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Lay Summary

Graphs can be used to model the real world situations, where we have a collection of objects that

have pairwise relationships. For example, a computer network can be represented as a graph, where

each server is a vertex and the connections between servers are edges. In this way, many real world

optimization problems can be modeled as graph optimization problems. Graph optimization problems

seek to optimize a quantity associated with the graph, such as maximizing or minimizing it. In this

thesis, we have studied five important graph optimization problems, which are listed below.

1. M A X I M U M I N T E R N A L S PA N N I N G T R E E Problem

2. M I N I M U M E D G E T O TA L D O M I N AT I N G S E T Problem

3. G R U N D Y ( D O U B L E ) D O M I N AT I O N Problem

4. M A X I M U M W E I G H T E D E D G E B I C L I Q U E Problem

5. N E I G H B O R - L O C AT I N G C O L O R I N G Problem

These problems have applications in various areas including social networks, computer networks,

telephone switching networks, bi-clustering analysis, etc. Unfortunately, solving these problems for

general graphs is challenging, and we cannot realistically expect to find optimal solutions in a practical

amount of time. Therefore, we focus on understanding the complexity of these problems for important

subclasses of graphs. The study of such graph problems constrained to particular graph classes has

attracted considerable interest and is an active research area in algorithmic graph theory. Specifically,

we try to see whether a problem under consideration can be solved in a reasonable amount of time in

some special cases or not. We also try to find some combinatorial bounds on optimization parameters

in terms of other important graph parameters. These bounds often help in designing approximation

algorithms for a problem that outputs a near-optimal solution in a reasonable amount of time.
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Abstract

Many real world optimization problems can be modeled as graph optimization problems. However,

several graph optimization problems that are practically significant are NP-hard for general graphs,

and hence, it is unlikely to find exact solutions in polynomial-time. One approach to tackle this

is to study the problem for some restricted graph classes, as most of the time graphs obtained by

modeling real world problems exhibit some special properties. Many of the researchers are working

to design polynomial-time algorithms for NP-hard graph optimization problems for restricted graph

classes. This thesis considers five important graph optimization problems, namely (i) M A X I M U M

I N T E R N A L S PA N N I N G T R E E Problem, (ii) M I N I M U M E D G E T O TA L D O M I N AT I N G S E T

Problem, (iii) G R U N D Y ( D O U B L E ) D O M I N AT I O N Problem, (iv) M A X I M U M W E I G H T E D

E D G E B I C L I Q U E Problem and (v) N E I G H B O R - L O C AT I N G C O L O R I N G Problem.

A spanning tree of a graph G containing the maximum number of internal vertices among all spanning

trees of G is called a maximum internal spanning tree (MIST) of G. The M A X I M U M I N T E R N A L

S PA N N I N G T R E E problem is to find a MIST for a given graph G. For some special graph classes,

we provide linear-time algorithms to compute a MIST and relate the number of internal vertices in a

MIST with an important graph parameter.

For a graph G = (V,E) without an isolated edge, a set D ⊆ E is called an edge total dominating

set (ETD-set) of G if every edge e ∈ E is adjacent to at least one edge of D. For a given graph

G with no isolated edges, the M I N I M U M E D G E T O TA L D O M I N AT I N G S E T Problem is to

find an ETD-set of G with minimum cardinality. We study the problem in subclasses of bipartite

graphs and chordal graphs. We prove some results from the approximation aspects. We also discuss

the complexity difference between the M I N I M U M E D G E D O M I N AT I N G S E T problem and the

M I N I M U M E D G E T O TA L D O M I N AT I N G S E T problem.

A sequence S = (v1, v2, . . . , vk) is a dominating sequence if N [vi] \
⋃i−1

j=1N [vj ] ̸= ∅ holds for every

i ∈ {2, . . . , k} and Ŝ = {v1, v2, . . . , vk} is a dominating set of G. The G R U N D Y D O M I N AT I O N

problem is to find a dominating sequence of maximum length for a given graph G. Moreover, a

sequence S = (v1, v2, . . . , vk) is a double dominating sequence if (i) for each i ∈ [k], the vertex

vi dominates at least one vertex of G that was dominated at most once by the previous vertices

of S and (ii), Ŝ = {v1, v2, . . . , vk} is a double dominating set of G. The G R U N D Y D O U B L E
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D O M I N AT I O N problem is to find a double dominating sequence of maximum length for a given

graph G. We find some graph classes for which the problems are solvable in polynomial-time.

Additionally, we identify certain graph classes for which these problems are NP-hard.

Given a weighted graph G = (V,E,w), where each edge e ∈ E has a weight w(e) ∈ R, the

M A X I M U M W E I G H T E D E D G E B I C L I Q U E problem is to find a biclique C of G such that the

sum of the weights of edges of C is maximum. We obtain some algorithmic results when w(e) ∈ R+.

A proper coloring of a graph is called a neighbor-locating coloring if, for any two vertices of the same

color, the sets of colors of their neighborhoods are different. Given a graph G, the N E I G H B O R -

L O C AT I N G C O L O R I N G problem requires assigning a color to each vertex of G such that the

coloring is a neighbor-locating coloring and the number of colors used is minimized. We provide

some algorithmic and combinatorial results for this parameter in some special graph classes.
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Chapter 1
Introduction

Graph theory plays a significant role in modeling pairwise relationships between discrete objects. In a

variety of domains, including computer science, communication networks, electrical networks, and

social sciences, graph theory has strong applications. The famous “Königsberg bridge problem” is

considered to be the origin of graph theory. This problem takes us back to the 18th century. At that

time, seven bridges crossed the river Pregel in the town of Königsberg. People of the town were trying

to solve a puzzle: Is it possible to walk through the town using every bridge just once and return to the

starting point at the end? By converting the problem into a graph problem, Leonhard Euler was able

to find a solution in 1736, however, he gave the slightly disappointing conclusion that no such walk

existed. His solution was based only on the actual configuration of bridges but essentially he proved

the first theorem in graph theory. In the years that followed, graph theory saw significant development

and is now considered to be one of the major areas of mathematics.

Numerous problems in the actual world can be modeled as graph-theoretic problems. For

instance, consider the following situation. We have a transport network in which a node represents

a crossroad and a link between two crossroads represents a road. We want to install surveillance

cameras on some of the crossroads so that every road is monitored by a camera. The goal is to locate

the minimum number of cameras in order to minimize the cost. This situation can be modeled as a

graph G = (V,E), where the vertices of the graph are crossroads and edges are roads. To achieve the

goal, we must select a set S ⊆ V of the minimum cardinality such that every edge has at least one end

vertex in the set S. In this way, a real world problem is modeled as a graph-theoretic problem.

An optimization problem is a problem in which the goal is to choose the best solution from a

range of possibilities while adhering to specific constraints. The best (optimal) solution is determined

by maximizing or minimizing a quantity within the scope of these constraints. The constraints in

these problems act as restrictions that must be considered. Over time, various types of optimization

problems have emerged, and specialized techniques have developed to tackle them.

Several real-life optimization problems can be seen as graph-theoretic problems. A graph

optimization problem is an optimization problem where our objective is to optimize (maximize or

minimize) a quantity associated with a graph. For instance, in the transport network example discussed

1
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above, our goal was to minimize the number of vertices in a subset of the vertex set of the graph with

respect to some conditions. Graph optimization problems include an extensive number of well-known

problems in graph theory and operations research. They appear to be theoretically very interesting

problems in addition to being ones with practical relevance. The development of efficient techniques

and numerical algorithms to solve such problems has been an active area of research for many decades.

In fact, of Karp’s 21 problems in the paper ([50]), 10 problems are some versions of graph optimization

problems, while most of the other 11 problems can be naturally formulated on graphs. In this thesis,

we have studied five graph optimization problems, namely:

1. M A X I M U M I N T E R N A L S PA N N I N G T R E E Problem

2. M I N I M U M E D G E T O TA L D O M I N AT I N G S E T Problem

3. G R U N D Y ( D O U B L E ) D O M I N AT I O N Problem

4. M A X I M U M W E I G H T E D E D G E B I C L I Q U E Problem

5. N E I G H B O R - L O C AT I N G C O L O R I N G Problem

Before presenting a brief summary of the above listed problems, we first discuss some basic notations

and definitions that are used throughout the thesis.

1.1 Basic Notations and Definitions

In this section, we go through some crucial graph theoretic and algorithmic notations that are employed

throughout the thesis.

1.1.1 Graph Theoretic Notations

For graph theoretic notations, we follow [10]. The set of integers {1, 2, . . . , k} is denoted by [k].

Throughout the thesis, n denotes the number of vertices in the graph and m denotes the number of

edges in the graph. A graph is said to be non-trivial if it contains at least two vertices. Let G = (V,E)

be a graph. An edge between the vertices u and v is denoted by uv. For an edge e = uv ∈ E, u and v

are called the end vertices of e. A vertex u is said to be incident with an edge e if u is one of the end

vertices of e. Two vertices u and v of G are called adjacent to each other or neighbors of each other

if uv ∈ E. Two edges e, f ∈ E are also called adjacent, if they share an end vertex. For a vertex
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v ∈ V , the set of all neighbors of v is denoted by NG(v) and this set is called the open neighborhood

of v in G. The set NG[v] = NG(v) ∪ {v} is called the closed neighbourhood of v in G. When the

graph is clear from the context, we use N(v) and N [v] to denote NG(v) and NG[v], respectively.

For a non-empty set A ⊆ V , the open neighborhood of A is denoted by NG(A) and is given by

NG(A) =
⋃

v∈ANG(v) whereas the set NG[A] = NG(A) ∪A is known as the closed neighborhood

of A. Two vertices u, v ∈ V are called open (closed) twins if N(u) = N(v)(N [u] = N [v]). The

degree of a vertex u ∈ V is defined as the number of vertices adjacent to u and is denoted by dG(u).

We use the symbols δ(G) = min{dG(v)|v ∈ V } and ∆(G) = max{dG(v)|v ∈ V } to denote the

minimum and maximum degree of G, respectively. A vertex v is called a pendant vertex or a leaf if

dG(v) = 1. For a pendant vertex v, the vertex adjacent to v is called the support vertex of v and is

denoted by s(v). A vertex v is called an internal vertex of G if dG(v) ≥ 2. A vertex v is called an

isolated vertex of G if dG(v) = 0. An edge is called an isolated edge if no other edge is adjacent to it.

For a set A ⊆ V , G \ A represents the graph obtained by removing the vertices of the set

A and all edges having at least one end vertex in A, from G. If A = {u}, we write G \ u, instead

of G \ {u}. For a set S ⊆ V , G[S] denotes the subgraph of G induced by S, whose vertex set

is S and two vertices x, y ∈ S are adjacent in G[S] if and only if xy ∈ E. Similarly, for a set

D ⊆ E, G[D] denotes the subgraph of G induced by the set of edges present in D, with vertex set

{v ∈ V (G) : v is incident with at least one edge e ∈ D} and edge set D. A subgraph of G is called a

spanning subgraph if the subgraph contains all the vertices of G.

A path on k vertices in G, denoted by Pk, is a sequence of vertices (x1, x2, . . . , xk) such that

xixi+1 ∈ E for each i ∈ {1, 2, . . . , k−1}. The length of a path Pk is defined as |V (Pk)|−1 = k−1.

A path containing all vertices of the graph is called a Hamiltonian path in G. A graph is said to be

connected if there exists a path between every pair of vertices in the graph. A graph is disconnected if

it is not connected. For a disconnected graph, every maximal connected subgraph is called a connected

component or simply a component of the graph. In a connected graph, a vertex v is called a cut vertex

of the graph if the removal of the vertex v makes the graph disconnected. A connected graph having

no cut vertex is called a biconnected graph.

A set X ⊆ V is called an independent set if no two vertices of X are adjacent in G. An

independent set in G with the maximum number of vertices is called a maximum independent set in G

and the cardinality of such a set is called the independence number of G, denoted by α(G). Two edges

are called independent if they are not adjacent to each other. A set Vc ⊆ V is called a vertex cover
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of G if every edge e ∈ E has at least one end vertex in Vc. A vertex cover of G with the minimum

number of vertices is called a minimum vertex cover of G and the cardinality of such a set is called

the vertex cover number of G, denoted by β(G). A set K ⊆ V is called a clique in G if for any two

vertices x, y ∈ K, xy ∈ E. In this case, we also say that K induces a clique in G. A clique in G with

the maximum number of vertices is called a maximum clique in G and the cardinality of such a set is

called the clique number of G, denoted by ω(G). A set D ⊆ V is called a dominating set of G if for

every vertex u ∈ V \D, N(u) ∩D ̸= ∅. By “u dominates v” or “v is dominated by u”, we mean

that v ∈ N [u]. A dominating set of G with the minimum number of vertices is called a minimum

dominating set of G and the cardinality of such a set is called the domination number of G, denoted by

γ(G). A set D ⊆ V is called a double dominating set of G if for every vertex u ∈ V , |N [u]∩D| ≥ 2.

A subset M of the edge set E is called a matching if no two edges in M have a common end vertex.

A vertex v ∈ V is said to be saturated by a matching M if v is incident with an edge in M .

A spanning subgraph of G is called a path cover if each component of the subgraph is a path.

A path (x1, x2, . . . , xn) together with the additional edge x1xn is called a cycle on n vertices and

is denoted by Cn. A cycle containing all vertices of the graph is called a Hamiltonian cycle in G.

We call the graph G a Hamiltonian graph if there exists a Hamiltonian cycle in G. Let x, y ∈ V (G).

The distance between x and y in the graph G, denoted by dG(x, y), is the length of the shortest path

between x and y. A graph G is called a complete graph if E(G) = {uv : u, v ∈ V } and is denoted by

Kn.

In this thesis, we consider only simple, undirected, and connected graphs.

1.1.2 Algorithmic Preliminaries

Here, we go over a few concepts related to algorithms and definitions used in this thesis. For these

terminologies, we follow [9] and [27]. When the input to an algorithm is a graph, the input size is

described by the numbers of vertices and edges in the graph. If G is a graph with n vertices and m

edges, then the input size is n+m. The number of operations or “steps” executed by an algorithm

is known as its running time and is denoted by O(input size). An efficient algorithm is an algorithm

whose running time is bounded by a polynomial in its input size. We denote the running time of an

efficient algorithm by O(poly(input size)), where poly((input size)) denotes a polynomial function

in the input size. A polynomial-time algorithm is another term used to refer to an efficient algorithm.
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The study of computational complexity aims to classify various computational problems

according to how effectively they can be solved. In general, two types of computational problems are

considered: optimization problems, which require an optimal solution (maximum or minimum value),

and decision problems, which only require a “YES” or “NO” answer. Formally, an optimization

problem is defined as follows:

Definition 1.1 ([9]). An optimization problem Π is a quadruple (IΠ,SOLΠ,mΠ, goalΠ), where:

1. IΠ is the set of instances of the problem Π,

2. SOLΠ is a function that transforms each input instance of Π to its set of feasible solutions,

3. mΠ is defined for pairs (x, y) such that x ∈ IΠ and y ∈ SOLΠ(x) giving the measure of the

function. For every pair (x, y), mΠ(x, y) equals a positive integer which is the value of the

feasible solution y,

4. goalΠ ∈ {M A X , M I N} describes whether Π is a maximization or a minimization problem.

For example, consider the M A X I M U M I N D E P E N D E N T S E T (MIS) problem. Given a graph G,

the MIS problem asks to find an independent set of G of the maximum cardinality. The MIS problem

is an optimization problem. Each element of the quadruple for this problem is defined as follows:

1. I = {G = (V,E) | G is a graph},

2. SOL(G) = {I | I is an independent set of G},

3. m(G,Vc) = |I|,

4. goal = M A X.

On the other hand, a decision problem Π have a set of instances IΠ and for a given instance

I ∈ IΠ there is a query associated with I whose answer is either YES (True) or NO (False). For

example, the H A M I LT O N I A N C Y C L E problem is a decision problem. For this problem, the set of

instances is the set of all graphs G. The query associated with every instance G of the problem is “Is

G a Hamiltonian graph?”

These decision and optimization problems are categorized in complexity theory according to

computational complexity. (i) Class P: It contains all the decision problems for which there exists a
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polynomial-time algorithm to solve it. (ii) Class NP: It contains all the decision problems which can

be verified in polynomial-time. By verification, we mean that given an instance I ∈ IΠ of a problem

Π and a certificate C(I) having a polynomial size in terms of the size of I , there exists a verification

algorithm that takes I and C(I) as input and in polynomial-time returns “YES” if and only if I is

a YES instance. The definitions of the P and NP classes indicate that P is included within NP. The

famous millennium hypothesis “P ̸= NP” is significant to note here because it is still unsolved as of

this writing.

In complexity theory, the idea of reductions is presented to group the problems into categories.

Suppose that we have a procedure that transforms any instance IA of a decision problem A into some

instance IB of another decision problem B satisfying the following characteristics:

• The time taken by the transformation is polynomial.

• The answers of both the instances are same. That is, IA is a “yes” instance if and only if IB is a

“yes” instance.

We call such a procedure a polynomial-time reduction from the problem A to the problem B. In other

words, we say that the problem A is polynomially reducible to the problem B and we write A ≤P B

to denote this.

A decision problem Π is said to be NP-hard if every problem in class NP is polynomially

reducible to Π. A problem in NP is called an NP-complete problem if it is also NP-hard. According

to traditional beliefs, unless P = NP, it is not possible to devise a polynomial-time algorithm for an

NP-complete problem.

Unfortunately, most of the graph problems are NP-hard for general cases. But due to the

importance of these problems in real world situations, various approaches are taken to deal with

the intractability of an NP-hard problem. It can be done in a variety of ways. The most natural

way is to identify a set of instances for which the problem can be solved efficiently. In terms of

graphs, this is equivalent to determine the graph classes for which the problem can be solved in

polynomial-time. Some of the well-studied graph classes are given in Figure 1.1. Another approach

is to design and analyze efficient approximation algorithms. Here, we choose to settle for a good

approximate solution to the problem rather than computing the optimal solution. The reliability of an

approximation algorithm can be measured by its approximation ratio.
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General

Bipartite

Bipartite Permutation

Tree

Cograph

Chain

Split

Proper Interval

Interval

Threshold

Convex Bipartite

Chordal Bipartite

Chordal

Co-bipartite

Block

Cactus

Permutation

Distance Hereditary

Circular Arc

Complete Bipartite

Cocomparibility

Perfect

Comparibility

F I G U R E 1 . 1 : A hierarchy of well-studied graph classes.

Definition 1.2 ([90]). r-Approximation Algorithm: Let Π be an optimization problem. A polynomial-

time algorithm, that returns a solution for an instance I ∈ IΠ such that the value of that solution lies

within a factor of r of the value of an optimal solution of I , is called an r-approximation algorithm for

the problem Π.

Here, the real number r is called the approximation ratio or performance ratio of the associated

approximation algorithm. Let Π be an optimization (minimization/maximization) problem and AΠ

be an r-approximation algorithm for the problem Π. We denote the value of the solution for an

instance I ∈ IΠ, returned by AΠ by AΠ(I) and the value of an optimal solution by opt(I). If Π is a

minimization problem then

r = max

{
AΠ(I)

opt(I)

∣∣∣∣I ∈ IΠ

}

Otherwise, if Π is a maximization problem then
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r = max

{
opt(I)

AΠ(I)

∣∣∣∣I ∈ IΠ

}
.

An optimization problem Π is said to be r-approximable if there exists an r-approximation algorithm

for Π.

One can divide the optimization problems into different classes based on the performance

ratio. An optimization problem Π belongs to the class APX, if there exists a polynomial-time r-

approximation algorithm, where r is a constant. Depending on the performance ratio, there are various

other classes. We refer to [90] for the details of these complexity classes of optimization problems. In

this thesis, other classes are not of interest to us, thus we will omit them from our discussion.

Given a complexity class C of optimization problems and a type of reduction, an optimization

problem Π is said to be C-hard with respect to this type of reduction if each problem in C has a

reduction of the given type to Π. In addition, if Π belongs to the complexity class C, then Π is said to

be C-complete. In this thesis, we are focused on APX-hard problems and the type of reduction we

used is called L-reduction. Formally, an L-reduction is defined as follows:

Definition 1.3. L-reduction:

Let P1 = (IP1 ,SOLP1 ,mp1 , M I N) and P2 = (IP1 ,SOLP2 ,mP2 , M I N) be two minimization prob-

lems. Let f : IP1 → IP2 be a polynomial-time function that transforms each instance of P1 to an

instance of P2. We say that the function f is an L-reduction if there exist a > 0 and b > 0 such that

for any instance I ∈ IP1 , the following holds:

1. min f(I) ≤ a ·min(I).

2. For every feasible solution y ∈ SOLP2(f(I)), in polynomial time, we can find a solution

x ∈ SOLP1(I) such that |min(I)−mP1(I, x)| ≤ b · |min(f(I))−mP2(f(I), y)|.

To show that an optimization problem Π ∈ APX is APX-complete, we need to show the existence of

an L-reduction from some known APX-hard problem to the problem Π.

Studying parameterized algorithms, heuristics, and meta-heuristics are some more strategies

for handling NP-hard problems. In this thesis, these techniques have not been applied in particular. For
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details on parameterized complexity, we refer [33]. Therefore, we omit the details of these approaches

for handling the intractability of NP-hard problems.

1.2 Graph Classes Studied in the Thesis

In this section, we formally define all the graph classes discussed in later chapters of this thesis.

Note: Special property(ies) of these graphs will be explained in detail wherever needed.

1.2.1 Bipartite Graphs

A graph G = (V,E) is called a bipartite graph if the vertex set V can be partitioned into two

independent sets X and Y . The pair (X,Y ) is called the bipartition of G. In a bipartite graph G, we

see that for any e ∈ E, one of the end vertex of e belongs to the set X and other end vertex belongs to

the set Y . Typically a bipartite graph is denoted by G = (X,Y,E). There are several characterizations

of bipartite graphs. The most commonly used characterization is: “A graph G is a bipartite graph if

and only if G contains no odd cycle”.

Most of the optimization problems which are NP-hard for general graphs remain NP-hard for

bipartite graphs as well. This forces researchers to explore the complexity status of an optimization

problem in subclasses of bipartite graphs having some special structure. The well known subclasses of

bipartite graphs in the literature are: perfect elimination bipartite graphs, chordal bipartite graphs,

convex bipartite graphs, bipartite permutation graphs and chain graphs. A hierarchy of bipartite

graphs and its subclasses is shown in Figure 1.2. In this thesis, we have worked on bipartite graphs

and some of its subclasses which are defined below.

1. Complete Bipartite Graphs: A bipartite graph G = (X,Y,E) is called a complete bipartite

graph if for any x ∈ X and y ∈ Y , xy ∈ E. If |X| = n1 and |Y | = n2, then the complete

bipartite graph G is denoted by Kn1,n2 . Most of the optimization problems are trivially solvable

for complete bipartite graphs. An example of a complete bipartite graph is shown in Figure 1.3.

2. Chain Graphs: A bipartite graph G = (X,Y,E) is called a chain graph if the neigh-

borhoods of the vertices of G form a chain; that is, the vertices of X and Y can be lin-

early ordered, say X = {x1, x2, . . . , xn1} and Y = {y1, y2, . . . , yn2} such that N(x1) ⊆
N(x2) ⊆ · · · ⊆ N(xn1) and N(y1) ⊇ N(y2) ⊇ · · · ⊇ N(yn2). The ordering α0 =
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Chain

Bipartite

Bipartite Permutation

Tree-Convex Bipartite

Convex Bipartite

Comb-Convex Bipartite

Triad-Convex Bipartite

Star-Convex Bipartite Perfect Elimination Bipartite

Chordal Bipartite

Biconvex Bipartite

Circular-Convex Bipartite

Complete Bipartite

F I G U R E 1 . 2 : A hierarchy of bipartite graphs and its subclasses.

b

b

b

b

b

X Y

F I G U R E 1 . 3 : Graph K3,2.

(x1, x2, . . . , xn1 , y1, y2, . . . , yn2) is called a chain ordering of G. Given a chain graph G, a

chain ordering of G can be computed in linear-time [45]. Throughout this thesis, chain ordering

of a chain graph is denoted by (x1, x2, . . . , xn1 , y1, y2, . . . , yn2). Sometimes, we may also

write (OX , OY ) to denote this, where OX = (x1, x2, . . . , xn1) and OY = (y1, y2, . . . , yn2).

An equivalence relation ∼ on the vertex set of a chain graph G = (X,Y,E) can be defined as

follows. Two vertices of G are related with the relation ∼ if and only if they are open twins. In

this way, we get a partition of vertex subsets X and Y of G. We name the parts obtained for the

X side by X1, X2, . . . , Xk1 and the parts obtained for the Y side are denoted by Y1, Y2, . . . , Yk2 .

Here, we assign the labels to the parts so that they satisfy N(X1) ⊂ N(X2) ⊂ · · · ⊂ N(Xk1)

and N(Y1) ⊃ N(Y2) ⊃ · · · ⊃ N(Yk2). Denote the set {X1, X2, . . . , Xk1} by PX and the

set {Y1, Y2, . . . , Yk2} by PY . We call the sets PX and PY obtained by the relation ∼ the twin

partition of X and Y respectively.

Note that such a partition can be obtained for any bipartite graph. For chain graphs, this partition

can be viewed as a partition satisfying specific useful properties.
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Proposition 1. In a chain graph G, let ∼ be the relation defined on V (G) as discussed above,

then k1 = k2.

Proof. We have that N(X1) ⊂ N(X2) ⊂ · · · ⊂ N(Xk1) and N(Y1) ⊃ N(Y2) ⊃ · · · ⊃
N(Yk2) holds true. For any i < j, N(Xi) is a proper subset of N(Xj). So, let y ∈ N(Xj)

such that y /∈ N(Xi). Since the graph is connected, this gives rise to at least two sets in

PY . Hence, we get that k2 ≥ k1. Similarly, N(Yi) ⊃ N(Yj) gives k1 ≥ k2 implying that

|PX | = k1 = k2 = |PY |.

Suppose k1 = k2 = k. Then the following result can be observed easily.

Proposition 2. For a chain graph G = (X,Y,E), let PX = {X1, X2, . . . , Xk} and PY =

{Y1, Y2, . . . , Yk} be the twin partition of X and Y respectively. Then N(Xi) = ∪ij=1Yj and

N(Yi) = ∪kj=iXj .

A chain graph together with the partition obtained by the relation ∼ is shown in Figure 1.4.

b b b b

b b

b b

b b

x6x1 x5x4x3x2

y4y3y1 y2

X4

Y4

X3
X2

Y3
Y1 Y2

X1

F I G U R E 1 . 4 : A Chain Graph.

3. Bipartite Permutation Graphs: A graph G = (V,E) with V = {v1, v2, . . . , vn} is said to be

a permutation graph if there is a permutation σ over {1, 2, . . . , n} such that vivj ∈ E if and

only if (i− j)(σ−1(i)− σ−1(j)) < 0. In other words, each vertex v in a permutation graph G

is associated with a line segment lv joining two points on two parallel lines L1 and L2, which

is called a line representation. Then, two vertices v and u are adjacent in G if and only if the

corresponding line segments lv and lu are crossing. A permutation graph together with its line

representation is shown in Figure 1.5.

A graph is a bipartite permutation graph if it is both a bipartite and permutation graph.

Several characterizations of bipartite permutation graphs are available in the literature. A strong

ordering (<X , <Y ) of a bipartite graph G = (X,Y,E) consists of an ordering <X of X and

an ordering <Y of Y , such that for all edges ab, a′b′, with a, a′ ∈ X and b, b′ ∈ Y ; if a <X a′

and b′ <Y b, then ab′ and a′b are edges in G. A strong ordering of a bipartite permutation
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b

b b

b b

v3

v4v5

v1 v2

b b b b b

b b b b b

41 3 52

4 1 35 2

L1

L2

lv1 lv3
lv5lv4lv2

G Line representation of G

F I G U R E 1 . 5 : A permutation graph G on 5 vertices with permutation (σ1, σ2, σ3, σ4, σ5) =
(5, 4, 2, 1, 3)

graph can be computed in linear-time [86]. An ordering <X of X has the adjacency property

if, for every vertex in Y , its neighbors in X are consecutive in <X . The ordering <X has the

enclosure property if, for every pair of vertices y, y′ of Y with N(y) ⊆ N(y′), the vertices of

N(y′) \N(y) appear consecutively in <X .

Authors in [46], proved that a bipartite graph is a bipartite permutation graph if and only if it

admits a strong ordering. Furthermore, if we assume that the graph is connected, then we can

say more.

Lemma 1.4. [46] Let (<X , <Y ) be a strong ordering of a connected bipartite permutation

graph G = (X,Y,E). Then both <X and <Y have the adjacency property and the enclosure

property.

A bipartite permutation graph along with its strong ordering is shown in Figure 1.6. Throughout

this thesis, we denote the strong ordering of vertices of G by (<X , <Y ).

b b b

b

b

b

b

b bbb
y1 y2 y4y3 y5 y6

x1 x2 x4x3 x5

G

F I G U R E 1 . 6 : A Bipartite Permutation Graph.

1.2.2 Trees

A graph is called a tree if it is connected and contains no cycle. For a tree T , we have |E(T )| =
|V (T )| − 1. Recall that a graph is bipartite if and only if it contains no odd cycle. As a tree contains

no cycle at all, it is also a bipartite graph. An example of a tree is shown in Figure 1.7.
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F I G U R E 1 . 7 : A Tree.

1.2.3 Chordal Graphs

A chordal graph is a graph that does not contain an induced cycle of length greater than 4. The class of

chordal graphs is an important subclass of perfect graphs. The complexity of many NP-hard problems

for general graphs is studied for the class of chordal graphs. Chordal graphs are well known due to the

existence of a vertex ordering called “perfect elimination ordering”.

Let G = (V,E) be a graph containing n vertices. A vertex v ∈ V is called a simplicial vertex

of G if the closed neighborhood of v induces a clique in G. There is another characterization of

chordal graphs based on simplicial vertices: “a graph G is a chordal graph if and only if every induced

subgraph of G has a simplicial vertex”. Further, an ordering α = (v1, v2, . . . , vn) of vertices in V

is called a perfect elimination ordering if the vertex vi is a simplicial vertex in the induced graph

G[{vi, vi+1, . . . , vn}]. Fulkerson and Gross [38] characterized chordal graphs, and showed that a

graph G is chordal if and only if it admits a perfect elimination ordering (PEO). We have studied the

complexity of some graph parameters in the following subclasses of chordal graphs which are more

structured. A hierarchy of chordal graphs and some of its subclasses are shown in Figure 1.8

Tree

Path

Split

Proper Interval

Interval

Co-chain

k-tree, fixed k

Caterpillar

Chordal

Block

Undirected Path

Doubly Chordal

Strongly Chordal

Threshold

F I G U R E 1 . 8 : A hierarchy of chordal graphs and its subclasses.
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1. Split Graphs: A graph G = (V,E) is called a split graph if the vertex set V can be partitioned

into two sets I and K such that I is an independent set of G and K is a clique in G. This is

an important subclass of chordal graphs for which the complexity of the many optimization

problems is studied in the literature. A split graph is shown in Figure 1.9.

b

b

b

b

b

b

b

b

b

I

K

F I G U R E 1 . 9 : A Split Graph

2. Threshold Graphs: A threshold graph is a graph that can be constructed from the graph K1

by repeated applications of the following two operations:

(a) Addition of a single isolated vertex to the graph.

(b) Addition of a single vertex to the graph such that it is adjacent to all the vertices added

prior to that vertex.

A threshold graph is shown in Figure 1.10. In this figure, black vertices are added to the graph

by the second operation and white vertices are added to the graph by the first operation. The

labels of the vertices represent the order in which they are added to the graph. Threshold graphs

b

b

bc

bc

bc
b

b

v5

v4

v1

v6

v3

v2

v7

F I G U R E 1 . 1 0 : A Threshold Graph

were introduced first in the book [66]. Threshold graphs can be characterized in various ways.

They can be viewed as special cases of some wider classes of graphs like cographs, split graphs,

interval graphs, etc.



1.2 Graph Classes Studied in the Thesis 15

3. Interval Graphs: A graph G = (V,E) is an interval graph if and only if there is a one-to-one

correspondence between its vertex set V and a family of closed intervals I = {Ik = [ak, bk]}
on the real line, such that two vertices of G are adjacent if and only if their corresponding

intervals intersect. Such a family of intervals I = {Ik = [ak, bk]} is called an interval

representation corresponding to the interval graph G. Booth and Lueker [15] designed a

linear-time recognition algorithm for interval graphs. An example of an interval graph and its

corresponding interval representation is shown in Figure 1.11.

I1
I4

I5

I2

I7
I6

I3
b b

b b

b b

b

v1

v3

v2

v4

v6v5
v7

(i) Interval Representation (ii) Interval Graph

F I G U R E 1 . 1 1 : An example of an interval graph and its corresponding interval representa-
tion.

4. Proper Interval Graph: A proper interval graph is an interval graph such that no interval

properly contains another in its interval representation. Due to its structural properties, various

optimization problems are efficiently solvable for this graph class. A unit interval graph is an

interval graph in which all the intervals in its interval representation are of unit length. It is

known that class of unit interval graphs and proper interval graphs coincide [43]. An example

of a proper interval graph and its corresponding interval representation is shown in Figure 1.12.

b b
I1

I3
I5

I4
I2 bbb

v2 v3 v5v4v1

Interval Representation Proper Interval Graph

F I G U R E 1 . 1 2 : A proper interval graph and its corresponding interval representation.

For a vertex v ∈ V (G), if N(v) induces a complete subgraph of G, then v is called a simplicial

vertex of G. A perfect elimination ordering (PEO) of G is an ordering α0 = (v1, v2, . . . , vn)

of V (G) such that vi is a simplicial vertex of G[{vi, vi+1, . . . , vn}], for every i ∈ [n]. A

PEO, α0 = (v1, v2, . . . , vn), of G is a bicompatible elimination ordering (BCO) if α0
−1 =

(vn, vn−1, . . . , v1), that is, the reverse of α0, is also a PEO of G. It is known that a graph G has



16 Chapter 1 Introduction

a BCO if and only if it is a proper interval graph [48]. Panda and Das proposed a linear-time

algorithm to compute a BCO of a proper interval graph [76].

5. Block Graphs: For a graph G, a maximal induced subgraph of G without a cut vertex is

called a block of G. Two blocks of a graph have at most one common vertex, that is, if

V (B1) ∩ V (B2) ̸= ∅ for two arbitrary blocks of G then |V (B1) ∩ V (B2)| = 1. A vertex

v ∈ V (B1) ∩ V (B2) if and only if v is a cut vertex of G.

A graph G is called a block graph if each of its blocks is a clique. Note that an edge is also a

clique so a tree is also a block graph. A complete graph G is also a block graph having exactly

one block, which is G itself. An example of a block graph is shown in Figure 1.13.

b b b

b

b

b

b

b

F I G U R E 1 . 1 3 : A block graph.

A block containing only one cut vertex is called an end block. Every block graph G has at least

two end blocks if G is not isomorphic to a complete graph.

1.2.4 Cographs

Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs such that V1 ∩ V2 = ∅ and E1 ∩ E2 = ∅. The

disjoint union G = (V,E), of G1 and G2 is a graph such that V = V1 ∪ V2 and E = E1 ∪ E2. The

complement of a graph G = (V,E) is a graph Ḡ = (V ′, E′) where V ′ = V and E′ = {e : e /∈ E}.
The class of cographs is defined recursively as follows:

1. K1 is a cograph.

2. The complement of a cograph is also a cograph.

3. The disjoint union of two cographs is also a cograph.

An example of a cograph is shown in Figure 1.14.

Cographs were independently identified under various names and were shown to have many

characterizations. Cographs are exactly the P4 restricted graphs. A cograph has a unique tree
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G4
G5 = G4 ∪G3

b b

G5

1 2

1 2 1 2 3

31 2

F I G U R E 1 . 1 4 : A Cograph.

representation associated with it. This tree, called a cotree, helps in designing fast polynomial time

algorithms for various graph optimization problems in cographs.

1.2.5 Cactus Graphs

A graph is cactus graph if each of its block is either a cycle or an edge. These are graphs in which each

edge is present in at most one cycle. Several researchers from different scientific fields are interested

in cactus graphs because they have many applications in biology and computer science. An example

of a cactus graph is shown in Figure 1.15.

b b b

b

b

b

b

b

F I G U R E 1 . 1 5 : A Cactus Graph.

1.2.6 Co-bipartite Graphs

A graph G = (V,E) is called a co-bipartite graph if its complement is a bipartite graph. In other

words, these are graphs whose vertex set can be partitioned into at most two cliques. Most of graph

optimization problems are NP-hard when the input is a co-bipartite graph. A co-bipartite graph is

shown in Figure 1.16.
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b b

b
b

b

b

b

F I G U R E 1 . 1 6 : A Co-bipartite Graph.

1.2.7 Co-chain Graphs

A co-chain graph is a co-bipartite graph in which the neighborhoods of the vertices in each side can

be linearly ordered with respect to inclusion. Complement of a chain graph is also a co-chain graph.

An example of a co-chain graph is shown in Figure 1.17.

b

b

b

bb

b

F I G U R E 1 . 1 7 : A Co-chain Graph.

1.3 Summary of the Problems Studied in the Thesis

In this thesis, we study five important graph optimization problems. We present all the

necessary definitions, problem statements, the motivation behind the problem, and the literature review

for each of the graph optimization problems in a sequential manner below.

1.3.1 Maximum Internal Spanning Tree Problem

A spanning tree of a graph G is a spanning subgraph of G which is also a tree. A spanning tree of

G containing the maximum number of internal vertices among all the spanning trees of G is called

a maximum internal spanning tree (MIST) of G. Given a graph G, the M A X I M U M I N T E R N A L

S PA N N I N G T R E E (MIST) problem is to find a MIST of G.

The formal definition of the problem and its decision version are stated below:
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M A X I M U M I N T E R N A L S PA N N I N G T R E E (MIST) Problem

Input: A graph G = (V,E).

Output: A maximum internal spanning tree of G.

D E C I D E M I S T Problem

Input: A graph G = (V,E) and k ∈ Z+.

Question: Does there exists a spanning tree T of G containing at least k internal vertices?

The MIST problem has theoretical significance because it generalizes the H A M I LT O N I A N PAT H

problem, a well-known NP-complete problem. Consequently, the Decide MIST problem is also

NP-hard for general graphs. Since the H A M I LT O N I A N PAT H problem is NP-hard, even for chordal

graphs and chordal bipartite graphs, the Decide MIST problem also remains NP-hard for these graph

classes. The MIST problem has been studied in the literature from an algorithmic point of view for

many years. Several constant factor approximation algorithms have been devised for this problem,

see [52, 58, 60, 80, 81]. In 2018, Chen et al. presented a 17
13 -approximation algorithm which is the

best approximation factor till now [25]. For cubic graphs, Salaman et al. designed a 6
5 -approximation

algorithm in 2008 [25]. A detailed survey on the history of approximation algorithms for the MIST

problem can be found in [82]. Recently, Li et al. proved that the MIST problem is Max-SNP-hard

[61].

To the best of our knowledge, the class of interval graphs is the first non-trivial graph class

for which the Decide MIST problem can be solved in polynomial-time [57]. We look for some more

graph classes for which the problem belongs to the class P and obtain some positive results.

1.3.2 Minimum Edge Total Dominating Set Problem

In a graph G = (V,E), a subset F ⊆ E is called an edge dominating set (ED-set) of G if, for each

e ∈ E, either e ∈ F or e is adjacent to an edge in F . The M I N I M U M E D G E D O M I N AT I N G S E T

(Min-EDS) problem requires us to find an edge dominating set of minimum cardinality for a given

graph G. The minimum cardinality of an edge dominating set of G is called the edge domination

number of G, denoted by γ′(G). In 1991, Kulli and Patwari [53] introduced the notion of edge total

domination in graphs. For a graph, G = (V,E) without an isolated edge, a set D ⊆ E is called

an edge total dominating set, abbreviated ETD-set, of G if every edge e ∈ E is adjacent to at least

one edge of D. An ETD-set with minimum cardinality is called a minimum edge total dominating

set (min-ETD-set) of G. The cardinality of a min-ETD-set of G is called the edge total domination
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number of G, denoted by γ′t(G). For a given graph G with no isolated edges, the M I N I M U M E D G E

T O TA L D O M I N AT I N G S E T (Min-ETDS) problem is to find a min-ETD-set of G.

The Min-EDS problem can be defined as the task of keeping track of the state of communi-

cations occurring among nodes in a wireless ad hoc network. To understand this, assume there is a

wireless ad hoc network. Any pair of nodes in such networks has the ability to start a packet exchange,

and routing can take any path the network chooses. Here, the goal is to place monitoring devices at

some nodes so that each communication is monitored. This task requires us to recognize a set of

communication links (edges) such that every other edge is adjacent to at least one edge belonging to

this set. By placing monitoring devices at the endpoints of each selected edge we can achieve our

goal. If we call the corresponding graph G, then the set of selected edges is an edge dominating set of

G. Due to cost considerations, we look for such sets with minimum size, that is, we seek minimum

edge dominating sets. Moreover, there can be a failure of devices so we want a backup for each

communication link. This situation can be handled by computing a min-ETD-set of G.

The formal definition of the problem and its decision version are stated below:

M I N I M U M E D G E T O TA L D O M I N AT I N G S E T (Min-ETDS) Problem

Input: A graph G = (V,E) with no isolated edge.

Output: A min-ETD-set D of G.

D E C I D E M I N - E T D S Problem

Input: A graph G = (V,E) with no isolated vertices and k ∈ Z+.

Question: Does there exists an ETD-set D of G such that |D| ≤ k?

The Min-ETDS problem and some of its variations gained considerable attention. Many researchers

studied both algorithmic and combinatorial aspects of these problems, see [1, 16, 53, 70, 77, 78, 85, 89].

Specifically, Kulli and Patwari in 1991, computed γ′t(G) when G is restricted to paths, cycles, complete

graphs, and complete bipartite graphs [53]. In 2014, Zhao et al. [92] proved that the decision version

of the Min-ETDS problem is NP-complete for planar graphs with maximum degree 3. In the same

article, they proved that it remains NP-complete for undirected path graphs, a subclass of chordal

graphs. Recently, in 2020, Zhuo et al. [75] proved that the problem is NP-complete for bipartite

graphs with maximum degree 3. On the positive side, the problem is linear-time solvable for trees. We

investigate the complexity status of this problem in some other graph classes and we increase the size

of the set of the graph classes for which the Decide Min-ETDS problem is in class P .
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1.3.3 Grundy (Double) Domination Problem

A sequence S = (v1, v2, . . . , vk) of vertices of G is called a dominating sequence of G if (i) for each

i ∈ [k], the vertex vi dominates at least one vertex of G that was not dominated by the previous

vertices of S and, (ii) the set Ŝ = {v1, v2, . . . , vk} is a dominating set of G. A dominating sequence

of maximum length is called a Grundy dominating sequence of G. The G R U N D Y D O M I N AT I O N

(GD) problem is to find a Grundy dominating sequence of a given graph G. Further, a sequence

S = (v1, v2, . . . , vk) of vertices of G is called a double dominating sequence of G if (i) for each

i ∈ [k], the vertex vi dominates at least one vertex of G that was dominated at most once by the

previous vertices of S and, (ii) the set Ŝ = {v1, v2, . . . , vk} is a double dominating set of G. A

double dominating sequence of maximum length is called a Grundy double dominating sequence of G.

The G R U N D Y D O U B L E D O M I N AT I O N (GD2) problem is to find a Grundy double dominating

sequence of a given graph G.

One of the oldest and most well-researched areas in graph theory is domination which is known

for many real world applications. Grundy dominating sequence of the graph somehow describes the

worst scenario that can happen when a dominating set is built. When we adopt a greedy procedure

to construct a dominating set of a graph, we pick vertices in the solution set one by one so that each

chosen vertex enlarges the set of vertices dominated by the selected vertices. This procedure also

motivates the notion of dominating sequences. A dominating set D in a graph can be seen as a set

of vertices governing or monitoring the vertices in V \D. Then the removal or failure of a vertex in

D or of an arbitrary edge may become the reason for the set D to not be a dominating set anymore.

If this is an undesirable situation, then it may be useful to increase the level of domination of each

vertex, so that, even if a vertex or edge fails, the set D will still be a dominating set in G. This idea

led researchers to introduce the concept of multiple domination. Therefore, the notion of double

dominating sequences is also introduced [44].

The formal definition of the problems and its decision versions are stated below:

G R U N D Y D O M I N AT I O N (GD) Problem

Input: A graph G = (V,E).

Output: A Grundy dominating sequence S of G.
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D E C I D E G R U N D Y D O M I N AT I O N (GDD) Problem

Input: A graph G = (V,E) and k ∈ Z+.

Question: Does there exists a dominating sequence S of G such that |Ŝ| ≥ k?

G R U N D Y D O U B L E D O M I N AT I O N (GD2) Problem

Input: A graph G = (V,E) with no isolated vertices.

Output: A Grundy dominating sequence S of G.

D E C I D E G R U N D Y D O U B L E D O M I N AT I O N (GD2D) Problem

Input: A graph G = (V,E) with no isolated vertices and k ∈ Z+.

Question: Does there exists a double dominating sequence S of G such that |Ŝ| ≥ k?

In 2014, Brešar et al. proved that the GDD problem is NP-complete for chordal graphs. They also

proved that a Grundy dominating sequence of trees, cographs and split graphs can be computed in

polynomial time (see [20]). Several combinatorial results have also been established for the parameter

in the literature [20, 44]. Grundy domination number of a graph is also studied in some standard

graph products [17]. Brešar et al. continued the study of this parameter and obtained further that

the GDD problem can be solved in polynomial time for interval and sierpiński graphs [19]. Several

authors explored this variant of dominating sequences in the literature (see [18, 72]). The Grundy

double domination number of a tree T is exactly the number of vertices of T [44]. We investigate the

complexity status of both problems in various graph classes and obtain some positive results and some

hardness results.

1.3.4 Maximum Weighted Edge Biclique Problem

For a graph G, a complete bipartite subgraph of G is called a biclique of G. For a weighted graph

G = (V,E,w), where each edge e ∈ E has a weight w(e) ∈ R, a biclique H of G such that∑
e∈E(H)w(e) is maximum among all bicliques of G, is called a maximum weighted edge biclique of

G. The M A X I M U M W E I G H T E D E D G E B I C L I Q U E (MWEB) problem is to find a maximum

weighted edge biclique of a given weighted graph G = (V,E,w).

Finding bicliques in bipartite graphs has a long history of applications. One important appli-

cation is found in the biclustering analysis of gene expression data. Suppose we have a set of genes

and a set of conditions. Having this, we form a bipartite graph G = (A,B,E). In this graph, A is

the set of conditions, and B is the set of genes. For u ∈ A, v ∈ B, we have (u, v) ∈ E iff v responds

in condition u, that is, if the expression level of v changes significantly in u. The weight of an edge
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somehow measures the level of significance corresponding to its endpoints. Here, a biclique of G

represents a subset of genes that are co-regulated under a subset of conditions. Then a maximum

weighted edge biclique of G corresponds to the most significant bicluster in the input data.

The formal problem statement and its decision version are stated as follows:

M A X I M U M W E I G H T E D E D G E B I C L I Q U E (MWEB) Problem

Input: A weighted graph G = (V,E,w), w ∈ R .

Output: A maximum weighted edge biclique C of G.

