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Lay Summary 

Alloys are created by mixing different elements together to improve overall 

properties. For many centuries, alloys have been created by first selecting a 

main element and then adding secondary elements to modify the properties. 

For example, superalloys use nickel as main element with titanium and 

aluminium as secondary additions for strength, and stainless steels use iron as 

main element with chromium as secondary addition for corrosion resistance. It 

was a long-held belief that mixing too many different elements together in large 

amounts will lead to brittle alloys that will not be useful for engineering 

applications. But in 2004, Prof. Brian Cantor and Prof. Jien-Wei Yeh showed 

that it is possible to make alloys with excellent properties by mixing five or 

even more elements in high concentrations. This discovery started the field of 

compositionally complex alloys (CCAs), which is a general name to denote 

alloys that have a lot of elements mixed in high concentration, and over the last 

20 years, many CCAs have been discovered that show much better properties 

than the traditional alloys. So how does one select which elements should be 

mixed, and in what concentrations, to create a CCA! At first thought, this may 

seem trivial as one might say – why not study all the possible combinations? 

But, to achieve this, we would need to make more than 10100 alloys. To put some 

context as to how large this number is, imagine if every living person on earth 

starts making 1000 alloys every second, then in 100 years from now we would 

have only 1021 alloys. Thus, the only way to overcome this is to use theoretical 

calculations, computer simulations or data-driven models to predict which 

compositions can give good properties and to then make only those handful of 

alloys for further study. This is the main motivation of this thesis wherein we 

have developed machine learning models that can generate rapid predictions 

for CCAs and can thus identify compositions where either we obtain the best 

properties or where we see sudden changes in the properties. Since machine 
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learning models are quite complex and don’t speak the same language as us, 

we have developed interfaces that, in principle, ask specific questions to these 

models and observe their response to build an understanding of how they 

function. We have also synthesized some unique and interesting alloys in our 

lab and analyzed their structure using microscopy to understand how elements 

interact with each other when they are mixed together. Thus, this thesis 

presents novel methodologies, models and results that shed new light on the 

design of CCAs. 
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Abstract 

Compositionally complex alloys (CCAs), containing large number of elements 

in high concentrations, represent an astronomical design space that can span 

more than 10100 possible compositions. The properties of CCAs can be 

improved significantly via compositional and microstructural tuning; but the 

traditional methodologies i.e., experimental alloy design and ab initio 

calculations are not suitable for efficient exploration of CCAs owing to their 

vast design space. Thus, machine learning (ML) has taken a center stage in 

recent years and various ML models have been reported for the exploration of 

CCAs. But these are often treated as a black box that offers no physical insights 

into the decision-making process of the trained models. In this thesis, we have 

developed interpretation frameworks, machine learning models and 

computational tools that enable targeted and physically informed exploration 

of CCAs. To address the black-box nature of ML models, two approaches have 

been implemented. Firstly, a neural network based ML has been reduced into 

a simpler and fundamentally interpretable mathematical model that can 

predict the probability of occurrence of FCC and BCC phases in CCAs. 

Secondly, a novel model-agnostic Compositional-Stimulus and Model-

Response (CoSMoR) framework has been developed to extract exact 

contribution of individual features. CoSMoR establishes the physical 

consistency of the nature of fit and provides material-specific specific insights 

into the decision-making process. We have also developed ML models for the 

prediction of short-range order (SRO) and hardness in CCAs and have 

validated them over a variety of complex alloy systems through comparison 

with ab-initio and experimental results wherein they reliably capture the linear, 

non-linear and non-monotonic changes in hardness and SRO as a function of 

alloy composition. We have also carried out experimental studies on CoCrNi 

ternary, CoCrCuNi quaternary and CoCrCuNi-M quinary alloys to probe the 
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effect of strong ordering and clustering binary pairs on the overall phase 

evolution. The strong and contrasting binary pair interactions encountered in 

these alloys provide a good test bed for not only validating but for also finding 

the limits of the ML models. To support our experimental studies and to 

address the challenges faced in identification and quantification of phases 

during microstructural characterization of CCAs using SEM-EDS data 

(especially when phase contrast is missing in SEM images), we have developed 

EDS-PhaSe software that performs phase segmentation and analysis through 

quantitative analysis of EDS elemental maps. All feature generation programs, 

trained ML models and interpretation routines developed as part of this thesis 

have been packaged as an open-source Python library (MAPAL). 
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Chapter 1: Introduction 

Compositionally complex alloys (CCAs) contain large number of principal 

elements, often five or more, in high concentrations. While various 

terminologies are associated with these alloys, such as High-Entropy Alloys 

(HEAs), multi-principal element alloys (MPEAs) and complex concentrated 

alloys, the central idea remains the same i.e., to explore the alloys in/around 

the center of multicomponent phase diagrams such that all the constituent 

elements are present in sufficiently high amounts (≥ 5 atomic %). Contrary to 

the traditional viewpoint that mixing of multiple elements in high 

concentrations would lead to formation of complex and brittle microstructures, 

in 1980s, Prof. Brian Cantor started experimenting with mixing up to 20 

elements and observed the surprising formation of a single-phase structure in 

five-component equiatomic CoCrFeMnNi. In 2004, research groups led by Prof. 

Brian Cantor and Prof. Jien-Wei Yeh reported formation of simple solid-

solution (SS) phases in various equiatomic alloys wherein the stability of SS 

phases was attributed largely to the high configurational entropy of mixing 

[1,2]. This new alloy design paradigm led to an explosion in research on CCAs 

resulting in discovery of various alloy systems with unique and promising 

properties. While the initial interest in CCAs was focused on finding systems 

that form simple SS phases, over the years it has branched into various domains 

involving the study of structure-property correlations, deformation 

mechanisms, alloy processing routes and short-range ordering behaviour [3–

11]. 
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The major challenges associated with exploration of CCAs are – a) an 

astronomical compositional space [8] (spanning more than 10100 unique 

compositions) that cannot be explored efficiently using time-intensive  

experimental route or ab-initio calculations, and b) a multitude of inter-atomic 

interactions (due to the presence of multiple elements in high concentrations) 

that need to be estimated accurately for computational modelling of CCAs. 

Over the last decade, data-driven models have evolved as a promising avenue 

for addressing these challenges. While the initial efforts (2007-2016) focused on 

the development of empirical and semi-empirical models to guide the phase 

selection in CCAs, the last few years (2018 onwards) have seen a significant 

shift towards the use of machine learning (ML) for exploring a broad range of 

aspects of CCAs such as phase selection, mechanical behaviour, corrosion 

behaviour and ordering behaviour. 

This chapter introduces the fundamental concepts of data-driven 

methodologies for training and validation of ML models, followed by a review 

of the data-driven models and alloy design paradigms that have been 

developed for exploring CCAs over the last decade. 

1.1 Data-driven approach to materials science 

Since ages, science has relied on theoretical and empirical frameworks to 

understand how our physical reality works. A theoretical approach relies on an 

underlying theory, mathematical framework and/or hypothesis to depict a 

reality which may then be validated through observations. On the contrary, an 

empirical approach is data-centric and explores the intricate dependencies and 

correlations that are hidden within the observed data to gain new insights 

about our reality. With the advent of computer age, the data-driven approaches 

have gained prominence due to the – (a) significant increase in the availability 

and accessibility of scientific data, (b) development of improved computer 

algorithms for processing and analyzing the data, and (c) exponential increase 

in computing power that drives the implementation of complex algorithms 

over large datasets. Thanks to the efforts of the entire computer science 
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community in providing open-source tools and extensive documentation, the 

key developments in artificial intelligence and machine learning (ML) have 

now spread to various science and engineering domains. Specific to materials 

science, we now have a dedicated field of materials informatics that applies the 

principles of data science, AI and ML for the discovery and development of 

materials. While the type and complexity of data-driven models may change 

from one problem to another, the key motivations that lie at the heart of every 

data-driven approach include – (a) interpolation and extrapolation of trends in 

existing data to predict behavior of new systems, (b) understanding cause-

effect relationships to develop rules or principles that link causality with 

observed outcomes, and (c) development of theoretical or semi-empirical 

frameworks that are guided by the trends identified within the data while also 

aligning with the underlying physical principles and theories. We will briefly 

discuss next the various aspects of data collection, feature engineering, model 

training and validation, and ML algorithms that are associated with 

development of ML models for materials science. 

1.1.1 Databases 

Gathering and storing of data lies at the core of any data-driven approach. In 

general, a database represents structured storage of information that can be 

read by machines (and often humans also). Every database follows some 

schema for organizing the information in a way that makes it readily accessible 

and can take many different forms based on the type and amount of 

information to be stored. Some typical examples are: a) relational databases that 

comprise of linked tables wherein primary keys link data within a table and 

foreign keys link one table with another table, b) hierarchical databases that 

categorize data in multiple levels using parent-child linkages, c) network 

databases that are similar to hierarchical databases but with additional 

flexibility that allows linking of children with multiple parents, and d) NoSQL 

databases that do not use the traditional table-based storage model and instead 

provide flexible schema to store data in different formats such as document 

databases (json objects), key-value databases or graph databases. While the 
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above methodologies are well suited for large scale projects involving multiple 

teams, it is often easier to run smaller personal projects using one’s own schema 

for managing the data, for example – a) using excel or csv files for storing 

tabular data, and b) maintaining directories and files linked to an index list as 

a pointer. 

Materials data is highly multi-modal in nature with a large variation in both 

the scope and the type of data. This makes the curation of materials datasets an 

extremely difficult task. For example, consolidating the multi-modal 

information such as tabular data, XRD patterns, SEM-EDS images, TEM 

images, electron diffraction patterns and temporal oxidation curves together is 

no easy task; that too when there are no clear standards on how the data is 

reported. Despite that, even before the age of modern AI and ML, many efforts 

were made to consolidate materials information. Notable amongst these are 

crystallographic databases (Pearson’s Crystal Data, Crystallography Open 

Database, ICDD database) and material handbooks (ASM handbooks, Springer 

Handbook of Materials Data). While these have been immensely useful in 

guiding materials research, they have some key limitations. The 

crystallographic databases are limited primarily to tasks that involve retrieval, 

solution or refinement of structures such as in XRD peak analysis, Rietveld 

refinement or creation of structures for ab initio calculations. The materials 

handbooks on the other hand contain a wide variety of data including 

thermodynamic data, phase diagrams, microstructures and diffusion 

coefficient. But the major problems are – a) the content is not easily machine 

readable and thus its integration with modern data analytics and machine 

learning tools is difficult, and b) they are not exhaustive enough to cover all 

materials or applications, especially the new and upcoming ones. In recent 

years, web scraping and text-mining has been used to convert unstructured 

experimental data present in scientific articles into structured datasets that can 

be then used for materials informatics [12–16]. Moreover, for problems where 

the available data is relatively sparse (such as high-entropy alloys), researchers 

have manually extracted datasets from literature [17–19]. Computational 

approaches, especially DFT-based ab-initio methods, provide another avenue 
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for generating materials data and contrary to experimental data, it is much 

easier to conform to well defined schema that is essential for large scale 

datasets. Thus, the last decade has witnessed remarkable efforts by various 

consortiums around the globe towards building open-source materials 

databases using ab-initio calculations. Some noteworthy mentions include 

Materials Project [20], AFLOW [21,22] , Open Quantum Materials Database 

(OQMD) [23,24] and NOMAD [25]. Since these databases contain DFT-

calculated information for compounds only, they do have a limitation in their 

application to metals and alloys where one frequently deals with solid 

solutions. Thus, for building data-driven approaches for such systems, the best 

option is to collect information from published literature, either manually or 

through combined use of web scraping and text-mining. The recent 

introduction of large language models offers some unique opportunities in 

automating this task and can pave the way forward for building structured 

experimental datasets for materials science. 
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Figure 1.1 A schematic representation of the multi-modal nature of data required for materials 
informatics 

1.1.2 Feature engineering 

The term ‘features’ in context of ML models is synonymous to term 

‘independent variables’ in the context of a mathematical function. Features act 

as the input for ML model wherein the ML algorithm then maps them to the 

output that is being predicted; similar to how a mathematical function y=f(x) 

maps the independent variable (x) to a dependent variable (y). Thus, the ML 

model essentially learns the dependencies between the input features and the 

model output. The features can be either numerical (continuous or discrete 

number values) or categorical (discrete values belonging to groups).  The choice 

of features depends on the problem at hand. For example, suppose we are 

interested in predicting the strength of an alloy wherein one would need to 

capture the effects of composition, processing route and microstructural 

characteristics. The processing route can be a categorical feature that can be 

handled in two different ways. The first option is to use a single feature that 

takes discrete values based on the route, e.g. as-cast=1, heat-treated=2, 

rolled=3. Second option is to define a separate Boolean feature for each of the 

possible routes and these will individually take a value of 1 or 0 based on 

whether that route was followed or not. The microstructure may be defined 

using features such as phase fractions, phase compositions and geometrical 

parameters for size and shapes of phases. The composition, in simplest way, 

may be incorporated using concentration of each element as a separate feature. 

From many theoretical frameworks developed over the years, we know that 

composition can have several effects such as solid-solution strengthening, 

internal strain generation, intermetallic formation and phase transitions that 

may affect the strength. When we use composition directly as a feature, we are 

assuming that the ML model will be able to learn all of these dependencies 

directly. But that is not possible due to the missing pieces of information such 

as atomic sizes, electronegativities, interaction parameters and valency that are 

not available to the ML model. Thus, it is always beneficial to convert 

composition into physical and thermodynamic features that capture various 
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aspects of the alloying process and are closely linked to the output property 

that is being predicted. This process is akin to integrating domain knowledge 

into the ML model to ensure that the model learning captures the underlying 

physics and is not merely statistical in nature. 

Before building any ML model, it is always advantageous to study the 

correlation between the various features and target variables present in the 

database. A correlation matrix is a table that expresses the correlation 

coefficients between variables and thus helps in visualizing the dependencies 

present in the data (especially if these dependencies are linear), as shown in 

Figure 1.2a. Pearson’s [26] and Spearman’s [27] correlation coefficients are the 

most commonly used correlation metrics. Both these coefficients can vary 

between -1 to +1 wherein a value of +1 or -1 indicates perfect linear 

relationship, positive and negative values represent direct and inverse relation 

respectively, and zero implies no correlation. Pearson’s correlation is a measure 

of the linear relationship between features and assumes that the features are 

normally distributed, whereas Spearman’s correlation is a measure of 

monotonicity of relationship between two features and does not assume 

normal distribution of features. Both Pearson’s and Spearman’s correlation are 

used only for continuous variables. If we have a binary variable, a ‘point 

biserial’ correlation coefficient [28] may be used to measure the relationship 

between a binary variable and a continuous variable. 

Multicollinearity between features is another important aspect of the database 

that must be probed before building ML models as it can have a significant 

impact on the perceived importance of a feature and thereby may lead to an 

incorrect interpretation of the learning. Multicollinearity occurs due to the 

presence of two or more variables in the database that are highly correlated to 

each other, as shown in Figure 1.2(b, c). This happens often due to the 

introduction of dependent variables that are a function of already existing 

independent variables in the dataset. There are generally two ways to root out 

multicollinear features: a) through a detailed study of correlation matrix and 

feature maps, and b) through hierarchical clustering of features and creation of 
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a dendrogram (Figure 1.2d) that groups collinear features based on a distance 

matrix [29]. 

 

Figure 1.2 Key aspects of feature engineering. (a) A schematic heat map of correlation 
coefficient matrix showing relationship between different features (Xi) and target parameter 
(Y). (b) Pair of features that show high collinearity. (c) Pair of features that show low 
collinearity. (d) A schematic dendrogram showing hierarchical clustering of features based on 
their collinearity. 

1.1.3 Training and validation of ML models 

All ML frameworks operate with an underlying hypothesis that the target 

property is fundamentally associated with the features being used as an input 

for the model; and thus, the training process estimates these dependencies 

based on the relationships that are captured in the dataset. This approach has 

been used extensively in building ML models for predicting various properties 

and behaviour of materials (including CCAs) [30–34]. Figure 1.3a shows the 

schematic representation of training and validation process in development of 

ML models. While building ML models, the dataset is generally divided into 

two parts – training and test set. The training set is used to train the model 

whereas the test set is used to evaluate the model. The deviation of a model 

from actual data is evaluated using a loss function that captures the error 

between predicted and actual output. The form of loss function can vary 

depending on the type of problem; for example, regression problems generally 

use mean absolute error or mean square error as the loss function whereas a 

log-loss function is used for classification problems. The training of ML model 

refers to the process of modifying the ML model parameters in order to 

minimize this loss function. This is done iteratively using optimizer functions 
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that update the model parameters in each iteration using loss values. The extent 

of modification that an optimizer can do in each iteration is controlled coarsely 

using a learning rate parameter. Depending on the size of the dataset, the 

training to test split generally ranges from 80:20 to 50:50. For sparse datasets, a 

better approach is to use K-fold cross validation that ensures that the model is 

exposed to all data points at least once, as shown in Figure 1.3b. During the 

training process, both training and test loss are monitored as a function of 

iterations, and the best-performing model is generally selected based on the 

minimization of test loss, as shown in Figure 1.3c.  For non-deterministic ML 

models such as neural networks, that can show high variance based on 

different initialization conditions, use of ensemble models is often desirable. 

An ensemble comprises of multiple models that provide independent 

predictions for the same input which are then clubbed to get an average or 

median prediction as the final output. 

 

Figure 1.3 Schematic for: (a) training and validation of machine learning models, (b) K-fold 
cross-validation methodology, and (c) selection of optimal model while preventing underfit or 
overfit. 
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1.1.4 Machine learning algorithms 

While all ML methodologies are aimed at identifying relationships hidden in 

the data in one way or another, these are broadly classified into three 

categories: a) Supervised learning – a target (output) variable is predicted from 

a set of descriptors (inputs) through generation of a function that maps inputs 

to target, b) Unsupervised learning – there is no specific target variable, but 

instead inherent dependencies between variables are exposed through 

different techniques such as clustering of population into groups, and c) 

Reinforcement learning – the model is trained to make specific decisions in 

such a way that it trains itself continuously through exposure to an 

environment wherein it is rewarded and punished from desired and undesired 

predictions respectively. 

Some of the commonly used ML algorithms include linear regression, logistic 

regression, decision tree, support vector machine (SVM), naïve-bayes, k-

nearest neighbours (kNN), K-Means clustering, random forest, gradient 

boosting and neural networks [35]. Amongst all these algorithms, neural 

networks have gained significant attention in the recent years due to their 

capability to: a) learn both linear and non-linear relationships in data, b) adapt 

to various kinds of input data structures like structured tables, images with 

spatial relationships, signals with temporal relationships and videos with both 

spatial and temporal relationships, and c) perform both regression and 

classification tasks with extremely high accuracy. But despite these advantages, 

neural networks suffer from their lack of interpretability since it is difficult to 

make out the exact decision-making process learnt by the model. To address 

this, there are some methodologies that have been adopted to impart 

interpretability or explainability to these models [36–39]. The choice of 

algorithm is often dictated by three factors: a) the type of decision boundaries 

that are to be learnt, b) the type of task i.e., regression or classification and the 

nature of target variable, and c) the amount of interpretability desired from the 

trained model. 
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1.2 Data-driven models for phase selection in CCAs 

They physical properties of an alloy are strongly dependent on the phases 

present, and thus, a targeted alloy design approach requires prior knowledge 

of the phases that will form in an alloy. This becomes a challenge for CCAs 

since the mixing of different elements can result in a variety of single-phase or 

multi-phase microstructures containing solid solution (SS) phases and 

Intermetallics (IM). Thus, the phase selection in CCAs has been by-far the most 

explored problem and numerous data-driven methodologies have been 

implemented over the years to address it.  These approaches have been 

classified into two categories here: a) parameter-based approaches wherein a 

single or combination of parameters have been used to draw phase 

classification boundaries, and b) ML-based approaches wherein a group of 

features have been used to train ML algorithms for phase prediction. 

1.2.1 Parameter-based phase selection 

Since the initial interest in CCAs was focused around finding alloys with 

simple SS phases, a major portion of the earlier work in data-driven phase 

selection was centered around two key classifications: a) whether the alloy will 

form only simple SS phases, only IM phases or a combination of both! and b) 

whether the structure of SS phase will be FCC or BCC! 

Predicting formation of simple-solid-solution vs. intermetallic phases: The 

empirical and semi-empirical rules for predicting the formation of SS and IM 

phases in CCAs are generally based on two types of parameters: a) 

thermodynamic parameters such as configurational entropy of mixing (∆𝑆𝑚𝑖𝑥) 

and mixing enthalpy (∆𝐻𝑚𝑖𝑥), and b) lattice distortion parameters such as size 

asymmetry, strain energy and geometric packing state. The configurational 

entropy of mixing is calculated as: ∆𝑆𝑚𝑖𝑥 = −𝑅 ∑ 𝑐𝑖 ln 𝑐𝑖
𝑛
𝑖=1 , where 𝑅 is the 

universal gas constant and 𝑐𝑖 is the concentration of ith element. The enthalpy 

of mixing is calculated using Takeuchi’s extended regular solution model [40] 

as: ∆𝐻𝑚𝑖𝑥 = ∑ 4∆𝐻𝑖𝑗
𝑚𝑖𝑥𝑛

𝑖=1,   𝑖≠𝑗 𝑐𝑖𝑐𝑗, where ∆𝐻𝑖𝑗
𝑚𝑖𝑥 is the mixing enthalpy of 

equiatomic binary i-j calculated using Miedema’s model [41,42]. While various 
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improvements have been proposed for ∆𝐻𝑚𝑖𝑥 calculations in ternary systems 

[43,44], they are yet to be extended to multi-component alloys. Table 1.1 lists 

the existing parameter-based models for predicting formation of simple SS 

phases in CCAs along with the performance of each model as reported by Tsai 

et al. [45] in a recent study. These rules lay out the conditions under which only 

simple SS phases will be observed i.e., outside these regions IM phases are 

predicted to appear in the alloy. While a variety of parameters are used in these 

rules, the key underlying principles comprise: a) high ∆𝑆𝑚𝑖𝑥 stabilizes the SS 

phases, b) large negative ∆𝐻𝑚𝑖𝑥 drives compound formation and a large 

positive ∆𝐻𝑚𝑖𝑥 leads to clustering, c) large asymmetry in atomic sizes 

destabilizes the SS phases due to introduction of lattice strains, and d) presence 

of atomic-pairs with high intermetallic formation tendency (i.e., high 

∆𝐻𝐼𝑀/∆𝐻𝑚𝑖𝑥 ratio) promotes appearance of IM phases. Here, we refer to 

ordering as the tendency of elements to mix with each other, in a periodic 

manner (at least locally) and clustering as the tendency for elements to 

segregate away from each other forming elemental clusters in case of binary 

systems. It is important to note that while these rules give some general insights 

into SS vs. IM stability in CCAs, the performance of these parameter-based 

models is not very good as they exhibit low accuracy and high degree of 

unbalance, as seen in Table 1.1. This is primarily due to: a) the simplistic nature 

of these rules as they utilize only a few parameters that are insufficient to 

directly capture all of the physics associated with the alloying process, and b) 

the small size of datasets used to formulate these rules. To overcome this, ML 

based phase prediction models have gained significant attention in recent years 

and have been discussed in the next section. 

FCC/BCC structure prediction: In 2011, Guo et al. [46] proposed Valence 

Electron Count (VEC) as a criterion for delineating the stability of FCC and BCC 

SS wherein VEC ≥ 8, (6.7 ≤ VEC < 8) and VEC<6.87 results in formation of FCC, 

(FCC+BCC) and BCC SS phases respectively. This simple rule has stood the test 

of time and has been reinforced in numerous later works wherein VEC appears 

as the single most important factor in determining BCC vs. FCC stability. But, 

at the same time, it is important to point out two limitations of this rule: a) it 
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cannot explain FCC/BCC stability variations in systems wherein VEC remains 

constant for e.g., Fex-(AlCoCr0.5Ni2.5)1-x [47], and b) there are exceptions to the 

bounds of 6.7 and 8 put on VEC since these have been estimated statistically 

and do not represent strict absolute boundaries for FCC/BCC stability. 

Recently, Beniwal and Ray [19] identified electronegativity (χAllen) and cohesive 

energy (Ecoh) as additional parameters to guide identification of FCC vs. BCC 

stability domains based on binary-feature maps. They reported an improved 

empirical classification criterion: BCC (VEC < 6.8 and Ecoh > 3.55 eV), FCC (VEC 

> 8 and Ecoh < 5.25 eV) and BCC + FCC (6.8 < VEC < 8 and 3.55 eV < Ecoh < 5.25 

eV). 
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Table 1.1 List of parameter-based models developed for phase classification in CCAs [48], along with the description of parameters used and the performance of each 
model as measured by Tsai et al. [45] using degree of unbalance (DoU) and accuracy as metrics  

Model Ref. Criterion Description of parameters Performance [45] 
 

DoU Accuracy 

Yang and Zhang, 
2012 [49] 

𝛺 ≥ 1.1 & 𝛿𝑟 ≤ 0.066 

𝛺 = 𝑇𝑚∆𝑆𝑚𝑖𝑥/∆𝐻𝑚𝑖𝑥                           𝛿𝑟 = √∑ 𝑐𝑖 (1 −
𝑟𝑖

𝑟̅
 )

2
𝑛
𝑖=1   

where, 𝑇𝑚 and 𝑟̅ are average melting temperature and average atomic radius respectively obtained using 
rule-of-mixture; 𝑐𝑖 is the concentration of ith element; and 𝑛 is the number of elements in alloy 

∆𝑆𝑚𝑖𝑥 = −𝑅 ∑ 𝑐𝑖 ln 𝑐𝑖
𝑛
𝑖=1                     ∆𝐻𝑚𝑖𝑥 = ∑ 4∆𝐻𝑖𝑗

𝑚𝑖𝑥𝑛
𝑖=1,   𝑖≠𝑗 𝑐𝑖𝑐𝑗  

where, ∆𝐻𝑖𝑗
𝑚𝑖𝑥 is the mixing enthalpy of equiatomic binary i-j calculated using Miedema’s model [41] 

83% 48% 

Guo et al., 2013 
[50] 

−11.6 < ∆𝐻𝑚𝑖𝑥 < 3.2 kJ 
mol−1 

& 𝛿𝑟 < 0.066 

∆𝐻𝑚𝑖𝑥 = ∑ 4∆𝐻𝑖𝑗
𝑚𝑖𝑥𝑛

𝑖=1,   𝑖≠𝑗 𝑐𝑖𝑐𝑗                   𝛿𝑟 = √∑ 𝑐𝑖 (1 −
𝑟𝑖

𝑟̅
 )

2
𝑛
𝑖=1   

where, ∆𝐻𝑖𝑗
𝑚𝑖𝑥 is the mixing enthalpy of equiatomic binary i-j calculated using Miedema’s model [41], 𝑟̅ 

is average atomic radius obtained using rule-of-mixture; 𝑐𝑖 and 𝑟𝑖 is the concentration and radius of ith 
element; and 𝑛 is the number of elements in alloy 

53% 61% 

Wang et al., 2015 
[51] 

−11.6 < ∆𝐻𝑚𝑖𝑥 < 3.2 kJ 
mol−1         &  𝛾 < 1.175 

𝛾 = 𝜔𝑆/𝜔𝐿              𝜔𝑆 = (1 − √((𝑟𝑆 + 𝑟̅)2 − 𝑟̅2)/(𝑟𝑆 + 𝑟̅)2)           𝜔𝐿 = (1 − √((𝑟𝐿 + 𝑟̅)2 − 𝑟̅2)/(𝑟𝐿 + 𝑟̅)2) 

where, 𝑟𝑆 and 𝑟𝐿 are the radii of smallest and largest atoms in alloy 

10% 54% 

Singh et al., 2014 
[52] 

𝛬 > 0.96 𝛬 = ∆𝑆𝑚𝑖𝑥/𝛿𝑟
2                         ∆𝑆𝑚𝑖𝑥 = −𝑅 ∑ 𝑐𝑖 ln 𝑐𝑖

𝑛
𝑖=1                              𝛿𝑟 = √∑ 𝑐𝑖 (1 −

𝑟𝑖

𝑟̅
 )

2
𝑛
𝑖=1   -38% 63% 
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Model Ref. Criterion Description of parameters Performance [45] 
 

DoU Accuracy 

where, 𝑟̅ is average atomic radius obtained using rule-of-mixture; 𝑐𝑖 and 𝑟𝑖 is the concentration and radius 
of ith element; and 𝑛 is the number of elements in alloy 

Ye et al., 2015 
[53] 

𝜙 ≥ 20 

𝜙 = (∆𝑆𝑚𝑖𝑥 − 𝑆𝐻)/|𝑆𝐸| 

𝑆𝐻 = |∆𝐻𝑚𝑖𝑥|/𝑇𝑚 

where, 𝑆𝐸 is the excess configurational entropy of mixing [54] 

-23% 61% 

Troparevsky et 
al., 2015 [55] 

−𝑇𝑎𝑛𝑛∆𝑆𝑚𝑖𝑥 < ∆𝐻𝑓 < 

3.57 meV/atom 

∆𝐻𝑓 is the formation enthalpy (∆𝐻𝑖𝑗
𝐼𝑀) of most stable binary IM compound (i-j) possible in alloy. 

∆𝐻𝑖𝑗
𝐼𝑀values for various i-j pairs were calculated by authors using DFT calculations. 

-45% 72% 

Senkov & 
Miracle, 2016 
[56] 

𝜅1
𝑐𝑟 > ∆𝐻𝐼𝑀/∆𝐻𝑚𝑖𝑥 

𝜅1
𝑐𝑟 = 𝑇𝑚∆𝑆𝑚𝑖𝑥(1 − 𝜅2)/|∆𝐻𝑚𝑖𝑥| 

𝜅2 = 0.6 (assessed using a sub-lattice model) 
-12% 72% 

King et al., 2016 
[57] 

Փ  ≥ 1 

Փ  = −∆𝐺𝑆𝑆/|∆𝐺𝑚𝑎𝑥| 

∆𝐺𝑆𝑆 = ∆𝐻𝑚𝑖𝑥 − 𝑇𝑚∆𝑆𝑚𝑖𝑥 

where, ∆𝐻𝑚𝑖𝑥 includes chemical, elastic and structural contributions [41];  

∆𝐺𝑚𝑎𝑥  is the highest (segregation) or lowest (intermetallic) Gibbs free energy amongst all binary systems 
that are possible from elements constituting the alloy 

-84% 63% 
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1.2.2 Inferring phase selection using Machine Learning 

To overcome the limitations posed by parameter-based models, a large number 

of ML based models have been reported in recent years to predict phase 

selection in CCAs [19,58–65], as listed in Table 1.2. A majority of these models 

are directed towards predicting whether the alloy will contain only simple SS 

phases or if it will contain IM phases; and only a few models focus on the 

identification of crystal structure of SS phases [19,58,61]. The implementation 

of ML requires a database to start out with; and for phase selection, the 

database must contain phase information of each alloy obtained via. 

experimental characterization or first-principles calculations. The phase 

information is further encoded into integer labels, for e.g., (SS→0, SS+IM→1, 

and IM→2) or (FCC→0, BCC→1, and FCC+BCC→2), wherein these labels 

comprise the target space for model training. For a more exhaustive multi-label 

classification, the phase information can also be encoded as a 3-element binary 

vector as shown by Beniwal and Ray [19], wherein the vector-elements 

correspond to presence of FCC, BCC and IM phases, i.e., (FCC→[1,0,0], 

FCC+BCC→[1,1,0], FCC+BCC+IM→[1,1,1], and so on). Here, the model is 

trained to predict this 3-element binary vector for each alloy i.e., it predicts the 

probability of occurrence of each phase – FCC, BCC and IM. This approach 

allows a seven-label classification wherein both SS vs. IM and FCC vs. BCC 

classifications can be achieved without compromising the model accuracy [19], 

as shown in Figure 1.4. 

 

Figure 1.4 Overview of the machine learning model developed by Beniwal and Ray for phase 
selection in CCAs [19]. 
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For ML implementation, each alloy is represented through a set of descriptors 

that capture the atomic, chemical, physical or thermodynamic information 

about the alloy. An extensive list of such descriptors for CCAs has been 

provided by Roy and Balasubramanian [66]. The features for ML model are 

selected based on their statistical correlation and physical relevance to alloy 

phase stability, and the parameter-based models discussed earlier provide a 

useful guide as to which descriptors are important for phase predictions. VEC, 

atomic size asymmetry, cohesive energy, enthalpy of mixing and entropy of 

mixing are amongst the most common features that appear repeatedly in ML 

models for phase prediction in CCAs. 

Table 1.2 lists the various ML models, along with the information about dataset, 

features, algorithms, and performance, that have been developed over the last 

three years for predicting phase selection in CCAs. These models exhibit a 

considerably higher classification accuracy as compared to the parameter-

based models listed in Table 1.1. This is primarily due to two reasons: a) the 

multi-dimensional nature of classification boundaries learnt by ML models due 

to the use of large number of features, and b) use of larger datasets which 

amounts to more training examples for the model to learn from. Through 

continuous improvements in the ML models, a large pool of material 

descriptors is now available for use as model features and the feature selection 

process is often carried out based on statistical correlation, intuitive physical 

significance and/or feature-importance study. A systematic study to identify 

the multi-collinearity and physical-overlapping of these features is still lacking. 

The usual label classification approach only predicts presence/absence of a 

phase and does not give any idea about the quantitative phase fractions. In a 

recent work, Beniwal and Ray [19] proposed an approach wherein the 

predicted probabilities of occurrence of phases are treated as a measure of 

phase stabilities and are thereby transformed into phase fraction estimates. This 

was achieved this through a combined use of 3-element binary vectors, that 

capture phase information, along with a softmax function in the output layer 
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of the neural network that restricts the model outputs such that the summation 

of outputs (phase fractions) cannot exceed a value of 1. The ability of the model 

to capture both linear and non-linear variations in the phase fractions of FCC, 

BCC and IM phases, as a function of alloy composition, was demonstrated over 

a variety of CCAs through comparison with experimental and CALPHAD 

results [19]. 

1.3 Data-driven models for mechanical behaviour of CCAs 

Since CCAs span an astronomical compositional space, the ability to predict 

mechanical properties is imperative for targeted alloy design. Various ML 

models, as listed in Table 1.3, have been reported in recent years for prediction 

of mechanical properties such as hardness, Young’s Modulus and elastic 

constants [58,67–72]. Table 1.3 also presents details concerning the dataset, 

features, algorithm and performance for each model. In one of the earlier 

works, Chang et al. [68] developed a simple neural network model to predict 

the Vickers hardness of Al-Co-Cr-Cu-Fe-Mn-Mo-Ni containing alloy systems. 

They used elemental concentrations as the model inputs, which makes the 

implementation easy but renders the model unusable for probing alloy systems 

that are away from this 8-element space used to train the model. Thus, all future 

works have used a more robust and general modelling approach wherein the 

compositional inputs are replaced with composition-dependent physical and 

thermodynamic features that are relevant to alloy hardness. Since the hardness 

of an alloy is closely associated with the type of phases present, a significant 

overlap can be seen between the features that have been used for phase 

selection (Table 1.2) and hardness (Table 1.3) in CCAs. A variety of ML 

algorithms, as listed in Table 1.3, have been used to model the Vickers hardness, 

Young’s modulus and elastic constants in CCAs using physical descriptors 

(such as radius asymmetry, melting temperature, density, elastic modulus 

asymmetry and VEC) and thermodynamic descriptors (enthalpy and entropy 

of mixing). 
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Table 1.2 List of ML based models for phase selection in CCAs along with the details of classification labels, dataset, features and algorithms used in the model training 
[48]. The accuracy of each model is also mentioned. 

Model Ref. Classification Labels Training Dataset Features ML algorithms Classification Accuracy 

Islam et al., 2018 
[59] 

AM, SS, IM Exp., 118 alloys 
∆𝐻𝑚𝑖𝑥 , ∆𝑆𝑚𝑖𝑥 , 𝛿𝑟, 
𝑉𝐸𝐶, ∆𝜒 

Neural Network 83% 

Huang et al., 
2019 [60] 

SS, SS+IM, IM Exp., 401 alloys 
∆𝐻𝑚𝑖𝑥 , ∆𝑆𝑚𝑖𝑥 , 𝛿𝑟, 
𝑉𝐸𝐶, ∆𝜒 

K-nearest neighbours, Support 
Vector Machine, Neural 
Network 

SS vs. IM: 86.7% 

SS+IM vs. IM: 94.3% 

SS vs SS+IM: 78.9% 

Li & Guo, 2019 
[61] 

FCC, BCC, NSP (Not 
forming Single Phase SS) 

Exp., 322 alloys 
∆𝐻𝑚𝑖𝑥 , ∆𝑆𝑚𝑖𝑥 , 𝛿𝑟, 
𝑉𝐸𝐶, ∆𝜒, 𝑇𝑚 

Support Vector Machine BCC:60%; FCC:75%; NSP:98% 

Zhou et al., 2019 
[62] 

AM, SS, IM 
Exp., 601 alloys 
(binary, ternary & 
higher-order alloys) 

∆𝐻𝑚𝑖𝑥 , ∆𝑆𝑚𝑖𝑥 , 𝛿𝑟, 
𝑉𝐸𝐶, ∆𝜒, 𝑇𝑚, 𝑟̅, 𝜒̅, 
𝛿𝑇𝑚

, ∆𝐾, ∆𝑉𝐸𝐶, 

(∆𝐻𝑚𝑖𝑥)𝐿𝑀, 𝐾 

Neural Network, Convolutional 
Neural Network, Support Vector 
Machine 

AM:95.6% 

SS:97.8% 

IM:92.2% 

Roy et al., 2020 
[58] 

FCC, BCC, FCC+BCC Exp., 329 alloys 

∆𝜒𝑃𝑎𝑢𝑙𝑖𝑛𝑔, ∆𝐻𝑚𝑖𝑥 , 

∆𝑆𝑚𝑖𝑥 , 𝛿𝑟, 𝛬, 𝑇𝑚, 𝑎𝑚, 
𝛺, ∆𝑎, ∆𝑇𝑚 

Gradient Boost Classification 70% 
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Model Ref. Classification Labels Training Dataset Features ML algorithms Classification Accuracy 

Zhang et al., 
2020 [63] 

FCC, BCC, FCC+BCC, 
SS, NSS (Not forming 
SS) 

Exp., 550 alloys 
A total of 70 
material descriptors 
used 

Linear Discriminant Analysis, 
Decision Tree, Naïve Bayes 
Classification, Neural Network, 
Random Forest, Support Vector 
Machine 

FCC, BCC, FCC+BCC: 88.7% 

SS, NSS: 91.3% 

Jaiswal et al., 
2021 [64] 

FCC, BCC, FCC+BCC Exp., 664 alloys 
∆𝐻𝑚𝑖𝑥 , ∆𝑆𝑚𝑖𝑥 , 𝛿𝑟, 
𝑉𝐸𝐶, ∆𝜒, 𝑇𝑚, 𝜒̅, 𝛺 

Logistic Regression, Random 
Forest, Support Vector Machine, 
Decision Tree, Gradient Boosting 
Decision Tree, Neural Network 

86% 

Lee et al., 2021 
[65] 

SS, IM, SS+IM, AM Exp., 989 alloys 

∆𝐻𝑚𝑖𝑥 , ∆𝑆𝑚𝑖𝑥 , 𝛿𝑟, 
𝑉𝐸𝐶, ∆𝜒, 𝑇𝑚, 𝑟̅, 𝜒̅, 
𝛿𝑇𝑚

, ∆𝐾, ∆𝑉𝐸𝐶, 

(∆𝐻𝑚𝑖𝑥)𝐿𝑀, 𝐾 

Deep Neural Network, Bayesian 
optimization, Generative 
Adversarial Network 

SS: 89% 

SS+IM: 90% 

IM: 94% 

AM: 100% 

Beniwal & Ray, 
2021 [19] 

FCC, BCC, FCC+BCC, 
FCC+IM, BCC+IM, 
FCC+BCC+IM, IM 

Exp., 323 alloys 

𝛿𝑟
𝑐𝑜𝑣, 𝛿𝑟

𝑚𝑒𝑡 , ∆𝐻𝑚𝑖𝑥, 
∆𝐻𝑒𝑙 ,  ∆𝑆𝑚𝑖𝑥 , 𝑉𝐸𝐶, 𝜌, 
𝛿𝐸, 𝛿𝐺, 𝛿𝐾, 𝜒̅𝐴𝑙𝑙𝑒𝑛, 
𝐸𝑐𝑜ℎ , 𝛿𝐸𝑐𝑜ℎ

, 𝛿𝑉𝑚
 

Deep Neural Network Ensemble 

FCC: 90%, BCC: 93%, 
FCC+BCC: 70%, FCC+IM: 82%, 
BCC+IM: 77%, FCC+BCC+IM: 
71%, IM:71% 
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1.4 Data-driven models for predicting ordering in CCAs 

The ordering behaviour of alloys represents the phenomenon where symmetry 

of the atomic arrangement is broken while the overall crystal structure remains 

the same. The extent of ordering in an alloy can be described through Warren-

Cowley short-range order (SRO) parameter [73] 𝛼𝑙
𝑖𝑗

 that is defined as: 𝛼𝑙
𝑖𝑗

= 1 −

𝑃𝑙
𝑖|𝑗

𝑐𝑖
, where 𝑐𝑖 is the concentration of atom i, and 𝑃𝑙

𝑖|𝑗
 is the probability of finding 

atom i at the l-th neighbor for a given atom j. The 𝛼𝑙
𝑖𝑗

 value is calculated for 

multiple atomic configurations followed by an ensemble averaging. Thus, the 

SRO for a CCA is not a single value but is instead a matrix that contains one 

SRO parameter for each unique binary present in the alloy. Moreover, the SRO 

parameter of each binary-pair is affected not only by that binary itself but by 

all the atomic interactions that exist in a material simultaneously. Owing to the 

limited dataset and immense physical complexity associated with 

manifestation of SRO in CCAs, there is hardly any ML model in literature that 

attempts to predict it. 

