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Abstract

A hydrodynamic instability called viscous fingering (VF) arises when a less viscous fluid displaces a more

viscous one in a porous medium. This phenomenon is prevalent in diverse transport scenarios, including

applications in the petroleum industry, aquifer contamination, and CO2 sequestration. A chemical reaction

may modify the viscosity of the fluids flowing in a porous medium and influence the VF. From macro

to micro scales fields utilize VF induced by chemical reactions to enhance mixing. To comprehend

chemo-hydrodynamic instability, we examine a reactive displacement involving a second-order chemical

reaction, denoted as A+B → C, assuming miscible, Newtonian, and neutrally buoyant fluids. These

bio-molecular reactions serve as fundamental components for diverse complex reactions. Moreover, the

viscosity profile depends on the viscosities of the reactants and products, determined by Rb = ln(µB/µA)

and Rc = ln(µC/µA) where µi is the viscosity of fluid i ∈ {A, B, C}. When reactants and products

exhibit viscosity contrasts, a nonlinear interaction arises between chemical reactions and hydrodynamics.

This interaction is modeled using a coupled system of partial differential equations that encompasses

Darcy’s law and three convection-diffusion-reaction (CDR) equations.

We employ non-linear simulations (NLS) to investigate reactive VF in radial flow. Our study involves

discussing a numerical technique that combines compact finite differences and a pseudo-spectral method.

For stable displacements, we report a transient growth in total reaction rate at higher Damköhler numbers

(Da) in radial flow, leading to more product formation, a phenomenon absent in rectilinear flow. Addi-

tionally, we observe an earlier onset of instability and enhanced fluid mixing with increasing viscosity

contrast. It also depends on whether the product is high or less viscous than reactants for a constant

Rb. Moreover, as the viscosity contrast increases, the mixing process reaches a saturation point, and we

identify the existence of frozen fingers in this reactive fluid system at later stages. Further, we extend our

analysis for infinitely fast reactions having iso-viscous reactants (Rb = 0) and establish a scaling relation

for the onset time of instability depending on the Péclet number (Pe) and Rc. Further, we conduct the

stability analysis using both the approaches, NLS, and linear stability analysis (LSA). Interestingly, the

viscosity profile is not modified after the reaction when Rc = Rb. This scenario serves as an equivalent

non-reactive case, allowing us to compare VF dynamics when the viscosity profile changes. We establish

a phase plane (Rb, Rc) phase plane for a wide range of Da and Pe divided by critical viscosity contrast

to induce instability. It states that if the equivalent non-reactive case, is stable, there exists a range of Rc

that corresponds to stable for each Rb and vanishes at the critical value of Rb that triggers instability for

the equivalent non-reactive cases. Otherwise, the flow remains unstable. The stable zone contracts for

xv



larger values of Da and Pe, yet it never disappears, even with Da → ∞. Intriguingly, a region near the

line Rc = Rb is identified where flow stability remains unaffected by reaction rate (Da).

To explore the influence of flow geometry on reactive VF, we investigate reactive displacements for

rectilinear flow in a linear regime. The unsteady base state renders a stability matrix highly non-normal,

and hence, the modal analysis like QSSA, may not predict the transient behavior accurately. Therefore, we

opt for a non-modal linear stability analysis (NMA) using a propagator matrix approach to assess reactive

displacements. As the viscosity contrast increases, an early onset occurs and more amplified perturbations

when the reaction generates a less viscous product (Rc < Rb) than the equivalent non-reactive scenario.

Conversely, there exist some reactive cases where onset is delayed if Rc > Rb compared to the equivalent

non-reactive case (Rc = Rb) for infinitely fast reactions, even with a steeper viscosity contrast. Further,

we focus on the reactions having a non-monotonic viscosity profile featuring finite reaction rates with

iso-viscous reactants (Rb = 0). For such instances, the unstable zone contracts, and a stable zone develops

in the mixing zone. As a consequence of this stable zone, fingering patterns localize and develop either

upstream or downstream of the flow, depending on whether the viscosity profile exhibits a maximum or

minimum. When Rc > 0, certain reactions exhibit transient growth within the perturbation amplification

curve, resulting in secondary instability. Here, we obtain a significant contrast in the early-stage VF

dynamics across both flow geometries. For radial flow, we observe the transient growth in perturbation

amplification but do not observe secondary instability for the similar non-monotonic viscosity profile

having maxima. In rectilinear flow, the velocity consistently facilitates convection towards the interface

throughout the process, contrasting with radial flow geometry where it diminishes over time at the

interface.

The numerical technique employed for NMA in this thesis introduces a new perspective for comprehending

time-dependent linear systems inherent in miscible reactive VF. The outcomes obtained align more

closely with non-linear simulations than the conventional approach, QSSA. This research contributes

a numerical and theoretical framework with potential applications for controlling and enhancing VF in

various geophysical processes, including CO2 sequestration, chemical flooding, and reactive pollutant

displacement.

Keywords: Viscous fingering instability, porous media, chemo-hydrodynamic instability, radial flow,

rectilinear flow, Darcy’s law, convection-diffusion-reaction equations, pseudo-spectral method, frozen

fingers, saturation in mixing phenomena, linear stability analysis, compact finite difference, non-normal

matrix, non-modal analysis.
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Chapter 1
Introduction

1.1 Introduction

Hydrodynamic instabilities arise at the interface between two fluids when there exists a gradient in physical

properties, for instance, density, viscosity, or surface tension, and emerge in the form of waves, vortices, or

other complex flow patterns. Depending on the specific flow conditions, various hydrodynamic instabilities

may be observed. For instance, the Saffman-Taylor instability is driven by viscosity contrast [102], the

Kelvin-Helmholtz instability occurs in shearing flows [84], and a density gradient drives the Rayleigh-

Taylor instability [56] as shown in figure 1.1. Several experimental and theoretical research has been

conducted to gain insight into these instabilities. While researchers employ convection-diffusion-reaction

equations to investigate such pattern-forming instabilities and spatiotemporal structures. Nevertheless,

the interaction between chemical reactions and hydrodynamics has received less attention in comparison

to non-reactive displacements. These phenomena are referred to as chemohydrodynamic instability.

F I G U R E 1 . 1 : (a) Rayleigh-Taylor instability [3], (b) Viscous fingering instability [75] and (c)
Kelvin-helmholtz instability [32]. The images are taken from the article, Banerjee [3], Nand

et al. [75], Govindarajan and Sahu [32], respectively.
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2 Chapter 1 Introduction

1.1.1 Viscous fingering instability

When a less viscous fluid displaces a more viscous one, it penetrates the displaced fluid into the shape

of fingers. This phenomenon is known as viscous fingering (VF) instability. It is a fundamental fluid

mechanics phenomenon with significant real-world applications such as oil recovery [102], chromatogra-

phy separation [81], spreading of pollution zones in aquifers [55, 117], medicines [7], diffusion-limited

aggregation [119] to name a few. The term ‘viscous fingering’ was introduced by engineers who were

primarily concerned with its application in secondary oil recovery from porous rocks [26]. In contrast,

physicists recognize VF as a morphological archetype that leads to the formation of interfacial patterns

[15, 41, 50]. Moreover, mathematicians have shown interest in this problem. It is often referred to as

the Hele-Shaw problem due to its relatively simple and occasionally solvable nature as a free-boundary

problem [104, 105]. Hill [36] has carried out the first experimental research and documented the instability

with miscible fluids in a porous medium. They have considered the displacements of sugar liquors by

water from the columns of granular media and explained the resulting instability. Since the publication

of this fundamental study, numerous theoretical, computational, and experimental studies have been

conducted to understand the process underlying VF instability better. Homsy [102] provides an excellent

evaluation of VF.

The instability improves fluid mixing, which can be beneficial or negative depending on the application.

For instance, it is helpful in a variety of applications, such as the remediation of contaminated aquifers

[76, 107] and the sequestration of CO2 [42]. Furthermore, mixing, separation, and reaction control

are some of the applications for microfluidic devices that make use of VF instability [44, 45, 97, 112].

Microfluidic devices, which can be used to mix fluids and transport particles, can produce intricate flow

patterns using VF instability. Further, it controls the enhanced mixing of CO2 plumes in porous matrix

[6, 61]. Overall, VF can be advantageous because it can improve the efficiency of fluid transport by

generating intricate flow patterns that distribute fluids across porous media. On the contrary, the formation

of fingers might have negative impacts in situations where the purpose is to spread a fluid evenly through

a porous media or where they can cause clogging, leakage, or other undesirable outcomes. VF can

lead to an early breakthrough of the invading fluid (typically water or brine), reducing the efficiency

of oil recovery and, in some cases, rendering it economically unviable [48]. Thus, it holds significant

importance to control the instability since even a slight suppression or reduction of viscous fingering, by

just a small percentage, can yield substantial economic benefits by lowering recovery costs.
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F I G U R E 1 . 2 : A Hele-Shaw cell showing the displacement of high viscous fluid than less
viscous fluid used in experiments [77].

1.1.2 Miscible displacement in porous media

Miscibility refers to the ability of fluids to mix and result in a uniform solution. Examples of well-

known miscible liquid combinations include water-ethanol, water-glycerol, and water-sugar syrup. In

miscible fluids, the occurrence of VF is influenced by several factors, including the contrast in viscosity

between underlying fluids, injection velocity, and rate of dispersion. The relative movement between the

fluids becomes more pronounced as the injection velocity increases, thereby intensifying the instability.

Conversely, the diffusive mixing of one fluid into the other diminishes the viscosity contrast between the

underlying fluids, hence reducing the tendency for fingering instability. Consequently, the dynamics of

miscible VF are determined by the interplay between the forces due to convection and diffusion.

To simulate the displacement of two miscible fluids, we adopt certain assumptions that the fluids exhibit

Newtonian behavior, are non-reactive, and possess neutral buoyancy. We also assume the presence of

a uniform, homogeneous porous medium with isotropic dispersion characteristics. Further, we assume

the flow is incompressible. In the context of incompressible flow within miscible multiphase fluids, the

assumption of incompressibility implies that the overall density of the fluid mixture remains constant

as it flows, regardless of the presence of multiple phases. This assumption simplifies the mathematical

modeling of fluid flow, allowing for the use of conservation of mass equations, the continuity equation.

This combination of characteristics can be found in various natural and engineering systems. For instance,

in Oil-Water Systems, Polymer Solutions, and Groundwater Contamination. The modeling of miscible

viscous fingering involves a coupled system of equations, which combines Darcy’s law with a convection-

diffusion equation. The mathematical formulation incorporates the principles of momentum conservation

and volume-averaged mass balance for solute concentration, denoted as c̃. The resulting equations are as

follows:

∇̃ · ũ = 0, (1.1a)

∇̃p̃ = − µ̃

κ̃
ũ, (1.1b)
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(a) (b)

F I G U R E 1 . 3 : Schematic of the miscible displacement in two-dimensional porous media for
(a) rectilinear flow and (b) radial flow. The images are taken from Hota and Mishra [37] and

Sharma et al. [92].

(a) (b)

F I G U R E 1 . 4 : The illustration of Viscous fingering during (a) Enhanced CO2 Storage and (b)
gas EOR showing a radial and rectilinear flow. The images are taken from Burrows et al. [14]

and Bello et al. [4].

∂c̃

∂t̃
+ ũ · ∇̃c̃ = D̃∇̃2c̃. (1.1c)

µ̃ = µ̃0e
Rc̃/c̃0 , R = ln

(
µ̃1

µ̃0

)
. (1.1d)

Here, ũ = (ũ, ṽ) represents the velocity, p̃ denotes pressure, κ̃ stands for the permeability of the porous

medium, and D̃ signifies the diffusion coefficient of the solute. Further, µ̃1 and µ̃0 are the viscosity of

displaced and displacing fluid, respectively. All the quantities in the tilde are the dimensional quantities.

In recent years, significant advancements have enriched the field of miscible viscous fingering

research [102]. These contributions encompass a wide range of experimental work, developing novel

mathematical tools, and formulating numerical techniques to enhance our comprehension of this intriguing
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phenomenon. To investigate VF, two distinct flow domain geometries are considered: radial and rectilinear.

The velocity profile is uniform for rectilinear displacement while it decreases with radial distance for

radial flow. This fundamental difference in the velocity profile for the flow geometries affects the overall

flow dynamics. For rectilinear displacements, Tan and Homsy [103] introduced a numerical methodology

to conduct non-linear simulations (NLS) and gain insights into the intricacies of non-linear behavior. The

numerical approach employs a Fourier spectral method with periodic boundary conditions. In parallel,

Chen et al. [17] have performed numerical experiments to understand VF within radial flow configuration.

They employ a hybrid scheme hybridized by the pseudospectral method and compact finite difference.

For miscible displacements, the base flow profile includes the advection-diffusion equation, which admits

a time-dependent solution. Owing to the unsteady base state profile, the system of linearized perturbed

equations becomes non-autonomous. Tan and Homsy [101] have performed a linear stability analysis

(LSA) using a quasi-steady-state approach (QSSA) and Initial value problem (IVP) analysis. They

observed that QSSA fails to capture the flow dynamics in the initial stages and concluded that an IVP must

be approached numerically with random initial conditions at early times. The QSSA approach reduces the

initial value problem into an autonomous system by freezing the base state at a specific time and applying

modal analysis. In contrast, the IVP approach provides a comprehensive solution to the non-autonomous

linearized problem for representative initial conditions. It is reported that QSSA demonstrates poor

agreement with both IVP and nonlinear simulations. While the IVP approach offers superior predictions

of early-time behavior compared to QSSA, it is not without its challenges. However, selecting random

initial conditions does not guarantee optimal perturbation growth, and determining perturbation growth

from IVP analysis remains a contentious issue. Furthermore, these random initial conditions are intended

to be localized within the diffusive layer. However, it perturbs the entire computational domain. In an

effort to address the limitations of LSA as carried out by Tan and Homsy [101], Ben et al. [5] performed

a spectral analysis method without QSSA within a self-similar coordinate system. The base state remains

steady in self-similar coordinates. Kim and Choi [52] adopted an eigenanalysis approach in a self-similar

coordinate system to eliminate the transient nature of the base state for a non-monotonic viscosity profile.

Although the linearized operator retains its time-dependent character. Subsequently, acknowledging the

non-autonomous nature of the linear stability matrix, Hota et al. [39] adopted a non-modal analysis based

on a propagator matrix approach within a self-similar domain. This innovative approach enables a more

precise exploration of time-evolving modes and their spatial characteristics compared to the QSSA or

other eigenanalysis methods.

On the contrary, for radial displacement, the perturbations exhibit algebraic behavior with time, unlike

the exponential growth in the rectilinear displacement [102]. It imposes that the onset of instability in
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radial displacement requires a minimum viscosity ratio between the involved fluids. This characteristic

distinguishes radial flow from rectilinear flow in terms of stability. Recently, Sharma et al. [93] compre-

hended the VF for radial flow and explained the transition in the flow stability numerically and empirically.

They present a phase plane between Péclet number (Pe) and viscosity ratio (R) classified into stable

and unstable zones. Here, Pe shows the ratio of transport due to the advection and due to the diffusion

[102]. Further, they introduce the initial radius of the circular region occupied by the displacing fluid, r0,

a control parameter in their study. For decreasing r0, the stable region in the phase plane between Pe and

R is contracted but never vanishes. It persists even when the point source is considered [8, 102, 115].

Non-normality of stability matrix:

In order to perform LSA, the approaches can be classified into two groups: modal analysis and non-modal

analysis. When we perform modal analysis, the perturbations are assumed to be exponential with time, and

hence the initial value problem associated with linearised perturbed equations, reduces into an eigenvalue

problem, for instance, QSSA. The flow stability is determined by the least stable eigenmode. However,

there are several instances where this approach describes the fate of perturbation only at asymptotic

times (t → ∞). Thus, it fails to capture the short-term behavior of perturbations such as wall-bounded

shear flows [88], falling liquid curtains [87], to cite a few. To determine the true fate of infinitesimal

perturbations, it is important to analyze the norm of stability matrix exponential containing comprehensive

dynamical information without imposing restrictive assumptions. Additionally, one must identify the

optimal initial condition that leads to the maximum amplification of its kinetic energy. The optimal

amplification, denoted as G(t), of initial energy over a specified time interval for a stability matrix, named

A, can be formulated as [37, 39, 85, 86]:

G(t) = max
q0

∥q(t)∥
∥q0∥

= max
q0

∥B exp(tA)Cq0∥
∥q0∥

= ∥B exp(tA)C∥ (1.2)

where q0 and q are the set of initial conditions and the corresponding temporal evolution.

Using the eigenvalue decomposition of Φ i.e. A = VΛV−1, the optimal amplification can be determined

as G(t) = ∥V exp(tΛ)V−1∥. However, this is only true when V is a unitary matrix, the least stable

eigenvalue (or real part of the largest eigenvalue of A, g(t)), can accurately describe the norm of the matrix

exponential for all time. Hence, if the stability matrix contains non-orthogonal eigenvectors, the temporal

evolution of G(t) significantly differs from that of g(t). We describe such a matrix as non-normal if

it contains a set of non-orthogonal eigenvectors. We can illustrate the influence of non-normality by a

simple geometric example as explained by Schmid [86]. Consider an initial condition f of unit length,
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F I G U R E 1 . 5 : Vector example of transient growth [86]. Starting on the left, the vector f is
defined as the difference between the nearly collinear vectors ϕ1 and ϕ2.

F I G U R E 1 . 6 : A comparison of Spectral abscissa (circles) and numerical abscissa (squares)
for R = 3, at different times (a) t = 10−8, (b) t = 10−5, (c) t = 1, and (d) t = 10 to illustrate
the presence of non-normality in the stability matrix at early times. The image is taken from

Hota et al. [39].

depicted in figure 1.5. Here, ϕ1 and ϕ2 represent non-orthogonal eigenvectors. Initially, f aligns with ϕ1

as it is the dominant eigenvector. However, it undergoes substantial early-time growth before eventually

decaying. Consequently, the combination of these vectors can demonstrate perturbation growth during the

initial stages. Now, if ϕ1 and ϕ2 were orthogonal, the perturbations would align and decay consistently

with ϕ1. Therefore, one can infer that the non-orthogonality of eigenvectors significantly influences the

short-term amplification of |f |, leading to misrepresentation of flow dynamics while conducting modal

analysis. Hence, they only describe the asymptotic fate of f but may fail to capture its transient behavior.

We can examine the non-normality in several ways, for instance, by computing condition numbers and
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comparing spectral abscissa to numerical abscissa. In conducting LSA for equation (1.1), where we

perturb the base state and linearize it, we observe that the resulting stability matrix exhibits significant

non-normality as shown in 1.6. As a consequence, the modal analysis approaches, for instance, QSSA,

lack in predicting the early time dynamics such as diffusion. In our study, we perform LSA for a

reactive displacement. It can be examined that non-normality persists in the associated stability matrix.

Consequently, we opt for non-modal analysis in our study to gain a more comprehensive understanding

of the system’s behavior.

1.1.3 Chemo-hydrodynamics instabilities

Chemical reactions have the potential to interact with hydrodynamic flows, giving rise to chemo-

hydrodynamic instabilities. Within reactive flows, the resultant products of these chemical reactions can

bring about changes in the physical characteristics of the fluids involved, such as viscosity and density.

This leads to a complex and nonlinear feedback loop that interconnects the chemical reactions with the

corresponding processes of diffusion and convection [22, 51, 63, 111, 116]. Such instabilities play a

pivotal role in a multitude of industrial and environmental scenarios, encompassing groundwater flow [24],

enhanced oil recovery [47, 68], chromatography separation [16, 91], and CO2 sequestration [12, 42, 58].

Further, the instability can either be solely induced by the chemical reaction itself or can influence the

dynamics of pre-existing fingering patterns. Consequently, gaining a comprehensive understanding of

reactive flows is of paramount importance. In most of the numerical investigations, the reactive fluids

are assumed to form a product through a second-order irreversible chemical reaction, A + B → C

[34, 35, 69, 90, 94]. Such types of bimolecular chemical reactions serve as a foundational building block

for a wide range of complex chemical processes. Therefore, a firm grasp of this fundamental reaction can

offer valuable insights into understanding more complex chemical reactions.

The dynamics of reactive displacement can be harnessed for optimizing mixing, as the chemical reaction

may finely tune the location and magnitude of instability. Experimental [70, 71, 72, 83] and theoretical

[34, 35, 69, 90] investigations into reactive VF have revealed that the presence of reactive fluids intensifies

VF dynamics when compared to non-reactive displacements. At first, Podgorski et al. [78] experimen-

tally showcase chemically induced instability, wherein the reaction results in the formation of a more

viscous and elastic micellar product upon contact between two reactants with equal viscosity. Notably,

Nagatsu et al. [71] conducted experiments involving instantaneous neutralization reactions, revealing

the emergence of shielding effects when the reaction produces a less viscous product than reactants.

Conversely, the generation of a high viscous product suppresses the shielding effect. Further, Nagatsu
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(a) (b)

F I G U R E 1 . 7 : Reaction-induced instability. (a) Kelvin -Helmholtz instability [63] and (b)
Viscous fingering instability [83].

et al. [70] reported experimental findings involving moderately fast reactions, showcasing a diverse array

of complex fingering patterns depending on reaction rate.

1.1.4 Convection-diffusion-reaction equations

The reactive transport can be modeled by a convection-diffusion-reaction (CDR) system of equations:

∂α̃

∂t̃
+ ũ · ∇̃α̃ = D̃α∇̃2α̃± f(α̃) (1.3)

In these equations, the variable α̃ represents concentrations of fluid species participating in the chemical

reaction, and ũ characterizes the velocity field. In these equations, the terms, ũ · ∇̃α̃, D̃α∇̃2α̃ and ±f(α̃)

correspond to convection, diffusion and reaction. Here, the reaction depends on the specific nature of the

chemical reaction under consideration. To illustrate, in the context of a second-order chemical reaction,

such as A + B → C, the reaction term is proportional to ãb̃ within the equation corresponding to the

concentrations of reactants, where ã and b̃ represent the concentrations of reactants A and B [2]. While

for the product concentration profile, the reaction term is proportional to ãb̃. In the absence of convection,

the equation will be converted into reaction-diffusion equations. For non-reactive situations, the equations

are converted into convection-diffusion equations.

1.1.5 Understanding of reactive miscible viscous fingering

To investigate reactive VF, numerous experimental investigations have been conducted within radial flow

geometry. In contrast, the theoretical and numerical aspects of the literature predominantly focus on

rectilinear flow geometry. In 2009, Gérard and De Wit [31] modeled reactive miscible displacement in
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rectilinear flow specifically for types of reactions involving iso-viscous reactants.

∇̃ · ũ = 0, (1.4a)

∇̃p̃ = − µ̃

κ̃
ũ, (1.4b)

∂ã

∂t̃
+ ũ · ∇̃ã = D̃A∇̃2ã− k̃ãb̃, (1.4c)

∂b̃

∂t̃
+ ũ · ∇̃b̃ = D̃B∇̃2b̃− k̃ãb̃, (1.4d)

∂c̃

∂t̃
+ ũ · ∇̃c̃ = D̃C∇̃2c̃+ k̃ãb̃, (1.4e)

µ̃ = µ̃0e
(Rcc̃)/ã0 , Rc = ln

(
µ̃(c̃ = ã0)

µ̃0

)
. (1.4f)

Here, the velocity vector, pressure, and viscosity are denoted by ũ = (ũ, ṽ), p̃, and µ̃, respectively.

Furthermore, the concentrations of the involved fluids, namely A, B, and C, are represented as ã, b̃, and

c̃, respectively and D̃A,B,C is the diffusion coefficient of fluid A, B, C. Equation (1.4a) corresponds

to the continuity equation for mass conservation, equation (1.4b) reflects Darcy’s law for momentum

conservation, and equations (1.4c)-(1.4e) encompass the reaction-diffusion-convection (RDC) equations

governing the averaged mass volume conservation for fluids A, B, and C. In the last equation (1.4f), the

viscosity is considered to be dependent on product concentration, and (ã0, µ̃0) are the initial concentration

and viscosity of reactants. While conducting non-linear simulations and linear stability analysis, the

equations undergo non-dimensionalization. This process introduces two additional non-dimensional

parameters, namely the Péclet number (Pe) and the Damköhler number (Da). The definitions of

these parameters depend on the specific flow configurations being considered. Here, Da represents the

reaction rate. For rectilinear flow, the flow described by the equations (1.4) is numerically solved using a

pseudospectral method that incorporates the effects of chemical reactions. They consider the reactive

cases when a reaction generates a high viscous product and induces instability upstream of the flow.

Later, Hejazi et al. [35] conducted an LSA on a reactive system and employed the quasi-steady state

approximation (QSSA) approach. They considered the viscosity profile, accounting for its dependence

on both reactants and product concentrations, as expressed by µ̃ = µ̃0e
(Rcc̃+Rbb̃)/ã0 and presented the

stability zones with contour plots of the maximum instantaneous growth rate for various reactions at

different times. Here Rb is the log-mobility ratio between reactants as Rb = ln(µ̃B/µ̃A). Further, Nagatsu

and De Wit [69] and Hejazi and Azaiez [34] offered numerical insights into how chemical reactions

affect VF while taking into account the same viscosity profile. Using the pseudospectral method, they

conduct numerical simulations for reactive flow involving infinitely fast and moderately fast reactions.
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Their findings revealed that when the non-reactive situation is unstable, i.e. Rb > 0, the chemical reaction

can have a destabilizing effect on the system when the viscosity of the products differs from that of the

reactants, i.e. Rc ̸= Rb. As |Rc−Rb| increases, the onset of VF occurs earlier. Conversely, when Rb < 0,

the chemical reaction can induce instability if it results in a non-monotonic viscosity profile. Importantly,

when Rb ≤ 0, chemical reactions are able to disrupt the symmetries of convective instabilities and confine

fluid motion to localized regions.

Despite the majority of experimental studies being conducted in radial flow geometry, there need to be

more numerical and theoretical investigations focusing on this particular flow configuration. This research

gap was recently addressed by Sharma et al. [94], who examined reactive flow within radial geometries.

They specifically explored scenarios where reactants had iso-viscous properties, and the resulting product

exhibited variations in viscosity compared to the reactants. However, it is reported that there exists a

critical viscosity contrast to trigger the instability for reactive displacement in radial flow geometry due

to spatially decreased velocity profile, unlike in the rectilinear flow domain. Notably, it was observed

that the onset of instability occurs earlier when a chemical reaction produces a highly viscous fluid. In

conclusion, De Wit [22] has provided a comprehensive account of the chemical reactions influencing

these instabilities, with a particular focus on how chemical reactions alter the viscosity of the system and

modify the flow dynamics.

1.1.6 VF dynamics due to altered viscosity profile

We non-dimensionalize the concentration of A, B and C, and viscosity, using the initial concentration and

viscosity of A, (ã0, µ̃0). The non-dimensionalized concentrations of A, B and C are (a, b, c) respectively

and viscosity is µ. In the absence of a chemical reaction i.e. Da = 0, the viscosity is a monotonic function

of space. The system is hydrodynamically unstable for the non-reactive fluids for Rb > 0 while a stable

displacement is observed for Rb < 0. The generation of the product due to a chemical reaction modifies

the viscosity profile, thereby affecting the VF dynamics. A (Rb, Rc) phase plane is presented in figure

1.8 showing various types of viscosity profiles depending on the various values of Rb and Rc. When

product viscosity is the same as reactant B i.e. Rb = Rc, the viscosity profile becomes µ = eRb(b+c).

Here (b + c) follows the convection-diffusion as followed by reactant B when Da = 0 and hence the

consumed amount of the reactant B in the reaction is equated by the product C in the expression (b+ c).

Consequently, the system retains its inherent monotonic viscosity profile for Rc = Rb demonstrated by

the system if fluids A and B are considered to be non-reactive. We use this information to compare the

VF dynamics for Rc ̸= Rb to this case Rb = Rc. Further, due to the presence of three miscible fluids

A, B, and C, two mixing zones appear when C produces. These are identified as the upstream mixing
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F I G U R E 1 . 8 : (Rb, Rc) Phase plane. The inset figures are viscosity depending on the value
of (Rb, Rc), i.e. ln(µ) = Rbb+Rcc. This figure is a reproduction of figure 3 from Hejazi et al.

[35].

zone, primarily occupied by fluids A and C, and the downstream mixing zone, mostly occupied by fluids

B and C. The viscosity profile can be distinguished at these two zones for Rb ̸= Rc. The viscosity

profile at these two zones decides the fate of the stability of the system. Since it is assumed that all fluids

have the same diffusion coefficient, and the initial concentration of both reactants is identical. Under

this assumption, (a + b + 2c) follows the convection-diffusion equation with the initial condition as

(a+ b+ 2c)(x, t = 0) = 1 and attains only one solution as (a+ b+ 2c) = 1 [35, 69]. (See appendix B.)

To analyze the viscosity distribution along the direction of the flow, we take the gradient of the viscosity

profile along x- direction using the relation a+ b+ 2c = 1 as referenced in [35] as:

∂µ

∂x
= µ

[
Rc

2

(
−∂a

∂x

)
+

(
Rb −

Rc

2

)
∂b

∂x

]
. (1.5)

Both −∂a/∂x and ∂b/∂x are positive in x− direction, and the viscosity profile solely depends on the

sign of Rc and Rb −Rc/2. The viscosity profile can be categorized mainly into two parts, monotonic or

non-monotonic viscosity profile, depending on the value of Rc and Rb −Rc/2.

The viscosity profile remains monotonic when Rc(Rb − Rc/2) > 0. In the (Rb, Rc) parameter plane

(figure 1.8), the region Rc(Rb − Rc/2) > 0 comprises two sub-regions and their confined boundary

can be defined as below. First, when the product is high viscous, then reactant B i.e. Rc ≥ Rb, but
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Rc ≤ 2Rb (region II), the viscosity profile becomes steeper at the upstream mixing zone. The confined

boundaries for this region are Rc = Rb and Rc = 2Rb. The viscosity profile remains unaffected by

the reaction for Rb = Rc. While, for Rc = 2Rb, the downstream mixing zone stabilizes neutrally, so

instability is more prone to appear at the upstream mixing zone. Secondly, when the product is more

viscous than reactant A, Rc ≥ 0 but Rc ≤ Rb (region I), the steeper viscosity contrast shifts towards

the downstream mixing zone. Here, instability is more likely to occur in the downstream mixing zone.

These two regions are separated by the line Rb = Rc in (Rb, Rc) phase plane. In the case of Rb < 0,

both the regions are re-defined as Rc ≤ 0 and 2Rb ≤ Rc (region V and VI) shows a decreasing viscosity

profile, that is, the only unconditionally stable region presents in (Rb, Rc) parameter plane. The viscosity

profile becomes non-monotonic with an extremum when Rc(Rb −Rc/2) < 0 and one of the zones will

be destabilized. When Rc > 0 and Rc > 2Rb, the viscosity profile attains a maximum, and instability

is expected to appear at the upstream mixing zone. On the other hand, when Rc < 0 and Rc < 2Rb,

an unfavorable viscosity gradient occurs at the downstream mixing zone with a local minimum. Our

investigation comprehensively explores these cases across both radial and rectilinear flow geometries.

1.2 Motivation and objectives

Motivated by the extensive applications of reactive viscous fingering, we aim to gain insight into the

interaction of a reactive miscible interface with a chemical reaction A + B → C and VF. Within this

context, the thesis sets out to achieve the following objectives:

• To understand the non-linear interaction between a chemical reaction and hydrodynamics in a

porous medium. We conduct the stability analysis of the reactive system concerning VF in both

flow geometries, radial and rectilinear. We examine the influence of flow configuration on stability.

• To examine the reaction-diffusion-convection equations system in the absence/presence of VF. We

explore how VF can improve mixing and enhance reaction efficiency.

• Develop an advanced numerical method for conducting LSA to understand the transient behavior of

reactive flow for a rectilinear flow geometry. We address the limitations of the existing theoretical

approach and develop the numerical scheme to overcome all the shortcomings in QSSA.

• Create a numerical approach for comprehending the dynamics of reactive flows in linear regime

with reactions occurring at an infinitely fast rate. For Da → ∞, we reconstruct the system of

governing equations and, hence, the linearized perturbed equations.
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1.3 Outline of thesis

The pursuit of the aforementioned goals is organized and elucidated across the following six chapters.

The initial chapter encompasses a comprehensive literature review coupled with an exploration of relevant

terminologies. Chapters two and three focus on exploring the flow and reaction properties, followed by a

stability analysis specific to radial flow. The analysis employs both NLS and LSA methodologies. In

chapter four, we investigate the reactive displacements with infinitely fast reactions for radial flow by

performing NLS. The final two chapters are dedicated to exploring the impact of chemical reactions on

viscous fingering dynamics during rectilinear displacement through linear stability analysis.

