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Lay Summary

With the expanding digital age, our world is becoming increasingly connected each day.

Today, it’s not just our phones and computers that connect to the internet, but also a

wide array of devices in our homes, o�ces, and cities—from smart refrigerators to tra�c

lights. This network of connected devices, known as the Internet of Things (IoT), helps in

making our lives more convenient and our environments more intelligent. However, this

advancement also brings with it a challenge: keeping all the data these devices collect and

share safe from spying eyes and potential cyber threats. Given the sheer volume of data

and the diversity of devices involved, traditional security measures often fail to address

these challenges. Imagine trying to use a single type of lock to secure every door, window,

and gate in a bustling, ever-changing city — it’s a challenging task that requires a more

dynamic approach.

Therefore, our research explores new strategies that adapt to the unique needs of the

IoT. We examine how we can protect data from unauthorized access and ensure that our

private information stays private, all while maintaining the functionality that makes these

connected devices so beneficial. This involves looking at how data is stored, how it is

shared across entities, and how we can build systems that are not only secure but also

resilient to attacks. The goal of this work is to ensure that the information collected by our

devices is used to improve our lives, not compromise our privacy. In essence, this thesis

seeks to build a foundation for a future where the interconnectedness of devices enhances

our world without endangering our digital safety.
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Abstract

The Internet of Things (IoT) is revolutionizing the way we interact with the world around

us, connecting everyday objects to the Internet for collecting and exchanging data. It o↵ers

immense potential for enhancing e�ciency, convenience, and technological innovation.

However, the rapid expansion of IoT devices also introduces significant security and privacy

challenges. These challenges arise because of the diverse and ubiquitous nature of IoT

devices with limited processing capabilities and open networks, making them vulnerable

to cyberattacks, data breaches, and unauthorized access.

This thesis is based on novel security and privacy solutions for the unique constraints

and requirements of the IoT ecosystem. First, we explore the application of blockchain

technology as a foundational measure to secure and decentralize IoT systems. Recognizing

the scalability challenges inherent in existing blockchain solutions when faced with the

voluminous data generated by IoT devices, we propose an architectural framework that

employs sidechains and o✏ine data storage. Extending this work further, we propose a

hierarchical blockchain-based framework specifically designed for the healthcare sector.

This framework addresses the issue of securely storing and sharing sensitive medical data

without compromising its integrity and privacy. It optimizes data storage solutions and

employs fog nodes for computational services to ensure e�cient data management.

Next, we explore the privacy aspect of IoT by leveraging Federated Learning (FL)

to protect user data. We present an FL-based framework that enables collaborative

training of a deep neural network on decentralized data, e↵ectively mitigating privacy

risks associated with data sharing. We further expand our discussion to decentralize

the FL framework by eliminating the need for a central server for data aggregation.

Lastly, we develop a sustainable and secure framework for IoT-based applications by

integrating the characteristics of both blockchain and FL. This mechanism enables the

dynamic optimization of blockchain performance parameters by training a decentralized

FL model, thereby preserving the distributed nature of blockchain while enhancing its

e�ciency. Through theoretical analysis and practical implementation, we validate the

feasibility and performance of proposed frameworks for di↵erent applications of IoT.

Keywords: Internet of Things (IoT), Blockchain, Federated Learning (FL), Data

Security, Decentralization, Privacy Preservation.
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Chapter 1

Introduction

1.1 Internet of Things

The Internet of Things (IoT), evolving rapidly in the industrial and academic areas

is a promising technology aiming to revamp human life completely. The IoT is a

heterogeneous network of interconnected devices with the capabilities to actuate, sense,

store and communicate, thereby connecting real-life to the digital world. IoT can help in

enhancing the quality of products and gain profits through autonomous operations and

increased product throughput. In today’s era, an IoT device has varying functionalities

ranging from a wearable device to complete industrial automation. IoT has the power

to transform a home into smart home, energy grids to smart energy grids, a city to

smart city, and much more. These smart environments represent a significant evolution

in how we interact with our surroundings, driven by the integration of IoT. They utilize

interconnected devices and systems to enhance operational e�ciency, improve resource

management, and elevate the quality of services provided to users. For instance, a smart

home uses IoT to connect various devices and appliances in a household to the Internet,

allowing them to be controlled remotely via smartphones or other networked devices. This

can include lighting, heating, air conditioning, TVs, computers, entertainment audio and

video systems, security cameras, and alarms. Smart homes can improve energy e�ciency,

convenience, and security. On a larger scale, a smart city employs similar IoT technologies

to optimize urban functionality and promote sustainable development. This includes

sophisticated management of city services such as transportation, utilities, and public

safety through real-time data analysis and connectivity.

Figure 1.1: Traditional IoT services.
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Basically, IoT systems are made up of four layers as shown in Figure 1.1.

• The first layer is made up of the battery-controlled, resource-constrained, small

devices with attached actuators and sensors. These devices sense and collect data,

perform light-weight processing on it if required and then communicate the data into

the network.

• The second layer, the IoT gateway, is a powerful processing device which aggregates

data from various devices and delivers this data further to the cloud services.

• The next layer is the Cloud which is used as a storage server for all the collected

sensor data. The data can be analyzed as well as processed in these cloud servers

for decision making.

• The fourth layer is the platform layer where the raw data is used for business services

and user applications by applying data analytics, statistical methods, machine

learning and other complex algorithms to extract corrective results from the data.

1.2 Applications of IoT

The applications of IoT are in diverse sectors, o↵ering numerous opportunities for

e�ciency, automation, and connectivity. The key applications of IoT and its impact

across various domains are outlined as follows:

• Smart Homes: IoT technology is central to the development of smart homes,

where appliances, heating, lighting, and multimedia devices are interconnected

and remotely controlled via the internet. These smart systems o↵er homeowners

convenience, energy e�ciency, and security. For example, thermostats can adjust the

temperature based on the homeowner’s habits, while smart locks provide enhanced

security through remote monitoring and control.

• Healthcare: In healthcare, IoT devices play a critical role in monitoring patient

health, managing chronic conditions, and enhancing drug delivery systems. Wearable

devices can track vital signs, sending real-time data to healthcare providers for timely

intervention. Furthermore, IoT facilitates remote patient monitoring, reducing the

need for hospital visits and allowing patients to receive care in the comfort of their

homes.

• Industrial Automation: Sensors and smart machines in factories enable real-time

monitoring of production lines, predictive maintenance, and inventory management,

leading to increased e�ciency and reduced operational costs. Moreover, IoT

facilitates the creation of digital twins, virtual replicas of physical devices that can

be used for simulation and analysis.

• Agriculture: In agriculture, IoT applications include precision farming, livestock

monitoring, and smart irrigation systems. Sensors can measure soil moisture,
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nutrient levels, and weather conditions, enabling farmers to make informed decisions

about planting and irrigation. Livestock monitoring devices track the health and

location of animals, improving herd management.

• Smart Cities: IoT technology is also helpful in developing smart cities, enhancing

urban infrastructure, transportation, and public services. Smart sensors manage

tra�c flow, reduce energy consumption through intelligent lighting, and monitor

environmental pollution. Additionally, IoT devices support waste management by

optimizing collection routes and schedules.

• Energy Management: IoT devices play a significant role in energy management,

both in residential and industrial settings. Smart grids use IoT technology to balance

electricity supply and demand, improve grid reliability, and support the integration

of renewable energy sources. Smart meters provide real-time information on energy

usage, encouraging consumers to adopt energy-saving behaviors.

These applications highlight the versatility and transformative potential of IoT across

multiple sectors. However, the data collected by IoT devices is not entirely secure and

tamper-proof which may pose a threat to the privacy and confidentiality of users [1].

Moreover, as the number of IoT devices are increasing, the traditional cryptographic

methods are no longer able to perpetuate data integrity against the threats and risks they

are exposed to.

1.3 Security and Privacy Challenges in IoT

In the context of the IoT, the concepts of security and privacy are critically important yet

distinctly di↵erent, each addressing separate concerns that arise from the interconnected

nature of devices and the vast amounts of data they handle.

1.3.1 Security in IoT

Security in IoT refers to the measures and techniques implemented to protect IoT devices

and networks from malicious attacks, unauthorized access, and other cyber threats. The

goal of security is to ensure the integrity, confidentiality, and availability of data as it is

collected, processed, transmitted, and stored by IoT devices and systems. Key aspects of

IoT security include:

• Integrity: Protecting data from being altered or tampered with by unauthorized

parties.

• Confidentiality: Ensuring that sensitive information is accessible only to those who

are authorized to view it.

• Availability: Guaranteeing that devices and data are accessible to authorized users

when needed, preventing disruptions to IoT services.
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Security challenges in IoT involve protecting the devices themselves from being hijacked or

compromised, securing the data they generate from interception or theft, and safeguarding

the networks they operate on from attacks like denial of service (DoS).

1.3.2 Privacy in IoT

Privacy in IoT, on the other hand, focuses on the rights and expectations of individuals

regarding their personal information that is collected, stored, and used by IoT devices and

services. It involves considerations about what data is collected, how it is used, who has

access to it, and how individuals can control their own information. Privacy concerns in

IoT include:

• Consent and Choice: Ensuring that individuals are informed about what data is

collected and have the choice to consent to its collection and use.

• Data Minimization: Collecting only the data that is necessary for the intended

purpose, and not retaining it longer than needed.

• Transparency and Accountability: Making it clear to users how their data is used,

who it is shared with, and implementing measures to hold entities accountable for

protecting user data.

Privacy challenges in IoT revolve around the potential for pervasive surveillance and data

collection without explicit consent, the risk of sensitive information being shared or sold

without users’ knowledge, and the di�culty users may face in managing their privacy

settings across multiple devices and platforms.

Several incidents and attacks to IoT devices have been devised in the past few years which

makes it di�cult to trust them. In 2018, it was discovered that smart assistants like Alexa

and Google home were squandered by hackers to snoop on users without their knowledge.

A smart refrigerator sent a large number of email spams in 2014 without the awareness of

owners. The large data generated by IoT devices, open wireless channels and complexity

of IoT systems further adds up to their security risks. Some of the typical challenges faced

by IoT networks are described as follows:

1. IoT Malware: IoT devices are exposed to various security problems which can

compromise the services provided by them. One such risk that makes them

vulnerable is the attack by malware which are created by hackers for the purpose

of stealing data, damaging devices or simply causing a mess. A malware is a

malicious software which can be of many types such as, viruses, worms, ransomware,

Trojans etc. Wang et al. [2] categorized IoT malware into two types based on

how the IoT devices are corrupted, one is to exploit the IoT devices through their

unfixed or imprudent vulnerabilities; while the other is to use brute force methods

to infect devices. The most common IoT vulnerabilities are bu↵er overflow, poorly

implemented encryption, unencrypted services and denial of service attacks. One of

the reasons that makes Brute force attack successful is the use of weak passwords.
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2. Device Updates Management: Although the IoT devices when purchased could

contain the latest security software, but it is not possible to avoid any new risks or

attacks which may arise later. Therefore, keeping the IoT devices updated to the

latest software becomes a necessity instead of an option. However, IoT updates are

still not delivered as e�ciently like smartphones and computers and the manufactures

of IoT devices pay less attention to the security risks. The updates should be

delivered automatically because the customers feel it is not their duty to do so and

we cannot even expect the users to stay on top of every software update. For the

IoT devices which are deployed in remote areas or are di�cult to access, over-the-air

updates is an option, but it can also pave a path for the hackers to use malicious

software for updating IoT devices.

3. Data Privacy Issues: IoT devices can collect detailed information about

individuals’ habits, health, and preferences, often without explicit consent. Users

may not be fully aware of the extent of data collection or how to control it, raising

concerns about personal privacy and autonomy. Once collected, data can be shared

with or sold to third parties, including advertisers and data brokers. Without strict

privacy controls, there is a risk that this data will be used in ways that users have

not agreed to, potentially leading to unwanted surveillance and targeting. Moreover,

even if data is collected with consent, the way it is stored and transmitted can

be insecure, leading to unauthorized access and breaches. Ensuring that data is

encrypted and securely managed throughout its lifecycle is a significant challenge.

4. Manufacturing Defects: IoT device manufacturers are more eager to release their

product in the market than testing for possible security leaks. This is among one

of the major security issues of IoT. Without any standard security mechanism,

IoT manufacturers will keep producing devices that are vulnerable to attacks.

For example, a smart refrigerator can compromise a user’s login credentials of

their Gmail-IDs, most fitness bands available today remain visible to be paired by

Bluetooth even after they have been paired by the user. Moreover, these resource

constraint devices cannot support heavy methods for security because complex

encryption and decryption methods cannot be performed fast enough by them to

transfer data in real-time securely.

5. Security of Massively Generated Data: With the increase in IoT devices each

day, the data generated by them is also increasing. Devices like smart thermostats,

smart TVs, lightning systems, speakers etc. constantly produce data leading to a

problem of processing, transmitting, and storing it securely. This data should be

kept encrypted or anonymous before it is stored or sent to the unsecure cloud servers

so that the personal information of users is not revealed. Disposing of cached or

unwanted data is also a security challenge so that it does not fall into wrong hands.

Moreover, data integrity should also be maintained by using digital signatures or

checksums. It is a common practice nowadays that the service providers sell or
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share this data with other companies without the permission of users violating their

privacy and trust. Therefore, ensuring the privacy of user’s crucial data has become

a serious concern to protect them from hackers.

6. Authorization and Authentication Issues: Authentication is the process of

identifying whether the user is the same person/entity he is claiming to be.

Authorization means checking whether the user has the required permission for

the data or resources he wants to access. In machine-to-machine communications,

authentication and authorization should be provided by the use of cryptographic

techniques [3]. Many IoT devices fail to authenticate other devices properly because

the basic means of authentication is the use of passwords and users can use weak

passwords and even default passwords which are easily predictable. Authorization

mechanisms available currently are mostly centralized and they do not provide

e�cient, e↵ective, manageable, and scalable mechanisms to control and verify the

access permissions of the users accurately. The increasing number of IoT users

and data produced by them makes it even more necessary to devise scalable and

manageable authorization techniques.

7. Botnet Attacks: A botnet is a cluster of devices connected through the internet

whose security has been compromised by an attacker. Hackers create botnets by

using malware to corrupt internet-connected devices and then controlling them

through a server. If one device has been compromised on a network, all the other

connected devices pose a threat of infection. One such example which a↵ected IoT

devices is the Mirai botnet (2016) [4]. Mirai botnet lead to a denial of service

attack with 620 gigabit-per-second of tra�c lead by a group of IoT devices, security

cameras, and routers. At almost the same time, another DDoS attack targeted

the French webhost which used the Mirai malware with a peak rate of 1.1 Tbps

tra�c. To avoid the common vulnerabilities, it is necessary to adopt some standard

security mechanisms to ensure that IoT devices are not used as zombies. Proper

intrusion detection systems should be installed because IoT software codes might

become obsolete when not updated for long periods of time.

1.4 Motivation

Traditional security and privacy solutions often fail to address the unique complexities

of IoT applications, leading to a need for novel approaches that can safeguard sensitive

data and ensure robust protection against cyber threats. Numerous solutions have been

proposed to mitigate these challenges, ranging from advanced encryption techniques and

secure communication protocols to privacy-preserving data aggregation methods as shown

in Figure 1.2. Despite these advancements, the decentralized nature of IoT networks

along with the vast amount of data generated by IoT devices, continues to pose significant

security and privacy risks. These include vulnerabilities to data breaches, unauthorized
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access, and the potential for misuse of personal information. These issues are critical

because they pose significant threats to the integrity and functionality of IoT systems

and have far-reaching consequences across interconnected networks. For instance, IoT

malware and botnet attacks not only compromise individual devices but can also escalate

to disrupt entire networks, making them critical concerns that necessitate robust and

immediate solutions. Moreover, the increasing integration of IoT devices into sensitive

and personal aspects of users’ lives is leading to privacy violations and data breaches.

