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Lay Summary

The thesis focuses on understanding fluid dynamics problems in rough domains.

Specifically, we explore how fluid flows behave in domains with rapidly oscillating

boundaries or tiny holes scattered throughout.

Let us now imagine the practical scenario of fluid flow past rough walls. Here, the

small-scale unevenness parallel to the flow can be used to minimize the drag (friction)

experienced by the field. Thus, increasing the number of asperities is likely to minimize

the drag. We wish to understand this situation through mathematical analysis.

We use a mathematical model called the generalized stationary Stokes equations to

describe these fluid flows. These equations capture the behavior of fluids in scenarios

where the boundaries are rough and the roughness varies with respect to the small positive

parameter. We mainly tend to approach the real scenarios when the parameter tends to

zero. This process is mathematically known as homogenization or also limiting analysis.

Thus, we obtain the homogenized system, which models approximately, in some sense, the

dynamics of fluid flow past rough walls. Likewise, one can understand the dynamics of

fluid flow in porous media.

The studies till now have looked into how fluid flow behaves in domains where boundaries

are rapidly oscillating and the no-slip boundary conditions prevail. In this thesis, we take

a step further and investigate what happens when part of the boundary behaves differently

from the rest. Our research involves extensive mathematical analysis to understand how

these systems work. We use one of the recent techniques to handle these situations, viz.,

the unfolding operator. This facilitates our analysis to homogenize the fluid problems in

these rough domains.

Furthermore, we also homogenize the optimal control problems (OCPs) that can be

thought of as the generalized calculus of variation problems where one minimizes the cost

functional subject to the dynamic constraints. In our case, we consider these constraints

to be the generalized stationary Stokes equations.

We have made some interesting findings along the way. Notably, in this thesis, we

observe significant effects on the overall flow pattern in specific scenarios involving the

homogenization and the OCPs governing stationary Stokes equations, particularly with

mixed boundary conditions such as Neumann and Robin conditions, applied on the

oscillating boundary of rough domains. Our focus extends to understanding OCPs, mainly

when controls are initially applied to the oscillating region before extending to the rough

domain—a previously unexplored aspect. Furthermore, our investigations cover even more

intricate scenarios, such as fluid behavior in domains featuring scattered tiny holes, termed

perforated domains.

Overall, this thesis sheds light on how fluids behave in complex environments and provides

analytical results valuable from the perspective of various practical applications, from

engineering to materials science.
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Abstract

The mathematical theory of partial differential equations (PDEs) represents a

long-established classical domain, holding relevance across diverse scientific and

engineering disciplines. Over the previous century, as functional analysis and operator

theory advanced, PDEs underwent thorough analysis. One of the more recent areas of

study is the theory of homogenization (limiting or asymptotic analysis), which illuminates

multi-scale phenomena present in various physical and engineering scenarios. This

developing field is applicable in various domains, encompassing composite materials,

porous media, rapidly oscillating boundaries, thin structures, and more. Consequently,

it has attracted significant attention as both a theoretical pursuit and an area of practical

utility over the last few decades.

This thesis investigates homogenization and optimal control problems (OCPs) associated

with the generalized stationary Stokes equations, featuring a second-order elliptic

linear differential operator in divergence form instead of the classical Laplacian

operator. We formulate and analyze the homogenization problems and OCPs over rough

(oscillating) domains, specifically domains characterized by rapidly oscillating boundaries

(comb-shaped) and domains with perforations. Furthermore, our primary focus is on

analyzing the limiting analysis of the distributive OCPs.

The present thesis comprises six chapters. Chapter 1 briefly introduces homogenization

and OCPs, along with relevant literature, preliminaries, and a summary of the thesis.

Chapter 6 encompasses the conclusion and outlines future plans. Our primary contribution

lies within Chapters 2-5.

In Chapter 2, we study the homogenization of the generalized stationary Stokes equations

involving the unidirectional oscillating coefficient matrix posed in a two-dimensional

domain with highly oscillating boundaries. We subject a segment of the oscillating

boundary with the Robin boundary condition having non-negative real parameters, while

its remaining portion is subject to Neumann boundary data. We derive the homogenized

problem, which depends on these non-negative real parameters. Finally, we show the

convergence of state and pressure within an appropriate space to those of the limit system

in a fixed domain and observe a corrector-type result under the special case of stationary

Stokes equations with Neumann boundary conditions throughout the highly oscillating

boundaries.

Chapters 3 and 4 introduce distributive OCPs governed by the stationary Stokes equations

in the same two-dimensional rough domain featuring rapidly oscillating boundaries.

Specifically, in Chapter 3, we address minimizing the L2−cost with distributive controls

applied in the oscillating part of the domain constrained by the stationary Stokes

equations. Furthermore, these controls are periodic along the direction of the periodicity

of the domain. By utilizing the unfolding operator technique, we characterize the

optimal controls. Ultimately, we establish the convergence results for the optimal

control, state, and pressure in an appropriate space to those of the limit system in a

fixed domain. Whereas Chapter 4 considers the homogenization of a distributive OCP
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subjected to the more generalized stationary Stokes equation involving unidirectional

oscillating coefficients. The cost functional considered is of the Dirichlet type involving

a unidirectional oscillating coefficient matrix. We characterize the optimal control and

study the homogenization of this OCP with the aid of the unfolding operator. Due to

oscillating matrices in the governing Stokes equations and the cost functional, one obtains

the limit OCP involving a perturbed tensor in the convergence analysis.

Next, in Chapter 5, we study the asymptotic analysis of the OCP constrained by

the generalized stationary Stokes equations over the n-dimensional (n ≥ 2) perforated

domain. We implement distributive controls in the interior region of the domain. The

considered Stokes operator involves an n-directional oscillating coefficient matrix for the

state equations. We provide a characterization of the optimal control and by employing

the method of periodic unfolding, we establish the convergence of the solutions of the

considered OCP to those of the limit OCP governed by stationary Stokes equations

over a non-perforated domain. Additionally, we demonstrate the convergence of the cost

functional, a result not observed in Chapters 3 and 4.

Keywords: Homogenization; Stokes equations; unfolding operator; optimal control;

oscillating boundary; perforated domain.
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Chapter 1

Introduction

1.1 Homogenization

The early 1970s marked the beginning of homogenization, with engineers and scientists

across diverse fields becoming deeply interested in the behavior of materials (or media)

featuring microstructures. These materials (or media) encompass composite materials,

porous media, rapidly oscillating boundaries, thin structures, and more. Despite

possessing reasonable ideas, a robust and rigorous mathematical framework was needed

to be developed to validate and interpret their findings accurately. Consequently,

homogenization emerged as a rich and indispensable area of study in the subsequent

decades.

The first mathematical formulation of homogenization started with the study of composite

materials. These materials exhibit complex microstructures comprising a mix of different

components only at the level of physical states. For instance, consider a piece of

jewelry crafted from a fine mixing (only at the level of the physical states) of gold

and copper possessing different physical properties. Within these materials, two distinct

scales are observed: the microscopic scale, which pertains to local properties, and the

macroscopic scale, which describes global properties. Notably, homogenization aims

to achieve macroscopic behavior, which is far better than the average behavior of the

individual components of gold and copper. This process is also known as the limiting

analysis.

During this era, various techniques emerged to facilitate the homogenization process.

These included the multi-scale expansion method, Tartar’s method of oscillating test

functions, two-scale convergences, the Bloch wave method, the method of unfolding,

and others. We will provide a concise overview of these techniques shortly. For a more

comprehensive understanding of homogenization and its methodologies, interested readers

can also consult references such as [1, 2].

Substantial research has explored homogenization problems in fixed domains, particularly

in areas such as composite materials. Here, we consider the specific types of media

exhibiting oscillatory characteristics, which will be the primary focus of this thesis in

the context of homogenization.

Perforated Domain: A typical demonstration of microstructure is found in porous

media, characterized by fine-scale porosity. A common instance of this is observed in

groundwater flow through porous structures. The homogenization of such fluid flow relies

heavily upon the size of fine scaling of the porosity (see, [3, 4]).
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Oscillating Domain: Another instance pertains to flow in channels featuring rough

boundaries, such as longitudinal ribs found in seabeds. In the literature, two types of

oscillating domains are discussed. The first involves the rough domains, i.e., the domains

featuring highly oscillating boundaries where the oscillation amplitude remains fixed but

the period is of small order (e.g., of order ε > 0). The second type involves thin domains,

where both the amplitude and period are of small order. We will focus on the former

scenario, namely the highly oscillating domains, in our context.

Techniques to Homogenize

Here, we briefly provide an overview of the various techniques developed for studying the

homogenization process. Interested readers can refer to [1, 2] for more detailed insights.

Formal Asymptotic Expansion: In this method, for an asymptotic problem, it is

assumed that the solution follows an asymptotic expansion described by:

uε(x) =

∞∑
i=0

εiui(x, y)|y=x
ε
,

where x represents a slow variable and y is the fast variable. The functions ui(x, y) in this

expansion are periodic with respect to y. Subsequently, an attempt is made to deduce the

homogenized solution through formal analysis. This involves seeking a function u0 to be

independent of the variable y and deriving the equation satisfied by it, which is indeed

a homogenized equation (see, [1]). While this approach is quite formal, more rigorous

methods are elaborated below.

Tartar’s Method of Oscillating Test Function: Here, the central idea is to construct

test functions that involve oscillations of the same type as present in the solutions. It is

done to overcome the difficulties encountered while passing to the limit in the analysis.

Through this approach, we notice that the energy of the original system converges to the

energy of the homogenized system (see, [1, 5]).

Compensated Compactness: It is commonly observed that the product of two weakly

convergent sequences does not usually converge to the product of their weak limits.

However, if one of the sequences exhibits strong convergence or both sequences oscillate

in transverse directions, passing the limit in their product becomes feasible. Therefore,

to tackle scenarios lacking strong convergence, the compensated compactness method was

introduced (see, [6–8] ). We now present a significant result pertinent to this context.

Lemma 1.1.1. (Div-Curl lemma) Let uε and vε be the vector valued functions in L2(Ω)N

such that uε → u weakly in L2(Ω)N and vε → u weakly in L2(Ω)N . Further assume that

div(uε) and curl(vε) remains in a bounded subset of H−1(Ω). Then

uεvε → uv in distribution.

This method is effective in studying non-linear partial differential equations.
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Gamma Convergence: The concept of gamma convergence was specifically devised for

investigating optimization problems, particularly those in the calculus of variations.

Introduced by E. De Giorgi and T. Franzoni in 1975 (see [9]), this notion is highly

influential and finds numerous applications across various problem domains, notably in

homogenization (see [10]).

Two-scale (Multi-scale) Convergence: The significance of multi-scale convergence

lies in its crucial role in understanding the various scales present in homogenization

problems, as it effectively captures these scales through a limiting process. This approach

convincingly validates the formal asymptotic analysis. Additionally, when dealing with a

bounded sequence in Lp(Ω), its weak limit u tends to average out all oscillations present in

uε, resulting in the loss of essential information required for homogenization. However, the

concept of two-scale convergence introduces two variables, x and y, where x represents the

slow (global) variable and y represents the fast (local) variable. This weak limit preserves

some information rather than entirely losing it. The concept of two-scale convergence was

initially introduced by G. Nguetseng in 1989 (see [11]) and further developed by G. Allaire

in 1992 (see [12]). Here, the integrals of the following form are dealt with for carrying out

the convergence analysis ∫
Ω
uεψ(x, x/ε)dx,

where the sequence {uε} is bounded in Lp(Ω), and ψ(x, y) represents smooth test functions

that exhibit periodicity with respect to the variable y.

Bloch Wave Method: The primary purpose of introducing this method was to

comprehend the interaction between solid and fluid (see [13]). The fundamental concept

involves diagonalizing the differential operator and converting the governing equations in

the physical space into a sequence of scalar equations devoid of derivatives in the phase

space. The application of block waves requires a periodic setup.

Method of Unfolding: The unfolding method, introduced by D. Cioranscu, A.

Damlamian, and G. Griso in [14], represents a recent technique to better understand

homogenization, even at the in-homogenized level. This approach introduces the unfolding

operator, which enables more profound insights into the process. In the context of

two-scale convergence, it becomes apparent that the function uε and its two-scale limit u

reside in distinct function spaces, indicating a convergence that is not in a fixed space.

However, with the unfolding method, an additional variable y is introduced at the ε

level, transforming the two-scale convergence into a weak convergence of the unfolding

operator within a fixed space despite the space’s doubled dimension. More specifically, we

operate within spaces such as Lp(Ω×Y ) instead of solely Lp(Ω). Essentially, the two-scale

convergence in Lp(Ω) can be replaced by the weak convergence of unfolding in the space

Lp(Ω × Y ). Further explanation of these concepts will follow, as this methodology is a

crucial tool in our analysis.
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1.2 Optimal Control Problems

Optimal control problems are often regarded as dynamic optimization, extending the

classical calculus of variations. With roots dating back about two and a half centuries,

this field draws motivation from renowned scientific and engineering problems. Key

examples include the Brachistochrone problem by Johann Bernoulli, Fermat’s Principle

predicting Snell’s law, the Dirichlet principle minimizing energy functionals for surfaces

yielding the Poisson’s equation, and the Action Principle, from which Newton’s second

law emerges as a special case. Further, within the calculus of variations, the focus is

on minimizing specific associated functionals over a set of trajectories. Optimal control

problems (OCPs) extend this framework to address a broader range of minimization

problems, encompassing trajectories defined by dynamical constraints. These dynamcial

constraints may manifest as ordinary differential equations (ODEs) or partial differential

equations (PDEs), determining the trajectories. The key aspect is that these trajectories

can be modified by adjusting the constraint system using controls. As a result, OCPs

find extensive applications, particularly in engineering sciences, where problems are often

modeled using differential equations with controls (see, [15]).

1.3 A Literature Survey

Now, we present a brief overview of the literature on homogenization and OCPs. Given

the vastness of these fields, providing an exhaustive survey is not feasible. Instead, we

will concentrate on presenting pertinent references. For a thorough understanding of

homogenization and its methodologies, readers are encouraged to explore [1, 2]. Regarding

the OCPs and the derivation of optimality systems, valuable insights can be found in

[15, 16].

The homogenization, also known as asymptotic or limiting analysis, of the partial

differential equations on domains with highly oscillating boundaries with fixed amplitude

has been widely analyzed. The first analysis in this direction was carried out in [17, 18]

by the authors upon using the extension operators technique to study the asymptotic

analysis of the solution to the Laplace equation subject to the homogeneous Neumann

boundary condition on the oscillating boundary. While, the same problem was further

analyzed, by the author in [19], under non-homogeneous Neumann boundary condition

of the form γ0ε
γ for γ, γ0 belonging to R and [0,∞), respectively. The author examined

three model domains, each displaying flux of order εγ through the oscillating boundary.

For ε approaching 0, solutions were scrutinized for different γ values, with γ = 1 emerging

as a critical threshold for the limit problem. The authors in [20] studied the limiting

analysis of the solution to the Laplace equation in the same domain with rapidly oscillating

boundaries. They showed that the solution could be approximated by a non-oscillating

function outside a layer of width 2ε, with an error that decreases exponentially.

In [21], the authors examined the homogenization of quasi-linear problems in a domain
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Ωh ⊂ Rn, h ∈ N, with an oscillating boundary resembling a forest of periodically

distributed cylinders. Focusing on the p-Laplacian with a homogeneous Neumann

boundary condition, they proved that as h → +∞, the homogenized operator became

independent of the first n− 1 derivatives in the zone bounded by this boundary. In [22],

the authors investigated the asymptotic behavior of the solution to the Laplace equation

in a domain with a highly oscillating boundary, motivated by the study of longitudinal

flow in a horizontal domain bounded by walls. Employing a boundary layer corrector, they

derived a nonoscillating solution approximation atO(ϵ3/2) for theH1-norm. The study [23]

explored the Poisson equation in a periodic junction Ωε, comprising a bottom fixed domain

Ω and an upper periodically distributed thin cylinders. It investigated homogenization as

ε approaches zero, emphasizing the construction of uniformly bounded extension operators

and examining asymptotic expansions to understand the limit behavior of solutions. In

[24], the authors examined a mixed boundary-value problem for the Poisson equation in

a two-level junction Ωε, formed by a domain Ω0 and 2N (N ∈ N) thin rods with variable

thickness ε = O(N−1). These rods were divided into two levels based on length, alternating

periodically with respect to ε. Investigating the asymptotic behavior of the solution as

ε→ 0 under Robin conditions on rod boundaries, a convergence theorem was established

using specific extension operators.

The author in [25] analyzed a semi-linear parabolic problem in a thick junction Ωε with

nonlinear Robin boundary conditions on branch boundaries, dependent on parameters

{αi}i∈N and β. As ε → 0, they obtained the homogenized problem, proved the existence

and uniqueness of its solution, and derived an asymptotic approximation indicating the

parameters’ impact on solution behavior. The authors in [26] studied homogenization

of the brush problem with L1 source term subject to the Neumann boundary condition.

Owing to the L1 source term, the authors used the concept of renormalized solutions to

establish the existence and uniqueness of the renormalized solutions and their stability.

In [27], the authors homogenized a second-order elliptic Neumann problem in this domain

with the assumption on data with L logL a priori estimates. They identified the limit

problem. Later, in [28] they studied the limiting analysis of an evolution problem with

L logL data in the same domain.

The work [29] investigated a boundary value problem involving the Laplacian in a domain

with a periodically oscillating boundary featuring non-homogeneous, non-linear Neumann

or Robin conditions. These conditions posed challenges in the limit analysis, particularly

with the changing surface integrals. Studies in the literature have successfully addressed

similar issues by converting surface terms to volume terms. This article introduced a

novel approach using the unfolding operator to tackle such complexities. The authors in

[30] studied the homogenization of a second-order elliptic PDE with oscillating coefficients

in two distinct domains: a standard rectangular domain with general oscillations and

a circular domain with angular oscillations. They studied the asymptotic behavior of

renormalized solutions by employing different unfolding operators to accommodate the

types of oscillations present. Additionally, they established strong convergence results.



6 Chapter 1. Introduction

Regarding a two-level thick multi-structure domain with the junction of the type 3 : 2 : 2,

the authors in [31] analyzed the asymptotic behavior of the Poisson equation solution

with Robin boundary conditions by employing periodic homogenization. Challenges were

addressed, including constructing a uniformly bounded extension operator before deriving

the homogenized problem using oscillating test functions, with potential result extensions

discussed. Further, the authors in [32] studied two mixed boundary value problems in a

thick three-dimensional junction (3 : 2 : 2), composed of a cylinder with ε-periodically

arranged thin disks of varying thickness. These disks were classified into two groups

with distinct geometrical structures and boundary conditions. Their research investigated

the influence of different boundary conditions on solution asymptotics as ε approaches 0.

The same authors then studied in [33] the homogenization of solutions to a quasi-linear

parabolic PDE subject to various boundary conditions, viz., alternating, inhomogeneous,

and Fourier conditions. Here, they used the special integral identities in the case of

inhomogeneous Fourier boundary conditions and obtained the respective limits of linear

and nonlinear terms using special test functions and the Browder-Minty method.

Also, regarding the homogenization problems in a two-dimensional thin domain with

highly oscillating boundary, the authors in [34] analyzed the Laplace operator with

Neumann boundary conditions. They determined the correct limit problem for cases

where the boundary was defined by the oscillating function εGε(x), where Gε(x) =

a(x) + b(x)g(x/ε), with g being periodic and a and b not necessarily constant. The

study [35] examined the convergence of solutions to the Poisson equation with Neumann

boundary conditions in a two-dimensional thin domain exhibiting significant oscillations.

They investigated the scenarios where the domain’s height, amplitude, and period of

oscillation, governed by ε > 0, were of comparable magnitudes. They employed

a suitable corrector approach, demonstrated strong convergence, and provided error

estimates when substituting original solutions with first-order expansions using the

Multiple-Scale Method. In the study [36], the focus was on the asymptotic behavior of a

set of solutions to a semi-linear elliptic problem with homogeneous Neumann boundary

conditions in a two-dimensional bounded set. As the positive parameter ε approaches

zero, the set degenerated to the unit interval, with upper and lower boundaries exhibiting

highly oscillatory behavior of varying orders and profiles. Through a combination of

linear homogenization theory and nonlinear analysis, the limit problem was obtained,

demonstrating the upper and lower semicontinuity of solutions as ε approaches zero. For

further reading on the problems over rapidly oscillating boundaries, we refer the reader to

[37–43] and the references therein.

Regarding the literature on the homogenization of OCP in a rough domain, the authors

in [44] studied the asymptotic analysis of an interior OCP governed by Laplace equations

posed in a domain with highly oscillating boundary. The authors applied the control away

from the oscillating part of the domain. They considered two types of cost functionals viz.,

L2−norm on the state variable, and the other one is the H1−norm on the state variable.

Using the unfolding operator technique, the authors in [45] considered an interior OCP
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in an oscillating domain, the control being acting on the oscillating part of the domain,

and obtained the characterization of the optimal control in terms of the adjoint state.

Then, they finally established the homogenized OCP. In [46], the asymptotic analysis of

an OCP with the parabolic problem over a branched domain is studied using the unfolding

operator. In [47], the asymptotic analysis of an OCP with the semi-linear problem over

the general oscillating boundary domain is studied using the unfolding operator technique.

In [48], the homogenization of an OCP with an elliptic problem over the circular domain is

studied using the unfolding operator suitably developed for the considered domain. In [49],

the authors homogenized the boundary OCP with a highly oscillating boundary, wherein

the controls act via both the Dirichlet and the Neumann boundary conditions over the

smooth part of the boundary and employ the periodic unfolding operator technique to

obtain the limit OCP.

With general cost functional, the authors in [50] considered an OCP governed by parabolic

equations posed on an oscillating domain. Here the authors proved the existence of the

optimal control and characterized it in terms of the adjoint state. Further, employing the

oscillating test function technique, the authors obtained the limit OCP. The authors in

[51] studied the asymptotic analysis of an interior OCP governed by the Laplace equation

upon employing the oscillating test function technique. Whereas, in [52], the authors

studied the asymptotic analysis of boundary OCP governed by the Laplace equation upon

employing the Buttazzo-Dal Maso abstract scheme. For further readings in this direction,

we refer the reader to [33, 53, 54].

There are very few works concerning the homogenization of the Stokes system in rough

domains. In [55], the authors first investigated the homogenization of the Stokes system

in a pillar-type domain and using boundary layer correctors, established a first-order

asymptotic approximation of the flow. Regarding the OCP, in [56], the authors have

examined an interior OCP in a three-dimensional pillar-type rough domain with a standard

quadratic cost functional with the state solving the stationary Stokes equations. The

Stokes equations are subjected to the Dirichlet zero boundary condition on the oscillating

boundary in both of these papers, which results in trivial contributions on the upper part

of the homogenized system. The homogenization of the stationary Stokes system subject

to the Neumann boundary condition on the oscillating boundary has been recently studied

by the authors in [57]. Very recently, in [58], the authors studied the asymptotic analysis of

a boundary OCP governed by Stokes equations, where the controls were applied through

Neumann boundary condition. Due to the Neumann boundary condition, a non-trivial

contribution on the upper part in homogenized systems has been observed in both the

preceding studies.

1.4 Prerequisites

Here, we present the domain configuration and introduce the remarkable unfolding

operator, which will play a pivotal role in our analysis throughout this thesis.
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1.4.1 Domain Configuration

We take into account an oscillating domain Ωε ⊂ Ω ⊂ R2, for each fixed ε defined through

a sequence { 1
k}, k ∈ N. Here, Ω is a fixed bounded domain. Let g : [0, 1) → R be a

smooth function with period 1 and h := max {|g(x1)|, x1 ∈ [0, 1]}. For h1 ∈ (h, h2) and

A := (a, b) ⊂ [0, 1), we define a step function ζ : [0, 1) → R with period 1

ζ(x1) =

{
h2 if x1 ∈ A,
h1 if x1 ∈ [0, 1)\A.

Also, we define an ε−periodic step function ζε : [0, ε) → R by ζε(x1) = ζ(x1
ε ), i.e.,

ζε(x1) =

{
h2 if x1 ∈ εA,
h1 if x1 ∈ [0, ε)\{εA}.

We now present the detailed configuration of the oscillating domain Ωε. It is composed

of two regions, the upper oscillating region Ω+
ε , consisting of the slabs of height (h2 − h1)

and width ε|A|, and the bottom fixed region Ω− which is adjoint to Ω+
ε at the interface Γε

(see, Figure 1.1). Here, |A| is the Lebesgue measure of A. Mathematically, we can write

Ωε =
{
(x1, x2) ∈ R2 | x1 ∈ (0, 1), x2 ∈ (g(x1), ζε(x1))

}
,

Ω+
ε = ε

[ 1
ε
−1⋃

n=0

{A+ n}
]
× (h1, h2),

Ω− =
{
(x1, x2) ∈ R2 | x1 ∈ (0, 1), x2 ∈ (g(x1), h1)

}
,

Γε = ε
[ 1

ε
−1⋃

n=0

{A+ n}
]
× {h1}.

0 1

Figure 1.1: The oscillating domain Ωε.

The boundaries of Ωε viz., side Γs, bottom Γb, oscillating γε, vertical Γ
1
ε, and horizontal

Γ2
ε are respectively defined as

Γs = {(0, x2) | x2 ∈ [g(0), h1]} ∪ {(1, x2) | x2 ∈ [g(1), h1]} ,
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Γb =
{
(x1, g(x1)) ∈ R2 | x1 ∈ [0, 1]

}
,

γε = ∂Ωε\{Γb ∪ Γs} = Γ1
ε ∪ Γ2

ε,

Γ1
ε =

1
ε
−1⋃

n=0

{
ε{a+ n} × (h1, h2)

}
∪
{
ε{b+ n} × (h1, h2)

}
,

Γ2
ε = γε\Γ1

ε.

The domain Ω− shares Γb and Γs as the common boundaries with Ωε. Its upper boundary

is defined as: Γ = {(x1, h1) | x1 ∈ [0, 1]} .
Next, we present the configuration of the limit domain Ω. It is composed of two regions,

the upper region Ω+, and the bottom region Ω− that are adjoined at the interface with Γ

(see Figure 1.2). Mathematically, we can write

Ω =
{
(x1, x2) ∈ R2 | x1 ∈ (0, 1), g(x1) < x2 < h2

}
.

The bottom boundary Γb of Ω is same as that of Ωε. The remaining boundaries viz., top

Γu, and vertical Γs′ , are respectively defined as

Γu = {(x1, h2) | x1 ∈ [0, 1]} ,

Γs′ = {(0, x2) | x2 ∈ [g(0), h2]} ∪ {(1, x2) | x2 ∈ [g(1), h2]} .

Let us denote by Λ+, the reference cell (see Figure 1.3), which is defined as

Λ+ =
{
(y1, y2) ∈ R2 | y1 ∈ (a, b), y2 ∈ (h1, h2)

}
.

The functions defined on Ωε are Γs-periodic, i.e., they take the same values on both sides

of Γs.

0 1

Figure 1.2: The 2-D domain Ω.

0 1

Figure 1.3: The 2-D domain Λ+.

1.4.2 Unfolding Operators and its Properties

Let us recall the definition and few of the properties of the periodic unfolding operator

laid down in detail in [14, 59–61]. We will use this technique in our context to derive the
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homogenized problem. First, we define the unfolding operator for the fixed domain Ω−

followed by the rough domain Ω+
ε .

Let us set Zε =
{
ζ ∈ Z2 | ε(ζ + (0, 1)2) ⊂ Ω−}, and Λε = Ω−\Ω̂−

ε , where

Ω̂−
ε = interior

{
∪ζ∈Zε ε(ζ + (0, 1)2)

}
.

Definition 1.4.1. The unfolding operator T ∗
ε : {Ω− → R} → {Ω− × (0, 1)2 → R} is

defined as

T ∗
ε (u) (x, y) =

 u
(
ε
[
x1
ε

]
(0,1)2

+ εy
)

a.e. for (x, y) ∈ Ω̂−
ε × (0, 1)2,

0 a.e. for (x, y) ∈ Λε × (0, 1)2.

Proposition 1.4.1. The properties of the unfolding operator for the fixed domain:

(i) T ∗
ε is linear, continuous and multiplicative from L2(Ω−) to L2(Ω− × (0, 1)2).

(ii) Let u ∈ L2 (Ω−) . Then T ∗
ε (u) → u strongly in L2

(
Ω− × (0, 1)2

)
.

(iii) For each ε > 0, let {uε} ∈ L2 (Ω−) and uε → u strongly in L2 (Ω−) . Then T ∗
ε (uε) →

u strongly in L2
(
Ω− × (0, 1)2

)
.

(iv) Let v ∈ L2
(
(0, 1)2

)
be a (0, 1)2-periodic function and vε(x) = v

(
x
ε

)
. Then,

T ∗
ε (vε) (x, y) =

{
v(y) a.e. for (x, y) ∈ Ω̂−

ε × (0, 1)2,

0 a.e. for (x, y) ∈ Λε × (0, 1)2.

(v) Let fε ∈ L2(Ω−) be uniformly bounded. Then, there exists f ∈
L2(Ω− × (0, 1)2) such that T ∗

ε (fε) ⇀ f weakly inL2(Ω− × (0, 1)2), and fε ⇀∫
(0,1)2 f(·, y) dy weakly in L2(Ω−).

Proposition 1.4.2. [59, Theorem 3.5.] Let fε ∈ H1(Ω−) satisfy ∥fε∥H1(Ω−) ≤ K. Then,

there exists f ∈ H1(Ω−) and f̂ ∈ L2
(
Ω−;H1

per

(
(0, 1)2

))
with M(0,1)2(f̂) = 0, such that

up to a subsequence,{
fε ⇀ f weakly in H1(Ω−),

T ∗
ε (∇fε)⇀ ∇f +∇yf̂ weakly in

(
L2
(
Ω− × (0, 1)2

))2
.

Definition 1.4.2. The unfolding operator T ε : {Ω+
ε → R} → {Ω+ × A → R} is defined

by

T ε (u) (x1, x2, y) = u
(
ε
[x1
ε

]
+ εy, x2

)
.

Given any domain D and a vector u : D ⊇ (Ω+
ε )

2 → (R)2, we understand its unfolding as

T ε(u) =
(
T ε(u1|Ω+

ε
), T ε(u2|Ω+

ε
)
)
.

Proposition 1.4.3. The properties of the unfolding operator for the oscillating domain:

(i) T ε is linear and continuous from L2(Ω+
ε ) to L

2(Ω+ × A).
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(ii) T ε is multiplicative, i.e., for given u, v ∈ L2(Ω+
ε ), we have T ε (u1u2) =

T ε (u1)T
ε (u2) .

(iii) Let u ∈ L1 (Ω+
ε ) . Then

∫
Ω+×A T

ε(u) dxdy =
∫
Ω+

ε
u dx.

(iv) Let u ∈ H1 (Ω+
ε ) . Then

∂T ε(u)

∂x2
= T ε

(
∂u

∂x2

)
and

∂T ε(u)

∂y
= εT ε

(
∂u

∂x1

)
.

(v) For a given u ∈ L2(Ω+
ε ), we have ∥T ε(u)∥L2(Ω+

ε ×A) = ∥u∥L2(Ω+
ε ).

(vi) Let u ∈ L2 (Ω+) . Then T ε(u) → u strongly in L2 (Ω+ × A) .

(vii) For every ε > 0, let {uε} ∈ L2 (Ω+
ε ) be such that T ε(uε)⇀ u

weakly in L2 (Ω+ × A) . Then ũε ⇀
∫
A
u(x1, x2, y)dy weakly in L2

(
Ω+
)
,

where˜denotes the extension by zero outside Ω+
ε to the whole of Ω+.

(viii) For every ε > 0, let {uε} ∈ H1 (Ω+
ε ) be such that T ε(uε)⇀ u weakly in

L2
(
(0, 1)× A;H1(h1, h2)

)
. Then ũε ⇀

∫
A
u (x1, x2, y) dy weakly in

L2
(
(0, 1);H1(h1, h2)

)
.

In the concluding segment of this introductory chapter, we offer a summary of the thesis

on a chapter-by-chapter basis.

1.5 Summary of the Thesis

This thesis is structured into six chapters. Chapter 1 offers a concise introduction to

homogenization and OCPs, accompanied by relevant literature, essential prerequisites,

and a thesis summary. Chapter 6 concludes the thesis and outlines future directions. The

primary focus of our contributions lies within Chapters 2-5.

1.5.1 Chapter 1

This chapter begins with an introduction to homogenization, followed by a discussion on

various methods developed over recent decades to achieve it (refer to Section 1.1). We

then briefly introduce OCPs in Section 1.2. Section 1.3 presents a thorough literature

review on homogenization and OCPs. Furthermore, in Section 1.4, details regarding the

domain under consideration and the remarkable technique of the unfolding operator are

discussed.

1.5.2 Chapter 2

Notations: Throughout Chapters 2-4, we adhere to the below-mentioned conventions.

Any bold symbols v and vε represent the vector function symbols (v1, v2) and (vε1, vε2),

respectively. Also, ṽ denotes the zero extension of the components of v outside Ω+
ε to the

whole of Ω+. Furthermore, for any function ϕ defined on either Ωε or Ω, we denote the
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restriction of ϕ on Ω+
ε or Ω+ as ϕ+ and the restriction of ϕ on Ω− as ϕ−. Likewise, ϕ+ =

(ϕ+1 , ϕ
+
2 ) and ϕ

− = (ϕ−1 , ϕ
−
2 ).

The present chapter examines the homogenization of a generalized stationary Stokes

equations in the oscillating domain Ωε (see Figure 1.1), represented as follows:

−div (Aε∇uε) +∇pε = f in Ωε,

div(uε) = 0 in Ωε,

µε ·Aε∇uε − pεµε + α2ε
α1uε = 0 on Γ1

ε,

µε ·Aε∇uε − pεµε = 0 on Γ2
ε,

uε = 0 on γl,

(1.5.1)

where α1 ≥ 1 andα2 ≥ 0 are the real parameters and the elliptic matrix Aε is set to oscillate

in the x1-direction with period ε. By ellipticity, we mean that there exist real constants

m, M > 0 such that m||λ||2 ≤
∑2

i,j=1 aij(x,
x1
ε )λiλj ≤ M ||λ||2 for all x, λ ∈ R2, which is

endowed with an Eucledian norm denoted by || · ||. The boundary γl = Γb ∪ Γs throughout

this thesis. It is well known that, for a given source function f ∈ (L2(Ω))2, the system

(1.5.1) is well defined and admits a unique weak solution, say (uε, pε) ∈ (H1
γl
(Ωε))

2×L2(Ω),

where the function space (H1
γl
(Ωε))

2 := {v ∈ (H1(Ωε))
2 | v|γl = 0}. Now, we aim at

homogenizing (1.5.1). For this, we use the remarkable method of unfolding detailed in

Section 1.4.2 and obtain the following limit problem for different values of α1:

− ∂

∂x2

(
A+

∂u+

∂x2

)
+ 2λδα1u

+ = |A|f in Ω+,

A+
∂u+

∂x2
= 0 in Γu,

−
2∑

j,α,β=1

∂

∂xα

(
dαβij

∂u−j
∂xβ

)
+∇p− = f in Ω−,

div (u−) = 0 in Ω−,

u− = 0 on γ′l = Γb ∪ Γs′ ,

u+ = u− on Γ,

A+
∂u+

∂x2
=

2∑
j,β=1

d2βij
∂u−

j

∂xβ
− p−e2 on Γ,

(1.5.2)

where δα1 denotes a function that takes value 1 for α1 = 1, and 0 otherwise. The boundary

γ′l = Γb ∪ Γs′ throughout this thesis. We observe that, apart from the usual non-trivial

contributions obtained in the literature (see, for example [57]) over Ω+, we obtain an extra

vector function, 2λu+, corresponding to α1 = 1 and α2 > 0. Further, the homogenized

matrix A+ is constant and elliptic over Ω+ and the tensor D = (dαβij )1≤i,j,α,β≤2 is elliptic

over Ω− (see, Chapter 2).

