
Investigation of Complex
Intracellular Dynamics using the

Ribosome Flow Model

A Thesis Submitted

in Partial Fulfilment of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY
by

Aditi Jain
(2018maz0007)

DEPARTMENT OF MATHEMATICS

INDIAN INSTITUTE OF TECHNOLOGY ROPAR

May, 2024



Aditi Jain: Investigation of Complex Intracellular Dynamics using the Ribosome
Flow Model
Copyright ©YYYY, Indian Institute of Technology Ropar
All Rights Reserved

ii



To
My Grandparents

iii



iv



Declaration of Originality

I hereby declare that the work which is being presented in the thesis entitled
“Investigation of Complex Intracellular Dynamics using the Ribosome
Flow Model” has been solely authored by me. It presents the result of my
own independent investigation/research conducted during the time period from
January 2019 to February 2024 under the supervision of Dr. Arvind Kumar Gupta,
Associate Professor at the Department of Mathematics, IIT Ropar.

To the best of my knowledge, it is an original work, both in terms of research
content and narrative, and has not been submitted or accepted elsewhere, in part
or in full, for the award of any degree, diploma, fellowship, associateship, or similar
title of any university or institution. Further, due credit has been attributed to
the relevant state-of-the-art and collaborations (if any) with appropriate citations
and acknowledgments, in line with established ethical norms and practices. I also
declare that any idea/data/fact/source stated in my thesis has not been fabricated/
falsified/ misrepresented. All the principles of academic honesty and integrity
have been followed. I fully understand that if the thesis is found to be unoriginal,
fabricated, or plagiarized, the Institute reserves the right to withdraw the thesis
from its archive and revoke the associated Degree conferred. Additionally, the
Institute also reserves the right to appraise all concerned sections of society of
the matter for their information and necessary action (if any). If accepted, I
hereby consent for my thesis to be available online in the Institute’s Open Access
repository, inter-library loan, and the title & abstract to be made available to
outside organizations.

Signature

Name: Aditi Jain
Entry Number: 2018maz0007
Program: PhD
Department: Mathematics
Indian Institute of Technology Ropar
Rupnagar, Punjab 140001

Date:

v

Mobile User



vi



Acknowledgement

I want to express my heartfelt gratitude to all those who have made diverse
contributions, each in their unique way, to the successful completion of this thesis.
During my PhD journey, I am fortunate enough to be surrounded by amazing and
supportive individuals. The journey entails more than just conducting research
papers and publishing them; it encompasses a multitude of experiences beyond mere
academia.

First and foremost, I express my sincere gratitude to my PhD advisor, Dr.
Arvind Kumar Gupta, for his invaluable guidance, patience, consistent support, and
encouragement. His expertise has played a pivotal role in shaping the trajectory of
my work. He always understand things and very calmly gives his best advice to me.
I really thank him for making me the best version of myself.

I am appreciative of the members of my doctoral committee—Dr. S. C. Martha,
Dr. Arun Kumar, Dr. Partha Sharathi Dutta, and Dr. Subhendu Sarkar—for their
feedback, valuable suggestions, and continuous evaluation of my research progress.
I also express my sincere thanks to the Reviewers—Professor Tamir Tuller and
Professor Malay Banerjee for evaluating my thesis and providing positive feedback
on it.

I want to extend my sincere gratitude to our collaborator Professor Michael
Margaliot for his invaluable suggestions and for providing significant input in my
research work. Again thanks to Arun Sir for his helpful insight and advice in
collaboration with our research work. I would also like to thank Naman for his
patience and help in completing our research problem.

I express my gratitude to IIT Ropar for extending financial support, which has
been instrumental in enabling this research. I am also thankful for the provision
of essential facilities and a conducive research environment. The research works
were partially supported by the FIST program of the Department of Science
and Technology, Government of India, Reference No. SR/FST/MS-I/2018/22(C).
Furthermore, I appreciate the assistance of Mr. Neeraj Sharma, our office assistant,
in handling technical requirements. Additionally, I acknowledge the support of Ms.
Jaspreet Kaur in efficiently managing various official tasks and always listening to
our not-so-big issues.

My sincere appreciation goes out to the members of my research group – Akriti,
Bipasha, Ankita, Nikhil, Naman, Shankha, and Ashish – for engaging in insightful
discussions and enjoyable dinner outings. I offer special thanks to Bipasha and
Ankita for listening attentively to my issues throughout the PhD journey and always

vii



giving helpful and encouraging advice.

I consider myself fortunate to have had the constant support of wonderful friends
throughout my time at IIT Ropar. A heartfelt thank you goes to my close-knit group,
including Vikas, Sahil, Monika, Sonam, and Niharika. Your friendship has been a
source of joy and support. From shared laughter to navigating challenges, each of
you has played a special role in making life’s journey more meaningful. I extend my
sincere gratitude, with a special acknowledgment to Sonam and Niharika. These
two have been my rock, always there for me through thick and thin. Their support
means the world to me, and I can’t express how grateful I am for their constant
presence in my life. They have turned the ups and downs into shared experiences,
making this journey incredibly special. I would also like to express my gratitude
for the delightful friendships with Amrendra, Taranjot, Surya, Arzoo, Himanshu,
Gopika, Kusum, Priya, Ayantika, Swati, Sakshi, Smita, Kapil, Akshay and others.
Each of you has added a special touch to my journey, and I truly appreciate the joy
you’ve brought into my life.

In conclusion, I wish to extend profound appreciation to my family. Thank you
all for always being there and trusting in my abilities. I feel incredibly fortunate to
have such incredible parents and their blessings have always propelled me to reach
new heights. I want to express my deep gratitude and love for my brothers – Akshit,
Sidham, and Navkar, for their steadfast support throughout my academic journey.
The occasional reunions have been imbued with immense joy, thanks to the delightful
presence of my sweet and caring younger brother, Navkar. Special thanks to my
Nanaji for his wonderful advice and encouragement for always keeping a positive
attitude towards life. Lastly, I am grateful to the Divine Entity, Almighty God,
whose unfathomable and limitless powers have consistently provided me with the
resilience and wisdom required to navigate the challenges of my doctoral endeavors.
Thank you God for making things happen at the right place and time.

The successful culmination of this thesis is indebted to the collaborative support
and contributions of these individuals and institutions. For this, I extend my
heartfelt gratitude.

Finally, I want the reader to believe in these two thoughts:

• Always let your conscience be your guide.

• Choose to be optimistic, it feels better.

viii



Certificate

This is to certify that the thesis entitled “Investigation of Complex
Intracellular Dynamics using the Ribosome Flow Model” , submitted by
Aditi Jain (2018maz0007) for the award of the degree of Doctor of Philosophy
of Indian Institute of Technology Ropar, is a record of bonafide research work carried
out under my guidance and supervision. To the best of my knowledge and belief,
the work presented in this thesis is original and has not been submitted, either in
part or full, for the award of any other degree, diploma, fellowship, associateship or
similar title of any university or institution.

In my opinion, the thesis has reached the standard fulfilling the requirements of
the regulations relating to the Degree.

Signature

Dr. Arvind Kumar Gupta
Department of Mathematics

Indian Institute of Technology Ropar
Rupnagar, Punjab 140001

Date:

ix

Auth

lot May 2024



x



Abstract

Movement is an important part of life. For example, in a central and fundamental
process known as gene expression, there is a movement of biological particles
called RNA polymerases on the DNA strand to produce messenger RNA (mRNA).
Then, ribosomes move sequentially along an mRNA molecule and decode it to
produce functional proteins. In intracellular transport within living organisms,
motor proteins move along microtubules to transport cargo from one location to
another. Another prominent example is the vehicular traffic in a city, where
people or goods are transported to another place via pathways. Understanding
these complex transport phenomena has been a significant area of research in
mathematics, biology, and physics. It requires developing appropriate mathematical
and computational models to analyze the flow of particles in these systems. Over the
years, the Ribosome Flow Model (RFM), obtained via a mean-field approximation
of a stochastic model called the Totally Asymmetric Simple Exclusion Process
(TASEP), has provided a rigorous mathematical framework for the analysis. It is a
deterministic, continuous-time model for analyzing the flow of interacting particles,
and its dynamics are described by ordinary differential equations (ODEs). It is
amenable to both mathematical and numerical analysis. The results of the RFM
analysis can be used to model and engineer gene expression.

In this thesis, we rely on the framework of RFM to model and analyze the
dynamical flow of particles along an ordered chain of sites encapsulating various
biologically observed features. We specifically focus on formulating a system of
non-linear ordinary differential equations, where the densities of each site on a lattice
serve as the state variables and understand their asymptotic behavior. Exploring
cooperative irreducible systems of ODEs with a first integral exhibiting positive
gradient, we leverage results on the global phase portrait of such systems in our
proposed models. Additionally, contraction theory proves to be a powerful tool
for establishing asymptotic properties, such as convergence to steady-state and
entrainment to a periodic excitation.

There are certain types of uncertainties present in the system leading to
variability in the parameters modeling the dynamics. In this direction, we develop
a framework to understand the flux of particle flow in the transport system having
different site capacities. Next, drawing inspiration from complex cellular processes
like intracellular transport where particles having extended length interact through
binding and repelling actions and can detach along the microtubule, we investigate
the impact of interactions and detachment phenomena on the output rate. Further,
motivated by experimental studies on collision-stimulated abortive termination of
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ribosomes, we develop a modeling framework to analyze the production rate under
various circumstances. Next, we derive a network model for large-scale translation
in the cell that encapsulates important cellular properties like ribosome drop-off
and attachment. We explore the effects of ribosome drop-off on production rates
to understand how drop-off influences the total production rate in the system.
Moving ahead, we develop a closed network system modeling simultaneous particle
movement along tracks with varying capacities in a resource-limited environment.
This facilitates the study of competition for shared resources and the development
of network models with feedforward and feedback connections between the tracks.
Inspired by real-world systems where entry rates into a lane are influenced by nearby
pools’ occupancy, we develop a model where parallel lanes are strategically connected
to multiple finite pools. This model takes into account the distribution of particles
in a local neighborhood.

In summary, we develop mathematical models that capture intricate features of
several biological and physical systems. These frameworks yield deeper insights into
how parameters influence system dynamics, enhancing our comprehension of the
underlying processes.

Keywords: Transport Phenomena; Mathematical Modeling; Ribosome Flow
Model; Ordinary Differential Equations; Cooperative Theory; Contraction Theory;
Steady-State.
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Chapter 1

Introduction

1.1 Transport phenomena

Over the years, unraveling the intricate dynamics of transport phenomena has
remained a focal point for scientists and engineers in various research domains
such as Mathematics, Physics, Biology, and more. Understanding the underlying
mechanisms driving these transport processes is crucial in analyzing their respective
dynamics. Many natural or man-made transport processes can be viewed as
non-equilibrium systems where ‘particles’ move along a one-dimensional lattice of
ordered ‘sites’. The concepts of self-driven and field-driven dynamics describe two
different mechanisms by which particles move within these systems. Self-driven
dynamics involve internal forces propelling particles autonomously, while field-driven
dynamics result from external fields exerting forces on particles. There is a
non-zero particle flux present in these systems which allows the particles to flow
preferentially in a particular direction. Hence, to analyze the collective movement of
particles in such systems, it is important to gain insights about the non-equilibrium
steady-states.

A pivotal and fundamental process within this realm is gene expression, which
converts genetic information into proteins [1]. Gene expression comprises two
primary stages: transcription and translation. In transcription [2], biological
particles known as RNA polymerases (RNAPs) move to interpret the instructions
encoded in specific regions of the DNA strand, generating messenger-RNA
(mRNA) (see Fig. 1.1a). The mRNA consists of codons, with each codon
corresponding to a specific amino acid. In the subsequent translation stage [3],
ribosomes sequentially traverse the mRNA and the successive tRNA molecules bring
amino acids to the ribosome, and the growing polypeptide chain is formed through
peptide bond formation, ultimately yielding functional proteins (see Fig. 1.1b). The
polypeptide chain, in turn, represents the initial linear form of a protein, with its
final structure and function determined by the specific sequence of amino acids.

Another notable example involves intracellular transport [2], where molecular
motors facilitate the movement of cargo between the cell’s center and periphery (see
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Figure 1.1: Biological processes: a) DNA transcription into mRNAs by RNA
polymerases. b) mRNA translation to produce polypeptide chains by ribosomes.
c) Intracellular transport to deliver cargo by kinesin.

Fig. 1.1c). These motors navigate along microtubule pathways, utilizing the energy
generated through adenosine triphosphate (ATP) hydrolysis [4]. Additionally, the
transportation of goods in a city’s vehicular traffic serves as another instance,
illustrating the movement of vehicles from one location to another [5]. Linear
communication networks provide yet another example, where data packets traverse
a structured arrangement of buffers [6].

The analysis of these transportation processes commonly involves employing a
model depicting the flow of particles along an ordered sequence of sites known
as a lattice or track. The particles’ movement may exhibit either unidirectional
flow, as seen in gene translation [7], or bidirectional flow, as observed in gene
transcription [8, 9]. To enhance the overall flow, multiple particles often traverse
the same lattice simultaneously. For instance, several ribosomes concurrently decode
the same mRNA molecule to increase protein production [10, 11]. In general, these
moving particles possess volume and are unable to pass through a particle positioned
in front of them. This leads to adherence to a simple exclusion principle, asserting
that along the lattice, two particles cannot occupy the same site simultaneously.

2



Consequently, a stalled particle can trigger the formation of “traffic jams” behind
it. Substantial evidence supports the existence of traffic jams involving ribosomes,
RNAPs, and motor proteins [10, 12, 13].

The proper functioning of these transport processes is crucial for the survival
of any living organism. For example, specific mutations in molecular motor
components can give rise to various neurological conditions, such as Alzheimer’s
disease, viral transport issues, and kidney diseases [14]. Additionally, research
indicates that ribosome drop-off may lead to potentially non-functional proteins,
contributing to developmental defects [15]. The consequences of traffic jams are
also of significant interest in understanding how particle density relies on system
parameters [16, 17]. Despite years of in vivo and in vitro studies on these transport
processes, certain properties remain inadequately analyzed due to experimental
constraints. Consequently, there is a need to develop suitable models to scrutinize
the movement of biological particles within the realms of biotechnology and synthetic
biology.

In investigating cellular transport phenomena, scientists employ mathematical
and computational models to analyze both qualitatively and quantitatively [18, 19,
20, 21]. Mathematical models are becoming increasingly significant in understanding
particle flow dynamics because they can be used to make qualitative and quantitative
predictions about the effects of changing parameters on system dynamics [22, 23,
24, 25]. Models with a steady state or several steady states are useful in numerous
studies in system biology [26]. This is so as the steady state has been used to
accurately predict several features of the biological experiments that are generally
performed in a very specific experimental environment [27, 28]. These models aid in
the identification of useful control parameters and in understanding the influence of
system structure and parameters on the particle density along the chain. Another
objective involves determining optimal parameter values that lead to achieving an
optimal production rate. Their significance is notably pronounced in synthetic
biology, wherein biological modules undergo modification or redesign [29].

1.2 Totally asymmetric simple exclusion process

The conventional model of translation is the totally asymmetric simple exclusion
process (TASEP) introduced by Mac-Donald et al [30]. It is a stochastic model
for modeling the unidirectional flow of particles along an ordered lattice. The term
“simple exclusion” represents that the particles hop forward with some probability
to a neighboring site provided it is empty. This describes the fact that the particles
cannot overtake each other due to their volume constraint. In TASEP with open
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boundary conditions, the particles enter the chain from the environment and exit
the chain into the environment. Fig. 1.2 depicts the topology of TASEP with open
boundary conditions along the chain having n sites. The input rate into the chain
is denoted by ↵ > 0, the hopping rate from site i to site i+ 1 is denoted by �i > 0,
and the exit rate from the chain is denoted by � > 0. During a short time interval
[t, t+�T ], a particle enters the chain with probability ↵�T , provided the first site
is empty, hop from site i to site i + 1 with probability �i�T , provided site i + 1 is
empty, and exit the chain with probability ��T .

𝛼 𝛽 𝛾𝑛−2 

1 2 3 4 5 𝑛 − 2 𝑛 − 1 𝑛 

Figure 1.2: TASEP with open boundary conditions.

The TASEP has been used to study a large number of transport phenomena
ranging from intracellular transport to pedestrian dynamics [22, 31, 32]. However,
due to the indirect interactions between the particles, rigorous analysis of TASEP is
still a challenge, and closed-form results exist only in the case of the homogeneous
TASEP or in particular cases such as when only one or two rates differ from all the
others. In the non-homogeneous case, one resort to extensive and time-consuming
Monte Carlo simulations [33, 34, 35]. Several mathematical models, such as those
based on Petri nets and probabilistic Boolean networks, have been proposed, but
they often entail lengthy and laborious calculations [36, 37].

Reuveni et al. introduced a dynamical model called the ribosome flow model
(RFM) for translation and it has been used extensively to study transport
in cell biology with many applications [38]. It is a deterministic dynamical
model for describing the evolution of particle densities in a finite chain with
unidirectional movement that obeys the ‘soft’ version of the simple exclusion
principle. The dynamics of the RFM are described by nonlinear ordinary differential
equations (ODEs) [39].

The next section describes the dynamics of the RFM.

1.3 Ribosome flow model

The RFM is a continuous-time model for analyzing the flow of particles along n

consecutive sites [39]. During modeling the flow of ribosomes in the translation
process, mRNA molecules are coarse-grained into a lattice consisting of n sites of
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codons. The entry of particles from the environment to the first site of the lattice
is regulated by a transition rate �0. The flow of particles from site i to site i + 1

is regulated by a transition rate �i for i = 1, 2, . . . , n � 1. The transition rate at
which particles exit the lattice is regulated by �n. The rates �i, i = 0, 1, . . . , n

are positive numbers and has units of 1/time. The exact values of �i’s can be
determined based on the biophysical properties of the phenomena modeled by the
RFM. For example, in the translation process, these properties include the tRNA
pool of the organism, the codon composition of each site, the local folding of mRNA
molecule, and the number of free available ribosomes [38, 40]. The occupancy or
density level of site i at time t is represented by a state variable xi(t) : R+ ! [0, 1],
for i = 1, 2, . . . , n. Here, xi(t) 2 [0, 1] represents the probability how occupied site
i is, where xi(t) = 0 [xi(t) = 1] means that site i is completely empty [completely
occupied] at time t. The topology of the RFM is described in Fig. 1.3.

𝝀𝟎 𝝀𝟐 𝝀𝟏 𝝀𝒏−𝟏 𝝀𝒏 𝝀𝟑 𝝀𝒏−𝟐 

𝑹(𝒕) 

𝑥2(𝑡) 
 

𝑥3(𝑡) 𝑥𝑛−1(𝑡) 𝑥𝑛(𝑡) 𝑥1(𝑡) 

Figure 1.3: The RFM models unidirectional flow along a chain of n sites. The
density at site i at time t is represented by xi(t) 2 [0, 1]. The transition rate from
site i to site i + 1 is regulated by a parameter �i > 0, with �0 and �n regulating
the initiation and termination rates, respectively. R(t) denotes the output rate at
time t.

The dynamics of the RFM is given by n nonlinear first-order ODEs:

ẋ1 = �0(1� x1)� �1x1(1� x2),

ẋ2 = �1x1(1� x2)� �2x2(1� x3),

...

ẋn = �n�1xn�1(1� xn)� �nxn. (1.1)

Defining x0(t) ⌘ 1 and xn+1(t) ⌘ 0 allows to write the above equations more
succinctly:

ẋi = �i�1xi�1(1� xi)� �ixi(1� xi+1), i 2 {1, . . . , n}. (1.2)

The flow of particles from site i to site i + 1 increases with the occupancy level of
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particles at site i and decreases as site i + 1 becomes fuller. This corresponds to a
“soft” version of the simple exclusion principle in TASEP. Hence, the rate of flow of
particles from site i to site i+ 1 is proportional to xi and (1� xi) [vacancy level at
site i� 1] and is given by �ixi(1� xi+1). Thereby, Eq. (1.2) states that the change
in the state variable xi as a function of time t is equal to the flow entering from site
i � 1 to site i minus the flow leaving from site i to site i + 1. The rate of flow of
particles out of the system is the output rate given by R(t) := �nxn. In the case
of mRNA translation, the output rate of ribosomes from the mRNA is also called
translation (protein production) rate. Since the state variables represent normalized
density levels, the state-space of the RFM is Cn := [0, 1]n.

Thus, RFM is a nonlinear compartmental system, where each xi represents a
normalized amount of “material” in the ith compartment and the dynamics describe
the flow of material from one compartment to another (see Fig. 1.4). Compartmental
systems play an important role in various biological domains including cellular
growth, pharmacokinetics, and epidemiology [41, 42].

𝑥𝑛−1(𝑡) 𝑥𝑛(𝑡) 

λ 𝑛−1 

 
 

λ 𝑛−2 

𝑥1(𝑡) 𝑥2(𝑡) 

λ 1 

 
 

λ 0 λ 𝑛 λ 2 

𝑹(𝒕) 

λ 3 λ 𝑛−3 

𝑥3(𝑡) 𝑥𝑛−2(𝑡) 

Figure 1.4: The RFM as a compartmental system where xi(t) denote the normalized
amount of “material” in compartment i at time t.

The RFM can be derived via a mean-field approximation for the occupation
probabilities of the sites of TASEP with open boundary conditions. The advantage
of this model is that it is highly amenable to rigorous numerical and mathematical
analysis using tools from systems and control theory [39]. The theory of TASEP
focuses on phase transitions [23], domain wall theory [43], etc., which is different
from the control-theoretic approach used to analyze RFM. Also, the analysis of the
RFM provides results that are valid for any number of sites n. In contrast, the
analysis of the TASEP provides approximate results that become more accurate
as n is taken to be very large. Furthermore, the analysis of the RFM holds for
any set of feasible rates including the case where the rates differ from one another.
From modeling intricate dynamics to analyzing stability, predicting future states,
and optimizing processes, the application of RFM theory significantly contributes
to the understanding of complex transport phenomena [44, 45, 46].

We next address the relevant concepts and results that describe the dynamical
properties of the RFM.
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1.4 Dynamical properties of RFM

For two vectors a, b 2 Rn, we write a  b if ai  bi for all i = 1, . . . , n, a < b

if ai  bi and ai < bi for some i, and a ⌧ b if ai < bi for all i = 1, . . . , n. Similarly,
for two control function u, v : R+ ! R+, we write u  v if u(t)  v(t) for all t � 0.
Let x(t, a) denote the solution of Eq. (1.1) at time t � 0 for the initial condition
a 2 Cn.

1.4.1 Invariance

Defining an invariant set is an important aspect of analyzing dynamical systems.
The existence of an invariant set entails bounds for the solution’s behavior [47]. In
this thesis, the main focus lies on modeling cellular transport through dynamical
systems generated by a system of nonlinear differential equations. Therefore, it is
important to consider such state spaces that form an invariant set for the system.

Definition 1.4.1. A set C is invariant if a solution starts in C and stays in it for
all t � 0.

Proposition 1.4.1 ([39]). The state space Cn is an invariant set for the dynamics
of the RFM, i.e., if a 2 Cn then x(t, a) 2 Cn for all t � 0.

In other words, every trajectory emanating from any initial condition in the state
space remains in it for all t � 0.

1.4.2 Repelling boundaries and persistence

Consider a time-varying dynamical system:

ẏ = f(t, y), (1.3)

whose trajectories evolve on ⌦ = I1 ⇥ I2 · · ·⇥ IN ⇢ Rn, where each Ik is an interval
of the form [0, c], c > 0 or [0,1), t 2 [0,1) is the time, and f is nonlinear vector
field which is continuously differentiable. Let y(t, a) denote the solution of (1.3) at
t for the initial condition a.

Definition 1.4.2 ([48]). The vector field f has the boundary repelling (BR) property
if given any ✏ > 0 and each sufficiently small � > 0, there exists M = M(✏,�) such
that for each i 2 {1, 2, . . . , n} and each t � 0, the condition

yi(t)  � and yj � ✏ for every j 2 {1, 2, . . . , i� 1} (1.4)

implies that
fi(t, y) � M. (1.5)
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In other words, every yi(t) is separated from zero after an arbitrarily short time.

Definition 1.4.3 ([49]). The vector field f has the cyclic boundary repelling (CBR)
property if given any ✏ > 0 and each sufficiently small � > 0, there exists M =

M(✏,�) such that for each i 2 {1, 2, . . . , n} and each t � 0, the condition

yi(t)  � and yi�1 � ✏ (where y0 ⌘ yn) (1.6)

implies that
fi(t, y) � M. (1.7)

In particular, if system (1.3) have a first integral then this property is important
to conclude that the trajectories get repelled from the boundaries.

Proposition 1.4.2 ([48, 49]). Suppose that vector field f satisfies BR (CBR)
property and for any ⌧ > 0, xi(⌧) > 0 implies that xi(t) > 0, for all i 2 {1, 2, . . . , n}
and all t � ⌧ . Then given any � > 0 there exists ✏ = ✏(�) > 0, with ✏(�) ! 0 as
� ! 0, such that every solution y(t, a) satisfies

yi(t, a) � ✏, for all t � � and i 2 {1, 2, . . . , n}. (1.8)

The following result shows that trajectories of (1.1) that emanate from an initial
condition in Cn become uniformly separated from the boundary of Cn.

Proposition 1.4.3 ([48]). Consider the RFM. For any � > 0 there exists ✏ = ✏(�) >

0, with ✏(�) ! 0 as ⌧ ! 0, such that for any a 2 Cn \ {0} we have

✏  xi(t, a)  1� ✏, for all t � � and i 2 {1, 2, . . . , n}. (1.9)

In other words, after an arbitrarily short time, each state variable is in the
range [✏, 1 � ✏]. This implies that, after an arbitrarily short time ⌧ > 0, every site
along the lattice is neither completely empty nor completely full.

To explain the usefulness of Proposition 1.4.3, consider the Jacobian J(x) of the
vector field of the RFM given by
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2

66666664

��0 � �1(1� x2) �1x1 0 . . . 0

�1(1� x2) ��1x1 � �2(1� x3) �2x2 . . . 0
. . .

0 0 0 . . . �n�1xn�1

0 0 0 . . . ��nxn

3

77777775

.

For any x 2 Cn, all the entries of J(x) are non-zero and it may become reducible for
values x on the boundary of [0, 1]n. However, J(x) is irreducible for all x 2 (0, 1)n.
Thus, Proposition 1.4.3 is useful in guaranteeing that after an arbitrarily short time,
the matrix J becomes an irreducible matrix. This property is important in analyzing
the asymptotic properties of the RFM.

1.4.3 Monotonicity

Let ⌦ ⇢ Rn be an open set. Consider a system of n ODEs:

ẏ = f(y), (1.10)

where f : ⌦ ! Rn is a continuously differentiable function. We assume that the
solution exists for all t � 0. Let y(t, a) denote the solution of (1.10) at time t for
the initial condition a.

Definition 1.4.4 ([50], Chapter 3). Let <R denote any of relations , < and ⌧.
The vector field f : ⌦! Rn is said to satisfy the Kamke condition if for any vectors
a, b 2 ⌦ satisfying a <R b, we have fi(a) <R fi(b).

The next result implies that the flow is monotone.

Theorem 1.4.1 ([50], Chapter 3). Suppose that the vector field f satisfies the Kamke
condition. Then for a <R b, we have

y(t, a) <R y(t, b), for all t � 0. (1.11)

One way to verify that the Kamke condition holds is based on the sign structure
of the Jacobian matrix J whose ij entry is @fi

@yij
.

Definition 1.4.5 ([51]). System (1.10) is called cooperative if for each y 2 ⌦,
@fi

@yj
(y) � 0 for any i 6= j. If a cooperative system satisfies @fi

@yj
(y) = 0 for any |i�j| >

1, then it is called a tridiagonal cooperative system. Furthermore, if @fi

@yj
(y) > 0 for

any |i� j| = 1, then it is called strongly cooperative tridiagonal system (SCTS).
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Proposition 1.4.4. For a cooperative system defined on an open convex set ⌦, the
resulting local flow is monotone.

Proof. By the fundamental theorem of calculus for line integrals [52], we have

fi(b)� fi(a) =

Z 1

0

@fi
@yj

(a+ (b� a)r)(bj � aj)dr. (1.12)

We have @fi

@yj
(y) � 0 for any i 6= j, therefore the above equation implies fi(a)  fi(b).

Hence, by Theorem 1.4.1 the flow of (1.10) is monotone.

Proposition 1.4.5 ([39]). For any a, b 2 Cn with a <R b, the solution of the RFM
satisfy

x(t, a) <R x(t, b), for all t � 0. (1.13)

This has the following interpretation. If bi � ai for all i, we say that a density
profile b is “more occupied” than a. The above proposition guarantees that this
relation between the corresponding density profiles of the RFM remains true for all
time.

1.4.4 Contractivity

Contraction theory is a potent tool for analyzing the behavior of certain nonlinear
dynamical systems [53]. It is a powerful tool for proving asymptotic properties
of the system including convergence to equilibrium and entrainment to a periodic
excitation [54, 55].

We consider a general deterministic dynamical system of the form:

ẏ = f(t, y), (1.14)

where y(t) 2 ⌦ ⇢ Rn is the state variable, t 2 [0,1) is the time and f is nonlinear
vector field which is continuously differentiable. Let y(t, a) denote the solution of
(1.14) at t for the initial condition a. Given a vector norm |.| : Rn ! R+, the
induced matrix norm ||.|| : Rn⇥n ! R+ is ||A|| = max

|y|=1
|Ay| and the induced matrix

measure µ : Rn⇥n ! R is µ(A) = lim
h!0

1
h
(||I + hA||� 1).

Definition 1.4.6 ([53]). The system (1.14) is called contractive if there exists a
vector norm |.| and c > 0 such that

|y(t, a)� y(t, b)|  exp(�ct)|a� b|, (1.15)

for any a, b 2 ⌦ and all t � 0.

10



We focus here on the matrix measures to prove that the trajectories converge to
each other exponentially.

Definition 1.4.7 ([55]). The given system (1.14) is said to be infinitesimally
contracting on ⌦ if there exists a norm ||.|| on ⌦, with associated matrix measure
µ, such that for some positive constant c (contraction rate) it holds that

µ(J(t, y))  �c, for all y 2 ⌦ and all t � 0. (1.16)

The next result states that infinite contractivity implies global contractivity.

Theorem 1.4.2 ([55]). Let ⌦ be convex and an invariant set of the dynamics of
(1.14). Suppose that f is infinitesimally contracting on ⌦ with respect to a norm,
||.||, with contraction rate c. Then for any two solutions y1(t) and y2(t), it holds
that:

||y1(t)� y2(t)||  exp(�ct)|y1(0)� y2(0)|, for all t � 0. (1.17)

Certain dynamical systems from system biology are not contracting with respect
to any norm but become eventually contractive after arbitrarily short transients
in time or amplitude. Indeed, the study of contraction after initial transients
seems reasonable as this notion is usually used to prove asymptotic properties
of the dynamical system. We next define two forms of generalized contractive
systems(GCSs).

Definition 1.4.8 ([56]). The system (1.14) is said to be contractive after a small
overshoot and short transient (SOST) on ⌦ with respect to a norm |.| if given any
✏ > 0 and ⌧ > 0 there exists c = c(⌧, ✏) > 0 such that

|y(t+ ⌧, a)� y(t+ ⌧, b)|  (1 + ✏) exp(�ct) |a� b|, (1.18)

for all t � 0 and all a, b 2 ⌦.

The definition of SOST states that the system contracts at an exponential rate
but only after an arbitrarily small time ⌧ and with an arbitrarily small overshoot
(1 + ✏).

Definition 1.4.9 ([56]). The system (1.14) is said to be contractive after a small
overshoot (SO) on ⌦ with respect to a norm |.| if given any ✏ > 0 and ⌧ > 0 there
exists c = c(⌧, ✏) > 0 such that

|y(t, a)� y(t, b)|  (1 + ✏) exp(�ct) |a� b|, (1.19)

for all t � 0 and all a, b 2 ⌦.
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The definition of SO states that the system contracts at an exponential rate with
an arbitrarily small overshoot (1 + ✏) and there is no time transient.

Note that SO implies SOST. The next definition provides a sufficient condition
to show that system (1.14) is SOST with respect to a norm.

Definition 1.4.10 ([56]). The system (1.14) is said to be nested contractive (NC)
on ⌦ with respect to a norm |.| if there exist a convex set ⌦⇠ ⇢ ⌦ and norms
|.|⇠ : Rn ! R+, where ⇠ 2 (0, 1/2], such that the following conditions holds.

1.
S

⇠2(0,1/2]⌦⇠ = ⌦, and ⌦⇠1 ⇢ ⌦⇠2 , for all ⇠1 � ⇠2.

2. For every ⌧ > 0 there exists ⇠(⌧) 2 (0, 1/2], with ⇠(⌧) ! 0 as ⌧ ! 0 such that
x(t, a) 2 ⌦⇠, for all a 2 ⌦ and all t � 0.

3. It is contractive on ⌦⇠ with respect to a norm |.|⇠ .

4. The norms ⌦⇠ converge to |.| as ⇠ ! 0, i.e., for every ⇠ > 0 there exist
� = �(⇠) > 0 with�(⇠) ! 0 as ⇠ ! 0 such that (1� �)|w|  |w|⇠  (1 + �)|w|,
for all w 2 ⌦.

Theorem 1.4.3 ([56]). If the system (1.14) is NC with respect to a norm |.| then
it is SOST with respect to a norm.

Also, it is interesting to know that under what conditions SO and SOST are
equivalent. The following definition addresses this aspect.

Definition 1.4.11 ([56]). A system (1.14) is said to be weakly expansive (WE) if
for any ✏ > 0 there exist ⌧ > 0 such that

|y(t, a)� y(t, b)|  (1 + ✏)|a� b|, (1.20)

for all a, b 2 ⌦ and all t � ⌧ .

Proposition 1.4.6 ([56]). Suppose that the system (1.14) is WE. Then (1.14) is
SO if and only if it is SOST.

Let |.|1 : Rn ! R+ denote the L1 norm, i.e., for x 2 Rn, |x|1 = |x1|+ |x2|+ · · ·+
|xn|. The next result shows that the solutions of the RFM are contracting after an
arbitrarily small overshoot.

Proposition 1.4.7 ([48]). Given any ✏ > 0 there exist � = �(✏) > 0 such that the
solutions of the RFM satisfy

|x(t, a)� x(t, b)|1  (1 + ✏) exp(��t)|a� b|1, (1.21)
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for all a, b 2 Cn and all t � 0.

Proof: It can be proved that the RFM satisfies SOST property by referring to
Definition 1.4.10. It can be easily observed that RFM is WE (see Ref. [39]). Hence,
by Proposition 1.4.6, RFM satisfies SO property.

The above contraction result is useful in implying that the RFM satisfies several
useful and important asymptotic properties.

1.4.5 Global asymptotic stability

Theorem 1.4.4 ([51]). Consider the system (1.10) to be a SCTS defined on ⌦.
Then either: a) limt!1 y(t, a) exists and is a steady-state point of the dynamics, or
b) as t ! 1, y(t, a) eventually leaves any compact set.

The following Brouwer Fixed-Point theorem guarantees the existence of the
steady-state point of the system (1.1).

Theorem 1.4.5 ([57]). Given that set ⌦ is compact and convex, and that function
f : ⌦! ⌦ is continuous, then there exists some k 2 ⌦ such that f(k) = k.

Theorem 1.4.6 ([39]). The RFM admits a unique steady-state point e 2 int(Cn)

that is globally asymptotically stable, i.e.,

lim
t!1

x(t, a) = e, for all a 2 Cn. (1.22)

Proof: The proof can be concluded by combining the fact that the RFM is
a strongly cooperative tridiagonal system with the above theorems. Also, the
framework of contraction theory provides a tool to conclude the existence of a steady
state for the RFM.

Thus, any set of transition rates �i, i = 0, 1, . . . , n induces a unique steady-state
value and any trajectory of the RFM converges to this value, regardless of the initial
point. The next simple example demonstrates the dynamical behavior of the RFM.

Example 1.4.1. Consider the RFM with dimension n = 3, rates �0 = 1.1654,
�1 = 1.0426, �2 = 1.0249, and �3 = 1.2086 . Fig. 1.5 depicts trajectories for six
different initial conditions [0.5 0 0]0, [0 0.5 0]0, [1 0 0]0, [0 1 1]0, [1 0 1]0, and
[1 1 1]0. It can be seen that the three solutions converge to the same point.

1.4.6 Entrainment

Many biological systems are excited by periodic signals, for example, the 24-hour
solar day. Proper functioning requires biological mechanisms to synchronize with
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Figure 1.5: Trajectories of the RFM in Example 1.4.1 for six different initial points
in int(Cn). The unique steady-state point is marked by an ellipse.

the periodic excitations. An important question is whether the system converges
to a periodic pattern with the same period as the excitation. It is well-known that
stable linear time-invariant systems entrain [58]. There are nonlinear systems that
may not entrain, for example, their trajectories may display a chaotic pattern rather
than converge to a periodic pattern [59]. There are however two important classes
of nonlinear systems that do entrain: contraction systems and cooperative systems
that admit a first integral.

The next theorem is an important result that proves entrainment to a periodic
excitation.

Theorem 1.4.7 ([56]). Suppose that the system (1.14), with state y evolving on a
compact and convex state-space ⌦, is SOST and that the vector field f is T -periodic.
Then it admits a unique periodic solution � : [0,1) ! ⌦ with period T and y(t, a)

converges to � for any a 2 ⌦.

To study entrainment in the RFM, assume that the parameters �i are not
constant, but are time-varying functions that are all jointly periodic with a
period T > 0. More precisely, we assume that

• There exists a (minimal) T > 0 such that all the rate functions �i(t) are
non-negative, continuous and T-periodic.

• There exists 0 < �1  �2 such that �i(t) 2 [�1, �2], for all i and all t 2 [0, T ).
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We then refer to the network as the periodic RFM (PRFM). Note that a constant
function is T -periodic for any T .

The next result shows that the PRFM entrains.

Theorem 1.4.8 ([48]). The PRFM admits a unique function � : R+ ! int(Cn),
i.e., T -periodic and for any initial condition a 2 Cn, the solution x(t, a) of the
PRFM converges to � as t ! 1.

The next simple example demonstrates that the RFM entrains to the periodic
excitations.

Example 1.4.2. Consider a PRFM with dimension n = 4, �0 = 1, �i = 1, �2(t) =

2 + sin(⇡t), �3(t) = 3 + sin(⇡t), and �4 = 1. Note that all the rates are periodic
with a common minimal period T = 2. It can be seen from Fig. 1.6 that all the
trajectories converge to the periodic solution with period T = 2.
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Figure 1.6: State variables xi as a function of t in Example 1.4.2. Note that each
state variable converges to a periodic function with a period T = 2.

1.4.7 Spectral representation of RFM

At the steady state, the time derivative of the state variables in Eq. (1.1) is zero,
and this gives

�iei(1� ei+1) = R, for i = 0, 1, . . . , n, (1.23)

where e0 := 1 and en+1 := 0. Solving the above set of nonlinear equations is not
trivial. However, there exists a spectral representation of the mapping from the �i’s
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to R [60]. Define the (n+ 2)⇥ (n+ 2) tridiagonal matrix given by

An :=

2

6666666664

0 ��1/2
0 0 . . . 0

��1/2
0 0 ��1/2

1 . . . 0

0 ��1/2
1 0 . . . 0

. . .
0 . . . 0 0 ��1/2

n

0 . . . 0 ��1/2
n 0

3

7777777775

.

It has been proved that there is a simple maximal eigenvalue � > 0, and let ⇣ 2 Rn+2
++

be the corresponding eigenvector. It has been analyzed that steady-state densities
satisfy

ei =
⇣i+2

�1/2
i

⇣i+1

, for all i 2 {1, 2, . . . , n} (1.24)

and
R =

1

�2
. (1.25)

1.5 Simulations

Direct simulation. We numerically solve the equation in Matlab to obtain the set
of steady-state occupancy probabilities and the steady-state rate of protein synthesis,
R. We start from an mRNA strand which is empty of ribosomes, x(0) = 0. The
densities are then found for a set of later times using Eq. (1.1) and Matlab’s ordinary
differential equation solver. The process stops when the vector x(t) converges to the
vector of steady-state density. More accurately, x(t) is constant (up to we stop the
process for a time t⇤ for which some prefixed numeric error threshold) for every
t > t⇤. The vector of steady state density and the protein production rate are then
x = e and R = �nen.

Stochastic simulation. Since the RFM is a mean-field approximation of TASEP,
we ran MATLAB simulations of this process. A simulation begins with an empty
chain of dimension n and continues for 107 time steps i.e., total simulation time.
Each site can accommodate atmost one particle and a particle can only hop
unidirectionally to a consecutive site if it is empty. Every site i, i = 1, 2, . . . , n

in the chain is associated with hopping rates �i’s, where the next hopping event
time tk + ✏k is generated randomly. For site i, ✏k are random variables drawn from
the exponential distribution with mean rate �i. If hopping time is equal to the
simulation time, then the particle at site i hops to site i + 1, provided site i + 1 is
empty. The occupancy at each site is averaged throughout the simulations with the
first 103 time steps discarded from the calculations to obtain the average steady-state
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reader density of each site.

To verify that the high correlation between the model and Monte Carlo
simulations holds for a large set of parameters, we ran 400 tests, wherein each
test a new set of rates are drawn randomly.

Example 1.5.1. Consider an RFM having dimensions n = 40. Assume that �i =

1 + ✓i where ✓i is a random variable uniformly distributed in the interval (�1
4 ,

1
4).

Fig. 1.7 depicts the correlations between the steady-state mean densities (⇢) of the
RFMs and the steady-state mean densities (�) calculated through Monte Carlo
simulations. It can be seen that the correlation between the two is high (r '
0.93484).
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Figure 1.7: Steady-state mean densities (numerically simulated ⇢ and Monte Carlo
simulated �) and the corresponding Pearson’s correlation coefficient r and p-value
in Example 1.5.1.

Hence, Monte Carlo simulations support the modeling of dynamical aspects of
translation using RFM.

1.6 Generalizations of the RFM

The RFM primarily analyzes the dynamical flow of ribosomes along the mRNA
molecule during the translation process. Many important aspects: the effect of
ribosome recycling [61], optimizing the protein production rate subject to convex
constraints on the rates [44, 62, 63], stochastic variability in translation [64], and
more have also been analyzed using tools from the theory of continued partial
fractions [65] and random matrix theory [66]. Several generalizations of the RFM
have been used to model numerous cellular central processes incorporating more
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sophisticated and more realistic features into the dynamical systems modeling
the movement of particles along the tracks. This includes ribosome flow model
network with a pool (RFMNP) to study the impact of competition for the limited
resources [49], excluded flow with local repelling and binding model (EFRBM)
to model the flow of motor proteins along a one-dimensional lattice of sites with
nearest-neighbor interactions between the motors [67], ribosome flow model with
Langmuir kinetics (RFMLK) that models attachment and detachment of ribosomes
along the mRNA molecule [68], the ribosome flow model with extended objects
(RFMEO) that models the unidirectional flow of ribosomes that cover several site
units [69], ribosome flow model with different site sizes (RFMD) that models the
unidirectional flow of particles along a lattice having different site sizes [70], and
many more. Next, we briefly review the dynamical properties of the enlisted models
above.

1.6.1 Ribosome flow model network with a finite pool

Naturally, as cellular resources are finite, the cellular components available are
in a limited amount, for example, it was estimated that there are approximately
24 ⇥ 104 ribosomes and 6 ⇥ 104 mRNA molecules in a yeast cell [71]. Biological
evidence suggests that there is an indirect coupling between the mRNAs as they
compete with each other for the limited availability of ribosomes [72]. Competition
for shared finite resources is a substantial aspect of studying the biophysics of
the cell. The investigation of the effect of a finite pool of ribosomes has been
done by a model called RFMNP introduced by Raveh et al. using a mean-field
TASEP approximation [49]. This is the very first model of a network composed of
interconnected RFMs. In this model, a set of m RFMs with input are considered
to represent different mRNA molecules parallelly competing for ribosomes. These
are interconnected through a pool of free ribosomes. An important property of the
RFMNP is that it is a closed system, so the total number of ribosomes remains
conserved for all t � 0. Let z(t) denote the pool density of free ribosomes at time
t. The ith RFM has dimension ni, transition rates �i

j
> 0, an input measurable

function Gi and output function yi. The dynamics of the ith RFM in the network
is thus given by:

ẋi

1 = �i

0Gi(z)(1� xi

1)� �i

1x
i

1(1� xi

2),

ẋi

2 = �i

1x
i

1(1� xi

2)� �i

2x
i

2(1� xi

3),

...

ẋi

ni
= �i

ni�1x
i

ni�1(1� xi

ni
)� �i

ni
xi

ni
,

yi = �i

ni
xi

ni
.

(1.26)
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The output of each RFM is fed into the pool. Hence, the pool dynamics is given by:

ż =
mX

i=1

yi �
mX

i=1

�i

0Gi(z)(1� xi

1). (1.27)

In other words, all the ribosomes that exit the mRNAs feed the pool and the pool
feeds the initiation sites in all the mRNAs (see Fig. 1.8).
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𝒛(𝒕) 
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Figure 1.8: Each mRNA is described by an RFM with input and output. The output
of each RFM is fed into the pool and the pool feeds the initiation rates of each RFM.
The function Gi describes the likelihood that the particles from the pool will attach
to the ith RFM.

Recall that every state variable xi

j
denotes the probability how occupied is the

site j of ith mRNA molecule and the pool variable z represents an average number
of free ribosomes in the pool. Therefore, the relevant state space of the RFMNP is:

⌦ := [0, 1]n1 ⇥ · · ·⇥ [0, 1]nm ⇥ [0,1).

Let

H(t) := z(t) +
mX

i=1

niX

j=1

xi

j
(t).

This is the total number of ribosomes in the system at time t. Thus, H is a first
integral of the dynamics. Let d := n1 + · · · + nm + 1, and let 1d denote a column
vector of d ones. For s � 0, let Ls := {a 2 ⌦ : 10

d
a = s}, i.e., the s level set of

the first integral H. The next stability result provides a rigorous framework for
analyzing the effect of competition by analyzing the steady-state behavior of the
network after a change in the parameters.
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Theorem 1.6.1 ([49]). Every level set Ls contains a unique steady-state point eLs

of the RFMNP and for any initial condition a 2 Ls, the solution of the RFMNP
converges to eLs.

In other words, the RFMNP admits a continuum of steady-state points and every
trajectory converges to a steady state.

1.6.2 Ribosome flow model with extended objects

In many biological flows, the particles are larger than their step sizes. For example, in
DNA transcription, each RNAP typically covers between 42 and 51 nucleotides [73]
and in mRNA translation, each ribosome typically covers about 10 to 11 codons [2].
In the RFM, mRNA molecules are coarse-grained into sites of consecutive codons.
However, how to coarse-grain the mRNA in a systematic way to obtain the best
fidelity between the model and the biological reality is still not clear. To encapsulate
the feature that every ribosome occupies the codon it is translating and codons after
it, a model called RFMEO was introduced [69]. The RFMEO is a continuous-time
model that describes the unidirectional flow of ribosomes where every ribosome
covers ` site units, with 1  `  n [69]. The part of the ribosome translating the
codon is referred to as the “reader”.

The transition rates �i > 0 represent the flow of ribosomes from one codon to
another, where �0 represents the rate at which the ribosomes start attaching to the
mRNA, and �n represents the rate at which ribosomes stop translating the mRNA.
Each codon on the n-dimension mRNA has a normalized reader density xk(t) 2 [0, 1]

and a coverage density yk(t) 2 [0, 1] given by

yk(t) =
kX

i=max{1,k�`+1}

xi(t), k = 1, 2, . . . , n. (1.28)

The dynamical equations describing the RFMEO are:

ẋ1 = �0(1� y`)� �1x1(1� y`+1),

ẋ2 = �1x1(1� y`+1)� �2x2(1� y`+2),

...

ẋn = �n�1xn�1(1� y`+n�1)� �nxn(1� y`+n),

(1.29)

with yk ⌘ 0 for all k > n.

More succinctly, we can write the above equations as follows:

ẋi = fi�1(x)� fi(x), i = 1, 2, . . . , n, (1.30)
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where
fi(x) := �ixi(1� yi+`), i = 0, 1, . . . , n, (1.31)

with xi(t) ⌘ 0 and yi(t) ⌘ 0 for all i < 1 and i > n. The term xi(1�yi+`) represents
that the reader flow from site i to site i+1 increases with the reader density at site
i and decreases with the coverage occupancy level at site i+ ` (see Fig. 1.9). Also,
note that the equations describing the flow in the last sites are linear ones as the
ribosome decoding the last ` codons can move without any hindrance towards the
exit end of the mRNA.

𝑥𝑖(𝑡) 𝑥𝑖−1(𝑡) 𝑥𝑖+1(𝑡) 𝑥𝑖+ℓ(𝑡) 𝑥𝑖+ℓ−1(𝑡) 

ℓ  sites 

λ𝑖𝑥𝑖 1 − 𝑦𝑖+ℓ  
 

𝑥𝑖(𝑡) 𝑥𝑖−1(𝑡) 𝑥𝑖+1(𝑡) 𝑥𝑖+ℓ(𝑡) 𝑥𝑖+ℓ−1(𝑡) 

ℓ  sites 

Figure 1.9: Ribosomes that cover ` sites scan the mRNA from left to right. The solid
circle represents the reader location of the ribosome and the sites i, i+1, . . . , i+`�1
are covered by the ribosome. The flow of ribosomes from site i to site i+ 1 is given
by �ixi(1� yi+`), where yi+`(t) =

P
i+`

k=i+1 xk(t).

The RFMEO, unlike the RFM, is not a cooperative dynamical system. The RFM
is a special case of RFMEO, with ` = 1. Further, as xk and yk are densities, the
state space is given as:

 = {x 2 Rn : xk 2 [0, 1] and yk 2 [0, 1]}. (1.32)

The next result shows that the solutions of the RFMEO are contracting after an
arbitrarily small overshoot and short transient.

Proposition 1.6.1 ([69]). Given any ✏ > 0 and each ⌧ > 0, there exist � = �(✏) > 0
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such that the solutions of the RFMEO satisfy

|x(t+ ⌧, a)� x(t+ ⌧, b)|1  (1 + ✏) exp(��t)|a� b|1, (1.33)

for all a, b 2  and all t � 0.

The following theorem states for fixed parameters in the system, the trajectories
corresponding to different initial states all converge to a unique steady-state point.

Theorem 1.6.2 ([69]). The RFMEO admits a global asymptotically stable
steady-state point e 2 int( ) i.e.,

lim
t!1

x(t, a) = e, for all a 2  . (1.34)

1.6.3 Ribosome flow model with Langmuir kinetics

Biological observations suggest that ribosomes may detach from the mRNA before
reaching the stop codon due to different reasons such as the presence of premature
codon, depletion in the concentration of tRNAs, or ribosome stalling [74, 75]. Also,
it is known that ribosomes may get attached to a codon via internal ribosome entry
sites (IRES), or due to leaky scanning [76]. To encapsulate all these features, a
deterministic, nonlinear, and continuous-time model called ribosome flow model with
Langmuir kinetics (RFMLK) was introduced [68]. The RFMLK is a coarse-grained
mean-field approximation of TASEP with open boundary conditions and Langmuir
kinetics. The RFMLK describes the flow of ribosomes along n consecutive sites of
an mRNA molecule. It contains three sets of parameters:

• �i > 0, i = 0, 1, . . . , n, controls the transition rate from site i to site i+ 1,

• ↵i � 0, i = 1, . . . , n, controls the detachment rate from site i, and

• �i � 0, i = 1, . . . , n, controls the attachment rate to site i.

Each parameter has units of 1/time. The probability that how occupied site i is
at time t is represented by a state variable xi(t). The dynamical equations describing
the RFMLK are:

ẋ1 = �0(1� x1)� �1x1(1� x2) + �1(1� x1)� ↵1x1,

ẋ2 = �1x1(1� x2)� �2x2(1� x3) + �2(1� x2)� ↵2x2,

...

ẋn = �n�1xn�1(1� xn)� �nxn + �n(1� xn)� ↵nxn. (1.35)
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The term ↵ixi represents the detachment of particles from site i to the environment,
whereas �i(1� xi) represents the attachment of particles from the environment to
site i. The topology of the RFMLK is depicted in Fig. 1.10. By setting some of
the ↵i’s and �i’s to positive values and the others to zero, it is possible to model
drop-off and internal entry of ribosomes at specific sites.

𝜶𝟏 𝜶𝟐 𝜶𝒏−𝟏 𝜶𝒏 

𝜷𝒏−𝟏 𝜷𝒏 𝜷𝟏 𝜷𝟐 𝜷𝟑 

𝜶𝟑 
𝝀𝟎 𝝀𝟐 𝝀𝟏 𝝀𝒏−𝟏 𝝀𝒏 𝝀𝟑 𝝀𝒏−𝟐 

𝑹(𝒕) 
𝑥1(𝑡) 
 
 

𝑥2(𝑡) 
 

𝑥3(𝑡) 𝑥𝑛−1(𝑡) 𝑥𝑛(𝑡) 

Figure 1.10: The RFMLK models unidirectional flow along a chain of n sites. The
density at site i at time t is represented by xi(t) 2 [0, 1]. The transition rate from
site i to site i + 1 is regulated by a parameter �i > 0, with �0 and �n regulating
the initiation and termination rates, respectively. The parameter ↵i � 0 [�i � 0]
controls the drop-off [attachment] rate from [to] site i. R(t) denotes the output rate
at time t.

