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Abstract

Elastic coupling is a unique phenomenon exhibited by anisotropic beams. Due to this

elastic coupling, different modes of beam deformation, such as extension, bending, and

twisting, interact with each other. Modern structures are utilizing this elastic coupling to

control them passively. The rotor blade of a wind turbine is one of the most well-known

examples, where the bend-twist coupling is being implemented to passively control

the angle of attack according to the wind load. This phenomenon of elastic coupling

is mainly studied in laminated composite beams, which are generally anisotropic and

inhomogeneous. There is a lack of research on elastic coupling in anisotropic-homogeneous

beams. In addition, the work that is currently available is based on specific assumptions

or has been solved for simplified loading cases.

This thesis work investigates the elastic coupling within both anisotropic-homogeneous

and anisotropic-inhomogeneous beams. The Variational Asymptotic Method (VAM)

has been employed as a mathematical tool, facilitating the simplification of the beam

problem. It systematically decomposes the 3D elasticity beam problem into a 2D

linear cross-sectional analysis and a 1D non-linear analysis along the beam length.

VAM employs the small parameters associated with the beam problem to perform this

decomposition, avoiding ad-hoc assumptions. These small parameters are utilized to

order the strain energy terms. The procedure begins by considering the dominant terms

first, then systematically includes lesser dominant terms in higher-order solutions.

The analysis of anisotropic-homogeneous beams has been carried out by considering a

prismatic beam with solid elliptical cross-section. The study is divided into two parts

based on solution characteristics. The first part addresses orthotropic beams, offering

solutions for both the Classical and Timoshenko-like beam models. The second part

extends the analysis to monoclinic and complete anisotropic beams, providing solutions

exclusively for the Classical beam model. For both cases, closed-form expressions for 1D

strain measures and displacement fields have been derived, facilitating the recovery of 3D

displacement, stress, and strain fields. Notably, it is observed that beams with material

anisotropy up to orthotropy do not exhibit elastic coupling phenomena; this phenomenon

is first observed in monoclinic material beams and subsequently in complete anisotropic

material beams. Furthermore, it is noted that even in complete anisotropic-homogeneous

material beams, a fully elastically coupled system is not achieved; instead, only bend-twist

coupling is observed. Additionally, the analysis reveals a violation of the plane stress

condition in all coupled cases. To validate the results, comparisons have been made with

Finite Element Analysis (FEA) and existing literature results, demonstrating a high level

of agreement.

The analysis of anisotropic-inhomogeneous beam has been carried out using a laminated

composite strip-like beam. These laminated composite structures provide the most

feasible way to model this type of beam. This analysis is divided into two parts. The

first part deals with the hygrothermal instabilities of these structures. Hygrothermal

stability conditions have been derived using Classical Laminated Plate Theory (CLPT).
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These conditions have been used to propose the generalized hygrothermally stable

stacking sequences with different modes of elastic coupling. Furthermore, these stacking

sequences have been optimized to achieve maximum coupling response. The optimized

results are compared with conventional numerically optimized results. Additionally,

both results are checked for robustness against small perturbations in the optimized

results. The comparison shows that the proposed hygrothermally stable stacking sequence

provides better results as the number of plies increases. Both stacking sequences show

almost similar error distribution in the sensitivity analysis. The second part involves

a mathematical analysis of these beams using VAM. Here, nonlinear kinematics for

the strip-like beam are presented. The 2D shell membrane and curvature terms are

derived from the 3D strain field, enabling the expression of 2D shell parameters in

terms of 1D beam parameters. These newly defined 2D shell parameters are utilized

to compute the 2D strain energy density functional. The zeroth-order approximate

solution is obtained by minimizing the strain energy corrected up to O(Eε2) through

the variational principle. This process ultimately yields the linear constitutive relation

governing the linear coupling behavior of these beams. To capture nonlinear coupling

behavior, the first-order approximate solution is employed. The hygrothermal stability

of these structures is verified through FE simulations, using previously optimized

hygrothermally stable stacking sequences. The simulation results confirm hygrothermal

stability and comparison with FEA results shows a close agreement in the coupling results.

Keywords: VAM; Beam; Elastic-coupling; Elliptic cross-section; Hygrothermal stability;

Laminate composite;
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Chapter 1

Introduction

Beam analysis is one of the important problems of structure design, as most of the

structural members fall under the beam category. It is a slender structural member

in which one of its dimensions is much larger than the other two. Because of this

characteristic, it is generally analyzed by considering it as a 1D structural member.

For this purpose, 1D beam theories are developed by the researchers. These 1D beam

theories require pre-determined cross-sectional stiffness/rigidity constants. These theories

are exhaustively investigated for the isotropic homogeneous beam. When it comes to

anisotropic homogeneous beams, there is limited work available. Moreover, very few of

these works included the analysis of the elastic coupling aspect.

The elastic coupling aspect is mostly investigated in laminated composite structures, which

are generally anisotropic and inhomogeneous. The Classical Laminate Theory (CLT) has

been used for the purpose which providing constitutive law relating force and moment

resultants with mid-plane strains and curvatures. These structures provide freedom to

tailor the desired elastic coupling behavior by wisely choosing the fiber orientation in

its constituent plies. This choice of fiber orientation is limited by the phenomenon called

hygrothermal instability. Because of this phenomenon, laminated structures deform due to

temperature and moisture changes. These hygrothermal instabilities should be removed to

maintain the functionality of these structures in environmental working conditions. This

can be achieved by properly selecting fiber angles in its constituent plies governed by

hygrothermal stability conditions.

1.1 Motivation

The interaction among the three modes of beam deformation (extension, bending and

twisting) is known as elastic coupling. This elastic coupling permits the designing

of passively controlled structures. Extension-twist coupling is extensively exploited in

rotating beam-like structures such as the wings of tilt-rotor aircraft. Here, the centrifugal

force regulates the angle of attack. Similarly, the bend-twist coupling is employed in wind

turbines and forward-swept aircraft. Here the aerodynamic bending load controls the

angle of attack in the wind turbine, while in forward-swept aircraft, it provides additional

torsional rigidity without adding the stiffeners hence, without increasing the aircraft’s

weight. This elastic coupling can be implemented to mimic the coupled wing motion of

flying insects or birds for the bio-inspired flapping wing micro bio-inspired air vehicles.

Successful implementation of this elastic coupling in the abovementioned applications

1



2 Chapter 1. Introduction

requires a deep understanding of elastic coupling in anisotropic beam-like structures and

factors affecting this elastic coupling. This becomes the motivation of the present work

providing the analysis of elastic coupling in anisotropic beam-like structures.

1.2 Objective

The primary objective of this study is to investigate the elastic coupling behavior of

anisotropic beams. The study also aims to determine closed-form expressions for 3D

displacement, stress/strain fields, and 1D beam parameters (γ11(x1), κi(x1), and ui(x1)).

Additionally, the study seeks to determine cross-sectional stiffness constants without

relying on ad-hoc assumptions. Furthermore, the research aims to provide generalized

stacking sequence schemes for anisotropic-inhomogeneous (laminate composite) beams

with different modes of elastic coupling that are hygrothermally stable. The study

is broadly divided into two parts based on the spatial characteristics of the beam

material, homogeneous or inhomogeneous. The first part focuses on the analysis of

anisotropic-homogeneous beams, while the second part is dedicated to the analysis of

anisotropic-inhomogeneous (laminated composite) strip-like beams.

An elliptical cross-section beam has been considered to investigate the elastic coupling

and to obtain beam field variables of the anisotropic-homogeneous beam. The complete

analysis is divided into two parts based on the available elastic coupling and the nature

of the solution. The first part provides the generalized analytical solution for the

orthotropic beam. The 1D constitutive relation suggests that the orthotropic beam

does not have elastic coupling characteristics. This solution can be reduced to the

transverse-isotropic and isotropic beam by applying the appropriate elastic symmetry.

Therefore, all homogeneous material beams with the level of anisotropy of orthotropy

remain elastically uncoupled. The second part covers the analysis of three cases of

monoclinic material and a complete anisotropic beam. It has been found that beams

with material anisotropy higher than orthotropy exhibit elastic coupling.

An anisotropic-inhomogeneous beam is investigated using a strip-like structure to model

the laminated beam. Laminated structures provide the most feasible way to model

anisotropic-inhomogeneous beams. The 2D strain measures are derived from the 3D strain

measures of the beam and expressed in terms of 1D beam parameters. Afterward, Classical

Laminate Plate Theory (CLPT) is employed to analyze the beam. As composite structures

exhibit hygrothermal instabilities, hygrothermal analysis is conducted to determine

stability conditions using CLPT. Using these conditions, generalized hygrothermal stable

stacking sequences are proposed for three types of coupling, namely extension-twist,

bend-twist, and extension-bend.
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1.3 Literature Survey

In order to achieve the objectives of this thesis, it is crucial to have a comprehensive

understanding of the previous as well as recent advancements and developments in the

field of beam theory. The history of beam theory can be traced back to the 16th century.

This historical aspect can be found in the book [3] by Timoshenko. The purpose of this

section is not to provide an exhaustive literature survey of previous beam theories; rather,

it provides work on beams that is more relevant and important to the present work.

1.3.1 Beam Theories

Beams are slender structures in which one dimension is much larger than the other two.

This structural characteristic makes them most suitable to be analyzed as 1D structures.

Euler-Bernoulli beam model [4, 5, 6] is the most popular and well-known model. It relies

on the assumption that the beam cross-sectional plane acts as a rigid body that remains

normal to the beam axis before and after the deformation in bending. The beam theory

formulated using these assumptions incorporates the deformations of the beam arising

from both extension and bending. To include the deformation due to torsion, the rigidity

assumption of the cross-section is relaxed for out-of-plane deformation, i.e., deformation

is allowed in the normal direction of the cross-sectional plane [7, 8, 9, 10, 11]. The beam

theories that account for deformation due to extension, bending and twisting are termed

as classical beam theories. For the higher accuracy of the results, further refinement of the

classical beam model is required. Timoshenko [12] suggests that though the cross-section

of the beam will act as a rigid body, it will not remain normal to the axis of the beam due

to the transverse shear.

The plane elasticity assumption is often made to solve beam problems having a thickness

very small compared to its width. For this class of beam problems, the load is assumed

to be in the plane of the beam and uniform along the thickness direction. These problems

are also called plane stress problems since the stress components corresponding to the

thickness coordinate index are zero. In contrast, the non-zero stress components solely

depend on the plane coordinates. These problems are solved by using Airy stress functions.

These functions identically satisfy the equilibrium equations and when put in only survived

compatibility equation, result in a bi-harmonic equation for zero body force. Hence this

problem can be solved by finding the appropriate Airy stress function, which satisfies the

loading boundary conditions and bi-harmonics equations. The detailed discussion can be

found in any standard test book on the theory of elasticity [10, 11, 13]. Hashin [14] used

this approach to solve the plane anisotropic beam problem. However, the compatibility

condition is not obtained in the form of a bi-harmonic equation due to normal-shear

coupling compliance coefficients. The problem is solved for cantilever beam configuration

with end concentration load and simply supported beam configuration with uniformly

distributed load. Murakami and Yamakawa [15] plane anisotropic cantilever problem by

using Hashin’s solution approach to solve for the Airy stress function, Timoshenko-like
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beam model and Euler-Bernoulli beam model. Ding et al. [16] presented the analysis of a

planer functionally graded beam. They also used the Airy stress function method to solve

this problem. The work presented by Sullivan and Oene [17], Schoeftner and Gahleitner

[18], Karttunen and Hertzen [19] are also in the same line.

The 1D beam theories require cross-sectional stiffness constants; hence the accuracy

of these theories depends on the accurate determination of the cross-sectional stiffness

constants. These stiffness constants carry the information of material and cross-section

geometry. These stiffness constants provided information about the coupling among

1D beam parameters. Mansfield and Sobey [20] derived the cross-sectional stiffness

properties for Fiber-Reinforce Composite (FRC) tube loaded with extension, bending

and torsion. Rehfield et al. [21] discussed the non-classical restrained torsional warping

and bending-shear coupling in thin-walled composite beams having close-cross-section.

Kosmatka and Friedmann [22] presented an analytical model for composite turbo-fan to

determine its vibration characteristics and cross-sectional stiffness constants were found

using the 2D FE model. Worndle [23] provides a finite element-based method to calculate

the cross-sectional properties, shear stress distribution and location of the shear center,

etc. Giavotto et al. [24] proposed FE-based cross-section analysis to obtain cross-sectional

stiffness and stress for anisotropic-inhomogeneous rotor blades. Kosmatka and Dong

[25] introduced an analytical beam model to obtain global cross-sectional properties of

anisotropic-homogeneous beams.

Carrera et al. proposed the Carrera Unified Formulation (CUF), a hierarchical formulation

that can be used to unify the reduction of 3D problems to 2D or 1D. Originally, it was

presented to derive a class of 2D plate theories [26], later it was used to derive the

higher-order beam theories. Carrera and Giunta [27] presented a CUF-based approach

to derive higher-order 1D beam models. Subsequently, different 1D beam models were

developed using CUF in various studies [28, 29, 30, 31, 32], which were utilized for

analyzing static and dynamic beams. The Generalized Unified Formulation (GUF) is

a generalized version of CUF, which allows for the treatment of each unknown of the

problem independently. This technique is advantageous in FEA discretization.

The Variational Asymptotic Method (VAM) provides a systematic way to analyze

beam-like structures. It splits the 3D elasticity problem of the beam into 2D linear

cross-sectional analysis and 1D nonlinear analysis along the axis of the beam. This

decomposition greatly simplifies the beam analysis. Here it should be noted that VAM

does not take any ad-hoc assumptions regarding the deformation field of the beam

for this decomposition; instead, it takes the small parameters involved in the problem

under consideration. The linear cross-section analysis provides the cross-sectional stiffness

constant and 2D warping functions in terms of 1D strain measures and strain recovery

relations. The cross-sectional stiffness constants are supplied for the 1D nonlinear analysis,

which provides the 1D stain measures and 1D displacements. These 1D stain measures, 1D

displacements, 2D warping functions and strain recovery relations are used in 3D recovery

relations, which provide the 3D stress, strain and displacement field. This whole procedure
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can be found in the book by Hodges [36] on Nonlinear Composite Beam Theory.

The VAM was proposed by Berdichevsky for the development of the shell theory [37]

and for elastic rods [38, 39]. His work on shell vibrations [40] and analysis of thin-walled

beam [41] also uses the VAM. He introduces the transverse shear in rod analysis in his

further work [42]. Danielson and Hodges [43] derived the kinematic relations by using

the decomposition of the rotation tensor. This decomposition allows the 3D strain to

be expressed in the local Cartesian coordinate system, greatly simplifying the beam

analysis. This kinematic description of the beam along with VAM, has been used to

extend the previous work on beams, which provides a simplified but mathematically

rigorous workable and practical solution. Atilgan and Hodges [44] used this approach

to analyze the anisotropic-inhomogeneous beam subjected to large small strain, large

global rotation and small local rotation. The resultant set of equations obtained from the

2D cross-sectional analysis is identical to that given by Giavotto et al. [24]. Fulton and

Hodges further extended this work [45, 46] for the analysis of the aeroelastic stability of

rotor-blades. They used computer code to calculate the cross-sectional stiffness based on

Giavotto et al. [24].

A new concept of employing asymptotic methods for the development of

finite-element-based beam cross-section analysis was introduced by Hodges et al. [47].

Further work of Cesnik et al. [48, 49, 50, 51, 52], Hodges et al.[53] and Yu et al. [54]

improved this methodology. This approach facilitates the analysis of the irregular or

complicated cross-section, for which analytical solution is not possible.

Transverse shear is a crucial factor of beam analysis under flexural loading. It is ignored

in the classical beam models. Popescu and Hodges [55] introduced the transverse shear

to classical beam theories involving extension, bending and torsion using VAM. They

suggested that in the general case, there is no asymptotically correct Timoshenko-like

beam exists. They proposed a method that can capture the transverse shear in prismatic

composite beams. They used the least square minimization method to obtain the most

accurate solution. Popescu et al. [56] relaxed the constraint that the cross-section should

be normal and suggested that any reference cross-section can be chosen without affecting

the interior solution. Yu and Hodges [57] used VAM to find the expression of shear stiffness

constants for homogeneous-isotropic beams with elliptical and rectangular cross-sections.

Rajagopal [58] obtained it for isotropic circular tubes. Renton [59] extracted the shear

stiffness for isotropic and homogeneous bars having simple cross-sections. Dong et al. [60]

and Pai and Schulz [61] calculated the shear-correction factors for isotropic beams. Ho

[62] and Tolf [63] derived the expression of shear stiffness for orthotropic beams having

elliptic cross-section.

Thin-walled beam-like structures exhibit non-classical Brazier effects, Trapeze effect and

Vlasov effect. These effects cannot be captured through the linear cross-sectional analysis.

Volovoi [64] was the first who investigate the thin-walled open cross-section anisotropic

prismatic beam for the end effects. However, the linearity of cross-section analysis prevents

it from capturing non-classical effects. Harursampath and Hodges [65] investigated the
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tubular beam using VAM and presented a nonlinear cross-sectional analysis to capture

the non-classical Brazier effect.

The trapeze effect is basically a nonlinear coupling between extension and twisting. This

effect is observable in the structures, which are soft in torsion and bending in one direction.

Hence, these structures may show large bending stiffness in one direction. A long slender

structure with one cross-sectional dimension significantly smaller than the other shows

this characteristic. Helicopter rotor blades and wings of aircraft fall under this category.

Buckley [66] considered the isotropic beam composed of several longitudinal fibers to

explain the trapeze effect. Wagner [67] used this approach to analyze torsion buckling in

beams. Biot [68] investigated the prismatic bar to calculate the increment in torsional

stiffness due to pre-applied axial tension using the second-order rotation effect. Hodges

[69] suggested that the trapeze effect arises due to the nonlinear strain field. Borri and

Merlini [70] presented a cross-sectional analysis and derived geometric stiffness terms

required to model the trapeze effect. Armanios et al. [71] presented the asymptotic

analysis of laminated composite strip and derived nonlinear extension-twist coupling in

anti-symmetric laminate. Popescu [72] treated the trapeze effect numerically using VAM

and geometric nonlinear theory. Hodges et al. [73] provided the analytical solution for

this problem; however, this solution is derived for the strip-like beam only. Popescu and

Hodges [74] presented numerical cross-sectional analysis to treat such nonlinear effects.

1.3.2 Elastic Coupling in Anisotropic Beams

Elastic coupling is a unique characteristic of anisotropic beams due to which different

modes of beam deformation (extension, bending, twisting ) interact with each other. This

elastic coupling assists in passive control in beam-like structures. It provides passive

control of pitch angle in wind turbine rotor blades, aeroelastic stability of helicopter rotor

blades. It is exploited as the control mechanism of forward-swept wing aircraft such as

X-29A.

This elastic coupling characteristic is generally analyzed in composite structures that

are not only anisotropic but also generally inhomogeneous. As per the author’s best

knowledge, very limited works are available on elastic coupling in anisotropic-homogeneous

beams. Hong and Chopra [75, 76] developed a composite beam model to analyze the

aerodynamic stability of bearingless rotor blades. Mansfield and Sobey [77] studied the

coupling behavior of fiber composite tubes to mimic the helicopter blade and derived

the expression for extensional, flexural, and torsional stiffness. Chandra and Chopra

[78] investigated the composite I beam with bend-twist coupling and studied the effect

of bend-twist coupling and constrained warping of the torsional stiffness. Badir et al.

[79] and Volovoi et al. [80] used VAM to analyze the thin-walled open cross-section

composite beams and derived the closed-form expressions of coupling stiffness constants.

Yu et al. [81] provided the cross-sectional analysis using VABS. They showed that the

location of the shear center varies due to the bend-twist coupling. Rehfield et al. [21]

investigated the non-classical extension-twist coupling in thin-walled composite beam with
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closed cross-section. Armanios et al. [71] and Hodges et al. [73] presented the non-linear

extension-twist coupling in the strip-like beam.

Researchers investigate the effects of the ply angles on the coupling parameters and

other dependent parameters such as aeroelastic stability. Bagherpour et al. [82] and

Goeij et al. [83] implemented bend-twist coupling in composite wind turbine blades by

modifying plies angles. Shams et al. [84] developed a model to investigate the effect of ply

angles on nonlinear aeroelastic stability parameters. Authors found that bend-twist and

bend-bend coupling stiffness significantly influence the aeroelastic stability. Hayat et al.

[85] investigated the fatigue loading in the wind turbine rotor blade and suggested that

this fatigue load can be mitigated by using different types of unbalance (i.e., ply-material,

ply-angle, and ply-thickness unbalances) in the laminate of composites which ultimately

regulates the bend-twist coupling.

Kosmatka and Dong [25] presented the analysis of anisotropic-homogeneous prismatic

beam with a general cross-section and determined the displacement and stress distribution

and also investigated the elastic coupling. IE and Kosmatka [86] extended this work for

the anisotropic-homogeneous prismatic beam with elliptical cross-section. Ho [87] also

investigated the anisotropic-homogeneous prismatic beam with elliptical cross-section;

however, he provided the results in 1D form. He extracted the extensional, torsion, and

other coupling constants. He further extended this work for the orthotropic materials [62].

1.3.3 Orthotropic Beam Analysis

Anisotropic material with three orthogonal planes of elastic symmetry reduces it to

orthotropic material. Orthotropic beams have been investigated mostly for simplified

cases. Tolf [63] presented the analysis of orthotropic beam with flexural loading, which

is a plane stress problem. The author obtained the solution for elliptical and rectangular

cross-sections using Saint-Venant’s semi-inverse method. Yang et al. [88] solved the

bending problem of the 2D orthotropic beam by introducing the Hamiltonian system.

Sullivan and Oene [89] presented the solution of the 2D orthotropic beam problem using

the Airy stress function method for plane stress conditions. Schoeftner and Gahleitner

[90] derived analytical expressions of horizontal and vertical deflection for orthotropic

rectangular strips using extended Castigliano’s theorem. Lim and Han [91] proposed a

higher-order deformation theory for 2D orthotropic beams to account for the deformation

due to impact loading. Santoro [92] presented the solution of Saint-Venant’s torsion

problem. Gaspari and Aristodemo [93] provided the solution for Saint-Venant’s coupled

torsion-flexure problem for orthotropic beam. Jimmy C. Ho [62] extracted the expression

of extensional, torsional and coupling stiffness constants for prismatic homogeneous

orthotropic beam. Omri Rand [94] developed a successive iterative method to solve the

orthotropic beam problem.
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1.3.4 Hygrothermal Stability Analysis of Anisotropic-Inhomogeneous

Beams

Anisotropic structures are generally modeled as laminated composite structures, as

discussed above. These composite materials can be tailored to achieve specific elastic

properties according to the application. If we talk about the elastic coupling aspect,

it can be tuned by altering the fiber angles in its constituent plies. However, these

laminated composite materials are sensitive to moisture and temperature changes.

Whenever these two factors change, these structures get deformed. This deformation

caused by the change in temperature and moisture is called “hygrothermal instability”.

The composite structures immune to this temperature and moisture change are called

“hygrothermally stable”. Composite structures should be hygrothermally stable to

maintain the functionality in the working conditions.

The hygrothermal stability condition can be achieved when the fiber orientation of

constituent plies satisfies certain conditions known as hygrothermal stability conditions.

Cross et al. [95] derived necessary and sufficient conditions for the hygrothermal stability

and proved that no asymmetric hygrothermal stable laminate is possible for 1 to 4-ply

stacking sequence. Further, they derived the family of hygrothermal stable laminates

for the 5, 6, 7, and 8-ply laminate. Chen [96] introduced the necessary and sufficient

conditions for hygrothermal isotropic laminate and proved that any laminate composed

of hygrothermal isotropic sub-laminates is also hygrothermally isotropic. Numerical

optimization has also been carried out to maximize the extension-twist coupling for 16-ply

laminate. Cross et al. [97] and Haynes et al. [98, 99] have investigated extension-twist

coupling and provided optimized hygrothermally stable stacking sequence using Sequential

Quadratic Programming (SQP). Aditya et al. [100] presented optimized results

for bend-twist coupled hygrothermally stable laminate using ant colony optimization

technique to obtain the globally optimized result. Optimization of multi-coupled laminates

with hygrothermal stability conditions has been done by Li et al. [101], Haynes and

Armanios [102, 2]. Optimization of hygrothermally stable laminate multi-objective

function has been done by Li and Li [103]. A Hygro-Thermally Curvature stable Coupling

laminate (HTCC) with 8-ply [θ, (θ+90)2, θ,−θ, (−θ+90)2,−θ]T was proposed by Winckler

[104] for Extension-twist coupling. However, this solution lagged optimality conditions.

1.4 Outline of Thesis

This thesis is divided into five chapters which are based on the objective of the thesis. From

the literature survey, it is found that the elastic coupling phenomenon of anisotropic beams

is generally investigated in laminated composite thin-walled structures. The laminated

composite materials are generally anisotropic and inhomogeneous. Very limited work

is available which investigates the elastic coupling in anisotropic-homogeneous beams.

The work, whichever is available, is solved either for the planer anisotropy or simple

loading conditions. These shortcomings are addressed in chapter 2 and chapter 3. In
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chapter 2, analysis of orthotropic-homogeneous beam having solid elliptical cross-section

has been provided using VAM. It includes the analytical closed-form solution for the

Classical beam model as well as the Timoshenko-like beam model. The cross-section

analysis provides the cross-section stiffness constants and 1D constitutive law. The 1D

analysis provides the closed-form expression of 1D stain measure and 1D displacement

and rotation, which ultimately provides closed form solution for 3D stress/strain and

displacement field. The obtained results are compared with FEA results. Chapter 3

deals with similar beams but having monoclinic and complete anisotropic material. Due

to the increased complexity, this chapter only provides results for the Classical beam

model only with a slightly change methodology. In this chapter semi-analytical approach

has been used. In this approach, the stiffness constants are pre-assigned with numerical

values rather than keeping them symbolically. The constitutive law provides the elastic

coupling behavior. The 1D displacement, rotation and strain measures are obtained and

also provided 3D displacement, stress and strain field. The obtained results are compared

with FEA results in this chapter also.

As already discussed, the anisotropic beams are generally being modeled as composite

structures and composite structures show hygrothermal instabilities, which should be

eliminated to maintain the functionality of these structures in working conditions. The

literature survey reveals that this hygrothermal instability problem is handled using

numerical optimization techniques. Though this technique provides the hygrothermally

stable stacking sequence, there are two major issues (i) The number of resultant

hygrothermally stable fiber angles may be as high as the number of plies in laminate, (ii)

obtained ply angles may not be in whole numbers. These two issues make manufacturing a

very difficult task. Chapter 4 deals with this issue and provides generalized hygrothermally

stable stacking sequences for extension-twist, bend-twist and extension-bend. In the

resultant hygrothermally stable laminates will have total 4i (i = 2, 3, 4...) plies and

independent fiber angles are i/2 in the case when i is an even number and (i − 1)/2 in

the case when i odd number. Hence, the proposed hygrothermally stable laminate can

have a theoretically infinite number of plies, it reduces independent fiber angles to a great

extent and any arbitrary value of independent fiber angles will result in a hygrothermally

stable stacking sequence. Moreover, it reduces computational time when used with

numerical techniques as the number of independent fiber angles is much less and need not

be checked for hygrothermal stability. These proposed stacking sequences are optimized

for each coupling case results are compared with those obtained from conventional

numerical optimization and also checked with sensitivity towards small perturbations in

optimized results. In the next section, a nonlinear analysis of strip-like composite beams

has been provided. The previously obtained results are used in this formulation. FEA

simulation has been carried out to check the hygrothermal stability of these structures

with these optimized results. This confirms the hygrothermal stability of these beams

with proposed optimized results. Chapter 5 concludes the thesis with the key observations

and the future aspects of the current study. In summary, the thesis is organized as follows:
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Chapter 2

Orthotropic Homogeneous Beam

Analysis

This chapter discusses the analysis of the orthotropic homogeneous beam problem. It

provides the essential beam kinematics, cross-sectional beam analysis, 1D beam analysis,

results and discussion with special cases and numerical validation. The cross-sectional

analysis provides the cross-sectional stiffness constants which are supplied to the 1D

beam analysis. Basically, the cross-sectional analysis is the foundation of 1D beam

analysis and the accuracy of the solution depends on the accurate determination of these

cross-sectional stiffness constants. The cross-sectional solution corrected up to the second

order corresponds to the Classical beam model and this solution corrected up to the third

order corresponds to the Timoshenko-like beam model. 1D strain energy and, ultimately,

1D constitutive law is obtained using cross-sectional analysis. The 1D constitutive law

relates the 1D strain measures and curvature terms to forces and moments, respectively.

The 1D beam analysis provides the 1D displacement field ui and rotation ϕ1. Finally, the

obtained solution is verified with literature by reducing it for the isotropic case and also

validated with FEA results.

2.1 Beam Kinematics

Figure 2.1: A schematic

In the beam-type structure, cross-sectional dimensions O(h) are much smaller than the

length dimension O(L). The ratio of cross-sectional dimension to length dimension,

O(h/L) is a small parameter, which is exploited by VAM. For R class beam [36], This

is the only small parameter for beam having solid cross-section with dimensions of the

same order. It serves the purpose of obtaining asymptotically correct solutions for beam

problems. The schematic of the beam is shown in Fig. 2.1. The fixed Cartesian coordinate

system bi is also shown in this figure with i =1, 2 and 3. (From here and onward, the
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Latin index takes the values 1 to 3 while the Greek index takes the values 2 and 3).

The position vector of any arbitrary material point of the un-deform beam in the fixed

Cartesian coordinate system bi is given as

r̂ = x1b1 + x2b2 + x3b3 = xibi (2.1)

Now let this beam deform and every material point takes a new position in the deform

configuration. Let u(x1, x2, x3) = uibi be the 3D displacement field due to which every

material point takes the position. The position vector R̂ of the previously taken material

point in the deformed configuration is

R̂ = (x1 + u1)b1 + (x2 + u1)b2 + (x3 + u3)b3 = (xi + ui)bi (2.2)

The covariant base vectors in the undeformed state are

gi =
∂r̂

∂xi
(2.3)

and the contravariant base vectors in the undeformed state are

gi =
1

2
√
g
eijk gj × gk (2.4)

here g = det(gi . gj) Similarly, covariant base vector Gi in the deformed state of the beam

can be obtained as

Gi =
∂R̂

∂xi
(2.5)

The deformation gradient tensor χ, defined by Ogden [105] is

χ = Gig
i (2.6)

For the beam under consideration, the influence of the local rotations is negligible. In

addition, the warping is small and the warping gradient in the cross-sectional plane is also

of the same order. The strain in this case given as

Γ =
χ+ χT

2
− I =


u′1

1
2(u1,2 + u′2)

1
2(u1,3 + u′3)

1
2(u1,2 + u′2) u2,2

1
2(u2,3 + u3,2)

1
2(u1,3 + u′3)

1
2(u2,3 + u3,2) u3,3

 (2.7)

Here (•)′ = ∂
∂x1

and (•),α = ∂
∂xα

. Eq. (2.7) gives the general definition of the strain for

R class beam with small local rotations. In the upcoming section, it can be seen that

the deformation of the beam is dictated by both material properties and cross-sectional

geometry. The purpose of this work is to understand these effects and to provide a

generalized framework for the deformation of anisotropic beams in terms of 1D variables

without making any a-prior ad hoc assumptions on displacement and/or stress fields. For
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the most general anisotropic materials, there are 21 independent elastic coefficients in the

stiffness matrix C. This stiffness matrix is symmetric with size 6× 6 and represented as

C =



C11 C12 C13 C14 C15 C16

C22 C23 C24 C25 C26

C33 C34 C35 C36

C44 C45 C46

sym. C55 C56

C66


(2.8)

The strain energy density (strain energy per unit volume) for a general anisotropic beam

is

U3D =
1

2
ΓT : C : Γ (2.9)

The total potential energy of the beam is given by the following equation.

