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Abstract

In our digitally connected world we share a lot of personal information and classified

data through insecure channels which require robust protection against third-party

threats. Thus, establishing secure communication channels becomes imperative and

block ciphers emerge as key guardians of confidentiality, integrity, and authenticity in

this digital landscape. The use of Maximum Distance Separable (MDS) matrices in block

cipher design plays a crucial role in defending against various attacks, and this thesis

delves into the intricate world of MDS matrices. MDS matrices trace their origins to

the generator matrix of maximum distance separable codes in coding theory — a code

that achieves the Singleton bound. Stemming from the most fascinating code of coding

theory and finding applications in symmetric key cryptography schemes, MDS matrices

have garnered substantial attention due to their various direct constructions, recursive

constructions, and lightweight constructions. Each method of constructing MDS matrices

unfolds its significance, creating a vibrant landscape for independent research.

The initial part of this thesis specifically emphasizes the direct construction of MDS

matrices and introduces easily implementable strategies for their inverse matrices. This

research endeavor began in 1977 with the proposition by Macwillams and Solane that

utilizes Cauchy matrices over finite fields for the direct construction of MDS matrices.

Following this result, we introduce a new construction for MDS matrices which are

not involutory, but semi-involutory in nature. These findings open up a new avenue

in the construction of easily invertible MDS matrices, considering the generalization of

both involutory and orthogonal properties. We have demonstrated that several Cauchy

based constructions proposed by Youssef, Mister and Tavares, Gupta and Ray, while not

inherently involutory or orthogonal, can have their inverse matrices easily implemented

by utilizing the original matrix and multiplying it with specific diagonal matrices. In

this thesis, we study another significant category of matrices – circulant matrices. Our

initial focus involves examining the characteristics of the associated diagonal matrices

of a circulant semi-involutory (semi-orthogonal) matrix over finite fields. Next, our

attention turns to the diverse generalizations of circulant matrices. Specifically, we

explore two prominent types: g-circulant matrices, introduced by Friedman in 1961, and

cyclic matrices, which were introduced by Liu and Sim in 2016. We establish a profound

connection between these two matrices and leveraging this connection, we provide a

positive resolution to the conjecture posited by Liu and Sim. Infact, we prove the

non-existence of involutory g-circulant MDS matrices of order 2d×2d over the finite field

F2m . A thorough exploration into g-circulant MDS matrices is conducted, considering

properties such as involutory, orthogonal, semi-involutory, and semi-orthogonal.

We also present a comprehensive exploration of the general structure of

semi-involutory maximum distance separable matrices of order of 3× 3 over finite fields

of characteristic 2. Our findings align with the research conducted on involutory MDS

matrices by Güzel, Sakalli, Akleylek, Rijmen and Çengellenmiş and some other authors.

These generalized structures provide valuable insights into the overall count of MDS
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matrices across finite fields. Notably, for orders exceeding four, the pursuit of such

structures remains an open avenue of investigation.

In the last part of the thesis, we revisit a generalization of conventional encryption

schemes known as Format Preserving Encryption (FPE) schemes. Traditional encryption

techniques inherently mandate the elimination of the input format to maintain the

“semantic security” of the encryption algorithm. However, there arise scenarios where

it becomes imperative to not only retain the format but also preserve the length of the

plaintext. This capability proves valuable in practical applications, such as encrypting

sensitive information like credit card numbers, social security numbers, or database

entries, where maintaining the original structure is crucial. Note that, a standard block

cipher would require a fixed size input and produce a (possibly longer than the plaintext)

fixed size output. This gap between what was available and what was needed in certain

practical situations prompted the exploration and design of encryption schemes that

preserve both the length and format of the input. The first formal study of such schemes,

known as Format Preserving Encryption schemes, was initiated by Bellare et al. in 2009.

Since then, numerous FPE schemes have been proposed by various authors up to the

present day. In the year 2016, Gupta et al. defined an algebraic structure named Format

Preserving Set (FPS) in the diffusion layer of an FPE scheme. Their work established

a significant correlation between the cardinality of these sets and the potential message

space of an FPE scheme over a finite field. This result affirms that numerous crucial

cardinalities within the message space are unattainable over finite fields. Subsequently,

Barua et al. extended the search of FPS over finite commutative rings. Building upon

this generalization, we present diverse constructions of format preserving sets over

finite commutative rings with identity and finite modules over principal ideal domains.

Notably, we provide examples of format preserving sets with cardinalities of 26 and

52 over torsion modules and rings. These particular cardinalities hold significance as

they align with the sets of English alphabets, both in lowercase and with capitalization.

Moreover, by considering a finite Abelian group as a torsion module over a PID, we

show that a matrix M with entries from the PID is MDS if and only if M is MDS under

the projection map on the same Abelian group.

Keywords: Cauchy matrices; Circulant matrices; Cyclic matrices; g-Circulant matrices;

Semi-involutory matrices; Semi-orthogonal matrices; MDS matrices; Format preserving

encryption; Format preserving set
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Chapter 1

Introduction

In today’s digitally connected world, we share a lot of information through a wide

range of online platforms and technologies. Sometimes this information is sensitive

like our bank details, medical history, or some secret military details which need to be

protected from third parties. Therefore, establishing a secure communication channel

is the best option to protect the information. Block ciphers play a pivotal role in

this scenario, ensuring the confidentiality, integrity, and authenticity of our transmitted

information. Maximum Distance Separable (MDS) matrices stands as a crucial tool in the

construction of a block cipher for enhancing security. In the present chapter, we provide

a comprehensive insight into the utilization and diverse constructions of MDS matrices

used in block ciphers which are relevant to our discussion, and some of them we shall

discuss in upcoming chapters in detail.

1.1 Cryptography

Cryptography is the practice and study of techniques for secure communication in the

presence of an adversary. The prefix “crypt” means “hidden” and the suffix “graphy”

means “writing”. Modern cryptography lies in the intersection of various fields including

mathematics, computer science, electrical engineering, physics, and more. The basic idea

of cryptography is to encrypt the message using a key to protect the information and then

send it through an insecure channel. Anybody who has the corresponding key can decrypt
the information and recover the original message. To any unauthorized observer, this

encrypted information should appear as gibberish and unintelligible.

A cryptosystem consists of an encryption algorithm, a decryption algorithm, and a key

generation algorithm. On the other hand, cryptanalysis is the technique to decrypt

the encrypted text without knowing the original key. To design a cryptosystem, deep

knowledge of cryptanalysis is required to protect the system from any attack. Therefore,

cryptography and cryptanalysis are like the two sides of the same coin, inextricably

intertwined with each other.

In modern days, two main approaches in the design of cryptosystems are symmetric key
cryptosystem and public key cryptosystem. This division depends upon the number of keys

used in the system. In a symmetric key setting, two parties share a key to communicate

secretly. Using this shared key, one party encrypts a message or plain text, transforming

it into cipher text. The other party uses the same key to decrypt the received cipher text

and retrieve the original message.
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The public key cryptosystem employs a pair of keys, a public key for encryption and a

secret key for decryption. In this process, the sender encrypts the plain text using the

recipient’s public key and transmits it through an insecure channel. The receiver then

decrypts the cipher text using their secret key. Even if the public key is available to

adversaries, they cannot get the original message. In both scenarios, the security of the

cryptosystem depends upon the key. Kerckhoffs’s principle underscores this by asserting

that “The cipher method must not be required to be secret, and it must be able to fall into the hands
of the enemy without inconvenience.”

1.1.1 Symmetric key cryptography

A symmetric key cryptography scheme consists of three fundamental components: a

key space K, an encryption algorithm E , and a decryption algorithm D. The encryption

algorithm chooses a key k from key space and a plain text m from the space of possible

messages M , yielding a cipher text c that belongs to the set of possible cipher texts C.

This process can be viewed as a function E : K ×M → C. Similarly, the decryption can

be viewed as the function D : K × C → M . For a successful cryptography scheme, the

decryption and encryption functions must adhere to the condition

D(k, E(k,m)) = m,

for allm ∈M and k ∈ K. Symmetric key algorithms predominantly fall into two families:

block ciphers and stream ciphers. While stream ciphers encrypt one byte of plain text at a

time, block cipher encrypts a fixed size of data block at a time. Some well known block

ciphers are Data Encryption Standard (DES) [1], Advanced Encryption Standard (AES)

[2], Twofish [3] etc., and some well known stream ciphers are RC4 [4], ChaCha20 [5],

Salsa20 [6] etc.

1.1.2 Block ciphers

Block ciphers are building blocks of many symmetric key protocols, playing a pivotal role

in securing digital information. Given that, computers store data in binary format where

each bit represents a value of either 0 or 1, block cipher algorithms operate on binary

inputs. These algorithms take a key of length k bits and a message of size n bits as input

and produce an output block of length n bit. Hence both the encryption and decryption

of a block cipher are function

F : {0, 1}k × {0, 1}n → {0, 1}n,

where k is the key length and n is the block length. This function acts as a permutation

of n bit binary digits. The challenge in the block cipher design is to construct a set of

permutations with a concise key that mimics a random permutation. For this purpose,

Claude Shannon introduced the idea of confusion and diffusion in his seminal paper [7].



Chapter 1. Introduction 3

The idea works as follows: Suppose we want to construct a random looking permutation

F over a 64 bit input block. The key k of F will specify 8 permutations, say f1, f2, . . . , f8
such that each have 8 bit block length. For an input x ∈ {0, 1}64, we separate it as 8 bytes,

say x1, x2, . . . , x8 and set

F (k, x) = f1(x1) ∥ f2(x2) ∥ · · · ∥ f8(x8).

These fi’s introduce confusion into F .

In the diffusion step the bits of the output are permuted. This step spreads the local change

that occurs in the diffusion layer throughout the entire 64 bit block. These two steps are

together called a round.

Substitution-permutation networks: A substitution-permutation network (SPN) can be

seen as a direct implementation of confusion - diffusion paradigm. It is a very simple

and elegant structure with provable security against various attacks. The substitution

layer employs a publicly defined “substitution function,” known as an S-box. This layer

utilizes multiple S-boxes, and the subsequent permutation layer rearranges the resulting

output from the substitution layer. Figure 1.1 illustrates a single round of an SPN. The

Figure 1.1: SPN struture

S-boxes induce confusion while mixing permutations introduce diffusion. The security

of an SPN based block cipher depends on many factors like the number of rounds, choice

of S-box, mixing permutations, key schedule, etc. A fundamental requirement for a block

cipher is the presence of the “avalanche effect,” which ensures that a small input change

affects every output bit. Two primary methods to introduce avalanche effects in an SPN

based block cipher are the following:

• The S-boxes are designed in such a way that one bit difference in the input of an
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S-box should spread to at least two bits.

• The mixing permutations are designed so that the output bits of any given S-box

are used as input to multiple S-boxes in the next round.

Heys and Tavares [8, 9, 10] demonstrated that choosing S-boxes with strong diffusion

characteristics improves the avalanche behaviour of an SPN. In [11], Serge Vaudenay

introduced multipermutations as a formalization of perfect diffusion.

Definition 1.1.1. A (r, n)-multipermutation over an alphabet Z is a function f from Zr to Zn

such that two different (r + n)-tuples of the form (x, f(x)) cannot collide in any r positions.

An equivalent definition says that the set of all (r + n)-tuples of the form (x, f(x)) is an

error correcting code with minimal distance n + 1, which is the maximal possible. In

the case of a linear function f , this aligns with the definition of MDS codes. Therefore,

employing an appropriate linear transformation in place of a permutation between

rounds of S-boxes offers an alternative approach for achieving optimal diffusion. The

idea of using linear transformation found its inception in the diffusion layer of the block

cipher SHARK [12] by Rijmen et al. in 1996. They choose a linear function L : Fn
2m → Fn

2m

that maximize the value of B(L), where

B(L) = min
a̸=0,a∈Fn

2m

{HW(a) + HW(L(a))},

with a = (a1, . . . , an) ∈ Fn
2m and HW(a) = |1 ≤ i ≤ n : ai ̸= 0| is the Hamming weight of

a. Since HW(a) ≤ n for all choice of L, if HW(a) = 1, then B ≤ n+1. An invertible linear

mapping L is called optimal if B = n + 1. To achieve this optimal linear transformation,

block cipher SHARK used the generator matrix of a [2n, n, n + 1] maximum distance

separable code (see Definition 1.2.2). The following proposition of Rijmen et al. [12]

proves the significance of using an MDS matrix.

Proposition 1.1.2. Let C be a [2n, n, n + 1] linear code over the finite field F2m . Let G be the
generator matrix of C in echelon form, i.e.,G = [In×n|Bn×n]. Then C defines an optimal invertible
linear mapping γ : (F2m)

n → (F2m)
n by γ(X) → B ·X .

In 1997, Daemen et al. incorporated an MDS matrix into the block cipher SQUARE

[13]. Subsequently, in 1998, Daemen and Rijmen used a circulant MDS matrix in the

block cipher AES. Moreover, several SPN-based block ciphers, such as PRESENT [14],

SQUARE [13], and Twofish [3] have integrated the MDS matrix into their diffusion layers,

demonstrating the significance and effectiveness of MDS matrices in these ciphers.

The assessment of the diffusion power in the transformations within the diffusion layer

of a block cipher is measured using the Branch Number (see [2], Chapter 9). For linear

transformations, both the differential and linear branch numbers play crucial roles in

determining the efficacy of these transformations.
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Definition 1.1.3. The differential branch number of a linear transformation ϕ over the finite field
F2m is given by

Bd(ϕ) = min
a̸=0,a∈Fn

2m

{Wt(a) + Wt(ϕ(a))}.

Definition 1.1.4. The linear branch number of a linear transformation ϕ over the finite field F2m

is given by
Bl(ϕ) = min

a̸=0,a∈Fn
2m

{Wt(a) + Wt(M ta)},

where ϕ(x) =M · x.

Note that the maximal value of Bd(ϕ) and Bl(ϕ) are n+1. In general Bd(ϕ) ̸= Bl(ϕ), but if

a matrix achieves the maximum possible differential or linear branch number, then both

branch numbers are equal. Consequently, for an MDS matrix M , Bd(ϕ) = Bl(ϕ) = n+ 1.

This property accentuates the optimal diffusion characteristics inherent in MDS matrices.

In general, SPN needs two different modules for the encryption and the decryption

operations. The decryption process of an SPN is performed by running the data

backward through the inverse network (i.e., applying the key scheduling algorithm in

reverse and using the inverse S-boxes and the inverse linear transformation layer). In

[15], Youssef et al. proposed a special class of SPNs that has the advantage that the same

network can be used to perform both the encryption and the decryption operations. The

basic idea is to use involutory substitution layers and involutory linear transformations.

In the following section, we delve into the details of MDS codes and matrices, preceded

by a brief overview of an alternative approach to block cipher design.

Fiestel Network: An alternative approach to construct a block cipher is the Fiestel

Network. Figure 1.2 shows two rounds of a Feistel network. A Feistel network operates

in a series of rounds. In each round, there is a keyed round function. In the initial round,

the n-bit input is bifurcated into two halves L0, R0 and each consisting of n
2 bits. The

resulting output L1, R1 determines as follows:

L1 = R0 and R1 = L0 ⊕ F1(R0),

where F1 : {0, 1}
n
2 → {0, 1}

n
2 is a keyed function.

Figure 1.2: Two round Fiestel network
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1.2 Maximum distance separable matrix

As discussed earlier, MDS matrices found their application in the diffusion layer of block

ciphers and it has a direct connection with one of the most fascinating codes in coding

theory, the maximum distance separable codes.

A linear code C is denoted by three parameters, n, k and d, where n and k are the

length and dimension of the code and d is the minimum Hamming distance between

the codewords. Richard Singleton established the following inequality between the

parameters of a code, named Singleton bound:

Theorem 1.2.1. Let C be an [n, k, d] code, then n− k ≥ d− 1.

Codes that satisfy d = n−k+1 are called maximum distance separable codes, abbreviated

as MDS codes. These codes achieve the maximum possible distance between the

codewords. Reed-Solomon codes (see [16], Chapter 10) stand out as a prominent example

of MDS codes. A characterization of MDS codes in terms of a systematic generator matrix

is provided by the following theorem:

Theorem 1.2.2. An [n, k, d] code C with generator matrix [Ik×k|A] where A is a k × (n − k)

matrix is MDS if and only if every square submatrix of A, formed by any i rows and i columns,
for any i = {1, 2, . . . ,min(k, n− k)}, is non-singular.

The matrix A in Theorem 1.2.2 is called an MDS matrix. Macwillams and Solane

[16] highlighted Cauchy matrices as a prime example of MDS matrices under certain

conditions. Specifically, they stated the following:

Corollary 1.2.3. Let {x1, x2, . . . , xn} and {y1, y2 . . . , yn} be two sets of elements from a finite
field F, with xi’s and yj ’s being distinct, and xi + yj ̸= 0 for 1 ≤ i, j ≤ n. Then every submatrix
of the Cauchy matrix A = ( 1

xi+yj
), 1 ≤ i, j ≤ n is non-singular over F.

In 1996, Youssef et al. [15] introduced the concept of using involutory linear

transformations to perform encryption and decryption operations in the same network.

They presented the following two methodologies for constructing involutory linear

transformations.

• First construction is the matrix

[
A A−1

A3 +A A

]
, which is an n×n involutory matrix

over the finite field F2m , where A is an n
2 × n

2 arbitrary non-singular matrix.

• Another construction utilizes a Cauchy matrix A to construct an MDS matrix that

satisfies A2 = c2I , where c is the sum of the entries of the first row of A.

In contrast, although any square submatrix of a Vandermonde matrix with real, positive

entries is non-singular, the same cannot be guaranteed for Vandermonde matrices over

finite fields. For example, see Fact 9 of [17]. Thus, while Cauchy matrices facilitate direct

MDS matrix construction, Vandermonde matrices fail to achieve this property.
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In 2004, Lacan and Fimes [18] first constructed systematic MDS erasure codes using two

Vandermonde matrices. Their results established a direct method for constructing MDS

matrices using two Vandermonde matrices. Let V (a1, a2, . . . , ar) = (aj−1
i )ri,j=1 represent

a Vandermonde matrix. The result of Lacan and Fimes is the following regarding the

characteristic of the submatrices of Vandermonde matrices:

Theorem 1.2.4. Let {a1, a2, . . . , ar} and {b1, b2, . . . , br} be 2r distinct elements over the finite
field Fq. Then every square submatrix of the matrix V (a1, a2, . . . , ar)

−1 · V (b1, b2, . . . , br) is
non-singular.

This theorem can be utilized to construct a systematic generator matrix of an MDS code,

as stated in the following theorem:

Theorem 1.2.5. Let V (a1, a2, . . . , ak) be a k × k non-singular Vandermonde matrix and
V (b1, b2, . . . , bn−k) be a k× (n−k) Vandermonde matrix. Then the code defined by the generator
matrix

G = [Ik×k|V (a1, a2, . . . , ak)
−1 · V (b1, b2, . . . , bn−k)]

is an MDS code if and only if aj and bj are n distinct elements.

These findings initiated a novel approach to directly constructing MDS matrices using

Cauchy and Vandermonde matrices. Subsequent studies [18, 19, 20, 21] expanded upon

this, providing diverse constructions of MDS matrices, which we will briefly discuss next.

1.2.1 Direct construction of MDS and involutory MDS matrices

The prevalence of MDS matrices in SPN-based block ciphers motivated various author to

develop direct methods for constructing involutory MDS matrices. In 2012, Sajadieh et al.
[19] showed that the Vandermonde based MDS matrix construction proposed by Lacan

and Fimes in [18], could be transformed into an involutory matrix. This transformation

involved a careful selection of the bi’s from the underlying finite field. Their work

substantiated the following results:

Theorem 1.2.6. Let V1 = Vand(a0, a1, . . . , an−1) and V2 = Vand(b0, b1, . . . , bn−1) be two
invertible Vandermonde matrices with bi = l + ai for all i = 0, 1, 2, . . . , n − 1, and l is an
arbitrary non-zero element. Then V −1

1 V2 is an upper triangular matrix, and its non-zero elements
are determined by the powers of l. Furthermore, the matrices V1 and V2 satisfy the equation
V2V

−1
1 V2 = V1.

An immediate application of this theorem yields the following corollary:

Corollary 1.2.7. Let V1 = Vand(a0, a1, . . . , an−1) and V2 = Vand(b0, b1, . . . , bn−1) be two
invertible Vandermonde matrices over the finite field F2m with bi = l + ai, l ∈ F∗

2m and ai ̸= bj

for all i, j = 0, 1, . . . , n− 1. Then V2V −1
1 is an involutory MDS matrix.

Sajadieh et al. ingeniously used the entries of the Vandermonde matrix from an additive

subgroup of the finite field F2m to construct Hadamard MDS matrices.
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A Hadamard matrix H adheres to the identity H2 = c2I , where c denotes the sum of

entries in any row and I represents the identity matrix. This property simplifies the

determination of H−1. Gupta and Ray restated this result in [20], as outlined below.

Before that, we provide the definition of a Special Vandermonde matrix.

Definition 1.2.8. Let G = {x0, x1, . . . , x2n−1} be an additive subgroup of order 2n of the finite
field F2m , which is linear span of n linearly independent the elements {x1, x2, x22 , . . . , x2n−1}.

Each xi ∈ G, 0 ≤ i ≤ 2n − 1 is of the form xi =
n−1∑
i=0

bix2i , where (bn−1, . . . , b1, b0) is the binary

representation of i. A Vandermonde matrix V = Vand(y0, y1, y2, . . . , y2n−1) is called Special
Vandermonde matrix if yi = l + xi for all i = 1, 2, . . . , 2n − 1.

The construction of a Hadamard matrix using a Vandermonde matrix is as follows:

Theorem 1.2.9. Let V1 = Vand(x0, x1, . . . , x2n−1) and V2 = Vand(y0, y1, . . . , y2n−1) be
two Special Vandermonde matrices over the finite field F2m with yi = x0 + y0 + xi, and
y0 /∈ {x0, x1, . . . , x2n−1}. Then V −1

1 V2 is a Hadamard involutory MDS matrix.

In [20], the authors further studied Cauchy based MDS matrix construction. They

constructed an MDS matrix of order a power of 2 using a Cauchy matrix A with entries

from an additive subgroup of the finite field F2m . The construction is as follows:

Theorem 1.2.10. Let G = {x0, x1, . . . , xn−1} be an additive subgroup of the finite field F2m .
Consider the coset l+G, l /∈ G with the elements yj = l+xj , j = 0, 1, . . . , n−1. Then the n×n
Cauchy matrix A = ( 1

xi+yj
), 0 ≤ i, j ≤ n− 1 is an MDS matrix.

The Cauchy matrix A constructed in Theorem 1.2.10 possesses the following interesting

properties:

• The matrix A has exactly n distinct entries.

• The matrix A is symmetric and all rows are permutations of the first row.

• The matrix A satisfies A2 = a2I , where a =
n−1∑
j=0

1

l + xj
.

• The matrix a−1A is an involutory MDS matrix, where a is the sum of all elements

of any row.

Considering the ease of computing the inverses of Hadamard matrices, Gupta and Ray

constructed Hadamard matrices using Cauchy based MDS matrix construction. Their

result is as follows:

Theorem 1.2.11. Let G = {x0, x1, . . . , x2n−1} be an additive subgroup of the finite field F2m ,
which is a linear span of n linearly independent elements {x1, x2, x22 , . . . , x2n−1}, such that

xi =
n−1∑
i=0

bix2i , where (bn−1, . . . , b1, b0) is the binary representation of i. Let yi = l + xi for 0 ≤

i ≤ 2n− 1, where l ∈ F2m \G. Then the Cauchy matrix A = (ai,j) = ( 1
xi+yj

), 0 ≤ i, j ≤ 2n− 1

is a Hadamard MDS matrix.
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Note that, in both Theorem 1.2.10 and Theorem 1.2.11, the order of the matrices are power

of 2. Therefore to obtain a matrix of a specific order k, we must initially generate a matrix

of size 2n where k ≤ 2n, followed by extracting a k × k submatrix from it. However,

this process does not guarantee that the resulting submatrices will exhibit the desired

involutory property.

Furthermore, in [21], Cui, Jin and Kong introduced another interesting class of Cauchy

matrices, termed compact Cauchy matrix. These matrices exhibit the fewest distinct entries,

rendering them particularly advantageous for implementation purposes. The definition

of compact Cauchy matrix is the following:

Definition 1.2.12. Let A be an n× n Cauchy matrix. If A has precisely n distinct entries, then
A is a compact Cauchy matrix.

It is worth noting that the Cauchy MDS matrix outlined in Theorem 1.2.10 qualifies as a

compact Cauchy matrix. Additionally, in [21] Cui et al. presented an alternative condition

for constructing compact Cauchy matrices in finite fields of characteristic 2.

Theorem 1.2.13. The matrix A is an n × n compact Cauchy matrix over F2m generated by
X = (x0, x1, x2, . . . , xn−1, xn, . . . , x2n−1) if and only if there exists an additive subgroup H of
F2m with elements a, b such that a + b /∈ H, a + H = {x0, x1, x2, . . . , xn−1} and b + H =

{xn, . . . , x2n−1}.

In the next theorem, we note an alternative method to construct MDS matrices using the

primitive elements of the finite field, as introduced by Roth and Seroussi in [22].

Theorem 1.2.14. Let S be the following triangular array over the finite field Fq:

Sq =

1 1 1 · · · 1 1 1

1 a1 a2 · · · aq−3 aq−2

1 a2 a3 · · · aq−2

1 a3 a4 · · ·
...

...
...

1 aq−3 aq−2

1 aq−2

1

,

where ai = 1
1−γi , 1 ≤ i ≤ q − 2 for an arbitrary primitive element γ of Fq. Then every square

submatrix of Sq is non-singular.

In [20], a relation was established between the construction of Hadamard MDS matrices

using Cauchy matrices and Vandermonde matrices. Let G = {γ0, γ1, . . . , γd−1} denote an

additive subgroup of F2m of order d, where γ0 = 0 and γi + γj = γi⊕j . Consider two

arbitrary elements r1, r2 from F2m such that r1 + r2 /∈ G. Construct three cosets of G as
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follows:

r1 +G = {αi = r1 + γi, for i = 0, 1, . . . , d− 1},

r2 +G = {βi = r2 + γi, for i = 0, 1, . . . , d− 1},

r1 + r2 +G = {δi = r1 + r2 + γi, for i = 0, 1, . . . , d− 1}.

Let V1 = Vand(α0, α1, . . . , αd−1) and V2 = Vand(β0, β1, . . . , βd−1) be two Vandermonde

matrices and M = (mi,j) = ( 1
γi+δj

), 1 ≤ i, j ≤ d − 1. Then the Vandermonde matrix

AB−1 and the Cauchy matrix M satisfy the following relation:

Theorem 1.2.15. AB−1 = 1
cM , where c =

d−1∑
k=0

1

δk
.

In 2019, the authors of [17] generalized the aforementioned relation, allowing entries

of both Vandermonde and Cauchy matrices to be arbitrary elements of the finite field.

Let {x0, x1, . . . , xn−1} and {y0, y1, . . . , yn−1} are 2n distinct elements from F2m such that

xi + yj ̸= 0 for all 0 ≤ i, j ≤ n − 1. Let V1 = Vand(x0, x1, . . . , xn−1) and V2 =

Vand(y0, y1, . . . , yn−1) be two Vandermonde matrices and M = (mi,j) = ( 1
xi+yj

) be a

Cauchy matrix. Then the matrices V −1
1 V2, V

−1
2 V1 and M are MDS matrices. The result of

Gupta et al. revealed a non-trivial relationship between these matrices, succinctly stated

as follows:

Theorem 1.2.16. Suppose V1, V2 andM are defined as above and V −1
1 = (bi,j), 0 ≤ i, j ≤ n−1.

Then D1MD2 = V −1
1 V2, where

D1 = diag(b0,n−1, b1,n−1, . . . , bn−1,n−1), and

D2 = diag(
n−1∏
k=0

(xk + y0),
n−1∏
k=0

(xk + y1), . . . ,
n−1∏
k=0

(xk + yn−1)).

According to the MDS matrix construction described in Corollary 1.2.7, it is possible to

construct involutory Vandermonde MDS matrix. Employing the similar construction, i.e.,

yi = l+xi it is possible to construct a Cauchy matrix M , and the resultant Cauchy matrix

is MDS but not necessarily involutory. Nevertheless, Theorem 1.2.16 asserts that this

particular M can be transformed into an involutory MDS matrix through an appropriate

choice of diagonal matrices D1 and D2.

We discussed the existence of MDS Cauchy matrices of order n × n with precisely

n distinct entries. Additionally, in [17], the authors constructed Vandermonde MDS

matrices with similar property. This construction is derived from Theorem 1.2.10 and

stated in the following theorem.

Let {x0, x1, . . . , xn−1} be an additive subgroup of F2m and V = Vand(x0, x1, . . . , xn−1).

Let V −1 = (bi,j) and γ =
∏n−1

i=0 xi. Now the theorem is the following:
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Theorem 1.2.17. Let V1 = Vand(x0, x1, . . . , xn−1) and V2 = Vand(y0, y1, . . . , yn−1) be two
Vandermonde matrices with yi = l + xi, l /∈ G. Then V −1

1 V2 is a compact involutory MDS
matrix.

From the aforementioned constructions, we can see that Hadamard matrices plays a

significant role in the construction of involutory MDS matrices. In [23], the authors

introduced Generalized Hadamard matrices (GHadamard) as a generalizations of

Hadamard matrices.

Definition 1.2.18. A matrix GH = (hi,j) of order 2t × 2t over the finite field F2m is called
GHadamard matrix, if its entries are of the form hi,j = ai⊕jb

−1
i bj , 0 ≤ i, j ≤ 2t − 1, where

ai, bj ’s are non-zero elements of F2m and b0 = 1.

In [17], the authors assert that GHadamard matrices arise from the multiplication of a

Hadamard matrix H with a non-singular diagonal matrix D, leading to the expression

DHD−1 for any GHadamard matrix. This multiplication preserves the involutory

property of the Hadamard matrix.

Note that, a Hadamard matrix is uniquely determined by its first row, and any

permutation of this row results in a different Hadamard matrix, possibly with a different

branch number. Additionally, for an involutory Hadamard matrix, the sum of the entries

of the first row must be 1. Moreover, to maintain the MDS characteristic, the first

row cannot have repeated elements. This is crucial because, if H(0, i) = H(0, j) for

i, j ∈ {0, 1, . . . , k − 1}, then the i ⊕ j-th row have H(i ⊕ j, i) = H(i ⊕ j, j). This results

to a singular submatrix of H . Consequently, there are k! permutations available for the

first row of a Hadamard matrix. In [24], Sim et al. studied the equivalence classes of

Hadamard matrices based on Branch number.

Definition 1.2.19. Given a Hadamard matrixH of order k×k and a permutation σ ∈ Sk, define
a Hadamard matrix Hσ such that the first row of Hσ is the σ-permutation of the first row of H .
Then H is said to be equivalent to Hσ if for any input vector v, the output vectors vH and vσHσ

have the same set of elements, where vσ is the σ-permutation of v.

Therefore, if two Hadamard matrices H1, H2 are equivalent, they belong to the same

equivalence class and they have the same branch number. This is because, for every pair

of input and output vector for H1, there is a corresponding pair of vectors for H2 with

the same number of non-zero components. Sim et al. determined the specific form of the

permutation σ that makes two Hadamard matrices equivalent when the entries of the

first row belong to the same set. They proved that σ must be one of the following two

permutations:

• Given a Hadamard matrix H , any Hadamard matrix Hα defined by the (α + 1)-th

row of H , with α = 0, 1, . . . , k − 1, is equivalent to H .

• For any linear permutation σ, i.e., σ(i ⊕ j) = σ(i) ⊕ σ(j), two Hadamard matrices

H and Hσ are equivalent.
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These permutations are referred as H-permutations in [24]. The following theorem

provides the total number of equivalence classes for Hadamard matrices of order 2s× 2s.

Theorem 1.2.20. For a given a set of 2s non-zero elements with S = {α0, α1, . . . , α2s−1},
there exists (2s−1)!∏s−1

i=0 (2
s−2i)

equivalence classes of Hadamard matrices of order 2s × 2s defined by
the elements of S.

In [25], Liu and Sim gave an equivalent but slightly different description for the

permutation σ. They proved that two Hadamard matrices H and Hσ belong to the same

equivalence class, if the permutation σ has the following expression:

σ(i⊕ j) = σ(i)⊕ σ(j)⊕ σ(0), where i, j ̸= 0.

In [24], Sim et al. investigated the equivalence class of Hadamard-Cauchy matrices,

initially introduced by Gupta et al. (see Theorem 1.2.11).

Definition 1.2.21. LetHC1 andHC2 be two Hadamard-Cauchy matrices. They are permutation
equivalent if one can be transformed to the other by either one or both of the following operations
on the entries of the first row:

• multiply by a non-zero scalar.

• H-permutation of the entries.

The following theorem presents the total number of equivalence classes for

Hadamard-Cauchy matrices of order 2s × 2s.

Theorem 1.2.22. Given two positive integers s and r, there are
s−1∏
i=0

2r−1 − 2i

2s − 2i
equivalence classes

of involutory Hadamard-Cauchy matrices of order 2s × 2s over F2m .

Over time, numerous researchers have counted the total numbers of MDS matrices for

smaller dimensions under specific conditions within finite fields. The subsequent section

is dedicated to exploring this particular theme.

1.2.2 Construction of general structure of MDS matrices

The preceding section explains diverse constructions and the significance of involutory

MDS matrices. While MDS matrices of orders that are powers of 2 hold practical

significance, the exploration of constructing MDS matrices for other orders remains an

intriguing pursuit. For example, In 2007, Barreto et al. [26] introduced Curupira, an

iterated block cipher designed specifically for constrained platforms. This cipher utilized

a 3× 3 MDS involutory matrix over the finite field F28 . Building upon this work, in 2019,

Guz̈el et al. explored the involutory MDS matrices of order 3× 3 over the finite field F2m

in more details. In [27], they established the following general structure of involutory

matrices over the finite field of characteristic 2:
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Theorem 1.2.23. Let A = (aij), 1 ≤ i, j ≤ 3 be a 3 × 3 matrix over the finite field F2m . If
A is involutory, a11 ̸= a22 and a11, a22 ̸= 1, then the entries of A can be expressed by only two
diagonal elements a11, a22 and two arbitrary non-zero elements b0, b1 from the finite field in the
following way:

A =


a11 (a11 + 1)b0 (a11 + 1)b1

(a22 + 1)b−1
0 a22 (a22 + 1)b−1

0 b1

(a11 + a22)b
−1
1 (a11 + a22)b

−1
1 b0 a11 + a22 + 1

 . (1.1)

Utilizing the structure of Theorem 1.2.23, they established the following proposition for

constructing an MDS matrix:

Proposition 1.2.24. Let A be a matrix in the general form described in Theorem 1.2.23. Then A
is MDS over F2m if and only if a11 ̸= a22, {a11, a22} ≠ {0, 1} and a11 + a22 ̸= 1.

This proposition implies that a11 and a22 have total (2m − 2) and (2m − 4) choices

respectively. Also the number of choice for b1, b2 are (2m − 1)2. Consequently, this leads

to a total count of (2m − 1)2(2m − 2)(2m − 4) involutory matrices of order 3 × 3 over a

finite field of characteristic 2.

Following this, in 2020, Jian et al. [28] revisited the construction of 4× 4 involutory MDS

matrices over the finite field F2m . Initially, they derived specific criteria governing the

trace of the matrix.

Theorem 1.2.25. Let A be an n× n matrix over the finite field F2m . Then

trace(A) =

1, if n is odd;

0, if n is even .

In the subsequent theorem, we highlight a key result from Jian et al. concerning the

overall structure of 4 × 4 involutory MDS matrices. The theorem asserts that among the

16 entries within a 4 × 4 involutory MDS matrix, the values of 8 entries can be entirely

deduced from the remaining 8. The theorem is as follows:

Theorem 1.2.26. Let A = (aij), 1 ≤ i, j ≤ 4 be an involutory MDS matrix over the finite field
F2m . Then

(a11 + a33)(a11 + a44) = a12a21 + a34a43.

Further if the eight entries a11, a12, a21, a22, a33, a34, a43, a44 are given, then the other eight
entries, i.e., (a13, a14, a23, a24)T and (a42, a32, a41, a31)

T are solutions of the system of linear
equations MX = 0, where

M =


a11 + a33 a43 a12 0

a34 a11 + a44 0 a12

a21 0 a11 + a44 a43

0 a21 a34 a11 + a33


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and X = (x1, x2, x3, x4)
T .

Continuing the exploration of even order involutory MDS matrices over F2m , Yang et
al. [29] introduced a novel method involving block matrices in 2021. Their result is as

follows:

Theorem 1.2.27. Let A =

[
A1 A2

A3 A4

]
be a 2n × 2n involutory matrix over F2m where

A1, A2, A3, A4 ∈ Mn×n(F2m). If the entries of A1 and A2 are given and the matrix A2 is
non-singular, then A3 and A4 can be uniquely determined.

While this method involves an exhaustive search, however, in contrast to a direct search

strategy, this construction overcomes the obstacle of the huge computational amount and

reduces the search space to a great extent.

Yang et al. extended the construction method outlined in Theorem 1.2.27 for larger orders

in the subsequent theorem. This result is a generalization of the 3× 3 structure proposed

by Guz̈el et al. to matrices of order (2n + 1) × (2n + 1) employing block matrices of size

n× n along with specific row and column vectors.

Theorem 1.2.28. Let

A =


A1 B1 A2

D1 c D2

A3 B2 A4


be a (2n+ 1)× (2n+ 1) involutory matrix over F2m , where A1, A2, A3, A4 are n× n matrices,
B2, B2 are n dimensional column vectors, D1, D2 are n dimensional row vectors and c is an
element of F2m . If A1, A2, B1, D1, c are known and A2, A3 are non-singular, then the involutory
matrix A can be uniquely determined.

1.2.3 MDS matrix construction from circulant and circulant-like matrices

The renowned block cipher AES [2] uses the circulant MDS matrix circulant(α, α+1, 1, 1)

over the finite field F28 in its diffusion layer, where α is a root of x8+x4+x3+x+1. This

matrix is consists two 1’s, offering an implementation advantage since multiplication

by 1 implies no processing at all. However, its inverse does not exhibit the same

favourable properties. In 2014, Gupta and Ray pioneered the study of circulant matrices

with involutory and orthogonal properties over the finite field of characteristic 2. They

demonstrated that, unlike Cauchy or Vandermonde matrices, these circulant matrices

often lack the desirable properties of being involutory or orthogonal. In [30, 31], Gupta

et al. established significant non-existence results regarding these circulant matrices.

Theorem 1.2.29. Circulant orthogonal matrices of order 2d × 2d over the finite field F2m cannot
be MDS.

It is worth noting that, in [30], the authors presented examples of 3×3 and 6×6 circulant

MDS matrices over F28 . However, in the case of involutory matrices, they proved the

non-existence for matrices of all orders.
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Theorem 1.2.30. Circulant involutory matrices of order n × n, n ≥ 3 over the finite field F2m

cannot be MDS.

The absence of circulant MDS matrices with easily implementable inverse properties

inspired the authors of [30] to generalized the circulant structure to an almost circulant

structure. They introduced the definition of three types of almost circulant matrices.

• The d × d matrix of the form

[
a 1

1t A

]
is called Type-I circulant-like matrix, where

A = circ(1, a1, a2, . . . , ad−2), 1 = (1, 1, . . . , 1). Here 1 is the unit element, ai’s and a

are any non-zero elements of the underlying field other than 1.

• The d × d matrix of the form

[
a b

bt A

]
is called almost Type-I circulant-like matrix,

where A = circ(a0, a1, a2, . . . , ad−2),b = (b, b, . . . , b). Here a, b and ai’s are any

non-zero elements of the underlying field.

• The 2d × 2d matrix f the form

[
A A−1

A3 +A A

]
is called Type-II circulant-like matrix,

where A = circ(a0, a1, a2, . . . , ad−1).

In both [30] and [17], the authors showed that Type-I circulant-like matrices have similar

involutory properties with circulant matrices. Consequently, the following result holds

true for these matrices.

Theorem 1.2.31. Type-I circulant-like matrices of order n×n over the finite field F2m can not be
involutory.

They also proved that, for the orthogonal case, Type-I circulant-like matrices can never

be MDS.

Theorem 1.2.32. Type-I circulant-like matrices of order n×n over the finite field F2m can not be
orthogonal.

Based on Youssef et al.’s construction outlined in Section 1.2, it is clear that Type-II

circulant-like matrices over F2m are involutory. However, it is noteworthy that they do

not maintain the MDS property across all matrix orders, as established by Gupta and Ray

in [30]. This leads to the following conclusion:

Theorem 1.2.33. Any 2n × 2n Type-II circulant-like matrix over F2m is non-MDS for even
values of n.

Note that, permutation equivalent matrices share the same branch number. Therefore, if

matrix M is MDS, then PMQ is also MDS for any two permutation matrices P and Q.

Keeping this in mind, in [25], Liu and Sim provided an equivalence relation between two

circulant matrices C and Cσ of order k × k, where σ is a k-cycle of the symmetric group

Sk acting on the indices of the first row of C. This relation categorizes the k! possible

circulant matrices of order k into (k−1)!
ϕ(k) equivalence classes, with each circulant matrix in

a class having the same branch number. The result is as follows:
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Theorem 1.2.34. Given two circulant matrices C = circ(c0, c1, . . . , cn−1) and Cσ =

circ(cσ(0), cσ(1), . . . , cσ(n−1)), C is permutation equivalent to Cσ if and only if σ is some index
permutation satisfying σ(i) = bi+ a (mod n), ∀ i ∈ {0, 1, 2, . . . , n− 1}, where a, b ∈ Zn and
gcd(b, n) = 1.

Liu and Sim also generalized the circulant matrix structure and introduced cyclic matrices
by changing the permutation.

Definition 1.2.35. For a k-cycle ρ ∈ Sk, a matrix Cρ of order k × k is called cyclic matrix
if each subsequent row is ρ-permutation of the previous row. We represent this matrix as
cyclicρ(c0, c1, c2, . . . , ck−1), where (c0, c1, c2, . . . , ck−1) is the first row of the matrix. The
(i, j)-th entry of Cρ can be expressed as Cρ(i, j) = cρ−i(j).

They also proved that, given a cyclic matrix and circulant matrix with entries from

same set of k elements, there exists a permutation equivalence relation between them.

However, they did not provide the structure of the permutation matrices. Based on the

permutation equivalence, they derived the following corollary:

Corollary 1.2.36. Any cyclic matrix corresponds to some circulant matrix, preserving the
coefficients and the branch number.

In [25], authors also established the non-existence of left-circulant MDS matrices with

involutory property for order 2d×2d over the finite field of characteristic 2. Additionally,

they asserted the following statement based on experimental findings.

Conjecture: No involutory MDS cyclic matrices exist for orders 4× 4 and 8× 8 over the

finite field of characteristic 2.

It is important to note that a circulant matrix is a specialized form of a Toeplitz matrix.

Defined by its initial row and column elements, a Toeplitz matrix can be represented by

the vectors {a0, a1, . . . , an−1, a−1, a−1, . . . , a−(n−1)}. The matrix is of the following form:

T =


a0 a1 a2 · · · an−1

a−1 a0 a1 · · · an−2

...
...

... · · ·
...

a−(n−1) a−(n−1) a−(n−3) · · · a0

 .

The study on circulant matrices with the MDS property inspired Sarkar and Syed [32, 33]

to delve into Toeplitz matrices possessing MDS characteristics. Their results illustrate the

similar behaviour of Toeplitz and circulant matrices. The first theorem of Sarkar et al. in

this direction is the following:

Theorem 1.2.37. Let T be an n × n Toeplitz matrix defined over F2m . Then T cannot be both
MDS and involutory.

In a similar way, they encountered the following result regarding orthogonality:

Theorem 1.2.38. Let T be an 2d × 2d Toeplitz matrix defined over F2m . Then T cannot be both
MDS and orthogonal.
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Similar to circulant case, there exist Toeplitz matrices of orders other that 2d × 2d that

possess both MDS and orthogonal properties. In [17], the following two examples of

Toeplitz orthogonal matrices over the finite field F28 with the irreducible polynomial x8+

x4 + x3 + x+ 1 were provided. The first example is a 3× 3 matrix Toep(α, 1 + α2 + α3 +

α4+α6, α+α2+α3+α4+α6, α+α2+α3+α4+α6, 1+α2+α3+α4+α6), and the next

example is a 6× 6 matrix Toep(1, 1, α, 1 + α2 + α3 + α5 + α6 + α7, α+ α5, α2 + α3 + α6 +

α7, α+α5, α2 +α3 +α6 +α7, α2 +α3 +α6 +α7, α+α5, 1+α2 +α3 +α5 +α6 +α7, α, 1).

Both matrices also satisfy the MDS property.

In [17], the authors investigated Hankel matrices and explored their properties

concerning MDS and involutory characteristics. Note that a left-circulant matrix is a

special case of Hankel matrix. A Hankel matrix is defined by its first row and last

column. It is also a symmetric matrix, therefore involutory and orthogonal are equivalent

conditions. In [17], the authors proved the following result.

Theorem 1.2.39. Let H be a 2n × 2n, n ≥ 2 Hankel MDS matrix over F2m . Then H is not an
involutory matrix.

The example of involutory Hankel matrices of orders other than powers of 2 is also

presented in [17]. Recently, in 2019, Cauchois et al. [34] introduced a correspondence

between a monic polynomial of degree m and a circulant matrix of order m×m through

the following definition:

Definition 1.2.40. Let h(X) = (Xm − 1) +
m−1∑
i=0

hiX
i ∈ Fq[x] be a monic polynomial of degree

m. The circulant matrix associated with h(X) is the matrix Ch = circulant(h0, h1, . . . , hm−1).

The matrix Ch can also be viewed as a matrix with respect to the basis

{1, X,X2, . . . , Xm−1} of the mapping

ϕ : Fq[X]/(Xm − 1) → Fq[X]/(Xm − 1)

defined by ϕ(Q(X)) = Q(X)h(X).

Using this algebraic framework, Cauchois et al. gave an alternative proof for Theorem

1.2.30 and extended this result for characteristic p ≥ 2 for matrices of even order. The

following two propositions play an important role in the generalization noted in Theorem

1.2.43.

Proposition 1.2.41. Let h(X) = (Xm−1)+
m−1∑
i=0

hiX
i ∈ Fq[X] and Ch be the circulant matrix

associated to h(X). Then Ch is MDS if and only if for all Q1 ∈ Fq[X] with degree(Q1(X)) ≤
m− 1, we have wt(Q1) + wt(Q1(X)h(X) (mod Xm − 1)) ≥ m+ 1.

Proposition 1.2.42. Let h(X) = (Xm−1)+
m−1∑
i=0

hiX
i ∈ Fq[X] and Ch be the circulant matrix

associated to h(X). Then Ch is involutory if and only if h(X)2 = 1 (mod Xm − 1).
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Theorem 1.2.43. Let d ≥ 2. Then involutory circulant MDS matrices of order 2d × 2d do not
exist over finite fields of characteristic p ≥ 2.

Cauchois et al. further extended this framework to θ-polynomial ring and define

θ-circulant matrices over this ring.

Definition 1.2.44. Let h⟨X⟩ = (Xm − 1) +
m−1∑
i=0

hiX
i ∈ Fqm [X, θ] be a monic q-polynomial of

degree m. The θ-circulant matrix associated with h⟨X⟩ is the matrix defined by

Ch,θ =


h0 h1 h2 · · · hm−1

h
[1]
m−1 h

[1]
0 h

[1]
1 · · · h

[1]
m−2

...
...

... · · ·
...

h
[m−1]
1 h

[m−1]
2 h

[m−1]
3 · · · h

[m−1]
0

 ,

where h[j]i = θj(hi) and θ be an Fq automorphism of Fn
q .

Analogous to propositions 1.2.42 and 1.2.42, Cauchois and Loidreau also established

conditions for a θ-circulant matrix to be both involutory and MDS. An example of such a

matrix was presented in [34].

Example 1.2.45. Let F24 be a finite field with the irreducible polynomialX4+X+1 and α is a root
of this polynomial. The matrix Ch,θ associated with h⟨X⟩ = (X4+1)+α7X3+α14X2+X+α ∈
F24 [X, θ] is a θ-circulant involutory MDS matrix .

