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Lay Summary

Graph theory is a mathematical discipline focused on studying relationships between objects, where

objects are represented by vertices and edges are used to represent the relationship between the objects. A

graph G consists of a set of vertices (V ) and a set of edges (E), where each edge connects two vertices.

Examples include social networks (vertices representing people and edges representing friendships),

transportation systems (vertices representing locations and edges representing roads), and molecular

structures (vertices representing atoms and edges representing chemical bonds). Graph theory provides

a powerful tool for modeling and solving real-world optimization problems, showcasing adaptability

across diverse fields. Its evolution is fueled by the capacity to represent complex relationships, making it

fundamental in both theoretical and practical applications across various disciplines.

Domination and its variations find practical applications in network design, such as optimizing guard

placement for monitoring locations, ensuring coverage in wireless sensor networks, and identifying critical

nodes in communication networks. Consider the guard allocation problem, where locations must be

monitored, and a guard can oversee its location and adjacent ones. This scenario is modeled as a graph

G, with vertices representing locations and edges connecting adjacent locations. A dominating set in the

graph identifies locations where guards must be stationed to ensure monitoring of all locations. The goal

is to minimize the number of guards needed, making it a minimization problem. While placing a guard

at every location is possible, the focus is on finding the most efficient solution with the least number of

guards. Further in real life situations, it would increase the reliability of such arrangements, if there is an

adjacent backup location for each guard or there is a unique partner for each guard which is at a distance

at most two. Motivated by such situations, two interesting variations of domination: Cosecure Domination

and Semipaired Domination, are introduced and studied in the literature.

The coloring problem in graph theory involves assigning colors to the vertices of a graph in such a way

that adjacent vertices have different colors. Consider a map where regions sharing a border should have

distinct colors. This map can be represented as a graph, where vertices represent regions and edges

connect adjacent regions. A proper coloring of this graph corresponds to a valid assignment of colors to

the regions, ensuring no two adjacent regions share the same color. The coloring problem is not just about

aesthetics; it has practical implications in designing schedules, optimizing resource usage, and solving
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real-world allocation challenges where conflicting entities must be distinguished by different colors for

effective management and coordination. Surely, we can obtain a feasible coloring of a given graph by

assigning a unique and distinct color to each vertex of the graph. But we try to use the minimum number

of colors required for this purpose and the driving factor for this is the limitation of resources in real-world.

The vertices assigned same color in a coloring of graph forms a color class. A vertex adjacent to every

vertex of a certain color class is said to dominate (or monitor) that color class. In practical scenarios, such

situation may arise where we need to ensure that each color class is monitored by some vertex (may be

other than itself) or/and every vertex plays a pivotal role in monitoring some color class. These intriguing

scenarios motivated researchers to explore certain domination-related coloring variations and we focus on

two of those: Total Dominator Coloring and Domination Coloring.

The thesis centers on four distinct variations of domination and domination-related coloring problems:

Cosecure Domination, Semipaired Domination, Total Dominator Coloring, and Domination Coloring.

These problems find practical applications in diverse fields like social networks, computer networks, and

telephone switching networks. However, in general scenario, it is not feasible to find the solution of these

problems in reasonable amount of time. To overcome this, the thesis investigates alternative strategies.

One approach seeks tailored algorithms for specific cases, while another emphasizes designing algorithms

that offer effective approximations, prioritizing practicality over achieving optimal solutions.



Abstract

Domination and coloring are two of the most classical and extensively studied graph optimization problems.

In recent decades, various fascinating variants of domination and variations integrating concepts of

domination and coloring, have been introduced and undergone in-depth exploration. In this thesis, we

study the computational complexity of some important variants of domination and domination-related

coloring problems.

A dominating set of G is a subset S ⊆ V , if every vertex not in S is adjacent to at least one vertex in S.

For a given graph G, the M I N I M U M D O M I N AT I O N problem is to compute a dominating set of G

with minimum cardinality. We specifically focus on two interesting variations of domination: cosecure

domination and semipaired domination, which are defined by imposing some additional conditions. Let

G = (V,E) be a graph with no isolated vertices. A dominating set S of G is said to be a cosecure

dominating set, if for every vertex v ∈ S there exists a vertex u ∈ V \ S such that uv ∈ E and

(S \ {v}) ∪ {u} is a dominating set of G. A dominating set S ⊆ V of G is said to be a semipaired

dominating set, if S can be partitioned into cardinality 2 subsets such that the vertices in each of these

subsets are at distance at most two from each other.

A coloring (or proper coloring) of G is an assignment of colors to the vertices of G such that if two

vertices are adjacent, then they must be assigned different colors. For a given graph G, the M I N I M U M

C O L O R I N G problem is to find a coloring of G using minimum number of colors. We explore two

intriguing variations of domination-related coloring: total dominator coloring and domination coloring,

defined introducing supplementary conditions of domination in coloring. For a graph G without any

isolated vertex, a coloring of G is called a total dominator coloring, if each vertex dominates some color

class other than its own. A coloring of G is termed as a domination coloring, if each vertex dominates

some color class and each color class is dominated by some vertex.

All the graph optimization problems, mentioned above, are known to be NP-hard for general graphs.

To address this challenge, one strategy is to explore the problem within the context of restricted graph

classes, as real-world problems often result in graphs with distinctive properties. In this thesis, we adopt

this strategy and examine the computational complexity of these problems across various subclasses of
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graphs, distinguished by their structural properties. Our analysis reveals specific graph classes where

these problems remain NP-hard and we develop efficient algorithms for solving these problems on certain

special graph classes. Additionally, we work on approximation aspects of the problems by proving

some results regarding bounds on approximation ratio, presenting some approximation algorithms, and

demonstrating approximation hardness for selected instances of these problems.
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Chapter 1
Introduction

Graph theory is a well studied branch of mathematics. It provides a powerful framework for

modeling and solving real-world problems, making it an indispensable tool in various fields, including,

computer science, biology, social sciences, and logistics. The origin of graph theory dates back to the

18th century, when a Swiss mathematician, Leonhard Euler, provided solution to the “Seven Bridges of

Königsberg” problem in 1736, introducing the concept of vertices and edges, which would later define a

graph. In this thesis, we primarily focus on exploring the computational complexity of some variations of

two classical graph theory problems, namely, domination and coloring problems.

Domination and coloring problems are among the most well-studied and fundamental topics in

graph theory. The origin of both the concepts can be traced back to the mid-19th century. In 1850s, out of

curiosity, several chess players were interested in placing the minimum number of queens on a chessboard

such that every square on the board is either occupied by a queen or attacked by a queen, this problem

was termed as “Queen’s Chessboard Problem”. It was not until a century later, in 1962, that Oystein Ore

formally introduced the concept of a dominating set in his book titled “Theory of Graphs” [91]. In a graph

G = (V,E), the domination problem is to find a smallest subset D of vertex set V (called a dominating

set) such that every vertex in G is either in D or is adjacent to at least one vertex in D. This concept finds

applications in network design, facility location, and social network analysis, among others. Till now

many variations of domination problem have been introduced and are vastly studied in the literature. The

detailed surveys on these can be found in the books [46, 47].

The concept of graph coloring was introduced in the 1852 paper “Map-Color Theorem” by Francis

Guthrie, a British mathematician. In this paper, Guthrie posed the famous “Four Color Problem” which

asked whether it is possible to color the regions of any map in such a way that no two adjacent regions

have the same color using only four colors. This question led to the formalization of the concept of graph

coloring and initiated the study of graph coloring problems. The Four Color Problem itself became one

of the most famous and long-standing problems in graph theory and was finally resolved in the 1970s

using a computer aided proof. The coloring problem aims to assign colors to the vertices of a graph such

that adjacent vertices have different colors, and the goal is to minimize the number of colors used. The

practical applications of graph coloring range from scheduling and register allocation in compilers to

1



2 Chapter 1 Introduction

frequency assignment in wireless networks. Variations of this problem include list coloring, total coloring,

rainbow coloring, and others, each introducing its own set of computational intricacies. A survey on some

important variations of coloring can be found in [20, 83].

Our exploration of these problems is motivated by their theoretical importance along with their

widespread applications in various fields, such as network design, facility location, and resource allocation

among others. Over the past century, numerous intriguing variations of domination and variations

combining concepts of domination and coloring have emerged and undergone thorough investigation

[10, 46, 47, 48, 63, 78, 85, 95, 96]. In this thesis, we focus on the complexity study of the following

variants of domination and coloring problems.

(a) C O S E C U R E D O M I N AT I O N Problem
(b) S E M I PA I R E D D O M I N AT I O N Problem
(c) T O TA L D O M I N AT O R C O L O R I N G Problem
(d) D O M I N AT I O N C O L O R I N G Problem

Understanding the computational complexity of these problems and uncovering their algorithmic

and hardness results are crucial steps in developing efficient solutions and algorithms for practical use.

All of the four above mentioned variations of the domination and coloring problems are NP-hard for

general graphs [7, 61, 73, 105]. The obvious next step is to analyse the complexity of these problems in

various subclasses of graphs, defined on basis of their structural properties. We delve into both algorithmic

aspects, aiming to design efficient algorithms and proving hardness results for the specific instances of

these problems which are of interest. We also work on approximation aspects, designing approximation

algorithms and proving approximation hardness results for some of these problems.

Prior to providing a concise overview of the problems listed above, we will first delve into

fundamental notations and definitions that will be used in this thesis.

1.1 Basic Notations and Definitions
In this section, we discuss some pertinent graph-theoretic and algorithmic notations and definitions, which

will be extensively used throughout this thesis.

1.1.1 Graph Theoretic Notations
Throughout this thesis, we only consider finite, simple, and undirected graphs. Let G = (V,E) be a graph,

where V = V (G) and E = E(G) represent the set of vertices and set of edges in G, respectively. In

this thesis, n denotes the number of vertices in G and m denotes the number of edges in G. We use the
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notation uv to denote an edge e between vertices u and v, here, u and v are called the end vertices of e. A

vertex v is said to be adjacent to a vertex u, if uv ∈ E. For a vertex u, all the vertices which are adjacent

to u are termed as neighbors of u. The open neighborhood of a vertex v ∈ V is the set of neighbors of v,

denoted by NG(v) = {u | uv ∈ E}, and the closed neighborhood of v is the set NG[v] = NG(v) ∪ {v}.
For a non-empty set U ⊆ V , the open neighborhood of U is NG(U) =

⋃
v∈U NG(v) and the closed

neighborhood of U is NG[U ] = NG(U) ∪ U .

The degree of a vertex v in G, denoted by dG(v), is the number of neighbors of v, that is,

dG(v) = |NG(v)|. The minimum degree of G is defined as δ(G) = min{dG(v) | v ∈ V }, and maximum

degree of G is defined as ∆(G) = max{dG(v) | v ∈ V }. When there is no ambiguity regarding the

graph, we can simply omit G from the notations. If dG(v) = 0, then v is called an isolated vertex, and if

dG(v) = 1, then v is called a pendant vertex. For a pendant vertex v, the vertex adjacent to v is called the

support vertex of v. A vertex v is called an internal vertex of G, if dG(v) ≥ 2.

We say that a graph is isolate-free, if it does not contain any isolated vertex. A graph is said

to be non-trivial, if it contains at least two vertices. G is called k-regular, if degree of each vertex of

G is k. If all the vertices of G has bounded degree, then G is said to be a bounded degree graph. A

graph H = (VH , EH ) is said to be a subgraph of G, if VH ⊆ V and EH ⊆ E. For a set U ⊆ V ,

the subgraph of G induced by U is defined as G[U ] = (U,EU ), where vertex set is U and edge set is

EU = {xy ∈ E | x, y ∈ U}. For a non-empty set U ⊆ V , G \ U represents the graph obtained by

removing all the vertices of set U and all the edges having at least one end vertex in U , from graph G.

That is, G \ U denotes the subgraph of G induced on V \ U and in notation G \ U = G[V \ U ]. When

U = {v}, we simply write G \ v to denote G \ {v}.

A graph is connected, if there is a path between every pair of distinct vertices of the graph. G is

disconnected, if it is not connected, that is, there exists a pair of vertices u and v in G such that there

is no path between u and v in G. In a disconnected graph G, its every maximal connected subgraph is

called a connected component (or component) of G. A vertex v of G is said to be a cut-vertex, if the

number of components of G \ v is greater than the number of components of G. Let G1 = (V1, E1) and

G2 = (V2, E2) be two graphs. The union of two graphs G1 and G2 is denoted by G1 ∪G2 and is defined

as the graph G1 ∪G2 = (V1 ∪ V2, E1 ∪E2). If V1 ∩ V2 = ∅, then G1 ∪G2 is called the disjoint union of

G1 and G2. The join of two graphs G1 and G2 is the graph G1 +G2, with V (G1 +G2) = V1 ∪ V2 as the

vertex set and E(G1 +G2) = E(G1) ∪ E(G2) ∪ {uv | u ∈ V1, v ∈ V2} as the edge set.
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A graph G on n vertices is called a complete graph and is denoted by Kn, if E = {uv | u, v ∈ V }.
A path on k vertices in G is denoted by Pk and is defined as a sequence of vertices x1, x2, . . . , xk such

that xixi+1 ∈ E, for 1 ≤ i ≤ k − 1. Such a path Pk can be represented as Pk = x1x2 . . . xk. The length

of Pk is defined as |V (Pk)| − 1 = k− 1. A path Pk = x1x2 . . . xk together with an additional edge x1xk

is called a cycle on k vertices and is denoted by Ck. An edge joining two non-consecutive vertices of a

cycle is called a chord of that cycle. The distance between two vertices u and v in G, denoted by dG(u, v),

is the length of the shortest path between u and v. The diameter of a graph G is denoted by diam(G)

and is defined as diam(G) = max{dG(u, v) | u, v ∈ V }. A graph without any cycles is called an acyclic

graph. A connected acyclic graph is called a tree. A pendant vertex in a tree is termed as a leaf and a

support vertex in a tree is termed as a stem. A tree T is called a star, if there exists a vertex v which is

adjacent to all other vertices of T . A comb is a graph obtained by attaching a pendant vertex (tooth) to

every vertex of a path (backbone).

A set C ⊆ V is called a vertex cover of G, if for every edge e = uv ∈ E, at least one of u or

v is in C. A vertex cover of G with the minimum number of vertices is called a minimum vertex cover

of G and the cardinality of such a set is called the vertex cover number of G, denoted by β(G). A set

I ⊆ V is called an independent set, if G[I] has no edge. An independent set in G with the maximum

number of vertices is called a maximum independent set in G and the cardinality of such a set is called the

independence number of G, denoted by α(G). A set K ⊆ V is called a clique in G, if G[K] is a complete

subgraph of G, that is, K induces a clique in G. A clique in G with the maximum number of vertices is

called a maximum clique in G and the cardinality of such a set is called the clique number of G, denoted

by ω(G).

A vertex v ∈ V dominates all the vertices of its closed neighbourhood NG[v]. A set D ⊆ V

is called a dominating set of G, if every vertex u ∈ V \ D is adjacent to at least one vertex in D. A

dominating set of G with the minimum number of vertices is called a minimum dominating set of G. The

domination number of G is the minimum cardinality among all dominating sets of G and it is denoted

by γ(G). By “u dominates v” or “v is dominated by u”, we mean that v ∈ N [u]. For a graph G, the

M I N I M U M D O M I N AT I O N (MD) problem is to find a dominating set of minimum cardinality. The

decision version of this problem is termed as the D O M I N AT I O N D E C I S I O N problem. Given a graph

G and a positive integer k, the D O M I N AT I O N D E C I S I O N (DD) problem asks whether there is a

dominating set of G of cardinality at most k. It is known that the DD problem is NP-complete for general

graphs [55]. The M I N I M U M D O M I N AT I O N problem and many of its variations are vastly studied in
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the literature and a detailed survey of these can be found in the books [46, 47]. For a detailed survey on

domination problem from an algorithmic point of view, one can refer to [19].

Let G = (V,E) be a graph with no isolated vertices. A vertex v totally dominates a vertex w

(w ̸= v), if v is adjacent to w. Thus, v totally dominates all the vertices of its open neighbourhood

NG(v). Note that every vertex dominates itself but does not totally dominate itself. A set D ⊆ V is said

to be a total dominating set,, abbreviated TD-set, of G, if every vertex v ∈ V is totally dominated by

some vertex in D. The minimum cardinality of a total dominating set of G is called the total domination

number of G and is denoted by γt(G). The M I N I M U M T O TA L D O M I N AT I O N (MTD) problem is

to find a total dominating set of G using γt(G) colors. The decision version of the MTD problem is the

T O TA L D O M I N AT I O N D E C I S I O N problem, abbreviated as the TDD problem, takes a graph G and a

positive integer k as an input and asks whether there exists a TD-set of size at most k. For recent books

on domination and total domination in graphs, we refer the reader to [46, 47, 48, 63].

A coloring (or proper coloring) of G is an assignment of colors to the vertices of G such that no

two adjacent vertices are assigned same color. The minimum number of colors required for a coloring of G

is the chromatic number of G and is denoted by χ(G). The M I N I M U M C O L O R I N G (MC) problem asks

to determine a coloring of G using χ(G) colors. The decision version of this problem is the C O L O R I N G

D E C I S I O N (CD) problem, which takes a graph G and a positive integer k as an input and asks whether

G has a coloring using at most k colors. A subset of vertices that are assigned the same color in a coloring

is termed as a color class. A singleton color class is termed as a solitary color class. It is known that the

CD problem is NP-complete when k ≥ 3 for general graphs [39].

We use the standard notation [k] = {1, 2, ..., k} for a positive integer k. For other graph-theoretic

definitions and notations which are explicitly not defined here, we follow standard textbooks on graph

theory [11, 103].

1.1.2 Algorithmic Preliminaries
In this subsection, we recall some algorithmic notations and definitions used in this thesis. We follow [9]

and [25] for these terminologies. Within the classical complexity theory, the running time of an algorithm

is measured by its worst case complexity in terms of the input size. When the input to an algorithm is

a graph, the input size of algorithm is described by the numbers of vertices and edges in the graph. For

a graph G with n vertices and m edges, the input size is n +m. The number of operations or “steps”

executed by an algorithm is known as its running time.
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Throughout this thesis, we use the O (Big ‘Oh’) notation to bound an algorithm’s running time

from above. Let f : N → R+ and g : N → R+. We say that f(n) = O(g(n)), if there exist positive

constants c ∈ R and n0 ∈ N such that f(n) ≤ c · g(n), for all n ≥ n0. An efficient algorithm is an

algorithm whose running time is bounded by a polynomial in its input size. We denote the running time of

an efficient algorithm by O(poly(input size)), where poly(input size) denotes a polynomial function in

the input size. A polynomial-time algorithm is another term used to refer to an efficient algorithm.

The study of computational complexity aims to classify various computational problems, on

the basis of how effectively they can be solved. In general, two types of computational problems are

considered: optimization problems and decision problems. The optimization problems seek a maximum

or minimum value as a solution, while for the instance of decision problems, we expect only “Yes” or

“No” answer. Formally, an optimization problem is defined as follows:

Definition 1.1 ([9]). An optimization problem Q is a quadruple (IQ,SOLQ,mQ, goalQ), where:

(a) IQ is the set of instances of Q.

(b) SOLQ is a function that associates each input instance of Q to its set of feasible solutions.

(c) mQ denotes the measure of the function and is defined for pairs (x, y) such that x ∈ IQ and

y ∈ SOLQ(x). For every pair (x, y), mQ(x, y) equals a positive integer which is the value of the feasible

solution y.

(d) goalQ ∈ {M A X , M I N} specifies whether Q is a maximization or minimization problem.

For example, consider the M I N I M U M D O M I N AT I O N (MD) problem. Given a graph G, the

MD problem asks to find a dominating set of G of the minimum cardinality. The MD problem is an

optimization problem. Each element of the quadruple for this problem is defined as follows:

(a) I = {G = (V,E) | G is a graph},
(b) SOL(G) = {D | D is a dominating set of G},
(c) m(G,D) = |D|, and

(d) goal = M I N.

On the other hand, a decision problem Q have a set of instances IQ and for a given instance

I ∈ IQ, there is a query associated with I whose answer is either Yes (True) or No (False). For example,

consider the decision version of the MD problem, that is, the D O M I N AT I O N D E C I S I O N problem. For

this problem, the set of instances is the set of all graphs G. The query associated with every instance G, k

of the problem is “Does G has a dominating set of cardinality at most k?”
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In the complexity theory, the optimization and decision problems are categorized depending

on their computational complexity. The most important complexity classes that are treated within this

thesis are the classes P and NP. The class P contains all the decision problems for which there exists a

polynomial-time algorithm to solve it. Whereas, the class NP which is a superclass of P contain all the

decision problems which can be verified in polynomial-time. Let IQ denote the set of all instances of a

decision problem Q. An instance I of Q is defined as a Yes (No) instance, if the answer to the problem Q

for the instance I is yes (no). By verification above (in the definition of class NP), we mean that given an

instance I ∈ IQ of a problem Q and a certificate C(I) of polynomial size in terms of the size of I , there

exists a verification algorithm that takes I and C(I) as input and in polynomial-time returns “Yes” if and

only if I is a Yes instance. The famous millennium conjecture “P ̸= NP” is still an open problem.

Let IQ denote the set of all instances of a decision problem Q. A decision problem Q1 is said to

be polynomially reducible to another decision problem Q2, if there exists a function f : IQ1 → IQ2 such

that (i) f is computable in polynomial-time and (ii) I is a Yes instance of Q1 if and only if f(I) is a Yes

instance of Q2. A decision problem Q is said to be NP-hard, if every problem in class NP is polynomially

reducible to Q. A decision problem Q is said to be NP-complete, if (i) Q ∈ NP , and (ii) for every

problem Q0 ∈ NP , Q0 is polynomially reducible to Q. An optimization problem Q is said to be NP-hard,

if a polynomial-time algorithm for Q would imply a polynomial-time algorithm for every problem in NP.

According to traditional beliefs, unless P = NP, it is not possible to devise a polynomial-time algorithm

for an NP-complete problem.

The majority of graph optimization problems are NP-hard for general cases. Despite their inherent

complexity, the practical significance of these problems motivated the exploration of ways to deal with the

intractability of NP-hard problems and numerous strategies have been devised to address this. A primary

approach involves identifying subsets of instances for which the problem can be solved efficiently. For the

graph-theoretic problems, this equates to identifying graph classes for which a polynomial-time solution

exists. F I G U R E 1.1 illustrates the hierarchy of some extensively studied graph classes.

Another strategy involves designing polynomial-time approximation algorithms. In this context,

rather than calculating the optimal solution for an optimization problem, the focus is on obtaining a good

approximate solution. The performance of an approximation algorithm is measured by its approximation

ratio.

Definition 1.2 ([104]). p-Approximation Algorithm: For an optimization problem Q, a polynomial-time

algorithm which returns a solution, for every instance I ∈ IQ such that the value of that solution lies
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Bipartite
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Split

Undirected

Path
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Threshold

Trees

Cactus

AT-free

Permutation

F I G U R E 1 . 1 : A hierarchy of well-studied graph classes.

within a factor of p of the value of an optimal solution of I , is called a p-approximation algorithm

for the problem Q and p is known as the approximation ratio or performance ratio of the associated

approximation algorithm.

Let Q be an optimization (minimization/maximization) problem and AQ be a p-approximation

algorithm for Q. For an instance I ∈ IQ, let us denote value of the solution returned by AQ as AQ(I) and

the value of an optimal solution by OPT (I). If Q is a minimization problem, then p = max

{
AQ(I)
OPT (I)

∣∣∣∣
I ∈ IQ

}
. Otherwise, if Q is a maximization problem, then p = max

{
OPT (I)
AQ(I)

∣∣∣∣ I ∈ IQ

}
. An

optimization problem Q is said to be p-approximable, if there exists a p-approximation algorithm for Q.

On the basis of approximation ratio, the optimization problems can be divided into various other

complexity classes, for details refer to [104]. Now, we define the classes considered in this thesis. An

optimization problem Q belongs to the class APX, if there exists a polynomial-time p-approximation

algorithm, where p is a constant. An optimization problem Q is said to be APX-hard, if there exists an

L-reduction from each problem in APX to Q. In order to show that an optimization problem Q ∈ APX is

APX-complete, we need to show the existence of an L-reduction from some known APX-hard problem to



1.2 Graph Classes Studied in the Thesis 9

the problem Q. Now, we define a special type of reduction termed as an L-reduction as follows:

Definition 1.3 ([104]). L-reduction: Consider two minimization problems Q1 =

(IQ1 ,SOLQ1 ,mQ1 , M I N) and Q2 = (IQ2 ,SOLQ2 ,mQ2 , M I N). A polynomial-time function

f : IQ1 → IQ2 that transforms each instance of Q1 to an instance of Q2 is said to be an L-reduction, if

there exist a > 0 and b > 0 such that for any instance I ∈ IQ1 , the following holds:

(a) min f(I) ≤ a ·min I , here, min I and min f(I) denote the value of optimal solution for I ∈ IQ1 and

f(I) ∈ IQ2 , respectively, and

(b) for every feasible solution y ∈ SOLQ2(f(I)), we can find a solution x ∈ SOLQ1(I) such that

|min I −mQ1(I, x)| ≤ b · |min f(I)−mQ2(f(I), y)|, in polynomial-time.

Some other strategies for handling NP-hard problem are studying parameterized algorithms,

heuristics, and meta-heuristics. These techniques have not been explored in this thesis and we omit the

details of these approaches. For details on parameterized complexity, one can refer to [36].

1.2 Graph Classes Studied in the Thesis
In this section, we formally define most of the graph classes discussed in later chapters. We also give

details about the required special properties of some of these graphs which will be used later.

1.2.1 Bipartite Graphs and its Subclasses
A graph G = (V,E) is called a bipartite graph, if the vertex set V can be partitioned into two independent

sets X and Y . The pair (X,Y ) is called the bipartition of G and the set X and Y are called the partites

of G. From the definition itself, it is clear that if e ∈ E, then one of the end vertex of e belongs to the set

X and other end vertex belongs to the set Y . Typically a bipartite graph is denoted by G = (X,Y,E).

Out of several known characterizations of bipartite graphs, the most commonly used characterization is:

“A graph G is a bipartite graph if and only if G contains no odd cycle”.

Many optimization problems that are NP-hard for general graphs also retain their NP-hard status

when considering bipartite graphs. As a result, researchers are compelled to investigate the complexity

of optimization problems within subclasses of bipartite graphs that exhibit specific structures. Notable

subclasses of bipartite graphs documented in the literature include perfect elimination bipartite graphs,

chordal bipartite graphs, convex bipartite graphs, tree-convex bipartite graphs, bipartite permutation

graphs, and bipartite chain graphs.
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It is worth mentioning that the M I N I M U M C O L O R I N G problem can be solved in linear-time

for bipartite graphs. Within this thesis, we work on bipartite graphs and some of its subclasses, which are

defined in detail below.

(a) Trees: A tree is a connected graph that does not contain any cycle. For a tree T , we have

|E(T )| = |V (T )| − 1. Recall that a graph is bipartite if and only if it contains no odd cycle. As a

tree contains no cycle at all, it is also a bipartite graph.

(b) Complete Bipartite Graphs: A bipartite graph G = (X,Y,E) is called a complete bipartite

graph, if for any x ∈ X and y ∈ Y , xy ∈ E. If |X| = p and |Y | = q, then the complete bipartite

graph G is denoted by Kp,q. Most of the optimization problems are trivially solvable for complete

bipartite graphs.

(c) Bipartite Chain Graphs or Chain Graphs: A bipartite graph G = (X,Y,E) is called a chain

graph, if there exists a chain ordering α = (x1, x2, . . . , xn1 , y1, y2, . . . , yn2) of X ∪ Y such that

N(x1) ⊆ N(x2) ⊆ · · · ⊆ N(xn1) and N(y1) ⊇ N(y2) ⊇ · · · ⊇ N(yn2). The chain ordering of a

given chain graph can be computed in linear-time [56].

Now, define a relation R on X as follows: xi and xj are related if N(xi) = N(xj). This relation

R is an equivalence relation. Let X1, X2, . . . , Xk is the partition of X based on the relation R.

Define Y1 = N(X1) and Yi = N(Xi) \ ∪i−1
j=1N(Xj) for i = 2, 3, . . . k. Then, Y1, Y2, . . . , Yk

forms a partition of Y . Such partition X1, X2, . . . , Xk, Y1, Y2, . . . , Yk of X ∪ Y is called a proper

ordered chain partition of X ∪ Y . Note that the number of sets in the partition of X (or Y ) are k.

Next, we remark that the set of pendant vertices of G is contained in X1 ∪ Yk.

Throughout this thesis, we consider a chain graph G with a proper ordered chain partition

X1, X2, . . . , Xk and Y1, Y2, . . . , Yk of X and Y , respectively. For i ∈ [k], let Xi =

{xi1, xi2, . . . , xir} and Yi = {yi1, yi2, . . . , yis}. Note that k = 1 if and only if G is a complete

bipartite graph. A chain graph together with its proper ordered chain partition obtained by the

relation ∼ is shown in F I G U R E 1.2.

b b b b b

b b b b b b

X1 X2 X3 X4

Y1 Y2 Y3 Y4

F I G U R E 1 . 2 : A Chain Graph.
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(d) Chordal bipartite graphs: A bipartite graph G = (X,Y,E) is called a chordal bipartite graph, if

every cycle in G of length at least six has a chord, that is, an edge joining two non-consecutive

vertices of the cycle. The complexity of several domination parameters behaves differently for

chordal bipartite graphs, some are efficiently solvable and others are NP-hard. Chordal bipartite

graphs can be recognized in polynomial-time [98].

(e) Tree-convex Bipartite Graphs: A bipartite graph G = (X ∪Y,E) is called a tree-convex bipartite

graph, if a tree T = (X,F ) can be defined on the vertices of X such that for every vertex y ∈ Y ,

the neighborhood of y, NG(y), induces a subtree of T [67]. If T is a path, then G is a convex

bipartite graph. Tree-convex bipartite graphs are recognizable in linear-time, and the associated

tree T can also be constructed in linear-time [12]. The concept of star-convex bipartite graphs,

comb-convex bipartite graphs, and tree-convex bipartite graphs are further studied in [21, 68, 97]

and elsewhere. A tree-convex bipartite graph G with a tree T is shown in F I G U R E 1.3.

b

b

b

y1

y3

y2

G

b

b

x1

x2

T

b

b
x1

x3

X Y

b

b

x3

x4

b
x2

b

x4

F I G U R E 1 . 3 : A Tree-convex Bipartite Graph G and the corresponding tree T .

We have mainly focussed on following two subclasses of tree-convex bipartite graphs in this thesis:

• Star-convex Bipartite Graphs: A bipartite graph G = (X ∪ Y,E) is called a star-convex

bipartite graph, if a star T = (X,F ) can be defined on the vertices of X such that for every

vertex y ∈ Y , the neighborhood of y, NG(y), induces a connected subgraph of T .

• Comb-convex Bipartite Graphs: A bipartite graph G = (X∪Y,E) is called a comb-convex

bipartite graph, if a comb T = (X,F ) can be defined on the vertices of X such that for

every vertex y ∈ Y , the neighborhood of y, NG(y), induces a connected subgraph of T .

1.2.2 Chordal Graphs and its Subclasses

A graph G is said to be a chordal graph, if every cycle in G of length at least four has a chord, that is, an

edge between two non-consecutive vertices of the cycle. Let G = (V,E) be a graph containing n vertices.

A vertex v ∈ V is called a simplicial vertex of G, if N(v) is a clique. A characterization of chordal graphs
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in terms of simplicial vertices states that “A graph G is chordal if and only if every induced subgraph of

G has a simplicial vertex”. Further, an ordering α = (v1, v2, . . . , vn) of vertices in V is called a perfect

elimination ordering, if the vertex vi is a simplicial vertex in the induced graph G[{vi, vi+1, . . . , vn}].
Due to Fulkerson and Gross [38], another characterization of chordal graphs is known which states that

“A graph G is chordal if and only if it admits a perfect elimination ordering (PEO)”.

Chordal graphs are hereditary graphs, that is, every induced subgraph of a chordal graph is also

chordal. The class of chordal graphs is an important subclass of perfect graphs. We have studied the

complexity of some graph parameters in the following subclasses of chordal graphs which are more

structured.

(a) Split Graphs: A graph G = (V,E) is called a split graph, if the vertex set V can be partitioned

into two sets I and K such that I is an independent set in G and K is a clique in G. This is an

important subclass of chordal graphs for which the complexity of the many optimization problems

is studied in the literature. A split graph is shown in F I G U R E 1.4.

b

b

b

b

b

b

b

u1

u2

v1

v2

v3
u3

u4

K
I

F I G U R E 1 . 4 : A Split Graph.

(b) Doubly Chordal Graphs: A vertex u ∈ N [v] is a maximum neighbor of v in G, if N [w] ⊆ N [u],

for all w ∈ N [v]. A vertex v is called doubly simplicial in G, if it is a simplicial vertex and has

a maximum neighbor in G. An ordering σ = (v1, v2, . . . , vn) of V is called a doubly perfect

elimination ordering (DPEO) of G, if vi is a doubly simplicial vertex in Gi = G[vi, vi+1, . . . , vn],

for each i, where 1 ≤ i ≤ n. Every doubly chordal graph admits a doubly perfect elimination

ordering (DPEO) [18, 87].

(c) Undirected path graphs: A graph is an undirected path graph, if it is a intersection graph of some

family of undirected paths of a tree. For an undirected path graph G, we have a corresponding

representation as an intersection graph of some family of undirected paths FG of a tree TG such

that each vertex v of G is represented by a path Tv ∈ FG, where Tv is a path and a subgraph of
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tree TG, and two vertices u, v ∈ V are adjacent in G if and only if their corresponding representing

paths Tu, Tv ∈ FG shares a vertex in TG. For illustration, consider F I G U R E 1.5 which shows an

example of an undirected path graph G and its representations as an intersection graphs of some

family of undirected paths of a tree TG. In TG, the family of paths FG is {Tv1 , Tv2 , . . . , Tv6},
where paths Tv1 = ab, Tv2 = bc, Tv3 = cd, Tv4 = cg, Tv5 = ce, and Tv6 = ef .

b b b

b

b

G

v6v5

v4v3

v2v1

b

b b b

b

b

b b

TG

a b

c

d

e f

g

bbbbb

b

b

b b

b b

b b

b

bb

b

b b

F I G U R E 1 . 5 : An undirected path graph G and its representations as an intersection graph of
some family of undirected paths of a tree TG.

1.2.3 Circle graphs and Cographs
Circle graphs is a superclass of cographs. A graph is a circle graph, if it is an intersection graph of chords

in a circle. For a circle graph G, we have a corresponding representation as an intersection graph of chords

in a circle CG such that each vertex v of G is represented by a chord Cv in CG and two vertices u, v are

adjacent in G if and only if the corresponding chords Cu, Cv intersect in CG. F I G U R E 1.6 shows an

illustration of an example of a circle graph G and its representation as an intersection graph of chords

{Ca, Cb, Cc, Cd, Ce, Cf , Cg}, in a circle CG.

G

Ca

Cb Cc

Cd

Ce

Cf

Cg

CG

a b

c d e

f g
b

bb

b

b b

b b

b

bb

b b

b b

b b b

b bbb

F I G U R E 1 . 6 : Illustration of a circle graph G and its representation as an intersection graph of
chords in a circle CG.

A graph G is said to be a cograph, if G is a P4-free graph, that is, P4 is not present as an induced

subgraph of G. Equivalently [94], a graph G of order at least 2 is a cograph if and only if G or its

complement G is not connected. A cograph can be constructed recursively using the following rules:

1. K1 is a cograph.
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2. Join of two cographs is a cograph.

3. Disjoint union of cographs is a cograph.

Corresponding to every cograph, there exists a unique rooted tree (cotree) representation upto

isomorphism [81]. This cotree representation is helpful in designing polynomial-time algorithms for

various graph optimization problems in cographs. An example of a cograph and its cotree representation

is shown in F I G U R E 1.7. For a connected cograph G, let the corresponding cotree be denoted by TG.

This cotree TG satisfies the following properties [82]:

P1 Every internal vertex has at least two children.

P2 Each internal vertex of TG is either labelled as a 1-node or 0-node such that root R is a 1-node and no

two adjacent internal vertices get the same label.

P3 Leaves in TG correspond to the vertices of G. Two vertices x and y are adjacent in G if and only if the

lowest common ancestor of x and y is a 1-node in TG.

b

b b

b b

b

b

a c

e f

d
a b c

d fe

b

b

1-node

0-node0-node

1-node

R
G TG

F I G U R E 1 . 7 : A Cograph.

1.2.4 AT-free Graphs
In a graph G = (V,E), a set A ⊆ V of three independent vertices is referred to as an asteroidal triple

(abbreviated as AT), if for any pair of vertices within set A, there exists a path P connecting them such

that V (P ) has no vertex from the closed neighbourhood of the third vertex. A graph is called an AT-free

graph, if it does not contain any asteroidal triple. It is interesting to see that a path on n vertices is an

AT-free graph, for any positive integer n. On the other hand, a cycle Cn is AT-free, if and only if n ≤ 5.

In F I G U R E 1.8, we give an example of an AT-free graph as well as a graph which contains an AT.

The class of AT-free graphs contains some important classes of graphs as its subclasses such as

cographs, interval graphs, permutation graphs, co-comparability graphs, and trapezoidal graphs.



1.3 Summary of the Problems Studied in the Thesis 15

bb
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bb
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G H

F I G U R E 1 . 8 : An AT-free graph G and a graph H containing an AT.

1.2.5 Planar Graphs
A graph G = (V,E) is termed a planar graph, if it can be drawn on the plane in a way that no two

edges intersect at a point other than a vertex of G. Various characterizations of planar graphs exist; for

a comprehensive examination, refer to [11]. Numerous optimization problems are studied for planar

graphs from both algorithmic as well as combinatorial point of view. Notably, the class of planar graphs

encompasses subclasses such as series-parallel graphs and maximal outerplanar graphs.

1.3 Summary of the Problems Studied in the Thesis
In this thesis, we study four important graph optimization problems. We present all the necessary

definitions, problem statements, the motivation behind the problem, and the literature review for each of

the graph optimization problems in a sequential manner below.

1.3.1 Cosecure Domination Problem

Let G = (V,E) is a simple graph with no isolated vertices. A dominating set S of G is said to

be a cosecure dominating set of G, if for every vertex v ∈ S there exists a vertex u ∈ V \ S such that

uv ∈ E and (S \ {v})∪{u} is a dominating set of G. The minimum cardinality of a cosecure dominating

set of G is called the cosecure domination number of G and is denoted by γcs(G). Since every cosecure

dominating set is a dominating set, we have γ(G) ≤ γcs(G). Also, note that the whole vertex set V

can never be a cosecure dominating set of graph G. For a graph G without any isolated vertex, every

maximum independent set of G is also a cosecure dominating set of G [7]. The M I N I M U M C O S E C U R E

D O M I N AT I O N (MCSD) problem is to find a minimum cardinality cosecure dominating set of G. Given

a graph G and a positive integer k, the C O S E C U R E D O M I N AT I O N D E C I S I O N (CSDD) problem is

to decide whether G has a cosecure dominating set of cardinality at most k.
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Motivation behind introducing this problem is: a situation in which the goal is to protect the graph

by using a subset of guards and simultaneously, provide a backup or substitute (non-guard) for each guard

such that the resultant arrangement after one substitution still protects the graph. This interesting variation

of domination known as cosecure domination was introduced by Arumugam et al. [7] in 2014 and was

further studied in [69, 84, 107].

In [7], Arumugam et al. initiated the study of the MCSD problem and determined the cosecure

domination number for some families of the standard graph classes such as paths, cycles, wheels, and

complete t-partite graphs. Further, they proved that the CSDD problem is NP-complete for bipartite,

chordal, and planar graphs. In [69], Joseph et al. gave few bounds on the cosecure domination number

for certain families of graphs. In [84], Manjusha et al. characterized the Mycielskian graphs with the

cosecure domination number 2 or 3 and gave a sharp upper bound for the cosecure domination number of

the Mycielskian of a graph. In [107], Zou et al. proved that the cosecure domination number of proper

interval graphs can be computed in linear-time.

1.3.2 Semipaired Domination Problem

Viewing domination as the guard allocation problem, the task is to monitor all the locations

by some guard, and a guard can monitor its own location as well as the locations adjacent to it. In

1998, Haynes and Slater [52] introduced another important variation of domination, known as Paired

Domination. The paired form of domination takes this a step further by guaranteeing that each guard

possesses a distinct backup adjacent to it, ready to assist in emergency situations [52]. If, however, we

ease the adjacency condition for backups, allowing them to be positioned at a maximum distance of 2, a

novel variation of domination emerges referred to as semipaired domination. This variation is a relaxed

notion of paired domination and was introduced in 2018 by Haynes and Henning [50], which is further

studied by other researchers in references [49, 51, 59, 60, 61, 62, 106] and elsewhere.