Π =

∫ L

0
⟨U3D⟩ dx1 −W (2.10)

where ⟨•⟩ =
∫ ∫

(•) dx2dx3. In Eq. (2.10), W is work done by the external loads and

⟨U3D⟩ is 1D strain energy. In order to carry out this integration, U3D should be known

as a function of x2 and x3. This is done by minimizing the strain energy functional

U1D = ⟨U3D⟩. VAM facilitates this minimization over the cross-section independently. Eq.

(2.10) forms the basis of 1D beam theory and minimization of this total potential energy

establishes the relation between 1D quantities and external loads.

2.2 Cross-sectional Analysis

In this section, we have provided the cross-section analysis of the beam. It analysis can

be divided into two parts (i) asymptotically correct cross-section analysis that provides

1D strain energy which includes energy contribution by extension, bending and torsion,

forms Classical beam model, and (ii) refined cross-section analysis which adds energy

contribution due to transverse shear into the Classical beam model forms Timoshenko-like

beam model. These two beam models are discussed below.

Classical Beam Model

2.2.1 Zeroth-Order Approximation

The zeroth-order approximation considers strain energy which is corrected up to O(µε2),

where µ represents the order of the material constants and is assumed to be of the same

order [36]. Minimization of this energy functional using variational principle provides the

stationary point of this strain energy functional. The functions that minimize this strain

energy functional are governed by the following Euler-Lagrange equations,
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C66u1,22 + 2C56u1,23 + C55u1,33 + C26u2,22 +
(
C25 + C46

)
u2,23 + C45u2,33

+ C46u3,22 + (C36 + C45)u3,23 + C35u3,33 = 0 (2.11)

C26u1,22 + (C25 + C46)u1,23 + C45u1,33 + C22u2,22 + 2C24u2,23 + C44u2,33

+ C24u3,22 + (C23 + C44)u3,23 + C34u3,33 = 0 (2.12)

C46u1,22 + (C36 + C45)u1,23 + C35u1,33 + C24u2,22 + (C23 + C44)u2,23

+ C34u2,33 + C44u3,22 + 2C34u3,23 + C33u3,33 = 0 (2.13)

with associated boundary conditions

n2
(
C66u1,2 + C56u1,3 + C26u2,2 + C46u2,3 + C46u3,2 + C36u3,3

)
+ n3

(
C56u1,2 + C55u1,3 + C25u2,2 + C45u2,3 + C45u3,2 + C35u3,3

)
= 0 (2.14)

n2
(
C26u1,2 + C25u1,3 + C22u2,2 + C24u2,3 + C24u3,2 + C23u3,3

)
+ n3

(
C46u1,2 + C45u1,3 + C24u2,2 + C44u2,3 + C44u3,2 + C34u3,3

)
= 0 (2.15)

n2
(
C46u1,2 + C45u1,3 + C24u2,2 + C44u2,3 + C44u3,2 + C34u3,3

)
+ n3

(
C36u1,2 + C35u1,3 + C23u2,2 + C34u2,3 + C34u3,2 + C33u3,3

)
= 0 (2.16)

Here nα are direction cosines of the outward normal with respect to xα. For simplicity,

the cross-section of the beam is taken as the elliptical. The solution which satisfy these

Euler-Lagrange equations (2.11-2.13) and boundary conditions (2.14-2.16) are

u01 = u1(x1) (2.17)

u02 = u2(x1)− x3ϕ1(x1) (2.18)

u03 = u3(x1) + x2ϕ1(x1) (2.19)

In Eqs. (2.17-2.19), ui(x1) and ϕ1(x1) are arbitrary 1D function of x1. The expression

for these unknown functions will be found using 1D constitutive relations. These

terms represent rigid body-like deformations. ui(x1) represents the rigid body-like

translations, while xαϕ1 gives the rigid body-like rotation of the cross-section plane

during deformation. It is to be noted that this cross-sectional solution neither depends

on the material properties nor the cross-sectional geometry. So this solution represents

the generic deformation of the homogeneous beam.

Beyond the zeroth order approximation, the solution becomes material-dependent. As

this chapter focused on the beam analysis of orthotropic material; hence, for further

development, the stiffness matrix (2.8) is reduced for the orthotropic material case.

Beam with material anisotropy higher than orthotropy will be treated separately using a

semi-analytical approach in the chapter 3.
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2.2.2 First Order Approximation

Orthotropic materials are defined by 9 independent engineering elastic constant

(Eii, νij , and Gij). Here summation convention will not be followed for i. The expression

for coefficient of stiffness matrix (Cij) in terms of engineering elastic constants is well

established and can be found in literature [94, 106].

In order to find the first-order solution, the strain energy considered should be corrected

up to order O
(
µε2(h/L)2

)
. To obtain this energy, it is required to perturb the zeroth

order solution, which is given as

uIi = u0i + vi(x1, x2, x3) (2.20)

where vi(x1, x2, x3) are asymptotically smaller than u0i and. For the definiteness of the

solution, we have to apply four constraints on vi(x1, x2, x3). These constraints define the

1D functions
(
ui(x1) and ϕ1(x1)

)
in term of the 3D displacement field. The constraints

chosen are

⟨vi⟩ = 0 ⟨v3,2 − v2,3⟩ = 0 (2.21)

By applying these constraints to Eq. (2.20) and using Eqs. (2.17-2.19), following relations

between the 1D function and 3D displacement field have been obtained.

A ui(x1) = ⟨ uIi ⟩

A ϕ1(x1) =
1

2
⟨ uI3,2 − uI2,3 ⟩

(2.22)

Here A is the cross-sectional area. The Eq. (2.22) shows that the 1D displacement variable

represents the average of 3D displacement over the cross-section of the beam. After using

the perturbed displacement field (2.20), the new modified strains field are

ΓI
11 = u1 (x1)

′ + v′1

ΓI
22 = v2,2

ΓI
33 = v3,3 (2.23)

ΓI
23 = v2,3 + v3,2

ΓI
13 = u3 (x1)

′ + x2ϕ1 (x1)
′ + v1,3 + v′3

ΓI
12 = u2 (x1)

′ − x3ϕ1 (x1)
′ + v1,2 + v′2

The strain energy is calculated using the strain field (2.23). Minimization of this first-order

approximate strain energy using variational method provides the following Euler-Lagrange

equations

C55v1,33 + C66v1,22 = 0 (2.24)

C23v3,23 + C44 (v2,33 + v3,23) + C22v2,22 = 0 (2.25)

C33v3,33 + C44 (v2,23 + v3,22) + C23v2,23 = 0 (2.26)
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and associated boundary conditions

n2C66

[
u2 (x1)

′ − x3ϕ1 (x1)
′ + v1,2

]
+ n3C55

[
u3 (x1)

′ + x2ϕ1 (x1)
′ + v1,3

]
= 0 (2.27)

n2
[
C12u1 (x1)

′ + C23v3,3 + C22v2,2
]
+ n3C44 [v2,3 + v3,2] = 0 (2.28)

n3
[
C13u1 (x1)

′ + C33v3,3 + C23v2,2
]
+ n2C44 [v2,3 + v3,2] = 0 (2.29)

The displacement functions vi which satisfy the Eqs. (2.24-2.26), boundary conditions

(2.27-2.29) and constraints (2.21) are given in following equations by underbraces terms.

uI1 =u01(x1, x2, x3)− x2u2(x1)
′ − x3u3(x1)

′︸ ︷︷ ︸+ψort(x2, x3) ϕ1(x1)
′︸ ︷︷ ︸

v1(x1,x2,x3)

(2.30)

uI2 =u02(x1, x2, x3)− ν12 x2 u1(x1)
′︸ ︷︷ ︸

v2(x1,x2,x3)

(2.31)

uI3 =u03(x1, x2, x3)− ν13 x3 u1(x1)
′︸ ︷︷ ︸

v3(x1,x2,x3)

(2.32)

where,

ψort =
(b2 G12 − a2 G13)x2x3

a2 G13 + b2 G12

The displacement components (2.30-2.32) are approximate up to first order. The terms

x2u2(x1)
′ and x3u3(x1)

′ in Eq. (2.30) represent the rigid body like displacement of

the cross-sectional plane due to bending of the beam. Except for these terms, all the

underbraces terms are due to the deformation of the plane. ψort(x2, x3) ϕ1(x1)
′ represents

the out-of-plane deformation due to torsion while ν12 x2 u1(x1)
′ and ν13 x3 u1(x1)

′ in-plane

deformations due to poisson effect. The warping function ψort(x1, x2) is not only the

function of cross-sectional coordinates (x1, x2) but also depends on the material properties

(G12 and G13) [94, 107]. For specific cases when G12 = G13, it is reduced to the well-known

Saint-Venant’s warping function. Moreover, this warping function vanished when

G12

G13
=
a2

b2
(2.33)

hence, if this condition prevails, even though the cross-section is elliptical, no out-of-plane

warping will be observed.

2.2.3 Second Order Approximation

The first-order solution can further be improved asymptotically by including the

second-order solution term to it. For this purpose, the strain energy corrected up to

order O
(
µε2(h/L)4

)
is considered. To obtain this required strain energy functional, we

have to modify the displacement field uIi of Eqs. (2.30-2.32) by adding asymptotically

small term wi(x1, x2, x3) to it. This modified displacement field after perturbation of the
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first-order displacement field is

uIIi (x1, x2, x3) = uIi + wi(x1, x2, x3) (2.34)

These wi are subjected to the same constraints as applicable for vi, given by Eq. (2.21)

due to the same reason. The corresponding modified strain field is

ΓII
11 = u1 (x1)

′ − x2u2 (x1)
′′ − x3u3 (x1)

′′ + ψort ϕ1 (x1)
′′ + w′

1

ΓII
22 = −ν12u1 (x1)′ + w2,2

ΓII
33 = −ν13u1 (x1)′ + w3,3 (2.35)

ΓII
23 = w2,3 + w3,2

ΓII
13 = −ν13x3u1 (x1)′′ + (ψort,3 + x2)ϕ1 (x1)

′ + w1,3 + w′
3

ΓII
12 = −ν12x2u1 (x1)′′ + (ψort,2 − x3)ϕ1 (x1)

′ + w1,2 + w′
2

Strain energy, corrected up to second order is calculated using equation (2.9) and strain

field (2.35). Minimization of this strain energy provides the following Euler–Lagrange

equations

K11u1 (x1)
′′ + C55w1,33 + C66w1,22 = 0 (2.36)

K12x3ϕ1 (x1)
′′ + C12u2 (x1)

′′ − C23w3,23 − C44 (w2,33 + w3,23)− C22w2,22 = 0 (2.37)

K13x2ϕ1 (x1)
′′ + C13u3 (x1)

′′ − C33w3,33 − C44 (w2,23 + w3,22)− C23w2,23 = 0 (2.38)

and associated boundary conditions

n3C55

[
K14x2ϕ1 (x1)

′ −K15x3u1 (x1)
′′ + w1,3

]
− n2C66

[
K16x3ϕ1 (x1)

′ −K17x2u1 (x1)
′′ − w1,2

]
= 0 (2.39)

n2
[
C12

(
x2u2 (x1)

′′ + x3u3 (x1)
′′ − ψortϕ1 (x1)

′′)− C23w3,3 − C22w2,2

]
− n3C44 [w2,3 + w3,2] = 0 (2.40)

n3
[
C13

(
x2u2 (x1)

′′ + x3u3 (x1)
′′ − ψortϕ1 (x1)

′′)− C33w3,3 − C23w2,2

]
− n2C44 [w2,3 + w3,2] = 0 (2.41)

where,

K11 =
1

C2
23 − C22C33

(
C33C

2
12 − 2C13C23C12 − C23C55C12 + C33C66C12 + C11C

2
23

+ C2
13C22 − C11C22C33 + C13C22C55 − C13C23C66

)
;

K12 =
a2C12C55 + 2a2C55C66 − b2C12C66

a2C55 + b2C66
; K13 =

a2C13C55 − 2b2C55C66 − b2C13C66

a2C55 + b2C66
;

K15 =
C13C22 − C12C23

C22C33 − C2
23

; K16 =
2a2C55

a2C55 + b2C66
;K17 =

C13C23 − C12C33

C22C33 − C2
23

The unknown functions wi are obtained by solving the Euler equations (2.36-2.38) and
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boundary conditions (2.39-2.41) along with (2.21) like constraints. While solving these

equations the terms u1(x1)
′′ and ϕ1 (x1)

′′ have to be dropped as these terms do not

contributes in this energy [57]. The 3D displacement field corrected up to the second

order is obtained as

uII1 =uI1(x1, x2, x3) (2.42)

uII2 =uI2(x1, x2, x3) +

w2(x1,x2,x3)︷ ︸︸ ︷
ν12x2x3u3(x1)

′′ +

w2(x1,x2,x3)︷ ︸︸ ︷[
ν12

(
Ax22 − I3

)
+ ν13

(
I2 −Ax23

)]
u2(x1)

′′

2A
(2.43)

uII3 =uI3(x1, x2, x3) +

w3(x1,x2,x3)︷ ︸︸ ︷
ν13x2x3u2(x1)

′′ −

w3(x1,x2,x3)︷ ︸︸ ︷[
ν12

(
Ax22 − I3

)
+ ν13

(
I2 −Ax23

)]
u3(x1)

′′

2A
(2.44)

with

A = ⟨1⟩ I2 =
〈
x23

〉
I3 =

〈
x22

〉
The overbrace terms w2(x1, x2, x3) and w3(x1, x2, x3) , in Eqs. (2.43-2.44), are

second-order terms. These terms provide the dependency of the 3D displacement field

on the geometry of the cross-section and the curvature of the beam. This second-order

solution only improves uIIα . It is noted that ν23 does not influence the cross-sectional

solution. The resultant 1D strain energy corrected up to order O
(
µε2(h/L)4

)
is

2U1D =E11

(
Au1 (x1)′ 2 + I3u2 (x1)′′ 2 + I2u3 (x1)′′ 2

)
+

πa3b3G12G13

a2G13 + b2G12
ϕ1 (x1)

′ 2 (2.45)

The mathematical formulation till now represents the classical model of the beam. The

displacement field given by equation (2.42-2.44) is the superposition of extension, torsion,

and pure bending in two directions. Arbitrary unknown (ui & ϕ1 and their derivatives)

involved in these equations can be obtained by using the 1D constitutive law of the 1D

boundary conditions.

Timoshenko-like Beam Model

The classical beam model does not incorporate transverse shear while solving flexure

problems. The generalized Timoshenko model provided by the VABS [57] incorporates

both bending and transverse shear. The most approximate one-dimensional strain energy

provided by this model is

2U1D = ϵTKϵ+ 2ϵTMϵ′ + ϵ′TN ϵ′ + 2ϵTPϵ′′ (2.46)

where K, M, N , and P are matrices that contain the material and geometrical

information of the beam cross-section and ϵ = [γ11 κ1 κ2 κ3]
T . Elements of ϵ are

1D strain measures used in the classical beam model. A generalized Timoshenko model is

extracted from energy Eq. (2.46) as

2Ut = ϵTXϵ+ 2ϵTFγs + γTs Gγs (2.47)
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where ϵ = [γ11 κ1 κ2 κ3]
T . Elements of ϵ are classical 1D strain measures defined in the

generalized Timoshenko beam model framework, and γs = [2γ12 2γ13]
T and the elements

of this vector are transverse shear strain. The relation between ϵ , ϵ and γ is

ϵ = ϵ+Qγ′s (2.48)

where

Q =

0 0 0 1

0 0 −1 0

T

X, F, and G are obtained as

G = (QTK−1NK−1Q)−1

F = MTK−1QG

X = K + FG−1F T

(2.49)

It is known that 1D strain measures are related to the derivatives of 1D displacement &

rotation measures as

ϕ1(x1)
′ = κ1 (x1) u1(x1)

′ = γ11 (x1) u2(x1)
′′ = κ3 (x1) u3(x1)

′′ = −κ2 (x1) (2.50)

It is clear from the relations (2.50) and Eq. (2.46) that strain energy (2.45) is not adequate

to extract generalized Timoshenko beam model from it. Hence, need to improve it further

by proceeding for third-order solution.

2.2.4 Third Order Approximation

To proceed for third order solution, the second order solution uIIi (x1, x2, x3) has to

be perturbed by adding asymptotically small term Wi(x1, x2, x3) to it, and (2.21) like

constraints will be applied on these new variables also. The only difference is that the

strain energy considered this time will be corrected up to order O
(
µε2(h/L)6

)
. The

resultant strain field will be

ΓIII
11 =u1 (x1)

′ − x2u2 (x1)
′′ − x3u3 (x1)

′′ +W ′
1

ΓIII
22 =ν12

(
x2u2 (x1)

′′ + x3u3 (x1)
′′ − u1 (x1)

′)+W2,2

ΓIII
33 =ν13

(
x2u2 (x1)

′′ + x3u3 (x1)
′′ − u1 (x1)

′)+W3,3

ΓIII
23 =W2,3 +W3,2

ΓIII
13 =

1

8

[
ν12

(
a2 − 4x22

)
+ ν13

(
4x23 − b2

)]
u3 (x1)

(3) ν13x2x3u2 (x1)
(3)

+ (ψort,3 + x2)ϕ1 (x1)
′ +W1,3 +W ′

3

ΓIII
12 =− 1

8

[
ν12

(
a2 − 4x22

)
+ ν13

(
4x23 − b2

)]
u2 (x1)

(3) + ν12x2x3u3 (x1)
(3)

+ (ψort,2 − x3)ϕ1 (x1)
′ +W1,2 +W ′

2

(2.51)
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In this case Euler-Lagrange equations

K11

[
x2u2 (x1)

(3) + x3u3 (x1)
(3)

]
− C55W1,33 − C66W1,22 = 0 (2.52)

C23W3,23 + C44 (W2,33 +W3,23) + C22W2,22 = 0 (2.53)

C33W3,33 + C44 (W2,23 +W3,22) + C23W2,23 = 0 (2.54)

and associated boundary conditions are

n3

[
C55 (ψort,3 (x2, x3) + x2)ϕ1 (x1)

′ − 1

8
C55

(
K17(a

2 − 4x22) +K15(b
2 − 4x23)

)
u3 (x1)

(3)

+K15C55x2x3u2 (x1)
(3) + C55W1,3

]
+ n2

[
C66W1,2 + C66 (ψort,2 (x2, x3)− x3)ϕ1 (x1)

′

+
1

8
C66

(
K17(a

2 − 4x22) +K15(b
2 − 4x23)

)
u2 (x1)

(3) −K17C66x2x3u3 (x1)
(3)

]
= 0

(2.55)

n2

[
C23W3,3 + C22W2,2

]
+ n3C44

[
W2,3 +W3,2

]
= 0 (2.56)

n3

[
C33W3,3 + C23W2,2

]
+ n2C44

[
W2,3 +W3,2

]
= 0 (2.57)

Solution of these Eqs. (2.52-2.54) and boundary conditions (2.55-2.57) along with

constraints will provides the unknown functions Wi. The displacement components

corrected up to the third order are the following

uIII1 =uII1 (x1, x2, x3) +

W1(x1,x2,x3)︷ ︸︸ ︷
F1(x2, x3) u2(x1)

(3) + F2(x2, x3) u3(x1)
(3) (2.58)

uIII2 =uII2 (x1, x2, x3) +

W2(x1,x2,x3)︷︸︸︷
0 (2.59)

uIII3 =uII3 (x1, x2, x3) +

W3(x1,x2,x3)︷︸︸︷
0 (2.60)

The expression of F1(x2, x3) and F2(x2, x3) is given in Appendix A.1. The third order

solution improves only uIII1 (x1, x2, x3) and shown by overbrace term W1(x1, x2, x3) in Eq.

(2.58). The 1D strain energy corrected up to third order is

2U1D =E11

(
Au1 (x1)′ 2 + I3u2 (x1)′′ 2 + I2u3 (x1)′′ 2

)
+

πa3b3G12G13

a2G13 + b2G12
ϕ1 (x1)

′ 2

+ S3u2 (x1)
′′′2 + S2u3 (x1)

′′′2 (2.61)

where,

S2 =
πab3

(
G12

(
4a4G2

13ν
2
12 + 5b4E2

11

)
+ 2a2b2E2

11G13

)
24G13 (a2G13 + 3b2G12)

; S3 =
πa3b

(
5a4E2

11G13 + 2a2b2E2
11G12 + 4b4G2

12G13ν213
)

24G12 (3a2G13 + b2G12)

This third-order strain energy can be written in terms of classical 1D strain measures as

2U1D = ϵTK ϵ+ ϵ′TN ϵ′ (2.62)
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where,

K =


AE11 0 0 0

0 πa3b3G12G13
a2G13+b2G12

0 0

0 0 I2E11 0

0 0 0 I3E11

 ; N =


0 0 0 0

0 0 0 0

0 0 S2 0

0 0 0 S3


Now by comparing the expressions of this third order strain energy given by Eq. (2.46) and

Eq.(2.62), matrices K, M, N , and P can be extracted. Further, using these matrices and

Eq. (2.49), matrices G, F , and X can be extracted. By using Eq. (2.47) the Timoshenko

beam model for orthotropic beam can be written as

2Ut =



γ11

κ1

κ2

κ3



T 
AE11 0 0 0

0 JortGeq 0 0

0 0 I2E11 0

0 0 0 I3E11





γ11

κ1

κ2

κ3


+

2γ12

2γ13


T S2 0

0 S3

2γ12

2γ13


(2.63)

with,

X = K; F = [0]; G =

S2 0

0 S3

 ; S2 =
3πa3bE2

11G12

(
3a2G13 + b2G12

)
10a4E2

11G13 + 4a2b2E2
11G12 + 8b4G2

12G13ν213
;

S3 =
3πab3E2

11G13

(
a2G13 + 3b2G12

)
2G12

(
4a4G2

13ν
2
12 + 5b4E2

11

)
+ 4a2b2E2

11G13

Jort and Geq will be defined in the upcoming section corresponding one-dimensional

constitutive law is

F1

F2

F3

M1

M2

M3


=



AE11 0 0 0 0 0

0 S2 0 0 0 0

0 0 S3 0 0 0

0 0 0 JortGeq 0 0

0 0 0 0 I2E11 0

0 0 0 0 0 I3E11





γ11

2γ12

2γ13

κ1

κ2

κ3


(2.64)
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2.3 One-Dimensional Beam Equation

The linear one-dimensional static equilibrium equations are given as [81]

F ′ + k̃F + f = 0 (2.65)

M ′ + k̃M + ẽ1F +m = 0 (2.66)

Where (̃•)ij = −epqr(•)r ; e1 = [1 0 0]T and k = [k1 k2 k3]
T , k1 represents the initial

twist along x1 and kα represents initial curvature about xα in undeformed basis, F and M

represent the column matrix of force and moment respectively, f and m are represents the

column of uniformly distributed force and moment respectively over the cantilever beam.

The solution of equations (2.65) and (2.66) for prismatic beam (ki = 0) is obtained by

applying the boundary conditions. They are, (a) at x1 = 0, rotation and displacements

are zero. (b) at x1 = L, concentrated force and moments i.e. F = F and M = M are

applied.

F = F + f (L− x1) (2.67)

M = M + ẽ1[F (L− x1) +
f

2
(L− x1)

2] +m(L− x1) (2.68)

To calculate the 1D quantities (ui, ϕ1), first of all, it is required to calculate the 1D force

and moment in term of strain measures (γ11, κi), using Eqs. ( 2.48, 2.64, 2.67 and 2.68).

After that, by using relations (2.50) and suitable boundary conditions on the displacement

field and rotations, the following expression of one-dimensional quantities are obtained

u1(x1) =
F 1

πabE11
x1 (2.69)

u2(x1) =
2F 2 (3L− x1)x

2
1

3πa3bE11
+
f2

(
6L2 − 4Lx1 + x21

)
x21

6πa3bE11
+

2M3

πa3bE11
x21

+K2[2F 2 + f2 (2L− x1)]x1︸ ︷︷ ︸ (2.70)

u3(x1) =
2F 3 (3L− x1)x

2
1

3πab3E11
+
f3

(
6L2 − 4Lx1 + x21

)
x21

6πab3E11
− 2M2

πab3E11
x21

+K3[2F 3 + f3 (2L− x1)]x1︸ ︷︷ ︸ (2.71)

ϕ1 (x1) =
M1

(
a2G13 + b2G12

)
x1

πa3b3G12G13
(2.72)

where, K2 = 1/2S2 and K3 = 1/2S3

2.4 Result and Discussion

In the current work, the solution corrected up to the second order provides the 1D strain

energy (Eq. (2.45)), which coincides with the classical beam theory. As it is already

discussed about the rigid body like deformation terms in previous sections. By citing these
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terms, the whole second-order 3D displacement field (Eqs.(2.42-2.44)) can be divided into

two parts (1) rigid body-like deformation where the cross-section acts like it is rigid in its

plane (2) elastic deformation where cross-section deforms elastically.

uII1 =u1(x1)− x2u2(x1)
′ − x3u3(x1)

′ + ψort(x2, x3) ϕ1(x1)
′ (2.73)

uII2 =u2(x1)− x3ϕ1(x1)− ν12 x2 u1(x1)
′ + ν12x2x3u3(x1)

′′

+
1

2A
[
ν12

(
Ax22 − I3

)
+ ν13

(
I2 −Ax23

)]
u2(x1)

′′ (2.74)

uII3 =u3(x1) + x2ϕ1(x1)− ν13 x3 u1(x1)
′ + ν13x2x3u2(x1)

′′

− 1

2A
[
ν12

(
Ax22 − I3

)
+ ν13

(
I2 −Ax23

)]
u3(x1)

′′ (2.75)

the once underlined terms belong to the rigid body like deformation (νij = 0) and

twice-underlined terms represent the elastic deformation of the cross-sectional plane. The

1D quantities (ui and ϕ1) are given in Eqs. (2.69-2.72). The terms except under-braces

ones represent classical 1D beam model solutions for extension, bending, and torsion. The

under braces terms are due to the transverse shear. The Eq. (2.72) can be written as well

well-known form of classical beam solution as

ϕ1(x1) =
M 1 x1
Jort Geq

(2.76)

where Jort is the Saint-Venant torsion constant which is given as

Jort = ⟨x22 + x23 + x2ψort,3 − x3ψort,2⟩ (2.77)

Jort =
πa3b3(G12 +G13)

2(a2G13 + b2G12)
(2.78)

The expression for the Geq can be obtained by comparing the equations (2.72 and 2.76)

and using expression of Jort from equation (2.78) and given as

Geq =
2G12G13

G12 +G13
(2.79)

which is nothing but the harmonic mean of the G12 and G13, which is given as

2

Geq
=

1

G12
+

1

G13
(2.80)

2.4.1 Special Cases

All the formulations given in the previous sections are for the generic orthotropic

homogeneous beam. This formulation is equally valid for the sub-classes of the orthotropic

materials (i.e. transverse- isotropic and isotropic). By applying the elastic symmetry this

complete formulation can be reduced for sub-classes also. For example, let us take ψort,

to reduce this for an isotropic case, one has to replace G12 and G13 with G. The resultant
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expression is given by equation (2.81), which is nothing but well well-known Saint-Venant

warping function for the isotropic beam with elliptical cross-section.

ψiso =
(b2 − a2)x2x3

a2 + b2
(2.81)

Likewise, the 3D displacement field corrected up to the second order (2.73-2.75) can be

reduced for the isotropic beam. For this purpose, material symmetry has to be used ( i.e.

ν12 = ν13 = ν23 = ν, G13 = G12 = G23 = G, E11 = E22 = E33 = E ). By applying these

material symmetries and taking F 2 = F 3 = f2 = f3 = 0 in Eqs. (2.69-2.72) and putting

final expression back to Eqs.(2.73-2.75), the following 3D displacement field for isotropic

material is obtained.

uII1 =
F 1

EA
x1 −

M3

EI3
x1x2 +

M2

EI2
x1x3 + ψiso

M1

GJ
(2.82)

uII2 =− νx2
F 1

EA
− x1x3

M1

GJ
− νx2x3

M2

EI2
+
M3x

2
1

2EI3
+
νM3

2EI3

(
x22 − x23 +

I2 − I3
A

)
(2.83)

uII3 =− νx3
F 1

EA
+ x1x2

M1

GJ
+ νx2x3

M3

EI3
− M2x

2
1

2EI2
+
νM2

2EI2

(
x22 − x23 +

I2 − I3
A

)
(2.84)

This expression of the 3D displacement field is exactly the same as given in [36] for

the isotropic homogeneous beam with elliptical cross-section. In a similar manner, the

generalized Timoshenko model can be obtained for isotropic-homogeneous from (2.63)

and given below. This expression is also exactly the same as given in[57].

2Ut =



γ11

κ1

κ2

κ3



T 
EA 0 0 0

0 GJ 0 0

0 0 EI2 0

0 0 0 EI3





γ11

κ1

κ2

κ3


+

2γ12

2γ13


T S2 0

0 S3

2γ12

2γ13

 (2.85)

with

S2 =
3a2

(
3a2 + b2

)
(1 + ν)2GA

2 [b4ν2 + 5a4(1 + ν)2 + 2a2b2(1 + ν)2]
; S3 =

3b2
(
a2 + 3b2

)
(1 + ν)2GA

2 [a4ν2 + 5b4(1 + ν)2 + 2a2b2(1 + ν)2]

It is important here to note that due to the dependency of the mathematical formulation

for orthotropic beam on the cross-sectional elastic constants (i.e ν12, ν13, G13, G12, E11),

only one sub-case is possible. This is when cross-sectional elastic constants are equal

(i.e ν12 = ν13 = ν, G13 = G12 = G, E11 = E) which means the cross-section is isotropic.

Because of this fact, for the two sub-classes of the transverse-isotropic material beam,

the complete formulation will remain the same as the orthotropic beam, while for one

sub-class, it will be the same as of isotropic beam.

So this complete mathematical formulation for the generic orthotropic beam is equally

valid for isotropic and transverse-isotropic beams also. Moreover, this study conveys that

orthotropic as well as its sub-classes material beam, does not provide any elastic coupling.
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This can be verified from 1D constitutive law (2.64), where all the one-dimensional strain

measures (γ11, κi) terms are decoupled from each other.