Recently, Adhiguna et al. [35] studied the necessary and sufficient condition for the

existence of orthogonal θ-circulant matrices using q-polynomial rings. They provided

the following example of θ-circulant orthogonal MDS matrix.

Example 1.2.46. Let F24 be a finite field with irreducible polynomial X4 +X +1 and α is a root
of this polynomial. Let θ(α) = α2 and Ch,θ is the matrix associated with h⟨X⟩ = (X4 − 1) +

α11 + αX + α7X2 + α5X3 ∈ F24 [X, θ]. Then Ch,θ is a θ-circulant orthogonal MDS matrix.

Thus far, our emphasis has been on the construction of MDS matrices through various

matrix types. In the next section, we briefly explore the construction of MDS matrices

using Gabidulin and BCH codes, along with the recursive construction of MDS matrices

from a sparse matrix.

1.2.4 Recursive construction of MDS matrices

One significant challenge with the previously discussed construction of MDS matrices

lies in their inefficient hardware implementation, notably in constrained setups like

RFID systems and sensor networks. To address this limitation without compromising

on the maximum branch number, a novel approach emerged in the in the document of

PHOTON lightweight hash family [36] and subsequently applied in the diffusion layer of

the LED lightweight block cipher [37]. These ciphers implemented anm×mMDS matrix
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Bm derived from the companion matrix B. This method of MDS matrix construction is

termed as recursive MDS matrix construction.

Following these developments, in 2012, Sajadieh et al. [38] introduced a family of

diffusion layer utilizing Feistel-like structures and linear round functions. Additionally,

Wu et al. [39] created diffusion layers using matrix polynomials from the commutative

ring F2[L,L
−1], where L is a non-singular matrix over F2. In 2013, Thierry P. Berger [40]

constructed an recursive MDS matrix using the generator matrix of Gabidulin codes. This

matrix was constructed from the polynomial basis B = {1, α, α2, . . . , αm−1} of the field

F2m , where α is a root of an irreducible polynomial P (X) of degree m. The generator

matrix of the [2r, r, r + 1] Gabidulin code GB,r is of the form

GB,r =


a0 a1 · · · am−1

a
[1]
0 a

[1]
1 · · · a

[1]
m−1

...
... · · ·

...

a
[r−1]
0 a

[r−1]
1 · · · a

[r−1]
m−1

 ,

where ai = αi, a[i] = a2
i

and m = 2r. This matrix can be expressed as GB,r = (U |SrU)

with S being the diagonal matrix diagonal(a1, a
[1]
1 , a

[2]
1 , . . . , a

[r−1]
1 ) and U is the matrix

restricted to first r columns of GB,r. Then the systematic generator matrix of GB,r is

M = (Ir×r|U−1SrU). Consider the MDS diffusion matrix A = U−1SrU . The subsequent

theorem illustrates how the matrix A represents a recursive MDS construction derived

from a companion matrix.

Theorem 1.2.47. Consider the companion matrix

C =



0 0 0 · · · a0,0

1 0 0 · · · a1,0

0 1 0 · · · a2,0
...

...
... · · ·

...
0 0 0 · · · ar−1,0


,

where ai,0 represents the entries of the matrixA = U−1SrU for i = 0, 1, . . . , r−1. ThenCr = A.

Subsequently, in 2014, Augot and Finiasz [41] used shortened BCH codes for the

construction of recursive MDS matrices.

Definition 1.2.48. Let Fq be a finite field and β be an element in some extension field of Fq with
order(β) = n. Select integers l, d and consider the d− 1 consecutive powers βl, βl+1, . . . , βl+d−2

of β. Let g(x) = lcm (MinFq(β
l),MinFq(β

l+1), . . . ,MinFq(β
l+d−2)), where MinFq(α) is the

minimal polynomial of α over Fq. The cyclic code defined by g(x) is called a BCH code with
length n, dimension n− deg(g), and minimum distance at least d.

Augot and Finiasz established a crucial condition on the roots of the polynomial g(x) for

a BCH code to be an MDS code, as outlined in the following theorem:
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Theorem 1.2.49. An BCH code over Fq defined by the k roots βl, βl+1, . . . , βl+k−1 with the
actual distance k + 1 is MDS if and only if P (x) =

∏k−1
j=0(x − βl+j) ∈ Fq[x]. In this case,

g(x) = lcm (MinFq(β
l),MinFq(β

l+1), . . . ,MinFq(β
l+k−1)) is equal to P (x).

In [42], Gupta et al. introduced the notion of a c-BCH code over Fq as a specific

type of BCH code. These codes are defined by generating polynomials whose roots

can be represented as consecutive powers of an element β in an extension field of Fq.

Consequently, according to Theorem 1.2.49, a c-BCH code over Fq is also an MDS code.

The MDS c-BCH code over Fq has length n = ord(g) and dimension k = n − deg(g).

Therefore, the generator matrix is of size k× deg(g). For the use diffusion layer, a square

matrix is necessary, i.e., deg(g) = k implying n = 2k. However, in the extensions of F2

all elements have odd orders. Hence, the solution involves seeking [n = 2k + z,m =

k + z, d = k + 1] MDS c-BCH codes, which are then shortened by z positions to yield the

desired [2k, k, k + 1] MDS codes, where z is an odd integer.

In [42] the authors presented results on the values of n and the corresponding values

of l for which the constructed polynomials generate MDS c-BCH codes satisfying the

conditions of Theorem 1.2.49. For integers k ≥ 2 and n = 2k + z(≤ q + 1) for some odd

integer z, their theorem is following:

Theorem 1.2.50. Let k and n be integers with k ≥ 2 and n > 2k. Then there exists an MDS
c-BCH code of length n and of dimension (n− k) over Fq if and only if q ≡ ±1 (mod n).

Continuing the recursive MDS construction, in [43], the authors expanded the scope

beyond the generator polynomials of BCH codes to identify arbitrary polynomials that

generate recursive MDS matrices. Consider a monic polynomial g(x) = a0+a1x+a2x
2+

· · ·+ ak−1x
k−1 + xk ∈ Fq[x] of degree k and Cg be the companion matrix associated with

g. Then

Cg =



0 1 0 · · · 0

0 0 1 · · · 0
...

...
... · · ·

...

0 0 0 · · · 1

−a0 −a1 −a1 · · · −ak−1


.

If the matrix M = Cm
g is an MDS matrix, then we say that the polynomial g(x) yields a

recursive MDS matrix. In [43], Gupta et al. established the conditions for M = Cm
g to

form an MDS matrix, which we outline here.

Theorem 1.2.51. Let g(x) ∈ Fq[x] be a monic polynomial of degree k with g(0) ̸= 0 and ord(g) =
n ≥ 2. Let E = {0, 1, . . . , k− 1,m,m+1, . . . ,m+ k− 1} for some integer m, k ≤ m ≤ n− k.
Then the matrix M = Cm

g is MDS if and only if the weight of any non-zero multiple f(x) of g(x)
of the form f(x) =

∑
e∈E

fex
e ∈ Fq[x] is greater than k.

This theorem presents a direct method to construct recursive MDS matrices using the

generator polynomial of a cyclic code. Consider a cyclic code τ = ⟨g(x)⟩ defined by
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g(x) ∈ Fq[x] of degree k with a minimum distance of k + 1. When the condition of

Theorem 1.2.51 is satisfied, τ becomes an MDS code. Consequently, for all m, where

k ≤ m ≤ ord(g) − k, the matrix Cm
g derived from the polynomial g(x) is MDS. Gupta et

al. also established criteria to construct recursive MDS matrices based on the roots of the

polynomial g(x). The following result addresses this criterion.

Theorem 1.2.52. Let g(x) ∈ Fq[x] be a monic polynomial of degree k with g(0) ̸= 0 and ord(g) =
n. Suppose that g has t distinct roots, say λ1, λ2, . . . , λt ∈ Fq with multiplicities e1, e2, . . . , et
respectively. Let m be an integer with k ≤ m ≤ n− k. Then the matrix M = Cm

g is MDS if and
only if any k columns of the matrix

H ′ =


1 λ1 λ21 · · · λk−1

1 λm1 · · · λm+k−1
1

1 λ2 λ22 · · · λk−1
2 λm2 · · · λm+k−1

2
...

...
... · · ·

...
... · · ·

...
1 λk λ2k · · · λk−1

k λmk · · · λm+k−1
k


are linearly independent over Fq.

Building upon their work in [43], the authors introduced techniques to construct

polynomials that generate recursive MDS matrices. This was accomplished by carefully

choosing the roots and rigorous verification of the conditions specified in Theorem 1.2.49.

An alternative approach to construct recursive MDS matrices was extensively explored in

[44], [45], [46]. Particularly, in [44], To et al. introduced a new class of serial-type matrices

called Diagonal-Serial Invertible (DSI) matrices, known for their sparse characteristics.

The definition of a DSI matrix is as follows:

Definition 1.2.53. A Diagonal-Serial Invertible (DSI) matrix D = (di,j), 1 ≤ i, j ≤ k with
entries from the finite field F2m is determined by two vectors, a = (a1, a2, . . . , ak) ∈ (F∗

2m)
k and

b = (b1, b2, . . . , bk−1) ∈ (F2m)
k−1 as follows:

Di,j =



a1, for i = 1 and j = k;

ai, for i = j + 1;

bi, for i = j ≤ k − 1;

0, otherwise.

The initial observation concerning these matrices is that every DSI matrix D = DSI(a,b)

is indeed invertible. Consequently, the primary aim in constructing an MDS matrix from

a power of D is to ascertain the minimum value of q where Dq contains only non-zero

entries. To address this, To et al. calculated the entries of q-th power of the general DSI

matrix D = DSI(a,b) using graph theory. They represented D as a weighted adjacency

matrix to a directed graph with vertices labeled 1 to k, and Di,j as the weight of the
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directed edge from vertex i to vertex j. Then for any q ∈ N, we have

(Dq)i,j =
∑

length q paths from i to j

(product of all weights along the path).

This unique construction led to the following consequential result:

Theorem 1.2.54. Given a DSI matrix D of order k × k, the minimum power of D for all entries
to have a non-zero algebraic expression is k (and thus possibly MDS).

They further reduced the number of non-zero entries and proposed the following

subclass of DSI matrices:

Definition 1.2.55. A DSI matrix D = DSI(a,b) of order k is sparse if satisfies:b2 = b4 = · · · = bk−2 = 0, if k is even;

b2 = b4 = · · · = bk−3 = 0, if k is odd.

Extending Theorem 1.2.54, the authors of [44] established that Sparse DSI matrices, with

dimensions k × k, have the potential to achieve k-MDS status.

Furthermore, in [46], DSI matrices were extended to Diagonal-Like Sparse (DLS) matrices

through multiplication with a permutation matrix. The definition of DLS matrices is the

following:

Definition 1.2.56. Let ρ = (i1 i2 · · · in) be a permutation such that ik ̸= k for k =

1, 2, . . . , n, D1 be a non-singular diagonal matrix, andD2 be a diagonal matrix (may be singular).
Then the matrix B = PD1 + D2 is the diagonal-like sparse (DLS) matrix, where P is the
permutation matrix of order n × n related to the permutation ρ. These matrices are denoted
by DLS(ρ,D1, D2).

In their work outlined in [46], the authors presented significant findings concerning DLS

matrices in constructing recursive MDS matrices. They established that, in the case of a

DLS matrix of order n × n, the fundamental criterion for constructing a recursive MDS

matrix is to elevate M to the n-th power. Their result in this regard is as follows:

Theorem 1.2.57. Given a DLS matrix M = DLS(ρ,D1, D2) of order n ≥ 2, for k < n− 1, the
number of non-zero elements in Mk is less than n2 and hence Mk is not an MDS matrix.

A bound on the number of non-zero entries in the matrix D2 for a Diagonal-Serial

Invertible (DSI) matrix of order n × n to qualify as recursive MDS is provided in [46].

Furthermore, they verified the essential condition that ρmust form an n-cycle, as outlined

in the following theorem:

Theorem 1.2.58. For an n-MDS DLS matrix DLS(ρ,D1, D2) of order n× n, D2 must have at
least ⌈n2 ⌉ non-zero elements and ρ will be an n-cycle.
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As a continuation of the work in [46], the authors delved introduced a further

generalization of DLS matrices termed Generalized DLS matrices (GDLS). This extension

involved an additional multiplication of the matrix D2 with another permutation matrix.

Moreover, they offered compelling instances of GDLS matrices with orders 4, 5, 6, and 7

over the finite field F28 within the same paper.

In 2021, Kesarwani et al. presented a broader framework for constructing recursive MDS

matrices within finite commutative rings in [47]. They first established that a companion

matrix is similar to a diagonal matrix when the difference between roots of the associated

polynomial are units within the ring. Leveraging this similarity criterion, they proved

that for a polynomial f(x) with roots from the units of a ring R, the corresponding

companion matrix of f provide a recursive MDS matrix, if the generalized Vandermonde

matrix V constructed using the roots of f is non-singular under certain conditions on the

entries of V. Considering U(R) as the set of units of the ring R, the theorem can be stated

as follows:

Theorem 1.2.59. Let h = (h0, h1, . . . , hn−1) be an n-tuple over U(R) with hi − hj ∈ U(R)

for all i ̸= j, i, j ∈ {0, 1, . . . , n − 1}. Let f(x) =
n−1∏
i=1

(x − hi). The for r ≥ n, the companion

matrix of f , i.e., Lr
f is MDS if and only if V(h, Z) is non-singular for all Z = {r1, r2, . . . , rn} ⊂

{0, 1, . . . , n− 1, r, r + 1, . . . , r + n− 1}, where V(h, Z) = (h
rj
i ) ∀ 0 ≤ i ≤ n− 1, 1 ≤ j ≤ n.

The authors of [47] further investigated how the conditions governing V(h, Z) change

based on the types of roots found within the polynomial f .

Till now, we have outlined methodologies for constructing MDS matrices. However,

for these matrices to be efficiently utilized in the diffusion layer, an additional crucial

condition is necessary: the XOR-count of the matrix should be minimal. In the following

section, we will offer a concise overview of how this condition works.

1.2.5 On implementation cost of MDS matrices

In the realm of MDS matrix implementations, a well-established principle is that lower

Hamming weight typically results in more cost-effective hardware implementations

of the matrix. This implementation cost is usually measured by the number of

XORs required to implement the matrix. As a consequence, this principle motivates

numerous researchers to construct MDS matrices with low XOR counts. For instance,

the coefficients of the AES MDS matrix are (0x01, 0x01, 0x02, 0x03) over F28 , and this

matrix is very lightweight due to the low Hamming weight of its entries. In [48], Khoo

et al. introduced the following formula to determine the total number of XOR operations

needed to implement an entire row within a matrix:

XOR count for one row of M =

k∑
i=1

γi + (n− 1)r,
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where γi is the XOR count of the i-th entry in the row of M , k being the order of the

diffusion matrix, n denotes the number of non-zero elements in the row, and r is the

dimension of the finite field. A detailed computation of XOR counts for circulant and

serial matrices across different orders over finite fields with characteristic 2 is presented

in [48]. After that, in 2015, Sim et al. [24] delved into the impact of irreducible polynomials

on the XOR count. Specifically, they computed the XOR count of all elements in various

finite fields of characteristic 2 and provided a formula for determining the total total XOR

count for fields of characteristic 2.

Theorem 1.2.60. The total XOR count for the field F2m is
m∑
i=2

2i−2(i− 1), where m ≥ 2.

Additionally, in [32], Sarkar and Syed explored the behaviour of the XOR count

distributions under different bases of finite fields. They proved that total XOR count

for the field F2m is invariant under the choice of irreducible polynomial and basis.

Subsequently, they presented the following result.

Theorem 1.2.61. The XOR count spectrum of F2m/(p(x)) and F2m/(q(x)) are the same.

Moreover, in [49], Beierle et al. introduced the concept of s-XOR of a matrix. This allow

the better estimate of the cost of hardware implementation.

Definition 1.2.62. An invertible matrix A has an s-XOR count t, if t is the minimal number

such that A can be written as A = P
t∏

k=1

(I+Ei,j) with ik ̸= jk for all k, where Ei,j is the matrix

that has exactly one 1 in the i-th row and j-th column and P is a permutation matrix.

Beierle et al. characterized all elements of the finite field F2m with s-XOR count of 1. In

[50], Lukas Kölsch generalized this and characterized all elements of the finite field F2m

with s-XOR count of 2.

1.3 Format preserving encryption

Format preserving encryption is a cryptographic technique designed to encrypt data

while retaining its original format. Traditional encryption methods inherently alter

the input format, as doing otherwise would compromise the semantic security of the

encryption algorithm. This behaviour was vividly described by Brightwell and Smith in

[51] as “Ciphertext bears roughly the same resemblance to plaintext as a hamburger does

to a T-bone steak”.

Block cipher encryption algorithms, such as AES, encrypt data in blocks of a fixed size

(e.g. 16 bytes in the case of AES) and treat this data as a sequence of binary digits.

Moreover, most modes of operation used with block ciphers increase the length of the

ciphertext by adding an extra block of initialization vector (IV). In many situations, it

might be necessary to preserve the length as well as the format of the plaintext. However,

a standard block cipher would require a fixed size input and produce a (possibly longer
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than the plaintext) fixed size output. This gap in what was available versus what was

needed in some practical situations led to the study and design of encryption schemes

which preserve both the length as well as the format of the input. The first formal study

of such schemes, which are called Format Preserving Encryption (FPE) schemes, was

initiated by Bellare et al. in 2009 [52]. Many FPE schemes, such as FFX, FFSEM, BPS etc.,

were proposed in the last two decades and the US government’s standards body National

Institute of Standards and Technology (NIST) has now standardized some FPE schemes

via Special publication 38-G [53].

In 2002, Black and Rogaway [54] explore the problem of encrypting plain text of specified

format into cipher text of the same format. They introduced three approaches, namely

Prefix Cipher, Cycle-Walking Cipher, and Generalized-Fiestel Cipher.

Prefix Cipher: Fix an integer k and consider the set M = {0, 1, . . . , k − 1}. The Prefix

cipher, denoted as P , utilizes an existing block cipher E, having a key space K and a

domain that is a superset of M. The key space for P also remains K. To compute PK(m)

for some m ∈ M and K ∈ K, first compute the tuple I = (EK(0), EK(1), . . . , EK(k − 1)).

Since each element of I is a distinct string, replace each element in I with its ordinal

position (starting from zero) to produce the tuple J . Then, PK(m) correspond to them-th

component of J .

Cycle-walking cipher: Let M = {0, 1, . . . , k− 1} denote the message space, with k being

a fixed integer. Let N be the smallest power of 2 greater or equals to k, and EK be an

n-bit block cipher, where n = logN . Then it is possible to construct an FPE CyK on the

set M by computing c = EK(m) and iterating if c /∈ M.

Generalized-Fiestel Cipher: In this method first decompose all the numbers in M into

pairs of “similarly sized” numbers and then apply the well-known Feistel construction

(see Section 1.1.2 ) to produce a cipher.

Combining Cycle-Walking with AES based balanced Feistel network, Terrance Spices

proposed FFSEM [55] in 2008. From then many FPE schemes were proposed, for example

FFX ( based on Feistel network) [56], BPS [57], VFPE [58]. In 2016, Chang et al. [59]

proposed a new FPE algorithm SPF, based on the substitution permutation network

(SPN) strategy. Each round of SPF consists of some basic transformations namely,

Format Preserving SubBytes, Shift Rows, Format Preserving MixColumns, Format

Preserving Key Addition, and Format Preserving Tweak Addition. In the MixColumn

transformation, i.e. in the diffusion layer they used the following binary matrix
1 1 0 1

0 1 1 1

1 0 1 1

1 1 0 1

 .

However, this matrix does not provide optimal branch number which is necessary to

prevent differential attacks against the FPE design.

In 2016, Gupta, Pandey and Ray first introduce the concept of Format Preserving Set
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(FPS) in [60] in the diffusion layer of an FPE. The concept is the following:

LetM be the matrix corresponding to the diffusion layer with entries from some algebraic

structure A. Let X be any set with the desired input size and ϕ : X → A be an injective

map. Then ϕ(X) is a format preserving set with respect to M if Mv ∈ ϕ(X)n for all

v ∈ ϕ(X)n. This notion of FPS plays a fundamental role in constructing FPE from a

block cipher, as demonstrated by Gupta et al. in their illustrative credit card encryption

example presented in [60].

In the encryption of credit card numbers, the desired format for both input and output

are the digits 0 to 9. To achieve this, first consider an injective map ϕ from the set X =

{0, 1, . . . , 9} to Y = {0, 1}m. To preserve the format of plaintext and its corresponding

ciphertext, one way to encrypt an element X1 ∥ X2 ∥ · · · ∥ Xl from X l is the following:

• First encode the element X1 ∥ X2 ∥ · · · ∥ Xl using the map ϕ. Let the output is

ϕ(X1) ∥ ϕ(X2) ∥ · · · ∥ ϕ(Xl) = Y1 ∥ Y2 ∥ · · · ∥ Yl an element of Y l.

• Use an block cipher encryption algorithm E and get the ciphertext Ȳ1 ∥ Ȳ2 ∥ · · · ∥ Ȳl.

• Apply ϕ−1 to decode the ciphertext and get ϕ−1(Ȳ1) ∥ ϕ−1(Ȳ2) ∥ · · · ∥ ϕ−1(Ȳl).

Figure 1.3: FPS structure

For successful decoding, ensuring that each Ȳi belongs to ϕ(X) for all i = 1, 2, . . . , l is

crucial. Therefore, this method provides a solution for format preserving encryption if

and only if E(ϕ(X)l) = ϕ(X)l. A model of this construction is presented in Figure 1.3.

Therefore, when using an SPN-based block cipher, two primary questions arise:

• Can an S-box be constructed which maps ϕ(X)l to ϕ(X)l, and

• Can an n × n matrix be constructed which given any input vector from ϕ(X)l

outputs a vector from ϕ(X)l only?

In their work, Gupta et al. [60], delved into answering this question by constructing

format preserving sets and investigating their characteristics under different conditions

concerning the set and the associated matrix. Their definition of a Format Preserving Set

(FPS) over a finite field is as follows:
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Definition 1.3.1. A non-empty set S ⊆ Fq is said to be a format preserving set with respect to
an n× n matrix M(Fq) if Mv ∈ Sn for all v ∈ Sn.

In particular, when the additive identity 0 ∈ S, Gupta et al. proved that the possible

cardinality of an FPS is always a prime power. This conclusion stems directly from the

following theorem:

Consider an n × n matrix M = (mi,j) with entries from Fq and Z = {mi,j : mi,j ∈ F∗
q}.

Consider the subgroup F∗
q of generated by the element of the set Z and denote it by ⟨Z⟩.

Now define the set K = {k1α1 + k2α2 + · · ·+ krαr : r ≥ 0, ki ≥ 1, αi ∈ ⟨Z⟩}. This set K is

the smallest field containing entries of the matrix M .

Theorem 1.3.2. Let 0 ∈ S . SupposeM has at least one row which contains at least two non-zero
entries. Then, S is an FPS with respect to M if and only if S is a vector space over the field K.

By keeping in mind that MDS matrix provides optimal diffusion, in 2017 Chang et al.
[61] constructed a new efficient format preserving encryption scheme named e-SPF. To

construct an FPE on a set of cardinality 10, they considered the Galois field GF (11) and

they used the following MDS matrix in the permutation layer
1 1 2 5

5 1 1 2

2 5 1 1

1 2 5 1

 .

Since size of the field (which is 11) is greater than the alphabet size 10, each state

of encryption needs some discarding algorithm to maintain the format. Therefore

an immediate question pops up: why not instead of the finite field search for

format preserving sets over some other algebraic structure where cardinality 10 or

other important alphabet size is possible. Also, can we construct some MDS matrix

simultaneously over those algebraic structure?

In this direction, Barua et al. [62] investigated the existence of an FPS over finite

commutative ring with identity under the restriction that S is closed under addition.

They proved that, under these conditions, S acquires a unital module structure over the

ring. Interestingly, within the same paper, they presented an example that diverges from

the aforementioned restrictions yet still constitutes an FPS.

Example 1.3.3. Consider the ring R = Z10, and a 3 × 3 matrix M with entries from the set
{1, 3, 5, 7, 9} ⊂ Z10. Consider the set S = {1, 3, 5, 7, 9}. S is not closed under addition, since
3 + 5 = 8 /∈ S. However, S is an FPS with respect to M over the ring Z10.

FPS of multiple different cardinalities which are not prime power were also constructed

in [62]. They showed how to construct an FPS of cardinality 20 with respect to a 3 × 3

MDS matrix, cardinality 103 with respect to a 4× 4 MDS matrix, and cardinality 263 with

respect to a 4× 4 MDS matrix. Their method involves the structure of certain finite rings

which are direct products of finite fields.
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1.4 Main results

In this section, we provide motivation and outline the main results of this thesis, which

we will substantiate in subsequent chapters. Our initial set of results is inspired by the

construction of Maximum Distance Separable (MDS) matrices utilizing Cauchy matrices

over finite fields. In [20], Gupta and Ray introduced a construction of MDS matrices

from the Cauchy matrix with entries from an additive subgroup of the finite field F2m .

This innovative construction yields MDS matrices of order powers of 2. Furthermore,

these matrices exhibit Hadamard matrix properties, simplifying the inversion process

significantly. This construction method extends to producing MDS matrices of any order

smaller than the original matrix, as submatrices of a Cauchy matrix retain the Cauchy

property. Thus, it becomes feasible to create MDS matrices of orders that are not strictly

powers of 2 by utilizing submatrices from this construction. However, it is important

to note that this approach does not guarantee the preservation of the straightforward

inverse characteristic.

Therefore, it seems natural to ask whether it is feasible to devise a construction method

for MDS matrices using the Cauchy matrix that ensures a straightforward inverse

with the property that its submatrices also yield MDS matrices with easily invertible

characteristics.

In [63], we address this question by presenting a construction of the MDS Cauchy matrix

over a finite field of characteristic p ≥ 2, as detailed in Theorem 1.4.3. This construction

relies on the semi-orthogonal characteristic of Cauchy matrices, a concept introduced by

Miroslav Fiedler and Frank J. Hall in 2012 [64]. Before delving further into our results, it

is pertinent to define a semi-orthogonal matrix.

Definition 1.4.1. A non-singular matrix M is semi-orthogonal if there exist non-singular
diagonal matrices D1 and D2 such that M−T = D1MD2, where M−T denotes the transpose
of the matrix M−1.

This is a generalization of the orthogonal property of a matrix. Although Fiedler and Hall

termed this property as “G-matrices”, in this thesis, we adopt the term “semi-orthogonal

property” to refer to it consistently.

If the matrix M of Definition 1.4.1 is symmetric, then the inverse matrix is of the form

M−1 = D2MD1, whereD1 andD2 are non-singular diagonal matrices. Matrices with this

characterization are termed as semi-involutory matrices. This concept was introduced

by Cheon et al. in 2021 as a generalization of involutory property. The definition of

semi-involutory matrix is as follows:

Definition 1.4.2. A non-singular matrix M is semi-involutory if there exist non-singular
diagonal matrices D1 and D2 such that M−1 = D1MD2.

The diagonal matrices D1 and D2 are referred as associated diagonal matrices of a

semi-involutorty (semi-orthogonal) matrix throughout the thesis.
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Now, we proceed to present the theorem that provides an MDS matrix of any order,

featuring a straightforward inverse matrix for all the submatrices also.

Theorem 1.4.3. Let G = {x0, x1, . . . , xd−1} be a proper subfield of the finite field Fpn and let
r /∈ G. Consider the coset r + G = {y0, y1, . . . , yd−1}. Then A = ( 1

xi+yj
), 1 ≤ i, j ≤ d − 1 is

an MDS Cauchy matrix. Further, there exist diagonal matrices D1 = 1
c2
I and D2 = I such that

A−1 = D1AD2, where c =
d−1∑
k=0

1

r + xk
.

Therefore, it is evident that constructing MDS matrices possessing semi-involutory

property is achievable. In [63], we further explore MDS matrices characterized by both

semi-involutory an semi-orthogonal properties. Initially, we demonstrate the feasibility

of constructing MDS matrices of smaller orders, such as 2× 2 and 3× 3, while possessing

both semi-involutory and semi-orthogonal properties. We begin by presenting the results

for the 2× 2 case.

Theorem 1.4.4. Let A = (aij) be a 2× 2 semi-involutory matrix. Then A is MDS if and only if
aij ̸= 0 for all 1 ≤ i, j ≤ 2.

Theorem 1.4.5. Let A = (aij) be a 2× 2 semi-orthogonal matrix. Then A is MDS if and only if
aij ̸= 0 for all 1 ≤ i, j ≤ 2.

For the construction of 3 × 3 semi-involutory MDS matrices, we rely on the

characterization of semi-involutory matrices established in [65]. This result establishes

a connection between the entries of a semi-involutory matrix and the submatrix formed

by excluding the row and column containing that entry.

Theorem 1.4.6. LetA = (aij) be a semi-involutory matrix of orderm×m. Then detA(j|i) = 0

if and only if aij = 0.

Leveraging Theorem 1.4.6, we establish the following characterization for 3 × 3

semi-involutory matrices.

Theorem 1.4.7. Let A = (aij) be a 3× 3 semi-involutory matrix over a finite field. Then A is an
MDS matrix if and only if aij ̸= 0 for all 1 ≤ i, j ≤ 3.

To construct semi-orthogonal MDS matrices of order 3 × 3, we first present a result

analogues to Theorem 1.4.6 in the semi-orthogonal context.

Theorem 1.4.8. LetA = (aij) be a semi-orthogonal matrix of orderm×m. Then detA(j|i) = 0

if and only if aji = 0.

This result offers a direct method for constructing 3 × 3 MDS matrices over finite fields,

ensuring they possess the semi-orthogonal property.

Corollary 1.4.9. Let A = (aij) be a 3 × 3 semi-orthogonal matrix over a finite field. Then A is
an MDS matrix if and only if aij ̸= 0 for all 1 ≤ i, j ≤ 3.
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Our subsequent results focus on the circulant matrices with semi-involutory and

semi-orthogonal properties. This study is significant due to the non-existence results

of Gupta et al. in [31] for finite fields of characteristic 2. They proved that circulant MDS

matrices of order n ≥ 3 cannot be involutory. Furthermore, circulant MDS matrices fail to

achieve orthogonality, particularly when the order of the matrix is 2d×2d. Consequently,

investigating the behavior of circulant matrices concerning both semi-involutory and

semi-orthogonal properties is an interesting area to study.

In [63], we specifically investigate this question concerning circulant matrices over finite

fields. In this direction, we first establish that for circulant semi-involutory matrices over

a finite field, the diagonal matrices exhibit intriguing and noteworthy properties. The

result is as follows.

Theorem 1.4.10. Let A be an n × n circulant matrix over a finite field F. Then A is
semi-involutory if and only if there exist non-singular diagonal matrices D1, D2 such that
Dn

1 = k1I and Dn
2 = k2I for non-zero scalars k1, k2 in the finite field, and A−1 = D1AD2.

An interesting corollary of the preceding theorem provides a correlation between the

scalars k1, k2 and an eigenvalue of the circulant matrix.

Corollary 1.4.11. Let A be an n × n circulant, semi-involutory matrix over Fpm where n = pk

for some k. Then there exists diagonal matrices D1 and D2 with Dn
1 = k1I and Dn

2 = k2I for
some non-zero scalars k1, k2 in the finite field with k1k2 = 1

λ2n where λ is the sum of the entries
of the first row, which is an eigenvalue value of A.

The next two results are analogues to the previous two for the semi-orthogonal case.

Theorem 1.4.12. Let A be an n × n circulant matrix over a finite field F. Then A is
semi-orthogonal if and only if there exist non-singular diagonal matrices D1 and D2 such that
Dn

1 = k1I and Dn
2 = k2I for non-zero scalars k1, k2 ∈ F, and A−T = D1AD2.

Corollary 1.4.13. Let A be an n × n circulant, semi-orthogonal matrix over Fpm where n = pk

for some k. Then there exists diagonal matrices D1 and D2 with Dn
1 = k1I and Dn

2 = k2I for
some non-zero scalars k1, k2 in the finite field with k1k2 = 1

λ2n where λ is the sum of the entries
of the first row, which is an eigenvalue value of A.

In our subsequent finding, we establish the non-existence of MDS property for a

particular class of circulant semi-orthogonal matrices. These matrices are named

sesqui-semi-orthogonal matrices in [63] and for these matrices either D1 or D2 is an

identity matrix. This result mirrors Gupta et al. findings concerning the non-existence

of circulant MDS matrices (see Section 1.2.3).

Theorem 1.4.14. Let p be a prime, and A be a 2p × 2p circulant sesqui-semi-orthogonal matrix
over the field Fpm . Then A is not an MDS matrix.

In the last section of [63], we present a necessary and sufficient condition for a 4×4 matrix

with all non-zero entries to be semi-involutory. This result extends the characterization

for 3× 3 matrices proved by Cheon et al. in [65]. First we need the following definition.
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Definition 1.4.15. Let A = (aij), 1 ≤ i, j ≤ n be an n × n matrix. The upper G-discriminant
of A is the

(
n
2

)
× n matrix G(Au) = (aikakj), and the lower G-discriminant of A is G(Al) =

(akiajk), where 1 ≤ i < j ≤ n and k ∈ {1, 2, . . . , n}.

Theorem 1.4.16. LetA =


a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

 be a 4×4 non-singular matrix over some field

F with aij ̸= 0 for all i, j, and a32a24a43 = a23a34a42. Then A is semi-involutory if and only if
the following conditions are satisfied:

1. Entries of A satisfy

a12a23a31 = a21a32a13, a21a14a42 = a12a24a41, a13a34a41 = a31a14a43.

2. Determinant of X1, X2 and X3 are zero where

X1 =


a11a12 a12a22 a13a32 a14a42

a11a13 a12a23 a13a33 a14a43

a11a14 a12a24 a13a34 a14a44

a21a13 a22a23 a23a33 a24a43

X2 =


a11a12 a12a22 a13a32 a14a42

a11a13 a12a23 a13a33 a14a43

a11a14 a12a24 a13a34 a14a44

a14a21 a22a24 a23a34 a24a44

 ,

and X3 =


a11a12 a12a22 a13a32 a14a42

a11a13 a12a23 a13a33 a14a43

a11a14 a12a24 a13a34 a14a44

a14a31 a24a32 a33a34 a34a44

 .

3. Rank of G(Au) and G(Al) is at most 3.

4. The submatrix B of A formed by removing the first column of A (i.e., B =

A[1, 2, 3, 4|2, 3, 4]) has ‘totally the rank’ 3.

In [63], we have demonstrated the feasibility of constructing 3 × 3 semi-involutory

MDS matrices over a finite field. Our next goal is to study the general structure of 3 × 3

semi-involutory MDS matrices. This is a similar line of work done by Güzel et al. in [27]

in 2019. To begin with, we rely on the theorem proved in [65] which provides a relation

between the corresponding diagonal matrices of an irreducible semi-involutory matrix.

Note that, a matrix A of order n × n is said to be reducible, if there exists permutation

matrix P such that

P TAP =

[
A1 A2

0 A3

]
,

where A1, A2 are square matrices of order at least 1. A matrix is said to be irreducible if it

is not reducible. The result for irreducible matrices is as follows.
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Theorem 1.4.17. Let A be an irreducible semi-involutory matrix of order n × n such that
A−1 = D1AD2, where D1 and D2 are non-singular diagonal matrices. Then D1 = cD2 for
some non-zero constant c.

Using this characteristic of irreducible matrices, we establish the following structure for

3× 3 semi-involutory matrices in [66].

Theorem 1.4.18. Let A = (aij), 1 ≤ i, j ≤ 3 be a 3×3 irreducible, semi-involutory matrix with
an associated diagonal matrix D =diagonal(d1, d2, d3) over the finite field F2m . Then the entries
of A can be expressed in terms of the diagonal entries of A and entries of D as follows:

a12 = (a11d1 + a33d3)d
−1
2 x,

a13 = (a11d1 + a22d2)d
−1
3 xy,

a21 = (a22d2 + a33d3)d
−1
1 x−1,

a23 = (a22d2 + a11d1)d
−1
3 y,

a31 = (a33d3 + a22d2)d
−1
1 (xy)−1,

a32 = (a33d3 + a11d1)d
−1
2 y−1,


(1.2)

where x, y are some non-zero elements of F2m .

In the specific scenario where d1 = d2 = d3 = 1 and c = 1, where c is the constant from

Theorem 1.4.17, the aforementioned theorem simplifies to the result established by Güzel

et al., as stated in Theorem 1.2.23.

We also establish the converse of Theorem 1.4.18 under certain conditions in the

subsequent theorem.

Theorem 1.4.19. Let A = (ai,j) be a 3× 3 matrix over F2m . Suppose d1, d2, d3, x, y ∈ F∗
2m are

any elements that satisfy Equation (1.2). If a11d1+a22d2+a33d3 ̸= 0, thenA is semi-involutory.
Moreover, if any two of a11d1 + a22d2, a22d2 + a33d3 and a11d1 + a33d3 are non-zero, then A is
irreducible.

The irreducible property of MDS matrices allow us to prove the following result.

Theorem 1.4.20. Let A = (ai,j) be a 3 × 3 matrix over F2m following the form described in
Equation (1.2), where a11, a22, a33, d1, d2, d3, x, y are non-zero. Then A is semi-involutory and
MDS if and only if a11d1 + a22d2, a11d1 + a33d3, a22d2 + a33d3 and a11d1 + a22d2 + a33d3 are
non-zero elements of F2m .

This result is a generalization of Proposition 1.2.24. By using Theorem 1.4.20, we

enumerate the total number of semi-involutory MDS matrices over the finite field F2m

in [66]. For this purpose, consider the following construction of a set S of 6-tuples

that satisfy the conditions presented in Theorem 1.4.20 over the finite field F2m : S =

{(a11, a22, a33, d1, d2, d3) ∈ (F∗
2m)

6,m ≥ 2 : a11d1 + a22d2 ̸= 0, a11d1 + a33d3 ̸= 0, a22d2 +

a33d3 ̸= 0, a11d1 + a22d2 + a33d3 ̸= 0}. Using the cardinality of S, we ascertain the total

number of semi-involutory MDS matrices over the finite field F2m .
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Theorem 1.4.21. The number of 3×3 semi-involutory MDS matrix over the finite field F2m ,m ≥
2 is (2m − 1)4(2m − 2)(23m − 6.22m + 9.2m − 4).

Our subsequent goal is to study the characteristics of cyclic matrices as introduced by

Liu and Sim in [25]. These cyclic matrices are generalization of circulant matrices. Before

delving into the properties of cyclic matrices, let us revisit the definition of g-circulant

matrices introduced by Friedman in [67], which stands as a generalization of circulant

matrices in specific scenarios.

Definition 1.4.22. A g-circulant matrix of order k × k is a matrix of the form A = g-circulant

(c0, c1, . . . , ck−1) =



c0 c1 · · · ck−1

ck−g ck−g+1 · · · ck−1−g

ck−2g ck−2g+1 · · · ck−1−2g

...
... · · ·

...
cg cg+1 · · · cg−1


, where all subscripts are taken modulo k.

In literature, the g-circulant matrices are explored vastly and one can see these references

[68],[67]. A representation of g-circulant matrices utilizing permutation matrices is

established in Theorem 5.1.7 of [68], which is the following.

Theorem 1.4.23. Let A = g-circulant(c0, c1, . . . , ck−1) with gcd(k, g) = 1. Then A

can be expressed as A =

k−1∑
i=0

aiQgP
i, where P = circulant(0, 1, 0, . . . , 0) and Qg =

g-circulant(1, 0, 0, . . . , 0).

In [69], we extend this representation to cyclic matrices. To proceed, we first revisit the

definition of cyclic matrices.

Definition 1.4.24. For a k-cycle ρ ∈ Sk, a matrix Cρ of order k × k is called cyclic matrix
if each subsequent row is ρ-permutation of the previous row. We represent this matrix as
cyclicρ(c0, c1, c2, . . . , ck−1), where (c0, c1, c2, . . . , ck−1) is the first row of the matrix. The
(i, j)-th entry of Cρ can be expressed as Cρ(i, j) = cρ−i(j).

Liu and Sim established a significant correspondence between cyclic and circulant

matrices, a result highlighted in Corollary 1.2.36. Building upon this, in [69], we furthered

this notion by proving a permutation equivalence between a circulant matrix and a cyclic

matrix. Additionally, we explicitly determined the permutation matrices involved in this

equivalence.

Theorem 1.4.25. Let Cρ(c0, c1, . . . , ck−1) be a cyclic matrix. Then there exists a unique
permutation matrix Q such that CQ = circulant(c0, cρ(0), cρ2(0), cρ3(0), . . . , cρk−1(0)).

This result provides the following generalization of Theorem 1.4.23 to cyclic matrices.

Theorem 1.4.26. Let Cρ(c0, c1, c2, . . . , ck−1) be a cyclic matrix. Then Cρ =

k−1∑
i=0

aρi(0)P
iQρ,

where Qρ = cyclicρ(1, 0, 0, . . . , 0) corresponding to the k-cycle ρ and P =circulant
(0, 1, 0, . . . , 0).
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Our subsequent objective is to study the g-circulant matrices with MDS property over the

finite field of characteristic 2. We commence with the following result on the determinant

of g-circulant matrices of order 2d × 2d over the finite field F2m .

Lemma 1.4.27. LetA = g-circulant(c0, c1, c2, . . . , c2d−1) be a matrix with entries from the finite

field F2m and g be an odd integer. Then det(A) = (

2d−1∑
i=0

ci)
2d .

Using this lemma, we establish the non-existence of g-circulant orthogonal MDS matrices

of order 2d×2d over the finite field of characteristic 2. This result represents a generalized

version of the outcome observed for circulant matrices, as presented in Section 1.2.3.

Theorem 1.4.28. Let A = g-circulant(c0, c1, c2, . . . , c2d−1) be a matrix with entries from the
finite field F2m and g be an odd integer. Then A is not an MDS matrix.

Note that, this result holds for a more general class, i.e., for cyclic matrices using Theorem

1.4.25.

Theorem 1.4.29. Let C be a 2d × 2d cyclic orthogonal matrix over F2m . Then C is not an MDS
matrix.

In addition to the study of g-circulant orthogonal matrices, in [70], we explore g-circulant

matrices with involutory property. These findings represent an extension of the earlier

exploration of the involutory and MDS properties of circulant and left-circulant matrices,

as initiated in [17, 25, 30, 31]. Our initial result establishes the pivotal reason behind

focusing on the condition g2 ≡ 1 (mod k) for constructing an involutory MDS matrix.

Theorem 1.4.30. Let A be a g-circulant matrix of order k × k and gcd(k, g) = 1. If g2 ̸≡ 1

(mod k), then A cannot be involutory.

Our subsequent aim is to investigate solutions to the equation g2 ≡ 1 (mod k) focusing

on those that lead to an involutory MDS g-circulant matrix. In this direction, first

observation is that when the order of the matrix is 2d×2d, a g-circulant involutory matrix

cannot be MDS over the finite field F2m . The result stands as follows.

Theorem 1.4.31. LetA be a g-circulant matrix of order 2d×2d over a finite field of characteristic
2 and g is odd. Let (c0, c1, c2, . . . , c2d−1) be the first row of A and g2 ≡ 1 (mod 2d). If A is an
involutory matrix, then A can not be MDS.

This aforementioned result is a partial affirmative answer to the conjecture proposed by

Liu and Sim in [25] noted in Section 1.2.3.

Our subsequent result focus on the case where the order of the matrix is of the form

2m
l∏

i=1

pmi
i ,m ≥ 0,mi ≥ 1 and pi’s are odd primes. Our initial finding affirm that a

g-circulant involutory matrix cannot be MDS if the value of g is strictly less than k − 1.
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Theorem 1.4.32. Let A be a g-circulant matrix of order k × k with gcd(k, g) = 1 over a finite

field of characteristic 2 with k = 2m
l∏

i=1

pmi
i ,m ≥ 0,mi ≥ 1 and pi’s are odd primes. Let

(c0, c1, c2, . . . , ck−1) be the first row of A and g2 ≡ 1 (mod k). If A is an involutory matrix and
1 ≤ g < k − 1, then A is not an MDS matrix.

The next result is on the remaining case, i.e., g = k − 1. In this scenario, the matrix

becomes left-circulant. Our following findings prove the possibility of constructing

left-circulant involutory MDS matrices under specific conditions. This outcome aligns

with Proposition 6 outlined in [25], and we offer an alternate proof leveraging the

structure of the matrix A2.

Theorem 1.4.33. Let A be a left-circulant matrix of order k over the finite field of characteristic

2 with k > 2, k = 2m
l∏

i=1

pmi
i ,m ≥ 0,mi ≥ 1 and pi’s are primes. Let (c0, c1, c2, . . . , ck−1) be

the first row of A. Then A is involutory and MDS if and only if the following conditions holds:

1.
k−1∑
i=0

ci = 1,

2.
k−1∑
i,j=0,

gi+j=l (mod k)

cicj = 0, 1 ≤ l ≤ ⌊k−1
2 ⌋,

3. All submatrices of A have non-zero determinant.

We also investigate g-circulant matrices endowed with semi-orthogonal and

semi-involutory properties. These findings naturally extend the results presented

in Theorems 1.4.10 and 1.4.12. The results are as follows:

Theorem 1.4.34. LetA be a g-circulant matrix of order k×k over a finite field F with gcd(g, k) =

1. ThenA is semi-orthogonal if and only if there exist non-singular diagonal matricesD1, D2 such
that Dk

1 = k1I and Dk
2 = k2I for non-zero scalars k1, k2 in the finite field and A−T = D1AD2.

Theorem 1.4.35. LetA be a g-circulant matrix of order k×k over a finite field F with gcd(g, k) =

1. ThenA is semi-involutory if and only if there exist non-singular diagonal matricesD1, D2 such
that Dk

1 = k1I and Dk
2 = k2I for non-zero scalars k1, k2 in the finite field and A−1 = D1AD2.

In [71], we further investigate the circulant MDS matrices with semi-orthogonal property

over a finite field of characteristic 2. Leveraging Theorem 1.4.12, we establish that for

circulant semi-orthogonal matrices of order 2d × 2d, the trace of the associated diagonal

matrices is zero over a finite field of characteristic 2.

Proposition 1.4.36. Let A be a circulant, semi-orthogonal matrix of order 2d × 2d over the finite
field F2m with associated diagonal matrices D1 and D2. Then the trace of D1 and D2 is zero.

Additionally, we establish a correlation between the trace of associated diagonal matrices

and the MDS property for even order circulant matrices. The initial matrix order we

investigate is 2in× 2in, i > 1 and n ≥ 3, an odd integer. The result is as follows.
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Theorem 1.4.37. Let A be a circulant, semi-orthogonal matrix of order k× k over the finite field
F2m with associated diagonal matrices D1 and D2, where k = 2in, i > 1 and n ≥ 3, an odd
integer. Then A is MDS implies both the matrices D1 and D2 have trace zero.

For other even numbers, i.e., numbers in the form of 2n, where n is an odd number,

an additional condition on the entries of at least one of the corresponding diagonal

matrices becomes necessary. Any diagonal matrix of even order meeting this criterion

is termed as non-periodic diagonal matrix. Specifically, we define a diagonal matrix

D = diagonal(d0, d1, d2, . . . , d2n−1) as a non-periodic diagonal matrix, if the entries satisfy

di ̸= di+n, i = 0, 1, 2, . . . , n− 1. The result under this condition is as follows.

Theorem 1.4.38. Let A be a circulant, semi-orthogonal matrix of order 2n×2n, n ≥ 3 be an odd
number, over F2m with associated diagonal matrices D1 and D2. If A is an MDS matrix and at
least one of the associated diagonal matrix is non-periodic, then trace of that non-periodic diagonal
matrix is zero.

We also provides examples of semi-orthogonal MDS matrices with odd orders in

[71]. The conclusive finding in this chapter pertains to the analogous characteristics

of previous results concerning circulant semi-involutory matrices. The theorem is as

follows.