Let G = (V,E) be a graph without any isolated vertices. A dominating set D is called a paired

dominating set, if the induced subgraph G[D] has a perfect matching. The paired domination number

γpr(G) is the minimum cardinality of a paired dominating set of G. A semipaired dominating set D ⊆ V

of G, is a dominating set of G, if D can be partitioned into cardinality 2 subsets such that the vertices in

each of these subsets are at distance at most two from each other. The semipaired domination number

γpr2(G) is the minimum cardinality of a semipaired dominating set of G. The M I N I M U M S E M I PA I R E D

D O M I N AT I O N (MSPD) problem is to compute a minimum cardinality semipaired dominating set of a

given graph G. For a graph G without an isolated vertex, we have γ(G) ≤ γpr2(G) ≤ γpr(G).
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In the initial few years, only combinatorial results are studied on the MSPD problem. Bounds on

the semipaired domination number for some graph classes and with respect to some other domination

parameters are obtained [49, 51, 59, 60, 106]. Later in 2020 [61], Henning et al. initiated the algorithmic

and complexity study of the problem. Due to [61, 62], it is known that the decision version of the MSPD

problem is NP-complete for bipartite graphs and split graphs. In addition, it is proved that the problem is

linear-time solvable in case of interval graphs and block graphs. Further, some approximation-related

results are known for this problem.

1.3.3 Total Dominator Coloring Problem

A coloring of G is said to be a dominator coloring, if every vertex of G dominates at least one

color class. In other words, each vertex of G belongs to either a singleton color class or is adjacent to

every vertex of some other color class. The minimum number of colors required for a dominator coloring

of G is called the dominator chromatic number of G, and is denoted by χd(G). If a dominator coloring

of G uses exactly χd(G) colors, then it is called a χd-coloring of G. The M I N I M U M D O M I N AT O R

C O L O R I N G problem is to find a dominator coloring of G using χd(G) colors. The decision version of

this problem, is known as the D O M I N AT O R C O L O R I N G D E C I S I O N problem, takes a graph G and a

positive integer k as input and asks whether G has a dominator coloring using at most k colors.

If we impose a more stringent condition on coloring of G such that every vertex of G dominates

at least one color class other than its own color class, we get a stricter variation of dominator coloring

of G, which is termed as total dominator coloring of G. A total dominator coloring (TD-coloring) of

graph G is a proper coloring of vertices of G, so that each vertex totally dominates some color class.

We would like to point out that a TD-coloring is only defined for isolate-free graphs. So, the graphs

considered in regards to this problems are isolate-free graphs. The total dominator chromatic number of

G, χtd(G), is the least number of colors required for a total dominator coloring of G. A TD-coloring of

G that uses exactly χtd(G) colors is called χtd-coloring of G. The M I N I M U M T O TA L D O M I N AT O R

C O L O R I N G (MTDC) problem is to find a total dominator coloring of G using the minimum number of

colors. The decision version of the MTDC problem is termed as the T O TA L D O M I N AT O R C O L O R I N G

D E C I S I O N (TDCD) problem, which takes an isolate-free graph G and a positive integer k as input and

asks whether G has a TD-coloring using at most k colors.

The concept of TD-coloring was first introduced in 2009 [54] and then extensively studied in

last decade, see [2, 41, 53, 57, 64, 72, 73, 74, 100, 101, 102] and elsewhere. It is known that the TDCD

problem is NP-complete for general graphs [73]. For an isolate-free graph G, max {γt(G), χ(G)} ≤
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χtd(G) ≤ γt(G) + χ(G) [73, 100]. For bipartite graphs G, γt(G) ≤ χtd(G) ≤ γt(G) + 2 and both the

bounds are tight for bipartite graphs as well as for trees and paths [57]. Total dominator coloring of various

graph classes, including, paths, wheels, trees, and caterpillars, are studied [73, 100, 101, 102]. The total

dominator coloring problem is also studied on product graphs and Mycielskian graphs [72, 74]. Further,

this problem has been studied on finding the bounds and exact values of χtd(G) for some graph classes and

graph operations [2, 41, 53, 64]. For any arbitrary tree T , γt(T ) ≤ χtd(T ) ≤ γt(T ) + 2 and trees having

χtd(T ) = γt(T ) are characterized in [57]. The characterization of trees having χtd(T ) = γt(T ) + 1 was

posed as an open problem in [57].

1.3.4 Domination Coloring Problem

Let G = (V,E) be a simple graph. A coloring of G is said to be a dominated coloring (also

known as cd-coloring), if every color class is dominated by at least one vertex of G. The minimum

number of colors required for a dominated coloring of G is known as the dominated chromatic number

of G and is denoted by χdom(G). The M I N I M U M D O M I N AT E D C O L O R I N G problem is to find a

dominated coloring of G using χdom(G) colors. Dominator coloring and dominated coloring of graphs

have been extensively studied by several researchers, refer to [10, 58, 78, 85, 95, 96] and references there

within. Note that in a dominator coloring of G, there may exist some color class which is not dominated

by any vertex of G, and in a dominated coloring of G, there may exist some vertex which does not

dominate any color class. Quite recently (in 2019), another interesting and stronger version of coloring,

namely, domination coloring was introduced by Zhou et al. [105], so that both of these conditions are

simultaneously satisfied.

In the domain of computer networks, the M I N I M U M D O M I N AT I O N C O L O R I N G problem

addresses the challenge of optimizing communication structures among computing systems. Here,

individual systems are represented as vertices, and communication links between them by edges. The

goal is to identify the minimum number of groups of systems that exhibit specific properties: systems

within a group are independent, yet they can communicate through at least one common intermediary,

and every system acts as an intermediary for at least one group, facilitating communication between

systems within the same group. This application aims to enhance network efficiency, establish a degree of

system isolation for security or operational reasons, and ensure a distributed responsibility for facilitating

communication across the network.

Now, we formally define domination coloring problem. A coloring of G is termed as a domination

coloring of G, if each vertex dominates some color class and each color class is dominated by some
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vertex. The minimum number of colors needed to achieve a domination coloring of G is referred to as

the domination chromatic number of G and is denoted by χdd(G). An optimal domination coloring of

G is a domination coloring of G, which uses exactly χdd(G) colors. The M I N I M U M D O M I N AT I O N

C O L O R I N G (MDC) problem seeks to determine a domination coloring of G using χdd(G) colors.

The decision version of the MDC problem is the D O M I N AT I O N C O L O R I N G D E C I S I O N problem,

abbreviated as the DCD problem, takes a graph G and a positive integer k as an input and asks whether G

has a domination coloring using at most k colors. It is known that the decision version of this problem is

NP-complete for general graphs [105].

In 2019, Zou et al. [105] initiated the study of this problem by providing some basic results and

properties of χdd(G), including the bounds and characterization results. They have also worked on some

special graph classes, such as split graphs, generalized Petersen graphs, corona products, and edge corona

products. In addition, they proved that the DCD problem is NP-complete for general graphs, and that it

is NP-complete to determine χdd(G) ≤ k, where k ≥ 4. Recently in 2022, Das and Mishra [33] gave a

polynomial-time characterization of graphs with the domination chromatic number at most 3. They also

introduced another related node deletion problem called Minimum q-domination Partization, and worked

on it.

1.4 Structure and Contributions of the Thesis
The thesis is structured as follows: the initial chapter encompasses both the introduction and a

comprehensive literature survey. This section not only introduces the topic but also includes pertinent

definitions and crucial theorems that form the foundation for the subsequent chapters of the thesis. The

subsequent organization of the remaining thesis is outlined below.

Chapter 2: C O S E C U R E D O M I N AT I O N

In this chapter, we investigate the M I N I M U M C O S E C U R E D O M I N AT I O N (MCSD) problem

for several graph classes of significant importance, including, split graphs, circle graphs, undirected path

graphs, cographs, doubly chordal graphs, bounded tree-width graphs, bounded clique-width graphs, chain

graphs, chordal bipartite graphs, star-convex bipartite graphs, and comb-convex bipartite graphs.

We show that the C O S E C U R E D O M I N AT I O N D E C I S I O N (CSDD) problem is NP-complete

for split graphs, undirected path graphs (subclasses of chordal graphs), and circle graphs. We establish that

the problem remains NP-complete for doubly chordal graphs and for some subclasses of bipartite graphs,
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namely, chordal bipartite graphs, star-convex bipartite graphs, and comb-convex bipartite graphs. On the

positive side, we show that the MCSD problem is efficiently solvable for cographs (subclass of circle

graphs), chain graphs (subclass of bipartite graphs), bounded tree-width graphs, and bounded clique-width

graphs.

In addition, we study the approximation aspects of the MCSD problem. We show that the problem

can be approximated within an approximation ratio of (∆+1) for perfect graphs with maximum degree ∆.

We also prove that the problem can not be approximated within an approximation ratio of (1−ϵ)ln(|V |) for

any ϵ > 0, unless P = NP. Moreover, we prove that the MCSD problem is APX-hard for bounded degree

graphs. We then demonstrate the construction of graphs with given order and the cosecure domination

number. Further, we establish that the computational complexity of this problem differs from that of the

classical domination problem.

Chapter 3: S E M I PA I R E D D O M I N AT I O N

In this chapter, we study the algorithmic and hardness results for the M I N I M U M S E M I PA I R E D

D O M I N AT I O N (MSPD) problem. We focus on two important graph classes, namely, AT-free graphs and

planar graphs, and resolve the complexity of the MSPD problem in these two graph classes. We prove

that the decision version of the problem is NP-complete for planar graphs with maximum degree 4. On

the positive side, we show that a minimum semipaired dominating set of AT-free graphs can be computed

in polynomial-time but the complexity of the algorithm turns out to be quite high, precisely, O
(
n19.5

)
.

So, we also give a constant-factor approximation algorithm for AT-free graphs, which takes linear-time.

Chapter 4: T O TA L D O M I N AT O R C O L O R I N G

In this chapter, we work on the complexity of the M I N I M U M T O TA L D O M I N AT O R

C O L O R I N G (MTDC) problem for some graph classes, namely, chain graphs, cographs, bipartite graphs,

planar graphs, and split graphs. We show that the decision version of the MTDC problem remains

NP-complete when restricted to bipartite, planar, and split graphs. We characterize the trees having

χtd(T ) = γt(T ) + 1, which completes the characterization of trees achieving all possible values of

χtd(T ). On the positive side, we show that for a cograph G, χtd(G) can be computed in linear-time.

Additionally, we demonstrate that 2 ≤ χtd(G) ≤ 4 for a chain graph G, and then we characterize the

class of chain graphs for every possible value of χtd(G) in linear-time.
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Chapter 5: D O M I N AT I O N C O L O R I N G

In this chapter, we explore the computational complexity of the M I N I M U M D O M I N AT I O N

C O L O R I N G (MDC) problem. We demonstrate that the decision version of this problem is NP-complete

for bipartite graphs, P5-free graphs, K1,k-free graphs (k ≥ 4), and various other graph classes with

forbidden induced subgraphs. On the other side, we present linear-time algorithms to compute the

domination chromatic number for bipartite chain graphs (subclass of bipartite graphs), cographs, and

P4-sparse graphs (subclass of P5-free graphs).

We further investigate the MDC problem to obtain some bounds and approximation related results

for the problem. We propose a 2 factor approximation algorithm for the MDC problem for split graphs.

We also show that the problem cannot be approximated within a factor of (n1−ϵ+1)/2, for general graphs,

for any ϵ > 0. In addition, we present 2(1 + ln(∆ + 1)) factor approximation algorithm for the MDC

problem for bipartite graph G with maximum degree ∆, and we also show that it cannot be approximated

below (12 − ϵ) ln(n) for bipartite graphs, for any ϵ > 0. Furthermore, we prove that for any graph G,

χdd(G) + 1 ≤ χdd(µ(G)) ≤ χdd(G) + 2, where µ(G) denotes the Mycielskian of G, and we provide a

characterization of graphs having χdd(µ(G)) = χdd(G) + 1.

Chapter 6: C O N C L U S I O N A N D F U T U R E A S P E C T S

This chapter serves as a conclusion, summarizing the contributions made during the PhD research,

while also shedding light on potential directions for future research.





Chapter 2
Cosecure Domination

This chapter is devoted to study the complexity of cosecure domination in graphs.

Precisely in this chapter, we investigate the computational complexity of the M I N I M U M

C O S E C U R E D O M I N AT I O N (MCSD) problem for various important graph classes. In addition,

we explore the approximation aspects of the problem.

2.1 Introduction
One of the important variations of domination problem is the secure domination which is

defined as follows. Let G = (V,E) be a graph with the vertex set V = V (G) and the edge set

E = E(G). A dominating set S ⊆ V of G is called a secure dominating set of G, if for every

u ∈ V \S, there exists a vertex v ∈ S adjacent to u such that (S \ {v})∪{u} is a dominating set

of G. The problem of finding a minimum cardinality secure dominating set of a graph is known

as the M I N I M U M S E C U R E D O M I N AT I O N problem. The concept of the secure domination

was first introduced by Cockayne et al. [24] in 2005. This problem and its many variants have

been extensively studied by several researchers in [5, 16, 24, 79, 93] and elsewhere. A detailed

survey on secure domination and its variants can be found in the book by Haynes et al. [46].

Now, consider a situation in which we have a set of locations that are connected to each

other using direct roads. We want to select a subset of locations such that we can distribute some

resource (food, medicine, etc.) at all the locations with an additional constraint of existence

of a substitute or replacement (unselected neighbouring) location for each selected location.

Assuming that if we are at a location, we can distribute the resource to its neighbouring locations

as well. In real life situations, some complication may arise at some selected location, to tackle

such situation, we want each selected distributing location to have a backup location from the

neighbouring unselected locations such that we can still be able to distribute the resource at all

the locations.

23
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Motivated by a similar situation, another interesting variation of domination known as

cosecure domination was introduced by Arumugam et al. [7] in 2014. The concept of cosecure

domination was further studied in [69, 84, 107]. This variation is partly related to secure

domination and it is, in a way, a complement to secure domination. For a graph G = (V,E), a

dominating set S ⊆ V is called a cosecure dominating set, abbreviated as CSDS, if for every

u ∈ S, there exists a vertex v ∈ V \ S adjacent to u such that (S \ {u}) ∪ {v} is a dominating

set of G. Note that if a graph G has isolated vertices, then there does not exist any cosecure

dominating set of G. Therefore, we will consider graphs without any isolated vertices. The

minimum cardinality of a cosecure dominating set of G is called the cosecure domination number

of G and is denoted by γcs(G).

Given a graph G without an isolated vertex, the M I N I M U M C O S E C U R E

D O M I N AT I O N (MCSD) problem is to find a minimum cardinality cosecure dominating set

of G. The decision version of this problem is the C O S E C U R E D O M I N AT I O N D E C I S I O N

(CSDD) problem that takes a graph G without isolated vertices and a positive integer k as an

instance and asks whether G has a cosecure dominating set of cardinality at most k. For a

dominating set S of G and a vertex u ∈ S, if there exists a vertex v ∈ V \ S such that uv ∈ E

and (S \ {u}) ∪ {v} is a dominating set of G, then we say that v is a replacement of u for

the set S. If there does not exist any vertex which is a replacement of u, then we say that a

replacement of u does not exist. Note that a dominating set S is a CSDS, if every vertex of S has

a replacement. A vertex w is said to be a private neighbour of u ∈ S, if w is not dominated by

any vertex of S except u.

In this study, we extend the existing literature by investigating some algorithmic and

approximation-related results for the M I N I M U M C O S E C U R E D O M I N AT I O N problem. It is

already known that the CSDD problem is NP-complete for chordal graphs and bipartite graphs [7].

Following the hierarchy of graph classes, the next obvious question is to ask about the complexity

status of the problem for subclasses of chordal graphs and bipartite graphs. Specifically, we work

on the MCSD problem for various graph classes of significant importance. Also, there was no

result in the literature regarding the approximation aspects of this problem, so, we have worked

in this direction as well. Another interesting question that we investigate is that whether there
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exists a graph for any given order having a certain cosecure domination number or not. The main

contributions and structure of the chapter are summarized below:

• In Section 2.2, we provide some preliminary results which will be used later in this chapter.

• Section 2.3 constitutes of the NP-completeness results for the CSDD problem. We show

that the CSDD problem is NP-complete for split graphs, circle graphs, undirected path

graphs, doubly chordal graphs, chordal bipartite graphs, star-convex bipartite graphs, and

comb-convex bipartite graphs.

• In Section 2.4, we present an efficient algorithm for computing the cosecure dominating set

of cographs and chain graphs. We also prove that the MCSD problem is linear-time solvable

for bounded tree-width graphs and bounded clique-width graphs. As a consequence, it

follows that the problem is linear-time solvable for distance hereditary graphs.

• In Section 2.5, we give construction of graphs having given order n and the cosecure

domination number c, if such a graph exists.

• In Section 2.6, we illustrate that the complexity associated with the MD problem can differ

from that of the MCSD problem within certain graph classes. We pinpoint two distinct

graph classes in which such variations are evident.

• Section 2.7, we delve into approximation-related results for the MCSD problem. We give

an approximation algorithm for the problem with an approximation ratio (∆ + 1) for

perfect graphs with maximum degree ∆.

• Also, we show that the MCSD problem cannot be approximated within an approximation

ratio of (1− ϵ) ln(|V |) for any ϵ > 0, unless P = NP. Further, we establish that the MCSD

problem is APX-hard for bounded degree graphs.

• In Section 2.8, we provide a brief summary of the chapter.

2.2 Preliminary Results
In this section, we list out few results which are already known in the literature and will

be helpful in proving some results in this chapter.
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Let G = C1 ∪ C2 ∪ · · · ∪ Ck be a disconnected graph, where C1, C2, . . . , Ck are the

connected components of G. Then, γcs(G) =
∑k

i=1 γcs(Ci). Thus, throughout this chapter, we

will consider only connected graphs with at least two vertices.

It is known that a cosecure dominating set does not exist for graphs with isolated vertices.

The following lemma shows the existence of a cosecure dominating set for any graph with no

isolated vertices.

Lemma 2.1. [7] Let G = (V,E) be a graph without any isolated vertices. Then, any maximum

independent set of G is also a cosecure dominating set of G.

Lemma 2.2. [7] If G = (X, Y,E) is a complete bipartite graph with |X| ≤ |Y |, then

γcs(G) =



|Y | if |X| = 1;

2 if |X| = 2;

3 if |X| = 3;

4 otherwise.

(A)

Lemma 2.3. [7] In a graph G = (V,E), let s be a support vertex and Ps be the set of pendant

vertices adjacent to s. If |Ps| ≥ 2, then every cosecure dominating set S of G contains Ps and

does not contain s.

The following corollary directly follows from the above result.

Corollary 2.4. Let G = (X, Y,E) be a star graph having order at least 3 and Y be the set of

pendant vertices of G and x ∈ X be the center of G. Then, every cosecure dominating set S of

G contains Y and x /∈ S.

2.3 NP-completeness Results
In this section, we prove the NP-completeness of the CSDD problem for various important

classes of graphs, namely, split graphs, circle graphs, undirected path graphs, chordal bipartite

graphs, star-convex bipartite graphs, and comb-convex bipartite graphs. To prove all these

NP-completeness results, we show polynomial-time reductions from the decision version of
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the M I N I M U M D O M I N AT I O N problem. The following results are known regarding the

NP-completeness of the D O M I N AT I O N D E C I S I O N problem.

Theorem 2.5. [13, 15, 75, 88] D O M I N AT I O N D E C I S I O N problem is NP-complete for split

graphs, circle graphs, undirected path graphs, chordal bipartite graphs, and bipartite graphs.

2.3.1 Split Graphs

In this subsection, we establish the NP-completeness of the CSDD problem for connected

split graphs. We start with presenting a lemma that tells about some properties of a dominating

set of a split graph.

Lemma 2.6. Let G = (K ∪ I, E) be a connected split graph and D be a dominating set of G of

cardinality k. Then, there exists a dominating set D′ of cardinality at most k such that D′ ⊆ K.

Further, D′ satisfies at least one of the following conditions:

(a) for every vertex u ∈ D′, there exist v ∈ I such that uv ∈ E.

(b) D′ ⊂ K, that is, D′ is properly contained in K.

Proof. Suppose that G = (K ∪ I, E) is a connected split graph and D is a dominating set of G

such that |D| = k. Now, if D′ ⊆ K, then we are done. Otherwise, there must exist u ∈ D∩I and

v ∈ K such that uv ∈ E, because G is a connected split graph. Observe that (D \ {u, v}) ∪ {v}
is again a dominating set of G of cardinality at most k. Thus, there exists a dominating set D′ of

G of cardinality at most k such that D′ ⊆ K.

Next, if there exists a vertex u ∈ D′ such that u is not adjacent to any vertex of I and

D′ = K, then D′ \ {u} is a dominating set of G of cardinality at most k. Hence, by removing

every such vertex from D′, we obtain a new dominating set D′′ of G of cardinality at most k

such that D′′ ⊂ K and for every vertex u ∈ D′′, there exists a v ∈ I such that uv ∈ E.

With the help of the above lemma, we prove that the decision version of the MCSD

problem is NP-complete for connected split graphs.

Theorem 2.7. CSDD problem is NP-complete for connected split graphs.

Proof. CSDD problem is in NP, as it is easy to check whether some set S is a dominating

set of a given graph G or not, additionally, verifying that every vertex in the proposed set
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S has a replacement in V \ S can be done in polynomial-time. Overall, we observe that

in polynomial-time we can verify whether some set forms a cosecure dominating set of a

given graph G or not. Now, to prove the NP-hardness, we provide a reduction from the

DD problem for split graphs to the CSDD problem for split graphs in the following way.

Consider a connected split graph G = (K ∪ I, E) and a positive integer k as an instance of

the DD problem. Assume that I = {v1, v2, . . . , vr}. We construct a graph H = (V H , EH)

from G as follows. We consider two copies I ′ and I ′′ of I , where I ′ = {v′1, v′2, . . . , v′r} and

I ′′ = {v′′1 , v′′2 , . . . , v′′r}, respectively. Define V H = K ∪ I ∪ I ′ ∪ I ′′ and EH = E ∪ {uv | u ∈ K

and v ∈ I ′} ∪ {v′iv′j | 1 ≤ i < j ≤ r} ∪ {viv′i, v′iv′′i | 1 ≤ i ≤ r}. Take C = K ∪ I ′ and

J = I ∪ I ′′. Note that V H = C ∪ J , where C is a clique and J is an independent set. Therefore,

H is a connected split graph. Note that H can be constructed from G in polynomial-time.

F I G U R E 2.1 illustrates the construction of H from G.
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F I G U R E 2 . 1 : Illustrating the construction of graph H from a graph G.

Now, we only need to prove the following claim.

Claim 2.3.1. G has a dominating set of cardinality at most k if and only if H has a cosecure

dominating set of cardinality at most k + |I|.
Proof. Assume that D is a dominating set of G of cardinality at most k, then using Lemma 2.6,

there exists a dominating set D′ of cardinality at most k of G such that D′ ⊆ K. Assume that D

is a dominating set of cardinality at most k of G such that D ⊆ K. Consider a set S = D ∪ I ′.

Clearly, S is a dominating set of H . Let u ∈ D∩K. Using Lemma 2.6, it follows that there exist

v ∈ I such that uv ∈ E, or D ⊂ K (which means that there exist w ∈ K \D). For u ∈ S ∩K,

if there exist v ∈ I such that uv ∈ EH , then v is a replacement of u; otherwise, there must exist
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w ∈ K \ S and w is a replacement of u in D. Now, for v′i ∈ S ∩ I ′, there exists a vertex v′′i ∈ I ′′

such that v′iv
′′
i ∈ EH and v′′i is a replacement of v′i in D. Therefore, S is a cosecure dominating

set of cardinality at most |D| + |I|. Hence, H has a cosecure dominating set of cardinality at

most k + |I|.

Conversely, assume that H has a cosecure dominating set S of cardinality at most k + |I|.
Let u ∈ I , u′ ∈ I ′ and u′′ ∈ I ′′ such that uu′, u′u′′ ∈ EH . Using definition of cosecure

dominating set, it follows that either u′ ∈ S or u′′ ∈ S. If some u′′ ∈ S, then we have that

u′ /∈ S, we can simply replace u′′ with u′ in S and the updated set is also a cosecure dominating

set of H . Thus, without loss of generality, we can assume that I ′ ⊆ S. Let D = S \ I ′. Note

that D ⊆ K ∪ I . Since for u′ ∈ I ′ ∩ S, there exists u′′ ∈ I ′′ such that u′u′′ ∈ E and u′′ is a

replacement of u′ in D. This implies that u is not a private neighbour of u′. Thus, there exist

v ∈ (K ∪ I) ∩ D such that either u = v or uv ∈ EH . Note that for every u ∈ I , there exist

v ∈ (K ∪ I)∩D such that either u = v or uv ∈ EH . Now, if D ∩K ̸= ∅. Then, it is easy to see

that D is a dominating set of cardinality at most k, as |I ′| = |I|. Next, assume that D ∩K = ∅.
Let u ∈ I ∩D and v ∈ K such that uv ∈ EH . Then, (D \ {u}) ∪ {v} is a dominating set of G

of cardinality at most k. Hence, the result follows.

Hence, the theorem is proved.

2.3.2 Circle Graphs and Chordal Bipartite Graphs

In this subsection, we establish that the decision version of the MCSD problem is

NP-complete, when restricted to circle graphs and chordal bipartite graphs. The proofs of

the NP-completeness follows by using a polynomial-time reduction from the DD problem to

the CSDD problem. Now, we illustrate the reduction f (Arumungam et al. [7]) used for this

purpose.

Reduction f : Given a graph G = (V,E) with V = {vi | 1 ≤ i ≤ n}, we construct a

graph G′ = (V ′, E ′) from G by attaching a path (vi, xi, yi) to each vertex vi ∈ V . Formally,
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V ′ = V ∪ {xi, yi | 1 ≤ i ≤ n} and E ′ = E ∪ {vixi, xiyi | 1 ≤ i ≤ n}. Note that |V ′| = 3n and

|E ′| = |E|+ 2n. It is easy to see that G′ can be constructed from G in polynomial-time.

The reduction f reduces an instance G of the DD problem to an instance G′ of the CSDD

problem. Now, we present the subsequent results which follows from [7].

Lemma 2.8. [7] G has a dominating set of cardinality at most k if and only if G′ has a cosecure

dominating set of cardinality at most k′, where k′ = k + |V |.

Lemma 2.9. [7] Let G′ be the graph constructed from G using the reduction f . Then, γcs(G′) =

γ(G) + |V |.

Next, we mention a result known regarding circle graphs. Later, a lemma regarding

chordal bipartite graphs which is easy to follow.

Lemma 2.10. [76] Let G be a circle graph and G′ be the graph obtained by using the above

defined reduction f . Then, G′ is also a circle graph.

Lemma 2.11. Let G be a chordal bipartite graph and G′ be the graph obtained by using the

reduction f . Then, G′ is also a chordal bipartite graph.

The proof of Theorem 2.12 directly follows from the amalgamation of Theorem 2.5,

Theorem 2.5, Lemma 2.8, Lemma 2.10, and Lemma 2.11.

Theorem 2.12. CSDD problem is NP-complete for circle graphs and chordal bipartite graphs.

2.3.3 Undirected Path Graphs

In this subsection, we establish that the decision version of the MCSD problem is

NP-complete, when restricted to undirected path graphs. Recall that a graph is an undirected

path graph, if it is a intersection graph of some family of undirected paths of a tree. For an

undirected path graph G, we have a corresponding representation as an intersection graph of

some family of undirected paths FG of a tree TG such that each vertex v of G is represented by

a path Tv ∈ FG, where Tv is a path and a subgraph of tree TG, and two vertices u, v ∈ V are

adjacent in G iff their corresponding representing paths Tu, Tv ∈ FG shares a vertex in TG.

We remark that for every undirected path graph G, there exists a representation as an

intersection graph of some family of undirected paths F ′
G of a tree T ′

G such that each path in
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F ′
G has a pendant vertex in the tree T ′

G. This new tree T ′
G can be constructed from TG by adding

a unique and distinct pendant vertex to each path which does not have any pendant vertex in TG.

For illustration, consider F I G U R E 2.2 which shows an example of an undirected path

graph G and its representations as an intersection graphs of some family of undirected paths

of a tree TG (and T ′
G). If there is a path P = {u,w, v} between vertices u and v which passes

through vertex w, then we represent path P as P = u− w − v. In TG, the family of paths FG is

{Tv1 , Tv2 , . . . , Tv6}, where paths Tv1 = a−b, Tv2 = b−c, Tv3 = c−d, Tv4 = c−g, Tv5 = c−e,

and Tv6 = e− f . Here, Tv2 and Tv3 does not have any pendant vertex in TG. So, we construct

T ′
G from TG by adding pendant vertices h and i to paths Tv2 and Tv5 , respectively. Now, in the

updated tree T ′
G, family of paths F ′

G is {T ′
v1
, T ′

v2
, . . . , T ′

v6
}, where T ′

v1
= a− b, T ′

v2
= h− b− c,

T ′
v3

= c− d, T ′
v4

= c− g, T ′
v5

= c− e− i, and T ′
v6

= e− f .
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F I G U R E 2 . 2 : Illustration of an undirected path graph G and its representations as an
intersection graphs of some family of undirected paths of a tree TG (and T ′

G).

The proof of the NP-completeness follows by using the polynomial-time reduction f

(defined in Subsection 2.3.2) from the DD problem to the CSDD problem. The following lemma

helps us in that purpose.

Lemma 2.13. Let G be an undirected path graph and H be the graph obtained by using the

above defined reduction f (defined in Subsection 2.3.2). Then, H is also an undirected path

graph.

Proof. Let G = (V,E) be an undirected path graph, where V = {v1, v2, . . . , vn}. There exist

tree TG and family of paths, FG = {T1, T2, . . . , Tn}, of TG such that G can be represented as

an intersection graph of family of paths FG of TG and each path in FG has a pendant vertex

in TG. Assume that ai is a pendant vertex of the path Ti in TG, for 1 ≤ i ≤ n. We modify tree

TG by adding a path ai − bi − ci to each ai and we call this new tree TH and a new family of
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paths FH of TH is constructed as follows: FH = {Ti, T
′
i , T

′′
i | 1 ≤ i ≤ n}, where T ′

i = ai − bi

and T ′′
i = bi − ci. Now, assuming that vi, xi and yi are represented by paths Ti, T ′

i , and T ′′
i ,

respectively, in tree TH . It is easy to see that H can be represented as an intersection graph of

family of paths FH of the tree TH . Thus, H is an undirected path graph.

Consequently, the proof of the subsequent theorem directly follows through the

amalgamation of Theorem 2.5, Lemma 2.8, and Lemma 2.13.

Theorem 2.14. CSDD problem is NP-complete for undirected path graphs.

2.3.4 Star-convex Bipartite Graphs

In this subsection, we prove that the decision version of the MCSD problem is

NP-complete, when restricted to connected star-convex bipartite graphs.

Theorem 2.15. CSDD problem is NP-complete for star-convex bipartite graphs.

Proof. Clearly, the CSDD problem is in NP for star-convex bipartite graphs. In order to prove the

NP-completeness, we establish a reduction from an instance of the D O M I N AT I O N D E C I S I O N

problem for bipartite graphs to an instance of the C O S E C U R E D O M I N AT I O N D E C I S I O N

problem for star-convex bipartite graphs.

Suppose that a bipartite graph G = (X, Y,E) is given, where X = {xi | 1 ≤ i ≤ n1}
and Y = {yi | 1 ≤ i ≤ n2}. We construct a star-convex bipartite graph G′ = (X ′, Y ′, E ′) from

G in the following way:

• X ′ = X ∪ {x, x′, x′
0, x

′
1, x

′
2},

• Y ′ = Y ∪ {y, y′, y′0, y′1, y′2}, and

• E ′ = E ∪ {xyi, x′yi | 1 ≤ i ≤ n2} ∪ {yxi, y
′xi | 1 ≤ i ≤ n1} ∪ {xy′i, yx′

i | 1 ≤ i ≤
2} ∪ {xy, xy′, x′y, x′y′, x′y′0, y

′x′
0}.

Here, |X ′| = n1 + 5, |Y ′| = n2 + 5 and |E ′| = |E| + 2n1 + 2n2 + 10. It is easy to see

that G′ can be constructed from G in polynomial-time. Also, the newly constructed graph G′ is a

star-convex bipartite graph with star T = (X ′, F ), where F = {xxi | 1 ≤ i ≤ n1} ∪ {xx′, xx′
i |

0 ≤ i ≤ 2} and x is the center of the star T . F I G U R E 2.3 illustrates the construction of G′ from

G.
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F I G U R E 2 . 3 : Illustrating the construction of graph G′ from a graph G.

Claim 2.3.2. G has a dominating set of cardinality at most k if and only if G′ has a cosecure

dominating set of cardinality at most k + 6.

Proof. Let D be a dominating set of G of cardinality at most k. Consider a set S = D ∪ {x′
i, y

′
i |

1 ≤ i ≤ 2} ∪ {x′, y′}, where x′
i ∈ X ′ and y′i ∈ Y ′ for 0 ≤ i ≤ 2. Clearly, S is a dominating

set of G′ and |S| ≤ k + 6. It is easy to see that for every vertex in S there exists a replacement,

in particular, for u ∈ S ∩ (X ′ \ {x′}), y is a replacement for u, and replacement for x′ is y′0.

Similarly, we can argue that we have some replacement for each vertex v ∈ S ∩ Y ′. Therefore,

S is a cosecure dominating set of G′ of cardinality at most k + 6. Hence, G′ has a cosecure

dominating set of cardinality at most k + 6.

Conversely, let S be a cosecure dominating set of cardinality at most k + 6. From

Lemma 2.3, it follows that x′
i, y

′
i ∈ S, for 1 ≤ i ≤ 2 and x, y /∈ S. By definition of a cosecure

dominating set, it is clear that exactly one of x′ and y′0 is in S. Similarly, exactly one of y′

and x′
0 is in S. Thus, |S \ (X ∪ Y )| ≥ 6. Define a set D = S ∩ (X ∪ Y ). Clearly, |D| ≤ k.

Now, we claim that the set D = S ∩ (X ∪ Y ) is a dominating set of G. If both x′ and y′

belong to S, then we are done. Note that when x′ ∈ S, then y′0 is the replacement for x′. This

means that S ∩ (X ∪ Y ) dominates X . Similarly, we get that S ∩ (X ∪ Y ) dominates Y when

y′ ∈ S. Therefore, we can conclude that in every possible case, D forms a dominating set of G

of cardinality at most k.

With this, we successfully conclude the proof of the stated result.
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As tree-convex bipartite graphs is a superclass of star-convex bipartite graphs, from

Theorem 2.15 the following corollary directly follows.

Corollary 2.16. The CSDD problem is NP-complete for tree-convex bipartite graphs.

2.3.5 Comb-convex Bipartite Graphs

In this subsection, we prove that the decision version of the MCSD problem is

NP-complete for comb-convex bipartite graphs.

Theorem 2.17. CSDD problem is NP-complete for comb-convex bipartite graphs.

Proof. Clearly, the CSDD problem is in NP for comb-convex bipartite graphs. The proof of

this can be established through a polynomial-time reduction from the DD problem to the CSDD

problem.

Suppose that a bipartite graph G = (X, Y,E) is given, where X = {xi | 1 ≤ i ≤ n1}
and Y = {yi | 1 ≤ i ≤ n2}. We construct a comb-convex bipartite graph G′ = (X ′, Y ′, E ′)

from G in the following way:

• X ′ = X ∪X0 ∪ {x1, x2, x3, a′, b′, c′} where X0 = {x0
i | 1 ≤ i ≤ n1},

• Y ′ = Y ∪ {y1, y2, a, b, c, d, e} ∪ {ai, bi | 1 ≤ i ≤ n1}, and

• E ′ = E ∪ {xiy
j, x0

i y
j | 1 ≤ i ≤ n1 and 1 ≤ j ≤ 2} ∪ {yix0

j | 1 ≤ i ≤ n2 and

1 ≤ j ≤ n1} ∪ {xiyj | 1 ≤ i ≤ 3 and 1 ≤ j ≤ n2} ∪ {xiyj | 1 ≤ i ≤ 3 and

1 ≤ j ≤ 2} ∪ {x0
i ai, x

0
i bi | 1 ≤ i ≤ n1} ∪ {y1a′, y1b′, y2c′} ∪ {x1a, x1b, x2c, x2d, x3e}.

Note that |X ′| = 2n1 + 6, |Y ′| = 2n1 + n2 + 7 and |E ′| = |E| + 6n1 + 3n2 + 11. It is

easy to see that G′ can be constructed from G in polynomial-time. Also, G′ is a comb-convex

bipartite graph with comb T = (X ′, F ), where F = {x0
ix

0
i+1 | 1 ≤ i ≤ n1 − 1} ∪ {xix

0
i | 1 ≤

i ≤ n1} ∪ {x0
n1
a′, a′b′, x1x0

1, x
1x2, x1x3, x3c′} is comb with X0 ∪ {x1, x3, a′} as backbone and

X ∪ {x2, b′, c′} as teeth. F I G U R E 2.4 illustrates the construction of G′ from G.

Claim 2.3.3. G has a dominating set of cardinality at most k if and only if G′ has a cosecure

dominating set of cardinality at most k + 2(|X|+ 4).

Proof. Let D be a dominating set of G of cardinality at most k. Consider a set S = D ∪
{ai, bi | 1 ≤ i ≤ n1} ∪ {a, b, c, d, a′, b′, y2, x3}. Clearly, S is a dominating set of G′ and

|S| = k+2(|X|+4). Now, we prove that for every vertex in S, there exists a replacement. First,
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F I G U R E 2 . 4 : Illustrating the construction of graph G′ from a graph G.

we consider the vertices in the set S ∩X ′ = (D ∩X)∪ {x3} and specify a replacement for each

vertex of S ∩X ′ as follows:

• y1 is a replacement for every vertex u ∈ S ∩X(= D ∩X),

• e is replacement for x3, and

• y1 is replacement for a′ and b′.

Now, we consider the vertices in set S∩Y ′ = (D∩Y )∪{a, b, c, d, y2} and specify a replacement

for each vertex of S ∩ Y ′ as follows:

• x1 is a replacement for every vertex u ∈ (S ∩ Y ) ∪ {a, b},
• c′ is replacement for y2, and

• x2 is replacement for c and d,

Thus, for every vertex of S, there exists a replacement. Therefore, we can conclude that S is a

cosecure dominating set of G′ of cardinality at most k + 2(|X|+ 4).

Conversely, let S be a cosecure dominating set of G′ of cardinality at most k+2(|X|+4).

From Lemma 2.3, it follows that {ai, bi | 1 ≤ i ≤ n1} ∪ {a, b, c, d, a′, b′} ⊆ S, and S ∩
({x1, x2, y1} ∪X0) = ∅. By definition of a cosecure dominating set, it is clear that exactly one

of y2 and c′ is in S. Similarly, exactly one of x3 and e is in S. Thus, |S \ (X ∪ Y )| ≥ 2(|X|+4).

Define a set D = S ∩ (X ∪ Y ). Clearly, by the above, |D| ≤ k. Now, we claim that the set

D = S ∩ (X ∪ Y ) is a dominating set of G. If both c′ and e belong to S, then we are done. Note
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that when x3 ∈ S, then e is the replacement for x3. This means that S ∩ (X ∪ Y ) dominates Y .

Similarly, we get that S ∩ (X ∪ Y ) dominates X , when y′ ∈ S. Therefore, we can conclude that

in every possible case, D forms a dominating set of G of cardinality at most k.

This completes the proof of the result.

2.4 Efficient Algorithms
In this section, we prove that the M I N I M U M C O S E C U R E D O M I N AT I O N problem is

solvable in polynomial-time for cograph, chain graphs, bounded tree-width graphs, and bounded

clique-width graphs.

Before designing our algorithms for cographs and chain graphs, we first give a simple

algorithm, namely, CSDS CB(G, p, q) that computes a minimum cosecure dominating set of

a complete bipartite graph. This algorithm is designed using Lemma 2.2. The algorithm

CSDS CB(G, p, q) takes a complete bipartite graph and cardinalities of the partite sets, namely,

p, q satisfying p ≤ q as an input and returns a minimum cosecure dominating set of G as an

output.

Algorithm 1: CSDS CB(G, p, q)

Input: A complete bipartite graph G = (X, Y,E) with |X| ≤ |Y | and two integers p, q,
where p = |X| and q = |Y |.

Output: A minimum cosecure dominating set of G.
if (p = 1) then

return Y ;
else if ((p = 2) or (p = 3)) then

return X;
else

Define Z = {x1, x2, y1, y2}, where x1, x2 ∈ X and y1, y2 ∈ Y ;
return Z;

2.4.1 Cographs
In this subsection, we present a linear-time algorithm to find a minimum cosecure

dominating set of a given cograph. Recall that a cograph is a graph that can be constructed

recursively using the following rules:

1. K1 is a cograph.
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2. Join of two cographs is a cograph.

3. Disjoint union of cographs is a cograph.

Corresponding to every cograph, there exists a unique rooted tree (cotree) representation

up to isomorphism [81]. For a connected cograph G, let the corresponding cotree be denoted by

TG. This cotree TG satisfies the following properties [82]:

P1 Every internal vertex has at least two children.

P2 Each internal vertex of TG is either labelled as a 1-node or 0-node such that root R is a

1-node and no two adjacent internal vertices get the same label.