Now, we state the main result of this chapter in the following theorem and refer the reader

to Chapter 2 for thorough details.

Theorem 1.5.1. For given ε > 0, let the pairs (uε, pε) and (u, p−), respectively, solves
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the problems (1.5.1) and (1.5.2). Then

ũ+
ε ⇀ |A|u+ weakly in L2

(
0, 1;

(
H1(h1, h2)

)2)
,

∂̃u+
ε

∂x1
⇀ −

[
|A| e1 +

(∫
A

a12
a11

dy

)
e2

]
∂u+2
∂x2

weakly in
(
L2
(
Ω+
))2

,

∂̃u+
ε

∂x2
⇀ |A| ∂u

+

∂x2
weakly in

(
L2
(
Ω+
))2

,

p̃+ε ⇀

(∫
A
a12 dy

)
∂u+1
∂x2

−
(∫

A
a11 dy

)
∂u+2
∂x2

weakly in L2(Ω+),

u−
ε ⇀ u− weakly in

(
H1(Ω−)

)2
,

p−ε ⇀
1

2
A0∇u− : I + p− weakly in L2(Ω−).

Finally, we state a corrector type result for the particular case when Aε is an identity

matrix and the parameter α2 = 0 in (2.1.1). A result that has been proved in [57].

Theorem 1.5.2 (Theorem 5.1, [57]). Let f ∈ L2(Ω) and Aε be the identity matrix. If

the corresponding pairs (uε, pε) and (u, p−), respectively, solves the problems (2.1.1) and

(2.4.11), then

ũ+
ε − χΩ+

ε
u+ → 0 strongly in L2

(
0, 1;

(
H1(h1, h2)

)2)
,

∂̃u+
ε

∂x1
+ χΩ+

ε

∂u+2
∂x2

e1 → 0 strongly in
(
L2
(
Ω+
))2

,

∂̃u+
ε

∂x2
− χΩ+

ε

∂u+

∂x2
→ 0 strongly in

(
L2
(
Ω+
))2

,

u−
ε − u− → 0 strongly in

(
H1(Ω−)

)2
.

In addition, if

∫
Ω−

(pε − p−) = 0 for every ε > 0, then p−ε − p− → 0 strongly in L2(Ω−).

1.5.3 Chapter 3

This chapter aims at studying the homogenization of an OCP governed by the stationary

Stokes equations in the same domain Ωε (see Figure 1.1). That is,

inf
θ∈(L2(Λ+))2

{
Jε(θ) =

1

2

∫
Ωε

|uε(θ)− ud|2 +
τ

2

∫
Ω+

ε

|θε|2
}

(Pε)

subject to 

−
2∑

i,j=1

∂

∂xi

(
aij(x)

∂uε

∂xj

)
+∇pε = θεχΩ+

ε
in Ωε,

div(uε) = 0 in Ωε,
2∑

i,j=1

aij(x)
∂uε

∂xj
µεi − pεµε = 0 on γε,

uε = 0 on γl,

(1.5.3)
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where ud = (ud1 , ud2) is the target state in (L2(Ω))2 and τ > 0 is a given regularization

parameter. We apply the periodic controls θε ∈
(
L2(Ω+

ε )
)2

in the oscillating region of

the domain given by θε(x1, x2) = θ(
x1
ε , x2), where the control function θ is defined on the

space
(
L2(Λ+)

)2
, where Λ+ := (a, b) × (h1, h2), is a reference cell. The problem (Pε) is

well defined and admits a unique solution
(
uε, pε,θε

)
∈
(
H1

γl
(Ωε)

)2 × L2(Ωε).

Now, we write the adjoint problem corresponding to (1.5.3): Find (vε, qε) ∈
(
H1

γl
(Ωε)

)2×
L2(Ωε) satisfying

−
2∑

i,j=1

∂

∂xi

(
aji(x)

∂vε
∂xj

)
+∇qε = uε − ud in Ωε,

div(vε) = 0 in Ωε,

2∑
i,j=1

aji(x)
∂vε
∂xj

µεi − qεµε = 0 on γε,

vε = 0 on γl.

(1.5.4)

We provide, the characterization of the optimal control θε with the aid of the unfolding

operator (detailed in Section 1.4.2) and adjoint state vε. The result is stated in the

following theorem.

Theorem 1.5.3. Let
(
uε, pε,θε

)
be the optimal solution of the problem (Pε) and vε

satisfies (4.1), then the optimal control θε ∈ (L2(Λ+))2 is given by

θε(y1, y2) = −1

τ

∫ 1

0
T ε(vε)(x1, y2, y1) dx1, (1.5.5)

where the unfolding operator T ε is defined in Chapter 1. Conversely, assume that a triplet

(ûε, p̂ε, θ̂ε) ∈
(
H1

γl
(Ωε)

)2 ×L2(Ωε)×
(
L2(Λ+)

)2
and a pair (v̂ε, q̂ε) ∈

(
H1

γl
(Ωε)

)2 ×L2(Ωε)

satisfy the following system

−
2∑

i,j=1

∂

∂xi

(
aij(x)

∂ûε

∂xj

)
+∇p̂ε = θ̂εε χΩ+

ε
in Ωε,

−
2∑

i,j=1

∂

∂xi

(
aji(x)

∂v̂ε
∂xj

)
+∇q̂ε = ûε − ud in Ωε,

div(ûε) = 0, div(v̂ε) = 0 in Ωε,

2∑
i,j=1

aij(x)
∂ûε

∂xj
µεi − p̂εµε = 0 on γε,

2∑
i,j=1

aji(x)
∂v̂ε
∂xj

µεi − q̂εµε = 0 on γε,

v̂ε = 0, ûε = 0 on γl,

(1.5.6)

where θ̂εε(x1, x2) = θ̂ε(
x1
ε , x2) for (x1, x2) ∈ Ω+

ε , and
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θ̂ε(y1, y2) = −1

τ

∫ 1

0
T ε(v̂ε)(x1, y2, y1) dx1. (1.5.7)

Then the triplet (ûε, p̂ε, θ̂ε) is the optimal solution to (Pε).

We employ the method of unfolding to obtain the following limit OCP:

inf
θ∈(L2(h1,h2))2

{
J(θ) =

1

2

∫
Ω
(|A|χΩ+ + χΩ−) |u− ud|2 dx+

|A|τ
2

∫ h2

h1

θ2 dx2

}
(P )

subject to

− ∂

∂x2

(
B
∂u+

∂x2

)
= θ in Ω+,

B
∂u+

∂x2
= 0 in Γu,

−
2∑

i,j=1

∂

∂xi

(
aij

∂u−

∂xj

)
+∇p− = 0 in Ω−,

div (u−) = 0 in Ω−,

u− = 0 on γ′l,

u+ = u− on Γ,

|A|
[
B
∂u+

∂x2

]
=

2∑
j=1

a2j
∂u−

∂xj
− p−e2 on Γ,

(1.5.8)

where u = u+ χΩ+ +u− χΩ− belongs to
(
Uγ′

l
(Ω)
)2

(see Section 2.2 for space description)

and the column vectors e1 and e2 are given by e1 = (1, 0)t and e2 = (0, 1)t, respectively.

Also, the matrix B expressed as:

B =

[
a22 −a21
−a12 a11 + a22 − a12a21

a11

]
,

is elliptic. Further, the limit adjoint system corresponding (1.5.8) is: Find (v, q−) ∈(
Uγ′

l
(Ω)
)2 × L2(Ω−) which satisfies the following system

− ∂

∂x2

(
Bt ∂v

+

∂x2

)
= u+ − ud in Ω+,

Bt ∂v
+

∂x2
= 0 in Γu,

−
2∑

i,j=1

∂
∂xj

(
aji(x)

∂v−

∂xi

)
+∇q− = u− − ud in Ω−,

div (v−) = 0 in Ω−,

v− = 0 on γ′l,

v+ = v− on Γ,

|A|
[
Bt ∂v

+

∂x2

]
=

2∑
i=1

a2i
∂v−

∂xi
− q−e2 on Γ,

(1.5.9)
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where Bt denotes the matrix transpose of B. In the following result, we provide the

characterization of the optimal control θ with the aid of the unfolding operator and adjoint

state v ∈
(
Uγ′

l
(Ω)
)2

.

Theorem 1.5.4. Let
(
u, p−,θ

)
be the optimal solution to the problem (P ) and (v, qε)

satisfies (1.5.9), then the optimal control θ ∈ (L2(h1, h2))
2 is given by

θ(x2) = −1

τ

∫ 1

0
v+(x1, x2) dx1,

Conversely, assume that a triplet (û, p̂−, θ̂) ∈
(
Uγ′

l
(Ω)
)2

× L2(Ω−)× (L2(h1, h2))
2 and a

pair (û, q̂−) ∈
(
Uγ′

l
(Ω)
)2

× L2(Ω−), respectively, satisfy the following systems

− ∂

∂x2

(
B
∂û+

∂x2

)
= θ̂ in Ω+,

B
∂û+

∂x2
= 0 in Γu,

−
2∑

i,j=1

∂

∂xi

(
aij(x)

∂û−

∂xj

)
+∇p̂− = 0 in Ω−,

div (û−) = 0 in Ω−,

û− = 0 on γ′l,

û+ = û− on Γ,

|A|
[
B
∂û+

∂x2

]
=

2∑
i,j=1

a2j
∂û−

∂xj
− p̂−e2 on Γ,

and 

− ∂

∂x2

(
Bt ∂v̂

+

∂x2

)
= û+ − ud in Ω+,

Bt ∂v̂
+

∂x2
= 0 in Γu,

−
2∑

i,j=1

∂

∂xj

(
aji(x)

∂v̂−

∂xi

)
+∇q̂− = û− − ud in Ω−,

div (v̂−) = 0 in Ω−,

v̂− = 0 on γ′l,

v̂+ = v̂− on Γ,

|A|
[
Bt ∂v̂

+

∂x2

]
=

2∑
i=1

a2i
∂v̂−

∂xi
− q̂−e2 on Γ,

where,

θ̂(x2) = −1

τ

∫ 1

0
v̂+(x1, x2) dx1.

Then, the triplet
(
û, p̂−, θ̂

)
is the optimal solution to (P ).

Finally, we present below the convergence result for the solutions to the problems (Pε)
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and its associated adjoint system (1.5.9) in the suitable function spaces.

Theorem 1.5.5. For given ε > 0, let the triplets (uε, pε,θε) and (u, p−,θ), respectively,

be the optimal solutions of the problems (Pε) and (P ). Then

u−
ε ⇀ u− weakly in

(
H1(Ω−)

)2
,

p−ε ⇀ p− weakly in L2(Ω−),

ũ+
ε ⇀ |A|u+ weakly in L2

(
0, 1;

(
H1(h1, h2)

)2)
,

∂̃u+
ε

∂x1
⇀ −|A|

(
e1 +

a12
a11

e2

)
∂u+2
∂x2

weakly in
(
L2
(
Ω+
))2

,

∂̃u+
ε

∂x2
⇀ |A|∂u

+

∂x2
weakly in

(
L2
(
Ω+
))2

,

p̃+ε ⇀ |A|
(
a12

∂u+1
∂x2

− a11
∂u+2
∂x2

)
weakly in L2(Ω+),

θε ⇀ θ weakly in
(
L2
(
Λ+
))2

,

and,

v−ε ⇀ v− weakly in
(
H1(Ω−)

)2
,

q−ε ⇀ q− weakly in L2(Ω−),

ṽ+ε ⇀ |A|v+ weakly in L2
(
0, 1;

(
H1(h1, h2)

)2)
,

∂̃v+ε
∂x1

⇀ −|A|
(
e1 +

a21
a11

e2

)
∂v+2
∂x2

weakly in
(
L2
(
Ω+
))2

,

∂̃v+ε
∂x2

⇀ |A|∂v
+

∂x2
weakly in

(
L2
(
Ω+
))2

,

q̃+ε ⇀ |A|
(
a21

∂v+1
∂x2

− a11
∂v+2
∂x2

)
weakly in L2(Ω+),

where θ(x2) = − 1

β

∫ 1

0
v+(x1, x2) dx1 and the pairs (vε, qε) and (v, q−) solve respectively

the systems (1.5.4) and (1.5.9).

1.5.4 Chapter 4

In this chapter, unlike in the Chapter 3, we apply the distributive control throughout the

domain Ωε (see, Figure 1.1) and study the homogenization of a generalized OCP subjected

to the constrained stationary Stokes equations of the form:

−div (Aε∇uε) +∇pε = f + θε in Ωε,

div(uε) = 0 in Ωε,

µε ·Aε∇uε − pεµε = 0 on γε,

uε = 0 on γl.

(1.5.12)
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The coefficient matrix Aε(x1, x2) = A(x1, x2,
x1
ε ) is elliptic. The problem (1.5.12) is well

defined and admits a unique weak solution.

The OCP is to minimize the Dirichlet cost functional Jε(θε) over the set of admissible

controls θε ∈ (L2(Ωε))
2 subjected to constrained generalized stationary Stokes equation

(1.5.12), i.e.,

inf
θε∈(L2(Ωε))2

{
Jε(θε) =

1

2

∫
Ωε

Bε∇uε(θε) : ∇uε(θε) +
τ

2

∫
Ωε

|θε|2
}
. (1.5.13)

Here, the coefficient matrix Bε, not necessarily equal to Aε, is symmetric, elliptic and is

set to oscillate in x1− direction, i.e., Bε(x1, x2) = B(x1, x2,
x1
ε ). A unique minimizer to

problem (1.5.13) exists, the proof of which is standard and follows along the lines of ([45,

Theorem 2.2]). Next, let us consider the associated adjoint problem to (1.5.12): Find

(vε, qε) ∈
(
H1

γl
(Ωε)

)2 × L2(Ωε) that obeys the following system:

−div
(
At

ε∇vε
)
+∇qε = −div (Bε∇uε) in Ωε,

div(vε) = 0 in Ωε,

µε ·At
ε∇vε − qεµε = µε ·Bε∇uε on γε,

vε = 0 on γl.

(1.5.14)

In the below-mentioned result, we state the characterization of the optimal control in

terms of the adjoint state solving the adjoint system (1.5.14).

Theorem 1.5.6. Let
(
uε, pε,θε

)
be the optimal solution of the problem (1.5.13) and the

pair (vε, qε) satisfies (1.5.14), then the optimal control θε ∈ (L2(Ωε))
2 is given by

θε(x) = −1

τ
vε(x) a.e. in Ωε. (1.5.15)

Conversely, assume that a triplet (ǔε, p̌ε,− 1
τ v̌ε) ∈

(
H1

γl
(Ωε)

)2 × L2(Ωε)×
(
L2(Ωε)

)2
and

a pair (v̌ε, q̌ε) ∈
(
H1

γl
(Ωε)

)2 × L2(Ωε) satisfy the following system

− div (Aε∇ǔε) +∇p̌ε = f − 1
τ v̌ε in Ωε,

−div
(
At

ε∇v̌ε
)
+∇q̌ε = −div (Bε∇ǔε) in Ωε,

div(ǔε) = 0, div(v̌ε) = 0 in Ωε,

µε ·Aε∇ǔε − p̌εµε = 0 on γε,

µε ·At
ε∇v̌ε − qεµε = µε ·Bε∇ǔε on γε,

v̌ε = 0, ǔε = 0 on γl.

(1.5.16)

Then the triplet (ǔε, p̌ε,− 1
τ v̌ε) is the optimal solution to (1.5.13).

Now, we present the limit OCP. To do so, we first present the following cell problems.

For 1 ≤ j, β ≤ 2, and P β
j = P β

j (y) = yjeβ, let the correctors (χβ
j ,Π

β
j ) ∈ (H1((0, 1)2))2 ×

L2((0, 1)2) solves the cell problem
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

−divy

(
A(x, y)∇y(P

β
j − χβ

j )
)
+∇yΠ

β
j = 0 in (0, 1)2,

divy(P
β
j − χβ

j ) = 0 in (0, 1)2,

(χβ
j ,Π

β
j ) is (0, 1)2- periodic,

M(0,1)2(χ
β
j ) = 0,

(1.5.17)

the correctors (Hβ
j , Q

β
j ) ∈ (H1((0, 1)2))2 × L2((0, 1)2) solves the cell problem



−divy

(
At(x, y)∇y(P

β
j −Hβ

j )
)
+∇yQ

β
j = 0 in (0, 1)2,

divy(P
β
j −Hβ

j ) = 0 in (0, 1)2,

(Hβ
j , Q

β
j ) is (0, 1)2- periodic,

M(0,1)2(H
β
j ) = 0,

(1.5.18)

and the correctors (T β
j , R

β
j ) ∈ (H1((0, 1)2))2 × L2((0, 1)2) solves the cell problem



−divy

(
B(x, y)∇y(P

β
j − χβ

j )−At(x, y)∇yT
β
j

)
+∇yR

β
j = 0 in (0, 1)2,

divy(P
β
j − T β

j ) = 0 in (0, 1)2,

(T β
j , R

β
j ) is (0, 1)2- periodic,

M(0,1)2(T
β
j ) = 0.

(1.5.19)

Over Ω−, we define the elliptic tensors D = (dαβij )1≤i,j,α,β≤2, its transpose Dt =

(dβαji )1≤i,j,α,β≤2, and the perturbed B# = (b#
αβ
ij )1≤i,j,α,β≤2 as

dαβij = aαβij −
∫
(0,1)2

A(x, y)∇y

(
P β
j − χβ

j

)
: ∇yχ

α
i dy,

dβαji = aβαji −
∫
(0,1)2

At(x, y)∇y

(
P β
j −Hβ

j

)
: ∇yH

α
i dy,

b#
αβ
ij = b0

αβ
ij −

∫
(0,1)2

(
B(x, y)∇y(P

β
j − χβ

j )−At(x, y)∇yT
β
j

)
: ∇yT

β
j dy,

where aαβij , a
βα
ji , and b0

αβ
ij forms the respective entries of the tensors A0, A

t
0, and B0 as

aαβij =

∫
(0,1)2

A(x, y)∇y

(
P β
j − χβ

j

)
: ∇yP

α
i dy,

aβαji =

∫
(0,1)2

At(x, y)∇y

(
P β
j −Hβ

j

)
: ∇yP

α
i dy,

b0
αβ
ij =

∫
(0,1)2

(
B(x, y)∇y(P

β
j − χβ

j )−At(x, y)∇yT
β
j

)
: ∇y(P

α
i ) dy.

Next, over Ω+, we define the elliptic matrices A+ = (a+ij)1≤i,j≤2, and B+ = (b+ij)1≤i,j≤2
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as

A+ = A+(x) =

∫
A

 a22 −a21

−a12 a11 + a22 − a12a21
a11

 dy,
B+ = B+(x) =

∫
A

 b22 −b21

−b12 b11 + b22 +
a12
a11

(
a12b11
a11

− b12

)
+ b21a12

a11

 dy.
Now, we present in the following the limit OCP:

inf
θ∈(L2(Ω)2)

{
J(θ) =

1

2

∫
Ω+

B+
∂u+

∂x2
:
∂u+

∂x2
dx +

1

2

∫
Ω−

B#∇u− : ∇u− dx +
τ

2

∫
Ω
|θ|2 dx

}
(1.5.20)

subject to

− ∂

∂x2

(
A+

∂u+

∂x2

)
= |A| (f + θ)χΩ+

ε
in Ω+,

A+
∂u+

∂x2
= 0 in Γu,

−
2∑

j,α,β=1

∂

∂xα

(
dαβij

∂u−j
∂xβ

)
+∇p− = (f + θ)χΩ− in Ω−,

div (u−) = 0 in Ω−,

u− = 0 on γ′l,

u+ = u− on Γ,

A+
∂u+

∂x2
=

2∑
j,β=1

d2βij
∂u−

j

∂xβ
− p−e2 on Γ,

(1.5.21)

Also, corresponding to (1.5.21), we consider the limit adjoint problem : Find (v, q−) ∈(
Uγ′

l
(Ω)
)2

× L2(Ω−) that obeys the following system:



− ∂

∂x2

(
At

+

∂v+

∂x2

)
= − ∂

∂x2

(
B+

∂u+

∂x2

)
in Ω+,

At
+

∂v+

∂x2
= B+

∂u+

∂x2
in Γu,

−
2∑

j,α,β=1

∂

∂xα

(
dβαji

∂v−j
∂xβ

)
+∇q− = −

2∑
j,α,β=1

∂

∂xα

(
b#

αβ
ij

∂u−j
∂xβ

)
in Ω−,

div (v−) = 0 in Ω−,

v− = 0 on γ′l,

v+ = v− on Γ,

At
+

∂v+

∂x2
−B+

∂u+

∂x2
=

2∑
j,β=1

dβ2ji
∂v−j
∂xβ

−
2∑

j,β=1

b#
2β
ij

∂u−
j

∂xβ
on Γ.

(1.5.22)

Next, in the below mentioned result, we state the characterization of the limit optimal
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control in terms of the adjoint state solving the limit adjoint system.

Theorem 1.5.7. Let
(
u, p−,θ

)
be the optimal solution to the problem (1.5.20) and (v, q−)

satisfies (1.5.22), then the optimal control θ ∈ (L2(Ω))2 is given by

θ(x) = −1

τ
v(x) a.e. in Ω.

Conversely, suppose that (ǔ, p̌−,− 1
τ v̌) ∈

(
Uγ′

l
(Ω)
)2

× L2(Ω−) × (L2(Ω))2 and (v̌, q̌−) ∈(
Uγ′

l
(Ω)
)2

× L2(Ω−), satisfies the following system


− ∂

∂x2

(
A+

∂ǔ+

∂x2

)
= |A| (f − 1

τ
v̌+) in Ω+,

− ∂

∂x2

(
At

+

∂v̌+

∂x2

)
= − ∂

∂x2

(
B+

∂ǔ+

∂x2

)
in Ω+,



−
2∑

j,α,β=1

∂

∂xα

(
dαβij

∂ǔ−j
∂xβ

)
+∇p− = f − 1

τ
v̌− in Ω−,

−
2∑

j,α,β=1

∂

∂xα

(
dβαji

∂v̌−j
∂xβ

)
+∇q̌− = −

2∑
j,α,β=1

∂

∂xα

(
b#

αβ
ij

∂ǔ−j
∂xβ

)
in Ω−,

div (ǔ−) = 0 in Ω−, div (v̌−) = 0 in Ω−,

together with the boundary conditions A+
∂ǔ+

∂x2
= 0, At

+

∂v̌+

∂x2
= B+

∂ǔ+

∂x2
in Γu,

ǔ− = 0, v̌− = 0 on γ′l,

and the interface conditions

ǔ+ = ǔ−, v̌+ = v̌− on Γ,

A+
∂ǔ+

∂x2
=

2∑
j,β=1

d2βij
∂ǔ−j
∂xβ

− p−e2 on Γ,

At
+

∂v̌+

∂x2
−B+

∂ǔ+

∂x2
=

2∑
j,β=1

dβ2ji
∂v̌−j
∂xβ

−
2∑

j,β=1

b#
2β
ij

∂ǔ−j
∂xβ

− q̌−e2 on Γ.

Then, the triplet
(
ǔ, p̌−,− 1

τ v̌
)
is the optimal solution to (1.5.20).

Now, we present the main result concerning the convergence analysis for the solutions to

the problem (1.5.13) and the corresponding adjoint system (1.5.22) upon employing the

method of unfolding.

Theorem 1.5.8. For given ε > 0, let the triplets (uε, pε,θε) and (u, p−,θ), respectively,
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be the optimal solutions of the problems (1.5.13) and (1.5.20). Then

ũ+
ε ⇀ |A|u+ weakly in L2

(
0, 1;

(
H1(g1, g2)

)2)
,

∂̃u+
ε

∂x1
⇀ −

[
|A| e1 +

(∫
A

a12
a11

dy

)
e2

]
∂u+2
∂x2

weakly in
(
L2
(
Ω+
))2

,

∂̃u+
ε

∂x2
⇀ |A| ∂u

+

∂x2
weakly in

(
L2
(
Ω+
))2

,

p̃+ε ⇀

(∫
A
a12 dy

)
∂u+1
∂x2

−
(∫

A
a11 dy

)
∂u+2
∂x2

weakly in L2(Ω+),

θ̃
+

ε ⇀ |A|θ+ weakly in
(
L2
(
Ω+
))2

,

θ
−
ε ⇀ θ

−
weakly in

(
L2
(
Ω−))2 ,

u−
ε ⇀ u− weakly in

(
H1(Ω−)

)2
,

p−ε ⇀
1

2
A0∇u− : I + p− weakly in L2(Ω−),

where θ(x) = −1

τ
v(x) and the pair (v, q−) solves the adjoint system (1.5.22).

1.5.5 Chapter 5

Notations: We follow the below-mentioned conventions in this chapter. Any bold

symbols ψ and ψε represent the vector function symbols (ψ1, . . . , ψn) and (ψε1, . . . , ψεn),

respectively. Also, ψ̃ denotes the zero extension of the components of ψ outside O∗
ε to the

whole of O. Here, O∗
ε ⊂ O is a periodically perforated domain (see, Figure 5.1).

The present chapter deals with the homogenization of the OCP constrained by the

generalized stationary Stokes equations in an n-dimensional (n ≥ 2) periodically

perforated domain O∗
ε . We subject the interior region of it with distributive control.

Homogeneous Neumann boundary conditions are prescribed on holes not intersecting

the outer boundary, and homogeneous Dirichlet conditions on the remaining part. More

precisely, we consider

inf
θε∈(L2(O∗

ε ))
n

{
Jε(θε) =

1

2

∫
O∗

ε

|uε(θε)− ud|2 +
τ

2

∫
O∗

ε

|θε|2
}
, (1.5.23)

subject to 

−div (Aε∇uε) +∇pε = θε in O∗
ε ,

div(uε) = 0 in O∗
ε ,

µε ·Aε∇uε − pεµε = 0 on Γε
1,

uε = 0 on Γε
0,

(1.5.24)

where the target state ud = (ud1 , . . . , udn) is defined on the space (L2(O))n, and θε is

a control function defined on the space
(
L2(O∗

ε)
)n
. Here, the matrix Aε(x) = A(xε ),

where A(x) = (aij(x))1≤i,j≤n defined on the space (L∞(O))n×n is assumed to obey the

uniform ellipticity condition: there exist real constants m, M > 0 such that m||λ||2 ≤
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∑n
i,j=1 aij(

x
ε )λiλj ≤ M ||λ||2 for all x, λ ∈ Rn, which is endowed with an Eucledian norm

denoted by || · ||. Also, we understand the action of scalar boundary operator µε ·Aε∇ on

the vector uε|Γε
1
in a ”diagonal” manner: (µε ·Aε∇uε)i = µε ·Aε∇uεi, for 1 ≤ i ≤ n.

We introduce the function space (H1
γl
(O∗

ε))
n := {ϕ ∈ (H1(O∗

ε))
n | ϕ|γl = 0}. This is a

Banach space endowed with the norm

||ϕ||(H1
γl
(O∗

ε ))
n := ||∇ϕ||(L2(O∗

ε ))
n×n , ∀ϕ ∈ (H1

γl
(O∗

ε))
n.

The existence of a unique weak solution (uε(θε), pε) ∈ (H1
Γε
0
(O∗

ε))
n×L2(O∗

ε) of the system

(5.3.2) follows analogous to [62, Theorem IV.7.1]. Also, for each ε > 0, there exists a unique

solution to the problem (5.3.1) that can be proved along the same lines as in [15, Chapter

2, Theorem 1.2]. We call the optimal solution to (5.3.1) by the triplet (uε, pε,θε), with

uε, pε, and θε as optimal state, pressure, and control, respectively. Let the pair (vε, qε)

is the solution to the following adjoint problem:

−div
(
At

ε∇vε
)
+∇qε = uε − ud in O∗

ε ,

div(vε) = 0 in O∗
ε ,

µε ·At
ε∇vε − qεµε = 0 on Γε

1,

vε = 0 on Γε
0.

(1.5.25)

We call vε and qε, the adjoint state and pressure, respectively. The existence of unique

weak solution (vε, qε) to (1.5.25) can now be proved in a way similar to that of system

(1.5.24).

The following theorem characterizes the optimal control, the proof of which follows

analogous to standard procedure laid in [15, Chapter 2, Theorem 1.4].

Theorem 1.5.9. Let
(
uε, pε,θε

)
be the optimal solution of the problem (1.5.23) and

(vε, qε) solves (1.5.25), then the optimal control is characterized by

θε = −1

τ
vε a.e. in O∗

ε . (1.5.26)

Conversely, suppose that a triplet (ǔε, p̌ε, θ̌ε) ∈
(
H1

γl
(O∗

ε)
)n × L2(O∗

ε)×
(
L2(O∗

ε)
)n

and a

pair (v̌ε, q̌ε) ∈
(
H1

γl
(O∗

ε)
)n × L2(O∗

ε) solves the following system:

−div (Aε∇ǔε) +∇p̌ε = −1

τ
v̌ε in O∗

ε ,

−div
(
At

ε∇v̌ε
)
+∇q̌ε = ǔε − ud in O∗

ε ,

div(ǔε) = 0, div(v̌ε) = 0 in O∗
ε ,

µε ·Aε∇ǔε − p̌εµε = 0 on Γε
1,

µε ·At
ε∇v̌ε − q̌εµε = 0 on Γε

1,

v̌ε = 0, ǔε = 0 on γl.

Then the triplet (ǔε, p̌ε,− 1
τ v̌ε) is the optimal solution of (1.5.23).
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Now, we presents the limit (homogenized) system corresponding to the problem (1.5.23).

Let us consider the function space
(
H1

0 (O)
)n

:=
{
φ ∈ (H1(O))n | φ|∂O = 0

}
, which is a

Hilbert space for the norm ∥φ∥(H1
0 (O))n := ∥∇φ∥(L2(O))n×n ∀φ ∈ (H1

0 (O))n.

We now consider the limit OCP associated with the Stokes system

inf
θ∈(L2(O))n

{
J(θ) =

Θ

2

∫
O
|u− ud|2 dx+

τΘ

2

∫
O
|θ|2 dx

}
, (1.5.27)

subject to 
−

n∑
j,α,β=1

∂

∂xα

(
bαβij

∂uj
∂xβ

)
+∇p = θ in O,

div (u) = 0 in O,
u = 0 on ∂O,

(1.5.28)

where Θ = |W ∗|
|W | , the tensor B = (bαβij ) = (bαβij )1≤i,j,α,β≤n is constant, elliptic, and for

1 ≤ i, j, α, β ≤ n, is given by

bαβij = aαβij − 1

|W ∗|

∫
W ∗

A(y)∇y

(
P β
j − χβ

j

)
: ∇yχ

α
i dy,

with aαβij = 1
|W ∗|

∫
W ∗ A(y)∇y

(
P β
j − χβ

j

)
: ∇yP

α
i dy as the entries of the constant tensor

A0, P
β
j = P β

j (y) = (0, . . . , yj , . . . , 0) with yj at the β-th position, and for 1 ≤ j, β ≤ n,

the correctors (χβ
j ,Π

β
j ) ∈ (H1(W ∗))n × L2(W ∗) solves the cell problem



−divy

(
A(y)∇y(P

β
j − χβ

j )
)
+∇yΠ

β
j = 0 in W ∗,

µ ·A(y)∇y(P
β
j − χβ

j )−Πβ
jµ = 0 on ∂W ∗\∂W,

divy(P
β
j − χβ

j ) = 0 in W ∗,

(χβ
j ,Π

β
j ) W ∗- periodic,

MW ∗(χβ
j ) = 0.

(1.5.29)

The existence of this unique pair (u, p) ∈ (H1
0 (O))n × L2(O) can be found in [5, Chapter

1]. Further, the problem (1.5.27) is a standard one and there exists a unique weak solution

to it, one can follow the arguments introduced in [15, Chapter 2, Theorem 1.2]. We call

the triplet (u, p,θ) ∈ (H1
0 (O))n×L2(O)× (L2(O))n, the optimal solution to (1.5.27), with

u, p, and θ as the optimal state, pressure, and control, respectively.

Now, we introduce the limit adjoint system associated with (1.5.28): Find a pair (v, q) ∈
(H1

0 (O))n × L2(O) which solves the system
−

n∑
j,α,β=1

∂

∂xα

(
bβαji

∂vj
∂xβ

)
+∇q = u− ud in O,

div (v) = 0 in O,
(1.5.30)

where the tensor Bt = (bβαji ) = (bβαji )1≤i,j,α,β≤n is constant, elliptic, and for 1 ≤ i, j, α, β ≤
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n, is given by

bβαji = aβαji − 1

|W ∗|

∫
W ∗

At(y)∇y

(
P β
j −Hβ

j

)
: ∇yH

α
i dy,

with aβαji = 1
|W ∗|

∫
W ∗ A

t(y)∇y

(
P β
j −Hβ

j

)
: ∇yP

α
i dy as the entries of the constant tensor

At
0. Also, for 1 ≤ j, β ≤ n, the correctors (Hβ

j , Z
β
j ) ∈ (H1(W ∗))n×L2(W ∗) solves the cell

problem 

−divy

(
At(y)∇y(P

β
j −Hβ

j )
)
+∇yZ

β
j = 0 in W ∗,

µ ·At(y)∇y(P
β
j −Hβ

j )− Zβ
j µ = 0 on ∂W ∗\∂W,

divy(P
β
j −Hβ

j ) = 0 in W ∗,

(Hβ
j , Z

β
j ) W ∗- periodic,

MW ∗(Hβ
j ) = 0.

(1.5.31)

In the following, we state a result similar to Theorem 1.5.9 that characterizes the optimal

control θ in terms of the adjoint state v and the proof of which follows analogous to the

standard procedure laid in [15, Chapter 2, Theorem 1.4].

Theorem 1.5.10. Let
(
u, p,θ

)
be the optimal solution to (1.5.27) and (v, q) be the

corresponding adjoint solution to (1.5.30), then the optimal control is characterized by

θ = −1

τ
v a.e. in O. (1.5.32)

Conversely, suppose that a triplet (ǔ, p̌, θ̌) ∈ (H1
0 (O))n × L2(O) × (L2(O))n and a pair

(v̌, q̌) ∈ (H1
0 (O))n × L2(O), respectively, satisfy the following systems:

−
n∑

j,α,β=1

∂

∂xα

(
bαβij

∂ǔj
∂xβ

)
+∇p̌ = − 1

τ v̌ in O,

div (ǔ) = 0 in O,

and 
−

n∑
j,α,β=1

∂

∂xα

(
bβαji

∂v̌j
∂xβ

)
+∇q̌ = ǔ− ud in O,

div (v̌) = 0 in O.

Then, the triplet
(
ǔ, p̌,− 1

τ v̌
)
is the optimal solution to (1.5.27).

We now present the key findings on the convergence analysis of the optimal solutions to

the problem (1.5.23) and its corresponding adjoint system (1.5.25) by using the method

of periodic unfolding for perforated domains detailed in Section 5.5.

Theorem 1.5.11. For given ε > 0, let the triplets (uε, pε,θε) and (u, p,θ), respectively,
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be the optimal solutions of the problems (1.5.23) and (1.5.27). Then

T ∗
ε (Aε) → A strongly in (L2(O ×W ∗))n×n, (1.5.33a)

θ̃ε ⇀ Θθ weakly in
(
L2 (O)

)n
, (1.5.33b)

ũε ⇀ Θu weakly in (H1
0 (O))n, (1.5.33c)

ṽε ⇀ Θv weakly in (H1
0 (O))n, (1.5.33d)

p̃ε ⇀
Θ

n
A0∇u : I +Θ p weakly in L2(O), (1.5.33e)

q̃ε ⇀
Θ

n
At

0∇v : I +Θ q weakly in L2(O), (1.5.33f)

where A0 is a tensor, I is the n× n identity matrix, θ is characterized through (1.5.32)

and the pairs (vε, qε) and (v, q) solve respectively the systems (1.5.25) and (1.5.30).