To bypass the complexities associated with multi-valued SRO matrix, Yin et al. 

[74] developed an alternative Variational Autoencoder (VAE)-based order 

parameter that compresses the ordering information into a single valued 

parameter. VAEs are based on 3D convolutional neural networks (CNNs) and 

allow encoding of the information into lower-dimensional latent variables in 

such a way that the data can be reconstructed through decoding process [75,76]. 

Their model input comprises a cubic lattice where the atoms sit at BCC lattice 

sites and each atom type was placed in a different channel. Each feature 

extraction (convolutional) layer, except for the final output layer, is followed 

by an average pooling layer. A dataset of 105 BCC-lattice based atomic 

configurations, comprising both ordered and disordered configurations, was 

generated using DFT-based Monte Carlo simulations at different temperatures; 

and an 80% to 20% split was used for training and testing respectively. 

Manhattan Distance metric [77], calculated in the VAE latent space, was used 

as an order parameter for order-disorder phase transitions which satisfies the
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Table 1.3 List of ML based models for prediction of mechanical properties in CCAs along with details of target property, dataset, features, and algorithms used in the 
model training [48]. The accuracy of each model is also mentioned, wherever available. 

Model Ref. 
Target 
Property 

Training 
Dataset 

Features ML algorithms Model Performance 

Chang et al., 
2019 [68] 

Vickers 
Hardness 

Exp., 91 
alloys 

𝑐𝑒𝑙  (𝑒𝑙 = 𝐴𝑙, 𝐶𝑜, 𝐶𝑟, 𝐶𝑢, 𝐹𝑒, 𝑀𝑛, 
𝑀𝑜, 𝑁𝑖) 

Neural Network 
R2=0.94; 

MAE=36 HV 

Rickman et al., 
2019 [67] 

Vickers 
Hardness 

Exp., 82 
alloys 

∆𝐻𝑚𝑖𝑥 , ∆𝑆𝑚𝑖𝑥 , 𝛿𝑟, 𝑇𝑚, 𝛺, 𝛿𝐸, 𝑉𝐸𝐶 
Canonical-Correlation Analysis, 
Genetic Algorithm 

- 

Wen et al., 2019 
[69] 

Vickers 
Hardness 

Exp., 155 
alloys 

∆𝐻𝑚𝑖𝑥 , ∆𝑆𝑚𝑖𝑥 , 𝛿𝑟, 𝛺, 𝛬, 𝑉𝐸𝐶, ∆𝜒, 
𝛾, (∆𝜒)𝐿𝑀, 𝑒/𝑎, 𝐸𝑐𝑜ℎ , η, (𝛿)𝐿𝑀, 𝐴, 

𝐹, 𝑤, 𝐺̅, 𝛿𝐺, (∆𝐺)𝐿𝑀, 𝜇 

Linear Regression, Polynomial 
Regression, Support Vector Regression, 
Neural Network, K-nearest neighbour 

Best Model: Support Vector 
Regression 

RMSE=68 

Roy et al., 2020 
[58] 

Young’s 
Modulus 

Exp., 87 
alloys 

∆𝜒𝑃𝑎𝑢𝑙𝑖𝑛𝑔, ∆𝐻𝑚𝑖𝑥 , ∆𝑆𝑚𝑖𝑥 , 𝛿𝑟, 𝛬, 

𝑇𝑚, 𝑎𝑚, 𝛺, ∆𝑎, ∆T𝑚 
Gradient Boost Regression 

MAE = 36 GPa 

Avg. % Error=18.2% 

Khakurel at al., 
2021 [71] 

Young’s 
Modulus 

Exp., Two 
datasets (154 
& 96 alloys) 

∆𝜒𝑃𝑎𝑢𝑙𝑖𝑛𝑔, ∆𝐻𝑚𝑖𝑥 , ∆𝑆𝑚𝑖𝑥 , 𝛿𝑟, 𝛬, 

𝑇𝑚, 𝑎𝑚, 𝛺, ∆𝑎, ∆T𝑚, 𝑉𝐸𝐶 

Gradient Boosting, XGBoost, Random 
Forest, Ada Boost, Support Vector 
Regression, Regression (Lasso, Ridge & 
Gaussian) 

Best Model: Gradient Boosting 

Only Refractory dataset: MAE=6.2 
GPa, R2=0.9 

All dataset: MAE=10.4 GPa, R2=0.71 
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Model Ref. 
Target 
Property 

Training 
Dataset 

Features ML algorithms Model Performance 

Revi et al., 2021 
[70] 

Elastic 
Constants 

Materials 
Project, 1229 
binary alloys 

𝑟̅, 𝜒̅, 𝐼𝑃̅̅ ̅, 𝜌̅, 𝑉𝐸𝐶, 𝑇𝑚, 𝐾, 𝐶̅, 𝑘̅, 𝜈̅ 
Linear Regression, Random Forest, 
Neural Network 

Best Model: Random Forest 

MAE=23.5 (DFT)/ 19.3 (Exp.) 

Yang et al., 2022 
[72] 

Vickers 
Hardness 

Exp., 370 
alloys 

𝑉𝐸𝐶, 𝑇𝑚, ∆m, ∆Col, ∆V Support Vector Regression 
RMSE=75 

R2=0.88 
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properties that: i) it should have non-zero values in ordered phase and 

approach zero in disordered phase, and ii) its second-order moment should 

peak at phase transitions. Yin et al. [74] applied this scalar VAE-based order 

parameter to study phase transitions in MoNbTaW, MoNbTaVW & 

AlxCoCrFeNi CCAs; and observed that even though it cannot capture all the 

physical information related to phase transitions, it has the capability of 

quantifying degree of ordering and phase-transition temperatures. 

1.5 Research gaps and motivation 

While various ML models have been reported for predicting phase selection 

and mechanical properties in CCAs, the aspects related to model interpretation 

and physical consistency of the model learning are often ignored. Moreover, 

while the primary aim of ML models for CCAs is to explore the vast 

compositional space, most reports only analyze the statistical performance over 

discrete compositions and don’t probe deeper into how well the model learning 

interpolates or extrapolates along continuous compositional variations. We 

believe that these nuances are of utmost importance in establishing the 

reliability and applicability of ML models and thus, in this thesis, we will 

develop data-driven models and computational frameworks for CCAs with 

three key tenets: a) Firstly, we want to ensure that the ML models are not 

treated as black-box models and will thus develop methodologies that can 

impart physical meaning to the model learning, b) Secondly, we will develop 

ML models for SRO and hardness prediction in CCAs and will explore their 

variation over continuous compositional pathways while using the 

interpretation methodologies to  extract physical insights, and c) Finally, we 

will experimentally study alloy compositions which show interesting and 

contrasting physics that can help in both validating as well as finding 

limitations of the ML models.  
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1.6 Outline of the thesis 

Chapter 1 provides an introduction to materials informatics, reviews the 

current state of the art and contains brief description of data-driven 

methodologies including feature engineering, types of machine learning 

models and their training and validation process. It also lists key literature 

related to the data-driven exploration of phase selection, mechanical properties 

and ordering behavior in CCAs. 

Chapter 2 builds on our prior work on phase selection [19] (not included in the 

thesis) and presents a mathematical model for FCC vs. BCC phase selection in 

CCAs that was developed through the reduction of complex neural network 

models into a significantly simpler and interpretable mathematical expression. 

This work presents a promising way for imparting interpretability to ML 

models through their reduction to simpler, but meaningful, frameworks. 

Chapter 3 presents a novel model-agnostic Compositional-Stimulus and 

Model-Response (CoSMoR) framework that can be applied to any 

composition-based ML model (irrespective of the algorithm used) to calculate 

the exact contribution of each feature towards the manifestation of target 

material property along a continuous compositional pathway. It showcases the 

capabilities of CoSMoR through its implementation on understanding phase 

selection in CCAs. 

Chapter 4 presents a novel ML framework for predicting the short-range order 

in CCAs using variational auto-encoders that map a three-dimensional 

representation of all the binary interactions in an alloy to a two-dimensional 

SRO matrix containing Warren-Cowley SRO parameters for each unique 

binary. The model is further integrated with CoSMoR to extract contributions 

of binary pairs and physical features towards the manifestation of SRO in any 

given alloy system. 

Chapter 5 presents a ML model for hardness prediction in CCAs that captures 

the essential physical and thermodynamic features contributing to hardness 
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and allows high-throughput exploration of multi-dimensional compositional 

space. The model is validated over diverse alloy systems that pose unique 

challenges due to the presence of ordering and clustering pairs, as well as 

vacancy-stabilized novel structures. The model is further integrated with 

CoSMoR to distill the physical origins of hardness in these alloys, as seen by 

the ML model. 

Chapter 6 presents experimental studies on CoCrNi ternary, CoCrCuNi 

quaternary and CoCrCuNi-M quinary alloys to probe the effect of strong 

ordering and clustering binary pairs on the overall phase evolution. The strong 

and contrasting binary pair interactions encountered in these alloys provide a 

good test bed for not only validating but for also finding the limits of the 

hardness and phase selection models developed in earlier chapters. 

Chapter 7 presents a concise summary as well as the future outlook for the 

research presented in this thesis. 
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Chapter 2: Reduced mathematical model for FCC 

vs BCC phase selection in compositionally 

complex alloys 

2.1 Introduction 

The exact quantitative rules governing phase stabilities in CCAs are not well-

understood, despite a reasonable qualitative understanding, which poses a 

challenge for predicting phase stabilities and phase fractions in these systems.  

Traditionally, phase stability has been studied theoretically using a variety of 

techniques such as the CALPHAD method [78], DFT calculations [79] or even 

semi-empirical thermodynamics such as extended Miedema’s model [80]. Each 

of these techniques have their own limitations – the CALPHAD approach is 

limited by the availability of a sufficiently extensive database; DFT calculations 

are inherently limited for solid solutions and are computationally expensive; 

Miedema’s approach, though convenient, does not capture the entire physics 

and has relatively low accuracy compared to the other methods [81,82]. Of late, 

ML based approaches have endeavored to fill this gap [83–85]. While various 

ML models have been developed for phase prediction in CCAs [48,83,86–93], 

these suffer from a general lack of interpretability since the exact decision-

making process is hidden. This limits the physical insights that can be obtained 

https://doi.org/10.1016/j.mtla.2022.101632
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from these models. Recently, explanatory model analysis techniques (such as 

Ceteris-Paribus profiles, breakDown analysis, SHapley Additive exPlanations 

and compositional-stimulus model-response study) have been applied to 

extract insights into the decision-making process of ML models for CCAs 

[37,72,94–96]. While these approaches do not make the ML models more 

interpretable by design, they do enable extraction of important physical 

insights from trained models based on local and global sensitivity of the model. 

An alternative data-driven approach is symbolic regression (SR) that creates 

fundamentally interpretable models by searching the space of mathematical 

expressions to identify a mathematical model that best fits the given dataset 

[38,97–101]. Since the formulation of best-fit model in SR is driven primarily by 

the statistical metrics, the final model form is often susceptible to be 

unrepresentative of any physical phenomenon. As an alternative to these 

approaches and with the aim of building a mathematical expression for 

occurrence probability of FCC and BCC phases in CCAs, here we present a 

mathematical reduction of physics-based and data-driven neural network 

(NN) models that were trained to predict the probability of occurrence of FCC 

and BCC phases in CCAs. The reduced model imparts interpretability through 

quantification of feature contributions towards phase occurrence probabilities 

and thus, exposes the decision-making process over discrete as well as 

continuous compositional spaces. 

The mixing of different elements in large concentrations in CCAs can result in 

a variety of phases including simple solid solution (SS) phases and 

intermetallics (IM). The structure of SS phase has a huge impact on the 

mechanical properties since BCC phases are generally associated with higher 

strength and hardness as compared to FCC phases [95]. Thus, an a-priori phase 

information is critical for targeted alloy design. Initially, various parameter-

based models [102–109] were developed for predicting phase boundaries; but 

these suffered from low accuracy and high degree of unbalance due to the 

smaller dataset size and simplistic nature of fit [110]. Guo et al. [111] proposed 

a Valence Electron Count (VEC) based criteria to determine the occurrence of 
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FCC and BCC phases in CCAs: FCC (VEC ≥ 8), FCC+BCC (6.87 ≤ VEC < 8), and 

BCC (VEC<6.87). While this simple rule has been reinforced in various later 

works [112,113], it has two limitations: a) it fails to explain variation in 

FCC/BCC phase stabilities in constant VEC systems for e.g., Fex-

(AlCoCr0.5Ni2.5)1-x [114], and b) the bounds of VEC=6.87 and 8 were determined 

empirically and thereby do not represent strict boundaries for FCC or BCC 

phase stabilities. Also, apart from VEC, other physical parameters such as 

cohesive energy can also play an important role in determining FCC/BCC 

phase boundaries [83]. To overcome this, in the reduced mathematical (RM) 

model developed here, we have isolated the effect of VEC on FCC and BCC 

phase occurrence to enable further assessment of the effect of other features on 

the FCC and BCC phase occurrence in CCAs.  

2.2 Development of machine learning models 

We first elucidate the model setup used for development of ML models [83]. 

Each alloy in the dataset was assigned two labels [F, B]; wherein F is presence 

(F=1) or absence (F=0) of FCC phase and B is presence (B=1) or absence (B=0) 

of BCC phase. Thus, any given alloy can have four possible phase 

configurations represented by [F, B] labels: [1, 0] → FCC; [0, 1] → BCC; [1, 1] → 

(FCC+BCC), and [0, 0] → (neither FCC nor BCC). To predict the alloy phase 

configuration, we developed two separate ensemble models. The first model 

predicts only F label i.e., it predicts whether FCC phase will be present or not. 

The second model predicts only B label i.e., it predicts whether BCC phase will 

be present or not. Since each of these models employs a sigmoid activation 

function in output layer, the output ranges between [0, 1] and has been 

interpreted as the predicted probability of occurrence of a phase [P(FCC)NN and 

P(BCC)NN]; where superscript NN represents Neural Network. A probability 

value threshold of 0.5 was used for phase classification i.e., a phase is present 

if P(phase)NN ≥ 0.5 and absent if P(phase)NN < 0.5 [83]. Thus, the combination 

of outputs from these two models can now span all four phase configurations 

mentioned earlier. For e.g., if both P(FCC)NN and P(BCC)NN are ≥ 0.5, then the 

alloy is predicted to have both (FCC+BCC) phases; whereas if P(FCC)NN ≥ 0.5 
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but P(BCC)NN < 0.5, then the alloy is predicted to have only FCC phase. This 

methodology has also been depicted schematically in Figure 2.1.  

 

Figure 2.1 Overview of machine learning framework used for the development of machine 
learning models. Two separate neural network models were trained – first for prediction of 
FCC phase and second for prediction of BCC phase. The input layer represents seven alloy 
features (listed in Table S2) and the output layer has 1 unit representing probability of 
occurrence of a phase (FCC or BCC). “ReLU” stands for rectified linear unit activation function.  

Each model was trained using a set of seven alloy features: F = {Valence 

Electron Count (VEC), Metallic radius asymmetry (𝛿𝑟
𝑚𝑒𝑡), Covalent radius 

asymmetry (𝛿𝑟
𝑐𝑜𝑣), Elastic modulus asymmetry (𝛿𝐸), Average cohesive energy 

(𝐸𝑐𝑜ℎ), Chemical enthalpy of mixing (∆𝐻𝑐ℎ), Elastic enthalpy of mixing (∆𝐻𝑒𝑙)}, 

as listed in Table 2.1. The Miedema’s chemical enthalpy of mixing (S. No. 6) 

was calculated in accordance with Miedema’s model [115–117] and takes into 

account the interfacial surface energy for non-ionic interfaces and dipole-layer 

energy for ionic interfaces. The elastic enthalpy of mixing (S. No. 7) was 

calculated using the classical elasticity method by Eshelby and Friedel [116–

118]. The binary enthalpies were extended to high-entropy alloys using the 

extended regular solid solution model proposed by Takeuchi and Inoue [119]. 

In our prior work [19], we have shown that these features are capable of 

capturing the phase selection in CCAs. A dataset of 426 as-cast CCAs, 
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containing experimentally observed room temperature phase information, was 

used to train the ML models. The dataset contained 293 alloys wherein BCC 

phase was present and 195 alloys wherein FCC phase was present. These 

include 71 alloys where both FCC and BCC phases were present. Also, there 

were 9 alloys that contained neither FCC nor BCC phase. The FCC and BCC 

phase prediction ML models exhibited a cross-validation accuracy of 95% and 

91% respectively. For the training of neural networks, ‘Binary Crossentropy’ 

loss function and ‘SGD’ optimizer was used with a learning rate of 0.01. All 

features were normalized within [0,1] range using min-max normalization. The 

correlation between features has been visualized in the form of a scatter-matrix 

plot in Figure 2.2. The ML models developed here are consistent with our 

previously reported model for the prediction of phase fractions in CCAs [83]; 

which has been shown to accurately predict the phases and phase fractions 

over a wide range of CCAs with an accuracy of 91% for FCC and 97% for BCC 

phase [83]. 

Table 2.1 Mathematical expressions of alloy features used for development of machine learning 
model.  

S. No. Feature Feature Description Calculation 

1 VEC Valence electron count ∑ 𝑐𝑖  𝑉𝐸𝐶𝑖
𝑁
𝑖=1   

2 𝛿𝑟
𝑚𝑒𝑡  Metallic radius asymmetry √ ∑ 𝑐𝑖 (1 −

𝑟𝑖

𝑟̅
)

2
𝑁
𝑖=1   

3 𝛿𝑟
𝑐𝑜𝑣 Covalent radius asymmetry √ ∑ 𝑐𝑖 (1 −

𝑟𝑖

𝑟̅
)

2
𝑁
𝑖=1   

4 𝛿𝐸 Young’s elastic modulus asymmetry √ ∑ 𝑐𝑖 (1 −
𝐸𝑖

𝐸̅
)

2
𝑁
𝑖=1   

5 𝐸𝑐𝑜ℎ Average cohesive energy ∑ 𝑐𝑖 𝐸𝑐𝑜ℎ,𝑖  

76 ΔHSS

chem

 Miedema’s chemical enthalpy of mixing ∑ 4𝐻𝑖𝑗
𝑐ℎ𝑒𝑚,𝐿 𝑐𝑖𝑐𝑗𝑖<𝑗   

7 ΔHel Elastic enthalpy of mixing ∑ 4𝐻𝑖𝑗
𝑒𝑙  𝑐𝑖𝑐𝑗𝑖<𝑗   

 



32 

 

 

Figure 2.2 Feature correlation: Pair plots of features used in this work. The linear-regression 
lines and Pearson’s correlation coefficient (R) values have been shown in the pair-plots above 
the diagonal.  

2.3 Development of Reduced Mathematical (RM) model 

2.3.1 Dataset for RM model 

Since the RM model is aimed as a simplistic and interpretable replacement for 

the ML model, it needs to capture the learning achieved by the trained ML 

model. This was achieved by fitting and validating the RM model on 

predictions generated from the trained ML models. We considered a 13-

element space [E = {Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Zr, Nb, Mo}]. Within 

this space E, the number of unique equiatomic alloys with n number of 

elements is 13Cn. Thus, the number of unique equiatomic alloys with 5 elements 

is 1287 (=13C5), with 6 elements is 1716 (=13C6) and with 7 elements is 1716 

(=13C7). Adding these together, we created a dataset of 4719 alloys and 

[P(FCC)NN, P(BCC)NN] values were obtained for each of the alloy using trained 

ML models. This dataset was used to fit the RM model for FCC and BCC 
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phases. Similarly, another dataset of 2002 (=13C8 + 13C9) unique equiatomic 

alloys with 8 and 9 elements from the element space E was created for 

validation of the RM model. The distribution of ML predicted phases in these 

datasets has been shown in Figure 2.3. 

 

Figure 2.3 Distribution of ML predicted phases in the datasets used for fitting and validation 
of RM models. 

2.3.2 Reduced mathematical representation of ML models 

As seen in Figure 2.4a, the NN-predicted phase probabilities i.e., P(FCC)NN and 

P(BCC)NN show a strong dependence on VEC wherein P(FCC)NN transitions 

from 0→1 and P(BCC)NN transitions from 1→0 as VEC increases. This 

dependence is very similar to the behaviour of a generalized logistic function 

which allows – a) non-linear scaling, b) limiting the output between 0 and 1, 

and c) variation in both the shape and size of the activation window. Thus, to 

isolate this effect of VEC on phase probabilities, we used a logistic function 

(𝑓𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐
𝑝ℎ𝑎𝑠𝑒 ) that has three parameters – 𝑀 (maximum value), 𝑘 (logistic growth 

rate), and 𝑥𝑜 (x value of sigmoid’s midpoint): 

𝑓𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐
𝑝ℎ𝑎𝑠𝑒 (𝑉𝐸𝐶) =

𝑀

1 + 𝑒−𝑘(𝑉𝐸𝐶−𝑥𝑜)
 

Equation 2.1 

Since the phase probabilities cannot be explained completely by VEC alone, we 

now focus on the residuals left by this fit. The absolute residuals obtained from 

here i.e., |P(phase)NN – 𝑓𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐
𝑝ℎ𝑎𝑠𝑒 (𝑉𝐸𝐶)| appear to peak at intermediate values of 

VEC, as seen in Figure 2.4b. We hypothesize that these residuals represent the 

effect of features other than VEC on phase probabilities. The distribution of 
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residuals seen in Figure 2.4b indicates that while the actual contribution of 

these features will depend on their individual values, the maximum possible 

contribution from these features in any alloy is a function of the VEC value of 

that alloy. We used a skew-normal function (𝑓𝑠𝑘𝑒𝑤−𝑛𝑜𝑟𝑚
𝑝ℎ𝑎𝑠𝑒 ) [120,121] to model this 

dependence of peak value of residuals on VEC as seen in Figure 2.4b. This 

function has four parameters – A (scaling factor), 𝜉 (location), 𝜔 (scale), and 𝛼 

(shape): 

𝑓𝑠𝑘𝑒𝑤−𝑛𝑜𝑟𝑚
𝑝ℎ𝑎𝑠𝑒 (𝑉𝐸𝐶) =

𝐴

√2𝜋𝜔
 𝑒𝑥𝑝 [−

(𝑉𝐸𝐶 − 𝜉)2

2𝜔2
] 𝑒𝑟𝑓𝑐 [−

𝛼(𝑉𝐸𝐶 − 𝜉)

√2𝜔
] 

Equation 2.2 

 

Figure 2.4 M athematical functions used for isolating the effect of VEC on phase 

stabilities. (a) Logistic function used to model the dependence of FCC and BCC 

occurrence probability on VEC. (b) Skew -normal function of VEC used to model 

the peak residuals obtained after logistic fit of phase probabilities wrt VEC . 
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Thus, we have modelled the residuals, i.e. [P(phase)NN – 𝑓𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐
𝑝ℎ𝑎𝑠𝑒 (𝑉𝐸𝐶)], as a 

linear function of all feature values (except VEC) that have been scaled by the 

𝑓𝑠𝑘𝑒𝑤−𝑛𝑜𝑟𝑚
𝑝ℎ𝑎𝑠𝑒 (𝑉𝐸𝐶) function. For any given alloy, the overall phase probability 

predicted by the reduced mathematical (RM) model, 𝑃(𝑝ℎ𝑎𝑠𝑒)𝑅𝑀, has been 

modelled as: 

𝑃(𝑝ℎ𝑎𝑠𝑒)𝑅𝑀 = 𝑓𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐
𝑝ℎ𝑎𝑠𝑒 (𝑉𝐸𝐶) + [ 𝛽0 + ∑ 𝛽𝑖 [ 𝑓𝑠𝑘𝑒𝑤−𝑛𝑜𝑟𝑚

𝑝ℎ𝑎𝑠𝑒 (𝑉𝐸𝐶) ∗  𝑋𝑖] 

𝑖 ∈ 𝐹 \ {𝑉𝐸𝐶}

] 

Equation 2.3 

Here ‘𝐹’ denotes the feature set {VEC, 𝛿𝑟
𝑚𝑒𝑡, 𝛿𝑟

𝑐𝑜𝑣, 𝛿𝐸, 𝐸𝑐𝑜ℎ, ∆𝐻𝑐ℎ, ∆𝐻𝑒𝑙}, 

‘𝐹 \ {𝑉𝐸𝐶}’ represents feature set excluding VEC, ‘𝛽0’ is the bias factor of linear 

fit, ‘𝛽𝑖’ represents the weight-factor for ith feature in ‘𝐹 \ {𝑉𝐸𝐶}’, and 𝑋𝑖 

represents the normalized value of ith feature in ‘𝐹 \ {𝑉𝐸𝐶}’. 

2.3.3 Optimization and performance of reduced mathematical model 

The model thus developed (Equation 2.3) was further optimized and its 

performance was evaluated using the process elucidated here. The final model 

has a total of seven parameters – three logistic function parameters (𝑀, 𝑘, 𝑥𝑜) 

and four skew-normal function parameters (A, 𝜉, 𝜔, 𝛼). For any given set of 

these parameters, we performed a fit of Equation 2.3 wrt P(phase)NN to yield 

the values of  𝛽0 and 𝛽𝑖, and the quality of fit thus obtained was quantified 

using the R2 score. For the optimization of model parameters, we used (1 – R2) 

as the objective function that was minimized using the LM-BFGS-B algorithm 

[122,123], which is a limited-memory (LM) implementation of Broyden–

Fletcher–Goldfarb–Shanno (BFGS) algorithm with simple bound constraints. 

The objective-function minimization was carried out using the ‘L-BFGS-B’ 

solver in ‘optimize’ method of ‘SciPy’ library for Python [124].  The code used 

for the optimization process has been uploaded on GitHub, as detailed in §2.7. 

Figure 2.5 shows the optimized functions and parameters, along with the 

performance of the optimized RM model with respect to the NN model, for 

both FCC and BCC phase. The (classification accuracy (CA), R2 score) of FCC 

and BCC model is (CA=97.2%, R2=0.966) and (CA=92.1%, R2=0.906), 
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respectively. A similar performance [(CA=97.1%, R2=0.966) for FCC and 

(CA=91.1%, R2=0.906) for BCC] was also obtained over the validation set that 

comprised 2003 compositions that were not used in the RM model 

development process (Figure 2.6). The optimized RM model also shows a good 

classification accuracy (93% for FCC and 84% for BCC) over the experimental 

dataset comprising 426 CCAs. The RM model performance was further 

validated through comparison with experimentally observed phases over a set 

of 35 new alloy compositions (compiled from recent literature) that were not 

present in the training dataset (Figure 2.7). 

 

Figure 2.5 Model parameters and performance of optimized RM model. (a1) FCC phase 
occurrence probabilities predicted by optimized RM model vs. NN model, (a2) Optimized 
logistic function for P(FCC) model, (a3) Optimized skew-normal function for P(FCC) model, 
(b1) BCC phase occurrence probabilities predicted by optimized RM model vs. NN model, (b2) 
Optimized logistic function for P(BCC) model, (b3) Optimized skew-normal function for 
P(BCC) model. 
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Figure 2.6 Performance of reduced mathematical (RM) model over validation dataset 

 

 

Figure 2.7 Confusion matrix for RM model predictions of (a) FCC and (b) BCC class labels for 
35 new alloys that were not present in the training dataset. (c) Precision, Recall and F-1 score 
for each class. 
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2.4 Feature contributions towards phase predictions 

The NN models, by themselves, do not allow direct insights into the decision-

making process since the exact mathematical form is either not easily 

visualizable or is not easily comprehensible when visualized. Therefore, a 

variety of indirect methods are often used to impart some interpretability (local 

or global) to the model by approximating the decision-making process. As an 

alternative approach, the RM model developed here replaces the NN models 

with a simplified mathematical model that enables direct and exact 

quantification of the feature contributions towards prediction of FCC and BCC 

phase occurrence probabilities. The magnitude of weight-factors (𝛽𝑖), as listed 

in Figure 2.8a, gives an estimation of the relative contribution of features; 

whereas the sign of 𝛽𝑖 indicates whether the relationship between P(Phase)RM 

and feature value is direct (positive 𝛽𝑖) or inverse (negative 𝛽𝑖). That said, the 

𝛽𝑖 value alone is not sufficient as the actual feature contribution is also a 

function of 𝑓𝑠𝑘𝑒𝑤−𝑛𝑜𝑟𝑚
𝑝ℎ𝑎𝑠𝑒  and actual feature (𝑋𝑖) values. For any given alloy probed 

through the RM model, the contribution of VEC can be quantified as 

‘𝑓𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐
𝑝ℎ𝑎𝑠𝑒 (𝑉𝐸𝐶)’, whereas the contribution of any other feature 𝑖 can be measured 

as ‘𝛽𝑖 [ 𝑓𝑠𝑘𝑒𝑤−𝑛𝑜𝑟𝑚
𝑝ℎ𝑎𝑠𝑒 (𝑉𝐸𝐶) ∗  𝑋𝑖]’, as shown in Figure 2.8(b, c). 

𝛿𝑟
𝑚𝑒𝑡, 𝛿𝑟

𝑐𝑜𝑣, 𝛿𝐸, and 𝐸𝑐𝑜ℎ show significant, but opposite, contributions in the FCC 

and BCC phase models, whereas ∆𝐻𝑐ℎ and ∆𝐻𝑒𝑙 appear as the least significant 

features for both FCC and BCC phases. Both 𝐸𝑐𝑜ℎ and 𝛿𝑟
𝑚𝑒𝑡 show a direct and 

inverse relationship with P(BCC)RM and P(FCC)RM respectively, thereby 

indicating that high cohesive energy and metallic radius asymmetry favours 

the occurrence of BCC phase over FCC phase. The role of 𝐸𝑐𝑜ℎ is consistent with 

the observations in another recent work where it was shown to be an important 

classifier for FCC and BCC phases in CCAs [83]. This also aligns with the fact 

that high 𝐸𝑐𝑜ℎ usually leads to a higher melting temperature (𝑇𝑚) and high 𝑇𝑚 

metals generally favor a more open structure (i.e., BCC as compared to FCC) 

due to the higher entropy. The 𝛿𝑟
𝑚𝑒𝑡 contribution seems to align with the fact 

that the BCC structures are more open (with lower packing fraction) as 



39 

 

compared to FCC and can thus accommodate larger atomic size differences. 

Unlike (𝐸𝑐𝑜ℎ and 𝛿𝑟
𝑚𝑒𝑡),  𝛿𝑟

𝑐𝑜𝑣 and 𝛿𝐸 show an inverse and direct relationship 

with P(BCC)RM and P(FCC)RM respectively. In the periodic table, covalent 

radius (𝑟𝑐𝑜𝑣) decreases and electronegativity (𝜒𝐴𝑙𝑙𝑒𝑛) increases as we move from 

left-to-right along a particular period; and thus, a high covalent-radius 

asymmetry (𝛿𝑟
𝑐𝑜𝑣) would also result in a large local mismatch in 

electronegativity (as confirmed in Figure 2.9) indicating the formation of 

stronger bonds which might favor formation of more close packed structure 

(FCC). The weak contribution from ∆𝐻𝑐ℎ and ∆𝐻𝑒𝑙 was further confirmed 

through the observation of no appreciable change in the model performance 

even upon their removal from the RM model (Figure 2.10 & Figure 2.11). 

 

Figure 2.8 Feature contributions. (a) Weight-factors (𝛽𝑖) of each feature in RM model, (b) 
stacked frequency density plots of the contributions made by each feature towards P(FCC)RM 
and P(BCC)RM, and (c) expressions for calculation of feature contribution values. Here, 
P(Phase)NN and P(Phase)RM is the phase occurrence probability predicted by NN and RM 
model, respectively; VEC is valence electron count, 𝛿𝑟

𝑚𝑒𝑡  is asymmetry in metallic radius, 𝛿𝑟
𝑐𝑜𝑣 

asymmetry in covalent radius, 𝛿𝐸 is asymmetry in elastic modulus, 𝐸𝑐𝑜ℎ is average cohesive 

energy, ∆𝐻𝑐ℎ is chemical enthalpy of mixing, and ∆𝐻𝑒𝑙  is elastic enthalpy of mixing. 
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Figure 2.9 Plot of local mismatch in electronegativity vs. asymmetry in covalent radius over all 
the alloys present in experimental dataset 

 

Figure 2.10 Performance of reduced mathematical (RM) model created without including 
chemical enthalpy and elastic enthalpy features. The exclusion of these features has no 
significant effect on the model performance. 
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Figure 2.11 Parameters of the reduced mathematical model created without including chemical 
enthalpy and elastic enthalpy features. The feature coefficients are very similar to those 
observed when both these features are included. 

2.5 Exploring continuous composition variations 

To further probe the feature contributions and the consistency between NN and 

RM model, we explored continuous composition variations in three alloy 

systems – Alx(CoCrFeNi)1-x, Tix(CrFeNi)1-x and Mox(TaTiWZr)1-x, as shown in 

Figure 2.12. The NN model predictions closely match the previously reported 

phase stabilities in these systems [125–127]. The RM model also correctly 

predicts – a) the FCC → (FCC+BCC) → BCC transitions as Al and Ti is added 

to Alx(CoCrFeNi)1-x (Figure 2.12a1) and Tix(CrFeNi)1-x (Figure 2.12b1), 

respectively, and b) BCC as the stable structure throughout the Mox(TaTiWZr)1-

x system (Figure 2.12c1). Moreover, the phase occurrence probability trends 

predicted by the RM model closely follow the predictions from NN model in 

all three systems, although the BCC-RM model does predict occurrence of BCC 

phases at slightly lower Al and Ti concentrations as compared to NN model. 

The feature contributions measured through the RM model provide insights 

into the decision-making process of the model. The FCC → BCC transition in 

Alx(CoCrFeNi)1-x appears to be driven primarily by the decrease in VEC due to 

Al addition along with the large contributions from 𝐸𝑐𝑜ℎ and 𝛿𝑟
𝑚𝑒𝑡 values 

associated with this system, as seen in Figure 2.12a. A similar observation is 

made in Tix(CrFeNi)1-x also, where FCC → BCC transition occurs with Ti 

addition (Figure 2.12b), but here the considerable increase in 𝛿𝑟
𝑐𝑜𝑣 with Ti 

addition also contributes significantly and causes smoothening of gradients of 

P(Phase)RM with respect to Ti concentration thereby leading to a larger 

compositional range over which the transition occurs as compared to 
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Alx(CoCrFeNi)1-x. In Mox(TaTiWZr)1-x (Figure 2.12c), the structure at x=0 is 

predicted to be BCC due to a low VEC value of 4.75 for equiatomic (TaTiWZr). 

With Mo addition, the VEC value increases very gradually (from 4.75 at x=0 to 

5.5 at x=0.6) and thus, we don’t see any transition being predicted by the RM 

or NN model. 

 

Figure 2.12 Comparing NN vs. reduced mathematical (RM) model predictions and feature 
contributions over continuous composition pathways in (a) Alx (CoCrFeNi)1-x, (b) Tix 
(CrFeNi)1-x and (c) Mox (TaTiWZr)1-x. At any composition x, feature contribution value 
represents exact contribution made by that feature towards the overall phase occurrence 
probability predicted in RM model i.e., P(Phase)RM. In (a1, b1, c1), compositional regions with 
different predicted phases have been mapped at the top axes for both NN and RM models; here 
F is FCC and B is BCC. 

The RM model developed in this work takes a mathematical form that was 

inspired by the physical intuition based on a well-documented idea that VEC 

is a key (but not the only) factor that dictates formation of FCC and BCC 
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structures in CCAs. While the RM model performs quite well, it poses a 

question as to whether it is indeed the best-fit mathematical model. To probe 

this, we performed symbolic regression (SR) using “Feyn” python module [128] 

that implements “QLattice”. QLattice is a supervised machine learning tool for 

symbolic regression that composes functions together to build mathematical 

models between the inputs and output in the dataset. The available 

mathematical functions include – addition, multiply, squared, linear, tanh, 

gaussian, exponential, logarithmic and inverse. The following parameters were 

used for symbolic regression: number of epochs = 10; maximum complexity = 

15; loss function = mean squared error. The mathematical forms of best-fit SR 

models have been shown in Figure 2.13. and the performance has been shown 

in Figure 2.14 and Figure 2.15. The SR models don’t show any significant 

improvement with respect to the RM model. However, the form of SR models 

is quite arbitrary and it is difficult to assign a physical meaning or significance 

to the mathematical form and constants obtained here. Thus, the RM model is 

superior in the sense that it enables clear interpretation of the model form as 

well as the feature contributions. 