Chapter 1 offers a comprehensive overview of viscous fingering instability, in particular, miscible

VF. It encompasses an extensive exploration of existing literature, including theoretical, experimental,

and numerical studies related to miscible VF. Moreover, it gains insight into the profound influence of

chemical reactions on VF instability and the resulting modifications to the viscosity profile. The chapter

briefly reviews pertinent literature concerning the properties of chemical reactions, particularly within the

framework of a system governed by CDR equations.

Chapter 2 is divided into two main sections. In the first part, we examine the reaction-advection-diffusion

equations for radial flow and investigate the influence of radial geometry on the reaction properties of the

chemical reaction, A+B → C. We compute several properties such as total reaction rate, first moment

of reaction rate, and the total amount of product and derive them as a function of Damköhler number

(Da) for stable displacement. It is observed that the reaction rate exhibits a non-monotonic behavior over

time, influenced by Da. We discuss different temporal scaling relationships for the total product yield.

Further, we investigate whether the reaction properties are impacted by the presence of VF for radial

flow. We consider the viscosity profile as viscosity depends on reactants and product concentrations

exponentially. We model the flow with reaction-convection-diffusion equations coupled with Darcy’s

law. We conduct a thorough numerical study using a numerical method hybridized by pseudospectral and

compact finite difference methods. When the viscosity of the product differs from that of the reactant, B,

i.e. Rc ̸= Rb, the chemical reaction modifies the viscosity profile, and hence the VF dynamics. When

Rb > 0, the flow becomes more unstable in the presence of a chemical reaction when Rc ̸= Rb. On the

contrary, when Rb < 0, the flow is stable in the absence of a chemical reaction, the chemical reaction

may destabilize the flow. We observe various fingering patterns depending on the value of the governing

parameters, Rb, Rc, and Da. Further, we seek to comprehend the effects of VF on reaction characteristics

such as reaction rate and total product yield for a wide range of Rc and Da. As the viscosity contrast(

|Rb−Rc|) increases, the displacement becomes more unstable, resulting in the total reaction rate enhanced
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and more amount of product generated. Moreover, we measure the deformation at the interface with the

help of interfacial length. It is observed that the onset of instability and degree of fluid mixing depend on

the sign of Rc −Rb. When Rb −Rc < 0, we observe a higher degree of mixing, indicating the role of

fingering instability in enhancing fluid mixing than the corresponding case, Rb −Rc > 0. Additionally,

we identify the presence of diffusion-dominated zones at later times in the case of reactive VF. For higher

viscosity ratios, the fingering pattern does not evolve with time and follows a diffusive regime in later

stages. We refer to these fingers as frozen fingers. One part of this chapter is published in the Physics of

Fluids journal.

Chapter 3 provides a comprehensive stability analysis for the reactive displacement, A + B → C

within radial flow. By performing NLS and LSA, we gain insights into how the altered viscosity profile

affects the stability of the system. We demonstrate that the flow becomes more unstable following

product generation (after chemical reaction) when the reactants exhibit an unfavorable viscosity contrast

triggering instability (Rb), and the product has a viscosity contrast to the reactants. Conversely, when

the equivalent non-reactive case is stable, we identify a range of Rc values for which the corresponding

reactive displacement is stable. The range of Rc that corresponds to stable displacement, decreases as Rb

increases and vanishes at the critical value of Rb triggering instability for non-reactive situations. Further,

we investigate how Da influences the critical values of (Rb, Rc) for instability. As Da increases, the flow

becomes more unstable for reactive cases if the corresponding non-reactive situation is already unstable.

Conversely, if the non-reactive flow counterparts (Da = 0) are stable, the stable range of Rc decreases

with increasing Da. Further, we validate these results predicted by LSA through NLS and establish a

phase plane based on the log-mobility ratios (Rb, Rc) divided by the critical viscosity ratios to trigger

instability. Interestingly, we obtain a region in the (Rb, Rc) phase plane in the neighborhood of Rc = Rb

line, for which the stability is not modified after the reaction. This phase plane provides a classification of

reactive flows, specifically those involving the chemical reaction A+B → C, based on their viscosity

profiles.

Chapter 4 focuses on the investigation of the non-linear interactions between infinitely fast reactions

and VF dynamics. Further, we consider the reactants to be iso-viscous and the instability is induced by

the reactions if they generate a product having viscosity contrast i.e. (Rb = 0, Rc ̸= 0). Such types of

reactions generate a non-monotonic viscosity profile if Rc ̸= 0. We analyze how this non-monotonicity

in the viscosity profile affects the flow dynamics, as it introduces a combined effect of stable and unstable

zones. We determine the onset time for various values of Rc and Péclet number (Pe). Using this

information, we establish a phase plane between Rc and Pe at a specific time and derive a power law

relationship. Additionally, we determine the critical viscosity ratio, Rc required to trigger instability for a



16 Chapter 1 Introduction

given Pe and fit a power law relationship between the critical viscosity ratio and Pe. These power laws

can assist in selecting the appropriate type of chemical reaction to modify viscosity while maintaining

a stable or unstable flow, depending on the specific application. Furthermore, we investigate the VF

dynamics after the onset of instability, particularly focusing on finger length. For cases with lower

viscosity ratios, we observe longer fingers develop when Rc > 0 compared to corresponding cases with

Rc < 0. However, for higher viscosity ratios, the trend is reversed. This chapter is published in the

Journal of Fluid Mechanics.

In Chapter 5, we aim to gain insights into the stability of reactive flow when subjected to VF instability

during rectilinear displacement in a linear regime. To accomplish this, we employ a non-modal linear

stability analysis (NMA) for a reactive system A + B → C with a propagator matrix approach and

discuss the limitations of the previously employed approach for LSA, QSSA method. We explore the

reactive displacement with the reactions having viscosity mismatched reactants, i.e. Rb ̸= 0. Further,

we constrain our analysis in this chapter to infinitely fast reactions only. In the context of such rapid

reactions, the mathematical modeling incorporates a scalar parameter, denoted as z = a+ c = 1− b− c,

which follows the convection-diffusion equation. Furthermore, we derive explicit expressions for fluid

concentrations as functions of this parameter z, represented as (a, b, c) = (f1, f2, f3)(z). This modeling

approach suggests the existence of a steady base state for the reactive flow and an analytic solution is

attainable for base state equations. As the viscosity contrast increases, an early onset occurs and more

amplified perturbations when the reaction generates a less viscous product (Rb < Rb) than the equivalent

non-reactive scenario (Rc = Rb). Conversely, when Rc > Rb, there exist some reactive cases where

onset is delayed compared to the equivalent non-reactive case (Rc = Rb), even with a steeper viscosity

contrast. However, after onset time, we observe an accelerated growth rate of perturbations, indicating

a more unstable displacement than the scenario where Rc = Rb. Furthermore, our findings reveal that

the onset time delays most when Rc = 2Rb for a given Rb. We also present a comparative analysis

between NMA and QSSA, demonstrating that NMA consistently aligns more with the results of nonlinear

simulations than QSSA.

Chapter 6 builds upon the discussion initiated in Chapter 5. We perform LSA for the type of reactions

having iso-viscous reactants and the product has viscosity contrast. We employ a non-modal LSA for a

reactive system A+ B → C with a propagator matrix approach. By examining optimal amplification

and growth rate, we focus on the transient behavior of eigenmodes in response to the most unstable initial

perturbations. We illustrate that an increase in the viscosity contrast, |Rc|, resulting from a chemical

reaction, leads to a more unstable system. Further, we observe a weak transient instability for some

values of Rc > 0 that delays the onset time of instability. We refer to this phenomenon as secondary



1.3 Outline of thesis 17

instability. We also determined how the flow stability is affected by Da. We found an early onset for

increasing Da showing a more unstable displacement. Further, an early onset is obtained for the reactive

displacements generating a high viscous product rather than a less viscous product for a given viscosity

contrast and each Da including the case when Da → ∞. These findings diverge from those obtained

through the QSSA approach but align well with results derived from NLS. Further, we compare the effect

of geometry, we both observe the transient growth for the reactive case with a non-monotonic viscosity

profile with maximum. However, we do not observe the secondary instability for radial flow.





Chapter 2
Flow dynamics of a radial miscible A +B → C types of

reaction front in a porous medium

2.1 Introduction

Chemical reactions are important in a variety of fields viz., petrochemical industry, water

decontamination [30], metabolic activity of bio-films [96] and medical industry, to name a few.

In most of the numerical studies, the reactive fluids are assumed to generate a product undergoing

an irreversible chemical reaction of second order [34, 69, 35, 94, 90]. Employing a chemical

reaction of second order means that the reaction rate depends on the concentration of both the

reactants i.e. reaction rate is proportional to ab where a and b is the concentration of reactant A

and B. It means if we increase both of the reactant’s concentrations by n times, the reaction

rate will be increased by n2 [2]. A bi-molecular chemical reaction A+ B → C, is a building

block for various complex reactions. Hence, knowledge about this basic reaction might help

comprehend other chemical reactions. Understanding various characteristics of the chemical

reaction is necessary to gain insights into the yield and the outcome of the chemical reaction.

During reactive displacements, the generated product may modify the viscosity profile, resulting

in a hydrodynamic instability, termed viscous fingering [22]. The instability occurs when a less

viscous fluid displaces a more viscous one in a porous medium resulting in intricate fingering

patterns [101]. It controls the efficiency of several applications including soil contamination in

groundwater flow [24, 57, 9, 99, 21], enhanced oil recovery [47, 68], chromatography separation

[16, 91] and CO2 sequestration [42, 12, 58]. One advantage of the fingering instability is

in mixing when fluids are miscible [44]. An enhanced mixing due to increased fluid-fluid

interactions is anticipated in the presence of VF. Further, a reactive displacement can be used

as an optimization of mixing due to VF instability as the reaction may tune the location and

amplitude of instability. In this chapter1, we discuss the flow dynamics when reactants have

some viscosity contrast for a range of reaction rates. We consider the displacing reactant A

1The part of this chapter is published in the Phys. Fluids [114].
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having less viscosity than the displaced reactant B and then investigate how the reaction can

modulate the product formation with such a hydro-dynamical unstable interface for radial flow.

We ask how the non-monotonicity in the viscosity profile introduced by the reaction affects

the fingering instability and how the instability alters the reaction characteristics like the total

amount of product, etc.? In this way, we explore how the hydrodynamics affect the reaction

kinematics. Further, we explore if the VF dynamics like onset of instability, mixing, etc observed

for similar non-monotonic profiles and whether chemical reactions have more or less viscous

product than reactants. For radial displacement, the forces due to convection and diffusion are

known to compete. The effect of these forces on reactive VF in terms of total reaction rate and

degree of mixing is discussed.

This chapter is organized as follows. We describe the mathematical formulations followed by

the numerical method in §2.2. We discuss the effect of VF dynamics and various characteristics

of the chemical reaction in the presence and absence of the instability in §2.3. At last, we

summarise all the results in conclusion §2.4.

2.2 Mathematical formulation

We investigate the transport of the reactive fluids in a homogeneous and isotropic two-dimensional

porous medium. We regard the reactants as fluid A and B which are Newtonian, neutrally buoy-

ant, allowing us to ignore the effect of gravity and undergo a second-order, irreversible chemical

reaction A + B → C. Further, the considered flow is incompressible and density remains

constant. In order to understand the reactive flow in the porous medium, the governing equations

include Darcy’s law coupled with the convection-diffusion-reaction equations one for each

reactant and product. The non-dimensional set of governing equations is [35, 94]:

∇ · u = 0, (2.1a)

∇p = −µu, (2.1b)

∂a

∂t
+ u ·∇a =

1

Pe
∇2a−Da ab, (2.1c)

∂b

∂t
+ u ·∇b =

1

Pe
∇2b−Da ab, (2.1d)
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F I G U R E 2 . 1 : Schematic of A+B → C chemical reaction in a radial source flow. The region
inside the inner circle and outside the outer circle is occupied by reactants A and B, respectively.
The product C is generated in the annulus region where the reactants come in contact. We

denote that region inside the annulus as the reaction front.

∂c

∂t
+ u ·∇c =

1

Pe
∇2c+Da ab. (2.1e)

To render the equations non-dimensional, we characterize the time by t̃f , the final time up to

which we inject fluid A. It is important to note that t̃f represents the duration up to which we

want to conduct the study. However, determining an appropriate characteristic length scale has

been a challenge. For the non-dimensionalization of the spatial vector, x̃, we can either utilize

the permeability κ̃, which has units of length2, or a function of Q̃t̃f with the same units. Here,

Q̃ is volumetric flow rate per unit depth. Previous works by Tan and Homsy [102] utilized
√
κ̃ as a length scale due to the absence of an explicit length scale. In contrast, in our study,

we are provided with both Q̃ and t̃f , allowing us to define the length scale as
√
Q̃t̃f [94].

This choice not only addresses the absence of an explicit length scale but also offers practical

advantages. Furthermore, it enables us to confine our temporal domain, given that the fingering

pattern develops in the diffusive regime in later stages, contingent upon the Péclet number (Pe)

[18, 114]. Further, we non-dimensionalize Darcy velocity u, viscosity µ, pressure p and fluid

concentrations (a, b, c) by
√
Q̃/t̃f , µ̃A, Q̃µ̃A/κ̃ and ã0, respectively. The term R = Da ab

is a reaction term that works as a source for product concentration and a sink for reactant

concentrations.

In addition, we consider the chemical reaction to take place in isothermal conditions. Further,
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there exist experimental pieces of evidence with unstable displacement [72, 73, 71, 83] where

the viscosity changes with a variation in the concentration of chemical species and the heat

release is negligible [72]. The experimental work of Taitelbaum et al. [100], Koo et al. [54]

involves stable displacement with no heat release due to reaction. Thus, we do not require an

energy equation and the use of a system of convection-diffusion-reaction equation is sufficient

to complete the mass balance of chemical species.

In our study, the viscosity is a function of the concentration of the reactants as well as the

product. The viscosity-concentration relation is taken as the well-known Arrhenius relation used

in various theoretical and numerical studies concerning VF [35, 34, 31, 94]:

µ = exp(Rbb+Rcc), (2.2)

where Rb = ln(µB/µA) and Rc = ln(µC/µA) are the log-mobility ratios. The viscosity of the

reactant B and the product C are denoted as µB and µC . In addition to Rb, Rc, we encounter

another two non-dimensional parameters Damköhler number (Da) and the Péclet number (Pe).

The pace of the chemical reaction is decided by Da which is the ratio of the convective time

scale to the reactive time scale, while Pe being the ratio of convective transfer to diffusive

transport, helps study the effect of diffusion in the system. The fluid A displaces fluid B radially.

We consider a finite source, that is, a circular region of radius r0 near the source is initially filled

with fluid A which is surrounded by fluid B contained outside the circle of radius r0. The fluid

A is continuously injected up to time t̃f . The initial distribution of fluids A, B and C is:

(a, b, c)(x, t = 0) =

(1, 0, 0) 0 < |x| < r0,

(0, 1, 0), Otherwise
. (2.3)

The reactants generate the product as soon as they come in contact so that in the absence of

any viscosity contrast, the product is contained in an annulus between the reactants as shown in

figure 2.1.

2.2.1 Numerical scheme

Owing to the coupling of the governing equations, we sought a numerical solution to the

governing equations. A hybrid of compact finite difference and pseudo-spectral method is used
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to obtain the numerical solution. We consider the computational domain as a square of side L

with the origin at the center. The fluid A is injected from the center with the potential velocity, a

characteristic of the radial flow, given as:

upot =
x

2π|x|2
. (2.4)

Further, due to a change in the viscosity owing to the chemical reaction, the velocity is modified

at the interface. To capture this, we introduce an additional rotational component in the velocity

profile denoted as urot so that total velocity becomes u = upot + urot.

Although upot is known at all times, it has a singularity at the origin which must be resolved

before using any numerical method. We resolve the singularity by introducing a Gaussian source

of core size σ1 [94, 17] so that the potential component of velocity becomes

upot =
1− exp(−|x|2/σ2

1)

2π|x|2
x, (2.5)

here σ1 ≤ r0 so that the exponential modification does not affect the VF dynamics [113]. On

the contrary, urot is smooth and must be computed at each time to obtain total velocity u. We

compute the rotational velocity with the help of the stream function as:

urot =

(
∂ψ

∂y
,−∂ψ

∂x

)
. (2.6)

Further, we take the curl of equation (2.1b) to obtain the stream function-vorticity formulation,

∇2ψ = −ω, ω = Rc

(
v
∂c

∂x
− u

∂c

∂y

)
+Rb

(
v
∂b

∂x
− u

∂b

∂y

)
. (2.7)

The Poisson equation (2.7) is solved by the pseudo-spectral method, where the partial deriva-

tives in the x direction are discretized by the Fourier sine expansion method. And the partial

derivative in the y direction by the compact finite difference method of sixth order. We solve

the convection-diffusion-reaction equation using the method of lines wherein the initial value

problems are solved using the Runge Kutta method of third order with adaptive time steps

satisfying Courant−Friedrichs−Lewy (CFL) condition as discussed by Sharma et al. [94].

In the initial condition for the concentration of the reactants, we observe a discontinuity

as shown in equation (2.3). To avoid this, we consider the initial condition for a and b which is a
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solution of a convection-diffusion equation in the absence of any viscosity contrast as follows:

∂a1
∂t1

+ u ·∇a1 =
1

Pe
∇2a1, |u| = 1

r
(2.8)

where r = |x|. The equation (2.8) attains a solution as referenced in Tan and Homsy [102]:

a1 =

∫ η1

0

exp

(
− s2

2

)
sPe−1ds∫ ∞

0

exp

(
− s2

2

)
sPe−1ds

(2.9)

where η1 = r(Pe/2t1)
1/2 is the self-similarity variable. We consider for a(x, t = 0) = a0 =

a1(t1 = r20/2) and b(x, t = 0) = 1− a0. Here, Pe is chosen in such a way that it maintains a

stable displacement. We add a small perturbation, 0.01 sin(2πN) at the points at which |x| = r0.

Here N is the set of random numbers between 0 and 1, and we keep the same set of numbers for

all the simulations to confirm the same initial condition. We discuss the order of convergence for

the numerical method in chapter 4, section 4.3.1 and convergence study for spatial discretization

in appendix A.

2.3 Results and discussion

Chemical reaction results in the generation of the product and the spatially localized region

where the product C is non-zero is termed as the reaction zone [22] and is shown in figure 2.1.

We refer to a displacement with no viscosity contrast between the reactants and the product, as

the stable displacement. Mathematically, a stable displacement is represented as Rb = Rc = 0.

It indicates no viscosity contrast in the system and Darcy’s law becomes decoupled from the

reaction-diffusion-convection equations. As a result, the velocity profile remains unperturbed by

the fluid concentrations. Hence, the reaction front features only advection-diffusion-reaction

equations and does not exhibit instability. On the other hand, an unstable displacement is

observed when a less viscous fluid displaces a more viscous one. Various characteristics like the

total yield of the product, location of the maximum of product or front position, width of the

reaction front, etc. have been of interest to many researchers. Various studies [29, 10, 110] have

focused on obtaining various scalings for these characteristics for both radial and rectilinear

geometry but by considering stable displacement only. Also, the effect of the rate of chemical
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reaction has not been taken into consideration. In this work, we discuss various characteristics

for stable displacement for various chemical reactions by varying Da and then see how VF

affects these results by considering unstable displacements. An insight into mixing due to the

interaction between chemical reaction and instability is gained.

2.3.1 Chemical reaction characteristics

In this section, we consider a stable displacement, that is the reactant A radially displaces

reactant B and generates product C on contact. We obtain insights into various characteristics

of a second-order chemical reaction A+B → C. For convenience, we convert the data from

Cartesian coordinates (x, y) to polar coordinates (r, θ) as done in Sharma et al. [94].

2.3.1.1 Total reaction rate

The quantity R(r, θ, t) = Da a(r, θ, t)b(r, θ, t) is the reaction rate and is evidently non-zero

only when the concentration of both the reactants is non-zero or where both the reactants A and

B co-exist. It tells about the generation of the product and is also called the production rate [29].

The total reaction rate, thus, gives information about the consumption of the reactants or the

generation of the product with time. We calculate the total reaction rate as [31]

Rtot(t) =

∫ 2π

0

∫ L

r0

R(r, θ, t) r dr dθ. (2.10)

At t = 0, we initiate a step-like initial condition for the reactants, and initially, no mixing zone

exists. However, in the reaction-diffusion-convection system, right after t = 0, the reactants

diffuse throughout the domain, resulting in the formation of a mixing zone. As a result, the

maximum amount of reactants is present in the mixing zone, and thus, Rtot is expected to be

maximum near t = 0. However, it is found that Rtot depends on Da as shown in figure 2.2. For

sufficiently high Da, Rtot is found to be a non-monotonic function of time. It is evident that Rtot

attains a maximum near the start of the experiment, followed by a minimum and then increases

attaining saturation with time. However, the value of the maximum decreases initially with a

decrease in Da. This may be attributed to slower consumption of the reactants or equivalently

lesser generation of the product for a smaller Da. Interestingly, for Da = 60, the maximum is

obtained at t > 0 despite the fact that the concentration of the reactants is the maximum at t = 0.
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F I G U R E 2 . 2 : Total reaction rate for Rb = Rc = 0, Pe = 3000 and various Da.
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F I G U R E 2 . 3 : Contours of the reaction rate R(x, y, t) = Da a(x, y, t)b(x, y, t) for (a) Da =
100 and (b) Da = 15 at different times.

On the contrary, no maximum is obtained for Da = 15 and Rtot(t) is a monotonic function of

time. This may be a consequence of a slower rate of reaction for these values of Da, resulting in

slow consumption of the reactants.

We plot the contours of the reaction rate R(x, y, t) = Da a(x, y, t)b(x, y, t) in figure 2.3 for two

values of Da. It is mentioned that we opt to plot R(x, y, t) in order to visualize the radial flow.

It is clear that independent of Da, R(x, y, t) is the maximum at initial time and decreases with

time due to the consumption of the reactants. With the help of colorbar in figure 2.3, it is easy to

compare the reaction rate at the initial time for different Da. Evidently, the reaction rate is much

higher initially for higher Da. In other words, the initial reaction rate increases with an increase
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in Da. Thus, for a smaller Da, reactants are consumed gradually, and hence Rtot(t) increases

monotonically. However, with an increase in Da, most of the reactants are consumed at the

initial time resulting in a maximum in Rtot(t) at the initial time (for Da ≥ 100) and at some

t > 0 for intermediate Da like Da = 60. Ultimately, with the passage of time, all reactants are

consumed resulting in equilibrium, and species are advected radially. However, in the case of

stable displacement, we observe a potential flow, which results in a decrease in the force caused

by the radial spreading of a front as it moves away from the source. Ultimately, the diffusion

dominates, and saturation in Rtot(t) is obtained independent of Da.

The minimum Rtot(t) for higher Da is reported for radial displacement for the first time in this

work. In the case of radial displacement, we need to consider both the forces due to diffusion

and radial spreading affecting the reaction characteristics. The initial decrease is caused by

diffusion while the increase after the minimum in Rtot can be attributed to advection due to

potential velocity.

2.3.1.2 Total amount of product

The total yield of the product is the most important characteristic of the chemical reaction. As

such, many studies have been conducted to understand the effect of the geometry and other

parameters on the total amount of product. Recently, Brau & De Witt [10] compared the yield

of the product in both rectilinear and radial geometry in the absence of any instability. It is

found that under given conditions, the radial flow generates more product per unit area of contact

than the rectilinear displacement. For a stable rectilinear displacement, the yield of the product

increases as t1/2 that is proportional to the diffusive growth of the reaction zone [34, 10, 110].

In rectilinear flow, a stable displacement exhibits a reaction-diffusion system within the reaction

front. While the reaction front is characterized by an advection-diffusion-reaction system in

case of radial flow [10]. Further, Comolli et al. [19] compared the yield of the product during

early and long time. It is reported that the yield of the product grows with time as ∝ t2 at early

time [19] and ∝ t at a long time [11, 10]. The yield of the product for varying Da is not studied

in the majority of the literature until recently Sharma et al. [92]. has reported the dependence

of the total amount of product on Da. However, the variation of total yield in different time

regimes for different Da is not reported. We gain insight into the same by calculating the total
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F I G U R E 2 . 4 : (a) Total amount of product ctot for stable displacement and various Da. Inset:
Log-log plot of the same at later times. Here dotted lines are fitted lines. (b) Log-log plot of ctot
at early times. The solid curves are fitted and markers represent the original data. All the curves

follow the power law relation ctot ∝ tf(Da). Inset: Da vs f(Da).

amount of the product as

ctot(t) =

∫ 2π

0

∫ L

r0

c(r, θ, t) r dr dθ. (2.11)

For a stable displacement, ctot is plotted as a function of time in figure 2.4(a). It is found that at

early times, ctot ∝ tf(Da) (see figure 2.4(b)), where f(Da) = αe−Daβ+α0 is a fitted exponential

function. Here αe−Daβ is a decreasing function of Da and the added coefficient α0 shows that

the exponent f(Da) does not vanish for large values ofDa. If we consider the product formation

at later times, the temporal evolution of product yield follows a different trend as ∝ tb, where

b ∼ 1 for Da ≥ 100 as shown in figure 2.4(a), while b > 1 for smaller Da which is in agreement

with the base state analysis of Sharma et al. [92].
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2.3.1.3 Reaction rate and center of reaction front

We calculate the average of the reaction rate along θ direction as

⟨R⟩(r, t) = 1

2π

∫ 2π

0

R(r, θ, t) dθ, (2.12)

and plot the same in figure 2.5. For a stable displacement, the averaged reaction rate follows
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F I G U R E 2 . 5 : Temporal evolution of average reaction rate for Da = 15, 60, 100 and stable
displacement. Inset: The first moment of the average reaction rate coincides with the center of
front at all times for stable displacement. Here, Da = 100. Here, solid, dashed and dotted lines

denotes the averaged reaction rate at time t = 0.1, 0.55, 1, respectively.

a bell-shaped profile with the width increasing with time owing to the diffusion of the species.

Further, the maximum value of ⟨R⟩(r, t) decreases with time due to the consumption of the

reactants. It is evident in figure 2.5 that the width, as well as the maximum of ⟨R⟩(r, t), depends

on Da with the maximum being more for the larger Da.

At any time, the spatial position where the averaged reaction rate is the maximum is termed as

the center of the front. The center of front is calculated mathematically by taking maximum of

the averaged reaction rate which is denoted as ⟨R⟩max(r, t). Further, the average reaction rate

profile is symmetrical along the center of the front for stable displacement. Further, it is known

that for symmetric distribution of concentration profile, the center of the front coincides with the

first moment mR, of ⟨R⟩(r, t) as in the inset of figure 2.5. The mR is computed as

mR =

∫ L
r0
r⟨R⟩(r, t) dr∫ L

r0
⟨R⟩(r, t) dr

. (2.13)
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2.3.2 Interaction of chemical reaction and VF dynamics
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F I G U R E 2 . 6 : Log-viscosity profile for Da = 100, Pe = 3000, (a) Rb = 1 and (b) Rb = −1
and various Rc. No product is generated for Da = 0, and hence the value of Rc is insignificant
when Da = 0. Also, the value of Da is irrelevant when Rb = Rc and thus the viscosity profile

is the same as that of the non-reactive case.
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F I G U R E 2 . 7 : Density plots of the reaction rate for Pe = 3000, Da = 100, (a) Rb = 1 and
(b) Rb = −1 and various Rc at t = 1. The Rc values in each row are chosen in order to have
constant |Rb − Rc| value. For instance, Rc = −3, 5 correspond to |Rb − Rc| = 4. Similarly,

Rc = 0, 2 result in |Rb −Rc| = 1, while |Rb −Rc| = 0 for Rc = 1.

For Da = 0, the governing equations represent the dynamics of non-reactive fluids. In order to

understand the effect of VF on chemical reactions and vice versa, we must be able to compare

the dynamics for the same Da ̸= 0. To tackle this problem, we compute the averaged viscosity

as ⟨µ⟩(r, t) = 1
2π

∫ 2π

0
µ(r, θ, t)dθ, where µ(r, θ, t) is the viscosity at time t converted to polar

coordinates [94] and plot its natural logarithm versus distance from the origin in figure 2.6. In
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the absence of a chemical reaction i.e. Da = 0, the viscosity is a monotonic function of space as

shown by the averaged viscosity profiles for Rb = 1,−1 in figure 2.6.

Evidently, viscosity is an increasing function of space for Rb > 0 and Da = 0. Thus, for the

non-reactive fluids, the system is hydrodynamically unstable (stable) for Rb > 0 (Rb < 0).

The generation of the product due to a chemical reaction may modify the viscosity profile

depending upon the viscosity of the newly formed product which is measured in terms of

the non-dimensional parameter Rc. Clearly, the viscosity profile changes with a change in

Rc in figure 2.6 and it either gets steeper or becomes non-monotonic exhibiting a maximum

or minimum according to the product is more or less viscous than the reactants. However,

the viscosity profile notably remains the same as that of the non-reactive case for Rb = Rc

[69]. Further, it can be observed that for a fixed Rb, the viscosity profiles for two values of

Rc corresponding to the same |Rb − Rc| are mirror images about the line ln(⟨µ⟩) = Rb/2.

Consequently, we discuss how the VF dynamics and its effect on chemical reactions are different

for these values of Rb and Rc for various Da. Also, we investigate if the spatially varying

velocity of the radial geometry affects the reaction properties and whether reaction properties

differ from that of the rectilinear flow with uniform velocity.

We plot the reaction rate R(x, y, t) in figure 2.7 for various parameters shown in figure 2.6. As

clear from the definition of the reaction rate, it is non-zero where both the reactants are non-zero.

It is evident in figure 2.7 that the reaction rate is non-zero in the finger-like patterns. This is

due to the unstable displacement corresponding to Rb ̸= 0 resulting in VF instability. The VF

dynamics for the radial displacement for a wide range of (Rb, Rc), Rb ̸= 0 covering all the

predicted viscosity profiles for Da = 100 and Pe = 3000 are discussed in the next subsections

§2.3.2.1 and §2.3.2.2.

2.3.2.1 VF dynamics for Rb > 0

For a fixed Rb > 0, we choose Rc in order to explore the reactive case with monotonic as well

as non-monotonic viscosity profiles and compare it with the corresponding non-reactive case.

The sign of Rc(Rb − Rc/2) decides the monotonicity of the viscosity profile [35]. We first

discuss the cases when the viscosity profile remains monotonic even after the reaction. This

happens when Rc(Rb − Rc/2) ≥ 0 [35]. In figure 2.8, the product concentration profiles are

presented for Rb = 1 and various Rc. The system is unstable for both non-reactive situations
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F I G U R E 2 . 8 : Product concentration profile for Pe = 3000, Da = 100, Rb = 1 and various
Rc at different times.

and reactive situations when Rb = Rc = 1 as slight deformation is observed for Rc = 1 at any

time. Clearly, Rc(Rb −Rc/2) = 0 for Rb = 1, Rc = 0, 2 and thus the viscosity is a monotonic

increasing function of space for which |Rb −Rc| is a constant. However, the fingering dynamics

are different for the two values ofRc as shown in columns II and IV of figure 2.8 and is attributed

to the steepness of the viscosity profile at downstream and upstream mixing zone, respectively

(See figure 2.6). Notably, the product is more concentrated in the direction of flow for Rc = 0,

and towards the origin for Rc = 2. We refer to fingers so obtained for Rc = 0 , 2 as outward and

inward fingers, respectively.

In general, when the product is more viscous than reactant B i.e. Rc > Rb but Rc ≤ 2Rb,

the viscosity profile becomes steeper at the upstream mixing zone, resulting in inward fingers.

On the other hand, when the product is less viscous than reactant B, but could have a higher

viscosity than A, i.e. 0 ≤ Rc < Rb, a steeper viscosity contrast occurs at the downstream mixing
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zone. In this case, the instability favors more in the downstream mixing zone, while the upstream

mixing zone stabilizes viscously resulting in outward fingers. Thus, the sign of Rb −Rc helps

to classify the fingers as inward or outward fingers. Further, some little bumps at the upstream

mixing zone are visible in the first row of figure 2.8 for Rc = 2 at time t = 0.15 while at the

same time, the flow is stable for Rc = 1, 0. Thus, the onset time, when the interface starts to

deform, occurs early for Rc = 2 than Rc = 1, 0 despite the similar monotonic viscosity contrast.

Stronger convection at the steeper upstream mixing zone results in early onset for Rc = 2.

The non-monotonic viscosity profile is of particular interest as it introduces conflicting stability

behavior due to the two zones where one is viscously stable and the other is predicted to be

unstable. The viscosity profile becomes non-monotonic with an extremum when Rc(Rb −

Rc/2) < 0. When the reaction produces a high viscous product than both of the reactants, i.e.

