAVs during training (at all times), the coverage map information is
integrated as part of the model’s state input. A coverage map also has a huge impact when
the model’s performance is evaluated in a test environment (discussed in subsection 5.4.3
and subsection 5.4.4).
The updated information gain as given in Equation 5.14 only corrects the future rewards
considering the cells that are being revisited. However, the already observed rewards also
needs to be updated that are in the replay buffer. Let’s say at time ¢t UAV u; communicated
with u; (a UAV can communicate with only a single UAV at a time), the replay buffer of
u; becomes equal to Z% .append(Z"i). Based on the number of overlapping cells between
u; and w; up until time ¢ as observed from the traces in m" and "/, the rewards in
the replay buffer are updated in reference to the Equation 5.10 and Equation 5.14. For a
UAV u; the updated state contains the local state information, its coverage map and the
coverage map of the UAVs with which u; communicated.

s = {o% {m% WYy jeU; j£i (5.16)

input —

5.4 Experimentation and Results

In this section, the performance of the proposed model dec-DQNCS is evaluated against the
simpler variant dec-DQNS8 and two other state-of-the-art multi-UAV coverage techniques
from the literature, namely, dec-DQN [28] and PSO [132]. Communication based reward
updates are not implemented for dec-DQNS8, and the utilization of coverage maps is
also omitted. In [28], authors employ a DQN-based approach to learn multi-UAV
controls for flood monitoring. The proposed technique is said to be decentralized but no
communication method is introduced or employed. When comparing with the proposed
model, the algorithm presented in [28] is regarded as a decentralized DQN without

communication, where UAVs are only aware of their local state. In [132], the authors
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proposed a distributed PSO model to perform exploration of a disaster area using UAVs.
There is no central node considered in this distributed approach, but the UAVs are able
to share their local information with other agents that are in its vicinity.

To evaluate dec-DQNCS8, a team of 7 UAVs (quadrotors) is considered during
experimentation. The altitude of the UAVs is fixed at 100 meters above sea level.
Considering a standard UAV camera, the half angles are assumed to be 300 and 450. To
create the training environment, the coastal region of Chennai city is considered, similar
to the one considered in Chapter 3, section 3.4. A different test environment is simulated
to evaluate the learnt policies of the multi-UAV system. The water level information and
population density information is encoded in a similar manner as discussed in Chapter
3, section 3.4. The collision range for UAVs is set to 10 meters, under which UAVs are
bound to collide. Implementation is done on Google Colab having, Intel(R) Xeon(R) CPU,
1xTesla K80 GPU, 2.30GHz CPU frequency, and 12GB RAM. The following performance

metrics are used to evaluate the proposed model:

e Average cumulative rewards observed by the multi-UAV system over the training

and test environments.
o Average joint coverage observed during training and testing.
e Multi-UAV path trace observed over the training and test environments.

Results are observed over 5 different random seeds and the deviation around the mean is
highlighted in the plots.

5.4.1 Average Cumulative Rewards Observed During Training

Experiments are performed over the course of 0.35 million episodes to observe the
difference in cumulative rewards more vividly (if present). Each episode is of 1000 time
steps. Figure 5.2a depicts the average cumulative rewards observed by various models
during training. As observed, all the RL-based methods perform similarly in the initial
episodes with dec-DQNS8 performing the best. But, as the number of episodes progresses
dec-DQNCS outperforms the others to achieve the highest overall rewards. Such behaviour
of dec-DQNCS is justified as the rewards are updated within episodes whenever the
UAV communicates, leading to a decline in average rewards. However, as soon as the
coverage map becomes good enough after communication, UAVs are able to spread over
the environment in a much better way, covering a significantly larger area. PSO performs
the worst highlighting the pitfall of PSO as it usually gets stuck in local optima, especially

when training is done using a limited number of environment parameters.

5.4.2 Average Joint Coverage Observed During Training Along with the
Multi-UAV Path Trace

In this experiment, the average joint coverage of the environment is observed during

training. The coverage is defined as the number of unique cells captured by the UAVs
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Figure 5.2: Performance comparison between dec-DQNCS, dec-DQNS, dec-DQN and PSO
based on (a) average cumulative rewards and (b) average joint coverage during training.

in an episode. Higher coverage provides a better chance of capturing a relatively larger
number of critical regions. Figure 5.2b depicts the average coverage by the multi-UAV
system during training. As observed, up until the 0.15 million episodes there is no
significant change in coverage to separate the models, but after 0.2 million (approx.)
episodes, dec-DQN shows a noticeable improvement in the joint coverage as it sees a
linear rise, outperforming PSO. A noticeable gap in joint coverage can be observed between
dec-DQNCS8 and dec-DQNS8 after 0.25 million episodes and this gap seems to increase with
the increase in the number of episodes. This signifies the impact of the coverage map used
by dec-DQNCS in achieving a better spread over the environment.

To further analyze the impact of updating rewards and sharing coverage maps in learning
a multi-UAV policy, the paths of the UAVs during training for both dec-DQNCS8 and
dec-DQNS8 are traced. dec-DQNS8 adopts the D8 flow estimation strategy for better
exploration and shares the experience replay buffer across UAVs during communication.
But, it does not update the rewards of the replay buffer on communication and also does
not use the coverage map for policy learning. Figure 5.3a and Figure 5.3b illustrates
the multi-UAV path observed during a single episode at the end of the training by both
dec-DQNCS8 and dec-DQNS. As observed, the updation in rewards and the use of CM
helps in maintaining better coverage over the environment in the long run. Rather than
forcing a constraint on the multi-UAV system to maintain inter-UAV separation, here the

system learns naturally about the effects of clustering with other UAVs.

5.4.3 Average Cumulative Rewards Observed During Testing

To analyze the generalizability and robustness of the learnt policy using dec-DQNCS, the
performance of the model is observed in a test environment over 100 episodes. During
testing, the learnt policies are not updated, but the UAVs are able to share their coverage
maps with each other during communication (in the case of dec-DQNCS8). The test
environment is simulated using the real-world elevation data of the Barpeta district

of Assam which is one of the most prone regions to floods. Figure 5.4a depicts the
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Figure 5.3: The multi-UAV path trace observed during training with (a) No updation in
rewards and (b) Updating rewards within episodes in the experience replay buffer.
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Figure 5.4: Performance comparison between dec-DQNCS, dec-DQNS8, dec-DQN and PSO
based on (a) average cumulative rewards and (b) average joint coverage during testing.

average cumulative rewards observed by various algorithms during testing. As observed,
dec-DQNCS has the best performance from the initial episode itself. This highlights the
fact that the proposed model is able to learn a robust multi-UAV policy. dec-DQN8 also
achieves significant rewards during testing. This justifies that the D8-based models are
able to learn a better policy and achieve relatively higher rewards even in a short duration
of time as compared to dec-DQN. PSO and dec-DQN have similar performances, with

PSO performing the worst in later episodes.

5.4.4 Average Joint Coverage Observed During Testing Along with the
Multi-UAV Path Trace

In this experiment, the average joint coverage is observed in the test environment. This
helps in highlighting the difference in the learnt policies and to observe whether the

multi-UAV system is able to maintain a considerable spread over the environment or not
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when the policies are fixed. As observed from Figure 5.4b, the proposed model dec-DQNCS8
sees better coverage as compared to other algorithms. This highlights the impact of using
the coverage map to learn the policies by including the map as part of the input state.
dec-DQNS sees better coverage as compared to dec-DQN up until 60" episode. PSO sees
the worst performance, highlighting the difficulty in learning suitable control sequences in
a highly dynamic environment.

To analyze the significance of communication during testing, two scenarios are considered,
one where the UAVs can communicate with each other and the other where the
communication is restricted. Figure 5.5a and Figure 5.5b represent these two scenarios
where the multi-UAV path trace is observed during testing. As can be seen, if the UAVs
are allowed to communicate they are able to spread significantly better over the test
environment just by sharing their coverage maps. This results in a higher probability of

covering a larger number of critical regions.
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Figure 5.5: The multi-UAV path trace observed during testing with (a) allowable
inter-UAV communication and (b) no communication.

5.4.5 Comparison with Centrally Trained Policies

For the performance gap between centralized and decentralised policies, the proposed
algorithm dec-DQNCS is compared with DSDQN and DQN [44] over the average joint
area coverage and the number of episodes required to converge during training, as depicted
in Figure 5.6a and Figure 5.6b respectively. All three models are trained and observed
under identical environmental conditions. As depicted in Figure 5.6a, the centralized
approach (D8DQN) achieves 20 % larger coverage as compared to dec-DQNCS8. Such an
outcome can be intuitively analyzed since in the case of DSDQN all the UAVs are jointly
regulated by a central system whereas, in the case of dec-DQNCS, the UAVs are dependent
on experience sharing via opportunistic communication. However, the effect of utilizing
domain knowledge using D8 has a significant impact on the models, since dec-DQNCS8

achieves 8.5 % larger area coverage than the standard DQN model (i.e., a centralized
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Figure 5.6: Centralized (D8DQN) vs Decentralized (dec-DQNCS8) system comparison
based on (a) average joint coverage and (b) number of episodes to converge during training.

approach). In terms of convergence, all three approaches do converge but at different
rates. D8DQN and DQN only took about 2.8 % (approx.) of the number of episodes to
converge as compared to dec-DQNCS8. Such a large gap signifies the difficulty in training
a decentralized model as compared to a centralized one. But knowing that a decentralized

based approach also converges is a step towards realizing real-world models.