 



44 

 

 

Figure 2.13 Mathematical expressions for FCC and BCC occurrence probability obtained from 
symbolic regression models. 
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Figure 2.14 Performance of (a) FCC and (b) BCC model developed using symbolic regression 
(SR). The SR models, similar to RM models, were developed to replace the trained ML models 
and same fitting dataset of 4719 compositions (as used for RM models) was used to develop SR 
models. 

 

 

Figure 2.15 Performance of (a) FCC and (b) BCC symbolic regression model on validation 
dataset comprising 2002 alloy compositions (this dataset is same as that used for validation of 
RM models) 

 

2.6 Conclusion 

In summary, we have presented in this chapter a mathematical reduction, 

driven by physical intuition and statistical inference, of a NN-based ML model 

that was trained to predict FCC and BCC phase occurrence probabilities in 

high-entropy alloys. The reduced mathematical model replaces the complex 

ML model with a simplified and interpretable mathematical function that 



46 

 

allows direct insights into the decision-making process. The mathematical 

model shows good consistency with the experimental database and ML model 

over both discrete and continuous compositions in a variety of systems. More 

importantly, it enables a direct quantitative estimation of feature contributions 

towards phase occurrence probabilities and thus allows a glimpse into the 

decision-making process followed by the model. While VEC remains the main 

driver for FCC ↔ BCC transitions, wherein very high and low VEC values 

result in FCC and BCC respectively, other features (namely – metallic radius 

asymmetry, cohesive energy, covalent radius asymmetry and elastic modulus 

asymmetry) also contribute significantly towards the phase stabilities when 

VEC values lie in the intermediate range. The cohesive energy and metallic 

radius asymmetry seem to show direct and inverse relationship with BCC and 

FCC phase occurrence respectively, whereas the covalent radius asymmetry 

and elastic modulus asymmetry seems to show inverse and direct relationship 

with BCC and FCC phase occurrence, respectively. The approach presented 

here highlights a possible way of imparting some interpretability to ML models 

through their reduction to simpler, but meaningful, frameworks. Moreover, 

identification of a reduced model essentially replaces the complex ML model 

with a simple mathematical relation leading to huge computational gains with 

minimal accuracy loss, thereby enabling a rapid assessment of phase selection 

over wide compositional spaces. 

While the reduced model shows good accuracy, few key limitations must be 

noted: (a) the feature contributions derived from the reduced model are not 

“exact” with respect to the ML model decision-making and thus some 

information loss is inevitable; (b) the modelled contribution of feature 

variations are scaled by a function dependent on VEC value and thus, might be 

suppressed in alloy systems where VEC changes are extremely subtle and (c) 

other aspects such as vacancy stabilization of structures (which though rarely 

observed, have been reported for medium entropy alloys [129]) have been 

ignored. To address some of these challenges, in the next chapter, we present a 

different methodology to extract the decision-making process of any 
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composition-based ML model by quantifying the exact contribution of each 

feature towards the overall prediction. 

2.7 Research data 

The code and datasets used for the development of machine learning model 

and reduced mathematical model are available at: 

https://github.com/IDEAsLab-Materials-Informatics/reduced-math-model-FCCvsBCC-HEAs  

 

  

https://github.com/IDEAsLab-Materials-Informatics/reduced-math-model-FCCvsBCC-HEAs
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Chapter 3: CoSMoR – Compositional-Stimulus 

and Model-Response framework to extract 

physical insights from machine learning models 

3.1 Introduction 

The application of machine learning (ML) in materials science has seen 

tremendous growth in recent years[30,34,48,130–132]. Compositional ML 

models, that use a combination of composition and elemental properties as 

input features, have been used extensively for the prediction of a wide variety 

of materials phenomena such as phase selection[19,37,58,60,133], mechanical 

properties[67,72,95], oxidation behavior[134–138], structure stability[139,140] 

and alloy discovery[141–147]. Given the success of these ML models even on 

unseen compositional space, there is a strong possibility that these models are 

capturing the underlying physical principles using the input material 

descriptors, even though these decisions are often hidden due to the 

complicated form assumed by ML models (especially deep neural networks). 

This introduces exciting avenues for uncovering physical insights from the 

trained ML models through the decoding of their decision-making process. 

Here, we have developed the Compositional Stimulus and Model Response 

(CoSMoR) framework that discretizes the compositional space and calculates 

https://doi.org/10.1103/PhysRevMaterials.7.043802
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the exact feature contributions along any given compositional pathway. This is 

done by combining the partial-local-dependence (PLD) of ML model (with 

respect to each feature) with the sensitivity of that feature (with respect to the 

composition) at each composition step. 

With the growing applicability and reliability of ML for materials science, the 

interpretability of these models has appeared at the forefront in recent 

years[94,148–151]. As discussed eloquently by Lipton [152] and Oviedo et al. 

[149], the term ‘interpretability’, and the expectations surrounding it, can be 

quite subjective since it is associated with a lot of technical jargon such as 

explainability, simulability, decomposability, algorithmic transparency, 

understandability, etc. Thus, it is imperative to define a priori the expectations 

for any framework that aims at decoding the decision-making process of ML 

models. In this regard, we describe here the four attributes of interpretation 

obtained from CoSMoR framework: 

(a) Type of explanation: Suppose we have a base alloy B. If we start 

adding another component A to this base alloy i.e., we move along 

AxB1-x composition pathway, then CoSMoR provides the exact 

contribution of each feature towards the changes in ML predicted 

property with respect to the base alloy composition. 

(b) Correctness of model explanation: The feature contributions 

calculated by CoSMoR along a composition pathway are not relative 

or indicative metrics of feature importance, but are instead 

quantitatively exact with respect to the model decision-making 

process. For example, suppose we have a hardness ML model that 

predicts an increase of 100 HV when 10 at. percent Al is added to 

CrFeNi base alloy, then implementation of CoSMoR will tell exactly 

how much did each feature contribute towards this overall increase 

of 100 HV hardness as predicted by the ML model. 

(c) Causation for model understanding: The existing interpretation 

methodologies such as partial dependence plots, accumulated local 

effects, Local interpretable model-agnostic explanations (LIME) and 
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SHapley Additive exPlanations (SHAP) provide an understanding of 

how important each feature is towards the overall model decision-

making. But, from an alloy design perspective, it is much more 

meaningful to understand the model decision making with respect 

to compositional variations because: (i) the direct point of control in 

alloy design is the elemental composition, not the feature values, (ii) 

the features cannot be varied independently since any alloying 

addition will affect all features, and (iii) the features cannot be 

changed by any arbitrary amount or to any arbitrary set of values 

since the elements have a fixed set of properties and we have direct 

control over only the alloy composition. Since CoSMoR probes 

feature contributions as a function of composition, the causality for 

model understanding obtained from CoSMoR is rooted in 

compositional variations rather than arbitrary feature variations. 

(d) Scope of explanation (local/global): In the context of compositional 

ML models, the scope of explanation from any interpretation 

framework may be defined as – (i) local if the understanding 

obtained is at a single composition value for example, calculating the 

partial dependence of model output on each feature for a given alloy 

(similar to SHAP values), and (ii) global if the understanding 

obtained reflects in general how the feature manifests in the model 

decision making for example, formulation of surrogate models with 

simplified and interpretable mathematical forms. While local 

explanations tend to be more accurate with respect to the model 

decision making process, they are valid only for a fixed composition 

value. On the other hand, the global explanations can span a much 

more expansive compositional space, but the understanding 

becomes generalized, though approximate. CoSMoR aims at 

combining the best of these two approaches to provide material-

specific insights. Fundamentally, the explanation obtained from 

CoSMoR is local in nature as it calculates feature contributions for 

each composition step at a time. But the scale of understanding is not 
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limited to a single composition point, and instead a complete 

continuous composition pathway can be probed. Moreover, 

composition pathways defined as AxB1-x can span a considerable 

compositional space since components A and B can be either 

elements or any stoichiometric combination of elements. 

3.2 Methodology for development of CoSMoR 

In CoSMoR framework, the compositional space is represented by atomic 

fraction (and not weight fraction). Further, it is discretized using a composition 

step size variable denoted by ∆𝑐. This is a user input parameter; for e.g., in §2.4 

(where CoSMoR has been applied to phase selection in CCAs), a composition 

step size value of 0.01 has been used that represents 0.01 at. fraction (i.e., 1 at. 

%). Consider a hypothetical compositional ML model that takes F number of 

input features (denoted as X𝑖 , 𝑖 ∈ [1,2,3, . . . F]) to predict a single target 

parameter Y. At any composition 𝑐, we have a set of all feature values. CoSMoR 

is built on the hypothesis that if the composition changes by a discrete amount 

∆𝑐, then the resultant change in prediction Y can be represented exactly as an 

accumulation of contributions from all features, i.e.: 

[∆Y]𝑐→𝑐+∆𝑐 = ∑[∆Y(X𝑖)]𝑐→𝑐+∆𝑐

F

𝑖=1

 

Equation 3.1 

The partial dependence (PD) of ML model on any feature is reflected by the 

sensitivity of the ML model to an independent change in that feature. But this 

PD value depends on the value of all the other features also i.e., at different 

compositions the PD values will be different. Thus, the term partial-local-

dependence (PLD) is used to denote the fact that any PD calculation is valid 

only locally (i.e., at a particular composition value only). As shown 

schematically in Figure 3.1a, PLD of the model with respect to feature X𝑖 at any 

composition 𝑐 is calculated by changing the value of feature X𝑖 by a small 

amount δX𝑖, while keeping all the other features same, and measuring the 
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change in model output δY. Thus, the PLD (denoted as m𝑐
X𝑖) with respect to 

feature X𝑖 at composition 𝑐 is calculated as:  m𝑐
X𝑖 = (

δY

δX𝑖
)

𝑐
. Here, δX𝑖 is a user 

input parameter whose value will depend on the scale of each feature. If all 

features were normalized to a uniform scale (as recommended for ML model 

development), same value of δX𝑖 may be used for all features; for e.g., in §3.4 

we used a value of 0.02 for δX𝑖 since all features were normalized to [0, 1] scale. 

Once we know the PLD values with respect to each feature at composition 𝑐, 

we can calculate the contribution of each feature for any discrete composition 

change. Suppose we change the composition by one step size i.e., we move 

from 𝑐 → 𝑐 + ∆𝑐. For this composition step, as shown in Figure 3.1b, the 

contribution of any feature X𝑖 (denoted as [∆Y]𝑐→𝑐+∆𝑐
X𝑖 ) towards the overall 

change in target Y can be calculated as the product of PLD and feature change, 

i.e.:  

[∆Y]𝑐→𝑐+∆𝑐
X𝑖 = m𝑐

X𝑖  [∆X𝑖]𝑐→𝑐+∆𝑐 

Equation 3.2 

where, [∆X𝑖]𝑐→𝑐+∆𝑐 is the change in value of feature X𝑖 as composition changes 

from 𝑐 → 𝑐 + ∆𝑐. 

With this, now we can explore the exact contribution of each feature along a 

continuous composition pathway, as shown schematically in Figure 3.1c. 

Suppose we take an initial baseline composition c0 and start increasing the 

concentration in steps of ∆𝑐. After N steps, the concentration is c0 + N∆𝑐, and 

the cumulative contribution of any feature X𝑖 towards the overall change in Y 

prediction is calculated as: 

[∆Y]c0→c0+𝑁∆𝑐
X𝑖 = ∑ [𝑚c0+(𝑛−1)∆𝑐

X𝑖  [∆X𝑖]c0+(𝑛−1)∆𝑐→c0+𝑛∆𝑐]

N

𝑛=1

 

Equation 3.3 

CoSMoR returns both the step-wise as well as the cumulative feature 

contributions along a composition pathway, as shown in Figure 3.1c. While the 
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user is afforded the flexibility to use any or both of these, in most use cases, 

cumulative contributions may be the preferred choice since plotting these 

provides a clear and intuitive visualization of both the local changes 

(represented by variations in slope) as well as cumulative effect (with respect 

to baseline composition) for feature contributions. Plotting these cumulative 

feature contributions as a function of compositional variation provides two key 

insights. Firstly, quantitively-accurate relative contributions of features can be 

ascertained, which can in turn be associated with the underlying physical 

phenomena represented by the features. Secondly, different composition 

pathways can be compared and the similarities or differences in the underlying 

physics can be understood by comparing these feature contributions. While the 

CoSMoR methodology to extract exact feature contributions will remain same 

for all ML models, the interpretation of these contributions will be problem-

specific. As an example, in §3.4, we have presented the application of CoSMoR 

to phase selection problem in CCAs. 
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Figure 3.1 Methodology used in CoSMoR to extract exact feature contributions along a 
compositional pathway. (a) Calculation of local partial dependence (δY/δXi) of target property 
Y with respect to feature Xi at any composition c. (b) Calculation of individual feature 
contributions towards change in phase probability for each one composition step i.e., as 
composition changes from c→c+∆c. (c) Calculation of cumulative feature contributions along a 
continuous composition pathway wherein the initial concentration is treated as baseline. 

3.3 Implementation of CoSMoR 

While it is possible to implement CoSMoR with any programming language 

(as long as the concerned ML model can be loaded into it), in our work, we 

have developed it using Python. The workflow starts with the creation of 

‘cosmor’ class and Figure 3.2 shows the flowchart depicting the 

implementation of CoSMoR methodology. We first go over the user inputs 

required for ‘cosmor’ class. A composition pathway is represented as a pseudo-
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binary system (AxB1-x) where components A and B can be either elements or 

stoichiometric combination of elements, for e.g., ‘Al’, ‘AlTi’, ‘Al2Ti’ and 

‘AlTi2Ni’ are all valid component inputs. The concentration of component A 

(i.e., x) is used as the independent variable and thus, the user must specify that 

component as A whose concentration has to be varied. For e.g., if effect of ‘Al’ 

addition to ‘Cu2NiTi’ has to be studied, then component A will be ‘Al’ and 

component B will be ‘Cu2NiTi’. The composition step size (∆𝑐) input is 

specified in atomic fraction (typically 0.01) and is used to discretize the 

composition space. The upper and lower bounds for the composition pathway 

are also required in the form of ‘start concentration of component A’ and ‘end 

concentration of component A’. These are specified in atomic fractions and 

must lie between [0, 1] with the additional constraint that start composition is 

less than end composition. Finally, feature step size (δX𝑖) input is required for 

the calculation of PLD values of model with respect to each feature. The current 

code assumes same value of δX𝑖 for all features and is thus suitable for models 

where normalized features are used. This functionality will be expanded in 

future updates to support the use of non-normalized features. 

The implementation requires six core functions, as shown in Figure 3.2. Two of 

these, viz. ‘create_features’ and ‘make_predictions’, would be specific to each 

model and thus have to be defined by the user, which the user would have 

created during the development of ML model. The ‘create_features’ function 

takes the compositions (generated by ‘create_alloys’ function) as an input and 

returns feature values for each composition. The ‘make_predictions’ function 

takes these feature values as input and generates the ML prediction for each 

composition. More information into the development of these functions, along 

with examples, has been provided in the code repository at GitHub (§3.7). Rest 

of the functions are model agnostic and thus do not require any user 

modification. 
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Figure 3.2 Flowchart showing implementation of CoSMoR. The function blocks with purple 
outline and text (namely, ‘create_features’ and ‘make_predictions’) are the user-defined functions 
whereas rest of the functions are in-built in the ‘cosmor’ code. 

3.4 Phase selection in compositionally complex alloys 

To demonstrate the application and importance of CoSMoR framework, we 

have applied it to probe the phase selection in CCAs. 

3.4.1 Development of ML models 

The ML models used here have been reported in our previous work[153]. The 

training dataset for these models was compiled from the database reported by 

Borg et al.[154] that contains 426 CCAs with experimentally observed phase 

information in as-cast condition at room temperature. While the dataset is 

small, we have shown in our previous works [19,153] that the model learning 

aligns well with the experimental results in a wide variety of alloy systems. 

Three separate artificial neural network models were trained for predicting the 

probability of occurrence of phases. The first model predicts only the 
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probability of FCC phase i.e. P(FCC), the second model predicts only the 

probability of BCC phase i.e. P(BCC) and the third model predicts only the 

probability of IM phase P(IM). Since these probabilities are independent of each 

other, they can individually vary between [0, 1] and their summation does not 

have to be equal to 1. While predicting the presence or absence of a phase, a 

probability threshold of 0.5 has been used i.e., the model predicts the presence 

of a phase if the predicted P(phase) ≥ 0.5. To elaborate, P(IM) = 0.6 means that 

the probability for IM phase to occur is 0.6 and we would conclude that it is 

present based on the threshold of 0.5. But it gives no information on whether 

FCC and BCC phases are present or absent. For that, we would need to look 

separately at P(FCC) and P(BCC) values. These models were driven by physics-

based features that have been shown to be correlated with phase stabilities in 

CCAs[19] and a cross-validation accuracy of 91, 95 and 76 % was obtained for 

BCC, FCC and IM phase respectively. The feature-set comprised of seven 

features – {Metallic radius asymmetry (δmet), Valence electron count (VEC), 

Covalent radius asymmetry (δcov), Elastic modulus asymmetry (δE), Average 

cohesive energy (Ecoh), Chemical enthalpy of mixing (∆Hchem), Elastic enthalpy 

of mixing (∆Hel)}. Since the focus here is on the implementation of CoSMoR to 

gain physical insights, more details related to the training, validation and 

performance of these models can be obtained from previous work[153]. 

3.4.2 Phase variations in Mx-(CoCrFeNi)1-x 

Since CoSMoR brings forth the decision-making process of the ML model 

along continuous composition pathways, it is pertinent to ascertain whether 

the ML model is even capable of capturing the continuous variations in the first 

place. For this purpose, we probed the effect of various element additions (Al, 

Cu, Mn, Mo and Ta) on phase evolution in CoCrFeNi. Equiatomic quaternary 

CoCrFeNi is a medium-entropy reduced Cantor alloy that exhibits FCC solid 

solution phase in as-cast condition [155,156]. We selected CoCrFeNi as the base 

alloy since the effect of different alloying elements has been studied 

experimentally for this system [156–169]; and thus, these compositions can be 

been used as validation checkposts for the phase mappings predicted through 
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ML model. Figure 3.3 shows the predicted occurrence probabilities of FCC, 

BCC and IM phases as a function of different alloying additions in CoCrFeNi 

quaternary along with the experimentally observed phases at some discrete 

compositions. With the addition of Cu and Mn, only FCC phase is predicted 

throughout the composition range of 0-0.4 at. fraction, as seen in Figure 3.3(b, 

c). This matches the experimental observations for Cu [162,165,168] and Mn 

[157,164] variations. 

Addition of Al to CoCrFeNi increases the occurrence probability of BCC phase, 

as seen in Figure 3.3a, and the model predicts formation of stable BCC phase 

beyond 9 at. % Al; this aligns closely with the experimental observations made 

by Chou et al. [169] wherein the alloy structure transitioned from single phase 

FCC to dual-phase (FCC+BCC) as Al concentration was increased from 8.57 to 

11.1 at. %. The model predicts a decrease in occurrence probability of FCC 

phase as Al increases and the structure transitions completely to BCC phase 

above 16 at. % Al; this complete transition from FCC→BCC phase has also been 

observed experimentally by Cieslak et al. [163] and Chou et al. [169] above 15.7 

and 20 at. % Al respectively. The model also predicts existence of IM phases 

above 20 at. % Al; which aligns with the formation of B2 phase above 20 at. % 

Al, as observed experimentally [163]. Thus, the effect of continuous Al variation 

has been captured accurately by the ML model as the learned transition 

boundaries align very closely with experimental observations. 

Addition of Mo or Ta to (CoCrFeNi) induces a strong IM formation tendency, 

as seen in Figure 3.3(d, e), and the model predicts a transition from FCC phase 

to a dual-phase (FCC+IM) structure above 7 at. % Mo and 3 at. % Ta. This aligns 

with the experimental studies for varying Mo [160] and Ta [159,161] 

concentration which showed the formation of IM phase at 9 at. % Mo and 2.5 

at. % Ta. Also, the predicted occurrence probability of BCC phase remains 

comfortably below the 0.5 threshold and thus no BCC phase formation is 

predicted with Mo or Ta addition in (CoCrFeNi). 
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Figure 3.3 Probability of occurrence of FCC, BCC and IM phases as predicted by machine 
learning models in Mx-(CoCrFeNi)1-x alloy systems. Phase probabilities as a function of (a) Al, 
(b) Cu, (c) Mn, (d) Mo, and (e) Ta addition in CoCrFeNi alloy. A phase probability (P) threshold 
of 0.5 has been used to indicate the presence of a particular phase, and correspondingly each 
plot has been divided into green and red regions representing P≥0.5 (i.e., phase presence) and 
P<0.5 (i.e., phase absence) respectively. Predicted phase transition boundaries have also been 
highlighted above the top-axis of each plot, along with the experimentally observed phases at 
some discrete compositions. The green dotted line (x=0.2) in each plot represents the 
equiatomic quinary composition. 

3.4.3 Decoding the decision-making process in Mx-(CoCrFeNi)1-x 

To understand the decision-making process used by the ML model for 

predicting phase probabilities, we implemented CoSMoR to calculate exact 

contribution of individual features towards FCC, BCC and IM phase 

probabilities in Mx-(CoCrFeNi)1-x alloy systems probed in §3.4.2. The feature 

contributions in these alloy systems, along with normalized feature values, 

have been plotted in Figure 3.4 and Figure 3.5 wherein x=0 has been used as 
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the baseline composition. A quick observation of these trends shows that: (a) 

the feature contributions vary non-linearly, sometimes even non-

monotonically, with respect to feature values, (b) same features contribute 

differently towards occurrence probability of different phases, viz. FCC, BCC 

and IM, and (c) the relative importance of features changes as we move from 

one system to another. These observations indicate that the decision-making 

process of the ML model is not purely statistical, and that it updates 

dynamically as the alloy system changes; thereby highlighting the cognizance 

of the model to underlying physics that drives the phase selection process in 

CCAs. Here, we discuss the findings that stand out on closer inspection. 

VEC and δmet contributions dominate the occurrence probability of FCC and 

BCC phases, as seen with respect to addition of Al, Mo or Ta to (CoCrFeNi) in 

Figure 3.4(a, b) Figure 3.5(a, b) and Figure 3.5(e, f), respectively. As Al, Mo or 

Ta concentration increases, VEC decreases whereas δmet increases, but both 

VEC and δmet contribute strongly towards a decrease in FCC and increase in 

BCC phase probability. Also, the magnitude of feature contributions changes 

sharply in the FCC→BCC transition domain (9-16 at. % Al) observed from 

experimental studies[163,169]. This aligns with the previous observations 

wherein VEC has been shown to be strongly associated with the stability of 

FCC and BCC phases[111,153,170,171]. Contrary to these systems, the addition 

of Cu or Mn to (CoCrFeNi) does not induce any significant change in the 

occurrence probability of FCC or BCC phase, as seen in Figure 3.4(e, f) and 

Figure 3.4(i, j) respectively. Even though δmet increases with addition of Mn 

(Figure 3.4l), its contribution towards FCC and BCC phase probability is 

negligible and marginal respectively. This aligns with previous 

observations[153] that the VEC acts as a classifier wherein the importance of 

not only VEC , but also that of the other features, towards occurrence of 

FCC/BCC phases is dictated by the VEC value. As seen with Al addition, the 

contributions of all features towards P(FCC) and P(BCC) sees a sudden changes 

beyond a threshold VEC value. Thus, it appears that the model has successfully 
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learnt these physics-based relationships to establish the stability of FCC and 

BCC phases in CCAs. 

 

Figure 3.4 Interpreting the decision-making process of phase selection ML models using 
CoSMoR. Cumulative contribution of each feature towards the overall phase probability 
P(phase) in (a-c) Alx-(CoCrFeNi)1-x, (e-g) Cux-(CoCrFeNi)1-x and (i-k) Mnx-(CoCrFeNi)1-x alloy 
systems. Normalized feature values as a function of (d) Al, (h) Cu and (l) Mn concentration. 
The feature contributions here are cumulative contributions along the composition pathway 
with respect to baseline composition of x=0. 

 

While FCC and BCC phase occurrence is dominated by VEC and δmet, the IM 

phase probability in Mx-(CoCrFeNi)1-x [M={Al, Mo, Ta}] is dominated by three 
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feature contributions: δcov, δE and ∆Hel. With the addition of Al, both δE and 

∆Hel increase (Figure 3.4d) and consequently drive the formation of IM phase 

to a large extent (Figure 3.4c), but the contribution of δE to IM formation is 

considerably more due to a much steeper increase in δE feature value. On the 

other hand, with addition of Mo and Ta, δcov and ∆Hel contribute significantly 

toward the IM phase formation, whereas the contribution of δE is almost 

negligible, as seen in Figure 3.5(c, g). This is because δcov increases sharply with 

Mo and Ta addition whereas δE saturates at low values, as seen in Figure 3.5(d, 

h). To read further into these observations, we need to discuss how these 

features (δcov, δE and ∆Hel) could be correlated to the formation of 

intermetallics. The bond formation in metals and alloys always has some 

covalent character[172] that is expected to be affected by δcov, which is a 

measure of asymmetry in bond lengths when constituent elements participate 

in covalent bond formation. The covalent nature is especially dominant in the 

intermetallics wherein a large δcov can dictate preferential formation of certain 

atomic-pairs and coordination symmetries corresponding to favorable atomic-

size ratios. The Young’s modulus (E) is correlated to the strength of interatomic 

bonds as it can be estimated from the potential energy vs. separation curve. 

Since multiple elemental interactions are possible in CCAs, δE is an indirect 

measure of the asymmetry in bond-strengths of different atomic-pairs. A high 

δE would indicate the presence of certain atomic pairs with considerably higher 

or lower bond-strengths that may promote ordering or clustering tendencies, 

and thus, dictate formation of intermetallics. The elastic enthalpy of mixing 

∆Hel, calculated using the classical elasticity method by Eshelby and 

Friedel[173–175], is a measure of the elastic energy generated due to the 

internal strains induced by size asymmetry between constituent elements. 

Since the calculation of ∆Hel considers both local distortion (through volume 

corrections) and bonding characteristics (indirectly through shear and bulk 

modulus), a large ∆Hel represents instability induced in the solid-solution 

phase due to excessive strain-energy and is expected to result in the formation 

of ordered structures that can relieve some of this strain-energy. Thus, all three 

features, viz. δcov, δE and ∆Hel, are closely correlated to the IM phase formation 
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in CCAs, and the fact that ML model gives significant and selective weightage 

to these features strongly indicates that it has successfully learnt the underlying 

physics. 

 

Figure 3.5 Interpreting the decision-making process of phase selection ML models using 
CoSMoR. Cumulative contribution of each feature towards the overall phase probability 
P(phase) in (a-c) Mox-(CoCrFeNi)1-x and (e-g) Tax-(CoCrFeNi)1-x alloy systems. Normalized 
feature values as a function of (d) Mo and (h) Ta concentration. The feature contributions here 
are cumulative contributions along the composition pathway with respect to baseline 
composition of x=0. 

 

3.4.4 Exploring Fex-(AlCoCr0.5Ni2.5)1-x and (TaNb)x-(MoW)1-x alloy 

systems 

The implementation of CoSMoR in Mx-(CoCrFeNi)1-x alloy systems shows a 

strong dependence of FCC and BCC phase occurrence on VEC. This poses an 

interesting question as to whether the ML model can capture phase stabilities 

in systems where VEC remains constant. To address this, we looked at Fex-

(AlCoCr0.5Ni2.5)1-x alloy system that maintains a constant VEC of 8 and has been 

studied experimentally by Liu et al.[47]. One would expect this system to have 
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FCC phase throughout the compositional range, but Liu et al. observed a 

transition from (FCC+BCC) dual-phase structure at x=0 to an almost single-

phase FCC structure at x=0.47. The ML model captures this transition almost 

perfectly, as seen in Figure 3.6(a, b), and the interpretation framework reveals 

that the extinction of BCC phase accompanying Fe addition is driven primarily 

by the decrease in δmet and δE. δmet is a measure of metallic radius asymmetry 

between the component elements and increase in δmet contributes to an increase 

in BCC and decrease in FCC phase probability, as seen in Figure 3.4(a, b), Figure 

3.5(a, b, e, f) and Figure 3.6b. This is expected since BCC phase, due to its more 

open structure, can accommodate the larger size asymmetry more easily as 

compared to the close packed FCC phase. 

CoSMoR was further used to explore another interesting alloy system that 

contradicts some of the earlier observations related to IM formation. In Mx-

(CoCrFeNi)1-x alloy systems, δcov, δE and ∆Hel features contribute strongly 

towards the occurrence of IM phases. Especially with Al addition, the increase 

in δE contributed significantly to the formation of IM phases at high Al 

concentration. But on the contrary, (TaNb)x-(MoW)1-x system shows a very 

steep increase in δE value as (TaNb) concentration increases (Figure 3.6h), but 

experimentally no IM formation is observed in this system[176]. This raises an 

interesting question as to whether the ML model can predict this behaviour and 

how this decision would be made based on all feature values. The ML model 

does not predict any IM formation in this system, as seen in Figure 3.6g, which 

aligns with the experimental observations[176] wherein TaNbMoW forms a 

simple single-phase BCC structure. This can be attributed to the fact that all the 

other drivers for IM formation are virtually non-existent in this system since: 

(a) there are no significant lattice strains as δmet and ∆Hel are almost zero, and 

(b) no strong chemical interactions as -6.38<∆Hchem <-0.22 kJ/mol, and (c) δcov 

is almost zero. This indicates that a high δE alone is not sufficient for IM 

formation, and that the model understands these nuances in the feature 

variations that are associated with occurrence of IM phases. 
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Figure 3.6 Interpreting the decision-making process of phase selection ML models using 
CoSMoR. Cumulative contribution of each feature towards the overall phase probability 
P(phase) in (a-c) Fex-(AlCoCr0.5Ni2.5)1-x and (e-g) (TaNb)x-(MoW)1-x alloy systems. Normalized 
feature values as a function of (d) Fe and (g) (TaNb) concentration. The feature contributions 
here are cumulative contributions along the composition pathway with respect to baseline 
composition of x=0. 

3.5 Use case scenarios for CoSMoR 

CoSMoR is a generalized framework that can be applied to any ML model 

(irrespective of the type or complexity of the models and features used) 

provided that the model has been built using features that are a direct function 

of material composition. Here we discuss the scenarios wherein CoSMoR can 

be used to evaluate, interpret and improve the compositional ML models that 

have been built for predicting material properties. 

3.5.1 Evaluating the nature of fit 

The development and optimization of ML models is driven by the 

maximization of statistical performance that is quantified using a variety of 
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metrics such as mean absolute error, R2 value, percentage error, precision, recall 

etc. But while the statistical nature of fit is routinely evaluated, the physical 

nature of the fit (which implies the consistency between the ML model 

decision-making process and the known physical rules) is often ignored 

resulting in a big question mark as to how well the model is expected to 

perform when extrapolated to novel compositions. It is an even bigger problem 

when using ML models (such as neural networks) that have multiple minima 

corresponding to similar statistical performance but different learning states, 

since now one can end up with different models with similar statistical 

performance. CoSMoR addresses these concerns by enabling the evaluation of 

physical nature of fit for compositional ML models through the comparison of 

feature contributions with well-established physical rules. For example, VEC is 

known to have a strong impact on FCC and BCC phase stability in CCAs and 

thus when we probe the model decision-making process in Mx-(CoCrFeNi)1-x 

alloys with CoSMoR, the fact that VEC contributions closely follow the P(FCC) 

and P(BCC) variations strongly indicates that the model has learnt this rule. On 

the other hand, if it had so happened that VEC contributions didn’t align with 

the P(FCC) and P(BCC) variations, we could have safely rejected the model 

even if it showed good statistical accuracy. Thus, users can validate the physical 

consistency of their compositional ML models by using CoSMoR. 

3.5.2 Revealing the drivers of change 

The black-box treatment of ML models obscures their decision-making process 

leaving open questions as to how exactly the model outcomes are computed. 

Implementation of CoSMoR provides the exact feature contributions along 

specific composition pathways and thus reveals material-specific insights into 

what drives the changes in target property as predicted by the ML model. This 

understanding can be both at feature level and physical level, as elaborated 

here.  

Firstly, CoSMoR identifies features that drive the changes as a function of 

composition which can lead to new fundamental insights and design 



68 

 

principles. For example, since the advent of data-driven models for CCAs, the 

intermetallic formation has been frequently assumed to be driven by large 

metallic radius asymmetry (δmet). But the implementation of CoSMoR in this 

work shows that it is actually the covalent radius asymmetry that is 

considerably more critical for intermetallic formation, and that δmet is more 

relevant for FCC and BCC phase stability rather than intermetallic formation. 

Similarly, even though δmet and elastic enthalpy of mixing (∆Hel) features are 

highly correlated, the intermetallic formation is predominantly driven by ∆Hel. 

Thus, CoSMoR can provide new insights into the relevance and significance of 

features used in the ML model. 

Secondly, when combined with experimental observations and ab-initio 

calculations, CoSMoR can lead to insights into the physical origins of the target 

property predicted by the ML model. Suppose we have a compositional ML 

model that uses a set of input material descriptors (such as VEC, δmet, δcov, ∆Hel, 

etc.) to predict the strength of an alloy. Using CoSMoR, we can identify the 

origin of strength at feature level while the DFT calculations and experimental 

results can assist in identification of baselines as to what these origins at feature 

level may represent at a physical level within the material. For example, one of 

the expected observations in this case would be that whenever FCC↔BCC 

transitions occur, the contribution of VEC towards the resultant changes in 

strength becomes significant. Such baselines, once established, will allow 

exploring the novel compositional spaces using CoSMoR to predict not only 

the variations in predicted property, but also the underlying physical 

phenomena that may be responsible for these variations. In our previous 

work[95], we have shown how this methodology can be used to extract 

physical origins of hardness in CCAs. 

The model-agnostic implementation offered by CoSMoR allows its use for both 

continuous as well as discrete decision-based models such as decision trees and 

random forest (RF). To illustrate this, we developed RF models for the same 

problem presented in this work i.e., presence/absence of FCC, BCC and IM 

phases in CCAs and implemented CoSMoR to probe the decision-making 
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process of these RF models along some of the compositional spaces. The 

performance of these models is inferior to the neural network models and they 

were developed only to illustrate the applicability of CoSMoR to such models. 

The results in Figure 3.7 show that CoSMoR successfully brings out the 

contribution of different features towards the phase occurrence for these RF 

models also. The instability of PLDs (which may occur in such discrete models) 

at phase transition boundaries does not appear to be a problem for FCC and 

BCC models. But, for the IM model, we do see instability in both the model 

output as well as the feature contributions. In fact, the instability in feature 

contributions could largely be due to the instability in the model output itself 

because the IM RF model was the least accurate model with F1 score of 0.74 as 

compared to FCC and BCC models with F1 score of 0.92 and 0.94 respectively. 

Thus, while the breakdown of continuous models using CoSMoR will always 

be more accurate as compared to that for decision-based models, we believe 

that certain best practices can improve the performance for RF models: (a) 

Reducing the complexity of the RF by controlling the depth and splitting 

criteria, (b) Preventing overfit of the model, and (c) Improving generality of the 

model by using bootstrapping or other techniques. 
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Figure 3.7 CoSMoR applied to random forest models for FCC, BCC and Intermetallic phase 
prediction in Alx-(CoCrFeNi)1-x, Mox-(CoCrFeNi)1-x, Tax-(CoCrFeNi)1-x. 

 

3.6 Conclusion 

In this chapter, we have presented the model-agnostic Compositional Stimulus 

and Model Response (CoSMoR) framework, which is an interpretation 

framework capable of decoding the decision-making process of machine 



71 

 

learning models trained for material properties along continuous 

compositional pathways. A compositional pathway is defined as a pseudo-

binary AxB1-x where components A and B can be either elements (e.g., ‘Al’ or 

‘Ti’) or any stoichiometric combination of elements (e.g., ‘CrFe’, ‘Cr2Fe’ or 

‘Cr2FeNi2’). As composition changes, the ML model predictions also change; 

but the variations in model predictions cannot be explained if the ML model is 

treated as a black-box. CoSMoR addresses this by calculating the exact 

contribution of each feature along any compositional pathway based on the 

partial-local-dependence of ML model (with respect to each feature) and the 

sensitivity of that feature (with respect to the composition). CoSMoR offers 

three unique advantages. Firstly, it adopts a model agnostic approach and thus 

can be applied to any compositional ML model, irrespective of the algorithm 

used. Secondly, the causality of model understanding is shifted to variations in 

alloy composition rather than some arbitrary feature variations. This enables 

integration of the understanding derived from CoSMoR with ab-initio 

calculations and experimental results to correlate the feature contributions with 

physical phenomenon. Thirdly, the feature contributions extracted by 

CoSMoR are quantitatively exact with respect to the model decision-making 

process. This enables direct and reliable comparison between multiple 

composition pathways to assess similarities and differences between how ML 

model treats these different alloy systems. We have showcased the importance 

of CoSMoR through implementation on phase selection problem in 

compositionally complex alloys. Individual feature contributions towards 

predicted phase probabilities in a variety of alloy systems, viz. Mx-(CoCrFeNi)1-

x [M={Al, Cu, Mn, Mo, Ta}], Fex-(AlCoCr0.5Ni2.5)1-x and (TaNb)x-(MoW)1-x were 

obtained using CoSMoR. The interpretation results show that the ML model 

has learnt the underlying physics associated with phase stability and point 

toward the features that are essential for predicting relative stability of 

FCC/BCC phases and formation of Intermetallic phase. Thus, CoSMoR 

enables a systematic and insightful exploration of compositional spaces using 

ML models to not only validate the physical nature of fit but to also extract 

material-specific insights as to how the target property manifests in a material. 
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3.7 Research data 

The CoSMoR code, along with the examples, is available at ‘IDEAsLab-

Materials-Informatics’ organization page on GitHub at: 

https://github.com/IDEAsLab-Materials-Informatics/CoSMoR 
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Chapter 4: Predicting short-range order in 

compositionally complex alloys using variational 

autoencoders 

4.1 Introduction 

The presence of multiple elements in high concentrations in CCAs results in 

complex interatomic interactions that may lead to microstructural complexity 

via intermetallic formation and/or phase separation into multiple solid-

solution phases. Even the disordered phases often exhibit atomic short-range 

order (SRO) owing to the presence of energetically favorable atom pairs. While 

SRO has been long known to affect the mechanical, electrical and magnetic 

properties in a variety of materials, its impact on the properties of CCAs has 

gained significant attention only in the recent years [5,7,95,177–179]. The 

experimental measurement of SRO is extremely difficult and thus density 

functional theory (DFT) based computational techniques have been the 

mainstay for study of SRO in materials. But even these pose a difficulty when 

applied to CCAs owing to the extremely large number of possible atomic 

configurations in any given quaternary or higher-order alloy. This problem is 

further compounded by the astronomical compositional space for CCAs, 

thereby making the high-throughput exploration of SRO in CCAs with DFT-

based techniques an extremely difficult task. Furthermore, any given pair with 

identical composition, may show starkly different SRO depending upon the 
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alloy chemistry. As an example, one can consider the Al-Cr binary pair. In an 

AlFeCoCrNi alloy, this pair typically shows clustering, with Al and Cr staying 

away from each other. The same pair, upon the addition of Zn, shows a 

complete reversal in their tendency to cluster apart and order together instead 

[133]. In this work, we present a novel machine learning (ML) framework to 

reliably classify all binary pairs in a given CCA as ordering or clustering and 

to quantitatively predict the SRO parameter for each binary pair, dependent on 

the overall alloy composition. Any given alloy composition is first transformed 

into a unique three-dimensional feature stack (comprising of binary pair 

descriptors) which is then mapped to a two-dimensional matrix of SRO 

parameters using a variational autoencoder. As the study of SRO in CCAs is 

still in a nascent stage, a significant stream of data is expected to appear in the 

coming times. Thus, to enable easy integration with future data, the ML 

framework has been wrapped as an automated workflow that can quickly and 

automatically retrain the models as and when more data becomes accessible. 