The RFMLK, just like RFM, is a nonlinear tridiagonal compartmental model
and the dynamical equations describe the flow between these compartments and
also with the cellular environment. If ↵i = �i = 0 for all i, then the model reduces
to the RFM. The following contraction property helps to deduce the global behavior
of the dynamical equations.

Proposition 1.6.2 ([68]). Given any ✏ > 0, there exist � = �(✏) > 0 such that the
solutions of the RFMLK satisfy

|x(t, a)� x(t, b)|1  (1 + ✏) exp(��t)|a� b|1, (1.36)

for all a, b 2 Cn and all t � 0.

The next theorem implies that any solution of the RFMLK converges to a unique
steady-state density.

Theorem 1.6.3 ([68]). The RFMLK admits a unique steady-state e 2 int(Cn) that
is globally asymptotically stable, i.e.,

lim
t!1

x(t, a) = e, for all a 2 Cn. (1.37)
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In particular the output (production) rate R := �nxn +
P

n

i=1 ↵nxn converges to
a steady-state. The RFMLK demonstrates the effect of the drop-off of ribosomes
on the mRNA translation process. It is intuitive to expect that detachment of
ribosomes from a jammed site may reduce congestion and hence increase the flow.
This is not true as drop-off results in truncated and non-functional proteins that
are of no use in cellular activities. The next result shows that detachment always
decreases the steady-state output R.

Proposition 1.6.3 ([68]). Suppose we modify RFMLK by changing ↵j to ↵̄j, with
↵j < ↵̄j, for any j 2 {1, 2, . . . , n� 1}. Let R̄ denote the steady-state output rate in
the modified RFMLK. Then R̄ < R.

1.6.4 Excluded flow with local repelling and binding model

Experimental investigations exhibit that intracellular transport phenomena are
influenced by the presence of interactions between the particles. Transport by
kinesins-1 along microtubules is an example of such behavior where kinesins-1
remains longer attached to the microtubule in the presence of neighboring motor
proteins [77]. An extension of the RFM called excluded flow with local repelling
and binding model (EFRBM) was introduced to include the nearest-neighbor
interactions between the particles by incorporating two “force” interactions: repelling
and binding forces with parameters r and q [67]. The EFRBM with n sites includes
the following parameters:

• �i > 0, i = 0, 1, . . . , n, controls the transition rate from site i to site i+ 1,

• r � 0 is the attachment/detachment force between the two existing neighbors,

• q � 0 is the attachment/detachment force between the two new neighbors.

Let

zi(t) :=

8
<

:
xi(t) i = 1, 2, . . . , n,

0 otherwise.
(1.38)

The dynamical equations describing the EFRBM are as follows:

ẋi = fi�1(x)� fi(x), i = 1, 2, . . . , n, (1.39)

where

fi(x) := �ixi(1� xi+1)(1 + (q � 1)zi+2)(1 + (r � 1)zi�1), i = 1, 2, . . . , n. (1.40)
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Eq. (1.39) implies that the change in the reader density at site i is the inflow
fi�1(x) from site i � 1 to site i minus the outflow fi(x) to site i + 1. The term
(1 + (q � 1)zi+2) represents that the flow from site i to site i+ 1 also depends upon
the density at site i + 2 and increases [decreases] if q > 1 [q < 1]. The particle at
site i + 2 will attract [q > 1] or repel [q < 1] the particle that move from site i to
i + 1 . Similarly, the term (1 + (r � 1)zi�1) represents that the flow into site i + 1

also depends upon the density at site i�1. The topology of the EFRBM is depicted
in Fig. 1.11.
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Figure 1.11: Schematic explanation of the transition flow from site i to site i+ 1 in
the EFRBM. Upper-left: the transition rate is �i when both sites i � 1 and i + 2
do not contain particles. Upper-right: the transition rate is �iq when site i� 1 does
not contain particle and site i + 2 does. Lower-left: the transition rate is �ir when
site i � 1 does contain particle and site i + 2 does not. Lower-right: the transition
rate is �irq when both sites i� 1 site i+ 2 do contain particles.

The EFRBM, unlike the RFM, is not a cooperative dynamical system and if r =
q = 1 for all i, then the model reduces to the RFM. The following contraction
property after a small overshoot helps to deduce the global behavior of the dynamical
equations.

Proposition 1.6.4 ([67]). Given any ✏ > 0, there exist � = �(✏) > 0 such that the
solutions of the EFRBM satisfy

|x(t, a)� x(t, b)|1  (1 + ✏) exp(��t)|a� b|1, (1.41)

for all a, b 2 Cn and all t � 0.

The next theorem implies that any solution of the EFRBM converges to a unique
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steady-state density that depends on the rates �i, r, q, and is independent of the
initial conditions.

Theorem 1.6.4 ([67]). Assume that r, q > 0. The EFRBM admits a unique
steady-state e 2 int(Cn) that is globally asymptotically stable, i.e.,

lim
t!1

x(t, a) = e, for all a 2 Cn. (1.42)

1.6.5 Ribosome flow model with different site sizes

In the previous generalizations of the RFM, the capacity of each site or compartment
is taken to be equal. However, each site along the compartment can have a different
size, for example, if we consider the flow of vehicles down a road, then the capacity
changes depending on the number of parallel lanes. A dynamical model called
ribosome flow model with different site sizes (RFMD) was introduced to analyze the
effect of different site capacities on the dynamics of the flow [70]. To incorporate
the feature of different site sizes each particle in this model hops forward to the next
site not only if it is vacant, but also if it is ready to accept the particle. The model
contains two sets of parameters:

• �i > 0, i = 0, 1, . . . , n controls the transition rate from site i to site i+ 1, and

• qi 2 (0, 1] describes the capacity at site i.

The dynamics of the RFMD is given by the set of n nonlinear ordinary differential
equations:

ẋ1 = �0(q1 � x1)� �1x1(q2 � x2),

ẋ2 = �1x1(q2 � x2)� �2x2(q3 � x3),

...

ẋn = �n�1xn�1(qn � xn)� �nxn. (1.43)

The state variable xi(t) : R+ ! [0, qi] describes the normalized occupancy level
of site i at time t where xi(t) = 0 [xi(t) = qi] means that site i is completely
empty [full] (see Fig. 1.12). The RFMD, just like RFM, is a nonlinear tridiagonal
compartmental model where compartments can have different capacities and
the dynamical equations describe the flow between these compartments. In the
particular case, when qi = 1 for all i, RFMD becomes the RFM.
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Figure 1.12: The RFM with different site sizes models the unidirectional flow along a
chain of n sites. The density at site i at time t is represented by xi(t) 2 [0, qi], where
qi 2 (0, 1] represents the maximal possible capacity at site i. The transition rate
from site i to site i+1 is regulated by a parameter �i > 0, with �0 and �n regulating
the initiation and termination rates, respectively. R(t) denotes the output rate at
time t.

The state-space of the RFMD is:

C := {x 2 Rn : xi 2 [0, qi], i = 1, 2, . . . , n}.

The next theorem states that the transition rates and site sizes determine a
unique steady-state e and any solution arising from different initial conditions in C

converges to it.

Theorem 1.6.5 ([70]). The RFMD admits a unique e 2 int(C) such that

lim
t!1

x(t, a) = e, for all a 2 C.

1.7 Aims and objectives

This thesis aims to predict the translation rates of ribosomes on a complex
network, which otherwise is difficult to predict through experiments. This will
give future directions to experimentalists for the further investigation of protein
synthesis. These mathematical models can serve as an effective tool for designing
synthetic biological circuits and have ramifications for biotechnology and human
health. In addition, they can also be useful for modeling and analyzing vehicular
flow, molecular traffic flow, pedestrian dynamics, and more. This thesis seeks to
resolve unanswered questions by developing dynamical models that capture realistic
biological phenomena occurring in cellular processes, specifically gene expression.
The following are the main objectives of this thesis:

• To obtain a framework for analyzing a complex transport model that
involves the flow of particles with stochastic transitions and stochastic site
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capabilities. Certain types of randomness or uncertainty are always present
in many nonlinear systems. The main goal of the model is to investigate
the steady-state particle flux under the notion that parameters are random
variables by using tools from the random matrix theory. The analysis can be
generalized and applied to study the flow of particles in numerous transport
systems in scenarios where rates depend on local factors.

• Examining the impact of interactions and detachment phenomena during the
flow of particles having extended length along the track. The stimulation to do
this problem comes from the fact that in many complex cellular processes such
as intracellular transport carried by motor proteins, the particles are larger
than their step sizes and they usually interact with one another by binding
and repelling actions based on the state of its neighboring particles [78]. The
methods rely on the theory of dynamical systems to predict properties of the
steady state and its ratification through the numerical solution of the equations
on selected examples.

• Understanding flow of ribosomes having extended length moving along mRNA,
including the possibility of detachment of the particles due to several reasons
like ribosome-ribosome collisions [79]. Motivated by the recent experimental
studies on collision-stimulated abortive termination of the ribosomes [80, 79],
we develop a deterministic modeling framework and analyze the steady state
production rate under different circumstances, such as, with and without
collisions with the neighboring ribosomes on the lattice. The formalism
developed is general and can be applied to different scenarios by considering
appropriate parameter values.

• Analyzing and developing a better understanding of large-scale simultaneous
mRNA translation incorporating the possibility of attachment/detachment of
ribosomes from the mRNA. Translation is the most energetically consuming
process in the cell and the phenomena of ribosome drop-off from a single
mRNA result in a decrease in production rate [81]. In the context of
simultaneous translation of mRNA molecules: does drop-off still decrease the
production rate? This work is motivated by the fact to analyze the effect of
ribosome drop-off as this may perhaps increase the total production rate in
the entire system, as it allows ribosomes to detach from slow sites, and then
attach to the initiation sites of other mRNA molecules.

• Building a closed network system that can model the simultaneous movement
of particles along tracks having sites of different capacities in a resource-limited
environment. Thus, it allows for studying the important topic of competition
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for shared resources. Moreover, developing a network model with feedforward
and feedback connections between the tracks facilitates modeling a network of
interconnected roads, where the flow out of one road may enter another road
in the network or re-enter the same road.

• To analyze the dynamics of several parallel lanes connected strategically to
multiple finite pools. This work is inspired by the fact that in many real-world
systems, the entry rate of particles into a lane is affected by the occupancy
of nearby pools. The main goal of the model is to investigate the effect of
parameters on the system properties. As per our knowledge, there is no
existing work in the context of RFM models that addresses the possibility
of distinct pools that mimic various physical transport processes.

1.8 Outline of the thesis

In this thesis, various generalizations of the RFM-based models are presented that
play a key role in understanding the different biophysical aspects of many complex
transport phenomena including intracellular transport. These models capture
several dynamical features of the phenomena which were not examined previously.
Models with a steady-state or several steady-states are very useful in various studies
not only related to system biology but also in other areas e.g., physical systems. In
this respect, using tools from contraction theory and cooperative theory, we prove
that the model admits a unique steady state. Secondly, we study the effect of a small
increase/decrease in any of the parameters on the steady-state profile. Monte Carlo
simulations are also performed supporting the modeling of intracellular processes
using the dynamical system. We present the work into eight chapters that include the
introductory (Chapter 1), six main chapters (from Chapter 2 to 7), and a conclusive
chapter (Chapter 8). The summary of the contents of each main chapter is provided
below.

Chapter 1: Introduction
This chapter briefs various important intracellular transport processes that require
developing appropriate mathematical and computational models to analyze the flow
of biological particles in the context of biotechnology and synthetic biology. Then
we discuss an important deterministic model called the ribosome flow model (RFM).
We provide a comprehensive insight into the dynamical properties of the RFM
which include persistence, contractivity, cooperativity, stability, and entrainment.
Next, we show that the RFM correlates with TASEP, supporting the modeling
of intracellular processes such as translation and transcription using the RFM.
Further, various generalizations of the RFM are reviewed that encapsulate several
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other realistic features of the biological processes and further serve as the basis for
developing more sophisticated and more realistic models.

Chapter 2: A theoretical framework to analyze the flow of particles in
a dynamical system with stochastic transition rates and site capacities
In this chapter, we first study several dynamical properties of the RFMD which
models the unidirectional movement of particles controlled by transition rates along
a lattice having different site sizes. There are various types of stochasticity present
in the systems due to several reasons such as experimental noise, uncertainty,
etc. Therefore, we speculate the RFMD model in the stochastic environment
to understand it in a better way. This work models the parameters as random
variables with known distributions and investigates the steady-state flow rate under
this notion by using tools from the random matrix theory. Some closed-form
theoretical results are derived for the steady-state flow rate under some restrictive
assumptions such as random variables being independent and identically distributed.
Furthermore, for arbitrary but bounded stochastic transition rates, stochastic site
capacities, or both, we establish bounds for the steady-state flow rate.

Chapter 3: Modeling transport of extended interacting objects with
drop-off phenomenon
This chapter considers a deterministic model of cellular transport on a
one-dimensional chain. The main novelty of the model is the inclusion of interactions
between the extended objects. The study focuses on characterizing the steady
state of the system under different circumstances, putting special emphasis on the
steady outflow. The methods rely on the theory of dynamical systems to predict
properties of the steady state and its ratification through the numerical solution of
the equations on simple examples. The main result is an existence and uniqueness
proof for the steady state. This work also shows examples of non-trivial behaviors
such as detachment rates may help in increasing the steady-state flow by alleviating
traffic jams that can exist due to several reasons like bottleneck rate or interactive
forces between the particles. We also analyze the special case of our model, when
there are no forces exerted by neighboring particles, and study the sensitivity of its
steady-state to variations in the parameters.

Chapter 4: Modeling mRNA translation with ribosome abortions
The contents of this chapter are motivated by the recent experimental studies
on collision-stimulated abortive termination of the ribosomes. We propose a
deterministic mathematical model for the process of mRNA translation described
by the flow of ribosomes having extended length moving along a one-dimensional
track i.e., mRNA, including the possibility of detachment of the particles due to
several reasons like ribosome-ribosome collisions. We prove that the model admits a
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unique steady-state profile. Furthermore, we study the effect of parameters on the
steady state through a theoretical framework in some cases. We also demonstrate
that in some cases, the predictions of the proposed model are consistent with the
previously proposed computational-based kinetic models. This work is important in
the context of studying dynamical processes involving abortions due to collisions.

Chapter 5: Large-scale mRNA translation and the intricate effects of
competition for the finite pool of ribosomes
In this chapter, we present a network model called RFM with Langmuir kinetics
network (RFMLKN) that encapsulates important biological phenomena such as
competition of a finite number of ribosomes leading to an indirect coupling
between the mRNA molecules and also the possibility of attachment/detachment of
ribosomes from the mRNA. In this work, we prove that the network always converges
to a steady state and entrains periodic excitations in any of its rates. Next, we study
its sensitivity to variations in parameters. Among our results, we study the effect of
change in a hopping rate in an mRNA molecule on the network. This yields a local
effect: an increase or decrease in the translation rate of this mRNA, and also the
global effect: the translation rate of the other mRNA molecules either all increase or
decrease. Next, we analyze that an increase in detachment [attachment] rate in one
of the RFMLKs increases [decreases] the steady-state pool density and consequently
increases [decreases] the density in each site in all the other RFMLKs.

Chapter 6: Large-scale closed and generalized networks of ribosome
flow model with different site sizes
This chapter describes and analyzes in detail two mathematical models for the flow
of “particles” along a set of “trails” e.g., ribosomes along a set of mRNA molecules.
The models are deterministic and use ordinary differential equations to describe the
occupancy levels at each site. The first large-scale network model that is introduced
and analyzed is RFMDNP - RFMDs network with a pool. This is a closed system
that can model the simultaneous movement of particles along tracks having sites of
different capacities in a resource-limited environment. Thus, it allows for studying
the important topic of competition for shared resources like ribosomes. Next, we
introduce a generalized network of RFMDs called RFMDN. This models a network
with feedforward and feedback connections between the RFMDs. For both models,
we prove various analytical properties related to stability, entrainment, convexity,
and more. Also, both models have been analyzed using the tools from the theory
of cooperative systems. We also present plenty of useful synthetic examples to
comprehend the results.

Chapter 7: A mathematical framework for analyzing particle flow in
a network with multiple pools
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This chapter studies a network of deterministic mathematical model ribosome flow
models that are interconnected via multiple pools, where RFM provides a useful
framework to model the flow of particles along a one-dimensional chain of sites. It
captures the scenario where the particles in the vicinity of the lanes compete for
entry into them. Firstly, we study a minimal model ribosome flow model network
with two pools (RFMNTP) and then illustrate the methodology to study a network
with multiple pools. Using the powerful theory of a cooperative dynamical system
with a first integral, we prove that the network always converges to a unique steady
state in every level set. Sensitivity analysis of the parameter’s variation is also
performed to understand overall the network behavior. This work provides results
that will be useful in the context of analyzing networks of dynamical processes in
which the entry rates of particles to a compartmental system are affected only by
the nearby local density.

Chapter 8: Conclusion and future scopes
The concluding chapter contains the summary of the results discussed in the
aforementioned main chapters of the thesis. We also consider some future directions
that might aid in understanding the transport processes more deeply and thoroughly.
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Chapter 2

A theoretical framework to analyze
the flow of particles in a dynamical
system with stochastic transition
rates and site capacities

In this chapter1, we study the stochasticity in an RFMD that models the
unidirectional movement of particles controlled by transition rates along a lattice
having different site sizes. The parameters are considered as random variables with
known distributions and some closed-form theoretical results are derived for the
steady-state flow rate under some restrictive assumptions such as random variables
being independent and identically distributed. Furthermore, the bounds for the
steady-state flow rate are established for arbitrary but bounded stochastic transition
rates, stochastic site capacities, or both.

2.1 Introduction

In reality, there are various types of stochasticity present in transport systems due
to several reasons such as intrinsic factors, experimental noise, uncertainty, etc. For
example, in many cellular transport processes, chemical reactions are stochastic due
to variability in the concentrations of the input factors and can produce probabilistic
outcomes [82]. Therefore, it is necessary to speculate on these transport processes
in the stochastic environment to understand them in a better way. A key factor to
analyze is the flow rate and hence, it is of considerable interest to understand how
this rate is affected under stochasticity in these processes. Generally, the stochastic
effects are modeled by considering the parameters drawn from the probability
distributions following certain physical arguments.

The RFMD is an important dynamical model for analyzing the movement of

1The content of this chapter is published as: “Aditi Jain, Arun Kumar, and Arvind Kumar
Gupta. A theoretical framework to analyse the flow of particles in a dynamical system with
stochastic transition rates and site capacities. Royal Society Open Science, 9(10): 220698, 2022.”



particles along a one-dimensional track and encapsulates an important dynamical
feature of different site sizes [70] (for details refer to Chapter 1). Therefore, it
is crucial to understand this model with variable rates due to various levels of
stochasticity. In this chapter, we characterize the notion of randomness in the RFMD
in the sense that the parameters are random variables with known distributions and
analyze the steady-state flow rate in the RFMD through a theoretical approach
under this assumption. In particular, this also models the transport phenomena
having stochastic variations in the transition rates and fixed site sizes. Our main
results also include some closed-form results under restrictions such as rates are
independent and identically distributed (i.i.d.) random variables. The analysis
can be applied to study the flow of particles in numerous transport systems in the
stochastic environment.

The content of the chapter is organized as follows. The next section recalls the
dynamical properties of the RFMD that are relevant in our context. Section 2.3
describes our main theoretical results that are derived for the steady-state flow rate.
In Section 2.4, we summarize the findings and finally present the proofs of all the
theoretical results in Section 2.5.

2.2 Dynamical properties of the RFMD

Consider an RFMD with dimension n, having transition rates �i 2 R++ for i =

0, 1, . . . , n, site sizes qi 2 (0, 1] for i = 1, 2, . . . , n, and qn+1 := 1.

More succinctly, the dynamical equations (1.43) describing the RFMD can be
written as:

ẋi = �i�1xi�1(qi � xi)� �ixi(qi+1 � xi+1), i = 1, . . . , n, (2.1)

where x0(t) := 1 and xn+1(t) := 0.

Let x(t, a) denote the solution of the RFMD at time t for the initial condition
x(0) = a. Recall that the relevant state space is: C := {x 2 Rn : xi 2 [0, qi], i =

1, 2, . . . , n}. It has been proved that there exists a unique e 2 int(C) such that
for any initial condition in C, the solution belongs to int(C) for all t > 0 and
limt!1 x(t, a) = e [70].
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At the steady-state, for x = e, we have

�0(q1 � e1) = �1e1(q2 � e2)

= �2e2(q3 � e3)

...

= �n�1en�1(qn � en)

= �nen.

To put it another way, at the steady state, the flow into and out of each site
is equal. Let R := �nen denote the steady-state flow or output rate. It is clear
that obtaining the solution of nonlinear equations in (2.1) is not straightforward in
general. However, it has been recently proved in Ref. [70] that the steady-state flow
rate can be obtained from the spectral properties of a suitable tridiagonal matrix.
Define An : R+ ! R(n+2)⇥(n+2) by

An(r) :=

2

6666666664

0 ��1/2
0 0 . . . 0

��1/2
0 (1� q1)r ��1/2

1 . . . 0

0 ��1/2
1 (1� q2)r . . . 0

. . .
0 . . . 0 (1� qn)r ��1/2

n

0 . . . 0 ��1/2
n 0

3

7777777775

.

The above matrix An(r) has real eigenvalues as it is symmetric. Further, each
element of An(r) is non-negative and An(r) is irreducible implying that it has a
simple maximal positive eigenvalue for each r [83]. It was shown in Ref. [70] that
there exists a unique value r⇤ 2 (0,1) such that

�(An(r
⇤)) = r⇤ (2.2)

and the steady-state flow rate satisfies

R =
1

(�(An(r⇤)))2
. (2.3)

The spectral representation above shows that the steady-state flow rate in the RFMD
depends on the transition rates and site capacities. This spectral representation has
various useful theoretical implications. It has been used to obtain results on the
sensitivity analysis and quasi-concavity of the steady-state flow rate. It also allows
determining the upper and lower bounds of R when the rates are random variables
with some known distributions using tools from probability theory.
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The main results on the steady-state flow rate in the RFMD given random
transition rates or random site capacities are presented in the next section.

2.3 Main results

Let (⌦,F ,P) be a probability space, and all random variables in the next subsections
are defined on this common probability space. We call random variable X to be
almost sure bounded if there exists 0  c < 1 such that P[|X|  c] = 1. Let
MX :=inf

c�0
{P[|X|  c] = 1} and mX :=sup

c�0
{P[c  |X|] = 1}. Let R�� := {x 2

R : x � � > 0}. The steady-state flow rate in the n-site RFMD is denoted by Rn.

We analyze the value of Rn given the random transition rates or the site
capacities. In Subsection 2.3.1, we provide results on the value of Rn by
assuming that the transition rates are random variables and the site capacities are
deterministic. Subsection 2.3.2 deals with the case when the site capacities are
random variables and the transition rates are deterministic. The last subsection
analyzes Rn given the variability in all the rates.

2.3.1 The RFMD with stochastic transition rates

In this subsection, we consider randomness only in the transition rates i.e., we
assume that the size of all the compartments is fixed and tackle stochasticity or
uncertainties in the transition rates by assuming them as random variables with
some known distributions. This situation may model, for example, variations in the
speed of the vehicles due to different human behaviors along a multi-lane road where
there is a change in the number of lanes along the road.

The random variable Z := X�1/2 is almost sure bounded for X supported on
R��. We further examine the steady-state flow rate by investigating two cases:
homogeneous and non-homogeneous site capacities. In the first case, we assume
that all the site capacities are equal. This assumption is certainly restrictive and is
required in order to derive some closed-form theoretical outcomes.

Case 1: The homogeneous compartment sizes (qi = q)

Firstly, we consider an RFMD with all the qi’s equal and denote their common
value as q. The following result assumes that the rates are i.i.d. random variables.

Theorem 2.3.1. Assume that rates �i in the RFMD with dimension n are
independent copies of a random variable X having support on R��. Then Rn

p!
q2(2MX�1/2)�2 as n ! 1 i.e., Rn approaches the value q2(2MX�1/2)�2 with
probability one, as n ! 1.
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The above result states that as the dimension of the RFMD increases, the
steady-state flow rate converges with unit probability to a fixed value depending
upon the constant site size q and on the minimal possible value (with probability
one) that the random variable X attains. Clearly, for q = 1, we retrieve the case of
variability in the rates in the RFM [64].

Example 2.3.1. Suppose that X follows a half-normal distribution with mean
having a value of 2 and standard deviation having a value of 0.1. Note that M

X�1/2 =

1/
p
2. Let qi = 0.5 for all i. In this case as n goes to infinity, Rn

p! 0.125 by Theorem
2.3.1. A histogram of the results for n 2 {50, 500, 1000} is shown in Fig. 2.1.
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Figure 2.1: Histograms showing 5000 distinct values each for RFMD with dimension
50, 500 and 1000 colored in blue, red and green, respectively for the steady-state flow
rate in the RFMD with the parameters considered in Example 2.3.1. Our theoretical
result predicts that as n goes to infinity, the steady-state flow rate converges to 0.125
with probability one.

We now investigate the cases where the restrictive assumption of rates being
i.i.d. random variables is a little bit relaxed. Our first case considers that the
random variables Xi could be non-identical, but all independent and having the same
support. In this case also, the analysis of the proof of Theorem 2.3.1 proves that
the steady-state flow rate asymptotically approaches the same value as in Theorem
2.3.1. The next example exhibits this.

Example 2.3.2. Let n + 1 independent random variables X0, X1,. . . , Xn
2�1

be distributed using the half-normal distribution with mean having value 1 and
standard deviation having value 0.1 and Xn

2
, Xn

2+1,. . . , Xn distributed uniformly
on [1, 2]. Note that M

X
�1/2
i

= 1 for all i. Let qi = 0.3 for all i. The theory
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predicts that as n goes to infinity, Rn

p! 0.0225. A histogram of the results for
n 2 {50, 500, 1000} is depicted in Fig. 2.2.
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Figure 2.2: Histograms showing 5000 distinct values each for RFMD with dimension
50, 500 and 1000 colored in blue, red and green, respectively for the steady-state flow
rate in the RFMD with the parameters considered in Example 2.3.2. The theory
predicts that as n goes to infinity, the steady-state flow rate converges to 0.0225
with probability one.

In the second case, we allow a growing (but still tiny) number of random variables
having support different from the other random variables. We use the notation Sn

to denote the set of permutations on {1, 2, . . . , n}. Consider a permutation ⇡ 2 Sn,
and let Y ⇡ , ⇡ � Y = (Y⇡(1), Y⇡(2), . . . , Y⇡(n)). Let Y ⇡

i
denote the ith element in Y ⇡.

The next result is a generalization of the theorem stated for q = 1 in Ref. [64].

Theorem 2.3.2. Let d = d(n) > 0 be an integer which has the property
limn!1

d(n)
n

= 0. Let {Xi}n�d

i=0 is a collection of (n � d + 1) independent random
variables having support on R��, and satisfies

M
X

�1/2
0

= M
X

�1/2
1

= · · · = M
X

�1/2
n�d

. (2.4)

Let {Xi}nn�d+1 is a collection of d random variables having support on the positive
semi-axis and satisfies

M
X

�1/2
j

 ��1/2, j = n� d+ 1, . . . , n. (2.5)

Denote Y = (X0, X1, . . . , Xn). Fix a permutation ⇡ 2 Sn+1. Let each rate �i in the
RFMD with dimension n is a copy of the random variable Y ⇡

i
, for 0  i  n and

�i’s are independent. Then Rn

p! q2(2M
X

�1/2
0

)�2 as n ! 1.
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The above result shows that the steady-state flow rate asymptotically approaches
the same value as in Theorem 2.3.1. We shall now describe the results on the
steady-state flow rate given the non-homogeneous site capacities.

Case 2: The non-homogeneous compartment sizes

Secondly, we consider the case when some (or all) qi’s are non-identical. Let q`

and qL denote the minimum and maximum value of {qi : i = 1, . . . , n}, respectively.
For given ✏ > 0, define a(✏) := P{X�1/2 � M

X�1/2 � ✏}. The next result analyzes
the bounds of Rn for the finite dimension n of the RFMD.

Theorem 2.3.3. Assume that rates �i in the RFMD are independent copies of
a random variable X having support on R��. Consider two sequences of positive
integers (ni) with nj < ni for j < i and (si) with sj < si for j < i and satisfying
si < ni � 1 for all i. Also, consider a decreasing sequence of positive scalars ✏i, with
✏i ! 0. Then Rni in the RFMD with dimension ni, for any i, satisfies

(q`)
2(2MX�1/2)�2  Rni  (qL)

2(2M
X�1/2)�2

�
1 +O(✏i + s�2

i
)
�
, (2.6)

with probability atleast

1� exp
⇣
�
jni � 2

si

k
(a(✏i))

si

⌘
. (2.7)

The following general result examines the case where we have bounded but
arbitrary Xi’s. The set of all possible s consecutive integers from the set {1, 2, . . . , n�
1} is denoted by J n�1

s
.

Theorem 2.3.4. Assume that each rate �i in the RFMD with dimension n is a copy
of a random variable Xi having support on R��i, for 0  i  n. Then Rn satisfies

(q`)
2
�
max
1in

X�1/2
i�1 +X�1/2

i

��2  Rn  (qL)
2

✓
2 max
1sn�1

cos
⇣ ⇡

s+ 2

⌘
max

Js2J n�1
s

min
i2Js

X�1/2
i

◆�2

,

(2.8)
with probability one.

The above result shows that the steady-state flow rate may not approach a
deterministic value in this scenario, but rather it is constrained by two random
values above and below. Given several possible distributions of random transition
rates, this result gives a notion of a range of output rates. The steady-state flow
rate is examined in the next subsection, given deterministic transition rates and
variability in site capacities.
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2.3.2 The RFMD with stochastic compartment sizes

In this subsection, we consider randomness only in the site sizes i.e., we assume that
the transition rates are fixed and tackle fluctuations in the size of compartments by
assuming them as random variables with some known distributions. This may model
processes like the packet flow in communication networks. In the context of linear
communication networks, the data packets are the moving particles and buffers are
the sites [45]. Due to many reasons such as run-down communication infrastructure
or interference, there could be fluctuations in the capacity of the buffers holding the
data packets [84]. The approach used here can be generalized to analyze the flow of
packets in such networks.

We further analyze the steady-state flow rate by considering the cases of
homogeneous and non-homogeneous transition rates. We assume that all the
transition rates are equal in the first case. Of course, this assumption is limiting,
yet it is required to derive some closed-form theoretical results. However, it has
some empirical support, for example, the rate of data packet transmission in a
communication network can be the same under similar conditions.

Case 1: The homogeneous transition rates (�i = �)

Firstly, we consider the case when all the �i’s are equal and denote their common
value by �. The next result assumes that the site capacities are i.i.d. random
variables.

Theorem 2.3.5. Assume that site capacities qi in the RFMD with dimension n are
independent copies of a random variable Q having support on [�, �], where 0 < � <

�  1. Then Rn

p! (mQ)2�/4 as n ! 1.

The above result states that the steady-state flow rate asymptotically approaches
a constant value with probability one that depends on the constant transition rate
� and the minimal possible value (with probability one) of the random variable Q

as the RFMD’s dimension grows.

Example 2.3.3. Assume that Q has a uniform distribution in the range [0.8, 1].
Take note of mQ = 0.8. For all i, let �i = 1. In this case, Theorem 2.3.5 implies
that as n approaches infinity, Rn

p! 0.16. A histogram of the results for n 2
{50, 500, 1000} is shown in Fig. 2.3.

Likewise, in the first subsection, we now examine the cases, where we allow some
relaxations in the assumption that the site capacities are i.i.d. random variables.
Our first case considers the random variables Qi that might be non-identical, but all
independent and they all have the same minimum bound. The following example
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Figure 2.3: Histograms showing 5000 distinct values each for RFMD with dimension
50, 500 and 1000 colored in blue, red and green, respectively for the steady-state flow
rate in the RFMD with the parameters considered in Example 2.3.3. Our theoretical
result shows that as n goes to infinity, the steady-state flow rate converges to 0.16
with probability one.

shows that if each site capacity qi is taken from the Qi distribution, then again the
steady-state flow rate approaches the same value as given in Theorem 2.3.5.

Example 2.3.4. Let n independent random variables Q1,. . . , Qn
2

distributed
uniformly on [0.7, 0.9] and Qn

2+1,. . . , Qn distributed uniformly on [0.7, 0.8]. Note
that mQi = 0.7 for all i. Let �i = 1 for all i. Thus, our theory predicts that as n

approaches infinity, Rn

p! 0.125. A histogram of the results for n 2 {50, 500, 1000}
is depicted in Fig. 2.4.

We consider an increasing (but small in comparison to n) number of random
variables modeling site sizes to have different support than the rest of the other
random variables in the next result.

Theorem 2.3.6. Consider an integer d = d(n) > 0 with the property limn!1
d(n)
n

=

0. Let {Qi}n�d

i=1 is a collection of (n�d) independent random variables having support
on [�, �], where 0 < � < �  1 and satisfies

mQ1 = mQ2 = · · · = mQn�d
. (2.9)

Let {Qi}nn�d+1 is a collection of d random variables having support on [µi, ⌧i], where
0 < µi < ⌧i  1, for i = n� d+ 1, . . . , n and satisfies

mQj � �, j = n� d+ 1, . . . , n. (2.10)
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Figure 2.4: Histograms showing 2500 distinct values each for RFMD with dimension
50, 500 and 1000 colored in blue, red and green, respectively for the steady-state flow
rate in the RFMD with the parameters considered in Example 2.3.4. The theory
forecasts that as n goes to infinity, the steady-state flow rate converges to 0.125 with
probability one.

Denote Y = (Q1, Q2, . . . , Qn). Consider a permutation ⇡ 2 Sn. Let each site
capacity qi in the RFMD with dimension n is a copy of the random variable Y ⇡

i
, for

1  i  n and qi’s are independent. Then Rn

p! (mQ1)
2�/4 as n ! 1.

The above result shows that the steady-state flow rate approaches the same
value as n goes to infinity as in Theorem 2.3.5. Next, we shall discuss the case of
non-homogeneous transition rates.

Case 2: The non-homogeneous transition rates

Secondly, we consider the case when some (or all) �i’s are non-identical. Let �` and
�L denote the minimum and maximum value of {��1/2

i
: i = 0, 1, . . . , n}, respectively.

For ⌘ > 0, define b(⌘) := P{Q  mQ + ⌘}. The following result provides the bounds
of Rn for the finite dimension n of the RFMD.

Theorem 2.3.7. Let us assume that site capacities qi in the RFMD are independent
copies of a random variable Q having support on [�, �], where 0 < � < �  1. Choose
two positive integer sequences (ni) with nj < ni for j < i and (si) with sj < si for
j < i and satisfying si < ni for all i, and a decreasing sequence of positive scalars
⌘i, with ⌘i ! 0. Then Rni in the RFMD with dimension ni, for any i, satisfies

(mQ)
2(2�L)

�2  Rni  (mQ)
2(2�`)

�2

✓
1 +

⌘2
i

mQ

+
2⌘i
mQ

◆�
1 +O(s�2

i
)
�
, (2.11)
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with probability atleast

1� exp
⇣
�
jni � 1

si

k
(b(⌘i))

si

⌘
. (2.12)

Notably, the convergence rate (2.11) to the value given for homogeneous
transition rate in Theorem 2.3.5 as n increases is slower than the rate of
convergence (2.6) to the value given for homogeneous site size in Theorem 2.3.1.
The following result deals with the situation, where Qi’s are arbitrary yet bounded.
They don’t have to be independent or identical.

Theorem 2.3.8. Suppose that every site capacity qi in the RFMD with dimension n

is a copy of a random variable Qi having support on [�i, �i], where 0 < �i < �i  1,
for 1  i  n. Then Rn satisfies

✓
min
1in

Qi

◆2

(2�L)
�2  Rn (2.13)

and

max
1sn

✓
2�` cos

⇣ ⇡

s+ 1

⌘
+ max

Js2J n
s

(1�max
i2Js

Qi)
1

(Rn)1/2

◆
 1

(Rn)1/2
. (2.14)

The above theorem shows that the steady-state flow rate is explicitly bounded
below by a random quantity and the other bound follows an implicit relationship. In
the above subsections, we derive the theoretical results where we allow assumptions
on the transition rates as random variables and the site capacities are deterministic,
and vice-versa. However, in the following subsection, we provide the bounds for the
steady-state flow rate in the most general scenario, when the capacities of the sites
and the values of the transition rates are random.

2.3.3 The Stochastic RFMD

We state our last result where we assume that all the parameters are arbitrary
random variables but bounded and they need not be independent or identical. For
Js 2 J n�1

s
, let Hs is the set {Js [ (`(Js) + 1)}, where `(Js) denotes the last entry of

the set Js.

Theorem 2.3.9. Assume that each rate �i in the RFMD with dimension n is a
copy of a random variable Xi having support on R��i, for 0  i  n. Suppose that
each site capacity qi in the RFMD is a copy of a random variable Qi having support
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on [�i, �i], where 0 < �i < �i  1, for 1  i  n. Then Rn satisfies

✓
min
1in

Qi

◆2 ✓
max
1in

X�1/2
i�1 +X�1/2

i

◆�2

 Rn (2.15)

and

max
1sn�1

max
Js2J n�1

s

✓
2 cos

⇣ ⇡

s+ 2

⌘
min
i2Js

X�1/2
i

+ (1�max
i2Hs

Qi)
1

(Rn)1/2

◆
 1

(Rn)1/2
.

(2.16)

The above result states that the steady-state flow rate is bounded by two random
quantities: the lower bound is explicit and the other bound follows an implicit
relationship. The theoretical result stated here is the most general result that holds
for variability or fluctuations both in the transition rates and the site capacities. We
state an example to demonstrate the above theorem.

Example 2.3.5. Consider an RFMD with dimension n = 3. Let the transition
rates � distributed uniformly on [1, 2] and the site sizes q distributed uniformly on
[0.5, 0.7]. We have by calculation, 0.0625  Rn  0.49. Fig. 2.5 depicts a histogram
for n = 3.
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Figure 2.5: Histogram of 10, 000 different values for RFMD with dimension 3 for
the steady-state flow rate in the RFMD with the parameters considered in Example
2.3.5. The theory predicts that the steady-state flow rate lies between 0.0625 and
0.49.

Note: Even though both the transition rates and the site capacities themselves
are i.i.d. random variables, the steady-state flow rate does not converge to a
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deterministic value in this situation, contrary to our earlier theoretical conclusions.
This can be explained as follows. Suppose that each rate �i is generated using the
distribution of a random variable X that takes values in the interval [a, b], where
a > 0. Consider that every site capacity qi is selected using the distribution of a
random variable Q taking values in the interval [c, d], where 0 < c < d  1. In this
respect, we have

1p
b
 1p

X
 1p

a
(2.17)

and
c  Q  d. (2.18)

From Eq. (2.15), we have
c2 a

4
 Rn. (2.19)

From Eq. (2.16), we have

2 cos

✓
⇡

s+ 2

◆
1p
b
+ (1� d)

1p
Rn

 1p
Rn

(2.20)

=) Rn  d2 b

4 (cos( ⇡

s+2))
2
. (2.21)

As n ! 1, we can choose s large enough such that

Rn  d2 b

4
. (2.22)

Eqs. (2.19) and (2.22) implies

c2 a

4
 Rn  d2 b

4
. (2.23)

Thus, the steady-state flow rate is bounded above and below by two different
deterministic values as n ! 1.

2.4 Discussion

Analyzing the flow of particles along the tracks is of paramount importance to
understand the dynamics of transport processes including the flow of biological
machines like motor proteins along filaments, the evacuation dynamics, etc.
Various models both deterministic and stochastic have been proposed to model
the movement of particles along the lattice. The RFM is a recent area of research
to rigorously analyze such processes. This is a deterministic, synchronous, and
continuous-time mathematical model that is an approximation of TASEP.
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The RFMD is a generalized version of the RFM that models an important feature
of sites having different sizes that were not incorporated in the RFM. The RFMD
analyzes the motion of particles in a preferred direction along a lattice through a
system of nonlinear ordinary differential equations. The dynamics always converge
to a steady-state density thus implying a constant flow rate eventually. Certain
types of randomness or uncertainties are always present in many nonlinear systems.
An important question in this context is how the steady-state flow rate in the RFMD
is affected by these fluctuations.

In this chapter, we analyze the stochasticity in RFMD through the consideration
of randomness in all the parameters by assuming them as random variables. Our
analysis includes some closed-form theoretical results under restrictive assumptions
such as rates are i.i.d. random variables. We show that, given a constant
homogeneous site size, the steady-state flow rate ultimately depends on the site
size and the minimal value of the random variables modeling the transition rates
as the number of sites increases. This scenario also holds where the assumption
on the random variables as i.i.d. is relaxed a bit. This may explain that the
steady-state flow rate can be maintained inspite of some variations in the transition
rates. Furthermore, we derive bounds for the steady-state flow rate in the case of a
finite dimension of the RFMD having rates as i.i.d. variables and also in the case
where transition rates are drawn from arbitrary but bounded random variables.

Next, we analyze the steady-state flow rate in the case of deterministic transition
rates and stochastic site capacities. Similarly, we prove that given a fixed
homogeneous transition rate, as the number of sites increases, the steady-state
flow rate depends on the transition rate and the minimum value that the random
variable modeling the site sizes attains. Our results also provide bounds on the
steady-state flow rate given the general case of arbitrary site capacities. In the
last and most general result, we derive bounds on the steady-state flow rate given
different distributions of the transition rates or the site sizes.

In conclusion, our work provides some asymptotic results and bounds on the
output of the RFMD and our observations are not dependent on the specific
statistical distribution. For further research, one can develop a different approach to
derive results for the convergence of the steady-state flow rate to the limiting value
in the case of stochasticity in all the parameters in the RFMD. Moreover, one can
analyze the steady-state flow rate in the RFMD by assuming transition rates and
site capacities as dependent random variables. We believe that the results described
here will be useful for analyzing systems modeled through the RFMD with rates
subject to uncertainties or fluctuations. For example, to analyze the performance of
wireless line networks or multi-receiver diversity with random-varying connectivity.
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2.5 Appendix: Proofs

Firstly, we recall a result stated in Ref. [64] that will be used later on in proving
Theorem 2.3.1.

Proposition 2.1. Suppose that {Ui}ni=1 are i.i.d. random variables such that they
are almost sure bounded. Let ✏ > 0. Consider an integer 1  s  n and let S be the
event that there exists an index 1  k  n�s+1 such that Uk, . . . , Uk+s�1 � MU1�✏.
Then the probability of S converges to one as n ! 1.

Proof: Let f := MU1 � ✏. For k 2 {1, . . . , n � s + 1}, let S(`) denote the event:
U`, . . . , U`+s�1 � f . Then

P(S) � P
�
S(1) [ S(s+ 1) [ S(2s+ 1) [ · · · [ S(hs+ 1)

�
,

where h is the largest integer such that (h + 1)s  n. We have the i.i.d. Ui’s and
thus we get

P(S) � 1�
�
1� (P(U1 � f))s

�h+1
.

Since, the probability P(U1 � f) is positive, when n ! 1, we have P(S) ! 1.

Proof of Theorem 2.3.1: For ease of notation, let Zi := ��1/2
i

and each random
variable Zi is a copy of X�1/2. Then An : R+ ! R(n+2)⇥(n+2) can be written as

An(r) :=

2

6666666664

0 Z0 0 . . . 0

Z0 (1� q)r Z1 . . . 0

0 Z1 (1� q)r . . . 0
. . .

0 . . . 0 (1� q)r Zn

0 . . . 0 Zn 0

3

7777777775

.

The maximum eigenvalue of any symmetric matrix A having non-negative elements
is bounded above by the maximum of the row sums of A [83], i.e.,

�max(A)  max
1in

nX

j=1

aij. (2.24)

Given An(r) is a symmetric matrix with non-negative elements and hence,

�max(An(r))  max
1in�1

(Zi + Zi+1) + (1� q)r. (2.25)
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Also, we have Zi  MZi for all i, which implies

�max(An(r))  2MZ1 + (1� q)r (2.26)

with probability one. By Eqs. (2.2) and (2.3), we get

q2

(2MZ1)2
 Rn. (2.27)

Let Gs denote the (s+ 1)⇥ (s+ 1) symmetric tridiagonal matrix

Gs :=

2

6666666664

0 1 0 . . . 0

1 0 1 . . . 0

0 1 0 . . . 0
. . .

0 . . . 0 0 1

0 . . . 0 1 0

3

7777777775

.

It is known that the maximal eigenvalue of the above matrix is �max(Gs) =

2 cos( ⇡

s+2) [85]. Let f := MZ1 � ✏. By Proposition 2.1, we have an index k such that
Zk, . . . , Zk+s�1 � f . We shall consider k = 1 and the other cases can be handled
similarly. Let Bn(r) be the matrix obtained by replacing the (s+1)⇥(s+1) principal
minor corresponding to the indices 2, 3, . . . , s + 2 of An(r) by fGs + (1 � q)rIs+1.
Hence Bn(r) is given by

2

666666666666666664

0 Z0 0 0 . . . . . . . . . 0

Z0 (1� q)r f 0 . . . . . . . . . 0

0 f (1� q)r f 0 . . . . . . 0
. . .

0 . . . 0 f (1� q)r Zs+1 . . . 0

0 . . . 0 0 Zs+1 (1� q)r . . . 0
. . .

0 . . . . . . . . . 0 (1� q)r Zn

0 . . . . . . . . . 0 Zn 0

3

777777777777777775

.

Then An(r) � Bn(r) (the inequality is componentwise) and hence �max(An(r)) �
�max(Bn(r)). Utilizing Cauchy’s interlacing theorem, we have that the largest
eigenvalue of Bn(r) is larger or equal to the largest eigenvalue of any of its principal
minors. Thus,

�max(Bn(r)) � f�max(Gs) + (1� q)r (2.28)
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=) �max(An(r)) � 2f cos

✓
⇡

s+ 2

◆
+ (1� q)r. (2.29)

By Eq. (2.2), we get

r⇤ � 2f cos

✓
⇡

s+ 2

◆
+ (1� q)r⇤. (2.30)

By Eq. (2.3), we get

Rn  q2
�
2f cos

�
⇡

s+2

��2 . (2.31)

Since, this holds for any ✏ > 0 and any integer s, and by Eq. (2.27), the proof of
the theorem is completed.

Proof of Theorem 2.3.2: By the pigeonhole principle, there exist a subsequence of
Y ⇡ of length atleast n

d
, which consists of consecutive Xi’s. In the proof of Proposition

2.1, the range of parameter h becomes (h + 1)s  bn

d
c and we have n

d
! 1 which

implies h ! 1 as well. The lower bound also holds due to the condition in Eq. (2.5).
Hence, by applying the arguments used in the proof of the Theorem 2.3.1, we get
the result.

Proof of Theorem 2.3.3: Let ✏ > 0. Consider an integer 1  s  n � 1. Let
a(✏) := P{Z1 � MZ1 � ✏}. The arguments in the proof of Theorem 2.3.1 imply that

r⇤ � 2(MZ1 � ✏)

qL
cos

✓
⇡

s+ 2

◆
(2.32)

with probability P(S) � 1 �
�
1 � (a(✏))s

�bn�1
s c � 1 � exp

⇣
�
j
n�1
s

k
(a(✏))s

⌘
. By

Eq. (2.32), we get

Rni  (qL)
2

✓
2(MZ1 � ✏i) cos

✓
⇡

si + 2

◆◆�2

= (qL)
2(2MZ1)

�2

✓
1 +

✏i
MZ1

+ o(✏i)

◆✓
1 +

⇡2

(si + 2)2
+ o(s�2

i
)

◆

= (qL)
2(2MZ1)

�2
�
1 +O(✏i + s�2

i
)
�
.

The lower bound can be attained as in Theorem 2.3.1 and hence, this completes the
proof of the theorem.

Proof of Theorem 2.3.4: From Eq. (2.24), we have

�max(An(r))  max
1in

(X�1/2
i�1 +X�1/2

i
) + (1� q`)r. (2.33)
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By Eq. (2.3), we have

r⇤ 
max
1in

(X�1/2
i�1 +X�1/2

i
)

q`
(2.34)

=) (q`)2�
max
1in

(X�1/2
i�1 +X�1/2

i
)
�2  Rn. (2.35)

For 1  s  n � 1, let Js 2 J n�1
s

. Let Bn(r) be the matrix obtained by
replacing (s+ 1)⇥ (s+ 1) principal minor corresponding to the indices Js of An(r)

by Gs min
i2Js

X�1/2
i

. Thus,

�max(An(r)) � �max(Gs min
i2Js

X�1/2
i

) + (1� qL)r

� 2 cos

✓
⇡

s+ 2

◆
min
i2Js

X�1/2
i

+ (1� qL)r.

Since this holds for any choice of 1  s  n� 1 and Js 2 J n�1
s

, therefore we get the
upper bound given in Eq. (2.8).

Proof of Theorem 2.3.5: Let mX :=sup
c�0

{P[c  |X|] = 1}. We shall state a

Proposition that has proof similar to the proof of Proposition 2.1.

Proposition 2.2. Suppose that {Vi}ni=1 are i.i.d. random variables and are almost
sure bounded. Let ⌘ > 0. Consider an integer 1  s  n and let S be the event
that there exists an index 1  k  n � s + 1 such that Vk, . . . , Vk+s�1  mV1 + ⌘.
Then the probability of S converges to one as n ! 1.

Now, using Proposition 2.2 and the arguments in the proof of Theorem 2.3.1
completes its proof.

Proof of Theorem 2.3.6: Utilizing the arguments given in Theorem 2.3.2 and in
the proof of the Theorem 2.3.5, completes the proof.

Proof of Theorem 2.3.7: Let ⌘ > 0. Consider an integer 1  s  n. Let
b(⌘) := P{Q  mQ + ⌘}. Using the arguments as in the proof of the Theorem 2.3.5,
we have

r⇤ � 2�`

(mQ + ⌘)
cos

✓
⇡

s+ 2

◆
, (2.36)

with probability P(S) � 1�
�
1� (b(⌘))s

�bn
s c � 1� exp

⇣
�
j
n

s

k
(b(⌘))s

⌘
.

By Eq. (2.36), we get the upper bound. Similarly, the lower bound can be
attained as in Theorem 2.3.1, and hence, the proof of the theorem can be concluded.

Proof of Theorems 2.3.8 and 2.3.9: The proofs are based on the same approach
used in Theorem 2.3.4 and thus omitted.
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Chapter 3

Modeling transport of extended
interacting objects with drop-off
phenomenon

The chapter1 provides a deterministic framework for modeling transport phenomena
involving interacting particles having an extended length. The model also
incorporates the realistic feature that particles may detach along the track. We study
its asymptotic behavior and analyze the effect of the nearest-neighbor interactions
on its density profile.

3.1 Introduction

There are many important biological transport phenomena where the driving force
for the movement of particles depends upon the constant source of energy [86]. One
of the most known examples of such a system is intracellular transport carried out
by motor proteins. Experimental investigations show that in many complex cellular
processes such as mRNA translation by ribosomes or intracellular transport carried
by motor proteins, the particles are larger than their step sizes and they usually
function in large groups and interact with one another by binding and repelling
actions based on the state of its neighboring particles [31]. Also, it has been seen
that in many of these transport processes, the biological particles may get detached
along the tracks. For example, kinesin-family motor proteins get detached from
the microtubule after every power stroke or when their path is blocked [87, 88].
Defects in kinesin-linked transport may disrupt the functioning of nerve cells and
can cause many serious diseases [14]. The neuron-wide system requires intracellular
transport of cargo throughout complex neuronal morphologies and its transport
malfunction is one of the indications of some neuronal diseases like Alzheimer’s [78].
Therefore, deriving mathematical models of these dynamical biological phenomena

1The content of this chapter is published as: “Aditi Jain and Arvind Kumar Gupta. Modeling
transport of extended interacting objects with drop-off phenomenon. Plos one 17(5): e0267858,
2022.”



is important and crucial for understanding the collective behavior of the movement
of particles and unraveling its biophysical aspects in the context of synthetic biology
and biomedical applications.

In this chapter, we introduce a model called the excluded flow of extended
interacting objects with drop-off effect (EFEIOD) to include the fact biological
“particles” cover several sites and are susceptible to detach at various sites along the
lattice. Using the theory of contractive dynamical systems, we prove that EFEIOD
always converges to a steady state. This steady state depends on the length of the
lattice n, the particle size `, transition rates �i’s, detachment rates ↵i’s, and the
interaction parameters q and r but not on the initial conditions. We also prove
that it entrains to periodic excitations in the transition/detachment rates and the
interaction parameters. This is important for the proper functioning of the biological
processes that are excited by the periodic events. Analysis and simulations highlight
the role of the effect of interactions on the steady-state flow. For example, in the case
of strong attractions from the neighboring particle at site i� `, the flow of particles
from site i to i+1 gets reduced, therefore an increase in detachment rate of particles
at site i � ` leads to an easy steady-state flow. In the absence of interactions, we
analyzed mRNA translation with ribosome drop-off and called it RFMEOD. We
also show using simulations that the RFMEOD correlates well with the TASEP
with extended objects including the drop-off phenomenon.