Rc > 0 & Rc > 2Rb so that Rb − Rc < 0, the viscosity profile attains a maximum. It shifts

the fingering instability only at the unstable zone, the upstream mixing zone, while the stable

downstream mixing zone resists the growth of fingering instability. The resultant fingering

patterns grow more upstream to the flow resulting in inward fingers as shown in figure 2.8

(column V) for Rc = 3. On the other hand, when the product is less viscous than reactant A,

i.e. Rc < 0 and thus Rb −Rc > 0, an unfavorable viscosity gradient occurs at the downstream

mixing zone with local minimum as in figure 2.6(a) for Rc = −1. The instability develops

predominantly in the downstream mixing zone, and the upstream mixing zone acts as a barrier,

which hinders the growth of fingers and outward fingers are obtained as shown in figure 2.8

(column I) for Rc = −1.

If we increase the viscosity gradient further, the system gets more unstable and the onset of

instability occurs early. To illustrate how this non-monotonic viscosity distribution affects the

fingering pattern, we choose another suitable pair of (Rb, Rc) for increased viscosity ratio. In

figure 2.9, we show the temporal evolution of the product concentration profile for Rb = 1 and

Rc = 5,−3. For Rc = −3, fingers grow up to boundary in time t = 0.97, hence concentration

plots are shown only up to time t = 0.97. If we see the concentration profile for Rc = 5, it

can be observed that more fingers are generated in the upstream mixing zone in comparison to

Rc = 3. Also, we observe the total number of fingers generated at the initial time, and at a later

time, they grow only upstream to the flow with time. No new fingers generate after t = 0.25 as

we can see the temporal evolution of Rc = 3 and 5 in figure 2.8(fifth column) and 2.9(a). When
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F I G U R E 2 . 9 : Product concentration profile for Pe = 3000, Da = 100, Rb = 1 and (a)
Rc = 5 and (b) Rc = −3. It can be observed that no new fingers are generated after t = 0.1
for both the parameters Rc = 5,−3. Also, the developed fingers experience the shielding and
merging effect as the number of fingers decreases and some of the fingers are merged after time

t = 0.2 for Rc = −3.

we decrease the product viscosity from Rc = −1 to Rc = −3, we see a significant difference

in the development of fingers. If we count the number of fingers, it can be observed that the

number of fingers increases with time for Rc = −1. While for Rc = −3, it can be observed

that some fingers are not growing with time as compared to neighboring fingers at time t = 0.4

showing shielding of fingers for Rc = −3. At a later time, it can be the shielded fingers merged

with the neighboring fingers at time t = 0.97. Evidently, outward fingers exhibit a shielding

effect for higher viscosity ratios such as Rc = −3.

Another comparison can be made for the same unfavorable viscosity jump. The viscosity

gradient is shown by |Rb − Rc| = | ln(µB/µC)| and |Rc| = | ln(µC/µA)| at downstream or

upstream mixing zone, respectively. When the product is less viscous, the shielding effect is

observed and fewer fingers are generated for a higher viscosity gradient, |Rb−Rc|. Also, fingers

are thinner when the product is highly viscous for |Rb − Rc| = 4, Rb = 1 than a less viscous

product. These results are in good agreement with the existing experimental results [71] and

theoretical [35], and numerical results [69] qualitatively that are obtained for the rectilinear case.
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F I G U R E 2 . 1 0 : Product concentration profile for Pe = 3000, Da = 100, Rb = −1 and
various (a) Rc > 0 and (b) Rc < 0 at time t = 1.

2.3.2.2 VF dynamics for Rb < 0

The non-reactive system is always stable for Rb < 0 as high viscous fluid A displaces a less

viscous fluid B. However, for Rb < 0, independent of Da, Rc the system remains stable for

monotonic viscosity profile obtained when Rc(Rb − Rc/2) ≥ 0. When the product viscosity

differs from that of the reactants such as Rc(Rb −Rc/2) < 0, the chemical reaction introduces

non-monotonicity in the viscosity profile, and the instability is expected either at the downstream

or upstream mixing zone. For Rc = 2,−4, the viscosity profile is a non-monotonic function of

space in figure 2.6(b) for Rb = −1. However, the flow is stable as shown in figure 2.10 despite

the displacement of a more viscous fluid by a less viscous one at the downstream mixing zone

for Rc = −4 and the upstream mixing zone for Rc = 2. This is due to the radial displacement

of the fluids and is not reported in the existing studies involving rectilinear displacement of

the fluids. Thus for Rb < 0, a minimum viscosity gradient is required in order to induce the

instability and observe the effect of chemical reaction on VF, similar to that for Rb = 0 [94].

The VF dynamics for the Rc values subject to |Rb −Rc| is the same for Rb = −1 are compared

in figure 2.10. It can be noticed that there are minor bumps at the upstream mixing zone for

Rc = 3, but the flow is stable for Rc = −5 while the viscosity gradient, |Rb −Rc| is identical

in both cases. This is another consequence of radial flow is that the critical viscosity gradient
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F I G U R E 2 . 1 1 : Product concentration profile for Pe = 3000, Da = 15, (a)Rb = 1, (b)
Rb = −1 and various Rc at final time t = 1.

|Rb −Rc| is more when the reaction produces a less viscous product.

If we further increase the viscosity ratio, fingers elongate more. In the symmetric conditions,

with the same viscosity jump |Rb −Rc|, more fingers are generated when the instability appears

at the upstream mixing zone. Also, the number of fingers increases if we increase the viscosity

ratio from Rc = 4 to Rc = 6. In contrast, the tip of the outward fingers gets wider when they

grow downstream to the flow, and fewer fingers develop for Rc = −8 than Rc = −6.

2.3.2.3 Effect of Da on VF dynamics

If we keep the viscosity ratio the same and vary Da, the VF dynamics are qualitatively the

same, but the intensity of the fingering pattern changes as shown in figure 2.11. For higher Da

such as Da = 100, the reaction time reduces, and a sufficient amount of product is formed in a

short time that favors the rigorous fingering instability. However, when the reactants have the

viscosity contrast itself, which is sufficient to induce instability in the corresponding non-reactive

situation, the reaction affects the intensity of the fingering pattern and onset time for varying

Da only. Otherwise, if a system is stable for Da = 0, there exists a critical Rc to trigger the

instability for a given Da and Rb. In particular, the Rb = 0 case is already discussed in Sharma

et al. [94]. Evidently, both the parameter Da and Rc are introduced by the reaction and thus, the

chemical reaction plays a vital role in the development of fingering dynamics.
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2.3.2.4 Effect of VF on Rtot
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F I G U R E 2 . 1 2 : Total reaction rate for Da = 100, Pe = 3000, (a)Rb = 1 and (b) Rb = −1
and various Rc. Black dotted curve is for Rb = Rc = 0. Here, solid lines are plotted when
Rb − Rc < 0 that is for Rc = 5, 3, 2; Rb = 1 (Rc = 6, 4; Rb = −1) and while dashed lines
are plotted for corresponding Rb −Rc > 0 that is for Rc = −3,−1, 0; Rb = 1 (Rc = −4,−6;

Rb = −1).

For the displacement involving reactants having viscosity contrast and/or generating a product

having a different viscosity than the reactants, instability may set in. We are interested in

exploring how this instability affects Rtot. In figure 2.12, Rtot for various Rc and Rb = 1,−1 is

plotted as a function of time forDa = 100. The curve forRb = Rc = 0 corresponds to the stable

displacement. Evidently, Rtot is more for unstable displacement than the stable displacement.

Further, the effect of the forces due to convection and diffusion is clearly evident with Rtot

attaining a local maximum at t = 0, then decreasing due to diffusion and ultimately increasing

after minimum due to convection. The convection here is due to two factors: the potential

velocity and the instability. Therefore, the increase in Rtot is more in the convective regime when

instability sets in, bringing more reactants in contact. This is further evident from increased

mixing for unstable displacement discussed in the next sections §2.3.3. Ultimately diffusion

dominates and saturation is attained by Rtot depending upon the value of Rc. Up to some initial

time, Rtot is independent of Rc. The instability starts to emerge at this time and it is termed as

the onset time of instability. However, the time when the minimum is obtained and the time

after which saturation is obtained depends upon Rc for a fixed Rb and Da. Both these times

are early for a larger |Rb − Rc| owing to a stronger instability. If we compare Rtot for same

|Rb −Rc| value, the total reaction rate is more for Rb −Rc < 0. Further, Rtot reverses the trend

and becomes less for Rb − Rc < 0 at later times. This is due to the onset time of instability

discussed in detail in next section §2.3.3.
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2.3.2.5 VF and total amount of product
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F I G U R E 2 . 1 3 : Total amount of product for Da = 100, Pe = 3000, (a)Rb = 1 and (b)
Rb = −1 and various Rc.

Now we compare the total amount of product for stable and unstable displacement. The

instability for Rb ̸= 0, Rc ̸= 0 results in an increased ctot as shown in figure 2.13. The ctot curve

for stable displacement and other Rc values coincide up to the onset time of instability, after

which the total amount of product increases with time for unstable displacements showing that

the VF instability increases the yield of the reaction. Further, ctot depends on Rc and sign of

Rb−Rc for a fixed Rb. A larger |Rb−Rc| results in a more rigorous instability and hence larger

ctot. For the same value of |Rb −Rc|, the dependence of ctot on the sign of Rb −Rc follows a

similar trend as that of Rtot. More ctot is obtained for Rb −Rc < 0, until the onset of instability

becomes independent of the sign of Rb −Rc [94]. This is in contrast with the results obtained

for rectilinear displacement [69] where the product is generated more when Rb −Rc > 0 than

that of Rb −Rc < 0. Thus, the total amount of product is influenced by the viscous fingering as

well as the kind of displacement considered.

2.3.2.6 VF affecting reaction front

As soon as we consider a viscosity contrast between the reactants and the reaction generates a

less or more viscous product than the reactants, ⟨R⟩(r, t) deviates from the bell-shaped profile

and exhibits a left or right tail depending upon the sign of Rb − Rc as shown in figure 2.14.

For Rb − Rc > 0, the reaction rate is more towards the origin as evident in the density plots

of the reaction rate. Hence, ⟨R⟩(r, t) shifts towards the left of the bell-shaped stable profile.

Due to a similar reason, ⟨R⟩(r, t) is shifted towards the right of the bell-shaped stable curve for
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F I G U R E 2 . 1 4 : Averaged reaction rate profile for Da = 100, (a) Rb = 1, (b) Rb = −1 and
various Rc at time t = 0.95.

Rb − Rc < 0 as shown in figure 2.14. Consequently, for Rb ̸= 0, Rc ̸= 0, the first moment of

average reaction rate, mR shifts above or below the first moment for Rb = Rc = 0 denoted as

mR0 . We plot mR for Rb = 1, Da = 15 and various Rc in figure 2.15.

0 0.5 1

0.1

0.2

0.3

0.4

0.5

0.6

0 0.5 1
-0.02

0

0.02

F I G U R E 2 . 1 5 : Temporal evolution of center of mass of averaged reaction rate ⟨R⟩(r, t) for
Rb = 1, various Rc and Da = 15. Inset: Relative difference, ∆mR in first moment of Rb ̸= 0,

Rc ̸= 0 and stable displacement Rb = Rc = 0.

It is found that the relation between mR0 and mR depends on Da. In figure 2.15, the first

moments are plotted for Da = 15 and evidently at all time, mR lies above (below) mR0 for

Rb − Rc > 0 (< 0). Thus, the fingering results in the shifting of the reaction front. However,

with an increase in Da, a shift in the trend of mR is observed. For instance, for Da = 100, we

observe the shifting of the reaction front. For smaller |Rb −Rc|, the reaction front shifts in the

direction opposite to the fingering (inward or outward) and consequently mR lies below (above)

mR0 for Rb −Rc > 0 (< 0) as shown in figure 2.16. Interestingly, the location of mR depends



40 Chapter 2 Flow dynamics of a radial miscible A+B → C reaction front

(a) (b)

0 0.5 1

0.1

0.2

0.3

0.4

0.5

0.6

0 0.5 1

-0.02

0

0.02

0 0.5 1

0.1

0.2

0.3

0.4

0.5

0.6

0 0.5 1

-0.02

0

0.02

F I G U R E 2 . 1 6 : Temporal evolution of center of mass of averaged reaction rate ⟨R⟩(r, t) for
(a) Rb = 1, and (b) Rb = −1, various Rc and Da = 100. Inset: Relative difference, ∆mR in

first moment of Rb ̸= 0, Rc ̸= 0 and stable displacement Rb = Rc = 0.

on Rc as well. For sufficiently high Rc such that the onset time of instability is independent

of the sign of Rb −Rc, mR initially moves in the direction of fingering but then experiences a

transition into the opposite direction.

The first moment of the averaged reaction rate tends to move in the direction where more

reactants are available. For a smaller Da, the reactants are consumed slowly and thus mR moves

in the direction of the fingers. On the other hand, for larger Da, the reactants are consumed at

a faster rate thus less reactants are available in the direction of the fingers. Thus mR tends to

shift in the opposite direction where the concentration of the reactants is more. The transition in

the direction of mR for high Rc can be explained to be a result of convection. The early onset

for such high Rc, tends to shift mR in the direction of fingering but after some time, with the

consumption of reactants, mR reverses direction.

2.3.3 Mixing dynamics

With an aim to analyze how chemical reaction affects the mixing of the species, we compare the

mixing of unstable to stable displacement using the degree of mixing of the product concentration

[62, 44]

χc(t) =
σ2
c (t)

σ2
c,∗(t)

− 1, (2.14)
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where the variance σ2
c of the averaged concentration profile of product, is computed as

σ2
c (t) =

∫ L
r0
(r −mc)

2⟨c⟩(r, t) dr∫ L
r0
⟨c⟩(r, t) dr

. (2.15)

Further, σ2
c,∗(t) is the variance corresponding to stable displacement Rb = Rc = 0. Evidently,

χc = 0 for the case Rb = Rc = 0 in figure 2.17. Zero value of χc is a consequence of the

normalization used in equation (2.14) and implies mixing attributed to diffusion in the absence

of instability. At early time, all the degree of mixing curves for Rb ̸= 0, Rc ̸= 0 coincide

with Rb = Rc = 0 curve and have value zero. It indicates the presence of an initial diffusion-

dominated regime, independent of the value of Rb, Rc. But with time, χc becomes positive

indicating an increase in the mixing due to instability. Evidently, figure 2.17 illustrates that the

system is destabilized more and mixing in the reaction zone is more enhanced when the product

has viscosity contrast with reactants (Rb ̸= Rc).

Further, mixing enhances with increasing viscosity ratio and depends on the sign of Rb −Rc.
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F I G U R E 2 . 1 7 : Degree of mixing for Da = 100, (a) Rb = 1 and (b) Rb = −1 and various Rc.
Here the onset of instability can be noted when the degree of mixing exceeds zero i.e. χ > 0 as
this quantification is a direct comparison of mixing between stable to unstable displacement.

We compare the mixing in the reaction zone for the same viscosity jump or same |Rb−Rc| value

in figure 2.17. It can be noticed that the degree of mixing is more when Rb −Rc < 0 than that

for Rb −Rc > 0 and a transition is evident with an increase in |Rb −Rc|. This is a consequence

of the origin of the instability at one of the two mixing zones (downstream or upstream) and

the radial displacement being considered. The potential velocity for the radial displacement is

inversely proportional to the distance from the source. As a result, convection is stronger at the

upstream mixing zone and hence the instability originates early at the upstream mixing zone.
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The onset time of instability (ton) can be defined as the minimum time when χc(t)

becomes positive. It can be verified from figure 2.17 that the onset time is early for Rb−Rc < 0

when instability appears at the upstream mixing zone. This early onset of instability results

in more degree of mixing for Rb − Rc < 0. The early onset for Rb − Rc < 0 is in contrast

with the results with rectilinear displacement [69, 35] wherein the velocity is uniform for the

undisturbed flow. If we keep increasing the viscosity ratio further (|Rb −Rc| ≥ 4, Rb = 1 and

|Rb −Rc| ≥ 7, Rb = −1 ) in figure 2.17, the trend changes. For higher viscosity ratio, the onset

occurs early and simultaneously; and the degree of mixing enhances more for Rb −Rc > 0 than

Rb − Rc < 0 at later times. This is because the outward fingers for Rb − Rc > 0 grow in the

direction of flow. Thus, whenever the onset of instability is the same for |Rb −Rc|, mixing will

be more for Rb −Rc > 0 at later times.

An important observation to be made in figure 2.17 is that, in particular, χc is zero initially,

becomes positive and is found to have obtained a saturation at later time for higher viscosity

ratio. Initially, χc is zero as diffusion dominates before the origin of instability. With the passage

of time, forces due to convection become stronger resulting in instability and more mixing. With

a further increase in time, convection decreases due to a decrease in potential velocity with

distance. No new fingers appear and the already existing fingers diffuse among themselves

causing a decrease in mixing. At later times, saturation in χc confirms the dominance of diffusion

at later times. Thus, the VF flow dynamics can be classified into three regimes: initial diffusion-

dominated regime, intermediate convection-dominated regime, and the final diffusion-dominated

regime. Chui et al. [18] experimentally reported a transition from convection-dominated to

diffusion-dominated regime during radial VF with non-reactive fluids. To further strengthen

the existence of three zones dominated by different forces, we calculate the interfacial length

as I(t) =
∫ 2π

0

∫ L
r0
|∇c| r drdθ. For Rb = Rc = 0, stable displacement without any instability

is observed. Consequently, diffusion is the only force in action for Rb = Rc = 0 and thus

I(t) ∝ t1/2 for Rb = Rc = 0 in figure 2.18. The instability originates as soon as I(t) deviates

from Rb = Rc = 0 curve and minimum such time is the onset time of instability ton. For some

t > ton, I(t) ∝ t indicates a convection-dominated regime. Finally, I(t) again becomes ∝ t1/2

due to dominance of diffusion. The onset time and the duration of each regime depend upon

the value of Rb − Rc. In figure 2.18, the interfacial length for Rb ̸= 0, Rc ̸= 0 merges with

Rb = Rc = 0 before onset time. When instability appears, I(t) grows at a faster rate and scales
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∝ t, but at a later time, again it scales ∝ t0.5. The transition in the scaling of interfacial length

I ∝ t to I ∝ t0.5 implies the shutdown of instability as no new fingers are generated at later

times. In the last regime, the instability does not generate new fingers and the existing fingers

grow only as the injection of reactant A is still going on. Such fingers are termed as frozen

fingers [8] and are reported for reactive fluids for the first time in this work.
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F I G U R E 2 . 1 8 : Log-log plot of interfacial length for (a)Rc = −3, 5, Rb = 1, (b) Rc = 6,
Rb = −1 and Rb = Rc = 0. Inset: interfacial length for Rc = 5,−3. Blue-dashed line for

Rc = −3 and Red solid is for Rc = 5.

2.4 Conclusion

A non-linear study is performed to understand a bi-molecular chemical reaction A+ B → C

generating a product having same or different viscosity than the reactants. The viscosity

difference between the reactants and/or the products results in VF instability if a less viscous

fluid displaces a more viscous one. A detailed analysis is performed to understand (a) various

characteristics of the reaction and how VF affects them; and (b) the effect of the chemical

reaction and VF on fluid mixing. First, we gain insight into various characteristics of the

chemical reaction by considering Rb = Rc = 0 so that displacement is viscously stable. The

total reaction rate and the total amount of product are found to be dependent on Da. For small

Da, Rtot(t) is an increasing function of time but with an increase in Da, Rtot becomes non-

monotonic attaining a maximum value at t = 0 for large Da and at some t > 0 for intermediate

values of Da. The non-monotonic nature is attributed to a different rate of consumption of

reactants for different Da and the extrema are a result of the competition between the forces due
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to convection and diffusion in radial displacements. The generated amount of product is found

to follow a Da dependent power law, different in early and late time regimes.

For a fixed Rb, the viscosity profiles for the two values of |Rb −Rc| are mirror images of each

other. We compare the VF dynamics for such values. It is found that depending upon the sign of

Rb−Rc, the product is more concentrated either towards the source or away from the source. For

Rb −Rc < 0, inward fingers are obtained as the upstream mixing zone supports the instability

and the downstream mixing zone acts as a barrier for the same. Enhanced mixing with chemical

reaction is captured in terms of the degree of mixing. Chemical reaction as well as the forces

due to convection and diffusion are found to contribute to increased mixing. For a fixed Rb, the

degree of mixing (χc(t)) is more forRb−Rc < 0 and is a consequence of the radial displacement

being considered which results in weaker convection at the downstream mixing zone. Thus, the

onset of instability is early for Rb −Rc < 0 and hence mixing is more for such values of Rc. It

is in contrast to results obtained for rectilinear displacement that corresponds to uniform flow

[69, 67]. The degree of mixing is zero initially, increases and is finally found to attain a saturation

with time. This indicates that initially, diffusion dominates followed by convection taking over

with the onset of instability and ultimately diffusion again comes into the picture. Different time

regimes dominated by convection or diffusion are established by calculating interfacial length.

The duration of different time regimes depends on various parameters considered in the problem.

The division of total time into three regimes with convection-dominated regime sandwiched

between diffusion-dominated regime is reported for the first time for reactive fluids.

Further, to explore how hydrodynamic instability affects the reaction kinematics, we calculate

several reaction characteristics for various values of Rb, Rc and compare the dynamics for mirror

image viscosity profile corresponding to constant values of |Rb−Rc|. For unstable displacement,

mR shifts in the downstream or the upstream mixing zone depending upon the nature of fingers.

For sufficiently high Rc, an initial transition in mR is observed. For Rb ̸= 0, Rc ̸= 0, Rtot

follows a similar trend as that for stable displacement, being a non-monotonic function of time

for higher Da. However, the convection-dominated regime after the occurrence of minimum

is larger for larger Rc because of higher instability. Further, mixing is enhanced with VF and

thus, ctot is also increased for Rb ̸= Rc ̸= 0, following a similar trend as the degree of mixing

for |Rb − Rc|. It is concluded that the kind of displacement as well as VF affects reaction

characteristics and a chemical reaction results in enhanced mixing.



Chapter 3
Linear stability analysis of reactive miscible viscous fingering

for radial displacement

3.1 Introduction

By modifying the viscosity profile, chemical reactions can modify and even trigger viscous

fingering (VF) instability in a porous medium. We consider a second-order chemical reaction,

A+B → C and the viscosity profile to be dependent on reactants and product concentrations.

The viscosity profile is modified if the reaction generates a product having viscosity contrast

with reactants, resulting in instability. For rectilinear displacement, the VF dynamics affected by

the chemical reaction are well understood both theoretically [35] and numerically [31, 34]. In

this chapter1, we discuss how can a chemical reaction affect the stability of the flow for radial

displacement.

For radial flow, there exists a minimum viscosity contrast to trigger the instability in non-reactive

displacements where both the flow are non-reactive in nature [93, 102], the same holds for

the reactive displacement [94]. It is reported that when reactants are iso-viscous, instability

is induced when the product and reactants have sufficient viscosity contrast. This has been

observed both through numerical investigations through non-linear simulations [94, 113] and

linear stability analysis [92]. However, they do not consider the reactive displacements with

viscosity mismatched reactants. The critical viscosity contrast reduces when we increase the

reaction rate. Further, Kim et al. [53] have performed a linear stability analysis (LSA) for

radial flow utilizing spectral analysis restricted to the asymptotic limit of Dat→ ∞, Pe→ ∞.

Here Da, Pe and t represent the reaction rate, Péclet number and time respectively. They

obtained critical viscosity ratios that trigger instability and establish a power law trend between

Pe and the critical viscosity ratios. Further, they show that the LSA results are supported by

non-linear simulations. To the best of our knowledge, no theoretical analysis of the radial

reactive displacement, when reactants have some viscosity contrast for a finite range of Pe and

1This chapter is under revision in the J. Fluid Mech. and the revised manuscript is submitted.
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Da, has been documented in the literature. However, the prevalent focus in most experimental

studies exploring reactive viscous fingering caused by reactants with mismatched viscosities

[72, 71, 70, 83]. In addition, instabilities often occur even in the absence of a reaction, leading

to an analysis of how chemical reactions impact viscous fingering [35, 114, 22]. Moreover, it

is observed that when the reactants have an unfavorable viscosity contrast, the reaction can

promote or stabilize viscous fingering for rectilinear flow, indicating that the chemical control of

local fingering dynamics can be precisely tuned by selecting the appropriate chemical species

with a particular difference in concentrations. [35, 22]. However, for radial flow, the literature

lacks the numerical investigation of reactive displacement with viscosity mismatched reactants.

Thus, it would be intriguing to investigate how the reaction rate influences the transition in

stability for radial flow when the reactants have viscosity contrast.

In this chapter, we fill the above-mentioned literature gap and present a thorough examination

that considers the effects of viscosity mismatch between the reactants and product for a range

of Da and Pe by performing non-linear simulations (NLS) and linear stability analysis (LSA).

In this work, we introduce an LSA to understand the dynamics of the reactive displacements

in transient time. However, we encounter an unsteady base state as a solution of advection-

diffusion-reaction equations [11]. The time-dependent nature of this base state renders the

stability matrix non-orthogonal. However, it has been observed that if the stability matrix is not

orthogonal, the early-time dynamics may not be captured [109, 86, 38]. Thus, we opt for non-

modal analysis. For optimal initial conditions, we give initial perturbation around the interface

instead of the entire r domain, as it is known as the fastest-growing perturbation [5, 40]. Later,

we validate all LSA predictions through non-linear simulations. Both LSA and NLS predict the

critical parameters for instability decay with Péclet number and reaction rate. Our research is

novel in that we explore the stability of reactive displacement based on the viscosity profile for

radial flow. We determine whether the modifications resulting from a chemical reaction impact

the flow stability compared to the equivalent non-reactive situation. We determine a phase plane

between the viscosity ratios between the reactants and product and reactants, divided by critical

viscosity ratios for instability and find that the reactions can affect system stability up to a certain

extent. For instance, there exists a stable region in the phase plane for even Da→ ∞.

The organization of the chapter is as follows. In §3.2, we provide the mathematical formulation.

We present the base state equations and solve them numerically. In §3.3, we derive the linearised
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F I G U R E 3 . 1 : Schematic of A + B → C chemical reaction in a radial source flow. The
green-colored shaded region bounded by dashed lines, is where both the reactants come into

contact and product C is generated. We denote this region as reaction zone. The outside and
inside region of the reaction zone is occupied by reactant B and A respectively.

perturbed equations and perform LSA. At last, we perform NLS and compare LSA results with

NLS results in §3.4 and address the applications of the work in §3.5.

3.2 Mathematical formulation

A miscible displacement is considered in a homogeneous and isotropic porous medium where

one fluid, let A, is injected from the source with flow rate Q per unit depth, displacing the other

fluid, let B, radially. Both fluids are Newtonian, neutrally buoyant, and reactive. A second-order

irreversible chemical reaction A+B → C occurs in the system whenever both fluids come into

contact. The system of flow equations consists of the continuity equation for incompressible flow

and Darcy’s law, describing mass conservation and momentum conservation. Further, we couple

the flow equations with reaction-convection-diffusion equations that interpret the transport of

fluid species. In experiments, the dye concentration is added in displacing fluid initially. The dye

is non-reactive in nature with the other fluids and has no impact on the viscosity profile. Further,

we consider a convection-diffusion equation describing the transport of dye concentration, z.

The equations can be represented in non-dimensionalized form as follows [35, 94]:

∇ · u = 0, (3.1a)

∇p = −µu, (3.1b)
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∂a

∂t
+ u ·∇a =

1

Pe
∇2a−Da ab, (3.1c)

∂b

∂t
+ u ·∇b =

1

Pe
∇2b−Da ab, (3.1d)

∂c

∂t
+ u ·∇c =

1

Pe
∇2c+Da ab, (3.1e)

∂z

∂t
+ u ·∇z =

1

Pe
∇2z. (3.1f)

These equations are non-dimensionalised are as in chapter 2. The viscosity profile depends on

product and reactant concentrations exponentially as follows [35]:

µ = exp(Rbb+Rcc). (3.2)

For every combination of (Rb, Rc) values, we have a specific reaction type, characterizing the

viscosity contrast between reactants; and product and reactant, A is defined by Rb = ln(µB/µA)

and Rc = ln(µC/µA) respectively. The initial conditions associated with equation (3.1) are:

(a, b, c, z)(x, t = 0) =

(1, 0, 0, 1), 0 < |x| < r0

(0, 1, 0, 0), Otherwise
, (3.3a)

u(x, t = 0) =
x

2π|x|2
. (3.3b)

where x = (x, y) and r0 is the initial radius of the circular region filled with fluid A. Here

we encounter four nondimensionalised parameters Rb, Rc, Damköhler number Da and Péclet

number Pe. All the fluids are assumed to have the same diffusion coefficient, D̃, and Pe = Q̃/D̃,

which shows a comparison of fluid transport due to convection and diffusion. While Da is

obtained as a ratio of convective time scale and reactive time scale i.e. Da =
t̃f

(1/k̃ã0)
. Here k̃

is the reaction rate constant.
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3.3 Linear Stability analysis

3.3.1 Linearised perturbed equations

In order to carry out a stability analysis, we need to formulate linearised perturbed equations

for perturbed fluid concentrations and perturbed velocity around base state flow. We define

(A0, B0, C0, Z0), base state concentrations of A, B, C, and dye as the solution of equations

(3.1c)-(3.1f) in the absence of any viscosity contrast i.e. Rb = Rc = 0 [92] as shown in figure

3.2. The base state solution is axisymmetric and it is just a function of radius, r only, hence,

not a function of θ. However, the analytical base state solution can not be attained analytically

[11]. Even, for the equation (3.1f) provided initial condition in the equation (3.3) an analytical

solution is unattainable [93]. Thus, we compute the base state concentrations numerically using

the method of lines, discussed in the next subsection §3.3.2. For stable displacement, the initial

velocity provided by the source does not get perturbed and remains the same as in equation

(3.3b) and it is considered as the base state velocity, u0. Then, we perturb the base state profile

as follows:

(a, b, c, z,u) = (A0, B0, C0, Z0,u0) + (a′, b′, c′, z′,u′). (3.4)

For the ease of calculations, we redefine the governing equation in stream function-vorticity

formulations. We define stream function as ψ = ψ0 +ψ′, ψ0 is base state stream function and ψ′

is the perturbed component of stream function that is defined as u′ =
(
−∂ψ′

∂y
, ∂ψ

′

∂x

)
. Thus, the

linearized perturbed system of equations can be written in stream function-vorticity formulation

as in Sharma et al. [92]:

∇2ψ′ = −ω, (3.5a)

ω = Rc (u0 ×∇c′ + u′ ×∇C0) · k̂ +Rb (u0 ×∇b′ + u′ ×∇B0) · k̂, (3.5b)

∂a′

∂t
+ u0 ·∇a′ + u′ ·∇A0 =

1

Pe
∇2a′ −Da (B0a

′ + A0b
′), (3.5c)

∂b′

∂t
+ u0 ·∇b′ + u′ ·∇B0 =

1

Pe
∇2b′ −Da (B0a

′ + A0b
′), (3.5d)

∂c′

∂t
+ u0 ·∇c′ + u′ ·∇C0 =

1

Pe
∇2c′ +Da (B0a

′ + A0b
′), (3.5e)

∂z′

∂t
+ u0 ·∇z′ + u′ ·∇Z0 =

1

Pe
∇2z′. (3.5f)
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F I G U R E 3 . 2 : Base state profile of (a) Reactant A, (b) Reactant B, (c) product C and (d) Dye
concentrations for Da = 100, Pe = 3000 at final time t = 1.

Here ω is k̂ component of vorticity. At boundary, we apply far-field boundary condition for all

the perturbed quantity, i.e. ψ′ = 0,

∂

∂x
(a′, b′, c′, z′) = 0 at x = ±L/2,

∂

∂y
(a′, b′, c′, z′) = 0 at y = ±L/2.

(3.5g)

Here, Ω = [−L/2, L/2]× [−L/2, L/2] is our computational domain.

3.3.2 Initial value calculations

Since radial flows exhibit an algebraic growth rate of perturbations rather than exponential,

modal analysis cannot be applied. Therefore, we have employed non-modal analysis, solving

initial value calculations for numerical LSA. This LSA serves as an efficient method to explore

time-dependent linear systems in miscible VF [101, 92, 40, 80]. We solve the system of equations

with the method of lines. We use the third-order Runge-Kutta method to solve the initial value

problem, both base state and linearised perturbed equations (3.5c)-(3.5f), resulting from the

discretization of spatial derivatives. Further, a highly efficient pseudo-spectral method hybridized

by compact finite difference method of sixth order is used to solve the Poisson equation in (3.5a).