In response to these challenges, this thesis is motivated by the potential of integrating

blockchain technology and Federated Learning (FL) as a comprehensive solution for

enhancing IoT security and privacy. Blockchain, with its decentralized architecture and

tamper-resistant ledger, o↵ers a robust framework for securing data transactions and

ensuring data integrity across distributed networks. Its inherent characteristics—such

as decentralization, transparency, and immutability—make it an ideal candidate for

addressing security vulnerabilities inherent in IoT applications. Conversely, FL presents

a novel approach to privacy-preserving data analysis. By enabling machine learning

models to be trained directly on devices without the need to centralize data, FL mitigates

traditional privacy concerns associated with data aggregation and processing. This

localized approach to data handling not only enhances user privacy but also reduces

the latency and bandwidth requirements associated with transmitting large volumes

of data to centralized servers. However, the integration of blockchain and FL within

Figure 1.2: Techniques for a Secure IoT

IoT ecosystems is not without its challenges. The scalability of blockchain, when

handling the high throughput of IoT data, and the e�ciency of FL, particularly in

terms of computational and communication overheads, present significant obstacles. These

challenges are compounded by the need to maintain a delicate balance between security,

privacy, and operational e�ciency in IoT systems. Acknowledging these complexities,

our motivation evolved to not only explore the integration of blockchain and FL as a
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robust solution for IoT security and privacy but also to address the inherent challenges

associated with their implementation in IoT contexts. This thesis aims to navigate these

hurdles by proposing innovative approaches that enhance the scalability of blockchain and

the e�ciency of FL, ensuring their viability as integrated solutions for IoT applications.

We describe these technologies in more details in the next sections.

1.5 Blockchain and IoT

A blockchain is basically a record of blocks which contain information secured via “digital

signatures”. It is a distributed ledger used to save information about transactions between

two parties in an incorruptible way. The distributed ledger technology o↵ers an advanced

way of identity management through public and private keys instead of passwords which

could be cracked easily. Each block contains a hash of the previous block which means that

if an intruder wants to modify one block, he will have to modify all the preceding blocks,

thus making it permanent. Blockchains o↵er a secure and transparent way to exchange

information as every node in the blockchain has a local copy of the blockchain and any

user can verify the identities himself.

The transactions in blockchain are validated by certain nodes called as “miners”. The

miners use a consensus mechanism such as proof-of-work to validate the transactions. The

transaction is valid only if the hash of a block with reference to the hash of its preceding

block is correct. The validated transaction is then combined with other transactions

and once the consensus is reached by a majority nodes, the new block is added to the

existing blockchain network. The existing local copies of the blockchain are then updated

on all the nodes with the new block. When two parties wish to exchange services or

information, blockchain uses smart contracts similar to paper contracts for stating the

terms and conditions of the deal. Smart contracts are digital, self-executable codes that

run automatically when some predefined conditions are met. Smart contracts stored on

the blockchain are helpful to set-up trustworthy relationships among parties without the

need of any third party. Ethereum is a public, open source, decentralized blockchain-based

platform featuring the functionality smart contracts. Smart contracts have applications

in the field of healthcare for health insurances, industries for financial agreements, real

estate for documents of property owner, etc. There are mainly three kinds of blockchain

namely, public blockchain, private blockchain and consortium blockchain.

1.5.1 Public Blockchain

Public blockchains are open to everyone for accessing, reading and writing to the ledger.

Anyone can join the blockchain network and verify the transactions to be added to the

blockchain. Decision making in such an open and decentralized system is managed by

consensus methods such as proof of stake (POS) and proof of work. These blockchains

are completely decentralized without intervention of any central authority to modify the

ledger or smart contracts which makes it reliable against any single point of failure. Also
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called as permissionless blockchains, public blockchains are used mainly for exchanging

and mining cryptocurrencies such as Bitcoin and Ethereum.

1.5.2 Private Blockchain

Private blockchains, also known as permissioned blockchains, have restricted access on who

can participate in the network. Only the users chosen by the respective authority or the

network administrator have the permission to read or write in the ledger. Such blockchains

are used mainly by centralized organizations who want to store their transactions privately

in a closed network. In private blockchains, identity of users are known to everyone

but transactions can only be viewed by those with the appropriate permission. Such

blockchains are more e�cient and have higher throughput due to finite number of users.

Some examples of permissioned blockchains are Hyperledger, Multichain etc.

1.5.3 Consortium Blockchain

Consortium blockchains are basically a hybrid of public and private blockchains where

some nodes are in-charge of the consensus mechanisms while other nodes have access to

the transactions. Unlike private blockchains, these blockchains are governed by more than

more one organization instead of a single entity. In these blockchains, transactions can be

made and blockchain can be edited/reviewed only by chosen members of the consortium

(federation). This approach has the benefits of a private blockchain and is very e�cient

since all the parties involved work together for the overall benefit of the network. These

blockchains are used by governments and central banks to supply chains. Some examples

are Energy Web Foundation (EWF) and R3 blockchains.

1.5.4 Challenges in Integration

Although blockchain can be used to resolve major security risks associated with IoT, it

faces several challenges while integration:

• Scalability and Performance Issues: Blockchain’s decentralized nature, while

enhancing security and trust, introduces scalability challenges, especially when

integrated with IoT systems that generate vast amounts of data. Traditional

blockchain networks, such as those used for cryptocurrencies, can handle only

a limited number of transactions per second, which cannot handle the needs of

large-scale IoT deployments. As the number of IoT devices and the data they

generate continue to grow exponentially, the blockchain’s ability to process and

record transactions e�ciently becomes a critical concern. This scalability issue can

lead to increased transaction processing times and higher costs, potentially hindering

the performance and adoption of blockchain in IoT applications.

• Data Privacy and Protection: While blockchain provides a secure and immutable

ledger, ensuring the privacy of the data recorded on the blockchain is a significant
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challenge. Blockchain’s transparency means that once data is added to the ledger,

it is visible to all participants in the network. This characteristic poses a privacy

risk for IoT applications that handle sensitive or personal data. Ensuring that data

stored on the blockchain is protected and complies with privacy regulations (e.g.,

GDPR) requires innovative approaches, such as the use of private or permissioned

blockchains, advanced encryption techniques, or zero-knowledge proofs, to balance

transparency with privacy.

• Latency Issues: The consensus mechanisms of blockchain, such as Proof of

Work (PoW) or Proof of Stake (PoS), ensure network security and data integrity

but also introduce latency in transaction processing and data recording. In IoT

scenarios where real-time or near-real-time data processing is crucial—for instance,

in autonomous vehicles, health monitoring systems, or industrial automation—this

latency can be problematic. The delay in confirming transactions and recording data

on the blockchain may not meet the stringent latency requirements of certain IoT

applications, a↵ecting their functionality and user experience.

• Energy Consumption and E�ciency: Blockchain networks, especially those

utilizing energy-intensive consensus mechanisms like PoW, consume significant

amounts of energy. The environmental impact of such high energy consumption

becomes a concern when scaling blockchain applications for IoT. Moreover, many

IoT devices are constrained by battery life and operate in energy-e�cient modes. The

added energy demands of blockchain operations could pose challenges in terms of the

sustainability and e�ciency of IoT devices integrated with blockchain, necessitating

the exploration of more energy-e�cient consensus mechanisms or hybrid models that

minimize energy consumption while maintaining security and integrity.

1.6 Federated Learning and IoT

FL allows IoT devices to learn a shared model while keeping all the training data on the

device, only exchanging model updates with a central server or among each other. This

approach significantly enhances data privacy, as raw data never leave the device, reducing

the risk of personal data exposure as shown in Figure 1.3. However, this integration is not

without its challenges. These challenges primarily revolve around ensuring the integrity

and e↵ectiveness of the learning process in the face of potential security threats and the

complexity of IoT data ecosystem.

• Malicious IoT Devices: In an FL environment, IoT devices collaboratively

contribute to the development of a shared model by processing data locally and

sending model updates to a central aggregator or directly to each other. This

distributed approach introduces the risk of malicious IoT devices participating in

the learning process. Such devices could intentionally send incorrect or manipulated

updates, aiming to degrade the model’s performance or bias its outcomes. Ensuring
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Figure 1.3: General framework of FL.

the reliability and trustworthiness of devices in such a decentralized setup is a

significant challenge.

• Model Poisoning: Similar to the challenge posed by malicious devices is the

threat of model poisoning. In this scenario, adversaries manipulate the learning

process by introducing harmful model updates, which, when aggregated, compromise

the model’s integrity. Detecting and mitigating model poisoning attempts require

sophisticated anomaly detection and filtering mechanisms to ensure that only

legitimate updates contribute to the model, without compromising the decentralized

ethos of FL.

• Vulnerabilities in the Central Server: Although FL significantly reduces the

need for centralized data storage, a central server is often still involved in aggregating

model updates and distributing the updated model to participating devices. This

server becomes a critical point of vulnerability, where security breaches or system

failures can disrupt the entire learning process. Protecting this server and ensuring

its resilience against attacks and operational failures is essential for the successful

integration of FL and IoT.

• Non-IID Data: One of the intrinsic characteristics of IoT environments is the

generation of non-IID (not independently and identically distributed) data. IoT

devices, deployed across varied environments and serving diverse functions, generate

data that reflect these di↵erences, leading to significant disparities in the distribution

of data across devices. This heterogeneity poses a challenge for FL, as conventional

machine learning algorithms assume data homogeneity for optimal performance.

Developing learning algorithms that can e↵ectively handle non-IID data, ensuring

fair and accurate model training, is a critical area of focus in integrating FL with
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IoT.

1.7 Research Problem and Objectives

This thesis aims to explore and enhance the domains of security and privacy within IoT

by utilizing progressive technologies and methodologies to safeguard IoT ecosystems. In

order to fulfill this goal, we aim to achieve the following key objectives:

How can we develop an architectural framework that enhances data security

in IoT systems using blockchain technology? This objective focuses on overcoming

the challenges of scalability and e�ciency in blockchain for real-time data processing in

IoT. By introducing a novel architectural framework that incorporates the concept of

sidechains and o✏ine data storage, we aim to ensure the secure handling of vast data

volumes generated by IoT devices. This exploration, detailed in Chapter 3, also extends

to the development of ‘HierChain,’ a hierarchical blockchain system tailored for the

security of sensitive healthcare data, integrating di↵erential privacy techniques to further

protect individual privacy.

Can we devise innovative strategies for ensuring data privacy within IoT-based

ecosystems? This question investigates the application of FL-based approaches to share

model updates based on local training of private IoT data. We aim to develop and

detail techniques that maintain user privacy, leveraging meta-learning to address data

heterogeneity challenges. The mechanisms and strategies devised are comprehensively

discussed in Chapter 4.

How might we enhance privacy in decentralized IoT environments through

peer-to-peer networks? This objective seeks to eradicate central points of trust in FL

and improve data privacy by deploying a robust aggregation mechanism that protects

clients from adversarial updates and malicious attacks. By simulating the e�ciency of

our algorithm for IoT-based smart applications, we explore the viability of this approach

in enhancing privacy within decentralized IoT contexts, as elaborated in Chapter 5.

What integrated approach can combine the strengths of blockchain and

peer-to-peer FL to create a sustainable and secure infrastructure for IoT

applications? This research question aims to develop a comprehensive solution that

integrates the security features of blockchain with the privacy-preserving characteristics

of peer-to-peer FL. By implementing load balancing across multiple blockchains based on

several optimization parameters, we design a sustainable and secure framework suitable

for diverse IoT applications. The methodologies and outcomes of this integrated approach

are thoroughly examined in Chapter 6.
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By addressing these objectives, this thesis contributes to the advancement of IoT,

proposing scalable, e�cient solutions that do not compromise system performance or

user privacy. Each chapter builds upon the preceding to articulate a coherent and

detailed examination of these critical issues, concluding in Chapter 7, which provides

the contributions made and gives insights into future directions for research in this rapidly

evolving field.

1.8 Thesis Contributions and Organisation

The major contributions of this work can be summarized as follows:

1. Proposed an architectural framework that utilizes sidechains and o✏ine data storage

to address the scalability challenges faced by blockchain systems in handling vast

amounts of IoT data. This framework ensures scalability without compromising on

speed and e�ciency.

2. Introduced a hierarchical blockchain-based system for data storage and sharing in

healthcare. It optimizes data storage, classifies health data by sensitivity levels, uses

di↵erential privacy techniques, and employs fog nodes for computational services.

This system enhances the e�ciency and security of medical data management in

IoT environments reducing latency by more than 70%, and a throughput increase

to handle upwards of 100 transactions per second for high-volume scenarios.

3. Proposed a robust and privacy-preserving FL framework for data sharing of smart

meters in the energy domain. This framework incorporates meta-learning to manage

data heterogeneity and maintains user privacy, achieving accuracy comparable to

centralized models. Specifically, the accuracy of the model showed a drop of only

8.7% in case of malicious clients with the attack detection mechanism demonstrating

robustness against increasing security threats.

4. Proposed a novel peer-to-peer FL approach that eliminates central points of trust

and strengthens data privacy. This method leverages the Bidirectional Encoder

Representations from Transformers (BERT) architecture, and a decision strategy

based on similarity scores and model update accuracy to provide protection against

adversarial attacks on sensitive IoT data. The success rate of poisoning attacks

decreased to below 0.2 (20%) after 100 training rounds in the proposed system,

compared to approximately 0.4 (40%) in traditional peer-to-peer FL and around 0.6

(60%) in standard FL validating the enhancement in security.

5. Introduced an approach that combines peer-to-peer FL with blockchain for a

sustainable and secure data-sharing network. This strategy transforms blockchain

nodes from passive components to active participants in the optimization process,

creating a responsive and self-optimizing blockchain ecosystem that improves

transactional e�ciency and reduces energy usage. Specifically, energy usage was
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reduced by up to 30% over traditional methods due to the e�cient load distribution

across nodes, which minimized redundant processing and energy expenditure.

Chapter 1
Introduction, Challenges,

and Contributions

Chapter 2
Background and Scope of

Work 

Chapter 3
Data Security in IoT

Chapter 4
Data Privacy for IoT

Chapter 5
Decentralized framework

for IoT privacy 

Chapter 6
A secure and privacy-

preserved IoT

Chapter 7
Conclusion and Future

Directions

Figure 1.4: Structure of the Thesis

Figure 1.4 shows the organization of thesis and how the chapters are related to each other.

Here, CHAPTER 2 provides a comprehensive literature survey of the existing works in

the domain of providing security and privacy to IoT-based applications. Additionally,
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it discusses the challenges and limitations of related literature and identifies the research

gaps. CHAPTER 3 introduces a novel approach that addresses the significant challenge of

security in IoT systems. Specifically, we focus on using blockchain technology to address

this challenge for a secure IoT. CHAPTER 4 expands the discussion to privacy concerns

in IoT applications by using innovative strategies for data sharing within IoT-based

ecosystems. CHAPTER 5 extends the approach of decentralizing the FL framework built

in Chapter 4 using a peer-to-peer network aimed at eradicating central points of trust and

enhancing data privacy. CHAPTER 6 builds on the frameworks designed in CHAPTER

3 and CHAPTER 5 to create a sustainable and secure infrastructure for IoT applications.

Finally, CHAPTER 7 concludes with the challenges and contributions made in this thesis.