Theorem 1.4.39. Let A be an n × n, n ≥ 3, n ̸= 2i circulant, semi-involutory matrix over the
finite field F2m with associated diagonal matrices D1 and D2. Then A is MDS implies both the
matrices D1 and D2 have trace zero.

This result can be perceived as an extension of the result of Gupta et al. presented in [30],

where it was proved that circulant involutory matrices of order n ≥ 3 cannot be MDS.

The last part of this thesis addresses the construction of format preserving sets over

rings and modules. We show that it is possible to construct format preserving sets over

a finite commutative ring which are not closed under addition. This result provide the

general theory behind the Example 1.3.3.

Theorem 1.4.40. Let I = ⟨a⟩ be a proper ideal of R = Zn, where n is a composite positive
integer and S = I + 1 ⊆ R. Then S is an FPS with respect to a matrix Mr×r(S) if and only if
the order of the matrix r ≡ 1(mod a).

We further study the similar construction of format preserving sets over Galois rings,

summarized as follows.

Theorem 1.4.41. Let R = GR(pn, r) and Ii be a principal ideal of R. Consider S = Ii+1 ⊆ R.
Then S is an FPS with respect to a matrix Mr×r with entries from S if and only if r ≡ 1(mod pi).

Moreover, we establish a construction of FPS over arbitrary rings by showing that ideals

are natural source of format preserving sets.

Theorem 1.4.42. Let S be an ideal of the ring R, then S is a format preserving set with respect
to any matrix Mn×n(R).
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The subsequent construction of FPS for torsoin modules over PID relies on the

fundamental theorem of finitely generated modules over PID.

Theorem 1.4.43. Let N be a finite module over a PID R with invariant factors a1, a2, . . . ,
am. A subset S of N is an FPS with respect to Mn×n(R) if and only if there exists Si ⊆ R/(ai),
such that each Si is an FPS with respect to Mn×n(R) for all i = 1, 2, . . . ,m.

These constructions of FPS within modules prompt an intriguing question: is it feasible to

construct MDS matrices over algebraic structures beyond finite fields? In this direction,

many authors [72, 73, 74] explored the construction MDS codes and corresponding

generator matrices over cyclic groups, Abelian groups, and elementary Abelian groups

as a module over Zp. In [75], we consider the construction of MDS matrix by considering

Zm as a Z module.

Theorem 1.4.44. Let N = Zm be a Z-module, where m = pd11 p
d2
2 · · · pdrr , and pi’s are distinct

primes, 1 ≤ i ≤ r. Suppose M = (aij)r×k is a matrix with entries from Z. Then M cannot be
MDS if max{r, k} ≥ p = min{p1, p2, . . . , pr}.

1.5 Organization of the thesis

We now give a brief outline of the work done in each chapter for the convenience of

reader.

Chapter 1. In this chapter, we give a brief introduction to the construction of maximum

distance separable (MDS) matrices and format preserving sets (FPS) using various

methods. For motivation, we describe some of the classical background as well as recent

results which lead to this work. In this chapter we also give the layout of the thesis and

the statement of the main results established in this thesis.

Chapter 2. In this chapter, we give the necessary prerequisites which are important in

order to understand the statement of the results and their proofs. We also recall some of

the recent work done by various authors which will be used in our discussion.

Chapter 3. In this chapter, we introduce the construction of MDS matrices possessing

both semi-involutory and semi-orthogonal properties. These properties represent a

generalization of the classical involutory and orthogonal properties of matrices. We

prove that some classical direct construction of MDS matrices over the finite fields satisfy

these properties which makes their inverse matrices easy to calculate. Additionally,

we provide a characterization of 4 × 4 semi-involutory matrices and characterize 3 × 3

semi-involutory and semi-orthogonal matrices with MDS property.

Chapter 4. In this chapter, we present the general structure of 3 × 3 semi-involutory

matrices over the finite field of characteristic 2. We also characterize these matrices with

the MDS property. Furthermore, we enumerate the total count of 3 × 3 semi-involutory
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MDS matrices over the finite field of characteristic 2.

Chapter 5. In this chapter, we introduce the general structure of cyclic matrices using

permutation matrices. We establish that cyclic matrices encompass a broader class

compared to both the g-circulant matrices introduced by Friedman and the traditional

circulant matrices. Additionally, we explore the properties of g-circulant and cyclic

orthogonal matrices exhibiting the MDS property.

Chapter 6. In this chapter, we explore g-circulant matrices with involutory and

MDS properties for various orders over the finite field of characteristic 2. Our initial

contribution involves providing an affirmative answer for Liu and Sim’s conjecture

for a subclass of cyclic matrices. Additionally, we explore g-circulant matrices with

semi-involutory and semi-orthogonal properties.

Chapter 7. In this chapter, we delve into the connection between the trace of the

associated diagonal matrices of circulant semi-orthogonal matrices of even orders with

the MDS property over the finite field F2m . Additionally, we present examples of

circulant, semi-orthogonal MDS matrices for odd orders. Analogous results for circulant

semi-involutory matrices of order n ≥ 3 are also demonstrated.

Chapter 8. In this chapter, we investigate the cardinality of format preserving sets (FPS)

over rings and modules. We specifically construct FPS of cardinalities 26 and 52 over

torsion modules and rings. These cardinalities are interesting because they correspond

to the set of English alphabets, without and with capitalization.

Chapter 9. In this chapter, we study the construction of maximum distance separable

(MDS) matrices over Z modules. Utilizing the concept of MDS codes over modules

introduced by Dong, Soh, and Gunawan, we establish that a matrix M with entries from

the PID is MDS if and only if M is MDS under the projection map on the same Abelian

group.
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Preliminaries

To make our discussion reasonably self-sufficient, we recall some of the basic definitions

and related results which shall be used frequently in the later chapters.

2.1 Algebraic structures and their properties

The definitions and the proof of the results mentioned in this section can be found in the

textbook [76].

Definition 2.1.1. A group is an ordered pair (G, ∗) where G is a set and ∗ is a binary operation
on G satisfying the following axioms:

• (a ∗ b) ∗ c = a ∗ (b ∗ c) for all a, b, c ∈ G,

• There exists an element e in G, called an identity of G, such that for all a ∈ G we have
a ∗ e = e ∗ a = a,

• For each a ∈ G there is an element a−1 of G, called an inverse of a, such that a ∗ a−1 =

a−1 ∗ a = e.

A semigroup is a set G together with a binary operation ∗ that satisfies the associative

property i.e., for all a, b, c ∈ G the equation (a ∗ b) ∗ c = a ∗ (b ∗ c) holds.

Definition 2.1.2. A group (G, ∗) is called Abelian (or commutative ) if a ∗ b = b ∗ a for all
a, b ∈ G.

Definition 2.1.3. A group G is cyclic if G can be generated by a single element, i.e., there is
some element x ∈ G such that G = {xn | n ∈ Z}.

Definition 2.1.4. Let Σ be any non-empty set and let SΣ be the set of all bijections from Σ to
itself. The set (SΣ, ◦) is called symmetric group where the operation ◦ is function composition.
If Σ = {1, 2, . . . , n}, the symmetric group on Σ is denoted Sn, the symmetric group of degree n.

Note that, the order of Sn is n!, because there are precisely n! permutations of

{1, 2, · · · , n}. A cycle is a string of integers which represents the element of Sn which

cyclically permutes these integers (and fixes all other integers). The cycle (x1 x2 · · · xm)

is the permutation which sends xi to xi+1 for all 1 ≤ i ≤ m− 1 and sends xm to x1.

Definition 2.1.5. Let (G, ∗) and (H, ◦) be groups. A map ϕ : G → H such that ϕ(x ⋆ y) =

ϕ(x) ◦ ϕ(y) is called a homomorphism.
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If the domain and range of the homomorphism ϕ are the same set, the it is called

endomorphism. Again if the map ϕ is a bijection, then it is called an isomorphism between

G and H .

Definition 2.1.6. A ring is a non empty set R together with two binary operations addition (+)

and multiplication (·) satisfying following axioms:

1. (R,+) is an abelian group.

2. (R, ·) is semigroup.

3. (r + s) · t = r · s+ s · t and r · (s+ t) = r · s+ r · t for all r, s, t in R.

A ring R is said to be commutative if it is commutative with respect to multiplication. We

sometimes simply write ab instead of a · b for a, b ∈ R. The additive identity of the ring

is denoted by 0 and the multiplicative identity, if it exists, is denoted by 1. Multiplicative

inverse of any element a is denoted by a−1. Characteristic of ring R is the smallest integer

n such that n · 1 = 0. If no such n exists, then we say R is of characteristics 0.

Definition 2.1.7. (i) A non-zero element a of a ring R is called a zero divisor if there is a
non-zero element b in R such that ab = 0 or ba = 0.

(ii) An element u in the ring R is called a unit if there exists v in R such that uv = vu = 1.

For example, every non zero element in the ring Zn is either a unit or a zero divisor. The

ideal of a ring plays a very important in this thesis. We define it next.

Definition 2.1.8. A (two sided) ideal I of a ring R is a subset of R with the following properties:

(i) For any r1, r2 ∈ I, (r1 − r2) ∈ I.

(ii) For any r ∈ R and r1 ∈ I, r · r1 ∈ I and r1 · r ∈ I.

If an ideal I is a proper subset of the ring it is called a proper ideal. If an ideal I is

generated by a single element α, it is called a principal ideal. We denote it by I = ⟨α⟩.

Definition 2.1.9. A Principal Ideal Domain (P.I.D.) is an integral domain in which every ideal
is principal.

Two families of ring we discuss now are ring of integers modulo n and Galois ring. The

set of integers modulo n, equipped with the operations of addition and multiplication,

constitutes a ring denoted as Zn in this thesis. A few notable properties of Zn are outlined

below.

1. (Zn,⊕,⊙) is a commutative ring with unity. The operation ⊕ is addition modulo n

and ⊙ is multiplication modulo n. The element 1 is the multiplicative identity and

0 is the additive identity of this ring.

2. Every ideal of Zn is principal ideal.
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3. Every non-zero element of Zn is either a unit or a zero divisor.

Galois rings are finite extensions of the ring Zpn , where p is a prime number. Let f(x) be a

monic, irreducible polynomial in Zpn [x]. Consider the ring homomorphism ψ : Zpn [x] →
Zp[x], where ψ(c0 + c1x+ · · ·+ cnx

n) = c̄0 + c̄1x+ · · ·+ c̄nx
n. Consider the image of f(x)

under the mapping ψ in Zp[x]. If the image f(x) in Zp[x] is irreducible in Zp, then f(x) is

called a monic, basic, irreducible polynomial.

Let f(x) is a monic, basic, irreducible polynomial of degree m over the ring Zpn . Then

the residue class ring Zpn [x]/⟨f(x)⟩ is a Galois ring, denoted by GR(pn,m). This ring is

of characteristic pn and of cardinality pnm. Some properties of the Galois ring GR(pn,m)

are as follows:

• GR(pn,m) is a finite, commutative, local ring, i.e., rings with a unique maximal

ideal.

• The unique maximal ideal of GR(pn,m) is the principal ideal (p) = pGR(pn,m). It

consists all elements which are multiple of p. Also GR(pn,m)/(p) is isomorphic to

the finite field Fpm .

• Other principal ideals of GR(pn,m) are Ii = (pi), 0 ≤ i ≤ n and the elements are of

the form Ii = {c0 + c1x+ · · ·+ cm−1x
m−1 : cj ∈ (pi), 1 ≤ j ≤ m− 1}.

Definition 2.1.10. Let R be a ring. A triple (N,+, ·), where (N,+) is an Abelian group together
with an action of R on N , is called an R-module if it satisfies the following conditions:

(i) (r + s) · n = r · n+ s · n, for all r, s ∈ R, n ∈ N .

(ii) (rs) · n = r(s · n), for all r, s ∈ R, n ∈ N .

(iii) r · (n1 + n2) = r · n1 + r · n2, for all r ∈ R, n1, n2 ∈ N .

(iv) Further, if the ring R has 1, then 1 · n = n, for all n ∈ N .

If N satisfies the above conditions over a field R then it becomes a vector space over R.

Further, every ring R has a module structure over itself.

Definition 2.1.11. Let R be a ring and N be an R-module. A subset N ′ of N is a submodule of
N if and only if

(i) N ′ ̸= ϕ and,

(ii) x+ ry ∈ N ′ for all r ∈ R and x, y ∈ N ′.

For example, if we consider a ring R as a module over itself, ideals are submodules of

R. An element n ∈ N of the R-module is called a torsion element if rn = 0 for some

non-zero element r ∈ R. The set of torsion elements is denoted by Tor(N) = {n ∈ N :

rn = 0 for some non-zero r ∈ R}.

Definition 2.1.12. An R-module N is said to be a torsion module if every element of N is a
torsion element.
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For example, any finite Abelian group is a torsion module over Z. For any submodule

N ′ of N, the annihilator of N ′ is the ideal of R defined by Ann(N ′) = {r ∈ R : rn =

0 for all n ∈ N ′}.

Definition 2.1.13. An R-module N is said to be free module on the subset A of N if for every
non-zero element x of N , there exist unique non-zero elements r1, r2, . . . , rn of R and unique
a1, a2, . . . , an in A such that x = r1a1 + r2a2 + · · ·+ rnan for some positive integer n.

The fundamental theorem of finitely generated modules over PID is following:

Theorem 2.1.14. Let R be a PID and N be a finitely generated R-module. Then

(i) N is isomorphic to the direct sum of finitely many cyclic modules. More precisely,

N ∼= Rr
⊕

R/(a1)
⊕

R/(a2)
⊕

· · ·
⊕

R/(am)

for some integer r ≥ 0 and non-zero elements a1, a2, . . . , am of R which are not units in R
and satisfy the divisibility relations a1|a2| · · · |am.

(ii) N is torsion free if and only if N is free.

(iii) Tor(N) ∼= R/(a1)
⊕

R/(a2)
⊕

· · ·
⊕

R/(am).

The elements a1, a2, . . . , am in Theorem 2.1.14 are known as the invariant factors of N .

Since R is a PID, for each 1 ≤ i ≤ m, R/(ai) is a cyclic module and its elements are of the

form r + (ai), which we denote as r̄.

A field F is a commutative ring with identity in which every non-zero element has an

inverse. The characteristic of a field F is the smallest positive integer p such that p·1F = 0,

where 1F is the multiplicative identity of F.

Proposition 2.1.15. The characteristic of a field F is either 0 or a prime p.

For example, the finite field Fp = Zp has characteristic p for any prime p. Also Fp has p

elements. The field Fpn is an finite extension of Fp with degree of extension n. Also Fpn ≃
Fp/⟨f(x)⟩, where f(x) is an irreducible polynomial of degree n in Fp[x]. For the finite

field Fq with q = pm, p prime, F∗
q is the set of non-zero elements of Fq and |F∗

q | = q − 1.

Theorem 2.1.16. F∗
q is a cyclic multiplicative group of order pm − 1.

Therefore, if α is a generator of the cyclic group F∗
q , then all elements are of the form

{1, α, α2, · · · , αpm−1} with αpm = 1.

In the finite field of characteristic 2, elements can be expressed in binary and hexadecimal

forms. For instance, consider the finite field F24 with irreducible polynomial x4 + x + 1.

If β ∈ F24 , it can be written as β0 + β1a+ β2a
2 + β3a

3, where a is a root of the polynomial

x4 + x + 1. Then β = (β0, β1, β2, β3)2 is the binary representation of the element. For

example, the binary form of the element a3 + a2 + 1 is (1101)2 and the hexadecimal form

is D.
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2.2 Some important results on matrices

In this section, we concentrate on specific classes of matrices and their properties, which

play a significant role in this thesis. A matrix, denoted as M = (mi,j), has entries mi,j

representing the element in the i-th row and j-th column. Alternatively, we may use mij .

The inverse and transpose are represented as M−1 and MT throughout the thesis.

Definition 2.2.1. Let {x0, x1, . . . , xn−1} and {y0, y1, . . . , yn−1} be two sets of elements from a
finite field F such that xi + yj ̸= 0 for 0 ≤ i, j ≤ n − 1. Then the matrix A =

(
1

xi+yj

)
, 0 ≤

i, j ≤ n− 1 is called a Cauchy matrix.

The determinant of a Cauchy matrix is

detA =

∏
1≤i<j≤n(xj − xi)(yj − yi)∏

1≤i,j≤n(xi + yj)
.

Also for the case xi ̸= xj and yi ̸= yj for all 1 ≤ i, j ≤ n, the determinant is

always non-zero and hence in this case square Cauchy matrices are invertible. Let

A−1 = (γij), 1 ≤ i, j ≤ n. Then the general form of γij is

γij = (xj + yi)

∏
l ̸=i(xj + yl)

∏
k ̸=j(yi + xk)∏

l ̸=j(xj − xl)
∏

k ̸=i(yi − yk)
. (2.1)

Definition 2.2.2. The matrix

V = vand(v0, v1, · · · , vm−1) =


1 v0 v20 · · · vn0

1 v1 v21 · · · vn1
...

...
... · · ·

...
1 vm−1 v2m−1 · · · vnm−1


is called a Vandermonde matrix of order m× n.

The (i, j)-th entry of a Vandermonde matrix is is denoted as V (i, j) = vji , considering

zero-based indices for both i, j. Most authors define the Vandermonde matrix as the

transpose of the aforementioned matrix.

The determinant of a square Vandermonde matrix is detV =
∏

0≤i<j≤n

(vi − vj). While

over the real field, the square submatrices of Vandermonde matrices are nonsingular,

this property does not hold over finite fields, as pointed out by MacWilliams and Sloane

in [16]. Therefore, an interesting remark regarding Vandermonde matrices over finite

field is the following:

Remark 2.2.3. There exists Vandermonde matrices over finite field with singular submatrices.
For example, the matrix Vandermonde(1, α, α4, α5), where α is a primitive element of the finite
field F24 defined by the polynomial x4 + x+ 1 has a singular submatrix. This matrix was shown
to have a singular submatrix, as demonstrated in [17].
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Definition 2.2.4. A finite field Hadamard matrix, denoted as H , is of order 2t × 2t, t > 0 with

entries from F2m can be expressed as follows: H =

[
A0 A1

A1 A0

]
where A0 and A1 are 2t−1 × 2t−1

Hadamard matrices.

A 2× 2 Hadamard matrix H with entries of the first row (h0, h1) has the form

[
h0 h1

h1 h0

]
.

Similarly, for a 4 × 4 Hadamard matrix with entries in the first row as (h0, h1, h2, h3) has

the following form: 
h0 h1 h2 h3

h1 h0 h3 h2

h2 h3 h0 h1

h3 h2 h1 h0

 .
It is important to note that a Hadamard matrix H over a field of characteristic 2 satisfies

H2 = c2I , where c is the sum of the elements in the first row of H . Consequently, if

c2 = 1, the matrix H becomes involutory. If the entries of a Hadamard matrix are taken

from a finite field of characteristic 2, they adhere to the following lemma.

Lemma 2.2.5. Let H = (hi,j), 0 ≤ i, j ≤ 2n − 1 be a 2n × 2n matrix with in the first row given
by (h0, h1, . . . , h2n−1). Then H is a Hadamard if and only if hi,j = hi⊕j , where i⊕ j represents
the bitwise XOR of the n-bit binary representations of i and j, respectively.

We now turn our attention to circulant matrices and their generalizations, and these are

the next class of matrices in our discussion. To start, let us define circulant matrices.

Definition 2.2.6. The k×k matrix of the form


c0 c1 c2 · · · ck−1

ck−1 c0 c1 · · · ck−2

...
...

... · · ·
...

c1 c2 c3 · · · c0

 is called a circulant

matrix and is denoted by C = circulant(c0, c1, c2, . . . , ck−1).

The entire circulant matrix is clearly defined by its first row (or column). Notably, we

represent the entry at the (i, j)-th position of this matrix as C(i, j). The entries of C
can be expressed as C(i, j) = cj−i (mod k). Moreover, the entries of C adhere to the

relationship C(i, j) = C(i + 1, j + 1). Utilizing the property of the permutation matrix

P = circulant(0, 1, 0, . . . , 0), a circulant matrix C can be represented as:

C = circulant(c0, c1, c2, . . . , ck−1) = c0I + c1P + c2P
2 + · · ·+ ck−1P

k−1, (2.2)

where I denotes the identity matrix of order k × k.

A comprehensive expression for the determinant of a circulant matrix is provided in

[68]. For any circulant matrix A = c0I + c1P + c2P
2 + · · · + ck−1P

k−1 of a fixed order

k, where c0, c1, · · · , ck−1 are arbitrary integers in Z and P = circulant(0, 1, 0, . . . , 0), the
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determinant det(A) can be expressed as:

det(A) =

k−1∏
j=0

(

k−1∑
i=0

ciω
ji
k ), (2.3)

where ωk = e
2πi
k ∈ C.

Definition 2.2.7. The square matrix of the form


c0 c1 c2 · · · ck−1

c1 c2 c3 · · · c0
...

...
... · · ·

...
ck−1 c0 c1 · · · ck−2

 is said to be

left-circulant matrix and denoted by left-circulant(c0, c1, c2, . . . , ck−1).

Next we discuss permutation matrices and some of its properties. By a permutation σ

belongs to the symmetric group Sn,we means one-to-one mapping from the set N =

{1, 2, . . . , n} to itself. A permutation can be written as σ =

(
1 2 3 · · · n

i1 i2 i3 · · · in

)
and this

means σ(1) = i1, σ(2) = i2, · · · , σ(n) = in. The inverse permutation is denoted by σ−1

and σ−1(ik) = k. Let Ei denote the row vector on n-components with 1 at i-th positions

and 0 at all other positions.

Definition 2.2.8. A permutation matrix P of order n× n is a matrix of the form

P = Pσ =


Ei1

Ei2
...
Ein

 .

It can be written as P = (aij) where

ai,σ(i) = 1, for i = 1, 2, · · · , n.

aij = 0, otherwise.
Some properties of permutations matrices are as follows:

• PσPτ = Pστ ,

• P−1
σ = Pσ−1 = P T

σ ,

• If A = (ai,j) is a m× n matrix, then PσA = Aσ(i),j and APσ = Ai,σ−1(j). That is, PσA

is A with row permuted by σ and APσ is A with column permuted by σ.

• A matrix A is said to be permutation similar to another matrix B if B = PAP T for

some permutation matrix P .

• A matrix A is said to be permutation equivalent to another matrix B if B = PAQ

for some permutation matrices P and Q.

B. Friedman further expanded the theory of circulant matrices in 1961 by introducing

g-circulant matrices [67]. The definition of a g-circulant matrix is as follows:
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Definition 2.2.9. A g-circulant matrix of order k × k is a matrix of the form A =

g-circulant(c0, c1, . . . , ck−1) =



c0 c1 · · · ck−1

ck−g ck−g+1 · · · ck−1−g

ck−2g ck−2g+1 · · · ck−1−2g

...
... · · ·

...
cg cg+1 · · · cg−1


, where all subscripts are

taken modulo k.

For g = 1, it represents a circulant matrix, and for g ≡ −1 (mod k), it takes the form of a

left-circulant matrix. Here are some noteworthy properties of g-circulant matrices, with

details provided in [68], [77].

Lemma 2.2.10. Let A be g-circulant and B h-circulant. Then AB is gh-circulant.

Lemma 2.2.11. If A and B are both g-circulant matrices then ABT forms a circulant matrix.

Lemma 2.2.12. A is g-circulant if and only if PA = AP g where P is the permutation matrix
P = circulant(0, 1, 0, . . . , 0).

For the case gcd(k, g) = 1, the solution to the equation gx ≡ 1 (mod k) is unique modulo

k. Then the following result regarding the inverse of a non-singular g-circulant matrix is

proved in [68].

Lemma 2.2.13. Let A be a non-singular g-circulant matrix of order k × k with gcd(g, k) = 1.
Then A−1 is g−1-circulant.

The next theorem extends the structure defined in Equation 2.2 to g-circulant matrices.

Let P = circulant(0, 1, 0, . . . , 0) and Qg = g-circulant(1, 0, 0, . . . , 0). The representation of

g-circulant matrices is established by the following theorem [[68], Theorem 5.1.7].

Theorem 2.2.14. Let A = g-circulant(c0, c1, . . . , ck−1) with gcd(k, g) = 1. Then A

can be expressed as A =

k−1∑
i=0

ciQgP
i where P = circulant(0, 1, 0, . . . , 0) and Qg =

g-circulant(1, 0, 0, . . . , 0).

The notion of cyclic matrix was introduced by Liu and Sim [25] as a generalization of

the circulant matrix in 2016. Cyclic matrices of order k × k are defined using a k-cycle

permutation ρ of its first row where ρ ∈ Sk, the permutation group on k elements. The

definition of cyclic matrix is the following:

Definition 2.2.15. For a k-cycle ρ ∈ Sk, a matrix Cρ of order k × k is called cyclic matrix
if each subsequent row is ρ-permutation of the previous row. We represent this matrix as
cyclicρ(c0, c1, c2, . . . , ck−1), where (c0, c1, c2, . . . , ck−1) is the first row of the matrix. The
(i, j)-th entry of Cρ can be expressed as Cρ(i, j) = cρ−i(j).
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2.3 Semi-involutory and semi-orthogonal matrices

Two intriguing properties of a matrix are its involutory and orthogonal characteristics.

Definition 2.3.1. A square matrix A is said to be involutory if A2 = I and orthogonal if AAT =

ATA = I .

Therefore, for a symmetric matrix A = AT , both properties become equivalent.

Recently, in 2012, Fiedler et al. [64] generalised orthogonal matrices and named them

G-matrices, which we refer as semi-orthogonal matrices throughout this thesis. The

definition of a semi-orthogonal matrix is as follows:

Definition 2.3.2. A non-singular matrix A is semi-orthogonal if there exist non-singular
diagonal matrices D1 and D2 such that A−T = D1AD2, where A−T denotes the transpose of
the matrix A−1.

Some equivalent definitions of semi-orthogonal matrices are the following:

1. A is semi-orthogonal.

2. A−1 and AT are semi-orthogonal.

3. If A is semi-orthogonal and D is a non-singular diagonal matrix, then both AD and

DA are semi-orthogonal.

4. If A is semi-orthogonal and P is a permutation matrix, then both PA and AP are

semi-orthogonal.

5. ADAT is non singular and diagonal for some diagonal matrix D.

We refer to the matricesD1 andD2 in definition as “associated diagonal matrices” for the

semi-orthogonal matrix A. The authors of [64] further provided a characterization of all

2× 2 semi-orthogonal matrices in the following theorem:

Theorem 2.3.3. A 2× 2 matrix is semi-orthogonal if and only if it is non-singular and has four
or two non-zero entries.

After that, in 2021, Cheon, Curtis and Kim [65] expanded the idea of an involutory matrix

and defined a semi-involutory matrix as follows:

Definition 2.3.4. A non-singular matrix A is said to be semi-involutory if there exist
non-singular diagonal matrices D1 and D2 such that A−1 = D1AD2.

Some equivalent definitions of semi-involutory matrices are given as follows:

1. A is semi-involutory.

2. A−1 and AT are semi-involutory.

3. DAD′ is semi-involutory for any non-singular diagonal matrices D and D′.
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4. P TAP is semi-involutory for any permutation matrix P .

5. ADA is non-singular and diagonal for some diagonal matrix D.

We refer the matrices D1 and D2 in the definition as “associated diagonal matrices” for

the semi-involutory matrix A.

Cheon et al. [65] provided a characterization of 2×2 semi-involutory matrices by utilizing

the “zero non-zero pattern” of the matrix. The “zero non-zero pattern” of a matrix A =

(aij) is the (0, 1)-matrix whose (i, j)-th entry is non-zero if and only if aij is non-zero.

Furthermore, Cheon et al. [65] characterize 2× 2 semi-involutory matrices based on this

property.

Theorem 2.3.5. LetA be a non-singular matrix of order 2. ThenA is semi-involutory if and only

if the zero non-zero pattern of A is not permutation similar to

[
1 1

1 0

]
.

A connection between the entries and submatrices of a semi-involutory matrix is

established in [65]. To articulate this result, we introduce specific notations. Let α and

β be subsets of the set [n] = {1, 2, . . . , n}. For a matrix A of order n, A[α|β] denotes the

|α| × |β| submatrix of A formed by the rows indexed by α and the columns indexed by β.

Let αc = [n] \ α and βc = [n] \ β. Then A(α|β) denotes the matrix A[αc|βc]. The result is

as follows:

Theorem 2.3.6. Let A = (aij) be a semi-involutory matrix of order n× n. Then detA(j|i) = 0

if and only if aij = 0.

Proof. For proof, see Theorem 2.11 of [65].

Before proceeding to the next characterization, we introduce another class of matrices.

Definition 2.3.7. A square matrix A is said to be reducible if it is permutation similar to an
upper triangular matrix. The matrix A is called irreducible if it is not reducible.

A comprehensive characterization of 3× 3 semi-involutory matrices was also established

by Cheon et al. The characterization is outlined as follows:

Theorem 2.3.8. Let A = (aij) be a real matrix of order 3× 3. Then A is semi-involutory if and
only if A is non-singular and one of the following holds.

• Up to permutation similarity A is a reducible matrix of the form

A =

[
B x

0T c

]

such that B−1 = D1BD2 for some non-singular diagonal matrices D1 and D2, and x = 0

or x is an eigenvector of BD1.

• Up to permutation similarity a11 = 0 is the only zero entry in A, detA(1|1) = 0 and
a12a23a31 = a13a21a32.
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• A is nowhere zero, a12a23a31 = a13a21a32, and detX = 0 where

X =


a11a22 a21a22 a23a31

a11a31 a21a32 a31a33

a12a31 a22a32 a32a33

 .
Proof. For proof, see Theorem 2.10 of [65].

Additionally, another characterization of irreducible semi-involutory matrices was

proven by Cheon et al., stated as follows:

Theorem 2.3.9. Let A be an irreducible semi-involutory matrix of order n × n such that
A−1 = D1AD2, where D1 and D2 are non-singular diagonal matrices. Then D1 = cD2 for
some non-zero constant c.

2.4 Linear codes

In this section, we revisit some definitions and results from coding theory, essential for

various proofs in our discussion.

In coding theory, a linear code C of length n over Fq is a subspace of Fn
q . If dimension

of C over Fq is k, then it is denoted as a [n, k] code. Here n is the length of the code

and k is the dimension. An element of C is called a codeword. Another important

parameter of a linear code is minimum distance. The Hamming distance between two

vectors x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) is the number of positions where

the differ, denoted by d(x,y). Additionally, the Hamming weight wt(x) of a vector

x = (x1, x2, . . . , xn) is the count of non-zero xi’s in x. Thus, the minimum distance d

of a linear code is defined by

d = min d(u,v) = min wt(u− v),

where u,v ∈ C,u ̸= v.

Hence, a linear code C of length n, dimension k, and minimum distance d is referred as

an [n, k, d] code. The minimum distance of a linear code is the minimum weight of any

non-zero codeword.

Definition 2.4.1. LetC be a linear code over Fn
q . The dual code ofC is the orthogonal complement

of the subspace C of Fn
q , and is denoted by C⊥.

Proposition 2.4.2. C⊥ is a linear code and dim C+ dim C⊥ = n.

Two important matrices associated to a linear codes are generator matrix and parity check

matrix.

Definition 2.4.3. A generator matrix of a [n, k] linear code C is a k × n matrix G whose rows
form a basis of C.
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The standard from of a generator matrix is [I|A], where I is the k× k identity matrix and

A is a k × (n− k) matrix.

Definition 2.4.4. A parity check matrix H of a linear code C is the generator matrix of the
dual code C⊥.

The parity check matrix of C is a (n− k)× k matrix, and the standard from of H is [B|I]
where I is the (n−k)×(n−k) identity matrix andB is a (n−k)×k matrix. The generator

matrix of a code C can be obtained from the standard form of the parity check matrix,

and it is [I| −BT ]. They are related by the identity GHT = 0 or HGT = 0. Some essential

properties of linear codes are following:

Theorem 2.4.5. If H is the parity check matrix of a code C of length n, then the code has
dimension n − k if and only if some k columns of H are linearly independent but no k + 1

columns are.

Proof. For proof, see Theorem 9 of Chapter 1 of [16].

Theorem 2.4.6. If H is the parity check matrix of a code of length n, then the code has minimum
distance d if and only if every d − 1 columns of H are linearly independent and some d columns
are linearly dependent.

Proof. For proof, see Theorem 10 of Chapter 1 of [16].

Theorem 2.4.7. (Singleton bound) If C is an [n, k, d] code, then n− k ≥ d− 1.

Proof. For proof, see Theorem 11 of Chapter 1 of [16].

Codes with d = n− k + 1 are called Maximum distance Separable (MDS) codes. It is one

of the most important class of codes. Reed-Solomon codes are an important example of

this class. Some key properties of MDS codes are following:

Theorem 2.4.8. A [n, k, d] code C is an MDS code if and only if every n − k columns of the
parity check matrix H are linearly independent.

Proof. For proof, see Theorem 1 of Chapter 11 of [16].

Theorem 2.4.9. If C is an MDS code, then C⊥ is also MDS.

Proof. For proof, see Theorem 2 of Chapter 11 of [16].

Corollary 2.4.10. Let C be an [n, k, d] code over the finite field Fq. Then the following statements
are equivalent:

• C is MDS.

• Every k columns of a generator matrix G are linearly independent.

• Every n− k columns of a parity check matrix H are linearly independent.
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Proof. For proof, see Corollary 3 of Chapter 11 of [16].

Theorem 2.4.11. An [n, k, d] code C with generator matrix [Ik×k|A], where A is a k × (n− k)

matrix is MDS if and only if every square submatrix of A, formed from any i rows and i columns,
for any i = {1, 2, . . . ,min(k, n− k)}, is non-singular.

Proof. For proof, see Theorem 8 of Chapter 11 of [16].

The following result is a direct application of Theorem 2.4.11.

Proposition 2.4.12. A square matrix A is an MDS matrix if and only if every square submatrix
of A is non-singular.

Some properties of MDS matrices are as follows:

Corollary 2.4.13. If A is an MDS matrix, then for any non-singular diagonal matrices D1 and
D2, D1AD2 is also an MDS matrix.

Proof. For proof, see Corollary 1 of [17].

Corollary 2.4.14. If A is an MDS matrix, then AT and A−1 are also MDS matrices.

Proof. For proof, see Corollary 2 and Corollary 3 of [17].

Corollary 2.4.15. For any permutation matrices P and Q, the branch numbers of the two
matrices M and PMQ are same.

Proof. For proof, see Proposition 1 of [17].

As an immediate application of this corollary, the following result holds.

Corollary 2.4.16. If A is an MDS matrix, then for any permutation matrices P and Q, PAQ is
also an MDS matrix.

Proof. For proof, see Corollary 4 of [17].
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Chapter 3

Semi-orthogonal and semi-involutory
MDS matrices

In this chapter we first introduce the construction of Maximum Distance Separable

(MDS) matrices with semi-involutory and semi-orthogonal properties. Subsequently,

we propose a construction method for MDS matrices using Cauchy matrices, ensuring a

straightforward inverse operation. This construction method maintains the property that

submatrices also exhibit the MDS property with easily invertible characteristics. In the

last part we provide a characterization of 4×4 semi-involutory matrices with all non-zero

entries over some field. The findings presented in this chapter have been published and

can be referenced in [63].

3.1 Introduction

The significance of constructing MDS matrices endowed with either involutory or

orthogonal properties becomes apparent through our discussion from Chapter 1. These

constructions have been studied by various authors. For instance, in [19], Sajadieh et
al. constructed involutory MDS matrices using Vandermonde matrices. Additionally,

in [20], the authors focused on Cauchy matrices to construct MDS involutory matrices.

In the Cauchy based construction, matrices are derived from an additive subgroup of

the finite field F2m , resulting in the orders of the matrices consistently being powers of

2. Therefore, even if it is possible to construct an involutory MDS matrix with order

as a power of 2 over the finite field F2m , the construction of an MDS Cauchy matrix

of any order with easily implementable inverse remains an open question. Recently,

in 2012, Fiedler and Hall [64] proved that Cauchy matrices are semi-orthogonal. The

semi-orthogonal property is a generalization of the orthogonal property of a matrix.

We recall (see Definition 2.3.2) the definition of semi-orthogonal matrices here for the

convenience of the reader.

Definition 3.1.1. A non-singular matrix M is semi-orthogonal if there exist non-singular
diagonal matrices D1 and D2 such that M−T = D1MD2, where M−T denotes the transpose of
the matrix M−1.

If the matrix M of Definition 3.1.1 is symmetric, then the inverse matrix is of the

form M−1 = D1MD2. Matrices with this characterization are termed semi-involutory
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matrices. This concept was introduced by Cheon et al. in 2021 as a generalization of

involutory property. We recall (see Definition 2.3.4) the definition here.

Definition 3.1.2. A non-singular matrix M is said to be semi-involutory if there exist
non-singular diagonal matrices D1 and D2 such that M−1 = D1MD2.

Significantly, in both of these generalizations, the authors aimed to construct matrices

with computationally simple inverses. Leveraging these properties, we proceed to

construct MDS matrices with a ‘nice inverse’ over finite fields. We initiate this process

by constructing MDS matrices of small orders.

3.2 Semi-involutory and semi-orthogonal MDS matrices of

small orders

In this section, our initial focus is to construct 2 × 2 MDS matrices with semi-involutory

and semi-orthogonal properties. Subsequently, we do the same for 3 × 3 matrices

and prove that some well-known constructions of MDS matrices exhibit either

semi-involutory or semi-orthogonal characteristics. We begin with matrices of order 2×2.

Utilizing the result of Cheon et al. noted in Theorem 2.3.5, we establish the criteria for a

2× 2 semi-involutory matrix to be MDS.

Theorem 3.2.1. Let A = (aij), 1 ≤ i, j ≤ 2 be a 2× 2 semi-involutory matrix over a finite field.
Then A is MDS if and only if aij ̸= 0 for all 1 ≤ i, j ≤ 2.

Proof. SinceA is a semi-involutory matrix,A−1 exists. Hence det(A) is a non-zero element

and the zero non-zero pattern of A is permutation similar to either

[
1 1

1 1

]
or

[
1 0

0 1

]
or[

1 0

1 1

]
. For A being MDS, all entries must be non-zero. Therefore, only the first pattern

is possible. Hence it is required that aij ̸= 0 for all the entries of A.

Conversely, assume that aij ̸= 0 for all 1 ≤ i, j ≤ 2. Since A is a 2 × 2 matrix, for being

MDS, it is enough to show that A is invertible and that is obvious from the fact that A is

semi-involutory.

Remark 3.2.2. For a 2×2 semi-involutory MDS matrix A =

[
a b

c d

]
, it is possible to construct

diagonal matrices D1 and D2 such that A−1 = D1AD2. Let detA = △ and consider D1 =[
1
△a 0

0 − 1
△d

]
and D2 =

[
d 0

0 −a

]
. Note that D1 and D2 need not be unique, since for any

non-zero element c of the finite field, 1
cD1 and cD2 also works.

Next, we show an application of Theorem 3.2.1.

Example 3.2.3. Consider the finite field F11 and A =

[
7 3

4 2

]
. Here det(A) = 2. Using Remark

3.2.2, we get D1 =

[
4 0

0 8

]
and D2 =

[
2 0

0 4

]
. Then A−1 = D1AD2. Again by considering
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c = 4, we can get another set of diagonal matrices, which are D1 =

[
1 0

0 2

]
and D2 =

[
8 0

0 5

]
.

These D1, D2 also satisfy A−1 = D1AD2. This shows that A is semi-involutory and MDS.

From the equivalent Definition 5 of semi-involutory matrices noted in Section 2.3 , we

know that if A is semi-involutory then ADA is a diagonal matrix, for some non-singular

diagonal matrix D. This property allows us to state that each 2 × 2 MDS matrix is

semi-involutory.

Proposition 3.2.4. Let A = (aij), 1 ≤ i, j ≤ 2 be a 2× 2 MDS matrix over a finite field. Then
A is semi-involutory.

Proof. Let A =

[
a11 a12

a21 a22

]
be a 2 × 2 MDS matrix. Then det(A) = a11a22 − a21a12 is

unit and entries of A are non-zero. First, consider the case when a11 and a22 are additive

inverse in the field, i.e., a11 + a22 = 0. Then for D = I2, the matrix ADA is diagonal.

In the other case, let d2 be the additive inverse of a22. If d1 = a−1
11 d

2
2 then a11 = d22d

−1
1 .

Hence a11d1 + a22d2 = d22 − d22 = 0. For D = diagonal(d1, d2), we can see that ADA is a

non-singular diagonal matrix. Hence, A semi-involutory.

We now turn our attention to semi-orthogonal matrices of order 2 × 2. Utilizing

Theorem 2.3.3 of Fiedler and Hall [65], the next result establishes the conditions for

semi-orthogonal matrices to be MDS. The proof of this result follows a similar logic to

that of Theorem 3.2.1.

Theorem 3.2.5. Let A = (aij), 1 ≤ i, j ≤ 2 be a 2× 2 semi-orthogonal matrix over a finite field.
Then A is MDS if and only if aij ̸= 0 for all 1 ≤ i, j ≤ 2.

Proof. Since A is a semi-orthogonal matrix, A−1 exists. Hence det(A) is a non-zero

element and the zero non-zero pattern of A has four or two non-zero entries. For A being

MDS, all entries must be non-zero. Therefore, only four non-zero entries are possible.

Hence it is required that aij ̸= 0 for all the entries of A.

Conversely, assume that aij ̸= 0 for all 1 ≤ i, j ≤ 2. Since A is a 2 × 2 matrix, for being

MDS, it is enough to show that A is invertible and that is obvious from the fact that A is

semi-orthogonal.

Using properties of semi-orthogonal matrices, we demonstrate that each 2×2 MDS matrix

matrix inherently exhibits a semi-orthogonal structure.

Theorem 3.2.6. Let A = (aij), 1 ≤ i, j ≤ 2 be a 2 × 2 MDS matrix over a finite field. Then A
is semi-orthogonal.

Proof. Let A =

[
a11 a12

a21 a22

]
be a 2 × 2 MDS matrix. Let c1 = a11a21 and c2 = a12a22.

Both c1, c2 are non-zero elements of the finite field since aij ̸= 0 in A. Then there exists

d1 such that c1 + d1 = 0. Take d2 = c−1
2 c21 and D =diagonal(d1, d2). Hence ADAT =
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[
a211d1 + a212d2 a11a21d1 + a22a12d2

a11a21d1 + a22a12d2 a221d1 + a222d2

]
. Observe that a11a21d1 + a22a12d2 = c1d1 +

c2d2 = −c21 + c2c
−1
2 c21 = 0. This shows that ADAT is a non-singular diagonal matrix and

A is semi-orthogonal.

Though 2 × 2 matrices have some nice properties, they have limited application in

the diffusion layer of real-life block ciphers. Therefore, we shift our discussion for

the case of 3 × 3 semi-involutory and semi-orthogonal matrices being MDS. Using the

characterization of semi-involutory matrices noted in Theorem 2.3.6, we can prove the

following statement.

Theorem 3.2.7. Let A = (aij), 1 ≤ i, j ≤ 3 be a 3× 3 semi-involutory matrix over a finite field.
Then A is an MDS matrix if and only if aij ̸= 0 for all 1 ≤ i, j ≤ 3.

Proof. Let A be semi-involutory and aij ̸= 0 for all 1 ≤ i, j ≤ 3. Then A−1 = D1AD2

where D1 = diagonal(d1, d2, d3) and D2 = diagonal(d′1, d
′
2, d

′
3) are non-singular diagonal

matrices. Let A−1 = (bij). Then bij = (−1)i+j detA(j|i)
detA and this equals to diaijd′j . Since

di, d
′
j ̸= 0 and aij ̸= 0, we have detA(j|i) ̸= 0. For a 3 × 3 matrix A, this implies

determinant of all 2× 2 submatrices are non-zero. Hence A is an MDS matrix.

Conversely, letA be an MDS matrix. Then it is obvious that aij ̸= 0 for all 1 ≤ i, j ≤ 3.

Example 3.2.8. Consider the finite field F24 constructed by the irreducible polynomial x4+x+1.

Let α be a primitive element of the field. Consider the matrix

M =


α+ 1 1 α2

α3 + 1 α3 + α+ 1 α

α α α3 + α

 .
It is easy to see that

M−1 =


α2 α3 + α2 + 1 1

α3 + α2 + α+ 1 α2 + α α3 + 1

α3 + 1 α3 + 1 α3 + α+ 1

 = DMD,

where D =


α3 + 1 0 0

0 α3 + 1 0

0 0 α3 + 1

. By Theorem 3.2.7, M is also an MDS matrix.

Next, we prove a similar result of Theorem 2.3.6 for semi-orthogonal matrices.

Theorem 3.2.9. Let A = (aij) be a semi-orthogonal matrix of order n× n. Then detA(j|i) = 0

if and only if aji = 0.

Proof. Let A be a semi-orthogonal matrix. Then A−T = D1AD2 for some non-singular

diagonal matrices D1 = diagonal(d1, d2, . . . , dn) and D2= diagonal(d′1, d
′
2, . . . , d

′
n). Let

A−1 = (bij). Then bij =
(−1)i+j detA(j|i)

detA and this is equal to the (i, j)-th entry of D2A
TD1.
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Hence (−1)i+j detA(j|i)
detA = d′iajidj . This implies that detA(j|i) = 0 if and only if aji = 0

since d′i, dj ̸= 0.

Using Theorem 3.2.9, we state a result for 3× 3 semi-orthogonal matrices.

Theorem 3.2.10. Let A = (aij), 1 ≤ i, j ≤ 3 be a 3 × 3 semi-orthogonal matrix over a finite
field. Then A is an MDS matrix if and only if aij ̸= 0 for all 1 ≤ i, j ≤ 3.

Proof. A is semi-orthogonal and aij ̸= 0 for all 1 ≤ i, j ≤ 3. Then A−T = D1AD2,

where D1 = diagonal(d1, d2, d3) and D2 = diagonal(d′1, d
′
2, d

′
3) are non-singular diagonal

matrices. Let A−1 = (bij), then A−T = (bji). Then bji = (−1)i+j detA(j|i)
detA , and this equals

to diaijd′j . Since di, d′j ̸= 0 and aji ̸= 0, we have detA(j|i) ̸= 0. For a 3 × 3 matrix A, this

implies determinant of all 2 × 2 submatrices are non-zero. Hence A is an MDS matrix.

Conversely, letA be an MDS matrix. Then it is obvious that aij ̸= 0 for all 1 ≤ i, j ≤ 3.

In the next section, we discuss some MDS matrix constructions which satisfy

semi-involutory and semi-orthogonal properties.

3.3 Cauchy matrices with semi-involutory and semi-orthogonal

properties

Macwillams and Solane [16] first observed that Cauchy matrices with entries over a finite

field offered a very interesting property that directly allows us to construct MDS matrices

as discussed in Theorem 1.2.3. Their construction is called Cauchy based construction

of Type-I. Based upon this technique, Gupta and Ray [20] introduced three more direct

constructions of MDS matrices from Cauchy matrices over a finite field of characteristic

2.

Constructon II: Let {x1, x2, . . . , xn} are elements from the finite field F2m and yi = l +

xi, 1 ≤ i ≤ n for some arbitrary non-zero element l ∈ F2m . Then the Cauchy matrix

C =
(

1
xi+yj

)
, 1 ≤ i, j ≤ n is an MDS matrix.

Construction III: Let G = {x1, x2, . . . , xn} be an additive subgroup of the finite field F2m .

Consider the set l + G = {l + xj = yj , 1 ≤ j ≤ n}, l /∈ G. Then the Cauchy matrix

C =
(

1
xi+yj

)
, 1 ≤ i, j ≤ n is an MDS matrix.

Construction IV: Let G = {x1, x2, . . . , x2n−1} be an additive subgroup of the finite field

F2m constructed by the linear combination of n linearly independent elements label as

x1, x2, x22 , . . . , x2n−1 . Let yi = l + xi, 1 ≤ i ≤ 2n − 1, l /∈ G. Then the Cauchy matrix

C =
(

1
xi+yj

)
, 1 ≤ i, j ≤ 2n − 1 is a Hadamard MDS matrix.