5.5 Chapter Summary

Decentralized Deep RL models used in UAV training face several challenges such as slow
convergence, limited local data, high communication overheads, inefficient exploration,
computational constraints, and lack of centralized coordination, leading to sub-optimal
policies. Nevertheless, successful training of a decentralized multi-UAV system using the
proposed dec-DQNCS8 algorithm was achieved despite these limitations. This technique
proves crucial in scenarios where information is widely distributed across the environment
and establishing communication with a ground control unit becomes unfeasible. The
upcoming chapter extends the application scope to discuss multi-UAV assisted real-time

path planning for rescue teams aiming to reach these critical locations during floods.
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6| Real-Time Serviceable Path Planning
during Floods

After identifying the critical regions in the flood-struck area, the problem of path planning
is addressed to assist waterborne evacuation vehicles (WBVs) to reach these critical
locations using UAVs. Autonomous navigation and formation control of multi-UAV
systems poses a significant challenge for the robotic systems that operate in unknown,
dynamic and stochastic environments. In this chapter, the objective is to deploy multiple
UAVs in an interleaved formation to identify serviceable paths in an unknown flooded
region. The objective is divided into two tasks: firstly, capturing environment related
information in connected regions using UAVs and latter, utilizing this information to
realize serviceable paths to reach critical locations. UAVs need to capture connected
locations in their joint Field-of-View (FoV) to avoid coverage gaps so as to ensure that a
serviceable path exists. Multi-agent Deep Deterministic Policy Gradient (MADDPG)
algorithm is employed for the multi-UAV system to achieve autonomous motion and
interleaved formation. The UAVs are tasked to capture the obstacle-related data and
identify shallow water regions for unrestricted motion of the WBV(s). After gathering
this information, MEA* (minimum expansion A*) algorithm is used for path planning.
MEA* address the node expansion issue with the standard A* algorithm, by pruning the
unserviceable nodes/locations based on the captured information, hence expediting the
path planning process.

The rest of the chapter is organized as follows. section 6.1 contains the environment
description. section 6.2 describes the multi-UAV model along with objective function.
section 6.3 presents the proposed Minimal Expansion A* (MEA*) approach with a node
expansion strategy, that utilizes information sensed by the UAVs. section 6.4 discusses
the experiments and results. Finally, in section 6.5, a concise summary of the chapter is

provided.

6.1 Environment Description

The flood environment consists of an underlying surface seen as a grid with my x my cells
with identical side dimensions. The surface is encoded with real-world road-transit network
information along with land use data (such as buildings, water bodies, etc.) gathered
using Mapbox Streets [133]. Further, to simulate flood-like dynamics, a 2D water mask is
defined over the environment. The water level at different cells varies within a fixed range
to imitate flooding motion. The water level depth and the detection of small underwater
objects/infrastructure are sensed through bathymetry [105]. By measuring shallow water
depths, captured locations (sensed by a UAV) are categorized as serviceable or not.

Serviceable Path: The aim is to identify serviceable paths for WBV to reach critical
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Figure 6.1: End-to-end UAV coverage to identify a serviceable path for WBV to reach a
critical location.

location(s). A location c is said to be serviceable A¢ if the underlying surface is clear of

any underwater objects/infrastructure and the water is not shallow for possible movement
of WBV.

(6.1)

(unserviceable) otherwise

A — { 1(serviceable)  if he > W and O° == False
)0

where O¢ denotes whether the location ¢ has an wunderlying or surrounding
obstacle/object(s) and h, is the water level /depth at location c¢. W denotes the threshold
level below which the water at cell ¢ is said to be shallow (unsafe for WBV movement, as
the boat could get stuck).

6.2 System Model

In the system model, there is a team of n UAVs (U): {u1,us, ..., u,} that are tasked to
perform area coverage for serviceable path planning for a waterborne vehicle(s) (WBV) by
sensing the region between the start location (i.e., location of the vehicle) and the location
of critical areas. The start and critical locations are always known. The objective is to
find connected locations (interlinked cells of the environment grid) so as to make the WBV
reach the critical location(s). Figure 6.1 describes the considered scenario where a team
of 4 UAVSs (u1,u2,us,uys) are sensing the cells ahead of the WBV in the direction of the
closest critical location to identify a serviceable path for the WBV to move. The WBYV is
perceived in the joint FoV at all times to identify the start location. In this sense, the start
location keeps on changing due to the movement of the WBV. Each UAV is equipped with
ventral cameras to capture the underlying surface in their field of view (FoV). The FoV
of each UAV forms a 3D pyramid having a hexagonal field of view as shown in Figure 6.2.
The joint FoV of the UAVs is given by the set F' = {v"“1,v"2 ... v%"} where, v; : {x;,y;}
is the FoV of the i UAV centered at (x;, ;).

The overall objective of the system for maintaining formation amongst UAVs and

serviceable path planning is given as:
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where, ¢ denotes time. T(.,.) is the trajectory alignment reward w.r.t. the guided path (¥)

given by the shortest Manhattan distance from start to critical location. O(.,.) represents

the FoV overlap incentive so that the UAVs learn to maintain end-to-end coverage with

no gaps.  is a scalar incentive given to the multi-UAV model if the sensed cells provide

a serviceable path.

The UAVs have limited flight time due to finite energy that depletes at a constant rate

(similar to the energy model adopted in Chapter 3, section 3.2), given as:

Vit =P — AP (6.3)

where ;" is the energy of u; at time ¢ and At represents the energy depletion per unit
of time. The UAVs are encouraged to follow the guided path only when it is obstacle free
(as constrained by A€). If an obstruction is captured by a UAV, the path is no longer
deemed to be serviceable and the UAVs help in adjusting the WBV trajectory (i.e., the
guided path) by sensing neighbouring regions (see Figure 6.3).

6.3 Proposed Methodology

This section begins with the presentation of the MDP, followed by multi-UAV control
policy and path planning algorithm.
6.3.1 MDP Formulation

The multi-UAV  coverage task is formulated as an MDP tuple <
S, A, Py, R, S0, Sstarts Seritical >, Where S denotes the joint state of the UAVs
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Figure 6.3: Multi-UAV coverage for serviceable path planning (depicted by green
color) w.r.t. to a guided path (depicted by orange color), considering obstacles and
shallow /unserviceable water regions (a cell having a water level of 3ft and less). The
cell value denotes the current water level at that location in feet.

{s" x s"2 x .. x s' ). s o: {u,y¢py} depicts the state of the i" UAV, where
ug, is the cell occupied by u; at time ¢ and ¢ is the cell given by the guide path. a
is the energy level of u; at time ¢t. The joint action of the multi-UAV system and is
given as {a"! x a"? x ... x a*"}. Each UAV’s action a" lies within the feasible action set
A = {yaw" pitch™  hover"} (for more details refer to Chapter4, subsection 4.3.1). Psy
denotes the state transition function and sy describes the starting configuration of the
multi-UAV system. Sgq-+ denotes the start location and Se.icq; Tepresents the critical
location(s) to be reached. sciticar can be a set {11, 72,...7,}, if multiple locations are to

be reached.

6.3.2 Multi-UAV Control Policy

To solve the MDP and achieve autonomous and continuous control of the multi-UAV
system, a Deep RL method is employed, known as Multi-agent Deep Deterministic Policy
Gradient (MADDPG) [60]. It works in a manner where each UAV is controlled by a
separate actor-critic networks, where the actor-network is responsible for providing the
feasible action based on the UAV’s current state and the critic-network validates the
effectiveness of the actions generated by the actor. Also, a set of target actor and critic
networks is used in MADDPG to stabilize training. Critic network of a single UAV (u;)
takes the state and action of each individual UAV ({s%1,a"!, s%2,a"2,...}) at each training
time-step ¢ into consideration to realize a state-action value function Q™ (s;", a;"*) for UAV

u;, given as:
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QW(Sh at) = EatNﬂ'

r
Z’YlRt+l+1|3ta at] (6.4)
1=0

where 0 < v < 1 is the discount factor (used to maintain finite sum over infinite horizon)
and I' denotes the max. time-step. The loss function used to update the critic network in

reference to UAV w; is given as ([60]):

1 . .
Lcritic = E Z (y;:l - QZ(S:Z, a;?,aq]?, L) azn)) (65)
k
y;:z = Rk‘ + VQ/(SZ;I’ aZj_l, aZil, ceey az?f‘l”a:il:ll/(oui) (66)

where p/ denotes the target actor-network. B represents the size of mini-batch used for
training that is sampled from the experience replay buffer and k denotes the iteration (for
more details see [60]). The learning actor network then gets updated using sampled policy
gradient (][60])

An estimate of the shortest path towards the critical location, provided by the guide path,
prompts the UAVs to initially explore that path. The guide path is a line connecting
the start and critical location corresponding to the shortest Manhattan distance between
them, without any knowledge of obstacles present in the environment (the obstacles are
sensed by the UAVs in real-time). The reward function R(.,.) captures the objective of
the system and incentivize the UAVs based on the maintained overlap and their alignment

with the guided trajectory:

Ry(U,F) =Y Ti(u;, A+ > O, v5) + pA° (6.7)
u; €U Vi,V EF
1 .
N egre W AT==1
Ty (s, W) = § iz (6.8)
1 otherwise
where Ty(.,.) denotes the trajectory alignment reward. ¢ is the set denoting

cells/locations covered by the guide path and uf is the cell covered by the UAV w;. N(.,.)
is the distance in terms of the number of cells between ¢ and u§, where the diagonally
adjacent cells are at the distance of v/2 and vertically /horizontally adjacent cells are at
a distance of 1. e denotes a positive scalar to prevent ZeroDivisionError. A€ denoted

whether the cell ¢ is serviceable or not (refer Equation 6.1).

The reward received by the multi-UAV system for maintaining FoV overlap is given by
O¢(vi, vj). As seen in Figure 6.2, if the euclidean distance d(.,.) between the center of the
FoVs of it" and %" UAV is ideal i.e. equal to D or upto allowable threshold AD, a positive
reward is received by the UAVs. Whereas, a larger overlap (i.e. the distance between the
center of the FoVs is less than AD) is observed or if there is a gap in FoVs’ i.e. distance

greater than D, a penalty is incurred by the multi-UAV system, as given in Equation 6.9.
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ﬁ Zf AD < d(vi,vj) < D
O(vi,v5) = ¢ =B x (d(vi,v;) — D) if d(vi,v;) > D (6.9)
—B x ()\D — d(’UZ',’Uj)) if d(vi,vj) <MD

where 8 denotes a positive scalar quantity.