The EFEIOD, presented here, is more general than the EFRBM as it includes
biologically observed features such as particles with extended length and phenomena
of dissociation of particles along the tracks. For details about EFRBM, the reader
can refer to Chapter 1.

This chapter is organized as follows. Section 3.2 describes the mathematical
model. The next section presents our main theoretical results and the effects of
the nearest-neighbor interactions on the steady-state behavior. In Section 3.4, we
describe the application of the EFEIOD to model mRNA translation with ribosome
drop-off and understand how a change in one of the parameters affects protein
production. Section 3.5 concludes and summarizes the chapter. Furthermore, to
increase readability we have placed all the proofs in the Appendix.

3.2 Model

The EFEIOD is a nonlinear, continuous time, compartmental model for the
unidirectional flow of biological “particles” of size ` directed from left to right on
a one-dimensional chain of n consecutive compartments or sites along the track.

The EFEIOD contains the following sets of 2n+ 3 non-negative parameters:
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1. �i > 0, i = 0, 1, . . . , n controls the transition rate from site i to i+ 1.

2. ↵i � 0, i = 1, . . . , n controls the detachment rate from site i to the
environment.

3. r � 0, is the attachment/detachment force between any two existing
consecutive particles.

4. q � 0, is the attachment/detachment force between any two new consecutive
particles.

Each parameter �i and ↵i has units of 1/time. A parameter q controls the
repelling or binding forces between two new neighbors and a parameter r between
two existing neighbors. In many studies, creating and breaking of bonds between
the nearest neighbors has been viewed as opposite chemical reactions [89]. So, it is
assumed that q

r
= exp( E

KB T
), where E denotes the interaction energy, by applying

the detailed balance arguments.

The position of the particle along the lattice is denoted by the site covered by the
leftmost end of it and this part is referred to as the reader. Thus, ‘the reader is at site
i’ means that the particle is located at site i and covers the sites i, i+1, . . . , i+`�1.
Let xi(t) 2 [0, 1] denote the normalized reader density of the biological particle at
site i at time t, and let yi(t) 2 [0, 1] denote its normalized coverage density at site i

at time t, i.e.,

yi(t) =
iX

j=max{1,i�`+1}

xj(t), i = 1, 2, . . . , n. (3.1)

The term ‘normalized’ here means that each xi(t) and each yi(t) takes value in
the interval [0, 1] for all t � 0. The value zero [one] corresponds to completely
empty [full]. The schematic explanation of a particle with size ` on the lattice is
shown in Fig. 3.1.

Eq. (3.1) implies that the total particle coverage at any site i is the summation
of the reader densities of ` consecutive sites left to site i. The state variables xi(t)

and yi(t) can be interpreted as the probability that site i is occupied and covered,
respectively at time t. Hence, xi and yi are dimensionless. Fig. 3.2 depicts the
possible transition scenarios from site i to site i+ 1.

To state the dynamical equations describing the EFEIOD, we introduce more
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Figure 3.1: A schematic view of a single particle of size ` at site i covering sites
i, i+1, . . . , i+ `� 1 on the lattice of dimension n. The state variable xi(t) describes
the reader density of particle at site i at time t. R(t) denotes the output rate at
time t.

notation for simplicity. Let

zi(t) :=

8
<

:
xi(t) i = 1, 2, . . . , n,

0 otherwise,
(3.2)

and

wi(t) :=

8
<

:
yi(t) i = 1, 2, . . . , n,

0 otherwise.
(3.3)

The dynamics of the EFEIOD is described by n nonlinear first-order ordinary
differential equations:

ẋi = fi�1(x)� fi(x)� gi(x), i = 1, 2, . . . , n, (3.4)

where
f0(x) := �0(1� w`)(1 + (q � 1)z`+1), (3.5)

fi(x) := �ixi(1� wi+`)(1 + (q � 1)zi+`+1)(1 + (r � 1)zi�`), i = 1, 2, . . . , n, (3.6)

and
gi(x) := ↵ixi(1 + (r � 1)zi+`)(1 + (r � 1)zi�`), i = 1, 2, . . . , n. (3.7)

Eq. (3.4) implies that the change in the reader density at site i is the inflow
fi�1(x) from site i � 1 to site i minus the outflow fi(x) to site i + 1 minus the
outflow gi(x) to the cell environment.

Eq. (3.6) can be explained as follows. The term xi represents that the reader flow
from site i to site i+1 increases with the reader density at site i. The term (1�wi+`)

represents a “soft” version of the simple exclusion principle which implies that the
flow increases with the ‘vacancy’ level at site i+ ` i.e., as the density in any of the `
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Figure 3.2: The particle covers ` sites and the dark red label denotes the reader
location. Schematic explanation of the transition flow from site i to site i+1 in the
EFEIOD: Upper-left: When there are no readers at sites i� `, i + ` and i + ` + 1,
the transition rate is �i and detachment rate is ↵i. Upper-right: When there is a
reader at site i + ` + 1 and site i � ` does not have, the transition rate is �iq and
detachment rate is ↵i. Middle-left: When there is reader at site i� ` and no readers
at sites i + ` and i + ` + 1, the transition rate is �ir and detachment rate is ↵ir.
Middle-right: When there are readers at sites i � ` and i + `, detachment rate is
↵ir2. Lower-part: When there are readers at sites i� ` and i+ `+ 1, the transition
rate is �iqr, and detachment rate is ↵ir.

consecutive sites increases the reader flow from site i to site i+1 gradually decreases.
The term (1 + (q � 1)zi+`+1) represents that the reader flow from site i to site i+ 1

also depends upon the reader density at site i + ` + 1 and increases [decreases] if
q > 1 [q < 1]. The particle at site i + ` + 1 will attract [q > 1] or repel [q < 1]
the particle that move from site i to i + 1 . Similarly, the term (1 + (r � 1)zi�`)

represents that the flow into site i+ 1 also depends upon the reader density at site
i� `.

The term gi(x) in Eq. (3.7) represents the detachment of particles from the site
i to the cell environment. If r > 1 [r < 1], then the particles at sites i� ` and i+ `

repel [attract] the particle at site i and increases [decreases] its detachment from
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site i.

The output rate from site n at any time t is given by:

R(t) = (�n + ↵n)xn(t)(1 + (r � 1)xn�`). (3.8)

Note that in the particular case, r = 1, q = 1, ` = 1, and ↵i = 0, the model
gets reduced to the RFM [38]. Clearly, in the case when the length of the biological
particle is equal to the lattice length, i.e., ` = n, there is no role of interaction
forces in the system. The splitting of interaction energy E between the creation and
breaking processes is not unique. Like in [89], we also assume that E is equally split
between the rates r and q, where

q = exp

✓
E

2KBT

◆
, r = exp

✓
�E

2KBT

◆
(3.9)

Note that Eq. (3.9) implies r = 1/q and has a simple physical meaning. If E > 0,
then there are attractive interactions in the system, i.e., the particle moves faster
creating a new pair [q > 1] and the process of breaking out of the pair is slowed
down [r < 1]. Similarly, E < 0 implies that there are repulsive interactions in the
system. The case E = 0 corresponds to the fact that there are no interactions in
the system and then we have q = r = 1.

The next section analyzes the EFEIOD using tools from systems and control
theory and in particular contraction theory.

3.3 Main results

Note that the state variable xi at any time t represents a reader density in the range
[0, 1]. The next example shows that Cn is not an invariant set of the EFEIOD.

Example 3.3.1. Consider a EFEIOD with dimension n = 6, particle size ` = 2,
rates �0 = 0.01, �i = 1, ↵i = 0.1, for i = 1, 2, . . . , n, r = 2, and q = 1/2. Consider
an initial condition x(0) = [1 0.9 0.5 1 1 1]0. It has been observed that at
some time t we have x(t) = [1.0033 0.8907 0.4993 1.0744 0.6954 0.9084]0 (all
numbers are four digit accurate).

Now, we define a state space which is an invariant set of dynamics. We assume
that any initial condition belongs to the state space:

 := {x 2 Rn : x 2 Cn and y 2 Cn}.

Note that the set  is a compact and convex set. Let x(t, a) denote the solution of
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Eq. (3.4) at time t � 0 for the initial condition a 2  .

3.3.1 Invariance and persistence

The following result shows that  is an invariant set for the dynamics of the
EFEIOD.

Proposition 3.3.1. If a 2  then the solution of EFEIOD satisfies x(t, a) 2  , for
all t � 0. For any a 2 @ , x(t, a) 2 int( ) for t > 0.

This implies that the trajectories that emanate from the boundary of  
‘immediately’ enter the interior of  . The next proposition is useful because it shows
that the solutions of the EFEIOD get ‘immediately’ uniformly separated from the
boundary of  .

Proposition 3.3.2. For any ⌧ > 0, there exists a compact and convex set  ⌧ that
is strictly contained in  such that for any a 2  , x(t, a) 2  ⌧ , for all t � ⌧ .

This means, in particular, for any ⌧ > 0 there exists d = d(⌧) 2 (0, 12) such that,
d  xi(t, a), yi(t, a)  1� d, for all t � ⌧, for all i and all a 2  .

This property is useful in analyzing the asymptotic properties of the system
dynamics.

3.3.2 Contraction

Differential analysis provides a very useful way to study the behavior of certain
nonlinear dynamical systems. In particular, contraction theory is based on
analyzing the time evolution of the distance between the trajectories that emanate
from different initial conditions and have its applications to synchronization and
reaction-diffusion partial differential equations [53, 55]. However, for our proposed
model, we needed a generalized version of contraction theory that has been defined
in Chapter 1.

Let |.|1 : Rn ! R+ denote the L1 norm, i.e., for x 2 Rn, |x|1 = |x1|+ |x2|+ · · ·+
|xn|.

Proposition 3.3.3. The EFEIOD is SOST with respect to the L1 norm, i.e., for
each ✏ > 0 and each ⌧ > 0 there exists c = c(⌧, ✏) > 0 such that

|x(t+⌧, a)�x(t+⌧, b)|1  (1+ ✏) exp(�ct)|a� b|1, for all t � 0 and all a, b 2  .
(3.10)

This means that the EFEIOD is contractive after an arbitrarily small time
transient ⌧ and with an arbitrarily small overshoot (1 + ✏). This implies that any
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two initial feasible densities in the EFEIOD evolving in time become ‘more similar’
to each other at an exponential rate.

3.3.3 Global asymptotic stability

Since the convex and compact set  is an invariant set of the dynamics, it contains
atleast one steady-state e [57]. By Proposition 3.3.1, we have e 2 int( ). Using
Eq. (3.10) with b = e, yields the following result.

Theorem 3.3.1. Assume that q, r > 0. The EFEIOD admits a globally
asymptotically stable steady-state density e 2 int( ), i.e., limt!1 x(t, a) = e, for
all a 2  .

This means that, regardless of the initial density, all trajectories emanating from
different initial conditions converge to the unique steady-state density that depends
on the system parameters: transition rates �i’s, detachment rates ↵i’s, interactions
determined by q and r, particle size `, and length of the chain n. The next example
demonstrates that the assumption q, r > 0 is necessary.

Example 3.3.2. Consider the EFEIOD with dimension n = 3 and particle size
` = 1.
For q = r = 0, we have:

ẋ1 = �0(1� x1)(1� x2)� �1x1(1� x2)(1� x3)� ↵1x1(1� x2),

ẋ2 = �1x1(1� x2)(1� x3)� �2x2(1� x1)(1� x3)� ↵2x2(1� x1)(1� x3),

ẋ3 = �2x2(1� x1)(1� x3)� �3x3(1� x2)� ↵3x3(1� x2).

(3.11)

Also, for q = 1 and r = 0, we have:

ẋ1 = �0(1� x1)� �1x1(1� x2)� ↵1x1(1� x2),

ẋ2 = �1x1(1� x2)� �2x2(1� x1)(1� x3)� ↵2x2(1� x1)(1� x3),

ẋ3 = �2x2(1� x1)(1� x3)� �3x3(1� x2)� ↵3x3(1� x2).

(3.12)

Eqs. (3.11) and (3.12) admits a continuum of steady-states, here [1 1 v]0 is a
steady-state for all v. Therefore, the assumption that q, r > 0 cannot be dropped.

The next example demonstrates the global asymptotic property, i.e., trajectories
starting from different initial conditions in  asymptotically converge to a unique
density profile along the lattice.

Example 3.3.3. Consider the EFEIOD with dimension n = 3, particle size ` = 2,
rates �i = 1, ↵i = 0.01, q = 1, and r = 1. Fig. 3.3 depicts trajectories for
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three different initial conditions [1 0 0]0, [0 1 0]0, and [0 0 1]0 in  . It
can be seen that the three solutions converge to the same steady state point
e = [0.4959 0.2483 0.2459]0.

Figure 3.3: Trajectories of EFEIOD for three initial conditions given in Example
3.3.3 as a function of time. The steady-state point is marked by an ellipse.

The next subsection analyzes how the various parameters in the proposed model
affect the steady-state output rate.

3.3.4 Analysis of the steady-state

At steady state for x = e, the left-hand side of all the equations in (3.4) is zero, so

fi�1(e) = fi(e) + gi(e), i = 1, 2, . . . , n. (3.13)

It follows from Eq. (3.13) that if we multiply parameters �i’s and ↵i’s
by a scalar constant c > 0 then e will not change, i.e., e(cp) = e(p) where
p = [�0,�1, . . . ,�n,↵1,↵2, . . . ,↵n]. Also, R(cp) = cR(p), i.e., the output rate is
homogeneous of order one w.r.t. the parameters �i’s and ↵i’s. By Eq. (3.13), we
have:

R = fn(e) + gn(e) = fi(e)�
n�1X

k=i+1

gk(e), i = 0, 1, . . . , n� 1. (3.14)

However, solving Eq. (3.14) in general, is non-trivial.
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The next result shows that the derivatives of the steady state point coordinates
with respect to the rates exist and are well-defined. Let the mapping from the
parameters to the unique steady state point be denoted by ⌘, i.e., ⌘i(�) = ei, for all
i = 1, 2 . . . , n and � = [�0 �1 · · · �n ↵1 ↵2 · · · ↵n r q]0.

Proposition 3.3.4. The derivative (@/@�j)⌘i(�) exists for all i, j.

The above result allows us to calculate the derivatives of the steady-state density
if some of the parameters in the system are changed. This is useful to study the
sensitivity of the steady-state w.r.t. small changes in the rates.

3.3.5 Effect of interactions

We demonstrate with several simulations the non-trivial effect of interactions on the
steady state of the EFEIOD.

The example below demonstrates that in the presence of strong attractive
interactions, the detachment of particles could be useful for increasing the flow
of particles along the lattice.

Example 3.3.4. Consider the EFEIOD with dimension n = 9, particle size ` = 3,
rates �0 = 1, �i = 1, and ↵i = ↵. Fig. 3.4 depicts that increasing the detachment
rate increases the steady-state output for the higher values of q.
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Figure 3.4: The steady-state output rate R as a function of q for a EFEIOD with
n = 9, ` = 3, �0 = 1, �i = 1, and ↵i = ↵, for all i.

The above example suggests that for larger values of attractive interactions, there
could be a regulatory mechanism to increase the flow of particles in the system by
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allowing the particles to detach from the sites. The next example shows the positive
role of increasing the detachment rate in the presence of a bottleneck rate at a site.

Example 3.3.5. Consider the EFEIOD with dimension n = 9, particle size ` = 2,
rates �0 = 1, �i = 1, for all i except �5 = 0.01, and ↵i = 0. Note that �5 is the
bottleneck rate. We vary the parameter ↵3, i.e., detachment rate of particles at site
3. It can be seen in Fig. 3.5 that for q > 1, i.e., r < 1, increasing ↵3 increases the
steady-state output rate. However, for q = 1, i.e., r = 1, increasing ↵3 decreases the
steady-state output rate.
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Figure 3.5: The steady-state output rate R as a function of ↵3 for a EFEIOD with
n = 9, ` = 2, �0 = 1, �i = 1, for all i except �5 = 0.01, ↵i = 0, and r = 1/q.

This can be explained as follows: for r < 1, a particle at site 5 will tend not
to hop forward as there is strong attraction from a particle at site 3. Therefore,
allowing particles to detach from site 3, leads to an easy flow of particles from site 5

and this increases the flow. This is important to study as the interactions from the
neighboring particles at the bottleneck rate further deteriorate the flow of particles
along the lattice. In the case of no interactions i.e., q = 1 [r = 1], it can be seen that
increasing the detachment rate leads to a decrease in the steady-state flow which is
always true as we theoretically analyze this special case in the next section.

The example above demonstrates that in the case of interactions, locally
controlled detachment can avoid bottlenecks and can lead to faster movement of
particles, hence increasing the flow and alleviating the “traffic jams” [90]. One may
perhaps think that increasing the particle size leads to a decrease in the steady-state
output rate, but steady-state densities follow complicated behavior in the presence
of interactions. It has been shown that when q = r = 1 and ↵i’s= 0, the steady-state
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output rate for ` > 1 is always less than the steady-state output rate for the
RFM [69]. But in the presence of interactions, increasing length does not always
decrease the output rate as shown in the example below.

Example 3.3.6. Consider the EFEIOD with dimension n = 9, rates �0 = 1, �i = 1,
and ↵i = 0, for all i. We vary the particle size `. It can be seen in Fig. 3.6 that for
q = 13: when ` = 1, we have R = 0.0808, when ` = 2, we have R = 0.1442, and
when ` = 3, we have R = 0.1249.
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Figure 3.6: The steady-state output rate R as a function of ` 2 {1, 2, 3} for a
EFEIOD with n = 9, �0 = 1, �i = 1, ↵i = 0, for all i, and r = 1/q.

Furthermore, in the thermodynamical limit, i.e., as number of sites goes to 1,
the homogeneous case of TASEPEO with strong repulsions and particle size `, and
with entry and exit rates equal to one is in the maximal current phase, where the
steady-state mean reader density is 1/(`+ 1+

p
`+ 1) and the steady-state output

rate is 1/((1 +
p
`+ 1)2)[91]. This implies that as ` goes to 1, the steady-state

output and mean reader density go to zero. The next example shows that this is
consistent with the results of our model. We define the steady-state mean reader
density by ⇢ = (1/n)

P
n

i=1 ei.

Example 3.3.7. Consider EFEIOD with dimension n = 100, rates �0 = 1, �i = 1,
for all i, ↵i = 0, q = 0.01, r = 100, and particle size `. Fig. 3.7a depicts that output
rate R decrease with `. Also, the steady-state mean reader density ⇢ decreases with
` as seen in Fig. 3.7b.

The next example shows that in the presence of interactions, an increase in an
initiation rate does not always lead to an increase in the output rate. However, in
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Figure 3.7: a) The steady-state output rate R as a function of ` 2 {1, 2, . . . , 45} for
a EFEIOD with n = 100, �0 = 1, �i = 1, ↵i = 0, for all i, q = 0.01, and r = 1/q.
b) The steady-state mean reader density ⇢ as a function of ` 2 {1, 2, . . . , 45} for a
EFEIOD with n = 100, �0 = 1, �i = 1, ↵i = 0, for all i, q = 0.01, and r = 1/q.

the case of no interactions, i.e., q = 1 [r = 1], an increase in an initiation rate due
to feedback or due to an increase in the number of ‘free’ biological particles leads to
an increase in the steady-state output rate as we theoretically analyze this special
case in the next section.

Example 3.3.8. Consider the EFEIOD with dimension n = 6, ` = 2, rates �i = 1,
for all i except �4 = 0.1, and ↵i = 0. We vary the initiation rate �0. It can be
seen in Fig. 3.8a that the steady-state output rate decreases with an increase in �0.
Fig. 3.8b depicts that the steady-state output rate increases with an increase in �0.

Now, we analyze the effect of increasing the length of a particle in the case
q ! 1.

Example 3.3.9. Consider the EFEIOD with dimension n = 3, �0 = 1, �i = 1,
↵i = ↵, for all i. Fig. 3.9a depicts that when q ! 1, the steady-state output rate
decreases to zero. Fig. 3.9b depicts that when q ! 1, the steady-state output rate
saturates to a non-zero constant value depending on the value of ↵, i.e., R = 0.1910

for ↵ = 0, R = 0.1720 for ↵ = 0.5, and R = 0.1267 for ↵ = 1.

A high value of q corresponds to a strong attachment between existing
neighbors (small r) and a high tendency for creating new neighbors (large q),
resulting in traffic jams and leading to a sharp decrease in the output rate. Therefore,
the length of the particle has an interesting role to play in order to maintain a
non-zero constant steady-state output rate in the case of weak repulsions.
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Figure 3.8: a) The steady-state output rate R as a function of �0 for a EFEIOD
with n = 6, ` = 2, �0 = 1, �i = 1, except �4 = 0.1, ↵i = 0, for all i, q = 7, and
r = 1/7. b) The steady-state output rate R as a function of �0 for a EFEIOD with
n = 6, ` = 2, �0 = 1, �i = 1, except �4 = 0.1, ↵i = 0, for all i, q = 1, and r = 1.
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Figure 3.9: a) The steady-state output rate R as a function of E for a EFEIOD with
n = 3, ` = 1, �0 = 1, �i = 1, ↵i = ↵, for all i, and r = 1/q. b) The steady-state
output rate R as a function of E for a EFEIOD with n = 3, ` = 2, �0 = 1, �i = 1,
↵i = ↵, for all i, and r = 1/q.

3.3.6 Entrainment

Many biological processes are periodic [92], for example, in translation-elongation
mechanism; tRNA molecules [93], ATP levels [94], ribosome drop-off rate [95],
translation initiation and elongation factors [96], oscillations in mRNA levels [97],
and more may vary in a periodic manner and this results into the periodicity of
the rates in the system. For the proper functioning of our body, certain biological
systems must be in sync with the periodic changes induced due to the continuously
changing environment [98, 99]. Entrainment also plays an important part in
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designing extracellular biomedical systems [100]. An important question is: will
the state variables of EFEIOD preserve the property of entrainment w.r.t. the
parameters �i’s, ↵i’s, q, and r?

Assume that the �i’s, ↵i’s, q and r are non-negative, uniformly bounded
time-varying continuous functions satisfying:

• There exists a (minimal) T > 0 such that every �i’s, ↵i’s, q, and r is a
T -periodic function.

• There exists 0 < �1 < �2 such that �i(t) 2 [�1, �2], for all i = 0, 1, . . . , n and all
t � 0.

This model has been referred to as periodic EFEIOD (PEFEIOD). The next result
follows from the fact that EFEIOD is SOST on  and the known results on
entrainment [54].

Theorem 3.3.2. The PEFEIOD admits a unique function � : R ! int( ), that
is T-periodic and for any initial condition a 2  , the trajectory x(t, a) converges
asymptotically to �.

The above theorem implies that the state variables entrain to the periodic
excitations in the parameters. The next example illustrates the behavior of
PEFEIOD.

Example 3.3.10. Consider a PEFEIOD with dimension n = 3, ribosome size ` = 2,
�0 = 1, �i = 1, except for �2(t) = 0.5 + 0.25 sin(⇡t/2), ↵i = 0.01 , r = 5, and
q = 1/5. Note, that there is a single time-varying periodic rate in the network and
all these rates are periodic with a common minimal period T = 4. We have taken
two different initial conditions [0 0 0]0 and [0.2 0.2 0.2]0 in  . It can be seen
from Fig. 3.10 that all the trajectories converge to the periodic solution with period
T = 4.

In general, describing the effect of parameters on the system dynamics by a
theoretical framework is cumbersome, as analyzing the set of nonlinear equations
that define the steady state is not trivial. However, for a special case q = r = 1, the
steady-state output rate sensitivity to variations in the parameters of the system can
be answered rigorously. Moreover, the proposed general model was representative
of the biology of molecular motors whereas this special case is important in the
context of studying the ribosome flow and provides a tool for developing a better
understanding and analyzing the factors that can affect this dynamical process of
translation.

65



0 4 8 12 16 20 24
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Figure 3.10: Trajectories of PEFEIOD in Example 3.3.10 as a function of time (t).
Here, xi(t) and yi(t) are the trajectories of PEFEIOD corresponding to initial
conditions [0 0 0]0 and [0.2 0.2 0.2]0, respectively.

3.4 Ribosome flow model with extended objects and

ribosome drop-off

The synthesis of protein as directed by the mRNA template consisting of codons is
carried out by ribosome and the process is referred to as translation [2]. The process
broadly takes place in three steps: initiation where ribosomal complex assembles at
the start codon of an mRNA chain; elongation where it moves along the mRNA in a
forward series of steps forming a polypeptide chain of amino acids, and termination
where it releases the chain that folds into functional protein and unbinds from the
mRNA. Translation is a fundamental cellular process that occurs in all living beings
at all times [1] and is known to consume most of the cell’s energy [101]. Therefore,
it is crucial to understand its dynamical aspects through mathematical modeling.

It is known from previous studies that the footprint of the ribosome on the
mRNA is 10 to 20 codons [102, 103, 104]. Many ribosomes can simultaneously
move on the same mRNA template, blocking the movement of other ribosomes
behind it [105], resulting in traffic-like movement on the template, and these “traffic
jams” are more severe in genes that are lowly expressed [106]. The ribosomes
that initiate translation of mRNA sequence may not successfully complete it and
hence fail to produce a full-length protein product [107, 108]. Hence, there are
translational errors that can disrupt cellular fitness and can cause diseases [109].
Such errors can have multiple causes like ribosomal traffic jams, reading frameshifts
[110], non-availability of tRNAs [111], misreading of codon, premature stop codons
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[112, 113, 114], etc. These errors often result in ribosome dissociating from the
mRNA before reaching the stop codon called ribosome drop-off event, resulting
in incomplete or incorrect peptides that are mostly non-functional, and possibly
toxic to the cell. The translational error due to premature translation termination
seems to represent more than two-thirds of the overall errors and thus have a strong
impact on protein formation [115, 81]. Therefore, modeling mRNA translation with
ribosome drop-off is important in analyzing the effect on the translation phenomena
as it leads to a reduction in the rate of protein production.

To gain insights into these dynamical aspects of translation, we consider a special
case of our model when q = r = 1 and we refer to this case as the ribosome flow
model of extended objects with drop-off effect (RFMEOD). In this model, mRNA
is treated as a one-dimensional lattice of length n, where n denotes the number of
sites (codons) and every ribosome covers ` sites, where 1  `  n. The sites 1 and n

represent the start and stop codons, respectively. The position of the ribosome along
the mRNA is denoted by the site covered by the leftmost end of it. At any time t,
if the leftmost edge of the ribosome is at site i, it means the reader is located at site
i and the ribosome is translating site i and sites i, . . . , i+ `� 1 are covered by this
ribosome. Ribosomes move unidirectionally from left to right by only one site on the
template and no two ribosomes can occupy or cover the same site simultaneously.

The dynamics of RFMEOD is given by:

ẋ1 = �0(1� y`)� �1x1(1� y`+1)� ↵1x1,

ẋ2 = �1x1(1� y`+1)� �2x2(1� y`+2)� ↵2x2,

...

ẋn�`+1 = �n�`xn�`(1� yn)� �n�`+1xn�`+1 � ↵n�`+1xn�`+1,

ẋn�`+2 = �n�`+1xn�`+1 � �n�`+2xn�`+2 � ↵n�`+2xn�`+2,

...

ẋn = �n�1xn�1 � �nxn � ↵nxn.

(3.15)

The term �i�1xi�1(1 � yi+`�1) represents the reader flow from site i � 1 to site
i. The flow increases with density level of readers at site i � 1 and decreases with
coverage density yi+`�1 = xi + xi+1 + · · · + xi+`�1. The term ↵ixi represents the
detachment of particles from the site i to the cell environment. Also, the equations
describing the last n � ` + 2 equations are linear, as a ribosome reading the last
` codon is the last particle and hence it moves without any hindrance towards the
last(stop) codon.
The output rate from site n at any time t, which is the protein production rate is
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given by:
R(t) = (�n + ↵n)xn(t). (3.16)

3.4.1 Analysis of the steady-state

Eq. (3.15) can be written as:

ẋi = fi�1(x)� fi(x)� gi(xi), i = 1, 2, . . . , n, (3.17)

where f0(x) := �0(1� y`),

fi(x) := �ixi(1� yi+`), i = 1, . . . , n� 1,

fn(x) := �nxn, (3.18)

gi(xi) := ↵ixi.

Also, yi = 0, for all i � n + 1. At steady state, the left-hand side of Eq. (3.17) is
zero, so

fi�1(e) = fi(e) + gi(ei), i = 1, 2, . . . , n. (3.19)

Let R = (�n + ↵n)en denote the steady-state output rate. From Eq. (3.19), we
get

R = fn(e) + gn(en) = fi(e)�
n�1X

k=i+1

gk(ek), i = 0, 1, . . . n� 1. (3.20)

This yields the following set of n+1 equations in the n+1 unknowns: e1, . . . , en, R:

en :=
R

�n

,

ei :=
R +

P
n�1
k=i+1 gk(ek)

�i(1� yi+`)
, i = n� 1, . . . , 1, and

y` :=
�0 �R�

P
n�1
k=1 gk(ek)

�0
. (3.21)

Solving Eq. (3.21) is in general non-trivial. Nevertheless, it can be solved in
closed form in some special cases. Note that when ↵i = 0, for all i, RFMEOD gets
reduced to RFMEO [69].

Example 3.4.1. Consider an RFMEOD with dimension n and with particle size
` = n. Consider homogeneous rates; �i = �, for i = 0, 1, . . . , n and ↵i = ↵, for
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i = 1, 2, . . . , n. We have

R =
�

1 + �

�+↵
+ (�+↵

�
)(
P

n�1
i=1

P
n�i�1
j=0

�
n�i�1

j

�
(↵
�
)j)

, (3.22)

and

ei =

P
n�i�1
j=0

�
n�i�1

j

�
(↵
�
)j

1 + �

�+↵
+ (�+↵

�
)(
P

n�1
i=1

P
n�i�1
j=0

�
n�i�1

j

�
(↵
�
)j)

. (3.23)

In case of totally homogeneous rates � = ↵, we have

R =
2 �

2n+1 � 1
, and ei =

2n�i

2n+1 � 1
. (3.24)

Eq. (3.20) can be used to prove various theoretical results. The next result shows
that increasing any of the ↵i’s, i 6= n decreases R. In other words, increasing any of
the internal detachment rate decreases the steady-state protein production rate.

Proposition 3.4.1. Consider an RFMEOD with dimension n and particle size `.
Then (@/@↵i)R < 0, for all i = 1, 2, . . . , n� 1.

The next result shows that increasing any of the �i’s increases R. In particular,
increasing the initiation rate always leads to an increase in the protein synthesis rate.
This result is consistent with a proposed canonical model of eukaryotic translation
exhibiting a relation between initiation rate and protein expression [116].

Proposition 3.4.2. Consider an RFMEOD with dimension n and particle size `.
Then (@/@�i)R > 0, for i = 0, 1, 2, . . . , n.

Consider the case where all �i = � and ↵i = ↵. In this case, we can say more
about steady-state densities.

Proposition 3.4.3. Consider an RFMEOD with dimension n, particle size `, �i =

�, and ↵i = ↵ ( 6= 0). Then

ei =
⇣�+ ↵

�

⌘n�i

en, for i = n� `+ 1, . . . , n, (3.25)

e1 > e2 > · · · > en�`+1 > en�`+2 > · · · > en, (3.26)

and
y` > y`+1 > · · · > yn. (3.27)

This implies that the steady-state reader densities decrease between sites 1 and n

and last ` sites reader density is given by Eq. (3.25). The next example demonstrates
this.
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Example 3.4.2. The steady-state reader densities of the RFMEOD with dimension
n = 16, for three particle sizes ` = 2, 4, 8 and �0 = 1, �i = 1, and ↵i = 0.1,
are depicted in Fig. 3.11. It may be observed that steady-state reader densities
monotonically decrease along the mRNA.
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Figure 3.11: The steady-state reader densities as a function of i for a RFMEOD
with n = 16, �0 = 1, �i = 1, and ↵i = 0.1, for i = 1, 2, . . . , 16, for different values of
`.

It has been seen that for fixed rates, the steady-state protein production rate in
the RFMEO with ` > 1 is always less than the steady-state protein production rate
with ` = 1 [69]. We also observed and investigated through simulations that this
seems to hold even in the case of the presence of a drop-off phenomenon.
Example 3.4.3. Consider a RFMEOD with n = 300 sites, ribosome size ` and
rates �0 = 0.8, �i = 1, ↵i = 0.01, for all i. It can be seen that in Fig. 3.12, R

monotonically decreases with `.

3.4.2 RFMEOD with positive feedback

In eukaryotes, mRNA molecules sometimes form circular structures that promote
recycling of the ribosomal subunits [117, 118, 74]. Therefore, it is biologically
evident to include the fact that the translation initiation rate is affected by the
premature and complete translation termination rate. This model can be used to
fine-tune the rate of protein production by ribosome recycling in the case of changing
ribosomal availability due to environmental stress [119]. We analyze the behavior of
the RFMEOD as a control system after closing the loop from the output of ribosomes
to the input with positive linear feedback.
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Figure 3.12: The steady-state output rate R as a function of ` 2 {1, 2, . . . , 40} for a
RFMEOD with n = 300, �0 = 0.8, �i = 1, and ↵i = 0.01, for all i.

Consider the RFMEOD with feedback:

ẋ1 = (k1 + k2(�nxn +
nX

i=1

↵ixi))(1� y`)� �1x1(1� y`+1)� ↵1x1,

ẋ2 = �1x1(1� y`+1)� �2x2(1� y`+2)� ↵2x2,

...

ẋn�`+1 = �n�`xn�`(1� yn)� �n�`+1xn�`+1 � ↵n�`+1xn�`+1,

ẋn�`+2 = �n�`+1xn�`+1 � �n�`+2xn�`+2 � ↵n�`+2xn�`+2,

...

ẋn = �n�1xn�1 � �nxn � ↵nxn,

(3.28)

where k1 > 0 and k2 � 0.

Here, the parameter k1 represents the diffusion of ribosomes to the start codon
of a mRNA molecule that is not related to the recycling of ribosomes. The term
k2(�nxn+

P
n

i=1 ↵ixi) represents the feedback due to recycling of ribosomes that have
finished (partially or completely) the process of translating the mRNA as depicted
in Fig. 3.13.

This is a generalization of the original RFMEOD as it includes both a term
related to initiation rate with and without recycling of ribosomes. The next theorem
proves that trajectories from any initial condition in  will always converge to a
unique steady state point in  .

Theorem 3.4.1. The set  includes a unique steady-state density e of the
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Figure 3.13: The EFEIOD with feedback where parameters k1 and k2 represent
the constant source and recycling rate of ribosomes, respectively. The term y =
�nxn +

P
n

i=1 ↵ixi denotes the output of ribosomes from the system.

closed-loop system (3.28). This point is globally asymptotically stable in  , i.e.,
limt!1 x(t, a) = e for any initial condition a 2  .

Example 3.4.4. Consider the closed loop system (3.28) with dimension n = 3,
` = 2, �i = 1, ↵i = 0.01, k1 = 1 and k2 = 100. Fig. 3.14 depicts trajectories for
three different initial conditions [1 0 0]0, [0 1 0]0, and [0 0 1]0 in  .

Figure 3.14: Trajectories of RFMEOD for three initial conditions given in Example
3.4.4 as a function of time. The steady-state point is marked by a ellipse.

The next result provides information on the change of e w.r.t. the control
parameters k1 and k2.

Proposition 3.4.4. Suppose that the �i’s and ↵i’s are fixed. Let e and ē correspond
to the control parameters (k1, k2) and (k̄1, k̄2), respectively. If k1 = k̄1, then en < ēn

if and only if k2 < k̄2. If k2 = k̄2, then en < ēn if and only if k1 < k̄1.
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From a biophysical point of view, the above result inferred the intuitive result
that increasing any of the control parameters leads to an increase in the protein
production rate. This result may be useful in the context of biotechnology in order
to improve the levels of proteins in the host.

3.4.3 Validation through Monte Carlo simulations

Since the RFMEOD is a mean-field approximation of TASEP with extended objects
and includes an additional detachment rate at every site of the lattice, we ran
MATLAB simulations of this process. A simulation begins with an empty chain of
dimension n and continues for 108 time steps i.e., total simulation time. Each site
can accommodate atmost one particle and a particle can only hop unidirectionally
to a consecutive site if it is empty. The leftmost site that the particle is covering is
referred to as the reader. Every site i, for i = 1, 2, . . . , n in the chain is associated
with hopping rates �i’s and detachment rates ↵i’s where the next hopping event time
tk + ✏k or the next detachment event time tk + �k is generated randomly. For site i,
✏k and �k are random variables drawn from the exponential distribution with mean
rate �i and ↵i, respectively. If hopping time is equal to the simulation time, then
the reader at site i hops to site i + 1, provided site i + ` is empty. Similarly, if the
detachment event time is equal to the simulation time then the reader dissociates
from site i. The occupancy at each site is averaged throughout the simulations
with the first 106 time steps discarded from the calculations to obtain the average
steady-state reader density of each site.

In the example below, we show that simulations support the modeling of
dynamical aspects of translation using RFMEOD.

Example 3.4.5. Consider the RFMEOD with dimension n = 15, particle size
` = 3, rates �0 = 0.1, �i = 1, for i = 1, 2, . . . , n� 1, �n = 0.8, and ↵i = 0 except for
↵8 = 0.01. Fig. 3.15 depicts steady-state reader density e and ⇢ for RFMEOD and
TASEP-detachment, respectively.

3.5 Discussion

In many biological processes like translation, cellular transport, gene transcription,
and many more, ‘particles’ move along one-dimensional “tracks”. We studied a
deterministic model called EFEIOD for the flow of particles along an ordered lattice
of sites that encapsulates important cellular properties like detachment of particles
from any site, nearest-neighbor interactions, and the fact that most particles cover
more than one site along the lattice. We analyzed this model using tools from
systems and control theory, in particular contraction theory.
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Figure 3.15: Steady-state reader density as a function of site number i given in
Example 3.4.5.

We proved that the EFEIOD converges to a unique steady-state density for
any set of feasible parameters. In other words, EFEIOD is robust to the initial
conditions. Moreover, we prove that if one or more of the parameters are
time-varying periodic functions with a common period T , then the steady-state
densities also converge to a periodic solution with period T . We demonstrate through
simulations of the EFEIOD several useful observations. For example, increasing the
particle size may sometimes lead to an increase in the output rate in the presence of
weak repulsions. Surprisingly, we also show that increasing the detachment rate does
not always decrease the output rate as elucidated in Ref. [90]. It is also important to
note that several known models like RFM with positive feedback [61], RFMEO [69],
and the model used in [75] for mRNA translation are special cases of the proposed
model.

We also rigorously analyzed a special case of the EFEIOD, when q = r = 1 and
called it RFMEOD to analyze the effects of ribosome drop-off on the translation
process. The ribosome drop-off is important to study as it could significantly
deteriorate the fitness of the host. We proved that increasing any one of the
transition (detachment) rates of the RFMEOD always increases (decreases) the
steady-state protein production and that in the homogeneous case, i.e., when all
the transition rates are equal and all the detachment rates are equal, the reader
density monotonically decreases along the lattice. We also modeled the observed
phenomenon that many eukaryotic ribosomes may translate mRNA in multiples by
including positive linear feedback in the RFMEOD.
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The results reported can shed light on many biophysical properties of intracellular
transport and may prove useful for applications in synthetic biology. One may
consider integrating another realistic feature of cellular transport such as the
attachment of biological particles at different sites along the tracks in our model.
Another research topic is studying the networks of EFEIOD and considering various
phenomena like competition of resources in the network. We believe that the
EFEIOD can be generalized to model and analyze more natural and artificial
processes. Examples include coordination of large groups of organisms, traffic
control, and more.

3.6 Appendix: Proofs

Proof of Proposition 3.3.1 and 3.3.2: The fact that  is an invariant set of
the dynamics and has a repelling boundary follows from the equations from the
EFEIOD. Let

⌘i(t) := �i(1 + (q � 1)zi+`+1)(1 + (r � 1)zi�`), i = 0, 1, . . . , n (3.29)

and
�i(t) := ↵i(1 + (r � 1)zi+`)(1 + (r � 1)zi�`), (3.30)

with the zi’s defined in Eq. (3.2). Therefore, EFEIOD can be written as:

ẋ1 = ⌘0(t) (1� w`)� ⌘1(t) x1(t) (1� w`+1)� �1 x1 and (3.31)

ẋi = ⌘i�1(t) xi�1(t) (1�wi+`�1)�⌘i(t) xi(t) (1�wi+`)��i xi i = 2, 3, . . . , n, (3.32)

with the wi’s defined in Eq. (3.3).

Note that for r, q > 0, all the time-varying transition rates ⌘i(t) are uniformly
separated from zero and uniformly bounded and all the time-varying detachment
rates are non-negative and uniformly bounded. Now, the proof of proposition follows
from the results in Refs. [69] and [48].

Proof of Proposition 3.3.3 : Let

 i(t) := ⌘i(t)
(1� wi+`(t))

(1� xi+1(t))
, i = 0, 1, . . . , n� 1 (3.33)

and
 n(t) := ⌘n(t) (1� wn+`(t)). (3.34)

Now, combining the representations in Eqs. (3.33) and (3.34) with the Eqs. (3.31)
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and (3.32), we get

ẋ1 =  0 (1� x1)�  1 x1(1� x2)� �1 x1, (3.35)

ẋi =  i�1 xi�1(1� xi)�  i xi(1� xi+1)� �i xi, i = 2, . . . , n� 1, and (3.36)

ẋn =  n�1 xn�1(1� xn)�  n xn � �n xn. (3.37)

Proposition 3.3.1 and the equations above imply that that EFEIOD can be
interpreted as time-varying MFALK system with no backward and attachment
dynamics with the well defined rates for all t > 0. Write the time-varying MFALK
as ẋ = f(x, t) with transition rates  i(t) and detachment rates �i(t). A calculation
shows that the Jacobian of f is J(t, x) = L(t, x) +D(t), where L is the matrix
2

66666664

� 1(1� x2)  1x1 0 . . . 0

 1(1� x2) � 1x1 �  2(1� x3)  2x2 . . . 0

0  2(1� x3) � 2x2 �  3(1� x4) . . . 0
. . .

0 0 . . .  n�1(1� xn) � n�1xn�1

3

77777775

and D is the diagonal matrix

D = diag(� 0 � �1,��2, . . . ,��n�1,� n � �n). (3.38)

Hence, Proposition 3.3.2 and the results in Ref. [68] and [48] imply that the EFEIOD
is SOST on  and this completes the proof.

Proof of Proposition 3.3.4: It follows from the results in Ref. [68] and the
argument used in the proof of Proposition 3 in Ref. [67].

Proof of Proposition 3.4.1: Consider two RFMEODs both with same dimension
n, particle size `, rates �i for all i = 0, 1, . . . , n, and ↵i for i = 1, 2, . . . , n, except for
any one j 2 {1, 2, . . . , n� 1} such that

↵j < ↵̄j. (3.39)

Therefore, the first RFMEOD admits a steady-state production rate R and the
second one admits R̄. We have to prove that R̄ < R. We shall prove it by
contradiction.

Let us assume that
R  R̄, (3.40)
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which implies that
en  ēn. (3.41)

From Eqs. (3.40), (3.41), and (3.20), we have

en�1  ēn�1. (3.42)

We start with the case j = n� 1. From Eqs. (3.20) and (3.40), we have

�n�2 en�2 � ↵n�1 en�1  �n�2 ēn�2 � ↵̄n�1 ēn�1. (3.43)

Now, Eqs. (3.39) and (3.43) implies that

�n�2 en�2 � ↵̄n�1 en�1  �n�2 ēn�2 � ↵̄n�1 ēn�1, (3.44)

which implies that
en�2 < ēn�2. (3.45)

Continuing this way, we have

ej  ēj, for j = n� `+ 1, . . . , n� 2. (3.46)

This means that
yn < ȳn. (3.47)

Now, from Eqs. (3.20), (3.39), and (3.40), we have

�n�` en�` (1� yn)�
n�1X

i=n�`+1

↵i ei  �n�` ēn�` (1� ȳn)�
n�1X

i=n�`+1

↵i ēi. (3.48)

Combining this with Eqs. (3.42), (3.46), and (3.47), we have

en�` < ēn�`. (3.49)

Continuing this way, we have

ej < ēj, for j = 1, . . . , n� 2, (3.50)

which implies that
y` < ȳ`. (3.51)
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From Eqs. (3.20) and (3.39), consider

�0 (1� y`)�
n�1X

i=1

↵i ei  �0 (1� ȳ`)�
n�1X

i=1

↵i ēi. (3.52)

From Eqs. (3.41) and (3.52), we have

y` � ȳ`, (3.53)

which is the contradiction to Eq. (3.51) resulting in R̄ < R in the case ↵n�1 < ↵̄n�1.

Hence, using the same approach for any j 2 {1, 2, . . . , n � 1}, we can conclude
that R̄ < R.

Proof of Proposition 3.4.2: The proof is similar to the proof of Proposition 3.4.1
above and is thus omitted.

Proof of Proposition 3.4.3: From Eq. (3.20), we have

� en�1 = (�+ ↵) en =) en�1 =
⇣�+ ↵

�

⌘
en. (3.54)

Similarly, we have

ej =
⇣�+ ↵

�

⌘n�j

en, for j = n� `+ 1, . . . , n (3.55)

Since (�+ ↵) > �, we have

en�`+1 > en�`+2 > · · · > en. (3.56)

From Eq. (3.20), consider

� en�` (1� yn)�
n�1X

i=n�`+1

↵ ei = � en�`+1 �
n�1X

i=n�`+2

↵ ei, (3.57)

which implies
� en�` (1� yn) = � en�`+1 + ↵ en�`+1. (3.58)

Therefore,
en�` (1� yn) > en�`+1 =) en�` > en�`+1. (3.59)

From Eq. (3.56),
en�` > en�`+1 > en�`+2 > · · · > en. (3.60)
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Now, consider
yn�1 � yn = en�` � en > 0 =) yn�1 > yn. (3.61)

Now, from Eq. (3.20),

� en�`�1 (1� yn�1) = � en�` (1� yn) + ↵ en�`. (3.62)

which implies
en�`�1 (1� yn�1) > en�` (1� yn). (3.63)

From Eq. (3.61), we have
en�`�1 > en�` (3.64)

and thus
yn�2 > yn�1. (3.65)

Continuing in this way completes the proof.

Proof of Theorem 3.4.1: Clearly,  is an invariant set of the dynamics. Note
that this system is RFMEOD with a time-varying initiation rate which is uniformly
bounded and uniformly separated from zero, i.e.,

0 < k1 + k2(�nxn +
nX

i=1

↵ixi) < M. (3.66)

Now, the proof follows by Theorem 3.3.1.

Proof of Proposition 3.4.4: We have equations for the RFMEOD with feedback
at steady-state as follows:

en :=
R

�n
,

ei :=
R +

P
n�1
k=i+1 gk(ek)

�i(1� yi+`)
, i = n� 1, . . . , 1, and

y` := 1� R +
P

n�1
k=1 gk(ek)

�0 (k1 + k2(�nen +
P

n

i=1 ↵iei))
. (3.67)

Suppose that k1 = k̄1 and k2 < k̄2. We have to prove that en < ēn. We shall
prove it by contradiction. Assume

ēn  en, (3.68)

which implies that
R̄  R, (3.69)
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which further implies from Eq. (3.67) that

ēi  ei, for all i = 1, 2, . . . , n� 1. (3.70)

Therefore,
ȳ`  y`. (3.71)

From Eq. (3.67) and simplifying calculations we have,

y` � ȳ` = k1 (�n +↵n) (ēn � en) + (k2 � k̄2) (�n (�n +↵n) ēn +↵n (�n +↵n) en ēn)

+ (k2 � k̄2)
⇣
(�n + ↵n)

n�1X

i=1

(ēi en + ei ēn) +
⇣ n�1X

i=1

↵i ei
⌘ ⇣ n�1X

i=1

↵i ēi
⌘⌘

. (3.72)

The fact that k2 < k̄2 and Eqs. (3.68) and (3.72) implies that

y` < ȳ` (3.73)

which is a contradiction to Eq. (3.71) and hence en < ēn, and the other part follows
the same arguments.
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Chapter 4

Modeling mRNA translation with
ribosome abortions

This chapter1 introduces a deterministic mathematical model for the flow of
extended length particles along the track encapsulating the fact that particles
may detach due to the collision with the neighboring particles. In particular, we
study ribosome flow along a mRNA molecule and provide insight into the effects of
premature termination due to abortions on protein expression.

4.1 Introduction

Gene translation is a process during which complex macromolecules called ribosomes
decode the information inscribed in an mRNA molecule unidirectionally codon by
codon to yield a functional protein [2]. One of the major errors in translation is
abortion, i.e., premature detachment of ribosomes from the mRNA strand resulting
in non-functional truncated proteins [115]. Even in non-stressed conditions, a certain
minimal abortion rate is observed [81]. Various mechanisms are known to cause
translation abortion. For example, ribosome collisions at stalls stimulate abortive
termination of the leading ribosome or can correspond to mutual abortion [116],
a false stop codon resulting from frameshift [120], and local depletion of tRNA
molecules etc. [74, 121, 122]. Translation is a central and one of the most energy
consuming processes in the cell and thus, modeling translation by encapsulating the
feature of ribosome abortions that can affect this process has important implications
to cell’s functioning, human health, evolution, and biotechnology [1].

The RFMLK analyzes mRNA translation with ribosome drop-off [68]. Yet, it
does not take into account the feature of detachment of ribosomes due to collisions
between them. As such, both the RFM and the RFMLK inherit the property that
the site size is equal to the size of the particle.

In this chapter, we introduce a deterministic mathematical model called ribosome

1The content of this chapter is published as: “Aditi Jain and Arvind Kumar Gupta. Modeling
mRNA translation with ribosome abortions. IEEE/ACM Transactions on Computational Biology

and Bioinformatics 20(2):1600-1605, 2022.”



flow model with extended objects and abortions (RFMEOA) to analyze mRNA
translation with fundamental phenomena of ribosome drop-off from the mRNA. It
models several reasons that could lead to detachment of ribosomes along a mRNA
molecule such as collisions between ribosomes or depletion of the concentration of
elongation factors. Using tools from the contraction theory, we prove that RFMEOA
always converges to a steady state. In other words, the density profile of ribosomes
and the protein production rate always converge to a unique steady state.

The chapter is organized as follows. The next two sections describe the model and
present our main results, respectively. Section 4.4 studies the effect of parameters
on the steady-state output rate. Section 4.5 summarizes the chapter and finally, the
proofs of the results are given in Section 4.6.

4.2 Model

The RFMEOA is a set of n first-order nonlinear ordinary differential equations,
where n denotes the number of sites along the mRNA. We assume that every
ribosome covers 1  `  n site units and is translating the left-most site it is
covering and refer to this part of the ribosome as the reader. Thus, ‘the ribosome
is at site i’ implies that the ribosome is located at site i and is translating it while
all the sites i, i + 1,. . . , i + ` � 1 remain covered by it simultaneously. Hence,
the ribosome that is located upto ` sites left to the site i contributes to the total
ribosome coverage at site i. Let xi(t) denote the ‘normalized’ reader density at site
i at time t (see Fig. 4.1).

Reader 

Codon 

mRNA 

Ribosome 
𝑥𝑖 ℓ sites 

Figure 4.1: The RFMEOA as a chain of n sites of codons. Each ribosome occupies
` sites and each site is described by a reader density xi(t) 2 [0, 1].

Let yi(t) denote the ‘normalized’ coverage density at site i at time t, i.e.,

yi(t) =
iX

j=max{1,i�`+1}

xj(t), i = 1, 2, . . . , n. (4.1)

The term ‘normalized’ implies that each variable xi(t) and yi(t) takes value in the
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interval [0, 1] for all t � 0. The value zero [one] means that site i is completely
free [full]. Now, we consider a state-space  for the RFMEOA such that values of
xi’s and yi’s are between zero and one. Let

 := {x 2 Rn : x 2 Cn and y 2 Cn}.

Note that the ‘vacancy’ level at site i is (1�yi), where yi denotes the total ribosome
coverage at site i.

The dynamics of the RFMEOA with n sites is given by:

ẋi = fi�1(x)� fi(x)� gi(x), i = 1, 2, . . . , n, (4.2)

where
fi(x) := �ixi(1� yi+`), i = 0, 1, . . . , n, (4.3)

and
gi(x) := ↵ixi(ai + bi xi�`)(ci + di xi+`), i = 1, 2, . . . , n, (4.4)

with xi(t) ⌘ 0 and yi(t) ⌘ 0 for all i < 1 and i > n. Here, the non-negative
parameters ↵i, ai, bi, ci and di controls the detachment from site i to the
environment. Each parameter �i, ↵i, ai, bi, ci and di has units 1/time.

The term fi(x) represents that the reader flow from site i to site i + 1 is
proportional to the reader occupancy level at site i [xi] and to the ‘vacancy’ level at
site i+` [1�yi+`] [69]. This is a ‘soft’ version of the exclusion principle which implies
that the rate of movement decreases as the density in any of the ` consecutive sites
increases.

