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Lay Summary

With the continuous advancement of imaging technology and the widespread use of

smartphones, images have become a primary means of sharing information and capturing

beautiful moments. However, with the widespread use of images, there are also increased

concerns about the integrity of image information and the misuse of images, for example,

for unauthorized information leakage, sharing of illicit photographs, and attacks on privacy.

Understanding the origin of these images is crucial, especially in situations where people

might misuse them for illegal activities or for leaking confidential information. Source

Camera Image Forensics (SCIF) is a specialized field within digital image forensics that

focuses on identifying the source camera associated with a given digital image. The

Camera Model Identification (CMI) is the primary task in the field of SCIF which involves

determining the camera model used to capture a particular image. This link between an

image and the camera model can be pivotal, especially in investigative scenarios. This

thesis aims to consider real-world aspects and associated challenges related to CMI and

we aim to associate more accountability with image acquisition and image sharing. The

key problems addressed in the thesis include:

• Camera Model Identification: The primary goal is to determine the specific

make and model of the camera that captured an original image. Unlike other

content-based image classification problems, the CMI is challenging as it involves

analyzing the unique characteristics imprinted by different camera models during

the image-capturing process and not much focus on image-content.

• Camera model identification of social media processed images: This task

focuses on finding the source camera model for images that have been downloaded

from popular social media platforms like Facebook, WhatsApp, or Instagram.

Images shared on social media platforms undergo post-processing operations such as

resizing and rescaling and this makes it very challenging to effectively perform CMI

on social media processed images. We present generic and also social media specific

CMI models in this thesis.

• Camera identification of multispectral images: Multispectral images capture a

broader range of data, including wavelengths beyond the visible spectrum, and have

more channel than the RGB images. There has been a rise in use of multispectral

images for different applications, e.g. remote sensing, agriculture, and food quality

inspection. We also explore the problem of camera identification of multispectral

images. To the best of our knowledge, ours is the first work in direction.

• New Dataset for CMI: There are limited datasets available for CMI, with many

captured in controlled settings. In response to this, we have developed a new

dataset using contemporary smartphone cameras, considering various settings for

increased diversity and better alignment with real-world scenarios. Our dataset
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includes images captured by different users, featuring both similar and non-similar

sets. In both sets, the content comprises a diverse variety of scenes.
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Abstract

With the advent of low-cost image acquisition devices, storage, and widespread network

connectivity, digital images are being increasingly utilized for information capture and

dissemination on social media platforms. However, with the widespread use of images

there are also increased concerns about the integrity of image information and the misuse

of images, for example, for unauthorized information leakage, sharing of illicit photographs,

and attacks on privacy. Effective source camera model identification (CMI) techniques can

play a crucial role in verifying the trustworthiness and integrity of the digital images and

in investigating misuse by locating the source of images. In addition to forensic analysis

and image tampering detection, the CMI techniques can also be used for intellectual

property protection by identifying the source of copyrighted images, which can help prevent

unauthorized use and distribution. This thesis delves into Source Camera Image Forensics

(SCIF), a subfield of image source forensics that serves as a blind verification method

for digital image authenticity and integrity. SCIF specifically aims to identify individual

camera devices and models linked to images.

This thesis presents a detailed survey of existing methods for the SCIF. Additionally,

it studies and improves the performance of CMI methods, presenting a basic framework

for CMI. Within this framework, a dual-branch CNN method is proposed, incorporating

improved methodologies for each stage. The first stage involves proposing a patch selection

to extract important patches from the input image. In the second stage, high-pass filtering

is applied to highlight artifacts related to the camera model, and this filtered image

is passed to the second branch of the dual-branch CNN. In the third stage, ResNet is

used to extract features from both RGB and high-pass filtered images. The proposed

dual-branch CMI method demonstrates significant improvement compared to previous

works, compared over multiple datasets.

Further, we consider more real-world aspects of images undergoing unknown processing

for being shared over social media and making it very challenging to effectively perform

CMI on these social media processed images. We present generic and also social media

specific CMI models in this thesis. Identifying the Source Social Media Network (SSMN)

of the image helps in channeling the image to the respective trained CMI model. So

we propose a method, SNRCN2, for identifying the SSMN of digital images. SNRCN2

utilizes high-pass filtered images using steganalysis filters. The experimental results show

the superior performance of SNRCN2. Furthermore, motivated by the fact that social

media networks apply some Image Processing Operations (IPOs) during image upload, we

propose a method, Multi-Scale Residual Deep CNN (MSRD-CNN), for detecting IPOs.

The experimental results show that MSRD-CNN performs significantly better in classifying

images post-processed with various operations. The thesis also acknowledges the growing

applications of multispectral images, proposing a novel CMI method tailored for these

images. A dual-branch network based on FractalNet rule is introduced, analyzing noise

residuals from multispectral channels to classify camera models. Ours is also the first work

related to camera identification of multispectral images.
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Additionally, this thesis introduces a new dataset, IITRPR-CMI, designed to serve as a

potential benchmark for evaluating CMI methods. This dataset comprises of a diverse

set of images acquired using the contemporary smartphone cameras and features a unique

train-test split based on content type and image acquisition methods for better alignment

with the real-world scenarios.

Keywords: Camera model identification; High-pass filtering; Convolutional neural

network (CNN); Source social media network; Multispectral images; Image forensics.
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Chapter 1

Introduction

The advancement of low-cost image acquisition devices, coupled with extensive storage

and widespread network connectivity, has elevated images to an indispensable role in our

daily lives. Images serve as a pivotal medium for information exchange, driving a range of

applications such as telemedicine support, diagnosis, assistive technologies, entertainment,

e-commerce, news media, and online education. With the convenience provided by

smartphones and digital cameras, individuals can effortlessly capture and share images

on popular social media platforms like Facebook and Instagram, contributing to the daily

influx of billions of posted images. However, this surge in multimedia content on the web,

facilitated by the pervasive use of these devices, also raises concerns about the integrity of

image information and potential misuse. These concerns include unauthorized information

leakage, sharing of illicit photographs, and privacy threats. It is essential to recognize the

source of digital images and trace its history. Retrieving information about the history

of an image is crucial in various investigations, encompassing forensic, criminal, security,

privacy, and intellectual property inquiries. Knowing the camera used to capture the image

and the processing it underwent is essential to verify its validity [1]. This information can

assist in narrowing down potential suspects, thereby reducing their number and elucidating

the authenticity of an image. The metadata, such as EXIF data within the image file,

provide important information related to the camera model. However, it has limitations

due to its susceptibility to modification or deletion. Consequently, relying on traces and

inconsistencies within the image pixels emerges as a more reliable method, providing a

higher level of trustworthiness to ascertain the authenticity of the images.

In recent years, the field of digital image forensics has seen considerable progress in

addressing the issues of image authenticity and integrity. Image source forensics, a subfield

of digital image forensics, focuses on determining the origin of a digital image. Figure 1.1

illustrates various sub-tasks integral to image source forensics, including camera model

identification (CMI), camera device identification (CDI), recaptured image forensics,

computer graphics image forensics, GAN-generated image detection, and source social

network identification (SSNI). Each of these sub-tasks aims to uncover the source of the

image. CMI and CDI fall under the category of Source Camera Image Forensics (SCIF),

which is related to identifying the camera model and device of digital images, respectively.

The remainder of this chapter is structured as follows: Section 1.1 provides an introduction

to SCIF, and the objectives of this thesis and its organizational structure are detailed in

Section 1.2
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1.1 Source Camera Image Forensics

SCIF is a specialized field within digital image forensics that focuses on identifying the

source camera associated with a given digital image. The primary objective of SCIF is to

analyze the unique characteristics embedded in digital images during the image acquisition

process, such as sensor noise patterns, lens distortions, and other artifacts specific to

the camera. By scrutinizing these distinctive features, forensic analysts can ascertain

crucial information about the camera used to capture the image. The following subsections

provide an explanation of the image acquisition pipeline and details the primary task of

camera model identification.

Image Source Forensics

Camera Model
Identification

GAN Generated
Image Detection

Recaptured
Image Forensic

Anti-Forensic and
Counter Anti-

Forensic 

Social Network
Identification

Camera Device
Identification

Computer
Graphics

Image Forensic

Diffusion Models
Generated Image

Detection

Figure 1.1: The overview of subtasks of image source forensics.

1.1.1 Image Acquisition Pipeline

The pipeline of image acquisition by a camera is not standard and can vary based on

multiple factors such as the manufacturing company or the camera model. However, a

general pipeline [2] of image acquisition can consist of a series of stages as shown in Figure

1.2.

The light passes through a lens and the lens is focused onto a sensor: Charge-Coupled

Device (CCD) or Complementary Metal-Oxide Semiconductor (CMOS). The sensor



Chapter 1. Introduction 3

Scene Lens CFA

Sensor

Demosaicing

White balancing   
Edge sharpening
Gamma correction 
JPEG compression
...........

Output image Post-processing

Figure 1.2: The stages of image acquisition and camera processing pipeline.

configuration comprises a matrix of diminutive elements arranged on a plane, where each

element corresponds to a pixel. The voltage generated by each pixel is directly proportional

to the brightness of the pixel. The use of a Color Filter Array (CFA) is a common

method for capturing color images. This array of color filters is placed on the surface of

the sensor, with each sensor element exposed to light within a narrow wavelength band

corresponding to a specific color (Red, Green, or Blue). The intensity of green light is

recorded for certain pixels, blue light for others, and red light for the remaining pixels.

The assignment of colors to pixels is determined by the shape of the CFA, which varies

depending on the manufacturer. Hereafter, the sensor’s output comprises three partially

sampled color layers, with only one color value recorded at each pixel location. The

interpolation is employed to address missing color information, such as the absence of

blue and red components for pixels that only received green light. This process, known

as demosaicing, utilizes proprietary interpolation techniques to derive the missing color

components from neighboring cells. Once the raw color image is acquired, a series of

operations are usually performed in succession. Digital correction is used to fix optical

distortions caused by lenses, such as barrel or pincushion distortion, which can leave

forensic evidence. Additionally, white balancing and color correction are often done in a

vendor-specific manner.

Lastly, the JPEG standard is commonly used for lossy image compression, though the

compression quality and implementation may differ between manufacturers. The advent

of computational photography has changed the landscape of photography. Nowadays,

devices come with custom features such as generating portrait images with a digitally

blurred background, creating an artistic effect. Furthermore, many devices are able to

capture High Dynamic Range (HDR) images by merging multiple exposures into one.

Smartphones with multiple cameras utilize specific algorithms (that are generally not

revealed to public) and produce the final images by combining the inputs, coming from



4 Chapter 1. Introduction

Motorola E3 LG Optimus
L50

Wiko Lenny 2 Apple iPhone 6 LG G3

LG G6 Motorola Z2
Play

Motorola G8
Plus

Samsung
Galaxy S4 mini

Samsung
Galaxy J1

Samsung
Galaxy J3

Samsung
Galaxy Star

Sony Xperia E5 Apple iPhone 3 Samsung
Galaxy A6

Apple iPhone 7 Samsung
Galaxy S4

Apple iPhone 8
Plus

Google Pixel 3 Google Nexus 5

BQ Aquaris X Huawei P9 lite Huawei P8 lite Huawei p20 lite Google Pixel
XL

Input images

Camera models

Figure 1.3: Illustration of CMI (mapping of input images to different camera models of
Forchheim dataset).

multiple cameras. Additionally, vendors offer options for capturing photographs with

special filter effects, which can enhance images in various artistic ways. All of these

custom operations provide valuable traces for forensic analysis.

1.1.2 Camera Model Identification

The camera identification of the image aims to find the respective camera that is used

to capture the image. The camera identification involves two subtasks: camera model

identification (CMI) and camera device identification (CDI). Given the input image, the

CDI aims to find the exact camera device that is used for image acquisition. Similarly,

given the input image, the CMI aims to find the camera model of respective device that

is used for image acquisition. At times, these both terminologies are used interchangeably

where there is only one device with respect to each camera model [3]. In this thesis, the

focus is on CMI of digital images.

CMI is a specialized field within digital image forensics that focuses on determining the

specific model of the camera that was used to capture a given image. As depicted

in Figure 1.3 for Forchheim dataset [4] camera models, CMI involves the process of
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aligning digital images with their respective camera acquisition models. The goal is

to establish a mapping that associates distinctive features within the images with the

specific camera models responsible for their capture. The CMI process involves analyzing

the traces and artifacts that are exclusive to the characteristics of the internal processing

pipeline of the camera. These traces come from the processing algorithms used by the

camera. For identification of camera models, several methods have been proposed in

the literature and a comprehensive survey of CMI methods is included in Stamm et al.

[5] and Yang et al.[1]. The approaches in initial years have relied more on handcrafted

features and/or statistical measures, obtained by considering the lens characteristics such

as radial distortion [6], lateral chromatic aberration [7] and the pattern of dust particles

on the sensor [8]; the CFA interpolation method deployed by the camera [9]; RGB pairs

correlation [10]; photo-response non-uniformity noise (PRNU) [11]; image texture features

from well selected color models and color channels [12]; or the combination of multiple

features [13]. Most of these handcrafted features based methods have relied on support

vector machines (SVM) for classification. Researchers have also explored non-handcrafted

feature methods using CNNs. CNN based CMI was first introduced by Bondi et al. [14]

using a simple architecture comprising four convolutional layers followed by two fully

connected layers. Features obtained from the trained CNN for 64× 64× 3 input patches

were utilized in linear binary SVM classifiers, trained using one-vs-one approach for final

CMI classification. Chen et al. [15] experimented with various pre-trained CNNs such as

ResNet [16], AlexNet [17], and GoogleNet [18] for CMI. Yao et al. [19] proposed a deeper

CNN model, considering 11 convolutional layers. Freire-Obregón et al. [3] proposed a

two convolutional layer based simple network architecture for camera identification and

conducted experiments by considering three smartphone devices. Another category of

CNN based CMI approaches is motivated by the observation that image contents may

act as obfuscating noise for CMI. These methods rely on pre-processing input images to

discount the impact of the image content by using operations such as highpass filtering

[20], non-linear median filter residuals [21] and LBP filtering [22] before passing to CNNs.

These filter choices were primarily inspired by their success in steganalysis. Yang et

al. [23] proposed using learned convolutional filters for preprocessing in a multi-scale

content-adaptive fusion residual network for CMI. In further work along this direction,

[24] used a sequence of pre-processing blocks containing convolutional layers to suppress

unnecessary content and to learn a better classifier. Liu et al. [25] also explored trainable

modified Res2Net [26] module for pre-processing, in combination with VGG16 based

CMI classifier. Bennabhaktula et al. [27] applied constrained convolutional layer for

the preprocessing and seven layer CNN model for the classification. Fusion of multiple

feature extractors has also been explored in other recent work on CMI. Rafi et al. [28]

explored features extracted from different size patches (64 × 64, 128 × 128, 256 ×
256) using DenseNet201. These features obtained from three different sized patches

are concatenated to provide final features for CMI. In the work [29], camera-specific

features are extracted from input patches by fusing three branches, two of which utilize
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convolutional pre-processing, and the third branch does not have any pre-processing.

Although many approaches are proposed for the CMI problem, the majority of methods

have performed evaluation with only one dataset, i.e., the Dresden dataset [30]. Few

methods [24] have considered more than one dataset, including images from smartphone

cameras. Furthermore, only a few methods [24, 19] have performed evaluation with

post-processed images using operations such as JPEG compression, rescaling, and Gamma

correction with known parameters. To the best of our knowledge, none of these methods

evaluated performance under the increasingly important real-world scenario where CMI is

performed on images shared on social media platforms. To be effective in this challenging

settings, CMI methods must be robust and maintain high accuracy despite the unknown

post-processing introduced by these platforms. Also, it is important to evaluate and

characterize the robustness of CMI methods in cross-dataset settings, where the image

datasets on which CMI is deployed are different from those on which it is trained.

1.2 Objectives and Organization of the Thesis

1.2.1 Objectives

The literature review in this domain of source camera image forensics reveals some of the

existing challenges and gaps. Most of the existing works did not consider the smartphone

cameras which are primarily the source now for image acquisition. The real-world aspect

of images being shared on social media is also often ignored in the existing works. There is

also no work in relation to source camera identification of multispectral images which are

also getting prevalent in many applications. This thesis is, therefore, focused on addressing

some of these challenges and developing effective methods for the identification of camera

models of the images. Considering these different aspects, the following objectives are

identified:

• To prepare, implement and analyze a method for CMI of the original images.

• To develop a method for source social media network (SSMN) identification of images

and CMI of social media network downloaded images.

• To develop a method for CMI of multispectral images.

• To create a dataset for smartphone camera images for benchmarking CMI methods.

1.2.2 Organization of the Thesis

The outline of the thesis is as follows:

• Chapter 1: The first chapter of the thesis is dedicated to the introduction discussing

the background and motivation of the research work and also the related definitions.

A brief discussion about existing CMI frameworks is provided in this chapter. This

chapter also provides the organization of the thesis.
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• Chapter 2: This chapter comprehensively discusses the literature review of different

existing CMI methods. We present in detail the different stages of the pipeline of

CMI methods and how the approaches differ in performing the tasks in these different

stages.

• Chapter 3: In this chapter, we prepare, implement and analyze a method for

the identification of camera model of images. A novel method “dual-branch

convolutional neural network for robust camera model identification” is discussed.

This method addresses a favorable inductive bias in the convolutional neural network

(CNN) for CMI task. The method is dual-branch model that incorporates the

features from RGB image and high-pass filtered image to provide rich features for

CMI. A thorough quantitative and qualitative evaluation on multiple camera model

datasets and comparative evaluation with existing methods are discussed in this

chapter.

• Chapter 4: In this chapter, we consider the more real-world aspects in relation to

utility of camera model identification methods. We discuss the effect of social media

network post-processing on CMI. We develop a method for SSMN identification of

the images. We have assessed the effect of social media network on the performance

of CMI. Also, we have explored the image processing operation detection on the

images.

• Chapter 5: In this chapter, we have extended the CMI method on the multispectral

images. We develop a method for CMI of multispectral images. To the best of our

understanding, ours is the first work in this direction. We also summarize how a new

dataset of multiple multispectral images is prepared and this newly created dataset

is then used for performance evaluation.

• Chapter 6: In this chapter, we discuss the positives and limitations of the prior CMI

datasets. We also describe the newly created benchmarking dataset comprising

smartphone camera images for CMI. Initial results of different competing methods

on this new challenging dataset are also presented.

• Chapter 7: In this chapter, we conclude the thesis by highlighting the work done

during the PhD and we also present some promising future directions.
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Chapter 2

Literature Review

This chapter presents a systematic review of camera identification methods for digital

images. Original digital images mainly consists of RGB images captured using either DSLR

or smartphone cameras. In this literature review, we have primary explored the methods

for CMI for digital images. This chapter also provide a brief review of CDI methods

which involves identification of individual device. The extensive insights and coverage

offered in this chapter serve as a valuable reference for researchers and practitioners in the

field of information forensics and security, fostering further advancements in this domain.

The CMI leverages to address a range of problems, including safeguarding intellectual

property rights, managing patent infringements, and authenticating acquisition sources.

In the research part, special emphasis is placed on the each stage of the framework of

CMI methods. We have mainly focused on the articles which discuss deep learning based

approaches for CMI. Regarding the framework of CMI approaches, we have focused on

each stage and show the different methods and strategy applied by different approaches in

each stage. Also, we have mentioned different challenges associated with the each stage of

the framework. We have explained the brief methodology of related works. The chapter

provides a comprehensive overview of popular image datasets employed for evaluating

the performance of deep learning based camera identification methods. The references

to related methods, datasets are provided. The literature review is primarily divided in

three different sections. Section 2.1 focuses on existing methods related to CDI, detailing

their methodologies. Section 2.2 covers the handcrafted features based methods for CMI.

Finally, Section 2.3 extensively reviews deep learning-based methods related to CMI.

2.1 Camera Device Identification

The CDI aims to identify the individual device/sensor which is used to capture the image.

It can be achieved by analysing the features related to sensors. Researchers have explored

different methods to extract sensor specific features. In this section we have presented the

existing CDI methods based on sensor based features.

2.1.1 Sensor Pattern Noise based Methods

Sensor Pattern Noise (SPN) is a unique and inherent noise related to sensors that arises

due to imperfections in the manufacturing process. It serve as fingerprint for individual

sensors as it It manifests as a distinctive spatially varying pattern of noise across the

sensor pixels. The SPN is also often called as Photo Response Non Uniformity (PRNU)
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[11]. This PRNU is predominantly attributed to Pixel Non-Uniformity (PNU), which

arises from variations in pixel sensitivity to light. Lukás et al. [11] have extracted the

noise by applying a denoising filter as per the following equation

N = I − F (I), (2.1)

where I is the input image, N is the noise residual and F is denoising funtion or filter.

The PNU noise is approximated by averaging the noise residuals from multiple images.

Researcher have proposed methods by leveraging PRNU or PNU noise as reference pattern

from the known sensors and correlating with questioned images.

Lukás et al. [11] have applied different denoising filters to extract noise residuals and

used a wavelet-based denoising filter as it provided the best results. For each camera,

noise fingerprint (reference pattern) is extracted by averaging the noise residuals from

more than 50 images. The fingerprint is further used to find the correlation with noise

residual of test images. The authors also investigated the robustness of PRNU for images

post-processed using JPEG compression, gamma correction. In [31], authors presented a

framework for CMI using the PRNU of the image. However, the PRNU computation in

this framework is achieved through a refined maximum-likelihood estimator applied to a

simplified model of sensor output. This estimator optimally utilizes the available data,

demonstrating an advantage in terms of efficiency. Specifically, the number of images

required to estimate the PRNU is notably smaller compared to the approach proposed by

Lukas et al. in [11]. Jiang et al. [32] also utilized the SPN noise as per in the method

[11, 31] for the user identification using their respective camera devices.

In the work [33], authors have proposed a method for CDI. Initially a A photon transfer

curve is plotted as the noise curve using RAW photos. The camera gain histogram is

generated based on the occurrences of various camera gain constants. Four distinctive

features are extracted from the distribution by utilizing this histogram, which are then

used for training and testing a SVM classifier.

Goljan et al. [34] investigated to SPN with respect cropped and scaled images. The results

suggest that CDI can be done for images that have been linearly scaled down by a factor

of 0.5 or more, or for images where 90% or more of the content has been cropped.

Rosenfeld et al. [35] performed number of experiments to assess the robustness of PRNU

based CDI. Image is post-processed using multiple Image Processing Operations (IPOs)

such as denoising, re-compression, and out-of-camera demosaicing.

Liu [36] et al. proposed a method to improve the PRNU based CDI. They observed

that detecting the presence of PRNU in an image poses a considerable challenge due to

its inherently weak signal. The recommendation is to extract the PRNU from the noise

residual by isolating the significant regions with higher signal quality, while discarding

regions heavily affected by irrelevant noises.

Li [37] investigated that the SPN noise extracted using the methods in [11, 31] can be

impaired by the scene details. In the work [37], authors have proposed a methodology

aimed at mitigating the impact of scene details on SPN. It is based on the hypothesis that
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higher signal components within an SPN are indicative of reduced reliability, and as such,

should be mitigated. An improved SPN can be achieved by applying weighting factors

inversely proportional to the magnitude of the individual SPN components.

Li et al. [38] explored the color decoupling technique to enhance the performance of CDI

by separately analyzing the PRNU contributions in different color channels. This approach

may improve the robustness of camera identification, especially in scenarios where color

information plays a crucial role. The PRNU is extracted by considering the presence

of CFA interpolation noise. Authors proposed Color-Decoupled PRNU (CD-PRNU)

extraction method, which can effectively mitigates the diffusion of the Color Filter Array

(CFA) interpolation error from the synthetic color channels to the physical channels. The

CD-PRNU extraction method has demonstrated significant improvements in performance.

Tomioks et al. [39] introduced a CDI method by leveraging clustered PNU noises.

The method extracts robust features related to image sensor The clustering of PNU

noises provides robust features related to image sensors,random noise, and scene content

variations.

Gisolf et al [40] proposed a simplified First Step Total Variation (FSTV) algorithm

designed for CDI. Authors observed that wavelet based denoising filter taked lot of time

and not suitable for large number of images. Therefore, the primary objective was to

create a faster algorithm, the results demonstrate that FSTV not only achieves reduced

computation time compared to wavelets but also exhibits enhanced accuracy. The optimal

outcomes are achieved through the combination of FSTV and Phase SPN. The utilization

of FSTV yields a substantial reduction in calculation time, proving advantageous for

handling extensive databases.

Kang et al. [41] presented a CDI method based on an eight-neighbor context-adaptive

SPN predictor to enhance the receiver operating characteristic performance of CDI.

The adaptability of the SPN predictor to various image edge regions allows for better

suppression of the impact of image content, resulting in a more accurate SPN estimation.

It particularly excels in withstanding mild JPEG compression, such as a quality factor of

90%, especially when maintaining a low false-positive rate. However, it is important to

note that the proposed method requires a substantial number of original images, not less

than 100, to create a camera fingerprint. The advantage of our method diminishes when

the camera fingerprint is generated with fewer images.

Julliand et al. [42] provides an in-depth examination of diverse sources and models of

noise in digital images. Authors investigated various noise alterations stemming from

both the acquisition pipeline and post-processing stages. Authors observed the impact of

alterations on the quality and intensity of noise, meticulously studying the specific effects

of each modification. It is observed that, as a JPEG image is generated, even in the case of

a high-quality rendition, the noise undergoes substantial transformation from its original

state in the raw image.

Gupta et al. [43] observed that the PRNU extracted through existing methods

retains high-frequency details (edge and textures) from the images. Authors propose a
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pre-processing step to enhance the efficiency of widely accepted PRNU extraction methods.

In the pre-processing step, pMihcak filter is used. Experimental results on Dresden [30]

dataset demonstrate that the pMihcak filter effectively eliminates noise from given images

without distorting their high-frequency details.

Valsesia et al. [44] proposed a method to address the storage and matching

complexity challenges in camera fingerprint databases through the utilization of random

projections. Authors demonstrated that random projections effectively preserve the

database’s geometry while significantly reducing the problem’s dimension with minimal

trade-offs. The theoretical analysis encompasses the use of real-valued and binary

random measurements, considering detection and false alarm probabilities. Also, Random

projections offer superior compression ratios and enhanced scalability.

Goljan et al. [45] explored the impact of JPEG compression on the performance of CDI

using the sensor fingerprints. Authors found that JPEG compression amplifies the variance

of the normalized correlation and the Peak to Correlation Energy (PCE). Consequently,

adjustments to the decision threshold are necessary to maintain a prescribed false-alarm

probability. Apart from image compression, authors also preformed experiments related

to video compression and it is observed that in the case of MPEG-4, not only does the

variance of the normalized correlation depend on compression quality, but there is also a

positive bias that increases the normalized correlation.