In the next section, results will be validated by comparing them with numerical results. As

it has already been discussed these results are equally valid for sub-classes of orthotropic

material, so this validation automatically validates the rest of the cases.

2.4.2 Numerical Validation

(a)

(b)

Figure 2.2: (a) Abaqus model with loading and boundary conditions (b) Schematic of the
beam with loading and boundary conditions

The analytical results are validated with the results of the commercially available FEM

solver Abaqus. A model of a Beam of the elliptical cross-section has been developed with

length L = 1 m, semi-major axis a = 10 cm, and semi-minor axis b = 7 cm minor axis

of the beam respectively. This beam is fixed at one end while free at the other end.

The origin of the coordinate system is located on the centroid of the beam at the fixed

end. The coordinate axis x1 is aligned along the centroidal axis of the beam, while the

coordinate axes x2 and x3 are aligned along with the major and the minor axis of the

beam, respectively. A twisting moment (M1) and bending moments (M2 & M3) are

applied at the free end with the magnitude of 5 × 104 N −m. The distributed moment

(m) is taken as zero. Axial surface traction (F̂1 ) of magnitude 2.27364× 109 N/m2 and

tangential traction (F̂2 & F̂3) of magnitude 2.27364×107 N/m2 in the direction of x2 and

x3 respectively, has been applied at the free end cross-section. On the lateral surface of

the beam, surface traction (f̂2 & f̂3) of magnitude 929023 N/m2 has been applied in the x2

and x3 direction respectively. The Abaqus beam model, featuring all the discussed applied

loads, is depicted in Fig. 2.2a. Here, it should be noted that the x− y − z coordinates of

Abaqus correspond to x1 − x2 − x3. The relation between F̂i and F i , between f̂α and fα

Figure 2.3: Convergence plot of FEA simulaion
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is given as

F i = ⟨F̂i⟩ fα =

∮
∂Ω

f̂α ds (2.86)

Here ∂Ω represents the lateral surface of the beam. Using relation (2.86) F 1 ≈ 5× 107 N ,

Fα ≈ 5 × 105 N and fα ≈ 5 × 105 N/m. The schematic of 1D beam with all applied

1D loads is depicted in Fig. 2.2b. The meshing has been done using 8-node linear brick,

reduced integration, hourglass control (C3D8R) element.

The convergence plot of FEA results is provided in Fig. 2.3. Here σ11 is plotted against

the number of elements in the meshed beam model. In the present case, the mesh size is

taken 5 mm, which corresponds to the 214000 elements in the meshed beam model. From

Fig. 2.3, it can be observed for this mesh size, the FEA solution has converged. For the

comparison of analytical and FEA solutions, absolute and relative error plots have been

used. These error terms are defined as

Absolute Error = |FEM result− Present result| (2.87)

Relative Error =

∣∣∣∣FEM result− Present result

FEM result

∣∣∣∣ (2.88)

The material properties used for the orthotropic beam have been provided in table (2.1)

Before further discussion, it should be noted that to obtain error surface plots, the

Table 2.1: Material properties of the orthotropic beam

E11 E22 E33 G12 G13 G23 ν12 ν13 ν23

(GPa) (GPa) (GPa) (GPa) (GPa) (GPa)

181 133 103 7.17 7 3 0.28 0.28 0.6

(a) (b)

Figure 2.4: Surface plot for out-of-plane warping obtained analytically and absolute error
between analytical and FEM results (a) analytical result plot (b) absolute error plot

analytical results are calculated at the nodes obtained from the FEA model. In Fig.

2.4 surface plot for out-of-plane warping is given. To obtain these plots, only twisting

moment (M1) is considered while all other loading is taken zero in Eq. (2.58). This
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(a) (b)

(c)

Figure 2.5: Deflection of the beam along the centroidal axis for three different loads (a)
axial stretch (b) deflection in x2 direction (c) deflection in x3 direction

surface plot is taken for the mid-cross-sectional plane of the beam. Fig. 2.4a is due to the

analytical result of the current study and Fig. 2.4b is the surface plot for the normalized

absolute error between analytical and FEM results. We have used the maximum value of

out-of-plane warping obtained from FE analysis to normalize the error. It can be seen

from this normalized error plot 2.4b that the magnitude of absolute error is less than 3%

of maximum out-of-plane warping value. This signifies that the difference between FEA

and current study results is very small.

In Fig. 2.5, curves showing the beam axis deflection in three coordinate directions

have been plotted. Each sub-figure contains three curves corresponding to three loading

conditions. These conditions are when the loads depicted in Fig. 2.2b are at 20%, 50%,

and 100% of their maximum magnitudes. The maximum value of each applied load is

provided earlier. Upon observing these plots, it can be inferred that the analytical results

of the current study are in excellent agreement with the FEA results.

The 3D displacement field over the mid-cross-sectional plane of the beam is shown in

Fig. 2.6. In this, surface plots 2.6a, 2.6c, and 2.6e are from the analytical results while

surface plots 2.6b, 2.6d, and 2.6f are due to relative error. The displacement field plotted

in this figure is corrected up to the third order and given by Eqs. (2.58-2.60) and the 1D

quantities (2.69-2.72). All loading conditions discussed earlier have been applied for these

surface plots. It can be seen from the error surface plots that the maximum relative error

is 0.4% for u1 and 1% for u2 and u3.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.6: Surface plot of the displacement field and relative error w.r.t. FEM results (a,
c, e) displacement along x1, x2 and x3 coordinate axis due to analytical result, (b, d, f)
relative error respectively

The surface plot of the 3D stress field corrected up to the third order is given in Fig. 2.7.

Analytical results of this stress field are shown in surface plots 2.7a, 2.7c, and 2.7e while

their corresponding absolute relative error plot is given in surface plots 2.7b, 2.7d, and

2.7f. Here plot for only three stress components (σ11, σ12 and σ13) are shown as other

three stress components (σ22, σ33 and σ23) are obtained as zero which corresponds to the

assumption of classical beam model.

Surface plot 2.7b suggests that the analytical result for the stress component (σ11) of the

current work is in very close agreement with FEM results. The maximum relative error
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(a) (b)

(c) (d)

(e) (f)

Figure 2.7: Surface plot of stress field and relative error w.r.t. FEM result (a, c, e)
analytical plot of σ11, σ13 and σ12 , (b, d, f) relative error plot respectively

for this stress component obtained 0.05, while for other stress components (σ13 and σ12)

this error seems to be very large, as can be seen from the surface plots 2.7f and 2.7d.

However, this is not true for the whole domain as this is a localized phenomenon and

occurs at some nodes of the domain. If we exclude the peak region, the relative error is

within 10% and this can be confirmed from surface plots 2.7d and 2.7f. By inspecting

these figures, it is observed that the peaks occur along a curve. Careful observation of

surface plots 2.7c and 2.7e suggests that the magnitude of the stress components (σ13

and σ12) is zero along or in the vicinity of this curve. The accuracy of stress components

(σ13 and σ12) compared to FEA results are assessed through normalized absolute error
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(a) (b)

Figure 2.8: Normalized absolute error of (a) σ13 (b) σ12

plots, as shown in Fig. 2.8. The maximum values of the corresponding stress components

obtained from the FE analysis are used for normalization. Upon examining these plots, it

is evident that the maximum absolute error between the current results and FEA results

is approximately 5% of σ13Max for σ13 and about 4% of σ12Max for σ12. This value lies

along the boundary curve of the cross-section, except at the boundary curve this error is

less than 1% of the corresponding maximum stress.

Now we will discuss the reason behind the peaks that appeared in these plots. The

(a) (b)

(c)

Figure 2.9: (a) Linear-Log plot of stress (σ13) plot along the major axis of cross-section
obtained analytically, (b) Linear-Log plot of stress (σ13) plot along the major axis of the
cross-section obtained from FEM and analytically on the same nodes (c) schematic of the
meshed cross-section with zero value curves
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occurrence of the peaks can be understood by Fig. 2.9. In Figs. 2.9a and 2.9b Log-Linear

plot of the absolute magnitude of stress component σ13 along the major axis of the

cross-section is plotted. The first is plotted using the current analytical expression, while

the second is from the FEA result and analytical result at the same FEA nodes. From

analytical plot 2.9a, it can be observed that the stress value suddenly drops to zero within

a very narrow region. Due to the small error between the results obtained from the two

approaches, the zero stress curve will be different for these two approaches as shown in

schematic Fig. 2.9c. Hence in this narrow region, the absolute error will be significant

or very large depending on the position of nodes w.r.t. zero stress curves as shown in

Fig. 2.9b. It should also be remembered that FEA results are available for the nodes,

and these nodes may or may not lie on this zero-stress curve. Depending on the position

of nodes w.r.t the analytical and FEA zero stress curves, different types of peaks are

possible, and the formation of these peaks can be understood by relative error Eq.(2.88).

Whenever a node occurs in the vicinity of the FEA zero stress curve, the absolute error

between FEA and analytical results will be significant, as discussed above, and the FEA

result value will approach zero. In this case, the calculated relative error will be very

high; in fact, this relative error can be as high as infinity, depending on the closeness of

the node to the FEA zero stress curve. In schematic Fig. 2.9c, nodes 1 and 2 represent

such nodes. Similarly, whenever a node occurs in the vicinity of the analytical zero stress

curve, the absolute error for such nodes will also have a significant value. However, in

(a) (b)

(c)

Figure 2.10: Deflection of mid-node vs% Load plot for all load condition (a) deflection in
x1 direction (b) deflection in x2 direction and (c) deflection in x3 direction
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this case, the analytical value will approach zero, while FEA results will have a significant

value. For such nodes, the relative error will be unity. Nodes 3 and 4 shown in schematic

Fig. 2.9c represent such nodes.

In Fig. 2.10 the 3D displacement field for mid node (x1 = 0.5 m and x2 = x3 = 0) of

the beam is plotted w.r.t. loads. In this case, all loads are applied, which are discussed

earlier. These figures suggest the FEA and the analytical results are in great agreement

with each other. This also confirms the linear dependency of the displacement field on

applied loads, which is already established in the analytical formulation.

The numerical validation of the current 3D displacement and stress field has
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Figure 2.11: Variation of shear stiffness S2 and S3 w.r.t. ratio of cross-section dimension
(b/a) with a=1

been presented in the above discussion, which shows that current and FEA results are in

great agreement. Although the presented 3D displacement and strain field is corrected up

to the third order that includes transverse shear deformation, assessing the improvement

over the classical beam model after shear deformation is included becomes important.

For this purpose, the closed-form expression of shear stiffness constants (S2 and S3) has

been verified by comparing it with the VABS results [62]. Material properties use for this

particular result are E11 = 141.96 GPa, E22 = E33 = 9.7901 GPa, G12 = G13 = 6.1360

GPa, G23 = 5.5155 GPa, ν12 = ν13 = 0.42 and ν23 = 0.54. Shear stiffness constants S2

and S3 have been plotted w.r.t. b/a with a = 1 m. The corresponding plot is given in

Fig. 2.11. This figure shows that the numerical values of shear stiffness constants (S2

and S3) obtained from the presented closed-form solution and VABS are in very close

agreement. Hence, it validates the current close-form solution.

The expression of shear stiffness constants reveals that these are the function of

cross-sectional dimensions (a and b) and material properties (E11, G12, G13, ν12 and ν13).

The variation of shear stiffness constants w.r.t. these geometric and material parameters

have been studied and corresponding surface plots are provided in Fig. 2.12 and Fig.

2.13. In the Fig 2.12, S2 and S3 are plotted against G12 and G13 for three different values

of b/a ratio with a = 1 m. It can be observed that as the value b/a ratio increased, the
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Figure 2.12: Variation of shear stiffness S2 and S3 w.r.t. shear modulus for different b/a
for a = 1 m

value of both the stiffness constants also increased for fixed G12 and G13. From Fig.

2.12a, it can be seen that for given b/a ratio S2 linearly varies with G12 while it does

not change significantly with G13. Hence, apparently S2 does not depends on the G13.

From Fig. 2.12b, similar observation can be made for S3, in this case S3 linearly varies

with G13 and does not change significantly with G12. Hence, it can be concluded that S3

apparently does not depend on the G12. One more observation can be made from Fig.

2.12b that shear stiffness constant S3 varies slightly for smaller value of G12 at a higher

value of b/a ratio, which gets saturated as G12 increases. A similar trend is observed for

S2 for smaller G13 when the b/a ratio is less than unity.

Fig. 2.13, both the shear stiffness constants have been plotted against E11 for three
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Figure 2.13: Variation of shear stiffness S2 and S3 w.r.t. young modulus for different b/a
for a = 1 m

different values of b/a ratio. Here, from this figure, it can be observed that the value of

both the shear stiffness constants increased with the increment in the b/a ratio. However,

this change is different for both the shear stiffness constants. S3 increases linearly while

S2 shows non-linear trend. It can also be confirmed from Fig. 2.11. For a fixed b/a ratio,

both the stiffness constants increase with E11 and get saturated after a specific value of

E11. It can be observed that the saturation point of S2 shifts towards a higher value of
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E11 as the b/a ratio increases. Contrary to this observation, for S3, saturation points shift

towards lower E11 as the b/a ratio increases. It is important to note here that saturation

of S3 is achieved at a very small value of E11 while S2 saturates at a very high value

of E11 for b/a greater than unity. This trend reverses if plots are taken w.r.t. a/b with

b = 1. It happens because of the symmetry i.e. S3 can be obtained from S2 if G12, ν12

and a are interchanged with G13, ν13 and b respectively.

The effect of transverse shear stiffness constants ultimately reflects on the deflection
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Figure 2.14: 1D displacement predicted from Classical and Timoshenko beam model

in the transverse direction. 1D deflection (u2 and u3) of the beam obtained from

Euler-Bernoulli and Timoshenko beam model is plotted against transverse shear load

(F 2 and F 3) and these plots are provided in Fig. 2.14. The Eqs. (2.70 and 2.71) have

been used to get these plots. It has already been discussed that the underbrace terms

in these equations are due to the transverse shear. These terms can be divided into two

parts (i) constant multiple Kα (α = 2, 3) having unit N−1 (ii) term related to force and

axial coordinate x1. In fact Kα is function of Sα and related as Kα = (2Sα)
−1. Hence,

the value of Kα depends on the cross-sectional geometry and material properties of the

beam. Fundamentally, the value of Kα governs the difference in deflection of the beam

obtained from the Euler-Bernoulli and Timoshenko Beam model. From Fig. 2.14, it can

be seen that the deflection predicted by the Timoshenko beam model is more than the

deflection predicted by the Euler-Bernoulli beam model. This observation suggests that

the Euler-Bernoulli beam model is stiffer than the Timoshenko beam model. From Eqs.

(2.70 and 2.71) it can be observed that for Kα = 0 Timoshenko beam model will reduce

to Euler-bernoulli beam model. This condition corresponds to infinite transverse shear

stiffness (Sα = ∞); in other words, the Euler–Bernoulli beam model is infinitely stiff in

transverse shear.

2.5 Concluding Remarks

In this chapter, we have provided an analysis of a homogeneous-orthotropic beam with

an elliptical cross-section. Solutions have been presented for both the Classical and
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Timoshenko-like beam models. Closed-form analytical expressions for the 3D displacement

field, stress/strain field, and 1D field variables have been derived. While these solutions

are specific to homogeneous-orthotropic materials, they can be adapted for transversely

isotropic and homogeneous cases by applying elastic symmetry conditions. The 1D

constitutive law suggests that these material beams lack elastic coupling characteristics.

Furthermore, a comparison of these analytical results with FEA results demonstrates a

close agreement between the results of the two approaches.
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Chapter 3

Anisotropic and Monoclinic

Homogeneous Beam Analysis

In the previous chapter 2, analysis was provided for orthotropic material beam, which

is also valid for beams having material anisotropy levels lower than orthotropy. This

chapter focuses on the analysis of the beam made of materials having anisotropy level

higher than orthotropy, i.e., complete anisotropic and monoclinic materials. The solution

methodology will remain the same as provided in the chapter 2. The only difference is that

in this chapter semi-analytical approach will be used because of the increased complexity.

Besides, this chapter provides the analysis for the Classical beam model only. The main

objective of this chapter is to explore the elastic coupling in beam-like structures made of

these materials. However, other field variables have also been obtained. The analysis in

the previous chapter 2 showed that no elastic coupling is available for orthotropic material

beams. This chapter first provides the analysis of complete anisotropic material beams,

followed by the analysis of monoclinic material beams. Numerical validation of current

results is provided for each case under consideration.

3.1 Anisotropic Homogeneous Beam Analysis

Anisotropic materials are defined by 21 independent elastic constants. Hence, the stiffness

matrix for these materials is a fully populated 6×6 matrix given by Eq. (2.8). This makes

the coupled Euler-Lagrange equations and associated boundary conditions obtained after

the application of VAM very complex and lengthy, which cannot be solved analytically

with the currently available resources. Hence, these are solved by taking a semi-analytical

approach. In this approach, the elastic constants are replaced by their numerical value

instead of keeping them in symbolic form. (This semi-analytical approach will be

applied from first-order approximation onward. Zeroth order solution is obtained through

analytical approach.) Though the solution obtained using this approach will not provide

information about the effect of elastic constants on the results, it provides information

about the elastic coupling in the anisotropic beams. Moreover, the closed-form solution

for the 3D displacement/stress/strain field can be obtained, equivalent to the analytical

solution for that particular anisotropic material.

In this semi-analytical approach, the elastic constants of the stiffness matrix (2.8) are

replaced by numerical values and the resultant stiffness matrix for this case is given by

Eq. (3.1). In this equation, P is a scalar multiplier and has a value of 109. The elastic

37
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constants of this stiffness matrix are arbitrarily chosen in such a way that this matrix

remains positive definite.

C =



220 58 50 32 22 38

200 52 30 26 20

190 22 28 26

110 34 36

sym. 100 28

90


× P (3.1)

3.1.1 Cross-sectional Analysis

As mentioned above, zeroth order approximate solution is obtained analytically. The

Euler-Lagrange equations and boundary conditions for this case are given by Eqs.

(2.11-2.13) and Eqs.(2.11-2.13) respectively. The zeroth order approximate solution is

given by Eqs. (2.17-2.19). As already discussed in chapter 2, this solution represents rigid

body-like deformation of the beam cross-section and depends on the axial coordinate (x1)

only. The first-order and second-order solutions are obtained by using a semi-analytical

approach. A detailed discussion is provided in the following sub-sections.

First order approximation

In order to obtain the first-order approximate results using VAM, it is required to consider

the strain energy corrected up to order O
(
µε2(h/L)2

)
. This required energy is obtained

by perturbing the zeroth order solution and it is given as

uIi = u0i + vi(x1, x2, x3) (3.2)

where vi(x1, x2, x3) are asymptotically smaller than u0i . For the definiteness of the solution,

vi(x1, x2, x3) is subjected to four constraints. These constraints provides the interpretation

of 1D unknown functions
(
ui(x1) and ϕ1(x1)

)
. These constraints are chosen as

⟨vi⟩ = 0 ⟨v3,2 − v2,3⟩ = 0 (3.3)

application of these constraints to Eq. (2.20) and using Eqs. (2.17-2.19), provides the

relation between 1D unknown functions and 3D displacement fields and is given as follows

A ui(x1) = ⟨ uIi ⟩

A ϕ1(x1) =
1

2
⟨ uI3,2 − uI2,3 ⟩

(3.4)

Here A is the cross-sectional area. The Eq. (3.4) suggests that the 1D displacement

and rotation are the average of 3D displacement and rotation over the cross-section. The
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perturbed displacement field (3.2), provides following modified strain field

ΓI
11 = u1 (x1)

′ + v′1

ΓI
22 = v2,2

ΓI
33 = v3,3 (3.5)

ΓI
23 = v2,3 + v3,2

ΓI
13 = u3 (x1)

′ + x2ϕ1 (x1)
′ + v1,3 + v′3

ΓI
12 = u2 (x1)

′ − x3ϕ1 (x1)
′ + v1,2 + v′2

This modified strain field (3.5) provides the required first-order strain energy. This strain

energy is minimized using the variational principle to give the following Euler-Lagrange

equations.

45v1,22 + 28v1,23 + 50v1,33 + 10v2,22 + 31v2,23 + 17v2,33

+ 18v3,22 + 30v3,23 + 14v3,33 = 0 (3.6)

5ϕ1 (x1)
′ − 10v1,22 − 31v1,23 − 17v1,33 − 100v2,22 − 30v2,23

− 55v2,33 − 15v3,22 − 81v3,23 − 11v3,33 = 0 (3.7)

4ϕ1 (x1)
′ + 18v1,22 + 30v1,23 + 14v1,33 + 15v2,22 + 81v2,23

+ 11v2,33 + 55v3,22 + 22v3,23 + 95v3,33 = 0 (3.8)

with associated boundary conditions

n2

[
19u1 (x1)

′ + 45u2 (x1)
′ + 14u3 (x1)

′ + (14x2 − 45x3)ϕ1(x1)
′

+ 45v1,2 + 14v1,3 + 10v2,2 + 18v2,3 + 18v3,2 + 13v3,3

]
+ n3

[
11u1 (x1)

′ + 14u2 (x1)
′ + 50u3 (x1)

′ + 2 (25x2 − 7x3)ϕ1(x1)
′

+ 14v1,2 + 50v1,3 + 13v2,2 + 17v2,3 + 17v3,2 + 14v3,3

]
= 0 (3.9)

n2

[
29u1 (x1)

′ + 10u2 (x1)
′ + 13u3 (x1)

′ + (13x2 − 10x3)ϕ1(x1)
′

+ 10v1,2 + 13v1,3 + 100v2,2 + 15v2,3 + 15v3,2 + 26v3,3

]
+ n3

[
16u1 (x1)

′ + 18u2 (x1)
′ + 17u3 (x1)

′ + (17x2 − 18x3)ϕ1(x1)
′

+ 18v1,2 + 17v1,3 + 15v2,2 + 55v2,3 + 55v3,2 + 11v3,3

]
= 0 (3.10)

n2

[
16u1 (x1)

′ + 18u2 (x1)
′ + 17u3 (x1)

′ + (17x2 − 18x3)ϕ1(x1)
′

+ 18v1,2 + 17v1,3 + 15v2,2 + 55v2,3 + 55v3,2 + 11v3,3

]
+ n3

[
25u1 (x1)

′ + 13u2 (x1)
′ + 14u3 (x1)

′ + (14x2 − 13x3)ϕ1(x1)
′

+ 13v1,2 + 14v1,3 + 26v2,2 + 11v2,3 + 11v3,2 + 95v3,3

]
= 0 (3.11)
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solution of Eqs. (3.6-3.8) satisfying boundary conditions (3.9-3.11) and constraints (3.3)

provides the first order approximate solution vi. The displacement field corrected up to

the first order is given in the following equations.

uI1 =u1(x1)− x2u2(x1)
′ − x3u3(x1)

′ + ψaniso(x2, x3) ϕ1(x1)
′ + F1

1 (x2, x3) u1(x1)
′︸ ︷︷ ︸

v1(x1,x2,x3)

(3.12)

uI2 =u2(x1)− x3ϕ1(x1)+F2
1 (x2, x3) u1 (x1)

′ + F2
2 (x2, x3)ϕ1(x1)

′︸ ︷︷ ︸
v2(x1,x2,x3)

(3.13)

uI3 =u3(x1) + x2ϕ1(x1)+F3
1 (x2, x3) u1 (x1)

′ + F3
2 (x2, x3)ϕ1(x1)

′︸ ︷︷ ︸
v3(x1,x2,x3)

(3.14)

In the above Eqs. (3.12-3.14), underbraces terms represent the first-order approximate

results (vi). The 2D functions used in the underbraces terms are provided in Appendix

B.1.1. The terms x2u2(x1)
′ and x3u3(x1)

′ in Eq. (3.12) represent the displacement due

to the rigid body like rotation of cross-sectional plane about x3 and x2 axis respectively

resultant from the bending of the beam. The other terms of the first-order approximation

(vi) represent the displacement due to the deformation of the cross-sectional plane. The

term ψanisoϕ1(x1)
′ represents the out-of-plane deformation due to the rotation and ψaniso

is the Saint-Venant-like warping function for anisotropic beam. Similarly, F2
1 u1 (x1)

′ and

F3
1 u1 (x1)

′ represents the in-plane deformation of the cross-sectional plane due to Poisson

effect. Here it can be observed that F1
1 u1(x1)

′, F2
2 ϕ1(x1)

′ and F3
2 ϕ1(x1)

′ are additional

terms in classical beam model solution for anisotropic beam compared to isotropic beam

[36].

This first-order solution does not capture the complete strain energy corresponding to the

classical beam model. It provides strain energy component corresponding to extension

and twisting only. It does not involve energy corresponding to the flexural deformation.

Hence this first-order solution needs to be improved by adding the second-order solution.

Second order Approximation

The procedure to obtain the second-order approximate solution is similar to that used

for the first-order solution. The modified strain energy required for the second order

approximate solution is corrected up to order O
(
µε2(h/L)4

)
. The asymptotically small

term used to obtain perturbed first-order solution is wi(x1, x2, x3) and the resultant

perturbed first-order displacement field is

uIIi (x1, x2, x3) = uIi + wi(x1, x2, x3) (3.15)

The wi are also subjected to the same constraints used for the vi, given by Eq. (3.3).

These constraints are given as

⟨wi⟩ = 0 ⟨w3,2 − w2,3⟩ = 0 (3.16)
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The perturbed first order displacement field (3.15) provides the following modified strain

field

ΓII
11 = u1 (x1)

′ − x2u2 (x1)
′′ − x3u3 (x1)

′′ + ψaniso ϕ1 (x1)
′′ + F1

1u1 (x1)
′′ + w′

1

ΓII
22 = F2

1,2u1 (x1)
′ + F2

2,2ϕ1 (x1)
′ + w2,2

ΓII
33 = F3

1,3u1 (x1)
′ + F3

2,3ϕ1 (x1)
′ + w3,3 (3.17)

ΓII
23 =

(
F2
1,3 + F3

1,2

)
u1 (x1)

′ +
(
F2
2,3 + F3

2,2

)
ϕ1 (x1)

′ + w2,3 + w3,2

ΓII
13 = F1

1,3u1 (x1)
′ + F3

1u1 (x1)
′′ + F3

2ϕ1 (x1)
′′ + (ψaniso,3 + x2)ϕ1 (x1)

′ + w1,3 + w′
3

ΓII
12 = F1

1,2u1 (x1)
′ + F2

1u1 (x1)
′′ + F2

2ϕ1 (x1)
′′ + (ψaniso,2 − x3)ϕ1 (x1)

′ + w1,2 + w′
2

The required second-order strain energy is calculated using this modified strain field.

Minimizing this second-order strain energy using the variational principle gives the

following Euler-Lagrange equations.

19u2 (x1)
′′ + 11u3 (x1)

′′ − χ1
1 ϕ1 (x1)

′ − χ1
2 u1 (x1)

′ − χ1
3 u1 (x1)

′′

− χ1
4 ϕ1 (x1)

′′ − 45w1,22 − 28w1,23 − 50w1,33 − 10w2,22 − 31w2,23

− 17w2,33 − 18w3,22 − 30w3,23 − 14w3,33 = 0 (3.18)

29u2 (x1)
′′ + 16u3 (x1)

′′ + χ2
1 ϕ1 (x1)

′ + χ2
2 u1 (x1)

′ − χ2
3 u1 (x1)

′′

+ χ2
4 ϕ1 (x1)

′′ − 10w1,22 − 31w1,23 − 17w1,33 − 100w2,22 − 30w2,23

− 55w2,33 − 15w3,22 − 81w3,23 − 11w3,33 = 0 (3.19)

16u2 (x1)
′′ + 25u3 (x1)

′′ − χ3
1 ϕ1 (x1)

′ − χ3
2 u1 (x1)

′ − χ3
3 u1 (x1)

′′

− χ3
4 ϕ1 (x1)

′′ − 18w1,22 − 30w1,23 − 14w1,33 − 15w2,22 − 81w2,23

− 11w2,33 − 55w3,22 − 22w3,23 − 95w3,33 = 0 (3.20)

with the following associated boundary conditions

n2

[
−19x2u2 (x1)

′′ − 19x3u3 (x1)
′′ + B1

1u1 (x1)
′ + B1

2ϕ1(x1)
′ + B1

3u1 (x1)
′′

+ B1
4ϕ1(x1)

′′ + 45w1,2 + 14w1,3 + 10w2,2 + 18w2,3 + 18w3,2 + 13w3,3

]
+ n3

[
−11x2u2 (x1)

′′ − 11x3u3 (x1)
′′ + B1

5u1 (x1)
′ + B1

6ϕ1(x1)
′ + B1

7u1 (x1)
′′

+ B1
8ϕ1(x1)

′′ + 14w1,2 + 50w1,3 + 13w2,2 + 17w2,3 + 17w3,2 + 14w3,3

]
= 0 (3.21)

n2

[
−29x2u2 (x1)

′′ − 29x3u3 (x1)
′′ + B2

1u1 (x1)
′ + B2

2ϕ1(x1)
′ + B2

3u1 (x1)
′′

+ B2
4ϕ1(x1)

′′ + 10w1,2 + 13w1,3 + 100w2,2 + 15w2,3 + 15w3,2 + 26w3,3

]
+ n3

[
−16x2u2 (x1)

′′ − 16x3u3 (x1)
′′ + B2

5u1 (x1)
′ + B2

6ϕ1(x1)
′ + B2

7u1 (x1)
′′

+ B2
8ϕ1(x1)

′′ + 18w1,2 + 17w1,3 + 15w2,2 + 55w2,3 + 55w3,2 + 11w3,3

]
= 0 (3.22)

n2

[
−16x2u2 (x1)

′′ − 16x3u3 (x1)
′′ + B3

1u1 (x1)
′ + B3

2ϕ1(x1)
′ + B3

3u1 (x1)
′′

+ B3
4ϕ1(x1)

′′ + 18w1,2 + 17w1,3 + 15w2,2 + 55w2,3 + 55w3,2 + 11w3,3

]
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+ n3

[
−25x2u2 (x1)

′′ − 25x3u3 (x1)
′′ + B3

5u1 (x1)
′ + B3

6ϕ1(x1)
′ + B3

7u1 (x1)
′′

+ B3
8ϕ1(x1)

′′ + 13w1,2 + 14w1,3 + 26w2,2 + 11w2,3 + 11w3,2 + 95w3,3

]
= 0 (3.23)

The solution of Euler-Lagrange equations (3.18-3.20) satisfying boundary conditions

(3.21-3.23) and constraints (3.16) provides the unknown warping function wi(x1, x2, x3) of

anisotropic beam. The terms u1(x1)
′′ and ϕ1 (x1)

′′ do not contribute to the classical beam

model energy [57] hence these terms has to be dropped while solving these equations. The

3D displacement field corrected up to the second order is given as

uII1 =u1(x1)− x2u2(x1)
′ − x3u3(x1)

′ + ψaniso(x2, x3) ϕ1(x1)
′ + F1

1 u1(x1)
′

+F1
2 (x2, x3) u2(x1)

′′ + F1
3 (x2, x3) u3(x1)

′′︸ ︷︷ ︸
w1(x1,x2,x3)

(3.24)

uII2 =u2(x1)− x3ϕ1(x1) + F2
1 (x2, x3) u1 (x1)

′ + F2
2 (x2, x3)ϕ1(x1)

′

+ F2
3 (x2, x3) u2(x1)

′′ + F2
4 (x2, x3) u3(x1)

′′︸ ︷︷ ︸
w2(x1,x2,x3)

(3.25)

uII3 =u3(x1) + x2ϕ1(x1) + F3
1 (x2, x3) u1 (x1)

′ + F3
2 (x2, x3)ϕ1(x1)

′

+F3
3 (x2, x3) u2(x1)

′′ + F3
4 (x2, x3) u3(x1)

′′︸ ︷︷ ︸
w3(x1,x2,x3)

(3.26)

The expressions of 2D functions used here are given in Appendix B.1.1. The underbraces

terms in Eqs. (3.24-3.26) are the second order terms wi(x1, x2, x3). Here it can be noted

that the underbraces terms in Eq. (3.24) are new additional terms in the classical beam

model solution for axial displacement of the anisotropic beam compared to the isotropic

beam. By using the following identity relations

ϕ1(x1)
′ = κ1 (x1) u1(x1)

′ = γ11 (x1)

u2(x1)
′′ = κ3 (x1) u3(x1)

′′ = −κ2 (x1)
(3.27)

the resultant 1D strain energy corrected up to order O
(
µε2(h/L)4

)
is given as

2U1D =S11γ
2
11 + S22κ

2
1 + S23κ1κ2 + S24κ1κ3 + S33κ

2
2 + S34κ2κ3 + S44κ

2
3 (3.28)

The terms Sij (i, j = 1, 2, 3, 4) are the cross-sectional stiffness constants. Expressions of

these stiffness constants are given in Appendix B.1.1. The second-order strain energy

(3.28) completely captures the classical beam model energy. From this energy, 1D inverse

constitutive law can be extracted and given as

γ11

κ1

κ2

κ3


=

1

P


Φ11 0 0 0

0 Φ22 Φ23 Φ24

0 Φ23 Φ33 0

0 Φ24 0 Φ44





F1

M1

M2

M3


(3.29)
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In the above equation, terms Φij (i, j = 1, 2, 3, 4) are cross-sectional flexibility constants.