This chapter ends with giving some highlights on the future direction of the work.
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Chapter 2

Literature Review

2.1 Introduction

As IoT devices become more autonomous and intelligent, safeguarding them against

potential device corruption and broader network implications has become critical.

Several cryptographic measures and procedural strategies have been proposed to

ensure confidentiality, integrity, and availability in IoT. These mechanisms safeguard

confidentiality through encryption and assure integrity and authenticity via message

authentication codes. However, IoT systems require not just these foundational security

services but also a focus on the execution and optimization of these solutions [5, 6, 7]. The

transition from Wireless Sensor Networks (WSNs) to internet-connected configurations

has made it necessary to devise robust defense mechanisms, particularly where sensor

nodes present vulnerabilities due to limited computational resources [8, 9]. Standards

such as IEEE 802.15.4 o↵er guidelines to enhance security at physical and medium access

control layers, adding layers of confidentiality, integrity, and availability to the system

[10]. However, the existing threats and security countermeasures, have certain limitations

when it comes to real-life applications [11]. The organization of the literature review in

our thesis is depicted in Figure 2.1.
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Figure 2.1: Categorization in the Literature Review.
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2.1.1 Confidentiality in IoT

Data confidentiality is an important parameter for IoT implementations, particularly

in commercial environments [12]. The existing confidentiality solutions are no longer

adequate due to challenges related to the vast amount of data generated by IoT

devices and the dynamic nature of data streams, which complicate access control. For

confidential data, encryption whether through symmetric or asymmetric algorithms, is

essential for securing communication channels, though the selection of an appropriate

encryption method depends on specific IoT application requirements and system criticality

[13]. Wireless IoT communications are susceptible to eavesdropping, potentially

compromising data confidentiality and a↵ecting the entire network. Mayer [14] identifies

localization/tracking, storage, communication, and identification as areas particularly

sensitive to confidentiality issues within IoT, contrasting them with sensors, devices,

actuators, and processing aspects.

IoT solutions should implement security mechanisms allowing users to control access

to predefined resources, a concept referred to as data ownership [15]. Current IoT

technologies’ approach to data security, including key management, may place undue strain

on IoT resources, risking diminished system capabilities. To counteract this, lightweight

cryptographic algorithms are proposed for resource-constrained IoT devices to safeguard

data, thereby ensuring confidentiality [16]. Datagram Transport Layer Security (DTLS)

is highlighted as a viable solution for confidentiality issues, o↵ering end-to-end security at

the application layer with minimal resource impact [5]. Cloud-based solutions that employ

cryptographic measures relying on Public Key Infrastructure (PKI) and information flow

control have been suggested to enhance data and communication confidentiality [17].

The concept of confidentiality is also linked with privacy by using techniques such as

anonymizing data collection and minimizing data collection as a means to protect against

unauthorized access.

2.1.2 Integrity in IoT

In the domain of the IoT, integrity comprises the safeguarding of IoT systems against

physical damages and tampering, including the use of counterfeit components and

sabotage [18]. The resilience and fault tolerance of an IoT system play a vital

role in maintaining data integrity, highlighting the need for robust designs capable of

withstanding various integrity threats. Sensor systems such as RFID networks are more

vulnerable, as their components are often unmonitored, making them easy targets for

data modification either in storage or transit. Commonly employed protective measures,

such as read-write protections and authentication techniques face limitations due to the

inherent resource constraints of many IoT devices, which also hinders the application of

standard cryptographic methods [19].

To ensure the integrity of processes, safeguarding device operations, communications,

and algorithm implementations are employed, critical for reliable data processing and
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service delivery [14]. Software integrity can be achieved through hardware isolation and

the use of secure hardware for software attestation. However, they face challenges due

to hardware-based attacks such as fault attacks if the system does not have protection

against them. Identity management systems can help in authentication and resource

control but they face deployment challenges related to scalability and management in

IoT infrastructures [20]. Integrity maintenance also requires standardized procedures and

extensive collaboration among IoT stakeholders to ensure data trustworthiness and system

quality. Such collaboration is essential for developing common schemes that address the

unique integrity and quality requirements of the IoT ecosystem [12].

2.1.3 Availability in IoT

Device availability stands as a basis for information networks, defining it as the

“most important factor” [21]. Therefore, it becomes necessary for IoT systems to

maintain operational persistence, uphold service levels, and meet application performance

expectations. The concept of availability in IoT extends to ensuring ubiquitous access,

suggesting that IoT devices must address key challenges including consistent availability,

which consists of both hardware and software dimensions to satisfy user needs [22].

IoT devices might also be victim of attacks such as Denial-of-Service (DoS) due to an

overwhelming number of requests resulting in a hindrance to their operation. DoS and

Distributed Denial-of-Service (DDoS) attacks pose significant threats to the availability

of IoT networks, disrupting device communications and access to network resources.

Such attacks range from simple jamming to more complex strategies designed to exhaust

resources or interrupt data transmission among IoT nodes [21]. These attacks not only

jeopardize network resources and applications but may also lead to energy depletion in

devices constrained by power. Current communication protocols endorsed such as the

Constrained Application Protocol (CoAP) might not be able to handle such limitations

[23]. Therefore, a shift towards Service Oriented Architecture (SOA) was proposed as a

preventive strategy, emphasizing the e�ciency of random sampling in monitoring network

tra�c to mitigate such threats [24]. Despite the array of defense mechanisms available for

WSNs[114],there is the need of a foolproof solution against such risks. Intrusion-Detection

System (IDS) aims to facilitate early detection of DoS activities, thereby preserving

network operations for 6LoWPAN solutions [21]. Moreover, distributed architectures over

centralized models can enhance service availability and eliminate single points of failure

[25].

2.1.4 Privacy in IoT

The exponential growth of IoT in recent years has raised significant privacy concerns due to

the increasing availability of data [12]. Currently, these devices lack the necessary safety

mechanisms, leading to a need for enhanced protection of personal information related

to individuals’ movements, habits, and interactions [26]. Moreover, inadequate measures

for ensuring data confidentiality and integrity may lead to privacy breaches leading to
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unauthorized access to sensitive information, thereby jeopardizing the potential for IoT

technologies’ widespread acceptance [19, 12].

Roman et al. [27] highlighted potential risks from overreaching entities that could collect

and share data without consent. To mitigate privacy violations, several key challenges,

including the development of self-aware devices, ensuring data integrity, enforcing

authentication, accommodating data heterogeneity, applying e�cient encryption, securing

cloud services, and establishing clear data ownership, governance, and policy management

need to be addressed. Proposed solutions to these privacy concerns include adopting a

“privacy by design” approach, allowing users dynamic control over their data and ensuring

their preferences align with existing policies before granting data access. Another crucial

factor is transparency enabling users to understand who manages and utilizes their data

[28]. Alternative measures can be allowing users to opt out of untrusted sensor networks

and introducing “privacy brokers” as intermediaries between users and the network [19].

However, technological measures alone are insu�cient to address the privacy issues,

necessitating consideration of the IoT’s economic and socio-ethical dimensions. Therefore,

there is a need to revise existing privacy regulations at both private and governmental

levels, along with enhancing public awareness about how IoT devices manage data [29].

The challenge of distinguishing between regular data and Personally Identifiable

Information (PII), which is legally protected complicates e↵orts to safeguard privacy

in IoT-based systems [30]. The debate continues over whether IoT privacy should be

regulated by governments or self-regulatory bodies, especially given the transboundary

nature of IoT data [28].

2.2 Existing Solutions for IoT

The limitations of IoT devices such as their resource-constrained nature, limited processing

power, and often weak security protocols make them prime targets for cyberattacks,

data breaches, and unauthorized access [22]. Some of the techniques explored by various

researchers to address the security and privacy concerns are described as follows:

2.2.1 Lightweight Cryptography

Lightweight cryptography addresses the need for secure encryption in IoT devices

constrained by limited computational resources [31]. Unlike traditional encryption

methods, which impose significant processing demands, lightweight cryptography is

designed to o↵er robust data confidentiality with minimal computational overhead. This

adaptation is crucial for the IoT ecosystem, where devices range from simple sensors to

more complex systems, all of which require e�cient data protection measures. These

techniques are especially vital in scenarios where the energy consumption and processing

capabilities of devices are limited, ensuring that security measures do not drain the device’s

critical resources [32]. While lightweight cryptography provides an e↵ective solution for

devices with limited computational resources, it often faces trade-o↵s between security
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strength and computational e�ciency.

2.2.2 Secure Communication Protocols

The integrity of data exchange between IoT devices can be assured through the

implementation of secure communication protocols [33]. Protocols such as Secure Sockets

Layer/Transport Layer Security (SSL/TLS) and Datagram Transport Layer Security

(DTLS) have been adapted to fit the IoT context [34], providing encrypted channels

that secure data in transit. These protocols prevent eavesdropping and tampering by

encrypting the data before transmission, ensuring that sensitive information remains

confidential between the communicating devices. Their adaptation for IoT takes into

account the need for e�ciency and low overhead, making secure communication feasible

even for devices with stringent resource constraints. However, these protocols do not

inherently address issues of data privacy once data reaches its destination, leaving a gap

in end-to-end data protection.

2.2.3 Identity and Access Management (IAM)

Traditional IAM frameworks are often ill-equipped to manage a wide variety of devices,

from low-power sensors to advanced smart devices, thereby needing innovative solutions

for IoT. These solutions can be based on certificate-based authentication and role-based

access controls, ensuring that only authorized devices and users can access the network

and perform actions based on their defined roles [35]. By addressing the unique challenges

of device diversity and scalability, IAM solutions for IoT secure the ecosystem against

unauthorized access and potential security breaches.

2.2.4 Intrusion Detection Systems (IDS)

Intrusion detection systems [36] are designed to continuously monitor the network for signs

of malicious activity for proactive threat detection and mitigation. By analyzing device

behavior patterns, network tra�c anomalies, and communication patterns, IoT-specific

IDS can e↵ectively identify potential threats and initiate responses to protect the network.

The development of IDS for IoT focuses on leveraging the vast amounts of data generated

by devices to intelligently detect anomalies, ensuring the security and resilience of IoT

networks against a wide range of cyber threats. However, the e↵ectiveness of IDS often

depends on the system’s ability to accurately di↵erentiate between normal and malicious

behavior, which can be particularly challenging in IoT due to the diversity of devices and

tra�c patterns.

2.2.5 Privacy-Preserving Techniques

The protection of user privacy in the IoT, where devices collect extensive amounts of

personal data, is an essential requirement [37]. Research in privacy-preserving techniques

explores methods like di↵erential privacy and FL to safeguard individual privacy [38].
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Di↵erential privacy introduces noise into the data analysis process, obscuring individual

data points without significantly impacting the overall analytical outcomes. This approach

prevents the identification of specific individuals from aggregated data. FL [39], on the

other hand, enables machine learning models to be trained directly on devices, using

data that never leaves its source. Together, these privacy-preserving techniques can help

maintain the confidentiality and integrity of user data in the IoT landscape.

Amidst these solutions and their limitations, the integration of blockchain technology and

FL o↵ers a comprehensive approach to addressing both security and privacy challenges

in IoT. Blockchain in IoT can prevent data tampering, facilitate secure peer-to-peer

transactions, and enable transparent audit trails, thereby providing a secure infrastructure

for IoT networks. On the other hand, FL minimizes data exposure and transmission,

significantly enhancing user privacy by keeping sensitive information localized and

reducing the risk of data breaches. We discuss the state-of-art works in these technologies

in the succeeding sections.

2.3 Blockchain-based Solutions for IoT Security

Figure 2.2: Blockchain integration methods.

Integration of blockchain with IoT gateways and end devices can be achieved through

several methods, depending upon the available resources and capabilities of IoT hardware.

Figure 2.2 shows how IoT nodes can communicate directly or through gateways to a

blockchain network. Existing methods of integration strategies are summarized in the

following subsections based on how IoT nodes are combined together with blockchain.

2.3.1 Lightweight IoT Nodes as Thin Clients

IoT end devices which are always on can function as a thin client in relaying the

transactions to full blockchain nodes. In this case, IoT gateways can function either as

full blockchain nodes or thin clients. Danzi et al. [40] have used a method of aggregation

at the blockchain nodes to reduce the amount of data to be transferred to the IoT nodes.
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Resource constrained IoT devices store only a small subset of data from the blockchain

nodes (BNs) such as block headers when they synchronise with the BNs. IoT devices are

connected via a base station to the blockchain nodes. The information is sent downlink

periodically after every T seconds in an aggregated manner to the IoT devices from the

blockchain nodes. The basic protocol used for blockchains is Ethereum protocol which

uses Merkle-Patricia trees for providing proof of inclusion for the modified data.

An e�cient Lightweight integrated Blockchain (ELIB) model is presented in [41] for

meeting the requirements of IoT. The model is applied to a resource constrained smart

home environment to verify its credibility. The ELIB model functions in three levels

i.e., certificateless cryptography (CC), Distributed Throughput Management (DTM) and

consensus algorithm. CC method is used to reduce the overhead associated with the

security of new blocks. The new blocks creation is restricted by consensus algorithm

and the DTM method takes control of altering specific system variables dynamically to

make sure that the throughput of public blockchain does not vary considerably from the

standard load.

Wang et al. [42] proposed a data sharing and storage model for decentralized access of

data derived from the FISCO-BCOS blockchain. The proposed architecture consists of

applications, IPFS and FISCO-BCOS. The working of this blockchain-based IoT network is

as follows: Initially, when any IoT device wants to join a network, it provides the necessary

information such as deice ID, service type, serial number etc. for identity authentication

by the route chain. According to this identity authentication, the route chain allocates it

to a specific set chain. The application then gathers data from the IoT device and encrypts

it for storage at the IPFS. Therefore, the storage expenditure of the blockchain is reduced

significantly because only IPFS file indexes are stored rather than the whole raw data.

Pohrmen et al. [43] proposed an IoT-blockchain architecture consisting of Application,

Infrastructure, and Control layers. User specific application services like smart railways,

smart grids, and smart campus etc., are provided by the Application layer. The Control

layer consists of several connected mining nodes containing high computational powers.

In this level, high security methods like asymmetric cryptography can be used (Global

blockchain). The Infrastructure layer is made up of networks like WSN, IOT, LTE etc.

and networking elements like routers, sensor nodes, switches etc. The network element

uses local blockchain to transfer collected data to Control layer from the network. When

the packet is forwarded, security methods should be implemented so that they are not

modified by any intruder. Lightweight hash functions are used for resource constrained

network elements.

A blockchain-based IoT system called BeeKeeper is proposed in [44]. In this

threshold-based system, three parties function together namely a leader, it’s devices and

certain servers. Initially, the leader performs a BeeKeeper protocol which is a (t,n)

threshold protocol having a complete control over several devices. The servers have the

potential to do homomorphic computations over the data encrypted on the blockchain

sent by the devices. However, if honest servers are more than n-t, the servers do not have
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the capability to learn from the data. A leader sends a query through transactions in the

blockchain to the servers when it wants a result from the encrypted data. The sensors

which are active can respond to the query with the appropriate encrypted data through

blockchain transactions. The encrypted responses can be decrypted only by the leader

because the decryption key is only available to the leader. The desired outcome can be

obtained by the leader if it collects t or more correct responses. Then, the corresponding

servers will gain some reward through the smart contract of the leader automatically.

Li et al. [45] proposed a scheme for storage and protection of IoT data using blockchain.