In work proposed by Li et al. [46], principal component analysis is explored to provide

a compact representation of SPN. Authors proposed a framework for denoising and

compression large size SPN. Reducing the size can speed up the processing time. Also,

authors presented a method for constructing a training set that minimizes the impact

of interfering artifacts. This method plays a crucial role in training the SPN feature

extractor. This make it robust to various unwanted noise sources. The combination of

theoretical derivations and experimental results indicates that this framework can serve

as a comprehensive post-processing framework for effective and efficient CDI.

Mieremet [47] presented a simple formula that allows for the a priori prediction of the

standard deviation of the correlation value distribution of multiple PRNUs for mismatches.

This formula serves as a decision rule in CDI, enabling a choice between conducting

a thorough investigation, including reference recordings (a time-consuming process), or

opting for a more efficient approach. In the context of common-source identification, this

formula can be utilized to offer an informed estimate for the threshold value in the cluster

algorithm, eliminating the need for arbitrary testing of a range of threshold values.

2.1.2 Auto-White Balance based Methods

Deng et al. [48] proposed a method for CDI using Auto-White Balance (AWB) residue

pattern. They investigated method to approximate the AWB setting applied during image

capture. This can be useful to recognizing the unique artifacts introduced by different

cameras. Authors also investigated their method for CMI and it shows good performance.
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2.1.3 Sensor Dust-based Methods

Dirik et al. [8] proposed a DSLR CDI method based on sensor dust. The persistent

location and unique shapes of dust specks in front of the imaging sensor create a unique

fingerprint for DSLR cameras. Despite of built-in dust removal mechanisms these cameras,

these hardware-based solutions often fall short of their efficacy claims. Moreover, since

dust spots are typically not overtly visible, users tend to overlook them. The effectiveness

of the method is evaluated on a dataset exceeding 1000 images from various cameras.

The proposed method exhibits robustness to post-processing operations such as JPEG

compression and downsizing.

2.1.4 Pixel Pattern-based Methods

Geradts et al. [49] observed that the errors in the Charge Coupled Devices (CCDs) were

visible and it is possible to utilize these error for identification of cameras. The patterns

related to hot point defects, point defects dead pixels, pixel traps, and cluster defects is

unique in different cameras. However, the errors in the expensive camera are not that

visible and image compression algorithms can suppress or move the pixel defects.

2.1.5 Deep Learning based Methods

Numerous deep learning-based CDI methods have been introduced in the literature [3, 50,

51, 25, 29]. However, it is noteworthy that despite their claims, these methods primarily

focus on identifying the camera model rather than the actual source camera of a given

image. This observation is derived from their methodological considerations, which involve

training and testing on various camera models of the Dresden dataset [30]. As a result,

their effectiveness in pinpointing the specific source camera of an input image remains

limited.

2.2 Conventional Camera Model Classification

The conventional CMI methods investigates different artifacts in the image acquisition

pipeline, related to camera models. San Choi et al. [6, 52] proposed a method for CDI

identification as discussed in section 2.1. However, the lens are specific to camera models.

A manufacturer apply same configurations lens to all the devices of same camera model.

So fingerprints related to lens abbreviations is related to camera model rather than the

camera device. Also, authors performed experiments with single device per camera model.

In their methodology, A vector of 36 features is extracted from the each input image. This

vector contains two additional lens radial distortion parameters as compared to 34 features

proposed in the CDI method [10]. Based on these 36 features from different cameras a

classifier is trained for distinguishing between images originating from a specific cameras.

Kharrazi et al. [10] explored 34 features related to CFA configuration, the demosaicing

algorithm, the color processing transformations. These features includes Average pixel
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value, RGB pairs correlation, Neighbor distribution Center of mass, RGB pairs energy

ratio, and Wavelet domain statistics. This method also proposed for CDI, however CFA

and other image processing operations are specific to camera model.

Bayram et al. [9] proposed a method for CDI of image based on color interpolation traces

in the RGB color channels. Authors have used expectation-maximization (EM) algorithms

to generate number of measures and further, a classifier is used to determine the reliability

of selected measures for classification of different camera images.

The work in [6, 9, 10, 52] are proposed for CDI but all these methods have performed

experiments with single device per camera model. The features utilized in their respective

method are more specific to camera model rather than the individual camera device.

Deng et al. [48] proposed a method for CMI using Auto-White Balance (AWB) residue

pattern. They investigated method to approximate the AWB setting applied during

image capture. This can be useful to recognizing the unique artifacts introduced by

different cameras models. Authors investigated their methodology for both CDI and CMI.

Experimental results shows good performance with respect to CMI.

San Choi et al. [53] explored statistics related to JPEG compression left on the images for

CMI. Authors suggests employing the bit per pixel and the percentage of non-zero integers

in each Discrete Cosine Transform (DCT) coefficient to represent the trade-off between

quality and size in a digital camera. A CMI classifier is constructed using these features

to assess their effectiveness.

Swaminathan et al. [54] examined the problem of component forensics and proposed the

methods to find algorithms and settings used by camera during image acquisition. They

have proposed a method to estimate the CFA pattern and interpolation kernel.

In the work [55], Filler et al. explored the PRNU for CMI. The PRNU is used primary

for CDI. However, authors demonstrated that the same PRNU fingerprint can be used for

CMI. Authors observed that fingerprints derived from images in the TIFF/JPEG format

encompass local structure resulting from diverse in-camera processing. This structure can

be identified by extracting a set of numerical features from the fingerprints and subjecting

them to classification using pattern classification methods. The experimental results show

the accuracy over 90%.

Swaminathan et al. [54] explored the distinct intrinsic traces on digital images related

to camera model. The proposed model is based on the assumption that in-camera and

post-camera image processing operations laves some intrinsic fingerprint artifacts on the

final images which can be distinctive in between camera models. related to fingerprint.

Authors have analysed the direct camera output and determine its component parameters

along with intrinsic fingerprints. Any subsequent post-camera processing is treated

as a manipulation filter. Authors ascertain the coefficients of its linear shift-invariant

approximation through blind deconvolution. The integrity of the provided image is

validated by the close resemblance between the estimated coefficients and the reference

pattern.

Cao et al. [2] presented a framework to detect the demosaicing regularities in between



Chapter 2. Literature Review 15

images. Authors have proposed an EM reverse classification algorithm. The proposed

method investigated the inherent disparities in color filtering and demosaicing algorithms,

achieving accurate detection through a meticulous reverse classification method coupled

with partial derivative correlation models. The effectiveness of the reverse classification

is demonstrated by employing an EMRC algorithm, particularly adept at resolving

ambiguities in demosaiced axes. Utilizing partial derivative correlation models enables

our method to efficiently discern both cross- and intra-channel correlations resulting from

demosaicing. Identifying the correct demosaicing algorithms helps in the identification

of camera model as demosaicing algorithm in these model is different. Experiments

on 14 camera models have shown accuracy of 97.5%. Authors have proposed an

expectation-maximization reverse classification algorithm

Goljan et al. [56] have performed large scale experiment consisting of images from 6896

individual cameras from 150 models. All the images are downloaded from Flickr and

verified using the EXIF file. The camera identification is performed on the basis of SPN

[11]. It is observed that error rates remain consistent among cameras of the same model,

suggesting the efficacy of existing methods designed to eliminate non-unique systematic

artifacts from fingerprints. Also, the primary factor leading to missed detection is the

quality of the images utilized for fingerprint estimation.

Gloe et al. [57] presented a method for efficiently estimating lateral chromatic aberration

(LCA). In their work, total 82 features consists of color features, image quality matrices,

and wavelet featurs. Experiments on image source identification suggest the significant

use of LCA for CMI in small sets. However, authors have mentioned the limitation of

method on distinguishing large number of camera models.

Kirchner et al. [58] proposed a method for determining CFA pattern in demosaiced digital

images. Understanding the pre-processing history and local inter-pixel correlation pattern

structure can prove valuable in camera identification and digital watermarking.

Xu et al. [59] have utilized the 354 features related to gray-scale local binary pattern

for CMI. Total 59 local binary patterns from the spatial domain of the red and green

color channels are extracted, along with their corresponding prediction-error arrays and

the 1st-level diagonal wavelet sub-bands of each image. All these features are extracted

by considering 8-neighbor binary co-occurrence.

Thai et al. [60] have related the CMI problem with hypothesis testing theory. The

approach in the work is based on heteroscedastic noise model which leveraging two

parameters (a, b) as distinctive fingerprints for CMI. It comprehensively addresses all

the noises affecting the raw image at the sensor output. The primary advantage of this

approach lies in the development of two generalized likelihood ratio tests with analytically

quantifiable performance, ensuring a specified false alarm rate. However, a notable

limitation is the emphasis on raw images, which may not always be available in practical

scenarios.

Milani et al. [61] investigated the traces left by color demosaicing algorithm. The method

entails identifying the demosaicing algorithm by analyzing the interpolated image using
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eigenalgorithms.

Chen et al. [62] stated that components related to image acquisition pipeline are complex

and nonlinear. Also, it is hard to define a model based on component parameters. Authors

investigate the rich models originally defined for steganalysis [63]. The approach in [63]

relies on analyzing the prediction errors in stego images with concealed information added

through steganography. Chen et al. [62] defined a rich model of demosaicing algorithm

used in a camera by generating a diverse set of sub-models.

Marra et al. [64] utilized the features related to co-occurrence matrices of selected

neighbors. The feature extraction involves three step: The residuals are extracted using

high-pass filtering, the residuals undergo quantization and truncation processes, finally,

the method includes the computation of the histogram of co-occurrences. The final 338

features are passed to SVM classifier for classification.

Celiktutan et al. [65] have explored three set of forensics features for CMI: binary similarity

measures, image-quality measures, and higher order wavelet statistics. These features are

further used for training SVM based classifier.

Tuama et al. [13] utiized features related to CFA interpolation, co-occurrences matrix,

and conditional probability statistics. The high-order statistics provided by these features

leverages the CMI performance. Feature are passed to train a SVM classifier. The method

achieves accuracy of 98.75% on 14 camera models from Dresden dataset [30].

Thai et al. [66] proposed a statistical test for the CMI. Similar to the heteroscedastic noise

model in the work [60], authors defined method on generalized noise model. Considering

both the linear connection between the expectation and variance of a RAW pixel and

incorporating the non-linear impact of gamma correction, the generalized noise model

provides a more precise characterization of a natural image in TIFF or JPEG format.

Patch extraction and selection
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Figure 2.1: The framework of the deep learning-based methods for CMI.

2.3 Deep Learning based Camera Model Identification

In this section, we provide a comprehensive overview of each stage in CMI methods.

Initially, we explain the framework of the CMI framework, reviewing each method within
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the corresponding stages of the framework. Further, we present the major datasets used

for evaluating CMI methods, along with their respective dataset splitting strategies.

Subsequently, we provide a brief explanation of the methodology employed by each

method.

2.3.1 Patch Extraction and Selection

The basic framework of CMI methods is illustrated in Figure 2.1. The initial

stage encompasses patch extraction and selection from each image. Subsequently, a

pre-processing stage is employed to enhance features. Following this, the patches

undergo processing by a deep learning-based model for feature extraction and subsequent

classification.

The input size of the image is very important aspect for the deep learning based models.

The number of parameters of a CNN model is directly proportional to input image size.

Numerous computer vision application applies resizing to input image prior to passing

it to CNN model. The resizing of image is suitable for object recognition or ImageNet

dataset image classification. However, for the forensics application such as CMI, CDI, or

image manipulation detection [67, 68], there is information loss due to resizing and the

artifacts related to fingerprints and manipulation lost from the image during the resizing

operation. Due to limitation of resizing, majority of CMI methods applies patch extraction

strategy to extract fixed sized patches from the image. The label of each patch is assigned

as same as label of the input image. Extracting patches from images also provide the

larger training dataset. The final prediction label of input image is estimated using the

majority voting over the prediction of CNN for patches per input image. The majority

is also very important aspect as it provide better accuracy when majority of patches are

correctly classified.

The patch selection strategy defines the three major aspects: how many patches to be

selected? 2. What is the size of the patches? 3. what kind of patches to be selected?

Bondi et al. [69] defines the first strategy for the patch selection. They selected 32 quality

non-overlapping patches of size 64× 64× 3. The idea of their patch selection is providing

large training data to smaller and lighter CNN architectures. According to Bondi et al.

[69] patch selection strategy, some patches from the input image are not important as all

patches may not contains statistical information. Therefore, the saturated patches should

not be considered. A quality factor (Q) [69] is defined to extract only 32 most quality

patches from image.

Q (Pk) =
1

3

∑
c∈[R,G,B]

[
α · β

(
µc − µ2

c

)
+ (1− α) (1− eγσc)

]
,

where α, β and γ are empirically set constants. µc and σc are the mean and standard

deviation of respective c ∈ [R,G,B] channel. Methods in [25, 28, 70] extracts different

number of patches of different sizes based on (Q). Moreover, alternative strategies for patch

extraction have been explored by Mayer et al. [71] and Bennabhaktula et al. [27], wherein
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patches are extracted based on entropy and standard deviation, respectively. Instead of

parameter-based patch extraction, certain methods adopt simpler strategies by extracting

all patches from the entire image. Methods in [20, 22, 72, 29] encompass all patches of

specific dimensions across the entire image without imposing any conditional constraints.

Some methods in [3] have extracted fixed number of patches from the image. However,

few methods [19] considers some portion of image to extract the patches from training

and inference. This approach is adopted due to the potential consequence of generating

an excessively large training dataset when extracting all patches from all images. A

summary of strategies of patch extraction applies in existing methods is presented in Table

2.1. where α, β and γ are empirically set constants. µc and σc are the mean and standard

deviation of respective c ∈ [R,G,B] channel. Methods in [25, 28, 70] extracts different

number of patches of different sizes based on (Q). Moreover, alternative strategies for patch

extraction have been explored by Mayer et al. [71] and Bennabhaktula et al. [27], wherein

patches are extracted based on entropy and standard deviation, respectively. Instead of

parameter-based patch extraction, certain methods adopt simpler strategies by extracting

all patches from the entire image. Methods in [29, 20, 22, 72] encompass all patches of

specific dimensions across the entire image without imposing any conditional constraints.

Some methods in [3] have extracted fixed number of patches from the image. However,

few methods [19] considers some portion of image to extract the patches from training

and inference. This approach is adopted due to the potential consequence of generating an

excessively large training dataset when extracting all patches from all images. A summary

of strategies of patch extraction applies in existing methods is presented in Table 2.1.

2.3.2 Preprocessing

In the context of deep learning-based problems in computer vision, it is a prevailing

practice to employ RGB images as the input data for neural network architectures.

This selection is substantiated by benchmark datasets like ImageNet [17], which find

application in object or animal recognition tasks founded on the principles of human

visual perception. Nonetheless, this foundational proposition may not uniformly translate

to the image forensics tasks such as CMI, source social media network detection [81] and

image manipulation detection [67, 68]. In the image forensics tasks, the main focus is the

identification and localization of artifacts intrinsic to an image, rather than on the content

present in the image. Hence, the significance of the preprocessing layer becomes evident,

as it is regarded as pivotal for mitigating the impact of scene content that obfuscates the

camera model fingerprints to a substantial extent. The summary of different methods

pre-processing is mentioned in Table 2.2.

The initial works of deep learning based CMI methods try to extract the artifacts directly

from the RGB image. All the methodologies outlined in [3, 14, 15, 69, 28, 70, 71, 19, 75,

76, 79, 82] apply CNN-based model directly on input RGB image. The primary distinction

among these methodologies resides in the selection of the CNN model utilized for feature

extraction and subsequent classification. It is assumed that these CNN models possess
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Table 2.1: Summary of different patch extraction strategies used by different CMI
methods. — implies that the method have not mentioned theirs strategy.

Year Method
Patches
per image

Size of patch Patch exctraction critieria

2016 Tuama et al. [20] All patches 256× 256 Select all patches.

2016 Bondi et al. [14] 32 64× 64 Non-saturated patches based on quality factor Q [69].

2017 Bayar et al. [73] 25 256× 256× 1 Patches from centre of green channel of image.

2017 Bayar et al. [21] 36 256× 256× 1 Patches from centre of green channel of image.

2017 Bondi et al. [69] 32 64× 64 Non-saturated patches based on quality factor Q [69].

2017 Chen et al. [15] NA NA Resize the image to 256× 256 (no patch extraction).

2018 Mayer et al. [74] ∼ 165 256× 256× 1 Patches from random position at green channel.

2018 Wang et al. [22] All patches 256× 256 Select all patches

2018 Yao et al. [19] 256 64× 64 75% of the image (from the centre of image)

2018 Güera at al. [75] 300 64× 64 From the center of image

2018 Kuzin et al. [76] 1 960× 960 Randomly cropped patch

2018 Ferreira at al. [70] 32 229× 229 Non-saturated patches based on quality factor Q [69].

2019 Cozzolino et al. [77] 1
1024× 1024,
128× 128

Center crop

2019 Zou et al. [78] 64 64× 64 Randomly selected patches

2019 Yang et al. [50] All patches 64× 64 Select all patches.

2019 Ding et al. [51] — 48× 48 Randomly cropped patch.

2019 Rafi et al. [28] 20 256× 256 Non-saturated patches based on quality factor Q [69].

2019 Freire-Obregón et al. [3] 256 32× 32 —

2019 Banna et al. [79] — 224× 224 —

2019 Mayer et al. [71] All patches
128× 128,
256× 256

Based on Entropy E.

2020 Kang et al. [72] All patches 256× 256 All patches

2021 Liu et al. [25] 128 64× 64 64 based on Q [69] and 64 using K mean clustering.

2021 Rafi et al. [24] 20 256× 256 Non-saturated patches based on quality factor Q [69].

2021 You et al. [29] All patches 64× 64 Select all patches

2021 Laio et al. [80] 5 227× 227 Randomly selected

2022 Bennabhaktula et al. [27] 200, 400 128× 128 Homogeneous patches based on standard deviation.

2023 Sychandran et al. [80] 256 32× 32 —

the capability to discern and extract features specific to the camera model from the input

RGB image. All these methods that involve directly feeding RGB input images into

CNN models exhibit descent performance, demonstrate the efficacy of CNNs in extracting

camera model-specific features. Also, a certain opacity remains in terms of the features

that CNN models learn directly from the RGB image.

However, recent advancements in research have directed their focus towards the

adoption of specific preprocessing operations/layer applied to input image prior to

CNN-based classifiers. This approach holds significance due to the primary objective

of preprocessing, which is to attenuate image content and guide the CNN classifier

to prioritize non-content-related aspects, such as CMI feature rich image noise. The

deliberate inclusion of image noise within the preprocessing phase amplifies the prominence

of fingerprint-related attributes, thereby elevating the overall efficacy of CNN-based

classifiers. For the extraction of CMI rich noise image, multiple method applies high-pass

filtering layer. Tuama et al. [20] and Laio et al. [80] applies a single high-pass filter (HPF)

[83] for noise extraction. Wang et al. [22] utilized the local binary patterns (LBP) for

the CMI. Ding et al. [51] and Kang et al. [72] applies Gaussian filters to extract noise

residuals from the input image. One branch of dual-branch CNN model in [21] apply

median filtering [84] to suppress content. Instead of applying fixed HPFs, some method

applies a dynamic high-pass filtering. The dynamic HPF can be a custom convolutional
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layer or CNN-based network. Although it is similar as CNN based feature extracting

layer, but a prerequisite here is that dimension of output of dynamic high-pass filtering

is same as dimension of input RGB image. Methods detailed in [71, 27, 21, 85] applies

constrained convolutional layer (CCL) [85] for enhancing camera model specific features.

Both CCL and HPFs employ linear transformations to enhance pertinent features while

simultaneously diminishing the impact of image content, resulting in enhanced capabilities

of CNNs for extracting camera model specific features. In a distinct approach, Yang el

al. [50] deploy three independent convolutional layers, each with varied sizes of learnable

filters. Methods in [25, 78, 24] applies a CNN-based residual network for extract for CMI

features enhanced noise image. Liu et al. applies a modified layer of Res2Net model [26] for

residual extraction. Cozzolino et al. [77] applies a CNN-based network to extract camera

model specific fingerprint (Noiseprint) which is distinctive across different camera models.

In contrast to residual extraction, the method in [29] applies three branch network, wherein

two branches deploy convolutional blocks with differing kernel sizes to extract multi-scale

content features. Among all these methods in [50, 51, 29, 21] are multi-branch methods

where each branch exhibiting distinct pre-processing.

Table 2.2: Summary of pre-processing used for CMI methods.

Year Method Input image to CNN Pre-processing operation

2016 Tuama et al. [20] High-pass filtered image Denoising high-pass filter

2016 Bondi et al. [14] RGB image —

2017 Bayar et al. [73] Dynamic high-pass filtered image CCL [86]

2017 Bayar et al. [21] Dynamic high-pass filtered image Median Filtering and CCL [86]

2017 Bondi et al. [69] RGB image —

2017 Chen et al. [15] RGB image —

2018 Mayer et al. [74] Dynamic high-pass filtered image CCL [86]

2018 Wang et al. [22] LBP of image LBP [59]

2018 Yao et al. [19] RGB image —

2018 Stamm et al. [82] RGB image —

2018 Güera at al. [75] RGB image —

2018 Kuzin et al. [76] RGB image —

2018 Ferreira at al. [70] RGB image —

2019 Cozzolino et al. [77] CNN based Noiseprint [77] CNN network

2019 Zou et al. [78] CNN based residual image CNN network

2019 Yang et al. [50] Dynamic high-pass filtered image Fusion based CNN network

2019 Ding et al. [51] RGB and High-pass filtered images Gaussain filters based residuals

2019 Rafi et al. [28] RGB image —

2019 Freire-Obregón et al. [3] RGB image —

2019 Banna et al. [79] RGB image —

2019 Mayer et al. [71] RGB image —

2020 Kang et al. [72] High-pass filtered image Conditional Gaussian filtering

2021 Liu et al. [25] CNN based residual image CNN network

2021 Rafi et al. [24] CNN based residual image CNN network

2021 You et al. [29] CNN based image CNN network

2021 Liao et al. [80] High-pass filtered image HPF

2022 Bennabhaktula et al. [27] Dynamic High-pass filtered image CCL [85]
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Table 2.3: Summary of feature extraction networks used for CMI methods.

Year Method Feature Extractor Feature Extractor Details

2016 Tuama et al. [20] Single branch CNN Convolutional layers

2016 Bondi et al. [14] Single branch CNN Convolutional layers

2017 Bayar et al. [73] Single branch CNN Convolutional layers

2017 Bayar et al. [21] Dual-branch CNN Convolutional layers

2017 Bondi et al. [69] Single branch CNN Convolutional layers

2017 Chen et al. [15] Single branch CNN ResNet34 [16]

2018 Mayer et al. [74] Single branch CNN Convolutional layers

2018 Wang et al. [22] Single branch CNN Convolutional layers

2018 Yao et al. [19] Single branch CNN Convolutional layers

2018 Güera at al. [75] Single branch CNN Convolutional layers

2018 Kuzin et al. [76] Single branch CNN DenseNet161 [87]

2019 Ferreira at al. [70] Dual-branch CNN Inception-ResNet [88] and XceptionNet [89]

2019 Cozzolino et al. [77] Dual-branch CNN Convolutional layers and Siamese Network [90]

2019 Zou et al. [78] Single branch CNN Modified SqueezeNet [91]

2019 Yang et al. [50] Three-branch CNN Residual blocks [16]

2019 Ding et al. [51] Four-branch CNN Residual blocks [16]

2019 Rafi et al. [28] Three-branch CNN DenseNet201 [87]

2019 Freire-Obregón et al. [3] Single branch CNN Convolutional layers

2019 Banna et al. [79] Single branch CNN MobileNet [92]

2019 Mayer et al. [71] Dual-branch CNN MISLNet [85]

2020 Kang et al. [72] Single branch CNN Convolutional layers

2021 Liu et al. [25] Single branch CNN VGG16 [93]

2021 Rafi et al. [24] Single branch CNN Convolutional layers

2021 You et al. [29] Three-branch CNN Convolutional layers and SE Block [94]

2021 Liao et al. [80] Three-branch CNN Residual blocks [16]

2022 Bennabhaktula et al. [27] Single branch CNN MISLNet [85]

2.3.3 Feature Extraction and Classification

One of the key aspect of the deep learning based methods is to automatically extracts

features from the images based on the error function between the estimated values and

original target values. The CNN is widely used as feature extractor from images in the

computer vision problems. Similar to vision problems, forensic community also employs

the CNN for extracting feature directly from the given input image or the preprocessed

input image. Most methods pass input to CNN based feature extractor after applying

pre-processing as we discussed in section 2.3.2. As there is no universal architecture

related to CNN based feature extractor, researchers proposed different models based on

their respective hypothesis. Most methods utilize simpler one-branch models by varying

the depth of the network and different parameters [3, 14, 69, 22, 72, 74, 75, 77, 24, 86]. Few

methods [15, 25, 70, 76, 24] employ standard CNN models which are originally proposed

for image classification tasks. Researchers also employed methods which are used in other

forensics task such as image manipulation. Method in [71, 27] have utilized the MISLNet

which is originally proposed for general proposed image manipulation (GIMD). Apart from

one-branch models, researcher also explored multi-branch model based on the hypothesis

that different pre-processed images may provide better camera specific features. The

multi-branch model refers to a model wherein different types of inputs are passed to

the CNN based feature extractor. Methods in [70, 71, 21] and [50, 25, 29, 28] utilize

two-branch and three-branch feature extractor. Ding et al. [51] employs four-branch



22 Chapter 2. Literature Review

network for feature extraction. The summary of different classifiers used in prior works is

illustrated in Table 2.3.

The feature extracted from deep learning based feature extractor are passed to classifier

to further classification. Initial methods methods [14, 85] utilized the support vector

machine (SVM) to train a classifier. Training CNN and SVM together is two phase

process. Firstly, CNN is trained using the training images. Secondly the trained feature

extractor is used to provide the high-level features to train the SVM. Recent methods

have applied fully-connected network and further to softmax layer. This softmax layer

provides the probability distribution over all the camera models. The model with highest

probability will be estimated camera model.

Table 2.4: Summary of datasets used for CMI methods.