4.2 Quantification of SRO 

The SRO in a material arises from preferential occurrence of atomic pairs that 

can be conveniently quantified using Warren-Cowley parameters [177,178,180–

182] which measure the extent to which spatial correlation of atoms varies 

relative to a perfectly random atomic distribution. While a binary alloy has 

single SRO parameter, a multicomponent alloy has multiple SRO parameters, 

one for each possible binary pair (𝜇-𝜈), that are defined as: 

𝛼𝜇𝜈
(𝑟)

= 1 −
𝑃𝜇𝜈

(𝑟)

𝑐𝜇𝑐𝜈
 

Equation 4.1 

where 𝑃𝜇𝜈
(𝑟)

 is the probability of finding 𝜇-𝜈 pair within a neighbor distance 

(shell) 𝑟, and 𝑐𝜇 and 𝑐𝜈 are the overall concentrations of 𝜇 and 𝜈 elements in the 

alloy respectively. If all elements are distributed randomly, 𝑃𝜇𝜈
(𝑟)

 is equal to 𝑐𝜇𝑐𝜈 

and thus  𝛼𝜇𝜈
(𝑟)

= 0 for all values of 𝑟; implying no SRO in the material. If  𝜇 and 



75 

 

𝜈 attract each other, 𝑃𝜇𝜈
(𝑟)

> 𝑐𝜇𝑐𝜈 and 𝛼𝜇𝜈
(𝑟)

< 0; whereas if they repel each other, 

𝑃𝜇𝜈
(𝑟)

< 𝑐𝜇𝑐𝜈 and 𝛼𝜇𝜈
(𝑟)

> 0. Thus, the Warren-Cowley SRO parameters have a 

finite range (−
min(𝑐𝜇,𝑐𝜈)

2

𝑐𝜇𝑐𝜈
≤ 𝛼𝜇𝜈

(𝑟)
≤ 1) wherein the positive SRO indicates 

clustering apart and the negative SRO indicates ordering together. 

4.3 Development of the SRO database 

The SRO database used in this work was developed by Prashant Singh at Ames 

Lab, USA. The density-functional theory-based thermodynamic linear-

response theory developed by Singh et al. [177] allows calculation of Warren-

Cowley SRO parameters αμν
⬚ (𝐤; T) for all pairs simultaneously in a N-

component system such as CCAs. After which, the real-space parameters αμν
ij

 

are obtained over neighbor shells by inverse-Fourier transform, as done 

experimentally. The SRO dictates the pair probabilities Pμν
ij

= cμ
i cν

j
(1 − αμν

ij
(𝑇)) 

in disordered alloys with temperature T  [3]. The free energy from DFT, the 

linear-response is analytically expanded to second-order in site-occupation 

probabilities (i.e., concentrations) cμ
i  and cν

j
 for atom-types μ, ν at lattice sites i,j 

to obtain the chemical stability (Hessian) matrix Sμν
(2)

(𝐤; T) for the disorder alloy 

represented in the thermodynamically-averaged unit cell [177]. Importantly, 

Sμν
(2)

(𝐤; T)  are thermodynamically averaged chemical pair-interchange energies 

for all μ-ν pairs, which dictate the SRO directly from the electronic structure 

(dispersion) of the homogeneously disordered alloy. 

The SRO database, created by Prashant Singh at Ames Lab, USA, comprised of 

41 unique alloys that include ternary, quaternary and quinary alloys and span 

a compositional space of 14 elements – {Al, Ti, V, Cr, Mn, Fe, Co, Ni, Zr, Nb, 

Mo, Hf, Ta, W}. The total number of binary pairs within these 41 alloys equals 

240. For the implementation of ML framework, the tabular dataset was then 

transformed into three-dimensional binary feature arrays (that act as the input) 

and two-dimensional SRO matrix (that acts as the output). This transformation 

process has been detailed in §4.4.1. 
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4.4 Machine learning framework 

The formulation of Warren-Cowley parameters (as discussed in §4.2) indicates 

that the SRO for 𝜇-𝜈 atomic pair depends on two terms viz. 𝑃𝜇𝜈
(𝑟)

 and 𝑐𝜇𝑐𝜈. The 

𝑐𝜇𝑐𝜈 term is trivial as it is simply the product of individual element 

concentrations 𝑐𝜇 and 𝑐𝜈. But the 𝑃𝜇𝜈
(𝑟)

 term is non-trivial as it effectively 

captures atomic distribution in favorable configurations dictated by binary 

interactions. Since 𝑐𝜇𝑐𝜈 becomes a constant as soon as the alloy composition is 

fixed, 𝑃𝜇𝜈
(𝑟)

 may be thought of as a transformation factor that modifies 𝑐𝜇𝑐𝜈 value 

to yield SRO of 𝜇-𝜈 pair. But the key point to note is that while 𝑐𝜇𝑐𝜈 depends 

only on concentration of elements in  𝜇-𝜈 atomic pair, 𝑃𝜇𝜈
(𝑟)

 is influenced by the 

behaviour and properties of all the binary pairs that exist in the material. This 

aligns with previous observations wherein SRO appears to be governed by the 

strength of interactions between multiple pairs of elements rather than simple 

chemical or physical characteristics [178,179,183]. The fundamental hypothesis 

behind the ML methodology adopted in this work is that – (a) given a fixed 

alloy composition, the Warren-Cowley SRO parameters can be determined if 

we simultaneously know the strength of interactions for all possible atomic 

pairs, and (b) the interaction strength of an isolated binary pair is linked to the 

thermodynamic and physical features associated with the interaction of 

constituent elements. 

4.4.1 Alloy representation as a binary-pair feature stack 

To implement the above hypothesis, we represent each alloy with a two-

dimensional 𝑐𝑖𝑐𝑗 array (𝐂) of shape (14x14) wherein the index of rows (𝑖) and 

columns (𝑗) map to the element list: {Al, Ti, V, Cr, Mn, Fe, Co, Ni, Zr, Nb, Mo, 

Hf, Ta, W}, as shown in Figure 4.1a. Here, the non-diagonal elements take a 

value of 𝑐𝑖𝑐𝑗 i.e.,  𝐂𝑖𝑗|
𝑖≠𝑗

= 𝑐𝑖𝑐𝑗 whereas the diagonal elements take a value of 

zero i.e., 𝐂𝑖𝑗|
𝑖=𝑗

= 0. The 𝐂 array is further rescaled to [0, 1] range using min-

max normalization with 0 and 0.25 as minimum and maximum values of 𝑐𝑖𝑐𝑗. 

Thus, any alloy within the compositional space of these 14 elements can be 
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mapped to a unique 𝐂 array of form shown in Figure 4.1a. Similarly, the full set 

of SRO parameters of all binary pairs in an alloy are represented as an SRO 

array (𝐒) of shape (14x14) as shown in Figure 4.1e. We create a separate three-

dimensional feature stack (𝐅) of shape (14x14x9), as shown in Figure 4.1b, that 

contains 9 binary feature arrays (each of shape 14x14) stacked on top of each 

other. The nine binary features used here have been detailed in Table 4.1 and 

the feature arrays (containing values for all atomic pairs) have been shown in 

Figure 4.2. Each layer of 𝐅 array is individually rescaled to [0, 1] range using 

min-max normalization and this normalized binary feature stack 𝐅, containing 

values of all features for all binary pairs, acts as a reference stack. For each alloy, 

a new transformed feature stack (𝐓), as shown in Figure 4.1c, is created by 

elementwise multiplication of 𝐂 array with each layer of 𝐅 i.e., 𝐓𝑘𝑖𝑗 = 𝐅𝑘𝑖𝑗. 𝐂𝑖𝑗. 

Since 𝐂 is unique for each alloy, 𝐓 is also a unique three-dimensional 

representation of each alloy composition. Thus, the machine learning approach 

in this work has been framed using the transformed feature stack 𝐓 as the input 

representation of each alloy that is then mapped to the SRO array 𝐒 using 

variational autoencoders, as depicted in Figure 4.1. 

Figure 4.2 Figure 4.3 Figure 4.4 Figure 4.5 Figure 4.6 

 

4.4.2 Variational autoencoder: Architecture and training 

A variational autoencoder (VAE) is a probabilistic generative model, built on 

neural network architecture, that comprises of two components – encoder and 

decoder. The encoder compresses the input to a significantly reduced latent 

space that is sampled from a distribution whereas the decoder decompresses 

the latent space and maps it back to a higher dimensional space. The 

architecture of the VAE model used in this work has been shown schematically 

in Figure 4.3. The VAE takes the transformed feature stack 𝐓 of shape (14x14x9) 

as input and the encoder transforms it to a latent vector of size 20 which is then 

expanded and mapped to the SRO array 𝐒 of shape (14x14x1) by the decoder.  
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Table 4.1 Description of nine features used to create the binary feature stack shown in Figure 
4.2. The feature values for all binary pairs were calculated assuming an equiatomic 
concentration i.e., 𝑐𝐴=𝑐𝐵=0.5 

# Description Abbreviation Formula for A-B binary pair 

1 Miedema’s chemical enthalpy of mixing ∆H𝑐ℎ 𝑐𝐴𝑐𝐵  (𝑓𝐵
𝐴 . ∆𝐻̅𝐴 𝑖𝑛 𝐵

 𝑖𝑛𝑡 + 𝑓𝐴
𝐵 . ∆𝐻̅𝐵 𝑖𝑛 𝐴

 𝑖𝑛𝑡 ) 

2 Miedema’s elastic enthalpy of mixing ∆H𝑒𝑙  𝑐𝐴𝑐𝐵(𝑐𝐵  ∆𝐻̅𝐴 𝑖𝑛 𝐵
𝑒𝑙 + 𝑐𝐴 ∆𝐻̅𝐵 𝑖𝑛 𝐴

𝑒𝑙 ) 

3 Valence electron count VEC 𝑐𝐴. VEC𝐴 + 𝑐𝐵 . VEC𝐵 

4 Spin magnetic moment 𝜇𝑆 𝑐𝐴. 𝜇𝑆
𝐴 + 𝑐𝐵 . 𝜇𝑆

𝐵 

5 Mismatch in Allen Electronegativity ∆𝜒 𝑐𝐴𝑐𝐵|𝜒𝐴 − 𝜒𝐵| 

6 
Mismatch in electron density over 

Wigner-Seitz cell boundary 
∆𝑛𝑤𝑠 𝑐𝐴𝑐𝐵|𝑛𝑤𝑠

𝐴 − 𝑛𝑤𝑠
𝐵 | 

7 Mismatch in metallic radius ∆𝑟𝑚𝑒𝑡 𝑐𝐴𝑐𝐵|𝑟𝑚𝑒𝑡
𝐴 − 𝑟𝑚𝑒𝑡

𝐵 | 

8 Mismatch in covalent radius ∆𝑟𝑐𝑜𝑣 𝑐𝐴𝑐𝐵|𝑟𝑐𝑜𝑣
𝐴 − 𝑟𝑐𝑜𝑣

𝐵 | 

9 Mismatch in elastic modulus ∆𝐸 𝑐𝐴𝑐𝐵|𝐸𝐴 − 𝐸𝐵| 

 

 

Figure 4.1 Overview of the machine learning framework. (a) Alloy representation as a 2D array 
(shape 14x14) containing cicj values for all i-j binary pairs in the alloy where ci and cj are atomic 
fractions of i and j element respectively. (b) Binary pairs feature stack (3D array of shape 
14x14x9) compiled through layering of 9 feature arrays containing binary pair properties as 
shown in Figure 4.2. (c) Transformed feature stack obtained through element-wise 
multiplication of each layer in binary pairs feature stack with alloy cicj array. (d) Schematic 
representation of variational auto-encoder with a latent space dimension of 20. (e) Predicted 
SRO array for the alloy comprising SRO values for all i-j binary pairs. 
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Figure 4.2 Normalized binary-pair feature arrays that were used to create the three-
dimensional binary pair feature stack (F) shown in Figure 4.1b. The 1-9 feature arrays shown 
here correspond to the 1-9 features listed in Table 4.1. 

The generated array 𝐒 contains the SRO parameters of all possible binary pairs 

in the alloy. While 𝐒 is supposed to be symmetric about the diagonal, the output 

from the decoder does not have this inherent constraint; thus, a transformation, 

wherein 𝐒 = (𝐒 + 𝐒𝐓)/𝟐, is carried out to ensure the symmetric nature of 

predicted SRO array. Since neural network models are non-deterministic in 

nature, we created an ensemble of VAE models to build an overall generalized 

model. The dataset was shuffled with five different random states and for each 

shuffled dataset, five training runs (each with fresh initialization of model 

parameters) were carried out wherein five-fold cross validation was 
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implemented in each run. This resulted in (5x5x5 = 125) VAE models that were 

clubbed as an ensemble wherein the median value from the ensemble 

predictions was used as the final prediction. Python|3.10.2, tensorflow|2.8.0 

and Keras|2.8.0 were used for implementing the VAE models. For the training 

of each model, Adam optimizer was used with a learning rate of 0.0005. The 

loss function comprised of two parts: reconstruction loss and KL divergence 

loss. 

 

Figure 4.3 Schematic architecture of the variational autoencoder model used in this work. It 
takes the transformed feature stack of shape (14, 14, 9) as input, encodes it to a latent vector of 
size 20 and maps it to the output SRO array of shape (14, 14, 1). 

4.5 Model performance and validation 

4.5.1 Cross-validation performance 

The cross-validation performance and confusion matrix of the ML model, as 

shown in Figure 4.4c, exhibits a high classification accuracy of 94.2% when 

classifying the type of SRO (ordering or clustering) that each atomic pair would 

exhibit in an alloy. Out of the total 240 atomic pairs in the dataset, the model 

made incorrect classification for only 14 atomic pairs. Figure 4.4d shows the 

confusion matrix and although the number of ordering pairs (=147) is 

significantly more than the clustering pairs (=93), the model does not show any 

significant bias and exhibits good accuracy for prediction of both ordering and 

clustering behaviour. Figure 4.4a shows the distribution of SRO values in both 

the DFT database and the ML predictions and Figure 4.4b shows the 
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distribution of mean absolute error. The quantitative prediction of binary-pair 

SRO values also exhibits a low mean absolute error of 0.08 with respect to the 

absolute SRO values in the DFT-database that range from -1.05 to 0.732.  

 

Figure 4.4 Data distribution and cross-validation performance. (a) Distribution of binary pair 
SRO values in DFT-based training dataset and cross-validation predictions from ML model. (b) 
Distribution of mean absolute error in cross-validation predictions. (c) Parity plot of ML 
predicted SRO (ML-SRO) vs. DFT predict SRO (DFT-SRO) for binary pairs with classification 
accuracy and mean absolute error (MAE) metrics. (d) Confusion matrix for ML-predicted 
ordering and clustering behaviour of binary pairs along with precision, recall and accuracy 
metrics. 

4.5.2 Exploring SRO as a function of composition 

While the model shows good performance over discrete compositions, as seen 

in Figure 4.4, it is imperative to observe the decision-making behaviour of the 

model along continuous compositional variations to ascertain two key aspects: 

(a) how well does the model interpolate or extrapolate the learning to new 
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compositions! and (b) can the model capture non-linear and non-monotonic 

changes in SRO associated with compositional variation! Thus, we predicted 

the SRO parameters in two alloy systems viz. Tix -(CrFeNi)1-x and Alx -(TiZrHf)1-

x along continuous compositional changes and compared them with SRO 

values calculated using DFT, as shown in Figure 4.5. The negative and positive 

SRO values reflect ordering and clustering tendencies respectively. The model 

correctly identifies [Fe-Ni] and [Cr-Fe] as the dominant clustering and ordering 

pair respectively in CrFeNi alloy. With addition of Ti to CrFeNi, SRO of the 

clustering pair [Fe-Ni] initially increases at low Ti concentrations and then 

decreases at higher Ti concentrations (Figure 4.5a). The ML model accurately 

captures this non-monotonic SRO variation. Moreover, the [Ni-Ti] pair sees a 

sudden increase in the ordering SRO as Ti concentration increases and at some 

point, between 15-25% Ti, the [Ni-Ti] pair takes over as the dominant ordering 

pair. The ML model also predicts a similar sudden increase in ordering 

tendency of [Ni-Ti] pair wherein it overtakes [Cr-Fe] at around 18% Ti to 

become the dominant ordering pair. Similarly, in Alx -(TiZrHf)1-x system 

(Figure 4.5b), the ML model correctly predicts [Ti-Zr] and [Hf-Zr] as the 

dominant ordering and clustering pairs respectively in absence of Al. Further, 

with addition of Al to TiZrHf, the ML model accurately predicts the increase in 

ordering tendency of [Al-Ti] pair to become the dominant ordering pair above 

9% Al. The number of DFT-calculated SRO points in Figure 4.5(a, b) are quite 

limited owing to the difficulty associated with rapid generation of DFT based 

SRO data. Thus, while the ML-SRO predictions appear to follow the trends 

indicated by DFT-SRO data points, more DFT-SRO data is needed to comment 

conclusively about the DFT-SRO trends over continuous composition 

variations. 
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Figure 4.5 Exploring SRO variation and ML-model decision-making process (using CoSMoR) 
as a function of composition. DFT calculated and ML predicted SRO values of binary pairs in 
(a) Tix-(CrFeNi)1-x and (b) Alx-(TiZrHf)1-x alloy systems. Here, only the pairs that show highest 
ordering/clustering tendency have been shown for each system. Cumulative contribution of 
individual binary pairs towards ML-predicted SRO of (a1) Cr-Fe, (a2) Fe-Ni, and (a3) Ni-Ti 
binary pair in Tix-(CrFeNi)1-x. Cumulative contribution of individual feature towards ML-
predicted SRO of (a4) Cr-Fe, (a5) Fe-Ni, and (a6) Ni-Ti binary pair in Tix-(CrFeNi)1-x. 
Cumulative contribution of individual binary pairs towards ML-predicted SRO of (a1) Al-Ti, 
(a2) Hf-Zr, and (a3) Ti-Zr binary pair in Alx-(TiZrHf)1-x. Cumulative contribution of individual 
feature towards ML-predicted SRO of (a4) Al-Ti, (a5) Hf-Zr, and (a6) Ti-Zr binary pair in Alx-
(TiZrHf)1-x. 

4.5.3 CoSMoR: Insights into decision-making process of ML model 

As seen in Figure 4.5(a, b), the ML model can capture the non-linear and non-

monotonic changes in SRO over continuous compositional variations. But this 

raises important questions pertaining to the decision-making process of the ML 

model, for example – a) Which features control the SRO value of a binary pair 

in any given alloy system? b) Are same features important for all binary pairs 

or do different features become dominant for different binary pairs in an alloy? 

c) Does feature importance change as we move from one alloy system to 
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another? d) Is the SRO value of a binary pair controlled by features of that 

binary pair only or by the features of other binary pairs as well? Answering 

these questions can provide key insight into the decision-making process of the 

ML model. With this motivation, we used Compositional-Stimulus and Model-

Response (CoSMoR) [36] framework to extract the exact contribution of 

features towards the predicted SRO of each binary pair as a function of 

composition. As seen in Figure 4.1c, the effective number of input features for 

any given alloy is equal to Nf×Np; where Nf is the number of features used in 

the binary-pair feature stack (=9 in this model as shown in Figure 4.1b) and Np 

is the number of unique binary pairs present in an alloy (=6 for quaternary 

alloys). Thus, as we change composition of Tix-(CrFeNi)1-x and Alx-(TiZrHf)1-x 

quaternary alloy systems, the variation in ML-SRO arises from (9×6=54) feature 

contributions. CoSMoR calculates the quantitative contribution of each feature 

with respect to the ML-SRO value for baseline composition at x=0. As it is 

difficult to visualize 54 variations in a legible manner, we have combined these 

contributions in two different ways. Firstly, contributions of all features 

associated with a binary pair are combined together to represent the 

cumulative effect of that particular binary pair and have been visualized in 

Figure 4.5(a1-a3, b1-b3). For example, the ‘Cr-Ni’ curve in Figure 4.5a1 shows 

the combined contribution of all nine features associated with ‘Cr-Ni’ binary 

pair on the ML-SRO of Cr-Fe pair in Tix-(CrFeNi)1-x alloy system. Secondly, 

contributions of all binary pairs for a given feature are clubbed together to 

represent the cumulative effect of each physical feature and have been 

visualized in Figure 4.5(a4-a6, b4-b6). For example, the ‘VEC’ curve in Figure 

4.5a4 shows the combined contribution of ‘VEC’ feature of all six binary pairs 

on the ML-SRO of Cr-Fe pair in Tix-(CrFeNi)1-x alloy system. 

We highlight here some insights gained from the breakdown of the ML model 

decision-making using CoSMoR. The ML-SRO of a binary pair is not dictated 

by its own properties but has strong contributions from other binary pairs as 

well. In fact, in some cases, it may be dictated entirely by other binaries. For 

example, in Tix-(CrFeNi)1-x, the SRO of Cr-Fe (Figure 4.5a1) and Fe-Ni (Figure 
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4.5a2) binaries is controlled majorly by other binary pairs whereas that of Ni-

Ti (Figure 4.5a3) is controlled strongly by Ni-Ti pair itself. Similarly, in Alx-

(TiZrHf)1-x, the SRO of Ti-Zr is controlled by other binary pairs whereas that of 

Al-Ti is controlled strongly by Al-Ti pair itself. Further, in an alloy system, the 

same binary pair can drive clustering for some atomic pairs and ordering for 

others. For example, in Tix-(CrFeNi)1-x, Ni-Ti pair contribution drives the 

clustering in Cr-Fe pair (Figure 4.5a1) whereas it drives the ordering of Ni-Ti 

pair itself (Figure 4.5a3). Similarly, in Alx-(TiZrHf)1-x, the Al-Ti pair 

contribution strongly drives the ordering in Al-Ti (Figure 4.5b1) and Ti-Zr 

(Figure 4.5b3) pair whereas it promotes clustering in Hf-Zr pair (Figure 4.5b2). 

These observations align with the fundamental understanding that the SRO in 

an alloy arises from favorable atomic configurations controlled by binary pair 

interactions wherein the preferential ordering/clustering of one atomic pair 

affects the other pair probabilities also since the overall concentration is fixed. 

Moving to the cumulative effect of physical features, we observe that within an 

alloy system, the contribution of a particular feature to the ordering behavior 

can vary drastically from one binary pair to another. For example, in Tix-

(CrFeNi)1-x, VEC and 𝜇𝑆 contributions lower the ordering tendency for Cr-Fe 

pair (Figure 4.5a4) whereas they strongly drive the ordering tendency for Ni-

Ti pair (Figure 4.5a6). Also, a feature that dominates SRO for one binary pair 

may not be significant for another binary pair. For example, in Tix-(CrFeNi)1-x, 

∆rcov contributes significantly to SRO for Cr-Fe pair (Figure 4.5a4) but not so 

much for Fe-Ni pair (Figure 4.5a5). Moreover, a feature that has huge 

significance in one alloy system may not be of particular importance in 

determining SRO for another alloy system. For example, in Tix-(CrFeNi)1-x, VEC 

contributes strongly to SRO for Cr-Fe, Fe-Ni and Ni-Ti pairs (Figure 4.5(a4-a6)) 

but in Alx-(TiZrHf)1-x, it does not play a major role in controlling the SRO of 

binary pairs (Figure 4.5(b4-b6)). Overall, these insights support the initial 

hypothesis (§4.4) behind the ML methodology in this work viz., SRO in an alloy 

can be predicted provided we have simultaneous knowledge of alloy chemistry 
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(which controls 𝑐𝜇𝑐𝜈 terms that represent 𝜇-𝜈 pair frequency) and physical 

features of all binary pairs (which control the strength of pair interactions).  

4.6 Automated workflow for model improvements 

The study of SRO in CCAs is still in its early stages and the current model was 

trained on a limited dataset of 41 CCAs (comprising 240 binary pairs). But with 

the growing research interest, a significant amount of data on SRO parameters 

for various CCAs is expected to appear in the coming years. In view of this, it 

is vital to ensure easy upgradability of the model as and when new SRO data 

appears. To achieve this, we have wrapped our ML model development  

 

Figure 4.6 Automated workflow for ML model development wherein models can be 
automatically retrained as and when new data is available. The green highlighted region 
indicates all the processes that are automated. The red pathways indicate instances where some 
user intervention is required. 

process as an automated workflow wherein – (a) the models can be retrained 

automatically, with or without user intervention, using updated datasets, (b) 
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addition of new elements, if required, can be handled with just some tweaking 

of VAE architecture, and (c) the model selection, ensemble building and 

performance evaluation proceeds automatically. The automated workflow and 

database generation method are summarized in Figure 4.6. 

4.7 Conclusions 

In summary, we have presented here a novel machine learning framework for 

predicting the Warren-Cowley SRO parameters in CCAs. The methodology 

developed relies on the hypothesis that the manifestation of SRO is governed 

primarily by the atom-pair interactions and that simultaneous knowledge of 

the interaction tendencies of all possible atomic pairs in a given alloy can point 

towards the SRO parameters. This has been implemented by expressing each 

alloy as a unique three-dimensional feature stack that encapsulates the physical 

and thermodynamic properties of all atomic pairs. Variational autoencoders 

are then used to map this three-dimensional feature stack to the two-

dimensional SRO array that contains SRO parameters for all binary pairs within 

the alloy. The ML model, comprising an ensemble of autoencoders, is shown to 

be capable of reliably classifying the type of SRO (ordering or clustering) for 

each binary pair within an alloy. Moreover, it also captures the non-linear and 

non-monotonic changes in SRO as a function of continuous compositional 

changes. The implementation of CoSMoR shows that, for each binary pair SRO 

in a given alloy system, the model captures the intricate contributions from all 

the different binary pairs and physical features. Further, the model effectively 

captures how these contributions change when we move from one alloy system 

to another. To enable integration of new research data with the models 

developed here, the entire development process has been wrapped as an 

automated workflow that can retrain the models with no or minimal user 

intervention. 
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Chapter 5: Distilling physical origins of hardness 

in compositionally complex alloys directly from 

ensemble neural network models 

5.1 Introduction 

Compositionally complex alloys (CCAs) present unique challenges including 

an astronomically large composition space (with more than 1078 possible alloy 

compositions[184]) and a multitude of interactions arising from mixing four or 

more principal elements (N≥4) that cannot be precisely explained or predicted 

with the existing thermodynamic and physical models. Ab-initio calculations 

can accurately predict the phase stability and physical properties[127,185,186]; 

however, they are time-intensive when extended to finite temperatures and 

thus are not well-suited as an exploratory tool. Similarly, experimental 

exploration of the composition space becomes expensive and time intensive. 

Given these constraints, coupled with a reasonably large volume of data on 

these alloys generated over the past decade, machine learning (ML) based 

approaches have rapidly gained traction[187–191]. A classic shortcoming of ML 

is that models with fewer parameters tend to be physically interpretable, 

though less accurate, while those with larger number of parameters tend to be 

more accurate but lose the interpretability. 

https://doi.org/10.1038/s41524-022-00842-3
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Hardness is an important quantity from engineering perspective as it is a 

measure of a material’s ability to resist localized plastic-deformation, 

scratching, or indentation. Knowledge of hardness can be critical because high 

hardness in an alloy is often associated with reduced ductility that may limit 

its use[192]. In the past few years, ML models have been reported and applied 

to CCAs to predict mechanical properties[193–197], thermal properties[195] 

and phase selection[83,89,91,198]. Chang et al.[194] implemented an artificial 

neural network (ANN), with a single hidden layer and three nodes, to predict 

hardness of AlCoCrFeMnNi high-entropy alloys (dataset size of 91 alloys) 

using composition-weighted hardness, density and atomic mass as features. 

Wen et al.[197] explored the hardness of AlCoCrCuFeNi system (dataset size 

of 155 alloys) using multiple ML algorithms (linear/polynomial regression, 

support vector machines, decision trees and ANNs) based on elemental 

compositions and twenty other material features. While both these models are 

quite useful and display good accuracy, they were trained on datasets spanning 

eight and six-element composition space, respectively. This leaves out a 

significant number of alloy systems, especially refractory CCAs, which cannot 

be explored reliably using these models. Rickman et al.[193] developed a more 

comprehensive approach employing a canonical-correlation analysis to predict 

the hardness of CCAs (dataset size of 82 alloys) using seven features built from 

elemental and thermodynamic parameters, and further used a genetic 

algorithm to search for high-hardness quinary alloys from a sixteen-element 

composition-space. While accurate, these models do not probe deeper into the 

nature of fit achieved by ML approach, thereby failing to assess the physical 

consistency of learning achieved – a challenge that we seek to address here 

through a combination of deconstructed ML predictions coupled with ab-initio 

stability analysis. 

Single-phase CCAs can provide fundamental insights into the correlation 

between physical and mechanical properties;[199–201] however, the multi-

phase alloys allow greater flexibility in tailoring the microstructure leading to 

improved properties.[202–206] Also, one expects discontinuous variations in 
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physical properties as we move across phase boundaries in multi-phase 

systems. This necessitates the development of strategies that can narrow down 

the regions of interest by rapidly exploring compositional spaces to provide 

approximate, but representative, insights into the targeted properties. Ideally, 

the model should also closely mirror the changes in microstructure 

assemblages, as well as the ordering that drives precipitate formation indicated 

by the phase transformations and capture the non-linear variation in physical 

properties due to change in alloy chemistry. As we develop this model for 

hardness prediction of CCAs, it is pertinent to ask: (i) What elemental and 

thermodynamic variables (or combination thereof) can best describe alloy 

hardness? (ii) Can a combination of these variables, some of which vary 

linearly, be combined to predict non-linear response in the system? And, (iii) Is 

the ML model’s decision-making process a mere statistical fit or does it capture 

some fundamental insights into the physical origins of hardness? 

In this chapter, we present a ML strategy (Figure 5.1) that employs an ensemble 

of ANNs, driven by elemental and alloying descriptors, to rapidly predict and 

explore the hardness of CCAs over vast compositional spaces. ANNs, inspired 

by biological neural networks, are capable of learning non-linear relationships 

and thus excel in predictive modelling of material properties[197,207–209] as 

they can learn complex unknown functions from a stream of data[210]. To 

address the high variance of ANNs, we implement a model averaging 

ensemble learning technique combining output from 165 trained networks to 

give a final prediction. The material descriptors used for training are shortlisted 

from an extensive pool of 22 features based on their fundamental relevance and 

statistical correlation with respect to hardness. The model is trained over a 

dataset[211] of 218 CCAs and is validated using a test dataset of 58 alloys 

compiled from recent literature (these were not included in model training), 

followed by experimental validation for TiZrHfAlx system. 

The ML model together with density-functional theory (DFT) is essential to 

minimize the gap in our understanding of the physical origin of mechanical 

response in CCAs. Therefore, for arbitrary CCAs, selected set of compositions 
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were analyzed using DFT[212] total-energy and electronic-structure 

calculations and DFT-based thermodynamic linear-response theory[79,186] to 

assess chemical short-range order to capture/identify the physics, including 

phase stability, electronic effects, and short-range ordering/clustering and its 

relation to ML-predicted hardness. ML models, neural networks particularly, 

often face criticism due to their treatment as a black-box that severely limits the 

understanding of the decision-making process. To overcome this, we have used 

the CoSMoR framework (presented in Chapter 3) to reveal the decision-making 

process for critical insights as to how the ML model learns the physical origins 

of hardness through different features. Our explainability analysis approach 

identifies the origin of hardness at the feature level while the DFT calculations 

assist in identification of baselines as to what these origins at feature level may 

represent at an atomistic level within the material. 

5.2 Development of ML models 

5.2.1 Database for ML model development 

A training dataset of 218 unique as-cast alloys, with experimentally measured 

hardness values, was extracted from the database compiled by Gorsse et 

al.[211] The data consists of single- and multi-phase alloys, as shown in Figure 

5.2a, and these comprise of 3d-transition-metals, refractory-metals and select 

main-group elements. The hardness values in the training dataset span from 

109 to 905 HV with the distribution profile as shown in Figure 5.2b. The region 

above 800 HV is very thinly populated. While there are some outliers lying 

beyond the 1.5 interquartile range (IQR) in single-phase BCC/FCC alloys, 

Figure 5.2a, these have not been excluded from the training as we believe these 

alloys could be critical for capturing the underlying physics that may not be 

apparent in other alloys. The model was validated using a separate test dataset 

comprising 58 alloys (provided in §5.7 Supplementary data) compiled from 

recent literature. The test dataset was not used for model training. It spans a  
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Figure 5.1 Overview of the methodology used for extracting origins of hardness: (a) CCAs 
hardness database development and calculation of alloy features, (b) training of neural 
network ensemble, (c) exploration of hardness over wide compositional spaces, (d) model 
interrogation to extract exact feature contributions along continuous composition pathways, 
(e) DFT results to probe ordering behaviour and structure stabilities, (f) experimental 
validation over complex alloy systems, and (g) analyzing the results to establish physical 
origins of hardness. 

composition space of 15 elements and contains alloys with hardness ranging 

from 123 HV to 894 HV, with a mean hardness value of 459 HV. The test set has 

a wide hardness distribution, as seen in Figure 5.2c, similar to that of the 

training set, and this diversity ensures that the performance of ML model on 

the test set is a good representation of its predictive ability. 
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Figure 5.2 Dataset exploration and model validation. (a) Statistical distribution of hardness 
values for eight different type of crystal structures present in the dataset along with number of 
alloys, mean hardness, median hardness, 1.5 IQR and 25%-75% percentile range for each 
structure. (b) Distribution of hardness values in the training dataset (218 alloys) along with 
mean, median and 10%-90% percentile range of hardness. (c) Distribution of hardness values 
in the testing dataset (58 alloys) compiled from recent literature. (d) Parity plot of hardness 
predictions obtained for test dataset along with statistical performance metrics –root mean 
square error (RMSE), mean absolute error (MAE) and average percentage error. The shaded 
area represents an 80% accuracy region and the number at top right corner represents fraction 
of predictions with > 80% accuracy. 

5.2.2 Feature engineering and model architecture 

We explored a set of 22 features comprising of elemental and alloying 

descriptors. The features have been classified as-such to highlight two different 

characteristics of an alloy: a) the elemental descriptors represent alloy 

properties that may be a direct extension of the properties possessed by 

component elements, and b) the alloying descriptors represent changes that 

occur when different elements interact with each other during alloy formation. 

Figure 5.3 lists these features along with the expressions used to calculate them 

and the Pearson’s correlation coefficient for each feature as a measure of its 
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linear association with hardness. The elemental descriptors are characteristic of 

the elemental composition of the alloy and were calculated as either 

composition-weighted average or as an asymmetry-measure over the 

component elements. The chemical and elastic enthalpies of mixing associated 

with alloy formation were calculated using Miedema’s model[108,119,213,214]. 

The configurational entropy depends only on the relative amount of 

constituents while being independent of their identity, and has been shown to 

be the primary stabilizing factor for disordered phases in CCAs[215]. YZ 

parameter represents a thermodynamic parameter developed by Yang and 

Zhang[102] that was shown to be a good descriptor of the phases present in 

CCAs. Figure 5.4 lists the ten shortlisted features that were used for training 

the ANNs and also visualizes the variation of hardness with each feature along 

with the linear regression lines and R2 values. Feed-forward back-propagation 

ANNs with twelve different architectures (Table 5.2) were trained using ten 

feature-sets (Table 5.3) with Vickers hardness as the target value. For three 

feature-sets, a multiple linear regression was also performed to act as a baseline 

measure of ANN performance. These ANNs (ANN1, ANN2, …, ANN12) were 

used with the aim to ascertain if the depth of neural network will be significant 

in controlling the model performance. This was of specific interest since a non-

linear relationship was observed between the features and hardness, and deep 

neural networks have been conclusively shown to perform better at learning 

non-linear relationships [216]. The number of layers in the neural networks 

used in this work range from two in ANN1 to seven in ANN12. Since the 

hardness prediction is a regression problem, the output layer in all ANN 

architectures employs rectified linear unit (ReLU) activation function. For the 

hidden layers, we have used a combination of sigmoid and ReLU activation 

functions. The hardness of an alloy is a strong function of its crystal structure 

and the same can also be seen in Figure 5.2a where the mean hardness value 

increases as we move from FCC to BCC crystal structure and the presence of 

intermetallic phases also hardens the alloy. This strong dependence indicates 

that the neural network may make accurate hardness predictions only if it is 

capable of classifying the alloy crystal structure based on input features. Past 
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research has shown that it is possible to predict the phases present in CCAs 

using the thermodynamic descriptors included in our feature sets [108,171,217]. 

Thus, we believe that hidden layers with sigmoid activation functions may be 

able to learn such correlations without explicitly training the network for 

crystal structure classification. This belief was strengthened by test runs 

wherein ANNs with combination of ReLU and sigmoid hidden layers 

performed considerably better than those with only ReLU hidden layers. 