P3 Leaves in TG correspond to the vertices of G. Two vertices x and y are adjacent in G if

and only if the lowest common ancestor of x and y is a 1-node in TG.
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F I G U R E 2 . 5 : Illustrating a cograph G and its cotree representation TG.

First, we give an example illustrating a cograph G and its cotree representation TG in

F I G U R E 2.5. As the leaves in TG correspond to the vertices of G, we remark that the label

is same for the leaf in TG and the corresponding vertex in G. Now, we define some notations

related to the cotree TG of a cograph G. Let R be the root vertex of TG. For a vertex x ∈ V (TG),

chTG
(x) denotes the set of children of x in TG and TG(x) denotes the subtree of TG rooted at

x. The set of leaves in TG(x) is denoted by L(x), where x ∈ V (TG). We define GTG(x) as

the subgraph of G induced on L(x). An internal vertex x of TG with label 0-node (1-node)

corresponds to the induced subgraph GTG(x) of G formed by disjoint union (join) of the induced

subgraphs GTG(xi) : 1 ≤ i ≤ k of G, where chTG
(x) = {x1, x2, . . . , xk}. When it is clear

from the context which graph is being considered, we can simply use Gi to represent GTG(xi),

where 1 ≤ i ≤ k and chT (x) to represent chTG
(x). Observe that GTG(R) is nothing but the
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cograph G itself. The readers interested in more detailed illustration of the cotree representation

corresponding to a cograph may refer to [28, 45, 81, 82]. Now, we establish a series of lemmas to

lay the groundwork for our main algorithm designed to compute a minimum cosecure dominating

set of a given connected cograph.

Consider a connected cograph G and the cotree TG corresponding to it. Let R be the root

vertex of the cotree TG. Observe that each subtree of TG represents an induced subgraph of the

graph G. The following lemma directly follows from the properties of the cotree corresponding

to a given cograph.

Lemma 2.18. If G is a cograph formed by the join of G1, G2, . . . , Gk, then for each i ∈ [k], Gi

is either K1 or a disconnected graph.

Note that any connected cograph G with at least two vertices can be written as the join of

k cographs G1, G2, . . . , Gk, where k ≥ 2. Observe that each Gi corresponds to a subtree of the

cotree TG. In the next lemma, we give a characterization for the graph G to have domination

number one.

Lemma 2.19. Let G = G1 +G2 + · · ·+Gk be a cograph with k ≥ 2. Then, γ(G) = 1 if and

only if there exists at least one i ∈ [k] such that Gi = K1.

Proof. Consider a cograph G = G1 +G2 + · · ·+Gk, k ≥ 2. First, let γ(G) = 1 and S = {v}
is a dominating set of G. As S is a dominating set, this implies that N [v] = V (G). If there exist

i ∈ [k] such that Gi = K1, then we are done. So, assume that there does not exist any i ∈ [k]

such that Gi = K1. Thus, |V (Gi)| ≥ 2 for all i ∈ [k]. Now, using Lemma 2.18, it follows that

each Gi is a disconnected graph. This implies that we require at least two vertices to dominate

G, which is a contradiction to the fact that γ(G) = 1. Therefore, there exists i ∈ [k] such that

Gi = K1.

Next, assume that there exist i ∈ [k] such that Gi = K1. Note that for u ∈ V (Gi),

N [u] = V (G). Thus, the set S = {u} forms a dominating set of G. Therefore, γ(G) = 1. This

concludes the result.

Note that if x is an internal vertex of the cotree TG which is a 1-node, then using
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Lemma 2.19, it follows that γ(GTG(x)) = 1 if and only if at least one of vertex in chTG
(x) is a

leaf in the cotree TG. Now, in Lemma 2.20, we give a characterization for cographs to have the

cosecure domination number one.

Lemma 2.20. Let G = G1 +G2 + · · ·+Gk be a cograph with k ≥ 2. Then, γcs(G) = 1 if and

only if there exist p, q ∈ [k] (p ̸= q) such that Gp = Gq = K1.

Proof. Consider a cograph G = G1 + G2 + · · · + Gk, k ≥ 2. Assume that γcs(G) = 1 and

S = {v} is a cosecure dominating set of G. As every cosecure dominating set is a dominating

set as well, thus, S is a dominating set of G and N [v] = V (G). That is, γ(G) = 1. Using

Lemma 2.19, there exist i ∈ [k] such that Gi = K1. As S is a cosecure dominating set, there

exists a vertex u ∈ V (G) \ S such that (S \ {v}) ∪ {u} = {u} is a dominating set. Thus, we

have N [v] = V (G) and N [u] = V (G). Therefore, there exist p, q ∈ [k] (p ̸= q) such that

Gp = Gq = K1.

Now, we assume that there exist p, q ∈ [k] (p ̸= q) such that Gp = Gq = K1. Note that

for x ∈ V (Gi), N [x] = V (G) where i = p, q. Thus, the set S = {v} forms a dominating set of

G, where v ∈ V (Gp). Further, there exists a vertex u ∈ V (Gq) such that (S \ {v})∪ {u} = {u}
is a dominating set. Therefore, S = {v} forms a cosecure dominating set of G and γcs(G) = 1.

Hence, this concludes the result.

Consider a cograph G which is the join of G1, G2, . . . , Gk, where k ≥ 3. In the

forthcoming lemma, we obtain a sufficient condition for the cographs having the cosecure

domination number two.

Lemma 2.21. Let G = G1 + G2 + · · · + Gk, k ≥ 3 be a cograph. If there exists at most one

i ∈ [k] such that Gi = K1, then γcs(G) = 2.

Proof. Assume that G = G1 +G2 + · · ·+Gk, k ≥ 3 is a cograph. Using Lemma 2.20, we have

γcs(G) ≥ 2. Without loss of generality, assume that G1 = k1. Now, consider a set S = {u, v},
where u ∈ V (G1) and v ∈ V (G2). Note that N [u] ∪N [v] = V (G). So, S is a dominating set

of G. Let w ∈ V (G3). Then, w is a replacement of u as well as v in the dominating set S of G.

Therefore, S is a cosecure dominating set of G. Hence, γcs(G) = 2.
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Let G be a cograph formed by the join of two cographs G1 and G2. We first prove an

upper bound on the cosecure domination number of G, when both G1 and G2 contain at least

two vertices. Later, in Lemma 2.23, we assume that x1 is a leaf in cotree TG and obtain that

the cosecure domination number of G is equal to the domination number of G2, which is the

cograph corresponding to the subtree rooted at vertex x2 in the cotree TG.

Lemma 2.22. If G = G1 +G2 is a cograph with |V (G1)|, |V (G2)| ≥ 2, then γcs(G) ≤ 4.

Proof. Assume that G = G1 +G2 is a cograph with |V (G1)|, |V (G2)| ≥ 2. If there exist i ∈ [2]

such that |V (Gi)| = 2, then S = V (Gi) forms a cosecure dominating set of G. Thus, γcs(G) ≤ 4

in this case. Now, we assume that |V (G1)|, |V (G2)| ≥ 3. Consider a set S = {u, v, x, y}, where

u, v ∈ V (G1) and x, y ∈ V (G2). As u dominates V (G2) and x dominates V (G1), therefore, S

is a dominating set of G. Let w ∈ V (G1) \ S and z ∈ V (G2) \ S. Then, w is a replacement

of x (and y) in S and z is a replacement of u (and v) in S such that the resultant set is still a

dominating set of G. Therefore, S is a cosecure dominating set of G. Hence, γcs(G) ≤ 4.

Lemma 2.23. If G = G1 +G2 is a cograph with G1 = K1, then γcs(G) = γ(G2).

Proof. Let G = G1 + G2 be a cograph with G1 = K1. If G2 = K1, then γ(G2) = 1. Using

Lemma 2.20, we have γcs(G) = 1. Thus, γcs(G) = γ(G2). Next, assume that G2 ̸= K1. Now,

using Lemma 2.18, G2 is a disconnected graph. Let G2 = C1 ∪ C2 ∪ · · · ∪ Cr, where Ci:

i ∈ [r] are the connected components of G2. Note that γ(G2) =
∑r

i=1 γ(Ci). If |V (Ci)| = 1

for all i ∈ [r], then G is a star graph and using Corollary 2.4, γcs(G) = r as the vertex in each

component Ci, i ∈ [r] of G2 is a leaf in star graph G. Therefore, γcs(G) = γ(G2).

Now, assume that there exists some i ∈ [r] such that |V (Ci)| > 1. Let V (G1) = {u}.
We claim that there exists an optimal cosecure dominating set S of G such that u /∈ S, that

is, V (G1) ∩ S = ∅. Suppose that S ′ is an optimal cosecure dominating set such that u ∈ S ′.

Let v ∈ V (G2) be a vertex that is a replacement of u, so that the resulting set still remains a

dominating set of G. So, S = (S ′ \ {u})∪{v} is also a dominating set of G and for every vertex

w ∈ S, u works as a replacement of w. Thus, S is also a cosecure dominating set of G and

u /∈ S. Also since |S| = |S ′|, therefore, S is the required optimal cosecure dominating set of G.

Hence, the claim holds true. Now, we assume that S is an optimal cosecure dominating set of G
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such that u /∈ S. As S is also a dominating set of G, thus, at least γ(Ci) vertices from each Ci,

i ∈ [r] must be in S. This implies that |S| ≥∑r
i=1 γ(Ci). Let Si be an optimal dominating set

of Ci, i ∈ [r]. Clearly, S ′′ = ∪ri=1Si is a dominating set of graph G. Also, for any vertex v ∈ S ′′,

u is a replacement of v. Thus, S ′′ is a cosecure dominating set of G and |S ′′| = ∑r
i=1 γ(Ci).

Therefore, γcs(G) = γ(G2). Hence, the result follows.

Let G be a cograph formed by the join of two disconnected graphs G1 and G2. In next

lemma, we consider all the possible cases and determine the cosecure domination number of G

in each case. In the subsequent lemma, we consider all conceivable scenarios and ascertain the

cosecure domination number of graph G for each of these cases. Observe that each connected

component of Gi corresponds to either a subtree rooted at a 1-node or a leaf in the cotree TG.

Lemma 2.24. Let G = G1 +G2 be a cograph, where G1 and G2 are disconnected graphs. If

G1 = C1 ∪ C2 ∪ · · · ∪ Cr and G2 = C ′
1 ∪ C ′

2 ∪ · · · ∪ C ′
p, where Ci: i ∈ [r] and C ′

j: j ∈ [p] are

the connected components of G1 and G2, respectively. Then, the following statements hold,

(a) If |V (Ci)|, |V (C ′
j)| = 1, for all i ∈ [r] and j ∈ [p], then γcs(G) can be computed in

linear-time.

(b) If there exist i ∈ [r] and j ∈ [p] such that |V (Ci)|, |V (C ′
j)| ≥ 2, then γcs(G) = 2.

(c) Assume that there exist i ∈ [r] such that |V (Ci)| ≥ 2 and |V (C ′
j)| = 1 for all j ∈ [p]. If

γ(G1) = 2 or γ(G2) = 2, then γcs(G) = 2. Otherwise, if γ(G1) ≥ 3 and γ(G2) ≥ 3, then

γcs(G) = 3.

(d) Assume that there exist j ∈ [p] such that |V (C ′
j)| ≥ 2 and |V (Ci)| = 1 for all i ∈ [r]. If

γ(G1) = 2 or γ(G2) = 2, then γcs(G) = 2. Otherwise, if γ(G1) ≥ 3 and γ(G2) ≥ 3, then

γcs(G) = 3.

Proof. Consider a cograph G formed by the join of two disconnected graphs G1 and G2. Let

G1 = C1 ∪ C2 ∪ · · · ∪ Cr and G2 = C ′
1 ∪ C ′

2 ∪ · · · ∪ C ′
p, where Ci: i ∈ [r] and C ′

j: j ∈ [p] are

the connected components of G1 and G2 respectively. As G1 and G2 are disconnected graphs,

p ≥ 2 and r ≥ 2. Thus, γcs(G1) and γcs(G2) are at least 2.

(a) Assume that |V (Ci)|, |V (C ′
j)| = 1 for all i ∈ [r] and j ∈ [p]. Thus, each component of G1

and G2 is an isolated vertex. Since G1 and G2 consists of isolated vertices and G is formed
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by join of G1 and G2. Therefore, G = G1 + G2 is a complete bipartite graph. Without

loss of generality, assume that |V (G1)| ≤ |V (G2)|. Then, γcs(G) can be computed using

Lemma 2.2, in linear-time.

(b) Assume that there exist i ∈ [r] and j ∈ [p] such that |V (Ci)|, |V (C ′
j)| ≥ 2. Using

Lemma 2.20, note that γcs(G) ≥ 2. Consider a set S = {u, v}, where u ∈ V (Ci) and

v ∈ V (C ′
j). Observe that N [u] ∪ N [v] = V (G). Thus, S forms a dominating set of G.

Since Ci and C ′
j are connected components, there exists x ∈ V (Ci) and y ∈ V (C ′

j) such

that ux, vy ∈ E(G). Observe that if u is replaced by x (and v is replaced by y) in S, the

resultant set still remains a dominating set of G. Therefore, S is a cosecure dominating set

of G. Hence, γcs(G) = 2.

(c) Assume that there exist i ∈ [r] such that |V (Ci)| ≥ 2 and |V (C ′
j)| = 1 for all j ∈ [p].

Without loss of generality, suppose that |V (C1)| ≥ 2. First, we assume that γ(G1) = 2.

In this case, r = 2 and we suppose that G1 = C1 ∪ C2. Note that here only possibility

is γ(C1) = γ(C2) = 1. Now, consider a set S = {u, v}, where u ∈ V (C1) dominates

C1 and v ∈ V (C2) dominates C2. As N [u] ∪N [v] = V (G), thus, S forms a dominating

set of G. Let x ∈ V (C ′
1). Note that if u ( or v) is replaced by x in S, the resultant set

still remains a dominating set of G. Therefore, S is a cosecure dominating set of G and

|S| = 2. Hence, γcs(G) = 2. Now, we assume that γ(G2) = 2. In this case, p = 2 and we

suppose that G2 = C ′
1 ∪ C ′

2. Note that here only possibility is γ(C ′
1) = γ(C ′

2) = 1. Let

S = {u, v}, where u ∈ V (C ′
1) and v ∈ V (C ′

2). Clearly, N [u] ∪ N [v] = V (G). Thus, S

forms a dominating set of G. Let x ∈ V (G1). Then, it is easy to see that x is a replacement

for both u and v in S. Therefore, S is a cosecure dominating set of G and |S| = 2. Hence,

γcs(G) = 2.

Next, we assume γ(G1) ≥ 3 and γ(G2) ≥ 3. In this case, p ≥ 3. Now, we claim that

γcs(G) ≥ 3. First, we observe that there does not exists any dominating set D of G having

cardinality two such that D ⊆ V (G1) or D ⊆ V (G2). Thus, if D = {x, y} is a dominating

set of G, then x ∈ V (G1) and y ∈ V (G2). Let D = {x, y} be a dominating set of G. As

there does not exists a replacement for y ∈ D, D can not be a cosecure dominating set of

G. Therefore, the cardinality of any cosecure dominating set of G is at least 3. Hence, the

claim follows and γcs(G) ≥ 3.
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Now, we will give a cosecure dominating set of G of cardinality 3 which will prove that

γcs(G) ≤ 3. Consider a set S = {u, v, w}, where u ∈ V (C1), v ∈ V (C ′
1) and w ∈ V (C ′

2).

Then, S is a dominating set of G, as V (G1) is dominated by v or w and V (G2) is dominated

by u. Let x ∈ V (C1) be a vertex adjacent to u in G, that is, xu ∈ E(G). Note that x is a

replacement of w, for every vertex w ∈ S. Thus, S is a cosecure dominating set of G and

|S| = 3. Therefore, γcs(G) ≤ 3. Hence, γcs(G) = 3.

(d) The proof for this can be derived using analogous reasoning to that provided for the

preceding part.

This completes the proof.

Based on the above lemmas, we design an efficient algorithm Algorithm 2, which

computes a minimum cosecure dominating set of a connected cograph. Observe that a connected

cograph G = (V,E) is join of some k cographs, say G1, G2, . . . , Gk, where k is at least 2. Using

the above fact as a key, we design our algorithm in which depending on the value of k and

structure of these k cographs, we consider different cases and compute a cosecure dominating

set of G (in some cases, with the help of minimum dominating set of Gi’s).

First, we recall some notations related to the cotree TG of a cograph G. Let R be the

root vertex of TG. For a vertex x ∈ V (TG), chTG
(x) denotes the set of children of x in TG

and TG(x) denotes the subtree of TG rooted at x. The set of leaves in TG(x) is denoted by

L(x), where x ∈ V (TG). We define GTG(x) as the subgraph of G induced on L(x). An internal

vertex x of TG with label 0-node (1-node) corresponds to the induced subgraph GTG(x) of G

formed by disjoint union (join) of the induced subgraphs GTG(xi) : 1 ≤ i ≤ k of G, where

chTG
(x) = {x1, x2, . . . , xk}. When it is clear from the context which graph is being considered,

we can simply use Gi to represent GTG(xi), where 1 ≤ i ≤ k and chT (x) to represent chTG
(x).

Observe that GTG(R) is nothing but the cograph G itself.

A cograph can be recognised in linear-time and its cotree representation can also be

computed in linear-time [28, 45]. Additionally, it is known that a minimum dominating set of

cographs can be computed in linear-time [90]. Now, we have the subsequent result.
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Algorithm 2: A Minimum Cosecure Dominating Set of a Cograph
Input: A connected cograph G = (V,E) with the cotree representation TG of G.
Output: A minimum cosecure dominating set S of G.
Let R be the root of the cotree TG and chTG

(R) = {x1, x2, . . . , xk};
if (k ≥ 3) then

if (there are at least two leaves in chTG
(R)) then

Define S = {xi}, where xi is a leaf in chTG
(R));

else
Define S = {xi, xj}, where xi and xj are two non-leaf vertices in chTG

(R);

if (k = 2) then
Let chTG

(R) = {x1, x2};
if (both x1 and x2 are leaves) then

Define S = {x1};
else if (exactly one of x1 or x2 is a leaf) then

Let x1 be a leaf and x2 be an internal vertex;
Define S to be a minimum dominating set of GTG(x2);

else if (both x1 and x2 are internal vertices) then
if ( both chTG

(x1) and chTG
(x2) has at least one 1-node ) then

Define S = {u, v}, where u ∈ L(x1) and v ∈ L(x2);

else if (exactly one of chTG
(x1) or chTG

(x2) has at least one 1-node) then
if ( γ(GTG(x1)) = 2 or γ(GTG(x2)) = 2) then

Let γ(GTG(x1)) = 2;
Define S to be a minimum dominating set of GTG(x1);

else
Let chTG

(x1) has at least one 1-node, say z, and let L(z) be the set of leaves in
TG(z);

Define S = {u, v, w}, where u ∈ L(z) and v, w ∈ L(x2);

else if (both chTG
(x1) and chTG

(x2) are leaves) then
Let p =min{|chTG

(x1)|, |chTG
(x2)|} and q =max{|chTG

(x1)|, |chTG
(x2)|};

Define S to be a minimum dominating set returned by the algorithm CSDS CB(G, p, q);

return S;

Theorem 2.25. Given a connected cograph G, a minimum cosecure dominating set of G can be

computed in linear-time.

Proof. The correctness of Algorithm 2 directly follows from Lemma 2.20, Lemma 2.21,

Lemma 2.23 and Lemma 2.24. Since the cotree representation of a cograph can be computed

in linear-time and all the steps of the Algorithm 2 can be executed in linear-time, a minimum

cosecure dominating set of a cograph can be computed in linear-time.
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2.4.2 Chain Graphs

In this subsection, we present an efficient algorithm to compute a minimum cosecure

dominating set of chain graphs. Throughout this section, we consider a chain graph G with a

proper ordered chain partition X1, X2, . . . , Xk and Y1, Y2, . . . , Yk of X and Y , respectively. For

i ∈ [k], let us write Xi = {xi1, xi2, . . . , xir} and Yi = {yi1, yi2, . . . , yis}.

Note that k = 1 if and only if G is a complete bipartite graph. In this case, a minimum

cosecure dominating set and γcs(G) can be computed by Lemma 2.2. From now onwards, we

assume that G is a connected chain graph with k ≥ 2.

Remark 2.26. Let PX denote the set of pendant vertices of G in X: then PX ̸= ∅ if and only if

|Y1| = 1 (and in this case PX = X1). Let PY denote the set of pendant vertices of G in Y : then

PY ̸= ∅ if and only if |Xk| = 1 (and in this case PY = Yk).

The following two lemmas are introduced for PX , however similar lemmas can be

introduced for PY , by symmetry.

Lemma 2.27. Let G be a chain graph, with |X1| ≥ 2 and |Y1| = 1. Then, for every cosecure

dominating set S of G, X1 ⊆ S and y11 /∈ S.

Proof. The proof follows by Remark 1 and by Lemma 2.3.

Now, we assume that there are more than one pendant vertex from X in the chain graph G.

In Lemma 2.28, we prove that the cosecure domination number of G[X1 ∪ Y1] and the remaining

graph can be computed independently and their sum will give the cosecure domination number

of G.

Lemma 2.28. Let G be a chain graph. Assume that G has more than one pendant vertex in X .

Define G1 = G[X1 ∪ Y1], G2 = G[∪ki=2(Xi ∪ Yi)]. Then, γcs(G) = γcs(G1) + γcs(G2).

Proof. By assumption and by Remark 1, we have |X1| ≥ 2 and |Y1| = 1. Let us define

G1 = G[X1 ∪ Y1], G2 = G[∪ki=2(Xi ∪ Yi)]. Assume that S1 and S2 are optimal cosecure

dominating sets of G1 and G2, respectively. Observe that S = S1 ∪ S2 is a cosecure dominating

set of G. Therefore, γcs(G) ≤ γcs(G1) + γcs(G2).
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Next, assume that S is an optimal cosecure dominating set of G. In particular, y11 is a

support vertex and there are more than one pendant vertices adjacent to y11. By Lemma 2.27,

every cosecure dominating set of G contains X1 and does not contain y11. Therefore, X1 ⊆ S

and y11 /∈ S. Observe that S1 = X1 forms an optimal cosecure dominating set of G1, so,

γcs(G1) = |X1|. Let S2 = S \ S1. Clearly, S2 is a dominating set of G2.

Now, let us show that, if y11 S-replaces a vertex v ∈ (S ∩X) \X1, then there is a vertex

u ∈ Y \{y11} such that u S-replaces v. Let v ∈ (S∩X)\X1 be a vertex such that y11 S-replaces

v. Since (S \{v})∪{y11} is also a dominating set of G, it follows that v is there in S to dominate

itself. Now, if there exists a vertex u ∈ Y \ Y1 such that u ∈ N(v) and u /∈ S, then one can see

that u S-replaces v and we are done. If not so, that is, N(v) ⊆ S, then S \ {v} is a CSDS of

cardinality |S| − 1 of G, which is a contradiction. Thus, there exist u ∈ ∪ki=2Yi such that u ̸= y11

and u S-replaces v. Observe that u S2-replaces v as well. Thus, S2 is a cosecure dominating set

of G2. Therefore, γcs(G) ≥ γcs(G1) + γcs(G2). Hence, the result follows.

In a chain graph G, if there are more than one pendant vertices from both X and Y .

We can define G1 = G[X1 ∪ Y1], G2 = G[∪k−1
i=2 (Xi ∪ Yi)] and G3 = G[Xk ∪ Yk], then by

Lemma 2.28, it follows that γcs(G) =
∑3

i=1 γcs(Gi).

Now, we consider a chain graph G having |X| ≥ 4 and |Y | ≥ 4. In Lemma 2.29, we give

a lower bound on the cosecure domination number of G.

Lemma 2.29. Let G be a chain graph such that |X| ≥ 4 and |Y | ≥ 4. Then, γcs(G) ≥ 4.

Proof. Consider a chain graph G such that |X| ≥ 4 and |Y | ≥ 4. Note that |S| ≥ 3 as any subset

of V (G) of cardinality two cannot form a cosecure dominating set of G. Now, suppose that S is

a cosecure dominating set of G such that |S| = 3. Without loss of generality, we can assume that

|S ∩X| = 2 and |S ∩ Y | = 1. Let S ∩ Y = {y} and x ∈ X \ S such that x replaces y. This

means that S ′ = (S \ {y}) ∪ {x} is a dominating set of G. Now, let x′ ∈ X be such that x′ ̸= x

and x′ /∈ S. Observe that x′ is not dominated by any vertex in set S ′, which is a contradiction.

Thus, there does not exist any cosecure dominating set S such that |S| = 3. Therefore, |S| ≥ 4.

Hence, the result follows.
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In the next lemma, we consider the case when G is a chain graph with k = 2 and determine

the cosecure domination number in all the possible cases.

Lemma 2.30. Let G be a chain graph such that k = 2. Then, one of the following case occurs.

(a) Assume that G has no pendant vertex (which means that |X| ≥ 3 and |Y | ≥ 3). If |X| = 3

or |Y | = 3, then γcs(G) = 3. Otherwise, γcs(G) = 4.

(b) Assume that G has more than one pendant vertex in X or more than one pendant vertex in

Y . Define G1 = G[X1 ∪ Y1] and G2 = G[X2 ∪ Y2]. Then, γcs(G) = γcs(G1) + γcs(G2).

(c) Assume that G has exactly one pendant vertex in X or exactly one pendant vertex in Y .

If |X| = 2 or |Y | = 2, then γcs(G) = 2. Else: if |X| = 3 or |Y | = 3, then γcs(G) = 3;

otherwise, γcs(G) = 4.

Proof. Consider a chain graph G such that k = 2.

(a) Assume that G does not have any pendant vertex. That is, |X2| ≥ 2 and |Y1| ≥ 2. Let

S be a cosecure dominating set of G. Note that |S| ≥ 3. Now, suppose that |X| = 3

or |Y | = 3. Without loss of generality, we can assume that |X| = 3, this implies that

|X2| = 2 and |X1| = 1. Consider S ′ = {x11, x21, x22}. Here, S ′ forms a dominating set of

G. In particular, y11 replaces every vertex of S ′, therefore, S ′ is a cosecure dominating set

of G and |S ′| = 3. Hence, γcs(G) = 3. Next, we assume that |X| ≥ 4 and |Y | ≥ 4. Then,

by Lemma 2.29, we have |S| ≥ 4. Consider a set S ′ = {y11, y12, x21, x22}, clearly, S ′ is

a dominating set of G. In particular, x11 replaces both y11 and y12; and y21 replaces both

x21 and x22. Therefore, S ′ is a cosecure dominating set of G such that |S ′| = 4. Hence,

γcs(G) = 4.

(b) Without loss of generality, assume that G has more than one pendant vertex in X . That is,

|X1| ≥ 2, |Y1| = 1 and |X2| ≥ 2. Let G1 = G[X1 ∪ Y1] and G2 = G[X2 ∪ Y2]. Then, by

Lemma 2.28, γcs(G) = γcs(G1) + γcs(G2).

(c) First, consider the case when G has exactly one pendant vertex in X and exactly one

pendant vertex in Y . This implies that |X1| = |Y1| = |X2| = |Y2| = 1 and |X| = |Y | = 2.

Then, S = Y forms a cosecure dominating set of G. As G is not a complete bipartite

graph, therefore, S is optimal and γcs(G) = 2.
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Now, consider the case when there is only one pendant vertex u in G. Without loss of

generality, let u ∈ X . Here, |Y1| = 1, |X1| = 1, and |X2| ≥ 2. If |Y | = 2, then, S = Y

forms a cosecure dominating set of G. In fact, S is an optimal cosecure dominating set

of G and γcs(G) = 2. Now, consider |X| = 3 or |Y | = 3. First, assume that |X| = 3.

This implies that |X2| = 2. Let S = {x11, x21, x22} clearly, S is a dominating set of G. In

particular, y11 replaces every vertex of S, S is a cosecure dominating set of G and |S| = 3.

Hence, γcs(G) = 3. The case when |Y | = 3 follows similarly. Now, we consider |X| ≥ 4

and |Y | ≥ 4. Then, by Lemma 2.29, we have |S| ≥ 4. Let S = {y11, y21, x21, x22}. Here,

S forms a dominating set of G. In particular, x11 replaces y11, x23 replaces y21; and y22

replaces both x21 and x22. Therefore, S is a cosecure dominating set of G, here, |S| = 4.

Hence, γcs(G) = 4.

This concludes the proof of the lemma.

From now onward, we assume that G is a chain graph and k ≥ 3. In the following lemma,

we will consider the case when the chain graph G has no pendant vertex and we give the exact

value of the cosecure domination number of G.

Lemma 2.31. Let G be a chain graph with k ≥ 3. If G has no pendant vertex, then γcs(G) = 4.

Proof. Let G be a chain graph with k ≥ 3. Assume that G has no pendant vertex. Thus,

we have |Y1| ≥ 2 and |Xk| ≥ 2. Let S be an optimal cosecure dominating set. Note that

|S| ≥ 3. Furthermore, since k ≥ 3, we have |X| ≥ 4 and |Y | ≥ 4. Thus, by Lemma 2.29,

we have |S| ≥ 4. Now, we claim that there exists a set S such that |S| = 4. Consider a set

S = {y11, y12, xk1, xk2}. Observe that S ′ is a dominating set of G. In particular, x11 replaces

both y11 and y12; and yk1 replaces both xk1 and xk2. Thus, S ′ is a cosecure dominating set of G,

here, |S ′| = 4. Therefore, γcs(G) = 4. Hence, the result follows.

Now, we assume that there is at most one pendant from X and Y both in a chain graph G.

In Lemma 2.32, we determine the value of the cosecure domination number of G.
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Lemma 2.32. Let G be a chain graph with k ≥ 3 such that G has exactly one pendant vertex

in X or exactly one pendant vertex in Y . If |X| = 3 or |Y | = 3, then γcs(G) = 3, otherwise,

γcs(G) = 4.

Proof. First, we assume that G has exactly one pendant vertex in X or exactly one pendant

vertex in Y . This implies that |X1| = |Y1| = |Xk| = |Yk| = 1. Assume that |X| = 3 or |Y | = 3.

Without loss of generality, let |X| = 3. Let S = {x11, x21, x31}. Clearly, S is a dominating

set of G. In particular, y31 replaces x31; y11 replaces x11 and x21. Therefore, S is a cosecure

dominating set of G and |S| = 3. Hence, γcs(G) = 3. Now, assume that |X| ≥ 4 and |Y | ≥ 4.

Then, by Lemma 2.29, we have |S| ≥ 4. Consider a set S = {y11, y21, x(k−1)1, xk1}. Here, S

forms a dominating set of G. Note that if k = 3, then |X2| ≥ 2 and |Y2| ≥ 2. If k = 3, then

x11 replaces y11, x22 replaces y21, y22 replaces x21; and y31 replaces x31. If k ≥ 4, then x11

replaces both y11, x21 replaces y21, y(k−1)1 replaces x(k−1)1; and yk1 replaces xk1. Therefore, S

is a cosecure dominating set of G and |S| = 4. Hence, γcs(G) = 4.

Next, assume that there is only one pendant vertex u in G. Without loss of generality, let

u ∈ X . Here, |Y1| = 1, |X1| = 1, and |Xk| ≥ 2. If |Y | = 3, then, S = {y11, y21, y31} forms a

cosecure dominating set. To see this, first observe that S is a dominating set of G. In particular,

x11 replaces y11 and xk1 replaces y21 and y31. Thus, S forms a cosecure dominating set of G

and |S| = 3. Hence, γcs(G) = 3. Now, if |Y | ≥ 4 then, using, Lemma 2.29, we have |S| ≥ 4.

Consider a set S = {y11, y21, xk1, xk2}. Here, S forms a dominating set of G. In particular, x11

replaces both y11, x21 replaces both y21; and yk1 replaces both xk1 and xk2. Thus, S is a cosecure

dominating set of G and |S| = 4. Therefore, γcs(G) = 4. Hence, this completes the proof of the

result.

Finally, we assume that G is a chain graph such that such that G has more than one pendant

vertex in X or more than one pendant vertex in Y . In Lemma 2.33, we give an expression to

determine the value of the cosecure domination number of G in every possible case.

Lemma 2.33. Let G be a chain graph with k ≥ 3. Then,

(a) Assume that G has more than one pendant vertex in X . Define G′ = G[∪ki=2(Xi ∪ Yi)].

Then, γcs(G) = |X1|+ γcs(G
′).
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(b) Assume that G has more than one pendant vertex in Y . Define G′ = G[∪k−1
i=1 (Xi ∪ Yi)].

Then, γcs(G) = |Yk|+ γcs(G
′)

(c) Assume that G has more than one pendant vertex in X and more than one pendant vertex

in Y . Define G′ = G[∪k−1
i=2 (Xi ∪ Yi)]. Then, γcs(G) = |X1|+ |Yk|+ γcs(G

′).

Proof. Consider a chain graph G such that k ≥ 3.

(a) It follows directly by Lemma 2.2 and by Lemma 2.28.

(b) It follows directly by Lemma 2.2 and by Lemma 2.28 (which holds for Y as well by

symmetry).

(c) Assume that |X1| ≥ 2, |Yk| ≥ 2 and |Xk| = |Y1| = 1. We define G1 = G[X1 ∪ Y1]

and G2 = G[∪ki=2(Xi ∪ Yi)]. Since |X1| ≥ 2 and |Y1| = 1, thus, by statement 1,

γcs(G) = |X1|+ γcs(G2). Now, consider the chain graph G2 and define G3 = G[Xk ∪ Yk]

and G′ = G[∪k−1
i=2 (Xi ∪ Yi)]. Thus, by statement 2, γcs(G2) = |Yk|+ γcs(G

′). Therefore,

γcs(G) = |X1|+ γcs(G2) implies that γcs(G) = |X1|+ |Yk|+ γcs(G
′).

This completes the proof of the result.

Now, on the basis of above lemmas, we design a recursive algorithm, namely,

CSDS Chain(G, k) to find a minimum cosecure dominating set of chain graphs. The algorithm

takes a connected chain graph G = (V,E) with a proper ordered chain partition X1, X2, . . . , Xk

and Y1, Y2, . . . , Yk of X and Y as an input. While executing the algorithm, we call the algorithm

CSDS CB(G, p, q), whenever we encounter a complete bipartite graph.

Let G be a connected chain graph with X1, X2, . . . , Xk and Y1, Y2, . . . , Yk as the proper

ordered chain partition of X and Y , respectively. The foundation of our algorithm lies in the

base case, where k = 2. The validity of this base case is established by referring to Lemma 2.30.

Subsequently, we use the insights from Lemma 2.31, Lemma 2.32, and Lemma 2.33 to design

our algorithm. These lemmas play a pivotal role in not only shaping the algorithm through a

recursive framework but also in establishing its correctness.

We are now ready to present the main result of this section. The proof of which directly

follows from the amalgamation of Lemma 2.30, Lemma 2.31, Lemma 2.32, and Lemma 2.33.
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Algorithm 3: CSDS Chain(G, k)

Input: A connected chain graph G = (V,E) with proper ordered chain partition X1, X2, . . . , Xk and
Y1, Y2, . . . , Yk of X and Y .

Output: Cosecure domination number of G, that is, γcs(G).
if (k = 2) then

if (|Y1| > 1 and |X2| > 1) then
X = X1 ∪X2, Y = Y1 ∪ Y2;
if (|X| = 3 or |Y | = 3) then

If |X| = 3, then define S = X . Otherwise, define S = Y ;

else
Define S = {y11, y12, x21, x22};

else if ((|X1| > 1 and |Y1| = 1) or (|X2| = 1 and |Y2| > 1)) then
Let G1 = G[X1 ∪ Y1] and G2 = G[X2 ∪ Y2];
Let p1 =min{|X1|, |Y1|}, q1 =max{|X1|, |Y1|}, p2 =min{|X2|, |Y2|} and q2 =max{|X2|, |Y2|};
S = CSDS CB(G1, p1, q1) ∪ CSDS CB(G2, p2, q2);

else if ((|X1| = |Y1| = 1) or (|X2| = |Y2| = 1)) then
if (|X| = 2 or |Y | = 2) then

If |X| = 2, then define S = X . Otherwise, define S = Y ;

else if (|X| = 3 or |Y | = 3) then
If |X| = 3, then define S = X . Otherwise, define S = Y ;

else if (|X| ≥ 4 and |Y | ≥ 4) then
If |X1| = |Y1| = 1, then define S = {y11, x21, x22, x23}. Otherwise, define
S = {x21, y11, y12, y13};

if (k ≥ 3) then
if (|Y1| > 1 and |Xk| > 1) then

Define S = {y11, y12, xk1, xk2};
else if ((|X1| > 1 and |Y1| = 1) and (|Yk| > 1 and |Xk| = 1)) then

Let G′ = G[∪k−1
i=2 (Xi ∪ Yi)];

S = X1 ∪ Yk∪ CSDS Chain(G′, k − 2);

else if (|X1| > 1 and |Y1| = 1) then
Let G′ = G[∪ki=2(Xi ∪ Yi)];
S = X1∪ CSDS Chain(G′, k − 1);

else if (|Yk| > 1 and |Xk| = 1) then
Let G′ = G[∪k−1

i=1 (Xi ∪ Yi)];
S = Yk∪ CSDS Chain(G′, k − 1);

else
if (|X| = 3 or |Y | = 3) then

If |X| = 3, then define S = X . Otherwise, define S = Y ;

else
Define S = {y11, y21, xk1, x(k−1)1};

return S;

As the running time of our algorithm CSDS Chain(G, k) is polynomial, therefore, a minimum

cosecure dominating set of a connected chain graph can be computed in polynomial-time.

Theorem 2.34. Given a connected chain graph G = (X, Y,E) with proper ordered chain



52 Chapter 2 Cosecure Domination

partition X1, X2, . . . , Xk and Y1, Y2, . . . , Yk of X and Y . Then, a minimum cosecure dominating

set of G can be computed in polynomial-time.

2.4.3 Bounded Tree-width Graphs and Bounded Clique-width Graphs

In this subsection, we prove that the M I N I M U M C O S E C U R E D O M I N AT I O N problem

can be solved in linear-time for bounded tree-width graphs and bounded clique-width graphs.

First, we formally define the parameters tree-width and clique-width of a graph. For formal

definitions of CMSOL and LinEMSOL, one can refer to [29, 30, 31].

Let G = (V,E) be a graph, T be a tree and S = {Su | u ∈ T} be a family of vertex

sets Su ⊆ V indexed by vertex u in T . The pair (T,S ) is called a tree decomposition of G, if it

satisfies the following three conditions [34]:

• ∪u∈TSu = V ;

• for every edge e of G, there exists a vertex u ∈ T such that Su contains both endpoints of

e; and

• if u1, u2, u3 ∈ T such that u2 lies on the path from u1 to u3 in T , then (Su1 ∩ Su3) ⊆ Su2 .

The width of a tree decomposition (T, S) of a graph G is defined as max{|Su| : u ∈ U} − 1.

The tree-width of a graph G is the minimum width of any tree decomposition of G. A graph is

said to be a bounded tree-width graph, if its tree-width is bounded.

The clique-width of a graph G is defined as the minimum number of labels required to

construct G using the following four operations [31]:

• creating a vertex with label i,

• taking disjoint union,

• renaming label i to label j, and

• connecting all the vertices with label i to all vertices with label j.

A construction of a graph G using the above four operations is said to be a k-expression, if it

uses at most k labels. A graph is said to be a bounded clique-width graph, if its clique-width is

bounded.
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Now, we briefly define MSOL, CMSOL, and LinEMSOL. For formal definitions of

MSOL, CMSOL, and LinEMSOL, one can refer to [8, 29, 30, 31].

Definition 2.35. (For more details on formal definitions refer to [8, 29])

The syntax of MSOL on graphs includes the logical connectives (operators) OR (∨), AND (∧),
NOT (¬), If And Only If (⇔), IMPLY (⇒), variables for vertices, edges, sets of vertices and

sets of edges, the logical quantifiers ∀, ∃ that can be applied to these variables, and the following

five binary relations: (1) u ∈ U , where u is a vertex variable and U is a vertex set variable (the

membership relation ∈ to check the existence of any element in a set); (2) d ∈ D, where d is an

edge variable and D is an edge set variable; (3) inc (d, u), where d is an edge variable, u is a

vertex variable, and the interpretation is that the edge d is incident on the vertex u; (4) adj(u, v),

where u and v are vertex variables u, and the interpretation is that u and v are adjacent; (5)

equality of variables representing vertices, edges, sets of vertices and sets of edges (using the

equality operator =).

Definition 2.36. (For more details on formal definitions refer to [29])

Counting Monadic Second Order Logic (CMSOL) extends MSOL by incorporating counting

quantifiers, enabling reasoning about the cardinality or size of sets of elements. CMSOL includes

the syntax of MSOL with additional counting quantifiers (∃≤k,∃≥k,∀=k) that express constraints

on the number of elements in sets satisfying certain properties.

Definition 2.37. (For more details on formal definitions refer to [30, 31]).

Let G be a graph, then G(τ1) denotes the structure with domain V (G) and binary relation R

such that R(x, y) ⇐⇒ xy ∈ E(G). Let MSOL(τ1) denotes the monadic second order logic

with quantification over subsets of vertices.