For a detailed proof of these statements, please refer to [20]. Note that, in Construction III,

the matrix C satisfies C2 = a2I , where a =

n∑
k=1

1

l + xk
. In Construction IV, although the

matrix C may not inherently exhibit involutory properties, the matrix 1
aC is a Hadamard

involutory matrix, where a is the sum of any row of C. Hence none of these constructions

directly exhibit involutory property but they do become involutory MDS matrices under

specific conditions.
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Another noteworthy constraint of these constructions relates to the size of the matrices.

The matrices produced through Constructions III and IV always have an order that is

a power of 2. Consequently, when aiming to construct an MDS Cauchy matrix of some

arbitrary order n, the initial step involves constructing an MDS Cauchy matrix of order 2β

where 2β ≥ n. Subsequently, a submatrix of size n×n is extracted from this larger matrix.

However, the resulting submatrix does not guarantee the preservation of involutory or

orthogonal properties.

Fiedler et al. [64, 78] established the semi-orthogonality of Cauchy matrices and

formulated diagonal matrices D1 and D2 such that A−T = D1AD2. The construction

is outlined as follows:

Consider a Cauchy matrix A =
(

1
xi+yj

)
, 1 ≤ i, j ≤ n, and let A−1 = (γij) where γij

adheres to the form detailed in Equation 2.1. Then A−1 can be written as γij = 1
xj+yi

UjVi,

where

Uj = (xj + yj)
∏
k ̸=j

xj + yk
xj − xk

(3.1)

and

Vi = (xi + yi)
∏
k ̸=i

yi + xk
yi − yk

. (3.2)

Considering D1 = diagonal(U1, . . . , Un) and D2 = diagonal(V1, . . . , Vn), we get A−T =

D1AD2. Using this construction we can state the following result.

Lemma 3.3.1. Type-I MDS Cauchy matrices are semi-orthogonal.

In [17], an example of a MDS Cauchy matrix is provided, and notably, it does not exhibit

involutory property. Employing Lemma 3.3.1, we demonstrate that this particular matrix

possesses a semi-orthogonal nature.

Example 3.3.2. Consider the finite field F24 with constructing polynomial x4 + x + 1 and
primitive element α. Let {x0 = 0, x1 = α4, x2 = α8} and {y0 = 1, y1 = α3, y2 = α5}.
Then the Cauchy matrix

A =


1 1

α3
1
α5

1
α4+1

1
α4+α3

1
α4+α5

1
α8+1

1
α8+α3

1
α8+α3

 =


1 α3 + α2 + α+ 1 α2 + α+ 1

α3 + 1 α2 + 1 α3 + α+ 1

α3 + α2 + 1 α2 α3 + α2 + α

 .
Calculating U1, U2, U3, V1, V2, V3 using formula 3.1 and 3.2, we can write

D1 =


α3 + α2 + α 0 0

0 α3 + α+ 1 0

0 0 α3 + α2

 andD2 =


α3 + α 0 0

0 α3 + α2 + 1 0

0 0 α3 + α2 + α

 .
Since A is semi-orthogonal, A−T = D1AD2. This implies A−1 should be equal to D2A

TD1. We
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can verify that this is indeed so for the given matrices, with

A−1 =


α2 + α 1 α3 + α2 + 1

α3 + α2 α3 + α2 + 1 α3 + α2

α2 α2 + α+ 1 α3 + α2 + 1

 .
If a matrix A is symmetric and semi-orthogonal then it is semi-involutory. Since Type-II

MDS Cauchy matrices are symmetric, hence by Lemma 3.3.1, they are semi-involutory.

We note this result as the following lemma.

Lemma 3.3.3. Let A be symmetric Cauchy matrix. Then A is semi-involutory.

In Example 2 of [17], an MDS Cauchy matrix of type-II is given. We show that it is

semi-involutory.

Example 3.3.4. Consider the finite field F24 with constructing polynomial x4 + x + 1 and
primitive element α. Let {x0 = α, x1 = α2, x2 = α3} and yi = l + xi, 1 ≤ i ≤ 3 where
l = 1. Then Cauchy matrix

A =


1 1

1+α+α2
1

1+α+α3

1
1+α+α2 1 1

1+α2+α3

1
1+α+α3

1
1+α2+α3 1

 =


1 α2 + α α2 + 1

α2 + α 1 α2

α2 + 1 α2 1

 .
Hence, by Lemma 3.3.3, we can say

A−1 = D2AD1 =


α3 + α2 α2 + α α

α2 + α α3 + α α+ 1

α α+ 1 α2 + α+ 1

 where

D1 =


α3 0 0

0 α3 + α2 + α+ 1 0

0 0 α2 + α

 and D2 =


α3 0 0

0 α3 + α2 + α+ 1 0

0 0 α2 + α

 .
In the Construction-III by Gupta and Ray [20], the Cauchy matrix C =

(
1

xi+yj

)
satisfies

C2 = a2I , where a =

n∑
k=0

1

r + xk
over the finite field of characteristic 2. However, in the

case of a finite field with characteristic p > 2, we have the following analogues result.

Lemma 3.3.5. LetG = (x0, x1, . . . , xd−1) be an additive subgroup of Fpn , p > 2. Let us consider
the coset r+G, r /∈ G of G having elements yj = r+xj , j = 0, . . . , d−1. Then the d×d matrix
A = (aij), where aij = 1

xi+yj
= 1

r+xi+xj
, for all 0 ≤ i, j ≤ d − 1 is a symmetric MDS matrix.

Also A2 = βI where β =

d−1∑
k=0

1

(r + xk)2
.

Proof. The symmetry of A is clear from the fact that aij = 1
xi+yj

= 1
r+xi+xj

= aji.

Since xi + yj = r + xi + xj ∈ r + G, it is non-zero for all 0 ≤ i, j ≤ d − 1. Thus
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from Theorem 1.2.3. , A is an MDS matrix. Let A2 = (hij). Then the diagonal entries

of A2 are hii =

d−1∑
k=0

1

(r + xi + xk)2
=

d−1∑
k=0

1

(r + xk)2
= β. The non diagonal entries

are hij =
d−1∑
k=0

1

r + xi + xk
· 1

r + xj + xk
=

d−1∑
k=0

1

xj − xi

(
1

r + xi + xk
− 1

r + xj + xk

)
=

1

xj − xi

d−1∑
k=0

(
1

r + xi + xk
− 1

r + xj + xk

)
=

1

xj − xi

(
d−1∑
l=0

1

r + xl
−

d−1∑
l′=0

1

r + xl′

)
= 0,

since the set {r + xl, 0 ≤ l ≤ d − 1} = {r + xl′ , 0 ≤ l′ ≤ d − 1}. This implies that

A2 = βI .

It is important to highlight that the choice of a field with characteristic 2 in [20] guarantees

that the value of a derived from Construction-III is invariably a square element. However,

it is not always possible for fields of characteristic p > 2, since there exist non-square

elements (see [79]). Subsequently, we introduce an alternative approach in Theorem 3.3.7

over a finite field of characteristic p for constructing MDS matrices with ‘nice inverse’,

leveraging the semi-involutory property of symmetric Cauchy matrices. To facilitate this,

we first establish the following result over a finite field.

Proposition 3.3.6. Let F be a finite field of cardinality pn and K be a subfield of cardinality
pm where m|n. Let K = {x0 = 0, x1, x2, . . . , xpm−1}. Then all the elementary symmetric
polynomials in terms of {x1, x2, . . . , xpm−1} are zero.

Proof. Let K∗ denote the group of non-zero elements of field K under multiplication.

Then all the elements of K∗ satisfy the equation xp
m−1 = 1. Therefore K∗ is the set of

all roots of the polynomial xp
m−1 − 1. Hence, all non-zero elements of K are roots of the

polynomial xp
m−1 − 1. Since it is a monic polynomial of degree pm − 1, we can write the

sum of all its roots as the the coefficient of xp
m−2 which is 0. Similarly the sum of product

of any two roots will be the coefficient of xp
m−3 and is also 0. Continuing this process we

find that the sum of product of any pm − 2 roots is the coefficient of x and is also 0. This

implies
pm−1∑
i=1

xi = 0,
∑

1≤i<j≤pm−1

xixj = 0, . . . ,

pm−1∑
i=1

pm−1∏
j=1, i ̸=j

xj = 0.

Now, we are ready to give the proof of Theorem 1.4.3.

Theorem 3.3.7. Let G = {x0, x1, . . . , xd−1} be a proper subfield of the finite field Fpn and let
r /∈ G. Consider the coset r +G = {y0, y1, . . . , yd−1}. Then A =

(
1

xi+yj

)
, 1 ≤ i, j ≤ d − 1 is

an MDS Cauchy matrix. Further, there exist diagonal matrices D1 = 1
c2
I and D2 = I such that

A−1 = D1AD2, where c =
d−1∑
k=0

1

r + xk
.

Proof. Let G = {x0 = 0, x1, x2, x3, . . . , xd−1} be a subfield of Fpn and the coset r + G =

{r + x0, r + x1, r + x2, r + x3, . . . , r + xd−1} = {y0, y1, y2, y3, . . . , yd−1}. Then xi + yj =

r+xi+xj = r+xl ∈ r+G for some l, since G is closed under addition. Therefore xi+ yj
is non-zero because 0 /∈ r+G. This implies the elements yj ’s are all distinct since xj ’s are

distinct. Hence, by Theorem 1.2.3 , A is an MDS Cauchy matrix.
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By the construction above, A is a symmetric MDS matrix. From Equation 2.1, 3.1 and

3.2 A−1 can be written as A−1 = (γij) =
(

1
xj+yi

UjVi

)
, 1 ≤ i, j ≤ d − 1, where Uj =

(xj + yj)
∏
k ̸=j

xj + yk
xj − xk

, Vi = (xi + yi)
∏
k ̸=i

yi + xk
yi − yk

. Hence A−1 = (UjajiVi) = (UjaijVi).

Therefore it is enough to show that UjVi =
1
c2

for all 1 ≤ i, j ≤ d− 1.

We consider two cases, when i = j or i ̸= j.

Case 1. When i = j

UiVi = (xi + yi)
∏
k ̸=i

(
xi + yk
xi − xk

)(xi + yi)
∏
k ̸=i

(
yi + xk
yi − yk

)

= (r + xi + xi)
∏
k ̸=i

(
r + xi + xk
xi − xk

)(r + xi + xi)
∏
k ̸=i

(
r + xi + xk
xi − xk

)

=
(r + xi + x0)

2(r + xi + x1)
2 · · · (r + xi + xi)

2 · · · (r + xi + xd−1)
2∏

k ̸=i

(xi − xk)
2

.

Case 2. When i ̸= j

UjVi = (xj + yj)
∏
k ̸=j

(
xj + yk
xj − xk

)(xi + yi)
∏
k ̸=i

(
yi + xk
yi − yk

)

= (r + xj + xj)
∏
k ̸=j

(
r + xj + xk
xj − xk

)(r + xi + xi)
∏
k ̸=i

(
r + xi + xk
xi − xk

)

=
(r + xj + x0) · · · (r + xj + xj) · · · (r + xj + xd−1)∏

k ̸=j

(xj − xk)

× (r + xi + x0) · · · (r + xi + xi) · · · (r + xi + xd−1)∏
k ̸=i

(xi − xk)

=
(r + xi + x0)

2(r + xi + x2)
2 · · · (r + xi + xi)

2 · · · (r + xi + xd−1)
2∏

k ̸=j

(xj − xk)
∏
k ̸=i

(xi − xk)
.

Since G is a subfield, it is closed under addition. Hence, for a fixed i, {xi + xj , 0 ≤ j ≤
d− 1} = {x0, x1, . . . , xd−1}. Thus {(r + xi + x0), . . . , (r + xi + xi), . . . , (r + xi + xd−1)} =

{(r + xj + x0), . . . , (r + xj + xj) . . . , (r + xj + xd−1)}.

Further, for a fixed i,∏
k ̸=i

(xi − xk)
2 = (xi − x0)

2 · · · (xi − xi−1)
2(xi − xi+1)

2 · · · (xi − xd−1)
2 = x21x

2
2x

2
3 · · ·x2d−1.

The previous statement is true since for any two distinct elements xk, xl ∈ G, (xi − xk) ̸=
(xi−xl). Hence, the set {(xi−x0), (xi−x1), . . . , (xi−xi−1), (xi−xi+1), . . . , (xi−xd−1)} =

{x1, x2, x3, . . . , xd−1}.



62 Chapter 3. Semi-orthogonal and semi-involutory MDS matrices

Similarly,∏
k ̸=j

(xj − xk)
∏
k ̸=i

(xi − xk) = (xj − x0) · · · (xj − xj−1)(xj − xj+1) · · · (xj − xd−1)(xi − x0)

· · · (xi − xi−1)(xi − xi+1) · · · (xi − xd−1)

= x21x
2
2x

2
3 · · ·x2d−1.

Hence, for all 0 ≤ i, j ≤ d− 1, UjVi =
(r+x0)2(r+x1)2(r+x2)2···(r+xd−1)

2

x2
1x

2
2x

2
3···x2

d−1
.

Further, c = 1
r+x0

+ 1
r+x1

+ 1
r+x2

+ · · ·+ 1
r+xd−1

= 1
y0

+ 1
y1

+ 1
y2

+ · · ·+ 1
yd−1

and this implies

1

c2
=

(y0y1y2 · · · yd−1)
2

(
∏
i ̸=0

yi +
∏
i ̸=1

yi + · · ·+
∏

i ̸=(d−1)

yi)
2
.

The numerator of 1
c2

is (y0y1y2 · · · yd−1)
2 = (r + x0)

2(r + x1)
2(r + x2)

2 · · · (r + xd−1)
2,

which is the same as the numerator of UjVi for all 0 ≤ i, j ≤ d− 1. On the other hand, the

denominator of 1
c2

is (
∏
i ̸=0

yi +
∏
i ̸=1

yi + · · ·+
∏

i ̸=(d−1)

yi)
2 which we calculate next.

Notice that
∏
i ̸=0

yi = y1y2y3 · · · yd−1 which can be simplified as follows.

∏
i ̸=0

yi = (r + x1)(r + x2)(r + x3) · · · (r + xd−1)

= rd−1 + rd−2(
d−1∑
i=1

xi) + rd−3(
d−1∑

i,j=1,i ̸=j

xixj) + · · ·+ r(x1x2 · · ·xd−2 + x2x3 · · ·xd−1)

+ x1x2x3 · · ·xd−1.

Hence,
∏
i ̸=0

yi +
∏
i ̸=1

yi + · · ·+
∏

i ̸=(d−1)

yi can be simplified as follows.

∏
i ̸=0

yi +
∏
i ̸=1

yi + · · ·+
∏

i ̸=(d−1)

yi

= {rd−1 + rd−2(
d−1∑
i=1

xi) + rd−3(
d−1∑

i,j=1,i ̸=j

xixj) + · · ·+ r(x1x2 · · ·xd−2 + x2x3 · · ·xd−1)+

x1x2x3 · · ·xd−1}+ {rd−1 + rd−2(
d−1∑

i=0,i ̸=1

xi) + rd−3(
d−1∑

i,j=0,i,j ̸=1,i<j

xixj) + · · ·

+ r(x0x2 · · ·xd−2 + x2x3 · · ·xd−1) + x0x2x3 · · ·xd−1}+ · · ·+ {rd−1 + rd−2(

d−2∑
i=0

xi)

+ rd−3(
d−2∑

i,j=0,i ̸=j,i<j

xixj) + · · ·+ r(x0x1 · · ·xd−3 + x1x2 · · ·xd−2) + x0x1x2x3 · · ·xd−2}

In the above expression, the coefficient of rd−1 is d and hence 0. Next, in the coefficient
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of rd−2, we can see that each xi will appear exactly d − 1 time. Therefore, the coefficient

of rd−2 is (d− 1)(x0 + x1 + · · ·+ xd−1) = 0 by Proposition 3.3.6. In the coefficient of rd−3,

each xixj will appear d− 2 times and hence the coefficient is (d− 2)(
d−1∑

i,j=0,i<j

xixj) = 0 by

Proposition 3.3.6. Continuing this process and using Proposition 3.3.6, the coefficient of r

is 2(x0x1 · · ·xd−3 + · · ·+ x2x3 · · ·xd−1) = 0. Finally, the constant term is x1x2x3 · · ·xd−1 +

x0x2x3 · · ·xd−1 + · · ·+ x0x1x2x3 · · ·xd−2 = x1x2x3 · · ·xd−1 since x0 = 0.

This implies that (
∏
i ̸=0

yi +
∏
i ̸=1

yi + · · · +
∏

i ̸=(d−1)

yi)
2 = (x1x2 · · ·xd−1)

2. Therefore, the

denominator of 1
c2

is x21x
2
2 · · ·x2d−1.

Hence, 1
c2

=
(r+x0)2(r+x1)2(r+x2)2···(r+xd−1)

2

x2
1x

2
2···x2

d−1
= UjVi. This completes the proof.

The construction of any n × n MDS matrix from the submatrices of a Cauchy matrix of

Type-III over F2m was given in Remark 5 of [17]. By using Theorem 3.3.7, it is possible to

construct a semi-involutory MDS Cauchy matrix of any prime power order by choosing a

proper finite field and its subfield. It is also possible to construct an MDS Cauchy matrix

from the submatrices of previous construction over any finite field. These submatrices are

also Cauchy matrix. Therefore from Lemma 3.3.1, they are semi-orthogonal. Notably, if

the submatrix is also symmetric, it becomes semi-involutory. For illustration, we provide

an example of a semi-involutory MDS Cauchy matrix of order 5× 5.

Example 3.3.8. Consider the finite field F52 with generating polynomial x2 + 4x + 2. Let α be
the primitive element. Consider the subfield G = {0, 1, 2, 3, 4} and r = 2α+1. Then the Cauchy
matrix

M =



1
2α+1

1
2α+2

1
2α+3

1
2α+4

1
2α

1
2α+2

1
2α+3

1
2α+4

1
2α

1
2α+1

1
2α+3

1
2α+4

1
2α

1
2α+1

1
2α+2

1
2α+4

1
2α

1
2α+1

1
2α+2

1
2α+3

1
2α

1
2α+1

1
2α+2

1
2α+3

1
2α+4


=



3α+ 3 3α+ 4 α 4α+ 3 α+ 4

3α+ 4 α 4α+ 3 α+ 4 3α+ 3

α 4α+ 3 α+ 4 3α+ 3 3α+ 4

4α+ 3 α+ 4 3α+ 3 3α+ 4 α

α+ 4 3α+ 3 3α+ 4 α 4α+ 3


.

Now c = (3α+ 3) + (3α+ 4) + α+ (4α+ 3) + (α+ 4) = 2α+ 4 and 1
c2

= 2. Hence D1 = 2I

and M−1 = D1 ·M =



α+ 1 α+ 3 2α 3α+ 1 2α+ 3

α+ 3 2α 3α+ 1 2α+ 3 α+ 1

2α 3α+ 1 2α+ 3 α+ 1 α+ 3

3α+ 1 2α+ 3 α+ 1 α+ 3 2α

2α+ 3 α+ 1 α+ 3 2α 3α+ 1


.

In Algorithm 1 of [20], another construction of Cauchy based MDS matrix was provided

which is a Hadamard matrix. In [80], authors proved that Hadamard matrices are also

semi-involutory.

In Section 1.2.2 we explained the non-trivial relationships between MDS matrices

constructed using the Cauchy based constructions and Vandermonde based

constructions. The detailed explanation of this connection is provided in Theorem

5.1 of [17], referenced as Theorem 1.2.16. For ease of reference, we reiterate it here.
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Theorem 3.3.9. Let {x0, x1, . . . , xn−1} and {y0, y1, . . . , yn−1} be 2n distinct elements from
F2m such that xi + yj ̸= 0 for all 0 ≤ i, j ≤ n − 1. Consider the matrices V1 =

Vand(x0, x1, . . . , xn−1), V2 = Vand(y0, y1, . . . , yn−1) and M = (mi,j), where mij = 1
xi+yj

.
Let V −1

1 = (bi,j), 0 ≤ i, j ≤ n − 1. Then D1MD2 = V −1
1 V2, where D1 =

diagonal(b0,n−1, b1,n−1, b2,n−1, . . . , bn−1,n−1) and D2 = diagonal(
n−1∏
k=0

(xk + y0),

n−1∏
k=0

(xk +

y1), . . . ,

n−1∏
k=0

(xk + yn−1)).

Proof. For proof see Theorem 5.1 of [17].

Now using Theorem 3.3.9 and Lemma 3.3.1 we can say that V −1
1 V2 is semi-orthogonal.

Lemma 3.3.10. Vandermonde based MDS matrices constructed by Theorem 3.3.9 are
semi-orthogonal.

Proof. Let V1 and V2 be two Vandermonde matrices as stated in Theorem 3.3.9.

Hence, there exist diagonal matrices D1, D2 such that V −1
1 V2 = D1MD2.

Since M is semi-orthogonal, M−1 = D3M
TD4 for some non-singular diagonal

matrices D3, D4. Therefore (V −1
1 V2)

−1 = D−1
2 M−1D−1

1 = D−1
2 D3M

TD4D
−1
1 =

D−1
2 D3D

−1
2 (V −1

1 V2)
TD−1

1 D4D
−1
1 = D′(V −1

1 V2)
TD′′, where D′, D′′ are non-singular

diagonal matrices. Hence, V −1
1 V2 is semi-orthogonal.

3.4 Circulant matrices with semi-involutory and

semi-orthogonal properties

Circulant MDS matrices have gained a lot of attention ([25, 30, 31, 34]) because of their

application in lightweight cryptography. A comprehensive study of the current findings

on circulant orthogonal and involutory matrices is presented in Section 1.2.3. Within

this section, our focus shifts to characterizing circulant matrices endowed with both

semi-involutory and semi-orthogonal properties, with entries from a finite field. We

begin with circulant semi-involutory matrices.

Theorem 3.4.1. LetA be an n×n circulant matrix over a finite field F. ThenA is semi-involutory
if and only if there exist non-singular diagonal matrices D1, D2 such that Dn

1 = k1I and Dn
2 =

k2I for non-zero scalars k1, k2 in the finite field and A−1 = D1AD2.

Proof. Let A = circulant(a1, a2, . . . , an) be semi-involutory. By definition there exist

non-singular diagonal matrices D1 and D2 such that A−1 = D1AD2. Let D1 =

diagonal(d1, d2, . . . , dn) and D2 = diagonal(d′1, d
′
2, . . . , d

′
n). Then the matrix A−1 is of the

form

A−1 =


d1a1d

′
1 d1a2d

′
2 · · · d1and

′
n

d2and
′
1 d2a1d

′
2 · · · d2an−1d

′
n

...
... · · ·

...

dna2d
′
1 dna3d

′
2 · · · dna1d

′
n

 .
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Since inverse of a circulant matrix is also circulant, entries of the second row of A−1 are

the same as the entries of the first row shifted right by one. Therefore,

d1a1d
′
1 = d2a1d

′
2

d1a2d
′
2 = d2a2d

′
3

...

d1and
′
n = d2and

′
1.

This implies that d1d′1 = d2d
′
2, d1d

′
2 = d2d

′
3, . . . , d1d

′
n = d2d

′
1. Multiplying all these

equalities, we get dn1 = dn2 . Similarly, entries of the third row are the same as entries of

the second row right shifted by one, and that implies d2aid′i = d3aid
′
i+1 for i = 1, . . . , n,

and the indices are reduced modulo n, which leads to dn2 = dn3 . Continuing this process,

we get dn1 = dn2 = dn3 = dn4 = · · · = dnn.

Similarly, in a circulant matrix, the second column is nothing but a circular shifted version

of the first column. This implies that, d1a1d′1 = d2a1d
′
2, d2and

′
1 = d3and

′
2, . . . , dna2d

′
1 =

d1a2d
′
2 and multiplying these, we get d′n1 = d′n2 . Applying the same reasoning for the

second and the third columns, we get d′n2 = d′n3 . Continuing similar reasoning, we get

dn1 = d′n2 = d′n3 = · · · = d′nn .

Conversely, if there exists non-singular diagonal matrices D1, D2 such that Dn
1 = k1I and

Dn
2 = k2I for non-zero scalars k1, k2 in the finite field and A−1 = D1AD2, then by the

definition A is semi-involutory.

Further, if the order of the matrix is some power of the characteristic if the finite field,

then we have the following corollary.

Corollary 3.4.2. Let A be an n×n circulant, semi-involutory matrix over Fpm where n = pk for
some k. Then there exists diagonal matrices D1 and D2 with Dn

1 = k1I and Dn
2 = k2I for some

non-zero scalars k1, k2 in the finite field with k1k2 = 1
λ2n where λ is the sum of the entries of the

first row, which is an eigenvalue value of A.

Proof. Let A = circulant(c1, c2, . . . , cn) be an n × n circulant, semi-involutory

matrix. Then there exist diagonal matrices D1 = diagonal(d1, d2, . . . , dn) and D2 =

diagonal(d′1, d
′
2, . . . , d

′
n) such that A−1 = D1AD2. This implies AD1A = D−1

2 , where

Dn
1 = k1I and Dn

2 = k2I for some k1, k2 ∈ Fpm by Theorem 3.4.1. Using the form of

matrices A and D1, we can write the structure of AD1 as follows.

AD1 =



c1d1 c2d2 c3d3 · · · cndn

cnd1 c1d2 c2d3 · · · cn−1dn

cn−1d1 cnd2 c1d3 · · · cn−2dn
...

...
... · · ·

...

c2d1 c3d2 c4d3 · · · c1dn


.

Let λ = c1 + c2 + · · · + cn and ri denote the sum of the entries of the i-th row of AD1.
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Adding the entries in the first row of AD1A, we get the following:

(c1 + c2 + · · ·+ cn)(c1d1 + c2d2 + c3d3 + · · ·+ cndn) = λr1.

Continuing in the same argument, we get the sum of entries of the i-th row of AD1A as

follows:

λri = (c1 + c2 + · · ·+ cn)(c1di + · · ·+ cndi−1).

From the equality AD1A = D−1
2 , we observe that the entries of the diagonal matrix D−1

2

satisfy 1
d′i

= λri for i = 1, . . . , n. Taking the n-th power on both sides of this equality, we

get 1
d′ni

= λnrni . Observe that λnrni = (c1 + c2 + · · ·+ cn)
n(c1di + c2di+1 + · · ·+ cndi−1)

n =

λnk1(c
n
1 + cn2 + · · ·+ cnn) = λ2nk1. This holds because n is a power of p and our finite field

is of characteristic p. The previous equality implies that k1k2 = 1
λ2n . Hence the proof is

complete.

A result similar to Theorem 3.4.1 holds for circulant semi-orthogonal matrices which we

record here.

Theorem 3.4.3. A be an n× n circulant matrix over a finite field F. Then A is semi-orthogonal
if and only if there exist non-singular diagonal matrices D1 and D2 such that Dn

1 = k1I and
Dn

2 = k2I for non-zero scalars k1, k2 ∈ F and A−T = D1AD2.

Proof. Let A = circulant(a1, a2, . . . , an) be semi-orthogonal. By definition there exist

non-singular diagonal matrices D1 and D2 such that A−T = D1AD2. Let D1 =

diagonal(d1, d2, . . . , dn) and D2 = diagonal(d′1, d
′
2, . . . , d

′
n).Then the matrix A−T is of the

form

A−T =


d1a1d

′
1 d1a2d

′
2 · · · d1and

′
n

d2and
′
1 d2a1d

′
2 · · · d2an−1d

′
n

...
... · · ·

...

dna2d
′
1 dna3d

′
2 · · · dna1d

′
n

 .
Since inverse and transpose of a circulant matrix is also circulant, entries of the second

row of A−T are the same as the entries of the first row shifted right by one. Therefore,

d1a1d
′
1 = d2a1d

′
2

d1a2d
′
2 = d2a2d

′
3

...

d1and
′
n = d2and

′
1.

This implies that d1d′1 = d2d
′
2, d1d

′
2 = d2d

′
3, · · · , d1d′n = d2d

′
1. Multiplying all these

equalities, we get dn1 = dn2 . Similarly, entries of the third row are the same as entries of

the second row right shifted by one, and that implies d2aid′i = d3aid
′
i+1 for i = 1, . . . , n,

and the indices are reduced modulo n, which leads to dn2 = dn3 . Continuing this process,

we get dn1 = dn2 = dn3 = dn4 = · · · = dnn.
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Similarly, in a circulant matrix, the second column is nothing but a circular shifted version

of the first column. This implies that, d1a1d′1 = d2a1d
′
2, d2and

′
1 = d3and

′
2, . . . , dna2d

′
1 =

d1a2d
′
2 and multiplying these, we get d′n1 = d′n2 . Applying the same reasoning for the

second and the third columns, we get d′n2 = d′n3 . Continuing similar reasoning, we get

dn1 = d′n2 = d′n3 = · · · = d′nn .

Conversely, if there exists non-singular diagonal matrices D1, D2 such that Dn
1 = k1I and

Dn
2 = k2I for non-zero scalars k1, k2 in the finite field and A−T = D1AD2, then by the

definition A is semi-involutory.

An immediate corollary of Theorem 3.4.3 which is analogues to Corollary 3.4.2 is

following.

Corollary 3.4.4. Let A be an n×n circulant, semi-orthogonal matrix over Fpm where n = pk for
some k. Then there exists diagonal matrices D1 and D2 with Dn

1 = k1I and Dn
2 = k2I for some

non-zero scalars k1, k2 in the finite field with k1k2 = 1
λ2n where λ is the sum of the entries of the

first row, which is an eigenvalue value of A.

Proof. Since A = circulant(c1, c2, . . . , cn) is an n × n circulant, semi-orthogonal

matrix. Then there exist diagonal matrices D1 = diagonal(d1, d2, . . . , dn) and D2 =

diagonal(d′1, d
′
2, . . . , d

′
n) such that A−T = D1AD2. This implies AD1A

T = D−1
2 , where

Dn
1 = k1I and Dn

2 = k2I for some k1, k2 ∈ Fpm by Theorem 3.4.1. Using the form of

matrices A and D1, we can write the structure of AD1 as follows.

AD1 =



c1d1 c2d2 c3d3 · · · cndn

cnd1 c1d2 c2d3 · · · cn−1dn

cn−1d1 cnd2 c1d3 · · · cn−2dn
...

...
... · · ·

...

c2d1 c3d2 c4d3 · · · c1dn


.

Let λ = c1 + c2 + · · ·+ cn, and let ri denote the sum of the entries of the i-th row of AD1.

Adding the entries in the first row of AD1A
T , we get the following:

(c1 + c2 + · · ·+ cn)(c1d1 + c2d2 + c3d3 + · · ·+ cndn) = λr1.

Continuing in the same argument, we get the sum of entries of the i-th row of AD1A
T as

follows:

λri = (c1 + c2 + · · ·+ cn)(c1di + · · ·+ cndi−1).

From the equality AD1A
T = D−1

2 , we observe that the entries of the diagonal matrix D−1
2

satisfy 1
d′i

= λri for i = 1, · · · , n. Taking the n-th power on both sides of this equality, we

get 1
d′ni

= λnrni . Observe that λnrni = (c1 + c2 + · · ·+ cn)
n(c1di + c2di+1 + · · ·+ cndi−1)

n =

λnk1(c
n
1 + cn2 + · · ·+ cnn) = λ2nk1. This holds because n is a power of p and our finite field

is of characteristic p. The previous equality implies that k1k2 = 1
λ2n . Hence the proof is

complete.
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An example of circulant semi-orthogonal matrix is the following.

Example 3.4.5. Consider the finite field F24 with generating polynomial x4 + x + 1 and α

be a primitive element. Let C = circulant(α3, α2, α3 + 1). Then C−T = CD where D =

diagonal(α3 + 1, α3 + 1, α3 + 1) and C−T= circulant(α2, α, α3 + α2 + 1). Note that, C is an
MDS matrix.

In Chapter 1, as outlined in Theorem 1.2.29, Gupta and Ray [30] proved that

circulant orthogonal matrices of order 2d × 2d cannot be MDS. We prove a similar

result for a subclass of circulant semi-orthogonal matrix. This subclass is named

sesqui-semi-orthogonal matrices. It contains the semi-orthogonal matrices A such that

A−T = D1AD2 with either D1 or D2 being an identity matrix. For this class of

matrices, we prove the non-existence of MDS property using the general expression for

the determinant of a circulant matrix. This result can be found in [68] and discussed in

Chapter 2, Section 2.2, Equation 2.3.

Theorem 3.4.6. Let p be a prime, and A be a 2p × 2p circulant sesqui-semi-orthogonal matrix
over the field Fpn . Then A is not an MDS matrix.

Proof. Let A = circulant(c0, c1, . . . , c2p−1) be a 2p × 2p circulant semi-orthogonal matrix

over Fpn . Without loss of generality, assume that D2 = I . Then AAT = D for some

non-singular diagonal matrix D.

Since non-diagonal entries of AAT are zero, we get the following 2p − 1 equations from

the first row of AAT .
2p−1∑
i=0

cici+1 = 0,

2p−1∑
i=0

cici+2 = 0,

2p−1∑
i=0

cici+3 = 0,

...
2p−1∑
i=0

cici+2p−1 = 0,



(3.3)

where suffixes of ci’s are taken modulo 2p. Adding alternate equations from (3.3) starting

with the first one, we get (c0 + c2 + · · · + c2p−2)(c1 + c3 + · · · + c2p−1) = 0. Then either

(c0+ c2+ · · ·+ c2p−2) = 0 or (c1+ c3+ · · ·+ c2p−1) = 0. Without loss of generality, assume

that (c0 + c2 + · · ·+ c2p−2) = 0.

Consider the p × p circulant sub-matrix formed by the odd numbered rows and odd

numbered columns of A. Let B = circulant(c0, c2, . . . , c2p−2) and detB = △. Let Qp×p =

circulant(0, 1, 0, . . . , 0) and Qp = I . The matrix B can be written as B = c0I + c2Q +

c4Q
2 + · · ·+ c2p−2Q

p−1. Hence △ =
∏n−1

j=0 (c0 + c2ω
j + c4ω

2j · · ·+ c2p−2ω
pj) = 0, where ω

is a p-th root of unity. This implies that A is not MDS.
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3.5 Characterisation of some 4×4 semi-involutory matrices

In this section, we study some properties of a class of 4× 4 semi-involutory matrices and

provide a necessary and sufficient condition for an arbitrary matrix of this class to be

semi-involutory. We prove Theorem 1.4.16 in this section. First we need the following

definition from [78].

Definition 3.5.1. Let A = (aij) be an n × n matrix. The upper G-discriminant of A is the(
n
2

)
× n matrix G(Au) = (aikakj), and the lower G-discriminant of A is G(Al) = (akiajk),

where 1 ≤ i < j ≤ n and k ∈ {1, 2, . . . , n}.

Theorem 3.5.2. Let A be a 4 × 4 matrix. If A is semi-involutory then the matrices G(Au) and
G(Al) are not of full rank.

Proof. Let A =


a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

 be a semi-involutory matrix. Then there exists a

non-singular diagonal matrix D = diagonal(d1, d2, d3, d4) such that ADA is a diagonal

matrix. Since the off-diagonal entries of ADA are zero, we have the following 12

equations

ai1a1jd1 + ai2a2jd2 + ai3a3jd3 + ai4a4jd4 = 0 where 1 ⩽ i < j ⩽ 4, and

a1iaj1d1 + a2iaj2d2 + a3iaj3d3 + a4iaj4d4 = 0 where 1 ⩽ i < j ⩽ 4.

Consider the 6× 4 matrix formed by the first six equations. It is denoted by

G(Au) =



a11a12 a12a22 a13a32 a14a42

a11a13 a12a23 a13a33 a14a43

a11a14 a12a24 a13a34 a14a44

a21a13 a22a23 a23a33 a24a43

a21a14 a22a24 a23a34 a24a44

a31a14 a32a24 a33a34 a34a44


.

Notice that the non-zero vector d = (d1, d2, d3, d4) satisfies G(Au) · dT = 0. Thus for any

4 × 4 sub-matrix of G(Au), the non-zero vector (d1, d2, d3, d4) belongs to its null space.

Therefore, rank(G(Au)) ̸= 4. Similarly G(Al) is constructed from the last six equations

and its rank is also not equal to 4.

Using Theorem 3.5.2 and Theorem 3.2.7, we provide some necessary and sufficient

conditions for a particular class of 4 × 4 matrices to be semi-involutory. We start by

recalling the definition of “totally the rank” from [78].

Definition 3.5.3. Let A be an m×n matrix. Then A has ‘totally the rank’ r if the rank of A is r,
and all r × r submatrices of A are non-singular.
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Theorem 3.5.4. Let A =


a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

 be a 4× 4 non-singular matrix over some field

F with aij ̸= 0 for all i, j, and a32a24a43 = a23a34a42. Then A is semi-involutory if and only if
the following conditions are satisfied:

1. Entries of A satisfy

a12a23a31 = a21a32a13 (3.4)

a21a14a42 = a12a24a41 (3.5)

a13a34a41 = a31a14a43. (3.6)

2. Determinant of X1, X2 and X3 are zero where

X1 =


a11a12 a12a22 a13a32 a14a42

a11a13 a12a23 a13a33 a14a43

a11a14 a12a24 a13a34 a14a44

a21a13 a22a23 a23a33 a24a43

 , X2 =


a11a12 a12a22 a13a32 a14a42

a11a13 a12a23 a13a33 a14a43

a11a14 a12a24 a13a34 a14a44

a14a21 a22a24 a23a34 a24a44

 ,

and X3 =


a11a12 a12a22 a13a32 a14a42

a11a13 a12a23 a13a33 a14a43

a11a14 a12a24 a13a34 a14a44

a14a31 a24a32 a33a34 a34a44

 .

3. Rank of G(Au) and G(Al) is at most 3.

4. The submatrix B of A formed by removing the first column of A (i.e., B =

A[1, 2, 3, 4|2, 3, 4]) has ‘totally the rank’ 3.

Proof. Let A be semi-involutory. Then there exists a non-singular diagonal matrix D

such that ADA is diagonal. Then the off-diagonal entries of ADA are zero giving us

the following 12 equations:

ai1a1jd1 + ai2a2jd2 + ai3a3jd3 + ai4a4jd4 = 0 where 1 ⩽ i < j ⩽ 4, (3.7)

a1iaj1d1 + a2iaj2d2 + a3iaj3d3 + a4iaj4d4 = 0 where 1 ⩽ i < j ⩽ 4. (3.8)

Using the condition aij ̸= 0 and Theorem 2.3.6, we get that all 3×3 submatrices ofA have

non-zero determinants. Since a11 ̸= 0, detA(1|1) = detA[{2, 3, 4}|{2, 3, 4}] ̸= 0. Similarly,

a12 ̸= 0 implies detA(2|1) = detA[{1, 3, 4}|{2, 3, 4}] ̸= 0. Other 3×3 submatrices can also

be shown to have non-zero determinants in the same manner.

Consider the following two 4× 4 submatrices constructed using Equations 3.7 and 3.8.
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X1 =


a11a12 a12a22 a13a32 a14a42

a11a13 a12a23 a13a33 a14a43

a11a14 a12a24 a13a34 a14a44

a21a13 a22a23 a23a33 a24a43

 and Y1 =


a11a12 a12a22 a13a32 a14a42

a11a13 a12a23 a13a33 a14a43

a11a14 a12a24 a13a34 a14a44

a12a31 a22a32 a32a33 a42a34

 .

Let xi denote the i-th row ofX1 and yj denote the j-th row of Y1. Let xij and yij denote the

j-th entry of the i-th row of X1 and Y1, respectively. Observe that the first three rows of

X1 and Y1 are the same. Since A is semi-involutory, there exists a non-zero vector d such

that X1d
T = 0 and Y1d

T = 0. Hence, ranks of X1 and Y1 are ≤ 3. Further, note that the

sub-matrix X1[{1, 2, 3}|{1, 2, 3}] is the same as the sub-matrix Y1[{1, 2, 3}|{1, 2, 3}]. The

determinant of this submatrix is a11a12a13 · detA[{1, 2, 3}|{2, 3, 4}] ̸= 0. Hence, the ranks

of X1 and Y1 are 3. This implies that x4 and y4 are linear combinations of x1, x2, x3. Let

x4 = ax1 + bx2 + cx3 and y4 = dx1 + ex2 + fx3 where a, b, c, d, e, f are some non-zero

scalars.

Consider t = a−1
23 a32. Then y42 = tx42 and y43 = tx43. By the given condition a32a24a43 =

a23a34a42, we get y44 = t x44. Since A is semi-involutory, we have d1x41+ d2x42+ d3x43+

d4x44 = 0 and d1y41 + d2y42 + d3y43 + d4y44 = 0 where di ̸= 0 for 1 ≤ i ≤ 4. Therefore,

td1x41+td2x42+td3x43+td4x44 = td1x41+d2y42+d3y43+d4y44 = 0, i.e., td1x41−d1y41 = 0.

Since d1 ̸= 0, we have y41 = tx41 implies a12a31a23 = a13a21a32.

Next consider the following two 4×4 sub matricesX2 and Y2 constructed from Equations

3.7 and 3.8 with the same first three rows and different last row.

X2 =


a11a12 a12a22 a13a32 a14a42

a11a13 a12a23 a13a33 a14a43

a11a14 a12a24 a13a34 a14a44

a14a21 a22a24 a23a34 a24a44

 and Y2 =


a11a12 a12a22 a13a32 a14a42

a11a13 a12a23 a13a33 a14a43

a11a14 a12a24 a13a34 a14a44

a12a41 a22a42 a32a43 a42a44



Then, by the same argument as before, the ranks of X2 and Y2 are 3. Let pi’s and

qi’s denote i-th row of X2 and Y2, respectively. Then p4 = a′p1 + b′p2 + c′p3 and

q4 = d′q1 + e′q2 + f ′q3 for some non-zero scalars a′, b′, c′, d′, e′, f ′. Let t = a−1
24 a42,

then tp42 = q42, tp44 = q44. Using the given condition a32a24a43 = a23a34a42, we get

tp43 = q43. Using semi-involutory property of A, we get d1p41+ d2p42+ d3p43+ d4p44 = 0

and d1q41 + d2q42 + d3q43 + d4q44 = 0 where di ̸= 0 for 1 ≤ i ≤ 4. This implies that

td1p41+td2p42+td3p43+td4p44 = td1p41+d2q42+d3q43+d4q44 = 0, i.e., td1p41−d1q41 = 0.

Since d1 ̸= 0, q41 = tp41 and a21a14a42 = a12a24a41.

Next consider the following two 4× 4 submatrices formed by Equations 3.7 and 3.8.
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X3 =


a11a12 a12a22 a13a32 a14a42

a11a13 a12a23 a13a33 a14a43

a11a14 a12a24 a13a34 a14a44

a14a31 a24a32 a33a34 a34a44

 and Y3 =


a11a12 a12a22 a13a32 a14a42

a11a13 a12a23 a13a33 a14a43

a11a14 a12a24 a13a34 a14a44

a13a41 a23a42 a33a43 a43a44


Using the same argument as earlier, the ranks of X3 and Y3 are 3. Let ri and si denote the

i-th row ofX3 and Y3 respectively. Then r4 = a′′r1+b
′′r2+c

′′r3 and s4 = d′′s1+e
′′s2+f

′′s3

for some non-zero scalars a′′, b′′, c′′, d′′, e′′, f ′′. Let t = a−1
34 a43. Then tr43 = s43, tr44 = s44.

Using the given condition a32a24a43 = a23a34a42, we get ta24a32 = a23a42, i.e., tr43 =

s43. Using the semi-involutory property of A again, we get r41 = ts41 and a13a34a41 =

a31a14a43.

Observe that X1, X2 and X3 are 4 × 4 submatrices of G(Au) of rank 3. Since G(Au) is a

6 × 4 matrix, its rank is ≤ 4. However, all 4 × 4 submatrices of G(Au) have rank 3. This

implies rank of G(Au) is at most 3. Similarly, the proof of the rank of G(Al) holds from

the argument that Y1, Y2 and Y3 have rank 3.

Consider the matrix B =


a12 a13 a14

a22 a23 a24

a32 a33 a34

a42 a43 a44

 . Since B is a 4 × 3 matrix, it’s rank is at most

3. From the semi-involuotry property of A, determinant of all 3 × 3 submatrices of B is

non-zero. Therefore, B has ’totally the rank’ 3.

Conversely, assume entries of A satisfy the given conditions. To show that A is

semi-involutory, we need to show the existence of a non-singular diagonal matrixD such

that ADA is diagonal. Consider the following two 6× 4 matrices:

G(Au) =M1 =



a11a12 a12a22 a13a32 a14a42

a11a13 a12a23 a13a33 a14a43

a11a14 a12a24 a13a34 a14a44

a21a13 a22a23 a23a33 a24a43

a21a14 a22a24 a23a34 a24a44

a31a14 a32a24 a33a34 a34a44


and

G(Al) =M2 =



a11a21 a21a22 a31a23 a41a24

a11a31 a21a32 a31a33 a41a34

a11a41 a21a42 a31a43 a41a44

a12a31 a22a32 a32a33 a42a34

a12a41 a22a42 a32a43 a42a44

a13a41 a23a42 a33a43 a43a44


.

To show that ADA is diagonal, it is enough to show that there exists a vector d =

(d1, d2, d3, d4) with all non-zero entries such that M1d
T and M2d

T are zero, i.e., they

share a null vector. Since the rank of M1 and M2 are ≤ 3, there exists a non-zero

null vector in the null space of M1 and M2 by the rank-nullity theorem. Using the



Chapter 3. Semi-orthogonal and semi-involutory MDS matrices 73

given conditions, and the Equations 3.4, 3.5 and 3.6, it is easy to show that row1M2 =

(a21a
−1
12 )row1M1, row2M2 = (a31a

−1
13 )row2M1, row3M2 = (a41a

−1
14 )row3M1, row4M2 =

(a32a
−1
23 )row4M1, row5M2 = (a42a

−1
24 )row5M1, and row6M2 = (a43a

−1
34 )row6M1. Hence

the row space of M1 and M2 are the same, and they share a non-zero null vector. To

complete the proof, we only need to show that all di’s are non-zero for 1 ≤ i ≤ 4.

On the contrary, let us assume that at least one di is zero. Without loss of generality, let

d1 = 0. Then M1d
T = 0 implies that d2C2 + d3C3 + d4C4 = 0 where Ci denotes the i-th

column of M1. This means that C2, C3, and C4 are linearly dependent. Consider the 6× 3

matrix M3 =
[
C2 C3 C4

]
. The rank of M3 is at most 2.

Now consider the following 3 × 3 submatrix of M3:


a12a22 a13a32 a14a42

a12a23 a13a33 a14a43

a12a24 a13a34 a14a44

 . The

determinant of this matrix is (a12a13a14 · detA[{2, 3, 4}|{2, 3, 4}]), which is non-zero by

condition 4. Hence d1 ̸= 0. Similarly, if d2 = 0 then d1C1 + d3C3 + d4C4 = 0 and

this implies that the rank of the 6 × 3 matrix
[
C1 C3 C4

]
is at most 2. Consider the

following 3 × 3 submatrix:


a11a12 a13a32 a14a42

a11a13 a13a33 a14a43

a11a14 a13a34 a14a44.

. The determinant of this matrix

is (a11a13a14 · detA[{1, 3, 4}|{2, 3, 4}]) and this is non-zero by condition 4. Thus d2 is

also non-zero. If d3 = 0, then the rank of the 6 × 3 matrix
[
C1 C2 C4

]
is at most

2. However, the determinant of the matrix


a11a12 a12a22 a14a42

a11a13 a12a23 a14a43

a11a14 a12a24 a14a44.

 is (a11a12a14 ·

detA[{1, 2, 4}|{2, 3, 4}]) ̸= 0 by condition 4. Thus d3 is also non-zero. Similarly, if d4 = 0

then the rank of
[
C1 C2 C3

]
is at most 2. However, the determinant of the matrix

a11a12 a12a22 a13a32

a11a13 a12a23 a13a33

a11a14 a12a24 a13a34.

 is (a11a12a13 ·detA[{1, 2, 3}|{2, 3, 4}]) ̸= 0 by condition 4. Thus

d4 is also non-zero.

Therefore, there exists a non-singular diagonal matrix D = diagonal(d1, d2, d3, d4) such

that ADA is diagonal. This completes the proof that A is semi-involutory.