D E C I D E M A X I M U M W E I G H T E D E D G E B I C L I Q U E (WEBD) Problem

Input: A weighted graph G = (V,E,w), w ∈ R+ and a positive integer k ∈ R+.

Output: Does there exists a weighted edge biclique C in G having weight at least k?

The MWEB problem was introduced in 1979 [40] and is well studied in the literature, see [30, 29, 47,

88]. The WEBD problem is NP-complete for general graphs and even for bipartite graphs [79]. Note

that the MWEB problem is the generalized version of the MEB problem. So, all the hardness results

for the MEB problem are also valid for the MWEB problem [36, 42]. Therefore, the MWEB problem

is hard to approximate in bipartite graphs within nδ for some δ > 0 under certain assumptions such as

random 4-SAT or 3-SAT hardness hypothesis. There exists a restricted version of the MWEB problem,

namely the S-MWEB problem, where S is a subset of real numbers from which edge weights are

taken and the input graph is a bipartite graph. In 2008, Tan ([88]) proved that for a wide range of

choices of S, no polynomial time algorithm can approximate the S-MWEB problem within a factor of

nϵ for some ϵ > 0 unless RP = NP . We study the problem for some particular choices of S.

1.3.5 Neighbor-Locating Coloring Problem

A vertex coloring of a graph G = (V,E) is called proper coloring if no two adjacent vertices receive

the same color. The minimum number of colors required for a proper coloring of G is called the

chromatic number of G. A proper coloring of G is said to be neighbor-locating coloring (NL-coloring)

if for each pair of vertices u, v ∈ V having the same color, the sets of colors assigned to the neighbors

of u and v are different. The minimum number of colors required for an NL-coloring of G is called

the neighbor-locating chromatic number of G and is denoted by χNL(G). A neighbor-locating

coloring of G which uses χNL(G) colors is called a minimum neighbor-locating coloring of G. The

N E I G H B O R - L O C AT I N G C O L O R I N G (NLC) problem asks to find an NL-coloring of G which

uses χNL(G) number of colors.
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Suppose that a company manufactures n chemicals. There exist some pairs of these chemicals

which are incompatible with each other. When two incompatible chemicals are in contact, there is a risk

of explosion. The company wants to create partitions in its warehouse so that incompatible chemicals

can be kept in separate compartments as a precaution. What is the least number of compartments into

which the warehouse should be partitioned? This can be answered via vertex coloring. We form a

graph G by taking a vertex for each chemical and we make two vertices adjacent iff the corresponding

chemicals are incompatible with each other. Then the chromatic number of G will be the least number

of compartments into which the warehouse should be partitioned. Moreover, if there is a desirable

situation where the number of compartments should be in such a way that two chemicals kept in

the same compartment can be distinguished on the basis of the incompatibility of chemicals, the

neighbor-locating chromatic number will be useful.

The formal problem statement and its decision version are stated as follows:

N E I G H B O R - L O C AT I N G C O L O R I N G (NLC) Problem

Instance: A graph G = (V,E).

Solution: A minimum neighbor-locating coloring of G.

D E C I D E N E I G H B O R - L O C AT I N G C O L O R I N G (NLCD) problem

Input: A graph G = (V,E) and a positive integer k ∈ R+.

Question: Does there exist a neighbor-locating coloring of G using at most k colors?

There is no hardness result on the NLC problem in the literature. Alcon et al. gave some bounds for

the neighbor-locating chromatic number of a general graph [3]. In the same article, they examined

the neighbor-locating chromatic number for some graph operations: the join and the disjoint union.

Moreover, the neighbor-locating chromatic number of split graphs and mycielski graphs have been

computed. Alcon et al. also established some bounds on the neighbor-locating chromatic number for

unicyclic graphs and trees in another paper [4]. Alcon et al. gave the neighbor-locating chromatic

number of paths, cycles, fans, and wheels [2]. In 2020, Alcon et al. characterized all graphs as having

neighbor-locating chromatic numbers equal to n or n− 1, where n is the number of vertices in the

graph [3]. In 2022, Mojdesh [69] studied the conjectures posed by Alcon et al. in [3]. We prove some

more bounds for the neighbor-locating chromatic number in some restricted graph classes.
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1.4 Structure and Contributions of the Thesis

The structure of the thesis is summarized as follows: the first chapter of the thesis is dedicated to

introduction and literature survey. This chapter also provides all the relevant definitions and important

theorems which are used in subsequent chapters of the thesis. The rest of the thesis is organized as

follows.

Chapter 2: Maximum Internal Spanning Tree

In this chapter, we investigate the complexity of the MIST problem in various graph classes and

obtain some positive results. We propose linear-time algorithms to compute a maximum internal

spanning tree of cographs, block graphs, cactus graphs, chain graphs, and bipartite permutation graphs.

The O P T I M A L PAT H C O V E R problem, which asks to find a path cover of a given graph with

the maximum number of edges, is also a well-studied problem. We also remark on the relationship

between the number of internal vertices in the maximum internal spanning tree and the number of

edges in optimal path cover for the special graph classes mentioned above.

Chapter 3: Minimum Edge Total Dominating Set

In this chapter, we study the algorithmic and hardness results for the Min-ETDS problem. It is

known that the decision version of the Min-ETDS problem is NP-complete for bipartite graphs and

chordal graphs. We first prove that the problem is linear-time solvable for chain graphs, a subclass of

bipartite graphs, and for two subclasses of chordal graphs, namely, split graphs and biconnected proper

interval graphs. Next, we show that the problem is APX-complete for graphs with maximum degree 3

and propose an approximation algorithm for the problem in k-regular graphs, where k ≥ 4. We

discuss the complexity difference between the M I N I M U M E D G E D O M I N AT I N G S E T problem

and M I N I M U M E D G E T O TA L D O M I N AT I N G S E T problem which seem to be closely related.

Chapter 4: Grundy (Double) Dominating Sequence

In this chapter, we give certain algorithmic and hardness results for the GDD and the GD2D problems

in some restricted graph classes. First, we prove that the GDD problem is NP-complete for bipartite

and co-bipartite graphs. Then we design a linear-time algorithm to compute a Grundy dominating

sequence of a chain graph. For this purpose, we use the structure of a connected chain graph G so that

we could characterize the structure of an optimal solution of G.
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Next, we prove that the GD2D problem is NP-complete for bipartite, co-bipartite, and split

graphs. Then we design a linear-time algorithm to compute a Grundy double dominating sequence

of a chain graph and of a threshold graph. For designing the algorithm in chain graphs, we use the

technique of dynamic programming in which we consider a slightly generalized version of the GD2D

problem, defined only for chain graphs.

Chapter 5: Maximum Weighted Edge Biclique

In this chapter, we study the MWEB problem with some particular choices of the set from which

the edge weights are being taken. The decision version of the MWEB problem is known to be

NP-complete for bipartite graphs. We show that the decision version of the MWEB problem remains

NP-complete even if the input graph is a complete bipartite graph. On the positive side, if the weight

of each edge is a positive real number in the input graph G, then we show that the MWEB problem is

O(n2)-time solvable for bipartite permutation graphs, and O(m+ n)-time solvable for chain graphs,

which is a subclass of bipartite permutation graphs.

Chapter 6: Neighbor-Locating Coloring

In this chapter, we give some algorithms, hardness results, and bounds for computing a neighbor-

locating chromatic number of a given graph G. We prove some bounds for general graphs and some

improved bounds for proper interval graphs and chain graphs. For some special chain graphs, we

compute the neighbor-locating chromatic number and find the corresponding coloring. One linear-time

approximation algorithm is also presented for the problem. We remark on the complexity difference

between the V E R T E X C O L O R I N G problem and the N E I G H B O R - L O C AT I N G C O L O R I N G

problem. For a co-bipartite graph, we examine the neighbor-locating chromatic number.

Chapter 7: Conclusion and Future Directions

In this chapter, We first provide a summary of the results discussed in the thesis. Secondly, we present

a list of prospective future directions and important unresolved questions.



Chapter 2
Maximum Internal Spanning Tree

2.1 Introduction

This chapter is devoted to the study of the MIST problem in graphs. The MIST problem

aims to find a spanning tree of a given graph G with maximum number of internal vertices.

Precisely, in this chapter, we study the complexity of the MIST problem in the following

graph classes: block graphs, cactus graphs, cographs, bipartite permutation graphs, and chain

graphs. We also discuss the relationship between the number of internal vertices in a MIST

of the graph G and the number of edges in its optimal path cover. By optimal path cover, we

mean a path cover with the maximum number of edges. Throughout this chapter, by Opt(G),

we mean the number of internal vertices in a MIST of G.

The well-known H A M I LT O N I A N PAT H problem asks to determine whether there

exists a Hamiltonian path in a given graph or not. The MIST problem generalizes the

H A M I LT O N I A N PAT H problem and the latter problem is NP-hard for bipartite and chordal

graphs [54, 71]. Consequently, the Decide MIST problem is also NP-hard in general graphs

as well as for bipartite and chordal graphs.

Note that we are working only with non-trivial connected graphs. So, a vertex that is

not an internal vertex is a pendant vertex. Hence, finding a spanning tree of a given graph G

with maximum number of internal vertices is equivalent of finding a spanning tree of G with

minimum number of leaves. Due to this, researchers studied the dual problem to MIST, the

M I N I M U M L E AV E S S PA N N I N G T R E E (MLST) problem which asks to find a spanning

tree with the minimum number of leaves for a given graph. From the algorithmic point of

view, both the MIST and the MLST problems are equivalent, but from the approximation

aspect, status of both the problems differ. In 1992, Lu and Ravi proved the following theorem.

Theorem 2.1. [65] The MLST problem cannot be approximated within any constant factor

unless P=NP.

27
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Unlike MLST, several constant factor approximation algorithms have been proposed

for the MIST problem in the literature. In 2003, Prieto et al. [80] gave a 2-approximation algo-

rithm for the MIST problem whose running time was later improved by Salamon et al. in 2008

[83]. Salamon also gave approximation algorithms for claw-free and cubic graphs with ap-

proximation factors 3
2

and 6
5

respectively [83]. In 2009, Salamon [81] gave a 7
4

-approximation

algorithm for graphs with no pendant vertices and later, in 2015, Knauer et al. [52] showed

that a simplified and faster version of Salamon’s algorithm yields a 5
3
-approximation algo-

rithm even on general graphs. In 2014, Li et al. proposed a 3
2
-approximation algorithm using

a different approach for general undirected graphs and improved this ratio to 4
3

for graphs

without leaves [60]. Li et al. gave a 3
2

-approximation algorithm for general graphs using

depth-5 local search [58]. In 2018, Chen et al. presented a 17
13

-approximation algorithm

which is the best approximation factor till now [25]. Recently, Li et al. proved that the MIST

problem is Max-SNP-hard [61].

For NP-hard problems, we generally look for some restricted graph classes in which

the problem can be solved in polynomial time. In the case of the MIST problem, this search

was unexplored for quite a long time. Recently, Li et al. proved that the class of interval

graphs is one of the graph classes for which the Decide MIST problem is in the class P

[57]. In this chapter, we show that for block graphs, cactus graphs, cographs, and bipartite

permutation graphs, the MIST problem is efficiently solvable.

While designing such algorithms, it is often useful to find an optimal path cover of

the graph. Recall that a path cover of a graph G is a spanning subgraph of G in which every

component is a path. An optimal path cover of G is a path cover containing the maximum

number of edges among all the path covers of G. In this chapter, P ∗ denotes an optimal path

cover of the graph G under consideration. In 2018, researchers have proved a connection

between Opt(G) and |E(P ∗)|.

Theorem 2.2. [59] The number of internal vertices of a maximum internal spanning tree

is less than the number of edges of an optimal path cover in a graph G, that is, Opt(G) ≤
|E(P ∗)| − 1, where P ∗ denotes an optimal path cover of G.



2.1 Introduction 29

Note that the vertices which are pendant in G itself will remain pendant in any MIST

of G. Hence, we have the following lemma.

Lemma 2.3. For a graph G, if v is a pendant vertex and u = s(v) in G, then v remains a

pendant vertex and u remains adjacent support vertex of v in any MIST of G.

Suppose G is not a tree and u ∈ V (G) is adjacent to k ≥ 2 pendant vertices, say

a1, . . . , ak. Let G′ = G \ {a2, . . . , ak}. Then based on Lemma 2.3, the number of internal

vertices in a MIST of G will be the same as the number of internal vertices in any MIST of

G′. It is also easy to obtain a MIST of G from any MIST of G′. Hence, for this chapter, we

assume that every vertex has at most one pendant vertex adjacent to it.

We denote a bipartite graph with the bipartition (X, Y ) by G = (X, Y,E). Below, we

give another result regarding the number of pendant vertices in a spanning tree of a bipartite

graph. Note that, if we have a number of internal vertices in a spanning tree of G from one

partite set, then at least a+1 vertices must be present in the neighborhood of these a vertices,

which lie in the other partite set of the bipartite graph G.

Lemma 2.4. Let G = (X, Y,E) be a bipartite graph with A ⊆ X and B ⊆ Y . If N(A) = B,

then there are at least max{0, |A| − |B|+ 1} pendant vertices from A in any spanning tree

of G. Similarly, if N(B) = A, then there are at least max{0, |B|− |A|+1} pendant vertices

from B in any spanning tree of G.

Now, we fix some terminologies. The set of pendant vertices in a graph G is denoted

by P (G). Let I(G) denote the set of internal vertices in G, and i(G) = |I(G)|. For a set

A ⊆ V and a spanning tree T of G, we define iT (A) = |I(T ) ∩ A|. Hence, for an empty set

A, iT (A) = 0.

The section-wise organization of this chapter is as follows: In Section 2.2, we present

efficient algorithms to solve the MIST problem for all the graph classes mentioned at the

beginning of this chapter. Section 2.3 describes the relationship between Opt(G) and |E(P ∗)|
for the same set of graph classes.
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2.2 Polynomial-Time Algorithms

In this section, we design efficient algorithms to compute a maximum internal spanning tree

for a given graph G when G is a block, cactus, cograph, or bipartite permutation graph.

2.2.1 Block and Cactus Graphs

Here, we discuss the results obtained for the MIST problem in block and cactus graphs in

detail. First, we recall a few definitions.

A block of a graph G is a maximal connected subgraph with no cut vertices. The set

of blocks of a graph is called the block decomposition of G and is denoted by B(G). Let

B0 ∈ B(G) and u, v be two vertices belonging to B0, then a path between u and v, which

contains all the vertices of the block B0, is called a spanning path between u and v in B0.

We say a block B is good if there exist distinct vertices u, v ∈ V (B) such that both u and v

are cut vertices of G and B has a spanning path between u and v. A block is said to be bad

otherwise. Let Bad(G) denote the set of bad blocks of G.

A block graph is a graph in which every block is a clique. If a block graph G contains

only one block then G is a complete graph. A block graph is said to be nontrivial if it contains

at least two blocks. Note that a trivial block has a Hamiltonian path. Thus for the remainder

of the subsection, we only consider nontrivial block graphs. Bad blocks of a block graph G

have another characterization which we state as the Proposition 3.

Proposition 3. A block B of a nontrivial block graph G is bad if and only if it contains exactly

one cut vertex of G.

Proof. A block containing exactly one cut vertex of G can not be a good block. So, assume

B is a bad block of G and it contains at least 2 cut vertices of G. Then, these 2 vertices have

a spanning path between them in B as G[V (B)] is a clique. This implies that B is a good

block, a contradiction. Hence, B contains exactly one cut vertex of G.

A graph G is a cactus graph if every block of G is either a cycle or an edge. If a cactus

graph G contains only one block then G is either a cycle or an edge and in that case finding a
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MIST of G is trivial. Again, a cactus graph is said to be nontrivial if it contains at least two

blocks, and now we only consider nontrivial cactus graphs.

A block of a cactus graph G is called an end block of G if it contains exactly one

cut vertex of G. Note that an end block of a cactus graph G is also a bad block of G. Bad

blocks of a cactus graph G have another characterization which we state in the following

Proposition.

Proposition 4. A block B of a nontrivial cactus graph G is bad if and only if B does not

contain two adjacent cut vertices of G.

Proof. First, let B be a bad block of G. If B is an end block then it does not have two distinct

cut vertices of G and so, there is nothing to prove. If B is not an end block, then it contains

at least 2 cut vertices of G. Since B is a bad block and two adjacent vertices of a block of

a cactus graph have a spanning path between them so, B does not contain two adjacent cut

vertices of G. Conversely, let B be a block such that it does not contain two adjacent cut

vertices of G. Then no two cut vertices of G have a spanning path between them in B. Hence,

B is a bad block of G.

If Bi and Bj are two blocks of a block/cactus graph G and V (Bi) ∩ V (Bj) ̸= ∅, then

|V (Bi) ∩ V (Bj)| = 1 and the vertex x ∈ V (Bi) ∩ V (Bj) is a cut vertex of G. Below, we

state two propositions that hold true for both block and cactus graphs.

Proposition 5. Let T be a MIST of a nontrivial block/cactus graph G. Then, T must have at

least one leaf in every bad block of G.

Proof. Let B be a bad block of G. If B is an edge, then one vertex of B is itself pendant in

G. So, we may assume that B is not an edge. Now, suppose that every vertex of block B is

internal in T then the degree of each vertex of B is at least 2 in T . First, let G be a block

graph. By Proposition 3, B has exactly one cut vertex of G, say u. Let T ′ = T [V (B)]. As T ′

is a forest, it must contain at least two leafs. As for any x ∈ V (B) \ {u}, dT (x) = dT ′(x), B

must contain at least one leaf of T .
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Now, let G be a cactus graph and u ∈ V (B) be a cut vertex of G. Let x and y be

neighbors of u in B. Since B is a bad block, by Proposition 4, x and y are non-cut vertices in

G which implies that their degree is exactly 2 in G and edges xu, uy belong to T . Now, let

v ∈ V (B) be any non-cut vertex of G and let x′ and y′ be neighbors of v. Since dG(v) is 2

and it is an internal vertex in T , edges x′v, vy′ belong to T . So, we see that every edge of the

block B of G belongs to T , a contradiction. Hence, T must have at least one leaf in every

bad block.

Proposition 6. Let T be a MIST of a nontrivial block/cactus graph G. Then, Opt(G) ≤
n− |Bad(G)|, where Opt(G) denotes the number of internal vertices in T .

Proof. By Proposition 5, we have that |P (T )| ≥ |Bad(G)|, where P (T ) denotes the set of

leaves of T . So,

Opt(G) = number of internal vertices in a MIST of G

= n− number of pendant vertices in a MIST of G

= n− |P (T )|

≤ n− |Bad(G)|

The block decomposition of a graph G can be computed in O(n) time using the

following approach. Let b be a cut vertex of a block/cactus graph G and G1, G2, . . . , Gt be

the connected components of the graph G− b. Let Hi denotes the subgraph G[V (Gi) ∪ {b}],
for each 1 ≤ i ≤ t. We call H1, H2, . . . , Ht the b-components of G. The block decomposition

of a block/cactus graph can be found by recursively choosing a cut vertex b and computing

the b-components.

Algorithm for Block and Cactus Graphs

Now, we first prove a theorem that relates the number of internal vertices in a MIST of

a block/cactus graph G to the number of bad components of G. Then, we outline a linear-time

algorithm to compute a MIST of G.
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Theorem 2.5. Let G be a graph with a nontrivial block decomposition such that each block

has a spanning path with a cut vertex as an endpoint. Then G has a spanning tree T in which

number of internal vertices is n− |Bad(G)|.

Proof. Let l be the number of blocks in G and Bi ∈ B(G) be an arbitrary block of G. If Bi

is good, then let Pi be a spanning path between two cut vertices of Bi. If Bi is bad, we let Pi

be a spanning path with a single cut vertex as an endpoint. Let T =
⋃l

i=1 Pi. Note that T

is a spanning tree of G. Furthermore, as any cut vertex of G cannot be a leaf of T , we have

i(T ) = n− |Bad(G)|.

The proof of Theorem 2.5 gives a simple algorithm for a block or cactus graph. First,

find a block decomposition, this takes O(n) time. Then for each block, B, determine if B

is bad or not and find the corresponding path. This takes O(|B|) time. In total, we have a

linear-time algorithm. As both block and cactus graphs satisfy the hypothesis of Theorem

2.5, combining with Proposition 6 we have the following,

Corollary 2.6. If G is a block or cactus graph, then Opt(G) = n− |Bad(G)|.

2.2.2 Cographs

In this subsection, we discuss the MIST problem for cographs. The complement-reducible

graphs or cographs have been discovered independently by several authors since the 1970s

[84, 49]. In the literature, the cographs are also known as P4-free graphs, D∗-graphs,

Hereditary Dacey graphs and 2-parity graphs. The class of cographs is defined recursively as

follows:

• A graph containing a single vertex is a cograph;

• Complement of a cograph is also a cograph;

• Disjoint union of two cographs is also a cograph.

Cographs admit a rooted tree representation [56]. This tree is called a cotree of a

cograph G, denoted T (G). Cotree of a connected cograph satisfies the following properties:
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1. Every internal vertex has at least two children.

2. Every internal vertex is labeled 0 or 1 with the root r receiving label 1, such that no

two adjacent internal vertices receive the same label.

3. The leaves of T (G) form a bijective correspondence with V (G), such that x, y ∈ V (G)

are adjacent if and only if their least common ancestor of x and y in T (G) has label 1.

Fig. 2.1 illustrates a cograph G along with its cotree T (G).
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F I G U R E 2 . 1 : Illustrating a cograph and its cotree

Lin et al. [64], described a technique to preprocess a cotree T (G) with root r such

that it is a binary rooted tree possessing the property (3) of a cotree. Such a tree is called the

binarized version of T (G), denoted by BT (G). Clearly, every internal vertex has exactly two

children in BT (G). The set of leaves of the left subtree (right subtree) of an interior vertex

x of BT (G) is denoted by L(xleft) (L(xright)). The tree BT (G) also ensures that for every

internal node with label 1, its left subtree contains at most as many leaves as the right subtree.

Thus, we have that BT (G) satisfies satisfies the following properties:

1. Every internal vertex has exactly two children.

2. The leaves of BT (G) form a bijective correspondence with V (G), such that x, y ∈
V (G) are adjacent if and only if their least common ancestor of x and y in BT (G) has

label 1.

3. For all interior vertices x of BT (G) assigned label 1, |L(xleft)| ≤ |L(xright)|.

Proposition 7. For any x ∈ L(rleft), y ∈ L(rright), we have xy ∈ E(G).
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Proof. A leaf of BT (G) represents a vertex of the graph G. Let x ∈ L(rleft), y ∈ L(rright).

As the least common ancestor of x and y is r and r has label 1, by property 3 of a cotree,

xy ∈ E(G).

A path cover P of a graph G is an optimal path cover if it has the maximum number

of edges. Authors of [64] gave a linear-time algorithm to compute an optimal path cover of a

cograph G. The optimal path cover P ∗ constructed in [64] is one of the following types:

• The path cover P ∗ contains a single path component which is a Hamiltonian path of G.

• The path cover P ∗ contains at least two path components. In this case, there exists

exactly one path p in P ∗ which contains vertices from both the sets L(rleft) and L(rright)

and all other paths in P ∗ contain vertices from L(rright) only. Fig. 2.2 illustrates this

case.

F I G U R E 2 . 2 : Optimal path cover of G containing more than 1 path components

Algorithm 1 uses the optimal path cover constructed from [64] to compute a MIST of a

cograph G.

Note that by Theorem 2.2 we have Opt(G) ≤ |E(P ∗)| − 1 for an optimal path cover P ∗.

Below, we give a theorem that implies that Algorithm 1 also outputs a spanning tree which

attains this upper bound.

Theorem 2.7. Algorithm 1 outputs a spanning tree T of a cograph G such that, i(T ) =

|E(P ∗)| − 1, where P ∗ is an optimal path cover of G. Hence, Opt(G) = |E(P ∗)| − 1.

Proof. Let P ∗ = {P1, P2, . . . , Pk} be the optimal path cover computed in step 1 of Algorithm

1. If |P ∗| = 1, then G has a Hamiltonian path and Algorithm 1 returns a Hamiltonian path.

Now, suppose |P ∗| > 1, then the path P1 contains vertices from both sets L(rleft) and
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Algorithm 1: Algorithm for finding a MIST of a cograph G

Input: A cograph G and a cotree T (G) of G.
Output: A Maximum Internal Spanning Tree T of G.

1 Let P ∗ = {P1, P2, . . . , Pk} be the optimal path cover of G computed by the algorithm in
[64];

2 V (T ) = V (G) and E(T ) = E(P ∗);
3 if k = 1 then
4 return T ;

5 else
/* P1 is the path which contains vertices from both the sets L(rleft) and L(rright) and
all other paths in P ∗ contain vertices from L(rright) only */

6 Let u ∈ (V (P1) ∩ L(rleft));
7 Let vi be an end vertex of the path Pi, for 2 ≤ i ≤ k;
8 E(T ) = E(T ) ∪ {uv2, uv3, . . . , uvk};
9 return T .

L(rright) and Pi ∩ L(rleft) = ∅ for all i ≥ 2. Now, let u ∈ V (P1) ∩ L(rleft) such that u is

not an end vertex of P1.

For each path in Pi ∈ P ∗ \ {P1}, consider a pendent vertex vi of the path. By

Proposition 7, vi and u are adjacent. Let T =
⋃k

i=1 Pi ∪ {viu : 2 ≤ i ≤ k}. These new edges

connect one internal vertex with a pendant vertex of path of P ∗. This is illustrated by the

dash edges in Fig. 2.2. Note then the number of internal vertices of T is |E(P ∗)| − 1, hence

i(T ) = Opt(G) = |E(P ∗)| − 1 by Theorem 2.2.

Note that step 1 of Algorithm 1 can be performed in linear-time [64]. Furthermore, note that

the construction of T in Theorem 2.7 is also linear-time. Therefore Algorithm 1 outputs a

MIST of G in linear-time.

2.2.3 Bipartite Permutation Graphs

In this subsection, we discuss the MIST problem for bipartite permutation graphs. We first

describe some properties of bipartite permutation graphs and after that, we present an efficient

algorithm for the MIST problem in this graph class.

Let G = (X, Y,E) be a connected bipartite permutation graph and (<X , <Y ) be a

strong ordering of G, where <X= (x1, x2, . . . , xn1) and <Y= (y1, y2, . . . , yn2). For u, v ∈
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V (G), we write u <X v if u, v ∈ X and u appears before v in the strong ordering; we define

u <Y v in a similar manner. We write xi < xj (or, yi < yj) when i < j. For vertices u, v of

G, u ≤ v denotes either u <X v, u <Y v, or u = v holds.

Since each vertex of G satisfies the adjacency property (see, lemma 1.4), the neigh-

borhood of any vertex consists of consecutive vertices in the strong ordering. We define the

first neighbor of a vertex as the vertex with minimum index in its neighborhood and the last

neighbor of a vertex as the vertex with maximum index in its neighborhood. We notate the

first and last neighbors of a vertex u as f(u) and l(u) respectively. Combining the above

statements for a bipartite permutation graph G with its strong ordering (<X , <Y ), G has the

following properties [55]:

1. For any vertex of G, vertices in its neighborhood are consecutive with respect to the

ordering <X or <Y .

2. If u < v then f(u) ≤ f(v) and l(u) ≤ l(v), for each pair of vertices u, v ∈ V (G).

Now, we define some terminology which we require for the remainder of this sub-

section. A vertex xi ∈ X, (1 ≤ i ≤ n1) with l(xi) = yj is of type 1 if j ≥ i. A

vertex yi ∈ Y, (1 ≤ i ≤ n2) with l(yi) = xj is of type 1 if j ≥ i + 1. Similarly, a

vertex xi ∈ X, (1 ≤ i ≤ n1) with l(xi) = yj is of type 2 if j ≥ i + 1 and a vertex

yi ∈ Y, (1 ≤ i ≤ n2) with l(yi) = xj is of type 2 if j ≥ i. Note that a type 2 vertex x ∈ X is

also a type 1 vertex but the converse may not be true. Furthermore, a type 1 vertex y ∈ Y is

also a type 2 vertex. Characterizing the vertices in this way is an important distinction for our

algorithm. We now prove two important lemmas which will be used to prove the correctness

of Algorithm 2.

Lemma 2.8. Let X ′ = {x1, x2, . . . , xk, xk+1} ⊆ X, Y ′ = {y1, y2, . . . , yk} ⊆ Y . Fur-

thermore, suppose each vertex of X ′ and Y ′ is of type 1 except xk+1, l(xk+1) = yk and

N(X ′) = Y ′. Then there exists a MIST T of G, in which x1 and xk+1 are pendant. Moreover;

if X \X ′ ̸= ∅, then the support vertex of xk+1 is of degree at least 3 in T .

Proof. We first show xiyi, yixi+1 ∈ E(G) for all 1 ≤ i ≤ k. Suppose there exists 1 ≤ i ≤ k

such that xiyi /∈ E(G). Let l(xi) = yj and l(yi) = xl. As both xi and yi are type 1, we have
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yj ≥ yi and xl > xi. As (<X , <Y ) is a strong ordering, we have xiyi ∈ E(G), a contradiction.

Thus we may assume xiyi ∈ E(G). Furthermore, as yi is of type 1 and xiyi ∈ E(G), we

have yixi+1 ∈ E(G). Hence, we may conclude that xiyi, yixi+1 ∈ E(G) for all i, 1 ≤ i ≤ k.

First, assume that X = X ′. Note that as (<X , <Y ) is a strong ordering of G, we have

for all x ∈ X , l(x) ≤ l(xk+1) = yk. Since G is connected, we have, Y = Y ′ as well. This

implies that G has a Hamiltonian path x1y1x2 . . . xkykxk+1 which is a MIST.

Now, we may assume that X \X ′ ̸= ∅. Let T ∗ be a MIST of G. If x1 and xk+1 are

pendant in T ∗ and degree of S(xk+1) is at least 3 in T ∗, then we are done. Suppose otherwise.

In that case, we modify T ∗ in the following way. We first remove all edges of T ∗ incident

with the vertices of X ′ and then add edges x1y1, y1x2, x2y2, . . . , xkyk and ykxk+1 to obtain a

new graph T . Note that as N(X ′) = Y ′, T is connected.

First suppose that T contains no cycle. Note that T is a spanning tree of G. If

dT (yk) = 2, then as N(X ′) = Y ′ we can choose an edge vyi(i < k) in T such that

v ∈ X \ X ′. Since the strong ordering (<X , <Y ) of the vertices of G satisfies property 2,

we have vyk ∈ E(G). So we can further modify T by removing the edge vyi and replacing

with the edge vyk. Note that iT ∗(X ′) ≤ k − 1. To see this, if iT ∗(X ′) > k − 1 then the

subgraph T ∗[X ′ ∪ Y ′] has at least 2k+ 1 edges and exactly 2k+ 1 vertices. This implies that

T ∗[X ′ ∪ Y ′] contains a cycle, a contradiction as T ∗ is a tree. We see that

i(T ∗) = iT ∗(X ′) + iT ∗(X \X ′) + iT ∗(Y ′) + iT ∗(Y \ Y ′)

≤ (k − 1) + iT ∗(X \X ′) + k + iT ∗(Y \ Y ′) = i(T ).

So, we have i(T ∗) ≤ i(T ). Since T is a spanning tree and T ∗ is a MIST of G, we have

that T is also a MIST. Thus, we obtain our desired MIST in which x1 and xk+1 are pendant

and the support vertex of xk+1 is of degree at least 3.

Now, suppose T contains a cycle C. Then there exists a pair of vertices yi, yj ∈
Y ′ (i < j) such that the path between yi and yj in T ∗ contains no vertex of X ′. Let P denotes

this path. Suppose xp is the vertex adjacent to yi in P and xq is the vertex adjacent to yj in

P . Now, if dT (xp) ≥ 3 or dT (xp) = dT (xq) = 2, we modify T by removing the edge yixp.
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Otherwise, if dT (xq) ≥ 3, we modify T by removing the edge yjxq. In this way, we removed

the cycle C.We repeat the same modification until there is no cycle in T . Thus, we end up

with a spanning tree T .

In this process of removing cycles, we made some vertices of X \X ′ pendant in T

which were internal in T ∗. Let a0 be the number of vertices of X \X ′ which were internal

in T ∗ and they are pendant in T . We denote the set of these a0 vertices by K. For each

vertex of K, there exists a pair of vertices yi, yj ∈ Y ′ (i < j) such that the path between

yi and yj in T ∗ contains no vertex of X ′. Note that we have such a path for each vertex

of K. Let K be the set of all these paths. We claim that iT ∗(X ′) ≤ k − a0 − 1. To see

this, assume iT ∗(X ′) ≥ k − a0. Then, we define A = {V (P ) ∩ (X \ X ′) : P ∈ K} and

B = {V (P ) ∩ (Y \ Y ′) : P ∈ K}. Now, consider the subgraph H of T ∗ induced on

X ′ ∪ Y ′ ∪ A ∪B. We see that |V (H)| = 2k + 1 + |A|+ |B|. Recall that each vertex of K

correspond to a pair of vertices of Y ′ that has a path between them with no vertex of X ′ in

the tree T ∗. Note that each vertex of K correspond to a unique path. Let p1, p2, . . . , pa0 be

these a0 paths. For each i ∈ [a0], we denote the number of intermediate vertices in the path

pi by IV (pi). Now, |E(H)| = |E∗
X′Y ′ | + |E∗

Y ′A| + |E∗
AB|, where E∗

X′Y ′ denotes the set of

edges having one end point in X ′ and another end point in Y ′ in the tree T ∗. Similarly, E∗
Y ′A

denotes the set of edges having one end point in Y ′ and another end point in A in the tree T ∗.

Again, E∗
AB denotes the set of edges having one end point in A and another end point in B in

the tree T ∗. We have,

|E(H)| = |E∗
X′Y ′ |+ |E∗

Y ′A|+ |E∗
AB|

≥ |E∗
X′Y ′ |+ |E(p1 ∪ p2 ∪ . . . ∪ pa0)|

= |E∗
X′Y ′ |+ |E(p1)|+ |E(p2) \ E(p1)|+ · · ·+ |E(pa0) \ E(∪a0−1

j=1 pj)|

≥ |E∗
X′Y ′|+ (|IV (p1)|+ 1) + (|IV (p2) \ IV (p1)|+ 1) + · · ·+ (|IV (pa0) \ IV (∪a0−1

j=1 pj)|+ 1)

= |E∗
X′Y ′ |+ IV (p1 ∪ p2 ∪ . . . ∪ pa0) + a0

≥ |E∗
X′Y ′ |+ |A|+ |B|+ a0

≥ 2(k − a0) + (a0 + 1) + |A|+ |B|+ a0

= 2k + 1− a0 + |A|+ |B|+ a0

= 2k + 1 + |A|+ |B|.
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Thus, |E(H)| ≥ 2k + 1 + |A| + |B|. This means that |E(H)| ≥ |V (H)| implying that H

contains a cycle, a contradiction on the fact that T ∗ is a tree. Hence, iT ∗(X ′) ≤ k − a0 − 1.

It follows,

i(T ∗) = iT ∗(X ′) + iT ∗(X \X ′) + iT ∗(Y ′) + iT ∗(Y \ Y ′)

≤ (k − 1− a0) + iT ∗(X \X ′) + k + iT ∗(Y \ Y ′)

= (k − 1) + (iT ∗(X \X ′)− a0) + k + iT ∗(Y \ Y ′) = i(T ).

So, we have i(T ∗) ≤ i(T ) which implies that T is also a MIST. If dT (yk) = 2, then

we can choose an edge vyi(i < k) in T , such that v ∈ X \ X ′. Since the strong ordering

(<X , <Y ) satisfies property 2, we have vyk ∈ E(G). So we update the tree T by removing

the edge vyi and adding the edge vyk. Thus, we obtain a MIST T in which x1 and xk+1 are

pendant and support vertex of xk+1, that is, yk is of degree at least 3.

Lemma 2.9. Let X ′ = {x1, x2, . . . , xk} ⊆ X, Y ′ = {y1, y2, . . . , yk} ⊆ Y . Furthermore,

suppose each vertex of X ′ and Y ′ is of type 1 except yk, l(yk) = xk and N(Y ′) = X ′.

(a) If xiyi+1 ∈ E(G) for all 1 ≤ i ≤ (k − 1), then there exists a MIST T of G, in which y1

is pendant.

(b) If there exists 1 ≤ t ≤ (k − 1) such that xtyt+1 /∈ E(G), then there exists a MIST T of

G, in which x1 and yk are pendant. Moreover; if Y \ Y ′ ̸= ∅, then support vertex of yk

is of degree at least 3 in T .

Proof. We first argue that xiyi, yixi+1 ∈ E(G) for 1 ≤ i ≤ k − 1. First assume for some

i, xiyi ̸∈ E(G). As both xi and yi are type 1, we have xi < l(yi) and yi < l(xi). As

(<X , <Y ) is a strong ordering, we have xiyi ∈ E(G), a contradiction. Furthermore, as yi is

of type 1, we have yixi+1 ∈ E(G). Hence, we may conclude that xiyi, yixi+1 ∈ E(G) for all

i, 1 ≤ i ≤ k − 1.

First assume that Y ′ = Y . As N(Y ′) = X ′, and G is connected we have, X = X ′

as well. Note that if xiyi+1 ∈ E(G) for all 1 ≤ i ≤ (k − 1), then y1x1 . . . xk−1ykxk is a
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Hamiltonian path. Otherwise, if there exists 1 ≤ t ≤ (k − 1) such that xtyt+1 /∈ E(G), then

x1y1x2y2 . . . yk−1xkyk gives the desired Hamiltonian path.

Now, assume that Y \ Y ′ ̸= ∅. We will first prove part (a). So, we also assume that

xiyi+1 ∈ E(G) ∀ 1 ≤ i ≤ k − 1. Let T ∗ be a MIST of G and suppose y1 is not pendant in

T ∗. Let T be the graph obtained from T ∗ where we remove all edges incident to the vertices

of Y ′ and add edges y1x1, x1y2, y2x2, . . . , xk−1yk and ykxk. Note that y1 is pendant in T .

First, suppose that T contains no cycles. In that case, T is a spanning tree of G. If

dT (xk) = 1, we modify T to make dT (xk) ≥ 2. Let v ∈ Y \ Y ′ such that vxi ∈ E(T ) where

i < k. As the strong ordering of the vertices of G satisfies property 2, we have vxk ∈ E(G)

as well. So we modify T by removing the edge vxi and adding the edge vxk. Note that T

still remains a spanning tree of G. Next, we claim that i(T ∗) ≤ i(T ).

i(T ∗) = iT ∗(X ′) + iT ∗(X \X ′) + iT ∗(Y ′) + iT ∗(Y \ Y ′)

≤ k + iT ∗(X \X ′) + (k − 1) + iT ∗(Y \ Y ′) = i(T ).

So, we have that i(T ∗) ≤ i(T ). Since T is a spanning tree and T ∗ is a MIST of G, T

is also a MIST of G.

Next, suppose T is not a tree, that is, T contains a cycle. We now modify T to remove

the cycles. Let C be a cycle of T . Then there exists a pair of vertices xi, xj ∈ X ′ (i < j)

such that the path between xi and xj in T ∗ contains no vertex of Y ′. Let P denotes this path.

Suppose yp is the vertex adjacent to xi in P and yq is the vertex adjacent to xj in P . Now, if

dT (yp) ≥ 3 or dT (yp) = dT (yq) = 2, we modify T by removing the edge xiyp. Otherwise,

if dT (yq) ≥ 3, we modify T by removing the edge xjyq. In this way, we removed the cycle

C. We repeat the same modification until there is no cycle in T . Thus, we end up with a

spanning tree T .

In this process of removing cycles, we made some vertices of Y \ Y ′ pendant in T

which were internal in T ∗. Let a0 be the number of vertices of Y \ Y ′ which were internal

in T ∗ and they are pendant in T . We denote the set of these a0 vertices by K. For each

vertex of K, there exists a pair of vertices xi, xj ∈ X ′ (i < j) such that the path between



42 Chapter 2 Maximum Internal Spanning Tree

xi and xj in T ∗ contains no vertex of Y ′. Note that we have such a path for each vertex

of K. Let K be the set of all these paths. We claim that iT ∗(Y ′) ≤ k − a0 − 1. To see

this, assume iT ∗(Y ′) ≥ k − a0. Then, we define A = {V (P ) ∩ (X \ X ′) : P ∈ K} and

B = {V (P ) ∩ (Y \ Y ′) : P ∈ K}. Now, consider the subgraph H of T ∗ induced on

X ′ ∪ Y ′ ∪ A ∪ B. We see that |V (H)| = 2k + |A| + |B|. Recall that each vertex of K

correspond to a pair of vertices of X ′ that has a path between them with no vertex of Y ′ in

the tree T ∗. Note that each vertex of K correspond to a unique path. Let p1, p2, . . . , pa0 be

these a0 paths. For each i ∈ [a0], we denote the number of intermediate vertices in the path

pi by IV (pi). Now, |E(H)| = |E∗
X′Y ′| + |E∗

X′B| + |E∗
AB|, where E∗

X′Y ′ denotes the set of

edges having one end point in X ′ and another end point in Y ′ in the tree T ∗. Similarly, E∗
X′B

denotes the set of edges having one end point in X ′ and another end point in B in the tree T ∗.

Again, E∗
AB denotes the set of edges having one end point in A and another end point in B in

the tree T ∗. We have,

|E(H)| = |E∗
X′Y ′|+ |E∗

X′B|+ |E∗
AB|

≥ |E∗
X′Y ′ |+ |E(p1 ∪ p2 ∪ . . . ∪ pa0)|

= |E∗
X′Y ′|+ |E(p1)|+ |E(p2) \ E(p1)|+ · · ·+ |E(pa0) \ E(∪a0−1

j=1 pj)|

≥ |E∗
X′Y ′ |+ (|IV (p1)|+ 1) + (|IV (p2) \ IV (p1)|+ 1) + · · ·+ (|IV (pa0) \ IV (∪a0−1

j=1 pj)|+ 1)

= |E∗
X′Y ′ |+ IV (p1 ∪ p2 ∪ . . . ∪ pa0) + a0

≥ |E∗
X′Y ′ |+ |A|+ |B|+ a0

≥ 2(k − a0) + a0 + |A|+ |B|+ a0

= 2k − a0 + |A|+ |B|+ a0

= 2k + |A|+ |B|.

Thus, |E(H)| ≥ 2k+ |A|+ |B|. This means that |E(H)| ≥ |V (H)| implying that H contains

a cycle, a contradiction on the fact that T ∗ is a tree. Hence, iT ∗(Y ′) ≤ k − a0 − 1. It follows,

i(T ∗) = iT ∗(X ′) + iT ∗(X \X ′) + iT ∗(Y ′) + iT ∗(Y \ Y ′)

≤ k + iT ∗(X \X ′) + (k − a0 − 1) + iT ∗(Y \ Y ′)

≤ k + iT ∗(X \X ′) + (k − 1) + (iT ∗(Y \ Y ′)− a0) = i(T )
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Again, we have that i(T ∗) ≤ i(T ) which implies that T is also a MIST. Hence, part (a) holds.

Next, we prove part (b). Let T ∗ be a MIST of G. If x1 and yk are pendant in T ∗ and

degree of S(yk) is at least 3 in T ∗, then we are done, so assume otherwise. In that case, let T

be the graph obtained by modifying T ∗ where we remove all edges incident on the vertices of

Y ′ and add edges x1y1, y1x2, x2y2, . . . , yk−1xk and xkyk.

First suppose that T contains no cycle, then T is a spanning tree of G. If dT (xk) = 2,

we further modify T to make dT (xk) ≥ 3. As Y \ Y ′ ̸= ∅ and N(Y ′) = X ′, there exists an

edge vxi ∈ E(T ) where i < k and v ∈ Y \ Y ′. Since the strong ordering of the vertices of

G satisfies property 2, we have vxk ∈ E(G). Thus we further modify T by removing vxi

and adding the edge vxk. As we assumed that there exists a t , 1 ≤ t ≤ (k − 1) such that

xtyt+1 ̸∈ E(G), we have N({x1, x2, ..., xt}) = {y1, y2, ..., yt}. Let X ′′ = {x1, x2, . . . , xt}
and note N(X ′′) = Y ′′ = {y1, y2, ..., yt}. By Lemma 2.4, we see that for any spanning tree

of G, X ′′ contains at least one pendant vertex. So, iT ∗(X ′) ≤ (k − 1).We see that

i(T ∗) = iT ∗(X ′) + iT ∗(X \X ′) + iT ∗(Y ′) + iT ∗(Y \ Y ′)

≤ (k − 1) + iT ∗(X \X ′) + (k − 1) + iT ∗(Y \ Y ′) = i(T ).

Again, we have i(T ∗) ≤ i(T ) which implies that T is a MIST. Thus, we obtained a

MIST T in which x1 and yk are pendant and support vertex of yk is of degree at least 3.

Now, suppose that T contains a cycle. We now modify T to be a spanning tree by

removing cycles. Let C be a cycle contained in T . Then there exists a pair of vertices

xi, xj ∈ X ′ (i < j) such that the path between xi and xj in T ∗ contains no vertex of Y ′. Let

P denotes this path. Suppose yp is the vertex adjacent to xi in P and yq is the vertex adjacent

to xj in P . Now, if dT (yp) ≥ 3 or dT (yp) = dT (yq) = 2, we modify T by removing the edge

xiyp. Otherwise, if dT (yq) ≥ 3, we modify T by removing the edge xjyq. In this way, we

removed the cycle C. We repeat the same modification until there is no cycle in T . Thus, we

end up with a spanning tree T .

In this process of removing cycles, we made some vertices of Y \ Y ′ pendant in T

which were internal in T ∗. Let a0 be the number of vertices of Y \ Y ′ which were internal
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in T ∗ and they are pendant in T . We denote the set of these a0 vertices by K. For each

vertex of K, there exists a pair of vertices xi, xj ∈ X ′ (i < j) such that the path between

xi and xj in T ∗ contains no vertex of Y ′. Note that we have such a path for each vertex

of K. Let K be the set of all these paths. We claim that iT ∗(Y ′) ≤ k − a0 − 1. To see

this, assume iT ∗(Y ′) ≥ k − a0. Then, we define A = {V (P ) ∩ (X \ X ′) : P ∈ K} and

B = {V (P ) ∩ (Y \ Y ′) : P ∈ K}. Now, consider the subgraph H of T ∗ induced on

X ′ ∪ Y ′ ∪ A ∪ B. We see that |V (H)| = 2k + |A| + |B|. Recall that each vertex of K

correspond to a pair of vertices of X ′ that has a path between them with no vertex of Y ′ in

the tree T ∗. Note that each vertex of K correspond to a unique path. Let p1, p2, . . . , pa0 be

these a0 paths. For each i ∈ [a0], we denote the number of intermediate vertices in the path

pi by IV (pi). Now, |E(H)| = |E∗
X′Y ′| + |E∗

X′B| + |E∗
AB|, where E∗

X′Y ′ denotes the set of

edges having one end point in X ′ and another end point in Y ′ in the tree T ∗. Similarly, E∗
X′B

denotes the set of edges having one end point in X ′ and another end point in B in the tree T ∗.

