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Abstract

Gene expression describes the process by which instructions encoded in an organ-
ism’s DNA directs the synthesis of mRNA or protein. The relationship between an
input signal and the amount of final gene products in a gene regulatory system is de-
scribed by a response curve. However, the shape of these curves depends on the detailed
interactions among the protein and DNA in gene regulatory networks. A comprehensive
understanding of the shape of the response curve and its relationships with the under-
lying molecular mechanisms by which a gene is transcribed is still challenging from a
theoretical and experimental point of view. Therefore, considerable attention has been
paid to understanding the mechanisms that determine the shape of the response curve.
With the advantage of available genomic data, one can develop predictive models that
explore the relationship between the genotype and phenotype of an organism. Thus,
theoretical models emerge as a suitable option that provides insight into the various
routes of protein-DNA interactions with the response curve. This thesis investigates the
relationship between the mechanisms of protein-DNA interactions and the shape of the
response curve for gene regulatory networks.

First, we develop a statistical thermodynamic framework for response curves by con-
sidering the binding of a transcription factor with the promoter region of genomic DNA.
The transcription factors follow various mechanisms during binding, such as cooperative
interactions and DNA looping. In cooperative interaction, the transcription factors can
spread from a nonspecific binding site to an adjacent specific binding site. DNA looping
is another crucial alternative by which two bound transcription factors at large distances
come close through protein-protein interaction. These two physical factors promote the
self-assembly of transcription factors or the formation of higher-order oligomers on DNA.
However, one can control their population by adding suitable input signals that perturb
the protein-protein interactions. These input signals may be a selective binding of a
small molecule to transcription factors or post-translational modifications such as phos-
phorylation or acetylation of an amino acid. Both modes alter the binding property
of the transcription factors, controlling the population of a selective configuration of a
protein-DNA complex. We develop a thermodynamic model in a grand canonical en-
semble that corroborates the relationship between an input signal and the population
of a selective protein-DNA complex at thermodynamic equilibrium. Precisely, this rela-
tionship is the response curve in our study. However, the calculations become difficult
for a complex gene regulatory system. Therefore, we use grand canonical Monte Carlo
simulation to calculate the response curves for those cases.

The equilibrium thermodynamic analysis of gene regulatory systems is a good start-
ing point, but these systems often experience out-of-equilibrium events that result in
alternative steady states. These alternative steady states of gene regulatory systems are
critical factors for the functioning of an assembly network. We perform their stochastic
dynamic analysis to explore their existence in a gene regulatory network. Here, the evo-

el



lution of the system is described by a Markov process as realized by a set of elementary
reactions whose joint distribution is governed by a master equation. The gene regula-
tory systems often have correlated noise that alters their dynamics significantly. In this
thesis, we explore the role of correlated noise in detail for a few gene regulatory systems.

We also show that our developed thermodynamic model can discern the fate of a cell.
To explore this, we consider the p53 signaling network, where the binding of tetrameric
phosphorylated p53 to the promoter regions of a few cell fate-determining genes. We use
a minimum free energy model and the Ising-based network model to establish a connec-
tion between the network topology and cell fate. In particular, the minimum free energy
model infers the existence of first-order phase transitions of a damaged cell upon binding
of tetrameric phosphorylated p53. Further, we apply our network model to various can-
cer cell lines ranging from breast cancer (MCF-7), colon cancer (HCT116), and leukemia
(K562) that exhibit different network topologies and determine the differential fate of a
malignant cell. Together, this thesis investigates modulated protein-DNA interactions
and their role in gene regulation in complex regulatory systems.

Keywords: Gene regulation, response curve, protein-DNA interactions, thermody-
namic model, Monte Carlo simulation, master equation, cell fate
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Chapter

Introduction

Gene expression is one of the main biological events by which the instructions encoded
in a gene are turned into a function in all living systems. The cell interprets genetic
information to guide the synthesis of proteins (Alberts, 2017). Various cells ranging from
bacteria to humans, use gene expression for their development and differentiation (Ben-
tovim et al., 2017; Zhou et al., 2019). The central dogma of molecular biology states that
the instruction stored in a gene flows from DNA to protein is unidirectional for any organ-
ism, and that happens via two steps: the transcription ( DNA TRANSCRIPTION>mRNA)

and the translation (mRNA TRANSLATION,

Protein) (Crick, 1970). During transcription,
the instructions encoded on the DNA are transferred to a messenger RNA (mRNA)
molecule upon binding an RNA polymerase (RNAP) to a promoter sequence near the
beginning of a gene. In the following step, these mRNAs translate into proteins by
ribosomal factories (Cech, 2000).

For gene expression, transcription is the critical step that controls the "on" and "oft"
of genes (Lee and Young, 2013). In this process, a set of regulatory proteins, known
as Transcription Factors (TFs), activate (or, more rarely, inhibit) DNA transcription by
binding to specific DNA sequences. These TFs bind to the promoter region of a gene.
Overall, this process is a collective result of the interplay among TFs, stimuli, and various
other biomolecules that work together to fine-tune the production of the number of copies
of mRNA mediated via various mechanisms. Nevertheless, genes follow many control
mechanisms that are known to determine gene expression (Kouno et al., 2013). These
control mechanisms are crucial in molecular biology since they permit the cell/organism
to counteract a wide range of inter- and intracellular stimuli and eventually decide a

cell’s responsive characteristics (Chen et al., 1998; Mazal et al., 2018). Both prokaryotes
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and eukaryotes have different regulatory mechanisms for controlling the transcription,
but they share a few common features, such as combinatorial control (Buchler et al.,
2003). In combinatorial control, specific combinations of TFs can regulate the expression
of multiple genes. Such combinations of TFs and their interactions with the promoter
regions can unriddle the expression patterns of a complex regulatory system. Thus,

transcription is a crucial biological step for gene expression in all living organisms.

Nevertheless, transcriptional regulation is a complex process that requires coordi-
nation among various biological events; their quantitative prediction is still challenging
(Pennisi, 2020). This thesis explores the two important questions in gene regulation, cal-
culating whether we can predict the shape of the gene expression response curve and its
relationships with the underlying molecular mechanisms by which a gene is transcribed.
The in-depth basis for exploring and understanding gene regulation comes from pio-
neering biophysical literature, which suggests the existence of various control layers that
significantly affect and regulate the gene expression (Vilar and Leibler, 2003; van Dieck
et al., 2009; Tolhuis et al., 2002; Stenger et al., 1994; Rhee et al., 1998; Ackers et al.,
1982; Bintu et al., 2005b). Multiple factors that alter the expression include a) binding
of particular types of proteins on DNA, b)strength of input signal, ¢) self-assembly of
TFs on DNA, d) physical state of DNA: looped or unlooped form, etc. These biophys-
ical events are crucial from the regulation perspective as they are known to affect the

regulation of bacteria and eukaryotic cells. We discuss a few of these factors below.

1.1 Regulation of gene expression

Gene regulation is the process used to control the gene expression. Near the Transcrip-
tion Start Site (TSS), many factors modulate the recruitment and activity of RNAP
(Petrenko et al., 2019). Factors such as the binding of TFs can either enhance or sup-
press the recruitment of RNAP. A particular class of TFs acts as an activator that
promotes the recruitment of RNAP upon their binding at T'SS, whereas a repressor re-
places the RNAP for the repression. Further, a stimulus can activate TFs that further
modulate the recruitment of RNAP — a feature that can be controlled externally. These
TFs often experience cooperative interactions and further influence the transcription

process. We discuss their role at the transcription level in gene expression below.



1.1 Regulation of gene expression

1.1.1 TF controlled transcription

TFs control the transcription process by responding to an input signal sourced by diverse
stimuli. The type of stimulus can be either the binding of small molecules to TFs,
which we refer to as ligand binding, or the chemical modification mechanisms such as
phosphorylation and acetylation of a TF (Wenta et al., 2008; Li et al., 2006). These
stimuli often promote the formation of active homo- or hetero-oligomeric complexes
that bind to the promoter regions of the genes for controlling the recruitment of RNAP
(Burz and Ackers, 1996; van Dieck et al., 2009). For example, the phosphorylation of
p53 (pH3*) promotes the population of tetrameric p53 repressors, which further binds to
the promoter regions of a few genes. These genes are expressed on the binding of p53* to
promoters and determine if a cell is malignant (Wenta et al., 2008; Li et al., 2006). Thus,
the binding of TFs to the promoter plays a significant role in various cellular processes,
such as cell development, differentiation, and counteracting responses to cellular stresses.
The stimuli-induced TF binding is often linked either with the onsetting or offsetting of
diseases (Albert and Kruglyak, 2015; Chen et al., 2018; Lee and Young, 2013). Therefore,
understanding the mechanisms behind the binding of modulated TFs to the DNA has
become an active area of research for curing various diseases such as cancer, diabetes, and
autoimmune disorders (Albert and Kruglyak, 2015; Chen et al., 2018; Lee and Young,
2013).

1.1.2 Strength of input signals

The free energy of interaction between stimuli and TF determines the strength of an
input signal. Therefore, one can modify such interaction by altering the type of stimulus
or by chemical modification. The stimulus-dependent gene expression is important for
controlled gene regulation (Molina et al., 2013; Saravanan et al., 2020). Generally, we
require a threshold amount of stimuli or a dose for controlled regulation. For gene
regulatory systems, stimuli activate TFs in a dose-dependent manner. The binding of
a ligand to a TF alters its functional activity. More often, ligand binding to TF does
not affect the binding affinity of TF to DNA; instead, it alters the conformational state
of the TF and promotes the population of active complexes (Rhee et al., 1998). The
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activated TF-DNA complex further influences other biophysical processes such as DNA
looping, altering the binding affinity of RNAP and DNA, and thereby modulating the
gene expression. Thus, ligand-dependent modulation offers an avenue to control the

intricate mechanism of gene regulation at the molecular level (Bashor et al., 2019).

1.1.3 Oligomerisation of TF

Moreover, TFs can self-assemble into several higher-order homo- or hetero-oligomeric
species on DNA under the exposure of input signals (Chen et al., 1998). The self-
assembly phenomenon plays a crucial role in modulating the control of gene expression
(van Dieck et al., 2009; Vilar and Saiz, 2011). Examples such as tumor suppressor
pH3, the nuclear factor NF-£B, retinoid nuclear hormone receptor RXR, etc., are known
for co-existing populations of dimers, trimers, tetramers, etc. (Kristjuhan et al., 1998,;
Michida et al., 2020; Vilar and Saiz, 2011). However, various environmental and in-
tracellular signals can modulate their population. These oligomers are known to be the
active species that promote differential gene expression (Vilar and Saiz, 2011). Since the
population of only a few oligomers are active in gene regulation, they are also crucial
for diseases. Therefore, one can relate these differential expressions with diseases rang-
ing from cancer to autoimmune disorders (Wang et al., 2019b; Szymczak et al., 2021).
However, we can tune these signals to control their population for developing molecular
therapies against those diseases (Stenger et al., 1994; Li et al., 2006). Therefore, under-
standing the corresponding mechanism behind the modulation of various populations of
complex assemblies and its correlation with gene regulation is necessary for developing

molecular therapies against diverse diseases.

1.1.4 DNA loop driven transcription

Not only does an input signal promote the formation of higher-order oligomers, but the
physical state of DNA also plays a crucial role in their formation. In this regard, DNA
looping plays a vital role in forming higher-order oligomers. The transcriptional control
for prokaryotes and eukaryotes involves the dependency on the activity of regulatory
protein on DNA sites which are very far from direct contact between promoter-bound

TFs (Yasmin et al., 2004; Vilar and Leibler, 2003; Tolhuis et al., 2002). These two
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simultaneously bound protein or protein complexes interact at two distant DNA sites,
forming DNA loops through the in situ formation of higher-order protein oligomers
(Vilar and Saiz, 2011). In this process, the DNA can act as a tether, where a pair of
DNA-bound proteins interacts even though they are a thousand nucleotide pairs away.
For such instances, DNA looping is the crucial mechanism facilitating the communication
between two distant bound regulatory proteins (Su et al., 1991). Thus, DNA looping is
entrenched in various biological processes such as transcription and replication, which
assists remote DNA sites’ influence on one another (Schleif, 1992; Stenger et al., 1994).
Two types of DNA loops exist in the literature: a) short DNA loops and b) Long DNA
loops based on the physical forces that assist their formation (Bazett-Jones et al., 1994;
Heenan et al., 2020). DNA elasticity is the critical factor for forming short DNA loops,
whereas for long loops, uncertain motion in the two DNA parts of a cell until they
discover one another is the plausible step (Saiz and Vilar, 2006a). Literature suggests
that the main driving factor for long loops is entropy loss when two DNA sites come
close from a far distance (Saiz and Vilar, 2006a). The DNA loop significantly affects the

initiation of gene expression at the transcription level.

Classic examples of DNA looping have been experimentally demonstrated for the
gene expressions in several operons in Escherichia coli (Cournac and Plumbridge, 2013).
The lac operon is one example where a single tetrameric form of the Lac repressor
can bind two operators simultaneously, looping out the intervening DNA. Simultaneous
binding of two lac repressors to two operators strengthens the overall interaction with
DNA and thereby leads to greater levels of repression in the cell (Garcia and Phillips,
2011). The reason behind such repression is the blocking of the activity of RNAP,
which stops the gene expression in the lac operon. The repression can be either at the
level of polymerase binding, e.g., due to competition between repressor and polymerase
for overlapping binding sites, or at later stages, because RNAP can be trapped in the
loop or not be able to recruit an activator (e.g., cyclic AMP receptor protein [CRP]).
Not only in lac operon, the gal operon also share a similar feature, where the dimeric
form of Gal repressor (GalR) binds to two operators, O and Oy, by forming a DNA
loop (Dalma-Weiszhausz and Brenowitz, 1992). The formation of such a DNA loop

blocks the accessibility of RNAP to promoters and hinders the formation of an open
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complex, thereby promoting repression. External stimuli galactose interacts with GalR
and changes its conformational state, which promotes unbinding of GalR and enhances
activation. In Figure 1.1, we have presented a schematic view of DNA looping and the

protein oligomers in gal operon in E. coli bacteria.
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Figure 1.1: A schematic view of various biophysical events in gal operon, is presented.Gal

repressosome is formed by DNA loop-assisted tetrameric GalR, which re-

presses both promoters, consisting of GalR in the tetrameric form and bound

to the two operators, and a histone-like protein HU responsible for bending
the DNA.

1.1.5 DNA supercoiling driven transcription

DNA supercoiling is another physical factor that constrains the movement of RNAPs
along the DNA during transcription (Kim et al., 2019). The DNA double helix follows
an axis typically curved-creating a phenomenon called supercoiling (Hatfield and Ben-
ham, 2002). Supercoiling of closed DNA is ubiquitous in various biological processes.
It is one of the ways by which DNA can store free energy. In this phenomenon, the
amount of twist in a particular DNA strand determines the amount of strain on it. It
can arise in two ways: a) when DNA winds around proteins and b) due to topological
constraints known as under or overwinding. Understanding supercoiling is crucial for
the understanding of the transcription process. At the transcription step, the individual
RNAPs generate negative supercoiling upstream and positive supercoiling downstream
in DNA (Kim et al., 2019; Sevier and Levine, 2017). It means that the transcription
would result in over- or under-winding of a DNA strand from RNAP. Single-molecule

experiments explore how molecular motors like RNAPs respond to mechanical interven-
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tions, including DNA stretching and twisting (Tripathi et al., 2022). These experiments
further show that the accumulation of negative DNA supercoils upstream of an RNAP

inhibits the translocation of the polymerase due to torsional stress (Ma et al., 2013).

1.1.6 Modulation of expression by network motifs

In synthetic biology, design principles or finding the underlying gene regulatory network
are an active area of research since they offer an understanding of the control mech-
anism behind the gene expression (English et al., 2021; Zhang et al., 2007; Shen-Orr
et al., 2002). More often, these networks form a coordinated interaction pattern among
protein and DNA, and they are known to be the network motifs in the gene regulatory
systems (Ozbudak et al., 2004; Duddu et al., 2020; Milo et al., 2002). Such coordinated
protein-protein and protein-DNA interactions form programmable complex assemblies
whose apparent structures are very similar. However, their functional response strongly
depends on the topology of the protein-DNA network motifs. The coordinated self-
assembly creates gene regulatory network motifs that corroborate the existence of a
precise functional response from them at the molecular level. Literature suggests vari-
ous complex networks exist inside a cell that form decision-making feedback loops that
further control the transcription process in a gene regulatory system (Buchler et al.,
2003; Webster and Weixlbaumer, 2021; Milo et al., 2002; Mangan et al., 2003). Thus,
the network topology is vital in producing phenotype diversity in regulatory circuits for
controlling the transcription process. In Figure 1.2, we have depicted a few such intricate

network motifs.

1.1.7 Modulation of expression by enhancer-promoter interaction

Enhancer-promoter interaction also contributes to regulating the transcription process
(Zuin et al., 2022). An enhancer element is a small part of DNA (50-1500 bp), occupied
by regulatory proteins, that increases the transcription of a particular gene by enhancer-
promoter interaction (Nolis et al., 2009; Samee et al., 2015). These interactions can be
regulated by forming long-range DNA loops, sometimes greater than one kilo of base
pairs. For multicellular organisms, distant enhancers generally control promoters, which

are megabase pair distance apart. Literature suggests (He et al., 2010; Nolis et al.,
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Figure 1.2: A schematic view of various intricate network motifs, (A) activation and

repression, (B) feedback loop, and (B) feed-forward loop, is presented. Com-
plex assemblies formed by the free energy of interactions among TFs, R, and
s are shown on the promoter regions of Gx, Gy, and G4 in the left-hand
side. The double-headed arrows are shown to represent both the binding
and unbinding events. The curly single-headed arrows are shown for the
production of biomolecules as they form a specific complex on the promoter
regions. The shaded shapes show unbound biomolecules in the figure. Wired
diagrams for various network motifs are shown on the right-hand side. We
represent the solid lines between two genes as hardware connections, and the
dashed lines are for the software of the network motifs. The population of
these complex assemblies is controlled by ligand molecules (s).

2009) the role of enhancers in regulating the expression mediated by enhancer-promoter

interactions in the three-dimensional nuclear domain. In Figure 1.3, we have presented a

schematic diagram where NF-xB controls the gene expression by modulating enhancer-

promoter interactions.
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Figure 1.3: A schematic view of enhancer-promoter interactions mediated via DNA loop-
ing and NF-xB-DNA interaction energy is presented. The population of these
complex assemblies is controlled by ligand molecules such as « — T'N F' and
LPS.

1.2 Biophysical modeling and quantification of gene
regulation

Therefore, it is clear from the above discussion that a molecular-level organization hap-
pens among TFs, chromatin remodellers, polymerases, and kinases on DNA (Coulon
et al., 2013). These proteins and enzymes work concertedly inside the nucleus to regu-
late the genes (Luo and Dean, 1999). Understanding the molecular mechanism behind
the transcriptional outputs at the gene level is a central question in molecular biology.
Recent advances in experimental techniques have enabled the analysis of transcriptional
regulation in vivo at the scale of single-molecule level (Larson, 2011) to genome-wide
(Stamatoyannopoulos, 2012) measurements. Due to an enormous increase in the avail-
ability of single-molecule level and genomic data, it becomes necessary to have quantita-
tive and predictive models for understanding gene regulation. There are two approaches,
a) equilibrium and b) non-equilibrium, to model gene regulation. The equilibrium mod-
els are built without considering the explicit dynamics. In contrast, the transcriptional
dynamics in non-equilibrium models can exhibit a form of molecular memory so that the

system’s future behavior depends on its past (Pedraza and Paulsson, 2008; Ahsendorf
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et al., 2014). These models are used to relate the concentration of regulators of a given
gene to its transcriptional output. Overall, thermodynamic models are often applied
to pre-initiation processes, such as binding of TFs and displacement of nucleosomes,
and non-equilibrium models are often applied to transcription initiation and elonga-
tion (Boettiger et al., 2011; Dobrzyriski and Bruggeman, 2009). In this thesis, we have

constructed both models to understand gene regulation of various regulatory systems.

1.2.1 Equilibrium thermodynamic models of gene regulation

The biological systems are examples of systems that are out of equilibrium. However,
there is a wealth of examples where equilibrium ideas are well justified based on the
timescales of underlying process (Bintu et al., 2005b; Weinert et al., 2014; Phillips,
2015). To apply this argument to our gene regulatory systems, we assume (a) the aver-
age behavior of the network is invariant over time and (b) the binding kinetics is much
faster than other cellular processes, such as cell growth. These two assumptions set the
stage for the thermodynamic modeling of gene regulation, which uses simple ideas from
statistical mechanics to infer and understand the distributions of regulatory proteins
across genomic DNA. The thermodynamic modeling of gene regulation considers a few
elementary protein-DNA and protein-protein interactions at equilibrium. These models
allow us to compute the probability of each promoter configuration based on the associ-
ation and dissociation of molecules and displacement of nucleosomes on DNA, without
considering the kinetic details (Bintu et al., 2005b). In these models, the regulatory
principle is based on the average occupancy of different complexes at promoter DNA,
subsequently influencing the accessibility of specific sites such as activator sequences
or the TATA box regions (Coulon et al., 2013). The key advantage of this method
is that it provides steady-state properties of gene regulatory systems without explicit
consideration of the dynamics.

Typically, one can describe the gene expression quantitatively by estimating two
quantities: a) fold change and b) dose response. The fold change is defined as the
relative population of the TF-RNAP complexes to free RNAP molecules on DNA (Vilar
and Saiz, 2011; Saiz and Vilar, 2007a). Similarly, the dose-response is defined as the ratio
between the activated TF-RNAP complexes as formed by the specific binding of a drug
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molecule with the TFs and the free RNAP molecules on DNA (Chen et al., 1998; Mazal
et al., 2018). Nevertheless, typical biological systems have many complexities, such as
interacting sites mediated via the DNA loop. However, the statistical thermodynamic
description of such complex regulatory systems provides a road map for Monte Carlo
simulation using the Metropolis algorithm (Rabier et al., 2021; Gasic et al., 2021). The
model, together with the simulation, predicts the occupation numbers of RNAP and

active complexes on the DNA and infer the intricate behavior of a cell.

1.2.2 Nonequilibrium dynamics of gene regulation and stochastic
models

Although it is worth demonstrating the molecules and macromolecular assemblies of the
cell from an equilibrium perspective, their non-equilibrium version must be addressed
when there is an energy expenditure (Coulon et al., 2013). The equilibrium models need
to be revised when considering the temporal aspects of transcription. Inspired by single-
cell level in vivo experiments, one can model these systems using a set of dynamical
equations that bridge links with the experimental data and provide an insight into the
mechanisms of gene regulation (Dar et al., 2012; Geva-Zatorsky et al., 2006). Moreover,
these models are also helpful in estimating the timescales of gene regulatory activity
(McNally et al., 2000; Dundr et al., 2002; Dion et al., 2007). In a non-equilibrium model,
the transcription is directly proportional to the amount of time RNAP spent bound to
the promoter (Buchler et al., 2003). Experimental biologists practice these descriptions
to probe the mechanistic view of gene regulation since it considers the directionality
in reactions and cycling molecular events. Moreover, the non-equilibrium models for
transcriptional dynamics can exhibit a form of molecular memory so that the system’s

future behavior is intimately related to its past (Coulon et al., 2013).

To carry out gene expression dynamics, one can write the coupled differential equa-
tions based on mass action kinetics of the elementary biomolecular reactions of a bi-
ological system (Cao and Grima, 2018; Ahnert and Fink, 2016; Berg, 2008). These
equations together retain the system’s equilibrium character as a whole since it obeys
the detailed balance principle. However, the detailed balance principle relaxes in the

non-equilibrium models. These models take into account how the kinetic organization
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of molecular events at gene promoters, which is vital in regulating the time course of
transcription. More often, these models are deterministic and possess nonlinear features.
Numerical techniques are adopted to solve them. However, the analysis based on the
kinetic equations is limited in its ability to characterize probabilistic events, as they do
not capture multi-modality in gene expression that arises from slow promoter binding
(Ali Al-Radhawi et al., 2019; Thomas et al., 2014). Therefore, one can consider the birth
and death processes governed by the elementary reactions in a gene regulatory network.
Generally, the time evolution of a grand probability function of a system is governed by
a chemical master equation (Vellela and Qian, 2009; Cao and Grima, 2018). However,
their analytical tracking is limited as the complexity of the network increases. Thus,
analytical methods cannot handle the solution of master equations for complex regu-
latory systems involving many nonlinear functioning promoters. Therefore, stochastic
simulations become popular to infer transcriptional outcomes by considering elementary
molecular events in a gene regulatory system (Gillespie, 1976; Saiz and Vilar, 2006b;
Cao et al., 2020).

1.3 Literature Review

The complex bio-molecular interactions in a cell regulate and control fundamental cel-
lular processes, including gene expression and signal transduction. Control over gene
expression is the central theme of any living system, as it allows an organism to respond
by changing external and internal signals. The genes are transcribed to mRNA molecules
with perfect regulatory control, further translating to functional proteins (Alberts, 2017;
Phillips et al., 2012). A particular class of protein called transcription factors (TFs) ac-
tivates target genes (TGs) by binding with the upstream or promoter region of the gene
that facilitates the recruitment of RNAP for the expression (Cao et al., 2020). A well-
known fact in gene regulation is the modulation of interactions between TFs and the
promoter region of TGs (Teif and Rippe, 2010; Alberts, 2017; Gerland et al., 2002).
The strong interactions between proteins and DNA and preceding events control gene
expression (Dangkulwanich et al., 2014). Several biophysical events such as the strength
of input signals, ligand binding (Chen et al., 1998), acetylation (Li et al., 2006), phos-
phorylation (Wenta et al., 2008; Kang et al., 2009); self-assembly of TFs (Hanson et al.,
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2005; van Dieck et al., 2009); and the physical state of DNA, etc. (Vilar and Saiz,
2005; Boedicker et al., 2013) control the final interaction between protein and DNA. In
particular, these modulated protein-DNA interactions have been observed in a class of
regulatory systems such as gal, lac and deo operons in E. coli (Nick and Gilbert, 1985;
Schleif, 1992; Dalma-Weiszhausz and Brenowitz, 1992), the lysogenic to lytic switch in
phage A (Ptashne, 2004), the human [-globin locus (Tolhuis et al., 2002), the nuclear
hormone receptor RXR (Yasmin et al., 2004) and tumor suppressor protein p53 (Stenger
et al., 1994).

The response curve typically describes the relationship between input signals and the
amount of final gene product. However, the shape of these curves depends on the detailed
information of gene regulatory networks. A comprehensive understanding of complex
genetic networks and their correlation with the shape of the response curves is challenging
from an experimental and theoretical point of view. Characterizing and decoding the
connectivity of gene regulatory networks is difficult since their regulatory activities are
influenced by each other. Due to an increase in the availability of genomic data, it
becomes necessary to have predictive models (Phillips, 2015; Wong and Gunawardena,
2020). Thus, theoretical models emerge as a suitable option that gives insight into the
mechanism of molecular organization by considering the various possible bio-physical
events linked with the gene regulation (Ackers et al., 1982; Bintu et al., 2005b; Teif,
2007). Such models put limits when considering a highly complex multi-component
system with interacting genes and inter-particle interactions. In recent times, despite
the vital role of the quantitative modeling of gene regulation in biological systems, the

mechanisms that determine the shape of the response curve are still challenging.

Researchers have presented thermodynamic models wherein the probability of find-
ing the system in a given regulatory state is a function of the free energy associated
with each system state under quasi-equilibrium approximation. The activity of a gene
is assumed to be proportional to the probability of a bound RNAP to the promoter
sequence (Buchler et al., 2003; Alberts, 2017). In particular, regulation is quantified by
the "response characteristics" indicating the gene expression level as a function of TF
or ligand concentration (Estrada et al., 2016; Buchler et al., 2003; Bintu et al., 2005b).

Therefore, calculating the occupancy index of RNAP on the promoter is crucial since
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it quantitatively impacts the transcription process. However, kinetics-based models are
also reported extensively for gene regulation, and they do not require as many assump-
tions but increase the number of parameters as complexity increases (Berg, 2008; Vilar
and Saiz, 2014). Kinetic-based methods also have two types: 1) Deterministic and 2)
Stochastic. The analysis based on the deterministic techniques is limited in characteriz-
ing probabilistic events. Moreover, these models do not capture multi-modality in gene
expression that arises from slow promoter binding (Kapuy et al., 2009; Vellela and Qian,
2009; Sahoo et al., 2018). The stochastic models offer an understanding of the multiple
steady states for the transcriptional outcomes (mRNA, protein) rendered by the solution

of the master equation.