3.6 Conclusion

This chapter explored MDS matrices characterized by semi-involutory and

semi-orthogonal properties, and also Cauchy, Vandermonde, and circulant matrices

within this framework. While the characterization of semi-involutory matrices of order

4 × 4 with all non-zero entries has been proved, the impact of the MDS property on this

characterization remains an open question. Furthermore, investigating circulant MDS

matrices of odd orders over finite fields, while considering their semi-involutory and

semi-orthogonal properties, introduces a compelling direction for future research.
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Chapter 4

Characterization of semi-involutory
MDS matrices

In the previous chapter, we have characterized 3× 3 semi-involutory MDS matrices over

finite fields. In this chapter we provide a general structure of these matrices, motivated

by the work on 3 × 3 MDS involutory matrices done by Guz̈el et al. in [27]. In first

section, we recall some results on the general structure of MDS involutory matrices

and semi-involutory matrices which will be useful for our discussion. Then we give a

characterization for 3 × 3 semi-involutory matrices and prove a necessary and sufficient

condition to construct MDS matrices using the characterization. In the last section,

we count the number of 3 × 3 semi-involutory MDS matrices over the finite fields of

characteristic 2. The work presented in this chapter is given in [66].

4.1 Introduction

Involutory MDS matrices play an important role in the design of lightweight

cryptography primitives. Recently, in 2019, Guz̈el et al. introduced a general construction

of MDS involutory matrices of order 3× 3 using only two arbitrary elements of the finite

field F2m . Their work was motivated by the use of MDS involutory matrix in the diffusion

layer of the block cipher Curupira. They established the following general format of

involutory matrices:
a1 (a1 + 1)b0 (a1 + 1)b1

(a2 + 1)b−1
0 a2 (a2 + 1)b−1

0 b1

(a1 + a2)b
−1
1 (a1 + a2)b

−1
1 b0 a1 + a2 + 1

 , (4.1)

where a1, a2 are arbitrary elements from the finite field F2m with a1 ̸= a2, {a1, a2} ≠ 1 and

b0, b1 ∈ F∗
2m . Using the structure 4.1 , they proved the following proposition to construct

an MDS matrix:

Proposition 4.1.1. A matrix in the form of Equation 4.1 is MDS over F2m ,m > 2 if and only if
a1, a2 ∈ F2m \ {0, 1} and a1 + a2 ̸= 1.

Proof. For proof see Proposition 1 of [27].

This proposition implies that there exists total (2m− 1)2(2m− 2)(2m− 4) involutory MDS

matrices of order 3×3 over the finite field F2m . Subsequently, in the following section, we
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generalize these results for irreducible semi-involutory matrices. Additionally, we rely on

certain properties of irreducible semi-involutory matrices which are noted in Section 2.3

of Chapter 2.

4.2 Structure of 3×3 semi-involutory MDS matrices

We begin this section with the proof of Theorem 1.2.

Theorem 4.2.1. Let A = (aij), 1 ≤ i, j ≤ 3 be a 3× 3 irreducible, semi-involutory matrix with
an associated diagonal matrix D = diagonal(d1, d2, d3) over the finite field F2m . Then

a12 = (a11d1 + a33d3)d
−1
2 x, a13 = (a11d1 + a22d2)d

−1
3 xy,

a21 = (a22d2 + a33d3)d
−1
1 x−1, a23 = (a22d2 + a11d1)d

−1
3 y,

a31 = (a33d3 + a22d2)d
−1
1 (xy)−1, a32 = (a33d3 + a11d1)d

−1
2 y−1,

(4.2)

where x, y are non-zero elements of F2m .

Proof. Since A =


a11 a12 a13

a21 a22 a23

a31 a32 a33

 is an irreducible, semi-involutory matrix, by Theorem

2.3.9, we have A−1 = cDAD. This implies that (DA)2 = c−1I . Let c−1 = a ∈ F2m . The

diagonal and non-diagonal entries of (DA)2 satisfy the following conditions:

a211d
2
1 + a12a21d1d2 + a13a31d1d3 = a (4.3)

a222d
2
2 + a12a21d1d2 + a23a32d2d3 = a (4.4)

a233d
2
3 + a13a31d1d3 + a23a32d2d3 = a (4.5)

a11a12d
2
1 + a12a22d1d2 + a13a32d1d3 = 0 (4.6)

a11a13d
2
1 + a12a23d1d3 + a13a33d1d3 = 0 (4.7)

a11a21d1d2 + a12a22d
2
2 + a23a31d2d3 = 0 (4.8)

a13a21d1d2 + a22a23d
2
2 + a23a33d2d3 = 0 (4.9)

a11a31d1d3 + a21a32d2d3 + a31a33d
2
3 = 0 (4.10)

a12a31d1d3 + a22a32d2d3 + a32a33d
2
3 = 0 (4.11)

Adding (4.3), (4.4) and (4.5) we get

a211d
2
1 + a222d

2
2 + a233d

2
3 = a. (4.12)

Equation (4.6), (4.7), (4.8), (4.9), (4.10) and (4.11) can be re-written in the following form
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thanks to an idea follows from Theorem 1 in [27]:

(a11d1 + a33d3)(a22d2 + a33d3) = a12a21d1d2 (4.13)

(a11d1 + a22d2)(a11d1 + a33d3) = a23a32d3d2 (4.14)

(a11d1 + a22d2)(a22d2 + a33d3) = a13a31d3d1. (4.15)

Multiply the first term in the product by d−1
2 and second term by d−1

1 in the left hand side

of Equation (4.13), we can write a12 = (a11d1+a33d3)d
−1
2 x and a21 = (a22d2+a33d3)d

−1
1 x−1

where x is an non-zero element of F2m . Similarly, form (4.14), we get a23 = (a22d2 +

a11d1)d
−1
3 y and a32 = (a33d3 + a11d1)d

−1
2 y−1, where y is an non-zero element of F2m .

Finally, from (4.15) we get a13 = (a11d1 + a22d2)d
−1
3 z and a31 = (a33d3 + a22d2)d

−1
1 z−1

where z is an non-zero element of F2m . SinceA is semi-involutory and irreducible, entries

of A satisfy a12a23a31 = a13a21a32 from Theorem 2.3.8. This implies x, y and z satisfy

xyz−1 = x−1y−1z. By choosing z = xy we get desired a13 and a31.

Remark 4.2.2. Irreducible semi-involutory matrices may not be involutory. Thus Theorem 4.2.1
holds for a more general class of matrices. For example, consider the finite field F23 with generating
polynomial x3 + x2 + 1. Let α be a primitive element of the finite field . Consider the matrix A =
α2 + α 1 α2 + 1

1 α2 + α α+ 1

α2 + 1 α+ 1 α2 + α

. Then A is semi-involutory and irreducible with D = diagonal

(α2 + α+ 1, α2 + α, α+ 1) and c = 1 but A2 ̸= I .

The converse of Theorem 4.2.1 is not necessarily true. For example,

Example 4.2.3. Consider the finite field F22 with generating polynomial x2 + x + 1. Let β be a
primitive element and a11 = 1, a22 = β, a33 = β + 1, d1 = β, d2 = β + 1 and d3 = 1. Take
x = β, y = β + 1. Then the matrix

A =


a11 (a11d1 + a33d3)d

−1
2 x (a11d1 + a22d2)d

−1
3 xy

(a22d2 + a33d3)d
−1
1 x−1 a22 (a11d1 + a22d2)d

−1
3 y

(a22d2 + a33d3)d
−1
1 (xy)−1 (a11d1 + a33d3)d

−1
2 y−1 a33

 (4.16)

is equal to


1 β + 1 β + 1

β + 1 β β

1 β + 1 β + 1

 with detA is zero. Hence A is not semi-involutory.

Observe that Equation (4.16) is the generalized form of the matrix provided in Theorem

1 of [27]. Substituting d1 = d2 = d3 = 1 and a = 1 in equation (4.12), we can deduce to

the generalized form of 3× 3 involutory matrix which is noted in Equation 4.1.

Under certain condition we prove the converse of Theorem 4.2.1 in the following

theorem.
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Theorem 4.2.4. Let A be a 3 × 3 matrix over F2m as described in Equation (4.16) and
d1, d2, d3, x, y ∈ F∗

2m . If a11d1 + a22d2 + a33d3 ̸= 0, then A is semi-involutory. Moreover,
if any two of a11d1+ a22d2, a22d2+ a33d3 and a11d1+ a33d3 are non-zero, then A is irreducible.

Proof. Consider the diagonal matrix D with d1, d2, d3 as consecutive diagonal entries.

Then D is a non-singular diagonal matrix and ADA = diagonal(d−1
1 a, d−1

2 a, d−1
3 a) where

a satisfies Equation (4.12), i.e., a = (a11d1 + a22d2 + a33d3)
2. Therefore by the given

condition ADA is a non-singular diagonal matrix. Since detA = (a11d1 + a22d2 +

a33d3)
3(d1d2d3)

−1, by the given condition detA ̸= 0. Hence from the equivalent

condition of semi-involutory matrix A is semi-involutory. Observe that if at least two of

a11d1+a22d2, a22d2+a33d3 and a11d1+a33d3 are non-zero, then A cannot be permutation

similar to a upper triangular matrix as a 3× 3 upper triangular matrix must have at least

three zeros, but by the given conditions, there can be at most two zero elements in A.

Therefore, A cannot be permutation similar to an upper triangular matrix. Thus, A is

irreducible.

Note that, MDS matrices are irreducible. Using this property we prove the following

result.

Theorem 4.2.5. Let A be a 3 × 3 matrix over F2m as described in Equation (4.16), where
a11, a22, a33, d1, d2, d3, x, y are non-zero. Then A is semi-involutory MDS matrix if and only
if a11d1 + a22d2, a11d1 + a33d3, a22d2 + a33d3 and a11d1 + a22d2 + a33d3 are non-zero elements
of the finite field.

Proof. Let A be a semi-involutory MDS matrix. Then A−1 exists and detA =

(a11d1+a22d2+a33d3)
3(d1d2d3)

−1. This implies a11d1+a22d2+a33d3 is non-zero. Observe

that, over the finite field F2m , Equation (4.12) can be written as (a11d1+a22d2+a33d3)2 = a

and there exists a non-zero element b such that b2 = a. Hence a11d1 + a22d2 + a33d3 = b.

The determinant of all 2× 2 sub-matrices of A are following:∣∣∣∣∣∣∣∣
a11 (a11d1 + a33d3)d

−1
2 x

(a22d2 + a33d3)d
−1
1 x−1 a22

∣∣∣∣∣∣∣∣ = a33bd3d
−1
1 d−1

2 ,

∣∣∣∣∣ a11 (a11d1 + a22d2)d
−1
3 xy

(a22d2 + a33d3)d
−1
1 x−1 (a11d1 + a22d2)d

−1
3 y

∣∣∣∣∣ = (a11d1 + a22d2)byd
−1
3 d−1

1 ,∣∣∣∣∣(a11d1 + a33d3)d
−1
2 x (a11d1 + a22d2)d

−1
3 xy

a22 (a11d1 + a22d2)d
−1
3 y

∣∣∣∣∣ = (a11d1 + a22d2)bxyd
−1
2 d−1

3 ,∣∣∣∣∣ a11 (a11d1 + a33d3)d
−1
2 x

(a22d2 + a33d3)d
−1
1 (xy)−1 (a11d1 + a33d3)d

−1
2 y−1

∣∣∣∣∣ = (a11d1 + a33d3)by
−1d−1

1 d−1
2 ,∣∣∣∣∣ a11 (a11d1 + a22d2)d

−1
3 xy

(a22d2 + a33d3)d
−1
1 (xy)−1 a33

∣∣∣∣∣ = a22bd2d
−1
1 d−1

3 ,∣∣∣∣∣ (a11d1 + a33d3)d
−1
2 x (a11d1 + a22d2)d

−1
3 xy

(a11d1 + a33d3)d
−1
2 y−1 a33

∣∣∣∣∣ = (a11d1 + a33d3)bxd
−1
2 d−1

3 ,
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∣∣∣∣∣ (a22d2 + a33d3)d
−1
1 x−1 a22

(a22d2 + a33d3)d
−1
1 (xy)−1 (a11d1 + a33d3)d

−1
2 y−1

∣∣∣∣∣ = (a22d2 + a33d3)bx
−1y−1d−1

1 d−1
2 ,∣∣∣∣∣ (a22d2 + a33d3)d

−1
1 x−1 (a11d1 + a22d2)d

−1
3 y

(a22d2 + a33d3)d
−1
1 (xy)−1 a33

∣∣∣∣∣ = (a22d2 + a33d3)bxd
−1
1 d−1

3 ,∣∣∣∣∣ a22 (a11d1 + a22d2)d
−1
3 y

(a11d1 + a33d3)d
−1
2 y−1 a33

∣∣∣∣∣ = a11bd1d
−1
2 d−1

3 .

Since A is an MDS matrix and d1, d2, d3, x, y, b are non-zero elements of the finite field,

then the condition holds.

Conversely, let a11d1 + a22d2, a11d1 + a33d3, a22d2 + a33d3 and a11d1 + a22d2 + a33d3 are

non-zero elements of the finite field. Then we have all the entries of the matrix A and all

2×2 sub-matrices have non-zero determinant. Since a11d1+a22d2+a33d3 ̸= 0, detA is also

non-zero. Therefore A is an MDS matrix. By some easy calculation we have ADA = D′

with D = diagonal(d1, d2, d3) and D′ = diagonal(d−1
1 a, d−1

2 a, d−1
3 a), with a = (a11d1 +

a22d2+a33d3)
2. Since a is a non-zero element of the finite field andD,D′ are non-singular

matrices, A is semi-involutory.

4.3 A counting problem

In this section, we count the number of semi-involutory MDS matrices of order 3 × 3

over the finite field F2m . We start with the following construction of a set S of

6-tuples that satisfy the conditions presented in Theorem 4.2.5 over the finite field F2m :

S = {(a11, a22, a33, d1, d2, d3) ∈ (F∗
2m)

6,m ≥ 2 : a11d1 + a22d2 ̸= 0, a11d1 + a33d3 ̸=
0, a22d2 + a33d3 ̸= 0, a11d1 + a22d2 + a33d3 ̸= 0}. Using the cardinality of S, we count the

number of semi-involutory MDS matrices in Theorem 4.3.5. To determine the cardinality

of S, we first prove a series of lemmas.

Lemma 4.3.1. Let S1 = {(a11, a22, a33, d1, d2, d3) ∈ (F∗
2m)

6,m ≥ 2 : aii ̸= ajj , 1 ≤ i < j ≤
3, a11d1+ a22d2 ̸= 0, a11d1+ a33d3 ̸= 0, a22d2+ a33d3 ̸= 0, a11d1+ a22d2+ a33d3 ̸= 0}. Then
|S1| = (2m − 1)2(2m − 2)(23m − 9 · 22m + 26 · 2m − 24).

Proof. Let aii ̸= ajj , 1 ≤ i < j ≤ 3. We consider three sub-cases based on the choice of

d1, d2, d3. As a result, let consider the following three sets:

S′
1 = {(a11, a22, a33, d1, d2, d3) ∈ (F∗

2m)
6,m ≥ 2 : aii ̸= ajj , di = dj , 1 ≤ i < j ≤ 3,

a11d1 + a22d2 ̸= 0, a11d1 + a33d3 ̸= 0, a22d2 + a33d3 ̸= 0, a11d1 + a22d2 + a33d3 ̸= 0},

S′′
1 = {(a11, a22, a33, d1, d2, d3) ∈ (F∗

2m)
6,m ≥ 2 : aii ̸= ajj , 1 ≤ i < j ≤ 3, di = dj for

(i, j) ∈ {(1, 2), (1, 3), (2, 3)}, a11d1 + a22d2 ̸= 0, a11d1 + a33d3 ̸= 0, a22d2 + a33d3 ̸= 0,

a11d1 + a22d2 + a33d3 ̸= 0},

S′′′
1 = {(a11, a22, a33, d1, d2, d3) ∈ (F∗

2m)
6,m ≥ 2 : aii ̸= ajj , di ̸= dj , 1 ≤ i < j ≤ 3,

a11d1 + a22d2 ̸= 0, a11d1 + a33d3 ̸= 0, a22d2 + a33d3 ̸= 0, a11d1 + a22d2 + a33d3 ̸= 0}.

Case I. First consider the set S′
1. In this case we have di = dj for 1 ≤ i < j ≤ 3. This
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implies that a11d1 + a22d2, a11d1 + a33d3, a22d2 + a33d3 are non-zero. Since di ∈ F∗
2m ,

the equation a11d1 + a22d2 + a33d3 = 0 holds if a11 + a22 + a33 = 0. Consider the sets

A1 = {(a11, a22, a33) : a11 + a22 + a33 = 0} and A2 = {(a11, a22, a33) : a11 + a22 + a33 ̸= 0}.

Any non-zero di ∈ F2m satisfy all the four conditions of S′
1 for each element ofA2. Clearly,

|A2| = (2m − 1)(2m − 2)(2m − 3)− (2m − 1)(2m − 2) = (2m − 1)(2m − 2)(2m − 4).

Hence cardinality of S′
1 is

|S′
1| = {(2m − 1)(2m − 2)(2m − 3)− (2m − 1)(2m − 2)}(2m − 1)

= (2m − 1)2(2m − 2)(2m − 4).

Case II. Next consider the set S′′
1 . Then exactly one pair of di is equal. We give the proof

for the case d1 = d2, d1 ̸= d3, d2 ̸= d3. The other two cases will follow similarly.

Let d1 = d2, d1 ̸= d3, d2 ̸= d3. Then a11d1 + a22d2 is non-zero. To determine the

cardinality of S′′
1 , we count the cardinality of non-zero 3-tuple (d1, d1, d3) such that

a11d1 + a33d3, a22d1 + a33d3, a11d1 + a22d1 + a33d3 are non-zero.

First we choose an arbitrary (a11, a22, a33) such that a33 ̸= a11 + a22 and fix it. There are

(2m − 1) and (2m − 2) ways to choose a11 and a22 respectively. Since a33 is different from

a11 + a22, we have (2m − 4) many options for a33. Therefore (a11, a22, a33) can be chosen

in total (2m − 1)(2m − 2)(2m − 4) ways. Let define the following two sets:

T = {(d1, d3) ̸= (0, 0) : d1 ̸= d3} and

X = {(d1, d3) ∈ T : a11d1 + a33d3 ̸= 0, a22d1 + a33d3 ̸= 0, a11d1 + a22d1 + a33d3 ̸= 0}.

Clearly, |T | = (2m − 1)(2m − 2). To count the cardinality of X , consider three sets

X1 = {(d1, d3) ∈ T : a11d1 + a33d3 = 0},

X2 = {(d1, d3) ∈ T : a22d1 + a33d3 = 0},

and X3 = {(d1, d3) ∈ T : (a11 + a22)d1 + a33d3 = 0}.

Observe that |X| = |T | \ |X1 ∪X2 ∪X3|. To calculate the cardinality of Xi, 1 ≤ i ≤ 3, we

construct three sets Y1, Y2 and Y3 defined as follows:

Y1 = {(xa33, xa11) : x ∈ F∗
2m},

Y2 = {(ya33, ya22) : y ∈ F∗
2m},

and Y3 = {(za33, z(a11 + a22) : z ∈ F∗
2m}.

We prove that Xi = Yi, 1 ≤ i ≤ 3. It is easy to observe that, Y1 ⊆ X1, Y2 ⊆ X2 and

Y3 ⊆ X3.

To prove the other side of inclusion, i.e.,X1 ⊆ Y1, consider an arbitrary element (α1, α2) ∈
X1. Therefore a11α1 + a33α2 = 0. Moreover, there exist non-zero elements β1, β2 in F∗

2m
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such that α1 = β1a33 and α2 = β2a11. Hence a11a33(β1 + β2) = 0 implies β1 = β2.

Thus (α1, α2) ∈ Y1 and this implies X1 = Y1. Similarly, Y2 = X2 and Y3 = X3 and

|X1| = |X2| = |X3| = (2m − 1).

Next assume that X1 ∩X2 ̸= ϕ. This implies a11 = a22, which is not possible. Similarly,

if X1 ∩X3 ̸= ϕ, that implies a11 = a11 + a22, which is not possible. Also, if X2 ∩X3 ̸= ϕ,

then a22 = a11 + a22, which is not possible. Therefore,

|X1 ∪X2 ∪X3| = 3(2m − 1) and

|X| = |T | \ |X1 ∪X2 ∪X3| = (2m − 1)(2m − 2)− 3(2m − 1) = (2m − 1)(2m − 5).

For the case a33 = a11 + a22, first we choose arbitrary a11, a22 and fix them. Then a11d1 +

a22d1 + a33d3 = (d1 + d3)a33 ̸= 0. Hence, in this situation the set X is defined as X =

{(d1, d3) ∈ T : a11d1 + a33d3 ̸= 0, a22d1 + a33d3 ̸= 0}. Following a similar approach as in

previous case, construct the sets X1, X2, Y1, Y2 and obtain |X|. Then

|X| = (2m − 1)(2m − 2)− 2(2m − 1) = (2m − 1)(2m − 4).

Combining both cases for d1 = d2, d1 ̸= d3, d2 ̸= d3 and considering the remaining two

cases for di’s, we have

|S′′
1 | = 3{(2m − 1)2(2m − 2)(2m − 4)(2m − 5) + (2m − 1)2(2m − 2)(2m − 4)}

= 3(2m − 1)2(2m − 2)(2m − 4)2.

Case III. Lastly, consider S′′′
1 . First choose an arbitrary triplet (a11, a22, a33) and fix it. First

we define the following two sets:

T = {(d1, d2, d3) ̸= (0, 0, 0) : di ̸= dj , 1 ≤ i < j ≤ 3},

X = {(d1, d2, d3) ∈ T : a11d1 + a22d2 ̸= 0, a11d1 + a33d3 ̸= 0, a22d2 + a33d3 ̸= 0,

a11d1 + a22d2 + a33d3 ̸= 0}.

Clearly, |T | = (2m − 1)(2m − 2)(2m − 3). Consider the sets

X1 = {(d1, d2, d3) ∈ T : a11d1 + a22d2 = 0},

X2 = {(d1, d2, d3) ∈ T : a11d1 + a33d3 = 0},

X3 = {(d1, d2, d3) ∈ T : a22d2 + a33d3 = 0},

and X4 = {(d1, d2, d3) ∈ T : a11d1 + a22d2 + a33d3 = 0}.
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First we calculate |X1 ∪X2 ∪X3 ∪X4|. We begin with defining the following sets

Y1 = {(xa22, xa11, d3) : x ∈ F∗
2m , d3 ̸= (0, xa22, xa11)},

Y2 = {(ya33, d2, ya11) : y ∈ F∗
2m , d2 ̸= (0, ya33, ya11)},

Y3 = {(d1, za33, za22) : d1 ∈ F∗
2m , z ∈ F∗

2m , za33 ̸= d1, za11 ̸= d1}

= {(d1, za33, za22) : d1 ∈ F∗
2m , z ∈ F∗

2m , z ̸= (d1a
−1
33 , d1a

−1
22 )},

and Y4 = {(d1, d2, d3) : d1 ∈ F∗
2m , d2 ̸= (0, d1, a

−1
22 a11d1, (a11 + a33)a

−1
22 d1, (a22 + a33)

−1a11d1),

d3 ̸= 0, d3 = a−1
33 (a11d1 + a22d2)}.

We prove that Xi = Yi, 1 ≤ i ≤ 4. For the case a33 = a11 + a22, Y4 is denoted by

Y 0
4 = {(d1, d2, d3) : d1 ∈ F∗

2m , d2 ̸= (0, d1, a
−1
22 a11d1), d3 ̸= 0, d3 = a−1

33 (a11d1 + a22d2)}.

The cardinality of Y 0
4 and Y4 are |Y 0

4 | = (2m − 1)(2m − 3) and |Y4| = (2m − 1)(2m − 5).

Clearly, Y1 ⊆ X1, Y2 ⊆ X2 and Y3 ⊆ X3. We now prove the reverse inclusion starting

with the case X1 ⊆ Y1, and the other two cases are similar.

Let (d′1, d
′
2, d

′
3) ∈ X1. From the construction of X1 this implies a11d′1 + a22d

′
2 = 0 and d′3 ̸=

{d′1, d′2}. There exists non-zero elements β1, β2 ∈ F∗
2m such that d′1 = β1a22, d

′
2 = β2a11.

Since a11d′1+ a22d
′
2 = 0, we have a11a22(β1+β2) = 0. Since a11, a22 are non-zero element,

this implies β1 = β2. Therefore d′3 ̸= {β1a22, β1a11} and X1 = Y1. Hence, cardinality

of the set Y1 is (2m − 1)(2m − 3) because, we need to choose x from F∗
2m and d3 from

F∗
2m \ {0, xa22, xa11}.

Likewise, X2 = Y2 and X3 = Y3. Hence |X1| = |X2| = |X3| = (2m − 1)(2m − 3).

We now prove that Y4 = X4 for the case a33 ̸= a11 + a22. Let (d′1, d
′
2, d

′
3) ∈ Y4. Then

d′3 = a−1
33 (a11d

′
1 + a22d

′
2) and this implies a11d′1 + a22d

′
2 + a33d

′
3 = 0. Also d′3 ̸= 0 implies

a11d
′
1 ̸= a22d

′
2 i.e., d′2 ̸= a−1

22 a11d
′
1.

To prove (d′1, d
′
2, d

′
3) ∈ X4, we need to show d′3 ̸= {d′1, d′2}. If d′3 = d′1 then d′1 =

a−1
33 (a11d

′
1 + a22d

′
2), which implies d′2 = (a11 + a33)a

−1
22 d

′
1, which is not possible from

the construction of Y4. Similarly, if d′3 = d′2, then d′2 = a−1
33 (a11d

′
1 + a22d

′
2), which implies

d′2 = (a22+a33)
−1a11d

′
1, which is also not possible from the construction of Y4. Therefore,

(d′1, d
′
2, d

′
3) ∈ T and Y4 ⊆ X4.

Conversely , let (d′1, d
′
2, d

′
3) ∈ X4. Then d′1 ̸= d′2, d

′
1 ̸= d′3, d

′
1 ̸= d′2 and a11d

′
1 + a22d

′
2 +

a33d
′
3 = 0. Since a33d′3 ̸= 0, we have a11d′1 ̸= a22d

′
2 and this implies d′2 ̸= a−1

22 a11d
′
1.

Furthermore, since d′3 ̸= d′1, d
′
2, it follows that a11d′1 + a22d

′
2 ̸= a33d

′
1 and a11d

′
1 + a22d

′
2 ̸=

a33d
′
2. This implies d′2 ̸= (a11 + a33)a

−1
22 d

′
1 and d′2 ̸= (a22 + a33)

−1a11d
′
1 respectively.

Therefore (d′1, d
′
2, d

′
3) ∈ Y4.

Similarly it can be proved that Y 0
4 = X4 when a33 = a11 + a22.

Next, we calculate the cardinality of Xi ∩ Xj , 1 ≤ i, j ≤ 4. We start with calculating

X1 ∩X2 and X1 ∩X4, and the others cases are similar.

Let (d′1, d
′
2, d

′
3) ∈ X1 ∩ X2. This implies d′1 = xa22 = ya33, d

′
2 = xa11, d

′
3 = ya11.

Since a22 ̸= a33, and xa22 = ya33 = d′1 then x = d′1a
−1
22 and y = d′1a

−1
33 . Therefore
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{(d′1, d′1a
−1
22 a11, d

′
1a

−1
33 a11) : d

′
1 ∈ F∗

2m} = X1 ∩X2 . Then |X1 ∩X2| = (2m − 1). Similar to

this, |X1 ∩X3| = |X2 ∩X3| = (2m − 1).

Let (d′1, d
′
2, d

′
3) ∈ X1 ∩ X4. Then a11d

′
1 + a22d

′
2 = 0 and a11d

′
1 + a22d

′
2 + a33d

′
3 = 0. This

implies a33d′3 = 0, which is not possible. Thus |X1 ∩ X4| = ϕ. Similarly, |X2 ∩ X4| =
|X3 ∩X4| = ϕ.

Lastly, we calculate the cardinality of the set X1 ∩ X2 ∩ X3. For that, we prove that

X1 ∩X2 ∩X3 = X1 ∩X2.

Let (d′1, d
′
2, d

′
3) ∈ X1 ∩X2. then a11d′1 + a22d

′
2 = 0 and a11d

′
1 + a33d

′
3 = 0. Adding these,

we have a22d′2 + a33d
′
3 = 0. Thus (d′1, d

′
2, d

′
3) ∈ X1 ∩X2 ∩X3. Other side of the inclusion

follow easily. Thus |X1 ∩X2 ∩X3| = (2m − 1).

Therefore |X1 ∪X2 ∪X3 ∪X4| =

2(2m − 1)(2.2m − 7), for a11 + a22 = a33

(2m − 1)(4.2m − 16), for a11 + a22 ̸= a33

and |X| =

(2m − 1)(22m − 9.2m + 20), for a11 + a22 = a33

(2m − 1)(22m − 9.2m + 22), for a11 + a22 ̸= a33.

Cardinality of S′′′
1 in this case is (2m − 1)2(2m − 2){(2m − 4)(22m − 9.2m + 22) + (22m −

9.2m +20)}. Since any two of S′
1, S

′′
1 and S′′′

1 have empty intersection, cardinality of S1 is:

|S1| = (2m − 1)2(2m − 2)(2m − 4) + 3(2m − 1)2(2m − 2)(2m − 4)2 + (2m − 1)2(2m − 2)

· {(2m − 4)(22m − 9.2m + 22) + (22m − 9.2m + 20)}

= (2m − 1)2(2m − 2)(23m − 9 · 22m + 26 · 2m − 24).

In the next lemma, we consider another condition on the aii’s and determine the

cardinality of the set S2 derived from S.

Lemma 4.3.2. Let S2 = {(a11, a22, a33, d1, d2, d3) ∈ (F∗
2m)

6,m ≥ 2 : aii = ajj , 1 ≤ i < j ≤
3, a11d1+ a22d2 ̸= 0, a11d1+ a33d3 ̸= 0, a22d2+ a33d3 ̸= 0, a11d1+ a22d2+ a33d3 ̸= 0}. Then
|S2| = (2m − 1)2(2m − 2)(2m − 4).

Proof. Assume that aii = ajj , 1 ≤ i < j ≤ 3. In this case, the only possible choice for di’s

are di ̸= dj , 1 ≤ i < j ≤ 3.

As a result a11d1 + a22d2, a11d1 + a33d3, a22d2 + a33d3 are never zero. Additionally, the

elements in the set S2 satisfy the condition a11d1 + a22d2 + a33d3 = a11(d1 + d2 + d3) ̸= 0.

Since a11 in non-zero, we need d1 + d2 + d3 cannot be zero i.e., d3 ̸= d1 + d2. Then for the

triplet (d1, d2, d3), we have

(2m − 1)(2m − 2)(2m − 3)− (2m − 1)(2m − 2) = (2m − 1)(2m − 2)(2m − 4)

many choices. Therefore cardinality of S2 is (2m − 1)2(2m − 2)(2m − 4).

For the last case, let us assume at most one pair of aii’s are equal i.e., aii = ajj for (i, j) ∈
{(1, 2), (1, 3), (2, 3)}. We prove for the case a11 = a22, a11 ̸= a33 and the other two cases
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follow similarly.

Lemma 4.3.3. Let S3 = {(a11, a22, a33, d1, d2, d3) ∈ (F∗
2m)

6,m ≥ 2 : a11 = a22, a11 ̸=
a33, a11d1 + a22d2 ̸= 0, a11d1 + a33d3 ̸= 0, a22d2 + a33d3 ̸= 0, a11d1 + a22d2 + a33d3 ̸= 0}.
Then |S3| = (2m − 1)2(2m − 2)(22m − 6 · 2m + 8).

Proof. Let a11 = a22, a11 ̸= a33, a22 ̸= a33. We study each sub-cases of di separately. Let

S′
3 = {(a11, a22, a33, d1, d2, d3) ∈ (F∗

2m)
6,m ≥ 2 : a11 = a22, a11 ̸= a33, d1 = d2, d2 ̸= d3,

d1 ̸= d3, a11d1 + a22d2 ̸= 0, a11d1 + a33d3 ̸= 0, a22d2 + a33d3 ̸= 0,

a11d1 + a22d2 + a33d3 ̸= 0},

S′′
3 = {(a11, a22, a33, d1, d2, d3) ∈ (F∗

2m)
6,m ≥ 2 : a11 = a22, a11 ̸= a33, d1 ̸= d2, d2 = d3,

d1 ̸= d3, a11d1 + a22d2 ̸= 0, a11d1 + a33d3 ̸= 0, a22d2 + a33d3 ̸= 0,

a11d1 + a22d2 + a33d3 ̸= 0},

S′′′
3 = {(a11, a22, a33, d1, d2, d3) ∈ (F∗

2m)
6,m ≥ 2 : a11 = a22, a11 ̸= a33, d1 ̸= d2, d2 ̸= d3,

d1 = d3, a11d1 + a22d2 ̸= 0, a11d1 + a33d3 ̸= 0, a22d2 + a33d3 ̸= 0,

a11d1 + a22d2 + a33d3 ̸= 0},

S′′′′
3 = {(a11, a22, a33, d1, d2, d3) ∈ (F∗

2m)
6,m ≥ 2 : a11 = a22, a11 ̸= a33, d1 ̸= d2, d2 ̸= d3,

d1 ̸= d3, a11d1 + a22d2 ̸= 0, a11d1 + a33d3 ̸= 0, a22d2 + a33d3 ̸= 0,

a11d1 + a22d2 + a33d3 ̸= 0}.

Case I. Consider the set S′
3. In this set, we have d1 = d2, d2 ̸= d3, d1 ̸= d3. Therefore

a11d1 + a22d2 is always zero and this case will never occur.

Case II. Consider the set S′′
3 . Then d1 ̸= d2, d2 = d3, d1 ̸= d3.

For each value of di’s with 1 ≤ i ≤ 3, both a22d2 + a33d3 and a11d1 + a22d2 are always

non-zero in this case.

Furthermore, the elements of the set S′′
3 satisfy a11d1 + a33d3, a11d1 + a22d2 + a33d3 are

non-zero. To find the cardinality of S′′
3 , we first fix an arbitrary 3-tuple (a11, a22, a33) ∈

(F∗
2m)

3 with a11 = a22. Let us define the following sets:

T = {(d1, d3) ̸= (0, 0) : d1 ̸= d3} and

X = {(d1, d3) ∈ T : a11d1 + a33d3 ̸= 0, a11d1 + a22d2 + a33d3 = a11d1 + a11d3 + a33d3 ̸= 0}

Clearly, |T | = (2m − 1)(2m − 2). To determine the cardinality of X , we first count the

cardinality of the following sets. Let

X1 = {(d1, d3) ∈ T : a11d1 + a33d3 = 0},

X2 = {(d1, d3) ∈ T : a11d1 + (a11 + a33)d3 = 0},

and Y1 = {(xa33, xa11) : x ∈ F∗
2m},

Y2 = {(z(a11 + a33), z(a11) : z ∈ F∗
2m}.
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Our claim is that Xi = Yi for i = 1, 2. One side of the inclusion is evident, i.e., Y1 ⊆
X1, Y2 ⊆ X2. For the converse part, consider an arbitrary element (α1, α2) ∈ X1. Then

a11α1 + a33α2 = 0. There exists non-zero elements β1, β2 over F∗
2m such that α1 = β1a33

and α2 = β2a11. Consequently, we get a11a33(β1 + β2) = 0 which implies β1 = β2. Thus

X1 = Y1. Similarly, X2 = Y2 and |X1| = |X2| = (2m − 1).

Next we calculate |X1 ∪X2|. If X1 ∩X2 ̸= ϕ then a33 = a11 + a33, which is contradiction

to a11 ̸= 0. Therefore

|X1 ∪X2| = 2(2m − 1) and

|X| = |T | \ |X1 ∪X2| = (2m − 1)(2m − 2)− 2(2m − 1) = (2m − 1)(2m − 4).

Thus |S′′
3 | = (2m − 1)2(2m − 2)(2m − 4).

Case III. Consider the set S′′′
3 . Then d1 ̸= d2, d2 ̸= d3, d1 = d3.

Proving similarly as Case II of Lemma 4.3.3, we will get |S′′′
3 | = (2m−1)2(2m−2)(2m−4).

Case IV. Consider the set S′′′′
3 . Then d1 ̸= d2, d2 ̸= d3, d1 ̸= d3.

First fix an arbitrary triple (a11, a22, a33) ∈ (F∗
2m)

3 with a11 = a22. Let define the following

sets:

T = {(d1, d2, d3) ̸= (0, 0, 0) : di ̸= dj , 1 ≤ i < j ≤ 3},

and X = {(d1, d2, d3) ∈ T : a11d1 + a22d2 = a11(d1 + d2) ̸= 0,

a11d1 + a33d3 ̸= 0, a22d2 + a33d3 ̸= 0, a11d1 + a22d2 + a33d3 ̸= 0}.

Clearly, |T | = (2m− 1)(2m− 2)(2m− 3). To determine the cardinality of X , we begin with

the following four subsets of X .

X1 = {(d1, d2, d3) ∈ T : a11d1 + a22d2 = 0},

X2 = {(d1, d2, d3) ∈ T : a11d1 + a33d3 = 0},

X3 = {(d1, d2, d3) ∈ T : a11d2 + a33d3 = 0},

and X4 = {(d1, d2, d3) ∈ T : a11d1 + a22d2 + a33d3 = 0}.

Observe that |X| = |T | \ |X1∪X2∪X3∪X4|. Since d1 ̸= d2 and a11 = a22, a11d1+a22d2 =

a11(d1 + d2) is always non-zero for all (d1, d2, d3). Therefore |X1| = 0.

Consider the following three sets:

Y2 = {(ya33, d2, ya11) : y ∈ F∗
23 , d2 ̸= {0, ya33, ya11}},

Y3 = {(d1, za33, za11) : d1 ∈ F∗
23 , z ∈ F∗

23 , d1 ̸= {za33, za11}}

= {(d1, za33, za11) : d1 ∈ F∗
23 , z ∈ F∗

23 , z ̸= {d1a−1
33 , d1a

−1
22 }},

and Y4 = {(d1, d2, d3) : d1 ∈ F∗
23 , d2 ̸= {0, d1, (a11 + a33)a

−1
22 d1, (a22 + a33)

−1a11d1}, d3 ̸= 0,

d3 = a−1
33 (a11d1 + a22d2)}.

Using the same argument as previous cases, we have Y2 = X2, Y3 = X3. Then |X2| =
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|X3| = (2m − 1)(2m − 3).

Next we prove that Y4 = X4. Let (d′1, d
′
2, d

′
3) ∈ Y4. Then d′3 = a−1

33 (a11d
′
1 + a22d

′
2) implies

a11d
′
1 + a22d

′
2 + a33d

′
3 = 0. Additionally, since d′3 ̸= 0 it follows that a11d′1 ̸= a22d

′
2 i.e.,

d′2 ̸= a−1
22 a11d

′
1 = d′1. To prove (d′1, d

′
2, d

′
3) ∈ X4, we need to show d′3 ̸= {d′1, d′2}. If we

assume d′3 = d′1 then d′1 = a−1
33 (a11d

′
1+a22d

′
2) which implies d′2 = (a11+a33)a

−1
22 d

′
1, which is

not possible. Also, if d′3 = d′2, then d′2 = a−1
33 (a11d

′
1+a22d

′
2) implies d′2 = (a22+a33)

−1a11d
′
1,

also not possible. Therefore (d′1, d
′
2, d

′
3) ∈ T and Y4 ⊆ X4.

Conversely , let (d′1, d
′
2, d

′
3) ∈ X4. Then d′1 ̸= d′2, d

′
1 ̸= d′3, d

′
1 ̸= d′2 and a11d

′
1 + a22d

′
2 +

a33d
′
3 = 0. Since a33d′3 ̸= 0, we have a11d′1 ̸= a22d

′
2. This implies d′2 ̸= a−1

22 a11d
′
1 = d′1.

Since d′3 ̸= {d′1, d′2}, then a11d′1 + a22d
′
2 ̸= a33d

′
1 and a11d

′
1 + a22d

′
2 ̸= a33d

′
2. This implies

d′2 ̸= (a11 + a33)a
−1
22 d

′
1 and d′2 ̸= (a22 + a33)

−1a11d
′
1 respectively. Thus (d′1, d

′
2, d

′
3) ∈ Y4.

Thus |Y4| = (2m − 1)(2m − 4) = |X4|.

Observe thatX1∩X2 = X1∩X3 = X1∩X4 = ϕ. Now we calculate cardinality ofX2∩X3.

If (d′1, d
′
2, d

′
3) ∈ X2 ∩X3, then a11d′1 + a33d

′
3 = 0 and a11d′2 + a33d

′
3 = 0. Adding these two

equations, we obtain, a11d′1 + a11d
′
2 = 0 which is not possible since d′1 ̸= d′2. Therefore we

conclude that X2 ∩X3 = ϕ.

Similarly, for the set X2 ∩X4, assume that (d′1, d
′
2, d

′
3) ∈ X2 ∩X4. Then a11d′1 + a33d

′
3 = 0

and a11d′1+a22d
′
2+a33d

′
3 = 0. These two equations imply a33d′3 = 0 which is not possible.

For similar reasons, X3 ∩X4 is also empty. Therefore,

|X1 ∪X2 ∪X3 ∪X4| = |X1|+ |X2|+ |X3|+ |X4|

= 2(2m − 1)(2m − 3) + (2m − 1)(2m − 4)

= (2m − 1)(3.2m − 10)

and |X| = (2m − 1)(2m − 2)(2m − 3)− (2m − 1)(3.2m − 10)

= (2m − 1)(22m − 8.2m + 16).

Hence cardinality of S′′′′
3 is (2m − 1)2(2m − 2)(22m − 8.2m + 16). Since the intersection of

any two of S′
3, S

′′
3 , S

′′′
3 and S′′′′

3 are empty, cardinality of S3 is

|S3| = 2(2m − 1)2(2m − 2)(2m − 4) + (2m − 1)2(2m − 2)(22m − 8.2m + 16)

= (2m − 1)2(2m − 2)(22m − 6 · 2m + 8).

Consider the other two cases similar to S3 and named them as follows:

S4 = {(a11, a22, a33, d1, d2, d3) ∈ (F∗
2m)

6,m ≥ 2 : a11 = a33, a22 ̸= a33, a11d1 + a22d2 ̸= 0,

a11d1 + a33d3 ̸= 0, a22d2 + a33d3 ̸= 0, a11d1 + a22d2 + a33d3 ̸= 0}

and S5 = {(a11, a22, a33, d1, d2, d3) ∈ (F∗
2m)

6,m ≥ 2 : a22 = a33, a11 ̸= a33, a11d1 + a22d2 ̸= 0,

a11d1 + a33d3 ̸= 0, a22d2 + a33d3 ̸= 0, a11d1 + a22d2 + a33d3 ̸= 0}.
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Then, we have

|S3 ∪ S4 ∪ S5| =6(2m − 1)2(2m − 2)(2m − 4) + 3(2m − 1)2(2m − 2)(22m − 8.2m + 16)

= 3(2m − 1)2(2m − 2)(22m − 6.2m + 8).

Theorem 4.3.4. Let S be the set S = {(a11, a22, a33, d1, d2, d3) ∈ (F∗
2m)

6,m ≥ 2 : a11d1 +

a22d2 ̸= 0, a11d1+a33d3 ̸= 0, a22d2+a33d3 ̸= 0, a11d1+a22d2+a33d3 ̸= 0}. Then cardinality
of S is (2m − 1)2(2m − 2)(23m − 6.22m + 9.2m − 4).

Proof. Note that, the set S is the disjoint union of S1, S2, S3, S4 and S5 i.e., Si ∩ Sj = ϕ

for all 1 ≤ i < j ≤ 5. Therefore, from lemma 4.3.1, 4.3.2 and 4.3.3, we have |S| =

|S1|+ |S2|+ |S3|+ |S4|+ |S5| = (2m − 1)2(2m − 2)(23m − 6.22m + 9.2m − 4).

Theorem 4.3.5. The number of 3×3 semi-involutory MDS matrix over the finite field F2m ,m ≥
2 is (2m − 1)4(2m − 2)(23m − 6.22m + 9.2m − 4).

Proof. An MDS semi-involutory matrix is expressed in general form given by the

equation (4.16) using only diagonal entries of the matrix and the entries of an associated

diagonal matrix. Let a11, a22, a33, d1, d2, d3 are those entries and x, y are arbitrary. Since

x, y ∈ F∗
2m , then the number of choices for x and y is (2m − 1)2. Using Theorem 4.2.5 and

Theorem 4.3.4, the number of choices for a11, a22, a33, d1, d2 and d3 are (2m − 1)2(2m −
2)(23m − 6.22m + 9.2m − 4). Therefore total number of MDS semi-involutory matrix is

(2m − 1)4(2m − 2)(23m − 6.22m + 9.2m − 4).

Remark 4.3.6. In [27] it was proved that the number of 3 × 3 involutory MDS matrices over
F2m ,m > 2 is (2m − 1)2(2m − 2)(2m − 4). Therefore, there exists total 1176 and 37800, 3× 3

involutory MDS matrices over F23 and F24 respectively. However, Theorem 4.3.5 states that
there does not exist any 3 × 3 semi-involutory MDS matrix over F22 and the number of 3 × 3

semi-involutory MDS matrices over F23 is 2832576, and over F24 is 1913625000.

4.4 Conclusion

In conclusion, this chapter demonstrates the construction of 3 × 3 semi-involutory MDS

matrices over the finite field F2m by using only three diagonal elements and the entries

of an associated diagonal matrix. However, the fundamental structure of involutory

and semi-involutory MDS matrices of orders greater than four over finite fields of

characteristic 2 still poses an unresolved question.
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Chapter 5

Cyclic non-MDS matrices

In 1998, Daemen et al. introduced a circulant Maximum Distance Separable (MDS)

matrix in the diffusion layer of the Rijndael block cipher, drawing significant attention

to circulant MDS matrices. This block cipher is now universally acclaimed as the AES

block cipher. After that, in 2016, Liu and Sim introduced cyclic matrices by changing the

permutation of circulant matrices. While circulant matrices have been well-studied in

literature, the properties of cyclic matrices are not. Back in 1961, Friedman introduced

the notion of g-circulant matrices to study the eigenvalues of composite matrices. This

chapter studies the properties of circulant and g-circulant matrices, generalizing them to

cyclic matrices. We also establish a permutation equivalence between cyclic and circulant

matrices and provide a detailed structure of the associated permutation matrices. In the

last section, we find the determinant of g-circulant matrices of order 2d×2d and prove that

they cannot be simultaneously orthogonal and MDS over a finite field of characteristic 2.

Furthermore, we prove that this result holds for any cyclic matrix. The work presented

in this chapter is given in [69].

5.1 Introduction

One significant limitation of the AES circulant matrix lies in the complexity of

implementing its inverse. Therefore, construction of a circulant MDS matrix with

orthogonal or involutory properties has become an important research topic. In this

direction, Gupta and Ray [30, 31] proved the non-existence of MDS property in circulant

orthogonal matrices of order 2d × 2d (Theorem 1.2.29) over the finite field F2m . They also

established the non-existence of circulant involutory matrices of order n ≥ 3 (Theorem

1.2.30) over the finite fields of characteristic 2.

Consequently, many researchers have sought to extend the circulant matrix property for

constructing MDS matrices with involutory or orthogonal characteristics. In [32, 33],

Sarkar and Syed studied Toeplitz matrices with orthogonal and involutory properties and

found some non-existence results. Following that, in 2016, Liu and Sim [25] introduced

cyclic matrices as an extension of circulant matrices. Their initial proof showcased

the existence of left-circulant involutory matrices with the MDS property, noting that

left-circulant matrices form a subclass of cyclic matrices. We revisit the definition of cyclic

matrices from Definition 2.2.15.

Definition 5.1.1. For a k-cycle ρ ∈ Sk, a matrix Cρ of order k × k is called cyclic matrix
if each subsequent row is ρ-permutation of the previous row. We represent this matrix as
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cyclicρ(c0, c1, c2, . . . , ck−1), where (c0, c1, c2, . . . , ck−1) is the first row of the matrix. The
(i, j)-th entry of Cρ can be expressed as Cρ(i, j) = cρ−i(j).