Expressions of these constants are given in Appendix B.1.1. This 1D inverse constitutive

law (3.29) suggests that axial strain (γ11) remains uncoupled from the curvature terms κi.

Similarly, κ2 and κ3 remain uncoupled from each other while both of these are coupled

to the κ1 term. Hence, the anisotropic-homogeneous beam will not show extension-bend,

extension-twist and bend-bend coupling. It will show bend-twist coupling only. It is the

highest possible level of elastic coupling in the anisotropic-homogeneous beam.

3.1.2 One-Dimensinal Beam Equation

The 1D intrinsic equations for linear geometrically exact classical beam theory for static

equilibrium [81] are given by the Eqs. (2.65 and 2.66) and the solution of these equations

for prismatic beam (ki = 0) with the boundary conditions, at x = L, F = F and M =M

is given by the Eqs. (2.67 and 2.68).

The 1D strain measures (γ11, κi) are obtained in terms of applied forces and moments

using Eqs. (2.67, 2.68 and 3.29). As these strain measures are functions of 1D displacement

(ui) and rotation (ϕ1) defined by the relations given in Eq. (3.27) hence, integration of

these strain measures followed by 1D boundary conditions provides the expressions of ui

and ϕ1. The boundary conditions used here are

at x1 = 0

u′2 = 0; u′3 = 0; u1 = 0; u2 = 0; u3 = 0; ϕ1 = 0; (3.30)

The resultant 1D displacements and rotation terms are given below

u1(x1) =
732963519 F 1

136276798454 πab P
x1 (3.31)

u2(x1) =
244321173 (3L− x1)x

2
1 F 2

68138399227 πa3b P
+

244321173
(
6L2 − 4Lx1 + x21

)
x21 f2

272553596908πa3bP

+
732963519x21 M3

68138399227 πa3b P
+

4753211x21 M1

136276798454 πa3b P
(3.32)

u3(x1) =
244321173 (3L− x1)x

2
1 F 3

68138399227 πab3 P
+

244321173
(
6L2 − 4Lx1 + x21

)
x21 f3

272553596908 πab3 P

− 732963519x21 M2

68138399227 πab3 P
− 210232453x21 M1

136276798454 πab3 P
(3.33)

ϕ1 (x1) =

(
1908076279a2 + 1629623061b2

)
x1 M1

136276798454 πa3b3 P
+

4753211 (2L− x1)x1 F 2

136276798454 πa3b P

− 210232453 (2L− x1)x1 F 3

136276798454 πab3 P
+

4753211
(
3L2 − 3Lx1 + x21

)
x1 f2

408830395362 πa3b P

−
210232453

(
3L2 − 3Lx1 + x21

)
x1 f3

408830395362 πab3 P
+

210232453x1 M2

68138399227 πab3 P

+
4753211x1 M3

68138399227πa3bP
(3.34)

The 3D displacement field corresponds to classical beam model uIIi for anisotropic beam

can be obtained by putting these 1D displacement and rotation terms in Eqs (3.24-3.26).
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3.1.3 Numerical Validation

The presented results are validated by comparing them with FEA results obtained from

Abaqus. The FEA model and the loading condition are the same as those used to validate

orthotropic material beam results provided in section 2.4.2. Everything is similar except

for material properties.

(a) (b)

Figure 3.1: Surface plot for out-of-plane warping obtained analytically and normalized
error between analytical and FEM results (a) analytical result plot (b) absolute error plot

(a) (b)

(c)

Figure 3.2: Deflection of the beam along beam axis with three different loading conditions
(a) deflection along x1 coordinate direction (b) deflection along x2 coordinate direction
(c) deflection along x3 coordinate direction
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In Fig. 3.1, validation of the out-of-plane warping deformation due to twisting has been

presented. Fig. 3.1a shows the out-of-plane warping obtained from the analytical result

and Fig. 3.1b shows the normalized error between the current analytical results and the

FEA results. The normalization is based on the maximum out-of-plane warping value.

The error plot reveals that the maximum discrepancy between the current analytical and

FEA results is 3% of the maximum out-of-plane warping. This indicates that the analytical

results effectively capture the deformation of the beam under twisting loads. Here, one

more important thing should be noted that the deformation of the beam’s cross-section

(a) (b)

(c) (d)

(e) (f)

Figure 3.3: Surface plot of the displacement field and relative error w.r.t. FEA results
(a,c,e) displacement along x1, x2 and x3 coordinate axis due to analytical result, (b,d,f)
relative error respectively
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due to twisting has two components (i) Saint-Venant-like deformation and (ii) deflection

due to bending. It can be confirmed from Fig. 3.1. The deflection part is coming due to

the elastic coupling among the κ1, κ2 and κ3 provided by Eq. (3.29).

In Figure 3.2, the plots of three displacement components ui along the centroidal

axis of the beam are presented. All the loads mentioned earlier and depicted in Fig.

2.2b are applied to the beam to generate these plots. Each plot features three curves

corresponding to the three loading conditions, as indicated in the figures. Notably, the

results for the displacement components u1 and u3 exhibit excellent agreement between the

current analytical results and FEA results. However, there is an observable inconsistency

(a) (b)

(c) (d)

(e) (f)

Figure 3.4: Surface plot of stress field and normalized error w.r.t. FEA result (a,c,e)
analytical plot of σ11, σ12 and σ13, (b,d,f) normalized error plot respectively
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(a) (b)

Figure 3.5: Normalized error plots in the absence of transverse loading (a) σ12 (b) σ13

in the displacement component u2, and this deviation becomes more pronounced as the

applied loads increase. It is observed that this discrepancy occurs in cases involving

the material, imparting coupling to the beam, as will be demonstrated in the upcoming

sections. However, further investigation is required to determine the factors responsible

for this deviation, which falls outside the scope of this study.

The surface plots illustrating the 3D displacement field are presented in Fig. 3.3. To

mitigate end effects, these surface plots are captured at the mid-surface of the beam. All

previously discussed loads are applied at their full magnitude in this case. The relative

error surface plots reveal that the maximum relative error for u1, u2, and u3 is 12.5%,

27.5%, and 0.6%, respectively. The substantial error in u2 aligns with earlier results

(depicted in Fig. 3.2). The notable error in u1 is attributed to the axial displacement

error in the x2 direction, as illustrated in the preceding Fig. 3.2. This axial displacement

error leads to an error in the cross-sectional rotation about the x3 axis. Given that this

rotation contributes to one component of the 3D u1 (as evident from Eq. 3.24), the error

in u2 propagates to u1. This is shown by the relative error plot (Fig. 3.3b), indicating that

the error is most pronounced at the boundary of the cross-section, while at the midsection,

it is negligible.

The stress components σ11, σ12, and σ13, along with their corresponding normalized error

plots, are presented in Fig. 3.4. Similar to previous cases, error normalization has been

performed by considering the respective maximum stress values. Analysis of Fig. 3.4b

reveals that the maximum error between the current analytical results and FEA results

for σ11 is approximately 1% of the maximum σ11, demonstrating the effective capture of

the stress component σ11 by the analytical solution under the applied loads shown in Fig.

2.2b.

However, the error for σ12 and σ13 is notably higher, reaching up to 40% and 60% of

their respective maximum values. This significant discrepancy can be attributed to two

main reasons. Firstly, it stems from errors in the 3D displacement fields u1 and u2, as

discussed earlier and illustrated in Fig. 3.3b and Fig. 3.3d since stress is a function of

the displacement field. Secondly, the analysis presented here provides a solution for the
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classical beam model only, failing to capture transverse shear. The plots are generated for

the loading conditions depicted in Fig. 2.2b, which involve transverse loads. These loads

result in transverse shear stress, adequately captured by 3D FEA but not accounted for

in the current analytic solution, leading to the observed substantial errors.

To support this argument, error plots for σ12 and σ13 are provided in Fig. 3.5 under the

absence of transverse loads. In this case, the maximum errors for σ12 and σ13 are reduced

to 3% and 2.5% of their maximum values, respectively.

In this case, the stress components σ22, σ33, and σ23 are determined to be non-zero,

contrary to the plain stress condition stipulated by beam theory. Surface plots illustrating

these stress components, derived from both current analytic results and FEA analyses,

(a) (b)

(c) (d)

(e) (f)

Figure 3.6: Surface plot of stress components σ22, σ23 and σ33 obtained from (a,c,e)
analytical results, (b,d,f) FEA analysis
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are presented in Fig. 3.6. Notably, the magnitudes of the results obtained through

the two approaches are of the order of MPa, but they exhibit substantial differences.

Furthermore, the stress distribution markedly differs between the two approaches. It is

important to note that our concern lies not in the magnitudes or distribution of these

stress components, but rather in their non-zero states as confirmed by both analytic and

FEA approaches. However, the observed difference in stress distribution could be due to

the omission of certain higher-order terms in the expressions of these stress components.

Additional investigation is needed to validate this potential explanation.

Fig. 3.7 provides surface plots depicting the influence of direct (M1) and coupling (M2

and M3) action on the twisting curvature (κ1). It can be seen from this figure that for

the present anisotropic material (present stiffness matrix) beam, the effect of direct action

on the twisting curvature is about 10 times that of the coupling action. In Fig. 3.8,

(a) (b)

Figure 3.7: Twisting curvature κ1 due to twisting moment M1, bending moments M2 and
M3 (a) with M3 = 0 (b) with M2 = 0

bend-twist coupling plots are provided. Here, Figs. 3.8a and 3.8b corresponds to current

work while Figs. 3.8c and 3.8d are because of the stiffness matrix used in article [1]. It

can be seen that for the current work, one of the bend-twist coupling (Fig. 3.8a) results

is in close agreement with the FEA result, while the second bend-twist coupling (Fig.

3.8b) result deviates from the FEA result. However, both the bend-twist coupling results

provided in Figs. 3.8c and 3.8d shows close agreement between current analytical and

FEA results.

The observations pertaining to the axial deflection of the beam, the 3D displacement field,

the 3D stress field, and coupling plots collectively indicate the potential absence of certain

terms in the expressions of these quantities, likely associated with the next higher-order

solution. Subsequent sections will delve into the fact that these discrepancies manifest

exclusively in coupled beam cases, implying that these terms may either be negligible or

zero in uncoupled scenarios but become pronounced in coupled beam situations. However,

further investigation is required to substantiate this assertion.
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(a) (b)

(c) (d)

Figure 3.8: Bend-twist coupling for the stiffness matrix used in (a,b) current work (c,d)
reference [1]

3.2 Monoclinic Homogeneous Beam Analysis

Monoclinic materials have one plane of elastic symmetry and are defined by 13 independent

elastic moduli. Depending on the plane of elastic symmetry, these materials are further

divided into three sub-classes. Results for each of these sub-classes beam are presented

in subsequent sub-sections. The corresponding stiffness matrix can be obtained from Eq.

(3.1) by making elastic moduli zero according to the plane of elastic symmetry.

The procedure to obtain the solution for these monoclinic material beams is the same as

provided for anisotropic material beams in the preceding section (3.1). Hence, the direct

results are provided instead of repeating the same process in the following sections.

3.2.1 Monoclinic With x2 − x3 Plane of Elastic Symmetry

For monoclinic materials with plane x2 − x3 as elastic symmetry C15 = C16 = C25 =

C26 = C35 = C36 = C45 = C46 = 0. Hence, the stiffness matrix (3.1) reduces accordingly

for this case. For these material beams, inverse constitutive law is given by Eq. (3.35).

This relation suggests that all the 1D quantities will remain uncoupled from each other.

The expressions of these flexibility constants Φij (i, j = 1, 2, 3, 4) are given in Appendix

B.2.1.
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

γ11

κ1

κ2

κ3


=

1

P


Φ11 0 0 0

0 Φ22 0 0

0 0 Φ33 0

0 0 0 Φ44





F1

M1

M2

M3


(3.35)

The 3D displacement field is given in Eqs. (3.36-3.38). The two-dimensional functions

used in these equations are provided in Appendix B.2.2.

u1(x1, x2, x3) =u1(x1)− x2u2(x1)
′ − x3u3(x1)

′ + ψmx1(x2, x3) ϕ1(x1)
′ (3.36)

u2(x1, x2, x3) =u2(x1)− x3ϕ1(x1) + F2
1 (x2, x3) u1 (x1)

′ + F2
2 (x2, x3) u2(x1)

′′

+ F2
3 (x2, x3) u3(x1)

′′ (3.37)

u3(x1, x2, x3) =u3(x1) + x2ϕ1(x1) + F3
1 (x2, x3) u1 (x1)

′ + F3
2 (x2, x3) u2(x1)

′′

+ F3
3 (x2, x3) u3(x1)

′′ (3.38)

The 1D quantities of this formulation are given by the following Eqs. (3.39-3.42). Here

F i, M i (i = 1, 2, 3) are concentrated forces and moments respectively applied at the free

end of the beam. fα (α = 2, 3) are distributed transverse load along the length of the

beam.

u1(x1) =
460425 F 1

88515418 πab P
x1 (3.39)

u2(x1) =
153475 (3l − x1)x

2
1 F 2

44257709 πa3b P
+

153475
(
6l2 − 4lx1 + x21

)
x21 f2

177030836 πa3b P

+
460425x21 M3

44257709 πa3b P
(3.40)

u3(x1) =
153475 (3l − x1)x

2
1 F 3

44257709 πa3b P
+

153475
(
6l2 − 4lx1 + x21

)
x21 f3

177030836 πa3b P

− 460425x21 M2

44257709 πa3b P
(3.41)

ϕ1 (x1) =
5
(
10a2 + 9b2

)
x1 M1

4108 πa3b3 P
(3.42)

Numerical Validation

The present analytical results are validated by comparing them with FEA results. Here

plots are provided for the displacement along the centroidal axis of the beam, surface plots

for the 3D displacement field, and out-of-plane warping at the mid-plane of the beam. The

precise determination of the displacement field also ensures the preciseness of the strain

and stress field, as these are the functions of the displacement field. For the surface plots

of out-of-plane warping, only twisting momentM1 is applied, and for the remaining plots,

all the loads discussed in the section 2.4.2 are applied on the beam.

The surface plot depicting the out-of-plane warping obtained from analytical results, along
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(a) (b)

Figure 3.9: Surface plot for out-of-plane warping (a) analytical expression (b) normalized
error

with its normalized error, is presented in Fig. 3.9. This out-of-plane warping plot consists

of saint-Venant like deformation only; hence confirms the uncoupled behavior for the

current material beam as determined by the Eq. 3.35. The normalized error plot in Fig.

3.9b illustrates that the maximum error between the current analytical results and the FEA

results is approximately 2.6% of the maximum out-of-plane warping value. Consequently,

the analytical results demonstrate good agreement with the FEA results.

(a) (b)

(c)

Figure 3.10: Deflection of the beam along the centroidal axis for three different loading
conditions (a) deflection along x1 coordinate direction (b) deflection along x2 coordinate
direction (c) deflection along x3 coordinate direction
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In Fig. 3.10, plots of displacement along the centroidal axis of the beam are given. Each

figure has three curves corresponding to three different loading conditions, which are 10%,

50%, and 100% of the maximum applied loads. In this figure, 3 different types of lines are

due to the analytical solution, while three types of markers represent the results of FEA

solutions. From these plots, it can be seen that the present results have almost overlapped

with the FEA results.

The surface plot of the 3D displacement field is given in Fig. 3.11. These surface plots

are taken at the mid-cross-sectional plane of the beam to avoid the end effects. All loads

(a) (b)

(c) (d)

(e) (f)

Figure 3.11: Surface plot of the displacement field and relative error w.r.t. FEA results
(a,c,e) displacement along x1, x2 and x3 coordinate axis due to analytical result, (d,b,f)
relative error respectively
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with their maximum magnitude are considered for this case. From the relative error

plots (Figs. 3.11b, 3.11d and 3.11f), it can be observed that the error between analytical

and FEA results is very small. The maximum relative error for u1 is 1.4%; for u2 it is

2.35%; for u3 it is obtained about 0.8%. All the error plots provided suggest that the

analytical results are in very close agreement with FEA results for present monoclinic

materials. In Fig. 3.12, surface plots illustrating the three non-zero stress components

(a) (b)

(c) (d)

(e) (f)

Figure 3.12: Surface plot of stress field and normalized error of σ11, σ12 and σ13 (a,c,e)
analytical result plots, (d,b,f) normalized error plots

(σ11, σ12, and σ13) are presented, along with their normalized errors between analytical

results and FEA results. The remaining three stress components (σ22, σ33, and σ23) are

determined to be zero for this class of monoclinic materials, thereby validating the plain
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stress condition for this case as well. The error plots reveal that the maximum error for

σ11 is 0.8% of its maximum value, while for σ12 and σ13, it is approximately 40% and 60%

of their respective maximum values. This substantial error arises due to the presence of

transverse shear stress, which is not captured by the classical beam model solution, as

discussed previously for the anisotropic beam case.

3.2.2 Monoclinic With x1 − x3 Plane of Elastic Symmetry

For this class of monoclinic material C14 = C16 = C24 = C26 = C34 = C36 = C45 =

C56 = 0 . The stiffness matrix for this case can be obtained by putting these zero-value

elastic moduli in the stiffness matrix (3.1). VAM analysis provides the inverse constitutive

relation given by Eq. (3.43). This relation suggests that for this type of material beam

κ1 and κ3 are coupled i.e the twisting moment M1 can influence u2 similarly bending

momentM3, concentrated force F 2 and distributed loadf2 can influence ϕ1. The flexibility

coefficient Φ24 provides this coupling behavior. Expressions of these flexibility coefficients

are provided in Appendix B.3.1.

γ11

κ1

κ2

κ3


=

1

P


Φ11 0 0 0

0 Φ22 0 Φ24

0 0 Φ33 0

0 Φ24 0 Φ44





F1

M1

M2

M3


(3.43)

The 3D displacement field for this case is given by Eqs. (3.44-3.46). The expressions of

the 2D functions used in these equations are given in Appendix B.3.2.

u1(x1, x2, x3) =u1(x1)− x2u2(x1)
′ − x3u3(x1)

′ + ψmx2(x2, x3) ϕ1(x1)
′

+ F1
1 (x2, x3) u2(x1)

′′ + F1
2 (x2, x3) u3(x1)

′′ + F1
3 u1(x1)

′ (3.44)

u2(x1, x2, x3) =u2(x1)− x3ϕ1(x1) + F2
1 (x2, x3) u1 (x1)

′ + F2
2 (x2, x3) u2(x1)

′′

+ F2
3 (x2, x3) u3(x1)

′′ + F2
4 (x2, x3)ϕ1(x1)

′ (3.45)

u3(x1, x2, x3) =u3(x1) + x2ϕ1(x1) + F3
1 (x2, x3) u1 (x1)

′ + F3
2 (x2, x3) u2(x1)

′′

+ F3
3 (x2, x3) u3(x1)

′′ + F3
4 (x2, x3)ϕ1(x1)

′ (3.46)

The 1D quantities for this case are given in Eqs (3.47-3.50). By inspecting Eq. (3.48) and

Eq.(3.50), the coupling behavior of these beams can be observed.

u1(x1) =
59287F 1

11569970 πab P
x1 (3.47)

u2(x1) =
59287 (3l − x1)x

2
1 F 2

17354955 πa3b P
+

59287
(
6l2 − 4lx1 + x21

)
x21 f2

69419820 πa3b P
+

59287x21 M3

5784985 πa3b P

+
1293x21 M1

2313994 πa3b P
(3.48)
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u3(x1) =
59287 (3l − x1)x

2
1 F 3

17354955 πab3 P
+

59287
(
6l2 − 4lx1 + x21

)
x21 f3

69419820 πab3 P
− 59287x21 M2

5784985 πab3 P
(3.49)

ϕ1 (x1) =

(
445443845a2 + 372529539b2

)
x1 M1

34841807658 πa3b3 P
+

1293 (2l − x1)x1 F 2

2313994 πa3b P

+
431

(
3l2 − 3lx1 + x21

)
x1 f2

2313994 πa3b P
+

1293x1 M3

1156997 πa3b P
(3.50)

Numerical Validation

(a) (b)

Figure 3.13: Surface plot for out-of-plane warping (a) analytical expression (b) normalized
error

In this section, analytical results have been validated by comparing them with FEA

results. In addition to deflection along centroidal axis plots, surface plots of out-of-plane

warping and 3D displacement field, stress plots are provided. Here, surface plots of stress

components σ22, σ33 and σ23 are provided as these are found to be non-zero mathematically

unlike uncoupled cases.

Surface plots of out-of-plane warping and its normalized error are presented in Fig. 3.13.

Analogous to prior cases, normalization has been done using the maximum out-of-plane

warping These plots are generated by applying the twisting moment only. The magnitude

of this twisting moment is the same as described in section 2.4.2. A careful examination of

Fig. 3.13a discloses that akin to the anisotropic case, the deformation of the cross-section

manifests in two components: (i) Saint-Venant warping deformation and (ii) bending

deformation induced by bend-twist coupling. It can be seen from the normalized error

plot 3.13b that the error between current analytical and FEA results is zero in the vicinity

of the minor axis of the cross-section and the maximum error is approximately 4% of

maximum out-of-plane warping. This error plot implies a close concurrence between the

current analytical results and those derived from the FEA.
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(a) (b)

(c)

Figure 3.14: Deflection of the beam along beam axis with three different loading conditions
(a) deflection along x1 coordinate direction (b) deflection along x2 coordinate direction
(c) deflection along x3 coordinate direction

The plots of the 3D displacement field along the centroidal axis of the beam are provided

in Fig. 3.14. The description of these figures is similar to that of Fig. 3.10. It can be

seen from Fig. 3.14 that analytical and FEA results are very close and it is difficult to

distinguish them.

Surface plots of the 3D displacement field have been provided in Fig. 3.15. The loading

conditions and description of the figure remain similar as described for Fig. 3.11. It can

be seen from Figs. 3.15b, 3.15d and 3.15f that for this case maximum relative error for

u1 is 3%, for u2 is 3.3% and for u3 it is 4.7%. Here it should be noted that though in

this case coupling is observed, the centroidal displacement and 3D displacement results

obtained from current analysis and FEA analysis are in very close agreement. This

result further can be improved by using the next higher-order solution incorporating the

transverse shear effect.

Surface plots of stress components σ11, σ12, σ13 and corresponding normalized error plots

are provided in Fig. 3.16. From normalized error plot 3.16b, it can be seen that out

of three stress components given here the normalized error of stress component σ11 is

negligible. The maximum error of this component is approximately 0.8% of the maximum

value. However, this normalized error for stress components σ12 and σ13 is very large

and approximately 40% and 60% of the corresponding maximum value respectively. The

reason for this large error is the transverse shear stress which is not captured in the
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(a) (b)

(c) (d)

(e) (f)

Figure 3.15: Surface plot of the displacement field and relative error w.r.t. FEA results
(a,c,e) displacement along x1, x2 and x3 coordinate axis due to analytical result, (b,d,f)
relative error respectively

current solution but in the FEA result. The detailed explanation and justification are

already provided in the complete anisotropy case.

The stress components σ22, σ33, and σ23 are depicted in Fig. 3.17. As discussed

previously, the surface plots (Fig. 3.17) of these stress components are presented here

because they are found to be non-zero mathematically, which contradicts the plane stress

assumption of the beam theory. These stress components have been computed utilizing

the 3D displacement field (3.44-3.46) and the corresponding stiffness matrix. These plots

confirm the violation of the plane stress condition, as indicated by both the current
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(a) (b)

(c) (d)

(e) (f)

Figure 3.16: Surface plot of stress field and normalized error w.r.t. FEA result (a,c,e)
analytical plot of σ11, σ12 and σ13, (b,d,f) relative error plot respectively

analytic solution and the FEA solution. However, there are differences in the stress

distribution between the two approaches. The potential reason behind this disparity

could be the presence of higher-order terms, which are absent in the current second-order

solution. Since our focus lies solely on verifying the violation of the plane stress condition,

the specific distribution is of less significance here.

Similar to the anisotropic case, a surface plot depicting the influence of direct (M1)

and coupling (M3) action on the twisting curvature (κ1) is provided in Fig. 3.18. By

comparing this figure with Fig. 3.7, it can be observed that the coupling action for the

current monoclinic material beam is weaker compared to the anisotropic material beam
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(a) (b)

(c) (d)

(e) (f)

Figure 3.17: Surface plot of stress components σ22, σ33 and σ23 obtained from (a,c,e)
analytical results, (b,d,f) FEA analysis

used in this study. However, it can be modified by adjusting the elastic constants of the

stiffness matrix.

The bend-twist coupling plot is provided in Fig. 3.19. Here, Fig. 3.19a corresponds to

the current stiffness matrix of monoclinic material while Fig. 3.19b corresponds to the

material used in article [1]. It can be observed here that the current and FEA coupling

results are close to each other but for the presented monoclinic material properties;

however, these results deviate from each other for the material properties of article [1].

Similar to the anisotropic case, in this case also, this deviation depends on the stiffness

matrix. As mentioned previously, the potential cause of this discrepancy might be the

absence of higher-order terms in the current solution. However, further investigation is
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required to confirm this claim, which falls beyond the scope of the current study.

(a)

Figure 3.18: Twisting curvature (κ1) due to twisting moment (M1) and bending moment
(M3)

(a) (b)

Figure 3.19: Couling plots for two different stiffness matrix

3.2.3 Monoclinic With x1 − x2 Plane of Elastic Symmetry

For this case C14 = C15 = C24 = C25 = C34 = C35 = C46 = C56 = 0. Substitution of

these elastic moduli in the stiffness matrix (3.1) produces stiffness matrix for this case.

The cross-sectional analysis of the beam using VAM provides the cross-sectional rigidity

constant matrix and constitutive relation. Hence, inverse-constitutive relation (3.51) can

be obtained. This inverse-constitutive relation suggests that κ1 and κ2 are coupled for

this case. So for this case M1 will influence u3 and similarly M2, F 3 and f3 will influence

ϕ1. The expressions of cross-sectional flexibility constants are provided in Appendix B.4.1.
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

γ11

κ1

κ2

κ3


=

1

P


Φ11 0 0 0

0 Φ22 Φ23 0

0 Φ23 Φ33 0

0 0 0 Φ44


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F1

M1

M2

M3


(3.51)

The 3D displacement field for this case is given by Eqs. (3.52-3.54). The expressions of

the 2D functions are provided in Appendix B.4.2.

u1(x1, x2, x3) =u1(x1)− x2u2(x1)
′ − x3u3(x1)

′ + ψmx3(x2, x3) ϕ1(x1)
′

+ F1
1 (x2, x3) u2(x1)

′′ + F1
2 (x2, x3) u3(x1)

′′ + F1
3 (x2, x3) u1(x1)

′ (3.52)

u2(x1, x2, x3) =u2(x1)− x3ϕ1(x1) + F2
1 (x2, x3) u1 (x1)

′ + F2
2 (x2, x3) u2(x1)

′′

+ F2
3 (x2, x3) u3(x1)

′′ + F2
4 (x2, x3)ϕ1(x1)

′ (3.53)

u3(x1, x2, x3) =u3(x1) + x2ϕ1(x1) + F3
1 (x2, x3) u1 (x1)

′ + F3
2 (x2, x3) u2(x1)

′′

+ F3
3 (x2, x3) u3(x1)

′′ + F3
4 (x2, x3)ϕ1(x1)

′ (3.54)

The 1D quantities for this case are given by the Eqs. (3.55-3.58). These equations also

confirm the coupling in these material beams.

u1(x1) =
94360 F 1

17650107 πab P
x1 (3.55)

u2(x1) =
188720 (3L− x1)x

2
1 F 2

52950321 πa3b P
+

47180
(
6L2 − 4Lx1 + x21

)
x21 f2

52950321 πa3b P

+
188720x21 M3

17650107 πa3b P
(3.56)

u3(x1) =
188720 (3L− x1)x

2
1 F 3

52950321 πab3 P
+

47180
(
6L2 − 4Lx1 + x21

)
x21 f3

52950321πab3P

− 188720x21 M2

17650107 πab3 P
− 30977x21 M1

17650107 πab3 P
(3.57)

ϕ1 (x1) =
5
(
426218129a2 + 388302354b2

)
x1 M1

173747653308 πa3b3 P
− 30977 (2L− x1)x1 F 3

17650107 πab3 P

−
30977

(
3L2 − 3Lx1 + x21

)
x1 f3

52950321 πab3 P

61954x1 M2

17650107 πab3 P
(3.58)

Numerical Validation

This section provides the validation of all the current results by providing a comparison

with FEA results. Here, surface plots of out-of-plane warping and normalized error are

shown in Fig. 3.20. Similar to the previous cases, this out-of-plane warping plot has been

obtained by applying the twisting moment only. The magnitude of this applied twisting

moment is the same as used in previous cases. Here, in this case, also, this out-of-plane

deformation due to the twisting of the cross-section has two parts (i) Saint-Venant warping

deformation and (ii) bending deformation due to bend-twist coupling. The normalized

error plot 3.20b reveals that the maximum error between the current analytical and
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(a) (b)

Figure 3.20: Surface plot for out-of-plane warping (a) analytical expression (b) normalized
error

FEA result is approximately 1.25% of maximum out-of-plane warping displacement. The

normalized error plot indicates that the present analytical result has effectively captured

the twisting deformation. Besides, it confirms the elastic coupling in these material beams.