The term gi(x) represents that the detachment of ribosomes from site i to
the environment is proportional to its reader occupancy level and to the reader
occupancy level of the neighboring ribosomes. Note that the neighboring ribosomes
of a ribosome at site i are ribosomes at sites i� ` and i+ `. The term (ai + bi xi�`)

represents the fact that the detachment of ribosomes at site i is stimulated by the
collision with the preceding ribosome, i.e., the preceding ribosome must be at site
i � `. Similarly, the term (ci + di xi+`) represents the fact that the detachment of
ribosomes at site i is stimulated by the collision with the succeeding ribosome. To
further explain Eq. (4.4), consider the case i = 4, ` = 2, b4 6= 0 and d4 6= 0 (assume
that n � 6). Then Eq. (4.4) yields

g4(x) = ↵4x4(a4 + b4 x2)(c4 + d4 x6). (4.5)

The term a4+ b4x2 and c4+d4x6 represents the fact that the detachment from site 4
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also depends on the reader density at site 2 and at site 6, respectively, which means
that the detachment of ribosome at site 4 is stimulated by the collisions with the
neighboring ribosomes.
The output rate of ribosomes from site n at time t, which is also called the protein
translation rate or production rate, is denoted by

R(t) := �nxn(t) + ↵nxn(t)(an + bn xn�`(t)). (4.6)

Remark 1. The case when ai = 1, bi = 0, ci = 1 and di = 0 models the situation
where ribosomes detach due to kinetic competition between normal elongation and
premature termination (see Fig. 4.2(a)). This kind of situation can be viewed as a
simple abortive termination (SAT) model [116].
Remark 2. The case when ai = 1, ci = 1 and di = 0 for all i and bi 6= 0 for some
i models the situation where the leading ribosomes undergo premature termination
after getting hit by the trailing ribosome (see Fig. 4.2(b)). This kind of situation
can be viewed as a collision-stimulated abortive termination (CSAT) model [116].
Remark 3. The case when ai = 1, bi = 0 and ci = 0 for all i and di 6= 0 for
some i models the situation where the ribosomes after a collision with the leading
ribosomes will stop processing the mRNA transcript (see Fig. 4.2(c)). This kind of
situation can be viewed as a collide and abortive termination (CAT) model [116].
In the particular case where ↵i = 0 for all i, the RFMEOA becomes the RFMEO,
i.e., a dynamic mean-field approximation of TASEPEO [69]. The next section
analyzes the dynamical behavior of the RFMEOA theoretically.

4.3 Main results

Let x(t, a) denote the solution of Eq. (4.2) at time t � 0 for the initial condition
a 2  .

4.3.1 Invariance and persistence

The next result shows that  is an invariant set of the dynamics and the
reader/coverage densities enter and remain in the interior of  after an arbitrarily
short time.

Proposition 4.3.1. If a 2 @ then the solution of RFMEOA satisfies x(t, a) 2
int( ) for all t > 0. For any ⌧ > 0, there exists a compact and convex set  ⌧ that
is strictly contained in  such that for any a 2  , x(t, a) 2  ⌧ , for all t � ⌧ .

From a biological point of view, this means that if the system is initiated such
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Figure 4.2: Schematic explanation of the detachment of ribosomes from site i. a)
When detachment does not depend upon the collisions(ai = 1, bi = 0, ci = 1 and
di = 0). b) When detachment occurs due to collision with the trailing ribosome(ai =
1, ci = 1 and di = 0). c) When detachment occurs due to collision with the leading
ribosome(ai = 1, bi = 0 and ci = 0).

that every reader/coverage density has values in  at time t = 0, then this remains
true for all t � 0. Furthermore, all the reader and coverage densities ‘immediately’
enter and remain in a set that is uniformly separated from the boundary of  , i.e.,
every site along the mRNA is neither completely full nor completely empty.

4.3.2 Contraction

The next proposition proves that the RFMEOA satisfies SOST (see definition in
Chapter 1). Let |.|1 : Rn ! R+ denote the L1 norm, i.e., for x 2 Rn, |x|1 =

|x1|+ |x2|+ · · ·+ |xn|.

Proposition 4.3.2. The RFMEOA is SOST with respect to the L1 norm, i.e., for
each ✏ > 0 and each ⌧ > 0 there exists � = �(⌧, ✏) > 0 such that

|x(t+ ⌧, a)� x(t+ ⌧, b)|1  (1 + ✏) exp(�t�)|a� b|1, (4.7)

for all t � 0 and all a, b 2  .

From a biological point of view, this means the following. If we initiate the system
with two different ribosomal densities in  . This generates two different solutions
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and the distance between these solutions decreases with time at an exponential rate.

4.3.3 Global asymptotic stability

The next result describes the asymptotic property of the RFMEOA that follows
from Propositions 4.3.1 and 4.3.2.

Theorem 4.3.1. The RFMEOA admits a globally asymptotically stable steady-state
density e 2 int( ), i.e., limt!1 x(t, a) = e, for all a 2  .

From a biological point of view, this means that the system always converges to
the unique steady-state profile, i.e., perturbations in the distribution of ribosomes
on an mRNA will not change the asymptotic behavior of the RFMEOA. The next
example demonstrates the stability property.

Example 4.3.1. Consider the RFMEOA with dimension n = 3, particle size ` = 2,
�i = 1, i = 0, . . . , 3, ↵1 = 0.1, ↵2 = 0, ↵3 = 0.1, a1 = 0, a2 = 0, a3 = 1, bi = 0,
i = 1, . . . , 3, c1 = 0, c2 = 0, c3 = 1, d1 = 1, d2 = 0 and d3 = 0. Fig. 4.3 depicts the
trajectories for three different initial conditions [1 0 0]0, [0 1 0]0, and [0 0 1]0

in  . It can be seen that the three solutions converge to the same steady-state point.

Figure 4.3: Trajectories of RFMEOA for three initial conditions given in Example
4.3.1 as a function of time. The steady-state point is marked by an ellipse.

In the next section, we explore how the steady-state output rate depends on the
various parameters of the RFMEOA.
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4.4 Effect of parameters

One might naturally expect the steady-state production rate to increase as the
initiation rate increases. However, this is not always true in the case of the premature
termination of the leading ribosome due to collision with the trailing one. The next
example demonstrates this.

Example 4.4.1. Consider the RFMEOA with dimension n = 10, particle size
` = 3, �i = 1, i = 0, . . . , n, except �4 = 0.1, ↵i = 0, except ↵4 = 1, ai = 0,
i = 1, . . . , n, bi = 0, except b4 = 0.5, ci = 1, and di = 0, i = 1, . . . , n. Fig. 4.4 depicts
that the steady-state production rate decreases as the initiation rate increases. As
the initiation rate increases, more ribosomes accumulate leading to an increase in
ribosome collisions stimulating the abortion of the ribosome at stall site 4 and hence
decreasing the production rate.
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Figure 4.4: The steady-state production rate R as a function of �0 for a RFMEOA
in Example 4.4.1.

The above example shows that increasing the initiation rate can decrease the
protein expression and is consistent with the prediction of the collision-stimulated
abortive termination model (CSAT) [116].

In general, to study the effect of parameters on the system dynamics by a
theoretical framework is cumbersome. One needs to calculate derivatives of the
steady-state point coordinates w.r.t. small changes in the parameters to obtain
information on whether the steady-state output rate increases or decreases. The
next result shows that these derivatives exist.

Let p = [�0 · · · �n ↵1 · · · ↵n a1 · · · an b1 · · · bn c1 · · · cn d1 · · · dn]0 is the
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vector of all the parameters. Consider mapping h from p to the unique steady-state
point in int( ).

Proposition 4.4.1. The derivative (@/@pj)hi(p) exists for all i, j.

However, there are some special cases for which the steady-state output rate
sensitivity to variations in the parameters can be answered theoretically.

4.4.1 The case when ai = 1 and bi = 0 for all i

The next result shows that increasing any of the transition rates along the mRNA
increases the steady-state protein production rate. Also, increasing the parameters
associated with the detachment rate decreases the steady-state protein production
rate.

Proposition 4.4.2. Consider a RFMEOA with dimension n, particle size `, ai = 1,
and bi = 0, for all i. Then (@/@↵i)R < 0 for all i = 1, 2, . . . , n�1 and (@/@�i)R > 0

for i = 0, 1, 2, . . . , n.

Also, note that (@/@ci)R < 0 and (@/@di)R < 0. In particular, increasing the
initiation rate increases the protein production rate. The next example shows this.

Example 4.4.2. Consider the RFMEOA with dimension n = 6, particle size ` = 2,
�i = 1, i = 1, . . . , n, except �4 = 0.1, ↵i = 1, except ↵6 = 0, ai = 1, bi = 0, i =
1, . . . , n, ci = 0.1, and di = 0.1, i = 1, . . . , n. Fig. 4.5 depicts that the steady-state
production rate increases as initiation rate increases.
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Figure 4.5: The steady-state production rate R as a function of �0 for a RFMEOA
in Example 4.4.2.
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The above example is also consistent with the prediction of the collide and
abortive termination model (CAT) [116]. The next result analyzes the RFMEOA
under the assumption of constant transition rates, i.e., �i := � > 0, i = 0, 1, . . . , n,
and constant parameters ↵i := ↵ > 0, i = 1, . . . , n.

Proposition 4.4.3. Consider a RFMEOA with dimension n, particle size `, �i =
� > 0, ↵i = ↵ > 0, ai = 1, and bi = 0 for all i. Then

e1 > e2 > · · · > en�1 > en. (4.8)

The above proposition implies that steady-state reader densities monotonically
decrease between sites 1 and n.

4.4.2 The case when ` = 1

The next result shows that an increase in any of the transition [detachment] rates
increases [decreases] the steady-state protein production rate.

Proposition 4.4.4. Consider a RFMEOA with dimension n, ` = 1, and assume
↵n = 0. Then (@/@↵i)R < 0 for all i = 1, 2, . . . , n � 1 and (@/@�i)R > 0 for
i = 0, 1, 2, . . . , n.

Consider an RFMEOA in Example 4.4.1 with ` = 1. By the above proposition,
we have that increasing �0 increases R as shown in Fig. 4.6. This demonstrates the
effect of the length on the steady-state output rate for varying the other parameters.
Note that this result also holds in the absence of abortions [60].
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Figure 4.6: The steady-state production rate R as a function of �0 for a RFMEOA
in Example 4.4.1 with ` = 1.
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The next result analyzes the RFMEOA under the assumption of constant
transition rates, i.e., �i := � > 0, i = 0, 1, . . . , n.

Proposition 4.4.5. Consider a RFMEOA with dimension n, ` = 1, and �i := � >

0. Then
e1 > e2 > · · · > en�1 > en. (4.9)

The above result shows that steady-state reader densities monotonically decrease
between sites 1 and n.

4.5 Discussion

It has been observed that a long pause of a ribosome at a site causes a long
queue of stalled ribosomes even under normal conditions [79]. In some cases,
ribosome stalls result in ribosome collisions that act as the trigger for quality
control responses, which act to remove stalled ribosomes from the mRNA. Hence,
abortions due to ribosome stalling or ribosome-ribosome collisions play a role
in translational regulation as they rescue ribosomes and make them available to
translate other mRNAs [123]. The motivation for studying RFMEOA is a recent
biological study supporting a model in which the leading stalled ribosome undergoes
premature termination after collision with the trailing one [80]. The RFMEOA is
a deterministic mathematical model for mRNA translation that incorporates many
realistic features: the fact that ribosomes cover several codons and the phenomenon
of premature termination of ribosomes from the mRNA strand without synthesis
of the full-length protein due to different reasons including ribosome-ribosome
collisions, non-availability of elongation factors.

Our main result shows that the RFMEOA is a contractive dynamical system.
This implies that it converges to a unique steady state for any set of feasible
parameters, i.e., it is robust to the initial conditions. We showed that in the
special case, in which trailing ribosomes that collide with the leading ribosomes
undergo abortive termination, increasing any of the transition [detachment] rate
always increases [decreases] the steady-state protein production rate.

Furthermore, in a computational study, it has been proposed that there is a
decrease in gene expression at high initiation rates when ribosome collisions at stalls
stimulate premature termination of the leading ribosomes [116]. We also observed
this prediction, i.e., increasing the initiation rate may sometimes lead to a decrease
in the production rate through simulations of the RFMEOA by considering the
parameters that support this scenario.

Translation is a complex process and understanding its various bio-physical
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aspects can address numerous biological questions. We believe that the RFMEOA
may serve as a basis to consider more sophisticated aspects, for example, mRNA
degradation, programmed frameshifts, mRNA secondary structures, to deepen the
understanding of the translation process [120]. It could also be generalized to model
other biological dynamical processes such as transcription, cellular transport, and
more [24]. Another research topic is to incorporate the phenomena of competition
for resources and analyze the effect of abortive termination on the total production
rate in the entire system.

4.6 Appendix: Proofs

Proof of Proposition 4.3.1: Consider the RFMEOA with x(0) 2 @ . Then there
exists an index j such that xj(0) 2 {0, 1} or yj(0) 2 {0, 1}. We shall consider few
cases.
Case 1 : Suppose that yj(0) = 0 for some j say the case j = `. This implies xk(0) = 0

for k = 1, 2, . . . , `. We have

ẏ`(0) = �0(1�y`(0))��`x`(0)(1�y2`(0))�
`X

i=1

↵i xi(0)(ai+bi xi�`(0))(ci+di xi+`(0)).

(4.10)

Now, Eq. (4.10) implies that ẏ`(0) = �0 and thus y`(0+) > 0. Therefore, for any
⌧ > 0 9 ✏(⌧) > 0 such that y`(t, a) � ✏ for all t � ⌧ . Continuing in this way, we have
yj(t, a) � ✏ for all i 2 {`, `+ 1, . . . , n} and all t � ⌧ .
Case 2 : Suppose that xj(0) = 0 for some j. Then there exists a minimal index k

such that xk(0) = 0. Let k = n then

ẋn(0) = �n�1xn�1(0) � �nxn(0) � ↵n xn(0)(an + bn xn�`(0))(cn + dn xn+`(0)).

(4.11)

Now, Eq. (4.11) implies that ẋn(0) = �n�1xn�1(0) > 0 and thus xn(0+) > 0.
Continuing in this way, we can show that if xj(0) = 0 for some j then xj(0+) > 0.
The analysis for other cases can be done using similar arguments. This shows that
for any a 2 @ , x(t, a) 2 int( ), for all t > 0.
Now, the proof of the other part of the proposition follows from the fact that  is
compact, convex, and with a repelling boundary; see [[48], Theorem 2].

Proof of Proposition 4.3.2: Let ⌧ > 0 be given. By Proposition 4.3.1, 9 � =
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�(⌧) 2 (0, 1/2) such that for all i and all t � ⌧ we have,

�  xi(t), yi(t)  1� �. (4.12)

Let
⌘i(t) := �i(t)

(1� yi+`(t))

(1� xi+1(t))
, and (4.13)

�i(t) := ↵i(ai + bi xi�`(t))(ci + di xi+`(t)), (4.14)

for i = 1, 2, . . . , n, with xi(t) ⌘ 0 for i < 1 and i > n.
Hence, using notations in Eqs. (4.13) and (4.14), RFMEOA can be written as:

ẋi = ⌘i�1(t)xi�1(1� xi)� ⌘i(t)xi(1� xi+1)� �i(t)xi, (4.15)

for i = 1, 2, . . . , n with x0 ⌘ 0 and xn+1 ⌘ 0.

Note that the time-varying detachment rates �i’s are non-negative. Also,
Eq. (4.12) implies that ⌘i’s are uniformly bounded and uniformly separated from
zero for all t � ⌧ . It follows from Eq. (4.15) that RFMEOA can be interpreted as the
MFALK with the time-varying transition and detachment rates with no backward
and attachment dynamics for all t � ⌧ [68]. Now, the results in Refs. [68] and [56]
imply that RFMEOA is SOST on  .

Proof of Theorem 4.3.1: We can write RFMEOA as ẋ = q(x) with q :  ! Rn.
Since the compact and convex set  is an invariant set of this dynamical system,
it contains the steady-state point e [57]. By Proposition 4.3.1, e 2 int( ) and then
the result follows from Proposition 4.3.2.

Proof of Proposition 4.4.1: The argument used in the proof of [[67], Proposition
3] implies that all the derivatives w.r.t. the given parameters are well-defined.

Proof of Proposition 4.4.2: At steady state, the left-hand side of Eq. (4.2) is zero,
so

fi�1(e) = fi(e) + gi(e), i = 1, 2, . . . , n. (4.16)

with fis and gis defined in Eqs. (4.3) and (4.4), respectively. Let R = (�n + ↵n)en

denote the steady-state production rate. From Eq. (4.16), we get

R = fn(e) + gn(e) = fi(e)�
n�1X

k=i+1

gk(e), i = 0, 1, . . . n� 1. (4.17)

Given a RFMEOA, pick any j 2 {0, 1, . . . , n} and consider a new RFMEOA with
�j < �̄j and all the other rates unchanged. Let ē and R̄ denote the steady-state
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density and production rate in the modified RFMEOA, respectively. We have to
show that R < R̄. Seeking a contradiction, assume that

R̄  R. (4.18)

We start with the case j = n. Combining Eqs. (4.17) and (4.18) with the fact that
�n < �̄n implies that

ēn < en. (4.19)

From Eqs. (4.17) and (4.18) we have, ēn�1  en�1 and ēn�k  en�k, k = 1, . . . , `�1.
This implies that

ȳn < yn. (4.20)

Now, from Eqs. (4.17) and (4.18), we have

�n�` ēn�` (1 � ȳn) �
n�1X

i=n�`+1

↵i ēi  �n�` en�` (1 � yn) �
n�1X

i=n�`+1

↵i ei (4.21)

which implies from Eq. (4.20) that ēn�` < en�` and so ȳn�1 < yn�1. Continuing in
this way we have ēk < ek, k = 1, . . . , n � ` and so ȳ` < y`. Using Eqs. (4.17) and
(4.18), results in R < R̄ which is contradiction to Eq. (4.18). So we conclude that
R < R̄ in the case �n < �̄n.
Hence, using the same approach for any j 2 {0, 1, . . . , n� 1}, we can conclude that
R < R̄. So, (@/@�j)R > 0 for all j. The proof of the other equation in Proposition
4.4.2 is very similar and is thus omitted.

Proof of Proposition 4.4.3: Consider Eq. (4.16) with �i = �(> 0), i = 0, 1, . . . , n

and ↵i = ↵(> 0), i = 1, . . . , n. Then

ej =
⇣�+ ↵

�

⌘n�j

en for j = n� `+ 1, . . . , n (4.22)

Since (� + ↵) > �, we have en�`+1 > en�`+2 > · · · > en and en�`(1 � yn) > en�`+1.
Since yn 2 (0, 1), it implies en�` > en�`+1 and yn�1 > yn. Also from Eq. (4.16), we
have

�en�`�1(1� yn�1) = �en�`(1� yn) + ↵(cn�` + dn�`xn) (4.23)

which implies en�`�1(1 � yn�1) � en�`(1 � yn) and combining this with yn�1 > yn

we have en�`�1 > en�`. Continuing in this manner completes the proof.

Proof of Proposition 4.4.4: Pick any j 2 {0, 1, . . . , n} and consider a new
RFMEOA with �j < �̄j and all the other rates unchanged. Let ē and R̄ denote the
steady-state density and production rate in the modified RFMEOA, respectively.
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We have to show that R < R̄. Seeking a contradiction, assume that

R̄  R. (4.24)

We start with the case j = n, i.e., �n < �̄n. From Eq. (4.24), we have ēn < en.
From Eq. (4.17) we have

ēn�1 =
R̄

�n�1(1� ēn)
<

R

�n�1(1� en)
= en�1. (4.25)

Now Eqs. (4.17) and (4.25) implies that

ēn�2 =
R̄ + ↵n�1an�1ēn�1(cn�1 + dn�1ēn)

�n�2(1� ēn�1)� ↵n�1bn�1ēn�1(cn�1 + dn�1ēn)

<
R + ↵n�1an�1en�1(cn�1 + dn�1en)

�n�2(1� en�1)� ↵n�1bn�1en�1(cn�1 + dn�1en)
= en�2. (4.26)

Continuing in this way we have ēi < ei, i = 1, . . . , n.

We have from Eq. (4.17),

�0(1� ē1)  �0(1� e1). (4.27)

This contradicts that ē1 < e1 and thus completes the proof. The proof of the other
cases is very similar and is thus omitted.

Proof of Proposition 4.4.5: The proof is similar to the proof of Proposition 4.4.3
above and is thus omitted.
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Chapter 5

Large-scale mRNA translation and
the intricate effects of competition for
the finite pool of ribosomes

In this chapter1, large-scale simultaneous mRNA translation in the cell has been
investigated through a mathematical network model that encapsulates important
biological features such as competition for shared resources and the possibility of
drop-off of ribosomes at different sites along the mRNA. We study the dynamical
properties of the model and analyze how state variables get affected by modifying
various biological features.

5.1 Introduction

Translation is a fundamental process that takes place in all living cells, from
bacteria to humans. Many mRNA molecules are translated in parallel with many
ribosomes decoding every mRNA molecule [124]. This implies that the mRNA
molecules effectively “compete” for the finite resources in the cell, like tRNA
molecules and free ribosomes [72, 125]. The competition for ribosomes may explain
important dynamical properties of translation, that are difficult to understand when
considering the translation of a single, isolated mRNA molecule. For example, it
is known that stalling ribosomes may detach from the mRNA before completing
the translation process [81, 75]. This is somewhat surprising, as a ribosome
that drops-off from the mRNA before reaching the stop codon fails to complete
the synthesis of a full-length protein, and releases a truncated protein, whose
accumulation could be detrimental to the cell [112]. However, in the context
of competition for free ribosomes, premature drop-off may have a positive effect:
it allows stalled ribosomes to join the pool of free ribosomes that can initiate
translation in other mRNA molecules. Thus, modeling translation as a network of

1The content of this chapter is published as: “Aditi Jain, Michael Margaliot, and Arvind Kumar
Gupta. Large-scale mRNA translation and the intricate effects of competition for the finite pool
of ribosomes. Journal of the Royal Society Interface 19(188): 20220033, 2022.”



interconnected processes and taking into account competition for shared resources is
important for gaining a deeper understanding of fundamental principles in cellular
biophysics.

Typically, translation is initiated by ribosome scanning from the end of
the capped mRNA. However, some mRNAs include internal ribosome entry
sites (IRESs), that allow for translation initiation in a cap-independent manner.
IRESs, first discovered in poliovirus, are common in RNA viruses and allow viral
translation even when host translation is inhibited for some reason [126, 127]. If the
IRES is located in the 50 UTR region then it can be modeled as one of the bio-physical
properties that affects the initiation rate of the mRNA. However, certain viruses,
like HIV, have IRESs within the open reading frame, downstream of the initiation
codon [128]. Cellular growth regulatory genes and genes transcribed in response to
stress also contain IRES elements [76]. Also, synthetic biologists often insert IRES
sequences into their vectors to allow expressing two or more genes from a single
vector [129]. We believe that the effect of IRESs on translation should also take
into account the competition for shared resources, like ribosomes. For example, a
recent study [130] shows that the non-structural protein 1 (Nsp1), produced by the
SARS-CoV-2 virus, binds to the human 40S subunit in ribosomal complexes, and
thus interferes with mRNA binding. This aids the virus in “hijacking” the cellular
translation machinery.

The RFMNP includes a network of RFMs interconnected via a pool of free
ribosomes. The dynamics of RFMNP have been described in Chapter 1. For a recent
application of this model to large-scale ribosome traffic engineering, see Ref. [131].
However, the RFMNP cannot model the important features of premature drop-off
and IRESs. As we will see below, adding these features to the model generates new,
important and perhaps surprising results.

In this chapter, we consider a network of RFMs with an additional Langmuir
kinetics (RFMLK). For details of the dynamics of RFMLKs, the reader can refer to
chapter 1. This allows modeling drop-off and attachment of ribosomes at any site
along the mRNA due to premature drop-off or IRESs, respectively. The RFMLKs
are interconnected via a pool of free ribosomes yielding a new model referred to
as the RFM with Langmuir kinetics network (RFMLKN). This allows modeling
simultaneous translation of an arbitrary number of mRNA molecules, with ribosome
drop-off from any site along the mRNA molecule to the pool of free ribosomes, and
attachment at an IRES at any site along the mRNA. In particular, we use this model
to rigorously analyze the effect of ribosome drop-off and/or IRES in one mRNA on
the production rate of all the other mRNA molecules. Note that drop-off from
[attachment at] site i is modeled by a parameter ↵i � 0 [�i � 0], such that setting
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the parameter to zero implies no drop-off [attachment] at this site.

We use the powerful theory of strictly cooperative dynamical systems with a
first integral [132] to prove that the RFMLKN admits a continuum of linearly
ordered equilibrium points. Every solution of the system converges to an equilibrium
that depends on the network parameters and the total number of ribosomes in
the network (that is conserved under the dynamics). This represents a dynamical
steady-state where the ribosome flow into and out of every site along any mRNA
molecule is equal, and the flows into and out of the pool are also equal. Thus, any
two solutions starting from two initial conditions corresponding to an equal total
number of ribosomes in the network converge to the same equilibrium point. In
other words, the network “forgets” the exact initial condition, except for the total
initial density of ribosomes. This qualitative behavior holds for any feasible set of
parameters covering many possible biophysical conditions.

More generally, we show that if all the transition rates vary in a periodic
manner, with a common period T , then every solution of the RFMLKN converges
to a periodic solution with period T . This implies in particular that the protein
production rate in all the mRNAs entrains to periodic excitations in the translational
machinery.

We use the RFMLKN to analyze quantitatively and qualitatively important
questions such as the effect of ribosome drop-off/attachment from/to a site in
one mRNA on the steady-state production rate of all the other mRNAs in the
network. The analysis highlights how the competition for shared resources generates
an indirect and intricate web of mutual effects between the mRNA molecules in the
cell. These effects cannot be analyzed using models of translation on a single, isolated
mRNA molecule.

The chapter is organized as follows. The next section summarizes the main
analysis results and their biological implications. Section 5.3 presents the new
mathematical model and demonstrates using several simple examples how it can
be used to study questions that are relevant for large-scale translation in the cell.
Section 5.4 states our main theoretical results. The following section concludes the
section and all the proofs are placed in the Appendix.

5.2 Summary of main results and their biological

implications

The RFMLKN encapsulates many fundamental aspects of gene translation. During
mRNA translation, ribosomes attach at the 50 end of the mRNA and scan it in a
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sequential manner. At each elongation step, every sequence of three consecutive
nucleotides in the mRNA, called a codon, is decoded into an amino-acid, and this
process continues until the ribosome reaches the 3’ end of the mRNA [2]. The codon
decoding rates may vary among different mRNAs and depend on many transcript
features [40].

Several ribosomes may scan the same mRNA molecule in parallel, but a ribosome
cannot overtake another ribosome in front of it, thus obeying the simple exclusion
principle. Ribosomes may detach from the mRNA molecule before reaching the stop
codon due to several reasons like ribosome “traffic jams”, the presence of a premature
stop codon, ribosome-ribosome interactions due to depletion of aminoacyl tRNA or
amino-acid misincorporation, etc. [81, 111]. The RFMLKN also allows to model
ribosome attachment at IRESs in mRNA sites where such a feature is relevant. The
limited availability of free ribosomes induces indirect coupling due to competition
between mRNA molecules (see Fig. 5.1).

Figure 5.1: Large-scale translation of mRNA molecules in the cell. Several ribosomes
may decode the same mRNA. Ribosomes that detach from an mRNA enter the pool
of free ribosomes.

We prove that for a given set of elongation, drop-off and attachment rates,
and a total number of ribosomes in the network, the RFMLKN admits a unique
steady-state, i.e., the ribosomal density profiles on all the mRNAs and in the pool
converge to a fixed value, as time goes to infinity. This raises the important question
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of how does the steady-state changes if we modify any parameter in the model, e.g.
the rate of ribosome drop-off in one site of a specific mRNA.

Our analysis shows that following an increase [decrease] in a drop-off rate in any
mRNA molecule, the steady-state ribosome density profile in all the other mRNA
molecules increases [decreases]. The intuitive explanation for this is as follows:
increasing the drop-off rate leads to releasing more ribosomes to the pool of free
ribosomes and this increases the initiation rate as well as the attachment rate in all
the other mRNA molecules leading to an increase in their ribosome density profile.
We also prove the “dual” result, namely, that increasing [decreasing] an attachment
rate in a specific site in an mRNA decreases [increases] the steady-state ribosome
densities in all the other mRNA molecules. However, and perhaps surprisingly,
we show that it is very difficult to analytically predict the effect of a variation in
one of the rates on the mRNA that is modified, as the effect will depend on the
entire network. For example, increasing the attachment rate in one site of a specific
mRNA may reduce the pool density and thus decrease the effective attachment rates
in other sites along the modified mRNA, leading to an unexpected decrease in the
density along this mRNA.

These results highlight the indirect effects of competition for resources, and
also the importance of taking competition into account when “tinkering” with the
bio-physical features of a single mRNA molecule, e.g. by replacing codons by
synonymous codons or using RNA interference (see Ref. [133]).

Our simulations suggest another interesting implication of ribosome drop-off
and/or ribosome attachment (e.g. in IRESs). It seems that these phenomena tend
to increase the amount of indirect “communication” between the mRNA molecules,
through the pool, and thus lead to a higher level of synchronization between the
production rates in the mRNAs. This suggests another possible advantage of
ribosome drop-off and attachment as tools for regulating the total protein production
from different copies of the same mRNA.

5.3 Mathematical Model

Our model is a network of interconnected RFMLKs. We begin by describing the
RFMLK with an input and then develop the network of interconnected RFMLKs.
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5.3.1 The RFMLK with an input and output

To build a network, we use an RFMLK with an input and output described by

ẋ1 = �0(1� x1)u� �1x1(1� x2) + �1(1� x1)u� ↵1x1,

ẋ2 = �1x1(1� x2)� �2x2(1� x3) + �2(1� x2)u� ↵2x2,

...

ẋn = �n�1xn�1(1� xn)� �nxn + �n(1� xn)u� ↵nxn,

y = �nxn +
nX

i=1

↵ixi. (5.1)

The time-varying function u(t) represents the density of ribosomes in the vicinity
of the mRNA molecule and thus affects the diffusion of ribosomes to the binding sites
along the mRNA. The parameters �i represent some intrinsic site-specific features,
and this modulates the effect of the common u(t). Mathematically, u(t) multiplies
the term representing the entry rate into the first site, and also the attachment
rates in all the sites. We assume that u(t) � 0 for any time t. A larger value
of u(t) corresponds for example to a larger density of free ribosomes in the vicinity
of the mRNA at time t, and consequently, it increases the effective initiation rate in
the first site and the attachment rates in all the sites i with �i > 0. The output y(t)
is the total exit rate of ribosomes from the RFMLK to the environment at time t.

Note that Eq. (5.1) is a nonlinear model, as it includes both products of
state-variables and products of state-variables and the control input.

Example 5.3.1. Consider the case n = 1. In this special case, Eq. (5.1) becomes
the affine control system

ẋ1 = �(�0u+ �1 + ↵1 + �1u)x1 + (�0 + �1)u.

Fix x1(0) 2 [0, 1]. Consider a constant control u(t) ⌘ v, with v > 0, then it is clear
that x1(t) 2 (0, 1) for all t > 0, and that the limit e1 := limt!1 x1(t) exists, and
satisfies

e1 =
1

1 + ↵1+�1
(�1+�0)v

.

In particular, if v = 0 then e1 = 0, and if v ! 1 then e1 ! 1. The first case
corresponds to no ribosomes in the vicinity of the mRNA, so the single site empties.
The second case corresponds to an infinite density of ribosomes, so the site fills up
completely. Note also that e1 is an increasing function of �0, �1, v, and a decreasing
function of �1,↵1.
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The next subsection introduces the RFMLKN.

5.3.2 A network of ribosome flow models with Langmuir
kinetics and a pool

To model large-scale translation under competition for the finite pool of ribosomes
in the cell, we consider a set of m RFMLKs with input and output, representing m

different mRNA molecules in the cell, connected via a pool of free ribosomes.

The ith RFMLK has length ni, input function ui, output yi, and rates �i0, �i1,
. . . , �i

ni
, �i

1, �i

2, . . . , �i

ni
and ↵i

1, ↵i

2, . . . , ↵i

ni
. The dynamics of the m RFMLKs is

written as
ẋ1 = f(x1, u1), y1 = g(x1),

...

ẋm = f(xm, um), ym = g(xm).

(5.2)

These RFMLKs are interconnected through a pool of free ribosomes, i.e., ribosomes
that are not attached to any mRNA. We use the scalar function z(t) � 0 to denote
the density of ribosomes in the pool at time t. The pool feeds the initiation locations
as well as the sites in the mRNAs where attachment takes place. Mathematically,
this implies that ui(t) = Gi(z(t)), i = 1, 2, . . . ,m. We assume that every
function Gi(·) : R+ ! R+ satisfies the following two properties:

1. Gi(0) = 0;

2. Gi(·) is continuously differentiable with G
0
i
(z) > 0 for all z � 0.

The first property implies that if the pool is empty then no ribosomes can exit the
pool; the second implies that as the number of ribosomes in the pool increases, more
ribosomes exit the pool. Note that these properties imply the following:

• There exists c > 0 such that Gi(z)  cz for all z > 0 sufficiently small.

This technical condition will be used later on in the proof of persistence in
the RFMLKN.

Functions that satisfy these properties include, for example, the linear
function G(z) = az, with a > 0, and the bounded function G(z) = a tanh(bz),
with a, b > 0 [134, 135].
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The dynamics of the ith RFMLK in the network is thus given by:

ẋi

1 = �i0Gi(z)(1� xi

1)� �i1x
i

1(1� xi

2) + �i

1Gi(z)(1� xi

1)� ↵i

1x
i

1,

ẋi

2 = �i1x
i

1(1� xi

2)� �i2x
i

2(1� xi

3) + �i

2Gi(z)(1� xi

2)� ↵i

2x
i

2,

...

ẋi

ni
= �i

ni�1x
i

ni�1(1� xi

ni
)� �i

ni
xi

ni
+ �i

ni
Gi(z)(1� xi

ni
)� ↵i

ni
xi

ni
,

yi = �i
ni
xi

ni
+

niX

`=1

↵i

`
xi

`
.

(5.3)

The output of each RFMLK is fed into the pool. Hence, the pool dynamics is given
by:

ż =
mX

i=1

�i
ni
xi

ni
+

mX

i=1

niX

j=1

↵i

j
xi

j
�

mX

i=1

�i0Gi(z)(1�xi

1)�
mX

i=1

niX

j=1

�i

j
Gi(z)(1�xi

j
). (5.4)

In other words, all the ribosomes that exit or drop off the mRNAs feed the pool,
and the pool feeds the initiation and attachment sites in all the mRNAs.

Summarizing, the RFMLKN is a dynamical system with d := 1 +
P

m

i=1 ni state
variables, and dynamics described by Eqs. (5.2), (5.3) and (5.4) (see Fig. 5.2).
Eq. (5.4) and our assumptions on the functions Gi imply that if z(0) � 0 then
z(t) � 0 for all t � 0, i.e., the pool density is always non-negative.
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Figure 5.2: Each mRNA is described by an RFMLK with input and output. The
output of each RFMLK is fed into the pool, and the pool feeds the initiation and
attachment rates in all the RFMLKs.

102



The feasible set of parameters in the RFMLKN is:

�i
j
> 0, �i

j
� 0, ↵i

j
� 0, for all i, j.

All the theoretical results in this chapter hold for any choice of parameter values in
this set. In particular, they hold if we set some (or all) of the ↵i

j
’s to zero and/or

set some (or all) of the �i

j
’s to zero. Thus, the theoretical results remain valid when

there is no drop-off from [attachment at] any site, or when there is drop-off from
[attachment to] very specific sites. Let

H(t) := z(t) +
mX

i=1

niX

j=1

xi

j
(t).

This is the total number of ribosomes in the system at time t. An important property
of the RFMLKN is that it is a closed system, so the total number of ribosomes is
conserved for all t � 0. Thus, H is a first integral of the dynamics.

The RFMLKN models the indirect coupling between the mRNA molecules
induced by competition for the finite number of ribosomes in the system. For
example, if there is a “traffic jam” of ribosomes on one of the mRNAs then the
pool density z decreases and thus the initiation and attachment rates to all the
mRNAs, that depend on the functions Gi(z), decrease.

We prove in Section 5.4 that all the state variables in the RFMLKN converge to
a steady state. The steady-state values depend on the parameter values in all the
RFMLKs and the total number of ribosomes in the network. Let ei

j
2 [0, 1] denote

the steady-state density at the jth site in the ith RFMLK, and let ez 2 [0,1) denote
the steady-state pool density.

The RFMLKN provides a versatile and powerful framework for simulating and
analyzing the effect of various biological phenomena on large-scale translation in the
cell under competition for free ribosomes. In the examples below, we demonstrate
how various changes in the network affect the RFMLKN steady-state. These
examples are simple and synthetic. Their goal is merely to demonstrate the variety
of topics that can be addressed using the new mathematical model.

Our first example demonstrates how the total number of ribosomes in the system
affects the ribosomal densities along the mRNAs.

Example 5.3.2. Consider an RFMLKN that includes a single RFMLK with
dimension n1 = 3, rates �1

j
= 1, for j = 0, . . . , 3, �1

j
= 0, for j = 1, 3,

�1
2 = 0.1, ↵1

j
= 0, for j = 1, 3, and ↵1

2 = 0.01, and a pool with an output
function G(z) = tanh(z). We simulated this system with the initial condition x1

j
= 0
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Figure 5.3: a) Steady-state values in the RFMLKN in Example 5.3.2 as a function
of the total number of ribosomes c. (a) when G(z) = tanh(z); (b) when G(z) = z.

for all j, and z(0) = c, so that the total number of ribosomes in the system is c,
for various values of c. When c = 0 there are no ribosomes in the network and
the steady-state values are all zero. As c increases, the number of ribosomes along
the RFMLK increases. Since tanh(z) ! 1 as z ! 1, ribosomal densities along
the mRNA saturate to the values corresponding to initiation rate �10 = 1, and
attachment rates zero except for �1

2 = 0.1. The remaining ribosomes accumulate
in the pool (see Fig. 5.3a). Using a different output function, namely, G(z) = z,
the qualitative behavior is same, but now as c increases, ribosomal densities tend to
have higher saturation values, and the remaining ribosomes accumulate in the pool
(see Fig. 5.3b).

The next example describes the effect of the drop-off rate of ribosomes along a
coding region in one of the mRNA molecules on the steady-state profiles of all the
mRNAs in the network. Ref. [81] analyzed the drop-off rate in E. coli under normal
conditions and estimated it to be 4 ⇥ 10�4 drop-off events per codon. This is not
negligible. For example, along a coding region of 300 codons (approximately the
average coding region length in E. coli) then on average, around 10 out of every 100
ribosomes will fail to complete translation of the mRNA. Recent studies suggest
that the drop-off rate increases with ribosomal traffic jams [80] and that under
stress conditions, such as amino acid starvation or aminoacyl-tRNA depletion due
to a high level of recombinant protein expression, ribosome drop-off can substantially
affect the efficiency of protein expression [75].

Let

ai := (1/ni)
niX

j=1

ei
j
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denote the average steady-state density (ASSD) in the ith RFMLK.

Example 5.3.3. Consider an RFMLKN with m = 3 RFMLKs with dimensions ni =

3, i = 1, 2, 3, and parameters �10 = 0.8, �20 = 1, �30 = 1.5, �1
j
= 1, �2

j
= 6.4, �3

j
= 10,

↵1
j
= ↵, ↵2

j
= 0, ↵3

j
= 0, �1

j
= 0, �2

j
= 0, �3

j
= 0, for all j, and Gi(z) = z, i = 1, 2, 3.

The initial condition is xi

j
= 0, for all i, j, and z(0) = 2. We vary the parameter ↵,

i.e., the ribosome drop-off rate from all the sites in the first RFMLK. Fig. 5.4 depicts
the ASSD in each RFMLK as a function of ↵. It can be seen that as ↵ increases,
the ASSD in the first RFMLK decreases, whereas the ASSD in all the other RFMLKs
increases. Indeed, as the drop-off rate from the first RFMLK increases, the density
in the pool increases, and more ribosomes become available for translating the other
mRNA molecules, thus increasing the ASSD in the other RFMLKs.
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Figure 5.4: Average steady-state density in the RFMLKN in Example 5.3.3 as a
function of the drop-off rate ↵ in the first RFMLK.

From a biological perspective, this example corresponds to a situation when due
to genetic errors or insufficient availability of charged tRNAs or frameshifting [136],
ribosomes start detaching before reaching the stop codon in an mRNA, resulting
in truncated protein products. Our results explain why this may still be beneficial
to the cell. The ribosome drop-off from one mRNA molecule increases the number
of free ribosomes that are now available to translate other mRNAs which in turn
increases the corresponding protein production rates. Of course, the effect of drop-off
from a single mRNA on the pool may be negligible, but the accumulated drop-off
from many mRNAs may be significant.

The next example considers the “dual” case of increasing the attachment rate in
one of the mRNA molecules in the network.

Example 5.3.4. Consider an RFMLKN with m = 2 RFMLKs with dimensions ni =

10, i = 1, 2. The parameter values are �10 = 0.8, �20 = 0.8, �1
j
= 5, �2

j
= 10, ↵1

j
= 0,
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↵2
j
= 0, �1

j
= �, �2

j
= 0, for all j, and Gi(z) = tanh(z), i = 1, 2. The initial condition

is xi

j
= 0, for all i, j, and z(0) = 3.5. Fig. 5.5 depicts the ASSD in each RFMLK as

a function of � ranging from 0 to 0.5. It can be seen that as � increases, the ASSD
in the first RFMLK increases and the ASSD in the other RFMLK decreases. This
is due to the attachment of ribosomes at the first RFMLK leading to a depletion of
ribosomes in the pool, and thus to a decrease in the ASSD in the second RFMLK.
Note the relatively sharp decrease in the steady-state pool density as � increases.
This is due to the fact that the number of sites is ni = 10, so a “traffic jam” in
an RFMLK involves many stalled ribosomes along the RFMLK.
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Figure 5.5: Average steady-state density in the RFMLKN in Example 5.3.4 as a
function of the attachment rate � in the first RFMLK.

From a biological point of view, the attachment rate may model internal ribosome
entry sites (IRESs) that appear in viral mRNAs. The RFMLKN may thus be used
to shed more light on how the viral mRNA “overtakes” the pool of free ribosomes
and thus: (1) accelerates the translation of viral mRNA, and (2) concomitantly
slows down the cellular innate immune response [137]. IRESs have also been used
as a biotechnological tool allowing the synthesis of several proteins of interest from
one multicistronic mRNA [138, 139, 76]. In this context, the example above shows
that the design of such tools should also take into consideration their effect on the
pool of free ribosomes.

The next example demonstrates the effect of modifying the length of one mRNA
molecule in the network.

Example 5.3.5. Consider an RFMLKN with m = 2 RFMLKs with dimensions n1 =

5, and n2, respectively. The parameter values are �i0 = 1, �i
j
= 1, ↵i

j
= 0.1,

�i

j
= 0.01, for all i, j, and Gi(z) = tanh(z), i = 1, 2. The initial condition is xi

j
= 0,

for all i, j, and z(0) = 5. We simulated this network for various values of n2.
As n2 increases, there is a decrease in the ASSD in both RFMLKs and in the
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pool density (see Fig. 5.6). Indeed, increasing n2 implies that ribosomes that bind
to the second RFMLK remain on it for a longer period of time. This decreases
the steady-state pool density and, consequently, the steady-state densities in all
the RFMLKs.
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Figure 5.6: ASSD and ez in Example 5.3.5 as a function of the length n2 of the
second RFMLK.

The next example again studies the effect of increasing n2 and also compares
the RFMLKN and the RFMNP.

Example 5.3.6. Consider an RFMLKN with m = 2 RFMLKs with dimensions n1 =

5, and n2, respectively. The parameters are �i
j
= ↵i

j
= �i

j
= 1, for all i, j, and the

initial condition is xi

j
(0) = 0, for all i, j and z(0) = 25. Recall that e1

n1
[e2

n2
] denotes

the steady-state density in the last site of the first [second] RFMLK. Let ⇢1
n1

[⇢2
n2

]
denote the steady-state density in the last site of the first [second] RFMLK, when
�i
j
= 1, ↵i

j
= �i

j
= 0 for all i, j, so the RFMLKs reduce to RFMs. Fig. 5.7 shows

that as n2 increases, the steady-state densities e1
n1

and e2
n2

tend to equal values.
However, ⇢1

n1
and ⇢2

n2
are different. The reason for this may be that the non-zero

attachment and detachment rates increase the indirect communication between the
RFMLKs (through the pool) leading to better “synchronization”.

The next section rigorously analyzes the RFMLK and the RFMLKN using
tools from systems and control theory and in particular the theory of cooperative
dynamical systems [50].

5.4 Main results

We begin by analyzing the properties of the RFMLK with input and output
described in Eq. (5.1), as these are the basic ingredients of the RFMLKN. Recall
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Figure 5.7: Steady-state densities in Example 5.3.6 as a function of the length n2 of
the second RFMLK.

that xi(t) 2 [0, 1] for all t, so the state-space of the RFMLK is Cn := [0, 1]n. Let
x(t, a) denote the solution of Eq. (5.1) at time t � 0 for the initial condition a 2 Cn.
For the sake of readability, all the proofs are placed in the Appendix.

5.4.1 Persistence

If u(t) ⌘ 0 then no ribosomes enter the RFMLK and then it is clear that x(t) will
converge to zero, that is, the density of ribosomes at each site will go to zero. The
next result shows that for any input that is bounded below by a positive number
all the state variables remain bounded away from zero and also bounded away from
one. In other words, all the sites along the mRNA will never become completely
empty nor completely full.

Proposition 5.4.1. Consider the RFMLK with a control u such that u(t) � s > 0

for all t � 0. For any ⌧ > 0 there exists ✏ = ✏(⌧) > 0, with ✏(⌧) ! 0 as ⌧ ! 0, such
that for any initial condition a 2 Cn the solution of (5.1) satisfies

✏  xi(t, a)  1� ✏, for all i 2 {1, . . . , n} and all t � ⌧.

In other words, for any control u(t) that is strictly positive for all t � 0 we have
that after any time ⌧ > 0 all the normalized densities are strictly separated away
from zero and from one. In particular, if the densities converge to a steady-state e

then ei 2 (0, 1) for all i.

5.4.2 Contraction

Contraction theory is a powerful tool for analyzing nonlinear dynamical systems [53,
56], and has found applications in bio-molecular systems, control theory,
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synchronization of coupled nonlinear systems [54], reaction-diffusion differential
equations [55], mathematical epidemiology [140, 141], and more.

For x 2 Rn, let |.|1 : Rn ! R+ denote the L1 norm. For a non-singular matrix
P 2 Rn⇥n, let |x|P,1 := |Px|1, i.e., the scaled L1 norm of x.

Proposition 5.4.2. Consider the RFMLK with a control u such that u(t) � s > 0

for all t � 0, and fix ⌧ > 0. There exist a non-singular matrix P = P (⌧) and ⌘ =

⌘(⌧) > 0 such that for any a, b 2 Cn, we have

|x(t+ ⌧, a)� x(t+ ⌧, b)|P,1  exp(�⌘t)|a� b|P,1 for all t � 0.

In other words, the RFMLK is contracting with respect to the scaled norm | · |P,1
after (the arbitrarily small) time delay ⌧ . From a biological point of view, this
implies that the difference between the ribosomal density profiles, corresponding to
two different initial ribosomal densities along the mRNA, decreases with time.

Proposition 5.4.2 implies several useful asymptotic properties of the RFMLK.
These are described in the following subsections.

5.4.3 Global asymptotic stability

Proposition 5.4.3. The RFMLK with a constant control u(t) ⌘ s > 0 admits a
unique steady-state es 2 int(Cn) that is globally asymptotically stable, i.e.,

lim
t!1

x(t, a) = es for any a 2 Cn.

In other words, the solution converges to es for any initial condition, so the initial
condition is “forgotten”. The equilibrium es represents a dynamic steady-state where
the input and output flows from each site in the RFMLK are equal, and thus the
densities in each site are constant. From a biological point of view, this implies that
the ribosomal density at each site along the mRNA converges to a constant value.
This steady-state describes a situation where for each site, the rate of ribosomes
entering the site is equal to the rate of ribosomes leaving the site.

5.4.4 Monotone control system

Angeli and Sontag [142] extended the notion of a monotone system to control
systems. The next result shows that the RFMLK is a monotone control system.
For two vectors v, w 2 Rn, we write v  w if vi  wi for all i = 1, . . . , n, and v ⌧ w

if vi < wi for all i = 1, . . . , n.

Proposition 5.4.4. Fix two initial conditions a, b 2 Cn, with a  b, and two
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controls u, v : R+ ! R+, with u(t)  v(t) for all t � 0. Then the corresponding
solutions of the RFMLK satisfy

x(t, a, u)  x(t, b, v), for all t � 0, (5.5)

and
y(t, a, u)  y(t, b, v), for all t � 0. (5.6)

In other words, if we consider two identical RFMLKs: the first with initial
densities ai and the second with initial densities bi, with ai  bi, for all i, and
apply a control u in the first and v in the second, with u(t)  v(t), for all t � 0,
then at each time t � 0 each density in the first RFMLK will be smaller or equal to
the corresponding density in the second RFMLK. From a biological point of view,
this implies the following. Consider two identical mRNAs. Suppose that for every
site, the first mRNA has an initial ribosomal density smaller or equal to the density
in the second. Also, the first mRNA is located in a region with a smaller ribosome
abundance in the vicinity of the mRNA. Then at each time t, every site in the first
mRNA will be less occupied than the corresponding site in the second mRNA.

The next proposition analyzes the relation between the steady-state densities
corresponding to constant control values.

Proposition 5.4.5. Consider the RFMLK with constant controls u(t) ⌘ s1

and v(t) ⌘ s2 with 0 < s1 < s2. Fix a, b 2 Cn, and let

es
1
:= lim

t!1
x(t, a, u),

es
2
:= lim

t!1
x(t, b, v).

Then
es

1  es
2
.

From a biological point of view this implies the following. Consider two identical
mRNAs. Suppose that the first mRNA is located in a region in the cell with a
smaller ribosome abundance. Then the ribosomal densities in the mRNAs converge
to a steady state, and for each site, the density in the first mRNA will be smaller
or equal to the density in the second mRNA.

We now turn to analyze the RFMLKN. Recall that every xi

j
2 [0, 1], and that

the pool density satisfies z 2 [0,1), so the state-space of the RFMLKN is

⌦ := [0, 1]n1 ⇥ · · ·⇥ [0, 1]nm ⇥ [0,1). (5.7)
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For a 2 ⌦, let

"
x(t, a)

z(t, a)

#
denote the solution of the RFMLKN at time t with the

initial condition a. Let d := n1 + · · · + nm + 1, and let 1d denote a column vector
of d ones. For s � 0, let Ls := {a 2 ⌦ : 10

d
a = s}, i.e., the s level set of the first

integral H. In other words, Ls is the set of all states in ⌦ with a total density of
ribosomes equal to s.

5.4.5 Invariance and persistence

The next result follows immediately from the equations of the RFMLKN.

Proposition 5.4.6. The state space ⌦ in (5.7) is an invariant set for the dynamics

of the RFMLKN that is, if a 2 ⌦ then

"
x(t, a)

z(t, a)

#
2 ⌦ for all t � 0.

In other words, every trajectory emanating from an initial condition in the state
space remains in it for all t � 0.

The next result shows that trajectories that emanate from an initial condition
in ⌦ become uniformly separated from the boundary of ⌦.

Proposition 5.4.7. Consider the RFMLKN. For any ⌧ > 0 there exists ✏ = ✏(⌧) >

0, with ✏(⌧) ! 0 as ⌧ ! 0, such that for any a 2 ⌦ \ {0} we have

✏  xi

j
(t, a)  1� ✏ (5.8)

and
✏  z(t, a) (5.9)

for all t � ⌧ , i 2 {1, 2, . . . ,m}, and j 2 {1, 2 . . . , ni}.

In other words, after an arbitrarily short time, every density in every RFMLK is
in the range [✏, 1� ✏], and the pool density is in the range [✏,1). From a biological
point of view, this implies that after an arbitrarily short time ⌧ > 0 every site along
every mRNA is not completely empty nor completely full, and that the pool is not
completely empty.

To explain the usefulness of Proposition 5.4.7, note that the Jacobian J of the
vector field of the RFMLK with input and output satisfies J(x, u) = M(x)�D(x, u),
where D(x, u) is a diagonal matrix with entries

�0u+�1(1�x2)+↵1+�1u,�1x1+�2(1�x3)+↵2+�2u, . . . ,�n�1xn�1+�n+↵n+�nu,
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and

M(x) :=

2

66666664

0 �1x1 0 0 . . . 0 0 0

�1(1� x2) 0 �2x2 0 . . . 0 0 0
. . .