For example, the matrix cyclicρ(c0, c1, c2, . . . , ck−1), where ρ = (0 1 2 · · · k − 1) ∈
Sk results in a circulant matrix. Similarly, if we use ρ = (0 k − 1 1 2 · · · k −
2) ∈ Sk, we obtain a left-circulant matrix. Note that, a k-cycle of the form(
0 1 2 · · · k − 1

g g + 1 g + 2 · · · g + k − 1

)
, where g + i is calculated modulo k and gcd(g, k) = 1

can be written as (0 g 2g (mod k) 3g (mod k) · · · (k − 1)g (mod k)). This gives a

complete k-cycle because of the next lemma.

Lemma 5.1.2. Let S = {αg (mod k), α = 0, 1, . . . , k−1}. Then S is a complete residue system
modulo k if and only if gcd(g, k) = 1.

Proof. Consider the mapping ϕ : Zk → S defined as ϕ(α) = αg (mod k). Take arbitrary

elements α1, α2 ∈ Zk and assume that ϕ(α1) = ϕ(α2). This implies α1g (mod k) = α2g

(mod k) and hence k divides (α1 − α2)g. Since gcd(g, k) = 1, this implies α1 − α2 = 0

(mod k), yielding α1 = α2. Therefore ϕ is injective and a bijection. Hence proved.

We now recall the definition of g-circulant matrices from Definition 2.2.9.

Definition 5.1.3. A g-circulant matrix of order k × k is a matrix of the form A =

g-circulant(c0, c1, . . . , ck−1) =



c0 c1 · · · ck−1

ck−g ck−g+1 · · · ck−1−g

ck−2g ck−2g+1 · · · ck−1−2g

...
... · · ·

...
cg cg+1 · · · cg−1


, where all subscripts are

taken modulo k.

For g = 1, it represents a circulant matrix, and for g ≡ −1 (mod k), it takes

the form of a left-circulant matrix. For the case gcd(g, k) = 1, g-circulant

matrices represent a subclass of cyclic matrices and otherwise it is not. In this

case, the k-cycle of Sk associated with a g-circulant matrix of order k × k is ρ =

(0 g 2g (mod k) 3g (mod k) · · · (k − 1)g (mod k)), and ρ−1 is of the form ρ−1 =(
0 1 2 · · · k − 1

k − g k − g + 1 k − g + 2 · · · k − 1− g

)
. Thus cyclic matrices corresponding to

these cycles are g-circulant matrices.

Consider the following example of cyclic and g-circulant matrix.

Example 5.1.4. Consider two 5-cycles ρ1 = (0 2 3 1 4) and ρ2 = (0 3 1 4 2) in S5. Then

cyclicρ1(c0, c1, c2, c3, c4) =



c0 c1 c2 c3 c4

c4 c3 c0 c2 c1

c1 c2 c4 c0 c3

c3 c0 c1 c4 c2

c2 c4 c3 c1 c0


,
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cyclicρ2(c0, c1, c2, c3, c4) =



c0 c1 c2 c3 c4

c2 c3 c4 c0 c1

c4 c0 c1 c2 c3

c1 c2 c3 c4 c0

c3 c4 c0 c1 c2


.

Observe that cyclicρ2(c0, c1, c2, c3, c4) is a 3-circulant matrix.

5.2 Structure of cyclic matrices and their connection with

g-circulant matrices

In this section we first show that we are only interested in the case gcd(k, g) = 1. This

restriction is vital because if gcd(k, g) > 1, these g-circulant matrices are singular and

hence never be MDS. To justify this, we use Lemma 5.1.2.

Theorem 5.2.1. Let A be a g-circulant matrix of order k× k. If gcd(g, k) > 1, then A cannot be
an MDS matrix.

Proof. Let A = (ai,j) be a g-circulant matrix and gcd(k, g) = d. Then there exists k1, k2
such that k = dk1, g = dk2 and gcd(k1, k2) = 1. In a g-circulant matrix, the entries satisfy

the relation ai,j = ai+1,j+g for 0 ≤ i, j ≤ k − 1, with suffixes calculated modulo k. The

entries of the first row of A are (a0,0, a0,1, a0,2, . . . , a0,n−1). According to Lemma 5.1.2,

there exits an integer α, 1 < α ≤ k − 1 such that αg = 0 (mod k). Consequently, we have

A(0, 0) = A(1, g) = A(2, 2g) = · · · = A(α, 0) = a0,0, and

A(0, j) = A(1, g + i) = A(2, 2g + j) = · · · = A(α, αg + j) = a0,j , for all j = 0, 1, . . . , k − 1.

Therefore, first row and α-th row are identical and A cannot be an MDS matrix.

We revisit the representation of g-circulant matrices using permutation matrices from

Theorem 2.2.14.

Theorem 5.2.2. Let A = g-circulant(c0, c1, . . . , ck−1) with gcd(k, g) = 1. Then A

can be expressed as A =

k−1∑
i=0

ciQgP
i, where P = circulant(0, 1, 0, . . . , 0) and Qg =

g-circulant(1, 0, 0, . . . , 0).

Our subsequent objective is to establish an analogue of Theorem 5.2.2 for cyclic matrices.

To achieve this, we first prove a permutation equivalence between a cyclic and a circulant

matrix in the following theorem.

Theorem 5.2.3. Let Cρ(c0, c1, . . . , ck−1) be a cyclic matrix. Then there exists a unique
permutation matrix Q such that CQ = circulant(c0, cρ(0), cρ2(0), cρ3(0), . . . , cρk−1(0)).
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Proof. Let Cρ = cyclic(c0, c1, c2, . . . , ck−1). Then by Definition 5.1.1, we have

Cρ = (cρ−i(j)) =



c0 c1 c2 · · · ck−1

cρ−1(0) cρ−1(1) cρ−1(2) · · · cρ−1(k−1)

cρ−2(0) cρ−2(1) cρ−2(2) · · · cρ−2(k−1)

...
...

... · · ·
...

cρ−(k−1)(0) cρ−(k−1)(1) cρ−(k−1)(2) · · · cρ−(k−1)(k−1)


.

Consider the permutation matrix Q with (i, j)−th entry is given by the rule

Q(i, j) =

1, if i = ρj(0), j = 0, 1, . . . , k − 1 ;

0, otherwise.

Since ρ is a cycle of length k, we have ρi(0) ̸= ρl(0) for i, l = {0, 1, 2, . . . , k − 1}, i ̸= l.

Therefore Q is a permutation matrix.

Let CQ = C. We prove that C is a circulant matrix by showing that i-th row of C is a right

shift of (i− 1)-th row for i = 0, 1, . . . , k− 1, i.e., C(i, j) = C(i− 1, j− 1) for 1 ≤ i, j ≤ k− 1.

We will establish this property through induction on i.

For the base case, consider i = 0. Evaluating C(0, 0) we get, C(0, 0) =∑k−1
l=0 Cρ(0, l)Q(l, 0) = Cρ(0, 0)Q(0, 0) = c0, since Q(0, 0) = 1 and Q(l, 0) = 0 for

l = 2, 3, . . . , k − 1.

Calculating similarly the other entries of this row, we get C(0, j) =
∑k−1

l=0 Cρ(0, l)Q(l, j) =

Cρ(0, ρ
j(0))Q(ρj(0), j) = cρj(0). This holds because Q(ρj(0), j) = 1 and the other entries

of the j-th column of Q are 0. Consequently, the first row (which is row-0) of the matrix

C is given by (c0, cρ(0), cρ2(0), cρ3(0), . . . , cρk−1(0)).

Next we prove the statement for i = 1.

Evaluating C(1, j) for j = 0, 1, . . . , k − 1, we get C(1, j) =
∑k−1

l=0 Cρ(1, l)Q(l, j) =

Cρ(1, ρ
j(0))Q(ρj(0), j) = cρ−1(ρj(0)) = cρj−1(0) = C(0, j − 1). This relationship

holds true due to the definitions of both Q and Cρ. Therefore the row R1 of C is

(cρk−1(0), c0, cρ(0), cρ2(0), cρ3(1), . . . , cρk−2(0)).

With this, the validity of the induction hypothesis for both i = 0, 1 are proved.

Using induction hypothesis, we assume that the i-th row can be represented as

(cρk−i(0), cρk−i+1(0), . . . , cρk−i+j−1(0), cρk−i+j(0), . . . , cρk−i−1(0)).

Calculating the first entry of the (i + 1)-th row, we get C(i + 1, 0) =
∑k−1

l=0 Cρ(i +

1, l)Q(l, 0) = C(i + 1, 0)Q(0, 0) = cρ−(i+1)(0) = cρk−i−1(0) = C(i, k − 1). This holds because

Q(0, 0) = 1 andQ(l, 0) = 0 for l = 2, 3, . . . , k−1. Similarly, by calculating the other entries

of the (i+1)-th row, we get C(i+1, j) =
∑k−1

l=0 C(i+1, l)Q(l, j) = C(i+1, ρj(0))Q(ρj(0), j) =

cρ−(i+1)(ρj(0)) = cρ−(i+1)+j(0) = cρk−(i+1)+j(0) = C(i, j− 1) for j = 1, 2, . . . , k− 1 by induction

hypothesis. Therefore C is a circulant matrix .

To establish uniqueness, suppose there exists another permutation matrix Q′ defined

using k-cycle ρ′ such that CQ′ = circulant (c0, cρ(0), cρ2(0), cρ3(0), . . . , cρk−1(0)). This implies

ρi(0) = ρ′i(0) for i = 1, . . . , k − 1. Since both ρ and ρ′ are k-cycle permutation, we can
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conclude that ρ = ρ′ and Q = Q′.

The matrix circulant(c0, cρ(0), cρ2(0), cρ3(0), . . . , cρk−1(0)) is referred as the circulant matrix
associated with the cyclic matrix Cρ throughout the thesis. In the forthcoming result, we

establish a noteworthy structure of the permutation matrix Q.

Lemma 5.2.4. Consider the permutation matrix Q of order k × k defined as

Q(i, j) =

1, if i = ρj(0), j = 0, 1, . . . , k − 1 ;

0, otherwise.

Then Q−1 = cyclicρ(1, 0, 0, . . . , 0).

Proof. Since Q−1 = QT , we can express Q−1 as follows:

Q−1(i, j) =

1, if j = ρi(0), i = 0, 1, · · · , k − 1 ;

0, otherwise.

Therefore Q−1 has 1 at the positions {(0, 0), (1, ρ(0)), (2, ρ2(0)), · · · , (k − 1, ρk−1(0))}.
Also from Definition 5.1.1, the cyclic matrix cyclicρ(1, 0, 0, . . . , 0) has 1 at positions

{(0, 0), (1, ρ(0)), (2, ρ2(0)), . . . , (k − 1, ρk−1(0))}. Hence they are equal.

Note that, the matrix Qρ = cyclicρ(1, 0, 0, . . . , 0) satisfy QρQ
T
ρ = I as described in Section

2.2. Next, we prove one of the main theorem of this chapter which is Theorem 1.4.26 and

this is a generalization of Theorem 5.2.2.

Theorem 5.2.5. Let Cρ(c0, c1, c2, . . . , ck−1) be a cyclic matrix. Then Cρ =

k−1∑
i=0

aρi(0)P
iQρ,

where Qρ = cyclicρ(1, 0, 0, . . . , 0) corresponding to the k-cycle ρ and P =

circulant(0, 1, 0, . . . , 0).

Proof. Since Cρ is a cyclic matrix, applying Theorem 5.2.3 we get a circulant matrix

C = circulant(c0, cρ(0), cρ2(0), cρ3(0), . . . , cρk−1(0)) corresponding to C. The circulant matrix

C can be written as C = c0I + cρ(0)P + cρ2(0)P
2 + · · · + cρk−1(0)P

k−1, where P =

circulant(0, 1, 0, . . . , 0). Therefore, C = c0Q
−1 + cρ(0)PQ

−1 + cρ2(0)P
2Q−1 + . . . +

cρk−1(0)P
k−1Q−1. By using Lemma 5.2.4, we get Q−1 = Qρ. Hence proved.

An illustration of Theorem 5.2.5 is the following.

Example 5.2.6. Consider the matrix C = cyclicρ1(c0, c1, c2, c3, c4) with ρ1 = (0 2 3 1 4) from
Example 5.1.4. Then C = c0Qρ1 + c2PQρ1 + c3P

2Qρ1 + c1P
3Qρ1 + c4P

4Qρ1 with Qρ1 is the
matrix

Qρ1 =



1 0 0 0 0

0 0 1 0 0

0 0 0 1 0

0 1 0 0 0

0 0 0 0 1


.
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Since g-circulant matrices with gcd(k, g) = 1 are cyclic matrices, we prove

that Theorem 5.2.5 is essentially reduced to Theorem 5.2.2 for the k-cycle

(0 g 2g (mod k) 3g (mod k) · · · (k − 1)g (mod k)) in the following corollary.

Corollary 5.2.7. Let Cρ = cyclic(c0, c1, c2, . . . , ck−1) where ρ is the k-cycle permutation
(0 g 2g (mod k) 3g (mod k) · · · (k − 1)g (mod k)) with gcd(g, k) = 1. Then Cρ =
k−1∑
i=0

aiQgP
i, where P = circulant(0, 1, 0, . . . , 0) and Qg = g-circulant(1, 0, 0, . . . , 0).

Proof. Since Cρ = cyclic (c0, c1, c2, . . . , ck−1), applying Theorem 5.2.5 we get

Cρ = c0Qρ + cρ(0)PQρ + cρ2(0)P
2Qρ + · · ·+ cρk−1(0)P

k−1Qρ,

where Qρ = cyclicρ(1, 0, 0, . . . , 0). Note that Qρ = Qg. Using Lemma 2.2.12 and

substituting ρ(0) = g, ρi(0) = ig, 1 ≤ i ≤ k − 1 we get

Cρ = c0Qg + cgQgP
g + c2gQgP

2g + c3gQgP
3g + · · ·+ c(k−1)gQgP

(k−1)g,

where {ig, 1 ≤ i ≤ k − 1} are calculated modulo k. Using Lemma 5.1.2, we can simply it

further to

Cρ = c0Qg + c1QgP + c2QgP
2 + · · ·+ c(k−1)QgP

(k−1).

This completes the proof.

To determine the number of circulant matrices with same branch number, Liu and

Sim [25] introduced an equivalence relation between two circulant matrices C =

circulant(c0, c1, . . . , ck−1) and Cσ = circulant(cσ(0), cσ(1), . . . , cσ(k−1)). Their result is noted

in Theorem 1.2.34.

In Theorem 5.2.3, we established a permutation equivalence between the cyclic matrix Cρ

and the circulant matrix C = circulant(c0, cρ(0), cρ2(0), cρ3(0), . . . , cρk−1(0)), where ρ ∈ Sk is

a cycle of length k. Therefore these two matrices have same branch number by Theorem

2.4.15. To determine when two cyclic matrices have the same branch number, we need

to prove an equivalence relation between them. This is accomplished in the following

theorem.

Theorem 5.2.8. Let Cρ1 and Cρ2 be two cyclic matrices with first row (c0, c1, . . . , ck−1). Then
Cρ1 ∼P.E Cρ2 if and only if their corresponding circulant matrices are permutation equivalent.

Proof. Let Cρ1 be permutation equivalent Cρ2 . Then there exists permutation matrices

P1, P2 such that P1Cρ1P2 = Cρ2 . From Theorem 5.2.3, we get two permutation matrices

Qρ1 and Qρ2 such that Cρ1Qρ1 = C1 and Cρ2Qρ2 = C2. This implies P1C1Q−1
ρ1 P2 = C2Q−1

ρ2 .

This can be written as P1C1P3 = C2 where P3 = Q−1
ρ1 P2Qρ2 . Since P3 is also a permutation

matrix, we get C1 ∼P.E C2.

Conversely, let C1 ∼P.E C2. Then there exists permutation matrices P1, P2 such that

P1C1P2 = C2. Since C1 and C2 corresponds to Cρ1 and Cρ2 respectively, we have

P1Cρ1Qρ1P2 = Cρ2Qρ2 . This implies P1Cρ1P3 = Cρ2 where P3 = Qρ1P2Q
−1
ρ2 .
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This theorem is illustrated in the following example.

Example 5.2.9. Let Cρ1 = cyclic (c0, c1, c2, c3, c4) with ρ1 = (0 2 4 1 3) and

Cρ2 = cyclic (c0, c1, c2, c3, c4) with ρ2 = (0 3 1 4 2).

Then

Cρ1 =



c0 c1 c2 c3 c4

c3 c4 c0 c1 c2

c1 c2 c3 c4 c0

c4 c0 c1 c2 c3

c2 c3 c4 c0 c1


and Cρ2 =



c0 c1 c2 c3 c4

c2 c2 c4 c0 c1

c4 c0 c1 c2 c3

c1 c2 c3 c4 c0

c3 c4 c0 c1 c2


.

Here P1Cρ1P2 = Cρ2 where P1 =



1 0 0 0 0

0 0 0 0 1

0 0 0 1 0

0 0 1 0 0

0 1 0 0 0


and P2 = I5.

Circulant matrices corresponding to Cρ1 and Cρ2 are C1 = circulant(c0, c2, c4, c1, c3) and C2 =

circulant(c0, c3, c1, c4, c2) respectively. Calculating P1C1P3 where P3 = Q−1
ρ1 Qρ2 , where Qρ1

and Qρ2 are as defined in Theorem 5.2.3, we get C2. This implies C1 ∼P.E C2.

On the other way, C1 =



c0 c2 c4 c1 c3

c3 c0 c2 c4 c1

c1 c3 c0 c2 c4

c4 c1 c3 c0 c2

c2 c4 c1 c3 c0


and C2 =



c0 c3 c1 c4 c2

c2 c0 c3 c1 c4

c4 c2 c0 c3 c1

c1 c4 c2 c0 c3

c3 c1 c4 c2 c0


.

Consider P1 = P2 =



1 0 0 0 0

0 0 0 0 1

0 0 0 1 0

0 0 1 0 0

0 1 0 0 0


. Then we get P1C1P2 = C2. It is easy to check that

P3 = Qρ1P2Q
−1
ρ2 = I5. Thus P1Cρ1I5 = Cρ2 and this implies Cρ1 ∼P.E Cρ2 .

5.3 g-Circulant matrices with orthogonal property

To investigate the orthogonal property of 2d × 2d circulant MDS matrices over the finite

fields of characteristic 2, Gupta and Ray [30] proved thatA2d is a scaler matrix, whereA is

a circulant matrix. Subsequently, Liu and Sim extended these findings to the left-circulant

case in [25]. Given that left-circulant matrices exhibit symmetry, the properties of being

involutory and orthogonal are synonymous. However, that is not the case for all other

g-circulant matrices. Therefore, this section is dedicated to the examination of g-circulant

matrices of order 2d × 2d, with a specific focus on their orthogonal attributes, as outlined

in Theorem 1.4.28. Preceding the theorem, we prove three intermediate lemmas.

Lemma 5.3.1. For any odd integer g > 1, and for any positive integer d, 2d divides g2
d−1
g−1 .
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Proof. g2
d−1
g−1 = (g + 1)(g2 + 1)(g2

2
+ 1) · · · (g2d−1

+ 1). Since g is an odd number, (g +

1), (g2 + 1), . . . , (g2
d−1

+ 1) are all even numbers. Hence, each term is divisible by 2 and

there are d such terms. Therefore 2d divides the product.

Lemma 5.3.2. Let A = g-circulant(c0, c1, c2, . . . , c2d−1) be a matrix with entries from the finite
field F2m , where g is an odd integer greater than 1. Then A2d = (c2

d

0 + c2
d

1 + c2
d

2 + · · ·+ c2
d

2d−1
)I .

Proof. Let A = g-circulant(c0, c1, c2, . . . , c2d−1). Applying Theorem 5.2.2, we express A as

A = c0Qg + c1QgP + c2QgP
2 + · · ·+ c2d−1QgP

2d−1.

Consequently,

A2d = (c0Qg + c1QgP + c2QgP
2 + · · ·+ c2d−1QgP

2d−1)2
d

= c2
d

0 Q
2d

g + c2
d

1 (QgP )
2d + c2

d

2 (QgP
2)2

d
+ · · ·+ c2

d

k−1(QgP
k−1)2

d
.

Since P = circulant(0, 1, 0, . . . , 0) is a 2d × 2d permutation matrix, we can easily see that

P 2d = I . Additionally, Qg = g-circulant(1, 0, 0, . . . , 0) is a 2d × 2d matrix. By applying

Lemma 2.2.10, we can sayQ2d
g is a g2

d
-circulant matrix. Since gϕ(2

d) = g2
d−1 ≡ 1 (mod 2d),

where ϕ is the phi-function, we have g2
d ≡ 1 (mod 2d) by squaring both sides. This

implies, Q2d
g = I . Therefore,

A2d = c2
d

0 Q
2d

g + c2
d

1 Q
2d

g P
g2

d
−1

g−1 + c2
d

2 Q
2d

g P
2(g2

d
−1)

g−1 + c2
d

3 Q
2d

g P
3(g2

d
−1)

g−1 + · · ·

+ c2
d

k−1Q
2d

g P
(k−1)(g2

d
−1)

g−1 .

Since n(g2
d−1)

g−1 ≡ 0 (mod 2d),we get P
n(g2

d
−1)

g−1 = I . ThereforeA2d = (c2
d

0 +c2
d

1 +c2
d

2 + · · ·+
c2

d

2d−1
)I .

Using this lemma we can say about determinant of g-circulant matrices.

Lemma 5.3.3. Let A = g-circulant(c0, c1, c2, . . . , c2d−1) be a matrix with entries from the finite

field F2m and g be an odd integer. Then det(A) = (

2d−1∑
i=0

ci)
2d .

Proof. Let A be g-circulant(c0, c1, . . . , c2d−1) and detA = △. Then △2d = (detA)2
d
=

det(A2d). From Lemma 5.3.2 and Lemma 4 of [31], A2d = (
2d−1∑
i=0

c2
d

i )I . So, △2d =

(
2d−1∑
i=0

c2
d

i )2
d
. This implies, △ =

2d−1∑
i=0

c2
d

i = (
2d−1∑
i=0

ci)
2d .

Now we are ready to give the proof of Theorem 1.4.28.

Theorem 5.3.4. Let A be a 2d × 2d g-circulant orthogonal matrix over F2m and g be an odd
integer. Then A is not an MDS matrix.
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Proof. Let A = g-circulant(c0, c1, . . . , c2d−1). Let the rows of A are denoted as

R0, R1, . . . , R2d−1 with R0 being same for all of them. Since A is orthogonal, R0 · Rj = 0

for j = 1, 2, · · · , 2d − 1. Consider the product R0 · Rj = 0 for j = {(2k + 1)g

(mod 2d), k = 0, 1, . . . , 2d−2 − 1}. These products lead to the following equations:

2d−1∑
i=0

cici+1 = 0,
2d−1∑
i=0

cici+3 = 0,
2d−1∑
i=0

cici+5 = 0, · · · ,
2d−1∑
i=0

cici+2d−1−1 = 0,

where suffixes are modulo 2d. Adding these equations yields

(c0 + c2 + · · ·+ c2d−2)(c1 + c3 + · · ·+ c2d−1) = 0

Note that g-circulant(c0, c2, . . . , c2d−2) and g-circulant(c1, c3, . . . , c2d−1) are two 2d−1×2d−1

submatrices of A. Therefore according to Lemma 5.3.3, either one of two submatrices is

singular. Therefore A is not MDS.

In the case of order 4 × 4, there are only two distinct g-circulant matrices: the circulant

and the left-circulant matrices. However, when the order is 2d × 2d, d > 2, total 2d−1

different g-circulant matrices exists, corresponding to g = 1, 3, 5, . . . , 2d − 1. Notably, for

g = 1 we obtain a circulant matrix, and for this, our findings are reduced to the first three

results presented in Section 3 of [31]. On the other hand, for the case g = 2d − 1, resulting

matrix is left-circulant. In this scenario, Theorem 5.3.4 provide a more general proof of

the results presented in Section 5.2 of [25].

In the next section, we discuss about cyclic matrices with orthogonal property.

5.4 Cyclic matrices with orthogonal property

We begin this section with an alternative proof of theorem 5.3.4 using the fact that the

permutation matrices are orthogonal. This proof holds for a more general class, i.e., for

cyclic matrices. Although this proof is compact, it does not describe any properties of

cyclic matrices like the determinant or scaler structure. But for the sake of completeness,

we record the proof here.

Theorem 5.4.1. Let C be a 2d × 2d cyclic orthogonal matrix over F2m . Then C is not MDS.

Proof. Let C be a 2d × 2d cyclic orthogonal MDS matrix over F2m . Then CCT = I . From

Theorem 5.2.3 there exists a permutation matrix Q such that CQ = C, where C is a

circulant matrix. Using the fact Q−1 = Qρ, we get C = CQρ. Since Qρ is a permutation

matrix, it is orthogonal. Therefore CCT = CQρ(CQρ)
T = CQρQ

T
ρ CT = CCT = I . Therefore

C is a 2d × 2d circulant orthogonal matrix over F2m . It is also MDS from Corollary 2.4.16.

This leads to a contradiction.

According to Remark 5 in [31], circulant orthogonal MDS matrices of orders other than

2d × 2d exist over the finite fields of characteristic 2. For example, C1 = circulant(a, 1 +
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a2 + a3 + a4 + a6, a+ a2 + a3 + a4 + a6) and C2 = circulant(1, 1, a, 1 + a2 + a3 + a5 + a6 +

a7, a+ a5, a2+ a3+ a6+ a7) are two examples of circulant MDS matrices with orthogonal

property over the finite field F28 with the irreducible polynomial x8 + x4 + x3 + x+ 1.

Similarly cyclic MDS matrices with orthogonal property can be found for orders other

than 2d × 2d. For instance, in the symmetric group S3, only two cycles of order 3 exist,

which are ρ1 = (0 1 2) and ρ = (0 2 1). This cycle ρ1 produce the circulant matrix C1,

while the cycle ρ2 yields the left-circulant matrix Cρ2 = left-circulant (a, 1+a2+a3+a4+

a6, a+ a2 + a3 + a4 + a6). This matrix is an orthogonal (involutory) MDS matrix.

In the symmetric group S6, consider the 6-cycle ρ = (0 2 4 3 5 1). Consider the cyclic

matrix Cρ with first row (1, a2 + a3 + a6 + a7, 1, 1+ a2 + a3 + a5 + a6 + a7, a, a5 + a). Then

the matrix is Cρ =



1 a2+a3

+a6+a7
1 1+a2+a3+

a5+a6+a7
a a5+a

a2+a3

+a6+a7
a5+a 1 a 1 1+a2+a3+

a5+a6+a7

a5+a
1+a2+a3+
a5+a6+a7

a2+a3

+a6+a7
1 1 a

1+a2+a3+
a5+a6+a7

a a5+a 1 a2+a3

+a6+a7
1

a 1 1+a2+a3+
a5+a6+a7

a2+a3

+a6+a7
a5+a 1

1 1 a a5+a
1+a2+a3+
a5+a6+a7

a2+a3

+a6+a7


.

According to Theorem 5.2.3, the circulant matrix corresponding to Cρ is C = circulant

(1, 1, a, 1+ a2 + a3 + a5 + a6 + a7, a+ a5, a2 + a3 + a6 + a7). This matrix is orthogonal and

MDS. Therefore Cρ is also orthogonal and MDS.

The general result is presented in the following theorem and the proof is straightforward

using the identity PP T = I for any permutation matrix P .

Theorem 5.4.2. Let C be a cyclic matrix of order k, k ̸= 2d. Then C is an MDS orthogonal matrix
if and only if the corresponding circulant matrix is an MDS orthogonal matrix.

Proof. Let C be a cyclic MDS matrix and CCT = I . From Theorem 5.2.3, there exists a

permutation matrix Q such that CQ is a circulant matrix say C. Then C = CQ−1 = CQT ,

since Q is a permutation matrix. Therefore CCT = CQ(CQ)T = CQQTC = CCT = I . Also

C is MDS by Corollary 2.4.16 .

5.5 Conclusion

In conclusion, this chapter has offered a comprehensive exploration of cyclic matrices and

their connection with g-circulant and circulant matrices. Additionally, cyclic orthogonal

matrices with the MDS property have been investigated. An open area for further

investigation lies in studying the properties of g-circulant and cyclic matrices with orders

other than 2d × 2d over finite fields.



Chapter 6

MDS property of g-circulant matrices

In the previous chapter, we explored a generalized form of circulant matrices known as

cyclic matrices, and a specific subclass referred to as g-circulant matrices. In this chapter,

we undertake a more comprehensive study of g-circulant matrices. In the initial section,

our focus is on g-circulant matrices endowed with MDS and involutory properties.

Additionally, we provide an affirmative answer to the conjecture raised by Liu and

Sim in [25] for g-circulant matrices. In the last section, we present some properties

of the associated diagonal matrices of a g-circulant matrix with semi-orthogonal and

semi-involutory characteristics. The work presented in this chapter can be found in [70].

6.1 Introduction

In 2016, Liu and Sim [25] conjectured that, there are no involutory MDS cyclic

matrices of order 4, 8 over F2m . In this chapter, we prove this conjecture for

g-circulant matrices, a subclass of cyclic matrices as established in Chapter 5. The

permutation ρ ∈ Sk corresponding to a g-circulant matrix of order k × k is

(0 g 2g (mod k) 3g (mod k) · · · (k − 1)g (mod k)). We reiterate the formal definition

of a g-circulant matrix here.

Definition 6.1.1. A g-circulant matrix of order k × k is a matrix of the form A =

g-circulant(c0, c1, . . . , ck−1) =



c0 c1 · · · ck−1

ck−g ck−g+1 · · · ck−1−g

ck−2g ck−2g+1 · · · ck−1−2g

...
... · · ·

...
cg cg+1 · · · cg−1


, where all subscripts are

taken modulo k.

Entries of a g-circulant matrix satisfy the relationA(i, j) = A(i+1, j+g), where subscripts

are calculated modulo k. Moreover, for a g-circulant matrix A = (ai,j), 0 ≤ i, j ≤ k − 1

with first row (c0, c1, . . . , ck−1), we have A(i, j) = cj−ig (mod k).

In the previous chapter, we explained that to construct an MDS g-circulant matrix, we

consider only the case gcd(g, k) = 1, as emphasized in Theorem 5.2.1. The general

structure of g-circulant matrices of order k × k in terms of permutation matrices under

the condition gcd(g, k) = 1, is detailed in Theorem 2.2.14, presented as follows.

Theorem 6.1.2. Let A = g-circulant(c0, c1, . . . , ck−1) with gcd(k, g) = 1. Then A
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can be expressed as A =
k−1∑
i=0

ciQgP
i, where P = circulant(0, 1, 0, . . . , 0) and Qg =

g-circulant(1, 0, 0, . . . , 0).

In the case of gcd(g, k) = 1, the inverse of a non-singular g-circulant matrix demonstrates

a specific characteristic, as established by [68], Theorem 5.1.4. For completeness, we

record the proof here.

Lemma 6.1.3. Let A be a non-singular g-circulant matrix of order k × k with gcd(g, k) = 1.
Then A−1 is g−1-circulant.

Proof. Since gcd(g, k) = 1, there exists g−1 with gg−1 = 1 (mod k). Now, from Lemma

2.2.12, we have PA = AP g and thus A−1P−1 = P−gA−1. Hence

PA−1 = P−g+1A−1P = P−g+1(A−1P−1)P 2

= P−g+1(P−gA−1)P 2 = P−2g+1A−1P 2.

Repeating this s times, we get PA−1 = P−sg+1A−1P s. Choosing s = g−1, we get PA−1 =

A−1P g−1
. Thus A−1 is g−1-circulant.

The transpose of a g-circulant matrix exhibits similar characteristics.

Lemma 6.1.4. Let A be a g-circulant matrix of order k × k with gcd(g, k) = 1. Then AT is
g−1-circulant.

Proof. Given that A = (ai,j), 0 ≤ i, j ≤ k − 1 is g-circulant matrix, we have A(i, j) =

A(i + 1, j + g), i.e., ai,j = ai+1,j+g ∀ 0 ≤, i, j ≤ k − 1, considering subscripts modulo k.

Using this property, the entries of A exhibit the following pattern:

ai,j = A(i, j) = A(i+ 1, j + g) = A(i+ 2, j + 2g) = · · · = A(i+ l, j + lg) = ai+l,j+lg,

where subscripts are calculated modulo k. Consequently, the entry at the i-th row and

j-th column repeats at the j+1-th column when j+lg = j+1 (mod k). Since gcd(g, k) = 1,

we have l = g−1. Then entries of AT are A(j, i) and they satisfy A(j, i) = A(j+1, i+ g−1)

for all 0 ≤ j, i ≤ k − 1. Thus AT is g−1-circulant.

6.2 g-Circulant matrices with MDS and involutory properties

We begin this section with a structure of A2 where A is a g-circulant matrix.

Theorem 6.2.1. Let A be a g-circulant matrix of order k× k with the first row (c0, c1, . . . , ck−1)

and gcd(k, g) = 1. Then A2 can be expressed as

A2 =
k−1∑
l=0

 k−1∑
i,j=0

gi+j=l (mod k)

cicj

Q2
gP

l,
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where Q2
g = g2-circulant(1, 0, 0, . . . , 0) and P = circulant(0, 1, 0, . . . , 0) are permutation

matrices of order k × k.

Proof. Let A = g-circulant(c0, c1, . . . , ck−1) with gcd(k, g) = 1. Then by Theorem 6.1.2, A

can be expressed as A =
k−1∑
k=0

ciQgP
i, where Qg is a g-circulant matrix. Therefore A2 an be

written as

A2 = (c0Qg + c1QgP + c2QgP
2 + c3QgP

3 + · · ·+ ck−1QgP
k−1)2

= c20Q
2
g + c21(QgP )

2 + · · ·+ c2k−1(QgP
k−1)2 + c0c1QgQgP + c0c2QgQgP

2 + · · ·

+ ck−2ck−1QgP
k−2QgP

k−1

Using the identity PQg = QgP
g and P k = I , we can derive that QgP

iQgP
k−ig = Q2

gP
k =

Q2
g. Therefore, the coefficient of Q2

g in A2 is:

k−1∑
i,j=0,

gi+j=0 (mod k)

cicj = c20 + c1ck−g + c2ck−2g + · · ·+ ck−1ck−(k−1)g.

Similarly, the coefficient of Q2
gP in A2 can be written as

k−1∑
i,j=0,

gi+j=1 (mod k)

cicj = c0c1 + c1c1+k−g + c2c1+k−2g + · · ·+ ck−1c1+k−(k−1)g.

Thus using induction, we get the coefficient of Q2
gP

l is
k−1∑
i,j=0,

gi+j=l (mod k)

cicj . Therefore, we

can conclude that A2 =
k−1∑
l=0

 k−1∑
i,j=0

gi+j=l (mod k)

cicj

Q2
gP

l.

Utilizing the structure of A2 from Theorem 6.2.1, we discuss the existence of g-circulant

matrices over the finite field F2m with both involutory and MDS properties. To begin

with, we show the non-existence of g-circulant involutory matrices when g2 ̸≡ 1 (mod k).

The theorem is as follows.

Theorem 6.2.2. Let A be a g-circulant matrix of order k × k and gcd(k, g) = 1. If g2 ̸≡ 1

(mod k), then A cannot be involutory.

Proof. Let A be a g-circulant matrix of order k × k and gcd(k, g) = 1. Then A2 is a

g2-circulant matrix. Therefore A2(0, 0) = A2(1, g2). If A is involutory then A2(0, 0) = 1.

But A2(1, g2) = 0 since g2 ̸≡ 1 (mod k). This is a contradiction.

An example illustrating Theorem 6.2.2 is as follows.
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Example 6.2.3. Consider the finite field F28 defined by the irreducible polynomial 1+ x2 + x5 +

x6 + x8. Let a be a primitive element of this field. Consider the 3-circulant matrix of order 5× 5

with the first row (1, a, 1 + a+ a4 + a5 + a7, 1 + a+ a3 + a4 + a5 + a7, a+ a3). Here 32 ≡ 4

(mod 5). The matrix A2 is a 4-circulant matrix. Then A2(0, 0) = a6 + 1 = A2(1, 4). For A to
be involutory, we must have A2(0, 0) = 1 and A2(1, 4) = 0, which is not possible. Consequently,
it is evident that A is never involutory.

The above theorem implies that, to construct a g-circulant matrix with MDS and

involutory properties, we only need to focus on the case g2 ≡ 1 (mod k). First we prove

some lemmas and a theorem to determine the number of solutions of the equivalence

relation x2 ≡ 1 (mod k).

Lemma 6.2.4. Let k = 2m, m positive integer. Then, the number of solutions to the congruence
relation x2 ≡ 1 (mod k) in the residue modulo k is

1, if m = 1 ;

2, if m = 2 ;

4, if m ≥ 3.

Proof. For k = 2 the only solution of the congruence relation is 1. When k = 4 there are

two solutions, namely x = 1, 3.

Consider the case k = 2m,m ≥ 3. It is apparent that ±1 (mod 2m) are solutions. We will

now prove that 2m−1±1 (mod 2m) also solutions. Consider the square of 2m−1±1. Then

(2m−1 ± 1)2 = 22(m−1) + 1± 2m = 1 (mod 2m), since 22(m−1) ± 2m ≡ 0 (mod 2m).

To establish that these are the only solutions, we will assume that there exists an α such

that α2 ≡ 1 (mod 2m) and α ̸= {±1, 2m−1 ± 1}. Furthermore, α must be an odd number

and assume α < 2m−1. Then α can be expressed as α = 2m−i ± 1 for some i in range 2 ≤
i ≤ m−1. Then α2 = 22(m−i)+1±2m−i+1 = 2m−i+1(2m−i+1±1)+1 < 2m−1(2m−1±1)+1

and therefore α2 not congruent to 1 modulo 2m.

Next, consider the case for an odd prime power in the following lemma.

Lemma 6.2.5. Let k = pm where p ≥ 3 be a prime number. Then the solutions to the congruence
x2 ≡ 1 (mod k) in the residue modulo k are given by x ≡ ±1 (mod k).

Proof. Let x2 ≡ 1 (mod pm). This implies pm|(x + 1)(x − 1). Suppose that x ̸= ±1

(mod pm). In this case, both x + 1 and x − 1 are less than pm. This implies p divides

both x+ 1 and x− 1. Therefore p|2, which is a contradiction to p is an odd prime .

Applying the Chinese Remainder Theorem one can prove the following theorem.

Theorem 6.2.6. Let k = 2mpm1
1 · · · pml

l where pi’s are odd primes and m,mi ≥ 0 for 1 ≤ i ≤ l.
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Then the number of solutions of the equation x2 = 1 (mod k) in residue modulo k is
2l, if m = 0, 1 ;

2l+1, if m = 2 ;

2l+2, if m ≥ 3.

Proof. Using Chinese Remainder Theorem, Lemma 6.2.4 and Lemma 6.2.5 the number of

solutions of x2 ≡ 1 (mod k) is 2i · 2l where

i =


0, if m = 0, 1 ;

1, if m = 2 ;

2, if m ≥ 3.

In [25], the authors conjectured that cyclic matrices of order 4, 8 over the finite field

F2m does not exists. In the following theorem, we substantiate their conjecture within

a specific subclass of cyclic matrices. Specifically, we show that g-circulant involutory

matrices of order 2d×2d cannot be MDS by proving the existence of a singular submatrix.

To establish this, we first demonstrate the presence of a left-circulant matrix as a

submatrix in a g-circulant matrix of order 2d × 2d for a particular g.

Lemma 6.2.7. Let A be a g-circulant matrix of order 2d × 2d and g = 2d−1 − 1. Let
(c0, c1, c2, . . . , c2d−1) be the first row of A. Then A has two left-circulant submatrices of order
2d−1 × 2d−1.

Proof. Let (c0, c1, c2, . . . , c2d−1) be the first row of A. We denote the i-th row of A by Ri,

j-th column by Cj and A(0, j) = cj for 0 ≤ j ≤ 2d− 1. Consider the entries of the row R2:

A(2, 0) = c2d−2g (mod 2d) = c2d−2(2d−1−1) = c2, A(2, 1) = c3,

A(2, 2) = c4, . . . , A(2, 2
d − 1) = c2+2d−1 (mod 2d) = c1.

Similarly, the entries of the row R4 are:

A(4, 0) = c2d−4g (mod 2d) = c4, A(4, 1) = c5,

A(4, 2) = c6, . . . , A(4, 2
d − 1) = c4+2d−1 (mod 2d) = c3.

Continuing this process, we find the entries of row R2d−2 are :

A(2d − 2, 0) = c2d−2, A(2
d − 2, 1) = c2d−1, . . . , A(2

d − 2, 2d − 1) = c2d−3.

Therefore the rows R0, R2, R4, . . . , R2d−1 and the columns C0, C2, C4, . . . , C2d−2 form the

left-circulant matrix with the entries of first row c0, c2, c4, . . . , c2d−2. Similarly, the rows
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R0, R2, R4, . . . , R2d−1 and the columnsC1, C3, C5, . . . , C2d−1 form the left-circulant matrix

with the entries of the first row c1, c3, c5, . . . , c2d−1.

Note that, if C1 is a circulant matrix with first row (c0, c1, c2, . . . , ck−1) and C2 is a

left-circulant matrix with same first row, then their determinant is same over the finite

field of characteristic 2. We are now ready to prove the theorem.

Theorem 6.2.8. Let A be a g-circulant matrix of order 2d × 2d over a finite field of characteristic
2, where g is odd. Let (c0, c1, c2, . . . , c2d−1) be the first row of A and g2 ≡ 1 (mod 2d). If A is
an involutory matrix, then A can not be an MDS matrix.

Proof. Consider the g-circulant matrix A of order 2d × 2d over F2m with first row

(c0, c1, c2, . . . , c2d−1). Given that g2 ≡ 1 (mod 2d), we consider the following cases for

the possible values of g:

Case I. For the case g = 1, A is a circulant matrix. If A is involutory, then from Lemma 9

of [30] (see Theorem 1.2.30), A can not be MDS.

Case II. For the case g = 2d − 1 the matrix A becomes a left-circulant matrix. Let

A be involutory. Since left-circulant matrices are symmetric, which implies they are

orthogonal. Therefore A is a 2d× 2d left-circulant, orthogonal matrix. Therefore A cannot

be MDS follows by the Theorem 5.3.4 of Chapter 5.

Case III. From the Lemma 6.2.4, there exist values of g in the range 1 < g < 2d − 1

satisfying g2 ≡ 1 (mod 2d). Note that g is an odd number.

Moreover,A2 is a circulant matrix according to Theorem 2.2.10. LetA be involutory. Since

Q2
g is a g2-circulant matrix and g2 ≡ 1 (mod 2d), we haveQ2

g = I . This impliesQ2
gP

l = P l

for 0 ≤ l ≤ k − 1. By utilizing Theorem 6.2.1 and the involutory property, we can deduce

that A2(0, 0) = 1 and A2(0, l) = 0 for 1 ≤ l ≤ 2d − 1. We calculate the coefficient of

A2(0, 2d−1).

A2(0, 2d−1) =

k−1∑
i,j=0,

gi+j=2d−1 (mod 2d)

cicj

=
k−1∑
i=0,

gi+i=2d−1 (mod 2d)

c2i +
k−1∑

i ̸=j, i,j=0,
gi+j=2d−1 (mod 2d)

cicj

Consider the equation gi+j = 2d−1 (mod 2d). Since g is invertible, multiply this equation

by g−1 and using that g has self-inverse, we get i + gj = g−12d−1 = g2d−1 = (2k1 +

1)2d−1 = 2dk1 +2d−1 = 2d−1 (mod 2d). Therefore the set {(i, j) : gi+ j = 2d−1 (mod 2d)}
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is same as the set {(i, j) : i+ gj = 2d−1 (mod 2d)}. Thus, the equation reduces as follows:

A2(0, 2d−1) =

k−1∑
i=0,

gi+i=2d−1 (mod 2d)

c2i +

k−1∑
i<j, i,j=0,

gi+j=2d−1 (mod 2d)

2cicj

=
k−1∑
i=0,

(g+1)i=2d−1 (mod 2d)

c2i

Consider the set S = {i : (g+1)i = 2d−1 (mod 2d)}. Note that, if α ∈ S, then the additive

inverse of α also belongs to S because (g + 1)(2d − α) = −(g + 1)α = 2d − 2d−1 = 2d−1

(mod 2d). As a result, |S| is even.

From Lemma 6.2.4, the only possibilities for g are 2d−1 ± 1. First we prove that for g =

2d−1−1, if α ∈ S then α+2 ∈ S. This is evident because (g+1)(α+2) = 2d−1+2(g+1) =

2d−1+2d = 2d−1 (mod 2d). Since 1 ∈ S in this scenario, we get 1, 1+2 = 3, 5, . . . , 2d−1 ∈
S. Also, 2 /∈ S. Hence,

A2(0, 2d−1) = (c1 + c3 + · · ·+ c2d−1)
2

Since A is involutory, this implies c1 + c3 + · · ·+ c2d−1 = 0.

Therefore by Lemma 6.2.7, we get a left-circulant submatrix of order 2d−1 × 2d−1 with

determinant 0 and this implies A is not an MDS matrix.

Next consider the case for g = 2d−1 + 1. First we prove that if α ∈ S then α + 2d−1 ∈ S.

This hold because (g + 1)(α + 2d−1) = 2d−1 + 2d−1(g + 1) = 2d−1 + 2d−1(2d−1 + 2) =

2d−1 + 2d(2d−2 + 1) = 2d−1 (mod 2d). Furthermore, 2d−2 ∈ S because (g + 1)2d−2 =

(2d−1 + 2)2d−2 = 2d−1(2d−1 + 1) = 2d−1 (mod 2d). Consequently 2d−2, 2d−2 + 2d−1 ∈ S.

Thus

A2(0, 2d−1) = (c2d−2 + c3·2d−2)2

Since A is involutory, this implies (c2d−2 + c3·2d−2) = 0. Consider the 2 × 2 submatrix of

A with entries A(0, 2d−2), A(0, 3 · 2d−2), A(2d−1, 2d−2) and A(2d−1, 3 · 2d−2). The entries in

the first rows are A(0, 2d−2) = c2d−2 and A(0, 3 · 2d−2) = c3·2d−2 . By calculating the entries

of 2d−1-th row, we get

A(2d−1, 2d−2) = c2d−2d−1g+2d−2 (mod 2d)

= c2d−2d−1(2d−1+1)+2d−2 (mod 2d) = c3·2d−2 ,

A(2d−1, 3 · 2d−2) = c2d−2d−1g+3·2d−2 (mod 2d)

= c2d−2(22−2d−2+3) (mod 2d) = c2d−2

Hence there exists a 2× 2 submatrix of A with determinant 0. Thus A is not MDS.
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Next we consider g-circulant matrices of order other than 2d×2d. Let k = 2m
l∏

i=1

pmi
i ,m ≥

0,mi ≥ 1 and pi’s are odd primes.

Theorem 6.2.9. Let A be a g-circulant matrix of order k × k with gcd(g, k) = 1 over a finite

field of characteristic 2 with k = 2m
l∏

i=1

pmi
i ,m ≥ 0,mi ≥ 1 and pi’s are odd primes. Let

(c0, c1, c2, . . . , ck−1) be the first row of A and g2 ≡ 1 (mod k). If A is an involutory matrix and
1 ≤ g < k − 1, then A is not an MDS matrix.

Proof. Case I. Let g = 1 i.e., A is a circulant matrix. Then from Lemma 9 of [30] (see

Theorem 1.2.30), A is not MDS.

Case II. Let consider the case 1 < g < k− 1. According to Theorem 6.2.6, there exists g in

this range with g2 ≡ 1 (mod k).Therefore A2 is a circulant matrix by Theorem 2.2.10. We

now calculate the entry A2(0, g + 1) using Theorem 6.2.1 :

A2(0, g + 1) =
k−1∑
i,j=0,

gi+j=g+1 (mod k)

cicj

=
k−1∑
i=0,

gi+i=g+1 (mod k)

c2i +
k−1∑

i ̸=j, i,j=0,
gi+j=g+1 (mod k)

cicj

Let (i, j) satisfy the equation gi + j = g + 1 (mod k). Then (j, i) also satisfy the same

because g is self-invertible . This implies i+ gj = 1+ g−1 = 1+ g (mod k). Therefore we

can write A2(0, g + 1) as the following:

A2(0, g + 1) =
k−1∑
i=0,

gi+i=g+1 (mod k)

c2i +
k−1∑

i<j, i,j=0,
gi+j=g+1 (mod k)

2cicj

=
k−1∑
i=0,

(g+1)i=g+1 (mod k)

c2i

Consider the set S = {i : gi + i = g + 1 (mod k)}. This set is non-empty because 1 ∈ S.