Another vital area of research in gene regulation is its link with various human dis-
eases. The disruption of a cellular network is responsible for many human diseases, such
as cancer, diabetes, and autoimmune disorders (Chen et al., 1998). Researchers have
explored molecular mechanisms to understand how overexpression and underexpression
of a gene are associated with the origin of various diseases. One such example includes
the pb3 repressor signaling system, which demonstrates how cells behave under environ-
mental stress and determine their fate based on the overexpression or underexpression
(Hanson et al., 2005; van Dieck et al., 2009; Navalkar et al., 2022). Thus, the detailed
understanding of the interplay between modulated protein-DNA interactions and genetic
responses in various systems is one of the central problems shaping the healthcare and

pharmaceutical industry.

From the above literature review, there arise the following questions while investigat-
ing the impact of modulated protein-DNA interaction on gene regulation for a wide range

of gene regulatory networks that exist in organisms ranging from bacteria to humans:

« How the expression of target genes can be quantitatively controlled by modulating

TF-ligand interactions and DNA looping?

o How vital is the network topology in gene regulatory circuits for phenotype diver-

sity?

o« How do the long-distance protein-protein interactions influence the promoter-

enhancer interaction?
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o What are the impacts of fluctuating rate parameters in gene expression?

o Can we predict the fate of a malignant cell using thermodynamic analysis? In this

regard, we chose the tumor suppressor, the p53 signaling network.

Thus, this thesis aims to provide detailed answers to the questions that are mentioned

above by using theoretical and computational methods.

1.4 Objectives and Scope

This thesis aims to understand the role of modulated interactions between protein and
DNA in regulating the gene expressions associated with a wide range of regulatory
networks ranging from lac operon in bacteria to tumor suppressor p53 in humans. For

this purpose, we have used statistical thermodynamics and stochastic modeling schemes.

The control over gene regulation is the central theme of any form of life, i.e., from
bacteria to humans (Dalma-Weiszhausz and Brenowitz, 1992; Tolhuis et al., 2002). De-
spite the involvement of noisy and complex biomolecular processes, they execute an
ordered genetic response in a biological cell. The origin of this order is related to the
detailed protein-DNA interaction involved in various gene regulatory (GR) networks.
However, the quantitative prediction of a response curve and its correlation with the
mechanism needs scientific attention. The first research problem in this thesis is thus
to explore the role of various biophysical processes, such as the binding of a TF to the
promoter and their oligomerization on DNA, TF-ligand interactions, and DNA looping

etc., in controlling gene expression.

Cooperative protein-protein and protein-DNA interactions form programmable com-
plex assemblies (Bocci et al., 2023; Vilar and Saiz, 2014) by performing non-linear gene
regulatory operations in signal transductions. The apparent structure of those com-
plex assemblies is very similar, but their functional response strongly depends on the
topology of the protein-DNA interaction networks (Huang et al., 2018; Buchler et al.,
2003). Formulation of response function from a gene regulatory networks is crucial
since it explores the mechanism behind the expression (Ackers et al., 1982; Bintu et al.,

2005b; Teif, 2007). Further, the enhancer elements regulate gene expression patterns
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mediated via promoter-enhancer interactions through DNA looping at a large distance
(Levine et al., 2014; Vilar and Saiz, 2014; Yasmin et al., 2004). Considering this, we
use theoretical analysis to examine how the internal connectivity of a gene regulatory
network appears in cellular environments. We further explore their role in calculating
the functional response. We validated our model by applying it to biological systems like
Saccharomyces in yeast cells and NF-xB enhancer systems to investigate the impact of
topology spatial regulation in modulating the gene expression pattern with systematic
variations of the binding and DNA looping parameters in a thermodynamic model (Ku-
mawat and Chakrabarty, 2019; Levine et al., 2014). This fact motivates us to pursue the
second research problem of this thesis, where we have explored how a complex network

of interactions can form a decision-making loop in a GR system.

It has been known that gene expression is inherently stochastic (Vellela and Qian,
2009; Golding et al., 2005). Moreover, many studies show that the higher-order net-
works exhibit multimodal distribution in the probability function for the transcriptional
outcomes (Zhu et al., 2022; Faucon et al., 2014). A deterministic model does not offer
any opportunity to understand the origin of such multimodal distribution or the exis-
tence of multistable features. However, the stochastic model considers various birth and
death processes linked with protein formation or degradation. In many instances, one
assumes that the rate parameters of those processes are constant, but this is not true
in general, as the values of rate parameters may vary in the cellular environment. This
argument motivates us to step into the third research problem, where we consider the
role of colored noise in controlling the transcriptional outcomes, where the correlation

time and noise strengths play a critical role in regulating gene expression.

The mutations and phosphorylation of p53 suppressor are integral to human cancer
progression (Li et al., 2006). It controls many cellular processes, including cell cycle
arrest, apoptosis, senescence, inhibition of angiogenesis, DNA repair, metastasis, etc
(Stenger et al., 1994; van Dieck et al., 2009). This fact motivates us to study the role
of tumor suppressor protein p53 in determining the cell fate of a malignant cell. The
phosphorylated p53 binds with promoters of four genes, p21, Bax, p48, and PAI, for the
gene expression (Bieging et al., 2014). However, the binding affinity of the phosphory-
lated p53 to them is different. Such heterogeneous binding produces differential gene
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expression, which can be related to a malignant cell’s fate (Reczek et al., 2003; Chen,
2016; Gomes and Espinosa, 2010). Various drug molecules, such as Nutlin and SIRT
inhibitors, are known to control the stability of phosphorylated p53 repressor, which
introduces an extra layer of control in gene expression (Vassilev et al., 2004; Peck et al.,
2010). Therefore, we employ a thermodynamic model to calculate the expression of
these genes upon binding phosphorylated p53 suppressors to their promoter regions. We
also apply our modeling schemes to study the relation between the topology of gene reg-
ulatory networks and cellular fates for various cancer cell lines (Mirzayans et al., 2015;
Mayo et al., 2005; Fan et al., 2020). We explore this because the topology of the gene
regulatory networks for different cell lines is different. We apply our proposed model to
explore the fate of Breast cancer (MCF-7), Colon cancer (HCT-116), and Blood cancer
cell lines (K562).

1.5 Outline of the Thesis

After a brief introduction to the modulation of protein-DNA interactions for various

gene regulatory networks, we move to particular research problems.

1.5.1 Formulation of response function for gene regulatory networks

In Chapter 2, we employ in silico binding studies of GR systems to show that the
TF binds to multiple DNA sites with high cooperativity. In this regard, we develop a
statistical thermodynamic formalism that considers the binding and unbinding events
of TFs to DNA and calculates the probability of each promoter configuration. We apply
this model to simple model systems and systems containing multiple interacting genes.
Using these models, we explore the effect of TF oligomerization, TF-ligand interactions,
and DNA looping on gene expression.

The thermodynamic models fall short when complex gene regulatory networks con-
tain multiple interacting genes. In this regard, we employ grand canonical Monte Carlo
simulations to study such a system and calculate the probability of promoter configura-
tions. The predictions are validated against detailed grand canonical Monte Carlo sim-

ulations and published data for the lac operon system. Overall, our study reveals that
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the expression of target genes can be quantitatively controlled by modulating TF-ligand
interactions and the looping energy of DNA. In contrast with the earlier quantitative
gene expression analysis studies, our modeling scheme based on the grand canonical
ensembles renders flexibility and essential insights by linking genetic response with the
detailed mechanism of protein-DNA interactions in various complex gene regulatory

networks.

1.5.2 Functional responses of bio-molecular assembly networks

In Chapter 3, we demonstrate how the coordinated self-assembly of protein molecules
on DNA produces gene regulatory network motifs. Our findings corroborate the existence
of a precise functional response at the molecular level using thermodynamic analyses.
We show that a complex network of interactions can form a decision-making loop, such
as feedback and feed-forward circuits, only by a few molecular mechanisms. These net-
works or the self-assembled proteins on the DNA produce precise functional responses at
thermodynamic equilibrium. We characterize each possible network of interactions by
systematic variations of free energy parameters associated with protein binding to DNA
and DNA looping. We further show that our proposed model can capture the boolean
logic operations such as AND, NAND, NOR, and OR gates. In this regard, we consider
the regulatory network of the NF-xB system, which takes into account multiple levels
of protein organization in the DNA. Through the quantitative thermodynamic model
of transcriptional regulation and systematic variation of promoter-enhancer interaction
modes, we can account for the origin of various logic gates formed in this system. We
further show that the interconversion or switching among various logic gates yields sys-
tematic binding and DNA looping parameter variations. Overall, our proposed model
demonstrates that the coordinated self-assembly of protein and DNA interactions creates
network motifs and logic operations at thermal equilibrium. These assemblies perform

well-defined computations and amplify gene expression inside a biological cell.
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1.5.3 Stochastic dynamics of gene regulatory networks driven by
intrinsic molecular noise

In Chapter 4, we study the dynamics of gene regulatory networks. Describing the
feedback loops for gene regulation in an equilibrium thermodynamic framework is chal-
lenging since the binding and unbinding of protein to DNA strictly follows the principle
of detailed balance in this framework. Moreover, the detailed balance allows one to
carry out the dynamics of the association and dissociation of protein on DNA using the
well-known principle of mass action kinetics. However, the dynamics of the feedback
loops for gene regulatory networks are interesting. The positive feedback loops of a net-
work promote the system to stay away from equilibrium, whereas the negative feedback
loops introduce multistability. Therefore, the stochastic models are best to describe the
dynamics of these complex regulatory networks. These stochastic models are developed
either by adding extra delta function correlated noise into the kinetic equation (extrin-
sic noise) or by considering the random molecular events based on the few elementary
reactions (intrinsic noise) given for a regulatory system. The first approach gives us a
set of coupled stochastic differential equations. However, the latter describes the time
evolution of the grand probability function as described by master or Fokker-Planck
equations. Using both approaches, We explore the Gal promoter dynamics in yeast cells
and the dynamics in NF-kB signaling systems. We calculate the stochastic potentials
from those stochastic trajectories. Our calculated stochastic potentials capture the sig-
nature of multistability in the feedback loops. However, the cellular noise sources have a
finite correlation time measured experimentally (Wang et al., 2019a; Gupta and Kham-
mash, 2022). In this chapter, we also discussed the effect of short-range correlation,

introduced by the Ornstein-Uhlenbeck processes, to model noisy gene expression.

1.5.4 Role of network topology in controling the cellular fate under
stressed condition: A tumor enigma

In Chapter 5, we develop thermodynamic models to determine the fate of a malig-
nant cell as governed by the tumor suppressor p53 signaling network. The tumor sup-
pressor p53 responds to stress by selectively triggering one of among many potential

transcriptomes that influences many layers of input signal modification, ranging from
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phosphorylation of p53, the wide range of binding affinity of p53 with the promoters
of various genes, to internal connectivity among cell fate genes. We show that min-
imum free energy is a fundamental property of biological networks that establishes a
connection to unriddle the enigma between the network topology and the state of the
cell. Using this model, we show how the binding of the p53* to the promoter regions
of the four cell fate-determining genes, Bax, p21, p48, and PAI, show phase transition
characteristics. We apply our developed model to various cancer cell lines from breast
cancer (MCF-T7), colon cancer (HCT116), and leukemia (K562) that exhibit different
network topologies. Our modeling scheme shows that the cell’s fate is mainly related to
the internal links among different cell fate genes and the free energy of binding among

various biomolecules.

Finally, in Chapter 6, we summarize the key findings and discuss future research

directions.
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Chapter

Formulation of response function for
gene regulatory networks

2.1 Introduction

The control over gene expression is the central theme of any form of life, as it allows an
organism to respond by changing external and internal signals. With perfect regulatory
control, the DNA of those genes are transcribed to mRNA molecules, which are further
translated to functional proteins (Alberts, 2017; Phillips et al., 2012). A particular class
of protein called transcription factors (TFs) activates target genes (T'Gs) by binding with
the upstream or promoter region of the gene that facilitates the recruitment of RNA
polymerase (RNAP) for the expression. A well-known fact in gene regulation is the
modulation of interactions between TFs and the promoter region of TGs (Gerland et al.,
2002; Alberts, 2017). The strong interactions between proteins and DNA and preceding
events control gene regulation (Dangkulwanich et al., 2014). Several biophysical events
such as the strength of input signals, ligand binding (Chen et al., 1998), acetylation (Li
et al., 2006), phosphorylation (Wenta et al., 2008; Kang et al., 2009); self-assembly of
TFs (Hanson et al., 2005; van Dieck et al., 2009); and physical state of DNA etc. (Vilar
and Saiz, 2005; Saiz and Vilar, 2007b; Boedicker et al., 2013) control the final interaction
between protein and DNA. In particular, forming a DNA loop due to the long-distance
protein-protein interactions plays a vital role in the unusual burst of gene expression
(Choi et al., 2008). This behavior has been observed in a class of regulatory systems
such as gal, lac, and deo operons in E. Coli (Adhya, 1989; Schleif, 1992), the lysogenic
to lytic switch in phage A (Ptashne, 2004), the human S-globin locus (Tolhuis et al.,

2002), the nuclear hormone receptor RXR (Yasmin et al., 2004) and tumor suppressor
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protein p53 (Stenger et al., 1994; Cournac and Plumbridge, 2013). However, how an
input signal is modulated by these biophysical events and its impact on transcriptional

output remains unclear.

A gene regulatory network mediates the relationship between an input signal and
the transcriptional output. Such networks inside the cell require a system-level un-
derstanding rather than a list of parts. Moreover, a cell is an open system, which
introduces further complexity to study them by suitable experimental methods. The
network of biomolecular interactions is commonly known as cellular networks, composed
of molecules used by the cells to sense and respond to the environment (Saiz and Vilar,
2008, 2006b; Saiz, 2012; Marbach et al., 2010). Such networks regulate and control the
fundamental cellular processes, including gene expression and signal transduction, in all
types of organisms, from bacteria to humans. The disruption of a cellular network is re-
sponsible for many human diseases, such as cancer, diabetes, and autoimmune disorders
(Chen et al., 2018). With this view, an idea has emerged in gene regulation that can be
used as a guiding principle in the ongoing development of molecular therapies against

diverse diseases.

Many studies have been performed to understand the intricate behavior of gene
regulatory networks (Djordjevic et al., 2003; Ong et al., 2010; Wang et al., 2009; Marbach
et al., 2010; Haldane et al., 2014; Landman et al., 2017; Wong and Gunawardena, 2020).
Single-molecule level experiments such as atomic force microscopy (AFM) (Harada et al.,
1999; Friedman et al., 2013; Wang et al., 2013; Lee, 2019), fluorescence-based methods
(Guthold et al., 1999; Bustamante et al., 1999; Suzuki et al., 2012), magnetic tweezers
assays (Revyakin et al., 2006; Kapanidis et al., 2006), cryo-electron microscopy (Liu
et al., 2017) etc. have emerged as a guiding tool to explore them in detail. Researchers
have shown that RNAP first binds with TFs that aid the enzyme to recognize and bind
to the promoter region of the DNA to initiate transcription using these experiments
(Dangkulwanich et al., 2014). These studies also show that transcription initiation
promotes DNA unwinding and influences the early phase of transcription elongation.
Further, these studies explore how short- and long-range interactions among TFs affect
the DNA binding properties of TFs. Moreover, the mechanism behind the local and

distant interactions between DNA and TF has also been revealed from those studies
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(Dangkulwanich et al., 2014; Alberts, 2017; Phillips et al., 2012).

Statistical thermodynamics-based models serve a quantitative framework to describe
transcriptional regulation for a variety of regulatory motifs (Phillips et al., 2012; Ackers
et al., 1982; Bintu et al., 2005b; Segal and Widom, 2009; He et al., 2010; Vilar and Saiz,
2011; Marzen et al., 2013; Weinert et al., 2014; Samee et al., 2015; Gonzdlez et al., 2019).
In particular, calculations under canonical and grand canonical ensembles are helpful to
predict the equilibrium or static behavior of response function for gene regulation (Ackers
et al., 1982; Vilar and Saiz, 2011; Weinert et al., 2014). However, most of these models
are developed under the non-interacting regime and are often considered an isolated
genetic unit (Saiz and Vilar, 2007a; Vilar and Saiz, 2011; Bintu et al., 2005b; Landman
et al., 2017). TFs act on multiple genes, often accumulating locally on DNA sites by

various mechanisms.

In the static model, the probability of finding the promoter configuration in a given
regulatory state is a function of the free energy of interactions among the components
present in the system under quasi-equilibrium approximation. The gene’s activity is
assumed to be proportional to the probability of an RNAP being bound to the promoter
sequence (Phillips et al., 2012). However, there are many kinetics-based models for gene
regulation, and they do not require as many assumptions but increase the number of
parameters (Ko, 1991; Berg, 2008; Sanchez and Kondev, 2008; Vilar and Saiz, 2014).

Quantitative modeling of gene regulations requires understanding the mechanisms
that determine the shape of response function. In this regard, we develop a novel
computational method by employing statistical mechanics to analyze a cellular network.
In particular, we employ the grand canonical ensemble approach to obtain an explicit
expression for a fraction of RNAP bound to DNA promoter sites. We consider short-
range interactions as the local interactions between DNA sites and TF, the nearest
neighbor interactions among TFs on DNA, and the formation of a DNA loop due to the
interactions between two distant TFs bound to DNA sites (Dangkulwanich et al., 2014;
Alberts, 2017; Phillips et al., 2012; Rydenfelt et al., 2014; Liu et al., 2016). Then, we
obtain the expressions for Fold-Change (FC) and Dose-Response (DR) in the presence
of TFs and small molecules or ligand. We also perform a Grand Canonical Monte Carlo
(GCMC) simulation for the GR systems. The GCMC simulation considers the binding
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and unbinding events under quasi-equilibrium conditions using the Metropolis-Hastings
algorithm. Finally, we validate our models and computational methods by revisiting the

published results for the cellular networks formed in the lac operon system of E. Coli.

2.2 Model system

The phenomenon of gene regulation is complex and not limited to only protein-DNA
interactions. Figure 2.1 presents a general schematic picture of protein-DNA interac-
tion found in nucleosomes/nucleoids when viewed as a lattice of possible binding sites.
The simplified lattice model is our starting point for the quantitative gene expression
calculations. The long-distance and short-range interactions between protein and DNA
are shown explicitly in the figure. With these varieties of biomolecular interactions, the
system forms a cellular network, and we assume that a) the average behavior of the net-
work is invariant over time and b) the binding kinetics is much faster than other cellular
processes, such as cell growth. We first develop a theoretical model for systems without
inter-particle interactions and then introduce it by nearest-neighbor interactions. We
employ grand canonical ensemble formalism to obtain an explicit expression for the av-
erage protein and its complexes bound to the promoter region of a gene. This modeling
scheme can include more complex regulatory features, opening the door to consider gene
regulation in natural cellular systems. Further, the method has the advantage over its
canonical ensemble counterpart since the former considers an open system and provides
simple analytical solutions for different competition scenarios. Effects of DNA loop-
ing and protein-ligand interactions on gene regulation are analyzed using our in-house
developed GCMC code.

2.2.1 Non-Interacting Sites

We map the DNA segment to a one-dimensional lattice of M equivalent, distinguishable,
and independent binding sites. We consider there are N protein molecules in the system
that bind with the DNA sites. Each DNA site can accommodate up to m protein
molecules. These proteins may oligomerize locally at a DNA site. We define a new

variable a,, the total number of sites with the protein occupancy, o. If the configuration
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Figure 2.1: A) Schematic view of the complex structure of nucleosomes/nucleoid B) The
zoomed view of a section of nucleosomes/nucleoid. Different types of protein-
DNA interactions control the populations of a specific configuration. We
denote RNAP-DNA, TF-DNA, TF-RNAP, and TF-ligand by €gp, €rp, €rr,
err. The nearest neighbor interactions for TF and RNAP on the DNA
lattice are wprr and wgrgr. w; represents the long-distance interactions among
RNAP and TF molecules. The color-coding schemes for RNAP, TF, and
ligand are green, orange, and purple. The formation of the DNA loop is also
shown here. An elastic constant k; defines the DNA elasticity for looping.
C) Protein-DNA interactions are modeled as a lattice of possible binding
sites that TFs can occupy. Two possible configurations out of an enormous
number of microstates are shown for representation. D) A correspondence
between the bead and 3-D structures of protein is shown.

of the system is given by the set of numbers {a,}, then the total energy of interactions is
E =Y as€;(0); where €;(0) is the j level site with occupancy o. The grand canonical

partition function for this non-interacting system is Z(\, M, T) = (X, T)*. The symbol,
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o

m
¢, which is the promoter partition function, takes the following form »  g(0)A% where

0=0
ei(o)
q(o) =32, ¢ 5T is the partition function for a site and A = eFsT is the absolute activity.
The symbols, kgT', p and T are the thermal energy and chemical potential of the protein
and the absolute temperature of the system. The average occupation number of bound

protein per DNA site, 0 = % is given by,

m

> oq(o) XN’

o= (@gf) = N (21)
TS glo)n”
0=0

Calculation of the quantity o0 is central since it quantitatively impacts the transcription
process.

Different types of sites in DNA are known in gene regulatory systems as various
TFs bind to the promoter regions of DNA either specifically or nonspecifically. For
example, the TFs and RNAP bind specifically to the different binding sites of the gene’s
promoter region for the initiation of transcription. The binding of a TF to the different
operator regions (Og) of DNA is standard in bacterial gene regulation (Shea and Ackers,
1985; Einav et al., 2018). In a classic work, Shea and Ackers have studied the efficient
Op control system of bacteriophage lambda, where they consider the interactions of cl
repressor and cro proteins at three different sites of the right O and the binding of
RNAP at different promoters (Shea and Ackers, 1985). With this view, we extend the
above method for the distinguishable and independent binding sites. In Table 1, we
present the obtained expressions for different GR systems. In particular, we derived
the grand canonical partition function and the fraction of bound protein molecules per
site for those cases. We consider cases such as a) simple regulation, when RNAP binds
with DNA, and b) controlled regulation, when TF and ligand control binding of RNAP
(Hawley and McClure, 1980). The detailed derivation of each of these equations is
presented in Appendix 1.
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2.2 Model system

Table 2.1: We consider seven different GR Systems (GRS). The system has a total of
M equivalent, distinguishable, independent promoters. Mg and My are the
total number of specific and non-specific or other binding sites. The grand
canonical partition function (Z); the promoter partition function (¢); and the
fraction of bound RNAP, RNAP-TF (C), and RNAP-TF-L (L) complexes
(0, oc, or) are calculated, when 1) when RNAP binds with DNA, 2) when
RNAP binds specifically (S) and non specifically (O) to DNA, 3) when TF-
RNAP complex binds with DNA as a pair, 4) recruitment of RNAP due to
the binding of TF, 5) stimulation of RNAP by TF, 6) cooperative stimulation
by the dimeric TFs and 7) activation due to the binding of a ligand to TFs.
The symbols Ag, Ay, Ay, are the absolute activities for RNAP, TF, and ligand.
qr, qr, qr, are the site partition functions for RNAP, TFs, ligand, and gs and
go are the site partition functions for specific and non-specific sites.
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2 Formulation of response function for gene regulatory networks

2.2.2 Interacting Sites

2.2.2.1 Ising-based Model:

We extend our calculations for interacting sites. Here, we consider a DNA consisting of
M equivalent, distinguishable sites, but they interact if protein molecules occupy both
sites. We introduce nearest neighbor interaction, w for such interaction. In this model,
the interaction energy between protein and DNA at i" site is e. Under this framework,
the model becomes the Ising model, known for studying various systems such as gas
adsorption, gas-liquid phase transition, binary alloy, etc. (Hill, 1986). This model can
be solved by various analytical techniques such as combinatorial, transfer matrix, etc.,
methods (Huang, 2009). We adopt the combinatorial approach to calculate the fraction
of bound RNAP for these systems, which is presented in Appendix 2. We have chosen the
combinatorial path over other methods since the former is consistent with our previous

analysis.

For the sake of simplicity, we consider each of the DNA sites can be either occupied

or unoccupied, then the total energy of interaction for the interacting system is:

M M
E = EZSZ‘ +@UZS¢SZ‘+1, (22)
i=1 i=1

where s; is the binary variable, which takes a value of either 0 or 1 depending on
the occupancy of i binding site. With this description of total energy, we obtain the

fraction of bound protein, o as:

1 w’ o /
o= — ¢ sy /fBT) - (2.3)
2 2le=2w + 2 sinh® (1 /kgT)|?

where, the effective chemical potential, i/ = (e+w—p)/2 and w' = —w/4kgT. The above
analytical approach is straightforward for simple regulation, such as binding between
the DNA site and RNAP. However, the method is challenging for controlled regulation,
where RNAP, TF, and ligand do not bind independently with DNA and TF. Further,
introducing oligomerization of TFs and forming a loop in DNA enhances the problem’s

complexity. Therefore, the computational approach, such as the GCMC technique, can
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2.2 Model system

be an alternative option for calculating o for such systems.

2.2.2.2 Monte Carlo Simulation (MCS):

MCS offers an intriguing opportunity to calculate the same quantity for the more com-
plex interacting system. We assume the protein’s bound phase is in thermodynamic
equilibrium with the free unbound phase at fixed chemical potential, i, the total num-
ber of DNA sites M, and temperature, T. Therefore, we perform the grand canonical
Monte Carlo Simulations for protein-DNA interactions. In short, the MCS realizes the
binding and unbinding of proteins to DNA as the Markov process and generates many
configurations under a few thermodynamic constraints. The MCS is advantageous over
the analytical approaches because we can implement it effortlessly for the complex inter-
acting protein-DNA system. For example, (a) the inclusion of long-distance interactions
between two distant DNA sites, or (b) the binding and formation of different oligomeric
species of TFs on the DNA site, or (¢) the long-range correlation effects through nearest-
neighbor interactions are quite challenging using analytical techniques. However, the
MCS offers to include such types of complex interactions present in protein-DNA sys-

tems.

To perform MCS, we model DNA as a coarse-grained one-dimensional (1-D) lattice
of size 180 sites. Each of the sites of the lattice corresponds with 40 DNA base pairs.
We consider TFs, RNAP, and ligands to perform our simulation for the gene expression.
The nearest neighbor interactions, oligomerization of TFs, and the DNA loop formation
are incorporated into the simulation. The periodic boundary condition (PBC) is applied
to avoid the end effects in our simulation. The simulations are performed using the
Metropolis update rule. Our MC simulation code is written in MATLAB, and the

outline of the program is written in Appendix 3.

2.2.3 Fold change and dose response

The TFs can be an activator or a repressor protein. Since the activator enhances mRNA
production, the number of mRNAs, F' can be directly proportional to the probability
of bound activator-RNAP complex to DNA, i.e., 6. Thus, we can write the number

of mRNA production in the presence of an activator, F4 = T4, where I'* is the
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2 Formulation of response function for gene regulatory networks

proportionality constant. In the case of GR network systems, multiple active species are
present in the system. Moreover, the population and activity of each of the species are
heterogeneous. Therefore, the net production of mRNA for an activator may be written
as F4 = T{0p+Y,_1 ['40;. The first term is the basal expression, which appears due to
the binding of the RNAP to the DNA, and other terms in the summation are for activated
transcription. Similarly, the binding of a repressor to DNA suppresses the production of
mRNA. Therefore, the number of mRNAs, F' for the repressor-RNAP complex bound
to DNA is F'® = Tf(1-0), where again the parameter, I'* is proportionality constant.
Thus, the net production of mRNA for a repressor is F® = Tlo, + >,_1 TE(1 — 0;).
We define the fold change for an activator or a repressor as the relative change in the
population of mRNA in the presence of TFs to the population in the absence of TFs,
ie., FCA/R = pA/R PTG The normalized fold change (NFC) for both activator and
repressor is defined as NFC = (FC — FCpin)/(FChaz — FCpin), where FC,,q, and

FC,.;, are maximum and minimum values of the F'C' function.

We can modify the molecular interaction in GR systems by adding other small
molecules, such as ligands, to control such gene regulation. The ligand can specifically
bind with the specific site of TFs and further modulate the interactions. Therefore, we
define Dose-Response (DR) as DRA/E = FA/R T 50 for an activator (or a repressor)
is the relative change in the population of active complexes that produce mRNA due
to the binding of a ligand to an activator (or a repressor) and the population of ac-
tive complexes in absence of ligand. The ratio is given by DR = FA/E/ I’SV R(SO. The
gene regulation can be enhanced or suppressed depending on the amount of ligand and
strength of interactions between TF and ligand. Thus, we can calculate the DR of a
particular ligand based on our developed model. In the subsequent sections, we present

the results for various GR systems.