An optimization problem is a LinEMSOL(τ1) optimization problem, if it can be expressed as

follow:

minXi⊆X:1≤i≤l{
∑

1≤i≤l ai|Xi| : < G(τ1), X1, X2, . . . , Xl >|= θ(X1, X2, . . . , Xl)},
where θ is an MSOL(τ1) formula that contains free set variables X1, X2, . . . , Xl and integers

ai(1 ≤ i ≤ l).

Now, we first prove that the cosecure domination problem can be formulated as CMSOL.
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Theorem 2.38. For a graph G = (V,E) and a positive integer k, the CSDD problem can be

expressed in CMSOL.

Proof. Let G = (V,E) be a graph and k be a positive integer. The CMSOL formula expressing

that D is a dominating set of G of cardinality at most k is,

Dom(D) = (D ⊆ V ) ∧ (|D| ≤ k) ∧ ((∀x ∈ V )(∃y ∈ V )((y ∈ D) ∧ (x ∈ N [y]))).

Using the above CMSOL formula for dominating set D of cardinality at most k, we give CMSOL

formula for a cosecure dominating set D of G of cardinality at most k as follows,

CSDom(D) = Dom(D)∧(∀x ∈ D)(∃y ∈ V \D)((y ∈ N(x))∧Dom((D\{x})∪{y}))).
Hence, the result follows.

The famous Courcelle’s Theorem [30] states that any problem which can be expressed as

a CMSOL formula is solvable in linear-time for graphs having bounded tree-width. Combining

Courcelle’s Theorem and the above theorem, the subsequent result directly follows.

Theorem 2.39. For bounded tree-width graphs, the CSDD problem is solvable in linear-time.

Now, we are going to prove that the decision version of the MCSD problem can be

expressed as LinEMSOL. We can define Dom′(D) by just excluding (|D| ≤ k) from Dom(D)

formula and then define CSDom′(D) using Dom′(D) (similarly as CSDom(D) is defined). We

remark that CSDom′(D) is an MSOL formula for a cosecure dominating set of G.

Theorem 2.40. For a graph G = (V,E) and a positive integer k, the CSDD problem can be

expressed in LinEMSOL.

Proof. Let G = (V,E) be a graph and k be a positive integer. Assume that G(τ1) denotes

the logic structure < V (G), R >, where R is a binary relation such that R(u, v) holds if and

only if uv is an edge in G. Using the above MSOL formula for a cosecure dominating set of

G, CSDom′(D), we give a LinEMSOL formulation corresponding to the cosecure domination

problem,

minX1{|X1| : < G(τ1), X1 >|= θ(X1)}, where θ(X1) = CSDom′(X1)

Hence, the result follows.
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It is known that a graph has clique-width at most k if and only if it admits a k-expression

[32]. Now, we mention an important theorem that is known due to [31] which states that any

problem which can be expressed as a LinEMSOL formula is solvable in linear-time, for graphs

having bounded clique-width whose k-expression can be computed in linear-time. Combining

the above information with Theorem 2.40, the subsequent result directly follows.

Theorem 2.41. For bounded clique-width graphs whose k-expression can be computed in

linear-time, the CSDD problem is solvable in linear-time.

The clique-width of distance-hereditary graphs is bounded by 3 and a 3-expression

defining it can be obtained in linear-time [43]. We remark that the M I N I M U M C O S E C U R E

D O M I N AT I O N problem can be solved in linear-time for distance-hereditary graphs. However,

its important to acknowledge that the challenge of presenting an explicit linear-time algorithm

for this, still continues to remain an open problem.

2.5 Existence of Graph G with Given Order and γcs(G)

In this section, we show that for any given pair (n, c) of positive integers such that

n > c ≥ 2, there exists a graph Gn,c having order n and the cosecure domination number

c. From the definition of the cosecure domination number of a graph G, it is obvious that

γcs(G) ≤ n. Also, since the whole vertex set V can never be a cosecure dominating set of graph

G. Consequently, we have the following observation.

Observation 2.5.1. There does not exist any graph G of order n such that γcs(G) = n.

It follows that 1 ≤ γcs(G) ≤ n− 1. Now, we consider the extreme cases in the upcoming

observations.

Observation 2.5.2. [7] Let G be a graph of order n. Then, γcs(G) = 1 if and only if G has at

least two vertices of degree n− 1.

As every vertex in a complete graph of order n has degree n− 1. We can simply consider

Gn,1 = Kn, where Kn is a complete graph of order n. Thus, we have existence of a graph Gn,1

having order n and the cosecure domination number one.

Observation 2.5.3. γcs(G) = n− 1 if and only if G is a star graph.
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Following the aforementioned observations, our task now remains centered on

demonstrating the existence of the graph G having γcs(G) ≥ 2 and order at least γcs(G) + 2. We

accomplish this in the subsequent theorem.

Theorem 2.42. Given a pair (n, c) of positive integers satisfying n ≥ c+ 2, where c ≥ 2, there

exists a graph Gn,c having order n and the cosecure domination number c.

Proof. Assume that two positive integers n and c are given such that n ≥ c+2, where c ≥ 2. We

consider three cases based on the value of c and in each of these cases, we illustrate construction

of graph Gn,c having order n and the cosecure domination number c:

Case 1:- c = 2

In this case, n ≥ c + 2 means that n ≥ 4. We construct a graph Gn,2 = (Vn,2, En,2) as

follows:

– Vn,2 = {x1, x2, . . . , xn}, and

– En,2 = {x1xi | 2 ≤ i ≤ n− 1} ∪ {xnxi | 2 ≤ i ≤ n− 1}.

The illustration of the graph Gn,2 is shown in F I G U R E 2.6. Clearly, the order of Gn,2

is n. We claim that γcs(Gn,2) = 2. As one vertex is not enough even to dominate the

vertices of Gn,2 and every cosecure dominating set is also a dominating set, this implies

that γcs(Gn,2) ≥ 2. Define a set S = {x1, xn} of cardinality 2. It is easy to see that S

forms a dominating set of Gn,2. Since x2 is a replacement for both x1 and xn, S also forms

a cosecure dominating set of Gn,2. Hence, Gn,2 has order n and cosecure domination

number 2.

b b

b

b

b

x1 xn

x2

xn−1

x3Gn,2

F I G U R E 2 . 6 : Illustrating graph Gn,2.

Case 2:- c = 3

In this case, n ≥ c+ 2 means that n ≥ 5. First, we assume that n = 5 and we construct

the graph G5,3 as illustrated in F I G U R E 2.7.
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b b b
x3 x4 x5G5,3

bx2

bx1

F I G U R E 2 . 7 : Illustrating graph G5,3.

The order of G5,3 is 5. Now, we prove that γcs(G5,3) = 3. Assume that D is an arbitrary

cosecure dominating set of G5,3. From Lemma 2.3, it follows that {x1, x2} ⊆ D. Also,

exactly one of x4 and x5 must be there in any cosecure dominating set D of G5,3. This

implies that γcs(G5,3) ≥ 3. The set S = {x1, x2, x4} forms a cosecure dominating set

of G5,3, as S is a dominating set, and x3 is replacement for both x1 and x2, and x5 is

replacement of x4. Hence, G5,3 is a graph having order 5 and the cosecure domination

number 3.

Next, we assume that n ≥ 6 and we construct the graph Gn,3 as follows:

– Vn,3 = {x1, x2, . . . , xn}, and

– En,3 = {x1x2, x2x3} ∪ {x3xi | 4 ≤ i ≤ n− 1} ∪ {xnxi | 4 ≤ i ≤ n− 1}.

The illustration of Gn,3 is shown in F I G U R E 2.8.

b b

b

b

b

x3 xn

x4

xn−1

x5
Gn,3, n ≥ 6

b
x2b

x1

F I G U R E 2 . 8 : Illustrating graph Gn,3.

Clearly, the order of Gn,3 is n. We claim that γcs(Gn,3) = 3. Assume that D is an

arbitrary cosecure dominating set of Gn,3. Observe that |D ∩ {xi | 3 ≤ i ≤ n}| ≥ 2 and

|D ∩ {x1, x2}| = 1. Thus, γcs(Gn,3) ≥ 3. Define a set S = {x2, x3, xn}. It is easy to

see that S forms a dominating set of Gn,2. Also, as x1 is replacement for x2, and x4 is a

replacement for both x1 and xn. Thus, S forms a cosecure dominating set of Gn,3. Hence,

Gn,3 has order n and cosecure domination number 3.
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Case 3:- c ≥ 4

In this case, n ≥ c + 2 means that n ≥ 6. We construct the graph Gn,c = (Vn,c, En,c) as

follows:

– Vn,c = {x1, x2, . . . , xn}, and

– En,c = {xc−1xi | 1 ≤ i ≤ c− 2}∪{xc−1xc}∪{xcxi | c+1 ≤ i ≤ n− 1}∪{xnxi |
c+ 1 ≤ i ≤ n− 1}.

The illustration of Gn,c is shown in F I G U R E 2.9.
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x1
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F I G U R E 2 . 9 : Illustrating graph Gn,4.

Clearly, the order of Gn,c is n. We claim that γcs(Gn,c) = c. Assume that D is an arbitrary

cosecure dominating set of Gn,c. From Lemma 2.3, it follows that {xi | 1 ≤ i ≤ c− 2} ⊆
D. Also, observe that |D ∩ {xi | c ≤ i ≤ n}| ≥ 2. Thus, γcs(Gn,c) ≥ c. Define a set

S = {xc, xn, x1, x2, . . . , xc−2} of cardinality c. It is easy to see that S forms a dominating

set of Gn,c. As xc+1 is a replacement for both xc and xn, and xc−1 is a replacement for

each xi, where 1 ≤ i ≤ c− 2, we conclude that S forms a cosecure dominating set of Gn,c.

Hence, Gn,c is a graph having order n and cosecure domination number c.

This completes the proof of the lemma.

2.6 Complexity Difference Between Domination and Cosecure

Domination
In this section, we illustrate a noteworthy distinction in the complexity of the M I N I M U M

D O M I N AT I O N problem and the M I N I M U M C O S E C U R E D O M I N AT I O N problem for

certain graph classes. We pinpoint two specific graph classes where this difference becomes

evident.
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2.6.1 GY4-graphs

In this subsection, we define a graph class which we call as GY4-graphs, and we prove

that the MCSD problem is polynomial-time solvable for GY4-graphs, whereas the decision

version of the MD problem is NP-complete.

Let S4 denote a star graph on 4 vertices. For 1 ≤ i ≤ n, let {S4
i | 1 ≤ i ≤ n} be

collection of n star graphs of order 4 such that v1i , v
2
i , v

3
i denote the pendant vertices and v4i

denote the center vertex. Now, we formally define the graph class GY4-graphs as follows:

Definition 2.43. GY4-graphs: A graph GY = (V Y , EY ) is said to be a GY4-graph, if it can be

constructed from a graph G = (V,E) with V = {v1, v2, . . . , vn}, by making pendant vertex v1i

of a star graph S4
i adjacent to vertex vi ∈ V , for each 1 ≤ i ≤ n.

Note that |V Y | = 5n and |EY | = 4n + |E|. So, n = |V Y |/5. F I G U R E 2.10 illustrates

the construction of GY4-graph GY from a given graph G.

b

b

b

b

v1

v2

v3

vn

G GY

b

b

b

b

v1

v2

v3

vn

b b
b

b

bbb
b

b

v1
1 v4

1 v2
1

v3
1

b b
b

b

v1
3 v4

3 v2
3

v3
3

v2
2 v4

2 v1
2

v3
2

b b
b

b

v1
n v4

n v2
n

v3
n

S4
2

S4
1

S4
3

S4
n

F I G U R E 2 . 1 0 : Illustrating the construction of graph GY from a graph G.

First, we show that the cosecure domination number of GY4-graphs can be computed in

linear-time.

Theorem 2.44. For a GY4-graph GY = (V Y , EY ), γcs(GY ) = 3
5
|V Y |.

Proof. Let G be a graph with V = {v1, v2, . . . , vn} and GY be the GY4-graph corresponding

to G. Suppose that Dcs is an arbitrary cosecure dominating set of GY . By Lemma 2.3, it

follows that {v2i , v3i | 1 ≤ i ≤ n} ⊆ Dcs and v1i /∈ Dcs. Further, observe that to dominate

v1i , at least one of vi or v1i must be there in Dcs. Collectively from the above arguments, it

follows that |{vi, v1i , v2i , v3i } ∩ Dcs| ≥ 3, for each 1 ≤ i ≤ n. Thus, |Dcs| ≥ 3n. Now, using
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the fact that Dcs was an arbitrary cosecure dominating set of GY and n = |V Y |/5, we have

γcs(G
Y ) ≥ 3

5
|V Y |. Conversely, it is easy to see that the set D = {v1i , v2i , v3i | 1 ≤ i ≤ n} forms

a cosecure dominating set of GY . Thus, γcs(GY ) ≤ 3n. In particular, n = |V Y |/5, we have

γcs(G
Y ) ≤ 3

5
|V Y |.

Next, we show that the DD problem is NP-complete for GY4-graphs. In order to do

this, we prove that the M I N I M U M D O M I N AT I O N problem for general graph G is efficiently

solvable if and only if the problem is efficiently solvable for the corresponding GY4-graph GY .

Lemma 2.45. Let GY = (V Y , EY ) be a GY4-graph corresponding to a graph G = (V,E) of

order n and k ≤ n. Then, G has a dominating set of cardinality at most k if and only if GY has

a dominating set of cardinality at most k + n.

Proof. Let D∗ be a dominating set of G such that |D∗| ≤ k. It is easy to see that D∗ ∪
{v41, v42, . . . , v4n} forms a dominating set of GY of cardinality at most k + n. Conversely, let DY

be a dominating set of GY of cardinality at most k+ n. Clearly, |DY ∩ {v1i , v2i , v3i , v4i }| ≥ 1. For

each 1 ≤ i ≤ n such that v1i ∈ DY , we can update the dominating set DY as (DY \ {v1i })∪ {vi}.
Assume that D∗

Y is the updated dominating set of GY . Now, the set D∗
Y ∩ V forms a dominating

set of G of cardinality at most k.

As the D O M I N AT I O N D E C I S I O N problem is NP-complete for general graphs [13].

Thus, the NP-completeness of the D O M I N AT I O N D E C I S I O N problem follows directly from

Lemma 2.45.

Theorem 2.46. DD problem is NP-complete for GY4-graphs.

2.6.2 Doubly Chordal Graphs

Note that the MD problem is already known to be linear-time solvable for doubly chordal

graphs [17]. In this subsection, we show the NP-completeness of the CSDD problem for doubly

chordal graphs. In order to prove this, we present a reduction from an instance of the S E T

C O V E R D E C I S I O N problem to an instance of the C O S E C U R E D O M I N AT I O N D E C I S I O N

problem.
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Before doing that, first, we formally define the S E T C O V E R D E C I S I O N problem.

Given a pair (A, S) and a positive integer k, where A is a set of p elements and S is a family of q

subsets of A, the S E T C O V E R D E C I S I O N problem asks whether there exists a subfamily S ′

of S such that ∪B∈S′B = A. The following result is known regarding the NP-completeness of

the S E T C O V E R D E C I S I O N problem.

Theorem 2.47. [71] S E T C O V E R D E C I S I O N problem is NP-complete.

Theorem 2.48. CSDD problem is NP-complete for doubly chordal graphs.

Proof. Clearly, the CSDD problem is in NP for doubly chordal graphs. Now, we define a

reduction from the S E T C O V E R D E C I S I O N problem for an instance (A, S, k), where A is a

set of p elements, S is a family of q subsets of A and k is a positive integer to an instance (G, k′)

of the CSDD problem.

Suppose that a set of elements A = {ai | 1 ≤ i ≤ p}, family S = {Si | 1 ≤ i ≤ q} of

subsets of A and a positive integer k is given. Now, we construct a graph G = (V,E) in the

following way:

• for each element ai ∈ A, we take a vertex ai in V ,

• for each subset Si ∈ S, we take a vertex si in V ,

• V = {ai | 1 ≤ i ≤ p} ∪ {si | 1 ≤ i ≤ q} ∪ {x1, x2, x3, y1, y2, z1, z2}, and

• E = {sisj | 1 ≤ i < j ≤ q} ∪ {aisj | ai ∈ Sj and Sj ∈ S, where 1 ≤ i ≤ p

and 1 ≤ j ≤ q} ∪ {aix1, sjx1, sjy1, sjz1 | 1 ≤ i ≤ p and 1 ≤ j ≤ q} ∪
{x1x2, x1x3, x1y1, x1z1, y1z1, y1y2, z1z2}.

The newly constructed graph G is a doubly chordal graph with DPEO

{x2, x3, y2, z2, a1, a2, . . . , ap, s1, s2, . . . , sq, y1, z1, x1}. It is easy to see that the above

construction can be done in polynomial-time.

Claim 2.6.1. (A, S) has a set cover of cardinality at most k if and only if G has a cosecure

dominating set of cardinality at most k′ = k + 4.

Proof. Let S ′ forms a set cover of (A, S) of cardinality at most k. Consider D′ = {si ∈ Si |
Si ∈ S ′, where 1 ≤ i ≤ q}. Define a set D = D′ ∪{x2, x3, y1, z1}. It is easy to see that D forms

a cosecure dominating set of G of cardinality at most k + 4.
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Conversely, assume that D is a cosecure dominating set of G of cardinality at most k + 4.

From Lemma 2.3, it follows that x2, x3 ∈ D and x1 /∈ D. Also, exactly one of y1 and y2 is in D,

and exactly one of z1 and z2 is in D. Suppose that I = {a1, a2, . . . , ap} and J = {s1, s2, . . . , sq}.
Above arguments implies that |D ∩ (I ∪ J)| ≤ k. Now, we claim that there exists a cosecure

dominating set D′ of G such that |D′ ∩ I| = 0. If D satisfies |D ∩ I| = 0, then we are done.

Next, assume that D∩ I = {u1, u2, . . . , ur}. If for each uj ∈ D∩ I , there exists a vertex wj ∈ J

such that ujwj ∈ E and wj /∈ D, then by removing uj and adding wj in D, we get the required

set. If for some uj′ ∈ D ∩ I , there does not exist any vertex wj′ ∈ J such that ujwj′ ∈ E and

wj′ /∈ D, then by simply removing such uj′ and doing this for each such uj′ ∈ D ∩ I , we get the

required set. Thus, there exists a cosecure dominating set D′ of G such that |D′ ∩ I| = 0. Now,

let S ′ be the subfamily of S formed by those subsets of A corresponding to vertices in D′ ∩ J .

As D′ forms a dominating set of G, thus, S ′ forms a set cover of (A, S) of cardinality at most

k.

This completes the proof of the result.

2.7 Approximation Results
In this section, we find the lower and upper bound on the approximation ratio of the

M I N I M U M C O S E C U R E D O M I N AT I O N problem. We also show that the problem is

APX-hard for graphs with maximum degree 4.

2.7.1 Upper Bound on Approximation Ratio

In this subsection, we prove that there exists a (∆ + 1)-approximation algorithm for the

MCSD problem for the graphs having maximum degree ∆ and a maximum independent set

which can be computed in polynomial-time.

Theorem 2.49. Let G be a graph with maximum degree ∆. If a maximum independent set I of

G can be computed in polynomial-time, then the MCSD problem can be approximated within an

approximation ratio of (∆ + 1).

Proof. Let G = (V,E) be a graph with maximum degree ∆ and |V | = n. Assume that I is a

maximum independent set of G. From Lemma 2.1, it follows that I is a cosecure dominating set

of G. Note that |I| ≤ n. Let S denotes an optimal cosecure dominating set of G. Then, |S| ≤ |I|.
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Since every cosecure dominating set is also a dominating set of G, thus, S is a dominating set of

G. Let ∆ be the maximum degree in G. Note that a vertex in G can dominate at most (∆ + 1)

vertices. Thus, |S| ≥ n
∆+1

. Consequently, |I| ≤ n ≤ (∆ + 1)|S|. Therefore, a maximum

independent set I of G is a cosecure dominating set of G and cardinality of I is at most (∆ + 1)

times the cardinality of an optimal cosecure dominating set of G. Hence, the result follows.

A graph is said to be a perfect graph, if the chromatic number of every induced subgraph

is same as the clique number of that subgraph. That is, G = (V,E) is a perfect graph if and

only if for every subset S ⊆ V , χ(G[S]) = ω(G[S]). Note that the MISP problem is solvable in

polynomial-time for perfect graphs [44]. Using this and Theorem 2.49, the following corollary

directly follows.

Corollary 2.50. MCSD problem can be approximated within an approximation ratio of (∆ + 1)

for perfect graphs with maximum degree ∆.

2.7.2 Lower Bound on Approximation Ratio

In order to obtain a lower bound on the approximation ratio of the MCSD problem, we

propose an approximation preserving reduction from the M I N I M U M D O M I N AT I O N problem.

Before doing that let us recall a result from the literature regarding the lower bound on the

approximation ratio of the M I N I M U M D O M I N AT I O N problem.

Theorem 2.51. [22, 35] Given a graph G = (V,E) with n = |V |, the M I N I M U M

D O M I N AT I O N problem cannot be approximated within an approximation ratio of (1− ϵ) ln(n)

for any ϵ > 0, unless P = NP .

Theorem 2.52. Given a graph G = (V,E) with n = |V |, the MCSD problem cannot be

approximated within an approximation ratio of (1− ϵ) ln(n), for any ϵ > 0, unless P = NP .

Proof. We prove this result by using contradiction. First, we propose an approximation

preserving reduction from the M I N I M U M D O M I N AT I O N problem to the MCSD problem as

follows: Suppose that a graph G = (V,E) is a given instance of the M I N I M U M D O M I N AT I O N

problem, where |V | = n and V = {v1, v2, . . . , vn}. We construct a new graph G′ = (V ′, E ′)

from G by adding 3 new vertices x, y and z, and making x adjacent to every vertex of V ∪{y, z}.
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Formally, V ′ = V ∪ {x, y, z} and E ′ = E ∪ {xvi : vi ∈ V , 1 ≤ i ≤ n} ∪ {xy, xz}. Note that

|V ′| = |V |+ 3 and |E ′| = |E|+ |V |+ 2.

We claim that G has a dominating set of cardinality at most k if and only if G′ has a

cosecure dominating set of cardinality at most k + 2. To see this, first suppose that G has a

dominating set D and |D| ≤ k. Let S = D ∪ {y, z}. As x is a replacement for every vertex of S,

S is a cosecure dominating set of G′ and |S| ≤ k+2. Conversely, assume that G′ has a cosecure

dominating set S and |S| ≤ k + 2. Using Lemma 2.3, it follows that y, z ∈ S and x /∈ S. Define

a set D = S ∩ V . Clearly, D is a dominating set of G and |D| ≤ k. Hence, the claim follows.

Now, suppose that Approx CSDS is an approximation algorithm that runs in

polynomial-time and solves the MCSD problem within an approximation ratio of α =

(1− ϵ)ln(|V ′|), for some fixed ϵ > 0. Let t be a fixed integer. Now, we propose the following

algorithm Approx Dominating Set to find a dominating set of a given graph G.

Algorithm 4: Approx Dominating Set
Input: A graph G = (V,E).
Output: A dominating set of G.
if there exists an optimal dominating set D of G of cardinality at most t then

return D;
else

Construct a new graph G′ using G;
Compute a cosecure dominating set S of G′ using Approx CSDS;
Define D = S ∩ V ;
return D;

Note that the Approx Dominating Set is a polynomial-time algorithm, as the algorithm

Approx CSDS runs in polynomial-time for G′ and every other step of Approx Dominating Set

can be computed in polynomial-time. If |D| ≤ t, then D is an optimal dominating set of G. Now,

assume that |D| > t.

Suppose that D∗ is an optimal dominating set of G and S∗ is an optimal cosecure

dominating set of G′. Using the above reduction and discussion, it follows that |S∗| = |D∗|+ 2.

Note that |D∗| > t. For a graph G, let Approx Dominating Set computes a dominating set D

of G and Approx CSDS computes a cosecure dominating set S of G′. Here, |D| = |S| − 2 ≤
α|S∗|−2 ≤ α|S∗| = α(|D∗|+2) ≤ α(1+ 2

|D∗|)|D∗| < α(1+ 2
t
)|D∗|. Thus, |D| ≤ α(1+ 2

t
)|D∗|.
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Let t be an integer that satisfies t > 2
ϵ
. Also, note that ln(n) ≊ ln(n+ 3), for sufficiently large

values of n. Thus, |D| ≤ α(1+ 2
t
)|D∗| ≤ (1−ϵ)ln(|V |)(1+ϵ)|D∗| ≤ (1−ϵ′)ln(|V |)|D∗|, where

ϵ′ = ϵ2. Therefore, Approx Dominating Set approximates the M I N I M U M D O M I N AT I O N

problem within an approximation ratio of (1−ϵ′)ln(|V |) for some ϵ′ > 0, which is a contradiction

to Theorem 2.51. Hence, the result follows.

2.7.3 APX-hardness

In this subsection, we show that the M I N I M U M C O S E C U R E D O M I N AT I O N problem

is APX-hard for graphs with maximum degree 4. To prove this result, we give an L-reduction

from the M I N I M U M D O M I N AT I O N problem for graphs with maximum degree 3, which is

already known to be APX-hard [3].

We use the polynomial-time reduction f (defined in Subsection 2.3.2) from the DD

problem to the CSDD problem. Now, we prove that the MCSD problem is APX-hard for graphs

with maximum degree 4 by showing that the reduction f is an L-reduction.

Claim 2.7.1. f is an L-reduction.

Proof. Assume that D is an optimal dominating set of G and S is an optimal cosecure dominating

set of G′, respectively. As D is a dominating set of G and the maximum degree in graph G is 3,

this implies that a vertex in G can dominate at most 4 vertices. Thus, |D| ≥ n
4

=⇒ n ≤ 4|D|.
Using Lemma 2.9, we have |S| = |D| + n. Thus, |S| ≤ |D| + 4|D| = 5|D|. Therefore,

|S| ≤ 5|D| and α = 5.

Next, we suppose that S ′ is a cosecure dominating set of G′ and assume that D′ = S ′ ∩ V .

Observe that for each i, either xi or yi is in S ′. We claim that for each vertex vi ∈ V , N [vi]∩D′ ̸=
∅, here D′ = S ′ ∩ V . That is, for each vi ∈ V , there exists a vertex vj ∈ S ′ ∩ V such that

either vi = vj or vivj ∈ E. Let vi be an arbitrary vertex in V . If xi ∈ S ′, then yi /∈ S ′, and yi

is a replacement of xi in S ′. This implies that S ′′ = (S ′ \ {xi}) ∪ {yi} is a dominating set of

G′. Since vi remains dominated in S ′′ as well, there exists a vertex vj ∈ S ′′ ∩ V such that vj

dominates vi, that is, either vi = vj or vivj ∈ E. Now, if we assume that yi ∈ S ′, then xi /∈ S ′, as

xi is a replacement for yi in S ′. Thus, there exists a vertex vj ∈ S ′ ∩ V such that vj dominates vi.

Since vi is an arbitrary vertex, therefore, D′ is a dominating set of G and |D′| ≤ |S ′| − n. Using
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Lemma 2.9, we have n = |S|−|D|. Thus, |D′| ≤ |S ′|−(|S|−|D|) =⇒ |D′|−|D| ≤ |S ′|−|S|.
Therefore, β = 1. This concludes that f is an L-reduction.

As a direct consequence of the preceding discussion, we present the following theorem.

Theorem 2.53. MCSD problem is APX-hard for graphs with maximum degree 4.

Subsequently, by combining Theorem 2.49 and Theorem 2.53, we derive the following

corollary.

Corollary 2.54. MCSD problem is APX-complete for perfect graph with maximum degree 4.

2.8 Summary
In this chapter, we focused on the algorithmic complexity of the M I N I M U M

C O S E C U R E D O M I N AT I O N (MCSD) problem in graphs and we resolved the complexity status

for several graph classes. We demonstrated the complexity difference between the M I N I M U M

D O M I N AT I O N problem and the MCSD problem in graphs. We identified two graph classes in

which one of the problems is NP-hard and other one is efficiently solvable. Further, we studied

approximation related results for the problem. We proposed an approximation algorithm for

perfect graphs. In addition, we proved that the MCSD problem is APX-hard for bounded degree

graphs and also established a lower bound on the approximation ratio of the problem.



Chapter 3
Semipaired Domination

This chapter is dedicated to study the algorithmic and hardness results for the M I N I M U M

S E M I PA I R E D D O M I N AT I O N (MSPD) problem. In this chapter, we resolve the complexity

status of the MSPD problem in two important graph classes: AT-free graphs and planar graphs.

3.1 Introduction

Quite recently (in 2018), Haynes and Henning [50] introduced a relaxed notion of paired

domination called Semipaired Domination, which is further studied by other researchers in

[49, 51, 59, 60, 61, 62, 106] and elsewhere. Let G = (V,E) be a graph with no isolated vertices.

A dominating set D ⊆ V is said to be a semipaired dominating set, abbreviated as semi-PD-set,

if D can be partitioned into 2-sets such that if {u, v} is a 2-set, then the distance between u and

v is at most 2, and u ̸= v. We say that u and v are partners, if u and v are semipaired, and we

sometime notate this by u ∼ v. A min-semi-PD-set of G is a semi-PD-set of G of minimum

cardinality. The semipaired domination number, denoted as γpr2(G), is the cardinality of a

min-semi-PD-set of G.

For a graph G without any isolated vertices, the M I N I M U M S E M I PA I R E D

D O M I N AT I O N problem (MSPD) requires to compute a semi-PD-set of G of cardinality

γpr2(G). The S E M I PA I R E D D O M I N AT I O N D E C I S I O N (SPDD) problem takes a graph G

and a positive integer k as an instance and asks whether there exits a semi-PD-set of G cardinality

at most k or not. For a given graph G without an isolated vertex, we have γ(G) ≤ γpr2(G) ≤
γpr(G). Since γ(G) ≤ γpr(G) ≤ 2γ(G), we have γ(G) ≤ γpr2(G) ≤ 2γ(G). For a connected

chain graph G with at least two vertices, we remark that γpr2(G) = γpr(G) = 2. Further, we note

that γpr2(G) = γpr(G) = 2, for a connected cograph G having at least two vertices. It should be

noted that cographs are a subclass of AT-free graphs, and for cographs the MSPD problem is

linear-time solvable.

67
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The main contributions and structure of this chapter is as follows:

• In Section 3.2, we prove the NP-completeness of the SPDD problem, when restricted

to planar graphs. The proof follows by polynomial-time reduction from the V E R T E X

C O V E R D E C I S I O N ( V C D ) problem for planar cubic graphs to the decision version of

the SPDD problem for planar graphs with maximum degree 4.

• In Section 3.3, we give a polynomial-time reduction from semipaired domination to paired

domination for general graphs and we make use of this reduction in establishing the

polynomial-time solvability of the MSPD problem for AT-free graphs.

• In Section 3.4, we give an efficient algorithm to find the min-semi-PD-set for AT-free

graphs but the complexity of the algorithm turns out to be quite high, precisely, O (n19.5).

So, we also give a constant-factor approximation algorithm for AT-free graphs, which

takes linear-time.

• In Section 3.5, we provide the concluding remarks.

3.2 NP-completeness for Planar Graphs
In this section, we prove that the SPDD problem is NP-complete for planar graphs with

maximum degree 4. First, we recall that a graph is said to be a planar graph, if it can be drawn on

a plane such that its edges do not cross each other. A cubic graph is a graph such that each vertex

has degree exactly 3. A graph is said to be a planar cubic graph, if it is both cubic and planar.

In order to obtain the NP-completeness result, we propose a polynomial-time reduction from

the V E R T E X C O V E R D E C I S I O N ( V C D ) problem for planar cubic graphs to the decision

version of our problem for planar graphs with maximum degree 4.

Before doing that we first formally define the M I N I M U M V E R T E X C O V E R problem

and V E R T E X C O V E R D E C I S I O N problem. A vertex cover S of a graph G is a subset

of vertex set V such that for each edge at least one of its endpoint is in S. The M I N I M U M

V E R T E X C O V E R problem asks us to find a minimum cardinality vertex cover of a graph.

Given a graph G and a positive integer k, the V E R T E X C O V E R D E C I S I O N problem asks

whether there exists a vertex cover of G of cardinality at most k. The following result regarding

the V C D problem is known in the literature.
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Theorem 3.1. [86] V C D problem is NP-complete for planar cubic graphs.

Now, we are ready to state and prove the main result of this section.

Theorem 3.2. SPDD problem is NP-complete for planar graphs with maximum degree 4.

Proof. First, we claim that the SPDD problem is in NP. Given a graph G = (V,E) and a set

D ⊆ V , to verify if D is a semi-PD-set of a graph G or not, we do the following: first, we take

the subgraph induced by D in G, say H = G[D]. Additionally, in H , we make two vertices

u, v ∈ V (H) adjacent, if dG(u, v) = 2 (distance between u and v is 2 in G). Now, we may

note that D is a semi-PD-set of G if and only if D is a dominating set of G and H has a perfect

matching. In this way, in polynomial-time, we can verify if a given subset of vertex set of a

graph G is a semi-PD-set of G or not. Therefore, the SPDD problem is in NP.

Now, we propose a reduction from the V C D problem for planar cubic graphs to the

SPDD problem for planar graphs with maximum degree 4 as follows: Consider a planar cubic

graph G = (V,E), where V = {u1, u2, . . . , un} and a positive integer k as an instance of the

V C D problem. Assume that a planar embedding of graph G is given with the input. Now, we

construct a graph G′ = (V ′, E ′) and a parameter k′, as an instance of the SPDD problem in the

following way:

• For each vertex ui ∈ V , we introduce a gadget Gui shown in the F I G U R E 3.1 and replace

each vertex ui in G by the gadget Gui in G′. The vertices in V (Gui) \ {xi, yi, zi} are the

internal vertices of the gadget Gui . The vertex set of G′ is

V ′ = ∪n
i=1{xi, x

1
i , x

2
i , x

3
i , x

4
i , x

5
i , x

6
i , x

7
i , x

8
i , x

9
i , yi, zi, a

1
i , a

2
i , a

3
i , a

4
i , b

1
i , b

2
i }.

• If eip, eiq, and eir are the three edges incident on ui in G, then make eip incident on xi, eiq

incident on yi, and eir incident on zi in G′.

• k′ = 4n+ 2k.

Note that |V ′| = 18n and |E ′| = m + 21n. Note that the gadget Gui is a planar graph

and by making use of second point of the construction, it follows that in the planar embedding

of graph G, if we replace each vertex ui with Gui , then the resulting graph is again a planar

graph. Thus, it is easy to see that the graph G′ is a planar graph with maximum degree 4 and it
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F I G U R E 3 . 1 : Illustration of the gadget Gui corresponding to a vertex ui ∈ V .

takes polynomial-time to construct G′ from a given graph G. Now, we only need to prove the

following claim to complete the proof.

Claim 3.2.1. γpr2(G′) = 4n+ 2k, where k is the cardinality of a minimum vertex cover of G.

Proof. First, let C be a minimum vertex cover of G of cardinality k. Define a set Dsp =

∪n
i=1 ({xi, x

2
i , yi, x

5
i , zi, x

8
i | ui ∈ C} ∪ {x2

i , x
4
i , x

6
i , x

8
i | ui /∈ C}) . Here, |Dsp| = 6k + 4(n −

k) = 4n+2k. By the definition of a vertex cover, if C is a vertex cover of G, then for each edge,

at least one of its endpoint must belong to C. Thus, we can say that if ui is adjacent to three

vertices uj, uk, ur and ui /∈ C, that is, uiuj, uiuk, uiur ∈ E and ui /∈ C, then uj, uk, ur ∈ C.

Combining the above arguments, we conclude that Dsp is a dominating set of G′. Now, as the

vertices of Dsp can be semipaired as follows: for ui ∈ C, xi ∼ x2
i , x

5
i ∼ zi, and x8

i ∼ yi, and

for ui /∈ C, x2
i ∼ x4

i and x6
i ∼ x8

i . Thus, Dsp is a semi-PD-set of G′ of cardinality 4n + 2k.

Therefore, γpr2(G′) ≤ 4n+ 2k.

Conversely, let Dsp be a min-semi-PD-set of G′ of cardinality 4n+ 2k. In a gadget Gui ,

to dominate b1i and b2i , {b1i , x2
i } ∩ Dsp ̸= ∅ and {b2i , x8

i } ∩ Dsp ̸= ∅, respectively. As a vertex

v ∈ {b1i , x2
i } ∩Dsp can only be semipaired with a vertex from {xi, x

1
i , x

2
i , x

3
i , x

4
i , a

1
i , b

1
i } \ {v},

thus, |Dsp ∩ {xi, x
1
i , x

2
i , x

3
i , x

4
i , a

1
i , b

1
i }| ≥ 2. Similarly, |Dsp ∩ {yi, x6

i , x
7
i , x

8
i , x

9
i , a

3
i , b

2
i }| ≥ 2.

Combining above two arguments, we get |Dsp ∩ V (Gui)| ≥ 4.

Now, first we prove that if |Dsp∩V (Gui)| = 4 for some i ∈ [n], then Dsp∩V (Gui) is either

{x2
i , x

4
i , x

6
i , x

8
i } or {x2

i , x
4
i , x

7
i , x

8
i }. Observe that to dominate b1i , b

2
i , a

1
i , a

2
i , a

3
i , and a4i , at least

one vertex from each of the following sets must be there in Dsp: {b1i , x2
i }, {b2i , x8

i }, {a1i , x2
i , x

3
i },

{a2i , x4
i , x

5
i }, {a3i , x7

i , x
8
i }, and {a4i , x4

i , x
5
i }, respectively. Now, if we assume that b1i ∈ Dsp, then

to dominate x1
i , we have |Dsp ∩ {xi, x

1
i , x

2
i }| ≥ 1. Also, |Dsp ∩ {yi, x6

i , x
7
i , x

8
i , x

9
i , a

3
i , b

2
i }| ≥ 2
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and |Dsp ∩ {a2i , x4
i , x

5
i }| ≥ 1. So, collectively |Dsp ∩ V (Gui)| ≥ 5. Thus, b1i /∈ Dsp. Similarly,

we can prove that b2i /∈ Dsp. From this, we conclude that x2
i , x

8
i ∈ Dsp. As x2

i is semipaired with

some vertex, say u, then u must be x4
i , otherwise, |Dsp ∩ V (Gui)| ≥ 5, which is a contradiction.

Now, we need one more vertex v such that v dominates x6
i and v can also be semipaired with

x8
i . The only possible choices for v are x6

i or x7
i . Thus, it follows that if |Dsp ∩ V (Gui)| = 4 for

some i ∈ [n], then Dsp ∩ V (Gui) is either {x2
i , x

4
i , x

6
i , x

8
i } or {x2

i , x
4
i , x

7
i , x

8
i }. Further, we can

easily note that if |Dsp ∩ V (Gui)| = 4 for some i ∈ [n], then Dsp ∩ {xi, yi, zi, x
1
i , a

4
i , x

9
i } = ∅.

Next, we claim that there exists a min-semi-PD-set D∗
sp of G′ such that |D∗

sp∩V (Gui)| = 4

or |D∗
sp ∩ V (Gui)| ≥ 6 for all i ∈ [n]. If Dsp is such a semi-PD-set of G′, then we are done. If

not, then there exists i ∈ [n] such that |Dsp ∩ V (Gui)| = 5. In this case, one of the vertex u from

Dsp ∩ V (Gui) must be semipaired with some vertex v from V (Guj) and j ̸= i. This implies

that Dsp ∩ {xi, yi, zi, x
1
i , a

4
i , x

9
i } ≠ ∅. More precisely, we prove that if |Dsp ∩ V (Gui)| = 5 for

some i ∈ [n], then |Dsp ∩ {xi, yi, zi, x
1
i , a

4
i , x

9
i }| = 1. To see this, we first consider the case,

when u = xi is the vertex that is semipaired with some vertex v from V (Guj) and j ̸= i. By

exploring the structure of the gadget Gui , it is easy to observe that |Dsp∩{x2
i , x

3
i , x

4
i , a

1
i , b

1
i }| ≥ 2

and |Dsp ∩ {x6
i , x

7
i , x

8
i , , a

3
i , b

2
i }| ≥ 2 (otherwise, either some internal vertex from V (Gui) is

left undominated or we get a contradiction on the cardinality of min-semi-PD-set of G′). Thus,

Dsp ∩ {yi, zi, x1
i , a

4
i , x

9
i } = ∅.

Similarly, we may prove that |Dsp ∩ {xi, yi, zi, x
1
i , a

4
i , x

9
i }| = 1, where u is any vertex

in the set {yi, zi, x1
i , a

4
i , x

9
i }. Hence, we get that if |Dsp ∩ V (Gui)| = 5 for some i ∈ [n], then

|Dsp ∩ {xi, yi, zi, x
1
i , a

4
i , x

9
i }| = 1.

We first assume that |Dsp∩V (Gui)| = 5 and xi ∈ Dsp∩V (Gui). Then, we will construct

a new min-semi-PD-set D′
sp of G′ such that |D′

sp ∩ V (Gui)| = 4 and |{j | |D′
sp ∩ V (Guj)| =

5}| < |{j | |Dsp ∩ V (Guj)| = 5}|. We may prove similar statement for u ∈ Dsp ∩ V (Gui),

where u is any vertex in the set {yi, zi, x1
i , a

4
i , x

9
i } and |Dsp ∩ V (Gui)| = 5.