In our study, we do not incorporate wavelength selection. While our LSA method does allow

for wavelength selection [40]. Further, we perturb the base state around the interface only as it

has been recognized with the highest perturbation growth [5]. We perturb the base state using a

consistent set of random initial conditions around the interface as follows:

(a′, b′, c′, z′)(x, t = 0) = 10−3

(sin(2πm1), sin(2πm2), 0, sin(2πm1)), |x| = r0,

(0, 0, 0, 0), Otherwise
. (3.6)
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Parameters dt nx = ny L r0 Pe
Value 10−4 1025 1.5 0.075 3000

TA B L E 3 . 1 : Table showing the parameters used in the LSA.

Here, m1 and m2 are random functions generating numbers between 0 and 1 which is to be

consistent across all parameters. The remaining parameters used in LSA are mentioned in table

3.1. The numerical method is explained in detail in Sharma et al. [92] and the references therein.

Since the base state is unsteady, we seek to analyze the temporal evolution of perturbations in the

comparison of the base state [95, 39]. To do the same, we utilize the energy method approach

and determine normalized energy function with respect to the base state profile for both the

perturbed concentration, α′ and u′.

E(t) =

∫
Ω
α′2 + u′2 dΩ∫

Ω
α2
0 + u2

0 dΩ
, (3.7)

here, α′ is the dummy variable for perturbed concentrations and α′ ∈ {a′, b′, c′, z′}.

Further, we compute energy amplification, G(t) by normalizing energy E(t) with E(t = 0) as

[65]:

G(t) =
E(t)

E(t = 0)
. (3.8)

Since we perturb the concentrations of the reactants initially, we use either a′ or b′ in energy

calculation in equation (3.7). In addition, it is reported that the temporal evolution of ln(G(t))

is same whether we choose a′ or b′ for computing G(t) [92]. We use a′ and A0 for the further

computation of energy amplification. For unstable displacement, when perturbations amplify

with time, ln(G(t)) increases with time. While a monotonically decreasing profile of ln(G(t)) is

obtained for stable displacements. The transition in stability from stable to unstable displacement

is depicted by a minimum in the ln(G(t)) curve. We denote that time as the onset time when

perturbations start to grow [39].

It is noteworthy that the time domain is confined to t = 1, representing the duration over which

our investigation is conducted. Hence, we analyze the stability of reactive displacement in
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transient time regimes only, not for asymptotic times. It has been observed that there exists a

diffusive regime at later times for radial flows [18, 114]. For non-reactive fluids, experimental

observations indicate that the interface growth decelerates, scaling as ∼ t1/2 at later times,

showing the existence of a diffusive regime as anticipated in a stable displacements [18]. It

indicates the shutdown of overall flow instability. This phenomenon is reported as frozen fingers.

Moreover, Verma et al. [114] has reported the existence of frozen fingers for reactive fluids.

Hence, the asymptotic analysis for reactive VF for radial flow is not required.

3.3.3 Transient energy growth

The system of equations (3.1) describes the reactive and non-reactive flow both depending

on the value of Da. For Da = 0, the system represents a non-reactive flow where all the

fluids are non-reactive in nature and follow the convection-diffusion equation. The viscosity

profile is monotonic and is given by µ = exp(Rbb) due to no product formation i.e. c = 0.

Further, the monotonic viscosity profile may be modified in the presence of a chemical reaction,

Da ̸= 0. In the present study, we aim to compare the reactive and non-reactive flow when

the viscosity contrast between displacing fluid A and displaced fluid B, Rb is same. Further,

for non-reactive fluids, it is reported there exists a critical viscosity contrast for instability for

radial displacement [93]. Hence, we divide the reactive flow into two categories depending on

whether the corresponding non-reactive flow, is stable or unstable. First, we consider the reactive

flow when the corresponding non-reactive flow i.e. (Rb, Da = 0), is stable and examine if the

chemical reaction affects the flow stability.

In the second category, we consider those types of reactions for which reactants have already an

unfavorable viscosity contrast for instability. We examine how stability behavior, such as the

growth rate of perturbations and onset of instability, is affected by product formation. In order

to evaluate the variation between reactive and non-reactive displacement, we must first review

the stability of the non-reactive system before analyzing the reactive displacement. We observe

a stability transition in the non-reactive system with two distinct values of Rb (Rb = 0.5, 0.3)

representing unstable and stable displacements, respectively. Further, we examine the reactive

situation associated with these two values of Rb.

To capture the transition of stability for increasing viscosity contrast, we analyze the energy
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amplification in the course of time for a non-reactive situation and various values of Rb. It

can be verified that the flow is unstable for Rb = 0.5, Da = 0, the ln(G(t)) increases with

time after obtaining a minimum as shown in the inset of figure 3.3(b). In the case of unstable

displacement, the initial decrements in energy show that the initial diffusion in the system and

instability take some time to manifest. The minimum denotes the onset time of instability when

instability appears. From the onset time, the convection starts to dominate the flow dynamics

and the perturbation growth begins. On the contrary, if we decrease the viscosity ratio between

reactants to Rb = 0.3, the flow remains stable for the entire time domain as shown in the inset of

figure 3.3(b) in spite of an unfavorable viscosity contrast. Thus, we have obtained two values

of Rb showing that an increase in viscosity contrast leads to the transition in stability for the

non-reactive situation. Now we analyze how the stability of the monotonic viscosity profile is

influenced by varying Rc.

3.3.3.1 Effect of Rc

When we consider the non-reactive flow, we have to deal only with a perturbed concentration

that follows a linearised perturbed equation corresponding to one convection-diffusion equation.

While in the reactive case, we have to handle three perturbed concentrations that follow equations

(3.5c)-(3.5e) and the complexity of the system analysis escalates. Therefore, it is absurd to

compare the evolution of perturbed reactive or non-reactive concentrations directly. Additionally,

we want to compare VF dynamics as a result of the modified viscosity profile, hence we find

a value of Rc for which the corresponding viscosity profile is not modified in the presence or

absence of the reaction.

When the product viscosity differs from that of the displacing fluid reactant B, i.e. Rc ̸= Rb, the

viscosity profile becomes either non-monotonic or remains monotonic but with steeper viscosity

contrast as shown in figure 3.3(a) for Da = 100, Rb = 0.5 and various Rc. Due to the presence

of all three fluids, Hejazi et al. [35] has identified two mixed zones: upstream and downstream

mixing zone. The region occupied by the reactant A and product C is defined as the upstream

mixing zone, while the region inhabited by B and C is termed as downstream mixing zone.

The significance of defining these regions is that different viscosity contrast occurs in these

two zones when Rb ̸= Rc and play an individual role in determining the overall stability of

the system. The viscosity contrast at the upstream mixing zone is decided by the factor Rc/2
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F I G U R E 3 . 3 : (a) Viscosity profile for Da = 100, Rb = 0.5 and various Rc. (b) Log energy
amplification with time for Da = 100, Rb = 0.5 and various Rc showing unstable displacement.

Inset: ln(G(t)) of Rb = 0.5, 0.3, Da = 0.

while Rb −Rc/2 determines the viscosity ratio at the downstream mixing zone [35, 114]. For

Rb = Rc = 0.5, it is evident that Rc/2 = Rb −Rc/2, that is, the viscosity in both zones is the

same. Thus, the viscosity contrast for Rc = 0.5 is monotonic, similar to that of Rb = 0.5 as

shown in figure 3.3(a). Thus, when a chemical reaction alters the viscosity profile, this specific

case of Rc = 0.5 can be used as a reference viscosity profile. For instance, if we compare the

viscosity profile in figure 3.3(a), it is evident that the viscosity profile remains monotonic for

Rc = 0, 1 but the reaction results in a non-monotonic viscosity profile for Rc = 1.5, − 0.5.

Even for the monotonic case, if we compare the profiles for Rc = 0, 0.5, 1, we can see that the

viscosity profile at the upstream mixing zone is steepened for Rc = 1, while it is steepened at

the downstream mixing zone for Rc = 0. We analyze how this affects the onset of instability.

We have plotted the log energy amplification curve for various Rc with Rb = 0.5 in figure

3.3(b). For Rc = 1, the viscosity profile steepens at the upstream mixing zone particularly and

becomes flat at the downstream mixing zone where Rb−Rc/2 = 0. Due to this, the onset occurs

early and the system exhibits more energy amplification for Rc = 1 than Rc = 0.5 despite

the same endpoint viscosity contrast. Now we analyze the energy amplification for Rc = 0,

where unfavorable viscosity contrast is shifted at the downstream mixing zone. The energy

amplification for Rc = 0 is more than that of Rc = 0.5 at a later time only. However, at an early

time, the energy amplification is less for Rc = 0, and hence the system is less destabilized than

Rc = 0.5. It shows the significance of the location where the unfavorable viscosity contrast

occurs and instability appears. Here, the upstream mixing zone stabilizes the system at early
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F I G U R E 3 . 4 : (a) Averaged reaction rate profile, ⟨R⟩(r, t) = 1

2π

∫ R
r0
R(r, θ, t)dθ and R =

DaA0B0 for base state for Da = 100. Density plot for perturbed concentration of C, c′ for
Da = 100, Rb = 0.5, (b) Rc = −0.5, (c) Rc = 0.5 and (d) Rc = 1.5 at final time t = 1 in
polar coordinates. Here the black-dashed line denotes the position where the reaction rate is

maximum as shown in (a).

times. While the unstable, downstream mixing zone will be carried into effect late and the

system destabilizes more when instability appears in the upstream mixing zone. Thus, despite

the same viscosity contrast in their unstable zone for Rc = 0, 0.5, 1 and Rb = 0.5 the system

may attribute stability transition at a different time by varying unfavorable viscosity contrast

locations.

Further, when Rc = 1.5 and Rc = −0.5, the viscosity profile becomes non-monotonic, resulting

in unfavorable viscosity contrasts at the trailing and downstream mixing zones, respectively.

For Rc = 1.5 (Rc = −0.5), the downstream (upstream) mixing zone stabilizes and instability

is expected to develop at the upstream (downstream) mixing zone. To illustrate this, we plot

the perturbation profile for c′ in polar coordinates at t = 1 for both Rc = −0.5 and Rc = 1.5

in figure 3.4(b) and 3.4(d), respectively. For Rc = 0.5, the viscosity profile is monotonic,

and hence, the perturbation profiles are distributed symmetrically across both mixing zones,

as depicted in figure 3.4(a). In contrast, the presence of localized unstable zones leads to a

more concentrated distribution of perturbation at the upstream (downstream) mixing zone when
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F I G U R E 3 . 5 : Density plot for perturbed concentration (a) a′, (b) b′ and (c) z′ for Da = 100,
Rb = 0.5 and Rc = 0.5 at final time t = 1 in polar coordinates.

Rc = 1.5 (Rc = −0.5). Moreover, we plot perturbation profiles for a′, b′, and z′ in figure 3.5.

Given that the concentrations of base state reactants A and B are localized in the downstream

and upstream mixing zones, respectively. In contrast, the perturbed z′ remains unlocalized in any

mixing zone, resembling the base state profile. Additionally, we observe a quadruple structure

for the perturbed concentration c′ in figure 3.4, influenced by the perturbed concentrations of

reactants b′ and a′, as described in equation 3.5.

In the energy amplification plots in figure 3.3(b), ln(G(t)) increases more for Rc = 1.5

than Rc = −0.5 depicting more amplified perturbations for Rc = 1.5 despite the same viscosity

contrast at respective unstable zone. It can be concluded that the perturbations amplify more

with enhanced energy amplification ln(G(t)) with a higher growth rate of perturbations for an

increased viscosity contrast, |Rb −Rc| for any fixed Rb. This aligns with both the findings from

the existing linear stability analysis [35] and nonlinear simulations [94, 114] qualitatively. The

nonlinear simulations indicate that as the viscosity ratio increases, the onset time of instability

decreases which leads to rigorous viscous fingering patterns [94, 114, 113]. In addition, the

mixing phenomena are enhanced [114].

Further, it can be seen that for each pair |Rc−Rb|, despite the identical viscosity contrasts,

the system exhibits a greater energy amplification for the caseRc−Rb > 0 than the corresponding

case, Rc −Rb < 0 as shown in figure 3.3(a). This raises the question of why the perturbations

amplify more when the unstable zone is situated at the upstream mixing zone in contrast to the

downstream mixing zone despite the viscosity contrast being the same (|Rc−Rb|)? The velocity

profile holds the responsibility for this property of radial flow. The velocity magnitude decreases

with the radial distance, which provides more convection to the upstream mixing zone than the
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F I G U R E 3 . 6 : (a)Log energy amplification and (b) growth rate with time for Da = 100,
Rb = 0.3 and various Rc showing unstable displacement. Inset: Growth rate for Rc = 1.1,−0.5
showing an unstable and stable displacement respectively despite the same viscosity contrast

|Rb −Rc|.

downstream mixing zone [94, 113]. Moreover, it hints at the asymmetry in the (Rb, Rc) phase

plane along the non-reactive region, Rc = Rb. We explore the asymmetry in the (Rb, Rc) phase

plane by taking corresponding stable non-reactive situations and finding the corresponding Rc

parameters that destabilize the flow. In the inset of figure 3.3(b), the flow is shown stable for

Rb = 0.3. If the reaction generates a product with enough high or less viscosity that makes the

viscosity profile non-monotonic and one of the zones becomes viscously unstable, the flow may

become unstable. We will next investigate these situations.

In figure 3.6(a), the flow is shown stable for some range of Rc, including Rc = 0.3 and on

further increment of viscosity ratio, the system becomes unstable. For the viscosity contrast

|Rc − Rb| = 1 (Rc = 1.3,−0.7), the flow is unstable as ln(G(t)) increases with time after

attaining a minimum, while the flow is stable for Rc = −0.4. It is interesting to note that when

Rc = 1, the system behaves inconsistently. Following a minimum, ln(G(t)) rises at first, then

starts to fall as the energy amplification increases to saturation. For better visualization, we

compute the growth rate as in Tan and Homsy [102]:

σ =
t

2G

dG

dt
.

Evidently, the growth rate of perturbations is negative for Rc = 1 at later times after onset, there

is a decay in perturbation growth as shown in figure 3.6(b). The positive growth rate indicates

that the perturbations grow after onset time. However, the unfavorable viscosity contrast at the

upstream mixing zone is not enough to sustain the growth of perturbations for a longer time
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and it starts to decrease again. A similar transition in stability is observed in literature [37] for

rectilinear flow. There, the secondary instability appears at late times after the first minima in

ln(G(t)). However, we do not observe the secondary instability for radial displacements. The

reason is the provided uniform flow that feeds convection to flow for the entire time uniformly

for rectilinear flow. However, in our case, the flow velocity reduces with radial distance and at

the unstable zone with time. As a result of this, once the flow is stabilized, convection is not able

to induce instability again. Hence, the flow is considered stable for Rc = 1. In conclusion, we

have obtained a stable zone for a range of Rc when the corresponding non-reactive displacement

is stable. In addition, we obtain such values of Rc where the flow is unstable when Rc −Rb > 0

(Rc = 1.1) while stable for the corresponding case Rc − Rb < 0 (Rc = −0.5) showing

asymmetry in (Rb, Rc) phase plane as shown in figure 3.10. We discuss this in detail in the

next subsection §3.4. The growth rate of perturbations is negative for Rc = −0.5, while the

system shows a positive growth rate after onset in perturbation evolution for Rc = 1.1. Now, the

question arises of how changing the reaction rate, Da, influences the stability of the reactive

system, regardless of whether the system is initially stable or unstable.

3.3.3.2 Effect of Da

When reactants are iso-viscous, Rb = 0, non-linear simulations have shown that the onset of

instability gets delayed and the critical viscosity ratio for instability is exceeded with lowering

Da [94]. Here, we explore the effect of Da when Rb ̸= 0. From the comparison of the figure

3.3 and figure 3.7(a), it can be observed that the ln(G(t)) is less for Da = 10 after onset time.

It happens as a result of the reduced amount of product decreasing the viscosity and thus the

viscosity gradient, resulting in slower growth of perturbations. Furthermore, if we compare

energy amplification for Rb = 0.3, Da = 100, 10 and various Rc as in the figures 3.6 and 3.7(b),

the stable range of Rc increases for decreased Da. Flow is unstable for both the parameters

Rc = 1.3, − 0.7 when Da = 100, but for Da = 10, these parameters belong in the stable range

of Rc for Rb = 0.3.

We have now covered the cases when the viscosity profile is modified due to the formed product

having viscosity contrast with reactants. However, there is another case when product viscosity

is identical to displacing fluid reactant B i.e. Rb = Rc regardless of Da, the viscosity profile

remains the same as the corresponding non-reactive situation, (Rb, Da = 0) [69]. For such cases,
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we claim that no change in the flow stability occurs when Rb = Rc provided the flow is stable

with or without the reaction, for instance, when Rb = 0.3. No change in perturbation growth or

energy amplification should be observed when the system is already unstable for corresponding

non-reactive situations Rb = 0.5 for changing Da. Instead of reactant A, we show energy

amplification for dye concentration. Since dye concentration follows the convection-diffusion

equation as followed by A when Da = 0, considering z allows us to examine the stability of the

parameter Rb = Rc for varied Da ranging from Da = 0 to Da = 100. From figure 3.8, it can

be concluded that the stability is unaffected by a chemical reaction when Rb = Rc as energy

amplification regardless of whether the system is stable or unstable before the reaction.
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3.4 Non-linear simulations

To support the fact that the results of LSA are not a consequence of linearised equations, we

perform non-linear simulations for viscous fingering instability on the system of equations given

in equation (3.1). To solve the coupled non-linear system of partial differential equations, we

utilize a highly efficient pseudospectral method hybridized with the compact finite difference

method. We decompose the velocity into two parts with rotational velocity (urot) and potential

velocity, (upot) that defines the unperturbed flow as given in equation (3.3b). In addition, we

define the rotational component to capture the instability by introducing the stream function as:

u = upot + urot, urot =

(
∂ψ

∂y
,−∂ψ

∂x

)
, (3.9a)

∇2ψ = −ω, ω = Rc

(
v
∂c

∂x
− u

∂c

∂y

)
+Rb

(
v
∂b

∂x
− u

∂b

∂y

)
. (3.9b)

We solve Poisson equations (3.9b) by applying Fourier sine expansion to solve x- derivative

and descritise y- derivative with the compact finite difference of sixth order. Further, the initial

value problem in equations (3.1c)-(3.1f) is solved by the third-order Runge -Kutta method with

adaptive time steps satisfying the Courant-Friedrichs-Lewy (CFL) condition. The remaining

details are explained in Sharma et al. [94], Verma et al. [113]. We also compute the order of

convergence for the numerical method in chapter 4, section 4.3.1 and convergence study for

spatial discretization in appendix A.

To track the instability, we plot the dye concentration profile for Rb = 0.3, 1, Da = 100,

Pe = 3000 and for various Rc at the final time t = 1 in figure 3.9. It is evident that the flow

is unstable for Rb = 1 irrespective of Rc. On the contrary, the flow is stable for Rb = 0.3

and we obtain a range of Rc where a transition can be observed in flow stability. The flow

remains stable for Rc = 0, 1. While the interface is deformed in the dye concentration profile

due to the non-monotonic viscosity profile for Rc = −2, 3 that enhances the viscosity gradient

in the reaction zone and provides a sufficient force to induce the instability. Furthermore, in

figure 3.9, it can be observed that, despite an unfavorable viscosity, there is a stable zone at

the upstream (downstream) mixing zone for Rc = 1 (Rc = 0), Rb = 0.3, whereas it becomes

unstable when Rc = 3 (Rc = −2). Hence, we determine critical product viscosity, Rc for each

Rb to trigger the instability if the flow is initially stable for corresponding Rb. This supports the
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F I G U R E 3 . 9 : Dye concentration profile for (Da,Pe) = (100, 3000), (a) Rb = 0.3 and (b)
Rb = 1 and various Rc at final time t = 1.

conclusions drawn by LSA in Figure 3.3(b), indicating that an unstable displacement remains

unstable in reactive flow if the corresponding non-reactive system is unstable. Furthermore,

by comparing figures 3.10 (Inset figures) and 3.4, we observe that instability develops more at

the upstream mixing and downstream mixing zones when Rc > Rb and Rc < Rb, respectively.

When Rc = Rb, the instability is not localized in any zone. Additionally, a comparison between

figures 3.6(a) and 3.9(b) depicts a stable range of Rc in the (Rb, Rc) phase plane for a constant

Rb in the corresponding stable non-reactive system.

The viscosity gradient at the upstream and downstream mixing zone is decided by Rc/2 and

Rb −Rc/2, respectively. The instability is anticipated to occur at the upstream mixing zone if

Rc > 0. Thus, we determine the critical viscosity ratio at the downstream mixing zone so that

the diffusion can weaken the responsible forces due to convection in the upstream mixing zone.

In another way, we find a critical Rb that can stabilize the flow. Similarly, if Rc < 0, then the

flow can be destabilized for increasing viscosity gradient, Rb − Rc/2 > 0 at the downstream

mixing zone. Hence, it will be convenient to find a critical Rb for a given Rc for the purpose of

the computational study. To determine instability, we measure the deformation of the interface

by interfacial length in the dye concentration [67, 94]. It is calculated by I(t) =
∫
Ω
|∇z| dΩ. For

stable displacement, interfacial length follows the relation I0(t) = 2π
√
r20 + t/π [93]. Evidently,
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F I G U R E 3 . 1 0 : The (Rb, Rc) phase plane for Pe = 3000, various Da along with Da → ∞.
Dye concentration profile for Rb = 1, (i) Rc = −3, (ii) Rc = 1, (iii) Rc = 5 showing unstable
displacement and (iv) Rb = Rc = 0 showing stable displacement in polar coordinates. The
viscosity profile is non-monotonic for Rc = −3, and 5 with the decreased and increased product
viscosity that leads to the localized fingering pattern in the upstream mixing and downstream
mixing zone, respectively. While the viscosity profile remains monotonic for Rb = Rc = 1 and

the resultant fingering patterns are not localized unlike the cases Rb = 5,−3.

for a deformed interface the interfacial length increases and if interfacial length, I(t) coincides

with I0(t) for the entire time domain, that parameter can be considered as stable displacement.

We define the flow as unstable when the relative difference in interfacial length is greater than

zero. ∆I = (I − I0)/I0 > 0.

A phase plane (Rb, Rc) is presented in figure 3.10 where the solid curves show critical viscosity

ratio (Rb, Rc) for instability for each Da and the region below the curve is stable and above

the curve is the unstable region. It can be observed that if reactants have favorable viscosity

contrast, i.e. Rb < 0.66, then two critical Rc can be determined that destabilize the flow for a

given reaction rate. It happens when a chemical reaction introduces a non-monotonic viscosity

profile and persuades convection and diffusion to compete, as suggested by LSA results. We

obtain a range of Rc when Rb < 0.66 corresponds to the stable flow. This range contracts for

increasing Rb and vanishes when Rb = Rc = 0.66. The viscosity contrast between reactants,

Rb = 0.66, is the maximum Rb for which flow is stable before the reaction and the reaction may
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alter the stability. Moreover, if reactants have viscosity contrast, Rb > 0.66 and the stability will

not be changed by the reaction. It exhibits the limitations of the influence of reaction on the

stability of the system. It is evident in figure 3.10 that the region around Rc = 0.66 is stable for

all values of Da. This is the Da independent critical regime that we have reported for radial VF.

The value of viscosity ratio (Rb, Rc) = (0.66, 0.66) is of our special interest. For (Rb, Rc) =

(0.66, 0.66), the viscosity profile is monotonic and identical to its inherent viscosity profile in

corresponding non-reactive situations. Now, we claim that the viscosity ratio when Rb = 0.66 is

also the critical viscosity ratio for the non-reactive fluids. For non-reactive fluids, Sharma et al.

[93] have established a scaling relation between Péclet number Pe and critical log-mobility ratio

Rb numerically

Rb = α(r0)Pe
−β, α = 30(1 + 10r0). (3.10)

Here β lies under confidence bounds (0.52, 0.59) and critical parameters (Rb, P e) lies on the

boundary that is given by Rb = α(r0)Pe
−0.55. Since the above relation (3.10) is determined

numerically and has theoretical and experimental support. It provides a fair opportunity to

compare reactive displacement with the corresponding non-reactive displacement in the context

of stability. In all the simulations, we have considered Pe = 3000 and r0 = 0.075, if we

put the same value of Pe and r0 in equation (3.10), we obtain the critical Rb = 0.642. In

addition, if we find the range for this critical viscosity ratio in 95 % confidence bound, we obtain

Rb ∈ (0.466, 0.817). The obtained critical viscosity Rb for the reactive case lies in the range

Rb ∈ (0.466, 0.817) and is almost the same as the calculated viscosity ratio, Rb = 0.642 for the

non-reactive displacement.

Though the viscosity profile is modified only when Rb ̸= Rc, thus the effect of product viscosity

Rc on stability can be compared along the line Rb = Rc whether the reaction increases or

decreases the viscosity of the system. The specific value (Rb, Rc) = (0.66.0.66) distinguishes

the stability behavior of reactive and non-reactive displacement. Furthermore, during the LSA

analysis, we noticed an asymmetry in the (Rb, Rc) phase plane along the line Rc = Rb. Despite

having the same viscosity contrast (|Rc −Rb|), perturbations exhibit a higher growth rate when

Rc > Rb compared to the opposite case, Rc < Rb as in figure 3.3(b) and 3.7(a). The critical

viscosity contrast is greater when the reaction decreases viscosity, i.e., Rc < Rb, than in the

opposite case, Rc > Rb, if a system is stable for the non-equivalent situation as shown in figures
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3.6 and 3.7(b). Similarly, in the (Rb, Rc) phase plane obtained from nonlinear simulations, we

observe asymmetry along the line Rc = Rb. The critical Rb decreases more significantly when

Rc > 0.66 compared to when Rc < 0.66. To visualize more about this asymmetry, we have

plotted a phase plane between Rc/2 and Rb −Rc/2 that shows viscosity contrast at upstream

and downstream mixing zone in figure 3.11(a). It can be observed that if the upstream mixing

zone is stable, the critical viscosity contrast for instability, Rb −Rc/2 is more than Rc/2 if the

downstream mixing zone is stable. The asymmetry is a consequence of the spatially dependent

base state velocity profile. When Rc < 0.66, the instability appears at the downstream mixing

zone due to steeper viscosity contrast while the upstream mixing zone stabilizes the flow. On

the contrary, when Rc > 0.66, the instability appears at the upstream mixing zone for the

same viscosity contrast at the unstable zone. If we compare both Rc values for the same Rb

maintaining the viscosity gradient |Rc −Rb|, the driving force provided by convection is more

efficient at the upstream mixing than at the downstream mixing zone. Consequently, the critical

viscosity contrast to trigger instability at the upstream mixing zone Rc/2 is less than the critical

viscosity ratio, Rb − Rc/2, to trigger the instability at the downstream mixing zone. Similar

asymmetric behavior is observed in [94]. A higher viscosity ratio is required for instability when

the reaction produces a less viscous product for Rb = 0 compared to when the product is highly

viscous.

3.4.1 Effect of Da and Pe (Da→ ∞)

It is reported that the stable region exists for all moderate ranges of Da, and the width of the

interval of stable Rc decreases with Da when Rb = 0 [94]. Interestingly, the stable region

even exists for Da→ ∞ when Rb = 0 [113]. When we increase Da, more product is formed

that enhances the viscosity of the system as in equation (3.2), leading to an enhanced viscosity

contrast and a higher growth rate of perturbations in the system as predicted by LSA and

illustrated in figure 3.3(b), 3.6 and 3.7. Hence, the critical viscosity ratio decreases for higher

Da as shown in figures 3.6, 3.7(b) and 3.10. However, the existence of the critical viscosity

contrast is shown only for the particular case, Rb = 0. It will be intriguing to examine whether

that critical viscosity occurs or identify the range of Rc that corresponds to stable displacements

when Rb ̸= 0. To investigate the same, we have performed simulations for a wide range of Da,

including the limiting case Da→ ∞.
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F I G U R E 3 . 1 1 : (a) Phase plane between the viscosity ratio at upstream mixing and downstream
mixing zone, Rc/2 and Rb−Rc/2 for Pe = 3000 and various Da. (b) (Rb, Rc) phase plane for
Pe = 3000, 1000 for Da → ∞. Here below the curve is a stable region, and above the curve
is an unstable region. Here the dashed line corresponds to the non-reactive case Da = 0 for

Pe = 3000 (blue) and Pe = 1000 (red).

For an instantaneous reaction, Da → ∞, the reaction front occurs in an infinitesimally small

region. This replicates an ideal situation where reactants are fully consumed at the reaction front

as soon as reactants meet i.e. a → 0, b → 0 at the reaction front. The concept of upstream

mixing and the downstream mixing zone is also based on this ideal situation Da → ∞. The

upstream mixing zone is only occupied by fluid A and C and the downstream mixing zone is

occupied by fluid B and C. In order to perform simulations for Da → ∞, we rearrange our

system of governing equations as in [113, 69, 66] as follows:

∂h

∂t
+ u ·∇h =

1

Pe
∇2h, (3.11a)

(a, b, c) =

(0, 1− 2h, h), h < 0.5,

(−1 + 2h, 0, 1− h), h ≥ 0.5

. (3.11b)

We perform numerical simulations and the numerical method is explained in the next chapter §4.

In figure 3.10, we have plotted the critical (Rb, Rc) curves for various Da. The stable zone in

(Rb, Rc) phase plane contracts for increasing Da but does not vanish even when Da→ ∞. It

can be verified from the recent article [53] for the asymptotic limit of Pe and Da. For Rb = 0,

it is reported that the minimum viscosity contrast to induce the instability is more i e. |Rc| > 0

if the reaction generates a less viscous product (Rc < 0) than a high viscous product (Rc > 0).
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Further, the stable region in the Da - Rc phase plane along the line Rc = 0 becomes less

symmetric with Da [94]. We observe the same for the case when Rb ̸= 0. The stable region in

the (Rb, Rc) phase plane becomes asymmetric for increasing Da around the line Rc = Rb.

In addition, if we considerDa = 0, the stable region is obtained asRb < 0.64, and the remaining

region in the (Rb, Rc) phase plane is an unstable zone. Further, the viscosity profile is monotonic

in the neighborhood of Rb = Rc, and it is identical for each Da. Thus, the VF dynamics remain

unchanged, and for this particular viscosity, all (Rc, Rb) curves showing the critical viscosity

contrast, are merged for various Da in the neighborhood of Rb = Rc. This can be confirmed by

both, LSA and NLS as shown in figure 3.8 and 3.10, respectively. Thus, the reaction affects the

stability of the flow, but the inherent non-reactive system equally contributes to the instability.

There exists a region in the (Rb, Rc) phase plane that is preserved and unaffected by the reaction.

This illustrates that the reaction is able to influence the stability of the system and may destabilize

the initially stable system, but there is some extent.

Further, it can be observed that if we increase the value of r0, it leads to weaker convection even

at the initial time [93]. Consequently, the critical viscosity contrast required to trigger instability

also increases for larger r0 as stated in the equation (3.10), and this holds true for reactive fluids

as well. In the phase plane (Rb, Rc) illustrated in Figure 3.10, the maximum critical value of

Rb required to induce instability increases with the increment of r0, following the relationship

(3.10). Below this maximum value of Rb, the stable range of Rc expands with an increase in r0

for each Rb.

At last, we check the effect of Pe on the stability of the system for given other parameters

(Da,Rb, Rc). The Pe number definition suggests a tuning between the flow rate and diffusion

coefficient. In another way, it decides the competition between forces due to convection and

diffusion and flow gets stabilized for decrements in Pe as diffusion works as stabilizing factor. It

is already reported that the stable region in the Rc-Da plane widens for decreasing Pe. However,

the qualitative behavior shown by the critical Rc-Da curves remains preserved for varying Pe

[94]. To understand the effect of Pe on the VF dynamics when Rb ̸= 0, we have fixed Da by

Da → ∞ and performed simulations for Pe = 3000, 1000. For Pe = 1000, the stable zone

widens, and critical (Rb, Rc) increases to trigger the instability as in figure 3.11(b). Also, we

can examine the critical viscosity ratio obtained in the case Rb = Rc for that VF dynamics gets
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unaffected by chemical reaction for Pe = 1000. The critical viscosity ratio for non-reactive

displacements is found around Rb = Rc = 1.17 for Pe = 1000, is the same value as computed

from the equation (3.10) for Pe = 1000 and r0.

3.5 Conclusion

Reactive flows in a porous medium are encountered in several transport phenomena that affect

the productivity of the process, as the chemical reaction can alter the physical properties at the

fluid-fluid interface. The presented problem is motivated as the generated product modifies

the viscosity profile that affects the overall stability of the system. In this chapter, we address

the stability of a reactive system A+B → C in a porous medium subjected to VF instability

exploring a range of (Rb, Rc) through LSA. We discuss how the product viscosity of the inherent

system influences the temporal evolution of the perturbations.