Moreover, the convergence of the cost functional is as follows

lim
ε→0

Jε(θε) = J(θ). (1.5.34)



Chapter 2

Homogenization of Stokes

Equations in an Oscillating Domain

In the preceding chapter, we explored literature revealing that homogenization problems

concerning stationary Stokes equations under Dirichlet and Neumann boundary conditions

on highly oscillating boundaries led to trivial and non-trivial contributions, respectively,

in the upper region of the limit domain. In this chapter†, we focus on investigating

the homogenization of generalized stationary Stokes equations featuring highly oscillating

coefficient matrices in a two-dimensional oscillating domain. By applying mixed boundary

data incorporating non-negative parameters, such as Robin and Neumann conditions,

on various segments of these highly oscillating boundaries and employing unfolding

techniques, we derive non-trivial contributions dependent on these parameters in the

limiting analysis. Additionally, we observe a corrector-type result under the special case

of stationary Stokes equations with Neumann boundary conditions throughout the highly

oscillating boundaries.

2.1 Introduction

In this chapter, we examine the asymptotic analysis (limiting or homogenization) of a

generalized stationary Stokes equations represented as follows:

−div (Aε∇uε) +∇pε = f in Ωε,

div(uε) = 0 in Ωε,

µε ·Aε∇uε − pεµε + α2ε
α1uε = 0 on Γ1

ε,

µε ·Aε∇uε − pεµε = 0 on Γ2
ε,

uε = 0 on γl.

(2.1.1)

In this context, an open bounded domain Ωε ⊂ R2 consists of a x1-periodic rough

(oscillating) boundary denoted by Γ1
ε∪Γ2

ε. The elliptic matrix Aε is configured to oscillate

in the x1-direction, specifically defined as Aε(x1, x2) = A(x1, x2,
x1
ε ). The functions uε,

pε, and f correspond to the state, pressure, and source functions, respectively. These are

defined within suitable function spaces, and the specifics will be outlined in an upcoming

section.

†The content of this chapter is submitted as: “S. Garg and B. C. Sardar. Homogenization of Stokes
equations with matrix coefficients in a highly oscillating domain.”
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The Stokes equations under consideration are generalized by incorporating a second-order

elliptic linear differential operator in divergence form with oscillating coefficients,

formulated as−div (Aε∇). This formulation deviates from the classical Laplacian operator

and was initially explored for a fixed domain in [5, Chapter 1]. In this context, the

action of the scalar operator −div (Aε∇) is defined diagonally on any vector u = (u1, u2)

with components u1, u2 in the H1 Sobolev space. For 1 ≤ i ≤ 2, it is expressed as

(−div (Aε∇u)) i = −div (Aε∇ui).

Similarly, µε ·Aε∇ is a scalar boundary operator on γε that acts diagonally on the vector

uε|γε , where µε denotes the outward normal unit vector to γε. Additionally, we assume

that α1 ≥ 1 and α2 ≥ 0 are real parameters. The Stokes equations given by (2.1.1) are

well-posed and possess a uniquely determined weak solution. The proof follows a classical

procedure and aligns with [62, Theorem IV.7.1], utilizing the elliptic property of Aε stated

in Section 2.2.

In Section 1.3 of the literature review, it has been observed that researchers have

delved into homogenization problems concerning Laplace equations on rough (oscillating)

domains with a fixed amplitude. Various boundary conditions on the highly oscillating

boundary have been explored, primarily focusing on Dirichlet and Neumann boundary

conditions. Additionally, it is noted that limited research has been carried out on

the stationary Stokes equations over these rough domains. The predominant boundary

data utilized comprises Dirichlet or Neumann conditions. The investigations have

provided distinct contributions in the homogenized system based on the different boundary

conditions. Specifically, trivial contributions were noted in the upper region of the limit

domain for both the Laplace and Stokes equations during the homogenization process

when considering the Dirichlet boundary condition. However, non-trivial contributions

were observed in both cases when considering the Neumann boundary condition.

The interesting scenario arises when one incorporates the Robin boundary condition on a

segment of the oscillating boundary while its remaining portion is subject to the Neumann

boundary data. The literature concerning the Stokes equations in rough domains has yet

to address this situation. This chapter examines this situation on a generalized stationary

Stokes equation over this rough domain. Here, the vertical boundary of the rough region is

imposed with the Robin boundary condition, involving real parameters α1 ≥ 1 andα2 ≥ 0

while its horizontal boundary is subject to the Neumann boundary condition. We aim at

homogenizing the problem (2.1.1).

This chapter is organized into five sections: Section 2.2 covers essential prerequisites that

will be extensively utilized throughout this chapter. Subsequently, in Section 2.3, we

derive norm estimates for the solution to problem (2.1.1). Section 2.4 introduces the

limit problem. Finally, in Section 2.5, the main results from the convergence analysis

are presented along with a corrector-type result under the particular case of stationary

Stokes equations with Neumann boundary conditions throughout the highly oscillating

boundaries.
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2.2 Prerequisites

Here, we introduce the Sobolev spaces and the inequalities to be used extensively in

Chapters 2-4.

Sobolev Spaces

• (H1
γl
(Ωε))

2 := {v ∈ (H1(Ωε))
2 : v|γl = 0}.

•
(
Uγ′

l
(Ω)
)2

:=
{
ϕ ∈ (L2(Ω))2 : ϕ− ∈ (H1(Ω−))2, ∂ϕ

+

∂x2
∈ (L2(Ω+))2 and ϕ|γ′

l
= 0
}
.

•
(
Uσ,γ′

l
(Ω)
)2

:=

{
ϕ ∈

(
Uγ′

l
(Ω)
)2

: div(Φ−) = 0 on Ω−
}
. This is a Hilbert space

with respect to the norm

∥ϕ∥2(
Uγ′

l
(Ω)

)2 = ∥ϕ−∥2(H1(Ω−))2 + ∥ϕ+∥2(L2(Ω+))2 +
∥∥∥∂ϕ+

∂x2

∥∥∥2
(L2(Ω+))2

.

The space
(
Uσ,γ′

l
(Ω)
)2

is a closed in
(
Uγ′

l
(Ω)
)2

with respect to the norm endowed

on the latter. We define
(
C∞
γ′
l
(Ω)
)2

:=
{
ϕ ∈ (C∞(Ω))2 : ϕ|γ′

l
= 0
}
, which is a dense

subspace of
(
Uγ′

l
(Ω)
)2

, with respect to the norm in
(
Uγ′

l
(Ω)
)2

(see, [21, Proposition

4.1]).

Inequalities

• Poincaré inequality [57, Lemma 2.2]: For each ε > 0, there exists K ∈ R+, such that

||v||L2(Ωε) ≤ K||∇v||(L2(Ωε))
2 , ∀ v ∈ H1

γl
(Ωε). (2.2.2)

• Bogovski operator theorem [57, Lemma 2.3]: For each ε > 0 and pε ∈ L2(Ωε), there

exists a gε ∈
(
H1

γl
(Ωε)

)2
and K ∈ R+, such that

div(gε) = pε and ||∇gε||(L2(Ωε))
2×2 ≤ K(Ω) ||pε||L2(Ωε). (2.2.3)

Note that throughout this thesis, || · || denotes the standard Euclidean norm on R2 and

K ∈ R+ denotes a generic constant that does not depend on ε. Next, we assume that

the matrix Aε = (aij
(
x, x1

ε

)
)1≤i,j≤2 given in problem (2.1.1) is elliptic, i.e., there exist

constants m, M ∈ R+, for which the following inequality holds:

m||ξ||2 ≤
2∑

i,j=1

aij

(
x,
x1
ε

)
ξiξj ≤M ||ξ||2 for allx, ξ ∈ R2.

2.3 A Priori Estimates

Let’s begin with the variational formulation of the problem (2.1.1).
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Definition 2.3.1. A pair (uε, pε) ∈ (H1
γl
(Ωε))

2 × L2(Ωε) is weak solution of (2.1.1) if∫
Ωε

Aε∇uε : ∇v dx+α2ε
α1

∫
Γ1
ε

uε·v dx−
∫
Ωε

pε div(v) dx =

∫
Ωε

f ·v dx, ∀ v ∈ (H1
γl
(Ωε))

2

(2.3.4)

and ∫
Ωε

div(uε) w dx = 0, ∀ w ∈ L2(Ωε). (2.3.5)

Here, (:) and (·) denote the component wise multiplication of matrix and the standard

scalar product of vectors, respectively. Also, note that we visualize a vector in R2 as a

column vector and use it interchangeably with a 2× 1 matrix when required.

As stated in Section 2.1, for every ε ∈ R+, the problem (2.1.1) possesses a weak solution

(uε, pε) ∈ (H1
γl
(Ωε))

2 × L2(Ωε) that is unique and the proof of which is conventional and

easily proceeds along the lines of [62, Theorem IV.7.1] by using the elliptic property of

the matrix Aε. Now, we establish norm estimates, independent of ε, for the solution pair

(uε, pε) of (2.1.1).

Theorem 2.3.2. For given ε > 0, let the source function f ∈
(
L2(Ω)

)2
. Then the

sequences {uε} and {pε} in the respective spaces (H1
γl
(Ωε))

2 and L2(Ωε) are bounded

uniformly in ε.

Proof. Taking v = uε in (2.1.1), using (2.3.5), and considering the elliptic property of the

matrix Aε and the Poincaré inequality (2.2.2), we get

m∥∇uε∥2(L2(Ωε))2×2 + α2ε
α1∥uε∥2(L2(Γ1

ε))
2 ≤ K∥f∥(L2(Ω))2∥∇uε∥(L2(Ωε))2×2 , (2.3.6)

which implies that

∥∇uε∥(L2(Ωε))2×2 ≤ K ∥f∥(L2(Ω))2 . (2.3.7)

Thus, we have the uniform bound for the sequence of state {uε} in the space (H1
γl
(Ωε))

2.

Now, we obtain the uniform bound for the sequence of pressure {pε} in the space L2(Ωε).

To do so, we employ the Bogovski operator theorem (2.2.3). Corresponding to pε ∈ L2(Ωε),

there exists gε ∈
(
H1

γl
(Ωε)

)2
such that div(gε) = pε. Taking v = gε in (2.3.4), we obtain

∥pε∥2L2(Ωε)
=

∫
Ωε

Aε(x)∇uε : ∇gε dx− α2ε
α1

∫
Γ1
ε

uε · gε dx−
∫
Ωε

f · gε dx. (2.3.8)

Also, from (2.3.6) and (2.3.7), we have
√
α2ε

α1
2 ∥uε∥(L2(Γ1

ε))
2 ≤ K∥f∥(L2(Ω))2 . Taking this

into account along with elliptic property of matrix Aε and (2.2.2), we get from (2.3.8)

∥pε∥2L2(Ωε)
≤M∥∇uε∥(L2(Ωε))2×2∥∇gε∥(L2(Ωε))2×2 +K(

√
α2ε

α1
2 + 1)∥f∥(L2(Ω))2∥∇gε∥(L2(Ωε))

2×2

≤ K
(
∥∇uε∥(L2(Ωε))

2×2 + ∥f∥(L2(Ω))2

)
∥∇gε∥(L2(Ωε))

2×2 .

This in view of (2.3.7) and (2.2.3) establishes the uniform bound for the sequence of

pressure {pε} in the space L2(Ωε).
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2.4 Homogenized Problem

Here, we present the homogenized problem. To start, we introduce the following cell

problem.

For 1 ≤ j, β ≤ 2, and P β
j = P β

j (y) = yjeβ, let the correctors (χβ
j ,Π

β
j ) ∈ (H1((0, 1)2))2 ×

L2((0, 1)2) solve the cell problem:

−divy

(
A(x, y)∇y(P

β
j − χβ

j )
)
+∇yΠ

β
j = 0 in (0, 1)2,

divy(P
β
j − χβ

j ) = 0 in (0, 1)2,

(χβ
j ,Π

β
j ) is (0, 1)2- periodic,∫

(0,1)2 χ
β
j dy = 0.

(2.4.9)

Over Ω−, we define the elliptic tensor D = (dαβij )1≤i,j,α,β≤2 as

dαβij = aαβij −
∫
(0,1)2

A(x, y)∇y

(
P β
j − χβ

j

)
: ∇yχ

α
i dy,

with aαβij , form the entries of the tensor A0 as

aαβij =

∫
(0,1)2

A(x, y)∇y

(
P β
j − χβ

j

)
: ∇yP

α
i dy.

Next, over Ω+, we define the elliptic matrix A+ = (a+ij)1≤i,j≤2 as

A+ = A+(x) =

∫
A

 a22 −a21

−a12 a11 + a22 − a12a21
a11

 dy. (2.4.10)

Let us introduce the limit problem for different values of α1:

− ∂

∂x2

(
A+

∂u+

∂x2

)
+ 2α2δα1u

+ = |A|f in Ω+,

A+
∂u+

∂x2
= 0 in Γu,

−
2∑

j,α,β=1

∂

∂xα

(
dαβij

∂u−j
∂xβ

)
+∇p− = f in Ω−,

div (u−) = 0 in Ω−,

u− = 0 on γ′l,

u+ = u− on Γ,

A+
∂u+

∂x2
=

2∑
j,β=1

d2βij
∂u−

j

∂xβ
− p−e2 on Γ,

(2.4.11)

where u = u+ χΩ+ + u− χΩ− belongs to
(
Uγ′

l
(Ω)
)2
, the column vectors e1 and e2 are

given by e1 = (1, 0)t and e2 = (0, 1)t, respectively, and δα1 denotes a function that takes
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value 1 for α1 = 1, and 0 otherwise. We denote the limit solution of (2.4.11) by the

pair (u, p−) ∈
(
Uγ′

l
(Ω)
)2

× L2(Ω−). The existence and uniqueness of a weak solution

(u, p−) ∈
(
Uγ′

l
(Ω)
)2

× L2(Ω−) for (2.4.11) can be settled following a similar approach as

done for (2.1.1), utilizing the elliptic property of A+ and D.

2.5 Convergence Result

Here, we utilize the unfolding operator method, which is already detailed in Section 1.4.2

to present the key findings on the convergence analysis of the solution to the problem

(2.1.1).

Theorem 2.5.1. For given ε > 0, let the pairs (uε, pε) and (u, p−), respectively, solves

the problems (2.1.1) and (2.4.11). Then

ũ+
ε ⇀ |A|u+ weakly in L2

(
0, 1;

(
H1(h1, h2)

)2)
,

∂̃u+
ε

∂x1
⇀ −

[
|A| e1 +

(∫
A

a12
a11

dy

)
e2

]
∂u+2
∂x2

weakly in
(
L2
(
Ω+
))2

,

∂̃u+
ε

∂x2
⇀ |A| ∂u

+

∂x2
weakly in

(
L2
(
Ω+
))2

,

p̃+ε ⇀

(∫
A
a12 dy

)
∂u+1
∂x2

−
(∫

A
a11 dy

)
∂u+2
∂x2

weakly in L2(Ω+),

u−
ε ⇀ u− weakly in

(
H1(Ω−)

)2
,

p−ε ⇀
1

2
A0∇u− : I + p− weakly in L2(Ω−).

Proof. The proof will progress in multiple steps. Initially, the homogenized system for the

problem (2.1.1) over Ω+ will be derived. This process will be analogous to the approach

outlined in [57, Theorem 4.1.]. Subsequently, we will establish the homogenized problem

over Ω−, which is quite challenging.

Step 1: The homogenized state equation over Ω+ is derived as follows.

Claim (A): The sequences {T ε(u+
ε )} ∈ L2(0, 1;

(
H1 ((h1, h2)× A)

)2
), {T ε(∇u+

ε )} ∈(
L2 (Ω+ × A)

)2×2
, and {T ε (p+ε )} ∈ L2 (Ω+ × A) are uniformly bounded. Further, there

exists subsequence not renamed and state u+
∗ such that the following are true:

T ε
(
u+
ε

)
⇀ u+

∗ weakly in L2
(
0, 1;

(
H1 ((h1, h2)× A)

)2)
, (2.5.12)

ũ+
ε ⇀ |A|u+

∗ weakly in L2
(
0, 1;

(
H1(h1, h2)

)2)
, (2.5.13)

∂̃u+
ε

∂x1
⇀ −

[
|A| e1 +

(∫
A

a12
a11

dy

)
e2

]
∂u+∗2
∂x2

weakly in
(
L2
(
Ω+
))2

, (2.5.14)

∂̃u+
ε

∂x2
⇀ |A| ∂u

+
∗

∂x2
weakly in

(
L2
(
Ω+
))2

, (2.5.15)

p̃+ε ⇀

(∫
A
a12 dy

)
∂u+∗1
∂x2

−
(∫

A
a11 dy

)
∂u+∗2
∂x2

weakly in L2(Ω+). (2.5.16)
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Proof of Claim (A): According to Theorem 2.3.2, the sequences {uε} ∈ (H1
γl
(Ωε))

2 and

{pε} ∈ L2 (Ωε) are uniformly bounded. This implies that {u+
ε } is uniformly bounded in(

H1 (Ω+
ε )
)2
. Now, using Proposition 1.4.3 (v), {T ε(u+

ε )} is uniformly bounded in

L2
(
0, 1;

(
H1 ((h1, h2)× A)

)2)
. Therefore, (2.5.12) holds and the below mentioned

statements are true

∂T ε(u+
ε )

∂x2
⇀

∂u+
∗

∂x2
weakly in

(
L2
(
Ω+ × A

))2
, (2.5.17)

∂T ε(u+
ε )

∂y
⇀

∂u+
∗

∂y
weakly in

(
L2
(
Ω+ × A

))2
. (2.5.18)

By using Proposition 1.4.3 (iv) in (2.5.18), we have
∂u+

∗
∂y

= 0. This implies that u+
∗ and

the variable y are independent, thus u+
∗ ∈ L2

(
0, 1;

(
H1 (h1, h2)

)2)
. Next, according to

Proposition 1.4.3 (viii) and (2.5.12), (2.5.13) holds. Further, using Proposition 1.4.3 (iv),

(vii) in (2.5.17), we get

∂̃u+
ε

∂x2
⇀

∫
A

∂u+
∗

∂x2
dy weakly in

(
L2
(
Ω+
))2

, (2.5.19)

which finally yields (2.5.15), as y and u+
∗ are independent.

From the uniform bounds of {∇u+
ε } and {p+ε }, the uniform bounds for {T ε(∇u+

ε )} ∈(
L2
(
Ω+ × A

))2×2
and {T ε (p+ε )} ∈ L2 (Ω+ × A) are obtained. As a result, up to

a subsequence (not renamed), there exists G := [G1, G2]
t ∈

(
L2 (Ω+ × A)

)2×2
and

g+ ∈ L2 (Ω+ × A) satisfying

T ε
(
∇u+

ε

)
⇀ G weakly in

(
L2
(
Ω+ × A

))2×2
, (2.5.20)

T ε
(
p+ε
)
⇀ g+ weakly in L2

(
Ω+ × A

)
, (2.5.21)

where G1 and G2 are the row vectors of the matrix G and are given as (G1
1 G2

1) and

(G1
2 G2

2), respectively. Considering Proposition 1.4.3 (vii) and referring to (2.5.20) and

(2.5.21), the below mentioned convergences hold:

∂̃u+
ε

∂x1
⇀

∫
A
G1 dy weakly in

(
L2
(
Ω+
))2

, (2.5.22)

p̃+ε ⇀

∫
A
g+ dy weakly in L2

(
Ω+
)
. (2.5.23)

Identification of G1, G2 and g+: From Proposition 1.4.3 (iv), we identify G2 on

comparison of (2.5.17) with (2.5.20), written as

G2 =
∂u+

∗
∂x2

a.e. in Ω+ × A. (2.5.24)

We will determine G1 and then proceed to determine g+. Let us define ϕε(x) =

εϕ(x1, x2)ψ{x1
ε }, where ϕ ∈ C∞

c (Ω+) and ψ ∈ C∞
per((0, 1)). So, T ε (ϕε) = εT ε(ϕ)ψ(y)
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and

T ε (ϕε) → 0 strongly in L2(Ω+ × A), (2.5.25a)

T ε (∇ϕε) → ϕ
∂ψ

∂y
e1 strongly in

(
L2(Ω+ × A)

)2
, (2.5.25b)

hold. Choosing v = ϕεel as a test function in (2.3.4) satisfied by uε, with l ∈ {1, 2}, gives:

2∑
i,j,l=1

∫
Ω+

ε

aij

(
x,
x1
ε

)∂u+εl
∂xj

∂ϕε

∂xl
dx+ α2ε

α1

∫
Γ1
ε

uεl ϕ
ε dx−

∫
Ω+

ε

p+ε
∂ϕε

∂xl
dx =

∫
Ω+

ε

fl ϕ
ε dx.

(2.5.26)

Using Proposition 1.4.3 (iii), (ii), (iv), and (1.4.1) in (2.5.26) gives:

2∑
i,j,l=1

∫
Ω+×A

aij(x, y)
∂T ε(u+εl)

∂xj

∂T ε(ϕε)

∂xl
dxdy + α2ε

α1

∫
Γ1
ε

uεl ϕ
ε dx

−
∫
Ω+×A

T ε(p+ε )
∂T ε(ϕε)

∂xl
dxdy =

∫
Ω+×A

T ε(fl)T
ε(ϕε) dx1 dx2 dy. (2.5.27)

Next, we simplify the second term on the left-hand side of (2.5.27) below:

α2ε
α1

∫
Γ1
ε

uεl ϕ
ε dx = α2ε

α1

1
ε
−1∑

n=0

∫ h2

h1

uεl(εn+ εa, x2)ϕ
ε(εn+ εa, x2) dx2

+ α2ε
α1

1
ε
−1∑

n=0

∫ h2

h1

uεl(εn+ εb, x2)ϕ
ε(εn+ εb, x2) dx2

= α2ε
α1−1

1
ε
−1∑

n=0

∫ h2

h1

∫ (n+1)ε

nε
uεl

(
ε
[x1
ε

]
+ εa, x2

)
ϕε
(
ε
[x1
ε

]
+ εa, x2

)
dx1dx2

+ α2ε
α1−1

1
ε
−1∑

n=0

∫ h2

h1

∫ (n+1)ε

nε
uεl

(
ε
[x1
ε

]
+ εb, x2

)
ϕε
(
ε
[x1
ε

]
+ εb, x2

)
dx1dx2

= α2ε
α1−1

∫
Ω+

T ε(uεl)(x1, x2, a)T
ε(ϕε)(x1, x2, a)dx1 dx2

+ α2ε
α1−1

∫
Ω+

T ε(uεl)(x1, x2, b)T
ε(ϕε)(x1, x2, b)dx1dx2. (2.5.28)

Substituting (2.5.28) in (2.5.27), we obtain

2∑
i,j,l=1

∫
Ω+×A

aij(x, y)
∂T ε(u+εl)

∂xj

∂T ε(ϕε)

∂xl
dxdy

+ α2ε
α1−1

∫
Ω+

T ε(uεl)(x1, x2, a)T
ε(ϕε)(x1, x2, a)dx1dx2

+ α2ε
α1−1

∫
Ω+

T ε(uεl)(x1, x2, b)T
ε(ϕε)(x1, x2, b)dx1 dx2
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−
∫
Ω+×A

T ε(p+ε )
∂T ε(ϕε)

∂xl
dxdy =

∫
Ω+×A

T ε(fl)T
ε(ϕε) dx1dx2 dy. (2.5.29)

In order to pass the limit ε → 0 in (2.5.29), we use the convergences (2.5.20), (2.5.21),

and (2.5.25) and derive

2∑
j=1

∫
Ω+×A

a1j(x, y) G
l
j ϕ

∂ψ

∂y
dx dy =


0 l = 2,∫
Ω+×A

g+ϕ
∂ψ

∂y
dx dy l = 1,

(2.5.30)

for all ϕ ∈ C∞
c (Ω+) and ψ ∈ C∞

per((0, 1)). Consequently, for almost every (x, y) ∈ Ω+×A,
we have

2∑
j=1

a1j(x, y) G
l
j =

 0 l = 2,

g+ l = 1.
(2.5.31)

Take ϕ ∈ C∞
c (Ω+) as a test function in (2.3.5) satisfied by uε. Now, we pass to limit

ε→ 0 by employing Proposition 1.4.3 (ii), (iii), (2.5.20), and (2.5.24), to get∫
A

[
G1

1 +
∂u+∗2
∂x2

]
dy = 0, for a.e. x ∈ Ω+.

Considering the y−independence of u+
∗ gives∫

A
G1

1 dy = −|A| ∂u
+
∗2

∂x2
, for a.e. x ∈ Ω+. (2.5.32)

Next, in view of (2.5.32) and the first equation of (2.5.31), we get

G2
1 = −a12(x, y)

a11(x, y)

∂u+∗2
∂x2

, for a.e. (x, y) ∈ Ω+ × A.

Using the y−independence of u+
∗ , we have∫

A
G2

1 dy = −
(∫

A

a12(x, y)

a11(x, y)
dy

)
∂u+∗2
∂x2

. (2.5.33)

Taking into account (2.5.31) for l = 1, (2.5.24), and (2.5.32), we get∫
A
g+ dy =

(∫
A
a12(x, y) dy

)
∂u+∗1
∂x2

−
(∫

A
a11(x, y) dy

)
∂u+∗2
∂x2

, a.e. in Ω+. (2.5.34)

Finally, substituting (2.5.32) and (2.5.33) in (2.5.22) gives (2.5.14). Similarly, substituting

(2.5.23) in (2.5.34) gives (2.5.16) and thus, Claim (A) is proved.

Claim (B): The state u+
∗ satisfies the variational formulation of problem (2.4.11) over

Ω+.

Proof of Claim (B): Set the test function Φ ∈ (C∞
c (Ω+))

2
in (2.3.4) and use Proposition
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1.4.3 (iii), (ii) to obtain

2∑
i,j=1

∫
Ω+×A

T ε
(
aij

(
x,
x1
ε

))
T ε

(
∂u+

ε

∂xj

)
· T ε

(
∂Φ

∂xi

)
dx dy + α2ε

α1

∫
Γ1
ε

uε ·Φ dx

−
∫
Ω+×A

T ε
(
p+ε
)
T ε

(
∂Φ1

∂x1
+
∂Φ2

∂x2

)
dx dy =

∫
Ω+×A

T ε(f) · T ε (Φ) dx dy,

which gives upon simplification

2∑
i,j=1

∫
Ω+×A

T ε
(
aij

(
x,
x1
ε

))
T ε

(
∂u+

ε

∂xj

)
· T ε

(
∂Φ

∂xi

)
dx dy

+ α2ε
α1−1

∫
Ω+

T ε(uε)(x1, x2, a)T
ε(Φ)(x1, x2, a) dx1 dx2

+ α2ε
α1−1

∫
Ω+

T ε(uε)(x1, x2, b)T
ε(Φ)(x1, x2, b) dx1 dx2

−
∫
Ω+×A

T ε
(
p+ε
)
T ε

(
∂Φ1

∂x1
+
∂Φ2

∂x2

)
dx dy =

∫
Ω+×A

T ε(f) · T ε (Φ) dx dy. (2.5.35)

In order to pas the limit ε → 0 in (2.5.35), we use Proposition 1.4.3 (vi) along with the

convergences (2.5.20), (2.5.12), and (2.5.21) to obtain

2∑
i,j=1

∫
Ω+×A

aij(x, y) Gj · ∂Φ
∂xi

dx dy + α2δα1

∫
Ω+

u+
∗ (x1, x2, a)Φ(x1, x2, a) dx1 dx2

+ α2δα1

∫
Ω+

u+
∗ (x1, x2, b)Φ(x1, x2, b) dx1 dx2 −

∫
Ω+×A

g+
(
∂Φ1

∂x1
+
∂Φ2

∂x2

)
dx dy

= |A|
∫
Ω+

f ·Φ dx, (2.5.36)

where δα1 is a function that takes value 1 for α1 = 1, and 0 otherwise. We replace (2.5.30)

for l = 2 in (2.5.36), followed by a comparison of the resulting equation with (2.5.34).

Eventually, we use the independence of the function u+
∗ with respect to the variable y to

obtain

2∑
j=1

∫
Ω+

[∫
A
a2j(x, y)G

1
j dy

]
∂Φ1

∂x2
dx+

2∑
j=1

∫
Ω+

[∫
A
a2j(x, y)G

2
j dy

]
∂Φ2

∂x2
dx

+ 2α2δα1

∫
Ω+

u+
∗ (x)Φ(x) dx−

2∑
j=1

∫
Ω+

[∫
A
a1j(x, y)G

1
j dy

]
∂Φ2

∂x2
dx

= |A|
∫
Ω+

f ·Φ dx.

Further, employing (2.5.24), (2.5.32), and (2.5.33) in the above equation, we get
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∫
Ω+

[(∫
A
a22(x, y)dy

)
∂u+∗1
∂x2

−
(∫

A
a21(x, y)dy

)
∂u+∗2
∂x2

]
∂Φ1

∂x2
dx

+

∫
Ω+

[
−
(∫

A
a12(x, y)dy

)
∂u+∗1
∂x2

+

(∫
A

(
a11 + a22 −

a12 a21
a11

)
dy

)
∂u+∗2
∂x2

]
∂Φ2

∂x2
dx

+ 2α2δα1

∫
Ω+

u+
∗ (x)Φ(x) dx = |A|

∫
Ω+

f ·Φ dx.

From the definition of A+ (see, (2.4.10)), we get for all Φ ∈ (C∞
c (Ω+))

2

∫
Ω+

A+
∂u+

∗
∂x2

:
∂Φ

∂x2
dx+ 2α2δα1

∫
Ω+

u+
∗ ·Φ dx = |A|

∫
Ω+

f ·Φ dx, (2.5.37)

and thus, Claim (B) stands true.

Step 2: Here, we will establish the homogenized problem over Ω−.

Claim (C): For all φ ∈ (H1
0 (Ω

−))2, ψ ∈
(
L2
(
Ω−;H1

per

(
(0, 1)2

)))2
, and w ∈

L2(Ω−), there exists a unique ordered triplet (u−
∗ , û

−, p̂−) ∈ (H1
0 (Ω

−))2 ×
(L2(Ω−;H1

per

(
(0, 1)2

)
))2 × L2(Ω− × (0, 1)2) which obeys the variational formulation:



∫
Ω−×(0,1)2

A(x, y)
(
∇u−

∗ +∇yû
−(x, y)

)
: (∇φ+∇yψ) dx dy

−
∫
Ω−×(0,1)2

p̂−(x, y) (div(φ) + divy(ψ)) dx dy =

∫
Ω−
f ·φ dx,

and,

∫
Ω−

div(u−
∗ )w dx = 0.

(2.5.38)

Proof of Claim (C): In order to prove (2.5.38), technique of unfolding operator for the fixed

domain is used. From the uniform bounds of {u−
ε } ∈

(
H1 (Ω−)

)2
and {p−ε } ∈ L2(Ω−),

we obtain the uniform bounds for {T ∗
ε (∇u−

ε )} ∈ (L2(Ω− × (0, 1)2))2×2 and {T ∗
ε (p

−
ε )} ∈

L2(Ω−×(0, 1)2) with the aid of Proposition 1.4.1 (i). Moreover, from Proposition 1.4.2 and

Proposition 1.4.1 (v), there exist subsequences not renamed and functions û− satisfying∫
(0,1)2 û

−dy = 0, u−
∗ , and p̂

− in spaces (L2(Ω−;H1
per(0, 1)

2))2, (H1(Ω−))2, and L2(Ω− ×
(0, 1)2), respectively, such that

u−
ε ⇀ u−

∗ weakly in (H1(Ω−))2, (2.5.39a)

T ∗
ε

(
∇u−

ε

)
⇀ ∇u−

∗ +∇yû
− weakly in (L2(Ω− × (0, 1)2))2×2, (2.5.39b)

T ∗
ε

(
p−ε
)
⇀ p̂− weakly in L2(Ω− × (0, 1)2), (2.5.39c)

p−ε ⇀

∫
(0,1)2

p̂− dy weakly in L2(Ω−). (2.5.39d)

Choose the function ϕε = φ(x) + εϕ(x)ξ(xε ), where, φ(x) ∈ (C∞
c (Ω−))2, ϕ(x) ∈ C∞

c (Ω−),

and ξ(xε ) ∈ (H1
per(0, 1)

2)2. Applying the unfolding operator for fixed domain, we have

T ∗
ε (ϕε) = T ∗

ε (φ(x)) + εT ∗
ε (ϕ(x))T

∗
ε (ξ(y)), which under the passage of limit gives:

T ∗
ε (ϕε) → φ(x) strongly in (L2(Ω+ × (0, 1)2))2, (2.5.40a)



38 Chapter 2. Homogenization of Stokes Equations in an Oscillating Domain

T ∗
ε (∇ϕε) → ∇φ(x) + ϕ∇y ξ(y) strongly in (L2(Ω+ × (0, 1)2))2×2. (2.5.40b)

Taking ϕε as a test function in the weak formulation (2.3.4), employing unfolding operator

with Proposition 1.4.1 (i), (ii) and the convergences (2.5.39), and (2.5.40), we get the

first equation of (2.5.38) under the passage of limit, which remains valid for every φ ∈
(H1

γ′
l
(Ω−))2 and ϕ ξ = ψ ∈ (L2(Ω−;H1

per(0, 1)
2))2, by density. Further, for all w ∈ L2(Ω−),

we have

∫
Ω−

div(u−
ε )w dx = 0. Now, upon applying unfolding on it and using Proposition

1.4.1 (i), (ii) along with convergence (2.5.39b), we get under the passage of limit ε → 0,∫
Ω−×(0,1)2

(
div(u−

∗ ) + divy (û
−)
)
w dxdy = 0, which eventually gives upon using the fact

that û− is (0, 1)2− periodic, for all w ∈ L2(Ω−), the second equation of (2.5.38). Thus,

the proof of Claim (C) is settled.

Now, we are going to identify the limit functions û− and p̂−.

Identification of û−, p̂−: Taking successively φ ≡ 0 and ψ ≡ 0 in (2.5.38), yields

−divy
(
A(x, y)∇yû

−(x, y)
)
+∇yp̂

−(x, y) = divy(A(x, y))∇u−
∗ (x) in Ω− × (0, 1)2,

−divx

(∫
(0,1)2

A(x, y)
(
∇u−

∗ (x) +∇yû
−(x, y)

)
dy

)
+∇

(∫
(0,1)2

p̂−dy

)
= f in Ω−,

div(u−
∗ ) = 0 in Ω−,

û−(x, ·) is (0, 1)2 − periodic.

(2.5.41)

In the first line of (2.5.41), we have the y-independence of ∇u−
∗ (x) and the linearity of

operators, viz., divergence and gradient, which suggests û−(x, y) and p̂−(x, y) to be of the

following form (see, for e.g., [63, Page 15]):
û−(x, y) = −

2∑
j,β=1

χβ
j (y)

∂u−∗j
∂xβ

+ u1(x),

p̂−(x, y) =
2∑

j,β=1

Πβ
j (y)

∂u−∗j
∂xβ

+ p−∗ (x).

(2.5.42)

where the ordered pair (u1, p
−
∗ ) ∈ (H1(Ω−))2 × L2(Ω−), and for 1 ≤ j, β ≤ 2, the pair

(χβ
j ,Π

β
j ) satisfy the cell problem (2.4.9).