The plots of 3D displacement along the centroidal axis of the beam are provided in Fig.

3.21. The displacement components u1 and u3 obtained from both analytical and FEA

are in close agreement for all three loading conditions. However, for u2, both the results

(a) (b)

(c)

Figure 3.21: Deflection of the beam along beam axis with three different loading conditions
(a) deflection along x1 coordinate direction (b) deflection along x2 coordinate direction
(c) deflection along x3 coordinate direction
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are agreed closely for lower loads, but as load increases, the analytical result starts to

deviate from the FEA result. Notably, this deviation is prominent in the direction of the

major semi-axis, indicating the possibility of the effect of omission of higher-order terms

as discussed earlier. Further mathematical analysis is essential to ascertain this claim.

The surface plot of the 3D displacement field for this case has been provided in Fig. 3.22.

The loading conditions remain the same as discussed earlier, except for the material of the

beam. For this case, the relative error for u1 and u2 increased significantly to 15% and

34% and can be seen from the Fig. 3.22b and 3.22d respectively. The relative error for

(a) (b)

(c) (d)

(e) (f)

Figure 3.22: Surface plot of the displacement field and relative error w.r.t. FEA results
(a,c,e) displacement along x1, x2 and x3 coordinate axis due to analytical result, (b,d,f)
relative error respectively
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(a) (b)

(c) (d)

(e) (f)

Figure 3.23: Surface plot of stress field and normalized error w.r.t. FEA result (a,c,e)
analytical plot of σ11, σ12 and σ13, (b,d,f) relative error plot respectively

u3 is still very small (0.6%); this can be seen from Fig. 3.22f. This significant error in 3D

field variables u1 and u2 is rooted from the error in the 1D field variable u2 as both the

u1 and u2 are function of u2.

The surface plots of stress components σ11, σ12, and σ13, along with their corresponding

normalized errors, are provided in Fig. 3.23. Similar to previous cases, normalization

has been performed using the corresponding maximum value. In this case, the stress

component σ11 is effectively captured, as shown by the normalized error plot in Fig.

3.23b. However, the other stress components σ12 and σ13 exhibit large errors compared

to FEA results due to the omission of shear stress effects, as explained in previous cases.



66 Chapter 3. Anisotropic and Monoclinic Homogeneous Beam Analysis

(a) (b)

(c) (d)

(e) (f)

Figure 3.24: Surface plot of stress components σ22, σ33 and σ23 obtained from (a,c,e)
analytical results, (b,d,f) FEA analysis

In this case, the stress components σ22, σ33, and σ23 are found to be non-zero. Therefore,

these stress components obtained from the current analytical results and FEA have been

plotted and are presented in Fig. 3.24. Similarly, in this case, the stress distribution

obtained from the two approaches differs but remains of the same order. As discussed

earlier, the possible reason might be the absence of higher-order terms; hence, this result

can be improved by using a higher-order solution. However, this is beyond the scope

of the current study, as we are primarily interested in the characteristic behavior of the

anisotropic beam.

The surface plot showing the influence of direct (M1) and coupling (M2) action on the
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(a)

Figure 3.25: Twisting curvature (κ1) due to twisting moment (M1) and bending moment
(M2)

twisting curvature (κ1)is provided in Fig. 3.25. By comparing this figure with Fig. 3.7, it

can be observed that the coupling action for the current monoclinic material beam is of

the same order as that of the anisotropic material beam used in this study.

In Fig. 3.26, bend-twist coupling plots are provided. Similar to the previous case

(a) (b)

Figure 3.26: Couling plots for two different stiffness matrix

of monoclinic material, Fig. 3.26a corresponds to the current stiffness matrix of the

monoclinic material beam, and Fig. 3.26b corresponds to the stiffness matrix provided in

the article [1]. Similar to the previous case of monoclinic material beam here in this case

also it can be observed here that the current and FEA coupling results are close to each

other for the presented monoclinic material properties; however, these two results deviate

from each other for the material properties of article [1].

From all the discussion, it can be observed that the discrepancy between current and

FEA results is only found in cases involving coupling. For all uncoupled cases, the

results obtained from the two approaches are in great agreement. One possible reason

for this discrepancy might be the presence of certain terms due to coupling, which highly

depends on the order of material constants. These terms are not captured in the current

solution as these terms might be migrated to higher-order solutions since we consider
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material constants of the same order. Therefore, improving the solution may entail either

incorporating a higher-order solution or considering the material order. There might be

other reasons as well; however, further investigation is needed to reach a solid conclusion,

which is beyond the scope of the current study.

3.3 Concluding Remarks

This chapter presented the analysis of the homogeneous material beams having material

anisotropy level higher than orthotropy, i.e., monoclinic material and complete anisotropic

material. The analysis is semi-analytical, as stiffness constants are assigned with numerical

values at the beginning of the procedure. This chapter and the previous chapter 2

presented a comprehensive analysis providing elastic coupling behavior in anisotropic

beams. This analysis suggests that beams with material anisotropy level up to orthotropy

exhibit no elastic coupling. The elastic coupling is first observed in monoclinic material

beams with one exception. Monoclinic material beams having the cross-sectional plane as

the plane of elastic symmetry also do not show elastic coupling. The results suggest that

beams do not provide a completely coupled system, even for the complete anisotropic but

homogeneous material. The extensional strain γ11 remains uncoupled from all the twisting

curvature κ1 and bending curvatures κα. One more important observation of this study

is that the plane stress assumption is violated for all the coupled cases, which is the basis

of many anisotropic material beam models.



Chapter 4

Anisotropic Inhomogeneous Beam

Analysis

This chapter presents the analysis of anisotropic but inhomogeneous beams. The laminate

composite provides the most feasible way to model these types of beams. However, these

structures tend to deform whenever there is a change in temperature and moisture. These

deformations are collectively termed hygrothermal instabilities. In real-life applications,

these structures are exposed to atmospheric conditions, hence are subjected to temperature

and moisture change. Therefore, to maintain these structures’ functionality under

atmospheric conditions, it becomes necessary to eliminate these hygrothermal instabilities.

To achieve the hygrothermal stability of laminated composite beams, conditions of

hygrothermal stability have been derived. A laminated structure satisfying these

hygrothermal stability conditions does not show in-plane shear and out-of-plane bending

and twisting deformation due to temperature and moisture change. In this work,

hygrothermally stable stacking sequences have been provided for three modes of elastic

coupling, i.e., extension-twist, bend-twist, and extension-bend. These proposed stacking

sequences have been optimized analytically and optimized results have been compared with

the optimized result obtained from the conventional numerical approach. The optimized

stacking sequences obtained from two approaches have been examined for the robustness

towards small perturbation in optimized fiber angles, using sensitivity analysis. At last, a

mathematical formulation of strip-like composite beam has been provided. It provides the

kinematic equivalence between 1D beam parameters and 2D plate parameters. Classical

Laminate Plate Theory (CLPT) has been employed along with the kinematic equivalence

relation to obtained the deformation field of this strip-like beam.

4.1 Derivation of Necessary and Sufficient Conditions for

Hygrothermal Stability

In the current work, Classical Laminate Theory (CLT) has been used to derive

the necessary and sufficient conditions for hygrothermal stability. CLT provides the

constitutive law, which relates the force and moment resultant to mid-plane strains and

curvatures of laminate. It should be kept in mind that the current work provides the study

of thermal effects only for convenience. However, the term “hygrothermal stability” has

been used to underline the fact that the mathematical formulation of the hygral effect is

69
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Figure 4.1: Schematic of Laminate

similar to that of the thermal effect. Hence, the presented mathematical formulation of

the thermal effect can easily be extended to the hygral effect. The constitutive relation in

the presence of mechanical loading along with thermal loading is given as [109].
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(4.1)

where εox, ε
o
y and γoxy represents mid-plane strains while κx, κy and κxy represents

mid-plane curvature of the laminate. Apq and Dpq are extensional and bending stiffnesses,

respectively. Bpq are extension-bending coupling stiffnesses. These three types of

stiffnesses are defined as,

Apq =
n∑

k=1

Qpq(k)(zk − zk−1) (4.2)

Bpq =
1

2

n∑
k=1

Qpq(k)(z
2
k − z2k−1) (4.3)

Dpq =
1

3

n∑
k=1

Qpq(k)(z
3
k − z3k−1) (4.4)

where n is the total number of plies in laminate, zi (positive in downward direction)

distance of from the mid-plane of the laminate and t is the thickness of the ply as shown

in Fig. 4.1. Besides, in this Fig. 4.1, H represents the total thickness of the laminate. In

Eq. (4.1) Nx, Ny and Nxy are force resultant and Mx, My and Mxy are moment resultant

due to mechanical loading. The superscripted terms represent the quantity due to thermal
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loading. The thermal force and moment caused by temperature ∆T [109] are:
N T

x

N T
y

N T
xy

 = ∆T

n∑
k=1

[
Q
]
k

{
α
}
k
(zk − zk−1) (4.5)


M T

x

M T
y

M T
xy

 =
1

2
∆T

n∑
k=1

[
Q
]
k

{
α
}
k
(z2k − z2k−1) (4.6)

In equations (4.2 - 4.6), Qpq(k) and {α}k represents reduced stiffness coefficient in

transformed coordinate system, and transformed thermal expansion coefficient for the

kth laminae respectively. Transformation of stiffness and thermal coefficient from material

coordinate to the laminate coordinate system for specially orthotropic lamina is given as[
Q
]
=

[
T
]−1 [

Q
] [
T
]−T

(4.7)

{
α
}
=


αx

αy

αxy

 =
[
T
]T


α1

α2

0

 (4.8)

where,

[
Q
]
=


Q11 Q12 0

Q12 Q22 0

0 0 Q66

 and
[
T
]
=


cos2 θ sin2 θ 2 cos θ sin θ

sin2 θ cos2 θ −2 cos θ sin θ

− cos θ sin θ cos θ sin θ cos2 θ − sin2 θ


For the convenience and simplicity of the expressions, the transformed coefficients of

stiffness Qpq are written in the invariant form given by Tsai[110].

Q11 = U1 + U2 cos 2θ + U3 cos 4θ

Q22 = U1 − U2 cos 2θ + U3 cos 4θ

Q66 = −U3 cos 4θ + U5

Q12 = −U3 cos 4θ + U4

Q16 =
1

2
U2 sin 2θ + U3 sin 4θ

Q26 =
1

2
U2 sin 2θ − U3 sin 4θ

(4.9)
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where,

U1 =
1

8
(3Q11 + 2Q12 + 3Q22 + 4Q66)

U2 =
1

2
(Q11 −Q22)

U3 =
1

8
(Q11 − 2Q12 +Q22 − 4Q66)

U4 =
1

8
(Q11 + 6Q12 +Q22 − 4Q66)

U5 =
1

8
(Q11 − 2Q12 +Q22 + 4Q66)

(4.10)

In the above equations Ur (r = 1, 2, 3, 4, 5) are invariant coefficients of laminates. By using

relations (4.2 - 4.4), (4.9) and (4.10), the stiffness coefficients can be calculated and given

as follow 

A11

A12

A22

A66

A16

A26


= H



1 ζ1 ζ2 0 0

0 0 −ζ2 1 0

1 −ζ1 ζ2 0 0

0 0 −ζ2 0 1

0 ζ3
2 ζ4 0 0

0 ζ3
2 −ζ4 0 0





U1

U2

U3

U4

U5


(4.11)



B11

B12

B22

B66

B16

B26


=
H2

2



0 ζ5 ζ6 0 0

0 0 −ζ6 0 0

0 −ζ5 ζ6 0 0

0 0 −ζ6 0 0

0 ζ7
2 ζ8 0 0

0 ζ7
2 −ζ8 0 0





U1

U2

U3

U4

U5


(4.12)



D11

D12

D22

D66

D16

D26


=
H3

12



1 ζ9 ζ10 0 0

0 0 −ζ10 1 0

1 −ζ9 ζ10 0 0

0 0 −ζ10 0 1

0 ζ11
2 ζ12 0 0

0 ζ11
2 −ζ12 0 0





U1

U2

U3

U4

U5


(4.13)
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where,

H = n t zk = kt− nt

2

(ζ1, ζ2, ζ3, ζ4) =
n∑

k=1

1

n
(cos 2θk, cos 4θk, sin 2θk, sin 4θk)

(ζ5, ζ6, ζ7, ζ8) =
n∑

k=1

(
2k − n− 1

n2

)
(cos 2θk, cos 4θk, sin 2θk, sin 4θk)

(ζ9, ζ10, ζ11, ζ12) =
n∑

k=1

[
12k2 − 12k(n+ 1) + 3n2 + 6n+ 4

n3

]
(cos 2θk, cos 4θk, sin 2θk, sin 4θk)

(4.14)

Here, ζs are lamination parameter. It should be noted that the thickness (t) of each ply

in the laminate is assumed to be the same. In a similar fashion thermal force (Eq.4.5)

and moment (Eq. 4.6) can be rewritten in the invariant form, using Eqs. (4.8), (4.9) and

(4.14) are: 
N T

x

N T
y

N T
xy

 =
1

2
H ∆T


UT
1 + UT

2 ζ1

UT
1 − UT

2 ζ1

UT
2 ζ3

 (4.15)


M T

x

M T
y

M T
xy

 =
1

4
H2 UT

2 ∆T


ζ5

−ζ5

ζ7

 (4.16)

where UT
1 and UT

2 are another invariant terms due to thermal loading and given as

UT
1 = α1U1 + α1U2 + α1U4 + α2U1 − α2U2 + α2U4

UT
2 = α1U1 + α1U2 + 2α1U3 − α1U4 − α2U1 + α2U2 − 2α2U3 + α2U4

Two types of distortions are present in the laminates due to the temperature and moisture

change. First, in-plane distortion due to the shear strain and out-of-plane distortion due

to bending and twisting. These hygrothermal distortions can be eliminated by nullifying

thermal shear (γTxy) and thermal curvatures (κTx , κ
T
y , κ

T
xy). Richard et al. [95] shows that

the necessary and sufficient conditions for the curvature stable laminates can be achieved

by satisfying any one of the following two conditions

[B] = 0 (4.17)

or

NT
x = NT

y

NT
xy =MT

x =MT
y =MT

xy = 0 (4.18)
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From Eq. (4.12), it is clear that the first condition i.e. [B] = 0 is satisfied when ζ5 = ζ6 =

ζ7 = ζ8 = 0. It can also be observed from Eq. (4.16) that for these conditions thermal

moment resultants (MT
x = MT

y = MT
xy) are also zero. This condition ultimately leads to

zero thermal curvature and can be verified from Eq. (4.1) in the absence of mechanical

loading.

Now, by examining the Eqs. (4.15) and (4.16), it is clear that for ζ1 = ζ3 = ζ5 = ζ7 = 0,

the second set of necessary and sufficient conditions for hygrothermal stability (Eq. 4.18)

is satisfied. The in-plane strains and curvature terms in the absence of mechanical loading

can be calculated using Eq. (4.1) and obtained as

εTx = εTy =
UT
1

2(U1 + U2)
∆T

εTxy = κTx = κTy = κTxy = 0 (4.19)

The laminate having the above state of strain refers as the hygrothermal isotropic laminate.

It can be concluded that ζ1 = ζ3 = ζ5 = ζ7 = 0 is one of the two conditions for

hygrothermal isotropic laminate. The second condition is proven by Chen [96] which

states that if principle coefficients of thermal expansion (or contraction) are equal i.e.

α1 = α2 then these do not change with the direction.

The hygrothermal stability condition (Eq. 4.17) eliminates out-of-plane deformation due

to hygrothermal bending and twisting only; it does not eliminate in-plane deformation

due to hygrothermal shear. The hygrothermal stability condition (Eq. 4.18) eliminates

both the in-plane and out-of-plane hygrothermal deformations. This work uses the second

set of hygrothermal stability conditions (Eq. 4.18) to achieve hygrothermal stability in

the proposed stacking sequences. The procedure to obtain these hygrothermally stable

stacking sequences, their optimization, and sensitivity analysis have been provided in the

following sections.

4.2 Extention-Twist Coupling with Hygrothermal Stable

Stacking

Hygrothermal stable laminate with extension-twist coupling should have a ply layup

that provides non-zero coupling coefficients B16 and B26 as well as satisfies the

hygrothermal stability conditions discussed in the previous section 4.1. Winckler, in

his work [104], suggested that the two laminates, each with hygrothermal isotropy

but anti-symmetric to each other when combined together, formed hygrothermal stable

laminate with extension-twisting coupling. The author presented a 8-ply laminate

[θ, (θ+90)2, θ,−θ, (−θ+90)2,−θ]T which fulfills all these conditions. This work extends the

Winckler-like stacking sequence to a generalized case for laminate having 4i (i = 2,3,4...),

i.e., the total number of plies n = 4i. Here i does not start with 1 because, in this case,

the laminate will have a total of 4 plies, and no hygrothermal stable asymmetric laminate

is possible, as proved by Cross et al. [95]. Depending on whether i is even or odd, the
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proposed stacking sequence can be divided into cases and sub-cases. This classification is

given in Fig. 4.2b and discussed in the following subsections.

(a)
(b)

Figure 4.2: (a) division and Sub-division of Laminate (b) Case and sub-cases involved in
proposed stacking sequence based on i

4.2.1 When i to be an even number

In this case, the generalized stacking sequence for hygrothermal stable laminate with

extension-twist coupling is achieved by following the steps given below

(a) Apply anti-symmetric condition about the mid-plane of the laminate. This will

reduce total independent fiber angles from 4i to 2i. This step results in two

Sub-Laminate (SL) as shown in figure (4.2a).

(b) Apply symmetric condition in one of the SLs about its own mid-plane. Due to

the first step, the fiber angles of the other SL will change accordingly. This step

further reduces the independent fiber angles from 2i to i and also produces four

Sub-Sub-Laminate (SSL).

(c) In the final step half of independent fiber angles
(
i
2

)
can be taken randomly let say

ϕk (k = 1, 2, 3... i2 ) but the remaining i
2 fiber angles has to be taken in the form

(90◦ + ϕk). This step reduces total independent fiber angles to i
2 . These total fiber

angles (ϕk and 90◦+ϕk) can be arranged in any random order in SSL or in factorial

(i) ways.

By following these steps, for given i the resultant hygrothermal laminate can be obtained

in factorial (i) ways and each laminate will have total i
2 independent fiber angles. The

schematic of laminate with SSLs and SLs is shown in the figure (4.2a). The laminate with

stacking sequence obtained by following the above steps will always satisfy the second set

of hygrothermal stability conditions (4.18) and show extension-twist coupling.

For better understanding, let’s take an example with i = 4. For hygrothermal stability

ζ1, ζ3, ζ5 and ζ7 has to be made zero. As discussed above, after the application of

anti-symmetric and symmetric conditions, there will be only 4 independent fiber angles in
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SSL, and the resultant ζ1, ζ3, ζ5 and ζ7 terms will be of the following form

(ζ1, ζ3, ζ5, ζ7) =

(
1
4 (cos 2θ1 + cos 2θ2 + cos 2θ3 + cos 2θ4) , 0, 0,

1
8 (− sin 2θ1 − sin 2θ2 − sin 2θ3 − sin 2θ4)

)
(4.20)

Here it can be seen that ζ3 and ζ5 are zero. Now to make ζ1 and ζ7 zero, two fiber angles

out of four independent fiber angles (θ1, θ2, θ3 and θ4) can be taken randomly as ϕ1 and

ϕ2 and remaining two fiber angles has to be made randomly (90◦ + ϕ1) and (90◦ + ϕ2).

This selection of fiber angles makes ζ1 and ζ7 also zero and can be verified by putting

these angles in Eq. 4.20. Hence, the hygrothermal stability condition has been satisfied.

This choice of stacking sequence also makes ζ4, ζ6, ζ11 and ζ12 zero. In this case, for any

allowed even value of i, the generalized expression for the coefficients of [A] and [B] are

given as

(A11 = A22, A12, A66, A16, A26) =
2

i
H

(
i

2
U1 + U3Sc,

i

2
U4 − U3Sc,

i

2
U5 − U3Sc, 0, 0

)
(B11, B12, B22, B66, B16, B26) =

H2

2i
(0, 0, 0, 0, − U3Ss, U3Ss) (4.21)

where Sc =
∑ i

2
k=1 cos 4ϕk and Ss =

∑ i
2
k=1 sin 4ϕk. In the above equation, coefficients of

the [D] matrix are not given because these depend on the stacking sequence and do not

have invariant expressions. Here it should be noted that whenever i
2 is a even number,

the Sc and Ss can be made zero by taking i
4 angles as ψ and the remaining i

4 angles as

(45◦ + ψ). This ultimately makes the B matrix zero.

To consider a specific case, when all independent fiber angles (ϕk) are taken as equal, the

term Sc and Ss will reduce to
i
2 cos 4ϕ and i

2 sin 4ϕ respectively. The coefficient of [A] and

[B] matrices will be rewritten as

(A11 = A22, A12, A66, A16, A26) = H (U1 + U3 cos 4ϕ, U4 − U3 cos 4ϕ, U5 − U3 cos 4ϕ, 0, 0)

(B11, B12, B22, B66, B16, B26) =
H2

4
(0, 0, 0, 0, − U3 sin 4ϕ, U3 sin 4ϕ) (4.22)

4.2.2 When i is to be an odd number

In this case, i
2 is not a whole number, so the steps followed in the condition when i is even

cannot be implemented directly. One additional step needs to be added after the first step

i.e. anti-asymmetric condition and subsequent steps remain as it is. Two Adjacent Plies

(AP) need to be preassigned 0◦ and 90◦ fiber angles in SL. Three positions of these AP are

possible, as shown in Fig. 4.3. When these AP are placed at the mid-plane of laminate in

SL, it refers as the inner-side. Similarly, the mid-side and outer-side refer to the position

where AP is situated at the mid and most exterior of SL, respectively. The introduction of

AP after applying the anti-symmetric condition reduces total unknown independent fiber

angles to 2i− 2. After this step, the second and third conditions that are used for i to be
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(a) (b)

(c)

Figure 4.3: Position of 0◦ and 90◦ AP in SL (a) inner-side (b) mid-side (c) outer-side

even conditions can be implemented in this case also. For better understanding, let’s take

an example with i = 5. In this case, after applying the anti-symmetric condition ζ3 and

ζ5 will vanish, and expression for ζ1 and ζ7 is given as

ζ1 =
1

10

(
cos 2θ1 + cos 2θ2 + cos 2θ3 + cos 2θ4 + cos 2θ5 + cos 2θ6 + cos 2θ7

+ cos 2θ8 + cos 2θ9 + cos 2θ10
)

(4.23)

ζ7 =
1

200

(
−19 sin 2θ1 − 17 sin 2θ2 − 15 sin 2θ3 − 13 sin 2θ4 − 11 sin 2θ5

−9 sin 2θ6 − 7 sin 2θ7 − 5 sin 2θ8 − 3 sin 2θ9 − sin 2θ10
)

(4.24)

Implementation of the remaining condition depends on the position of the AP and will be

discussed in each case separately. Here it should be noted that there are other combinations

of 0◦ and 90◦ plies also possible that can serve the purpose. For example, any two

plies situated at the symmetric position about the mid-plane of SL can be chosen to

be preassigned the 0◦ and 90◦ fiber angle. This method is equally valid however, in this

paper, only the AP method is studied and will be discussed in subsequent subsections.

AP at inner-side of SL

In this case, AP is selected in SL at the mid-plane of laminate to pre-assign 0◦ and 90◦

see figure (4.6a). Now other two remaining conditions can be implemented. In this case,

for the symmetry condition, the plane of symmetry will be different from the mid-plane

of SL. It will be mid-plane of the remaining 2i − 2 plies. After applying the symmetry

condition, there will be i − 1 independent fiber angles. Half of them
(
i−1
2

)
will have to

make ϕk
(
k = 1, 2, 3... i−1

2

)
and remaining as 90◦ + ϕk. This will make ζ1 and ζ7 zero.

Hence the hygrothermal condition is achieved.

Now, continue the example taken in the previous section (4.2.2) with i = 5. In the

current case, plies with θ9 and θ10 will be selected as AP and preassigned 0◦ and 90◦ fiber

angles. After this assignment of fiber angle, the corresponding term in equations (4.23

and 4.24) will vanish. It can be seen from these equations that the assignment of 0◦ and
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90◦ is arbitrary and will always vanish these terms. Next, the application of symmetry

condition about the mid-plane of remaining plies i.e. plane between θ4 and θ5 plies will

reduce these equations in the following form.

ζ1 =
1

5
(cos 2θ1 + cos 2θ2 + cos 2θ3 + cos 2θ4) (4.25)

ζ7 = − 3

25

(
sin 2θ1 + sin 2θ2 + sin 2θ3 + sin 2θ4

)
(4.26)

In these equations (4.25 and 4.26) any two out of four fiber angles can be selected to take

value ϕk and the remaining two as 90◦ + ϕk. This will vanish ζ1 and ζ7 also.

By following the steps given above for any permissible odd i, the elements of the ABD

matrix can be calculated using equations (4.11-4.14). The generalized expression of the

coefficients of [A] and [B] matrices are given as

(A11 = A22, A12, A66, A16, A26) =
H

i

(
i U1 + (1 + 2Sc)U3, i U4 − (1 + 2Sc)U3,

i U5 − (1 + 2Sc)U3, 0, 0

)
(4.27)

(B11, B12, B22, B66, B16, B26) =
(i+ 1)

2i2
H2

(
0, 0, 0, 0, − U3Ss, U3Ss

)
(4.28)

where,

Sc =
∑ i−1

2
k=1 cos 4ϕk Ss =

∑ i−1
2

k=1 sin 4ϕk

AP at mid-side of SL

In this case, all steps remain the same as discussed in the above section (4.2.2). The only

position of AP and plane of symmetry will change. The position of the AP will be at

the mid of SL, as shown in Fig.4.3b, and the plane of symmetry will coincide with the

mid-plane of SL.

In this case, for the example under consideration, plies with θ5 and θ6 will be AP. So

the terms corresponding to these fiber angles will vanish in Eqs. (4.23 and 4.24). After

applying the symmetry conditions, these equations will be reduced to

ζ1 =
1

5
(cos 2θ1 + cos 2θ2 + cos 2θ3 + cos 2θ4) (4.29)

ζ7 = − 1

10

(
sin 2θ1 + sin 2θ2 + sin 2θ3 + sin 2θ4

)
(4.30)

Above Eqs. (4.29 and 4.30) is similar to Eqs. (4.25 and 4.26) and can be made zero

following the similar approach. In this case, the generalized expression of the coefficient

of [A] and [B] matrices are given as

(A11 = A22, A12, , A66, A16, A26) =
H

i

(
i U1 + (1 + 2Sc)U3, i U4 − (1 + 2Sc)U3,
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i U5 − (1 + 2Sc)U3, 0, 0

)
(4.31)

(B11, B12, B22, B66, B16, B26) =
1

2i
H2

(
0, 0, 0, 0, − U3Ss, U3Ss

)
(4.32)

Where,

Sc =
∑ i−1

2
k=1 cos 4ϕk Ss =

∑ i−1
2

k=1 sin 4ϕk

AP at outer-side of SL

In this case, AP will be at the exteriormost position of the SL see Fig. 4.3c, and the plane

of symmetry will be different from the mid-plane of SL. In the current numerical example,

the AP will be the plies corresponding to θ1 and θ2, and the plane of symmetry will be

the plane between θ6 and θ7. So after the application of symmetry conditions Eqs. (4.23

and 4.24) will reduce to

ζ1 =
1

5
(cos 2θ3 + cos 2θ4 + cos 2θ5 + cos 2θ6) (4.33)

ζ7 = − 2

25

(
sin 2θ3 + sin 2θ4 + sin 2θ5 + sin 2θ6

)
(4.34)

Now following the procedure discussed in section (4.2.2) ζ1 and ζ7 will be made zero. and

the resultant coefficients of the [A] and [B] matrices for any permissible odd i is given as

(A11 = A22, A12, , A66, A16, A26) =
H

i

(
i U1 + (1 + 2Sc)U3, i U4 − (1 + 2Sc)U3,

i U5 − (1 + 2Sc)U3, 0, 0

)
(4.35)

(B11, B12, B22, B66, B16, B26) =
(i− 1)

2i2
H2

(
0, 0, 0, 0, − U3Ss, U3Ss

)
(4.36)

where,

Sc =
∑ i−1

2
k=1 cos 4ϕk Ss =

∑ i−1
2

k=1 sin 4ϕk

Figure 4.4: Steps to get hygrothermally stable laminate with extension-twist coupling
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For all sub-cases of i to be odd cases, the expression of coefficients of the [D] matrix is not

given as its expression depends on the stacking sequence and varies accordingly. Besides

this, similar to the even i condition, all the equations representing coefficients of [A] and

[B] matrices can also be reduced for all ϕs are equal conditions for all sub-cases. It should

also be noted that for i to be odd case, by following the above-given steps the resultant

hygrothermal stable laminates can be obtained in factorial(i− 1) ways and each laminate

will have i−1
2 independent fiber angles.

The whole procedure to obtain the hygrothermally stable laminate with extension-twist

coupling is summarized in the following Fig. 4.4

4.2.3 Optimization

In this section, the proposed stacking sequence is optimized to get maximized

extension-twist coupling for the given number of plies. This can be achieved by maximizing

the compliance coefficient b16 provided in Eq. (4.37). This equation is the inverse

of equation (Eq. 4.1). The compliance coefficient b16 is the objective function and

hygrothermal stability conditions (Eqs. 4.17 and 4.18) serve as constraints of the current

optimization problem. In the current work second set of hygrothermal stability conditions

(Eq. 4.18) is being used as the first set (Eq. 4.17) nullify the entire coupling matrix [B]

which is not allowed in current work. As already discussed that the proposed stacking

sequence inherently satisfies the required hygrothermal stability conditions for any set of

fiber angles between −90◦ and 90◦. Therefore the proposed stacking sequence reduces

constrained optimization problems into unconstrained ones and can be solved analytically

or numerically. For the calculation of the objective function, b16 materials properties are

required. these material properties are given in table (4.1).