Since IoT devices are low power devices with constrained resources, so edge computing is

used in this method to carry out computations at the network edge on behalf of IoT devices

and store the data in Distributed Hash Tables (DHTs). Before forwarding this data for

storage to the DHT, the edge device announces this data by posting to the blockchain,

a transaction, stating that this data belongs to a certain IoT device. This transaction is

then verified by the blockchain and details like the ID of IoT device and storage address

are recorded. Similarly, when data is required by an IoT device from the DHT, it will

first place a transaction which will be authenticated by the blockchain. Certificateless

cryptography (CC) is used as an authentication method for the identification of an IoT

device. The drawback of CC is outlived through the use of blockchain’s public ledger

system which helps to broadcast the public key of any IoT device in a convenient manner.

NormaChain [46] is a transaction settlement scheme based on blockchains for IoT

E-commerce. The regulators need certain information about user’s transactions to keep

a check on their legitimacy. This dilemma of choosing between privacy and legitimacy

is solved by NormaChain through the use of searchable encryption (SE). SE is a method

which allows the regulators to search for any particular keywords from the encrypted data

without uncovering the whole plaintext. This helps in searching for any criminal manifests

while keeping the privacy of the users intact. The authors propose a modified version

of public key encryption with keyword search (PEKS) method which is decentralized

without the need of any central supervision unlike the original scheme. This supervision

is distributed among n parties and the target keyword can be searched only when all

the n parties authorize it simultaneously. Therefore, this scheme tolerates corruptions

upto collusion of n-1 parties. This scheme is designed to overcome the e�ciency issue for

E-commerce based IoT. A layered blockchain is used in which each layer has a di↵erent

role to achieve scalability and more transaction speed. Experimentally, this scheme can

achieve a supervision accuracy of 100% and the average transaction-per-second is 113.

Xu et al. [47] proposed a nonrepudiation service provisioning approach for Industrial IoT

based on blockchain for evidence recording and providing service. Each service required

by client is divided in advance into two non-executable sections. They are delivered

through o↵-chain and on-chain channels separately after proper recognition of evidence

submissions. Specifically, a major portion of the program is conveyed privately through

o↵-chain channels after submitting valid evidence to the blockchain and the remaining part

will be posted on the blockchain after recognition of valid evidence of the preceding steps.
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Service verification method used in this chapter for Industrial IoT do not require complete

program codes due to the lightweight cryptographic techniques and homomorphic hash

solutions used. Moreover, fair automated smart contracts are used to aid the Industrial

IoT clients and services providers in solving service disputes e�ciently.

A blockchain-based analytical model for wireless IoT systems has been proposed in

[48]. The network consists of two types of nodes namely, full function nodes (FNs)

and IoT transaction nodes (TNs). TNs are the traditional IoT devices with limited

resources and are of two kinds, idle TNs and active TNs based on whether they are

currently transmitting data or not. FNs are the nodes which have su�cient memory and

computational powers. They can implement blockchain protocols fully by taking charge

of data storage, transaction confirmation and forming new blocks. FNs are connected

through wireless communications with the TNs and via high data links with each other.

Information between TNs is transmitted in the form of transactions and they are validated

and written in blocks by FNs. Moreover, they have also deduced a probability density

function (PDF) of signal-to-interference-plus-noise ratio for transferring data from an IoT

to a full node. The security of the proposed model is analyzed under di↵erent attacks i.e.,

random FN, random link, and eclipse attack. The model proved to be valid under these

attacks.

BPIIoT [49], is a light-weighted Blockchain-based platform to solve the problems of trust,

security and island connection in the Industrial IoT construction process. BPIIoT consists

of an on-chain as well as an o↵-chain network to manage latency and loads in the network.

The on-chain network performs all the transactions such as, programmable licenses, digital

signatures, etc. while the o↵-chain network can solve problems of complex processing,

storage etc. Involvement of third parties is avoided by using SMPC (Secure Multi Party

Computation) by the on-chain network. Data processing and computations are divided

among several nodes which perform the given tasks without revealing the information.

The IoT nodes, act as lightweight devices consisting of four layers: application, service,

network and device layer. The service layer supports services for blockchain like smart

contracts, asymmetric encryption and other general services like controller service, I/O

interface etc. Network layer is used for communication between nodes and the blockchain.

The device layer consists of actuators and sensors that are deployed in the given field.

These IoT devices connect blockchain to the machines through a plug and play solution.

IoT devices make it possible for the machine to post data to the blockchain, send and

receive transactions in the blockchain.

2.3.2 IoT Gateways as Blockchain Nodes

IoT gateways can function either as a full blockchain node or a thin client. IoT gateway

can route data and verify integrity of data in case it functions as a full blockchain node.

If used as thin clients, IoT gateways store only few relevant data parts. Mehedi et al. [50]

proposed a reliable and polished blockchain-IoT infrastructure which cultivates a breather

from centralized systems and memory overhead while maintaining the privacy and security
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e↵ectively. They used the standard IoT infrastructure along with decentralized blockchain

technology for storing the data and accessing it. For integration of blockchain and IoT,

they used Ethereum as blockchain platform and terminal devices enlisting the network

technology. Whenever a request is made for storing a transaction, the proposed approach

uses the distributed ledger which gets executed and stored on its own. To protect the

users identity, the terminal devices are organized in a better way.

Loukil et al. [51] designed a semantic IoT gateway which improved the control over the

private resources along with providing protection for collected personal data. This is done

by first matching the terms and conditions of service at customer’s end with the privacy

preferences at the data owner’s end and then inducing a policy adaptable to the described

conditions. This privacy policy is converted into smart contracts and then to host the

generated smart contracts, the set of resources are connected to a decentralized network

using blockchain technology. There are nine core components of this blockchain framework

named as public IoT network, private IoT network, public blockchain, smart contract,

private ledger, transaction, Semantic IoT Gateway, storage node and local storage. The

Semantic IoT Gateway binds together the blockchain network, the actuators and the IoT

terminals. When the experiment was performed on real world, use-case data shows positive

result and proves that custom generated smart contracts can be added to the blockchain

technology with high success rate.

A credit-based mechanism has been proposed in [52] which ensures better e�ciency for

simultaneous transactions and confirms system security. For ensuring the confidentiality of

sensitive data, a mechanism for managing the data authority is defined which controls the

sensor data access. The mechanism is designed on structured blockchains based on directed

acyclic graphs which gives better performance and improved throughput compared to

chain-structured blockchain like Satoshi-style, etc. The case-study was conducted for

smart factory and system was implemented on Raspberry Pi model 3B. The architecture

design of smart-factory consists of four major components named tangle network, wireless

sensors, managers and gateways. The designed architecture is impenetrable to various

attacks like DoS, DDoS, Sybil, etc. To guarantee the optimal trade-o↵ between system

security and transactional e�ciency, a Proof of Work mechanism has been designed which

ensures that the honest nodes always devour limited number of resources while enforcing

the malicious nodes with increased attack cost. To ensure confidentiality, the authors

designed a mechanism for data authority management in which the nodes which collect

sensitive data are given the secret key by managers and with the help of this key, sensor

data is encrypted before being posted on the blockchain.

Biswas et al. [53] have used a network of local peers which narrows the gap between

blockchain peers and IoT devices. Without a↵ecting the transactional validation policy

followed by peers at both the local and global level, the number of transactions

entering the global blockchain are restricted using local ledger. The authors proposed

a framework based on blockchain technology for IoT which considers both the inter and

intra transactions for the corresponding organization. Each IoT device is registered by
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the certification authority and associated with one of the organizations. Instead of using

peers belonging to global blockchain, a local peer was structured to achieve the interaction

with peers belonging to global blockchain network. The designed framework targets to

handle the indirect rise in transaction per second for the global blockchain network and

increase in ledger storage requirements at peer level. The size of ledger is limited under this

framework and is distributed between local and global peers. The transactions between

two organizations are validated via global blockchain network validating it for 100% peer

validation. In this work, they clearly demonstrated that if the issue of scalability is not

addressed, blockchain and IoT cannot be integrated together and creating a network of

local peers allowed the blockchain ledger to spread across all the peers and hence improved

scalability.

A blockchain connected gateway is designed in [54] to maintain the privacy preference

of IoT devices securely and adaptively within the blockchain network. It can prevent

the leakage of sensitive data by ensuring that the data is not accessed without the user’s

permission. There are three major participants in the proposed framework namely IoT

device administrator, gateway administrator and end user. The IoT device administrator

stores the device information along with device’s privacy policy at the blockchain network

before the user gets the access to it. The list of attributes uploaded on the blockchain

network includes device’s name, manufacturer’s information, device description, device

images list, etc., and the privacy policy includes information related to preference, policy

identifier,etc. The signature scheme proposed by authors is robust and has interacting

skills similar to DLP based on elliptic curves. Each security component of this signature

scheme is implemented and tested on Model B of Raspberry Pi III and computational cost

for each security component is calculated. The results show that while legacy devices are

in use, the proposed framework increases the trust among IoT applications and improves

user privacy.

Badr et al. [55] designed a novel protocol named pseudonym based on encryption

for providing privacy to the patient’s data available in the e-Healthcare system. The

encryption mechanism is blockchain-based in which high end di↵erent authority encryption

technique is used for securing the patient’s confidential data. The public blockchain tier

between the healthcare cloud providers and the blockchain tier handling the sensors on

patients body along with patient’s system on the platform are considered in this approach.

The work elevates the anonymity factor in patient’s data by considering blockchain as

the anonymity enhancement technology using the multi-tier architectural model which

prevents system from various attacks like block enquiry infringement etc. The solution

was evaluated using the MIRACL library which keeps track of the processing time for all

the functions executing within the communication channel. The architecture is a three

tier where the first tier shows how all the sensors, devices are connected to patient through

a gateway or aggregator. The second tier analyzes the distribution of ledger and handles

communication within the members of health record member and provider. In tier three,

the compliance with the cloud providers is considered and analyzed. This framework can
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handle some of the security vulnerabilities but not all. Therefore, in the future, this model

can be modified to handle larger cluster of security issues.

2.3.3 IoT Nodes Integrated with Blockchain Clients

An IoT battery-powered device may be integrated directly with blockchain client. This

allows blockchain features to be embedded in IoT devices itself for direct interaction

between them. A multilevel blockchain system (MBS) is proposed in [56] to secure

IoT which uses mobile agents to enforce the flexibility and speed of transactions in the

blockchain. Mobile agents roam throughout the network of IoT devices to aggregate

useful data and generate hashed blocks of data reducing time delays and solving other

issues like scalability and synchronization. MBS consists of three hierarchical levels

through which IoT devices can send their data securely: micro-level consisting of IoT

devices, meso-level consisting of cluster-heads and macro-level consisting of the blockchain

platform. MBS platform is made up of four entities: IoT device (collect and transmit data),

ordering service (accept transactions and create blocks), endorsing peers (check validity

of smart-contracts), and committing peers (run validation). It includes meso, macro and

micro agents with di↵erent roles and locations in the architecture. Simulation is done

using Hyperledger Fabric with 1000 nodes and the end results are satisfactory in terms of

energy consumption and response time.

Qian et al. [57] divide IoT into three parts i.e, network layer, application layer, and

perception layer and propose a security scheme for IoT using blockchain by considering

the security issues in these layers. The application layer consisting of smart home,

smart healthcare, automatic driving includes access and authentication control, privacy

protection and software handling. The network layer consists of low power WANs and

mobile networks. The perception layer requires security of devices, authentication and

access control and consists of IoT gateway and terminal devices. To manage the security

and other issues of IoT, blockchain based platforms for IoT devices can be constructed

along-with the integration of cloud services. This structure consisting of union nodes, IoT

devices, cloud providers etc. communicate through high speed links. Links between IoT

and blockchain devices can be secured through authentication techniques to guarantee

reliability. They have also discussed two open issues namely identity verification and

machine learning-based monitoring of abnormal network tra�c.

A blockchain-based IoT structure is proposed in [58] using smart contacts which aids users

in keeping a complete control over their useful data and also on how it is used by third-party

clients. The given system model consists of three entities: Aggregates are the users owning

IoT devices who post transaction into the blockchain to publish data or grant permissions;

Subscribers (third-party) who want to access the data posted on the blockchain by issuing

transactions; Vendors are the IoT devices’ manufacturers liable for producing o�cial

images of firmware. All these three entities are recognized through public-private key

pairs when they want to communicate via the blockchain network. Aggregators store

their published data in the o↵-chain network using content based addressing. A hash is
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calculated for each data piece corresponding to the address of the data which is used as

an index for data search and retrieval. Two smart contracts namely, FirmwareUpdate

and AccessControl are introduced for controlling updates and proving access permissions.

This blockchain-based update scheme of firmware ensures that the IoT devices are not

tampered with and are designed through authentic firmwares.

Another hierarchical structure of blockchain is discussed in [59] for tamper-proof

storage and retrieval of data in IoT systems. In this architecture, along with the

resource-constrained IoT nodes, some additional devices are used for ”data collection”

which have more storage and computational power. This model ensures that the data

is sent securely to the edge servers through the resource-constrained devices for data

verification. An authentication and access control method for IoT is proposed in [60]

based on a distinct blockchain-dependent architecture. The authentication process is done

through smart contracts. If found valid, then the sender’s address and access token are

broadcasted by the smart contract through which the user can receive this information. A

package is then crafted by the user and signed using the ethereum private key. The authors

have shown that this method outperforms existing methods in terms of decentralization

and tamper proof records. This approach can also withstand attacks attempted to guess

credentials through brute force and control legitimate sessions.

Bubbles of Trust [61] is an authentication method for IoT devices based on public

blockchains and smart contracts. In this approach, secure virtual zones called bubbles

of trust are created where each device trusts only the devices within its zone. Each zone is

non-accessible and protected from non-member devices. Communications in this network

are through transactions validated by the blockchain. In the initialization phase, a Master

device is designated which owns a public and private key-pair. All objects of the system

are called followers. Each follower is given a ticket that contains objectID (identifier of

follower), groupID (identifier of object’s bubble), pubAddr (public address of follower) and

a signature. The master of the bubble initiates a transaction containing the identifier of

master and the group created. This transaction is validated by the blockchain to check

the uniqueness of identifiers. After creation of a bubble, the followers send transactions

to get linked to their bubble.The follower’s identifier is also verified and validated by the

blockchain using smart contracts. This approach satisfies the security requirements of IoT,

its cost and e�ciency when implemented using Ethereum and C++ language.

2.3.4 IoT Nodes as Regular Sensors

IoT devices with insu�cient resources to tolerate any additional logic function as regular

sensors. They simple collect the data and forward it to the blockchain structure through

the gateway. Dorri et al. [62] showed that blockchain can be designed scalable as well as

lightweight by optimizing it with respect to the requirements of the IoT with proper

end-to-end security. They proposed a Distributed Throughput Management (DTM)

algorithm which lowers the delay and processing overhead for mining. The cluster heads

deploy the distributed trust technique such that the verification of new blocks does not
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result in high processing overhead. To handle scalability, all the overlay nodes including

service providers, cloud storage and IoT devices are made a part of clusters and the

blockchain is managed by the cluster heads only. For reducing the packet overhead as

well as memory footprints, the data of all the nodes is stored o↵-the-chain on cloud

storage. Each cluster head tries to develop trust with the other cluster heads by validating

them on the basis of generated new blocks using the distributed algorithm of trust. By

considering the transaction load of the network, DTM algorithm ensures that throughput

of blockchain remains stable as far as system parameters are handled dynamically. They

also performed analysis of proposed approach under 8 significant cyber attacks and

estimated the likelihood of these attacks along with their respective defence mechanisms

which ensured that the algorithm is prone to all of them. The simulation was performed

on NS3 and the results showed that in comparison to other approaches, this approach

provides higher scalability and reduces the overall delay and packet overhead.