The LSA predicts that the modified viscosity contrast i.e. Rc ̸= Rb stimulates the growth

rate of perturbations. This leads to an earlier onset of instability and a higher growth rate of

perturbations if the flow is already unstable without the reaction. These results agree with the

experimental studies [71, 70] as the reaction enhances the instability for radial flow. On the

other hand, if the corresponding non-reactive displacement is stable, such chemical reactions

can be categorized into two parts based on product viscosity, Rc. For a given reaction rate, Da,

we can find a range of reaction types, Rc including Rc = Rb which correspond to the stable flow.

In such reactive displacement, the altered viscosity profile is not enough to trigger instability.

The system becomes unstable for the remaining reaction types Rc. Another conclusion that

can be drawn from the LSA is that the system exhibits an early onset time and more amplified

perturbations when induced by a high viscous product generation rather than a less viscous

product. Moreover, such reactive displacements show a higher growth rate of perturbations

if we increase Da. While the stable range of Rc contracts if the corresponding non-reactive

displacement is stable. Also, some reactions exist where product viscosity is the same as the

reactant, B, Rc = Rb, and thus the stability of the system remains unaltered after the reaction

regardless of Da.

Further, we perform non-linear simulations to determine the critical viscosity ratio (Rb, Rc)

exhibiting instability in reactive flow for a given Da and Pe. We provide sufficient data to



68 Chapter 3 Linear stability analysis of radial reactive viscous fingering

determine the stability of the reactive flow. We present a (Rb, Rc) phase plane separated by

critical viscosity ratio for instability into the stable and unstable regions for the entire range of

Da and various Pe explored. The importance of each parameter in determining the stability

of the system is explained by the phase plane. The stable region in the (Rb, Rc) phase plane

reduces for increasing Da and Pe but never completely disappears.



Chapter 4
Computational analysis of radial viscous fingering induced by

an infinitely fast chemical reaction

4.1 Introduction

In this chapter1, we focus on the investigation of the non-linear interactions between infinitely

fast reactions and VF dynamics. Various experimental studies involve fluids undergoing neu-

tralization reactions which are an example of instantaneous reaction as the reaction rate is very

large for such reactions. [72, 74, 71]. Nagatsu et al. [71] experimentally showed the effect of

an instantaneous chemical reaction on viscous fingering by considering the radial displacement

of the reactive as well as non-reactive fluids. They observed widening of the fingers for the

reactive case when viscosity is increased by the chemical reaction, while the shielding effect is

more than the non-reactive case when the chemical reaction decreases the viscosity. In another

study, Nagatsu et al. [70] explored the effect of the reaction rate on miscible VF involving radial

displacement of the reactive fluids, in terms of a non-dimensional parameter Damköhler number

Da defined as the ratio of the convective time scale to the reactive time scale. They reported the

dynamics for moderate Da to be different than those for a sufficiently high Da [71] signifying a

dependence of the fingering dynamics on the reaction rate.

Further, the effect of an infinite Da on the VF dynamics is explored numerically by Nagatsu

and De Wit [69] where the chemical reaction modifies the viscosity in the system undergoing

rectilinear displacement. But due to the difference in the displacement used in the simulations

as well as in the experiments opposite trends in experimental finger width [71] are obtained.

Recently Sharma et al. [94] have discussed VF induced by chemical reactions by considering

reactants having same viscosity but generating a more and less viscous product for radial

displacement. They explore the VF dynamics for a range of finite Da and obtain qualitative

agreement with experiments [78, 83]. Further, for a given Da, the existence of critical viscosity

contrast for the occurrence of VF is reported. However, the viscous fingering induced solely

1This chapter is published in the J. Fluid Mech..

69
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by instantaneous chemical reactions for radial displacements is unexplored. In this work, we

numerically discuss reactive fingering dynamics for the limiting case Da → ∞ for reactants

undergoing radial displacement. We suitably modify the governing equations to take care of

Da→ ∞ similar to the work of Nagatsu and De Wit [69], Michioka and Komori [66]. We gain

insight into the effect and the interaction of the forces due to convection, diffusion and reaction

on VF in terms of the dimensionless parameters and see if the stable displacement still exists

when the chemical reaction is infinitely fast. The stable displacement, if exists, implies that

force due to the reaction is not sufficient to overcome the other two forces due to convection and

diffusion. Thus, the triggering of the instability also depends upon the log-mobility ratio, Rc and

the Péclet number, Pe which are a measure of the other two forces in the system. Hence, we

determine the onset of instability in terms of these non-dimensional numbers.

The chapter is organized as follows. The governing equations are discussed in §4.2 followed by

modifying the equations to deal with Da→ ∞ in §4.3. We discuss the results in terms of the

onset of instability and finger length in §4.4, followed by the conclusion in §4.5.

4.2 Mathematical formulation

We consider two fluids A and B as reactants undergoing a second-order chemical reaction

A+B → C

upon contact to generate another fluid C as the product. The fluid A radially displaces fluid B in

a two-dimensional homogeneous and isotropic porous medium having constant permeability

κ̃. We consider the fluids to be miscible and the reactants have same viscosity µA = µB = µ0,

while the viscosity of the product µC may be different than the reactants. Considering the

fluids to be incompressible and neutrally buoyant, we use a system of coupled non-linear partial

differential equations (PDEs) [94] to model the flow of reactive fluids in the porous medium.

The system of PDEs comprises a continuity equation and Darcy’s law respectively for the

conservation of mass and momentum of the flow through a porous medium, coupled to three

convection-diffusion-reaction equations for the mass balance of the three fluids A, B and C.



4.2 Mathematical formulation 71

The non-dimensional governing equations are

∇ · u = 0, (4.1a)

∇p = −µ(c)u, (4.1b)

∂a

∂t
+ u ·∇a =

1

Pe
∇2a−Da ab, (4.1c)

∂b

∂t
+ u ·∇b =

1

Pe
∇2b−Da ab, (4.1d)

∂c

∂t
+ u ·∇c =

1

Pe
∇2c+Da ab, (4.1e)

where u = (u, v), p, µ respectively denote the dimensionless Darcy velocity, pressure and

viscosity. The non-dimensional chemical concentrations of the fluids A,B,C are a, b, c, respec-

tively. These equations are non-dimensionalised are as in chapter 2. The viscosity-concentration

relation is taken here as:

µ(c) = eRcc, Rc = ln

(
µC
µ0

)
, (4.2)

where µ0 and µC are viscosities of the reactants and product, respectively and Rc is the log-

mobility ratio. Here, we encounter two more dimensionless parameters: the Damköhler number

Da and the Péclet number Pe. We assume the three fluids have same diffusion coefficient D

and hence only one Pe appears in all three CDR equations. The Péclet number is the ratio of the

mass transfer due to convection and diffusion, while the Damköhler number being the ratio of

convective time scale to reactive time scale depicts the relative importance of convection to that

of reaction. As viscosity also contributes to the velocity of the fluid, we regard the log-mobility

ratio as a measure of force due to convection. Thus, the three non-dimensional parameters

actually provide a measure of the relative dominance of one of the three forces each due to

convection, diffusion and reaction. Since Da → ∞ in this study, the force due to reaction is

assumingly large and the absence or presence of any instability is due to the dominance of the

other two forces due to convection and diffusion which we discuss by varying Rc and Pe in

§4.4.

The fluid A is contained in a circle of non-dimensional radius r0 initially and is surrounded by

the fluid B (see figure 4.1(a)). The fluid A injected continuously with flow rate per unit depth

Q from the injection hole located at the origin. The fluid A radially displaces fluid B and both
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(a) (b)

F I G U R E 4 . 1 : (a) A schematic of the problem at t = 0 showing reactant A contained in
a circle of radius r0. The region outside the circle is occupied by reactant B. (b) The same
schematic at t > 0 depicts the generation of the product C in the yellow-colored annulus region

where the reactants come in contact. Here r > r0.

fluids undergo a chemical reaction to produce C in the region between the reactants as shown in

figure 4.1(b). Thus, the initial conditions associated with equation (4.1c)-(4.1e) are

(a, b, c)(x, y, t = 0) =

(1, 0, 0) x2 + y2 ≤ r20

(0, 1, 0), Otherwise
, (4.3)

where r0 is the radius of the circular region initial filled with fluid A. We discuss the boundary

conditions in the next subsection where we describe the numerical scheme used to solve the

governing system of equations.

4.3 Numerical scheme

We perform numerical computations in Cartesian coordinates by considering a square computa-

tional domain with the injection hole being at the origin of the coordinate system. For numerical

computations, we choose a non-dimensional domain Ω = [−L/2, L/2]× [−L/2, L/2]. In this

study, we take L = 1.5 and the domain is discretized into nx × ny grid points. (see appendix

A for grid independence study). Further, r0 = 0.075 throughout this study. There are a few

challenges in performing a computational study of radial displacement of reactants undergoing

an infinitely fast reaction. We have to deal with a singularity at the origin in the velocity field

[17, 94] along with taking care of Da which approaches infinity. We discuss these two before

discussing the numerical method.
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As we can see that Da appears in all three convection diffusion reaction equations (4.1c)-(4.1e),

hence, in order to numerically deal with infinitely fast reaction rate (Da→ ∞), we must wisely

modify the equations. We observe that simply adding or subtracting two of the convection-

diffusion-reaction equations can help eliminate Da from the equations. Hence, we add equations

(4.1c) & (4.1e) and equations (4.1d) & (4.1e) to obtain following two equations:

∂H1

∂t
+ u ·∇H1 =

1

Pe
∇2H1, (4.4a)

∂H2

∂t
+ u ·∇H2 =

1

Pe
∇2H2, (4.4b)

where H1 = a + c and H2 = b + c. It must be noted that now we have two convection-

diffusion equations (4.1a), one for each Hi, i = 1, 2 satisfying two different initial conditions

(H1(x, y, t = 0) = a(x, y, t = 0) and H2(x, y, t = 0) = b(x, y, t = 0) as c(x, y, t = 0) = 0),

while each satisfies no flux boundary condition. Further, by using a suitable normalization [69],

hi =
Hi −Hi;B0

Hi;A0 −Hi;B0

, i = 1, 2, (4.5)

we will show that we only need to solve one convection-diffusion equation. For i = 1, 2, we

denote normalised Hi as hi. While Hi;B0 is the value of Hi inside the region of displaced fluid

and Hi;A0 is the value of Hi in the region of displacing fluid, that is,

H1;B0 = 0, H2;B0 = 1, (4.6)

H1;A0 = 1, H2;A0 = 0. (4.7)

Substituting the values of Hi;B0 and Hi;A0 in equation (4.5), we obtain the value of hi, i = 1, 2

as:

h1 = a+ c, h2 = 1− (b+ c). (4.8)

It is evident that both h1, h2 now satisfy the following two convection-diffusion equations

∂hi
∂t

+ u ·∇hi =
1

Pe
∇2hi, i = 1, 2, (4.9)



74 Chapter 4 Radial viscous fingering induced by an infinitely fast reaction

associated with the same following initial condition for both the equations

hi(x, y, t = 0) =

1, x2 + y2 ≤ r20

0, Otherwise
, for i = 1, 2. (4.10)

Thus, in place of solving two different equations each for hi, i = 1, 2, we can denote h1 = h2 = h

and solve the following differential equation for h

∂h

∂t
+ u ·∇h =

1

Pe
∇2h, (4.11)

associated with the initial condition (4.10) with hi replaced with h. It is not possible to find the

solution of the above equation using similarity variables [93]. Thus, we solve the above equation

numerically as explained ahead. The computed h value is used to find the concentration a, b, c

[Nagatsu and De Wit [69] and Ref. therein] as explained below.

When we consider the chemical reaction to be infinitely fast, that is, Da→ ∞, the reactive time

scale, 1/(k̃ã0) becomes very small such that it is negligible in comparison to the convective

time scale. Introducing such small time steps in simulations is quite difficult. To avoid such

circumstances, we opt conserved scalar approach to handle this infinitely fast reaction term. It is

safe to use this approach as it can be utilized for infinitely fast reactions only, not for moderately

fast reactions [66, 20]. To obtain a, b, c from h, we utilize the fact that the reaction occurs with

an infinite reaction rate. The region where both the reactants co-exist and thus react to generate

the product is termed the reaction front. But as Da → ∞, the two reactants are consumed as

soon as they come in contact and the concentration of both the reactants tends to zero in the

reaction front [69]. (See appendix B for details.) Thus, using equation (4.8), we obtain that in

the reaction front c = h = 0.5. The two reactants cannot co-exist outside the reaction front,

that is, when h ̸= 0.5. Thus, for h < 0.5, we have a = 0 and we get from equation (4.8) that

b = 1 − 2h, c = h. Similarly, for h > 0.5 and b = 0, we get a = 2h − 1, c = 1 − h. See

appendix B for details. Thus, solving only one convection diffusion equation (4.11) for h, we

can obtain the reactant and the product concentration as

(a, b, c) =

(0, 1− 2h, h), h < 0.5,

(−1 + 2h, 0, 1− h), h ≥ 0.5

. (4.12)



4.3 Numerical scheme 75

c = h = 0.5. The two reactants cannot co-exist outside the reaction front, that is, when h ̸= 0.5.

Thus, for h < 0.5, if we assume a = 0, we get from equation (4.8) that b = 1− 2h, c = h. It

must be noted that there exist two more choices of H1, H2 and thus obtained h1, h2 are different

than those used here. (See appendix B for details.). But we obtain the same equation (4.12) in

each case. Thus, in order to deal withDa→ ∞, we actually simplified the situation by having to

deal with only one convection-diffusion equation in place of three convection-diffusion-reaction

equations. It is mentioned that the above method is applicable even when the initial concentration

of the reactants is unequal. We define ϕ = b̃0/ã0 as the ratio of the initial concentration of the

two reactants. In our study, we take ϕ = 1 but for ϕ ̸= 1, equation (4.6)-(4.8), (4.12) will be

modified to include ϕ as follows [53]:

(a, b, c) =

(0, β − (1 + β)h, h), h < hξ,

(−β + (1 + β)h, 0, β(1− h)), h ≥ hξ

. (4.13)

Here, hξ is the value of h at reaction front, considering a = b = 0, that gives hξ =
ϕ

1 + ϕ
. Now,

we explain about resolving the singularity in the velocity field.

In the absence of any viscosity gradient, the radial flow is a potential flow with the velocity given

as

upot(x, y, t) =

(
x

2π(x2 + y2)
,

y

2π(x2 + y2)

)
, (4.14)

which clearly has a singularity as (x, y) → (0, 0). We get rid of this singularity by introducing

an exponential modification regarded as a Gaussian source in literature [17, 94]

upot =

(
x
1− e−(x2+y2)/σ2

1

2π(x2 + y2)
, y

1− e−(x2+y2)/σ2
1

2π(x2 + y2)

)
, σ1 ≤ r0, (4.15)

where we fix σ1 = 0.075 in all the simulations so that the exponential function introduced to

deal with the singularity at the origin has no effect on the VF dynamics. We consider the fluid

A inside a circle of initial radius r0 and σ1 ≤ r0 so that the exponential function has no effect

on the VF dynamics. This is due to the fact that with an increase in r (where r2 = x2 + y2),

the exponential term will eventually decay and will have no effect on the velocity. We consider

the computational domain Ω = [−0.75, 0.75]× [−0.75, 0.75] and we have taken r0 = 0.075, so

that the initial circular region has covered less than 5% of the total computational domain. (See
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appendix A for the effect of different σ on the dynamics.) It must be noted that upot is the total

velocity in the absence of any viscosity gradient but as soon as the reactants come in contact to

generate a more or less viscous product than the reactants, the viscosity gradient alters the total

velocity. Thus, we consider the total velocity to contain two components

u = upot + urot, (4.16)

where urot is the velocity component due to the chemical reaction and must be computed at

each time, while upot is known at all time. To compute urot, we use stream function ψ defined

as urot =
(
∂ψ
∂y
,−∂ψ

∂x

)
. We take curl of Darcy’s law (4.1b) to obtain stream function vorticity

formulation

∇2ψ = −ω, (4.17a)

ω = Rc

(
v
∂c

∂x
− u

∂c

∂y

)
. (4.17b)

Here ω is the k̂ component of the vorticity vector. Above equation (4.17) coupled with the

convection-diffusion equation (4.11) for h is solved to explore the VF dynamics after using

equation (5.6b) to obtain the species concentration from h. The boundary conditions used are

ψ = 0, (4.18)

∇h · n̂ = 0, (4.19)

at x = ±L/2, y = ±L/2. Here n̂ is the unit outward normal. We perform numerical simulations

by using a hybridization of compact finite difference method and the pseudo-spectral method

[94]. We employ sixth-order compact finite difference method [59] along y-direction and

Fourier sine expansion in x-direction to solve the Poisson equation (4.17). In order to solve

the convection-diffusion equation for h, we use the method of lines. The spatial derivatives

are discretized using compact finite difference of sixth order. Thus obtained semi-discretized

system of ordinary differential equations is solved using the third order Runge-Kutta method.

The time steps are adaptive for Runge-Kutta method and satisfy Courant-Friedrichs-Lewy (CFL)

condition. More details about the numerical method can be found in [94] and the references

therein.
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4.3.1 Order of convergence

We discuss here the order of convergence of the numerical method. The time step dt is chosen

adaptively in order to satisfy the CFL condition. So, we perform the convergence analysis for

spatial discretization only. The numerical method is said to be convergent if there exist two

non-zero constants C1 and P such that |sN − s0| ≤ C1dx
P . Here sN , s0 are respectively the

numerical and the exact solution, P is the order of the convergence and C1 is independent of dx,

the spatial step size. In other words, a numerical method is said to be of order P if the error in

numerical solution is O(dxP ) =M1dx
P [13].

To find the order of convergence, we perform simulations for four sets of grid points nx = ny

keeping all other parameters the same. Also, we know nx = ny = N+1, where N is the number

of sub-intervals. The spatial step sizes are defined as dx = dy = L/N where L is the domain

length. We choose the numerical solution corresponding to the maximum value of N, that is,

N = 1024 as the exact solution: s0 = s1024. The error corresponding to each N is computed as

ϵN(t) =
∥sN − s0∥

∥s0∥
. Further, we consider the worst case scenario and denote the error for the

solution with N sub-intervals as EN = max
0≤t≤1

ϵN(t). We compute the order P of the numerical

method as [13, 25, 43]:

P = log2

(
EN
E2N

)
(4.20)

We follow the steps below to find order:

Step 1: Compute the numerical solution sN for each N . We take sN , s0 as the concentration of

reactants as well as product by replacing s by a, b, c, respectively.

Step 2: The error ϵN(t) =
∥sN(x, y)− s0(x, y)∥

∥s0(x, y)∥
for various grid points is calculated. We

denote the discretised x and y domain for N = 128, 256, 512 as:

x = {x0(= −0.75), x1, x2, . . . , xj, . . . xN(= 0.75)},

y = {y0(= −0.75), y1, y2, . . . , yj, . . . yN(= 0.75)}.

Also, the discretised x and y domain for N = 1024 is denoted as:

X = {X0(= −0.75), X1, X2, . . . , Xj, . . . XN(= 0.75)},

Y = {Y0(= −0.75), Y1, Y2, . . . , Yj, . . . YN(= 0.75)}.
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N EC
N P EA

N P EB
N P

128 0.0444 1.094 0.0014 0.9489 0.0012 0.9
256 0.0208 1.5305 0.0075 1.585 0.0006427 1.5029
512 0.0072 - 0.0025 - 0.0002678 -

TA B L E 4 . 1 : Error and order for various N . Used parameters are Pe = 2000, Rc = 0.
EC
N , E

A
N and EB

N respectively denote the error in the numerical solution of product concentration,
reactant A concentration and reactant B concentration.

4681012

10
-3

0.005

0.01

0.015

0.02

F I G U R E 4 . 2 : Error in product concentration EC
N versus dx for Pe = 2000, Rc = 0. The

dashed and dotted lines represent the reference lines with slope dx and dx1.5, respectively.

For any N , we compute ϵN(t) as

ϵN(t) =
∥sN(x = xi, y = yj)− s0(x = X∆i, y = Y∆j)∥

∥s0(x = X∆i, y = Y∆j)∥
,

where i = {0, 1, 2, . . . N} and j = {0, 1, 2, . . . N} and ∆ = 1024/N . For example, ϵN(t) for

N = 512 is computed as:

ϵ512(t) =
∥s512(x = xi, y = yj)− s0(x = X2i, y = Y2j)∥

∥s0(x = X2i, y = Y2j)∥
,

for i = {0, 1, 2, . . . 512} and j = {0, 1, 2, . . . 512}. Here we present results using 2-norm.

However, it is verified that results are independent of the norm.

Step 3: Find the error as EN = max
0≤t≤1

ϵN(t).

Step 4: Compute order of convergence of the numerical method.

We present the error and the order in table 4.1. It is evident that with an increase in N , the

error reduces significantly. We plot the error in the numerical solution of product concentration

EC
N as a function of dx in figure 4.2. Also, reference lines with slope dx, dx1.5 are plotted. It
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is evident that the order of convergence of the method lies between 1 and 1.5. There exist

many studies [25, 60, 43, 49] where the order of convergence of the method is lower than the

order of discretization of the derivatives. In our work also, spatial discretization is performed

using sixth-order compact finite difference at the internal grid points, while the boundary points

are discretized using third and fourth-order compact finite difference. But since we have a

coupled system of non-linear and fully coupled partial differential equations, we believe that

order between 1 and 1.5 is adequate as evident from small error in table 4.1.

4.4 Results and discussion

VF induced by chemical reaction is discussed by Sharma et al. [94] and it is observed that for a

given finite reaction rate (Da) and Pe, there always exists a range of Rc for which only a stable

displacement is observed. Motivated by this, we ask what happens if Da → ∞, that is, the

chemical reaction is instantaneous. For Da→ ∞, the reaction rate and hence the force due to

reaction is strong enough to trigger any instability but how the interplay of this force with forces

due to convection and diffusion affect the overall VF dynamics is worth examining.

We consider reactants to have no viscosity contrast and they undergo an infinitely fast chemical

reaction upon contact, generating a product having same or different viscosity. When all the

species have same viscosity, the product is generated in a ring between the reactants A and B

(see figure 4.1). Thus, the obtained region between A and C is regarded as the upstream mixing

zone and that between B and C is regarded as the downstream mixing zone throughout this

study independent of the displacement being stable or unstable. The product with different

viscosity is of interest to us as the viscosity contrast results in the fingering instability due to the

viscosity profile being a non-monotonic function of space. If the product is more viscous than

the reactants, the viscosity profile experiences a maximum and thus the upstream mixing zone

witnesses instability. On the other hand, for a less viscous product, a minimum is obtained in the

viscosity profile, thereby making downstream mixing zone an unstable one where a less viscous

fluid displaces a more viscous one. We explore various features of VF due to a chemical reaction

with an infinitely fast reaction rate between the reactants undergoing radial displacement.
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(a)

(b)

F I G U R E 4 . 3 : Density plots of product C concentration at final time t = 1 for Pe = 3000 and
(a) Rc > 0 (in first row) (b) Rc < 0 (in second row). Flower like instability for Rc ≥ 2 and

crown like instability for Rc ≤ −2 is evident.

4.4.1 Effect of different reactants on the VF dynamics

The outcome of a chemical reaction depends on the type of reactants considered. Hence, in this

section, we discuss the VF dynamics by considering the reactants having different viscosity

contrast and diffusion coefficients. Numerically, Rc and Pe are the two parameters describing

these properties. For a fixed Rc, a higher Pe represents the reactants having a small diffusion

coefficient and hence rigorous fingering instability is anticipated. Further, by the definition

of Rc in equation (4.2), it is clear that Rc > 0 corresponds to a more viscous product while a

less viscous product is generated for Rc < 0. We discuss the effect of these two parameters in

order to understand the VF dynamics for a range of reactants undergoing infinitely fast chemical

reactions.

4.4.1.1 Varying the viscosity of the reactants

As discussed, Rc > 0 corresponds to a more viscous product and hence the upstream mixing

zone is unstable to instability. In figure 4.3(a), product C concentration for various Rc > 0 is

plotted (see appendix D for components of velocity). We observe fingers towards the source

(origin), in the form of a flower and the downstream mixing zone acts as a barrier to the instability

preventing the fingers from penetrating further. Similarly, for Rc < 0, the fingers are observed at

the downstream mixing zone away from the source and appear as a crown (see figure 4.3(b)).

Further, with an increase in |Rc|, the fingering instability becomes more rigorous. These are in
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F I G U R E 4 . 4 : Density plots of product C concentration for various Pe and (a) Rc = 5 (in
first row), (b) Rc = −5 (in second row) at final time t = 1.

agreement with the existing numerical [94] and experimental [71, 78] studies involving finite

Da. Thus, these salient features of VF dynamics are independent of the reaction rate. The length

of the fingers appears to depend on Rc and we shall discuss this in detail in §4.4.2.3. Also, no

deformations are observed for the displacement corresponding |Rc| = 1.5 signifying completely

stable displacement. Thus, despite, an infinite Da, stable displacement is evident for some |Rc|

and fixed Pe.

4.4.1.2 Effect of Péclet number

FixingRc, we vary the Péclet number to explore the effect of diffusion on the fingering dynamics.

We plot the density plots of the product concentration at non-dimensional final time t = 1 for

Rc = 5 in figure 4.4(a) and Rc = −5 in figure 4.4(b). As the Da is infinite, sufficient product

is formed as soon as the reactants come in contact and hence rigorous instability is anticipated

as convection is strong near the source. Indeed, with an increase in Pe, fingering instability is

evident, however, stable displacement is observed for the smallest Pe(= 500) shown. Thus,

despite the reaction rate being infinite and a high viscosity contrast (|Rc| = 5 here), the diffusion

is strong enough to prevent instability. Thus, for a given viscosity contrast between the reactants,

stable displacement is observed which is in agreement with the existing recent studies [94, 93]

that reported an unfavorable viscosity contrast being insufficient to induce the instability when

fluids undergo radial displacement. To the best of the author’s knowledge, no stable displacement
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(a)

(b)
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F I G U R E 4 . 5 : Temporal evolution of concentration of product for (a) Rc = 4 (in first row)
and (b) Rc = −4 (in second row) for Pe = 1000. The instability appears at t ≈ 0.2 for Rc = 4

while at t ≈ 0.3 for Rc = −4.

is reported when the reactants displace each other rectilinearly [69]. Thus, three processes due

to convection, diffusion and reaction interplay and affect the overall dynamics and it can be

concluded that a stable region including a range of Rc for a fixed Pe and Da for which no VF

is observed [94] never vanishes. We gain more insight into this by finding the onset time of

instability in the next subsection.

4.4.2 Unstable displacements

We have shown in the previous section that a stable displacement exists despite an infinite

Damköhler number but here we explore the unstable displacements. We start by understanding

how the onset time varies with varying viscosity contrast and the Péclet number and then gain

insight into the overall VF dynamics.

4.4.2.1 Onset of instability

The time when the fingers start to appear is referred to as the onset time of instability ton. The

density plots of product concentration for |Rc| = 4 and Pe = 1000 are shown in figure 4.5. It is

evident from figure 4.5(a) that the fingering appears early for Rc = 4 in comparison to Rc = −4

in figure 4.5(b). This is due to the upstream mixing zone where the radial velocity is higher (than

at the downstream mixing zone), is unstable for Rc > 0. We quantify the onset time with the
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F I G U R E 4 . 6 : (a) Temporal evolution of the interfacial length for various Rc and Pe = 3000.
Clearly, the onset of instability is early for Rc > 0. Inset: δI versus t for |Rc| = 2 showing the
delayed onset for Rc = −2. (b) The onset time versus |Rc| showing a delayed onset for Rc < 0.

help of the interfacial length defined as [94]

I(t) =

∫ x2

x1

∫ y2

y1

√(
∂c

∂x

)2

+

(
∂c

∂y

)2

dy dx. (4.21)

The product has the same viscosity as the reactants for Rc = 0 and hence a stable displacement

is observed. We denote the interfacial length corresponding to Rc = 0 as I0 and use the same as

the reference for stable displacement. If the interfacial length for any Rc ̸= 0 coincides with

I0 for some time, we regard the displacement as stable up to that time and denote the time

when the two interfacial length curves start to deviate as ton. We plot the interfacial length

as a function of time for various Rc and Pe = 3000 in figure 4.6(a). Clearly, for some |Rc|,

I(t) for Rc < 0 deviates from I0(t) at a later time in comparison to the deviation for Rc > 0,

indicating an early onset for Rc > 0. This is in contradiction to the delayed onset for Rc > 0

reported in the rectilinear geometry [35]. This can be attributed to the key difference between

the rectilinear and the radial displacement which arises due to their respective velocity profiles.

In rectilinear displacement, the velocity profile is uniform [101] which results in delayed onset

for Rc > 0 as instability appears in a direction opposite to the flow. But in radial geometry, the

velocity is spatially varying; the radial component of velocity being, ur = 1/2πr [102]. This

velocity feeds instability with higher convective velocity when the product is more viscous and

instability appears at upstream mixing zone resulting in early instability for Rc > 0. Further, it

is observed that with an increase in |Rc|, the deviation occurs at the same time (see figure 4.6(a))

as sufficient product to trigger the instability is generated early. This is in agreement with the
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F I G U R E 4 . 7 : (a) Onset time ton versus Rc for Pe = 3000, 1000, 500 showing a delayed
onset for smaller Pe. (b) Plot for Rc versus Pe for a given time t.

instability generated by a chemical reaction with finite Da [94]. Of course, for a fixed Pe and

Rc, the onset is early with an increase in Da but the force due to convection is the ultimate force

out of the three forces due to convection, diffusion and reaction in action, deciding onset in this

case.

For a fixed Pe, we calculate the absolute difference δI(t) = |I(t) − I0(t)| in the interfacial

length of Rc ̸= 0 and Rc = 0 and define the onset time of instability as

ton = min{t > 0 : δI > tol}, (4.22)

here we have used tol to be O(10−3). We plot ton versus |Rc| for Pe = 3000 in figure 4.6(b).

Clearly, the onset is early for a larger viscosity contrast. It is evident that the displacement is

more stable for Rc < 0 as ton is more than that for the corresponding Rc > 0. Further, with

an increase in |Rc|, the two curves approach each other indicating the onset time becomes

independent of the sign of Rc which is a feature of radial displacement [94]. Also, no ton is

obtained for various |Rc|, for instance, |Rc| = 1.5. This is because a stable displacement is

observed for such viscosity contrast indicating that the force due to reaction is not sufficient to

trigger the instability. We conclude that for any time t < ton, stable displacement is observed,

while the VF instability is visible for t ≥ ton. Thus, the onset time can be used to divide the

t−Rc phase space into two zones with the region below the curve being the stable one and the

region above the curve being unstable zone. Hence, this t−Rc phase space provides information

about the completely stable displacements and the time when instability is observed for the first
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time if the displacement is unstable.

We determine the onset time of instability for various |Rc| by varying Pe. The onset time ton

versus |Rc| for various Pe is shown in the figure 4.7(a). It is evident that for each Pe, the onset

time follows the same trend as explained for Pe = 3000. However, the stable zone in the t−Rc

phase space increases with a decrease in Pe. Interestingly, the onset time or equivalently, the

curves marking the boundary between stable and unstable region of t−Rc phase space can be

made independent of Pe (see figure 4.9) using a rescaling which we obtain as explained below.

4.4.2.2 Dependence of ton on Rc and Pe

Since the width of the stable region is different for each Pe, thus for each time, we find a

relationship between the Péclet number and Rc. We explain below the procedure used to find a

relation between Rc > 0 and Pe. A similar procedure is used for Rc < 0 and Pe. We fix a time

t and for a range of Pe, choose the Rc > 0 values lying on the boundary between the stable and

unstable zone of the t − Rc phase space. Thus obtained (Pe,Rc) pairs are plotted for each t

as shown in figure 4.7(b). It is evident that for a fixed Pe, there exists a range of Rc for which

stable displacement is observed at the given time t, indicating a continuous competition between

the forces due to convection and diffusion. In fact, we find a stable zone sandwiched between

two unstable zones for each time. Further, a loglog plot is given in figure 4.8. Interestingly, the

curves thus obtained follow a similar trend for each time t and using the cftool of MATLAB [1],

we obtain a power law between R+
c and Pe as

R+
c = 260Pe−0.64, (4.23)

where R+
c corresponds to the positive log-mobility ratio for which stable displacement is

observed for all time and fixed Pe. Similarly, the power law obtained for the negative log-

mobility ratio up to which flow is stable, R−
c and Pe is

R−
c = −160Pe−0.58. (4.24)

It is clear that the onset time will exist only when |Rc| > |R±
c |.
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F I G U R E 4 . 8 : Log-log plot of Rc versus Pe at various time t. These curves can be well fitted
using the power law R−

c = −160Pe−0.58 for Rc < 0 in (a) and R+
c = 260Pe−0.64 for Rc > 0

in (b).