Dataset Total Images
Total original
images

Total camera
models

Total camera
devices

Dresden [30] 14999 14999 25 73

VISION [95] 34,427 11,732 30 35

Socrates [96] 9721 9721 65 103

Forchheim [4] 23106 3851 25 27

IEEE SP Cup [82] 2750 2750 10 10

2.3.4 Datasets

The CMI requires model to learn from the dataset and evaluate their performance based

on the learned information. Different camera identification dataset have been used for

CDI, CMI. The CDI datasets provide images from multiple camera devices, wheres the

CMI datasets provide images from multiple camera models. In the context of the CDI

dataset, the count of distinct camera models is always less than or equal to the number

of devices. In contrast, the desired aspect of CMI dataset is there should be at least two

device per camera model. This ensures a fair evaluation by utilizing training images from

one device and test images from a another device. The datasets are classified into two

categories depending on the acquisition device type.

Furthermore, the datasets are systematically categorized into two classes based on the

type of acquisition device. This categorization aids in organizing and analyzing data,

facilitating a comprehensive exploration of model behavior across different device types

within the CDI and CMI domains.

• Non-smartphone cameras datasets: This category of datasets contained images

acquired from the non smartphone camera equipped with large size sensors. Due to

large sensor size of these cameras, more light can be captured and more detail of the

scene can be captures. Further, it provide interchangeable lenses for different view

preferences and lenses also have different aperture.

• Smartphone cameras datasets: This category comprises images acquired from

smartphone cameras. The sensor size of smartphone cameras is notably smaller
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compared to other digital cameras. Smartphones typically have a fixed number

of lenses, usually around three, and most of them feature a fixed aperture size.

Given the widespread use of smartphone cameras among the general population, the

CMI with respect to smartphone camera models are of utmost importance. Several

CMI datasets have been released, containing images captured with smartphone

cameras. The details of these datasets are presented in Table 2.4. Notably, there

isn’t a single primary or major CMI dataset encompassing images from smartphone

cameras. This absence stems from the fact that these datasets have emerged at

different points in time and are tied to the camera models available when they were

introduced. The smartphone technology landscape is dynamic, with new smartphone

cameras entering the market daily. Nonetheless, these datasets offer a platform

for comparative analysis of CMI methods and CMI methods can subsequently be

adapted and retrained to accommodate new datasets from evolving smartphone

cameras.

One significant aspect related to datasets involves the uploading and downloading of

post-processed images from social media platforms. The majority of information is

disseminated through images shared on platforms like Facebook and WhatsApp. Almost

all images are captured using smartphone cameras, given their compatibility with internet

browsers and mobile applications. Therefore, assessing the robustness of CMI methods

across social media platforms holds great importance. One major aspects related

to datasets is the post-processed images uploaded and downloaded from social media

platforms. Most of the information is circulated thought the images shared over social

media platforms such as Facebook, WhatsApp. Majority of these images are captures

using smartphone cameras as it support Internet browsers and mobile applications. So, it

is very important to evaluate the robustness of CMI methods over social media platforms.

Few datasets include a social media version of each image, corresponding to the original

image captured using smartphone cameras. These datasets are shown in the Table 2.4.

The post-processing version of images provide significant robustness of the CMI method.

In IEEE SP Cup [82], test dataset contains images from seconds device with respect to

camera model and these images are post-processed using JPEG compressing, resizing and

gamma correction. These post-processing operation further provide a evaluation of the

robustness of CMI methods. Few method have created copies of post-processing images

by applying some image processing operations (IPOs). The most common image IPOs

are JPEG compression, Gamma correction, resempling, resizing etc as shown in Table 2.5.

Here are a few examples of IPOs with different parameters: JPEG compression is applied

with quality factors of 70, 80, and 90; gamma correction is applied with values of 0.8 and

1.2; and contrast enhancement is performed with factors of 0.6, 0.8, 1.2, and 1.4.

Within the realm of CMI , the availability of multiple datasets is evident. However, a

notable absence exists, characterized by the absence of a benchmarking CMI dataset that

provides a predefined splitting into training and test sets. Various methods have employed

different approaches when comes to splitting the dataset. The splitting of datasets are
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very important as it provide a fair comparative evaluation of all different CMI methods.

One of the significant split is stated by Bondi et al. [14], in which the dataset split is

performed on the basis of device identifier. The training and test dataset are disjoint in

terms of image acquisition device. It is worth noting that the Dresden dataset provides

images from only 18 camera models that have two or more associated devices and does not

include any smartphone images. In the Table we provide a summary of different methods

dataset split strategy.

Table 2.5: Summary of dataset splits used for CMI methods.

Year Method Datasets Dataset splits Folds Post-processing

2016 Tuama et al. [20] Dresden + Custom (8:0:2) 5 —

2016 Bondi et al. [14] Dresden (18)
Split dataset based on
scene and device id

— —

2017 Bayar et al. [73] Custom (8:0:2) — —

2017 Bayar et al. [21] Dresden (4:0:1) — Resampling + JPEG)

2017 Bondi et al. [69] Dresden
Split dataset based on
scene and device id

— —

2017 Chen et al. [15] Dresden (7:0:3) — —

2018 Mayer et al. [74] Dresden + Custom
Split dataset based on
scene and device id

— —

2018 Wang et al. [22] Dresden (8:0:2) — —

2018 Yao et al. [19] Dresden (3:0:2) — —

2018 Güera at al. [75] Dresden
Split dataset based on
scene and device id

— —

2018 Kuzin et al. [76] SP Cup + Custom — — —

2018 Ferreira at al. [70] SP Cup + Custom — 2
Gamma correction
(Resizing+ JPEG)

2019 Cozzolino et al. [77] Dresden (3) — — —

2019 Zou et al. [78] Dresden (18) — — —

2019 Yang et al. [50]
Dresden (23),
Custom, SP Cup (3)

— — —

2019 Ding et al. [51]
Dresden (27) +
Custom

— —

Average blur
Motion blur
Bilateral blur
Median blur)
Compression

2019 Rafi et al. [28]
Dresden (27) +
SP Cup (10)

— —
Gamma correction
(Resizing + JPEG)

2019 Freire-Obregón et al. [3] MICHE-I (3) — — —

2019 Banna et al. [79] Custom (9:0:1) — —

2020 Mayer et al. [71]
Dresden (26) +
Custom

tabular — —

2020 Kang et al. [72] Dresden (27) (4:0:1) 5 —

2021 Liu et al. [25] Dresden (18)
(7938, 1353, 540)
(# images)

— —

2021 Rafi et al. [24]
Dresden (27)
SP Cup (10)

(7938, 1353, 540)
(# images)

— —

2021 You et al. [29] Dresden (23) (4:1:1) — —

2021 Laio et al. [80] Dresden (17) (4:0:1) —

Contrast enhancement
Resizing
median filtering
JPEG

2022 Bennabhaktula et al. [27] Dresden
Split dataset based on
device id

5 —

2.3.5 Methodologies

The first work related to employing deep learning based CMI is proposed by Bondi et

al. [14]. In their work, a RGB image patch is passed to four layer CNN network for
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feature extraction. The extracted features from the trained CNN are subsequently fed

into a SVM for further classification. The overall process is executed in two phase: the

initial phase involves the training of the CNN model, followed by the subsequent training

of the SVM classifier. The training of the CNN is based on the cross-entropy loss. Most

of the CNN based CMI method have applied cross-entropy loss for the error computation.

Experimental outcomes shows the patch-level accuracy (PLA) of 93% on 18 camera models

of Dresden dataset [30].

Tuama et al. [20] have apply similar 3 layer CNN model as in [14]. However, they

incorporated a high-pass filter [83] to suppress content and accentuating the artifacts

related to camera model. The results shows the PLA of 91.9% on 33 camera models.

Bayar et al. [73] have discussed that the static high-pass filter for content suppression is

not adaptive. The authors have addressed this issue by incorporating the CCL [86] which

jointly learn the filter values based on the training of the CNN based CMI. Also, instead

of utilizing all the channels of RGB image, the method takes only green channel as the

input.

Bayar et al. [21] have expanded upon their prior work in [73] by enhancing the methodology

through augmentation of the CCL layer with the median filtering layer. Total four

convolutional layers are used to extract the features from pre-processed image. The

robustness of proposed approach is evaluated on resampling and JPEG compression

operations. Experimental results shows the PLA of 98.58% on 26 camera models of

Dresden dataset. It is noted that authors have considered Nikon D70 and Nikon D70s

as separate camera model in Dresden dataset.

Inspired by [14], Bondi et al. [69] investigated the different CNN based models for learning

discriminant features from RGB image. They have investigated models incorporating

four, six, eight, and ten convolutional layers. Authors also performed experiments via

varying size of training data, correct splits of data into training, validation, and test sets.

Experimental results shows the PLA of 93.93% on 18 camera models of Dresden dataset.

The work proposed by Chen et al. [15] is the first work related to apply transfer learning

approach in CMI. This entails leveraging a CNN model initially designed for a distinct

classification problem and subsequently fine-tuning it for the CMI problem. In this work,

the ResNet34 [16] has been utilized for CMI. The experiments were conducted on a dataset

comprising 27 camera models from the Dresden dataset and the model achieved image-level

accuracy (ILA) of 94.73%. It must be noted that the images are resized to 256× 256× 3

to meet the model requirement.

Similar to the work in [73], Mayer et al. [74] employed a four-layer CNN incorporating

CCL and utilizing only the green channel of input images. However, the authors adopted

a dual-network approach, training two separate networks to discern the similarity between

images of two known camera models and a test image during the inference phase. The

proposed method achieved the ILA of 95.8% on 10 camera model, when both the camera

models are known.

Wang et al. [22] incorporated a three-layer CNN network with LBP of the input image.
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it is observed that LBP coding operation enhances the overall performance and also

highlights the effectiveness of a well-designed CNN structure with suitable preprocessing.

The proposed method shows the PLA of 97.41% on 14 camera models of Dresden dataset.

Yao et al. [19] explored the deep CNN network with thirteen convolutional layers. It is

emphasized that the deeper networks provide better high-level features. The proposed

method achieve PLA of more than 93% and ILA of more than 98% on 25 camera models

of Dresden dataset. The authors have performed experiments to check to robustness

of proposed method under JPEG compression, adding Gaussian-distributed noise, and

rescaling. The ILA on JPEG compressed and noise added images are more then 80%.

However, the performance on re-scaled images are not good.

Similar to prior CNN-based works, Güera at al. [75] utilized a four layer CNN model

without any preprocessing for CMI. However, the authors introduced a novel approach by

proposing the estimation of patch reliability to identify the patches that not important

for the training of CNNs. The utilization of this reliable patch selection method with the

four-layer CNN model resulted in achieving a maximum ILA of 95%.

Inspired by the transfer learning methodologies, Kuzin et al. [76] applied a DenseNet161

[87] for CMI. Notably, they actively participated in the IEEE SP Cup 2018 on the Kaggle

platform [82] and secured the second position. Throughout the training of DenseNet161,

the authors implemented multiple augmentations, including rotation, JPEG compression,

and Gamma transformations to enhance the robustness of model. The model achieved the

ILA of 98.79% on 10 camera models of SP cup dataset.

Ferreira et al. [70] have propsped a dual-branch model which consists for two different

models. One branch consists of Inception-ResNet [88] based network and another branch

consist of Xception [89] based network. Each branch network independently outputs a

high-level feature vector of size 256. The combined features from two baranches of 512

size is passed to fully-connected layer for further classification. The experiments has been

performed in IEEE SP Cup [82] dataset.

Similar to PRNU fingerprint for the CDI, Cozzolino et al. [77] proposed a CNN based

fingerprint named “Noiseprint” for distinguishing between different camera models. This

fingerprinting approach also used for detecting manipulated images. In their work, The

methodology employs CNNs to effectively extract and analyze distinctive noise features,

aiming to establish a robust and distinct fingerprint for each camera model. Through the

training of a Siamese-based model [90] and a CNN-based denoiser on a diverse dataset,

the research showcases the potential of noiseprint in achieving accurate and reliable CMI.

The emphasis on noise patterns as identifiable signatures signifies a valuable advancement

in the field of digital image forensics.

Zou et al. [78] employed a residual network to extract the noise residuals from the input

image. The essence of extracting noise lies in the ability of network to maintain the

input image dimensions unchanged, and the learned Residual Extraction Network (REN)

facilitates the generation of content-suppressed images. The noise residuals obtained

from REN are then fed into a CNN network inspired by SqueezeNet [91]. The modified
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SqueezeNet consists of eight fire modeules. The modified SqueezeNet comprises eight fire

modules. Each fire module consisting of a 1×1 squeeze convolutional layer, a 1×1 expand

convolutional layer, and a 3×3 expand convolutional layer. The squeeze convolutional

layer plays a crucial role in diminishing the number of input channels for subsequent

convolutional layers, thereby reducing the overall parameter count. The features from two

different expand convolutional layer are connected through the concatenation layer. The

proposed method achieved ILA of 91.29% on 18 camera models of Dresden dataset.

Yang et al. [50] have employed fusion networks for CMI. A fusion network is consist

of three parallel network consists of same architecture with different parameters (kernel

size). The network consists of three residual blocks and a convolutional layer. Initially,

a fusion network is trained comprehensively on all patches and subsequently saved for

transfer learning. The saved model serves as the initialization for three distinct fusion

networks. These three networks are individually trained on three different sets of image

patches categorized as saturated, smooth, and others based on mean and variance. During

the inference of a test image patch, the model selection is determined by the type of patch,

and the output from the chosen model is defined as the final estimation of the image patch.

Ding et al. [51] have employed fusion network for feature extraction and classification. In

their methodology, three version of high-pass filtering is applied in three distinct branches.

The first branch utilized a 3 × 3 Gaussian filter to extract noise. The second branch

processed the denoised image from the first branch and applied a 5 × 5 Gaussian filter.

The output from the second branch was then further processed with a 7 × 7 Gaussian

filter. This approach resulted in three different versions of high-pass filtered images, which

were then passed through three separate residual blocks to obtain low-level features. The

outputs of three residuals blocks are concatenated with low-level features of RGB input

image outputs from another residual block. The concatenated features were subsequently

fed into a CNN-based network consisting of multiple residual blocks. The proposed method

achieved ILA of 98.8% on Dresden dataset. In the experiments, the robustness of proposed

is evaluated on different post-processed images e.g. blurring, compression, and contrast

enhancement.

Rafi et al. [28] have applied three DenseNet201 [87] models to extract features from three

different reshaped version of input image. All these three are applied in parallel to extract

high-level features of size 1920 from the input. The concatenated features are further

passed CNN based model incorporating squeeze and excitation blocks [94] along with

convolutional layers. Each DenseNet201 has been initialized with DenseNet201 trained

on all patches of size 256 × 256 from all images. Further, three different DenseNet201 is

trained with 1× 256× 256, 4× 128× 128, and 16× 64× 64 size reshaped input image of

size 256 × 256. The training dataset is augmented with the JPEG compression, resizing,

and gamma correction. The proposed method achieved accuracy of 98.37% on test set of

IEEE SP Cup [82] dataset.

Freire-Obregón et al. [3] have employed a simple CNN model consisting of two

convolutional layers. The proposed method have achieved ILA of 92.3% on MICHE-I
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dataset. Different experiments have been perfom to evaluate different hyperparameters

such as dropout, activation function, and topology of the model.

Banna et al. [79] have applied the transfer learning methodology and employed MobileNet

[92] for feature extraction. The features extracted from MobileNet are subsequently fed

into three distinct statistical classifiers: SVM, random forest, and logistic regression. The

methods employing SVM, random forest, and logistic regression achieved ILA of 98.82%,

97.16%, and 98.54% on IEEE SP Cup dataset, respectively.

Kang et al. [72] utilized a CNN model consisting of three convolutional layer for feature

extraction from reduced edge image patches. It is observed that image patches containing

strong edges tend to be scene-specific and may not encapsulate crucial artifacts distinctive

to the camera model. Therefore, it is better to apply smoothing filter to reduce the affect

of strong edge on CNN based CMI training. The proposed method achieved ILA of 95%

on 27 camera models of Dresden dataset.

Mayer et al. [71] introduced a dual-branch similarity network designed to ascertain the

similarity of forensic features between two input instances. The input features to similarity

network are output of two distinct feature extractors with similar architectures. Notably,

features originating from the same camera model exhibit higher similarity compared to

those from different models. The feature extractor is inspired from the MISLNet [85].

The MISLNet consists of CCL layer to extract the noise residuals from the input image.

These noise residuals are subsequently passed to four convolutional layer for feature

extraction. The training of proposed method is executed in two phase. Initially, the

feature extractor is trained separately, and the same feature extractor is employed in both

branches. Subsequently, the similarity network is trained using features extracted from

the trained feature extractors. The proposed method achieved ILA of 94% on 25 camera

models of Dresden dataset.

Similar to work by Zou et al. [78], Liu et al. [25] have incorporated dynamic extraction of

noise residuals. The noise residuals are extracted by applying proposed Res2Net [26] based

residual prediction module. The noise residuals outputs from residual prediction module

are passed to VGG16 CNN model for further feature extraction and classification. The

distinctive aspect of their approach lies in the residual prediction module which effectively

and efficiently suppress the content information and provide artifacts rich noise residuals.

The proposed method achieved ILA of 92.62% on 18 camera models of Dresden dataset.

Rafi et al. [24] employed CNN based RemNet network for the extraction of noise residuals

and subsequent feature extraction. Inspired from highway networks [97], the authors

designed a remnant block comprising a convolutional layer, batch normalization, and ReLU

activation. The dimension of output and input of remnant block is same. The RemNet

network is constructed with three remnant blocks arranged sequentially, followed by a

CNN-based classifier. he noise residuals derived from the remnant blocks are directed

to the classifier network for feature extraction and classification. The RemNet method

achieve ILA of 97.59% and 95.11% on Dresden and IEEE SP Cup dataset, respectively.

In addition to evaluating performance on original images, the robustness of RemNet was
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assessed on post-processed images subjected to various IPOs such as JPEG compression,

gamma correction, and rescaling.

You et al. [29] investigated the multiscale convolutional layers for the extraction of

low-level features. The proposed method is three branch CNN model. The first branch

processes RGB images as input without applying any operations. The second branch

comprises two convolutional layers with sequentially sized kernels of 3 × 3 and 5 × 5.

Conversely, the third branch reverses the order of convolutional layers. Additionally, both

the second and third branches incorporate a skip connection at the second convolutional

layer. The outputs from all preprocessing steps are channeled into three distinct

CNN-based SE-SCINet models with same architecture. The SE-CDINet consist of multiple

convolutional layers and Squeeze and Excitation block. The proposed method achieved

ILA of 98.51% on 23 camera models of Dresden dataset.

Liao et al. [80] also explored the multiscale convolutional layer for extracting features from

the input image. However, their approach differs from conventional RGB image feature

extraction. Instead, features are extracted from high-pass filtered images, employing a

High-Pass Filter (HPF) inspired by prior work [83]. This output noise residuals are

passed to three convolutional layer with different kernel sizes. The outputs from these

convolutional layers are concatenated and subsequently fed into a CNN-based network

comprising four residual blocks. The proposed method achieves accuracy of 98.21% on

27 camera models of Dresden dataset. Apart from experimentation with original images,

the experiments were performed on images post-processed with multiple IPOs such as

contrast-enhancement, JPEG compression, median filtering, and resizing.

Bennabhaktula et al. [27] employed the MISLNet [85] for feature extraction and further

classification. The only difference from MISLNet is the activation. The author have used

ReLU activation function instead of TanH activation function. The proposed method have

achieved ILA of 99.01% on 18 camera models of Dresden dataset.

2.4 Limitations of Prior Works

The majority of existing methods predominantly focus on extracting features primary from

RGB images or high-pass filtered images. Some methods, such as Ding et al. [51], have

explored fusion networks by incorporating both RGB images and multiple noise residuals.

The exploration of robustness is crucial, necessitating the consideration of diverse feature

images. Another noteworthy observation is that the majority of methods have conducted

experiments on a single dataset. Only few methods [51, 28, 24] have extended their

evaluations to encompass more than one dataset. Evaluating methods across multiple

datasets is pivotal, highlighting another important aspect on the generalization capabilities

of the proposed methods. Furthermore, assessing methods in a cross-dataset setting, where

the model is tested on images from a distinct dataset, remains largely unexplored. This

aspect is pivotal for understanding the broader generalization capacity of the method. An

additional aspect worth noting is that prior works often prioritize their respective PSS,
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as evident in studies like [14, 27]. The focus tends to shift more towards the PSS rather

than the model itself. Furthermore, in comparative analyses, authors frequently overlook

the importance of a fair comparison by not employing the same PSS. However, achieving

this can be experimentally challenging, particularly considering the large number of image

patches generated after patch extraction.

2.5 Summary

In this chapter, we have investigated the problem of CDI and CMI. The primary focus

is on the deep learning based method for the CMI. We formulate a pipeline consisting

of different stages of the deep learning based CMI method. The pipeline includes patch

extraction and selection, preprocessing, and feature extraction and classification. We

comprehensively provide the methodology of each method with respect to each stage.

This provides a vision for the limitation of prior CMI methods and further improvements.

We have also briefly explained the methodology of each method.



Chapter 3

Dual-branch Convolutional Neural

Network for Camera Model

Identification of Images

3.1 Introduction

In this chapter, we propose a dual-branch convolutional neural network (CNN) for

camera model identification (CMI), where one branch directly uses the three-channel

RGB image and the other uses a noise image obtained via high-pass filtering. For

scalability, the method operates on cropped image patches and majority voting is used for

image-level CMI. We conducted extensive experiments to evaluate the proposed method

on multiple datasets and compare its performance against prior methods. For quantifying

CMI accuracy, we use existing PLA and ILA metrics and also a new metric that we

propose for assessing the robustness of image-level camera model estimates. Importantly,

our evaluations and performance comparisons include cross-dataset scenarios where the

evaluation is performed on a dataset different from and not necessarily represented by

the training dataset. The significant improvements over prior methods that have used

a single RGB or noise branch support our hypothesis that the proposed dual-branch

architecture provides a convenient mechanism to introduce a favorable inductive bias in

CNN architectures for CMI.

Traditional CMI methods that operate by examining the header (meta-data information)

of the image file are not as applicable now-a-days because meta-data information can be

altered or lost when images are shared on social media [5]. Therefore, researchers have been

exploring image processing and deep learning based CMI methods considering the intrinsic

traces left in the image during the image-acquisition process because of specific modules

(software/hardware) in the imaging pipeline [98, 99]. For example, there are traces left

by the camera lens, the Color Filter Array (CFA) pattern, and/or the camera sensor(s).

These camera specific fingerprints are not visually observable, but are present and can

be effectively utilized for CMI. Existing literature has primarily explored CMI for digital

cameras, with only limited prior work addressing smartphone devices that are increasingly

the dominant source of captured and shared images. There are many variations in sensor

size, lens characteristics, image resolution and image processing techniques used, across

different camera models, which makes it challenging to identify the camera model from the
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captured image. This work aims to address these challenges by developing a deep learning

based CMI method that works effectively across multiple datasets. So, we present a

novel CMI method that utilizes a dual-branch architecture with two ResNet [16] CNN

branches, with one operating on the RGB color image and the other on a pre-processed

high-pass filtered image. Unlike most of existing works that are single branch models and

apply a preprocessing layer for the extraction of camera model features, our dual-branch

architecture is predicated on the hypothesis that the RGB images and corresponding

high-pass filtered (noise) images carry complementary fingerprints indicative of the camera

model, which the dual branches can effectively exploit and combine for CMI. In this sense,

our method can also be seen as a convenient mechanism for introducing an advantageous

inductive bias [100] in CNN architectures for CMI. Compared to single branch models, the

inclusion of an additional branch generally increases the number of learning parameters

and thus, the computational cost. However, the proposed high-pass filtered images based

additional branch aims to extract better distinctive features that are specific to camera

models. Extensive experiments on multiple datasets also demonstrate that the proposed

dual-branch method provides superior accuracy compared to prior methods. Also, while

the training cost is higher for the dual branch model, the cost of inference during use

of the trained model is orders of magnitude lower than the cost of training and, for the

dual branch model, will only be about two times that of a single branch model. For

large scale deployments of forensic and related techniques, even relatively small increases

in CMI accuracy are well-worth such modest increases in computation. This is because

of the critical legal evidence CMI can provide, and also because, in many applications,

CMI occurs at the front-end and errors in CMI can also adversely impact the accuracy

of downstream tasks such as image authentication, image retrieval, and camera device

identification [25]. Extensive experiments on multiple datasets demonstrate that the

proposed method performs better than prior methods.

The rest of the chapter is organized as follows. Section 3.2 explains our proposed

dual-branch CNN based CMI framework. Experiments and results including the

comparison with alternative methods are presented in Section 3.3. Finally, we summaries

the chapter in Section 3.4.

3.2 Proposed Camera Model Identification framework

The proposed framework for CMI comprises of two stages after patch extraction: a

dual-branch feature extraction CNN and a classification network, as illustrated in Figure

3.1. To ensure scalability of the method to large and varying size images, we adopt the

established paradigm of first extracting informative patches from the image, which then

serve as inputs to dual-branch CNN that extracts features from which initially patch-level

and then overall image-level estimates of the camera model are obtained. The patches

are obtained by cropping with no resizing because resizing would affect the intrinsic

correlations and noise features of the input image which are critical for identifying camera
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model fingerprints and training the deep learning model. In the proposed dual-branch

CNN, the first (top) CNN branch operates directly on the camera-captured RGB image

(patch) X and the second (bottom) CNN branch operates on a high-pass filtered version

of the RGB image. Using two branches increases the computational cost in comparison

to that of similar backbone based single-branch models, but we aim to improve the

accuracy and robustness by extracting more distinctive features related to CMI. The

branch operating on the RGB image is better suited to learning color related features,

whereas the high-pass filtering de-emphasizes image spatial content in favor of camera

model specific spatial features. Thus, we hypothesize that the proposed dual-branch

architecture provides a convenient method for introducing a favorable inductive bias [100]

in CNN architectures for CMI, which have previously been used with either the RGB

branch alone, or a noise branch alone. The high-level features obtained from both branches

are fused via concatenation to obtain the final camera model related features. In the second

stage, a camera model estimate is obtained for each patch using a two-layer fully-connected

classification network. Finally, the majority voting is applied on patch-level estimates to

obtain the camera model estimate at the overall image-level.
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Figure 3.1: Framework of the proposed dual-branch CNN for CMI.