Again, E∗
AB denotes the set of edges having one end point in A and another end point in B in

the tree T ∗. We have,

|E(H)| = |E∗
X′Y ′|+ |E∗

X′B|+ |E∗
AB|

≥ |E∗
X′Y ′ |+ |E(p1 ∪ p2 ∪ . . . ∪ pa0)|

= |E∗
X′Y ′|+ |E(p1)|+ |E(p2) \ E(p1)|+ · · ·+ |E(pa0) \ E(∪a0−1

j=1 pj)|

≥ |E∗
X′Y ′ |+ (|IV (p1)|+ 1) + (|IV (p2) \ IV (p1)|+ 1) + · · ·+ (|IV (pa0) \ IV (∪a0−1

j=1 pj)|+ 1)

= |E∗
X′Y ′ |+ IV (p1 ∪ p2 ∪ . . . ∪ pa0) + a0

≥ |E∗
X′Y ′ |+ |A|+ |B|+ a0

≥ 2(k − a0) + a0 + |A|+ |B|+ a0

= 2k − a0 + |A|+ |B|+ a0

= 2k + |A|+ |B|.

Thus, |E(H)| ≥ 2k+ |A|+ |B|. This means that |E(H)| ≥ |V (H)| implying that H contains

a cycle, a contradiction on the fact that T ∗ is a tree. Hence, iT ∗(Y ′) ≤ k − a0 − 1.
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It follows,

i(T ∗) = iT ∗(X ′) + iT ∗(X \X ′) + iT ∗(Y ′) + iT ∗(Y \ Y ′)

≤ (k − 1) + iT ∗(X \X ′) + (k − a0 − 1) + iT ∗(Y \ Y ′)

≤ (k − 1) + iT ∗(X \X ′) + (k − 1) + (iT ∗(Y \ Y ′)− a0) = i(T )

This implies that T is also a MIST. Thus, we obtained a MIST T in which x1 and yk are

pendant and support vertex of yk is of degree at least 3.

We state similar results when the vertices are of type 2. By symmetry, the proofs of

Lemmas 2.10 and 2.11 follow from Lemmas 2.8 and 2.9.

Lemma 2.10. Let X ′ = {x1, x2, . . . , xk} ⊆ X, Y ′ = {y1, y2, . . . , yk, yk+1} ⊆ Y . Fur-

thermore, suppose each vertex of X ′ and Y ′ is of type 2 except yk+1, l(yk+1) = xk and

N(Y ′) = X ′. Then there exists a MIST T of G, in which y1 and yk+1 are pendant. Moreover;

if Y \ Y ′ ̸= ∅, then support vertex of yk+1 is of degree at least 3 in T .

Lemma 2.11. Let X ′ = {x1, x2, . . . , xk} ⊆ X, Y ′ = {y1, y2, . . . , yk} ⊆ Y . Furthermore,

suppose each vertex of X ′ and Y ′ is of type 2 except xk, l(xk) = yk and N(X ′) = Y ′.

(a) If yixi+1 ∈ E(G) ∀ 1 ≤ i ≤ (k − 1), then there exists a MIST T of G, in which x1 is

pendant.

(b) If ∃ 1 ≤ t ≤ (k − 1) such that ytxt+1 /∈ E(G), then there exists a MIST T of G, in

which y1 and xk are pendant. Moreover; if X \X ′ ̸= ∅, then support vertex of xk is of

degree at least 3 in T .

Algorithm for Bipartite Permutation Graphs

Now, we propose an algorithm to find a MIST of G based on the Lemmas 2.8, 2.9,

2.10 and 2.11. In our algorithm, we first find a vertex u such that it is a pendant vertex in

some MIST T of G and the degree of support vertex of u in T is at least 3. Now, if we remove

u from G and call the remaining graph G′, then we see that the number of internal vertices

in a MIST of G is same as the number of internal vertices in a MIST of G′. Note that we
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can easily construct a MIST of G from a MIST of G′ by adding the pendant vertex u to the

corresponding support vertex. So, after finding the vertex u, the problem is reduced to finding

MIST of G \ {u}, say G′. We continue doing the same until no such vertex u exists and then

the resulting graph has a Hamiltonian path.

In our algorithm, we visit the vertices alternatively from the partitions X and Y . We

consider two special orderings (x1, y1, x2, y2, ...) and (y1, x1, y2, x2, ...) of V (G) which we

call α0 and β0, respectively. Below, we describe the method to find a vertex u which is a

pendant vertex in some MIST T of G and dT (s(u)) is at least 3.

We first visit the vertices of G in the ordering α0 and search for the first vertex, which

is not of type 1. Let u be such a vertex. If u ∈ X or u ∈ Y and the conditions of part (b) of

Lemma 2.9 are satisfied, then there exists a MIST T of G in which u is a pendant vertex and

the degree of support vertex of u in T is at least 3. So, we remove u from G and find a MIST

T ′ of G \ {u}. Later, we obtain a MIST of G by adding u to T ′. But, if u ∈ Y , say u = yk

and conditions of part (a) of Lemma 2.9 are satisfied, then there exists a MIST T of G in

which y1 is a pendant vertex. In this case, we start visiting the vertices of G in the ordering

β0, starting from y1. At this step, we do not maintain any information from α0 search.

Now, let u be the first vertex not of type 2 in the ordering β0. If u ∈ Y or u ∈ X and

the conditions of part (b) of Lemma 2.11 are satisfied, then there exists a MIST T of G in

which u is a pendant vertex and the degree of support vertex of u in T is at least 3. So, we

remove u from G and find a MIST T ′ of G \ {u}. Later, we obtain a MIST of G by adding

u to T ′. Here, if u ∈ X and conditions of part (a) of Lemma 2.11 are satisfied, then there

exists a MIST T of G in which x1 is a pendant vertex. But, we have already explored this

possibility while visiting the vertices of G in the ordering α0. So, we do not get such a vertex

u. To see this, suppose that we get such a vertex u. Then, u = xt for some t, where t > k.

Now, part (a) of Lemma 2.11 tells that yixi+1 ∈ E(G) for all 1 ≤ i ≤ (t − 1) implying

that ykxk+1 ∈ E(G). But, while visiting the vertices in the ordering α0, we got a vertex yk

satisfying l(yk) = xk, so ykxk+1 /∈ E(G), a contradiction.

The detailed procedure for computing a MIST of a bipartite permutation graph is

presented in Algorithm 2. Algorithm 2 either finds a vertex which is not of type 1 or a vertex
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which is not of type 2. When such a vertex u is found, we call u as an encountered vertex.

All the encountered vertices are found while executing the steps written in lines 4, 11, 17, 22,

31 or 39 of Algorithm 2. We see that the algorithm returns a spanning tree T of G. Before

proving the correctness of the Algorithm 2, we state a necessary lemma.

Lemma 2.12. Let G be the input bipartite permutation graph for the Algorithm 2 and a1

denotes the first encountered vertex in either the α0 or β0 search. Suppose that T is the

spanning tree of G returned by Algorithm 2. Let X1 ⊆ X be the set of vertices which are

visited from X side till a1 and Y1 ⊆ Y be the set of vertices which are visited from Y side till

a1. Then there exists a MIST T ∗ of G such that E(T ∗[X1 ∪ Y1]) = E(T [X1 ∪ Y1]).

Proof. We have four cases to consider.

Case 1: a1 ∈ X and it is not of type 1. Then the vertex a1 was found when flag = 1 in

Algorithm 2, that is, when searching for the first vertex not of type 1. Let a1 = xk+1 for

some k. Then the sets X ′ = {x1, x2, . . . , xk, xk+1} ⊆ X, Y ′ = {y1, y2, . . . , yk} ⊆ Y satisfy

the hypothesis of Lemma 2.8. Thus by Lemma 2.8, there exists a MIST T ∗ of G such that

E(T ∗[X1 ∪ Y1]) = {x1y1, y1x2, x2y2, . . . , xkyk, ykxk+1}. In particular, E(T ∗[X1 ∪ Y1]) =

E(T [X1 ∪ Y1]).

Case 2: a1 ∈ Y and it is not of type 1. Then the vertex a1 was also found when flag = 1 in

the algorithm. Let a1 = yk for some k. Then the sets X ′ = {x1, x2, . . . , xk} ⊆ X, Y ′ =

{y1, y2, . . . , yk} ⊆ Y satisfy the hypothesis of part (b) of Lemma 2.9. Thus by Lemma 2.9,

there exists a MIST T ∗ of G such that E(T ′[X1 ∪ Y1]) = {x1y1, y1x2, x2y2, . . . , xkyk} =

E(T [X1 ∪ Y1]).

By symmetry, the other two cases (a1 ∈ X and it is not of type 2; a1 ∈ Y and it is not

of type 2) follow from Lemmas 2.10 and 2.11. Thus there exists a MIST T ∗ of G such that

E(T ∗[X1 ∪ Y1]) = E(T [X1 ∪ Y1]) in all cases.

Now, we prove the correctness of Algorithm 2.

Theorem 2.13. Algorithm 2 returns a maximum internal spanning tree of G.
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Algorithm 2: Algorithm for finding a MIST of a bipartite permutation graph G
Input: A bipartite permutation graph G and a strong ordering
(<X , <Y ) = (x1, x2, . . . , xn1 , y1, y2, . . . , yn2) of V (G). Output: A MIST T of G.

1 V (T ) = X ∪ Y,E(T ) = ∅, t = 0; flag = 1;
2 α0 = (x1, y1, x2, y2, ...) and β0 = (y1, x1, y2, x2, ...);
3 Visit the vertices of V (G) in the ordering α0;
4 Let u be the first vertex with minimum index in the ordering α0 which is not of type 1;
5 while flag == 1 do
6 if u ∈ X then
7 Let u = xk+1 for some k;
8 if k + 1 ̸= n1 then
9 t = t+ 1; rename xk+1 as at; E(T ) = E(T ) ∪ {ykat};

10 Rename xi as xi−1 for every k + 2 ≤ i ≤ n1; n1 = n1 − 1;
11 Continue looking for the next vertex that is not of type 1 in the ordering α0, call it u;

12 else
13 E(T ) = E(T ) ∪ {x1y1, y1x2, x2y2, . . . , xkyk, ykxk+1}; return T ;

14 else
15 Let u = yk for some k;
16 if xiyi+1 ∈ E(G) ∀ 1 ≤ i ≤ (k − 1) then
17 Find a vertex which is not of type 2 in the ordering β0 starting from y1, call it u;

flag = 2;
18 else
19 if k ̸= n2 then
20 t = t+ 1; rename yk as at; E(T ) = E(T ) ∪ {xkat};
21 Rename yi as yi−1 for every k + 1 ≤ i ≤ n2; n2 = n2 − 1;
22 Continue looking for the next vertex that is not of type 1 in the ordering α0, call

it u;
23 else
24 E(T ) = E(T ) ∪ {x1y1, y1x2, x2y2, . . . , yk−1xk, xkyk}; return T ;

25 while flag == 2 do
26 if u ∈ Y then
27 Let u = yk+1 for some k;
28 if k + 1 ̸= n2 then
29 t = t+ 1; rename yk+1 as at; E(T ) = E(T ) ∪ {xkat};
30 Rename yi as yi−1 for every k + 2 ≤ i ≤ n2; n2 = n2 − 1;
31 Continue looking for the next vertex that is not of type 2 in the ordering β0, call it u;

32 else
33 E(T ) = E(T ) ∪ {y1x1, x1y2, y2x2, . . . , ykxk, xkyk+1}; return T ;

34 else
35 Let u = xk for some k;
36 if k ̸= n1 then
37 t = t+ 1; rename xk as at; E(T ) = E(T ) ∪ {ykat};
38 Rename xi as xi−1 for every k + 1 ≤ i ≤ n1; n1 = n1 − 1;
39 Continue looking for the next vertex that is not of type 2 in the ordering β0, call it u;

40 else
41 E(T ) = E(T ) ∪ {y1x1, x1y2, y2x2, . . . , xk−1yk, ykxk}; return T ;
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Proof. Let T ∗ be a MIST of G and T be the spanning tree of G returned by Algorithm 2.

Recall in the execution of Algorithm 2, we either search for a vertex not of type 1 with the

ordering α0 or we search for a vertex not of type 2 with the ordering β0. This is ensured

since either we never arrive at line 17 or we arrive at it once and after that flag remains 2

throughout the algorithm. Let a1, a2, . . . , ap be the sequence of vertices encountered in the

execution of Algorithm 2. Let X1 and Y1 denote the set of vertices visited till a1 from X and

Y side respectively. For 1 < i < p, let Xi denotes the set of vertices visited from X side after

ai−1 and upto ai. Similarly, let Yi denotes the set of vertices visited from Y side after ai−1

and upto ai. Let Xp and Yp denote the set of all vertices visited after ap−1 from X and Y side

respectively.

First suppose Algorithm 2 is searching for a vertex not of type 1 with the ordering α0

and it never arrives at line 17. This means that flag is 1 throughout the algorithm. To prove

that T is a MIST of G, we will prove that T ∗ can be modified so that it remains a MIST of G

and E(T ∗) is same as E(T ), that is,

E(T ∗[

p⋃
j=1

Xj ∪
p⋃

j=1

Yj]) = E(T [

p⋃
j=1

Xj ∪
p⋃

j=1

Yj]). (2.1)

We prove (2.1) using induction on p. If p = 1, we have E(T ∗[X1 ∪ Y1]) = E(T [X1 ∪ Y1])

due to Lemma 2.12. Hence, (2.1) is true for p = 1. Assume that (2.1) is true for p = i.

We now show that (2.1) is true for p = i+ 1. So, consider vertex ai+1 for i ≥ 2. Two

possible cases arise.

Case 1: ai+1 ∈ X .

If aj ∈ X for each j, 1 ≤ j ≤ i, then define X∗ = ∪i+1
j=1Xj and Y ∗ = ∪i+1

j=1Yj .

Otherwise, let j be the largest index such that j ∈ {1, 2, . . . , i} and aj ∈ Y . Then define

X∗ = ∪i+1
t=j+1Xt and Y ∗ = ∪i+1

t=j+1Yt. Note that, in both the cases, we have N(X∗) = Y ∗.

As N(X∗) = Y ∗, by Lemma 2.4 we have that the number of pendant vertices from

X∗ in any spanning tree of G is at least |X∗| − |Y ∗|+ 1. Therefore, iT ∗(X∗) ≤ |Y ∗| − 1.

If (2.1) is not true for p = i + 1, we remove all edges of T ∗ who have one end in
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∪ij=1(Xj ∪ Yj) and the other in (Xi+1 ∪ Yi+1) and all edges incident with the vertices of Xi+1

within T ∗. We then add all edges from E(T [Xi+1 ∪ Yi+1]) and the edge of T which connects

∪ij=1(Xj ∪ Yj) to (Xi+1 ∪ Yi+1) in T ∗. If cycles were created in this process, then we can

remove those cycles without introducing more pendant vertices using the method discussed in

Lemmas 2.8 and 2.9. Let T ∗
new denote this updated tree. Define X ′ = X \ (X∗ ∪ (∪pt=i+2Xt))

and Y ′ = X \ (Y ∗ ∪ (∪pt=i+2Yt)). We have,

i(T ∗) = iT ∗(X ′) + iT ∗(X∗) + iT ∗(

p⋃
t=i+2

Xt) + iT ∗(Y ′) + iT ∗(Y ∗) + iT ∗(

p⋃
t=i+2

Yt)

≤ iT ∗(X ′) + |Y ∗| − 1 + iT ∗(

p⋃
t=i+2

Xt) + iT ∗(Y ′) + |Y ∗|+ iT ∗(

p⋃
t=i+2

Yt)

= i(T ∗
new), as iT ∗

new
(X∗) = |Y ∗| − 1.

Thus T ∗
new is also a MIST of G and (2.1) is true for p = i+ 1 with T ∗ = T ∗

new.

Case 2: ai+1 ∈ Y . Here, we discuss two subcases.

Subcase 2.1: aj ∈ Y ∀ j; 1 ≤ j ≤ i.

Here, for X∗ = ∪i+1
j=1Xj and Y ∗ = ∪i+1

j=1Yj , we have |X∗| = |Y ∗| − i. As N(Y ∗) =

X∗, by Lemma 2.4 we have that the number of pendant vertices from Y ∗ in any spanning

tree of G is at least |Y ∗| − |X∗| + 1 = i + 1. Therefore iT ∗(Y ∗) ≤ |Y ∗| − (i + 1). Here,

a1 ∈ Y , so, let a1 = yk for some k. As we have assumed that flag is 1, this implies that there

exists an index t, 1 ≤ t ≤ k− 1 such that xtyt+1 /∈ E(G). So, for X ′ = {x1, x2, . . . , xt} and

Y ′ = {y1, y2, . . . , yt}, we have N(X ′) = Y ′. Now, by Lemma 2.4, we know that the number

of pendant vertices within X ′ in any spanning tree of G is at least |X ′| − |Y ′|+ 1 = 1. So,

iT ∗(X ′) ≤ |X ′| − 1, implying that iT ∗(X∗) ≤ |X∗| − 1. If (2.1) is not true for p = i+ 1, we

construct another spanning tree T ∗
new of G from T ∗ in the following way: remove all edges of

T ∗ who have one end in ∪ij=1(Xj ∪ Yj) and the other in (Xi+1 ∪ Yi+1) and all edges incident

with the vertices of Yi+1 within T ∗. Then, add all edges from E(T [Xi+1 ∪ Yi+1]) and the

edge of T which connects ∪ij=1(Xj ∪ Yj) to (Xi+1 ∪ Yi+1) in T ∗. As before, if cycles are

present, further modify T ∗ to remove these cycles without introducing more pendant vertices.
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Now we have,

i(T ∗) = iT ∗(X∗) + iT ∗(X \X∗) + iT ∗(Y ∗) + iT ∗(Y \ Y ∗)

≤ |X∗| − 1 + iT ∗(X \X∗) + |Y ∗| − (i+ 1) + iT ∗(Y \ Y ∗) = i(T ∗
new)

Subcase 2.2: aj ∈ X for some 1 ≤ j ≤ i.

We choose the largest j ∈ {1, 2, . . . , i} such that aj ∈ X . Then for X∗ = ∪i+1
t=j+1Xt

and Y ∗ = ∪i+1
t=j+1Yt, we have |X∗| = |Y ∗| − (i − j). As N(Y ∗) = X∗, by Lemma 2.4

we have that the number of pendant vertices from Y ∗ in any spanning tree of G is at least

|Y ∗| − |X∗| + 1 = i− j + 1. Therefore, iT ∗(Y ∗) ≤ |Y ∗| − (i− j + 1). If (2.1) is not true

for p = i+ 1, we construct another spanning tree T ∗
new of G from T ∗ using the same way as

done in subcase 2.1. We have,

i(T ∗) = iT ∗(

j⋃
t=1

Xt) + iT ∗(X∗) + iT ∗(

p⋃
t=i+2

Xt) + iT ∗(

j⋃
t=1

Yt) + iT ∗(Y ∗) + iT ∗(

p⋃
t=i+2

Yt)

≤ iT ∗(

j⋃
t=1

Xt) + |X∗|+ iT ∗(

p⋃
t=i+2

Xt) + iT ∗(

j⋃
t=1

Yt) + |Y ∗| − (i− j + 1) + iT ∗(

p⋃
t=i+2

Yt)

= i(T ∗
new).

Thus T ∗
new is also a MIST of G and (2.1) is true for p = i+ 1 with T ∗ = T ∗

new.

Hence, we get that (2.1) is true for all p, that is, E(T ∗[X ∪ Y ]) = E(T [X ∪ Y ]) in

each possible case, when flag is 1.

If algorithm arrives at line 17, then flag changes to 2 and it remains 2 throughout the

algorithm. So, it searches vertex not of type 2 in the ordering β0 starting from y1. There will

be analogous arguments for this case also, using Lemmas 2.10 and 2.11 instead. For a quick

justification why, with the assumption flag = 1, the above analysis fails if we encounter a

vertex, say u1 = yj , such that u1 is not type 1 and xiyi+1 ∈ E(G) for all 1 ≤ i ≤ (j − 1).

The analogous failure case for the flag = 2 is, when we encounter a vertex u2 = xk that
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is not of type 2 and yixi+1 ∈ E(G) for all 1 ≤ i ≤ (k − 1). Note that these cases cannot

simultaneously occur. Otherwise the analysis is symmetric. Consequently, Algorithm 2

returns a maximum internal spanning tree of G.

Now, we discuss the running time of Algorithm 2. Suppose Algorithm 2 returns a

MIST T . Recall that we visit the vertices in one of the orders α0 = (x1, y1, x2, y2, . . .),

or β0 = (y1, x1, y2, x2, . . .). Furthermore, any vertex encountered during the execution

of the algorithm must be pendant in T . As we never visit the same vertex twice, these

pendant vertices are found in linear-time. The remaining graph must have a Hamiltonian

path, and finding the Hamiltonian path is also linear-time in our algorithm. So, all the steps

of Algorithm 2 can be executed in O(n+m) time. Hence we have the following corollary.

Corollary 2.14. A maximum internal spanning tree of a bipartite permutation graph can be

computed in linear-time.

As chain graph is a subclass of bipartite permutation graphs, Algorithm 2 also works

for chain graphs. For chain graphs, we computed a bound in terms of the number of edges in

its optimal path cover.

2.2.4 Chain Graphs

Let G = (X, Y,E) be a chain graph and (OX , OY ) be the chain ordering of G, where

OX = (x1, x2, . . . , xn1) and OY = (y1, y2, . . . , yn2). If a vertex xi appears before xj in the

chain ordering, we write xi < xj . In this subsection, we prove the following lower bound for

the number of internal vertices in a MIST of G.

Theorem 2.15. For a chain graph G, let P ∗ be an optimal path cover of G. Then Opt(G) ≥
|E(P ∗)| − 2.

In order to prove Theorem 2.15, we look at optimal path covers of bipartite permutation

graphs. Authors of [87] gave an algorithm to find an optimal path cover of a bipartite

permutation graph. Note that this algorithm also applies to chain graphs. We recall the

algorithm given in [87], but first, we cover some notations used in the algorithm. A path

cover P ∗ = {P1, P2, . . . , Pk} is contiguous if it satisfies the following two conditions:
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1. If x ∈ X is the only vertex in Pi and if x′ < x < x′′, then x′ and x′′ belong to different

paths.

2. If xy is an edge in Pi and x′y′ is an edge in Pj , where i ̸= j and x < x′, then y < y′.

A path P is contiguous if it is one of the following forms: xiyjxi+1yj+1 . . . yt−1xr,

xiyjxi+1yj+1 . . . yt−1xryt, yjxiyj+1xi+1 . . . xr−1ytxr, or yjxiyj+1xi+1 . . . xr−1yt such that r ≥
i and t ≥ j. Note that every path in a contiguous path cover is contiguous. Let P be a

contiguous path which ends with some edge, say xpyq. If yqxp+1 /∈ E(G), then we say

that the path P is not extendable on the right. A contiguous path is said to be a maximal

contiguous path if it is not extendable on the right. An optimal path cover P ∗ = {P1, . . . , Pk}
is a maximum optimal path cover if each Pi covers the maximum number of vertices in

V (G) \ {P1 ∪ P2 ∪ . . . Pi−1}. According to [87], there exists an optimal path cover which is

a maximum optimal path cover for any bipartite permutation graph G such that every path in

the path cover is a maximal contiguous path.

As a chain graph is an instance of a bipartite permutation graph, we look at the

algorithm from [87] which finds this desired maximum optimal path cover for a chain graph

(Algorithm 3). From this point, we refer such a path cover as an optimal path cover of a chain

graph.

Algorithm 3: Algorithm for finding an optimal path cover of G
Input: A chain graph G = (X, Y,E) with the ordering of its vertices.
Output: An optimal path cover P of G.

1 Mark all vertices in X and Y as not visited; let P = ∅.
2 while all vertices of G are not visited do
3 Let x and y be the first vertices in X and Y which are not visited.
4 Let Px and Py be the maximal contiguous paths starting from x and y, respectively.
5 Q:= Maximum of Px and Py.
6 P := P ∪Q.
7 Mark all vertices in Q as visited.

8 Output P .

Let P and Q be two distinct paths in a graph G. We define a combining edge of P and

Q as an edge of G whose one end vertex is in path P and another end vertex is in path Q. Let

P ∗ be the optimal path cover obtained from Algorithm 3. A path in P ∗ is nontrivial if it has
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at least two vertices. We assume that the path components of P ∗ are ordered with respect to

their appearance in Algorithm 3. Before proving Theorem 2.15, we prove some lemmas first.

Lemma 2.16. Let P and Q be two consecutive nontrivial path components in P ∗ such that P

ends at a vertex of X side and Q starts with a vertex of X side. Then there exists a combining

edge of P and Q which joins an internal vertex of P to a pendant vertex of Q.

Proof. Suppose that P ends at some vertex x and Q starts from some vertex x′, where x < x′.

Let y be the vertex adjacent to x in P , then y ∈ N(x′) as G is a chain graph. So, the edge

yx′ is a combining edge for path components P and Q. We see that y is internal in P and x′

is pendant in Q. Fig. 2.3 provides an illustration.

b bbb b b

b b b b

P Q

x

y

x′

y′

combining edge

F I G U R E 2 . 3 : P ends at X side, Q starts from X side

Lemma 2.17. There are no consecutive nontrivial path components P and Q in P ∗ such

that:

1. P ends at a vertex of Y side and Q starts with a vertex of Y side, or,

2. P ends at a vertex of Y side and Q starts with a vertex of X side.

Proof. First, suppose that there are two consecutive nontrivial path components P and Q

in P ∗ such that P ends at a vertex of Y side and Q starts with a vertex of Y side. As P ∗

was constructed from Algorithm 3, every path component in P ∗ is maximal contiguous.

But, in this case, P is extendable on right. So, this case will not arise. Fig. 2.4 provides an

illustration.

b

bbb b b

b b b b

P Q

b

F I G U R E 2 . 4 : P ends at Y side, Q starts from Y side
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Now, suppose that there are two consecutive nontrivial path components P and Q

in P ∗ such that P ends at a vertex of Y side and Q starts with a vertex of X side. Due to

the similar reason, this case will also not arise. Fig. 2.5 provides an illustration. Hence, the

b

bbb b b

b b b b

P Q

b

F I G U R E 2 . 5 : P ends at Y side, Q starts from X side

lemma holds.

Lemma 2.18. Let P and Q be two consecutive nontrivial path components in P ∗ such that

P ends at a vertex of X side and Q starts with a vertex of Y side. Then the following is true:

1. If Q ends at a vertex of X side, then Q can be modified to another path Q′ such that

V (Q) = V (Q′), Q′ is also a maximal contiguous path and there exists a combining

edge of P and Q′ which joins an internal vertex of P to a pendant vertex of Q′.

2. If Q ends at a vertex of Y side, then there exists a combining edge of P and Q which

joins an internal vertex of P to an internal vertex of Q.

Proof. Suppose that P ends at some vertex x and Q starts from some vertex y = yj . Let y′

be the neighbor of x in P .

First, suppose that Q ends at a vertex of X side. Let Q = yxiyj+1 . . . xtykxt+1. As

G is a chain graph, we have that Q′ = xiyxi+1 . . . yk−1xt+1yk is also a path in G. Note that

V (Q) = V (Q′) and Q′ is a maximal contiguous path. We can replace Q with Q′ in the path

cover P ∗. Now we see that edge y′xi ∈ E(G) as N(x) ⊆ N(xi). So, the edge y′xi is a

combining edge for path components P and Q′. We see that y′ is internal in P and xi is

pendant in Q′. Fig. 2.6 provides an illustration.

Now, suppose that Q ends at a vertex of Y side. Let x′ be the neighbor of y in Q.

Since, x < x′ and G is a chain graph, edge y′x′ ∈ E(G). Here, we consider the edge y′x′ as

the combining edge for path components P and Q. We see that y′ is internal in P and x′ is

also internal in Q. Fig. 2.7 provides an illustration.
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b bbb b b

b b b b

P Q

x

y′

xi

y

combining edge

b

b b

xi+1 xt+1xt

yj+1 ykyj+2

b bbb b b

b b b b

P Q′

x

y′

b

b b

xi xi+1 xt+1xt

y yj+1 ykyk−1

F I G U R E 2 . 6 : P ends at X side, Q starts from Y side and ends at X side

b bbb b b

b b b b

P Q

x

y′

x′

y
b b

x0

y0

combining edge

F I G U R E 2 . 7 : P ends at X side, Q starts from Y side and ends at Y side

Now, we give the proof of the Theorem 2.15.

Proof of Theorem 2.15. Let P ∗ be the optimal path cover of G obtained from Algorithm 3.

Suppose P ∗ has k path components P1, P2, . . . , Pk. Let us denote number of edges of the

component Pi by ei for every 1 ≤ i ≤ k. This implies that e1 + e2 + . . . + ek = |E(P ∗)|.
Note that the number of internal vertices in a path with ei edges is ei − 1.

Let P and Q be two consecutive nontrivial path components in P ∗. Then using

Lemmas 2.16, 2.17 and 2.18, we see that in each possible case, we get a combining edge of

P and Q. If we connect each consecutive nontrivial path component with these combining

edges and connect the remaining single vertex components by an arbitrary edge incident with

an internal vertex of a nontrivial path component, we obtain a spanning tree of G.

First, assume that we never get P and Q such that P ends at a vertex of X side, Q

starts from a vertex of Y side and Q ends at a vertex of Y side. Note then every combining

edge connects one internal vertex of P and one pendant vertex of Q. So, i(T ) = e1 − 1 +

e2 + e3 + . . .+ ek = |E(P ∗)| − 1.
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Now, assume that there exists some P and Q such that P ends at a vertex of X side,

Q starts from a vertex of Y side and Q ends at a vertex of Y side. Here, suppose that Q

ends at the vertex y0 and let x0 be the neighbor of y0 in Q. We claim that x0 = xn1 . If this

is not the case then there exists a vertex x∗ in X such that x∗ > x0 and x∗ /∈ V (Q). But,

since G is a chain graph, we have that (y0, x∗) ∈ E(G) which makes Q, a non-maximal

path, a contradiction. Thus, x0 = xn1 which implies that, if Q′′ ∈ P ∗ and appears after Q in

Algorithm 3, then Q′′ is a single vertex path component containing a vertex of Y . This implies

that this case appears only once. So, i(T ) = e1 − 1 + e2 + e3 + . . .+ ek − 1 = |E(P ∗)| − 2.

Hence, the number of internal vertices in any MIST of G is at least |E(P ∗)| − 2, that

is, Opt(G) ≥ |E(P ∗)| − 2.

Combining Theorem 2.2 and Theorem 2.15, we can state the following corollary.

Corollary 2.19. For a chain graph G, if P ∗ denotes an optimal path cover then Opt(G) is

either |E(P ∗)| − 1 or |E(P ∗)| − 2.

Now, we give examples of chain graphs which shows that both the bounds (given by

Theorem 2.2 and Theorem 2.15) are tight. In Fig. 2.8, G1 and G2 are chain graphs and T1 and

T2 are Maximum Internal Spanning Trees of G1 and G2 respectively. We can see that optimal

path cover obtained from Algorithm 3 for the graph G1 is {x1y1x2y2x3, y3x4y4x5y5} which

has 8 edges and its MIST T1 has 6 internal vertices i.e. Opt(G1) = |E(P ∗)| − 2 = 8− 2 = 6.

Using Lemma 2.4, it can be verified that any MIST of G1 has at least four pendant vertices,

two from X side and two from Y side; so, G1 can have at most 6 internal vertices in its

MIST. Hence, T1 is indeed a MIST of G1. In a similar manner, optimal path cover obtained

from Algorithm 3 for the graph G2 is {x1y1x2y2x3, y3x4y4x5y5x6} which has 9 edges and its

MIST T2 has 8 internal vertices i.e. Opt(G2) = |E(P ∗)| − 1 = 9− 1 = 8.

2.3 Relationship between Opt(G) and |E(P ∗)|

In this section, we summarize the relationship between Opt(G) and |E(P ∗)| for all the graph

classes discussed in the previous sections.
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b b b b b

b b b b b

b b b b b

b b b b b

b

b b b b b

b b b b b

b b b b b

b b b b b

b

x5x2 x6x4x1 x3

y1 y2 y3 y5y4

x5x2 x4x1 x3

x5x2 x4x1 x3 x5x2 x4x1 x3 x6

y1 y2 y3 y5y4

y1 y2 y3 y5y4 y1 y2 y3 y5y4

G1 G2

T1 T2

F I G U R E 2 . 8 : Examples showing that bounds given by Theorem 2.2 and Theorem 2.15 for
chain graphs are tight

2.3.1 Block/Cactus Graph

Let G be a block or cactus graph. Then we show that there does not exist a constant k such

that Opt(G) ≥ |E(P ∗)| − k where P ∗ is an optimal path cover of G. Recall Corollary 2.6

states that Opt(G) = n− |Bad(G)| and Theorem 2.2 states Opt(G) ≤ |E(P ∗)| − 1. Note

that the number of edges in the optimal path cover P ∗ and the number of components in

P ∗ adds up to n. So, we see that n − |Bad(G)| = |E(P ∗)| − (|Bad(G)| − |P ∗|). Thus,

Opt(G) = |E(P ∗)| − (|Bad(G)| − |P ∗|) for both block and cactus graphs.

For every integer n = 5k (k ≥ 1), we construct a connected graph Gn with n vertices

and Opt(Gn) = |E(P ∗)| − O(n). The graph Gn is both a block graph and a cactus graph

as every block of Gn is either an edge or a clique on three vertices. The vertex set of Gn is

V (Gn) = V1∪V2∪. . .∪Vk, where Vi = {xi
1, x

i
2, . . . , x

i
5} for each i ∈ {1, 2, . . . , k}. The edge

set is E(Gn) = E1 ∪ E2 ∪ . . . ∪ Ek ∪ E ′, where Ei = {xi
1x

i
2, x

i
2x

i
3, x

i
3x

i
1, x

i
3x

i
4, x

i
4x

i
5, x

i
5x

i
3}

for each i and E ′ contains the edges of the form xi
3x

i+1
3 for 1 ≤ i ≤ (k − 1). Note

|E(Gn)| = 7k − 1. We obtain an optimal path cover P ∗ for Gn having 4k edges and

k components [74]. The number of bad blocks in Gn is 2k. Using Theorem 2.5, we

obtain a MIST T of Gn with n − |Bad(G)| = 5k − 2k = 3k internal vertices. Thus,

Opt(Gn) = 3k = 4k − k = 4k − n
5
= |E(P ∗)| −O(n). Fig. 2.9 provides an illustration for

G20.

Here, we see that |Bad(Gn)| − |P ∗| = 2k − k = k which implies that for arbitrary

n = 5k, we have Opt(Gn) = |E(P ∗)| − k. So, block and cactus graphs do not have lower

bound for Opt(G) of the form |E(P ∗)| − c for some fixed natural number c, independent of
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F I G U R E 2 . 9 : Graph G20, its optimal path cover P ∗ and its MIST T

n.

2.3.2 Bipartite Permutation Graph

Now, let G be a bipartite permutation graph, then Opt(G) cannot be lower bounded with

value |E(P ∗)| − k for any fixed natural number k. Below, for every natural number k, we

give a construction of a bipartite permutation graph such that Opt(G) = |E(P ∗)| −O(5k).

For every integer n = 5k (k ≥ 1), we construct a connected bipartite permutation

graph Gn with n vertices and Opt(Gn) = |E(P ∗)| − O(n). For all 1 ≤ i ≤ k, let Xi =

{xi
1, x

i
2} and Yi = {yi1, yi2, yi3} if i is even and Xi = {xi

1, x
i
2, x

i
3} and Yi = {yi1, yi2} for

odd i. Let V (Gn) = V1 ∪ V2 ∪ . . . ∪ Vk where Vi = Xi ∪ Yi for all 1 ≤ i ≤ k. Let

E(Gn) = E1∪E2∪. . .∪Ek∪E ′ where Ei = {xy|x ∈ Xi, y ∈ Yi} for each 1 ≤ i ≤ k and E ′

is the set of edges of the form yi2x
i+1
1 if i is odd and xi

2y
i+1
1 if i is even for each 1 ≤ i ≤ (k−1).

We see that Gn is a bipartite permutation graph with n vertices and n+2k−1 edges. Algorithm

3 gives an optimal path cover P ∗ for Gn having 4k edges and Algorithm 2 gives a MIST with

3k internal vertices. So, we get that Opt(Gn) = 3k = 4k − k = 4k − n
5
= |E(P ∗)| −O(n).

Fig. 2.10 provides an illustration for G25.

Thus Opt(G) for bipartite permutation graphs do not have a lower bound of the form

|E(P ∗)| − k for some fixed natural number k, independent of n.
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F I G U R E 2 . 1 0 : Graph G25, its optimal path cover P ∗ from Algorithm 3 and its MIST T
from Algorithm 2

2.3.3 Chain Graph and Cographs

In Corollary 2.19, we have proved that |E(P ∗)| − 2 ≤ Opt(G) ≤ |E(P ∗)| − 1 for a chain

graph G. Figure 2.8 ensures that both these bounds are tight. Thus, we have, Opt(G) ∈
{|E(P ∗)| − 1, |E(P ∗)| − 2} when G is a chain graph.

For a cograph G, Theorem 2.7 states that Opt(G) = |E(P ∗)| − 1.

2.4 Summary

We studied the MIST problem, a generalization of the H A M I LT O N I A N PAT H

problem. As the Decide MIST problem remains NP-hard even for bipartite graphs and

chordal graphs [54, 71], we further investigated the complexity of the MIST problem for the

following classes of graphs: chain graphs, bipartite permutation graphs, block graphs, cactus

graphs and cographs. We found linear-time algorithms for the MIST problem for each of

these graph classes.

Li et al. [59] proved an upper bound for Opt(G) in terms of number of edges in an

optimal path cover of G. We further studied this relationship for graph classes mentioned

above and proved tight lower bounds for chain graphs and cographs. We also proved that this

phenomenon does not hold for general graphs with the construction of a bipartite permutation
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graph and a block graph such that Opt(G) is arbitrarily far from |E(P ∗)| for the constructed

graphs.





Chapter 3
Edge Total Dominating Set

3.1 Introduction

This chapter is dedicated to the study of the edge total domination in graphs. We study

the Min-ETDS problem from both algorithmic and approximation point of view. We found

some subclasses of bipartite and chordal graphs in which the problem is efficiently solvable.

From the perspective of approximation, we prove that the problem is APX-hard and provide

an approximation algorithm for k-regular graphs, where k ≥ 4. We also remark on the

complexity difference between the Min-EDS problem and the Min-ETDS problem which

seem to be closely related.

The notion of edge total domination was introduced in 1991 [53]. Kulli et al. [53]

discussed the edge total domination number for paths, cycles, complete graphs and complete

bipartite graphs. The Decide Min-ETDS problem is NP-complete in bipartite graphs and

chordal graphs [75, 92]. We found one subclass of bipartite graphs and two subclasses of

chordal graphs for which the problem is in class P. To the best of our knowledge, the only

class of graphs for which the Min-ETDS problem can be solved in polynomial-time is the

class of trees. In the upcoming sections, we discuss our results in detail. We fix some

terminologies first.

For an ETD-set D of a graph G = (V,E), a vertex u ∈ V is said to be D-saturated

or saturated by D, if u is incident with some edge in D. A set of vertices A ⊆ V (G) is

D-saturated if every vertex in A is D-saturated. The set of all the D-saturated vertices of G

is denoted by VD. For a set A ⊆ V , an ETD-set D of G[A] is a saturating set of A if every

vertex of A is incident with some edge in D. The minimum cardinality saturating set of A is

called a minimum saturating set of A and is denoted by DA. The following two results will

be used in the proofs of theorems in the later sections.

Proposition 8. If G is a graph with ω(G) = k, then for any ETD-set D of G, |VD| ≥ k − 1.

63
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Proof. Let D be an ETD-set of G and C be a clique of G such that |C| = k. Suppose, to the

contrary, that |VD| ≤ k − 2. This implies that there exist vertices u, v ∈ C such that u and v

are not saturated by D. Since C is a clique of G, uv ∈ E(G). In this case, we observe that

there is no edge in D which is adjacent to the edge uv. This contradicts the assumption that

D is an ETD-set of G. Hence, |VD| ≥ k − 1.

Proposition 9. Let G be a graph and D be an ETD-set of G. For a vertex u of G, if u /∈ VD,

then NG(u) ⊆ VD.

Proof. Let u /∈ VD. Suppose, to the contrary, that NG(u) ⊈ VD. This implies that there exists

a vertex v ∈ NG(u) such that the edge uv is not D-saturated. This contradicts the assumption

that D is an ETD-set of G. Hence, NG(u) ⊆ VD.

The section-wise contribution is as follows: In Section 3.2, we present the efficient

algorithms to solve the Min-ETDS problem in chain graphs, split graphs, and biconnected

proper interval graphs. Next, in Section 3.3 we discuss the results concerning APX-hardness

and approximation algorithm. Section 3.4 describes the complexity difference between edge

domination and edge total domination.

3.2 Efficient Algorithms

In this section, we present the efficient algorithms to solve the Min-ETDS problem in chain

graphs, split graphs, and proper interval graphs with no cut vertices.

3.2.1 Chain Graphs

Let G = (X, Y,E) be a chain graph and (OX , OY ) = (x1, x2, . . . , xn1 , y1, y2, . . . , yn2) be

the chain ordering of G. Given a chain ordering of G, for i < j, we write xi < xj if xi

appears before xj in the chain ordering. Similarly, for i < j, we write yi < yj , if yi appears

before yj in the ordering (OX , OY ).

Recall the relation ∼ defined on V (G) discussed in Chapter 1. For u, v ∈ V (G),

u ∼ v if and only if vertices u and v are open twins. The relation ∼ is an equivalence relation.
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Let PX = {X1, X2, . . . , Xk} be the twin partition of X side and PY = {Y1, Y2, . . . , Yk} be

the twin partition of the Y side. The sets in PX and PY satisfy Propositions 1 and 2.

In particular, Y1 = N(X1). As G is a connected chain graph, we see that y1x1 ∈ E(G).

Also, y1x ∈ E(G) for each x ∈ X as N(x1) ⊆ N(xi) for every i ≥ 2. In a similar manner,

we have that xn1y ∈ E(G) for each y ∈ Y . Note that the set of edges {y1x : x ∈ X} is an

ETD-set of G, and so γ′
t(G) ≤ n1. Similarly, {xn1y : y ∈ Y } is also an ETD-set of G, and

so γ′
t(G) ≤ n2. Lemma 3.1 combines these observations.

Lemma 3.1. For a chain graph G, γ′
t(G) ≤ min{n1, n2}.

Through the following set of lemmas, we show the existence of a min-ETD-set D∗ of a chain

graph G = (X, Y,E), satisfying some specific properties.

Lemma 3.2. There exists a min-ETD-set D∗ of a chain graph G such that the vertices xn1

and y1 are D∗-saturated.

Proof. Let G be a chain graph and D be a min-ETD-set of G. Suppose that xn1 is not

saturated by D. Since xn1 is not saturated by D, using Proposition 9, we have Y ⊆ VD.

Further, as D is a min-ETD-set of G and the set Y is saturated by D, we have |D| ≥ |Y | = n2.

Also, using Lemma 3.1, we have |D| ≤ n2. Therefore, γ′
t(G) = |D| = n2 and in this case

the set D∗ = {xn1y : y ∈ Y } is a min-ETD-set of G that saturates both vertices xn1 and y1.

Suppose next that y1 is not saturated by D. By Proposition 9, we have X ⊆ VD.

Further, as D is a min-ETD-set of G and the set X is saturated by D, we have |D| ≥ |X| = n1.

By Lemma 3.1, we have |D| ≤ n1. Therefore, γ′
t(G) = |D| = n1 and in this case the set

D∗ = {y1x : x ∈ X} is a min-ETD-set of G that saturates both vertices xn1 and y1. Hence,

the lemma holds.

Lemma 3.3. There exists a min-ETD-set D of a chain graph G and positive integers i, j such

that i ∈ [n1], j ∈ [n2] satisfying the following:

(a) VD ∩X = {xi, xi+1, . . . , xn1}.

(b) VD ∩ Y = {y1, y2, . . . , yj}.
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(c) xiyj ∈ E(G).

(d) If i ≥ 2, then j ≥ max{t : yt ∈ N(xi−1)}.

Proof. Let G be a chain graph. Using Lemma 3.2, we have a min-ETD-set D∗ of G such

that xn1 is D∗-saturated. We denote the subgraph G[D∗] of G by G∗. If X ⊆ VD∗ , then

γ′
t(G) = n1 and D = {y1x : x ∈ X} is a min-ETD-set of G satisfying all the conditions.

Similarly, if Y ⊆ VD∗ , then γ′
t(G) = n2 and D = {xn1y : y ∈ Y } is a min-ETD-set of G

satisfying all four conditions (a)-(d). Therefore, we assume that X ⊈ VD∗ and Y ⊈ VD∗ .

Now, if D∗ does not satisfy one or more conditions of the lemma, we show that we can

modify D∗ to get another min-ETD-set of G satisfying all the conditions of the lemma.

(a) Suppose D∗ does not satisfy condition (a) of the lemma. Note that xn1 ∈ VD∗ . Let

r be the largest index such that xr /∈ VD∗ , implying that, {xr+1, xr+2, . . . , xn1} ⊆ VD∗ ∩X .

Clearly, r ∈ [n1 − 1]. If r = 1, then condition (a) follows with i = 2. So, let r ≥ 2. Now, if

xj /∈ VD∗ for each j, j ∈ [r], then we get that VD∗∩X = {xi, xi+1, . . . , xn1}, where i = r+1

and thus, condition (a) is satisfied. Otherwise, suppose there is a vertex xj, j ∈ [r − 1] such

that xj is D∗-saturated. Let NG∗(xj) = {yp1 , yp2 , . . . , ypt}. Since N(xj) ⊆ N(xr), we have,

{ypixr : i ∈ [t]} ⊆ E(G).

Now, update D = (D∗ \ {xjypi : i ∈ [t]}) ∪ {ypixr : i ∈ [t]}. We observe that D

is also an ETD-set of G satisfying |D∗| = |D|. Thus, D is a min-ETD-set of G such that

{xr, xr+1, . . . , xn1} ⊆ VD ∩X . Moreover, D does not saturate the vertex xj . By repeatedly

applying this modification, we get a min-ETD-set D′ of G such that D′ does not saturate any

vertex xj, j < i for some i ∈ [n1] and, VD′ ∩X = {xi, xi+1, . . . , xn1}. Thus, condition (a)

is satisfied by D′. Additionally, we observe that VD′ ∩ Y = VD∗ ∩ Y .

(b) Next, let D be a min-ETD-set of G which satisfies condition (a) and does not

satisfy condition (b). By implementing similar modifications to the set D as we did while

proving condition (a), we can prove that there exists a min-ETD-set D′ of G such that

VD′ ∩ Y = {y1, y2, . . . , yj} for some j ∈ [n2]. Moreover, VD′ ∩X = VD ∩X . In addition,

D′ satisfy both conditions (a) and (b).
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(c) From the above discussion, we note that there exists a min-ETD-set of G satisfying

the first two conditions of the lemma. Suppose D is a min-ETD-set of G satisfying conditions

(a) and (b). If D satisfies condition (c) as well, then we are done. Thus, we may assume

that D does not satisfy (c). That is, xiyj /∈ E(G). From our initial assumptions, X ⊈ VD,

and so i ≥ 2. This further implies that xi−1yj /∈ E(G) and j ≥ 2. Let yj′ ∈ {y1, y2, . . . , yj}
be the vertex with the maximum index such that xi−1yj′ ∈ E(G). We define the sets

X0 = {xi, xi+1, . . . , xn1} and Y0 = {y1, y2, . . . , yj′}. Let A = X0 ∪ Y0 and B = A ∪ Y ′,

where Y ′ = {yj′+1, yj′+2, . . . , yj}. Note that G[A] is a complete bipartite subgraph of G.