2.3 Results

2.3.1 Average Occupation Number

Using the above theoretical and computational methodologies, we first compute the

average occupation number, o for different GR systems as a function of the activity of
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2.3 Results

RNAP, \g for both interacting and non-interacting systems. The results obtained from
our derived analytical function and MCS are presented in Figure 2.2. The range of A that
we have chosen for our calculation is based on the average concentration of proteins found
in a cylindrical cell of major and minor axes ~3 and 1 uM (Cossart and Gicquel-Sanzey,
1985). We show the results for the interacting case in Panel D. It is apparent from
that figure that our theoretical and computational results are matched well for both
the non-interacting and interacting cases. The values of o0 quickly reached saturation as
the interaction between RNAP and DNA strengthened. In this situation, DNA binding
sites continue to recruit RNAP molecules until they are saturated. However, in the case
of binding of RNAP with specific and non-specific DNA sites in terms of their binding
affinity to RNAP, we find two saturation points for 0. The first corresponds with the
specific sites, and the other corresponds with the non-specific sites. Two different binding
interactions between the RNAP molecule and DNA binding site can explain the origin

behind the two saturation points.

In Figure 2.2C, we show the results obtained for the simultaneous binding of TF with
the RNAP at the promoter region of the gene. Here, we choose a fixed value activity
(Einav et al., 2018), Az = 1.5x107° for TF to calculate the o (Buchler et al., 2003). The
0 quickly reached saturation as the interaction between RNAP and TF strengthened.
In other words, the TF facilitates the recruitment of more RNAP molecules as the
interaction between RNAP and TF enhances. Thus, the binding of RNAPs to the DNA
can be controlled by modulating RNAP and TF interaction. Further, it is clear from
Panel D that there is a sharp rise in the function, o, as the nearest neighbor interactions
among RNAP become strong. In other words, DNA sites enhance the recruitment of
RNAP molecules as the attractive interactions among RNAP are strengthened. It is a
clear signature of cooperative effect among RNAP, and often, it describes the presence of
long-range correlation among RNAP on the DNA (Ackers et al., 1982). As the nearest-
neighbor interaction is enhanced, the function o becomes steeper, a clear sign of the TG

activation due to the cooperative effect.

Since the binding of TF with DNA controls the gene expression, we calculate the
0 as a function of Ay at fixed value of RNAP activity, Az = 10~* (Landman et al.,
2017). We consider that the TFs recruit RNAP to the gene promoter and stimulate the
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2 Formulation of response function for gene regulatory networks

5
log(Ar)

Figure 2.2: Average occupation number of RNAP and RNAP-TF complex, o for non-
interacting and interacting systems as a function of RNAP activity. Solid
lines and the symbol circles represent theoretical and simulation results.
The calculations are done for three different values of interaction energies as
shown by three line colors: red, blue, and green. Schematic lattice configura-
tions of short segments of protein-DNA complexes are shown in the respective
panels. Panel A) simple binding between RNAP and DNA. Panel B), when
RNAP binds specifically and non-specifically to DNA. The value of binding
interaction for RNAP with nonspecific DNA binding sites, €9, = —2kpT is
considered. Three values of egp are considered for both analyses. Panel C),
simultaneous binding of RNAP and TFs on DNA. The binding interactions
of RNAPs and TFs with DNA, egp = —4.68kgT.e7p = —8.88kgT and
A = 1.5 x107% are considered. Three values of e;p are considered. D)
The nearest neighbor interactions (wgg) are introduced when RNAP occu-
pies both sites. Three values of wgrg are considered for the calculation.

transition from a closed to an open complex (Ye et al., 2022). We also consider that
the TF and RNAP molecules are in close contact for such a stimulated transition. We
present the results in Figure 2.3. Once again, we find an active correspondence between

theoretical and simulation results. In specific, we show the results for the recruitment
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of RNAP due to the binding of TF (panel A), stimulation of RNAP by TF (panel
B), cooperative stimulation by the dimeric TFs (Panel C), and activation due to the
binding of a ligand to TFs (Panel D). We find that as the interaction between TF and
DNA is enhanced, TF recruits more RNAP and saturates promoter sites quickly as we
increase the activity of TF, Ap. We also find that stimuli in the system enhance the
interaction between TF and DNA, further increasing the RNAP-TF complex population
at equilibrium. In general, such stimulation can be activation or repression, depending
on the nature of TFs. We also find that as the dimeric interaction between two TFs is
enhanced, there is a sharp rise in the function, 0. Such a change in slope in that function
is a clear signature of cooperative effect. As shown in panel D, the ligand activates the
TFs, facilitating the recruitment of more RNAP on the promoter region of a gene. As a

result, the promoters become saturated earlier with the increase in ligand activity, Ar.

The above discussion demonstrates that our theoretical and computational results
correspond closely. Therefore, any of these methods can calculate o . Since the theo-
retical approaches have mathematical difficulty for complex interacting GR systems, we

adopt MCS for further calculations.

2.3.2 Self Assembly of TF and DNA Looping

We discuss the results obtained from MCS for complex GR systems in this section. Here,
we mainly introduce a few complexities into the GR systems: a) formation of oligomeric
species, b) DNA looping, ¢) ligand-TF interactions, etc. Such complexities are common
in the prokaryotic and eukaryotic cells (Matthews, 1992; Cournac and Plumbridge, 2013;
Burz and Ackers, 1996). In Figure 2.4, we show the possible complexes that formed on
the DNA in our simulation. As mentioned in the figure, both free and ligand-bound
TFs participate in the oligomerization of DNA. Moreover, forming a loop in DNA pro-
motes the population of higher-order oligomers in the system. For example, in the
bacteriophage lambda model, the cI genetic switch includes extra cooperativity through
octamerization of the cl repressor protein, mediated by long-range DNA looping (Dodd
et al., 2005). We also consider a few other bio-inspired facts for the gene regulation,
such as a) specific binding of ligand to the TFs, b) simultaneous binding of TFs with
both RNAP and the DNA binding sites, and c¢) only RNAP unable to participate for
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Figure 2.3:

0 afief” . . - ; i . . .
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Average occupation number (0) of RNAP, TF-RNAP, and TF-RNAP-L
complexes for non-interacting systems as a function of Ar and Ap. Solid
lines and the symbol circles represent theoretical and simulation results.
Schematic lattice configurations of short segments of protein-DNA com-
plexes are shown in the respective panels. A) recruitment of RNAP by
TF, B) stimulation of RNAP due to the binding of TF, C) cooperative
stimulation by the dimeric TFs, and D) activation due to the binding
of a ligand to TFs. Following binding interaction parameter are used:
€ERD — —4.68kBT,€TD = —8.88]€BT,)\R :10_4,)\T = 1.5 x 1076,

the loop formation, in our calculations. Nevertheless, these binding events generate a

new set of microstates, directly impacting the populations of different complexes. We

further consider that 1) DNA sites can accommodate up to two TFs on a linear lattice,

and 2) two distant occupied sites of DNA can participate in the loop formation in our

calculations. However, one can relax such restrictions in a simulation and perform MCS

for any arbitrary situation.
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Figure 2.4: Various complexes formed in our MCS are shown in this figure. Green,
orange, and magenta beads are for the RNAP, TF, and ligand. The arc
shown in the figure is for the DNA loop. Complexes formed on a linear DNA
segment are shown in the first row. In the subsequent rows, we show the
possible complexes formed due to DNA loop formation.

2.3.2.1 Binding of TFs on a Linear DNA Segment:

We present the o for six possible types of complexes formed among TFs, ligands, and
DNA as a function of ligand activity, A\ in Figure 2.5. To obtain these results, we
first consider that the DNA is sufficiently stiff and does not undergo loop formation
at the expense of interactions among TFs. For comparison, we further include the
results obtained from linear segments when some parts of a flexible DNA undergo loop
formation. It is clear from the figure that each of the complexes’ relative populations
varies significantly with the increase in ligand activity. We see that the population
of the highest-order oligomer is enhanced, reaching a saturation point with increased
ligand activity. It happens because plenty of ligand molecules are available to bind with
TF, further enhancing the attraction among TFs as ligand activity increases. We also
found that the lower-order oligomer population reaches a maximum and then depletes as
ligand activity increases. We also note that their magnitude is significantly smaller than
the higher-order oligomer. These non-uniform populations of different oligomers are the
origin of differential gene regulation as it is sensitive to a specific oligomeric species

(Vilar and Saiz, 2011). The figure also shows that the favorable interactions between
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2 Formulation of response function for gene regulatory networks

TF and ligand enhance the overall population of ligand-bound TF complexes, promoting

higher-order oligomerization and DNA looping (Bintu et al., 2005b,a). Therefore, it is

clear from our analysis that the population of various oligomeric complexes on the DNA

can be controlled quantitatively by ligand activity.
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Figure 2.5: Fraction of different species formed on linear DNA segments for both
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the stiff (solid lines) and flexible (dashed lines) DNAs are shown as a
function of ligand activity, A;. The following values of energy of in-
teractions for various complex formations are considered, egp = —
4.68]€BT,€TD = - 888]{53T , €ETR = — SI{JBT, €Err — — 2]€BT7 w, = —
0.2kgT, wrr = —5kgT wrr = —1kgT |, k= 3.8]‘35—;. The calculations
are done at fixed values of activities for RNAP and TF, those are given by
Ar = 107*A\r = 1.5 x 10 Srespectively.
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2.3.2.2 Effect of DNA looping:

The formation of a DNA loop in these systems is crucial since it modifies the relative
population of higher-order oligomeric species such as trimer, tetramer, etc. Proteins are
the key element for the DNA loop formation (Bintu et al., 2005b,a; Rydenfelt et al.,
2014; Liu et al., 2016). The origin behind DNA loop formation is the strong interactions
between two long distant TFs bound to the DNA sites. These interactions must overcome
the elastic free energy of DNA to form a loop. An increase in ligand activity and the
enhancement of TF-ligand interaction promotes the binding ability of TFs to DNA. If
they are far apart, then the DNA loop forms at the expense of TF-TF interactions.

We present the o as a function of ligand activity, A\; in Figure 2.6. We see that the
populations of all those species are small, but they are very crucial in gene regulation.
The gene regulation depends on the population of a specific complex formed in a cellular
system. The overall population of oligomeric species enhances as the interaction between
TF and ligand strengthens. However, we find that both ligand activity and the TF-
ligand interaction modulate the relative population of the complex species formed on
DNA due to forming a loop. For example, we find an enhancement of the population
of ligand-bound tetrameric species as the interaction between TF and ligand is strong.
Enhancement of the population of tetrameric species and the expression through them
are well known for the RXR receptor, p53 repressor signaling systems (Vilar and Saiz,
2011). We present the average number of loops per configuration in the last panel of
the figure. We see an increase in the number of loops for strong TF-ligand interactions.
Our calculation demonstrates how a ligand controls the population of active complexes

in a gene regulatory system.

2.3.3 Quantification of Activation and Repression

This section discusses the GR system’s functional response from the population of active
species present at thermal equilibrium. We calculate FC as defined in the materials and
methods section to quantify the activation and repression. We take stoichiometric values
of oligomerization for the parameters, I'* and I'? in our calculation. For example,

we consider I'; values for monomer, dimer, trimer, and tetramer as 1, 2, 3, and 4,
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The population of higher-order oligomeric species formed on the flexible DNA

due to the looping. The following values of energy of interactions for var-

ious complex formations are considered, egp = — 4.68kgT,erp = —
888]€BT , €ETR = - 3,1{?BT, €T = - QkJBT, w; = - 02]€BT, WRR —
—bkpT, wpr = —1kgT , k = 3.8]“%[. The calculations are done at fixed

values of activities for RNAP and TF, those are A\g = 107* \p 1.5 x
107° respectively. The average number of loops per configuration is shown
at the extreme bottom right panel of the figure.

respectively. However, those parameters are system-specific and can be obtained from

the experiment. In Figure 2.7, we present the FC for the activation and repression as

a function of TF activity for the system where TFs form at maximum dimer on linear

DNA segment and tetramer through DNA looping. The results for DR are shown in the

same figure as a function of the ligand activity.

In the top two panels, we show the results for NFC as a function of TF activity.

If the TF acts as an activator, then NFC rises to 1.

We further notice that with

strong favorable TF-TF nearest-neighbor interactions for an activator, the function is

steeper than the unfavorable TF-TF interactions. An opposite effect is also true for a
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repressor. The NFC for the repressor quickly reaches 0 as we increase the TF-TF nearest-
neighbor interactions. Therefore, our theoretical models clearly show the activation and
repression of GR systems. In the two panels on the bottom, we show the results for
DR as a function of ligand activity. We show that the DR rises to a saturation point
when the ligand activates the activator. Our quantitative calculation shows that the
strength of TF-ligand interaction modulates the population of active species, which
further influences the DR. We see that the favorable interaction between protein and
ligand produces strong DR. However, we find an opposite effect when the ligand activates
a repressor. Therefore, it is clear from our analysis that we can control these functional
responses quantitatively by including ligands in the system. Measurement of DR in a
quantitative way has substantial implications in the pharmacological industry since it

provides valuable information on a drug molecule’s potency.
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Figure 2.7: Quantification of functional responses in GR systems. A) NFC for the acti-
vation as a Ar function. B) NFC for repression as a Ar function. C) Control
activation with a ligand, i.e., DR# as a function of ;. D) Control of repres-
sion with a ligand, i.e., DR as a function of \y.
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2.3.4 Transcriptional Control Of Lac Operon

We finally use the lac operon in E. coli bacteria as a prototype system to illustrate
the applicability and limitations of our modeling scheme. An isolated lac operon gene’s
promoter region consists of an activator binding site, an RNAP binding site adjacent to
the activator site, and three operator sites (Liu et al., 2017). Different binding regions
of the lac operon promoter and the interaction network are shown schematically in
figure 2.8. The lac operon gene expression does not happen only due to the binding
and unbinding of RNAP with the promoter site of DNA, but there are also many layers
of control mechanism. In particular, two proteins, namely lac repressor (LacR) and
cAMP activator proteins (CRP), are involved in the controlled repression. In short, the
binding of dimeric CRP protein to the activator site of the promoter forms a complex
with RNAP. An allosteric effector, cAMP binds with the CRP protein of the complex
that activates transcription. The active form of tetrameric LacR binds to one of the three
operator sites of the lac operon gene that represses transcription. Repression by LacR
becomes activation upon binding of lactose or synthetic gratuitous inducer isopropyl
p-D-thiogalactopyranoside (IPTG). It is evident from experimental studies that the fold
change is substantial due to the involvement of LacR-mediated DNA looping (Choi et al.,
2008). We can capture this complex mechanism’s final response function quantitatively

from our analysis.

We show the results in Figure 2.9. In Figure 2.9A, we show the FC as a function of
LacR activity. The results are also obtained for three different values of the activity of
IPTG. It is evident from the figure that the LacR down-regulates the lac operon gene.
It happens because the binding of LacR inhibits the binding of RNAP to the promoter
that exhibits a downregulation of the lac operon gene. We also see that the gene is

up-regulated in the presence of IPTG.
We find that as we increase the IPTG activity, the LacR molecules quickly unbind

from the promoter region of the lac operon gene, which in turn up-regulates the expres-
sion. We observed a delay in repression as we increased the magnitude of \; from 1073 to
1071, As the activity, \; is increased, LacR molecules are more susceptible to IPTG,
which impedes LacR-IPTG complex binding and promotes binding between RNAP and

DNA. Our simulation studies also find that the nearest-neighbor interactions among
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Figure 2.8: The Protein-DNA interaction network of lac operon system at thermody-
namic equilibrium is presented. Different binding regions of the promoter of
the lac operon gene are depicted by different shades of color in the lattice.
O1, Oy, O3 are three operators where LacR can bind. CRP and RNAP bind
to their respective binding regions. Different shapes are used to represent
the different biomolecules in the figure. The letters inside the shapes, such
as R, L, C, I, and ¢, correspond with the RNAP, LacR, CRP, IPTG, and
cAMP molecules in the figure.

RNAP do not impact the repression process. However, the binding of CRP up-regulates
the gene expression, as evident from Figure 2.9B. It happens because the CRP protein
enhances the recruitment of RNAPs on DNA. The analysis also shows that the increased
activity of cAMP further up-regulates expression. It occurs because the binding between
cAMP and CRP strengthens the interaction between CRP and RNAP. Such binding fa-
cilitates the recruitment of RNAP and stimulates the bound RNAP on the promoter
region of the lac operon gene. We found a strong activation by introducing the nearest-
neighbor interaction among RNAP molecules. The long-range correlation among RNAP
molecules promotes the recruitment of more RNAP on DNA. Such recruitment of RNAP

molecules on DNA shows a strong activation effect in our results.

Our calculations also quantitatively predict the up and down regulations mechanisms
of lac operon system as a function of IPTG and cAMP. We show the results in panels

C and D of Figure 2.9 under two conditions: a) in the presence and b) in the absence
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Figure 2.9: Fold Change (FC) and Dose-Response (DR) as a function of biomolecular
activities, A\, A\c, A; and A.. Solid lines represent theoretical results, and
the results obtained from 20 independent GCMC simulation runs are shown
by shaded colors. A) Repression as a function of A;. The calculations are
done at three \; values. B) Activation as a function of Ac. The calculation
is also done at three constant values of A\.. C) Activation as a A\; function.
The calculations are done for both stiff and flexible DNAs. D) Activation
as a function of \.. Here, we also consider two cases: with and without
loop cases. The results obtained from GCMC simulations for the interact-
ing system, where we consider nearest-neighbor interactions among RNAP
molecules (wrp = —bkpT), are shown by solid green and blue colors in each
panel.

of DNA loops. Our analysis shows that the binding of IPTG to LacR facilitates the un-
binding of LacR from DNA, which up-regulates the gene expression. However, removing
LacR molecules from DNA using IPTG is not energetically favorable if they are involved
in DNA loop formation. This fact appears in our results as the down-regulation of LacR-
mediated gene expression in the presence of DNA loops. However, we observed a strong
leaky effect in DR for a stiff DNA at a low value of A\; as evident from our results. Such

leaky expression disappears for flexible DNA. It happens because the LacR promotes
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2.4 Discussions

the loop formation of flexible DNA that tightens the binding between LacR and DNA.
As a result, the low value of A\; is insufficient to unbind LacR from the DNA binding
sites and is observed as down-regulation for the flexible DNA. Since the DNA loops only
form under the binding of LacR, cAMP binding to CRP up-regulates the gene expres-
sion. However, the effect is not linear since the binding of cAMP indirectly controls the
binding of LacR (i.e., it decreases), further up-regulating the expression. Once again,
we observe a weak leaky effect for stiffer DNA compared to the flexible one. The cAMP
activates only the CRP and does not affect the unbinding of LacR. Since both ligands
activate the gene expression, we find a strong long-range correlation for both cases, as
shown in panels C and D. Both ligands ultimately promote the recruitment of RNAP,
and the recruited RNAP molecules undergo nearest neighbor interactions on the DNA.
This is a clear signature of the cooperative effect, which we observe a strong activation

in the response function.

2.4 Discussions

Recent experimental and theoretical studies show that gene regulation strongly depends
on the network of protein and DNA interactions. A series of unprecedented physico-
chemical events control the information (energy) flow from extracellular to intracellular
environments before binding a protein with DNA. Such interactions are responsible for
the over-expression and under-expression of a gene. Since most diseases are intimately
related to the over-expression and under-expression of a gene, it is crucial to explore those
molecular mechanisms in detail. In this study, we develop novel theoretical and compu-
tational approaches based on statistical mechanics to investigate the gene expression of
several regulatory motifs, as shown in Table 2.2.1. The probability of promoter occu-
pancy is quantified by simple statistical thermodynamic relations that contain only a few
experimentally measurable parameters. Our theoretical model includes a few biophysical
effects, such as oligomerization of TFs, DNA looping, and TF-ligand interactions. We
show that the population of different oligomers on DNA is controlled by modifying the

protein-protein, protein-ligand interactions, and DNA elasticity at thermal equilibrium.

The central theme of our study is calculating the average population of RNAP and
RNAP-TF complexes formed on DNA and finding the functional response. Our model’s
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2 Formulation of response function for gene regulatory networks

key feature is that it is based on equilibrium thermodynamics. We apply this modeling
scheme to an isolated gene and a wide variety of GR networks under different competi-
tion scenarios. The model requires only a few molecular parameters that can affect the
shape of the response curves in gene regulation. Calculating the populations of various
complex species on the promoter (or the promoter configuration) is crucial for determin-
ing the genotypic to phenotypic changes in the cellular environment. Extracting that
information from experiments is challenging, but finding the relationships between the
molecular mechanism behind gene regulation and the shape of the functional response is
central in molecular biology. Our model successfully captures such facts without ignoring

the complexity of the problem.

We calculate the 0 of RNAP on the model DNA lattice as a function of the activity of
RNAP for the basal expression. We show that the o quickly reaches the saturation point
for the favorable interactions between RNAP and DNA. However, we find that binding
RNAP with specific and non-specific sites of DNA modifies the shape of o function.
It happens due to the competition of binding of RNAP with specific and non-specific
sites of DNA. The origin of such hidden heterogeneity in the function, o arises from
the different molecular interactions and the possible number of available states of the
system (Vilar and Saiz, 2011; Saiz, 2012; Phillips, 2015; Landman et al., 2017). We also
show that the cooperative transcriptional activation results from cooperative interaction
among RNAP molecules. However, the free energy of interactions between RNAP and
DNA is particular and varies within a narrow range for a natural genetic system. The
free energy of interactions between RNAP and DNA is modified by the interactions of
TFs with DNA. We show that the strong interactions between TFs and DNA significantly
alter the function, o of RNAP-TF complexes. Such modifications in the population of
complexes influence the functional response, i.e., mRNA production. Thus, it is clear
from our discussion that a TF controls the production of mRNA.

Moreover, TF in a genetic system controls gene regulation by external interventions,
such as introducing a small molecule. These small molecules can be drug molecules
that only bind to the ligand-binding domain of a TF and alter network configurations.
Including a drug molecule in the system opens up an ample opportunity to discover

a new drug molecule that controls the over-expression and under-expression of a gene
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using this method. The ligand that alters the RNAP-TF complex population affects the
functional response, i.e., mRNA production. Our analysis shows that the proposed mod-
eling scheme successfully captures such ligand-controlled gene regulation mechanisms at

thermal equilibrium.

The TF-ligand interactions modulate the population of RNAP complexes and modify
the population of oligomeric species formed by TFs. Often, a specific oligomeric complex
is an active species for gene expression (Vilar and Saiz, 2011; Landman et al., 2017). We
have also shown that the oligomerization of TFs on DNA further modifies the population
of the complexes. The formation of such species on DNA is crucial since one can correlate
the functional response with a specific oligomeric species. For example, dimeric and
tetrameric species are found active for the RXR receptor system; tetrameric species are
found active for the pb3 receptor system; all the monomeric, dimeric, and tetrameric
species are found active for octamer binding proteins (Vilar and Saiz, 2011). We further
show that long-distance interactions among TFs can happen through the formation of
the DNA loop. DNA looping is crucial in gene regulation since it modifies the population
of oligomeric species and generates a functionally active looped configuration of DNA.
Many detailed studies have been performed on lac represor system to explore the DNA
looping and its consequences (Vilar and Saiz, 2011; Landman et al., 2017). The origin
behind looping is associated with DNA elasticity that alters the population of oligomeric
species at thermal equilibrium (Smith et al., 1992).

Softening or hardening of DNA can happen due to the change in cellular environ-
ments, such as alteration of pH, ionic strength, etc., or chemical modification of DNA
such as DNA methylation (Choy et al., 2010; Dangkulwanich et al., 2014; Severin et al.,
2011; Baumann et al., 1997; Ngo et al., 2016). Our analysis shows that the formation
of the loop and the population of oligomeric species are correlated. They significantly
influence FC and DR. Further, the sensitivity of the biophysical parameters to the re-
sponse curve shows that the complexes’ population formed within a narrow range of
them. In other words, they are less sensitive to the population of the complexes. We
consider only three biologically relevant parameters such as k;, epy, , and A\ to show
their effect on the population of complexes. Our analysis shows competition among the

parameters, but they are less sensitive to the response curve.
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2 Formulation of response function for gene regulatory networks

We finish our analysis by considering the lac operon promoter sequence in which
multiple cellular organizations are observed. We have chosen this system because many
detailed studies have been done in this direction. In particular, Vilar et. al. (Vilar and
Saiz, 2005, 2014, 2011), Saiz et. al. (Saiz and Vilar, 2008, 2007b) and Philips et. al.
(Phillips, 2015; Boedicker et al., 2013; Cournac and Plumbridge, 2013) have developed
similar thermodynamic models for the regulation of the lac operon system. We have
performed detailed, comprehensive work for this system using our developed model and
validated it against GCMC simulation in this work. Our analysis shows that the cAMP
activates the CRP activator protein, enhancing the promoter-RNAP complex popula-
tion and finally upregulating the expression. Similarly, the IPTG facilitates the LacR
unbinding, further upregulating the expression. We also show that LacR-mediated DNA
looping down-regulates a few orders of magnitude in the gene expression compared to
unlooped configuration. On a final note, the lac operon system analysis is not new,
but our calculations provide new insights into gene regulation at the system level in a

quantitative manner.

Appendix: 1) Average occupation number for
non-interacting sites

The central quantity is to find the population of various complexes formed at thermo-
dynamic equilibrium. We define the total energy function for protein-DNA interaction

for a j;, energy state as below :

B =33 stei(0) (2.4

i=1 0=0
Here, we introduce a binary variable s; that takes care of a biomolecule occupancy on
the iy, site of the DNA lattice. The index and superscript o stands for the occupation
of biomolecules at that site. The variable, s{ = 1, when 4, site of DNA is occupied with
o protein molecules and s? = 0 otherwise. The symbol €;(0) is the jy, level site with
occupancy o. With these descriptions, we define the canonical partition function for our

system that takes the following form
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Ej
QIN,M,T)=M> e FT = MY e i=lo=0

J J

(2.5)

At this point, we can group the number of DNA sites with o protein molecules. We
define a new variable a,, the total number of sites with occupancy, o. The variables

a, and o are related by the following relation.

Y ap=M, > oa,=N (2.6)
0=0 0=0

If the system’s configuration is given by those set of numbers {a,}, then the above

partition function takes the following form.

~>a,

= kBT
QN M, T) = M2
H a,!
o=0
( 763'(0)) (27)
m Ze kT Qo
= M My 7
01;[0 a,!

_5@
where g(0) = X, e *57T is the site partition function, where the site is occupied with

o protein molecules. The above mathematically awkward restriction (2.6) can be avoided

by introducing the grand canonical partition function instead.

E(u, M, T) = "iw Q(N, M, T)AY

N=0

mM M' 0) q(l)a1q(2>a2 e q<m>am

N
- Z aplarlas! - - - ap,! A (2.8)
= Z ! aO [Q<1))\]a1[q(2))\2]a2 c. [q(m>/\m]am
{ao} aplajlas! - - - apy,!

where A\ = e*/#8T is the absolute activity, which converts a many-body problem to a
one-body problem as a power series of \. We have used the second restriction in (2.6)

in rewriting A" in the last step, and the only first restriction (2.6) on the sets {a,} is.
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2 Formulation of response function for gene regulatory networks

Use of the multinomial theorem, we can simplify the function =
= (1, M, T) = €\, T)M (2.9)

where £ = Z q(0)A?, The average number of bound protein molecule per site, o is given

as m
) %
o= N A (=) 5 (2.10)
M M\ oN ), & 0 '

Zoqr(o)A

The quantity o is of primary interest since it is directly related to the DNA molecule tran-
scription. We can extend the above derivation for different, distinguishable, and inde-
pendent sites. If all the sites are distinguishable but still independent of each other, then
the grand partition, Z(u, M, T) function will be [T, &, where &; is a sum, Z qi(0)\?, for

the iz, site only. Different types of DNA binding sites are common as the protein binds
to DNA, either specifically or nonspecifically. For example, the RNAP binds specifically
to the gene’s promoter region to initiate transcription. The TF can also bind either
specifically or nonspecifically. In this case, the specific binding of RNAP to a gene can
only happen due to forming a particular complex between TF and RNAP. Therefore, if
there are S types of equivalent sites present and the number of DNA binding sites for

that type is Ms, then the grand canonical partition function takes the following form
S

E(p, M, T) = Hf , where M =Y M, and & = > ¢:(0)A
t=1 =0
Further, the above derivation can be extended for the multi-component system if the

DNA sites are still independent and equivalent. In cellular systems, different TFs and
enzymes can bind with DNA sites. If we consider there are P types of protein molecules
present in the system, each of the types protein possesses Np molecules, and they bind up
to mp protein molecules with a DNA site, then we can calculate all the binding properties
of the system. We further consider system is open with respect to all the components,

then the grand canonical partition function, Z(uy, po....up, M, T) = E(AAe.. Ap, T)M,
mi mo mp
where £ = > > . ) q(01,00...0p) AP AZ LAY

01=0 02=0 op=0
In a similar fashion, we can also calculate the fluctuations of occupation (o,). We

start with the following relation and then differentiate both sides with respect to A,

48



2.4 Discussions

dividing by = and multiplying with \.