0 0 0 0 . . . �n�2(1� xn�1) 0 �n�1xn�1

0 0 0 0 . . . 0 �n�1(1� xn) 0

3

77777775

.

For any x 2 [0, 1]n all the entries of M(x) are nonnegative, so (5.3) is a cooperative
dynamical system [50]. The matrix M(x) may become reducible for values x on
the boundary of [0, 1]n. However, M(x) is irreducible for all x 2 (0, 1)n. Thus,
Proposition 5.4.7 guarantees that after an arbitrarily short time the matrix M(x(t))

and, thus J(x(t), u(t)), becomes an irreducible matrix. This will be used in analyzing
the asymptotic properties of the RFMLKN described below.

5.4.6 Stability

The next result shows that every level set contains a unique steady-state ribosome
distribution in each mRNA and in the pool. The proof is based on the theory of
monotone dynamical systems that admit a first integral, see Ref. [143, 132].

Theorem 5.4.1. Every level set Ls contains a unique equilibrium point eLs of
the RFMLKN and for any initial condition a 2 Ls, the solution of the RFMLKN
converges to eLs. Furthermore, for any 0  s < p,

eLs ⌧ eLp . (5.10)

In other words, the RFMLKN admits a continuum of equilibrium points and
any two solutions starting from initial conditions in the same level set of the
system converge to the same equilibrium point. Thus, the rates �i

j
, �i

j
, ↵i

j
and

the total number of ribosomes s in the network determine a unique steady-state
density profile in the RFMLKs and the pool. Eq. (5.10) implies that for two initial
conditions, the first one with a smaller total number of ribosomes than the second
one, the corresponding equilibrium points e1 and e2 will be completely ordered: every
steady-state density in e1 will be strictly smaller than the corresponding density
in e2.

From a biological point of view, this implies the following. Consider a network
of mRNA molecules interconnected via a pool. We compare two scenarios. In the
first, the total number of ribosomes in the network is s and in the second it is p,
with p > s. In both cases, the densities on each mRNA and in the pool converge
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to a steady state, and for each site in each mRNA and the pool, the density in the
second scenario is larger than in the first one.

Example 5.4.1. To model a gene that is highly expressed with respect to other
genes, consider an RFMLKN with a single RFMLK and a pool. Assume that the
output function of the pool is G1(z) = z, and that the dimension of the RFMLK
is n1 = 2. The equations of the RFMLKN are then

ẋ1
1 = �10z(1� x1

1)� �11x
1
1(1� x1

2) + �1
1z(1� x1

1)� ↵1
1x

1
1,

ẋ1
2 = �11x

1
1(1� x1

2)� �12x
1
2 + �1

2z(1� x1
2)� ↵1

2x
1
2, (5.11)

ż = �12x
1
2 � �10z(1� x1

1) +
2X

j=1

↵1
j
x1
j
�

2X

j=1

�1
j
z(1� x1

j
).

Any equilibrium point e =
h
e11 e12 ez

i0
2 Ls satisfies

�10ez(1� e11) = �11e
1
1(1� e12)� �1

1ez(1� e11) + ↵1
1e

1
1

= �12e
1
2 �

2X

j=1

�1
j
ez(1� e1

j
) +

2X

j=1

↵1
j
e1
j
,

(5.12)

and
e11 + e12 + ez = s.

Fig. 5.8 depicts trajectories of Eq. (5.11) with parameters �10 = 1, �11 = 1, �12 = 1,
↵1
1 = 0.1, ↵1

2 = 0.1, �1
1 = 0.2, �1

2 = 0.2, and three different initial conditions in the
level set L1: [0.5 0.5 0]0, [0.5 0 0.5]0, and [0 0.5 0.5]0. It may be seen that
all three solutions converge to the same equilibrium point.

Various intracellular mechanisms may affect the parameters of the translation
machinery. For example, the elongation rates depend on the interaction between
the nascent peptide and the exit tunnel of the system [144]. Stress conditions
increase ribosome abortion and drop-off. Due to competition for the finite pool of
ribosomes, any change in the translation speed along a specific mRNA molecule will
also indirectly affect the translation of other mRNAs in the network. The variability
in the factors that affect translation in the cell requires models that can be used to
analyze the sensitivity to parameter values. Another motivation for studying these
issues comes from synthetic biology, for example, the recent interest in co-expression
of multiple genes at a given desired ratio [108, 145].
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Figure 5.8: Trajectories of the RFMLKN in Example 5.4.1 for three different initial
conditions in L1. The unique equilibrium in L1 is marked by a circle.

5.4.7 Effect of parameters

Our first result in this subsection analyzes the affect of a modification in the drop-off
rate at one site of an mRNA molecule on the entire RFMLKN. We assume, without
loss of generality, that the modification is in one of the rates in the first RFMLK.

Theorem 5.4.2. Consider an RFMLKN with m RFMLKs with dimensions ni, i =

1, . . . ,m, and parameters �i0 > 0, �i
j
> 0, ↵i

j
� 0, and �i

j
� 0, i = 1, . . . ,m

and j = 1, 2, . . . , ni. Fix s > 0. Let ei
j
2 (0, 1), and ez 2 (0,1) denote the unique

steady-state density in the level set Ls of H. Fix k 2 {1, . . . , n1} and suppose that we
modify the RFMLKN by changing ↵1

k
to ↵̄1

k
, with ↵̄1

k
> ↵1

k
. Let ēi

j
2 (0, 1), ēz > 0,

denote the steady-state density in the modified RFMLKN. Then

ēz > ez and ēi
j
> ei

j
for all i 2 {2, . . . ,m} and all j 2 {1, . . . , ni}. (5.13)

From a biological point of view, this implies that an increase in the drop-off
rate in one of the mRNAs yields an increase in the steady-state pool density and
consequently an increase in the density in each site in all the other mRNAs. Of
course, the exact quantitative effect may be small or large, depending on various
parameters e.g. the ratio between the number of ribosomes that detach from the
mRNA and the number of ribosomes in the pool.

Note that Theorem 5.4.2 and also the results below analyze the effect of changing
a single parameter in the network. However, they also allow to analyze also
specific modifications in several parameters. For example, Theorem 5.4.2 shows
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that increasing the drop-off rate in an mRNA molecule increases the steady-state
pool density, so it is clear that increasing several drop-off rates will also increase the
steady-state pool density.

The effect of increasing ↵1
k

on the steady-state in the first RFMLK is non-trivial.
It is natural to expect a decrease in the density in each site of the first RFMLK.
But, as more ribosomes accumulate in the pool the effective attachment rates in
sites along the first RFMLK may also increase, leading to an increase in the density
in certain sites. In general, the total effect on the first RFMLK will depend on all
the parameters in the RFMLKN, and is thus difficult to predict analytically. The
next two examples demonstrate this.

Example 5.4.2. Consider an RFMLKN with m = 2 RFMLKs of dimensions n1 = 6

and n2 = 3, parameters �i0 = 1, �i
j
= 1, ↵i

j
= 0, �i

j
= 0, for all i, j, and Gi(z) = z,

i = 1, 2. The initial condition is xi

j
= 0, for all i, j, and z(0) = 5. We

simulated this RFMLKN for several values of the drop-off rate ↵1
3 from the third

site in RFMLK #1. Figs. 5.9a and 5.9b show that increasing ↵1
3 increases e11, and

decreases e1
i

for all i > 1. As predicted in Theorem. 5.4.2, it also increases ez, so
more ribosomes accumulate in the pool leading to an increase in e2

j
for all j.
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Figure 5.9: Behavior of the RFMLKN in Example 5.4.2 as a function of ↵1
3 when

�1
4 = 0: a) Steady-state values in RFMLK #1. b) Steady-state values in RFMLK #2

and the pool.

Example 5.4.3. Consider the RFMLKN in Example 5.4.2, but now with �1
4 = 2.

Fig. 5.10 shows that in this case an increase in the drop-off rate ↵1
3 yields an increase

in the steady-state values in the sites of RFMLK #1 located after the third site.
This is because of an increase in the density of free ribosomes in the pool leading to
more ribosomes attaching to the first RFMLK.
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Figure 5.10: Steady-state values in RFMLK #1 in the RFMLKN in Example 5.4.3
as a function of the drop-off rate ↵1

3.

It is known that ribosome drop-off from a single RFMLK always decreases the
steady-state production rate [68]. The next example demonstrates that ribosome
drop-off from one transcript in a network connected via a pool of free ribosomes may
still be beneficial for the cell, as it allows ribosomes to detach from slow sites and
then attach at the initiation sites of other, less jammed, transcripts. We measure
the “usefulness” to the cell using the average steady-state protein production rate in
the entire network, defined as

Rav :=
1

m

mX

i=1

�i
ni
ei
ni
.

In other words, this is the total production rate in all the mRNAs (normalized by
the number of mRNAs in the network).

Example 5.4.4. We consider a network representing several copies of the S.
cerevisiae gene YBL025W that encodes the protein RRN10, which is an RNA
polymerase I-specific transcription initiation factor. This gene includes 145 codons,
excluding the stop codon. It has been modeled using an RFM with length n = 5,
and rates

h
�0 . . . �5

i
=

h
0.1678 0.2572 0.2758 0.2514 0.2612 0.3002

i
. (5.14)

This model was derived by dividing the 145 codons into 6 groups of consecutive
codons, estimating the decoding time di for each group based on ribo-seq data, and
then setting �i = 1/di (with units of 1/sec). We refer to [46] for the full details.

Consider an RFMLKN with m = 50 RFMLKs with dimensions ni = 5, i 2
{1, 2, . . . , 50}. The transition rates are as in Eq. (5.14) in RFMLKs #2 to #50. In
RFMLK #1, the transition rates are as in Eq. (5.14), except for �2 = 0.001. Thus,
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site 2 in the first RFMLK is a slow site, e.g. due to a stalled ribosome. The other
parameters in the network are: ↵i

j
= 0, �i

j
= 0, and Gi(z) = z for all i, j. The

initial condition is xi

j
= 0, for all i, j, and z(0) = 100. Fig. 5.11 depicts Rav as a

function of the drop-off rate ↵1
2 in the range 0 to 0.01. It can be observed that the

total steady-state protein production rate in the network increases when ribosomes
are allowed to detach from the slow site. The quantitative effect is small, but this
is because we modify the drop-off rate in one of the 50 mRNAs. If the drop-off rate
is increased in several jammed mRNAs then the effect will be more pronounced.

Increasing ↵1
2 from 0 to 0.01 in RFMLK #1 decreases the total density in

RFMLK #1 (i.e., the sum of all the densities on the different sites along RFMLK #1)
from 2.0002 to 1.8929, increases the total density from 1.9827 to 1.9848 in all the
other RFMLKs, and increases the pool density from 0.8488 to 0.8506. As the
drop-off rate increases more ribosomes accumulate in the pool and become available
for other RFMLKs, and thus there is an increase in the initiation rates in all the
other RFMLKs leading to higher production rates. Our simulations suggest that
this phenomena takes place only when the number of ribosomes in the pool is rather
low, that is, when the pool is “starved”. Summarizing, our model suggests that at
least in some cases ribosome drop-off from a jammed site may be advantageous to
the cell.

0 0.002 0.004 0.006 0.008 0.01
69.31

69.315

69.32

69.325

69.33

69.335

69.34

69.345

69.35

Av
er

ag
e 

pr
ot

ei
n 

pr
od

uc
tio

n 
ra

te
 R

av

10-3

Figure 5.11: Average protein production rate in the RFMLKN in Example 5.4.4 as
a function of the drop-off rate ↵1

2.

The next result analyzes the “dual” case of the one described in Theorem 5.4.2
i.e., the affect of modifying one of the attachment rates in an RFMLK in the network.

Theorem 5.4.3. Consider an RFMLKN with m RFMLKs of dimensions ni, i =
1, . . . ,m, and parameters �i0 > 0, �i

j
> 0, ↵i

j
� 0, and �i

j
� 0, i = 1, . . . ,m

and j = 1, 2, . . . , ni. Fix s > 0. Let ei
j
2 (0, 1), and ez 2 (0,1) denote the unique

steady-state density in the level set Ls of H. Fix k 2 {1, . . . , n1} and suppose that
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we modify the RFMLKN by changing �1
k

to �̄1
k
, with �̄1

k
> �1

k
. Let ēi

j
2 (0, 1), ēz > 0,

denote the steady-state density in the modified RFMLKN. Then

ēz < ez and ēi
j
< ei

j
for all i 2 {2, . . . ,m} and all j 2 {1, . . . , ni}. (5.15)

In other words, an increase in the attachment rate in one of the RFMLKs
decreases the steady-state pool density and consequently decreases the density in
each site in all the other RFMLKs.

Example 5.4.5. Consider an RFMLKN with m = 2 RFMLKs of dimensions n1 = 9

and n2 = 3, parameters �i0 = 1, �i
j
= 1, ↵i

j
= 0, �i

j
= 0, for all i, j, and Gi(z) = z,

i = 1, 2. The initial condition is xi

j
= 0, for all i, j, and z(0) = 5. We simulated

this RFMLKN for several values of the attachment rate �1
3 . Fig. 5.12b shows

that as �1
3 increases there is a decrease in the steady-state pool density (as more

ribosomes bind to the third site of RFMLK #1) and consequently a decrease in
the steady-state values in all the sites in RFMLK #2. As shown in Fig. 5.12a,
the effect of increasing �1

3 on RFMLK #1 is non-trivial. A decrease in the pool
density decreases e11. However, the increase in the attachment rate in the third site
leads to more ribosomes attaching to this site and consequently a higher density in
sites 3, . . . , 9. Also, this creates a “traffic jam” along these sites and thus increases
the density in site 2 as well.
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Figure 5.12: Behavior of the RFMLKN in Example 5.4.5 as a function of the
attachment rate �1

3 : a) Steady-state densities RFMLK #1. b) Steady-state densities
in RFMLK #2 and the pool.

Our last result in this subsection analyzes the effect of modifying a hopping rate
in one of the RFMLKs in the network.
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Theorem 5.4.4. Consider an RFMLKN with m RFMLKs of dimensions ni, i =

1, . . . ,m, and parameters �i0 > 0, �i
j
> 0, ↵i

j
� 0 and �i

j
� 0, i = 1, . . . ,m, j =

1, 2, . . . , ni. Fix s > 0. Let ei
j
2 (0, 1), and ez 2 (0,1) denote the unique steady-state

density in the level set Ls of H. Fix k 2 {0, . . . , n1}. Suppose that we modify the
RFMLKN by changing �1

k
to �̄1

k
, with �̄1

k
> �1

k
. Let ēi

j
2 (0, 1), ēz > 0 denote the

steady-state density in the modified RFMLKN. Then one of the following three cases
holds. Either

ēz > ez and ēi
j
> ei

j
for all i 2 {2, . . . ,m} and all j 2 {1, . . . , ni},

or

ēz = ez and ēi
j
= ei

j
for all i 2 {2, . . . ,m} and all j 2 {1, . . . , ni}, (5.16)

or
ēz < ez and ēi

j
< ei

j
for all i 2 {2, . . . ,m} and all j 2 {1, . . . , ni}.

Clearly, this covers all the possible cases for the change in the pool density, and
each case shows that the qualitative behavior of all the other RFMLKs is the same.
From a biological pint of view, this implies that modifying a translation rate in an
mRNA affects all the sites in all the other mRNAs in the same way. This is natural,
as all the mRNAs are fed from the same pool, so if, for example, the steady-state
density in the pool increases then all the densities in all the sites in the other mRNAs
will increase.

Theorem 5.4.4 does not provide any information on the modified densities in the
sites along RFMLK #1. Indeed, it seems that any of these densities may increase or
decrease depending upon the parameters in the entire network. The next examples
demonstrate this.

Example 5.4.6. Consider an RFMLKN with m = 2 RFMLKs of dimensions n1 = 9

and n2 = 3, parameters �i0 = 2, �i
j
= 2, for all i, j except for �15, ↵1

j
= 0.1, for

j 2 {1, 2, . . . , 8}, ↵1
9 = 0, ↵2

j
= 0.1, for j = 1, 2, ↵2

3 = 0, �1
j
= 0.1 for all j except

for �1
1 = 0, �2

1 = 0, �2
j
= 0.1 for j = 2, 3 and Gi(z) = z, i = 1, 2. The initial

condition is xi

j
= 0, for all i, j, and z(0) = 3. We simulated this RFMLKN for

various values of the elongation rate �15. Note that when �15 ⌧ 2 it is a bottleneck
rate in RFMLK #1. Fig. 5.13b shows that increasing �15 increases the pool density
and thus the densities in all the sites along RFMLK #2. Fig. 5.13a shows that
increasing �15 yields a decrease in sites 3, 4, 5 in RFMLK #1, but an increase in all
the other sites.
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Figure 5.13: Behavior of the RFMLKN in Example 5.4.6 as a function of the
elongation rate �15: a) Steady-state densities in RFMLK #1. b) Steady-state
densities in RFMLK #2 and the pool.

Example 5.4.7. Consider again the RFMLKN in Example 5.4.6, but now the initial
condition is xi

j
= 0, for all i, j, and z(0) = 10. In this case, Fig. 5.14b shows that

increasing the elongation rate �15 leads to a decrease in the steady-state pool density
resulting in decreased steady-state densities in RFMLK #2. Fig. 5.14a shows that
in this case the effect of increasing �15 on RFMLK #1 is more intuitive: it decreases
the densities in sites 1, . . . , 5 and increases the densities in sites 6, . . . , 9.

0.5 1 1.5 2 2.5 3
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)

0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

(b)

Figure 5.14: Behavior of the RFMLKN in Example 5.4.7 as a function of the
elongation rate �15: a) Steady-state densities in RFMLK #1. b) Steady-state
densities in RFMLK #2 and the pool.

We now analyze several additional mathematical properties of the RFMLKN.
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5.4.8 Strong monotonicity

Recall that the dynamical system ẋ = f(x) is called cooperative if for any two initial
conditions a, b with a  b we have x(t, a)  x(t, b) for all t � 0 [50]. In other words,
the flow preserves the (partial) ordering between the initial conditions. The next
result shows that the RFMLKN is cooperative.

Proposition 5.4.8. Consider the RFMLKN. Fix two initial conditions a, b 2 ⌦

with a  b. Then

x(t, a)  x(t, b) and z(t, a)  z(t, b), for all t � 0.

If, furthermore, a 6= b then

x(t, a) ⌧ x(t, b) and z(t, a) < z(t, b), for all t > 0.

From a biological point of view, this implies the following. Consider an RFMLKN
with two different initial densities. For every site in every mRNA, the first initial
density is smaller or equal to the density in the second RFMLKN, and the same
holds for the initial pool density. Then at each time t > 0, the corresponding solution
from these densities still maintain the same ordering between the site densities and
the pool density.

The next subsection shows that the flow of the RFMLKN is a non-expansive
mapping. For a vector v 2 Rn, let |v|1 : Rn ! R+ denote the L1 norm of v.

5.4.9 Non-expansion

In a contractive system, all solutions converge exponentially to one another. Since
the RFMLKN admits more than one equilibrium, it is not a contractive system with
respect to any norm. However, the next result shows that the L1 distance between
any two trajectories is non-expansive, i.e., it is bounded by the distance L1 between
the initial conditions.

Proposition 5.4.9. Consider the RFMLKN. Fix a, b 2 ⌦. Then
�����

"
x(t, a)

z(t, a)

#
�

"
x(t, b)

z(t, b)

#�����
1

 |a� b|1, for all t � 0. (5.17)

In particular, the difference between two “close” ribosomal density profiles will
remain close for all t � 0.
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Fix a 2 ⌦ and let s =: 10
d
a. Setting b = eLs in Eq. (5.17) yields

�����

"
x(t, a)

z(t, a)

#
� eLs

�����
1

 |a� eLs |1, for all t � 0.

In other words, the convergence to the equilibrium eLs is monotone in the sense that
the L1 distance can only decrease with time.

5.4.10 Entrainment

Many biological processes are excited by a periodic input. Proper functioning
often requires entraining to the excitation, that is, converging to a periodic
pattern with the same period as the excitation. A typical example is the ability
of cells to coordinate their growth with the periodic cell-cycle division process.
Translation seems to play an important role in this process. It is known for
example that expression of the human translation initiation factor eIF3f peaks twice
in the cell cycle: in the S and the M phases [146]. An interesting question is
whether entrainment in translation may increase the average production rate [147].
Entrainment is also important in the context of synthetic biology, for example, in
designing a biological network that is coordinated by a single oscillator producing a
common “clock signal” [100].

To study entrainment in the RFMLKN, assume that the parameters �i
j
,↵i

j
, �i

j

in all the RFMLKs are not constant, but are time-varying functions, that are all
jointly periodic with a period T > 0. More precisely, we assume that

• There exists a (minimal) T > 0 such that all the rate functions �i
j
(t), ↵i

j
(t)

and �i

j
(t) are non-negative, continuous, and T-periodic.

• There exists 0 < �1  �2 such that �i
j
(t) 2 [�1, �2], for all i, j and all t 2 [0, T ).

We then refer to the network as the periodic RFM with Langmuir kinetics
network (PRFMLKN). Note that a constant function is T -periodic for any T , so
for example, if one parameter in the network is T -periodic and all the others are
constant then our assumptions hold.

The next result shows that the PRFMLKN entrains.

Theorem 5.4.5. Consider the PRFMLKN. Fix s � 0. There exists a unique
function �s : R+ ! int(⌦), that is T -periodic, and for any initial condition a ="
x(0)

z(0)

#
2 Ls, the solution

"
x(t, a)

z(t, a)

#
of the PRFMLKN converges to �s as t ! 1.
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In other words, if the rates are T -periodic then all the densities in the mRNAs
and the pool converge to a periodic pattern with period T , and thus so will
the protein production rate in every mRNA. In particular, if a single parameter
in one of the RFMLKs is T -periodic and all the other parameters are constant
then the network entrains. Roughly speaking, this can be explained as follows.
The T -periodic parameter will generate T -periodic variations in the pool density
and this will generate T -periodic patterns in all the mRNA densities, as the pool
feeds all the mRNAs. Again, this demonstrates the intricate coupling generated by
the competition for shared resources.

Example 5.4.8. Consider a network with m = 2 RFMLKs of dimensions n1 = 2

and n2 = 3, and with Gi(z) = tanh(z), i = 1, 2. All the rates in the network are
constant and equal to one, except for �22(t) = 5+4 sin(2⇡t). Thus all the rates in the
network are periodic with a common minimal period T = 1. The initial condition
is z(0) = xi

j
(0) = 1/4 for all i, j. Fig. 5.15 depicts the state-variables and the pool

density as a function of t. Note that all the densities converge to a periodic pattern
with period one. Note also that since the total number of ribosomes is conserved,
maximal peaks in the density along the RFMLKs corresponds to minimal peaks in
the pool density, and vice-versa.
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Figure 5.15: Trajectories of PRFMLKN in Example 5.4.8 as a function of time.

5.5 Discussion

We derived and analyzed a novel and general network model of ribosome flow
during large-scale translation in the cell. This model encapsulates important cellular
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properties like ribosome drop-off, ribosome attachment at IRESs, and competition
for a finite pool of free ribosomes. We analyzed the model using tools from systems
and control theory, including contraction theory, and the theory of cooperative
dynamical systems.

The new model is an irreducible cooperative dynamical system admitting a first
integral (the total density of ribosomes in the network). This implies that the system
admits a continuum of linearly ordered equilibrium points, and that every trajectory
converges to an equilibrium point. The system is also on the “verge of contraction”
with respect to the L1 norm. In addition, we proved that if one or more of the rates
in the network are time-varying periodic functions with a common period T , then
the densities along all the mRNAs and in the pool converge to a periodic solution
with period T , i.e., the system entrains to a periodic excitation.

An important question is the sensitivity of the network steady-state to variations
in the mRNA parameters and the density of free ribosomes. We thoroughly analyzed
this problem and showed that a modification of a bio-physical property in a specific
mRNA has two implications. First, via competition it affects translation in all
the other mRNAs in an intuitive manner: if the pool steady-state density increases
[decreases] then the density in all other sites in all other mRNAs increases [decreases].
Second, and perhaps surprisingly, it is almost impossible to predict what will be the
effect on the densities and protein production rate in the mRNA that is modified,
as this depends in a non-trivial way on the interactions between all the mRNAs
and the pool. For example, an increase in the drop-off rate in a specific site in an
mRNA may increase the pool density, thus increasing the attachment rates along
this mRNA and leading to an increase in the density in some sites along this mRNA.

These results highlight that analyzing the effect of any bio-physical property on
translation in the cell must take into account the intricate effects of competition,
especially when the competition for shared resources plays a major role, e.g. under
stressful conditions.

We believe that the new model presented here provides a powerful framework
for analyzing and re-engineering the translation process. It may also prove useful
for modeling other natural transport phenomena such as gene transcription and
intracellular transport, as well as artificial systems. One possible avenue for further
research is in developing a quantitative and qualitative understanding of how viral
mRNAs hijack the translation machinery and, in particular, whether the indirect
effects of competition are enough to hamper the host’s immune response.
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5.6 Appendix: Proofs

We begin by writing the RFMLK with input and output in the form:

ẋ1 = f0(x1, u)� f1(x1, x2)� g1(x1, u),

ẋ2 = f1(x1, x2)� f2(x2, x3)� g2(x2, u),

... (5.18)

ẋn = fn�1(xn�1, xn)� fn(xn)� gn(xn, u),

y = h(x),

where u : R+ ! R+ is a scalar input function that takes non-negative values for any
time t � 0, y : R+ ! R+ is a scalar non-negative output function, and

f0(x1, u) := �0(1� x1)u,

fi(xi, xi+1) := �ixi(1� xi+1), i = 1, . . . , n� 1,

fn(xn) := �nxn, (5.19)

gi(xi) := ↵ixi � �i(1� xi)u,

h(x) := �nxn +
nX

i=1

↵ixi.

The parameters satisfy �i > 0,↵i � 0, and �i � 0 for all i. Recall that every xi

takes values in the interval [0, 1], so the state-space of the RFMLK is Cn := [0, 1]n.

Proof of Proposition 5.4.1: Fix � > 0. We will show that for any sufficiently
small 4 > 0 there exists K = K(�,4) > 0 such that for every k 2 {1, . . . , n} and
every t � 0 the condition

xk  4 and xi � � for all i 2 {1, . . . , k � 1}

implies that
ẋk � K. (5.20)

For k = 1 the condition is simply x1  4, and then

ẋ1 = f0(x1, u)� f1(x1, x2)� g1(x1, u)

= (�0 + �1)(1� x1)u� (�1(1� x2) + ↵1)x1

� �0(1�4)s� (�1 + ↵1)4

=: K1.
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Note that K1 � �0s/2 > 0 for any 4 > 0 sufficiently small. For k 2 {2, . . . , n� 1}
we have

ẋk = fk�1(xk�1, xk)� fk(xk, xk+1)� gk(xk, u)

= (�k�1xk�1 + �ku)(1� xk)� (�k(1� xk+1) + ↵k)xk

� �k�1�(1�4)� (�k + ↵k)4

=: Kk.

Note that Kk � �k�1�/2 > 0 for any 4 > 0 sufficiently small. For k = n we have

ẋn = fn�1(xn�1, xn)� fn(xn)� gn(xn, u)

= (�n�1xn�1 + �nu)(1� xn)� (�n + ↵n)xn

� �n�1�(1�4)� (�n + ↵n)4

=: Kn.

Note that Kn � �n�1�/2 > 0, for any 4 > 0 sufficiently small. We conclude
that Eq. (5.20) holds for K := min{K1, . . . , Kn} � min{�0, . . . ,�n}min{s, �}/2 > 0.
By Ref. [48, Lemma 1], this implies that for any ⌧ > 0 there exists ✏1 = ✏1(⌧) > 0,
with ✏1(⌧) ! 0 as ⌧ ! 0, such that for any a 2 Cn the solution of Eq. (5.18) satisfies

xi(t, a) � ✏1, for all i 2 {1, . . . , n} and all t � ⌧. (5.21)

Let zi := 1� xn+1�i, i = 1, . . . , n. Then Eq. (5.18) gives

ż1 = �fn�1(1� z2, 1� z1) + fn(1� z1) + gn(1� z1, u),

ż2 = �fn�2(1� z3, 1� z2) + fn�1(1� z2, 1� z1) + gn�1(1� z2, u),

... (5.22)

żn = �f0(1� zn, u) + f1(1� zn, 1� zn�1) + g1(1� zn, u).

It is not difficult to verify that this system also satisfies condition Eq. (5.20), so
by Ref. [48, Lemma 1], for any ⌧ > 0 there exists ✏2 = ✏2(⌧) > 0, with ✏2(⌧) ! 0 as
⌧ ! 0, such that for any a 2 Cn the solution of Eq. (5.22) satisfies

zi(t, a) � ✏2, for all i 2 {1, . . . , n} and all t � ⌧.

Combining this with Eq. (5.21) completes the proof of Proposition 5.4.1.

Proof of Proposition 5.4.2: Let f denote the vector field in Eq. (5.18), and
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let J := @

@x
f denote its Jacobian. Then

J = J1 � diag(↵1 + �1u, , . . . ,↵n + �nu), (5.23)

where J1 is given below
2

6666664

��0u� �1(1� x2) �1x1 0 . . . 0 0

�1(1� x2) ��1x1 � �2(1� x3) �2x2 . . . 0 0
. . .

0 0 0 . . . ��n�2xn�2 � �n�1(1� xn) �n�1xn�1

0 0 0 . . . �n�1(1� xn) ��nxn

3

7777775
.

Note that J1 is the Jacobian of an RFM with a time-varying initiation rate �0u(t) �
�0s, and that ↵i + �iu(t) � 0 for all t. Note also that for any x 2 int(Cn), all the
entries in the super- and sub-diagonal of J1 are positive, so in particular J1 (and
thus J) is irreducible.

Fix a, b 2 Cn and ⌧ > 0. By Proposition 5.4.1, there exists ✏ = ✏(⌧) > 0, such
that

✏  xi(t, a), xi(t, b)  1� ✏, for all i 2 {1, . . . , n} and all t � ⌧.

Now arguing as in the proof of Ref. [48, Theorem 4] completes the proof of
Proposition 5.4.2. Proof of Proposition 5.4.3: The RFMLK with a constant
input u(t) ⌘ s > 0 is a time-invariant system that maps the convex and compact
state-space [0, 1]n to itself. Hence, it admits an equilibrium es. Proposition 5.4.1
implies that es 2 (0, 1)n. Proposition 5.4.2 implies that any solution converges to es

and this completes the proof of Proposition 5.4.3.

Proof of Proposition 5.4.4: It follows from Eq. (5.23) that J is a Metzler matrix,
i.e., every off-diagonal entry of J is non-negative. Also,

K :=
@

@u
f

= diag(
@

@u
f0 �

@

@u
g1,�

@

@u
g2, . . . ,�

@

@u
gn)

= diag(�0(1� x1) + �1(1� x1), �2(1� x2, ), . . . , �n(1� xn)),

so every entry of K is non-negative. The results in Ref. [142] imply that the RFMLK
is a monotone control system, so Eq. (5.5) holds. Now the definition of the output y
implies Eq. (5.6) and this completes the proof of Proposition 5.4.4.

Proof of Proposition 5.4.5: We already know that the limits es
1 , es2 , and e :=

limt!1 x(t, a, v) exist. By monotonicity, x(t, a, u)  x(t, a, v), for all t � 0, and
taking the limit as t ! 1 gives es

1  e. Since the system is contractive, e = es
2 ,

and this completes the proof of Proposition 5.4.5.

127



For the sake of simplicity and to avoid cumbersome notation, we provide proofs
of the theoretical results when m = 2, i.e., a network with two RFMLKs connected
via a pool of free ribosomes (the proofs when m > 2 are very similar). We write the
first RFMLK as

ṗ1 = �0(1� p1)u1 � �1p1(1� p2)� ↵1p1 + �1(1� p1)u1,

ṗ2 = �1p1(1� p2)� �2p2(1� p3)� ↵2p2 + �2(1� p2)u1,

... (5.24)

ṗn = �n�1pn�1(1� pn)� �npn � ↵npn + �n(1� pn)u1,

y1 = �npn +
nX

i=1

↵ipi,

and the second as

q̇1 = ⌘0(1� q1)u2 � ⌘1q1(1� q2)� �1q1 + �1(1� q1)u2,

q̇2 = ⌘1q1(1� q2)� ⌘2q2(1� q3)� �2q2 + �2(1� q2)u2,

... (5.25)

q̇` = ⌘`�1q`�1(1� q`)� ⌘`q` � �`q` + �`(1� q`)u2,

y2 = ⌘`q` +
`X

i=1

�iqi.

The inputs to the RFMLKs are functions of the pool density

u1 = G1(z), u2 = G2(z), (5.26)

and the pool dynamics is

ż = y1+y2��0(1�p1)G1(z)�⌘0(1�q1)G2(z)�
nX

i=1

�i(1�pi)G1(z)�
`X

i=1

�i(1�qi)G2(z).

(5.27)
The state-space of this network is

⌦ := [0, 1]n ⇥ [0, 1]` ⇥ R+.

Note that
P

n

i=1 ṗi +
P

`

i=1 q̇i + ż = 0, so

H(p, q, z) :=
nX

i=1

pi +
`X

i=1

qi + z (5.28)

is a first integral of the dynamics, that is, H(p(t), q(t), z(t)) ⌘ H(p(0), q(0), z(0)).
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In other words, the total density of ribosomes in the network is conserved. For
any s � 0, we define the s level set of the first integral H by

Ls := {a 2 ⌦ :
n+`+1X

i=1

ai = s}.

Thus, Ls includes all the states in ⌦ with total density of ribosomes equal to s. Note
that for s = 0, L0 = {0}, and the dynamics emanating from zero remains in zero
for all time t � 0. therefore, we will always consider Ls with s > 0.

Proof of Proposition 5.4.7: We now restate and prove the persistence result in
Proposition 5.4.7 for the case m = 2.

Proposition 5.6.1. Consider the RFMLKN with m = 2. Fix s > 0. Then for
any ⌧ > 0 there exists ✏(⌧) > 0, with ✏(⌧) ! 0 as ⌧ ! 0, such that for any initial
condition in Ls and any t � ⌧ the solution of the RFMLKN satisfies

✏  pi(t)  1� ✏, for all i 2 {1, . . . , n},

✏  qj(t)  1� ✏, for all j 2 {1, . . . , `},

0 < z(t).

It is useful to denote p0 := z, pn+1 := 0, and p�1 := pn. Using the fact that y2 � 0

yields

ṗ0 � �npn +
nX

i=1

↵ipi � �0(1� p1)G1(p0)� ⌘0(1� q1)G2(p0)

�
nX

i=1

�i(1� pi)G1(p0)�
`X

i=1

�i(1� qi)G2(p0).

We now show that the system with state-variables p0, . . . , pn satisfies the cyclic
boundary-repelling (CBR) condition in Ref. [49, Lemma 1], that is, for any � > 0

and any sufficiently small 4 > 0, there exists K = K(�,4) > 0 such that for
each k = 0, . . . , n and each t � 0 the condition

pk(t)  4 and pk�1(t) � �

implies that
ẋk � K.
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Indeed, for k = 0 we have

ṗ0 � �npn � �0(1� p1)G1(p0)� ⌘0(1� q1)G2(p0)�
nX

i=1

�i(1� pi)G1(p0)�
`X

i=1

�i(1� qi)G2(p0)

� �n� � �0(1� p1)G1(4)� ⌘0(1� q1)G2(4)�
nX

i=1

�i(1� pi)G1(4)�
`X

i=1

�i(1� qi)G2(4),

and since Gi(0) = 0 and Gi is continuous, ṗ0 � �n�/2 for all 4 > 0 sufficiently
small.

For k 2 {1, . . . , n}, we have

ṗk = �k�1pk�1(1� pk)� �kpk(1� pk+1)� ↵kpk + �k(1� pk)G1(p0)

� �k�(1�4)� �k4(1� pk+1)� ↵k4,

so ṗk � �k�/2 for all 4 > 0 sufficiently small.

It is also straightforward to verify that if pk(t) > 0, for some k 2 {0, . . . , n}
and t > 0 then pk(r) > 0, for all r � t. It now follows from [49, Lemma 1] that for
any ⌧ > 0 there exists ✏(⌧) > 0, with ✏(⌧) ! 0 as ⌧ ! 0, such that for any initial

condition
h
p0(0) . . . pn(0)

iT
6= 0 and any t � ⌧ the solution of the RFMLKN

satisfies

✏  pi(t), for all i 2 {0, . . . , n}.

Using a similar argument for the q system proves that for any t � ⌧ ,

✏  qi(t), for all i 2 {1, . . . , `}.

Finally, arguing as in the proof of Proposition 5.4.1 completes the proof of
Proposition 5.6.1.

Our next goal is to prove the sensitivity results for the RFMLKN. It is useful
to first write equations describing the steady state of the RFMLK for a constant
input u(t) ⌘ v, with v > 0. By Eq. (5.1),

f0(e1, v) = f1(e1, e2) + g1(e1, v),

fj�1(ej�1, ej) = fj(ej, ej+1) + gj(ej, v), j = 2, . . . , n� 1,

fn�1(en�1, en) = fn(en) + gn(en, v). (5.29)
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This yields

fn(en) + gn(en, v) = f0(e1, v)�
n�1X

k=1

gk(ek, v)

= fj(ej, ej+1)�
n�1X

k=j+1

gk(ek, v), j = 1, . . . , n� 1. (5.30)

Substituting the expressions for the fi’s and gi’s yields the following result.

Proposition 5.6.2. Consider the steady state of the RFMLK with u(t) ⌘ v,
where v > 0. Then for any k = 1, . . . , n� 1, we have

ek = wk(ek+1, . . . , en, v)

:=
�nen +

P
n

j=k+1 ↵jej �
P

n

j=k+1 �jv(1� ej)

�k(1� ek+1)
, (5.31)

and

v = w(e1, . . . , en)

:=
�nen +

P
n

j=1 ↵jej

�0(1� e1) +
P

n

j=1 �j(1� ej)
. (5.32)

Note that the function wk is increasing in ek+1, . . . , en (and strictly increasing
in ek+1, en), and is decreasing in v. Also, the function w is increasing in e1, . . . , en

(and strictly increasing in e1, en).

Proof of Theorem 5.4.1: It is clear that for s = 0, L0 = {e0}, with e0 = 0, and all
trajectories converge to e0. Fix s > 0. The Jacobian of the RFMLKN with m = 2

is

J =

2

64
Jpp 0 v

0 Jqq w

cT dT r

3

75 , (5.33)

where Jpp is the Jacobian of an RFMLK with state-variables p1, . . . , pn, rates �i,↵i, �i

and input u = G1(z) (see Eq. (5.23)), Jqq is the Jacobian of an RFMLK with
state-variables q1, . . . , q`, rates ⌘i, �i, �i and input u = G2(z) (see Eq. (5.23)),

v :=
h
�0(1� p1)G0

1(z) + �1(1� p1)G0
1(z) �2(1� p2)G0

1(z) . . . �n(1� pn)G0
1(z)

iT
,

w :=
h
⌘0(1� q1)G0

2(z) + �1(1� q1)G0
2(z) �2(1� q2)G0

2(z) . . . �`(1� q`)G0
2(z)

iT
,

c :=
h
�0G1(z) + ↵1 + �1G1(z) ↵2 + �2G1(z) . . . �n + ↵n + �nG1(z)

iT
,

d :=
h
⌘0G2(z) + �1 + �1G2(z) �2 + �2G2(z) . . . ⌘` + �` + �`G2(z)

iT
,
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and

r := ��0(1� p1)G
0
1(z)� ⌘0(1� q1)G

0
2(z)�

nX

i=1

�i(1� pi)G
0
1(z)�

`X

i=1

�i(1� qi)G
0
2(z).

These equations imply that for any
h
p q z

iT
2 ⌦ the Jacobian matrix J is

Metzler, so the RFMLKN is a cooperative dynamical system. Furthermore, for
any

h
p q z

iT
2 int(⌦) all the entries on the super- and sub-diagonals of Jpp, Jqq

are positive, and so are the first entry in v, w, and the first and last entry in c, d. This
implies that for any

h
p q z

iT
2 int(⌦) the matrix J is irreducible. Combining this

with Proposition 5.6.1 and the results in Ref. [132] on strongly cooperative dynamical
systems with a first integral completes the proof of Theorem 5.4.1.

Proof of Theorem 5.4.2: We again prove for the special case m = 2, i.e., a network
with two RFMLKs and a pool. Let e1

i
, i 2 {1, . . . , n}, denote the steady-state in the

first RFMLK, and e2
j
, j 2 {1, . . . , `}, denote the steady-state in the second RFMLK.

Since the initial condition remains the same, we have

nX

i=1

e1
i
+

`X

j=1

e2
j
+ ez =

nX

i=1

ē1
i
+

`X

j=1

ē2
j
+ ēz. (5.34)

We prove that ez < ēz by contradiction. We consider two cases: ez = ēz; and
ez > ēz, and show that each of these cases yields a contradiction.

Case 1. Assume that ez = ēz. In this case, there is no change in the input
and parameter values in the second RFMLK, so e2

j
= ē2

j
for all j = 1, . . . , `.

Consider the first RFMLK. Since the steady-state input to this RFMLK remains
the same, Proposition 7 in Ref. [68], that states that increasing any of the
detachment rates (without changing any other parameter) in the RFMLK decreases
all the steady-state densities, implies that ē1

j
< e1

j
, for all j. However, this

contradicts Eq. (5.34).

Case 2. Assume that
ez > ēz. (5.35)

In other words, after increasing ↵1
k

to ↵̄1
k
, the steady-state input to each RFMLK is

decreased. Then ē2
j
< e2

j
for all j = 1, . . . , `. Combining this with Eq. (5.34) implies

that e1
j
< ē1

j
for at least one index j. Let s 2 {1, . . . , n} be the maximal index such

that
e1
s
< ē1

s
. (5.36)

Applying Eq. (5.31) inductively implies that e1
j
< ē1

j
for any j 2 {s, s � 1, . . . , 1}
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(note that it follows from Eq. (5.31) that increasing ↵1
k

can only further increase the
corresponding steady-state value ē1

k
). Suppose that

s < n. (5.37)

Then

e1
j
< ē1

j
, j = 1, . . . , s, (5.38)

e1
j
� ē1

j
, j = s+ 1, . . . , n.

By Eq. (5.31),
e1
s
= N/D, ē1

s
= N̄/D̄, (5.39)

where

N := �1
n
e1
n
+

nX

j=s+1

↵1
j
e1
j
�

nX

j=s+1

�1
j
G1(ez)(1� e1

j
),

D := �1
s
(1� e1

s+1),

N̄ := �1
n
ē1
n
+

nX

j=s+1

↵̃1
j
ē1
j
�

nX

j=s+1

�1
j
G1(ēz)(1� ē1

j
),

D̄ := �1
s
(1� ē1

s+1),

where ↵̃1
k
:= ↵̄1

k
, and ↵̃1

i
:= ↵1

i
, for all i 6= k. Note that Eq. (5.38) implies that

N

D
<

N̄

D̄
. (5.40)

By the first equation in Eq. (5.30),

G1(ez) =
�1
n
e1
n
+
P

n

j=1 ↵
1
j
e1
j
�

P
n

j=1 �
1
j
G1(ez)(1� e1

j
)

�10(1� e11)

=
N +

P
s

j=1 ↵
1
j
e1
j
�
P

s

j=1 �
1
j
G1(ez)(1� e1

j
)

�10(1� e11)
,

and thus

G1(ēz) =
N̄ +

P
s

j=1 ↵̃
1
j
ē1
j
�

P
s

j=1 �
1
j
G1(ēz)(1� ē1

j
)

�10(1� ē11)
.

Combining this with Eqs. (5.35) and (5.38) implies that if N̄ � N , then G1(ēz) �
G1(ez), but this contradicts Eq. (5.35), so we conclude that N̄ < N . Now Eq. (5.40)
implies that D̄ < D, i.e., ē1

s+1 > e1
s+1. However, this contradicts Eq. (5.38), so we

conclude that Eq. (5.37) cannot hold, i.e., s = n. Applying Eq. (5.31) inductively
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implies that
e1
j
< ē1

j
, j 2 {n, n� 1, . . . , 1}. (5.41)

Eq. (5.32) gives

G1(ez) =
�1
n
e1
n
+
P

n

j=1 ↵
1
j
e1
j

�10(1� e11) +
P

n

j=1 �
1
j
(1� e1

j
)
,

G1(ēz) =
�1
n
ē1
n
+
P

n

j=1 ↵̃
1
j
ē1
j

�10(1� ē11) +
P

n

j=1 �
1
j
(1� ē1

j
)
,

so G1(ez) < G1(ēz). This contradicts Eq. (5.35), and we conclude that Case 2 is
impossible. This completes the proof of Theorem 5.4.2.

Proof of Theorem 5.4.3: The proof is similar to the proof of Theorem 5.4.2 above.

Proof of Theorem 5.4.4: Clearly, we have three possible cases: ēz = ez, or ēz > ez,
or ēz < ez. In the first case, the input to each RFMLK satisfies Gi(ēz) = Gi(ez).
Since the parameters in all the RFMLKs, except for RFMLK #1, are unchanged,
we conclude that Eq. (5.16) holds. The analysis in the second and third cases is
similar. This completes the proof of Theorem 5.4.4.

Proof of Proposition 5.4.8: It was shown in the proof of Theorem 5.4.1 that
the RFMLKN is a strongly cooperative dynamical system and the results in
Proposition 5.4.8 follow.

Proof of Proposition 5.4.9: Recall that the Jacobian J of the RFMLKN
(with m = 2) is given in Eq. (5.33). This matrix is Metzler, and a calculation
shows that the sum of every column of J is zero. Hence, the L1 matrix measure of J
is zero and this implies Eq. (5.17).

Proof of Theorem 5.4.5: Write the PRFMLKN as ẋ = f(t, x). Then f(t, z) =

f(t + T, z), for all t � 0 and z 2 ⌦, and H(x) is a first integral of the dynamics.
Theorem 5.4.5 now follows from the results in Ref. [143]. The fact that �s 2 int(⌦)

follows from the persistence result in Proposition 5.4.7.
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Chapter 6

Large-scale closed and generalized
networks of ribosome flow model with
different site sizes

This chapter1 presents two large-scale network models that can model concurrent
transport processes that give rise to networks comprising multiple tracks. We study
several analytical properties related to stability, entrainment, convexity, and more
and the results have been explained with plenty of useful but synthetic examples.

6.1 Introduction

Dynamical systems play a key role in understanding the different biophysical aspects
of many complex transport phenomena. An important goal in these models is to
provide indications on how a change in the parameters affects the system behavior,
lead to algorithms for optimizing the flow, uncover underlying mechanisms of the
observed complex behavior, enable completing synthetic goals, etc [44, 46].

In the general scenario, multiple transport processes take place concurrently, i.e.,
flow out of one lattice may enter another lattice or re-enter the same lattice. For
example, in each cell, there is a large-scale translation rather than a translation of a
single mRNA molecule, vehicular motion on networks of roads, etc [10]. Therefore,
it is essential to analyze networks of interconnected transport systems for various
objectives such as optimizing the output rate or traffic jams, etc. In this direction,
various networks of interconnected RFMs have been developed, including RFM
network with a pool [49], network of RFMs with additional features such as ribosome
drop-off and attachment [148] and generalized networks of RFMs [149].

Previous studies on the network of RFMs of course analyze transcription,
translation, and other cellular processes, but in these studies, the site capacities of all
the RFMs are the same. However, from a wider perspective, the capacity of different

1The content of this chapter is published as: “Aditi Jain and Arvind Kumar Gupta. Large-scale
closed and generalized networks of ribosome flow model with different site sizes. Physica D:

Nonlinear Phenomena 455: 133881, 2023.”



sites can vary. For example, the number of parallel lanes on the roadway varies in a
vehicular network, the capacity of buffers differs in linear communication networks,
etc. In Ref. [70], RFMD analyzes an important cellular process of modification of
proteins by the mechanism of phosphotransfer. Therefore, it is important to analyze
networks of RFMDs that provide a framework to understand the network dynamics
of such physical and biological systems.

In this chapter, we introduce two large-scale network models that are amenable
to mathematical analysis called RFMD network with a pool (RFMDNP) and a
generalized network of RFMDs (RFMDN). To facilitate the analysis of a network of
RFMDs, we extend the RFMD into a control system by introducing a time-varying
non-negative input function. We observe that it is a monotone control system.

The RFMDNP analyzes a closed system consisting of a finite pool of particles
feeding a single layer of parallel RFMDs. In the network, the total number of
particles is conserved. It explores the interactions induced between the RFMDs as
they all compete for a shared resource. The competition couples all the RFMDs
and hence, a change in one RFMD affects the others. A system can also exhibit
sensitive dependence on the initial conditions or on its parameters [150]. Therefore,
it is crucial to analyze the dynamical properties of the network in order to understand
its behavior. Utilizing the tools from the theory of cooperative dynamical systems
with a first integral, we show that the RFMDNP is an irreducible cooperative system
that admits a continuum of linearly ordered steady-state points and it entrains to
periodic excitations in the parameters [132, 143, 151]. These stability properties
are crucial as they provide a framework to understand how a change in an RFMD
affects the network’s steady-state behavior. Then we consider the RFMDN to model
a network of RFMDs where the flow out of one RFMD is distributed between the
inputs of the same or other RFMDs. We prove that for a given set of parameters,
the RFMDN always admits a unique steady state i.e., it is robust to the initial
conditions. Another important context is to re-engineer the system so that an
optimal output rate can be obtained. In this regard, we also show that the problem
of maximizing the steady-state output rate of the RFMDN is a convex optimization
problem, and thereby we can determine the interconnection weights between the
RFMDs using highly efficient algorithms.

Note that the networks of RFMDs we study here are more general than the
studies based on the network of RFMs and thus can be utilized to model other
transport phenomena such as vehicular traffic flow that cannot be analyzed using a
network of RFMs.

The chapter is organized as follows. Section 6.2 reviews the RFMD and presents
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the RFMD as an input-output system. Section 6.3 describes the network of RFMDs
with a finite pool, details the theoretical results, and analyzes the effect of parameters
on the network. The next section introduces a generalized version of network of
RFMDs and studies its properties. Section 6.5 contains a discussion of our results
and the appendix includes all the mathematical proofs.

6.2 The RFMD with an input and an output

Recall that dynamical equations describing the RFMD are:

ẋi = �i�1xi�1(qi � xi)� �ixi(qi+1 � xi+1), i = 1, . . . , n, (6.1)

where x0(t) := 1 and xn+1(t) := 0.

Also, recall that the relevant state space is: C := {x 2 Rn : xi 2 [0, qi], i =

1, 2, . . . , n}. It has been already proved that there exists a unique e 2 int(C) such
that for any initial condition in C, the solution belongs to int(C) for all t > 0 and
limt!1 x(t, a) = e [70].

Also, recall that the steady-state of the RFMD can be derived from the spectral
properties of a parameter-dependent tridiagonal matrix An : R+ ! R(n+2)⇥(n+2)

given by

An(k) :=

2

6666666664

0 ��1/2
0 0 . . . 0

��1/2
0 (1� q1)k ��1/2

1 . . . 0

0 ��1/2
1 (1� q2)k . . . 0

. . .
0 . . . 0 (1� qn)k ��1/2

n

0 . . . 0 ��1/2
n 0

3

7777777775

.

It has been proved that there is an unique value k⇤ 2 (0,1) such that �(An(k⇤)) =

k⇤, where �(A) denotes the maximal eigenvalue (Perron root) of A, and let ⇣ 2
Rn+2

++ be the corresponding eigenvector [70]. It has been analyzed that steady-state
densities satisfy

ei =
⇣i+2

�1/2
i

k⇤⇣i+1

, for all i 2 {1, 2, . . . , n} (6.2)

and
R =

1

(�(An(k⇤)))2
. (6.3)

It has also been shown that the steady-state output rate
R(�0,�1, . . . ,�n, q1, . . . , qn) is in general a quasi-concave function over Rn+1

++ ⇥ (0, 1]n
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and for fixed qi’s, R(�0,�1, . . . ,�n) is a concave function over Rn+1
++ [70].

To form a network of RFMDs, we consider the RFMD with a single-input and
single-output control system as follows:

ẋ1 = �0(q1 � x1)u� �1x1(q2 � x2),

ẋ2 = �1x1(q2 � x2)� �2x2(q3 � x3),

...

ẋn = �n�1xn�1(qn � xn)� �nxn, and

y = �nxn. (6.4)

The input to the RFMD is a bounded and measurable function u : R+ ! R+ taking
non-negative values for all t � 0. The output rate from the RFMD at time t is
represented by y(t). Let x(t, u, a) denote the solution of the RFMD with control
function u and initial condition a. The following result shows that given any initial
point in C and input function u(t) that takes positive values, the trajectory remains
in C for any t � 0, and after a certain time, all the sites will neither be totally full
nor totally empty.

Proposition 6.2.1. Consider the RFMD with an input u satisfying u(t) > 0 for
all t � 0. For every a 2 int(C), the solution x(t, u, a) 2 int(C) for any t � 0.
Moreover, for any a 2 @C there exists a time ⌧ such that x(⌧, u, a) 2 int(C) for all
t � ⌧ .