6.3.3 Real Time Path Planning Algorithm

A* is a heuristic algorithm [134] and one of the most widely used algorithms for path
planning in a grid environment. A* determines the optimal path by sequentially expanding
nodes in ascending order of their associated costs. The cost ¢ of each sensed/reached cell
r¢ is generally calculated based on its distance from the start location to critical location,

given as:

q(r€) =v+¢° (6.10)

where v¢ is the heuristic distance (Manhattan distance) of the cell r¢ to the critical
location/cell and g€ is the distance from the start location to the reached cell (r¢) through a
selected sequence of cells. The computing time required by the A* algorithm significantly
relies on the number of nodes expanded. In the standard A* path planning algorithm,
nodes are expanded in the order of their cost ¢¢ (starting from minimum cost), until the
critical location is reached. A* takes a large amount of space to store all possible paths
and a lot of time to find them. This can be computationally very expensive and sometimes
infeasible in environments will large state spaces [135]. Hence, an improved A* algorithm
is proposed, known as, MEA* attaining the minimum number of expanded nodes/cells by

performing a look-ahead into the search space and pruning the cells that are unserviceable.

6.3.4 Minimal Expansion A* (MEA¥)

In MEA* the underlying idea is that the sensed nodes (referred to as explored cells)
that are in the shallow water region are not expanded further and the nodes that are
vertically /horizontally adjacent to obstacles (i.e., an obstacle is present in the region
surrounding that cell) incur a cost/penalty if expanded. Also, the proposed algorithm
works in real-time where the start location changes as WBV moves on the current identified
path and no replanning is done. As, the environment is dynamic and the water level of
the cells changes, a location deemed to be shallow earlier might become serviceable at a
later stage. Such a cell could be visited again if the estimated cost of reaching the critical
location from that location plus the cost of returning to that location is less than the
estimated cost of going forward from the current location.

The cost function for the proposed MEA* is given as:

" () =0 4 g 4 o (6.11)
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a if O°==True
0° =< 00 if he<W (6.12)
0

otherwise

o is an additional cost («) for a node/cell ¢ that is surrounded by an obstacle. The presence
of the obstacle (which is part of the guide path) and the shallow water regions/nodes (that
are unserviceable) are captured by the autonomous UAVs deployed in-front of WBV for
guide path updation to identify a serviceable path. An explored node is different from
an expanded node, where any sensed node/cell by a UAV is said to be explored and if
shallow water or obstacle is observed at that location that node is not expanded further.

The expanded nodes are those that are deemed to be serviceable.

6.4 Experimentation and Results

In this section, the considered experimental settings are discussed, and the performance
of the proposed model MEA*MADDPG over a 2D grid is analyzed. For model
implementation, Chennai city map information is encoded in a grid using the Mapbox
Streets tool. Further, a 2D water layer is overlayed to simulate floods, distinguishing
areas with shallow water (typically the high-elevation regions) and areas with a substantial
volume of accumulated water. During experimentation the shallow water cells are
processed as obstacles i.e., they cannot be a part of a serviceable path.

A team of 4 UAVs (quadrotors) is considered as part of the system during experimentation,
where one of them is tasked to maintain the WBYV in its FoV to provide with start location
and the other three UAVs deployed in front of the WBV for autonomous sensing. The
altitude of the UAVs is fixed at 20 meters above ground for all the UAVs for uniform
resolution images and the UAV camera angle (half angles) is set to 45° [136] which results

2. The Chennai city map having an area of 425 x 10 m?

in an FoV area of 40 x 40 m
results in a grid with 515 x 515 cells where the area of each cell is equal to the FoV of
a UAV. The ideal inter UAV separation distance D is set as 40 meters and the allowable
overlap (AD) is 20 meters (with a value of 0.5 for w) under which the UAVs are prone
to collision. Implementation is done on Google Colab having, Intel(R) Xeon(R) CPU,
1xTesla K80 GPU, 2.30GHz CPU frequency, and 12GB RAM.

The proposed algorithm MEA*MADDPG is compared with with 4 other prevalent
techniques from the literature, namely, RRT (Rapidly Exploring Random Tree) [137],
RRT™* [137] [134], A* [134] and real-time path planning algorithm ERRT [138]. Active
Pre-training [139] is applied to MEA*MADDPG to align the UAVs with the guide path.
In [137], authors provide an analytical review of path planning algorithms, namely, RRT
and RRT* over a simulated environment having obstacles. In [134], authors analyzed
the performance gap between A* and RRT* using a realistic simulator to handle the
dynamic properties of the robot. In [138], authors perform perception-aware pathfinding

for a snake robot in an unknown environment. A modified RRT algorithm known as
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Figure 6.4: Performance comparison between RRT*, RRT, ERRT, A* and
MEA*MADDPG over (a) average run time and (b) average number of expanded cells.

an executive rapidly-exploring random tree (ERRT) is proposed that leverages the lidar
scanning-based real-time mapping for path planning.

The following performance metrics are used to evaluate the proposed model:
e Average run time
e Average number of expanded cells
o Average serviceable path length

The results are observed over 100 episodes with varying initial positions of start and critical

location. The maximum run-time of a single episode is set to 50000 time-steps.

6.4.1 Performance Comparison over Average Run Time

In this experiment, the time required by each algorithm to reach the critical location is
observed under equivalent environmental conditions (including start and critical locations,
obstacle positioning, etc.) Figure 6.4a depicts the average recorded run time (in seconds)
over 100 episodes and as seen, RRT* took approximately 5 times longer as compared to
RRT and even longer as compared to other techniques. RRT performs the second worst
with approximately double the run time as compared to ERRT and A*. As ERRT uses
a waypoint cache and allows each new node to be selected more closely to the target
waypoint (critical location), it performs better than the baseline RRT in terms of run
time. However, A* and MEA*MADDPG significantly improves over the run time of
RRT-based approaches. Such a difference can be intuitively analyzed as RRT and other
similar approaches add new nodes randomly in the search space to find the target/critical
location but have a very low probability of finding a path quickly as the process is
random. Whereas, A* works on the heuristic value of the cell and expands only those
nodes that have the minimum cost to reach the critical location. The proposed approach
MEA*MADDPG further improves over the run time of A* i.e., approx. 1.5 times faster,
as it removes the nodes that are unserviceable from further expansion by foreseeing the

obstacle-bound paths and shallow water paths.
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6.4.2 Performance Comparison over the Average Number of Expanded
Nodes

In this experiment, the number of nodes/cells explored by each algorithm is recorded until
a path to a critical location is identified. A cell that is examined by the algorithm or whose
cost function is calculated is said to be explored and when that cell becomes part of a path
it is said to be expanded. Figure 6.4b depicts the average number of expanded nodes/cells
by each technique. As observed, RRT* and RRT have similar numbers of expanded cells.
ERRT improves on the average number of expanded cells by considering path cost and
selecting cells closer to the critical location/waypoint. However, the path generated by
ERRT is not as optimized as A* due to its random nature. A* performs the second best
in terms of expanded cells and finds the optimal path. MEA*MADDPG further improves
over A* in terms of expanded cells by excluding shallow water and obstacle-surrounded

cells from expansion, resulting in fewer candidate cells.

6.4.3 Performance Comparison over Average Serviceable Path Length

In this experiment, the average serviceable path length observed by each technique before
reaching the critical location from the start location is observed. A serviceable path is a
set of neighbouring cells connected in a sequence from the start to the critical location.
Figure 6.5 depicts the performance comparison of different techniques. As observed, RRT*
is able to achieve a 35% (approx.) shorter path as compared to RRT due to its rewiring
operation selecting the most suitable node in terms of distance. ERRT is also able to
improve over RRT as it prioritizes new nodes to be selected more closely to the critical
location. However, it doesn’t perform well as compared to RRT* and sees an additional
10% increase in the number of nodes in the serviceable path. A* being optimal of them all
is able to discover the shortest path and on average improves upto 60% in terms of path
length as compared to ERRT. MEA*MADDPG also falls short as compared to A* as it
generates a longer serviceable path. Such a performance of A* is justified as it selects the

least cost path after expanding all the possible paths to the critical location that could be

x103
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Figure 6.5:  Performance comparison between RRT*, RRT, ERRT, A* and
MEA*MADDPG over average serviceable path length until the critical location is reached.
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better in terms of cost. But, due to this A* suffers from a worse run-time and number
of expanded nodes as compared to MEA*MADDPG. Since, MEA*MADDPG doesn’t do
path replanning a longer serviceable path is observed by the proposed approach, but at

the same time such an approach is more practical when it comes to real-world deployment.

6.4.4 Performance Comparison in Moving Obstacle Environment

In this experiment we address the problem of path planning when the environment has
non-stationary obstacles. Specifically, in scenarios like flooding, abundant debris such as
submerged and non-stationary objects like trees, cars, and light poles that can impede
the movement of WBVs are present. To mitigate potential obstacles, the deployed UAVs
conduct area coverage and sensing around the WBYV. Following this aerial assessment,
the path planning algorithm guides the WBV away from these detected obstacles,
ensuring a safer and obstacle-free trajectory. Multiple configurations of the system are
evaluated by changing the location of the WBV and the critical region to compare the
performance of different algorithms. Figure 6.6 depicts a similar performance achieved
by MEA*MADDPG outperforming other algorithms in case of run time and number of

expanded nodes. This performance is attributed to the minimum node expansion strategy
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Figure 6.6: Comparative analysis in a non-stationary obstacle environment, evaluating
the performance of RRT, RRT*, ERRT, A*, and MEA*MADDPG across (a) average run
time, (b) average count of expanded cells, and (c) average serviceable path length until
reaching the crucial location. Two different configurations are considered: (a,b,c) Start
location at (5,5) and Goal location at (21,27), and (d,e,f) Start location at (19,4) and Goal
location at (12,10), in a 30x30 grid.
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Figure 6.7: Impact of varying number of UAVs on (a) average run time of MEA*MADDPG
and (b) average accumulated rewards by the multi-UAV system.

in MEA*MADDPG that prunes the unserviceable nodes to quickly identify a serviceable
path to the critical location for the WBV. However, MEA*MADDPG exhibits a longer
path, as also observed in case of stationary obstacles (refer to Figure 6.5). This behavior is
justified as MEA*MADDPG operates in real-time, without performing replanning, which
makes more sense when it comes to practical deployment of the path planning system in

flood scenarios.