εox

εoy

γoxy

κx

κy

κxy



=



a11 a12 a16 b11 b12 b16

a12 a22 a26 b12 b22 b26

a16 a26 a66 b16 b26 b66

b11 b12 b16 d11 d12 d16

b12 b22 b26 d12 d22 d26

b16 b26 b66 d16 d26 d66





Nx +N T
x

Ny +N T
y

Nxy +N T
xy

Mx +M T
x

My +M T
y

Mxy +M T
xy



(4.37)

In the present work, the proposed stacking sequence is optimized analytically to get an

optimized set of fiber angles using the ‘Maximize’ function of Wolfram Mathematica [111].

This function provides exact optimized parameters that maximize the given objective

function. As already discussed that there are total factorial(i) and factorial(i − 1)

permutations are possible for i to be even and odd respectively. Each permutation has its

own optimized ϕs and the optimized objective function value and corresponding stacking

sequence do not necessarily represent globally optimized stacking sequence. Whenever the
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Table 4.1: Material properties of graphite/epoxy T300/976 [2]

E11 125 GPa

E22 8.45 GPa

G12 4.3 GPa

ν12 0.328

t 0.152 mm

term ‘globally optimized stacking sequence’ is used in the context of analytic optimization,

it shall refer to that permutation of the proposed stacking sequence that maximizes b16

upon optimization. Therefore the permutation carrying the maximum value of objective

function b16 will be considered as the globally optimized permutation of the proposed

stacking sequence. In this work, every permutation for i = 2 through i = 7 has been

optimized to find the globally optimized stacking sequence for given i. There is more

than one permutation that upon optimization provides the same value of the objective

function for global as well as sub-optimal cases. Out of these same globally optimized

stacking sequences, one is selected and given in the table (4.2). A similar optimization

process has also been followed by taking each ϕs equal. In this case, each permutation

provides the same optimized value of the objective function, and one of the optimized

sequences with optimized objective function value is provided in the table (4.3). In both

the tables, letters I, M, and O in the second column (Pos) represent the position of plies

made 0◦ and 90◦ in SL as discussed in the preceding section and as shown in Fig. (4.3).

The analytically optimized results for both cases ( all ϕs different and same ) are

not significantly different and can be observed from the tables (4.2 and 4.3). The

calculated results show that for the case when all ϕs are the same, all permutations of

the proposed stacking sequence produce same optimized value of objective function b16

which is insignificantly different from the globally optimized b16 obtained with different

ϕs. This result creates an advantageous situation because it reduces all effort in finding

globally optimized stacking sequences to just one calculation. On the other hand, the case

when all ϕs are different provides different sub-optimal solution which is absent for the

case when all ϕs same. The presence of sub-optimal solutions increases the application

spectrum.

Numerical optimization is carried out using the ‘fmincon’ function of MATLAB

[112] implemented with the SQP algorithm. It should be noted that for numerical

optimization, most generic stacked laminate (i.e. laminate without specific conditions

applied on stacking or having the number of independent fiber angles equal to the number

of plies) has been used instead of the current proposed stacking sequence. Here objective

function has been taken as −b216 because ‘fmincon’ provides minimized results. −90◦ and

90◦ form the lower and upper bounds of the problem. The following constraints are used.
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ζ1 = ζ3 = ζ5 = ζ7 = 0 (4.38)

These constraints are equivalent to the second set of hygrothermal stability conditions (Eq.

Table 4.2: Optimized fiber angles and stacking sequence for extension-twist coupling

i Pos. ϕ1(
◦) ϕ2(

◦) ϕ3(
◦) Stacking sequence (◦) b16(N

−1)

in 10−5

2 - -67.5 - - [-67.5/22.5/22.5/-67.5]A 7.56

3

I
14.66 - - [14.66/-75.34/-75.34

2.23
/14.66/0/90]A

M
15.51 - - [15.51/-74.49/0/90

1.71
/-74.49/15.51]A

O
20.89 - - [0/90/20.89/-69.11

1.71
/-69.11/20.89]A

4 - -66.60 20.45 -
[-69.55/20.45/-66.60/23.40

1.92
/23.40/-66.60/20.45/-69.55]A

5

I -72.88 15.39 -

[-74.61/15.39/17.12

0.96/-72.88/-72.88/17.12/15.39

/-74.61/0/90]A

M -74.90 18.17 -

[-74.90/15.10/18.17

0.792/-71.83/0/90/-71.83

/18.17/15.10/-74.90]A

O -71.35 21.53 -

[0/90/-71.35/18.65

0.816/-68.47/21.53/21.53

/-68.47/18.65/-71.35]A

6 - 23.57 19.63 22.25

[-70.37/19.63/-67.75/22.25

0.854/-66.43/23.57/23.57/-66.43

/22.25/-67.75/19.63/-70.37]A

7

I 17.51 15.69 18.48

[15.69/-74.31/-72.49/17.51/-71.52

0.527/18.48/18.48/-71.52/17.51/-72.49

/-74.31/15.69/0/90]A

M 17.72 15.19 19.41

[15.19/-74.81/17.72/-72.28/-70.59

0.452/19.41/0/90/19.41/-70.59

/-72.28/17.72/-74.81/15.19]A

O 21.80 20.42 17.80

[0/90/-72.20/17.80/20.42

0.466/-69.58/21.80/-68.20/-68.20

/21.80/-69.58/20.42/17.80/-72.20]A

I → inner-side, M → mid-side, O → outer-side
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4.18). There are several local minima/optima present for the objective function. Therefore

gradient-based ‘fmincon’ function often returns the sub-optimal solution, which depends

on the initial guess. Hence to find and build confidence in the global optima, several

iterations are required. As the number of plies increases, the number of these iterations

increases drastically without guaranteeing the globally optimized value. However, in the

present case at most, fifty thousand iterations with random initial guesses have been used

for i = 6 and i = 7 cases. The obtained globally optimized values of b16 are given in table

(4.3).

The results for i = 2 and i = 3 (or total plies 8 and 12) are in line with results available

in earlier publication [103]. It should be noted here that although the total number of

Table 4.3: Optimized fiber angle and stacking sequence for extension-twist coupling with
numerical optimization

i Pos. ϕ Stacking sequence b16(N
−1) in 10−5

(◦) (◦) Ana. Opt. Nu. Opt.

2 - -67.5 [-67.5/22.5/22.5/-67.5]A 7.56 8.98

3

I 14.66 [14.66/-75.34/-75.34/14.66/0/90]A 2.23

4.95M 15.51 [15.51/-74.49/0/90/-74.49/15.51]A 1.71

O 20.89 [0/90/20.89/-69.11/-69.11/20.89]A 1.71

4 - -67.5
[22.5/-67.5/22.5/-67.5/-67.5

1.89 2.60
/22.5/-67.5/22.5]A

5

I 16.27
[-73.73/16.27/16.27/-73.73/-73.73

0.956

1.46

/16.27/16.27/-73.73/0/90]A

M 16.69
[-73.31/16.69/16.69/-73.31/0

0.782
/90/-73.31/16.69/16.69/-73.31]A

O -69.80
[0/90/-69.80/-69.80/20.20

0.809
/20.20/20.20/20.20/-69.80/-69.80]A

6 - -67.5

[22.50/-67.50/-67.50/22.50

0.84 0.970/-67.50/22.50/22.50/-67.50

/22.50/-67.50/-67.50/22.50]A

7

I 17.29

[17.29/-72.71/17.29/-72.71/-72.71

0.522

0.604

/17.29/17.29/-72.71/-72.71/17.29

/-72.71/17.29/0/90]A

M 17.57

[17.57/-72.43/-72.43/17.57/-72.43

0.445/17.57/0/90/17.57/-72.43

/17.57/-72.43/-72.43/17.57]A

O 20.21

[0/90/20.21/20.21/-69.79/20.21

0.46/-69.79/-69.79/-69.79/-69.79

/20.21/-69.79/20.21/20.21]A

I → inner-side, M → mid-side, O → outer-side



84 Chapter 4. Anisotropic Inhomogeneous Beam Analysis

plies is the same for both analytical and numerical optimization, the expression of the

objective function b16 will be different. As discussed above for both cases the number

of independent fiber angles is different (for analytical it is i and for numerical it is 4i)

therefore the globally optimized value of objective function b16 will be different. Hence

both results cannot be compared directly. However, these two results prove helpful in

choosing between these two approaches.

The proposed stacking sequence can also be optimized using ‘fmincon’. As in this case,

the independent fiber angles are lower (i instead of 4i), and due to the unconstrained

problem, fewer iterations are required to get the globally optimized solution. Which

ultimately reduces the calculation time. The Fig. 4.5 shows plots of optimized b16 obtained

analytically and numerically given in table (4.2 and 4.3). Analytical results are taken from

the table (4.2) only as both analytical results are insignificantly different. Fig. (4.5) shows

a significant deviation between two results for smaller values of i, but as i increases, the

difference between these two results diminishes. It is because independent fiber angles are i

for analytical results while 4i for numerical results, though total plies for both cases are the

same (4i). This additional constraint on analytical results creates a difference between the

two results. Additionally, b16 inversely depends on the square of the total thickness (H) of

the laminate. For larger i, thickness starts to dominate and both the results approach each

other asymptotically, as shown in Fig. (4.5). This observation together with the above

discussion makes it clear that for large i the current proposed stacking sequence provides

an efficient way to obtain optimized results without compromising much on coupling.

Figure 4.5: Plots of optimized b16 obtained analytically and numerically

4.2.4 Sensitivity Analysis

The exact implementation of the optimized stacking sequence is required during the

manufacturing process of laminate to get better operational characteristics. However,

in real life, it is nearly impossible to achieve the exact optimized stacking sequence in

manufactured laminate due to the inevitable small errors. For the practical usefulness

of the presented optimized stacking sequence, this small error in ply angles should not

result in significant coupling loss. Therefore sensitivity analysis has been performed to

investigate the loss of coupling due to small errors in ply angles. The loss of coupling is

defined as the relative error between optimized and perturbed extension-twist coupling
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(a) (b)

(c)

Figure 4.6: Histogram for i=4 due to (a) analytical optimization with different ϕs (b)
analytical optimization with same ϕs (c) numerical optimization

coefficient and is given as

%Error =
|bP16| − |bO16|

|bO16|
× 100 (4.39)

Here bP16 is the coupling coefficient due to the perturbed stacking sequence, and bO16 is

the optimized coupling coefficient. Here, the sensitivity analysis results are given for the

laminates with i = 4 and 5. For these laminates, both analytically (all ϕs are the same

and different) and numerically optimized results are considered for perturbed stacking

sequence. Total 5 × 105 sets of perturbed stacking sequence for each case are generated.

It is assumed that each ply angle is uniformly distributed between [θk − 2◦, θk + 2◦].

Where θk is the optimized angle for kth ply in the laminate.

All the results of this work are given in figure (4.6 and 4.7) in terms of histograms for

i = 4 & i = 5 respectively. As discussed above direct correlation cannot be established

between the sensitivity of analytically and numerically optimized results. It is also

mentioned in earlier sections that there is more than one permutation of the proposed

stacking sequence is possible which provides the same globally optimized value. Sensitivity

analysis provides criteria for selection from these globally optimized stacking sequences.

In figure (4.8) histograms corresponding to four different globally optimized permutations

for i = 4 are given. By observing these results some important points can be made.

These are the following
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 4.7: Histogram for i=5 due to (a,c,e) analytical optimization with different ϕs with
0◦ 90◦ pair at inner, mid and outer side of SL respectively (b,d,f) analytical optimization
with same ϕs with 0◦ 90◦ pair at inner, mid and outer side of SL respectively (g) numerical
optimization
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(a) (b)

(c) (d)

Figure 4.8: Histograms of four different globally optimized permutations for i=4

1. For both cases of analytical optimization (all ϕs are different and same), the resultant

optimized stacking sequence is almost equally sensitive towards the perturbation.

Hence selection between these two approaches will not be affected by sensitivity.

2. For i to be odd case, the optimized stacking sequence becomes more sensitive as AP

shifts towards the outer side. This observation suggests that the laminate with AP

at the inner-side is best suitable for this case.

3. Optimized stacking sequence obtained using the numerical approach is slightly more

robust than the analytical approach. However, this difference may not influence

much the selection of the approach to be followed.

4. from the figure (4.8) it can be observed that the distribution of the error is different

and varies for each permutation. As the variation is not significant, thus for given i

any globally optimized permutation can be selected randomly.

If the results of figures (4.7e,4.7f) are ignored, then for each remaining case the major

portion of the error distribution comes between ±5% and the maximum error is within

±10%. Therefore these stacking sequences can be considered suitable for design purposes

from the point of view of sensitivity.
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4.3 Bend-Twist Coupling with Hygrothermal Stable

Stacking

In laminated composites, to incorporate the bend-twist coupling, the stiffness coefficients

D16 and D26 must be non-zero. For such composites to be completely hygrothermal stable,

it is necessary to satisfy the second set of hygrothermal stability conditions (Eq. 4.18) as

this condition prevents both in-plane and out-of-plane hygrothermal deformations. In the

current work, two approaches have been provided to get hygrothermal stable laminates

with bend-twist coupling. Each approach results in a special class of symmetric laminate

having a total 4i (i = 2, 3, 4... or i = 1, 2, 3... depending on the approach) plies. Due

to symmetry, these laminates are inherently hygrothermally curvature stable ([B] = 0 or

ζ5 = ζ6 = ζ7 = ζ8 = 0 ). Besides this, these laminates also satisfy hygrothermal stability

conditions (Eq. 4.18). Hence, these resulting laminates are completely hygrothermal

stable. The two approaches mentioned above are as follows:

4.3.1 First approach

The first approach is further divided into two sub-cases depending on the value of i

(i.e. even or odd). The division and sub-division of this case are similar to that of

the extension-twist case and are as shown in Fig. 4.2b. For this approach, a minimum

of 8 plies are required. Therefore i will take values starting from 2. The two cases are

discussed in the following sub-sections.

When i is an even number

In this case, the hygrothermally stable laminate with bend-twist coupling is obtained by

using the following steps:

(a) Make the laminate symmetric about the mid-plane of the overall laminate. This

step introduces two Sub-Laminates (SL) in the laminate as depicted in Fig. 4.2a.

Furthermore, the total number of independent fiber angles decreases from 4i to 2i.

(b) Make one of the SL anti-symmetric about its own mid-plane. The corresponding

angles in other SLs will change automatically because of the first step. This

step introduces two Sub-Sub-Laminate (SSL) in each SL as depicted in Fig. 4.2a.

After application of this step, the total number of independent fiber angles further

decreases from 2i to i.

(c) In the last step, make half of the total independent fiber angles (i/2) as ϕk (k =

1, 2, 3...i/2) and the remaining i/2 fiber angles as (90◦ + ϕk). This selection of fiber

angles will be arbitrary. This final step will decrease the number of total independent

fiber angles to i/2.

These steps provide hygrothermally stable laminate in factorial(i) ways because of the

last step. Here it should be noted that this resultant laminate will satisfy both the set of
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hygrothermal stability conditions (4.17 and 4.18). As already discussed, because of the

symmetry of the resultant laminate, it is inherently hygrothermal curvature stable. The

in-plane hygrothermal stability condition (ζ1 = ζ3 = 0) is satisfied by the last step. This

whole process can be understood by taking a numerical example with i = 4. In this case,

the total plies in the laminate will be n = 16. After applying the symmetry condition, the

resultant expression of ζ1 and ζ3 will be

(ζ1, ζ3) =
1

8

8∑
k=1

(cos 2θk, sin 2θk) (4.40)

Now, after applying the anti-symmetric condition, the ζ3 term will vanish and the resultant

ζ1 will take the following form

ζ1 =
1

4
(cos 2θ1 + cos 2θ2 + cos 2θ3 + cos 2θ4) (4.41)

Following the last step, any two fiber angles have to be taken as ϕ1 and ϕ2 and the

remaining two have to be made 90◦ + ϕ1 and 90◦ + ϕ2. This choice of angles will vanish

the ζ1 term. Here it can be noted that any arbitrary selection of angles will always vanish

the ζ1 term. There are total factorial(4) possible ways available for such selection.

When i is an odd number

All the steps given in section 4.3.1 for i to be even case are valid and will be followed for

this case also. However, the direct implementation of these steps is not possible as, in this

case, i/2 is not a whole number. For the implementation of these steps, one more step has

to be added after step (a). This step is following

� Select two Adjacent Plies (APs) in SL, assign them fiber angles ϕc and 90◦ + ϕc

arbitrarily. Three positions of these APs are identified, and according to their

position, these are referred inner-side, mid-side and outer-side APs, as shown in

Fig. 4.9.

after this step, the remaining two steps (b) and (c) can be applied. These four steps have

to be followed in this sequence only and will be referred first, second, third and fourth

steps respectively. By following these steps, the obtained resultant hygrothermally stable

laminate will have total (i+1)/2 ( ϕc → 1 and ϕk → (i− 1)/2 ) independent fiber angles.

Here it should be noted that the plane about which the anti-symmetric condition has to be

applied will not necessarily be the mid-plane of SL. It will change according to the position

of APs in SL. For a better understanding of these four steps, a numerical example with

i = 3 has been explained below.

The first step (symmetry step) is common to all three sub-cases. After applying this first
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step, the ζ1 and ζ3 terms take the following form

ζ1 =
1

6
(cos 2θ1 + cos 2θ2 + cos 2θ3 + cos 2θ4 + cos 2θ5 + cos 2θ6)

ζ3 =
1

6
(sin 2θ1 + sin 2θ2 + sin 2θ3 + sin 2θ4 + sin 2θ5 + sin 2θ6) (4.42)

Now, the second step (selection of APs) has to be applied. Depending on the position of

APs, this step has been divided into following three sub-cases, given as follows:

(a) (b)

(c)

Figure 4.9: Position of APs in SL (a) inner-side (b) mid-side (c) outer-side

APs at inner-side

In this case, APs are situated at the mid-plane of the laminate, as shown in Fig. 4.9a. In

the current example (4.42) these APs correspond to the plies with fiber angles θ5 and θ6.

By taking these two fiber angles as ϕc and 90◦+ϕc, the terms corresponding to these fiber

angles will vanish from the expression of ζ1 and ζ3. The resultant expression for these

terms will be,

ζ1 =
1

6
(cos 2θ1 + cos 2θ2 + cos 2θ3 + cos 2θ4)

ζ3 =
1

6
(sin 2θ1 + sin 2θ2 + sin 2θ3 + sin 2θ4) (4.43)

here it should be noted that the choice of ϕc and 90◦ + ϕc is arbitrary. Now third step

(anti-symmetric) will be applied about the plane between plies with fiber angles θ2 and

θ3. After this step, ζ3 will be vanished. The ζ1 term will be nullified after applying the

fourth step as demonstrated for the i to be even case in section 4.3.1 by using step (c).

APs at mid-side

In this case, the APs correspond to plies situated on either side of the mid-plane of SL, as

shown in Fig. 4.9b. In the ongoing example (4.42), these APs are corresponds to θ3 and
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θ4 plies. After application of the second step, the resultant expression of ζ1 and ζ3 will be,

ζ1 =
1

6
(cos 2θ1 + cos 2θ2 + cos 2θ5 + cos 2θ6)

ζ3 =
1

6
(sin 2θ1 + sin 2θ2 + sin 2θ5 + sin 2θ6) (4.44)

in this case, the plane about which the anti-symmetric condition has to be applied coincides

with the mid-plane of SL. Like the previous case, after applying the third and fourth steps,

ζ1 and ζ3 will become zero.

APs at outer-side

In this case, APs are situated at the outermost position in SL as depicted in Fig. 4.9c.

In the current example(4.42), these APs correspond to fiber angles θ1 and θ2. The terms

corresponding to these APs will be canceled out after the application of the second step

and the resultant expression will be,

ζ1 =
1

6
(cos 2θ3 + cos 2θ4 + cos 2θ5 + cos 2θ6)

ζ3 =
1

6
(sin 2θ3 + sin 2θ4 + sin 2θ5 + sin 2θ6) (4.45)

in this case, the plane of anti-symmetry will be between θ4 and θ5 plies. Now again, the

application of the third and fourth conditions will make ζ1 and ζ3 zero.

For any permissible odd i, for the ‘APs at mid-side’ case, the plane of anti-symmetry will

be the mid-plane of SL. For the other two cases, it will be the mid-plane of plies excluding

APs. By following these steps, for fixed order of APs’ angles, the resulting hygrothermally

stable laminate can be obtained in factorial(i− 1) ways. Fig. 4.10 summarizes the whole

procedure to obtain hygrothermally stable laminate with bend-twist coupling.

Figure 4.10: Steps to get hygrothermally stable laminate with bend-twist coupling
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4.3.2 Second approach

The second approach, to get hygrothermally stable laminate with bend-twist coupling,

is accomplished by following the steps (a) and (c) used for i to be even case of the first

approach given in section 4.3.1. Unlike the first approach, in this second approach, i can

be 1. By following this approach, the resulting hygrothermally stable laminate can be

obtained in factorial(2i) ways and the resulting laminate will have total i independent

fiber angles.

An example with i = 4 is given here to explain the two-stepped procedure of this approach.

For i = 4 there will be a total 16 plies in the laminate. After applying the first step

(symmetric condition), the expression of ζ1 and ζ3 is given as,

ζ1 =
1

8
(cos 2θ1 + cos 2θ2 + cos 2θ3 + cos 2θ4 + cos 2θ5 + cos 2θ6 + cos 2θ7 + cos 2θ8)

ζ3 =
1

8
(sin 2θ1 + sin 2θ2 + sin 2θ3 + sin 2θ4 + sin 2θ5 + sin 2θ6 + sin 2θ7 + sin 2θ8)(4.46)

After this step, the total independent fiber angle will be reduced to half. In this example,

it is 8. In the second and the final step of this approach, half of these independent fiber

angles will be taken as ϕk (k = 1, 2, 3, 4) and the remaining as (90◦+ϕk). This selection of

fiber angles will vanish the ζ1 and ζ3 terms. Hence all conditions of hygrothermal stability

have been satisfied. Here it should be noted that the assignment of fiber angles ϕk and

(90◦ + ϕk) is completely arbitrary and this assignment can be done in factorial(8) ways

or resulting hygrothermally stable laminate is obtained in factorial(8) ways.

4.3.3 Optimization

The optimization of the proposed stacking sequence is carried out to get maximum

bending-twisting coupling. For this purpose compliance coefficient d16 is taken as the

objective function, given in Eq. (4.37). The hygrothermal stability conditions (4.17 and

4.18) are the constraints of this optimization problem. As discussed above, in this present

work, the proposed stacking sequences inherently satisfy all the hygrothermal stability

constraints for any fiber angles set between −90◦ and 90◦. Therefore, these stacking

sequences reduced the original constrained optimization problem into an unconstrained

one. Hence, it can be solved by both analytical and numerical methods.

Similar to the extension-twist case, the proposed stacking sequences have been optimized

using both analytical and conventional constrained optimization methods in this case

also. The procedure of optimization will remain the same as provided in the optimization

section 4.2.3 of the extension-twist case. For the convenience of further communication,

this conventional constrained optimization will be referred ‘numerical optimization’ as it

is completely based on numerical technique.

Each permutation of the proposed stacking sequence has its own optimized set of fiber

angles that may not necessarily represent the globally optimized set of fiber angles for a

given i within that class of laminate. Here, the set of optimized fiber angles corresponds
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to the permutation, which provides maximum objective function value upon optimization

among all possible permutations and has been referred as the globally optimized fiber

angle set. The material properties used in the calculation of objective function d16 are

given in Table 4.1.

The stacking sequence obtained by following the first approach is optimized using the

‘Maximize’ function. All the possible permutations for i = 2 through i = 7 have been

optimized. The stacking sequence having maximum objective function value is selected as

globally optimized stacking sequence. The global optimum value of unknown fiber angles

Table 4.4: Bend-twist optimized stacking sequence obtained with first approach (all ϕk
different)

i Pos. ϕ1(
◦) ϕ2(

◦) ϕ3(
◦) ϕc(

◦) Stacking sequence d16

(◦) (Nm)−1

2 - 68.14 - - - [-21.86/68.14/-68.14/21.86]S 0.21

3
I -14.80 - - -22.87

[-14.80/75.20/-75.20/14.80
0.033

/-22.87/67.13]S

M -22.17 - - -23.58
[67.83/-22.17/-23.58/66.42

0.073
/22.17/-67.83]S

O -23.23 - - -22.69
[-22.69/67.31/-23.23/66.77 0.084

/-66.77/23.23]S

4 - -23.06 -20.70 - -
[-23.06/-20.70/69.30/66.94

0.03
/-66.94/-69.30/20.70/23.06]S

5

I -18.88 -16.22 - -23.45
[-18.88/-16.22/73.78/71.12/-71.12

0.0091
/-73.78/16.22/18.88/-23.45/66.55]S

M -23.23 -21.99 - -22.43
[-23.23/-21.99/68.01/66.77/-22.43

0.016
/67.57/-66.77/-68.01/21.99/23.23]S

O 67.53 65.82 - -22.27
[-22.27/67.73/-24.18/-22.47/67.53

0.016
/65.82/-65.82/-67.53/22.47/24.18]S

6 - -23.42 -21.95 -20.27 -

[-23.42/-21.95/-20.27/69.73

0.0077/68.05/66.58/-66.58/-68.05

/-69.73/20.27/21.95/23.42]S

7

I -20.58 -17.15 71.01 -23.92

[-20.58/-18.99/-17.15/72.85/71.01

0.0037/69.42/-69.42/-71.01/-72.85/17.15

/18.99/20.58/-23.92/66.08]S

M -22.59 -21.56 66.45 -21.98

[-23.55/-22.59/-21.56/68.44/67.41

0.0056/66.45/-21.98/68.02/-66.45/-67.41

/-68.44/21.56/22.59/23.55]S

O 66.74 -21.96 65.54 -21.93

[-21.93/68.07/-24.46/-23.26/-21.96
0.0055

/68.04/66.74/65.54/-65.54/-66.74

/-68.04/21.96/23.26/24.46]S

I → inner-side, M → mid-side, O → outer-side
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(ϕk), unknown fiber angle (ϕc) of APs, stacking sequence and corresponding objective

function value is provided in Table 4.4. A similar optimization process has also been

done by taking all unknown fiber angles (ϕk) the same i.e. ϕk = ϕ. The corresponding

optimized values are provided in the Table 4.5. In these two tables, the letters I, M, and

O in the second column represent the position of APs in SL.

The stacking sequence obtained using the second approach has been optimized using

the ‘fmincon’ function. In this case, random search has been used to obtain a globally

optimized stacking sequence instead of optimizing all permutations. It is because, in this

case, the total permutations are factorial(2i), which becomes very large numbers as i

increases. This randomization process is accomplished in two steps. In the first step, i

fiber angles (ϕk) have been generated between−90◦ and 90◦ randomly. By using these fiber

angles, another i fiber angle (90◦+ϕk) has been generated by adding 90◦ to every previously

generated ϕk. In the second step, these total 2i fiber angles are shuffled to randomize the

sequence of these angles. Thereafter using this randomized stacking sequence, a symmetric

stacking sequence with a total of 4i plies has been created. Hence a randomized second

approach like stacking sequence has been generated. This randomized stacking sequence is

used as the initial guess of the optimized fiber angles. To obtain global optimized results,

several thousand iterations have been performed. The globally optimized fiber angles (ϕk),

stacking sequence and objective function value have been given in Table 4.6. Similar to the

first approach, in this second approach also, optimization has been performed by taking

each fiber angle the same. The corresponding globally optimized values are provided in

the Table 4.7.

In the case of numerical optimization, a randomized but symmetric stacking sequence

is used as the initial guess of the optimized fiber angles. It is done by first generating 2i

random fiber angles between −90◦ and 90◦ then creating a symmetric stacking sequence

(4i fiber angles) using these 2i random fiber angles. This choice of initial guess of fiber

angles enforces symmetric constraint in the laminate. ζ1 = ζ3 = 0 condition is used as

the constraint of the problem. The lower and upper bounds of the problem are −90◦ and

90◦ respectively. The optimized results of this case are provided in Table 4.7. The results

correspond to i = 1 and i = 2 are in the same line as given by Aditya et al.[100].

On comparing the optimized results of the two cases (ϕk same and different) of the first

approach given in Table 4.4 and Table 4.5, it is observed that these two results are almost

identical. For both cases, when i is an odd number, APs at the inner-side condition provide

poorer results than the mid and outer-side conditions. This type of clear indication is not

observed when comparing mid-side and outer-side results. These observations suggest that

for the first approach, the case when all ϕk are the same is computationally more efficient

as in this case, only one unknown fiber angle has to be found, unlike other case. Similar

observations are obtained for the second approach also and can be verified by comparing

the optimized results given in Table 4.6 and Table 4.7. Moreover, the computational

efficiency aspect becomes more important for the second approach because, in this case,

the number of unknowns is twice as compared to the first approach.
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Table 4.5: Bend-twist optimized stacking sequence obtained with first approach (all ϕs
same)

i Pos. ϕ (◦) ϕc (
◦) Stacking sequence d16

(◦) (Nm)−1

2 - 68.14 - [-21.86/68.14/-68.14/21.86]S 0.21

3

I -14.80 -22.87 [-14.80/75.20/-75.20/14.80/-22.87/67.13]S 0.033

M 67.83 -23.58 [67.83/-22.17/-23.58/66.42/22.17/-67.83]S 0.073

O -23.23 -22.69 [-22.69/67.31/-23.23/66.77/-66.77/23.23]S 0.084

4 - 68.14 -
[-21.86/-21.86/68.14/68.14

0.026
/-68.14/-68.14/21.86/21.86]S

5

I -17.82 -23.55
[-17.82/-17.82/72.18/72.18/-72.18

0.009
/-72.18/17.82/17.82/-23.55/66.45]S

M 67.89 -22.97
[67.89/-22.11/-22.11/67.89/-22.97

0.014
/67.03/-67.89/22.11/22.11/-67.89]S

O -22.61 -22.43
[-22.43/67.57/-22.61/67.39/-22.61

0.015
/67.39/-67.39/22.61/-67.39/22.61]S

6 - -21.86 -
[-21.86/-21.86/-21.86/68.14/68.14/68.14

0.0076
/-68.14/-68.14/-68.14/21.86/21.86/21.86]S

7

I -19.19 -24.03
[-19.19/-19.19/-19.19/70.81/70.81/70.81/-70.81

0.0037
/-70.81/-70.81/19.19/19.19/19.19/-24.03/65.97]S

M -22.55 -21.97
[-22.55/-22.55/-22.55/67.45/67.45/67.45/-21.97

0.0055
/68.03/-67.45/-67.45/-67.45/22.55/22.55/22.55]S

O -22.10 -22.17
[-22.17/67.83/67.90/-22.10/-22.10/-22.10/67.90

0.0051
/67.90/-67.90/-67.90/22.10/22.10/22.10/-67.90]S

I → inner-side, M → mid-side, O → outer-side

The optimized results of the second approach and numerical optimization can be

compared from Table 4.7. It can be seen that these two results are almost identical.