Case 1: xi is semipaired with xj

Now, for x1
j , either x1

j ∈ Dsp or x1
j /∈ Dsp. If x1

j /∈ Dsp, then the set (Dsp \ V (Gui)) ∪
{x1

j , x
2
i , x

4
i , x

6
i , x

8
i } is a min-semi-PD-set of G′. Otherwise, if x1

j ∈ Dsp, then we claim

that at least one of a1j or b1j /∈ Dsp. If possible, assume that both a1j and b1j are in Dsp. Now,
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we claim that D′
sp = Dsp \ {x1

j , b
1
j} also forms a semi-PD-set of G′. Clearly, D′

sp forms a

dominating set of G′. Further, if x1
j is semipaired with b1j in Dsp, then keeping the vertices

semipaired in D′
sp in the same way as they were semipaired in Dsp, we get that D′

sp forms a

semipaired dominating set of G′. Otherwise, assume that x1
j is semipaired with some vertex

r ∈ V (Guj) and b1j is semipaired with some vertex s ∈ V (Guj) in Dsp, then semipairing r

with s with each other in D′
sp and keeping all the other vertices semipaired in D′

sp in the

same way as they were semipaired in Dsp, we get that D′
sp forms a semipaired dominating

set of G′. Hence, we get a smaller sized semi-PD-set D′
sp of G′ which has cardinality

less that of |Dsp|, which is a contradiction as Dsp is a min-semi-PD-set of G′. Now, we

consider the case, x1
j ∈ Dsp and {a1j , b1j} ⊈ Dsp. Let qj be the partner of x1

j in Dsp. Pick a

vertex pj from {a1j , b1j} \Dsp. Then, the set D′
sp = (Dsp \ V (Gui)) ∪ {pj, x2

i , x
4
i , x

6
i , x

8
i }

is a min-semi-PD-set of G′ (as xj ∼ x1
j , pj ∼ qj , x2

i ∼ x4
i , x

6
i ∼ x8

i and all the remaining

vertices of D′
sp are semipaired with the same vertices as they were semipaired in the

previous min-semi-PD-set Dsp of G′.)

Case 2: xi is semipaired with yj

This case follows similarly as Case 1.

Case 3: xi is semipaired with x1
j

Now, for xj , either xj ∈ Dsp or xj /∈ Dsp. If xj /∈ Dsp, then the set (Dsp \ V (Gui)) ∪
{xj, x

2
i , x

4
i , x

6
i , x

8
i } is a min-semi-PD-set of G′. Otherwise, if xj ∈ Dsp, then at least one

of a1j , b
1
j , or x3

j /∈ Dsp. If not, then by making some modification to Dsp as done in Case

1, we can obtain a semi-PD-set D′ of G′ having cardinality less that of |Dsp|, which is

a contradiction. Now, we consider the case, xj ∈ Dsp and {a1j , b1j , x3
j} ⊈ Dsp. Clearly,

x2
j is the partner of xj in Dsp. Pick a vertex pj from {a1j , b1j , x3

j} \ Dsp. Then, the set

D′
sp = (Dsp \ V (Gui)) ∪ {pj, x2

i , x
4
i , x

6
i , x

8
i } is a min-semi-PD-set of G′ (as x1

j ∼ xj ,

x2
j ∼ pj , x2

i ∼ x4
i , x6

i ∼ x8
i and all the other vertices of D′

sp remains semipaired as were in

Dsp).

Case 4: xi is semipaired with x9
i

This case follows similarly as Case 3.

Case 5: xi is semipaired with zj

In this case, we consider two cases for the set {x4
j , x

5
j , a

4
j}: either {x4

j , x
5
j , a

4
j} ⊆ Dsp
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or {x4
j , x

5
j , a

4
j} ⊈ Dsp. Now, if {x4

j , x
5
j , a

4
j} ⊈ Dsp, then we pick a vertex pj from

{x4
j , x

5
j , a

4
j} \ Dsp and form a set (Dsp \ V (Gui)) ∪ {pj, x2

i , x
4
i , x

6
i , x

8
i } which is a

min-semi-PD-set of G′. Otherwise, if {x4
j , x

5
j , a

4
j} ⊆ Dsp, then no two vertices among

these three are semipaired together (because if any two vertices from the set {x4
j , x

5
j , a

4
j}

are semipaired together, then removing one of those vertex and the vertices of V (Gui)

from Dsp, and by including the set {x2
i , x

4
i , x

6
i , x

8
i } in Dsp, we get a semi-PD-set of G′

having cardinality |Dsp| − 2, which is a contradiction).

So, we can assume that {x4
j , x

5
j , a

4
j} ⊆ Dsp and no two vertices among these three are

partners. As Dsp is a semi-PD-set, a4j is semipaired with a vertex from V (Guj), say pj .

Note that a2j /∈ Dsp ( if a2j ∈ Dsp, then making some modification to Dsp, we can obtain a

semi-PD-set D′ of G′ having cardinality less that of |Dsp|, we arrive at a contradiction).

Thus, now we have {x4
j , x

5
j , a

4
j} ⊆ Dsp such that no two vertices among these three are

partners and a2j /∈ Dsp. Then, the set D′
sp = (Dsp \ V (Gui)) ∪ {a2j , x2

i , x
4
i , x

6
i , x

8
i } is a

min-semi-PD-set of G′ (as zj ∼ a4j , a
2
j ∼ pj , x2

i ∼ x4
i , x

6
i ∼ x8

i and all the other vertices

of D′
sp remains semipaired as were in Dsp).

Case 6: xi is semipaired with a4j

Now, for zj , we have two choices, either zj ∈ Dsp or zj /∈ Dsp. If zj ∈ Dsp, then the

set D′′
sp = (Dsp \ (V (Gui ∪ {zj}) ∪ {x2

i , x
4
i , x

6
i , x

8
i } is a semi-PD-set of G′ of cardinality

|Dsp| − 2, which is a contradiction. Thus, zj /∈ Dsp. Then, the set D′
sp = (Dsp \ V (Gui)∪

{zj, x2
i , x

4
i , x

6
i , x

8
i } is a min-semi-PD-set of G′ (as a4j ∼ zj , x2

i ∼ x4
i , x

6
i ∼ x8

i and all the

other vertices of D′
sp remains semipaired as were in Dsp).

Note that if we are doing the above procedure some r times, then each time we are reducing the

number of gadgets which has exactly five vertices in common with the min-semi-PD-set of G′ by

at least 1. So, in this way, we can modify the min-semi-PD-set Dsp of G′ to obtain the required

min-semi-PD-set D∗
sp of G′ satisfying |D∗

sp ∩ V (Gui)| = 4 or |D∗
sp ∩ V (Gui)| ≥ 6 for all i ∈ [n].

Thus, without loss of generality, we can assume that there exists a min-semi-PD-set D∗
sp of G′

such that |D∗
sp ∩ V (Gui)| = 4 or |D∗

sp ∩ V (Gui)| ≥ 6 for all i ∈ [n].

Construct a set C by including vertex ui corresponding to a gadget Gui for which |D′
sp ∩

V (Gui)| ≥ 6, where i ∈ [n]. As γpr2(G
′) ≥ 6|C| + 4(n − |C|) = 4n + 2|C|. Thus, 2|C| ≤
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γpr2(G
′) − 4n. Now, we prove that C forms a vertex cover of G. Let eij = uiuj be an

arbitrary edge in G. Corresponding to edge eij = uiuj ∈ E, we have an edge pipj in G′,

where pk ∈ {xk, yk, zk}, for k ∈ {i, j}. It is enough to prove that either |D∗
sp ∩ V (Gui)| ≥ 6 or

|D∗
sp∩V (Guj)| ≥ 6. Now, we assume that both |D∗

sp∩V (Gui)| = 4 and |D∗
sp∩V (Guj)| = 4. As

|D∗
sp ∩ V (Gui)| = 4 for i ∈ [n], thus, D∗

sp ∩ V (Gui) is either {x2
i , x

4
i , x

6
i , x

8
i } or {x2

i , x
4
i , x

7
i , x

8
i }.

Similarly, we have D∗
sp ∩ V (Guj) is either {x2

j , x
4
j , x

6
j , x

8
j} or {x2

j , x
4
j , x

7
j , x

8
j}. It is easy to see

that pi and pj are not dominated in D∗
sp, which is a contradiction. Thus, we conclude that

either |D∗
sp ∩ V (Gui)| ≥ 6 or |D∗

sp ∩ V (Guj)| ≥ 6. Since eij = uiuj was an arbitrary edge

in G, it follows that C forms a vertex cover of G. Therefore, 2|C| ≤ γpr2(G
′) − 4n implies

that 2k ≤ γpr2(G
′) − 4n, where k is the cardinality of a minimum vertex cover of G. Hence,

γpr2(G
′) ≥ 4n+ 2k, where k is the cardinality of a minimum vertex cover of G.

Hence, the theorem is proved.

3.3 Reduction from Semipaired Domination to Paired

Domination
In this section, we illustrate a polynomial-time graph transformation from semipaired

dominating set to paired dominating set. Precisely, given a graph G = (V,E), we describe a

polynomial-time reduction, which transforms graph G into another graph G′ = (V ′, E ′) such

that γpr2(G) = γpr(G
′). The construction of G′ corresponding to a given graph G is as follows:

Construction A : Let G = (V,E) be a given graph with V = {v1, v2, . . . , vn}. Take two copies

V1 = {v11, v12, . . . , v1n} and V2 = {v21, v22, . . . , v2n} of the vertex set V . We make two vertices v1i

and v1j adjacent in G′, if the distance between the corresponding vertices vi and vj is at most two

in G. Further, we make a vertex v1i adjacent to a vertex v2j , if vi ∈ NG [vj]. Formally, the vertex

set and edge set of G′ are as follows:

• V ′ = V1 ∪ V2, and

• E ′ = {v1i v1j | dG(vi, vj) ≤ 2} ∪ {v1pv2q | vp ∈ NG[vq]}.
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Note that G′ [V1] is isomorphic to G2 and V2 is an independent set of G′. It is easy to observe

that given a graph G = (V,E), the graph G′ = (V ′, E ′) can be constructed in O(|V | · |E|)
time. Next, we prove that a min-semi-PD-set of G can be obtained from a min-PD-set of G′ in

polynomial-time.

Theorem 3.3. If G is a graph and the graph G′ is obtained from G using the Construction A ,

then γpr (G
′) = γpr2(G). Moreover, a min-semi-PD-set of G can be obtained from a min-PD-set

of G′ in linear-time.

Proof. Let G = (V,E) be a graph and G′ = (V ′, E ′) be the graph obtained from G using the

Construction A and Dsp be a min-semi-PD-set of G. We claim that the set Dp = {v1i | vi ∈ Dsp}
is a PD-set of G′. Since Dsp is a semi-PD-set of G, for each vertex vi ∈ V , NG [vi] ∩Dsp ̸= ∅.
Thus, by the construction of the graph G′ and the set Dp, each vertex in the set V2 is dominated

by a vertex in Dp. Further, as G′ [V1] is isomorphic of G2, it is easy to observe that each vertex in

the set V1 is also dominated by some vertex of Dp. This concludes that the set Dp is a dominating

set of G′. Now, as Dsp is a semi-PD-set of G, for every vertex vi ∈ Dsp, there exists a vertex

vj ∈ Dsp which is semipaired with vi. Note that dG (vi, vj) ≤ 2. Clearly, by the construction

of the set Dp, we have v1i , v
1
j ∈ Dsp. Also, by the construction of the graph G′, we observe

that v1i v
1
j ∈ E (G′). Thus, G′ [Dp] has a perfect matching. Therefore, the set Dp is a paired

dominating set of G′. Hence, γpr (G′) ≤ γpr2(G).

Conversely, let Dp be a min-PD-set of G′. First, we claim that we can modify Dp

such that Dp ∩ V2 = ∅. Assume that v2i ∈ Dp. Since V2 is an independent set in G′, v2i is

paired with v1j such that vj ∈ NG [vi]. Note that NG′ [v2i ] ⊆ NG′ [v1i ]. If v1i ∈ Dp, then the set

Dp = (Dp\ {v2i }) ∪ {u}, where u ∈ NG′
(
v1j
)
∩ V1 such that v1j paired with u is a required

min-PD-set of G′. If v1i /∈ Dp, then the set Dp = (Dp\ {v2i }) ∪ {v1i } such that v1j is paired with

v1i is a required min-PD-set of G′. Therefore, we may assume that Dp ∩ V2 = ∅.

Next, we show that the set Dsp = {vi | v1i ∈ Dp} is a semi-PD-set of G. Consider an

arbitrary vertex vi ∈ V . Since Dp ∩ V2 = ∅, to dominate the vertex v2i , there is a vertex

v1j ∈ NG′ (v2i ) ∩Dp. Note that vj /∈ Dsp. Also, by construction of G′, we note that vivj ∈ E(G).

Hence, vi is dominated by the set Dsp. This concludes that Dsp is a dominating set of G. Finally,

to show that the set Dsp is a semi-PD-set of G1, we need to claim that for every vertex vi ∈ Dsp,
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there exists a vertex vj ∈ Dsp which is semipaired with vi. Let vi ∈ Dsp. By construction

of the set Dsp, v1i ∈ Dp. Since Dp is a PD-set of G′ and Dp ∩ V2 = ∅, there exists another

vertex v1j ∈ NG′ (v1i ) ∩Dp such that v1i is paired with v1j . Thus, we have vj ∈ Dsp. Noting the

fact that v1j ∈ NG′ (v1i ) and by construction of G′ from G, we have dG (vi, vj) ≤ 2. So, vj is

semipaired with vi in Dsp. Thus, we conclude that the set Dsp is a semi-PD-set of G. Therefore,

γpr2(G) ≤ γpr (G
′) and hence, we have γpr (G

′) = γpr2(G). Also, as described in this proof, we

can construct a min-semi-PD-set of G given a min-PD-set of G′ in linear-time. Therefore, the

result follows.

Corollary 3.4. Let G be a class of graphs which is closed under the Construction A . If

the M P D problem is polynomial-time for G , then the MSPD problem can also be solved in

polynomial-time for G .

3.4 Semipaired Domination in AT-free Graphs
In this section, we resolve the complexity of the MSPD problem in asteroidal triple free (AT-free)

graphs. For this purpose, first we recall the definition of AT-free graphs and some of their

properties.

Definition 3.5. Let G = (V,E) be a graph. A set A of three independent vertices is called an

asteroidal triple, in short an AT , if there is a path P joining any two vertices of the set A such

that P does not contain any vertex from the closed neighbourhood of the third vertex. A graph G

is called an asteroidal triple free graph, in short AT-free, if it does not has an AT.

bb

b

bb

b x1

x6

x5x4 x3x2

b

b

bb

b y1

y2

y5y4y3

G H

F I G U R E 3 . 2 : An AT-free graph G and a graph H which has an AT, namely, {x1, x2, x3}.

We note that a path Pn is AT-free for any positive integer n and a cycle Cn is AT-free if

and only if n ≤ 5. In F I G U R E 3.2, we give an example of an AT-free graph as well as a graph
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which contains an AT. AT-free graphs contain some important classes of graphs as its subclasses

such as cographs, interval graphs, permutation graphs, co-comparability graphs, and trapezoidal

graphs. Every AT-free graph has a special pair (x, y) of vertices called a dominating pair. Next,

we give the definition of a dominating pair and a dominating shortest path.

Definition 3.6. In a graph G = (V,E), a pair of vertices (u, v) is called a dominating pair, if the

vertex set of any path P joining u and v in G forms a dominating set of G.

Definition 3.7. Let G be a graph and (u, v) is a dominating pair in G. A shortest path P joining

u and v is called a dominating shortest path.

Corneil et al. [26, 27] proposed a linear-time algorithm to compute a dominating pair and

dominating shortest path of an AT-free graph. Now, we study the MSPD problem in AT-free

graphs. First, we propose an exact algorithm to compute a min-semi-PD-set of an AT-free graphs.

To accomplish this task, we use the polynomial-time graph transformation given in Section 3.3.

We observe that the complexity of the exact algorithm is high. Therefore, in the next subsection,

we design a linear-time constant factor approximation algorithm to compute a semi-PD-set in

AT-free graphs.

3.4.1 Exact Algorithm

In [99], the authors designed a polynomial-time algorithm to compute a min-PD-set of an AT-free

graph. To design such polynomial-time algorithm, the authors first proved the existence of a

special min-PD-set D of an AT-free. This min-PD-set D contains at most six vertices from any

three consecutive BFS-levels of a BFS-tree of G. The algorithm given in [99] can be modified

such that if for any graph G, there exist a BFS-tree T , and a min-PD-set Dp of G such that Dp

contains at most s vertices from 3-consecutive BFS-levels of T , then a min-PD-set of G can be

computed in O(ns+ 5
2 )-time. This can be done by exploring all the possible sets containing s

vertices from three consecutive BFS-levels of T , instead of exploring all possible sets containing

6 vertices from three consecutive BFS-levels. To compute a min-semi-PD-set of a given AT-free

graph, we first construct corresponding graph G′ using Construction A (Section 3.3). Next, we

show that for the graph G′ there exists a BFS-tree T and a min-PD-set Dp such that Dp contains

at most 2k + 13 vertices from any k + 1 consecutive BFS-levels of T . Thus, from the discussion
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above, we note that a min-PD-set Dp of G′ can be computed in O(n17+2.5). Finally, we can

compute a min-semi-PD-set of G from a min-PD-set Dp of G in O(n)-time. The following

lemma works as a key in proving the main result of this section.

Lemma 3.8. If G is an AT -free graph and G′ is the corresponding constructed graph from G,

using the Construction A (Section 3.3), then there exist a vertex v, a BFS-tree T of G′ rooted

at v, and a min-PD-set D of G′ such that D contains at most 2k + 13 vertices from any k + 1

consecutive BFS-levels of T .

Proof. Let G be an AT-free graph and G′ be the corresponding constructed graph using the

Construction A (Section 3.3). Since G is an AT-free graph, there exists a dominating pair, say

(u, v) in G. Note that there are two copies of the vertex u in G′. Precisely, let u1 ∈ V1 and

u2 ∈ V2 be the two copies of u in G′. We construct a BFS tree T of G′, rooted at vertex u1 such

that there exists a min-PD-set D of G′, which contains at most 2k + 13 vertices from any k + 1

consecutive BFS levels of T . To construct T , we first construct a BFS-tree T ′ of G′ [V1] rooted at

u1. Let α = (u1
1, u

1
2, . . . , u

1
n) be a BFS-ordering of T ′, where u1 = u1

1. We add the vertices of V2

in the tree T ′ to obtain BFS-tree T of G′. We process the vertices of the set V1 in the order as they

appear in α. While processing the vertex u1
i , we add the vertices of the set NG′ (u1

i ) ∩ V2, which

are not yet added in the tree, as children of the vertex u1
i . The tree T obtained after processing all

the vertices in the ordering α is a BFS-tree of G′. Next, we give the existence of a min-PD-set D

of G′ such that D contains at most 2k + 13 vertices from any k + 1 consecutive BFS-levels of T .

Let P = u0u1u2 . . . ur be a dominating shortest path in G joining vertices u and v of

dominating pair, where u0 = u and ur = v. Note that the path P corresponds to two paths

P1 = u1
0u

1
2u

1
4 . . . and P2 = u1

0u
1
1u

1
3 . . . in the graph G′ [V1]. If |V (P )| is even, then V (P ) is a

PD-set of G′. If V (P ) contains odd number of vertices, then V (P ) ∪ {x} is a PD-set of G′,

where x ∈ NG′ (u0) \V (P ). Thus, the set V (P ) along with at most one additional vertex is a

PD-set of G. Let A be such a PD-set which consists of V (P ) and at most one extra vertex, if

needed, as mentioned above. That is, A = V (P ) when |V (P )| is even, otherwise, when |V (P )|
is odd, then A = V (P ) ∪ {x}, where x ∈ NG′ (u0) \V (P ).

Let D be a min-PD-set of G′ and denote BFS-levels of T rooted at u1 as

L0, L1, L2, · · · , Ld, where L0 = {u1}, L1 = NG′ (u1) and for 2 ≤ i ≤ d, Li =
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{x | dG′(u1, x) = i}. Note that |A ∩ Li| ≤ 2, for i ̸= 1, and for i = 1, |A ∩ L1| ≤ 3. On

the contrary, suppose that there are consecutive k + 1 levels such that D has more than 2k + 13

vertices from these consecutive BFS-levels of T . We denote Di,j = D ∩
(⋃j

s=i Ls

)
, for

0 ≤ i < j ≤ d and call a pair (i, j) a bad segment, if |Di,j| ≥ 2j + 14. Due to our assumption,

there is at least one bad segment in T .

First, we choose i minimum and then keeping i fixed we choose j to be maximum such

that (i, j) is a bad segment. Observe that |D ∩ Li−1| ≤ 1; otherwise, (i− 1, j) is a bad segment

which is a contradiction on the minimality of i. Similarly, we may claim that |D ∩ Lj+1| ≤ 1;

otherwise, (i, j + 1) is a bad segment, which is a contradiction on the maximality of j with

respect to i. Now, denote Ai,j = A ∩
(⋃j+2

s=(i−2) Ls

)
. Using the fact that |A ∩ Li| ≤ 2, for i ̸= 1,

and for i = 1, |A ∩ L1| ≤ 3, we have |Ai,j| ≤ 2j − 2i+ 11 ≤ 2j + 11.

As A is a PD-set of G′ and from the construction of the BFS-tree T , we may note that

NG′ [Di,j] ⊆ NG′ [Ai,j]. Thus, the modified set D′ = (D\Di,j) ∪ Ai,j is a dominating set of G′.

Note that the vertices in the set Ai,j is a path in G′, therefore, the vertices in the set Ai,j can be

paired among themselves except one. To pair an unpaired vertex in the set Ai,j , we include an

extra vertex, say x, in D′ so that the vertices in the set Ai,j are paired in D′. Now, there may

exists a vertex u ∈ Li−1∩D, which may remain unpaired in the set D′. To pair u, we will include

a vertex y ∈ NG′(u) \D′ in D′. Similarly, if there exists a vertex v ∈ Lj+1 ∩D, which remain

unpaired in D′, then we include a vertex z ∈ NG′(v)\D′ in D′. Since |Ai,j ∪ {x, y, z}| ≤ 2j+14,

the updated set D′ is also a min-PD-set of G′. We call this construction of a min-PD-set D′ from

a min-PD-set D, a replacement of a min-PD-set.

Note that the boundary cases i ∈ {0, 1} and j ∈ {d − 1, d} are not possible. Indeed,

|Ai,j| ≤ 2j + 9, therefore, |Ai,j ∪ {x, y, z}| ≤ 2j + 12. Hence, the updated set D′ is a PD-set of

G′ such that |D′| < |D|, which is a contradiction on the minimality of D. Next, we claim that if

(i∗, j∗) is a bad segment with respect to the PD-set D′, then i∗ > i.

Consider a bad segment (i∗, j∗) in T with respect to D′. By contradiction, we assume

that i∗ ≤ i. Note that i∗ + j∗ ≥ i− 2. Indeed, if i∗ + j∗ < i− 2, then (i∗, j∗) is a bad segment

with respect to D′ as well, which is a contradiction to our earlier choice of i. We note that

|D′ ∩ Lt| ≥ 2, for i− 1 ≤ t ≤ i+ j + 2. Therefore, if (i∗, j∗) is a bad segment such that i∗ ≤ i
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and i∗ + j∗ ≥ i− 2, then there exists a j′ such that (i∗, j′) is a bad segment with respect to D′,

satisfying i∗ + j′ ≥ i+ j+2. Further, note that
∣∣∣D′ ∩

(⋃i∗+j′

s=i∗ Ls

)∣∣∣ = ∣∣∣D ∩ (⋃i∗+j′

s=i∗ Ls

)∣∣∣. This

concludes that (i∗, j′) is a bad segment with respect to D as well, which is a contradiction to the

earlier choice of either i or j. Thus, i∗ > i.

From the arguments, we observe that after each replacement of a min-PD-set, the minimum

value of i increases, for which there exists a j such that (i, j) is a bad segment with respect to

min-PD-set of G′. Therefore, starting with a min-PD-set of G′, in at most d replacement of

min-PD-set, we can get a required min-PD-set Dp of G′, here, d is the depth of BFS-tree T . Note

that Dp contains at most 2k + 13 elements from any k + 1 consecutive BFS-levels of T .

Using the above lemma, we conclude that for graph G′, there exists a BFS-tree T and a

min-PD-set Dp of G′ such that Dp contains at most 2k + 13 vertices from any k + 1 consecutive

BFS-levels of T . Note that Dp contains at most 17 vertices from three consecutive BFS-levels of

T . This implies that a min-PD-set of G′ can be obtained in O (n19.5) time. By using Theorem 3.3,

we can say that a min-semi-PD-set of G can be obtained from a min-PD-set of G′ in linear-time,

and thus, we have the following result.

Theorem 3.9. A min-semi-PD set of an AT-free graph can be computed in polynomial-time.

Through Theorem 3.9, we resolved the complexity of the MSPD problem in AT-free

graphs. Note that the complexity of the proposed algorithm is O (n19.5).

3.4.2 Approximation Algorithm

In this subsection, we propose a linear-time 3.5 factor approximation algorithm for the

MSPD problem in AT-free graphs. A dominating set S of G is called a connected dominating set

of G, if S induces a connected subgraph of G. The connected domination number of G, γc(G),

is the minimum cardinality of a connected dominating set of G.

To analyse the approximation algorithm, we use the following relation between two

important domination parameters, namely, the domination number γ(G) and the connected

domination number γc(G) of a given graph G.

Theorem 3.10. [37] For a graph G, γc(G) ≤ 3γ(G)− 2.
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Further, recall that γ(G) ≤ γpr2(G). Thus, we have the following relation between

γpr2(G) and γc(G).

Corollary 3.11. For a graph G, γc(G) ≤ 3γpr2(G)− 2.

The algorithm is as follows: Let G = (V,E) be an AT-free graph. Compute a dominating

pair (x, y) and a dominating shortest path P of G in linear-time. If |V (P )| is even, then

D = V (P ) is a semi-PD-set of G. Now, suppose |V (P )| is odd. In this case, if x is a pendant

vertex in G, then D = V (P )\{x} is a semi-PD-set of G. Otherwise, D = V (P )∪ {z} such that

z ∈ NG(x)\V (P ) is a semi-PD-set of G. Now, we prove the following result:

Theorem 3.12. A min-semi-PD-set of an AT -free graph can be approximated within a factor of

3.5 in linear-time.

Proof. Let G be an AT-free graph with dominating pair (u, v) and P be a shortest path between

u and v. Since P is a shortest path between u and v in G, the diameter of the graph G is at

least |V (P )| − 1. Further, size of any connected dominating set is at least diam(G) − 1, that

is, γc(G) ≥ diam(G) − 1. Thus, we have γc ≥ |V (P )| − 2. Using Corollary 3.11, we have

|V (P )| − 2 ≤ 3γpr2(G) − 2, implying that, |V (P )| ≤ 3γpr2(G). Note that the set D = V (P )

with at most one additional vertex is a semi-PD-set of G. Thus, |D| ≤ 3γpr2(G) + 1. Noting the

fact that γpr2(G) ≥ 2, we have |D| ≤ 7
2
γpr2(G). Hence, the result follows.

3.5 Summary
In this chapter, we study the complexity of the M I N I M U M S E M I PA I R E D

D O M I N AT I O N (MSPD) problem in graphs. We focused on two important graph classes:

AT-free graphs and planar graphs, and resolved the complexity status of the problem in these

classes of graphs. We showed that the decision version of the MSPD problem is NP-complete

for planar graphs with maximum degree 4. Next, we demonstrated that the problem belongs

to the complexity class P for AT-free graphs, by providing a polynomial-time exact algorithm

for the MSPD problem in AT-free graphs. We have also provided a linear-time constant factor

approximation algorithm for the problem in AT-free graphs, since the running time of the

proposed exact algorithm for AT-free graphs is quite high.





Chapter 4
Total Dominator Coloring

This chapter deals with the computational complexity of the M I N I M U M T O TA L

D O M I N AT O R C O L O R I N G problem in various important classes of graphs, namely chain

graphs, cographs, bipartite graphs, planar graphs, and split graphs.

4.1 Introduction
In this chapter, we work on the complexity of the M I N I M U M T O TA L D O M I N AT O R

C O L O R I N G problem for some graph classes, namely, chain graphs, cographs, bipartite graphs,

planar graphs, and split graphs. For any arbitrary tree T , γt(T ) ≤ χtd(T ) ≤ γt(T ) + 2

and trees having χtd(T ) = γt(T ) are characterized in [57]. The characterization of trees

having χtd(T ) = γt(T ) + 1 was posed as an open problem in [57]. We give a characterization

of trees having χtd(T ) = γt(T ) + 1, that completes the characterization of trees for every

possible value of χtd(T ). We remark that the condition given in this characterization can not be

checked in polynomial-time. Then, we prove that the total dominator chromatic number for both

connected and disconnected cographs in linear-time. Next, we show that for a chain graph G,

2 ≤ χtd(G) ≤ 4 and characterize the class of chain graphs for every possible value of χtd(G) in

linear-time. On the other hand, to the best of our knowledge, there is only one hardness result

known for the TDCD problem, which states that the TDCD problem is NP-complete for general

graphs [73]. We extend the study of the M I N I M U M T O TA L D O M I N AT O R C O L O R I N G

problem in this direction by showing that the TDCD problem remains NP-complete even when

restricted to planar graphs, connected bipartite graphs, and split graphs. This also shows that the

TDCD problem remains NP-complete for chordal graphs, as split graphs is a subclass of chordal

graphs.

This chapter is organised as follows:

• In Section 4.2, we give some notations and mention some known results that will be used

later in the chapter.

83
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• In Section 4.3, we focus on the TD-coloring of trees and characterize the trees T having

χtd(T ) = γt(T ) + 1.

• In Section 4.4, we demonstrate that the MTDC problem is linear-time solvable for cographs

and chain graphs.

• In Section 4.5, we establish that the TDCD problem is NP-complete even for planar graphs,

connected bipartite graphs, and split graphs.

• Finally, Section 4.6 summarizes the chapter.

4.2 Preliminary Notations and Results
Let G = (V,E) be a graph. We assume that all the graphs considered in this chapter

are simple, non-trivial, isolate-free, and undirected. If D is a minimal TD-set of G, then the

D-private neighborhood of a vertex u ∈ D is the set of vertices that are totally dominated

by u only, and is denoted by pn(u,D). Thus, if w ∈ pn(u,D), then N(w) ∩ D = {u}. If

pn(u,D) = {w}, then w is the only vertex in the D-private neighborhood of u. We define the

sets DI = {u ∈ D : |pn(u,D)| = 1} and DR = D \DI . Thus, D = DI ∪DR.

An optimal TD-coloring of G is a χtd-coloring of G. Let H be a χtd-coloring of G.

The color class V H
i is the set of vertices receiving color i in H , where 1 ≤ i ≤ χtd(G). Let

CH = {V H
1 , V H

2 , . . . , V H
χtd(G)} be the collection of color classes of H . If |V H

i | = 1, then V H
i

is called a solitary color class and the vertex v ∈ V H
i is called a solitary vertex. A color class

V H
i is said to be a free color class, if every vertex of G totally dominates a color class other than

V H
i . Let

• CH
0 be a minimum cardinality non-empty subset of CH such that each u ∈ V totally

dominates some color class of CH
0 ,

• CH
P be the subset of CH such that each color class R ∈ CH

P is a solitary color class,

• CH
S be the subset of CH such that each color class R ∈ CH

S contains more than one

vertex and is totally dominated by some vertex of G, and

• CH
G be the subset of CH such that each color class R ∈ CH

G contains more than one

vertex and is not totally dominated by any vertex of G.
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The sets CH
P , CH

S and CH
G forms a partition of the color classes of H and thus, CH =

CH
P ∪ CH

S ∪ CH
G . Let AH be the set of solitary vertices in the coloring H , and let BH be the

set of all the vertices in color classes of CH
G . Thus,

• AH = {u ∈ R : R ∈ CH
P }, and

• BH = {u ∈ R : R ∈ CH
G }.

Let DH
0 be the set constructed by picking exactly one vertex from each color class of

CH
0 . Also, let DH

S be the set constructed by picking one vertex from each color class of CH
S .

We note that |CH
S | = |DH

S |.

b b b b b b b b b b b
v1 v2 v3 v4 v5 v6 v7 v8 v9 v11v10

1 2 3 456 67 77 7

F I G U R E 4 . 1 : A tree T = P11 and a χtd-coloring H of T

We now illustrate the above definitions with an example. Let T = P11 be the path

v1v2 . . . v11 of order 11, and let H be the χtd-coloring of T given in F I G U R E 4.1. In this

example, the following properties hold for the tree T .

• χtd(T ) = 7.

• V H
1 = {v2}, V H

2 = {v3}, V H
3 = {v9}, V H

4 = {v10}, V H
5 = {v6}, V H

6 = {v5, v7}, and

V H
7 = {v1, v4, v8, v11} are the color classes.

• CH = {V H
1 , V H

2 , V H
3 , V H

4 , V H
5 , V H

6 , V H
7 }.

• CH
0 = {V H

1 , V H
2 , V H

3 , V H
4 , V H

5 , V H
6 }.

• The solitary vertices are v2, v3, v6, v9, v10.

• CH
P = {V H

1 , V H
2 , V H

3 , V H
4 , V H

5 }.

• CH
S = {V H

6 }.

• CH
G = {V H

7 }.

• AH = {v2, v3, v6, v9, v10}.

• BH = {v1, v4, v8, v11}.

• DH
S = {v5}.

• DH
0 = {v2, v3, v5, v6, v9, v10}.



86 Chapter 4 Total Dominator Coloring

• For the dominating set DH
0 , DI = {v3, v5}, and DR = {v2, v6, v9, v10}.

The following result regarding bounds on χtd(G) is already known.

Theorem 4.1. [73, 100] For an isolate-free graph G,

max{γt(G), χ(G)} ≤ χtd(G) ≤ γt(G) + χ(G).

For planar graph G, we have χ(G) = 4. Using Theorem 4.1, we have γt(G) ≤ χtd(G) ≤
γt(G) + 4. Now, we formally state the results regarding bounds on χtd(G) for bipartite and

planar graphs.

Corollary 4.2. The following properties hold:

(a) If G is a bipartite graph, then γt(G) ≤ χtd(G) ≤ γt(G) + 2.
(b) If G is a planar graph, then γt(G) ≤ χtd(G) ≤ γt(G) + 4.

Since trees are a subclass of bipartite graph, the bounds in Corollary 4.2(a) also hold when

G is a tree. We note that both the bounds in Corollary 4.2(a) are achievable for bipartite graphs

as well as for trees.

For the characterization of trees having χtd(T ) = γt(T ) given in [57], a family of trees T

is constructed as: T = P2 ∪ {trees obtained by connecting k ≥ 1 disjoint stars of order at least

three using (k − 1) edges joining leaf vertices such that the center of each original star remains a

stem}. The following results are known for trees.

Theorem 4.3. [57] For a tree T , γt(T ) = χtd(T ) if and only if T ∈ T .

Theorem 4.4. [57] For a tree T /∈ T , the following statements hold:

(a) If χtd(T ) = γt(T ) + 1, then T admits a TD-coloring using χtd(T ) colors having a free

color class.

(b) If χtd(T ) = γt(T ) + 2, then T admits a TD-coloring using χtd(T ) colors having two free

color classes.

4.3 Characterization of Trees T having χtd(T ) = γt(T ) + 1

Throughout this section, we assume that T = (V,E) is a non-trivial tree. By

Corollary 4.2(a), χtd(T ) takes one of the three values γt(T ), γt(T ) + 1 or γt(T ) + 2. Further, it

is shown in [57] that there are infinitely many trees for each value of χtd(T ). Also, recall that
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Theorem 4.3 gives a characterization of the trees T satisfying γt(T ) = χtd(T ). In this section,

we characterize trees T satisfying γt(T ) = χtd(T ) + 1, thereby completing a characterization of

trees T having every possible value of χtd(T ).

We first prove the following properties regarding χtd-coloring of trees.

Proposition 4.5. Every support vertex in any χtd-coloring of a tree T is solitary.

Proof. Let H be a TD-coloring of a tree T using χtd(T ) colors. On the contrary, assume that

there exists a stem v which is not solitary. Since v is a stem, there must be a leaf vertex x adjacent

to this stem, which is not adjacent to any other vertex of T . In any TD-coloring of T , each

vertex of T is properly colored and totally dominates some color class. Let v belong to color

class R, which is not solitary. Then, the vertex x is not totally dominating any color class, which

is a contradiction to the fact that H is a TD-coloring of T . Hence, the result follows.

In the next result, we consider the trees having at least three vertices and we establish the

existence of an optimal TD-coloring such that leaves that are adjacent to a support vertex can be

given the same color.

Proposition 4.6. If T is a tree of order n ≥ 3, then there exists a χtd-coloring of T such that all

leaf neighbors of a support vertex belong to the same color class.

Proof. Among all χtd-colorings of the tree T , let H be chosen so that the number of support

vertices in T whose leaf neighbors are not all colored with the same color is minimum. Let u be

an arbitrary support vertex of T , and let u have color 1 in the coloring H . Further, let H1 be

the color class that contains u. Suppose that the leaf neighbors of u do not belong to the same

color class. By Proposition 4.5, H1 is a solitary color class, and so H1 = {u}. The vertex u

necessarily totally dominates some color class, say H2 and let every vertex in H2 is colored

with color 2. If some leaf neighbor of u is colored 2, then recolor all the leaf neighbors of u

with color 2. If no leaf neighbor of u is colored 2, then recolor all the leaf neighbors of u with

an existing color used to color one of the leaf neighbors of u. Let H ′ be the resulting coloring

of the vertices of T . This produces a χtd-coloring of T with fewer support vertices whose leaf

neighbors are not all colored with the same color, contradicting our choice of the χtd-coloring
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H . Therefore, the χtd-coloring H colors all leaf neighbors of a support vertex with the same

color.

We note that it is not necessarily true that if T is a tree with n ≥ 3, then there exists a

χtd-coloring of T that colors all leaves with the same color. For example, if T is a path P6 and

C is a TD-coloring that colors both leaves with the same color, then an additional four colors

are needed for C to be a TD-coloring. Such a TD-coloring, therefore uses five colors. However,

χtd(T ) = γt(T ) = 4, and so C is not a χtd-coloring of T . We remark, however, that P6 belongs

to the tree family T defined earlier and, by Theorem 4.3, a tree T belongs to this family T if

and only if γt(T ) = χtd(T ). We show next that if T is a tree that does not belong to the family

T , then there does exist a χtd-coloring of T that colors all the leaves with the same color.

Proposition 4.7. If T is a tree and T /∈ T , then there exists a χtd-coloring of T that colors all

leaves with the same color.

Proof. Let T be a tree that does not belong to the family T . By Theorem 4.3, γt(T ) ̸= χtd(T ),

implying by Corollary 4.2 that either χtd(T ) = γt(T )+1 or χtd(T ) = γt(T )+2. By Theorem 4.4,

there exists a χtd-coloring H of T which contains a free color class, say R where vertices in R

are colored using color r.

We now construct a χtd-coloring of T as follows. Since T /∈ T , we note that the tree T is

not a star, implying that each support vertex of T has some non-leaf neighbor. For each support

vertex u in T , do the following. If all the leaf neighbors of u are colored using color r, then we

make no change to the colors of these leaf neighbors, and they all remain colored using color r.

Suppose, however, that some leaf neighbor of u is not colored using color r. The vertex u totally

dominates some color class, say S, where vertices of S are colored using color s.

Now, if a non-leaf neighbor of u is colored with the color s, then recolor all leaf neighbors

of u using color r. Otherwise, if no non-leaf neighbor of u is colored with the color s, then some,

but not all the leaf neighbors of u are colored with the color s. In this case, we select an arbitrary

non-leaf neighbor of u and recolor it with the color s and recolor all the leaf-neighbors of u with

the color r. We do this for every support vertex in T . The resulting χtd-coloring of T colors all

the leaves with the same color.
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Corollary 4.8. If T is a tree satisfying χtd(T ) = γt(T ) + 1, then there exists a χtd-coloring H

of T that colors all the leaves with the same color and such that |CH
G | = 1.

Proof. Let T be a tree satisfying χtd(T ) = γt(T ) + 1. By Proposition 4.7, there exists a

χtd-coloring H of T that colors all leaves with the same color. Assume that color class R

contains all the leaves of T . Since T /∈ T , the tree T is not a star. Thus, there does not exist any

vertex in T which is adjacent to all the leaves of T , implying that R is a free color class of H

and hence the color class R belongs to the set CH
G . We show that CH

G = {R}. On the contrary,

suppose that |CH
G | ≥ 2. In this case, the set consisting of one vertex from each Q ∈ CH

P ∪ CH
S

forms a TD-set of T , which is of cardinality |CH
P | + |CH

S | ≤ |H | − |CH
G | ≤ χtd(T ) − 2 =

γt(T )− 1, a contradiction. Therefore, CH
G = {R}, and so |CH

G | = 1.