NY QN M, T)A\N =3 NQ(N, M, T)\" (2.11)
N N
A <8N> + Q STNQ(N, M, T)A\Y = iz N?Q(N, M, T)\N (2.12)
N)yr =5 =N

or,

N2 — (N> =op?2 =\ @]j)m (2.13)

Here, on? indicates the variance. Now, we put N from Eq. (1.10) and obtain

N 2 CY C™ S

N2—(N)2IO'N =A o\

(2.14)

M,T

Now, we divide Eq. 1.11 by M? and obtain fluctuations of occupation numbers per

site, which takes the following form

- 9 A (9 ()‘ (al@T;E)M,T>

-0 =0 =1n o

(2.15)

M,T

Let us compute the fraction of bound molecules for a few gene regulatory systems
with the above formulation. First, we consider a straightforward case, i.e., the binding
of RNAP with DNA. It is a case of uncontrolled gene expression. We consider RNAP
binds with the DNA site in a binary fashion, i.e., the occupancy, o is either 0 or 1.
Since mRNA synthesis is proportional to the number of RNAP molecules bound to the
promoter region, we primarily want to calculate the fraction of bound RNAP per DNA
site. The site partition function ¢(o) for this case is either ¢(0) = 1 for unoccupied site
or q(1) = gqg for the occupied site. The quantity ¢ will be 1 + ggAr and the grand

canonical partition, = = ¢M. Thus, the fraction of bound RNAP is,

A In= A
R LIS R AT (2.16)
M 8)\3 M,T 1—|—qR)\R
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Appendix: 2) Average occupation number for
interacting sites

We consider a DNA segment as a one-dimensional lattice of which M equivalent, dis-
tinguishable sites are present. However, there is the potential energy of interaction,
w between two neighboring sites when protein molecules occupy both. The energy of
interaction between protein and DNA at i, site is ¢;. The introduction of such a nearest
neighboring interaction effect into the model converts our previous model to a more
mathematically challenging model. However, one can map this model with the 1-d lat-
tice gas model or more formally known as the Ising model for magnetic systems. This
model is solved by a variety of analytical techniques such as combinatorial, transfer ma-
trix, etc. This prototypical model is the starting point for a wide variety of real systems,
such as gas adsorption, gas-liquid phase transition, binary alloy, protein-DNA interac-
tion, etc. Here, we adopt this model for the calculation of occupation numbers for a
weakly interacting system, where the long-range correlation is important. According to

our previous notation, the total energy for this interacting system for a j** energy state

is given by
M m /I m m ,
Ej=3 % sl (0)+> > > sisie; " (o) (2.17)
i=10=0 ik 0=00'=0

The index ¢ and k are related by the nearest neighbor, and the periodic boundary
condition is applied to the lattice (i.e., M + 1 site is the first site). The variable, s¢ ,
takes value 1 when the site is occupied by o molecules and 0 otherwise, and the primed
sum extends over nearest-neighbor interactions. For the sake of simplicity, we consider
each of the DNA sites can be either occupied or unoccupied (i.e., the value for m = 1),
and the energy of interaction between protein and DNA at i, site is eév (0) = ¢, and the
nearest neighbor interaction between two occupied sites is ej-v N(o) = w. Thus, the total
energy expression for a j;, energy state, takes the form

M M
Ej = EZSZ‘ +w23131+1 (218)
=1 =1
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where s; is the binary variable, which takes a value of either 0 or 1. At this point,
we can group two types of fundamental interactions, such as (a) N protein-DNA in-
teractions, (b) Ni; nearest neighbor interactions. The system is characterized thermo-
dynamically by M sites, of which N are occupied at temperature 7. There will be
Ni; nearest neighbor pairs of occupied sites; the interaction potential is Nj;w. How-
ever, it is more convenient to use Ny;—the number of nearest-neighbor pairs of sites with
one site empty and the other filled with protein. Both variables are related, and the
following argument can establish it. If a line is drawn from each occupied site to its
two neighboring sites, we will have drawn 2N lines. Also, in this process, two lines are
placed between each nearest neighbor, 11 pairs, and one line between 01 pairs. There-
fore, these arguments constitute two relations (a) 2N = 2Ny + Ny for occupied sites
and (b) 2(M — N) = 2Ny + Np; for empty sites, which further suggest that only one of
Ni1, No1, Noo is independent; we chose Ny;. We assume M is very large, and therefore
end effects from relations (a) and (b) can be neglected. The potential energy of nearest
neighbor interaction is Nyjyw = (N — Np1/2)w. Since the system is open, we consider a
grand canonical ensemble for the calculation of the average number of bound proteins.
The total energy of interaction for this interacting system, which can be written in an

explicit way as

E; = Ne+ Njqw = Ne+ (N — N1 /2)w (2.19)
The canonical partition function is
Q(N,M,T) Zg e ’“BT

—ZZQN MN01

E No1

{N€+(N N01/2)w}

(2.20)

BwN

:Z e_ kBT ZgN MNOI) (eﬁ)]\k’l
E

No1

— (47 7)" 32 g(N, M, Noy) (e757) ™"
Noz

where ¢ = > p e_’w%T, is the site partition function. The function g(N, M, Ny;) is the

ol



2 Formulation of response function for gene regulatory networks

degeneracy for the configurational arrangements N molecules in M sites giving Ny, pairs

of type 01. The function g(N, M, Ny;) takes the following form

N!(M — N)!
(N — Not/2)/(M — N — Nt /2)![(No1/2)1]?
The details of the construction of this function can be found elsewhere (Hill, 1986). The

g(N, M, N()l) = (221)

grand canonical partition function is

2.22
:;;x (N, M, Nop )y™Nor 222)
= %:g:t(N, No1)

w/2ksT and y = ghe /k8T. Use of maximum term method, one can

where, z = e
approximate InZ=, as the dominant term of the double summation over N and Ny; to

determine the =
In==1In Z t(N, N01>
N,No1 (2.23)

=In tmaz

where Int = Ing + Nlny + Ny Inz. To find Int,,.. we set mnt =0, and ¢ 61“ =0 and

0 (1—0—04)_1
1—-o0 00—« oy
(0—a)l—0—a) 1

a? T a2

obtain

(2.24)

where 0 = %, a = 12\/](\)41 Upon rearrangement of the first equation of (2.24), we first

obtain @ and then get o after substituting it into the second expression.

_o(1-0)(y—1)
oy —(1—0)
__dy+a(y— 1P+ (y— DAye + 2y — 1))
T 24y 4+ 272(y — 1)2] (2.25)
1 e sinh(y/ /kpT)

2 2le2 4+ 2 sinh®(y/ /kpT)]2
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where, the effective chemical potential, i/ = (¢ +w — p)/2 and w' = —w/4kgT.

Appendix: 3) Grand canonical Monte Carlo simulation

In the previous subsections, we discussed the calculation of the fraction of bound pro-
tein, which is the key quantity to study gene regulation using analytical approaches.
However, we noticed that introducing simple nearest neighboring interactions into the
model introduces serious mathematical complications and limits its applicability to more
complex interacting systems. In this regard, Monte Carlo simulation offers an intrigu-
ing opportunity to calculate the same quantity for a more complex interacting system.
Therefore, we continue our calculation with the framework of the grand canonical Monte
Carlo simulation (MCs) for protein-DNA interactions. The protein’s bound phase is in
thermodynamic equilibrium with the free unbound phase at fixed chemical potential, p,
the total number of DNA sites M, and temperature, T. We validated our exact solution
with this simulation. For example, (a) the inclusion of long-distance interactions among
TFs occupied at two distant DNA sites, or (b) the binding and formation of different
oligomeric species on the DNA site, or (¢) the long-range correlation effects mediated
through DNA loop are quite challenging to study through analytical techniques. How-
ever, the MCs offer to include any type of complex interactions present in protein—-DNA
systems. To perform MCs, we first define the total energy of interaction for a microstate
in the protein-DNA model system. We still consider the DNA as a 1-D lattice in which
different types of molecular interactions are present. Specifically, we consider three types
of biomolecules, namely, RNAP (responsible for the gene expression), TFs, and ligands,
that control the expression. All sorts of possible complex interactions are considered to
prove the richness and flexibility of the model. In specific, the total energy of such an

interacting system is given by

M m m

R S ITIOND S S IFTACLIOND 3Dy

e e =Ll (2.26)
Z 2{3?5?',5?15(0) + §k7l(|AMn"| - LO)Q}
0=00'=0
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where, M is the total number of lattice points for DNA; m is the maximum occupancy

per site; s? is the binary variable, which takes value 1 when the iy, site is occupied
N
J
DNA and other molecules, such as TFs, RNAP, and ligand. ej-v Nis the different types of

DIS ;

with o molecules, otherwise it takes value 0. €.’ is the host-guest interaction between

nearest-neighbor interactions among different bound molecules present on DNA; € s
the interaction between two molecules at two distal bound DNA sites, ¢ and 4'; k; is
the force constant for bending of DNA molecule. |AM;;| is the absolute value of the
difference between two sites, ¢ and i’; and Lg is the reference value of site difference for
which the loop energy is minimum. The last term constitutes the competition between
the intermolecular interactions and the elastic energy of DNA, and these two energies

are opposite in nature.

Once we defined the system’s total energy, we performed the simulation in a grand-
canonical ensemble using the Metropolis-Hastings algorithm. We calculate the change in
energy, AFE for the transition from old to new microstates. We consider a promoter site
containing an RNAP binding site and a TF binding site that accommodates RNAP and
TF molecules in our simulation. We further consider the promoter site can accommodate
up to 2 TFs and one RNAP. A single ligand molecule binds specifically with the TF. We
follow the following Markov chain proposal transitions.

1) We chose a random DNA site and proposed to insert TF or, RNAP or ligand.
If the sites are saturated, we do not accept the proposal. If unsaturated, accept the

proposal with probability

P(N—-N+1)= mm{l, (%) 2 eik@TT} (2.27)

(N+1)

2) We chose a random bound DNA site to remove it. We accept the proposal with
the probability

3
M) X

P(N = N —1) :min{l,<A—) %%‘T} (2.28)

If there are no bound molecules in the system, we proceed with the next Markov
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chain transition proposal.
3) We translate the molecules on the lattice, and we accept the proposal with the

following probability
P(o%n):min{l,(%} (2.29)

The periodic boundary condition is applied to avoid the end effects in our simulation.
Our MC simulation code is written in MATLAB, and the relevant pseudo code con-
taining algorithm for carrying out Grand Canonical Monte Carlo (GCMC)

simulation for 1-D DNA lattice is written below :

Parameters
(kgT,V,activity, MC Steps, AddRemSteps) — (0.53,180, 1072, 25000, 100)

e — All sort of interaction energies

Initialisation
X=zeros(V,1); Array containing coordinate of proteins
N=sum(X); Number of proteins
U=0; Total energy of the system
o=0; Average number of proteins per microstate per site

Monte carlo code
for step = 1: MCSteps
for substep = 1 : AddRemSteps

if rand < 0.5 For addition of protein
i = ceil(rand *V);,j =1,

it X;;, ==0

oU = ¢ Interaction energies by applying PBC
if rand < exp(i’f?[(%v)ﬁ;tmty*v Metropolis algorithm
X,;=1U=U+06U;N =N +1;

end

end
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else For deletion of protein
it N>0

il = ceil(rand x V); , j1 = 1;

it Xi1,1 >0

oU = —¢; Interaction energies by applying PBC
xp(— k;UT )« N
activityxV

Xiji=0;U=U+0U;N=N —1;

end

if rand < Metropolis algorithm

end

end

end

end

it N >0 Translation of protein on lattice
for substep =1:V

i2 = ceil(rand x V'); , j2 = 1;

if Xioj0 >0

i3 = ceil(rand x V'); , j3 = 1;

if X33 ==0

Ul = —¢; Interaction energies by applying PBC
Xizje =10

oU2 = ¢; Interaction energies by applying PBC
oU = 0U1 + 6U2;

Xinjo = Xizjo + 1

if rand < exp(—é—UT) Metropolis algorithm
Xiojo = Xiojo — 1; Xig js = Xig js + 1; U = U + 0U;

end

end

end

end

end

Np = sum(X)
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- = N .
0=0+ Vo

end

-~ 6 . . 0 0 .

0 = 3CSieps) Final average no. of proteins per microstate per site
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Chapter

Functional responses of bio-molecular
assembly networks

3.1 Introduction

In the previous chapter, we discussed how protein-DNA interaction networks modulate
the shape of the response function in gene regulation. In this chapter, we characterized
them and infer that these networks form extremely reliable functional units in a cell
(Hartwell et al., 1999). These networks of interaction form a diverse range of biomolecu-
lar assemblies that perform nonlinear regulatory operations involved in cellular decision-
making and signal processing (Bashor et al., 2019; English et al., 2021; Gyorgy et al.,
2023; Kalir and Alon, 2004; Mangan and Alon, 2003). Moreover, they bind combinato-
rially to produce functional responses in converting the TF inputs into a switching-like
transcriptional output (Buchler et al., 2003). Many examples are reported in literature
where the self-assembly mechanism is critical for forming signaling complexes with tens

of different molecular species in a biological cell (Liu et al., 2017; Bashor et al., 2019).

The network motif in the gene regulatory system is defined as the statistically sig-
nificant smaller protein-DNA interaction network or pattern in a large biomolecular
network. The self-assembly of protein and DNA is the critical mechanism for forming
such network motifs in a cell (Vilar and Leibler, 2003; Teif, 2005; Widom, 2005; Wong
and Gunawardena, 2020). The most common network motifs are the feedback and feed-
forward loops, known in both prokaryotic and eukaryotic cells (Kaplan et al., 2008;
Avendano et al., 2013; Siegele and Hu, 1997; Jenkins and Macauley, 2017).

For example, the lac operon system exhibits a feedback mechanism upon binding

lac repressors to the lac operators (Mitrophanov and Groisman, 2008; Yildirim and

29
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Mackey, 2003). The circuit constitutes positive feedback upon binding an inducer allo-
lactose with the Lacl repressor. The inducer promotes unbinding the repressor, further
repressing transcription of the lacZY A operon. As a result, the presence of more al-
lolactose in the system elevates the expression of the transport protein LacY, which in
turn enhances the rate of lactose intake and its conversion into allolactose. The system
also exhibits negative feedback because the LacZ metabolizes allolactose, thus decreas-
ing its availability to Lacl, eventually leading to the lacZYA operon’s repression. The
feedback loops are also known to exist in eukaryotic cells. In plant cells, the hormone
Auxin induces the production of a family of proteins, AUX and [AA, which act as re-
pressors for the expression of its gene. They also interact with the Auxin Response
Factor (ARF) that promotes repression (Teale et al., 2006). In yeast cells, the galactose
activates the TetR repressor, which represses the yellow GFP production. However, a
signaling molecule, anhydrotetracycline (ATC), controls the DNA binding activity of
Tet repressor protein that leads to a negative feedback loop in this system (Nevozhay

et al., 2009).

Feedforward loops (FFLs) are also common in the GRN of E.Coli bacteria, yeast
and human cells (Milo et al., 2002; Shen-Orr et al., 2002). An incoherent FFL is formed
in the gal operon system of E. coli bacteria, where an activator, cAMP, induces CRP
recruitment. Such recruitment activates both galS and gal E'TK operons. In addition
to that, the galactose induces the galS operon that represses gal E'T'K operon and its
promoter (Mangan et al., 2003). Higher-order organisms such as human stem cells,
OCT4, SOX2, and NANOG also form a regulatory circuit consisting of autoregulatory
and feedforward loops (Boyer et al., 2005).

Long-distanced enhancer elements participate in gene expression by forming specific
assemblies in various systems (Levine and Davidson, 2005; Stathopoulos and Levine,
2005). NF-xB is one such system, where the enhancer elements, kB, and IRE are far
from their promoter. Two transcriptional activators, NF-xB and Interferon regulatory
factors (IRF), form heterodimers and bind to their respective enhancer sites. These
activators get activated in macrophages after exposure to pathogens. Formation of
such protein assembly at the regulatory region of NF-xB system determines the ori-

gin of the Boolean logic in the NF-xkB gene regulatory circuits (Cheng et al., 2011).
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Wang et. al. have reported that the IRF combinatorially control NF-xB target genes
through their computational modeling and predicted AND and OR logic gates for this
system (Wang et al., 2021b). Further, both of the activators fluctuate between active
and inactive states upon exposure to a stimulus, lipopolysaccharide (LPS), (Saravanan
et al., 2020; Puc et al., 2015) and that promote binding to their respective enhancer
elements of target genes (Michida et al., 2020). Typically, the source of these stimuli
are pathogens, and they are powerful pro-inflammatory agents and potent activators in
monocytes/macrophages (Tucureanu et al., 2018; Idriss and Naismith, 2000). However,
the biological function of NF-«xB is complex, producing diverse cellular variability in
response to stimuli. The mechanisms behind the selective participation of NF-xB at the

enhancer regions are still unclear (Lee et al., 2009; Tay et al., 2010).

Various experimental techniques based on single-molecule experiments, such as Atomic
Force Microscopy (AFM) (Harada et al., 1999; Lee, 2019), magnetic tweezers assays
(Revyakin et al., 2006), cryo-electron microscopy (Liu et al., 2017), and DNA sequence
analysis help to find the parameter information for such networks. Single-cell level ex-
periments based on Green Fluorescence Protein (GFP) provide quantitative details of
the amount of mRNA produced or expression (Soboleski et al., 2005). Further, the
electromobility shift assays (Hellman and Fried, 2007) (EMSA) or "footprinting" assays
(Ragnhildstveit et al., 1997) are used to obtain the detailed protein-DNA interaction
energies. Recent advances in cryo-electron microscopy allow one to identify the Tran-
scription Active Complexes (TAC) and establish a direct relationship between their
structure and gene expression (Liu et al., 2017; Bashor et al., 2019). However, most of
the experimental techniques follow a reductionist approach, where the studies are per-
formed on the part of a biological system. Therefore, it introduces a challenge in modern
biology to integrate molecular-level data and the properties of biological systems.

The structural characterization of TAC using microscopy is sometimes sufficient to
relate with the desired functional responses (Buchler et al., 2003; Bintu et al., 2005b;
Teif, 2007; Bashor et al., 2019). In molecular biology, the structurally identical TACs
can produce different functional responses (Buchler et al., 2003; Bashor et al., 2019).
The origin of such variations can be linked with the topology of the biomolecular net-

works. Therefore, theoretical and computational approaches emerge to understand the
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3 Functional responses of bio-molecular assembly networks

network properties of biomolecular interactions at the system level. Typically, equi-
librium thermodynamic models identify the most likely formed biomolecular assembly
networks under a few constraints (Buchler et al., 2003; Wong and Gunawardena, 2020;
Biddle et al., 2019). The method first calculates the probability of each complex as
a function of free energy parameters by considering all possible microstates for a given
network topology. We express the functional responses as a function of the average value

of the most probable configuration of the topology in a dose-dependent manner.

This Chapter explores how the coordinated interaction among biomolecules forms
functional assemblies for the feedback (FL) and feedforward (FFL) network motifs. We
further explore the relationship between the network topology of a biomolecular assembly
and the Boolean logic responses in detail. In this regard, we developed a statistical
thermodynamical model to characterize those configurations. We further show how DNA
flexibility, or its chemical modification, can cause a switch in the logic behavior, such as
transitioning from AND into OR behavior. We show that the assembly of biomolecules
in the gene regulatory network forms simple, functional units in the parameter space.
These assemblies perform well-defined computations that finally appear in phenotypic

diversity in a biological cell. We discuss them below.

3.2 Models and Methods

3.2.1 Theoretical Background and Simulation Details:

We model the transcriptional regulation of complex gene regulatory networks. We pro-
pose a generic thermodynamic model, which considers explicit networks of protein-DNA
and protein-protein and protein-ligand interactions. To provide a realistic view of the
theoretical models, we validated them against GCMC. As mentioned above, the produc-
tion of a protein from an active assembly is a tightly regulated process; therefore, the
population of the final product is proportional to the relative abundance of the complex
assembly. The thermodynamic approach captures such information by considering all

possible network configurations for a set of free energy parameters.

62



3.2 Models and Methods

3.2.1.1 Thermodynamic Model for Gene Transcription:

The transcription rate may be defined in many instances by the amount of time spent
bound to the RNAP bound to the promoter. Here, we quantify the degree of gene
transcription by the equilibrium binding probability (o) of RNAP-promoter binding due
to the interactions with bound TFs. For a single promoter, the probability under a grand

canonical ensemble can be written as

_ Son
- fon + EorF’ (3-1)

where the {pn and {ppp are the partition functions for the TF (P) bound and
unbound RNAP (R) microstates. The explicit form of {on and opp for this simplest
case are Eopp = 1+ gpAp and Eon = qrAg(l + gpApe=RP/¥8T)  The subscripts P,
R, and RP are for the TF, RNAP and RNAP-TF complex molecules. The strength of
interactions between RNAP and TF is denoted by ezrp. We define the exponential term
(e=rr/kBT) as the cooperativity factor, wgp, that can be tunable to a certain degree by
the relative placement of these sites in the regulatory region. In general, the variable
wrp takes values 0, 1, w > 1 and 2 > 5w for the mutual exclusion, independent binding,
pairwise cooperativity if they are bound to adjacent sites and cooperativity due to DNA
looping. Here, the symbol A = eFsT is the absolute activity and ¢ = 3 e_’c%T is the
site partition function, when a TF is bound to the DNA site. Here, each site of the
DNA is associated with many energy states, and we denoted them using the j index.
The symbols kgT', T', and p are the systems’ thermal energy, absolute temperature, and
chemical potential. The above formalism for the single promoter case can be extended
for more complex GRNs containing multiple promoters interacting through TF binding
and DNA looping. If there are a total of L TF binding sites in a Core Regulatory
Region (CRR), the weight for each microstate of site occupation is still a simple product
of gp,Ap, and wp,p, values, under the assumption that the TF-TF interaction is glue-
like (Buchler et al., 2003). The subscripts, ¢ and j are the labels for various promoter
sites. We introduce a binary variable o € [0, 1] to denote the occupation of each site i.

Therefore, we can write the weight for each microstate:
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3 Functional responses of bio-molecular assembly networks

L
W[O'l,O'Q. anl)\}‘; ?:;“;373 (32)

1<j

Immediately, we can write the {pn and £ppp as the sum

gOFF: Z Z Z W[O-l,O-Q....O-Z'], (33)

01=0,1 02=0,1 0;=0,1

and

Con= > > . Z (01, 09....0)W (o1, 03....0/] (3.4)

01=0,1 065=0,1 =0,1
The function, @ is the additional weight factor due to the interaction of the RNAP
with the bound TFs. Note that an RNAP can bind either simultaneously with multiple

TFs or with a single TFs. Taking these facts into consideration, we define () as follows.

= qR)\RH 0(wypi, 0)][1 +w20j5(wp7i,w)] (3.5)

j=1
The first factor ensures that the RNAP can not bind to a site ¢ if it is bound with a
repressor (i.e., with w,, = 0). The second factor is the additional weight gained by the
cooperative interaction of TFs with RNAP (i.e., with w,; = w). We apply the above
prescription for a wide range of gene regulatory network motifs and obtain the explicit
form of the grand canonical partition functions. The grand partition functions are used
to obtain the o, which we convert to fold change (F'C'). The FC' is defined as the ratio
between the occupation numbers of the specific complex assembly when RNAP is bound
with TFs in the network (o.), and the R-DNA complex (0,) respectively (Gautam and
Kumar Sinha, 2021), i.e., FC = &

3.2.1.2 GCMC Simulations:

The partition function-based analysis of a protein-DNA interactions network is increas-
ingly complex as the components increase. For example, considering all possible pairwise
interactions and a system-level analysis of such biomolecular networks using the above
analytical method is a real challenge. Therefore, we perform GCMC simulation that
offers a numerical way to analyze such complex networks without an explicit analytical

solution. The MC simulation realizes all possible binding and unbinding events as the

64



3.2 Models and Methods

Markov process and generates many configurations of the Metropolis-Hastings algorithm
(Gautam and Kumar Sinha, 2021). First, we map the Core Regulatory Region (CRR)
consisting of L binding sites to a one-dimensional (1-D) lattice. The TFs or RNAPs walk
randomly and bind reversibly to their respective binding sites by following the topol-
ogy of the protein-DNA interaction network. We further consider M identical units
for averaging in our simulation. Other technicalities, such as consideration of pairwise
interactions among all the biomolecules and periodic boundary conditions (PBC), are

also applied in our simulation.

3.2.2 Complex Assembly as Network Motifs:

We apply the above formalism for activation and repression, feedback, and feed-forward
loop assemblies. The biomolecular network of interactions of each of the units is pre-
sented in Figures 3.1, 3.2, 3.3, and 3.4. To demonstrate those processes, we consider
a unit consisting of the promoter regions of regulatory and target genes as denoted by
G x and Gy. These two genes produce two TFs, namely, T'Fx and T Fy. In the following
step, we deduce the grand canonical partition function for M identical units using our
proposed scheme, =(\, M, T) = ((orr + Eon)M by considering all possible configura-
tions of a biomolecular network for each of the cases. We then calculate the fraction,

o8 of hound complexes on Gy from the Z(\, M, T) under different com-

[OR]Y ~ forrtfon
petition scenario.

3.2.2.1 Activation and Repression:

In Figure 3.1, we present the biomolecular network of interactions for the simple and
induced mechanisms. The network consists of two genes, G x, a regulatory gene, and Gy,
a target gene. Here, the word activation means the G'x activates Gy through a network

of interactions, as mentioned in the figure. We calculate the conditional population,

(o[(R,C)y|Rx]) i.e. the population of RNAP (R) or R-mediated complexes (C') on
Gy when another R is bound on G x at thermal equilibrium. In short, the mechanism for
activation can read as the R binds with Gx and produces the T'Fy that again binds with
the Gy along with the binding of R. As the interaction between T'Fy and R is enhanced

at the promoter region of Gy, the Gy is activated. In contrast to the activation, the word
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3 Functional responses of bio-molecular assembly networks

repression means the Gy represses GGy through a biomolecular network of interactions, as
also presented in the figure. Again, we calculate the conditional population, (o[Ry |Rx])
to quantify repression. Here, the binding of R to G x produces the T'Fy that binds with
the Gy that hinders the binding of R. As a result, the expression of Gy is suppressed.
As shown in the table, we control the whole process by a signaling molecule sy which
binds with the T'Fy and further controls the gene expression. Binding of sy to the
TFy strengthen the interaction of T'Fy with the DNA and R for activation. Similarly,
forming a complex between T'Fy and sy enhances the excluded volume interaction that
further represses the expression. We again calculate the conditional populations of
those specific assemblies for induced activation and repression to quantify the induced

responses.

A A | B

Nr\wii,[' x m\m ﬁ& gi};ﬂgm\ AROVK ,\f\/“ii ’E’W

Figure 3.1: Panel A and B represent the complex assemblies for simple activation and
repression for two gene systems. Complex assemblies for induced activation
and repression are presented in panels C and D. We adopt the same symbolic
scheme as shown in Figure 1.2 to represent each biomolecule. The arrow
— and H are used for activation and repression. The wired network version
for each complex assembly is shown in the inset.

3.2.2.2 Feedback Loops:

We further decode the feedback loops (FLs) through our thermodynamic formalism,

shown in Figure 3.2. The fundamental units for the biomolecular network of interactions
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3.2 Models and Methods

for various feedback loops are shown in the same figure. Again, we consider two genes,
Gx, a regulatory gene, and a target gene, GGy. Here, both of these genes activate
or repress each other simultaneously. Explicitly, we define the feedback loop as the
production of the gene products of Gx and Gy are affected through their products,
namely T'Fy and T Fx. In the case of positive feedback loops, the gene Gx is activated
by binding T'F'y and the gene Gy is activated by binding T'Fy along with the binding of
R. However, the production of T'Fx and T Fy hinders the binding of R to the Gx and
Gy for the negative feedback loop cases. Once again, we calculate conditional population
of R and its complexes on Gx and Gy, o[(R,C)y|(R,C)x] and o[(R, C)x|(R,C)y], to

find the response functions.