It should be noted that in Table 4.7, the second approach results are obtained from the

unconstrained formulation with a single fiber angle. While numerical optimization results

are obtained from the constrained formulation with 2i unknown fiber angles. Therefore

second approach (with all ϕk same) becomes computationally very efficient. Likewise, in

the second approach, with all ϕk different, the involved unknown fiber angles are i, which

is half of the unknown involved in numerical optimization. Hence, this approach also

provides better computational efficiency than the numerical approach.

The computational efficiency can be proved by comparing the time taken by different

approaches (both cases of the second approach and numerical optimization) to obtain

globally optimized results. In this regard, the time taken by the ‘fmincon’ function to

converge to the globally optimized objective function value (up to 3 significant digits) for

i = 3 has been recorded. For each case, to obtain the computational time distribution, a
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Table 4.6: Bend-twist optimized stacking sequence obtained with second approach (all ϕs
different)

i ϕk (◦) Stacking sequence (◦) d16(Nm)−1

1 {-65.68} [24.32/-65.68]S 3.04

2 {22.99, -64.44} [25.56/22.99/-67.01/-64.44]S 0.39

3 {-24.80, -22.25, 64.19} [-25.81/-24.80/-22.25/67.75/65.20/64.19]S 0.114

4
{64.11, 68.17, -24.06, [-25.89/-25.38/-24.06/-21.83

0.048
64.62} /68.17/65.94/64.62/64.11]S

5
{-25.67, -24.83, 66.54, [-25.57/-25.67/-24.83/-23.46/-21.61

0.025
-25.57, -21.61} /68.39/66.54/65.17/64.43/64.33]S

6
{-25.53, -24.23, -24.87, [-24.49/-24.23/-24.87/-25.53/72.67/-22.05

0.014
65.51, -17.33, 67.95} /-17.33/67.95/65.51/65.77/64.47/65.13]S

7

{-64.79, 25.83,-70.89, [25.21/25.83/22.96/-70.89/-71.08

0.009-67.26,18.12,-67.04, /-71.88/-67.04/-67.26/19.11/18.92

18.92} /22.74/-64.17/18.12/-64.79]S

Table 4.7: Bend-twist optimized stacking sequence obtained with second approach (all ϕs
same) and numerical optimization

i ϕ (◦) Stacking sequence (◦) d16(Nm)−1

2nd Approach Nu.Op.

1 -65.68 [24.32/-65.68]S 3.04 3.04

2 -65.68 [{24.32}2/{-65.68}2]S 0.38 0.38

3 -65.68 [{24.32}3/{65.68}3]S 0.11 0.11

4 -66.00 [{24.00}4/{-66.00}5]S 0.048 0.051

5 24.00 [{24.00}5/{-66.00}5]S 0.024 0.027

6 66.00 [{-24.00}6/{66.00}6]S 0.014 0.015

7 25.00 [{25.00}7/{-65.00}7]S 0.009 0.009

Table 4.8: Computational time in seconds

Case Mean Mode Median

Second approach (all ϕk same) 0.144 0.008 0.10

Second approach (all ϕk different) 0.848 0.020 0.59

Numerical optimization 2.09 0.141 1.45

sample size of 5×104 has been taken. The mean, mode and median of this computational

time data are provided in Table 4.8. The computational time distribution for each case

is provided in Fig. 4.11. From this figure, it can be observed that for the proposed

second approach with all ϕk same, the computational time distribution is confined within
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0.8 seconds. This computational time distribution is confined to 5 and 12 seconds for

the case when all ϕk are different and numerical optimization cases, respectively. Mean,

mode and median values of this computational time distribution also suggest that the

proposed stacking sequence is computationally more efficient than numerical optimization.

From these observations, all of these approaches can be arranged according to their

computational efficiency in the following order

second approach (all ϕk same) > second approach (all ϕk same) > numerical optimization

In Fig. 4.12 optimized d16 is plotted against i obtained due to first approach and second

(a) (b)

(c)

Figure 4.11: Computational time distribution (a) Second approach all ϕk same (b) second
approach all ϕk different (c) numerical optimization

Figure 4.12: Plots of optimized d16 values
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approach/numerical optimization. Here it should be noted that in the first approach, for

i to be an odd case, the value of d16 is taken for APs at mid-side conditions. From this

figure, it can be seen that as the i increases, the difference between the optimized results of

the first approach and the second approach/numerical optimization reduces. Furthermore,

as in the first approach, the independent fiber angles are only i/2 (or only one for all ϕk

same) and the level of randomization (factorial(i) ) is much less than the second approach

(factorial(2i) ). Hence, for higher i, the first approach with all ϕk is the best option to get

hygrothermal stable laminate with bend-twist coupling as it will converge to its optimized

value in the least time.

4.3.4 Sensitivity Analysis

The optimized stacking sequences have been investigated for their robustness to small

perturbations in the optimized fiber angles using sensitivity analysis, as has been done for

the extension–twist coupling case. Here, in this case, the coupling loss term is defined as

the relative error between perturbed and optimized bend-twist coupling coefficient, and

the mathematical expression is given as,

%Error =
|dP16| − |dO16|

|dO16|
× 100 (4.47)

where dO16 represents the optimized coupling coefficient and dP16 represents the coupling

coefficient due to perturbed stacking sequence. For the sensitivity analysis purpose,

optimized results obtained with the first approach (both cases for i = 3), second approach

(both cases for i = 4, 5, 6), and numerical optimization (for i = 3, 4, 5, 6) have been

selected. For each case, total 5 × 105 perturbed stacking sequences have been generated.

It is done by assuming that ply angles are uniformly distributed between θk − 2◦ and

θk + 2◦ for each ply. Here θk represents the optimized fiber angle for kth ply of laminate.

In Fig. 4.13, the error histograms corresponding to both cases of the first approach are

given. From this figure, two observations can be made. (i) The error distribution in

bend-twist coupling due to perturbation in optimized stacking sequence is almost similar

for both cases. (ii) Sensitivity-wise, the laminate with APs at the inner-side is the most

sensitive among the three sub-cases. The error distribution for mid-side and outer-side

cases is not much different but between these two sub-cases, mid-side laminate is the least

sensitive.

The error histograms for both cases of the second approach have been provided in Fig.

4.14. It can be observed from this figure that for the case when all ϕk are equal, it is more

robust than the case when all ϕk are different. The histogram of numerical optimization

has been provided in Fig. 4.15. By comparing all the histograms (for first approach APs

at mid-side case), it can be seen that for all given cases error distribution is within ± 6%.
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4.4 Extension-Bend Coupling with Hygrothermal Stable

Stacking

Laminates with extension-bend coupling and hygrothermal stability require asymmetric

stacking sequence with nonzero B11, B22 and B12. Hence, the first set of hygrothermal

stability conditions (Eq. 4.17), i.e., [B] = 0 or ζ5 = ζ6 = ζ7 = ζ8 = 0 cannot be

implemented. From Eq. (4.12), it can be observed that B11 and B22 are function of ζ5

and ζ6, while B12 is function of ζ6 only. Therefore, when the second set of hygrothermal

stability conditions (Eq. 4.18), i.e., ζ1 = ζ3 = ζ5 = ζ7 = 0 has been applied, it leaves

B11, B22 and B12 nonzero. Hence, hygrothermally stable laminate with extension-bend

(a) (b)

(c) (d)

(e) (f)

Figure 4.13: First approach for i = 3 (a,c,e) all ϕk different, for APs at inner-side,
mid-side and outer-side respectively (b,d,f) all ϕk same, for APs at inner-side, mid-side
and outer-side respectively
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(a) (b)

(c) (d)

(e) (f)

Figure 4.14: Second approach, (a,c,e) all ϕk different for i = 4, 5 and 6 respectively (b,d,f)
all ϕk same for i = 4, 5 and 6 respectively

coupling can be obtained. Jones[109] suggests that anti-symmetric cross-laminate provides

such coupling, but this laminate is not hygrothermally stable. The present study proposes

an asymmetric stacking sequence for the laminate with a total 4i (i = 2, 3, 4. . . ) plies.

Depending on the numerical value of i (whether it is even or odd), two cases arise and will

be discussed in the following sub-sections.

4.4.1 When i is an even number

In this case, the hygrothermally stable laminate with extension-bend coupling is obtained

using the following steps:

(a) The Sub-Laminates (SLs), on either side of the mid-plane of the overall laminate,

have to be symmetric about their own mid-plane (division of laminate is given in
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(a) (b)

(c) (d)

Figure 4.15: Numerical approach for i = 3, 4, 5 and 6 respectively

Fig. 4.2a). After this step, each SL leaves with i independent fiber angles. Hence,

this step reduces total independent fiber angles to 2i.

(b) In one SL, half (i/2) independent fiber angles have to be made 45◦ and the remaining

half as −45◦. Similarly, in other SL, half-fiber angles have to be made 90◦ and the

other half as 0◦. This assignment of values to independent fiber angles is completely

arbitrary.

The above steps can be better understood by the following example of laminate having

total plies 8 (i = 2). For the application of the first step ((a)), following replacement of

fiber angles is required

(θ4 → θ1, θ3 → θ2, θ8 → θ5, θ7 → θ6)

After the above replacement of fiber angles, for this laminate, the expression of

ζ1, ζ3, ζ5, and ζ7 is given as

ζ1 =
1
4 (cos 2θ1 + cos 2θ2 + cos 2θ5 + cos 2θ6) (4.48)

ζ3 =
1
4 (sin 2θ1 + sin 2θ2 + sin 2θ5 + sin 2θ6) (4.49)

ζ4 =
1
8 (− cos 2θ1 − cos 2θ2 + cos 2θ5 + cos 2θ6) (4.50)

ζ7 =
1
8 (− sin 2θ1 − sin 2θ2 + sin 2θ5 + sin 2θ6) (4.51)

Fiber angles θ1 and θ2 corresponds to SL above the mid-plane, while fiber angles θ5 and

θ6 corresponds to lower SL (as shown in Fig. 4.2a). Now, according to the second step
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(b), one of the SLs can be chosen arbitrarily to assign fiber angles 45◦/ − 45◦ or 90◦/0◦.

Let upper SL is chosen to be assigned with 45◦/ − 45◦. Here it can be seen that the

assignment of these fiber angles is completely arbitrary. Similar observations can be made

for the lower SL with fiber angles 90◦/0◦. After the application of this second step, Eqs.

(4.48-4.51) will be vanished hence satisfying the hygrothermal stability condition.

4.4.2 When i is an odd number

(a) (b)

(c)

Figure 4.16: 3 position of adjacent plies (a) inner-side (b) mid-side (c) outer-side

In this case, i/2 is not a whole number; hence, the second step (b) of the previous section

(4.4.1) cannot be implemented directly. In addition to the two steps provided in the

previous section (4.4.1), one more step has been proposed. In this step, two Adjacent

Plies (APs) have to be selected in both the SLs. APs of one SL will be in symmetry

w.r.t APs of other SL. These APs have to be assigned with 45◦ and −45◦ arbitrarily. In

this work, three positions (inner-side, mid-side and outer-side) of APs in SL have been

identified, as shown in Fig. 4.16. Hence, according to the position of APs, in this case,

three different stacking sequences are possible. These three stacking sequences can be

obtained by applying (i) the step of selection of APs, as discussed above, and (ii) the two

steps (i.e.,(a) symmetry condition and (b) fiber angles assignment) provided in section

(4.4.1).

Application of the first step leaves 2(i− 1) independent fiber angles in each SL. Similarly,

after applying the symmetry condition step, each SL leaves with (i− 1) independent fiber

angles. Here, it should be noted that the application of the symmetry condition will

depend on the position of APs in SL as it changes the plane of symmetry. Positions of the

plane of symmetry correspond to the three positions of APs are shown in Fig.3. Now, as

(i− 1) is an even number, the last step of the assignment of independent fiber angles with

45◦/−45◦ and 90◦/0◦ can be implemented as has been done in section (4.4.1). All of these

steps for three subcases can be understood by taking an example with i = 3. The first two
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steps and the resultant expression of ζ1, ζ3, ζ5, and ζ7 is given in table (4.9).The resultant

expression of ζ1, ζ3, ζ5, and ζ7 given in this table, will be vanished after the application of

the third step. Hence this stacking sequence meets the condition of hygrothermal stability.

The whole procedure can be understood by the Fig. 4.17

Figure 4.17: Steps to get hygrothermally stable laminate with extension-bend coupling

Table 4.9: steps to obtain hygrothermally stable laminate with extension-bend coupling
for i = 3

Pos. Fiber
angles

correspond
to APs and
corresponding
replacement

Fiber
angles

replacement
for

symmetry
condition

Resultant expression of ζ1, ζ3, ζ5, ζ7 after the first
two steps

I

θ4 → θ1, ζ1 = 1/6 (cos 2θ1 + cos 2θ2 + cos 2θ9 + cos 2θ10)

θ8 → θ5, θ3 → θ2, ζ3 = 1/6 (sin 2θ1 + sin 2θ2 + sin 2θ9 + sin 2θ10)

θ7 → θ6 θ12 → θ9, ζ5 = 1/9 (− cos 2θ1 − cos 2θ2 + cos 2θ9 + cos 2θ10)

θ11 → θ10 ζ7 = 1/9 (− sin 2θ1 − sin 2θ2 + sin 2θ9 + sin 2θ10)

M

θ6 → θ1, ζ1 = 1/6 (cos 2θ1 + cos 2θ2 + cos 2θ7 + cos 2θ8)

θ10 → θ3, θ5 → θ2, ζ3 = 1/6 (sin 2θ1 + sin 2θ2 + sin 2θ7 + sin 2θ8)

θ9 → θ4 θ12 → θ7, ζ5 = 1/12 (− cos 2θ1 − cos 2θ2 + cos 2θ7 + cos 2θ8)

θ11 → θ8 ζ7 = 1/12 (− sin 2θ1 − sin 2θ2 + sin 2θ7 + sin 2θ8)

O

θ6 → θ3, ζ1 = 1/6 (cos 2θ3 + cos 2θ4 + cos 2θ7 + cos 2θ8)

θ12 → θ1, θ5 → θ4, ζ3 = 1/6 (sin 2θ3 + sin 2θ4 + sin 2θ7 + sin 2θ8)

θ11 → θ2 θ10 → θ7, ζ5 = 1/18 (− cos 2θ3 − cos 2θ4 + cos 2θ7 + cos 2θ8)

θ9 → θ8 ζ7 = 1/18 (− sin 2θ3 − sin 2θ4 + sin 2θ7 + sin 2θ8)

I → inner-side, M → mid-side, O → outer-side
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4.4.3 Optimization

The optimization in the current work aims to maximize the extension-bend coupling.

Hence, in this optimization process, the compliance coefficient b11 serves the purpose of

the objective function. The hygrothermal stability conditions (Eq. 4.18) in terms of ζ,

are the constraints of the optimization problem. The material properties used in the

optimization process are provided in table (4.1).

As the proposed stacking sequence has already satisfied these constraints and the fiber

Table 4.10: optimized results obtained using the current approach

i Pos. Optimized Stacking sequence b11(N
−1)

(◦) (10−5)

2 - [(45/− 45)S/(90/0)S ]T 4.17

3

I [(45/− 45)S/(45/− 45)S/(90/0)S ]T 2.28

M [(45/− 45)/(45/− 45)/(−45/45)/(90/0)/(−45/45)/(0/90)]T 1.65

O [(45/− 45)/(45/− 45)S/(90/0)S/(−45/45)]T 1.67

4 - [(452/− 452)S/(902/02)S ]T 1.04

5

I [(452/− 452)S/(45/− 45)S/(902/02)S ]T 0.78

M [(452/− 452)/(45/− 45)/(−452/452)/(902/02)/(−45/45)/(02/902)]T 0.624

O [(45/− 45)/(452/− 452)S/(902/02)S/(−45/45)]T 0.649

6 - [(453/− 453)S/(903/03)S ]T 0.464

7

I [(453/− 453)S/(45/− 45)S/(903/03)S ]T 0.384

M [(453/− 453)/(45/− 45)/(−453/453)/(903/03)/(−45/45)/(03/903)]T 0.325

O [(45/− 45)/(453/− 453)S/(903/03)S/(−45/45)]T 0.336

I → inner-side, M → mid-side, O → outer-side

angles have already been assigned. Hence, the optimization of the proposed stacking

sequence involves the rearrangement of the assigned fiber angles in both the SL and

finding out the sequence of these assigned fiber angles, which provides maximized b11.

To obtain this optimized sequence, all possible sequences have been generated and the

Figure 4.18: Plots of optimized b11 values
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corresponding objecting function value has been obtained. The sequence that corresponds

to the maximum objective function is selected as the globally optimized stacking sequence

for the proposed stacking sequence. These optimized results are provided in table (4.10).

This table contains the optimized results for laminates having i = 2 through 7. From table

(4.10), it can be observed that for odd values of i, the better optimized objective function

value is obtained when APs are at the inner-side.

The conventional optimization results of most generic stacked laminate are provided in the

table (4.11). These optimized results are obtained using ‘fmincon’ function of MATLAB

implemented with the SQP algorithm. The hygrothermal stability conditions serve as the

equality constraints of the problem. To find and build confidence in globally optimized

results, several thousand (even lakhs for larger i) iterations have been performed by taking

different initial guesses.

The optimized results obtained from the two approaches are plotted against i and given

Table 4.11: optimized results obtained using the conventional approach

i Optimized Stacking sequence b11(N
−1)

(◦) (10−5)

2 [−89.90/− 44.88/3.27/31.53/35.30/− 53.42/51.43/− 52.85]T 5.68

3
[−74.59/− 89.86/− 16.39/− 12.18/26.14/41.28/38.04

2.34
/− 42.48/58.08/− 46.55/63.07/− 41.49]T

4
[53.50/49.11/− 49.88/− 46.90/43.38/− 57.34/− 39.75/38.89

1.26
/− 32.87/50.45/− 17.47/− 8.21/9.92/− 81.71/− 82.98/55.99]T

5

[38.70/− 56.72/39.08/− 55.30/− 48.08/47.29/42.24/− 52.39/44.48

0.624/− 47.18/− 2.83/− 26.77/− 74.22/37.38/70.17/− 17.51

/− 12.18/− 86.96/20.44/86.38]T

6

[−78.11/− 46.65/90.00/3.97/− 69.18/36.47/35.77/7.62/− 10.32

0.406/− 42.81/53.23/74.91/17.69/− 40.61/− 31.88/46.43/46.02

/− 51.05/51.05/46.74/− 42.77/55.84/− 51.43/− 46.16]T

7

[79.27/90.00/2.96/90.00/69.81/− 33.38/− 16.72/28.24/25.62

0.239
/− 37.45/0.69/− 14.59/16.44/− 30.52/80.85/− 62.66/83.35

/− 39.42/64.37/52.30/− 48.26/− 41.55/48.73/45.51/45.73/42.98

/− 43.78/− 42.93]T

in Fig. 4.18. Comparison of the two results using this figure reveals that for smaller i

the conventional results are better than the current approach results. As i increases, the

difference between the two results becomes insignificant and for larger i current approach

provides better results than the conventional approach.

4.4.4 Sensitivity analysis

The sensitivity analysis for this case has also been done for the same reason as discussed

in the previous two cases. The coupling loss in this case is also defined as the relative
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% error between the perturbed result and optimized result but in this case coupling

coefficient is b11 and mathematically it represents as

%Error =
|bP11| − |bo11|

|bo11|
× 100 (4.52)

Similar to the previous cases, in this case also total of 5 × 104 perturbed results have

(a) (b)

(c) (d)

(e) (f)

Figure 4.19: histograms for APs at inner-side, mid-side and outer-side (a,c,e) for i = 5
(b,d,f) for i = 7 respectively

been generated in the range (θk − 2◦) and (θk + 2◦) by assuming the perturbed results

are uniformly distributed between these two limits. Here θk represents the optimized fiber

angle of kth ply. Optimized results obtained from the proposed approach and conventional

numerical approach have been considered for this analysis. The results obtained from this

analysis have been provided in the form of histogram in Fig. 4.19 and Fig. 4.20.
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In Fig. 4.19, histograms obtained from the sensitivity analysis of optimized results of

the current approach for three subcases of i = 5 and i = 7 have been provided. These

histograms show the effect of the position of the APs on the robustness of the resultant

laminate. From this figure, it can be observed that for three positions of APs, the difference

in %error distribution is not significant. In other words, the position of APs does not

affect the sensitivity significantly. However, a closer observation reveals that the % error

distribution for the laminate with APs at the inner side has a marginally more central

tendency than for the other two positions.

In Fig. 4.20 histogram corresponds to the sensitivity analysis of current optimized results

and conventional optimized results have been provided. For both approaches, results

are provided for i = 2, 3, 4. Here, the histogram for the current approach with i = 3

corresponds to laminate having APs at the inner side. This figure compares the robustness

to perturbations in the optimized fiber angles of the resulting laminate obtained using both

approaches. By comparing the results, it can be observed that for smaller i conventional

approach provides a more robust stacking sequence; however, the difference between the

two results is not significantly large. As i increases, the difference in error distribution

becomes very small. Hence, for larger i, both approaches provide equally robust stacking

sequences.

4.5 Analysis of Strip-like Beam

This section presents an analysis of the coupling behavior of an anisotropic-inhomogeneous

beam, which is modeled as a strip-like composite beam. The elastic coupling in

composite structures is well explored using CLPT. In this study, we used the VAM-based

mathematical formulation developed by Hodges et al. [73] for the strip-like beam. We

implemented the hygrothermally stable stacking sequences proposed in the previous section

into this mathematical formulation to obtain the hygrothermally stable beam with the

desired coupling. We have shown three types of coupling results here and compared them

with the FEA results, which showed close agreement between the two. The FEA analysis

verified the hygrothermal stability of these beams. For convenience, we have provided a

brief introduction to this formulation before proceeding to the coupling results.

4.5.1 Mathematical Formulation

The Variational Asymptotic Method requires small parameters, as already discussed in

chapter 2. For this class of beam, small parameters are width-to-length ratio δb = b/l,

thickness-to-width ratio δh = h/b, and width times pre-twist angle per unit length δt = bk1.

The beam geometry and associated coordinate system are shown in Fig. 4.21. In this

analytical development, indices i = 1, 2, 3 while indices α = 1, 2.

The position vector of any arbitrary material point in the undeformed configuration of
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(a) (b)

(c) (d)

(e) (f)

Figure 4.20: sensitivity histograms for i = 2, 3 and 3 (a, c, e) current approach and (b, d,
f) conventional approach respectively

Figure 4.21: Schematic of the strip-like beam with associated coordinate system

this strip is given as

r̂ = x1b1 + x2b2(x1) + x3b3(x1) (4.53)
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The respective covariant base vector in the undeformed state can be obtained by using

the relation provided in Eq. (2.3) and given as

g1 = b1 + k1(x2b3 − x3b2), g2 = b2, g3 = b3 (4.54)

Using these covariant base vectors corresponding contravariant base vector can be

calculated by using Eq. (2.4) and given as

g1 = b1, g2 = b2 + k1x3b1, g3 = b3 − k1x2b1 (4.55)

Similar to the undeformed state, the position vector in the deformed state can be defined

and given by

R̂ = x1b1 + ui(x1)bi + x2B2(x1) + x3B3(x1) + wi(x1, x2, x3)Bi(x1) (4.56)

Here, in this expression, ui represents the rigid body translation, Bi are orthogonal unit

vectors of the deformed coordinate system obtained from rigid body rotation, and wi

represents the warping displacements of the beam cross-section.

The warping displacement component w3 can be divided into an average warping across

the thickness and Poisson-like unknown variation as suggested by the reference [73] and

is given as

w3(x1, x2, x3) = w3(x1, x2) + ∆3(x1, x2, x3) (4.57)

where ∫ h
2

−h
2

∆3 (x1, x2, x3) dx3 = 0 (4.58)

Similarly, the above reference suggests that the warping components wα can be split into

three parts (i) average warping, (ii) linear variation along the thickness and (iii) unknown

variations; these are written as

wα(x1, x2, x3) = wα(x1, x2) + x3ϕα(x1, x2) + ∆α(x1, x2, x3) (4.59)

where ∫ h
2

−h
2

∆α (x1, x2, x3) dx3 = 0 (4.60)

and ∫ h
2

−h
2

∆α,3 (x1, x2, x3) dx3 = 0 (4.61)

By using these relations, Eq. (4.56) will be rewritten as

R̂ = x1b1 + uibi + wiBi + x2B2 + x3 (ϕ1B1 + ϕ2B2 +B3) + ∆iBi (4.62)

Here, Bi(x1) and ui(x1) are beam quantities, whereas wi(x1, x2) and ϕα(x1, x2) shows the

shell behavior. The ϕα(x1, x2) represents local rotation and wi(x1, x2) are warping. These
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variables are subjected to the following constraints

⟨wi⟩ = 0, ⟨w3,2⟩ = ⟨ϕ2⟩ (4.63)

where

⟨•⟩ =
∫ b

2

− b
2

(•) dx2 = 0 (4.64)

Now the covariant base vector in the deformed state

Gi =
∂R̂

∂xi
(4.65)

The above evaluation is completed by using the following identities.

B1 =
[(x1 + u1)b1 + u2b2 + u3b3]

′

s′
,

B′
i =[(k1 + κ1)B1 + κ2B2 + κ3B3]×Bi

(4.66)

where

b′i =k1b1 × bi,

s′ =
√

(1 + u′1)
2 + (u′2 − k1u3)2 + (u′3 + k1u2)2 = 1 + γ11

(4.67)

Here s denotes the running arc length along the reference line of the beam the deformation

gradient tensor A = Gig
i can be calculated. The elements of this gradient tensor A in

mixed bases system [113] is Aij = Bi.A.bj . For the small local rotation assumption, the

3D strain field is given as

E =
A+AT

2
− I3 (4.68)

The 3D strain field for the moderate local rotation case [113] is defined as

Γ = E − Ã2

2
+
EÃ− ÃE

2
(4.69)
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Here, Ã is the anti-symmetric part of A. The 3D strain components useful for further

development are

Γ11 = γ11 − x2κ3 + x3κ2︸ ︷︷ ︸
O(ε)

+

O(εδt/δh)︷ ︸︸ ︷
k1x

2
2κ1 +

x22κ
2
1

2
+ w3κ2︸ ︷︷ ︸

O(ε2/δ2h)

+O

(
εδb, εδt,

ε2

δh

)
,

Γ22 =w2,2 − x3w3,22︸ ︷︷ ︸
O(ε)

+

O(ε2/δ2h)︷ ︸︸ ︷
1

2
w2
3,2 +O(εδh)

2Γ12 =w1,2 − 2x3κ1︸ ︷︷ ︸
O(ε)

+

O(εδt/δh)︷ ︸︸ ︷
k1(x2w3,2 − w3)+ k1(x2w3,2 − w3)︸ ︷︷ ︸

O(ε2/δ2h)

+O

(
εδb, εδh, εδt,

ε2

δh

)
.

(4.70)

The estimation of the order of the different quantities in the 3D strain field can be followed

from the reference [73]. The 3D strain measures and 2D strain measures are related by

Γαβ = εαβ + x3ραβ. Here, in this relation εαβ represents the mid-plane stains while ραβ

denotes mid-plane curvatures. Using this relation, membrane strain and curvature terms

can be extracted from Eq. (4.70). The membrane strains are

ε11 ≈γ11 − x2κ3 + k1x
2
2κ1 +

x22κ
2
1

2
+ w3κ2,

ε22 ≈w2,2 +
1

2
w2
3,2,

2ε12 ≈w1,2 + k1(x2w3,2 − w3) + κ1(x2w3,2 − w3)

(4.71)

While membrane curvatures are

ρ11 ≈κ2
ρ22 ≈− w3,22

2ρ12 ≈− 2κ1

(4.72)

In the above relations, non-underlined terms are of order O(ε) and underlined terms are

of order O(ε∆); where ∆ = ε/δ2h is a new small parameter. The non-underlined terms

are dominated terms and for zeroth order approximation, only these terms are required.

The underlined terms are non-linear and are available due to moderate rotations. For

first-order approximation, these terms have to be included. Further, it has been shown in

the reference [73] that both CLST and CLPT contribute exactly the same in zeroth order

and first order approximate energy.
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4.5.2 Strain Energy of Strip-like Beam

In the current case, the beam is assumed to be a 2D elastic structure. The corresponding

strain energy density (energy per unit mid-surface) is defined as

U2D =
1

2



ε11

ε22

2ε12

ρ11

ρ22

2ρ12



T

A B

B D





ε11

ε22

2ε12

ρ11

ρ22

2ρ12


(4.73)

Here, εαβ and ραβ are membrane strains and curvatures, respectively, given by Eqs.

(4.71-4.72). A, B and D are extensional, coupling and bending stiffnesses, respectively.

The unknown functions wi can be obtained as the known function of x2, κi and k1 by

minimizing strain energy functional U =
∫ l
0⟨U2D⟩dx1 along with the constraints (4.58),

(4.60), (4.61) and (4.63). After that, the strain energy density (strain energy per unit

length) U1D = ⟨U2D⟩ can be found.

4.5.3 Zeroth Order Approximation

The zeroth order approximation requires stain energy which is corrected up to order Eε2.

Hence, only the leading terms (non-underlined) of 2D membrane stains and curvatures

in Eqs. (4.71) and (4.72) will be considered. As discussed above, the zeroth order

approximate warping function w0
i can be obtained by minimizing zeroth-order energy.

Ultimately 1D strain energy U1D density and 1D constitutive relation can be found. The

linear 1D constitutive relation is obtained in the following form.


F1

M1

M2

M3

 =


bA11 −2bB16 + 1

12
b3A11k1 bB11 0

−2bB16 + 1
12

b3A11k1
1
80

b5A11k21 − 1
3
b3B16k1 + 4bD66

1
12

b3B11k1 − 2bD16 0

bB11
1
12

b3B11k1 − 2bD16 bD11 0

0 0 0 1
12

b3A11




γ11

κ1

κ2

κ3


(4.74)

The expressions of newly defined stiffness constants are provided in Appendix C.1. Here

the expressions of warping functions w0
i are not provided as we are interested in the

constitutive law only to observe the coupling behavior. However, expressions of these

warping functions can be found in the reference [73]. For prismatic beam (k1 = 0), the
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Eq. (4.74) takes the form.



F1

M1

M2

M3


=



bA11 −2bB16 bB11 0

−2bB16 4bD66 −2bD16 0

bB11 −2bD16 bD11 0

0 0 0 1
12b

3A11





γ11

κ1

κ2

κ3


(4.75)

The first-order approximate solution can be obtained by perturbing the zeroth order

solution and minimizing modified first-order strain energy as provided by Hodges et al.

[73]. The resulting 1D strain energy corrected up to the first order is given as

U1D =
1

2
εTl [Sl]εl + εTl [Sln]εn +

1

2
εTn [Sn]εn (4.76)

where,

εl = {γ11 κ1 κ2 κ3}T

εn = {κ21 κ22 κ2γ11 κ2κ3 κ2κ1}T
(4.77)

The Eq. (4.76) can be written as

2U1D = εT [S]ε (4.78)

where

[S] =

 Sl Sln

ST
ln Sn


9×9

ε = {γ11 κ1 κ2 κ3 κ21 κ22 κ2γ11 κ2κ3 κ2κ1}T

(4.79)

The components of [Sl] already provided in Eq. (4.75), the remaining components of [S]
are provided in Appendix C.2.