We next prove some key lemmas that we will need to prove our characterization of trees

T satisfying γt(T ) = χtd(T ) + 1.

Lemma 4.9. If H is a χtd-coloring in a tree T , then the following properties hold:

(a) Every R ∈ CH
S is totally dominated by exactly one vertex.

(b) AH ∪DH
S is a TD-set of T .

Proof. Let H be a χtd-coloring of T . Let R ∈ CH
S . If R is totally dominated by two or more

vertices, then any two such vertices, together with any two vertices from R, induce a subgraph of

the tree T that contains a 4-cycle, which is a contradiction. Hence, R is totally dominated by

exactly one vertex. This proves part (a).

To prove part (b), we assume that v is an arbitrary vertex of T . As H is a χtd-coloring of

T , there exists a color class, say R, such that v totally dominates R. Thus, R ∈ CH
P ∪ CH

S . If

R ∈ CH
P , then v is totally dominated by some vertex of AH . Otherwise, if R ∈ CH

S , then v is

totally dominated by some vertex of DH
S . Therefore, AH ∪DH

S is a TD-set of T . This proves

part (b).

Lemma 4.10. If T is a tree satisfying χtd(T ) = γt(T ) + 1, then there exists a χtd-coloring H

of T such that AH ∪DH
S is a γt-set of T .
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Proof. Let T be a tree and χtd(T ) = γt(T ) + 1. By Corollary 4.8, there exists a χtd-coloring

H of T satisfying |CH
G | = 1. We note that χtd(T ) = |CH

P | + |CH
S | + |CH

G |. Moreover, by

definition we have |CH
P | = |AH | and |CH

S | = |DH
S |. Thus,

γt(T ) = χtd(T )− 1

= (|CH
P |+ |CH

S |+ |CH
G |)− 1

= (1 + |AH |+ |DH
S |)− 1

= |AH |+ |DH
S |.

By Lemma 4.9(b), we infer that the TD-set AH ∪ DH
S of T is therefore a minimum

TD-set, that is, AH ∪DH
S is a γt-set of T .

Before presenting our main result of this section, we introduce some additional notation.

Let T be a non-trivial tree satisfying T /∈ T , and D be a γt-set of the tree T and S ⊆ D, then

v ∈ V (T ) is called a (D,S)-bad vertex, if |NT (v) ∩D| ≥ 2 and NT (v) ∩D ⊆ S. We are now

in a position to provide a characterization of trees T satisfying γt(T ) = χtd(T ) + 1.

Theorem 4.11. Let T be a non-trivial tree and T /∈ T . Then, χtd(T ) = γt(T ) + 1 if and only if

there exists a γt-set D of T and a partition (D1, D2) of D satisfying the following properties:

(a) D2 ⊆ DI , where DI = {v ∈ D : | pn(v,D)| = 1},
(b) T contains no (D,D2)-bad vertex, and

(c) the set V (T ) \ (D1 ∪N [S]) is independent, where S =
⋃
v∈D2

pn(v,D).

Proof. Let T be a tree satisfying χtd(T ) = γt(T )+1. By Corollary 4.8, there exists a χtd-coloring

H of T that colors all leaves with the same color and such that |CH
G | = 1. Let R be the set of

all leaves of T , and so CH
G = {R}. Let DH

1 ⊆ V which contain all the solitary vertices from

the color classes of CH
P , and let DH

2 ⊆ V contains precisely one vertex from each Q ∈ CH
S .

Thus, |DH
1 | = |CH

P | = |AH | and |DH
2 | = |CH

S | = |DH
S |. By Lemma 4.10 and its proof, the

set DH = DH
1 ∪ DH

2 is a γt-set of T . Thus, |DH | = γt(T ) and pn(x,DH ) ̸= ∅, for each

x ∈ DH .

Let x ∈ DH
2 and let X be the color class of H such that x ∈ X . Thus, x ∈ X and

|X| ≥ 2. We show that x has a unique DH -private neighbor, that is, |pn(x,DH )| = 1. As
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observed earlier, pn(x,DH ) ̸= ∅. Let y ∈ pn(x,DH ), and thus, the only neighbor of y in DH

is x. Since H is a TD-coloring of T , y totally dominates some color class, say Y ∈ CH
P ∪ CH

S .

If Y is different from X and since R is a free color class, then the vertex y would be adjacent

to at least two vertices in the DH , contradicting the supposition that y ∈ pn(x,DH ). Hence, y

totally dominates color class X and x ∈ X .

To the contrary, suppose that |pn(x,DH )| ≥ 2, and let z be a vertex in pn(x,DH )

different from y. Analogous arguments as given for the vertex y show that z totally dominates

color class X . However, |X| ≥ 2. Thus, any two vertices from the color class X , together with

the vertices y and z, induce a subgraph of the tree T that contains a 4-cycle, a contradiction.

Hence, pn(x,DH ) = {y}, that is, the vertex x has a unique DH -private neighbor, where x

is an arbitrary vertex in DH
2 . Now, recall that DI = {v ∈ DH : |pn(v,DH )| = 1}, and so

DH
2 ⊆ DI . Let

S =
⋃

x∈DH
2

pn(x,DH ).

By our earlier observations, |pn(x,DH )| = 1 and the vertex in pn(x,DH ) totally dominates
the color class containing x, for every vertex x ∈ DH

2 . Thus, NT [S] contains all vertices that

belong to the set CH
S . This implies that V (T ) \ (DH

1 ∪N [S]) ⊆ BH , where BH = R. Now,

since R is independent, the set V (T ) \ (DH
1 ∪N [S]) is also independent.

Next, we show that there is no (DH , DH
2 )-bad vertex. To the contrary, suppose that there

exists a (DH , DH
2 )-bad vertex, say v ∈ V (T ). Thus, |NT (v) ∩DH | ≥ 2 and NT (v) ∩DH ⊆

DH
2 . Thus, v can not totally dominate any K ∈ CH

P . Further, v is not a DH -private neighbor

of any w ∈ DH . Let v totally dominates Q ∈ CH
P ∪ CH

S . Necessarily, Q belongs to CH
S . Let

u ∈ Q ∩DH , and let u′ ∈ Q such that u′ ̸= u. By our earlier observations, |pn(u,DH )| = 1.

Let x ∈ pn(u,DH ). Now, the set {u, u′, v, x} induces a 4-cycle in T , a contradiction. As Q

was arbitrary and v does not totally dominate any Q ∈ CH
S , a contradiction to H being a

TD-coloring of T . Hence, there is no (DH , DH
2 )-bad vertex. Thus the properties (a), (b) and (c)

all hold, where D1 = DH
1 and D2 = DH

2 .

Conversely, let T be a non-trivial tree and T /∈ T , and let there exists a γt-set D of T and

a partition (D1, D2) of D satisfying the three properties (a), (b) and (c), that is, (a) D2 ⊆ DI , (b)

T contains no (D,D2)-bad vertex, and (c) the set V (T ) \ (D1 ∪N [S]) is independent, where
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S =
⋃
v∈D2

pn(v,D).

Let C be the coloring of the vertices of T defined as follows. Color each vertex in D with a
unique color. Further, for each vertex x ∈ D2 and its unique D-private neighbor y ∈ pn(x,D),

we color all the vertices in NT (y) with the same color used to color x. Finally, we color all the

remaining uncolored vertices with one new color. Since V (T ) \ (D1 ∪N [S]) is independent and

since T contains no (D,D2)-bad vertex, we infer that C is a TD-coloring of T , which implies

that χtd(T ) ≤ |C | = |D|+ 1 = γt(T ) + 1. However, χtd(T ) ≥ γt(T ) + 1, since by supposition

T /∈ T . Therefore, χtd(T ) = γt(T ) + 1.

By Theorem 4.3 and Theorem 4.11, we have a characterization of trees for all three

possible values of the total dominator chromatic number.

4.4 Linear-time Algorithms

4.4.1 Cographs

In this section, we compute the total dominator chromatic number of connected and

disconnected cographs in terms of the chromatic number of cographs. In a TD-coloring H

of G, we call a color class R ∈ CH
0 as an exclusive color class and the corresponding color

an exclusive color. The remaining colors in the coloring H we call non-exclusive colors. The

number of exclusive colors will be unique for a given TD-coloring H of G, but if we change

the TD-coloring, then this may change accordingly.

First, we show that the total dominator chromatic number and the chromatic number

coincides for connected cographs. Further, we prove that in any optimal TD-coloring of a

connected cograph, there are at least two exclusive color classes.

Theorem 4.12. If G is a connected cograph, then χtd(G) = χ(G). Further, if H is a

χtd-coloring of G, then |CH
0 | = 2.

Proof. Let G be a connected cograph. Thus, the graph G is not connected, implying that V (G)

can be partitioned into two non-empty disjoint subsets P and Q such that every x ∈ P is adjacent

to every y ∈ Q in the graph G. Assume that H is a proper coloring of G. Clearly, for any
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color class A ∈ CH , either A ⊆ P or A ⊆ Q not both. Let a and b be the colors used to color

vertices in P and Q, respectively. Assume that V H
a and V H

b be the color classes of color a and

b, respectively. We note that V H
a ⊆ P and V H

b ⊆ Q. Thus, each x ∈ P totally dominates V H
b ,

and each vertex of Q totally dominates V H
a , implying that H is a TD-coloring of G. Therefore,

χ(G) ≤ χtd(G) ≤ |H | = χ(G ). Hence, χtd(G) = χ(G). Moreover, since each v ∈ V either

totally dominates V H
a or V H

b , the set CH
0 = {V H

a , V H
b }. Thus, |CH

0 | = 2 and there are two

exclusive colors required in an optimal TD-coloring of G.

Next, we consider disconnected cographs G. Using the property that every component

of G is itself a connected cograph, we provide an expression for computing χtd(G) in terms of

χ(G) and the number of components of G.

Theorem 4.13. If G is a disconnected cograph with k components, then

χtd(G) = χ(G) + 2(k − 1).

Proof. Let G be a disconnected graph with k ≥ 2 components G1, . . . , Gk, and let H be a

χtd-coloring of G. Let Hi be the restriction of the coloring H of G to the component Gi,

for i ∈ [k]. The resulting coloring Hi is itself a TD-coloring of Gi for i ∈ [k]. Since each

component of G is itself a connected cograph, applying Theorem 4.12 to each component of

G, we infer that |CHi
0 | = 2, and so each Gi has two exclusive colors for all i ∈ [k]. Since

there are k such components, the χtd-coloring H of G, therefore, has at least 2k exclusive

colors. Let rH denote the maximum number of non-exclusive colors in the coloring H . Thus,

χtd(G) = |H | = 2k + rH .

Applying Theorem 4.12 to each component Gi for i ∈ [k], we have χtd(Gi) = χ(Gi).

If χ(Gi) < χ(G) for each i ∈ [k], then there exists a proper coloring of G using less than

χ(G) colors, a contradiction. Thus, there exists at least one component of G, say Gj , such that

χ(Gj) = χ(G). Therefore, the coloring Hj uses χ(G) colors. Among these χ(G) colors, two

colors are exclusive for Gj and the remaining χ(G)− 2 are non-exclusive colors for Gj , and so

rH ≥ χ(G)− 2. However, χ(G)− 2 is the maximum number of non-exclusive colors possible

for any component of G, and so rH ≤ χ(G) − 2. Consequently, rH = χ(G) − 2. Therefore,

χtd(G) = 2k + (χ(G)− 2) = χ(G) + 2(k − 1).
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For a cograph G, the chromatic number χ(G) can be computed in linear-time [77]. Thus,

χtd(G) of cographs can also be computed in linear-time.

4.4.2 Chain Graphs

In this section, we will show that 2 ≤ χtd(G) ≤ 4 for any chain graph G and we

characterize the chain graphs satisfying χtd(G) = i for each i, 2 ≤ i ≤ 4. Throughout this

section, we will consider an isolate-free chain graph G with a chain partition X1, . . . , Xk of X

and Y1, . . . , Yk of Y , respectively. Note that the number of sets in the partition of X (or Y ) is k.

In the following result, we establish the bounds on χtd(G) of a chain graph G and we

present some properties of an isolate-free chain graph.

Lemma 4.14. If G is chain graph with a chain partition of length k, then the following properties

hold:

(a) γt(G) = 2.

(b) 2 ≤ χtd(G) ≤ 4.

(c) If k ≥ 2, then χtd(G) ≥ 3.

(d) If k ≥ 3, then χtd(G) = 4.

Proof. Let G = (X, Y,E) be chain graph with a chain partition of length k. Assume that the

set S = {x, y}, where x ∈ Xk and y ∈ Y1. Then, S is a TD-set of G, as a vertex x′ ∈ X totally

dominates y and y′ ∈ Y totally dominates x. So, γt(G) ≤ 2. Since γt(F ) ≥ 2 for all isolate-free

graphs F , this yields γt(G) = 2. This proves part (a).

By Corollary 4.2(a), we have γt(G) ≤ χtd(G) ≤ γt(G) + 2. Since γt(G) = 2 by part (a),

this yields 2 ≤ χtd(G) ≤ 4, which proves part (b).

To prove part (c), let k ≥ 2 and let H be a χtd-coloring of G. Let x ∈ X1. Let V H
1 be

a color class totally dominated by x and let the vertices in V H
1 be colored with color 1. Since

N(x) = Y1, the color class V H
1 ⊆ Y1, and so there exists a vertex in Y1 with color 1. Let y1 be

such a vertex in Y1 with color 1. We note that y1 is adjacent to all vertices of X . Let y ∈ Yk and

let V H
2 be a color class totally dominated by the vertex y and let the vertices in V H

2 be colored

with color 2. Since N(y) = Xk, the color class V H
2 ⊆ Xk, and so there exists a vertex in Xk

with color 2. Let xk be such a vertex in Xk with color 2. We note that xk is adjacent to whole
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of Y . Since y totally dominates the color class V H
2 ⊆ Xk, no vertex in X1 is colored using

color 2. In particular, the vertex x ∈ X1 is not colored using color 2. Moreover, since the vertex

x is adjacent to a vertex in Y1 of color 1, the vertex x can not be colored using color 1. Thus, a

third color is needed to color x, implying that χtd(G) = |H | ≥ 3. This completes the proof of

part (c).

To prove part (d), let k ≥ 3 and let H be a χtd-coloring of G. We proceed exactly as in

the proof of part (c). Adopting our earlier notation in the proof of part (c), the vertex y1 ∈ Y1 is

colored with color 1 and the vertex xk ∈ Xk is colored with color 2. As observed earlier, the

vertex y1 is adjacent to every vertex of X , thus, no vertex in X \ Xk is colored with color 1.

Moreover, since the vertex y ∈ Yk totally dominates the color class V H
2 ⊆ Xk, no vertex in

X \Xk is colored with color 2. As observed earlier, the vertex xk is adjacent to every vertex

of Y , and so no vertex in Y \ Y1 is colored with color 2. Moreover, since the vertex x ∈ X1

totally dominates the color class V H
1 ⊆ Y1, no vertex in Y \ Y1 is colored with color 1. Hence,

no vertex in (X \Xk)∪ (Y \ Y1) is colored with color 1 or color 2. Let x2 ∈ X2 and let y2 ∈ Y2.

Since x2 and y2 are adjacent vertices, two additional colors are therefore needed to color the

vertices x2 and y2, and so χtd(G) ≥ 4. By part (b), χtd(G) ≤ 4. Consequently, in this case when

k ≥ 3, we have χtd(G) = 4. This proves part (d).

We are now in a position to characterize the class of chain graphs, for every possible value

of χtd(G) in linear-time.

Theorem 4.15. If G is a chain graph with a chain partition of length k, then the following

properties hold:

(a) χtd(G) = 2 if and only if k = 1.
(b) χtd(G) = 3 if and only if k = 2.
(c) χtd(G) = 4 if and only if k ≥ 3.

Proof. Let G = (X, Y,E) be an isolate-free chain graph, and let G have a chain partition of

length k. By Lemma 4.14(b), we have 2 ≤ χtd(G) ≤ 4. By Lemma 4.14(c), if χtd(G) = 2, then

k = 1. Conversely, let k = 1. Then, G is a complete bipartite graph and every proper coloring of

G is a TD-coloring of G. Therefore, χtd(G) = 2. This proves part (a).
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To prove part (b), let χtd(G) = 3. Using Lemma 4.14(d) and part (a) above, we infer that

k = 2. To prove the converse, suppose that k = 2. By Lemma 4.14(c), we have χtd(G) ≥ 3. Let

H be a coloring of the vertices of G defined as follows. Color each vertex in Y1 with color 1,

color each vertex in X2 with color 2, and color the vertices in X1 ∪ Y2 with color 3. Since the

resulting coloring H is a TD-coloring of G using 3 colors, and so χtd(G) ≤ 3. Consequently,

χtd(G) = 3. This proves part (b).

To prove part (c), suppose that χtd(G) = 4. By parts (a) and (b) above, k ≥ 3. Conversely,

if k ≥ 3, then by using Lemma 4.14(d), we have χtd(G) = 4. This proves part (c).

A chain ordering of a chain graph can be obtained in linear-time [56]. A chain partition

of a chain graph can also be computed in linear-time. Therefore, for a chain graph G, χtd(G)

can also be computed in linear-time.

If G is a bipartite graph, then as shown in [40], γ(G) ≤ χd(G) ≤ γ(G) + 2. Further, G is

a complete bipartite graph if and only if χd(G) = 2 [40]. Observe that if G is a star graph K1,k,

for some k ≥ 1, then γ(G) = 1 and χd(G) = 2. Now, if G is a connected chain graph different

from a star graph, then using similar arguments as employed in the proofs of Lemma 4.14 and

Theorem 4.15, we remark that analogous bounds and characterizations hold for the dominator

chromatic number of bipartite graphs as well.

4.5 NP-completeness Results
In this section, we study the decision version of the M I N I M U M T O TA L D O M I N AT O R

C O L O R I N G problem, abbreviated as the TDCD problem, and we prove that the TDCD problem

is NP-complete for planar graphs, connected bipartite graphs and split graphs. The following

result regarding split graphs is known.

Theorem 4.16. [8] D O M I N AT O R C O L O R I N G D E C I S I O N problem is NP-complete for split

graphs.

For a split graph G = (K, I,E) with |K| = ω(G), here, ω(G) denotes the clique number

of G, it is known that ω(G) ≤ χd(G) ≤ ω(G) + 1 (see [6]). We show that similar bounds also

hold for the total dominator chromatic number of split graphs.
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Lemma 4.17. If G = (K, I,E) is a connected split graph and |K| = ω(G), then ω(G) ≤
χtd(G) ≤ ω(G) + 1.

Proof. Let G = (K, I,E) be a connected split graph and |K| = ω(G). We note that χtd(G) ≥
χ(G) ≥ ω(G). Hence, it suffices for us to show that χtd(G) ≤ ω(G) + 1. For this purpose, we

give a TD-coloring using ω(G) + 1 colors. Let H be a coloring of the vertices of G defined

as follows. We color each vertex in K with a unique color, and color the remaining vertices

in I with a new color. Since I is an independent set, H is indeed a proper coloring of K ∪ I .

Further, |H | = ω(G) + 1. If |K| = 1, then G is a star graph, the vertex in the clique K totally

dominates the color class containing I , and each vertex in the set I totally dominates a color

class containing K. If |K| ≥ 2, then every vertex in G totally dominates a color class that is

contained in K. In both cases, H is a TD-coloring of G that uses ω(G) + 1 colors. Hence,

χtd(G) ≤ |H | = ω(G) + 1 and the result follows.

The subsequent corollary directly follows from Lemma 4.17.

Corollary 4.18. Let G = (K, I,E) be a connected split graph with |K| = ω(G). If χd(G) =

ω(G) + 1, then χtd(G) = ω(G) + 1.

Observe that for a star graph G, χd(G) = χtd(G) = 2. Next, we show that for any split

graph G, χd(G) and χtd(G) are equal.

Lemma 4.19. If G is a connected split graph with split partition (K, I), where |K| = ω(G) ≥ 2,

then χd(G) = χtd(G).

Proof. Let G = (K, I,E) be a connected split graph with |K| = ω(G) ≥ 2. Let H be a

χd-coloring of G. If H is a TD-coloring of G, then the desired result is immediate. Now, if H

is not a TD-coloring of G. Assume that the set S contain all those vertices from G that does not

totally dominate any color class in the dominator coloring H of G.

First, we show that K ∩ S = ∅. Let v ∈ K ∩ S. Since |K| ≥ 2, there exists u ∈ K

and u ̸= v. Let V H
1 be the color class of H such that u ∈ V H

1 . Since v ∈ S, v does not

totally dominates V H
1 , implying that there exists a vertex u′ ∈ I such that u′ ∈ V H

1 and

vu′ /∈ E(G).Now, u′ necessarily dominates some color class other than V H
1 , say V H

2 . Since

N(u′) ⊆ K and u′v /∈ E(G), it follows that V H
2 ⊂ K \ {v} and V H

2 is a solitary color class.
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Thus, v totally dominates V H
2 , contradicting our supposition that v /∈ S. Therefore, K ∩ S = ∅.

Hence, S ⊆ I .

Now, let v ∈ S ∩ I . Since H is a dominator coloring of G and v ∈ S, the vertex v

dominates its own color class, say V H
1 . Necessarily, V H

1 is a solitary color class and this color

class is contained in I . To color the vertices of K, an additional ω(G) colors are required in

the coloring H . Therefore, χd(G) = |H | ≥ ω(G) + 1 and since χd(G) ≤ ω(G) + 1, we get

χd(G) = ω(G) + 1. Hence by Corollary 4.18, χtd(G) = ω(G) + 1.

By Lemma 4.19, the problem of computing χtd(G) and χd(G) are equivalent, for a

connected split graph G. Clearly, the TDCD problem is in NP. Now, from Theorem 4.16 and

Lemma 4.19, we obtain the following result.

Theorem 4.20. TDCD problem is NP-complete for split graphs.

Next, we prove the NP-completeness of the TDCD problem in case of bipartite graphs. In

order to do that we require the following result.

Theorem 4.21. [22] For any graph G, the problem of determining a γt-set of G can not be

approximated to within a factor of c ln(n) in polynomial-time, for any constant c < 1, unless

P = NP . This holds true for bipartite graphs as well.

From Theorem 4.21, it follows that its not possible to approximate γt(G) below a factor

of ln(n). When n ≥ 8, we note that ln(n) > 2, and so γt(G) can not be approximated within an

approximation ratio of 2.

Corollary 4.22. If n ≥ 8, then the problem of determining a γt-set of G can not be approximated

to within a factor of 2 in polynomial-time, unless P = NP . This is true for bipartite graphs as

well.

Theorem 4.23. TDCD problem is NP-complete for connected bipartite graphs.

Proof. Let G be a connected bipartite graph. The TDCD problem is in NP as given a coloring

with its color classes, in polynomial-time, we can check if every vertex dominates some color

class other than it’s own, that is, given coloring is a total dominator coloring or not. It remains

to show that the TDCD is NP-hard. On the contrary, suppose that the M I N I M U M T O TA L

D O M I N AT O R C O L O R I N G problem is polynomial-time solvable for connected bipartite
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graphs. Let H be a χtd-coloring of G and let CH = {V H
1 , V H

2 , . . . , V H
χtd(G)} be the collection

of color classes of H . Now, consider the following approximation algorithm for finding a

TD-set of the connected bipartite graph G:

Algorithm 5: APPROX TDS(G,H ,C H )

Input: A connected bipartite graph G.
Output: A total dominating set of G.
Compute a χtd-coloring H of G.
Let CH = {V H

1 , V H
2 , . . . , V H

χtd(G)} be the collection of color classes of H .
for (i = 1 to χtd(G)) do

Update D ← D ∪ {ui} where ui is some vertex of V H
i ;

return D;

Note that the time complexity of algorithm APPROX TDS(G,H ,C H ) is polynomial,

as the M I N I M U M T O TA L D O M I N AT O R C O L O R I N G problem can be solved in

polynomial-time for G and each step takes polynomial-time. From Corollary 4.2(a), χtd(G) ≤
γt(G) + 2. The set D obtained from algorithm APPROX TDS(G,H ,C H ) is a TD-set of

cardinality χtd(G) ≤ γt(G) + 2. As γt(G) ≥ 2, we observe that γt(G) + 2 ≤ 2γt(G). Thus, D

is a TD-set of cardinality at most 2γt(G). Therefore, we get a 2-approximation algorithm for

finding a TD-set of G, contradicting Corollary 4.22. Hence, the result follows.

Lastly, we consider planar graphs and we prove that the decision version of the MTDC

problem is NP-complete in case of planar graphs using another known NP-complete problem,

namely the TDD problem. The following result is known regarding the TDD problem for planar

graphs.

Theorem 4.24. [14] TDD problem is NP-complete for planar graphs.

Theorem 4.25. TDCD problem is NP-complete for planar graphs.

Proof. Clearly, the TDCD problem is in NP. Next, we need to show that the TDCD problem

is NP-hard. On the contrary, suppose that the MTDC problem is solvable in polynomial-time

for planar graphs. Then, we claim that the MTD problem can be solved in polynomial-time for

planar graphs, which would contradict Theorem 4.24.

Let G be a planar graph. From Corollary 4.2(b), we have χtd(G) ≤ γt(G) + 4. Consider

five copies G1, G2, . . . , G5 of the graph G, and let G′ be the disjoint union of these five copies
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of G. Applying Corollary 4.2 to the graph G′, χtd(G
′) ≤ γt(G

′) + 4. As the MTDC problem

can be solved in polynomial-time for G′ as well, let H be a χtd-coloring of G′ and let CH =

{C1, C2, . . . , Cχtd(G′)}.

Now, we define D′ = {u1, u2, . . . , uχtd(G′)}, where ui ∈ Ci for 1 ≤ i ≤ χtd(G
′). This

D′ is a TD-set of G′ of cardinality at most γt(G′) + 4. Since G′ is union of five copies of G,

γt(G
′) = 5γt(G). Thus, D′ is a TD-set of cardinality at most 5γt(G) + 4. Let Di = D′ ∩ V (Gi)

for i ∈ [5], and so |D′| = ∑5
i=1 |Di|. Pick j ∈ [5] such that |Dj| ≤ |Di|, for all i ∈ [5]. Then,

5|Dj| ≤
∑5

i=1 |Di| = |D′| ≤ 5γt(G)+4, implying that |Dj| ≤ γt(G)+ 4
5
. Therefore, we have a

TD-set Dj of G of cardinality γt(G). This yields a γt-set of G in polynomial-time, contradicting

Theorem 4.24.

4.6 Summary
In this chapter, we studied the M I N I M U M T O TA L D O M I N AT O R C O L O R I N G

problem for graphs. We established that the total dominator chromatic number of chain graphs

and cographs can be computed in linear-time. In addition, we proved that the TDCD problem

remains NP-complete when restricted to planar graphs, split graphs and connected bipartite

graphs, strengthening the only known hardness result for the TDCD problem for general graphs.

As a consequence, we get that the TDCD problem can not be solved in polynomial-time for

chordal graphs. We also provide a characterization for the total dominator chromatic number of

trees, but we remark that the characterization provided by us is not polynomial-time.
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In this chapter, we explore the computational complexity of the M I N I M U M D O M I N AT I O N

C O L O R I N G (MDC) problem. We establish that the decision version of this problem is

NP-complete for bipartite graphs, P5-free graphs, and various other graph classes with forbidden

induced subgraphs. We present linear-time algorithms for the MDC problem for chain graphs,

cographs, and P4-sparse graphs. We also obtain various bound and approximation related results

for the problem.

5.1 Introduction

As the MDC problem is introduced quite recently (in 2019), by Zou et al. [105], there

has been limited research regarding the algorithmic aspects and computational complexity. We

have focused majorly on the complexity study of the problem in various graph classes, namely,

bipartite graphs, chain graphs (subclass of bipartite graphs), cographs (subclass of circle graphs),

P4-sparse graphs (superclass of cographs), P5-free graphs (superclass of P4-sparse graphs and

split graphs), as well as numerous graph classes characterized by forbidden induced subgraphs.

Our main contributions and structure of this chapter are listed below:

• In Section 5.2, we introduce some preliminary results for the MDC problem that will be

used later in the chapter.

• In Section 5.3, we present bound related results for the problem. We prove that the

total domination number of the input graph works as a lower bound for the domination

chromatic number of the input graph. In addition, we establish lower as well as upper

bounds for split graphs and star-free graphs with star of order greater than 2.

• In addition, we demonstrate that χdd(µ(G)) is either χdd(G) + 1 or χdd(G) + 2, where

µ(G) denotes the Mycielskian of graph G and also characterize the same.

101
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• In Section 5.4, we delve into specific graph classes, chain graphs, cographs, and P4-sparse

graphs, and present linear-time algorithms for the MDC problem for all these classes of

graphs.

• In Section 5.5, we prove that the DCD problem is NP-complete for bipartite graphs, P5-free

graphs, and for various other graph classes with forbidden induced subgraphs.

• In Section 5.6, we propose a 2 factor approximation algorithm for the MDC problem

for split graphs. We also show that the problem is inapproximable within a factor of

(n1−ϵ + 1)/2, for general graphs, for any ϵ > 0.

• In addition, we present 2(1 + ln(∆ + 1)) factor approximation algorithm for the MDC

problem for bipartite graph G with maximum degree ∆, and we also show that it cannot

be approximated below (1
2
− ϵ) ln(n) for bipartite graphs, for any ϵ > 0.

• In Section 5.7, we provide a brief summary of the chapter.

5.2 Preliminary Results
Let G = (V,E) be a graph, where V = V (G) and E = E(G) represents the set of

vertices and set of edges in G, respectively. Now, we present some preliminary results related to

the M I N I M U M D O M I N AT I O N C O L O R I N G problem. Recall that a vertex having degree 1 is

called a pendant vertex and its neighbour a support vertex.

Lemma 5.1. Let G be a graph, s be a support vertex in G and Ls be the set of pendant vertices

adjacent to s in G. If H is a domination coloring of G, then s or every vertex of Ls is in a

solitary color class.

Proof. Let G be a graph. Assume that s is a support vertex in G and Ls is the corresponding set

of pendant vertices adjacent to s in G. Suppose that H is a domination coloring of G. If {s} is

a solitary color class, then we are done. Now, we assume that {s} is not a solitary color class in

the domination coloring H of G. We claim that in this case, every vertex u ∈ Ls must be in

a solitary color class of H . If there exists some vertex u ∈ Ls which is not in a solitary color

class of H , then u does not dominate any color class in H of G, which is contradiction as H

is a domination coloring of G. Therefore, if {s} is not a solitary color class in the domination
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coloring H of G, then every vertex u ∈ Ls must be in a solitary color class. Hence, the result

follows.

Next, we present a result regarding disconnected graphs, which reveals that by determining

the domination chromatic number of each individual connected component within a disconnected

graph, we can efficiently compute the domination chromatic number of the entire disconnected

graph in linear-time.

Theorem 5.2. If H is a disconnected graph with H1, H2, . . . , Hk as its connected components,

then χdd(H) =
∑k

i=1 χdd(Hi).

Proof. Let H be a disconnected graph with connected components H1, H2, . . . , Hk. Assume

that C is an optimal domination coloring of H . In a domination coloring of H , every color class

of C needs to be dominated by some vertex of H . This implies that colors used in a component

Hi (1 ≤ i ≤ k) cannot be used in any other component Hj , where 1 ≤ j ≤ k and j ̸= i. Thus,

every color class of C is completely contained in one of the connected components of H . Also,

the coloring induced on each connected component Hi from C gives us an optimal domination

coloring of each Hi, for 1 ≤ i ≤ k. Therefore, we get χdd(H) =
∑k

i=1 χdd(Hi).

Lemma 5.3. [105] For a bipartite graph G, γ(G) ≤ χdd(G) ≤ 2γ(G).

5.3 Bounds on χdd(G)

In this section, we present some bounds on the domination chromatic number of graphs.

In the first result of this section, we prove that the total domination number works as a lower

bound for the domination chromatic number.

Lemma 5.4. For a graph G without any isolated vertices, γt(G) ≤ χdd(G).

Proof. Let G = (V,E) be a graph and H be an optimal domination coloring of G. Assume that

C1, C2, . . . , Ck represent the color classes of the domination coloring H . As H is a domination

coloring of G, it follows that each color class Ci is dominated by some vertex, for 1 ≤ i ≤ k.

Let D = {xi | xi dominates color class Ci and xi /∈ Ci, for 1 ≤ i ≤ k} be a set formed by the

least number of vertices required to dominate every color classes of H . Clearly, |D| ≤ k and D

forms a dominating set of G. As each vertex of D is also colored in the domination coloring H ,



104 Chapter 5 Domination Coloring

thus, for each vertex u ∈ D, there exists another vertex v ∈ D such that uv ∈ E. This means

that every vertex of D is dominated by some vertex which is adjacent to it. Therefore, D is also

a total dominating set of G.

For a complete graph G = Kn (n ≥ 2), χdd(G) = n and γt(G) = 2. Note that when

n = 2, we have G = K2 and χdd(G) = n = 2 = γt(G). But when n is arbitrarily large, the

domination chromatic number of G = Kn is very large compared to the total domination number

of G.

Next, we give a bound for the domination chromatic number of split graphs. To obtain

that we make use of the following results already known in the literature.

Lemma 5.5. [80] Let G = (K ∪ I, E) be a connected split graph and D be a dominating set

of G of cardinality k. Then, there exists a dominating set D′ of cardinality at most k such that

D′ ⊆ K.

Theorem 5.6. [85] For a split graph G, an optimal dominated coloring of G can be computed in

linear-time and χdom(G) = χ(G).

Lemma 5.7. For a connected split graph G, χ(G) ≤ χdd(G) ≤ χ(G) + γ(G).

Proof. Let G be a connected split graph. Using Theorem 5.6, we can consider an optimal

dominated coloring C of G. Let C = {C1, C2, . . . , Cr}, where Ci represent the set of vertices

which have got color i in C . Note that r = |C | = χdom(G). Let D be an optimal dominating

set of G of cardinality k, where k = γ(G). By Lemma 5.5, there exists a dominating set D′ of

cardinality γ(G) such that D′ ⊆ K. Let D′ = {x1, x2, . . . , xk}. Now, we define a new coloring

C ′ of G as follows:

• assign a unique and distinct color to each xi ∈ D′, where 1 ≤ i ≤ k, and

• restrict coloring C of G to V \D′, here, V \D′ is the set of all the remaining uncolored

vertices of G.

Clearly, C ′ is a proper coloring of G using at most k + r colors, as no two adjacent vertices in

G are given same color in C ′. Let C ′
i = Ci ∩ (V \D′) that is, C ′

i represent the color class of

color i in C ′ of G that corresponds to color class Ci of color i in C of G, for 1 ≤ i ≤ r, if such a

color class C ′
i exist in C ′ of G. Note that {xi} ∈ C ′, for each i, 1 ≤ i ≤ k. That is, each {xi} is
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a solitary color class in C ′ of G, for 1 ≤ i ≤ k. Since D′ is a dominating set of G, it follows that

every vertex x ∈ V dominates some color class {xi} ∈ C ′, where 1 ≤ i ≤ k. Thus, every vertex

of G dominates some color class in C ′ of G. It is easy to see that each solitary color class {x} in

C ′ of G is dominated by the vertex x. Also, as C is a dominated coloring of G, each color class

Ci is dominated by some vertex in C of G, for 1 ≤ i ≤ r. If some color class Ci is dominated by

some vertex y ∈ V in C of G and corresponding color class C ′
i of color i exists in C ′ of G, then

C ′
i is also dominated by vertex y in C ′ of G. Therefore, every color class in C ′ is dominated by

some vertex of G. Hence, C ′ is a domination coloring of G using at most k + r colors, where

k = γ(G) and r = χdom(G). Hence, the result follows.

Using the fact that for a split graph G, γ(G) ≤ χ(G), the following corollary directly

follows.

Corollary 5.8. For a split graph G, χ(G) ≤ χdd(G) ≤ 2χ(G).

Lemma 5.9. For a K1,k-free graph G with k ≥ 2, n
k−1
≤ χdd(G).

Proof. Let G be a K1,k-free graph with k ≥ 2 and C = {C1, C2, . . . , Cr} be a domination

coloring of G, where Ci, for 1 ≤ i ≤ r, is the color class in C of G. Now, we claim that |Ci| < k,

for each i, where 1 ≤ i ≤ r. On the contrary, assume that there exist some j such that |Cj| ≥ k.

As C is a domination coloring of G, it follows that each color class Ci is dominated by some

vertex, for 1 ≤ i ≤ r. Thus, the color class Cj is also dominated by some vertex x ∈ V and

|Cj| ≥ k. Now, the set {x}∪Cj ⊆ V induces a K1,s in G, where s ≥ k, which is a contradiction

to the fact that G is a K1,k-free graph. Thus, there does not exist any j such that |Cj| ≥ k.

Therefore, |Ci| < k, for each i, where 1 ≤ i ≤ r. Hence, |C | = χdd(G) ≥ n
k−1

and the result

follows.

In particular, K1,3-free graphs are termed as claw-free graphs and we get the subsequent

corollary which directly follows from Lemma 5.9.

Corollary 5.10. For a claw-free graph G, n
2
≤ χdd(G).
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5.3.1 Mycielskian graphs

In this section, we prove that for any graph G, χdd(G) + 1 ≤ χdd(µ(G)) ≤ χdd(G) + 2,

where µ(G) denotes the Mycielskian of graph G, and we also provide characterization for

each value of χdd(µ(G)). The concept of Mycielskian graphs was first introduced as a graph

transformation using which one can construct triangle-free graphs having arbitrarily large

chromatic number [89]. Now, we formally define Mycielskian of graphs.

Given a graph G = (V,E) with V = {x1, x2, . . . , xn}, the Mycielskian of G is defined as

the graph µ(G) = (U, F ), where the vertex set U = V ∪ V ′ ∪ {z}, where V ′ is a copy of V , that

is, V ′ = {x′
i | xi ∈ V }, and the edge set F = E ∪ {xix

′
j | xixj ∈ E} ∪ {x′z | x′ ∈ V ′}. For

each vertex x ∈ V , we have a vertex x′ ∈ V ′ which is the copy of x in V ′. Note that V ′ forms an

independent set in graph µ(G) and z is not adjacent to any vertex of V . Throughout this section,

we consider connected graphs only.

Now, we recall the definitions of some terms defined earlier which will be extensively

used here. Let C be a coloring of a graph G. A singleton color class is termed as a solitary color

class. A color class Ci ∈ C is said to be a free color class, if every vertex of G dominates some

color class other than Ci. A vertex x is termed as a private vertex with respect to C , if x only

dominates its own color class.

It is known in the literature that χ(µ(G)) = χ(G) + 1 [89]. Also, the dominator coloring

and dominated coloring of Mycielskian of graphs has already been studied [1, 6, 23]. In the

following theorem, we prove that the domination chromatic number of µ(G) can take one of the

two values χdd(G) + 1 or χdd(G) + 2.

Theorem 5.11. Given a graph G, χdd(G) + 1 ≤ χdd(µ(G)) ≤ χdd(G) + 2.

Proof. Let G be a graph. First, we are going to prove the upper bound on domination chromatic

number of µ(G), that is, χdd(µ(G)) ≤ χdd(G) + 2. Assume that C is an optimal domination

coloring of G and C = {C1, C2, . . . , Ck}, where Ci is the color class of color i, for 1 ≤ i ≤ k.

That is, |C | = k = χdd(G). Now, we define a coloring C ′ of graph µ(G) as follows:

• assign the same color to each vertex x ∈ V as given in C of G,

• assign (k + 1)th color to all the vertices of V ′, and
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• assign (k + 2)th color to vertex z.

It is easy to see that C ′ is a proper coloring of µ(G) using k + 2 colors, as no two adjacent

vertices in µ(G) are given same color and two new colors ((k + 1)th and (k + 2)th) are used

in C ′. Assume that C ′ = {C ′
1, C

′
2, . . . , C

′
k, C

′
k+1, C

′
k+2}, where C ′

i is the color class of color i,

for 1 ≤ i ≤ k + 2. That is, for 1 ≤ i ≤ k, C ′
i = Ci; C ′

k+1 = V ′; and C ′
k+2 = {z}. Using the

facts that (1) C is a domination coloring of G, (2) every vertex in V ′ ∪ {z} dominates color class

C ′
k+2 = {z} in C ′, and (3) both the color classes C ′

k+1 and C ′
k+2 are dominated by vertex z. It

follows that C ′ is a domination coloring of µ(G). Thus, we have a domination coloring C ′ of

µ(G) which uses exactly k + 2 colors, where k = χdd(G). Therefore, χdd(µ(G)) ≤ χdd(G) + 2.

Now, we prove that χdd(G) + 1 ≤ χdd(µ(G)). For this, we assume that C is an optimal

domination coloring of µ(G) and C = {C1, C2, . . . , Ck}, where Ci is the color class of color

i, for 1 ≤ i ≤ k. We are going to prove that we have a domination coloring of G using

χdd(µ(G))− 1 colors. Without loss of generality, we can assume that z ∈ Ck. Then, one of the

following two cases arise:

Case 1:- |Ck| = 1.

In this case, Ck = {z} is a solitary color class in C of µ(G). Now, we define a coloring C ′ of

graph G as follows:

• for each Cj ⊆ V ′, pick one vertex x′ ∈ Cj and assign the color j to the corresponding

vertex x ∈ V , and

• restrict C of µ(G) to all the remaining uncolored vertices of G.