Figure 3.2: Panel A, B, C, and D are for the complex assemblies of PFL, NFL1, NFL2,
and FNFL feedback loops. We adopt the same symbols as shown in Figure
1.2 to represent each biomolecule. The arrow — and = are used for activation
and repression. The wired network version for each complex assembly is
shown in the inset.
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3 Functional responses of bio-molecular assembly networks

3.2.2.3 Feedforward Loops:

The feed-forward loop (FFL) is another common network motif found in various or-
ganisms. The fundamental unit consists of two regulatory genes, Gx and Gy, and a
structural or target gene GG 4. The genetic output of Gx is the T Fy that regulates the
genetic output of Gy, T'F4. Furthermore, the T'Fy and T'F4 control the expression of
G 4 through an interaction with the R at the promoter region of G4. These TFs can
either be an activator or a repressor. Depending on the binding of T'Fy and T'F4 to
their respective promoter regions, there are eight possible configurations, as shown in
Figures 3.3 and 3.4 (Mangan and Alon, 2003; Milo et al., 2002). The regulation of G 4 by
T Fy is called the direct path, but the same regulation through 7T'F4 is called the indirect
path. Among them, four configurations are coherent, and the other four are incoherent
feed-forward loops (Mazal et al., 2018; Milo et al., 2002; Kaplan et al., 2008). Here, the
word coherent means that the overall sign of the gene regulation G 4 along the direct and
the indirect paths is the same. In the case of incoherent feed-forward loops, the overall
sign of the regulation of gene G4 along the direct and indirect paths is the opposite. A
classic example of incoherent FFL is the gal operon in E.Coli bacteria, where the CRP
and gal repressor protein, cAMP, and galactose control the expression of the gal gene,

i.e., the production of galgrx enzyme by forming an incoherent FFL among themselves.

3.2.3 Complex Assembly as Logic Gate Operation :

Figure 3.5 shows various configurations for AND, OR, NAND, and NOR logic gates
for the Nuclear factor kB system. The origin behind various configurations of complex
assemblies in the parameter space relies on the free energy of interactions and the ac-
tivities of biomolecules. In this model, we aim to control the population of different
configurations by varying stimuli activities and DNA looping energies. We define the
active and inactive states of TFs depending on whether the stimuli randomly activate
TF. We further consider that the binding of active TFs is more potent to bind with DNA
than its inactive form. The TFs can access the promoter region by various modes and
play a critical role in forming active configurations, thereby modifying gene regulation.
An active configuration produces a unit of mRNA, demonstrating that the AND and
NOR gates produce 25 % of mRNA, and OR and NAND produce 75 % of mRNA on
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Figure 3.3: Panels A, B, C, and D are for the complex assemblies of types 1, 2, 3, and
4 coherent FFLs. We adopt the same symbols as shown in Figure 1.2 to
represent each biomolecule. The arrow — and - are used for activation and
repression. The wired network version for each complex assembly is shown
in the inset.

average. In the case of AND and OR gates, the TFs access the promoter by forming
loops, whereas the TFs access the promoter region by diffusion for NAND and NOR

gates.

The complex assembly forms an active configuration in the presence of external stim-
uli. The presence of stimuli is controllable; one can achieve various gates by tuning them.
The TFs can bind to the enhancer elements and participate in mRNA production when
they access the promoter region of the genes. The DNA forms two loops between en-
hancer and promoter regions for an AND operation through the interaction between TFs
and TATA-binding protein. We refer to it as an active configuration since it can produce
a unit of mRNA (configurations shown in Figure 3.5). This particular configuration is
possible when the DNA is flexible (ezp = 0kpT') and a saturated level of stimuli (LPS
and TNF-«) weakly induce TFs (e;_7p = —1kgT). One can control the population of
active TFs by increasing stimuli activities. The presence of stimuli promotes enhancer-

TF interaction, further facilitating DNA loop formation between enhancer and promoter
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Figure 3.4: Panels A, B, C, and D are for the complex assemblies of types 1, 2, 3, and
4 incoherent FFLs. We adopt the same symbols as shown in Figure 1.2 to
represent each biomolecule. The arrow — and - are used for activation and
repression. The wired network version for each complex assembly is shown
in the inset.

regions through protein-protein interactions. Therefore, one can realize a unique config-
uration for AND assembly containing two DNA loops at high values of stimuli activities.
Note that the protein-protein cooperative interactions among TFs and TATA-binding
proteins become very strong in this case, which rules out the formation of a single DNA
loop configuration. Therefore, it promotes only one active configuration with two DNA
loops to produce a single mRNA molecule. However, a strong induction of stimuli to
TFs (e,—7r = —8kpT'), which have bound to the enhancer elements of flexible DNA| al-
lows to form three unique configurations of assemblies containing a single loop or double
loops in the parameter space. Production of such configurations corresponds with the
OR-like gates. In the case of the OR gate, we notice three active configurations produce
three mRNA molecules.

As we decrease the flexibility of DNA (e;p=12 kpT), the long-distanced TF-p300
interactions through DNA looping are stopped. Under this situation, only the facilitated
tracking or diffusion-like mode allows inactive TFs to reach proximity to the promoter

region and control the gene expression. Depending on the strong (e;_rp = —11kgT)
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and weak (e;_rp = —3.5kgT) stimuli induced activation of TF, we obtain another set
of unique configurations in the parameter space upon varying stimuli activities. With a
small to moderate stimuli activity, it weakly induces TF that promotes the accessibility
of inactive TFs towards the core promoter region and forms three unique configurations
of complex assemblies that produce three mRNA molecules. We found this signature for
the NAND gate. As stimuli strongly induce TF, the active TFs rarely visit the promoter
region. Therefore, the inactive TFs visit the promoter region only at low stimuli activities
and form a unique configuration of complex assembly for the NOR gate. However, at
the saturated level of stimuli activities, the movement of TFs is entirely restricted for
both NAND and NOR gates, and the gene stays almost at the off state that corresponds
with a basal mRNA level.

3.3 Results

3.3.1 Thermodynamic Analysis of GRN:

We calculate the population of various complex assemblies on the target genes, as shown
in Figures 3.6, 3.7, 3.8, and 3.9. We express them using normalized F'C' in our analysis.
The activity for R molecule is considered fixed, Ap = 2.9 x 10~* throughout our analysis

(Landman et al., 2017; Gautam and Kumar Sinha, 2021).

3.3.1.1 Activation and Repression

The FC' obtained from our theory and GCMC simulation for simple and induced pro-
cesses are presented in Figure 3.6. We find a good agreement between theory and
simulation results. As evident from our results (panel A), the F'C rises to the saturation
point as the free energy of interaction between T'Fy and Ry, i.e., €g, —y is enhanced. In
other words, the T'Fy activates the transcription process by forming a complex consisting
of TFy, Ry, and the promoter region of the Gy. However, the strong interaction be-
tween T'Fy and Ry facilitates the recruitment of R molecules, enhancing such complexes’
population. An increase in the population of such complexes enhances the activation,
which we observed in our F'C' analysis. However, the interactions present in a GRN are

challenging to control because interactions among biomolecules are specific in a GRN.
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Figure 3.5: Schematic for forming various possible logic gates and their configuration for

the NF-xB system. (A) H and L indicate the high and low stimuli activities
in the table. The symbols E1 and E2 are the two enhancer elements of
the NF-xB system, namely IRE, k[ sites. The symbol A is the Boolean
expression of the corresponding gate operations, and LP is the number of
enhancer-promoter loops. (B) Various configurations for AND, OR, NAND,
and NOR logical operations. The active configurations are marked with
the tick symbols in the figure. Here, we use the purple and green colors
cartoon for the protein, IRF, and NF-xB. These two proteins are stimulated
by the LPS and T'N F' — «, as shown by the orange and brown color cartoons.
The red and light blue color cartoons are used to indicate the heterodimeric
complex of p300-AP-1 and RNAP molecules. (C) A schematic view of various
logic gates in parameter space. We show the logic gates as a function of a
few controllable parameters such as protein-stimuli interaction strengths,
€LPS/TNF—a, the strength of DNA loops e,p and the activities of stimuli,
Arps and Aryp_q.

A change in free energy of interactions among these biomolecules may result from their

chemical modifications inside a cell (Kim et al., 2008). Nevertheless, we can control

that interaction by introducing a signaling molecule, sy, that binds specifically with the

T Fy. Furthermore, the sy can be chemically modified in the laboratory that binds with

altered free energy (e5_y), changing the FC' quantitatively. We show those results in
panel B. The activity of TFy, A\pp, = 1.5 X 10~° kept fixed for this analysis.

In contrast to activation, we find a sharp decline in F'C' for the repression (panel C of

Figure 3.6). Once again, the agreement between theory and simulation is evident from
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our analysis. We also find that the strong interactions between T'Fy and Gy hinders
the binding of R with G'y. Such depletion of R from Gy is a clear signature of binding
competition between R and TFy with Gy, as observed in repression analysis. Since
we consider an excluded volume interaction throughout our calculation for repression,
the presence of both TFy and R on Gy in a configuration cannot be realized in the
counting of microstates. Therefore, the F'C' decreases sharply and drops to 0 as the
magnitude of Ay increases. We also find the F'C' drops down to the 0 value beforehand
as the interactions between T'Fy and Gy are enhanced. Nevertheless, the population of
the desired complex during repression is reduced, and such reduction of the population
of the complexes is directly proportional to the transcription. We show them in terms
of FC in our analysis. Like activation, the sy molecule also enhances the repression

dose-dependent, as shown in panel D.

The above prototypical model systems for the activation and repression are common
in bacteria (Milo et al., 2002). For example, the lacl gene acts as the regulatory gene
that produces the lac-repressor for the lac target gene in the lac-operon system (Mangan
and Alon, 2003; Liu et al., 2017). Similarly, the cyclic adenosine 3’,5-monophosphate
receptor protein (CAP) activates the transcription of E. Coli. bacteria by forming a
complex assembly containing CAP dimer, RNAP, and the specific protein promoter
region and de novo synthesized RNA oligonucleotide. Recently, the structure of such
an active complex has been identified experimentally and is considered the TAC (Liu
et al., 2017). An increase in the population of such TAC in the system enhances the
transcription process. In another bacterial system, the trp operon, a repressor protein
trpR binds to the regulatory region and blocks the binding of RNAP to that region,
which finally inhibits the transcription (Kulasiri et al., 2008). However, a small molecule,
tryptophan, binds with the repressor, enhances the binding probability of it to the

regulatory region, and represses the gene in a dose-dependent manner.

3.3.1.2 Feedback Loops (FL):

FLs are common network motifs in various organisms. For example, the lac operon in
bacteria have a FL. In this network, the lactose indirectly activates lactose permease

expression, forming a positive FL. Also, there exist ara-FGH and xyl-FGH operons in
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Figure 3.6: Results for the simple activation and repression for two gene systems in the
absence and presence of signaling species are shown. For panels A and B,
the x-axis indicates the activities of respective TFs. For panels C and D, the
x-axis shows the activity of signaling species, and the y-axis indicates FC
or the target gene expression for all the panels. Here, solid lines and circles
represent the theoretical and simulation results, respectively.

E.coli that also comprises a genetic FL as they contain the gene for arabinose and xylose
transporters, respectively (Siegele and Hu, 1997; Ozbudak et al., 2004; Choi et al., 2008).
Nevertheless, they play an essential role in the control mechanism and follow a specific
biomolecular network of interactions, where the population of two T F's regulates each
other transcription in the FL (Gardner et al., 2000). The feedback mechanism emerges
from the direct activity of a regulator toward itself or indirectly via downstream products
of its target gene (English et al., 2021). We mention a minimal model (See Figure 3.2)
that consists of two genes Gx and Gy. They produce two proteins, namely, T'Fy and
T F, forming four possible complex assemblies for the feedback loop, namely, a) Positive

feedback loop (PFL), b) two Negative feedback loops (NFL), and ¢) mutually inhibiting
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or Fully negative feedback loop (FNFL) in the previous section. We analyzed these
minimal models and calculated the population of such complexes on the promoter region
of Gx and GGy. We control the F'C by introducing two signaling molecules, sx and sy and
present those results as F'C' as a function of their activity (As, and A, ) in the Figure
3.7. Our results show that tuning the interaction strength between T'F's and signaling
molecules controls the complexes’ population. Further, nearest-neighbor interactions
play a vital role in simultaneous activation and repression, which we have shown in our

analysis.

Our analysis clearly shows that the binding of T'Fy activates the transcription of
Gy and produces another T'F'yx that further activates Gx and produces again T'Fy in
the PFL. Note that here, both of the T'F's are activators. The binding and unbinding of
T F's and RNAP to the promoter region of the genes formed this specific network of inter-
actions at thermal equilibrium. We find the F'C's on G x and Gy increase simultaneously
as the activity of the signaling molecules, sy and sy increases. The F'C' reaches to a sat-
uration point until all R molecules form the complexes with the T'F's. We further show
that such FFC' can be modulated by increasing interaction strength between T'F's and
signaling molecules. This analysis reveals that the cooperative interactions among T'F's
increase the F'C' functions on both genes. We consider the same network of interactions
to construct the NFL, but one of the T'F's must be a repressor. The repressor binds to
the gene’s promoter region by competing with RNAP or replacing RNAP. As mentioned
before, we consider excluded volume interaction for the repressor binding to the DNA
binding site. However, we consider T'Fy and T'Fx act as activators and repressors or
vice versa for constructing the NFL1 and NFL2, respectively. In the case of NFL1, the
binding of T'Fy to the promoter region of Gy inhibits expression of Gy gene, which is
reflected from our F'C analysis. As a result, we observed an activation on Gy and re-
pression on Gy from our analysis. We find an opposite effect for NFL2, where T'Fy and
TFx act as an activator and a repressor, respectively. Considering both of the T'F's are
repressors, the GRN forms an FNFL. Both repressors reduce the population of R from
the promoter regions of Gx and Gy as both of the T'F's are activated. As a result, we

find repressions from both genes as we increase the activities of sy and sx.

We chose only a few identical sets of free-energy parameters for the Gx and Gy
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to demonstrate the role of binding free energy in complex biological processes. For this
reason, we observe symmetric response functions from both genes. Our results show that
the PFL enhances the F'C' functions significantly and can act as a switching function in
a biological system (English et al., 2021). However, we find an asymmetric distribution
for the NFL. Both NFLs could improve the robustness and stability as the F'C' functions
simultaneously show activation and repression on both genes (English et al., 2021). The
analyses of the population of complexes under the NFL further give a clear indication
for producing a uniform signal in response to cellular noise (Kim et al., 2008). However,
for FNFL, we observe a narrow distribution of complexes at all values of A, a clear
signature of sustained oscillations and homeostasis (Kim et al., 2008). In the case of
FNFL, both genes become silent as both repressors are activated. These signatures
are quite common and found in various biological systems and used combinatorially to
construct synthetic gene circuits (Kim et al., 2008). An example of such coupled positive
and negative feedback motif is the galactose uptake network of Saccharomyces cerevisiae
of yeast cells (Avendano et al., 2013). The assembly of this dual feedback is composed
of two proteins: a dimeric Gal4P, which acts as an activator, and MiglP, which acts as
a repressor to all the GAL genes. Our method allows one to calculate the population of

that assembly at thermal equilibrium and correlate it with the functional response.

3.3.1.3 Feedforward Loops (FFL)

We analyzed a series of model FFL network motifs in this section. We present the
biomolecular assembly and the network topology (Mangan and Alon, 2003) that consists
of two regulatory genes, Gx and Gy and a target or structural gene G4 in the previous
section. The transcriptional output, T'Fy and T'F4, of both genes, Gx and Gy that
regulate the gene expression of G4. Both T'Fy and TF, act either as an activator or a
repressor in the network, and they influence the recruitment or replacement of R on the
promoter of G4 through a competitive mechanism. Such recruitment or replacement of
R happens whether the T'F' is an activator or a repressor, and the specific free energy
of interactions among various biomolecules present in the network determines that fact.
Here, we show that the genetic output of the G 4 as a function of the activities of signaling

molecules, A\;, and \,, that bind specifically to the T'Fy and T'F4 and control the
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Figure 3.7: This figure contains the results for different cases of the feedback circuit.
Panel A shows the results for PFL, panel B and C show the results for NFL1
and NFL2, respectively, and panel D shows the results for the FNFL. Here,
the x-axis and y-axis indicate the activity of signaling species and the FC
or the target gene expression. The solid lines show the results obtained
without considering nearest-neighbor interactions among biomolecules. The
dashed lines are used to show the results obtained by considering nearest-
neighbor interactions. Circles show simulation results, and the calculations
are performed for the different values of €,x.

activation or repression of G4 in a dose-dependent manner. Without the loss of any
generality, the transcriptional output of G4 is nothing but the equilibrium probability
of binding R molecules at the promoter region of G4 (Buchler et al., 2003). Finally,
these network motifs are common and known to exist in £.Coli and yeast (Shen-Orr

et al., 2002; Milo et al., 2002; Mangan and Alon, 2003).
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We show the simulation results for coherent and incoherent FFLs in Figures 3.8 and
3.9. We show that the DNA looping and nearest-neighbor interactions increase the
sharpness of the response functions, as evident from our analysis. The presented results
for coherent and incoherent FFLs show that the population of R enhances or impedes
as the active T F's recruit or replace R through their binding free energy. Therefore, the
activity of ligands can modulate the gene expression for FFL networks in both positive
and negative manners. Overall, we find that if Ty and T F4 behave as an activator, the
FC will reach its maximum value at the larger values of activities of ligands. However,
if TFy and TF, act as a repressor, then FC comes as the minimum value for smaller
values of activities of ligands. The origin of the distinct two-dimensional map is related

to the network topology and the nature of TFs found in our analysis.

In the case of coherent FFL, we find a clear correlation between the strength of
the input signal and the binding of R at the promoter region of G4. For the type 1
coherent FFL, we find TAC spans a specific region in the 2-d map at large values of
activities of the signaling molecules, Ay, and A;,. Here, both the T'Fy and TFy4 act
as an activator for this case. An enhancement in occupancy at the promoter regions
will result in more glue-like interactions with the R, thereby recruiting more R for the
pre-initiation complex (Buchler et al., 2003). Similarly, we can explain the obtained
2-d maps for the types 2, 3, and 4 coherent FFLs. However, at least one or both TFs
are repressors that bind strongly with the promoter region and impede the binding of
R via excluded-volume interaction. Therefore, it becomes conceivable that the activity
of ligands can modulate the gene expression for FFL networks in both positive and
negative manners. Overall, we find that if T Fy and T F4 behave as an activator, the FC
will reach its maximum value at the larger values of activities of ligands. However, if
TFy and TF,4 act as a repressor, then FC comes as the minimum value for smaller values
of activities of ligands. The T'Fy acts as a repressor when it binds with the promoter
region of Gy and G4, whereas T'F4 binds as an activator with the promoter region of
G 4 for the type 2 coherent FFL. In the case of type 3 coherent FFL, the T'Fy binds as
an activator for the Gy, but it acts as a repressor for G4, and T F4 binds as a repressor
for G 4. Similarly, both the T'Fy and T F4 bind as a repressor to the promoter region of

Gy and G4, but TFy binds as an activator and facilitates the recruitment of R at the
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Figure 3.8: Two-dimensional response functions (FC) for different coherent feedforward
Loops are shown here. Panels A, B, C, and D show the results for types 1,
2, 3, and 4 coherent FFLs. Here, the x-axis and y-axis indicate the activities
of signaling species bound to Y and A TF. The color bar along the Z-axis
shows the fraction of RNAP that is bound to structural gene A, indicating
the mRNA production.

promoter region of G4 for the type 4 coherent FFL. Therefore, the origin of the distinct
two-dimensional map is related to the network topology and the nature of TFs found in
our analysis.

We also find a similar correlation between input signals and the genetic output em-
ploying TAC formation at the promoter region of G4 for the incoherent FFLs. For type
1 incoherent FFL, we notice that the population of T'Fy is enhanced as the values of

A
region of Gy and G genes. The binding of T'Fy to the promoter region of Gy produces

sy increase. These activated T'Fys increase their binding probability with the promoter

TF4, which is a repressor, and undergoes binding with the promoter region of G4. As

the values of A\, are increased, the occupancy of T'F4 impedes R to bind with the pro-
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moter region of G4 through excluded-volume interaction, thereby decreasing the gene
expression. Thus, we find a controlled expression at high values of A, and low values of
As, for the type 1 incoherent FFL. We can also similarly explain the output expression
for types 2, 3, and 4, which are incoherent FFL. The biomolecular network assembly of
the Gal operon system of E. Coli bacteria shares a type 1 IFFL network that encodes
the amphibolic pathway for the metabolism of D-galactose (Mangan et al., 2006). Im-
mediately, we can map this system with our framework and calculate the population of
a complex formed between cAMP and the dimeric CRP that activates and represses two

promoters simultaneously.
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Figure 3.9: Two-dimesional response functions (FC) for different incoherent feedforward
Loops are shown here. Panels A, B, C, and D show the results for types
1, 2, 3, and 4 incoherent FFLs. Here, the x-axis and y-axis indicate the
activities of signaling species bound to Y and A TF. The color bar along the
Z-axis shows the fraction of RNAP that is bound to the structural gene A,
indicating the mRNA production.
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3.3.2 Galactose Utilization Pathway in Yeast Cell:

Here, we apply our proposed modeling scheme to explore the galactose uptake pathway
in Yeast cell (Venturelli et al., 2012; Avendano et al., 2013). A collection of genes
that follows a galactose-responsive pathway (GAL) for deciding whether the galactose
will be metabolized in the presence or absence of other sugars such as glucose (Douglas
and Hawthorne, 1966; Johnston, 1987; Escalante-Chong et al., 2015). The biomolecu-
lar assembly network for this system forms a dual feedback loop consisting of positive
and negative feedback loops. Here, a dimeric protein, Galdp, acts as an activator, and
Miglp represses all the GAL genes. The cell prefers to uptake glucose from a mixture
of sugars, followed by less-preferred carbon sources, a phenomenon commonly known as
diauxic growth (Monod, 1949). A common consensus in this problem is that if glucose
is available in the environment, the expression of genes associated with the metabolism
of alternative sugars is switched off via catabolite expression (Gancedo, 1998). However,
a recent study suggests that regulating GAL genes does not solely depend upon glu-
cose depletion; instead, they respond to the concentration ratio between galactose and
glucose, a phenomenon named ratio-sensing (Escalante-Chong et al., 2015). Thus, this
galactose: glucose ratio reaches a threshold value, determining whether the gene will
turn on or off. However, the mechanism that governs this ratio-sensing is quite complex
and yet needs to be clarified, which requires detailed knowledge of the biomolecular

network that links the regulation and fine-tuning of cellular decisions for yeast cells.

The figure shows that the activities of glucose and galactose control the expression
of the GAL1 gene. We further notice that the GAL1 gene is not turning off because of
the presence of glucose; instead, the ratio of galactose: glucose decides the cell fate by
choosing the suitable sugar and thereby sets a threshold limit known as ratio-sensing as
shown in Figure 3.10. It is clear from that figure that glucose alone does not control
the GALL gene; instead, a combination of galactose and glucose is required to turn it
on or off. Specifically, we find that the GAL1 is turned off at large values of glucose
activities, but the gene becomes active at large values of galactose. We further notice
that our modeling scheme captures the diauxic growth, i.e., the GAL1 gene becomes
active as both activities, Ag;, and Agq , are at large values. Therefore, our modeling

scheme successfully captures the complex mechanism of ratio-sensing for the GAL genes
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in yeast cells.
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Figure 3.10: Schematic of the yeast GAL signaling pathway. The dual feedback mecha-
nism of this signaling pathway is shown in panel A). In panel B, we show
the expression of the GAL1 gene in response to glucose and galactose. The
diauxic effect in the presence of glucose: galactose is explored.

3.3.3 Logical Decisions of NF-xB Signaling System

In synthetic biology, various digital circuits can be fabricated by exploiting biomolec-
ular self-assembly (Qiu and Chiechi, 2022; Kimchi et al., 2020; Chen et al., 2020; Yin
et al., 2008) as the basis of molecular-level computations. Such studies suggest that
self-assembly can be harnessed as a unique property to achieve the desired manipulation
for biological function. Moreover, it has been recognized that programmable DNA loops
play a crucial characteristic in designing digital circuits. One can employ the CRISPR-
based DNA looping method (Hao et al., 2017) to customize or manipulate DNA loops.
This method offers massive flexibility for DNA manipulation for various cell types, re-
fines the knowledge of various loops, and helps design flexible digital circuits. Draw-
ing from such studies, we explored a biological system for NF-xB as a building block
and how self-assembly and programmable DNA loops lead to biocomputing machines.
In Figure 3.11, we also show how the switching among various gates is regulated by

stimuli-TF interaction and DNA looping energies that generate various self-assembled
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species. Thus, we explore the origin of such modularity of the self-assembly and the
cooperativity among regulatory components, coupled with the ability to design various
protein complexes, enabling the design of sophisticated transcriptional logic furnishing
a vast range of biological functions.
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Figure 3.11: Evolution of the various logic gates in the parameter space. (A) Panel A, B,
C, and D refer to the population of the active assemblies for the AND, OR,
NAND, and NOR logic gates as a function of stimuli activities (Aryp_o and
Arps). (B) Panel E and F are the logic gates switching between AND to OR
and NAND to NOR. Note that the switching only happens as the strength
of interaction between stimuli and TF (e;,_rr) varies. The switching from
OR-~AND to NOR-NAND happens through the variation of DNA stiffness
parameter (e;p) as a function of stimuli activities.

Figure 3.11 (panel A, B, C, D) presents various logic gate results obtained from par-
tition function calculations and MC simulations in the parameter space. Here, we show
that the formation of different logic gate configurations evolves upon variation of free
energy parameters and stimuli activities. The weak activation of TF limits the popula-
tion of active TFs, but a significant population of active TFs on enhancers is observed at
high stimuli activities. The binding of the active TFs to the enhancer elements does not
necessarily mean that the configuration is active unless they reach the promoter region
and alter the mRNA production. As discussed above, various mechanisms can reach the
promoter region: a) by long-distance protein-protein interaction through DNA looping
and b) by diffusion-like mode. In the case of AND configuration, binding of active NF-xB
and IRF to the enhancer elements promotes the form of DNA loops between enhancer

and promoter through a cooperative interaction among the bound NF-xB, IRF, and
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p300 molecules. Note that an active TF binding to the promoter rarely happens; there-
fore, the long-distance interaction through DNA looping and cooperative interaction
among protein molecules are essential for an active AND assembly, as revealed from our
study. Since TFs access the promoter region by this mechanism, they become an active
assembly because they can produce mRNA or participate in gene regulation. Therefore,
we find a narrow region in the parameter space where the active complex assemblies of
AND-like configurations are observed when a large quantity of stimuli weakly induces
TF. Overall, two DNA loops formed at high stimuli activity values and weak stimuli
induced TF activation characterizes AND assembly. Similarly, the origin of the OR-like
gate’s configurations relies upon tuning the free energy of activation between the TF
and stimuli. As we increase the free energy of activation between TF and stimuli, the
strong interaction between them allows TFs to reach proximity to the promoter region
by single or double DNA loops. Therefore, we obtain a broad region of responses as

both stimuli’ activities increase.

In contrast to the above two gates, the NAND and NOR gates rely on the stiffness
of DNA. We increased the stiffness of DNA by increasing the elastic parameter for the
DNA chain and observed complementary AND and OR logical responses. We show that
binding TFs to the enhancer elements allows only their translation along with DNA.
Such translation motion of TFs along DNA is crucial since it allows them to access the
promoter region for activation or repression of the gene regulation. As mentioned in the
previous sections, the nature of binding between TFs and DNA creates NAND and NOR
complexes in the configurational space. We find that the weak activation of TFs and
moderate levels of their activities produce NAND-like gates. However, one can control
the accessibility of TFs to the promoter region of DNA by tuning the activation free
energy between TF and stimuli. As we increase the free energy of activation, the TFs
rarely visit the promoter region. As a result, we find the NOR responses only at high
values of stimuli activities. Further, it is evident from our analysis that the movement of
TFs is restricted at very high values of stimuli activities that appear as inactive NAND
and NOR-like responses. We have observed fair consistency between our theoretical and

simulation results for the NF-xB signaling system.

It is clear from the above analysis that the diverse range of logical computations
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by the interactions between protein and DNA through the formation of specific com-
plexes is quite possible in the parameter space. We show a specific complex responsible
for a specific logical response in a narrow range of parameters. Such parameter vari-
ations are common in cellular biology as the activities of biomolecules change through
many biological processes such as cooperative binding, post-translational modifications,
oligomerization, etc. Therefore, the observed output patterns for various logic expres-
sions switch among themselves because of the existence of such parameter variations in

cellular systems. We discuss them below.

The reason behind switching between OR to AND-like logical responses is the forma-
tion of DNA loops that vary for AND and OR assemblies. The formation of two DNA
loops promotes cooperative interactions among proteins in the locally formed complexes
on the DNA. On the other hand, the OR-like gate requires either or both TFs to interact
with the promoter to form the DNA loops. It happens because of the strong stimuli-
induced TF activation, which increases the occupancy of active TFs to enhancers even
at low values of stimuli activities. As the population of active TFs increases at their
low values, the probability of the formation of DNA loops increases in the absence of
TF-TF cooperative interaction. Our analysis revealed the importance of cooperative in-
teraction, which is crucial for an AND-like response. However, forming an OR-like gate
requires no cooperative effect through the TF-TF interaction. As a result, either single
or double DNA loops at low stimuli values activate the promoter region and provide an

OR-like response.