 

Figure 5.3 List of all the calculated features along with their mathematical expression and their 
Pearson’s coefficient of correlation with hardness. 
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Figure 5.4 Ten shortlisted features along with their correlation coefficient with hardness and 
plots (a-j) of hardness vs. each shortlisted feature. Linear regression lines have been plotted 
along with R2 in each plot. Data points have been color-coded based on number of phases 
present. 
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Table 5.1 Cross-validation performance summary of ANNs with different architectures trained 
on various feature sets. Here,  

Improvement Factor of model i,  IFi

= (
100

4
) [(

R2i − R2L|FS1

R2L|FS1

) + (
RMSEL|FS1 − RMSEi

RMSEL|FS1

) + (
MAEL|FS1 − MAEi

MAEL|FS1

)

+ (
%ErrL|FS1 − %Erri

%ErrL|FS1

)] 

where: L|FS1 refers to Lin Regression Algorithm (S. No. 1) which has been used as baseline 
measure 

S.No. ML 
Algorithm 

Feature 
Set 

R2 RMSE MAE Avg. % 
error 

Improvement 
Factor (IF) 

1 Lin Reg FS1 0.52 124.0 103 28.60% 0 

2 Lin Reg FS2 0.549 122.0 101.6 27.50% 3.09 

3 Lin Reg FS3 0.55 122.0 99.8 26.70% 4.28 

4 ANN1 FS1 0.726 95.0 69.4 18.10% 33.08 

5 ANN1 FS2 0.831 74.8 52.7 13.44% 50.34 

6 ANN2 FS1 0.81 78.0 55.6 14.70% 46.87 

7 ANN2 FS2 0.847 71.5 50.2 13.02% 52.76 

8 ANN2 FS3 0.849 71.4 50.5 12.63% 53.15 

9 ANN2 FS4 0.794 84.8 55.7 14.88% 44.54 

10 ANN2 FS5 0.822 78.7 51.7 12.86% 49.84 

11 ANN3 FS2 0.844 71.9 48.8 12.87% 52.96 

12 ANN4 FS2 0.851 70.3 48.6 12.78% 53.77 

13 ANN5 FS2 0.854 69.7 50.6 13.29% 53.12 

14 ANN6 FS2 0.847 71.9 47.9 12.67% 53.53 

15 ANN6 FS6 0.811 79.5 54.0 14.69% 47.01 

16 ANN6 FS7 0.799 82.4 53.6 13.29% 47.15 

17 ANN6 FS8 0.825 76.7 53.7 13.68% 49.18 

18 ANN6 FS9 0.837 74.6 52.4 12.71% 51.38 

19 ANN7 FS2 0.832 75.0 51.4 13.13% 50.94 

20 ANN8 FS2 0.852 70.3 50.1 13.29% 53.02 

21 ANN9 FS2 0.843 72.3 51.4 13.34% 51.84 

22 ANN10 FS2 0.828 75.9 52.8 13.79% 49.66 

23 ANN11 FS2 0.840 73.6 51.0 13.72% 51.21 

24 ANN12 FS2 0.832 76.2 50.8 13.02% 50.92 

25 ANN2 FS10 0.835 74.0 49.6 12.51% 52.21 

5.2.3 Machine learning model training 

The standard practices followed while training all the models have been 

elucidated here. To ensure equal importance to all features during the training 

and for good convergence, the range of each feature was rescaled to [0, 1] range 

using min-max normalization.  For every training process, five-fold cross 

validation was used and thus the training-set to test-set size ratio was always 

80:20. Each cross validation was independent of the others i.e., trained weights 
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Table 5.2 ANN architectures used in the work 

Architecture Layer Units Activation Functions 

ANN1 25,1 sigmoid, ReLU 

ANN2 20,15,10,1 sigmoid, sigmoid, ReLU, ReLU 

ANN3 20,15,10,5,1 sigmoid, sigmoid, sigmoid, ReLU, ReLU 

ANN4 20,15,10,5,1 sigmoid, sigmoid, ReLU, ReLU, ReLU 

ANN5 25,20,15,1 sigmoid, sigmoid, ReLU, ReLU 

ANN6 25,20,15,10,1 sigmoid, sigmoid, sigmoid, ReLU, ReLU 

ANN7 25,20,15,10,5,1 sigmoid, sigmoid, sigmoid, ReLU, ReLU, ReLU 

ANN8 40,30,20,10,1 sigmoid, sigmoid, sigmoid, ReLU, ReLU 

ANN9 60,45,30,15,1 sigmoid, sigmoid, sigmoid, ReLU, ReLU 

ANN10 40,30,20,10,5,1 sigmoid, sigmoid, sigmoid, sigmoid, ReLU, ReLU 

ANN11 60,40,30,20,10,1 sigmoid, sigmoid, sigmoid, sigmoid, ReLU, ReLU 

ANN12 40,35,25,15,10,5,1 sigmoid, sigmoid, sigmoid, sigmoid, ReLU, ReLU, ReLU 

 

Table 5.3 Feature-sets used in this work for training ML models 

Feature Set Features Present 

FS1 𝛿met, ∆S̅config,  VECalloy  , ∆H̅SS
chem,  ∆H̅SS

el   

FS2  VECalloy,  𝛿cov,    𝛿E,  ∆H̅SS
chem,  ∆H̅SS

el  ,  𝜌̅ 

FS3  VECalloy,  𝛿cov,    𝛿E,  𝛿G,  ∆H̅SS
chem,  ∆H̅SS

el   

FS4  VECalloy,  𝛿cov,  𝛿Vm ,  𝛿E,  𝛿G,  ∆H̅SS
chem,  ∆H̅SS

el   

FS5  ∆S̅config,  VECalloy,  𝛿cov,  𝛿E,  𝛿G,  ∆H̅SS
chem,  ∆H̅SS

el   

FS6 𝛿met, VECalloy,   𝛿E,  ∆H̅SS
chem,  ∆H̅SS

el  ,  𝜌̅ 

FS7 𝛿met, ∆S̅config,  VECalloy,   𝛿E,  ∆H̅SS
chem,  ∆H̅SS

el  ,  𝜌̅ 

FS8 𝛿met, ∆S̅config,  VECalloy,   𝛿Vm ,  𝛿E,  ∆H̅SS
chem,  ∆H̅SS

el  ,  𝜌̅ 

FS9 𝛿met, ∆S̅config,  VECalloy,  𝛿Vm ,  𝛿E,  𝛿G,  ∆H̅SS
chem,  ∆H̅SS

el  ,  𝜌̅ 

FS10 𝛿met, ∆S̅config,  VECalloy,  𝛿cov,  𝛿Vm ,  𝛿E,  𝛿G,  ∆H̅SS
chem,  ∆H̅SS

el  ,  𝜌̅ 

 

or initialized parameters were not carried forward.  All performance results are 

from models trained on the randomized data with same seed to ensure 

uniformity of training/test sets between all models. This allows fair 

comparison of performance between models while ruling out any bias due to 

dataset. Python 3.8.1 and associated open-source libraries have been used for 

developing all the models reported here. We have used pandas|1.0.3 and 

numpy|1.18.2 for data processing, scikit-learn|0.22.2 and statsmodels|0.11.1 

for linear regression and statistical analysis, and tensorflow|2.2.0rc2 and 
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keras|2.3.1 for implementation of ANNs.  All ANNs were trained using mean 

absolute error (MAE) loss function and Adam optimizer with a learning rate of 

0.02. The performance of each ANN was calculated using only the cross-

validation results, i.e., for each alloy, only that prediction was considered when 

it was part of the validation set and thus did not participate in the training 

process. For any given training process, the predictions of each validation set 

were recorded and statistical analysis (R2, RMSE, MAE and average percentage 

error) was done on the combined predictions from all validation sets. 

Averaging of statistical scores from validation sets was not done as it would 

bring in bias by giving more/less importance to a particular validation set. The 

cross-validation performance for each trained model is detailed in Table 5.1 and 

the effect of model architecture and feature set has been visualized in Figure 

5.5 and Figure 5.6. 

 

Figure 5.5 Significance of depth of ANNs. Parity plot for hardness predictions obtained using: 
(a) ANN1 and FS1, (b) ANN2 and FS1, and (c) Linear Regression (least squares). (d) Probability 
density of the absolute error about the MAE for predictions obtained through all three. 
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Figure 5.6 Improvement factor of (a) ANN2/ANN6 trained with different feature sets, and (b) 
ANNs with different architectures trained with FS2 feature-set. 

5.2.4 Predictions using ensemble model 

The final ML model consists of an ensemble of 165 trained ANN models which 

were selected based on their cross-validation performance scores. A model 

averaging technique is used wherein the final prediction is calculated as an 

average of the 165 predictions (one from each trained model present in the 

ensemble). The ML model developed here requires only a single user input viz. 

name of the alloy (for e.g., AlCo2CrFe0.5Ni) for predicting the hardness as the 

composition and features required by each ANN are calculated automatically 

by supporting scripts. 

We generated hardness predictions (ternary contour plots in Figure 5.7, 5.8 and 

5.9) over vast compositional spaces by reducing the compositional degree of 

freedom in CCAs through clubbing of elements into binary or ternary 

components. For example, in Figure 5.7a, AlTiCrFeNi system is broken into 

three components – Al, Ti and an equiatomic ternary (CrFeNi). This allows 

representation of CCAs composition space on a ternary plot. The first step is to 

create alloy compositions spaced by 1 atomic %, thereby leading to 5151 unique 

compositions. The ML model is used to predict the hardness at each of these 

compositions and the results are plotted as a predicted hardness contour on a 

ternary plot. 
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5.3 Methodology – ab-initio calculations and experiments 

The DFT calculations for phase stability and ordering behavior were done by 

Dr. Prashant Singh and Prof. Duane Johnson at Ames Lab, USA. The 

experimental fabrication and hardness measurement for Alx(TiZrHf)1-x alloys 

was done by Dr. Shalabh Gupta and Dr. Matthew Kramer at Ames Lab, USA. 

5.3.1 Density Functional Theory Calculations 

The density-functional theory (DFT) based Korringa-Kohn-Rostoker (KKR) 

Greens’ function method combined with the coherent potential approximation 

(CPA) was used to calculate total energy of arbitrary solid-solution alloys[212]. 

The KKR-CPA performs configurational averaging simultaneously with charge 

self-consistency, which properly includes alloy-induced Friedel impurity-

charge screening. For DFT, we used the Perdew-Burke-Ernzerhof (PBE) 

exchange-correlation functional for solids[218]. We employed a site-centered, 

spherical-harmonic basis that includes s, p, d, and f -orbital symmetries (i.e., 

lmax=3) in all calculations. The self-consistent charge density was obtained from 

the Green’s function using a complex-energy contour integration and Gauss-

Laguerre quadrature[212] (with 24-point semi-circular mesh enclosing the 

bottom to the top of the valence states). An equally spaced k-space mesh of 24 

× 24 × 24 was used for Brillouin zone integrations. The core electrons were 

treated fully relativistically (includes spin-orbit coupling), while semi-

core/valence electrons were treated scalar relativistically (i.e., neglecting spin-

orbit coupling). 

5.3.2 Linear-response Theory for Short-Range Order 

Thermodynamic linear-response theory was used to calculated Warren-

Cowley SRO parameters[79], i.e., 𝛼𝜇𝜈
𝑖𝑗

, where 𝜇𝜈 denote elements pairs in the 

alloys and 𝑖𝑗 are lattice sites in the crystal. For a homogeneous solid-solution 

alloy with a set of compositions {𝑐𝜇
𝑖 }, the SRO dictates pair probabilities 𝑃𝜇𝜈

𝑖𝑗
=

𝑐𝜇
𝑖 𝑐𝜈

𝑗
(1 − 𝛼𝜇𝜈

𝑖𝑗
) that potentially can affect chemical short-range order[127], as 
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well as mechanical behavior[219]. For a dominant k-space wavevector 𝐤 = 𝐤𝒐, 

the SRO diverges at the spinodal temperature (Tsp) due to absolute instability 

in the correlated fluctuations, i.e., 𝛂𝜇𝜈
−1;s,s′(𝐤𝒐;Tsp)=0 (where s,s’ denote the 

independent sublattice in the structure), and provides an estimate for SRO and 

the order-disorder or miscibility temperature[79]. This first-principles theory 

of SRO is based on the electronic structure of the alloy; therefore, it directly 

embodies underlying electronic and alloying effects (like band-filling, 

hybridization, atomic-size, or Fermi-surface nesting[220]). 

5.3.3 Experimental Methods 

The Alx(TiZrHf)1-x with x = 0-0.25 atomic fraction was synthesized by arc-

melting on a water-cooled copper hearth in an ultra-high purity argon 

atmosphere using elemental chunks (Alfa Aesar, purity > 99.8%). Samples were 

melted, flipped and re-melted multiple times to ensure homogeneity. The 

Vickers microhardness testing was performed on a Wilson Instruments Tukon 

hardness tester using an indenter with a square pyramid shape. The micro-

hardness tests employed a constant 500 g load with a hold time of 10 s. The 

indentation size was measured using an optical microscope, and a look up table 

is used to determine the Vickers hardness value. Micro hardness tests were 

performed 1 mm apart with 3 test measurements on each sample. 

5.4 Results and discussion 

The ML model was trained on databases available in the literature[211]. The 

model was validated using three different approaches – (a) Direct comparison 

with discrete hardness measurements of alloys across different alloy systems. 

(b) Validation of model predictions in systems with continuously varying 

compositions, where non-linear increases in hardness have been reported. And 

(c) experimental validation of model predictions for the TiZrHfAlx CCAs. The 

ML model predictions have been combined with ab-initio calculations in cases 

(b) and (c) for understanding the physics of the process and how well is it 

reflected by the ML model.  
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5.4.1 Model validation 

The ML model, comprising of an ensemble of 165 trained ANNs, was used to 

predict the hardness of each alloy present in test set. Figure 5.2d shows the 

prediction results and performance metrics obtained for the test set. An average 

percentage error of 18.6% and mean absolute error of 82.8 HV was obtained on 

the test set, with 62% (75% if only as-cast alloys are considered) of predictions 

lying within 80% accuracy region. The alloys in test set were prepared with 

either vacuum arc melting (denoted by black dots) or through mechanical 

alloying (MA) plus spark plasma sintering (SPS) route (denoted by red dots, 

MA+SPS). Both the as-cast and (MA+SPS) alloys were kept in the test set to 

highlight the fact that the final model, trained on only as-cast alloys, is more 

prone to underpredict the hardness of alloys made through (MA+SPS) route. 

Thus, although the test set accuracy (~82%) is slightly lower in comparison with 

cross-validation accuracy (~87%), the model captures the experimentally 

measured hardness with a reasonable accuracy. 

5.4.2 Prediction of non-linear trends in Hardness 

Having established a good statistical performance of our model for discrete 

alloy compositions, we perform the next step in our validation, namely 

exploration of continuously varied composition space and prediction of non-

linear variations in hardness. This validation can be accomplished only if the 

model can correctly identify both the continuous monotonic (near linear) and 

discontinuous (non-linear) variation of hardness due to subtle changes in 

alloying chemistry. The discontinuity in hardness values may arise from 

formation of new phases resulting in different microstructural assemblage as a 

result of compositional variations. The new crystal structures can have 

significantly different nearest neighbors (and hence bonding) as well as 

completely different slip systems affecting the resistance to localized plastic 

deformation. One also expects that significant incipient ordering, which may 

arise near phase boundaries as the composition is varied continuously prior to 

the actual phase separation/transformation, may be responsible for controlling 
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the “width” of the non-linear jumps in hardness. As shown previously, 

hardness depends on the nature of the atomic bonding[172,221]. The bond 

strength is mainly driven by constituent elements and their properties, such as 

electronegativity, that control the electronic-structure behavior[222]. Thus, we 

anticipate a dependence of CCA hardness on its overall electronic structure. 

Therefore, comparing electronic-structure behavior with hardness in the CCAs 

should reveal contributions from electronic mechanism. 

Hence, we have explored a CCA system – AlxTiy(CrFeNi)1-x-y – that had the 

adequate microstructural complexity along with reported experimental 

hardness values over a range of compositions[223,224]. We have also 

investigated the HfxCoy(CrFeNi)1-x-y system, where Hf content is seen to affect 

the ordering process. Notably, Co has a room temperature crystal structure 

similar to Ti and is expected to form a solid solution with CrFeNi, while Hf is 

expected to exhibit a strong clustering effect. As such, we assessed 

HfxCoy(CrFeNi)1-x-y and compared the model predictions with the experimental 

measurements reported by Ma and Shek[225]. 

The interest in AlxTiy(CrFeNi)1-x-y system stems from the role of Al in promoting 

B2 ordering in a number of systems[79,186]. Ti does not have as pronounced 

an effect on ordering as Al, but Ti-containing systems do exhibit formation of 

intermetallics[223,224,226]. Figure 5.7a shows the contour plot of hardness 

predictions for the entire composition range of AlxTiy (CrFeNi)1-x-y system. An 

inset (in Figure 5.7b) shows an expanded view where experimental 

measurements are available. Predicted and actual hardness values are 

compared (Figure 5.7c) for five Tix(CrFeNi)1-x compositions (x = 0.0625 – 0.1666) 

studied by Gao et al.[224] to investigate the effect of Ti addition. Both the 

measurements and the predicted values show a near-linear monotonic increase 

and there is an excellent agreement in general trends, although absolute values 

are underpredicted. To understand the underlying reason for the deviation of 

predicted hardness, we performed phase stability (Eform) analysis in Figure 

5.7d, and found that increasing Ti stabilizes the BCC structure, which mirrors 

the trends in hardness. This stabilization is also borne out by the experiments, 
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where increased Ti content led to a reduction of the FCC phase fraction, as well 

as increase in the BCC phase fraction. Additionally, minor amounts of 

intermetallic phases begin to form (ε-phase, Ni3Ti at low Ti and the R-phase, 

Ni2.67Ti1.33 at higher Ti). Figure 5.2a indicates that the training dataset included 

only a very small amount of intermetallics (1) or multi-phase mixtures (14) – 

FCC+BCC+IM. Presumably, the data available was too sparse for greater 

accuracy. Enhanced Eform strongly correlates with charge sharing due to 

increased hybridization among constituent elements and suggests towards 

increased bond strength in Tix(CrFeNi)1-x. The bonding behavior is dependent 

on local environment; therefore, we hypothesize that it should directly impact 

the local electronic properties, such as short-range order. The SRO strength of 

Tix(CrFeNi)1-x, calculated using thermodynamic linear-response theory[79], is 

shown in Figure 5.7e. We found that the SRO of dominant pairs (Cr-Ni pair at 

x=0; and Ti-Ni pair x=0.0629-0.189) increases with increasing Ti. The stronger 

SRO also indicates increased concentration fluctuations, which directly 

correlates with stronger bonding character arising from increased 

hybridization. This bonding/hybridization effect is an aspect that has not been 

considered in the ML model directly due to a paucity of data on which the 

model could be trained. Nonetheless, the model does include the formation 

enthalpy, as estimated by Miedema’s semi-empirical model as a feature, which 

is expected to correlate with bonding. At this stage, we note that Miedema’s 

model provides a reasonable agreement with experimental measurements of 

formation enthalpies but it does not seem to capture the effect of Ti adequately. 

As a result, the elemental descriptors for Ti in Miedema’s model must be 

adjusted and this is another potential source of error. 

As Al is added (with corresponding decrease in the amount of Ti) and we move 

from the quaternary TixCrFeNi to the quinary AlxTiy(CrFeNi)1-x-y, the accuracy 

of the model is seen to improve with excellent agreement between experimental 

measurements and ML predictions, as seen in Figure 5.7f. Significantly, the ML  
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Figure 5.7 ML predictions of hardness and corresponding formation enthalpy and SRO 
obtained from DFT calculations. (a) Predicted hardness contours for AlxTiy(CrFeNi)1-x-y. (b) 
Inset shows the hardness contours in Al-poor and Ti-poor regions, along with composition 
trajectories along which hardness measurements and predictions are compared. (c) 
Experimental and ML-predicted hardness for Tix(CrFeNi)1-x with a 90% prediction-interval (PI). 
(d) Formation energy of the BCC alloy and (e) Pairwise SRO in Tix(CrFeNi)1-x . (f) Experimental 
and ML-predicted hardness for AlxTiy(CrFeNi)1-x-y with a 90% prediction-interval (PI). (g) 
Formation energy of the BCC solid solution and (h) Pair SRO and dominant ordering pairs in 
AlxTiy(CrFeNi)1-x-y. 

is able to predict the non-linear increases in hardness as a function of 

composition. A comparison with experiments[223] and prior phase stability 

calculations[83] indicates that Al addition results in a structural change, with 

the simple FCC structure transforming to a three-phase mixture (FCC + BCC + 

Intermetallic). We investigated this further here. We performed DFT 

calculations for phase stability[127] (Figure 5.7g) and short-range order (SRO) 

of CCAs[79,227], in particular the strength of dominant pairs (Figure 5.7h). Our 

DFT calculations (which embody quantum mechanics) provide robust Eform 

prediction in CCAs[127,220]. Clearly, the trends in Eform and SRO pair strength 

match with hardness in Figure 5.7f, i.e., our model is able to capture the 

electronic-structure-driven features yielding a non-linear change in hardness. 

The possible reason for small or no error in hardness of AlxTiy(CrFeNi)1-x-y 

comes from the fact that SRO contribution is very weak compared to CrFeNiTix, 



108 

 

and the relative amount of Ti is lower in comparison to the quaternary alloy; 

hence, errors associated with Miedema’s calculation of formation enthalpies is 

minimized. 

The hardness contours for the Hf-Co-(CrFeNi) system are shown in Figure 5.8a 

where Figure 5.8b gives an expanded view of the region investigated 

experimentally by Ma and Shek[225]. The model predicts a strong dependence 

of hardness on the Hf content, as the predicted hardness contours in Figure 5.8a 

are almost entirely dictated by the amount of Hf present in the system. The 

predictions accurately follow the experimental hardness[225] values shown in 

Figure 5.8c. The hardness variation in this system is relatively linear. The Eform 

in Figure 5.8d clearly shows that Hf destabilizes the FCC phase. Stability 

predictions show good agreement with experiments as the hypoeutectic 

microstructures and Laves phases increase with increasing %Hf[225]. With the 

addition of Hf, the Hfx(CoCrFeNi)1-x CCAs transformed from a single-phase 

FCC structure at x = 0 to (C15 Laves + FCC phases) at x = 0.09. Hypoeutectic 

microstructures were obtained from x = 0.024-0.069 and a fully eutectic 

structure with lamellas of FCC and C15 Laves phase was found at x = 0.09[225]. 

This result raises a question whether the intermetallic phase contributes 

significantly to the hardness in the hyper-eutectic region. The other possibility 

would be enhanced contributions to hardness due to ordering or clustering in 

the solid solution phase itself. To explore this aspect, we calculated the SRO 

pair strength using DFT. The SRO pair strength in Figure 5.8e is even more 

interesting as Hfx(CoCrFeNi)1-x at x = 0 shows weak ordering behavior with 

SRO pair strength of 2.51 Laue (Cr-Ni pair) but adding Hf (x > 0) promotes 

clustering (clustering is often related to unstable density of states at the Fermi-

level43. The clustering strength of dominant Hf-Cr pair (21-29 Laue) shows 

monotonic increase with increasing %Hf. Clustering in Hf-Cr pairs suggests 

that Hf does not thermodynamically prefer to sit around Cr, i.e., Hf promotes 

phase separation. In some cases, the presence of multiple phases in CCAs 

improves hardness as the multiple phases with different grain sizes and grain 

orientation can strengthen the alloy. Thus, it is possible that the Hf-Cr 
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clustering drives the eutectic phase formation and eventually contributes to 

enhanced hardness through the formation of second phase intermetallics. 

 

Figure 5.8 ML predictions of hardness and corresponding DFT-predicted formation enthalpy 
and SRO. (a) Predicted hardness contours for HfxCoy(CrFeNi)1-x-y system, with (b) showing an 
expanded view of the compositions from experiments by Ma and Shek[225]. (c) Experimental 
and ML-predicted hardness for Hfx(CoCrFeNi)1-x alloys with a 90% prediction-interval (PI). (d) 
DFT formation energies showing the relative stabilities of the BCC and FCC structures. (e) DFT 
SRO and the main ordering and clustering pairs present. 

5.4.3 Experimental validation in the Al-Ti-Zr-Hf alloy system 

While the AlxTiy(CrFeNi)1-x-y and HfxCoy(CrFeNi)1-x-y systems provided a study 

in contrast displaying ordering and clustering tendencies, respectively, in 

neither of these two systems were defects (like vacancies) noted to play a 

prominent role. However, the formation of a vacancy-stabilized phase was 

recently discovered in the Alx(TiZrHf)1-x system, where values of x > 0.125 

promote the formation of a new type gamma-brass (4-vacancy ordered) 

phase[186]. Such phases were absent from the training dataset and, therefore, 

the ML model is not necessarily expected to give accurate predictions. 

Nonetheless, this creates an opportunity for understanding whether the 

vacancies play a significant role in the hardness. Furthermore, it should be 

noted that the crystal structure of ternary TiZrHf is hcp, which is also absent 

from the training dataset. Hence, we choose to measure the hardness in the 

Alx(TiZrHf)1-x system to test the limits of the ML model. 
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The model was observed to underpredict the hardness by a maximum of 18% 

across the compositions studied. Nonetheless, the model was able to capture 

the trends in hardness quite accurately. Figure 5.9a shows the predicted 

hardness contours in the AlxTiy(ZrHf)1-x-y system, while Figure 5.9b shows the 

comparison of predicted and experimentally measured hardness. The values 

are significantly under-predicted by the ML model, which is indicative that the 

quantitative predictions by model may be limited in cases where significant 

vacancy-ordering or occurrence of the hcp structure occurs. This in itself is not 

a surprising result since the CCAs database used for training the model consists 

largely of cubic solid solution alloys with few multi-phase alloys with a 

constituent intermetallic phase. It is, however, interesting to observe that the 

model still predicts the general trends in hardness. 

 

Figure 5.9 ML hardness predictions and corresponding DFT-predicted formation enthalpy and 
SRO. (a) Predicted hardness contours for AlxTiy(ZrHf)1-x-y system. (b) Experimental and ML-
predicted hardness for Alx(TiZrHf)1-x alloys with a 90% prediction-interval (PI). (c) DFT energy 
calculations shows the relative stabilities of the BCC and HCP structures. (d) DFT SRO pairs 
show the ordering and clustering tendencies. (e) DFT and XRD densities compared for the 
HCP, BCC (vacancy-stabilized) and disordered BCC (without vacancy) phases. 

In Figure 5.9c, we plot alloy phase stability and overall, a monotonous change 

in Eform was found except a jump at Al=0.0749 atomic faction. The similar jump 

was also observed in hardness in Figure 5.9b, i.e., the ML model is able to 

capture the electronic and size effect through valence-electron count and 

atomic-radii, respectively. The reason for jump in hardness is obvious as alloy 

undergoes a phase transformation (hcp→bcc) at Al=0.0749; however, it still 
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does not explain why ML model underestimates the hardness by 15-20%. 

Similar to Tix(CrFeNi)1-x, the enhanced Eform in Alx(TiZrHf)1-x can well correlate 

to improved bond strength that can directly impact the local properties, such 

as short-range order. In Figure 5.9d, we plot DFT-derived SRO pair strength of 

dominant pairs in BCC phase. At Al=0, the clustering in Ti-Hf pairs is the 

dominant mode, which suggests that Ti and Hf want to phase separate and 

form a two-phase region. Moreover, adding Al stabilizes the bcc phase, as 

shown in Figure 5.9c. For Al>0, the Alx(TiZrHf)1-x shows ordering and Al-Hf is 

the dominant SRO pair. In going from clustering mode for Al=0 to ordering 

mode for Al>0 in Figure 5.9d, a jump in SRO pair strength and hardness is seen 

in Figure 5.9b at same Al atomic fraction. Recently, Singh et al.[186] studied 

Alx(TiZrHf)1-x CCAs and found that vacancies stabilize the BCC phase at higher 

Al content, whereas competing (BCC/HCP) phases were found in Al-poor 

region. The abrupt change in Alx(TiZrHf)1-x densities with 7.45 at.% vacancies 

matches with X-ray measured density in Figure 5.9e[186]. Clearly, the ANN 

model is able to capture the trends of experiments and electronic features but 

underpredicts the hardness. In Alx(TiZrHf)1-x, both SRO and vacancies have 

significant contribution on alloy properties, however, the ML model was not 

trained with these quantities. 

5.4.4 Physical insights from decision-making process of the ML model 

The results presented thus far highlight the accuracy of ML model along with 

its ability to predict non-linear hardness variations associated with phase 

transitions in a variety of CCAs. But this still leaves two fundamental questions. 

What is the decision-making process followed by the ML model? Are these 

decisions purely statistical in nature or do they capture the fundamental 

physics that can lead to insights into the physical origins of hardness? To 

address these questions, we have probed the nature of the fit using CoSMoR 

(detailed in Chapter 3) that exposes the exact contribution of each feature 

towards the predicted hardness over continuous composition variations. 

Notably, CoSMoR does not just rank the features based on their perceived or 

indicative importance, but gives directly the exact quantitative contribution of 
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each feature towards decision-making. Also, CoSMoR ensures that the 

causality for model understanding is not some arbitrary change in feature 

values but instead the alloy composition which is the direct point-of-control in 

alloy design. 

The hardness contribution of each feature (as obtained from CoSMoR) and 

overall hardness variation for Alx(CrFeNi)1-x, Tix(CrFeNi)1-x, Hfx(CoCrFeNi)1-x, 

and Alx(TiZrHf)1-x CCAs is shown in Figure 5.10. The non-linear decision 

making of the ML model is evident through the non-linear contribution of 

select features to hardness. Additionally, it appears that the origin of non-linear 

response arises due to a combination of features, some of which result in near-

linear response while the others serve to “classify” the structure of the system 

in almost a step-like manner, which introduces the non-linearity. For example, 

the VEC, that acts as a classifier for phase selection (FCC and/or BCC), seems 

to plateau over a range where further variation in VEC does not affect 

structural changes. 

The CoSMoR results, in tandem with first-principles DFT calculations, 

conclusively shows that the model is cognizant of the underlying physics such 

as relative phase stability, phase transitions, SRO and solid-solution 

strengthening. There are four key insights obtained from the breakdown of ML 

model. Firstly, the hardness contribution of VEC is strikingly different in 

Alx(CrFeNi)1-x, Tix(CrFeNi)1-x and Hfx(CoCrFeNi)1-x CCAs even though the 

VEC varies almost identically. The ML model gives significant importance to 

VEC in Alx(CrFeNi)1-x in the composition range where FCC→ BCC phase 

transition is expected based on experimental observations[223,228]. In 

Tix(CrFeNi)1-x, VEC contribution is lower, in line with the lower BCC stability 

obtained from Ti addition as compared to Al, as seen in Figure 5.7(d, g). In 

contrast, addition of Hf in Hfx(CoCrFeNi)1-x does not induce this FCC→ BCC 

transition[225] and the VEC contribution towards predicted hardness in ML  
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Figure 5.10 Visualizing the decision-making process of ML model. Contribution of different 
features toward ML hardness prediction in: (a) Alx(CrFeNi)1-x, (b) Tix(CrFeNi)1-x, (c) 
Hfx(CoCrFeNi)1-x, and (d) Alx(TiZrHf)1-x alloy systems. At any composition (x), the hardness 
contribution of each feature is equal to the vertical distance between that feature contribution 
plot and the baseline hardness value (calculated at x=0). At any x, the summation of baseline 
hardness and all feature contributions will result in overall hardness. (e) Feature variations 
with respect to composition for alloy systems shown in (a-d). Normalized feature values have 
been plotted here. Feature notations: VEC-Valence electron concentration, δcov-asymmetry in 
covalent radius, ρ-average density, δE-asymmetry in Young’s modulus, δG-asymmetry in shear 
modulus, ΔHchem-chemical enthalpy of mixing, ΔHel-elastic enthalpy of mixing. Features that 
had negligible contribution to hardness prediction over these composition ranges have not 
been included in the plots. 

model is also negligible. This is significant as FCC→ BCC transitions in CCAs 

have been linked to VEC in past[111,127,171] and the hardness of BCC 

structures is significantly higher; and thus, it appears that the ML model has 

successfully “learned” these nuances that are critical for accurate hardness 

prediction. 

Secondly, the contributions of chemical mixing enthalpy (ΔHchem) and 

asymmetry in covalent radius (δcov) toward hardness prediction are quite 

significant and follow each other closely (except for Alx(CrFeNi)1-x where the 

value of δcov changes only slightly with Al addition, thereby resulting in its 

negligible contribution to hardness). The hardness contributions of ΔHchem and 

δcov in ML model are strongly linked to the ordering tendencies, as they are 
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negligible at low SRO values but kick in suddenly as SRO increases beyond ~4-

5 Laue; this happens at ~10 at.% Al in Alx(CrFeNi)1-x, ~4 at.% Ti in Tix(CrFeNi)1-

x and ~3 at.% Al in Alx(TiZrHf)1-x, as seen from Figure 5.7(e, h), Figure 5.9d and 

Figure 5.10(a, b, d). Also, while both ΔHchem and δcov contributions follow 

ordering tendencies, δcov appears to be considerably more dominant where 

intermetallic formation occurs, as seen for Tix(CrFeNi)1-x and Hfx(CoCrFeNi)1-x 

systems in Figure 5.10(b, c), both of which exhibit strong intermetallic 

formation[224,225]. The contributions to hardness from ΔHchem and δcov also 

appear to be sensitive to phase transformations as their slopes change 

significantly wherever phase transitions appear. In Alx(TiZrHf)1-x, Figure 5.10d, 

this coincides with HCP→BCC transition as Al increases from 7.7 to 14.2 at.%, 

as seen in Figure 5.9b, and in Tix(CrFeNi)1-x, the two non-linear jumps in ΔHchem 

and δcov hardness contributions, as seen in Figure 5.10b, coincide with the 

formation of ε-phase (Ni3Ti , HCP) at low Ti concentrations and a metastable 

R-phase (Ni2.67Ti1.33) at higher concentrations[224]. This insight is significant as 

the short-range order and the nature of metallic bonds have been linked to 

intermetallic formation and mechanical properties in previous 

studies[172,219]. The ML model appears to be able to capture these 

dependencies quite accurately through variations in ΔHchem and δcov. 

The third insight is from the hardness contributions from asymmetry in 

Young’s Modulus (δE), which appear to be more direct wherein a larger 

increase in δE manifests as a more significant increase in hardness; as can be 

seen for Alx(CrFeNi)1-x which shows the highest increase in δE among the 

systems studied and consequently exhibits highest contribution of δE towards 

ML predicted hardness. But, note that the hardness contribution of δE is not 

linear with respect to feature value and appears to follow similar trends as 

ΔHchem and δcov, which are linked to ordering and phase transformations. This 

is along expected lines, because the Young’s modulus can be calculated in 

principle from the interatomic potential-energy (U) vs. separation (r) curve, 

where the force 𝐹 = −𝜕𝑈/𝜕𝑟. At constant pressure and negligible volume 

changes, 𝛿𝑈 ≈ 𝑑𝐻. A larger δE would indicate the presence of a pair of atoms 
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where one species has a higher bond strength (and hence higher stiffness or 

larger Young’s modulus) and the other has a lower bond strength. It has been 

observed empirically for minerals that higher is the localization of the electron 

density, higher is the bond strength. In Miedema’s model, the value of Hchem 

is a function of the difference in the Wigner-Seitz cell boundary electron density 

and will likely predict a higher value of Hchem for the atomic species pair 

described above. 

Finally, the elastic mixing enthalpy (ΔHel) increases monotonically with respect 

to composition (x) in all systems studied here, but its contribution to hardness 

prediction shows striking differences and shifts from negative to negligible to 

strongly positive contribution as we move from Alx(CrFeNi)1-x to Tix(CrFeNi)1-

x to Hfx(CoCrFeNi)1-x system. Addition of Hf to CoCrFeNi causes a significant 

increase in ΔHel and the Hf-Cr pair has a strong clustering tendency, as shown 

in Figure 5.9e, indicating that Hf does not prefer sitting next to Cr. Recently, 

Roy et al.[229] have demonstrated that lattice distortion can be used for 

estimating solid-solution hardening in high-entropy alloys, where the solute-

atom dislocation interaction energy was calculated as a function of shear 

modulus, solute-atom–dislocation-core distance and local strain. The distance 

from dislocation core is influenced by atomic size (i.e., molar volume) with 

smaller atoms segregating easily to dislocation cores and the local strain is 

influenced by the radius asymmetry. ΔHel captures these nuances to some 

extent as it reflects both the local distortion and the bonding characteristics. 

Figure 5.10c shows that the hardness increase predicted by ML model at low 

Hf concentration (<3 at.%) originates almost entirely from ΔHel contribution, 

indicating that the ML model is able to correctly predict the hardness variations 

accompanying phase separation processes driven by a combination of weak 

ordering parameter and high elastic strain energy. 

5.5 Conclusions 

In summary, our machine-learning (ML) framework identifies in the decision-

making process the essential feature sets, non-linear responses, and the 
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underlying correlated physics – here, for hardness in compositionally complex 

alloys (CCAs). Our ML model utilizes an ensemble of 165 independent neural 

networks that are driven by physical features to predict the hardness of CCAs; 

wherein each network is trained on a diverse dataset using elemental and 

alloying descriptors. The model successfully predicts hardness variations in a 

wide variety of CCAs and closely follows the ordering behaviour and phase 

transitions observed from first-principles calculations. The decoding of ML 

model, achieved through implementation of CoSMoR, indicates that the 

underlying physics is being captured through predictors of atomic-interactions 

(such as formation enthalpy and bonding characteristics) and local-lattice 

distortion (such as size-asymmetry, elastic-enthalpy and strain-energy) along 

with a phase classifier (VEC). Our proposed ML framework presents a 

promising way of efficiently exploring wide compositional spaces in CCAs.  

While the ML model is generally successful, it appears that small discrepancies 

with the experimental measurements stem from: (i) discrepancies in 

experimental and calculated enthalpies that can become significant for systems 

containing elements prone to multiple oxidation states such as Ti – an artifact 

that is carried over from Miedema’s approach, and (ii) lack of explicit 

information on crystal structure and SRO parameters, neither of which is 

known without a priori experiments and/or DFT calculations. Improvements 

in the proposed model will, therefore, require accurate prediction of short-

range order parameters and crystal structures from elemental properties and 

improved description of thermodynamic interactions. For example, it is well 

known that the short-range order in disordered alloys may affect mechanical 

response[230], therefore, it is important for future models to effectively capture 

such effects on material properties. In next chapter, we try to address some of 

these issues by developing a machine learning model for prediction of short-

range order in CCAs. 
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5.6 Research data 

The training dataset used for the development of machine learning model was 

collected from https://doi.org/10.1016/j.dib.2018.11.111[211]. The processed 

training dataset with normalized feature values as well as the codes used for 

trailing of machine learning models are available at GitHub: 

https://github.com/IDEAsLab-Materials-Informatics/ML-hardness-MPEAs. 

The test dataset of 58 alloys compiled for this work is available in  

Supplementary data (§5.7). 

5.7 Supplementary data 

Test dataset of 58 CCAs compiled from recent literature along with their actual and predicted 
values. 