Since DB is a minimum saturating set of B and D is a min-ETD-set of G such that VD = B,

|DB| ≤ |D|. Further, we have |D| = |DB| as DB is also an ETD-set of G. Now, we modify

the set DB as follows.

First, assume that |Y0| ≥ 2. Let xy′ ∈ DB such that x ∈ X0 and y′ ∈ Y ′. If there

exists a vertex y0 ∈ Y0 such that xy0 /∈ DB , then update the set DB by (DB \ {xy′})∪{xy0}.
Otherwise, if xy ∈ DB for each y ∈ Y0, then update the set DB by DB \{xy′}. Now, suppose

that |Y0| = 1 and so, Y0 = {y1}. Again, let xy′ ∈ DB such that x ∈ X0 and y′ ∈ Y ′. Then,

either dG[DB ](y1) ≥ 2 or there exists a vertex x′ ∈ X0 such that x′y1 /∈ DB . If dG[DB ](y1) ≥ 2,

then update the set DB by DB \ {xy′}. But if x′y1 /∈ DB for some x′ ∈ X0, then update the

set DB by (DB \ {xy′}) ∪ {x′y1}. By implementing these modifications for each edge of

DB ∩E(G[X0 ∪ Y ′]), we get a new set of edges D′. We claim that D′ is a saturating set of A.

First we observe that each vertex of A is saturated by D′. Now, we show that D′ is

an ETD-set of G[A]. For this purpose, we show that, for each e ∈ E(G[A]), there exists an

edge in D′ which is adjacent to e. So, let e be an edge of the graph G[A]. Now, two cases

are possible. Suppose firstly that e /∈ D′. In this case, since end vertices of the edge e are

two vertices of A and each vertex of A is saturated by D′, there exists an edge in D′ which is

adjacent to e. Suppose secondly that e ∈ D′. Assume that x ∈ X0, y ∈ Y0 be the end vertices

of e. Further, there can be two cases.

First, suppose that e ∈ DB. In this case, there exists an edge e′ ∈ DB which is

adjacent to e as DB is an ETD-set of G[B], where A ⊆ B. If e′ is incident with the vertex

y, then e′ ∈ D′. If e′ is incident with x and e′ = xy′, where y′ ∈ Y0, then again we have,

e′ ∈ D′. But if e′ = xy′, where y′ ∈ Y ′, then e′ /∈ D′. In this case, either xy′′ ∈ D′ for some
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y′′ ∈ Y0 \ {y} or yx′ ∈ D′ for some x′ ∈ X0 \ {x}. This is ensured by the modification

we performed in DB. In both ways, we have an edge in D′ which is adjacent to e. Thus, if

e ∈ DB ∩D′, then there is an edge in D′ which is adjacent to e.

Now, suppose that e /∈ DB but e ∈ D′. Then, since DB saturates every vertex of Y0,

there is an edge e′ ∈ DB incident with y such that e′ ∈ D′. Clearly, the edge e′ is adjacent to

e. Again, if e /∈ DB, e ∈ D′, then there is an edge in D′ which is adjacent to e. Therefore, D′

is an ETD-set of G[A]. Hence, we deduce that |DA| ≤ |D′| ≤ |DB| ≤ |D|. We also observe

that DA is an ETD-set of G implying further that |DA| = |D|. This yields a min-ETD-set

DA of G which satisfy conditions (a), (b) and (c).

(d) Finally, we have that either xiyj ∈ E(G) or there exists another min-ETD-set of

G which satisfies conditions (a), (b) and (c). Condition (d) directly follows from the above

discussion and using Proposition 9.

Therefore, the lemma holds.

Now we present Algorithm 4, which outputs DA for a given subset of vertices A of G, when

G[A] is a complete bipartite graph.

Note that, if DA is a minimum saturating set of A ⊆ V (G) then each component of

G[DA] is a tree. Algorithm 4 outputs a saturating set D0 of A ⊆ V (G), and in the subgraph

G[D0], at most one component can be a tree other than a P3. So, if, for A ⊆ V (G), D0 is the

saturating set returned by Algorithm 4 such that G[D0] has c components then either all c

components are isomorphic to P3, or c−1 components are isomorphic to P3 and 1 component

is a tree that is not a P3. Below, we give the proof of correctness of Algorithm 4.

Theorem 3.4. Given a set A ⊆ V (G) for a chain graph G such that G[A] is a complete

bipartite graph, Algorithm 4 outputs a minimum saturating set of A.

Proof. It is clear that Algorithm 4 outputs a saturating set of A. Let D1 be the saturating set

returned by Algorithm 4 and D2 be a minimum saturating set of A. We need to show that

D1 is a minimum saturating set of A. On the contrary, suppose that |D2| < |D1|. Assume

that G[D1] has c components and G[D2] has t components. Here, |A| = 3c + (a − 3) and
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|D1| = 2c + (a − 3), where a ≥ 3. So, |D2| < 2c + (a − 3). Since each component of

D2 is also a tree, we have, |D2| = |A| − t = 3c + (a − 3) − t. This further implies that

3c+ (a− 3)− t < 2c+ (a− 3) and hence, t > c. We consider two cases here:

Case 1: All components of G[D1] are P3.

Here, |A| = 3c and |D1| = 2c. So, |D2| < 2c. We also have, t > c. As each component

of G[D2] has at least 2 edges, |D2| ≥ 2t > 2c, a contradiction on |D2| < 2c. Therefore,

|D2| = 2c and D1 is a minimum saturating set of A.

Case 2: One component of G[D1] is not a P3.

We denote the component of G[D1] which is not a P3 by K. Note that |V (K)| = a. Now, we

modify D2 in such a way that at most one component of G[D2] is a tree other than a P3. Let

H1, H2 be two components of G[D2] which are not P3. Then there exists a subtree T1 of H1

which is a P3. We remove all edges except the edges of E(T1) from H1. Suppose we removed

b number of edges in this process. Then it is possible to connect the remaining vertices of

H1 with H2 using exactly b new edges as G[A] is a complete bipartite graph and thus, we

converted one non P3 component to a P3. After repeated applications of this modification,

we get a minimum saturating set of A which satisfy that either all components are P3 or there

is one component that is not a P3. We again call this set D2. Recall that we have, t > c,

where t is the number of components of G[D2] and c is the number of components of G[D1].

Since t− 1 components of G[D2] are P3 and c− 1 components of G[D1] are P3, we have, a

subgraph H1 of G[D2] such that |V (H1)| = |V (K)| = a and H1 has at least two components.

Hence, |D1| = 2(c − 1) + a − 1 and |D2| = 2(c − 1) + |E(H1)|. Thus, |E(H1)| < a − 1.

This means that K is a disjoint union of two subgraphs of G[A] such that one of them is a P3

and Algorithm 4 made the component K which is not a P3, a contradiction. Therefore, D1 is

a minimum saturating set of A.

Next, we give an algorithm to compute a min-ETD-set of a given chain graph G. Using

Lemma 3.3, we know that there exists a min-ETD-set of G such that it saturates each vertex

of some special subset A of V (G) and it does not saturate any of the remaining vertices in G.

Before formally presenting our Algorithm 5, we present the main ideas in the algorithm for

computing a min-ETD-set of G. We first find a minimum saturating set, DA of all special
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Algorithm 4: Algorithm for finding a minimum saturating set of A ⊆ V (G) such that
G[A] is a complete bipartite subgraph of G.
Input: A chain graph G = (X, Y,E) and A ⊆ V (G).
Output: DA: A minimum saturating set of A.
Let A ∩X = {a1, a2, . . . , ap′} and A ∩ Y = {b1, b2, . . . , bq′};
DA = ∅, i = 1, j = 1 and p = p′, q = q′;
while (p > 0 or q > 0) do

if (q ≥ p > 0 and q ≥ 2) then
DA = DA ∪ {aibj , aibj+1};
i = i+ 1, j = j + 2, p = p− 1, q = q − 2;

else
if (q ≥ 2 and p = 0) then

DA = DA ∪ {ai−1bj , ai−1bj+1, . . . , ai−1bq′};
q = 0;

else
if (p > q > 0 and p ≥ 2) then

DA = DA ∪ {aibj , ai+1bj};
i = i+ 2, j = j + 1, p = p− 2, q = q − 1;

else
if (p ≥ 2 and q = 0) then

DA = DA ∪ {aibj−1, ai+1bj−1, . . . , ap′bj−1};
p = 0;

else
if p = 1 and q = 1 then

DA = DA ∪ {aibj−1, ai−1bj};
p, q = 0;

else
if p = 1 and q = 0 then

DA = DA ∪ {aibj−1};
p = 0;

else
DA = DA ∪ {ai−1bj};
q = 0;

Return DA.

subsets A ⊆ V (G), and then we return the DA with minimum cardinality. Algorithm 5

correctly outputs a min-ETD-set of G in linear-time. So, we directly state Theorem 3.5.

Theorem 3.5. Algorithm 5 returns a min-ETD-set of a chain graph in linear-time.

Now, we describe the Algorithm 5 for a chain graph G shown in Fig. 3.1. For the

graph G, Algorithm 5 computes a min-ETD-set in two steps. First, it computes a minimum

saturating set of all special subsets A of V (G). Thereafter it returns a DA with minimum
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Algorithm 5: Algorithm for finding a min-ETD-set of a chain graph G

Input: A chain graph G
Output: A min-ETD-set of G
Compute the partition P = {X1, X2, . . . , Xk} and P ′ = {Y1, Y2, . . . , Yk} for X and Y side

respectively;
for (i = n1 to 1) do

Let Ai = {xi, xi+1, . . . , xn1} and xi ∈ Xs for some s ∈ [k];
if (i ≥ 2 and xi−1 ∈ Xs) then

Ai = Ai ∪ {y1, y2, . . . , yj}, where, j = max{r : yr ∈ Ys}
Compute DAi from Algorithm 4;

else if (i ≥ 2 and xi−1 /∈ Xs) then
Ai = Ai ∪ {y1, y2, . . . , yj}, where, j = max{r : yr ∈ Ys−1}
Compute DAi from Algorithm 4;

else if (i = 1) then
DAi = {xy1 : x ∈ X}

Return a DAi with minimum cardinality.

b b b b b

b b b b

x1 x5x2 x4x3

y1 y2 y3 y4

F I G U R E 3 . 1 : A chain graph G.

cardinality. Below, we illustrate the procedure in detail.

In the first step, Algorithm 5 selects n1 = 5 special subsets of V (G) and computes a

minimum saturating set for each one of them using Algorithm 4. All 5 subsets (Ai : i ∈ [5])

and corresponding minimum saturating sets are listed below.

i Ai DAi
|DAi

|
i = 5 A5 = {x5, y1, y2} DA5 = {y1x5, x5y2} |DA5| = 2
i = 4 A4 = {x4, x5, y1, y2} DA4 = {y1x4, x4y2, y2x5} |DA4| = 3
i = 3 A3 = {x3, x4, x5, y1} DA3 = {y1x3, y1x4, y1x5} |DA3| = 3
i = 2 A2 = {x2, x3, x4, x5, y1} DA2 = {y1x2, y1x3, y1x4, y1x5} |DA2| = 4
i = 1 A1 = {x1, x2, x3, x4, x5} DA1 = {y1x1, y1x2, y1x3, y1x4, y1x5} |DA1| = 5

TA B L E 3 . 1 : An illustration of the Algorithm 5.

The second step is to choose a DA which has minimum number of edges. So, our algorithm

returns the set {y1x5, x5y2} as a min-ETD-set of the chain graph G shown in Fig. 3.1.
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The Decide Min-ETDS problem remains NP-complete for chordal graphs [92]. In the

next two subsections, we study the Min-ETDS problem in two subclasses of chordal graphs,

namely, split graphs, and proper interval graphs.

3.2.2 Split Graphs

Here, we discuss the complexity of the Min-ETDS problem in split graphs. It is important

to remark that, the decision version of most variations of the vertex domination problem

remains NP-complete when restricted to split graphs. In this subsection, we prove that the

Min-ETDS problem is linear-time solvable in split graphs. First, we recall the definition of a

split graph. A graph G = (V,E) is called a split graph, if the vertex set V can be partitioned

into two sets K and I , such that K is a clique and I is an independent set of G. Throughout

this subsection, G = (I,K,E) denotes a split graph. If there exists a vertex u in K such that

NG(u) ∩ I = ∅, then we update the set I as I ∪ {u}. Thus, we may assume that, for every

vertex u ∈ K, NG(u) ∩ I ̸= ∅. Let |I| = n1 and |K| = n2. We observe that a min-ETD-set

of a split graph G with n2 ≤ 3 can be computed easily. So, we consider split graphs with

n2 ≥ 4. Before presenting an algorithm, we prove an important lemma.

Lemma 3.6. If G = (I,K,E) is a split graph, then there exists a min-ETD-set D of G which

saturates all the vertices of K.

Proof. Let D be a min-ETD-set of G such that D does not saturate a vertex v ∈ K. Using

Proposition 8, we note that D saturates all the vertices of K \ {v} . Since every vertex of K

has a neighbor in I , there exists a vertex u ∈ NG(v)∩I . As D is an ETD-set of G, there exists

an edge e = ux ∈ D, where x ∈ K \ {v}. We observe that the set D′ = (D \ {ux}) ∪ {xv}
is an ETD-set of G with |D′| = |D|, implying that, D′ is also a min-ETD-set of G. Therefore,

the result follows.

Based on Proposition 8 and Lemma 3.6, we now design Algorithm 6 which computes a min-

ETD-set of a given split graph G = (I,K,E). Below, we give the proof of the correctness of

Algorithm 6.
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Algorithm 6: Algorithm for finding a min-ETD-set of a split graph G

Input:A split graph G = (I,K,E).
Output:A min-ETD-set D of G.
D = ∅;

Let K = {a1, a2, . . . , an2};
if (n2 ≡ 0 (mod 3)) then

D = {a3t−2a3t−1, a3t−1a3t : t ∈ [n2

3
]};

else if (n2 ≡ 1 (mod 3)) then
D = {a3t−2a3t−1, a3t−1a3t : t ∈ [n2−1

3
]} ∪ {an2−1an2};

else
D = {a3t−2a3t−1, a3t−1a3t : t ∈ [n2−2

3
]} ∪ {an2−2an2−1, an2−1an2};

return D.

a1
a5

a2

a4

a3
b

b
b

b

b
b

b

b
b

KI

F I G U R E 3 . 2 : A split graph G = (I,K,E).

Theorem 3.7. Given a split graph G = (I,K,E), Algorithm 6 computes a min-ETD-set of

G in linear-time.

Proof. Let D be the set of edges returned by Algorithm 6. We observe that Algorithm 6

returns a set of edges which induces a collection of paths Pt’s, where t ≥ 3. Also we note

that the set D saturates all vertices of K with a minimum number of edges. Thus, the set

D is an ETD-set of G. Due to Lemma 3.6, there is a min-ETD-set of G which saturates all

vertices of K. Assume D∗ is a min-ETD-set of G such that K ⊆ VD∗ . Hence, |D| ≤ |D∗|
implying further that |D| = |D∗|. Thus, D is also a min-ETD-set of G. Algorithm 6 selects

some edges of G[K] after considering a fix order of vertices of K and outputs those edges in

D. This can be done in linear-time. Hence, the theorem holds.

Next, we explain the procedure of the Algorithm 6 by a split graph G shown in Fig. 3.2.

For this split graph, Algorithm 6 computes a min-ETD-set by selecting some edges from the

subgraph G[K] of G in such a manner so that the set of selected edges forms an ETD-set
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of G and all vertices of K are saturated by that set. The selection of the edges depends on

the remainder we get when n2 = |K| is divided by 3. Below, we give the computations

performed for the graph G shown in Fig. 3.2.

K = {a1, a2, a3, a4, a5}
n2 = 5 ≡ 2 (mod 3)

D = {a1a2, a2a3, a3a4, a4a5}

TA B L E 3 . 2 : An illustration of the Algorithm 6.

Thus, Algorithm 6 returns the set {a1a2, a2a3, a3a4, a4a5} as a min-ETD-set of G.

3.2.3 Proper Interval Graphs

Let G be a PIG and α0 = (v1, v2, . . . , vn) be a BCO of G. For i < j, vi < vj denotes that

vi appears before vj in α0. We use l(vi) to denote the highest indexed neighbor of vi in α0.

Formally if k = max{j : vj ∈ NG[vi]}, then l(vi) = vk. For a vertex vi, let vk, vj ∈ NG(vi)

be two vertices such that k < i and i < j, then we call vk as a left neighbor of vi and vj as a

right neighbor of vi. Further, using the definition of BCO, it can be observed that v1v2 . . . vn

is a Hamiltonian path in G. Now, we state an observation which holds true for any PIG.

Observation 1. If vivj ∈ E(G) and i < j, then for every k, i < k < j, we have vivk, vkvj ∈
E(G).

For each i ∈ [n− 1], we observe that there is a clique C of G such that vi, vi+1 ∈ C.

Thus, combining Proposition 8 and Observation 1, we note that for i ∈ [n] at least one of vi

and vi+1 will be saturated by every ETD-set of G. Recall that a vertex v of a connected graph

G is cut vertex of G if G − v is disconnected. In this subsection, we study the min-ETD-

set of proper interval graphs without a cut vertex. First, we have the following important

observation.

Observation 2. Let G be a PIG with no cut vertex and α0 = (v1, v2, . . . , vn) be a BCO of G

then vi−1vi+1 ∈ E(G) for every i, 2 ≤ i ≤ n− 1.

Throughout this subsection, G denotes a PIG with no cut vertex and its BCO is denoted

by α0 = (v1, v2, . . . , vn). Note that a min-ETD-set of any such PIG when n ≤ 3, can be

computed easily. So, we consider graphs containing at least four vertices. We present the
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essential ideas of computing a min-ETD-set of G as follows. We first find the vertex set

S of the graph induced by some min-ETD-set of G. Thereafter we find a set of edges D

with minimum cardinality saturating all vertices of S. Clearly, D is a min-ETD-set of G.

Algorithm 7 computes the vertex set which is saturated by some min-ETD-set of G. Before

proving the main results of the subsection, we present the following lemma.

Lemma 3.8. If D is a min-ETD-set of G and VD = {vi1 , vi2 , . . . , vik} such that for p < q,

vip < viq , where p, q ∈ [k], then virvir+1 ∈ E(G) for each r ∈ [k − 1] and N(u) ⊆ VD for

all u ∈ V (G) \ VD.

Proof. Let vir ∈ VD, where r ∈ [k]. Assume vir = vj for some j ∈ [n]. Now, either

vir+1 = vj+1 or vir+1 = vj+2 because two consecutive vertices will not remain unsaturated by

any ETD-set of G. If vir+1 = vj+1, then virvir+1 ∈ E(G) as α0 is a BCO and G is a proper

interval graph. Otherwise, if vir+1 = vj+2, we have virvir+1 ∈ E(G) using Observation 2.

Also, using Proposition 9, we have that N(u) ⊆ VD for all u ∈ V (G) \ VD. Therefore, the

lemma follows.

Lemma 3.9. Let A = {vi1 , vi2 , . . . , vik} ⊆ V (G) satisfying vij < vir for j < r. Let

virvir+1 ∈ E(G) for each r ∈ [k − 1] and N(u) ⊆ A for all u ∈ V (G) \ A. If there exists a

min-ETD-set D∗ of G such that |VD∗ | = k, then the set DA is also a min-ETD-set of G.

Proof. We first show that DA is also an ETD-set of G. Let xy be an edge of G. If x ∈ A, then

there exists an edge e ∈ DA which is incident with x as DA saturates the vertex x. If e ̸= xy,

then e is adjacent to xy in G. Otherwise, if e = xy, there exists another edge e′ ∈ DA which

is adjacent to e as DA is an ETD-set of G[A]. Now, let x /∈ A which implies that y ∈ A as

N(u) ⊆ A for all u ∈ V (G) \ A. Again, since DA saturates each vertex of A, there exists an

edge e ∈ DA which is incident with y. Note that e ̸= xy as x /∈ A. So, the edge e is adjacent

to the edge xy. Hence, for the edge xy, we always have an edge in DA which is adjacent to

xy. The set DA is therefore an ETD-set of G.

Next, we show that DA is a min-ETD-set of G. Let D∗ be a min-ETD-set of G such that

|VD∗| = k. Note that k vertices cannot be saturated by any set of edges containing less than

2⌊k
3
⌋+ (kmod 3) number of edges. This implies that γ′

t(G) = |D∗| ≥ 2⌊k
3
⌋+ (kmod 3).
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Further, recall that the set DA saturates all vertices of A (|A| = k) using a minimum

number of edges and thus, |DA| ≥ 2⌊k
3
⌋+ (kmod 3). Moreover, a set of edges D0, obtained

using the similar construction as in Algorithm 8 for the set A, is an ETD-set of G[A]. The

set D0 saturates all vertices of A and |D0| = 2⌊k
3
⌋ + (kmod 3). Hence, |DA| ≤ |D0| =

2⌊k
3
⌋ + (kmod 3). Consequently, |DA| = 2⌊k

3
⌋ + (kmod 3), implying that DA is also a

min-ETD-set of G. This proves the result.

Now, we give Algorithm 7 that outputs a set of vertices saturated by some min-ETD-set

of a proper interval graph with no cut vertex.

Algorithm 7: Algorithm for finding the vertex set which is saturated by some min-ETD-
set of G.
Input: A proper interval graph G with no cut vertex.
Output: VD, for some min-ETD-set D of G.
Initialize: S = ∅, i = 1;
for (i = 1 to n) do

m(vi) = 0;
while (i ≤ n and m(vn) = 0) do

vk = l(vi); and W = {vi, vi+1, . . . , vk};
if (there is some vertex x in W such that m(x) = 0) then

Let j be the smallest index such that vj ∈ W and m(vj) = 0;
vk′ = l(vj);
S = S ∪ {vj+1, vj+2, . . . , vk′};
for (each x in S) do

m(x) = 1;
m(vj) = 1;

i = i+ 1;
Return S.

Let S be the set of vertices returned by the Algorithm 7. Recall that α0 = (v1, v2, . . . , vn)

denotes a BCO of G. It is clear from the steps of Algorithm 7 that there is no i ∈ [n− 1] such

that vi, vi+1 /∈ S. We, therefore, state the following result.

Lemma 3.10. Let S = {vi1 , vi2 , . . . , vik} be the set of vertices returned by Algorithm 7 such

that for p < q, vip < viq . If vip = vj for some j ∈ [n] and p ∈ [k − 1] then vip+1 = vj+1 or

vip+1 = vj+2.

Lemma 3.11. Let S = {vi1 , vi2 , . . . , vik} be the set of vertices returned by the Algorithm 7

such that for p < q and vip < viq , then virvir+1 ∈ E(G) for each r ∈ [k − 1].
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Proof. The proof directly follows from the Observation 2 and Lemma 3.10.

Now, we prove the following important lemma which implies the correctness of

Algorithm 7.

Lemma 3.12. There exists a min-ETD-set D∗ of G, such that VD∗ = S, where S =

{w1, w2, . . . , wk} is the set of vertices returned by Algorithm 7.

Proof. Let S∗ = {u1, u2, . . . , uk′} be the set of vertices, taken in the order as they appear in

α0, saturated by some min-ETD-set D∗ of G. We also assume that vertices of S are taken in

the order as they appear in α0. We prove the lemma by modifying the set S∗ to get another set

S0 of vertices of G such that S0 ⊆ V (G) satisfies all conditions of Lemma 3.9. We show that

S0 = S and this further implies that there exists a min-ETD-set D∗ of G, such that VD∗ = S.

Now, let i ∈ [min{k, k′}] be the smallest index such that ui ̸= wi. Let ui be the vertex vj in

the ordering α. Next, we have two cases to consider.

Case 1: ui < wi

Here, we have, vj /∈ S and wi = vj+1. Moreover if i ≥ 2, then ui−1 = wi−1 = vj−1.

If i ̸= k′, then using Lemma 3.10, ui+1 is either vj+2 or vj+1. Now, if ui+1 = vj+2, then

we modify S∗ as follows. We remove the vertex ui and add the vertex wi to S∗, that is,

S ′ = (S∗ \ {ui}) ∪ {wi}. We do a similar modification when i = k′. Now, we show that the

set S ′ ⊆ V (G) satisfies all conditions of Lemma 3.9. Clearly, there is an edge between each

pair of consecutive vertices of S ′. Now, as vj /∈ S ′, we need to show that NG(vj) ⊆ S ′.

We note that all left neighbors of vj were already present in S∗ before the modification

so they belong to S ′ also. The vertex vj+1 is the only right neighbor of vj which was absent in

S∗ prior to the modification. Now, we have vj+1 ∈ S ′ as wi = vj+1. For each vertex u ̸= vj

such that u /∈ S ′, we already have N(u) ⊆ S ′. Hence, by Lemma 3.9 there exists another

min-ETD-set which saturates S ′.

Now suppose ui+1 = vj+1. Among right neighbors of vj , at most one vertex is not in

the set S∗. If NG(vj) ⊆ S∗, then S ′ = S∗ \ {ui}. Note that all conditions of Lemma 3.9 are

satisfied by the set S ′. Suppose next that vt ∈ NG(vj) is a right neighbor of vj and vt /∈ S∗.
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Then, S ′ = (S∗\{ui})∪{vt}. Here, the vertex vj /∈ S ′, so we need to show that all neighbors

of vj must be present in S ′. We see that NG(vj) \ {vt} ⊆ S∗, and so NG(vj) \ {vt} ⊆ S ′ and

due to the modification, we have vt ∈ S ′. For each vertex u ̸= vj such that u /∈ S ′, we have

N(u) ⊆ S ′. Therefore, by Lemma 3.9, there exists another min-ETD-set which saturates S ′.

Case 2: ui > wi

In this case, ui−1 is either vj−1 or vj−2. Note that i ̸= 1. If ui−1 = vj−1, then

wi−1 = vj−1 which further implies that wi = vj+1. This cannot be true as we have considered

ui > wi. Hence, ui−1 = vj−2, implying wi−1 = vj−2. Now, the vertex wi = vj−1. We

observe, vj−1 /∈ S∗ and vj−2, vj−1 ∈ S. This implies that there exists a vertex, say vt, with

vt < vj−2 such that vt /∈ S and vtvj−2, vtvj−1 ∈ E(G). Since ur = wr for each r ∈ [i− 1],

we get vt /∈ S∗. This contradicts the fact that D∗ is an ETD-set of G because the edge vtvj−1

is not dominated by any edge in D∗. Hence, it is not true that ui > wi.

Now, we have shown that we can modify S∗ to obtain uj = wj for every j ∈ [i]. By

repeatedly applying the above modifications to S∗, we get a set S0 such that ur = wr for

every r ∈ [k]. We can therefore conclude that S0 = S. In addition, the set S satisfies all

conditions of Lemma 3.9. Thus, there exists a min-ETD-set D′ such that VD′ = S. Hence,

the lemma holds.

An Algorithm to compute a min-ETD-set of a PIG G with no cut vertex is given in

Algorithm 8.

Algorithm 8: Algorithm for finding a min-ETD-set of G.
Input: A proper interval graph G with no cut vertex.
Output: A min-ETD-set of G.
Let S = {w1, w2, . . . , wk} be the set of vertices returned by Algorithm 7;
if (k ≡ 0 (mod 3)) then

D = {w3t−2w3t−1, w3t−1w3t : t ∈ [k
3
]}

else if (k ≡ 1 (mod 3)) then
D = {w3t−2w3t−1, w3t−1w3t : t ∈ [k−1

3
]} ∪ {wk−1wk};

else
D = {w3t−2w3t−1, w3t−1w3t : t ∈ [k−2

3
]} ∪ {wk−2wk−1, wk−1wk};;

return D.
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b b b b b b

v1 v3v2 v6v4 v5

(a) An Interval Representation

(b) Corresponding PIG

Iv1

Iv3

Iv2 Iv6

Iv4

Iv5

F I G U R E 3 . 3 : A PIG with no cut vertex and its interval representation.

We discuss the steps of computing a min-ETD-set of a PIG G shown in Fig. 3.3. Note

that G does not have any cut vertices. For this graph, Algorithm 8 computes a min-ETD-set

in two steps. First, it computes the vertex set S saturated by some min-ETD-set of G using

Algorithm 7. Then it returns a set of edges D so that D is an ETD-set of G and VD = S.

Below, we demonstrate the procedure in detail.

For the first step, Algorithm 8 calls Algorithm 7 to find the set S. Algorithm 7

computes S in two iterations. Below, we illustrate those 2 iterations of the algorithm.

Initially:
S = ∅ and m(v1) = m(v2) = m(v3) = m(v4) = m(v5) = m(v6) = 0

Iteration 1(i = 1 ≤ 6 and m(v6) = 0)
vk = v3,W = {v1, v2, v3}

vj = v1 ∈ W with the smallest index such that m(vj) = 0
vk′ = v3 and S = {v2, v3}

m(v2) = 1,m(v3) = 1,m(v1) = 1
i = 2 and m(v6) = 0

Iteration 2(i = 2 ≤ 6 and m(v6) = 0)
vk = v5,W = {v2, v3, v4, v5}

vj = v4 ∈ W with the smallest index such that m(vj) = 0
vk′ = v6 and S = {v2, v3} ∪ {v5, v6} = {v2, v3, v5, v6}

m(v5) = 1,m(v6) = 1,m(v4) = 1
i = 3 and m(v6) = 1

TA B L E 3 . 3 : An illustration of the Algorithm 7.

The second step is to find a set of edges D so that D is an ETD-set of G and VD = S.

Algorithm 8 achieves this using the properties satisfied by the edges of G[S] and returns the

set {v2v3, v3v5, v5v6} as a min-ETD-set of the graph G shown in Fig. 3.3.
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The following theorem proves the correctness of Algorithm 8.

Theorem 3.13. Given a proper interval graph G with no cut vertex, Algorithm 8 computes a

min-ETD-set of G in linear-time.

Proof. Algorithm 8 returns an ETD-set of G which saturates each vertex of the set S

computed by Algorithm 7. Note that an ETD-set saturating t vertices contains at least

2⌊ t
3
⌋+ (tmod 3) edges. Algorithm 8 computes an ETD-set of G which saturates S with ex-

actly 2
⌊ |S|

3

⌋
+(|S|mod 3) edges. Hence, D, the set returned by Algorithm 8 is a min-ETD-set

of G.

To analyze the running time, we see that Algorithm 7 finds the vertex set of a min-

ETD-set of G by visiting the vertices in the linear ordering α. Once we have obtained the

set S from Algorithm 7, then we select 2
⌊ |S|

3

⌋
+ (|S|mod 3) edges of G in Algorithm 8. All

these steps can be implemented in O(m+ n)-time. Consequently, the statement holds.

3.3 APX-completeness and Approximation Algorithm

In this section, we first prove that the Min-ETDS problem is APX-complete for graphs with

maximum degree 3. Further, we propose an approximation algorithm for the problem in

k-regular graphs when k ≥ 4.

For basic definitions and notations on APX-completeness, we refer [90]. To show

that an optimization problem Π ∈ APX is APX-complete, we need to show the existence

of an L-reduction from some known APX-complete problem to the problem Π. Note that

γ′
t(G) ≤ 2γ′(G) for any graph G. In [26], it is remarked that there is a 2-approximation

algorithm to compute an edge dominating set of a given graph. So, a 4-approximation

algorithm for the Min-ETDS problem in general graphs is trivial. Hence, the Min-ETDS

problem belongs to the class APX. To show the APX-completeness of the Min-ETDS problem,

we give an L-reduction from the M I N I M U M V E R T E X C O V E R (MVC) problem. The

MVC problem asks to find a minimum vertex cover of a given graph G. The MVC problem

is already known to be APX-complete for cubic graphs [6].
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Theorem 3.14. The Min-ETDS problem is APX-complete for graphs with maximum degree 3.

Proof. We give an L-reduction f from the instances of the MVC problem for cubic graphs

to the instances of the Min-ETDS problem for graphs with maximum degree 3. Given a

cubic graph G = (V,E), we use the same construction given in [92] to construct an instance

G′ = (V ′, E ′) of the Min-ETDS problem. For sake of completeness, we illustrate the

construction here as well.

Let G = (V,E) be a graph, where V = {v1, v2, . . . , vn}. We replace each vertex vi

of G by a gadget Hvi shown in Fig. 3.4. Let the three edges incident to vi in G be incident

with the three vertices xi, yi and zi in Hvi . According to [91], we note that we can always

avoid joining vertices yi and yj for two distinct vertices vi and vj of G. We observe that the

maximum degree of any vertex in G′ is 3. We proceed further by proving the following claim.

Claim 3.3.1. If V ∗
c is a minimum vertex cover of G, then |V ∗

c | = γ′
t(G

′)− 5n.

Proof. Let C be a minimum vertex cover of G. Let D = {ai1ai2 , ci1ci2 , di1di2 : vi ∈ V } ∪
{xiai1 , yici1 , zidi1 : vi ∈ C} ∪ {ai1bi, ci1di1 : vi /∈ C}. Since C is a vertex cover of G, the

set D is an ETD-set of G′. Also, |D| = 3n + 3|C| + 2(n − |C|) = 5n + |C|. Hence,

γ′
t(G

′) ≤ 5n+ |C| = 5n+ |V ∗
c |.

Conversely, let D be an ETD-set of G′ such that |D| ≤ 5n + |V ∗
c |. We note that

{ai1ai2 , ci1ci2 , di1di2} ⊆ D for every vi ∈ V . Let Fvi = E(Hvi) \ {ai1ai2 , ci1ci2 , di1di2} for

each vertex vi of G. Now, for any vertex vi of G, the set D contains at least two edges from

Fvi to totally dominate the edges ai1ai2 , ci1ci2 and di1di2 . If it contains exactly two edges
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from Fvi , then one of them is ci1di1 and the other is xiai1 or ai1bi. If it contains at least three

edges from Fvi , then we can replace all of them by the edges xiai1 , yici1 and zidi1 in D. Now,

let D contains an edge e of the form milj, i ̸= j, where mi is xi, yi or zi and lj is xj, yj or zj .

1. Assume that mi = xi. If D contains three edges from Fvj , we remove the edge e from

D. Otherwise, we replace all edges of (D ∩ Fvj) ∪ {e} by xjaj1 , yjcj1 , zjdj1 .

2. Assume that mi = zi. Similar modifications can be done in this case also.

Thus, D contains no edge which connects two different gadgets in G′. Clearly, D

remains an ETD-set of G′. If D has exactly two edges from some Fvi , then they must be ci1di1

and ai1bi or ci1di1 and xiai1 or ci1di1 and ai2ai3 . Note that none of the edges xiai1 , ai2ai3

dominate the edge biyi and there is no edge between yi and yj for any i ̸= j. So, if D has

exactly two edges from some Fvi , then they must be ci1di1 and ai1bi. Therefore, it follows that

for every edge e, connecting two different gadgets in G′, D must have six edges from at least

one of these gadgets. So, the set C = {vi ∈ V : D contains three edges from Fvi} is a vertex

cover of G. Thus, we have, 5n+ |V ∗
c | ≥ |D| ≥ γ′

t(G
′) ≥ 3|C|+2(n−|C|)+3n = 5n+ |C|,

implying that |C| = |V ∗
c |. Hence, |V ∗

c | = γ′
t(G

′)− 5n.

We now return to the proof of Theorem 3.14. It remains to show that f is an L-

reduction. Let V ∗
c be a minimum vertex cover of G and D∗

t be a min-ETD-set of G′. We

have |D∗
t | = |V ∗

c |+ 5n. Since the maximum degree of G is 3 and G is connected, we have

n−1 ≤ m ≤ 3|V ∗
c |. This implies that n ≤ 3|V ∗

c |+1. Consequently, we have |D∗
t | ≤ 21|V ∗

c |.

Now, let Dt be an ETD-set of G′. If Dt contains at least three edges from Fvi for

any vertex vi of G, then we take vi in the set C. Note that C is a vertex cover of G, and

so |C| ≤ |Dt| − 5n or, |Dt| ≥ |C| + 5n. Hence, |Dt| − |D∗
t | ≥ |C| + 5n − |D∗

t | =
|C| − (|D∗

t | − 5n) = |C| − |V ∗
c |. Therefore, |Dt| − |D∗

t | ≥ |C| − |V ∗
c |. This proves that f is

an L-reduction with a = 21 and b = 1.

Now, we present an approximation algorithm for the Min-ETDS problem in k-regular

graphs with k ≥ 4. For this purpose, first, we note a relationship between the number of
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vertices saturated by some min-ETD-set of G and γ′
t(G). For designing the algorithm, this

relationship is significant. We state this relation formally as follows.

Observation 3. Let S be the vertex set of the graph G∗ = G[D∗], where D∗ is a min-ETD-set

of G, then |S| ≤ 3
2
|D∗|.

Proof. Let G∗ have k components and let ni denote the number of vertices in the ith compo-

nent of G∗, where i ∈ [k]. Since each component of G∗ is a tree containing at least two edges

of D∗, we have

|VD∗| = |V (G∗)| = n1 + n2 + · · ·+ nk

= (n1 − 1) + (n2 − 1) + · · ·+ (nk − 1) + k

= |D∗|+ k

≤ |D∗|+ 1

2
|D∗|

=
3

2
|D∗| = 3

2
γ′
t(G).

Now, we design an approximation algorithm for the Min-ETDS problem in k-regular

graphs with k ≥ 4 using a well studied problem, the M I N I M U M C O N N E C T E D V E R T E X

C O V E R (MCVC) problem. This problem is a variation of the well known MVC problem.

A vertex cover C of a graph G such that G[C] is connected is a connected vertex cover of

G. Given a graph G, the MCVC problem is to find a connected vertex cover of minimum

cardinality. A minimum connected vertex cover (min-CVC) of G is connected vertex cover of

minimum cardinality. We proceed further by proving an important relationship between a

min-ETD-set and a min-CVC of a graph G, which will enable us to design our algorithm.

Theorem 3.15. If D∗ is a min-ETD-set of G and S∗ be a min-CVC of G, then |S∗| ≤ 2|D∗|,
that is, |S∗| ≤ 2γ′

t(G).
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Proof. Let S = VD∗ . Note that S is a vertex cover of G. Let G′ denote the subgraph of G

induced by the vertex set S, that is, G′ = G[S]. We see that V (G) \ V (G′) is an independent

set of G. Hence, no two vertices of V (G) \ V (G′) are adjacent.

If G′ is connected, then V (G′) = S is a connected vertex cover of G. Hence we

may assume that G′ is disconnected. Lt G′ have k ≥ 2 components, namely G1, G2, . . . , Gk.

Since G is connected, we have that, for some i ̸= j and for x ∈ V (Gi), y ∈ V (Gj), there

is a path P between x and y in G. Let P : u1u2 . . . ut where u1 = x and ut = y. As i ̸= j,

all vertices from the set {u2, u3, . . . , ut−1} do not belong to S. So, there exists a vertex

ur ∈ {u2, u3, . . . , ut−1} such that ur ∈ V (G) \ S and ur−1, ur+1 ∈ S. Now, we consider

the set S ′ = S ∪ {ur} and we update the graph G′ by considering G′ = G[S ′]. Hence, the

number of components in the resulting graph G′ is now k − 1. We proceed in this manner

with similar modifications until the resulting graph G′ is connected.

Hence, we may assume that G′ is connected. Letting S ′ = V (G′) yields |S ′| ≤
|S|+ k − 1 < |S|+ k ≤ |S|+ 1

2
|D∗| ≤ 3

2
|D∗|+ 1

2
|D∗| = 2|D∗|. The last inequality holds

due to Observation 3. Note that S ′ is a connected vertex cover of G and thus, |S∗| ≤ 2|D∗|,
that is, |S∗| ≤ 2γ′

t(G).

We finally present our promised approximation algorithm.

Algorithm 9: Algorithm for finding a min-ETD-set of a k-regular graph G

Input: A k-regular graph G, k ≥ 4.
Output: A min-ETD-set of G. Compute a connected vertex cover S of G using the
algorithm in [62];

Let G′ = G[S] and D′ = E(G′);
while (G′ contains at least one cycle ) do

Let C be a cycle in G′;
Let e ∈ E(C);
D′ = D′ \ {e};
G′ = G[D′];

return D′.

The approximation ratio and time complexity of Algorithm 9 is proved in the following

theorem.
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Theorem 3.16. Algorithm 9 is a 4k
k+2

+O( 1
n
)-approximation algorithm for Min-ETDS problem

in k-regular graphs for k ≥ 4 and it runs in O(n3)-time.

Proof. Assume that S∗ is a min-CVC of G and D∗ is a min-ETD-set of G. Let S be the

connected vertex cover of G obtained by the algorithm in [62] and let D′ be the edge set

returned by Algorithm 9. It is clear from Algorithm 9 that D′ is an ETD-set of G as it is

obtained by removing one edge from each cycle of a connected graph. Since D′ has no cycle

and G[D′] is connected, it is a tree. Hence,

|D′| = |S| − 1 ≤ (
2k

k + 2
+O

(
1

n

)
)|S∗| − 1

≤ (
2k

k + 2
+O

(
1

n

)
)2|D∗|

= (
4k

k + 2
+O

(
1

n

)
)|D∗|.

The second inequality holds using Theorem 3.15. Hence, Algorithm 9 is a 4k
k+2

+O( 1
n
)-

approximation algorithm.

To analyze the time complexity, we see that Algorithm 9 first finds a CVC S of G

using the algorithm in [62]. The authors of [62] have proved that their algorithm runs in

O(n3)-time. After that, Algorithm 9 looks at all cycles in the graph G[S] and removes one

edge from each of them so that the updated graph has no cycles and is connected. Finally,

it returns the set of edges of the updated graph. It is possible to accomplish this work in

linear-time. Thus, Algorithm 9 runs in O(n3)-time.

3.4 Complexity Difference Between Edge Domination and

Edge Total Domination

In this section, we discuss the complexity difference between the Min-EDS and the Min-

ETDS problem. Although these two problems appear to be firmly related, they differ in terms

of complexity. For this purpose, first, we define a new graph class, namely GP8 graphs. We
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show that for the class of GP8 graphs, the Decide Min-ETDS problem is NP-complete, while

the edge domination number can be computed efficiently for any GP8 graph.

Before presenting the definition of a GP8 graph, we explain some terminologies that

are going to be used in this section. For a graph G = (V,E) and an edge e ∈ E, we say that

the edge e dominates an edge e0 of G if e0 ∈ {f : f is adjacent to e}∪{e}. An edge e totally

dominates another edge f if the edges e and f are adjacent edges.

Definition 3.17. A graph G = (V,E) is called a GP8 graph if it is obtained from a general

graph G′ = (V ′, E ′), where V ′ = {v1, v2, . . . , vn}, by adding a path Pi : aibicidieifigihi on

8 vertices to each vertex vi ∈ V ′ and the edge viei for all i ∈ [n]. Formally, V = V ′ ∪
{ai, bi, ci, di, ei, fi, gi, hi : i ∈ [n]} and E = E ′∪{viei, aibi, bici, cidi, diei, eifi, figi, gihi : vi ∈
V and i ∈ [n]}.

An example of a GP8 graph obtained from C4, a cycle on four vertices, is shown in

Fig. 3.5. Now we prove the following results for GP8 graphs.

Theorem 3.18. If G is a GP8 graph obtained from a general graph G′ = (V ′, E ′) with

|V ′| = n, then γ′(G) = 3n.

Proof. Let G = (V,E) be a GP8 graph obtained from a general graph G′ = (V ′, E ′).
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From Definition 3.17, we note that if V ′ = {v1, v2, . . . , vn}, then we have V = V ′ ∪
{ai, bi, ci, di, ei, fi, gi, hi : i ∈ [n]} and E = E ′∪{viei, aibi, bici, cidi, diei, eifi, figi, gihi : vi ∈
V and i ∈ [n]}. We note that the set {bici, figi, viei : i ∈ [n]} is an edge dominating set of G.

Therefore, if D is a minimum edge dominating set of G, then |D| ≤ 3n.

Further, suppose D is a minimum edge dominating set of G. We note that, to dominate

the edge aibi, either aibi ∈ D or bici ∈ D. Without loss of generality we assume that bici ∈ D

and aibi /∈ D for each i ∈ [n]. Similarly, to dominate the edge gihi, either gihi ∈ D or

figi ∈ D. Again, without loss of generality we assume that figi ∈ D and gihi /∈ D for each

i ∈ [n]. Now, it may be noted that the edge diei is neither dominated by bici nor by gifi. Also,

the edge diei can only be dominated by an edge in the set Si = {diei, eifi, viei, cidi}, where

i ∈ [n]. Thus, if diei is dominated by e ∈ D ∩ Si then the set D = (D \ {e}) ∪ {viei} is

also a minimum edge dominating set of G. Hence, there exists a min-ETD-set D such that

bici, figi, viei ∈ D for each i ∈ [n]. Therefore, |D| ≥ 3n. Consequently, γ′(G) = 3n.

Lemma 3.19. If G is a GP8 graph obtained from the graph G′, then G′ has an ETD-set of

size at most k if and only if G has an ETD-set of size at most k + 4n.

Proof. Let G = (V,E) be a GP8 graph obtained from the graph G′ = (V ′, E ′). If D′ is an

ETD-set of G′ of size at most k, then the set D = D′ ∪ {bici, cidi, eifi, figi : ∈ [n]} is an

ETD-set of G of size at most k + 4n.

Conversely, suppose D is an ETD-set of the graph G of size at most k + 4n. We note

that, to totally dominate the edge aibi, the edge bici ∈ D for each i ∈ [n]. To totally dominate

the edge bici, at least one of aibi and cidi belongs to D, implying that |D∩{aibi, bici, cidi}| ≥
2 for each i ∈ [n]. Similarly, to totally dominate the edge gihi, the edge figi ∈ D, and

to totally dominate the edge figi, at least one of eifi and gihi belongs to D, implying

that |D ∩ {eifi, figi, gihi}| ≥ 2 for each i ∈ [n]. Therefore, adopting the notation from

Definition 3.17, we have |D ∩ E(Pi)| ≥ 4 for each i ∈ [n]. Further no edge of E ′ can be

dominated by the edges in E(Pi) for any i ∈ [n]. Let D′ = D \ (⋃n
i=1E(Pi)). Now suppose

viei ∈ D′. If all edges incident with vi different from viei are in D′, then remove viei from D′;
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otherwise in D′, we replace viei with some other edge e incident on vi such that e ∈ E ′ \D′.

The resulting set D′ is an ETD-set of G′ satisfying |D′| ≤ k. Hence, the result follows.

Theorem 3.20. The Decide Min-ETDS problem is NP-complete for GP8 graphs.

Proof. The proof directly follows from Lemma 3.19.

Now we define another graph class, namely GP3 graphs. For this graph class, we

show that the decision version of the Min-EDS problem is NP-complete but the Min-ETDS

problem is efficiently solvable.

Definition 3.21. A graph G = (V,E) is called a GP3 graph if it is obtained from a general

graph G′ = (V ′, E ′), where V ′ = {v1, v2, . . . , vn}, by adding a path Pi = aibici on three

vertices corresponding to each vertex vi ∈ V ′ and adding an edge viai for all i ∈ [n]. Formally,

V = V ′ ∪ {ai, bi, ci : i ∈ [n]} and E = E ′ ∪ {viai, aibi, bici : vi ∈ V and i ∈ [n]}.

An example of a GP3 graph obtained from a cycle on four vertices is shown in Fig. 3.6.