Identification of

∫
(0,1)2

p̂− dy: Choosing the test function y = (y1, y2) in the weak

formulation of (2.4.9), we get

2∑
i,k,l,α=1

∫
(0,1)2

alk
∂

∂yk

(
P β
j − χβ

j

)
· ∂P

α
i

∂yl

∂yi
∂yα

dy = 2

∫
(0,1)2

Πβ
j dy. (2.5.43)

In view of (2.5.39d), (2.5.42), and (2.5.43), we observe that

∫
(0,1)2

p̂− dy =
1

2

2∑
i,j,k,l,α,β=1

∫
(0,1)2

alk
∂

∂yk

(
P β
j − χβ

j

)
· ∂P

α
i

∂yl

∂yi
∂yα

∂u−∗j
∂xβ

dy + p−∗ ,
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which upon using the definition of aαβij , gives

∫
(0,1)2

p̂− dy =
1

2

2∑
i,j,α,β=1

aαβij
∂u−∗j
∂xβ

∂yi
∂yα

+ p−∗ . (2.5.44)

Equation (2.5.44) can also be written as∫
(0,1)2

p̂− dy =
1

2
A0∇u−

∗ : I + p−∗ . (2.5.45)

Finally, we identify the weak convergence of p−ε from the substitution of (2.5.45) in

(2.5.39d), given as

p−ε ⇀
1

2
A0∇u−

∗ : I + p−∗ weakly in L2(Ω−), (2.5.46a)

Claim (D): The pair (u−
∗ , p

−
∗ ) satisfies the variational formulation of problem (2.4.11)

over Ω−.

Proof of Claim (D): Putting the values of û−(x, y) and p̂−(x, y) from expression (2.5.42)

with ψ ≡ 0 into equation (2.5.38), we get

∫
Ω−×(0,1)2

A(x, y)

∇u−
∗ −

2∑
j,β=1

∇yχ
β
j (y)

∂u−∗j
∂xβ

 : ∇φ dx dy

−
2∑

j,β=1

∫
Ω−×(0,1)2

Πβ
j (y)

∂u−∗j
∂xβ

div(φ)dx dy −
∫
Ω−

p−∗ (x) div(φ)dx =

∫
Ω−
f ·φ dx.

(2.5.47)

Set P β
j = yjeβ. Then the terms ∇u−

∗ ,∇φ, and div(φ) have the following expression

∇u−
∗ =

2∑
j,β=1

∇yP
β
j

∂u−∗j
∂xβ

, ∇φ =

2∑
i,α=1

∇yP
α
i

∂φi

∂xα
, div(φ) =

2∑
i,α=1

divy(P
α
i )

∂φi

∂xα
.

Substituting these expressions in (2.5.47), we obtain

2∑
i,j,α,β=1

∫
Ω−

(∫
(0,1)2

A(x, y)∇y(P
β
j − χβ

j ) : ∇yP
α
i dy

)
∂u−∗j
∂xβ

∂φi

∂xα
dx

−
2∑

i,j,α,β=1

∫
Ω−

(∫
(0,1)2

Πβ
j divy(P

α
i )dy

)
∂u−∗j
∂xβ

∂φi

∂xα
dx−

∫
Ω−

p−∗ div(φ)dx =

∫
Ω−
f ·φdx.

(2.5.48)

Now, choosing the test function χα
i in the weak formulation of (2.4.9), we get the following
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upon using the fact that divy(χ
α
i ) = δiα, where δ denotes the Kronecker delta function:∫

(0,1)2
A(x, y)∇y

(
P β
j − χβ

j

)
: ∇yχ

α
i dy =

∫
(0,1)2

Πβ
j δiα dy, (2.5.49)

Further, substituting (2.5.49) in (2.5.48) upon using the fact that divy(P
α
i ) = δiα, we

obtain

2∑
i,j,α,β=1

∫
Ω−

(∫
(0,1)2

A(x, y)∇y(P
β
j − χβ

j ) : ∇y(P
α
i − χα

i ) dy

)
∂u−∗j
∂xβ

∂φi

∂xα
dx

−
∫
Ω−

p−∗ div(φ) dx =

∫
Ω−
f ·φ dx. (2.5.50)

We re-write equation (2.5.50) for all φ ∈ (H1
0 (Ω

−))2 that is expressed by

2∑
i,j,α,β=1

∫
Ω−

dαβij
∂u−∗j
∂xβ

∂φi

∂xα
dx−

∫
Ω−

p−∗ div(φ) dx =

∫
Ω−
f ·φ dx. (2.5.51)

Also, for all w ∈ L2(Ω−), the equation (2.5.38) yields
∫
Ω− div(u−

∗ )w dx = 0. This together

with equation (2.5.51) imply that the pair (u−
∗ , p

−
∗ ) in space (H1

0 (Ω
−))2 × L2(Ω−) satisfy

the variational formulation of the problem (2.4.11) over Ω−. This establishes Claim (D).

Step 3: Considering the test function Ψ ∈
(
C∞
γ′
l
(Ω)
)2

in equation (2.3.4), we get

∫
Ω+

ε

Aε∇u+
ε : ∇Ψ dx+ α2ε

α1

∫
Γ1
ε

uε ·Ψ dx+

∫
Ω−

Aε∇u−
ε : ∇Ψ dx−

∫
Ω+

ε

q+ε div(Ψ) dx

−
∫
Ω−

p−ε div(Ψ) dx =

∫
Ω+

ε

f ·Ψ dx+

∫
Ω−
f ·Ψ dx. (2.5.52)

Taking into account the previous steps, we obtain

lim
ε→0

[∫
Ω+

ε

Aε∇u+
ε : ∇Ψ dx+ α2ε

α1

∫
Γ1
ε

uε ·Ψ dx−
∫
Ω+

ε

p+ε div(Ψ) dx−
∫
Ω+

ε

f ·Ψ dx

]

=

∫
Ω+

A+
∂u+

∗
∂x2

:
∂Ψ

∂x2
dx+ 2α2δα1

∫
Ω+

u+
∗ ·Ψ dx− |A|

∫
Ω+

f ·Ψ dx, (2.5.53)

lim
ε→0

[∫
Ω−

Aε∇u−
ε : ∇Ψdx−

∫
Ω−

p−ε div(Ψ)dx−
∫
Ω−
f ·Ψdx

]

=
2∑

i,j,α,β=1

∫
Ω−

dαβij
∂u−∗j
∂xβ

∂Ψi

∂xα
dx−

∫
Ω−

p−∗ div(Ψ)dx−
∫
Ω−
f ·Ψ dx. (2.5.54)

Thus, using (2.5.53) and (2.5.54) in (2.5.52), we get by density for all Ψ ∈
(
Uγ′

l
(Ω)
)2

∫
Ω+

A+
∂u+

∗
∂x2

:
∂Ψ

∂x2
dx+ 2α2δα1

∫
Ω+

u+
∗ ·Ψ dx+

2∑
i,j,α,β=1

∫
Ω−

dαβij
∂u−∗j
∂xβ

∂Ψi

∂xα
dx
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−
∫
Ω−

p−∗ div(Ψ)dx = |A|
∫
Ω+

f ·Ψ dx+

∫
Ω−
f ·Ψ dx.

Further, we define u∗ = u
+
∗ χΩ++u−

∗ χΩ− , which belongs to
(
Uσ,γ′

l
(Ω)
)2

(see, [57, Theorem

4.2]). Thus, we conclude that the pair (u∗, p
−
∗ ) uniquely solves the variational formulation

of problem (2.4.11). Taking into account uniqueness of solution, we establish that the

subsequent pairs are equal:

(u, p) = (u∗, p
−
∗ ).

The proof of Theorem 2.5.1 is complete.

In the following theorem, we state a corrector type result for the particular case when Aε

is an identity matrix and the parameter λ = 0 in (2.1.1). A result that has been proved

in [57].

Theorem 2.5.2 (Theorem 5.1, [57]). Let f ∈ L2(Ω) and Aε be the identity matrix. If

the corresponding pairs (uε, pε) and (u, p−), respectively, solves the problems (2.1.1) and

(2.4.11), then

ũ+
ε − χΩ+

ε
u+ → 0 strongly in L2

(
0, 1;

(
H1(h1, h2)

)2)
,

∂̃u+
ε

∂x1
+ χΩ+

ε

∂u+2
∂x2

e1 → 0 strongly in
(
L2
(
Ω+
))2

,

∂̃u+
ε

∂x2
− χΩ+

ε

∂u+

∂x2
→ 0 strongly in

(
L2
(
Ω+
))2

,

u−
ε − u− → 0 strongly in

(
H1(Ω−)

)2
.

In addition, if

∫
Ω−

(pε − p−)dx = 0 for every ε > 0, then p−ε −p− → 0 strongly in L2(Ω−).

2.6 Conclusion

In this chapter, we address the homogenization of the generalized stationary Stokes

equations (2.1.1) in a two-dimensional oscillating domain Ωε, utilizing the remarkable

method of unfolding outlined in Chapter 1. Our emphasis lies on subjecting the

vertical boundary of γε to the Robin boundary condition, involving real parameters

α1 ≥ 1 andα2 ≥ 0 while imposing the Neumann boundary condition on its horizontal

boundary. Until now, this scenario has not been explored in the literature.

Our approach begins with the standard derivation of a priori estimates uniform with

respect to ε for the sequence of velocity and pressure functions in their respective Sobolev

spaces. Subsequently, by employing the unfolding method, we conduct a thorough limiting

analysis for the considered problem (2.1.1). The presence of the Robin boundary condition

leads us to observe, in the convergence analysis, the emergence of the δα1 function in the

limit problem (2.4.11) in the fixed domain Ω. Also, the presence of oscillating matrix

Aε poses additional difficulties in the analysis, particularly in the bottom fixed part Ω−,
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which we tackle using suitable corrector functions satisfying the cell problem (2.4.9) in

the unit square reference cell. Thus, in the homogenized problem, we obtain non-trivial

contributions in the upper fixed part Ω+ governed by a generalized elliptic system and

the generalized stationary Stokes equations in the bottom fixed part Ω−. Additionally, we

observe a corrector-type result under the particular case of stationary Stokes equations

with Neumann boundary conditions throughout the highly oscillating boundaries.



Chapter 3

Interior Control on the Upper

Oscillating Region

This chapter† introduces an interior optimal control problem (OCP) in a two-dimensional

domain Ωε with a highly oscillatory boundary governed by the stationary Stokes equations.

We consider the periodic controls in the oscillating region of the domain and use the

unfolding operator to characterize the optimal controls. Further, we establish the

convergences of optimal control, state, and pressure in a suitable space to the ones of

the limit system in a fixed domain.

3.1 Introduction

In this chapter, we consider the asymptotic analysis (homogenization) of an interior

optimal control problem associated with the Stokes system in a two-dimensional domain

Ωε (see, Section 1.4.1, for the domain description) with highly oscillating boundary. Unlike

the classical Stokes equations, we consider a modified Laplacian operator, i.e., an elliptic

linear differential operator of order two in divergence form, with coefficients dependent on

the space coordinates. This type of modified Stokes operator was first studied in detail

by the authors in [5] under the periodicity hypothesis on the coefficients. We apply the

periodic controls in the oscillating part of the domain, i.e., Ω+
ε (see, Figure 1.1). The

objective of this chapter is to obtain the characterization of the optimal control and the

asymptotic analysis of the optimal solution (viz., optimal control, corresponding optimal

state, and pressure) and the associated adjoint state and pressure. We employ the method

of unfolding operator to achieve the characterization mentioned above and obtain the

homogenized system and the results on the convergence analysis.

The asymptotic analysis of the partial differential equations on domains with highly

oscillating boundaries with fixed amplitude has been widely analyzed. Using the extension

operators technique, in [17, 18], the authors studied the asymptotic analysis of the solution

to the Laplace equation subject to the homogeneous Neumann boundary condition on the

oscillating boundary. While, the same problem was further analyzed, by the authors in

[19], under non-homogeneous Neumann boundary condition of the form γ0ε
γ for γ, γ0

belonging to R and [0,∞), respectively. The authors in [26] studied homogenization of

†The content of this chapter is published in: “S. Garg and B. C. Sardar. Asymptotic analysis of
an interior optimal control problem governed by Stokes equations. Math Meth Appl Sci., 46(1):745-764,
2023.”
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the brush problem with L1 source term subject to the Neumann boundary condition.

Owing to the L1 source term, the authors used the concept of renormalized solutions to

establish the existence and uniqueness of the renormalized solutions and their stability.

In [33], the authors consider a two-level thick junction of the type 3 : 2 : 2, and

study the homogenization of solutions to a quasilinear parabolic PDE subject to various

boundary conditions, viz., alternating, inhomogeneous, and Fourier conditions. Here, the

authors used the special integral identities in the case of inhomogeneous Fourier boundary

conditions. The limits of linear and nonlinear terms were respectively obtained using

special test functions and the Browder-Minty method. For further reading on the problems

over rapidly oscillating boundaries, we refer the reader to [20, 22, 38–40].

Regarding the literature on the homogenization of OCP in a rough domain, the authors

in [44] studied the asymptotic analysis of an interior OCP governed by Laplace equations

posed in a domain with highly oscillating boundary. The authors applied the control away

from the oscillating part of the domain. They considered two types of cost functionals viz.,

L2−norm on the state variable, and the other one is the H1−norm on the state variable.

Using the unfolding operator technique, the authors in [45] considered an interior OCP

in an oscillating domain, the control being acting on the oscillating part of the domain,

and obtained the characterization of the optimal control in terms of the adjoint state.

Then, they finally established the homogenized OCP. In [46], the asymptotic analysis of

an OCP with the parabolic problem over a branched domain is studied using the unfolding

operator. In [47], the asymptotic analysis of an OCP with the semi-linear problem over

the general oscillating boundary domain is studied using the unfolding operator technique.

In [48], the homogenization of an OCP with an elliptic problem over the circular domain is

studied using the unfolding operator suitably developed for the considered domain. In [49],

the authors homogenized the boundary OCP with a highly oscillating boundary, wherein

the controls act via both the Dirichlet and the Neumann boundary conditions over the

smooth part of the boundary and employ the periodic unfolding operator technique to

obtain the limit OCP.

With general cost functional, the authors in [50] considered an OCP governed by parabolic

equations posed on an oscillating domain. Here the authors proved the existence of the

optimal control and characterized it in terms of the adjoint state. Further, employing the

oscillating test function technique, the authors obtained the limit OCP. The authors in

[51] studied the asymptotic analysis of an interior OCP governed by the Laplace equation

upon employing the oscillating test function technique. Whereas, in [52], the authors

studied the asymptotic analysis of boundary OCP governed by the Laplace equation upon

employing the Buttazzo-Dal Maso abstract scheme. For further readings in this direction,

we refer the reader to [33, 53, 54].

There are very few works concerning the homogenization of the Stokes system in rough

domains. In [55], the authors first investigated the homogenization of the Stokes system

in a pillar-type domain and using boundary layer correctors, established a first-order

asymptotic approximation of the flow. Regarding the OCP, in [56], the authors have
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examined an interior OCP in a three-dimensional pillar-type rough domain with a standard

quadratic cost functional with the state solving the stationary Stokes system. The Stokes

system has a Dirichlet zero boundary condition on the oscillating boundary in both of

these papers, which results in trivial contributions on the upper part of the homogenized

system. The homogenization of the stationary Stokes system subject to the Neumann

boundary condition on the oscillating boundary has been recently studied by the authors

in [57]. Very recently, in [58], the authors studied the asymptotic analysis of a boundary

OCP governed by Stokes equations, where the controls were applied through Neumann

boundary condition. Due to the Neumann boundary condition, a non-trivial contribution

on the upper part in homogenized systems has been observed in both the preceding studies.

In the present chapter, we apply the periodic interior controls in the oscillating part of

the domain subject to the Neumann boundary condition on the oscillating part. As a

consequence of the Neumann condition, we observe non-trivial contributions on the upper

part in the homogenized OCP.

This chapter is organized as follows: In Section 3.2, we pose on the oscillating domain Ωε

(see, Figure 1.1), the steady-state Stokes system with homogeneous Neumann boundary

condition on the oscillating part of the boundary. To homogenize, we employ the technique

of the unfolding operator already detailed in Section 1.4.2. The optimality system governed

by the steady Stokes equations is introduced in Section 3.3. After that, we obtain the

uniform estimates for the solutions independent of the oscillating parameter ε. Section

3.4 presents the limit OCP in a fixed domain Ω (see, Figure 1.2) under the asymptotic

analysis of an OCP in Ωε governed by the Stokes equations and the convergence analysis

is given in Section 3.5.

3.2 Problem Illustration

We consider an OCP associated with the stationary Stokes equation over the oscillating

domain Ωε. Here, our objective is to minimize the L2−cost functional with periodic

controls in the oscillating part of the domain. More precisely, we consider

inf
θ∈(L2(Λ+))2

{
Jε(θ) =

1

2

∫
Ωε

|uε(θ)− ud|2 +
τ

2

∫
Ω+

ε

|θε|2
}

(Pε)

subject to 

−
2∑

i,j=1

∂

∂xi

(
aij(x)

∂uε

∂xj

)
+∇pε = θεχΩ+

ε
in Ωε,

div(uε) = 0 in Ωε,

2∑
i,j=1

aij(x)
∂uε

∂xj
µεi − pεµε = 0 on γε,

uε = 0 on γl,

(3.2.1)
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where ud = (ud1 , ud2) is the desired state in (L2(Ω))2 and τ > 0 is a given regularization

parameter. The control θε defined on the space
(
L2(Ω+

ε )
)2

is of the form θε(x1, x2) =

θ(x1
ε , x2), where the control function θ is defined on the space

(
L2(Λ+)

)2
. Also, χΩ+

ε

denotes the characteristic function of Ω+
ε .

Here, we assume the matrix (aij(x))1≤i,j≤2 satisfy the uniform ellipticity condition, with

entries aij(x) ∈ L∞(Ω) for 1 ≤ i, j ≤ 2. By uniform ellipticity condition, we mean that

there exist real constants m, M > 0 such that m||ξ||2 ≤
2∑

i,j=1
aij(x)ξiξj ≤ M ||ξ||2 for all

ξ ∈ R2, which is equipped with a standard Euclidean norm denoted by || · ||. Also, µε

denotes the outward normal unit vector on γε.

Further, we consider the space
(
H1

γl
(Ωε)

)2
:= {v ∈

(
H1(Ωε)

)2
: v|γl = 0}.

Definition 3.2.1. We say a pair (uε, pε) ∈
(
H1

γl
(Ωε)

)2 × L2(Ωε) is a weak solution to

(3.2.1) if, for all v ∈
(
H1

γl
(Ωε)

)2
,

2∑
i,j=1

∫
Ωε

aij(x)
∂uε

∂xj
· ∂v
∂xi

dx−
∫
Ωε

pε div(v) dx =

∫
Ω+

ε

θε · v dx (3.2.2)

and for all w ∈ L2(Ωε), ∫
Ωε

div(uε) w dx = 0. (3.2.3)

The existence and uniqueness of a weak solution (uε(θ
ε), pε) ∈

(
H1

γl
(Ωε)

)2×L2(Ωε) of the

system (3.2.1) follow along the lines of [62, Theorem IV.7.1], which we adapt in Remark

3.2.2. Also, there exists a unique solution to problem (Pε) (cf. [45, Theorem 2.1]).

Remark 3.2.2. To prove the existence and uniqueness of a weak solution to (3.2.1),

we follow [62, Theorem IV.7.1] to first prove the existence and uniqueness of the velocity

function uε by using Lax-Milgram Theorem (see, [62, Theorem II.2.5]) and then recover

the pressure term pε by using de Rham’s Theorem (see, [62, Theorem IV.2.4]). Therefore,

if we choose v ∈
(
H1

γl
(Ωε)

)2
such that div v = 0, then (3.2.2) and (3.2.3) converts into

the following form: Finding uε ∈
(
H1

γl
(Ωε)

)2
satisfying divuε = 0 such that

2∑
i,j=1

∫
Ωε

aij(x)
∂uε

∂xj
· ∂v
∂xi

dx =

∫
Ω+

ε

θε · v dx, (3.2.4)

for all v ∈
(
H1

γl
(Ωε)

)2
with div v = 0.

For simplification, we denote by (Wγl(Ωε))
2 the space of functions v ∈ (H1

γl
(Ωε))

2 such that

div v = 0. Now, for each ε > 0, the bilinear form A(uε,v) =

2∑
i,j=1

∫
Ωε

aij(x)
∂uε

∂xj
· ∂v
∂xi

dx

is symmetric, continuous, and uniformly elliptic on (Wγl(Ωε))
2 × (Wγl(Ωε))

2 using the

symmetric, continuity, and uniform ellpiticity properties of the matrix (aij)1≤i,j≤2 along

with the Poincaré inequality (2.2.2). Hence, by the Lax-Milgram theorem, there exists a

unique solution uε ∈ (Wγl(Ωε))
2 to (3.2.4).

Further, if we restrict ourselves to v ∈ (C∞
c (Ωε))

2 with div v = 0 in (3.2.4), then by de
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Rham’s theorem, there exists a unique pressure pε ∈ L2(Ωε)/R such that we have the first

equation of system (3.2.1). Indeed, it is easy to check that pε is unique in L2(Ωε). Hence,

the system (3.2.1) possesses a unique weak solution (uε(θ
ε), pε) ∈ (H1

γl
(Ωε))

2 × L2(Ωε).

Notations: For convenience, we will use the following notations throughout this chapter:

aij = aij(x) for 1 ≤ i, j ≤ 2, and (aij)1≤i,j≤2 = (aij(x))1≤i,j≤2.

3.3 Optimality System and A Priori Estimates

3.3.1 Optimality System

In this section, we formulate the characterization of the optimal control to the problem

(Pε) with the aid of the unfolding operator.

For each ε > 0, let θε ∈ (L2(Λ+))2 be a unique minimizer of the problem (Pε) and

(uε, pε) ∈
(
H1

γl
(Ωε)

)2 × L2(Ωε) be the corresponding solution to (3.2.1), where θε is the

optimal control, uε is the optimal state, and pε is the associated pressure. We call the

triplet (uε, pε,θε), the optimal solution to (Pε). Consider the adjoint system corresponding

to (3.2.1): Find (vε, qε) ∈
(
H1

γl
(Ωε)

)2 × L2(Ωε) which satisfies the following system

−
2∑

i,j=1

∂

∂xi

(
aji(x)

∂vε
∂xj

)
+∇qε = uε − ud in Ωε,

div(vε) = 0 in Ωε,

2∑
i,j=1

aji(x)
∂vε
∂xj

µεi − qεµε = 0 on γε,

vε = 0 on γl,

(3.3.5)

where vε and qε are the adjoint state and adjoint pressure, respectively. There exists a

unique weak solution (vε, qε) ∈ (H1
γl
(Ωε))

2 × L2(Ωε) to the adjoint system (3.3.5). For

details on the proof, one can use the standard arguments (see, [62, Theorem IV.7.1]). We

now present the characterization of the optimal control θε with the aid of the unfolding

operator and adjoint state vε in the following theorem.

Theorem 3.3.1. Let
(
uε, pε,θε

)
be the optimal solution of the problem (Pε) and vε

satisfies (3.3.5), then the optimal control θε ∈ (L2(Λ+))2 is given by

θε(y1, y2) = −1

τ

∫ 1

0
T ε(vε)(x1, y2, y1) dx1, (3.3.6)

where the unfolding operator T ε is defined in Section 1.4.2. Conversely, assume that a

triplet (ûε, p̂ε, θ̂ε) ∈
(
H1

γl
(Ωε)

)2 × L2(Ωε)×
(
L2(Λ+)

)2
and a pair (v̂ε, q̂ε) ∈

(
H1

γl
(Ωε)

)2 ×
L2(Ωε) satisfy the following system
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

−
2∑

i,j=1

∂

∂xi

(
aij(x)

∂ûε

∂xj

)
+∇p̂ε = θ̂εε χΩ+

ε
in Ωε,

−
2∑

i,j=1

∂

∂xi

(
aji(x)

∂v̂ε
∂xj

)
+∇q̂ε = ûε − ud in Ωε,

div(ûε) = 0, div(v̂ε) = 0 in Ωε,

2∑
i,j=1

aij(x)
∂ûε

∂xj
µεi − p̂εµε = 0 on γε,

2∑
i,j=1

aji(x)
∂v̂ε
∂xj

µεi − q̂εµε = 0 on γε,

v̂ε = 0, ûε = 0 on γl,

(3.3.7)

where θ̂εε(x1, x2) = θ̂ε(
x1
ε , x2) for (x1, x2) ∈ Ω+

ε and

θ̂ε(y1, y2) = −1

τ

∫ 1

0
T ε(v̂ε)(x1, y2, y1) dx1. (3.3.8)

Then, the triplet (ûε, p̂ε, θ̂ε) is the optimal solution to (Pε).

Note: In the expression θ̂εε(x1, x2), the upper script ε is used to indicate the periodic

scaling with respect to the first variable x1 i.e., θ̂εε(x1, x2) = θ̂ε(
x1
ε , x2), and the lower

script ε is used to indicate the optimal control at ε stage. We will adapt the above

convention throughout this chapter wherever applicable.

Proof. Aiming at completeness, we present a short proof arguing along the lines of [45,

Theorem 4.1]. Since θε is an optimal control, it implies that

Jε(θε + λθ)− Jε(θε)

λ
≥ 0 ∀ λ > 0 and θ ∈ (L2(Λ+))2. (3.3.9)

Simplifying (3.3.9) and then passing to the limit when λ −→ 0, we get

0 ≤ lim
λ→0

Jε(θε + λθ)− Jε(θε)

λ
=

∫
Ωε

(uε − ud) · (wθε
, ε) dx+ τ

∫
Ω+

ε

θ
ε
ε · θε dx, (3.3.10)

where θ
ε
ε(x1, x2) = θε(

x1
ε , x2), uε(θ

ε
ε + λθε) − uε(θ

ε
ε) = λwθε

, ε, pε(θ
ε
ε + λθε) − pε(θ

ε
ε) =

λpθε
, ε, and the pair (wθε

, ε, pθε
, ε) ∈ (H1

γl
(Ωε))

2 × L2(Ωε) solves

−
2∑

i,j=1

∂

∂xi

(
aij(x)

∂wθε
, ε

∂xj

)
+∇pθε

, ε = θεχΩ+
ε

in Ωε,

div(wθε
, ε) = 0 in Ωε,

2∑
i,j=1

aij(x)
∂wθε

, ε

∂xj
µεi − pθε

, εµε = 0 on γε,

wθε
, ε = 0 on γl.

(3.3.11)
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Since
(
uε, pε,θε

)
is an optimal solution, we have from (3.3.10), for all θ ∈ (L2(Λ+))2∫

Ωε

(uε − ud) · (wθε
, ε) dx+ τ

∫
Ω+

ε

θ
ε
ε · θε dx = 0. (3.3.12)

Using test functions wθε
, ε and vε respectively in (3.3.5) and (3.3.11), we obtain

∫
Ωε

(uε − ud) · (wθε
, ε) dx =

2∑
i,j=1

∫
Ωε

aji(x)
∂vε
∂xj

·
∂wθε

, ε

∂xi
dx =

∫
Ω+

ε

θε · vε dx. (3.3.13)

From (3.3.12) and (3.3.13), we obtain further, for all θ ∈ (L2(Λ+))2∫
Ω+

ε

θε · vε dx+ τ

∫
Ω+

ε

θ
ε
ε · θε dx = 0. (3.3.14)

Using Proposition 1.4.3 (ii), (iii) in (3.3.14), we get∫
Ω+

ε

θε · vε dx =

∫
Ω+×A

T ε(θε) · T ε(vε) dxdy

=

∫
Ω+×A

θ(y1, y2) · T ε(vε)(x1, y2, y1) dx1 dy1 dy2

=

∫
Λ+

(∫ 1

0
T ε(vε)(x1, y2, y1) dx1

)
· θ(y1, y2) dy1 dy2

(3.3.15)

and ∫
Ω+

ε

θ
ε
ε · θε dx =

∫
Ω+×A

T ε(θ
ε
ε) · T ε(θε) dxdy

=

∫
Ω+×A

θε(y1, y2) · θ(y1, y2) dx1 dy1 dy2

=

∫
Λ+

θε(y1, y2) · θ(y1, y2) dy1 dy2.

(3.3.16)

Hence, using (3.3.15) and (3.3.16) in (3.3.14), we finally obtain (3.3.6). This settles the

proof of the first part.

Conversely, suppose that (ûε, v̂ε) ∈
(
H1

γl
(Ωε)

)2 × (H1
γl
(Ωε)

)2
and θ̂ε ∈

(
L2(Ω+

ε )
)2

obey

(3.3.7) and (3.3.8), respectively and observe

Jε(θ̂ε + θ)− Jε(θ̂ε) =
1

2

∫
Ωε

(uε,1 − ûε)
2 dx+

∫
Ωε

(uε,1 − ûε) · (ûε − ud) dx

+ τ

∫
Ω+

ε

θ̂εε · θε dx+
τ

2

∫
Ω+

ε

θε2 dx,

(3.3.17)

where uε,1 = uε(θ̂
ε
ε + θ

ε). Using (uε,1 − ûε) as a test function in the second equation of

the system (3.3.7), we notice that

∫
Ωε

(uε,1 − ûε) · (ûε − ud) dx =
2∑

i,j=1

∫
Ωε

aji(x)
∂v̂ε
∂xj

· ∂(uε,1 − ûε)

∂xi
dx.

Again, using v̂ε as a test function in the first equation of system (3.3.7) satisfied by
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(uε,1−ûε), we find that the right-hand side of the above equation is equal to

∫
Ω+

ε

v̂ε ·θε dx.

Further, simplifying the above equation by using the properties of the unfolding operator

along with equation (3.3.8), we have∫
Ωε

(uε,1 − ûε) · (ûε − ud) dx =

∫
Ω+

ε

v̂ε · θε dx

=

∫
Ω+×A

T ε(v̂ε) · T ε(θε) dxdy

=

∫
Λ+

(∫ 1

0
T ε(v̂ε)(x1, y2, y1) dx1

)
· θ(y1, y2)dy1 dy2

= −τ
∫
Λ+

θ̂ε(y1, y2) · θ(y1, y2) dy1 dy2

= −τ
∫
Ω+

ε

θ̂εε · θε dx.

Hence, using the above expression in (3.3.17), we finally obtain, for all θ ∈ (L2(Λ+))2

Jε(θ̂ε + θ)− Jε(θ̂ε) ≥ 0.

Thus, (ûε, p̂ε, θ̂ε) is the optimal solution to (Pε).

3.3.2 A Priori Estimates

Let us use the Poincaré inequality (2.2.2) and the Bogovski operator theorem (2.2.3) to

derive the uniform bounds (independent of ε) for the optimal solution to the problem (Pε)

and their corresponding adjoint counterparts (viz., adjoint state and pressure).

Theorem 3.3.2. For given ε > 0, let θε ∈
(
L2(Λ+)

)2
be an optimal control to the

problem (Pε), then the sequences {θε}, {uε}, and {pε}, respectively, in spaces
(
L2(Λ+)

)2
,

(H1
γl
(Ωε))

2, and L2(Ωε) are bounded uniformly with respect to ε. Furthermore, the

corresponding sequences {vε} and {qε}, respectively, in spaces (H1
γl
(Ωε))

2 and L2(Ωε) are

also bounded uniformly with respect to ε.

Proof. Let us denote by uε(0), the solution to (3.2.1) corresponding to θ = 0. Using the

fact that (uε,θε) is an optimal solution to (Pε), we have

∥uε(θ)− ud∥2(L2(Ωε))2
+ τ∥θεε∥2(L2(Ω+

ε ))2
≤ ∥uε(0)− ud∥2(L2(Ωε))2

,

which implies that

∥θεε∥(L2(Ω+
ε ))2 = ∥θε∥(L2(Λ+))2 ≤ 1√

τ

(
∥uε(0)∥(L2(Ωε))2 + ∥ud∥(L2(Ωε))2

)
. (3.3.18)

We wish to compute the estimate ∥uε(0)∥(L2(Ωε))2 , so as to prove the uniform bound for

the optimal control θε ∈ (L2(Λ+))2. For that substitute w = pε in (3.2.3) and v = uε

in (3.2.2). Employing the uniform ellipticity property of the matrix (aij)1≤i,j≤2 and the
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Poincaré inequality (2.2.2), we get

m
2∑

i=1

∥∥∥∂uε

∂xi

∥∥∥2
(L2(Ωε))

2
≤

2∑
i,j=1

∫
Ωε

aij
∂uε

∂xj
· ∂uε

∂xi
dx ≤ K ∥θε∥(L2(Λ+))2∥∇uε∥(L2(Ωε))

2×2 ,

where m > 0, is an ellipticity constant for matrix (aij)1≤i,j≤2 and the expression on the

left hand-side of the above equation is equal tom∥∇uε∥2(L2(Ωε))
2×2 . Therefore, upon further

simplification, we get

∥∇uε∥(L2(Ωε))
2×2 ≤ K ∥θε∥(L2(Λ+))2 . (3.3.19)

From (3.3.19), for θ = 0, we have ∥∇uε(0)∥(L2(Ωε))
2×2 ≤ 0. Using this estimate and (2.2.2)

in (3.3.18), we establish the uniform boundedness of ∥θε∥(L2(Λ+))2 with respect to ε. Also,

for θε = θε in (3.3.19), we have

∥∇uε∥(L2(Ωε))2×2 ≤ K ∥θε∥(L2(Λ+))2 . (3.3.20)

Thus, using the uniform bound of ∥θε∥(L2(Λ+))2 and (2.2.2) in (3.3.20), we establish the

uniform boundedness of ∥uε∥(H1(Ωε))2 with respect to ε.

Now, we give the proof of uniform bound for the associated pressure term, i.e., ∥pε∥L2(Ωε).

From the Bogovski operator theorem (2.2.3), there exists gε ∈
(
H1

γl
(Ωε)

)2
such that

div(gε) = pε. Corresponding to θε, we get upon substituting v = gε in (3.2.2)

∥pε∥2L2(Ωε)
=

2∑
i,j=1

∫
Ωε

aij(x)
∂uε

∂xj
· ∂gε
∂xi

dx−
∫
Ω+

ε

θ
ε
ε · gε dx. (3.3.21)

Using the uniform ellipticity property of the matrix (aij)1≤i,j≤2 and (2.2.2), we get from

(3.3.21)

∥pε∥2L2(Ωε)
≤M

2∑
i,j=1

∥∥∥∂uε

∂xj

∥∥∥
(L2(Ωε))2

∥∥∥∂gε
∂xi

∥∥∥
(L2(Ωε))2

+ ∥θε∥(L2(Λ+))2∥∇gε∥(L2(Ωε))
2×2

≤ K
(
∥∇uε∥(L2(Ωε))

2×2 + ∥θε∥(L2(Λ+))2

)
∥∇gε∥(L2(Ωε))

2×2 .

This implies that ∥pε∥L2(Ωε) ≤ K on using the uniform estimates ∥∇uε∥(L2(Ωε))
2×2 ,

∥θε∥(L2(Λ+))2 , and the one given in (2.2.3). Thus, we have established the uniform

boundedness of the associated pressure term. In a similar way, we can obtain the

uniform boundedness of the corresponding sequences {vε} and {qε}, respectively, in spaces

(H1
γl
(Ωε))

2 and L2(Ωε).

3.4 Homogenized System

This section is concerned with the homogenization of the optimality system. Taking into

account the function spaces introduced in Section 2.2, let us introduce the limit OCP given
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by

inf
θ∈(L2(h1,h2))2

{
J(θ) =

1

2

∫
Ω
(|A|χΩ+ + χΩ−) |u− ud|2 dx+

|A|τ
2

∫ h2

h1

θ2 dx2

}
(P )

subject to

− ∂

∂x2

(
B
∂u+

∂x2

)
= θ in Ω+,

B
∂u+

∂x2
= 0 in Γu,

−
2∑

i,j=1

∂

∂xi

(
aij

∂u−

∂xj

)
+∇p− = 0 in Ω−,

div (u−) = 0 in Ω−,

u− = 0 on γ′l,

u+ = u− on Γ,

|A|
[
B
∂u+

∂x2

]
=

2∑
j=1

a2j
∂u−

∂xj
− p−e2 on Γ,

(3.4.22)

where u = u+ χΩ+ + u− χΩ− belongs to
(
Uγ′

l
(Ω)
)2

and θ ∈ (L2(h1, h2))
2. Also, matrix

B is given by

B =

[
a22 −a21
−a12 a11 + a22 − a12a21

a11

]
.