A highly scalable and distributed access management system is proposed in [63] using

blockchain technology. The authors compare the existing approaches with the proposed

approach and illustrate that when it is tested and analyzed on di↵erent configurations

of the blockchain system, the delay was reduced and the throughput was improved.

When the sensor nodes are connected through multiple hubs, this approach works better

for horizontal scalability and gives better result. The architecture for this model was

designed keeping in mind various parameters like concurrency, mobility, lightweight nature,

accessibility, scalability, etc. It constitutes of various components where each component

performs a specific task and all of them when allied together will result in complete working

of the system. Sensor network, agent-node, managers, blockchain network, smart contract

and management hub are the various components of this architecture. To test and retrieve

the best results, they performed the experiment multiple times using Docker on Ethereum

platform. The results were almost similar in each of the trial and showed positive results.

An access management scheme is proposed in [64] based on attributes for IoT systems.

Blockchain is used to store attribute’s distribution to maintain data integrity and avoid

single point of failures. Two main entities used in this approach are: IoT devices and

attribute authorities. The attributes authorities distribute attributes and manage the

blockchain. Attribute-based access extracts the identities (roles) into an attribute-set

managed by the attribute authorities. These authorities maintain a public ledger jointly

using a consensus mechanism. The attributes are authorized and posted to blockchain

through “transactions”. For the registration of IoT devices into the network, the attribute

authorities create a public/private key pair. The IoT devices collect and share the data in

the network. They do not take take part in verifying transactions and can only view the

blockchain. The access control mechanism is simplified through the use of basic signature

and hash techniques to make this approach e�cient for resource constrained IoT systems.

BB-DIS (Blockchain and Bilinear mapping based Data Integrity) is proposed in [65] for

data integrity of large-scale data of IoT systems. Framework of BB-DIS includes four

entities namely Cloud Service Providers (CSPs), Data Consumer Devices (DCDs), Data
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Owner Devices (DODs), and Smart Contracts. Smart contracts used in this approach

are of di↵erent kinds and they are used to verify the data integrity in blockchain. DCDs

and DODs are used to produce key pairs at the time of initialization of the blockchain.

CSPs can provide mining services by functioning as miner nodes and receiving the required

rewards. Storage services like Microsoft Azure, Amazon S3 etc., are also provided by CSPs.

BB-DIS after dividing the IoT data into shards generates homomorphic verifiable tags

(HVTs) for verfication of sampling. Edge computing is used to reduce the computation

and communication costs by preprocessing the large-scale generated IoT data.

A distributed key management architecture is proposed in [66] to reduce the latency

and satisfy the scalability, hierarchical access control and decentralization requirements

in IoT. In this architecture, the blockchain mechanism is governed by the SAMs

(security access managers) instead of central authorities. SAMs are used for storing the

logical topology whereas the blockchain is used to store the key management activities.

Moreover, multiblockchains are used by cloud managers to reduce latency and support

scalability operations. This multiblockchain approach improves the scalability and system

performance as shown through simulation results.

2.4 FL-based Solutions for IoT Privacy

The integration techniques for FL within IoT networks can be broadly classified into three

categories: centralized, distributed, and hierarchical aggregation methods as shown in

Figure 2.3. In the centralized approach, a singular edge or cloud server is responsible

for compiling the local learning models from all connected devices. Meanwhile, the

distributed method employs multiple servers to collect updates from local learning models.

These updates are then shared and combined across di↵erent servers before a collective

global model is formed. Hierarchical aggregation, alternatively, involves an initial layer of

aggregation at closer nodes, such as edge servers, before these pre-aggregated models are

further combined into a final global model.

2.4.1 Centralized Aggregation

Centralized aggregation, as explored in several studies [67, 68, 69, 70], involves the

collection of local learning models from IoT devices by a singular edge or cloud server

to construct a global learning model. This model of aggregation, adaptable for edge or

cloud computing, o↵ers a streamlined approach but raises concerns regarding scalability

and potential bottlenecks.

Wang et al. [67] proposed an In-Edge-AI framework that integrates Deep Q-Learning

agents within edge computing-enabled IoT networks for tasks such as computation

o✏oading and edge caching. While this framework demonstrates the potential to reduce

training costs significantly, it does not fully address security and privacy concerns that

might lead to potential exploitation by malicious entities. The study in [71] presents a

framework aimed at enhancing both learning and communication e�ciency in wireless
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Figure 2.3: Types of FL aggregations: central, distributed and hierarchical.

FL environments. It formulates an optimization problem for joint wireless resource

allocation, highlighting the influence of wireless factors on learning performance and

suggesting strategies for optimal resource distribution to minimize learning loss. Wang

et al. [72] explored the convergence properties of FL with non-IID data and proposed a

control algorithm to minimize learning loss, thereby enhancing learning e�ciency within

edge networks. However, it emphasizes the need for further research into handling

non-convex loss functions more commonly encountered in IoT applications. A significant

advancement in client selection for FL is introduced by the FedCS protocol [68], which

optimizes client selection based on device capabilities and data characteristics to improve

learning e�ciency. However, it necessitates additional measures to protect device privacy

and better manage the transmission latency to accommodate more participants in the

learning process. To address the challenge of asynchronous participation and the

presence of malicious devices, the architecture CoLearn [73] utilizes a FL framework to

ensure secure and e�cient learning among resource-constrained IoT devices. Despite its

advantages, there’s an opportunity to enhance its performance further through lightweight

authentication mechanisms for IoT devices.

2.4.2 Distributed Aggregation

Unlike centralized models, where a single server aggregates learning updates, distributed

methods utilize multiple aggregation points, allowing for a more flexible and resilient

framework. In distributed aggregation [74, 75], IoT devices generate their local learning

models and transmit these updates to a network of distributed servers. These servers then

collaborate, sharing the gathered learning models among themselves before performing a

collective aggregation to formulate a global model. This method stands out for its ability

to operate without relying on a singular central server thereby enhancing decentralization.
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Qu et al. [74] introduced FL-Block, which leverages blockchain technology within fog

computing environments to enhance the robustness of FL against poisoning attacks. By

adopting a decentralized aggregation method, FL-Block aims to mitigate risks associated

with centralized server failures or security breaches. The FL process under FL-Block

comprises local model development by devices, cross-verification at fog servers, and global

model updates through collaborative fog server aggregation. However, the latency due to

blockchain’s consensus algorithms poses a challenge, suggesting a need for innovative FL

schemes that can accommodate the decentralized nature of blockchain more e�ciently.

Furthermore, the study in [75] addresses the limitations of device connectivity to fog servers

by proposing an FL scheme that facilitates device cooperation, eliminating the reliance

on centralized servers for model aggregation. This scheme introduces two strategies:

consensus-based federated averaging and an enhanced version that includes gradient

exchange, aiming to reduce convergence times despite added complexity. The proposed

model was tested within an industrial IoT setup, showcasing its potential for scalability and

robustness in dense Device-to-Device (D2D) networks. Although the proposed approach

has several advantages, the authors do not consider the importance of e�cient resource

allocation and power control within such networks. Optimizing resource distribution and

adjusting power levels could significantly reduce packet error rates, thereby enhancing the

accuracy of the global federated learning model.

2.4.3 Hierarchical Aggregation

Hierarchical FL integrates multiple layers of model aggregation, typically involving initial

aggregations at edge servers before a final, comprehensive aggregation occurs at a cloud

server. This method has been explored in various studies [76, 77, 78] which illustrate its

application in enhancing IoT networks’ e�ciency and security.

Zhao et al. [77] introduced an FL framework for intelligent fog radio access networks. This

framework aims to address the challenges associated with centralized machine learning

approaches, such as elevated communication costs and privacy concerns. By adopting both

traditional and hierarchical FL processes, the framework proposes a solution where model

aggregations occur initially at fog nodes, followed by a concluding aggregation at a remote

cloud server. This setup facilitates the inclusion of a greater number of end-devices in the

learning process through the compression of local model neural network architectures and

parameters. The authors further discussed the crucial technologies required to implement

FL in intelligent fog radio access networks, along with highlighting relevant research

challenges. Similarly, the approaches in [78] and [76] proposed hierarchical FL frameworks

designed for mobile networks, emphasizing the benefits of local aggregations before global

cloud-based aggregation. This approach significantly benefits performance, enabling

end-devices to utilize existing communication resources more e�ciently. However, the

implementation of hierarchical FL has several design considerations, such as the optimal

frequency of edge server aggregations prior to central cloud aggregation. Hierarchical FL

introduces potential divergences in model weights, categorized on the level of aggregation
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— at the edge due to client-edge discrepancies and at the cloud due to edge-cloud

discrepancies. As described in [76], the extent of these divergences is influenced by the

balance between the number of local learning iterations and edge aggregations. Optimizing

the number of edge aggregations typically enhances learning outcomes, particularly for

non-IID data distributions. The performance of hierarchical FL is further dependent on

the chosen federated optimization scheme (e.g., FedAvg, FedProx) and how it manages

data heterogeneity.

2.5 Research Gaps

Based on the existing state-of-the-art literature on IoT security and privacy, a thorough

examination reveals that there are significant gaps that need to be addressed to enhance

the robustness of IoT systems.

Firstly, the scalability of blockchain technology within IoT-based applications is still a

critical concern. Despite the recognition of blockchain’s potential to enhance security

measures, its application in IoT environments is limited due to scalability challenges. The

substantial data volumes generated by IoT devices demand a blockchain framework that

not only accommodates it but does so without compromising security.

Secondly, preserving privacy through FL-based techniques in IoT presents another area

requiring further research. While FL proposes a methodology for training ML models

on decentralized data sources, current approaches lack in protecting the model from

adversarial attacks and maintaining model accuracy even in the presence of heterogeneous

IoT data.

Thirdly, the decentralization of FL systems to a peer-to-peer (P2P) architecture is sparsely

covered in existing literature. This decentralization is aimed at mitigating single points

of failure and strengthening the system’s defense against adversarial attacks. This gap

signifies the need for innovative approaches to ensure secure, robust, and decentralized

collaborative learning within IoT ecosystems.

Lastly, a detailed exploration regarding the integration of P2P-FL that can address

blockchain’s energy consumption—is understudied. This research gap highlights the need

for a solution that combines blockchain and P2P-FL to build a sustainable, secure, and

privacy-focused infrastructure for IoT applications.
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Data Security for IoT

In this chapter, we delve into the intersection of data security and IoT, focusing on the

application of blockchain technology as a secure data storage solution.

3.1 Blockchain for Data Security

The trending smart living IoT environments though beneficial introduce several security

and privacy issues [41]. For instance, in a smart healthcare scenario, on one hand, we

want to ensure the privacy and security of user’s medical data and on the other hand,

we will have to disclose their personal information to the doctors and sta↵ so that they

can examine and treat the patients. Another example is the safety and privacy of user’s

data in a smart home system. As shown in Figure 3.1, the various devices of a smart

home (such as smart refrigerators, smart lightning systems, smoke detectors [79], audio

system, thermostat, power control, etc.) can regulate themselves automatically and be

remotely controlled through the Internet. However, they pose several security risks, such

as, smart assistants like Alexa can be used by intruders to steal the private data of users by

snooping upon them. Therefore, it is critical to ensure database security, data encryption,

information integrity, service validation and secure communication links for the smart

applications of IoT systems.

Moreover, the IoT systems are mostly centralized and dependent on cloud servers for

storage and processing capabilities. Although this centralized cloud architecture has been

prevalent for decades, it will not be able to support the ever increasing demands of the

IoT systems tomorrow.

A decentralized approach with a standard peer-to-peer (P2P) model would help in solving

many issues of the IoT ecosystems. In a decentralized IoT network, each device can operate

independently and communicate with its peers directly without needing a central authority.

This P2P model reduces the risk of centralized data breaches and system failures, while

also potentially decreasing latency and improving system responsiveness. Decentralized

systems make it much harder for any single point of failure to cripple the network thereby

enhancing the resilience of the network against attacks or technical failures. Moreover, it

can also reduce the cost of setting up and running large data centers, which are usually

needed in centralized systems. Blockchain technology is a distributed approach that can

be used to resolve the security issues related to IoT [40]. By keeping an immutable history

of the data collected and exchanged by smart devices, blockchain can help make the IoT

system secure along with improving the trust and security through “smart contracts”
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Figure 3.1: A smart home being eavesdropped by an intruder.

and “digital signatures”. Developing IoT systems are using the blockchain technology to

provide security, verify and validate users, record data, construct decentralized platforms

and manage transactions. However, the adoption of blockchain technology in IoT-based

systems still pose the issue of scalability due to the tremendous amount of data generated.

In this chapter, we propose a framework guideline for IoT-blockchain systems. We use

the concept of sidechains to address the scaling problem of blockchain thus making it

appropriate for IoT-based systems. Moreover, we utilize the concept of edge servers to

process and store the data o✏ine. Sidechains exist alongwith main blockchains generally

attached to it via two-way pegs. They can be used to perform some specific task

independently and then later be rejoined to the main blockchain. Sidechains increase

the e�ciency of blockchains by o✏oading some work of the main chain thus making it

faster and smaller. To exemplify our idea, we use the scenario of healthcare systems in the

rest of this chapter. Healthcare is a very typical and crucial use-case of IoT systems, where

the amount of data collected is very extensive and voluminous. However, the architecture

proposed is application-agnostic for usage in diverse IoT-based systems.

Along with scalability, highly sensitive and private healthcare data requires strong

authorization and authentication procedures for storage. Generally, users have very limited

control over their data because they don’t know how it will be stored or accessed once

it is sent to the cloud. In such cases, patients who are unfamiliar with the norms and

procedures for protecting private data may avoid full-disclosure of their medical data or

refuse treatment altogether. Interoperability challenges between hospital systems and

di↵erent providers pose additional barriers to e↵ective data access and sharing.

Since blockchain is not fundamentally designed for high throughput, therefore it needs to

be optimized for use in real-time IoT applications such as smart healthcare [80]. In light of

existing state-of-the-art research, there are three major issues in the current mechanisms:

1) ledger storage constraints 2) data management di�culties, and 3) high latencies.

To address the above challenges, we propose HierChain, a novel hierarchical

blockchain-based framework, for secure health data management and storage. According
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to the scalability trilemma given by Vitalik Buterin, all three components i.e. scalability,

security, and decentralization cannot be maximized simultaneously [81]. Figure 3.2

Figure 3.2: HierChain Taxonomy.

represents the hierarchical storage taxonomy used in HierChain. The taxonomy utilized in

HierChain states that as the security of a blockchain increases, its scalability decreases and

vice versa [82]. Following this constraint, HierChain manages data storage in a manner

such that more sensitive data is sent to a highly secured blockchain (even if it is less

scalable) whereas less sensitive data is sent to a highly scalable blockchain (that could be

less secure). Therefore, the proposed strategy helps to perpetuate the trade-o↵ between

security and scalability in a coherent manner. Furthermore, our approach integrates fog

nodes to facilitate data pre-processing and encryption techniques specifically designed for

resource-constrained IoT nodes. By leveraging fog nodes, we optimize the data flow and

ensure that only relevant and necessary data is communicated to the blockchain network.

Overall, HierChain introduces a key innovation by leveraging multiple blockchains in a

novel approach that has not been explored in the existing literature. By harnessing

the potential of a multi-blockchain framework, we present a robust solution that

e↵ectively addresses the prevailing issues. HierChain addresses the challenge of ledger

storage constraints by categorizing health data based on its specific features and storage

requirements and storing it on di↵erent blockchains accordingly. Moreover, it tackles

data management di�culties by integrating fog nodes for data preprocessing, enabling

the elimination of redundant information and optimizing the data flow. Additionally,

HierChain mitigates high latencies by intelligently selecting the blockchain based on

network latency and choosing the optimal one for data storage and sharing. Therefore,

our approach o↵ers a fresh perspective and contributes to the advancement of blockchain

technology in the healthcare domain.