The NOR-NAND is also observed upon variation of €;_rpr. In this case, we first
set the high DNA looping energy (erp). Then we performed a continuous variation of
€r—1r, ALps and Aryp_, on the active complex. The high values of €, _rpr disfavor the
long-distance interaction through DNA looping; TFs only access the promoter region by
translation mode along the DNA. However, the movement of TFs is controlled by the
binding between TF and DNA: the enhancement of interactions produces NOR, and its
suppression produces NAND logical responses. Therefore, the origin of the NOR-NAND
switching again lies in the variation of the e;_7r parameter. Modulation of interaction
between stimuli and TF controls the movement of the TFs on the DNA, which is the
origin of the NOR and NAND logical responses. As we increase the Ay ps and Aryrp_q,
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the population of activated TFs is enhanced. Such enhancement of the population of TFs
increases the TF-DNA interactions that stop their accessibility to the promoter region
of the regulatory motif. As demonstrated earlier, we find the NAND response with a low
to moderate level of stimuli activities. In contrast, the NOR response is observed only
at low values of \pps and Arnyp_o. We find a narrow red region for the NOR response
spreads over and transforms to NAND response upon variation of €;_rr and the stimuli

activities.

3.3.3.1 Dy Analysis:

We characterize the switching between two logical responses by calculating the Dy,
function to explore the behavior space for the complete set of available configurations of
assemblies. It measures the similarity between the results obtained from MC simulations
and the theoretical logical functions obtained from our partition function calculation.
Plotting Dy, as a scatter revealed that AND and OR Boolean-like computations are
contained in flexible DNA, whereas rigid DNA can compute NAND and NOR responses.
We find a divergence region for both the AND — OR and NAND — NOR switching. It
is a clear sign of the inter-conversion between the OR and AND, like logical responses,
which are detectable in the parameter space. The signature of wide divergence for the
AN D —OR switching suggests that they are distinguishable, and the exclusive AND and
OR-like logical responses are detectable in the behavior space from our analysis. The
conversion between NAND and NOR switching is less detectable, as found from the
Dy, analysis, since the divergence for the NOR-NAND switching is narrow. We further
vary the degree of oligomerization of NF-xB to achieve robustness of gate switching. We
find that the oligomerization of NF-kB does not enhance switching robustness; their
monomers show robust switchings from AND to OR or NAND to NOR. We find from
the analysis that the formation of the higher-order oligomers perturbs the logic gate

operations, a signature that moves away from the precise computation.
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Figure 3.12: The behavior space for the complete set of available assembly configurations
is plotted as K-L divergence (D ): similarity between theoretical model
computed output surfaces and the Boolean surfaces obtained from Monte
Carlo simulations. The regions are marked for the exclusive AND, OR,
NAND, and NOR logic gates. The calculations are done by varying degrees
of oligomerization (ny) to explore the robustness of the switching among
gates.

3.4 Conclusions

This work employs theoretical and computational methods to characterize the cellular
networks formed by self-assembling proteins and RNAPs on DNA. We show that the
functional responses of a GRN rely on the network topology of an assembly. We apply
statistical thermodynamics to estimate the population of a specific assembly. One can
characterize those assemblies using the cryo-EM technique as demonstrated in recent
studies (Liu et al., 2017; Bashor et al., 2019). One key advantage of the thermodynamic
model is that it considers only a few free energy interaction parameters, allowing us to
predict whether the desired complex will form at thermodynamic equilibrium. Overall,
these networks can respond to information encoded in the binding of signaling molecules
to the T'F's. In particular, we characterized some of the most common GRN motifs
like activation, repression, FL, and FFL using our theoretical and simulation methods
(Buchler et al., 2003; Mangan and Alon, 2003; Freire-Rios et al., 2020; Bashor et al.,
2019; Kaplan et al., 2008). We validate our model by revisiting the published results for

the gene expression of the Gal promoter system of yeast cells (Escalante-Chong et al.,
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2015).

We further establish the link between complex assembly and network motifs for the
information processing of GRNs. We consider each GRN motif composed of unique ge-
netic architecture and a specific set of protein-DNA, protein-protein, and protein-ligand
interactions (Buchler et al., 2003; Bashor et al., 2019). We assume that the TFs and
RNAPs assemble at the gene promoter regions and form a functional complex at ther-
modynamic equilibrium. We show that they produce precise functional responses in the
presence of molecular noise. We calculate those response functions using a specific com-
plex assembly’s conditional occupation number at the various promoter regions. Our
calculated F'C for various GRN motifs qualitatively agree with the reported experimen-
tal data (Avendano et al., 2013; Shen-Orr et al., 2002; Milo et al., 2002; Mangan and
Alon, 2003). In the present analysis, we considered GRNs for the activation, repression,
feedback, and feed-forward loops. We chose these networks because of the large class of
experimental data available for them (Aviziotis et al., 2015; Siegele and Hu, 1997; Jenk-
ins and Macauley, 2017; Nevozhay et al., 2009). We control activation and repression
by increasing the free energy of interactions between RNAP and TFs. In the case of the
feedback loop, we propose a network of assembly that shows functional responses with
significant variations. The effect of network topology on functional response is crucial
for higher-order complex assemblies (Buchler et al., 2003; Liu et al., 2017; Bashor et al.,
2019). Incorporating other biophysical effects such as DNA looping, TF-ligand interac-
tions, and nearest-neighboring interaction further alters the shape of response functions,
as reported extensively in many literatures (Buchler et al., 2003; Vilar and Leibler, 2003).
Depending on the nature of T'F's and interaction parameters, the RNAPs are recruited
or replaced on the DNA to form a functional assembly, and their population determines
the functional responses (Bintu et al., 2005b; Phillips, 2015; Crews and Pearson, 2009).
As evident, alteration of the free energy of interaction parameters perturbs the assem-
bly and further disrupts the information processing in the GRN motifs. The proposed
technique may help to predict the response functions for partially known or unknown
GRN motifs.

Using our theoretical calculations, we also demonstrate the possibility of creating

Boolean logic in the NF-xB system. We explored the building blocks of such logic op-
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erations by considering the programmed DNA loop and the NF-xB-stimuli interactions.
We show that various active self-assemblies formed under two input conditions. In our
calculation, we define an active assembly when a TF interacts with the promoter. DNA
looping or the translational movement of TFs are a few such mechanisms that move a
TF from a nonspecific binding region to the promoter region on DNA for forming active
configurations. Each of these active configurations produces a unit of mRNA molecule.
We manipulate the stiffness of DNA that allows us to create programmable DNA loops, a
crucial factor for AND, OR, NAND, and NOR Boolean operations. Since we can control
DNA flexibility externally, gates are interconvertible in the parameter space. Integration
of such logic gates may offer high-level biomolecular computation in a cellular system.
They have the potential to identify and analyze disease-related genes (Benenson et al.,
2004).

The work demonstrates that biomolecular self-assemblies have the potential to cap-
ture digital information in the form of mRNA molecules. Our findings demonstrate
that individual cells can execute molecular arithmetic functions using modulated self-
assembly. This feature has been demonstrated by Bashor et. al., showing how a complex
signal is processed in synthetic gene circuits using cooperative regulatory assemblies
(Bashor et al., 2019). Many studies have shown that mRNA-based logic operations
can detect disease indicators, including mRNA of genes linked with lung cancer and
prostate cancer (Benenson, 2009; Leisner et al., 2010; Benenson et al., 2004; Gil et al.,
2011). Here, we describe it for NF-xB as a building block and how self-assembly and
programmable DNA loop lead to forming a typical biological microprocessor. This de-
vice takes stimuli as input information and then rewires the gene regulatory networks

through a modulated self-assembly that produces the Boolean output as the population
of mRNA.
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Chapter

Stochastic dynamics of gene regulatory
networks driven by intrinsic molecular
noise

4.1 Introduction

In the previous chapter, we have demonstrated that proteins can perform multiple tasks
in a cell by interacting with a short DNA sequence in the genome. The final result
appears as a gene expression by which the cell executes various operations ranging from
signaling to immune response. In this chapter, we explore the dynamics of gene reg-
ulatory networks driven by intrinsic molecular noise. It has been reported previously
that gene expression is a tightly regulated process and inherently stochastic (Ko, 1991;
Elowitz et al., 2002; Golding et al., 2005). Many modeling schemes are developed in
this direction to account for stochasticity in gene expression. Most systems experience
two types of noises at the cellular level, one intimately related to the random molecular
events governed by the elementary reactions (internal noise), and the other one is the ex-
ternal noise governed by the changes in environmental conditions (Van Kampen, 1992).
Cellular systems experience both noises naturally, but their understanding using experi-
ments is quite challenging (Gebhardt et al., 2013; Bratsun et al., 2005). Single-molecule
imaging is a powerful tool that captures such signals from a noisy environment in the live
cell, but their theoretical modeling remains a difficult problem (Gebhardt et al., 2013).
In this regard, stochastic simulation algorithms (SSA) provide a brute-force method to
model elementary realized reactions for gene regulation (Gillespie, 1977). The modeling
schemes are system-specific, and often, they experience a broad spectrum of noises rang-

ing from delta function correlated white noise to the correlated colored noise (Gardiner,
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2009).

The mass action kinetics-based deterministic models offer to understand the exis-
tence of alternative steady states of a biochemical network (Alon, 2019). These dynam-
ical models are typically nonlinear. Therefore, their analytical treatments work well for
a small network containing few molecular components. However, obtaining a closed-
form analytical solution is challenging for a complex gene regulatory system owing to its
nonlinearity. The bifurcation theory can help to study the stability of dynamic nonlin-
ear systems (Strogatz, 2018). However, one can also develop stochastic models of this
network by incorporating external or internal noises. The noise can drive transitions
from one steady state to another alternative state, a feature absent in deterministic
systems. These stochastic models have broad applicability, from ecological to gene reg-
ulatory systems operating at diverse timescales (Black and McKane, 2012; Tian and
Burrage, 2006). Since the system experiences broad-spectrum noises, one must carefully
incorporate them for appropriate modeling. The noise sources are typically from various
stochastic events linked with gene expression, cellular responses to external stimuli, or

immune responses.

Generally, two approaches are there for the stochastic time evolution of these net-
works. These are (a) solving the coupled stochastic differential equations (extrinsic) and
(b) solving a chemical master equation whose joint distribution is governed by a set of
elementary reactions of the network (intrinsic) (Kaern et al., 2005; Satija and Shalek,
2014). The analytical solutions of both of these models are challenging. Therefore,
stochastic simulations have been widely used for their analyses. We employ Kinetic
Monte Carlo (KMC) simulations by following the Gillespie algorithm that samples the
Markov process as realized by a set of elementary reactions (Gillespie, 1976). Both of
these models do not require as many assumptions, but the dimensions and the number
of parameters increase as the complexity of the network increases (Bailey, 2001; Brown
et al., 2004). In this regard, suitable approximations such as the time scale separation
can reduce their dimension (Golikeri and Luss, 1974; Holehouse et al., 2020). Another se-
rious difficulty arises while incorporating the correlated noise into the stochastic models.
The existence of correlated noise is common in the biochemical network (Sompolinsky

et al., 2001; Liu et al., 2001; Holehouse et al., 2020). In the case of correlated noise,
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the system takes information from its past for its dynamic evolution. The governing
chemical master equation for dynamic evolution becomes non-Markovian (Zhang and
Zhou, 2019). One can adopt unified color noise approximation (UCNA) to explore their
dynamics analytically (Jung and Hénggi, 1987; Holehouse et al., 2020). Of particular
interest, we follow work by (Spanio et al., 2017), where they studied the population
dynamics in which birth and death rates fluctuate over time. However, the KMC simu-
lations are alternative approaches for taking into account correlated extrinsic or intrinsic

noises (Spanio et al., 2017; Cao and Grima, 2018; Sarkar et al., 2019).

In this chapter, we study the dynamics of network motifs in the presence of noise.
In particular, we propose the master equation for each protein-DNA assembly for their
dynamic evolution. We characterize their dynamical feature using stochastic simulation
and obtain a signature of multistability in a higher-order assembly. We further explore
how a time-varying rate parameter impacts protein production. We incorporate the
time variation into the rate parameter for protein degradation as the newly synthesized
protein has a finite lifetime. To analyze this model, we use the UCNA, which is valid
in the limits of very short-range correlation (Jung and Hanggi, 1987; Hénggi, 1994)
and explore the validation in the limit of white-noise approximation as obtained from
the KMC simulations using the modified Gillespie algorithm (Gibson and Bruck, 2000).
We show that our proposed modeling framework could be employed for studying the
dynamics of such complex systems with colored noise. Specifically, we aim to develop
a general theoretical framework that one can employ to obtain the analytical form for
the steady state distribution of produced protein in a network motif (Alon, 2019), and
to observe the effect of the time-varying rate parameter that introduces the correlated
noise. Furthermore, we explore the quantitative distinction between typical and super-

enhancers mediated gene expression.

4.2 Models and methods

4.2.1 Deterministic model for Gene Transcription:

We propose the dynamic model for each of the networks using mass action kinetics,

where the state variables ¢;’s undergoes a transition from o to (1 — o) with a reaction
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4 Stochastic dynamics of gene regulatory networks driven by intrinsic molecular noise

rate r; = kop(1—0;) +koppo;. The kyp, and k,pp are two rate constants for the association
and dissociation processes. The edges of the network are an elementary reaction and
propose their deterministic kinetic equations, which can be written as.

Ccll}t( = SF(x), (4.1)
where S is the stoichiometry matrix, x is a vector whose length is equal to the number
of components present in the network, F'(x) is the vector of rate laws. The explicit form
of the equations for each network is presented in the table in Appendix 1. In general,
we consider four types of elementary reactions: a) basal expression that happens upon
binding of only RNAP, b) activation of promoter state that happens upon forming
a complex with TFs, ¢) controlled gene expression mediated through the interactions
between RNAP and TF, and d) degradation of proteins in our modeling scheme. We
also describe that the number of reactions increases as the components and complexity
of the networks increase. Based on the table containing biomolecular reactions, one
can write a set of above-coupled differential equations containing kinetic parameters.
These coupled equations can be solved directly and obtain the deterministic dynamics
of each network. The state of the system changes depending on kinetic parameters but
remains unchanged unless any molecular perturbation is applied to the network. We
took the parameter values from the literature for kinetic calculations (Cao and Grima,
2018, 2020).

Immediately, we apply our proposed theoretical scheme to a gene regulatory sys-
tem that exploits protein assembly on DNA for a specific function. In this regard, we
chose the NF-xB signaling system to apply our proposed scheme. Here, it follows the
gene activation/deactivation mechanism that encodes IkBa mediated via NF-xB. Ex-
perimental techniques have confirmed that the NF-xB forms dimer and then associate
with IkBa protein to form hetero dimeric IkBa-NF-kB complexes that participate for
signal transduction (Ngo et al., 2020; Hayden and Ghosh, 2014). The GRN exhibits a
negative feedback loop and a delayed degradation of IkBa protein (Lee and Schiemann,
2011; Zambrano et al., 2016). Protein degradation occurs through a complex proteolytic
pathway, which may be assumed as delay degradation (Krishna et al., 2006; Mather
et al., 2009). Note that negative feedback in the regulatory circuit dampens the effect
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4.2 Models and methods

of noise. We use this simple model as a guideline here, but it maintains a high degree
of biological relevance for gene regulation in other similar systems of interest. The dy-
namics of this system were analyzed deterministically as well as stochastically. In the

modeling process, we write the biochemical reaction scheme for this system below.

a kifa(NF—kB) e ek kofg (IkBa) c. (4.2)
G**% G* + 1kBa, IkBas% ¢ (4.3)

where G and G* are the genes in inactive and active states encoding IkBa protein; ki,
ko, kp and kg4 are rate constants of those reactions. Our analysis refers to NF-xB and
IkBa as N and I, respectively. The deterministic rate equations for this model system

are given by

dG*™ «
W = klfA(N)G — kaR(])G ,and (44)
dI
— = kpG* — k4l 4.5
e~ F I (45)
* . . (N)nHl B KmnH2
Here, G+ G* =1, fa(N) = T and fr(l) = —Km;Hz—zi-(I)"H2’ where K,,,, K,

stand for the binding affinity of NF-xB and IkBa and ngy, and ngo are the Hill’s coef-
ficients given for the binding of NF-xB and IkBa to their respective enhancer regions.
One can realize the degree of the binding of these two proteins to the enhancer regions
embedded in ny, and nye, which, in other words, considers the cooperative effect. To
carry out our analysis, we perform the linear stability analysis by means of drawing a
bifurcation diagram over a range of parameter values. Under quasi-steady state approx-
imation (QSSA), the corresponding deterministic rate equation for mean IxBa protein
number (I) reduces to the form:

ar kikpfa(IN)
dt  kifa(N)+ kafr(l)

— kgl (4.6)
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4 Stochastic dynamics of gene regulatory networks driven by intrinsic molecular noise

4.2.2 Stochastic Approach

4.2.2.1 Markovian Dynamics

The analysis based on the above kinetic equations is limited in its ability to characterize
probabilistic events, as they do not capture multi-modality in gene expression that arises
from slow promoter binding (Vellela and Qian, 2009). Therefore, one can consider
the birth and death processes of the networks’ elementary reactions. Generally, it is
described by the time evolution of a grand probability function governed by a chemical

master equation.

dp(x07 th X, t)

o =Y {hi(x — 5D e)p(xo, to,x — S, 1) — hi(x, ci)p(xo,to,x,t),} (4.7)

i=1
where p(xo, to, X, t) is grand probability function, the subscript 0 is for the initial condi-
tion, m the total number of elementary reactions of the network, ¢;’s are the stochastic
rate constants, and the associated rate law for each of the reactions, h;(x,¢;) and S is
the stoichiometry matrix. We present the explicit of the S, h; and the values of ¢;’s in
Appendix 1. However, solving the above equation with an analytical approach is limited
as the complexity of the network increases. Several attempts have been made to solve
the chemical master equation using the generating function method, self-consistent pro-
teomic field, binomial moment, etc. (Walczak et al., 2005; Gardiner, 2009; Barzel and
Biham, 2011).

For example, the CME for the NF-xB mediated gene activation and deactivation
under Markovian approximation may be written as

dP(I,t)

S =S I = VP =16+ ST+ VP + 1,1) = (S7(D) + S~ (D)P(L,1)

(4.8)

where P(I,t) is the grand the probability function that there exist I proteins in

the system at time ¢; ST and S~ are the propensities of IxkBa protein production and
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degradation, respectively. These propensities have the form:

N kikp fa(N)
S D= E ) + ke ™ (49)
S=(I) = kal (4.10)

The above equation can be reduced to Fokker Planck equation (FPE) by the Stratonovich
sense (Risken and Risken, 1996), which allows one to calculate the probability, P(1,t)

0 0 ' 1 9
&P(I’ t) = —&[al(]) + ay(Das(I)P(I,t)] + §ﬁ[a2(1)P(I,t)], (4.11)

where ai(I) and ap(I) are the first two jump moments, written as ai(I) = S*(I) +
S™(I) and as(I) = ST(I) — S~(I) respectively. The steady-state solution of the FPE
has the form (Van Kampen, 1992):

_ Q A [stn-s)
P(I) = YeEnEET P (2 / ) dI, (4.12)

where () is a normalization constant.

Despite their importance, analytical methods cannot handle complex regulatory sys-
tems involving many non-linear functioning promoters. Therefore, one can perform
stochastic simulation by considering each elementary reaction of each of the networks.
The stochastic dynamics directly provide a signature on the robustness and stability
of each network motif. We use the Gillespie algorithm to perform our stochastic sim-
ulations (Gillespie, 1976). It provides a realistic view of where the fluctuations in the
abundance of the molecules in living cells affect their growth. Geometrically, the number
of molecules change is the random walk on a multidimensional state space (Van Kampen,
1992). Stochastic simulation has an advantage over its deterministic version because the
former method takes care of the system’s intrinsic fluctuations, allowing the state of the
system to switch from one to another. The trajectories obtained from stochastic sim-
ulations sample the Markov process as realized by a set of elementary reactions whose

joint distribution is described by the master equation.
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4.2.2.2 Incorporation of colored noise using UCNA

The IkBa protein exhibits a delay degradation (Krishna et al., 2006). We introduce
the delay degradation into our model by introducing a time lag 7. Here, we define
delay degradation as if an IxBa is produced at time ¢ then it will degrade at ¢t + 7.
The functions f4 and fr are for the activation and repression. In our analysis, we
have not done any formal delay dynamic analysis; rather, we introduce it by short-
range correlated noise into the degradation parameter k;. We include the effect of delay
on protein degradation by introducing short-range correlated noise to the degradation
parameter, kg. Technically, we consider fluctuating kq driven by the Ornstein-Uhlenbeck
(OU) process (Holehouse et al., 2020; Spanio et al., 2017). We define kq as kg + kqe,
where kg is the mean value and € is the Gaussian correlated noise (color) defined by the
' dt

< E()E(t) >=2D5(t —t'). With this definition, the Gaussian color noise, €(t) has zero

’ - /‘
mean and correlator < €(t)e(t) >= %e‘lt: . By using the propensities given in the

OU process, % = —£ 4 \/gf (t), where £(t) is a zero-mean Gaussian white noise with

equations (4.9) and (4.10), the corresponding Langevin equation to the chemical FPE

equation (4.11) is given as

dl _ kikpfa(N) _kd1+$ Fkp fa(N) + kgl .T(t) (4.13)

dt ki fa(N) + ko fr(I) k1fa(N) + ko fr(I)

where I'(t) is the Gaussian white noise with zero mean and follows < I'(£)['(t') >=
5(t—t'). At this point we replace kq by kg = kq(1+¢€(t)) that takes care the degradation

of protein that happens at ¢ + 7 time. The resulting equation becomes

al _ kikpfa(N)
dt  kifa(N)+ ko fr(l)

kikpfa(IV)
kifa(N) + kafr(1)

ko IT(t) (4.14)

— (kg + kae(t))] + \l

Note that €(t) is the correlated noise generated by the OU process. However, it is to
be noted that in the argument of the square root in equation (4.14), we have replaced €(t)
by its mean of zero, which comprises a mean-field approximation. This approximation

is helpful because we can now solve (4.14) and (4.16) equations analytically. For clarity,
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we rewrite the equation (4.14) together with the OU process as

dl
i h(I) + gi(D)e + g2(1)I'(t) (4.15)
€ 2
—— =£(t 4.16
e (4.10)
where, h(I) = lm‘il(llc\f% kal, g1(I) = —kql, and go(I) = \/lm + k4l and

£(t) is a zero-mean Caussian white noise with < £(£)&(t') >= 2D§(t—t'). We employ the
UCNA method to obtain the approximate solution of equations (4.15) and (4.16). The
method eliminates the noise adiabatically from the equation (4.16) (Jung and Hénggi,
1987). After elimination of noise from the equation (4.16), the equation (4.15) may be

rewritten in the limit 7 — 0 and 7 — o0:

o h(ZD . \/Zgl([)ﬁ(t; + () (4.17)

g1(1)
redefine (4.17) such that we only have one effective Gaussian white noise term. We

where, Z = 147 (gl(l)h(l)_h (I)QI(I)>' To obtain the simplified Langevin equation, we

write:
g(DI(t) = V27g1(1E(t) + g2 (I)D(t) (4.18)

where, I'(t) is Gaussian white noise with mean zero and correlator < T'(t)['(t') >= 25(t—
t'). We assume zero correlation between I'(t) and £(t) (i.e.,< T(t)&(t) >=< D(t)E(t) >=
0) to find the g(I). Use of these correlators, we obtain g(1)? < T(t)T'(t') >= 27g,(I)* <
EER) > +go(1)? < T(HT(t) > that finally gives us, g(I) = \/27D91(1)2 + %. By
proposing ¢(I)I'(t) = V271 (I)E(t) + go(1)T(t), the reduced Langevin equation becomes:

WD) | g(DE()

I =
A zZ

(4.19)

The FPE associated with the SDE can be written in the Stratonovich form (Risken and
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4 Stochastic dynamics of gene regulatory networks driven by intrinsic molecular noise

Risken, 1996; Holehouse et al., 2020) as

0 0 02

P = =2 (W) +3(D7 (D) PID] + 5

ot [G(1)*P(1,1)] (4.20)

Here, h(I) = h(I)/Z and §(I) = g(I)/Z. Immediately, the corresponding steady-state

solution is written as:

P(I) = g(?)pr (/ M) + 9U1)g U)) dl, (4.21)

where the () is the normalization constant.

4.3 Results

4.3.1 Stochastic Dynamics of Network Assembly:

We perform the stochastic simulation for each network motif, as discussed in Chapter
3. The stochastic dynamics of network assembly allow switching from one state space
to another for a given set of kinetic parameters. We fixed the kinetic parameter values
of the network throughout our dynamic analysis and presented them in Appendix 1.
We analyze the effect of binding and unbinding, together with a few other reactions, in
the production dynamics. Our analyses revealed that the protein production obtained
from various network motifs fluctuates around a mean, which follows the deterministic
dynamics. We find oscillations of protein number in the trajectory, which is a clear
signature of multistability (Cao and Grima, 2018; Duddu et al., 2020; Zhu et al., 2022;
Li et al., 2018). We calculate the steady state probability distribution (Pss) of the
protein number for each network motif and, after that, calculate the stochastic potentials,
F = —log(Pss) to establish the presence of multistability. We show the results in
Figure 4.2. These results correspond between the dynamic and the previously explored
thermodynamic results.

In the case of the activation network of assembly, we find that protein production
follows a Gaussian distribution for both the simple and induced activations. The derived
potential from the distribution function deepens as the ligand activates TFs. Moreover,

it is evident from the figure that the depth of potential is increased for the induced
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Activation and Repression Feedback Loops
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Figure 4.1: The probability distribution of proteins obtained from stochastic simulation
is shown here. The presented results are for the activation and repression,
feedback loops, and feedforward loops. A clear signature of multimodality
for higher-order network assembly is visible from these graphs.

expression. These signatures suggest the protein assembly tightens its regulation as the
ligand stabilizes the protein-DNA interaction network. We also notice that there is a
mono-stable region for the repression. However, the binding of ligands to TFs enhances
repression, as evidenced by the broad, deep potential well observed in our analysis.

Overall, the obtained potential diagram reveals that the dynamics of these networks are
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4 Stochastic dynamics of gene regulatory networks driven by intrinsic molecular noise

relatively simple, showing the unimodal distribution in protein production, and have a

clear sign of mono-stability.

In contrast to simple activation and repression, we find different features for the
feedback loops. In the case of the positive feedback loop, we find the unimodal distri-
bution of protein molecules for both genes Gx and Gy. Therefore, the production of
proteins from the Gx and Gy amplify each other mutually for this case. However, we
notice the bimodal distribution of produced protein for the negative feedback loops and
exhibit bistability. However, the stochastic potential obtained from the gene expression
for mutually inhibiting the feedback loop exhibits frustration in their dynamics. Once
again, we find a clear correspondence between our dynamic and thermodynamic results

obtained from the assembly networks.

The probability distribution of proteins and stochastic potential functions obtained
from the dynamics of FFLs are also shown in Figure 4.1 and 4.2, respectively. It is
clear from the figure that the FFLs exhibit multistability. Such signatures of FFLs are
consistent with the previous studies (Cao and Grima, 2018; Duddu et al., 2020). In
the case of incoherent loops, the system exhibits oscillation in the dynamics, a typical
feature usually found in FFLs (Zhang et al., 2016). Our analysis also reveals that the
coherent FFLs also show multimodal behavior. Thus, the multimodality feature is quite
common for the FFLs. The multimodality or multistability features are the origin of
a wide range of phenotype diversity of a cell as reported in many literatures (Cao and
Grima, 2018; Ochab-Marcinek and Tabaka, 2010). In the following section, we apply

this method to the NF-xB system since it uses the protein assembly to process a signal.

4.3.2 NF-xB system

4.3.2.1 Bifurcation analysis

The deterministic dynamical equations for the NF-xB are described in the method sec-
tion. Since the system exhibits nonlinearity, we first conduct the bifurcation analysis
to extract parameter sensitivity. A bifurcation diagram quantifies how a dynamical
system’s long-time behavior changes as a function of a parameter. In other words, it
describes a change in the stability or existence of fixed points as the system parameters

change. In a biological system, such perturbation in a parameter is common since we
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Activation and Repression Feedback Loops
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Figure 4.2: The stochastic potentials for various GRNs are shown in the 2D contour
maps. The presented results are for the activation and repression, feedback
loops, and feedforward loops. A clear signature of multimodality for higher-
order network assembly is visible from these maps.

observe sudden switching among stable, steady states.