Definition 3.4.1. We say a pair (u, p−) ∈
(
Uγ′

l
(Ω)
)2

× L2(Ω−) is a weak solution to

(3.4.22) if, for all ψ ∈
(
Uγ′

l
(Ω)
)2

,

|A|
(∫

Ω+

B
∂u+

∂x2
:
∂ψ

∂x2
dx−

∫
Ω+

θ ·ψ dx
)

=

∫
Ω−

p− divψ dx−
2∑

i,j=1

∫
Ω−

aij(x)
∂u−

∂xj
·∂ψ
∂xi

dx,

(3.4.23)

and for all w ∈ L2(Ω−), ∫
Ω−

div(u−) w dx = 0. (3.4.24)

Here, the matrix B is uniformly elliptic and bounded using the uniform ellipticity and

boundedness properties of the matrix (aij)1≤i,j≤2 and this is easy to verify. The existence

and uniqueness of such a pair (u, p−) ∈
(
Uγ′

l
(Ω)
)2

×L2(Ω−) can be found in ([57, Theorem

4.5]). We call the triplet (u, p−,θ) ∈
(
Uγ′

l
(Ω)
)2

× L2(Ω−) ×
(
L2(h1, h2)

)2
, the optimal

solution to (P ). Also, we can prove the existence of a unique optimal solution to (P ) using

standard arguments (see, [45, Theorem 2.1]).

Consider the limit adjoint system corresponding to (3.4.22): Find (v, q−) ∈
(
Uγ′

l
(Ω)
)2

×
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L2(Ω−) which satisfies the following system

− ∂

∂x2

(
Bt ∂v

+

∂x2

)
= u+ − ud in Ω+,

Bt ∂v
+

∂x2
= 0 in Γu,

−
2∑

i,j=1

∂
∂xj

(
aji(x)

∂v−

∂xi

)
+∇q− = u− − ud in Ω−,

div (v−) = 0 in Ω−,

v− = 0 on γ′l,

v+ = v− on Γ,

|A|
[
Bt ∂v

+

∂x2

]
=

2∑
i=1

a2i
∂v−

∂xi
− q−e2 on Γ,

(3.4.25)

where Bt denotes the matrix transpose of B. In the following result, we provide the

characterization of the optimal control θ with the aid of the unfolding operator and adjoint

state v ∈
(
Uγ′

l
(Ω)
)2

and the proof is analogous to Theorem 3.3.1.

Theorem 3.4.2. Let
(
u, p−,θ

)
be the optimal solution to the problem (P ) and v satisfies

(3.4.25), then the optimal control θ ∈ (L2(h1, h2))
2 is given by

θ(x2) = −1

τ

∫ 1

0
v+(x1, x2) dx1.

Conversely, assume that a triplet (û, p̂−, θ̂) ∈
(
Uγ′

l
(Ω)
)2

× L2(Ω−)× (L2(h1, h2))
2 and a

pair (û, q̂−) ∈
(
Uγ′

l
(Ω)
)2

× L2(Ω−), respectively, satisfy the following systems

− ∂

∂x2

(
B
∂û+

∂x2

)
= θ̂ in Ω+,

B
∂û+

∂x2
= 0 in Γu,

−
2∑

i,j=1

∂

∂xi

(
aij(x)

∂û−

∂xj

)
+∇p̂− = 0 in Ω−,

div (û−) = 0 in Ω−,

û− = 0 on γ′l,

û+ = û− on Γ,

|A|
[
B
∂û+

∂x2

]
=

2∑
i,j=1

a2j
∂û−

∂xj
− p̂−e2 on Γ,

and
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

− ∂

∂x2

(
Bt ∂v̂

+

∂x2

)
= û+ − ud in Ω+,

Bt ∂v̂
+

∂x2
= 0 in Γu,

−
2∑

i,j=1

∂

∂xj

(
aji(x)

∂v̂−

∂xi

)
+∇q̂− = û− − ud in Ω−,

div (v̂−) = 0 in Ω−,

v̂− = 0 on γ′l,

v̂+ = v̂− on Γ,

|A|
[
Bt ∂v̂

+

∂x2

]
=

2∑
i=1

a2i
∂v̂−

∂xi
− q̂−e2 on Γ,

where

θ̂(x2) = −1

τ

∫ 1

0
v̂+(x1, x2) dx1.

Then, the triplet
(
û, p̂−, θ̂

)
is the optimal solution to (P ).

3.5 Convergence Analysis

We now formulate the convergence result for the solutions to the problems (Pε) and its

associated adjoint system (3.3.5), in the suitable function spaces.

Theorem 3.5.1. For given ε > 0, let the triplets (uε, pε,θε) and (u, p−,θ), respectively,

be the optimal solutions of the problems (Pε) and (P ). Then

u−
ε ⇀ u− weakly in

(
H1(Ω−)

)2
,

p−ε ⇀ p− weakly in L2(Ω−),

ũ+
ε ⇀ |A|u+ weakly in L2

(
0, 1;

(
H1(h1, h2)

)2)
,

∂̃u+
ε

∂x1
⇀ −|A|

(
e1 +

a12
a11

e2

)
∂u+2
∂x2

weakly in
(
L2
(
Ω+
))2

,

∂̃u+
ε

∂x2
⇀ |A|∂u

+

∂x2
weakly in

(
L2
(
Ω+
))2

,

p̃+ε ⇀ |A|
(
a12

∂u+1
∂x2

− a11
∂u+2
∂x2

)
weakly in L2(Ω+),

θε ⇀ θ weakly in
(
L2
(
Λ+
))2

,

and

v−ε ⇀ v− weakly in
(
H1(Ω−)

)2
,

q−ε ⇀ q− weakly in L2(Ω−),

ṽ+ε ⇀ |A|v+ weakly in L2
(
0, 1;

(
H1(h1, h2)

)2)
,
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∂̃v+ε
∂x1

⇀ −|A|
(
e1 +

a21
a11

e2

)
∂v+2
∂x2

weakly in
(
L2
(
Ω+
))2

,

∂̃v+ε
∂x2

⇀ |A|∂v
+

∂x2
weakly in

(
L2
(
Ω+
))2

,

q̃+ε ⇀ |A|
(
a21

∂v+1
∂x2

− a11
∂v+2
∂x2

)
weakly in L2(Ω+),

where θ(x2) = −1

τ

∫ 1

0
v+(x1, x2) dx1 and the pairs (vε, qε) and (v, q−) solve respectively

the systems (3.3.5) and (3.4.25).

Proof. Since a triplet (uε, pε,θε) is an optimal solution to problem (Pε), we have the

uniform bounds, owing to Theorem 3.3.2, for the sequences {θε}, {uε}, {pε}, {vε}, and
{qε} in the spaces

(
L2 (Λ+)

)2
, (H1

γl
(Ωε))

2, L2 (Ωε), (H
1
γl
(Ωε))

2, and L2 (Ωε), respectively.

Since, the sequence {θε} is uniformly bounded in the space
(
L2 (Λ+)

)2
, by weak

compactness, there exists a subsequence not relabeled and θ∗ such that

θε ⇀ θ∗ weakly in
(
L2
(
Λ+
))2

. (3.5.28)

Step 1: (Claim) We prove the boundedness of the sequence {T ε(u+
ε )} in

L2(0, 1;
(
H1 ((h1, h2)× A)

)2
) and the following convergences satisfied by it: there exists a

subsequence not relabeled and u+
∗ such that

T ε
(
u+
ε

)
⇀ u+

∗ weakly in L2
(
0, 1;

(
H1 ((h1, h2)× A)

)2)
, (3.5.29)

ũ+
ε ⇀ |A|u+

∗ weakly in L2
(
0, 1;

(
H1(h1, h2)

)2)
. (3.5.30)

Proof of the Claim: Since the sequence {u+
ε } is uniformly bounded in

(
H1 (Ω+

ε )
)2
,

employing Proposition 1.4.3 (i), we have the sequence {T ε(u+
ε )} is uniformly bounded in

L2
(
0, 1;

(
H1 ((h1, h2)× A)

)2)
. Thus, we establish (3.5.29) and thereby have the following

convergences:

∂T ε (u+
ε )

∂x2
⇀

∂u+
∗

∂x2
weakly in

(
L2
(
Ω+ × A

))2
, (3.5.31a)

∂T ε (u+
ε )

∂y
⇀

∂u+
∗

∂y
weakly in

(
L2
(
Ω+ × A

))2
. (3.5.31b)

Using Proposition 1.4.3 (iv) in (3.5.31b), we obtain
∂u+

∗
∂y

= 0. Thus, u+
∗ ∈

L2
(
0, 1;

(
H1 (h1, h2)

)2)
.

Again, using Proposition 1.4.3 (iv), (vii) in (3.5.31a), we obtain

∂̃u+
ε

∂x2
⇀

∫
A

∂u+
∗

∂x2
dy = |A|∂u

+
∗

∂x2
weakly in

(
L2
(
Ω+
))2

. (3.5.32)

Also, from (3.5.29) and Proposition 1.4.3 (viii), we get (3.5.30) upon using the
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independence of u+
∗ on the variable y.

Step 2: (Claim) We prove the uniform boundedness of the sequences {T ε(∇u+
ε )} and

{T ε (p+ε )} in the respective spaces
(
L2 (Ω+ × A)

)2×2
and L2 (Ω+ × A). Further, we prove

the following convergences:

∂̃u+
ε

∂x1
⇀ −|A|

(
e1 +

a12
a11

e2

)
∂u+∗2
∂x2

weakly in
(
L2
(
Ω+
))2

, (3.5.33a)

∂̃u+
ε

∂x2
⇀ |A|∂u

+
∗

∂x2
weakly in

(
L2
(
Ω+
))2

, (3.5.33b)

p̃+ε ⇀ |A|
(
a12

∂u+∗1
∂x2

− a11
∂u+∗2
∂x2

)
weakly in L2(Ω+). (3.5.33c)

Proof of the Claim: Since the sequences {∇u+
ε } and {p+ε } are uniformly bounded, we

observe that the sequences {T ε(∇u+
ε )} and {T ε (p+ε )} are uniformly bounded in the

respective spaces
(
L2
(
Ω+ × A

))2×2
and L2 (Ω+ × A). Therefore, up to a subsequence

not relabeled, there exists Z :=

Z1

Z2

 and z+, respectively, in
(
L2 (Ω+ × A)

)2×2
and

L2 (Ω+ × A), such that we have the following convergences:

T ε
(
∇u+

ε

)
⇀ Z weakly in

(
L2
(
Ω+ × A

))2×2
, (3.5.34a)

T ε
(
p+ε
)
⇀ z+ weakly in L2

(
Ω+ × A

)
, (3.5.34b)

where Z1 and Z2 are the row vectors of the matrix Z and are given as (Z
1
1 Z

2
1) and

(Z
1
2 Z

2
2), respectively. Upon employing Proposition 1.4.3 (vii) on (3.5.34a) and (3.5.34b),

we obtain the following convergences:

∂̃u+
ε

∂x1
⇀

∫
A
Z1 dy weakly in

(
L2
(
Ω+
))2

, (3.5.35a)

∂̃u+
ε

∂x2
⇀

∫
A
Z2 dy weakly in

(
L2
(
Ω+
))2

, (3.5.35b)

p̃+ε ⇀

∫
A
z+ dy weakly in L2

(
Ω+
)
. (3.5.35c)

Comparing (3.5.35b) with (3.5.32), we identify Z2 as∫
A
Z2 dy = |A|∂u

+
∗

∂x2
, for a.e. x ∈ Ω+. (3.5.36)

Now, we head towards the identification of Z1. Let us define ψ
ε(x) = εϕ(x1, x2){x1

ε }, where
ϕ ∈ C∞

c (Ω+). Then, we obtain T ε (ψε) = εT ε(ϕ)y and have the following convergences:

T ε (ψε) −→ 0 strongly in L2(Ω+ × A), (3.5.37a)

T ε

(
∂ψε

∂x1

)
−→ ϕ strongly in L2(Ω+ × A), (3.5.37b)
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T ε

(
∂ψε

∂x2

)
−→ 0 strongly in L2(Ω+ × A). (3.5.37c)

By choosing, for a fixed 1 ≤ k ≤ 2, the test function v = ψεek in the weak formulation

(3.2.2) satisfied by uε, we get

2∑
i,j,k=1

∫
Ω+

ε

aij
∂uεk
∂xj

∂ψε

∂xk
dx−

∫
Ω+

ε

p+ε
∂ψε

∂xk
dx =

∫
Ω+

ε

θ
ε
εkψ

ε dx, (3.5.38)

where uεk and θ
ε
εk denote the k-th component of uε and θ

ε
ε, respectively. Using Proposition

1.4.3 (iii), (ii), (iv) in (3.5.38), we get

2∑
i,j,k=1

∫
Ω+×A

T ε(aij)
∂

∂xj
T ε(uεk)

∂

∂xk
T ε(ψε) dxdy −

∫
Ω+×A

T ε(p+ε )
∂

∂xk
T ε(ψε) dxdy

=

∫
Ω+×A

T ε(θ
ε
εk)(x1, x2, y)T

ε(ψε)(x1, x2, y) dx1 dx2 dy

=

∫
Ω+×A

θεk(y, x2)T
ε(ψε)(x1, x2, y) dx1 dx2 dy.

Now, upon passing to the limit when ε −→ 0 in the above expression and employing

convergences (3.5.34), (3.5.37), and (3.5.28), we derive for all ϕ ∈ C∞
c (Ω+)

2∑
j=1

∫
Ω+×A

a1j Z
k
j ϕdx dy =


0 k = 2,∫
Ω+×A

z+ϕdx dy k = 1.
(3.5.39)

Therefore, for a.e. x ∈ Ω+, we have

2∑
j=1

∫
A
a1j Z

k
j dy =


0 k = 2,∫
A
z+ dy k = 1.

(3.5.40)

We employ in (3.2.3), satisfied by uε, the test function ϕ ∈ C∞
c (Ω+) and Proposition 1.4.3

(ii), (iii). Then, upon passing to the limit when ε −→ 0 and using (3.5.34a) and (3.5.36),

we derive for a.e. x ∈ Ω+ ∫
A

[
Z

1
1 +

∂u∗2
∂x2

]
dy = 0,

where u∗i denotes the i-th component of the vector u∗. Thus, for a.e. x ∈ Ω+, since u∗ is

independent of y, we get the following∫
A
Z

1
1 dy = −|A|∂u∗2

∂x2
. (3.5.41)

Also, from the first equation of (3.5.40), we obtain∫
A
Z

2
1 dy = −|A|

(
a12
a11

)
∂u∗2
∂x2

. (3.5.42)
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From (3.5.41) and the second equation of (3.5.40), we obtain for a.e. x ∈ Ω+

∫
A
z+ dy = |A|

(
a12

∂u+∗1
∂x2

− a11
∂u+∗2
∂x2

)
. (3.5.43)

Therefore, comparing the set of equations (3.5.35a) with (3.5.41) and (3.5.42), (3.5.35b)

with (3.5.36), and (3.5.35c) with (3.5.43), we establish (3.5.33a), (3.5.33b), and (3.5.33c).

This settles the proof of the claim.

Now, from the uniform bounds of the sequences {u−
ε } ∈

(
H1(Ω−)

)2
and {p−ε } ∈ L2(Ω−),

we have the existence of subsequences (not relabeled) and u−
∗ and p−∗ respectively in(

H1(Ω−)
)2

and L2(Ω−) such that the following convergences hold

u−
ε ⇀ u−

∗ weakly in
(
H1(Ω−)

)2
, (3.5.44a)

p−ε ⇀ p−∗ weakly in L2(Ω−). (3.5.44b)

Further, we define

u∗(x) =

 u+
∗ if x ∈ Ω+,

u−
∗ if x ∈ Ω−.

Then, u∗ ∈
(
Uσ,γ′

l
(Ω)
)2

(see, [57, Theorem 4.2]).

Step 3: Now, let us use a test function Ψ ∈
(
C∞
γ′
l
(Ω)
)2

in the weak formulation (3.2.2)

satisfied by the optimal triplet (uε, pε,θε) and then employing Proposition 1.4.3 (iii), (ii),

we get

2∑
i,j=1

∫
Ω+×A

T ε (aij) T
ε

(
∂u+

ε

∂xj

)
·T ε

(
∂Ψ

∂xi

)
dx dy−

∫
Ω+×A

T ε
(
p+ε
)
T ε

(
∂Ψ1

∂x1
+
∂Ψ2

∂x2

)
dx dy

−
∫
Ω+×A

T ε(θ
ε
ε)·T ε (Ψ) dx dy =

∫
Ω−

p−ε

(
∂Ψ1

∂x1
+
∂Ψ2

∂x2

)
dx−

2∑
i,j=1

∫
Ω−

aij

(
∂u−

ε

∂xj

)
·
(
∂Ψ

∂xi

)
dx.

Passing to the limit when ε → 0 and using the convergences (3.5.28), (3.5.34) along with

Proposition 1.4.3 (vi), we obtain

2∑
i,j=1

∫
Ω+×A

aij Zj ·
∂Ψ

∂xi
dx dy −

∫
Ω+×A

z+
(
∂Ψ1

∂x1
+
∂Ψ2

∂x2

)
dx dy

−
∫
Ω+×A

θ∗ ·Ψ dx dy =

∫
Ω−

p−∗

(
∂Ψ1

∂x1
+
∂Ψ2

∂x2

)
dx−

2∑
i,j=1

∫
Ω−

aij

(
∂u−

∗
∂xj

)
·
(
∂Ψ

∂xi

)
dx.

(3.5.45)

From the left-hand side of the (3.5.45), consider its first two integrals and call them as I,

L, respectively, and then simplify these below
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I =

2∑
i,j=1

∫
Ω+×A

aijZj ·
∂Ψ

∂xi
dx dy =

2∑
i,j,k=1

∫
Ω+

aij

[∫
A
Z

k
j dy

](
∂Ψk

∂xi

)
dx

=
2∑

i,j=1

∫
Ω+

aij

[∫
A
Z

1
j dy

](
∂Ψ1

∂xi

)
dx+

2∑
i,j=1

∫
Ω+

aij

[∫
A
Z

2
j dy

](
∂Ψ2

∂xi

)
dx

=

2∑
j=1

∫
Ω+

a1j

[∫
A
Z

1
j dy

](
∂Ψ1

∂x1

)
dx+

2∑
j=1

∫
Ω+

a2j

[∫
A
Z

1
j dy

](
∂Ψ1

∂x2

)
dx

+
2∑

j=1

∫
Ω+

a1j

[∫
A
Z

2
j dy

](
∂Ψ2

∂x1

)
dx+

2∑
j=1

∫
Ω+

a2j

[∫
A
Z

2
j dy

](
∂Ψ2

∂x2

)
dx

and

L =

∫
Ω+×A

z+
(
∂Ψ1

∂x1
+
∂Ψ2

∂x2

)
dx dy

=

∫
Ω+

 2∑
j=1

a1j Z
1
j dy

(∂Ψ1

∂x1
+
∂Ψ2

∂x2

)
dx (By using (3.5.39))

=
2∑

j=1

∫
Ω+

a1j

[∫
A
Z

1
j dy

](
∂Ψ1

∂x1

)
dx+

2∑
j=1

∫
Ω+

a1j

[∫
A
Z

1
j dy

](
∂Ψ2

∂x2

)
dx.

Substracting the simplified expressions and then using first part of equation (3.5.39), we

get

(
I − L

)
=

2∑
j=1

∫
Ω+

a2j

[∫
A
Z

1
j dy

](
∂Ψ1

∂x2

)
dx+

2∑
j=1

∫
Ω+

a2j

[∫
A
Z

2
j dy

](
∂Ψ2

∂x2

)
dx

−
2∑

j=1

∫
Ω+

a1j

[∫
A
Z

1
j dy

](
∂Ψ2

∂x2

)
dx.

Expanding the summations on the right-hand side of the above equation gives

(
I − L

)
=

∫
Ω+

[
a21

∫
A
Z

1
1 dy + a22

∫
A
Z

1
2 dy

](
∂Ψ1

∂x2

)
dx

+

∫
Ω+

[
a21

∫
A
Z

2
1 dy + a22

∫
A
Z

2
2 dy

](
∂Ψ2

∂x2

)
dx

−
∫
Ω+

[
a11

∫
A
Z

1
1 dy + a12

∫
A
Z

1
2 dy

](
∂Ψ2

∂x2

)
dx.

Substituting (3.5.36), (3.5.41), and (3.5.42) in the above expression, we further get upon

rearrangement
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(
I − L

)
= |A|

∫
Ω+

[
a22

(
∂u+∗1
∂x2

)
− a21

(
∂u+∗2
∂x2

)](
∂Ψ1

∂x2

)
dx

+ |A|
∫
Ω+

[
−a12

(
∂u+∗1
∂x2

)
+

(
a11 + a22 −

a12a21
a11

)(
∂u+∗2
∂x2

)](
∂Ψ2

∂x2

)
dx.

Also, we can write this as

(
I − L

)
= |A|

∫
Ω+

B
∂u+

∗
∂x2

:
∂Ψ

∂x2
dx. (3.5.46)

Substituting the (3.5.46) into the (3.5.45), we finally obtain for all Ψ ∈
(
C∞
γ′
l
(Ω)
)2

|A|
∫
Ω+

B
∂u+

∗
∂x2

:
∂Ψ

∂x2
dx−

∫
Ω+×A

θ∗ ·Ψ dxdy =

∫
Ω−

p−∗ div(Ψ) dx

−
2∑

i,j=1

∫
Ω−

aij

(
∂u−

∗
∂xj

)
·
(
∂Ψ

∂xi

)
dx.

(3.5.47)

We now wish to simplify further the second integral on the left-hand side of equation

(3.5.47). To do so, firstly, we can easily obtain the weak convergences for pair (vε, qε)

satisfying (3.3.5) in a pattern similar to the one followed for pair (uε, pε). That is, we

obtain the following weak convergences

T ε(v+ε )⇀ v+∗ weakly in L2
(
0, 1;

(
H1 ((h1, h2)× A)

)2)
,

ṽ+ε ⇀ |A|v+∗ weakly in L2
(
0, 1;

(
H1(h1, h2)

)2)
,

∂̃v+
ε

∂x1
⇀ −|A|

(
e1 +

a21
a11
e2

)
∂v+∗2
∂x2

weakly in
(
L2 (Ω+)

)2
,

∂̃v+
ε

∂x2
⇀ |A|∂v

+
∗

∂x2
weakly in

(
L2 (Ω+)

)2
,

v−ε ⇀ v−∗ weakly in
(
H1(Ω−)

)2
,

q−ε ⇀ q−∗ weakly in L2(Ω−),

q̃+ε ⇀ |A|
(
a21

∂v+∗1
∂x2

− a11
∂v+∗2
∂x2

)
weakly in L2 (Ω+) ,

(3.5.48)

where v∗ is independent of the variable y, belongs to the space
(
Uγ′

l
(Ω)
)2

, and obeys

system (3.4.25) for u = u∗. Therefore, from the optimality condition (3.3.6), the weak

convergences (3.5.28), and the first one of (3.5.48), we derive while passing to the limits

when ε −→ 0

θ∗(x2) = −1

τ

∫ 1

0
v+∗ (x1, x2) dx1.

This implies that θ∗ ∈
(
L2(h1, h2)

)2
and is clearly independent of the variable y. Thus,
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we simplify (3.5.47) to obtain, for all Ψ ∈
(
C∞
γ′
l
(Ω)
)2

|A|
( ∫

Ω+

B
∂u+

∗
∂x2

:
∂Ψ

∂x2
dx−

∫
Ω+

θ∗ ·Ψ dx

)
=

∫
Ω−

p−∗ div(Ψ) dx

−
2∑

i,j=1

∫
Ω−

aij

(
∂u−

∗
∂xj

)
·
(
∂Ψ

∂xi

)
dx.

(3.5.49)

Since,
(
C∞
γ′
l
(Ω)
)2

is a dense subspace of
(
Uγ′

l
(Ω)
)2

, therefore, (3.5.49) holds true in(
Uγ′

l
(Ω)
)2

. Also, employing the test function ϕ ∈ C∞
c (Ω−) in (3.2.3), we derive the

following upon passing the limit when ε −→ 0∫
Ω−

div(u−
∗ )ϕdx = 0,

which by density holds true in L2(Ω−). Thus, the pair (u∗, p
−
∗ ) obeys the weak formulation

of the system (3.4.22), for θ = θ∗.

Consequently, corresponding to the minimization problem (P), we get the optimality

system. Theorem 3.4.2 implies that the triplet (u∗, p
−
∗ ,θ∗) is the optimal solution to

(P ). Thus, evoking the uniqueness of the optimal solution, we have the following equality

for the pair of triplets:

(u, p−,θ) = (u∗, p
−
∗ ,θ∗).

The proof of Theorem 3.5.1 is complete.

3.6 Conclusion

This chapter presents the asymptotic analysis of a periodic interior OCP associated

with the modified Stokes system subject to the Neumann boundary condition on the

oscillating boundary of a two-dimensional highly oscillating domain. Periodic interior

controls are applied in the oscillating part of the domain. Via the unfolding operator, the

characterization of the optimal control is achieved in terms of adjoint state. Finally, we get

the limit OCP posed on a fixed domain and observe that the optimal solutions to the Stokes

system over the highly oscillating domain converge to the optimal solution of the thus

obtained limit OCP posed on a fixed domain. Due to the Neumann boundary condition

on the oscillating boundary, we observed a non-trivial contribution in the upper part of

the homogenized OCP. A more interesting problem in this direction will be minimizing

a Dirichlet (gradient type) cost functional constrained by more generalized stationary

Stokes equations that involve the unidirectional oscillating coefficient matrix. Moreover,

one can also apply the interior controls throughout the oscillating domain. This situation

is addressed in Chapter 4.
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Chapter 4

Distributive Optimal Control

Problem in an Oscillating Domain

The present chapter† deals with the homogenization of a distributive optimal control

problem (OCP) subjected to the more generalized stationary Stokes equation involving

unidirectional oscillating coefficients posed in a two-dimensional oscillating domain. The

cost functional considered is of the Dirichlet type involving a unidirectional oscillating

coefficient matrix. We characterize the optimal control and study the homogenization

of this OCP with the aid of the unfolding operator. Due to the presence of oscillating

matrices both in the governing Stokes equations and the cost functional, one obtains the

limit OCP involving a perturbed tensor in the convergence analysis.

4.1 Introduction

In this chapter, we study the homogenization (limiting or asymptotic analysis) of a

generalized OCP subjected to the constrained stationary Stokes equations of the form:

−div (Aε∇uε) +∇pε = f + θε in Ωε,

div(uε) = 0 in Ωε,

µε ·Aε∇uε − pεµε = 0 on γε,

uε = 0 on γl.

(4.1.1)

Here, the domain Ωε ⊂ R2 with rapidly oscillating boundary γε is the same bounded

domain considered in preceding chapters. The coefficient matrix Aε is elliptic and is

set to oscillate in x1− direction, i.e., Aε(x1, x2) = A(x1, x2,
x1
ε ). The source function

f ∈ (L2(Ω))2. The functions θε, uε, and pε are, respectively, the control, state, and

pressure functions defined on the appropriate function spaces, which will be defined in

a later section. The Stokes equations considered are generalized owing to the presence

of a second-order elliptic linear differential operator in divergence form with oscillating

coefficients, i.e., −div (Aε∇), first studied for the fixed domain in [5, Chapter 1], instead

of the classical Laplacian operator. Here, the action of the scalar operator −div (Aε∇)

is defined in a “diagonal” manner on any vector u = (u1, u2), with components u1, u2 in

†The content of this chapter is published in: “S. Garg and B. C. Sardar. Homogenization of
distributive optimal control problem governed by Stokes system in an oscillating domain. Asymptotic
Analysis, 136(1):1-26, 2024.”
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the H1 Sobolev space. That is, for 1 ≤ i ≤ 2, we have (−div (Aε∇u))i = −div (Aε∇ui).
Likewise, the scalar boundary operator µε ·Aε∇ acts in a “diagonal” manner on the vector

uε|γε . The problem (4.1.1) is well defined and admits a unique weak solution, the proof

of which is standard one and follows easily along the lines of Chapter 3, Remark 3.2.2, by

employing the ellipticity of matrix Aε.

The OCP is to minimize the Dirichlet cost functional Jε(θε) over the set of admissible

controls θε ∈ (L2(Ωε))
2 subjected to constrained generalized stationary Stoke equation

(4.1.1), i.e.,

inf
θε∈(L2(Ωε))2

{
Jε(θε) =

1

2

∫
Ωε

Bε∇uε(θε) : ∇uε(θε) +
τ

2

∫
Ωε

|θε|2
}
. (4.1.2)

Here, the coefficient matrix Bε, not necessarily equal to Aε, is symmetric, elliptic, and is

set to oscillate in x1− direction, i.e., Bε(x1, x2) = B(x1, x2,
x1
ε ). A unique minimizer to

problem (4.1.2) exists, the proof of which is standard and follows along the lines of ([45,

Theorem 2.2]).

We omit a thorough survey and discuss only the pertinent literature that justifies the

subject of this chapter. In the literature, a few studies concern the limiting analysis

of the stationary Stokes equations in the oscillating domain. The first study in this

direction is [55], wherein the authors examined, using the boundary layer correctors, the

limiting analysis of the Stokes system subjected to homogeneous Dirichlet boundary data

on the oscillating part of the boundary. Later on, in [39], they obtained the effective

boundary condition of Navier-type (wall law) for the same problem. However, the authors

in [57] examined a similar problem, but now with the homogeneous Neumann data on

the oscillating part of the boundary. The analysis in preceding papers revealed different

results in the upper part of the limit domain. Unlike the trivial contributions in [39, 55],

the latter [57] yields non-trivial contributions in the upper part of the limit domain.

The OCPs governing Stokes equations are recently being studied over this type of

oscillating domain. The authors in [56] investigated the homogenization of OCP

constrained by stationary Stokes equations with homogeneous Dirichlet data on the

boundary of the oscillating domain in a three-dimensional setup. The L2−cost with

distributive controls was applied in the non-oscillating part of the domain. Also, in Chapter

3, we conducted a study on the homogenization of an OCP constrained by the generalized

stationary Stokes equations involving some coefficient matrix with Neumann boundary

data on the oscillating boundary in a two-dimensional setup. We employed the L2−cost

with distributive controls in the oscillating part of the domain. As expected from the

previous studies, our work in Chapter 3 yields non-trivial contributions involving some

coefficient matrix in the upper part of the limit domain, unlike the trivial contributions in

[56] in the upper part of the limit domain. Regarding the boundary OCP constrained by

stationary Stokes equations with Neumann data on the boundary of the oscillating domain

with L2− cost in a three-dimensional setup, the non-trivial contributions were observed

in [64] for the upper part of the limit domain under the limiting analysis.
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In the present chapter, we consider an OCP (4.1.2) which is of a more generalized form

than that of the considered one in our previous work, Chapter 3. Since, unlike the

L2−cost functional, we consider here the Dirichlet cost functional with the oscillating

coefficient matrix Bε. Also, we take the generalized stationary Stokes equations (4.1.1),

which involves a generalized Stokes operator with the coefficient matrix Aε that oscillates

with a period ε in the direction of oscillations of the domain Ωε. Further, we apply the

distributive controls over the full domain Ωε instead of the distributive controls considered

in Chapter 3 over the restricted region of the domain Ωε consisting of oscillations, i.e., away

from the fixed part. The presence of oscillating matrices Aε and Bε respectively in the

state equations (4.1.1) and the cost functional (4.1.2) causes difficulties in the analysis,

particularly for the fixed bottom part of the oscillating domain. These difficulties will

become evident in the process of establishing the limit OCP using the remarkable method

of unfolding, which is thoroughly discussed in Chapter 1.

For a broad perspective, one can also refer to the articles related to the homogenization

of different boundary value problems in similar domains with oscillating boundaries,

i.e., Ωε or in its more general version. For instance, we refer the reader to works of

[17, 19, 26, 29, 30, 37, 52] for the elliptic boundary value problems and to the work of [33]

for quasi-linear parabolic partial differential equation (PDE). For more recent articles on

homogenization over such domains, one can see [30, 41–43]. Next, regarding the limiting

analysis of the OCPs, we refer the reader to the works of [44, 45, 65] for the OCPs

constrained by standard or more general elliptic boundary value problems, to the works

of [46, 50] for the OCPs constrained by parabolic PDEs, and to the work of [51] for the

OCP constrained by the wave equation.

We divide this chapter into six sections: Section 4.1.1 lists the essential preliminaries

that will be used thoroughly in this chapter. Following this, Section 4.2 presents the

optimality system corresponding to (4.1.2), accompanied by a discussion of a priori

estimates. Subsequently, we introduce the limit optimality system in Section 4.3. Finally,

Section 4.4 details the key findings of the convergence analysis.

4.1.1 Preliminaries

Assumptions

Let us impose the following assumptions on the matrices Aε =
(
aij
(
x, x1

ε

))
1≤i,j≤2

and

Bε =
(
bij
(
x, x1

ε

))
1≤i,j≤2

considered in the OCP (4.1.2).

• Aε is elliptic. That is, there exist real constants m, M > 0, such that

m||λ||2 ≤
2∑

i,j=1

aij

(
x,
x1
ε

)
λiλj ≤M ||λ||2 for allx, λ ∈ R2.

• Bε is symmetric and elliptic. By latter, we mean that there exist real constants

β1, β2 > 0 such that
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β1||λ||2 ≤
2∑

i,j=1

bij

(
x,
x1
ε

)
λiλj ≤ β2||λ||2 for allx, λ ∈ R2.

4.2 Optimality Condition and Norm-estimates

4.2.1 Optimality Condition

Here, we present the characterization result for the optimal control, which minimizes the

OCP (4.1.2). Let us first write the weak formulation of the problem (4.1.1).

Definition 4.2.1. We call a pair (uε, pε) ∈ (H1
γl
(Ωε))

2×L2(Ωε) to be a weak solution to

(4.1.1) if, for all v ∈ (H1
γl
(Ωε))

2,∫
Ωε

Aε∇uε : ∇v dx−
∫
Ωε

pε div(v) dx =

∫
Ωε

(f + θε) · v dx (4.2.3)

and for all w ∈ L2(Ωε), ∫
Ωε

div(uε) w dx = 0. (4.2.4)

As mentioned in the introduction, for given ε > 0 and the functions f ∈ (L2(Ω))2

and θε ∈ (L2(Ωε))
2, the problem (4.1.1) admits a unique weak solution (uε(θε), pε) ∈

(H1
γl
(Ωε))

2 × L2(Ωε), the proof of which is standard one and follows quickly along the

lines of Chapter 3, Remark 3.2.2, by employing the ellipticity of matrix Aε. Moreover, a

unique minimizer to the OCP (4.1.2) exists. Let us denote it by θε ∈ (L2(Ωε))
2 and the

associated solution to (4.1.1) by (uε, pε) ∈
(
H1

γl
(Ωε)

)2 × L2(Ωε), where the terms θε, uε,

and pε are respectively the optimal control, state, and pressure. We denote the optimal

solution to the OCP (4.1.2) by a triplet (uε, pε,θε).

Next, let us consider the associated adjoint problem to (4.1.1): Find (vε, qε) ∈(
H1

γl
(Ωε)

)2 × L2(Ωε) that obeys the following system:

−div
(
At

ε∇vε
)
+∇qε = −div (Bε∇uε) in Ωε,

div(vε) = 0 in Ωε,

µε ·At
ε∇vε − qεµε = µε ·Bε∇uε on γε,

vε = 0 on γl.

(4.2.5)

A unique weak solution (vε, qε) ∈ (H1
γl
(Ωε))

2×L2(Ωε) to the adjoint problem (4.2.5) exists,

which is easy to establish analogous to the state equation (4.1.1) by using the ellipticity of

the matrices At
ε and Bε. We denote the terms vε and qε respectively by the adjoint state

and pressure. In the below-mentioned result, we characterize the optimal control in terms

of the adjoint state solving the adjoint system (4.2.5). The proof of which is a standard

argument and follows analogous to [16, Theorem 2.7.1].