Theorem 3.22. If G is a GP3 graph obtained from the graph G′ = (V ′, E ′), where |V ′| = n,

then γ′
t(G) = 2n.

Proof. Let G = (V,E) be a GP3 graph obtained from a general graph G′ = (V ′, E ′). From

Definition 3.21, we note that if V ′ = {v1, . . . , vn} then we have V = V ′∪{ai, bi, ci : i ∈ [n]}
and E = E ′ ∪ {viai, aibi, bici : vi ∈ V and i ∈ [n]}. The set D′ = {viai, aibi : i ∈ [n]} is an

ETD-set of G. Therefore, we have γ′
t(G) ≤ |D′| = 2n.
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Next, assume that D is a min-ETD-set of G. To totally dominate the edge bici, the

edge aibi ∈ D. Moreover to totally dominate the edge aibi, the set D contains at least one

of the edges bici and aivi, implying that |D ∩ {viai, aibi, bici : i ∈ [n]}| ≥ 2. Therefore,

|D| ≥ 2n. Consequently, we have γ′
t(G) = 2.

Lemma 3.23. If G is a GP3 graph obtained from the graph G′, then G′ has an edge dom-

inating set of size at most k if and only if G has an edge dominating set of size at most

k + n.

Proof. Let G = (V,E) be a GP3 graph obtained from a general graph G′ = (V ′, E ′). Every

ED-set of G′ can be extended to an ED-set of G by adding to it the edges from the set

{aibi : i ∈ [n]}. Hence, if G′ has an ED-set of size at most k, then G has an ED-set of size at

most k + n.

Conversely, assume that D is an ED-set of G of size at most k + n. To dominate the

edge bici, we note that bici ∈ D or aibi ∈ D. Thus, |D ∩ {aibi, bici}| ≥ 1 for each i ∈ [n].

Further, no edge of E ′ can be dominated using an edge in the set {aibi, bici : i ∈ [n]}. Let

D′ = D \ {aibi, bici : i ∈ [n]}. Now, if D′ ⊆ E ′, then D′ is an ED-set of G′ and |D′| ≤ k.

Otherwise, assume that viai ∈ D′ for some i ∈ [n]. If all edges incident with vi other than

viai are in D′, then remove viai from D′; otherwise, replace the edge viai in D′ with some

other edge e ∈ E ′ \ D′ incident with vi. In both cases, the set D′ is an ED-set of G′ and

|D′| ≤ k. Hence, the result follows.

Theorem 3.24. The decision version of the Min-EDS problem is NP-complete for GP3 graphs.

Proof. The proof directly follows from Lemma 3.23.

3.5 Summary

We studied the computational complexity of the Min-ETDS problem. We discussed

the complexity difference between the Min-EDS and the Min-ETDS problem. We resolved

the complexity status of the problem in chain graphs, a subclass of bipartite graphs. Further,
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we studied the problem in two subclasses of chordal graphs, split graphs, and proper interval

graphs without a cut vertex.

We also studied the approximation hardness and approximation algorithm for the prob-

lem. We proved that the problem is APX-complete for graphs with maximum degree 3 and

designed an efficient approximation algorithm for k-regular graphs when k ≥ 4. We remark

that the key to design our approximation algorithm is a relationship between cardinalities of a

min-ETD-set and a min-CVC of a graph.



Chapter 4
Grundy (Double) Dominating Sequence

4.1 Introduction

This chapter concentrates on two distinct types of vertex sequences in graphs, namely

“dominating sequences” and “double dominating sequences”. For a given graph G, the aim

is to find a dominating sequence (double dominating sequence) of maximum length. The

chapter presents algorithmic and hardness results for both the optimization problems.

Domination in graphs is one of the classical problems in graph theory and has an

extremely rich literature. The M I N I M U M D O M I N AT I O N problem is to find a dominating

set of minimum cardinality. This problem and its variations have numerous applications

in real-world problems including social networks, facility location problems, and routing

problems. For more information about domination in graphs, the reader is referred to three

recent monographs [13, 14, 35]. To find a dominating set of minimum cardinality in a given

graph, it might seem reasonable to pick vertices one at a time depending on some criterion,

such as large vertex degree.

The domination game, introduced in 2010 ([23]) models this vertex-by-vertex approach

of building a dominating set of a graph. In this game, we have a graph G and two players,

Dominator and Staller, who alternately take turns and choose a vertex from G such that

whenever a vertex is chosen by either player, at least one additional vertex of G is dominated

that was not dominated by the previously chosen vertices. The game begins with either

Dominator or Staller taking the first move, and they continue to alternate turns. The game

comes to an end when there is no more vertex to choose. Dominator and Staller have the

opposite goals in the game: one wants the game to end in as few moves as possible while the

other one wants to extend the length of the game. At the end of the game, the set of vertices

chosen during the game forms a dominating set. Therefore, throughout the game, a sequence

of vertices is selected. In several papers, authors explored a sequence obtained by the same

91
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basic rule, yet assuming that only the slow player plays the game, leading to the following

specific definitions.

Let S = (v1, v2, . . . , vk) be a sequence of distinct vertices of G. The corresponding

set {v1, v2, . . . , vk} of vertices from the sequence S will be denoted by Ŝ. A sequence

S = (v1, v2, . . . , vk) is a closed neighborhood sequence if N [vi] \
⋃i−1

j=1N [vj] ̸= ∅, holds for

every i ∈ {2, 3, . . . , k}. If, in addition, Ŝ is a dominating set of G, then S is a dominating

sequence of G. Clearly, the length k of a dominating sequence S is bounded below by the

domination number, γ(G), of G. A dominating sequence of maximum length in G is called

a Grundy dominating sequence (GD-sequence) of G. The cardinality of such a sequence is

called the Grundy domination number of G and is denoted by γgr(G). Given a graph G, the

G R U N D Y D O M I N AT I O N (GD) problem asks to find a Grundy dominating sequence of G.

By the GDD problem, we mean the decision version of the GD problem.

These concepts were introduced and studied in 2014 by Brešar, Gologranc, Milanič,

Rall, and Rizzi [20], where the motivation came from the domination game as described

above. In addition, Grundy domination presents the worst-case scenario in the process of the

online update of a dominating set in the expanding network. In 2021, domination games, as

well as Grundy domination, were comprehensively surveyed in the book [21].

A close relation between dominating sequences in graphs and covering sequences in

hypergraphs was found in the seminal paper [20]. A hypergraph is a generalization of a graph.

Mathematically, a hypergraph is represented by an ordered pair H = (X,E ), where X is

the set of vertices of H and E is the set of hyperedges of H . A hyperedge of H is a subset

of vertices of H . Given a hypergraph H = (X,E ) with no isolated vertices, an edge cover

of H is a set of hyperedges from E that covers all vertices of X . That is, the union of the

hyperedges from an edge cover is the vertex set X . An edge cover of H having minimum

number of hyperedges is called a minimum edge cover of H . The cardinality of such an edge

cover of H is the edge covering number of H and is denoted by ρ(H).

Now, consider a sequence of hyperedges C = (C1, . . . , Cr) of a hypergraph H . If

for each i, i ∈ [r], Ci covers a vertex not covered by Cj , for all j < i, then, C is a legal

hyperedge sequence of H . If C = (C1, C2, . . . , Cr) is a legal hyperedge sequence and the
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set Ĉ = {C1, C2, . . . , Cr} is an edge cover of H , then C is an edge covering sequence.

An edge covering sequence of maximum length in H is a Grundy covering sequence of

H . The size of such a sequence is the Grundy covering number of H and is denoted by

ρgr(H). Given a hypergraph H = (X,E ), the G R U N D Y C O V E R I N G problem asks to

find an edge covering sequence of H having size ρgr(H). The G R U N D Y C O V E R I N G

D E C I S I O N (GCD) problem is the decision version of the G R U N D Y C O V E R I N G problem.

It was shown in [20] that the GDD problem is NP-complete by reduction from the GCD

problem, while for the NP-completeness of the GCD problem, a reduction from the classical

F E E D B A C K A R C S E T problem was used.

Recently Haynes et al. proposed various kinds of vertex sequences, each of which is

specified in terms of some conditions that must be satisfied by every subsequent vertex in

the sequence [44]. Predictably, double domination in the sequence context is one of these

variations. Recall that, for a graph G with no isolated vertices, a set D ⊆ V is called a double

dominating set of G, if for every vertex x ∈ V , |NG[x] ∩D| ≥ 2.

A sequence S is called a double neighborhood sequence of a graph G = (V,E)

without any isolated vertices, if for each i ≥ 2, the vertex vi dominates at least one vertex

u in V which is dominated at most once by the vertices v1, v2, . . . , vi−1. If Ŝ is a double

dominating set of G, then we call S a double dominating sequence of G. A double dominating

sequence of G with maximum length is called a Grundy double dominating sequence (GDD-

sequence) of G. The length of a GDD-sequence is the Grundy double domination number

of G and is denoted by γ×2
gr (G). Given a graph G with no isolated vertices, the G R U N D Y

D O U B L E D O M I N AT I O N (GD2) problem asks to find a GDD-sequence sequence of G.

By the GD2D problem, we mean the decision version of the GD2 problem. This concept

was introduced in a slightly different manner by Haynes et al. in [44]. In their version, Si

denotes the subsequence (v1, v2, . . . , vi) which consists of the first i vertices of the sequence

S = (v1, v2, . . . , vk). We state their definition below.

Definition 1. Let S = (v1, v2, . . . , vk) be a sequence of vertices in a graph G without isolated

vertices such that every vertex vi, i ≥ 2 dominates at least one vertex x in V \ Ŝi−1 that is

dominated at most once by vertices in Ŝi−1. Such a sequence is called a double neighborhood

sequence of G. A double neighborhood sequence of maximal length is called a double
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dominating sequence of G. The maximum length of a double dominating sequence is called

the Grundy double domination number, denoted by γ2gr(G). A double dominating sequence

of length γ2gr(G) is called a γ2gr-sequence or a Grundy double dominating sequence.

Note that if S is a double neighborhood sequence according to our definition

then Ŝ is a double dominating set of G. But according to the definition 1, if S is a

double neighborhood sequence of G then Ŝ is not necessarily a double dominating set of

G. If we consider a maximum length double neighborhood sequence according to the

definition 1, then the set Ŝ is a double dominating set of G. Hence, optimal solutions

according to both definitions, will be same. Below, we prove it formally.

Before the proof, we define some notations that will be used throughout this chapter. If

S1 = (v1, v2, . . . , vn) and S2 = (u1, u2, . . . , um), n,m ≥ 0, are two sequences, then the con-

catenation of the sequences S1 and S2 is the sequence S1⊕S2 = (v1, v2, . . . , vn, u1, u2, . . . , um).

Let A = {u1, u2, . . . , ut} be an ordered set of vertices then (A) denotes the sequence of

vertices (u1, u2, . . . , ut). For vertices u1, u2, . . . , ut, the sequence (u1, u2, . . . , ut) is denoted

by u1 ⊕ u2 ⊕ · · · ⊕ ut.

Let S be a double neighborhood sequence according to the definition 1. We see that

S is a double neighborhood sequence according to our definition also. Now, either Ŝ is a

double dominating set of G or after appending some vertices at the end of S, we get a double

dominating sequence of G according to our definition. So, we state the following lemma.

Lemma 4.1. γ2gr(G) ≤ γ×2
gr (G).

We fix some terminologies for this section only. In a double neighborhood sequence S

according to our definition, a vertex u ∈ Ŝ is said to be a good vertex if it is appearing in the

sequence only to double dominate vertices appearing prior to u.

In order to prove that the value of Grundy double domination number is equal in all

graphs according to both the definitions, it is enough to prove the following lemma.

Lemma 4.2. There exists a double neighborhood sequence according to definition 1 of size

γ×2
gr (G).
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Proof. Consider a Grundy double dominating sequence S = (v1, v2, . . . , vk) of G according

to our definition, in which the index of the first good vertex is highest. Let i be the index of

the first good vertex in S. We write S as S1 ⊕ vi ⊕ S2. Since vi is a good vertex, it dominates

some vertices of the graph the second time and all of those vertices appear before vi in the

sequence. Assume that vi dominates vertices vi1 , vi2 , . . . , vir second time and they appear

before vi in S in the order vi1 , vi2 , . . . , vir . Note that these vertices appear in the subsequence

S1. Since vi dominates the vertices vi1 , vi2 , . . . , vir second time, we get that no neighbor

of these vertices appears in the subsequence S1. Now, we modify S as follows. We place

vertices vi1 , vi2 , . . . , vir just after vi in the same order and get a new sequence, say S ′.

Next, we show that there is no good vertex till index i in S ′ and S ′ remains a double

neighborhood sequence of G according to our definition. Clearly, the vertex at the i-th index

in S ′ is vir and it dominates itself the second time. Note that S ′ contains no good vertex up

to the vertex vir . So, there is no good vertex till the index i in S ′. Now, it remains to show

that S ′ is still a double neighborhood sequence of G according to our definition of size k. We

write S ′ as S ′
1 ⊕ vi ⊕ vi1 ⊕ vi2 ⊕ · · · ⊕ vir ⊕ S ′

2. Note that S ′
2 is same as the subsequence S2.

Let x ∈ Ŝ ′
1. Since S was a double neighborhood sequence of G according to our

definition, x dominates a vertex of G which is dominated at most once by the vertices

prior to x in S. Let A be the set of vertices that appear before x in S. In the sequence

S ′, vertex x is appearing before vi and the set of vertices that appear prior to x in S ′ is a

subset of A. So, x still dominates a vertex which is dominated at most once before x in S ′.

Now, we see that vi dominates vertices vi1 , vi2 , . . . , vir first time which are appearing after

vi in S ′. Vertices vi1 , vi2 , . . . , vir dominate themselves second time in S ′. So, every vertex

of S ′
1 ∪ {vi, vi1 , vi2 , . . . , vir} dominates a vertex which is dominated at most once by the

previous vertices. Finally, let x ∈ S2. Clearly x dominates a vertex which is dominated at

most once by the vertices which precede x in S ′.

Hence, S ′ remains a double neighborhood sequence of size |Ŝ| according to our

definition and so, S ′ is also a Grundy double dominating sequence of G according to our

definition. The sequence S ′ contains no good vertex till index i. This contradicts the fact

that S is a Grundy double dominating sequence according to our definition in which the first

good vertex appears at the highest index. Thus, there is a sequence that contains no good
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F I G U R E 4 . 1 : Some Graph Classes.

vertex. Therefore, there exists a double neighborhood sequence according to definition 1 of

size γ×2
gr (G).

Using Lemma 4.1 and Lemma 4.2, we get that γ2gr(G) = γ×2
gr (G). Therefore, we

follow our definition of double dominating sequences in this thesis.

A hierarchy presenting relationships between some classes of graphs that are relevant

to this chapter is shown in Fig. 4.1. The section-wise organization of this chapter is as follows:

In Section 4.2, we present all the results we have obtained for the GD problem, and Section

4.3 describes all the results concerning the GD2 problem.

4.2 Dominating Sequences

In this section, we first prove that the GDD problem is NP-complete for bipartite and co-

bipartite graphs. Next, we propose a linear-time algorithm that outputs a Grundy dominating

sequence for a chain graph, a subclass of bipartite graphs.

In the seminal paper [20] the authors proved that the GDD problem is NP-complete

for chordal graphs. They also proved that a Grundy dominating sequence in trees, cographs,

and split graphs can be computed in polynomial time [20]. An additional study of Grundy

domination in forests was used in proving a formula for the Grundy domination number in

strong products of graphs [12]. Several combinatorial results have also been established for

the parameter and its relatives in the literature [18, 24, 34, 44, 63]. From the computational

point of view, it was shown that the GDD problem can be solved in polynomial time for
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interval graphs and Sierpiński graphs [19], as well as on some X-join products, lexicographic

products and related classes of graphs [72].

If S is a closed neighborhood sequence, then we say that vi footprints the vertices

from N [vi] \ ∪i−1
j=1N [vj], and that vi is the footprinter of every vertex u ∈ N [vi] \ ∪i−1

j=1N [vj].

The following result is an immediate consequence of definitions.

Proposition 10. Let S be a (Grundy) dominating sequence in a graph G. If u, v ∈ V (G) such

that N [u] ⊆ N [v] and u, v ∈ Ŝ, then u appears before v in S.

Given a hypergraph H = (X,E ), a legal transversal sequence is a sequence S =

(v1, . . . , vk) of vertices from X such that for each i there exists an hyperedge Ei ∈ E such that

vi ∈ Ei and vj /∈ Ei for all j, where j < i. The longest possible legal transversal sequence in

a hypergraph H is a Grundy transversal sequence and its length is the Grundy transversal

number of H , denoted τgr(H). The following result was proved in [22, Proposition 8.3].

Proposition 11. The Grundy transversal number of an arbitrary hypergraph H equals the

Grundy covering number of H; τgr(H) = ρgr(H).

4.2.1 NP-completeness results

Recall that the GDD problem is NP-complete for general graphs, and also when

restricted to chordal graphs. In this subsection, we prove that the problem remains NP-

complete for bipartite and co-bipartite graphs.

4.2.1.1 Bipartite Graphs

Here, we prove the NP-completeness of the GDD problem for bipartite graphs. We reduce

the GCD problem for hypergraphs to the GDD problem for bipartite graphs. Given a

hypergraph H = (X,E ) with |X| = n and |E | = m, (n,m ≥ 2), we construct an instance

G = (X∗, Y ∗, E∗) of the GDD problem, where G is a bipartite graph, as follows.

V (G) = A∪X ′∪E ′∪B, where A = {a1, a2, . . . , an} and B = {b1, b2, . . . , bm}. The

sets X ′ and E ′ contain n and m vertices respectively, where each vertex of X ′ corresponds to

a vertex of X in the hypergraph H and each vertex of E ′ correspond to a hyperedge of H .
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For a hyperedge Ei ∈ E , we denote the corresponding vertex in E ′ by ei. Now, a vertex x

of X ′ is adjacent to a vertex of ei ∈ E ′ in G if and only if x ∈ Ei in H . Each vertex of A is

adjacent to each vertex of X ′ in G, also, each vertex of B is adjacent to each vertex of E ′ in G.

Clearly, graph G is a bipartite graph. Fig. 4.2 illustrates the construction of G when H is the

hypergraph given by (X = {x1, x2, x3, x4},E = {E1,E2,E3,E4}), where E1 = {x1, x2, x4},
E2 = {x2, x3}, E3 = {x1, x2} and E4 = {x2, x3, x4}.

Theorem 4.3. Let G be the bipartite graph constructed from a hypergraph H = (X,E ) with

|X| = n and |E | = m, (n,m ≥ 2) as explained above. Then, ρgr(H) ≥ k if and only if

γgr(G) ≥ n+m+ k.

Proof. First, let (E1,E2, . . . ,Ek′) be an edge covering sequence of size at least k in H . Then

the sequence (b1, b2, . . . , bm, e1, e2, . . . , ek′ , a1, a2, . . . , an) is a dominating sequence of size

at least n+m+ k in G. Hence, γgr(G) ≥ n+m+ k.

For the converse, let us assume that γgr(G) ≥ n+m+ k for some positive integer k.

If X ′ ∩ Ŝ ̸= ∅ for some dominating sequence S of G, then x0 denotes the first vertex in S

coming from X ′, and if E ′ ∩ Ŝ ̸= ∅ for some dominating sequence S of G, then e0 denotes

the first vertex in S coming from E ′.

First, we prove two auxiliary claims.

Claim 1. There exists a dominating sequence S of size at least n+m+ k in G such that all

vertices of A appear in S and if X ′ ∩ Ŝ ̸= ∅, then all vertices of A appear before x0.

Proof. Let S be a dominating sequence of size at least n+m+ k in G (which exists, since

γgr(G) ≥ n +m + k). Suppose there exists a vertex ai ∈ A, which is not appearing in S.
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Then, there exists vertex from X ′ which is appearing in S to footprint ai. Hence, X ′ ∩ Ŝ ̸= ∅
and x0 footprints ai. Let P denotes the set of vertices appearing before x0 and Q be the set of

vertices appearing after x0 in S. Now, two cases are possible.

Case 1: Q ∩ A = ∅.
In this case, either P ∩ A = ∅ or P contains some vertices of A. So, first assume that P

contains no vertex of A. Then, we see that no vertex of A appears in the sequence S. If x0

does not footprint any vertex in E ′, then we modify S by appending vertices of A in the order

(a1, a2, . . . , an) just before x0 and removing all vertices from Q that footprinted a vertex of

X ′ along with the vertex x0. Otherwise, if x0 footprints some vertices of E ′, we perform the

same modification without removing x0. In either case, we removed at most n vertices and

we added n new vertices to S, by which the so modified sequenceS is a dominating sequence

of size at least n+m+ k in G, which satisfies the statement of the claim.

Now, if P contains some vertices of A, then no vertex of Q footprints any vertex of

X ′. Again, if x0 footprints only vertices of A, then we modify S by appending vertices of

A \ P in any order just before x0 and removing the vertex x0. Otherwise, if x0 footprints

also some vertices of E ′, we perform the same modification, but without removing x0. In

either case, we removed at most 1 vertex and we added at least 1 new vertex to the sequence

S. With this, the so modified sequence S is a dominating sequence of size at least n+m+ k

in G, which satisfies the statement of the claim.

Case 2: |Q ∩ A| = 1.

In this case, P contains no vertex of A. Let aj be the vertex from Q∩A appearing in S. Note

that the vertices in S, which footprint only vertices from X ′, do not appear after aj in S. Note

that there are at most n− 2 vertices that appear in S between x0 and aj and footprint a vertex

of X ′, and denote the set of these vertices by Q′. If x0 does not footprint any vertex in E ′,

then we modify S by appending vertices of A in the order (a1, a2, . . . , an) just before x0 and

then removing all vertices of Q′ ∪ {x0, aj}. Otherwise, if x0 footprints also some vertices of

E ′, we perform the same modification without removing x0. In either case, we removed at

most n− 1 vertices and we added n− 1 new vertices to S. Hence, the so modified sequence

S is a dominating sequence of size at least n+m+ k in G, which satisfies the statement of

the claim.
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By the above claim, there exists a dominating sequence S of size n+m+ k such that

all vertices of A appear in S and they appear before x0 if X ′ ∩ Ŝ ̸= ∅. The proof of Claim 2

is similar to the proof of the Claim 1.

Claim 2. There exists a dominating sequence S of size at least n+m+ k in G such that all

vertices of B appear in S and if E ′ ∩ Ŝ ̸= ∅, then all vertices of B appear before e0.

Combining the above two claims we infer that there exists a dominating sequence S

of size at least n+m+ k in G such that |(X ′ ∪ E ′) ∩ Ŝ| ≥ k.

Claim 3. Either X ′ ∩ Ŝ = ∅ or E ′ ∩ Ŝ = ∅.

Proof. If X ′ ∩ Ŝ = ∅, we are done. So, assume that X ′ ∩ Ŝ ̸= ∅ and E ′ ∩ Ŝ ̸= ∅. Now, either

e0 appears before x0 or e0 appears after x0. In the former case, we see that before the vertex

x0, all vertices of G are footprinted (and thus dominated) using Claims 1 and 2. So, x0 does

not footprint any vertex implying that this case is not possible. Similarly, the latter case is

also not possible, which proves the claim.

Now, if X ′ ∩ Ŝ = ∅, then we have that |E ′ ∩ Ŝ| ≥ k. In addition, by Claim 2, since

all vertices of B appear in S before any vertex of E ′ appears in S, the suibsequence of S of

vertices in E ′ corresponds to an edge covering sequence in the hypergraph H , which is of

size at least k. Thus, ρgr(H) ≥ k, as desired.

Otherwise, if E ′ ∩ Ŝ = ∅, then we derive that |X ′ ∩ Ŝ| ≥ k, where the subsequence

formed by vertices of X ′ ∩ Ŝ corresponds to a legal transversal sequence of the hypergraph

H of size at least k. By Proposition 11, τgr(H) = ρgr(H), and so ρgr(H) ≥ k. The proof of

the theorem is complete.

The following theorem follows directly from Theorem 4.3.

Theorem 4.4. The GDD problem is NP-complete for bipartite graphs.



4.2 Dominating Sequences 101

b b b

b

b

b b

b

b

a b c

a1

b1

c1

a2

b2

c2

G
G′

V1 V2

F I G U R E 4 . 3 : Construction of a co-bipartite graph G′ from a graph G.

4.2.1.2 Co-bipartite Graphs

Now, we prove the NP-completeness of the GDD problem for co-bipartite graphs. Here, we

reduce the GDD problem for general graphs to the GDD problem for co-bipartite graphs.

Given a graph G = (V,E), where V = {v1, v2, . . . , vn}, we construct an instance G′ =

(V1 ∪ V2, E
′) of the GDD problem, where G′ is a co-bipartite graph, as follows.

The vertex set of G′ is V1 ∪ V2, where V1 = {v1i : vi ∈ V } and V2 = {v2i : vi ∈ V }.
The set of edges of G′ is given by {v1i v1j : 1 ≤ i < j ≤ n}∪{v2i v2j : 1 ≤ i < j ≤ n}∪{v1i v2j :

vj ∈ NG[vi], i, j ∈ [n]}. Note that G′ is a co-bipartite graph. Fig. 4.3 provides an illustration

of the construction of G′ from G.

Claim 4. For a positive integer k, γgr(G) ≥ k if and only if γgr(G′) ≥ k.

Proof. First, let S = (u1, u2, . . . , ut) be a dominating sequence of G of size t, where t ≥ k.

Then S ′ = (u1
1, u

1
2, . . . , u

1
t ) is a dominating sequence of size at least k in G′. Indeed, if vi is a

vertex footprinted by ui with respect to S, then v2i is footprinted by u1
i with respect to S ′.

Conversely, let S = (w1, w2, . . . , wt) be a dominating sequence of size t in G′, where

t ≥ k and wi ∈ V1 ∪ V2 for all i ∈ [t]. Without loss of generality, we may assume that

w1 ∈ V1. Note that there can be at most one vertex from V2 in S. If there is no such vertex,

then the sequence S corresponds to a sequence of vertices in G of size at least k, which is a

dominating sequence of G. Now, suppose there exists a vertex from V2 in S. Clearly, it has to

be the last vertex of S, and let wt be vertex v2i ∈ V2. Note that v2i appears in S to footprint

some vertices of V2. Let K = {v2j ∈ V2 : v2j is footprinted by v2i in S }. Let v2j ∈ K then,

v1j /∈ Ŝ. We modify S by replacing the vertex v2i with the vertex v1j and get a new sequence



102 Chapter 4 Grundy (Double) Dominating Sequence

S ′. If S ′ is not a dominating sequence then there is a vertex v2r ∈ K which is not dominated

by the sequence S ′. In this case, we see that the sequence S ′ ⊕ v1r dominates v2r . We keep

on appending such vertices until every vertex of K is dominated and call the final sequence

again by S ′. So, the updated S ′ is a dominating sequence of G′ of size at least k. Since S ′

contains only vertices from V1, it corresponds to a sequence of vertices in G of size at least k,

which is a dominating sequence of G. This completes the proof of the converse direction of

the statement.

Now, we are ready to state the announced result.

Theorem 4.5. The GDD problem is NP-complete for co-bipartite graphs.

4.2.2 Algorithm for Chain Graphs

In this subsection, we give a linear-time algorithm to compute a GD-sequence of a

chain graph. Before discussing the main idea for chain graphs, we first give the Grundy

domination number of a complete bipartite graph which is a subclass of chain graphs. The

proof of this result is easy and hence, is omitted.

Proposition 12. If G = (X, Y,E) is complete bipartite graph, then γgr(G) = max{|X|, |Y |}.

A chain graph G = (X, Y,E) has a chain ordering (OX , OY ), where OX = (x1, x2, . . .,

xn1) and OY = (y1, y2, . . . , yn2), and based on the equivalence relation ∼ discussed in Chap-

ter 1, the sets X and Y have a twin partition. Let PX = {X1, X2, . . . , Xk} be the twin

partition of the vertex subset X and PY = {Y1, Y2, . . . , Yk} be the twin partition of the vertex

subset Y . Recall that N(Xi) =
⋃i

r=1 Yr and N(Yj) =
⋃k

r=j Xr for each i, j ∈ [k]. Since the

case k = 1 yields a complete bipartite graph, in the rest of this subsection, we only consider

the chain graphs with k ≥ 2. We also assume that a chain graph G = (X, Y,E) is given

along with the chain ordering and the twin partitions of X and Y .

The proof of the following observation is again easy, and hence is omitted.

Observation 4. Let A ⊆ V (G) be a set of open twins in an arbitrary graph G. Then there

exists a GD-sequence S of G such that all vertices of A ∩ Ŝ appear together in S.
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Observation 5. Let S be a GD-sequence of G and A ⊆ V (G) be a set of open twins in an

arbitrary graph G such that A ∩ Ŝ ̸= ∅. If the first vertex of A in S footprints itself, then

there exists a GD-sequence of G in which all vertices of A appear and they appear together

in that sequence.

Proof. If A ∩ Ŝ = A, we have nothing to prove. So, suppose that A ∩ Ŝ ̸= A. Then, there

exists a vertex a ∈ A, which is not in S. Thus there exists a vertex b ∈ Ŝ, which footprints a.

Note that b appears after all vertices of A ∩ Ŝ. Now, we modify S by replacing b with the

vertex a. By doing this repeatedly, we get a new GD-sequence S ′ of G which contains all

vertices of A. We can rearrange all vertices of A so that all vertices of A appear together in

S ′.

In the remainder of the subsection we assume that G is a chain graph with the partition

of its vertex set as described earlier.

Observation 6. There exists a GD-sequence S of G such that for every i ∈ [k], we have

Xi ∩ Ŝ ̸= ∅ or Yi ∩ Ŝ ̸= ∅.

Proof. Let S be a GD-sequence such that Xi ∩ Ŝ = ∅ and Yi ∩ Ŝ = ∅. This implies that

there exist vertices x ∈ ∪k
r=i+1Xr and y ∈ ∪i−1

r=1Yr in S to footprint the vertices of Yi and

Xi respectively. Note that i /∈ {1, k}. Now, if x appears before y in S, then modifying the

sequence S by replacing y by all vertices of Xi gives another GD-sequence of G such that

Xi ∩ Ŝ ̸= ∅. (Note that if y ∈ Yj , then Xj ∩ Ŝ ̸= ∅. To see this, assuming that Xj ∩ Ŝ = ∅
implies that y footprints vertices of both Xj and Xi in S. In this case, replacing the vertex y

with all vertices of Xi and Xj results in a new dominating sequence of G of length bigger

than S, a contradiction.) Similarly, if y appears before x in S, then modifying the sequence S

by replacing x by all vertices of Yi gives another GD-sequence of G such that Yi ∩ Ŝ ̸= ∅.
Hence, there exists a GD-sequence S of G such that Xi ∩ Ŝ ̸= ∅ or Yi ∩ Ŝ ̸= ∅.

Let A be a set of open twins in G. If |A ∩ Ŝ| ≥ 2, then we see that the first vertex of

A in S footprints itself. Thus we can assume that, A ⊆ Ŝ, due to Observation 5. Hence, we
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have, |A ∩ Ŝ| ≤ 1 or A ⊆ Ŝ for any set of open twins A in G. Note that the each of the sets

X1, X2, . . . , Xk, Y1, Y2, . . . , Yk is a set of open twins in G.

Now, based on the Observations 4, 5 and 6, whenever we consider a GD-sequence S

of G, we assume that S satisfies the following, for the rest of this section:

(1) For each i ∈ [k], |Xi ∩ Ŝ| ≤ 1 or Xi ⊆ Ŝ. If Xi ⊆ Ŝ, then all vertices of Xi appear

together in S.

(2) For each i ∈ [k], |Yi ∩ Ŝ| ≤ 1 or Yi ⊆ Ŝ. If Yi ⊆ Ŝ, then all vertices of Yi appear together

in S.

(3) For each i ∈ [k], Xi ∩ Ŝ ̸= ∅ or Yi ∩ Ŝ ̸= ∅.

Now, let S be a GD-sequence of G. Then S is one of the following type:

(a) X ∩ Ŝ = ∅, (b) Y ∩ Ŝ = ∅, (c) X ∩ Ŝ ̸= ∅ and Y ∩ Ŝ ̸= ∅.

We call the corresponding GD-sequences S to be of type (a), type (b), and type (c), respec-

tively.

Lemma 4.6. Let S∗ = (v1, v2, . . . , vp) be a GD-sequence of G of type (c). The following

statements hold:

1. If v1 ∈ Y1, then there exists a type (a) GD-sequence of G.

2. If v1 ∈ Xk, then there exists a type (b) GD-sequence of G.

3. If v1 /∈ Y1 ∪Xk, then there exists a GD-sequence S of G such that ∪ir=1Xr ⊆ Ŝ for

some i ∈ [k] and ∪kr=jYr ⊆ Ŝ for some j ∈ [k].

Proof. First, we assume that v1 ∈ Y1. In this case, all vertices of X are footprinted by v1.

So, all the vertices v2, . . . , vp appear to footprint vertices of Y \ {v1} only. This implies that

γgr(G) ≤ |Y |. So, the sequence S = (yn2 , yn2−1, . . . , y1) is also a GD-sequence of G and it

is of type (a).
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Next, we assume that v1 ∈ Xk. In this case, all vertices of Y are footprinted by v1.

So, all the vertices v2, . . . , vp appear to footprint vertices of X \ {v1} only. This implies that

γgr(G) ≤ |X|. So, the sequence S = (x1, x2, , . . . , xn1) is also a GD-sequence of G and it is

of type (b).

Next, we assume that v1 /∈ Y1 ∪Xk. Since S∗ contains vertices from both X and Y ,

we have two cases to consider.

Case 1: v1 ∈ X .

Let v1 ∈ Xi0 (i0 ∈ [k]). So, we get that v1 footprints all vertices of N(Xi0) ∪ {v1}. Now, let

u be a vertex of X such that N(u) ⊆ N(v1). If u is footprinted by some vertex from N(u),

we modify the sequence S∗ as follows. We remove the footprinter of u from S∗ and include

u just after v1 and get a new sequence. But, if u is footprinted by itself, then we relocate u in

S by putting it just after v1. We repeat the respective modifications for each vertex u such

that N(u) ⊆ N(v1) and get a new sequence S which remains a GD-sequence of G. Thus,

we have that ∪i0r=1Xr ⊆ Ŝ and the vertices of ∪i0r=1Xr are at first
∑i0

r=1 |Xr| places of the

sequence. Next, we consider the (
∑i0

r=1 |Xr|+ 1)-th vertex of the sequence. If that vertex is

from X , we repeat the same modifications until we get a vertex of Y in the sequence. After

all such modifications, we have that ∪ir=1Xr ⊆ Ŝ for some i ∈ [k].

Now, we again rename the sequence by S∗ and vertices of S∗ by (v1, v2, . . . , vp). Let

t ∈ [p] be the smallest index such that vt ∈ Y . Note that all vertices of ∪ir=1(Xr ∪ Yr) are

footprinted before the appearance of vt. If vt ∈ ∪i
r=1Yr, then vt footprints all vertices of

∪kr=i+1Xr. With this, all vertices of X are footprinted. So, a vertex vt′ ∈ Ŝ∗ such that t′ > t

appears to footprint a vertex of ∪kr=i+1Yr and no vertex of ∪kr=i+1Yr appeared before vt. We

modify S∗ by removing all vertices of S∗ after vt and including all vertices of ∪kr=i+1Yr after

vt, we get a new GD-sequence S in which we have ∪kr=i+1Yr ⊆ Ŝ. Otherwise, if vt ∈ Yi′

where i′ > i, then vt footprints all vertices of ∪k
r=i′Xr. Clearly, all vertices of ∪kr=i′Yr need

to be footprinted after the appearance of vt in the sequence S∗. If some vertex of ∪k
r=i′Yr is

not appearing in S∗ then we remove its footprinter from the sequence and include the vertex

itself in the sequence. Thus, we get a new GD-sequence S in which we have ∪kr=i′Yr ⊆ Ŝ.

Case 2: v1 ∈ Y .
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Similar proof as case 1.

Therefore, there exists a GD-sequence S of G such that ∪ir=1Xr ⊆ Ŝ for some i ∈ [k]

and ∪kr=jYr ⊆ Ŝ for some j ∈ [k].

Lemma 4.7. Suppose there exists a type (c) GD-sequence (v1, v2, . . . , vp) of G, where

v1 /∈ (X1 ∪ Yk). Then there exists a GD-sequence S of G such that ∪i
r=1Xr ⊆ Ŝ for some

i ∈ [k] and ∪kr=jYr ⊆ Ŝ for some j ∈ [k], where j ≥ i.

Proof. Using Lemma 4.6, we have that there exists a GD-sequence S of G such that

∪ir=1Xr ⊆ Ŝ for some i ∈ [k] and ∪kr=jYr ⊆ Ŝ for some j ∈ [k]. We need to show that

j ≥ i. On the contrary, assume that, j < i, then we have, (Xi−1 ∪Xi ∪ Yi−1 ∪ Yi) ⊆ Ŝ. Let

K = {Xi−1, Xi, Yi−1, Yi}. Recall that all vertices coming from a set of open twins appear

together in S. Let A ∈ K be the set whose vertices appear after the other three sets of K in

the sequence S. Then, all vertices of N [A] are footprinted before the appearance of vertices

of A, so A does not footprint a new vertex, a contradiction. Therefore, j ≥ i.

Lemma 4.8. Suppose there exists a type (c) GD-sequence (v1, v2, . . . , vp) of G, where

v1 /∈ (X1 ∪ Yk). Then there exists a GD-sequence S of G such that ∪i
r=1Xr ⊆ Ŝ for some

i ∈ [k] and ∪kr=jYr ⊆ Ŝ for some j ∈ [k], where j ≥ i. Moreover, the following is satisfied

by the sequence S:

1. If i ≤ k − 2, either (∪kr=i+1Xr) ∩ Ŝ = ∅ or (∪kr=i+2Xr) ∩ Ŝ = ∅ and |Xi+1 ∩ Ŝ| = 1.

2. If i = k − 1, then either Xk ∩ Ŝ = ∅ or |Xk ∩ Ŝ| = 1.

Proof. Let S be a GD-sequence of G such that ∪ir=1Xr ⊆ Ŝ for some i ∈ [k] and ∪kr=jYr ⊆ Ŝ

for some j ∈ [k], where j ≥ i. We also assume that S is a sequence with largest such i.

Existence of such a sequence is ensured by the Lemmas 4.6 and 4.7.

Now, assume that i < k and so, Xi+1 ⊈ Ŝ. If i = k − 1 and Xk ∩ Ŝ ̸= ∅ then either

|Xk ∩ Ŝ| = 1 or |Xk ∩ Ŝ| ≥ 2. In the latter case, we get that first vertex of Xk in S footprints

itself. So, Observation 5 ensures that |Xk ∩ Ŝ| = 1.
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Next, we show that if i ≤ k − 2, then (∪kr=i+2Xr) ∩ Ŝ = ∅. So, let t ∈ {i+ 2, . . . , k}
be the minimum index such that Xt ∩ Ŝ ̸= ∅. This means that there are some vertices of

∪t−1
r=i+1Xr which are not appearing in the sequence S. Let A denotes the set of these vertices.

Note that A is not the empty set. Let x be the vertex of Xt which appears first in S. We

discuss two cases here.

Case 1: x footprints itself.

In this case, we have that no neighbor of Xt appears in S before x. So, all vertices in S, which

footprint vertices of A, appear after x. Now, we modify S by removing all such vertices

and including all vertices of A in the sequence just after all vertices of Xt ∩ Ŝ. We call the

modified sequence again by S as it remains a GD-sequence of G. Thus, we get a contradiction

on i being the largest index. So, this case is not possible.

Case 2: x does not footprint itself.

In this case, we get that all vertices of Xt are footprinted by some vertex of Y , which appears

before x in S. So, x footprints some vertices from the set ∪tr=1Yr. Thus, |Xt ∩ Ŝ| = 1 and

Xt ∩ Ŝ = {x}. Now, let y be the vertex which footprints vertices of A ∩Xi+1 in S. Then,

there can be two subcases:

Subcase 2.1: y appears after x.

In this subcase, we modify S by removing y and including all vertices of A ∩Xi+1 in the

sequence just after x. We call the modified sequence again by S as it remains a GD-sequence

of G. Thus, we again get a contradiction on i being the largest index. So, this subcase is not

possible.

Subcase 2.2: y appears before x.

Here, all vertices of A are footprinted before the appearance of x. Recall that x ∈ (∪kr=i+2Xr)∩
Ŝ. We get that all vertices of ∪kr=i+1Xr are footprinted before the appearance of x. Note

that the vertex x itself is footprinted before the appearance of x. So, we have, x appears to

footprint some vertices of ∪tr=1Yr. This can be further divided in two cases: (i) x does not

footprint the vertices of Yt. (ii) x footprints the vertices of Yt.

In the first case, x footprints some vertices of the set ∪t−1
r=1Yr. Note that A ∩Xt−1 ̸= ∅
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and vertices of A ∩Xt−1 does not appear in S. Now, we modify S by replacing the vertex

x by a vertex of A ∩Xt−1 and a get a new GD-sequence in which no vertex of Xt appears

and one vertex of Xt−1 appears. If t = i + 2, then after applying the modification once,

we get a GD-sequence S ′ such that Xi+2 ∩ Ŝ ′ = ∅ and |Xi+1 ∩ Ŝ ′| = 1. Otherwise, if

t > i + 2, then after applying the modification once, we get a GD-sequence S ′ such that

Xt ∩ Ŝ ′ = ∅ and |Xt−1 ∩ Ŝ ′| = 1. Thus, we have another index t′ = t− 1 ∈ {i+ 2, . . . , k}
such that Xt′ ∩ Ŝ ′ ̸= ∅. Now, we consider the vertex of Xt−1 ∩ Ŝ ′. Clearly, the vertex of

Xt−1 ∩ Ŝ ′ also footprints some neighbor of it. We repeat the similar modifications until we

get a GD-sequence in which a vertex of Xp, where p ∈ {i+2, . . . , k} appears in the sequence

and it appears for a vertex of Yp. When we arrive at such a sequence, we perform one more

modification by replacing the vertex of Xp by vertices of Yp.

In the second case, x footprints vertices of Yt and we modify S by replacing x with

all vertices of Yt. Note that no vertex of Yt was appearing in the sequence prior to this

modification. If t = i+ 2, then after applying the modification once, we get a GD-sequence

S ′ such that Xi+2 ∩ Ŝ ′ = ∅. Otherwise, if t > i + 2, then after applying the modification

once, we get a GD-sequence S ′ such that Xt ∩ Ŝ ′ = ∅ and Xt−1 ∩ Ŝ ′ = ∅. Now, we have,

either there is no index t′ in the set {i + 2, . . . , k} such that Xt′ ∩ Ŝ ′ ̸= ∅ or there is some

t′ ∈ {i+ 2, . . . , k} (t′ > t) such that Xt′ ∩ Ŝ ′ ̸= ∅.

By repeating the above arguments we get that, there is a GD-sequence S of G such that

either (∪kr=i+1Xr)∩ Ŝ = ∅ or (∪kr=i+2Xr)∩ Ŝ = ∅ and |Xi+1 ∩ Ŝ| = 1. Note that during the

modifications, whenever we removed a vertex from the sequence, it was a vertex of ∪kr=i+2Xr

so, ∪ir=1Xr remains a subset of Ŝ and whenever we added a vertex to the sequence, it was a

vertex of Yr, where a vertex of Yr was missing from the sequence prior to any modification,

implying r < j so, ∪kr=jYr remains a subset of Ŝ. Therefore, the Lemma holds.

Lemma 4.9. Suppose there exists a type (c) GD-sequence (v1, v2, . . . , vp) of G, where

v1 /∈ (X1 ∪ Yk). Then there exists a GD-sequence S of G such that ∪i
r=1Xr ⊆ Ŝ for some

i ∈ [k] and ∪kr=jYr ⊆ Ŝ for some j ∈ [k], where j ≥ i. Moreover, the following is satisfied

by the sequence S:
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1. If i ≤ k − 2, either (∪kr=i+1Xr) ∩ Ŝ = ∅ or (∪kr=i+2Xr) ∩ Ŝ = ∅ and |Xi+1 ∩ Ŝ| = 1.

2. If i = k − 1, then either Xk ∩ Ŝ = ∅ or |Xk ∩ Ŝ| = 1.

3. j ≤ i+ 2.

4. If j ≥ 3, either (∪j−1
r=1Yr) ∩ Ŝ = ∅ or (∪j−2

r=1Yr) ∩ Ŝ = ∅ and |Yj−1 ∩ Ŝ| = 1.

5. If j = 2, then either Y1 ∩ Ŝ = ∅ or |Y1 ∩ Ŝ| = 1.

Proof. Due to Lemma 4.8, there exists a GD-sequence S of G such that ∪ir=1Xr ⊆ Ŝ for

some i ∈ [k] and ∪k
r=jYr ⊆ Ŝ for some j ∈ [k], where j ≥ i. It also satisfies the properties

(1) and (2). Let S be such a sequence with the smallest index j. So, we have, Yj−1∩ Ŝ ̸= Yj−1.

So, there is a vertex x of N(Yj−1) which appears to footprint vertices of Ŝ \ Yj−1. Now, we

need to show the properties (3), (4) and (5).

To prove (3), we assume that j ≥ i+3. So, Yi+2∩Ŝ ̸= Yi+2. This means that a vertex of

Yi+2 is not appearing in S and so, a vertex of N(Yi+2) appears in S, but N(Yi+2) = ∪kr=i+2Xr

and we have, (∪kr=i+2Xr) ∩ Ŝ = ∅. So, no vertex of N(Yi+2) appears in S, a contradiction.

Thus, property (3) holds.

To prove (4), let j ≥ 3. Now, we show that (∪j−2
r=1Yr) ∩ Ŝ = ∅. On the contrary,

suppose that Yt0 ∩ Ŝ ̸= ∅ for some t0 ∈ {1, . . . , j − 2}. Let y be the vertex of Yt0 ∩ Ŝ which

appears first in S. We consider two cases here.

Case 1: y footprints itself.

If y appears to footprint itself then the vertex x appears after y. Since x footprints some

vertices of Yj−1, we have, x ∈ {Xj−1, Xj, Xj+1}. To see this, if x ∈ ∪k
r=j+2Xr, then

j ≤ i − 1, a contradiction on j ≥ i. So, x ∈ {Xj−1, Xj, Xj+1} holds. Now, we see that

no vertex x0 ∈ X appears in S such that N(x) ⊂ N(x0). To see this, let such a vertex x0

appears in S then either it appears before x or after x. Since x footprinted some vertices of

Yj−1, x0 appears after x. Next, we get that x0 appears for some vertex y0 ∈ ∪k
r=jYr and so,

y0 is not appearing in S before x0. After the appearance of x0, all vertices of the set N [y0]

are footprinted. So, y0 /∈ Ŝ, a contradiction on ∪kr=jYr ⊆ Ŝ. Thus, no vertex x0 ∈ X appears

in S such that N(x) ⊂ N(x0). Hence, x ∈ Xi or x ∈ Xi+1. If x ∈ Xi, Xi+1 ∩ Ŝ = ∅. Now,
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we modify the sequence by replacing the vertex x by vertices of Ŝ \ Yj−1 and get a new

GD-sequence S ′ in which we have that ∪i−1
r=1Xr ⊆ Ŝ ′ and ∪kr=j−1Yr ⊆ Ŝ ′, where j ≥ i. It

also satisfies properties (1) and (2). This is a contradiction on our assumption that j is the

smallest index satisfying all these mentioned properties. Therefore, y does not footprint itself.