It is easy to see that C ′ is a proper coloring of G using at most k − 1 colors, as no two adjacent

vertices in G are given same color in C ′ and the color k is not assigned to any vertex of G in C ′.

Assume that C ′ = {C ′
1, C

′
2, . . . , C

′
k−1} such that Ci is the color class corresponding to color i,

for 1 ≤ i ≤ k − 1. As C is a domination coloring of µ(G), every vertex dominates some color

class Ci in C of µ(G). If x ∈ V dominates some color class Ci in C of µ(G), then x dominates

color class C ′
i in C ′ of G. Thus, every vertex of G dominates some color class. If color class Ci

(i ̸= k) is dominated by some vertex x ∈ V (or x′ ∈ V ′) in C of µ(G), then color class C ′
i is

dominated by vertex x in C ′ of G. If color class Ci (i ̸= k) is dominated by vertex z in C of
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µ(G), then Ci ⊆ V ′. Thus, C ′
i is a solitary color class in C ′ of G and C ′

i is dominated by the

vertex x ∈ C ′
i ∩ V in C ′ of G. Therefore, every color class C ′

i, 1 ≤ i ≤ k − 1 is dominated by

some vertex of G. Hence, C ′ is a domination coloring of G which uses at most k − 1 colors,

where k = χdd(µ(G)). Therefore, χdd(G) ≤ χdd(µ(G))− 1.

Case 2:- |Ck| ≥ 2.

In this case, Ck ∩ V ̸= ∅. Now, we define a coloring C ′ of graph G as follows:

• for each Cj ⊆ V ′, pick one vertex x′ ∈ Cj and assign the color j to the corresponding

vertex x ∈ V ,

• for each uncolored vertex x ∈ Ck \ {z}, pick the color given to x′ in C of µ(G) and assign

this color to x, and

• restrict C of µ(G) to all the remaining uncolored vertices of G.

It is easy to see that C ′ is a proper coloring of G using at most k − 1 colors, as no two adjacent

vertices in G are given same color in C ′ and the color k is not assigned to any vertex of G in

C ′. Assume that C ′ = {C ′
1, C

′
2, . . . , C

′
k−1} such that C ′

i is the color class corresponding to color

i, for 1 ≤ i ≤ k − 1. As C is a domination coloring of G, every vertex dominates some color

class Ci in C of µ(G). If x ∈ V dominates some color class Ci in C of µ(G), then x dominates

color class C ′
i in C ′ of G. Thus, every vertex of G dominates some color class. If color class

Ci (i ̸= k) is dominated by some vertex x ∈ V (or x′ ∈ V ′) in C of µ(G), then color class C ′
i

is dominated by vertex x in C ′ of G. If color class Ci is dominated by some vertex z in C of

µ(G), then Ci ⊆ V ′. Thus, C ′
i is a solitary color class in C ′ of G and C ′

i is dominated by the

vertex x ∈ C ′
i ∩ V in C ′ of G. Therefore, every color class C ′

i, 1 ≤ i ≤ k − 1 is dominated by

some vertex of G. Hence, C ′ is a domination coloring of G using at most k − 1 colors, where

k = χdd(µ(G)). Therefore, χdd(G) ≤ χdd(µ(G))− 1.

In both the cases, we get χdd(G) ≤ χdd(µ(G)) − 1, that is, χdd(G) + 1 ≤ χdd(µ(G)).

Hence, the result follows.

Now, we establish that both the bounds are tight. For the complete graph Kn, we have

χdd(µ(Kn)) = χdd(Kn)+1 = n+1. Also, for the path P5, we have χdd(µ(P5)) = χdd(P5)+2 =
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4 + 2 = 6.

Now, we give a necessary and sufficient condition for χdd(µ(G)) = χdd(G) + 1, which in

fact works as characterization for the domination chromatic number of Mycielskian of graphs.

Theorem 5.12. Let G be a given graph and µ(G) be the corresponding Mycielskian of graph G.

Then, χdd(µ(G)) = χdd(G) + 1 if and only if there exists an optimal domination coloring C of

G such that one of the following is true:

(a) Every x ∈ V dominates some color class other than its own in C of G.

(b) For every private vertex x ∈ V with respect to C of G, there exists a free color class

Ci ∈ C , which is dominated by a vertex y ∈ N(x) such that Ci ∩N(x) = ∅.

Proof. Let G be a given graph and µ(G) be the corresponding Mycielskian of graph G. Suppose

that C is an optimal domination coloring of G and C = {C1, C2, . . . , Ck}, where Ci is the

color class of color i, for 1 ≤ i ≤ k. That is, |C | = k = χdd(G). From Theorem 5.11, we

have χdd(G) + 1 ≤ χdd(µ(G)). To obtain χdd(µ(G)) = χdd(G) + 1, we only need to prove

χdd(µ(G)) ≤ χdd(G) + 1 in both the conditions.

Assume that condition (a) is satisfied, that is, every vertex x ∈ V dominates some color

class other than its own in C of G. In this case, we define a coloring C ′ of graph µ(G) as follows:

• assign the same color to vertex x ∈ V and x′ ∈ V ′ as given to x ∈ V in C of G, and

• assign (k + 1)th color to vertex z.

It is easy to see that C ′ is a proper coloring of µ(G) using k + 1 colors, as no two adjacent

vertices in µ(G) are given same color in C ′. Assume that C ′ = {C ′
1, C

′
2, . . . , C

′
k, C

′
k+1}, where

C ′
i is the color class of color i, for 1 ≤ i ≤ k + 1. As C is a domination coloring of G, every

vertex dominates some color class Ci in C of G. If x ∈ V dominates some color class Ci

(1 ≤ i ≤ k) in C of G, then x dominates color class C ′
i in C ′ of µ(G). In addition, every vertex

in V ′ ∪ {z} dominates color class C ′
k+1 = {z} in C ′. Thus, every vertex of G dominates some

color class in C ′ of µ(G). If color class Ci (1 ≤ i ≤ k) is dominated by some vertex x ∈ V \ Ci

in C of G, then color class C ′
i is dominated by vertex x in C ′ of µ(G). Also, the color class

C ′
k+1 = {z} is dominated by z in C ′ of µ(G). Therefore, every color class C ′

i, 1 ≤ i ≤ k + 1
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is dominated by some vertex of G. Hence, C ′ is a domination coloring of µ(G), which uses at

most k + 1 colors, where k = χdd(G). Thus, χdd(µ(G)) ≤ χdd(G) + 1.

Assume that condition (b) is satisfied, that is, for every private vertex x ∈ V with respect

to C of G, there exists a free color class Ci ∈ C , which is dominated by a vertex y ∈ N(v) such

that Ci ∩N(x) = ∅. In this case, we define a coloring C ′ of graph µ(G) as follows:

• assign the same color to vertex x ∈ V as given in C of G,

• for each private vertex x ∈ V with respect to C of G, pick the color i of the corresponding

free color class Ci ∈ C and assign the ith color to vertex x′ ∈ V ′,

• for each remaining vertex x′ ∈ V ′, assign the color of x ∈ V in C of G to x′ ∈ V ′, and

• assign (k + 1)th color to vertex z.

It is easy to see that C ′ is a proper coloring of µ(G) using k + 1 colors, as no two adjacent

vertices in µ(G) are given same color in C ′. Assume that C ′ = {C ′
1, C

′
2, . . . , C

′
k, C

′
k+1}, where

C ′
i is the color class of color i, for 1 ≤ i ≤ k + 1. As C is a domination coloring of G, every

vertex dominates some color class Ci in C of G. If x ∈ V dominates some color class Ci

(1 ≤ i ≤ k) in C of G, then x dominates color class C ′
i in C ′ of µ(G). In addition, every vertex

in V ′ ∪ {z} dominates color class C ′
k+1 = {z} in C ′. Thus, every vertex of G dominates some

color class in C ′ of µ(G). Let Ci be a free color class corresponding to some private vertex

x ∈ V with respect to C of G. Then, there exists a vertex y ∈ N(x) which dominates color

class Ci such that Ci ∩ N(x) = ∅ in C of G. In such case, y ∈ N(v) also dominates color

class C ′
i in C ′ of µ(G). Now, consider all remaining color class which are not free color classes

corresponding to any private vertex. If such color class Ci (for 1 ≤ i ≤ k) is dominated by some

vertex x ∈ V \ Ci in C of G, then color class C ′
i is dominated by vertex x in C ′ of µ(G). Also,

the color class C ′
k+1 = {z} is dominated by z in C ′ of µ(G). Therefore, every color class C ′

i,

1 ≤ i ≤ k + 1 is dominated by some vertex of G. Hence, C ′ is a domination coloring of µ(G),

which uses at most k + 1 colors, where k = χdd(G). Thus, χdd(µ(G)) ≤ χdd(G) + 1.

Now, we prove the converse part of the result. We assume that χdd(µ(G)) = χdd(G) + 1.

Now, we need to prove the existence of an optimal domination coloring of G such that one of the

conditions (a) or (b) is satisfied. Let C = {C1, C2, . . . , Ck} be an optimal domination coloring
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of µ(G), where k = |C | = χdd(µ(G)) = χdd(G) + 1 and Ci is the color class of color i, for

1 ≤ i ≤ k. Without loss of generality, we can assume that z ∈ Ck. Then, one of the following

two cases arise:

Case 1:- |Ck| = 1.

In this case, Ck = {z} is a solitary color class in C of µ(G). If we assume that |Ci| ≥ 2, for

each i such that 1 ≤ i ≤ k − 1. Then, we can define a coloring C ′ of G as follows:

• for each Cj ⊆ V ′, pick one vertex x′ ∈ Cj and assign the color j to the corresponding

vertex x ∈ V , and

• restrict C of µ(G) to all the remaining uncolored vertices of G.

It is easy to see that C ′ is a proper coloring of G using k−1 = χdd(G) colors, as no two adjacent

vertices in G are given same color in C ′ and the color k is not assigned to any vertex of G in C ′.

Assume that C ′ = {C ′
1, C

′
2, . . . , C

′
k−1} such that C ′

i is the color class corresponding to color i,

for 1 ≤ i ≤ k − 1. As C is a domination coloring of µ(G), every vertex dominates some color

class Ci in C of µ(G). If x ∈ V dominates some color class Ci in C of µ(G), then x dominates

color class C ′
i in C ′ of G. Thus, every vertex of G dominates some color class. Now, using the

fact that |Ci| ≥ 2, for each i such that 1 ≤ i ≤ k − 1 and the construction of coloring C ′ of G,

we get that every vertex of G dominates some color class other than its own in C ′ of G.

If color class Ci (i ̸= k) is dominated by some vertex x ∈ V (or x′ ∈ V ′) in C of µ(G),

then color class C ′
i is dominated by vertex x in C ′ of G. If color class Ci (i ̸= k) is dominated

by vertex z in C of µ(G), then Ci ⊆ V ′. Thus, C ′
i is a solitary color class in C ′ of G and C ′

i is

dominated by the vertex x ∈ C ′
i ∩ V in C ′ of G. Therefore, every color class C ′

i, 1 ≤ i ≤ k − 1

is dominated by some vertex of G. Hence, C ′ is a domination coloring of G which uses χdd(G)

colors such that every vertex of G dominates some color class other than its own in C ′ of G.

Hence, condition (a) is satisfied, if |Ci| ≥ 2 in C of µ(G), for each i such that 1 ≤ i ≤ k − 1.

Now, we assume that there exists some color class Ci such that |Ci| = 1 in C of µ(G),

for 1 ≤ i ≤ k − 1. We are going to prove that it is not possible to have both {xi} and {x′
i} as

color classes in C of µ(G), for any i, where 1 ≤ i ≤ k − 1. We prove the following claim:
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Claim 5.3.1. There does not exists i ∈ [n] such that both {xi} and {x′
i} are solitary color classes

in C of µ(G).

Proof. On the contrary, assume that there exists i such that both {xi} ∈ C and {x′
i} ∈ C in C

of µ(G). Without loss of generality, we can assume that the (k − 1)th color was assigned to

vertex xi in the domination coloring C of µ(G). Now, we prove that we can define a domination

coloring of G using at most χdd(G)− 1 colors, which is a contradiction. Consider a coloring C ′

of G defined as follows:

• for each Cj ⊆ V ′, pick one vertex x′ ∈ Cj and assign the color j to the corresponding

vertex x ∈ V , and

• restrict C of µ(G) to all the remaining uncolored vertices of G.

It is easy to see that C ′ is a proper coloring of G using at most k−2 = χdd(µ(G))−2 = χdd(G)−1
colors, as no two adjacent vertices in G are given same color in C ′ and at least two colors (k and

(k − 1)) are not assigned to any vertex of G in C ′. Assume that C ′ = {C ′
1, C

′
2, . . . , C

′
k−2} such

that C ′
i is the color class corresponding to color i, for 1 ≤ i ≤ k− 2. Note that some of C ′

j might

be empty. So, we are giving following arguments for only non-empty C ′
j . As C is a domination

coloring of µ(G), every vertex dominates some color class Ci in C of µ(G). Note that if x ∈ V

(x ̸= xi) dominates Ck−1 = {xi}, then x also dominates color class {x′
i} in C of µ(G). If x ∈ V

(x ̸= xi) dominates some color class Ci (i ̸= k − 1) in C of µ(G), then x dominates color class

C ′
i in C ′ of G. Also, vertex xi dominates color class {x′

i} ∈ C ′ of G. Thus, every vertex of G

dominates some color class in C ′ of G. If color class Ci (1 ≤ i ≤ k − 2) is dominated by some

vertex x ∈ V (or x′ ∈ V ′) in C of µ(G), then color class C ′
i is dominated by vertex x in C ′ of G.

If color class Ci (1 ≤ i ≤ k − 2) is dominated by vertex z in C of µ(G), then Ci ⊆ V ′. Thus,

C ′
i is a solitary color class in C ′ of G and C ′

i is dominated by the vertex x ∈ C ′
i ∩ V in C ′ of G.

Therefore, every color class C ′
i, 1 ≤ i ≤ k − 2 is dominated by some vertex of G. Hence, C ′ is

a domination coloring of G that uses at most χdd(G)− 1 colors, which is a contradiction. Thus,

the claim follows.

Assume that there exist i such that {xi} ∈ C in C of µ(G). From Claim 5.3.1, it follows

that {x′
i} /∈ C . Then, we can define a coloring C ′ of graph G as follows:
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• for each Cj ⊆ V ′, pick one vertex x′ ∈ Cj and assign the color j to the corresponding

vertex x ∈ V , and

• restrict C of µ(G) to all the remaining uncolored vertices of G.

It is easy to see that C ′ is a proper coloring of G using k−1 = χdd(G) colors, as no two adjacent

vertices in G are given same color in C ′ and the color k is not assigned to any vertex of G in C ′.

Assume that C ′ = {C ′
1, C

′
2, . . . , C

′
k−1} such that C ′

i is the color class corresponding to color i,

for 1 ≤ i ≤ k − 1.

Now, if we assume that for all such i such that {xi} ∈ C , xi dominates some color class

other than its own in C of µ(G). Then, every vertex x ∈ V dominates some color class other

than its own in C of µ(G). This would imply that every vertex x ∈ V dominates some color class

other than its own in C ′ of G. In addition, every color class C ′
i, 1 ≤ i ≤ k − 1 is dominated by

some vertex of G. Hence, C ′ is a domination coloring of G which uses χdd(G) colors such that

every vertex of G dominates some color class other than its own in C ′ of G. Hence, condition

(a) is satisfied, for this case.

Now, if we assume that there exists some i such that {xi} ∈ C and xi does not dominate

any color class other than its own in C of µ(G). It follows that xi does not dominate any color

class other than its own in C ′ of G. Thus, xi is a private vertex in C of µ(G). Observe that

if xi is a private vertex in C of µ(G), then xi is a private vertex in C ′ of G as well. Thus, xi

is a private vertex in C ′ of G. In this case also, C ′ is a domination coloring of G which uses

χdd(G) colors. Let x′
i ∈ Cj and Cj ∈ C . Clearly, we have |Cj| ≥ 2 and no vertex from V ′ can

dominate color class Cj . Further, x′
i does not dominate any color class other than Ck in C of

µ(G) (otherwise, we get a contradiction to the fact that xi is a private vertex in C of µ(G)). Now,

we are going to prove that C ′
j is the free color class for private vertex xi in C ′ of G such that C ′

j

is dominated by a vertex y ∈ N(xi) and C ′
j ∩N(xi) = ∅.

First, we prove that it is not possible that only the vertex z dominates color class Cj in

C of µ(G). Assume that if so, then we can define a coloring C ′′ of G by picking one vertex

x′ ∈ Ci and assigning the color i to the corresponding vertex x ∈ V , for each Ci ⊆ V ′ (i ̸= j);

and by restricting C of µ(G) to all the remaining uncolored vertices of G. Note that out of k

colors, two colors (j and k) are not assigned to any vertex of G in C ′′. This defined coloring C ′′
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is a domination coloring of G using k − 2 = χdd(G)− 1 colors, which is a contradiction. Thus,

at least one vertex from V must dominate the color class Cj in C of µ(G).

Now, we claim that there exists a vertex y ∈ N(xi) ∩ V such that y dominates color

class Cj . Let y ∈ V be a vertex that dominates color class Cj in C of µ(G). As y ∈ V and

yx′
i ∈ F (µ(G)), thus, we have yxi ∈ F (µ(G)) and also yxi ∈ E(G). Thus, y ∈ N(xi) ∩ V . By

the construction of graph µ(G) for a given graph G, it follows that no vertex in N(xi) is assigned

the color j in C of µ(G) and also not in C ′ of G. Thus, Cj ∩N(xi) = ∅. Observe that if x ∈ V

dominates color class Cj in C of µ(G), then x also dominates color class C ′
j in C ′ of G.

Now, we prove that C ′
j ∈ C ′ is a free color class in C ′ of G. If a vertex x ∈ V dominates

the color class Cj ∈ C of µ(G), then in C ′ of G, x dominates the color class C ′
j as well as the

the color class {xi} ∈ C . Hence, C ′
j ∈ C ′ is a free color class in C ′ of G. Therefore, for a

private vertex x ∈ V with respect to C of G, there exists a free color class C ′
j ∈ C ′, which is

dominated by a vertex y ∈ N(xi) such that C ′
j ∩N(xi) = ∅. This can proved for every private

vertex in C ′ of G. Thus, condition (b) is satisfied, for this case.

Case 2:- |Ck| ≥ 2.

In this case, Ck ∩ V ̸= ∅. Clearly, no vertex from V ∪ {z} can dominate color class Ck. Also as

C is a domination coloring of µ(G), there exist at least one vertex in V ′ which dominates Ck and

z dominates some color class Cj . Thus, we have Cj ⊆ V ′. Now, we prove the following claims:

Claim 5.3.2. There does not exists i ∈ [n] such that both {xi} and {x′
i} are solitary color classes

in C of µ(G).

Proof. On the contrary, assume that there exists i such that both {xi} ∈ C and {x′
i} ∈ C in C

of µ(G). Without loss of generality, we can assume that the (k − 1)th color was assigned to

vertex xi in the domination coloring C of µ(G). Now, we prove that we can define a domination

coloring of G using χdd(G)− 1 colors, which is a contradiction. Consider a coloring C ′ of graph

G defined as follows:

• for each Ci ⊆ V ′, pick one vertex x′ ∈ Ci and assign the color i to the corresponding

vertex x ∈ V ,
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• for each uncolored vertex x ∈ Ck \ {z}, pick the color given to x′ in C of µ(G) and assign

this color to x, and

• restrict C of µ(G) to all the remaining uncolored vertices of G.

It is easy to see that C ′ is a proper coloring of G using k − 2 = χdd(µ(G))− 2 = χdd(G)− 1

colors, as no two adjacent vertices in G are given same color in C ′ and two colors (k and (k−1))

are not assigned to any vertex of G in C ′. Assume that C ′ = {C ′
1, C

′
2, . . . , C

′
k−2} such that C ′

i is

the color class corresponding to color i, for 1 ≤ i ≤ k − 2. As C is a domination coloring of

µ(G), every vertex dominates some color class Ci in C of µ(G). Note that if x ∈ V (x ̸= xi)

dominates Ck−1 = {xi}, then x also dominates color class {x′
i} in C of µ(G). If x ∈ V (x ̸= xi)

dominates some color class Ci (i ̸= k − 1) in C of µ(G), then x dominates color class C ′
i in C ′

of G. Also, vertex xi dominates color class {x′
i} ∈ C ′ of G. Thus, every vertex of G dominates

some color class in C ′ of G. If color class Ci (1 ≤ i ≤ k − 2) is dominated by some vertex

x ∈ V (or x′ ∈ V ′) in C of µ(G), then color class C ′
i is dominated by vertex x in C ′ of G. If

color class Ci (1 ≤ i ≤ k − 2) is dominated by vertex z in C of µ(G), then Ci ⊆ V ′. Thus, C ′
i

is a solitary color class in C ′ of G and C ′
i is dominated by the vertex x ∈ C ′

i ∩ V in C ′ of G.

Therefore, every color class C ′
i, 1 ≤ i ≤ k − 2 is dominated by some vertex of G. Hence, C ′

is a domination coloring of G that uses χdd(G)− 1 colors, which is a contradiction. Thus, the

claim follows.

Claim 5.3.3. If x ∈ V is a private vertex in C of µ(G), then x′ dominates Ck.

Proof. Let x ∈ V be a private vertex in C of µ(G). Clearly, x′ does not dominate color class

{x} ∈ C as x and x′ are not adjacent in µ(G). By Claim 5.3.2, it follows that {x′} is not a

solitary color class in C of µ(G). So, x′ does not dominate its own color class, but x′ must

dominate some color class. Now, if x′ dominates some color class Ci such that Ci ⊆ V , then x

also dominates the color class Ci, which is a contradiction to x being a private vertex in C of

µ(G). Therefore, the only possibility for the color class which can be dominated by x′ is Ck.

Hence, the result follows.

Claim 5.3.4. If x ∈ V only dominates Cj in C of µ(G), then x′ dominates Ck.
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Proof. Let x ∈ V only dominates the color class Cj in C of µ(G). Clearly, x′ does not dominate

color class Cj ∈ C as Cj ⊆ V ′ and xx′ /∈ F (µ(G)), here F (µ(G)) is edge set of µ(G). Now,

if x′ dominates some color class Ci such that Ci ⊆ V , then x also dominates the color class

Ci, which is a contradiction to the fact that x only dominates the color class Cj in C of µ(G).

Therefore, the only possibility for the color class which can be dominated by x′ is Ck. Hence,

the result follows.

Now, we define a coloring C ′ of graph G as follows:

• for each Ci ⊆ V ′ (i ̸= j), pick one vertex x′ ∈ Ci and assign the color i to the

corresponding vertex x ∈ V , and

• restrict C of µ(G) to all the remaining uncolored vertices of G.

It is easy to see that C ′ is a proper coloring of G using at most k − 1 colors, as no two adjacent

vertices in G are given same color in C ′ and the color j is not assigned to any vertex of G in

C ′. Assume that C ′ = {C ′
1, C

′
2, . . . , C

′
k} \ {C ′

j} such that C ′
i is the color class corresponding

to color i, for 1 ≤ i( ̸= j) ≤ k. Note that C ′
j is not a color class in coloring C ′ of G. As C is

a domination coloring of µ(G), every vertex dominates some color class Ci in C of µ(G). If

x ∈ V is a private vertex or it only dominates color class Ci in C of µ(G), then by Claim 5.3.3

and Claim 5.3.4, x dominates color class C ′
k in C ′ of G. If x ∈ V is any other vertex and x

dominated some color class Ci in C of µ(G), then x dominates color class C ′
i in C ′ of G. Thus,

every vertex of G dominates some color class. If color class Ci (i ̸= j) is dominated by some

vertex x ∈ V (or x′ ∈ V ′) in C of µ(G), then color class C ′
i is dominated by vertex x in C ′ of

G. If color class Ci (i ̸= j) is dominated by some vertex z in C of µ(G), then Ci ⊆ V ′. Thus,

C ′
i (i ̸= j) is a solitary color class in C ′ of G and C ′

i is dominated by the vertex x ∈ C ′
i ∩ V in

C ′ of G. Therefore, every color class C ′
i, 1 ≤ i(̸= j) ≤ k is dominated by some vertex of G.

Hence, C ′ is a domination coloring of G which uses at most k− 1 colors, where k = χdd(µ(G)).

Hence, condition (a) is satisfied, for this case.

5.4 Linear-time Algorithms
In this section, we demonstrate that the M I N I M U M D O M I N AT I O N C O L O R I N G

problem is linear-time solvable in cographs, P4-sparse graphs, and chain graphs.
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5.4.1 P4-sparse Graphs and Cographs

In this subsection, we present linear-time algorithm for P4-sparse graph and interestingly,

we demonstrate that in case of connected cographs, the domination chromatic number coincides

with that of the chromatic number.

We first define P4-sparse graph. A P4-sparse graph is a graph such that every set of 5

vertices contains at most one P4. It is worth mentioning that P4-sparse graphs is a superclass

of cographs (P4-free graphs) and is a subclass of P5-free graphs. There is another equivalent

definition of P4-sparse graphs which make use of a special structure termed as a spider, and

below we give the definition of a spider graph.

A graph G = (V,E) is called a spider, if its vertex set V can be partitioned into three sets

K, I , and A such that

• K = {u1, . . . , uk}(k ≥ 2) forms a clique,

• I = {v1, . . . , vk} forms an independent set, and

• every vertex in A is adjacent to all the vertices in K and is non-adjacent to all the vertices

in I , and one of the following conditions hold true:

– for every 1 ≤ i ≤ k, N(vi) = {ui}, and such a spider is called a thin spider,

– for every 1 ≤ i ≤ k, N(vi) = K \ {ui}, and such a spider is called a thick spider.

This partition (K, I,A) of the vertex set is called the spider partition. The spider partition

of a given spider can be computed in linear-time [66]. The following result is an equivalent

definition of P4-sparse graphs, is known which emphasis on the structure of P4-sparse graphs.

Theorem 5.13. [65] A graph is P4-sparse if and only if one of the following assertions hold,

A1 G is a one-vertex graph.

A2 G is the disjoint union of two P4-sparse graphs.

A3 G is the join of two P4-sparse graphs.

A4 G is a spider with spider partition (K, I,A), where A is empty or G[A] is a P4-sparse

graph.

Due to [66], it is known that P4-sparse graphs can be recognized in linear-time. Also, there exists

a representation tree TG corresponding to a P4-sparse graph G, which can also be constructed
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in linear-time [66]. From this representation tree TG corresponding to a P4-sparse graph G,

one can identify (in linear-time) which one of the assertions among A1, A2, A3, or A4 does G

satisfies. Further, given a representation tree TG corresponding to a P4-sparse graph G, χ(G)

can be obtained in linear-time [65].

Theorem 5.14. [65] The chromatic number of P4-sparse graphs can be computed in linear-time.

Now, we are going to consider each of the above statements one by one and show that the

domination chromatic number of that particular graph can be computed in linear-time. In this

way, we prove that the domination chromatic number of P4-sparse graphs can be determined in

linear-time.

First, we consider the statement of assertion A1 of Theorem 5.13, G is a one-vertex graph,

then clearly χdd(G) = 1. Now, we consider the case when G is the disjoint union of some k,

P4-sparse graphs. The following result follows directly from Theorem 5.2.

Lemma 5.15. If G is a disconnected P4-sparse graph with connected components C1, C2, . . . , Ck,

then χdd(G) =
∑k

i=1 χdd(Ci).

Based on the preceding result, we can determine the domination chromatic number

of a disconnected P4-sparse graph by relating it to the domination chromatic number of its

connected components (which are connected P4-sparse graphs). This relationship extends to

the case of a graph formed by the disjoint union of two P4-sparse graphs, as described in the

statement of assertion A2 of Theorem 5.13. As every connected component of a P4-sparse

graph is in itself a connected P4-sparse graph. Thus, the domination chromatic number of

a disconnected P4-sparse graph can be computed in linear-time, if the domination chromatic

number of connected P4-sparse graphs is computable in linear-time.

Next, we consider the statement of assertion A3 of Theorem 5.13, G is the join of two

P4-sparse graphs. In this case, the domination chromatic number and the chromatic number of G

coincides.

Lemma 5.16. Let G be a P4-sparse graphs, which is formed by the join of two P4-sparse graphs

G1 and G2. Then, χdd(G) = χ(G1) + χ(G2) = χ(G).

Proof. Let G be a P4-sparse graphs formed by the join of two P4-sparse graphs G1 and G2.
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Clearly, χ(G) ≤ χdd(G). Let H be a proper coloring of G. In the proper coloring H of

G, no color used in G1 can be used to color vertices of G2 and vice-versa. If we take any

vertex u ∈ V (G1) (or v ∈ V (G2)), then u (or v) dominates every color class of G2 (or G1).

This implies that in the proper coloring H of G, every vertex dominates some color class and

every color class is dominated by some vertex. Thus, H is also a domination coloring of G

and it follows that every proper coloring of G is also a domination coloring of G. Therefore,

χdd(G) = χ(G) = χ(G1) + χ(G2).

At last, we focus on the statement of assertion A4 of Theorem 5.13, G is a spider with

spider partition (K, I,A), where A is empty or G[A] is a P4-sparse graph. The following lemma

holds for thin spider graphs.

Lemma 5.17. Let G be a thin spider graph with spider partition (K, I,A). Then, in any

domination coloring of G, no two vertices of I can be assigned same color.

Proof. Assume that G = (V,E) is a thin spider graph with spider partition (K, I,A). Let H

be a domination coloring of G. If two vertices vi ∈ I and vj ∈ I (i ̸= j and 1 ≤ i, j ≤ k) are

given the same color a in H , then there does not exists a vertex x ∈ V such that x dominates

the color class of color a in H . This is a contradiction to H being a domination coloring of G.

Hence, the result follows.

In the next lemma, we consider the case of spider graph G with spider partition (K, I,A),

where A is empty and give expressions to compute the domination chromatic number of G in

terms of the chromatic number of G for both thin spider and thick spider.

Lemma 5.18. Let G be a spider graph with spider partition (K, I,A), where A is empty. Then,

the following holds,

(a) If G is a thin spider, then χdd(G) = |K|+
⌈
|K|
2

⌉
= χ(G) +

⌈
χ(G)
2

⌉
.

(b) If G is a thick spider, then χdd(G) = χ(G) + 1.

Proof. Consider a spider graph G with spider partition (K, I,A), where K = {u1, . . . , uk} and

I = {v1, . . . , vk} (k ≥ 2). Here, |K| = k = |I|. Assume that A is empty.

(a) Let G be a thin spider, and let H be a domination coloring of G. As the set K forms

a clique, in every coloring of G, we need to use k distinct colors to color vertices of



120 Chapter 5 Domination Coloring

K. Without loss of generality, we can assume that color i is given to vertex ui of K for

1 ≤ i ≤ k (up to isomorphism).

We claim that at most
⌊
k
2

⌋
colors can be common in K and I in any domination coloring

of G. Equivalently, we prove that at most
⌊
k
2

⌋
colors out of {1, 2, . . . , k} colors can be

given to the vertices of I in the domination coloring H of G. Clearly, ui and vi cannot

be given same color in any coloring of G. From Lemma 5.1, it follows that at least one

of {ui} or {vi} is a solitary color class in H . This implies that if we give color i to the

vertex vj ∈ I , then {uj} must be a solitary color class in H . Thus, color j cannot be

given to any vertex of I in H . Generalizing this, we get that each time we assign color i

to some vertex vj of I , we are forced to make color class of color j solitary, that is, {uj}
must be a solitary color class in domination coloring H of G. Thus, at most

⌊
k
2

⌋
colors

out of {1, 2, . . . , k} colors can be given to the vertices of I in the domination coloring H

of G. Thus, the claim follows.

From Lemma 5.17, it follows that no two vertices of I can be assigned same color in

any domination coloring H of G. Thus, no two vertices vi ∈ I and vj ∈ I (i ̸= j and

1 ≤ i, j ≤ k) can be given the same color in H . Thus, at least
⌈
k
2

⌉
new colors are needed

for any domination coloring of G. Therefore, χdd(G) ≥ k +
⌈
k
2

⌉
.

Now, we only need to prove that χdd(G) ≤ k +
⌈
k
2

⌉
. In order to attain this, we define a

domination coloring H of G using k +
⌈
k
2

⌉
colors as follows:

• color vertex ui ∈ K with color i, for 1 ≤ i ≤ k (this colors vertices of K);

• When i is odd and 1 ≤ i ≤ k − 1, color vertex vi+1 with color i (this colors even

indexed vertices of I); and

• When i is odd and 1 ≤ i ≤ k, color vertex vi with color ( i+1
2
)′ (this colors odd

indexed vertices of I).

This resulting coloring H is a domination coloring of G using k +
⌈
k
2

⌉
colors, and so

χdd(G) ≤ k +
⌈
k
2

⌉
. Hence, χdd(G) = k +

⌈
k
2

⌉
.

(b) Let G be a thick spider. It is known that χ(G) = k. Up to isomorphism, there is only

one way to properly color vertices of G and that is, to give color i to vertices ui ∈ K and

vi ∈ I , for 1 ≤ i ≤ k. But this coloring is not a domination coloring, as the vertices of I

does not dominate any color class. Thus, we require at least one additional color to define
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a domination coloring of G. Therefore, χdd(G) ≥ k + 1.

Now, we are only left to prove that χdd(G) ≤ χ(G)+1 and for this, we define a domination

coloring H of G using k + 1 colors as follows:
• color vertex ui ∈ K with color i, for 1 ≤ i ≤ k (this colors vertices of K);

• color vertex vi ∈ I with color i, for 1 ≤ i ≤ k − 1 (this colors vertices of I \ {vk});
and

• color vertex vk ∈ I with color k + 1.

Note that that vi (for i < k ) dominates the solitary color class {uk}, while vk dominates

{vk}. This resulting coloring H is a domination coloring of G using k + 1 colors, and so

χdd(G) ≤ k + 1. Hence, χdd(G) = k + 1 = χ(G) + 1.

This concludes the proof of the result.

In the next lemma, we consider the case of spider graph G with spider partition (K, I,A),

where G[A] is a P4-sparse graph. We derive expressions to compute the domination chromatic

number of G in terms of the chromatic number of G in both thin spider and thick spider.

Lemma 5.19. Let G be a spider graph with spider partition (K, I,A), where G[A] is a P4-sparse

graph. Then, the following holds,

(a) If G is a thin spider, and

(a) if χ(G[A]) < |K|, χdd(G) = |K|+χ(G[A])+
⌈
|K|−χ(G[A])

2

⌉
= χ(G)+

⌈
|K|−χ(G[A])

2

⌉
.

(b) if χ(G[A]) ≥ |K|, then χdd(G) = |K|+ χ(G[A]) = χ(G).

(b) If G is a thick spider, then χdd(G) = |K|+ χ(G[A]) = χ(G).

Proof. Consider a spider graph G with spider partition (K, I,A), where K = {u1, . . . , uk} and

I = {v1, . . . , vk} (k ≥ 2). Here, |K| = k = |I|. Assume that G[A] is a P4-sparse graph.

(a) Let G be a thin spider. Now, we consider two cases on the basis of value of χ(G[A]) as

follows:

(a) Assume that χ(G[A]) < |K|. It is known that χ(G) = k + χ(G[A]). Since every

domination coloring of G is also a proper coloring of G, χdd(G) ≥ χ(G) = k +

χ(G[A]). Let H be a domination coloring of G. As the set K forms a clique, in
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every coloring of G we need to use k distinct colors to color vertices of K and new

χ(G[A]) new colors to color vertices of G[A].

Without loss of generality (up to isomorphism), we can assume that color i is given to

vertex ui of K for 1 ≤ i ≤ k and a proper coloring of G[A] using χ(G[A]) new colors,

say 1′, 2′, . . . , χ(G[A])′. Now, we try to repeat as many colors as possible, so that

the resulting coloring H remains a domination coloring of G. This approach works

due to the symmetry in the structure of thin spider graph G. As the vertices of A and

I are non-adjacent, we can color vertex vi by using color i′ for 1 ≤ i ≤ χ(G[A]).

There are still k−χ(G[A]) remaining uncolored vertices to color in H . In particular,

S = {vi | χ(G[A]) + 1 ≤ i ≤ k} is the set of uncolored vertices of G.

From Lemma 5.17, it is clear that we cannot repeat any color from the set

{1′, 2′, . . . , χ(G[A])′} to color vertices of S. Also, from Lemma 5.1, it follows

that each of {u1}, {u2}, . . ., {uχ(G[A])} are solitary color classes in any domination

coloring H of G. Thus, the only colors that can be given to the vertices of S are

χ(G[A]), χ(G[A]) + 1, . . . , k and in total, we have k − χ(G[A]) colors left to color

vertices of S in H .

Now, we claim that out of these k−χ(G[A]) remaining colors, we can only use at most⌊
k−χ(G[A])

2

⌋
to color the vertices of S. The proof of this claim follows by arguments

similar to that given in the proof of Lemma 5.18 case 1. Thus, at least
⌈
|K|−χ(G[A])

2

⌉
new additional colors are required to color vertices of S such that the coloring H

remains a domination coloring of G. Hence, χdd(G) = k + χ(G[A]) +
⌈
k−χ(G[A])

2

⌉
.

Now, we are only left to prove that χdd(G) ≤ k + χ(G[A]) +
⌈
k−χ(G[A])

2

⌉
. For this,

we define a domination coloring H of G using k + χ(G[A]) +
⌈
k−χ(G[A])

2

⌉
colors

as follows:

• color vertex ui ∈ K with color i, for 1 ≤ i ≤ k (this colors vertices of K);

• properly color vertices of G[A] using exactly χ(G[A]) colors (namely,

1′, 2′, . . . , χ(G[A])′) (this colors vertices of G[A]); and

• color vertex vi ∈ I with new color i′, for 1 ≤ i ≤ χ(G[A])
(
this colors vertices

of I \ {vi | χ(G[A]) + 1 ≤ i ≤ k}
)
.

• color vertex vi ∈ I with distinct color from new
⌈
k−χ(G[A])

2

⌉
colors, for
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χ(G[A]) + 1 ≤ i ≤ χ(G[A]) +
⌈
k−χ(G[A])

2

⌉ (
this colors vertices of

{
vi |

χ(G[A]) + 1 ≤ i ≤ χ(G[A]) +
⌈
k−χ(G[A])

2

⌉})
.

• color vertex vi ∈ I with a distinct color from
{
χ(G[A]) + 1, χ(G[A]) +

2, . . . , χ(G[A]) +
⌊
k−χ(G[A])

2

⌋}
colors, for χ(G[A]) +

⌈
k−χ(G[A])

2

⌉
+ 1 ≤ i ≤ k(

this colors vertices of
{
vi | χ(G[A]) +

⌈
k−χ(G[A])

2

⌉
+ 1 ≤ i ≤ k

})
.

This resulting coloring H is a domination coloring of G using
(
k + χ(G[A]) +⌈

k−χ(G[A])
2

⌉)
colors, and so χdd(G) ≤ k+χ(G[A])+

⌈
k−χ(G[A])

2

⌉
. Hence, χdd(G) =

k + χ(G[A]) +
⌈
k−χ(G[A])

2

⌉
.

(b) Assume that χ(G[A]) ≥ |K|. It is known that χ(G) = k + χ(G[A]). As every

domination coloring of G is also a proper coloring of G, χdd(G) ≥ χ(G) = k +

χ(G[A]).

Now, we are only left to prove that χdd(G) ≤ χ(G) = k + χ(G[A]). For this, we

define a domination coloring H of G using k + χ(G[A]) colors as follows:

• color vertex ui ∈ K with color i, for 1 ≤ i ≤ k (this colors vertices of K);

• properly color vertices of G[A] using exactly χ(G[A]) colors (namely,

1′, 2′, . . . , χ(G[A])′) (this colors vertices of G[A]); and

• color vertex vi ∈ I with color i′, for 1 ≤ i ≤ k (this colors vertices of I).

This resulting coloring H is a domination coloring of G using k + χ(G[A]) colors,

and so χdd(G) ≤ k + χ(G[A]). Hence, χdd(G) = k + χ(G[A]) = χ(G).

(b) Let G be a thick spider. It is known that χ(G) = k + χ(G[A]) = χ(G) and χdd(G) ≥
χ(G) = k+χ(G[A]). Now, we are only need to prove that χdd(G) ≤ χ(G) = k+χ(G[A]).

For this, we define a domination coloring H of G using k + χ(G[A]) colors as follows:
• color vertex ui ∈ K with color i, for 1 ≤ i ≤ k (this colors vertices of K);

• properly color vertices of G[A] using exactly χ(G[A]) colors (this colors vertices of

G[A]);

• pick one color from the colors used in the proper coloring vertices of G[A], say a,

and color vertex vi ∈ I with color a, for 1 ≤ i ≤ k − 1 (this colors vertices of

I \ {vk}); and

• color vertex vk with color k,.
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This resulting coloring H is a domination coloring of G using k + χ(G[A]) colors, and

so χdd(G) ≤ k + χ(G[A]). Hence, χdd(G) = k + χ(G[A]) = χ(G).

This concludes the proof of the result.