Theorem 4.2.2. Let
(
uε, pε,θε

)
be the optimal solution of the problem (4.1.2) and the

pair (vε, qε) satisfies (4.2.5), then the optimal control θε ∈ (L2(Ωε))
2 is given by
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θε(x) = −1

τ
vε(x) a.e. in Ωε. (4.2.6)

Conversely, assume that a triplet (ǔε, p̌ε,− 1
τ v̌ε) ∈

(
H1

γl
(Ωε)

)2 × L2(Ωε)×
(
L2(Ωε)

)2
and

a pair (v̌ε, q̌ε) ∈
(
H1

γl
(Ωε)

)2 × L2(Ωε) satisfy the following system

−div (Aε∇ǔε) +∇p̌ε = f − 1
τ v̌ε in Ωε,

−div
(
At

ε∇v̌ε
)
+∇q̌ε = −div (Bε∇ǔε) in Ωε,

div(ǔε) = 0, div(v̌ε) = 0 in Ωε,

µε ·Aε∇ǔε − p̌εµε = 0 on γε,

µε ·At
ε∇v̌ε − qεµε = µε ·Bε∇ǔε on γε,

v̌ε = 0, ǔε = 0 on γl.

(4.2.7)

Then the triplet (ǔε, p̌ε,− 1
τ v̌ε) is the optimal solution to (4.1.2).

4.2.2 A Priori Estimates

We now derive the norm-estimates, uniform in ε, for the triplet (uε, pε,θε) solving the

OCP (4.1.2) and the pair (vε, qε) solving (4.2.5).

Theorem 4.2.3. For given ε > 0, let the optimal control to (4.1.2) be θε ∈
(
L2(Ωε)

)2
.

Then the following sequences are bounded uniformly in ε:

∥θε∥(L2(Ωε))2 ≤ K, (4.2.8)

∥uε∥(H1
γl
(Ωε))2 ≤ K, (4.2.9)

∥pε∥L2(Ωε) ≤ K, (4.2.10)

∥vε∥(H1
γl
(Ωε))2 ≤ K, (4.2.11)

∥qε∥L2(Ωε) ≤ K. (4.2.12)

Proof. Taking zero control in (4.1.1), we denote the corresponding state function by uε(0).

Taking into account the ellipticity of matrix Bε and the optimality condition for the cost

functional, i.e., Jε(θε) ≤ J(0), we get

m∥∇uε(θ)∥2(L2(Ωε))2×2 + τ∥θε∥2(L2(Ωε))2
≤ β2∥∇uε(0)∥2(L2(Ωε))2×2 ,

which implies that

∥θε∥(L2(Ωε))2 ≤
√
β2√
τ
∥∇uε(0)∥(L2(Ωε))2×2 . (4.2.13)

In order to obtain the first estimate (4.2.8), we need to further simplify the right-hand

side of (4.2.13). To do so, we plug in the data v = uε and w = pε in (4.2.3) and (4.2.4),

respectively. Taking into account the ellipticity of matrix Aε and (2.2.2), we obtain

m∥∇uε∥2(L2(Ωε))2×2 ≤
∫
Ωε

Aε(x)∇uε : ∇uε dx
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≤ (∥f∥(L2(Ω))2 + β1 ∥θε∥(L2(Ωε))
2)∥∇uε∥(L2(Ωε))

2×2 ,

which upon further simplification, gives

∥∇uε∥(L2(Ωε))
2×2 ≤ K (∥f∥(L2(Ω))2 + ∥θε∥(L2(Ωε))

2). (4.2.14)

From (4.2.14) corresponding to θ = 0, we have ∥∇uε(0)∥(L2(Ωε))
2×2 ≤ K. Employing

this together with (2.2.2) in (4.2.13) establishes (4.2.8). Again, from (4.2.14), we have for

θε = θε

∥∇uε∥(L2(Ωε))2×2 ≤ K
(
∥f∥(L2(Ω))2 + ∥θε∥(L2(Ωε))

2

)
. (4.2.15)

Thus, employing (4.2.8) and Poincaré inequality (2.2.2) in (4.2.15) establishes (4.2.9).

Next, we head towards proving the uniform estimate (4.2.10), i.e., ∥pε∥L2(Ωε) ≤ K. From

(2.2.3), there exists gε ∈
(
H1

γl
(Ωε)

)2
such that div(gε) = pε. Corresponding to θε, upon

substituting v = gε in (4.2.3), we get

∥pε∥2L2(Ωε)
=

∫
Ωε

Aε(x)∇uε : ∇gε dx−
∫
Ωε

(f + θε) · gε dx. (4.2.16)

Taking into account the ellipticity of matrix Aε and (2.2.2) in (4.2.16), we have

∥pε∥2L2(Ωε)
≤M∥∇uε∥(L2(Ωε))2×2∥∇gε∥(L2(Ωε))2×2

+ (∥f∥(L2(Ω))2 + ∥θε∥(L2(Ωε))
2)∥∇gε∥(L2(Ωε))

2×2

≤ K
(
∥∇uε∥(L2(Ωε))

2×2 + ∥f∥(L2(Ω))2 + ∥θε∥(L2(Ωε))
2

)
∥∇gε∥(L2(Ωε))

2×2 .

This estimate in view of (4.2.8), (4.2.9) and (2.2.3), establishes (4.2.10). Likewise, for

the associated adjoint state and pressure sequences, one can easily establish the uniform

estimates (4.2.11) and (4.2.12).

4.3 Limit Optimality System

In this section, we present the limit optimal control problem. To do so, we first present

the following cell problems.

For 1 ≤ j, β ≤ 2, and P β
j = P β

j (y) = yjeβ, let the correctors (χβ
j ,Π

β
j ) ∈ (H1((0, 1)2))2 ×

L2((0, 1)2) solves the cell problem

−divy

(
A(x, y)∇y(P

β
j − χβ

j )
)
+∇yΠ

β
j = 0 in (0, 1)2,

divy(P
β
j − χβ

j ) = 0 in (0, 1)2,

(χβ
j ,Π

β
j ) is (0, 1)2- periodic,

M(0,1)2(χ
β
j ) = 0,

(4.3.17)

the correctors (Hβ
j , Q

β
j ) ∈ (H1((0, 1)2))2 × L2((0, 1)2) solves the cell problem
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

−divy

(
At(x, y)∇y(P

β
j −Hβ

j )
)
+∇yQ

β
j = 0 in (0, 1)2,

divy(P
β
j −Hβ

j ) = 0 in (0, 1)2,

(Hβ
j , Q

β
j ) is (0, 1)2- periodic,

M(0,1)2(H
β
j ) = 0,

(4.3.18)

and the correctors (T β
j , R

β
j ) ∈ (H1((0, 1)2))2 × L2((0, 1)2) solves the cell problem



−divy

(
B(x, y)∇y(P

β
j − χβ

j )−At(x, y)∇yT
β
j

)
+∇yR

β
j = 0 in (0, 1)2,

divy(P
β
j − T β

j ) = 0 in (0, 1)2,

(T β
j , R

β
j ) is (0, 1)2- periodic,

M(0,1)2(T
β
j ) = 0.

(4.3.19)

Over Ω−, we define the elliptic tensors D = (dαβij )1≤i,j,α,β≤2, its transpose Dt =

(dβαji )1≤i,j,α,β≤2, and the perturbed B# = (b#
αβ
ij )1≤i,j,α,β≤2 as

dαβij = aαβij −
∫
(0,1)2

A(x, y)∇y

(
P β
j − χβ

j

)
: ∇yχ

α
i dy,

dβαji = aβαji −
∫
(0,1)2

At(x, y)∇y

(
P β
j −Hβ

j

)
: ∇yH

α
i dy,

b#
αβ
ij = b0

αβ
ij −

∫
(0,1)2

(
B(x, y)∇y(P

β
j − χβ

j )−At(x, y)∇yT
β
j

)
: ∇yT

β
j dy,

where aαβij , a
βα
ji , and b0

αβ
ij forms the respective entries of the tensors A0, A

t
0, and B0 as

aαβij =

∫
(0,1)2

A(x, y)∇y

(
P β
j − χβ

j

)
: ∇yP

α
i dy,

aβαji =

∫
(0,1)2

At(x, y)∇y

(
P β
j −Hβ

j

)
: ∇yP

α
i dy,

b0
αβ
ij =

∫
(0,1)2

(
B(x, y)∇y(P

β
j − χβ

j )−At(x, y)∇yT
β
j

)
: ∇y(P

α
i ) dy.

Next, over Ω+, we define the elliptic matrices A+ = (a+ij)1≤i,j≤2, and B+ = (b+ij)1≤i,j≤2

as

A+ = A+(x) =

∫
A

 a22 −a21

−a12 a11 + a22 − a12a21
a11

 dy,
B+ = B+(x) =

∫
A

 b22 −b21

−b12 b11 + b22 +
a12
a11

(
a12b11
a11

− b12

)
+ b21a12

a11

 dy.
Now, we present in the following the limit OCP:
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inf
θ∈(L2(Ω)2)

{
J(θ) =

1

2

∫
Ω+

B+
∂u+

∂x2
:
∂u+

∂x2
dx +

1

2

∫
Ω−

B#∇u− : ∇u− dx +
τ

2

∫
Ω
|θ|2 dx

}
(4.3.20)

subject to

− ∂

∂x2

(
A+

∂u+

∂x2

)
= |A| (f + θ)χΩ+

ε
in Ω+,

A+
∂u+

∂x2
= 0 in Γu,

−
2∑

j,α,β=1

∂

∂xα

(
dαβij

∂u−j
∂xβ

)
+∇p− = (f + θ)χΩ− in Ω−,

div (u−) = 0 in Ω−,

u− = 0 on γ′l,

u+ = u− on Γ,

A+
∂u+

∂x2
=

2∑
j,β=1

d2βij
∂u−

j

∂xβ
− p−e2 on Γ,

(4.3.21)

where u = u+ χΩ+ + u− χΩ− belongs to
(
Uγ′

l
(Ω)
)2

. We denote the optimal solution of

(4.3.20) by the triplet (u, p−,θ) ∈
(
Uγ′

l
(Ω)
)2

× L2(Ω−)×
(
L2(Ω)

)2
. Using the ellipticity

of the matrix A+ and tensor D, it is easy to establish analogous to (4.1.1), the existence

of a unique weak solution (u, p−) ∈
(
Uγ′

l
(Ω)
)2

× L2(Ω−) to (4.3.21). Again, using the

ellipticity of the matrix B+ and tensor B#, it is easy to establish analogous to (4.1.2), the

existence of optimal solution (u, p−,θ) ∈
(
Uγ′

l
(Ω)
)2

× L2(Ω−)×
(
L2(Ω)

)2
to (4.3.20).

Also, corresponding to (4.3.21), we consider the limit adjoint problem : Find (v, q−) ∈(
Uγ′

l
(Ω)
)2

× L2(Ω−) that obeys the following system:



− ∂

∂x2

(
At

+

∂v+

∂x2

)
= − ∂

∂x2

(
B+

∂u+

∂x2

)
in Ω+,

At
+

∂v+

∂x2
= B+

∂u+

∂x2
in Γu,

−
2∑

j,α,β=1

∂

∂xα

(
dβαji

∂v−j
∂xβ

)
+∇q− = −

2∑
j,α,β=1

∂

∂xα

(
b#

αβ
ij

∂u−j
∂xβ

)
in Ω−,

div (v−) = 0 in Ω−,

v− = 0 on γ′l,

v+ = v− on Γ,

At
+

∂v+

∂x2
−B+

∂u+

∂x2
=

2∑
j,β=1

dβ2ji
∂v−j
∂xβ

−
2∑

j,β=1

b#
2β
ij

∂u−
j

∂xβ
on Γ.

(4.3.22)

A unique weak solution (v, q−) ∈
(
Uγ′

l
(Ω)
)2

× L2(Ω−) to (4.3.22) exists, which is easy to
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establish analogous to the limit state equation (4.3.21) by employing the ellipticity of

matrices At
+ and B+; and tensors Dt and B#. Next, in the below mentioned result, we

characterize the limit optimal control in terms of the adjoint state solving the limit adjoint

system. This can be easily established analogous to Theorem 4.2.2.

Theorem 4.3.1. Let
(
u, p−,θ

)
be the optimal solution to the problem (4.3.20) and (v, q−)

satisfies (4.3.22), then the optimal control θ ∈ (L2(Ω))2 is given by

θ(x) = −1

τ
v(x) a.e. in Ω.

Conversely, suppose that (ǔ, p̌−,− 1
τ v̌) ∈

(
Uγ′

l
(Ω)
)2

× L2(Ω−) × (L2(Ω))2 and (v̌, q̌−) ∈(
Uγ′

l
(Ω)
)2

× L2(Ω−), satisfies the following system


− ∂

∂x2

(
A+

∂ǔ+

∂x2

)
= |A| (f − 1

τ
v̌+) in Ω+,

− ∂

∂x2

(
At

+

∂v̌+

∂x2

)
= − ∂

∂x2

(
B+

∂ǔ+

∂x2

)
in Ω+,



−
2∑

j,α,β=1

∂α

(
dαβij

∂ǔ−j
∂xβ

)
+∇p− = f − 1

τ
v̌− in Ω−,

−
2∑

j,α,β=1

∂α

(
dβαji

∂v̌−j
∂xβ

)
+∇q̌− = −

2∑
j,α,β=1

∂α

(
b#

αβ
ij

∂ǔ−j
∂xβ

)
in Ω−,

div (ǔ−) = 0 in Ω−, div (v̌−) = 0 in Ω−,

together with the boundary conditions A+
∂ǔ+

∂x2
= 0, At

+

∂v̌+

∂x2
= B+

∂ǔ+

∂x2
in Γu,

ǔ− = 0, v̌− = 0 on γ′l,

and the interface conditions

ǔ+ = ǔ−, v̌+ = v̌− on Γ,

A+
∂ǔ+

∂x2
=

2∑
j,β=1

d2βij
∂ǔ−j
∂xβ

− p−e2 on Γ,

At
+

∂v̌+

∂x2
−B+

∂ǔ+

∂x2
=

2∑
j,β=1

dβ2ji
∂v̌−j
∂xβ

−
2∑

j,β=1

b#
2β
ij

∂ǔ−j
∂xβ

− q̌−e2 on Γ.

Then, the triplet
(
ǔ, p̌−,− 1

τ v̌
)
is the optimal solution to (4.3.20).

4.4 Convergence Results

In this section, we present the main result concerning the convergence analysis for the

solutions to the problem (4.1.2) and the corresponding adjoint system (4.3.22) upon
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employing the method of unfolding operator detailed in Chapter 1, Section 1.4.2.

Theorem 4.4.1. For given ε > 0, let the triplets (uε, pε,θε) and (u, p−,θ), respectively,

be the optimal solutions of the problems (4.1.2) and (4.3.20). Then

ũ+
ε ⇀ |A|u+ weakly in L2

(
0, 1;

(
H1(h1, h2)

)2)
,

∂̃u+
ε

∂x1
⇀ −

[
|A| e1 +

(∫
A

a12
a11

dy

)
e2

]
∂u+2
∂x2

weakly in
(
L2
(
Ω+
))2

,

∂̃u+
ε

∂x2
⇀ |A| ∂u

+

∂x2
weakly in

(
L2
(
Ω+
))2

,

p̃+ε ⇀

(∫
A
a12 dy

)
∂u+1
∂x2

−
(∫

A
a11 dy

)
∂u+2
∂x2

weakly in L2(Ω+),

θ̃
+

ε ⇀ |A|θ+ weakly in
(
L2
(
Ω+
))2

,

θ
−
ε ⇀ θ

−
weakly in

(
L2
(
Ω−))2 ,

u−
ε ⇀ u− weakly in

(
H1(Ω−)

)2
,

p−ε ⇀
1

2
A0∇u− : I + p− weakly in L2(Ω−),

where θ(x) = −1

τ
v(x) and the pair (v, q−) solves the adjoint system (4.3.22).

Proof. We will proceed with the proof in multiple steps. Firstly, we will obtain the

homogenized system for the OCP (4.3.20) over Ω+. This will follow along the same lines

as we did in Chapter 3, Theorem 3.5.1. Next, we will prove the limit system over Ω−.

Due to the optimality of the solution (uε, pε,θε) to problem (4.1.2), one has in view of

Theorem 4.2.3, the uniform estimates for the sequences {θε}, {uε}, {pε}, {vε}, and {qε}
in the spaces

(
L2 (Ωε)

)2
, (H1

γl
(Ωε))

2, L2 (Ωε), (H
1
γl
(Ωε))

2, and L2 (Ωε), respectively.

From the uniform bound of {θε} , we have the uniform bound for the sequences {T ε(θ
+
ε )}

and {θ−ε }, respectively, in the spaces
(
L2 (Ω+ × A)

)2
and

(
L2 (Ω−)

)2
. Therefore, from the

weak compactness results and the Proposition 1.4.3 (vii), there exist subsequences not

relabeled and functions θ+∗ ∈
(
L2 (Ω+ × A)

)2
and θ−∗ ∈

(
L2 (Ω−)

)2
, such that

T ε(θ
+
ε )⇀ θ+∗ weakly in

(
L2
(
Ω+ × A

))2
, (4.4.23)

θ̃
+

ε ⇀

∫
A
θ+∗ dy weakly in

(
L2
(
Ω+
))2

, (4.4.24)

θ
−
ε ⇀ θ−∗ weakly in

(
L2
(
Ω−)) . (4.4.25)

Step 1: Here, over Ω+, we obtain the homogenized state equation following along the

lines of Chapter 3, Theorem 3.5.1.

Claim 1(a): The sequences {T ε(u+
ε )} ∈ L2

(
0, 1;

(
H1 ((h1, h2)× A)

)2 )
, {T ε(∇u+

ε )} ∈(
L2 (Ω+ × A)

)2×2
, and {T ε (p+ε )} ∈ L2 (Ω+ × A) are uniformly bounded. Further, there

exists subsequence not relabeled and function u+
∗ such that the following convergences
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hold:

T ε
(
u+
ε

)
⇀ u+

∗ weakly in L2
(
0, 1;

(
H1 ((h1, h2)× A)

)2)
, (4.4.26)

ũ+
ε ⇀ |A|u+

∗ weakly in L2
(
0, 1;

(
H1(h1, h2)

)2)
, (4.4.27)

∂̃u+
ε

∂x1
⇀ −

[
|A| e1 +

(∫
A

a12
a11

dy

)
e2

]
∂u+∗2
∂x2

weakly in
(
L2
(
Ω+
))2

, (4.4.28)

∂̃u+
ε

∂x2
⇀ |A| ∂u

+
∗

∂x2
weakly in

(
L2
(
Ω+
))2

, (4.4.29)

p̃+ε ⇀

(∫
A
a12 dy

)
∂u+∗1
∂x2

−
(∫

A
a11 dy

)
∂u+∗2
∂x2

weakly in L2(Ω+). (4.4.30)

Proof of Claim 1(a): Since the sequence {u+
ε } is uniformly bounded in

(
H1 (Ω+

ε )
)2
,

employing Proposition 1.4.3 (v), we have the sequence {T ε(u+
ε )} is uniformly bounded

in L2
(
0, 1;

(
H1 ((h1, h2)× A)

)2)
. Thus, we establish (4.4.26) and have the following

convergences

∂T ε(u+
ε )

∂x2
⇀

∂u+
∗

∂x2
weakly in

(
L2
(
Ω+ × A

))2
, (4.4.31)

∂T ε(u+
ε )

∂y
⇀

∂u+
∗

∂y
weakly in

(
L2
(
Ω+ × A

))2
. (4.4.32)

Employing Proposition 1.4.3 (iv) in (4.4.32), we obtain
∂u+

∗
∂y

= 0. This gives

the independence of u+
∗ on the variable y and therefore it belongs to the space

L2
(
0, 1;

(
H1 (g1, g2)

)2)
. Also, in view of Proposition 1.4.3 (viii) and (4.4.26), we get

(4.4.27). Again, employing Proposition 1.4.3 (iv), (vii) in (4.4.31), we obtain

∂̃u+
ε

∂x2
⇀

∫
A

∂u+
∗

∂x2
dy weakly in

(
L2
(
Ω+
))2

, (4.4.33)

which gives (4.4.29) upon using the independence of u+
∗ on the variable y.

Next, from the uniform bounds of the sequences {∇u+
ε } and {p+ε }, we obtain the uniform

bounds for corresponding unfolded sequences {T ε(∇u+
ε )} and {T ε (p+ε )} in the respective

spaces
(
L2
(
Ω+ × A

))2×2
and L2 (Ω+ × A). Therefore, up to a subsequence not relabeled,

there exists G := [G1, G2]
t and g+ respectively in

(
L2 (Ω+ × A)

)2×2
and L2 (Ω+ × A),

such that we have the following convergences

T ε
(
∇u+

ε

)
⇀ G weakly in

(
L2
(
Ω+ × A

))2×2
, (4.4.34)

T ε
(
p+ε
)
⇀ g+ weakly in L2

(
Ω+ × A

)
, (4.4.35)

where G1 and G2 are the row vectors of the matrix G and are given as (G
1
1 G

2
1) and

(G
1
2 G

2
2), respectively. Also, in view of Proposition 1.4.3 (vii), and on (4.4.34) and
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(4.4.35), we obtain the following convergences

∂̃u+
ε

∂x1
⇀

∫
A
G1 dy weakly in

(
L2
(
Ω+
))2

, (4.4.36)

p̃+ε ⇀

∫
A
g+ dy weakly in L2

(
Ω+
)
. (4.4.37)

Identification of G1, G2 and g+: In view of Proposition 1.4.3 (iv), we get the following

identification for G2 upon comparing (4.4.31) with (4.4.34)

G2 =
∂u+

∗
∂x2

a.e. in Ω+ × A. (4.4.38)

Next, we will identify G1 and after that g+. Let us define ϕε(x) = εϕ(x1, x2)ψ{x1
ε }, where

ϕ ∈ C∞
c (Ω+) and ψ ∈ C∞

per((0, 1)). Then, we obtain T ε (ϕε) = εT ε(ϕ)ψ(y) and have the

following convergences

T ε (ϕε) → 0 strongly in L2(Ω+ × A), (4.4.39a)

T ε (∇ϕε) → ϕ
∂ψ

∂y
e1 strongly in

(
L2(Ω+ × A)

)2
. (4.4.39b)

Fixing l ∈ {1, 2} and using v = ϕεel as a test function in (4.2.3) obeyed by the state uε,

we get

2∑
i,j,l=1

∫
Ω+

ε

aij

(
x,
x1
ε

)∂u+εl
∂xj

∂ϕε

∂xl
dx−

∫
Ω+

ε

p+ε
∂ϕε

∂xl
dx =

∫
Ω+

ε

θ
+
εl ϕ

ε dx. (4.4.40)

In view of Proposition 1.4.3 (iii), (ii), (iv) and Definition 1.4.2 of unfolding operator, we

get from (4.4.40)

2∑
i,j,l=1

∫
Ω+×A

aij(x, y)
∂T ε(u+εl)

∂xj

∂T ε(ϕε)

∂xl
dxdy −

∫
Ω+×A

T ε(p+ε )
∂T ε(ϕε)

∂xl
dxdy

=

∫
Ω+×A

T ε(θ
+
εl)T

ε(ϕε) dx1 dx2 dy.

(4.4.41)

Again, given the convergences (4.4.34), (4.4.35), (4.4.39), and (4.4.23), we derive for all

ϕ ∈ C∞
c (Ω+) and ψ ∈ C∞

per((0, 1)) under the passage of limit ε→ 0 in (4.4.41):

2∑
j=1

∫
Ω+×A

a1j(x, y) G
l
j ϕ

∂ψ

∂y
dx dy =


0 l = 2,∫
Ω+×A

g+ϕ
∂ψ

∂y
dx dy l = 1.

(4.4.42)

This implies that for almost every (x, y) ∈ Ω+ × A, we have

2∑
j=1

a1j(x, y) G
l
j =

 0 l = 2,

g+ l = 1.
(4.4.43)
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Taking ϕ ∈ C∞
c (Ω+) as a test function in (4.2.4) obeyed by state uε, and using Proposition

1.4.3 (ii), (iii), (4.4.34), and (4.4.38), we derive under the passage of limit ε→ 0∫
A

[
G

1
1 +

∂u+∗2
∂x2

]
dy = 0, for a.e.x ∈ Ω+.

This gives the following upon using the y−independence of u+
∗∫

A
G

1
1 dy = −|A| ∂u

+
∗2

∂x2
, for a.e.x ∈ Ω+. (4.4.44)

Next, in view of (4.4.44) and the first equation of (4.4.43), we get

G
2
1 = −a12(x, y)

a11(x, y)

∂u+∗2
∂x2

a.e. in Ω+ × A. (4.4.45)

This gives the following upon using the y−independence of u+
∗∫

A
G

2
1 dy = −

(∫
A

a12(x, y)

a11(x, y)
dy

)
∂u+∗2
∂x2

. (4.4.46)

Further, in view of (4.4.38), (4.4.44), and the last equation of (4.4.43), we get∫
A
g+ dy =

(∫
A
a12(x, y) dy

)
∂u+∗1
∂x2

−
(∫

A
a11(x, y) dy

)
∂u+∗2
∂x2

, a.e. in Ω+. (4.4.47)

Thus, comparing (4.4.36) with (4.4.44), and (4.4.46) establishes (4.4.28). Also, comparing

(4.4.37) with (4.4.47) establishes (4.4.30). The proof of Claim 1(a) is complete.

Claim 1(b): The pair (u+
∗ ,θ

+
∗ ) obeys the weak formulation of the system (4.3.21) over

Ω+.

Proof of Claim 1(b): Taking Φ ∈ (C∞
c (Ω+))

2
as a test function in the variational

formulation (4.2.3) obeyed by (uε, pε,θε) and employing Proposition 1.4.3 (iii), (ii), yields

2∑
i,j=1

∫
Ω+×A

T ε
(
aij(x,

x1
ε
)
)
T ε

(
∂u+

ε

∂xj

)
· T ε

(
∂Φ

∂xi

)
dx dy

−
∫
Ω+×A

T ε
(
p+ε
)
T ε

(
∂Φ1

∂x1
+
∂Φ2

∂x2

)
dx dy =

∫
Ω+×A

(T ε(f) + T ε(θ
+
ε )) · T ε (Φ) dx dy.

In view of Proposition 1.4.3 (vi) and convergences (4.4.23), (4.4.34), and (4.4.35), we

obtain under the passage of limit ε→ 0

2∑
i,j=1

∫
Ω+×A

aij(x, y) Gj · ∂Φ
∂xi

dx dy −
∫
Ω+×A

g+
(
∂Φ1

∂x1
+
∂Φ2

∂x2

)
dx dy

=

∫
Ω+×A

(f + θ+∗ ) ·Φ dx dy. (4.4.48)

Substituting the expression of g+ from (4.4.47) in (4.4.48), we get in view of first part of
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equation (4.4.42), the following simplification:

2∑
j=1

∫
Ω+

[∫
A
a2j(x, y)G

1
j dy

]
∂Φ1

∂x2
dx+

2∑
j=1

∫
Ω+

[∫
A
a2j(x, y)G

2
j dy

]
∂Φ2

∂x2
dx

−
2∑

j=1

∫
Ω+

[∫
A
a1j(x, y)G

1
j dy

]
∂Φ2

∂x2
dx =

∫
Ω+×A

(f + θ+∗ ) ·Φ dx dy.

Further, employing (4.4.38), (4.4.44), and (4.4.46) in the above equation, we get∫
Ω+

[(∫
A
a22(x, y)dy

)
∂u+∗1
∂x2

−
(∫

A
a21(x, y)dy

)
∂u+∗2
∂x2

]
∂Φ1

∂x2
dx

+

∫
Ω+

[
−
(∫

A
a12(x, y)dy

)
∂u+∗1
∂x2

+

(∫
A

(
a11 + a22 −

a12a21
a11

)
dy

)
∂u+∗2
∂x2

]
∂Φ2

∂x2
dx

=

∫
Ω+×A

(f + θ+∗ ) ·Φ dx dy.

Finally, using the definition of A+ from Section 4.3, we get for all Φ ∈ (C∞
c (Ω+))

2

∫
Ω+

A+
∂u+

∗
∂x2

:
∂Φ

∂x2
dx =

∫
Ω+×A

(f + θ+∗ ) ·Φ dxdy. (4.4.49)

We will simplify further the second integral on the right-hand side of equation (4.4.49).

Before doing so, we first state that it is an easy computation, omitted here, to obtain the

weak convergences for pair (vε, qε) satisfying (4.2.5) using the arguments similar to those

followed for pair (uε, pε). That is, we obtain the following weak convergences

T ε
(
v+ε
)
⇀ v+∗ weakly in L2

(
0, 1;

(
H1 ((h1, h2)× A)

)2)
,

ṽ+ε ⇀ |A|v+∗ weakly in L2
(
0, 1;

(
H1(h1, h2)

)2)
,

∂̃v+ε
∂x1

⇀ −
[
|A| e1 +

(∫
A

a21
a11

dy

)
e2

]
∂v+∗2
∂x2

+

[(∫
A

b12a11 − b12a12
a211

dy

)
e2

]
∂u+∗2
∂x2

weakly in
(
L2
(
Ω+
))2

,

∂̃v+ε
∂x2

⇀ |A| ∂v
+
∗

∂x2
weakly in

(
L2
(
Ω+
))2

,

q̃+ε ⇀

(∫
A
a21 dy

)
∂v+∗1
∂x2

−
(∫

A
a11 dy

)
∂v+∗2
∂x2

−
(∫

A
b12 dy

)
∂u+∗1
∂x2

−
(∫

A
b11 dy

)
∂u+∗2
∂x2

weakly in L2(Ω+),

where v+∗ is y−independent. Therefore, taking into account the characterization (4.2.6),

and the convergences (4.4.23) and the first one in (4.4.50), we derive under the passage of

limit ε→ 0

θ+∗ (x, y) = −1

τ
v+∗ (x), for a.e. (x, y) ∈

(
L2(Ω+ × A)

)2
.
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This implies that θ+∗ ∈
(
L2(Ω+)

)2
and is y−independent. Thus, for all Φ ∈ (C∞

c (Ω+))
2
,

we simplify the equation (4.4.49) as∫
Ω+

A+
∂u+

∗
∂x2

:
∂Φ

∂x2
dx = |A|

∫
Ω+

(f + θ+∗ ) ·Φ dx, (4.4.51)

which establishes Claim 1(b).

Step 2: In this step, we will obtain the homogenized OCP over Ω−.

Claim 2(a): For all φ ∈ (H1
0 (Ω

−))2, ψ ∈
(
L2
(
Ω−;H1

per

(
(0, 1)2

)))2
, and w ∈ L2(Ω−),

there exists a unique ordered quadruplet (u−
∗ , û

−, p̂−,θ−∗ ) ∈ (H1
0 (Ω

−))2 × (L2(Ω−;

H1
per

(
(0, 1)2

)
))2 × L2(Ω− × (0, 1)2)× (L2(Ω−))2 that solves the following limit system:



∫
Ω−×(0,1)2

A(x, y)
(
∇u−

∗ +∇yû
−(x, y)

)
: (∇φ+∇yψ) dx dy

−
∫
Ω−×(0,1)2

p̂−(x, y) (div(φ) + divy(ψ)) dx dy =

∫
Ω−

(f + θ−∗ ) ·φ dx

and

∫
Ω−

div(u−
∗ )w dx = 0,

(4.4.52)

and a unique ordered triplet (v−∗ , v̂
−, q̂−) ∈ (H1

0 (Ω
−))2 × (L2(Ω−;H1

per

(
(0, 1)2

)
))2 ×

L2(Ω− × (0, 1)2) that solves the following limit adjoint system:

∫
Ω−×(0,1)2

At(x, y)
(
∇v−∗ +∇yv̂

−(x, y)
)
: (∇φ+∇yψ) dx dy

−
∫
Ω−×(0,1)2

q̂−(x, y) (div(φ) + divy(ψ)) dx dy

=

∫
Ω−×(0,1)2

B(x, y)
(
∇u−

∗ +∇yû
−(x, y)

)
: (∇φ+∇yψ) dx dy

and

∫
Ω−

div(v−∗ )w dx = 0.

(4.4.53)

Proof of Claim 2(a): Here, we will furnish the proof of (4.4.52). Analogously, one can

easily establish (4.4.53). Towards the proof of (4.4.52), we will employ the unfolding

operator technique for the fixed domain, as discussed in Chapter 1, Section 1.4.2. Since

the sequences {u−
ε } and {p−ε } are respectively uniformly bounded in

(
H1 (Ω−)

)2
and

L2(Ω−), we employ Proposition 1.4.1 (i) to have the uniform boundedness of the sequences

{T ∗
ε (∇u−

ε )}, and {T ∗
ε (p

−
ε )} in the respective spaces (L2(Ω− × (0, 1)2))2×2, and L2(Ω− ×

(0, 1)2). Further, upon employing Proposition 1.4.2 and Proposition 1.4.1 (v), there exist

subsequences not relabelled and functions û− with M(0,1)2(û
−) = 0, u−

∗ , and p̂
− in spaces

(L2(Ω−;H1
per(0, 1)

2))2, (H1(Ω−))2, and L2(Ω− × (0, 1)2), respectively, such that

u−
ε ⇀ u−

∗ weakly in (H1(Ω−))2, (4.4.54a)

T ∗
ε

(
∇u−

ε

)
⇀ ∇u−

∗ +∇yû
− weakly in (L2(Ω− × (0, 1)2))2×2, (4.4.54b)

T ∗
ε

(
p−ε
)
⇀ p̂− weakly in L2(Ω− × (0, 1)2), (4.4.54c)
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p−ε ⇀M(0,1)2(p̂
−) weakly in L2(Ω−). (4.4.54d)

Choose the function ϕε = φ(x) + εϕ(x)ξ(xε ), where, φ(x) ∈ D(Ω−)2, ϕ(x) ∈ D(Ω−),

and ξ(xε ) ∈ (H1
per(0, 1)

2)2. Applying the unfolding operator for fixed domain, we have

T ∗
ε (ϕε) = T ∗

ε (φ(x)) + εT ∗
ε (ϕ(x))T

∗
ε (ξ(y)), which under the passage of limit gives:

T ∗
ε (ϕε) → φ(x) strongly in (L2(Ω+ × (0, 1)2))2, (4.4.55a)

T ∗
ε (∇ϕε) → ∇φ(x) + ϕ∇yξ(y) strongly in (L2(Ω+ × (0, 1)2))2×2. (4.4.55b)

Taking ϕε as a test function in the weak formulation (4.2.3), employing unfolding operator

with Proposition 1.4.1 (i), (ii), and the convergences (4.4.54) and (4.4.55), we get the

first equation of (4.4.52) under the passage of limit, which remains valid for every φ ∈
(H1

γ′
l
(Ω−))2 and ϕ ξ = ψ ∈ (L2(Ω−;H1

per(0, 1)
2))2, by density. Further, for all w ∈ L2(Ω−),

we have

∫
Ω−

div(u−
ε )w dx = 0. Now, upon applying unfolding on it and using Proposition

1.4.1 (i), (ii) along with convergence (4.4.54b), we get under the passage of limit ε → 0,∫
Ω−×(0,1)2

(
div(u−

∗ ) + divy(û
−)
)
w dxdy = 0, which eventually gives upon using the fact

that û− is (0, 1)2− periodic, for all w ∈ L2(Ω−), the second equation of (4.4.52). Thus,

the proof of Claim 2(a) is settled. Next, we are going to identify the limit functions û− and

p̂−. The identification for the adjoint counterparts, viz., v̂− and q̂−, follows analogously.

Identification of û−, v̂−, p̂−, q̂−: Taking sucessively φ ≡ 0 and ψ ≡ 0 in (4.4.52),

yields

−divy
(
A(x, y)∇yû

−(x, y)
)
+∇yp̂

−(x, y) = divy(A(x, y))∇u−
∗ (x) in Ω− × (0, 1)2,

−divx

(∫
(0,1)2

A(x, y)
(
∇u−

∗ (x) +∇yû
−) dy)+∇

(∫
(0,1)2

p̂−dy

)
= f + θ−∗ in Ω−,

div(u−
∗ ) = 0 in Ω−,

û−(x, ·) is (0, 1)2 − periodic.