Table 3.1: Architecture of the proposed method

Network modules Layers Input size Output size Kernels

RGB Feature Extractor
(RW1)

Conv1 (B1) 64× 64× 3 32× 32× 64 7× 7 (64)
Conv2 x (B2) 32× 32× 64 16× 16× 256 [1× 1 (64), 3× 3 (64), 1× 1 (256)]× 3
Conv3 x (B3) 16× 16× 256 8× 8× 512 [1× 1 (128), 3× 3 (128), 1× 1 (512)]× 4
Conv4 x (B4) 8× 8× 512 4× 4× 1024 [1× 1 (256), 3× 3 (256), 1× 1 (1024)]× 6
Conv5 x (B5) 4× 4× 1024 2× 2× 2048 [1× 1 (512), 3× 3 (512), 1× 1 (2048)]× 3
Average pooling 2× 2× 2048 1× 1× 2048 −−−−−−−

High-Pass Filtering 64× 64× 3 64× 64× 3 3× 3, 3× 3, 5× 5

Noise Feature Extractor
(RW2)

Layers are similar
as in RW1

64× 64× 3 1× 1× 2048 −−−−−−−

Fusion Network
FC1 (2048 + 2048) 2048 −−−−−−−
FC2 2048 K classes −−−−−−−
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3.2.1 RGB Image Feature Extraction Branch

For the RGB feature extraction branch, we utilize the residual neural networks (ResNets)

[16] as the ResNets provide residual connections straight to the earlier layers and negate

the challenge of vanishing gradients, prevalent in many deep neural networks. The ResNet

model comprises of five residual blocks, each of which is having several convolution layers,

batch normalization, ReLU activation function and one skip connection. More specifically,

we use ResNet50 for extracting feature maps from input RGB patch in the top branch of

the proposed method. For effective learning, the ResNet50 model, pretrained on ImageNet,

is fine-tuned during the training process. The architectural details with parameters of RGB

feature extractor branch is provided in Table 3.1. Representing the function depicted by

RGB feature extractor as RW1(·), where W1 the set of weights of the trained RGB feature

extractor, the output feature maps for the branch can be written as:

RW1(X) = (B5(B4(B3(B2(B1(X)))))), (3.1)

where B1, B2, B3, B4, and B5 represent the residual blocks of RGB feature extractor.

Figure 3.2: Three high-pass filters (F1, F2, and F3 ) used for extracting noise image from
RGB image.

3.2.2 Noise Image Feature Extraction Branch

The noise image feature extraction branch is used in parallel with the RGB image

feature extraction branch for extracting the enhanced camera model specific features

by suppressing the image content information. The noise image has three channels

corresponding to the three high-pass filters F1, F2, and F3 of varied scales as shown

in Figure 3.2. The motivation for selecting these filters is their proven better performance

and wider adoption in steganalysis [63, 101, 102]. The filter F3 has also been considered

earlier for CMI [20]. The illustration of each high-pass filter output on two RGB images
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Figure 3.3: Illustration of output noise images (X∗). RGB image of original camera image
convolved with three high-pass filters F1, F2, F3 (top to bottom). The original images
are from the Dresden dataset with almost identical scene content but captured with two
different cameras, Nikon 70 and Nikon D200.
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of similar content from different camera models is shown in the Figure 3.3 and we can

observe that the difference in the respective images of the considered RGB images is quite

visible. Each channel of the three-channel noise image (X∗), which serves as input to

ResNet50 based feature extractor in this branch, is obtained from the input RGB image

by performing the high-pass filtering using each of these above-specified filters individually.

This whole procedure to generate X∗ is described in Algorithm 1, where Z defines the

three channel high-pass filter, derived by triplicating the same filter for convolution with

the RGB input image and ⊛ represents a convolutional operator.

Algorithm 1 High-Pass Filtering (HPF )

Require: X, F1, F2, F3

Ensure: X∗

1: for k ← 1 to 3 do
2: for l← 1 to 3 do
3: Z(:, :, l) = Fk

4: end for
5: X∗(:, :, k) = X ⊛ Z
6: end for

The generated noise image (X∗) is given as input to ResNet50 of noise branch to extract

high-level features. The high-pass filters used can help extract multi-scale noise features

for better CMI performance. Although both branches have same architecture as shown

in Table 3.1, but ResNet50 employed in the RGB image feature extraction branch does

not share any weights with ResNet50 of the noise image feature extraction branch. The

ResNet50s used in both the branches are pretrained on ImageNet [103] which are further

fine-tuned simultaneously during the training process. The overall operation of the noise

branch can be formulated in Eqs. 3.2 and 3.3. Considering W2 as a set of weights of the

trained ResNet50 based feature extractor RW2(·) of the noise branch, the output of this

branch RW2(X
∗) can then be formulated as:

RW2(X
∗) = (B5(B4(B3(B2(B1(X

∗)))))), (3.2)

where,

X∗ = HPF(X,F1, F2, F3). (3.3)

3.2.3 Fusion Network

The extracted features from RGB image feature extraction branch (RW1(X)) and noise

image feature extraction branch RW2(X
∗) are fused together via concatenation (⊕) in a

vector as:

HC = RW1(X)⊕RW2(X
∗), (3.4)

which represents the combined high-level features for CMI. These final features HC are

further provided to the fully-connected classification neural network for classification of

camera models. This classification network consists of two fully-connected layers i.e. FC1
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and FC2. The FC1 and FC2 consists of 2048 and K nodes respectively, where K is total

number of camera models. The fused features HC are input to FC1 and the output of

the FC1 layer forms the input for the final layer FC2. The output of a node in FC1 and

FC2 is a linear combination of input features from the previous layer. The output of last

layer is input to a softmax layer that outputs an estimated probability distribution over

the camera models. The node with highest probability is labeled as the estimated camera

model. The loss function used in the proposed method is the cross-entropy loss,

L = − log
exp (oi)∑K
j=1 exp (oj)

, (3.5)

where oi is the output of the final layer’s i
th node, corresponding to the true camera model

and exp (·) is the exponential function.

3.3 Experiments and Results

We evaluated the performance of the proposed method on multiple datasets. In the

following, we first describe the experimental setup, the training and testing strategies,

and the four datasets used in the experiments. Then, we discuss the evaluation metrics we

use, which include two commonly used prior evaluation metrics for CMI and a new metric

that we motivate and propose, which advantageously also quantifies the robustness of the

image-level classification. We also propose a new evaluation metric for potentially deeper

considerations. Lastly, we present extensive results on multiple datasets and a detailed

comparison and discussion, also exploring alternative settings for the proposed method.

3.3.1 Experimental Setup

As indicated in Section 3.2, for scalability, multiple crops from an original image, with no

resizing or other pre-processing are used as inputs for the proposed method. Specifically,

we used 64× 64× 3 patches. Images acquired now-a-days via smartphone or other digital

cameras, and also the majority of images in the considered datasets, are larger than

1024× 1024× 3 pixels and yield 256 or more patches. The patches with saturated regions

typically do not provide discerning information for CMI. Therefore, we extract 256 quality

patches per image using the [14] patch quality measure

Q(P) = 1

3

∑
c∈[R,G,B]

[
α · β ·

(
µc − µ2

c

)
+ (1− α) · (1− exp(γσc))

]
, (3.6)

where α, β and γ are empirically set constants with values 0.7, 4 and ln(0.01) respectively.

µc and σc are the mean and standard deviation of respective channel c ∈ [R,G,B].

Prior to patch selection, images in a dataset are apportioned in a 80:20 ratio into training

and test subsets. This ensures that the training and test data do not share patches in

common that are derived from the same image. All the experiments are performed on an

2.40 GHz 2X Intel Xeon Silver 4210R system with 128 GB RAM and equipped with two
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Nvidia V100 GPUs each having 32 GB memory. The proposed and the other competing

models considered in the experiments were implemented in PyTorch (version 1.8.1) with

Torchvision (version: 0.9.1). All other required code was written in Python. For training

the deep neural network models, we used the Adam optimizer [104] with a learning rate

of 0.0001 and default settings of β1 = 0.9, β2 = 0.999, ϵ = 1e− 08, zero weight decay, and

a batch size of 128. All the considered models were trained for 100 epochs and for each

model, it was observed that the training loss was converging by the 100 epochs or earlier.

3.3.2 Datasets Used

We used four datasets in our work: the Dresden [30] dataset which has been extensively

utilized in prior camera forensics work and three public smartphone camera datasets

[4, 82, 96]. The smartphone camera datasets are particularly relevant given that the

overwhelming majority of captured images nowadays come from smartphones. We

summarize the relevant characteristics and considerations for each of these datasets as

follows:

• The Dresden dataset [30] contains more than 16000 images acquired using 73 digital

cameras representing 25 different camera models. The images feature diverse lighting

conditions and image content (indoor/outdoor, public places, trees etc). To more

closely reflect real-world situations, the images were captured with varied camera

settings (e.g. focal length, flash on/off). As in prior works [14, 24, 25], for our

experiments, we only include around 15000 images captured with the 18 camera

models for which the dataset contains multiple cameras and exclude images from

camera models that were represented only by one single camera device.

• The SOurce Camera REcognition on Smartphones (SOCRatES) dataset provided by

[96] contains images from 65 camera models. The dataset includes the largest number

of smartphone models in existing and publicly available source camera identification

datasets. The dataset is also more diverse and representative of real-world situations

because the images were collected by individual smartphone owners themselves.

• The Forchheim dataset [4] provides around 4000 images captured using 25 different

smartphone camera models, with varied scene content and different capture

conditions: indoor/outdoor, day/night, and close-up/distant. By providing images

of the same scene captured with the different devices, the dataset helps minimize

the role of image content as an obfuscating factor in CMI. Additionally, the dataset

also contains versions of the images post-processed using five different popular social

media platforms: WhatsApp, Facebook, Instagram, Telegram, and Twitter. CMI

on the post processed images represents more realistic application scenarios because

the social media platforms are commonly used to share images.

• The SP Cup dataset [82] is provided by the IEEE Signal Processing society. It

contains a total of 2750 images captured using 10 different smartphone camera
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devices and each of these devices are of different smartphone camera model.

The numbers of images, camera models, and individual (camera) devices in the datasets

used for the experiments are summarized in Table 3.2.

Table 3.2: Details of datasets used in experiments

Dataset Total images Total camera models Total devices

Dresden [30] 14999 18 66

Socrates [96] 9721 65 103

Forchheim [4] 3851 25 27

IEEE SP Cup [82] 2750 10 10

3.3.3 Evaluation Metrics

The majority of the prior works have used the accuracy metric or image-level accuracy

(ILA) to evaluate the performance of the CMI methods. Also, some of the CMI methods

[14, 25, 27] based on extracting patches from the test images followed by majority voting for

the estimation of camera model used patch-level accuracy (PLA) for analysis. We consider

both of these evaluation metrics in our analysis and we also propose a new evaluation

metric: Average Percentage of Majority class Votes for Correctly estimated images

(APMVC) that, advantageously, also characterizes the robustness of the image-level

camera model estimate provided by the model. Let N and C denote the total number

of images and camera models in the dataset, Xi, Yi, Ŷi denote the selected ith image, its

true camera model, and estimated camera model, respectively, and let Pi denote the total

number of patches from the ith image. yij and ŷij denote the true camera model, and

estimated camera model respectively, for the jth patch of ith image. The PLA, ILA, and

APMVC metrics are then given by

PLA =

∑N
i=1

∑Pi
j=1 I (ŷij = yij)∑N

i=1 Pi

, (3.7)

ILA =

∑N
i=1 I

(
Ŷi = Yi

)
N

, (3.8)

APMVC =

∑N
i=1

((∑Pi
j=1 I

(
ŷij = yij , Ŷi = Yi

))
/Pi

)
∑N

i=1

(
I
(
Ŷi = Yi

)) , (3.9)

where I(·) is the indicator function and Ŷi corresponds to camera model with highest

number of votes as per the estimations of the patches of image Xi, Ŷi is estimated as

Ŷi = argmax
l

 Pi∑
j=1

I (ŷij = l)

 . (3.10)
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3.3.4 Results and Discussion

The performance of the proposed dual-branch CMI method is evaluated in detail

considering several different scenarios, including varying patch selection strategies and

the cross-dataset settings. We also highlight the benefit of the proposed dual-branch

method by comparing against single branch alternatives. The competing CMI methods

considered for performance comparison are [3], [14], [15], [25], [29], [27], [19], and [24]. Out

of these methods, the CMI methods [25, 29, 27, 24] are pre-processing based CNNs and

[3, 14, 15, 19] are CNN based methods that do not use a pre-processing stage.

Table 3.3: Results on All Datasets considering 256 maximum quality patches of size 64×64
per image.

Dataset Dresden Socrates

Method PLA ILA APMVC PLA ILA APMVC

Bondi et al. [14] 90.93 96.73 93.27 63.09 79.36 76.08

Chen et al. [15] 99.07 99.90 99.14 94.19 98.04 95.73

Yao et al. [19] 90.63 99.60 90.88 65.94 83.57 77.38

Freire-Obregon et al. [3] 93.17 98.30 94.24 84.73 93.68 89.21

You et al. [29] 98.00 99.86 98.07 92.33 98.20 93.61

Liu et al. [25] 97.53 98.50 98.51 93.88 97.74 95.46

Rafi et al. [24] 98.81 99.93 98.85 96.06 98.51 97.25

Bennabhaktula et al. [27] 98.52 99.90 98.58 91.59 97.68 93.18

Proposed CMI method 99.19 99.90 99.25 96.58 98.66 97.63

Dataset Forchheim IEEE SP Cup

Method PLA ILA APMVC PLA ILA APMVC

Bondi et al. [14] 74.03 93.61 77.41 90.25 98.54 91.22

Chen et al. [15] 91.62 99.10 92.08 96.93 100 96.93

Yao et al. [19] 74.46 96.93 76.09 90.78 99.45 91.11

Freire-Obregon et al. [3] 84.71 98.97 85.29 94.83 99.81 94.97

You et al. [29] 89.66 99.61 89.89 96.99 100 96.99

Liu et al. [25] 96.27 99.48 96.56 98.77 99.81 98.89

Rafi et al. [24] 97.11 99.87 97.18 99.27 100 99.27

Bennabhaktula et al. [27] 91.78 99.74 91.97 97.2 99.63 97.44

Proposed CMI method 97.59 100 97.59 99.33 99.81 99.47

Comparison considering varying Patch Selection Strategies

The CMI methods considered extract and select the patches from the input image via a

patch selection strategies (PSS) before feeding to the CNN network except the method [15]

which resizes the input image to a fixed size image. However, the patch selection strategies

used in different CMI methods are generally not the same and do play a significant role in

the performance of the model, as also discussed later in this section. So for fair comparison,

we first compare the proposed method with other CMI methods using the same PSS as

used in the proposed method and then followed by a thorough comparison with different

methods. We further evaluate the individual methods using their native PSS.
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Table 3.4: Different methods patch selection criteria

Method
Number of patches

per image
Patch size Patch selection strategy

Bondi et al. [14] 32 64×64 Extract patches based on
value of quality measure (Q)

Yao et al. [19] 256 64×64 Extract patches from
central 75% of the image.

Freire-Obregon et al. [3] 256 32×32 Not mentioned the exact criteria.
Assuming patches from center.

Liu et al. [25] 128 64×64

64 patches based on
quality measure (Q).
+
64 patches using
K-means clustering
and nearest patches.

Rafi et al. [24] 20 256×256 Extract patches based on
quality measure (Q).

Bennabhaktula et al. [27] 400 128×128 Extract homogeneous patches based on
standard deviation.

Proposed 256 64 × 64
Extract patches based on
value of quality measure (Q)

Table 3.3 shows the performance of different methods using proposed PSS on the four

different datasets. In terms of PLA, the proposed method consistently shows better

performance than all other competing CMI methods on all the datasets. In terms of ILA,

the performance of 99.93% is achieved by [24] on Dresden dataset and perfect performance

of 100% is achieved by three methods [15, 29, 24] including [24] on the IEEE SP dataset.

The proposed method performs marginally worse, by around 0.05% , as it mis-classifies

one additional image in each of these two datasets. Also, the proposed method provides

the best ILA performance of 98.66% and 100% on the larger smartphone camera based

datasets i.e. Socrates and Forchheim, respectively. This is significant as these two datasets

have larger number of classes (65 and 25) and the number of training images per class

was smaller in comparison to that of other two datasets. In terms of APMVC also, the

proposed method provides the best performance in comparison to all other methods on all

the datasets. Further, in some cases when the ILA performance is identical, the APMVC

performance of the proposed method is better. For example on the Dresden dataset, the

APMVC of the proposed method is better than that of [15] and on IEEE SP dataset,

APMVC of the proposed method is again better than that of [3] and [25]. Overall the

performance of many other methods in this setting was quite competing, but it may be

noted that we used the proposed PSS here.

Table 3.4 shows the PSS strategies of different methods including the proposed PSS.

Two methods [15] and [29] are not considered here as there was only resizing in [15]

with no patch selection and the overall PSS is not clearly specified in [29]. In this

detailed comparison with the other methods [24, 14, 3, 25, 19], we consider four different

experiment settings: (i) compared method with its native PSS, (ii) compared method

with the proposed PSS, (iii) proposed method with compared method’s PSS and (iv)

proposed method with the proposed PSS. The plots in Figure 3.4 (a-h) compare the
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Figure 3.4: Comparison of classification accuracy for the proposed method vs alternative
methods with different patch selection strategies (PSSs). Sub-figures (a)-(d) show the
patch-level accuracy (PLA) and (e)-(h) show the image-level accuracy (ILA) for the
Dresden, SOCRATES, Forchheim, and IEEE SP Cup datasets, respectively.
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PLA and ILA metrics for all these 4 settings on all four datasets. The numerical related

to comparison, over all datasets, of the proposed and alternative methods, with both

adopting the native PSS of the alternative method is shown in Table. 3.5. In all the

cases, both PLA and ILA of other methods improved upon using the proposed PSS in

comparison to their native PSS and the proposed method with another method’s PSS

also consistently provided better performance than the method using its native PSS. The

robustness of the proposed method is also further illustrated here; compared to other

methods, the proposed method suffers from a smaller drop in ILA and PLA performance

metrics when using another method’s PSS instead of the proposed PSS. Comparisons

of the proposed method’s performance with that of other methods using their native

PSS, highlight the superior performance of the proposed method. Compared to [24], the

proposed method provides the PLA improvements of 1.56%, 6.27%, 4.64% and 28.79% and

the ILA improvements of 0.48%, 1.61%, 0.77% and 4.96% on Dresden, Socrates, Forchheim

and IEEE SP cup datasets, respectively. Therefore, the proposed method achieves an the

overall ILA and PLA improvement of 1.96% and 10.31%, respectively, compared with the

[24] method. The overall improvements in ILA and PLA in comparison to other methods

[14, 3, 19] are even more than 11% and 24%, respectively.

Cross-Dataset Evaluation

To further evaluate the robustness of proposed method, we experimented with

cross-dataset setting which includes images of 6 common smartphones (Apple iPhone 6s,

Samsung Galaxy S4 mini, Apple iPhone 7, Samsung Galaxy S4, Google Nexus 5, Huawei

P8 lite) of Forchheim and Socrates test set. These camera models are common in both

the datasets. In this experiment, we selected images from one dataset smartphones for

training the model and tested on images of another dataset. The results are shown in

Table 3.6. In the results, we observed that the proposed method performs best in terms of

PLA and ILA among all other methods. The proposed method provides the improvement

of 1.84% and 5.17% in terms of PLA and ILA, respectively as compared to second best

method [25] when all methods are trained on Socrates images and tested on Forchheim

images. Also, the proposed method provides the improvement of 1.93% and 3.52% in

terms of PLA and ILA, respectively as compared to second best method [25] when all

methods are trained on Forchheim images and tested on Socrates images.

Effectiveness of Dual-Branch Fusion Method

We explore and discuss the effectiveness of the dual-branch fusion method used in the

proposed method by comparing it with single-branch architectures (either RGB or noise

image) obtained by dropping one of the branches. We also vary the number of patches

extracted per image. For these comparison experiments, we use the Forchheim dataset

because it provides similar image content across all camera models. The plots in Figure

3.5 present the comparative results in terms of PLA, ILA, and APMVC and the numerical

values corresponding to the plots are shown in Table 3.7. We also computed the inference
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Table 3.5: Comparison, over all datasets, of the proposed and alternative methods, with
both adopting the native PSS of the alternative method

Dataset Dresden Socrates

Method PLA ILA APMVC PLA ILA APMVC

Bondi et al. [14] 85.94 96.72 93.53 56.02 70.27 74.75

Proposed CMI method 99.02 99.91 99.08 94.31 97.99 95.83

Yao et al. [19] 84.00 98.72 92.78 61.30 74.07 80.32

Proposed CMI method 98.64 99.73 98.81 94.79 98.35 96.10

Freire-Obregón et al. [3] 84.36 97.07 86.36 65.11 73.51 85.46

Proposed CMI method 96.57 99.51 96.87 85.89 95.02 89.43

Liu et al. [25] 96.17 98.98 96.85 88.59 96.25 91.20

Proposed CMI method 96.45 99.60 96.71 91.56 97.94 92.96

Rafi et al. [24] 96.29 99.29 96.84 87.58 95.89 90.36

Proposed CMI method 97.79 99.77 97.93 93.07 97.43 94.86

Bennabhaktula et al. [27] 97.71 99.10 98.44 87.50 93.06 93.07

Proposed CMI method 98.49 99.36 98.95 95.77 97.27 98.00

Dataset Forchheim IEEE SP Cup

Method PLA ILA APMVC PLA ILA APMVC

Bondi et al. [14] 68.15 88.12 74.67 85.94 96.72 87.87

Proposed CMI method 92.28 99.36 92.76 97.73 99.63 98.02

Yao et al. [19] 61.76 88.63 67.51 84.00 98.72 84.79

Proposed CMI method 95.97 99.61 96.25 98.76 99.81 98.87

Freire-Obregón et al. [3] 62.30 84.54 70.49 74.58 92.00 79.73

Proposed CMI methodd 80.92 95.91 83.16 91.17 99.27 91.68

Liu et al. [25] 88.87 98.59 89.62 90.77 99.09 91.33

Proposed CMI method 90.02 99.48 90.25 92.25 99.27 92.73

Rafi et al. [24] 90.38 98.72 90.86 76.03 95.27 78.29

Proposed CMI method 94.57 99.48 94.81 97.92 100 97.92

Bennabhaktula et al. [27] 81.46 90.80 88.03 90.60 96.54 92.97

Proposed CMI method 95.21 97.44 97.28 96.72 98.54 97.75

Table 3.6: Results in cross-dataset settings

Dataset
Train dataset: Socrates,
Test dataset: Forchheim

Train dataset: Forchheim,
Test dataset: Socrates

Method PLA ILA PLA ILA

Bondi el al. [14] 47.87 58.04 56.41 62.32

Chen el al. [15] 57.44 67.24 55.77 64.78

Yao el al. [14] 19.20 21.26 32.19 38.02

Freire-Obregon el al. [3] 48.36 58.62 52.88 60.21

You el al. [29] 58.39 66.66 62.26 68.30

Liu el al. [25] 70.99 79.88 67.40 72.53

Rafi el al. [24] 61.76 68.39 65.89 75.00

Bennabhaktula el al. [27] 49.36 46.71 46.71 51.06

Proposed CMI method 72.83 85.05 69.33 78.52

time for all patches in all three cases and as anticipated, the inference time for each patch

in the dual-branch method is around 1.84 and 1.83 times that of RGB branch and noise
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Figure 3.5: Comparison of results using only RGB branch, only noise branch and with
dual-branch (Fusion) with choosing different patches per image on Forchheim dataset.
PLA, ILA, APMVC (left to right)

branch, respectively. However, it can be noted from Figure 3.5 that irrespective of the

number of patches used in a method, the dual-branch method performs consistently better

than either the RGB branch or the noise branch alone on all three evaluation metrics

considered. It can also be observed that increasing the number of patches improved

the performance in all cases on all three evaluation metrics considered. These results

support our hypothesis that the proposed dual-branch architecture provides a convenient

mechanism for introducing an effective inductive bias for CMI.

Table 3.7: Performance on the Forchheim dataset for the proposed dual-branch approach
and approaches using only one of the two branches (RGB or noise), considering different
number of patches per image.

No. of patches
per image

Evaluation
metrics

RGB branch
only

Noise branch
only

Dual-branch

32
PLA 87.79 86.49 92.28
ILA 97.31 97.82 99.36
APMVC 89.53 87.84 92.92

64
PLA 90.52 90.90 95.13
ILA 98.21 99.23 99.74
APMVC 91.67 91.37 95.30

128
PLA 92.63 94.18 96.66
ILA 98.97 99.61 99.74
APMVC 93.27 94.45 96.84

256
PLA 94.14 95.92 97.59
ILA 99.61 99.74 100
APMVC 94.35 96.06 97.59

Ablation Study with Different CNN based Models

In this section, we present results from an ablation study that explores differ-ent ResNet

(He et al., 2016) methods as the feature extractor for both branches in the proposed

method. Table S.3 summarizes the results for the proposed method on the Forchheim

dataset with four different ResNet methods used for feature extraction: ResNet34,
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ResNet50, ResNet101 and ResNet152. It can be seen that ResNet50 provides the highest

PLA and APMVC. ResNet50, ResNet101, and ResNet152 provide 100% ILA. However,

the number of param- eters in ResNet50 is significantly smaller than in ResNet101 and

ResNet152. In addition to ResNet models, we experimented with VGG16, VGG19,

DenseNet121, and EfficentNetB0 CNN models as the feature extractor.

The results with these models are shown in Table 3.8. All of these models exhibit

excellent performance on the Forchheim dataset, achieving 100% ILA. ResNet50 provides

slightly better PLA. ResNet50 is selected as the primary feature extractor for the proposed

technique. With the exception of DenseNet121, the dual-branch framework achieves 100%

ILA for each of these CNN models as the feature extractor, highlighting the effectiveness

of the overall proposed architecture and the high-pass filtering employed.

Table 3.8: PLA, ILA, and APMVC on the Forchheim dataset for the ablation study with
different CNN based models used as the feature extractor for the proposed method.

Model PLA ILA APMVC

VGG16 [93] 97.16 100 97.16

VGG19 [93] 97.22 100 97.22

DenseNet121 [87] 97.44 99.74 97.33

EfficientNetB0 [105] 97.51 100 97.51

ResNet34 [16] 97.10 99.87 97.08

Proposed (ResNet50) 97.59 100 97.53

ResNet101 [16] 97.11 100 96.99

ResNet152 [16] 97.44 100 97.33

3.4 Summary

In this chapter, we addressed the challenge of CMI in digital images. The dual-branch

CNN-based framework introduced in this chapter presents a novel, efficient, and robust

solution for identifying the camera model used in capturing an image. Comparative

to previous methods, our proposed approach demonstrates substantial enhancements in

CMI accuracy. In cross-dataset scenarios, where evaluation images not only differ from

the training set but are sourced from an entirely distinct dataset, our method achieves

improvements in PLA ranging from 1.8% to 1.9%, and ILA between 3.5% and 5.2%.