Note that, there always exists a smallest non-zero integer α < k such that (1 + g)α = 0

(mod k). This holds because, the conditions k|(g + 1)(g − 1) and 1 ≤ (g + 1), (g − 1) < k

implies gcd(k, g + 1) > 1. Therefore, such α exists.

Then 1+βα ∈ S for β = {1, 2, . . . , ⌊k−1
α ⌋}, because (1+g)(1+βα) = (1+g)+βα(1+g) =
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1 + g (mod k). Therefore A2(0, g + 1) can be written as:

A2(0, g + 1) =

k−1∑
i=0,

(g+1)i=g+1 (mod k)

c2i

= c21 + c21+α + c21+2α + · · ·+ c2
1+⌊ k−1

α
⌋α

= (c1 + c1+α + c1+2α + · · ·+ c1+⌊ k−1
α

⌋α)
2

Since A is involutory, we get c1 + c1+α + c1+2α + · · · + c1+⌊ k−1
α

⌋α = 0. This equation has

⌊k−1
α ⌋α+ 1 = k

α number of entries.

Construct the submatrix B of A with order k
α × k

α as follows: The entries of B are drawn

from the rowsR0, Rα, R2α, . . . , R⌊ k−1
α

⌋α and columnsC1, C1+α, C1+2α, . . . , C1+⌊ k−1
α

⌋α ofA.

The entries of the first row of B are (c1, c1+α, c1+2α, . . . , c1+⌊ k−1
α

⌋α).

To generate the entries of the second row of B, consider the sequence :

A(α, 1) = A(α− 1, 1− g) = A(α− 2, 1− 2g) = · · · = A(α− p, 1− pg) = · · · .

Given that the matrix A is g-circulant, we have A(α, 1) = A(0, j) for some 0 ≤ j ≤ k − 1.

Thus α − p = 0 (mod k) implies 1 − αg = 0 (mod k). As α(1 + g) = 0 (mod k), this

implies j = 1 + α. Continuing this process we obtain

A(α, 1 + βα) = A(α− 1, 1 + βα− g) = · · · = A(0, 1− βα− αg) = A(0, 1 + α(β + 1)).

Also A(α, 1 + (⌊k−1
α ⌋ + 1)α) = A(0, 1) and second row of B is one left-shift of the first

row. By calculating in similar manner, we get

A(2α, 1 + βα) = A(α, 1 + α(β + 1)),

with the entries calculated modulo k. This implies that the rows of B are left shifts of the

previous row, making B a left-circulant matrix of order k
α × k

α . Also determinant of B is

zero. Therefore A is not MDS.

In next case, we prove that it is possible to construct left-circulant involutory MDS under

certain conditions. This result is similar of Proposition 6 of [25].

Theorem 6.2.10. Let A be a left-circulant matrix of order k×k over a finite field of characteristic

2 with k = 2m
l∏

i=1

pmi
i ,m ≥ 0,mi ≥ 1 and pi’s are primes. Let (c0, c1, c2, . . . , ck−1) be the first

row of A. Then A is involutory and MDS if and only if the following conditions holds:

1.
k−1∑
i=0

ci = 1,

2.
k−1∑
i,j=0,

gi+j=l (mod k)

cicj = 0, 1 ≤ l ≤ ⌊k−1
2 ⌋,
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3. All submatrices of A have non-zero determinant.

Proof. Consider a left-circulant matrixA of order k×k over the finite field of characteristic

2 with k = 2m
l∏

i=1

pmi
i and pi’s are primes. Since g ≡ −1 (mod k), then from Theorem

2.2.10, A2 is circulant. Let A be involutory. Then A2(0, 0) = 1 and A2(0, l) = 0, 1 ≤ l ≤
k − 1. Therefore using Theorem 6.2.1, A2(0, 0) can be written as:

A2(0, 0) =
k−1∑
i,j=0,

gi+j=0 (mod k)

cicj =
k−1∑
i=0,

gi+i=0 (mod k)

c2i = (
k−1∑
i=0

ci)
2.

This holds because gi+j = 0 (mod k) and g ≡ −1 (mod k) implies j = i. Thus
k−1∑
i=0

ci = 1.

The coefficient of P l is
k−1∑
i,j=0,

gi+j=l (mod k),l ̸=0

cicj for 1 ≤ l ≤ k − 1. Therefore

A2(0, l) =
k−1∑
i,j=0,

gi+j=l (mod k),l ̸=0

cicj

Since g2 ≡ 1 (mod k), the equation gi+j = l (mod k) can be written as i+gj = gl = k− l
(mod k). Hence the set {(i, j) : gi+ j = l (mod k)} same as the set {(i, j) : i+ gj = k − l

(mod k)}.

Therefore, it is enough to consider first ⌊k−1
2 ⌋ entries of first row of A2, i.e., coefficients of

P l with 1 ≤ l ≤ ⌊k−1
2 ⌋. Note that, when k is even,

A2

(
0,
k

2

)
=

k−1∑
i,j=0,

gi+j= k
2

(mod k)

cicj =
k−1∑
i,j=0,

gi+j= k
2

(mod k),i<j

2cicj = 0.

This holds because the set {(i, j) : gi+ j = k
2 (mod k)} equals to {(i, j) : i+ gj = g−1 k

2 =

g k
2 = k

2 (mod k)}. This implies for even k, A2(0, k2 ) always 0. Therefore the conditions

hold.

Conversely, if the conditions hold, then A2(0, 0) = 1 and A2(0, l) = 0 for 1 ≤ l ≤ k − 1.

Since A2 is circulant, this implies A is involutory. From the third condition it is evident

that A is MDS. Hence proved.

Consider the following example of left-circulant involutory MDS matrix from [25].

Example 6.2.11. Consider the finite field F28 defined by the irreducible polynomial 1+x2+x5+
x6 + x8. Let a be a primitive element. Construct the left-circulant matrix of order 5× 5 with the
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first row (1, a, 1 + a+ a4 + a5 + a7, 1 + a+ a3 + a4 + a5 + a7, a+ a3). Then

k−1∑
i=0

ci = 1 + a+ 1 + a+ a4 + a5 + a7 + 1 + a+ a3 + a4 + a5 + a7 + a+ a3 = 1,

k−1∑
i,j=0,

4i+j=1 (mod k)

cicj = c0c1 + c1c2 + c2c3 + c3c4 + c4c0

= (1 · a) + (a · (1 + a+ a4 + a5 + a7)) + ((1 + a+ a4 + a5 + a7)

· (1 + a+ a3 + a4 + a5 + a7)) + ((1 + a+ a3 + a4 + a5 + a7)

· (a3 + a)) + ((a3 + a))

= 0,

k−1∑
i,j=0,

4i+j=2 (mod k)

cicj = c0c2 + c1c3 + c2c4 + c3c0 + c4c1

= (1 · (1 + a+ a4 + a5 + a7)) + (a · (1 + a+ a3 + a4 + a5 + a7))+

((1 + a+ a4 + a5 + a7) · (a3 + a)) + ((1 + a+ a3 + a4 + a5 + a7))

+ ((a3 + a) · a)

= 0.

Therefore, A2 = I from Theorem 6.2.10. Additionally, all submatrices of A are non-singular,
affirming that A is an MDS matrix as well.

6.3 g-Circulant matrices with semi-involutory and

semi-orthogonal properties

In this section, we focus on g-circulant matrices endowed with semi-involutory and

semi-orthogonal properties. As discussed in Section 3.4, Chatterjee and Laha [63]

demonstrated that for a circulant matrix of order k × k, possessing the semi-orthogonal

property leads to the intriguing result that the k-th power of the associated diagonal

matrices yields a scalar matrix. This finding prompts a natural question: does this

distinctive characteristic also hold true for g-circulant semi-orthogonal matrices? Our

investigation extends to this inquiry, considering the case where gcd(g, k) = 1, as this

condition proves to be essential for the non-singularity of the matrix in Theorem 5.2.1

in Chapter 5. We also need the following characteristic of semi-orthogonal matrices

described in Theorem 2.5 of [64].

Theorem 6.3.1. Let A be a semi-orthogonal matrix of order k×k and P be an k×k permutation
matrix. Then both AP and PA are semi-orthogonal matrices.

Proof. Since A is semi-orthogonal, there exists diagonal matrices D1 and D2 such
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that A−T = D1AD2. Let D1 = diagonal(d1, . . . , dk) and D2 = diagonal(e1, . . . , ek).

Additionally the permutation matrix P satisfy PP T = I . Now (AP )−T =

A−TP−T = D1APP
−1D2P

T = D1APD3, where D3 = PD2P
T . Then D3 =

diagonal(eσ−1(1), eσ−1(2), eσ−1(3), . . . , eσ−1(k)), where σ is the permutation associated with

P . Similarly, PA also semi-orthogonal.

Theorem 6.3.2. LetA be a g-circulant matrix of order k×k over a finite field F with gcd(g, k) =

1. ThenA is semi-orthogonal if and only if there exist non-singular diagonal matricesD1, D2 such
that Dk

1 = k1I and Dk
2 = k2I for non-zero scalars k1, k2 in the finite field and A−T = D1AD2.

Proof. Let A be a g-circulant matrix with semi-orthogonal property. Then there exists

non-singular diagonal matrices D1 and D2 such that A−T = D1AD2. Since A is

g-circulant and gcd(g, k) = 1, by Theorem 5.2.3, there exists a unique permutation matrix

Q such that AQ = C, where C is a circulant matrix. Lemma 6.3.1 implies that C is also

semi-orthogonal. According to Theorem 3.4.3, the associated diagonal matrices E1, E2

of C satisfy En
1 = k1I and En

2 = k2I for some non-zero scalars k1, k2 in the finite field

and C−T = E1CE2. This implies (AQ)−T = E1AQE2. Thus A−T = E1AQE2Q
T .

Consider D1 = E1, which implies Dn
1 = En

1 = k1I . Let D2 = QE2Q
T . If E2 =

diagonal(e0, e1, . . . , ek−1) and σ ∈ Sk be the permutation associated to Q, then D2 is

also a diagonal matrix with diagonal entries (eσ−1(0), eσ−1(1), eσ−1(2), . . . , eσ−1(k−1)). Since

eσ−1(i) = ej for 0 ≤ i, j ≤ k − 1 and QQT = I , then Dn
2 = (QE2Q

T )n = k2I . Hence

proved.

Conversely, if there exists non-singular diagonal matrices D1, D2 such that Dn
1 = k1I and

Dn
2 = k2I for non zero scalars k1, k2 in the finite field and A−T = D1AD2, then by the

definition A is semi-orthogonal.

Example 6.3.3. Consider the 5×5 matrixA = circulant(1, 1+α+α3, 1+α+α3, α+α3, 1+α3+

α4 + α7), where α is a primitive element of the finite field F28 with the generating polynomial
x8 + x4 + x3 + x2 + 1. Note that, A is semi-orthogonal since A−T = D1AD2, where D1 =

diagonal(α2 + α, α7 + α2 + 1, α7 + α6 + α5 + α4 + α2, α5 + α4 + α3 + α2, α6 + α3 + α+ 1)

and D2 = diagonal(α7 + α6 + α3 + α2 + α + 1, α7 + α5 + α3, α7 + α5 + α4 + α2 + 1, α6 +

α5 + α2, α7 + α5 + α4 + α2 + α). Here k1 = α5 + α3 + α2 + α and k2 = α6 + α4 + α3 + 1. A

is also an MDS matrix.

The generalization of Theorem 3.4.1 to the case of g-circulant matrices is noted in the

subsequent theorem.

Theorem 6.3.4. LetA be a g-circulant matrix of order k×k over a finite field F with gcd(g, k) =

1. ThenA is semi-involutory if and only if there exist non-singular diagonal matricesD1, D2 such
that Dk

1 = k1I and Dk
2 = k2I for non-zero scalars k1, k2 in the finite field and A−1 = D1AD2.

Proof. Let A = g-circulant(a0, a1, . . . , ak−1) and ρ ∈ Sk be the k-cycle associated to A.

Assume that A is semi-involutory. This implies the existence of non-singular diagonal
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matrices D1 and D2 such that A−1 = D1AD2. Let D1 =diagonal(d0, d1, . . . , dk−1) and

D2 =diagonal(d′0, d
′
1, . . . , d

′
k−1). Then the matrix A−1 takes the form

A−1 =


d0a0d

′
0 d0a1d

′
1 · · · d0ak−1d

′
k−1

d1ak−gd
′
0 d1ak−g+1d

′
2 · · · d1ak−1−gd

′
k−1

...
... · · ·

...

dk−1agd
′
0 dk−1ag+1d

′
1 · · · dk−1ag−1d

′
k−1

 .

Here the suffixes of ai’s are calculated modulo k. Since inverse of a g-circulant matrix is

h-circulant with gh ≡ 1 (mod k), the entries of the second row of A−1 are the same as the

entries of the first row shifted right by h positions. Since h < k, there exists l such that

0 ≤ l ≤ k − 1 and ρ(l) = h. Therefore,

d0a0d
′
0 = d1ald

′
h

d0a1d
′
1 = d1al+1d

′
h+1

...

d0ak−1d
′
k−1 = d1al−1d

′
h−1.

Here all the suffixes of di, ai and d′i are calculated modulo k. Note that, the sets

{l, l + 1, . . . , l − 1} and {h, h + 1, . . . , h − 1} form a complete set of residues modulo k.

Then multiplying all these equalities, we get dk0 = dk1 . Similarly, entries of the third row

are the same as entries of the second row right shifted by h positions, and that implies

d1aρ−1(i)d
′
i = d2aρ−1(h+i)d

′
h+i for i = 0, . . . , k − 1, and the indices are reduced modulo

k, which leads to dk2 = dk3 . Continuing this process, we get dk1 = dk2 = dk3 = dk4 =

· · · = dkk. Moreover, in A−1, the second column is g-shift of the first column by Lemma

6.1. Therefore d0a0d′0 = dhak−hg+1d
′
1, d1ak−gd

′
0 = dh+1ak−(h+1)g+1d

′
1, . . . , dk−1agd

′
0 =

dh+(k−1)ak−(h−1)g−1d
′
1. Multiplying these equations we get d′n0 = d′n1 . Applying the same

reasoning for the second and the third columns, we get d′n1 = d′n2 . Continuing in a similar

manner, we conclude that d′n0 = dn1 = d′n2 = d′n3 = · · · = d′nk−1.

Conversely, if there exists non-singular diagonal matrices D1, D2 such that Dn
1 = k1I and

Dn
2 = k2I for non zero scalars k1, k2 in the finite field and A−1 = D1AD2, then by the

definition A is semi-involutory.

Example 6.3.5. Consider the 2 × 2 matrix A = circulant(1, a2), where a is a primitive element
of the finite field F22 with the generating polynomial x2 + x+ 1. Note that, A is semi-involutory
since A−1 = D1AD2, where D1 = diagonal(a, a) and D2 = I2×2. Here k1 = a+ 1 and k2 = 1.

A is also an MDS matrix.

Example 6.3.6. Consider the 4 × 4 matrix A = circulant(a, a3, a2 + a + 1, a3), where a is a
primitive element of the finite field F24 with the generating polynomial x4 + x+ 1. Note that, A
is semi-involutory since A−1 = D1AD2, where D1 = diagonal(a3 + 1, a3 + 1, a3 + 1, a3 + 1)

and D2 = I4×4. Here k1 = a3 + a2 + a and k2 = 1.
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6.4 Conclusion

This chapter offers a comprehensive exploration of g-circulant involutory MDS matrices

and g-circulant semi-orthogonal and semi-involutory matrices. However, the study

of g-circulant MDS matrices with either semi-orthogonal or semi-involutory properties

remains an unexplored area in current research.



Chapter 7

Circulant MDS matrices with
semi-involutory and semi-orthogonal
properties

Circulant matrices and their extensions have gained considerable attention in recent

years, as discussed in previous chapters. The absence of the MDS property in circulant

orthogonal and involutory matrices for different orders over the finite field F2m has

prompted numerous researchers [17, 25, 30, 31, 32, 33] to investigate Toeplitz matrices,

Hankel matrices, and Cyclic matrices etc. with the MDS property. In 2023, Chatterjee

and Laha initiated a study of circulant matrices, focusing on semi-involutory and

semi-orthogonal properties as discussed in Chapter 3. Building upon their results, this

chapter establishes a relationship between the trace of the associated diagonal matrices

of a semi-orthogonal (semi-involutory) circulant matrix and the MDS property for

various orders over the finite field F2m . Additionally, we present examples of circulant,

semi-orthogonal matrices with odd orders over a finite field of characteristic 2. The work

presented in this chapter can be found in [71].

7.1 Introduction

In [30, 31], Gupta et al. proved that circulant orthogonal matrices of order 2d × 2d

cannot be MDS over a finite field of characteristic 2. Furthermore, they provided

examples of circulant orthogonal MDS matrices for orders 3, 5, 6, 7 over the finite field

F28 . Subsequently, in 2023, Chatterjee et al. [63] delved into the semi-involutory and

semi-orthogonal properties of circulant matrices. Their study showed that in a circulant

semi-orthogonal (semi-involutory) matrix of order n×n, the n-th power of the associated

diagonal matrices are scalar matrices. The summarized results are as follows:

Theorem 7.1.1. A be an n× n circulant matrix over a finite field F. Then A is semi-orthogonal
if and only if there exist non-singular diagonal matrices D1 and D2 such that Dn

1 = k1I and
Dn

2 = k2I for non-zero scalars k1, k2 ∈ F, and A−T = D1AD2.

Theorem 7.1.2. A be an n× n circulant matrix over a finite field F. Then A is semi-involutory
if and only if there exist non-singular diagonal matrices D1 and D2 such that Dn

1 = k1I and
Dn

2 = k2I for non-zero scalars k1, k2 ∈ F, and A−1 = D1AD2.

113
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In [63], the absence of the MDS property for circulant sesqui-semi-orthogonal matrices of

order 2p×2p over the finite field Fpn was established. However, a comprehensive study of

circulant semi-orthogonal matrices for other orders was not conducted. In the following

section, our attention is directed towards diverse orders of circulant semi-orthogonal

MDS matrices over the finite fields of characteristic 2.

7.2 Circulant matrices with MDS and semi-orthogonal

properties

Leveraging Theorem 7.1.1, we establish that for circulant semi-orthogonal matrices of

order 2d × 2d, the trace of the associated diagonal matrices are zero over a finite field of

characteristic 2.

Proposition 7.2.1. Let A be a circulant, semi-orthogonal matrix of order 2d × 2d over the finite
field F2m with associated diagonal matrices D1 and D2. Then trace of D1 and D2 are zero.

Proof. Let A be a circulant semi-orthogonal matrix with associated diagonal matrices D1

and D2. Then A−T = D1AD2, where D1 and D2 are non-singular diagonal matrices. Let

D1 = diagonal(d0, d1, d2, . . . , d2d−1) and D2 = diagonal(e0, e1, e2, . . . , e2d−1). These two

diagonal matrices also satisfy D2d
1 = k1I and D2d

2 = k2I for some non-zero scalers k1, k2
of the finite field by Theorem 7.1.1. This implies trace(D2d

1 ) = 2dk1 = 0 and trace(D2d
2 ) =

2dk2 = 0. This leads to the expressions:

d2
d

0 + d2
d

1 + d2
d

2 + · · ·+ d2
d

2d−1 = (d0 + d1 + d2 + · · ·+ d2d−1)
2d = 0

and

e2
d

0 + e2
d

1 + e2
d

2 + · · ·+ e2
d

2d−1 = (e0 + e1 + e2 + · · ·+ e2d−1)
2d = 0.

Thus trace(D1) and trace(D2) are zero.

Next we prove Theorem 1.4.37 which establish a significant relationship between

the MDS property and the trace of the associated diagonal matrices for circulant,

semi-orthogonal matrices of even orders other than powers of 2.

Theorem 7.2.2. Let A be a circulant, semi-orthogonal matrix of order k × k over the finite field
F2m with associated diagonal matrices D1 and D2, where k = 2in, i > 1 and n ≥ 3, an odd
integer. Then A is MDS implies both the matrices D1 and D2 have trace zero.

Proof. Let A = circulant(a0, a1, a2, . . . , ak−1). Since A is semi-orthogonal, we have

A−T = D1AD2, where D1 and D2 are non-singular diagonal matrices given by D1 =

diagonal(d0, d1, d2, . . . , dk−1) and D2 = diagonal(e0, e1, e2, . . . , ek−1). Let A be an MDS

matrix, then all the submatrices of A have determinant non-zero. Using the identity

AA−1 = I , we have AD2A
TD1 = I . Let M = AD2A

TD1. Since all non-diagonal

entries of M are zero, we can derive the following set of equations from the entries
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M(0, 1),M(1, 2),M(2, 3), . . . ,M(k − 2, k − 1),M(k − 1, 0):

(

k−1∑
i=0

aiai+1ei+1)d1 = 0

(

k−1∑
i=0

aiai+1ei+2)d2 = 0

...

(
k−1∑
i=0

aiai+1ei+(k−1))dk−1 = 0

(
k−1∑
i=0

aiai+1ei+k)d0 = 0.

Here all the suffixes are calculated modulo k. Since di’s are non-zero, these equations

reduce to the following:

(
k−1∑
i=0

aiai+1ei+1) = 0, (
k−1∑
i=0

aiai+1ei+2) = 0, . . . , (
k−1∑
i=0

aiai+1ei+k) = 0

Adding these equations we get

(

k−1∑
i=0

aiai+1)(e0 + e1 + · · ·+ ek−1) = 0. (7.1)

Next, consider the following set of entries of the matrix M : M(0, 3), M(1, 4), M(2, 5),

. . . , M(k − 3, 0), M(k − 2, 1), M(k − 1, 2). From these entries, we get the following set of

equations:

(
k−1∑
i=0

aiai+3ei+3)d3 = 0

(

k−1∑
i=0

aiai+3ei+4)d4 = 0

(
k−1∑
i=0

aiai+3ei+5)d5 = 0

...

(
k−1∑
i=0

aiai+3ei+k+1)d1 = 0

(

k−1∑
i=0

aiai+3ei+k+2)d2 = 0.

Here all the suffixes are calculated modulo k. Similarly as before, using that di’s are
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non-zero and adding these equations, we get

(

k−1∑
i=0

aiai+3)(e0 + e1 + · · ·+ ek−1) = 0. (7.2)

Continuing this process to cover all the odd positions of the first row till the position

M(0, k2 ).

Consider the entries at positionsM(0, k2−1),M(1, k2 ),M(2, k2+1), . . . ,M(k2+1, 0),M(k2+

2, 1), · · · ,M(k − 1, k2 − 2). From these entries, we get the equation

(
k−1∑
i=0

aiai+ k
2
−1)(

k−1∑
i=0

ei) = 0, (7.3)

where the suffixes are calculated modulo k.

Adding the following k
4 equations

(

k−1∑
i=0

aiai+1)(
k−1∑
i=0

ei) = 0, (
k−1∑
i=0

aiai+3)(
k−1∑
i=0

ei) = 0, . . . , (
k−1∑
i=0

aiai+ k
2
−1)(

k−1∑
i=0

ei) = 0,

we get

(a0 + a2 + · · ·+ ak−2)(a1 + a3 + · · ·+ ak−1)(e0 + e1 + · · ·+ ek−1) = 0. (7.4)

Given that A is a circulant matrix of order k× k, it has two circulant submatrices of order
k
2 with the first row (a0, a2, . . . , ak−2) and (a1, a3, . . . , ak−1) respectively. According to

Equation (2.3), both (a0 + a2 + · · · + ak−2) and (a1 + a3 + · · · + ak−1) must be non-zero

since A is an MDS matrix. Therefore from Equation 7.4, we have (e0+e1+ · · ·+ek−1) = 0

and this implies trace(D2) = 0.

Similarly using the identity A−1A = I and following the same process, we will get

trace(D1) = 0.

In the next result, we explore the case where the order of the matrix is an even number

of the form 2n, n is an odd number. In this case, we need one additional condition on

the entries of at least one of the associated diagonal matrix. Any diagonal matrix of even

order meeting this criterion is termed as non-periodic diagonal matrix. Specifically, we

define a diagonal matrix D = diagonal(d0, d1, d2, . . . , d2n−1) as a non-periodic diagonal

matrix, if the entries satisfy di ̸= di+n, i = 0, 1, 2, . . . , n− 1.

Theorem 7.2.3. Let A be a circulant, semi-orthogonal matrix of order 2n× 2n, n ≥ 3 be an odd
number, over F2m with associated diagonal matrices D1 and D2. If A is an MDS matrix and at
least one of the associated diagonal matrix is non-periodic, then trace of that non-periodic diagonal
matrix is zero.

Proof. Let A = circulant(a0, a1, a2, . . . , a2n−1). Since A is semi-orthogonal, it satisfy

A−T = D1AD2, where D1 and D2 are non-singular diagonal matrices given by D1 =
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diagonal(d0, d1, d2, . . . , d2n−1) and D2 = diagonal(e0, e1, e2, . . . , e2n−1). Without loss of

generality, we assume that D2 is non-periodic diagonal matrix. Then ei ̸= ei+n, i =

0, 1, 2, . . . , n− 1. Let A be an MDS matrix.

Since AA−1 = I , we have AD2A
TD1 = I . Let AD2A

TD1 = M . All non-diagonal entries

of M are zero. Form the entries M(0, 1),M(1, 2),M(2, 3), . . . ,M(2n− 2, 2n− 1),M(2n−
1, 0) we get the following equations:

(

2n−1∑
i=0

aiai+1ei+1)d1 = 0

(
2n−1∑
i=0

aiai+1ei+2)d2 = 0

...

(
2n−1∑
i=0

aiai+1ei+(2n−1))d2n−1 = 0

(
2n−1∑
i=0

aiai+1ei+2n)d0 = 0.

Here all the suffixes are calculated modulo 2n. Since di’s are non zero, we can add these

equations and get

(
2n−1∑
i=0

aiai+1)(e0 + e1 + · · ·+ e2n−1) = 0.

Continuing the similar process for the entries at positions M(0, 3), M(1, 4), M(2, 5), . . . ,

M(2n− 3, 0) we get:

(

2n−1∑
i=0

aiai+3ei+3)d3 = 0

(
2n−1∑
i=0

aiai+3ei+4)d4 = 0

...

(
2n−1∑
i=0

aiai+3ei+(2n))d0 = 0

(
2n−1∑
i=0

aiai+3ei+2n+1)d1 = 0

(

2n−1∑
i=0

aiai+3ei+2n+2)d2 = 0.
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Here all the suffixes are calculated modulo 2n. Adding these equations we get

(
2n−1∑
i=0

aiai+3)(
2n−1∑
i=0

ei) = 0.

Continue this process to cover all the odd positions of the first row, upto the position

M(0, n). From the entries M(0, n),M(1, n+ 1),M(2, n+ 2), . . . ,M(n− 1, 2n− 1) we get:

(
n−1∑
i=0

aiai+n(ei + ei+n))dn = 0

(
n−1∑
i=0

aiai+n(ei+1 + ei+(n+1)))dn+1 = 0

...

(
n−1∑
i=0

aiai+n(ei+(n−1) + e(i+n)+(n−1)))d2n−1 = 0.

(7.5)

Here all the suffixes are calculated modulo 2n. Using the given conditions on ei’s and

di’s non-zero, we get (
2n−1∑
i=0

aiai+n)(
2n−1∑
i=0

ei) = 0.

Note that, in Equation (7.5), we have n number of equations, where the other sets of

involve 2n equations each. Finally, adding the following ⌈n2 ⌉ equations:

(
2n−1∑
i=0

aiai+1)(
2n−1∑
i=0

ei) = 0, (
2n−1∑
i=0

aiai+3)(
2n−1∑
i=0

ei) = 0, . . . , (
n−1∑
i=0

aiai+n)(
2n−1∑
i=0

ei) = 0,

we obtain

(a0 + a2 + · · ·+ a2n−2)(a1 + a3 + · · ·+ a2n−1)(e0 + e1 + · · ·+ e2n−1) = 0.

Since A is MDS, using the same argument as previous theorem, we get (
2n−1∑
i=0

ei) = 0. This

implies trace(D2) = 0.

Similarly using the identity A−1A = I, D1 is non-cyclic diagonal matrix, and following

the same process, we will get trace(D1) = 0.

For circulant, semi-orthogonal matrices of odd order, the following examples

demonstrate the possibility of achieving the MDS property.

Example 7.2.4. Consider the 3×3 matrixA = circulant(α, α+1, α2+α),where α is a primitive
element of the finite field F28 with the generating polynomial x8+x4+x3+x2+1. Note that, A
is semi-orthogonal sinceA−T = D1AD2,whereD1 = diagonal(α7+α6+α5+α, α7+α6+α5+

α, α7+α6+α5+α) andD2 = diagonal(α6+α4+α3+α, α6+α4+α3+α, α6+α4+α3+α).
A is also an MDS matrix.

Example 7.2.5. Consider the 5×5 matrixA = circulant(1, 1+α+α3, 1+α+α3, α+α3, 1+α3+

α4 + α7), where α is a primitive element of the finite field F28 with the generating polynomial
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x8 + x4 + x3 + x2 + 1. Note that, A is semi-orthogonal since A−T = D1AD2, where D1 =

diagonal(α2 + α, α7 + α2 + 1, α7 + α6 + α5 + α4 + α2, α5 + α4 + α3 + α2, α6 + α3 + α+ 1)

and D2 = diagonal(α7 + α6 + α3 + α2 + α + 1, α7 + α5 + α3, α7 + α5 + α4 + α2 + 1, α6 +

α5 + α2, α7 + α5 + α4 + α2 + α). A is also an MDS matrix.

Remark 7.2.6. We have classified circulant semi-orthogonal matrices over the finite field F2m

into four distinct categories. Specifically, for odd orders, we provide examples of circulant
semi-orthogonal matrices of orders 3 × 3 and 5 × 5 with the MDS property. For matrices of
order 2d × 2d, the trace of the associated diagonal matrices is zero. Additionally, for matrices
of even order, where the order k ≡ 0 (mod 4), the MDS property ensures that the trace of the
associated diagonal matrices remains zero. Furthermore, when the order is even and congruent
to 2 (mod 4), the MDS property together with non-periodic diagonal matrices results in a trace
value of zero for the associated diagonal matrices.

In the subsequent section, we explore circulant matrices with the semi-involutory

property. Our objective is to determine whether similar outcomes persist under

semi-involutory property or not.

7.3 Circulant matrices with MDS and semi-involutory

properties

In [30], Gupta et al. proved that circulant involutory matrices of order n ≥ 3 cannot

be MDS over the finite field of characteristic 2. In the subsequent results, we extend

this characteristic to circulant semi-involutory matrices. In this direction, our first

result demonstrate that, the trace of the associate diagonal matrices of a circulant,

semi-involutory matrix of order 2d × 2d is zero. This mirrors a similar outcome as

presented in Theorem 7.2.1, and for the sake of completeness, we acknowledge this result.

Proposition 7.3.1. Let A be a 2d × 2d circulant, semi-involutory matrix over the finite field F2m

with associated diagonal matrices D1 and D2. Then trace of D1 and D2 are zero.

Proof. Let A be a circulant semi-involutory matrix with associated diagonal matrices D1

and D2. Then A−1 = D1AD2, where D1 and D2 are non-singular diagonal matrices. Let

D1 = diagonal(d0, d1, d2, . . . , d2d−1) and D2 = diagonal(e0, e1, e2, . . . , e2d−1). These two

diagonal matrices also satisfy D2d
1 = k1I and D2d

2 = k2I for some non-zero scalers k1, k2
of the finite field by Theorem 7.1.2. This implies trace(D2d

1 ) = 2dk1 = 0 and trace(D2d
2 ) =

2dk2 = 0. This leads to the expressions:

d2
d

0 + d2
d

1 + d2
d

2 + · · ·+ d2
d

2d−1 = (d0 + d1 + d2 + · · ·+ d2d−1)
2d = 0

and

e2
d

0 + e2
d

1 + e2
d

2 + · · ·+ e2
d

2d−1 = (e0 + e1 + e2 + · · ·+ e2d−1)
2d = 0.

Thus trace(D1) and trace(D2) are zero.
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For circulant semi-involutory matrices with orders other than 2d × 2d, our result

establishes that the trace value of the associated diagonal matrices is zero when the matrix

exhibits the MDS property which is noted in Theorem 1.4.39.

Theorem 7.3.2. Let A be an n × n, n ≥ 3, n ̸= 2i circulant, semi-involutory matrix over the
finite field F2m with associated diagonal matrices D1 and D2. Then A is MDS implies both the
matrices D1 and D2 have trace zero.

Proof. Let A = circulant(a0, a1, a2, . . . , an−1). Since A is semi-involutory, we have

A−1 = D1AD2, where D1 and D2 are non-singular diagonal matrices given by D1 =

diagonal(d0, d1, d2, . . . , dn−1) and D2 = diagonal(e0, e1, e2, . . . , en−1). Let A be an MDS

matrix. Since AA−1 = I , we have AD1AD2 = I . Let M = AD1AD2. This implies that all

non diagonal entries of M are 0.

Case I: Consider the case n is even, n = 2k.

From the entries M(0, 2),M(1, 3),M(2, 4),M(3, 5), . . . ,M(2k − 3, 2k − 1),M(2k −
2, 0),M(2k − 1, 1) we get the following equations:

(a21d1+a
2
k+1dk+1 + a0a2(d0 + d2) + a3a2k−1(d3 + d2k−1) + · · ·+ akak+2(dk + dk+2))e2 = 0

(a21d2+a
2
k+1dk+2 + a0a2(d1 + d3) + a3a2k−1(d4 + d2k) + · · ·+ akak+2(dk+1 + dk+3))e3 = 0

...

(a21d2k−2 + a2k+1dk−2 + a0a2(d2k−1 + d2k−3) + +a3a2k−1(d3+(2k−3) + d2k−4) + · · ·+ akak+2

(dk−1 + dk−3))e2k−1 = 0

(a21d2k−1 + a2k+1dk−1 + a0a2(d2k + d2k−2) + a3a2k−1(d1 + d2k−3) + · · ·+ akak+2

(dk−2 + dk))e0 = 0

(a21d2k + a2k+1dk + a0a2(d1 + d2k−1) + a3a2k−1(d2 + d2k−2) + · · ·+ akak+2

(dk−1 + dk+1))e1 = 0.

All the suffixes are calculated modulo 2k. Since ei’s are non-zero, adding all these

equations, we get

(a21 + a2k+1)(d1 + d2 + · · ·+ d2k−1) = 0 (7.6)

SinceA is an MDS matrix, all its submatrices have determinant non-zero. Consider the 2×
2 submatrix ofAwith the positionsA[0, 1], A[0, k+1], A[k, 1], A[k, k+1]. The determinant

of this submatrix is (a21 + a2k+1) and thus it is non-zero. Consequently Equation (7.6)

implies (d1 + d2 + · · ·+ d2k−1) = 0. Therefore trace of D1 is zero.

Considering the identity A−1A = I and proceed similarly, we will get trace of D2 is zero.

Case II: Consider the case n is odd, n = 2k + 1.

The entries at the positions M(0, 2),M(1, 3),M(2, 4),M(3, 5), . . . ,M(2k − 2, 2k),M(2k −
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1, 0),M(2k, 1) give the following equations:

(a21d1+a0a2(d0 + d2) + a3a2k(d3 + d2k) + · · ·+ ak+1ak+2(dk+1 + dk+2))e2 = 0

(a21d2+a0a2(d1 + d3) + a3a2k(d4 + d2k+1) + · · ·+ ak+1ak+2(dk+2 + dk+3))e3 = 0

...

(a21d2k−1 + a0a2(d0+2k−2 + d1+2k−2) + a3a2k(d3+2k−2 + d2k+2k−2) + · · ·+ ak+1ak+2

(dk+1+2k−2 + dk+2++2k−2))e2k−1 = 0

(a21d2k + a0a2(d0+2k−1 + d2+2k−1) + a3a2k(d3+2k−1 + d2k+2k−1) + · · ·+ ak+1ak+2

(dk+1+2k−1 + dk+2+2k−1))e0 = 0

(a21d0 + a0a2(d1 + d2k) + a3a2k(d2 + d2k−1) + · · ·+ ak+1ak+2(dk + dk+1))e1 = 0.

All the suffixes are calculated modulo 2k + 1. Since ei’s are non-zero, adding all these

equations, we get

(a21)(d1 + d2 + · · ·+ d2k) = 0 (7.7)

SinceA is an MDS matrix, all entries ofA are non-zero. This implies (d1+d2+ · · ·+d2k) =
0. Therefore trace of D1 is zero.

Considering the identity A−1A = I and proceed similarly, we will get trace of D2 is

zero.

Remark 7.3.3. For circulant semi-involutory matrices over the finite field F2m , we have proven
that matrices of order 2d × 2d exhibit a zero trace for their associated diagonal matrices.
Furthermore, for orders not represented as powers of 2, the trace remains zero if the matrix
possesses the MDS property.

7.4 Conclusion

In conclusion, this chapter has explored circulant matrices with both semi-orthogonal

and MDS properties, as well as circulant matrices characterized by semi-involutory and

MDS attributes. Exploring similar properties in the generalization of circulant matrices

invites further inquiry, promising valuable insights for future research in this domain.
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Chapter 8

Format preserving sets

In this chapter, we study format preserving sets (FPS), which play a crucial role in

determining the cardinality of message space within format preserving encryption (FPE)

schemes. We first explore certain constructions of FPS over finite commutative rings

with identity. We show that it is possible to construct format preserving sets over a

finite commutative ring that are not closed under addition. We also provide examples

of format preserving sets of cardinalities 26 and 52 over torsion modules and rings.

These cardinalities are interesting because they correspond to the set of English alphabets,

without and with capitalization. The work presented in this chapter is published and can

be found in [75], Section 3 and 4.

8.1 Introduction

Format preserving encryption is an encryption algorithm that preserves the length as

well as the format of the plain text. The first formal study of format preserving encryption

(FPE) schemes were initiated by Bellare et al. in 2009 [52]. In 2016, Chang et al. [59]

proposed a new FPE algorithm SPF, based on a substitution permutation network (SPN)

strategy. In the same year Gupta, Pandey and Ray [60] introduced the concept of format

preserving set (FPS) in the diffusion layer of a format preserving encryption scheme as

follows: Let M be the matrix corresponding to the diffusion layer with entries from some

algebraic structure A. Let X be any set with the desired input size and ϕ : X → A be an

injective map. Then ϕ(X) is a format preserving set with respect to M if Mv ∈ ϕ(X)n

for all v ∈ ϕ(X)n. The formal definition of an FPS over an algebraic structure A is the

following:

Definition 8.1.1. A non-empty set S ⊆ A is said to be a format preserving set with respect to an
n× n matrix M(A) if Mv ∈ An for all v ∈ An.

It is evident from our discussion in Chapter 1, Section 1.3 that the cardinality of an FPS

plays an important role in the diffusion layer of an FPE scheme.

In [60], Gupta et al. and in [62] Barua et al. established that format preserving sets are

vector space over some subfield of the finite field Fpn . Therefore the possible cardinalities

of an FPS must be prime powers. However, in practical scenarios, the goal of an FPE

scheme is to encrypt messages of arbitrary length, not only restricted to prime powers.

Additionally, message spaces with cardinalities such as 10, 26 and 52 carry substantial
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significance as they correspond respectively to the set of decimal digits, the set of English

alphabets, without and with capitalization.

To address this gap, in 2018, Baura et al. [62] investigated the existence of an FPS

over a finite commutative ring with identity under the restriction that the set is closed

under addition. In this chapter, we present a detailed study of the construction of

format preserving sets over rings and finitely generated modules. Our results show the

feasibility of attending various cardinalities, which were not attained over finite fields

previously.

8.2 Structure of format preserving sets over rings

We explore the structure of FPS over various rings. Initially, we study the structure of FPS

over the ring Zn. Subsequently, we extend and generalize the findings to Galois rings.

Finally, we provide few results applicable to arbitrary rings.

8.2.1 Structure of FPS over Zn

In 2018, Barua et al. [62] described the structure of a format preserving set S over a

finite commutative unital ring R by assuming the condition that the set S is closed under

addition. Curiously, they observed the following example of a format preserving set

which does not satisfy their condition.

Example 8.2.1. Consider the ring R = Z10, and a 3 × 3 matrix M with entries from the set
{1, 3, 5, 7, 9} ⊂ Z10. Consider the set S = {1, 3, 5, 7, 9}. S is not closed under addition, since
3 + 5 = 8 /∈ S. However, S is an FPS with respect to M over the ring Z10.

Although the set is not closed under addition, it is still an FPS. The general theory behind

this phenomenon is proved in the Theorem 8.2.3. Prior to that, we establish a lemma

which is useful to prove the theorem.

Lemma 8.2.2. Let I = ⟨a⟩ be a proper ideal of R = Zn where n is a composite positive integer

and S = I + 1. Then
r∑

t=1

at (mod n) ∈ S for all at ∈ S, 1 ≤ t ≤ r, where r ≡ 1 (mod a).

Proof. Since S = I +1, for every element s ∈ S there exists i ∈ I such that s = i+1. Also

i = an′ (mod n), where n′ ∈ Zn, so s = an′ + 1 (mod n). Now

r∑
t=1

at (mod n) =
r∑

t=1

(it + 1) (mod n)

=

r∑
t=1

it + r (mod n).

Since i1, . . . , ir are elements of I, there exist n1, n2, . . . , nr ∈ Zn such that ij = anj , 1 ≤
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j ≤ r. Using the given condition r ≡ 1 (mod a) (i.e. r = an′′ +1), we have the following.

r∑
t=1

at (mod n) =
r∑

t=1

ant + (an′′ + 1) (mod n) ∈ ⟨a⟩+ 1 = S.

Theorem 8.2.3. Let I = ⟨a⟩ be a proper ideal of R = Zn, where n is a composite positive integer
and S = I + 1 ⊆ R. Then S is an FPS with respect to a matrix Mr×r(S) if and only if the order
of the matrix r ≡ 1 (mod a).

Proof. Let s1, s2 ∈ S. Then there exist i1, i2 ∈ I such that s1 = i1 + 1 and s2 = i2 + 1.

Consider the product of s1 and s2 as follows:

s1 · s2 = (i1 + 1) · (i2 + 1) (mod n)

= i1 · i2 + i1 + i2 + 1 (mod n)

∈ I + 1 (since I is ideal)

= S,

i.e., S is closed under multiplication.

For an arbitrary column vector v = [s1, s2, . . . , sr]
t ∈ Sr, we show that Mv ∈ Sr. The i-th

entry of the vector Mv is [Mv]i = mi,1s1 +mi,2s2 + · · · +mi,rsr. Since mi,j ∈ S and S is

closed under multiplication, therefore mi,jsj ∈ S for all j = 1, 2, . . . , r. Now [Mv]i is the

sum of r elements with entries from S and by the given condition r ≡ 1 (mod a). Hence,

by Lemma 8.2.2, we have that [Mv]i ∈ S. Since i is arbitrary, Mv ∈ Sr.

Conversely, let I = ⟨a⟩ be an ideal of R and S = I + 1 be an FPS with respect to

Mr×r(S). Then Mv ∈ Sr for all vectors v ∈ Sr. Consider an arbitrary column vector v =

[s1, s2, . . . , sr]
t ∈ Sr. The i-th entry of the vector Mv is mi,1s1 +mi,2s2 + · · ·+mi,rsr ∈ S.

Since both mi,j and sj are from S, there exist ni,j , n′j such that mi,j = ani,j + 1 (mod n)

and sj = an′j + 1 (mod n) for all j = 1, 2, . . . , r. Therefore,

[Mv]i = mi,1s1 +mi,2s2 + · · ·+mi,rsr

= (ani,1 + 1)(an′1 + 1) + · · ·+ (ani,r + 1)(an′r + 1) (mod n)

= (a2ni,1n
′
1 + ani,1 + an′1 + · · ·+ a2ni,rn

′
r + ani,r + an′r) + r (mod n).

The first part belongs to I and is equal to an1(say) for some n1 ∈ Zn. Therefore, [Mv]i =

an1+r (mod n) = s′ ∈ S. Since S = I+1, we have s′ ≡ 1 (mod a). Therefore, an1+r ≡ 1

(mod a) and thus r ≡ 1 (mod a). This completes the proof.

Note that, if the characteristic of Zn is even then by considering I = ⟨2⟩, we see that

S = I + 1 forms a set which is not closed under addition. However, if we take any odd

number of elements from S, then by Lemma 8.2.2, the sum of those elements belongs to

S. This implies that S is a format preserving set with respect to any odd order matrix
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with entries from S by Theorem 8.2.3. This is precisely the example provided by Barua et
al. at [62].

Next two examples are applications of Theorem 8.2.3 under different conditions. These

examples illustrate that constructing an FPS becomes straightforward when an ideal is

provided.

Example 8.2.4. Consider the ring Z16 and I = ⟨2⟩. Then S = I+1 = {1, 3, 5, 7, 9, 11, 13, 15}.

Consider the 3×3 matrixM =


7 11 15

5 7 1

13 3 5

 . Then by Theorem 8.2.3, S is a format preserving

set with respect to M.

If I = ⟨4⟩, and S = I + 1 = {1, 5, 9, 13}. Then S is a format preserving with respect to any
5× 5 matrix with entries from S.

Example 8.2.5. Consider the ring Z15 and the ideal I = ⟨3⟩ = {0, 3, 6, 9, 12}. Then the set
S = I + 1 = {1, 4, 7, 10, 13}. Here, S is not closed under addition. Now by Lemma 8.2.2, sum
of any four elements in S belongs to S. For example 4 + 7+ 10 + 13 (mod 15) = 4 ∈ S, 4 + 4+

7 + 13 (mod 15) = 13 ∈ S. Consider M =


7 4 1 7

10 1 4 10

13 4 13 7

4 4 7 7

 and v = [10, 7, 13, 10]t ∈ S4. By

Theorem 8.2.3, we know that Mv ∈ S4.

We notice that the condition r ≡ 1 (mod a) is an equivalent condition for the Theorem

8.2.3. Next, we provide a counterexample of the theorem.

Remark 8.2.6. Consider the ring Z15 and I = ⟨3⟩. Then S = I + 1 = {1, 4, 7, 10, 13}. Set

M =


1 4 13

7 1 7

10 4 1

 is a 3 × 3 matrix with entries from S and v = [1, 7, 1]t ∈ S3. But Mv =

[12, 6, 9]t /∈ S3.

In the next section we provide similar results over Galois ring.

8.2.2 Structure of FPS over Galois rings

In this section we generalize the results of the previous section to Galois rings GR(pn, r),

where p is a prime and n, r are positive integers. We commence with the following lemma

which is crucial to prove Theorem 8.2.8.

Lemma 8.2.7. Let R be the Galois ring GR(pn, r) and Ii (where 0 ≤ i ≤ n) are the principal

ideals of R. Let S = Ii + 1. Then
r∑

k=1

fk (mod pn) ∈ S, for all fk ∈ S, 1 ≤ k ≤ r, if r ≡ 1

(mod pi).



Chapter 8. Format preserving sets 127

Proof. We know that GR(pn, r) ∼= Zpn [x]/(f(x)), where f(x) ∈ Zpn [x] is a monic, basic,

irreducible polynomial of degree r. Then Ii = {a0 + a1x+ · · ·+ ar−1x
r−1 : aj ∈ ⟨pi⟩, 1 ≤

j ≤ r − 1} is a principal ideal of R. Now

r∑
k=1

fk (mod pn) =
r∑

k=1

(gk + 1) (mod pn)

=
r∑

k=1

r−1∑
j=0

(gk,jx
j + 1) (mod pn)

=
r∑

k=1

gk,0 +
r∑

k=1

r−1∑
j=1

gk,jx
j + r (mod pn)

=
r∑

k=1

gk,0 +
r∑

k=1

r−1∑
j=1

gk,jx
j + pil + 1 (mod pn).