S. 
No. 

Alloy Name 
Actual 
(HV) 

Predicted 
(HV) 

Ref 

1 AlCoFeNiTi 635 552 Edalati et al.: 10.1016/j.msec.2020.110908 

2 CrFeNiNb 0.1 Ti 0.2 512 414 Zhang et al: 10.1016/j.msea.2019.138212 

3 CrFeNiNb 0.1 Ti 0.3 629 439 Zhang et al: 10.1016/j.msea.2019.138212 

4 CrFeNiNb 0.1 Ti 0.4 867 515 Zhang et al: 10.1016/j.msea.2019.138212 

5 AlCoCr0.5Fe0.5Ni2.5 343 424 Liu et al.: 10.1016/j.jallcom.2020.153881 

6 AlCoCr0.5Fe1.5Ni2.5 294 396 Liu et al.: 10.1016/j.jallcom.2020.153881 

7 AlCoCr0.5Fe2.5Ni2.5 247 251 Liu et al.: 10.1016/j.jallcom.2020.153881 

8 AlCoCr0.5Fe3.5Ni2.5 224 204 Liu et al.: 10.1016/j.jallcom.2020.153881 

9 
Al 10.86 Cr 20.93 Fe 22.48 
Mn 22.11 Ni 23.62 

553 423 Dewangan et al.: 10.1016/j.jallcom.2020.153766 

10 
Al 10.47 Cr 20.18 Fe 20.67 
Mn 21.32 Ni 22.78 W 3.59 

503 557 Dewangan et al.: 10.1016/j.jallcom.2020.153766 

11 
Al 10.11 Cr 19.49 Fe 20.93 
Mn 20.59 Ni 22 W 6.89 

490 616 Dewangan et al.: 10.1016/j.jallcom.2020.153766 

12 
Al 7.95 Cr 15.32 Fe 16.45 
Mn 16.19 Ni 17.29 W 26.8 

461 666 Dewangan et al.: 10.1016/j.jallcom.2020.153766 

13 
Al 5.66 Co 18.87 Cr 18.87 Fe 
18.87 Mn 18.87 Ni 18.87 

125 170 Chang et al.: 10.1007/s11837-019-03704-4 

14 
Al 11 Co 18 Cr 22 Fe 22 Mn 
5 Ni 22 

198 316 Chang et al.: 10.1007/s11837-019-03704-4 

15 
Al 30.5 Co 16 Cr 18.5 Fe 16.5 
Mn 5 Ni 13.5 

522 517 Chang et al.: 10.1007/s11837-019-03704-4 

16 
Al 30 Co 6 Cr 35 Fe 6 Mn 18 
Ni 5  

605 577 Chang et al.: 10.1007/s11837-019-03704-4 

17 
Al 25.5 Co 9 Cr 35 Fe 10 Mn 
15.5 Ni 5 

628 574 Chang et al.: 10.1007/s11837-019-03704-4 

18 
Al 24 Co 18 Cr 35 Fe 10 
Mn7.5 Ni 5.5  

650 561 Chang et al.: 10.1007/s11837-019-03704-4 

19 
Al 8 Co 25 Cu 18 Fe 25 Ni 
25 

129 173 
Fu et al.: 
https://doi.org/10.1016/j.actamat.2016.01.050. 

20 
Al 10 Co 17 Fe 35 Mo 6 Ni 
34 

182 260 Menou et al.: 10.1016/j.matdes.2018.01.045 

21 
Fe 40 Mn 14 Ni 10 Cr 10 Al 
15 Si 10 C 1 

596 560 
Jain et al.: 
https://doi.org/10.1016/j.jallcom.2020.155013 

22 Al 35 Cr 14 Mg 6 Ti 35 V 10 460 531 Chauhan et al: 10.1016/j.jallcom.2019.153367 

https://doi.org/10.1016/j.dib.2018.11.111
https://github.com/IDEAsLab-Materials-Informatics/ML-hardness-MPEAs
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S. 
No. 

Alloy Name 
Actual 
(HV) 

Predicted 
(HV) 

Ref 

23 Mo 0.5 VNbTi 370 459 Xiang et al.: 10.1016/j.jallcom.2019.153352 

24 Mo 0.5 VNbTiCr 0.25 410 465 Xiang et al.: 10.1016/j.jallcom.2019.153352 

25 Mo 0.5 VNbTiCr 0.5 456 489 Xiang et al.: 10.1016/j.jallcom.2019.153352 

26 Mo 0.5 VNbTiCr 0.75 488 515 Xiang et al.: 10.1016/j.jallcom.2019.153352 

27 Mo 0.5 VNbTiCr 1 518 538 Xiang et al.: 10.1016/j.jallcom.2019.153352 

28 Mo 0.5 VNbTiCr 1.5 580 565 Xiang et al.: 10.1016/j.jallcom.2019.153352 

29 Mo 0.5 VNbTiCr 2 668 573 Xiang et al.: 10.1016/j.jallcom.2019.153352 

30 Al 19.2 Co 28 Fe 28 Ni 24.8 556 409 Avila-Rubio et al: 10.1016/j.apt.2020.02.008 

31 
Al 17.6 Co 22.6 Fe 24.2 Ni 
22.1 Mo 13.5 

639 621 Avila-Rubio et al: 10.1016/j.apt.2020.02.008 

32 
Al 14.6 Co 21.5 Fe 22.6 Ni 
20.4 Ti 20.9 

681 547 Avila-Rubio et al: 10.1016/j.apt.2020.02.008 

33 
Al 13.7 Co 18.3 Fe 19.5 Ni 
17.9 Mo 14.4 Ti 16.2 

894 635 Avila-Rubio et al: 10.1016/j.apt.2020.02.008 

34 TiAlMoSiW 803 583 Kanyane et al.: 10.1016/j.matpr.2020.02.095 

35  Ti 0.25 AlMoSi 0.25 W 0.1 750 560 Kanyane et al.: 10.1016/j.matpr.2020.02.095 

36 Ti 0.3 Al Mo Si 0.3 W 0.1 765 568 Kanyane et al.: 10.1016/j.matpr.2020.02.095 

37 CoCrFeNi 156 143 Ma and Shek: 10.1016/j.jallcom.2020.154159 

38 CoCrFeNiHf 0.1 213 214 Ma and Shek: 10.1016/j.jallcom.2020.154159 

39 CoCrFeNiHf 0.2 333 356 Ma and Shek: 10.1016/j.jallcom.2020.154159 

40 CoCrFeNiHf 0.3 417 416 Ma and Shek: 10.1016/j.jallcom.2020.154159 

41 CoCrFeNiHf 0.4 569 474 Ma and Shek: 10.1016/j.jallcom.2020.154159 

42 Al 0.6 CrCuFeMnNi  220 230 
Mitrica et al.: 
10.1016/j.matchemphys.2019.122555 

43 AlCrCoFeNiTi  380 603 
Mitrica et al.: 
10.1016/j.matchemphys.2019.122555 

44 
Al 0.33 CrCuFeMn 0.33 
NiSi 0.33 

441 224 
Mitrica et al.: 
10.1016/j.matchemphys.2019.122555 

45 Al 0.5 CrFeMnNi 0.5 412 458 
Mitrica et al.: 
10.1016/j.matchemphys.2019.122555 

46 FeCoNiCuMo 0.2  162 215 Soni et al.: 10.1016/j.vacuum.2020.109173 

47 FeCoNiCuMo 0.4 203 233 Soni et al.: 10.1016/j.vacuum.2020.109173 

48 FeCoNiCuMo 0.6  277 237 Soni et al.: 10.1016/j.vacuum.2020.109173 

49 FeCoNiCuMo 0.8  347 241 Soni et al.: 10.1016/j.vacuum.2020.109173 

50 FeCoNiCuMo 1 382 244 Soni et al.: 10.1016/j.vacuum.2020.109173 

51 AlCrCuFeNiV 0.2 522 485 Huang et al.: 10.1016/j.vacuum.2019.109129 

52 AlCrCuFeNiV 0.6 560 592 Huang et al.: 10.1016/j.vacuum.2019.109129 

53 AlCrCuFeNiV 1 549 630 Huang et al.: 10.1016/j.vacuum.2019.109129 

54 CrFeNi 187 165 Zhang et al.: 10.1016/j.msea.2019.138566 

55 CrFeNiAl 0.2 215 199 Zhang et al.: 10.1016/j.msea.2019.138566 

56 CrFeNiAl 0.4  542 468 Zhang et al.: 10.1016/j.msea.2019.138566 

57 CrFeNiAl 0.3 Ti 0.3 551 554 Zhang et al.: 10.1016/j.msea.2019.138566 

58 CrFeNiAl 0.4 Ti 0.2 580 548 Zhang et al.: 10.1016/j.msea.2019.138566 
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Chapter 6: Phase evolution in CoCrCuNi-M alloys 

in presence of strong ordering and clustering 

binary pairs 

6.1 Introduction 

In this chapter, we present the experimental results on phase selection and 

hardness in the CoCrNi, CoCrCuNi and CoCrCuNi-M (M={Al, Ti, Zr, Nb, Mo}) 

alloy systems that were studied to – (a) validate the ML models for phase 

selection and hardness prediction that were developed in previous chapters, 

(b) study the effect of strong ordering/clustering binary pairs on phase 

evolution in CCAs and (c) establish limiting conditions and boundaries for the 

ML model. The rationale for selecting these systems is grounded in our recent 

work, which showed that Zn addition to AlCrFeCoNi leads to the rarely seen 

preferential ordering of Al-Cr binary pair, indicating that the presence of strong 

clustering or ordering pairs can drive unexpected behavior in CCAs [133]. Since 

the alloy development with Zn is difficult (especially, when synthesized via 

casting, owing to its very low boiling point), we included Cu in this work as it 

also introduces strong ordering/clustering with the 3d and 4d transition 

metals. The addition of Cu, however, introduces additional complexities, 

especially with respect to the presence of refractory metals, since the databases 

used for model development had only one composition that included a Cu-Mo 

pair and no compositions with a Cu-Nb pair. Thus, in addition to being a more 
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practical option than Zn, this also provided us with a means of testing the limits 

of the models developed. 

The base alloy composition is the equiatomic ternary CoCrNi medium entropy 

alloy, chosen since it is known to form a single-phase solid solution. The alloy 

compositions were selected through careful chemical additions to this ternary 

base alloy system to synthesize quaternary and quinary alloys such that each 

alloy had at least one strong ordering or clustering pair present in it. CoCrNi 

has been studied extensively in recent years[231,232]. It shows a highly stable 

single-phase FCC structure  that aligns with the expectations since – (a) it has a 

high average valence electron count (VEC) of 8.33 which suggests higher 

stability of FCC phase over BCC phase according to empirical VEC-based rule 

[46], (b) all binary pairs in CoCrNi show low, albeit negative chemical 

interaction parameters, and very low elastic interaction parameters ( Figure 6.1) 

indicating the potential of developing an entropy stabilized solid solution alloy 

(low, but negative, i.e., attractive interactions indicate alloying while the 

entropic stabilization is expected to drive the system towards a structurally 

ordered, but chemically disordered solid solution), which also suggests no 

preferential ordering/clustering that may be driven by chemical interactions, 

and (c) there is no indication of large lattice strains in the alloy owing to the 

similar atomic sizes of Co, Cr and Ni and negligible elastic interaction 

parameters of all binary pairs (Figure 6.1b). The role of the interaction 

parameters offers physical and quantitative insights into the process of alloying 

and segregation [133]. Hence, we include a separate section on this topic 

(§6.3.26.3.2) ahead of our discussion of the experimental results. 

The addition of Cu results in phase separation leading to two FCC phases 

(CoCrNi based FCC and Cu rich FCC) [233]. This again aligns with the binary 

pair properties since even though Cu does not introduce any significant lattice 

strains in CoCrNi, it does have a positive chemical interaction parameter with 

all the other elements, especially Cr (Figure 6.1b), indicating a preferential 

tendency to cluster into a separate Cu rich phase. As discussed in the previous 

chapters, we refer to ordering as the tendency of elements to mix with each 
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other, in a periodic manner (at least locally) and clustering as the tendency for 

elements to segregate away from each other forming elemental clusters in case 

of binary systems. These observations suggest that binary pair properties can 

be a significant driver for phase evolution in CCAs and hence, to test this 

hypothesis, we added Cu to CoCrNi as our quaternary addition.  

A host of quinary additions were then investigated systematically. The 

compositions studied in this work include – base alloys (CoCrNi and 

CoCrCuNi) and CoCrCuNi-M alloys where M={Al, Ti, Zr, Nb, Mo}. Al was 

selected as one of the candidates due to its propensity to promote B2 ordering 

[3,7,177]. The choice of Ti and Zr as the second class of quinary additions was 

dictated by identical VEC for both the elements, while introducing a significant 

size mismatch (Ti has an atomic radius of 140pm while Zr has an atomic radius 

of 155pm). As we move from Al → Ti → Zr, the VEC and nature of chemical 

interactions remains similar (Figure 6.1b) but the atomic sizes (and 

consequently the elastic interaction parameters and hence elastic strains) 

increase significantly. The third and final category of quinary additions 

included Nb and Mo. These two elements differ in their VECs (with Mo having 

one more valence electron than Nb). Both Mo and Nb have very similar atomic 

size (approx. 145pm each). This allows for exploring the effect of VEC when the 

size doesn’t change. Also, since the training databases for phase selection and 

hardness prediction ML models contained only one alloy with Mo-Cu pair and 

no alloys with Nb-Cu pair, these systems can help ascertain limits of the ML 

models.  Furthermore, the choice of the quinary additions (i.e., Al and the four 

early transition metals – Ti, Zr, Nb and Mo) ensure that the overall VEC of the 

alloys progressively decreases from a range which can be safely classified as 

FCC to values at the VEC classification boundaries which can potentially lead 

to interesting phase selection behavior with BCC and/or intermetallic phases 

likely to emerge. While the overall VEC decreases in comparison to the base 

ternary CoCrNi alloy, as we move from Zr → Nb → Mo, the VEC increases for 

the set of quinary alloys and the chemical interactions (especially for M-Cu 
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pair) change drastically. In this sense, such a choice of model systems creates 

an ideal testbed for the ML models developed so far. 

 

Figure 6.1 (a) Design methodology indicating the baseline compositions and the rationale for 
selection of alloying elements. (b) Miedema’s chemical (∆Hchem) and elastic (∆Helastic) interaction 
parameters representing enthalpy change (in kJ) associated with the addition of 1 mole of 
solute A into an infinite amount of solvent B. ∆Hsol is the sum of both ∆Hchem and ∆Helastic.  

6.2 Methodology 

6.2.1 Machine learning and Thermo-Calc calculations 

The machine learning calculations were done to predict the phase fractions and 

Vicker’s hardness for – a) base alloy compositions (CoCrNi and CoCrCuNi) 

and b) Mx-(CoCrCuNi)1-x alloy systems along continuous addition of an 

alloying element to CoCrCuNi. The phase fractions were predicted using a ML 

model developed by us in a prior work [19].  The Vicker’s hardness values were 

predicted using the ML model [95] developed as part of this thesis in Chapter 

5. The thermodynamic calculations for prediction of stables phases (as a 

function of temperature) were carried out using Thermo-Calc software with 

TCHEA5 database. 
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6.2.2 Experimental characterization 

Alloy ingots were prepared through arc melting of high purity (≥99.9%) 

elements (procured from Alfa Aesar and Sigma-Aldrich) on a water-cooled 

copper hearth in an inert argon gas environment. Each alloy was remelted at 

least five times to ensure chemical homogeneity. The as-cast alloy ingots were 

sectioned and polished for further characterization. Structural characterization 

was done through X-ray diffraction (XRD, PANalytical XPERT-PRO) using Co 

Kα radiation with λ(Kα1) = 1.78901 Å and λ(Kα2) = 1.7929 Å. The XRD data was 

Rietveld-refined using the GSAS-II code [234]. Microstructural characterization 

was done using a Scanning Electron Microscope (SEM, JEOL-6610LV) 

equipped with a tungsten filament electron gun. Along with SEM, the chemical 

composition and elemental distribution maps were generated using Energy 

Dispersive Spectroscopy (EDS, Bruker). Vicker’s hardness of each sample was 

measured with a micro hardness tester (Zwick Roell) using 100 gf load and 10 

seconds dwell time. Ten hardness measurements were done for each alloy to 

obtain an average hardness value and associated uncertainty estimates. 

6.2.3 EDS-PhaSe analysis 

The elemental maps obtained from SEM-EDS were analyzed using the EDS-

PhaSe software [235] that was developed as part of this thesis to perform 

quantitative analysis from EDS data. EDS-PhaSe was published recently [235] 

and is also included as Appendix B in this thesis. The phase segmentation and 

analysis routine of EDS-PhaSe involves three steps – (a) first, the element maps 

obtained from EDS are converted into estimated composition maps 

(atomic/weight percent), (b) secondly, various markers of elemental 

segregation are calculated for spatial visualization of any preferential 

segregation of element pairs within the scanned region, and c) thirdly, masks 

are created interactively using threshold conditions to generate phase 

segmented micrograph along with the estimates of phase compositions. The 

EDS-PhaSe phase compositions shown in the figures in this chapter represent 
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the average composition of each phase calculated by EDS-PhaSe after phase 

segmentation. 

6.3 Results and discussion 

6.3.1 Summary of Machine learning predictions 

Figure 6.2a shows the ML-predicted phase fractions of FCC, BCC and 

Intermetallic (IM) phases and Figure 6.2b shows the ML-predicted Vicker’s 

hardness for Mx-(CoCrCuNi)1-x alloy systems. For all alloys, the hardness 

trends closely follow the FCC → BCC phase transitions and IM formation 

predicted by phase selection model, thereby indicating that the models are 

physically consistent with each other. ML predictions show a significant IM 

formation for all alloying elements except Al which shows IM formation at only 

high concentrations (around equiatomic). With Al addition, the hardness 

increase correlates directly with the FCC→BCC phase transition beyond 8 at.% 

Al. Addition of Zr, Nb or Ti causes a steep increase in hardness, even at low 

concentrations, that correlates with the strong IM formation predicted by the 

ML model for these systems. Figure 6.2c shows the comparison between ML-

predicted and experimentally measured Vicker’s hardness for CoCrNi and 

CoCrCuNi base alloys and Mx-(CoCrCuNi)1-x equiatomic alloys. The ML 

models closely capture the hardness for base alloys and CoCrCuNi-(Al/Ti/Zr) 

alloys but a significant deviation is observed for CoCrCuNi-(Nb/Mo) alloys. 

Figure 6.2b shows that the ML model is predicting a steep increase in hardness 

with Nb addition at equiatomic composition and that the predicted hardness 

increases to ~600 HV at 25 at.% Nb. Thus, the model is correctly predicting 

large increase in hardness with Nb, albeit at slightly higher concentrations. The 

discrepancy in hardness prediction with Mo addition coincides with the 

underpredicted IM formation tendency which, as we will see later in §6.3.7, 

does not match with the experimental observations wherein the Mo rich 

intermetallic phase is actually the major phase in CoCrCuNi-Mo alloy.  The 

errors in ML-predictions for CoCrCuNi-Mo alloy possibly arise from the 

exceptionally large positive mixing enthalpy of this alloy since all Mo-pairs 
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(Mo-Cu in particular) have a positive interaction parameter (∆Hsol), as seen in 

Figure 6.1. The database used for the training of ML models did not have alloys 

with such large positive mixing enthalpies; hence, the model is extrapolating 

into a prediction space that is quite far from the training space, leading to 

underprediction of both the IM formation and hardness. This allows us to 

recognize a limiting condition for our ML models wherein we can expect the 

intermetallic formation and hardness values to be significantly underpredicted 

for alloys with exceptionally large mixing enthalpy values. That said, the ML 

models, as a whole, align well with the experimentally observed trends in IM 

phase formation and hardness values for all of the other alloys studied here. 

 

Figure 6.2 (a) Phase fraction of FCC, BCC and Intermetallic (IM) phases as predicted by ML 
model along continuous composition variations in Mx-(CoCrCuNi)1-x alloys. (b) ML predicted 
Vicker’s hardness in Mx-(CoCrCuNi)1-x alloys. (c) Comparing ML predicted and experimentally 
measured hardness of equiatomic alloys CoCrNi, CoCrCuNi and CoCrCuNi-M. Here, M 
includes {Al, Ti, Zr, Nb, Mo}.  
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6.3.2 Thermodynamic framework for general analyses of the systems 

Before embarking on a detailed discussion of the experimental work, we 

outline here a basic thermodynamic framework that has been used for a rather 

intuitive and qualitative assessments of the results. For developing a 

qualitative physical understanding, we resort to Miedema’s semi-empirical 

model [41,236], while ThermoCalc calculations and Machine Learning 

predictions offer more quantitative insights (albeit not as physically intuitive).  

The Miedema approach involves deconstructing the enthalpy of alloys into 

three contributions – chemical (originating from electronic interactions as 

atoms are brought close to form an alloy), elastic (originating from size 

mismatch coupled with the elastic moduli, i.e., a sense of the activation barrier 

to alloying in systems with atomic size mismatches forming an alloy, 

essentially requiring atoms to be squeezed together or stretched, depending on 

whether there is a positive or negative size mismatch) and structural (which is 

somewhat analogous to the different lattice stabilities proposed by Kauffman 

[237] while developing the Calphad method, although in Miedema’s scheme, 

the effects are not nearly quite as pronounced). Generally, the structural 

contribution in Miedema’s approach is small and often neglected. Miedema 

and his coworkers developed a model for estimating the interaction parameters 

in a sub-regular formalism (i.e., HA/B – the interaction parameter when a B atom 

is brought in infinite dilution in an A element – and HB/A are different). 

Miedema listed these chemical interaction parameters (which we replicate 

partially in Table 6.1). Additionally, Miedema incorporated Eshelby’s model of 

elastic interactions to estimate elastic contributions to the enthalpy through 

which analogous elastic interaction parameters can be calculated, also listed in 

Figure 6.1b for binary pairs relevant in this work. The interaction parameters 

indicate how strongly the elements want to stay close (negative values of 

interaction parameters), whereby the energetics can become more favorable if 

the atoms are ordered ideally or how strongly the elements want to stay apart 

(positive interaction parameters), whereby similar atoms cluster together, apart 

from the other atoms. Of course, the process of ordering and clustering is not 
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determined solely from binary pair enthalpy or binary interaction parameters, 

especially when other elements are present, as we had seen in the previous 

chapter 4 where we modelled short range ordering and clustering; nonetheless, 

as our analysis indicated, the interactions do have a significant contribution. It 

is important that we understand this since we will be discussing the 

partitioning of elements in our experiments within this framework.  

While Miedema’s model allows for an intuitive qualitative understanding of 

our results, it is not very accurate quantitatively. Therefore, we shall also 

sometimes refer to Thermo-Calc results and results from our own ML models 

as we study the concentrations and phase fractions estimated using EDS 

analyses and Rietveld refinement of XRD data. 

6.3.3 Baseline alloys: CoCrNi and CoCrCuNi 

CoCrNi has been studied extensively in the literature and has been observed to 

have a single-phase FCC structure. As noted earlier in §6.1, the single-phase 

FCC structure of CoCrNi aligns well with the various criteria viz., VEC, atomic 

size asymmetry and binary pair interaction parameters, that are correlated 

strongly to the phase evolution in CCAs. The ML predictions (Figure 6.2a) also 

indicate a single-phase FCC phase, as does the Thermo-Calc analysis (Figure 

6.3) of the equiatomic ternary. We observed a microstructure comprising a 

single phase with FCC structure (a=3.569 Å), as seen in Figure 6.4 and Figure 

6.5, which is in agreement with the literature results as well as our ML model 

and Thermo-Calc calculations. No second phase formation or preferential 

elemental segregation was observed in SEM-EDS results. 
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Figure 6.3 Thermo-Calc predicted phase fractions in CoCrNi ternary as a function of 
temperature. 

 

Figure 6.4 SEM-EDS results of CoCrNi. 

The base alloy system for our investigations here is formed by addition of Cu 

to the CoCrNi ternary in equiatomic proportions resulting in a CoCrCuNi 

quaternary system. As seen in a previous study by Derimow et al.  [233] and 

our own results here (Figure 6.7 and Figure 6.8), the addition of Cu to CoCrNi 

causes phase separation into two FCC phases – a CoCrNi rich FCC phase 

(a=3.572 Å) and a Cu rich FCC phase (a=3.605 Å). In general, in a binary system, 

Cu and Ni have excellent solid solubility and conform to the classic Hume-

Rothery rules for the formation of a substitutional solid solution. 
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Figure 6.5 XRD pattern and Rietveld-refined structures for CoCrNi ternary. 

However, at lower temperatures, the Cu-Ni system is known to undergo phase 

separation resulting in the formation of a Cu rich and Ni rich solid solution 

[238]. Nonetheless, Figure 6.1b indicates that all the three binary pairs with Cu 

(Cu-Co, Cu-Cr and Cu-Ni – especially Cu-Cr) have strongly positive interaction 

parameters which promotes clustering of Cu atoms and inducing phase 

separation into Cu rich regions and CoCrNi regions. Both these regions, 

however, are FCC type structures. This is reflected in our ML model results in 

Figure 6.2a which shows the existence of only FCC without any quinary 

alloying, as well as in the ThermoCalc results in Figure 6.6. The phase 

compositions obtained from EDS are shown in Figure 6.7.  

The minor solubilities of Co, Cr and Ni in the Cu rich phase stems from two 

sources – minimizing the overall Gibbs free energy of the system to arrive at a 

suitable CoCrNi composition with a low enough enthalpy and high enough 

entropy and a Cu rich phase where the positive interactions with minor 

additions between the binaries are overcome largely through an increased 

entropy. It is instructive to note that the concentrations are in the order of 
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interaction parameters, i.e., with Cu-Cr having the highest chemical interaction 

parameters (but low elastic interaction parameters due to similar size), the 

concentration of Cr is the least in the Cu rich phase. The Cu-Co interactions are 

less strongly positive which allows for a greater concentration of Co (albeit, a 

greater size mismatch and hence higher elastic contributions to the enthalpy 

ensures that the Co concentration, though greater than Cr is not significantly 

larger). The Cu-Ni binary pair has the lowest positive chemical interaction 

parameters and has a negligible atomic size mismatch. Consequently, the 

solubility of Ni is highest in the Cu rich phase. Cr, Co and Ni are all higher 

melting elements in comparison to Cu. Therefore, quite likely, the CoCrNi 

phase would be the primary solidifying phase. This line of reasoning is also in 

agreement with Thermo-Calc results. When the CoCrNi rich phase solidifies as 

dendritic region (DR), the Cr cannot accommodate too much Cu and pushes 

majority of Cu to the interdendritic (ID) region resulting in a Cu rich (~70% Cu) 

ID phase. As some Cu (~10 at.%) does go into the CoCrNi rich phase, we 

observe a very minor increase in its lattice parameter from 3.569 Å (without 

Cu) to 3.572 Å (with Cu). 

 

Figure 6.6 Thermo-Calc predicted phase fractions in CoCrCuNi quaternary as a function of 
temperature. 
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Figure 6.7 SEM-EDS and EDS-PhaSe results of CoCrCuNi alloy along with the phase 
information. The quantitative analysis of EDS data and subsequent phase segmentation was 
done using EDS-PhaSe [235] software that was developed as part of this thesis (Appendix B). 

 

Figure 6.8 XRD pattern and Rietveld-refined structures for CoCrCuNi equiatomic quaternary. 
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6.3.4 CoCrCuNi-Al 

Al has a larger radius and significantly lower VEC compared to Co, Cr, Ni and 

Cu. Moreover, as seen in Figure 6.1b, Al has negative interaction parameters 

with all elements here. The Al-Ni interaction parameters are especially 

negative, as is Al-Co (though to a lesser extent than Al-Ni), which could be 

sufficient to promote ordering of these elements with the elastic interaction 

parameters being only slightly positive and not enough to overcome the effects 

of the chemical interaction parameters. In contrast to the highly negative Al-Ni 

and Al-Co interactions, the Al-Cr or Al-Cu chemical interaction parameters are 

only moderately negative, while the elastic interaction parameters are 

comparable to Al-Ni and Al-Co pairs. This would suggest that Al would mostly 

tend to stay with Ni and Co, allowing the Cr-Cu pair to cluster resulting 

potentially in a three-phase mixture of an AlNiCo rich phase, a Cr rich phase 

(or potentially a Co-Cr rich phase, if the Al-Ni ordering tendency drives the 

formation of an intermetallic phase) and a Cu rich phase.  

It is now instructive to compare the line of reasoning developed above with our 

ML (Figure 6.2) and Thermo-Calc results (Figure 6.9). The ML model indicates 

the existence of BCC, FCC and intermetallic phases. The Thermo-Calc differs 

slightly, showing the presence of a CoCr rich BCT sigma phase (which is 

essentially a distortion of the BCC structure), an FCC phase that is Cu rich and 

an Al-Ni intermetallic showing a B2 ordering. This is observed in experimental 

results also (Figure 6.10) wherein, similar to CoCrCuNi alloy, we see the 

formation of Co-Cr rich dendrites with Cu segregating to form a Cu rich ID 

phase. The Al-Ni rich phase forms at the interface of the dendritic and 

interdendritic region. The placement of this phase can be understood when we 

consider that Al has the negative interaction parameters with all other elements 

(and hence can stay adjoining to all of the atoms, individually, without 

destabilizing the system) while Ni has the lowest positive interaction with Cu 

while having low negative interactions with Co and Cr. Our XRD analysis 

(Figure 6.11) indicates the presence of an FCC phase (a=3.626 Å), which 

matches reasonably well with the lattice parameter of Cu (3.604 Å, possibly 
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owing to the larger atomic size of Al) and likely corresponds to the Cu rich 

phase. The diffraction pattern also shows a minor B2 phase (a=2.882 Å) whose 

lattice parameter matches closely with the well-known Al-Ni B2 and is 

therefore likely corresponding to the B2 phase. The major phase observed in 

the XRD is a BCC phase (a=2.868 Å). This would, therefore, map onto the third 

phase seen via phase segmentation of the SEM images, i.e., the Co-Cr rich 

phase. Apparently, the incorporation of Al in CoCrNi rich phase causes it to 

transform into CoCr-rich phase. This may be driven by two factors – firstly, the 

depletion of Ni (which is the only FCC element in CoCrNi rich phase) due to 

the formation of NiAl rich phase and secondly, the incorporation of a 

significant amount of Al (~21 at. %) which is known to induce FCC → BCC 

transition owing to its low VEC. 

 

Figure 6.9 Thermo-Calc predicted phase fractions in CoCrCuNi-Al equiatomic quinary as a 
function of temperature. 
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Figure 6.10 SEM-EDS and EDS-PhaSe results of CoCrCuNi-Al alloy along with the phase 
information. The quantitative analysis of EDS data and subsequent phase segmentation was 
done using EDS-PhaSe [235] software that was developed as part of this thesis (Appendix B) 

 

Figure 6.11 XRD pattern and Rietveld-refined structures for CoCrCuNi-Al equiatomic quinary. 
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6.3.5 CoCrCuNi-Ti 

Similar to Al, Ti has a larger atomic size and lower VEC than Co, Cr, Cu and 

Ni. Also, Ti-(Co/Cr/Cu/Ni) have similar chemical and elastic interaction 

parameters as Al-pairs, as seen in Figure 6.1b. But there are three key 

differences between Al and Ti addition that can potentially affect the overall 

phase evolution. Firstly, Ti is larger than Al, with higher elastic modulii and 

consequently, Ti-pairs have more positive elastic interactions than Al-pairs. 

Secondly, while the chemical interaction parameters of Ti-(Co/Ni/Cu) pairs 

are more negative than same Al-pairs, the chemical interaction parameter of Ti-

Cr is less negative than Al-Cr. This, accompanied by the higher elastic 

interactions for Ti-pairs, results in just a slightly negative solution interaction 

parameter (∆Hsol) of Ti-Cr pair. Thirdly, Ti has HCP crystal structure unlike Al 

which has FCC structure. The combined effect of these factors implies that if a 

Ti-rich phase forms, which is quite probable owing to exceptionally strong Ti-

(Co,Ni) ordering. It can accommodate Cu preferentially over Cr, given a 

stronger Ti-Cu interaction as opposed to Ti-Cr interactions, and since Cu-Cr 

cluster strongly, any Cu that goes into these phases can effectively make it more 

and more difficult for Cr to be accommodated. This can potentially result in Cr 

being pushed out completely to form a separate Cr-rich phase. 

The ML predictions, Figure 6.2a, indicate that the addition of Ti to CoCrCuNi 

result in presence of FCC and intermetallic phases. This aligns with the strong 

ordering of Ti-Ni and Ti-Co pairs that may drive intermetallic formation. The 

Thermo-Calc calculations (Figure 6.12)  also indicate formation of a variety of 

intermetallic phases that include Co2Ti-type C15 Laves, Ni3Ti-type D024 and Ti-

Co rich B2 phase. But Thermo-Calc also predicts a pure Cr BCC phase and a 

pure Cu FCC phase. While the binary interaction parameters support 

formation of a Cr rich phase here, there is no apparent reason why Cu should 

cluster out completely; especially if Cr has already clustered into a separate 

phase since the primary driver for Cu segregation here is the Cr-Cu pair. 
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The experimental results (Figure 6.13) are in partial agreement with the ML and 

Thermo-Calc predictions as the phase segmented micrograph and EDS-PhaSe 

analysis shows the formation of a Cr rich phase, a Co-Ti rich phase and two 

CoCrNiTi phases (one of which has higher Ni while one has higher Cu and Ti). 

The Cr rich phase appears as separate dendrites while the Ni-enriched 

CoCrNiTi phase forms the dominant matrix phase that embeds the Co-Ti rich 

phase and a tiny amount of Cu-Ti enriched CoCrNiTi phase. The formation of 

Cr rich phase matches with the Thermo-Calc predictions but we did not find 

any evidence of a Cu rich phase that was predicted by Thermo-Calc. This 

makes sense as it is quite unlikely (based on binary interactions) that Cu would 

cluster out in this system, especially if Cr already forms a Cr rich phase. 

The XRD patterns (Figure 6.14) show two major phases – a BCC phase, a=2.886 

Å and an FCC phase, a=3.621 Å. The microstructural analysis also shows two 

major phases – a Cr rich phase and a Ni-enriched CoCrNiTi phase. Based on 

the composition of Cr rich phase (~74% Cr) and the fact that the lattice 

parameter of BCC phase (a=2.886 Å) is quite close to that of Cr (a=2.879 Å) in 

addition to the BCC structure of Cr, it would appear that it is the Cr rich phase 

that has crystallized with a BCC structure. Hence, the other major phase i.e., 

the FCC phase, a=3.621 Å, very likely corresponds to the Ni rich CoCrNiTi 

matrix phase. We also observe a Laves C15, a=6.689 Å minor phase in the XRD 

analysis. Based on the Thermo-Calc calculations which predict formation of a 

Co2Ti-type C15 Laves phase, it is quite likely that the Co-Ti rich phase in the 

microstructure corresponds to the Laves C15, a=6.689 Å structure. 
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Figure 6.12 Thermo-Calc predicted phase fractions in CoCrCuNi-Ti equiatomic quinary as a 
function of temperature. 

 

Figure 6.13 SEM-EDS and EDS-PhaSe results of CoCrCuNi-Ti alloy along with the phase 
information. The quantitative analysis of EDS data and subsequent phase segmentation was 
done using EDS-PhaSe [235] software that was developed as part of this thesis (Appendix B). 
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Figure 6.14 XRD pattern and Rietveld-refined structures for CoCrCuNi-Ti equiatomic quinary 

6.3.6 CoCrCuNi-Zr 

As seen in Figure 6.1, Zr has the same VEC and crystal structure as Ti. The 

chemical interaction parameters of Zr-pairs in CoCrCuNi-Zr are also similar to 

Ti-pairs albeit the magnitude of Zr-(Co/Ni/Cu) pairs has increased 

significantly compared to same Ti-pairs whereas as that of Zr-Cr pair is only 

slightly more negative than Ti-Cr. But the major difference is the significantly 

larger atomic size of Zr as compared to Ti which results in exceptionally high 

elastic interaction parameters of Zr-pairs. This leads to – (a) only slightly more 

negative solution interaction parameters (∆Hsol) of Zr-(Co/Ni) pairs as 

compared to Ti-(Co/Ni) pairs, and (b) a positive solution interaction parameter 

(∆Hsol) of Zr-Cr pair. This implies that the addition of Zr to CoCrCuNi should 

result in formation of Cr-rich phases, possibly even more pronounced than 

what we saw with Ti addition. It also suggests strong possibility of formation 

of Zr-Ni-Co rich intermetallic phases. 
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The ML predictions, Figure 6.2a, indicate that the addition of Zr to CoCrCuNi 

results in the presence of mostly BCC and intermetallic phases with a small 

amount of FCC phase. This aligns with the formation of a Cr-rich and Zr-

(Ni/Co) rich intermetallics that can be reasoned based on the binary interaction 

parameters. The Zr-Ni and Zr-Co binary phase diagrams also show an 

exceptionally intermetallic formation tendencies with the presence of many 

different line compounds. The Thermo-Calc calculations predict the formation 

of only three phases – a Cr rich BCC phase, a pure Cu FCC phase and a CoNiZr 

Laves C15 phase. This is in line with the ML predictions. 

The experimental results (Figure 6.16) show good agreement with the ML and 

ThermoCalc predictions as the phase segmented micrograph and EDS-PhaSe 

analysis shows the formation of a Cr rich phase, a CoZrNi rich phase and a Cu 

rich phase. This matches very closely with the Thermo-Calc predictions as in 

both the cases CoNiZr phase is by far the most dominant, followed by the Cu 

rich phase and the Cr rich phase. 

The XRD pattern, Figure 6.17, also shows a Laves C15 phase, a=12.364 Å, as the 

major phase accompanied by two minor phases – a BCC phase, a= 2.878 Å and 

a hexagonal phase, a=3.82 Å, c=4.685 Å. Since the CoZrNi rich phase appears 

as the dominant phase from phase segmentation, it is reasonable to assign the 

Laves C15, a=12.364 Å structure to this phase. It is further supported by the 

Thermo-Calc calculations that predict a CoNiZr Laves C15 as the dominant 

phase. The Cr-rich phase identified from microstructural analysis very likely 

corresponds to the BCC structure, similar to what was observed with Ti 

addition. The remaining hexagonal structure most likely belongs to the Cu-rich 

phase which has a significant amount of Co present in it. 
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Figure 6.15 Thermo-Calc predicted phase fractions in CoCrCuNi-Zr equiatomic quinary as a 
function of temperature. 

 

Figure 6.16 SEM-EDS and EDS-PhaSe results of CoCrCuNi-Zr alloy along with the phase 
information. The quantitative analysis of EDS data and subsequent phase segmentation was 
done using EDS-PhaSe [235] software that was developed as part of this thesis (Appendix B). 
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Figure 6.17 XRD pattern and Rietveld-refined structures for CoCrCuNi-Zr equiatomic quinary 

6.3.7 CoCrCuNi-Nb 

Unlike Ti and Zr, which exhibit close-packed (HCP) structures at the room 

temperature, Nb has a BCC structure. As seen in Figure 6.1b, similar to Ti and 

Zr, Nb-(Co/Cr/Ni) pairs also have negative chemical interaction parameters, 

with the Nb-Co and Nb-Ni interactions being highly negative. Nb-Cu, 

however, shows positive interaction parameters (unlike the Cu-Ti and Cu-Zr 

interaction parameters). The Nb atom is significantly larger than the late 

transition metals in the system which results in significantly positive elastic 

interaction parameters. In the case of Nb-Co and Nb-Ni, the magnitude of the 

elastic interaction parameters is much lower than the chemical interaction 

parameters, while in case of Nb-Cr, the elastic and chemical interaction 

parameters are comparable in magnitude. The Nb-Cu not only has positive 

chemical interaction parameters, but also strongly positive elastic parameters, 

which suggests that Nb and Cu would prefer to stay apart – something which 
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the Nb-Cu binary phase diagram readily shows with significant immiscibility 

in the liquid state leading to a monotectic reaction. With Cu clustering with 

other elements in the system as well, the formation of a Cu rich phase is only 

logical – something borne out experimentally also, as seen in Figure 6.19. With 

Ni-Cr interactions being significantly stronger than Co-Cr, we would anticipate 

a Ni-Cr rich phase with some Co and a Nb-Co rich phase. 