6.4.5 Varying Number of UAVs

In this experiment, the impact of varying number of UAVs on the run time and average
rewards of MEA*MADDPG is observed. Figure 6.7a depicts the impact of scaling the
number of UAVs on the model’s run time. As observed, a sharp decrease in run-time is
observed till the system is scaled to 10 UAVs, however, on further increase in the number of
UAVs the run time seems to converge. The initial drop in run-time is easily understandable
as with more UAVs the system is able to observe a larger region simultaneously which
helps in realizing a serviceable path while avoiding foreseen obstacles in a brisk manner.
The impact of scalability (in terms of the number of UAVs) is also analyzed w.r.t. the
multi-UAV system reward in reference to Equation 6.7. Figure 6.7b depicts the change in
average accumulated rewards as the number of UAVs are increased in the system in the
range [1-20]. The multi-UAV model seems to suffer from penalties as it sees a continuous
dip in rewards. This reflects on how the reward function is formulated. The UAV(s) are
encouraged to align with the guide path but with the increase in the number of UAVs, the
system suffers from overlapping incurred penalties. This suggests a maximum limit on the
number of UAVs that should be included in the system to achieve optimal performance.
With more UAVs, the system as a whole sees stacked incentives from optimal alignment
but fails to manage the desired overlap. A reward lower than 70 is noted as poor in
the current setting. As a result, a system of upto 18 UAVs is acceptable for end-to-end

serviceable path planning in the considered scenario.
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6.5 Chapter Summary

In this chapter, an automated path-finding method is introduced utilizing UAVs to assist
WBVs in reaching critical regions during floods. The proposed algorithm MEA*MADDPG
coordinates UAVs in an interleaved formation to identify serviceable regions devoid of
obstacles or shallow waters, optimizing movement for WBVs. Initially, the algorithm
conserves UAV energy by following a guide path and surveys adjacent regions if the current
path is unserviceable. Comparative evaluations highlight the algorithm’s efficacy and
efficiency in swiftly generating real-time serviceable paths as compared to other prevalent
techniques in the literature. Further extending the application scope, the problem of
tracking a moving convoy using multiple autonomous UAVs is discussed in the next

chapter.

. mm*mm .
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7| Autonomous Multi-UAV Control for
Moving Convoy Tracking

In this chapter, the problem of tracking a moving convoy of vehicles using autonomous
UAVs is addressed. For the end-to-end coverage and tracking of the convoy, algorithms
that can operate in continuous state and action spaces are required. Actor-critic methods
[19] in reinforcement learning are well-suited to handle such continuous domain problems.
Hence, for this tracking application, the Multi-Agent Deep Deterministic Policy Gradient
(MADDPG) [60] algorithm is employed to enable the UAVs to maintain the moving convoy
in their joint Field-of-View (FoV). However, the networks in MADDPG are randomly
initialized which leads to delayed convergence and require a substantial number of samples
[40] to train. The poorly defined target functions also introduce overestimation bias in
the policy, causing the policy to diverge [34]. To tackle this effectively, a novel target
value function estimator is proposed leveraging the observed information, i.e., the convoy’s
current trajectory or traveled path. This observed data is used to compute the covariance
matrix of a Gaussian process regression (GPR) model [140]. This GPR model is then
used as the target critic in the MADDPG model. Further, the complexity of the convoy
trajectories is encoded in the kernel function of the GPR to keep the value estimates within
bounds. In addition to this, the reward function is formulated based on the tracking and
overlapping incentives derived from the positions of the UAVs and the convoy. This helps
the UAVs to keep the vehicles of the convoy near the center of their FoVs resulting in
higher coverage (assuming each UAV is tasked to track a single vehicle of the convoy).
The proposed approach is evaluated over different road trajectories with varying degrees
of complexity. Further, the model is also tested using Gazebo [55] simulator that has a
real-world physics engine.

The rest of the chapter is organized as follows. section 7.1 presents the overall system
description along with the system’s objective. In section 7.2, the proposed GPR-MADDPG
algorithm is discussed, highlighting overestimation bias problem, GPR modelling and
kernel function. section 7.3 discusses the experiments and results. Finally, in section 7.4,

a concise summary of the chapter is provided.

7.1 System Model

In the system model, a group of n UAVs U = {u;|i € {1,2,...,n}} is considered tasked
to track a convoy of vehicles moving on the ground (for simplicity an equal number of
UAVs and vehicles are considered, although the number of vehicles can be larger). Each
UAV is tasked to track a single vehicle of the convoy and try to keep it at the center
of its FoV. The joint FoV of all the UAVs is given by the set F' = {v;|li € {1,2,....n}},

where, v; = (2y,, yu,) denoting the center of the FoV. The overall objective of the system



84 Chapter 7. Autonomous Multi-UAV Control for Moving Convoy Tracking

observable
gap

E overlap 1 i
(Xg,,Vr) ' Vo : J

O Fov) ) A FoV(v))

™o

observable |

' ;0”:«. H i
E) o 3) E=5770 0, 0, ) G 1) @ 0ij »O(x,,. 7))

«=5.2d="— 474
— FoV(v,) 2d FoV(v))
2d

(a) (b) ©

Figure 7.1: Overlapping of FoVs for a pair of UAVs (u;,u;) (a) Optimal case of Overlap
(b) Overlap beyond given threshold (c¢) Disjoint FoVs with no overlap.

is to keep track of the convoy with each individual UAV tracking a particular vehicle 7;
(T'={mli € {1,2,...,n}}) within its FoV, ideally at its center. The overall objective of

the system is given as:

Y Tu(m F)+ > Oulvivy) (7.1)

t= 7EeT v, v EFi#]

[e.9]
max

0
where t is the time. Ty(.,.) represents the incentive associated with tracking error based
on the UAV’s position and the relative position of the vehicle it is tracking and O(.,.)

represents the overlapping incentive conditioned on the maximum allowable overlap.

1 .
min d(mo)Fd if Le(ri) =1
Ty (75, F) = 4 e 7 (7.2)

—e otherwise

where e,d’ are positive scalar quantities. min d(7;,v;) finds the distance from the 2D
projected position of the UAV to the vehicle being tracked (d’ is a small positive scalar to
avoid ZeroDivisionError). 1;(7;) is an indicator function which denotes whether the target
vehicle 7; is present in the joint FoV or not. The multi-UAV system obtains incentives
corresponding to the degree to which the UAV is perpendicularly aligned with the target
along with end-to-end coverage of the whole convoy. If the altitude of the UAV is H
meters, the FoV of the UAV is (2h x tan(07))(2h x tan(f2)) m? w.r.t UAV angles (as seen
in Figure 7.1(a)). A fixed altitude for all the UAVs is considered for equal resolution of
the joint FoV.

Let the center of FoV for u; be (zu,,y.,;) and for u; as (v, y.;) where, (x,y) denotes
the coordinates of the 2D projected position of the UAV. As the UAVs follow an ordered
formation, the i*» UAV has an overlap of FoVs with the (i + l)th UAV. In the ideal case
with edge-to-edge FoV coverage without any gaps the overlapping distance between u; and
u;j (where j =i+ 1) is 0; ; = 2d (see Figure 7.1(a)) where, o, ; is the euclidean distance
between the center of the FoV’s (or the 2D projected positions) of u; and u;. However,

as the environment is noisy, some threshold overlap (6.2d) is allowed (refer Equation 7.3).
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Beyond the threshold, as shown in Figure 7.1(b), the overlapping incentive is reduced
according to Equation 7.3 second condition. Figure 7.1(c) shows the case of disjoint FoVs.
In this case, the non-overlapping distance between the FoVs (v;, v;) is calculated and the

overlapping incentive is reduced according to Equation 7.3 third condition.

c if 6.2d < o§7i+1 < 2d
O (vi,vj) = § —c x g(8.2d — 0} ;4 1) if 0f<d.2d (7.3)
—c X g(of;i_Irl —2d) if OZ?J_H > 2d

In the above equation, ¢ and § are positive scalars. The value of § lies between (0,1). 2d
is the ideal distance between two FoVs with no gaps. Function g(.) is used to scale down
the value between [0,1] for mathematical simplification. A target (vehicle) 7; is said to be

tracked by the UAV wu; (as seen in Figure 7.1(a)), if the following conditions are satisfied:

Ty, — h x tan(01) < zr; < @y, +h X tan(0r) (7.4)
Yu; — h X tan(02) < yr; < yu, + h x tan(02) '

where, (7r,,y,;) are the coordinates of the vehicle 7; being tracked in u;’s FoV. In the
event of a collision between the UAVs at any point in time, the episode is terminated, and

a new one begins.

7.2 Proposed Methodology

In this section, the discussion centers on the proposed solution for multi-UAV based convoy
tracking, emphasizing the target value function approximation achieved using GPR-based

target critic.