The chromatic number of P4-sparse graphs can be determined in linear-time, as

demonstrated in Theorem 5.14, due to [65]. Moreover, by combining Lemmas 5.15, 5.16,

5.18, and 5.19, we can establish the proof for the following result.

Theorem 5.20. The domination chromatic number of P4-sparse graphs can be computed in

linear-time.

By Theorem 5.20, and using the fact that cographs is a subclass of P4-sparse graphs, it

follows that the domination chromatic number of cographs can be compute in linear-time. It

is known that the chromatic number of cographs can be computed in linear-time [77]. Now,

we demonstrate the equivalence between the domination chromatic number and the chromatic

number for connected cographs.

Lemma 5.21. For a connected cograph G, χdd(G) = χ(G).

Proof. Let G be a connected cograph. By making use of the recursive definition of cographs,

we get that G is K1 or G is formed by taking the join of two cographs. Since every domination

coloring is a proper coloring first, we have χ(G) ≤ χdd(G). Now, we claim that every proper

coloring of G is also a domination coloring of G. Let H be an arbitrary proper coloring of G.

We need to prove that H is also a domination coloring of G. If G = K1, in this case, clearly,

we have χdd(G) = χ(G) = 1. Next, we assume that G is a graph formed by taking the join of

two cographs G1 and G2. In the proper coloring H of G, no color used in G1 can be used to

color vertices of G2 and vice-versa. Note that if we take any vertex u ∈ V (G1) (or v ∈ V (G2)),

then u (or v) dominates every color class of G2 (or G1). This implies that in the proper coloring

H of G, every vertex dominates some color class and every color class is dominated by some

vertex. Thus, H is also a domination coloring of G and the claim follows, as H was an an

arbitrary proper coloring of G. Further, we have χdd(G) = χ(G).
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The proof of following result directly follows by combining Theorem 5.2 and

Theorem 5.21 as every connected component of a disconnected cograph is in itself a connected

cograph.

Lemma 5.22. Let G be a disconnected cograph with connected components C1, C2, . . . , Ck.

Then, χdd(G) =
∑k

i=1 χ(Ci).

5.4.2 Chain Graphs

In this section, we present a linear-time algorithm for the MDC problem in case of chain

graphs and we show that for a chain graph G, 2 ≤ χdd(G) ≤ 4. The efficient linear-time

algorithm for determining the domination chromatic number of connected chain graphs when

provided with the associated chain partition as input. This is achieved through a categorization

of connected chain graphs on the basis of the size of their chain partition.

Theorem 5.23. Let G = (P,Q,E) be a connected chain graph with a chain partition

P1, P2, . . . , Pk of P and Q1, Q2, . . . , Qk of Q, respectively, of length k. The following statements

hold true,

(a) If k = 1, then χdd(G) = 2.

(b) For k = 2, if |P1| ≥ 2 and |Q2| ≥ 2, then χdd(G) = 4, otherwise, χdd(G) = 3.

(c) If k ≥ 3, then χdd(G) = 4.

Proof. Let G = (X, Y,E) be a connected chain graph, and G has a chain partition

(P1, P2, . . . , Pk of P and Q1, Q2, . . . , Qk of Q, respectively) of length k.

(a) If k = 1, then G is a complete bipartite graph, and every proper coloring of G is a

domination coloring of G. Therefore, χdd(G) = χ(G) = 2. This proves part (a).

(b) Let k = 2. First, we prove that χdd(G) ≥ 3. As G is a chain graph, the only way to color

G using two colors is to color P and Q using colors 1 and 2, respectively. But this coloring

is not a domination coloring of G, as the vertices of P1 and Q2 does not dominate any

color class. Thus, χdd(G) ≥ 3. Note that the vertices of P1 and Q2 cannot be given same

color in any domination coloring of G (because then that color class will not be dominated

by any vertex of G).
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Consider the case when |P1| = 1. We need to prove that χdd(G) ≤ 3. For this, we define a

domination coloring H of G using three colors as follows:
• color each vertex in Q = Q1 ∪Q2 with color 1,

• color each vertex in P2 with color 2, and

• color the vertices in P1 with color 3.

This resulting coloring H is a domination coloring of G using 3 colors, and so χdd(G) ≤ 3.

Hence, χdd(G) = 3.

Now, we consider the case when |Q2| = 1 and prove that χdd(G) ≤ 3. For this purpose,

let us define a domination coloring H of G using three colors as follows:
• color each vertex in Q1 with color 1,

• color each vertex in P = P1 ∪ P2 with color 2, and

• color the vertices in Q2 with color 3.

This resulting coloring H is a domination coloring of G using 3 colors, and so χdd(G) ≤ 3.

Hence, χdd(G) = 3.

Finally, we consider the case when |P1| ≥ 2 and |Q2| ≥ 2. We claim that χdd(G) ≥ 4 in

this case. Without loss of generality, in any domination coloring, we can fix colors 1 and 2

to color vertices of Q1 and P2, respectively. Clearly, we cannot use color 1 and 2 to color

vertices of P1 and Q2, respectively. Also, if we use color 2 to color vertices of P1, then for

the vertices of Q2 to dominate some color class, we require at least two more colors to

color vertices of Q2. Thus, in total at least 4 colors are used and we get χdd(G) ≥ 4. By

similar arguments, we can argue that if we use color 1 to color any other vertices of G,

then χdd(G) ≥ 4. Also, note that we cannot give same color to the vertices of P1 and Q2

in any domination coloring of G. So, if we don’t use color 1 and 2 to color the vertices of

Q2 and P1, respectively, we require at least two new colors to color the vertices of Q2 and

P1 in any domination coloring of G. So, in every case, we get χdd(G) ≥ 4.

Now, we are only left to prove that χdd(G) ≤ 4. For this, we define a domination coloring

H of G using four colors as follows:
• color each vertex in Q1 with color 1;

• color each vertex in P2 with color 2;

• color the vertices in Q2 with color 3, and

• color the vertices in P1 with color 4.
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This resulting coloring H is a domination coloring of G using 4 colors, and so χdd(G) ≤ 4.

Hence, χdd(G) = 4.

(c) Let k ≥ 3. Without loss of generality, in any domination coloring, we can fix colors 1 and

2 to color vertices of Q1 and Pk, respectively. As every vertex of P (or Q) is adjacent to

vertices of Q1 (or Pk), color 1 (or 2) cannot be given to any vertex of P (or Q). Also, note

that the vertices of P1 and Qk cannot be given same color in any domination coloring of G

(because then that color class will not be dominated by any vertex of G).

Now, we claim that χdd(G) ≥ 4. If we use color 2 to color vertices of P1, P2, . . . , Pk−1,

then for vertices of Q2, Q3, . . . , Qk to dominate some color class, we require at least two

more colors to color vertices of Q2, Q3, . . . , Qk. Thus, χdd(G) ≥ 4. Also, by similar

arguments, we can argue that if we use color 1 to color vertices of Q2, Q3, . . . , Qk, we

require at least two more colors to color vertices of P1, P2, . . . , Pk−1. Thus, in this case,

χdd(G) ≥ 4. Next, if we do not use colors 1 and 2 to color vertices of Q2, Q3, . . . , Qk and

P1, P2, . . . , Pk−1, respectively. Then, we need at least two new colors to color the vertices

of P1 and Qk in any domination coloring of G. Thus, we require at least two new colors

to color vertices of G in this case as well, so that it becomes a domination coloring of G.

Therefore, in this case also, we get χdd(G) ≥ 4. Hence, χdd(G) ≥ 4.

Now, we prove that χdd(G) ≤ 4 and in order to obtain this, we define a domination

coloring H of G using four colors as follows:
• color each vertex in Q1 with color 1,

• color each vertex in Pk with color 2,

• color the vertices in Q2 ∪Q3 ∪ . . . ∪Qk with color 3, and

• color the vertices in P1 ∪ P2 ∪ . . . ∪ Pk−1 with color 4.

This resulting coloring H is a domination coloring of G using 4 colors, and so χdd(G) ≤ 4.

Hence, χdd(G) = 4.

This concludes the proof of the result.

The above theorem clearly defines both the upper and lower bounds for the domination

chromatic number of connected chain graphs. Thus, we have the following corollary.

Corollary 5.24. For a connected chain graph G, 2 ≤ χdd(G) ≤ 4.
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Using Theorem 5.2, the proof of subsequent theorem directly follows.

Theorem 5.25. If G is a disconnected chain graph with connected components

C1, C2, . . . , Ck, then χdd(G) =
∑k

i=1 χdd(Ci).

By using the property that each connected component within a disconnected chain graph is

itself a chain graph, combined with the insights from Theorem 5.23, we can efficiently calculate

the domination chromatic number for each connected component of such a graph in linear-time.

Consequently, in the linear-time, the domination chromatic number for a disconnected chain

graph can be computed.

According to [56], it is established that a chain ordering for a given chain graph can

be efficiently computed in linear-time. Furthermore, it is evident that with a chain ordering

of a chain graph, we can determine its chain partition in linear-time. Moreover, starting from

the chain partition of a chain graph G, we can compute its domination chromatic number as

demonstrated in Theorem 5.23 and Theorem 5.25, in linear-time. Consequently, for a chain

graph G, the computation of χdd(G) can also be accomplished in linear-time. This concludes the

proof of the following result.

Theorem 5.26. Given a chain graph G, the M I N I M U M D O M I N AT I O N C O L O R I N G problem

is solvable in linear-time.

5.5 NP-completeness results
In this section, we present various NP-completeness results for the decision version of the

MDC problem, which is referred to as the D O M I N AT I O N C O L O R I N G D E C I S I O N (DCD)

problem.

5.5.1 Bipartite Graphs

In this subsection, we prove that the decision version of the MDC problem is NP-complete,

when restricted to bipartite graphs. In order to do that we require the following known result.

Theorem 5.27. [22] For any graph G, the problem of determining a minimum dominating set of

G cannot be approximated within an approximation ratio of c ln(n) in polynomial-time, for any

constant c < 1, unless P = NP . This holds true for bipartite graphs as well.
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From Theorem 5.27, it follows that it is not possible to approximate γ(G) below a factor

of ln(n). When n ≥ 8, we note that ln(n) > 2, and so γ(G) cannot be approximated within an

approximation ratio of 2.

Corollary 5.28. If n ≥ 8, then the problem of determining a γ-set of G cannot be approximated

within a factor of 2 in polynomial-time, unless P = NP . This is true for bipartite graphs as

well.

Theorem 5.29. DCD problem is NP-complete for bipartite graphs.

Proof. Let G be a bipartite graph. Clearly, the DCD problem is in NP. It remains to show that the

DCD is NP-hard. On the contrary, suppose that the M I N I M U M D O M I N AT I O N C O L O R I N G

problem is polynomial-time solvable for bipartite graphs. Let H be an optimal domination

coloring of G and let CH = {V H
1 , V H

2 , . . . , V H
χdd(G)} be the collection of color classes of H .

Now, we propose an approximation algorithm APPROX DS BIP(G,H ,C H ) for finding a

dominating set of bipartite graph G.

Algorithm 6: APPROX DS BIP(G,H ,C H )

Input: A bipartite graph G.
Output: A dominating set of G.
Compute a χdd-coloring H of G.
Let CH = {V H

1 , V H
2 , . . . , V H

χdd(G)} be the collection of color classes of H .
for (i = 1 to χdd(G)) do

Update D ← D ∪ {ui} where ui is some vertex of V H
i ;

return D;

Note that the time complexity of algorithm APPROX DS BIP(G,H ,C H ) is

polynomial, as the M I N I M U M D O M I N AT I O N C O L O R I N G problem can be solved in

polynomial-time for G and each step takes polynomial-time. From Lemma 5.3, χdd(G) ≤ 2γ(G)

for bipartite graphs. The set D obtained from algorithm APPROX DS BIP(G,H ,C H ) is a

dominating set of cardinality χdd(G) ≤ 2γ(G). Thus, D is a dominating set of cardinality at

most 2γ(G). Therefore, we get a 2-approximation algorithm for finding a dominating set of G,

contradicting Corollary 5.28. Hence, the result follows.
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5.5.2 Some Graphs With Forbidden Induced Subgraphs

Now, we illustrate a reduction (Reduction g) from an instance G to an instance H , which

will be used later. The Reduction g is defined as follows:

Reduction g: Given a graph G = (V,E) with V = {vi | 1 ≤ i ≤ n}, a new graph H = (U, F )

is constructed from G by making a vertex z adjacent to each vertex vi ∈ V , for 1 ≤ i ≤ n.

Formally, U = V ∪ {z} and F = E ∪ {zvi | 1 ≤ i ≤ n}. Note that |U | = n + 1 and

|F | = |E|+ n.

It is easy to see that H can be constructed from G in polynomial-time. Next, we prove a

lemma which plays a very crucial role in upcoming hardness results.

Lemma 5.30. G has a coloring using at most k colors if and only if H has a domination coloring

using at most k′ colors, where k′ = k + 1.

Proof. Let G = (V,E) be a graph with V = {vi | 1 ≤ i ≤ n} and H be the graph obtained

from G on using the Reduction g. First, note that the vertex z in H must form a solitary color

class in any coloring of H , as z is adjacent to every other vertex of H .

Now, we assume that G has a coloring CG using at most k colors. We need to prove that

there exists a domination coloring of H using at most k + 1 colors. We define a new coloring

CH of H by making use of the coloring CG of G as follows:

• assign the same color to each vertex vi (for each 1 ≤ i ≤ n) in CH as given in CG,

• assign a new color to vertex z in coloring CH of H .

It is easy to see that the coloring CH is a proper coloring of H . Also, each color class of CH is

dominated by z and each vertex of H dominates solitary color class containing z. Therefore, the

constructed coloring CH of H is a domination coloring of H .

Next, let CH be a domination coloring of H using at most k+1 colors. We now construct

a coloring CG of G from the coloring CH of H by assigning the same color to each vertex vi (for

each 1 ≤ i ≤ n) in CG as given in CH . Clearly, CG is a proper coloring of G. Also, since the

vertex z forms a solitary color class in every coloring of H , the coloring CG of G uses one color
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less than that of the domination coloring CH of H . Hence, CG is a coloring of G using at most k

colors.

From the above lemma, the following corollary directly follows.

Corollary 5.31. If G′ is the graph constructed from G using above Reduction g, then χdd(G
′) =

χ(G) + 1.

The complexity of the M I N I M U M C O L O R I N G problem on graphs with forbidden

induced subgraphs has been studied in [77]. Subsequently, similar results for the decision

version of the dominated coloring problem were derived in [96]. Additionally, [77] provides a

characterization regarding the complexity of the M I N I M U M C O L O R I N G problem in H-free

graphs.

Theorem 5.32. [77] C O L O R I N G D E C I S I O N problem is NP-complete for H-free graphs,

when H is other than an induced subgraph of P4 or P3 ∪K1.

The following result is a direct consequence of the preceding theorem.

Corollary 5.33. C O L O R I N G D E C I S I O N problem is NP-complete for the following graph

classes: (a) P5-free graphs, (b) pK1-free graphs (p ≥ 4), (c) qK2-free graphs (q ≥ 2), (d)

C4-free graphs, (e) C6-free graphs, (f) K2 ∪ 2K1-free graphs, and (g) K1,k-free graphs (k ≥ 4).

It is known that the C O L O R I N G D E C I S I O N problem is NP-complete for kK1-free

graphs, where k ≥ 4 [77]. With the help of this, we prove that the D O M I N AT I O N C O L O R I N G

D E C I S I O N problem is NP-complete for star-free graphs, where star is of order at least 5.

Theorem 5.34. DCD problem is NP-complete for K1,k-free graphs (k ≥ 4).

Proof. The membership of the DCD problem in NP is easy to see as both the conditions of a

proper coloring being a domination coloring, can be verified in polynomial-time. In order to

prove the NP-hardness, we make use a reduction from the C O L O R I N G D E C I S I O N problem

for kK1-free graphs to the D O M I N AT I O N C O L O R I N G D E C I S I O N problem for K1,k-free

graphs, where k ≥ 4.

Let G be a kK1-free graphs, where k ≥ 4. Assume that the Reduction g is the reduction

used for this purpose. It is easy to see that the graph H obtained by using the Reduction g is a
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K1,k-free graph (k ≥ 4). Using Lemma 5.30, it follows that G has a coloring using at most k

colors if and only if H has a domination coloring using at most k+1 colors. As the C O L O R I N G

D E C I S I O N problem is NP-complete for kK1-free graphs (k ≥ 4), the result follows.

The graph class of P5-free graphs is a superclass of P4-free graphs and split graphs.

The proof of next theorem directly follows by using Reduction g and by Corollary 5.33 and

Lemma 5.30.

Theorem 5.35. DCD problem is NP-complete for the following graph classes:

(a) P5-free graphs,

(b) pK1-free graphs (p ≥ 4),

(c) qK2-free graphs (q ≥ 2),

(d) C4-free graphs,

(e) C6-free graphs, and

(f) K2 ∪ 2K1-free graphs.

Proof. Clearly, the DCD problem in NP. Let us use the following notation to denote the

considered graph classes:

(a) G1 to denote P5-free graphs,

(b) G2 to denote pK1-free graphs (p ≥ 4),

(c) G3 to denote qK2-free graphs (q ≥ 2),

(d) G4 to denote C4-free graphs,

(e) G5 to denote C6-free graphs, and

(f) G6 to denote K2 ∪ 2K1-free graphs.

In order to prove the result, we use the Reduction g from the C O L O R I N G D E C I S I O N

problem for graph class Gi to the D O M I N AT I O N C O L O R I N G D E C I S I O N problem for graph

class Gi for each i, where 1 ≤ i ≤ 6.

First, we fix one i, where 1 ≤ i ≤ 6. Let G be a graph from graph class Gi. It is easy to

see that the graph H obtained by using the Reduction g is also from the graph class Gi. Then,

from Lemma 5.30, it follows that G has a coloring using at most k colors if and only if H

has a domination coloring using at most k′ colors, where k′ = k + 1. As the C O L O R I N G
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D E C I S I O N problem is NP-complete for graph class Gi, it follows that the D O M I N AT I O N

C O L O R I N G D E C I S I O N problem is also NP-complete for graph class Gi. This holds for each

i, where 1 ≤ i ≤ 6. This completes the proof of the theorem.

5.6 Approximation Results
In last section, we proved that the DCD problem is NP-complete when restricted to

bipartite graphs. In this section, we provide the lower and upper bounds on the approximation

ratio of the MDC problem for bipartite graphs. Further, we prove that the MDC problem has a

lower bound of (n1−ϵ+1)
2

on the approximation ratio for general graphs, for any ϵ > 0.

5.6.1 Approximation Algorithms

In this section, we present approximation algorithms for the MDC problem. Firstly,

we remark that for split graphs, there exists a 2 factor approximation algorithm for the MDC

problem, which can be obtained by using Corollary 5.8 and the known fact that the chromatic

number of a split graph can be computed in linear-time [42].

Theorem 5.36. MDC problem can be approximated with an approximation ratio of 2 for split

graphs in linear-time.

Now, we prove that there exists a 2(1 + ln(∆ + 1))-approximation algorithm for the

MDC problem, when restricted to bipartite graphs. The following result is known regarding the

approximation of domination problem in the literature.

Theorem 5.37. [25] Given a graph G with maximum degree ∆, the M I N I M U M D O M I N AT I O N

problem can be approximated with an approximation ratio of (1+ ln(∆+1)) in polynomial-time.

The above result holds for bipartite graphs as well.

Theorem 5.38. For a bipartite graph G with maximum degree ∆, the MDC problem can be

approximated within an approximation ratio of 2 · (1 + ln(∆ + 1)) in polynomial-time.

Proof. Let G be a bipartite graph with maximum degree ∆. From Theorem 5.37, it follows that

a dominating set D of G can be obtained within an approximation ratio of (1 + ln(∆ + 1)) in

polynomial-time. Assume that Approx Dom Set(G) is the approximation algorithm that can
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compute a dominating set D of G of cardinality k, where k ≤ (1 + ln(∆ + 1))γ(G). Now, we

propose the following algorithm Approx Dom Col Bip(G) to find a domination coloring C of

a given bipartite graph G.

Algorithm 7: Approx Dom Col Bip(G)

Input: A bipartite graph G.
Output: A domination coloring C of G.
Compute a dominating set D = {x1, x2, . . . , xk} of G using the approximation algorithm
Approx Dom Set(G).

Let i = 1, S = ∅, C = ∅;
while (i ≤ k) do

Assign color i to vertex xi and define Ci = {xi};
Assign color i′ to all the vertices in N(xi) \ S and define C ′

i = N(xi) \ S;
Update C = C ∪ {{xi}} ∪ {N(xi) \ S}, that is, add the color classes Ci and C ′

i in the
collection C ;

Update S = S ∪ {xi} ∪N(xi);
i = i+ 1;

return C ;

Note that given a bipartite graph G, the algorithm Approx Dom Col Bip(G) runs

in polynomial-time, as a dominating set D = {x1, x2, . . . , xk} of G can be computed in

polynomial-time using Approx Dom Set(G) and every other step of the algorithm can be

computed in polynomial-time. Clearly, C uses at most 2k colors. Now, using the fact that G

is a bipartite graph, it is easy see that the coloring returned by above algorithm C is a proper

coloring of G. Next, we prove that C is a domination coloring of G. For 1 ≤ i ≤ k, each

vertex in Ci ∪ C ′
i dominates color class Ci. Thus, every vertex of G dominates at least one color

class. Further, for 1 ≤ i ≤ k, the color classes Ci and C ′
i are dominated by xi. Thus, every

color class is dominated by at least one vertex. Therefore, C is a domination coloring of G

using at most 2k colors and |C | ≤ 2k. Now, using the fact that k ≤ (1 + ln(∆ + 1))γ(G) and

γ(G) ≤ χdd(G), we get |C | ≤ 2k ≤ 2 · (1 + ln(∆ + 1))γ(G) ≤ 2 · (1 + ln(∆ + 1))χdd(G).

Hence, Approx Dom Col Bip(G) is a polynomial-time algorithm which returns a domination

coloring of G within an approximation ratio of 2 · (1 + ln(∆ + 1)).
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Lemma 5.39. Given a dominated coloring of G using l colors and a dominating set of G

of cardinality k, we may compute a domination coloring of G using at most l + k colors in

linear-time.

Proof. Let G be a graph and D be a dominating set of G of cardinality k. Assume that C is a

dominated coloring of G using l colors and let C = {V1, V2, . . . , Vl} be the collection of color

classes of C . Now, we define a new coloring C ′ of G which uses at most l+k colors as follows:

• for each x ∈ D, assign a unique and distinct color to x (this uses exactly k colors and

color classes formed are {U1, U2, . . . , Uk}),

• for each x ∈ V \D, assign the same color to x as assigned in the coloring C (this uses at

most l colors and color classes formed are {V ′
1 , V

′
2 , . . . , V

′
l }).

Clearly, the coloring C ′ = {U1, U2, . . . , Uk, V
′
1 , V

′
2 , . . . , V

′
l } of G uses at most l + k colors and

C ′ is a proper coloring of G. Note that V ′
i may be empty for some i, 1 ≤ i ≤ l. Also, the above

coloring can be obtained in linear-time from given dominating set D and dominated coloring C

of G. We claim that C ′ is also a domination coloring of G. That is, we need to show that every

vertex of G dominates some color class of C ′ and every color class of C ′ is dominated by some

vertex of G. As D is a dominating set of G, this means that N [D] = V , that is, every vertex of G

is either adjacent to some vertex in D or it belongs to D. Now, since vertices of D are assigned a

unique and distinct color in coloring C ′, thus, every vertex of G dominates at least one color

class. Also, it is easy to see that every color class is dominated by some vertex. Therefore, C is

a domination coloring of G which uses at most l + k colors, that is, |C | ≤ l + k.

Next, we present a result related to approximation of the M I N I M U M D O M I N AT I O N

C O L O R I N G problem for general graphs.

Theorem 5.40. Given a p-approximation algorithm for the M I N I M U M D O M I N AT E D

C O L O R I N G problem and a q-approximation algorithm for the M I N I M U M D O M I N AT I O N

problem, there exists an (p+ q)-approximation algorithm for the M I N I M U M D O M I N AT I O N

C O L O R I N G problem.

Proof. Let G be a graph. Assume that C is a dominated coloring of G obtained from a

p-approximation algorithm and |C | = l. Also, suppose that D is a dominating set of G obtained
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from a q-approximation algorithm and |D| = k. From Lemma 5.39, it follows that there exists a

domination coloring Cd of G that uses at most l + k colors. That is, |Cd| ≤ |C |+ |D| = l + k.

Using the fact that l ≤ p · χdom(G) and k ≤ q · γ(G), we get |Cd| ≤ p · χdom(G) + q · γ(G).

Thus, |Cd| ≤ p · χdd(G) + q · χdd(G), as χdd(G) ≥ χdom(G) and χdd(G) ≥ γ(G). Therefore,

we get |Cd| ≤ (p+ q) · χdd(G). Hence, the result follows.

5.6.2 Lower Bound on Approximation Ratio

In this subsection, we establish the lower bounds on the approximation ratio of the

M I N I M U M D O M I N AT I O N C O L O R I N G problem for general graphs as well as bipartite

graphs. For bipartite graphs, we demonstrate that the MDC problem has a lower bound of

(1
2
− ϵ) ln(n) on the approximation ratio, for any ϵ > 0. Additionally, we prove that for general

graphs, the problem cannot be approximated within a factor of (n1−ϵ + 1)/2, for any ϵ > 0.

For this purpose, we will be making use of the following results from the literature

regarding the lower bound on the approximation ratio of the M I N I M U M D O M I N AT I O N (MD)

problem and M I N I M U M C O L O R I N G (MC) Problem.

Theorem 5.41. [22, 35] Given a graph G = (V,E) with n = |V |, the MD problem cannot be

approximated within an approximation ratio of (1− ϵ) ln(n), for any ϵ > 0, unless P = NP .

Theorem 5.42. [108] MC problem cannot be approximated within a factor n1−ϵ, for any ϵ > 0,

unless P=NP.

Now, we start with presenting the result for bipartite graphs.

Theorem 5.43. Given a bipartite graph G = (V,E) with n = |V |, the MDC problem cannot be

approximated within an approximation ratio of (1
2
− ϵ) ln(n), for any ϵ > 0, unless P=NP.

Proof. Suppose that Approx Dom Col 1(G) is an approximation algorithm that runs in

polynomial-time and solves the MDC problem within an approximation ratio of (1
2
− ϵ) ln(n),

for some fixed ϵ > 0. Now, we propose the following approximation algorithm Approx DS(G)

to find a dominating set of a given graph G.
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Algorithm 8: Approx DS(G)

Input: A graph G = (V,E).
Output: A dominating set of G.
Compute a domination coloring C = {C1, C2, . . . , Ck} of G using the approximation
algorithm Approx Dom Col 1(G).

Set i = 1, D = ∅;
while (i ≤ k) do

Pick one vertex x from color class Ci;
Update D = D ∪ {x};
i = i+ 1;

return D;

Note that Approx DS(G) is a polynomial-time algorithm, as the algorithm

Approx Dom Col 1(G) runs in polynomial-time and every other step of Approx DS(G) can be

computed in polynomial-time.

For a bipartite graph G, Approx Dom Col 1(G) computes a domination coloring C =

{C1, C2, . . . , Ck} of G and let Approx DS(G) computes a dominating set D of G. Then,

γ(G) ≤ |D| and χdd(G) ≤ |C |. Since the dominating set D in Approx DS(G) is constructed by

picking one vertex from each color class of the domination coloring C , we have |D| = |C |. Now,

using the fact that the Approx Dom Col 1(G) gives a domination coloring within a factor of

(1
2
− ϵ) ln(n) of the optimal, for some fixed ϵ > 0. We get that |C | ≤ ((1

2
− ϵ) ln(n))× χdd(G).

On combining all the information above, we have γ(G) ≤ |D| = |C | ≤ ((1− ϵ) ln(n)) ·
χdd(G). Also, from Lemma 5.3, it follows that χdd(G) ≤ 2γ(G) for bipartite graphs. So,

|D| ≤ ((1
2
− ϵ) ln(n)) · χdd(G) ≤ ((1

2
− ϵ) ln(n)) · 2γ(G) = ((1 − ϵ′) ln(n)) · γ(G), where

ϵ′ = 2ϵ. Therefore, Approx DS(G) approximates the M I N I M U M D O M I N AT I O N problem

within an approximation ratio of (1 − ϵ′) ln(n), for some ϵ′ > 0, which is a contradiction to

Theorem 5.41. Hence, the result follows.

Now, we establish the lower bound on the approximation ratio of the MDC problem for

general graphs with the help of following theorem.

Theorem 5.44. [70, 92] Let there exists an L-reduction from an optimization problem A

to another optimization problem B with positive constants α and β. Then, there is a
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q-approximation algorithm for A if and only if there is a (1 + (q−1)
α·β )-approximation algorithm

for B.

It follows from the above theorem that A is inapproximable within a factor of q if and

only if B is inapproximable within a factor of (1 + (q−1)
αβ

).

Theorem 5.45. For general graphs, the M I N I M U M D O M I N AT I O N C O L O R I N G problem

cannot be approximated within an approximation ratio of (1+n1−ϵ)
2

, for any ϵ > 0, unless P=NP.

Proof. First, we prove that there exists an L-reduction from the M I N I M U M C O L O R I N G

problem to the M I N I M U M D O M I N AT I O N C O L O R I N G problem. For this purpose, we use

the Reduction g (defined in Subsection 5.5.2) from the MC problem to the MDC problem. Given

a graph G, assume that Reduction g reduces it to another graph H . Now, we prove the following

claim.

Claim 5.6.1. f is an L-reduction.

Proof. Assume that C ∗
G is an optimal coloring of G and C ∗

H is an optimal domination coloring

of H , respectively. Here, |C ∗
G| = χ(G) and |C ∗

H | = χdd(H). Using Lemma 5.31, we have

|C ∗
H | = |C ∗

G|+ 1. Thus, χdd(H) = |C ∗
H | = |C ∗

G|+ 1 = χ(G) + 1 ≤ χ(G) + χ(G) = 2 · χ(G).

Therefore, we have χdd(H) ≤ 2 · χ(G) and thus, α = 2.

Suppose that CH is a domination coloring of H , we can find a coloring CG of G using

similar arguments as used in the proof of Lemma 5.30. From Lemma 5.30 and Corollary 5.31, we

have |CH | = |CG|+ 1 and χdd(H) = χ(G) + 1. Thus, we have |CG| − |C ∗
G| = |CG| − χ(G) =

(|CH |−1)−(χdd(H)−1) = 1 ·(|CH |−χdd(H)). Therefore, |CG|−χ(G) ≤ 1 ·(|CH |−χdd(H))

and we get β = 1. This concludes that f is an L-reduction.

This implies that we have an L-reduction from the M I N I M U M C O L O R I N G problem to

the M I N I M U M D O M I N AT I O N C O L O R I N G problem. From Theorem 5.42, we have that the

MC problem is inapproximable within a ratio of n1−ϵ, for any ϵ > 0, unless P=NP. Let q = n1−ϵ.

As α = 2 and β = 1, the term
(
1 + (q−1)

α·β

)
=

(
1 + (n1−ϵ−1)

2·1

)
=

(
1 + (n1−ϵ−1)

2

)
=

(
2+n1−ϵ−1

2

)
=(

1+n1−ϵ

2

)
. Now, using Theorem 5.44, it follows that the MDC problem is inapproximable within

a ratio of
(
1+n1−ϵ

2

)
, for any ϵ > 0, unless P=NP.
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5.7 Summary
In this chapter, we investigated the M I N I M U M D O M I N AT I O N C O L O R I N G problem

across various significant graph classes, such as chain graphs, cographs, P4-sparse graphs, P5-free

graphs, and star-free graphs (with a star of order at least 5). We provided a linear-time algorithm

for chain graphs and established that for a chain graph G, 2 ≤ χdd(G) ≤ 4. We demonstrated

that for connected cographs, the domination chromatic number aligns with the chromatic number.

Additionally, we presented an efficient linear-time algorithm for computing the domination

chromatic number of P4-sparse graphs. Strengthening the only known hardness result for the

D O M I N AT I O N C O L O R I N G D E C I S I O N problem for general graphs, we established that

the problem remains NP-complete for P5-free graphs, and for various other classes of graphs

characterized by forbidden induced subgraphs. Further, we have established various bounds and

studied approximation related results for the problem.





Chapter 6
Conclusion and Future Directions

In this thesis, we studied the computational complexity of the following variants of

domination and domination-related coloring problems.

(a) C O S E C U R E D O M I N AT I O N Problem

(b) S E M I PA I R E D D O M I N AT I O N Problem

(c) T O TA L D O M I N AT O R C O L O R I N G Problem

(d) D O M I N AT I O N C O L O R I N G Problem

In Chapter 2, we focused on the algorithmic complexity of the M I N I M U M C O S E C U R E

D O M I N AT I O N (MCSD) problem on various important classes of graph. The decision version of

the MCSD problem was known to be NP-complete for bipartite graphs, planar graphs, and chordal

graphs. We proved that the problem remains NP-complete even when restricted to undirected

path graphs, split graphs, circle graphs, chordal bipartite graphs, tree-convex bipartite graphs,

and doubly chordal graphs. To the best of our knowledge, every hardness result for the CSDD

problem follows from some polynomial-time reduction from the domination problem. Thus, it

was intriguing to identify to classify two graph classes where the computational complexity of

this problem varies from that of the classical domination problem. Further, one can try to identify

more such graph classes for which the complexities of the MCSD problem and the classical

domination problem differs.

We proposed efficient algorithm for the MCSD problem for chain graphs. The inclusion

relation that holds for subclasses of bipartite graphs is, Chain ⊊ Bipartite Permutation ⊊

Convex Bipartite ⊊ Chordal Bipartite. Since the complexity of the MCSD problem is resolved

for chain graphs (efficiently solvable) and chordal bipartite graphs (NP-hard), and the graph

classes of bipartite permutation graphs and convex bipartite graphs are sandwiched between these

two, it would be interesting to explore the complexity of the MCSD problem for these graph

classes. Intuitively, we conjecture that the MCSD problem is efficiently solvable for bipartite

permutation graphs. We also gave a construction of graphs having given order and cosecure

141
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domination number. One can work on construction of graphs with a certain order, domination

number, and cosecure domination number.

We presented linear-time algorithm for the MCSD problem for cographs. In addition, we

established that the MCSD problem is linear-time solvable for bounded clique-width graphs.

From this, it follows that the problem is linear-time solvable for distance hereditary graphs,

but we did not provide an explicit algorithm to compute the cosecure domination number (or

a minimum cosecure dominating set) of distance hereditary graphs. Note that Cographs ⊊

Distance Hereditary ⊊ Circle. So, it is a good research direction to work on designing a

linear-time algorithm that computes the cosecure domination number (or a minimum cosecure

dominating set) of distance hereditary graphs.

Additionally, we worked on the approximation aspects of the MCSD problem and obtained

some results for the same. We designed a (∆+1)-approximation algorithm for perfect graph with

maximum degree ∆, making use of a relationship between their cosecure domination number and

independence number. One may see whether there exist an even better approximation algorithm

for perfect graphs. It is worth mentioning that the complexity status of the MCSD problem is still

elusive in trees and designing an efficient algorithm for trees is definitely an intriguing avenue

for further research in this field.

In Chapter 3, we studied the M I N I M U M S E M I PA I R E D D O M I N AT I O N (MSPD)

problem and resolved the complexity of the problem in planar graphs and AT-free graphs. We

showed that the decision version of the problem remains NP-complete for planar graphs with

maximum degree 4. We also proved that the problem belongs to the complexity class P for

AT-free graphs, by providing a polynomial-time exact algorithm for the MSPD problem in

AT-free graphs. We further remarked that the running time of the proposed exact algorithm is

quite high and provided a linear-time constant factor approximation algorithm for the problem in

AT-free graphs.

We remarked that γpr2(G) = γpr(G) = 2, for a connected cograph G having at least two

vertices. As cographs are a subclass of AT-free graphs, and for cographs the MSPD problem is

linear-time solvable. One should try to design better time-complexity exact algorithm for AT-free
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graphs and for some of its subclasses. In addition, designing approximation algorithm for the

MSPD problem for planar graphs is another research direction that can be considered. The

following inequality is known in the literature, which gives relation between three domination

parameters:
γ(G) ≤ γpr2(G) ≤ γpr(G) ≤ 2γ(G).

Identifying and characterizing graph classes, where equality holds in the above relation is still an

open problem. Further, working on extremities of the inequality γ(G) ≤ γpr2(G) ≤ 2γ(G) and

settling the following conjectures is another avenue that can be explored:

• For graph G , it is NP-hard to decide whether γpr2(G) = γ(G).

• For graph G, it is NP-hard to decide whether γpr2(G) = 2γ(G).

• For graph G, it is NP-hard to decide whether γpr2(G) = γpr(G).

Note that similar type of results are already studied for paired domination problem which

provided interesting insights into the problem [4, 99]. It is interesting to see that for a connected

chain graph G with at least two vertices, we have γpr2(G) = γpr(G) = 2 and the MSPD problem

is efficiently solvable for chain graphs. Also, the decision version of the MSPD problem is

NP-complete for bipartite graphs but the complexity status of the MSPD problem is still unknown

for many subclasses of bipartite graphs, namely, tree-convex bipartite graphs, convex bipartite

graphs, and chordal bipartite graphs. Thus, resolving the complexity status of the problem for

these graph classes naturally appears to be an interesting and promising direction to work on.

In Chapter 4, we studied the M I N I M U M T O TA L D O M I N AT O R C O L O R I N G (MTDC)

problem for some important graph classes, including, trees, cographs, chain graphs, split graphs,

planar graphs, and bipartite graphs. We proved that the problem is solvable in linear-time for

cographs and chain graphs. On the other side, we proved that the TDCD problem remains

NP-complete when restricted to planar graphs, split graphs, and connected bipartite graphs,

strengthening the only known hardness result for the TDCD problem for general graphs. In this

way, we established that the TDCD problem can not be solved in polynomial-time for chordal

graphs. It is still open to resolve the complexity status of the MTDC problem in block graphs

and interval graphs, which are both important subclasses of chordal graphs. Since the problem is

NP-hard for chordal graphs, bipartite graphs, and planar graphs, it is interesting to look for good
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approximation algorithms for the problem in these graph classes.

The characterization of trees having χtd(T ) = γt(T ) + 1 was posed as an open problem

in [57] and we answered that by characterizing trees T satisfying χtd(T ) = γt(T ) + 1. However,

we remark that the condition given in our characterization cannot be checked in polynomial-time.

Hence, it still remains an open problem to give a polynomial-time characterization of trees T

satisfying χtd(T ) = γt(T ) + 1. Thus, one can also work on designing an efficient algorithm

for trees. Also, as the MTDC problem is closely related to the M I N I M U M D O M I N AT O R

C O L O R I N G problem, it would be interesting to identify some of the classes of graph, where

complexity of these two problems differs, if there exists any such graph classes.

In Chapter 5, we investigated the M I N I M U M D O M I N AT I O N C O L O R I N G (MDC)

problem across various important graph classes. Strengthening the only known NP-hardness

result for the decision version of the MDC problem for general graphs, we demonstrated that

the problem is NP-complete for bipartite graphs, P5-free graphs, and for various other classes

of graphs characterized by forbidden induced subgraphs. We presented linear-time algorithms

for chain graphs, cographs, and P4-sparse graphs. We conjecture that the MDC problem is

solvable in polynomial-time for distance hereditary graphs (superclass of cographs) and bipartite

permutation graphs (superclass of chain graphs and subclass of bipartite graphs), one can work

on designing efficient algorithms for these graph classes. Further, we established various bounds

and studied approximation related results for the problem.

It is known that every domination coloring of any given graph G without isolated vertices

is also a dominator coloring and dominated coloring of G. However, not every dominator

(or dominated) coloring of G is necessarily a domination coloring of G. Identifying standard

graph classes where this converse holds presents an intriguing research problem. Exploring

graph classes for which an optimal dominator (or dominated) coloring is also an optimal

domination coloring poses a valuable avenue for investigation. Additionally, understanding

how the computational complexity of the MDC problem varies from that of the M I N I M U M

D O M I N AT O R C O L O R I N G problem and M I N I M U M D O M I N AT E D C O L O R I N G problem

in specific graph classes is another promising research direction.
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It is interesting to note that for split graphs and claw-free graphs, the M I N I M U M

D O M I N AT E D C O L O R I N G problem is efficiently solvable, in contrast, the M I N I M U M

D O M I N AT O R C O L O R I N G problem is NP-complete. Thus, investigating the complexity status

of the MDC problem in these graph classes is of particular interest. Most of the NP-hardness

results for the MDC problem in the literature for certain classes of graphs follows from some

polynomial-time reduction from the M I N I M U M C O L O R I N G problem. We pose this as an

open question to determine (if there exist) some family of graphs such that the M I N I M U M

C O L O R I N G problem is solvable in polynomial-time, but the MDC problem remains NP-hard

and vice versa.

Being a relatively new variation of domination-related coloring problems, the status of

computational complexity of the MDC problem is still open in many important graph classes,

including, some subclasses of bipartite graphs and chordal graphs (and its various subclasses).

Exploring the complexity of this problem and devising approximation algorithms for both general

and specific graph classes presents an interesting avenue for research.
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