(4.4.56)

In the first line of (4.4.56), we have the y-independence of ∇u−
∗ (x) and the linearity of

operators, viz., divergence and gradient, which suggests û−(x, y) and p̂−(x, y) to be of the

following form (see, for e.g., [63, Page 15]):
û−(x, y) = −

2∑
j,β=1

χβ
j (y)

∂u−∗j
∂xβ

+ u1(x),

p̂−(x, y) =
2∑

j,β=1

Πβ
j (y)

∂u−∗j
∂xβ

+ p−∗ (x),

(4.4.57)

where the ordered pair (u1, p
−
∗ ) ∈ (H1(Ω−))2 × L2(Ω−) and for 1 ≤ j, β ≤ 2, the pair

(χβ
j ,Π

β
j ) satisfy the cell problem (4.3.17). Likewise, we obtain for the corresponding
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adjoint weak formulation (4.4.53):

−divy(A
t(x, y)∇yv̂

−(x, y)) +∇y q̂
−(x, y) = divy(A

t(x, y))∇v−∗ (x)

−divy(B(x, y)(∇u−
∗ (x) +∇yû

−(x, y))) in Ω− × (0, 1)2,

−divx

(∫
(0,1)2

At(x, y)(∇v−∗ (x) +∇yv̂
−(x, y))dy

)
+∇

(∫
(0,1)2

q̂−(x, y) dy

)
= −divx

(∫
(0,1)2 B(x, y)(∇u−

∗ (x) +∇yû
−(x, y))dy

)
in Ω−,

div(v−∗ ) = 0 in Ω−,

v̂−(x, ·) is (0, 1)2 − periodic,

(4.4.58)

and 
v̂−(x, y) = −

2∑
j,β=1

Hβ
j (y)

∂v−∗j
∂xβ

+
2∑

j,β=1

T β
j (y)

∂u−∗j
∂xβ

+ v1(x),

q̂−(x, y) =

2∑
j,β=1

Qβ
j (y)

∂v−∗j
∂xβ

−
2∑

j,β=1

Rβ
j (y)

∂u−∗j
∂xβ

+ q−∗ (x),

(4.4.59)

where the ordered pair (v1, q
−
∗ ) ∈ (H1(Ω−))2 × L2(Ω−) and for 1 ≤ j, β ≤ 2, the pair

(Hβ
j , Q

β
j ) satisfy the cell problem (4.3.18).

Identification of M(0,1)2(p̂
−) and M(0,1)2(q̂

−): Choosing the test function y = (y1, y2)

in the weak formulation of (4.3.17), we get

2∑
i,l,m,α=1

∫
(0,1)2

alm
∂

∂ym

(
P β
j − χβ

j

)
· ∂P

α
i

∂yl

∂yi
∂yα

dy = 2

∫
(0,1)2

Πβ
j dy. (4.4.60)

In view of (4.4.54d), (4.4.57), and (4.4.60), we observe that

M(0,1)2(p̂
−) =

1

2

2∑
i,j,l,m,α,β=1

∫
(0,1)2

alm
∂

∂ym

(
P β
j − χβ

j

)
· ∂P

α
i

∂yl

∂yi
∂yα

∂u−∗j
∂xβ

dy + p−∗ ,

which upon using the definition of aαβij , gives

M(0,1)2(p̂
−) =

1

2

2∑
i,j,α,β=1

aαβij
∂u−∗j
∂xβ

∂yi
∂yα

+ p−∗ . (4.4.61)

Also, we re-write (4.4.61) to get the identification of M(0,1)2(p̂
−) as

M(0,1)2(p̂
−) =

1

2
A0∇u−

∗ : I + p−∗ . (4.4.62)

Likewise, one can obtain the identification of M(0,1)2(q̂
−) as

M(0,1)2(q̂
−) =

1

2
(At

0∇v−∗ : I −Bt
0∇u−

∗ : I) + q−∗ . (4.4.63)
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Thus, from (4.4.54d) and (4.4.62), we have identified in the following the weak limit for

pε and likewise for its associated adjoint counterpart qε:

pε ⇀
1

2
A0∇u−

∗ : I + p−∗ weakly in L2(Ω−), (4.4.64a)

qε ⇀
1

2
(At

0∇v−∗ : I −Bt
0∇u−

∗ : I) + q−∗ weakly in L2(Ω−). (4.4.64b)

Claim 2(b): The pairs (u−
∗ , p

−
∗ ) and (v−∗ , q

−
∗ ) respectively obey the weak formulation of

systems (4.3.21) and (4.3.22) over Ω−.

Proof of Claim 2(b): Substituting the values of û−(x, y) , p̂−(x, y), v̂−(x, y), and q̂−(x, y)

from expressions (4.4.57) and (4.4.59) with ψ ≡ 0 into equation (4.4.52) and (4.4.53), we

get, respectively,

∫
Ω−×(0,1)2

A(x, y)

∇u−
∗ −

2∑
j,β=1

∇yχ
β
j (y)

∂u−∗j
∂xβ

 : ∇φ dx dy (4.4.65)

−
2∑

j,β=1

∫
Ω−×(0,1)2

Πβ
j (y)

∂u−∗j
∂xβ

div(φ)dx dy −
∫
Ω−

p−∗ (x) div(φ)dx =

∫
Ω−

(f + θ−∗ ) ·φ dx

and

∫
Ω−×(0,1)2

At(x, y)

∇v−∗ −
2∑

j,β=1

∇yH
β
j (y)

∂v−∗j
∂xβ

+
2∑

j,β=1

∇yT
β
j (y)

∂u−∗j
∂xβ

 : ∇φ dx dy

−
2∑

j,β=1

∫
Ω−×(0,1)2

[
Qβ

j (y)
∂v−∗j
∂xβ

−Rβ
j (y)

∂u−∗j
∂xβ

]
div(φ)dx dy −

∫
Ω−

q−∗ (x) div(φ)dx

=

∫
Ω−×(0,1)2

B(x, y)

∇u−
∗ −

2∑
j,β=1

∇yχ
β
j (y)

∂u−∗j
∂xβ

 : ∇φ dx dy. (4.4.66)

With P β
j = yjeβ, we can express the terms ∇u−

∗ ,∇u−
∗ ,∇φ, and div(φ) as

∇u−
∗ =

2∑
j,β=1

∇yP
β
j

∂u−∗j
∂xβ

, ∇v−∗ =

2∑
j,β=1

∇yP
β
j

∂v−∗j
∂xβ

,

∇φ =
2∑

i,α=1

∇yP
α
i

∂φi

∂xα
, div(φ) =

2∑
i,α=1

divy(P
α
i )

∂φi

∂xα
.

Substituting these expressions in (4.4.65) and (4.4.66), we obtain, respectively

2∑
i,j,α,β=1

∫
Ω−

(∫
(0,1)2

A(x, y)∇y(P
β
j − χβ

j ) : ∇yP
α
i dy

)
∂u−∗j
∂xβ

∂φi

∂xα
dx

−
2∑

i,j,α,β=1

∫
Ω−

(∫
(0,1)2

Πβ
j divy(P

α
i )dy

)
∂u−∗j
∂xβ

∂φi

∂xα
dx−

∫
Ω−

p−∗ div(φ)dx (4.4.67)
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=

∫
Ω−

(f + θ−∗ ) ·φdx (4.4.68)

and

2∑
i,j,α,β=1

∫
Ω−

(∫
(0,1)2

At(x, y)∇y(P
β
j −Hβ

j ) : ∇yP
α
i dy

)
∂v−∗j
∂xβ

∂φi

∂xα
dx

+

2∑
i,j,α,β=1

∫
Ω−

(∫
(0,1)2

At(x, y)∇yT
β
j : ∇yP

α
i dy

)
∂u−∗j
∂xβ

∂φi

∂xα
dx

−
2∑

i,j,α,β=1

[∫
Ω−

(∫
(0,1)2

Qβ
j divy(P

α
i )dy

)
∂v−∗j
∂xβ

−
∫
Ω−

(∫
(0,1)2

Rβ
j divy(P

α
i )dy

)
∂u−∗j
∂xβ

]
∂φi

∂xα
dx−

∫
Ω−

p−∗ div(φ)dx

=
2∑

i,j,α,β=1

∫
Ω−

(∫
(0,1)2

B(x, y)∇y(P
β
j − χβ

j ) : ∇yP
α
i dy

)
∂u−∗j
∂xβ

∂φi

∂xα
dx. (4.4.69)

Now, choosing the test functions χα
i , H

α
i , and T

α
i in the weak formulation of (4.3.17),

(4.3.18), and (4.3.19), respectively, we get upon using the fact that divy(χ
α
i ) = divy(H

α
i ) =

divy(T
α
i ) = divy(P

α
i ) = δiα, where δ denotes the Kronecker delta function, the following:∫

(0,1)2
A(x, y)∇y

(
P β
j − χβ

j

)
: ∇yχ

α
i dy =

∫
(0,1)2

Πβ
j δiα dy, (4.4.70)

∫
(0,1)2

At(x, y)∇y

(
P β
j −Hβ

j

)
: ∇yH

α
i dy =

∫
(0,1)2

Qβ
j δiα dy, and (4.4.71)

∫
(0,1)2

(
B(x, y)∇y(P

β
j − χβ

j −At(x, y)∇yT
β
j

)
: ∇yT

α
i dy =

∫
(0,1)2

Rβ
j δiα dy. (4.4.72)

Further, substituting (4.4.70) in (4.4.67), and (4.4.71) and (4.4.72) in (4.4.69), we obtain

2∑
i,j,α,β=1

∫
Ω−

(∫
(0,1)2

A(x, y)∇y(P
β
j − χβ

j ) : ∇y(P
α
i − χα

i ) dy

)
∂u−∗j
∂xβ

∂φi

∂xα
dx

−
∫
Ω−

p−∗ div(φ) dx =

∫
Ω−

(f + θ−∗ ) ·φ dx (4.4.73)

and

2∑
i,j,α,β=1

∫
Ω−

(∫
(0,1)2

At(x, y)∇y(P
β
j −Hβ

j ) : ∇y(P
α
i −Hα

i ) dy

)
∂v−∗j
∂xβ

∂φi

∂xα
dx

−
2∑

i,j,α,β=1

∫
Ω−

[ ∫
(0,1)2

(
B(x, y)∇y(P

β
j − χβ

j )−At(x, y)∇yT
β
j

)
:

∇y(P
α
i − T β

j ) dy

]
∂u−∗j
∂xβ

∂φi

∂xα
dx−

∫
Ω−

q−∗ div(φ) dx = 0. (4.4.74)
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Also, we can write (4.4.73) and (4.4.74) as

2∑
i,j,α,β=1

∫
Ω−

dαβij
∂u−∗j
∂xβ

∂φi

∂xα
dx−

∫
Ω−

p−∗ div(φ) dx =

∫
Ω−

(f + θ−∗ ) ·φ dx and (4.4.75)

2∑
i,j,α,β=1

∫
Ω−

dβαji
∂v−∗j
∂xβ

∂φi

∂xα
dx−

∫
Ω−

q−∗ div(φ) dx =
2∑

i,j,α,β=1

∫
Ω−

b#−
αβ

ij

∂u−∗j
∂xβ

∂φi

∂xα
dx,

(4.4.76)

which holds true for all φ ∈ (H1
0 (Ω

−))2. Also, from (4.4.52)-(4.4.53), we have∫
Ω− div(u−

∗ )w dx =
∫
Ω− div(v−∗ )w dx = 0, for every w ∈ L2(Ω−). This together with

equations (4.4.75) and (4.4.76) imply that, for θ− = θ−∗ , the pairs (u−
∗ , p

−
∗ ) and (v−∗ , q

−
∗ )

in space (H1
0 (Ω

−))2×L2(Ω−) respectively satisfy the variational formulation of the systems

(4.3.21) and (4.3.22) over Ω−. This establishes Claim 2(b).

Step 3: Taking Ψ ∈
(
C∞
γ′
l
(Ω)
)2

as a test function in (4.2.3), we obtain

∫
Ω+

ε

Aε∇u+
ε : ∇Ψ dx+

∫
Ω−

Aε∇u−
ε : ∇Ψ dx−

∫
Ω+

ε

p+ε div(Ψ) dx−
∫
Ω−

p−ε div(Ψ) dx

=

∫
Ω+

ε

(f + θ+ε ) ·Ψ dx+

∫
Ω−

(f + θ−ε ) ·Ψ dx. (4.4.77)

In view of the preceding Steps, we have,

lim
ε→0

[∫
Ω+

ε

Aε∇u+
ε : ∇Ψ dx−

∫
Ω+

ε

p+ε div(Ψ) dx−
∫
Ω+

ε

(f + θ+ε ) ·Ψ dx

]
=

∫
Ω+

A+
∂u+

∂x2
:
∂Ψ

∂x2
dx− |A|

∫
Ω+

(f + θ+∗ ) ·Ψ dx and (4.4.78)

lim
ε→0

[∫
Ω−

Aε∇u−
ε : ∇Ψdx−

∫
Ω−

p−ε div(Ψ)dx−
∫
Ω−

(f + θ−ε ) ·Ψdx
]

=

2∑
i,j,α,β=1

∫
Ω−

dαβij
∂u−∗j
∂xβ

∂Ψi

∂xα
dx−

∫
Ω−

p−∗ div(Ψ)dx−
∫
Ω−

(f + θ−∗ ) ·Ψ dx. (4.4.79)

Thus, using (4.4.78) and (4.4.79) in (4.4.77), we get by density for all Ψ ∈
(
Uγ′

l
(Ω)
)2

∫
Ω+

A+
∂u+

∂x2
:
∂Ψ

∂x2
dx+

2∑
i,j,α,β=1

∫
Ω−

dαβij
∂u−∗j
∂xβ

∂Ψi

∂xα
dx−

∫
Ω−

p−∗ div(Ψ)dx

= |A|
∫
Ω+

(f + θ+∗ ) ·Ψ dx+

∫
Ω−

(f + θ−∗ ) ·Ψ dx.

Further, we define θ∗ = θ+∗ χΩ+ + θ−∗ χΩ− , which clearly belongs to (L2(Ω))2. Also, we

define u∗ = u
+
∗ χΩ++u−

∗ χΩ− , which belongs to
(
Uσ,γ′

l
(Ω)
)2

(see, [57, Theorem 4.2]). Thus,

we obtain the optimality system for the minimization problem (4.3.20). Also, in view of
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Theorem 4.3.1, we conclude (u∗, p
−
∗ ,θ∗) forms an optimal triplet to (4.3.20). Finally,

upon considering the optimal solution’s uniqueness, we establish that the subsequent pair

of triplets are equal:

(u, p,θ) = (u∗, p
−
∗ ,θ∗).

The proof of Theorem 4.4.1 is complete.

4.5 Conclusion

In this chapter, we address the homogenization of a distributive OCP constrained by

the more generalized stationary Stokes equation, which incorporates a unidirectional

oscillating coefficient matrix, posed in a two-dimensional oscillating domain. Our analysis

focuses on a Dirichlet-type cost functional, also involving a unidirectional oscillating

coefficient matrix. By employing the unfolding operator as a key tool, we characterize

the optimal control and delve into the homogenization process of this OCP. Notably,

the presence of oscillating matrices in both the governing Stokes equations and the cost

functional adds complexity to the analysis. Consequently, we derive the limit OCP,

incorporating a perturbed tensor in the convergence analysis.
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Chapter 5

Distributive Optimal Control

Problem in a Perforated Domain

This chapter† studies the asymptotic analysis of the optimal control problem (OCP)

constrained by the stationary Stokes equations in a periodically perforated domain. We

subject the interior region of it with distributive controls. The Stokes operator considered

involves the oscillating coefficients for the state equations. We characterize the optimal

control and, upon employing the method of periodic unfolding, establish the convergence

of the solutions of the considered OCP to the solutions of the limit OCP governed by

stationary Stokes equations over a non-perforated domain. The convergence of the cost

functional is also established.

5.1 Introduction

In this chapter, we consider the optimal control problem (OCP) governed by generalized

stationary Stokes equations in an n-dimensional (n ≥ 2) periodically perforated domain

O∗
ε (see, Section 5.2, for detailed configuration of the domain). The size of holes in the

perforated domain is of the same order as that of the period, and the holes are allowed

to intersect the boundary of the domain. The control is applied in the interior region of

the domain, and we wish to study the asymptotic analysis (homogenization) of an interior

OCP subject to the constrained stationary Stokes equations with oscillating coefficients.

One can find several works in the literature regarding the homogenization of Stokes

equations over a perforated domain. Using the multiple-scale expansion method, the

authors in [66] studied the homogenization of Stokes equations in a porous medium with

the Dirichlet boundary condition on the boundary of the holes. They obtained the Darcy’s

law as the limit law in the homogenized medium. In [67], the authors considered the

Stokes system in a periodically perforated domain with non-homogeneous slip boundary

conditions depending upon some parameter γ. Upon employing the Tartar’s method of

oscillating test functions they obtained under homogenization, the limit laws, viz., Darcy’s

law ( for γ < 1), Brinkmann’s law (for γ = 1), and Stokes’s type law (for γ > 1). In [68],

the author studied a similar problem using the method of periodic unfolding in perforated

domains by [69]. Further, the type of behavior as seen in [67] was already observed in

†The content of this chapter is published in: “S. Garg and B. C. Sardar. Optimal control problem for
Stokes’ system: Asymptotic analysis via unfolding method in a perforated domain. Electron. J. Differential
Equations, 2023(80):1-20, 2023.”
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[70] by the authors while studying the homogeneous Fourier boundary conditions for the

two-dimensional Stokes equation. Likewise, in [71, 72], the author examined the Stokes

equation in a perforated domain with holes of size much smaller than the small positive

parameter ε, wherein they considered the boundary conditions on the holes to be of the

Dirichlet type in [72] and the slip type in [71]. The domain geometry, more specifically,

the size of the holes, determines the kind of limit law in these works. Also, the author in

[73] employed the Γ− convergence techniques to get comparable results.

A few works concern the homogenization of the OCPs governed by the elliptic systems

over the periodically perforated domains with different kinds of boundary conditions on

the boundary of holes (of the size of the same order as that of the period). In this regard,

with the use of different techiniques, viz., H0−convergence in [74], two-scale convergence in

[75], and unfolding methods in [76, 77], the homogenized OCPs were thus obtained over the

non-perforated domains. Further, the homogenization of OCPs subject to the boundary

value problems concerning the steady Stokes equations mainly comprise the boundary

conditions of the type: Dirichlet, Navier slip-friction, Neumann, Mixed, etc. The authors

in [78] studied the homogenization of the OCPs subject to the Stokes equations with

Dirichlet boundary conditions on the boundary of holes, where the size of the holes is of the

same order as that of the period. Here, the authors could obtain the homogenized system,

pertaining only to the case when the set of admissible controls was unconstrained. For

more literature concerning the homogenization of optimal control problems in perforated

domains, the reader is referred to [79–82] and the references therein. Also, over another

type of oscillating domain, one can refer to the recent work [57] for the case of mixed

boundary value problem for the Stokes system, wherein the authors homogenized the

stationary Stokes system subject to the mixed boundary condition comprising of the

Neumann boundary condition on the highly oscillating boundary and the homogeneous

Dirichlet boundary condition on the base part of the domain’s boundary. Very recently, the

authors in [83] studied the asymptotic analysis of the Stokes system with mixed boundary

conditions of similar type on the thin oscillating domain. Furthermore, pertaining to

the Navier-Stokes equations, the existence of the solutions to the mixed boundary value

problem has been established by the authors in [84] for 2D bounded domain. For more

literature related to the Stokes system with mixed boundary conditions, one may refer to

[85–87] and the references therein.

The present chapter introduces an interior OCP subject to the generalized stationary

Stokes equations in a periodically perforated domain O∗
ε . We employ mixed boundary

data on the boundary of the perforated domain, i.e., on the boundary of holes that

do not intersect the outer boundary, the homogeneous Neumann boundary condition is

prescribed, while on the rest part of the boundary, the homogeneous Dirichlet boundary

condition is prescribed. The underlying objective of this chapter is to study the

homogenization of this OCP. More specifically, we consider the minimization of the

L2−cost functional (5.3.1), which is subject to the constrained generalized stationary

Stokes equations (5.3.2).
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The Stokes equations are generalized in the sense that we consider a second-order

elliptic linear differential operator in divergence form with oscillating coefficients, i.e.,

−div (Aε∇), first studied for the fixed domain in [5, Chapter 1], instead of the classical

Laplacian operator, which later on was studied by various authors for different types of

ε−dependent varying domains. For instance, we studied in Chapter 3 the generalized

stationary Stokes equation for the two-dimensional oscillating domain. Here, the action

of the scalar operator −div (Aε∇) is defined in a “diagonal” manner on any vector

u = (u1, . . . , un), with components u1, . . . , un in the H1 Sobolev space. That is, for

1 ≤ i ≤ n, we have (−div (Aε∇u))i = −div (Aε∇ui). The main difficulty observed

during the homogenization was identifying the limit pressure terms appearing in the state

and the adjoint systems, which we overcame by introducing suitable corrector functions

that solved some cell problems. We thus obtained the limit OCP associated with the

stationary Stokes equation in a non-perforated domain.

The layout of this chapter is as follows: In the next section, we introduce the periodically

perforated domain O∗
ε . Section 5.3 is devoted to a detailed description of the considered

OCP and the derivation of the optimality condition, followed by the characterization of

the optimal control. In Section 5.4, we derive a priori estimates of the solutions to the

considered OCP and its corresponding adjoint problem. In Section 5.5, we recall the

definition of the method of periodic unfolding in perforated domains (see, [88, 89]) and

a few of its properties. Section 5.6, refers to the limit (homogenized) OCP. Finally, we

derive the main convergence results in Section 5.7 followed by some important remarks.

5.2 Domain Description

Let {b1, ..., bn} be a basis of Rn (n ≥ 2), and W be the associated reference cell defined as

W =

{
w ∈ Rn |w =

n∑
i=1

wibi, (w1, . . . , wn) ∈ (0, 1)n

}
.

Let us denote O, W, and W ∗ =W\Y by an open bounded subset of Rn, a compact subset

of W , and the perforated reference cell, respectively. Here, Y ⊂ W is an open set with

the assumption that the boundary of Y is Lipschitz continuous and has a finite number

of connected components.

Also, let ε > 0 be a sequence that converges to zero and set

T =

{
ζ ∈ Rn | ζ =

n∑
i=1

zibi, (z1, . . . , zn) ∈ Zn

}
, Zε = {ζ ∈ T | ε(ζ +W ) ⊂ O} .

We take into account the perforated domain O∗
ε (see, Figure 5.1) given by O∗

ε = O\Yε,
where Yε = ∪ζ∈T ε(ζ + Y ). Now, let us denote Ôε as the interior of the largest union of

ε(ζ+W ) cells such that ε(ζ+W ) ⊂ O, while Λε ⊂ O as containing the parts from ε(ζ+W )
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Figure 5.1: The Perforated domain O∗
ε and the reference cell W.

cells intersecting the boundary ∂O. More precisely, we write Λε = O\Ôε, where

Ôε = interior
{
∪ζ∈Zε ε(ζ +W )

}
.

The associated perforated domains are defined as

Ô∗
ε = Ôε\Yε, Λ̂∗

ε = O∗
ε\Ô∗

ε .

Also, we denote the boundary of the perforated domain O∗
ε as

∂O∗
ε = Γε

1 ∪ Γε
0, where Γε

1 = ∂Ôε ∩ ∂Yε andΓε
0 = ∂O∗

ε\Γε
1,

which means that Γε
1 denotes the boundary of set of holes contained in Ôε.

In Figure 5.1, Ô∗
ε and Λ̂∗

ε respectively represent the dark perforated part and the remaining

part of the perforated domain O∗
ε . While, Γε

1 and Γε
0 respectively represent the boundary

of holes contained in Ô∗
ε a nd the boundary of holes contained in Λ̂∗

ε along with the outer

boundary ∂O.

5.3 Problem Description and Optimality Condition

Let us consider the following OCP associated with Stokes system:

inf
θε∈(L2(O∗

ε ))
n

{
Jε(θε) =

1

2

∫
O∗

ε

|uε(θε)− ud|2 +
τ

2

∫
O∗

ε

|θε|2
}
, (5.3.1)

subject to 

−div (Aε∇uε) +∇pε = θε in O∗
ε ,

div(uε) = 0 in O∗
ε ,

µε ·Aε∇uε − pεµε = 0 on Γε
1,

uε = 0 on Γε
0,

(5.3.2)
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where the target state ud = (ud1 , . . . , udn) is defined on the space (L2(O))n, and θε is

a control function defined on the space
(
L2(O∗

ε)
)n
. Here, the matrix Aε(x) = A(xε ),

where A(x) = (aij(x))1≤i,j≤n defined on the space (L∞(O))n×n is assumed to obey the

uniform ellipticity condition: there exist real constants m, M > 0 such that m||λ||2 ≤∑n
i,j=1 aij(x)λiλj ≤ M ||λ||2 for all λ ∈ Rn, which is endowed with an Eucledian norm

denoted by || · ||. Also, we understand the action of scalar boundary operator µε · Aε∇
on the vector uε|Γε

1
in a “diagonal” manner: (µε ·Aε∇uε)i = µε · Aε∇uεi, for 1 ≤ i ≤ n,

where µε denotes the outward normal unit vector to Γε
1.

We introduce the function space (H1
Γε
0
(O∗

ε))
n := {ϕ ∈ (H1(O∗

ε))
n | ϕ|Γε

0
= 0}. This is a

Banach space endowed with the norm

||ϕ||(H1
Γε
0
(O∗

ε ))
n := ||∇ϕ||(L2(O∗

ε ))
n×n , ∀ϕ ∈ (H1

Γε
0
(O∗

ε))
n.

Definition 5.3.1. We say a pair (uε, pε) ∈ (H1
Γε
0
(O∗

ε))
n × L2(O∗

ε) is a weak solution to

(5.3.2) if, for all ϕ ∈ (H1
Γε
0
(O∗

ε))
n,∫

O∗
ε

Aε∇uε : ∇ϕ dx−
∫
O∗

ε

pε div(ϕ) dx =

∫
O∗

ε

θε · ϕ dx (5.3.3)

and for all w ∈ L2(O∗
ε), ∫

O∗
ε

div(uε) w dx = 0. (5.3.4)

The existence of a unique weak solution (uε(θε), pε) ∈ (H1
Γε
0
(O∗

ε))
n×L2(O∗

ε) of the system

(5.3.2) follows analogous to [62, Theorem IV.7.1]. Also, for each ε > 0, there exists a

unique solution to the problem (5.3.1) that can be proved along the same lines as in [15,

Chapter 2, Theorem 1.2]. We call the optimal solution to (5.3.1) by the triplet (uε, pε,θε),

with uε, pε, and θε as optimal state, pressure, and control, respectively.

Optimality Condition: The optimality condition is given by J ′
ε(θ) · (θ−θε) ≥ 0, for all

θ ∈ (L2(O∗
ε))

n (see, [15, Chapter 2, Page 48]). One can obtain the further simplification

of this condition as
∫
O∗

ε
(vε + τ θε) · (θ − θε) ≥ 0, for all θ ∈ (L2(O∗

ε))
n (see, [15, Chapter

2]), where the pair (vε, qε) is the solution to the following adjoint problem:

−div
(
At

ε∇vε
)
+∇qε = uε − ud in O∗

ε ,

div(vε) = 0 in O∗
ε ,

µε ·At
ε∇vε − qεµε = 0 on Γε

1,

vε = 0 on Γε
0.

(5.3.5)

We call vε and qε, the adjoint state and pressure, respectively. The existence of unique

weak solution (vε, qε) to (5.3.5) can now be proved in a way similar to that of system

(5.3.2).

The following theorem characterizes the optimal control, the proof of which follows

analogous to standard procedure laid in [15, Chapter 2, Theorem 1.4].
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Theorem 5.3.2. Let
(
uε, pε,θε

)
be the optimal solution of the problem (5.3.1) and

(vε, qε) solves (5.3.5), then the optimal control is characterized by

θε = −1

τ
vε a.e. in O∗

ε . (5.3.6)

Conversely, suppose that a triplet (ǔε, p̌ε, θ̌ε) ∈
(
H1

Γε
0
(O∗

ε)
)n

× L2(O∗
ε) ×

(
L2(O∗

ε)
)n

and

a pair (v̌ε, q̌ε) ∈
(
H1

Γε
0
(O∗

ε)
)n

× L2(O∗
ε) solves the following system:



−div (Aε∇ǔε) +∇p̌ε = − 1
τ v̌ε in O∗

ε ,

−div
(
At

ε∇v̌ε
)
+∇q̌ε = ǔε − ud in O∗

ε ,

div(ǔε) = 0, div(v̌ε) = 0 in O∗
ε ,

µε ·Aε∇ǔε − p̌εµε = 0 on Γε
1,

µε ·At
ε∇v̌ε − q̌εµε = 0 on Γε

1,

v̌ε = 0, ǔε = 0 on Γε
0.

Then the triplet (ǔε, p̌ε,− 1
τ v̌ε) is the optimal solution of (5.3.1).

5.4 A Priori Estimates

This section concerns the derivation of estimates for the optimal solution to the problem

(5.3.1) and the associated solution to the adjoint problem (5.3.5). These estimates are

uniform and independent of the parameter ε. Towards attaining this aim, we first evoke

the following two lemmas:

Lemma 5.4.1 (Lemma A.4, [90]). There exists a constant K ∈ R+, independent of ε,

such that

||v||L2(O∗
ε )

n ≤ K||∇v||(L2(O∗
ε ))

n×n , ∀ v ∈ (H1
Γε
0
(O∗

ε))
n.

Lemma 5.4.2 (Lemma 5.1, [70]). For each ε > 0 and qε ∈ L2(O∗
ε), there exists gε ∈

(H1
Γε
0
(O∗

ε))
n and a constant K ∈ R+, independent of ε, such that

div(gε) = qε and ||∇gε||(L2(O∗
ε ))

n×n ≤ K(O) ||qε||L2(O∗
ε )
. (5.4.7)

Theorem 5.4.3. For each ε > 0, let
(
uε, pε,θε

)
be the optimal solution of the problem

(5.3.1) and (vε, qε) solves the corresponding adjoint problem (5.3.5). Then, one has θε ∈
(H1

Γε
0
(O∗

ε))
n and there exists a constant K ∈ R+, independent of ε such that

∥∥θ̄ε∥∥(L2(O∗
ε ))

n ≤ K, (5.4.8)

∥ūε∥(H1
Γε
0
(O∗

ε ))
n ≤ K, (5.4.9)

∥v̄ε∥(H1
Γε
0
(O∗

ε ))
n ≤ K, (5.4.10)

∥p̄ε∥L2(O∗
ε )

≤ K, (5.4.11)
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∥q̄ε∥L2(O∗
ε )

≤ K. (5.4.12)

Proof. Let uε(0) denotes the solution to (5.3.2) corresponding to θε = 0. In view of

Lemma 5.4.1, one can show that ∥uε(0)∥(L2(O∗
ε ))

n ≤ 0, i.e., uε(0) = 0 in (L2(O∗
ε))

n.

Using this and the optimality of solution (uε, pε,θε) to problem (5.3.1), we have

∥uε(θ)− ud∥2(L2(O∗
ε ))

n + τ∥θε∥2(L2(O∗
ε ))

n ≤ ∥uε(0)− ud∥2(L2(O∗
ε ))

n ≤ K,

which gives estimate (5.4.8). Now, let us take uε as a test function in (5.3.3). Considering

(5.4.8) and the uniform ellipticity condition of matrix Aε, one obtains upon applying the

Cauchy-Schwarz inequality along with the Lemma 5.4.1, the following:

m∥∇uε∥2(L2(O∗
ε ))

n×n ≤
∫
O∗

ε

Aε∇uε : ∇uε dx ≤ C ∥θε∥(L2(O∗
ε ))

n∥∇uε∥(L2(O∗
ε ))

n×n ,

from which estimate (5.4.9) follows.

Owing to Lemma 5.4.2, for given pε ∈ L2(O∗
ε), there exists gε ∈ (H1

Γε
0
(O∗

ε))
n satisying

div(gε) = pε. Corresponding to θε, taking v = gε in (5.3.3), we get

∥pε∥2L2(O∗
ε )

=

∫
O∗

ε

Aε∇uε : ∇gε dx−
∫
O∗

ε

θε · gε dx. (5.4.13)

In view of (5.4.7), (5.4.8) and (5.4.9), and the uniform ellipticity condition of the matrix

Aε, one obtains from (5.4.13) upon employing the Cauchy-Schwarz inequality and Lemma

5.4.1, the following:

∥pε∥2L2(O∗
ε )

≤
(
M∥∇uε∥(L2(O∗

ε ))
n×n +K∥θε∥(L2(O∗

ε ))
n

)
∥∇gε∥(L2(O∗

ε ))
n×n ,

which gives the estimate (5.4.11). Likewise, one can easily obtain the estimates (5.4.10)

and (5.4.12) following the above discussion. Finally, from (5.3.6), we obtain that θε ∈
(H1

Γε
0
(O∗

ε))
n.

5.5 The Method of Periodic Unfolding for Perforated

Domains

We evokes the definition of the periodic unfolding operator and few of its properties as

stated in [88, 89]. Given x ∈ Rn, we denote the greatest integer and the fractional parts

of x respectively by [x]W and {x}W . That is, [x]W =
∑n

j=1 kjbj be the unique integer

combination of periods and {x}W = x− [x]W . In particular, we have for ε > 0,

x = ε
([x
ε

]
W

+
{x
ε

}
W

)
, ∀x ∈ Rn.

Definition 5.5.1. The unfolding operator T ∗
ε : {O∗

ε → R} → {O ×W ∗ → R} is defined
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as

T ∗
ε (u) (x, y) =

{
u
(
ε
[
x
ε

]
W

+ εy
)

a.e. for (x, y) ∈ Ôε ×W ∗,

0 a.e. for (x, y) ∈ Λ̂∗
ε ×W ∗.

Also, for any domain D ⊇ O∗
ε and vector u = (u1, · · · , un) ∈ ({D → R})n, we define its

unfolding by

T ∗
ε (u) := (T ∗

ε (u1), · · · , T ∗
ε (un)).

Proposition 5.5.1. The following are the properties of the unfolding operator:

(i) T ∗
ε is linear and continuous from L2(O∗

ε) to L
2(O ×W ∗).

(ii) Let u, v ∈ L2(O∗
ε). Then T ∗

ε (uv) = T ∗
ε (u)T ∗

ε (v) .

(iii) Let u ∈ L2 (O) . Then T ∗
ε (u) → u strongly in L2 (O ×W ∗) .

(iv) Let u ∈ L1 (O∗
ε) . Then∫

Ô∗
ε

u(x) dx =

∫
O∗

ε

u(x) dx−
∫
Λ̂∗
ε

u(x) dx =
1

|W ∗|

∫
O×W ∗

T ∗
ε (u)(x, y) dxdy.

(v) For each ε > 0, let {uε} ∈ L2 (O) and uε → u strongly in L2 (O) .

Then T ∗
ε (uε) → u strongly in L2 (O ×W ∗) .

(vi) Let v ∈ L2 (W ∗) be a W -periodic function and vε(x) = v
(
x
ε

)
. Then,

T ∗
ε (vε) (x, y) =

{
v(y) a.e. for (x, y) ∈ Ôε ×W ∗,

0 a.e. for (x, y) ∈ Λε ×W ∗.

(vii) Let fε ∈ L2 (O∗
ε) be uniformly bounded. Then, there exists f ∈ L2(O ×W ∗) such

that T ∗
ε (fε)⇀ f weakly inL2(O ×W ∗), and

f̃ε ⇀
1

|W |

∫
W ∗

f(·, y) dy weakly in L2(O),

where˜denotes the extension by zero outside O∗
ε to the whole of O.