7.2.1 MDP Formulation

A Multi-agent Reinforcement Learning (MARL) model is described by a Markov Decision
Process (MDP) quintuple < S, A, Psy, R, s9p >, where S is the joint state space of the
n UAVs: {s1 X s9,..... X Sp}, where s; denotes the location of UAV wu; and the relative
location of the vehicle it is tracking [y, , Yu,, T+, Yr,] (value of (z,,,y,,) may be unavailable
based on whether the vehicle is present in the FoV of u; or not). a; denotes the joint
action of the UAVs: {a; X ag, ..... X an} at time t, where a; belongs to a feasible action set
A : [yaw;, pitch;]. Psy denotes the model of the environment. R is the reward function
and sg denotes the starting configuration of the UAVs.

In this work, the objective is to learn a joint policy in order to maximize the cumulative
rewards received by the multi-UAV system in the long run. Policy w(s;) provides the
actions for all the UAVs present in the common state-space at any given time ¢. Further, for

a given policy (7) a state-action value function Q™ (s, a;) defines the long-term desirability
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of a state-action pair given as:

Qﬂ-(sh at) = Eatww

Z Y Ryyiqst, at] (7.5)

=0
where 0 < v < 1 is the discount factor.

The reward function R(.,.) is formulated based on the system’s objective (Equation 7.1),

given as:

R(T,F) =Y _L(r,F) + >  Ovi,vy)) (7.6)

€T Ui,U]'EF,’L';éj

The value function Q(s,a) represents the expected return of all the future rewards from
a given state-action configuration. Function approximation methods in Deep RL work by
updating this value function with an exploration-exploitation trade-off [141] to learn an
optimal policy. The motivation behind proposing GPR based target for value function
approximation is to generalize the value function over the state-action space based on the
observed data and maintain the estimates within bounds. The GPR approximation is

implemented individually for each of the UAVs within the system.

7.2.2 GPR modelling

GPR works as a function approximation technique that provides us with a continuous
estimate of the value function along with the variance over these estimates. GPR
technique has earlier been adopted to learn continuous state-action value function in
SARSA()N) (see Engel et al. [142]). GPR has also been applied previously along with
dynamic programming to provide value function estimates over unobserved locations (see
Deisenroth et al. [143]). In the GPR model, a prior is placed directly over the value

function and conditioned on observations (state-action pairs) to provide Q-value estimates.

In the considered scenario, the observed state-action pairs are denoted as M; = [m;]f_ L
where, m; = [s;,a;] and t is the time-step upto which observations have been made.
[ limits the number of previous time-steps considered for formulating the covariance
matrix. Hence, for a new input my 1 = [si41,ai41], the target Q-value (Qupp(t+1))
is the estimated GPR mean calculated using kernel function (k), covariance matrix
C = C(My, My) and additive white noise A'(0,c2).

Qupr(t+1) = Clmesr, My)[C(My, My) + 021) " Z

Z = [Qapr()]i_,

The kernel function using an alignment parameter (oy,) is given as:”



Chapter 7.  Autonomous Multi-UAV Control for Moving Convoy Tracking 87

k(mg, mi1) = exp <_Hmt - mt+1H2) X ap

my X Mi41
ap:1/1><<

[l | < fmgga]

(7.8)

where 1) is a positive scalar in range (0,1]. «p, is the alignment incentive based on the
angle between the observed point at time ¢ and the current input at time ¢t + 1. The
underlying idea behind the proposed GPR is that the state-action configurations that are
closer to each other with less angular deviation have similar Q-values. This intuition is
derived based on the underlying application of tracking the moving convoy. The mean
Q-value from the GPR model is then used as the target to calculate the critic’s loss. This
mean Q-value is scaled using the alignment parameter «;, based on the alignment of the

new inputs with respect to the previously observed points.

Overestimation Bias

The existence of overestimation bias is due to function approximation errors in actor-critic
methods as the policy is updated w.r.t. an approximate critic [34]. The actor-network
is updated based on the state-action value estimated by this critic network resulting in
sub-optimal policies. The critic network parameters are updated using the gradients from
a biased target that can be noisy. Sometimes these noisy and biased estimates overshoot
the true target value (E[Qg(s,a)] > E[Q7(s,a)]). Hence, the model keeps on trying to
maximize over a false estimate. This overestimation develops into a more prominent bias
over many iterations if left unnoticed. The alignment parameter () regulates the Q-value
estimates within bounds when high uncertainty in the convoy trajectory is observed. As
the MADDPG model suffers from overestimation bias in the Q-value estimates [34], the
scaling of the Q-value estimates using the alignment parameter helps to improve the model

by limiting the extent of overestimation bias.

7.2.3 The Proposed GPR-MADDPG Model

The GPR model is suited for the tracking application as the kernel function of the GPR
is adapted using the tacking incentive based on the convoy movement. This tracking
incentive can be intuitively seen as a function that is normally distributed along the
state-action space. Thus, we can find the continuous estimate of target Q-values in the
state-action space by using this incentive as a measure in the kernel function of GPR. Thus,
in the proposed algorithm GPR-MADDPG, the GPR is used as a target value function
approximator for the MADDPG model to learn the UAV policy 7(s;). Figure 7.2 shows
the overall architecture of the GPR-MADDPG model, and as illustrated, each UAV has
an actor and critic network along with a GPR target value estimator. The output of GPR

is used to calculate the critic’s loss for training the critic network.
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Figure 7.2: Illustration of GPR-MADDPG architecture.

The loss function used to update the critic network is given as:
1
Leritic = B ;(yt — Q(s51,:09))? (7.9)
where 09 are the parameters of the learning critic network and B is mini-batch size.

e = R+ vQepr(sir1, 1 (s01]60")) (7.10)

where y/ represents the target actor network. Unlike the MADDPG algorithm, the
proposed model updates the critic network parameters based on GPR estimated target

Q-values(Qgpp)-

The learning actor network then gets updated using sampled policy gradient:

1 i
Vord ~ BZ:VGQ(S’an)|5—8t7a—ﬂ(5t)v9wu($’0 )|St (711)

The proposed GPR-MADDPG algorithm is given in algorithm 4. As depicted, the
system-related hyperparameters such as the number of target vehicles (n), UAV altitude
(H), value of , number of time-steps I', etc., are initialized. Further, at each time-step
t within an episode the joint action A; is executed by the UAVs based on their joint
state S;. Next, the reward received by the UAVs and their next state as perceived from
the environment is observed. Tuple (S, A¢, Ry, Si+1) is stored in the replay buffer Z.

After initial exploration and experience gathering, the multi-UAV model is now trained
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using the proposed GPR-MADDPG algorithm. Random mini-batches of experiences is
extracted from the buffer and used to realize the target Q-value Q¢ pg(.,.) based on state
si+1 and the action received from target actor p’ (stHW‘/). Next, critic loss is calculated
using the learning critic Q-value Q(s;, a;|6%) and target value y;, where y; calculated using
current reward R; and target critic Q-value as given by Equation 7.9 and Equation 7.10.
To learn the optimal policy the learning actor weights are updated in the direction of the
gradient, as given in Equation 7.11.

The computation cost of the GPR-MADDPG algorithm as seen from the algorithm is
O(E xT' % S), where E is the number of episodes, I" is the max_ time_ step of each episode

and S denotes the number of states at any given time-step.

7.2.4 GPR-MADDPG Convergence

As the actor-critic model [144] is gradient-based, in practicality, it’s difficult for such
models (i.e., GPR-MADDPG in this case) to attain a global optimal policy, but for
GPR-MADDPG model to converge, the L¢c should be under the desired threshold

and should not increase as the number of episodes tends to infinity.

1. At any given time(t), the Q-value given by current policy (Q™) is some approximation
of optimal Q-value (Q*).

2. The current approximation us updated in a greedy manner to reduce d(7;,v;) Vi €
TVjekF.

Q (sta1s 1" (511 10°)) = Q7 (st 1/ ()] < 1Q (5141, 1 (504116"))—

(7.12)
Q™ (st pu(9)))|

where, 7’ is the improved approximation of previous policy 7 for a given state s [19].

But, the knowledge of Q* is not available, so the model uses the approximated Q value

estimated from the GPR target. In reference to the Equation 7.8:

k(myg, miy1) = exp (_Hmt - mt+1|‘2) X

my X My41
apzwx(

[l | < flrmega]

The covariance matrix (C') produced by applying the kernel function on the observed pairs
will specify the statistical relationship between them. The optimal Q value (Q*) will be
given by the policy that achieves the highest global reward (R) possible and in ideal terms

would be achieved at the position, where:

d(Ti,Uj) =0 (713)
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In reference to Equation 7.6:

Re=) L(mF)+ Y  Odviv)

€T Ui,UjGF,i#j

In reference to Equation 7.2:

1 .
Tmin Al - LAd! Zf ]-t(T‘) — 1
Ii(1;, F) = v eF d(7iv5)+d !

—e otherwise

At, d(m,v;) =0, we have m; = my41,
At, my = my41, the kernel function gives output as 1 (the maximum correlation that

could be achieved).