It is important to note that our approach is highly relevant for healthcare due to

its ability to ensure the privacy and security of sensitive healthcare information. By

integrating di↵erential privacy, secure blockchain allocation, alignment with compliance

standards, and optimized data storage techniques, HierChain e↵ectively addresses the

specific challenges and regulatory requirements associated with medical data, providing a

robust and tailored solution for healthcare applications.
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3.2 System Model

This section presents the technical framework designed for integrating IoT with blockchain

in a scalable and storage optimized manner. The proposed framework, HierChain, is

configured in the form of layers to store the massive IoT data e↵ectively and securely

while maintaining the performance of application.

3.2.1 Di↵erent Layers

• End-user layer encompasses a sensing network that contains various sensors and

actuators at edge of the layer. It includes distinct types of devices such as health

monitors, smart wearables, medical equipment, body sensors, and other devices that

sense the environment and collect real-time data.

• Fog layer is the central layer of proposed hierarchical architecture. It consists of

reliable computing and powered devices called fog nodes. Any device which is a few

hops away from the end-user layer can be converted into a fog node. Each fog node

is connected to a local group of devices for performing the computation and storage

of perceived data.

• Cloud layer enables storage and computation by providing resources to end users

over the internet. Most of the existing applications nowadays require abstraction,

encapsulation, and processing of real-time data that can be provided by the cloud.

It consists of a centralized, shared pool of cloud servers that are delivered to the end

users in an on-demand manner.

3.2.2 Data Types

In certain parts of the world, data protection regulations have been implemented to

safeguard personal health records against security attacks and threats. Two of the most

commonly enforced data protection regulations are GDPR and HIPAA [83]. The European

Union has implemented the General Data Protection Regulation (GDPR), according

to which companies should protect the Personally Identifiable Information (PII) of

individuals. The GDPR categorizes data into three types: Sensitive Personal information,

Personal information, and Non-Personal information, each with its own requirements for

protection. Health insurance portability and Accountability Act (HIPAA) governs the

usage and disclosure of U.S.-protected health information (PHI) and applies to healthcare

plans, payment systems, and business associates. PHI pertains to mental or physical health

information, and prior patient approval is typically required for its disclosure or use. IoT

data collected from clinical sources is unstructured and voluminous. In our system model,

the health data from di↵erent sources are classified into three categories as follows.

• Public data (least sensitive): Information that does not require high

confidentiality or privacy is termed public data. Data set for which no confidentiality
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or privacy is expected is classified as public data. Although this public information

does not require protection, care should be taken while sharing health-related data.

Data examples: Hospital department’s information, dates of current employment,

job postings, campus maps, list of publications, specializations of doctors, medicines

available currently, and tests facilitated.

• Restricted data (moderately sensitive): Restricted data refers to information

that is restricted to a group of personnel only. It may be a group of authorized

employees, an organization, or a group of organizations. This information is not

available to the general public, hence, some level of authentication is required to

access this data. Restricted data refers to the information restricted to a group of

authorized people or an organization and not available in the public domain.

Data examples: Insurance information, appointment details, pharmaceutical

supplies details, performance reviews, personnel records, policies and procedures,

scheduling, and billing details.

• Confidential data (highly sensitive): Confidential data is information that needs

to be protected at all costs and is accessible only through approved authorization.

Such information is required to be kept confidential even by the laws and regulations

of healthcare institutions. Data examples: Credit/debit card details, personal details

such as date of birth, age, sex, and address, patient’s medical history, doctor-patient

communication, images collected during diagnosis, service records and file progress

notes.

3.2.3 Blockchain Categorization

A blockchain is essentially a chain of blocks (as depicted by Figure 3.3), each containing

data, the hash of the block (a unique digital fingerprint), and the hash of the previous

block. Blocks are secured through hash functions, specifically SHA-256 in the case of

Bitcoin, which generates a fixed-size string that appears random and changes entirely

with any modification to input data. Hashes are critical for maintaining the blockchain’s

integrity and ensuring that each block is permanently recorded and unalterable once added

to the chain. Each block in the chain contains the hash of the previous block, which links

the blocks together in a chronological and unchangeable sequence as shown in Figure

3.4. This chaining defends against block tampering, as altering any block would require

recalculating all subsequent block hashes, a task that becomes computationally impractical

as the chain lengthens. To create a block, the following steps are performed:

• When a transaction occurs, it is verified through a consensus mechanism by

thousands of computers around the network.

• The verified transaction is stored in a block and combined with other transactions

to form a data set.
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Figure 3.3: Basic Structure of a Blockchain.

Figure 3.4: Linking di↵erent blocks.

• The block is then given an exact hash. Once added to the blockchain, it’s published

across the network.

The types of blockchains available for storing the previously described categories of

data can be either public, private, or consortium blockchains. A public blockchain is

a decentralized and distributed digital ledger where anyone is free to join the network and

perform transactions. On the other hand, a private blockchain is operated and controlled

by an entity with restrictions on who can participate in the network. Finally, consortium

blockchains are a hybrid between private and public blockchains with a semi-decentralized

structure. The data can be stored in these blockchains in two forms: Sidechains and main

chain. A sidechain is a secondary blockchain, that exists alongside its parent chain. This

mechanism allows assets to be transferred from one blockchain to be used on a second

blockchain and vice versa.

3.3 Problem Formulation

In this section, we present a formulation of our research problem in terms of an

optimization problem. The amount of IoT healthcare data is increasing day-by-day with

time [84]. This data when stored on a blockchain leads to an increase in the number

of executed transactions. Each transaction within a block consists of various fields that

determine its size. Size of a transaction for any block b can be given as stxn(b). This size
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is comprised of following values:

stxn(b) = dflag +
tlockX

t=tstart

(ctrin + ctrout)

+ tlock + V,

(3.1)

where V = version number, dflag = flags data, tstart = start time, ctrin = in-counter, list

of inputs, ctrout = out-counter, list of outputs, and tlock = lock time. The size stxn(b) is

measured in bytes and includes all bytes from the fields mentioned above. Each component

of the transaction adds to the total size, calculated by summing the individual sizes of

the version number, flags, counters, and time fields, plus the actual data included in input

and output lists. If the number of transactions in a block b are ntxn(b), then the total size

of transaction data in a block can be given as:

Stxn(b) = ntxn(b) · stxn(b) (3.2)

Along with the transaction data, each block contains some metadata too. Metadata

consists of a block header and transaction counters. Therefore, size of a block header [85]

can be given as:

Shdr(b) = h

h
previous block

i
+ h

h
merkle root

+ version+ target formula

+ nonce+ timestamp

i
,

(3.3)

Here, h represents the hash function used in the blockchain, previous block refers to the

hash value of the previous block in the blockchain, merkle root denotes the hash value that

represents all the transactions included in the block, version indicates the version number

of the blockchain protocol or software being used, target formula is used to calculate the

target value for mining a new block, nonce stands for “number only used once”, and

timestamp specifies the timestamp indicating the time when the block was created.

Thus, the total size of metadata for block b can be described as:

Smd(b) = Shdr(b) + Sctr(b), (3.4)

where Sctr(b) denotes the size of transaction counters. Each block of a blockchain contains

both transaction data and its metadata. Therefore, from equations (1) – (4), the total

size of the block b for blockchain Bi can be represented as,

S(b, Bi) = Stxn(b) + Smd(b), (3.5)

As mentioned above, a block consists of a multiple number of transactions [85]. The time it

takes for a blockchain to reach a consensus for a particular block depends on the di�culty

level of the blockchain. When a block b is posted, it takes some time to be propagated in
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the blockchain Bi network. So, the propagation delay for sending a block b on blockchain

Bi can be defined by:

tp(b, Bi) = tc(b, Bi) + tpr(b, Bi) + tq(b, Bi) (3.6)

Here, tc (b,Bi) = communication delay, tpr (b,Bi) = processing delay, and tq (b,Bi) =

queuing delay. Along with the propagation delay, the settling time for a block adds to the

total delay before it can be confirmed. This settling delay, ts(b, Bi), can be represented

by:

ts(b, Bi) = tcs(b, Bi) + tot(b, Bi). (3.7)

Here, tcs(b, Bi) denotes consensus delay and tot(b, Bi) denotes other delays that might be

involved such as synchronization delay or network delay. Therefore, by using equations 6

and 7, overall network latency, T (b, Bi), for a block to be generated can be given by:

T (b, Bi) = tp(b, Bi) + ts(b, Bi). (3.8)

Therefore, in order to achieve maximum performance for data storage on a blockchain,

the optimization problem can be represented mathematically as:

min T (b, Bi) & max S(b, Bi) (3.9)

Thus, this optimization problem provides a mathematical foundation for determining the

most e�cient allocation of data to di↵erent blockchains within the HierChain framework.

In order to achieve this, we have used three distinct blockchains in our experimentation.

These blockchains are selected such that they have variable network latency and block

sizes based on their ability to provide security and scalability. A detailed description of

our proposed solution for data access and storage is provided in the subsequent section.

3.4 Proposed Solution

HierChain classifies the data on the basis of its sensitivity and stores it on di↵erent

blockchains according to it. We build a storage hierarchy consisting of di↵erent types

of blockchains selected by the given optimization problem making it scalable and e�cient.

A component-wise description of the proposed hierarchical storage model is shown in

Figure 3.5.

3.4.1 Data Initialization and Classification

The health data can be from various sources such as the sensors used for monitoring

patients, health insurance data, and pharmaceutical supply data. This vast amount of

data if not preprocessed becomes di�cult to handle. Therefore, we use filtering and data

reduction techniques followed by data classification and tagging before actually storing

the data on the blockchain.
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Figure 3.5: The Layered Architecture of HierChain.

The first phase of our proposed approach as given by Algorithm 1 is explained in the

following steps:

Algorithm 1 Data Initialization and Classification
Input: Raw data from various data sources.
Output: Classified and filtered data as public (dp), restricted (dr) and confidential

data (dc).

1: procedure Initialization(S)
2: while True do
3: for i = 1 to sizeof(Nodes) do
4: if (data==valid) then
5: Data Filtering
6: Data Aggregation
7: Data Classification
8: else
9: Data is Invalid

10: end

1. To handle the redundant and voluminous raw data, we first clean the data to filter

out the outliers. This is followed by a data aggregation process that integrates

multiple data from various sensors into a single data batch. The data from light or

resource-constrained IoT devices is preprocessed by the help of fog nodes while full

nodes can perform the computation on their own.

2. The information about the storage of the generated data is then mapped according

to the sensitivity of the data. Although all kinds of user medical data should be

protected from unauthorized access, the levels of sensitivity can vary when it comes

to the secure storage of data. We classify the health data into three categories

namely public data, restricted data, and confidential data.

3. The data classification is performed by training data sets for a machine learning
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based algorithm that further performs data tagging. As described in the

next subsection, we use Principal component analysis (PCA) technique for data

preprocessing and Naive Bayes for data classification on the fog layer. The data

which is highly sensitive is first encrypted by the fog layer and tagged as restricted

or confidential accordingly before sending it for storage. If an IoT device wants

to send pre-encrypted data, it has to tag the data itself before sending it to the

next layer. The data is encrypted using the Advanced Encryption Standard (AES)

algorithm where each user has their own unique AES encryption key to encrypt data

before uploading it to the blockchain. AES is a widely used symmetric key cipher,

which means that the same key is used for both encryption and decryption processes.

The encrypted data can then be stored on the blockchain along with a reference to

the encryption key used.

3.4.2 Data Preprocessing, Security, and Classification on the Fog Layer

To keep health data private according to the above-mentioned regulations, we use an

automated method for the privacy classification of user data. The first step in the process

involves the preprocessing of data that is performed by the fog layer in the form of di↵erent

subtasks described as follows:

• Data cleaning: Some parts of the received health data can be inaccurate or irrelevant

for the required application. Data cleansing helps in reducing the complexity and

computational time by removing unnecessary data features.

• Filtering: The medical IoT devices may produce imperfect and noisy data that may

increase the complexity of the model built, therefore it needs to be filtered first.

• Aggregating: Since there are many sensors used for health monitoring, the fog nodes

aggregate all the information from these sensors to reduce bandwidth consumption.

• Wrangling: The raw data from di↵erent sensors are not in the same format, therefore

it is converted to a common format to make it more convenient for storage and later

computations.

We use the PCA technique [86] for data preprocessing which is a multivariate technique

that extracts important information by analyzing a data table to display the similarity

patterns as data points in maps. PCA transforms the original high-dimensional data

into a new set of data that is lower-dimensional, while still retaining the most important

information. It achieves this by identifying the principal components in the data, which

are linear combinations of the original features that explain the most variation in the

data. The first principal component captures the most variation, the second captures the

second-most variation, and so on. By reducing the dimensionality of the data, PCA can

improve the accuracy of machine learning models and reduce the risk of overfitting.

The Naive Bayes algorithm is a widely used machine learning technique that is known for

its speed and ability to perform well in multi-class classification tasks [87]. In our work,
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since our focus is on classifying user-health data into public, restricted, and confidential,

the Naive Bayes algorithm appears to be a suitable choice for meeting our classification

needs. The goal of the classifier is to predict the probability of a given instance belonging

to a particular class, based on its features.

HierChain also leverages the privacy-preserving ML technique called di↵erential privacy to

protect the privacy of sensitive data during analysis [88]. Di↵erential privacy ensures that

the presence or absence of an individual’s data in the dataset does not significantly impact

the outcome of the analysis. It achieves this by injecting controlled noise or randomness

into the computations performed on the data. This noise masks the contribution of

individual data points, preventing the extraction of sensitive information.

• Sensitivity Analysis: For each category of data (public, restricted, and confidential),

a sensitivity analysis is performed to determine the maximum impact that a single

data point can have on the analysis results. Let’s denote the sensitivity of the

analysis function as �f, which represents the maximum di↵erence in the output of

the analysis function f when a single data point is added or removed.

• Privacy Budget: A privacy budget, denoted as ", is established to quantify the

allowable privacy loss. The privacy budget determines the amount of noise that will

be added to the analysis results.

• Noise Generation: The noise generation mechanism, i.e., the Laplace noise, is applied

based on the selected privacy budget and sensitivity of the analysis. The Laplace

mechanism adds noise from a Laplace distribution with a scale determined by the

sensitivity (�f) and privacy budget ("). The probability density function (PDF) of

the Laplace distribution is given by:

Lap(x|µ, b) = 1

2b
· exp

✓
� |x� µ|

b

◆
(3.10)

where x is the random variable, µ is the location parameter (mean), the scale

parameter b determines the amount of noise added, and it is computed as b =

�f / ".

• Privacy-Preserving Analysis: The fog nodes perform privacy-preserving analysis on

the data using the selected noise generation mechanism. The analysis function,

denoted as f, is applied to the data, and the noise is added to the results to protect

the privacy of individual data points.

To further illustrate the integration of di↵erential privacy in the fog layer, let’s consider an

example where the fog nodes perform a query to calculate the average BMI (Body Mass

Index) of a subset of individuals in the dataset.

Let’s define the function f as the average BMI calculation function, and let X be the input

dataset. The sensitivity �f of the average BMI calculation is 1 since adding or removing
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a single individual’s data can change the average by at most 1 unit. Using Laplace noise

addition, the privacy-preserving calculation of the average BMI, denoted as Ẑ, can be

represented as:

Ẑ = f(X) + Lap(0,
�f

"
) (3.11)

where Ẑ represents the perturbed output and Lap(0, �f / ") represents the Laplace noise

with a center at 0 and a scale parameter �f / ". By incorporating di↵erential privacy into

the fog layer of HierChain, sensitive medical data can be protected during the analysis

process.