The above proposition states that for any input function u(t) that is strictly
positive, C is an invariant set of the dynamical system (6.4), and all the state
variables xi’s get separated from the boundary of C after a certain time ⌧ . The next
proposition illustrates the fact that the RFMD is a monotone control system.

Proposition 6.2.2. Consider two control functions v, w : R+ ! R+ such that
v(t)  w(t) for all t � 0 and two starting conditions a, b 2 C such that a  b. Then
the respective RFMD solutions satisfy

x(t, v, a)  x(t, w, b), for all t � 0. (6.5)

The above result states that given two similar RFMDs, the first with initial
densities ai that are lower than or equal to the initial densities bi of the second one
and with the control input v(t) that is lower than or equal to control input w(t) of
the second one for all t � 0, then the densities in the first RFMD will always be
lower than or equal to the respective densities in the second RFMD. Consequently,
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the output of the first RFMD will always be lower than or equal to the output of
the second RFMD.

In the next section, we describe the dynamics of the RFMDNP and analyze its
various mathematical properties.

6.3 A network of RFMDs with a pool

To model RFMDNP, we consider a closed system comprising a finite pool of particles
feeding a single-layer parallel set of m RFMDs. These m RFMDs are coupled
through a pool and thus the input to each RFMD relies on the pool occupancy.
The RFMD #i has length ni, parameters �i0, �i1, . . . , �i

ni
, qi1, qi2, . . . , qi

ni
, input

function ui, and output yi (see Fig. 6.1). Thus, the dynamical equations describing
the m RFMDs can be written as:

ẋ1 = f(x1, u1), y1 = �1
n1
x1
n1
,

...

ẋm = f(xm, um), ym = �m
nm

xm

nm
.

(6.6)

RFMD #𝑖 
𝑢𝑖 𝑦𝑖 = λ𝑛𝑖

𝑖  𝑥𝑛𝑖
𝑖  

Source 

Figure 6.1: An RFMD #i of length ni, input ui from an external source, and output
yi.

The pool’s occupancy level at time t is denoted by z(t). The input to each
RFMD is supplied by the pool and the output from each RFMD is returned to
the pool. We pose the following assumptions: a) if there is no particle in the pool
then the effective entry rate into the RFMDs becomes zero, and b) as the number
of particles in the pool increases, then the effective entry rate into the RFMDs
increases. Mathematically, these can be stated by assuming ui(t) = Gi(z(t)), for
i 2 {1, 2, . . . ,m}, where Gi : R+ ! R+ satisfies: a) Gi(0) = 0 and b) Gi(z) is
continuous and strictly increasing function of z.

Thus, the RFMD #i dynamics is governed by:

ẋi

1 = �i0Gi(z)(q
i

1 � xi

1)� �i1x
i

1(q
i

2 � xi

2),

ẋi

2 = �i1x
i

1(q
i

2 � xi

2)� �i2x
i

2(q
i

3 � xi

3),

...

ẋi

ni
= �i

ni�1x
i

ni�1(q
i

ni
� xi

ni
)� �i

ni
xi

ni
,

yi = �i
ni
xi

ni
,

(6.7)
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and the pool dynamics is given by:

ż =
mX

i=1

yi �
mX

i=1

�i0 Gi(z)(q
i

1 � xi

1). (6.8)

The above Eq. (6.8) implies that the flow into the pool is the sum of all the output
rates of the RFMDs and the flow out of the pool is the overall flow of particles that
binds to the RFMDs. Combining the assumptions on the functions Gi with Eq. (6.8)
and given z(0) � 0 , we have z(t) � 0 for all t � 0. This implies that the pool density
is never negative.

Summing up, the RFMDNP is a nonlinear dynamical system with ` := n1+ · · ·+
nm + 1 state variables and its dynamics is given by Eqs. (6.6), (6.7) and (6.8) (see
Fig. 6.2).

  

Pool 

𝑢1 = 𝐺1(𝑧) 

𝑢𝑖 = 𝐺𝑖(𝑧) 

𝑢𝑚 = 𝐺𝑚(𝑧) 

#𝑖 

#1 

#𝑚 

𝑦1 

𝑦𝑚 

𝑦𝑖 

RFMD 

RFMD 

RFMD 

Figure 6.2: A closed network of m RFMDs connected through a pool. The pool
feeds the input to each RFMD and the output from each RFMD is fed into the
pool.

At any time t, let

H(t) :=
mX

i=1

niX

j=1

xi

j
(t) + z(t) (6.9)

denote the total density of the particles in the network. Since the RFMDNP is a
closed system,

H(t) ⌘ H(0) for all t � 0. (6.10)

In other words, H is a first integral of the dynamical system.

We now analyze some of the mathematical properties of the RFMDNP. Recall
that every xi

j
2 [0, qi

j
], and z 2 [0,1), so the state space of the RFMDNP is

⌦ := ⌦1 ⇥ · · ·⇥ ⌦m ⇥ [0,1), (6.11)
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where ⌦i := [0, qi1]⇥ [0, qi2]⇥ · · ·⇥ [0, qi
ni
]. Let 1` represent a column vector of ` ones.

Consider Lr := {a 2 ⌦ : 10
`
a = r}, which denotes the r level set of the first integral

H. For r = 0, we have L0 = {0} and the trajectories beginning from zero initial
state always stay in zero and thereby, we will always consider r > 0. Simply put,
Lr is the set containing all the states associated to a total density of r particles in
the system. Let [x(t, a) z(t, a)]0 denote the solution of the RFMD at time t with
the starting point a 2 ⌦.

6.3.1 Invariance and persistence

The next result shows that any trajectory originating from a point in the state space
stays in it at any given time t � 0.

Proposition 6.3.1. The state space ⌦ in Eq. (6.11) is an invariant set for the
dynamics of the RFMDNP i.e., if a 2 ⌦ then [x(t, a) z(t, a)]0 2 ⌦ for all t � 0.

The next proposition states that after an arbitrarily short time, the solution gets
uniformly separated from the boundary of the state space.

Proposition 6.3.2. Given any ⌧ > 0, there exists � = �(⌧) > 0, with �(⌧) ! 0

as ⌧ ! 0, such that for any a 2 ⌦ \ {0} and for all t � ⌧ , for all i 2 {1, 2, . . . ,m},
and for all j 2 {1, 2 . . . , ni}, we have

�  xi

j
(t, a)  qi

j
� �

and
�  z(t, a).

In particular, after time ⌧ > 0, the density in site j of RFMD #i is in the range
[�, qi

j
� �] and the pool density is in the range [�,1). Thus, Proposition 6.3.2 is

important in studying the asymptotic behavior of the RFMDNP, as it guarantees
that its Jacobian matrix becomes irreducible after an arbitrarily short time.

6.3.2 Stability

The next main result states that the RFMDNP admits a continuum of steady-state
points and the trajectories that emanate from the same level set converge to the
same steady-state point.

Theorem 6.3.1. Every level set Lr contains a unique steady-state point eLr of the
RFMDNP and for any starting point a 2 Lr, the solution of the RFMDNP converges
to eLr . Moreover, for any 0 < r < s,

eLr ⌧ eLs . (6.12)
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In particular, every level set admits a unique steady-state particle distribution
in each RFMD and the pool. Eq. (6.12) means the following. Consider a network
with two scenarios: the total number of particles in the first and second is r and
s, respectively, with r < s. Then the steady-state densities in the first network are
strictly smaller than the corresponding steady-state densities in the second one.

Example 6.3.1. Consider an RFMDNP with a single RFMD of length n1 = 2.
Assume that �10 = 0.1, �11 = 1, �12 = 1, q11 = 0.5, q12 = 1, and G1(z) = z. Fig. 6.3
depicts the trajectories of the RFMDNP with three different starting points in L2:
[0.5 0 1.5]0, [0 1 1]0, and [0.5 1 0.5]0. It can be seen that all three trajectories
converge to the same steady-state point.

Figure 6.3: Trajectories of the RFMDNP in Example 6.3.1 for three different starting
points in L2. The unique steady-state point in L2 is marked by an ellipse.

6.3.3 Entrainment

There are periodic excitations in many biological or physical systems, e.g., periodic
cell-cycle division in biological organisms, time-varying periodic traffic lights in
a road network, oscillations in protein levels, etc. [48, 98]. It is important for
dynamical systems to synchronize to periodic oscillations in order to facilitate
coordinated movement, e.g., coordinated rhythmic movement is essential for the
proper functioning of the human system.

Even seemingly simple, nonlinear systems may not entrain [152]. A natural
concern in this context is: how do the steady-state densities in the RFMDNP behave
when there is a periodic excitation feeding the network? If f(t+ T ) = f(t) for all t,
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then the function f is T -periodic. In order to consider the periodic excitation in the
RFMDNP, we shall assume some or all of the parameters as T -periodic functions.
Therefore, we consider the following assumptions:
a) all the transition rates �i0, �ij are positive, continuous, and uniformly bounded
functions of time i.e., there exists 0 < ⌘1  ⌘2 such that �i0(t),�ij(t) 2 [⌘1, ⌘2] for all
t � 0.
b) the site sizes qi

j
are positive and continuous functions of time i.e., there exists

0 < �  1 such that qi
j
(t) 2 [�, 1].

c) a minimal T > 0 exists such that all the �i
j
’s and the qi

j
’s are T -periodic functions.

We call the network with the periodic excitations as the periodic
RFMDNP (PRFMDNP). The next result shows that the property of entrainment
holds in PRFMDNP.

Theorem 6.3.2. Consider the PRFMDNP. There exists a unique T -periodic
function �r : R+ ! int(⌦) and for any starting point a 2 Lr, the solution of
the PRFMDNP approaches �r as t ! 1.

The above theorem states that every trajectory of the PRFMDNP with an
initial density profile Lr converges to a unique T -periodic solution. Thus, the
PRFMDNP phase locks to periodic oscillations in the parameters. The following
example exhibits this.

Example 6.3.2. Consider the PRFMDNP having m = 2 RFMDs of lengths n1 = 3

and n2 = 2. Assume that �10 = 0.1, �11 = 1, �12 = 2 + sin(2⇡t), �13 = 0.5, �20 = 0.2,
�21 = 2, �22 = 1, q11 = 0.7, q12 = 0.3, q13 = 1, q21 = 1, , q22 = 0.3, and Gi(z) = tanh(z),
i = 1, 2. Observe that all the parameters are periodic with a common period T = 1.
Consider an initial condition xi

j
(0) = z(0) = 0.1, for all i, j. Fig. 6.4 shows all

the densities as a function of time t and it can be observed that they converge to a
periodic pattern with period one.

An important question is what effect would a small variation in one of the
parameters in an RFMD has on the steady-state point of the network. The next
subsection analyzes this effect on the network.

6.3.4 Effect of parameters

Let p = [� q H(0)]0 be the vector of all the parameters and a total number of
particles in the network, where � is the vector of all the transition rates and q is the
vector of all the site sizes in the RFMDs. Consider a mapping g from p to the unique
steady-state point in int(⌦). The next result allows considering the derivatives of
the steady-state point w.r.t. small variations in the parameters.
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Figure 6.4: Trajectories of the PRFMDNP as a function of time t in Example 6.3.2.

Proposition 6.3.3. The derivative (@/@pk)g(p) exists for all k.

We next analyze the effect of change in the transition rate at a single site of
an RFMD on the whole network. Without loss of generality, we presume that the
change is in one of the rates in the RFMD #1.

Theorem 6.3.3. Consider an RFMDNP with m RFMDs of lengths ni and
parameters �i0 > 0, �i

j
> 0, and qi

j
2 (0, 1], i 2 {1, . . . ,m} and j 2 {1, 2, . . . , ni}.

For the level set Lr of H, let ei
j
, and ez represents the steady-state density of

the RFMDNP. Pick k 2 {0, 1, . . . , n1}, and consider the RFMDNP obtained by
modifying �1

k
to �̄1

k
, with �̄1

k
> �1

k
. Let ēi

j
and ēz represents the steady-state density

in this new RFMDNP. We have

ē1
k
< e1

k
, ē1

j
> e1

j
, for all j 2 {k + 1, . . . , n1}, (6.13)

and either one of the following two cases holds:

1. ēz < ez and ēi
j
< ei

j
, for all i 6= 1 and all j.

2. ez < ēz and ei
j
< ēi

j
, for all i 6= 1 and all j.

Note that increasing the transition rate at site i implies that there is an increase
in the flow of particles from site i to site i + 1. The above theorem states that as
�1
k

increases; the number of particles in site k of RFMD #1 decreases whereas the
number of particles in all the sites k + 1, k + 2, . . . , n1 of RFMD #1 increases and
the other RFMD steady-state densities and the pool density either all increase or all
decrease. Observe that changing a transition rate in an RFMD affects the qualitative
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behavior of all the other RFMDs and the pool density in a similar manner as they
are fed from the same pool. Theorem 6.3.3 does not provide any information about
the exact outcome i.e., whether the pool density will increase or decrease as it
depends upon various other parameters in the network. However, one can obtain
information by computing the derivatives of steady-state point coordinates w.r.t. the
rates. Note that the above result is in agreement with the previous result reported
in Ref. [49]. The next example demonstrates the case when pool density increases
with an increase in a transition rate of an RFMD.

Example 6.3.3. Consider an RFMDNP with m = 2 RFMDs of lengths n1 = 3 and
n2 = 2. Let �i0 = 1, �i

j
= 1, for all i, j except �12, q11 = 0.8, q12 = 0.4, q13 = 0.6,

q21 = 0.7, q22 = 0.5, and Gi(z) = tanh(z), i = 1, 2. Consider an initial state xi

j
(0) = 0

for all i, j and z(0) = 2. The simulation for several values of transition rate �12 is
depicted in Figs. 6.5a and 6.5b. It can be seen that as �12 increases there is a decrease
in e12, an increase in e13, an increase in ez and consequently an increase in e2

j
for all

j. This is because increasing �12 means that the particles traverse RFMD #1 more
easily and hence the particles become more quickly available in the pool.
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Figure 6.5: The steady-state densities of the RFMDNP as a function of transition
rate �12 in Example 6.3.3, (a) In RFMD #1, (b) In RFMD #2 and the pool.

The next example illustrates the case when the pool density decreases with an
increase in a transition rate of an RFMD.

Example 6.3.4. Consider an RFMDNP with m = 2 RFMDs of lengths n1 = 7

and n2 = 2. Let �i0 = 1, �i
j
= 1, qi

j
= 1 for all i, j except �14, q16 = 0.5 and

Gi(z) = z, i = 1, 2. Assume xi

j
(0) = 0 for all i, j and z(0) = 6. Figs. 6.6a and 6.6b

depict simulations for several values of transition rate �14. It can be seen that as �14
increases there is a decrease in e14, an increase in e1

k
for k = 5, 6, 7, a decrease in ez
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and consequently a decrease in e2
j

for all j. This is because increasing �14 leads to
an increase in a traffic jam due to a small site size in the RFMD #1.
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Figure 6.6: The steady-state densities of the RFMDNP as a function of transition
rate �14 in Example 6.3.4, (a) In RFMD #1, (b) In RFMD #2 and the pool.

The second result shows the effect of change in the site size parameter at one
site of an RFMD on the network.

Theorem 6.3.4. Consider an RFMDNP with m RFMDs of lengths ni and
parameters �i0 > 0, �i

j
> 0, and qi

j
2 (0, 1], i 2 {1, . . . ,m} and j 2 {1, 2, . . . , ni}.

For the level set Lr of H, let ei
j

and ez represents the steady-state density in the
RFMDNP. Pick k 2 {1, . . . , n1} and consider the RFMDNP obtained by changing q1

k

to q̄1
k
, with q̄1

k
> q1

k
. Let ēi

j
, ēz, represents the steady-state density in the new

RFMDNP. We have

ē1
k�1 < e1

k�1, ē1
j
> e1

j
, for all j 2 {k, . . . , n1}, (6.14)

and either one of the following two cases holds:

1. ēz < ez and ēi
j
< ei

j
, for all i 6= 1 and all j.

2. ez < ēz and ei
j
< ēi

j
, for all i 6= 1 and all j.

An increase in the size of site i results in an increase in the density at site i and
consequently increases the densities in all the sites right to it. The above theorem
implies that modifying a site size q1

k
in RFMD #1 decreases the density at site k�1

and increases the densities at sites k, k + 1, . . . , n1; affects all the sites in all the
other RFMDs and the pool density in the same way. Indeed, this theorem does not
give any details on the new densities for sites 1, 2, . . . , k � 2 along RFMD #1 and
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whether the pool density will increase or decrease as it will depend on various other
parameters in the network. The next two examples represent the two cases when
the pool density increases and decreases, respectively.

Example 6.3.5. Consider an RFMDNP with m = 2 RFMDs of lengths n1 = 5 and
n2 = 3. Let �i0 = 1, �i

j
= 1, qi

j
= 1, for all i, j except q13, and Gi(z) = z, i = 1, 2.

Consider an initial point xi

j
(0) = 0, for all i, j and z(0) = 2. Figs. 6.7a and 6.7b

depict simulations for several values of site size parameter q13. It can be observed
that as q13 increases there is a decrease in e12, an increase in e1

j
, for j = 3, 4, 5, an

increase in ez and consequently an increase in e2
j

for all j. This is because increasing
q13 means that the particles flow more easily from site 2 to site 3 in RFMD #1 and
thus increases the pool density.
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Figure 6.7: The steady-state densities of the RFMDNP as a function of site size q13
in Example 6.3.5, (a) In RFMD #1, (b) In RFMD #2 and the pool.

Example 6.3.6. Consider an RFMDNP with m = 2 RFMDs of lengths n1 = 9

and n2 = 3. Let �i0 = 1, �i
j
= 1, qi

j
= 1, for all i, j except q15, q17 = 0.5, and

Gi(z) = z, i = 1, 2. Consider a starting point xi

j
(0) = 0, for all i, j and z(0) = 6.

Figs. 6.8a and 6.8b depict simulations for several values of site size parameter q15. It
can be observed that as q15 increases there is a decrease in e14, an increase in e1

k
for

k = 5, 6, 7, 8, 9, a decrease in ez, and consequently a decrease in e2
j

for all j. It is
because increasing q15 leads to an increase in the flow rate forming a traffic jam due
to a bottleneck site size in the RFMD #1 and thus depleting the pool.

Indeed, by modifying the initiation rate �10 or the site size q11, we obtain all the
information about the modified densities along RFMD #1.
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Figure 6.8: The steady-state densities of the RFMDNP as a function of site size q15
in Example 6.3.6, (a) In RFMD #1, (b) In RFMD #2 and the pool.

Corollary 6.3.4.1. Suppose that either �10 is modified to �̄10, with �̄10 > �10 or q11 is
modified to q̄11 with q̄11 > q11. Then

ē1
j
> e1

j
for all j 2 {1, . . . , n1}, ēi

j
< ei

j
for all i 6= 1, j 2 {1, . . . , ni}, and ēz < ez.

(6.15)

Note that increasing �10 or q11 allows more particles to bind to the RFMD #1

more easily and hence this increases the steady-state densities in RFMD #1 and
decreases the pool density.

The RFMDNP enables modeling a closed network in which particles are supplied
to the RFMDs from a pool whose output function is an increasing function of the
density of particles in the pool. This is a specific case of a network of RFMDs that
facilitates analyzing competition of shared resources between the RFMDs. In the
next section, we analyze a generalized network where the output of an RFMD is
distributed into several inputs of other RFMDs including itself. Such networks also
allow modeling the optimal division of a resource among several other RFMDs.

6.4 A generalized network of RFMDs

Consider a network of m interconnected RFMDs:

ẋ1 = f(x1, u1), y1 = �1
n1
x1
n1
,

...

ẋm = f(xm, um), ym = �m
nm

xm

nm
,

(6.16)
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with ui =
P

m

j=0 w
i

j
yj as the input to RFMD #i for i 2 {1, 2, . . . ,m}, where wi

0 > 0

represent the fixed constant source and wi

j
� 0 represent the weights describing the

output yj proportion, both feeding the input of RFMD #i. We refer to this as a
generalized network of ribosome flow models with different sites network (RFMDN).

Let the total output from the network is:

y(t) :=
mX

i=1

ciy
i(t), (6.17)

where ci represents the non-negative weights associated with the outputs. Let
P

m

i=1 w
i

k
 1 for k 2 {1, 2, . . . ,m}. This kind of network describes a distribution

of the output of any RFMD #i to other RFMDs in the network. We refer to this
network as a distributed network of RFMDs.

The state space of the RFMDN is

⌦0 := ⌦1 ⇥ · · ·⇥ ⌦m. (6.18)

For a 2 ⌦0, let x(t, a) denote the solution of the RFMDN at time t with the initial
condition a. It can be easily shown that the state space is an invariant set of (6.16).

6.4.1 Global asymptotic stability

The following result shows that any trajectory of the RFMDN starting from the
boundary of ⌦0 immediately enters int(⌦0).

Proposition 6.4.1. For every a 2 int(⌦0), the solution x(t, a) of the RFMDN stays
in int(⌦0) for any t � 0. Moreover , for any a 2 @⌦0, there exists a time ⌧ such that
x(⌧, a) 2 int(⌦0) for all t � ⌧ .

The next result guarantees that the general network is a globally asymptotically
stable network. The proof of the result is based on the powerful theory of cooperative
systems [50].

Theorem 6.4.1. The RFMDN admits a globally asymptotically stable steady-state
density e 2 int(⌦0), i.e., limt!1 x(t, a) = e for all a 2 ⌦0.

In other words, the state variables approach a steady state that only depends
on the parameters in the network and is independent of the starting state. Let
yss := limt!1 y(t) i.e., yss denotes the steady-state output rate. Note that wi

0 > 0

can be replaced by wi

0 � 0 if the input ui to RFMD #i satisfies ui(t) > 0 for all
t > 0. The following simple example exhibits the dynamic behavior of the RFMDN.
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Example 6.4.1. Consider the RFMDN depicted in Fig. 6.9a. Each RFMD has
dimension ni = 1 for i = 1, 2, 3. Assume that �i0 = 1, �i

j
= 1, q11 = 0.5, q21 = 1 and

q31 = 0.7. Here the input to RFMD #1 is u1 = 0.1 + 0.5y2 + 0.2y3, to RFMD #2

is u2 = 0.3y1 + 0.1y2 + 0.3y3, and to RFMD #3 is u3 = 0.7y1. The network output
is given as y = 0.4y2 + 0.5y3. Fig. 6.9b depicts the trajectories of the RFMDN
with three different starting conditions: [0.5 0 0]0, [0 0.5 0]0, and [0 0 0.5]0.
Note that all the state variables and thus the network output converges to a unique
steady-state value.
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Figure 6.9: a) The network of the three connected RFMDs in Example 6.4.1. b)
Trajectories of the RFMDN in Example 6.4.1 for three different starting points. The
unique steady-state point is marked by an ellipse.

Now, we analyze a closed-loop system of an RFMD with positive feedback. In
this system, a fixed source is feeding a single RFMD with rate w1 > 0 and w2 � 0

describes the weightage of the RFMD output feeding back into the input of the
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RFMD (see Fig. 6.10). The main theoretical Theorem 6.4.1 guarantees that this
network is globally asymptotically stable. Thus, the dynamics of this network are
as follows:

ẋ1 = (w1 + w2�nxn)(q1 � x1)� �1x1(q2 � x2),

ẋ2 = �1x1(q2 � x2)� �2x2(q3 � x3),

...

ẋn = �n�1xn�1(qn � xn)� �nxn. (6.19)

The output rate is y(t) = �nxn(t). The next is an intuitive result which implies that
increasing any of the feedback parameters w1 or w2 increases the output rate.

RFMD  

𝑤2𝑦 

𝑦 
 𝑤1 

Figure 6.10: The network of closed-loop of an RFMD with positive feedback. The
total RFMD input is u(t) = w1 + w2y.

Proposition 6.4.2. Consider the system given by (6.19) and let the parameters �i
and qi be fixed. Let yss and ȳss denote the steady-state output rate corresponding to
the control parameters (w1, w2) and (w̄1, w̄2) respectively. If w1 = w̄1 then yss < ȳss

if and only if w2 < w̄2. If w2 = w̄2 then yss < ȳss if and only if w1 < w̄1.

Example 6.4.2. Consider Eq. (6.19) with n = 3, w1 = 0.1, �i = 1, for all i, q1 = 1,
q2 = 0.5, q3 = 1. Fig. 6.11 depicts yss as a function of w2. It can be observed that
yss increases with w2.

Further, we analyze a network of RFMDs having no feedback connections i.e.,
input ui of RFMD #i, for any i, does not depend on its output directly or indirectly.
We refer to it as feed-forward networks of RFMDs. Recall that steady-state densities
and the steady-state output rate in a single RFMD can be obtained from the spectral
approach removing the requirement to numerically simulate the dynamics until
the convergence. The same approach can be applied to a feed-forward network of
RFMDs to find the steady state of the whole network. It can be explained as follows.
Consider RFMDs that are fed by a constant source only and the steady-state output
rate of these RFMDs can be calculated by Eq. (6.3). Now, consider those RFMDs
that are fed by the output of the above RFMDs and/or constant sources. Note
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Figure 6.11: The steady-state output rate yss for the closed-loop network as a
function of w2 in Example 6.4.2.

that the input to these RFMDs converges to a steady-state value and hence with
the constant input, the steady-state output rate of these RFMDs can be computed
by Eq. (6.3). Continuing in this way, we can find the steady state of the overall
network. The next simple example exhibits this.

Example 6.4.3. Consider the network given in Fig. 6.12. It consists of three
RFMDs each with dimension ni = 1. Assume that �10 = 0.5, �11 = 1, q11 = 0.1,
�20 = 0.1, �21 = 0.5, q21 = 1, �30 = 0.8, �31 = 1, and q31 = 0.5. The spectral
representation of the steady-state in RFMD #1 is based on the matrix

A1(k) :=

2

64
0 1/

p
0.5 0

1/
p
0.5 0.9k 1

0 1 0

3

75 .

After calculations, we have y1 = 0.0333. The spectral representation of the
steady-state in RFMD #2 is based on the matrix

A2 :=

2

64
0 1/

p
0.1 0

1/
p
0.1 0 1/

p
0.5

0 1/
p
0.5 0

3

75 .

After calculations, we get y2 = 0.0833. Now, the constant input value to RFMD #3

is y1 + y2. Thus, the spectral representation of RFMD #3 is based on the matrix

A3(k) :=

2

64
0 1/

p
0.0933 0

1/
p
0.0933 0.5k 1

0 1 0

3

75 .
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Hence, the steady-state output rate of the network is yss = 0.0427.

 𝑦1 
 

 𝑦2 
 

𝑦 

RFMD #1 

RFMD #2 

1 

1 

RFMD #3 

Figure 6.12: The feed-forward network of three RFMDs in Example 6.4.3.

6.4.2 Optimizing the network output rate

It is important to understand how a common resource should be divided into a
system comprising several sub-systems such that the overall output measure is
optimized. In this section, we study the problem of optimizing the total output
rate from the distributed network of RFMDs w.r.t. the connecting weights i.e., how
to distribute the output from each RFMD between the RFMDs so that the network
output rate is maximized.

Problem 1 Consider an RFMDN consisting of m RFMDs having a total output
rate at time t defined as in Eq. (6.17). The optimization problem is to maximize
the steady-state network output rate yss w.r.t. the connection (control) weights wi

j

subject to the constraints:

wi

j
2 [0, 1] for all i 2 {1, 2, . . . ,m} and j 2 {0, 1, . . . ,m} (6.20)

and
mX

i=1

wi

k
= 1 for all k 2 {1, 2, . . . ,m}, (6.21)

where wi

j
describes the connection weight of output of RFMD #j to input of RFMD

#i. The next result is important as it implies that one can easily determine the
optimal weights in Problem 1.

Theorem 6.4.2. Problem 1 can be formulated as a convex optimization problem.

The next simple example illustrates this.

Example 6.4.4. Consider an RFMDN having only one RFMD of dimension n1 = 1,
�10 = �11 = 1 and q11 = 0.5. Suppose it is fed by a source with the rate 0.1 along with
feedback from its output back to the input with proportion v i.e., u1 = 0.1+vy1. Let
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yss = e11(v) denote the steady-state output rate of the network. It can be observed
in Fig. 6.13 that yss is not concave in v. Thus, the given optimization problem:

max yss(v) subject to v 2 [0, 1] (6.22)

is not a convex optimization problem. However, with a reparametrization of the
input as u1 = 0.1+w with w 2 [0, y1], Problem (6.22) becomes a convex optimization
problem given as:

max yss(w) =
0.5(0.1 + w)

1.1 + w
subject to 0  w  0.5(0.1 + w)

1.1 + w
. (6.23)

The solution to this problem is achieved at w⇤ = 0.0742 and yss = 0.0742. This
concludes that the solution to the Problem (6.22) is v⇤ = 1. Hence, after suitable
reparametrization of the Problem (6.22) to (6.23), we can determine the optimal
weights.
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Figure 6.13: The steady-state output rate yss for the RFMDN as a function of v in
Example 6.4.4.

Further, we analyze that in a feed-forward network of RFMDs, Problem 1 can
be solved more directly.

Theorem 6.4.3. Consider a feed-forward network of RFMDs, where w denotes the
set of all connection weights. Then the mapping w ! yss(w) is concave and thus
Problem 1 is a convex optimization problem.

In other words, without any formulation, Problem 1 is a convex optimization
problem for feed-forward networks. The next example exhibits this.

Example 6.4.5. Consider an RFMDN consisting of m = 2 RFMDs each with
dimension ni = 10, i = 1, 2. Assume that �i0 = 1, �i

j
= 1, and qi

j
= 1, for all i, j.
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Let a unit resource feed the inputs to RFMD #1 and RFMD #2 with u1 = v and
u2 = 1 � v, respectively, where v 2 [0, 1]. The sum of the outputs from the two
RFMDs is the total network output. The solid line in Fig. 6.14 depicts that the
steady-state output rate yss(v) is a concave function and it attains maximum value
at v = 0.5. Note that since both the lanes are equivalent, therefore equally dividing
the input from the given unit source optimizes the network output. Now, let all the
parameters be the same but q18 = 0.3, i.e., the site capacity in lane 1 at site 8 is
less than the other site capacities. The dashed line in Fig. 6.14 shows that yss(v)

attains maximum value at v = 0.15. This can be explained as follows: in order to
avoid traffic jams in RFMD #1 due to the presence of a site with less capacity, more
resources are dispatched to RFMD #2.
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Figure 6.14: The steady-state output rate yss for the RFMDN as a function of v in
Example 6.4.5. The solid line represents the case when qi

j
= 1, for all i.j and the

dashed line represents the case when qi
j
= 1, for all i, j except for q18 = 0.3.

6.5 Discussion

Understanding the motion of particles along networks of interconnected tracks has
attracted increasing attention in recent years. Dynamical systems play a crucial role
in analyzing biological and physical systems. In this chapter, we consider large-scale
networks of the dynamical model RFMD which has been developed to model the
unidirectional motion of particles along an isolated track having different site sizes.
We rigorously study two network models: the RFMDNP which facilitates modeling
a network of parallel RFMDs coupled indirectly through a shared finite resource and
the RFMDN which models the network of interconnected RFMDs coupled directly
through several outputs of other RFMDs or itself.

The RFMDNP is a closed system that consists of several RFMDs interconnected
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through a resource, namely, the pool of particles. We establish that the RFMDNP
admits a continuum of linearly ordered steady-state points. This steady-state point
is independent of the initial profile and depends on all the parameters and the total
number of particles in the network. We also show that if all the parameters change
periodically in time with a common period T , then every solution of the RFMDNP
converges to a periodic trajectory having period T . In other words, the RFMDNP
phase locks to periodic parameters with a common period. Furthermore, we study
the effect of changing parameters in an RFMD on the steady-state behavior of the
network. Our mathematical analysis predicts that an increase in a transition rate
or an increase in a size of a site in any one RFMD say RFMD #1 always leads to
an increase in the output of RFMD #1. The output rates of all the other RFMDs
are affected in the same way i.e., either they all increase or all decrease.

To enable the analysis of important phenomena such as transport on a network
of roads comprising sites of different sizes where the flow out from a road may
enter (re-enter) another (same) road, we consider a network of interconnected
RFMDs (RFMDN), in which the RFMD outputs in the network is connected through
some connection weights to the inputs of other RFMDs. We show that the network
admits a unique steady state independent of the initial profile. In other words, the
network is globally asymptotically stable. In addition, we study the mathematical
properties of closed-loop and feed-forward networks and demonstrate them using
simple examples. For a feed-forward network of RFMDs, we see that the steady
state of the network can be determined using a spectral approach without any
requirement to solve the equations of the system numerically. Furthermore, we
analyze the problem of how to determine the interconnection weightage between the
RFMDs in order to maximize the steady-state output of the network and show that
this is a convex optimization problem. These findings are in accordance with the
previous results reported in Ref. [149].

We also note that the networks of RFMs analyze essential cellular processes
such as protein synthesis, and intracellular transport. We believe this suggests that
the networks presented here will also provide a powerful framework to model many
natural and artificial processes such as cellular transport, communication networks,
vehicular traffic, and more. A possible avenue for future research is modeling the
network of RFMDs by considering the weighted connections between the RFMDs as
time-varying functions. Another possibility is generalizing these networks to include
features like detachment/attachment of particles from internal sites in the lanes.
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6.6 Appendix: Proofs

Proof of Proposition 6.2.1: For sake of convenience, let x(t) denote the solution of the
system (6.4) for the given input u and initial condition a = x(0) 2 int(C). Seeking
a contradiction, assume that there exists a first time t0 > 0 such that x(t0) /2 int(C).
Then x(t0) 2 @C, so xj(t0) 2 {0, qj} for atleast one index j. We shall consider two
cases:
Case 1: Let k be the minimal index such that xk(t0) = 0 and xj(t0) > 0 for any
j < k. If k = 1, then ẋ1(t0) = �0q1u > 0. Since we have x1(t) 2 (0, q1) for any
t < t0 and therefore, x1(t0) > 0. Therefore, the case k = 1 is not possible, so k > 1.
Now Eq. (6.4) implies that ẋk(t0) = �k�1xk�1(t0)qk. We have xk�1(t0) > 0 and hence,
ẋk(t0) > 0 which is again a contradiction. Therefore, case 1 is not possible.
Case 2: Let k be the maximal index such that xk(t0) = qk and xj(t0) < qj for any
k < j. If k = n, then Eq. (6.4) implies that ẋn(t0) = ��nqn < 0. Since xn(t) 2 (0, qn)

for any t < t0 and therefore, x1(t0) < qn. Therefore, the case k = n is not possible,
so k < n. Now Eq. (6.4) implies that ẋk(t0) = ��kqk(qk+1 � xk+1(t0)). We have
xj(t0) < qj for any j > k, and hence ẋk(t0) < 0 and this implies that xk(t0) < qk.
Therefore, case 2 also does not hold.
Thus, we get that int(C) as an invariant state space. To prove the other part,
assume that initial point x(0) 2 @C i.e., xj(0) 2 {0, qj} for atleast one index j. We
shall consider two cases:
Case 1: Let k be the minimal index such that xk(0) = 0 and xj(0) > 0 for any j < k.
We will show that xk(�) 2 (0, qk), for some � > 0. If k = 1, then ẋ1(0) = �0q1u > 0,
so x1(�) 2 (0, q1). If k > 1, then ẋk(0) = �k�1xk�1(0)qk > 0, so xk(�) 2 (0, qk).
Thus, xi(�) 2 (0, qi) for any i 2 {1, 2, . . . , k} and for any t � �. Inductively, there
exists a time ⌘ > 0 such that xi(⌘) > 0, for any i 2 {1, 2, . . . , n} and for any t � ⌘.
Case 2: Let k be the maximal index such that xk(0) = qk and for any j > k,
xj(0) < qj. Arguing in the similar manner as in case 1, there exists a time  > 0

such that xi( ) < qi for any i 2 {1, 2, . . . , n} and for any t �  .
Hence, combining both the cases there exists a time ⌧ = max(⌘, ) such that x(⌧) 2
int(C) for all t � ⌧ .

Proof of Proposition 6.2.2: We first calculate M := @

@u
f ,

M = diag(
@

@u
f1 �

@

@u
f2,�

@

@u
f3, . . . ,�

@

@u
fn)

= diag(�0(q1 � x1), 0, . . . , 0).

From Proposition 6.2.1, we have every entry of M non-negative. Let J := @

@x
f

denote the Jacobian of the dynamics, where f is the vector field. Then J is given
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as below
2

6666664

��0u� �1(q2 � x2) �1x1 0 . . . 0

�1(q2 � x2) ��1x1 � �2(q3 � x3) �2x2 . . . 0

0 �2(q3 � x3) ��2x2 � �3(q4 � x4) . . . 0
. . .

0 0 0 . . . ��n�1xn�1 � �n

3

7777775
.

It follows from Proposition 6.2.1 that every off-diagonal entry of J is
non-negative. Thus, the RFMLK is a monotone control system by using the results
in Ref. [142].

We now turn to consider a closed network of RFMDs (RFMDNP).
Proof of Proposition 6.3.2: For the sake of simplicity, consider the case m = 1 and
the proof in the case when m > 1 is similar. The RFMDNP for m = 1 is given by:

ẋ1 = �0G(z)(q1 � x1)� �1x1(q2 � x2),

ẋ2 = �1x1(q2 � x2)� �2x2(q3 � x3),

...

ẋn = �n�1xn�1(qn � xn)� �nxn,

ż = �nxn � �0 G(z)(q1 � x1).

(6.24)

Let x0 := z and x�1 := xn. Now, we will prove that given any ✏ > 0 and any
sufficiently small 4 > 0, there exists P = P (✏,4) > 0 such that for each k 2
{0, . . . , n} and each t � 0 the condition

xk(t)  4 and xk�1(t) � ✏

implies that
ẋk � P.

For k = 0 we have

ẋ0 � �nxn � �0(q1 � x1)G(x0)

� �n✏� �0(q1 � x1)G(4),

and hence, ẋ0 � �n✏/2 for all 4 > 0 sufficiently small. For k 2 {1, . . . , n} we have

ẋk = �k�1xk�1(qk � xk)� �kxk(qk+1 � xk+1)

� �k✏(qk �4)� �k4(qk+1 � xk+1),

so ẋk � �kqk✏/2, for all 4 > 0 sufficiently small. Also, if xk(t) > 0 for some k 2
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{0, . . . , n} and t > 0, then xk(t0) > 0 for all t0 � t. Now, it follows from Lemma 1
in Ref. [49] that for any ⌧ > 0 there exists �(⌧) > 0, with �(⌧) ! 0 as ⌧ ! 0, such
that

�  xi(t), for all i 2 {0, . . . , n}, for any a, and any t � ⌧. (6.25)

Now define pi(t) := qn+1�i � xn+1�i(t), for i 2 {1, 2, . . . , n} and pn+1 := z. We
have,

ṗ1 = �n(qn � p1)� �n�1p1(qn�1 � p2),

ṗ2 = �n�1p1(qn�1 � p2)� �n�2p2(qn�2 � p3),

...

ṗn = �1pn�1(q1 � pn)� �0pnG(pn+1),

ṗn+1 = �n(qn � p1)� �0pnG(pn+1).

(6.26)

From Eq. (6.25), we have pn+1 � � for all t � ⌧ . Note that the first n equations
of Eq. (6.26) are an RFMD with time-varying exit rate �0G(pn+1) and therefore,
9 �1(⌧) > 0 such that

�1  pi(t), for all i 2 {1, . . . , n} and any t � ⌧. (6.27)

Combining this with Eq. (6.25) proves the proposition.

Proof of Theorem 6.3.1: The Jacobian of the RFMDNP is

J(x, z) :=

2

66666664

J1
1 0 . . . 0 J1

m+1

0 J2
2 0 . . . J2

m+1

. . .
0 0 . . . Jm

m
Jm

m+1

Jm+1
1 Jm+1

2 . . . Jm+1
m

Jm+1
m+1

3

77777775

where J i

i
is the Jacobian of RFMD #i given by

2

66666664

��i0Gi(z)� �i1(q
i

2 � xi

2) �i1x
i

1 0 0

�i1(q
i

2 � xi

2) ��i1xi

1 � �i2(q
i

3 � xi

3) �i2x
i

2 0
. . .

0 0 0 �i
ni�1x

i

ni�1

0 0 0 ��i
ni�1x

i

ni�1 � �i
ni

3

77777775

,

Jm+1
i

= [�i0Gi(z) 0 . . . 0 �i
ni
], J i

m+1 = [�i0G
0
i
(z)(qi1�xi

1) 0 . . . 0]0, i 2 {1, 2, . . . ,m},
and
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Jm+1
m+1 = �

P
m

i=1 �
i

0G
0
i
(z)(qi1 � xi

1). For any point in ⌦, every off-diagonal entry of J
is non-negative, so the RFMDNP is a cooperative dynamical system. Also for any
point in int(⌦), we have xi

j
2 (0, qi

j
) and z > 0 for all t � 0 which implies that every

term on the sub and super-diagonal of J i

i
is positive and Gi(z) > 0, i = 1, 2, . . . ,m.

Hence, J is an irreducible matrix. Now, combining Proposition 6.3.2 with the results
in Ref. [153] completes the proof of this theorem.

Proof of Theorem 6.3.2: We can write the PRFMDNP as ẋ = f(t, x).
Then f(t, y) = f(t + T, y) for all t � 0, y 2 ⌦. Now, �r 2 int(⌦) follows from
the Proposition 6.3.2 and the results in Ref. [143] proves the theorem.

Proof of Proposition 6.3.3: We can write the RFMDNP as ẋ = f(x), where
x represents the vector consisting of state variables and the pool density, with
initial condition x(0) = x0. Then �ẋ = J(x)�x, where J := @f

@x
is the Jacobian

of the dynamics. Note that from Proposition 6.3.2, the given system is a strongly
cooperative system of ODEs having a first integral with positive gradient. Hence,
the results in Ref. [154] shows that 9 a norm depending on x such that for all
t > 0, we have |�(x(t))|x(t) < |�x0|x0 . At the unique steady-state point e, we have
| exp(J(e)t)�(x0)|e < |�x0|e for all t > 0. Hence, the matrix obtained by restricting
J(e) to the integral manifold is Hurwitz matrix, and thereby the mapping h is
analytic using the implicit function theorem.

Proof of Theorem 6.3.3: We shall prove it for the case m = 2 (the proof of the
case when m > 2 is similar) i.e.,

ē1
k
< e1

k
and ē1

j
> e1

j
, for all j 2 {k + 1, . . . , n1} (6.28)

and
sign(ē2

j
� e2

j
) = sign(ēz � ez), for all j 2 {1, 2, . . . , n2}. (6.29)

Since, the initial condition remains the same, therefore

n1X

i=1

e1
i
+

n2X

j=1

e2
j
+ ez =

n1X

i=1

ē1
i
+

n2X

j=1

ē2
j
+ ēz = H(0) (6.30)
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At the steady-state, the RFMDNP equations yield:

�10G1(ez)(q
1
1 � e11) = �11e

1
1(q

1
2 � e12),

= �12e
1
2(q

1
3 � e13),

...

= �1
n1�1e

1
n1�1(q

1
n1

� e1
n1
)

= �1
n1
e1
n1
,

(6.31)

�20G2(ez)(q
2
1 � e21) = �21e

2
1(q

2
2 � e22),

= �22e
2
2(q

2
3 � e23),

...

= �2
n2�1e

2
n2�1(q

2
n2

� e2
n2
)

= �2
n2
e2
n2
,

(6.32)

,
�1
n1
e1
n1

+ �2
n2
e2
n2

= �10G1(ez)(q
1
1 � e11) + �20G2(ez)(q

2
1 � e21). (6.33)

The last equality in Eq. (6.32) gives

e2
n2�1 =

�2
n2
e2
n2

�2
n2�1(q

2
n2

� e2
n2
)
. (6.34)

It can be observed that if e2
n2

increases with an increase in �1
k

then the numerator
and denominator of the Eq. (6.34) increases and decreases, respectively, and hence
the left side of Eq. (6.34) is increasing. Similarly, if e2

n2
decreases with an increase in

�1
k
, then the numerator and denominator of the Eq. (6.34) decreases and increases,

respectively, and hence the left side of Eq. (6.34) is decreasing. Therefore,

sign(ē2
n2�1 � e2

n2�1) = sign(ē2
n2

� e2
n2
). (6.35)

Using the same argument above and by Eq. (6.32) we have

sign(ē21 � e21) = sign(ē22 � e22) = · · · = sign(ē2
n2�1 � e2

n2�1) = sign(ē2
n2

� e2
n2
). (6.36)

Again by Eq. (6.32), we have

G2(ez) =
�2
n2
e2
n2

�20(q
2
1 � e21)

. (6.37)

Since Gi(z) for i = 1, 2 is a strictly increasing function of z, therefore combining
this with Eq. (6.36), proves the Eq. (6.29).

161



Arguing as above and using Eq. (6.31), we have:

sign(ē1
k+1 � e1

k+1) = sign(ē1
k+2 � e1

k+2) = · · · = sign(ē1
n1

� e1
n1
). (6.38)

By Eq. (6.31), we have

e1
k
=

�1
n1
e1
n1

�1
k
(q1

k+1 � e1
k+1)

. (6.39)

Now, if sign(ē1
n1

� e1
n1
) < 0 i.e., ē1

n1
< e1

n1
, then combining this with Eqs. (6.38)

and (6.39) and the fact that �1
k
< �̄1

k
yields

sign(ē1
k
� e1

k
) = sign(ē1

k+1 � e1
k+1) = · · · = sign(ē1

n1
� e1

n1
). (6.40)

Arguing as above and using Eqs. (6.31) and (6.40) we have

sign(ēz � ez) = sign(ē11 � e11) = sign(ē12 � e12) = · · · = sign(ē1
n1

� e1
n1
). (6.41)

By Eqs. (6.29) and (6.41), we get a contradiction to Eq. (6.30). Hence, sign(ē1
n1
�

e1
n1
) > 0 i.e., e1

n1
< ē1

n1
and from Eq. (6.38), we get

e1
j
< ē1

j
, for all j 2 {k + 1, . . . , n1}. (6.42)

Now if e1
k
< ē1

k
, we again get Eq. (6.40) and hence e1

j
< ē1

j
, for all j 2 {1, . . . , n1}

and ez < ēz and this implies that e2
j
< ē2

j
, for all j 2 {1, . . . , n2} which is again a

contradiction to Eq. (6.30). Hence, ē1
k
< e1

k
.

Next, we turn to consider a generalized network of RFMDs (RFMDN).

Proof of Proposition 6.4.1: The proof is based on similar arguments as in the
proof of the Proposition 6.2.1 and is thus omitted.

Proof of Theorem 6.4.1: We can write the RFMDN as ẋ = f(x). Let J := @

@x
f

denote the Jacobian of the dynamics. Since the input to each RFMD is positive,
therefore each RFMD is a monotone control system and the other non-diagonal
terms are non-negative in J as all the connection weights wi

j
’s are non-negative, and

hence the network is a cooperative system.
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At steady-state, the equations of the RFMDN yield:

�i0u
i(qi1 � ei1) = �i1e

i

1(q
i

2 � ei2),

= �i2e
i

2(q
i

3 � ei3),

...

= �i
ni�1e

i

ni�1(q
i

ni
� ei

ni
)

= �i
ni
ei
ni
.

(6.43)

Note that ei
ni

uniquely determines ei1, ei2,. . . ,eini�1. Let us assume that ē 6= e is
another steady-state point of the network. Then ēk

nk
6= ek

nk
for some k. Without loss

of generality, suppose that e1
n1

< ē1
n1

. Then by Eq. (6.43), we have

�1
n1�1e

1
n1�1(q

1
n1

� e1
n1
) < �1

n1�1ē
1
n1�1(q

1
n1

� ē1
n1
) (6.44)

which implies
e1
n1�1 < ē1

n1�1. (6.45)

Continuing in this manner, we get

e1
j
< ē1

j
for all j 2 {1, 2, . . . , n1}. (6.46)

Also by Eq. (6.43), we have

ē11 � e11 = q1 �
�1
n1
ē1
n1

�10ū
1

� q1 +
�1
n1
e1
n1

�10u
1
,

=
�1
n1
(e1

n1
ū1 � ē1

n1
u1)

�10u
1ū1

,

=
�1
n1

�10u
1ū1

⇣
w1

0(e
1
n1

� ē1
n1
) +

mX

j=2

w1
j
�j
nj
(e1

n1
ēj
nj

� ē1
n1
ej
nj
)
⌘
.

(6.47)

Since the left-hand side is positive and the first term on the right-hand side is
negative, therefore atleast one of the terms of the summation must be positive.
Again, without loss of generality, we can assume that e1

n1
ē2
n2

� ē1
n1
e2
n2

> 0. So

ē1
n1

e1
n1

<
ē2
n2

e2
n2

, (6.48)

which implies
e2
j
< ē2

j
for all j 2 {1, 2, . . . , n2}. (6.49)
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By Eq. (6.43), we have

ē21 � e21 =
�2
n2

�20u
2ū2

⇣
w2

0(e
2
n2

� ē2
n2
) + w2

1�
1
n1
(e2

n2
ē1
n1

� ē2
n2
e1
n1
) +

mX

j=3

w2
j
�j
nj
(e2

n2
ēj
nj

� ē2
n2
ej
nj
)
⌘
.

(6.50)

By Eqs. (6.48) and (6.49), we must have atleast one of the terms in the summation
should be positive. Again, without loss of generality assume that e2

n2
ē3
n3
� ē2

n2
e3
n3

> 0

which implies
ē2
n2

e2
n2

<
ē3
n3

e3
n3

. (6.51)

Hence, continuing in this way we get

1 <
ē1
n1

e1
n1

<
ē2
n2

e2
n2

< · · · <
ēm
nm

em
nm

(6.52)

which implies that

ei
j
< ēi

j
, for all i 2 {1, 2, . . . ,m} and j 2 {1, 2, . . . , ni}. (6.53)

Using Eq. (6.43), we have

ēm1 � em1 =
�m
nm

�m0 u
mūm

⇣
wm

0 (e
m

nm
� ēm

nm
) +

m�1X

j=1

wm

j
�j
nj
(em

nm
ēj
nj

� ēm
nm

ej
nj
)
⌘
. (6.54)

By Eqs. (6.52) and (6.53), the left-hand side of the above equation is positive and
the right-hand side is negative which gives us a contradiction. Hence, there exists a
unique steady-state point of the network.

By Proposition 6.4.1 and the results in Ref. [155] implies that the network admits
a globally asymptotically stable steady-state point.

Proof of Proposition 6.4.2: Suppose w2 < w̄2. To the contrary, let ȳss  yss.
Then we have ēn  en. From the arguments given in the above proposition, we get
ēi  ei for all i 2 {1, 2, . . . , n� 1}. Now,

ē11 � e11 =
�nen

�0(w1 + w2�nen)
� �nēn
�0(w1 + w̄2�nēn)

=
�n
�0

⇣
w1(en � ēn) + �nenēn(w̄2 � w2)

⌘
.

(6.55)

This implies ē1 > e1 which is a contradiction. Hence, yss < ȳss. The other part of
the proposition can be proved in a similar way.

Proof of Theorem 6.4.2: Let vi
j
:= wi

j
yi. Then the inputs can be written as
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ui = wi

0 +
P

m

j=1 v
i

j
. Also, we know that the steady-state output of an RFMD with

fixed site sizes is a concave function of the transition rates and hence, yi
ss

= gi(ui)

for some concave function gi. Then the constraints become wi

0 � 0, vi
j
� 0 and

P
m

i=1 v
i

j
= gj(uj). These constraints define a convex set of wi

0 and vi
j
. Note that

the steady-state network output rate is a weighted sum of the concave functions.
Hence, the formulation of Problem 1 is a convex optimization problem [156].

Proof of Theorem 6.4.3: Consider a graph of m nodes where each RFMD
represents a node and there is a directed edge from RFMD #i to RFMD #j if
the flow out of the former feeds the later. Then the graph of feed-forward network
of m RFMDs is a directed acyclic graph [157]. Hence, the steady-state input to any
RFMD #i will be a weighted sum of steady-state outputs of RFMDs. Also, we know
that for fixed site sizes, the output yi is a concave function of the transition rates
and in particular the input rate, and hence the mapping w ! yss(w) is concave.
The constraints already define a convex set and hence this completes the proof.
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Chapter 7

A mathematical framework for
analyzing particle flow in a network
with multiple pools

This chapter1 introduces a network model of ribosome flow models (RFMs) having
multiple pools where each RFM captures the dynamics of particle flow in a lane and
competes for the finite resources present at the nearby pool. We study a ribosome
flow model network with two pools (RFMNTP) and show that the network always
admits a steady state. We then analyze the behavior of the RFMNTP with respect to
modifying the transition rate through a theoretical framework. Finally, we illustrate
how these results can provide insights into studying a network with multiple pools.

7.1 Introduction

Movement is a vital aspect of life. Various cellular and physical processes involve
the movement of particles along tracks. These processes generally take place in
parallel and they compete for the available limited resources. For example, during
gene expression all DNA (mRNA) molecules simultaneously compete for the limited
amount of RNAPs (ribosomes) [1, 158, 72]. This competition generates a network
in which an indirect coupling induces interactions among the lanes even in the
absence of explicit connections [159, 160]. Hence, it is of considerable interest to
analyze such networks in the presence of these interactions and also, to design several
resource-sharing synthetic gene networks [161, 162]. In physical systems such as
vehicular flow, the number of vehicles moving along the roads is finite. The entry
rate of the vehicles along the road is affected due to the queue of vehicles waiting to
enter a road, where each vehicle competes with other vehicles for limited space on
the road [163]. This requires modeling the complex road network to comprehend the
traffic flow thereby, reducing travel time, and preventing traffic deadlocks [164, 165].