Case 2: y does not footprint itself.

In this case, we get that all vertices of Yt0 are footprinted by some vertex of X , which appears

before y in S. So, y footprints some vertices from the set ∪kr=t0
Xr. Thus, |Yt0 ∩ Ŝ| = 1 and

Yt0 ∩ Ŝ = {y}. Recall that x is the vertex which footprints vertices of Ŝ \ Yj−1 in S. Then,

there can be two subcases:

Subcase 2.1: y appears before x.

In this subcase, we again get that x ∈ Xi or x ∈ Xi+1. If x ∈ Xi, Xi+1 ∩ Ŝ = ∅. We can

prove it using the similar arguments as we gave in case 1. We modify S by replacing the

vertex x by all vertices of Ŝ \ Yj−1. Thus, we get another GD-sequence S ′ in which we have

that ∪i−1
r=1Xr ⊆ Ŝ ′ and ∪kr=j−1Yr ⊆ Ŝ ′, where j ≥ i. It also satisfies properties (1) and (2).

This is a contradiction on our assumption that j is the smallest index satisfying all these

mentioned properties. Therefore, y does not appear before x.

Subcase 2.2: y appears after x.

Here y footprints some vertices of ∪kr=t0
Xr. Note that t0 ≤ j − 2 < i+ 1. So, if y footprints

a vertex x0 ∈ ∪j−2
r=t0Xr then x0 appears nowhere in the sequence. This is a contradiction on

the fact that ∪ir=1Xr ⊆ Ŝ. So, y footprints a vertex of ∪kr=j−1Xr. Note that Yj−1 ∩ Ŝ = ∅ and

(∪j−2
r=1Yr) ∩ Ŝ = {y}. Now, we modify S by replacing the vertex y by the vertices of Yj−1

and get a new GD-sequence S ′ in which we have that ∪ir=1Xr ⊆ Ŝ ′ and ∪kr=jYr ⊆ Ŝ ′, where

j ≥ i. It also satisfies properties (1), (2), (3) and (4).

To prove (5), if j = 2 and Y1 ∩ Ŝ ̸= ∅ then either |Y1 ∩ Ŝ| = 1 or |Y1 ∩ Ŝ| ≥ 2. In the

latter case, we get that first vertex of Y1 in S footprints itself. So, Observation 5 ensures that

|Y1 ∩ Ŝ| = 1.

Therefore, the lemma holds.
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Lemma 4.10. Let S be a GD-sequence of G satisfying all properties of Lemma 4.9. Then the

following statements are true:

1. j ∈ {i, i+ 1};

2. if j = i then |Xi| = 1 or |Yi| = 1;

3. if j = i+ 1, then either |Xi+1 ∩ Ŝ| = 1 or |Yi ∩ Ŝ| = 1.

Proof. Since S satisfies all properties of Lemma 4.9, there are integers i ∈ [k − 1], j ∈
{2, . . . , k} such that ∪ir=1Xr ⊆ Ŝ and ∪kr=jYr ⊆ Ŝ. It also holds that either Xi+1 ∩ Ŝ = ∅ or

|Xi+1 ∩ Ŝ| = 1. Similarly, either Yj−1 ∩ Ŝ = ∅ or |Yj−1 ∩ Ŝ| = 1. Using Lemma 4.9, we can

also say that if i ≤ k − 2, then (∪kr=i+2Xr) ∩ Ŝ = ∅ and, if j ≥ 3, then (∪j−2
r=1Yr) ∩ Ŝ = ∅.

Lemma 4.9 ensures that j ∈ {i, i+ 1, i+ 2}.

To prove (1), we show that j ̸= i+ 2. Suppose, j = i+ 2. Then we see that γgr(G) ≤
α+β+2, where α =

∑i
r=1 |Xr| and β =

∑k
r=i+2 |Yr| due to Lemma 4.9. Now, consider the

sequence S0 = (X1)⊕(X2)⊕· · ·⊕(Xi)⊕(Yk)⊕(Yk−1)⊕· · ·⊕(Yi+2)⊕(y)⊕(Yi+1), where

y ∈ Yi. If |Yi+1| > 1, S0 is a dominating sequence of G having length at least α + β + 3,

contradiction on S being a GD-sequence. This implies that |Yi+1| = 1 and S0 is also a

GD-sequence of G which satisfies that ∪kr=i+1Yr ⊆ Ŝ along with all properties of Lemma

4.9. So, j = i+ 1. Thus, property (2) holds.

To prove (2), we assume j = i. If Xi appears before Yi, then an eventual second vertex

from Yi does not footprint any vertex, a contradiction. So, |Yi| = 1. In the similar way, we

get that |Xi| = 1, when Yi appears before Xi. Thus, property (2) holds.

To prove (3), assume that j = i+1. We show that either |Xi+1∩Ŝ| = 1 or |Yi∩Ŝ| = 1.

So, first we assume that neither is true, that is, |Xi+1 ∩ Ŝ| = 0 and |Yi ∩ Ŝ| = 0. Now,

if Yi+1 appears before Xi, then the length of S can be increased by including a vertex of

Xi+1 just before Xi, but S is a dominating sequence of G of maximum length. So, Yi+1

appears after Xi, thus length of S can be increased by including a vertex of Yi just before

Yi+1, but S is a dominating sequence of G of maximum length. Hence, |Xi+1 ∩ Ŝ| = 1

or |Yi ∩ Ŝ| = 1. If |Xi+1 ∩ Ŝ| = 1 and |Yi ∩ Ŝ| = 1, then suppose that Xi+1 ∩ Ŝ = {a}
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and Yi ∩ Ŝ = {b}. Clearly, vertices of the four sets {a}, {b}, Xi and Yi+1 appear in S. Let

K = {{a}, {b}, Xi, Yi+1}. Recall that all vertices of Xi appear together in S. Similarly, all

vertices of Yi+1 appear together in S. Let A ∈ K be the set whose vertices appear after the

other three sets of K in the sequence S. Then, all vertices of N [A] are footprinted before the

appearance of vertices of A. Therefore, either |Xi+1 ∩ Ŝ| = 1 or |Yi ∩ Ŝ| = 1. Thus property

(3) holds.

Lemma 4.11. Let S be a GD-sequence of G satisfying all properties of Lemma 4.9. Then the

following statements are true for i < k and j ≥ 2:

1. If j = i then, Xi+1 ∩ Ŝ = ∅ and Yi−1 ∩ Ŝ = ∅;

2. If j = i+1, then either |Xi+1∩Ŝ| = 1 and Yi∩Ŝ = ∅ or |Yi∩Ŝ| = 1 and Xi+1∩Ŝ = ∅.

Proof. To prove (1), let j = i and Xi+1 ∩ Ŝ ̸= ∅. This implies that |Xi+1 ∩ Ŝ| = 1. Let

Xi+1 ∩ Ŝ = {a} and K = {Xi, {a}, Yi, Yi+1}. Recall that all vertices coming from a set

of open twins appear together in S. Let A ∈ K be the set whose vertices appear after the

other three sets of K in the sequence S. Then, all vertices of N [A] are footprinted before

the appearance of vertices of A, so A does not footprint a new vertex, a contradiction. Thus,

Xi+1 ∩ Ŝ = ∅. In the similar way we can prove that Yi−1 ∩ Ŝ = ∅.

To prove (2), we assume that j = i + 1 and |Xi+1 ∩ Ŝ| = 1. We need to show that

Yi ∩ Ŝ = ∅. On the contrary, suppose that Yi ∩ Ŝ ̸= ∅. Here, we see that S contain vertices

from all of the sets Xi, Xi+1, Yi and Yi+1. Then there exists a vertex a ∈ Xi∪Xi+1∪Yi∪Yi+1

whose closed neighborhood is footprinted before its appearance, a contradiction. In the similar

way, we can prove that if |Yi ∩ Ŝ| = 1, then Xi+1 ∩ Ŝ = ∅.

Lemma 4.12. Let S be a GD-sequence of G satisfying all properties of Lemma 4.7. If i = k,

then one of the following statements is true.

1. γgr(G) = |X|
2. γgr(G) = |Y |
3. γgr(G) = |X|+ |Yk|
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Proof. If there exists a type (a) or type (b) GD-sequence of G then γgr(G) = |Y | or γgr(G) =

|X|. So, assume that all GD-sequences of G are of type (c). Now, consider the sequence S.

It is given that i = k. Lemma 4.7 ensures that j ≥ i. This further implies that j = k and so,

Yk ⊆ Ŝ. We get, (∪k−1
r=1Yr) = ∅ due to Lemmas 4.9 and 4.11. Therefore, |Ŝ| ≤ |X| + |Yk|

and S0 = (X1)⊕ (X2)⊕ · · · ⊕ (Xk−2)⊕ (Yk)⊕ (Xk)⊕ (Xk−1) is a dominating sequence

of G. Therefore, γgr(G) = |X|+ |Yk|.

Analogous to Lemma 4.12, we give a symmetric lemma for the set Y of G, whose

proof follows similar lines, and is omitted.

Lemma 4.13. Let S be a GD-sequence of G satisfying all properties of Lemma 4.7. If j = 1,

then one of the following statements is true.

1. γgr(G) = |Y |
2. γgr(G) = |X|
3. γgr(G) = |Y |+ |X1|

Lemma 4.14. If G = (X, Y,E) is a chain graph such that every GD-sequence of G is of

type (c), then for any GD-sequence S of G, the following statements are true:

1. ∪ir=1Xr ⊆ Ŝ and ∪kr=jYr ⊆ Ŝ for some i, j ∈ [k].

2. Integers i and j satisfy exactly one of the following:

(a) i < k, j > 1.

(b) i = 1, j = 1.

(c) i = k, j = k.

3. If i < k, j > 1, then γgr(G) =


∑i

r=1 |Xr|+
∑k

r=j |Yr| : j = i∑i
r=1 |Xr|+

∑k
r=j |Yr|+ 1 : j = i+ 1

4. If i = 1, j = 1, then γgr(G) = |Y |+ |X1|

5. If i = k, j = k, then γgr(G) = |X|+ |Yk|
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Proof. Lemmas 4.6 and 4.7 ensure property (1). To prove property (2), we need to show

that i = k, j = 1 cannot be true. So, assume that this is true. Then, Lemma 4.10 yields

k = 1, a contradiction proving that property (2) holds. Property (3) follows from Lemmas

4.9. Properties (4) and (5) can be proved using Lemmas 4.12 and 4.13.

Now, We are ready to present an algorithm for computing a GD-sequence of a chain

graph based on the above lemmas; see Algorithm 10. By following the above discussion,

note that γgr(G) ∈ A, where

A =
{
n1, n2, n1 + |Yk|, n2 + |X1|,

i∑
r=1

|Xr|+
k∑
l=i

|Yl|,
i∑

r=1

|Xr|+
k∑

l=i+1

|Yl|+ 1
}
,

for some i ∈ [k − 1]. Thus, the sequence returned by Algorithm 10 is a GD-sequence of G.

It is easy to see that Algorithm 10 computes S in linear time, which is the time needed to

compute the parts X1, . . . , Xk, Y1, . . . , Yk. The following theorem readily follows.

Theorem 4.15. Algorithm 10 outputs a GD-sequence S of G in linear time.

There is a connection between Grundy domination number of a graph and its indepen-

dence number. Let A be an independent set of size α(G). By considering all vertices of A in

any order, we get a closed neighborhood sequence of G, which yields the well known bound

γgr(G) ≥ α(G). In addition, for a chain graph G, we prove that Grundy domination number

is either α(G) or α(G) + 1.

Theorem 4.16. If G is a chain graph, then γgr(G) ∈ {α(G), α(G) + 1}.

Proof. Let G be a chain graph. By using the notation established in this section, we claim

that α(G) ∈ {n1, n2,
∑i

j=1 |Xj|+
∑k

j=i+1 |Yj| for some i ∈ [k − 1]}. To see this, let A be a

maximum independent set of G. Three cases are possible. If A ⊆ X , then A = X implying

that α(G) = n1; if A ⊆ Y , then A = Y implying that α(G) = n2. Now, if A ∩X ̸= ∅ and

A ∩ Y ̸= ∅, then one can easily infer that A = (∪ij=1Xj) ∪ (∪k
j=i+1Yj) for some i ∈ [k − 1]

implying that α(G) =
∑i

j=1 |Xj|+
∑k

j=i+1 |Yj|. Letting i0 ∈ [k − 1] be an index such that
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Algorithm 10: GD-sequence of a chain graph
Input: A chain graph G = (X, Y,E) without isolated vertices along with a chain
ordering (x1, . . . , xn1 , y1, . . . , yn2) of V (G).

Output: A GD-sequence S of G.
1 Find the parts X1, X2, . . . , Xk and Y1, Y2, . . . , Yk;
2 i = 0, sum[ ] = 0;
3 if |Y1| = 1 then
4 sum[0] = n2 + |X1|;
5 else
6 sum[0] = n2;

7 for i = 1 : k − 1 do
8 sum[i] =

∑i
j=1 |Xj |+ n2 −

∑i
j=1 |Yj |+ 1;

9 if |Xk| = 1 then
10 sum[k] = n1 + |Yk|;
11 else
12 sum[k] = n1;

13 Find an index i∗ ∈ {0, 1, 2, . . . , k} for which sum[i] is maximum;
14 if i∗ == 0 and |Y1| > 1 then
15 S ← (Yk)⊕ (Yk−1)⊕ · · · ⊕ (Y1);

16 else if i∗ == 0 and |Y1| = 1 then
17 if k ≥ 3 then
18 S ← (X1)⊕ (Yk)⊕ · · · ⊕ (Y3)⊕ (Y1)⊕ (Y2);

19 else
20 S ← (X1)⊕ (Y1)⊕ (Y2);

21 else if i∗ == k and |Xk| > 1 then
22 S ← (X1)⊕ (X2)⊕ · · · ⊕ (Xk);

23 else if i∗ == k and |Xk| = 1 then
24 if k ≥ 3 then
25 S ← (X1)⊕ (X2)⊕ · · · ⊕ (Xk−2)⊕ (Yk)⊕ (Xk)⊕ (Xk−1);

26 else
27 S ← (Y2)⊕ (X2)⊕ (X1);

28 else
29 choose a vertex x ∈ Xi∗+1

30 if i∗ > 1 then
31 S ← (X1)⊕ (X2)⊕ · · · ⊕ (Xi∗−1)⊕ (Yk)⊕ (Yk−1)⊕ · · · ⊕ (Yi∗+1)⊕ x⊕ (Xi∗);

32 else
33 S ← (Yk)⊕ (Yk−1)⊕ · · · ⊕ (Y2)⊕ x⊕ (X1);

34 return S.

∑i0
j=1 |Xj| +

∑k
j=i0+1 |Yj| ≥

∑i
j=1 |Xj| +

∑k
j=i+1 |Yj| for each i ∈ [k − 1], we may write

α(G) ∈ {n1, n2,
∑i0

j=1 |Xj|+
∑k

j=i0+1 |Yj|}.
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Algorithm 10 computes a GD-sequence of G and it turns out that γgr(G) ∈ {n1, n2, n1+

|Yk|, n2 + |X1|,
∑i

j=1 |Xj|+
∑k

j=i |Yj|,
∑i

j=1 |Xj|+
∑k

j=i+1 |Yj|+ 1} for some i ∈ [k− 1].

Note that γgr(G) = n1 + |Yk| when |Xk| = 1 implying that γgr(G) =
∑k−1

j=1 |Xj|+ |Yk|+ 1.

Similarly, γgr(G) = n2 + |X1| when |Y1| = 1 implying that γgr(G) = |X1|+
∑k

j=2 |Yk|+ 1.

Now, if γgr(G) =
∑i

j=1 |Xj| +
∑k

j=i |Yj| for some i ∈ [k − 1] then Lemma 4.10 ensures

that γgr(G) is either
∑i

j=1 |Xj| +
∑k

j=i+1 |Yj| + 1 or
∑i−1

j=1 |Xj| +
∑k

j=i |Yj| + 1. Hence,

γgr(G) ∈ {n1, n2,
∑i

j=1 |Xj|+
∑k

j=i+1 |Yj|+ 1 for some i ∈ [k − 1]}. Since Algorithm 10

computes the GD-sequence by finding the maximum of the set {n1, n2} ∪ {
∑i

j=1 |Xj| +∑k
j=i+1 |Yj|+ 1 : i ∈ [k − 1]}, we have, γgr(G) ∈ {n1, n2,

∑i0
j=1 |Xj|+

∑k
j=i0+1 |Yj|+ 1}.

Now, suppose t =
∑i0

j=1 |Xj|+
∑k

j=i0+1 |Yj|, then we can write that α(G) ∈ {n1, n2, t} and

γgr(G) ∈ {n1, n2, t+ 1}. Now, we consider three cases.

Case 1: γgr(G) = n1:

In this case, n1 ≥ n2 and n1 ≥ t+ 1 > t. This implies that α(G) = n1.

Case 2: γgr(G) = n2:

In this case, n2 ≥ n1 and n2 ≥ t+ 1 > t. This implies that α(G) = n2.

Case 3: γgr(G) = t+ 1:

In this case, if α(G) = n1 then n1 ≥ t = γgr(G) − 1. So, γgr(G) ≤ α(G) + 1. Similarly,

if α(G) = n2 then n2 ≥ t = γgr(G) − 1. So, γgr(G) ≤ α(G) + 1. Otherwise, α(G) = t

implying that γgr(G) = α(G) + 1.

Therefore, γgr(G) ∈ {α(G), α(G) + 1}.

Note that the GDD problem in the class of co-chain graphs (that is, the complements

of chain graphs) is easily solvable. Indeed, in a co-chain graph G = (X, Y,E), one can find

similar partitions of X and Y into k sets X1, . . . , Xk, and Y1, . . . , Yk, respectively, that arises

from the ∼ relation in G. Then, one can also immediately infer that γgr(G) = k.
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4.3 Double Dominating Sequences

In this section, we first prove that the GD2D problem is NP-complete for split, bipartite and

co-bipartite graphs. Next, we propose a linear-time algorithm that outputs a GDD-sequence

for a threshold graph, a subclass of split graphs. We also present a linear-time algorithm for

the GD2 problem in chain graphs, a subclass of bipartite graphs.

In the paper [44], Haynes and Hedetniemi proposed several variations of vertex

sequences that could be interesting and gave a few initial results on some of these concepts.

In particular, they presented Grundy double domination and found a formula for the Grundy

double domination number in a square grid of an arbitrary dimension. They also proved that

the Grundy double domination number of a tree T is exactly the number of vertices of T [44].

To the best of our knowledge, no hardness result is known for this variant in the literature.

The following lemma holds for any connected graph.

Lemma 4.17. Let S be a GDD-sequence of a connected graph G. If u, v ∈ V (G) such that

N [u] ⊆ N [v] and u, v ∈ Ŝ, then either u appears before v in the sequence S or there exists

another GDD-sequence in which u appears before v.

Proof. We may assume that u and v are not closed twins for otherwise the statement is clear.

If v appears before u in the sequence S, then exchanging the places of these two vertices we

obtain a sequence S ′, and we claim that S ′ is also a double neighborhood sequence. Indeed,

if u appears to dominate some vertex x, the second time, with respect to S, it dominates

x the first time with respect to S ′, and note that x is then dominated for the second time

(since x ∈ N [v]). Hence when we consider v in S ′, it dominates x for the second time. In

addition, for all vertices w that lie between v and u in S, we note that if w was appearing to

dominate some vertex y /∈ N [v] \N [u], the first or the second time, with respect to S, then it

does the same with respect to S ′. Otherwise, if w was appearing to dominate some vertex

x ∈ N [v] \N [u], then it dominates x the second time (x is dominated fir the first time by v).

However, in the sequence S ′, w dominates x first time and v dominates x the second time.

Since for all other vertices (that do not lie between v and u in S) nothing changes in S ′, we
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derive that S ′ is indeed a double neighborhood sequence of G, and since it is of the same

length as S, it is a GDD-sequence of G.

4.3.1 NP-completeness Results

In this subsection, we prove that the GD2D problem is NP-complete for split, bipartite

and co-bipartite graphs. The NP-completeness result for the split graph is the first hardness

result for this problem which also implies the NP-hardness of the problem in general graphs.

4.3.1.1 Split Graphs

A graph G is a split graph if V (G) can be partitioned into two sets I and K, where I is an

independent set and K is a clique. We may assume that a partition is done in such a way

that α(G) = |I|, which implies that every vertex in K has a neighbor in I . The partition

V (G) = [I,K] is a split partition of V (G). The following observation holds for any split

graph.

Lemma 4.18. If G = (I,K,E) is a split graph, then there exists a GDD-sequence S such

that all vertices of I belong to Ŝ.

Proof. Let G be a split graph and [I,K] a split partition of G. Let S be a GDD-sequence of

G, which maximizes the number of vertices from I . Suppose that there exists x ∈ I , which

is not in S, and let vi ∈ Ŝ be the vertex that dominates x for the second time (noting that

every vertex of G needs to be dominated twice). Since x /∈ Ŝ, we infer that vi ∈ K. Hence,

N [x] ⊂ N [vi]. Thus, the sequence S ′, which is obtained from S by replacing vi with x, is a

double dominating sequence, since x dominates itself the second time and all other vertices

of S ′ dominate the same vertices as in S. However, since |Ŝ ′| = |Ŝ|, S ′ is a GDD-sequence,

which yields a contradiction with the assumption that S maximizes the number of vertices

from I .

Theorem 4.19. The GD2D problem is NP-complete even when restricted to split graphs.
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Proof. It is clear that the GD2D problem is in NP. To prove the NP-hardness, we reduce the

GCD problem for hypergraphs to the GD2D problem for split graphs. Given a hypergraph

H = (X,E ) with E = {E1,E2, . . . ,Em}, |X| = n and |E | = m, (n,m ≥ 2), we construct

an instance G of the GD2D problem, where G is a split graph, as follows.

Let V (G) = I∪K, where I = X and K = {e1, e2, . . . , em}. Vertices of I correspond

to the vertices of X and vertices of K correspond to the hyperedges of H . For an edge

Ei ∈ E , we denote the corresponding vertex in K by ei. The edge set of G is given by

{eiej : 1 ≤ i < j ≤ m} ∪ {uei : u ∈ Ei, u ∈ I, i ∈ [m]}. Clearly, the set of vertices I is an

independent set in G. The subgraph G[K] is a complete graph. So, the graph G is a split graph

with split partition [I,K]. See Fig. 4.4, which presents the construction of the graph G from

a hypergraph H , which is given by (X = {x1, x2, x3, x4},E = {E1,E2,E3,E4,E5}), where

E1 = {x1, x2, x4}, E2 = {x2, x3}, E3 = {x1, x2}, E4 = {x2, x3, x4} and E5 = {x1, x3, x4}.

Now, we prove the following claim.

Claim 5. For the graphs G and H discussed above, γ×2
gr (G) = |X|+ ρgr(H).

Proof. First, let C = {Ei1 ,Ei2 , . . . ,Eik} be a Grundy edge covering sequence of H . Suppose

X = {x1, x2, . . . , xn}. Then, the sequence (x1, x2, . . . , xn, ei1 , ei2 , . . . , eik) is a double

dominating sequence for G. So, γ×2
gr (G) ≥ n+ k = |X|+ ρgr(H).

For the other side, we assume that S is a GDD-sequence of G in which all vertices of

I appear. Existence of such a sequence is ensured by Lemma 4.18. Thus, |Ŝ| = |I| + k =

|X|+ k = n+ k. Note that no two vertices of K are closed twins in G due to its construction

from the hypergraph H . Among vertices from K, let u and v be the first that appear in S.

Clearly, u appears for a vertex in I . Since u and v are not closed twins, then either v also
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appears for a vertex in I , or N [v] ⊊ N [u], and all vertices in N [v] ∩ I appear in S before v.

However, in the latter case we apply Lemma 4.17, and note that changing the places of u and

v in S results in another GDD-sequence, in which both u and v dominate a vertex in I . Now,

for all further vertices in S that are from K it is clear that they do not dominate a vertex in K

(since u and v double dominate the entire K). Therefore, every vertex in S, which is from K,

dominates a vertex in I either the first or the second time. So, S is a GDD-sequence in which

all vertices coming from K dominate a vertex in I , all vertices of I appear in S and dominate

themselves. Let SK be the subsequence of vertices in S that are from K (in the same order

as they appear in S). Clearly, SK corresponds to the sequence of edges in H such that each

edge of the sequence SK covers a vertex in X that was not covered by edges appearing prior

to it (since each vertex in SK dominates a vertex in I). Thus SK induces an edge covering

sequence in H and so its length is at most ρgr(H). This implies, n + k ≤ n + ρgr(H). So,

γ×2
gr (G) ≤ |X|+ ρgr(H).

Hence, γ×2
gr (G) = |X|+ ρgr(H) holds true.

Therefore, The GD2D problem is NP-complete even when restricted to split graphs.

4.3.1.2 Bipartite Graphs

Here, we prove the NP-completeness of the GD2D problem for bipartite graphs. We reduce

the GCD problem for hypergraphs to the GD2D problem for bipartite graphs. Let H = (X,E )

be a hypergraph with no isolated vertices. It is known that the GCD problem is NP-hard in

general graphs [20]. We claim that the GCD problem is efficiently solvable for k ≤ 2. To see

this, first, let k = 1. Now, the problem asks if there exists an edge covering sequence of a

given hypergraph H with at least 1 hyperedge. To solve this problem, first we check whether

union of all hyperedges of H equals vertex set of H or not. If yes, then the answer to the

problem is YES otherwise the answer is NO. Thus, we have the solution of the GCD problem

when k = 1, in polynomial-time. Now, let k = 2. Here, the problem asks if there exists an

edge covering sequence of a given hypergraph H with at least 2 hyperedges. To solve this

problem, first we check whether number of hyperedges of H is at least 2 or not. If not, clearly

the answer to the problem is NO. So, we assume that H has at least two hyperedges. Next, we
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check whether union of all hyperedges of H equals vertex set of H or not. If not, the answer

to the problem is NO. Otherwise, if the union of all hyperedges of H equals vertex set of H

then, there are two possibilities: either there is a hyperedge E ′ which equals V (H) or there is

no such hyperedge. In the former case, there is one hyperedge E ′′ which is a proper subset of

V (H). Here, (E ′′, E ′) is a solution of size at least 2. So, the answer to the problem is YES.

In the latter case, since union of all hyperedges of H equals vertex set of H , we get that any

solution is of size at least 2. Thus, we have the solution of the GCD problem when k = 2,

in polynomial-time. Therefore, the GCD problem is efficiently solvable for k ≤ 2. Recall

that the GCD problem is NP-complete for any k ∈ Z+. Consequently, the GCD problem is

NP-complete for k ≥ 3.

Theorem 4.20. The GD2D problem is NP-complete for bipartite graphs.

Proof. It is clear that the GD2D problem is in class NP. To show the NP-hardness, we

give a polynomial reduction from the GCD problem in hypergraphs which is known to be

NP-hard [20]. Given a hypergraph H = (X,E ) with |X| = n and E = {E1,E2, . . . ,Em},
(n,m ≥ 2), we construct an instance G = (X∗, Y ∗, E∗) of the GD2D problem, where G

is a bipartite graph, as follows. X∗ = I ∪ X ′ and Y ∗ = E ′, where I = {v1, v2, . . . , vm},
X ′ = {x1, x2, . . . , xn} and E ′ = {α, e1, e2, . . . , em}. A vertex of X ′ corresponds to a

vertex of X in the hypergraph H and the vertex ei of E ′ corresponds to the hyperedge

Ei of H . Now, a vertex x of X ′ is adjacent to a vertex of ei ∈ E ′ in G if and only if

x ∈ Ei in H . Each vertex of I is adjacent to each vertex of E ′ in G. Clearly, G is a

bipartite graph. Fig. 4.5 illustrates the construction of G when H is the hypergraph given

by (X = {x1, x2, x3, x4},E = {E1,E2,E3,E4}), where E1 = {x1, x2, x4}, E2 = {x2, x3},
E3 = {x1, x2} and E4 = {x2, x3, x4}.
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Now, we show that ρgr(H) ≥ k if and only if γ×2
gr (G) ≥ n +m + k + 1, for k ≥ 3.

First, let (Ei1 ,Ei2 , . . . ,Eik′
) be an edge covering sequence of size at least k in H . Then the

sequence (x1, x2, . . . , xn, v1, v2, . . . , vm, α, ei1 , ei2 , . . . , eik′ ) is a double dominating sequence

of size at least n+m+ k + 1 in G. So, we have γ×2
gr (G) ≥ n+m+ k + 1.

For the converse part, we give a claim first.

Claim 6. There exists a double dominating sequence of G of size at least n+m+ k + 1 in

which the first vertex from E ′ is the vertex α.

Proof. Let e0 be the first vertex from E ′ appearing in S. If e0 = α, then there is nothing to

prove. So, we assume that e0 ̸= α. Now, there can be two cases.

Case 1: α /∈ Ŝ

In this case, if e0 is appearing to dominate vertices of I only, then we replace the vertex e0

by the vertex α in the sequence S. Otherwise, e0 is appearing to dominate some vertices

from X ′ ∪ {e0} also, then we put α just before e0 in the sequence S. Hence, we modified the

sequence S by removing at most 1 vertex and adding 1 new vertex. We see that S remains

a double dominating sequence of size at least n+m+ k + 1 in G and now, the first vertex

from E ′ appearing in S is α.

Case 2: α ∈ Ŝ

Here, the vertex α appears in the sequence after e0. Since e0 is the first vertex coming from

E ′ in S, it is appearing to dominate vertices of I and some vertices of X ′. We have that

N [α] = {α} ∪ I . So, if we modify the sequence by putting the vertex α just before e0 in

the sequence, the updated sequence is also a double neighborhood sequence. This follows

because e0 dominates its neighbors from X ′ in the new sequence as they are not dominated by

α. By doing this, size of S remains unchanged. So, S remains a double dominating sequence

of size at least n +m + k + 1 in G and now, the first vertex from E ′ appearing in S is α.

Hence, the claim is true.

Let S be a double dominating sequence of size at least n+m+ k + 1 in G satisfying

Claim 6. Note that |Ŝ ∩ E ′| ≥ k + 1.
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As k ≥ 3, let e be the second vertex coming from E ′ in S. Now, let A denotes the set

of vertices appearing before the vertex α in S, B denotes the set of vertices appearing after

the vertex α and before the vertex e. Finally, C denotes the set of vertices appearing after the

vertex e in S.

Claim 7. |I ∩ (A ∪B)| ≥ 2.

Proof. Let |I ∩ (A ∪ B)| ≤ 1, then we see that |I ∩ Ŝ| ≤ 2. Now, we get that |Ŝ| =
|Ŝ ∩ I| + |Ŝ ∩ E ′| + |Ŝ ∩ X ′| ≤ 2 +m + 1 + n = n +m + 3 < n +m + 4. This gives

a contradiction as we considered S to be a double dominating sequence of size at least

n+m+ k + 1 in G, where k ≥ 3. Hence, |I ∩ (A ∪B)| ≥ 2 holds true.

Claim 8. There exists a double dominating sequence S0 of G of size at least n+m+ k + 1

satisfying Claim 6 such that Ŝ0 ∩X ′ = X ′ and all vertices of X ′ appear before the vertex e

in the sequence S0.

Proof. Here, we have two cases to consider.

Case 1: There is a vertex x ∈ X ′ which does not appear in the sequence S:

Let x ∈ X ′ be a vertex such that it does not appear in the sequence S. This tells that there are

two vertices coming from E ′, say ei and ej which appear in S and they dominate the vertex x

first and second time respectively. Let v∗ denotes the vertex which appears just before the

vertex e in the sequence S. Then, we see that the vertices ei and ej appear in the sequence S

after v∗. Using Claim 7, we know that before the vertex e all vertices of E ′ are dominated

twice. So, vertex ej is appearing to dominate vertices of X ′ only.

Now, there are two possibilties. First, assume that ei is appearing only to dominate the

vertex x first time, then we modify S by adding x just before e and removing the vertex ei

from S. But, if ei was appearing to dominate some vertices of {ei}∪ I ∪ (X ′ \{x}) also, then

we modify S by putting the vertex x just before e in the sequence. By this modification, we

removed at most 1 vertex from the sequence and added a new vertex to S. Thus, S remains a

double dominating sequence of size at least n+m+ k+1 in G with x appearing in S before

the vertex e.



124 Chapter 4 Grundy (Double) Dominating Sequence

Case 2: There is a vertex x ∈ X ′ ∩ Ŝ which appears after e in S:

In this case, vertex x is appearing to dominate itself only. Since all vertices of E ′ are

dominated twice before the vertex e, so we remove the vertex x from its place and put it

just before e. Note that the size of S is not changed and so, S remains a double dominating

sequence of size at least n + m + k + 1 in G with x appearing in S before the vertex e.

Therefore, the claim holds true.

Claim 8 ensures that we can assume that Ŝ ∩X ′ = X ′ and all vertices of X ′ appear

before the vertex e in the sequence S. Combining all claims, we get that |Ŝ ∩ (E ′ \ {α})| ≥ k

and these vertices of (E ′ \ {α}) are appearing only to dominate vertices of X ′ second time.

So, these vertices of Ŝ ∩ (E ′ \ {α}) correspond to a legal hyperedge sequence of size at least

k in the hypergraph H . So, ρgr(H) ≥ k.

Therefore, the GD2D problem is NP-complete for bipartite graphs.

4.3.1.3 Co-bipartite Graphs

Here, we prove that the problem also remains NP-complete for co-bipartite graphs.

For this, we give a polynomial reduction from the GDD problem in general graphs when

k ≥ 4. Given a graph G = (V,E) with V = {v1, v2, . . . , vn} (n ≥ 2), we construct an

instance G′ = (V ′, E ′) of the GD2D problem in the following way.

Define the vertex set V ′ as V ′ = V1 ∪ V2 ∪ V3, where Vr = {vri : i ∈ [n]} for each

r, 1 ≤ r ≤ 3. Add the edges in G′ in the following way. (i) Add the edges so that G′[V1] and

G′[V2∪V3] are complete subgraphs of G′. (ii) If vj ∈ NG[vi], then add an edge between v1i and

v2j . (iii) For each i ∈ [n], add the edge v1i v
3
i in G′. Formally, define E ′ = {v1i v1j , v2i v2j , v3i v3j :

1 ≤ i < j ≤ n} ∪ {v2i v3j : 1 ≤ i ≤ j ≤ n} ∪ {v1i v2j : vj ∈ NG[vi]} ∪ {v1i v3i : i ∈ [n]}.
Clearly, G′ is a co-bipartite graph. Fig. 4.6 illustrates the construction of G′ from a graph G.

To prove the NP-hardness of the GD2D problem in co-bipartite graphs, it is enough to

prove the following theorem.
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G′[V2 ∪ V3] ∼= K12
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G
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G′[V1] ∼= K6

F I G U R E 4 . 6 : Construction of co-bipartite graph G′ from the graph G.

Theorem 4.21.⋆ Let G′ be the co-bipartite graph constructed from a graph G = (V,E)

with V = {v1, v2, . . . , vn} (n ≥ 2) as explained above. Then, γgr(G) ≥ k if and only if

γ×2
gr (G

′) ≥ n+ k, for k ≥ 4.

Proof. First, let S = (vi1 , vi2 , . . . , vit) be a dominating sequence of G of size t, where t ≥ k.

Then the sequence (v31, v
3
2, . . . , v

3
n, v

2
i1
, v2i2 , . . . , v

2
it) is a double dominating sequence of G′ of

size at least n+ k. So, we get that γ×2
gr (G

′) ≥ n+ k.

Conversely, let S be a double dominating sequence of G′ having size at least n+ k.

Now, we claim that there exists a double dominating sequence S∗ of G′ in which the following

is true:

1. V1 ∩ Ŝ∗ = ∅,

2. V3 ⊆ Ŝ∗,

3. All vertices of V3 appear at initial n places of the sequence S∗.

If S satisfies all the above conditions then there is nothing to prove. So, assume that V1∩Ŝ ̸= ∅.
Then either |V1 ∩ Ŝ| ≥ 2 or |V1 ∩ Ŝ| ≤ 1.

If |V1 ∩ Ŝ| ≥ 2, let v1i and v1j be the first two vertices of V1 which are appearing in

S. Let A be the subset of Ŝ which contains vertices of S appearing before v1i in S. Let

B be the subset of Ŝ which contains vertices of S appearing after v1i in S and before v1j .

Finally, let C be the subset of Ŝ which contains vertices of S appearing after v1j in S. Now, if

|(A∪B)∩(V2∪V3)| ≤ 2, we get that |Ŝ∩(V2∪V3)| ≤ 2 which further implies that |Ŝ| ≤ n+2.

This contradicts the assumption that k ≥ 4. So, we have that |(A ∪ B) ∩ (V2 ∪ V3)| ≥ 3.
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In this case, we get that C = ∅. Since all vertices of V2 ∪ V3 have been dominated twice

before the appearance of v1j and v1i ∈ V1 also appears before v1j , we get that v1j appears to

dominate some vertex v1k ∈ V1 second time. As, no vertex of G′ appears after v1j , we have that

v3k /∈ Ŝ. Now, we modify S by replacing the vertex v1j by v3k and get a new double dominating

sequence of G′ of same size. By repeating the above arguments, we can say that there exists

a double dominating sequence of G′ in which at most 1 vertex of V1 appears. So, we assume

that |V1 ∩ Ŝ| ≤ 1.

First, we assume that |V1 ∩ Ŝ| = 1 and V1 ∩ Ŝ = {v1i }. Again, let A be the subset of Ŝ

which contains vertices of S appearing before v1i in S and B be the subset of Ŝ which contains

vertices of S appearing after v1i in S. Now, either |A∩ (V2 ∪ V3)| ≤ 1 or |A∩ (V2 ∪ V3)| ≥ 2.

If |A ∩ (V2 ∪ V3)| ≤ 1 then, |Ŝ| ≤ n+ 3. This contradicts the assumption that k ≥ 4. So, we

have that |A∩ (V2 ∪ V3)| ≥ 2. Note that v1i appears after at least two vertices of V2 ∪ V3 in S,

this implies that v1i appears only to dominate some vertex of V1 first or second time. There

can be two cases now.

Case 1: v1i appears to dominate itself.

If there is a vertex u ∈ V2 ∪ V3 which is a neighbor of v1i in G′ and u /∈ Ŝ then, we modify S

by replacing the vertex v1i by u and get a new double dominating sequence of G′ of same size

in which no vertex of V1 appears. So, assume that all neighbors of v1i belonging to the set

V2 ∪ V3 appear in Ŝ. So, v3i ∈ Ŝ.

Thus, we have that v3i appears to dominate v1i first or second time and all other

neighbors of v1i from the set V2 ∪ V3 belong to the set B. In particular, the vertex v2i is also in

B and it appears after v3i in S. Note that v2i appears to dominate some vertex v1j of V1 second

time. This implies that v3j /∈ Ŝ. Now, we modify S by replacing the vertex v2i by v3j and the

vertex v1i by v2i to get a new double dominating sequence of G′ of same size in which no

vertex of V1 appears.

Case 2: v1i is dominated twice before its appearance.

Here, suppose that v1i appears to dominate some vertex v1j of V1, first or second time. If

v2j /∈ Ŝ, then we can modify S by replacing the vertex v1i by v2j to get a new double dominating

sequence of G′ of same size in which no vertex of V1 appears. Similarly if v3j /∈ Ŝ, we get a
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new double dominating sequence of G′ of same size containing no vertex of V1. So, assume

that v2j , v
3
j ∈ Ŝ. Note that at least one of the vertices v2j and v3j does not belong to the set A.

This implies that the vertex v2j appears to dominate some vertex v1k of V1 second time and

v3k /∈ Ŝ. Now, we modify S by replacing the vertex v2j by v3k and the vertex v1i by v2j to get a

new double dominating sequence of G′ of same size in which no vertex of V1 appears.

Hence, we can assume that S contains no vertex of V1. Thus, condition (1) holds.

Now, we need to show that V3 ⊆ Ŝ. On the contrary, assume that this is not true. Let v3i ∈ V3

be a vertex which is not in Ŝ. This implies that the vertex v1i is dominated both times by

two vertices of V2. Let v2j ∈ V2 be the vertex which dominates v1i second time. Now, we

modify S by replacing the vertex v2j by v3i to get a new double dominating sequence of G′ of

same size in which the vertex v3i appears. By repeating this argument, we get that there is a

double dominating sequence of G′ in which all vertices of V3 appears. So, we can assume

that V3 ⊆ Ŝ and thus, condition (2) is also satisfied.

Now, it remains to show that all n vertices of V3 appear at initial n places. For this, it is

enough to show that v3i ∈ V3 dominates the vertex v1i first time for each i ∈ [n]. So, let v1i be

a vertex of V1 such that it is dominated first time by a vertex v2j of V2 and second time by v3i .

Clearly v3i appears after v2j in S. Here, we see that NG′ [v3i ] ⊆ NG′ [v2j ], so we can exchange

the positions of these two vertices with each other and get a new double dominating sequence

of G′ of same size such that v3i dominates v1i first time. Hence, we get that all n vertices of V3

appear at initial n places of S.

Therefore, we have that, at least k vertices of V2 are appearing in S and all of them are

appearing only to dominate vertices of V1 second time. So, these vertices correspond to a

dominating sequence of G of size at least k. Thus, γgr(G) ≥ k.

4.3.2 Efficient Algorithms

In this subsection, we provide linear-time algorithms for two restricted graph classes.

In the previous subsection, we showed that the GD2D problem is NP-complete for split

graphs and bipartite graphs. To reduce the gap between the hierarchy of graph classes,

we investigated the problem in threshold and chain graphs and obtained positive results.
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Threshold graphs are a subclass of split graphs and chain graphs are a subclass of bipartite

graphs.

4.3.2.1 Threshold Graphs

A threshold graph is a graph that can be constructed from the one-vertex graph by

repeated applications of the following two operations:

1. Addition of a single isolated vertex to the graph.

2. Addition of a single dominating vertex to the graph, that is, a single vertex that is

adjacent to all other vertices.

For notational convenience, we denote by I the set of vertices of G that were added to

G by operation 1, while D denotes the set of vertices of G added by operation 2. The former

vertices are called isolated, while the latter are dominating vertices of G (clearly, these should

not be mistaken with the terms isolated and dominating in general context). We denote a

threshold graph G by G = (I,D,E).

Since double domination makes no sense in graphs with minimum degree 0, we may

restrict our attention to the threshold graphs in which the construction ends with operation 2,

which are exactly the connected threshold graphs. Note that threshold graphs are split graphs,

where the set of isolated vertices forms an independent set I , while the set of dominating

vertices forms a clique D.

Note that threshold graphs have a similar property as chain graphs, notably, the linear

order in which vertices of I , resp. D, are processed when G is constructed, yields the

inclusion-wise linear order of their open neighborhoods in D, resp. I . More formally, let

x1, . . . , xk be the set of isolated vertices of a threshold graph G in the order in which they

were added to G, and similarly, let y1, . . . , yℓ be the set of dominating vertices of G in the

order in which they were added to G (according to the above definition of threshold graphs).

Then, N(x1) ⊇ N(x2) ⊇ · · · ⊇ N(xk) and N(y1) ∩ I ⊆ N(y2) ∩ I ⊆ · · · ⊆ N(yℓ) ∩ I .

Given a graph G, once we obtain the parts D and I , an ordering of the vertices of I and D

can be found by sorting the vertices according to their degrees in polynomial-time. Note that
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the ordering obtained for the sets I and D via this method, will be the same order in which

these vertices were added to the graph G.

Now, using Lemmas 4.18 and 4.17 we infer that the following can be assumed for a

threshold graph G: there exists a GDD-sequence S of G such that all vertices of I belong to Ŝ

and appear in the beginning of S. That is, S = (xk, . . . , x1)⊕SD, where I = {x1, . . . , xk} is

the set of isolated vertices of G, and SD is a sequence, which consists of (some) vertices from

D. It is also clear that the largest length of SD, and thus of S, can be achieved if vertices of D

are processed in the order in which they appear according to the definition of threshold graphs,

where among closed twins (that is, dominating vertices between which lies no isolated vertex

in the construction of G) only the first vertex is added to SD.

The above yields the algorithm for obtaining a GDD-sequence S of a threshold graph

G; see Algorithm 11. In the input, the ordering (y1, . . . , yℓ) of vertices of D in which they

appear in G according to the definition of threshold graphs is given. As mentioned above,

this implies N(y1) ∩ I ⊆ N(y2) ∩ I ⊆ · · · ⊆ N(yℓ) ∩ I .

Algorithm 11: GDD-sequence of a threshold graph
Input: A connected threshold graph G = (I,D,E) along with an ordering (y1, . . . , yℓ)
of the vertices of D and an ordering (x1, . . . , xk) of the vertices of I .

Output: A GDD-sequence S of G.
1 S = (xk, xk−1, . . . , x1, y1);
2 i = 1;
3 while i ≤ ℓ do
4 if N(yi) ∩ I = N(yi+1) ∩ I then
5 i = i+ 1;

6 else
7 S = S ⊕ yi;
8 i = i+ 1;

9 Output S.

Theorem 4.22. Algorithm 11 returns a GDD-sequence of a threshold graph G. Provided

that the ordering of dominating vertices is given (i.e., the ordering in which they are added

to G according to the defining construction of G), the complexity of the algorithm is O(n),

where n is the order of G.
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Due to [45], threshold graphs can be recognized in linear time and the partition of

its vertex set into D and I can also be computed in linear time. Thus, the preprocessing

does not (significantly) worsen the computational complexity. Note that the complexity of

Algorithm 11 is in fact O(ℓ), where ℓ is the number of dominating vertices of G, which can

be better than O(n).

4.3.2.2 Chain Graphs

Now, we present a linear-time algorithm to solve the GD2 problem in chain graphs. Let

G = (X, Y,E) denote a chain graph and PX , PY be the twin partition of X, Y obtained by the

relation ∼, respectively. Recall that, PX = {X1, X2, . . . , Xk} and PY = {Y1, Y2, . . . , Yk}.
Let (x1, x2, . . . , xn1 , y1, y2, . . . , yn2) be the chain ordering of G.

For i ∈ [k], xi denotes the vertex of Xi having minimum index in the chain ordering

of G. Similarly, yi denotes the vertex of Yi having maximum index in the chain ordering of

G. Below, we give a result that gives the Grundy double domination number of a complete

bipartite graph.

Proposition 13. Let G = (X, Y,E) be a complete bipartite graph. Then γ×2
gr (G) =

max{|X|, |Y |}+ 1.

Proof. Without loss of generality, assume that n1 ≥ n2. We show that γ×2
gr (G) = n1 +

1. Clearly (x1, x2, . . . , xn1 , y1) is a double dominating sequence of G which implies that

γ×2
gr (G) ≥ n1 + 1.

Now, assume that S is a GDD-sequence of G such that |Ŝ| > n1 + 1. This implies

that S contains at least two vertices from both X and Y . Moreover, S contains at least two

vertices from X side or Y side and exactly two vertices from the other side. Let v be the

vertex which appears at the end of S.

First, we assume that |Ŝ ∩X| = 2. Note that v ∈ X in this case. Since at least two

vertices of Y side and one vertex of X side have been appeared before v in S, we have that, all

vertices of X are dominated twice and all vertices of Y are dominated at least once before the

appearance of v. Hence, we get that v appears to dominate some vertex y ∈ Y second time
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and y /∈ Ŝ. Now, we modify S by replacing the vertex v by y and get a new GDD-sequence

of G in which we have only one vertex from X side. So, γ×2
gr (G) ≤ n2 + 1 ≤ n1 + 1 which

contradicts our assumption that |Ŝ| > n1 + 1. So, |Ŝ ∩X| ≠ 2.