Additionally, our method enhances CMI robustness, measured by a new metric, APMVC,

introduced specifically for this purpose. However, it’s worth noting that the presented

method, along with many explored in prior work, operates on original images without

accounting for post-processing operations that may occur when images are shared on

social media platforms.
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4.1 Introduction

The focus of CMI has traditionally been on discerning the specific camera model associated

with a given digital image. However, with the pervasive role of social media platforms in

image sharing, there is an increasing need to extend the scope of CMI to include the

identification of camera models for post-processed images disseminated through these

platforms. The recognition of the Source Social Media Network (SSMN) for digital

images has emerged as a critical concern within the image forensic scientific community.

Consequently, evaluating the robustness of CMI methods, particularly on social media

post-processed images, has become imperative. This study delves into the challenge of

identifying the SSMN before determining the camera model of an image. This unique

approach facilitates the assessment of CMI method robustness in two distinct scenarios:

firstly, by identifying the source social media platform of an image and subsequently

applying the CMI method; and secondly, by evaluating the robustness of the CMI

method without prior knowledge of the SSMN. Additionally, it is noteworthy that social

media platforms often employ Image Post-Processing Operations (IPOs) when images are

uploaded. This complicates the accurate detection of IPO on a digital image. Identifying

Image Post-Processing Operations (IPOs) is commonly referred to as General Purpose

Image Manipulation Detection (GIMD) [106].

In recent years, with the technological advancement of smartphones and social media

platforms, a large number of images are being shared over the internet on a daily

basis. In this social network ecosystem, digital images have become a major source

of real-time information. Moreover, digital images play a critical role as a piece of

evidence in the judicial courts. However, this ecosystem also provides an accessible

channel for proliferating illegal activities such as spreading fake news, hurting religious
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sentiments, violence and terrorism provocation, and defamation activities. Therefore, it

is imperative to find the provenance of the digital images [99, 107]. Identification of the

social networks such as Facebook, WhatsApp, Instagram, etc., used for sharing digital

images is a critical task in the area of source image forensics. It is observed that these

social media platforms introduced specific artifacts in the images during the process of

uploading and downloading. The extraction of these artifacts can be used as a signature

to identify the social media platforms. The aim of the social network identification of

an image is to find the social network from which the image is downloaded and saved in

the media device. This forensic analysis helps in combating cybercrime by locating the

source/origin of the images.

Most of the existing SSMN identification methods focused on the analysis of

traces/artifacts introduced by the post-processing operations of social media networks.

Some works were dedicated to the detection of particular post-processing operations

[85, 108]. However, SSMN identification is a challenging task because the parameters

of the post-processing operations used by social media networks are not available publicly.

Also, different versions of a social network may use different post-processing operations

with different parameters. Therefore, researchers explored data-driven approaches to find

the related artifacts in the images. CNNs are widely used as feature extractor in the

data-driven approaches for image forensic problems [14, 86, 109, 110]. Most existing works

on SSMN identification transform the given image into different domains to highlight the

artifacts and then pass the transformed image to a CNN classifier. In [111], histogram

of the Discrete Cosine Transform (DCT) coefficients of the input image is passed to a

CNN based classifier for social network detection. Researchers also explored the artifacts

left in the Photo Response Non-Uniformity (PRNU) of the image for SSMN classification.

The PRNU is the major component of sensor pattern noise which is generally used to

identify the source digital camera that captured the image [11, 31]. It is observed in [112]

that different social networks may introduce unique artifacts in the PRNU. The method

proposed in [112] used a Wiener filter to extract the PRNU noise of the image and then

these noise features are passed to CNN based classifier. Amerini et al. [113] proposed

a dual-channel CNN for SSMN identification by exploring two different transformations

of the given input image. The input to the first CNN branch is the 909 elements vector

which is extracted from 101 histogram bins of first 9 DCT frequencies in zigzag order. The

input to the second CNN is the PRNU noise of the image. It is observed that the PRNU

of an image can be diminished by scene details [37] or ISO settings [114]. Therefore,

PRNU based method works when the strong PRNU is present in the image [115]. In

the recent work [115], researchers utilized the transfer learning approach for extracting

features and classification. The images are first transformed into DCT/Discrete Wavelet

Transform (DWT) domain, as DCT and DWT are the basis of JPEG [116] and JPEG2000

[117] compression formats, respectively. Afterwards, the transformed image is passed to

VGG16 [93] for high-level features extraction and classification. In this work [115], the

input image is resized to 224×224 to meet the VGG16 model requirement, which may cause
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information loss. In [118], researchers applied a three-branch CNN model (MSF-CNN) on

the DWT transformed image for extracting multi-scale content insensitive features for the

identification of SSMN. It is observed that most social media networks use JPEG format

for image compression [119]. However, social networks may also apply rescaling or other

unknown post-processing operations apart from image compression.

With the precedence of deep Convolutional Neural Networks (CNNs) in the domain of

image forensics, we propose a novel Steganalysis Noise Residuals based CNN (SNRCN2) to

extract pertinent features related to social networks for SSMN identification of an image.

We consider the suppression of image content information for developing better SSMN

identification method. We employ the steganalysis-based high-level SRM filters to suppress

the image content information and extract the noise residuals from an image which are

then passed to a CNN for SSMN identification. We perform a set of ablation studies to

select the optimal parameters for designing the CNN. The rest of the chapter is organized

as follows. Section 4.2 explains a detailed description of the proposed SNRCN2. Section

4.3 includes various experimental results including the comparative analysis. Further in

the section 4.3.5, we have evaluate the CMI method robustness on social media network

post-processed images. Furthermore, Section 4.4 extends the scope by incorporating SSMN

identification into the broader context of GIMD.

(a) Overall architecture,  , , , and  denotes four different CBR blocks, K denotes number of filters
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Figure 4.1: The architecture of SNRCN2.

4.2 Proposed Method

This section describes our SNRCN2 method for the SSMN identification of a given input

image. The proposed architecture is provided in Figure 4.1. The proposed method consists

of following steps: extraction of steganalysis based noise residuals using 30 SRM filters

from the given input image for content information suppression, extraction of high-level

hierarchical features related to social network platforms from noise residuals using a robust

CNN, and finally the SSMN classification based on these high-level features. These steps

are further described in more detail in following two subsections.
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Figure 4.2: Illustration of noise residuals for Original, Facebook, and Instagram image
corresponding to the different classes of SRM filters.

4.2.1 Steganalysis based Noise Residuals

Most of the solutions for image forensic problems such as camera model identification

and image manipulation detection, rely on suppressing the content information of an

input image [5, 99]. It is useful to highlight the artifacts in the underlying noise

fingerprints. Also, extracting features from RGB image using CNNs tends to learn

content-dependent information which leads to the consideration of undesired features that

reduce the performance of forensic models. Inspired from [63], we deploy a high-pass layer

in the first stage for the extraction of noise residuals. In this layer, the input RGB image

is convolved with well-known 30 SRM fixed high-pass kernels defined in [63]. Initially, all

of these kernels are used in steganalysis-based methods. It is mentioned in [63] that noise

feature maps obtained using all of these kernels may be useful to recover the processing

history of an image. These 30 SRM filters correspond to 7 different residual classes include

8, 4, 8, 1, 1, 4, and 4 filters in class 1st, 2nd, 3rd, 3×3 SQUARE, 5×5 SQUARE, 3×3

EDGE, and 5×5 EDGE, respectively. The maximum filter size of these SRM filters is

5×5. Therefore, we set the filter size of 5×5 for the first HPL layer. All the SRM filters

are converted to the same size i.e. 5×5 using zeros padding. Moreover, this layer acts

as a regularization term in deep learning to ease network convergence by reducing the

feasible parameter space. To perform convolution operation with a three-channel RGB

image, each single-channel kernel is converted to a three-channel kernel by duplicating the

values. For each kernel, the convolution operation outputs a single-channel noise feature

map. Therefore, this high-pass layer provides 30 noise feature maps. We also provide the

visualization of obtained noise residuals corresponding to the 1st (first filter), 2nd (first

filter), 3rd (first filter), 3×3 SQUARE, and 5×5 SQUARE class filters as shown in Figure

4.2. Note that we have not shown all the 30 noise residuals including noise residuals

corresponding to 3×3 EDGE and 5×5 EDGE classes due to the space constraint. The
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convolution of an image I with the kernel Wj can be formulated as:

Fj = I ⊛Wj j ∈ {1, 2, ..., 30}, (4.1)

where, Fj and Wj represent the jth noise feature map and jth SRM kernel, respectively.

Wj can be formally defined as:

Wj = [W 1
j , W

2
j , W

3
j ], (4.2)

where, W 1
j , W

2
j and W 3

j represent single-channel kernels with same values. Consider the

input image of size M ×N × 3, the output noise residuals (I ′) after convolution operation

of high-pass layer can be formulated as:

I ′ = [F1, F2, ..., Fj , ..., F29, F30], (4.3)

where, the size of I ′ is M ×N × 30.

4.2.2 CNN for High-level Features Extraction and Classification

The noise residuals obtained from the first stage are passed to CNN-based classifier for the

identification of SSMN. The aim of this classifier is to extract high-level features related

to social media networks and generate the corresponding class probabilities. The CNN

architecture as shown in Figure 4.1(a) consists of four CBR blocks. Each CBR block (CB)
is a sequential network consisting of three layers i.e., convolution, batch normalization,

and ReLU activation function layers as shown in Figure 4.1(b). The convolution layer of

each CBR block is responsible for extracting relevant features for SSMN identification.

Afterwards, batch normalization is performed to standardize the obtained feature maps

distribution which results in the reduction of generalization error and fast training. Lastly,

the purpose of the ReLU layer is to introduce non-linearity to our model and resolve the

issue of vanishing gradients. All CBRs are connected to each other in a sequential manner,

with the max-pooling layer as the intermediate layer. The purpose of the max-pooling

layer is to down-sample the input along the spatial dimension and pass the dominating

features to the next CBR block. The proposed CNN is able to learn relevant features with

low computation cost. The output of the last CBR is passed to the average pooling layer

with a kernel size of 4 × 4 and the resultant output is further provided to a convolution

layer (CL) to extract high-level features. The number of kernels in this convolutional layer

is the same as the total number of classes (NS), i.e. one more than the number of social

media networks. These high-level features become the input of a fully-connected layer

(FC) having neurons equal to the Ns. The number of kernels in the four CBRs i.e., CB1 ,

CB2 , CB3 , and CB4 are 32, 64, 128, and 256 respectively, denoted by K. The high-level

features (H) obtained from input noise residuals (I ′) are passed to FC layer and can be

formulated as,

H = CL(PA(CB4(PM (CB3(PM (CB2(PM (CB1(I
′)) (4.4)
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where PA and PM denote the average and max pooling layers, respectively. At last,

the softmax layer provides the probabilities related to the social media networks and

classification is done using the highest probability value. The training loss L of SNRCN2

is carried out by computing cross-entropy loss between the target and the estimated output

of the proposed method. The loss function is formulated as:

L (f (H;W ) ; {y1, y2, ..., yNs}) = −
Ns∑
k=1

log (ŷk) .yk (4.5)

where, ŷk is the output of softmax function f corresponding to kth class and yk is the true

binary label of kth class with value 1 only for the correct class. The function f is applied

on linear transformation of the high-level features H, with weight matrices W of FC layer,

corresponding to the input image.

4.3 Experimental Results and Discussion

In this section, we initially provide the details related to the datasets and settings used in

our experiments. Then, we present the results obtained by our proposed model and other

existing methods for comparative analysis, results of the ablation studies, and finally the

discussion related to our approach.

4.3.1 Dataset Details

We evaluate our SNRCN2 on two major publicly available datasets i.e., VISION [95] and

Forchheim [4]. The criteria for selecting these two datasets is based on the availability,

the number of image acquisition devices and the number of images. The objective is to

select the datasets having a maximum number of acquisition devices and a large number

of images per social media network class.

The VISION dataset contains around 34427 RGB images in JPEG format. Out of these,

11732 are the original images and the remaining 22695 are images from social media

networks. The 11732 images have been captured using 35 different smartphone cameras.

These smartphone devices belong to 11 widely used camera manufacturing brands. Out

of 11,732 original non-processed images, 7565 have been uploaded and downloaded from

two majorly used social networks i.e., Facebook and WhatsApp. Facebook provides two

quality versions i.e., low and high. Therefore, there are three copies of the original image

i.e., two belong to Facebook and one to WhatsApp. So, the total number of social media

network images are 22695 i.e. (3×7565). We considered all images of the VISION dataset

for the experiments.

The Forchheim dataset contains 23106 images captured from 27 smartphone cameras.

It contains 3851 original non-processed images along with five copies of social network

platforms. Each image has a copy of Facebook, Instagram, Telegram, Twitter and

WhatsApp social networks. So, the total number of social media network images are
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19255 i.e. (5 × 3851) and the images in each social media network of this dataset share

the same content, making it suitable for tracing forensic fingerprints.

4.3.2 Experimental Settings

All the experiments have been performed with a system consisting of Tesla V100 GPU of

32GB memory and 3.20 GHz Intel Core i7-8700 CPU with 64GB RAM. Each dataset has

been divided into three sets i.e., training, validation and testing set in the proportion of

80%, 10%, and 10%, respectively. For each image in the considered datasets, we extract a

maximum of 64 non-overlapping patches of size 256× 256× 3 from the centre portion of

the image. The label of each patch is the same as of the image label. Further, the model

output for all patches are combined by majority voting to obtain the final estimation of

the input image. This also helps in achieving better accuracy at image level when the

majority of the patches are correctly classified.

We implement the SNRCN2 in PyTorch 1.8.0 framework. We apply mini-batch stochastic

gradient descent with a batch size of 64 to train the SNRCN2. We used Adam optimizer

with an initial learning rate of 0.0001. All the considered methods were trained for a

maximum of 100 epochs. It was observed that all the methods were converging by 100

epochs. During the training, we observed validation loss for the convergence and picked

the model with maximum validation accuracy for testing.

4.3.3 Results and Analysis

We conduct a set of experiments to evaluate the performance of SNRCN2 along with

a comparative analysis with recent existing techniques including PRNU based CNN

[112], DCT based VGG16 network [115], DWT based VGG16 network [115], and

MSF-CNN [118]. To the best of our knowledge, MSF-CNN [118] is the most recent

method for SSMN identification. For performance comparison and evaluation, we consider

primarily two evaluation metrics: PLA and ILA.

Results on the VISION and Forchheim Datasets

Table 4.1 presents the comparative analysis of different SSMN identification methods

on two different datasets. It is observed that SNRCN2 provides the highest image-level

accuracies of 99.53% and 100% on the VISION and Forchheim datasets, respectively. Our

method provides an image-level accuracy improvement of 1.07% and 1.60% on VISION and

Forchheim dataset, respectively as compared to the second-best method [112]. Moreover,

SNRCN2 outperforms the existing methods by providing better patch-level accuracies

of 99.84% and 99.81% on the VISION and Forchheim datasets, respectively. Note that

the approaches [115] and [118] resized the input image before passing it to CNN instead

of extracting patches. Therefore, patch-level accuracy is not applicable for these two

methods. It is also observed that the image-level accuracy on Forchheim dataset for

all the considered existing techniques is significantly less as compared to the VISION
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dataset. But, our method provides high image-level accuracy on both the datasets, thereby

confirming its better generalization ability.

Table 4.1: Comparative analysis of different methods on VISION and Forchheim datasets.

Dataset VISION Forchheim

Method PLA ILA PLA ILA

PRNU+CNN 97.65 98.46 92.39 98.40

DCT+VGG16 — 98.23 — 90.22

DWT+VGG16 — 95.66 — 94.50

MSF-CNN — 96.66 — 91.34

SNRCN2 99.84 99.53 99.81 100

Table 4.2: Image-level accuracy results of different methods for each class on VISION and
Forchheim datasets.

Dataset VISION

Method Original Facebook WhatsApp

PRNU+CNN [112] 97.44 99.60 97.75

DCT+VGG16 [115] 99.14 98.41 96.43

DWT+VGG16 [115] 99.40 99.07 96.69

MSF-CNN [118] 98.47 97.22 92.73

SNRCN2 99.57 100 98.55

Table 4.3: Image-level accuracy results of different methods for each class on Forchheim
dataset.

Dataset Forchheim

Method Original Facebook WhatsApp Instagram Telegram Twitter

PRNU+CNN [112] 100 97.14 96.62 100 97.92 98.70

DCT+VGG16 [115] 98.44 86.49 90.90 82.85 86.49 96.10

DWT+VGG16 [115] 99.44 99.22 92.72 90.66 88.31 96.36

MSF-CNN [118] 98.18 94.81 88.57 90.65 88.57 87.27

SNRCN2 100 100 100 100 100 100

We further provide the results based on each social media network class for both the

VISION and Forchheim datasets as shown in Table 4.2 and 4.3. Note that the VISION

dataset has three classes while the Forchheim dataset includes six. Table 4.2 and 4.3 show

that proposed model outperforms the existing methods by providing highest image-level

accuracies i.e., 99.57%, 100%, and 98.55% for Original, Facebook, and WhatsApp

class, respectively on VISION dataset. It is observed that our approach provides an

image-level accuracy improvement of 1.10%, 2.78%, and 5.82% as compared to the recent

MSF-CNN [118] method. Also, our model attains a perfect image-level accuracy of 100%

for the Facebook social media network class. Similarly, Table 4.2 and 4.3 show that our

model achieves perfect image-level accuracy of 100% for all the social media network classes

of the Forchheim dataset. The results on the Forchheim dataset is very significant due to

the reason that each social media network has the same number of images with similar

content. This implies that SNRCN2 emphasizes unique artifacts left by particular social
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Figure 4.3: Confusion matrix of SNRCN2 on different datasets. Social media networks
are abbreviated as, Facebook: FB, Instagram: IG, Original: OR, Telegram: TG, Twitter:
TW, WhatsApp: WA.

media networks.

The performance of the proposed model is also confirmed from the confusion matrices

based on VISION and Forchheim datasets as shown in Figure 4.3. It is observed from

Figure 4.3(a) that only 5 original and 11 WhatsApp images are wrongly classified in

WhatsApp and original class, respectively on the VISION dataset. Importantly, all the

social media network images of the Forchheim dataset are correctly classified as shown in

Figure 4.3(b).

Table 4.4: Image-level accuracy results of different methods on combined dataset.

Method Original Facebook WhatsApp Overall

PRNU+CNN [112] 97.90 99.80 86.60 95.61

DCT+VGG16 [115] 99.06 94.05 82.82 92.72

DWT+VGG16 [115] 98.71 96.73 95.63 97.10

MSF-CNN [118] 96.86 96.14 83.84 92.28

SNRCN2 99.19 99.41 98.54 99.10



56
Chapter 4. Source Social Media Platform Identification of Images and Camera Model

Identification of Social Media Post-processed Images

Results on the Combined Dataset

The VISION and Forchheim datasets include original images as well as images downloaded

from two common social media networks i.e., Facebook and WhatsApp. As both

datasets are released at different times, it is quite possible that the post-processing

operations/parameters applied on the images by these social media networks are different.

To further evaluate the robustness of the proposed model, we created a new dataset that

contains images of common social media networks of VISION and Forchheim datasets

along with original images. This results in a dataset having an almost double number

of VISION dataset images as compared to the Forchheim dataset images. Therefore, to

maintain the equivalent number of images from both datasets, we considered the images

related to the first 15 devices out of 35 devices from the VISION Dataset. The final

combined dataset contains 14423 and 11553 images of the VISION and Forchheim dataset,

respectively. It is observed from Table 4.4 that SNRCN2 achieves significant improvement

with an overall accuracy of 99.10% as compared to the second-best method Manisha et al.

[115] with an accuracy of 97.10% with DWT input. These results on the combined dataset

are quite important because we can observe a significant difference in the accuracy values

obtained by different methods as shown in Table 4.4, thereby confirming the proposed

model robustness.

Table 4.5: Performance of proposed model on Forchheim dataset considering different
batch sizes, learning rates and patch sizes.

PLA ILA

Batch size

8 99.56 100
16 99.62 100
32 99.72 100
64 99.81 100

Learning rate

0.1 40.81 16.66
0.01 99.31 99.69
0.001 99.73 99.95
0.0001 99.81 100
0.00001 99.41 99.82

Patch size
64 × 64 98.21 99.74
256 × 256 99.81 100

4.3.4 Ablation Studies

In this section, we present the ablation studies related to the model training

hyper-parameters and design choices on the Forchheim dataset. To obtain the optimal

hyper-parameter values for our network, we train our SNRCN2 by considering different

values of the most significant hyper-parameters i.e., batch size and learning rate. We have

also evaluated our model by extracting patches of size 64×64 similar to [112] method and

also the patches of size 256 × 256. The results of these methods are presented in Table

4.5. Based on these results, we select the batch size of 64, the learning rate of 0.0001
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and image patch size of 256 × 256, as these provide the best values for both patch-level

accuracy (99.81%) and image-level accuracy (100%).

We also perform an ablation study by considering varying number of consecutive CBR

blocks in between the pooling layers of our proposed network, as shown in Figure 4.1(a).

The image-level accuracies with two and three consecutive CBR blocks in between pooling

layers is the same as in the case of one CBR block i.e. 100%. However, there is noted

a slight improvement of around 0.1% in patch-level accuracy in these cases but with a

significant increase in the computation time. So, we do not include more than one CBR

block in between the pooling layers in proposed SNRCN2. Lastly, we also compare with

another network setting by having a total of five CBR blocks and five pooling layers. In this

case of five CBR blocks, there is a miss-classification of one image and the performance of

the model marginally decreased by 0.01% and 0.06% in terms of patch-level and image-level

accuracy, respectively.

Table 4.6: Results on Forchheim social media platform based images when trained on
augmented dataset

Social media Facebook WhatsApp Instagram

Method PLA ILA PLA ILA PLA ILA

Chen et al. [15] 40.29 69.60 54.91 81.22 48.06 76.62

Yao et al. [19] 25.33 49.80 33.52 58.10 31.02 57.98

Freire-Obregon et al. [3] 25.50 38.44 34.96 53.38 31.53 49.04

You at al. [29] 31.10 62.06 49.85 77.77 38.52 67.81

Liu at al. [25] 35.10 66.92 55.25 80.72 45.45 74.45

Rafi et al. [24] 34.81 66.53 53.89 81.22 42.53 72.73

Bennabhaktula et al. [27] 91.53 60.15 48.51 77.29 39.54 69.98

Our CMI method 43.38 70.90 61.41 85.52 51.86 78.92

Social media Telegram Twitter Average (SM)

Method PLA ILA PLA ILA PLA ILA

Chen et al. [15] 54.24 81.35 64.81 88.76 52.46 79.51

Yao et al. [19] 33.32 62.32 39.21 67.17 32.48 59.07

Freire-Obregon et al. [3] 35.21 54.53 40.15 61.94 33.47 51.47

You at al. [29] 49.03 81.35 57.44 84.29 45.19 74.66

Liu at al. [25] 54.86 84.29 67.90 90.80 51.73 79.44

Rafi et al. [24] 55.97 86.71 67.63 90.54 50.97 79.55

Bennabhaktula et al. [27] 44.46 77.77 54.23 83.26 43.65 73.71

Our CMI method 62.38 87.22 74.07 92.46 58.62 83.20

4.3.5 Robustness of CMI Mthods against Real-World Social Media

Network Post-processed Images

Social media platforms have become the prominent medium for sharing the images.

Therefore, the forensic query regarding identifying the source camera model is very likely to

be applied for image(s) coming via one of these platforms. All these platforms apply some

post-processing operations, such as JPEG compression and rescaling, and the parameters
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used in such operations are generally not known. Therefore, it is important to examine the

robustness of the proposed approach against real-world post processed images. We perform

this evaluation using the Forchheim dataset that consists of original images acquired using

some smartphones and also the social media platforms based post-processed versions of

each image. The reason of choosing this Forchheim dataset is that it provides the images

from five social media network and number of images (3851) related to each social media

platform and original images are equivalent. For this evaluation, the training of each

network model considered is done using the augmented dataset that consists of 80% of the

original images of Forchheim dataset and 5 different copies of each of these images acquired

using highly popular social media platforms: Facebook, Whatsapp, Instagram, Telegram,

and Twitter. After training, the evaluation on the similarly enhanced test set is performed,

the results of which are presented in Table 4.6 for the social media platforms based images.

As per the results, the best robustness is achieved by the proposed method for each of

the five different platforms, with overall average PLA and ILA of 58.62% and 83.20%,

respectively. On Twitter, the proposed method achieves highest ILA of 92.46% among all

social media platforms. On Whatsapp and Telegram also, it is more than 85%, whereas,

on Instagram and Facebook, it is somewhat lower i.e. 78.92% and 71.9% respectively.

However, these all are better than that of any other CMI method considered. The

substantial ILA improvements of 7.67%, 10.95%, 7.91%, 11.45%, and 9.09% are achieved

on Facebook, Whatsapp, Instagram, Telegram, and Twitter, respectively, in comparison

to the second-best performing methods. In terms of overall ILA, the methods: [24], [15]

and [25] performed almost similarly i.e. around 79.5%, and they can be considered then

second-best performing methods, as the proposed method performs considerably better

i.e. 83.2%, as shown in Table 4.6. Further, we evaluate the efficacy of directing images

to models specifically trained on individual social media network images. We trained five

separate models, each corresponding to one of the five social media networks included in

the Forchheim dataset. These models were then compared with a model trained on an

augmented dataset. The results of this comparative evaluation are presented in Table

4.7. It has been observed that there is an improvement in ILA across all the social

media network images. This finding underscores the potential benefits of specialized model

training for CMI of image in the context of different social media platforms.

Table 4.7: Results on Forchheim social media platform based images when trained on each
social media images dataset

Test on
social media

Facebook WhatsApp Instagram Telegram Twitter

Trained on
social media

PLA ILA PLA ILA PLA ILA PLA ILA PLA ILA

Facebook 40.64 72.66 25.66 39.46 5.73 4.56 26.25 40.74 15.64 16.68

WhatsApp 21.95 36.27 61.86 86.84 7.66 8.17 18.48 21.20 20.60 22.34

Instagram 3.98 3.70 4.70 4.46 50.50 81.73 5.22 4.72 6.96 6.62

Telegram 14.01 14.81 22.75 23.64 5.21 5.23 64.78 88.76 27.09 35.12

Twitter 8.14 7.79 19.13 21.22 11.11 14.17 21.72 26.55 75.55 92.97
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4.3.6 Discussion and Limitations

In our work, all the considered methods are trained for 100 epochs. We observe the

validation loss and find that all the methods are converging by 100 epochs or earlier. Our

method is converging by around 50 epochs. For testing purposes, we pick the model weights

providing maximum validation accuracy. Also, we have performed a set of ablation studies

by considering the Forchheim dataset to select the appropriate network hyper-parameters

such as batch size and learning rate. The values chosen are the ones that provide the best

results for SSMN identification. We also consider enhancing the total number of CBR

blocks from 4 to 5, but that results in decrease in performance, potentially due to low

resolution of high-level features obtained by the last convolution layer in case of 5 CBR

block., So, we finally choose to have only four CBR blocks in our proposed model.