The ML predictions, Figure 6.2,  indicate the formation of FCC and intermetallic 

phases, which would be in agreement with a Cu rich phase (FCC) and a CoCrNi 

rich phase (which, based on the analysis of the CoCrNi ternary, is known to be 

an FCC phase). The strong chemical interactions between Nb and Co would 

then drive the intermetallic formation. The ML predictions also show a minor 

amount of BCC forming potentially. With Cr being the only BCC element 

which does not show strong intermetallic forming tendency (as evidenced from 

relatively low negative chemical interaction parameters), one can only surmise 

that a Cr rich phase might be a minor BCC phase (if at all present). The Thermo-

Calc calculations, Figure 6.18, are broadly aligned with these predictions with 

a Co-Nb C15 Laves phase intermetallic featuring prominently with a Cu rich 

FCC phase and Cr rich BCC phase. Interestingly, the Thermo-Calc simulation 

doesn’t indicate a second FCC phase and this is where the ML predictions 

deviate from the Thermo-Calc result. 

The experimental results (Figure 6.19) also show a significant formation of a 

Cu-rich phase (~78% Cu) – which is in agreement with both the ML and 

ThermoCalc results, but the morphology of this phase is quite different from 

what was observed in CoCrCuNi and CoCrCuNi-Al alloys. In these systems, 

the Cu-rich phase formed the ID region but with Nb addition, it forms isolated 

globules. This is characteristic of liquid phase separation that occurs in 

monotectic systems. This is quite likely given that the binary Cu-Nb system is 

known to show a monotectic reaction. In the Cu-Nb system, as we cool through 

the monotectic, the Nb rich solid solution is the primary solidifying phase in a 

dendritic morphology, with Cu rich globules solidifying later. Here, we 

observe something similar, with the formation of Nb-Co rich dendritic 
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structures encompassing the globular Cu rich regions. Of the minor solutes 

present in this Cu rich phase, Nb content is the lowest and Ni content the 

highest – which is in agreement with the chemical interaction parameters of the 

individual Cu containing binary pairs. The matrix is the major phase, rich in 

Co and Nb, with significant amounts of Ni and Cr being present. The 

interdendritic region is enriched in Ni and Cr.  

The diffraction pattern (Figure 6.20) shows the major phase to be a C36 Laves 

phase (a=4.819 Å, c=7.813 Å). Given the Thermo-Calc/ML predictions of the 

intermetallic phase and EDS phase segmentation results, it is quite likely that 

this corresponds to the Co-Nb rich phase where the chemical interaction 

parameters are strongly negative (and hence, more amenable to intermetallic 

formation). The second major phase is an FCC solid solution, a=3.616 Å, quite 

similar to Cu and likely corresponds to the Cu rich solid solution. A second 

FCC phase (in minor amounts) is seen to have a lattice parameter of a=3.607 Å, 

which is nearly identical to the CoCrNi ternary alloy and likely corresponds to 

the CoCrNi phase. This is a situation where the Thermo-Calc actually misses 

out the minor FCC phase and predicts a second D0A intermetallic which is not 

observed experimentally. 

 

Figure 6.18 Thermo-Calc predicted phase fractions in CoCrCuNi-Nb equiatomic quinary as a 
function of temperature. 
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Figure 6.19 SEM-EDS and EDS-PhaSe results of CoCrCuNi-Nb alloy along with the phase 
information. The quantitative analysis of EDS data and subsequent phase segmentation was 
done using EDS-PhaSe [235] software that was developed as part of this thesis (Appendix B). 

 

Figure 6.20 XRD pattern and Rietveld-refined structures for CoCrCuNi-Nb equiatomic quinary 
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6.3.8 CoCrCuNi-Mo 

As seen in Figure 6.1, Mo has many similarities with Cr as they both have BCC 

structure, are in the same group and hence have the same VEC (=6). The 

chemical interaction parameters of Mo-(Co/Ni/Cu) pairs are very similar to 

Cr-pairs. But the major difference is the much larger size of Mo atom as 

compared to Cr which leads to significantly higher elastic interaction 

parameters of Mo-pairs. This is in fact the reason why Mo-Cr binary, which 

forms an isomorphous system at high temperatures, breaks down into Mo rich 

and Cr rich solids at low temperatures. The overall solution interaction 

parameters (∆Hsol) of all Mo-pairs are positive with that of Mo-Cu pair being 

exceptionally large. In terms of interaction with Cu, Mo is similar to Nb as the 

Mo-Cu binary also shows monotectic reaction with significant immiscibility in 

the liquid state. But due to an additional valence electron, the chemical 

interaction parameters of Mo-(Co/Cr/Ni) pairs are significantly weaker as 

compared to same Nb-pairs. Since both Mo and Cu cluster strongly with all the 

other elements in this system, it would be fair to expect the formation of 

separate Mo rich and Cu rich phases in this alloy which should then drive the 

formation of a third CoCrNi phase since both Cu and Mo cluster with Co, Cr 

and Ni. 

The ML predictions, Figure 6.2, indicate the presence of FCC and Intermetallic 

phases which aligns with the possible formation of a Cu rich phase (FCC) and 

a CoCrNi rich phase (FCC) deduced from binary interaction parameters. The 

expected Mo-rich phase could very well align with the intermetallic phase 

formation since Zhou et al. have recently reported the formation of a Mo-rich 

intermetallic phase in a CoCrNiMo quaternary [239]. The Thermo-Calc 

calculations, Figure 6.21, also closely match these predictions as they predict 

the formation of a Cu rich phase (FCC), a NiCoCr phase (FCC) and a Mo-Cr 

rich sigma phase (BCT). That said, we do see a discrepancy in the quantitative 

phase estimation since Thermo-Calc predicts a significantly more amount of 

intermetallic phase than what is suggested by the ML model. 
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The experimental results (Figure 6.22) are in agreement with the ML and 

Thermo-Calc predictions as the phase segmented micrograph and EDS-PhaSe 

analysis shows the formation of a Cu rich phase, a CoCrNi phase and a Mo rich 

phase. Similar to the CoCrCuNi-Nb system, the Cu rich phase here is also 

present as isolated globules encompassed by Mo rich dendrites and marks the 

liquid phase separation that may have been driven by the well-known 

monotectic reaction in Cu-Mo system. It appears that as the melt cools, it may 

have separated into Cu rich and Mo rich liquid phases, and since Mo has 

significantly higher melting point, the Mo-rich dendrites may have solidified 

first thereby trapping the Cu rich liquid which has significantly lower melting 

point. As the Mo-rich dendrites grew, the interdendritic region may have 

gotten enriched in Ni and Co (owing to the positive interaction parameters of 

Mo-Ni and Mo-Co pairs). Since Ni-Cr is by the far the strongest ordering pair 

in this alloy system, the Ni may have pulled some Cr from the Mo-rich 

dendrites into the interdendritic region. The interdendritic region may have 

finally solidified as the CoCrNi FCC phase. 

The XRD pattern (Figure 6.23) shows the major phase (~87 wt.%) to be a 

tetragonal σ-phase, a=9.013 Å, c=4.696 Å. Since the Mo-rich intermetallic is by 

far the most dominant phase present in both the microstructure and Thermo-

Calc calculations, we can safely assign Mo-rich phase as the tetragonal σ-phase. 

The second major phase is an FCC solid solution, a=3.614 Å. This matches with 

the lattice parameter of Cu and may be assigned to the Cu-rich phase which 

has been observed both experimentally and in Thermo-Calc simulations. The 

expected peak positions of CoCrNi FCC phase overlap with the peaks of 

tetragonal Mo-rich phase and cannot be deconvoluted reliably. Thus, while we 

see clearly observe the CoCrNi phase as the interdendritic phase and can 

confidently expect it to be an FCC phase based on Thermo-Calc simulations as 

well as analysis of previous alloy systems, we cannot conclusively declare its 

structure or the lattice parameter here. We also observe some minor peaks in 

the XRD which match with a Cr rich BCC phase. While we did not observe any 

such phase in microstructural characterization, it could very well be that a  
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Figure 6.21 Thermo-Calc predicted phase fractions in CoCrCuNi-Mo equiatomic quinary as a 
function of temperature. 

 

Figure 6.22 SEM-EDS and EDS-PhaSe results of CoCrCuNi-Mo alloy along with the phase 
information. The quantitative analysis of EDS data and subsequent phase segmentation was 
done using EDS-PhaSe [235] software that was developed as part of this thesis (Appendix B). 
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Figure 6.23 XRD pattern and Rietveld-refined structures for CoCrCuNi-Mo equiatomic quinary 

small amount of Cr-rich BCC phase separates out from the Mo-rich phase since 

we do know that Mo-Cr binary phase separates at low temperatures. 

6.4 Conclusions 

In this chapter, we carried out experimental studies on CoCrNi ternary, 

CoCrCuNi quaternary and CoCrCuNi-M (M={Al, Ti, Zr, Nb, Mo}) quinary 

alloys to study the phase evolution in these alloys. The coexistence of Cu with 

3d and 4d transition metals introduces a broad spectrum of ordering and 

clustering behavior which makes these alloys a good test bed for a systematic 

study on the role of binary interactions in phase selection in CCAs. Moreover, 

these compositions are not only helpful in validating the phase selection and 

hardness prediction ML models developed earlier in this dissertation, but are 

also vital in identifying the limits of these models. The binary interactions here 

change from strongly ordering (in Ti and Zr systems) to strongly clustering (in 

Nb and Mo systems) and thus push the ML models to their limits; which is 
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especially true for Nb and Mo systems since the training datasets had only alloy 

with Cu-Mo pair and no alloy with Cu-Nb pair. The structural and 

microstructural characterization of as-cast alloys was done through XRD (with 

Rietveld refinement) and SEM-EDS measurements. EDS-PhaSe was used for 

the phase analysis from SEM-EDS data. The CoCrNi ternary exhibits a single-

phase FCC structure whereas the addition of Cu causes phase separation into 

a CoCrNi rich FCC phase and a Cu rich phase in CoCrCuNi quaternary. The 

addition of Al to CoCrCuNi causes the formation of an additional Al-Ni rich 

B2 phase at the interface of dendritic and interdendritic regions that drives the 

CoCrNi-rich dendritic phase to transition into a Co-Cr BCT phase. The addition 

of either Ti or Zr to CoCrCuNi leads to intermetallic formation and completely 

flips the clustering behavior wherein now we have Cr (instead of Cu) clustering 

to a separate Cr rich phase. This is driven by the formation of Ti and Zr rich 

phases which, combined with the higher ordering of Ti-Cu and Zr-Cu pairs 

compared to Ti-Cr and Zr-Cr pairs, drives the Cr out instead of Cu. The 

addition of either Nb or Mo to CoCrCuNi leads to a major intermetallic phase 

that solidifies as dendritic region and a minor CoCrNi rich phase that forms in 

the interdendritic region. Also, for both alloys, Cu segregates into separate 

globular regions encompassed by Mo rich and Nb rich dendrites indicating 

liquid phase separation between Cu-rich and Mo-rich liquids; which is not 

surprising as both Cu-Mo and Cu-Nb binaries exhibit a monotectic reaction. 

The formation of intermetallic phases in all CoCrCuNi-M quinary alloys here 

results in a significant increase in their hardness as compared to the CoCrCuNi 

quaternary. The hardness ML model quite reliably predicts this increase for Al, 

Ti and Zr alloys but is quite off in Nb and Mo alloys (especially Mo). Similarly, 

the phase selection model correctly predicts the intermetallic formation in all 

of the quinary alloys, but underpredicts the phase fraction of intermetallic 

phases in Nb and Mo alloys (especially Mo). This stems from the fact that the 

behavior seen in Nb and Mo alloys here was not well represented in the 

training datasets as they have an exceptionally high chemical enthalpy of 

mixing owing to their strong clustering tendencies wherein Nb-(Co/Cr) and 

Mo-(Co/Cr/Cu/Ni) pairs all have positive interaction parameters. Thus, this 
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highlights an important limitation of the ML models wherein they can be 

expected to break down when operating near or outside the limits of the feature 

values that were encountered in the training process. Going forward, we will 

design and incorporate these limitations into MAPAL (Appendix A) so that, 

whenever these models are used, appropriate warnings and confidence 

estimates are generated based on the feature space that is being probed by the 

user. 
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Chapter 7: Conclusions and future outlook 

7.1 Research summary and general conclusions 

Since the initial reports by Brian Cantor and Jien-Wei Yeh in 2004, 

compositionally complex alloys (CCAs) have come a long way in the last two 

decades and are amongst the most widely researched class of alloys today. A 

fundamental challenge associated with the exploration of CCAs is the 

astronomical compositional space (more than 10100 possible compositions) that 

is presented by these alloys. In recent years, machine learning (ML) has 

appeared as a promising tool to aid material discovery and has immense 

potential to enable the efficient exploration of compositional spaces in CCAs. 

But the black-box treatment that is often accorded to these models makes it 

difficult to extract any physical insights from the decision-making process of 

these models. Thus, the scope of this thesis is to build data-driven models and 

explainability frameworks that can not only accelerate the design of CCAs but 

can also decode the decision-making process of these models to provide 

fundamental physical insights into the factors that lead to certain properties in 

CCAs. Prior to this thesis, we published an ML model for predicting the phase 

selection in CCAs and validated it using ab initio, atomistic, experimental and 

Thermo-Calc results for a wide variety of alloy systems. But despite the 

excellent performance, it was treated as a black-box model since it deployed an 

ensemble of deep neural-networks which cannot be visualized or decoded 

directly. Thus, in Chapter 2, we started out this thesis by reducing the complex 

neural network model into a simplified and interpretable mathematical 

function for the probability of occurrence of FCC and BCC phases in CCAs. We 
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used a logistic function to isolate the effect of valence electron count on FCC 

and BCC phase occurrence and modeled the residuals as a function of six other 

physical and thermodynamic descriptors. This enabled a direct quantitative 

estimation of feature contributions towards the phase occurrence probabilities. 

We also showed that the physics-guided mathematical form (wherever 

possible) is superior to the brute-force deduction of mathematical expression 

through symbolic regression. That said, there are often scenarios where one 

may not have any idea as to what type of mathematical expression may be 

suitable for a problem. Thus, to enable interpretation in such scenarios, in 

Chapter 3, we developed a model-agnostic interpretational methodology 

termed as Compositional-Stimulus and Model-Response (CoSMoR) 

framework. CoSMoR can be applied to any composition-based ML model 

(irrespective of the algorithm used) to calculate the exact contribution of each 

feature towards the manifestation of target material property along a 

continuous compositional pathway. It utilizes the local partial dependencies of 

target property with respect to each feature and combines it with feature 

variations associated with discretized compositional variations to measure 

exact feature contributions. We showcased the importance of CoSMoR in this 

chapter through its implementation on the phase selection problem in CCAs 

wherein it provided materials-specific physical insights into phase transitions. 

Now that we had an interpretation methodology that can be applied to any 

composition-based model, we next developed ML models for predicting the 

short-range order (Chapter 4) and hardness (Chapter 5) in CCAs. From ML 

perspective, short-range order (SRO) prediction has unique challenges since – 

(a) SRO data is not a single value for any given alloy but is instead a matrix 

containing one SRO value for each unique binary pair, and (b) the SRO is 

controlled by the competing nature of binary pair interactions and not by the 

consolidated alloy features. We addressed these challenges in Chapter 4 by 

devising a new methodology wherein all of the information pertaining to an 

alloy and its constituent binary pairs was encoded into a three-dimensional 

array which was then mapped to a two-dimensional SRO matrix using 

variational autoencoders. In Chapter 5, we developed a neural network 
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ensemble model that captures the essential physical and thermodynamic 

features that contribute to hardness and allows high-throughput exploration of 

multi-dimensional compositional space. The model was used to explore and 

successfully predict hardness in AlxTiy(CrFeNi)1-x-y, HfxCoy(CrFeNi)1-x-y and 

Alx(TiZrHf)1-x systems. Using the DFT calculations done by our collaborators 

at Ames Lab, USA, we showed that the model is able to capture both linear and 

non-linear hardness variations that are associated with the composition-

dependent SRO and phase stabilities. For both SRO and hardness model, we 

used CoSMoR to extract physical insights from the decision-making process of 

the model. Finally, in Chapter 6, we undertook experimental study of CoCrNi, 

CoCrCuNi and CoCrCuNi-M (M={Al, Ti, Zr, Nb, Mo}) alloys to – a) assess the 

capability of phase selection and hardness prediction ML models developed 

earlier in this thesis, and b) study the effect of strong ordering/clustering 

binary pairs on phase evolution in CCAs. We performed the structural and 

microstructural characterization using XRD and SEM-EDS to study the phase 

evolution in these alloys and measured the Vicker’s hardness for comparison 

with our ML predictions. To assist the microstructural analysis from SEM-EDS 

data, we developed the EDS-PhaSe software as part of this thesis, included as 

Appendix B, to enable quantitative analysis of EDS data. It converts the EDS 

elemental maps into estimated composition maps and allows interactive phase 

segmentation and phase analysis based on various markers of elemental 

segregation. All feature generation programs, trained ML models and 

interpretation routines developed as part of this thesis have been packaged into 

a Python library viz., MAPAL, that has been included as Appendix A. Overall, 

this thesis encompasses the development of ML models and computational 

frameworks for the study of CCAs to – a) enable reliable, efficient and targeted 

exploration of compositional spaces in CCAs, b) decode the decision-making 

process of ML model to provide physical insights, and c) enhance the 

microstructural characterization from SEM-EDS data to add new dimensions 

to the insights that can be gained from experimental results. 
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7.2 Future outlook 

Even though the extensive research on CCAs over the last decade has 

uncovered many compositions with unique and improved properties such as 

excellent high temperature resistance, cryogenic strength and extreme 

toughness, we have barely scratched the surface of what these alloys have to 

offer. In the years and decades to come, CCAs have the potential to 

revolutionize many technologies that are impeded by the limitations imposed 

by existing alloys. This thesis makes several contributions towards the 

exploration of these alloys and there are several avenues in which it can be 

taken forward. Firstly, as is true for any data-driven approach, the accuracy 

and applicability of the model is strongly dictated by the quality, quantity and 

diversity of the data on which it was trained. As CCAs are still fairly new 

materials (compared to the steels and superalloys), the volume of experimental 

data is significantly lacking. But in the time to come, this will change due to 

both the exponentially growing research interest in these alloys as well as the 

high-throughput automated experimental facilities that have started appearing 

recently. As more data becomes available, the ML models must be retrained 

and reevaluated to improve their performance. Secondly, there is an urgent 

need for implementation and automation of web-scraping and text-mining to 

develop exhaustive databases for CCAs using the published literature. This 

would ensure that the ML models can learn from as much data as possible and 

can also actively adapt to new research as it appears. Thirdly, majority of the 

ML models for CCAs, including those developed in this thesis, are 

microstructure agnostic. While it is not difficult to build multi-modal ML 

models that incorporate images, the main difficulties with the incorporation of 

microstructures from published literature include – a) lack of uniform 

reporting standards that ensure availability of annotation-free images along 

with the associated metadata, b) immense length scales that are spanned by 

microstructural images, and c) lack of labelled microstructures that contain 

layers/masks representing distinct phases or features. There is an immense 

scope in future to develop methodologies that can circumvent these problems 

and enable effective utilization of microstructural information for improving 
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ML models. Finally, as the field of CCAs matures, it would be immensely 

helpful to combine machine learning with various computational approaches 

viz., ab initio calculations, atomistic simulations, theoretical modeling and 

thermodynamic modeling, to form synergistic frameworks that can perform 

much better than the standalone methods. We are also developing a package 

for high-throughput calculations in MAPAL that would use the pre-trained 

models developed in this thesis to efficiently generate and explore the 

properties of CCAs over large compositional spaces spanning millions of 

compositions.  
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Appendix A  

MAPAL: A python library for mapping features 

and properties of alloys over compositional spaces 

 

 

 

A.1 Introduction 

Alloy design involves mixing of multiple elements together to get improved or 

unique properties. The alloy composition controls the type and extent of atomic 

interactions as well as the phases that are possible in an alloy; and thus, 

compositional tuning is a critical part of any alloy design process. While 

deciding the composition, a preliminary conceptualization of the expected 

alloy properties often requires extension of elemental properties to the alloy 

composition space. The perfect example is Hume-Rothery rules that provide 

approximate conditions for formation of solid-solutions in binary alloys based 

on the individual elemental properties viz. atomic size, crystal structure, 

electronegativity and valency. Similarly, for compositionally complex alloys 

(CCAs), we have highlighted in previous chapters various composition-based 

features that play a significant role in phase selection and hardness. Thus, 

despite the simplistic nature of such composition-based metrics, their relevance 

and importance in alloy design has been cemented by a plethora of empirical, 

semi-empirical and machine learning models that have been successfully 
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deployed to predict the phase selection, mechanical properties and oxidation 

behaviour in a wide-variety of materials. With this in mind, we have built 

MAPAL (Mapping Alloys) as a tool to assist the compositional design of alloys 

through three key implementations: (a) mapping of alloy features to a variety 

of compositional regimes within binary, ternary and multi-component alloy 

systems, (b) parametrizing alloy compositions into a wide variety of physical 

and thermodynamic descriptors that act as input for machine learning models, 

and (c) mapping of alloy properties such as hardness, phase selection and yield 

strength over compositional spaces using pre-trained models. MAPAL is 

distributed as an open-source Python library that can be easily integrated with 

machine learning workflows and can thus be used for both creating new ML 

models as well as using trained models for exploration of new compositional 

spaces. 

A.2 Design methodology and programming environment 

As MAPAL predominantly focuses on compositional mapping, we elaborate 

here the nuances associated with how the alloy composition is represented in 

MAPAL. An alloy is represented by a ‘string’ variable for alloy name which 

captures its composition. This string consists of a sequence of elements wherein 

each element is followed by a number suffix that denotes its stoichiometry. If 

an element does not have a numeric suffix, stoichiometry of ‘1’ is assumed for 

that element. This terminology is in line with the commonly used 

representation for compounds and CCAs. Some examples are: 

• ‘AlTi’, ’Al1Ti1’, ’Al50Ti50’ are equivalent and represent an equiatomic 

binary alloy of Al and Ti; whereas ’Al2Ti’ or ‘AlTi0.5’ or ‘Al66.6Ti33.3’ 

represent a binary alloy where the number of atoms of Al : Ti are in a 

ratio of 2 : 1 

• ‘CoCrFeNi’ or ‘Co1Cr1Fe1Ni1’ is an equiatomic quaternary whereas 

‘CoCr2FeNi2.5’ is a quaternary alloy where number of atoms of (Co : Cr 

: Fe : Ni) are present in a ratio of (1 : 2 : 1 : 2.5) 
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MAPAL library comprises several packages and Figure A.1 shows the 

schematic flowchart of how the features or ML predicted properties are 

mapped either to user-defined compositional regimes (Figure A.1a) or to a list 

of alloy compositions (Figure A.1b) that are being used for training new ML 

models.  

MAPAL was developed using Python|3.10.2 and has been tested on Windows 

10, 11 and Ubuntu 20.04. For different functionalities, it uses following open-

source python libraries: numpy|1.26.1, pandas|2.1.2, tqdm|4.66.1, 

tensorflow|2.8.0, matplotlib|3.8.0, plotly|5.18.0, scikit-image|0.22.0. 

 

Figure A.1 Flowchart showing the use of MAPAL packages for: (a) mapping features or 
machine learning predictions as a function of composition, and (b) creating alloy descriptors 
for training machine learning models. 

A.3 MAPAL packages 

MAPAL contains different packages with dedicated functionalities. While the 

implementation of each package has been detailed (with examples) in the 

documentation, we briefly describe each package here to highlight its contents 

and usage. 



182 
 

A.3.1 mapal.element_data 

MAPAL contains an in-built database of elemental properties that are used for 

calculating alloy features. The parameters for implementation of Miedema’s 

model (§A.3.4) are also included in this database. The element properties 

currently available are listed in Table A.1 along with their ‘prop_key’ which is 

used to call any property from the database. Since new workflows may require 

customization of the element database, the user can both update the values as 

well as add new element properties to the in-built database by following a 

simple process shown in the documentation. The key functions available in the 

‘element_data’ package are: 

• mapal.element_data.el_properties(): prints list of all properties available in 

the element database 

• mapal.element_data.el_prop_info(prop_key): prints the information about 

any particular ‘prop_key’ 

• mapal.element_data.get_el_property(el, prop_key): returns the value of 

property ‘prop_key’ for element ‘el’ 

A.3.2 mapal.create_alloys 

A pre-requisite for mapping features over compositions is to have a 

functionality that can create the compositional space in the first place. This role 

is filled by the ‘create_alloys’ package in MAPAL. A compositional space 

represents a map of the concentration of alloy components. In a true binary and 

ternary system, each component is a single element e.g., AlxTi1-x or AlxTiyZr1-x-

y, whereas in a pseudo binary or ternary system, the components can be a 

stoichiometric combination of multiple elements e.g., (Al)x(Ti2Zr)1-x or 

(AlNi)x(TiZr)y(MoNb)1-x-y. Thus, to enable creation of both true as well as 

pseudo binary/ternary systems, the components can be defined as either a 

single element (e.g., A=’Al’, B=’Ti’) or a stoichiometric combination of multiple 

elements (e.g., A=’AlNi’, B=’Ti2Zr’). It should be noted that the inputs/outputs 

for compositions and composition step sizes in ‘create_alloys’ are represented in 

atomic fraction units (and not in atomic percent). The key functions available  
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Table A.1 List of element properties available in the built-in element database of MAPAL 
library. 

# Element property (prop_key)  # Element property (prop_key) 

1 Crystal structure (crys_struct)  13 Valence electron count (VEC) 

2 Work function (phi_workFunc) 
 

14 
Pauling Electronegativity 

(EN_Pauling) 

3 
Electron density at Wigner-Seitz 

cell boundary (nWS) 

 
15 

Allen Electronegativity 

(EN_Allen) 

4 Molar volume (Vm)  16 Density (density_S) 

5 Elastic modulus (E)  17 Melting temperature (Tm) 

6 Shear modulus (G)  18 Cohesive energy (Coh_E) 

7 Bulk modulus (K) 
 

19 
Compressibility 

(Compressibility) 

8 Surface energy (Sf_E) 
 

20 
Number of unpaired electrons 

(n_unpaired) 

9 
Vacancy formation energy 

(Hf_vac) 

 
21 

Spin magnetic moment 

(spin_mag_moment) 

10 
R/P ratio in Miedema’s model 

(R_P_ratio) 

 
22 Vickers hardness number (VHN) 

11 Metallic radius (r_met)  23 Poisson number (poisson_num) 

12 Covalent radius (r_cov)    

 

in ‘create_alloys’ package are: 

• mapal.create_alloys.binary(A, B, dc=0.01, cAmin=0, cAmax=1): creates 

alloy compositions for a AxB1-x binary system with a composition 

(atomic fraction) step size of ‘dc‘ (default=0.01). The lower and upper 

bounds for concentration of component A are ‘cAmin‘ (default=0) and 

‘cAmax‘ (default=1) 

• mapal.create_alloys.ternary(A, B, C, dc=0.01): creates alloy compositions 

for a AxByC1-x-y ternary system with a composition (atomic fraction) step 

size of ‘dc‘ (default=0.01) 

• mapal.create_alloys.ternary_1Cfixed(A, B, C, Cfix, dc=0.01, cAmin=0, 

cAmax=’’): creates alloy compositions for a AxB1-xCCfix ternary system 

with a composition (atomic fraction) step size of ‘dc‘ (default=0.01). The 
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concentration (atomic fraction) of component C is fixed as ‘Cfix’. The 

lower and upper bounds for concentration of component A are ‘cAmin‘ 

(default=0) and ‘cAmax‘ (default=1 – Cfix) 

• mapal.create_alloys.equiatomic_alloys(el_list, n_el): creates all possible 

equiatomic compositions containing ‘n_el’ number of elements from the 

‘el_list’ list of elements 

• mapal.create_alloys.all_possible_compositions(el_list, dc=0.01, cmin=0.0): 

creates all possible compositions from ‘el_list’ list of elements with a 

composition (atomic fraction) step size of ‘dc‘ (default=0.01). The 

minimum possible concentration of any element is ‘cmin’ (default=0) 

A.3.3 mapal.alloy_features 

One of the primary goals behind development of MAPAL is to enable creation 

of alloy features over compositional space. While the compositional space 

(alloy compositions) is created using ‘create_alloys’ package, the 

parametrization of these compositions into alloy descriptors is achieved 

through ‘alloy_features’ package. There are two methodologies for creating 

features: 

a) Operator-based features: An operator mutates the properties of constituent 

elements based on the alloy composition to create an alloy feature. An 

operator represents just the mathematical function and thus, when 

creating operator-based features, user must also provide the element 

property (‘prop_key’ from Table A.1) to which the operator will be 

applied. The operators available in MAPAL are listed in Table A.2 along 

with their mathematical expression and ‘operator_key’ that is used to call 

a specific operator function. 

b) Defined features: These are strictly defined functions that require only the 

alloy composition as an input. The defined features available in MAPAL 

are listed in Table A.3 along with their mathematical expression and 

‘feature_key’ that is used to call them. 
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The key functions available in ‘alloy_features’ package are: 

• mapal.alloy_features.list_operators(): returns list of operators available to 

mutate elemental properties to alloy features 

• mapal.alloy_features.list_features(): returns list of defined features 

available in MAPAL 

• mapal.alloy_features.get_feat_value(alloy_list, feature): serves as a single 

access function to calculate all the features available in MAPAL for a list 

of alloys (‘alloy_list’). If the feature to be calculated is an operator-based 

feature (Table A.2), then ‘feature’ is defined as a tuple of (‘operator_key’, 

‘el_prop’). For example, composition weighted average VEC will be 

expressed as feature = (‘comp_avg’, ‘VEC’). If the feature is a defined 

feature (Table A.3), then ‘feature’ is defined simply as the ‘feature_key’; 

for example, configurational entropy will be expressed as feature = 

‘S_config’ 

• mapal.alloy_features.get_comp_dict(alloy_name): converts alloy name 

string (‘alloy_name’) into a dictionary containing alloy composition 

A.3.4 mapal.miedema_calc 

MAPAL contains an in-built Miedema calculator that implements Miedema’s 

model [1,2] to calculate the chemical and elastic enthalpy of mixing associated 

with mixing of two elements. While the original Miedema’s model was built 

for binary alloys only, the Miedema calculator in MAPAL extends it to multi-

component alloys using the extended regular solution model [3]. 

Despite the simplistic nature of Miedema’s model, owing to the use of a 

macroscopic atom picture that is not backed by quantum mechanics, it has been 

widely used due to its – (a) good agreement with the experimental mixing 

enthalpy values for binary alloys, and (b) ease of implementation in calculating 

enthalpy estimates that can act as a feature for data-driven models. In fact, over 

the last decade (including the work in this thesis), Miedema’s enthalpy values 

have featured as key variables in many empirical, semi-empirical and ML 

models for CCAs. Since the Miedema’s approach has been documented 
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Table A.2 List of operator-based features available in MAPAL. The operator-based features use 
the alloy composition to mutate any element property X (extracted from in-built element 
database) into an alloy feature. The calculation of these features requires two inputs – (i) alloy 
composition, and (ii) the elemental property to be transformed (X). They ‘operator_key’ for 
each feature represents the notation using which it can be called in MAPAL. 

# Operator based features operator_key Mathematical expression 

1 Composition weighted average comp_avg 𝑋̅ = ∑ 𝑐𝑖𝑋𝑖
𝑁
𝑖=1   

2 Asymmetry asymmetry 𝛿𝑋 = √ ∑ 𝑐𝑖 (1 −
𝑋𝑖

𝑋̅
)

2
𝑁
𝑖=1   

3 Local mismatch local_mismatch 
LM𝑋 = ∑ ∑ 𝑐𝑖𝑐𝑗|𝑋𝑖 −𝑁

𝑗=1,𝑗≠𝑖
𝑁
𝑖=1

𝑋𝑗|  

4 Square difference sqdiff SD𝑋 = √∑ 𝑐𝑖(𝑋𝑖 − 𝑋̅)
2𝑁

𝑖=1   

5 Modulus mismatch modulus_mismatch η
𝑋

= ∑ (
𝑐𝑖

2(𝑋𝑖−𝑋̅)

𝑋𝑖+𝑋̅

1+0.5(𝑐𝑖
2(𝑋𝑖−𝑋̅)

𝑋𝑖+𝑋̅
)
)𝑁

𝑖=1   

 

Table A.3 List of defined features available in MAPAL. The calculation of these features 
requires only the alloy composition as an input and the relevant elemental properties are 
extracted automatically from the built-in element database. They ‘feature_key’ for each feature 
represents the notation using which it can be called in MAPAL. 

# Defined features feature_key Mathematical expression 

1 
Configurational entropy of 

mixing 
S_config ΔS𝑐𝑜𝑛𝑓𝑖𝑔 = −𝑅 ∑ 𝑐𝑖 log(𝑐𝑖)

𝑁
𝑖=1   

2 
Singh’s geometrical 

parameter 
Singh_parameter Λ =

ΔS𝑐𝑜𝑛𝑓𝑖𝑔

(𝛿𝑟)2   

3 
Wang’s geometrical 

parameter 
Wang_parameter γ =

1−√1−(
𝑟̅

𝑟𝑆+𝑟̅
)

2
 

1−√1−(
𝑟̅

𝑟𝐿+𝑟̅
)

2
 

  

4 Lattice distortion energy latt_dist_energy μ = 0.5 𝐸̅ 𝛿𝑟 

5 
Energy term in alloy 

strengthening model 
energy_strength_model A = 𝐺̅ 𝛿𝑟  (

1+𝜇̅

1−𝜇̅
)  

6 Peierls-Nabarro factor Peierl_Nabarro_factor F =
2𝐺̅

1−𝜇̅
  

 

extensively in the literature, we will not discuss all of its nuances here and will 

instead just briefly highlight the step-by-step methodology used by the 

Miedema calculator in MAPAL. All of the elemental parameters required for 
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the implementation of Miedema’s model have been incorporated in the in-built 

element database of MAPAL and are called directly from there by the program. 

When mixing two elements A and B in concentrations 𝑐𝐴 and 𝑐𝐵 respectively, 

the chemical enthalpy of mixing (∆𝐻𝐴𝐵
𝑐ℎ𝑒𝑚) is calculated using a series of steps 

highlighted below: 

Step 1: Calculating surface concentrations (𝑐𝐴
𝑠 and 𝑐𝐵

𝑠 ): 

𝑐𝐴
𝑠 =

𝑐𝐴𝑉̅𝐴
2 3⁄

𝑐𝐴𝑉̅𝐴
2 3⁄

+ 𝑐𝐵𝑉̅𝐵
2 3⁄

          𝑎𝑛𝑑     𝑐𝐵
𝑠 =

𝑐𝐵𝑉̅𝐵
2 3⁄

𝑐𝐴𝑉̅𝐴
2 3⁄

+ 𝑐𝐵𝑉̅𝐵
2 3⁄

  

where 𝑉̅𝐴 and 𝑉̅𝐵 are molar volumes of element A and B respectively 

 

Step 2: Implementing volume corrections to calculate effective molar volumes 

of elements A and B in A-B alloy: 

∆𝑉̅𝐴 =
𝑃𝑜 𝑓𝐵

𝐴 𝑉̅𝐴
2 3⁄

 (𝜙𝐴
∗ − 𝜙𝐵

∗ )

2(𝑛𝑤𝑠
−1 3⁄

)
𝑎𝑣

  [(𝑛𝑊𝑆
𝐵

)
−1

− (𝑛𝑊𝑆
𝐴

)
−1

)] 

∆𝑉̅𝐵 =
𝑃𝑜 𝑓𝐴

𝐵 𝑉̅𝐵
2 3⁄

 (𝜙𝐵
∗ − 𝜙𝐴

∗)

2(𝑛𝑤𝑠
−1 3⁄

)
𝑎𝑣

  [(𝑛𝑊𝑆
𝐴

)
−1

− (𝑛𝑊𝑆
𝐵

)
−1

)] 

where 𝜙𝐴
∗  and 𝜙𝐵

∗  are work functions for A & B, 𝑛𝑊𝑆
𝐴  and 𝑛𝑊𝑆

𝐵  are average 

electron density parameters over the entire Wigner-Seitz cell boundary, 

(𝑛𝑤𝑠
−1/3

)𝑎𝑣 is equal to 
(𝑛𝑊𝑆

𝐴 )−1/3+(𝑛𝑊𝑆
𝐵 )−1/3

2
 , and 𝑃𝑜 is an empirical constant that is 

equal to 1.5 when molar volume is expressed in cm3, work function in Volts and 

𝑛𝑊𝑆 in density units. If A-B is assumed to form solid solution, then 𝑓𝐵
𝐴 =

𝑐𝐵
𝑠  𝑎𝑛𝑑  𝑓𝐴

𝐵 = 𝑐𝐴
𝑠. 

The corrected molar volumes are then calculated as: 

(𝑉̅𝐴)𝑖𝑛 𝑎𝑙𝑙𝑜𝑦 = (𝑉̅𝐴)𝑝𝑢𝑟𝑒 + ∆𝑉̅𝐴     & (𝑉̅𝐵)𝑖𝑛 𝑎𝑙𝑙𝑜𝑦 = (𝑉̅𝐵)𝑝𝑢𝑟𝑒 + ∆𝑉̅𝐵 
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Step 3: Calculating the parameter Г: 

Г =
1

(𝑛𝑤𝑠
−1 3⁄

)
𝑎𝑣

[−𝑷(∆𝜙∗)2 +  𝑸(∆𝑛𝑤𝑠
1 3⁄

)
2

− 𝑹] 

where ∆𝑛𝑤𝑠
1/2

= (𝑛𝑤𝑠
𝐴 )1/2 − (𝑛𝑤𝑠

B )1/2 and ∆𝜙∗ = 𝜙𝐴
∗ − 𝜙𝐵

∗  

𝑷, 𝑸 and 𝑹 are all constants and their value is selected as following: 

Case 1: If both A & B are transition metals, then 𝑷=14.1, 𝑹=0 & 𝑸=9.4*𝑷 

Case 2: If both A & B are non-transition metals, then 𝑷=10.6, 𝑹=0 & 𝑸=9.4*𝑷 

Case 3: If one of the elements is a transition metal and the other is a non-

transition metal, then 𝑷=12.3 and 𝑸=9.4*𝑷. The value of 𝑹 is calculated as 𝑹 =

12.3 (
𝑅

𝑃
)

𝐴
(

𝑅

𝑃
)

𝐵
(

𝑅

𝑃
)

𝑝ℎ𝑎𝑠𝑒
 where (

𝑅

𝑃
)

𝑝ℎ𝑎𝑠𝑒
=1 (for solid state) and 0.73 (for liquid 

state). The values of (
𝑅

𝑃
)

𝐴
 and (

𝑅

𝑃
)

𝐵
 are obtained from the built-in element 

database. 