Now, suppose that |Ŝ∩Y | = 2. Note that v ∈ Y in this case and v appears to dominate

some vertex x ∈ X second time. Again, we have that x /∈ Ŝ. Now, we modify S by replacing

the vertex v by x and get a new GDD-sequence of G in which we have only one vertex from

Y side. Again, γ×2
gr (G) ≤ n1 + 1 which contradicts our assumption that |Ŝ| > n1 + 1. So,

|Ŝ ∩ Y | ≠ 2. Thus, we get that no such S exists. Therefore, γ×2
gr (G) = n1 + 1.

For technical reasons, we actually consider a slightly more generalized problem in

chain graphs. Let G = (X, Y,E) be a chain graph and M ⊆ V (G). Vertices of M are called

marked vertices of G. All remaining vertices of G are called unmarked vertices. We denote

the set of unmarked vertices of G by V0 and the subgraph of G induced on the set V0 by G0.

The set of marked vertices satisfy all the conditions written in equation 4.1.

M ⊆ (Xk ∪ Y1), |M ∩Xk| ≤ 1, |M ∩ Y1| ≤ 1, |Xk \M | ≥ 1, |Y1 \M | ≥ 1 (4.1)

A sequence S = (v1, v2, . . . , vk), where vi ∈ V0 for each i ∈ [k], is called an M-double

neighborhood sequence of (G,M) if for each i, the vertex vi dominates at least one vertex u

of G which is dominated at most once by its preceding vertices in the sequence S. In addition,

if Ŝ is a double dominating set of G0, then we call S an M-double dominating sequence of

(G,M). Note that Ŝ may not be a double dominating set of G. An M-double dominating

sequence with maximum length is called a Grundy M-double dominating sequence of (G,M).

The length of a Grundy M-double dominating sequence of (G,M) is called the Grundy M-

double domination number of (G,M) and is denoted by γ×2
grm(G,M). Given a chain graph

G and M ⊆ V (G) satisfying equation 4.1, the G R U N D Y M - D O U B L E D O M I N AT I O N

(GMD2) problem asks to compute a Grundy M-double dominating sequence of (G,M).

From this point, G = (G,M) denotes an instance of the GMD2 problem, where

G = (X, Y,E) is a chain graph and M is a subset of V (G) satisfying equation 4.1. Let S be

a Grundy M-double dominating sequence of G . If M = ∅ then, S is also a GDD-sequence of

G. So, the GD2 problem is a special case of the GMD2 problem.
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Now, we state two important lemmas. The proofs of these lemmas are easy and, hence

are omitted.

Lemma 4.23. Let M ̸= ∅. Then, γ×2
grm(G ) ≤ γ×2

gr (G).

Lemma 4.24. For any Grundy M-double dominating sequence S of G , we have that Xk∩Ŝ ̸=
∅ and Y1 ∩ Ŝ ̸= ∅.

We prove a lemma for complete bipartite graphs that forms the basis of our algorithm.

Lemma 4.25. γ×2
grm(G ) ∈ {max{n1, n2},max{n1, n2}+ 1}, when G is a complete bipartite

graph.

Proof. There are four cases to consider.

Case 1: M = ∅: In this case, γ×2
grm(G ) = γ×2

gr (G). Using Proposition 13, we have γ×2
grm(G ) =

max{n1, n2}+ 1.

Case 2: M ∩Xk = {xn1} and M ∩ Y1 = ∅: Since |M ∩Xk| = 1, we have that n1 ≥ 2. We

consider two subcases now.

Subcase 2.1: n1 = max{n1, n2}:
Here, we have that γ×2

gr (G) = n1+1. Now, if n2 = 1, γ×2
grm(G ) ≤ |X|−1+ |Y | = n1. As the

sequence (x1, x2, . . . , xn1−1, y1) is an M-double dominating sequence of G of length n1. So,

γ×2
grm(G ) = n1 = max{n1, n2}. Otherwise, if n2 > 1, the sequence (x1, x2, . . . , xn1−1, y1, y2)

is an M-double dominating sequence of G of length n1 + 1. Thus, we have that γ×2
grm(G ) =

n1 + 1 = max{n1, n2}+ 1 using Lemma 4.23.

Subcase 2.2: n2 = max{n1, n2}:
Here, we have that γ×2

gr (G) = n2 + 1. Since n1 ≥ 2, we have that n2 ≥ 2. The sequence

(y1, y2, . . . , yn2 , x1) is an M-double dominating sequence of G of length n2 + 1. Thus, we

have γ×2
grm(G ) = n2 + 1 = max{n1, n2}+ 1 using Lemma 4.23.

Case 3: M ∩ Y1 = {y1} and M ∩Xk = ∅:
This case is similar to case 2.
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Case 4: M ∩Xk = {xn1} and M ∩ Y1 = {y1}:
Clearly, n1 ≥ 2 and n2 ≥ 2. We again consider two subcases.

Subcase 4.1: n1 = max{n1, n2}:
Here, we have that γ×2

gr (G) = n1+1. If n2 ≥ 3, the sequence (x1, x2, . . . , xn1−1, y2, y3) is an

M-double dominating sequence of G of length n1−1+2 = n1+1. So, γ×2
grm(G ) = n1+1 =

max{n1, n2}+ 1 using Lemma 4.23. But, if n2 = 2, the sequence (x1, x2, . . . , xn1−1, y2) is

an M-double dominating sequence of G of length n1 − 1 + 1 = n1. So, γ×2
grm(G ) = n1 =

max{n1, n2} using the fact that γ×2
grm(G) ≤ |X| − 1 + |Y | − 1 = n1 − 1 + 2− 1 = n1.

Subcase 4.2: n2 = max{n1, n2}:
Similar to the subcase 4.1, we can prove that γ×2

grm(G ) is either n2 or n2 + 1.

Algorithm 12 computes a Grundy M-double dominating sequence of G based on the

Lemma 4.25, when G is a complete bipartite graph. Next, we state some lemmas for G when

G is not a complete bipartite graph, that is, k ≥ 2.

Lemma 4.26. If there exists a Grundy M-double dominating sequence S∗ of G such that

|Xk ∩ Ŝ∗| ≥ 3, then exactly one of the following is true:

1. γ×2
grm(G ) = |X|+ k.

2. γ×2
grm(G ) = |X|+ k − 1.

Proof. Let Xk = {ak1 , ak2 , . . . , akt}. There can be two cases.

Case 1: M ∩Xk = ∅
In this case, no vertex of Xk is marked and (x1, x2, . . . , xn1 , y

k, yk−1, . . . , y1) is an M-double

dominating sequence of G which implies that γ×2
grm(G ) ≥ |X|+ k.

Since, |Xk ∩ Ŝ∗| ≥ 3, we get that t ≥ 3. Note that we can assume that all vertices of

Xk ∩ Ŝ∗ appear in the same order as in the chain ordering. We also assume that all vertices

of (Xk \ {ak1}) ∩ Ŝ∗ appear together in S∗. Now, we show that there exists an M-double

dominating sequence of G in which all vertices of Xk appear. To see this, suppose that there

is a vertex aki , where i ≥ 4, such that aki /∈ Ŝ∗. This means that there are two vertices
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Algorithm 12: S = GrundyM1(G,M)

Input: G = (G,M), where G = (X,Y,E) is a complete bipartite graph and M ⊆ V (G)
satisfying equation 4.1, X = {x1, . . . , xn1} and Y = {y1, . . . , yn2}.

Output: A Grundy M-double dominating sequence S of G .
if M = ∅ then

if n1 ≥ n2 then
S = (x1, x2, . . . , xn1 , y1)

else
S = (y1, y2, . . . , yn2 , x1)

if M ∩Xk = {xn1} and M ∩ Y1 = ∅ then
if n1 ≥ n2 then

if n2 = 1 then
S = (x1, x2, . . . , xn1−1, y1)

else
S = (x1, x2, . . . , xn1−1, y1, y2)

else
S = (y1, y2, . . . , yn2 , x1)

if M ∩ Y1 = {y1} and M ∩Xk = ∅ then
if n2 ≥ n1 then

if n1 = 1 then
S = (y2, y3, . . . , yn2 , x1)

else
S = (y2, y3, . . . , yn2 , x1, x2)

else
S = (x1, x2, . . . , xn2 , y2)

if M ∩Xk = {xn1} and M ∩ Y1 = {y1} then
if n1 ≥ n2 then

if n2 ≥ 3 then
S = (x1, x2, . . . , xn1−1, y2, y3)

else
S = (x1, x2, . . . , xn1−1, y2)

else
if n1 ≥ 3 then

S = (y2, y3, . . . , yn2 , x1, x2)

else
S = (y2, y3, . . . , yn2 , x1)

return S.

y, y′ ∈ Y ∩ Ŝ∗ which dominate aki first and second time respectively. Note that y′ appears

after ak3 in S∗. Here, we modify the sequence by replacing y′ with the vertex aki and get

a new Grundy M-double dominating sequence of G in which the vertex aki appears. By

repeating this argument, we get a Grundy M-double dominating sequence of G in which
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all vertices of Xk appear. So, assume that Xk ⊆ Ŝ∗. We also assume that all vertices of

Xk \ {ak1} appear together in S∗.

Next, we show that there exists a Grundy M-double dominating sequence of G in

which all vertices of X appear. So, let x0 be a vertex of X side which does not appear in S∗.

This implies that there is a vertex y0 ∈ Y which appears in S∗, to dominate x0 the second

time. Note that y0 appears after all vertices of Xk in S∗. We modify S∗ by replacing y0

with the vertex x0 and get a new Grundy M-double dominating sequence of G in which

the vertex x0 appears. By repeating this argument, we get a Grundy M-double dominating

sequence S of G in which all vertices of X appear. Thus, X ⊆ Ŝ. Since N(Xk) = Y and

|Xk ∩ Ŝ| = |Xk| ≥ 3, we have that at most one vertex of Y appears before ak3 in S. So, at

most k vertices can appear in S from the Y side. Thus, γ×2
grm(G ) ≤ |X| + k which further

implies that γ×2
grm(G ) = |X|+ k.

Case 2: M ∩Xk ̸= ∅
Let akt be the marked vertex of Xk. Here, we see that t ≥ 4. If (X \ {akt}) ⊈ Ŝ∗, we can do

similar modifications as done in case 1 and get a new Grundy M-double dominating sequence

S of G such that all vertices of X \ {akt} appear in S. Again, we see that at most k vertices

can appear from the Y side in S. Thus, γ×2
grm(G ) ≤ |X| − 1 + k which further implies that

γ×2
grm(G ) = |X|+ k − 1.

Similar to Lemma 4.26, we state another lemma for the Y side of G. Proof of Lemma

4.27 is similar to the Lemma 4.26.

Lemma 4.27. If there exists a Grundy M-double dominating sequence S∗ of G such that

|Y1 ∩ Ŝ∗| ≥ 3, then exactly one of the following is true:

1. γ×2
grm(G ) = |Y |+ k.

2. γ×2
grm(G ) = |Y |+ k − 1.

Lemma 4.28. Let G be an instance of the GMD2 problem such that there is no Grundy

M-double dominating sequence S∗ of G satisfying |Xk ∩ Ŝ∗| ≥ 3 or |Y1 ∩ Ŝ∗| ≥ 3. Assume

that S is a Grundy M-double dominating sequence of G such that |Xk ∩ Ŝ| = 2. Then either
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|Y1∩ Ŝ| = 1 or there exists another Grundy M-double dominating sequence S ′ of G satisfying

one of the following:

(1) |Xk ∩ Ŝ ′| = 2 and |Y1 ∩ Ŝ ′| = 1. (2) |Xk ∩ Ŝ ′| = 1 and |Y1 ∩ Ŝ ′| = 2.

Proof. Since G has no Grundy M-double dominating sequence having at least 3 vertices

from Y1, we have that |Y1 ∩ Ŝ| ≤ 2. Moreover, Lemma 4.24 ensures that |Y1 ∩ Ŝ| = 1 or

|Y1 ∩ Ŝ| = 2. Now, if |Y1 ∩ Ŝ| = 1, there is nothing to prove. So, assume that |Y1 ∩ Ŝ| = 2.

Suppose that Xk ∩ Ŝ = {a, b} and Y1 ∩ Ŝ = {c, d}. Note that the sequence S ends with a

vertex of the set {a, b, c, d}. There are two cases to consider.

Case 1: S ends with c or d:

First, we assume that S ends with the vertex d. As all vertices of the set {a, b, c} have

appeared before d, we get that d appears to dominate some vertex x∗ of X second time.

Note that x∗ /∈ Ŝ. Now, if x∗ is an unmarked vertex, we modify S by replacing the last

vertex d by the vertex x∗ and get a new Grundy M-double dominating sequence S ′ of G such

that |Y1 ∩ Ŝ ′| = 1. Otherwise, x∗ is a marked vertex of G. This means that x∗ ∈ Xk. As

d is dominating x∗ second time and N(Xk) = Y , we get that |Y ∩ Ŝ| = 2. In particular,

Y ∩ Ŝ = {c, d} = Y1 ∩ Ŝ. Since k ≥ 2, there is a vertex y0 ∈ Y2 which is appearing nowhere

in S. So, we modify S by replacing the last vertex d by the vertex y0 and get a new Grundy

M-double dominating sequence S ′ of G such that |Y1 ∩ Ŝ ′| = 1. Hence, Ŝ ′ is the desired

Grundy M-double dominating sequence of G . Similar arguments can be given when S ends

with the vertex c.

Case 2: S ends with a or b:

In this case, we get a new Grundy M-double dominating sequence S ′ of G such that |Xk ∩
Ŝ ′| = 1 and |Y1 ∩ Ŝ ′| = 2 by doing similar modifications as done in case 1.

Therefore, the lemma holds.

Lemma 4.29. Let G be an instance of the GMD2 problem such that there is no Grundy

M-double dominating sequence S∗ of G satisfying |Xk ∩ Ŝ∗| ≥ 3 or |Y1 ∩ Ŝ∗| ≥ 3. Assume
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that S is a Grundy M-double dominating sequence of G such that |Xk ∩ Ŝ| = 1. Then

Yk ⊆ Ŝ.

Proof. Since every vertex of Yk has to be dominated at least twice by the vertices of S,

N(Yk) = Xk and |Xk ∩ Ŝ| = 1, we get, Yk ⊆ Ŝ.

Similar to Lemma 4.29, we state another lemma for G.

Lemma 4.30. Let G be an instance of the GMD2 problem such that there is no Grundy

M-double dominating sequence S∗ of G satisfying |Xk ∩ Ŝ∗| ≥ 3 or |Y1 ∩ Ŝ∗| ≥ 3. Assume

that S is a Grundy M-double dominating sequence of G such that |Y1∩ Ŝ| = 1. Then X1 ⊆ Ŝ.

Using Lemmas 4.28, 4.29 and 4.30, we can directly state the following result.

Lemma 4.31. Let G be an instance of the GMD2 problem such that there is no Grundy

M-double dominating sequence S∗ of G satisfying |Xk ∩ Ŝ∗| ≥ 3 or |Y1 ∩ Ŝ∗| ≥ 3. Then one

of the following is true:

(1) There exists a Grundy M-double dominating sequence S of G such that

|Xk ∩ Ŝ| = 1 and Yk ⊆ Ŝ.

(2) There exists a Grundy M-double dominating sequence S of G such that |Y1∩Ŝ| = 1

and X1 ⊆ Ŝ.

Let G be an instance of the GMD2 problem such that there is no Grundy M-double

dominating sequence S∗ of G satisfying |Xk ∩ Ŝ∗| ≥ 3 or |Y1 ∩ Ŝ∗| ≥ 3. We call a Grundy

M-double dominating sequence S of G as a type 1 optimal sequence of G if it satisfies that

|Xk ∩ Ŝ| = 1 and Yk ⊆ Ŝ. Similarly, We call a Grundy M-double dominating sequence S of

G , a type 2 optimal sequence of G if it satisfies that |Y1 ∩ Ŝ| = 1 and X1 ⊆ Ŝ.

Lemma 4.32. Let G be an instance of the GMD2 problem. Then one of the following is true:

(1) There exists a type 1 optimal sequence of G .

(2) There exists a type 2 optimal sequence of G .
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Proof. If a vertex of X is marked, we assume that it is the vertex xn1 and if a vertex of Y is

marked, we assume that it is the vertex y1. If G is an instance such that there is no Grundy

M-double dominating sequence S∗ of G satisfying |Xk ∩ Ŝ∗| ≥ 3 or |Y1 ∩ Ŝ∗| ≥ 3 then the

statement is true using Lemma 4.31.

So, assume that there is a Grundy M-double dominating sequence S∗ of G such that

|Xk∩Ŝ∗| ≥ 3 or |Y1∩Ŝ∗| ≥ 3. If |Xk∩Ŝ∗| ≥ 3 then, using Lemma 4.26, we get that γ×2
grm(G )

is |X| + k or |X| + k − 1. If γ×2
grm(G ) is |X| + k, then (x1, x2, . . . , xn1 , y

k, yk−1, . . . , y1)

is a type 2 optimal sequence of G . Note that xn1 is not a marked vertex of G in this case.

Otherwise, if γ×2
grm(G ) is |X| + k − 1, then (x1, x2, . . . , xn1−1, y

k, yk−1, . . . , y1) is a type 2

optimal sequence of G . Thus, if |Xk ∩ Ŝ∗| ≥ 3, there exists a type 2 optimal sequence of G .

Similarly, if |Y1 ∩ Ŝ∗| ≥ 3, then we get that there exists a type 1 optimal sequence of

G . This is ensured due to Lemma 4.27.

Finally, we state the lemma which completely characterizes the structure of an optimal

solution for an instance of the GMD2 problem. The proof is easy and hence, is omitted.

Lemma 4.33. Let G be an instance of the GMD2 problem. Then one of the following is true:

(1) There exists a type 1 optimal sequence S of G in which the vertex of Xk ∩ Ŝ appear in the

last.

(2) There exists a type 2 optimal sequence S of G in which the vertex of Y1 ∩ Ŝ appear in the

last.

We use a dynamic programming approach to solve the GMD2 problem for an instance

G in Algorithm 13. Through Lemma 4.33, we characterized the structure of an optimal

solution. Next, we define the optimal solution of the problem recursively in terms of the

optimal solutions to subproblems. For GMD2 problem, we pick the subproblems as the

problem of finding a Grundy M-double dominating sequence of G ′ = (G′,M ′), where G′ is

a subgraph of G and M ′ ⊆ V (G′) satisfying equation 4.1.

Let S be a Grundy M-double dominating sequence of G which is a type 1 optimal

sequence of G and the vertex of Xk ∩ Ŝ appear in the last. We also assume that all vertices
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of Yk appear together just before the vertex of Xk. Let G1 denotes the subgraph of G

induced on the set of vertices (X \ Xk) ∪ {xt+1} ∪ (Y \ Yk), where t = |X| − |Xk|. Let

M1 = {xt+1} ∪ (M ∩ Y1). Then the subsequence of S obtained by removing the last |Yk|+1

vertices of S is a Grundy M-double dominating sequence of (G1,M1).

Similarly, if S is a type 2 optimal sequence of G having the vertex of Y1 ∩ Ŝ in the last

and G2 denotes the subgraph of G induced on the set of vertices (Y \ Y1) ∪ {yt} ∪ (X \X1),

where t = |M ∩ Y1|+1. Again, assume that all vertices of X1 appear together just before the

vertex of Y1. Let M2 = {yt} ∪ (M ∩Xk). Then the subsequence of S obtained by removing

the last |X1|+ 1 vertices of S is a Grundy M-double dominating sequence of (G2,M2).

Now, we give the algorithm to compute a Grundy M-double dominating sequence of G .

Algorithm 13: S = GrundyM(G,M)

Input: G = (G,M), where G = (X, Y,E) is a chain graph and M ⊆ V (G) satisfying
equation 4.1. X = {x1, . . . , xn1} and Y = {y1, . . . , yn2}.

Output: A Grundy M-double dominating sequence S of G .
if k = 1 then

S = GrundyM1(G,M);
return S;

else
t = |X| − |Xk|, X ′

k−1 = Xk−1 ∪ {xt+1};
if k ≥ 3 then

X ′ = ∪k−2
i=1Xi ∪X ′

k−1;

else
X ′ = X ′

k−1;

G1
k−1 = G[X ′ ∪ (Y \ Yk)], M ∩Xk = {xt+1};

S1 = GrundyM(G1
k−1,M)⊕ (Yk)⊕ xt+1;

t = |M ∩ Y1|+ 1, Y ′
1 = Y2 ∪ {yt};

if k ≥ 3 then
Y ′ = ∪ki=3Yi ∪ Y ′

1 ;

else
Y ′ = Y ′

1 ;

G2
k−1 = G[(X \X1) ∪ Y ′], M ∩ Y1 = {yt};

S2 = GrundyM(G2
k−1,M)⊕ (X1)⊕ yt;

if |Ŝ1| ≥ |Ŝ2| then
return S1;
else

return S2;
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Algorithm 13 computes a Grundy M-double dominating sequence of G = (G,M) by

recursively appending some vertices at the end of the Grundy M-double dominating sequence

of (G′,M ′), where G′ is a subgraph of G. Note that this task can be performed in linear-time.

Based on the above discussion, we directly state the following theorem.

Theorem 4.34. Algorithm 13 outputs a Grundy M-double dominating sequence of G =

(G,M) in linear-time, where G is a chain graph.

To solve the GD2 problem in a chain graph G, we compute a Grundy M-double

dominating sequence of (G, ∅) using Algorithm 13. So, we can state the following theorem.

Theorem 4.35. A GDD-sequence of a chain graph G can be computed in linear-time.

4.4 Summary

We studied the GDD problem and the GD2D problem in this chapter. We proved that

both problems are NP-complete for bipartite graphs and co-bipartite graphs. In addition,

we showed that the GD2D problem is NP-complete for split graphs. On a positive note,

we presented a linear-time algorithm to solve the GD problem in chain graphs. We also

remarked on a connection between the independence number of a graph G and the Grundy

domination number of G. We also proved that the GD2D problem is efficiently solvable

for chain graphs and for threshold graphs. We solved this problem in chain graphs using a

dynamic programming approach. Since the class of chain graphs is a subclass of bipartite

graphs, the gap between the efficient algorithms and NP-completeness in the subclasses of

bipartite graphs has been narrowed a little for both problems. As threshold graph is a subclass

of split graphs, the same can be said for chordal graphs.



Chapter 5
Maximum Weighted Edge Biclique

5.1 Introduction

In this chapter, we discuss the MWEB problem for edge weighted bipartite graphs. In

particular, we resolve the complexity status of the problem in chain graphs and bipartite

permutation graphs when the weights of the edges of the graph are taken from the set of

positive real numbers.

The M A X I M U M V E R T E X B I C L I Q U E (MVB) problem is to find a biclique of a

graph G with maximum number of vertices. The decision version of the MVB problem is

NP-complete for general graphs [40], but the MVB problem is polynomial-time solvable

for bipartite graphs [40]. The M A X I M U M E D G E B I C L I Q U E (MEB) problem is to find

a biclique in an unweighted graph G with the maximum number of edges. The decision

version of the MEB problem is NP-complete for general graphs [40] and it also remains

NP-complete for bipartite graphs [79] unlike the MVB problem. Many researchers have also

studied some other variations of these problems, see [40, 30, 29, 47]. The MEB problem was

first introduced in [40] and further studied in [79, 68, 88, 73, 8]. Some wide details about

the applications of the MEB problem can be found in [30, 73]. Since the MEB problem

is hard to approximate in bipartite graphs within nδ for some δ > 0 [36, 42] under certain

assumptions such as random 4-SAT or 3-SAT hardness hypothesis, researchers have also

studied the problem for subclasses of bipartite graphs. The MEB problem is polynomial-time

solvable for the following subclasses of bipartite graphs: chordal bipartite graphs, convex

bipartite graphs, and bipartite permutation graphs [73, 5, 31, 32, 41, 51]. Some other hardness

results are also available for the MEB problem based on some assumptions ([68, 8, 37, 7]).

In this chapter, we study the MWEB problem which is the weighted version of the MEB

problem. The WEBD problem is the decision version of the MWEB problem.

There exists a restricted version of the MWEB problem, namely the S-MWEB problem,

where S is a subset of real numbers from which edge weights are taken and the input graph

141
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is a bipartite graph. In 2008, Tan ([88]) proved that for a wide range of choices of S, no

polynomial-time algorithm can approximate the S-MWEB problem within a factor of nϵ for

some ϵ > 0 unless RP=NP. He also proved that the decision version of the S-MWEB problem

is NP-complete even for S = {−1, 0, 1}. In this work, we show that this problem remains

NP-complete when S = {1,−M} (M > |E(G)|) in a very restricted graph class. On the

positive side, we show that when the set S is the set of positive real numbers, the S-MWEB

problem is quadratic time solvable for bipartite permutation graphs and linear-time solvable

for chain graphs.

The organization of upcoming sections of this chapter is as follows. In Section 5.2,

we discuss the NP-completeness result for the WEBD problem. Section 5.3 presents the

polynomial time algorithms for the problem when edge weights are taken from the set R+.

5.2 NP-completeness Result

In this section, we show that the WEBD problem is NP-complete for complete bipartite

graphs, a very restricted subclass.

Theorem 5.1. The WEBD Problem is NP-complete for complete bipartite graphs.

Proof. Clearly, the WEBD problem is in NP. To prove the NP-hardness of the WEBD problem

for a complete bipartite graph, we make a polynomial reduction from the unweighted version

of the same problem for bipartite graphs. So, we prove a construction of a weighted complete

bipartite graph from an unweighted bipartite graph.

Let G = (X, Y,E) be an unweighted bipartite graph with |X| = n1 and |Y | = n2. We

construct a new graph H which is nothing but Kn1,n2 . Now, for an edge e in H , we define

its weight to be 1 if e ∈ E and −M otherwise, where M > m = |E|. So, H is a weighted

complete bipartite graph with weights as any real number. Fig. 5.1 illustrates the construction

of H from G. The dashed edges in Fig. 5.1 are the edges with weight −M .

Now to complete the proof of the theorem, we only need to prove the following claim.
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F I G U R E 5 . 1 : An illustration to the construction of H from G.

Claim 5.2.1. G has a biclique of size at least k > 0 if and only if H has a biclique of weight

at least k > 0.

Proof. Let C be a biclique of G of size at least k > 0. Clearly, C corresponds to a biclique

of weight at least k in H . Conversely, let C be a biclique of weight at least k in H . If

all the edges of C are of weight 1 then all the edges of C are present in G also and so, C

corresponds to a biclique of size at least k in G. Now, if there is at least one edge e0 of C

having weight−M then we see that
∑

e∈E(C)\{e0}w(e) ≥ k+M . Since exactly m = |E(G)|
edges of H have weight 1, we have,

∑
e∈E(C)\{e0}w(e) ≤ m < M , a contradiction to∑

e∈E(C)\{e0}w(e) ≥ k +M . So, no edge of C has weight −M .

Hence, the theorem is proved.

We have observed that the WEBD problem is NP-complete even for complete bipartite

graphs. In the next section, we will discuss the S-MWEB problem with S as the set of positive

real numbers, which will be the restricted version of the MWEB problem. Throughout the

Section 5.3, by the MWEB problem we mean the S-MWEB problem, where S = R+.

5.3 Polynomial Time Algorithms

In this section, we design efficient algorithms for the R+-MWEB problem in bipartite

permutation graphs and chain graphs, subclasses of bipartite graphs. The class of chain

graphs is a subclass of bipartite permutation graphs so the algorithm for bipartite permutation
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graphs also works for chain graphs. We present separate algorithms for both of these graph

classes for the sake of better running times.

5.3.1 Bipartite Permutation Graphs

Let G = (X, Y,E) be a weighted bipartite permutation graph with the strong ordering

(<X , <Y ) of G. Weights on the edges are some positive real numbers. Suppose that <X=

(x1, x2, . . . , xk) and <Y= (y1, y2, . . . , yk′). We write u <X v or u <Y v for vertices u, v of

G if u appears before v in the strong ordering of vertices of G. We write u < v when it is

clear from the context that u, v are coming from which side of the bipartition. For any edge

xiyj , its weight is denoted by wij .

Now, we define the first and last neighbor of a vertex in G. Since both <X and <Y

satisfy adjacency property (see lemma 1.4), for a vertex v of G, its neighbor set has some

consecutive vertices in <X or <Y . First neighbor of v is defined as the vertex that appears

first in the strong ordering of G in its neighbor set and last neighbor of v is defined as the

vertex that appears last in the strong ordering of G in its neighbor set. For any vertex u of G,

f(u) denotes the first neighbor of u, and l(u) denotes the last neighbor of u. For u in X , we

denote f(u) by yαu and l(u) by yβu where 1 ≤ αu ≤ βu ≤ k′.

It can be observed that for a bipartite permutation graph G with its strong ordering

(<X , <Y ), it has the following properties which will be used in the further discussion (See

[55]):

1. Given any vertex of G, its neighbor set consists of some consecutive vertices in <X or

<Y .

2. For a pair of vertices u, v from X or Y , if u < v then f(u) ≤ f(v) and l(u) ≤ l(v).

Now, we discuss the structure of a maximal biclique of G which will be used in getting a

maximum biclique of G.

Let G′ = (X ′, Y ′, E ′) denotes a maximal biclique of G with X ′ = {xi, xi+1, . . . , xj} and

Y ′ = {yi′ , yi′+1, . . . , yj′} then edge xiyi′ is called the first edge of G′. We call an edge uv of
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G as a safe edge if it is the first edge of some maximal biclique of G. We will see that one

safe edge corresponds to exactly one maximal biclique of G and vice versa.

Lemma 5.2. Let G′ = (X ′, Y ′, E ′) be a biclique of G with X ′ = {xi, xi+1, . . . , xj} and

Y ′ = {yi′ , yi′+1, . . . , yj′}, then G′ is a maximal biclique of G if and only if the following

holds for the graph G.

(a) l(xi) = yj′

(b) f(xj) = yi′

(c) l(yi′) = xj

(d) f(yj′) = xi

Proof. First, let us assume that G′ is a maximal biclique. We need to show that conditions

(a), (b), (c) and (d) are true. For (a), it is clear that l(xi) ≥ yj′ since G′ is a biclique. If

equality holds, we are done. So, let l(xi) > yj′ , say l(xi) = yt(> yj′). Since vertices

are ordered according to the strong ordering, all vertices of X ′ are adjacent to the vertices

yj′+1, yj′+2, . . . , yt in G implying that G′ is not a maximal biclique of G. Now for (b), suppose

that f(xj) < yi′ , say f(xj) = yp(< yi′). All vertices of X ′ are adjacent to yp, yp+1, . . . , yi′−1

in G because of the strong ordering of the vertices of G, but G′ was maximal. Similarly (c)

and (d) can be proven.

Conversely, we assume that the conditions (a), (b), (c) and (d) are true. Let, if possi-

ble, G′ is not maximal. Then there exists a vertex v in G for which one of the follow-

ing conditions must be satisfied: (i) v < xi and vyj′ ∈ E(G), (ii) v < yi′ and vxj ∈
E(G), (iii) v > xj and vyi′ ∈ E(G), and (iv) v > yj′ and vxi ∈ E(G). But none of the

edges vyj′ , vxj, vyi′ , vxi can be present in G because of our assumption that (a), (b), (c) and

(d) are true. So, G′ is a maximal biclique.

For any edge e = uv, the biclique corresponding to e, is the subgraph induced by the

vertices {u, ..., l(v), v, ..., l(u)}. By Lemma 5.2, it can be observed that any maximal biclique

of G can be identified from its first edge(safe edge). Given any edge uv (u ∈ X and v ∈ Y )

of G, one can easily check whether that is a safe edge or not as follows: If the first neighbor of
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F I G U R E 5 . 2 : An example of Bipartite Permutation Graph.

the last neighbor of v is equal to v and first neighbor of last neighbor of u is equal to u, then

uv qualifies as a safe edge. We observe from lemma 5.2 that this condition is both necessary

and sufficient for a biclique(corresponding to an edge uv) to be a maximal biclique. Hence,

we can say that number of safe edges in G is equal to the number of maximal bicliques of G.

We denote the maximal biclique corresponding to the safe edge e by Ge. For every vertex u

of G, we define an array called prefix sum array(psa) of u of size d(u) as an array in which

each value equals the sum of weights of edges up to that position starting from f(u). The psa

of xi(or yj) is denoted by Ai[ ](or Bj[ ]). Fig. 5.2 represents a bipartite permutation graph.

Next, we illustrate all the terminologies defined in this section using Fig. 5.2.

In bipartite permutation graph shown in Fig. 5.2, x2y2 is a safe edge since f(l(x2)) =

f(y5) = x2 and f(l(y2)) = f(x4) = y2 but x4y4 is not as f(l(x4)) = f(y5) = x2 ̸= x4.

Prefix sum array of the vertex x6 is A6 = {27, 37, 48, 99}, where A6[1] = 27, A6[2] =

27 + 10 = 37, A6[3] = 27 + 10 + 11 = 48 and A6[4] = 27 + 10 + 11 + 51 = 99.

Our Algorithm

Our idea for finding a maximum biclique is to look at all possible maximal bicliques of G

and then return the one with the maximum weight. Since weights are positive real numbers

any maximum biclique is some maximal biclique of G. The idea behind our algorithm is the

following.

1. Find all safe edges of G.

2. Find psa of each vertex of G.

3. For each vertex u ∈ X ,
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(a) for each v ∈ N(u) (choose vertex v in the given ordering)

(b) if e = uv is a safe edge

i. find the maximal biclique Ge.

ii. find We, the weight of biclique Ge using psa of vertices.

4. Output the maximal biclique Ge∗ for which We∗ is maximum.

Note: We implement step 3 for each vertex in O(n)-time and hence overall complexity of

step 3 is O(n2). The detailed algorithm is given in Algorithm 14.

Theorem 5.3. Algorithm 14 outputs a maximum weighted edge biclique of the bipartite

permutation graph G.

Proof. We know that all edge weights of G are positive and a MWEB of G is a maximal

biclique of G. Hence, it is enough to show that Algorithm 14 finds all maximal bicliques

of G and compares their weights. Suppose that H is a maximal biclique of G, then its

first edge, say uv, is a safe edge and it will be identified while checking the condition

f(l(v)) == v and f(l(u)) == u. Hence, biclique H will be determined and its weight will

be calculated during the execution of the algorithm. This proves that our algorithm computes

the weights of all maximal bicliques of G, and hence it produces a maximum weighted edge

biclique of G.

Theorem 5.4. Algorithm 14 runs in O(n2)-time.

Proof. For any edge e ∈ E, it will take constant time to check whether e qualifies as a

safe edge or not. This is ensured due to Lemma 5.2. So, the preprocessing of all the

safe edges takes O(m)-time as it scans all the edges one by one. For a vertex u of G,

calculating its psa will take d(u) amount of time. Hence, finding psa of each vertex will

take O(m)-time. For a vertex u ∈ X , step 3 can be implemented in O(n)-time. This is

possible because, for all the safe edges in which one of the end point is u, we can find the

weights of the corresponding bicliques in O(n)-time altogether. So, overall step 3 takes
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Algorithm 14: Algorithm for finding a MWEB of a bipartite permutation graph G

Input: A bipartite permutation graph G = (X, Y,E) with the strong ordering of its
vertices.

Output: A maximum weighted edge biclique of G.
/* identifying safe edges */
for each edge e = uv in E do

if f(l(v)) == v and f(l(u)) == u then
mark e as a safe edge

/* finding prefix sum arrays of vertices of G */
/* If N(xi) = {ys1 , ys2 , . . . , ysd(xi)}, Sxi

denotes the set {1, 2, . . . , d(xi)}
*/

for each vertex xi from X do
for every j from Sxi

do
Ai[j] = Ai[j − 1] + wisj

/* similarly we can find psa of vertices of Y */
max:=0
for each vertex x = xi from X do

sum:=0
/* S ′

x denotes the set {ya1 , ya2 , . . . , yat} where a1 < a2 < . . . < at
such that xya1 , xya2 , . . . , xyat are safe edges */

for j = 1 to t do
/* finding maximal biclique corresponding to the safe

edge e = xyaj */
Xe := {xi, xi+1, . . . , xp} // xp = l(yaj)
Ye := {yaj , yaj+1, . . . , yq} // yq = l(xi)
Ee := {uv|u ∈ Xe, v ∈ Ye}, Ge := (Xe, Ye, Ee)
if sum==0 then

for each vertex x′ = xb from Xe do
sum := sum+ Ab[q − αx′ + 1]− Ab[aj − αx′ ]

We := sum

else
We := sum+W1 −W2, sum := We

/* W1 and W2 are the weights of the subgraphs
induced by the vertices {xc+1, . . . l(yaj), yaj , . . . , yq} and
{xi, . . . xc, yaj−1

, . . . , yaj−1} respectively, where
xc = l(yaj−1

). W1 and W2 are obtained using psa of
vertices */

if We > max then
max := We, e∗ := e

return Ge∗ and max
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O(n2)-time. Therefore, the algorithm returns a maximum weighted edge biclique of G in

O(m) +O(m) +O(n2) ≈ O(n2)-time.

5.3.2 Chain Graphs

Let G = (X, Y,E) be a chain graph with the chain ordering (x1, x2, . . . , xn1 , y1, y2, . . .

, yn2) such that N(x1) ⊆ N(x2) ⊆ . . . ⊆ N(xn1) and N(y1) ⊇ N(y2) ⊇ . . . ⊇ N(yn2).

Throughout this section, G = (X, Y,E) denotes a weighted chain graph with |X| = n1 and

|Y | = n2.

Recall the relation ∼ on X ∪ Y discussed in Chapter 1. Let PX be the twin partition

of X and PY be the twin partition of Y . We write PX = {X1, X2, . . . , Xk} and PY =

{Y1, Y2, . . . , Yk}. Note that [u] denotes the equivalence class for u ∈ V (G).

Now, we define the representative vertex for each set of PX . For a set S ∈ PX , a

vertex from S is called the representative vertex of the set S, if it is the least indexed vertex

among all vertices of S. We denote the representative vertex of a set S by rS . Next, we state

some observations related to maximal bicliques of a chain graph which leads to a maximum

weighted edge biclique of G.

Lemma 5.5. Let G′ = (X ′, Y ′, E ′) be a maximal biclique of G, then the following holds:

(a) If x ∈ X ′, then [x] ⊆ X ′.

(b) If, y ∈ Y ′, then [y] ⊆ Y ′.

Proof. (a) Here, we will show that [x] ⊆ X ′ for any x ∈ X ′. Let x0 ∈ [x], as x0 and x are

similar vertices, N(x0) = N(x). Now, Y ′ ⊆ N(x) = N(x0) implies that x0 is adjacent to all

vertices of Y ′ in G. We must have these edges in G′ as it is a maximal biclique. So, [x] ⊆ X ′

is true.

Proof of part (b) is similar.

Below, we give a result that describes the detailed structure of a maximal biclique of a chain

graph.
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36

55
1943

F I G U R E 5 . 3 : An example of Chain Graph.

Lemma 5.6. Let G′ = (X ′, Y ′, E ′) be a maximal biclique of G. Then there exists an index

1 ≤ i ≤ k such that X ′ = Xi ∪Xi+1 ∪ . . . ∪Xk and Y ′ = N(rXi
) .

Proof. We know that vertices of G have an ordering as {x1, x2, . . . , xn1} and {y1, y2, . . . , yn2}
for X and Y respectively. Let j be the minimum index from {1, 2, . . . , n1} such that xj ∈ X ′

and there is some t such that xj ∈ Xt. Now Lemma 5.5 tells that [xj] = Xt ⊆ X ′ implying

that xj = rXt . Since j is the smallest index, we get that {X1 ∪X2 ∪ . . . ∪Xt−1} ∩X ′ = ϕ.

Now, as Y ′ ⊆ N(xj) and G is a chain graph, X ′ = Xt ∪Xt+1 ∪ . . . ∪Xk. Hence, for i = t,

one part of the lemma holds. For the remaining part, it is enough to show that N(xj) ⊆ Y ′.

So, let y be a neighbor of xj , then y is adjacent to all vertices in the set {xj+1, xj+2, . . . , xn1}
implying that y ∈ Y ′. Hence, Y ′ = N(rXi

) and X ′ = Xi ∪Xi+1 ∪ . . . ∪Xk.

It can be identified from Lemma 5.6 that a chain graph has exactly k maximal bicliques,

where k is the number of distinct equivalence classes corresponding to the relation ∼. Now,

we define an array called partition sum array(ptsa) of size k for each y ∈ Y . In a partition

sum array of a vertex y, each value contains the sum of weights of the edges incident on the

vertex y coming from one set of PX . We denote the ptsa of yi by Ai[ ]. Fig. 5.3 represents a

chain graph. We illustrate all the terminologies defined in this section using Fig. 5.3.

In the chain graph shown in Fig. 5.3, the partition PX = {X1, X2, X3, X4}, where

X1 = {x1, x2}, X2 = {x3, x4}, X3 = {x5} and X4 = {x6}. Partition sum array of the vertex

y1 is A1 = {98, 43, 3, 36}, where A1[1] = 55 + 43 = 98, A1[2] = 19 + 24 = 43, A1[3] = 3

and A1[4] = 36.

By Lemma 5.6, we know the structure of maximal bicliques of G. One can easily

see that each maximal biclique can be identified from the representative vertex of one of

the Xi’s from PX . We use the notation Gx for the maximal biclique corresponding to the
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representative vertex x and, Wx for the weight of the maximal biclique Gx, where x is the

representative vertex of some set in PX .

Our Algorithm

Our basic idea for finding a maximum biclique in chain graphs is to find weight of each

maximal biclique of G and output the one with the maximum weight. Since G has only k

maximal bicliques, so, in order to get the desired biclique, we need to find out the weights

of these k bicliques. Since chain graph is a subclass of bipartite permutation graph, we may

also use Algorithm 14 to compute a maximum weighted edge biclique of G. The ordering of

vertices of G as given in chain graph will also work for bipartite permutation graph. In this

way, we will get our desired output in O(n2)-time. Here, we propose an algorithm in which

we use a different method to find out the sum of each maximal biclique of G which results in

overall running time O(m+ n). The difference here is to use partition sum array instead of

prefix sum array. Below, we present the algorithm.

Algorithm 15: Algorithm for finding a MWEB of a chain graph G

Input: A chain graph G = (X, Y,E) with the chain ordering of its vertices.
Output: A maximum weighted edge biclique of G.

1. Find the partitions PX = {X1, X2, . . . , Xk} and PY = {Y1, Y2, . . . , Yk} from the
equivalence relation ∼, say R =< rXk

, rXk−1
, . . . , rX1 >.

2. Calculate the ptsa for each vertex of Y .
3. For each vertex u according to the order in which it appears in R,

find the maximal biclique Gu corresponding to the vertex u.
find Wu, the weight of biclique Gu using ptsa of vertices from Y ∩ V (Gu).

4. Output the maximal biclique Gu∗ for which Wu∗ is maximum.

Note that we implement step 3 for each vertex u ∈ R such that WrXj
is calculated

using ptsa of vertices of N(rXj
).

Proof of the correctness of Algorithm 15 follows from the fact that it considers weights

of all maximal bicliques of G and any maximum biclique is one of the maximal bicliques.

So, we can directly state the following theorem.

Theorem 5.7. Algorithm 15 outputs a maximum weighted edge biclique of a chain graph G.



152 Chapter 5 Maximum Weighted Edge Biclique

To analyze the running time of Algorithm 15, we need to bring some notations into

consideration. We denote the cardinalities of sets in the partition PX and PY by pi, qj for

Xi, Yj respectively, i.e. |Xi| = pi and |Yj| = qj . Now, we give a result that will be used in

analyzing the running time of Algorithm 15.

Lemma 5.8. Let G be a chain graph with a partition obtained from the ∼ relation defined on

X as well as on Y . Then m ≥ kq1 + (k − 1)q2 + . . .+ qk.

Proof. We know that N(X1) ⊂ N(X2) ⊂ . . . ⊂ N(Xk) and N(Y1) ⊃ N(Y2) ⊃ . . . ⊃
N(Yk). Since Y1 ∪ Y2 ∪ . . . ∪ Yk = Y and for i ̸= j, Yi ∩ Yj = ϕ, we can write that

m =
∑
y∈Y1

d(y) +
∑
y∈Y2

d(y) + . . .+
∑
y∈Yk

d(y)

= q1

k∑
i=1

pi + q2

k∑
i=2

pi + . . .+ qkpk

≥ kq1 + (k − 1)q2 + . . .+ qk.

The last inequality follows since |Xi| ≥ 1 for 1 ≤ i ≤ k.

Theorem 5.9. Algorithm 15 runs in O(m+ n)-time.

Proof. Step 1 will take O(n)-time as we have to go through all the vertices of G. To find

out the time taken by step 2, we see that we are doing some number of additions during

Algorithm 2. For each vertex y of Y , we are doing d(y) number of additions, so overall

step 2 takes
∑
y∈Y

d(y) = O(m) time. Now, to analyze step 3, we see that in our proposed

algorithm, we are finding weights of maximal bicliques in the order WrXk
,WrXk−1

, . . . ,WrX1
.

For calculating WrXj
, we are doing

j∑
i=1

qi + (j − 1) number of additions, where j varies from

k downto 1. Hence, step 3 performs

k∑
i=1

qi+
k−1∑
i=1

qi+. . .+q1+(k−1)+(k−2)+. . .+2+1+0 ≤ kq1+(k−1)q2+. . .+qk+
k(k + 1)

2
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number of additions. Now we know that m ≥ k(k+1)
2

since N(X1) ⊂ N(X2) ⊂ . . . ⊂
N(Xk1) and N(Y1) ⊃ N(Y2) ⊃ . . . ⊃ N(Yk2). Now using Lemma 5.8, we can say that step

3 will take O(m)-time to execute. Clearly, choosing the maximum among all the Wu’s will

take O(k)-time. Therefore, the Algorithm 15 returns a maximum weighted edge biclique of

G in O(n) +O(m) +O(m) +O(k) ≈ O(m+ n) time.

5.4 Summary

In this chapter, we discussed the MWEB problem. We proved that the decision version of

the MWEB problem remains NP-complete even for complete bipartite graphs, which is a

subclass of bipartite graphs. On the positive side, we show that for the input graph G, if

the weight of each edge is a positive real number, then the MWEB problem is O(n2)-time

solvable for bipartite permutation graphs and O(m+ n)-time solvable for chain graphs.





Chapter 6
Neighbor-Locating Coloring

6.1 Introduction

This chapter is dedicated to a variant of the V E R T E X C O L O R I N G problem in graphs,

namely “N E I G H B O R - L O C AT I N G C O L O R I N G” (NLC) problem. We discuss certain

bounds for general graphs as well as for some restricted graph classes such as chain graphs,

proper interval graphs and co-bipartite graphs. We also present a linear-time approximation

algorithm for the NLC problem. A comparison between the complexity of the NLC problem

with the V E R T E X C O L O R I N G problem is also discussed.

Graph coloring is a well-studied fundamental problem in graph theory, which involves

assigning labels or “colors” to elements (such as vertices, edges, or both) of a graph while

adhering to certain constraints. Although there are various forms of graph coloring, most

research in this area has been focused on vertex coloring, which has gained significant

attention since the famous four-color problem. The real-world applications of vertex coloring

have attracted researchers from many engineering fields, including scheduling, timetabling,

register allocation, frequency assignment, and many more.