1The content of this chapter is published as “Aditi Jain and Arvind Kumar Gupta. A
mathematical framework for analysing particle flow in a network with multiple pools. Royal Society

Open Science 11: 231588, 2024.”



Several computational and mathematical models have been developed to study
resource-sharing networks [166, 167, 168]. One such model includes the set of totally
asymmetric simple exclusion processes (TASEPs) that are interconnected to each
other via a pool of free particles [169, 170, 171]. The TASEP and its networks have
been used to model and analyze various natural and artificial systems, including
mRNA translation, vehicular traffic flow, and more [5, 22, 172]. Regardless of
its simple description, rigorous analysis of networks of TASEPs is complex, exact
solutions exist for simplified cases and most non-homogeneous cases are studied
via numerical methods or extensive Monte Carlo simulations [33, 34, 173]. Hence,
understanding the effect of parameters on the dynamics of a system through
TASEP-based models has proved challenging. There are lattice hydrodynamic
models that utilize ordinary differential equations to model the flow of vehicles along
the lanes[174, 175, 176]. Therefore, the framework of RFM that also describes the
flow of particles can serve as the basis for understanding the dynamics of vehicular
traffic.

An RFM network in Ref. [149] is a generalized network that analyzes various
network topologies using a set of interconnected RFMs. It models the static
connections between the RFMs and hence, the input to each RFM is a source (maybe
pools of free ribosomes in the cell) whose output rate is a constant or proportion
of the output of other RFMs. Here, the pool supplies a constant input source and
hence, it does not take into account the competition effects on the network’s behavior
due to finite resources.

Almost all prior research has provided an understanding of biological activities
constrained by a single pool. However, taking into account the concept of multiple
pools helps one to comprehend the participation of particles in the vicinity of
their targets. For instance, in the context of introducing synthetic circuit genes,
a network model called Orthogonal Ribosome Flow Model (ORFM) was introduced
where the ribosome pool has been divided by use of orthogonal ribosomes and the
introduced genes are only translated by mutated ribosomes [177]. The concept of
orthogonal ribosomes was used to increase the protein output by decoupling circuit
genes from the host pool of ribosomes. The concept of multiple pools also provides
a useful framework to model vehicular flow between different cities where each pool
represents each city.

In this chapter, we study the idea that the entry rate of the particles on lanes
is affected by the occupancy of the nearby pool. Studying a minimal model of a
two-pool network is a useful strategy for gaining insights into the behavior of more
complex systems with multiple pools. We present our theoretical investigation of a
two-pool network and then illustrate how one can generalize it to study a network
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with multiple pools. We introduce a new model called the ribosome flow model
network with two pools (RFMNTP) that includes several RFMs interconnected via
two dynamical pools of free particles. It captures the feature that the particles
located far away from RFMs will not impact the initiation rates of these RFMs.
Therefore, each RFM can be associated with two pools of particles, one pool
containing particles impacting the initiation rate of the RFM, and the other pool
receiving its output. The whole system being closed conserves the number of
particles. This two-pool network then models vehicular flow between the two
cities where each pool represents each city. Similarly, pedestrian flow involving
the movement of people between two places is reminiscent of the fact that it can be
studied by incorporating two pools in the network.

By utilizing the theory of cooperative dynamical systems with a first integral, we
prove that the RFMNTP admits a continuum of steady-state points [132, 143, 153].
Therefore, the same steady-state point is attained by any two solutions starting
from initial conditions corresponding to an equal total number of particles in the
network, and hence, the network can be analyzed by the steady-state density profile.
This theoretical analysis can also be easily extended to prove the stability results
for multiple pools. Next, we study how a change in one RFM affects the dynamics
of the network. The change in the steady-state with respect to changing the rate
of a site in a specific RFM, say R, can be any one of the following outcomes: a)
steady-state pool densities can both increase (decrease) simultaneously, b) a decrease
in the steady-state pool density that is feeding R and an increase in the steady-state
density of the other pool. The results hold for any set of parameters in the network.

The structure of this chapter is organized as follows. The next section introduces
the network of ribosome flow models with multiple pools. Section 7.3 describes a
two-pool network and then describes our main mathematical results. Section 7.4

illustrates the idea of understanding the dynamics of a network with multiple pools.
The final section summarizes and suggests some directions for further research. The
proofs of the results are provided in the Appendix for ease of reading.

7.2 The mathematical framework

We first review the spectral properties of the RFM that have been described in
Chapter 1.

7.2.1 Ribosome flow model

Recall that the state-space of the RFM is Cn. It has also been proved that RFM
admits a steady-state e [39]. In Ref. [44], it has been shown that there exists a
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spectral representation for the mapping from �0, �1,. . . , �n to steady-state e given
by (n+ 2)⇥ (n+ 2) Jacobi matrix

A :=

2

6666666664

0 ��1/2
0 0 . . . 0

��1/2
0 0 ��1/2

1 . . . 0

0 ��1/2
1 0 . . . 0

. . .
0 . . . 0 0 ��1/2

n

0 . . . 0 ��1/2
n 0

3

7777777775

.

Note that A admits a unique maximal eigenvalue � > 0 and the entries of a
corresponding eigenvector ⇣ 2 Rn+2 are all positive for all i 2 {1, 2, . . . , n+ 2} [83].
It has also been proved in Ref. [44] that the steady-state values of the RFM satisfy

ej =
⇣j+2

�1/2
j
�⇣j+1

, for j = 1, 2, . . . , n (7.1)

and the steady-state output rate satisfy

R =
1

�2
. (7.2)

To build a network of interconnected RFMs, the first step is to extend the
RFM into a single-input single-output (SISO) system. This is done by adding a
time-varying measurable and bounded function v : R+ ! R+ to the RFM [61]. In
the context of translation, the function v represents the flow of ribosomes into the
mRNA from the cell environment. The equations describing the RFM with input
and output are as follows:

ẋ1 = �0v(1� x1)� �1x1(1� x2),

ẋ2 = �1x1(1� x2)� �2x2(1� x3),

...

ẋn = �n�1xn�1(1� xn)� �nxn,

and R(t) = �nxn(t).

(7.3)

The system given by (7.3) is a monotone control system [142]. It can also be
seen that Cn is an invariant set of the dynamics i.e., any trajectory emanating from
any point in Cn shall remain in it for all time t � 0.
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7.2.2 Network of ribosome flow models with multiple pools

Now, we provide some insights into the dynamics of the flow of particles on several
lanes connected via multiple pools. Consider a network consisting of M pools and N

RFMs. Each pool is connected to at least one RFM that receives its input from the
pool and at least one other RFM that feeds its output to the pool. The particles that
are not attached to any RFM are present in the pools. The topology of this network
can be represented using a directed multigraph where each node represents the pool
and the directed edges represent the RFMs that indicate the flow of particles from
one pool to the other pool (see Fig. 7.1).

RFM 

POOL 

Figure 7.1: The graph representation of the network with multiple pools where each
node (circle) represents the pool and the directed edges (dashed lines having arrows)
represent a chain of sites on which particles undergo RFM dynamics. The arrow of
the edge pointing to the pool represents that the output of the RFM is feeding the
pool.

Let RFM #i be described by the tuple Ai := {ni, Gi, xi

j
,�i

k
} for i = 1, 2, . . . , N ,

j = 1, 2 . . . , ni, k = 0, 1, . . . , ni, where ni is the dimension of RFM #i; Gi : R+ ! R+

is the input function of the RFM #i; xi

j
’s are the state variables and �i

k
’s are the

positive transition rates along RFM #i. Let Pool #j density is described by zj(t)

for j = 1, 2, . . . ,M where zj represent the average number of particles in the pool.
Assume that Pool #j is feeding the input to the RFM #k, k 2 I where I is a subset
of the set {1, 2, . . . , N} and let RFM #k0, k0 2 I 0 where I 0 is a subset of the set
{1, 2, . . . , N} r I, is feeding its output to the Pool #j. Thus, the dynamics of the
RFM #k is described by the following ODEs:

ẋk

1 = �k

0Gk(zj)(1� xk

1)� �k

1x
k

1(1� xk

2),

ẋk

2 = �k

1x
k

1(1� xk

2)� �k

2x
k

2(1� xk

3),

...

ẋk

nk
= �k

nk�1x
k

nk�1(1� xk

nk
)� �k

nk
xk

nk
,

(7.4)
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and the dynamics is described by the following balance equation for each Pool #j:

żj =
X

k02I0

�k
0

nk0
xk

0

nk0
�

X

k2I

�k

0Gk(zj)(1� xk

1). (7.5)

The entry rate of particles into the RFMs is modulated by the occupancy level of
the nearby pool. Note that there is no direct link between the RFMs in the network
and the interconnections are via the pool of particles. The pool outflow functions Gk

describe the likelihood that the particles will attach to the RFMs. In other words,
these functions model the competition for particles between the RFMs. Therefore,
RFM having a more effective initiation rate �k

0Gk(zj) have more influx of particles
into them.

Each state variable xi

j
represents the normalized particle density and Gi gives

non-negative output. Therefore, the state space of the network is

⌦ = [0, 1]n1 ⇥ [0, 1]n2 . . . [0, 1]nN ⇥ [0,1)M . (7.6)

Let

F (t) :=
MX

j=1

zj(t) +
NX

i=1

niX

j=1

xi

j
(t) (7.7)

describe the total occupancy of particles in the network at any time t. Since it is
a closed system, F (t) is a first integral of the dynamics. Note that all the particles
can be accommodated in any of the pools.

Analyzing such networks requires information about interconnected RFMs and
the pools and therefore, a minimal model of a two-pool network provides a useful
starting point for studying the behavior of particle flow in a network with multiple
pools. We now shall begin our study with a new model RFMNTP that considers
two dynamic pools in the network. The proposed model considers the dynamics of
particles on various tracks, wherein on some tracks particles are recruited from one
pool and return to the other pool, and vice versa. This is a primary study of a
system having two pools in the framework of a network of RFMs. The findings can
be generalized to complex systems with multiple pools.

7.3 The ribosome flow model network with two

pools

We consider a network model consisting of several RFMs and two finite pools: Pool
I and Pool II and this model the dynamics of the flow of particles on several lanes
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interconnected via two pools (see Fig. 7.2a). We represent those RFMs, say m � 1

in number, whose input is received through Pool I and output is supplied to Pool II
as RFMXs. For the reverse case, the RFMs, say n � 1 in number, whose input is
received through Pool II and output is supplied to Pool I are referred to as RFMYs.
We call this network a ribosome flow model network with two pools (RFMNTP) (see
Fig. 7.2b). Let RFMX # i is described by the tuple Ei := {`i, Gi, xi

j
,�i

k
} for i =

1, 2, . . . ,m, j = 1, 2 . . . , `i, k = 0, 1, . . . , `i, where `i is the dimension of RFMX #
i; Gi : R+ ! R+ is the ith input function; xi

j
’s are the state variables and �i

k
’s

are the positive transition rates along RFMX # i. Similarly, consider RFMY #
i represented by the tuple Fi := {pi, Hi, yij, ⌘

i

k
} for i = 1, 2, . . . , n, j = 1, 2 . . . , pi,

k = 0, 1, . . . , pi, where pi is the dimension of RFMY # i; Hi : R+ ! R+ is the ith
input function; yi

j
’s are the state variables and ⌘i

k
’s are the positive transition rates

along RFMY # i. The Pool I and Pool II density at time t is modeled by z1(t) and
z2(t), respectively.

POOL I 

POOL II 
 

(a)

POOL I 

POOL II 

𝑅𝐹𝑀
𝑋

 #1 

𝑅𝐹𝑀
𝑋

 #𝑖 

𝑅𝐹𝑀
𝑋

 #𝑚
 𝑅𝐹

𝑀
𝑌 

#1
 

𝑅𝐹
𝑀

𝑌 
#𝑖

 

𝑅𝐹
𝑀

𝑌 
#𝑛

 

(b)

Figure 7.2: (a) Topology of the network with two pools and 5 lanes: Particles from
Pool I (Pool II) transverse lanes 1,2 (3,4,5) and join the Pool II (Pool I) and then
transverse lanes 3,4,5 (1,2) and again join Pool I (Pool II). Hence, Pool I (Pool II)
supplies its input to lanes 1,2 (3,4,5) and receives its output from lanes 3,4,5 (1,2).
In the case of vehicular traffic, particle/lane/pool represents the car/road/city. (b)
Topology of the RFMNTP: the m RFMXs receive their input from Pool I and supply
their output to Pool II and the n RFMYs receive their input from Pool II and supply
their output to Pool I.

Thus, the RFMX #i dynamics is described by the following equations:

ẋi

1 = �i

0Gi(z1)(1� xi

1)� �i

1x
i

1(1� xi

2),

ẋi

2 = �i

1x
i

1(1� xi

2)� �i

2x
i

2(1� xi

3),

...

ẋi

`i
= �i

`i�1x
i

`i�1(1� xi

`i
)� �i

`i
xi

`i
,

(7.8)
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and its output rate of exit of particles is given by �i

`i
xi

`i
.

The dynamics of RFMY #i is described by the following equations:

ẏi1 = ⌘i0Hi(z2)(1� yi1)� ⌘i1y
i

1(1� yi2),

ẏi2 = ⌘i1y
i

1(1� yi2)� ⌘i2y
i

2(1� yi3),

...

ẏi
pi
= ⌘i

pi�1y
i

pi�1(1� yi
pi
)� ⌘i

pi
yi
pi
,

(7.9)

and its output rate of exit of particles is given by ⌘i
pi
yi
pi

.

Pool I feeds all the RFMXs and the output of each RFMY is supplied into Pool
I, so the change in z1 is given by the following balance equation:

ż1 =
nX

i=1

⌘i
pi
yi
pi
�

mX

i=1

�i

0 Gi(z1)(1� xi

1). (7.10)

Also, Pool II feeds all the RFMYs, and the output of each RFMX is supplied
into Pool II, so the change in z2 is given by the following balance equation:

ż2 =
mX

i=1

�i

`i
xi

`i
�

nX

i=1

⌘i0 Hi(z2)(1� yi1). (7.11)

It can be observed that if the pools are empty then no particles can attach to
the respective lanes, and as the pools become fuller more particles can attach to the
lanes. Therefore these properties are satisfied by imposing the following assumptions
on Gi and Hi: a) Gi(0) = 0 and Hi(0) = 0, b) Gi(z1) and Hi(z2) are continuous and
strictly increasing functions of z1 and z2, respectively. Let

Q(t) := z1(t) + z2(t) +
mX

i=1

`iX

j=1

xi

j
(t) +

nX

i=1

piX

j=1

yi
j
(t) (7.12)

describe the total occupancy of particles in the network at any time t. Since the
RFMNTP is a closed system, Q(t) is a first integral of the dynamics, i.e., Q(t) = Q(0)

for all t � 0. Note that both pool densities are bounded by Q(0). Summing up,
the RFMNTP is a dynamical system with s =

P
m

i=1 `i +
P

n

i=1 pi + 2 state variables
whose dynamics are given by Eqs. (7.8), (7.9), (7.10) and (7.11). The next section
rigorously analyzes the mathematical aspect of the RFMNTP.
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7.3.1 Dynamical properties of the RFMNTP

Given two vectors u, v 2 Rn, we define order relation u ⌧ v if ui < vi for all i. Recall
that every xi

j
and yi

j
represent normalized particle density and the assumptions on

Gi and Hi imply that the pool densities are always non-negative. Therefore, the
state space of the RFMNTP is

B = [0, 1]`1⇥[0, 1]`2⇥. . . [0, 1]`m⇥[0, 1]p1⇥[0, 1]p2⇥. . . [0, 1]pn⇥[0,1)⇥[0,1). (7.13)

Let [x(t, a) y(t, a) z1(t, a) z2(t, a)]0 denote the solution of the RFMNTP at time
t for the initial condition a 2 B, where x and y is the vector consisting of all the
state variables of RFMXs and RFMYs, respectively. For r � 0, let Lr := {a 2 B :
P

s

i=1 ai = r} i.e., Lr represent all states in B corresponding to total occupancy of
particles equal to r in the network.

7.3.2 Invariance

The following result states that for any initial condition a 2 B, the trajectory of the
RFMNTP stays in B for all t � 0.

Proposition 7.3.1. The state space B is an invariant set of the RFMNTP, i.e.,
0  xi

j
(t, a)  1, 0  yi

j
(t, a)  1, zi(t, a) 2 [0,1) for any t � 0, and any initial

condition a 2 B.

We shall now show that the proposed nonlinear system of differential equations is
a cooperative system. This property guarantees the monotonicity (order-preserving
property) of the flow with respect to the partial ordering in the phase space (refer
to Chapter 1). Now, the Jacobian matrix J of the vector field of the RFMNTP is:

J(x, y, z1, z2) =

2

666666666666666666664

X1 0 0 0 0 0 . . . 0 U1 0

0 X2 0 0 0 0 . . . 0 U2 0
... . . . ...

...
...

...
...

...
0 0 . . . Xm 0 0 . . . 0 Um 0

0 0 . . . 0 Y1 0 . . . 0 0 V1

0 0 . . . 0 0 Y2 . . . 0 0 V2

...
...

...
... . . . ...

...
...

0 0 . . . 0 0 0 . . . Yn 0 Vn

A1 A2 . . . Am B1 B2 . . . Bn Z1 0

C1 C2 . . . Cm D1 D2 . . . Dn 0 Z2

3

777777777777777777775
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where Xi represents the Jacobian matrix of RFMX #i and is given by
2

66666664

��i

0Gi(z1)� �i

1(1� xi

2) �i

1x
i

1 0 . . . 0

�i

1(1� xi

2) ��i

1x
i

1 � �i

2(1� xi

3) �i

2x
i

2 . . . 0
. . .

0 0 0 . . . �i

`i�1x
i

`i�1

0 0 0 . . . ��i

`i�1x
i

`i�1 � �i

`i

3

77777775

,

and Yi represents the Jacobian matrix of RFMY #i and is given by
2

66666664

�⌘i0Hi(z2)� ⌘i1(1� yi2) ⌘i1y
i

1 0 . . . 0

⌘i1(1� yi2) �⌘i1y
i

1 � ⌘i2(1� yi3) ⌘i2y
i

2 . . . 0
. . .

0 0 0 . . . ⌘i
pi�1y

i

pi�1

0 0 0 . . . �⌘i
pi�1y

i

pi�1 � ⌘i
pi

3

77777775

,

Ai = [�i

0Gi(z1) 0 . . . 0 0], Bi = [0 . . . 0 0 ⌘i
pi
], Ci = [0 . . . 0 0 �i

`i
], Di =

[⌘i0Hi(z2) 0 . . . 0 0], Ui = [�i

0G
0
i
(z1)(1�xi

1) 0 . . . 0]0, Vi = [⌘i0H
0
i
(z2)(1�yi1) 0 . . . 0]0,

Z1 = �
P

m

i=1 �
i

0G
0
i
(z1)(1 � xi

1) and Z2 = �
P

n

i=1 ⌘
i

0H
0
i
(z2)(1 � yi1). Clearly, by

Proposition 7.3.1 we get that the Jacobian matrix J is Metzler for any initial
condition in B, and thus the RFMNTP is a cooperative dynamical system.

7.3.3 Persistence

The next result proves that the property called persistence holds which implies that
any trajectory becomes uniformly separated from the boundary of B.

Proposition 7.3.2. For any � > 0 there exists ✏ > 0 depending on � with ✏ ! 0

as � ! 0 such that ✏  xi

j
(t, a)  1 � ✏, for i 2 {1, 2, . . . ,m}, j 2 {1, 2, . . . , `i},

✏  yi
j
(t, a)  1 � ✏, for i 2 {1, 2, . . . , n}, j 2 {1, 2, . . . , pi} and ✏  zi(t, a) for

i 2 {1, 2} for all a 2 (B \ {0}) and all t � �.

In other words, all the densities are smaller than one and larger than zero, and
the pool occupancies are strictly positive. This result guarantees that the Jacobian
matrix of the dynamics becomes irreducible after an arbitrarily short time [83].
Thus, the RFMNTP is a cooperative irreducible system of ODEs. Next, we analyze
the asymptotic behavior of the RFMNTP.

7.3.4 Stability

The following result shows that each level set of the first integral has a unique
intersection with the ordered set of fixed points.
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Theorem 7.3.1. The RFMNTP admits a unique steady-state point in every level
set Lr, say er, and for any initial condition a 2 Lr, the trajectory converges to er.
Furthermore, for any 0  r1 < r2, we have er1 ⌧ er2.

The above theorem implies that the rates �i

j
, ⌘i

j
, and the total density of particle

r determine a unique steady-state point of the network. Moreover, the continuum
of the steady state points {er : r 2 [0,1)} are linearly ordered. Combining
Proposition 7.3.2 and Theorem 7.3.1 follows that for any r > 0, er 2 int(B) i.e.,
the steady-state profile will never include densities of RFMXs and RFMYs that are
either zero or one and the Pool I, and the Pool II steady-state densities are always
strictly positive. The following example demonstrates the Theorem 7.3.1.

Example 7.3.1. Consider an RFMNTP with m = 1 RFMX and n = 1 RFMY
each with dimension 2. Assume that �1

0 = 0.8, �1
1 = 1, �1

2 = 1.2, ⌘10 = 1, ⌘11 = 2,
⌘12 = 1, G1(z1) = tanh(z1), and H1(z2) = z2. By Theorem 7.3.1, there exist an
unique equilibrium point e in L2 and after simulating the dynamical system, we have
e = [0.3589 0.2302 0.1909 0.2763 0.6023 0.3414]0. Figures 7.3a and 7.3b depict
trajectories of RFMNTP for initial conditions in the level set L2: [0.5 0.5 0.5 0.5 0 0]0

and [0 0 0 0 1 1]0, respectively. It can be observed that each of these trajectories
converges to e.
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Figure 7.3: Trajectories of the RFMNTP in Example 7.3.1: (a) For initial condition
[0.5 0.5 0.5 0.5 0 0]0 and (b) For initial condition [0 0 0 0 1 1]0.

For ease of notation, let e = [ex ey ez1 ez2 ]
0 where ex :=

[e1
x1

e1
x2
· · · e1

x`1
e2
x1

e2
x2
· · · e2

x`2
· · · em

x1
em
x2
· · · em

x`m
] and ey :=

[e1
y1

e1
y2
· · · e1

yp1
e2
y1

e2
y2
· · · e2

yp2
· · · en

yp1
en
yp2

· · · en
ypn

] denote the unique steady-state
point of the RFMNTP in the level set Lr of Q. At steady-state, the change in all
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the state variables and the pool variables w.r.t. time t becomes zero and thereby
Eq. (7.8) implies

�i

0Gi(ez1)(1� ei
x1
) = �i

1e
i

x1
(1� ei

x2
) = · · · = �i

`i
ei
x`i

. (7.14)

Similarly, at steady-state, Eq. (7.9) yields

⌘i0Hi(ez2)(1� ei
y1
) = ⌘i1e

i

y1
(1� ei

y2
) = · · · = ⌘i

pi
ei
ypi

. (7.15)

Again at steady-state, Eq. (7.10) implies that

nX

i=1

⌘i
pi
ei
ypi

=
mX

i=1

�i

0 Gi(ez1)(1� ei
x1
). (7.16)

We can also express the above equation as:

nX

i=1

⌘i
pi
ei
ypi

=
mX

i=1

�i

`i
ei
x`i

. (7.17)

Eq. (7.17) implies that the total output of all the RFMXs is equal to the total output
of all the RFMYs.

Next, we provide an analysis of how the spectral approach can obtain the
steady-state e of the network without any numerical simulations of the dynamics.
Consider an RFMNTP with m RFMXs where each RFMX has dimension `i,
i = 1, 2, . . . ,m and n RFMYs where each RFMY has dimension pk, k = 1, 2, . . . , n.
We also assume that the transition rates in RFMX #i are represented by �i

j
and in

RFMY #k by ⌘i
k
. The input to RFMX #i is given by Gi and to RFMY #k by Hk.

Consider the total density of particles in the network to be r.

The steady-state values of each RFMX #i satisfy

ei
xj

=
⇣ i
j+2q

�i

j
�i
x
⇣ i
j+1

, j = 1, 2, . . . , `i, (7.18)

where �i

x
is the Perron eigenvalue and ⇣ i is the corresponding Perron eigenvector of
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the (`i + 2)⇥ (`i + 2) Jacobi matrix Ai given by

Ai :=

2

6666666664

0 (�i

0Gi(ez1))
�1/2 0 . . . 0

(�i

0Gi(ez1))
�1/2 0 (�i

1)
�1/2 . . . 0

0 (�i

1)
�1/2 0 . . . 0

. . .
0 . . . 0 0 (�i

`i
)�1/2

0 . . . 0 (�i

`i
)�1/2 0

3

7777777775

.

The steady-state values of each RFMY #k satisfy

ek
yj
=

⇠k
j+2q

⌘k
j
�k
y
⇠k
j+1

, j = 1, 2, . . . , pk, (7.19)

where �k

y
is the Perron eigenvalue and ⇠k is the corresponding Perron eigenvector of

the (pk + 2)⇥ (pk + 2) Jacobi matrix Bk given by

Bk :=

2

6666666664

0 (⌘k0Hk(ez2))
�1/2 0 . . . 0

(⌘k0Hk(ez2))
�1/2 0 (⌘k1)

�1/2 . . . 0

0 (⌘k1)
�1/2 0 . . . 0

. . .
0 . . . 0 0 (⌘k

pk
)�1/2

0 . . . 0 (⌘k
pk
)�1/2 0

3

7777777775

.

It follows from Eq. (7.12) that

ez1 + ez2 +
mX

i=1

`iX

j=1

ei
xj
(ez1) +

nX

k=1

pkX

j=1

ek
yj
(ez2) = r. (7.20)

Also, Eq. (7.17) implies

nX

i=1

⌘i
pi
ei
ypi

(ez2) =
mX

i=1

�i

`i
ei
x`i

(ez1). (7.21)

Combining Eqs. (7.20) and (7.21) gives the expression of ez1 and ez2 in terms of
number of particles r. Thus, the entire steady-state profile of the network can then
be calculated by plugging the values of r in the expression. Note that this approach
also allows one to obtain an expression of densities for any unknown transition
parameter and we only need to plug the values to obtain the entire steady-state
profile without any numerical simulations of the dynamics. However, one has to
choose stable algorithms to solve the system of nonlinear equations (7.20) and (7.21).
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7.3.5 Entrainment

Many important dynamical processes are periodic such as the cell-cycle division
process, gene regulation, circadian rhythm, 24-hour solar day, and more [178, 179,
180]. Proper functioning often requires such processes to vary periodically with
the same period. For example, a person’s lack of synchronization to day and night
can have health consequences [181]. For nonlinear systems, a periodic input signal
does not guarantee that the response of the system will also be periodic as their
behavior can be quasi-periodic or chaotic [182, 59]. Therefore, a natural question
is whether the RFMNTP synchronizes with the periodic excitations or not. To
answer this question, we assume that some or all the parameters in the RFMNTP
are not constants but periodic and continuous functions of time with a common
period T > 0, and satisfy the condition 0 < �1 < �i

j
 �2 and 0 < �3 < ⌘i

j
 �4.

In this case, we call the network model the periodic RFMNTP (PRFMNTP). The
next result shows that all the trajectories approach a periodic pattern with the same
period T .

Theorem 7.3.2. Consider the PRFMNTP. Fix r > 0. Then a unique T -periodic
function �r : R+ ! int(B) exists and for any a 2 Lr, the solution of the PRFMNTP
converges to �r.

In particular, PRFMNTP entrains to the periodic excitations in the parameters.
As an additional point, if we examine the RFMNTP model for vehicular traffic
between two cities, it enables a continuous flow of traffic while coordinating with
the traffic lights. In simpler terms, when the traffic lights (rates) change periodically,
the traffic density (state variables) will gradually settle into a recurring pattern with
the same period. The following example illustrates the dynamic behavior of the
PRFMNTP model.

Example 7.3.2. Consider a PRFMNTP with m = 1 RFMX with dimension `1 = 3

and n = 1 RFMY with dimensions p1 = 2. Assume that �1
0 = 0.8, �1

1 = 3,
�1
2 = 3 + 2 sin(2⇡t), �1

3 = 3 � 2 sin(2⇡t), ⌘10 = 1.2, ⌘11 = 4 � 2 sin(2⇡t), ⌘12 = 1,
G1(z1) = z1, and H1(z2) = z2. Let initial condition be xi

j
= 0, yi

j
= 0, z1(0) = 0 and

z2(0) = 1. Note that all the parameters are periodic with a common period T = 1.
It can be seen in Fig. 7.4 that every trajectory converges to a periodic function with
period one.

7.3.6 Effect of parameters

In this subsection, we analyze the effect of change in parameters on the network
using a theoretical framework that is well explained through simple examples.
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Figure 7.4: Trajectories of the PRFMNTP in Example 7.3.2 as a function of time.
Each state variable converges to a periodic solution having period one.

Without loss of generality, we analyze the effect of change in the transition
rate at a single site of an RFMX on the steady-state point of the network and
presume that the change is in one of the transition rates in the RFMX #1. Let
� := [�1

0 · · ·�1
`1

�2
0, · · ·�2

`2
· · ·�m

0 · · ·�m

`m
] and ⌘ := [⌘10 · · · ⌘1p1 ⌘20 · · · ⌘2p2 · · · ⌘

n

0 · · · ⌘npn ].

Theorem 7.3.3. Consider an RFMNTP with m RFMXs having dimensions
`1, `2, . . . , `n and n RFMYs having dimensions p1, p2, . . . , pn. Let P = [� ⌘]0 denote
the set of all parameters of the RFMNTP. Fix r > 0 and let e denote the unique
steady-state point of the RFMNTP in the level set Lr of Q. Pick k 2 {0, 1, . . . , `1}
and suppose that we modify �1

k
to �̄1

k
with �1

k
< �̄1

k
. Let ē denote the steady-state

point in the new RFMNTP. Then

ē1
xk

< e1
xk

and e1
xj

< ē1
xj

for all j 2 {k + 1, . . . , `1}. (7.22)

Also, either one of the following cases holds:

1. ez1 < ēz1, ez2 < ēz2, eixj
< ēi

xj
for all i 2 {2, 3, . . . ,m}, j 2 {1, 2, . . . , `i} and

ei
yj
< ēi

yj
for all i 2 {1, 2, . . . , n}, j 2 {1, 2, . . . , pi}.

2. ēz1 < ez1, ez2 < ēz2, ēixj
< ei

xj
for all i 2 {2, 3, . . . ,m}, j 2 {1, 2, . . . , `i} and

ei
yj
< ēi

yj
for all i 2 {1, 2, . . . , n}, j 2 {1, 2, . . . , pi}.

3. ēz1 < ez1, ēz2 < ez2, ēixj
< ei

xj
for all i 2 {2, 3, . . . ,m}, j 2 {1, 2, . . . , `i} and

ēi
yj
< ei

yj
for all i 2 {1, 2, . . . , n}, j 2 {1, 2, . . . , pi}.

4. ez1 = ēz1, ez2 < ēz2, eixj
= ēi

xj
for all i 2 {2, 3, . . . ,m}, j 2 {1, 2, . . . , `i} and

ei
yj
< ēi

yj
for all i 2 {1, 2, . . . , n}, j 2 {1, 2, . . . , pi}.
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5. ēz1 < ez1, ez2 = ēz2, ēixj
< ei

xj
for all i 2 {2, 3, . . . ,m}, j 2 {1, 2, . . . , `i} and

ei
yj
= ēi

yj
for all i 2 {1, 2, . . . , n}, j 2 {1, 2, . . . , pi}.

Clearly, the above theorem lists all the possible cases of the effect of modifying
the transition rate �1

k
on the steady-state densities of the remaining RFMXs, all the

RFMYs, and the pools. However, it does not give any information on the modified
steady-state densities in sites {1, . . . , k � 1} of RFMX #1. Note that the theorem
also exhibits how the output rates in all the RFMXs and RFMYs change. The next
example demonstrates the scenario when modifying a slow site increases the output
rates of all lanes.

Example 7.3.3. Consider an RFMNTP with m = 1 RFMX with dimension `1 = 10

and n = 2 RFMYs with dimensions pi = 5 for i = 1, 2. Assume that �1
j
= 1 for i = 1,

j = 1, 2, . . . , `i, ⌘ij = 1 for i = 1, 2 and j = 1, 2, . . . , pi, G1(z1) = z1, and Hi(z2) = z2

for i = 1, 2. Let initial point is xi

j
= 0, yi

j
= 0, z1(0) = 0.2 and z2(0) = 0.2. We

simulate the system until steady-state for a range of values of �1
5. It can be seen in

Fig. 7.5a that we have ez1 < ēz1 and ez2 < ēz2 . Note that when �1
5 is small it is the

only bottleneck rate in the RFMX and increasing it allows more particles to traverse
RFMX more quickly. Hence, this increases the output flow rate of the RFMX, and
subsequently, the Pool II density increases. This further increases the output rates
of all the RFMYs and thus increases the Pool I density.

It has been previously reported that due to environmental change, stress
conditions, or pathological conditions, there could be particle stalling leading to
an increase in a traffic jam in a track resulting in a decrement in output rates of
other tracks [49]. However, in our model, resource sharing is based on the concept
that the entry rate is impacted by the neighboring particles and this can lead to
both effects: a decrease in output rates from some of the tracks and an increase in
output rates from others. The next example demonstrates this.

Example 7.3.4. Consider an RFMNTP with m = 1 RFMX with dimension `1 = 20

and n = 1 RFMY with dimension p1 = 10. Assume that �1
j
= 1 for i = 1,

j = 1, 2, . . . , `i except �1
7 = 0.1, ⌘i

j
= 1 for i = 1 and j = 1, 2, . . . , pi, G1(z1) = z1,

and H1(z2) = z2. Consider an initial condition xi

j
= 0, yi

j
= 0, z1(0) = 4 and

z2(0) = 4. We simulate the system until steady-state for a range of values of �1
5. It

can be seen in Fig. 7.5b that we have ēz1 < ez1 and ez2 < ēz2 . This can be explained
as follows. Note that, when �1

7 is the bottleneck rate in the RFMX, increasing �1
5

only generates more traffic jams along RFMX. This depletes the Pool I density.
However, in this case, the number of particles increases on the RFMX and thus
the output flow rate of the RFMX increases, and subsequently, the Pool II density
increases.
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The following example exhibits the scenario in which increasing any of the
transition rates in a specific lane yields an increase in the output rate of this lane,
and the output rates in the other lanes all decrease.

Example 7.3.5. Consider an RFMNTP with m = 2 RFMX with dimensions `1 =

10, `2 = 5 and n = 2 RFMYs with dimensions pi = 5 for i = 1, 2. Assume that �i

j
= 1

for i = 1, 2, j = 1, 2, . . . , `i, ⌘ij = 1 for i = 1, 2 and j = 1, 2, . . . , pi, Gi(z1) = z1, and
Hi(z2) = z2 for i = 1, 2. Consider an initial condition xi

j
= 0, yi

j
= 0, z1(0) = 4

and z2(0) = 4. We simulate the system until steady-state for a range of values of
�1
5. It can be seen in Fig. 7.5c that we have ēz1 < ez1 and ēz2 < ez2 . This can be

understood by the following explanation. Increasing �1
5 leads to the formation of

traffic jams along RFMX #1 due to the bottleneck rate �1
7. This depletes Pool I

and decreases the output rate of RFMX #2. So, there is a trade-off between the
output values of both RFMXs i.e., whether the rate of increment of the output of
RFMX #1 is higher than the rate of decrement of RFMX #2. Depending upon
the parameters of the RFMNTP, it can be seen in Fig. 7.5c that Pool II density
decreased due to the overall decrease in the total output rates from both RFMXs.
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Figure 7.5: The steady-state pool densities for various values of transition rate �1
5 in

the RFMX #1 of the RFMNTP considered in (a) Example 7.3.3 (b) Example 7.3.4
(c) Example 7.3.5.

The next result provides specific information for the case when there is a single
RFMX in the network.

Corollary 7.3.3.1. Consider an RFMNTP with m = 1 RFMX and n RFMYs.
Pick k 2 {0, 1, . . . , `1} and suppose that �1

k
is changed to �̄1

k
with �1

k
< �̄1

k
. Then

ē1
xk

< e1
xk

and e1
xj

< ē1
xj

for all j 2 {k + 1, . . . , `1}, (7.23)

ez2 < ēz2 , and ei
yj
< ēi

yj
for all i 2 {1, 2, . . . , n}, j 2 {1, 2, . . . , pi}. (7.24)

The following result implies that we can study steady-state properties of a
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network of m identical RFMXs and m identical RFMYs by a much simpler network
consisting of only a single RFMX and a single RFMY.

Proposition 7.3.3. Consider the following two RFMNTPs:
(a) An RFMNTP with m identical RFMXs each having length `, rates �0,�1 . . . ,�`

and m identical RFMYs each having length p, rates ⌘0, ⌘1 . . . , ⌘p. Let the output
function G of Pool I and H of Pool II be homogeneous functions of degree 1. Let
r > 0 be the total density of particles in the network and e denote its steady-state
point.
(b) An RFMNTP with a single RFMX of length `, rates (m�0),�1 . . . ,�` and a single
RFMY of length p, rates (m⌘0), ⌘1 . . . , ⌘p. Let the output function G of Pool I and
H of Pool II be homogeneous functions of degree 1. Let r/m be the total density of
particles in the network and ẽ = [ẽx1 ẽx2 · · · ẽx`

ẽy1 ẽy2 · · · ẽyp ẽz1 ẽz2 ]
0 denote its

steady-state point.
Then we have

ei
xj

= ẽxj for all i = 1, 2, . . . ,m, j = 1, 2, . . . `, (7.25)

ei
yj
= ẽyj for all i = 1, 2, . . . ,m, j = 1, 2, . . . p, (7.26)

and
ez1 = mẽz1 and ez2 = mẽz2 . (7.27)

7.3.7 Mapping of the RFMNP to RFMNTP

In this section, we show that the RFMNP is a special case of our model RFMNTP.
The RFMNP has been used for analyzing the competition of ribosomes in the
translation process. It assumes that the ribosomes that are located far away will
also impact the initiation rates of the mRNAs and therefore include several RFMs
interconnected via a single pool of free particles. All the RFMs feed the pool and
the pool feeds the entry locations in all the RFMs. In this section, we show that
the model RFMNP can be studied by the model RFMNTP i.e., we can construct
the model RFMNP through RFMNTP as illustrated in the next paragraph.

Consider an RFMNP having m RFMs with dimensions `i, rates �i

j
, state

variables xi

j
, a pool with density z, and the first integral having value (1/2)Q(0).

Construct an RFMNTP having m RFMXs and m RFMYs with the assumption
`i = pi for all i = 1, 2, . . . ,m, �i

j
= ⌘i

j
for all i = 1, 2, . . . ,m, j = 0, 1, . . . , `i, Gi = Hi

for each i = 1, 2 . . . ,m and having the first integral Q(0). We shall show that both
Pool I and Pool II steady-state density value is the same i.e., ez1 = ez2 . Suppose on
the contrary ez1 < ez2 . Note that Gi is well defined and strictly increasing function
and this implies Gi(ez1) < Gi(ez2) for all i. Since each RFMY is a copy of an
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RFMX, respectively, therefore, we have ei
x`i

< ei
y`i

for all i and this implies that
P

m

i=1 �
i

`i
(ei

y`i
� ei

x`i
) > 0 which is a contradiction to Eq. (7.17) in our case. Hence,

ez1 = ez2 which implies that the steady-state densities of each RFMX #i are the
same as of each RFMY #i, respectively. Therefore, our system becomes equivalent
to the given one-pool network RFMNP.

7.3.8 Monte Carlo simulations(MCs)

It has been shown that RFM and Monte Carlo simulations (TASEP with parallel
update rule) provide highly correlated predictions for a large set of parameters [38].
In this section, we compare the steady states of the RFMNTP with the Monte Carlo
simulations. This supports the modeling of the network of RFMs with two pools.

We validate our model by performing Monte Carlo simulations with a parallel
update scheme. Each site is occupied with atmost one particle and the particle
advances to the consecutive site if it is time to hop. The hopping times between
consecutive sites of lanes receiving inputs from Pool I is exponentially distributed
with parameters �i

1,�
i

2, . . . ,�
i

`i
, i.e., the next hopping time at site j of lane i is

t + e(�i

j
) where t is the current time and e(�i

j
) is randomly generated from the

exponential distribution with mean parameter �i

j
and the hopping time for the

particle to hop to site 1 of lane i is calculated as t + e(�i

0Gi(z1)) where z1 is the
number of particles present in Pool I at time t. Similarly, the hopping times between
consecutive sites of lanes receiving inputs from Pool II are exponentially distributed
with parameters ⌘i1, ⌘

i

2, . . . , ⌘
i

pi
the hopping time for the particle to hop to site 1 of

lane i is calculated as t+ e(�i

0Hi(z2)) where z2 is the number of particles present in
Pool II at time t. A simulation begins with an empty chain with all the particles
distributed arbitrarily in the pools and continues for 107 time steps. After removing
the initial 104 steps from the calculation, the steady-state density of each site is
calculated as the number of time steps it was occupied divided by the overall
simulation runtime. In the example below, we show that simulations match the
model RFMNTP.

Example 7.3.6. Consider an RFMNTP with m = 2 RFMXs having dimensions
`1 = 10, `2 = 15, n = 1 RFMY having dimension p1 = 15, �i

0 = 1, �1
j
= 1 + ✓j,

where ✓j is a random variable uniformly distributed in the interval (0, 1), �2
j
= 2+✓j,

⌘10 = 1, ⌘1
j
= 5 + ✓j, Gi(z1) = z1, Hi(z2) = z2, and first integral having value 7. It

can be observed in Fig. 7.6 that the steady-state density profile of the RFMNTP
and the Monte Carlo simulations match well with each other.
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Figure 7.6: The steady-state density as a function of the site number for RFMXs
and RFMYs in the RFMNTP in Example 7.3.6. Solid lines and symbols denote
numerically simulated RFMNTP and Monte Carlo simulations, respectively.

7.4 Analyzing a network with multiple pools

Consider a network consisting of M pools and N RFMs having interconnections
via the pools. One can extend the analysis done in the section §7.3.1 to show that
the network admits a continuum of steady-state points. The following example
demonstrates the dynamic behavior of the network with three pools.

Example 7.4.1. Consider a network of three RFMs, each with dimension 2, having
three pools. Suppose RFM #1 receives its input from Pool #1 and supplies its
output to Pool #2, RFM #2 receives its input from Pool #2 and supplies its output
to Pool #3, and RFM #3 receives its input from Pool #3 and supplies its output
to Pool #1. Assume that �1

0 = 0.8, �1
1 = 1, �1

2 = 2, �2
0 = 1, �2

1 = 1.2, �2
2 = 0.1,

�3
0 = 0.1, �3

1 = 0.5, �3
2 = 1, G1(z1) = tanh(z1), G2(z2) = tanh(z2), and G3(z3) =

z3. There exist an unique equilibrium point e in L4 and after calculation we have
e = [0.09514 0.04541 0.8249 0.9082 0.1998 0.0908 0.12613 0.5745 1.1350]0.
Figures 7.7a and 7.7b depict trajectories of RFMNTP for initial conditions in the
level set L4: [0.5 0.5 0.5 0.5 0.5 0.5 0 0 1]0 and [0 0 0 0 0 0 1.5 1.5 1]0, respectively.
It can be observed that each of these trajectories converges to e.

Next, we understand the effect of modifying a transition rate of a site in an RFM
on the entire network by analyzing the steady-state densities.
Eq. (7.4) at steady-state e is given as:

�k

0Gk(ezj)(1� ek
x1
) = �k

1e
k

x1
(1� ek

x2
) = · · · = �k

nk
ek
xnk

. (7.28)
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Figure 7.7: Trajectories of the network with three pools in Example 7.4.1: (a)
For initial condition [0.5 0.5 0.5 0.5 0.5 0.5 0 0 1]0 and (b) For initial condition
[0 0 0 0 0 0 1.5 1.5 1]0.

Eq. (7.5) at steady-state e is given as

X

k02I0

�k
0

nk0
ek

0

xnk0
=

X

k2I

�k

0Gk(ezj)(1� ek
x1
). (7.29)

Rewriting the above equation we get,

X

k02I0

�k
0

nk0
ek

0

xnk0
=

X

k2I

�k

nk
ek
xnk

. (7.30)

WLOG, we assume that Pool #1 is feeding the RFM #1 and there is an increment
in the rate �1

k
of RFM #1. Let ē represent the steady state of the modified

network. Then by arguing similarly as in the proof of the Theorem 7.3.3, we get
the information that ē1

xk
< e1

xk
and e1

xj
< ē1

xj
for all j 2 {k + 1, . . . , n1}. The

steady-state densities of the RFMs and the pools associated directly with Pool #1

follow the cases mentioned in the Theorem 7.3.3 depending on the various parameter
values. The change in the steady-state densities of the other pools depends on the
total input it is receiving from the RFMs and can be analyzed through Eq. (7.30).
Also, the case when ez1 < ēz1 and ēzj < ezj for any j 2 {1, 2, . . . ,M} is not possible
as argued in Theorem 7.3.3. This is a brief outline to gain an understanding of how
the network with multiple pools behaves as the exact scenario will be more clear
when we know the interconnections between the RFMs via the pools.

In order to verify that the high correlation between the model and Monte Carlo
simulations holds for a large set of parameters, we ran 250 tests, wherein each test
a new set of rates are drawn randomly.
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Example 7.4.2. Consider a network with M = 3 pools and N = 3 RFMs having
dimensions n1 = 20, n2 = 30, n3 = 40, where RFM #1/RFM #2/RFM #3 receives
its input from Pool #1/Pool #2/Pool #3 and supplies its output to Pool #2/Pool
#3/Pool #1. Assume that �i

0 = 1, �1
j
= 0.5+✓j, �2

j
= 2+✓j, �3

j
= 1+✓j where ✓j is

a random variable uniformly distributed in the interval (0, 1), Gi(zj) = zj, and first
integral having value 6. Fig. 7.8 depicts the correlations between the steady-state
mean densities (⇢) of the RFMs and the steady-state mean densities (�) calculated
through Monte Carlo simulations. It can be seen that the correlation between the
two is high (r ' 0.919633).

0.0632 0.0633 0.0634 0.0635 0.0636 0.0637 0.0638 0.0639
0.0631

0.0632

0.0633

0.0634

0.0635

0.0636

0.0637

0.0638

Figure 7.8: Steady-state mean densities (numerically simulated ⇢ and Monte Carlo
simulated �) , and the corresponding Pearson’s correlation coefficient r and p-value
in Example 7.4.2.

7.5 Discussion

Various transport phenomena involve the movement of particles along some tracks,
for example, there is movement of RNA polymerases along DNA molecules,
movement of ribosomes along mRNA molecules, motor proteins move along
microtubules in order to transport cargo from one location to another, data packets
move along buffers, there is the movement of vehicles along roads and many more.
In all these systems, the particles are moving on a network of interconnected lanes in
several transport systems. A common attribute in such phenomena is the presence of
finite resources generating a closed network. The RFM was developed for analyzing
the excluded flow of particles along a one-dimensional isolated track and it provides
a useful and versatile modeling component that helps to understand the complex
networks of the cellular as well as physical processes.
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The network models consisting of a single pool are used to describe the behavior
of the system when the particles are distributed uniformly throughout the system.
These single-pool models, however, do not take into account the distribution of
particles in a local neighborhood and hence are not been able to model the movement
of resources between different pools, for instance, the movement of cars (resources)
between the two cities (pools). We introduced a new network model, RFMNTP,
composed of several RFMs that focused on analyzing how the network behaves
when only the nearby resources impact the entry rates of its target. The RFMNTP
is a closed network consisting of RFMs strategically connected to two pools such
that Pool I (Pool II) feeds the input of some of the RFMs (remaining RFMs) and
the output of them is fed into Pool II (Pool I). In other words, the first sites of some
of the lanes and the last sites of the remaining lanes are connected to the same pool.

Understanding the stability of a system is a fundamental and foremost aspect
of analyzing systems in various fields of study. In this context, it is important to
understand the stability of our network to predict its long-term behavior. We prove
that the RFMNTP is a cooperative irreducible dynamical system that admits a
non-trivial first integral and thus enjoys several dynamical properties. In particular,
The RFMNTP admits a continuum of steady-state points and it entrains to periodic
excitations in the parameters. Our theoretical analysis shows that an increase in
the transition rate of a site in an RFM has a non-trivial effect on the output rates of
the other RFMs. It can lead to any of the scenarios: the output rate of all the other
RFMs increase or decrease; an increase in output rates of some of the RFMs and a
decrease in output rates of the other RFMs. The specific outcome can be predicted
by simulating the RFMNTP.

A noteworthy observation is that there could be a simultaneous increase in the
output rates of some of the RFMs and a decrease in the output rates of the other
RFMs. In the previous network model [49], we have seen that an increase in a
transition rate in an RFM in the presence of a bottleneck rate leads to a decrease
in the output rate of the other RFMs, whereas we can see in Example 3.4 that this
may not hold due to aspect of local sharing of particles incorporated through two
pools. Next, we have illustrated how to gain an understanding of how the changes
in an RFM affect other RFMs and the overall behavior of the network with multiple
pools.

The model described here can be generalized to capture more complicated
features. For example, the output of the shorter lanes can be fed back into the
same pool. This phenomenon may be studied by adding its output rate to the same
pool. The RFM also provides an analytical framework for modeling and analyzing
linear communication networks [45]. In this context, the moving particles are data
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packets, the chain of sites is a one-dimensional chain of ordered buffers, and the
decreasing entry rate to a fuller buffer represents a kind of decentralized backpressure
flow control. Another research direction is to analyze networks, comprising multiple
flows that share common nodes, using a set of interconnected RFMs, constraining
the link capacities in the communication networks. An applicability of our model
can be to analyze a network topology where a common source node is linked to
several chains of ordered buffers. The output of these chains at the destination node
can be a source node for other sets of chains of ordered buffers and so on. One
may also generalize RFMNTP by considering nearest-neighbor interactions in the
network as seen in molecular motor traffic. Another interesting direction is to try
and validate our predictions about the local behavior of the cellular environment
experimentally.

7.6 Appendix: Proofs

Proof of Proposition 7.3.2: For simplicity, we consider RFMNTP with one RFMX
and one RFMY. Let x1

j
:= xj and y1

j
:= yj. Also, let x0 := z1, x`+1 := z2,

x`+j+1 := yj for j = 1, 2, . . . , p and x�1 := x`+p+1. We now show that the system with
state-variables x0, . . . , x`+p+1 satisfies the cyclic boundary-repelling (CBR) property
described in Chapter 1 (i.e., for any � > 0 and any sufficiently small 4 > 0,
9 P = P (�,4) > 0 such that for each k = 1, . . . , ` + p + 1 and each t � 0 the
condition xk(t)  4 and xk�1(t) � � implies that ẋk � P ).

For k = 0, we have ẋ0 = ⌘px`+p+1 � �0G(x0)(1 � x1) � ⌘p� � �0G(4)(1 � x1),
and we have G(0) = 0, G is a continuous function and thus ẋ0 � ⌘p�/2 for all 4 > 0

sufficiently small.

Now for k = 1, we have ẋ1 = �0G(z1)(1� x1)� �1x1(1� x2) � �0G(�)(1�4)�
�14(1� x2), so ẋ1 � �0G(�)/2 for all 4 > 0 sufficiently small.

For k 2 {2, . . . , `}, we have ẋk = �k�1xk�1(1 � xk) � �kxk(1 � xk+1) � �k�(1 �
4)� �k4(1� xk+1), and therefore ẋk � �k�/2 for all 4 > 0 sufficiently small.

For k = `+1, we have ẋ`+1 = �`x`�⌘0H(x`+1)(1�x`+2) � �`��⌘0H(4)(1�x`+2),
and we have H(0) = 0, H is a continuous function and thus ẋ`+1 � �`�/2 for
all 4 > 0 sufficiently small.

Now for k = ` + 2, we have ẋ`+2 = ⌘0H(z2)(1 � x`+2) � ⌘1x`+2(1 � x`+3) �
⌘0H(�)(1�4)� ⌘14(1�x`+3), so ẋ`+2 � ⌘0H(�)/2 for all 4 > 0 sufficiently small.