3.4.3 Secure Data Access and Storage

Every IoT device or fog node that wants to access or store data is first authenticated by

a “digital signature” in the blockchain. The blockchain layer consists of di↵erent kinds

of blockchains with varying levels of security, functionality, and scalability. Moreover, for

users to have control over their stored data, we use Access Control Lists (ACLs) to enforce

access control policies in the blockchain. They specify which entities are allowed to access

specific resources and what actions they are allowed to perform on those resources and are

enforced by smart contracts.

To handle the large amount of health data, HierChain exploits the specific features of

di↵erent existing blockchains to store and access data. A blockchain is selected primarily

on the basis of the sensitivity of data. Secondly, the specific features of the blockchain

such as the block generation time (speed), security hash rate, fault-tolerance, scalability,

etc. determine the kind and amount of data that will be stored on it. Moreover,

every blockchain consists of one or two sidechains alongwith the mainchain to perform

specific functionalities. To ensure that the system is scalable and cost-e↵ective, we use

InterPlanetary File System (IPFS) as an o↵-chain distributed data storage mechanism

that provides faster access to data. IPFS is a protocol and peer-to-peer network designed

to provide a decentralized and distributed file storage system. We utilize a hybrid storage

approach where sensitive data is stored on the blockchain network itself for immutability

and security, and less sensitive data is stored on IPFS for e�ciency and scalability.

A prototype for our proposed approach is given in Algorithm 2. Here, we consider three

blockchains (which can be increased according to the health data) to securely store and

access the classified data (output of Algorithm 1). HierChain stores the classified data on

the considered blockchains as follows:

1. Public data: This kind of data is voluminous and has the least security requirements.

HierChain uses a private blockchain to store public data. The reason is that private

blockchains though less secure, are highly scalable due to their speedy consensus

algorithms [89].

2. Restricted data: Restricted data being more sensitive is stored on a consortium

blockchain. Restricted data often needs to be kept secret between an organization
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Algorithm 2 Secure Data Access and Storage

Input: Classified and filtered data as public (dp), restricted (dr) and confidential data
(dc).

Output: Data stored in public (Bpu) , private (Bpr) and consortium blockchains
(Bcn).

1: procedure Initialization(S)
2: while True do
3: for i = 1 to sizeof(Nodes) do
4: Validate Node Ni

5: if (Ni==Valid) then
6: Add node Ni

7: Grant storage access to Ni

8: switch data do
9: case 1: data=dp

10: Store in (Bpr)

11: case 2: data=dr
12: Store in (Bcn)

13: case 3: data=dc
14: Store in (Bpu)

15: else
16: Access failed

17: end

or a group of people, therefore a consortium blockchain can fulfill its required security

needs.

3. Confidential data: This is the most sensitive data which requires the highest amount

of security. Although the security requirements of confidential data are very high, the

data volume is low. Therefore, HierChain uses a public blockchain to store such data

in an encrypted form. A public blockchain provides the highest amount of security

due to large number of validators and complex consensus algorithms involved [90].

3.4.4 Sidechains Design and Interactions

In this architecture, the healthcare system is maintained through a main blockchain and

three side-chains (could be increased according to requirements of healthcare providers).

The three side-chains regulate di↵erent components of healthcare system namely:

• Patient’s Data: This side-chain is a consortium blockchain. Every patient is

recognized through a universally unique patient identifier assigned by the Certificate

authority (CA). The CA ensures the authentication of every patient so that a

person’s private data is protected from illegal access. The information to be stored

about a patient will include his personal data (contact no, address, blood group, age

etc.), medical records of any past illness, allergies and other relevant data collected

from wearable IoT devices. This huge amount of data is not feasible to be stored

on the blockchain due to scalability issues leading to slow transaction processing.
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Therefore, we store the patients data in an o↵-chain storage using a fog/edge server.

The patient can control with whom he wants to share his health-related data and

for how much time. This data can also be used for processing and making decisions

by applying AI techniques in the cloud server. To secure the data stored in cloud

server, we store the hash of information on the side-chain which is a small value. If

we want to verify the integrity of our data, we can calculate its hash and match it

with the associated hash stored on the blockchain. Whenever new data is collected,

the blockchain is updated and all the members a�liated by the patient to be on his

care team can access this new information.

• Pharmaceutical suppliers management: This is also a consortium blockchain

which is used to track medicine supplies and verify their integrity. Drug supply

chain [42] can be managed through blockchain by using smart contracts and unique

barcodes tagged to every drug. The barcodes present on the drugs are scanned

and stored on the blockchain in the form of an immutable distributed ledger. The

blockchain records are also updated according to the supply chain when transferred

from one party to another. Since this is not a public blockchain, only authorized

users can view and update the blockchain. This side-chain will help in enforcing drug

traceability through accurate tracking of any drug’s chain of custody. Moreover, this

will help small retailers in financial issues through automated payments and provide

easy access of medicines to hospitals in case of emergencies.

• Hospital’s information: Being a public blockchain, this sidechain maintains

information about every hospital, the services they provide and their specific

specialisations. This helps the patients to search for the best available health services

near them on the basis of their requirements. This unites all the providers into

a decentralized repository which will benefit the citizens as well as the hospitals.

Moreover, this chain can also maintain publicly the feedback of the hospitals. This

will force the providers to deliver quality services.

The main blockchain is a public blockchain used to initiate transactions amongst the

entities of side-chains through the use of “smart contracts”. A smart contract, similar

to an actual contract, is an agreement in the form of a computer code between two

parties without the need of any third party to enforce it. Smart contracts enforce data

authentication and authorization. We can track down all the activities associated to a

unique ID right from the beginning of the registration of that ID through them. In this

manner, a patient or a supplier can be authorized to a particular hospital in a verified

manner. The main blockchain stores the records in an encrypted form by generating a

hash value for every transaction. We use cloud servers to store the data of patients. Only

the hash of the data is stored online in the main blockchain instead of storing the whole

data to increase the speed and e�ciency of transactions.
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Figure 3.6: Healthcare system architecture.

System Interactions

We outline the system as follows. Doctors, patients and pharmaceutical suppliers first

register themselves on the blockchain using their unique addresses. The sidechains are

used to store data about specific entities, execute smart contracts, and perform unique

functionalities. The main chain stores information in an encrypted form and serves as a

common platform to all the sidechains. This framework allows several healthcare entities

to participate whilst preserving the decentralization of the system. As shown in Figure 3.6,

assets (such as data and cryptocurrency) can be transferred from the sidechain to the main

chain and vice versa. For o↵-chain data storage, the sidechains avail edge and fog servers

for faster retrieval and storage of data. However, the data storage and computational

facilities required by main chain are extensive, therefore they are connected directly to

the cloud servers. Smart contracts are used to store the mapping information and data

regarding a particular entity and its interaction with other entities. For instance, the

smart contract deployed on the patient’s sidechain stores a mapping from the patient’s

contract address to his unique ID. The account contract of a patient also contains details

about his personal information, medical history, and record of healthcare providers allowed

to view/modify the patient’s medical files. This consortium-based sidechain allows only

authorized viewers to execute the smart contracts and read/verify the blocks. Moreover,

due to pre-authorized verification, no malicious nodes could post false transactions by

colluding, thus eliminating the need for proof-of-work. Therefore, we use Delegated Proof

of Stake (DPoS) mechanism [91] for consensus since the nodes are pre-validated and known.
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3.5 Performance Analysis

In this section, we evaluate the performance of HierChain through extensive

experimentation on real-time data.

3.5.1 Experimental Setup

We created a testbed to simulate a real-time environment for the proposed

blockchain-based framework that helps in the management of IoT health-data. The

proposed framework, HierChain, consists of the following elements:

• Healthcare datasets

• Raspberry Pi 4 Model B device

• Cryptocurrency Wallet

• Processing units

We used Medical Cost Personal Dataset1 to access data, write and deploy smart contracts,

and perform transactions on HierChain. Three di↵erent blockchains are used to store data

classified according to its sensitivity. Data pre-processing and classification are performed

at the fog nodes using the PCA and Naive Bayes algorithms respectively. HierChain

uses Ethereum (public blockchain) to store confidential data, Hyperledger Sawtooth

(consortium blockchain) to store restricted data, and MultiChain (private blockchain)

to store public data.

The considered dataset consists of 7 features that are classified into public, restricted, and

confidential categories as follows:

• Public- age, BMI, children: These features are generally not considered sensitive

medical information and are often collected in public health surveys. They can be

used for demographic analysis and to identify general health trends.

• Restricted- sex, region: While region may not be considered highly sensitive medical

information, it is still personal data that can be used to identify individuals. Also,

sex can be considered sensitive information in some contexts. As such, it is usually

treated as restricted information and is subject to data protection laws.

• Confidential- smoker, charges: These features contain highly sensitive medical

information that is considered confidential. Smoking status can reveal important

health risks, and charges can provide insights into an individual’s medical history

and treatment. This information should be carefully protected and only shared on

a need-to-know basis.

1https://gist.github.com/meperezcuello/82a9f1c1c473d6585e750ad2e3c05a41
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Framework Element Configuration Parameters Values

Healthcare
dataset

Source Medical Cost Personal Dataset
Number of records 1338

Features age, sex, BMI, children, smoker, region, charges

Full
Node

Operating System Ubuntu 18.04
CPU Intel Core i7-7700 CPU @ 3.60GHz
RAM 64 GB
Storage 1 TB SSD

Fog
Node

Operating System Ubuntu 18.04
CPU Intel Core i7-6600U CPU @ 2.60GHz
RAM 8 GB
Storage 256 GB SSD

Raspberry
Pi-4B
(light
node)

Number of devices 3
CPU Quad-core ARM Cortex-A72
RAM 4GB LPDDR4-3200 SDRAM
Storage 32GB MicroSD card

Data
processing

Python 3.7 Flask
Data pre-processing PCA (n components = 3)
Data classification Naive Bayes

Blockchains
Ethereum PoS, Network: Public, Network ID: 15734

Hyperledger Sawtooth pBFT, Network: Consortium, Initial Nodes: 3
MultiChain Round-robin, Network: Private, Network ID: 98765

Table 3.1: Configuration details.

It’s important to note that the classification of medical information can vary depending

on the specific context and regulatory requirements of the situation. This is just a general

test-case scenario for the medical insurance dataset.

We created a network of blockchains in which the end-users send medical data to the fog

nodes connected to them. We use Raspberry Pi 4B as light nodes that send data for

computation to the fog node. The data from these nodes is then sent to the fog nodes for

pre-processing and classification. The technical details of all the components used in our

experimentation are described in Table 3.1.

Public Consortium Private 

Store Data

return
Access Data

Raw Data

Validate Data

Blockchain Network

Data Filter

deploy

Data Classify

Data Aggregate

Create Record

Validate DataValidate Data

Create Record Create Record
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Figure 3.7: Logical flow execution of HierChain.

The steps in the execution flow of HierChain are illustrated in Figure 3.7. Fog nodes

perform filtering and classification of data by associating a tag with it. The tags associated



52 Chapter 3. Data Security for IoT

with the data can be either public, restricted, or confidential. Moreover, confidential and

restricted data is encrypted either by the end-user or the fog node depending upon the

preference of the user. We assume that the communication delay of delivering the messages

from the source node to the fog node is very less and does not impact the overall execution

time of the blockchain. After the raw user data is preprocessed and encrypted by the fog

node, it is stored on the particular blockchain platform according to the tag associated

with it (Algorithm 2). The data records are then validated by the blockchain’s consensus

algorithm in the form of blocks and recorded on the blockchain. This data can then be

accessed by the cloud servers or users for storage or decision-making purposes according to

the ACLs. We enforce ACLs using smart contracts that has conditions to decide whether

access to data or resources is granted or denied. HierChain stores the tagged data on

di↵erent blockchains (selected through the optimization problem) as follows:

• Ethereum: Ethereum is a public, open-source, and decentralized blockchain-based

platform that uses the Proof-of-Work (PoW) consensus protocol [82]. Since it is

highly secure due to active participation and decentralization of nodes, it is nearly

impossible for intruders to gain control over the network. However, due to long

transaction times and computationally intensive consensus methods, it faces the

issue of scalability at the trade-o↵ of high security. Therefore, HierChain uses it

to store confidential data that requires the highest protection but consumes less

network bandwidth.

• Hyperledger Sawtooth: Hyperledger Sawtooth is a Hyperledger project that supports

two types of consensus algorithms: Practical Byzantine Fault Tolerance (pBFT) and

Proof of Elapsed Time (PoET) [43]. Hyperledger Sawtooth is preferred because these

consensus protocols are both fast and scalable. Therefore, we use it to store restricted

data shared amongst a group of people within an organization.

• MultiChain: MultiChain is an open-source platform for the deployment and creation

of private blockchains. The mining process in MultiChain is controlled by a set of

identified validators. The round-robin mining protocol uses a simple and e�cient

consensus mechanism based on a round-robin algorithm where each node takes turns

proposing the next block. MultiChain is used to store public data as it provides

scalability and faster transactions at the cost of security.

3.5.2 Experimental Procedure

With the testbed and procedure explained in the previous section, we then proceed to test

the performance of HierChain for healthcare data storage. We compare the performance

of HierChain with 3 scenarios:

• All the data is stored using smart contracts on Ethereum platform.

• All the data is stored using smart contracts, called “chaincode”, on Hyperledger

Sawtooth platform.
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• All the data is stored on MultiChain using streams.

Moreover, we also present the attack evaluation to provide a comprehensive understanding

of the framework’s resilience and shed light on the capabilities, motivations, and potential

attack vectors. This evaluation will help uncover potential weaknesses in the HierChain

framework and enable the development of e↵ective countermeasures to mitigate security

risks.

(a) Principal components.

(b) Outlier Detection.

Figure 3.8: Data preprocessing using PCA.

3.6 Results and Discussions

The presented results aim to provide a scalable data management framework without

compromising the security and performance of the system. We discuss the evaluation of

HierChain in terms of performance and security in the following subsections.

3.6.1 Performance Evaluation

Fog nodes perform data preprocessing of data using the PCA technique to visualize the

dataset and detect outliers that may a↵ect the results of subsequent analysis. As we

can see from Figure 3.8a, the first two principal components are linear combinations of

the original variables, where the first component explains the largest possible variance,

and the second component explains the second-largest possible variance. This plot helps

to visualize any underlying patterns or clusters in the data that may be di�cult to

see in the original high-dimensional space. Figure 3.8b is a box plot, that identifies

any potential outliers in the data. We can see that there are a few points in some

columns that fall outside the whiskers, which suggests that they may be outliers.
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(a) Data before PCA.

(b) Data after PCA.

Figure 3.9: Visualization of the e↵ect of PCA on the data.

Figure 3.10: Confirmation time vs data sensitivity

The data appears to be relatively clean with a few outliers in the “age”, “bmi”, and

“charges” features. These outliers are investigated further to determine if they are

errors or legitimate data points. The “children”, “smoker”, and “region” features

do not appear to have any outliers. Overall, Figure 3.9 shows a visualization of the

e↵ect of PCA to gain insights into the underlying patterns in the data. Figure 3.9a

shows the original data with the two most important features (Feature 1 and Feature

2) and the target variable (charges) as the color scale. On the other hand, Figure

3.9b shows the data after PCA with the two principal components (PC 1 and PC 2),

where each data point is represented by its two principal component scores, which are

linear combinations of the original features. It shows that the data has been transformed

and compressed into two dimensions while still preserving the variance of the original data.