The existing methods consider different strategies while feeding the input image to their

models for training/testing. Caldelli et al. [112] considered the input image to be

the 64 × 64 size patches extracted from the PRNU of the given image. Manisha et

al. [115, 118] considered the input image to be the resized version of the preprocessed

image (DCT/DWT) in their works. In our work, we initially extract the maximum of 64

non-overlapping patches of size 256× 256. We prefer patch-extraction instead of resizing

as partitioning the image into patches does not affect the noise fingerprints of the image.

Also, the partitioning of an image into patches increases the total number of images for the

training. Unlike approach [112], we consider larger patch size to provide larger receptive

field to our model for better feature extraction and better performance, as evident also from

the results presented in Table 4.5. Inference time of method [112] is least, likely because of

using smaller sizes patches, and the inference times of other methods [115, 118] are much

higher than that of our method. Overall the experimental results and comparative analysis

across two different datasets and the combined dataset demonstrate the effectiveness and

robustness of our method for SSMN identification tasks. However, it may be noted that

the proposed method gives more emphasis on the detection of artifacts left by the most

recent social media platform and this may be a challenge when the images are shared

multiple times via different social media networks. Further, the datasets used considered

maximally 30 smartphone cameras and most of the images in these are natural scene

images. The performance on more diverse and real-world scenarios is yet to be examined.

We also plan to investigate the robustness against adversarial attacks in future.

4.4 MSRD-CNN: Multi-Scale Residual Deep CNN for

General-purpose Image Manipulation Detection

4.4.1 Introduction

The digital information can be shared in the form of audio, image, and video using

various social media platforms such as Facebook, Instagram, Snapchat, etc. The advent

of powerful editing software results in a significant increase in the number of tampered
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images on social media related to political, individual attacks, publicity, etc. Therefore,

the authenticity of digital images is very crucial. Moreover, the investigation of digital

images can play important role in many fields related to medical, news media, scientific

exploration, law and crime [120, 121, 98]. Thus, it is a concern of great importance in

multimedia forensics. The detection of different image processing operations has a great

relevance to the forensic community due to the fact that these operations may be used

by the counterfeiter in the creation of an image forgery. It is perceived that different

image processing operations embed special artifacts or footprints in the processed image.

Several forensic algorithms have been designed to detect the particular image processing

operation by analyzing the corresponding artifacts. Some image processing operations

considered are resampling [122, 123, 124, 125, 126], JPEG compression [127, 128, 129, 130],

median filtering [131, 84, 132, 133], contrast enhancement [134, 135, 136, 137], etc. Also,

many anti-forensic approaches related to different image processing operations such as

JPEG compression [138], [139], median filtering [140], and contrast enhancement [141]

have also been proposed to mislead the forensic techniques by concealing the footprints

of corresponding image processing operations. The researchers have also developed

general-purpose image manipulation detection schemes to detect different image processing

operations [86, 142, 143, 85, 23, 106]. Moreover, it is observed that recent works on

multi-purpose image tampering detection are based on deep learning techniques, for

instance, Convolutional Neural Networks (CNNs). These CNNs have demonstrated the

ability to automatically learn the image manipulation features from data. A novel

constrained convolutional layer based CNN is proposed in [86] to detect the multiple

image processing operations by suppressing the image content information and the authors

further optimized their constrained neural network in [85] for better performance. In [142],

a densely connected CNN based on isotropic constraint is proposed for general-purpose

image forensics by considering the anti-forensic attacks. The isotropic convolutional

layer works as a high-pass filter to highlight the image processing operations artifacts by

suppressing the image content information. Moreover, an image manipulation detection

approach built upon [86] and combined with a deep Siamese CNN network is presented

in [143]. However, their work was not to identify the specific image manipulation but to

classify the input patch pair (two images) whether they are identically processed or not. In

[23], Xception architecture is employed to classify multiple image processing operations by

considering small-sized images. Most of the existing general-purpose forensic techniques

can be easily circumvented by using some anti-forensic attacks. Recently, a universal

image manipulation detection approach based on densely-connected CNN is proposed

in [106] and it has also considered most of the image processing operations including

various anti-forensic techniques for evaluation. However, the proposed CNN is significantly

different from the existing approach [106] in terms of network architecture as well as used

image manipulation datasets.

Overall, designing a unified forensic scheme capable of detecting different image

manipulations under different attacks is still a challenging task for the researchers. Also,
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to the best of our knowledge, the existing works have not performed any cross dataset

testing to evaluate the generalization of their models. In this section, we present a

novel and effective image manipulation detection network capable of detecting multiple

editing operations including anti-forensic methods. Our network comprises of three

stages: pre-processing, hierarchical high-level feature extraction, and classification. Firstly

inspired by Res2Net [26], a multi-scale residual module is employed in pre-processing stage

to extract the prediction error or noise features adaptively. Further, the obtained noise

features are processed by using FEBs to extract the high-level image manipulation features.

We have considered several image processing operations including anti-forensic schemes

and with arbitrary parameters to evaluate our network. The remaining part of the section

includes a detailed description of the proposed network in Section 4.4.2 and the experiment

results are discussed in Section 4.4.3.

4.4.2 Proposed MSRD-CNN Architecture

In this section, we propose a novel MSRD-CNN architecture capable of detecting the traces

of multiple image processing operations and anti-forensic techniques. The architecture of

MSRD-CNN, as shown in Figure 4.4, includes three different stages i.e., extraction of

noise features using a multi-scale residual module, feature extraction network to extract

high-level features related to image tampering artifacts, and classification.

Multi-Scale Residual Module

Most of the image manipulation detection schemes use the idea of suppressing the content

information of an input image to highlight the image manipulation artifacts. Compared

to applying fixed filters to the input image prior to CNN for the extraction of prediction

error features, it is preferred to employ a trainable filtering scheme for pre-processing

to potentially learn more appropriate image manipulation features adaptively for image

forensic tasks. In our approach, we use a data-driven pre-processing scheme that consists of

a two-layer CNN and a multi-scale residual module. Each convolution layer in the two-layer

CNN contains 64 filters of 3×3 followed by batch normalization and the ReLU layer. This

two-layer CNN is employed to obtain better input features for the multi-scale residual

module. Let us denote the functions of these two convolution layers by C1(·) and C2(·),
respectively. For a given input image I of size 256×256, the output of this two-layer CNN

is formulated as:

IC1C2 = C2(C1(I)), (4.6)

This output IC1C2 , having size of 256 × 256 × 64, is then passed to the multi-scale

residual module which is inspired from Res2Net [26] and designed to learn the suitable

noise features. The proposed multi-scale residual module explores the multi-scale feature

representation by dividing the input features of size 256 × 256 × 64 along the channel

axis, which results in four different groups of size 256× 256× 16. These groups are then

interconnected in a hierarchical residual-like style as shown Figure 4.4(b). Each group is
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Figure 4.4: The architecture of MSRD-CNN

further processed by a Convolutional Block (CB) having two convolution layers with 16

filters of 3×3 followed by batch normalization and ReLU layers. The output feature maps

of the first CB is added to the second group before passing to the second CB as shown in

Figure 4.4(b). Let xi represents the feature maps of ith group, where i ∈ {1, 2, 3, 4}, and
Hi(·) is the function performed by the convolutional block of ith group. The output of
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Hi(·) which is yi will be added to xi+1 group and passed to (i+ 1)th convolutional block

(Hi+1) as provided in Eq. 4.7.

yi =

{
Hi (xi) i = 1

Hi (xi + yi−1) i = 2, 3, 4
(4.7)

The outputs of all the convolutional blocks are concatenated and passed to a convolution

layer having 64 filters of size 1 × 1. The output of this convolutional layer is subtracted

from the input of the multi-scale residual module to obtain the final noise features as:

IMSRM = MSRM(IC1C2)− IC1C2 (4.8)

where, MSRM(·) denotes the function performed by the multi-scale residual module.

The feature extraction blocks further process these noise features to extract the high-level

image manipulation features. Note that the features size i.e., height and width remains

same during the pre-processing stage except the channel size.

Feature Extraction Network

The noise features obtained from the multi-scale residual module are passed to the

feature extraction network to extract the high-level image manipulation features. This

feature extraction network has four FEBs and each FEB (FB) is based on a residual skip

connection containing two regular convolution layers of size 3× 3 and a 1× 1 convolution

layer. The input of a FEB is added to the output of the second convolution layer followed

by the average pooling operation as shown in Figure 4.4(c). Note that we have not used

the pooling layer in the multi-scale residual module of pre-processing stage because pooling

layer strengths the image content and reduces noise signal by averaging. The purpose of

the pooling layer is to down-sample the features for learning high-level image manipulation

features. Number of filters in the four FEBs i.e FB1,FB2,FB3, and FB4 are 64, 64, 128

and 256 respectively. The resultant features obtained from this feature extraction network

can be formulated as:

I ′FB = FB4(FB3(FB2(FB1(IMSRM )))) (4.9)

The output of this feature extraction network i.e. I ′FB
is further processed by two

convolution layers each having 64 filters of size 3 × 3 to obtain the more relevant image

manipulation features. First convolution layer is followed by batch normalization and

ReLU and the second convolutional layer is followed by batch normalization. Afterward,

the average pooling layer with filter size 4× 4 and stride 4 is applied to reduce the feature

dimension.

Lastly, the global features obtained after the average pooling layer is fed to a

fully-connected (FC) layer with 11 neurons corresponding to image processing operations

used for classification. We use the softmax function to get the probability of predicted

classes and the cross-entropy function to calculate the overall network loss.
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4.4.3 Experimental Results

We conducted extensive experiments to evaluate the performance of the proposed model

in the detection of multiple image processing operations and various anti-forensic attacks.

Firstly, to confirm the multi-purpose nature of our MSRD-CNN, we considered 10 image

processing operations along with corresponding parameters listed in Table 4.8. The

image processing parameters are selected randomly to create more challenging image

manipulation datasets. For instance, in JPEG compression, we compress the original

images by randomly selecting the Quality Factor (QF) ranging from 60 to 90.

Table 4.8: Different image processing operations used for the generation of manipulation
datasets with arbitrary parameters.

Image editing operations Parameters

JPEG compression (JPEG) QF = 60, 61, 62, . . . , 90

Gaussian Blurring (GB) σ = 0.7, 0.9, 1.1, 1.3

Adaptive White Gaussian Noise (AWGN) σ = 1.4, 1.6, 1.8, 2

Resampling (RS) using bilinear interpolation Scaling = 1.2, 1.4, 1.6, 1.8, 2

Median Filtering (MF) Kernel = 3, 5, 7, 9

Contrast Enhancement (CE) γ = 0.6, 0.8, 1.2, 1.4

JPEG anti-forensics (JPEGAF) [138] QF = 60, 61, 62, . . . , 90

JPEG anti-forensics (JPEGAF) [139] QF = 60, 61, 62, . . . , 90

Median filtering anti-forensics (MFAF) [140] Kernel = 3, 5, 7, 9

Contrast enhancement anti-forensics (CEAF) [141] γ = 0.6, 0.8, 1.2, 1.4

[144] and Dresden image dataset [30] for the evaluation of different image tampering

detection approaches. The standard BOSSBase dataset comprises of 10,000 grayscale

images of resolution 512×512 in PGM format. We have transformed these PGM images

into PNG format for evaluation purposes. The standard Dresden dataset contains

3008×2000 size 1491 raw images in NEF format. We converted these raw images into

PNG format for evaluation. Our model is implemented by using PyTorch 1.8 deep learning

framework and all the experiments are performed using Tesla V100 GPU with 32GB RAM.

We compared our network with recent multi-purpose image tampering detection methods

[142, 85, 23, 106] in terms of detection accuracy. We also assessed our model’s robustness

and generalization by performing cross-dataset testing. The experimental results exhibit

the efficacy of the proposed model in comparison to the existing image manipulation

detection methods. All the relevant codes are available on request for reproducibility and

research advancement.

Multiple Image Manipulation Detection

In this subsection, we evaluate our MSRD-CNN performance in the detection of multiple

image processing operations including anti-forensic techniques using BOSSBase and

Dresden datasets. We created one original image (OR) and 10 tampered image datasets

using the image processing operations as listed in Table 1 by considering 4,167 and 1,333

images sequentially from the BOSSBase dataset for training and testing, respectively.
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We extracted 4 patches of size 256×256 from each of these images, which results in

16,668 training and 5,332 testing images for each of the image processing operations.

Therefore, we obtained a dataset having 2,42,000 grayscale images. We used 1,83,348

images (including 16,668 original images) for training, and remaining 58,652 images

(including 5,332 original images) for testing purposes. Note that we follow the strategy

used by the existing works [85] to create image manipulation datasets corresponding to

different image manipulation operations to make the comparison feasible. Therefore, we

have used only 4167 and 1333 images from the BOSSBase dataset for training and testing,

respectively. This may also be noted that the complete BOSSBase dataset images are

not used in consideration to the limited computational facilities availability, as we are

considering 10 image manipulation methods including anti-forensic approaches which are

highly compute-intensive and time-consuming.

We also evaluated our network ability using 881 images from the Dresden dataset.

We follow the same strategy as used for the BOSSBase dataset in preparing image

manipulation datasets using different image processing operations. We considered 667

images for training and 214 images for testing the considered neural networks. All of

these images are cropped from the center to obtain a sub-image region of size 1280×1280.

Afterward, each sub-image region is processed to extract 25 patches of size 256× 256 and

then converted into grayscale format. Therefore, we obtained 16,668 (approx.) images

for training and 5,332 (approx.) images for testing corresponding to image processing

operations provided in Table 1. The training of our network is performed by using the

Adam optimizer with a learning rate of 0.001 and we trained our network for 100 epochs

in each experiment.

We evaluated confusion matrices for our model based on multiple image processing

operations for BOSSBase and Dresden datasets as shown in Tables 2 and 3. Our

MSRD-CNN provides average accuracies of 97.07% and 97.48% for BOSSBase and Dresden

datasets, respectively, when evaluated on multiple image processing operations. Table

2 reveals that the proposed network gives an accuracy of greater than 97% for each

image processing operation except for the original and CE images on the BOSSBase

dataset. The accuracy of original and contrast-enhanced images is 87.92% and 90.15%,

respectively for the BOSSBase dataset. Table 3 demonstrates that our proposed approach

identifies each image processing operation with an accuracy of greater than 97% except

for the original and contrast-enhanced images with 92.22% and 85.03% respectively on the

Dresden dataset. Moreover, the robustness of our model is confirmed by the fact that it

provides high accuracies against different anti-forensic approaches on both the datasets.

We also conducted an experiment by combining both the training sets of BOSSBase and

Dresden datasets. It is observed that combining both the training datasets increases the

model accuracy further, likely because of the increase of training dataset size and/or more

diversity. The testing accuracy increases from 97.07% to 97.38% on the BOSSBase test

dataset. Similarly, model testing accuracy increases from 97.48% to 98.11% on the Dresden

test dataset. However, the training time increases significantly due to the large training
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data.

Table 4.9: Performance comparison of different multi-purpose forensic schemes on
BOSSBase dataset by considering multiple image processing operations. (OR: original
images, JPEG: JPEG compression, GB: Gaussian blurring, AWGN: adaptive white
Gaussian noise, RS: resampling using bilinear interpolation, MF: median filtering,
CE: contrast enhancement, JPEGAF: JPEG anti-forensics, MFAF: median filtering
anti-forensics, CFAF: contrast enhancement anti-forensic.)

BOSSBase Dataset
Chen [142] Bayar [85] Yang [23] Singh [106] Ours

OR 23.65 54.86 79.76 82.50 87.92

JPEG 96.66 99.72 99.83 99.76 99.89

GB 98.52 99.36 99.93 99.61 99.70

AWGN 80.65 93.12 98.54 98.33 99.34

RS 62.04 90.72 97.51 96.31 97.81

MF 88.77 97.32 97.60 99.40 99.76

CE 28.84 50.21 65.56 86.53 90.15

JPEGAF [138] 56.77 87.45 96.85 97.99 98.42

JPEGAF [139] 63.93 93.57 97.68 98.87 97.86

MFAF [140] 95.16 99.29 99.42 99.64 99.76

CEAF [141] 76.44 93.34 95.35 97.37 97.17

Overall Avg. 70.13 87.18 93.45 96.03 97.07

Table 4.10: Performance comparison of different multi-purpose forensic schemes on
Dresden dataset by considering multiple image processing operations.

Dresden Dataset
Chen [142] Bayar [85] Yang [23] Singh [23] Ours

OR 39.07 23.48 35.54 81.40 92.22

JPEG 99.36 99.72 100.00 100.00 99.98

GB 99.91 94.90 99.79 99.91 99.74

AWGN 98.95 96.02 98.91 99.94 99.94

RS 82.2 84.26 98.33 99.27 99.81

MF 93.55 97.39 99.81 99.96 100.00

CE 53.06 74.79 78.94 88.32 85.03

JPEGAF [138] 51.03 79.95 97.85 99.01 99.49

JPEGAF [139] 59.75 70.93 95.99 95.72 97.43

MFAF [140] 95.37 99.08 99.87 99.94 100.00

CEAF [141] 58.55 66.84 89.45 92.55 98.63

Overall Avg. 75.53 80.67 90.41 96.00 97.48

4.4.4 Comparative Analysis with Existing Approaches

We compared our MSRD-CNN with existing multi-purpose forensic schemes [142, 85,

23, 106] by considering multiple images processing operations including anti-forensic

techniques using the same training and testing datasets as defined in Section III-A. We

provide the diagonal entries of confusion matrices in Table 4.9 and 4.10 for different

methods for ease of comparison. The proposed model provides better detection as
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Table 4.11: Performance comparison of different multi-purpose forensic schemes by
considering cross dataset testing when trained

Models trained on BOSSBase and tested on
Dresden dataset (BOSSTrain-DRESTest)

Chen [142] Bayar [85] Yang [23] Singh [106] Ours

OR 9.96 1.74 2.03 0.04 0.17

JPEG 97.09 99.59 99.42 99.59 99.96

GB 99.94 99.06 99.27 99.83 99.76

AWGN 94.28 78.17 93.45 89.89 95.09

RS 74.72 41.64 69.47 82.37 96.08

MF 74.47 95.09 92.74 99.34 99.98

CE 33.36 29.24 31.83 76.03 92.12

JPEGAF [138] 35.90 71.57 88.24 92.24 92.78

JPEGAF [139] 69.47 80.95 88.62 91.13 89.20

MFAF [140] 96.98 99.62 98.67 99.74 99.74

CEAF [141] 58.78 66.32 67.07 79.22 86.52

Overall Avg. 67.72 69.36 75.53 82.67 86.49

Overall Avg.
excluding OR

73.5 76.13 82.88 90.94 95.12

Table 4.12: Performance comparison of different multi-purpose forensic schemes by
considering cross dataset testing

Models trained on Dresden and tested on
BOSSBase dataset (DRESTrain-BOSSTest)

Chen [142] Bayar [85] Yang [23] Singh [106] Ours

OR 25.84 3.04 28.88 1.88 18.55

JPEG 94.71 98.57 97.21 98.91 99.83

GB 93.98 88.47 98.24 97.81 91.65

AWGN 71.92 79.41 94.34 92.16 85.60

RS 59.92 73.37 87.3 77.44 85.07

MF 81.73 94.35 96.19 98.54 98.35

CE 18.06 32.24 36.37 27.89 46.40

JPEGAF [138] 48.82 71.27 86.42 92.76 95.57

JPEGAF [139] 51.11 78.96 91.37 91.92 93.23

MFAF [140] 84.47 98.69 99.51 99.01 98.26

CEAF [141] 63.92 37.55 72.69 66.04 82.93

Overall Avg. 63.14 68.72 80.77 76.76 81.40

Overall Avg.
excluding OR

66.86 75.29 85.96 84.25 87.69

compared to the existing approaches for all the considered image manipulations except

GB, JPEGAF [139], and CEAF [141] operations, when tested on the BOSSBase dataset as

shown in Table 4.9. Similarly, our network achieves better detection accuracy for all image

manipulations except JPEG, GB, and CE operations for the Dresden dataset. However,

it may be noted that for GB and CEAF [141] operations in the BOSSBase dataset, our

model is second best and is around 0.2% lower than the best performing method. Also,

for the JPEG and GB operations in Dresden dataset, our method is 0.02% and 0.17%



68
Chapter 4. Source Social Media Platform Identification of Images and Camera Model

Identification of Social Media Post-processed Images

lower than the best performing method, respectively. Moreover, Table 4 shows that our

model outperforms the recent deep learning based scheme [106] with average accuracy

improvements of 1.04% and 1.48% for the BOSSBase and Dresden datasets, respectively.

4.4.5 Performance evaluation based on cross dataset images

In this subsection, we evaluate the performance of our network by considering cross dataset

testing images. In the first experiment, the considered models, trained on the BOSSBase

training dataset images, are applied on the Dresden test set images. Similarly, we also

perform the experiments considering Dresden training dataset images and BOSSBase test

dataset images. The average accuracy results of these cross dataset testing experiments

are presented in Table 4.11 and 4.12. It is observed that our MSRD-CNN architecture

outperforms the recent multi-purpose forensic schemes by providing higher detection

accuracies of 86.49% and 81.40% for BOSSTrain-DRESTest and DRESTrain-BOSSTest,

respectively. It is also noted from Table 5 that all the considered forensic methods do not

perform well for the original images because the proposed model focuses on the artifacts

introduced by the image manipulation operations in the image. But, the original images

do not have any manipulation artifacts except the camera fingerprint-related features.

Moreover, the original images of these two datasets are acquired from different camera

models/devices. Therefore, we also provided the overall average accuracies excluding the

original images as shown in Table 4.11 and 4.12. These results are also in favour of

proposed MSRD-CNN, with 95.1% and 87.7% accuracies in two settings considered. This

highlights the overall best generalization ability of the proposed approach.

4.5 Summary

In this chapter, we propose a new method (SNRCN2) for source social media network

(SSMN) identification of an input image. We rely on patch-based driven approach in

contrast to image resizing approach and suppressing the image content information by

utilizing the steganalysis based high-pass SRM filters for noise residuals extraction. These

extracted noise residuals are then given to our CNN model to better learn the artifacts left

in the image during the post-processing operations of social media networks and perform

classification. We have examined the effectiveness of the proposed model against existing

methods by considering two different datasets and also a combined dataset. The proposed

method consistently provides the superior performance, with image-level accuracy of

99.53% and 100%, and F1-score of 99.42% and 100% on VISION and Forchheim dataset,

respectively. On the combined dataset, the proposed method provides the image-level

accuracy of 99.10% which is 2% improvement compared to second-best performing method.

On all these datasets, the patch-level accuracy results of the proposed method were

also the best. We have examined the performance CMI methods on the social media

network post-processed images. The proposed CMI method achieves ILA of 83.20% on

post-processed images when trained in all social media images. It is observed there is
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improvement of 1.40% in terms of ILA when trained on individual social media network

images. It is observed that the performance of CMI methods including our CMI method

decreases on post-processed images.

We have extended the SSMN identification to IPOs detection and proposed a

general-purpose forensic approach for image manipulation detection. Our MSRD-CNN

employs a multi-scale residual module to learn the prediction error features adaptively by

suppressing the image content information. A feature extraction network further processes

these low-level forensic features to provide high-level image manipulation features for

better classification. The results consistently show that our model can effectively classify

different image processing operations, including anti-forensic attacks. Our model provides

overall accuracy improvements of 1.04% and 1.48% as compared to the recent forensic

method [106] on BOSSBase and Dresden datasets, respectively. Even in cross dataset

testing settings, our model outperforms other approaches and exhibits good generalization

ability.
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Chapter 5

A Dual-Branch CNN for

Multispectral Camera Device

Identification

5.1 Introduction

Determining the image acquisition device is one of the most important aspects of

image provenance. With the numerous applications of multispectral images, it is

important to identify the multispectral image acquisition camera. For this reason, we

propose an approach based on the dual branch convolution neural network (CNN) for the

identification of the multispectral image acquisition camera. The proposed method applies

a pre-processing layer that extracts Photo-Response Non-Uniformity (PRNU) based noise

residual using a wavelet-based denoising filter. These noise residuals are utilized by dual

branch CNN model for feature extraction and further classification. We perform the

extensive experiments on the newly created dataset that consist of images from multiple

multispectral image datasets.

With the advancement of the low-cost image acquisition devices, images have become

a major medium of information. There is already lots of applications which rely

on RGB images captured using digital cameras or smartphone cameras. However,

with technological advancement, multispectral cameras are being adapted for numerous

applications related to forensic science that deal with analysing the evidence gathered

at the crime scene. The utilization of multispectral imaging in the analysis of gunshot

residue on the clothing of a target is of considerable significance in the field of forensic

investigations [145, 146]. This analytical approach plays a crucial role in discerning

key aspects such as the shooting distance, the presence of primer residue, and the

identification of metal particles originating from discharged bullets. Multispectral images

also serve as a valuable tool, enabling nondestructive and noncontact analysis of forensic

evidence, particularly in the examination of biological fluids [147, 148, 149]. Multispectral

images also help in the document analysis that holds pivotal significance within the

field of forensic science, serving as a fundamental task for the identification of document

forgery [150, 151, 152]. Document forgery encompasses a range of potentially fraudulent

modifications applied to documents, including the obliteration or addition of text. The

multispectral images also actively used in the biometric related applications [153] like
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iris liveness detection [154], contactless palm-vein authentication [155]. In crime cases

pertaining to domestic violence and child abuse, the chronological assessment of bruise

progression serves as a critical source of evidentiary information. Multispectral image

analysis and diffusion theory were employed to visualize skin vasculature and monitor

the progression of fresh skin bruises [156]. It may be noted that from last few years,

there is rapid growth in the use of multispectral images in different domains in terms

of the number of research papers published as shown in Figure 5.1. We have used

“multispectral” as a keyword to find the related research papers. Multispectral cameras

provide more than three channel-based information compared to the commonly used

RGB image cameras. Therefore, the multispectral cameras has the ability to provide

non-destructive and real-time analysis of the crime scene, and these analyses can be

presented as evidence to the court to prove the crime against criminals. However, with the

increase utilization of these multispectral cameras and efficacy of the applications related

to multispectral cameras, it raises a question regarding the trustworthiness of multispectral

image. The camera device identification is one of the essential task to define the integrity

and trustworthiness of the multispectral image. The camera device identification of the

multispectral image helps in the linking to the owner of multispectral image. It can help

in the investigation when the multispectral image is presented in the court as a piece of

evidence. It can also be useful in image manipulation detection for verification.
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Figure 5.1: Growth in the use of multispectral images in different domains in terms of the
number of research papers published.