 

Step 4: Calculating chemical enthalpy of mixing (∆𝐻𝐴𝐵
𝑐ℎ𝑒𝑚) for A-B binary pair: 

∆𝐻𝐴𝐵
𝑐ℎ𝑒𝑚 = (𝑐𝐴. 𝑐𝐵)(𝑐𝐵

𝑠
 𝑉̅𝐴

2 3⁄
+ 𝑐𝐴

𝑠 𝑉̅𝐵
2 3⁄

) .  Г 

where 𝑉̅𝐴 and 𝑉̅𝐵 are corrected molar volumes of element A and B calculated in 

step 2. 

 

 When mixing two elements A and B in concentrations 𝑐𝐴 and 𝑐𝐵 

respectively, the elastic enthalpy of mixing (∆𝐻𝐴𝐵
𝑒𝑙 ) is calculated as: 

∆𝐻𝐴𝐵
𝑒𝑙 = 𝑐𝐴𝑐𝐵(𝑐𝐵 ∆𝐻̅𝐴 𝑖𝑛 𝐵

𝑒𝑙 + 𝑐𝐴 ∆𝐻̅𝐵 𝑖𝑛 𝐴
𝑒𝑙 ) 

The ∆𝐻̅𝐴 𝑖𝑛 𝐵
𝑒𝑙𝑎𝑠𝑡  and ∆𝐻̅𝐵 𝑖𝑛 𝐴

𝑒𝑙𝑎𝑠𝑡  values in above equation are calculated as: 
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∆𝐻̅𝐴 𝑖𝑛 𝐵
𝑒𝑙𝑎𝑠𝑡 =

2𝐾𝐴𝐺𝐵(𝑉̅𝐴 − 𝑉̅𝐵)2

3𝐾𝐴𝑉̅𝐵 + 4𝐺𝐵𝑉̅𝐴

    &   ∆𝐻̅𝐵 𝑖𝑛 𝐴
𝑒𝑙𝑎𝑠𝑡 =

2𝐾𝐵𝐺𝐴(𝑉̅𝐴 − 𝑉̅𝐵)2

3𝐾𝐵𝑉̅𝐴 + 4𝐺𝐴𝑉̅𝐵

 

where 𝐾𝐴 & 𝐾𝐵 are bulk modulus of A & B, 𝐺𝐵 & 𝐺𝐵 are shear modulus of A & 

B, and 𝑉̅𝐴 & 𝑉̅𝐵 are corrected molar volumes of A & B. 

 

For multi-component alloys containing three or more elements, the Miedema 

calculator in MAPAL calculates the enthalpy values using the extended regular 

solution model [3] as shown below: 

∆𝐻𝑎𝑙𝑙𝑜𝑦 = ∑ ∑ 4 𝑐𝑖𝑐𝑗
𝑁
𝑗=1,𝑗≠𝑖

𝑁
𝑖=1 ∆𝐻𝑖𝑗

𝑚𝑖𝑥  

where 𝑁 is the number of elements present in the alloy and ∆𝐻𝑖𝑗
𝑚𝑖𝑥 is the mixing 

enthalpy for 𝑖 − 𝑗 equiatomic alloy. 

 

The key functions available in ‘miedema_calc’ package are: 

• mapal.miedema_calc.get_miedema_enthalpy(alloy_name): returns mixing 

enthalpy for solid solution and formation enthalpy for intermetallic for 

an alloy (‘alloy_name’) using Miedema's model 

• mapal.miedema_calc.get_miedema_vol_correction(alloy_name): calculates 

overall effective volume correction applied to elements in Miedema’s 

model. It can be considered as an estimate of the distortion in atomic 

volumes due to alloying 

A.3.5 mapal.preTrained_ML_mods 

With the has built-in functionalities for calculating compositional spaces and 

alloy features, MAPAL can seamlessly support deployment of trained ML 

models to map predictions over different compositional regimes to aid the alloy 

design process. This becomes especially helpful when MAPAL was used to 

create features for training of the ML model. Currently, we have included two 

pre-trained ML models in MAPAL (as shown in Table A.4) – (a) Neural 
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network ensemble model for predicting Vicker’s hardness in multi-principal 

component alloys [4], and (b) a neural network ensemble model for predicting 

phase fractions of FCC, BCC and intermetallic phases in high-entropy alloys 

[5]. We have also developed an yield strength prediction model for multi-

principal element alloys that will be included in a future update. The key 

functions available in ‘preTrained_ML_mods’ package are: 

• mapal.preTrained_ML_mods.mods_list(): prints the list of pre-trained ML 

models available in MAPAL along with their ‘model_key’ that is used 

to access them 

• mapal.preTrained_ML_mods.info(mod): returns detailed information 

about any model (‘mod’) 

• mapal.preTrained_ML_mods.predict_hardness(alloy_names_list): creates 

Vicker’s hardness predictions for a list of alloys (‘alloy_names_list’) 

• mapal.preTrained_ML_mods.predict_phase_fractions(alloy_names_list): 

creates predicted phase fractions of FCC, BCC and Intermetallic phases 

for a list of alloys (‘alloy_names_list’) 

 

Table A.4 List of pre-trained machine learning models available in the MAPAL. 

# 
Pre-trained Machine 

Learning model 

model

_key 

Predicted 

property 
Reference 

1 

Neural network ensemble 

model for predicting 

hardness of as-cast multi-

principal element alloys 

M1 
Vickers 

Hardness (HV) 

[4] Beniwal et al., npj 

Computational Materials, 8 (2022) 

153 

DOI: 10.1038/s41524-022-00842-3 

2 

Neural network ensemble 

model for predicting phase 

fraction of FCC, BCC & 

Intermetallic phases in as-

cast high-entropy alloys 

M2 

Phase fraction 

of FCC, BCC 

and 

Intermetallic 

phase 

[5] Beniwal and Ray, Computational 

Materials Science, 197 (2021) 110647 

DOI: 

10.1016/j.commatsci.2021.110647 

3 

Neural network ensemble 

model for predicting yield 

strength of as-cast multi-

principal element alloys 

- 
Yield strength 

(MPa) 

Not published currently. The model 

will be added to MAPAL in future 

update 
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A.3.6 mapal.map_features 

The ‘map_features’ package combines various functionalities in MAPAL (as 

discussed above) with plotting functions to enable visualization of features as 

a function of composition in different type of alloy systems, as shown in Figure 

A.2. Both the operator-based features and defined features (as discussed earlier 

in §A.3.3) can be visualized using this package. The key functions available in 

‘map_features’ package are: 

• mapal.map_features.binary(feats, A, B, dc=0.01, cAmin=0, cAmax=1): plots 

all features in input feature list (‘feats’) for an AxB1-x binary system with 

a composition (atomic fraction) step size of ‘dc‘ (default=0.01), as shown 

in Figure A.2a. The lower and upper bounds for concentration of 

component A are ‘cAmin‘ (default=0) and ‘cAmax‘ (default=1) 

• mapal.map_features.ternary(feats, A, B, C, dc=0.01, colorscale=’Viridis’): 

creates a ternary plot for all features in input feature list (‘feats’) over an 

AxByC1-x-y ternary system with a composition (atomic fraction) step size 

of ‘dc‘ (default=0.01), as shown in Figure A.2b 

• mapal.map_features.ternary1Cfixed(feats, A, B, C, Cfix, dc=0.01, cAmin=0, 

cAmax=’’): plots all features in input feature list (‘feats’) for an AxB1-xCCfix 

ternary system with a composition (atomic fraction) step size of ‘dc‘ 

(default=0.01), as shown in Figure A.2c. The concentration (atomic 

fraction) of component C is fixed as ‘Cfix’. The lower and upper bounds 

for concentration of component A are ‘cAmin‘ (default=0) and ‘cAmax‘ 

(default=1 – Cfix) 
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Figure A.2 Different types of feature-composition maps created using ‘map_features’ package. 
(a) Features maps for Alx(CrFeNi)1-x pseudo-binary system. (b) Feature maps for 
AlxTiy(CrFeNi)1-x-y pseudo-ternary system. (c) Feature maps for AlxTi1-x(CrFeNi)0.6 pseudo-
ternary system where the concentration of (CrFeNi) is fixed at 0.6 atomic fraction. In all (a-c), 
the left, middle and right figures are for configurational entropy, composition-weighted 
average valence electron count (VEC) and asymmetry in metallic radius respectively. 

A.3.7 mapal.map_ML_predictions 

Trained ML models can potentially guide the alloy design process by enabling 

identification of composition-of-interests based on how the predictions change 

over continuous compositional variations. To enable this, ‘map_ML_predictions’ 

package in MAPAL uses the pre-trained ML models (as listed in Table A.4) to 

map the predictions over different type of compositional regimes including 

binary, pseudo-binary, ternary and pseudo-ternary compositional spaces. The 

key functions available in ‘map_ML_predictions’ package are: 
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• mapal.map_ML_predictions.HV_binary(A, B, dc=0.01, cAmin=0, cAmax=1): 

plots the Vicker’s hardness predictions for an AxB1-x binary system with 

a composition (atomic fraction) step size of ‘dc‘ (default=0.01), as shown 

in Figure A.3a. The lower and upper bounds for concentration of 

component A are ‘cAmin‘ (default=0) and ‘cAmax‘ (default=1) 

• mapal.map_ML_predictions.fPhase_binary(A, B, dc=0.01, cAmin=0, 

cAmax=1): plots the predicted phase fractions of FCC, BCC and 

Intermetallic phases over an AxByC1-x-y ternary system with a 

composition (atomic fraction) step size of ‘dc‘ (default=0.01), as shown 

in Figure A.3a 

• mapal.map_ML_predictions.HV_ternary(A, B, C, dc=0.01): plots the 

Vicker’s hardness predictions over an AxByC1-x-y ternary system with a 

composition (atomic fraction) step size of ‘dc‘ (default=0.01), as shown 

in Figure A.3b 

• mapal.map_ML_predictions.fPhase_ternary(A, B, C, dc=0.01): plots the 

predicted phase fractions of FCC, BCC and Intermetallic phases over an 

AxByC1-x-y ternary system with a composition (atomic fraction) step size 

of ‘dc‘ (default=0.01), as shown in Figure A.3b 

• mapal.map_ML_predictions.HV_ternary1Cfixed(A, B, C, Cfix, dc=0.01, 

cAmin=0, cAmax=’’): plots the Vicker’s hardness predictions over an 

AxB1-xCCfix ternary system with a composition (atomic fraction) step size 

of ‘dc‘ (default=0.01), as shown in Figure A.3c. The concentration (atomic 

fraction) of component C is fixed as ‘Cfix’. The lower and upper bounds 

for concentration of component A are ‘cAmin‘ (default=0) and ‘cAmax‘ 

(default=1 – Cfix) 

• mapal.map_ML_predictions.fPhase_ternary1Cfixed(A, B, C, Cfix, dc=0.01, 

cAmin=0, cAmax’’): plots the predicted phase fractions of FCC, BCC and 

Intermetallic phases over an AxB1-xCCfix ternary system with a 

composition (atomic fraction) step size of ‘dc‘ (default=0.01), as shown 

in Figure A.3c. The concentration (atomic fraction) of component C is 

fixed as ‘Cfix’. The lower and upper bounds for concentration of 

component A are ‘cAmin‘ (default=0) and ‘cAmax‘ (default=1 – Cfix) 
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A.4 Conclusions 

In summary, we have built MAPAL to enable parametrization of alloy 

compositions into physically relevant features that can be used to develop new 

machine learning models for predicting properties and behaviour of materials. 

MAPAL can also help in the alloy design process through – (a) visualization of 

a wide variety of thermodynamic and physical alloy descriptors over 

compositional spaces including binary, pseudo-binary, ternary and pseudo-

ternary alloy systems, and (b) mapping of machine learning predictions from 

pre-trained models over compositional spaces. These visualizations provide 

insights for the selection of compositions-of-interest that can be further studied 

experimentally or through first-principles calculations. MAPAL has been 

developed as an open-source Python library and can support not only the 

training of new ML models but also the use of pre-trained ML models for 

exploration of compositional spaces. As the source code for MAPAL has 

published online, users can easily modify or expand the existing functions and 

element database for new case-specific functionalities.  

A.5 Code availability 

The documentation of MAPAL is available at https://ideas-

db.notion.site/ideas-db/mapal-3c83308bf94140f6a5bb9ff12dd47543. The 

source code for MAPAL is available on ‘IDEAsLab-Materials-Informatics’ 

organization page on GitHub (https://github.com/IDEAsLab-Materials-

Informatics). The library is currently available for download as a wheel 

package that can be installed locally using pip. Soon, it will also be hosted on 

PyPI repository to enable direct pip installation through web. 

 

https://ideas-db.notion.site/ideas-db/mapal-3c83308bf94140f6a5bb9ff12dd47543
https://ideas-db.notion.site/ideas-db/mapal-3c83308bf94140f6a5bb9ff12dd47543
https://github.com/IDEAsLab-Materials-Informatics
https://github.com/IDEAsLab-Materials-Informatics
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Figure A.3 Different types of property-composition maps created using ‘map_ML_predictions’ 
package. Predicted hardness and phase fractions maps for  (a) Alx(CrFeNi)1-x pseudo-binary 
system, (b AlxTiy(CrFeNi)1-x-y pseudo-ternary system, and (c) AlxTi1-x(CrFeNi)0.6 pseudo-ternary 
system where the concentration of (CrFeNi) is fixed at 0.6 atomic fraction. In all (a-c), f_FCC, 
f_BCC and f_IM represent phase fractions of FCC, BCC and Intermetallic phases respectively. 
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Appendix B  

EDS-PhaSe: Phase segmentation and analysis from 
EDS elemental map images using markers of 
elemental segregation 

 

 

 

B.1 Introduction 

Scanning Electron Microscopy (SEM), combined with Energy Dispersive 

Spectroscopy (EDS) mapping, is commonly used for gaining a qualitative 

understanding of elemental and phase distribution in materials. While SEM 

imaging (especially with back-scattered electrons) enables visualization of 

phase distribution in the sample surface due to the average Z-contrast, EDS 

elemental maps provide a visualization of the elemental distribution within the 

sample. However, extracting quantitative data that allows for chemical 

mapping of phases is rarely attempted. A key impediment in such efforts lies 

in the self-scaling nature of the individual element map, i.e., the intensities scale 

between the highest and lowest concentration of that element vis-à-vis the 

microstructure instead of scaling according to the absolute concentrations 

within the alloy. A wealth of such data exists in the microscopy literature where 

qualitative analysis is done without quantifying the results. The present work 

https://doi.org/10.1007/s13632-023-01020-7
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seeks to address this challenge via appropriate scaling of intensity, normalized 

for the actual chemical compositions. 

Usually, the separate phases are identified based on the contrast in SEM images 

(typically using backscattered electrons with some visual cues from EDS maps) 

and the phase compositions are estimated by sampling small regions within 

the separate phases. This becomes challenging in scenarios where the phase 

contrast is not clearly apparent from the backscattered images due to low 

overall Z contrast. In this work, we present the EDS-Phase Segmentation 

(EDS-PhaSe) tool that enables phase segmentation and phase analysis using 

the EDS elemental map images. It converts the EDS map images into estimated 

composition maps for calculating markers of selective elemental redistribution 

in the scanned area and creates a phase segmented micrograph while providing 

approximate fraction and composition of each identified phase. 

EDS is a quantitative technique wherein the chemical composition of any 

region on the sample surface can be calculated from the analysis of the 

characteristic X-ray spectrum emitted by that region when it is impacted by 

high-energy fast-moving electrons [1]. EDS mapping over a selected area is 

often used to generate elemental maps, the color intensity of which is scaled 

according to the relative abundance of the element within that region. 

However, given the self-scaling nature of the individual elemental maps, a 

measure of the overall composition is not obtainable by direct visual 

observation, which in turns becomes an impediment for extracting quantitative 

data from the EDS maps. The major reason behind such treatment is the fact 

that statistical accuracy of EDS quantification is strongly linked to the number 

of signals (photon counts) received, which can be very low at a single pixel due 

to the short dwell time per pixel while mapping large areas. Since phase 

separation is usually associated with elemental redistribution, EDS elemental 

maps can be used to identify compositionally different phases. Various 

commercial software packages are in fact available for automated phase 

segmentation, but these are coupled with the respective spectroscopic imaging 

systems and thus cannot work with the elemental mapping data available only 
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as images (for example, data obtained from published literature). Various 

approaches have been implemented by researchers for EDS assisted phase 

segmentation [2–6]. Some of these lack capabilities for generalized 

implementation for phase analysis, while others are built only for specific use-

case scenarios. The edxia tool developed by Georget et al. [4] is especially 

interesting, albeit it is targeted towards microstructural analysis of 

cementitious materials only. 

The EDS-PhaSe framework presented in this work enables phase segmentation 

and phase analysis using the EDS data to obtain estimates of phase fractions 

and phase compositions. The algorithms presented here are available as an 

interactive workflow with an easy-to-use interface and can be implemented 

directly to the EDS elemental map images for any material without requiring 

access to any raw data or proprietary software. The application of EDS-PhaSe 

is demonstrated here for microstructural analysis in AlCoCrFeNi alloy. 

B.2 Methodology 

The EDS-PhaSe framework developed in this work enables phase 

segmentation and phase analysis from raw EDS elemental map images. It was 

implemented using the Python programming language and associated open-

source libraries. ‘OpenCV’ was used for reading and processing the raw EDS 

maps, ‘numpy’ was used for manipulation and conversion of pixel map arrays, 

and ‘matplotlib’ was used for plotting the pixel maps, phase masks and 

segmented microstructures. The codes were wrapped into jupyter notebooks 

wherein interactive controls were incorporated using ‘ipywidgets’. This enables 

a user-friendly access to the EDS-PhaSe (akin to a graphical user interface) so 

that it can be used for analyzing new data and EDS maps without any coding. 

The code for EDS-PhaSe is available at GitHub (§B.5 Research data). 

The SEM micrograph and raw EDS elemental maps of AlCoCrFeNi used in this 

work correspond to equiatomic AlCoCrFeNi CCA that was prepared using 

Mechanical Alloying (MA) followed by sintering in the published work of 
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Shivam et al. [7]. The microstructure and EDS elemental maps for AlCoCrFeNi 

alloy were captured using FEI Quanta 200 F SEM equipped with AMETEK EDS 

detector operated at 20 kV. The accuracy of this approach was also 

demonstrated on a commercial Ni-based Haynes 282 superalloy using the 

actual raw data from the EDS maps as well as the images derived from the 

commercial software package (Oxford’s AZtec). 

B.3 Results 

B.3.1 Creating estimated composition maps 

The elemental maps obtained from EDS capture the distribution of each 

element within the scan area which is most commonly represented in the form 

of RGB color images wherein the intensity of each pixel is scaled relative to the 

spectral contribution of that pixel to the overall spectrum of a given element. 

Figure B.1 shows the methodology used for converting raw EDS maps into 

estimated composition maps. Suppose a sample has 𝑁 number of raw EDS 

elemental maps (one for each element) and the size of each map is 𝑚 × 𝑛. The 

intensity of any (𝑖, 𝑗) pixel in the raw EDS map of any element 𝑘 is denoted here 

as 𝐼𝑖𝑗
𝑘 . The raw EDS map of any element 𝑘 is converted to a scaled map wherein 

the scaled intensity of any (𝑖, 𝑗) pixel (𝑆𝑖𝑗
𝑘 ) is given as: 

𝑆𝑖𝑗
𝑘 =

𝑋̅𝑘

∑ ∑ 𝐼𝑖𝑗
𝑘𝑛

𝑗=1
𝑚
𝑖=1

× 𝐼𝑖𝑗
𝑘  

Equation B.1 

where, 𝑋̅𝑘 is the average concentration of element 𝑘 in the overall area mapped 

using EDS and the denominator (∑ ∑ 𝐼𝑖𝑗
𝑘𝑛

𝑗=1
𝑚
𝑖=1 ) is the sum of all pixel intensities 

in the raw EDS map of element 𝑘. 𝑋̅𝑘 can be in either atomic percent or weight 

percent and must match the mode used for creating raw EDS maps. In essence, 

the scaled map is a representation of how the total quantity of any given 

element present in the overall scanned area is redistributed to each pixel. This 

assumes a linear relationship between the pixel intensity at a given spatial 
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location and the relative quantity of the element present (here, relative refers to 

the maximum quantity of the element within the region captured in the map). 

 

Figure B.1 Methodology for conversion of raw EDS maps into composition maps. 

The scaled map of any element 𝑘 is then converted to an estimated composition 

map wherein the estimated concentration (𝑋𝑖𝑗
𝑘 ) of element 𝑘 in any (𝑖, 𝑗) pixel is 

given as: 

𝑋𝑖𝑗
𝑘 =

𝑆𝑖𝑗
𝑘

𝑇𝑖𝑗
× 100 

Equation B.2 

where, 𝑇𝑖𝑗 is the summation of scaled intensities for all elements at the (𝑖, 𝑗) 

pixel and is calculated as 𝑇𝑖𝑗 = ∑ 𝑆𝑖𝑗
𝑘𝑁

𝑘=1 . The units of estimated composition 

maps thus obtained are same as the mode used for capturing the raw EDS 

elemental maps. Figure B.2 shows the raw elemental EDS maps along with the 

transformed composition maps (atomic percent and weight percent) for 

AlCoCrFeNi alloy. 
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Figure B.2 EDS elemental maps and transformed compositional maps for AlCoCrFeNi. 

B.3.2 Elemental segregation markers 

Phase separation in alloys, whether it be during solidification or heat treatment, 

is often marked by the redistribution of elements into different phases. EDS 

maps capture this elemental redistribution; but, while they give visual cues on 

the nature of segregation in different regions, the lack of quantitative analysis 

often makes it difficult to: (a) precisely phase segment the microstructure when 

phase contrast is lacking in SEM micrographs [8], (b) estimate the extent of 

elemental redistribution, and (c) differentiate between the Z contrast (due to 

average atomic number difference) and grain orientation contrast. Thus, we use 

two markers that provide quantitative information on the selective 

redistribution of all element pairs at each pixel in a given alloy and can act as 

parameters for performing phase segmentation. 

The first parameter is a proxy order-parameter (𝛼𝑖𝑗
𝐴−𝐵) that is a measure of 

elemental ordering on a microscopic scale (decided by pixel size in EDS scan) 

and is calculated at any (𝑖, 𝑗) pixel for any binary pair A-B as: 

𝛼𝑖𝑗
𝐴−𝐵 =

𝑋𝑖𝑗
𝐴 𝑋𝑖𝑗

𝐵

𝑋̅𝐴 𝑋̅𝐵
− 1 

Equation B.3 
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where, 𝑋𝑖𝑗
𝐴 and 𝑋𝑖𝑗

𝐵  are estimated atomic percent of element A and B respectively 

at (𝑖, 𝑗) pixel, and 𝑋̅𝐴 and 𝑋̅𝐵 are the average atomic percent of element A and 

B respectively in the overall area mapped using EDS. Here, 𝑋𝑖𝑗
𝐴 𝑋𝑖𝑗

𝐵  is a measure 

of co-occurrence of the A and B in the (𝑖, 𝑗) pixel whereas 𝑋̅𝐴 𝑋̅𝐵 is a measure of 

co-occurrence of A and B under assumption that A and B elements are 

distributed uniformly throughout the mapped area. Consequently, 𝛼𝑖𝑗
𝐴−𝐵 takes 

positive value in pixels where co-occurrence of A-B is higher than what would 

be obtained with uniform distribution of elements and vice-versa. Thus, 

𝛼𝑖𝑗
𝐴−𝐵>0 suggests ordering behavior of A-B binary at the (𝑖, 𝑗) pixel whereas 

𝛼𝑖𝑗
𝐴−𝐵>0 suggests either clustering of A-B binary at (𝑖, 𝑗) pixel or rejection of both 

A & B elements from (𝑖, 𝑗) pixel. The formulation of 𝛼𝑖𝑗
𝐴−𝐵 parameter here is 

inspired from the Warren-Cowley parameter [9–12] used extensively for 

characterizing the short-range order. Since the formation of new phases is often 

associated with selective redistribution of elements (while total amount of each 

element is conserved), it is reasonable to expect that the 𝛼𝑖𝑗
𝐴−𝐵 parameter for at 

least one binary pair would undergo a strong transition as we move from one 

phase to the next. Thus, mapping of 𝛼𝑖𝑗
𝐴−𝐵 parameter for all binaries over the 

entire scan area, as shown in Figure B.3, can provide contrast for identifying 

phases that may not be easily distinguishable from SEM images. 

 

 

The second parameter is the absolute concentration difference (∆𝑋𝑖𝑗
𝐴−𝐵) that is 

calculated at any (𝑖, 𝑗) pixel for a binary pair A-B as: 

∆𝑋𝑖𝑗
𝐴−𝐵 = |𝑋𝑖𝑗

𝐴 − 𝑋𝑖𝑗
𝐵| 

Equation B.4 

where, 𝑋𝑖𝑗
𝐴 and 𝑋𝑖𝑗

𝐵  are the estimated concentration of element A and B 

respectively at (𝑖, 𝑗) pixel. It is a fairly straight-forward metric that quantifies 

the difference between concentrations of element A and B at each pixel; and 
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thus, when mapped over the entire scanned area (as shown in Figure B.3), it 

can create contrast useful for phase identification. 

While these parameters are useful in most cases, there are instances where the 

use of single element concentration (𝑋𝑖𝑗
𝑘 ) by itself may be preferable for phase 

identification. For e.g., suppose we have formation of two phases that 

correspond approximately to A2B and AB2 stoichiometry. The 𝛼𝑖𝑗
𝐴−𝐵 and ∆𝑋𝑖𝑗

𝐴−𝐵 

parameter maps over these phases will look identical, but these can be easily 

distinguished by the elemental concentration of either A or B. Thus, the choice 

of exact parameter for phase segmentation will vary not only from one sample 

to another, but also from one phase to another within the same sample. To 

enable this, EDS-PhaSe framework developed in this work provides the 

flexibility to use different parameters for identification of different phases 

within the same sample. 

B.3.3 Creating phase masks 

Here we are looking at the AlCoCrFeNi alloy that was prepared through 

mechanical alloying route. For this alloy, it is difficult to identify phases 

directly from the SEM micrograph (Figure B.5b) since these don’t exhibit great 

contrast. The binary parameter maps (Figure B.3) and estimated composition 

maps (Figure B.2) provide clear insights into what type of phases are present 

and what parameters may be ideal for their separate identification.  
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Figure B.3 Proxy-order parameter maps and absolute concentration difference maps for all 
binary pairs. 

From Figure B.3, we can see three separate (non-overlapping) regions which 

show a strong ordering parameter for different binary pairs. The strongest one 

is the Co-Ni ordering, followed by Al-Cr and Cr-Fe, thereby indicating that we 

have three major phases present in the alloy: a (Co, Ni)-rich phase, a (Al, Cr)-

rich phase and a (Fe, Cr)-rich phase. EDS-PhaSe allows interactive mask 

creation for a phase that gets overlaid on top of the SEM micrograph. First, a 

condition is defined for each phase using three user inputs: (a) parameter type, 

(b) operator type, and (c) threshold value. For e.g., the mask for (Co, Ni)-rich 

phase in Figure B.4a has been created using ‘𝛼𝑖𝑗
𝐶𝑜−𝑁𝑖’ parameter and ‘>’ (i.e., 

‘greater than’) operator for different threshold values viz. {0.1, 0.3, 0.5, 1}. 

Similarly, the mask for (Al, Cr)-rich phase in Figure B.4b has been created using 

‘𝛼𝑖𝑗
𝐴𝑙−𝐶𝑟’ parameter and ‘>’ (i.e., ‘greater than’) operator for different threshold 

values viz. {0.1, 0.3, 0.5, 1}. 

Once the condition is defined, the phase mask is created by assigning a value 

of ‘1’ or ‘0’ at each pixel based on whether the condition is satisfied or not 

satisfied respectively. The interactive controls allow creation and visualization 



206 

 

of the masks (Figure B.4) in real time so that appropriate parameter choice can 

be made for final phase segmentation and analysis. 

 

Figure B.4 Phase segmentation masks for different threshold values. 

B.3.4 Phase segmentation and analysis 

Once the conditions for identification of each phase are finalized, these are used 

to create the individual phase masks. The overall phase segmented image is 

created by layering the individual phase masks on top of each other. The 

analysis of these phase masks yields important information pertaining to: (a) 

the volume (or area) fraction of each phase, and (b) the estimated average 

composition of each phase. 

The phase fraction (𝑓𝑝) of any phase 𝑝 is calculated as: 

𝑓𝑝 = (
1

𝑚 × 𝑛
) ∑ ∑ 𝜹𝑀𝑖𝑗

𝑝
=1

𝑛

𝑗=1

𝑚

𝑖=1

 

Equation B.5 

where, (𝑚 × 𝑛) is the total number of pixels in image of size (𝑚 × 𝑛), 𝑀𝑖𝑗
𝑝  is the 

value of phase mask for phase 𝑝 at (𝑖, 𝑗) pixel, and 𝜹𝑀𝑖𝑗
𝑝

=1 is a delta function that 

returns 1 if 𝑀𝑖𝑗
𝑝 = 1 or else 0. Figure B.5a shows the individual phase masks and 
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phase fractions of three phases identified in the AlCoCrFeNi. The estimated 

phase fractions of (Co, Ni)-rich phase, (Al, Cr)-rich phase and Fe-rich phase in 

the scanned area are 0.36, 0.34 and 0.3 respectively. 

The average concentration (𝑋̅𝑘,𝑝) of any element 𝑘 in any phase 𝑝 is calculated 

as: 

𝑋̅𝑘,𝑝 = (
1

𝑓𝑝
) (

1

𝑚 × 𝑛
) ∑ ∑ 𝑋𝑖𝑗

𝑘  𝑀𝑖𝑗
𝑝

𝑛

𝑗=1

𝑚

𝑖=1

 

Equation B.6 

where, 𝑓𝑝 is the phase fraction of phase 𝑝, (𝑚 × 𝑛) is the total number of pixels 

in image of size (𝑚 × 𝑛), 𝑋𝑖𝑗
𝑘  is the estimated concentration of element k at (𝑖, 𝑗) 

pixel, and 𝑀𝑖𝑗
𝑝  is the value of phase mask of phase 𝑝 at (𝑖, 𝑗) pixel. Implementing 

this phase analysis on the AlCoCrFeNi results in the estimated average 

compositions (in atomic percent) of (Co, Ni)-rich, (Al, Cr)-rich and Fe-rich 

phases as {Al: 13.6, Co: 25.5, Cr: 16, Fe: 17.6, Ni: 27.3}, {Al: 27.6, Co: 15.8, Cr: 

24.6, Fe: 17.7, Ni: 14.3} and {Al: 16.7, Co: 18.7, Cr: 21.1, Fe: 26, Ni: 17.5} 

respectively. To highlight the significance of phase analysis enabled by EDS-

PhaSe framework, it must be noted that in the original work [7], the authors 

had identified three phases through XRD, but could sample only two phases 

during SEM-EDS due to a lack of clear phase contrast in SEM micrographs. 

EDS-PhaSe shines especially in such scenarios where the phase identification 

is otherwise difficult. 

The estimated phase fractions and phase compositions through EDS-PhaSe are 

especially sensitive to the threshold values used while creating the phase 

masks, and thus represent only rough estimates of what the actual phase 

compositions might be. But that said, the type of elemental redistribution 

indicated by the analysis would still be accurate, i.e., (Co, Ni)-rich phase 

identified here would be rich in Co and Ni in actual sample also, even though 

the extent of segregation may be under- or over-estimated based on the choice 

of threshold values. 
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Figure B.5 Phase segmentation and phase analysis. (a) Phase masks for individual phases. (b) 
SEM micrograph and phase-segmented micrograph along with the estimated phase 
compositions in atomic-percent. 

B.3.5 Using raw count maps for EDS-PhaSe analysis 

The vast majority of EDS elemental mapping data is collected and distributed 

as graphic images and thus, in §B.3.1-B.3.4, we focused on the methodology 

(Figure B.1) and implementation (Figure B.2-Figure B.5) of EDS-PhaSe for 

analyzing EDS images. But some EDS software (such as AZtec by Oxford 

Instruments) provide easy access to raw count maps, containing the counts of 

characteristic X-rays used for quantification of each element, that can be 

exported in a tabular format as excel or csv files. EDS-PhaSe has the capability 

to analyze these raw count maps in a manner similar to how graphic images 

are analyzed above. To showcase this, we have analyzed Haynes 282 alloy 

(Figure B.6) using two different data sources – (a) the raw count maps created 

using Kα1 and Lα1 energies for mapping of {Al, Co, Cr, Ni, Si, Ti} and Mo, 

respectively and (b) graphic images of elemental maps. We further calculated 

the compositions of various regions, as marked in Figure B.6c, with EDS-PhaSe 

using both data sources and compared these with the compositions measured 

directly through EDS region scans (Figure B.6d) to address three key 
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questions:– (a) How accurate are the compositions calculated by EDS-PhaSe 

model as compared to actual EDS region scans?, (b) What is the extent of 

improvement (if any) obtained when raw count maps are used instead of 

graphic images?, and (c) How sensitive are the EDS-PhaSe calculations to size 

of the scanned area?. To quantify the difference between calculated and actual 

concentration, the error metric (Figure B.6d) has been calculated as: 

𝐸𝑟𝑟𝑜𝑟 = ∑ |𝑋𝑚𝑜𝑑𝑒𝑙
𝑖 − 𝑋𝐸𝐷𝑆

𝑖 |

𝑁

𝑖=1

 

Equation B.7 

where 𝑁 is the number of elements, 𝑋𝑚𝑜𝑑𝑒𝑙
𝑖  is the concentration of 𝑖𝑡ℎ element 

as calculated by the EDS-PhaSe model and 𝑋𝐸𝐷𝑆
𝑖  is the concentration of 𝑖𝑡ℎ 

element as determined by the EDS region scan. 

As seen in Figure B.6d, the overall error in EDS-PhaSe calculated compositions 

is quite small; ranging between 0.46 and 2.24 at. % with raw count maps and 

between 0.17 and 2.69 at. % with graphic images as the data source. These error 

values are small since these are not average errors in concentration of elements, 

but are instead cumulative errors representing summation over absolute errors 

in concentration of all elements. The accuracy of EDS-PhaSe calculated 

compositions shows a direct relation to the area of the scanned region 

(represented by number of pixels lying within the region) as the accuracy 

decreases with decrease in the size of sampled region and vice-versa, as seen in 

Figure B.6d. 
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Figure B.6 Comparing performance of EDS-PhaSe model using different data sources (EDS 
images and raw count maps) over scan areas of varying size. (a) Microstructure and elemental 
maps of Haynes 282 alloy. EDS element maps were collected as both graphic images as well as 
raw count maps. (b) Composition maps [atomic percent] created using EDS-PhaSe. (c) Marked 
regions with region id varying from 02 to 17). The composition of each of these regions was 
measured first using the EDS software and then using the EDS-PhaSe tool presented in this 
work. (c) Error in composition of regions marked in (b) as calculated by EDS-PhaSe model 
using two different data sources – raw count maps (Lα1 for Mo and Kα1 for all other elements) 
and EDS images. The labels (2-17) in (c) correspond to respective region id marked in (b). The 
error is calculated as sum of absolute difference between composition of each element 

measured by EDS-PhaSe Model (𝐗𝐦𝐨𝐝𝐞𝐥
𝐢 ) vs. the actual concentration measured by EDS 

software (𝐗𝐄𝐃𝐒
𝐢 ). 
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B.4 Conclusions 

This chapter presents the EDS-PhaSe framework that incorporates an 

interactive workflow for phase segmentation and phase analysis using the EDS 

elemental map images. It converts the EDS map images into estimated 

composition maps that are used for calculating markers of selective elemental 

redistribution in the scanned area. The proxy order parameter, defined as a 

measure of deviation in occurrence frequency of binary atom pairs, is especially 

helpful in highlighting chemical contrast between different phases. EDS-PhaSe 

creates individual phase masks with the additional flexibility of using different 

identification parameter and conditions for each phase. It further creates a 

phase segmented micrograph and provides approximate fraction and 

composition of each phase. The approach offers two unique advantages. 

Firstly, it enables the direct processing of EDS elemental map images without 

requiring any raw or proprietary data/software; thereby enabling analysis of 

EDS results available in the published literature as images or in cases where 

either the raw data is not available/collected or the access to proprietary 

software is limited. Secondly, it enables segmentation and analysis of phases 

even when the phase contrast is missing in SEM micrographs; thereby assisting 

in correlating the XRD and SEM-EDS data as shown in this work for 

AlCoCrFeNi alloy. The quantitative phase analysis obtained from EDS-PhaSe, 

comprising phase fractions and phase compositions, can be further integrated 

with insights obtained from other computational techniques such as: (a) phase 

selection, phase fractions and phase constitutions predicted by machine 

learning models and CALPHAD calculations [13–20], (b) ordering and 

clustering tendencies predicted by ab-initio calculations and atomistic 

simulations [21–23], and (c) microstructural changes such as phase separation 

and precipitate formation predicted by phase field modelling [16,24,25]. 

The current implementation of EDS-PhaSe has certain limitations also – (a) the 

phase masks are very sensitive to the threshold value, which is a user-input 

parameter, and thus, the phase fractions and phase compositions should only 

be treated as rough estimates, (b) EDS-PhaSe does not perform any spectrum 
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correction and assumes that the EDS software has taken into account all 

corrections (such as ZAF correction) while capturing the elemental maps, 

which is often the case, and (c) it is assumed that no post-processing has been 

done on the input EDS element map images post-acquisition; but that said, 

linear adjustment of the intensity spectrum (brightness and contrast 

adjustments) in input images will not make a difference as long as the 

thresholds are kept above (below) the maximum (minimum) intensity values 

in raw spectrum. 

The best use case scenario, and the future thrust, for EDS-PhaSe framework is 

its integration with the EDS software so that the phase segmentation and 

analysis is done simultaneously in real time during the acquisition of EDS 

elemental maps. This would provide critical insights to the operator as to which 

areas should be sampled further for accurate quantification of phase 

compositions. As EDS-PhaSe code is available as open-access with this article, 

there are various other collaborative avenues for improvements such as – (a) 

while EDS-PhaSe is capable of analyzing raw count maps, these are not readily 

accessible from all EDS software and thus there is scope for development of 

algorithms that can break down the raw spectrum into count maps, (b) 

development of new and innovative markers using the composition maps to 

create unique masks, (c) development of algorithms to guide selection of 

appropriate threshold parameters, and (d) unique masking techniques to probe 

different microstructural features such as grain boundary segregation. 

B.5 Research data 

EDS-PhaSe code, wrapped in interactive Jupyter notebooks, is available at 

‘IDEAsLab-Computational-Microstructure’ organization page on GitHub:  

https://github.com/IDEAsLab-Computational-Microstructure/EDS-PhaSe 

https://github.com/IDEAsLab-Computational-Microstructure/EDS-PhaSe
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