Let G = (V,E) be a simple and undirected graph. Vertex coloring of G is an

assignment of colors to the vertices of G. When a vertex coloring of G uses k colors, we call

it a k-coloring of G. A k-coloring of G can also be viewed as a function from V to [k]. A

coloring of vertices of G is a proper coloring if no two adjacent vertices receive the same

color. The V E R T E X C O L O R I N G problem asks to find a proper coloring of G using the

minimum number of colors. The minimum number of colors required for a proper coloring

of G is called the chromatic number of G, denoted by χ(G). Let c : V → [k] be a proper

coloring of G. Then the color assigned to a vertex v ∈ V in the coloring c is denoted by c(v).

For a subset S of V , we denote the set of colors assigned to the vertices of S in the coloring c

by c(S). Malaguti et al. did a vast survey on vertex coloring in 2010 [67].

155
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In literature, several variants of the V E R T E X C O L O R I N G problem have been

introduced. Recently, the notion of neighbor-locating colorings is introduced [3]. Particularly,

we look at vertex colorings where any two vertices with the same color can be differentiated

from one another by the colors of their respective neighbors. A proper coloring c of a graph G

is called a neighbor-locating coloring (NL-coloring) if, for any two vertices u, v of the same

color, c(N(u)) ̸= c(N(v)). The neighbor-locating chromatic number of G is the minimum

k such that a neighbor-locating k-coloring of G exists. We denote the neighbor-locating

chromatic number of G by χNL(G). Given a graph G, the N E I G H B O R - L O C AT I N G

C O L O R I N G (NLC) problem requires assigning a color to each vertex of G such that the

coloring is a neighbor-locating coloring and the number of colors used is χNL(G).

To the best of our knowledge, there is no hardness result on the NLC problem in the

literature. Alcon et al. gave some bounds for the neighbor-locating chromatic number of a

general graph [3]. In the same article, they examined the neighbor-locating chromatic number

for some graph operations: the join and the disjoint union. Moreover, the neighbor-locating

chromatic number of split graphs and mycielski graphs have been computed. Alcon et al. also

established some bounds on the neighbor-locating chromatic number for unicyclic graphs

and trees in another paper [4]. Alcon et al. gave neighbor-locating chromatic number of

paths, cycles, fans, and wheels [2]. In 2020, Alcon et al. characterized all graphs having

neighbor-locating chromatic number equal to n or n− 1, where n is the number of vertices

in the graph [3]. In 2022, Mojdesh [69] studied the conjectures posed by Alcon et al. in [3].

The section-wise organization is as follows: Section 6.2 describes all the bounds we

have obtained for the NLC problem in some special graph classes. Next, in Section 6.3,

we give the approximation algorithm for the problem. Finally, section 6.4 remarks on a

complexity difference between the V E R T E X C O L O R I N G problem and the NLC problem.

6.2 Bounds

In this section, we discuss bounds for the neighbor-locating chromatic number of

graphs in terms of different important graph parameters. We first provide some lower and

upper bounds for general graphs. Then, we also discuss bounds for some special graph classes
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such as chain graphs, proper interval graphs, and co-bipartite graphs. In addition, we provide

exact values of the neighbor-locating chromatic number for restricted types of chain graphs.

First, we discuss some terminologies which will be used in this section. For a graph

G = (V,E), two vertices u, v ∈ V are called open twins if N(u) = N(v). A set S subset

of V is called an open twin set of G if for any pair of vertices u, v ∈ S, u, v are open twins.

We define a relation on the vertex set of graph G. Two vertices are related if and only if they

are open twins. We call it the “open twin relation”. It is easy to verify that this relation is an

equivalence relation on V . An equivalence class of the open twin relation is referred to as a

twin class. The twin number of a graph G, denoted by τ(G), is the maximum cardinality of

a twin class of G. Below, we state some bounds as propositions for the neighbor-locating

chromatic number of a connected graph G.

Proposition 14. χNL(G) ≥ τ(G) + 1.

Proof. Any neighbor-locating coloring of G requires that each pair of vertices from a twin

class have unique colors assigned to both of its vertices. The size of a largest twin class is

τ(G). Additionally, there exists a vertex outside the largest twin class that must be colored

differently. Therefore, χNL(G) ≥ τ(G) + 1 holds true.

Recall that β(G) is the vertex cover number of G.

Proposition 15. χNL(G) ≤ β(G) + τ(G).

Proof. To prove this proposition, we give a NL-coloring c of G using β(G) + τ(G) colors.

Let C be a minimum vertex cover of G. Assign each vertex of C, a unique color from the

set [β(G)]. Next, partition the vertices of V (G) \ C on the basis of open twin vertices, that

is, if two vertices from V (G) \ C are open twins, consider them in the same part. Let P

denote this partition. Now, consider a set from the collection P and assign each vertex of

that set a unique color from the set {β(G) + 1, β(G) + 2, . . . , β(G) + τ(G)}. Repeat this

for each set from the collection P . Note that we have assigned colors in such a way that this

coloring is a proper coloring. When two vertices u, v ∈ V (G) \ C have the same color, their

neighborhoods in the set C are different as they are not open twins. Since each vertex of C
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has a different color, c(N(u)) ̸= c(N(v)). Thus, c is a NL-coloring of G using β(G) + τ(G)

colors. Therefore, χNL(G) ≤ β(G) + τ(G).

When G contains no open twins, we have τ(G) = 1. A graph is called twin free if no two

vertices are open twins. Combining this with Proposition 15, Proposition 16 holds.

Proposition 16. For any twin-free graph G, χNL(G) ≤ β(G) + 1.

Note that for a bipartite graph G = (X, Y,E), β(G) ≤ min{|X|, |Y |}. Hence, we have the

following proposition.

Proposition 17. For a twin-free bipartite graph G = (X, Y,E),

χNL(G) ≤ min{|X|, |Y |}+ 1.

6.2.1 Chain Graphs

In this subsection, we discuss the neighbor-locating chromatic number for the class of

chain graphs. A chain graph G = (X, Y,E) has an ordering (x1, x2, . . . , xn1 , y1, y2, . . . , yn2)

of vertices of G such that N(x1) ⊆ N(x2) ⊆ · · · ⊆ N(xn1) and N(y1) ⊇ N(y2) ⊇ · · · ⊇
N(yn2). Note that X = {x1, x2, . . . , xn1} and Y = {y1, y2, . . . , yn2}. This ordering of

vertices of G is called a chain ordering of G. Throughout this subsection, G = (X, Y,E)

denotes a chain graph.

The open twin relation provides a partition for both sides of the vertex set of G. Let

PX = {X1, X2, . . . , Xk} and PY = {Y1, Y2, . . . , Yk} denotes the partition obtained for the

X and Y side respectively. We have kept the order of the sets in PX and PY such that they

satisfy N(X1) ⊂ N(X2) ⊂ · · · ⊂ N(Xk) and N(Y1) ⊃ N(Y2) ⊃ · · · ⊃ N(Yk). Note that

N(Xi) = ∪ij=1Yj and N(Yi) = ∪kj=iXj for each i ∈ [k]. Let t = max{|Xi| : i ∈ [k]} and

s = max{|Yi| : i ∈ [k]} for G.

Theorem 6.1. For a chain graph G = (X, Y,E), the following holds true.

1. χNL(G) ≤ 2k + s+ t− 2.
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2. χNL(G) ≤ min{|X|+ s, |Y |+ t}.

3. χNL(G) ≥ max{s, t}+ 1.

4. χNL(G) ≥ |Y1|+ t.

5. χNL(G) ≥ |Xk|+ s.

Proof. We prove each stated bound one by one.

1. To show, χNL(G) ≤ 2k + s+ t− 2, we give a NL-coloring of G using 2k + s+ t− 2

colors. Assign the color i to exactly one vertex of Xi for each i ∈ [k]. Next, assign the

color k + i to exactly one vertex of Yi for each i ∈ [k]. Now, consider the set of colors

A = {a1, a2, . . . , at−1} and B = {b1, b2, . . . , bs−1}. Assign a unique color from the

set A to each uncolored vertex of Xi for each i ∈ [k]. Similarly, assign a unique color

from the set B to each uncolored vertex of Yi for each i ∈ [k]. We call this coloring c.

We see that c is a proper coloring of G as we have assigned colors to the vertices of X

from the set [k] ∪ A and to the vertices of Y from the set {k + 1, k + 2, . . . , 2k} ∪B.

Note that c uses 2k + |A|+ |B| = 2k + t− 1 + s− 1 = 2k + s+ t− 2 colors. Now,

we need to show that c is a NL-coloring of G. For this, let u, v be two vertices of

G having the same color. Now, there can be two cases: u ∈ Xi, v ∈ Xj for some

i, j ∈ [k] or u ∈ Yi, v ∈ Yj for some i, j ∈ [k]. In the former case, without loss of

generality, we assume that i < j, then k+ i+1 ∈ c(N(v)) but k+ i+1 /∈ c(N(u)), so

c(N(u)) ̸= c(N(v)). Similarly, in the latter case, without loss of generality, we assume

that i < j, then i ∈ c(N(u)) but i /∈ c(N(v)), so c(N(u)) ̸= c(N(v)). Therefore, c is

a NL-coloring of G which uses 2k + s+ t− 2 colors.

2. To show, χNL(G) ≤ min{|X| + s, |Y | + t}, we show that χNL(G) ≤ |X| + s and

χNL(G) ≤ |Y | + t. First, we prove that χNL(G) ≤ |X| + s. For this, we give a

NL-coloring of G using |X| + s colors. Recall that X = {x1, x2, . . . , xn1}. Let B

denotes the set {b1, b2, . . . , bs}. Now, assign the vertex xi of X the color i for i ∈ [n1]

and assign a unique color from the set B to each uncolored vertex of Yi for each i ∈ [k].

Clearly, this is a proper coloring since the set of colors used in X side is the set [n1]

and the set of colors used in Y side is the set B. Now, let u, v be two vertices of the
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same color, then u ∈ Yi and v ∈ Yj for some i, j ∈ [k]. If i < j, then N(u) ⊂ N(v)

and all vertices of X have different colors, so c(N(u)) ̸= c(N(v)). Hence, we have a

NL-coloring of G using |X|+ s colors. So, χNL(G) ≤ |X|+ s. In a similar manner,

we can assign colors to the vertices of G so that we have a NL-coloring of G which uses

|Y |+t colors. So, χNL(G) ≤ |Y |+t. Consequently, χNL(G) ≤ min{|X|+s, |Y |+t}.

3. For the chain graph G, τ(G) = max{s, t}. So, χNL(G) ≥ max{s, t}+ 1 holds using

Proposition 14.

4. Again, let Xi be the set such that t = |Xi|. Since all vertices of Xi are open twins,

each vertex of Xi must get a different color in any NL-coloring of G, and for each

y ∈ Y1, N(y) = X , so vertices in Y1 must receive distinct colors different from the

colors given to the vertices of X . Thus, χNL(G) ≥ |Y1|+ t.

5. χNL(G) ≥ |Xk|+ s holds due to the similar arguments we have given in the proof of

the previous bound.

Now, we prove the results providing the exact value of the neighbor-locating chromatic

number of some restricted chain graphs. A neighbor-locating coloring of these chain graphs

that uses the minimum number of colors is given in their respective proofs.

Theorem 6.2. For a chain graph G, if |X1| > |X2| > · · · > |Xk| and |Yi| ≤ |Y1| for each

i ∈ {2, . . . , k}, then χNL(G) = |Y1|+ |X1|.

Proof. Here, we observe that t = |X1| and s = |Y1|, so |Y1|+ |X1| = s+ t. Using Theorem

6.1, we already know that χNL(G) ≥ s+ t. Now, we give a NL-coloring of G which uses

s+ t colors. Consider the sets A = {a1, a2, . . . , at} and B = {b1, b2, . . . , bs} as two ordered

sets of t and s colors respectively. Now, we define a coloring c : V (G)→ A ∪B as follows.

For i ∈ [k], assign each vertex of Xi a unique color from the set A. It is possible since

|Xi| ≤ t = |A| for each i ∈ [k]. Clearly, c(X1) = A. We assign colors to the vertices of

Xi, i > 1 in such a way that c(Xi) = {a1, a2, . . . , at′}, where t′ = |Xi|. Now, we assign
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colors to the vertices of Y . Color all vertices of Y1 with a unique color from the set B. So,

c(Y1) = B.

Since N(Y2) ⊂ N(Y1) and |X1| > |X2|, at least one color from the set A is not in the

neighborhood of Y2. So, first we assign all such colors uniquely to the vertices of Y2 and if

there are some uncolored vertex in Y2, we give all of them a unique color from the set B.

In a similar manner, color all vertices of ∪kj=3Yj in the order (Y3, . . . , YK). Thus, we have a

proper coloring in G using s+ t colors. Next, we show that c is a NL-coloring of G. For this,

let u, v ∈ V (G) be two vertices of the same color in the coloring c. We have three cases to

consider.

Case 1: u ∈ Xi and v ∈ Xj for some i, j ∈ [k], i < j:

In this case, we see that there exists a vertex in Yi+1 whose color is not given to any of the

vertices in the set ∪ij=1Yj which is equal to the set N(Xi). So, c(N(u)) ̸= c(N(v)).

Case 2: u ∈ Yi and v ∈ Yj for some i, j ∈ [k], i < j:

In this case, we see that there exists a vertex in Xi whose color is not given to any of the

vertices in the set ∪kj=i+1Xj which is a superset of the set N(Yj). So, c(N(u)) ̸= c(N(v)).

Case 3: u ∈ Xi and v ∈ Yj for some i, j ∈ [k], i < j:

In this case, we see that B ⊆ c(N(Xi)) as c(Y1) = B but B ∩ c(N(Yj)) = ∅. So, c(N(u)) ̸=
c(N(v)).

Hence, c is a NL-coloring of G which uses s+ t colors. Therefore, χNL(G) = s+ t =

|Y1|+ t.

The proof of the Theorem 6.3 is similar to the proof of the Theorem 6.2 and, hence is omitted.

Theorem 6.3. For a chain graph G, if |Y1| < |Y2| < · · · < |Yk| and |Xi| ≤ |Xk| for each

i ∈ [k − 1], then χNL(G) = |Xk|+ s.

Theorem 6.4. Let G = (X, Y,E) be a chain graph such that N(x1) ⊂ N(x2) = · · · =
N(xn1), N(y1) = · · · = N(yi−1) ⊃ N(yi) = · · · = N(yn2) for some i ≤ p and n1 = n2 = p

then

1. If p > 2i− 1, then χNL(G) = 2p− i.
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2. If p ≤ 2i− 1, then χNL(G) = p+ i− 1.

Proof. Suppose that c is a NL-coloring of G using χNL(G) colors implying |c(V (G))| =
χNL(G). Note that k = 2, X1 = {x1}, X2 = {x2, . . . , xp}, Y1 = {y1, . . . , yi−1} and Y2 =

{yi, . . . , yp} for the graph G. Since t = |X2| = p− 1 and |Y1| = i− 1, χNL(G) ≥ p+ i− 2

using Theorem 6.1. We observe that all vertices of X2 ∪ Y1 have different colors in any

NL-coloring of G, so |c(X2 ∪ Y1)| = p+ i− 2. Now, we have two cases to consider.

Case 1: c(x1) ∈ c(X2):

In this case, we observe that c(y) /∈ c(X ∪ Y1) for each y ∈ Y2. So, χNL(G) = p+ i− 2 +

|Y2| = p+ i− 2 + p− i+ 1 = 2p− 1.

Case 2: c(x1) /∈ c(X2):

In this case, c(x1) /∈ c(X2 ∪ Y1). So, |c(X ∪ Y1)| = p + i− 1. Now, either |Y2| > |Y1| + 1

or |Y2| ≤ |Y1| + 1. If |Y2| > |Y1| + 1, that is, p > 2i − 1, at least |Y2| − (|Y1| + 1) =

p− i + 1− i + 1− 1 = p− 2i + 1 more colors are used in the coloring c. So, χNL(G) =

p+ i− 1+p− 2i+1 = 2p− i. Otherwise, if |Y2| ≤ |Y1|+1, that is, p ≤ 2i− 2, colors of all

vertices of Y2 can coincide with the colors of Y1∪X1. So, χNL(G) = |c(X∪Y1)| = p+ i−1.

As 2p− 1 ≥ max{2p− i, p+ i− 1}, we get, χNL(G) = 2p− i when p > 2i− 1 and

χNL(G) = p+ i− 1 when p ≤ 2i− 1. Therefore, the theorem holds.

6.2.2 Proper Interval Graphs

In this subsection, we discuss bounds on the neighbor-locating chromatic number of

a proper interval graph G in terms of independence number and clique number of G. For

shorthand, we write “proper interval graph” as PIG. Let G be a PIG and π = (v1, v2, . . . , vn)

be a BCO of vertices of G. Note that for i < j, vi appears before vj in the ordering π. We

write vi <π vj to denote that vi appears before vj in the ordering π. We define last neighbor

of a vertex vi ∈ V (G), denoted by l(vi), as the highest indexed neighbor of vi in the ordering

π. The following observation can be proved using the properties of a BCO of G.

Observation 7. If vivj ∈ E(G) and i < j, then for each k, i < k < j; we have vivk, vkvj ∈
E(G).
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Recall that α(G) denotes the independence number of G, χ(G) denotes the chromatic

number of G and ω(G) denotes the clique number of G. Theorem 6.5 gives a relation between

χ(G) and ω(G) for an interval graph [11].

Theorem 6.5. For an interval graph G, χ(G) = ω(G).

Since every PIG is an interval graph, the above theorem also holds for proper interval graphs.

Now, we are ready to prove the main theorem of this section.

Theorem 6.6. For a proper interval graph G, χNL(G) ≤ α(G) + ω(G)− 1. Moreover, the

bound is tight.

Proof. First, we assume that G ≇ Kn. We need to show that χNL(G) ≤ α(G) + ω(G)− 1.

So, we give a NL-coloring of G which uses exactly α(G) + ω(G)− 1 colors.

First, we find a maximal independent set I of G containing the vertex v1. Let I =

{vi1 , vi2 , vi3 , . . . , vit}, where vi1 = v1 and vij <π vij′ for each j < j′. We find such an

independent set I in t steps as follows. In the first step, I = {v1}. Now, for each i from 2 to

t, we pick a vertex vk ∈ V (G) such that vk is the smallest indexed vertex that is not adjacent

to the vertex included in the previous step and we include vk in I . We stop when no more

vertex can be included in I .

Now, we give a coloring c to the vertices of G in the following way. We assign colors

in two stages. In stage 1, we assign a unique color to each vertex of I . By doing this, we

have used |I| colors in stage 1 and |I| ≤ α(G). Next, we observe that exactly one vertex of

each maximal clique is colored in stage 1. In stage 2, we color all the remaining uncolored

vertices of G. Using Theorem 6.5, we know that χ(G) = ω(G) and exactly one vertex of

each maximal clique is colored in stage 1, so there exists a proper coloring of G, say c′

in which only ω(G) − 1 colors are used while coloring vertices of V (G) \ I . For a vertex

u ∈ V (G) \ I , c(u) = c′(u). We can ensure that c(I) ∩ c(V (G) \ I) = ∅. Thus, we have

colored each vertex of G and |c(V (G))| ≤ α(G) + ω(G) − 1. As c′ is a proper coloring

that is used in stage 2 and all colors assigned in stage 1 are different from the colors used in

stage 2, c is also a proper coloring of G. Now, we show that c is a NL-coloring of G. Let
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vi, vj ∈ V (G), i < j such that c(vi) = c(vj). This implies that vivj /∈ E(G) and both of

these vertices are colored in stage 2. So, vi, vj /∈ I . Since I is a maximal independent set of

G, there exists a vertex in I which is adjacent to vi in G. Similarly, there exists a vertex in I

which is adjacent to vj in G. There are two cases to consider.

Case 1: ∃ w ∈ I such that w is adjacent to only one of vi or vj .

Without loss of generality, suppose that ∃ w ∈ I such that wvi ∈ E(G) and wvj /∈ E(G).

Since w is colored in stage 1, the set {a ∈ V (G) : c(a) = c(w)} is equal to {w}. So, we

have, c(w) ∈ c(N(vi)) but c(w) /∈ c(N(vj)). Hence, c(N(vi)) ̸= c(N(vj)).

Case 2: ∄ w ∈ I such that w is adjacent to only one of vi or vj .

Let w ∈ I be a vertex such that wvi, wvj ∈ E(G). Note that vi < w < vj , since otherwise vi

and vj must be adjacent and can not receive the same color. Moreover, we get, n ≥ 4. Recall

that vivj /∈ E(G). Since vi is colored in stage 2, there exists a vertex say vk (k < i) such that

vk is colored in stage 1 and vkvi ∈ E(G). As vk ∈ I , we must have, vkw /∈ E(G) implying

that vkvj /∈ E(G). This gives a contradiction to our assumption that there is no vertex in G

which is adjacent to only one of vi or vj . Hence, case 2 will not arise.

Thus, c is a NL-coloring of G. So, χNL(G) ≤ α(G) + ω(G) − 1. Now, if G ∼= Kn

then χNL(G) = n = 1 + n − 1 = α(G) + ω(G) − 1. Therefore, the bound holds for any

PIG. The bound is tight for the class of complete graphs.

6.2.3 Co-bipartite Graphs

In this subsection, we discuss the neighbor-locating chromatic number of co-bipartite

graphs. A graph is a co-bipartite graph if its complement is a bipartite graph. In other words,

a co-bipartite graph is a graph whose vertex set can be partitioned into two sets V1 and V2

such that G[V1] and G[V2] are complete subgraphs of G. We call the subsets V1 and V2, a

co-bipartition of V (G). Throughout this subsection, G denotes a co-bipartite graph with

co-bipartition {V1, V2}. Let |V1| = n1 and |V2| = n2. Without loss of generality, we assume

that n1 ≥ n2. Since G[V1] ∼= Kn1 , we have, χNL(G) ≥ n1 as all vertices of V1 must be

assigned different colors in any NL-coloring of G. We also have, χNL(G) ≤ n1 + n2.

Recall that a matching M of a graph G is a set of independent edges of G. Suppose M

is a matching of G and c is a proper coloring of G[V1]. Note that each vertex of V1 must have
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received a unique color in the coloring c as G[V1] ∼= Kn1 . We denote the color assigned to

the vertex v ∈ V1 by cv. Now, using the matching M of G and the proper coloring c of G[V1],

we define a proper coloring for the graph G. For this, we need to assign colors to each vertex

of V1 and V2. First, we assign the color cv to each vertex v ∈ V1. Then we assign colors to

the vertices of V2. For this purpose, we consider the matching M of G. Each edge e ∈M is

of the form xy, where x ∈ V1 and y ∈ V2. Let xy be such an edge, then we assign the vertex

y ∈ V2 the color cx. For all the remaining vertices of V2, we assign a different color uniquely.

In this way, we have assigned colors to all the vertices of G and it is a proper coloring of G.

Thus, given a proper coloring on the vertices of G[V1] and a matching of G, we can define a

proper coloring for all vertices of G. We call the coloring of G defined in such a way, the

coloring Mc, where M denotes the given matching and c denotes the coloring assigned to the

vertices of V1.

Now, we state a result that describes the neighbor-locating chromatic number of

restricted kind of co-bipartite graphs.

Theorem 6.7. Let G be a co-bipartite graph such that there exists a vertex u ∈ V2 with

N(u) ∩ V1 = ∅. If there exists a matching of G saturating all vertices of V2 then χNL(G) ∈
{n1, n1 + 1}.

Proof. Let M = {M : M is a matching of G saturating all vertices of V2}. Note that M ̸= ∅.
Suppose c is a proper coloring for the vertices of G[V1]. Since G[V1] ∼= Kn1 , we assume that

each vertex of V1 is assigned a unique color from the set [n1] in the coloring c. For each

M ∈M, consider the proper coloring Mc of G which assigns colors to all vertices of G.

Now, either there exists a matching M∗ ∈ M such that the proper coloring M∗
c

is a neighbor-locating coloring of G or there is no such matching. In the former case,

χNL(G) = n1. In the latter case, χNL(G) ≥ n1 + 1.

Next, we prove that χNL(G) = n1 + 1 if Mc is not a neighbor-locating coloring of G

for each M ∈M. For this, we give a NL-coloring of G that uses n1 + 1 colors. According to

the statement of the theorem, there exists a vertex u ∈ V2 such that u is not adjacent to any

vertex of V1 in G. So, n2 ≥ 2 as G is connected. Let M ∈M which implies that it saturates
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each vertex of V2. Note that there exists an edge e ∈M that saturates the vertex u. We see

that the set M ′ = M \ {e} is non-empty and is also a matching of G. Now, in the coloring

M ′
c, the vertex u ∈ V2 is assigned a different color from the colors used for the vertices of

V1. So, the number of colors used in the coloring M ′
c is n1 + 1. In the coloring M ′

c, the color

assigned to the vertex u is not in the neighborhood of any vertex of V1 and it is present in the

neighborhoods of all the vertices of V2 \ {u}. Thus, we get that M ′
c is a NL-coloring of G

and hence, χNL(G) = n1 + 1.

Now, we define some terminologies which we require for the rest of this subsection.

For sets A ⊆ V1, B ⊆ V2, the set of edges {uv ∈ E(G) : u ∈ A, v ∈ B} is denoted by

EAB(G). The set V1 \ A is denoted by A′ and the set V2 \B is denoted by B′.

Let S2 ⊆ V2. We say that S2 satisfies property P if there exists a non-empty set

S1 ⊆ V1 such that |S1| = n1 − n2 + |S2| and the following holds: (i) for each x ∈ S1,

|{y ∈ S2 : y /∈ N(x)}| ≤ 1 and, (ii) for each y ∈ S2, |{x ∈ S1 : x /∈ N(y)}| ≤ 1. Suppose

S2 ⊆ V2 satisfies the property P then the set S1 is called a P -pair of S2. The set of all P -pairs

of S2 is denoted by PS2.

We define sets Y and Z for a co-bipartite graph G as follows. Y = {S2 ⊆ V2 : PS2 ̸=
∅}, Z = {S2 ∈ Y : ∃ a matching M of G[S ′

1 ∪ S ′
2] that saturates each vertex of S ′

2 for some

P -pair S1 of S2 and G[M ∪ ES1S′
2
(G) ∪ ES′

1S2
(G)] contains no isolated edge}.

Finally, we state the theorem which exactly describes the neighbor-locating chromatic

number of a co-bipartite graph G.

Theorem 6.8. For a co-bipartite graph G, χNL(G) = n1+r, where r = min{|S2| : S2 ∈ Z}.

Proof. First, we show that χNL(G) ≥ n1+r. On the contrary, assume that χNL(G) < n1+r.

So, let χNL(G) = n1 + k, where k < r. Let c be a NL-coloring of G which uses χNL(G),

that is, n1 + k colors. Suppose {a1, a2, . . . , an1 , b1, b2, . . . , bk} is the set of n1 + k colors

used in the coloring c. For notational convenience, we write C1 = {a1, a2, . . . , an1} and

C2 = {b1, b2, . . . , bk}. We also assume that c(V1) = C1 and C2 ⊆ c(V2).
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Let S2 = {y ∈ V2 : c(y) ∈ C2} and S1 = {x ∈ V1 : c(x) /∈ c(V2)}, then we see

that S1 is a P -pair of S2. Hence, S2 ∈ Y . We claim that S2 ∈ Z. To see this, note that, for

each vertex x ∈ S ′
1, there is exactly one vertex y ∈ S ′

2 such that c(x) = c(y). Now, the set

M = {xy : c(x) = c(y)} is a matching of G[S ′
1 ∪ S ′

2] that saturates each vertex of S ′
2. Since

c is a NL-coloring of G, c(N(x)) ̸= c(N(y)) for every pair of vertices x, y of G satisfying

c(x) = c(y). Let xy ∈M implying that c(x) = c(y), then c(N(x)) ̸= c(N(y)). This means

that there is a color in the set C2 which is not in the set c(N(x)) or there is a color in the set

c(S1) which is not in the set c(N(y)), that is, c(N(x))∩C2 ̸= C2 or c(N(y))∩c(S1) ̸= c(S1).

Thus, for each edge in M , there exists an edge adjacent to it in ES1S′
2
(G) ∪ ES′

1S2
(G). Thus,

S2 ∈ Z. So, |S2| ≥ r as r = min{|S2| : S2 ∈ Z} which further implies that k ≥ r, a

contradiction. So, χNL(G) ≥ n1 + r.

Next, we give a NL-coloring of G that uses n1 + r colors. Let S2 ∈ Z such that

|S2| = r. Now, assign a unique color to each vertex of V1 from the set [n1]. Denote this

coloring of G[V1] by c0. Since S2 ∈ Z, there exists a matching M of G[S ′
1∪S ′

2] that saturates

each vertex of S ′
2, where S1 is a P -pair of S2. As all vertices of V1 are properly colored by

the coloring c0 and M is a matching of G, there exists a proper coloring Mc0 for the whole

vertex set of G. We assign each vertex of V2 the colors assigned by Mc0 , hence all vertices

of G are properly colored and the number of colors used is n1 + r. To see that it is also

a NL-coloring, let x ∈ S ′
1 and y ∈ S ′

2 be the vertices such that Mc0(x) = Mc0(y). Since

S2 ∈ Z, there exists a vertex x′ ∈ S1 such that x′y /∈ E(G) or there is a vertex y′ ∈ S2

such that xy′ /∈ E(G). So, Mc0(N(x)) ̸= Mc0(N(y)). Hence, Mc0 is a NL-coloring of G.

Therefore, χNL(G) = n1 + r.

Now, using the Theorem 6.8 we characterize all co-bipartite graphs whose neighbor-

locating chromatic number is n1 or n1 + n2.

Theorem 6.9. χNL(G) = n1 if and only if the following holds: (i) n1 > n2, (ii) there exists a

set S1 ⊆ V1 with |S1| = n1 − n2 such that, for each S2 ⊆ V2, |S2| ≤ |NG(S2)∩ S ′
1| and, (iii)

the set of edges ES1V2(G) covers all vertices of V2.
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Theorem 6.10. χNL(G) = n1+n2 if and only if for every edge xy ∈ E(G) (x ∈ V1, y ∈ V2),

we have xy′ ∈ E(G) for every y′ ∈ V2 \ {y} and x′y ∈ E(G) for every x′ ∈ V1 \ {x}.

The proof of both the Theorems 6.9 and 6.10 follow from the Theorem 6.8.

6.3 Approximation Algorithm

In this section, we present an approximation algorithm for the NLC problem in general

graphs. For basic definitions related to approximation algorithms, we refer [90].

To design the algorithm, we use a vertex cover of the given graph G. The V E R T E X

C O V E R problem asks to compute a minimum vertex cover of a given graph G. The V E RT E X

C O V E R problem is a known NP-complete problem [39]. There exists a 2-approximation

algorithm for the V E R T E X C O V E R problem in general graphs that works as follows: Pick

an arbitrary edge, take both of its endpoints into vertex cover, and remove these two vertices

from the graph. Repeat this until we have no edge in the graph. We name this algorithm

ALGOVC for this section.

Now, we give an approximation algorithm (Algorithm 16) to compute a NL-coloring

for a graph G. Note that we are considering connected graphs only.

Algorithm 16: An approximation algorithm: NL-coloring of a graph
Input: A connected graph G = (V,E).
Output: a NL-coloring of G.

1. Find a vertex cover of the graph, say C using ALGOVC.
2. Give each vertex of C a unique color from the set [2β(G)].
3. Find a partition of the vertices of V \ C such that, if two vertices of V \ C are open

twins, keep them in the same part. Call that partition P .
4. For each set X ∈ P , do the following:

Assign a unique color to each vertex of X from the set
{2β(G) + 1, 2β(G) + 2, . . . , 2β(G) + τ(G)}.

5. Return the coloring.

Theorem 6.11 proves the correctness and ratio of the Algorithm 16.

Theorem 6.11. Algorithm 16 is an O(β(G))-approximation algorithm for the NLC problem

in general graphs and it runs in linear-time.
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Proof. Let c be the coloring returned by the Algorithm 16. We can prove that c is a NL-

coloring of G using the similar arguments as given in the proof of the Proposition 15. Now,

we prove the ratio of the algorithm. Let Algo(G) denote the number of colors used in the

coloring c and Opt(G) = χNL(G). Then,

Algo(G)

Opt(G)
≤ 2β(G) + τ(G)

χNL(G)

≤ 2β(G) + τ(G)

1 + τ(G)

≤ 2β(G) + τ(G)

τ(G)

≤ 1 +
2β(G)

τ(G)

≤ 1 + 2β(G)

Note that each step of the Algorithm 16 can be implemented in linear-time. Hence, the

theorem is proved.

6.4 Neighbor-Locating Coloring vs Vertex Coloring

Recall that the V E R T E X C O L O R I N G problem asks to find a proper coloring of G

using the minimum number of colors. In this section, we remark the complexity difference

between the V E R T E X C O L O R I N G problem and the NLC problem.

First, we state some observations as propositions in which we characterize all graphs

having neighbor-locating chromatic numbers 1 or 2. The proofs of the Propositions are easy

and hence, proofs are omitted.

Proposition 18. For a connected graph G, χNL(G) = 1 if and only if G ∼= K1.

Proposition 19. For a connected graph G, χNL(G) = 2 if and only if G ∼= K2 or G ∼= K2.

Using Propositions 18 and 19, we can directly state that χNL(G) ≥ 3, for all connected

graphs with |V (G)| ≥ 3. Below, we state a result that has been proved in [3].
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Theorem 6.12. For a graph G with no isolated vertices, |V (G)| ≤ k(2k−1 − 1), where

k = χNL(G).

If G admits a proper coloring with at most k colors, we say that G is k-colorable. The

k - C O L O R A B I L I T Y problem (k ≥ 2) asks to find a k-coloring of a given graph G if G

is k-colorable. Dailey et al. proved that the 3- C O L O R I N G problem is NP-complete [28].

In a similar manner, we can define the N E I G H B O R - L O C AT I N G 3- C O L O R A B I L I T Y

(NL3C) problem as follows: Given a graph G, find a NL-coloring of G using at most 3 colors,

if such a NL-coloring exists. By NL-k-coloring, we mean a NL-coloring that uses k colors.

Below, we prove that the NL3C problem can be solved in polynomial-time.

Theorem 6.13. The N E I G H B O R - L O C AT I N G 3- C O L O R A B I L I T Y problem is in class P .

Proof. Let G = (V,E) be the input graph for the NL3C problem and n = |V (G)|. To prove

the theorem, we provide a polynomial-time algorithm that outputs a NL-3-coloring of G if

such a coloring exists, otherwise, it returns that no such coloring exists. We also assume that

G is a connected graph. Theorem 6.12 tells that n ≤ k(2k−1 − 1), where k = χNL(G). For

k = 3, k(2k−1 − 1) = 9. Thus, if n ≥ 10, it can never have a NL-coloring using 3 colors. So,

let n ≤ 9. For a graph with at most 9 vertices, NL-3-coloring can be computed by brute force

method if it exists. Below, we further mention the details.

Note that a proper coloring of G that uses t colors, partitions the vertex set of G in t

parts where all vertices in one part must have the same color. A neighbor-locating coloring

is also proper coloring. So, a NL-t-coloring also partitions the vertex set in t parts with

some additional requirements. Suppose c is a NL-coloring of G using 3 colors in which

vertices u, v ∈ V have been assigned the same color. Since c is a NL-coloring, we have,

c(N(u)) ̸= c(N(v)). We assume that 3 colors used in the coloring c are labeled as c1, c2

and c3. Without loss of generality, let c(u) = c(v) = c1. This means that the set of colors

assigned to the neighborhood of the vertices u, v must be a nonempty subset of {c2, c3}. As

the number of nonempty subsets of {c2, c3} are 3, we can say that 4 vertices of G must not

get the same color in any NL-3-coloring of G. Thus, a NL-3-coloring of G corresponds to

a positive solution of the equation x1 + x2 + x3 = n, 1 ≤ xi ≤ 3. Note that the number of
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positive solutions of the equation x1 + x2 + x3 = n, 1 ≤ xi ≤ 3 are
∑9

n=3

(
n−1
2

)
= 84. This

suggests a simple algorithm for solving the NL3C problem in G.

Suppose a1, a2, a3 is a solution of this equation. Then there are
(
n
a1

)
.
(
n−a1
a2

)
.
(
n−(a1+a2)

a3

)
number of ways in which we can partition the set V into 3 parts such that the three parts

contain a1, a2 and a3 number of vertices, respectively. So, by looking at all possible such

partitions, we can check in polynomial-time whether that partition leads to a neighbor-locating

coloring of G. We describe the steps below.

1. If n ≥ 10, output “No such coloring exists”.

2. If n ≤ 9, find all positive solutions of the equation x1 + x2 + x3 = n, 1 ≤ xi ≤ 3.

3. For each solution (x1, x2, x3) = (a1, a2, a3), find all ways of partitioning V into 3 parts

containing a1, a2 and a3 number of vertices respectively.

4. For each way of partitioning, check whether that leads to a NL-coloring or not.

5. If yes, return that partition as the coloring. Otherwise, output “No such coloring exists”.

It is easy to see that all these tasks can be performed in constant time. So, The

N E I G H B O R - L O C AT I N G 3- C O L O R A B I L I T Y problem is in class P .

For k ≥ 3, the N E I G H B O R - L O C AT I N G k - C O L O R A B I L I T Y (NLkC) problem is

to find a NL-coloring of a given graph G using at most k colors, if such a coloring exists. We

observe that finding such a coloring is equivalent to partitioning the vertex set of the graph

in k parts satisfying certain conditions. The number of ways for doing such a partition is

O(nf(k)), where f(k) represents a polynomial function of k. So, we can directly state the

following result.

Theorem 6.14. For any constant k(k ≥ 3), the NLkC problem is in class P .
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6.5 Summary

In this chapter, we proved some new bounds for the neighbor-locating chromatic number in

general graphs as well as in some restricted graph classes. We also designed an approximation

algorithm that runs in linear-time but the ratio is not constant. Although finding whether a

graph G can be colored properly using 3 colors is a well-known NP-hard problem [28], we

found that the similar problem in the neighbor-locating coloring turns out to be in class P.



Chapter 7
Conclusion and Future Directions

7.1 Contributions

In this thesis, we studied the following five graph optimization problems. We obtained

numerous algorithmic and combinatorial results for these graph parameters.

1. M A X I M U M I N T E R N A L S PA N N I N G T R E E Problem

2. M I N I M U M E D G E T O TA L D O M I N AT I N G S E T Problem

3. G R U N D Y ( D O U B L E ) D O M I N AT I O N Problem

4. M A X I M U M W E I G H T E D E D G E B I C L I Q U E Problem

5. N E I G H B O R - L O C AT I N G C O L O R I N G Problem

In Chapter 2, we studied the MIST problem which is a generalization of the H A M I L -

T O N I A N PAT H problem. Since the H A M I LT O N I A N PAT H problem is NP-hard for

chordal and bipartite graphs, the MIST problem also remains NP-hard for chordal and bipar-

tite graphs [54, 71]. We studied the MIST problem for the following classes of graphs: chain

graphs, bipartite permutation graphs, block graphs, cactus graphs and cographs. We found

linear-time algorithms for the MIST problem for each of these graph classes.

Li et al. [59] proved an upper bound for Opt(G) in terms of |E(P ∗)|, where Opt(G)

denotes the number of internal vertices in a MIST of G and |E(P ∗)| denotes the number of

edge in an optimal path cover of G. We further studied the relationship between the number

of edges in optimal path covers and Opt(G) and provided tight lower bounds for chain graphs

and cographs. We also proved that this phenomenon does not hold for general graphs with the

construction of bipartite permutation graphs and block graphs for which Opt(G) is arbitrarily

far from |E(P ∗)|.

In Chapter 3, we studied the computational complexity of the Min-ETDS problem.

173
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We discussed the complexity difference between the Min-EDS and the Min-ETDS problem

and proved that they differ in terms of complexity. We resolved the complexity status of the

problem in chain graphs. Further, we studied the problem in two subclasses of chordal graphs

which are split graphs and proper interval graphs without any cut vertices.

We also studied the approximation aspect of this problem. We proved that the problem

is APX-complete for graphs with maximum degree 3 and designed an efficient approximation

algorithm for k-regular graphs when k ≥ 4. We remark that our approximation algorithm is

based on a relationship between the cardinality of min-ETD-set and min-CVC of a graph.

The next chapter, that is, Chapter 4 is devoted to the vertex sequences in graphs.

Precisely, we discussed the Grundy dominating and Grundy double dominating sequences

in graphs. We showed that the GDD problem is NP-complete for bipartite and co-bipartite

graphs and linear-time solvable for chain graphs which is a subclass of bipartite graphs.

For the GD2D problem, we proved that it also remains NP-complete for split, bipartite and

co-bipartite graphs. On the positive side, we designed linear-time algorithms for threshold

graphs and chain graphs.

In Chapter 5, we studied the MWEB problem. We proved that the decision version

of the MWEB problem remains NP-complete even for complete bipartite graphs, which is

a subclass of bipartite graphs. On the positive side, we proved that by adding a restriction

that if the weight of each edge is a positive real number, the MWEB problem is O(n2)-time

solvable for bipartite permutation graphs and O(m+ n)-time solvable for chain graphs.

In Chapter 6, we studied the NLC problem. We gave certain bounds for the associated

parameter in the following graph classes: chain graphs, proper interval graphs, and co-

bipartite graphs. We also presented an approximation algorithm for general graphs. Further,

we have presented a result showing that the complexity of the NLC problem differs from the

V E R T E X C O L O R I N G problem.
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7.2 Future Directions

Below, we give some promising research directions for the five problems that we studied in

the thesis.

• M A X I M U M I N T E R N A L S PA N N I N G T R E E Problem

A convex bipartite graph G with bipartition (X, Y ) and an ordering X = (x1, x2, . . . , xn),

is a bipartite graph such that for each y ∈ Y , the neighborhood of y in X appears

consecutively. The complexity status of the MIST problem is still open for the class of

convex bipartite graphs, which is a superclass of bipartite permutation graphs and a

subclass of chordal bipartite graphs. We designed a polynomial algorithm for the MIST

problem in bipartite permutation graphs. In bipartite graphs, the problem is already

NP-complete. Designing an algorithm for the MIST problem in convex bipartite graphs

will be a good research direction.

The weighted version of the MIST problem is also well studied in literature [81].

Given a vertex-weighted connected graph G, the M A X I M U M W E I G H T I N T E R N A L

S PA N N I N G T R E E (MwIST) problem asks for a spanning tree T of G such that the

total weight of internal vertices in T is maximized. Since the MwIST problem is a

generalization of the MIST problem, one may also investigate the complexity status of

the MwIST problem for some special classes of graphs.

As far as we know, every hardness proof in the literature for the MIST problem on fam-

ilies of graphs relies on a reduction to the H A M I LT O N I A N PAT H problem. We leave

as an open question if there exists a family of graphs such that the H A M I LT O N I A N

PAT H problem is polynomial time, but the MIST problem remains NP-hard.

• M I N I M U M E D G E T O TA L D O M I N AT I N G S E T Problem

We resolved the complexity status of the Min-ETDS problem in chain graphs. One may

work on resolving the complexity status of the problem in other subclasses of bipartite

graphs, sandwiched between bipartite graphs and chain graphs. Further, we studied

the problem in proper interval graphs without a cut vertex. It would be interesting to
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resolve the complexity of the problem in interval graphs.

If we look at the paper [26], it is shown that there is a 2-approximation algorithm to

compute an edge dominating set of a given graph. So, a 4-approximation algorithm

for the min-ETDS problem in general graphs is trivial. One may try to design an

approximation algorithm with approximation ratio better than 4.

• G R U N D Y ( D O U B L E ) D O M I N AT I O N Problem

For the GD and the GD2 problems, we resolved the complexity status in various special

graph classes but there are still many graph classes in which the complexity status

is unknown. Finding answers to these questions can be a good research direction.

Note that the gap between NP-completeness and efficient algorithms of the GD and

GD2 problems has come a bit closer in bipartite graphs, where our results from

Chapter 4 show that, in bipartite graphs, both the problems are NP-complete. There is

a polynomial-time algorithm for these problems in chain graphs. Noting the following

inclusion relation between graph classes:

Chain⊊ Bipartite Permutation ⊊Chordal Bipartite⊊Bipartite,

the following question is natural, and its solution would narrow the gap a little more

(in the bipartite case).

Problem 1. What is the computational complexity of determining the Grundy dom-

ination number and the Grundy double domination number in bipartite permutation

graphs or in chordal bipartite graphs?

A similar, but somewhat larger gap comes from our results in Chapter 4 concerning the

Grundy double domination. There are several classes of graphs that lie between the

threshold graph (for which we found an efficient algorithm) and the split graph (for

which we proved NP-completeness). Perhaps the most interesting class among these

graph classes is strongly chordal split graphs. One may also investigate the complexity

of Grundy double domination in cographs as for several Grundy domination-type

invariants, efficient algorithm exists for cographs.
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Problem 2. What is the computational complexity of determining the Grundy double

domination number in strongly chordal split graphs (respectively cographs)?

Note that, due to the structure of co-chain graphs, we may infer that finding the Grundy

domination number and the Grundy double domination number is easy for a co-chain

graph. Recall that complement of a chain graph is a co-chain graph. So, it would be

interesting to see if there are some other known classes of graphs G whose complement

class G = {G : G ∈ G } has the similar status of the computational complexity of the

GDD and the GD2D problem as G . Two nice instances (with G bipartite graphs and

chain graphs) are presented in Section 4.2 and 4.3 of Chapter 4.

There is no result for the GD problem and the GD2 problem from the approximation

point of view. One can also try to design an approximation algorithm for the problem.

Several other types of vertex sequences were presented in [44] of which computational

complexities have not yet been considered. The study of all those sequences is open

from an algorithmic point of view.

• M A X I M U M W E I G H T E D E D G E B I C L I Q U E Problem

It will be interesting to try to design a linear-time algorithm for the MWEB problem in

bipartite permutation graphs, as for the unweighted case, this problem is linear-time

solvable. One may also try to design a linear-time algorithm for the MEB problem

in convex bipartite graphs. We have given efficient algorithms to solve the S-MWEB

problem in some subclasses of bipartite graphs by taking the edge weights from the set

of positive real numbers, that is, S = R+. For some different choices of S, finding the

complexity status of the S-MWEB problem can be a good research direction.

• N E I G H B O R - L O C AT I N G C O L O R I N G Problem

To continue the algorithmic study of the NLC problem, one can try to investigate the

complexity status in various other graph classes. We strongly believe that the decision

version of the NLC problem is NP-complete for general graphs. Below, we state this

statement as a conjecture.
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Conjecture 1. The decision version of the NLC problem is NP-complete for general

graphs.

One may try to find the complexity status of the problem in some other graph classes

such as bipartite graphs and chordal graphs. Although finding whether a graph G

can be colored properly using 3 colors is a well-known NP-hard problem [28], we

found that a similar problem in the neighbor-locating type of coloring comes out to

be in class P. A useful research direction may be to find more results that compare the

neighbor-locating coloring to other variations of vertex colorings.

For a co-bipartite graph G, one can try to answer the question that whether there is any

polynomial time algorithm that computes an NL-coloring of G using χNL(G) colors.

We designed an approximation algorithm that runs in linear-time but the ratio is not

constant. This keeps the following question open: Does the NLC problem belong to

the class APX?
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