For effective multispectral camera identification, we understand and analyze the process of

multispectral image acquisition and we use the forensic traces left during the acquisition

process. A multispectral image of size M ×N ×K has K channel and is mainly generally

captured using two different classes of the multispectral imaging systems: (i) mutli-shot
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imaging systems, and (ii) single-shot imaging systems. The mutli-shot imaging systems use

multiple acquisitions with the help of multiple color filter arrays or multiple illumination

while the single-shot imaging systems use a single acquisition to capture the multispectral

imaging system. The first category of multi-shot multispectral imaging system uses K

shot to capture K-channel multispectral image as each shot with specific color filter

array captures the kth channel [157]. These imaging systems require a mechanical system

attached to camera which helps in changing the filter array or different illumination each

time. Another category of the multi-shot multispectral imaging systems capture one row

of the M pixel values for all the K channels at each acquisition and thus require N number

of acquisition to capture an multispectral image of size M ×N ×K. These multispectral

imaging systems have push broom line scan technology that needs a focusing mirror lens

so that the imaging system can only capture a small portion of the scene. The single-shot

imaging systems either use K imaging sensor to capture the K channel simultaneously

or use a multispectral filter array similar to color filter array in color camera to capture

a multispectral image with single imaging sensor in a single acquisition. The systems

with multispectral filter array use multispectral image demosaicking methods [158, 159] to

generate the complete multispectral image. Each acquisition process of the multispectral

camera may leave discernible noise or artifacts on the multispectral image. Therefore, the

multispectral camera device identification method may utilize these discernible noises or

artifacts generated during the acquisition process.

The metadata of an image can provide information related to camera. It is embedded in

EXIF file of the image and can be forged easily. Also, most of the multispectral images are

in .mat extension. So, it is easy to remove the camera information or any other metadata

of the multispectral image as .mat files are easily editable. Therefore, the task of camera

identification of multispectral images is difficult.

A number of methods have been proposed for the identification of camera of RGB

image. A review of most of the methodologies have presented in paper [1]. Initial

approaches use the specific artifacts generated during acquisition process of the image

with a hypothetical model. These specific artifacts includes color filter array (CFA), lateral

chromatic aberration, lens distortion, demosaicking algorithms and image quality matrices

(IQM), dust traces, and sensor pattern noise (SPN) [14]. Some methods utilized the

statistical features (local binary pattern and co-occurrences) along with machine learning

classifiers. However, all of these outlined methods explored the handcrafted features.

Recently, the researchers start using the data-driven methods for camera identification.

These data-driven methods use CNNs to extract the camera forensics features from the

image and these features further passed to a classifier. These methods use the CNNs

to extract features from the RGB image only and mainly varies in terms of number of

convolutional layers and the activation functions. The methods [14], [19], [3], [15], [28],

and [160] employed 4 layer CNN, 13 layer CNN, 2 layer CNN, a ResNet model,

DenseNet models and 3 layer CNN model, respectively. Some CNN based methods

apply pre-processing on the image to suppress the content information. This provide
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an advantage to CNN to focus more on forensics artifacts. The methods proposed by Rafi

et al. [24] , Liu et al. [25], Wang et al. [22], and Tauma et al. [20] have employed remnant

blocks for prepossessing with 6 layer CNN, Res2Net based preprocessing with VGG16,

local binary patterns with 3 layer CNN, and a 5 × 5 high-pass filter with 3 layer CNN,

respectively. Few methods also explored the fusion-based CNNs that utilized multiple

branches to extract features from the image. Each branch extracts distinct features by

applying different filters from other branches. You et al. [29] utilized three-branch CNN

with prepossessing, Ding et al. [51] employ a four-branch preprocessing module and ResNet

based CNN. Each branch employs a distinct Gaussian-based denoising. Yang at al. [50]

and Bayar et al. [21] employed multi-branch fusion-CNN, where each branch extracts

different artifacts from the image. Despite the fact that many methods including above

mentioned, have been proposed for camera identification of RGB images, there is no work

pertaining to camera identification of multispectral images. Also, none of these methods

provide the scalability scheme for the multispectral image as the acquisition process of

the RGB image is quite different from the acquisition process of the multispectral image.

Therefore, we require a dedicated camera identification method for multispectral images.



































Figure 5.2: Fractal expansion rule

We propose an approach based on the dual branch CNN for the identification of the

multispectral image acquisition camera. The proposed method applies a pre-processing

layer that extracts PRNU based noise residual using a wavelet-based denoising filter. These

noise residuals are utilized by dual branch CNN model for feature extraction and further

classification. We construct a dual-branch CNN based on FractalNet [161] for effective

feature extraction from multispectral images and better multispectral camera device

identification (MCDI). We prepare a new dataset for multispectral camera identification

studies, based on multiple publically available multispectral images datasets. Extensive

experimental results on multispectral image datasets, considering 4, 5, and 6 channels

images, demonstrate the efficacy of the proposed Dual-Branch Convolutional-Batch

normalization-ReLU network (DBCBRN) method for MCDI. We extend the existing RGB

image-based camera identification approaches for MCDI and also perform the comparative
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analysis. It is the first work of its kind, concerning the camera device identification of

multispectral images. The remainder of the chapter is formatted as follows: The section 5.2

provides a comprehensive explanation of our proposed dual-branch CNN-based framework.

Experiments and results are presented in Section 5.3, along with a description of the

dataset employed and a comparison with alternative methods.

Conv 2D
3 × 3, K

BN ReLU

Figure 5.3: CBR block (B) of proposed dual-branch CNN. K is total number of kernels
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Figure 5.4: The architecture of the proposed dual-branch method. The straight line (|)
represent the channel-wise concatenation operation and NX represents the noise image of
input multispectral image.

5.2 Proposed Method for Multispectral Camera Device

Identification

This section describes the proposed method, DBCBRN, for the camera identification of

a given multispectral image. The architecture of the proposed method is provided in

Figure 5.4. The proposed method consists of two key steps: first, the extraction of PRNU

based noise residuals from the given input multispectral image and second, the extraction

of high-level features related to multispectral cameras from these noise residuals using a

FractalNet-based CNN. These steps are further described in more detail in the following

two subsections.

5.2.1 Noise Extraction

Most camera identification methods rely on suppressing the content information to make

the identification method more robust and content-independent. Also, due to more

channels in the multispectral image compared to the RGB image, it is beneficial to apply

content-suppressing pre-processing before high-level feature extraction from the input

image. Also, the CNN-based model tends to learn content-dependent information that

is not appropriate for camera identification methods. Therefore, we apply PRNU-based

noise extraction pre-processing for extracting noise residuals from the multispectral input

image. It is shown in [11] PRNU-based noise can be used for extracting fingerprints

related to the camera and also contains the patterns used for camera identification [11, 55].
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The noise residuals are extracted using the denoising filter applied independently on each

channel of the multispectral image. Considering the input image X and denoising filter

F , the noise residual can be computed using the following equation,

NXi = X − F (Xi) i ∈ {1...C}, (5.1)

where i is the ith channel of the multispectral input image. We use an adaptive wavelet

filter mentioned in [11] as the denoising filter. The denoising filter is the outcome of

two-stage process. Firstly, the local image variance is calculated. Secondly, the local

Wiener filter is applied in the wavelet domain to obtain a denoised image estimation. The

size of noise residuals is the same as the size of input multispectral image.

5.2.2 FractalNet-based DBCBRN for High-Level Features Extraction

and Classification

The PRNU-based noise residuals are further passed to FractalNet [161] based DBCBRN

model. The DBCBRN aims to extract the high-level camera fingerprint features from the

noise residuals. The FractalNet has a more straightforward design and shows competitive

performance compared to ResNet-based models. The FractalNet-based networks can be

built using expanding the basic building block as shown in Figure 5.2. BC is the fractal

block that represents a specific operation, e.g., convolutional layer or combination of

computational layers. The initial FractalNet consist of only one block. The subsequent

FractalNet can be expended by recursively increasing the width C as shown in eq.5.2.

BC+1(X) = BC(X)⊕ BC(BC(X)) (5.2)

The FractalNet branches are joined together using a concatenation or addition layer.

Further, the pooling layer can be applied in depth-wise expansion to reduce the spatial

dimension.

The proposed model is a two-branch FratcalNet with a width of 2 (C = 2) and depth of 5

as shown in Figure 5.4. Here, the depth defines the number of concatenation layers. We

define the CBR block (B) as a fractal block of the network that is a sequence of 3 × 3

convolution layer, batch normalization (BN), and ReLU activation function as shown in

Figure 5.3. The number of kernels in convolutional layer of CBR block is denoted as K.

Each branch of DBCBRN consists of a sequence of CBR blocks. The design of DBCBRN

is such that the number of CBR blocks in first branch is double of the second branch. The

concatenation layer (|) between the branches combines the features from two branches

using concatenation by channels and thus, doubles the number of channels. The number

of channels after the five concatenations would be sixteen times the number of output

channels of the first CBR block. The channels sharing at the concatenation layer provides

disparate features from both branches and further providing significant high-level features

for classification. It may be noted that we use five type of CBR blocks on the basis of

number of channels(K) as the number of channels doubles after every concatenation layer.
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These CBR blocks can be denoted as B1, B2, B3, B4,, and B5 with corresponding number of

kernels (K) as 32, 64, 128, 256, and 512 respectively. Each concatenation layer is followed

by a max-pooling layer to down-sample the spatial dimension and pass only the prepotent

features to the subsequent layer. The last concatenation layer outputs the feature maps

of size 8 × 8 × 1024 for the input noise residual of size 128 × 128 × 3. The output of the

last concatenation layer is passed to the global average pooling layer, which reduces the

incoming features into 1×1×1024. Finally, we pass the average-pooled high-level features

to 1× 1 convolutional layer with a total number of kernels equal to the number of classes

(N). Further, the output vector is passed to the softmax layer to generate probabilities for

the N multispectral cameras and classification is done using highest probability value. The

training loss L of DBCBRN is carried out by computing cross-entropy loss between the

target and the estimated output of the DBCBRN model. The loss function is formulated

as:

L (fs (fc (Hc;Wc)) ;Y ) = − log
(
Ŷ
)
× Y, (5.3)

where Y is the one-hot encoded target and Ŷ is the corresponding output of softmax layer.

The function fs depicted the softmax layer and function fc depicted the convolutional layer

operation on high-level input features HC . The function fc is parameterized by kernels

Wc.

5.3 Experimental results

In this section, to assess the performance of the proposed method for the camera

identification, we conducted a set of experiments and perform comparative analysis of

the proposed method on newly constructed dataset. We also evaluate the effectiveness of

the noise residuals for the camera identification.

5.3.1 Dataset

To the best of our knowledge, there is no standard dataset for multispectral camera

identification. Moreover, there is no dataset available that contains images captured

by different multispectral cameras. Therefore, we have created a new dataset that

contains 609 images captured from 11 different multispectral cameras. All of these

images are available in different multispectral datasets, along with various multispectral

image-related applications. In [162], a summary of multispectral image datasets and

accompanying multispectral cameras is provided. We merge the datasets for which images

are acquired using the same camera device. We carefully select the cameras that capture

the multispectral image in 420nm-700nm as the common spectral range. We discard the

datasets with fewer images and have images of poor resolution in terms of width and height.

These images from different datasets have different bit-size and datatype. Therefore, We

perform max-normalization [163] to bring each channel of the multispectral image in the

[0, 1] range. The list of selected camera along with the spectral range is mentioned
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in Table 5.1. For our experiments, we have experimented with k-channel multispectral

images where k∈ 4, 5, 6. To generate the K-channel multispectral image, we select K

channels with equal spectral separation, beginning with the first channel. We select (420,

510, 600, 690), (420, 490, 560, 630, 700), and (420, 470, 520, 570, 620, 670) channels

from this spectral range 420-700 nm to create 4-channel, 5-channel, and 6-channel image,

respectively for our experiment. It is worth noting that 4, 5, and 6-channel images contain

distinct channels except the 420nm. Therefore, This provides the comprehensive analysis

of all approaches. The newly created dataset will be shared publicly for the multispectral

camera identification.

Table 5.1: Details of camera devices in dataset for the experiments.

Dataset Camera Number of images Spectral range Number of channels

ICVL [164] Specim PS Kappa DX4 201 400−700 31

CAVE [165] Apogee Alta U260 31 400−700 31

Natural Scenes [166] Pulnix TM1010 8 410−710 31

Natural Scenes [167, 168, 169] Hamamatsu C47429512ER 71 400−720 33

TokyoTech [170] Monochrome camera 51 420−720 31

Harvard [171] Nuance FX, CRI Inc. 77 420−720 31

UGR [172] Photon V-EOS 14 400−1000 61

UWA Scenes [173] Monochrome CCD camera, Basler Inc. 15 400−720 33

HS-SOD [174] NH-AIK hyperspectral camera, Eba-Japan Co 60 350−1100 81

SpecTex [175] Imspector V8 60 400−780 39

Finalyson [176] The Spectracube Camera 21 400−780 31

5.3.2 Experimental Settings

All the experiments regarding training and testing of the model are performed with a

system consisting of RTX 2080Ti GPU of 8GB memory and 3.20 GHz Intel Core i7-8700

CPU with 64GB RAM. The newly created dataset has been divided into two sets i.e.,

training and testing. We follow a 80-20 % split with 482 images for training and 127

for the testing. Each image is divided into non-overlapping patches of size 128 × 128 to

meet the model input requirement. Importantly, it also provide more data for training of

the model. We extract patches from the centre of spatial dimension of the images and

ignore the boundary patches of small size. The label of each patch is same as the label

of the corresponding image. It is noticeable that we have not used any resizing on the

model input image as there might be information loss due to resizing. Further, The final

label of the input image is estimated using the majority voting. However, this provides

higher degree of accuracy for proposed model when most patches are classified correctly.

We implement the proposed model in PyTorch 1.8.0 framework. We utilize mini-batch

stochastic gradient descent and use the batch size of 64 for training of proposed model.

We employ the Adam optimizer with a 0.0001 initial learning rate. We train each model

under consideration for 100 epochs and all models were converging by 100 epochs. Also,

The proposed model converges before the all comparative methods. We choose the model

with the highest accuracy on test dataset.
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5.3.3 Results and Analysis

In this section, we evaluate the performance of the proposed model using a series of

experiments and a comparative study. Since, there is no CNN-based method for camera

identification of multispectral images, we investigate the state-of-the-art methods used for

camera identification of RGB images. All of these methods assume a three-channel RGB

input image; however, none of these methods provide or explain scalability to images with

more than three channels. Therefore, we have redesigned the initial layer of these methods

to comply with multispectral input image and further perform the comparative analysis

with proposed method. We consider four methods for comparative analysis i.e. Mayer

et al. [177], Liao et al. [80], Rafi el al. [24], and Bennabhaktula et al. [27]. The methods

in [177], [24], and [27] have performed CNN-based preprocessing to suppress the image

content. Suppressing the content related information leverages better extraction of camera

related information. The method in [80] have employed a combination of three dynamic

filter and a static filter for suppressing the content information. All of these methods have

demonstrated outstanding accuracy on the Dresden dataset [30], and the method in [27]

have achieved the highest accuracy of 99.01%. The Dresden dataset is standard RGB

image dataset which contains images captured using multiple digital cameras.

To perform evaluation of all the methods including proposed method, we define two

evaluation matrices i.e patch-level accuracy and image-level accuracy. The patch-level

accuracy is calculated by dividing the total number of correctly classified patches by the

total number of patches. It is formulated as:

Patch-level accuracy =

∑N
i=1

∑Pi
j=1 I (ŷij = yij)∑T

i=1 Pi

, (5.4)

where yij and ŷij denote the actual and predicted labels of jth patch of ith image,

respectively. Pi represents the total number of patches in ith image and T is total number

of images. I(C) is the indicator function such that I(C) = 1 if and only if the condition (C)

is true, and I(C) = 0 otherwise. Image-level accuracy is calculated by dividing the total

number of correctly classified images by the total number of images. It is formulated as:

Image-level accuracy =

∑N
i=1 I

(
Ŷi = Yi

)
T

, (5.5)

where Yi and Ŷi denote the actual and predicted labels of ith image, respectively. First,

we evaluate the proposed method in terms of the patch-level accuracy. Further, we pick

the model with highest patch-level accuracy for the evaluation in terms of image–level

accuracy.

Results on 4 channel image dataset

Table 5.2 shows the comparative analysis of the proposed method. The proposed method

achieves the highest patch-level accuracy of 97.52% and image-level accuracy of 97.63% on
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Table 5.2: Comparative analysis of different methods on 4,5, and 6 channel dataset

4 channel 5 channel 6 channel
Method PLA ILA PLA ILA PLA ILA

Mayer et al. [2018] [177] 95.20 88.70 94.00 93.54 92.18 89.51

Liao et al. [2021] [80] 93.28 88.00 93.68 90.40 89.16 83.20

Rafi et al. [2021] [24] 92.60 84.67 95.41 95.16 96.09 93.70

Bennabhaktula et al. [2022] [27] 94.17 92.12 94.21 95.27 94.69 95.28

DBCBRN with noise residuals 97.52 97.63 97.95 98.42 97.68 97.63

the 4 channel images of newly created dataset as shown in table 5.2. The method in [27]

achieves the second highest image-level accuracy of 92.12%. Our proposed method shows

an improvement of 5.51% in image-level accuracy as compare to second best method. All

other methods do not perform well considering image-level accuracy. It may be noted

that all methods have less image-level accuracy than the patch-level accuracy, the reason

is that the incorrect classified images have less number of patches and more than half

number of patches are incorrectly classified.

Results on 5 channel image dataset

On the 5 channel image dataset, each of the comparing methods perform admirably. The

patch-level and image-level accuracy for each comparative method surpasses 90% as shown

in Table 5.2. However, the proposed method outperforms all other methods by achieving

the patch-level and image-level accuracy of 97.95% and 98.42%, respectively.

Results on 6 channel image dataset

The results on 6 channel image dataset is shown in Table 5.2. The proposed method

achieve an accuracy of 97.29% at the patch level and 96.85% at the image level. The

proposed method performs better than second-best method in [27] by a margin of 1.57%

in term of image-level accuracy.

It is observed that the proposed method performs consistently best in each 4, 5, and 6

channel image dataset. All other methods do not perform consistent on 4, 5, and 6 channel

image datasets. All the methods have higher patch-level and image-level accuracy in case

of 5 channel image dataset. The reason might be that the channels in 5 channel images

provide better distinct information compared to channels in 4 and 6 channel images.

Table 5.3: Comparative analysis of the proposed model with different pre-processing

4 channel 5 channel 6 channel
Method PLA ILA PLA ILA PLA ILA

DBCBRN without noise residuals 95.99 94.48 95.65 96.06 95.77 95.27

DBCBRN with constrained convolutional layer 96.52 94.48 95.35 92.91 96.12 94.48

DBCBRN with noise residuals 97.52 97.63 97.95 98.42 97.68 97.63
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5.3.4 Significance of Noise Residuals

Mostly, different RGB image camera device identification methods uses different

preprocessing techniques to suppress the image content. In our work, we apply

PRNU based preprocessing to extract noise residuals. To validate the significance of

noise residuals in the proposed network setting, we perform experiments with different

preprocessing scenarios and present the comparative analysis in Table 5.3. We train

the proposed DBCBRN classifier with 4, 5, and 6 channel images for the considered

preprocessing settings. Firstly, we train and evaluate the DBCBRN without any

pre-processing. It has been observed that the DBCBRN with pre-processing is performing

significantly better than DBCBRN trained without pre-processing. In terms of image-level

accuracy, the DBCBRN with noise residuals outperforms by 3.15%, 2.36%, and 4.36%

when compared to DBCBRN without any pre-processing on 4, 5, and 6 channel datasets,

respectively. The noise residuals provide much better artifacts related to the camera

device. Interestingly, from Table II and Table III, it can be noted that even without using

noise residuals the proposed DBCBRN performs better than all of the other comparative

methods. This signifies that the proposed DBCBRN model is a better feature extractor

and classifier. In addition, the inclusion of noise residuals further enhance the model

prediction capabilities and make it more robust.

Secondly, we test the DBCBRN model with constrained convolutional-based

pre-processing, which is a standard technique also used by [177]. The constrained

convolutional layer applies dynamic high-pass filtering before DBCBRN. From the results

presented in Table III, it has been observed that the performance of DBCBRN with

a constrained convolutional layer is significantly lower than the DBCBRN with noise

residuals. The DBCBRN with noise residuals shows an improvement of 3.15%, 5.51%,

and 3.15% as compared to DBCBRN with constrained convolutional layer on 4, 5, and

6 channel image datasets, respectively,in terms of image-level accuracy. Also, it can

be noted that the patch-level and image-level accuracy of DBCBRN with constrained

convolutional-based pre-processing is significantly higher than the Mayer et al. [177]

method that originally uses constraint convolutional-based pre-processing with CNN,

results reported in Table II. This highlights the efficacy of the proposed DBCBRN and

shows that it is a better feature extractor than the CNN model in [177].

5.3.5 Results on Dresden Dataset

We conduct the experiments to assess the efficacy of the proposed method on RGB images

using the Dresden [30] dataset, which encompasses RGB images from 25 camera models.

We specifically choose the image samples from 25 camera devices, each representing a

unique camera model. We partition the dataset into a 80% training set and a 20% test set.

Table IV provides a comparative analysis of various camera device identification methods

on the Dresden dataset. The results indicate that the proposed DBCBRN method attains

a 100% accuracy at the image level, mirroring the performance achieved by the method
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introduced by Bennabhaktula et al. [27]. Furthermore, it is noted that the proposed

method attains a patch-level accuracy of 99.10%, surpassing the second-best method by

1.37%. These findings show the effectiveness of the proposed method on RGB images.

Table 5.4: Comparative analysis of the proposed model on the Dresden dataset.

Method PLA ILA

Mayar et al. [177] 94.26 99.1

Liao et al. [80] 81.63 94.28

Rafi et al. [24] 95.17 99.55

Bennabhaktula et al. [27] 97.73 100

DBCBRN with noise residuals 99.10 100

5.4 Summary

For the high level of inspection, the advance security applications introduce the use of

multispectral cameras. In this chapter, we address the problem of camera identification of

a multispectral image, which plays a crucial role in multispectral image source forensics.

The domain of source forensics has widely been explored but limited to RGB images

only. This is the first work that majorly focuses on the source forensics of multispectral

images. The proposed method utilized the PRNU-based noise residuals of the given

multispectral image for camera identification. These noise residuals are further fed into a

FractalNet-based dual-branch CNN to learn the high-level forensics features and further

camera identification.

This problem is first of its kind, so there is no standard dataset that contains images from

multiple multispectral cameras. Along with an efficient camera identification method,

this work contributes in presenting a new dataset that consists of images acquired from

multiple multispectral camera devices. We also explored and extended the state-of-the-art

RGB image based camera identification methods for the multispectral images. Multiple

experiments have been conducted on the developed dataset with 4, 5, and 6 channel

images, and the comparison analysis demonstrates that the proposed method outperforms

all state-of-the-art camera identification methods. The proposed model achieves highest

image-level accuracy of 97.63%, 98.42%, and 96.85% on 4, 5, and 6 channels image dataset,

respectively. As there is no publicly available standard dataset for camera identification

of multispectral images and there is a scope of further enlarging the developed dataset,

we intend to analyse the suggested work on a greater number of cameras in the future.

We can also investigate methods for matching multispectral cameras across different

spectral bands. Matching multispectral cameras that capture images in different parts of

the spectrum poses additional challenges but could be crucial for comprehensive camera

device identification. We can also investigate potential vulnerabilities of camera device

identification systems to adversarial attacks. Understanding and mitigating vulnerabilities

will be important for the reliability of such systems in practical applications.



Chapter 6

IITRPR-CMI: A dataset for

camera model identification

6.1 Introduction

The use of digital imaging is becoming increasingly popular, with smartphones making it

easier than ever to take, share, and view images and videos. However, this convenience

has also opened the door to potential misuse, raising concerns about the accuracy and

authenticity of multimedia content. Examples of illegal material, copyright infringement,

and intentional deception through manipulated media demonstrate the need for reliable

image forensics. The CMI investigates the feasibility of connecting digital pictures to

the device model that was used to take them. Being able to recognize the brand and

type of camera that took a certain photograph is critical in a variety of investigative

circumstances, particularly in legal matters. Over the past two decades, researchers in

the field of image forensics have been working hard to develop methods to address these

issues. This research has evolved from heuristic techniques that focused on modeling

imaging artifacts to more recent deep learning-based approaches, such as CNN. The CNN

model extract the important artifacts related to camera models from the images. Multiple

CNN-based method [14, 28, 24, 27] have been proposed for the CMI task. These methods

need the training data to learn or extract the inherent fingerprint present in the images.

Further, these method need to be evaluated on unseen test images.

The introduction of datasets, such as the Dresden dataset [30] has played a pivotal role

in evaluating and advancing forensic algorithms. However, these datasets come with

limitations, with Dresden predominantly featuring DSLR and compact cameras and a

notable absence of post-processed social media images. The need for comprehensive

datasets reflecting the diverse and realistic impact of post-processing on forensic traces is

evident. The absence of a latest and diverse dataset for CMI tasks has been a recognized

challenge.

The proliferation of smartphones as the primary device for taking pictures has drastically

altered the way visual data is created and shared. To evaluate and enhance CMI techniques

for smartphone cameras, datasets such as SOCRatES [96], Forchheim [4], VISION [95], and

Daxing [178] have been developed. The ever-evolving nature of imaging technology and

the widespread use of smartphones necessitates the need for ongoing progress in CMI tasks

and related datasets. Therefore, it is essential to upgrade the methods used to identify
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camera models, and diverse datasets are essential for assessing these methods. With

reliable datasets and a comprehensive understanding of CMI methods, we can improve

image forensics and open up new possibilities in the field.

Samsung NV15 Nikon D70 Sony DSC T77 Sony DSC W170

Figure 6.1: Sample images of the Dresden dataset.