Now, to obtain the dependence of the onset time on Rc and Pe, we utilize the relation between

R±
c and Pe. We assume a fitting for ton as

ton ∝ (|Rc|Peβ1 − β2)
β3 , (4.25)

where the sign of Rc decides the constant of proportionality and βi, i = 1, 2, 3. The constants

β1, β2 are obtained using equation (4.23), (4.24) and the fact that ton does not exist for completely

stable displacement. Consequently, for any Rc corresponding completely stable displacement,

ton is not defined thus, we can take

β1 = 0.64, β2 = 260 for Rc > 0, (4.26)

β1 = 0.58, β2 = 160 for Rc < 0, (4.27)

and β3 must be negative. We obtain the constant of proportionality and β3 using cftool of

MATLAB [1] and the onset time of instability for any |Rc| and Pe can be obtained as

ton = 31.1(Pe0.64Rc − 260)−1.22, Rc > 0, (4.28a)

ton = 437(Pe0.58|Rc| − 160)−1.85, Rc < 0. (4.28b)
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F I G U R E 4 . 9 : Onset time curves for various Pe, merged into a single curve for (a) Rc < 0
and (b) Rc > 0.

We plot ton versus RcPe
β1 for Rc < 0 in figure 4.9(a) and Rc > 0 in figure 4.9(b). The onset

time appears independent of Pe as all the points fall together around a single black curve

which represents the onset time calculated in equations (4.28). In other words, the boundary

between the stable and the unstable zone is found to follow the power law defined above in

equations (4.28). We obtain one boundary between stable and unstable regions independent of

Pe. This relation can be used to find whether a displacement corresponding to any |Rc|, and Pe

is completely stable or not. If ton is not defined which may happen when the quantity within the

bracket in equation (4.28) is negative or zero, then the displacement is completely stable while a

finite value of ton corresponds to the onset time for instability for the given |Rc| and Pe.

4.4.2.3 Finger length

After the onset of fingering instability, different dynamics are observed depending on Pe and

the sign of Rc. In this section, we discuss these dynamics, focusing basically on the length of

the fingers. Sharma et al. [94] observed that for a fixed finite Da, the length of the fingers for

Rc > 0 is greater than that for corresponding Rc < 0 but the two finger lengths approach each

other with an increase in Da. However, for infinite Da, we observe that the length of the fingers

depend upon Rc and Pe and a transition is observed which we discuss and quantify below.

For better visualization and comparison of the length of the fingers, we make the transformation

from the (x, y) coordinates to (r, θ) coordinates as in [94]. The density plots of the product

concentration are shown in figure 4.10 for Pe = 1000 and various Rc. It must be noted that the
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and (a) Rc = 4, (b) Rc = −4, (c) Rc = 5.5 and (d) Rc = −5.5 at final time t = 1. For Rc < 0,

the vertical axis is reversed for a better comparison of the finger length.
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F I G U R E 4 . 1 1 : (a) Temporal evolution of L− and L+ for Pe = 1000 and various Rc. (b)
Length of inward and outward fingers for Rc = 5,−5 and Pe = 2000, 700. Here solid lines are
for Rc = 5 and dashed lines are for Rc = −5. Clearly, transition in VF dynamics also occurs

for a given viscosity ratio and varying Pe.

fingers for Rc < 0 appear at the downstream mixing zone but we have reversed the vertical axis

(r-axis) in figure 4.10(b, d) so that the fingers face in one direction for both positive and negative

Rc and ease the visual comparison. Evidently, the length of the fingers is larger for Rc = 4 than

for Rc = −4 (as evident from comparison of figure 4.10(a,b)). However, if we compare the

length for |Rc| = 5.5 in figure 4.10(c,d), the trend seems to be opposite with the fingers being

visibly longer for Rc = −5.5 than for Rc = 5.5.
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In order to quantify the length of the fingers, we average the product concentration c(θ, r, t)

along the θ direction to obtain the averaged product concentration ⟨c(r)⟩(t) as [94]

⟨c(r)⟩(t) = 1

2π

∫ 2π

0

c(θ, r, t) dθ. (4.29)

The first and the last r values for which ⟨c(r)⟩(t) > 0.005 for Rc = 0 are termed as r0,in and

r0,out [94]. Similarly, rin and rout are the points defined for Rc ̸= 0. The distance between

r0,out and rout denoted as L+ corresponds to the length of the fingers at the downstream mixing

zone. We refer to such fingers as outward fingers as these fingers appear away from the source.

From the discussion so far, it is evident that the outward fingers are more prominent for Rc < 0.

Similarly the fingers at the upstream mixing zone are referred to as the inward fingers with their

length being denoted L− and being the distance between r0,in and rin. Mathematically, we can

write [94]

L− = r0,in − rin, L+ = rout − r0,out. (4.30)

We plot the length of the fingers for a fixed Pe = 1000 and various Rc in figure 4.11(a). Clearly,

at all times, L− for Rc = 4 is larger than L+ for Rc = −4 which supports the observations

of figure 4.10 and is a contradiction to the result in rectilinear geometry [67] where fingers

are longer when the sample is less viscous. Further, with an increase in the magnitude of

Rc, we observe a transition in the finger length with time. Initially, inward fingers are longer

for Rc = 4.6 than outward fingers for Rc = −4.6. After some time, the outward fingers for

Rc = −4.6 grow more than the inward fingers for Rc = 4.6. Ultimately, we observe a complete

shift in the length of the fingers, the outward fingers are longer for Rc = −5.5 than the inward

fingers for Rc = 5.5 at all times except some initial time, as evident by a comparison of L+

for Rc = −5.5 with L− for Rc = 5.5. It is verified that L+ for Rc < 0 is longer than L− for

Rc > 0 on increasing |Rc| further. Thus, fixing Pe, we observe that a transition in the length

of the fingers is observed with an increase in Rc. Further, we see what happens if we vary Pe

for a fixed Rc by plotting the finger length as a function of time in figure 4.11(b). It is evident

that the trend in the relation between L+ and L− reverses with an increase in Pe. Thus, we

observe a unique dependence on the length of the fingers on the governing parameters which is

not observed for finite Da and appears to be a feature of an infinitely fast reaction rate. But what

is responsible for this kind of dependence? To answer this question, we look back into the onset

of instability and the spatially dependent velocity.
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As discussed in §4.4.2.1, the onset time of instability is early for Rc > 0 than for corresponding

Rc < 0 but the onset time becomes independent of the sign ofRc with an increase in the viscosity

contrast. This is due to the spatially varying velocity and is the reason behind the dependence of

the length of fingers on Rc. As ton is early for Rc = 4, so fingers start to grow at the upstream

mixing zone earlier and with faster convection velocity in comparison to the outward fingers

for Rc = −4 which appear late and with lesser convection velocity. This results in larger L−

for Rc = 4 than L+ for Rc = −4. As |Rc| increases the difference between ton decreases and

so does the finger length. Ultimately when ton is independent of the sign of Rc, the fingers

appearing at the downstream mixing zone are longer than the inward fingers as the outward

fingers grow radially outward in the direction of the flow which results in L+ for Rc < 0 to be

more than the L− for the corresponding Rc > 0.

4.5 Conclusion

The viscous fingering dynamics induced by an infinitely fast chemical reaction between reac-

tants having same viscosity and undergoing radial displacement is discussed. The numerical

complexity arises due to a non-dimensional number Da → ∞ for such chemical reactions.

Thus, for the mathematical modeling of such reactions, the governing equations must be dealt

properly to achieve numerical convergence. We present the governing equations comprising a

system of three coupled convection-diffusion-reaction equations each containing Da. However,

it is shown that using suitable transformation, the dynamics can be understood using only one

convection-diffusion equation, coupled to the equations of fluid flow. The resulting system

of equations is solved numerically using a hybrid numerical scheme based on compact finite

difference and the pseudo-spectral method. The solution of the equations is utilized to extract the

knowledge about the concentration of the reactants as well as products, which is used to see the

relative effect of the forces due to convection, diffusion and reaction. We assume the reactants

having same viscosity and instability appear only when the product has a different viscosity

than the reactants. A more viscous product results in flower like instability, while crown like

instability is observed when the product is less viscous than the reactants.

ForDa→ ∞, the chemical reaction results in a sufficient amount of product as soon as reactants

come into contact and the displacement is expected to become unstable as soon as the product is
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generated. On the contrary, we observe stable displacement even for such high Da. Thus, an

interplay of the forces due to convection, diffusion and reaction affects the overall dynamics.

For Da → ∞, although the force due to reaction is high but the triggering of the instability

also depends upon other two non-dimensional parameters Pe,Rc which are a measure of other

two forces due to convection and diffusion. We quantify this by measuring the onset time of

instability, ton, which is the minimum time when the instability appears. Using density plots of

the product concentration and quantification based on the interfacial length, it is shown that the

onset time of instability is a function of both Pe and Rc. For a fixed Pe, the onset is found to be

delayed for Rc < 0 which is in contrast to the results reported for rectilinear displacement [35].

However, the onset time becomes comparable for |Rc| with an increase in the viscosity contrast

between the reactants and the product, and this is found to affect the fingering dynamics at a

later time when finger length is found to depend on the sign of Rc. On the other hand, the onset

time increases with a decrease in Pe for a fixed Rc, as the stabilizing force due to diffusion is

strong for smaller Pe. Using a proper fitting, we make the onset time independent of Pe and it

is observed that ton curves for various Pe merge into a single curve. The onset time divides the

entire time into two parts, one corresponding stable displacement when t < ton, and unstable

displacement is observed for the remaining time t ≥ ton. Thus, the onset time of instability

divides the t − Rc phase space into three zones with a stable zone sandwiched between two

unstable zones. There exist reactions for which no finite ton is observed, a stable displacement at

all times is observed for such reactions, which is never observed for rectilinear displacement.

Further, we analyze the evolution of the fingering patterns at later times. ForRc < 0, the outward

fingers appear while inward fingers are observed for Rc > 0. It is reported that the inward fingers

for Rc > 0 are longer than outward fingers for Rc < 0, which is in contrast to that observed for

rectilinear displacement [67]. This is due to larger convection at the unstable front and early

onset time for Rc > 0. However, with an increase in |Rc|, the inward finger length for Rc > 0

and the outward finger length for Rc < 0 approach each other and we observe a transition in the

finger length. There exists a |Rc| for fixed Pe after which the outward finger length for Rc < 0

becomes larger than the inward fingers for Rc > 0. This transition appears to be due to infinite

Da as no such transition is reported for finite Da [94]. A similar transition in VF dynamics is

obtained for varying Pe and a given viscosity ratio.

Our results help us to understand the non-linear interaction between chemical reactions and VF
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dynamics. The study finds application in controlling VF using chemical reactions, for increasing

mixing in micro-fluidic devices and point-of-care devices.



Chapter 5
Non-modal linear stability analysis of reactive viscous

fingering for rectilinear flow for infinitely fast reactions

5.1 Introduction

In the preceding three chapters, we have focused on the reactive displacements undergoing

radial flow geometry. However, the initial exploration of numerical modeling for studying

reactive viscous fingering (VF) was introduced in the context of rectilinear flow geometry by

Gérard and De Wit [31]. They have performed numerical simulations and focused on a specific

case characterized by Rb = 0 and Rc > 0. Subsequently, Hejazi and Azaiez [34] investigates

the remaining dynamics of VF influenced by chemical reactions by examining the impact of

viscosity modification expressed as µ = eRbb+Rcc. Due to the difference in the basic velocity

profile, the flow properties vary in different flow geometries. For rectilinear flow, the velocity

profile is uniform, feeding the convection to the interface for the entire time domain, and does

not attribute any critical viscosity contrast, a distinction from radial flow. On the contrary, the

velocity profile decreases with radial distance for radial flow geometry, attributed to the existence

of critical parameters to trigger the instability. In addition, Brau and De Wit [10] has obtained in

their study that chemical reaction generates less amount of product in rectilinear flow geometry

than the radial flow geometry. Evidently, it affects the reactive VF also. In this chapter1, we

study how the geometry affects the stability of reactive flow.

To understand the reactive displacement in the linear regime, Hejazi et al. [35] conducted a modal

analysis using the Quasi-Steady-State Approximation (QSSA) approach. The QSSA approach

assumes that the base state changes at a slower rate compared to the perturbations. Thus, the

base state is considered to be steady by freezing times and QSSA solely focuses on the temporal

progression of disturbances, resulting in the neglect of any rate of change in the base state.

However, the reactive system may exhibit transient growth due to the negligence of an unsteady

base state, which can not be captured by QSSA. Further, it is shown that QSSA is unable to

1This chapter is submitted for publication.
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anticipate the onset of instability for non-reactive fluids. Previous studies by Tan and Homsy

[101] and Hota et al. [39] have shown that QSSA is unable to accurately represent the initial

diffusive dynamics in non-reactive fluids. To investigate the transient growth, it is necessary

to employ a non-modal linear stability analysis (NMA) [86, 39]. In addition, the reactive flow

may exhibit a non-monotonic viscosity profile. The presence of both unstable and stable regions

serves as to the significance and complexity of these viscosity profiles. Hota and Mishra [37]

conducted NMA on non-monotonic viscosity profiles for non-reactive displacements. It is

demonstrated that the underlying physical mechanism is impacted by both the viscosity contrast

at the endpoints and the maximum viscosity caused by the non-monotonic viscosity profile.

Further, the perturbation contours are formed in quadruple structures. However, the QSSA

analysis falls short of capturing these findings.

In this chapter, we focus on the reactive flow with infinitely fast reactions only. Although a

majority of experiments are conducted with infinitely fast reactive flow [71, 83], theoretical

attention is not given much to such reactive flow [53, 35]. To the best of our knowledge, no

literature performs non-modal analysis for reactive systems for rectilinear flow that deals with

infinitely fast reactions. In the present study, we compute the onset time of instability and optimal

initial condition, which corresponds to the maximum growth rate, and corresponding temporal

evolution to determine the transient behavior of a reactive system. Furthermore, agreement with

existing numerical results is demonstrated, and a comparison is made between our findings and

the conclusions drawn by QSSA.

The chapter is organized as follows. In section §5.2, the mathematical formulation for reactive

flow with infinitely fast reactions. Following base state and transient energy growth, the

linearized perturbed equations are derived for carrying out NMA using the propagator matrix

approach in section §5.3. An analytical formulation for base state concentration profiles of all

three fluid species for infinitely fast reactions in the self-similar domain for rectilinear flow is

provided. Along with conclusions and suggestions for future research, section §5.4 compares

the QSSA results with the results of the NMA results in section §5.5.
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5.2 Mathematical formulation

We consider the uniform displacement of two reactive fluids, named A and B, that undergo a

second-order chemical reaction A+B → C and generate C in a homogeneous porous medium

having constant permeability, κ̃ as represented in figure 5.1. All the fluid species are considered

to be miscible, incompressible, Newtonian, neutrally buoyant, and have the same diffusion

coefficient, D̃.

F I G U R E 5 . 1 : Schematic of the two-dimensional rectilinear reactive flow A+B → C. The
dashed lines illustrate the initial position of the interface and Ũ0 is the velocity at which the
reactant A has been injected. Here, brown and black colored regions are occupied with reactants

A and B. The reaction zone is occupied by all three fluids.

The above-mentioned flow can be formulated mathematically as [35, 31]:

∇̃ · ũ = 0, (5.1a)

∇̃p̃ = − µ̃
κ̃
ũ, (5.1b)

∂ã

∂t̃
+ ũ · ∇̃ã = D̃∇̃2ã− k̃ãb̃, (5.1c)

∂b̃

∂t̃
+ ũ · ∇̃b̃ = D̃∇̃2b̃− k̃ãb̃, (5.1d)

∂c̃

∂t̃
+ ũ · ∇̃c̃ = D̃∇̃2c̃+ k̃ãb̃. (5.1e)

Here equation (5.1a) is the continuity equation for mass conservation, equation (5.1b) is Darcy’s

law for momentum conservation, equation (5.1c)-(5.1e) are convection-diffusion-reaction (CDR)

equations for averaged mass volume conservation for fluid A, B, and C. Further, ũ = (ũ, ṽ), p̃,

and (ã, b̃, c̃) denotes velocity, pressure, and fluid concentrations of A, B, and C, respectively.
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Since we aim to study the VF dynamics in the reaction zone only and the fluid (reactant A)

is injected with a uniform velocity Ũ0, we have switched to a moving reference frame by

considering x̂ = x̃− Ũ0t̃ and û = (ũ− Ũ0, ṽ). Further, we non-dimensionalize the equations

(5.1). The characteristic scales that are used to non-dimensionalized are as follows [31, 35]:

x =
x̃

D̃/Ũ0

, u =
ũ

Ũ0

, t =
t̃

D̃/Ũ2
0

,

(a, b, c) =
(ã, b̃, c̃)

ã0
, µ =

µ̃

µ̃0

, p =
p̃

D̃µ̃0κ̃
,

where ã0 and µ̃0 are the initial concentration and viscosity of the reactant A, respectively. Here,

the dimensional variables are denoted with a tilde, ∼, and for brevity, both tilde (̃·) and hat (̂·)

have been dropped in the non-dimensional forms. Thus, the following system of equations (5.1)

in a non-dimensionalized form in moving frame of reference, can be described as:

∇ · u = 0, (5.2a)

∇p = −µ(u+ î), (5.2b)

∂a

∂t
+ u · ∇a = ∇2a−Da ab, (5.2c)

∂b

∂t
+ u · ∇b = ∇2b−Da ab, (5.2d)

∂c

∂t
+ u · ∇c = ∇2c+Da ab. (5.2e)

Here, the Damköhler number Da represents the ratio of diffusive time scale D̃/Ũ2
0 to reactive

time scale 1/k̃ã0. Here k̃ is the kinetic constant of the reaction. It shows how rapidly or gradually

a reaction occurs. Further, to complete the system, the viscosity-concentration relation is defined

as viscosity depends on fluids concentrations exponentially as follows [35] :

µ = µ(a, b, c) = e(Rcc+Rbb), (5.3)

Rb = ln

(
µB
µA

)
, Rc = ln

(
µC
µA

)
, (5.4)

where, µA = µ(a = 1, 0, 0), µB = µ(0, b = 1, 0) and µC = µ(0, 0, c = 1). The system
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of equations (5.2) is supplemented with the initial condition for velocity, u = 0 and fluid

concentrations,

(a, b, c)(x, y) = (1− H (x), H (x), 0) =

(0, 1, 0), x > 0,

(1, 0, 0), x ≤ 0,

where H (x) is the Heavy-side function. While boundary conditions are the following [39] :

u = 0,
∂a

∂x
=
∂b

∂x
=
∂c

∂x
= 0 for |x| → ∞, (5.5a)

∂a

∂y
=
∂b

∂y
=
∂c

∂y
= 0,

∂v

∂y
= 0 for |y| → ∞. (5.5b)

In this study, we aim to do stability analysis when the reaction rate is infinitely fast, i.e.,Da→ ∞.

To incorporate with Da→ ∞, the conserved scalar technique is utilized and the system of CDR

equations is reduced into a convection-diffusion equation [66, 20]. The fluid concentrations are

assigned for Da→ ∞ as follows [69, 113]:

∂z

∂t
+ u ·∇z = ∇2z, (5.6a)

(a, b, c) =

(0, 1− 2z, z), z < 0.5,

(−1 + 2z, 0, 1− z), z ≥ 0.5,

(5.6b)

where initial condition for z are z(x, y, t = 0) = 1− H (x) and at boundary z follows far-field

boundary condition.

5.3 Linear stability analysis

In this section, a steady base state solution is presented for a reactive system subject to infinitely

fast reaction. It consists of a reaction-diffusion system with an infinitely fast reaction, and an

analytical solution in the (x, t) domain is provided. It is defined by the equation (5.2) in the

absence of no viscosity contrast in the system and ub = 0. In the absence of viscosity contrast,

z follows the diffusion equation for x-direction whose solution can be written in terms of the
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complementary error function:

zb =
1

2
erfc

(
x

2
√
t

)
. (5.7a)

Since, zb(x > 0) < 0.5 and zb(x ≤ 0) ≥ 0.5, the reactants and product concentration distribution

will be as follows:

(Ab, Bb, Cb) =

(0, 1− 2zb, zb) x > 0,

(−1 + 2zb, 0, 1− zb) x ≤ 0.

(5.7b)

Further, the base state is perturbed with infinitesimal perturbations with orders of magnitude of

O(10−3).

(a, b, c, z) = (Ab, Bb, Cb, zb) + (a′, b′, c′, z′), (5.8a)

u = 0+ u′, µ = µb + µ′, (5.8b)

where prime notations are for perturbed quantities. Further, the perturbed pressure, p′, is

eliminated by using the curl of the perturbed equations of Darcy’s law, and the perturbed

continuity equation is then used to eliminate v′. The linearized perturbed system of equations is

obtained as:

[
∂2

∂x2
+

∂2

∂y2
+

(
Rb
∂Bb

∂x
+Rc

∂Cb
∂x

)
∂

∂x

]
u′ = −Rb

∂2b′

∂y2
−Rc

∂2c′

∂y2
, (5.9a)

∂z′

∂t
+
∂zb
∂x

u′ =

(
∂2

∂x2
+

∂2

∂y2

)
z′, (5.9b)

(a′, b′, c′) =

(0,−2z′, z′), x > 0,

(2z′, 0,−z′), x ≤ 0.

(5.9c)

The above set of equations is linear in terms of a function of y that allows the perturbations in

the given form of Fourier mode decomposition

(z′, a′, b′, c′, u′, µ′) = (ϕz, ϕa, ϕb, ϕc, ϕu, ϕµ)(x, t)e
iky,

where k is the non-dimensional wave number. The reduced set of equations are

L1ϕu = L2ϕb + L3ϕc, (5.10a)
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∂ϕz
∂t

= L4ϕz + L5ϕu, (5.10b)

where
L1 = D2

x − k2Ix + (RbDxB +RcDxC)Dx, L2 = k2RbIx,

L3 = k2RcIx, L4 = D2
x − k2Ix, L5 = −Dxzb,

ϕa = 2(Ix − Hx)ϕz, ϕb = −2Hxϕz, ϕc = (2Hx − Ix)ϕz,


with Dx =

∂

∂x
; Ix and Hx are Identity and Heaviside operators, respectively. The system of

equations (5.10) can be re-written as:

∂ϕz
∂t

= L ϕz, L = L4 + L5L
−1
1 (2(L3 − L2)Hx − L3). (5.11)

The analytical solution to equation (5.11) is unattainable, so we have to rely on the numerical

method. The numerical domain is considered as Ω = [−L,L], discretized into n+ 2 grid points.

The initial condition associated with the equation (5.11) is ϕz(x, 0) = α rand(x) where α is the

magnitude of perturbations is of order O(10−3) and at boundary ϕz(t) = 0. Here, rand(x) is

a random function that considers the value between -1 and 1. It is evident that the system in

the equation (5.11) is a non-autonomous system. As a result, the conventional modal analysis

is not applicable to solving such a system [28]. To solve the system of equations (5.11), one

method is QSSA discussed in literature [35]. We discuss QSSA based on modal analysis and the

limitations of QSSA in detail in subsection §5.4.4.

5.3.1 Non-modal analysis

Following discretization, the partial differential equation (5.11), transforms into a matrix-valued

differential equation. When employing non-modal analysis, there are two methods available

for solving the system. The first approach involves performing initial value calculations (IVC)

using random initial conditions. However, when dealing with non-reactive fluids, two significant

challenges arise. The initial challenge relates to selecting a representative initial condition

that corresponds to the optimal amplification of perturbations. Secondly, these perturbations

should be localized at the interface. However, the perturbations take more time to localize at

the interface in the IVC with random initial conditions because it is dispersed over the entire

domain. Moreover, in IVC, this arbitrary initial condition may not correspond to the optimal
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perturbation amplification. We address both the issues here for reactive flow and overcome by

utilizing the propagator matrix method approach.

5.3.1.1 Self-similarity transformation

The base-state solution zb, equation (5.7), is time-dependent which results in inaccurate predic-

tion of growth of the perturbation determined by QSSA [101]. To overcome this, we consider a

self-similar coordinate system, (ξ, t) =
(
x√
t
, t

)
which provides an implicit time-independent

base state. Moreover, in the case of the non-reactive flow, it is observed that in the self-similar

coordinate system, the concentration eigenfunctions are localized around both base state and

dominant eigenmode e−ξ2/4, providing the accurate prediction of the perturbed quantities [39].

Further, the concentration eigenfunction determined from the IVC in (x, t) coordinate system

converges to the dominant mode but at a later time of the onset. So it is preferable to perform

calculations in the (ξ, t) domain.

Hence, the equation (5.10) can be re-cast in self-similarity transformation as:

∂ϕz
∂t

=Mϕz, M =M4 +M5M
−1
1 (2(M3 −M2)Hξ −M3), (5.12)

where

M1 = D2
ξ − k2Iξ + (RbDξBb +RcDξCb)Dξ, M2 = k2RbIξ,

M3 = k2RcIξ, M4 = D2
ξ − k2Iξ + (ξ/2

√
t)Dξ, M5 = −Dξzb,

ϕa = 2(Iξ − Hξ)ϕz, ϕb = −2Hξϕz, ϕc = (2Hξ − Iξ)ϕz,Dξ =
1√
t
∂
∂ξ
.


The spatial derivatives are discretized using center finite difference formulas, and hence, the

initial value problem described in equation (5.12) can be written in matrix form:

dϕz
dt

= Mϕz. (5.13)

Furthermore, a singularity is encountered within the system of equations (5.13) at the time t = 0.

To eliminate this singularity from our system, the temporal domain is confined to the interval

(tp, t), with tp selected at the order of O(10−3), as in Hota et al. [39].
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5.3.1.2 Propagator matrix approach

To utilize the propagator matrix approach, we consider:

ϕz = Ψ(tp; t)X0. (5.14)

Here X0 is the random initial condition and Ψ(tp; t) is the propagator matrix and satisfies the

following matrix-valued differential equation

d

dt
Ψ(tp; t) = MΨ(tp; t); Ψ(tp; tp) = I , (5.15)

where I is an identity matrix of n× n.

By opting for the propagator matrix approach, we deal with a deterministic system of differential

equation (5.15) with initial condition Ψ(tp; tp) = I instead of a vector differential equation

system with random initial condition. The propagator operator, Ψ(tp; t), is the one that passes

information from the initial perturbation time (tp), when the perturbation is introduced to the

base state, to a later time, t. The initial value problem, (5.15) is solved using the method of lines.

For the same, the Runge-Kutta method of fourth order with an inbuilt MATLAB function [1],

ode45, with an absolute error of order O(10−5) is utilized. convergence study and validation of

the numerical scheme are provided in §5.3.1.4, respectively.

5.3.1.3 Transient energy growth

In the non-modal stability analysis, the amplification magnitude of the perturbations is measured

by normalizing with the initial perturbation magnitude at time tp.

Gϕ(t) =
Eϕ(t)

Eϕ(tp)
,

where Eϕ(t) = ∥ϕz(t)∥ =
∫∞
−∞ ϕz(t)

2dx and ∥ · ∥ is the L2 norm. The maximum energy that

a perturbation can have while taking into account all possible initial conditions is denoted by

G(t), which represents the optimal amplification [39],

G(t) = max
ϕz

Gϕ.
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The optimal amplification G(t) depends on t as well as other parameters such as log mobility

ratios Rb and Rc and wave number k. Further, growth rate, σ, is defined as the rate of relative

change in optimal amplification [39, 106]:

σ(t) =
d(ln(G(t)))

dt
.

When the growth rate, σ > 0, the system is unstable; when σ < 0, the system is stable. While

the system is neutrally stable when σ = 0. The time when G(t) starts to increase is called onset

time,

ton = min
t≥0

(σ(t) > 0).

In order to find optimal amplification, the singular value decomposition of the propagator matrix,

Ψ(tp; tf ) = UMV T is determined where superscript T stands for transpose of the matrix, the

diagonal elements of M are the singular values, and tf is the final time integration. The optimal

amplification G(t) is thus obtained from the largest singular value of the propagator matrix,

Ψ(tp; tf ) while the optimal initial condition is provided by the corresponding right singular

vector, V , and the evolved state for time t is provided by the left singular vector, U . Further,

We consider the maximum growth rate and optimal amplification with respect to k where the

range of wave number, k is determined by QSSA for which σ > 0. In the next section §5.4,

we demonstrate the temporal evolution of optimal perturbation structures by plotting optimal

amplification.

5.3.1.4 Convergence study and validation of numerical scheme

A convergence analysis is conducted to ensure that the numerical quantities utilized throughout

this study, such as optimal amplification, remain unaffected by the coding parameters. Numerical

integration is carried out in MATLAB using built-in functions such as ode45 with an absolute

error tolerance of order O(10−5). The convergence analysis is specifically focused on spatial

discretization, denoted as dx. For this purpose, simulations are performed for five sets of spatial

step sizes, with dx ranging from 0.2 to 1. The numerical solution corresponding to the minimum

value of dx, specifically dx = 0.2, is chosen as the exact solution. The error corresponding to
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F I G U R E 5 . 2 : Optimal amplification for Rb = 2, Rc = −2, k = 0.2 and various dx. Here the
markers denote the onset time. The onset time does not alter by taking dx = 0.4 in comparison

to dx = 0.2. Inset: absolute error versus dx.

each dx is computed as follows:

ϵ = max
t

∥∥∥∥G(dx)−G(dx = 0.2)

G(dx = 0.2)

∥∥∥∥
The optimal amplification is plotted for Rb = 2, Rc = −2, k = 0.2 and various dx in figure

5.2. It is evident that the relative error decreases with decreasing dx value and reduces ϵ < 1%

by taking dx = 0.4. Thus, in all of our calculations, dx is fixed to 0.4 for optimal results with

minimal computational time and optimal accuracy. The remaining constants, namely domain

length, L, and perturbation time, tp, are chosen as in Hota et al. [39].

TA B L E 5 . 1 : The parameters and corresponding values used in the numerical study.

Parameters dx L tp

Values 0.4 100 10−3

Further, we validate our numerical scheme. To do the same, the results of Hota et al. [39]

are reproduced. Equation (5.6b) allows us to deduce that z follows the convection-diffusion

equation, where z = b+ c. Furthermore, if the condition Rb = Rc is considered, the viscosity

profile is reduced to a monotonic viscosity profile resembling the non-reactive system with

a viscosity profile µ = eRbz. Consequently, the governing system of equations replicates a

non-reactive system. Using this fact, a comparison is made between the optimal amplification

for Rb = Rc = 3 and the non-reactive system for Rb = 3. It is expected that the optimal



104 Chapter 5 Non-modal analysis of reactive flow for infinitely fast reactions
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F I G U R E 5 . 3 : (a) Viscosity profile (b) optimal amplification for Rb = 3; Da = 0 and
Rb = Rc = 3; Da → ∞.

amplification curve remains the same for both Rb = 3;Da = 0 and Rb = Rc = 3;Da → ∞.

The obtained results are displayed in Figure 5.3, and that confirms the expectation.

5.4 Result and discussion

To develop a thorough comprehension of the fundamental attributes of a reactive system in the

context of stability analysis, encompassing the onset time of instability and the growth rate

of perturbation, the reactive system is categorized based on its viscosity profile. Further, the

behavior of the system is analyzed after the product is formed, with a specific emphasis on

whether the viscosity profile has a non-monotonic or monotonic trend. Since the reaction rate is

infinitely fast, a mixed zone made up of reactant concentrations, a ̸= 0, b ̸= 0, will not exist as

the product forms immediately after the reactants come into contact. Thus, the reaction zone,

where C is generated and gets mixed, can be divided into two separate zones. We term them

upstream and downstream mixing zone, situated at ξ < 0 where fluid A and C are mixed, and

ξ > 0 where fluid B and C are mixed, respectively.

From the base state concentration distribution, it can be observed that Ab +Bb + 2Cb = 1 (see

appendix B) and Ab(ξ > 0) = Bb(ξ < 0) = 0. Also, the base state concentration profile of

A and B mirror image to each other about the line ξ = 0, i.e., Ab(ξ) = Bb(−ξ). Using these

observations, the base state viscosity profile, µb = eRbb+Rcc can be re-written for an infinitely
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fast reaction as below:

µb =


exp

(
Rc

2

)
exp

(
−Rc

Ab
2

)
ξ < 0,

exp

(
Rc

2

)
exp

[(
Rb −

Rc

2

)(
Bb

2

)]
ξ ≥ 0.

(5.16)

Equation (5.16) indicates that the nature of the viscosity profile at these two zones depends on the

sign of Rc (Rb −Rc/2) [35]. If Rc (Rb −Rc/2) ≥ 0, the viscosity profile remains monotonic

after the reaction. Otherwise, it becomes non-monotonic. We first discuss the flow dynamics of

chemical reactions for the former case for which the viscosity profile remains monotonic.