So at optimality,

Qtpr(str1, 1 (5141]0"7)) = Q* (se41, 1 (5¢4110"7)) (7.14)

Having the updated policy (7’), such that:

d(ti, Uj)m < d(ti, Uj)ﬂ-

, , , (7.15)
— QGpr(str1, 1(se4110")) < QGpr(ser1, 1 (se11[07))

That implies,

Qe pr(5t+1, 17 (5e0110M)) — Q™ (50, 1/(5))] < |QEpR(S141, 1™ (5:4110"7)) — (7.16)
Q™ (st, 1u(s))]
And,
as t — o0

(7.17)

t ’ * *
QEpr(5t11, 1 (5:41]0")) = QEpr(sey1, 1 (514110 ))

7.2.5 Assumptions and Limitations

In the proposed approach the focus on maintaining a single vehicle at the center of the FoV
of each UAV, however, this can be easily extended to scenarios involving multiple vehicles
within each FoV by adapting the reward function to multiple vehicles. Is it assumed that
the environment is markovian that follows a stationary distribution. This assumption is
a necessary condition for the convergence of the UAVS’ policies. The critic networks have
access to the joint observations comprising the states and actions of every UAV during
training (as in the case of standard MADDPG algorithm [60]). This helps in addressing the
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Algorithm 4: GPR-MADDPG algorithm

1 Input: Number of moving vehicles (n), UAV altitude (H), v, T’
2 for episode=1,2,... do

3 Initialise the state of the target vehicles in the center of the FoV of the
assigned UAVs

4 Set time(t)=0

5 while t < T do

6 Observe joint state S (refer subsection 7.2.1)

7 For each agent i, select an action a; w.r.t. current policy 7

8 Execute joint action A; : {a1 X ag, ..... X an}

9 Observe joint Reward R and next state of each agent Syy1 (refer

subsection 7.2.1)

10 Append replay buffer Z < (Sy, ar, Ry, Si+1)

11 St — St+1

12 for each agent do

13 Sample a random mini-batch of B samples (Sk, ax, R, Sk+1) from Z
14 Set yr, = Ri + Q% pp(Ski1, 1/ (Skt1/60%)) (given by Equation 7.10)
15 Update critic by minimizing the loss (given by Equation 7.9):

16

Lcritic = ;;(yk - Q(Skyaka))Q
17 Update actor network using the sampled policy gradient (given by
Equation 7.11):
18
Vord % 55 3 Va@(5,al69) g amr(sn) Vor (5167,
k

19 end

20 Update joint policy 7
21 end
22 end
23 return Updated joint policy =

non-stationarity w.r.t. to multiple UAVs. The altitude of the UAVs is fixed at H so that
the FoV images can be easily stitched together with same ground resolution. The system
model does not account for the energy levels of the UAVs. As a result, the assumption is

made that the UAVS’ batteries are replaced and managed at the ground control station.

7.3 Experimentation and Results

In this section, the performance of the proposed GPR-MADDPG algorithm is compared
with various baseline approaches,namely MADDPG [60], MA-A2C [145] and MA-A3C
[146]. The adaption of MA-A2C and MA-A3C algorithms is in reference to the cited
literature, where a centralised critic is applied conditioned on the state (i.e., shared by
all the UAVs) of the environment rather than the individual history of observations.
Additionally, the scalability of GPR-MADDPG concerning the number of UAVs in the
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Figure 7.3: Real-world road networks, where, the green marker represents the start of the
convoy course and the red marker represents the end. The white dotted line is denoting
the path taken by the convoy (nodes in orange, pink and blue represent the 3 vehicles of
the moving convoy). (a) Straight track with 90° turns (b) Curved track (c) Switchback
track.

system is also addressed. GPR-MADDPG is also compared with three recent techniques
from literature viz. Meta-TD3 [79], TF-DQN [80] and A* [147] that are proposed for UAV
based object tracking applications. Three distinct road networks are selected, namely,
Straight track with right angle turns (Figure 7.3(a)), Curved track ( Figure 7.3(b)) and
Switchback track ( Figure 7.3(c)). There are two variants of convoy movement opted, viz.
Constant velocity convoy and Varying velocity convoy. Three vehicles in the convoy are
considered while performing the experiments with the scalability experiment performed
separately.

In all the experiments, the actor network learning rate is set to le~% and the critic network
learning rate to le™3 [32]. Each episode runs for 1000 steps. FoV overlap parameter (4)
is set to 0.75. The maximum velocity for UAV is set as 40 km/hr [148] and the rate of
change of velocity is set to 2m/s?. For simulating the environment, OSRM tool [54] is
used to collect latitude-longitude coordinates for varied road tracks over which the convoy
movement is tracked. Dataset used can be found in the given GitHub repository '. Results
are observed over 5 different random seeds and their average is highlighted in the plots to

analyze the statistical significance of the proposed model and its generalization ability.

7.3.1 Convoy Travelling at Constant Velocity

In this experiment, the speed of the convoy is set to 35 km/hr. Figure 7.4(a), Figure 7.4(b)
and Figure 7.4(c) plot the average rewards per episode for the considered tracks. These
plots compare the performance of GPR-MADDPG against MA-A2C, MA-A3C and
MADDPG. As can be observed in these figures, the proposed GPR-MADDPG model
outperforms all other baseline approaches on all three different tracks used in the
experimentation. It can be noted from Figure 7.4, MA-A3C and MA-A2C have almost
similar performance with not much improvement in rewards over the period of 10000
episodes. Both these algorithms are very sensitive to small changes in hyperparameters and
difficult to train in highly dynamic and continuous environments. Looking at MADDPG
and GPR-MADDPG, both are able to learn and improve as episodes go by but higher

"https://github.com/Armaan-Garg/Dataset-GPR-MADDPG



Chapter 7.  Autonomous Multi-UAV Control for Moving Convoy Tracking 93

140| __ GprmapDPG 1200 Germaoorc
—— MADDPG —— MADDPG
100 | — ma-A2C 80 | — wma-a2c
“~ MA-A3C )
T 60 T 40
S 3
20 S 0
< &
20 -40
-60 ' -80
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Episodes Episodes
(a) (b)
100 ___ Gpr-mapore
—— MADDPG
50| — ma-A2c
“ MA-A3C
T o
S
§ 50 A
& " ‘;_‘«;,,.W‘l“,“,m J!'le M ¥ |
-100 TR “'H ‘H'i' " "7{
150 \

0 2000 4000 6000 8000 10000
Episodes

()

Figure 7.4: Performance comparison of GPR-MADDPG, MADDPG, MA-A2C and
MA-A3C methods corresponding to (a) Straight track (b) Curved track (c) Switchback
track, where the convoy is travelling at constant velocity.

fluctuation in rewards is observed in the case of MADDPG relative to GPR-MADDPG.
This corresponds to the fact that utilizing the proposed kernel function in GPR-MADDPG
limits fluctuations, by avoiding the overestimation of Q-values and facilitating the learning
of a more stable policy.

The complexity of the tracks can be deduced from Figure 7.4, as in the case of the curved
track there is almost 15 percent drop in observed rewards as compared to the straight
line track. These rewards further diminish by approximately 15 percent in the case of
switchback track. Higher fluctuation in the case of curved and switchback tracks indicates
a relatively unstable policy as to the one learnt in the case of straight-line track. One of
the key differences between the results for curved and switchback tracks is that in the case
of switchback there is no significant improvement in results almost halfway through the
total episodes. A rise in rewards is observed only after 6000 episodes. Also, a very low

rise in rewards is observed contrary to the linear rise in the case of curved track.

7.3.2 Convoy Travelling at Varying Velocity

This section presents the results gathered from the experiment where the speed of the
vehicles in the convoy is varied in the range of 5 km/hr to 35 km/hr. In addition,
pre-assigned vehicle stops (randomly generated) were introduced along the path to further
test the robustness of the proposed model. The plots in Figure 7.5 depict the results
corresponding to the three tracks explained earlier. A significant drop in the performance

of all the algorithms can be observed in the results due to the additional complexity



94 Chapter 7. Autonomous Multi-UAV Control for Moving Convoy Tracking

120 100

—— GPR-MADDPG —— GPR-MADDPG
—— MADDPG —— MADDPG
80| — ma-A2C 50| — ma-a2c
e MA-A3C .
T 40 T o
S S
“Sﬁ 0 % 50
< i & -
-40 L R -100
-80 i ! , -150 PRI !
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Episodes Episodes
(a) (b)

—— GPR-MADDPG

Rewards

-240

0 2000 4000 6000 8000 10000
Episodes

()

Figure 7.5: Performance comparison of GPR-MADDPG, MADDPG, MA-A2C and
MA-A3C methods corresponding to (a) Straight track (b) Curved track (c) Switchback
track, where the convoy is travelling at varying velocity.

of varying velocity of vehicles. MA-A2C seems to perform better than MA-A3C and is
equivalent to MADDPG to some degree. MA-A3C consists of UAVs that interact with a
different copy of the environment in parallel for better exploration, but in this scenario,
it just hinders with the overall performance of the multi-UAV system as it performs
the worst. All the algorithms show higher fluctuation in overall rewards depicting the
complexity of tracking in varying velocity environments. However, as can be noted, the
proposed GPR-MADDPG still outperforms the baseline approaches, demonstrating a more
effectively trained policy for the UAVs. This can be attributed to the fact that the GPR
based model is able to improve the actor-network by using appropriate target values and
limits the negative rewards in the long run. GPR-MADDPG shows fluctuations relative to
MADDPG (especially in the case of switchback track) highlighting the extreme difficulty

in tracking the convoy for the multi-UAV system in such conditions.

7.3.3 Convoy Travelling on Multi-lane Track at Varying Velocity

In this experiment, the multi-UAV based tracking is subjected to a different formation
of convoy where vehicles are travelling in multiple lanes in 3x3 formation (Figure 7.6(a))
at a varying velocity between 5 - 35 km/hr. The management of FoV overlaps is more
crucial in this particular setting and could incur higher negative rewards. The plot in
Figure 7.6(b)) depicts the cumulative rewards accumulated by various models. As can be
seen, the proposed model performs significantly well as compared to other techniques in
this multi-lane setting. The better performance of the proposed GPR-MADDPG model
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Figure 7.6: (a) Real-world road network of multi-lane track (b) Performance comparison
of GPR-MADDPG, MADDPG, MA-A3C and MA-A2C methods over a multi-lane track.

can be attributed to the modelling of tracking and overlap objectives using the kernel
function and reward function. This encoding of the specific attributes of the tracking
application into the Q-value estimates results in its good performance. A similar trend in
performance is observed with GPR-MADDPG performing the best followed by MADDPG.
MA-A2C and MA-A3C perform almost equivalently with MA-A2C outperforming the
latter in a few episodes. The accumulated rewards are almost similar to the one where
targets are travelling on a curved track with varying velocity, but in this scenario, there

is a lower overall reward due to a larger number of overlaps between UAVs.