In this chapter we have presented a summary of CMI datasets in section 6.2. Further, we

have proposed the metholodology for creating a new dataset for evaluating CMI methods

in section 6.3. In section 6.4, we have presented results of recent CMI methods on proposed

dataset.
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Samsung Galaxy J7 Samsung S4 Mini LG G3 Samsung S7 Edge

Figure 6.2: Sample images of the Socrates dataset.

6.2 Related Work

Multiple datasets have been published to address the evolving challenges of evaluating CMI

tasks. The main condition of the CMI dataset is that there should be multiple images

from different cameras. However, there is no universal dataset capable of comprehensively

evaluating CMI methods, as cameras are evolving and managing all images from devices

is very challenging. Consequently, researchers are consistently constructing new datasets

over time to facilitate the ongoing evaluation of CMI methods.
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Motorola E3 LG Optimus L50 Wiko Lenny2 LG G3

Figure 6.3: Sample images of the Forchheim dataset.

The Dresden dataset [30] is the first of its kind to evaluate forensic problems, providing

a large number of images and devices. It includes around 14999 JPEG images and 1491

RAW images from 73 camera devices of 26 camera models. The images are divided into

indoor and outdoor scenes, captured using traditional non-smartphone digital cameras.

This dataset is the main dataset for the CMI method, offering images from more than two

devices belonging to 18 camera models. However, it does not contain images of smartphone

cameras, which are widely used by a large population. Additionally, there are no splits

(train or test) based on scenes or other parameters for evaluting CMI methods. The
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Samsung Galaxy N3 Samsung Galaxy S4 Apple IPhone 4S Apple IPhone 6

Figure 6.4: Sample images of the SP Cup dataset.

sample images of Dresden dataset are shown in Figure 6.1.

Shullani et al. [95] presented the VISION dataset, which includes 34,000 images from

35 smartphones of 11 major brands. Additionally, they provided a baseline dataset with

16,100 images evenly distributed among all the devices. The VISION dataset also contains

post-processed images downloaded from Facebook and WhatsApp.

In 2018, Stamm et al. [82] organized an IEEE SP Cup contest for CMI. The contest

featured a training dataset of 2750 images, equally distributed among 10 smartphone

camera models. The test dataset was released without labels and the teams had to upload
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the results to obtain the ILA of the test dataset. The test dataset also included IPO

post-processed images, providing a valid and effective way to evaluate CMI methods.

However, the lack of labels in the test dataset limited the scope of inference from the test

dataset results. The sample images of SP Cup dataset are shown in Figure 6.4.

The Daxing [178] is one of the largest datasets that provides 43400 smartphone camera

images and belongs to 90 smartphone devices of 22 camera models. All these cameras

belong to 5 major brands. To the best of our knowledge, this is the largest smartphone

image dataset in terms of total images. Images are captured using different orientations of

the smartphone: 0, 90, and 180. The scene in images includes the saturated region such

as wall, sky and unsaturated region such as trees, stone, objects.

Galldi et al. [96] introduced the SOCRatES dataset for camera recognition on

smartphones. This is the largest CMI dataset in terms of the number of camera devices

and models, containing around 9700 images taken with 103 different camera devices of

65 smartphone camera models. The main feature of this dataset is that all images were

taken by camera device owners, which introduces heterogeneity in the image capturing

techniques. The images in the dataset are divided into two categories: background and

foreground. The background category includes images of the sky, clouds, and saturated

images that contain any object, which are useful for better extraction with respect to

the device. The foreground category includes images consisting of single objects such as

books, water bottles, lamps, and pots, etc. Despite the large dataset in terms of camera

models, the number of images per camera device is much smaller, and the variability in

the scene is much lower. The sample images of Socrates dataset are shown in Figure 6.2.

The Forchheim [4] dataset holds significant importance for evaluating camera identification

tasks The key importance of this dataset is that it contains images of same scene. The

dataset comprises images from approximately 143 scenes, with each scene captured using

all available devices. In total, there are 23,106 images, including 3,851 original images

from 27 camera devices of 25 camera models. The remaining images are post-processed

images uploaded and downloaded from five social media platforms. These post-processed

images are important for evaluating the robustness of CMI methods. Given that the

dataset offers images from the same scene, it facilitates the extraction of forensic features

related to camera models. However, it is equally important to assess their performance

on non-similar scene images to comprehensively evaluate CMI methods. It is noteworthy

that the Forchheim dataset does not provide the non-similar images. The sample images

of Forchheim dataset are shown in Figure 6.3.

There are also few datasets that are initially proposed for different forensics problem.

However, these dataset can be used for CMI. The RAISE dataset [179] contains 8156

images from three different camera models of Nikon brand. The scene in images includes:

saturated images, objects, and people. The SIDD dataset is presented by Abdelhamed et

a. [180]. It is originally proposed for noise removal from smartphone images. However, it

can be used for CMI as it provides 30000 images belonging to 5 different smartphone.
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6.3 IITRPR-CMI dataset

6.3.1 Image Acquisition Protocol

The goal of creating a diverse dataset is to incorporate the various important aspects of

the datasets that have been presented previously. We have proposed a methodology to

create a diverse dataset, as there is no existing dataset that provides a split based on scene

for CMI methods evlauation. The Forchheim dataset [4] provides the same scenes across

all camera devices, but does not provide a split. Previous methods have randomly split the

dataset for evaluating their respective methods. Our approach aims to provide a dataset

split for effective evaluation of CMI methods. The second aspect of the CMI dataset is the

homogeneity or heterogeneity among the users who have taken the images. All datasets,

except for SOCRatES [96], consist of images captured by a single user or a common set

of users. The heterogeneity aspect introduces a sense of realism to the captured images.

We have collected images that have been taken by their respective owners. The third

major aspect of the CMI dataset is that the images contain the same content or scene.

This characteristic was introduced in the Forchheim dataset [4]. The images in the dataset

should contain images of the same content so that the differences between the same content

images will highlight the noise artifacts related to the camera model. Inspired by this, we

have also collected images of the same content that have natural scenes and objects.

The proposed methodology for image acquisition involves the participation of two users

per smartphone camera device. One user is owner of the camera device, while the other

remains fixed across all devices. The owner of the camera device is tasked with capturing

images encompassing diverse landscapes and objects, under varying lighting conditions

such as sunlight, foggy, or night conditions. There are no restrictions imposed on the

owner regarding the scenes captured. Concurrently, the second user is responsible for

capturing images falling into four distinct categories: natural, objects, texture, and colors.

Natural category images must feature a predetermined set of scenes and be captured

under sunlight. The object category images should consist of a fixed set of objects against

a uniform background across all images. The third set encompasses images depicting

different textures on various objects, with a requirement for continuity across the surface.

The color category involves scenes with multiple colors. Additionally, the camera settings,

including aspect ratio and auto-focus, remain consistent across all images. A total of 20

different camera devices are included in the image acquisition process. All users have been

duly informed about the purpose behind capturing these images.

6.3.2 Dataset Organization

This section presents the organization of the newly constructed dataset IITRPR-CMI. This

dataset contains images taken with a total of 16 smartphone cameras from a variety of

brands, including Vivo, Oppo, Realme, Samsung, OnePlus, and Apple. These cameras are

primarily used by a large population of users in India. The dataset includes smartphones
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from a wide range of prices, providing a broad spectrum of the population. Also, we

have include the images from different OS platforms. All images are stored in the highest

JPEG quality and were captured using the default auto-settings of the cameras, including

High Dynamic Range (HDR), focus, and white-balance. The list of smartphone cameras,

respective brands, operating system and their maximum resolution is shown in Table 6.1.

Table 6.1: Smartphone camera models included in the IITRPR-CMI dataset

SNo. Camera Id Brand Model OS Version Max. Image Resolution

1 D01 Samsung Galaxy S20Plus Samsung Galaxy S20 Plus Android 13 4032 x 2268

2 D02 Nothing One Nothing One Nothing OS 1.5.6 4096 x 3072

3 D03 Samsung Galaxy A03 Samsung Galaxy A03 Android 12 4000 x 3000

4 D04 Samsung Galaxy M04 Samsung Galaxy M04 Android 12 4160 x 3120

5 D05 Vivo V9 Pro Vivo V9 Pro Android 9 4160 x 3120

6 D06 Apple Iphone 12Mini Apple Iphone 12 Mini iOS 16.2 4032 x 3024

7 D07 Apple Iphone 11 Apple Iphone 11 iOS 16.6 4032 x 3024

8 D08 Redmi Note 8Pro Redmi Note 8 Pro Android 9 4624 x 3472

9 D09 Samsung Galaxy J8 10G Samsung Galaxy J810G Android 10 4608 x 2592

10 D10 Samsung Galaxy F41 Samsung Galaxy F41 Android 12 4624 x 2136

11 D11 OnePlus 8T OnePlus 8T Android 12 4000 x 1800

12 D12 Vivo Y02t Vivo Y02t Android 13 3264 x 1836

13 D13 Oppo A17k Oppo A17k Android 12 3264 x 1840

14 D14 Samsung Galaxy S20 FE5G Samsung Galaxy S20 FE 5G Android 13 4000 x 3000

15 D15 Motorola Moto G60 Motorola Moto G60 Android 13 4000 x 3000

We have two categories in the images captured by each camera. The first category consists

of images that are captured without any constraint by the respective owner. The second

category consist fixed number of images captured by one specific user. The first category

defines images which are randomly clicked. There is no limit on the number of images. We

have collected all the images available by the user. Although, we have set a constraint of

minimum 150 images per camera in this category. Considering the scene details of images

in this category, there might be overlap in the scene as most scenes are clicked in same

place. However, there is good amount of randomness in scene content. The number of

images clicked by each camera is mentioned in the Table 6.2. There are total 3033 number

of images respective to first category. Few images of each category in the proposed dataset

are shown in Figure 6.5.

Table 6.2: The organization of the IITRPR-CMI dataset.

SNo. Camera Id Random images Natural Texture Objects Colours No Content

1 D01 Samsung Galaxy S20Plus 169 54 42 44 15 2

2 D02 Nothing One 225 54 42 44 15 2

3 D03 Samsung Galaxy A03 231 54 42 44 15 2

4 D04 Samsung Galaxy M04 251 54 42 44 15 2

5 D05 Vivo V9 Pro 168 54 42 44 15 2

6 D06 Apple Iphone 12Mini 152 54 42 44 15 2

7 D07 Apple Iphone 11 178 54 42 44 15 2

8 D08 Redmi Note 8Pro 196 54 42 44 15 2

9 D09 Samsung Galaxy J8 10G 168 54 42 44 15 2

10 D10 Samsung Galaxy F41 159 54 42 44 15 2

11 D11 OnePlus 8T 171 54 42 44 15 2

12 D12 Vivo Y02t 188 54 42 44 15 2

13 D13 Oppo A17k 169 54 42 44 15 2

14 D14 Samsung Galaxy S20 FE5G 175 54 42 44 15 2

15 D15 Motorola Moto G60 280 54 42 44 15 2
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Figure 6.5: Sample images of the IITRPR-CMI dataset.

6.4 Results

We have evaluated the state-of-the-art method on the proposed IITRPR-CMI dataset.

We have performed experiments in three different settings. In the first setting, we have

considered images from the second category that is images consists of same scene. The

second category images are divide in 80% training and 20% test set. Most of the prior

method have considered the similar scene images for the evaluations. It is assumed that

similar scene images provide better camera model fingerprint [4]. Table 6.3 shows the
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results of four CMI methods [27, 28, 25] including our proposed CMI method. It is

observed all methods have perform better and our proposed CMI method achieves highest

ILA of 96.87%. It is inferred that the similar content provide better fingerprints for CMI.

Table 6.3: Comparison of the proposed CMI method and alternative methods with
adopting the native PSS of the respective method

PLA ILA APMVC

Bennabhaktula et al. 91.78 96.09 94.49

Rafi et al. 74.8 89.64 80.57

Liu et al. 80.25 95.5 82.81

Proposed CMI method 93.73 96.87 95.94

Further we have evaluated the proposed CMI method with the Bennabhaktula et al. [27]

on two settings. The reason of performing experiments with the method proposed in [27]

is that it perform second best in the experiments with similar scene images as shown in

Table 6.3. In the first setting we have trained model on similar scene images and tested on

random images. In the second setting we have trained model on random images and tested

on similar scene images. The comparative results are shown in Table 6.4. The proposed

method have performed better than method on [27] in terms all evaluation metrics (PLA,

ILA, and APMVC). However, it may be noted that in both settings the accuracies are not

that good. In case of training with random images and tested on similar scene images,

the ILA is 79.85% which is better than the training with similar scene images and tested

on random images. It is inferred that the quality noise features learned from similar

scene images are not good enough to correlate with the noise features of random images.

However, the random images provide a wide range images in terms of scene to learn camera

model fingerprints and provide better correlation with quality noise from the similar scene

images.

In this study, we conducted a comparative evaluation of our proposed camera model

identification (CMI) method against the technique described by Bennabhaktula et al.

(2022). The selection of Bennabhaktula et al.’s method as a benchmark stems from its

commendable performance, ranking second best in our tests involving images with similar

scenes (refer to Table 6.3. This evaluation comprised two experimental setups. The first

involved training the model using images from similar scenes and testing it on a set of

randomly chosen images. Conversely, the second setup involved training the model on a

random image collection and testing it on images with similar scenes. The outcomes of

these experiments are detailed in Table 6.4.

Our findings indicate that the proposed CMI method surpasses the performance of the

Bennabhaktula et al. method across all the evaluation metrics we employed, namely

Patch-Level Accuracy (PLA), Image-Level Accuracy (ILA), and Average Precision for

Multi-View Camera (APMVC). However, it’s important to note that in both experimental

setups, the overall accuracy levels were moderate.

A notable observation was that when the model was trained on random images and

then applied to similar scenes, the ILA achieved was 79.85%, which is higher than the
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reverse scenario (training on similar scenes and testing on random images). This suggests

that the quality noise features extracted from similar scenes may not effectively correlate

with those from random images. Conversely, training with a more diverse set of scenes

(random images) appears to enhance the model’s ability to learn distinctive camera model

fingerprints, improving its correlation with the quality noise characteristics found in similar

scenes.

Table 6.4: Comparison of the proposed CMI method trained on different settings

Mehtod
Trained on similar scene images,
Tested on random images

Trained on random images,
Tested on similar scene images

PLA ILA APMVC PLA ILA APMVC

Bennabhaktula et al. 36.1 42.16 68.84 61.28 68.56 81.94

Proposed CMI method 54.16 69.72 67.77 72.22 79.85 84.88

6.5 Summary

This chapter primarily addresses the dataset aspect of CMI methods. We introduced

a new dataset called IITRPR-CMI, which comprises images taken with commonly used

smartphone cameras. This dataset includes images from 15 different smartphone cameras

and is categorized based on content type. It consists of two main sets: one set containing

2880 randomly taken images and another set consisting of 2355 images capturing similar

scenes. The latter set comprises 157 instances of the same scene, each captured using 15

different smartphone cameras. To assess the effectiveness of our proposed CMI method

and compare it with existing state-of-the-art techniques, we conducted experiments using

this dataset. These experiments underscore the significance of the dataset and its potential

for further advancements in the field of CMI.
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Chapter 7

Conclusion

7.1 Conclusion

This thesis aims to provide novel and effective methods in the field of source camera image

forensics, more specifically for camera model identification for both RGB and multispectral

images. The Chapter 1 discusses the motivation for this work, considering the rapid rise of

images acquisition via smartphone cameras or multispectral devices. A detailed literature

review is presented in this relation in Chapter 2. The novel methods developed and the

experiments discussed in Chapter 3 and 4 consider the evaluation on multiple datasets

with different competitive methods and in the light of real-world scenarios. Chapter 5

focuses on camera identification for multispectral images and the Chapter 6 presents a

new RGB images dataset created by us for CMI evaluation.

The new dual-branch CNN-based framework, a patch-based driven approach as described

in Chapter 3, provides an effective, and robust approach for identifying the model of the

camera used to capture a RGB image. Compared with prior methods on multiple datasets,

the proposed approach offers significant improvements in CMI accuracy for challenging

but important application scenarios. In cross-dataset settings also, where the evaluation

images not only differ from the training images but are drawn from an entirely different

dataset, the proposed method improves PLA between 1.8% and 1.9% and ILA between

3.5% and 5.2%, in comparison to second best performing method. The proposed method

also improves CMI robustness, which we quantify in terms of a new APMVC metric that

we propose for this purpose.

Addressing the challenges posed by images shared over social media networks such as

Whatsapp, Telegram, Facebook, Twitter or Instagram, the thesis explores social media

network identification and the performance of CMI methods on social media network

post-processed images. We propose a new method (SNRCN2) for identifying the source

social media network of an input (shared) image. For better performance and better

noise residual extraction, we rely on suppressing the image content information by

utilizing the steganalysis based high-pass SRM filters. These extracted noise residuals

are then given to our CNN model to learn better artifacts left in the image during

the post-processing operations of social media networks and perform classification. The

proposed method consistently provides superior performance, with image-level accuracy

of 99.53% and 100% on VISION and Forchheim datasets, respectively. Identifying the

social media source of images streamlined the process, enabling efficient direction of

images to the relevant trained CMI method, thereby reducing training time and enhancing
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performance. Extensive experimentation using the Forchheim dataset is performed to

validate the effectiveness of directing images to respective social media network trained

CMI method. In one setting, we trained CMI methods on an augmented dataset of social

media post-processed images and original images. Subsequently in another setting, we

trained distinct CMI models for each social media platform. The results showed improved

ILA when using CMI models trained explicitly for each social media network images,

highlighting the benefits of tailored approaches in camera model identification. In both

the settings the proposed dual-branch CMI method performs consistently better than

existing CMI methods. The Chapter 4 further presents that related problem of general

image processing operation detection and an effective method, MSRD-CNN, for this task.

Considering the use of multispectral cameras for different applications in recent times,

we present in Chapter 5 the problem of camera identification of a multispectral image,

a problem that plays a crucial role in multispectral image source forensics. The

proposed method utilized the PRNU-based noise residuals of the given multispectral

image for camera identification. These noise residuals are further fed into a

FractalNet-based dual-branch CNN to learn the high-level forensics features and further

camera identification. This problem is the first of its kind, so there is no standard dataset

that contains images from multiple multispectral cameras. Along with an efficient camera

identification method, this work contributes to presenting a new dataset that consists

of images acquired from multiple multispectral camera devices. We also explored and

extended the state-of-the-art RGB image-based camera identification methods for the

multispectral images. Numerous experiments have been conducted on the developed

dataset with 4, 5, and 6-channel images, and the comparison analysis demonstrates that

the proposed method outperforms all state-of-the-art camera identification methods. The

proposed model achieves the highest image-level accuracy of 97.63%, 98.42%, and 96.85%

on the 4, 5, and 6-channel image datasets, respectively.

As there are few datasets related to smartphone camera images and smartphone camera

technology is evolving very fast, a new dataset IITRPR-CMI is created, as described in

Chapter 6, to evaluate and further improve the CMI methods. The dataset contains images

acquired from 15 smartphone cameras. The dataset is divided based on the content type.

One set consists of 2880 randomly clicked images and another set consists of 2355 similar

scene images. The similar scene images are cumulative of 157 same scene images, each

captured via 15 different smartphone cameras. The experiments have been performed

on this dataset also to evaluate the performance of our proposed CMI method and prior

state-of-the-art methods. The different experiments conducted using this new dataset

highlights its importance and the scope for further improvement in field of CMI. The

dataset may be further extended and would be made publicly available.

In summary, this thesis significantly contributes to the field of source camera image

forensics, offering innovative methods and valuable datasets for CMI across diverse imaging

scenarios.
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7.2 Scope of Future Research

This thesis opens up several promising directions for future work in the field of SCIF, each

paving the way for advancements in digital image forensics. The current CMI approach,

similar to most existing methods, operates in batch mode where the entire set of camera

devices and models are known before training. A pivotal area for future development

involves creating methods capable of incremental upgrades. As new devices, such as

the latest smartphone models, are introduced, there’s a growing need for methods that

can fine-tune to recognize these new camera models without the necessity of retraining

the entire CMI method from scratch. Otherwise also, there is scope for improvement in

developing effective CMI models as highlighted by newly developed CMI dataset.

In the future, we aim to expand the scope of the proposed SSMN method. This

expansion seeks to encompass a larger set of real-world images, addressing the complexities

introduced by the distribution of images across various social media networks and the

challenges posed by potential adversarial attacks. Such an expansion is vital for enhancing

the practicality and robustness of CMI methods in real-world scenarios.

As there is no publicly available standard dataset for camera identification of multispectral

images and there is a scope of further enlarging the developed dataset, we intend to analyze

the suggested work on a broader range of cameras and explore methods for matching

multispectral cameras across different spectral bands. This area is particularly challenging

due to the variety of image capture techniques across the spectrum, but it is important

for a comprehensive understanding of CMI.

Another important direction for future work is the creation of large-scale datasets for

CMI that represent the increasing diversity and sophistication of modern smartphone

cameras. A key challenge in this domain is that modern smartphones increasingly employ

computational cameras, where the image is synthesized by fusing together captures from

multiple sensors. In such situations, the sensor features indicative of the camera model

will likely differ in different images depending on the sensor images used in the fusion and

their relative contributions.

Finally, exploring the potential vulnerabilities of camera identification systems to

adversarial attacks is essential. Understanding and mitigating these vulnerabilities will

contribute significantly to the reliability and applicability of these systems, ensuring their

robustness and effectiveness in the dynamic landscape of camera model identification

methodologies.
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thesis, Université de Lille, 2018.

[158] Vishwas Rathi and Puneet Goyal. Multispectral image demosaicking based on novel

spectrally localized average images. IEEE Signal Processing Letters, 29:449–453,

2021.

[159] Medha Gupta, Vishwas Rathi, and Puneet Goyal. Adaptive and progressive

multispectral image demosaicking. IEEE Transactions on Computational Imaging,

8:69–80, 2022.

[160] Na Huang, Jingsha He, Nafei Zhu, Xinggang Xuan, Gongzheng Liu, and Chengyue

Chang. Identification of the source camera of images based on convolutional neural

network. Digital Investigation, 26:72–80, 2018.

[161] Gustav Larsson, Michael Maire, and Gregory Shakhnarovich. FractalNet: Ultra-deep

neural networks without residuals. In International Conference on Learning

Representations, 2017.

[162] Haris Ahmad Khan, Sofiane Mihoubi, Benjamin Mathon, Jean-Baptiste Thomas,

and Jon Yngve Hardeberg. Hytexila: High resolution visible and near infrared

hyperspectral texture images. Sensors, 18(7):2045, 2018.

[163] Yunsong Li, Weiying Xie, and Huaqing Li. Hyperspectral image reconstruction

by deep convolutional neural network for classification. Pattern Recognition, 63:

371–383, 2017.

[164] Boaz Arad and Ohad Ben-Shahar. Sparse recovery of hyperspectral signal from

natural RGB images. In European Conference on Computer Vision, pages 19–34.

Springer, 2016.



References 113

[165] Fumihito Yasuma, Tomoo Mitsunaga, Daisuke Iso, and Shree K. Nayar. Generalized

assorted pixel camera: Postcapture control of resolution, dynamic range, and

spectrum. IEEE Transactions on Image Processing, 19(9):2241–2253, 2010.

[166] Sérgio MC Nascimento, Flávio P Ferreira, and David H Foster. Statistics of spatial

cone-excitation ratios in natural scenes. JOSA A, 19(8):1484–1490, 2002.

[167] David H Foster, Kinjiro Amano, Sérgio MC Nascimento, and Michael J Foster.

Frequency of metamerism in natural scenes. Josa a, 23(10):2359–2372, 2006.

[168] David H Foster, Kinjiro Amano, and Sérgio MC Nascimento. Time-lapse ratios of

cone excitations in natural scenes. Vision research, 120:45–60, 2016.

[169] Sérgio MC Nascimento, Kinjiro Amano, and David H Foster. Spatial distributions

of local illumination color in natural scenes. Vision research, 120:39–44, 2016.

[170] Yusukex Monno, Sunao Kikuchi, Masayuki Tanaka, and Masatoshi Okutomi. A

practical one-shot multispectral imaging system using a single image sensor. IEEE

Transactions on Image Processing, 24(10):3048–3059, 2015.

[171] Ayan Chakrabarti and Todd Zickler. Statistics of real-world hyperspectral images.

In CVPR 2011, pages 193–200. IEEE, 2011.

[172] Jia Eckhard, Timo Eckhard, Eva M Valero, Juan Luis Nieves, and Estibaliz Garrote

Contreras. Outdoor scene reflectance measurements using a bragg-grating-based

hyperspectral imager. Applied Optics, 54(13):D15–D24, 2015.

[173] Zohaib Khan, Faisal Shafait, and Ajmal Mian. Adaptive spectral reflectance recovery

using spatio-spectral support from hyperspectral images. In 2014 IEEE International

Conference on Image Processing (ICIP), pages 664–668. IEEE, 2014.

[174] Nevrez Imamoglu, Yu Oishi, Xiaoqiang Zhang, Guanqun Ding, Yuming Fang, Toru

Kouyama, and Ryosuke Nakamura. Hyperspectral image dataset for benchmarking

on salient object detection. In 2018 Tenth international conference on quality of

multimedia experience (qoMEX), pages 1–3. IEEE, 2018.

[175] Arash Mirhashemi. Introducing spectral moment features in analyzing the spectex

hyperspectral texture database. Machine Vision and Applications, 29(3):415–432,

2018.

[176] Steven Hordley, Graham Finalyson, and Peter Morovic. A multi-spectral image

database and its application to image rendering across illumination. In Third

International Conference on Image and Graphics (ICIG’04), pages 394–397. IEEE,

2004.

[177] Owen Mayer, Belhassen Bayar, and Matthew C Stamm. Learning unified

deep-features for multiple forensic tasks. In Proceedings of the 6th ACM workshop

on information hiding and multimedia security, pages 79–84, 2018.



114 References

[178] Huawei Tian, Yanhui Xiao, Gang Cao, Yongsheng Zhang, Zhiyin Xu, and Yao Zhao.

Daxing smartphone identification dataset. IEEE Access, 7:101046–101053, 2019.

[179] Duc-Tien Dang-Nguyen, Cecilia Pasquini, Valentina Conotter, and Giulia Boato.

RAISE: A raw images dataset for digital image forensics. In Proceedings of the 6th

ACM multimedia systems conference, pages 219–224, 2015.

[180] Abdelrahman Abdelhamed, Stephen Lin, and Michael S Brown. A high-quality

denoising dataset for smartphone cameras. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 1692–1700. IEEE, 2018.