4.5.4 Coupling Analysis

The coupling behavior of these beams is examined by expressing the strain (γ11) and

curvatures (κi) in terms of the applied force (F1) and moments (Mi). This is achieved by

solving the equilibrium equations ∂U1D
∂γ11

and ∂U1D
∂κi

. We will then implement the stacking

sequence scheme obtained previously to incorporate different elastic coupling modes, along

with hygrothermal stability. The coupling result and the hygrothermal stability will be

verified through FE simulation. The material properties used for the simulation are as
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follows: E11 = 132.2 GPa, E22 = E33 = 10.75 GPa, G12 = G13 = G23 = 5.65 GPa,

ν12 = ν13 = 0.239 and ν23 = 0.4. The dimensions of the strip model are length=279.4 mm,

width=25.4 mm and thickness=1.168 mm. The simulation has been conducted using 3D

solid element C3D8R.

In Fig. 4.22, the FEA simulation results depict a strip-like cantilever beam with an 8-ply

general asymmetric stacking sequence. The simulation involves applying a temperature

change of 80◦C. The figure illustrates noticeable deformations in both bending and

twisting as a consequence of the temperature fluctuations, highlighting the presence of

hygrothermal instabilities.

In the following subsections, we will employ the proposed hygrothermally stable stacking

sequences and assess their suitability for maintaining hygrothermal stability with the

desired elastic coupling in the strip-like beam configuration. For the sake of convenience,

this discussion is limited to linear results. However, nonlinear plots are also included,

compared with the FEA results, to provide a comprehensive understanding.

Extension-Twist Coupling

The laminated composite beam incorporates the extension-twist coupling with

hygrothermal stability by applying the stacking sequence scheme outlined in Section 4.2.

This integration reduces the linear constitutive relation from Eq.(4.75) to Eq.(4.80). The

newly defined coefficients are provided in appendix C.1. As demonstrated earlier, the

proposed stacking sequence inherently satisfies the hygrothermal stability conditions for

any arbitrary independent fiber angles. Consequently, one can freely choose arbitrary

values for these independent fiber angles. However, in this specific instance, we have

employed the optimized results obtained from this stacking sequence comprising 8 plies,

with an independent fiber angle of ϕ1 = −67.5◦, as implemented in Eq. (4.80) to derive

the coupling results. It is important to note that the optimized results utilized in this

context may not be representative of the optimal outcomes for this case. This is due to

differences in coupling coefficients between the two cases.

(a)

Figure 4.22: Thermal deformation due to temperature change in asymmetric laminate
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

F1

M1

M2

M3


=



bÂ11 −2bB̂16 0 0

−2bB̂16 4bD̂66 0 0

0 0 bD̂11 0

0 0 0 1
12Â11b

3





γ11

κ1

κ2

κ3


(4.80)

(a)

(b)

Figure 4.23: (a) Extension-twist coupling plot (b)Thermal deformation due to temperature
change

Considering Eq. (4.80), it is evident that the linear 1D constitutive law only captures

extension-twist coupling with the proposed hygrothermally stable stacking sequences. In

Fig. 4.23a, we plot the twist angle against the applied extension load, as dictated by

the current linear constitutive law. The non-linear relation between twist angle and

extension force is obtained by solving force and moment equilibrium equations stemming

from virtual work application. Here, we have to employ the first-order strain energy (Eq.

(4.78)). The twist angle derived from this non-linear relationship, along with the result

from FEA analysis, is also showcased in Fig. 4.23a. This illustration suggests that the

proposed stacking sequence effectively provides extension-twist coupling in the strip-like

beam configuration.

The simulation results for the beam subjected to a temperature difference of 80◦C are

presented in Fig. 4.22. This result demonstrates that the proposed hygrothermally stable

stacking sequence, incorporating extension-twist coupling, ensures hygrothermal stability

even in strip-like beams.

Bend-Twist Coupling

In this case, we have implemented the stacking sequence scheme proposed in section 4.3 to

incorporate bend-twist coupling with hygrothermal stability. This implementation results

in the reduction of the linear constitutive law (Eq. (4.75)) to Eq. (4.81). The newly

defined coefficients used in this relation are provided in appendix C.1. The 1D constitutive

relation derived from this stacking sequence indicates that the proposed hygrothermally
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stable stacking sequence imparts only bend-twist coupling to strip-like beams.
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Figure 4.24: (a) Bend-twist coupling plot (b)Thermal deformation due to temperature
change

Recall that the hygrothermally stable stacking sequence proposed for bend-twist coupling

always satisfies hygrothermal stability conditions for any arbitrary independent fiber

angles. Hence, we have used previously obtained optimized independent fiber angle

ϕ1 = 68.14◦ for the calculation and simulation purpose for 8-ply laminate. The coupling

results obtained from linear constitutive relation and FEA analyses have been plotted and

provided in Fig. 4.25a. Here, we have plotted the bending angle θ2 against the applied

twisting moment. The non-linear relation between bending angle θ2 and twisting moment

is obtained by following the procedure as discussed in the previous case. The resulting

non-linear relation is used to plot θ2 against applied twisting moment M1 and provided

in Fig. 4.25a. These plots suggest that the proposed hygrothermally stable stacking

sequences are applicable in strip-like beams also and impart bend-twist coupling to such

beams.

Similar to the previous scenario, the Finite Element Analysis (FEA) results have confirmed

the hygrothermal stability of the strip beam when employing the proposed stacking

sequences, as illustrated in Fig. 4.24b. In this case, a temperature difference of 80◦C was

applied with the current stacking sequence, and no bending, twisting, or shear deformation

was observed in response to this temperature change.
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Extension-Bend Coupling

In this case, the constitutive relation for a hygrothermally stable strip-like beam can be

derived by employing a stacking sequence designed to incorporate extension-bend coupling

in the laminate. These stacking sequences are not presented in variable form; instead, they

are pre-assigned with numerical values of ±45◦, 0◦, and 90◦. However, it is still possible

to express the constitutive law symbolically in this case. This can be accomplished by

setting to zero those stiffness constants of the ABD matrix in Eq. (4.75) that become zero

due to the implementation of the proposed stacking sequences. For the current scenario,

A16 = A26 = B16 = B26 = 0, and the resulting constitutive relation is provided by Eq.

(4.82). Appendix C.1 contains the newly defined constants utilized in this equation.
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Figure 4.25: (a) Extension-Bend coupling plot (b)Thermal deformation due to
temperature change

This equation is not completely decoupled from other deformation modes, as observed in

the previous two cases. However, full decoupling can be achieved to exclusively provide

extension-bend coupling and ensure hygrothermal stability. Examining Eq. (4.75), it is

apparent that this decoupling can be attained by setting B16 and D16 to zero. Analyzing

the unbarred expressions of these terms (provided in Appendix C.1), it becomes evident

that these terms can be nullified by setting A16, A26, B16, B26, D16, and D26 to zero. In

the current case, we already have A16 = A26 = B16 = B26 = 0, so only two additional

constants (D16 and D26) need to be nullified. Considering the terms in terms of ζ (see Eqs.

(4.11-4.11)), it is necessary to make ζ3, ζ4, ζ7, ζ8, ζ11, and ζ12 zero. Additionally, two more

zeta terms, ζ1 and ζ5, must be nullified to satisfy the hygrothermal stability conditions.
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This condition can be achieved by devising a new systematic stacking sequence, similar

to the current approach, or by employing constrained numerical optimization techniques,

where the mentioned zero zeta terms serve as constraints. In the current case, we have

ζ1 = ζ3 = ζ4 = ζ5 = ζ7 = ζ8 = 0, and thus, only two additional terms, ζ11 and ζ12, need

to be nullified.

In the current case, the stacking sequence utilized for calculations and FEA simulations

is [(45/ − 45)S/(90/0)S ]T . When computing the compliance matrix (Cl) by taking the

inverse of the stiffness matrix from Eq. (4.82), it is evident that the extension-twist

compliance coefficient Cl(2, 1) is of the order of O(10−5), while the extension-bend

compliance coefficient Cl(3, 1) is of the order of O(10−3). Consequently, the resulting

relation effectively imparts extension-bend coupling exclusively. The bending angle θ2

derived from this linear constitutive relation aligns closely with the FEA analysis, as

depicted in Fig. 4.25a. The figure illustrates that the linear results obtained from the two

different approaches are in close agreement. Non-linear results are not presented in this

case due to observed discrepancies between analytical and FEA results, currently under

investigation. Furthermore, such non-linear analysis is beyond the scope of this thesis,

as the primary focus is to assess the applicability of the proposed hygrothermally stable

stacking sequences with different elastic couplings in a strip-like beam configuration, for

which the linear solution suffices.

The simulation results presented in Fig. 4.25b are obtained by applying a temperature

change of 80◦C, consistent with the approach adopted in previous cases. Notably, for

the employed stacking sequence, the strip-like beam exhibits no thermal deformation

in bending, twisting, or shearing. This observation serves to confirm the hygrothermal

stability of the proposed stacking sequence in a beam-like structure as well.
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Conclusion and Future Scope

5.1 Conclusion

This thesis work presents a comprehensive analysis of elastic coupling in anisotropic

homogeneous and inhomogeneous beams. This analysis has been carried out using VAM,

which simplified the analysis of the 3D elasticity problem of the beam by splitting it

into 2D linear cross-section analysis and 1D along-the-length analysis. To achieve the

objectives of this thesis work, a prismatic beam with a solid elliptical cross-section has

been considered for the analysis of anisotropic-homogeneous beams and a strip-like beam

for the analysis of anisotropic-inhomogeneous beams.

The anisotropic-homogeneous beam analysis is divided into two parts based on the

nature of the analysis and results. The first part of this analysis covers the

orthotropic-homogeneous beam analysis (chapter 2) while the second part deals with

the analysis of monoclinic and complete anisotropic homogeneous beam (chapter 3).

There is a slight difference in the methodology used in the two parts; orthotropic beam

analysis is completely analytical, whereas monoclinic and anisotropic beam analysis is

semi-analytical. The solution procedure is the same for both cases. The beam under

consideration has cross-sectional dimensions of the same order; hence, only a small

parameter (a/l ≪ 1) is available for this class of beams. This geometric small parameter,

along with the smallness of strain (ε ≪ 1), has been used to order the different terms

involved in the 3D strain field. This ordering ultimately leads to the ordered stain energy

functional. For the zeroth order approximate solution, the strain energy corrected up to

O(µε2) has been considered for the minimization using the variational principle. This

minimization provides the Euler-Lagrange equations and associated boundary conditions.

These Euler-Lagrange equations have been solved along with associated BCs to get

zeroth order approximate solution. For the first-order approximate solution, the required

strain energy should be corrected up to O(µε4). The remaining procedure is the same

as the zeroth order solution; however, the current and next higher order approximate

solution is subjected to the constraints (see chapter 2). Similarly, other next higher-order

approximate solutions have been obtained. The Timoshenko-like beam model has been

extracted from the third-order approximate strain energy as suggested by [57]. The 1D

constitutive law has been obtained from the 1D strain energy. The 1D strain measures,

displacement and rotation, have been obtained from the 1D beam analysis. Determination

of these 1D quantities allows the recovery of the 3D displacement, stress and strain field.

The coupling behavior is governed by the cross-sectional stiffness constants provided in

119
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the 1D constitutive law. The results obtained from this analysis are compared with the

FEA results, where they show good agreement with FEA results.

In light of the observations made in the relevant chapters, the following key conclusions

can be drawn about the deformations and coupling behavior of anisotropic-homogeneous

beams:

� The zeroth order approximate solution represents the rigid body-like deformation

of the beam-like structures. This zeroth order solution includes rigid body-like

translation ui(x1) and rotation ϕ1(x1) of the cross-section. As no elastic constants

are involved in this solution, it represents the material-independent and most generic

solution of beam deformation.

� The first-order approximate solution incorporates both rigid body-like rotation of

cross-sections due to bending and elastic deformations. It provides the expression

for out-of-plane warping due to torsion and in-plane deformation due to the Poisson

effect.

� This analysis suggests that the beams of this class having material anisotropy level of

orthotropy or less do not show any elastic coupling. It is observed for monoclinic and

complete anisotropic materials. There is one exception if the monoclinic material

case, the monoclinic material beam having cross-section plane (x2−x3 plane) as the

plane of elastic symmetry does not show any elastic coupling.

� It is observed that in monoclinic material beams having x1 − x2 plane as plane of

elastic symmetry show coupling between κ1 and κ2. Similarly, for x1 − x3 plane as

a plane of elastic symmetry, the coupling is observed between κ1 and κ3. Hence,

monoclinic material beams show bend-twist coupling only.

� Even the complete anisotropic homogeneous beam does not show fully coupled

behavior. The extensional strain term γ11 remains uncoupled from all curvature

κi terms. In this case it is observed that κ1 is coupled to both κ2 and

κ3. However, κ2 and κ3 remain uncoupled from each other. Hence, complete

anisotropic-homogeneous beams also show bend-twist coupling only.

� The surface plots, showing the influence of direct (M1) and coupling (M2 and M3)

action on κ1 suggests that the coupling effect is not negligible; rather, it is almost

1/10 of direct action.

� This study suggests that the material beams, which show elastic coupling behavior,

violate plane stress assumptions (σ22 = σ33 = σ23 = 0) which is the basis of many

anisotropic-homogeneous beam analysis. This plane stress condition holds for all

uncoupled cases theoretically.

The analysis of anisotropic-inhomogeneous beam has been carried out using a laminated

composite strip-like beam. It is because laminated composite structures provide the
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most feasible way to model anisotropic-inhomogeneous beams. This work also has two

parts. In the first part, analysis of hygrothermal stability has been provided. The

hygrothermal stability analysis becomes essential for composite beams as these structures

are sensitive to changes in hygrothermal conditions. Generalized hygrothermally stable

stacking sequences with different modes of elastic coupling have been proposed to eliminate

these hygrothermal instabilities. This study provides a systematic and very simple way to

obtain these proposed hygrothermally stable laminates. Optimization has also been carried

out to maximize the desired coupling coefficient. The optimized results are compared

with the conventional numerically optimized results. The optimized results are checked

for robustness against the small perturbation in optimized results.

In the second part, a strip-like composite beam model has been modeled using VAM. This

work extensively refers to the work by Hodges et al. [73]. It exploits the naturally available

small parameter to dimensionally reduce the 3D elasticity problem into the strip-like beam

problem. The smallness of the thickness allows to introduce the shell parameters. This

nonlinear beam formulation facilitates expressing 2D shell parameters in terms of 1D

beam parameters. Further, strain energy has been calculated using the CLPT energy

equation. The zeroth order approximate solution has been obtained by minimizing stain

energy corrected up to O(Eε2). The linear constitutive relation has been obtained using

the zeroth order approximate solution. The first-order 1D strain energy has been used

to obtain nonlinear elastic coupling relations. Previously obtained optimized stacking

sequences have been implemented in this linear constitutive relation and nonlinear elastic

coupling relations for different coupling modes. The same hygrothermally stable stacking

sequence has been implemented in the FEA model to check the hygrothermal stability of

the optimized stacking sequence. The linear and nonlinear results are compared with the

FEA results for every optimized result.

The key observations of this analysis are the following:

� A generalized form of hygrothermally stable stacking sequences for a new class of

laminated composites with extension-twist, bend-twist and extension-bend has been

proposed. These proposed stacking sequences inherently satisfy the hygrothermal

stability conditions. Hence optimization of these stacking sequences becomes an

unconstrained problem that can be handled analytically and numerically.

� Comparison of optimized results of proposed stacking sequences with conventional

numerically optimized results suggests that the current approach provides a better

way to design the hygrothermally stable laminate with the abovementioned couplings

for large i.

� As proposed stacking sequences reduces the number of independent fiber angles in

laminate and reduces constrained optimization problems into unconstrained ones;

Hence, it turns out to be more computationally efficient.

� The sensitivity analysis confirms the robustness of these stacking sequences against

the perturbation in optimized results. The resultant error distribution has been
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compared with those obtained from the conventional numerically optimized results.

It has been found that for both approaches, error distribution is similar.

� These optimized results have been checked for hygrothermal stability in strip-like

beam formulation using FEA simulation, which shows that these stacking sequences

are also equally valid in strip-like beam formulation.

� Comparison analytical elastic coupling results with FEA results suggests that the

nonlinear analytical coupling results are in close agreement with FEA results. This

confirms the applicability of proposed stacking sequences in strip-like beam for the

different types of coupling.

5.2 Future Scope

Some of the future work related to the anisotropic-homogeneous beam analysis in this

thesis could focus on exploring the extensions and applications described below.

� The presented analysis used a prismatic beam with elliptical cross-section. This

analysis can be extended for the initially curved and twisted beam.

� This analysis can also be extended to the hollow cross-section or any general

cross-section.

� The monoclinic and complete anisotropic beam analysis used a semi-analytical

approach. This solution can be completely analytic, providing deeper insight and

understanding of the coupling and the elastic coefficient influencing it. A parametric

study can be performed after getting the complete analytical results.

� In the present study, the analysis of monoclinic and complete anisotropic beams is

limited to the Classical beam model. This study can be extended further to the

Timoshenko-like beam, which would provide more accurate results.

� The present analysis uses the Cartesian coordinate system; this can be reformulated

using curvilinear coordinate system.

The work related to the anisotropic-inhomogeneous beam analysis that can be used for

future extension of this study is following:

� The hygrothermally stable stacking sequences provided in this study are derived for

the flat surface. This work can be extended to the curved surfaces.

� In this study, optimization has been performed to maximize the coupling coefficient

of the plate-like structure and used the same for the beam-like structure. This

optimization can be performed for the beam coupling coefficient using the proposed

stacking sequences, which need not to satisfy hygrothermal stability constraints.

However, the most accurate optimized results required hygrothermal stability
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constrained should be obtained for strip-like beam and proposed stacking sequences

should be modified accordingly.

� Hygrothermal stability of the strip beam implemented with the proposed stacking

sequence has been checked using FEA simulation. Though the FEA simulation

suggests that the strip-like beam with the proposed stacking sequence is

hygrothermally stable, hygrothermal stability conditions can be derived for the

current strip-like beam to check analytically the applicability of the currently

proposed stacking sequence in the strip-like beam. The degree of error can also

be checked.
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Chapter A

2D Functions

A.1 Orthotropic: 2D Functions
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Chapter B

Stiffness & Flexibility Constants

and 2D Functions

B.1 Complete Anisotropic

B.1.1 2D Functions
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+ 14ψaniso,3 + 45ψaniso,2

B1
3 =19F1

1 + 45F2
1 + 14F3

1

B1
4 =45F2

2 + 14F3
2 + 19ψaniso

B1
5 =11 + 50F1

1,3 + 14F1
1,2 + 17F2

1,3 + 13F2
1,2 + 14F3

1,3 + 17F3
1,2

B1
6 =50x2 − 14x3 + 17F2

2,3 + 13F2
2,2 + 14F3

2,3 + 17F3
2,2

+ 50ψaniso,3 + 14ψaniso,2

B1
7 =11F1

1 + 14F2
1 + 50F3

1

B1
8 =14F2

2 + 50F3
2 + 11ψaniso

B2
1 =29 + 13F1

1,3 + 10F1
1,2 + 15F2

1,3 + 100F2
1,2 + 26F3

1,3 + 15F3
1,2

B2
2 =13x2 − 10x3 + 15F2

2,3 + 100F2
2,2 + 26F3

2,3 + 15F3
2,2

+ 13ψaniso,3 + 10ψaniso,2

B2
3 =29F1

1 + 10F2
1 + 13F3

1

B2
4 =10F2

2 + 13F3
2 + 29ψaniso

B2
5 =16 + 17F1

1,3 + 18F1
1,2 + 55F2

1,3 + 15F2
1,2 + 11F3

1,3 + 55F3
1,2

B2
6 =17x2 − 18x3 + 55F2

2,3 + 15F2
2,2 + 11F3

2,3 + 55F3
2,2

+ 17ψaniso,3 + 18ψaniso,2

B2
7 =16F1

1 + 18F2
1 + 17F3

1

B2
8 =18F2

2 + 17F3
2 + 16ψaniso

B3
1 =16 + 17F1

1,3 + 18F1
1,2 + 55F2

1,3 + 15F2
1,2 + 11F3

1,3 + 55F3
1,2

B3
2 =17x2 − 18x3 + 55F2

2,3 + 15F2
2,2 + 11F3

2,3 + 55F3
2,2

+ 17ψaniso,3 + 18ψaniso,2

B3
3 =16F1

1 + 18F2
1 + 17F3

1

B3
4 =18F2

2 + 17F3
2 + 16ψaniso

B3
5 =25 + 14F1

1,3 + 13F1
1,2 + 11F2

1,3 + 26F2
1,2 + 95F3

1,3 + 11F3
1,2

B3
6 =14x2 − 13x3 + 11F2

2,3 + 26F2
2,2 + 95F3

2,3 + 11F3
2,2

+ 14ψaniso,3 + 13ψaniso,2

B3
7 =25F1

1 + 13F2
1 + 14F3

1

B3
8 =13F2

2 + 14F3
2 + 25ψaniso
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B.1.2 Cross-sectional stiffness and flexibility constants

S11 =
136276798454πabP

732963519
S22 =

732963519πa3b3P

9938248a2 + 8764747b2

S23 =− 210232453πa3b3P

9938248a2 + 8764747b2
S24 = − 4753211πa3b3P

9938248a2 + 8764747b2

S33 =
πP

(
1398550303976265801a3b3 + 1194431660419301138ab5

)
2931854076 (9938248a2 + 8764747b2)

S34 =
999279208156583πa3b3P

1465927038 (9938248a2 + 8764747b2)

S44 =
πP

(
1354352619681868592a5b+ 1194454253434111659a3b3

)
2931854076 (9938248a2 + 8764747b2)

Φ11 =
732963519

136276798454πab
Φ22 =

1908076279a2 + 1629623061b2

136276798454πa3b3

Φ33 =
1465927038

68138399227πab3
Φ44 =

1465927038

68138399227πa3b
Φ23 =

210232453

68138399227πab3

Φ24 =
4753211

68138399227πa3b

B.2 Monoclinic Beam with Plane x2 − x3 of Elastic

Symmetry

B.2.1 Cross-sectional rigidity constant

Φ11 =
460425

88515418πab
Φ22 =

5
(
10a2 + 9b2

)
4108πa3b3

Φ33 =
920850

44257709πab3
Φ44 =

920850

44257709πa3b

B.2.2 2D functions

ψmx1(x2, x3) =
14a2x23 + 5

(
9b2 − 10a2

)
x3x2 − 14b2x22

50a2 + 45b2

F2
1 (x2, x3) =− 785336 x2 + 361612 x3

3683400

F2
2 (x2, x3) =

83830(b2 − x23)− 98167(a2 − 4x22)

3683400

F2
3 (x2, x3) =

785336x2x3 − 90403
(
b2 − 4x23

)
3683400

F3
1 (x2, x3) =− 361612 x2 + 670640 x3

3683400

F3
2 (x2, x3) =

670640x2x3 − 90403(a2 − 4x22)

3683400

F3
3 (x2, x3) =

98167(a2 − 4x22)− 83830(b2 − 4x23)

3683400
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B.3 Monoclinic Beam with Plane x1 − x3 of Elastic

Symmetry

B.3.1 Cross-sectional rigidity constant

Φ11 =
59287

11569970πab
Φ22 =

445443845a2 + 372529539b2

34841807658πa3b3
Φ33 =

118574

5784985πab3

Φ44 =
118574

5784985πa3b
ϕ24 =

1293

1156997πa3b

B.3.2 2D functions

ψmx2(x2, x3) =

(
18980424b2 − 22825495a2

)
x2x3

22825495a2 + 18980424b2

F1
1 (x2, x3) =

2489025 a2x2x3
22825495a2 + 18980424b2

F1
2 (x2, x3) =−

6465
(
b2 − 4x23

)
474296

F1
3 (x2, x3) =− 6465 x3

59287

F2
1 (x2, x3) =− 13505 x2

59287

F2
2 (x2, x3) =

1

8(22825495a2 + 18980424b2)

[
20

(
1039885a2 + 905571b2

)
x22 − 5199425a4

− 36
(
559055a2 + 417294b2

)
x23 + 503640a2b2 + 3755646b4

]
F2
3 (x2, x3) =

13505 x2x3
59287

F2
4 (x2, x3) =

9
[
8
(
415009a2 + 126909b2

)
x23 − 832676b2x22 − 621849a2b2 − 253818b4

]
91301980a2 + 75921696b2

F3
1 (x2, x3) =− 10953 x3

59287

F3
2 (x2, x3) =

9
(
468545a2 + 417294b2

)
x2x3

22825495a2 + 18980424b2

F3
3 (x2, x3) =

13505(a2 − 4x22)− 10953(b2 − 4x23)

474296

F3
4 (x2, x3) =− 4568724 b2x2x3

22825495a2 + 18980424b2

B.4 Monoclinic Beam with Plane x1 − x2 of Elastic

Symmetry

B.4.1 Cross-sectional rigidity constant

Φ11 =
94360

17650107πab
Φ22 =

5
(
426218129a2 + 388302354b2

)
173747653308πa3b3

Φ33 =
377440

17650107πab3

Φ44 =
377440

17650107πa3b
Φ23 =

61954

17650107πab3
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B.4.2 2D functions

ψmx3(x2, x3) =

(
2594900b2 − 2714483a2

)
x2x3

2714483a2 + 2594900b2

F1
1 (x2, x3) =−

30977
(
a2 − 4x22

)
754880

F1
2 (x2, x3) =

1703735 b2 x2x3
2 (2714483a2 + 2594900b2)

F1
3 (x2, x3) =− 30977 x2

94360

F2
1 (x2, x3) =− 40723 x2

188720

F2
2 (x2, x3) =

30040(b2 − x23)− 40723(a2 − 4x22)

1509760

F2
3 (x2, x3) =

5
(
1036081a2 + 895906b2

)
x2x3

8 (2714483a2 + 2594900b2)

F2
4 (x2, x3) =

376533 a2x2x3
2714483a2 + 2594900b2

F3
1 (x2, x3) =− 751 x3

4718

F3
2 (x2, x3) =

751 x2x3
4718

F3
3 (x2, x3) =

1

64 (2714483a2 + 2594900b2)

[
8
(
2148453a2 + 1652200b2

)
x23

− 4
(
5180405a2 + 6585966b2

)
x22 + 5

(
1036081a4 + 457812a2b2 − 660880b4

)]
F3
4 (x2, x3) =

2559440a2x23 − 68x22
(
22149a2 + 94360b2

)
+ 376533a4 + 964260a2b2

8 (2714483a2 + 2594900b2)



Chapter C

Stiffness Constants

C.1 Stiffness Variables

A11 =A11 +
A66A

2
12 − 2A16A26A12 +A2

16A22

A2
26 −A22A66

B11 =B11 +
(A16A22 −A12A26)B16 + (A12A66 −A16A26)B12

A2
26 −A22A66

B12 =B12 +
(A16A22 −A12A26)B26 + (A12A66 −A16A26)B22

A2
26 −A22A66

B16 =B16 +
(A16A22 −A12A26)B66 + (A12A66 −A16A26)B26

A2
26 −A22A66

D11 =D11 +
A66B

2
12 − 2A26B16B12 +A22B

2
16

A2
26 −A22A66

D12 =D12 +
B16 (A22B26 −A26B22) +B12 (A66B22 −A26B26)

A2
26 −A22A66

D22 =D22 +
A66B

2
22 − 2A26B26B22 +A22B

2
26

A2
26 −A22A66

D16 =D16 +
B16 (A22B66 −A26B26) +B12 (A66B26 −A26B66)

A2
26 −A22A66

D26 =D26 +
−A26B

2
26 +B26 (A22B66 +A66B22)−A26B22B66

A2
26 −A22A66

D66 =D66 +
A66B

2
26 − 2A26B66B26 +A22B

2
66

A2
26 −A22A66

A11 =A11 −
B

2
12

D22

,

B11 =B11 −
B12D12

D22

,

B16 =B16 −
B12D26

D22

D11 =D11 −
D

2
12

D22

,

D16 =D16 −
D12D26

D22

,

D66 =D66 −
D

2
26

D22

133
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D̂11 =D11 +
B2

16D22 − 2B26B16D12 +A66D
2
12

B2
26 −A66D22

Â11 =A11 −
A2

12

A22

B̂16 =B16 −
A12B26

A22

D̂66 =D66 −
B2

26

A22

ˆ
D66 =D66 −

D2
26

D22

D̂16 =D16 −
D12D26

D22

ˆ
D11 =D11 −

D2
12

D22

ˆ
A11 =A11 +

A22B
2
12 − 2A12B22B12 +A2

12D22

B2
22 −A22D22

ˆ̄B11 =B11 +
B12 (A12D22 +A22D12)−A12B22D12 −B2

12B22

B2
22 −A22D22

ˆ̄
D66 =D66 +

A22B
2
66D22 −B2

22B
2
66 +A22A66D

2
26

A66

(
B2

22 −A22D22

)
ˆ̄D16 =D16 +

A22D12D26 −B12B22D26

B2
22 −A22D22

ˆ̄
D11 =D11 +

B2
12D22 − 2B22B12D12 +A22D

2
12

B2
22 −A22D22

ˆ̄B16 =
D26 (A12B22 −A22B12)

B2
22 −A22D22

C.2 Coefficient of stiffness matrix [S]

S16 = S17 = S18 = S19 = S28 = S29 = S36 = S37 = S38 = S39 = S45 =

S46 = S47 = S49 = S56 = S58 = S68 = S78 = S89 = 0

S15 =
1

24
b3A11

S25 =
1

160
b5A11k1 −

1

12
b3B16

S26 =
b5A11D12k1

360D22

S27 =
b5A11B12k1

360D22

S35 =
b7A11B12k1

2

10080D22

− b5A11D26k1

180D22

+
1

24
b3B11

S48 = −b
5A11B12

720D22
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S55 =
1

320
b5A11

S57 =
b5A11B12

720D22

S59 =
b7A11B12k1

10080D22

− b5A11D26

360D22

S66 =
b5A11D

2
12

720D
2
22

S67 =
b5A11B12D12

720D
2
22

S69 = −b
7A11B12D12k1

60480D
2
22

− b5A11D12D26

360D
2
22

S77 =
b5A11B

2
12

720D
2
22

S79 = −b
7A11B

2
12k1

60480D
2
22

− b5A11B12D26

360D
2
22

S88 =
b7A11B

2
12

10080D
2
22

− b7A
2

11

30240D22

S99 = −k12
 b9A11B

2
12

403200D
2
22

+
b9A

2

11

90720D22

+
b7A11B12D26k1

15120D
2
22

+
b5A11D

2
26

180D
2
22

+
b5A11D12

360D22
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