5.4.1 VF dynamics when viscosity profile is monotonicRc (Rb −Rc/2) ≥ 0

To analyse the monotonic viscosity profile between the lines Rc = 0 and Rc = 2Rb, the

(Rb, Rc) phase plane is shown in figure 5.4(a). It is observed that when Rc = Rb, the viscosity

profile is also unaffected by the product viscosity. The stability analysis for this particular case

allows us to compare the dynamics of the VF in the reactive system. The investigation helps in

assessing the potential influence of the chemical reaction on the viscosity profile and analyzing

its consequences on the stability of the flow. Moreover, upon examining the viscosity jump at

the two lines Rc = 0 and Rc = 2Rb, it can be observed that the unstable region is localized at

the downstream and upstream mixing zones, respectively. Therefore, it is anticipated that the

system will exhibit greater instability in the scenarios where Rc = 0 and Rc = 2Rb, compared

to the scenario where Rc = Rb, given a specific value of Rb [37].

To conduct this analysis, the parameters are chosen to keep the endpoint viscosity contrast the

same by fixing Rb and vary Rc, in particular, Rb = 2, Rc = 4, 2, 0 and corresponding viscosity

profiles have been depicted in the inset of figure 5.4(a). The optimal amplification, ln(G(t))

illustrated in figure 5.4(b) shows that due to the dominance of diffusion, there is a decay in

amplification. However, once the onset occurs, the convection starts to dominate the flow, and

the ln(G(t)) increases. For Rc = 0, the viscosity contrast becomes steeper at the downstream

mixing zone than Rc = 2, 4, and hence, an early onset occurs. Interestingly, the onset delays

despite the steeper viscosity contrast at the upstream mixing zone for Rc = 4 than Rc = 2.

However, once the onset time occurs, an increment in growth rate can be observed. At later
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F I G U R E 5 . 4 : (a) The Rb − Rc phase plane. Here in the colored region bounded between
the lines Rc = 0 and Rc = 2Rb, the viscosity profile remains monotonic as shown in the Inset
figure. Inset: Log-viscosity profile for Rb = 2 and Rc = 4, 2, 0. (b) Optimal amplification for
Rb = 2, Rc = 0, 2, 4. Inset: Growth rate for Rc = 4, 2 at the later time showing that the growth

of the perturbations is more for Rc = 4 than Rc = 2.

times, the perturbations have a larger growth rate, σ, for Rc = 4 than Rc = 2 showing a more

unstable displacement.

(a) (b)
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F I G U R E 5 . 5 : (a) z concentration profile for Rb = 2 and Rc = 4, 2, 0. (b) Mixing length
for Rb = 2 and various Rc = 0 with the stable displacement Rb = Rc = 0. This figure is a

reproduction of figures 6,7 and 9(a) from [69].

Moreover, we validate our results with non-linear simulation data and reproduce some results

from the work of Nagatsu and De Wit [69]. Following their numerical method, the system of

equations (5.6), (5.2a), (5.2b) have been solved, and the corresponding concentration profile of

z and mixing length, ML, are illustrated in figure 5.5. The mixing length (ML) is calculated

as the length of the region where 0.01 < ⟨z(x, t)⟩y < 0.99, where ⟨z(x, t)⟩ is the averaged z
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concentration profile along y direction [69]. In the z concentration plot, the fingering pattern

appears early and the mixing length is more for Rc = 0 than Rc = 4, 2. However, if the mixing

length curve is compared for Rc = 2, 4, ML is more for Rc = 4 than Rc = 2 showing the more

unstable situation for Rc = 4. While at the initial time, QSSA claims that chemical reactions

can have a stabilizing effect when Rc > Rb [35] which is consistent with NMA at early times;

while at later times, the NMA results are validated through non-linear simulations. Therefore,

we assert that the findings obtained using NMA are precise and align well with both the current

numerical [69] and theoretical analyses [35]. Furthermore, when the early-time behavior of

the non-monotonic viscosity profile is examined, a similar behavior is observed, which will be

discussed in the subsequent section, namely, §5.4.2.

5.4.2 VF dynamics when viscosity profile is non-monotonic Rc (Rb −Rc/2) < 0

The non-monotonic viscosity profile is depicted in figure 5.6(a), zone I and IV; and figure 5.9(a),

zone I and III. Such viscosity profile is particularly intriguing because it establishes a combined

region of a stable and unstable zone where convection and diffusion compete. Here again, the

VF dynamics re-categorize depending on the ratio of viscosity jump at stable and unstable zones.

In this section, such cases are discussed depending upon whether Rb > 0 or Rb < 0.

5.4.2.1 Optimal amplification for Rb > 0

(a) (b)
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F I G U R E 5 . 6 : (a) The (Rb, Rc) phase plane for Rb > 0. Here in the uncolored region bounded
between the lines Rc = 0 and Rc = 2Rb, the viscosity profile remains monotonic. Inset:
Log-viscosity profile for Rb = 2, (i) Rc = −2, (ii) Rc = 6. (b) Optimal amplification for
Rb = 2, Rc = 6,−2, 2. Here the squared marker denotes the onset time. Inset: Growth rate for

Rc = 6, 2.
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The viscosity profiles is illustrated for Rc = 6,−2 with fix Rb = 2 in figure 5.6(a). For these

parameters, the viscosity contrast increases in the upstream (downstream) mixing zone for

Rc = 6 (Rc = −2). Since the instability is supposed to develop upstream to the flow for Rc = 6,

it results in delayed onset than the system corresponds to Rc = 2. However, after onset time, the

growth rate of perturbations increases more than Rc = 2 as shown in figure 5.6(b). Further, it

can be confirmed through non-linear simulation results as the mixing length due to instability is

more for Rc = 6 than Rc = 2 in figure 5.5(b). On the contrary, when Rc = −2, the viscosity

contrast increases in the downstream mixing zone while the upstream mixing zone stabilizes

the flow due to a favorable viscosity contrast. The becomes more unstable than both the cases

Rc = 6, 2 with early onset and more amplified perturbations. In such a viscosity configuration,

the optimal energy of the perturbations is more amplified for a reactive system and the system

becomes more unstable than the corresponding situation, Rc = 6 despite the same viscosity

jump, |Rb −Rc| = 4.

(a) (b)

F I G U R E 5 . 7 : Perturbation contour plot for Rb = 2, k = 0.2 and Rc = 2, of (a) A and B and
(b) C. Here the time integration intervals are (i) = [0.001, 0.1], (ii) = [0.001, 5] and (iii)= [0.001,
30]. In (a) the solid lines show the reactant A perturbation contour and dashed lines present

reactant B perturbation contours.

Further, we plot the perturbation iso-contours for a′, b′ and z′ in figure 5.7 and explain the

underlying physical mechanism. For a non-monotonic viscosity profile, it is stated that the

perturbation contours are formed in a quadruple structure, while they remain in a dipole structure

for a monotonic viscosity profile for a non-reactive system [39, 64]. However, it is complicated to

understand the interpretation of the temporal evolution of the perturbed concentration according

to the viscosity profile in the reactive system since there are four perturbed concentrations, a′,

b′, c′ and z′. It has been observed that dipole structures develop for z′ and that the quadruple

structures are always formed for the perturbed concentration of C. Since the base state reactant
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A and B concentrations are localized in the upstream and downstream mixing zones respectively,

the perturbation contours follow a similar profile. The perturbation contours are plotted for

reactant concentration in figure 5.7. It clearly shows how perturbations respond in reference to

their base state profile. Further, the perturbed concentration of C is impacted by the perturbed

reactant concentration, b′ and a′, as stated in equation (5.9).

(a) (b)

(c) (d)
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F I G U R E 5 . 8 : Perturbation contour plot for Rb = 2, (a) Rc = 2, (b) Rc = 6 and (c) Rc = −2,
showing the evolution of the perturbations of product, c = V cos(ky) and k = 0.2. Here the
time integration intervals, [tp, t] are (i) [0.001, 0.1], (ii) [0.001, 5] and (iii) [0.001, 30]. The
perturbation contours are shown to span from their minimum to maximum values in five equal

increments. (d) Onset time versus Rc for various Rb.

Further, we illustrate the temporal evolution of perturbations of c′ for various Rc in figure 5.8.

The viscosity profile is monotonically increasing for Rc = 2, which implies the unfavorable

viscosity contrast should not be shifted at any of the zones. Consequently, the perturbation

contours are almost uniformly distributed and develop with time in both regions for Rc = 2 as in

figure 5.8(a). While the viscosity profile is modified into a non-monotonic viscosity profile with

maxima for Rc = 6 that makes the perturbations isocontours in the downstream mixing zone,



110 Chapter 5 Non-modal analysis of reactive flow for infinitely fast reactions

stabilize due to diffusion. While the perturbation isocontours continue to evolve over time at the

unstable upstream mixing zone shifting the perturbed concentration profile illustrated in figure

5.8(b). On the other hand, the perturbation isocontours develop more in the downstream mixing

zone than the upstream mixing zone for Rc = −2 which is shown in figure 5.8(c). Thus, the

perturbation contours demonstrate that the strength of the destabilizing contours as well as their

placements are affected by Rc and have an impact on the stability of the reactive displacement.

Thus far, it has been noted that the onset experiences a delay when Rc > Rb compared to the

corresponding scenario where Rc = Rb for a given Rb. However, it is necessary to examine

whether the onset continues to be delayed for higher viscosity ratios, Rc > Rb as further

increment in the viscosity contrast at the upstream mixing zone. Alternatively, an early onset

might be observed for higher viscosity contrast as seen in non-linear simulations at later times

[69]. To analyze the same, simulations are performed for various values of Rb and Rc and check

whether the VF dynamics outlined for Rb = 2 are qualitatively the same for other Rb values.

The onset time for Rb = 1, 1.5, 2 and various Rc is plotted in figure 5.8(d) to determine the

effect of the altered viscosity profile. We obtain there exists some reactions for which Rc > Rb,

the onset occurs early than the corresponding non-reactive case, Rc = Rb. Re-analyzing the

viscosity profile reveals that the least steeper viscosity contrast occurs when Rc = Rb at fixed

Rb. Interestingly, when Rc = 2Rb as onset is delayed most for a given Rb. Even though the

viscosity contrast is steeper for some values of Rc, the instability is more likely to occur at the

upstream mixing zone when Rc > Rb and hence, the onset is delayed [67]. We explain this

through energy balance computation in section §5.4.3. In another way, it explains how, despite

the steeper viscosity profile than Rc = Rb, the stable downstream mixing zone can dominate

dynamics and delay the onset time.

5.4.2.2 Optimal amplification for Rb < 0

When Rb < 0, the reactant A is more viscous than reactant B implying the flow is stable before

the reaction. The flow becomes unstable if product viscosity modifies the viscosity profile into

non-monotonic when |Rc − 2Rb| > 0 as shown in figure 5.9(a), zone I and III. While, zone

II in figure 5.9(a) between the line Rc = 2Rb and Rc = 0, remains stable. Another important

observation is that, unlike when Rb > 0, the viscosity contrast in stable zones is always greater

than that in unstable zones for the case Rb < 0. It indicates that the unstable zone remains
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F I G U R E 5 . 9 : (a) The (Rb, Rc) phase plane for Rb < 0. Here the colored regions depict the
non-monotonic viscosity profile. Inset: log-viscosity profile for Rb = −1 and (i) Rc − 6, (ii)

Rc = −1, (iii) Rc = 4. (b) Optimal amplification for Rb = −1 and Rc = 4,−6.

weaker than the stable zone suggesting that the perturbations die at the stable zone with time as

there is less dominance of the unstable zone as shown in figure 5.10. For Rc = 4 (Rc = −6), the

perturbation contours are more dispersed in the unstable upstream (downstream) mixing zone

and die with time in the stable zone. This emphasizes the significant impact of the endpoint

viscosity contrast i.e. on the spatiotemporal evolution of perturbations and the underlying flow

dynamics.

(a) (b)

F I G U R E 5 . 1 0 : Perturbation contour plot for Rb = −1, Da → ∞ and (a) Rc = −6, k = 0.15
and (b) Rc = 4, k = 0.1. Here the time integration intervals [tp, t] (i) = [0.001, 30], (ii) = [0.001,

50] and (iii) = [0.001, 80].

Moreover, the optimal amplification is computed for Rc = 4,−6 retaining the same viscosity

jump at both the zone, stable and unstable in figure 5.9(b). The optimal amplification, ln(G(t))

is more, and early onset occurs for Rc = −6 than Rc = 4. In the next subsection, the balance
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of energy attributed to various terms in linearized equations in (ξ, t) coordinates is presented,

followed by a comparison with QSSA in (x, t) coordinates.

5.4.3 Computing perturbation energy balance

A more comprehensive analysis of the impact of infinitely fast reactions on perturbation stability

can be achieved by examining the energy distribution of concentration perturbation eigen-

modes. Upon using the QSSA in the self-similar co-ordinates (ξ, t), i.e.,(ϕu, ϕz, ϕa, ϕb, ϕc) =
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F I G U R E 5 . 1 1 : Energy balance for reactive fluids, Da → ∞, k = 0.2, Rb = 2 obtained in
(ξ, t) domain for (a) Rc = 0, (b) Rc = 2 and (c) Rc = 4 at different times.

(ψu, ψz, ψa, ψb, ψc) e
σ(t0)t. Here t0 is the freezing time and σ(t0) is the growth constant of the
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system for a given wave number k. Equation (5.12) reduces to

(
1

t
D2 − 1

t
(RbDBb +RcDCb)D − k2

)
ψu = k2 (Rcψc +Rbψb) , (5.17)

σ (t0)ψz =

(
1

t
D2 − k2

)
ψz +

ξ

2
Dψz −

1√
t
(Dzb)ψu (5.18)

with initial condition (ψa, ψb, ψc) =

(0,−2ψz, ψz) , ξ > 0,

(2ψz, 0,−ψz) , ξ ≤ 0,

where D =
d

dξ
and D2 =

d2

dξ2
.

In order to get the concentration perturbation eigenmodes energy |ψz|2, multiply the complex

conjugate of ψz, denoted by ψ∗
z with Equation (5.17), we have

σ (t0)ψzψ
∗
z =

[(
1

t
D2 − k2

)
ψz

]
ψ∗
z +

ξ

2
(Dψz)ψ

∗
z −

1√
t
(Dzb)ψuψ

∗
z , (5.19)

where the term on the left-hand side, LHS = σ|ψz|2 = σ (t0)ψzψ
∗
z expression represents

the balance and the term on the right-hand side, RHS1 =

[(
1

t
D2 − k2

)
ψz

]
ψ∗
z is diffusion

term, and RHS2 = − 1√
t
(Dzb)ψuψ∗

z is the production of perturbed velocity and perturbed

concentration by the effect of the perturbed on the base state concentration profile. Here a steady

base state implies that the RHS2 term depends on time and ψu only. It is observed that the

eigenmodes determined from SS-QSSA are always real-valued.

The energy balance terms for Rb = 2 and various Rc are plotted in Figure 5.11. Initially, at time

t = 5, when Rc = 2, the flow remains stable due to the negative left-hand side (LHS) term i.e.,

σ < 0. This stability can be attributed to the dominance of diffusion in the energy budget, as

the RHS1 exceeds RHS2 at this point. Subsequently, after the onset time, RHS1 experiences

a significant decay. Now, the energy budget is compared for a viscosity profile with a steeper

gradient, for Rc = 0, 4, than Rc = 2. In the case of Rc = 0 (see Figure 5.11(a)), RHS1 decays

rapidly, and RHS2 shifts towards the downstream mixing zone, as predicted by the perturbed

concentration contour plots as in Figure 5.8(c). However, the same does not happen when

Rc = 4 as shown in Figure 5.11(c). Notably, RHS1 decays at a slower rate compared to the

Rc = 0, 2 case. Furthermore, it is observed that as there is a decrease in the viscosity contrast in

the downstream mixing zone, RHS1 becomes more dominant signifies diffusion, and similarly,

RHS2, associated with convection, decays more rapidly. This justifies the delayed onset time for

Rc = 4 compared to both Rc = 2 and Rc = 0. Moreover, it illustrates that despite the steeper
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viscosity contrast occurring at the upstream mixing zone for Rc = 4, the flow dynamics are

primarily influenced by the viscosity profile at the downstream mixing zone.

5.4.4 Comparision with QSSA

The QSSA in (x, t) coordinates assumed that the rate of change of the base state is much slower

compared to the pace at which perturbations change. Here, two-time scales are considered: one

related to the base state and the other to the perturbations. We freeze the base state under the

same supposition and then apply modal analysis to get an eigenvalue problem. One significant

drawback of this approach is that the base state undergoes rapid changes during early times.

Therefore, the time-dependent stability matrix is non-normal. Therefore, the QSSA may not

accurately represent the initial time dynamics. The non-normality of the stability matrix is

analyzed by calculating the condition number presented in Appendix §E [37, 108].

At an initial time, QSSA predicts that the flow will be unstable when Rc < Rb for increasing

Da when Rb > 0. While the system becomes less unstable, the corresponding non-reactive

situation Rc = Rb will be the most unstable situation among the flow conditions Rc ≥ Rb. On

the contrary, through NMA, it is observed that there exist some reactions for which early onset

occurs for Rc > Rb. Moreover, the growth rate increases for Rc > Rb after the onset time than

in the case of Rc = Rb showing a more unstable displacement. Further, the flow is stable initially

due to diffusion, and instability takes time when convection dominates the dynamics. Evidently,

QSSA fails to capture early-time diffusion and does not anticipate the onset of instability for the

reactive flow corresponding to Rb < 0.

5.5 Conclusion

In this theoretical study, the stability of a miscible reactive interface is addressed subject to a VF

instability for a rectilinear flow in the porous medium. The perturbed system, after linearization,

is determined to be a set of non-autonomous equations. To address this, Hejazi et al. [35],

invokes QSSA and analysed the infinitely fast reactions limited to growth rate analysis at t = 0.

The QSSA eigenmodes, however, are non-orthogonal, and there is potential for non-modal

growth [86]. To the best of our knowledge, in the linear regime, a systematic stability analysis

for infinitely fast reactions has not been conducted. The present study aims to address the
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constraints associated with the QSSA method. To overcome the shortcomings inherent in

the QSSA approach, we adopt non-modal analysis (NMA), which is based on the principles

of singular value decomposition. Further, we perform NMA in a self-similar domain which

provides a steady base state.

The analysis is limited to the asymptotic limit Da → ∞, so the stability of the underlying

reactive displacement is solely dependent on the non-dimensional parameters Rb and Rc. The

destabilization of the system is enhanced when the chemical reaction yields a product with

lower viscosity, denoted as Rc < Rb, while maintaining the same viscosity contrast |Rc −Rb|.

While some types of reactions exist, the onset gets delayed when Rc > Rb despite the steeper

viscosity contrast when Rb > 0. Moreover, the NMA results show that the most delayed

onset occurs when Rc = 2Rb for each Rb despite the steeper viscosity gradient than the case

Rb = Rc. This happens since the instability originates upstream to the flow when Rc > Rb

and onset gets delayed [67]. It is confirmed by analyzing the energy budget and showing the

dominance of viscosity contrast at the downstream mixing zone. Further, it is demonstrated that

the perturbation contours localize at the unstable front and diminish at the stable zone faster if

Rb ≤ 0 while the same can not be observed for the case when Rb > 0. These results all agree

well with those of the non-linear simulations [69]. It concludes that for reactive displacements,

the NMA approach can describe more accurately the onset time and the underlying physical

mechanism of instability. Moreover, the QSSA technique is unable to capture these results due

to the presence of non-normality in the stability matrix.

For the infinitely fast reaction system, the present LSA can assist in predicting early time

dynamics more accurately and can be utilized to optimize the instability. In addition to the

scope of this study, it is necessary to explore the impact of chemical reactions with the values

(Rb, Rc) on VF dynamics. It is also important to determine whether the same chemical reaction

can result in different fingering dynamics when the ratio of initial reactant concentrations is

varied. Additionally, our study focuses on the continuous investigation of the consequences of a

finite Damkohler number (Da) on the dynamics of fingering. A detailed analysis of this topic

will be presented in the next chapter 6





Chapter 6
Non-modal linear stability analysis of reaction-induced

miscible viscous fingering for rectilinear flow

6.1 General introduction

In the preceding chapter 5, our analysis primarily centered on reactive displacement that entailed

reactions occurring at an infinitely rapid rate. This analysis was conducted through the utilization

of non-modal linear stability analysis (NMA) employing the propagator matrix approach. How-

ever, we have not addressed reactive displacements considering finite reaction rates, denoted

as Da, for rectilinear flow. For finite Da, Hejazi et al. [35] have performed a linear stability

analysis (LSA) on a reactive system and approached quasi-steady state approximation (QSSA)

for rectilinear displacement. They have derived the dispersion relation analytically at the initial

time point, t = 0 and for t > 0, the stability analysis is studied by solving an eigenvalue problem.

The viscosity profile is dependent on the concentration of reactants and product in an exponen-

tial manner. It has been observed that the flow becomes more unstable when non-monotonic

viscosity profiles are present, specifically those that exhibit a minimum rather than a maximum

after the reaction occurs. This phenomenon has been observed in reactive displacements involv-

ing reactants with equal viscosities. Further, they have provided contour plots illustrating the

stability zones, which depict the maximum instantaneous growth rate for different reactions

at various time intervals. Because the viscosity profile demonstrated non-monotonic behavior

for the reactive flow, the presence of both unstable and stable zones underlines the relevance

and complexity of finger pattern rheology. It is important to comprehend the implications of

non-monotonicity in order to effectively manage or induce instability.

In 2018, Hota and Mishra [37] conducted a study on miscible viscous fingering (VF) with non-

monotonic viscosity profiles and performed non-modal analysis for non-reactive displacements.

It is demonstrated that the underlying physical mechanism is impacted by both the viscosity

contrast at the endpoints and the maximum viscosity caused by the non-monotonic viscosity

profile. Further, the perturbation contours are formed in quadruple structures. However, the

117
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QSSA analysis falls short of capturing these findings. In this chapter, we investigate the reactive

viscous fingering in a linear regime with reactions involving iso-viscous reactants and depicting

a non-monotonic viscosity profile.

As described in Chapter 5, the mathematical representation of reactions that occur at an infinite

rate of speed entails using a coupled equation that combines Darcy’s law with the convection-

diffusion equation. However, when dealing with finite values of Da, the analysis requires

to incorporation of three convection-diffusion reaction (CDR) equations. Consequently, the

complexity arises when conducting NMA. For instance, we have derived an analytical solution

for the steady base state profile when Da→ ∞. However, for finite Da values, the base state

profile which is determined by reaction-diffusion equations, does not possess an explicit analytic

solution. Further, we have derived an analytical solution for the steady base state profile when

Da → ∞. Conversely, for finite Da, the base state profile is described by reaction-diffusion

equations, for which an explicit analytic solution is not attainable [29, 35]. In this chapter, we

will discuss the complexities mentioned above and propose a numerical method for conducting

Non-Modal Analysis (NMA) on reactive displacement with finite reaction rates. In order to

accomplish this objective, we employ a propagator matrix methodology in a self-similar domain.

This chapter is outlined as follows. In section §6.2, we describe the mathematical framework

concerning reactive displacements characterized by finite Da within the rectilinear flow. Subse-

quently, in section §6.3, we derive the linearized perturbed equations following discussions on

the base state and transient energy growth. Finally, our findings are discussed in section §6.4

and then, conclusions are summarized in section §6.5.

6.2 Mathematical formulation

Consider the flow in a two-dimensional homogeneous porous media as shown in figure 6.1

where the invading fluid is injected at a uniform velocity Ũ0. The system involves two reactive

fluids, namely fluid A and B that are assumed to exhibit the properties of incompressibility,

Newtonian behavior, neutrality in buoyancy, and miscibility. When these two fluids come into

contact, they undergo a second-order chemical reaction represented by A+B → C, where C is

the product after reaction.
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F I G U R E 6 . 1 : Schematic of the flow of a reactive front A+B → C.

The flow can be formulated mathematically as the set of partial differential equations (PDEs)

including the continuity equation and Darcy’s law, which together describe the conservation of

mass and momentum in the flow through a porous medium. These equations are coupled with

three convection-diffusion-reaction (CDR) equations that govern the mass balance for the three

fluids, A, B, and C. The non-dimensionalized governing equations are as follows [31, 35]:

∇ · u = 0, (6.1a)

∇p = −µ(u+ i), (6.1b)

∂a

∂t
+ u · ∇a = ∇2a−Da ab, (6.1c)

∂b

∂t
+ u · ∇b = ∇2b−Da ab, (6.1d)

∂c

∂t
+ u · ∇c = ∇2c+Da ab. (6.1e)

The equations (6.1) are presented in a moving reference frame with uniform velocity, Ũ0

as in chapter 5. Here u = (u, v) Darcy velocity, p pressure, µ viscosity and (a, b, c) are

fluid concentration of A, B, C. The equations are non-dimensionalised as chapter 5. The

system of equations (6.1) supplemented with the initial condition for velocity, u = 0 and fluid

concentrations,

(a, b, c)(x, y) =

(0, 1, 0), x > 0,

(1, 0, 0), x ≤ 0.

(6.2)
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The reactive flow is characterized by two dimensionless parameters Damköhler number Da and

log-mobility ratio Rc. The viscosity depends on the product concentration exponentially [31],

µ = eRcc, Rc = ln

(
µ(c = 1)

µ(c = 0)

)
.

Here we study how the chemical reaction affects the flow stability if it modifies the viscosity

profile i.e., Rc ̸= 0 by performing linear stability analysis.

6.3 Linear stability analysis

To perform LSA, we introduce a base state solution for a reactive system, followed by the

derivation of the linearized perturbation equations. Let us denote the base state concentrations by

Ab, Bb and Cb of fluid A, B and C respectively which followed the following reaction-diffusion

equations:
∂Ab
∂t

=
∂2Ab
∂x2

−DaAbBb, (6.3a)

∂Bb

∂t
=
∂2Bb

∂x2
−DaAbBb, (6.3b)

∂Cb
∂t

=
∂2Cb
∂x2

+DaAbBb. (6.3c)

In the base state profile, both reactants meet via diffusion, reacting to produce C at the miscible

interface. Over time, A and B are consumed by the reaction, causing a decrease in the reaction

rate. Simultaneously, more and more product is formed and diffuses further as shown in figure

6.2. If we reconsider the equations (6.3) along with the initial conditions in the equation (6.2),

we obtain Ab +Bb + 2Cb = 1 [35]. It indicates that when the reactants are entirely consumed,

the maximum concentration of C can reach up to 0.5, i.e., cmax = 0.5. Since an exact analytical

solution for this set of base-state equations is unattainable, we solve them numerically [29, 35].

Further, we perturb the base state and the magnitude of the perturbations is of order O(10−3).

We denote the perturbed quantities with prime notations.

(a, b, c) = (Ab, Bb, Cb) + (a′, b′, c′),

u = 0+ u′, µ = µ0 + µ′, p = p0 + p′.
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F I G U R E 6 . 2 : Base state concentration profile for A (blue lines), B (red lines) and C (green
lines) at time t = 1, 5 and 10 represented by dotted, dashed and solid lines, respectively. Here,

Sb is the dummy variable for base state concentrations.

The linearized perturbed system of equations will be,

∇ · u′ = 0, (6.4a)

∇p′ = −µ0u
′ − µ′i, (6.4b)

∂a′

∂t
+ u′ · ∇Ab = ∇2a′ −Da(Abb

′ +Bba
′), (6.4c)

∂b′

∂t
+ u′ · ∇Bb = ∇2b′ −Da(Abb

′ +Bba
′), (6.4d)

∂c′

∂t
+ u′ · ∇Cb = ∇2c′ +Da(Abb

′ +Bba
′), (6.4e)

µ′ = µ0(Rbb
′ +Rcc

′). (6.4f)

Here p′ can be eliminated by using the curl of the perturbed equations of Darcy’s law, and the

perturbed continuity equation is then used to eliminate v′. Further, the above set of equations

is linear in terms of the function of y. This characteristic allows us to apply Fourier mode

decomposition of the perturbations, s′ = ϕse
iky. Here s is the dummy variable that stands for

either a, b or c, and k is the wavenumber.
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The reduced set of equations are,

∂

∂t


ϕa

ϕb

ϕc

 =


M11 M12 M13

M21 M22 M23

M31 M32 M33



ϕa

ϕb

ϕc

 (6.5)

where

M11 = D2
x − k2Ix −DaBb, M12 = −DaAb, M13 = −DxAbN ,

M21 = −DaBb, M22 = D2
x − k2Ix −DaAb, M23 = −DxBbN ,

M31 = DaBb, M32 = DaAb, M33 = D2
x − k2Ix − DxCbN ,

N1 = D2
x − k2Ix + (RcDxCb)Dx, N2 = k2RcIx, N = N −1

1 N2.



Here, Dx =
∂

∂x
; Ix is Identity operators. We consider the numerical domain as Ω = [−L,L]

which is discretized into n+ 2 grid points.

In order to analyze the linearised perturbed system (6.5), the existing approaches for linear

stability analysis can be classified into two categories modal analysis and non-modal analysis.

In modal analysis, the differential equation system is converted into an eigenvalue problem,

as perturbations are assumed to be exponentially dependent on time. Here, we study the most

unstable eigenmode and predict the asymptotic behavior of the system. In the equation (6.5),

the system is non-autonomous as the base state is unsteady and hence, the stability matrix

Mij, i, j ∈ {1, 2, 3} is time dependent that prohibits to apply the traditional modal analysis. To

deal with the unsteady base state, a method presented in the literature is the quasi-steady state

approximation (QSSA) approach [35].

6.3.1 QSSA

In the framework of QSSA, it is assumed that the rate of change in the base state is much slower

than the rate of change in perturbations, ∂tSb << ∂ts
′. Here Sb and s′ are dummy variables

to represent base state and perturbed variables. This assumption introduces two distinct time

scales: the first is associated with the base state, denoted as t0, and the second pertains to the

perturbations and is represented as t. Building upon this assumption, we freeze the base state,

and subsequently, we apply modal analysis, expressed as ϕs = Φs(x)e
σ(t0). The system of
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equations can then be simplified accordingly.
M11 M12 M13

M21 M22 M23

M31 M32 M33



ϕa

ϕb

ϕc

 = eσ(t0)


ϕa

ϕb

ϕc

 (6.6)

In this context, t0 serves as the freezing time, and σ(t0) represents the growth constant of the

system for a given wave number k. It is important to note that in the early stages, the base state

undergoes rapid changes. The QSSA anticipates that the flow remains most unstable until the

product concentration reaches its peak. When Rc = 5, 3, the QSSA indicates a decline in the

growth constant after t = 100, followed by flow stabilization [35] which is in contrast with

non-linear simulations [31]. Evidently, the QSSA fails to accurately represent the transient time

dynamics. To capture the same, we need a better approach for analysis than QSSA.

6.3.2 Non-modal analysis

Due to the linearised perturbed system being non-autonomous, we prefer using non-modal

analysis [39, 86]. For the same, we employ a propagator matrix approach in the self-similar

domain. In self-similar domain, we have,

ξ =
x√
t

τ = t.

The equation (6.5) will be transformed in self-similar domain as:

∂

∂t


ϕa

ϕb

ϕc

 =


L11 L12 L13

L21 L22 L23

L31 L32 L33



ϕa

ϕb

ϕc

 (6.7)

where

L11 = D2
ξ − k2Iξ + (ξ/2

√
t)Dξ −DaBb, L12 = −DaAb, L13 = −DξAbJ ,

L21 = −DaBb, L22 = D2
ξ − k2Iξ + (ξ/2

√
t)Dξ −DaAb, L23 = −DξBbJ ,

L31 = DaBb, L32 = DaAb, L33 = D2
x − k2Iξ + (ξ/2

√
t)Dξ − DξCbJ ,

J1 = D2
ξ − k2Iξ + (RcDξCb)Dξ, J2 = k2RcIξ, J = J −1

1 J2, Dξ =
1√
t

∂

∂ξ
.


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Using central finite difference formulas, we discretize the spatial derivatives. The initial value

problem described in equation (6.7) can be written in matrix form:

dϕ

dt
= Lijϕ, ϕ =


ϕa

ϕb

ϕc

 . (6.8)

Further, we encounter a singularity in the system of equations (6.8) at time t = 0. We restrict

our temporal domain to (tp, t) that will allow us to get rid of the singularity at t = 0 from our

system, where tp is chosen to be on order 10−3 [39]. To apply the propagator matrix approach,

we consider,


ϕa

ϕb

ϕc

 = Ψ(tp; t)


Xa

Xb

Xc

 . (6.9)

Here [Xa, Xb, Xc]
T is the random initial condition where subscript T stands for transpose of a

matrix and Ψ(tp; t) is a propagator matrix. It satisfies the following matrix-valued differential

equation,
d

dt
Ψ(tp; t) = LΨ(tp; t); Ψ(tp; tp) = I , (6.10)

where I is an identity matrix of 3n×3n. By opting for the propagator matrix approach, we deal

with a deterministic system of differential equation (6.10) with initial condition Ψ(tp; tp) = I

instead of a vector differential equation system with random initial condition. The propagator

operator, Ψ(tp; t), is the one that passes information from the initial perturbation time (tp), when

the perturbation is introduced to the base state, to time, t.