7.3.4 Unknown Test Trajectory

To test the policy generated by the GPR-MADDPG over unseen trajectories, a test
trajectory is selected with a route length of 100 km (Figure 7.7(a)). The convoy is travelling
at a varying velocity between 5 - 35 km/hr. The models in this experiment do not learn or
update their policy, instead, the policies learnt in the case of switchback track with varying
velocity is used to track the convoy over this entire stretch. The observed rewards over a
single episode is reported. This experiment evaluates the robustness of the learnt policies
over a longer duration while covering any form of track that the convoy might observe in
the real-world. As can be observed from the plot in Figure 7.7(b), the policy learnt using
GPR-MADDPG produces better rewards over the long route followed by the performance
of the MADDPG model. This experiment shows that the proposed model is able to tackle
any form of track with relative ease as compared to other baseline approaches. This type of
track poses different challenges corresponding to the road structure over which the target
vehicles are travelling. An accumulation of positive rewards in case of all the different
models highlights the effectiveness of Deep RL based techniques w.r.t. autonomous robots

in unknown environments.

7.3.5 Comparison with State-of-the-art Models

In this section, the proposed GPR-MADDPG algorithm is compared with three recent
algorithms from the literature namely Meta-TD3 [79], TF-DQN [80] and A* [147]. In
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Figure 7.7: (a) Real-world road network of 100 km stretch (Test trajectory) (b)
Performance comparison of GPR-MADDPG, MADDPG, MA-A3C and MA-A2C methods
over the test trajectory. (¢) Performance comparison between GPR-MADDPG,
Meta-TD3, TF-DQN and A* over a 100 km stretch.

[79], the authors have proposed an algorithm that enables the optimization of the initial
parameters of a MARL model to improve generalization ability in uncertain environments.
To adapt this method to the current setting the learnt Meta-TD3 policy is trained on each
track, straight track, curved track and switchback track (in this particular order) and
the experience gained while training over the straight track is carried over as part of
the replay buffer when training over the curved track and similarly when training next
on the switchback track. Another algorithm viz. TF-DQN [80] is a Deep Q-Network
based approach to persistently track a dynamic target using UAV along with obstacle
avoidance. This technique is adopted as such with each UAV using individual TF-DQN
algorithm running at their end, but the action space is discretized by considering the yaw
and pitch action values in the range [-1,1,0.1], where 0.1 step denotes 18-degree (approx.)
angle shift. GPR-MADDPG and TF-DQN utilize their policies learnt over the switchback
track. Additionally, selecting a heuristic-based approach from the literature [147] acts as
a baseline for other Deep RL based algorithms. The A* search algorithm calculates the
cost of all the next positions that may be reached from the current position using the cost
function (this function is calculated based on the objective function given in this chapter)
and adds the least cost position to the trajectory. Based on the current state and speed of
the UAV and using discretized action space as in TF-DQN, the possible next positions are

identified. In such a manner the A* is adopted and implemented for comparison. Also,
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each UAV runs a separate A* algorithm at their end.

All three algorithms are compared under identical environmental settings. In this
experiment, the test trajectory is used to evaluate the algorithms. Results in Figure 7.7(c)
depict the average rewards over 10000 episodes attained by each model. A similar level of
performance is observed in the case of TF-DQN and Meta-TD3 in terms of rewards with
Meta-TD3 slightly outperforming the TF-DQN based model. GPR-MADDPG performs
the best, outperforming both Meta-TD3 and TF-DQN throughout the episodes. GPR
based target helps to gain better rewards in earlier episodes itself on which the model is able
to build in later episodes. This shows the robustness of GPR-MADDPG which significantly
improves the performance of the learnt policy via a GPR based target for estimating better
target values of the critic and limiting the fluctuations in the rewards with the help of a
well-designed kernel function. TF-DQN shows the highest fluctuations in rewards depicting
an unstable policy learnt using TF-DQN. Still, both TF-DQN and Meta-TD3 are able
to gain higher rewards as episodes go by and are able to improve to some degree. A*
based approach performs the worst in comparison to the Deep RL methods highlighting
the difficulty in learning autonomous controls for UAVs in dynamic environments. The
heuristic-based approach is not able to adapt to the changing environment and falls short
of performing equivalent to function approximation techniques of Deep RL and also sees

the highest fluctuation in rewards, depicting unstable policy.

7.3.6 Varying Number of UAVs

To explore the scalability of the proposed model, the number of UAVs in the system are
varied for this experiment. All three tracks of convoy movement (straight, curved and
switchback tracks) are considered for this experiment along with both variants of convoy
movement behaviour. The plot in Figure 7.8(a) shows the average accumulated rewards
(over 10000 episodes) with varying number of UAVs. As can be seen, for the straight track,
the proposed model maintains quite a similar level of performance even with the increasing
number of UAVs, however, there is a noticeable drop in the average accumulated rewards
with the increase in the number of UAVs in case of curved track. A significant drop in
rewards can be observed in the case of switchback track with increasing number of UAVs.
This degradation in the cumulative rewards of the UAVs is due to high instability in FoV
overlap due to the complexity of the curved and switchback track. The complexity of the
track plays a critical role in the performance of the model, especially with the increasing
number of UAVs. Still, with 14 UAVs the proposed model is able to gain positive rewards
highlighting the effectiveness of the proposed model in performing cooperative tasks in

complex environments with real-time tracking.

7.3.7 Impact of an RL Hyperparameter v on Performance

In this experiment, the performance of the proposed GPR-MADDPG algorithm is observed
while varying the discount factor . As the discount factor () is one of the key RL

specific hyperparameter that affects the policy learning process, sensitivity analysis for
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Figure 7.8: (a) Performance of GPR-MADDPG corresponding to the varying number of
UAVs. (b) Sensitivity analysis for hyperparameter v and its impact on GPR-MADDPG’s
performance. (c) Percentage FoV overlap among the UAVs corresponding to various
methods.

v is performed in this experiment. Figure 7.8(b) depicts the rewards accumulated by
GPR-MADDPG with varying values of v during training for all the three categories of
road networks (values of « lower than 0.6 has not been presented as the model performs
sub-optimally for lower values of 7 and the policy never converges). As can be seen,
different values of + have varying impact on the performance of GPR-MADDPG on
different tracks. For the straight track, variation in +’s value doesn’t affect the policy
learning of GPR-MADDPG to a great extent. GPR-MADDPG sees almost similar
performance (in terms of reward accumulation) in the case of a lower value of v (close
to 0.6) as when the value of v is set close to 1. However, this is not true in the case
of curved and switchback tracks. In the case of the curved track, the value of ~ close
to 0.8 is preferable, highlighting that GPR-MADDPG performance depends significantly
on immediate rewards and not alone on long-term rewards. The proposed model achieves
optimal learning when both immediate and long-term rewards are weighed during training.
In the case of switchback track, the proposed model heavily relies on immediate rewards as
it prefers the value of v close to 0.7. This is due to the fact that in the case of switchback
track there is relatively higher uncertainty in the convoy’s trajectory as compared to
straight and curved tracks. Value of v around 0.8 seems to be a good trade-off for

maintaining the optimal performance of the proposed approach on all different tracks.
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7.3.8 Error in joint FoV Overlap

Further comparison involves examining the error in the overlap of FoVs generated by
GPR-MADDPG and baseline algorithms over the considered tracks and both variants of
convoy movement. An error in overlap is recorded whenever the FoVs of UAVs goes out
of bound. Average symmetric Mean Absolute Percentage Error (sM APE) is calculated
for comparing the errors in FoVs’ overlaps. sM APFE for a single episode is defined as:

t —2d .
Ym0 Lijevizi of ogaa i 0 >2d

sMAPE = (7.18)
6.2d— o

> —0 2 jeUit] 62d+o - if of; < d.2d

where I' is the total time of a single episode.

As can be observed from the plot in Figure 7.8(c), the proposed approach
(GPR-MADDPG) results in the least amount of overlapping error while tracking the
convoy of moving vehicles as compared to other baseline algorithms. The proposed model
produces approximately 69 percent lower error as compared to MA-A2C and MA-A3C and
about 55 percent lower as compared to MADDPG. This indicates that the GPR-MADDPG
policy maintains a better end-to-end coverage of the moving convoy as compared to other
algorithms by learning the actions that lead to better coverage and incurs minimum

overlapping error.

7.3.9 Simulation in Gazebo Physics Simulator

Gazebo with Robot Operating System (ROS) provides a testbed to simulate the real-world
dynamics of robotic systems. To validate the proposed model under real-world dynamics,
the Gazebo 3D simulator is employed to simulate the movement of three ground robots
forming a convoy, while three UAVs are deployed to track this convoy. Runway world is
used for simulation where the convoy is assigned a trajectory to move along a path (with
deviations and added noise) that is unknown to the UAVs.
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Figure 7.9: (a) Snapshot of multiple UAVs tracking a moving convoy as implemented is

Gazebo simulator. (b) Performance comparison between GPR-MADDPG and Meta-TD3
algorithms in a simulated environment in Gazebo.
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Each UAV is tasked to track a single robot (see Figure 7.9(a), containing 3 UAVs and 3
robots in the Gazebo simulator). To train a GPR-MADDPG policy, a total of 130,000
episodes were conducted with random convoy trajectories in the simulator. This training
was evaluated against the performance of Meta-TD3, recognized as the best algorithm
in the literature. Figure 7.9(b) depicts the result of the comparison of GPR-MADDPG
and Meta-TD3 in the simulator for the last 30000 episodes (as the change in accumulated
rewards was very low in the initial 100000 episodes). It can be observed from the plot
that the proposed GPR-MADDPG model outperforms Meta-TD3 by a large margin in
simulation. A higher number of episodes were required for training in simulator as the
simulated environment is very dynamic and spontaneous like the real-world environment
and it’s difficult for the UAVs to perform precise actions as provided by the controller.
It’s important to note that GPR-MADDPG operates as an off-policy method. Here, data
is generated using a behavioral policy while the algorithm learns a distinct target policy.
Hence, the GPR-MADDPG model can be trained using the data collected from a separate

behavioural policy of UAV movement and tracking.