For k 2 {`+ 3, . . . , `+ p+ 1} we have ẋk = ⌘k�1xk�1(1� xk)� ⌘kxk(1� xk+1) �
⌘k�(1 � 4) � ⌘k4(1 � xk+1) , and therefore ẋk � ⌘k�/2 for all 4 > 0 sufficiently
small. Thus, the RFMNTP satisfies CBR.
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Also, observe that that if xk(t) > 0 and t > 0 then xk(T ) > 0 for all T � t. It
now follows from the result [Lemma 1] on repelling boundaries and persistence in
Ref. [49]) that for any ⌧ > 0 there exists ✏1(⌧) > 0, with ✏1(⌧) ! 0 as ⌧ ! 0, such
that for any non-zero initial condition and any t � ⌧ the solution of the RFMNTP
satisfies

✏1  xi(t), for all i 2 {0, . . . , `+ p+ 1}. (7.31)

For the other part of the equality, define ui(t) := 1� x`+1�i(t) for i = 1, 2, . . . , `

and vi(t) := 1� yp+1�i(t) for i = 1, 2, . . . , p. From Eq. (7.31), we have z1 � ✏1 and
z2 � ✏1 for all t � ⌧ . Note that the system with state variables u1, u2, . . . , u`

are an RFM having time-varying exit rate �0G(z1) and the system with state
variables v1, v2, . . . , vp are an RFM having time-varying exit rate ⌘0H(z2). Therefore,
9 ✏2(⌧) > 0 and ✏3(⌧) > 0 such that any t � ⌧ , we have ✏2  ui(t), for all i 2
{1, . . . , `} and ✏3  vi(t), for all i 2 {1, . . . , p}. Combining this with the definition
of ui and vi completes the proof.

Proof of Theorem 7.3.1: We have that the RFMNTP is a cooperative
irreducible system on int(B) with a non-trivial first integral. Combining this with
Proposition 7.3.2 and the results in Ref. [153][see Theorems 10 and 11] completes
the proof of this theorem.

Proof of Theorem 7.3.2: From the Proposition 7.3.2, it follows that �r 2 int(B)
and the results in Ref. [143] [see Theorem 3.1] prove this theorem.

Proof of Theorem 7.3.3: At steady-state we have

mX

i=1

`iX

j=1

ei
xj
+

nX

i=1

piX

j=1

ei
yj
+ ez1 + ez2 = r (7.32)

and this also holds for the modified network since the initial condition is the same
i.e.,

mX

i=1

`iX

j=1

ēi
xj
+

nX

i=1

piX

j=1

ēi
yj
+ ēz1 + ēz2 = r. (7.33)

Pick k 2 {1, 2, . . . , `1 � 1}. Let us assume that

ē1
x`1

 e1
x`1

. (7.34)

Then the Eq. (7.14) implies that

�1
`1�1ē

1
x`1�1

(1� ē1
x`1

)  �1
`1�1e

1
x`1�1

(1� e1
x`1

). (7.35)
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From Eq. (7.34), the above equation implies that ē1
x`1�1

 e1
x`1�1

. Continuing this
way, we have

ē1
xj

 e1
xj

for all j = k + 1, k + 2, . . . , `j. (7.36)

Now, from Eq. (7.14) consider

�̄1
k
ē1
xk
(1� ē1

xk+1
)  �1

k
e1
xk
(1� e1

xk+1
). (7.37)

We have �1
k
< �̄1

k
, thereby Eq. (7.37) implies that

�̄1
k
ē1
xk
(1� ē1

xk+1
) < �̄1

k
e1
xk
(1� e1

xk+1
). (7.38)

which implies ē1
xk

< e1
xk

. From Eq. (7.14) we have

�1
k�1ē

1
xk�1

(1� ē1
xk
) < �1

k�1e
1
xk�1

(1� e1
xk
). (7.39)

Now, since ē1
xk

< e1
xk

, we must have ē1
xk�1

< e1
xk�1

. Continuing in this way, we get

ē1
xj

< e1
xj

for all j = 1, 2, . . . , k � 2. (7.40)

This also implies that ēz1 < ez1 . Since RFMX is a monotone control system and
therefore we have

ēi
x`j

< ei
x`j

for all i = 2, 3, . . . ,m and j = 1, 2, . . . , `i. (7.41)

Note that all the RFMYs are interconnected through the pool variable z2 and hence
all are affected in the same manner. From Eqs. (7.17),(7.34) and (7.41), we have

ēi
y`j

< ei
y`j

for all i = 1, 2, . . . , n and j = 1, 2, . . . , pi. (7.42)

and this implies ēz2 < ez2 which yields the contradiction to the Eq. (7.33). Hence,
e1
x`1

< ē1
x`1

. Now if e1
xk

 ē1
xk

, this implies that ez1 < ēz1 which further implies
ei
y`j

< ēi
y`j

for all i = 1, 2, . . . , n and j = 1, 2, . . . , pi and ez2 < ēz2 . This is again
a contradiction to Eq. (7.33). Also, note that the case ez1 is increasing and ez2 is
decreasing is not possible as this will lead to the contradiction to Eq. (7.17).
Now, consider k = 0. Let us assume that

ē1
x`1

 e1
x`1

. (7.43)

Continuing as above we have

ē1
xj

 e1
xj

for all j = 1, 2, . . . , `1 � 1. (7.44)
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Now, from Eq. (7.14) consider

�̄1
0G1(ēz1)(1� ē1

x1
)  �1

0G1(ez1)(1� e1
x1
). (7.45)

We have �1
0 < �̄1

0 and thereby Eqs. (7.44) and (7.45) implies ēz1 < ez1 . Again using
the above arguments we get the contradiction to Eq. (7.43).
Now, consider k = `1. Then we have to show that ē1

x`1
< e1

x`1
. Seeking a

contradiction, assume
e1
x`1

 ē1
x`1

. (7.46)

Then Eq. (7.14) with the fact that �1
`1
< �̄1

`1
implies that

�1
`1�1e

1
x`1�1

(1� e1
x`1

) < �1
`1�1ē

1
x`1�1

(1� ē1
x`1

). (7.47)

From Eq. (7.46), the above equation implies that e1
x`1�1

< ē1
x`1�1

. Continuing this
way, we have

e1
xj

< ē1
xj

for all j = 1, 2, . . . , `1 � 2. (7.48)

This also implies that ez1 < ēz1 . Since RFMX is a monotone control system and
therefore we have

ei
x`j

< ēi
x`j

for all i = 2, 3, . . . ,m and j = 1, 2, . . . , `i. (7.49)

Note that all the RFMYs are interconnected through the pool variable z2 and hence
all are affected in the same manner. From Eqs. (7.17), (7.46), (7.49) and the fact
that �1

`1
< �̄1

`1
, we have ei

y`j
< ēi

y`j
for all i = 1, 2, . . . , n and j = 1, 2, . . . , pi. This

implies ez2 < ēz2 which yields the contradiction to the Eq. (7.33). Hence, ē1
x`1

< e1
x`1

.
This completes the proof of this theorem.

Proof of Proposition 7.3.3: The network considered in part (a) has identical
RFMXs and hence the steady-state density profile of the RFMXs are same and
similarly this holds for RFMYs. Without loss of generality, consider the steady-state
equations for the RFMX #1 in (a):

�0G(ez1)(1� e1
x1
) = �1e

1
x1
(1� e1

x2
) = · · · = �`e

1
x`
, (7.50)

and the steady-state equation for the RFMY #1 in (a) is as follows:

⌘0H(ez2)(1� e1
y1
) = ⌘1e

1
y1
(1� e1

y2
) = · · · = ⌘pe

1
yp
. (7.51)
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Similarly, the steady-state equation for RFMX in (b):

m�0G(ẽz1)(1� ẽx1) = �1ẽx1(1� ẽx2) = · · · = �`ẽx`
, (7.52)

and the steady-state equation for the RFMY in (b) is as follows:

m⌘0H(ẽz2)(1� ẽy1) = ⌘1ẽy1(1� ẽy2) = · · · = ⌘pẽyp . (7.53)

Now, consider Eqs. (7.50) and (7.52), suppose we have

�`e
1
x`

= �`ẽx`
(7.54)

=) e1
xi
= ẽxi for all i (7.55)

and also
�0G(ez1)(1� e1

x1
) = m�0G(ẽz1)(1� ẽx1) (7.56)

=) ez1 = mẽz1 . (7.57)

Similarly, we get

e1
yi
= ẽyi for all i and ez2 = mẽz2 . (7.58)

Now, the steady-state Eq. (7.12) for the network (a) is

m(e1
x1

+ e1
x2

+ · · ·+ e1
x`
) +m(e1

y1
+ e1

y2
+ · · ·+ e1

yp
) + ez1 + ez2 = r. (7.59)

By Eqs. (7.55), (7.57) and (7.58), we get

ẽx1 + ẽx2 + · · ·+ ẽx`
+ ẽy1 + ẽy2 + · · ·+ ẽyp + ẽz1 + ẽz2 = r/m. (7.60)

and this completes the proof of the proposition.
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Chapter 8

Conclusion and future scopes

Numerous cellular processes involve the transportation of particles to different
locations for material transport or cellular product synthesis. Gene translation,
a fundamental process, entails ribosomes moving along mRNA molecules to
generate functional proteins, making it one of the most energy-consuming processes.
Predicting protein synthesis rates, ribosome densities, and related parameters has
garnered significant interest among theoretical biologists. Models for translation
analysis are introduced with diverse formulations at various levels of abstraction. A
recent approach, the ribosome flow model (RFM), is a deterministic, continuous-time
mathematical model for particle interaction flow. Its advantage lies in its
amenability to rigorous mathematical analysis using systems and control theory
tools, offering an improved predictive framework for systems and synthetic biology
applications. Additionally, it finds utility in describing biological and physical
processes such as molecular motor traffic, pedestrian dynamics, and vehicular traffic
flow.

While the RFM serves as a foundational model, numerous generalizations have
been developed to incorporate observed realistic features, including interactions
between molecular motors, particle abortion along tracks, finite resource availability,
extended particle size, and various stochasticity types within cells. However,
the scope for extending these models is extensive, as several realistic features
must be integrated to deepen our understanding of the process. Motivated by
several experimentally observed features, this thesis focuses on model development
and understanding the impact of these features on system dynamics. Dynamical
properties such as invariance, persistence, stability, and entrainment are studied
within this context, employing tools from cooperative dynamical systems,
contraction theory, and random matrix theory.

8.1 Summary of results

The contents of Chapter 2 consider the variability in rates in a generalized version
of RFM, called RFMD, which incorporates feature of different site sizes. The
RFMD analyzes the motion of particles along a lattice having different size capacities



through a system of ordinary differential equations. Firstly, we analyze stochasticity
in RFMD by assuming parameters as independent and identically distributed (i.i.d.)
random variables. In this context, we prove that given a constant homogeneous site
size [transition rate] as the dimension of the RFMD increases, the steady-state flow
rate depends only on the size [rate] and the minimal value of the random variables
modeling the transition rates [size sites]. Furthermore, in the case of finite dimension,
the bounds for the steady-state flow rate are provided when transition rates [site
sizes] are drawn from i.i.d. random variables and also in the most general case when
the transition rates or site sizes are drawn from different distributions.

The next model introduced in Chapter 3 is a deterministic framework to study
cellular phenomena involving interacting particles and is called the excluded flow of
extended interacting objects with drop-off effect (EFEIOD). This model incorporates
many biologically observed features including extended length of the particles,
nearest-neighbor interactions, and the fact that particles can detach along the lattice.
Using tools from contraction theory, we show that the model admits a unique steady
state and entrains to periodic excitations in the parameters. Simulations of the
EFEIOD demonstrate several useful observations. For instance, in the presence
of weak repulsions, increasing the length of the particles can increase the output
rate. Another observation is that an increase in detachment rates can increase the
output rate. In the absence of interactions, we analyze the effect of parameters
on the output rate through a theoretical framework and prove that increasing
transition [detachment] rates always increase the output rate. In this context further,
we consider the model as a control system after introducing two parameters that
represent the constant input source and recycling rate of particles, respectively. It
has been shown that increasing any of these parameters leads to an increase in the
output rate.

Next, Chapter 4 addresses the biological phenomenon of abortions of ribosomes
due to collision mechanisms in the gene translation process through a mathematical
model called ribosome flow model with extended length and abortions (RFMEOA).
It is a deterministic framework that also incorporates the fact that ribosomes cover
several codons. We show that the RFMEOA admits a unique steady-state using
tools from contraction theory. Furthermore, the effect of parameters in a special
case, in which trailing ribosomes undergo abortive termination, is investigated
through a theoretical framework. In this respect, we prove that increasing any
of the transition [detachment] rates always increases [decreases] the output rate.
Next, we observe that an increase in the initiation rate may sometimes lead to a
decrease in the output rate.

In Chapter 5, we investigate simultaneous mRNA translation in the cell through
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a mathematical network model that encapsulates important biological features such
as competition for shared resources and the possibility of attachment/detachment
of ribosomes at different sites along the mRNA. We utilize the powerful theory of
strictly cooperative dynamical systems with a first integral to prove that the model
always converges to a steady state that depends on the parameters and the total
number of ribosomes in the network. Furthermore, we study how this steady state
is affected by modifying various biological features. One of our findings is that when
the number of free ribosomes is small, increasing the drop-off rate in an mRNA
that is “jammed” by ribosomes can increase the total protein production rate in the
network. This is because the ribosomes that drop off from the jammed mRNA can
initiate translation in other mRNAs.

The contents of Chapter 6 describe two large-scale network models called
an RFMD network with a pool (RFMDNP) and a generalized network of
RFMDs (RFMDN). These models represent the fact that the entry rate of particles
into the lanes may be influenced indirectly due to finite resources or directly by
feedback/feed-forward mechanisms, respectively. We show that the RFMDNP
admits a continuum of linearly ordered steady-state points. Furthermore, an increase
in transition rates [site sizes] in an RFMD increases the output rate of this RFMD
and the output rate in other RFMDs all increase or decrease. Next, utilizing tools
from cooperative theory we show that the RFMDN is globally asymptotically stable.
Determining the interconnection weights between the RFMDs to optimize the output
rate is a convex optimization problem.

The final Chapter 7 introduces a two-pool RFM network (RFMNTP), where each
RFM competes for finite resources at nearby pools. We prove that the RFMNTP is
a cooperative irreducible dynamical system that admits a non-trivial first integral.
Our theoretical analysis shows that an increase in a transition rate of a site in an
RFM has a non-trivial effect on the output rates of the other RFMs. It can lead
to any of the scenarios: the output rate of all the other RFMs increase or decrease;
an increase in output rates of some of the RFMs; and a decrease in output rates
of the other RFMs. Simulations reveal counterintuitive results such as altering
transition rates can simultaneously increase the output of some of the RFMs while
decreasing another. This emphasizes the non-trivial role of local particle sharing.
Finally, these analyses have been extended to understand the network of RFMs with
multiple pools.
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8.2 Future scopes

Integration of the ribosome flow model into systems biology frameworks can
enhance predictive modeling of cellular behavior. By incorporating ribosome
dynamics into mathematical models of cellular processes, researchers can gain a more
comprehensive understanding of cellular function and behavior. Advancements in
experimental techniques such as single-molecule imaging, ribosome profiling, and
high-throughput sequencing provide opportunities to validate the RFM and its
generalizations.

There are many open problems related to RFM dynamics. One can formulate
a more sophisticated mathematical model taking into account the programmed
frameshifting of ribosomes while moving along an mRNA template. In the
RFM, it has been shown that the steady-state output rate is related to the
maximal eigenvalue of a certain matrix with elements that are transition rates
of the ribosomes. An intriguing avenue of investigation involves determining if
RFMLK can similarly be analyzed using a linear algebraic methodology. One can
further generalize the RFMD model to capture more complicated features such as
attachment/detachment of particles.

Another possible avenue for further research is modeling a generalized network
of RFMs incorporating the feature of attachment/detachment of ribosomes. Prior
network models primarily adjusted the entry rate of particles based on pool
occupancy, leaving exit rates unchanged. Exploring this direction entails formulating
a model to examine network dynamics when RFM outflow to the pool is constrained
by pool capacities. Another research problem is assessing the impact of abortive
termination on overall production rates across the system. This analysis could
be pursued by integrating resource competition phenomena within the RFMEOA
framework.

In conclusion, the ribosome flow model holds promise for advancing our
understanding of protein synthesis dynamics, gene expression regulation, and
cellular behavior. Its future scope encompasses diverse areas of research with the
potential to impact various fields and contribute to the development of new therapies
and biotechnologies.

198



References

[1] Francis Crick. Central dogma of molecular biology. Nature, 227(5258):561–563,
1970.

[2] B Alberts, A Johnson, J Lewis, M Raff, K Roberts, and P Walter. Molecular
biology of the cell, 5th edn, garland science, new york. ISBN, 1174808063:
1392, 2007.

[3] Lee D Kapp and Jon R Lorsch. The molecular mechanics of eukaryotic
translation. Annual review of biochemistry, 73(1):657–704, 2004.

[4] Jonathon Howard. Mechanics of motor proteins. In Physics of bio-molecules
and cells. Physique des biomolécules et des cellules: session LXXV. 2–27 July
2001, pages 69–94. Springer, 2002.

[5] Debashish Chowdhury, Ludger Santen, and Andreas Schadschneider.
Statistical physics of vehicular traffic and some related systems. Physics
Reports, 329(4-6):199–329, 2000.

[6] Abbas El Gamal and Young-Han Kim. Network information theory.
Cambridge university press, 2011.

[7] Marina Chekulaeva and Markus Landthaler. Eyes on translation. Molecular
cell, 63(6):918–925, 2016.

[8] Joshua W Shaevitz, Elio A Abbondanzieri, Robert Landick, and Steven M
Block. Backtracking by single rna polymerase molecules observed at
near-base-pair resolution. Nature, 426(6967):684–687, 2003.

[9] Evgeny Nudler. Rna polymerase backtracking in gene regulation and genome
instability. Cell, 149(7):1438–1445, 2012.

[10] Yoav Arava, Yulei Wang, John D Storey, Chih Long Liu, Patrick O Brown,
and Daniel Herschlag. Genome-wide analysis of mrna translation profiles in
saccharomyces cerevisiae. Proceedings of the National Academy of Sciences,
100(7):3889–3894, 2003.

[11] Ada Yonath. Ribosomes: ribozymes that survived evolution pressures but is
paralyzed by tiny antibiotics. In Macromolecular Crystallography: Deciphering
the Structure, Function and Dynamics of Biological Molecules, pages 195–208.
Springer, 2011.

199



[12] Stefan Klumpp and Terence Hwa. Traffic patrol in the transcription of
ribosomal rna. RNA biology, 6(4):392–394, 2009.

[13] Cécile Leduc, Kathrin Padberg-Gehle, Vladimir Varga, Dirk Helbing, Stefan
Diez, and Jonathon Howard. Molecular crowding creates traffic jams of kinesin
motors on microtubules. Proceedings of the National Academy of Sciences, 109
(16):6100–6105, 2012.

[14] Manfred Schliwa and Günther Woehlke. Molecular motors. Nature, 422(6933):
759–765, 2003.

[15] Jonathan R Warner and Kerri B McIntosh. How common are extraribosomal
functions of ribosomal proteins? Molecular cell, 34(1):3–11, 2009.

[16] Jennifer L Ross. The impacts of molecular motor traffic jams. Proceedings of
the National Academy of Sciences, 109(16):5911–5912, 2012.

[17] Scott A Small, Sabrina Simoes-Spassov, Richard Mayeux, and Gregory A
Petsko. Endosomal traffic jams represent a pathogenic hub and therapeutic
target in alzheimer’s disease. Trends in neurosciences, 40(10):592–602, 2017.

[18] Reinhart Heinrich and Tom A Rapoport. Mathematical modelling of
translation of mrna in eucaryotes; steady states, time-dependent processes
and application to reticulocytest. Journal of theoretical biology, 86(2):279–313,
1980.

[19] Alexandra Dana and Tamir Tuller. Efficient manipulations of synonymous
mutations for controlling translation rate: an analytical approach. Journal of
Computational Biology, 19(2):200–231, 2012.

[20] Tobias von der Haar. Mathematical and computational modelling of ribosomal
movement and protein synthesis: an overview. Computational and structural
biotechnology journal, 1(1):e201204002, 2012.

[21] Yun-Bo Zhao and J Krishnan. mrna translation and protein synthesis: an
analysis of different modelling methodologies and a new pbn based approach.
BMC systems biology, 8:1–24, 2014.

[22] Debashish Chowdhury, Andreas Schadschneider, and Katsuhiro Nishinari.
Physics of transport and traffic phenomena in biology: from molecular motors
and cells to organisms. Physics of Life reviews, 2(4):318–352, 2005.

[23] Richard A Blythe and Martin R Evans. Nonequilibrium steady states of
matrix-product form: a solver’s guide. Journal of Physics A: Mathematical
and Theoretical, 40(46):R333, 2007.

200



[24] Shlomit Edri, Eran Gazit, Eyal Cohen, and Tamir Tuller. The rna polymerase
flow model of gene transcription. IEEE Transactions on Biomedical Circuits
and Systems, 8(1):54–64, 2014.

[25] John H Lagergren, John T Nardini, G Michael Lavigne, Erica M Rutter, and
Kevin B Flores. Learning partial differential equations for biological transport
models from noisy spatio-temporal data. Proceedings of the Royal Society A,
476(2234):20190800, 2020.

[26] Jeremy Gunawardena. Models in systems biology: the parameter problem and
the meanings of robustness. Elements of computational systems biology, pages
19–47, 2010.

[27] Shankar Mukherji, Margaret S Ebert, Grace XY Zheng, John S Tsang,
Phillip A Sharp, and Alexander Van Oudenaarden. Micrornas can generate
thresholds in target gene expression. Nature genetics, 43(9):854–859, 2011.

[28] Ziv Bar-Joseph, Anthony Gitter, and Itamar Simon. Studying and modelling
dynamic biological processes using time-series gene expression data. Nature
Reviews Genetics, 13(8):552–564, 2012.

[29] Domitilla Del Vecchio, Yili Qian, Richard M Murray, and Eduardo D Sontag.
Future systems and control research in synthetic biology. Annual Reviews in
Control, 45:5–17, 2018.

[30] Carolyn T MacDonald, Julian H Gibbs, and Allen C Pipkin. Kinetics of
biopolymerization on nucleic acid templates. Biopolymers: Original Research
on Biomolecules, 6(1):1–25, 1968.

[31] Andreas Schadschneider, Debashish Chowdhury, and Katsuhiro Nishinari.
Stochastic transport in complex systems: from molecules to vehicles. Elsevier,
2010.

[32] Hadas Zur and Tamir Tuller. Predictive biophysical modeling and
understanding of the dynamics of mrna translation and its evolution. Nucleic
acids research, 44(19):9031–9049, 2016.

[33] Anatoly B Kolomeisky. Asymmetric simple exclusion model with local
inhomogeneity. Journal of Physics A: Mathematical and General, 31(4):1153,
1998.

[34] Tom Chou and Greg Lakatos. Clustered bottlenecks in mrna translation and
protein synthesis. Physical review letters, 93(19):198101, 2004.

201



[35] JiaJia Dong, Beate Schmittmann, and Royce KP Zia. Inhomogeneous
exclusion processes with extended objects: The effect of defect locations.
Physical Review E, 76(5):051113, 2007.

[36] Chris A Brackley, David S Broomhead, M Carmen Romano, and Marco Thiel.
A max-plus model of ribosome dynamics during mrna translation. Journal of
Theoretical Biology, 303:128–140, 2012.

[37] Yun-Bo Zhao and J Krishnan. Probabilistic boolean network modelling
and analysis framework for mrna translation. IEEE/ACM transactions on
computational biology and bioinformatics, 13(4):754–766, 2015.

[38] Shlomi Reuveni, Isaac Meilijson, Martin Kupiec, Eytan Ruppin, and Tamir
Tuller. Genome-scale analysis of translation elongation with a ribosome flow
model. PLoS computational biology, 7(9):e1002127, 2011.

[39] Michael Margaliot and Tamir Tuller. Stability analysis of the ribosome
flow model. IEEE/ACM Transactions on Computational Biology and
Bioinformatics, 9(5):1545–1552, 2012.

[40] Tamir Tuller, Isana Veksler-Lublinsky, Nir Gazit, Martin Kupiec, Eytan
Ruppin, and Michal Ziv-Ukelson. Composite effects of gene determinants on
the translation speed and density of ribosomes. Genome biology, 12(11):1–18,
2011.

[41] John A Jacquez and Carl P Simon. Qualitative theory of compartmental
systems. Siam Review, 35(1):43–79, 1993.

[42] Fred Brauer. Compartmental models in epidemiology. Mathematical
epidemiology, pages 19–79, 2008.

[43] J Cividini, HJ Hilhorst, and C Appert-Rolland. Exact domain wall theory for
deterministic tasep with parallel update. Journal of Physics A: Mathematical
and Theoretical, 47(22):222001, 2014.

[44] Gilad Poker, Yoram Zarai, Michael Margaliot, and Tamir Tuller. Maximizing
protein translation rate in the non-homogeneous ribosome flow model: a
convex optimization approach. Journal of The Royal Society Interface, 11
(100):20140713, 2014.

[45] Yoram Zarai, Oz Mendel, and Michael Margaliot. Analyzing linear
communication networks using the ribosome flow model. In 2015
IEEE International Conference on Computer and Information Technology;

202



Ubiquitous Computing and Communications; Dependable, Autonomic and
Secure Computing; Pervasive Intelligence and Computing, pages 755–761.
IEEE, 2015.

[46] Yoram Zarai, Michael Margaliot, and Tamir Tuller. Optimal down regulation
of mrna translation. Scientific reports, 7(1):41243, 2017.

[47] Clark Robinson. Dynamical systems: stability, symbolic dynamics, and chaos.
CRC press, 1998.

[48] Michael Margaliot, Eduardo D Sontag, and Tamir Tuller. Entrainment to
periodic initiation and transition rates in a computational model for gene
translation. PloS one, 9(5):e96039, 2014.

[49] Alon Raveh, Michael Margaliot, Eduardo D Sontag, and Tamir Tuller. A
model for competition for ribosomes in the cell. Journal of The Royal Society
Interface, 13(116):20151062, 2016.

[50] Hal L Smith. Monotone dynamical systems: an introduction to the theory
of competitive and cooperative systems: an introduction to the theory of
competitive and cooperative systems. Number 41. American Mathematical
Soc., 2008.

[51] John Smillie. Competitive and cooperative tridiagonal systems of differential
equations. SIAM journal on mathematical analysis, 15(3):530–534, 1984.

[52] Jerrold E Marsden and Anthony Tromba. Vector calculus. Macmillan, 2003.

[53] Winfried Lohmiller and Jean-Jacques E Slotine. On contraction analysis for
non-linear systems. Automatica, 34(6):683–696, 1998.

[54] Giovanni Russo, Mario Di Bernardo, and Eduardo D Sontag. Global
entrainment of transcriptional systems to periodic inputs. PLoS computational
biology, 6(4):e1000739, 2010.

[55] Zahra Aminzare and Eduardo D Sontagy. Contraction methods for nonlinear
systems: A brief introduction and some open problems. In 53rd IEEE
Conference on Decision and Control, pages 3835–3847. IEEE, 2014.

[56] Michael Margaliot, Eduardo D Sontag, and Tamir Tuller. Contraction after
small transients. Automatica, 67:178–184, 2016.

[57] David Richeson and Jim Wiseman. A fixed point theorem for bounded
dynamical systems. Illinois Journal of Mathematics, 46(2):491–495, 2002.

203



[58] LA Zadeh. Desoer, ca: Linear system theory–the state space approach, 1963.

[59] Evgeni V Nikolaev, Sahand Jamal Rahi, and Eduardo D Sontag. Subharmonics
and chaos in simple periodically forced biomolecular models. Biophysical
journal, 114(5):1232–1240, 2018.

[60] Gilad Poker, Michael Margaliot, and Tamir Tuller. Sensitivity of mrna
translation. Scientific Reports, 5(1):12795, 2015.

[61] Michael Margaliot and Tamir Tuller. Ribosome flow model with positive
feedback. Journal of the Royal Society Interface, 10(85):20130267, 2013.

[62] Yoram Zarai, Michael Margaliot, and Tamir Tuller. Maximizing protein
translation rate in the ribosome flow model: the homogeneous case.
IEEE/ACM Transactions on Computational Biology and Bioinformatics, 11
(6):1184–1195, 2014.

[63] Yoram Zarai, Alexander Ovseevich, and Michael Margaliot. Optimal
translation along a circular mrna. Scientific reports, 7(1):1–16, 2017.

[64] Michael Margaliot, Wasim Huleihel, and Tamir Tuller. Variability in mrna
translation: a random matrix theory approach. Scientific Reports, 11(1):1–14,
2021.

[65] Hubert Stanley Wall. Analytic theory of continued fractions. Courier Dover
Publications, 2018.

[66] Z Bai and Jack Silverstein. Spectral Analysis of Large Dimensional Random
Matrices. 2010. ISBN 978-1-4419-0660-1. doi: 10.1007/978-1-4419-0661-8.

[67] Yoram Zarai, Michael Margaliot, and Anatoly B Kolomeisky. A deterministic
model for one-dimensional excluded flow with local interactions. Plos one, 12
(8):e0182074, 2017.

[68] Yoram Zarai, Michael Margaliot, and Tamir Tuller. A deterministic
mathematical model for bidirectional excluded flow with langmuir kinetics.
PloS one, 12(8):e0182178, 2017.

[69] Yoram Zarai, Michael Margaliot, and Tamir Tuller. Ribosome flow model with
extended objects. Journal of The Royal Society Interface, 14(135):20170128,
2017.

[70] Eyal Bar-Shalom, Alexander Ovseevich, and Michael Margaliot. Ribosome
flow model with different site sizes. SIAM Journal on Applied Dynamical
Systems, 19(1):541–576, 2020.

204



[71] Jonathan R Warner. The economics of ribosome biosynthesis in yeast. Trends
in biochemical sciences, 24(11):437–440, 1999.

[72] Jesper Vind, Michael A Sørensen, Michael D Rasmussen, and Steen Pedersen.
Synthesis of proteins in escherichia coli is limited by the concentration of free
ribosomes: expression from reporter genes does not always reflect functional
mrna levels. Journal of molecular biology, 231(3):678–688, 1993.

[73] Gretchen A Rice, Michael J Chamberlin, and Caroline M Kane. Contacts
between mammalian rna polymerase ii and the template dna in a ternary
elongation complex. Nucleic acids research, 21(1):113–118, 1993.

[74] Michael A Gilchrist and Andreas Wagner. A model of protein translation
including codon bias, nonsense errors, and ribosome recycling. Journal of
theoretical biology, 239(4):417–434, 2006.

[75] Pierre Bonnin, Norbert Kern, Neil T Young, Ian Stansfield, and M Carmen
Romano. Novel mrna-specific effects of ribosome drop-off on translation rate
and polysome profile. PLoS computational biology, 13(5):e1005555, 2017.

[76] Christopher UT Hellen and Peter Sarnow. Internal ribosome entry sites in
eukaryotic mrna molecules. Genes & development, 15(13):1593–1612, 2001.

[77] Wouter H Roos, Otger Campas, Fabien Montel, Günther Woehlke, Joachim P
Spatz, Patricia Bassereau, and Giovanni Cappello. Dynamic kinesin-1
clustering on microtubules due to mutually attractive interactions. Physical
biology, 5(4):046004, 2008.

[78] Cecile Appert-Rolland, Maximilian Ebbinghaus, and Ludger Santen.
Intracellular transport driven by cytoskeletal motors: General mechanisms
and defects. Physics Reports, 593:1–59, 2015.

[79] Peixun Han, Yuichi Shichino, Tilman Schneider-Poetsch, Mari Mito, Satoshi
Hashimoto, Tsuyoshi Udagawa, Kenji Kohno, Minoru Yoshida, Yuichiro
Mishima, Toshifumi Inada, et al. Genome-wide survey of ribosome collision.
Cell reports, 31(5):107610, 2020.

[80] Michael A Ferrin and Arvind R Subramaniam. Kinetic modeling predicts a
stimulatory role for ribosome collisions at elongation stall sites in bacteria.
Elife, 6:e23629, 2017.

[81] Celine Sin, Davide Chiarugi, and Angelo Valleriani. Quantitative assessment
of ribosome drop-off in e. coli. Nucleic acids research, 44(6):2528–2537, 2016.

205



[82] William J Blake, Mads Kærn, Charles R Cantor, and James J Collins. Noise
in eukaryotic gene expression. Nature, 422(6932):633–637, 2003.

[83] Roger A Horn and Charles R Johnson. Matrix analysis. Cambridge university
press, 2012.

[84] Martin Haenggi. Outage, local throughput, and capacity of random wireless
networks. IEEE Transactions on Wireless Communications, 8(8):4350–4359,
2009. doi: 10.1109/TWC.2009.090105.

[85] Silvia Noschese, Lionello Pasquini, and Lothar Reichel. Tridiagonal toeplitz
matrices: properties and novel applications. Numerical linear algebra with
applications, 20(2):302–326, 2013.

[86] Nicolaas Godfried Van Kampen. Stochastic processes in physics and chemistry,
volume 1. Elsevier, 1992.

[87] Gabriella Piazzesi, Leonardo Lucii, and Vincenzo Lombardi. The size and the
speed of the working stroke of muscle myosin and its dependence on the force,
2002.

[88] Ivo A Telley, Peter Bieling, and Thomas Surrey. Obstacles on the microtubule
reduce the processivity of kinesin-1 in a minimal in vitro system and in cell
extract. Biophysical journal, 96(8):3341–3353, 2009.

[89] Hamid Teimouri, Anatoly B Kolomeisky, and Kareem Mehrabiani. Theoretical
analysis of dynamic processes for interacting molecular motors. Journal of
Physics A: Mathematical and Theoretical, 48(6):065001, 2015.

[90] Alex H Williams, Cian O’Donnell, Terrence J Sejnowski, and Timothy
O’Leary. Dendritic trafficking faces physiologically critical speed-precision
tradeoffs. Elife, 5:e20556, 2016.

[91] Tripti Midha, Luiza VF Gomes, Anatoly B Kolomeisky, and Arvind Kumar
Gupta. Theoretical investigations of asymmetric simple exclusion processes
for interacting oligomers. Journal of Statistical Mechanics: Theory and
Experiment, 2018(5):053209, 2018.

[92] Karsten Kruse and Frank Jülicher. Oscillations in cell biology. Current opinion
in cell biology, 17(1):20–26, 2005.

[93] Tamir Tuller, Yedael Y Waldman, Martin Kupiec, and Eytan Ruppin.
Translation efficiency is determined by both codon bias and folding energy.
Proceedings of the national academy of sciences, 107(8):3645–3650, 2010.

206



[94] Sumita Das, Tomoki P Terada, and Masaki Sasai. Single-molecular and
ensemble-level oscillations of cyanobacterial circadian clock. Biophysics and
physicobiology, 15:136–150, 2018.

[95] Anze Zupanic, Catherine Meplan, Sushma N Grellscheid, John C Mathers,
Tom BL Kirkwood, John E Hesketh, and Daryl P Shanley. Detecting
translational regulation by change point analysis of ribosome profiling data
sets. RNA, 20(10):1507–1518, 2014.

[96] Jeroen R Mesters, Anatolij P Potapov, J Martien De Graaf, and Barend
Kraal. Synergism between the gtpase activities of ef-tu· gtp and ef-g· gtp on
empty ribosomes: Elongation factors as stimulators of the ribosomal oscillation
between two conformations. Journal of molecular biology, 242(5):644–654,
1994.

[97] Yoram Zarai and Tamir Tuller. Computational analysis of the oscillatory
behavior at the translation level induced by mrna levels oscillations due to
finite intracellular resources. PLoS computational biology, 14(4):e1006055,
2018.

[98] Milana Frenkel-Morgenstern, Tamar Danon, Thomas Christian, Takao
Igarashi, Lydia Cohen, Ya-Ming Hou, and Lars Juhl Jensen. Genes adopt
non-optimal codon usage to generate cell cycle-dependent oscillations in
protein levels. Molecular systems biology, 8(1):572, 2012.

[99] Kelly Dong, Earl Goyarts, Antonella Rella, Edward Pelle, Yung Hou Wong,
and Nadine Pernodet. Age associated decrease of mt-1 melatonin receptor
in human dermal skin fibroblasts impairs protection against uv-induced dna
damage. International journal of molecular sciences, 21(1):326, 2020.

[100] Ahmad S Khalil and James J Collins. Synthetic biology: applications come of
age. Nature Reviews Genetics, 11(5):367–379, 2010.

[101] Frank Buttgereit and Martin D Brand. A hierarchy of atp-consuming processes
in mammalian cells. Biochemical Journal, 312(1):163–167, 1995.

[102] Nicholas T Ingolia, Sina Ghaemmaghami, John RS Newman, and Jonathan S
Weissman. Genome-wide analysis in vivo of translation with nucleotide
resolution using ribosome profiling. science, 324(5924):218–223, 2009.

[103] Shiping Zhang, Emanuel Goldman, and Geoffrey Zubay. Clustering of low
usage codons and ribosome movement. Journal of theoretical biology, 170(4):
339–354, 1994.

207



[104] Tamir Tuller, Asaf Carmi, Kalin Vestsigian, Sivan Navon, Yuval Dorfan, John
Zaborske, Tao Pan, Orna Dahan, Itay Furman, and Yitzhak Pilpel. An
evolutionarily conserved mechanism for controlling the efficiency of protein
translation. Cell, 141(2):344–354, 2010.

[105] Namiko Mitarai, Kim Sneppen, and Steen Pedersen. Ribosome collisions and
translation efficiency: optimization by codon usage and mrna destabilization.
Journal of molecular biology, 382(1):236–245, 2008.

[106] Alon Diament, Anna Feldman, Elisheva Schochet, Martin Kupiec, Yoav Arava,
and Tamir Tuller. The extent of ribosome queuing in budding yeast. PLoS
computational biology, 14(1):e1005951, 2018.

[107] J Ross Buchan and Ian Stansfield. Halting a cellular production line: responses
to ribosomal pausing during translation. Biology of the Cell, 99(9):475–487,
2007.

[108] Ziqing Liu, Olivia Chen, J Blake Joseph Wall, Michael Zheng, Yang Zhou,
Li Wang, Haley Ruth Vaseghi, Li Qian, and Jiandong Liu. Systematic
comparison of 2a peptides for cloning multi-genes in a polycistronic vector.
Scientific reports, 7(1):2193, 2017.

[109] Lisa M Lindqvist, Kristofferson Tandoc, Ivan Topisirovic, and Luc Furic.
Cross-talk between protein synthesis, energy metabolism and autophagy in
cancer. Current opinion in genetics & development, 48:104–111, 2018.

[110] Bhavya Mishra, Gunter M Schütz, and Debashish Chowdhury. Slip of grip
of a molecular motor on a crowded track: Modeling shift of reading frame of
ribosome on rna template. Europhysics Letters, 114(6):68005, 2016.

[111] Gong Zhang, Ivan Fedyunin, Oskar Miekley, Angelo Valleriani, Alessandro
Moura, and Zoya Ignatova. Global and local depletion of ternary complex
limits translational elongation. Nucleic acids research, 38(14):4778–4787, 2010.

[112] Egor Svidritskiy, Gabriel Demo, and Andrei A Korostelev. Mechanism of
premature translation termination on a sense codon. Journal of Biological
Chemistry, 293(32):12472–12479, 2018.

[113] Sinéad O’Loughlin, Mark C Capece, Mariia Klimova, Norma M Wills,
Arthur Coakley, Ekaterina Samatova, Patrick BF O’Connor, Gary Loughran,
Jonathan S Weissman, Pavel V Baranov, et al. Polysomes bypass a
50-nucleotide coding gap less efficiently than monosomes due to attenuation

208



of a 5’ mrna stem–loop and enhanced drop-off. Journal of molecular biology,
432(16):4369–4387, 2020.

[114] Min Shi, Heng Zhang, Lantian Wang, Changlan Zhu, Ke Sheng, Yanhua Du,
Ke Wang, Anusha Dias, She Chen, Malcolm Whitman, et al. Premature
termination codons are recognized in the nucleus in a reading-frame-dependent
manner. Cell discovery, 1(1):1–20, 2015.

[115] CG Kurland. Translational accuracy and the fitness of bacteria. Annual review
of genetics, 26(1):29–50, 1992.

[116] Heungwon Park and Arvind R Subramaniam. Inverted translational control
of eukaryotic gene expression by ribosome collisions. PLoS biology, 17(9):
e3000396, 2019.

[117] Elina Nürenberg and Robert Tampé. Tying up loose ends: ribosome recycling
in eukaryotes and archaea. Trends in biochemical sciences, 38(2):64–74, 2013.

[118] Maxim A Skabkin, Olga V Skabkina, Christopher UT Hellen, and Tatyana V
Pestova. Reinitiation and other unconventional posttermination events during
eukaryotic translation. Molecular cell, 51(2):249–264, 2013.

[119] E Marshall, I Stansfield, and MC Romano. Ribosome recycling induces
optimal translation rate at low ribosomal availability. Journal of the Royal
Society Interface, 11(98):20140589, 2014.

[120] Philip J Farabaugh. Programmed translational frameshifting. Microbiological
reviews, 60(1):103–134, 1996.

[121] Szymon Juszkiewicz, Shaun H Speldewinde, Li Wan, Jesper Q Svejstrup, and
Ramanujan S Hegde. The asc-1 complex disassembles collided ribosomes.
Molecular cell, 79(4):603–614, 2020.

[122] Taolan Zhao, Yan-Ming Chen, Yu Li, Jia Wang, Siyu Chen, Ning Gao,
and Wenfeng Qian. Disome-seq reveals widespread ribosome collisions that
promote cotranslational protein folding. Genome biology, 22(1):1–35, 2021.

[123] Carrie L Simms, Liewei L Yan, and Hani S Zaher. Ribosome collision is critical
for quality control during no-go decay. Molecular cell, 68(2):361–373, 2017.

[124] Nicholas T Ingolia, Gloria A Brar, Silvia Rouskin, Anna M McGeachy,
and Jonathan S Weissman. The ribosome profiling strategy for monitoring
translation in vivo by deep sequencing of ribosome-protected mrna fragments.
Nature protocols, 7(8):1534–1550, 2012.

209



[125] Chris A Brackley, M Carmen Romano, and Marco Thiel. The dynamics of
supply and demand in mrna translation. PLoS Computational Biology, 7(10):
e1002203, 2011.

[126] Andrew E Firth and Ian Brierley. Non-canonical translation in rna viruses.
The Journal of general virology, 93(Pt 7):1385, 2012.

[127] Derek Walsh, Michael B Mathews, and Ian Mohr. Tinkering with translation:
protein synthesis in virus-infected cells. Cold Spring Harbor perspectives in
biology, 5(1):a012351, 2013.

[128] Nicolas Locker, Nathalie Chamond, and Bruno Sargueil. A conserved structure
within the hiv gag open reading frame that controls translation initiation
directly recruits the 40s subunit and eif3. Nucleic acids research, 39(6):
2367–2377, 2011.

[129] SM Ngoi, AC Chien, and CGL Lee. Exploiting internal ribosome entry sites
in gene therapy vector design. Current gene therapy, 4(1):15–31, 2004.

[130] Katharina Schubert, Evangelos D Karousis, Ahmad Jomaa, Alain Scaiola,
Blanca Echeverria, Lukas-Adrian Gurzeler, Marc Leibundgut, Volker Thiel,
Oliver Mühlemann, and Nenad Ban. Sars-cov-2 nsp1 binds the ribosomal
mrna channel to inhibit translation. Nature structural & molecular biology, 27
(10):959–966, 2020.

[131] Hadas Zur, Rachel Cohen-Kupiec, Sophie Vinokour, and Tamir Tuller.
Algorithms for ribosome traffic engineering and their potential in improving
host cells’ titer and growth rate. Scientific reports, 10(1):21202, 2020.

[132] Janusz Mierczyński. Strictly cooperative systems with a first integral. SIAM
journal on mathematical analysis, 18(3):642–646, 1987.

[133] Maxim V Gerashchenko, Mikhail V Nesterchuk, Elena M Smekalova, Joao A
Paulo, Piotr S Kowalski, Kseniya A Akulich, Roman Bogorad, Sergey E
Dmitriev, Steven Gygi, Timofei Zatsepin, et al. Translation elongation factor
2 depletion by sirna in mouse liver leads to mtor-independent translational
upregulation of ribosomal protein genes. Scientific reports, 10(1):15473, 2020.

[134] RKP Zia, JJ Dong, and B Schmittmann. Modeling translation in protein
synthesis with tasep: A tutorial and recent developments. Journal of Statistical
Physics, 144(2):405–428, 2011.

210



[135] DA Adams, B Schmittmann, and RKP Zia. Far-from-equilibrium transport
with constrained resources. Journal of Statistical Mechanics: Theory and
Experiment, 2008(06):P06009, 2008.

[136] Jingwei Li and Yunxin Zhang. Translation with frameshifting of ribosome
along mrna transcript. arXiv preprint arXiv:1502.02109, 2015.

[137] Noam Stern-Ginossar, Sunnie R Thompson, Michael B Mathews, and Ian
Mohr. Translational control in virus-infected cells. Cold Spring Harbor
perspectives in biology, 11(3):a033001, 2019.

[138] Xiaoli Qin and Peter Sarnow. Preferential translation of internal ribosome
entry site-containing mrnas during the mitotic cycle in mammalian cells.
Journal of Biological Chemistry, 279(14):13721–13728, 2004.

[139] Alex V Kochetov, Shandar Ahmad, Vladimir Ivanisenko, Oxana A Volkova,
Nikolay A Kolchanov, and Akinori Sarai. uorfs, reinitiation and alternative
translation start sites in human mrnas. FEBS letters, 582(9):1293–1297, 2008.

[140] Michael Y Li and James S Muldowney. Global stability for the seir model in
epidemiology. Mathematical biosciences, 125(2):155–164, 1995.

[141] Chengshuai Wu, Ilya Kanevskiy, and Michael Margaliot. k-contraction:
Theory and applications. Automatica, 136:110048, 2022.

[142] David Angeli and Eduardo D Sontag. Monotone control systems. IEEE
Transactions on automatic control, 48(10):1684–1698, 2003.

[143] Baorong Tang, Yang Kuang, and Hal Smith. Strictly nonautonomous
cooperative system with a first integral. SIAM journal on mathematical
analysis, 24(5):1331–1339, 1993.

[144] Renana Sabi and Tamir Tuller. A comparative genomics study on the effect of
individual amino acids on ribosome stalling. BMC genomics, 16:1–12, 2015.

[145] Kyuri Lee, Soo Young Kim, Yunmi Seo, Hyokyung Kwon, Young Jik Kwon,
and Hyukjin Lee. Multicistronic ivt mrna for simultaneous expression
of multiple fluorescent proteins. Journal of Industrial and Engineering
Chemistry, 80:770–777, 2019.

[146] Ana E Higareda-Mendoza and Marco A Pardo-Galván. Expression of human
eukaryotic initiation factor 3f oscillates with cell cycle in a549 cells and is
essential for cell viability. Cell division, 5(1):1–13, 2010.

211



[147] M Ali Al-Radhawi, Michael Margaliot, and Eduardo D Sontag. Maximizing
average throughput in oscillatory biochemical synthesis systems: an optimal
control approach. Royal Society open science, 8(9):210878.

[148] Aditi Jain, Michael Margaliot, and Arvind Kumar Gupta. Large-scale mrna
translation and the intricate effects of competition for the finite pool of
ribosomes. Journal of the Royal Society Interface, 19(188):20220033, 2022.

[149] Itzik Nanikashvili, Yoram Zarai, Alexander Ovseevich, Tamir Tuller, and
Michael Margaliot. Networks of ribosome flow models for modeling and
analyzing intracellular traffic. Scientific reports, 9(1):1–14, 2019.

[150] Ying-Cheng Lai and Raimond L Winslow. Extreme sensitive dependence
on parameters and initial conditions in spatio-temporal chaotic dynamical
systems. Physica D: Nonlinear Phenomena, 74(3-4):353–371, 1994.

[151] Jiang Ji-Fa. Periodic monotone systems with an invariant function. SIAM
Journal on Mathematical Analysis, 27(6):1738–1744, 1996.

[152] Harry L Swinney. Observations of order and chaos in nonlinear systems.
Physica D: Nonlinear Phenomena, 7(1-3):3–15, 1983.

[153] Janusz Mierczyński. Cooperative irreducible systems of ordinary differential
equations with first integral. arXiv preprint arXiv:1208.4697, 2012.

[154] Janusz Mierczyński. A class of strongly cooperative systems without
compactness. In Colloquium Mathematicae, volume 62, pages 43–47, 1991.

[155] Jiang Ji-Fa. On the global stability of cooperative systems. Bulletin of the
London Mathematical Society, 26(5):455–458, 1994.

[156] Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. Convex
optimization. Cambridge university press, 2004.

[157] Rangaswami Balakrishnan and Kanna Ranganathan. A textbook of graph
theory. Springer Science & Business Media, 2012.

[158] Gordon Churchward, Hans Bremer, and R Young. Transcription in bacteria
at different dna concentrations. Journal of bacteriology, 150(2):572–581, 1982.

[159] Andras Gyorgy and Domitilla Del Vecchio. Limitations and trade-offs in gene
expression due to competition for shared cellular resources. In 53rd IEEE
Conference on Decision and Control, pages 5431–5436. IEEE, 2014.

212



[160] Timothy Frei, Federica Cella, Fabiana Tedeschi, Joaquín Gutiérrez, Guy-Bart
Stan, Mustafa Khammash, and Velia Siciliano. Characterization and
mitigation of gene expression burden in mammalian cells. Nature
communications, 11(1):4641, 2020.

[161] Yili Qian and Domitilla Del Vecchio. Effective interaction graphs arising from
resource limitations in gene networks. In 2015 American Control Conference
(ACC), pages 4417–4423. IEEE, 2015.

[162] Alexander PS Darlington, Juhyun Kim, José I Jiménez, and Declan G
Bates. Dynamic allocation of orthogonal ribosomes facilitates uncoupling of
co-expressed genes. Nature communications, 9(1):695, 2018.

[163] Meesoon Ha and Marcel Den Nijs. Macroscopic car condensation in a parking
garage. Physical Review E, 66(3):036118, 2002.

[164] Dietrich E Wolf, Michael Schreckenberg, and Achim Bachem. Traffic and
granular flow. World Scientific, 1996.

[165] Arvind Giridhar and PR Kumar. Scheduling automated traffic on a network
of roads. IEEE Transactions on Vehicular Technology, 55(5):1467–1474, 2006.

[166] L Jonathan Cook and RKP Zia. Competition for finite resources. Journal of
Statistical Mechanics: Theory and Experiment, 2012(05):P05008, 2012.

[167] William H Mather, Jeff Hasty, Lev S Tsimring, and Ruth J Williams.
Translational cross talk in gene networks. Biophysical journal, 104(11):
2564–2572, 2013.

[168] Renana Sabi and Tamir Tuller. Modelling and measuring intracellular
competition for finite resources during gene expression. Journal of the Royal
Society Interface, 16(154):20180887, 2019.

[169] L Jonathan Cook and RKP Zia. Feedback and fluctuations in a totally
asymmetric simple exclusion process with finite resources. Journal of
Statistical Mechanics: Theory and Experiment, 2009(02):P02012, 2009.

[170] Philip Greulich, Luca Ciandrini, Rosalind J Allen, and M Carmen Romano.
Mixed population of competing totally asymmetric simple exclusion processes
with a shared reservoir of particles. Physical Review E, 85(1):011142, 2012.

[171] Izaak Neri, Norbert Kern, and Andrea Parmeggiani. Totally asymmetric
simple exclusion process on networks. Physical review letters, 107(6):068702,
2011.

213



[172] Tom Chou, Kirone Mallick, and Royce KP Zia. Non-equilibrium statistical
mechanics: from a paradigmatic model to biological transport. Reports on
progress in physics, 74(11):116601, 2011.

[173] JJ Dong, B Schmittmann, and RKP Zia. Towards a model for protein
production rates. Journal of Statistical Physics, 128:21–34, 2007.

[174] Michael Herty, Axel Klar, and AK Singh. An ode traffic network model.
Journal of computational and applied mathematics, 203(2):419–436, 2007.

[175] Arvind Kumar Gupta and Poonam Redhu. Analyses of the driver’s
anticipation effect in a new lattice hydrodynamic traffic flow model with
passing. Nonlinear Dynamics, 76:1001–1011, 2014.

[176] Md Anowar Hossain and Jun Tanimoto. A microscopic traffic flow model for
sharing information from a vehicle to vehicle by considering system time delay
effect. Physica A: Statistical Mechanics and its Applications, 585:126437, 2022.

[177] Jared Miller, M Ali Al-Radhawi, and Eduardo D Sontag. Mediating ribosomal
competition by splitting pools. IEEE Control Systems Letters, 5(5):1555–1560,
2020.

[178] Steven M Reppert and David R Weaver. Coordination of circadian timing in
mammals. Nature, 418(6901):935–941, 2002.

[179] Michael Polymenis and Rodolfo Aramayo. Translate to divide: control of the
cell cycle by protein synthesis. Microbial Cell, 2(4):94, 2015.

[180] Philipp Eser, Carina Demel, Kerstin C Maier, Björn Schwalb, Nicole Pirkl,
Dietmar E Martin, Patrick Cramer, and Achim Tresch. Periodic mrna
synthesis and degradation co-operate during cell cycle gene expression.
Molecular systems biology, 10(1):717, 2014.

[181] William H Walker, James C Walton, A Courtney DeVries, and Randy J Nelson.
Circadian rhythm disruption and mental health. Translational psychiatry, 10
(1):28, 2020.

[182] Yuri A Kuznetsov and Yuri A Kuznetsov. Numerical analysis of bifurcations.
Elements of applied bifurcation theory, pages 505–585, 2004.

214