Proposition 5.5.2. Let O ⊂ Rn be bounded with Lipschitz boundary. Let fε ∈ H1(O∗
ε)

be such that fε = 0 on ∂O ∩ ∂O∗
ε and satisfy,

∥∇fε∥(L2(O∗
ε ))

n ≤ K.

Then, there exists f ∈ H1
0 (O) and f̂ ∈ L2

(
O;H1

per (W
∗)
)
with MW ∗(f̂) = 0, such that up

to a subsequence, T ∗
ε (∇fε)⇀ ∇f +∇yf̂ weakly in

(
L2 (O ×W ∗)

)n
,

T ∗
ε (fε) → f strongly in L2

(
O;H1 (W ∗)

)
.
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5.6 Limit Optimal Control Problem

This section presents the limit (homogenized) system corresponding to the problem (5.3.1),

which we considered in the beginning.

Let us consider the function space

(
H1

0 (O)
)n

:=
{
φ ∈ (H1(O))n | φ|∂O = 0

}
,

which is a Hilbert space for the norm

∥φ∥(H1
0 (O))n := ∥∇φ∥(L2(O))n×n ∀φ ∈ (H1

0 (O))n.

We now consider the limit OCP associated with the Stokes system

inf
θ∈(L2(O))n

{
J(θ) =

Θ

2

∫
O
|u− ud|2 dx+

τΘ

2

∫
O
|θ|2 dx

}
, (5.6.14)

subject to 
−

n∑
j,α,β=1

∂

∂xα

(
bαβij

∂uj
∂xβ

)
+∇p = θ in O,

div (u) = 0 in O,
u = 0 on ∂O,

(5.6.15)

where the tensor B = (bαβij ) = (bαβij )1≤i,j,α,β≤n is constant, elliptic, and for 1 ≤ i, j, α, β ≤
n, is given by

bαβij = aαβij − 1

|W ∗|

∫
W ∗

A(y)∇y

(
P β
j − χβ

j

)
: ∇yχ

α
i dy,

with aαβij = 1
|W ∗|

∫
W ∗ A(y)∇y

(
P β
j − χβ

j

)
: ∇yP

α
i dy as the entries of the constant tensor

A0, P
β
j = P β

j (y) = (0, . . . , yj , . . . , 0) with yj at the β-th position, and for 1 ≤ j, β ≤ n,

the correctors (χβ
j ,Π

β
j ) ∈ (H1(W ∗))n × L2(W ∗) solves the cell problem



−divy

(
A(y)∇y(P

β
j − χβ

j )
)
+∇yΠ

β
j = 0 in W ∗,

µ ·A(y)∇y(P
β
j − χβ

j )−Πβ
jµ = 0 on ∂W ∗\∂W,

divy(P
β
j − χβ

j ) = 0 in W ∗,

(χβ
j ,Π

β
j ) W ∗- periodic,

MW ∗(χβ
j ) = 0.

(5.6.16)

Here, Θ = |W ∗|
|W | is the proportion of the perforated reference cell W ∗ in the reference

cell W and µ denotes the outward normal unit vector to ∂W ∗\∂W . The existence of

this unique pair (u, p) ∈ (H1
0 (O))n × L2(O) can be found in [5, Chapter 1]. Further,

the problem (5.6.14) is a standard one and there exists a unique weak solution to it, one

can follow the arguments introduced in [15, Chapter 2, Theorem 1.2]. We call the triplet
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(u, p,θ) ∈ (H1
0 (O))n ×L2(O)× (L2(O))n, the optimal solution to (5.6.14), with u, p, and

θ as the optimal state, pressure, and control, respectively.

Now, we introduce the limit adjoint system associated with (5.6.15): Find a pair (v, q) ∈
(H1

0 (O))n × L2(O) which solves the system
−

n∑
j,α,β=1

∂

∂xα

(
bβαji

∂vj
∂xβ

)
+∇q = u− ud in O,

div (v) = 0 in O,
(5.6.17)

where the tensor Bt = (bβαji ) = (bβαji )1≤i,j,α,β≤n is constant, elliptic, and for 1 ≤ i, j, α, β ≤
n, is given by

bβαji = aβαji − 1

|W ∗|

∫
W ∗

At(y)∇y

(
P β
j −Hβ

j

)
: ∇yH

α
i dy,

with aβαji = 1
|W ∗|

∫
W ∗ A

t(y)∇y

(
P β
j −Hβ

j

)
: ∇yP

α
i dy as the entries of the constant tensor

At
0. Also, for 1 ≤ j, β ≤ n, the correctors (Hβ

j , Z
β
j ) ∈ (H1(W ∗))n×L2(W ∗) solves the cell

problem 

−divy

(
At(y)∇y(P

β
j −Hβ

j )
)
+∇yZ

β
j = 0 in W ∗,

µ ·At(y)∇y(P
β
j −Hβ

j )− Zβ
j µ = 0 on ∂W ∗\∂W,

divy(P
β
j −Hβ

j ) = 0 in W ∗,

(Hβ
j , Z

β
j ) W ∗- periodic,

MW ∗(Hβ
j ) = 0.

(5.6.18)

In the following, we state a result similar to Theorem 5.3.2 that characterizes the optimal

control θ in terms of the adjoint state v and the proof of which follows analogous to the

standard procedure laid in [15, Chapter 2, Theorem 1.4].

Theorem 5.6.1. Let
(
u, p,θ

)
be the optimal solution to (5.6.14) and (v, q) be the

corresponding adjoint solution to (5.6.17), then the optimal control is characterized by

θ = −1

τ
v a.e. in O. (5.6.19)

Conversely, suppose that a triplet (ǔ, p̌, θ̌) ∈ (H1
0 (O))n × L2(O) × (L2(O))n and a pair

(v̌, q̌) ∈ (H1
0 (O))n × L2(O), respectively, satisfy the following systems:

−
n∑

j,α,β=1

∂

∂xα

(
bαβij

∂ǔj
∂xβ

)
+∇p̌ = − 1

τ v̌ in O,

div (ǔ) = 0 in O,

and
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
−

n∑
j,α,β=1

∂

∂xα

(
bβαji

∂v̌j
∂xβ

)
+∇q̌ = ǔ− ud in O,

div (v̌) = 0 in O.

Then, the triplet
(
ǔ, p̌,− 1

τ v̌
)
is the optimal solution to (5.6.14).

5.7 Convergence Results

We present here the key findings on the convergence analysis of the optimal solutions

to the problem (5.3.1) and its corresponding adjoint system (5.3.5) by using the method

of periodic unfolding for perforated domains described in Section 5.5. In the following,

for 1 ≤ i ≤ n and any vector function ψ, ψ̃ = (ψ̃1, · · · , ψ̃n), where ψ̃i denotes the zero

extension of ψi outside O∗
ε to the whole of O.

Theorem 5.7.1. For given ε > 0, let the triplets (uε, pε,θε) and (u, p,θ), respectively,

be the optimal solutions of the problems (5.3.1) and (5.6.14). Then

T ∗
ε (Aε) → A strongly in (L2(O ×W ∗))n×n, (5.7.20a)

θ̃ε ⇀ Θθ weakly in
(
L2 (O)

)n
, (5.7.20b)

ũε ⇀ Θu weakly in (H1
0 (O))n, (5.7.20c)

ṽε ⇀ Θv weakly in (H1
0 (O))n, (5.7.20d)

p̃ε ⇀
Θ

n
A0∇u : I +Θ p weakly in L2(O), (5.7.20e)

q̃ε ⇀
Θ

n
At

0∇v : I +Θ q weakly in L2(O), (5.7.20f)

where A0 is a tensor as defined in Section 5.6, I is the n× n identity matrix, θ is

characterized through (5.6.19) and the pairs (vε, qε) and (v, q) solve respectively the

systems (5.3.5) and (5.6.17).

Moreover,

lim
ε→0

Jε(θε) = J(θ). (5.7.21)

Proof. First, upon using Proposition 5.5.1 (vi) on the entries of the matrix Aε, we obtain

(5.7.20a) under the passage of limit ε → 0. Similarly, one can prove the convergence for

the matrix At
ε under unfolding. Next, in view of Theorem 5.4.3 and the fact that the

triplet (uε, pε,θε) is an optimal solution to problem (5.3.1), one gets uniform estimates

for the sequences {θε}, {uε}, {pε}, {vε}, and {qε} in the spaces (L2 (O∗
ε))

n, (H1
Γε
0
(O∗

ε))
n,

L2 (O∗
ε), (H

1
Γε
0
(O∗

ε))
n, and L2 (O∗

ε), respectively.

Using the uniform estimate of the sequence {θε} in the space
(
L2 (O∗

ε)
)n

and Proposition

5.5.1 (i), we have the sequence {T ∗
ε (θε)} to be uniformly bounded in the space(

L2 (O ×W ∗)
)n
. Thus, by weak compactness, there exists a subsequence not relabelled
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and a function θ̂ in
(
L2 (O ×W ∗)

)n
, such that

T ∗
ε (θε)⇀ θ̂ weakly in

(
L2 (O ×W ∗)

)n
. (5.7.22)

Now, using Proposition 5.5.1 (vii) in (5.7.22) gives

θ̃ε ⇀
1

|W |

∫
W ∗
θ̂(x, y) dy = Θθ0 weakly in

(
L2 (O)

)n
, (5.7.23)

where, θ0 = MW ∗(θ̂).

Employing Proposition 5.5.1 (i), we have the uniform boundedness of the sequences

{T ε(uε)}, {T ε(∇uε)}, and {T ε(pε)} in the respective spaces (L2(O;H1 (W ∗)))n, (L2(O×
W ∗))n×n, and L2(O ×W ∗). Further, upon employing Proposition 5.5.2 and Proposition

5.5.1 (vii), there exist subsequences not relabelled and functions û with MW ∗(û) = 0, u0,

and p̂ in spaces (L2(O;H1
per (W

∗)))n, (H1
0 (O))n, and L2(O×W ∗), respectively, such that

T ∗
ε (uε) → u0 strongly in (L2(O;H1 (W ∗)))n, (5.7.24a)

T ∗
ε (∇uε)⇀ ∇u0 +∇yû weakly in (L2(O ×W ∗))n×n, (5.7.24b)

ũε ⇀ Θu0 weakly in (H1
0 (O))n, (5.7.24c)

T ∗
ε (pε)⇀ p̂ weakly in L2(O ×W ∗), (5.7.24d)

p̃ε ⇀ ΘMW ∗(p̂) weakly in L2(O). (5.7.24e)

Likewise, for the associated adjoint counterparts, viz., vε, and qε , one obtains that there

exist subsequences not relabelled and functions v̂ with MW ∗(v̂) = 0, v0, and q̂ in spaces

(L2(O;H1
per (W

∗)))n, (H1
0 (O))n, and L2(O ×W ∗), respectively, such that

T ∗
ε (vε) → v0 strongly in (L2(O;H1 (W ∗)))n, (5.7.25a)

T ∗
ε (∇vε)⇀ ∇v0 +∇yv̂ weakly in (L2(O ×W ∗))n×n, (5.7.25b)

ṽε ⇀ Θv0 weakly in (H1
0 (O))n, (5.7.25c)

T ∗
ε (qε)⇀ q̂ weakly in L2(O ×W ∗), (5.7.25d)

q̃ε ⇀ ΘMW ∗(q̂) weakly in L2(O). (5.7.25e)

The identification of the limit functions û, v̂, p̂, q̂, MW ∗(p̂) and MW ∗(q̂) is carried out in

subsequent steps.

Step 1: (Claim) For all φ ∈ (H1
0 (O))n, ψ ∈

(
L2
(
O;H1

per (W
∗)
))n

, and w ∈ L2(O),

we claim that the ordered quadruplet (u0, û, p̂,θ0) ∈ (H1
0 (O))n × (L2(O;H1

per (W
∗)))n ×

L2(O ×W ∗)× (L2(O))n is a unique solution to the following limit system:



5.7. Convergence Results 97



1

|W |

∫
O×W ∗

A(y) (∇u0 +∇yû(x, y)) : (∇φ+∇yψ) dx dy

− 1

|W |

∫
O×W ∗

p̂(x, y) (div(φ) + divy(ψ)) dx dy = Θ

∫
O
θ0 ·φ dx,

and,

∫
O
div(u0)w dx = 0,

(5.7.26)

and the ordered triplet (v0, v̂, q̂) ∈ (H1
0 (O))n × (L2(O;H1

per (W
∗)))n × L2(O ×W ∗) is a

unique solution to the following limit adjoint system:

1

|W |

∫
O×W ∗

At(y) (∇v0 +∇yv̂(x, y)) : (∇φ+∇yψ) dx dy

− 1

|W |

∫
O×W ∗

q̂(x, y) (div(φ) + divy(ψ)) dx dy = Θ

∫
O
(u0 − ud) ·φ dx,

and,

∫
O
div(v0)w dx = 0.

(5.7.27)

Proof of the Claim: Towards the proof of (5.7.26), let us consider a test function φ ∈
(D(O))n in (5.3.3) and use properties (i), (ii), and (iv) of Proposition 5.5.1 to get

1

|W |

∫
O×W ∗

T ∗
ε (Aε)T

∗
ε (∇uε) : T

∗
ε (∇φ) dx dy +

∫
Λ̂∗
ε

Aε∇uε : ∇φ dx−
∫
Λ̂∗
ε

pε div(φ) dx

− 1

|W |

∫
O×W ∗

T ∗
ε (pε) T

∗
ε (div(φ)) dx dy

=
1

|W |

∫
O×W ∗

T ∗
ε (θε) · T ∗

ε (ϕε) dx dy +

∫
Λ̂∗
ε

θε ·φ dx. (5.7.28)

Using Proposition 5.5.1 (iii), the fact that limε→0 |Λ̂∗
ε| = 0, and convergences (5.7.22),

(5.7.20a), (5.7.24b), (5.7.24d), we have under the passage of limit ε→ 0 in (5.7.28)

1

|W |

∫
O×W ∗

A(y) (∇u0 +∇yû(x, y)) : ∇φ dx dy

− 1

|W |

∫
O×W ∗

p̂(x, y) div(φ) dx dy = Θ

∫
O
θ0 ·φ dx, (5.7.29)

which remains valid for every φ ∈ (H1
0 (O))n, by density.

Now, consider the function ϕε(x) = εϕ(x)ξ(xε ), where ϕ ∈ D(O) and ξ ∈ (H1
per(W

∗))n.

Employing properties (ii), (iii), and (vi) of Proposition 5.5.1, one can easily obtain

T ∗
ε (ϕε) (x, y) → 0 strongly in (L2(O ×W ∗))n, (5.7.30a)

T ∗
ε (∇ϕε) (x, y) → ϕ(x)∇yξ(y) strongly in (L2(O ×W ∗))n×n. (5.7.30b)

Let us use the test function ϕε in (5.3.3) and employ properties (i), (ii), and (iv) of
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Proposition 5.5.1 to get

1

|W |

∫
O×W ∗

T ∗
ε (Aε)T

∗
ε (∇uε) : T

∗
ε (∇ϕε) dx dy +

∫
Λ̂∗
ε

Aε∇uε : ∇ϕε dx

−
∫
Λ̂∗
ε

pε div(ϕε) dx− 1

|W |

∫
O×W ∗

T ∗
ε (pε) T

∗
ε (div(ϕε)) dx dy (5.7.31)

=
1

|W |

∫
O×W ∗

T ∗
ε (θε) · T ∗

ε (ϕε) dx dy +

∫
Λ̂∗
ε

θε · ϕε dx.

In (5.7.31), the absolute value of each integral over Λ̂∗
ε is bounded above with a bound of

order ε|Λ̂∗
ε| or |Λ̂∗

ε|. This with the fact that limε→0 |Λ̂∗
ε| = 0, and convergences (5.7.22),

(5.7.20a), (5.7.24b), (5.7.24d), and (5.7.30), gives under the passage of limit ε→ 0,

1

|W |

∫
O×W ∗

A(y) (∇u0 +∇yû(x, y)) : ∇yψ dx dy −
1

|W |

∫
O×W ∗

p̂(x, y) divy(ψ) dx dy = 0,

(5.7.32)

which remains valid for every ϕ ξ = ψ ∈ (L2(O;H1
per(W

∗)))n, by density.

Further, for all w ∈ L2(O), we have∫
O∗

ε

div(uε)w dx = 0. (5.7.33)

Now, upon applying unfolding on (5.7.33) and using properties (i), (ii), and (iii) of

Proposition 5.5.1 along with convergence (5.7.24b), we get under the passage of limit

ε→ 0
1

|W |

∫
O×W ∗

(div(u0) + divy(û))w dxdy = 0,

which eventually gives upon using the fact that û is W ∗−periodic, for all w ∈ L2(O):∫
O
div(u0)w dx = 0. (5.7.34)

Finally, upon adding (5.7.29) with (5.7.32) and considering (5.7.34), we establish (5.7.26).

Likewise, one can easily establish (5.7.27). This settles the proof of the claim.

Step 2: First, we are going to identify the limit functions û, v̂, p̂, and q̂. Next, using

these identifications, we will identify MW ∗(p̂) and MW ∗(q̂).

Identification of û, v̂, p̂, q̂: Taking sucessively φ ≡ 0 and ψ ≡ 0 in (5.7.26), yields

−divy(A(y)∇yû(x, y)) +∇yp̂(x, y) = divy(A(y))∇u0(x) in O ×W ∗,

−divx

(∫
W ∗

A(y)(∇u0(x) +∇yû(x, y))dy

)
+∇

(∫
W ∗

p̂(x, y)dy

)
= |W ∗|θ0 in O,

div(u0) = 0 in O,

û(x, ·) is W ∗ − periodic.

(5.7.35)
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In the first line of (5.7.35), we have the y-independence of ∇u0(x) and the linearity of

operators, viz., divergence and gradient, which suggests û(x, y) and p̂(x, y) to be of the

following form (see, for e.g., 4.4.57):
û(x, y) = −

n∑
j,β=1

χβ
j (y)

∂u0j
∂xβ

+ u1(x),

p̂(x, y) =

n∑
j,β=1

Πβ
j (y)

∂u0j
∂xβ

+ p0(x).

(5.7.36)

where the ordered pair (u1, p0) ∈ (H1(O))n×L2(O), and for 1 ≤ j, β ≤ n, the pair (χβ
j ,Π

β
j )

satisfy the cell problem (5.6.16). Likewise we obtain for the corresponding adjoint weak

formulation (5.7.27):

−divy(A(y)∇yv̂(x, y)) +∇y q̂(x, y) = divy(A(y))∇v0(x) in O ×W ∗,

−divx
(∫

W ∗ A(y)(∇v0(x) +∇yv̂(x, y))dy
)
+∇

(∫
W ∗ q̂(x, y)dy

)
= |W ∗| (u0 − ud) in O,

div(v0) = 0 in O,

v̂(x, ·) is W ∗ − periodic,

(5.7.37)

and 
v̂(x, y) = −

n∑
j,β=1

Hβ
j (y)

∂v0j
∂xβ

+ v1(x),

q̂(x, y) =
n∑

j,β=1

Zβ
j (y)

∂v0j
∂xβ

+ q0(x),

(5.7.38)

where the ordered pair (v1, q0) ∈ (H1(O))n × L2(O) and for 1 ≤ j, β ≤ n, the pair

(Hβ
j , Z

β
j ) satisfy the cell problem (5.6.18).

Identification of MW ∗(p̂) and MW ∗(q̂): Choosing the test function y = (y1, . . . , yn)

in the weak formulation of (5.6.16), we get

n∑
i,l,k,α=1

∫
W ∗

alk
∂

∂yk

(
P β
j − χβ

j

)
· ∂P

α
i

∂yl

∂yi
∂yα

dy = n

∫
W ∗

Πβ
j dy. (5.7.39)

In view of (5.7.24e), (5.7.36), and (5.7.39), we observe that

MW ∗(p̂) =
1

n|W ∗|

n∑
i,j,l,k,α,β=1

∫
W ∗

alk
∂

∂yk

(
P β
j − χβ

j

)
· ∂P

α
i

∂yl

∂yi
∂yα

∂u0j
∂xβ

dy + p0,

which upon using the definition of aαβij , gives

MW ∗(p̂) =
1

n

n∑
i,j,α,β=1

aαβij
∂u0j
∂xβ

∂yi
∂yα

+ p0. (5.7.40)
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Also, we re-write the equation (5.7.40) to get the identification of MW ∗(p̂) as

MW ∗(p̂) =
1

n
A0∇u0 : I + p0. (5.7.41)

Likewise, one can obtain the identification of MW ∗(q̂) as

MW ∗(q̂) =
1

n
At

0∇v0 : I + q0. (5.7.42)

Thus, from (5.7.24e) and (5.7.41); (5.7.25e) and (5.7.42), we have the following weak

convergences:

p̃ε ⇀
Θ

n
A0∇u0 : I +Θ p0 weakly in L2(O), (5.7.43a)

q̃ε ⇀
Θ

n
At

0∇v0 : I +Θ q0 weakly in L2(O). (5.7.43b)

Step 3: (Claim) The pairs (u0, p0) and (v0, q0) solve the systems (5.6.15) and (5.6.17),

respectively.

Proof of the Claim: We now prove that the pair (u0, p0) solves the system (5.6.15). The

proof that the pair (v0, q0) solves the system (5.6.17) follows analogously. Substituting

the values of û(x, y) and p̂(x, y) from expression (5.7.36) into equation (5.7.29), we get

1

|W |

n∑
l,k=1

∫
O×W ∗

alk

∂u0

∂xk
−

n∑
j,β=1

∂χβ
j

∂yk

∂u0j
∂xβ

 ∂φ

∂xl
dx dy

− 1

|W |

n∑
j,β=1

∫
O×W ∗

Πβ
j

∂u0j
∂xβ

div(φ) dx dy −Θ

∫
O
p0 div(φ) dx

= Θ

∫
O
θ0 ·φ dx. (5.7.44)

Considering P β
j = (0, . . . , yj , . . . , 0) with yj at the β−th position, we can express the terms

∂u0
∂xk

, ∂φ∂xl
, and div(φ) as

∂u0

∂xk
=

n∑
j,β=1

∂P β
j

∂yk

∂u0j
∂xβ

,
∂φ

∂xl
=

n∑
i,α=1

∂P α
i

∂yl

∂φi

∂xα
, div(φ) =

n∑
i,α=1

divy(P
α
i )
∂φi

∂xα
.

Substituting these expressions in (5.7.44), we obtain

n∑
i,j,α,β=1

∫
O

 1

|W ∗|

n∑
l,k=1

∫
W ∗

alk
∂

∂yk

(
P β
j − χβ

j

) ∂P α
i

∂yl
dy

 ∂u0j
∂xβ

∂φi

∂xα
dx

−
n∑

i,j,α,β=1

∫
O

(
1

|W ∗|

∫
W ∗

Πβ
j divy(P

α
i ) dy

)
∂u0j
∂xβ

∂φi

∂xα
dx−

∫
O
p0 div(φ) dx =

∫
O
θ0 ·φ dx.

(5.7.45)

Now, choosing the test function χα
i in the weak formulation of (5.6.16), we get upon using
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the fact that divy(χ
α
i ) = divy(P

α
i ) = δiα, where δ denotes the Kronecker delta function,

the following: ∫
W ∗

A(y)∇y

(
P β
j − χβ

j

)
: ∇yχ

α
i dy =

∫
W ∗

Πβ
j δiα dy. (5.7.46)

Further, substituting (5.7.46) in (5.7.45), we obtain

n∑
i,j,α,β=1

∫
O

 1

|W ∗|

n∑
l,k=1

∫
W ∗

alk
∂

∂yk

(
P β
j − χβ

j

) ∂

∂yl
(P α

i − χα
i ) dy

 ∂u0j
∂xβ

∂φi

∂xα
dx

−
∫
O
p0 div(φ) dx =

∫
O
θ0 ·φ dx. (5.7.47)

Also, we can write equation (5.7.47) as

n∑
i,j,α,β=1

∫
O
bαβij

∂u0j
∂xβ

∂φi

∂xα
dx−

∫
O
p0 div(φ) dx =

∫
O
θ0 ·φ dx, (5.7.48)

which holds true for all φ ∈ (H1
0 (O))n. Also, from equation (5.7.34), we have∫

O div(u0)w dx = 0, for every w ∈ L2(O). This together with equation (5.7.48) implies

that, for θ = θ0, the pair (u0, p0) ∈ (H1
0 (O))n×L2(O) satisfies the variational formulation

of the system (5.6.15).

Therefore, we obtain the optimality system for the minimization problem (5.6.14). Also,

in view of Theorem 5.6.1, we conclude that the triplet (u0, p0,θ0) is indeed an optimal

solution to the problem (5.6.14). Finally, upon considering the optimal solution’s

uniqueness, we establish that the subsequent pair of triplets are equal:

(u, p,θ) = (u0, p0,θ0). (5.7.49)

Hence, upon comparing (5.7.24c), (5.7.25c), (5.7.43a), (5.7.43b), and (5.7.23) with (5.7.49),

we obtain convergences (5.7.20c), (5.7.20d), (5.7.20e), (5.7.20f), and (5.7.20b), respectively.

Step 4: Now, we will furnish the proof of the energy convergence for the L2−cost

functional.

Choosing the test function (uε − ud) in the weak formulation of system (5.3.5), we get

under unfolding upon passing ε→ 0

lim
ε→0

∫
O∗

ε

|uε − ud|2 dx =
1

|W |
lim
ε→0

∫
O×W ∗

T ∗
ε (A

t
ε)T

∗
ε (∇vε) : T ∗

ε (∇(uε − ud)) dx dy

+
1

|W |
lim
ε→0

∫
O×W ∗

T ∗
ε (qε) T

∗
ε (div(ud)) dx dy,

which gives in view of (5.7.49), Proposition 5.5.1 (iii) and convergences (5.7.25a),

(5.7.24b), and (5.7.25d)

lim
ε→0

∫
O∗

ε

|uε − ud|2 dx =
1

|W |

∫
O×W ∗

At(y) (∇v +∇yv̂(x, y)) : ∇y(u− ud) dx dy
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+
1

|W |

∫
O×W ∗

q̂(x, y) div(ud) dx dy. (5.7.50)

Also, using (5.7.38) in (5.7.50) along with (5.7.49), we have upon simplification

lim
ε→0

∫
O∗

ε

|uε − ud|2 dx = Θ

 n∑
i,j,α,β=1

∫
O
bβαji

∂vi
∂xα

∂(u− ud)j
∂xβ

dx−
∫
O
q div(u− ud) dx

 .

(5.7.51)

Now, using the test function (u− ud) in the weak formulation of system (5.6.17), we get

the following upon comparing with the right hand side of equation (5.7.51)

lim
ε→0

∫
O∗

ε

|uε − ud|2 dx = Θ

∫
O
|u− ud|2 dx. (5.7.52)

Furthermore, in view of (5.3.6), (5.7.25a), and (5.7.49), we get under unfolding upon the

passage of limit ε→ 0

lim
ε→0

τ

2

∫
O∗

ε

|θε|2 dx = lim
ε→0

1

2|W |

∫
O×W ∗

|T ∗
ε (θε)|2 dx dy

= lim
ε→0

1

2τ |W |

∫
O×W ∗

|T ∗
ε (vε)|2 dx dy

=
1

2τ |W |

∫
O×W ∗

|v|2 dx dy. (5.7.53)

Also, since v is independent of y and comparing the right hand side of (5.7.53) with

(5.6.19), we get

lim
ε→0

τ

2

∫
O∗

ε

|θε|2 dx =
Θτ

2

∫
O
|θ|2 dx. (5.7.54)

Thus, from equations (5.7.52) and (5.7.54), we get (5.7.21).

This completes the proof of Theorem 5.7.1.

Remark 5.7.2. We observe that in our case, when the size of holes is of the same order

as that of the period, i.e., the size of the holes is large (limε→0 σε = 0), with Neumann data

on the part of the boundary ∂O∗
ε , the homogenized problem is an interior OCP governed by

stationary Stokes System. Here, upon following the convention of Allaire [91], we define

σε as the ratio between the actual size of the holes and the critical size, with bε denoting

the size (say, diameter) of holes:

σε =


ε|log( bεε )|

1
2 for n = 2,(

εn

bn−2
ε

) 1
2

for n ≥ 3.
(5.7.55)

Regarding the OCP governed by Stokes equations with homogeneous Dirichlet boundary

condition on the boundary of the perforated domain, the authors in [80] studied the cases

when the size of the holes is critical and smaller. Concerning the case of smaller size



5.8. Conclusion 103

holes, i.e., when limε→0 σε = +∞, they obtained under homogenization the OCP governed

by Stokes law, while in the case of critical size holes, i.e., when limε→0 σε = r, where r > 0

is finite, they obtained under homogenization the OCP governed by Brinkman-type law,

leading to the appearance of ’strange term’ in the limit state equation (see, [80, Theorem

2.2, Page 164-165]). The situation concerning the case of larger size holes, i.e., when

limε→0 σε = 0, was left open by the authors in [80] which is then settled by the authors in

[78], wherein they employed two-scale convergence method to obtain under homogenization

the OCP governed by Darcy’s law (see, [78, Theorem 2.8., Page 7]).

One can notice that in our setting, due to Neumann data on the part of the boundary ∂O∗
ε ,

we obtained under homogenization the OCP governed by Stokes system, unlike Darcy law

which the authors obtained in [78] due to Dirichlet data on the boundary of the perforated

domain. The homogenization of the OCP (5.3.1) with Neumann data for the cases where

the size of holes is smaller (limε→0 σε = +∞) and critical (limε→0 σε = r, where r > 0 is

finite), are left open to be explored. It would be interesting to see the type of laws the limit

OCP would obey in each case mentioned above.

Remark 5.7.3. For the time-dependent (evolution) Stokes and incompressible

Navier-Stokes type equations over periodically perforated domains with holes of large size,

one can find, for example, in the works of [92, 93] that the homogenous/non-homogeneous

Dirichlet boundary data is prescribed on the boundary of perforated domain and under

homogenization the Darcy-type Law is obtained. However, in the case of Neumann Data

on the boundary of perforated domain, it remains a question of one’s interest that owing

to the vector value spaces involved of the form (L2(0, T ;V ))n and (L2(0, T ;V ′))n, where,

V := {u ∈ (H1(O∗
ε))

n | div(u) = 0 in O∗
ε} and V ′ being the topological dual of V , how

one devises an approach to deal with the difficulties that may arise in establishing the

homogenization results.

5.8 Conclusion

We address the limiting behavior of an interior OCP corresponding to Stokes equations in

an n-dimensional (n ≥ 2) periodically perforated domain O∗
ε via the technique of periodic

unfolding in perforated domains (see, [88, 89]). We employ the Neumann boundary

condition on the part of the boundary of the perforated domain. Firstly, we characterize

the unique minimizer of the problem (5.3.1) in terms of the adjoint state. Secondly, we

deduce the apriori optimal bounds for control, state, pressure, and their corresponding

adjoint state and pressure functions. After that, we conduct the limiting analysis for the

considered OCP upon employing the periodic unfolding method in perforated domains.

We observe the convergence between the optimal solution to the problem (5.3.1) posed on

the perforated domain O∗
ε and the optimal solution to that of the limit problem (5.6.14)

governed by stationary Stokes equation posed on a non-perforated domain O. Finally, we

establish the convergence of energy corresponding to L2−cost functional.
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Chapter 6

Conclusion and Future Plan

6.1 Conclusion

In this thesis, we study the homogenization and optimal control problems (OCPs) governed

by stationary Stokes equations in the rough domains, viz., domain with rapidly oscillating

boundaries and domain with perforations.

As seen in the literature, the homogenization problems related to stationary Stokes

equations are well studied over the highly oscillating domain with Dirichlet and Neumann

boundary conditions on the highly oscillating boundaries. This thesis begins with the

study of homogenization of generalized stationary Stokes equations subjected to the mixed

boundary conditions on the highly oscillating boundaries. That is, we subject a segment

of the oscillating boundary with the Robin boundary condition having non-negative real

parameters, while its remaining portion is subject to Neumann boundary data. By the

generalized Stokes equations, we mean consideration of a second-order elliptic linear

differential operator in divergence form with oscillating coefficients, i.e., −div (Aε∇),

first studied for the fixed domain in [5, Chapter 1], instead of the classical Laplacian

operator. We derive the homogenized problem, which depends on these non-negative real

parameters. Finally, using the remarkable technique of unfolding operator, we show the

convergence of state and pressure within an appropriate space to those of the limit system

in a fixed domain and observe a corrector-type result under the special case of stationary

Stokes equations with Neumann boundary conditions throughout the highly oscillating

boundaries.

Now, we delve into the homogenization of distributive OCPs that govern the generalized

stationary Stokes equations in oscillating and perforated domains. Focusing on analyzing

the oscillating domain, we first study the limiting behavior of the interior OCP constrained

by the stationary Stokes equations, where Neumann boundary conditions prevail on the

highly oscillating boundaries. Here, in the upper oscillatory region, we subject the periodic

interior controls via a quadratic cost functional. Using the unfolding operator technique,

we characterize the optimal control. Subsequently, we deduce the limit OCP in the limit

domain and establish convergence results. Notably, we observe non-trivial contributions

in the upper portion of the limit domain.

Until now, we have addressed the homogenization of OCP governing Stokes equations

when the periodic controls act in the oscillating domain’s upper oscillatory region. Next,

we consider the homogenization of a more general distributive OCP constrained by

the stationary Stokes equation in the same oscillating domain, which incorporates a
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unidirectional oscillating coefficient matrix. Our analysis focuses on a Dirichlet-type

cost functional involving a unidirectional oscillating coefficient matrix. By employing

the unfolding operator as a key tool, we characterize the optimal control and delve into

the homogenization process of this OCP. Notably, the presence of oscillating matrices

in both the governing Stokes equations and the cost functional adds complexity to the

analysis. Consequently, we derive the limit OCP, incorporating a perturbed tensor in the

convergence analysis.

Finally, we examine the asymptotic behavior of an interior OCP associated with Stokes

equations in an n-dimensional (n ≥ 2) periodically perforated domain using periodic

unfolding techniques. We employed the Neumann boundary condition on the part of the

boundary of the perforated domain. We characterize the optimal control and proceed with

the asymptotic analysis of the OCP using the periodic unfolding method in perforated

domains. We observe convergence between the optimal solution of the problem posed

on the perforated domain and the optimal solution of the limit problem governed by

the stationary Stokes equation in a non-perforated domain. Additionally, we prove the

convergence of the energy corresponding to the L2-cost functional, a result not observed

in the preceding problems over the oscillating domain.

6.2 Future Plan

This thesis addresses homogenization and interior OCPs associated with the generalized

stationary Stokes equations in a two-dimensional oscillating domain. However, extending

these findings to higher dimensions, specifically three or more, requires further exploration.

A major challenge lies in effectively handling the complexity of the limit tensor and

establishing its ellipticity in these higher-dimensional contexts.

Our forthcoming plan is divided into the following main directions. First, we aim to

rigorously address the higher dimensional cases, i.e., to investigate the limiting analysis

of the generalized stationary Stokes equations in an oscillating domain as we move into

higher dimensions.

Second, a crucial part of our plan involves investigating the limiting analysis of the

Navier-Stokes equations in a two-dimensional oscillating domain, subject to various

boundary conditions such as Neumann, Robin, and Navier-Slip. The presence of non-linear

terms imposes a significant challenge, impeding the passage of weak limit in the product

of weakly convergent sequences. We plan to address these challenges by thoroughly

examining the complexities involved and deriving corrector results.

Last but not least, our research trajectory extends to exploring the limiting analysis

of generalized OCPs governing evolution Stokes equations in an n-dimensional (n ≥ 2)

oscillating domain. Through these concerted efforts, we aim to advance the understanding

and applicability of homogenization and control theory in complex fluid dynamics scenarios

across various dimensionalities.
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