The last statement in the proof above follows from the given condition r ≡ 1 (mod pi).

Since Ii is an ideal generated by pi,
∑r

k=1 gk,0 + pil ∈ Ii. Hence
∑r

k=1 fk(mod pn) =
r−1∑
i=0

dix
i + 1 ∈ Ii + 1 = S.

Lemma 8.2.7 allows us to prove the following theorem in a manner analogous to Theorem

8.2.3.

Theorem 8.2.8. Let R = GR(pn, r) and Ii be a principal ideal of R. Consider S = Ii +1 ⊆ R.
Then S is an FPS with respect to a matrix Mr×r with entries from S if and only if r ≡ 1

(mod pi).

Proof. Let f1, f2 ∈ S. Then there exist g1, g2 ∈ Ii such that f1 = g1 + 1 and f2 = g2 + 1.

Considering g1 =
r−1∑
i=0

aix
i and g2 =

r−1∑
i=0

bix
i, we have

f1 = (a0 + 1) +

r−1∑
i=1

aix
i and f2 = (b0 + 1) +

r−1∑
i=1

bix
i.

Consider the product f1 · f2 as follows.

f1 · f2 =

(
(a0 + 1) +

r−1∑
i=1

aix
i

)
·

(
(b0 + 1) +

r−1∑
i=1

bix
i

)
(mod pn)

=
r−1∑
i=0

cix
i +

r−1∑
i=0

aix
i +

r−1∑
i=0

bix
i + 1 (mod pn) (where ci =

i∑
j=0

ajbi−j)

∈ Ii + 1 (since Ii is an ideal) = S.

This proves that S is closed under multiplication.

To show that S is an FPS with respect to the matrix M(S), where the order of M is

congruent to 1 (mod pi), consider an arbitrary vector v = [f1, f2, · · · , fr]t ∈ Sr. The
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i-th entry of Mv is mi,1f1 +mi,2f2 + · · · +mi,rfr. Since mi,j ∈ S and S is closed under

multiplication, it is evident that each mi,jfj ∈ S for j = 1, 2, · · · , r. By Lemma 8.2.7, we

get that [Mv]i ∈ S.

Conversely, let Ii = ⟨pi⟩ = ⟨a⟩ (say) be an ideal of R and S = Ii+1 be an FPS with respect

to Mr×r(S). Then Mv ∈ Sr for all vectors v ∈ Sr. Consider an arbitrary column vector

v = [s1, s2, . . . , sr]
t ∈ Sr. The i-th entry of the vectorMv ismi,1s1+mi,2s2+ · · ·+mi,rsr ∈

S. Since bothmi,j and sj are from S, there exist ni,j , n′j such thatmi,j = ani,j+1 (mod pn)

and sj = an′j + 1 (mod pn) for all j = 1, 2, . . . , r. Therefore,

[Mv]i = mi,1s1 +mi,2s2 + · · ·+mi,rsr

= (ani,1 + 1)(an′1 + 1) + · · ·+ (ani,r + 1)(an′r + 1) (mod pn)

= (a2ni,1n
′
1 + ani,1 + an′1 + · · ·+ a2ni,rn

′
r + ani,r + an′r) + r (mod pn).

The first part belongs to I and is equal to an1(say) for some n1. Therefore, [Mv]i = an1+r

(mod pn) = s′ ∈ S. Since S = I + 1, we have s′ ≡ 1 (mod pi). Therefore, an1 + r ≡ 1

(mod pi) and thus r ≡ 1 (mod pi). This completes the proof.

8.2.3 Structure of FPS over arbitrary rings

In the preceding two sections, we provided constructions of an FPS from the translation

of an ideal by 1. In this section, we study the construction of a new FPS through

the translation of another format preserving set using arbitrary elements from a ring.

Under this assumption, we prove Theorem 8.2.9. Following that, we discuss some more

properties of FPS over arbitrary rings in Theorem 8.2.11 and Theorem 8.2.17.

Theorem 8.2.9. Let R be a finite commutative ring with unity, S ⊆ R and Sβ = S + β, where

β ∈ R. Suppose M = (mi,j)n×n is a matrix with entries from R and
n∑

j=1

mi,j = 1 for all

i = 1, 2, . . . , n. Then Sβ is an FPS with respect to M if and only if S is an FPS with respect to
M.

Proof. Let S be an FPS with respect to M. Then for any vector v ∈ Sn, Mv ∈ Sn. Let

v1 = [s1, s2, . . . , sn]
t be an arbitrary vector from Sn

β . Since si ∈ Sβ , there exists αi ∈
S such that si = αi+β for i = 1, 2, . . . , n. The i-th entry ofMv1 is given by the following:

[Mv1]i = mi,1s1 + · · ·+mi,nsn

= mi,1(α1 + β) + · · ·+mi,n(αn + β)

= mi,1α1 + · · ·+mi,nαn + β(mi,1 + · · ·+mi,n)

= mi,1α1 + · · ·+mi,nαn + β · 1

= mi,1α1 + · · ·+mi,nαn + β.

Consider v = [α1, α2, . . . , αn]
t ∈ Sn. Then by the given condition the i-th entry of Mv i.e.

[Mv]i = mi,1α1 +mi,2α2 + · · · +mi,nαn = s ∈ S. Hence [Mv1]i = s + β ∈ Sβ. Since i is
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arbitrary, Mv1 ∈ Sn
β . This proves the “if” part of the theorem.

Conversely, assume Sβ is an FPS with respect to M. Let v′ = [x1, x2, . . . , xn]
t ∈ Sn. Then

xi = si − β for some si ∈ Sβ for all i = 1, 2, . . . , n. The i-th entry of Mv′ is given by the

following:

[Mv′]i = mi,1x1 +mi,2x2 + · · ·+mi,nxn

= mi,1(s1 − β) + · · ·+mi,n(sn − β)

= mi,1s1 + · · ·+mi,nsn − β(mi,1 + · · ·+mi,n)

= mi,1s1 + · · ·+mi,nsn − β.

Consider w = [s1, s2, . . . , sn]
t ∈ Sn

β . By the given condition, the i-th entry of Mw, i.e.

[Mw]i = mi,1s1 +mi,2s2 + · · · +mi,nsn = s′ ∈ Sβ. Hence [Mv′]i = s′ − β ∈ S. Since i is

arbitrary, Mv′ ∈ Sn.

The following example illustrates Theorem 8.2.9.

Example 8.2.10. Consider the set S = {1, 4, 7, 10, 13} in Z15 and the matrix M =
7 4 1 4

10 1 4 1

1 7 4 4

1 1 4 10

 . Then M satisfies the condition
n∑

j=1

mi,j = 1 (mod 15). Let S2 = S + 2 =

{0, 3, 6, 9, 12}. Therefore S2 is format preserving with respect to M.

To construct format preserving sets of cardinality 10 and 26, Barua et al.[62] considered

either the entire ring Z10 or Z26 or free module over subrings which are also isomorphic

to Z10 or Z26. But in Example 8.2.10, S2 is an ideal of Z15 and yet an FPS. In the next

result, we show that ideals are a natural source of format preserving sets.

Theorem 8.2.11. Let S be an ideal of the ring R, then S is a format preserving set with respect
to any matrix Mn×n(R).

Proof. Consider any arbitrary column vector v = [x1, x2, . . . , xn]
t ∈ Sn and an arbitrary

matrix M = (mi,j)n×n, where mi,j ∈ R, 1 ≤ i, j ≤ n.

The i-th row of the vector Mv is [Mv]i = mi,1x1 + mi,2x2 + · · · + mi,nxn. Since S is an

ideal of R, then mi,jxj ∈ S and S also closed under addition. Hence, Mv ∈ Sn and thus

S is an FPS with respect to M.

In the following examples we construct format preserving sets of cardinalities 3, 5 and 10

derived from the ideals of a ring.

Example 8.2.12. Let R = Z15 and I1 = {0, 3, 6, 9, 12} and I2 = {0, 5, 10}. Suppose M is any
square matrix with entries from Z15. Then both I1 and I2 are format preserving sets with respect
to M .

Example 8.2.13. Let R = Z20, and suppose I is an ideal generated by 2. Cardinality of I is 10
and it is an FPS with respect to any matrix over Z20.
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Though ideals are format preserving sets with respect to any matrix with entries from

the ring, union of two ideals is not necessarily a format preserving set. Therefore, union

of two format preserving sets over a ring is not necessarily a format preserving set. We

show an example of such a case below.

Example 8.2.14. Consider I1 and I2 from Example 8.2.12. Then I1
⋃
I2 =

{0, 3, 5, 6, 9, 10, 12}. Consider a 3 × 3 matrix M with entries from Z15. Let M =


1 5 1

4 3 9

2 2 1


and v = [3, 0, 5]t ∈ (I1

⋃
I2)3. Then Mv = [8, 12, 11]t /∈ (I1

⋃
I2)3.

Example 8.2.15. Let the ring R = Z21, S = ⟨3⟩, and M =

[
2 20

6 16

]
. Suppose S is an FPS with

respect to M. Consider S′ = S + 2 = {2, 5, 8, 11, 14, 17, 20}. By Theorem 8.2.9, S′ is also an
FPS with respect to M . It can be observed that S′ is not closed under addition.

Remark 8.2.16. In the ring Zn, consider S = ⟨a⟩. Suppose M is a matrix that satisfies the
condition of Theorem 8.2.9. Then from S we can construct (a − 1) new format preserving sets
which are S + 1, S + 2, . . . , S + (a− 1).

In the next result we show that we can construct an FPS containing all the units of a ring

under certain conditions. Let R∗ denote the group of units of ring R. The following

theorem allows us to construct an FPS.

Theorem 8.2.17. Let R be a finite commutative ring with unity such that R∗ is cyclic. Let S be
a subset of R which contains at least one unit of R. Suppose M is a square matrix with entries
from R with R∗ being generated by some entry of the matrix M . That is, R∗ = ⟨mi,j⟩ for some
mij ∈M . If S is an FPS with respect to M , with 0 ∈ S, then S contains all the units of R.

Proof. Since R∗ is a finite cyclic group, there exist k ∈ N and β ∈ R such that |R∗| = k

and βk = 1. Let α ∈ S be a unit of R, then α = βi and α−1 = βk−i for some 1 ≤ i ≤ k.

Assume that M = (mi,j)n×n and m11 = β. Consider the vector v = [α, 0, . . . , 0]t ∈ Sn.

Then Mv = [βα,m2,1α, · · · ,mn,1α]
t ∈ Sn, i.e. βα = βi+1 ∈ S. Clearly βα is a unit of R.

Now consider the vector v1 = [βα, 0, 0, . . . , 0]t ∈ Sn. ThenMv1 ∈ Sn i.e. β2α = βi+2 ∈ S.

Continuing this process k − i times we get βi+j = 1 ∈ S. For v′ = [1, 0, . . . , 0]t, we have

Mv′ = [β,m2,1, . . . ,mn,1]
t. Thus β ∈ S. Hence βi ∈ S for all i = 1, 2, · · · , k.

Example 8.2.18. Consider R = Z50, then |R∗| = 20. If S is an FPS satisfying the conditions of
Theorem 8.2.17, then cardinality of S is at least 21.

Remark 8.2.19. Note that for a format preserving set of arbitrary cardinality p satisfying the
conditions of Theorem 8.2.17, one needs to find a ring of characteristic n such that cardinality of
R∗ is ≥ p.

The converse of Theorem 8.2.17 is not true. We prove this by the following example.
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Example 8.2.20. Let R be the ring Z10. Suppose S is the set containing all the units of R and 0.

Let M =

[
3 2

4 8

]
and v = [3, 0]t. Then Mv = [9, 2]t /∈ S2.

In the next section we discuss the construction of format preserving sets with entries from

modules.

8.3 Structure of format preserving sets over modules

So far we have considered the entries of a format preserving set S and the corresponding

matrix M from the ring R. In this section, we study the case where the entries of S and

M are not necessarily from the same algebraic structure. We know that it is possible to

generalize the concept of linear codes from a finite field to a module. This suggests us to

study the construction FPS over modules. We provide some results for FPS over modules

next.

While constructing FPS over modules, we need to put some restrictions because all the

elements in the module and the ring are not necessarily units.

Lemma 8.3.1. Let N be an R-module and S ⊆ N. Suppose M is a square matrix with entries
from the ring R and a ∈ R is a unit with S′ = aS. Then S is an FPS with respect to M if and
only if S′ is an FPS with respect to M.

Proof. Let S be an FPS with respect to M = (mi,j)n×n. Then for all v ∈ Sn, Mv ∈ Sn. Let

v′ ∈ S′n. Then there exists a vector v1 ∈ Sn such that v′ = a ·v1. Now Mv′ =M(a ·v1) =

a(Mv1) ∈ S′n.

Conversely, let S′ be an FPS with respect to M. Then Mv ∈ S′n for all v ∈ S′n. Since a is

unit, a−1 exists. Let v2 ∈ Sn, then there exists v3 ∈ S′n such that v2 = a−1v3. Since S′ is

an FPS, we have Mv2 =M(a−1v3) = a−1(Mv3) ∈ Sn.

We can see that under multiplication by a unit of the ring, the behaviour of a format

preserving set remains unchanged. But there may exist some r in R such that r · n = 0

for some n ∈ N, i.e., r is an annihilator of n. We consider this case in the next lemma.

Lemma 8.3.2. Let N be an R-module and S ⊆ N be an FPS with respect to Mn×n(R). Suppose
r ∈ R is an annihilator of some element of S and S′ = rS. Then S′ is an FPS with respect to
Mn×n(R) if 0 ∈ S.

Proof. Let r ∈ R be an annihilator of s ∈ S. Consider an arbitrary vector v′ ∈ S′n. Then

there exists a column vector v = [v1, v2, . . . , vn]
t ∈ Sn such that v′ = rv.

First, suppose that s ̸= vi for all 1 ≤ i ≤ n. Then v′ = [rv1, rv2, . . . , rvn]
t and none of

the entries of v′ is zero. Now, Mv′ = M [rv1, rv2, . . . , rvn]
t = rM [v1, v2, . . . , vn]

t. But S is

an FPS with respect to M , hence we have that M [v1, v2, . . . , vn]
t ∈ Sn. This implies that

Mv′ ∈ rSn = S′n.

Now assume that vi = s for some 1 ≤ i ≤ n. Without loss of generality, let us assume

that v1 = s. Then v′ = [0, rv2, . . . , rvn]
t ∈ S′n. Now Mv′ = M [0, rv2, . . . , rvn]

t =
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rM [0, v2, · · · , vn]t. Since 0 ∈ S, [0, v2, . . . , vn]
t ∈ Sn. Hence M [0, v2, . . . , vn]

t ∈ Sn and

rM [0, v2, . . . , vn]
t ∈ S′n i.e., Mv′ ∈ S′n.

Note that the converse of Lemma 8.3.2 is not true. We illustrate this with the following

example.

Example 8.3.3. Consider N = Z10 and R = Z20. Then N is an R-module. Suppose S =

{0, 2, 3} and M is any square matrix with entries from R. For r = 10 ∈ Z20, we have S′ = {0}
and hence S′ is an FPS with respect to any matrix, but S is not.
Consider r = 5 ∈ Z20. Then we have S′ = {0, 5} and it is an FPS with respect to any matrix
since it is a submodule of N . But S is not an FPS.

We have seen in Theorem 8.2.11 that ideals of a ring are format preserving sets. Similarly

one can prove that submodules of a module are also format preserving with respect to

any matrix with entries from the ring.

Theorem 8.3.4. LetN be an R-module and I be a submodule ofN. Then I is a format preserving
set with respect to any matrix Mn×n(R).

Proof. Consider any arbitrary column vector v = [x1, x2, . . . , xn]
t ∈ In and an arbitrary

matrix M = (mi,j)n×n, where mi,j ∈ R, 1 ≤ i, j ≤ n.

The i-th row of the vector Mv is [Mv]i = mi,1x1 + mi,2x2 + · · · + mi,nxn. Since I is a

submodule of N, then mi,jxj ∈ I and I also closed under addition. Hence, Mv ∈ In and

thus I is an FPS with respect to M.

In the next theorem we prove that translation of submodules are format preserving under

some restriction on the matrix.

Theorem 8.3.5. Let N be an R-module and I be a submodule of N. Let S = I + 1. Then S is a

format preserving set with respect to Mr×r(R) if and only if
r∑

j=1

mi,j ∈ S for all i = 1, 2, . . . , r.

Proof. Let s1, s2 ∈ S. Then there exist i1, i2 ∈ I such that s1 = i1 + 1 and s2 = i2 + 1.

Consider the product of s1 and s2 as follows.

s1 · s2 = (i1 + 1) · (i2 + 1)

= i1 · i2 + i1 + i2 + 1

∈ I + 1 (since I is submodule)

= S.

This shows that S is closed under multiplication.

Consider an arbitrary vector v = [s1, s2, . . . , sr]
t ∈ Sr. We have to show that Mv ∈ Sr.

The i-th entry of the vector Mv is [Mv]i = mi,1s1 +mi,2s2 + · · · +mi,rsr. This entry can

be written in the following form:

[Mv]i = mi,1(i1 + 1) + · · ·+mi,r(ir + 1)

= mi,1i1 + · · ·+mi,rir + (mi,1 + · · ·+mi,r).
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Since I is a submodule, for some i′′ ∈ I, we have that mi,1i1 +mi,2i2 + · · ·+mi,rir = i′′.

By the given condition
r∑

j=1

mi,j ∈ S, there exists some i′ ∈ I such that
r∑

j=1

mi,j = i′ + 1.

Thus [Mv]i = i′′ + i′ + 1 ∈ I + 1 = S. Since i is arbitrary, Mv ∈ Sr.

Conversely, assume that S is an FPS with respect to M. Then for all v ∈ Sr, Mv ∈ Sr.

Let v = [s1, s2, . . . , sr]
t ∈ Sr. Then [Mv]i = mi,1s1 + mi,2s2 + · · · + mi,rsr = mi,1i1 +

mi,2i2 + · · ·+mi,rir + (mi,1 +mi,2 + · · ·+mi,r) ∈ S. Now mi,1i1 +mi,2i2 + · · ·+mi,rir +

(mi,1 +mi,2 + · · ·+mi,r) = i1 +m′ ∈ I +m′, where (mi,1 +mi,2 + · · ·+mi,r) = m′. This

implies that i1 +m′ ∈ S, hence i1 +m′ = i2 + 1 for some i2 ∈ I. Therefore m′ − 1 ∈ I i.e.,

m′ ∈ I + 1 = S.

The following example illuminates Theorem 8.3.5.

Example 8.3.6. LetN = R = Z35 and suppose I = ⟨7⟩ is a submodule ofN. Then S = I+1 =

{1, 8, 15, 22, 29}. Consider the matrix M =


15 7 7

1 8 6

11 3 8

 with entries from the ring R. Then by

Theorem 8.3.5, S is an FPS with respect to M.

8.3.1 Structure of FPS over torsion modules

Barua et al. provided sufficient conditions for an FPS to be an R-module in Theorem 4

of [62]. Moreover, if S is a free R-module, then |S| = |R|m for some m ≥ 0. In this

subsection, we explore other possible cardinalities that an FPS over a finite module can

attain. Towards this goal, we now prove Theorem 8.3.7 using the Fundamental theorem

of finitely generated modules over PID.

Theorem 8.3.7. Let N be a finite module over a PID R with invariant factors a1, a2, . . . , am. A
subset S of N is an FPS with respect to Mn×n(R) if and only if there exists Si ⊆ R/(ai), such
that each Si is an FPS with respect to Mn×n(R) for all i = 1, 2, . . . ,m.

Proof. Since N is a finite module over PID R with invariant factors a1, a2, . . . , am,

by Theorem 2.1.14, we have that N ∼= R/(a1)
⊕

R/(a2)
⊕

· · ·
⊕

R/(am) where

a1|a2| · · · |am.
For each i ∈ {1, 2, . . . ,m}, let Si be an FPS with respect to M. In particular, there exists

S1 ⊆ R/(a1) such that S1 is format preserving with respect to M, where M = (mi,j)n×n.

For v′ = [x̄11, x̄21, . . . , x̄n1]
t ∈ Sn

1 , Mv′ = [m1,1x̄11 +m1,2x̄21 + · · ·+m1,nx̄n1,

m2,1x̄11 + m2,2x̄21 + · · · + m2,nx̄n1, · · · ,mn,1x̄11 + mn,2x̄21 + ... + mn,nx̄n1]
t ∈ Sn

1 . This

implies mi,1x̄11 +mi,2x̄21 + · · ·+mi,nx̄n1 ∈ S1 for all i = 1, 2, . . . ,m.

Similarly, since each Sj ⊆ R/(aj), 1 ≤ j ≤ m, is an FPS with respect to M, for any vector

v′′ = [x̄1j , x̄2j , . . . , x̄nj ]
t ∈ Sn

j , Mv′′ ∈ Sn
j . This implies that mi,1x̄1j + mi,2x̄2j + · · · +

mi,nx̄nj ∈ Sj for i = 1, 2, . . . , n.

We construct a set S from the sets S1, S2, . . . , Sm, such that any element s ∈ S is of the

form s = (x̄1, x̄2, . . . , x̄m), where x̄i ∈ Si, 1 ≤ i ≤ m.
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For an arbitrary vector v = [s1, s2, . . . , sn]
t ∈ Sn, we show that Mv ∈ Sn. For each

1 ≤ j ≤ n, sj = (x̄j1, x̄j2, . . . , x̄jm), where x̄ji ∈ Si for all i = 1, 2, . . . ,m. The i-th entry

of the vector Mv is the following:

[Mv]i = mi,1s1 + · · ·+mi,nsn

= mi,1(x̄11, . . . , x̄1m) + · · ·+mi,n(x̄n1, x̄n2, . . . , x̄nm)

= (mi,1x̄11 + · · ·+mi,nx̄n1,mi,1x̄12 + · · ·+mi,nx̄n2, . . . ,mi,1x̄1m + · · ·+mi,nx̄nm).

By our assumption mi,1x̄11 +mi,2x̄21 + · · · +mi,nx̄n1 ∈ S1, . . . ,mi,1x̄1j +mi,2x̄2j + · · · +
mi,nx̄nj ∈ Sj , . . . ,mi,1x̄1m +mi,2x̄2m + · · ·+mi,nx̄nm ∈ Sm. Hence [Mv]i ∈ S for all i.

Conversely, let S be a format preserving set with respect to M. Construct Si from the set

S in the following way:

S1 = {s (mod a1) : s ∈ S}, S2 = {s (mod a2) : s ∈ S}, . . . , Sm = {s (mod am) : s ∈ S}.

We show that each Si is format preserving with respect to M for i ∈ 1, 2, . . . ,m. Consider

an arbitrary column vector v′ = [s̄i1, s̄i2, . . . , s̄in]
t ∈ Sn

i . Now

Mv′ =


m1,1s̄i1 +m1,2s̄i2 + · · ·+m1,ns̄in

m2,1s̄i1 +m2,2s̄i2 + · · ·+m2,ns̄in
...

mn,1s̄i1 +mn,2s̄i2 + · · ·+mn,ns̄in

 .

Since s̄i1, s̄i2, . . . , s̄in ∈ Si, there exist si1 , si2 , . . . , sin ∈ S such that sij (mod ai) = s̄ij for

all j ∈ {1, 2, . . . , n}. Hence,

Mv′ =


m1,1si1(mod ai) +m1,2si2(mod ai) + · · ·+m1,nsin(mod ai)

m2,1si1(mod ai) +m2,2si2(mod ai) + · · ·+m2,nsin(mod ai)
...

mn,1si1(mod ai) +mn,2si2(mod ai) + · · ·+mn,nsin(mod ai)



=


(m1,1si1 + · · ·+m1,nsin)(mod ai)

(m2,1si1 + · · ·+m2,nsin)(mod ai)
...

(mn,1si1 + · · ·+mn,nsin)(mod ai)

 .

By assumption S is an FPS with respect to M. Hence by considering v =

[si1 , si2 , . . . , sin ]
t ∈ Sn, Mv ∈ Sn. This implies that [Mv]k = (mk,1si1 + mk,2si2 + · · · +

mk,nsin) ∈ S. Therefore [Mv]k(mod ai) ∈ Si for k ∈ {1, 2, . . . , n}, i.e., (mk,1si1 +mk,2si2 +

· · · + mk,nsin)(mod ai) ∈ Si. Hence Mv′ ∈ Sn
i , i.e., Si is an FPS with respect to M for

i ∈ {1, 2, . . . , n}.

In the following example, we illustrate Theorem 8.3.7 and construct FPS of cardinalities



Chapter 8. Format preserving sets 135

16 and 52.

Example 8.3.8. Let N be an Abelian group of order 144. Clearly N is a module over Z. By
Theorem 2.1.14, N ∼= Z2

⊕
Z6
⊕

Z12, where Zai = Z/aiZ, 1 ≤ i ≤ 3 with a1 = 2, a2 = 6, and
a3 = 12. Let M be any square matrix with entries from Z. Set S1 = Z2, S2 = 3Z6, S3 = 3Z12

and S = {(x, y, z) : x ∈ S1, y ∈ S2, z ∈ S3}. It is evident that S1, S2 and S3 are format
preserving with respect to M. Therefore S ⊆ N is an FPS of cardinality 16 with respect to M.

Remark 8.3.9. We now use Theorem 8.3.7 to construct an FPS of cardinality 52. Consider an
Abelian group N of order 416 as a Z-module. Then by Theorem 2.1.14, N ∼= Z2

⊕
Z4
⊕

Z52,

where Zai = Z/aiZ, 1 ≤ i ≤ 3 with a1 = 2, a2 = 4, and a3 = 52. Let sets S1 = Z2, S2 = 2Z4,

and S3 = 4Z52. Consider S = {(x, y, z) : x ∈ S1, y ∈ S2, z ∈ S3}. We see that S1, S2, S3
are FPS with respect to any square matrix M with entries from Z. Hence S ⊆ N is an FPS of
cardinality 52 with respect to M.

We now make an observation about the direct product of two format preserving sets.

Proposition 8.3.10. Direct product of two format preserving sets with respect to a matrix M is
again format preserving.

Proof. Suppose S1 and S2 are two format preserving sets with respect to matrix M =

(mi,j)n×n. Let (v1,v2) = [(x1, y1), (x2, y2), . . . , (xn, yn)]
t ∈ (S1 × S2)

n, where v1 =

[x1, x2, . . . , xn]
t ∈ Sn

1 and v2 = [y1, y2, . . . , yn]
t ∈ Sn

2 . The i-th entry of [M(v1,v2)] is

[M(v1,v2)]i = mi,1(x1, y1) +mi,2(x2, y2) + · · · +mi,n(xn, yn) = (mi,1x1 +mi,2x2 + · · · +
mi,nxn,mi,1y1+mi,2y2+ · · ·+mi,nyn). Since S1 and S2 are format preserving with respect

to M , we have Mv1 ∈ Sn
1 and Mv2 ∈ Sn

2 . This implies that [Mv1]i ∈ S1 and [Mv2]i ∈ S2

for 1 ≤ i ≤ n. Hence [M(v1,v2)]i ∈ (S1 ×S2) for 1 ≤ i ≤ n. This proves that S1 ×S2 is an

FPS with respect to M.

We illustrate this proposition with an example.

Example 8.3.11. Consider Z26 as a Z-module. Let M =


3 15 7

7 21 19

11 17 21

 be a matrix over Z with

entries from the set of odd integers. Let S1 = ⟨2⟩ + 1 and S2 = {0, 13}. By Theorem 8.3.5, S1
is an FPS with respect to M. Being a submodule of Z26, S2 is an FPS with respect to M. By
Proposition 8.3.10, S1×S2 is an FPS with respect to M over Z26×Z26. Observe that cardinality
of S1 × S2 is 26.

Example 8.3.11 corresponds to the cardinality of the set of lowercase English alphabets,

which is an interesting use-cases of FPS.

Note that M is not an MDS matrix over the Z-module Z26 in the above example. A

detailed study on the MDS matrices over rings modules is provided in next chapter.
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8.4 Conclusion

In conclusion, we discussed the construction of format preserving sets that are not closed

under addition over certain rings and modules. This research has unveiled intriguing

avenues for future exploration in this domain. One such question arising is the possibility

of constructing FPS independent of well-known subsets within algebraic structures.

Additionally, beyond translation, the exploration of alternative methods for constructing

FPS with diverse and interesting cardinalities from subclasses of rings and modules

presents itself as a promising direction for further investigation.
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MDS matrices over modules

In this chapter we are primarily interested in the matrix characterization of maximum

distance separable (MDS) codes over Z-modules. Initially, we revisit the work of Zain

and Rajan [72] on the construction of Maximum Distance Separable (MDS) group codes

over cyclic groups. Following that, we generalize the results of Dong, Soh, and Gunawan

[74] on the characterization of MDS group codes over the elementary Abelian group. The

work presented in this chapter is published and can be found in [75], Section 6.

9.1 Introduction

An (n, k) group code over a group G is a subset of Gn which forms a group under

componentwise group operations. This subset can be defined in terms of (n − k) group

homomorphism from Gk to G. The formal definition is the following:

Definition 9.1.1. A (n, k) group code over an Abelian group G is a subgroup of Gn with order
|G|k described by n− k homomorphisms ϕj , j = 1, 2, . . . , n− k of Gk onto G. Its codewords are
(x1, x2, . . . , xk, xk+1, . . . , xn), where

xk+j = ϕj(x1, . . . , xk) =
k⊕

l=1

ϕj(e, . . . , e, xl, e, . . . , e), j = 1, 2, . . . , n− k. (9.1)

Here e is the identity element and
⊕

is the group operation.

The term ϕj(e, . . . , e, xl, e, . . . , e) can be replaced by an endomorphism of G say ψlj .

Therefore the group code can be defined by the set of endomorphisms {ψlj , l =

1, 2, . . . , k; j = 1, 2, . . . , n− k}. Then the Equation 9.1 can be written as

xk+j =

k∏
l=1

ϕj(e, . . . , c, xj , e, . . . , e) =

k∏
l=1

ψlj(xj), j = 1, 2, . . . , n− k. (9.2)

In [72], Zain and Rajan established the necessary and sufficient the conditions for a (k +

s, k) group code over the cyclic group Cm of m to be MDS. The entries of associated

matrix Λ of the generator matrix G = [Ik×k|Λ] play a crucial role in this characterization.

Their result is as follows:

Theorem 9.1.2. A (k + s, k) group code L over the cyclic group Cm is MDS if and only if the
determinant of every h× h submatrix, where h = 1, 2, . . . ,min{s, k}, of the associated matrix Λ

is a unit in Zm.
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An immediate application of Theorem 9.1.2 is the following result.

Theorem 9.1.3. Let Cm be a cyclic group with m = pd elements where p is prime. A (k + s, k)

MDS group code over Cm does not exists if max {s, k} ≥ p where d can take any value and
s, k ≥ 2.

An immediate corollary of Theorem 9.1.3 is the following:

Corollary 9.1.4. Let Cm be a cyclic group with m = pd elements where p is prime. Let
Mk×s, s, k ≥ 2 be a matrix with entries from Cm. If max {s, k} ≥ p, then M cannot be an
MDS matrix.

In [72], the authors also provided the following characterization of MDS codes for cyclic

groups of order m, where m is an arbitrary integer.

Theorem 9.1.5. Let Cm be a cyclic group with m = pd11 p
d2
2 · · · pdmm where p1, p2, . . . , pm are

distinct primes. A (k + s, k) MDS group code for all s, k ≥ 2 over Cm does not exists if max
{s, k} ≥ p, where p = min{p1, p2, . . . , pm}.

9.2 Characterization of MDS Codes over Modules

In 1997, Dong et al.( [74]) generalized the matrix characterizations of MDS codes over

finite fields and MDS group codes over cyclic groups to linear codes with systematic

parity check matrices over modules.

Let R be a commutative ring with identity and N be an R-module. A linear code C of

length n over a module N is defined to be a submodule of Nn. It is denoted by C(k, r)

where n = k + r with generator matrix [Ik|Mk×r] and parity check matrix [−M t|Ir]. In

[74], Dong et al. provided a characterization for C(k, r) to be an MDS code when N is a

cyclic group with m elements and the ring R = Zm. They proved the following theorem

which can be seen as a generalization of Theorem 9.1.2.

Theorem 9.2.1. Let C(k, r) be a linear code of length n = k + r with generator matrix
[Ik|Mk×r]. Then C(k, r) is MDS if and only if the determinant of every h × h submatrix,
h = 1, 2, . . . ,min{k, r}, of M is not an annihilator of any non zero element in N.

If the group G is an elementary Abelian group of exponent p, where p is a prime number,

then G is a Zp-module. In [74], Dong et al. established the following non-existence result

of MDS group codes over an elementary Abelian group as module over Zp.

Corollary 9.2.2. Let R = Zp, N be an elementary Abelian group with exponent p, and
M = (aij)k×r be any matrix over Zp. Then MDS group codes C(k, r) with parity check matrix
[−M |Ir] do not exist if max{k, r} ≥ p.

For example, consider N = Z5 × Z5 as R = Z5 module. Using Corollary 9.2.2, we infer

that there does not exist any MDS matrix of order n if n ≥ 5.
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9.3 Non-existence of MDS matrix over Zm as Z-module

In this section we shall consider the problem of constructing MDS matrices with entries

from the Abelian group Zm acting as Z-module, where m is an integer. We begin with

the case when the group G = Zpi , i ≥ 1, where p is prime and the ring is Z. Recall that

an element x ∈ Z is said to be an annihilator of m ∈ Zpi if x · m = 0. For each i ≥ 1,

consider the map ϕi : Z → Zpi defined by ϕi(a) = a (mod pi) = ā (say). Note that ϕi is

a surjective homomorphism for i ≥ 1. Now we are ready to give a series of intermediate

lemmas which we use to prove the main result of this chapter.

Lemma 9.3.1. An element x ∈ Z is an annihilator of some element in Zpi for some i ≥ 1 if and
only if gcd(x̄, p) > 1.

Proof. For i = 1, i.e, when we consider Zp as a Z-module for some prime p, the proof is

obvious. Hence, we prove the lemma only for i > 1.

Fix an i > 1. Suppose x ∈ Z is annihilator of m ∈ Zpi . Then xm = 0 (mod pi), i.e., pi|xm.
If pi|x then ϕi(x) = 0 i.e., gcd(x̄, p) = p, and we are done. On the other hand, if a smaller

power of p divides x, then we can show that the statement of the lemma is true as follows.

Consider pm|x, pn|m, where n + m = i, n,m ≥ 1. Then x = pmk′ i.e. ϕi(x) = pmk′

(mod pi) = pmk1.Hence gcd(pmk1, p) > 1.We had defined ϕi(x) = x̄, hence gcd(x̄, p) > 1.

Conversely, assume that gcd(x̄, p) > 1. Since p is prime, this implies that p|x̄ i.e. x̄ =

pk1. There exists anm ∈ Z such that ϕi(m) = x̄. Thusm = x̄+pik2 = p(k1+p
i−1k2) = pk3

where k1, k2, k3 ∈ Z. Hence m ∈ Z is an annihilator of pi−1 ∈ Zpi .

This lemma is also valid for the Abelian group Zm, where m is an integer. In this case,

the map is ϕ : Z → Zm and ϕ(a) = a (mod m) = ā. We state the generalized version of

Lemma 9.3.1 below.

Lemma 9.3.2. Consider the Abelian group Zm as Z-module where m = pa11 p
a2
2 · · · pall . An

element x ∈ Z is an annihilator of some element in Zm if and only if there exists pi for some
i ∈ {1, 2, . . . , l} such that gcd(x̄, pi) ̸= 1.

Proof. Suppose x ∈ Z is annihilator of α ∈ Zm. Then xα = 0 (mod m) i.e., m|xα. If m|x
then pi|x for all i. Since x̄ = x (mod m) and pi|m then pi|x̄. Therefore gcd(x̄, pi) > 1. On

the other hand, since α < m, there always exists pi for i ∈ {1, 2, . . . , l} such that pi|x. This

implies there exists pi such that gcd(x̄, pi) ̸= 1 for some i ∈ {1, 2, . . . , l}.
Conversely, assume that gcd(x̄, pi) > 1 for some i ∈ {1, 2, . . . , l}. This implies pi|x̄ i.e.

x̄ = pik1. There exists an β ∈ Z such that ϕ(β) = x̄. Thus β = x̄+mk2 = pik1+mk2 = pik3

since pi|m and k1, k2, k3 ∈ Z. Therefore β is an annihilator of n
pi

∈ Zm.

The following example illuminates the general version of the lemma stated above.

Example 9.3.3. Let N = Z22325 be a Z-module. Then 27 ∈ Z is an annihilator of 20 ∈ N. But
7 ∈ Z is not an annihilator of any non zero element of N .
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In the next lemma we explore the condition for an arbitrary integer to be a unit of the

Abelian group Zpi under the mapping ϕi.

Lemma 9.3.4. Let a ∈ Z and ϕi(a) is image of a in Zpi under the surjective homomorphism ϕi

described earlier. Then gcd(ϕi(a), p) = 1 if and only if gcd(a, p) = 1.

Proof. Suppose gcd(a, p) = 1 and gcd(ϕi(a), p) > 1. This implies p|ϕi(a), i.e., ϕi(a) = pk1.

Hence a = pk1 + pik2 = p(k1 + pi−1k2), where k1, k2 ∈ Z. Thus p|a, contradicting our

assumption.

Conversely, assume that gcd(ϕi(a), p) = 1 and ϕi(a) = ā. For this, the following three

cases may arise.

• If a < pi then ā = a and gcd(a, p) = 1.

• f a > pi and a is a multiple of pi then ā = 0 and gcd(0, p) = p. Hence a ̸= pik.

• If a = b+ pik then ϕi(a) = b, where b, k ∈ Z. Hence gcd(b, p) = 1 implies that p does

not divide b. This implies that p does not divide a and gcd(a, p) = 1.

In each of these cases, the statement of the lemma holds. Hence proved.

Lemma 9.3.4 also holds for the mapping ϕ over the Abelian group Zm. For completeness

we record the result here.

Lemma 9.3.5. Let a ∈ Z and ϕ(a) is image of a in Zm under the surjective homomorphism ϕ

described earlier, where m = pa11 p
a2
2 · · · pall . Then gcd(ϕ(a),m) = 1 if and only if gcd(a, pi) = 1

for all i = 1, 2, . . . , l.

Proof. Suppose gcd(a, pi) = 1 for all i = 1, 2, . . . , l. Let us assume that gcd(ϕ(a),m) > 1.

This implies, there exists at least one prime pi, i ∈ {1, 2, . . . , l} such that pi|ϕ(a). This

implies pi|a, a contradiction to the assumption.

Conversely, gcd(ϕ(a),m) = 1 and ϕ(a) = ā. For this, the following three cases may arise.

• If a < m then ā = a and gcd(a, pi) = 1 for all i = 1, 2, . . . , l.

• If a > m and a is a multiple of m then ā = 0 and gcd(0,m) = m. Hence this case

will not appear.

• If a = b + mk then ϕ(a) = b, where b, k ∈ Z. Hence gcd(b,m) = 1 implies that pi
does not divide b for all i = 1, 2, . . . , l. This implies that pi does not divide a and

gcd(a, pi) = 1 for all i = 1, 2, . . . , l.

In each of these cases, the statement of the lemma holds. Hence proved.

Given an n×nmatrixM = (mij) with entries from Z, the matrixM = (mi,j) is construed

by applying the map ϕi to all entries of the matrix M . Then the following relationship

holds between the determinant value of both M and M .
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Lemma 9.3.6. Let M = (mij) be an n× n matrix with entries from Z. Suppose M = (mi,j) is
a matrix over Zpi . Then ϕi(detM) = detM.

Proof. By Leibniz formula for determinant of an n × n matrix, we have that detM =∑
σ∈Sn

sgn(σ)
n∏

i=1

mσ(i),i, where Sn is a permutation group with n elements and ai,j denotes

the (i, j)-th entry of the matrix. Consider the following,

ϕi(detM) = ϕi

(∑
σ∈Sn

sgn(σ) ·
n∏

i=1

mσ(i),i

)

=
∑
σ∈Sn

sgn(σ) ·
n∏

i=1

ϕi(mσ(i),i)

= detM.

In the last line above, we have used the fact that sgn(σ) is +1 or −1, depending on

whether the permutation is even or odd, and hence it remains unchanged under ϕi.

Theorem 9.3.7. Let N = Zpi , i ≥ 1 be a Z-module and M = (mk,j)n×n be a matrix with
entries from Z. Then M is an MDS matrix if and only if M is an MDS matrix over Zpi .

Proof. Let M be an MDS matrix with entries from Z. Then for all k and j ∈ {1, 2, . . . , n},
mk,j is not an annihilator of any non zero element of Zpi . Therefore Lemma 9.3.1 implies

that gcd(mk,j , p) = 1. Then using Lemma 9.3.4, mk,j is a unit in Zpi for all k, j.

Next, we show that determinant of every square submatrix ofM is a unit in Zpi . Suppose

there exists an r×r sub-matrixM ′ ofM whose determinant is not a unit. Then detM
′
= d̄

must be a zero divisor in Zpi , i.e., gcd(d̄, p) > 1. Let M ′ be the corresponding submatrix

of M ′ in M. If detM ′ = d then d̄ = ϕ(d). Therefore, gcd(d̄, p) > 1 implies gcd(d, p) > 1.

Hence d is an annihilator of some non zero element in Zpi which is a contradiction to the

assumption.

Conversely, let M be an MDS matrix. Then determinant of every r × r submatrix for

r ∈ {1, 2, . . . , n} is a unit. Hence, by Lemma 9.3.1, 9.3.6 and 9.3.4, preimages of these

determinants in Z are not annihilators of any non zero element in Zpi . Hence M is also

an MDS matrix.

We provide an example MDS matrix constructed by using Theorem 9.3.7.

Example 9.3.8. Consider Z72 as a Z-module. Let M =

[
58 32

3 9

]
be a matrix with entries from

Z such that gcd(mkj , 7) = 1 for all 1 ≤ k, j ≤ 2 and det(M) = 426. Then by Theorem 9.2.1,

M is an MDS matrix. Further, M =

[
9 32

3 9

]
is the matrix over Z72 . It is also an MDS matrix

since entries of M are units in Z72 and determinant of M is 34, which is also a unit in Z72 .

An analogues result of Theorem 9.3.7 for Abelian group Zm as Z-module, where m is an

arbitrary integer is the following:
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Theorem 9.3.9. Let N = Zm be a Z-module where m = pa11 p
a2
2 · · · pall . Let M = (mk,j)n×n be

a matrix with entries from Z. Then M is an MDS matrix if and only if M is an MDS matrix over
Zm.

Proof. Let M be an MDS matrix with entries from Z. Then for all k and j ∈ {1, 2, . . . , n},
mk,j is not an annihilator of any non zero element of Zm. Then Lemma 9.3.2 implies that

gcd(mk,j , pi) = 1 for all i = 1, 2, . . . , l. Therefore from Lemma 9.3.5, gcd(mk,j ,m) = 1 and

thus mk,j is a unit in Zm for all k, j.

Next, we show that determinant of every square submatrix ofM is a unit in Zm. Suppose

there exists an r×r sub-matrixM ′ ofM whose determinant is not a unit. Then detM
′
= d̄

must be a zero divisor in Zm, i.e., gcd(d̄, pi) > 1 for some i ∈ {1, 2, . . . , j}. Let M ′ be the

corresponding submatrix of M ′ in M. If detM ′ = d then d̄ = ϕ(d). Therefore, gcd(d̄, pi) >

1 implies gcd(d, pi) > 1. Hence d is an annihilator of some non zero element in Zm which

is a contradiction to the assumption that M is MDS.

Conversely, let M be an MDS matrix. Then determinant of every r × r submatrix for r ∈
{1, 2, . . . , n} is a unit. Hence, by Lemma 9.3.6 and 9.3.5, preimages of these determinants

in Z are not annihilators of any non zero element in Zpi . Hence M is also an MDS matrix.

We are now in a position to state some non-existence results for MDS matrices when we

consider an Abelian group as a Z-module. Theorem 9.3.10 describes the case when order

of the Abelian group is power of a prime, and Theorem 9.3.12 generalizes this to the case

when the order is any composite integer.

Theorem 9.3.10. Let N = Zpi be a Z-module and M = (ai,j)r×k be a matrix with entries from
Z. Then M cannot be MDS if max{r, k} ≥ p.

Proof. Let Mr×k be an MDS matrix and max{r, k} ≥ p. By Theorem 9.3.7, M r×k is MDS.

However, it contradicts the statement of Corollary 9.1.4, hence not possible. Therefore,

M cannot be MDS.

The next example shows an application of Theorem 9.3.10 by considering the ring Z32 as

a Z-module.

Example 9.3.11. Consider Z32 as a Z-module. Let M =


1 1 1

2 8 16

4 16 32

 . Then M =


1 1 1

2 8 7

4 7 5


is a matrix over Z32 . The determinant of the 2× 2 sub-matrix

[
1 1

4 7

]
is 3 which is not a unit in

Z32 . Hence, M is not an MDS matrix over Z32 as Z-module.

Theorem 9.3.12. Let N = Zm be a Z-module, where m = pd11 p
d2
2 · · · pdll , and pi’s are distinct

primes, 1 ≤ i ≤ l. Suppose M = (ai,j)r×k is a matrix with entries from Z. Then M cannot be
MDS if max{r, k} ≥ p = min{p1, p2, . . . , pl}.
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Proof. Let Mr×k be an MDS matrix and max{r, k} ≥ p = min{p1, p2, . . . , pl}. By Theorem

9.3.9, M r×k is MDS. However, it contradicts the statement of Theorem 9.1.5, hence not

possible. Therefore, M cannot be MDS.

Example 9.3.13. Consider Z20 as a Z-module. Let M =


3 7 1

11 1 9

3 13 7

 be a 3 × 3 matrix with

entries from Z. For this matrix, we have that M =M . Consider the 2× 2 sub-matrix

[
7 1

1 9

]
of

M . It’s determinant is 62 which is an annihilator of 10 in Z20. Hence M is not MDS.
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Conclusion

In conclusion, this thesis has delved into the intricate structures of MDS matrices

over finite fields, particularly focusing on their semi-involutory and semi-orthogonal

properties. Moreover, we have studied the construction of format preserving sets

over finite commutative rings and modules and investigated the non-existence of MDS

matrices over modules. The study commenced by establishing the MDS nature of 3 × 3

semi-orthogonal and semi-involutory matrices, extending to the analysis of well-known

constructions such as Cauchy and Vandermonde based MDS matrices. A noteworthy

contribution of this work is the formulation of a comprehensive method for constructing

all 3 × 3 semi-involutory MDS matrices over the finite field F2m . The proposed matrix

form presented in Equation 4.16 offers practical benefits, particularly in the diffusion

layer of SPN-based block ciphers. This is because of the simplicity of the inverse

matrix, which involves a straightforward multiplication of two diagonal matrices with

the original matrix. Furthermore, the thesis provides a quantitative assessment of the

total number of 3× 3 MDS semi-involutory matrices over the finite field F2m .

However, despite these achievements, several intriguing avenues for future research

emerge. The general structures of involutory and semi-involutory matrices, especially

for even sizes or powers of 2, remain an open problem, prompting further exploration

into their MDS properties. We have also studied various generalizations of circulant

matrices with the MDS property and introduce a novel perspective by considering

both semi-orthogonal and semi-involutory attributes. The exploration of cyclic matrices

other than g-circulant matrices, with involutory property, remains an interesting and

challenging problem for future investigation.

Also, the exploration of cyclic matrices with combined semi-involutory and

semi-orthogonal properties is a further direction of research. Furthermore, our

investigation of new construction method for FPS within finite modules over Principal

Ideal Domains (PID), finite commutative rings and the existence of Maximum Distance

Separable (MDS) matrices for modules over PID, shed light on the new constructions

of FPS and MDS matrices within various algebraic structures. Our research open up

several intriguing avenues for future exploration. The question of whether FPS can be

constructed without relying on well-known subsets like ideals and submodules remains

unresolved, challenging researchers to explore alternative methods for FPS generation.

Additionally, the prospect of constructing rings or modules over which FPS can be

generated with respect to an MDS matrix represents a promising direction for further

investigation, offering insights into the diverse applicability of format preserving sets.
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