7.4 Chapter Summary

In this chapter a Deep RL algorithm to track a moving convoy using autonomous UAVs is
proposed. The control policy is learnt for the UAVs by employing the MADDPG model,
which utilizes Gaussian Process Regression (GPR) to estimate the target Q-value function.
The GPR targets, coupled with an adaptive kernel function, significantly improves the final
policy and expedited the training process. Comparative experiments conducted on diverse
trajectories validate the robustness and superior performance of GPR-MADDPG over
baseline Deep RL methods and state-of-the-art techniques in existing literature. This work
can be extended to optimize UAV energy consumption and investigating the applicability
of GPR targets in diverse applications. In the next chapter I conclude my thesis by
summarizing the crucial findings and insights gained from the research work. It also

outlines potential areas for future research, discussing avenues for further investigation.
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8| Conclusions and Avenues for Future

Research

In conclusion, the use of autonomous unmanned aerial vehicles (UAVs) in flood disaster
relief operations holds immense potential for significantly enhancing relief planning. UAVs
achieves this by reducing the requirement for additional manpower while facilitating
extensive aerial coverage and offering remote sensing, real-time path planning, and various
other capabilities. However, learning autonomous control policies for UAV is not trivial,
especially in dynamic and stochastic environments such as floods. The contribution made
in this thesis concentrate on providing Deep RL solutions for various aspects of relief
operations and security applications, namely, area coverage, path planning and target
tracking. The proposed Deep RL algorithms provide novel exploration strategies to
improve policy learning and to expedite reward accumulation especially in early phases
of training. This chapter provides a summary of the contributions made in this thesis
and discusses potential directions for future research, including possible extensions to the

proposed models.

8.1 Summary of the Contributions

The prime aim of this thesis is to develop and evaluate algorithms based on deep
reinforcement learning (Deep RL) for autonomous multi-UAV controls tasked to operate
in flood relief scenarios. These algorithms enable UAVs to effectively cover flooded areas
and collect critical information within strict time-frames, attributed to limited UAV
energy and the continuously changing dynamics of the flood conditions. By integrating
water-flow estimation algorithms like D8 and D-infinity (DINF), this thesis addresses the
challenges faced in early phases of training standard Deep RL algorithms, such as sparse
rewards, random target function approximation and overestimation bias. Additionally, the
research covers path planning and target tracking applications of multi-UAV systems. The
algorithms proposed in this thesis provide comprehensive solutions to enable autonomous
control for multi-UAV systems in various applications, including joint area coverage,
real-time path planning, and moving convoy tracking.

The first contribution of this thesis introduces two new methods, D8QL and DS8DQN, for
multi-UAV exploration during flood disasters. These methods use the D8 flow algorithm
to guide the UAVs based on water flow estimates. Compared to existing methods, D8QL
and D8DQN perform better in terms of accumulated rewards and joint area coverage.
However, D8QL and D8DQN have limitations. It only works with discrete action spaces
and may struggle in more complex environments. Furthermore, due to the D8 algorithm,
the UAVs might tend to cluster together, potentially resulting in less efficient coverage,

especially when critical regions are distributed across a larger area. Building on this first
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work, the second contribution of this thesis is the D3S algorithm that uses D-infinity
algorithm to provide target actions with exact degree of water flow estimates to learn
continuous control policies for UAVs. This technique is integrated into the DDPG model,
facilitating policy learning while preventing clustering of UAVs using Path scatter. Both
the proposed algorithms D8DQN and D3S highlights the significance of domain knowledge

in enhancing Deep RL policies for UAVs in critical environments.

Further, recognizing the constraints posed by centrally trained algorithms like the ones
mentioned above, when dealing with distributed data and communication challenges,
it becomes evident that a centralized training framework might not suffice. Hence,
the next contribution of this thesis explores decentralized training of UAVs to learn a
local policy without relying on a ground control unit which is required in centralized
training paradigms. The proposed dec-DQNCS algorithm leverages the D8 flow estimation
algorithm to enhance the exploration strategy. The algorithm enables UAVs to
communicate within their transmission range, facilitating data sharing for quick and
robust training. Additionally, it leverages coverage maps that contains the observed
trajectories of each individual UAV. This information enhances the UAVs’ awareness
of each other’s paths and helps in maximizing the overall area coverage. Results from
training and test environments showcase the algorithm’s significant impact on realizing
successful decentralized multi-UAV policies, demonstrating improvements across multiple

performance metrics.

Expanding the application scope, the subsequent application involved addressing the
problem of path planning to reach critical locations during floods. This contribution
presents an automated real-time path-planning algorithm for UAVs to assist waterborne
evacuation vehicles (WBVs) to reach critical location(s) during floods. The UAVs maintain
an intervened formation to sense connected regions that are serviceable i.e., devoid of
obstacles and shallow water regions, for possible movement of WBVs. Initial exploration
is enabled along a guide path i.e., the shortest path from the location of the WBV to the
critical location, due to limited battery of UAVs. The neighbouring regions are sensed
by the UAVs if the guide path is found to be unserviceable. The proposed algorithm
MEA*MADDPG is compared with existing path-planning techniques, showcasing its

effectiveness in generating real-time serviceable paths.

Furthermore, the application of tracking a moving convoy of vehicles using autonomous
UAVs is also addressed in this thesis. A Deep RL algorithm is proposed that uses Gaussian
Process Regression (GPR) to approximate the target Q-value function for MADDPG
model. Utilizing GPR targets along with an adaptive kernel function allowed for a
more precise approximation. Experimentation using various road trajectories of differing
complexities demonstrated the robustness and superior performance of GPR-MADDPG
over baseline Deep RL approaches, as well as state-of-the-art techniques from existing

literature.

All the proposed algorithm in this thesis offer effective autonomous solutions for multi-UAV

systems across various applications, providing enhanced coverage, real-time path planning,
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and consistent target tracking.

8.2 Future Research Scopes

The research work reported in the contributing chapters of this thesis provides ample scope
to advance the work in various research directions. As part of future work, investigating
the efficacy of D8-enhanced Double DQN (D8-DDQN) and Dueling DQN can offer deeper
insights into the performance of D8-based RL models (Chapter 3). Additionally, extending
non-RL techniques like Genetic Algorithms (GA), A*, etc., to learn continuous UAV
actions and comparing them with deep RL models could provide valuable insights (Chapter
4). Moreover, analyzing the impact of varying number of UAVs on overall coverage and
rewards can help fine-tune incentive and penalty configurations (Chapter 4). In reference
to the proposed model, dec-DQNCS, extending decentralized training to continuous
action spaces with Deep RL models like DDPG, SAC, and TD3 for multi-UAV systems
holds promise for improving scalability and efficiency (Chapter 5). Further, exploring
variations in communication settings such as transmission range, power, or probability
can offer valuable insights, contributing to the enhancement of dec-DQNC8’s performance
(Chapter 5). Additionally, investigating obstacle-bound environments such as tunnels can
be interesting for testing the performance of GPR-MADDPG based multi-UAV convoy
tracking, where UAVs encounter unique challenges (Chapter 7).

Future work may also involve the development of energy-aware multi-UAV systems,
including techniques for autonomous landing on moving platforms to recharge, thus
enhancing operational endurance. In addition, exploring data-driven approaches to
dynamically adjust kernel parameters based on observed interactions could enhance
algorithm adaptability (Chapter 7). Techniques like SHAP (SHapley Additive
exPlanations) can be investigated for interpretable policy actions. One of the primary
domains of future work is to extend the proposed solutions in various other disaster
scenarios, such as earthquakes, avalanches, wildfires etc. By carefully attributing the
domain characteristics, better target functions can be designed that are closer to true value
functions. Additionally, exploring transfer learning to initialize network weights can be
valuable when employing a trained model from a disaster scenario to a similar application.
Considering the proposed algorithms, extending the action set to integrate altitude control
could significantly enhance adaptability, particularly in tracking applications where the
moving objects might exit the field-of-view. In such instances, UAVs require the capability
to readjust and relocate the objects, and by incorporating altitude control, the UAVs can
efficiently handle these situations, ensuring continuous tracking.

Additionally, exploring energy modeling for UAVs beyond flight time limitations involves
investigating strategies for optimizing UAV energy consumption. This extension can
prolong the UAVs’ flight duration, thus extending their support capabilities during disaster
response operations. Further exploration into energy modeling, maintaining optimal

altitude, and utilizing trajectory optimization techniques can further extend the flight
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time of UAVs. Moreover, investigating reward shaping to enhance multi-UAV policies
can be a potential avenue for future research in disaster relief applications. Reward
shaping involves customizing a reward function to provide more frequent feedback on
desired behaviors, an area currently drawing attention from researchers in the field
of reinforcement learning. Timely feedback proves crucial, especially during initial
learning phases, as it encourages the exploration of favorable behaviors from the outset.
Incorporating diverse methodologies like domain knowledge based exploration, energy
optimization and reward shaping, exhibits promising potential to extend the impact of
Deep RL algorithms across diverse applications. These methods hold the promise of
significantly enhancing operational strategies, offering avenues for continual improvement
and innovation in addressing challenges within dynamic and stochastic environments, such

as disaster response scenarios.
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D8QL and DSDQN
Link: https://github.com/Armaan-Garg/D8QL-D8DQN

D3S
Link: https://github.com/Armaan-Garg/D3S

dec-DQNCS8
Link: https://github.com/Armaan-Garg/dec-DQNCS8

MEA*MADDPG
Link: https://github.com/Armaan-Garg/MEA-MADDPG

GPR-MADDPG
Dataset: https://github.com/Armaan-Garg/Dataset-GPR-MADDPG
Link: https://github.com/Armaan-Garg/GPR-MADDPG
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