We performed a bifurcation analysis of our model system, showing the population
of IkBa as a function of bifurcation parameters, k; and NF-xB. We show the results

in subfigures A and B of Figure 4.3. We marked stable and unstable regions by the
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magenta colored line and green colored circles in those subfigures. The system exhibits
bistability, as evident from the saddle-node or fold bifurcation shown in the figure.
The existence of saddle-node bifurcation is also used to infer the hysteretic behavior
of the system, as evident from Figure 4.3. From subfigure A, we see an increase of
kq from low to high values (for subfigure A), resulting in picking the upper branch in
the bistable regime, whereas decreasing from high to low values (for subfigure A) takes
us to the lower branch. A similar effect is also evident for the variation of NF-xB as
shown in subfigure B. It is clear from the figure that the system exhibits bistability
only over a range of parameter values, and it experiences monostability in other regions.
Literature suggests that bistability or, in general, multistability is an essential recurring
theme for understanding various cell signaling or cellular functioning, which includes
decision-making biophysical processes such as cell cycle progression, cell differentiation,
and apoptosis (Angeli et al., 2004; Eissing et al., 2004; Sobie, 2011). These observations
from subfigure A and B shed light on the presence of the two stable, steady states and
the existence of the bimodal distribution in the population of IkBa influenced by the
rate constant k; and NF-£B in our system. This presence of bistability may be correlated
with the switching between two functional states or the phenotype diversity of a GRN.
The NF-xB system tends to settle into a stable state marked by high IxBa concentration
at high values of NF-xB and low concentration of IxkBa for low values of NF-xB. We

also find similar behavior for k4 where it shows bistability for a specific range of NF-xB.

We further performed a two-parameter bifurcation analysis of equilibria for our model
system. The main findings from this analysis are that we can figure out the region cor-
responding to the monostable and bistable, a line separating them, and an identification
of the cusp point, if any. The cusp point in a 2-D bifurcation diagram shows a signature
of catastrophic change in the system. It is a bifurcation of equilibria in a two-parameter
family of dynamical equations at which the critical equilibrium has one zero eigenvalue,
and the quadratic coefficient for the saddle-node bifurcation vanishes. At the cusp bifur-
cation point two branches of saddle-node bifurcation curve meet tangentially, forming a
semicubic parabola. We find from our two-dimensional bifurcation diagram in subfigure
¢, which delineates a bistable region in the k;—NF-xB parameter space. Here, we ob-

served a cusp point at the origin. We find another cusp point in the k; and k; parameter
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space, a signature of catastrophic change we could observe in the system.
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Figure 4.3: This figure shows the concentration of NF-xB and rate of degradation of
IkBa protein (kq) induced saddle-node (SN) bifurcation for the number of
IkBa species. Also, we have shown the presence of a cusp point for these
parameters, which shows a boundary (marked by blue colour) between mono-
stable and bistable states.

4.3.2.2 Stochastic potentials

Since the system exhibits bistability, exploring the dynamics in the presence of noise
will be interesting. We perform stochastic dynamics of this system in the presence of
white and color noises. Specifically, we calculate the steady-state probability distribu-
tions (SSPD) and stochastic potentials using our theoretical analysis. Figure 4.4 are the
SSPD for non-fluctuating protein degradation rate parameters obtained from equation

(4.12) and kinetic Monte Carlo simulations. We consider three different values of kg,

1 1

i.e., 1073min~t, 2 x 10®min~!, and 3 x 1073min~! chosen from bifurcation analysis
in the Figure 4.4. We observe a fair correlation between the results obtained from the
reduced master equation and the KMC simulation. We find bimodality in the protein’s

production over a range of protein degradation parameters, ky. We find similar results
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by varying the concentration of NF-xB. The results correlate well with the bifurcation
analysis in the previous section. Our analysis shows that the degradation rate param-
eter can induce bimodality that may be related to the cellular decision-making for this
regulatory network. It thus becomes a significant step to identify the parameters space,
which can control the phenotypic states and thus demands precise attention toward a
better understanding of complex degradation mechanisms associated with such subtle

gene regulatory architectures.
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Figure 4.4: Here, we compare the solution of the reduced master equation from equation
(4.12) (solid line) and Gillespie’s algorithm (histogram). Panel A and C are
responsible for the monostable regions, and B indicates the bistable region,
as can be well correlated with the bifurcation diagram. The value of the
degradation parameter ky for subfigure A, B and C are 102min~!, 2 x
1073min~!, and 3 x 1073min~! respectively.

A close comparison between the probability distribution functions obtained from
UCNA analysis in the regime of color and white noises is presented in Figure 4.5. We
find that a strongly correlated noise (7 =1000) increases the sharpness of the probabil-
ity distribution function, which signifies its importance in biological systems. Multiple
sharp peaks in probability distribution function may be related to the multiple phe-
notypes observed in biological systems. In general, biological systems are associated
with correlated color noise, which is responsible for different phenotype behaviors, e.g.,
noise can affect the cell fates by randomly turning on either latency or reactivation.
The randomness associated with biological reaction events gives rise to biological noise,
which may be one of the origins of cell variability (Kellogg and Tay, 2015; Wang et al.,
2022). Thus, exploring the noise-induced phenotypes at the single-cell level is essential

to understand them better.
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Figure 4.5: Panel A and C are responsible for the monostable regions, and B indicates the
bistable region, which can be well correlated with the bifurcation diagram.
The value of the degradation parameter k; for subfigure A, B and C are
1073min=t, 2 x 10™3min~", and 3 x 10™3min~! respectively.

The obtained SSPD from the UCNA method is presented in Figure 4.5 for a range
of correlation time 7. We observed that the SSPD becomes narrow as the correlation
time increases (panels A and C). Moreover, in panel B, we observed that colored noise
influences the bimodality in the population of IkBa at large correlation time (7 = 1000).
These results reveal the role of noise in regulating bimodality. Thus, it is crucial to
determine the role of colored noise near the boundary between monostable and bistable
regions. We chose the value for the protein degradation parameter, k;=2x10"3min !,
which takes into account the boundary between monostable and bistable region, as shown

in Figure 4.5.
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Figure 4.6: The results for noise induced bimodality for the fluctuating rate parameters
for the degradation rate parameter, k; are shown. The values of the param-
eters used here are N=50 and k; = 0.0023min~".
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In Figure 4.6, we vary the correlation time at the boundary point. We observe
bimodality for strongly correlated noise ( for 7 = 1000), which suggests the existence
of the noise induced bimodality (Holehouse et al., 2020). In the white noise limit, the
system exhibits monostability, but it exhibits bistability for strongly correlated noise.
This is a clear signature of the noise-induced bistability, as revealed from the appearance
of a shallow peak at large 7 value. The origin behind such change can be correlated with

the large fluctuations in the degradation rate parameter.

4.3.3 Stochastic analysis for the SE and TE-mediated expression

Our proposed model considers the switching of the promoter states between active (G*)
and inactive (G) through the binding of NF-xB. The model considers oligomerization
through Hill’s coefficients (ng) present in Hill’s function, f4. The strength of binding
or the binding affinity between the NF-xB and promoter region of DNA is characterized
by the parameter, K,,;. The amount of total NF-xB is given by the parameter N. Note
that an increase in NN results in the binding of a cluster of proteins at the promoter
region. The binding of clusters of proteins to the gene’s promoter region enhances
the expression abruptly, which is quite distinct from the regular binding of TF to the
promoter region. The binding of such a cluster of proteins to the promoter region is
defined as a super-enhancer (SE), and the regular protein-promoter interaction is called
a typical enhancer (TE). Gene expression via SE produces higher fold change than the
expression controlled by the typical enhancers (TEs) (Brown et al., 2014; Michida et al.,
2020).

Literature suggests (Michida et al., 2020) that the typical values of ny for the ex-
pressions mediated by TE and SE have values ~ 1 and 4, respectively. Therefore, we
use these numbers to model them as a function of NF-xB concentration. The results are
presented in Figure 4.7, where we plot the maximum probability value of the produced
protein, P (/kBa). We observe an abrupt switching in the expression level for the
SE at a very low concentration of NF-xB. The results are shown in the panels A and
B. Thus, when NF-kB binds as a cluster to promoter regions, a significant difference
in gene expression level is exhibited for a specific range of NF-xB concentrations. Our

observed results correlate well with the earlier reported results (Michida et al., 2020).
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Michida et. al. reported that interactions among enhancer region and NF-xB molecules
could be cooperative as well as non-cooperative. The choice of these modes is based
on the amount of NF-xkB present in the system and chromatin accessibility (Michida
et al., 2020). Based on a similar argument, Figure 4.7 supports the role of NF-xkB as
SEs and TEs, where SE produces a high expression level relative to TE. We also ob-
served the existence of bistability in this system. Bistable or multistable features in a
GRN are essential for cellular decision making and often correlate well between geno-
type and phenotype relations. Thus, we infer from this analysis that the genes can tune
their expression by forming clusters of transcription-regulating proteins at the enhancer

elements of a gene.
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Figure 4.7: Maximum probability value of the IxkBa protein produced via SE-and TE-
mediated gene expression: The dashed blue and solid red color lines indicate
the TE- and SE-mediated gene expression, respectively. The value of the
degradation parameter k; for subfigure A, B and C are 10 3min~!, 2 x
1073min~t, and 3 x 10™3min!, respectively.

4.4 Discussion

In summary, we have studied theoretical and computational models for the dynamics
of gene regulatory networks. Our dynamic analysis shows that each complex assem-
bly’s functional response strongly depends on the network’s topology. We find that the
network topology associated with the complex assembly plays a vital role in the pro-
duction of protein molecules. We calculate the stochastic potentials from their trajecto-
ries. We find the multi-stability features in the higher-order networks. Recent studies

have also demonstrated the existence of such multi-stable features in higher-order GRNs
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4 Stochastic dynamics of gene regulatory networks driven by intrinsic molecular noise

(Duddu et al., 2020; Zhu et al., 2022). In the case of activation or repression, we find
mono-stability as evident from the single potential well. However, the assembly shows
multi-stable features for feedback and feed-forward loops. Our analysis shows that the
apparent structure of the bio-molecular complexes is quite similar. However, their func-

tional responses strongly depend on the network’s topology.

We further analyze the stochastic dynamics of the NF-xB since it forms homo and
hetero-oligomers on the DNA. We analyze this regulatory system using analytical meth-
ods and kinetic Monte Carlo simulation. We first identify the sensitive parameter from
bifurcation analysis. We find k4, k; and the input concentration of NF-xB are sensitive
parameters as evident from the observed fold bifurcation. Based on this analysis, we
chose the k; parameter and studied the stochastic dynamics when it fluctuates. We
first perform our analysis by approximating the system that follows in the limit of white
noise. We chose a static rate parameter to model it. We solve the corresponding master
equation and obtain the steady-state probability distribution of the produced protein.
However, including the protein lifetime requires a fluctuating rate parameter driven by
the correlated noise. The introduction of short-range correlated noise to the rate pa-
rameter effectively deals with the degradation protein at ¢ + 7 if it is produced at t.
We apply the UCNA method to analyze the system analytically and obtain the steady
state probability distribution function. We performed the KMC simulation and found

our results matched well with the analytical method.

Our analysis shows that the bimodality of a gene regulatory network arises from var-
ious factors such as the fluctuating rate parameter k4, the rate of change of gene from
inactive to active state ki, and Noise-induced bimodality. This bimodal behavior can
result from a negative feedback mechanism akin to the toggle switch in a gene regulatory
system. Numerous such systems exist in natural systems (Ochab-Marcinek and Tabaka,
2010; Venturelli et al., 2012), so it becomes essential to understand their origin. We ob-
served noise-induced bimodality by employing a theoretical and simulation approach and
put effort into understanding the mechanism of such behavior. Our analyses establish
a close correspondence between the system’s nonlinearities and inherent noise in a bio-
logical system. We find a close correlation between an input signal and the multi-modal

distribution in protein production as determined by the interaction network. We also
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observed that the clustering of transcription-regulating proteins influences the switch

from a broad distribution to a narrow distribution of the produced proteins.

Our analysis for the typical and super-enhancers mediated gene expression correlates

well with the experimental findings. We made a correspondence between our theoretical

and computational results and presented their biological relevance.

These combined

theoretical and simulation methods can be applied to various other biological systems

for anticipating gene expression.

Appendix: 1) Activation and Repression

Table 4.1: This table contains various elementary reactions for the activation(A), re-
pression(R), Induced activation(IA), Induced repression(IR) network motifs.
Here, Gx and Gy represent the genes with the basal expression, G3- repre-
sents the activated gene, and G¥ represents the repressed gene. Also, T Fy
and T'Fy represent the proteins that are expressed by Gx and Gy, respec-
tively. The specific reaction rates for each reaction are shown on the marked

arrows.
A R IA IR
1) Gx 25 Gx +TFx | 1) Gx 25 Gx +TFx | 1) Gx 25 Gx + TFx | 1) Gx 2 Gx + TFx
2) Gy 2% Gy + TFy | 2) Gy 2% Gy +TFy | 2) Gy 2% Gy +TFy | 2) Gy 2% Gy + TFy
OPYY oX X
2 *GY + TFy —— 3) Gy -+ TFy LN GY@ E})gix + Lx — 3T)P?F;X + Lx >
Y X X
* OPYY’ , x OX’ % ox
ilf)Fer XY Gy + 1)Gy® 5 Gy + TFy i)XTFX — TFx + i)TFX — TFx +
X
* PYY’ * * OPY * RY
5) GyT — Gy™ + 5)TFX kax ¢ 5)@;}/ + TFx — 5)G@Y + TFx —
TFY GY GY
* opy’ o Ky
6) TFx % ¢ 6)TFy % ¢ A S
x Y *
7) TFY kay r?}?y — GY + 7)TFX kax (b
Y

8)TFx ~2; ¢
9)TFy <25 ¢

8)TFy <25 ¢

The x vector corresponding to Equation (4.1) that is associated with the reaction
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4 Stochastic dynamics of gene regulatory networks driven by intrinsic molecular noise

network for activation is written as x = [Gy G% TFyx TFy] and the stoichiometry

matrix S for the same is given as follows

0 -1 1 0 0 0

0 1 -1 0 0 0
Sa =

10 -1 1 0 -1 0

01 0 0 1 0 -1

Also, F(x) is written as [pxGx pyGy 0pyyGyTFx 0pyyGE pyy G kaxTFx kayTFy]' .
Here, stochastic rate constants (¢;) and the associated rate law for each of the reactions,

hi(x,¢;) taking place in a volume of size (2 are written as:

o /7 !
Ci:[pX Py PQYY OrPyy Pyy kax deL and,

hi(x, c)=[pxgx proy T gyvnx opyy gy Pyydy kaxnx kayny], where gi and g;
represent the deterministic mean number of bounded and unbounded i** genes, respec-
tively, and nx and ny are the mean protein number production from the respective X
and Y gene.

The x vector associated with the reaction network for repression is x = [Gy G TFx TFy]

and stoichiometry matrix S for the same is given as follows

00 -1 1 0 0

00 1 -1 0 O
Sp =

10 -1 1 -1 0

o1 0 0 0 -1

Also, here F'(x) in this case is written as [pxGx py Gy kyyGyT Fx Ky y GO kay TFx deTFy]',
with

ci=[px py "5 Kyy kay kay,] and,

hi(x,ci)=[pxgx pygy “5-gynx Kyy gy kaynx kayny]

where g represents the deterministic mean number of repressed genes.

The x vector associated with the reaction network for Induced activation is x =

Gy Gy TFx Lx TF% TFY]/ and stoichiometry matrix S for the same is given as follows
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00 O 0O -1 1 0 O 0

00 0 0 1 —1 0 0 0

1 0 -1 1 0 0 0 -1 0
Sra =

00 -1 1 0 0 0 0 0

o0 1 -1 -1 1 0 O 0

01 0 0 0 0 1 0 -1

Also, F(x) is written as
[oxGx pyGy oxTFxLx oxTF% opyGyTF% opyGy pyGy kaxTFx kayTFy],
ci=lpx py % ox B opy py kax kay] and,
hi(x,c;)=[pxgx pygy Znxlx oxny BXgynk opy gy pygy kaxnx kayny)
where, [; represents the mean ligand number binding and activating the i"* protein

produced from i*" gene.

The x vector associated with the reaction network for induced repression is, x =

Gy G TFx Lx TF% TFy] and stoichiometry matrix S for the same is given as follows

o0 o o0 -1 1 0 O

oo o0 o0 1 -1 0 O

10 -1 1 0 0 -1 0
Sir =

oo0-11 0 0 0 O

00 1 -1 -1 1 0

o1 0 O o0 0 0 -1

Now, F(x) is written as [pxGx pyGy oxTFxLx UIXTF)*( ky Gy TF% /{/YG@ kaxTFx k’dyTFy]l,
c=lpx py & ox X Ky kax kay], and

hi(x, ci)=[pxgx pvay Enxlx oxnky Lgynk kygP kaxnx kayny].
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Appendix: 2) Deterministic Model

Table 4.2: The deterministic equations for the A, R, TA, and IR network motifs are

shown here.

A R
dzy — —opy, GyTFy + o Gy dj;“ = —kyGyTFx + 5y GS
dc(l]:}/ = opy,, GyTFx —op, Gy dthg = ry Gy Tl =iy Gy
d:,;ifx = pxGx—0p,, GyTFx+op, Gy —kixTFx dj:ifx = pxGx — by GyTFx + Ky GY — kaxTFx
P oGy + iy Gy — kay TFy T — Gy — b TFy
TA IR
ddciy = —op, GyTFx 4+ 0p, Gy dthY = —ryGyTFx + 1y GY
dde/ =op,GyTFy — 0 Gy d;@ = kyGyTF% — kyGY
d:’;lfx = pxGx —oxTFxLx +0xTFx — kaxTFx dj;ifx = pxGx —oxTFxLx +oxTFx — kaxTFx
dI;lfY = pyGy + py Gy — kayTFy dj;lf;( = oxTFx Lx—0xTFy—ryGyTFy+ry Gy
dj;lf X _ g\ TFyLy—0TFs—op,GyTFitah G defY = pyGy — kayTFy
déjtx = —oxTFxLx + o\TF% dé;X = —oxTFxLx +oxTFx
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Chapter

Role of network topology in controling
the cellular fate under stressed
condition: A tumor enigma

5.1 Introduction

In this Chapter, we develop a thermodynamic model for the p53 signaling network to
explore the role of network topology in controlling cell fate. The p53 tumor suppressor
protein can regulate the expression of nearly 100 genes in response to DNA damage
(Wright and Dyson, 2015; Sullivan et al., 2018). The tumor suppressor gene products
frequently regulate selected signal transduction pathways and monitor the efficiency of
cellular duplication by checkpoints in cell division. The p53-signaling pathway responds
to a wide variety of stress signals and regulates the process of tumorigenesis. These
expressions are associated with determining cell fate, e.g., cell cycle arrest, DNA repair,
senescence, apoptosis, etc. (Levine, 1997; Bieging et al., 2014). Perturbations along the

pathway could compromise p53 activity and consequently promote tumor development.

Genotoxic stress created by DNA damage induces the transcriptional activity of the
p53 protein. Unstressed cells maintain low levels of p53 by continuous proteasomal
degradation mediated by a protein, MDM2 (Kubbutat et al., 1997; Haupt et al., 1997).
However, the genome with lost integrity produces a mutant p53 protein with intense
phosphorylation and acetylation at sites common for stabilizing wild-type p53, thereby
facilitating the collection of defective mutant p53 inside the nucleus, ultimately ending up
as an oncogene (Bode and Dong, 2004; Vousden and Prives, 2009). Cascading events in
post-translational modifications regulate the transcriptional activity of p53 that inhibits

binding with MDM?2 and promotes the expression of the p21 gene. Studies suggest that

115



5 Role of network topology in controling the cellular fate under stressed condition: A tumor enigma

phosphorylation of p53 significantly affects its binding affinity to DNA. Single-site phos-
phorylation of p53 at Thrl8 results in a twofold increase in affinity to DNA, double-site
phosphorylation at Ser15, Thr18 leads to an approximately five-fold increase, and triple-
site phosphorylation at Ser15, Thrl8, and Ser20 causes more than Ten-fold increase in
binding affinity to DNA (Lee et al., 2010; Ferreon et al., 2009). The degree of phos-
phorylation affects the phenotypical changes differentially in a cell, a signature accepted
widely for inhibiting the cancer progression over the last few decades (Lee et al., 2010;
Olsson et al., 2007). This fact is verified in mice, where a single-site phosphorylation of
serine or threonine of p53 affects little to their activity. In contrast, their simultaneous
phosphorylation impacts mice’s activities significantly, indicating that multisite phos-
phorylation has synergistic effects on p53 response (Chao et al., 2006; Lee et al., 2010).
In humans, simultaneous phosphorylation on threonine and serine also synergizes, in-
creasing p53 responses (Gatti et al., 2000; Mayo et al., 2005). However, the mechanism
linked with the phosphorylation and especially multisite phosphorylation in controlling

p53 activation remains unclear (Vousden and Prives, 2009; Olsson et al., 2007).

Under stressed conditions, cells produce an uncontrolled amount of p53 suppressor
that may not degrade during the cell cycle. The excess p53 undergoes phosphorylation
once it senses external stimuli and participates in a series of transcriptional activation
processes. Lack of participation of p53 for transcription regulation initiates tumor pro-
gression. The outcome of this series of events is unique, which we can relate to the fate
of a cell (Hafner et al., 2019). It is found that few genes trigger the fate of a cell. Ex-
pressions of them determine the unique phenotype of the cell. In our study, we consider
the unique phenotype for the p53 repressor system to be one of the possibilities of cell
cycle arrest, DNA repair, inhibition of angiogenesis, and apoptosis (Levine and Oren,
2009; Kastenhuber and Lowe, 2017). These four events are governed by the binding
of phosphorylated tetramers of the p53 repressor (p53*) to the promoter region of four
genes such as p21 (Rokudai et al., 2009), p48 (Williams and Schumacher, 2016), PAI
(Teodoro et al., 2006), and Bax (Farkas et al., 2021; Chao et al., 2006) in the genome.
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The mechanism behind p21-dependent apoptosis is still unclear, but it is believed that
the p53* promotes the production of p21 protein that binds with CDK-cyclin complex
for the cell cycle arrest (Yeap et al., 2015). Further, few studies suggest that p21 plays
a vital role in inhibiting apoptosis in a p53-dependent manner (Attardi et al., 1996; Bis-
sonnette and Hunting, 1998). Therefore, one can ask a pertinent question on how a cell
opts between p21-dependent cycle arrest and apoptosis once it receives signals from the
damaged DNA. Few studies report that high levels of p21 expressions result in cell cycle
arrest and promote apoptosis in a p53-dependent manner (Choi et al., 2016; Macleod
et al., 1995). Moreover, p21 is also known for regulating a few other genes that cause
inhibition of angiogenesis and DNA repair (Furuta et al., 2006; Kuljaca et al., 2009).
Few studies also show that the PAI regulates apoptosis in cells (Chen et al., 2004).

Since the phosphorylated tetramer of p53 binds differentially to the response ele-
ments of the four cell fate-determining genes, they produce differential gene expression
and consequently determine the state of a cell. Further, these four genes are not inde-
pendent in a cell; they are often connected through protein-protein interaction. Upon
consideration of the internal networks or the network topology among these four genes,
the expression further differentiated that plays a crucial role in determining the state
of a cell. Therefore, it is critical to understand that the binding of p53* to these four
genes is necessary to determine a cell’s fate. Moreover, various cancer cell lines have
different internal gene regulatory networks among these four genes, further introducing
differential gene expression that leads to a cell’s fate (Fan et al., 2020; Georgakilas et al.,

2017; Mirzayans et al., 2015).

The mechanism behind p53 suppressor-mediated regulation is complex and requires
a system-level analysis (Braithwaite et al., 2005; Vousden and Prives, 2009). However, a
minimal regulatory network model can be constructed based on four cell fate-determining
genes for this system (Figure 5.1). This model considers how the p53 suppressor is
produced under the oxidative stress of DNA and its binding with the promoter region of
these genes. According to our proposed model, the p53 gene transcribes p53 suppressors
that undergo degradation under normal conditions (Lavin et al., 2006). It happens
through a negative feedback mechanism in which the p53 suppressor targets the MDM?2
gene that produces the negative regulator MDM2 protein, and then MDM2 selectively
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promotes p53 degradation through a p53-MDM2 interaction (Lahav, 2008). Therefore,
the negative feedback loop maintains a low p53 level and shows oscillatory dynamics in
their population (Lahav, 2008). However, if DNA is damaged under stress, it activates
various other protein kinases, such as ATM, ATR, Chkl, and Chk2, which promote
the phosphorylation of p53 and MDMZ2. As a result, the interaction between p53 and
MDM2 is disrupted, stabilizing p53 and enhancing its transcriptional activity. The
excess ph3 undergoes phosphorylation by ATM protein that controls the populations
of pb3* and pb3. The p53* inhibits binding with MDM2 but activates several stress
response programs, including cell cycle arrest, DNA repair, and programmed cell death
(Lahav, 2008). The p53* binds with the promoter region of four genes, Bax, p21, p48,
and PAI, competitively, determining the cell fate (Saraméki et al., 2006; Bieging et al.,
2014; Harris and Levine, 2005).

Moreover, other oncogenes such as RAS, MYC, and -catenin have a common regula-
tory element, namely E2F, that produces ARF protein, further regulating the population
between phosphorylated and unphosphorylated MDM2 (Zindy et al., 1998; Weber et al.,
1999). However, the production of ARF is inhibited by a p53* suppressor. A small
molecule, Nutlin, binds with the MDM?2, prevents the binding with p53, and inhibits
the degradation of the p53 suppressor (Vassilev et al., 2004; Tovar et al., 2006). The
pH3* suppressor simultaneously activates WIP and miR genes, producing WIP1 protein
(Fiscella et al., 1997; He et al., 2007).

Moreover, these four cell fate-determining genes are often interconnected but vary
among cell lines. We focus on three cancer lines: a) breast cancer (MCF-T7), b) colorectal
cancer (HCT116), and c) blood cancer (K562) to compare their expressions (Tor et al.,
2015; He et al., 2020; Georgakilas et al., 2017; Ehrhardt et al., 2013; Yen et al., 2020;
Harris and Levine, 2005; Drullion et al., 2012). The network topology among the four
genes of these three cell lines is different, producing qualitatively different gene expres-
sions and determining the cell fate (Fan et al., 2020; Mirzayans et al., 2015). In MCF-7,
the p21 activates both p48 and Bax genes along with the binding of p53* to the promoter
regions of four genes (Tor et al., 2015; He et al., 2020). This effect finally leads to the cell
cycle arrest and induces apoptosis in a drug-dependent manner mediated via twist reg-

ulation (Ranganathan et al., 2015). In the case of HCT116 cell lines, the p21 represses
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both p48 and Bax genes (Ehrhardt et al., 2013; Georgakilas et al., 2017). Since this
interaction network differs from the MCF-7, it produces different expressions. However,
the p21 activates p48 and represses Bax genes for the K562 cell line (Yen et al., 2020;
Fan et al., 2020; Drullion et al., 2012). Such difference in interconnectivity among the
genes enhances differentiability in gene expressions, which requires careful attention to

repair a cell.

In this work, we aim to explore three crucial questions through our theoretical anal-
ysis: a) Whether binding of the p53* to the promoter regions of the four cell fate-
determining genes, Bax, p21, p48, and PAI, show phase transition characteristics. b)
To investigate the role of internal networks among different cell fate-determining genes
that add an extra layer of control on expression. ¢) To study the role of such internal
networks for different cancer cell lines associated with breast, colon, and blood cancer
cell lines, i.e., MCF-7, HCT116, K562. Our proposed thermodynamic model for the bio-
logical network revealed that the differential gene expression that decides a cell’s fate is
predominantly associated with internal networks among different cell fate genes and the
free energy of binding among protein-DNA and protein-protein interaction. Our study
considers only the p53* that participates in binding events and determines a cell’s fate.
We organize this chapter in the following way. We first discuss the proposed minimum
free energy model and grand partition function for the biological network. Then, we
discuss the results, and finally, we conclude our findings and explain the role of net-
work topology among four genes for different cancer cell lines in regulating the gene’s

expressions in a p53*-dependent manner.