We solve the initial value problem, (6.10) using the method of lines. Further, we solve explicitly

by utilizing the Runge-Kutta method of fourth order with an inbuilt MATLAB function, ode45,

with an absolute error of order O(10−5) [1]. After solving the equation (6.10), we compute the

optimal amplification, G(t) and growth rate, σ. The optimal amplification is obtained through

the singular value decomposition of the propagator matrix, Ψ(tp; tf ) = UMV T . The largest

singular value of the propagator matrix represents the optimal amplification, denoted as G(t),

while the corresponding right singular vector, V , provides the optimal initial condition. The
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evolved state for time t is given by the left singular vector, U . In the next section §6.3.2.1, we

validate our numerical method.

6.3.2.1 Validation of numerical method

To validate our numerical method, we consider Da = 0 and Rb = 3 that correspond to non-

reactive flow and tried to replicate the results of non-reactive flow by generating the same

viscosity profile as the non-reactive one. However, it is difficult to choose the appropriate initial

condition. The obvious choice for the initial condition was for the equation (6.10), an identity

matrix of 3n × 3n. If we reconsider the base state equations as in equation (6.3) for Da = 0,

both Ab and Bb follow the diffusion equations, but with different initial conditions as in (6.2).

Further, for non-reaction fluids, the base state concentration follows the diffusion equation

adopting the same initial condition as for Bb. Hence, the base flow equations are still different

for a reactive case with Da = 0 compared to the non-reactive fluids. Therefore, anticipating

identical amplification as observed in non-reactive fluids becomes impracticable. Evidently, the

initial condition did not work.

To consider the same non-reactive base state profile, we consider the base state for A and B the

same, Ab = Bb. From figure 6.3, it can be shown that we are able to reproduce the non-reactive

results as amplification curves are matched, hence we validate our numerical method. Further, it

is computationally costly to solve a system of 3n× 3n, 3n times. To reduce the computation

cost, we check if flow stability is affected by the initial condition for c′ and a′. We observe

that the stability is not affected if we consider a′(t = 0) = c′(t = 0) = 0 and b′(t = 0) ̸= 0.

Thus, we consider the initial condition for (6.10) as Ψ(tp; tp) = A . Here, A is a 3n× 3n block

diagonal matrix with the n× n identity matrix as the second block along the main diagonal and

all other entries set to zero.

6.4 Result and discussion

Initially, the flow is stable in the absence of viscosity contrast as the viscosity of reactants are

identical i.e., µA = µB. If the generated product has some viscosity contrast with the reactants,

a chemical reaction at time t > 0 changes the viscosity profile and turns into a non-monotonic

viscosity profile. Owing to the presence of three fluids, the reaction zone, where the product
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F I G U R E 6 . 3 : Log of optimal amplification, ln(G(t)) for Rb = 3, Da = 0 in the reactive case.
Here, the (×) curve shows the ln(G(t)) for the non-reactive case.

C is present, can be divided into two regions: the downstream mixing zone and the upstream

mixing zone. The region primarily occupied by fluid A and C can be identified as the upstream

mixing zones. While the downstream mixing zone is primarily occupied by fluid B and C.

When the reaction produces a high viscous product i.e., Rc > 0, the viscosity profile becomes

non-monotonic with maxima and destabilizes the upstream mixing zone, while the downstream

mixing zone remains viscously stable. Contrarily, the downstream mixing zone becomes unstable

with increasing viscosity contrast as the less viscous product is being generated which is the

case, Rc < 0. We plot the ln(G(t)) for various values of Rc ̸= 0 and analyze the flow stability.

6.4.1 Effect of Rc

In figure 6.4, the optimal amplification ln(G(t)) is shown for various Rc and Da = 1. The

increase (decrease) of ln(G(t)) represents the relative growth (decay) of the disturbances.

Moreover, the presence of extremums in this curve carries special significance: a minimum

indicates the transition from a regime dominated by diffusion to one dominated by convection,

which implies the onset of instability. We term the time corresponding to this minimum as the

onset time of instability, denoted as ton. Conversely, a maximum represents transient growth

phenomena [39, 93]. This non-monotonicity in ln(G(t)) curves exhibits the interplay between

two forces namely, convection and diffusion.

It can be observed that there is an influence of steeper viscosity contrast and accordingly, we

have an early onset for increased viscosity contrast |Rc| if the reaction generates the less viscous
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F I G U R E 6 . 4 : Logarithm of optimal amplification, ln(G(t)) for Rb = 0, Da = 1 and (a)
Rc > 0 and (b) Rc < 0. Here the diamond dotes denote the onset time of instability.

product as shown in figure 6.4(b). While, forRc > 0, the trend in ln(G(t)) behaves inconsistently.

Comparing the log-amplification curves for Rc = 4 and 6, an early onset is observed for Rc = 6

compared to Rc = 4, and after the onset time, ln(G(t)) exhibits a monotonic increase with

higher growth rate for Rc = 6. In contrast, for Rc = 5, the log-amplification curve displays two

minima and one maxima. Following the second minima, ln(G(t)) increases monotonically, and

this minimum is considered the onset time for Rc = 5.

To understand the non-monotonic behavior of ln(G(t)) before onset time for Rc = 5, we

compute growth rate as defined in [39, 106]:

σ =
1

G

dG

dt
. (6.11)

We have plotted the growth rate curve for various Rc > 0 in figure 6.5. For Rc = 5, the initial

increment following the first minima occurs due to the influence of unfavorable viscosity contrast

at the upstream mixing zone. However, there exists a stable zone at the downstream mixing zone

that impacts the flow stability and leads to the decay of perturbations. Evidently, the unfavorable

viscosity contrast at the upstream mixing zone is not enough to sustain the perturbation growth.

However, when diffusion weakens over time, convection becomes prominent, leading to the

onset of instability. This phenomenon can be referred to as secondary instability [37]. A similar

transition in stability is observed in literature [37] for the non-reactive fluids with non-monotonic

viscosity-concentration relation. Interestingly, the same does not happen when Rc = 6 and 4. It

can be explained that for Rc = 4, the viscosity contrast is less and not sufficient to amplify the
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F I G U R E 6 . 5 : Growth rate, σ for Rb = 0, Da = 1 and Rc > 0. Here the squared dotes denote
the onset time of instability.

perturbations. Hence, due to the weak unstable zone, diffusion dominates the dynamics, and

flow remains stable in early times. Further, the onset gets delayed until the stable zone within

the downstream zone diffuses over time. Conversely, for Rc = 6, the higher viscosity contrast

induces the onset of instability within the upstream mixing zone, sustaining perturbation growth

without displaying secondary instability.

In addition, the absence of secondary instability is notable when the reaction generates a less

viscous product, Rc < 0 despite the same viscosity contrast. When Rc < 0, the unstable

zone is shifted at the downstream mixing zone, hence, the instability is anticipated to develop

downstream to the flow. On the contrary, for Rc > 0, the instability will develop upstream to the

flow. For non-reactive fluids, it is reported that the fingering instability is more intense when

it develops downstream to the flow than the case when it develops upstream to flow for the

same viscosity contrast [67]. This asymmetry in behavior persists for reactive fluids, leading to

an early onset for Rc < 0 compared to the corresponding Rc > 0, despite the same viscosity

jump. This suggests that if a stable zone is situated in the upstream mixing zone, then once

the perturbations start to amplify at early times, it will continue to amplify over time. The

presence of a stable zone does not influence the growth of the perturbations as illustrated in

figure 6.4(b) for Rc < 0. Conversely, if the stable zone resides in the downstream mixing zone, it

can impact the perturbation growth. In this situation, there might be a transient growth indicated

by a maximum in the ln(G(t)) curve, as evident in the instance of Rc = 5 depicted in figure

6.4(a). This implies that the viscosity profile has a predominant influence within the downstream

mixing zone. As a consequence, an unfavorable viscosity contrast at the downstream mixing



6.4 Result and discussion 129

(a) (b) (c)

-20 0 20
0

0.5

1

1.5

2

2.5

-20 0 20
0

0.5

1

1.5

2

2.5

-20 0 20
0

0.5

1

1.5

2

2.5

F I G U R E 6 . 6 : Viscosity profile for Rc = 5 and various Da at different times (a) t = 5, (b)
t = 10 and t = 20 depicting an increased viscosity contrast with time.

zone results in early onset, and no transient growth is observed. In contrast, if the stable zone is

situated at the downstream mixing zone, it influences the perturbation growth, and secondary

instability may manifest for some parameters.

6.4.2 Effect of Da

The onset of instability also depends on the reaction rate, Da, for the given viscosity contrast,

Rc. A larger value of Da corresponds to a slower reaction time, resulting in increased product

generation. Consequently, this leads to a steeper viscosity contrast at the unstable zone, as

depicted in figure 6.6. As a result, the system becomes more unstable with increasingDa, leading

to an earlier onset of instability [31]. In the figure 6.7, we have plotted the log-amplification

curve for Rc = 5,−5 and various Da. It can be observed that onset gets delayed for decreasing

Da for a viscosity contrast, Rc. Further, for Da = 1, Rc = 5, we have observed a secondary

instability. The question arises: does the same phenomenon occur with varying Da? In figure

6.7(a), temporal evolution of ln(G(t)) is shown for Rc = 5 and various Da. When we reduce

Da to 0.1, the viscosity contrast reduces and is insufficient to prompt transient perturbation

growth in the early times, hence the onset gets delayed. However, if we increase Da as Da = 10,

the secondary instability can be observed with an early onset time for the case Rc = 5.

Further, the QSSA predicts that when the generated product concentration reaches its maximum

value that is cmax = 0.5 at later times, the growth rate of perturbation does not depend anymore

whether the generated product is less or high viscous (Rc ≶ 0) [35]. Further, it predicts that

the growth rate increases with time as the generated amount of product increases, but starts
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viscosity gradient for infinitely fast reactions decreases with time. (b) Logarithm of optimal
amplification, ln(G(t)) for various Rc and Da → ∞. Here the squared dotes denote the onset

time of instability.

to decrease once saturation occurs at cmax = 0.5. If we consider the infinitely fast reactions,

the product concentration, hence the viscosity, reaches its maximum at t > 0 as soon as the

reactants come into contact. With time, the viscosity gradient diminishes as shown in figure

6.8(a). This prompts two questions: (i) Do we observe identical onset or maximum amplification

regardless of whether Rc > 0 or Rc < 0 for the same viscosity contrast? (ii) Can reactions

exhibit a stabilizing effect when Da→ ∞ compared to reactive cases with finite reaction rates

(Da) for a given viscosity contrast (Rc) ?

We conduct simulations for reactive displacements involving infinitely fast reactions for various

values of Rc, employing the methodology outlined in chapter 5 and plot optimal amplification,
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ln(G(t)) for |Rc| = 4, 5. It shows that the flow becomes more unstable for Rc < 0 than the

corresponding case Rc > 0 with an early onset and more amplification, ln(G(t)). Moreover,

upon comparing the onset time for Da → ∞ and finite Da in figures 6.8, 6.4, and 6.7, it is

obtained that the early onset occurs for Da → ∞ compared to finite Da for a given viscosity

ratio, indicating a more unstable system. Hence, it can be concluded that the infinitely fast

reactions demonstrate no stabilizing effect when compared to reactive displacements involving

finite Da. Further, these outcomes can be validated through nonlinear simulations [69], thereby

contradicting the conclusions drawn by QSSA. Evidently, the QSSA approach fails to accurately

capture the dynamics at early times.

6.4.3 Effect of geometry

In this section, we compare the flow dynamics for varying the flow geometry and, hence influence

of basic flow velocity on reactive VF. For radial flow, the spatially dependent velocity profile

attributes the existence of critical viscosity contrast to trigger instability. While the uniform

base velocity for rectilinear flow always exhibits instability if there is an unfavorable viscosity

contrast. Now, the non-monotonic viscosity profile showcases an interplay between stable and

unstable zones, hence between the convection and diffusion. This interplay results in a transient

growth for some parameters as illustrated by a non-monotonic behavior in the ln(G(t)) curve

exhibiting both maxima and minima within both the flow geometries (See figures 6.4(a) and

3.6). However, in rectilinear flow, when the diffusion weakens with time, uniform base velocity

feeds the convection at the interface, hence the onset of instability occurs for such parameters.

While in radial flow, we do not observe the same. For radial flow, after maxima, the perturbation

decays only and no secondary instability is observed. This behavior can be examined for radial

flow for parameters such as Da = 100, Rb = 0.3, and Rc = 1 exhibiting a non-monotonic

viscosity profile with maximum, as discussed in figure 3.6 from chapter 3. Therefore, the flow

geometry significantly influences transient flow dynamics, in particular, when the viscosity

profile is non-monotonic.

6.5 Conclusion

The chapter investigates the reactive displacement with reactions having finite reaction rates for

rectilinear flow in the linear regime. We particularly focus on the reactions having iso-viscous
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reactants. To study the transient growth of perturbations in reactive VF, we employ non-modal

analysis. The presence of an unsteady base state introduces a significant transient response to

the perturbations, a factor that has been overlooked in existing literature [35]. To address this

gap, we develop a numerical method for non-modal analysis of reactive VF. In this method, we

determine the dominant perturbations that undergo maximum amplification within the linear

regime. For the same, we develop a numerical method, which is based on the propagator matrix

approach and singular value decomposition [39, 82].

The flow stability is affected by two dimensionless parameters, Rc and Da. For Rc ̸= 0,

the reaction exhibits a non-monotonic viscosity profile showcasing an interplay of stable and

unstable zones. When Rc < 0, instability localizes in the downstream mixing zone, leading

to an earlier onset of instability compared to the corresponding Rc > 0 case, despite the same

viscosity contrasts. Moreover, the reactive system exhibits transient perturbation growth before

the onset of instability for certain Rc values, especially when the reaction generates a high

viscous product. In such instances, the unfavorable viscosity contrast at the upstream mixing

zone triggers perturbation growth yet fails to overcome the stable zone in the downstream mixing

zone, causing the perturbation to decay. After some time, as diffusion weakens in the stable

zone, the onset occurs. This phenomenon is referred to as secondary instability [37]. However,

the same is not observed when Rc < 0, indicating a dominance of the viscosity profile in the

downstream mixing zone. This behavior contrasts with the flow dynamics observed in radial

flow geometry as observed in chapter 3 for considering a similar non-monotonic viscosity profile

featuring a maximum. In radial flow, transient growth is also observed at early times. However,

secondary instability is not observed in radial flow. Thus, the flow geometry also influences

transient flow dynamics. Lastly, we examine the effect of Da on flow stability. We obtained

an early onset with an increasing Da including Da → ∞. This result is in contrast to QSSA

predictions. However, the NMA outcomes are more consistent with the conclusions drawn from

nonlinear simulations than QSSA.



Chapter 7
Summary and future work

7.1 Summary of the thesis

This thesis examines the impact of the A+B → C chemical reaction on miscible viscous

fingering in a porous medium, employing linear stability analysis and numerical simulations.

The instability, characterized by the formation of finger-like patterns, is observed in diverse

fields including chromatographic separation and enhanced oil recovery. It occurs when a less

viscous fluid displaces a more viscous one in a porous medium. Chemical reactions can alter

the viscosity of fluids in porous media, impacting viscous fingering. The instability induced by

chemical reactions is utilized across different scales for enhancing mixing. To understand this

chemo-hydrodynamic instability, we investigate a reactive displacement involving a second-order

chemical reaction, A+ B → C, assuming miscible, Newtonian, and neutrally buoyant fluids.

We consider the viscosity profile to depend on the concentrations of the reactants and products

as µ = exp(Rbb+Rcc). This interaction is mathematically modeled using a coupled system of

partial differential equations, incorporating Darcy’s law and three convection-diffusion-reaction

(CDR) equations. When Rb ̸= 0 and Rc ̸= 0, a nonlinear interaction emerges between chemical

reactions and hydrodynamics. We investigate two distinct flow geometries: rectilinear and

radial. In the case of radial flow, we employ non-linear simulations (NLS) to explore a wide

range of reactions and flow properties. One significant finding is identifying a transient zone for

radial flow depending on Da where the reaction rate exhibits temporal growth, attributed to the

spatially varying flow velocity for stable displacements. Further, we compute the total amount

of product following the temporal scaling as ∝ tf(Da).

By employing both NLS and Linear Stability Analysis (LSA), we determine the stability

of reactive displacements in terms ofRb andRc, dividing the (Rb, Rc) parameter space into stable

and unstable regions for each Pe and Da. The stable zone in the (Rb, Rc) phase plane contracts

with increased Da and Pe but never vanishes; it persists even as Da → ∞. Intriguingly, we

identify a Da independent stable region in the neighborhood of Rc = Rb where no transition

occurs in stability despite changes in reaction rate. We explore how VF impacts reaction
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properties. Our investigations reveal that enhanced mixing is achieved when a reaction generates

a more viscous product (Rc − Rb > 0) than the equivalent case for the reactions generating a

less viscous product (Rc −Rb < 0) for radial flow. Moreover, we observe saturation in mixing

for reactive displacements characterized by higher viscosity contrasts, resulting in the formation

of frozen fingers. Expanding our analysis to infinitely fast reactions, we explore the extent to

which chemical reactions influence flow properties. We determine a scaling relation to compute

the onset time of instability for a given viscosity ratio and Péclet number.

Furthermore, we conduct LSA for reactive displacement in rectilinear flow. We address

the limitations of existing LSA approaches in the literature for rectilinear flow, such as the quasi-

steady-state Approximation (QSSA) approach, and develop a numerical scheme for Non-modal

Analysis (NMA) using the propagator matrix approach. We develop numerical methods for

both types of reactions, those with finite and infinite reaction rates. By examining the optimal

amplification and growth rate, we focus on the transient behavior of eigenmodes in response

to the most unstable initial perturbations. We explore reactive displacement for the case where

Rb ̸= 0 and Da → ∞. As the viscosity contrast increases, an early onset occurs and more

amplified perturbations when the reaction generates a less viscous product (Rb < Rb) than

the equivalent non-reactive scenario (Rc = Rb). Conversely, when Rc > Rb, there exist some

reactive cases where onset is delayed compared to the equivalent non-reactive case (Rc = Rb),

even with a steeper viscosity contrast. Further, we obtain that the onset time delays most when

Rc = 2Rb for a given Rb. However, after the onset time, we observe an accelerated growth rate

of perturbations, indicating a more unstable displacement than the scenario where Rc = Rb.

Additionally, we perform LSA for reactive displacements with Rb = 0 and Rc ̸= 0 with finite

Da. We observe a weak transient instability for some values of Rc > 0 that delays the onset time

of instability. We refer to this phenomenon as secondary instability. It is noteworthy that our

NMA results consistently align more closely with NLS outcomes compared to those obtained

through the QSSA approach. Further, when comparing the effect of geometry, we observe

transient growth for the reactive case with a non-monotonic viscosity profile with maximum.

However, we do not observe the secondary instability for radial flow.

Our findings contribute to the understanding of the interaction between chemical reactions

and VF dynamics. We observe a mutual influence between viscous fingering (VF) and chemical

reactions. VF affects reaction characteristics, while the chemical reaction, in turn, enhances
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mixing. Thus, the reactive viscous fingering can be utilized as a potent mechanism to tune

enhanced mixing and location of instability in several applications such as enhanced oil recovery,

frontal polymerization [79] and chemical treatment of oil-bearing formations [23], to name a

few. The study has implications for various chemical-enhanced oil recovery (EOR) mechanisms

aimed at reducing residual oil and increasing oil production in reservoirs. Strategies such as

controlling the mobility ratio [33, 98, 118], reducing interfacial tension [89], and enhancing

miscibility between displaced and displacing fluids [46] are fundamental mechanisms in EOR

processes [27].

7.2 Future work

This thesis only concentrates on reactive viscous fingering with irreversible chemical

reactions with symmetric flow conditions. For instance, it considers the ratio of initial concentra-

tions of reactants to be the same, denoted as ϕ = b0/a0, with ϕ = 1. Additionally, it assumes

the diffusion coefficients of fluid species (A,B,C) are equal, represented by δB = DB/DA and

δC = DC/DB , with δB = 1 and δC = 1. Furthermore, the study explores reactive fingering only

for two types of flow geometries: radial and rectilinear. However, it does not investigate reactive

viscous fingering for the quarter five-spot flow geometry. Based on these considerations, the

future research problems are as follows:

• To conduct Non-modal analysis of reactive fingering instability under the conditions of

Rb ̸= 0 and finite Da for rectilinear flow in a porous medium.

• To explore the effect of the initial condition of miscible A + B → C reaction front for

radial flow in a porous medium.

• To investigate of miscible A+B → C reaction front for radial flow in a porous medium

if δB ̸= 1 and δC ̸= 1.

• To develop a numerical method to understand reactive viscous fingering in the quarter

five-spot geometry.





Appendix A
Grid independence and effect of σ1

We present here the convergence study for spatial discretization. We did not perform

any temporal convergence study as the time stepping is adaptive and is obtained using the CFL

condition. The existing results in the manuscript are for N = 512 in the x as well as y direction,

where nx = ny = N + 1. We show that the results remain the same on taking double the grid

points. We did not go for higher grid points as it increases the computational cost. The density

plots of the product concentration are shown in figure A.1 and the interfacial length is plotted

in figure A.2 for Rc = −3.5, P e = 3000. It can be observed that the grid independence is

achieved for N = 512.

(a)

(b)

F I G U R E A . 1 : Temporal evolution of concentration for Rc = −3.5, Pe = 3000 for (a)
N = 512 (in first row) and (b) N = 1024 (in second row) at time t = 0.1, 0.4 0.7, 1 (left to

right).

Effect of σ on fingering dynamics: For a fixed r0, and σ ≤ r0, the VF dynamics are

found to be identical, as shown in figure A.3. Both the fingering patterns as well as the interfacial

length are the same for the different values of σ considered.
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F I G U R E A . 2 : Interfacial length for Pe = 3000, Rc = −3.5 for various grid points.
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F I G U R E A . 3 : (a) Product concentration profile at time t = 1 and (b) interfacial length for
Pe = 3000, Rc = −2.5, r0 = 0.075 and various σ. Evidently, both concentration plot and

interfacial length are identical for σ ≤ r0.



Appendix B
Why h < 0.5 when a = 0?

B.1 To show a + b + 2c = 1

In our study, it is assumed that all fluids have the same diffusion coefficient, and the initial

concentration of both reactants is identical. Under this assumption, let z1 = (a+ b+2c) follows

the convection-diffusion equation with the initial condition as z1(x, t = 0) = 1. We have:

∂z1
∂t

+ u ·∇z1 = D∇2z1 (B.1)

With the condition u = 0 at the boundary, the equation (B.1) attains only one solution as

z1 = (a+ b+ 2c) = 1 [35, 69]. For instance, we have plotted the averaged concentration profile

for a, b, c, and a+ b+ 2c for stable displacements Rc = Rb = 0 at different times in figure B.1

showing that a+ b+ 2c = 1. However, this is only true when the diffusion coefficient of all the

fluids are same and the initial concentration for both the reactants are same.

-20 -10 0 10 20
0

0.5

1

F I G U R E B . 1 : Averaged concentration profile, ⟨a⟩, ⟨b⟩, ⟨c⟩ and ⟨a+ b+ 2c⟩ represented by
blue, red, green and black lines, respectively, at different times. Here these curves are plotted at
time t = 1, 5 and 10 represented by dotted, dashed, and solid lines, respectively. Here, s is the

dummy variable for concentrations.
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F I G U R E B . 2 : Temporal evolution of the angular averaged concentration plots of A, B, C, for
Pe = 3000 and Da → ∞.

B.2 Why h < 0.5 when a = 0?

When the reaction rate is infinite, the reaction time tends to zero. As a result, the reactants

are consumed immediately as soon as they come in contact. Thus for t > 0, reactants do not

co-exist in the entire domain of numerical experiment, except at the reaction front. Even at

the reaction front, the reaction concentration reduces and a → 0, b → 0 and the maximum

amount of product is generated. To gain more insight into this, we compute the angular averaged

concentration ⟨s(r, t)⟩

⟨s⟩(r, t) =
∫ 2π

0
s(r, θ, t) dθ

2π
, (B.2)

where s(r, θ, t) is the concentration of s in polar coordinates. Please note that s is a dummy

variable here. The averaged concentrations ⟨a⟩, ⟨b⟩, ⟨c⟩ are calculated and plotted in figure

B.2 for Da→ ∞. The instantaneous reaction for Da→ ∞ results in the maximum expected

amount of product at the reaction front as soon as the reactants come in contact. It is evident

in figure B.2 that the product concentration does not change much with an increase in time.

However, the width of the Gaussian profile followed by ⟨c(r, t)⟩ increases with time on account

of diffusion. The reactant concentration tends to zero at the reaction front and outside it, either

one of the reactants is zero, as shown in figure B.2.

To obtain a, b, c from h, we utilize the fact that the reaction occurs with an infinite reaction

rate. The reaction front is the region where both the reactants co-exist and thus react to generate

the product. But as Da→ ∞, the two reactants are consumed as soon as they come in contact

and thus a, b tend to zero in the reaction front. Thus, from equation (4.8) and the fact that
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h1 = h = h2, we get

a+ c = h = 1− (b+ c). (B.3)

When a→ 0, from first pair, we get h = c. Using this and b→ 0 in second pair (h = 1−(b+c)),

we get h = 0.5. Hence at the reaction front, h = c = 0.5. The two reactants cannot co-exist

outside the reaction front, that is, when h ̸= 0.5. Thus, in the AC zone, that is occupied by

injected fluid reactant A and the formed product C, we have b = 0. Thus, from last pair, we get

c = 1− h. Substituting this is the first pair, we get a+1− h = h =⇒ h = (1+ a)/2. In other

words, we can say that h > 0.5 in the AC front. Similar logic holds for taking h < 0.5 when

a = 0.

B.3 Different choices of H1, H2

In addition to the one used in the main text in §4.3, we can have two more choices of H1

and H2 as

(H1, H2) = {(a− b, a+ c), (a− b, b+ c)}, (B.4)

and obtain corresponding h1, h2 using the normalisation in equation (4.5) as

(h1, h2) =

{(
a− b+ 1

2
, a+ c

)
,

(
a− b+ 1

2
, 1− (b+ c)

)}
. (B.5)

However, the dependence of a, b, c on h remains the same as

(a, b, c) =

(0, 1− 2h, h) h < 0.5,

(−1 + 2h, 0, 1− h) h ≥ 0.5

. (B.6)





Appendix C
Pseudo-code of the numerical method

Step 1: We consider a computational domain Ω = [−0.75, 0.75]× [−0.75, 0.75] discre-

tised into nx × ny grid points. At t = 0, we give the initial condition for h. We consider the

initial radius r0 = 0.075 and utilize the axisymmetric base state solution of Tan and Homsy

[102] at t = r20/2 as an initial condition for h. For the velocity profile, we provide potential flow

i e. upot. We assign initial fluid concentrations as a = h = 1− b and c = 0.

Step 2: The time is incremented by dt as t→ t+ dt.

Step 3: The initial dt is dt = 10−6. Then we update h value for time t+ dt by discretising the

following convection diffusion equation as

∂h

∂t
+ u · ∇h =

1

Pe
∇2h. (C.1)

We discretize space derivative using sixth-order compact finite difference and solve the resulting

semi-discretized ordinary differential equation using the third-order Runge Kutta method.

Step 4: After obtaining value for h at time t+ dt, we assign fluid concentrations a, b and c as

below

(a, b, c) =

 (0, 1− 2h, h), h < 0.5

(−1 + 2h, 0, 1− h), h ≥ 0.5
(C.2)

Step 5: We use the updated value of c at time t+ dt to find out the value ω as

ω = Rc

(
v
∂c

∂x
− u

∂c

∂y

)
. (C.3)

Step 6: Then we solve the Poisson equation ∇2ψ = −ω by pseudo-spectral method. We employ

sixth-order compact finite difference method along y-direction and Fourier Sine expansion in

x-direction.

Step 7: Time is again incremented by dt, t→ t+ dt. From this step, dt is chosen adaptively by

Courant-Friedrichs-Lewy (CFL) condition.
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Step 8: Step 3 to Step 6 are repeated until the final time tf or before the fluid reaches the

boundary which is specified by checking if h > 0 at ten grid points away from the boundary,

x = ±0.75, y = ±0.75 in the computational domain.



Appendix D
Pressure and velocity component for radial displacement

We plot upot, urot and the total velocity u in figure D.1. As upot is independent of time

and other parameters, it is shown only for one fixed time. It is evident that upot decreases with an

increase in the distance from the origin. Further, since urot arises due to the viscosity contrast,

it is non-zero only at the front where the product is generated or inside the fingers and is zero

elsewhere. It decreases with time due to diffusion of the product with time. The total velocity u

is obtained by adding the two components of velocity and it is evident from figure D.1(c),(d)

that both the components contribute in VF dynamics.

The pressure can be derived from the Darcy’s Law as below:

∇p = −µu (D.1a)

⇒ ∂p

∂x
= −µu, ∂p

∂y
= −µv (D.1b)

⇒ p = −
∫
µu dx+ f(y) (D.1c)

and − µv =
∂p

∂y
= − ∂

∂y

(∫
µu dx

)
+
∂f

∂y
(D.1d)

By Leibnitz rule,

−µv = −
∫
∂µ

∂y
u− µ

∂u

∂y
dx+

∂f

∂y
(D.1e)

⇒ ∂f

∂y
= −µv +

∫
∂µ

∂y
u+ µ

∂u

∂y
dx (D.1f)

⇒ f = −
∫
µv dy +

∫ [∫
∂y

∂y
u+ µ

∂u

∂y
dx

]
dy + c (D.1g)

put f into D.1c

⇒ p = −
∫
µu dx−

∫
µv dy +

∫ [∫
∂µ
∂y
u+ µ∂u

∂y
dx

]
dy + c (D.1h)
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F I G U R E D . 1 : (a) Potential component of velocity. Here only one plot is shown as it does not
depend on time, Pe and Rc. Temporal evolution of (b) rotational component of velocity urot
and (c) total velocity u for Rc = −3.5, Pe = 3000. (d) Temporal evolution of total velocity for

Rc = −5, Pe = 2000 .



Appendix E
Non-normality of the stability matrix

In figure E.1, the condition number of the stability matrix, L (t) in equation (6.5) in (x, t)

domain for Rb = 2, Rc = −2 is plotted. The condition number is computed as follows in [108]:

cond(L ) = ∥L ∥2∥L −1∥2. (E.1)
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F I G U R E E . 1 : Condition number of the stability matrix L in equation (6.5) in (x, t) domain
for the viscosity profile, Rb = 2, Rc = −2. (b) Condition number for the stability matrix in
(x, t) and (ξ, t) domain corresponds to QSSA and SS-QSSA for Rb = 2, Rc = −2 and k = 0.2.

For (ξ, t) domain, the stability matrix is from the equation (6.7).
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F I G U R E E . 2 : The singular vectors and eigen functions obtained from (a) NMA and (b) QSSA,
respectively, for the viscosity profile Rb = 2, Rc = −2, k = 0.2 for (i) ϕz , (ii) ϕa, (iii) ϕb and
(iv) ϕc. Here, in figure (a), the singular vectors are plotted at t = 10−3 (dashed lines) and

t = 10 ( solid lines).

147



148 Appendix E Non-normality of the stability matrix

The stability matrix, L (t), is highly ill-conditioned. It suggests that the eigenvalues

of L are very sensitive, and its eigenfunctions are non-orthogonal, implying that L is highly

non-normal. Due to this, significant non-modal growth in transient time can be expected, which

eigenmodes cannot capture and it may be incorrect to infer instability from eigenvalues for

non-normal systems [109, 38]. Moreover, the eigenvalues predict only the asymptotic behavior

of a non-normal system, not the transient behavior. As a result, the transient growth of the

perturbations is not captured by QSSA accurately. Moreover, we plot the condition number

of the stability matrix in the (ξ, t) domain, demonstrating that even Self-similar- Quasi Steady

State approximation (SS-QSSA) may not exhibit optimal transient growth due to the stability

matrix’s non-normality in transient time.

Further, we plot quasi-steady state eigenmodes at freezing time t0 > 0 for Rb = 2,

Rc = −2, and k = 0.2 and compare them to NMA eigenmodes in figure E.2. In contrast to the

eigenfunctions in (x, t), which occupy the entire spatial domain and appear to be global modes,

the eigenmodes from NMA are concentrated around the interface, ξ = 0. This explains how

some profiles that were determined as unstable by the QSSA analysis may end up being stable

in the NMA. Moreover, the eigenmodes computed from QSSA do not predict the localized

perturbation contours depending on (Rb, Rc). Evidently, it becomes apparent that conducting

the analysis in (ξ, t) coordinates is more precise than in the traditional (x, t) coordinates.
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