5.2 Model

5.2.1 Minimal Free Energy Model to Calculate Equilibrium
DNA-Transcription Factor Binding:

Here, we adopt the minimum free energy model for protein binding to a large DNA
molecule (Teif et al., 2002; Lando and Teif, 2000). In our model system, p53* proteins
bind to the promoter regions of the cell fate-determining genes. Specifically, the p53*

repressor can reach all promoter regions of those genes, forming a protein-DNA interac-
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Figure 5.1: The schematic figure shows how a cell responds under environmental stress
in the p53-mediated signaling pathway. The stress triggers cascading events
ranging from DNA damage to synthesizing p53* to the cell’s fate. Various
labeled cartoons are used to depict different proteins and genes. The tetramer
of p53* that binds to the four cell fate genes is also marked in the figure. The
binding of p53* to the promoter regions of four cell fate-determining genes is
competitive, as shown in the dotted box. The internal connectivity among
the cell fate genes, which may be linked with various cell lines, also plays a
critical role in binding the tetrameric p53* to the promoter regions of these
genes. The relative population of these protein-DNA complexes determines
the fate of a cell.

tion network responsible for cell fate determination. The minimum free energy model
allows us to determine whether this protein-DNA interaction provides a signature of
phase transitions in a cell. With this aim, we propose a free energy function, F'(k,b, o) ,
for binding k proteins to the DNA. We consider a total of N lattice sites on DNA, and

the initial concentration of p53* is .

F(k,bjo)=kxe—kxG(c)+bxe +0xe—RxT xlogW (5.1)
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The first term contributes the free energy (€g) for the direct binding of k& molecules of
p53* repressor with DNA. The second term, G (% = ¢), is associated with the free energy
of interaction of a bound protein with all other bound proteins. Such interaction may
originate from changes in DNA structure that alter the topology of the protein-DNA
interactions network. In the third term, we include the nearest neighboring interactions
(b x €) among all the bound p53 on the lattice. Here, b is the number of contacts
formed by the binding of k p53* to the DNA, and the free energy associated with each
contact is €;. The values of b lie within the interval 0 < b < k — 1. We include the free
energy contribution for the phosphorylation bound p53 through a factor as given in the
fourth term. Here, o and €, indicate the degree of phosphorylation and the free energy
associated with each interaction and the values of ¢ lie in the interval 0 < ¢ < k. The
fifth term is associated with the entropy contribution due to the number of ways to bind
k p53 repressor, which form b p53-p53 contacts in the DNA of lattice sites N. If a pb3*
covers m lattices of the DNA, then one can calculate the combinatorial factor, W, by

the following.

(N —m x k)! (k —1)! k!
N —(mt ) xktb]l(k—1—b) " (k—1—b)8 " (k—o)lo!

W= (5.2)

Since the initial concentration of the p53* is ¢y in the solution, the change in free

energy upon the addition of DNA to the solution may be written as

AF(k,b,0) = F(k,b,0) — k x [o + RT log(co)] (5.3)

The last term above the equation is the loss of free energy that appears due to the
binding of k£ p53* from the solution. Here, the chemical potential of the p53* in the
solution is u = po + RT'log(cy), where p, po are the chemical potential of the p53
in solution, and its standard state, and R, and T' are the gas constant and absolute
temperature. Once we define the free energy function for the protein-DNA network,
we can optimize it to obtain its equilibrium properties. Upon applying the Stirling
approximation for the large values of k, b, ¢ and N, we obtain their most probable or

the equilibrium values k* or ¢* = k*/N, b* and o*.
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Lo — €o 2wc* (1—mc)™ (¢ —21)*(¢F — 29)
. = 5.4
exp( RT ). exp( RT ) l—(m+1)c+2z ¢ coc* (5.4)
€1 21
_ Ay _a- et 4 2) b 5.5
exp( RT) (1—(m+1)c"+ 2z) = 2) (5.5)
€9 Z9
.t )= 5.6
exp( RT) (¢* — 2z9) (5:6)
Where, we define K = exp(#3—) is the binding constant, A(c*) = exp (%%=) is
related to the long-range interactions, a; = exp(— %) and ay; = exp(—4%) are the factor

of contact interactions of bound ligands and phosphorylation: z; = b*/N, z, = ¢*/N
are the relative concentration of ligand-ligand contacts and phosphorylation. Note that
we apply the Stirling approximation on N, k, b and m during the optimization. The
above equations ( (5.4), (5.5) and (5.6)) are solved simultaneously and then insert into

the equation (5.3) AF(c*, b*, o) for a given ¢.

AF*

NET ~ —c*log(K x B* x ¢y x (¢*)?) — 21 log(ay) — 22 log(az)—

(1 —mc*) xlog(l —m x ¢*) 4+ 2(c" — z1) log(c* — 21)+
(" — 22)log(c" — 22) + 2z log(z1) + 22 log(z2)
+ (1= (m+1)c" + z)log(1 — (m+ 1)c* + z)

where, B* = exp(G(c*)/RT') = exp(wc*/RT).

5.2.2 Grand Partition Function For the Network

The above model provides an understanding of cell transitions, but it poorly considers
the topology of the network. We use the average values of the topology parameter, w,
obtained from our simulations. Therefore, we propose a network model that explicitly
considers the topology of the protein-DNA interactions. A gene regulatory network
(GRN) is a directed graph in this model. The elements of this graph are proteins or
transcription factors, and they bind to the promoter regions of genes. In this problem,

four genes, p21, p48, PAI, Bax, and p53*, form a small network. Since a cell’s fate is
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determined by the binding of p53* to the four genes, p21, p48, PAI, and Bax, we consider
this small network to identify the binding patterns and infer the gene expression. The
wiring of the networks is critical because they vary for different cell lines (Fan et al.,
2020; Mirzayans et al., 2015). Thus, one can expect heterogeneous cell fate for different

cell lines.

We define the network as a directed graph (G), where we consider genes as vertices
(V), and the protein-promoter and promoter-promoter interactions form the edges (F).
The p53* binds to the promoter region of these four genes, and the interaction among
the genes exists either in a protein occupancy-dependent or independent manner. In
particular, one can realize the protein occupancy-dependent edges if proteins occupy
both participating promoters. We further consider that a saturated level of RNAP is
present in the system. With this aim, we define the total energy function or Hamiltonian

of the network.

H(G) = Z Z €8; + Z Z Wi 044 (57)

i 5i=0 i#j 03 =0
Here, the ¢; and w;; are the free energy of protein-DNA and promoter-promoter inter-
actions; s; takes a value of 1 if there exists a direct protein-DNA interaction; otherwise,
it takes value 0. The o;; is the adjacency matrix for the interaction among genes, which
takes a value of either 1 or 0 depending on connections. If the total no of proteins is
N, then Y7, s; = N. If we assume s; and o0;; are independent, then the Grand partition

function for a network is

= J1(1 + Nexp(—pe)) 1;[(1 + exp(—fuwi;))
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where A is the exp(Su) and p is the chemical potential of p53*. One can immediately

calculate the average occupancy of p53* on each of the genes by taking the )\8(1913\5. We
express our results in terms of fold change (FC), which is defined as the ratio between the
occupancy of RNAP in the presence of p53* and the occupancy of only RNAP (basal) in
the network. However, in practice, genes are influenced by each other through protein-
protein interaction, which immediately restricts the application of the independence
between s; and o0;;. To explore all the effects together, we first list all possible network
configurations as shown in figure 5.2. We then identify all the configurations where
at least one p53* is bound to a particular promoter. The ratio of statistical weights
between those configurations and the total number of configurations provides a signature
of the probability of gene expression of that particular gene. Note that the counting
process becomes exceedingly complex as the network size increases. Therefore, one can
employ Monte Carlo (MC) simulations that offer an elegant approach to identifying those

relevant configurations for expressing a particular gene in a large network (Gautam and

Kumar Sinha, 2021; Gautam and Sinha, 2023).
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Figure 5.2: The figure demonstrates all sixty-four possible microstates for the gene reg-
ulatory network of the MCF-7 cancer cell line. We calculate the statistical
weights, thereby the population of each configuration, using the grand par-
tition function. We marked green, blue, yellow, and red background color
regions for the configurations associated with cell fate genes, p48, p21, PAI,
and Bax genes, respectively. The solid and shed backgrounds are used to
show the exclusive and shared configurations for a specific gene. Similarly,
the solid and dashed lines of different colors are used to show the border
for a specific gene’s exclusive and shared configurations. The configurations
located at the middle white background region are common to all genes.
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5.3 Results

We start with binding the p53* to the promoter regions of the four cell fate-determining
genes, Bax, p21, p48, and PAI. We further study the importance of the topology of a
network of interactions that alters a cell’s fate. We rationalized the network topology
with different cell lines, MCF-7, HCT116, and K562, and found that the gene expressions
are quite different for these three lines (Tor et al., 2015; He et al., 2020; Georgakilas et al.,
2017; Ehrhardt et al., 2013; Yen et al., 2020; Harris and Levine, 2005; Drullion et al.,
2012), triggering diverse cell fate. We discuss them in detail below.

5.3.1 p53-Dependent Cell Transitions from Thermodynamic
Models:

We first aim to identify if there are any phase transitions on the binding of p53* to the
promoter regions of the genes. Since the topology of the network of interactions varies
from cell to cell, we study this behavior for three different cell lines that we consider
in this study. We probe two critical questions: a) Will the binding of p53* to the Bax,
p21, p48, and PAI genes show phase transition characteristics in a cell? b) if it happens,
what will be the role of the topology of the interaction network for these transitions?
Understanding phase transitions for this system at a fundamental level is crucial for the
preventive measurements. We chose the fraction of bound p53* at equilibrium, ¢* as our
order parameter to study the phase transition behaviour (Callen, 1991). We further vary
the topology parameter, w , defined as the average number of edges of the network, to
mimic the cellular variation. We use the w values obtained from our GCMC simulations

for the three different cell lines (w =2.02, 2.97, and 4.03) as considered in our study.

We calculate ¢* as function of their initial concentration ¢y of p53* shown in the
Figure 5.3. We also consider three cell lines by varying the w parameter in this study.
We notice an S-shaped curve for each cell line, a signature of phase transition exhibited
in a cell upon binding the p53*. To confirm whether this phase transition is contin-
uous or discontinuous, we calculate the equilibrium free energy of interaction AF* as

included in the inset of the figure. The free energy analysis reveals that the system
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exhibits bistability that passes through a barrier. We mark the free energy data on the
order parameter ¢*, which reveals a clear signature of abrupt transitions. Therefore,
we characterize this system as exhibiting first-order phase transitions upon binding the

p53* using the minimal free energy model.

The concentration of p53* at which the model network exhibits a transition is called
the potency point, and the point at which the p53* binding to the promoter saturates
is called the efficacy point (Martins et al., 2006). We draw a line between these two
points to compare a qualitative signature of these transitions among the three cell lines.
They are different, as revealed by our analysis. We notice that the potency points for the
HCT116, K562, and MCF-7 cell lines are at 2.2uM, 1.33uM, and 0.81uM , showing that
HCT116 requires more pbH3* to saturate the promoter. However, MCF-7 takes the least
amount of p53* to saturate the promoter. We also notice that the saturation level for
HCT116 is relatively low compared to the other two cell lines. The origin of differential
behavior in these three cell lines’ phase transitions primarily arises from the difference

in network topology, which we included through the w parameter, as discussed earlier

(Teif et al., 2002; Lando and Teif, 2000; Teif, 2005).

5.3.2 Role of Network Topology

p53 is a crucial transcription factor that determines cellular fate by interacting with
the promoter regions of various genes with a wide range of binding affinity. Here, four
genes, p21, Bax, p48, and PAI, participate in p53* binding, and the degree of its binding
determines a cell’s fate (Harris and Levine, 2005; Hafner et al., 2019). The differential
expressions from these four genes upon binding p53* lead to the initiation of cell cycle
arrest, apoptosis, DNA repair, and inhibition of angiogenesis. In other words, such
binding events control the cancer progression. These differential expressions promote
the cellular transitions and determine the actual state of the cell as a consequence. In
other words, it determines the fate of a cell. However, the binding of the p53* may be
influenced by many other factors, such as a) internal rewiring of the GRN, b) interfering
with other proteins, c¢) abrupt external perturbation, etc. Since we restrict our study
to an isolated GRN within an equilibrium regime, we ignore all other factors except

internal rewiring. To demonstrate the importance of internal rewiring among genes, we
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Figure 5.3: We compare binding curves among various cell lines based on their network

topology. Here, the values of the parameters used are m = 2, a; = €3,

as = ¢’ , K = ¢°. The connectivity parameters (w) we obtained from

GCMC simulations for three cell lines are 2.02, 2.97, and 4.03, respectively.
The dotted lines are for the unstable region obtained from the free energy
analysis. The network topology governing the cell lines influences the first-
order cellular transition.

first perform a comparative study between gene expressions upon binding p53* to the
promoter regions of these four genes in the absence and the presence of an arbitrary
internal network. Note that the p53* binds to the four genes independently through

their free energy of interactions without wiring among genes.

In Figure 5.4, we present the response function in the absence of any internal networks
among the promoters of cell fate-determining genes, and we observed that the binding of
p53* on genes takes place sequentially as a function of its increasing concentration values
owing to its wide range of binding affinities. However, we find a significant change in the
gene expression pattern when considering a few arbitrary links among these genes. We
present the response functions for both cases in Figure 5.4. The rationale behind adding
a few links among these four genes is that they vary from one cell line to another. Since
this system is responsible for cancer progression, various cancer cell lines are found with

different internal links (Jangili et al., 2022; Georgakilas et al., 2017; Han et al., 2002;
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Fan et al., 2020; Li et al., 2015; Rodriguez and Meuth, 2006; Tor et al., 2015; He et al.,
2020).

Without internal links, we observe a sequential expression for these genes, but all
are expressed at the same saturation level at large values of Ap53. In other words,
we infer that these four genes express differentially at low values of A,s53 , but their
expressions are almost identical at large values of \p53. The differential expressions at
low values of A\p53 appear due to the different binding affinities of the promoter regions
of these four genes to the p53*. Therefore, if a cancer cell consists of these four genes
without internal links, the cell reaches equiprobably to any of these four states. However,
internal links show differential expressions, even at large 53 values. The results indicate
the importance of internal links that determine a differential expression. For example,
all four genes express differentially upon introducing two inhibitory loops. We also
notice that the cell primarily initiates the inhibition of angiogenesis as the p48 gene is
preferentially expressed for this network. Therefore, it is clear from our demonstration
that the internal networks among genes play a crucial role in determining the state of a
cell. The internal networks for different cancer cell lines significantly differ. We discuss
them in detail below (Mirzayans et al., 2015; Mayo et al., 2005; Fan et al., 2020).

5.3.3 Comparison of Different Cancer Cell Lines

The immortal cancer cells uncontrollably divide and multiply with the progression of
time. Human cancer cell lines have received considerable attention in the biology commu-
nity to understand their origin and develop a method that inhibits cancer progression
(Cortes-Ciriano et al., 2016; Abdullah et al., 2009; Guo et al., 2019). Understanding
their origin and the mechanism behind cancer progression is crucial to exploring the
potency and efficacy of existing cancer treatments and finding new efficient treatments
(Martins et al., 2006). Since cancer can progress through a p53-dependent pathway
(Powell et al., 2014), it is essential to have a better view or understanding of the un-
derlying mechanisms that regulate the binding of p53 to various cell fate-determining
genes. As described in the introduction, for a cell under stress, these four genes are part
of the concerted gene expression programs responsible for various fundamental biological

processes and the underlying cell fate determination, orchestrated by complex gene regu-
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Figure 5.4: The FC for different genes in the absence and the presence of internal connec-
tivity. The binding of p53* to the promoter regions of the four cell fate genes
is different under these two situations. We show the respective networks in
the inset of the figure. We notice differential gene expressions for systems
with internal connectivity. Such heterogeneous expression is absent for the
system with simple binding events based on their affinity. Here, solid lines
are for the theoretical results, and circles represent the simulation results.

latory networks centered around p53 binding (Wilkinson et al., 2017; Harris and Levine,
2005). However, the genetic mutations in these genes are associated with abnormal ex-
pression, which prolongs the tumor growth (Pryczynicz et al., 2014). Various cancer cell
lines are reported in the literature where the internal links among these four genes are
quite different. Therefore, we focus on three cancer lines: a) breast cancer (MCF-7), b)
colorectal cancer (HCT116), and c¢) blood cancer (K562) to compare their expressions.
The internal links among the four genes of these three cell lines are different, producing

qualitatively different gene expressions and determining the cell fate.

We performed partition function-based analysis and GCMC simulation for each of the
networks. It is evident from the figure that the internal connectivity among genes alters
the expressions significantly upon binding of p53* to the promoter regions of four cell
fate-determining genes. Our analysis shows that these four genes play an essential role
in repairing a malignant cell by different modes of action (Torgovnick and Schumacher,
2015; Alhmoud et al., 2021; Wang et al., 2021a). Our analysis reveals that the MCF-
7 cell line predominantly expresses the p48 and Bax genes, which either initiate the

process of repairing DNA or follow apoptosis. We find significantly different expressions
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between the HCT116 and the MCF-7 cell lines. As mentioned above, the origin behind
differential expression for this cell line is related to the network’s topology. As observed
from our analysis, the repression effect of the p21 gene triggers the activation of PAI and
p21 genes, which either inhibit angiogenesis or arrest the cell cycle. However, the p48
gene expresses exclusively for the K562 cell line, as evidenced by our analysis. Thus, it
is clear from our analysis that the impact of p53* in controlling the expression for the
cell fate-determining genes by forging the connection between an input signal and the

network topology (Benstead-Hume et al., 2022; Hafner et al., 2019).
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Figure 5.5: The Gene expression FC of different genes obtained for three cell lines are
shown here. Since the internal connectivity among the genes for the cell
lines is different, we show them in the figure. The binding of p53* to the
promoter regions of the four genes is heterogeneous, exploring the possibility
of differential gene expression and a cell’s fate. Here, the solid lines and
circles represent the theoretical and simulation results, respectively.

5.4 Discussion

In this work, we put an effort to encapsulate multiple biophysical processes and gene
networks to understand the fine-tuned expression and cell fate. Our modeling scheme and
findings establish a predictive protocol that can be employed to understand transcription
patterns for vast possibilities of cellular fates. Our analyses for the different cell lines
based on the network topologies are known for four genes, p21, Bax, p48, and PAI
(Tor et al., 2015; He et al., 2020; Georgakilas et al., 2017; Ehrhardt et al., 2013; Yen
et al., 2020; Harris and Levine, 2005; Drullion et al., 2012). The p53 maintains its low

level in a healthy cell by a continuous degradation mechanism through an interaction
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with a protein MDM2 (Alarcon-Vargas and Ronai, 2002; Kubbutat et al., 1997; Haupt
et al., 1997). A cell under stress damages DNA that produces a p53*, which inhibits
binding with MDM2, and thus, the concentration of p53* is stabilised (Chehab et al.,
1999). The tetramer of p53* controls many cellular processes, including cell fate, i.e., cell
cycle arrest, apoptosis, senescence, inhibition of angiogenesis, DNA repair, metastasis,
etc. (Harris and Levine, 2005). For example, the programmed cell death or cell cycle
arrest is triggered by activating a p21 gene upon binding tetrameric p53* that produces
the p21 protein. The p21 protein binds with another cyclin-dependent kinase complex
(CDK/cyclin) that promotes cell cycle arrest (Bissonnette and Hunting, 1998; Rokudai
et al., 2009). Failing to bind p53* to these cell fate-determining genes promotes human
cancer progression. Therefore, it is urgent to understand the mechanisms behind p53*
dependent cellular functionality for curing early-stage cancer progression (Marei et al.,
2021).

As mentioned above, the system exhibits multiple layers of control, ranging from
phosphorylation of p53 protein that alters its biological activity and has a wide range of
binding affinity to the promoter regions of the cell-fate-determining genes (Chao et al.,
2006; Mayo et al., 2005). These genes, often connected, form a network of interaction
to determine the cell fate. Here, we seek to understand the role of p53* in determining
the cell fate of a malignant cell through the lens of the minimum free energy model.
Our model offers an understanding of the role of network topology in regulating the
expression of various cell fate-determining genes. We show that the degree of binding of
pH3* to the promoter regions of these genes shows phase transition characteristics. The
transition is discontinuous or first order, as revealed by the sign of free energy data at
equilibrium (Callen, 1991). We further explore the phase transition behavior for different
cancer cell lines, MCF-7, HCT116, and K562, as they have the same constituents, but
the network topologies differ. The results reveal that phase transition behavior strongly
depends on network topology, which is also explored by a few other studies (Teif et al.,
2002; Lando and Teif, 2000).

To further pin down the actual cellular state of the cell, we propose a grand partition
function for the biological networks and perform GCMC simulations of them to explore

the microscopic origin of the cell fate (Hill, 1986). We find a strong dependence between
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cell fate and the network topology. The MCF-7 cell line presents an example where
the p21 protein regulates the expression of p48 and Bax genes, which are associated
with initiating the DNA repair process and apoptosis. However, p21 represses p48 and
Bax genes in the HCT116 cell line, ultimately activating p21 and PAI genes, inhibiting
angiogenesis, or arresting the cell cycle. However, the p48 gene expression exclusively
promotes the initiation of DNA repair process in the K562 cell line. Therefore, the
diverse range of outcomes obtained from the different cell lines governed by the network
topology provides a clear understanding of the actual state of an early-stage malignant
cell (Benstead-Hume et al., 2022; Rashid et al., 2022).

Cell phenotype is often the result of key transcription factors that regulate the ex-
pression and are inherently related to the cascading event of the cell fate decisions (Jia
et al., 2017). Sometimes, a transcription factor can decide the cellular fate based on the
cell’s context. As the tetrameric p53* decides to activate one of the genes among many
genes based on the sequence-specific response element (Kern et al., 1991). A prime ques-
tion in this regard is how p53 decides the cellular fate based on a wide range of binding
affinity dependent on the promoters and internal networks for the cell fate-determining
genes. We explored this question here in this direction. However, there is a possibility
that some other factors can dominate over network topology, such as the entanglement
of these genes with some common genes, which can either elevate or bring their expres-
sion down, dysregulated transcriptional programs that result from genetic mutations,
epigenetic regulation, RNA stability, protein translation, post-translational control, etc.
Understanding each factor offers the opportunity to cure malignant to healthy cells.
Our proposed theoretical method could include those factors in the model, which we are

currently exploring.
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Chapter

Conclusions

6.1 Key Findings

This thesis provides a detailed understanding of protein-DNA interaction and its im-
pacts on gene regulation. Specifically, we investigate various biomolecular mechanisms
that regulate genes in various organisms, ranging from prokaryotes to eukaryotes. We
explored gene regulation for a system under an equilibrium regime and dynamically
evolving biological systems. While dealing with biological systems under equilibrium,
we made a partition function-based thermodynamic model and counter-validated its cal-
culations with our in-house Grand Canonical Monte Carlo (GCMC) based simulations.
While considering dynamically evolving systems, we analyzed the master equations as
well as performed Kinetic Monte Carlo (KMC) simulations. We explored the gene reg-
ulation of various biological systems. We established quantitative relationships between
the shape of the response curve and the underlying biophysical mechanism that occurs

at a molecular level.

The quantitative prediction of the shape of the genetic response curve from the un-
derlying molecular mechanism needs careful attention. To explore it, we first perform in
silico binding studies of transcription factors to the promoter regions of genes for var-
ious gene regulatory systems. The detailed mechanism of protein-DNA interactions in
gene regulatory systems relates to the ordered genetic response of a complex and noisy
biological cell. We show that the TFs bind to multiple DNA sites with high coopera-
tivity and spread from one non-specific binding site to an adjacent specific binding site
of DNA. Furthermore, the DNA undergoes loop formation through the long-distance

protein-protein interaction. Therefore, our calculation considers various controlling fac-
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tors, such as TF oligomerization, TF-ligand interactions, and DNA looping. We apply
our developed method to an isolated gene and a system containing multiple interacting
genes. We validate our model against the published data for the bacterial lac operon
system. In short, our partition function-based theoretical frameworks and GCMC simu-
lation can predict the shape of the response curve by following the detailed protein-DNA
interactions in a gene regulatory system. We infer that the shape of the gene expression
curves can be altered by modulating TF-ligand interactions and the looping energy of
DNA.

Cooperative protein-protein and protein-DNA interactions form programmable com-
plex assemblies. These assemblies produce a precise functional response that can strongly
depend on the topology of those networks. We demonstrated how the coordinated self-
assembly creates gene regulatory network motifs that corroborate the existence of a
precise functional response at the molecular level using thermodynamic analysis. We
performed partition function-based calculations and Monte Carlo simulations to show
that a complex network of interactions, such as feedback and feedforward circuits, can
form a decision-making loop only by a few molecular mechanisms. We characterize each
possible network of interactions by systematic variations of free energy parameters asso-
ciated with the binding among biomolecules and DNA looping. We further show that the
self-assembly of proteins on DNA differentially promotes logic operations such as AND,
NAND, NOR, and OR. We can account for the origin of various logic gates formed in
gene regulatory networks through the quantitative thermodynamic model of transcrip-
tional regulation and systematic variation of promoter-enhancer interaction modes. We
further show that the inter-conversion or switching among various logic gates yielded
under the systematic variations of the stimuli-TF binding and DNA looping parameters.
Our calculations establish that the network topology is vital in phenotype diversity in
regulatory circuits.

We find a strong correlation between our dynamic and thermodynamic analysis.
Our dynamic analysis shows that the functional response for gene regulatory networks
strongly depends on the network’s topology. We calculate the protein production from
the solution of the chemical master equation. We further use the stochastic trajecto-

ries to calculate the stochastic potentials. We found that multi-stability is a common
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feature in GRN, often linked with a biological system’s phenotype diversity. Our dy-
namical analysis of the biomolecular assembly between protein and DNA shows that
the functional responses strongly depend on the network’s topology. We find a close
correspondence between the system’s nonlinearities and the noise of a biological system.
We find noise-induced bimodality upon introducing short-range correlated noise defined
by the OU process. The noise-induced bimodality for a gene regulatory network may
be linked with the different phenotypes that appear due to the prolonged degradation
of a protein molecule. Our analysis shows that an input signal is processed through
a noisy network of interactions that shifts the distribution from unimodal to bimodal.
Our analyses establish a close correspondence between the system’s nonlinearities and
inherent noise in a biological system. We find a close correlation between an input signal
and the multi-modal distribution in protein production as determined by the interac-
tion network. We also observed that the clustering of transcription-regulating proteins

enhances the sharpness in the distribution of the produced protein.

Lastly, we study the role of tumor suppressor p53 to understand the origin behind the
fate of a damaged cell. The tumor suppressor p53 responds to stress by selectively trig-
gering one among many potential transcriptomes that influence cellular fate decisions.
We develop thermodynamic models for this purpose. Our model explores the fate of a
damaged cell governed by the molecular interactions present in the tumor suppressor
p53 signaling network. The control involves many layers of input signal modification,
ranging from phosphorylation of p53, the wide range of binding affinity of p53 with the
promoters of various genes, to internal connectivity among cell fate genes. We show that
minimum free energy is a fundamental property of biological networks that establishes
a connection between cell fate and network topology. This model offers a robust under-
standing of the cell fate and unriddles the enigma between the network topology and
the cell transition. We apply our developed model to various cancer cell lines ranging
from breast cancer (MCF-7), colon cancer (HCT116), and leukemia (K562) that exhibit
different network topologies. We find that the network topology of these different cell
lines determines the fate of a damaged cell. Our developed model correlates the biolog-
ical relevance of these mechanisms and suggests that they represent general archetypal

designs for developmental decisions.
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6.2 Future Directions

Our findings highlight the understanding of the connection between biomolecular mecha-
nisms and characteristic response functions for various complex biological systems rang-
ing from prokaryotes to eukaryotes. However, many questions remain unanswered. The

following questions could be of interest to the research community in this direction:

We have employed the coarse-grained modeling scheme to understand gene regulation
using statistical thermodynamics. Nevertheless, a system-level multi-scale approach will
enhance our understanding of these biophysical phenomena. Thus, comparing atomistic,
coarse-grained, and continuum scales will give a better view of gene regulation for various
complex biological systems. Therefore, developing such multi-scale models and mapping
them over experimental data will be interesting. In this direction, Molecular Dynamics
simulations can estimate the free energy of interactions between protein and DNA. One
can plug these derived interaction energies into our developed model for understanding

the in silico studies of gene regulation.

We explore gene regulation primarily using thermodynamic models and a few stochas-
tic models in this thesis. However, spatiotemporal-based models could be an immediate
extension of our work, which could help us understand many other relevant biological
phenomena, such as tumor growth. Such models may establish a correlation between the
underlying biophysical processes that promote cellular organization and tumor growth

at the gene level.

Stochastic fluctuations are significant in various biochemical reactions when the num-
ber of biomolecules is low inside a living cell. Many reactions are not instantaneous; in-
stead, they have a natural time delay during the evolution of cell states. Thus, a possible
extension of our work could be to include such time delays in the dynamic studies of
gene regulation in our modeling scheme. It will be interesting to systematically explore
stochastic dynamics and time delays and include their combined effects in our modeling

schemes.

Finally, theoretical and computational models that enhance our understanding of the
correlation between biomolecular mechanisms and characteristic response curves at the

genomic level will undoubtedly be a step toward developing disease-specific therapies.
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