We performed experiments with a di↵erent number of transactions to compare the

performance of HierChain in terms of scalability. Figure 3.10 shows the confirmation times
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Figure 3.11: Average throughput vs Blockchain type.

for di↵erent kinds of data. It shows that the average confirmation time for confidential

data is the highest (around 171 seconds), followed by restricted and public data. This is

because confidential data is stored on Ethereum (which is more computation-intensive) as

it requires the highest amount of security. To compare the performance of HierChain, we

use the following metrics:

• The throughput of a blockchain is the number of transactions or data items that can

be processed and stored by the blockchain network within a specific time interval,

typically measured in transactions per second (TPS) or data items per second.

As shown in Figure 3.11, the throughput of HierChain is comparable to that of

Multichain although it provides the security level of an Ethereum blockchain. Since

Multichain is a private blockchain, it is controlled by a node or a group of nodes,

while Ethereum uses a fully decentralized PoW consensus protocol. Figure 3.11

shows that when the number of transactions increases, the throughput of Ethereum

and Hyperledger decreases considerably. However, HierChain provides an average

throughput of 299.6 transactions per second even when the number of transactions

is 10,000.

• The time it takes for a blockchain to execute and confirm all the transactions in

a block is termed as the execution time. As the number of transactions increase,

the execution time increases due to clogging of the network. Figure 3.12a shows

that the execution time of Ethereum is very high (255.4 seconds) as compared to

other methods. This is because the process of mining used in Ethereum is much

more exhaustive as compared to Multichain and Hyperledger. HierChain has a

comparatively less execution time in the order of 44.2 seconds even when the number

of transactions are high due to its selective storage criteria.

• Latency in a blockchain can be defined as the di↵erence between the deployment and

completion time for a transaction. As represented by Figure 3.12b, Ethereum has the

highest average latency as compared to other approaches because the generated block
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is broadcasted across all nodes in the network. The average latency of HierChain

is 61.2 seconds when the number of transactions are 10,000. Although the security

standards HierChain are high, its average latency is much less than Ethereum and

comparable to a private blockchain.

Therefore, we can see that HierChain outperforms the existing methods as it provides the

required scalability as well as data security through optimal storage of data.

(a)

(b)

Figure 3.12: (a) Execution Time vs Blockchain type, (b) Average latency vs Blockchain
type.

3.6.2 Attack Evaluation on Fog Layer

We define the following variables to analyse the security of the fog layer:

D: Original dataset containing sensitive healthcare data.

D’: Perturbed dataset obtained by applying di↵erential privacy mechanisms to D.

A: Attacker’s knowledge or background information.

Q: Query function representing the analysis or computation performed on the dataset.

�: Privacy parameter that represents the overall privacy guarantee of the di↵erential

privacy mechanism.

The attack model is characterized using the following descriptions:
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(a)

(b)

Figure 3.13: Attack success rates by varying the privacy parameters.

1. Attacker’s Knowledge: The attacker’s knowledge or background information,

denoted as A, can be represented as A = {A1, A2, . . . , An}.

2. Attack Objective: The attacker’s objective is to infer sensitive information from the

perturbed dataset D’ using the knowledge A and query function Q.

3. Security Analysis: The security analysis aims to quantify the risk of privacy breaches

and the potential for reidentification attacks.

The attack success rate represents the likelihood of an attacker successfully breaching

the privacy of the data despite the di↵erential privacy measures in place. By varying

the privacy parameters (" and �), we analyze the impact of these parameters on the

e↵ectiveness of the privacy protection mechanism. Therefore, we evaluate the resilience

of fog layer and identify the optimal privacy parameters that minimize the attack success

rate through Figures 3.13a and 3.13b. The y-axis of the graphs represents the attack

success rate, which indicates the probability of an attacker successfully de-anonymizing or

extracting sensitive information from the protected data. It helps determine the level of

privacy protection needed for the fog layer model without significantly compromising the

usefulness of the data for analysis or computation.

3.6.3 Attack Evaluation on Blockchain Layer

In this section, we examine the attack evaluation for the proposed HierChain framework

by describing the related actors as follows:
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Threat Actor

A threat actor is an attacker who wants to compromise the integrity and privacy of medical

data stored on the HierChain system. It can be an adversary or a group of adversaries

trying to steal the sensitive health data of users for unethical purposes.

Attack Vectors

• Sybil attack: The attacker could create multiple fake identities to gain control of the

HierChain network and manipulate the classification of health data, leading to the

storage of sensitive data on less secure blockchains.

• Data tampering: The attacker could modify the health data stored on the HierChain

system, compromising its integrity and accuracy.

• Denial of Service (DoS) attack: The attacker could launch a DoS attack on the

HierChain network, making it unavailable to medical professionals and causing

disruptions in the diagnostic process.

Evaluation

• Sybil attack: Since HierChain saves the most sensitive data on Ethereum, we

compare the Sybil attacks on Ethereum with Hyperledger and Multichain. We detect

the Sybils using the k-means clustering algorithm [92] to group nodes that have

similar transaction patterns. Nodes that belong to the same cluster are likely to be

legitimate nodes, while nodes that do not belong to any cluster may be Sybil nodes.

This technique cannot provide a perfect measure of the actual number of Sybil nodes

but we use it for the calculation of a rough estimate. As we can see from Figure 3.14,

Ethereum is less prone to Sybil attacks than MultiChain, therefore HierChain uses it

to save confidential data. This is because public blockchains are generally considered

to be more resistant to Sybil attacks than private blockchains since they rely on a

decentralized network of nodes to validate transactions and maintain the integrity

of the ledger. The decentralized nature of public blockchains makes it di�cult for

an attacker to create a large number of fake identities without being detected by the

rest of the network.

• Data tampering: Although blockchain technology is known for its security and

immutability, we use digital signatures and text encryption before storing sensitive

data to ensure the integrity of the data stored on blockchain. Moreover, since

HierChain preprocesses the data to remove redundancy using fog nodes, any

malicious data injection would need to occur before the preprocessing stage to avoid

detection.

• DoS attack: Since HierChain is a distributed system, a DoS attack would need to

target multiple nodes simultaneously to cause disruption to the network. Moreover,
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in the event of an attack, we could use load-balancing to use a di↵erent blockchain

to store data temporarily for instant availability.

Figure 3.14: Comparison of Sybil attacks on di↵erent blockchains.

Overall, HierChain has the potential to address the challenges faced by healthcare systems

in the secure storage and sharing of medical data.

3.6.4 Security Assessment

Security of HierChain can be analyzed through the STRIDE threat model [93].

There are two possible ways to perform STRIDE-based threat modeling [93]:

STRIDE-per-interaction and STRIDE-per-element. Since STRIDE-per-element requires

analysing the operations and behavior of each component in the system, it is not suitable

for our framework. Therefore, we perform STRIDE-per-interaction that considers the risks

against system interactions and its prevention strategies are generally su�cient to protect

a system (as cyber-attacks are normally caused due to malicious interactions).

STRIDE is a mnemonic for six categories of threats– Spoofing, Tampering, Repudiation,

Information Disclosure, Denial of Service (DoS), and Elevation of Privilege. Every device

and user who wants to store or access the data is first authenticated by HierChain through

digital signatures. Due to this pre-verification step, no user could spoof or impersonate

someone else. Since blockchain is an immutable ledger for data storage, tampering with

data is almost impossible without being detected. All the nodes are pre-verified in

HierChain and every posted transaction is signed with the identity provided to the node.

Therefore, no user can claim non-repudiation of his actions in the network. HierChain

prevents information disclosure to unauthorized entities by giving complete control to the

users on who can access their data. Since we are storing the data on di↵erent blockchains,

so even if one blockchain su↵ers from the DoS attack, the whole system will not come down

to a halt. Elevation of Privilege is prevented in HierChain as it gives access to information

only to authorized users. Moreover, all the sensitive information is encrypted before being

stored on the blockchain layer. Therefore, we can conclude that the proposed framework

fulfills the security constraints according to the STRIDE model.
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3.7 Summary

In this chapter, we developed a novel approach that combines the advantages of di↵erent

blockchains and fog computing to store the data records in an optimal manner. The main

focus of this work was to overcome the scalability challenges of existing blockchain systems

while maintaining data security and the performance of the network. Our comprehensive

evaluation aims to provide valuable insights into the practical implications of HierChain

in healthcare context proving its viability for real-world deployment and its potential

to safeguard sensitive medical data. Although blockchain can keep the data secure, it

does not guarantee the privacy of data if an attacker is successful in eavesdropping any

unencrypted data. The next chapter explores the privacy aspect of IoT-based applications.



Chapter 4

Data Privacy in IoT Applications

In the previous chapter, we focused on the security challenges associated with IoT,

particularly through the potential of blockchain technology to enhance data integrity and

confidentiality. While ensuring security is crucial, it is equally important to address the

privacy concerns regarding user data in IoT systems. This chapter focuses on privacy

concerns within IoT and how to address them using the concept of FL.

In this chapter, we consider another application of IoT, the smart grid, and experiment

on energy-related data to enhance energy e�ciency while maintaining user data privacy.

Specifically, we use Non-Intrusive Load Monitoring (NILM) to analyze detailed energy

usage data to identify individual appliance loads, o↵ering significant benefits for energy

management and e�ciency. While our discussion includes a focus on NILM, the privacy

architecture we propose is designed to be application-agnostic, suitable for a wide range

of IoT applications. This chapter underlines the essential balance between utilizing the

potential of IoT technologies and protecting the privacy of individuals in an increasingly

interconnected environment.

4.1 FL for Data Privacy

Electric utilities were historically grappling with the challenge of increasing e�ciency and

detecting outages, because they had limited visibility into their networks, especially in

the last mile of distribution. With the advent of smart meters and advanced metering

infrastructure [94], they were finally able to gather high-resolution, aggregate data

from their customers for billing purposes in addition to generating useful insights, from

monitoring aberrant power usage patterns and developing virtual energy audits to demand

response. Some of these applications rely on the power consumption profile of home

appliances, which is not readily available and must be inferred from the aggregate data.

Non-Intrusive Load Monitoring (NILM) [95] is the problem of disaggregating the

total household energy use, measured by a smart meter, into the load of individual

appliances. It helps reduce the energy consumption and electricity bill of homeowners

by providing real-time feedback on appliance-level power consumption [96], improving the

load forecasting accuracy, and suggesting load shifting strategies during peak hours [97].

While there are several promising techniques for NILM, including signal processing and

probabilistic graphical models, deep learning, and in particular the attention mechanism,

has been shown to be more e↵ective [98]. One such deep learning model is based on

the notion of sequence-to-sequence (seq2seq) translation, in which a sequence of words,
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e.g. in one language, is mapped to a sequence in another language. By analogy, in

energy disaggregation, the seq2seq translation can be used to map the sequence of the

aggregate household demand into the power consumption of individual home appliances.

However, traditional seq2seq models often struggle with long input sequences because they

use Recurrent Neural Networks (RNNs), which process the input one token at a time.

This processing can become computationally expensive for long sequences and make it

di�cult for the model to learn dependencies between tokens that are far apart in the

input sequence [99]. Transformers, however, handle long input sequences more e�ciently

by processing all tokens in parallel [100]. They use a self-attention mechanism to weigh the

importance of each token in the input sequence for each output token, allowing the model

to capture long-range dependencies more e↵ectively. This makes transformers a more

suitable choice for NILM, where the input sequences can be long and complex, and the

model needs to learn dependencies between di↵erent parts of the sequence to accurately

identify individual loads [101].

Regardless of which machine learning model is used for NILM, sending the smart meter

data along with groundtruth power profiles of home appliances to a remote server that

trains or runs this model could raise privacy concerns. This is because a passive adversary

or an intruder can obtain appliance-level information and use this private information

to learn the user’s habits and lifestyle, such as when they come home, their preferred

temperature setting and activities of daily living [102, 103]. To address these privacy

concerns and enable training the NILM model on decentralized data that belong to many

clients, possibly with unique appliances and usage patterns, Federated Learning (FL) has

been adopted in recent work [104, 105, 103, 106]. In this framework, the NILM model

can be trained by the clients in a collaborative fashion, without requiring them to share

their data with a central server [39]. The global model is built by aggregating the model

updates performed independently by the clients on their local data.

While FL addresses the concern related to sharing raw data with a central server, there

are still several challenges that limit its real-world application. Firstly, FL algorithms

are prone to privacy attacks during the exchange of parameters between clients and the

aggregation server [107, 108]. The server might be Honest-But-Curious (HBC), i.e., a

passive adversary that follows the aggregation protocol but takes a peek at the clients’

updates to extract additional (private) information. Di↵erent techniques have been

proposed to mitigate this attack, from di↵erential privacy to homomorphic encryption

and secure multiparty computation [109]. Secondly, malicious clients may attack the

FL model by sending incorrect updates to the server during the training process. This

client-side attack has multiple types, namely the poisoning attack, model inversion attack,

membership inference attack, and backdoor attack [110]. However, existing defense

mechanisms against malicious clients in FL are inadequate and more research must be done

on developing robust defense mechanisms against adversarial attacks, particularly those

that are di�cult to detect or prevent [108]. Moreover, the current FL-based frameworks

are not fully e↵ective in the presence of heterogeneity, e.g. when homes contain di↵erent
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appliances or exhibit dissimilar feature distributions [111, 112].

Recent advances in FL motivated researchers to apply this paradigm to NILM [105, 103,

106], but the related work builds on the standard FL framework, failing to address the

specific challenges of FL in NILM, namely dishonest clients and heterogeneity. We address

this gap in the literature by introducing a robust and privacy-aware FL-based NILM

framework. The main contributions in this chapter are summarized below.

• We propose a robust NILM framework based on FL. We use the bidirectional

transformer architecture that follows the pattern of sequence-to-sequence learning

for energy disaggregation to achieve better performance in terms of the diverse smart

meter clients. To address the challenge of data heterogeneity, we use Model-Agnostic

Meta-Learning (MAML) which allows fast and dynamic adaptation of the model

according to the client updates.

• To make the model robust against dishonest clients, we devise a reputation scheme

for the selective sampling of clients in every round of FL based on their gradient

updates during the global model training.

• Through extensive experiments, we corroborate the e↵ectiveness of the proposed

FL-based NILM framework by comparing it with the centrally-trained model.

4.2 Preliminaries

4.2.1 Non-Intrusive Load Monitoring (NILM)

The aim of NILM is to identify the electricity consumption of individual appliances

using aggregate data, e.g. from a smart meter. Since it requires only a single point of

measurement and no extra equipment needs to be installed in the house, this identification

technique is deemed non-intrusive. The aggregated power load for a home is time-series

data denoted by P = [p1, p2, · · · , pT ] where pt represents the smart meter reading at time

t. This value is the sum total of the energy usage of all appliances that were not in the

OFF state. Suppose there are I appliances in a given home, the total power consumption

at t is given by

pt = ↵t +
IX

i=1

e
i
t, (4.1)

where e
i
t is the energy usage of ith appliance and ↵t represents the measurement error,

which is assumed to be small. The disaggregation problem concerns recovering E
i =

[ei1, · · · , eiT ] for every appliance i from the aggregate measurement P = [p1 · · · , pT ]. Thus,
NILM algorithms approximate a function G that performs the following mapping for every

time slot:

G(pt) = [e1t , · · · , eit, · · · , eIt ]. (4.2)

For the disaggregation task, each target appliance must have a threshold value so that

we can determine if it is in the ON or OFF state. Hence, the state for each appliance
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depends on the specified minimum on and o↵ duration, maximum power, and the on-power

threshold. In our experiments, the ON/OFF states are determined by a simple comparison

with the on-status thresholds, but the status changes are considered valid only when they

last longer than the minimum ON and minimum OFF duration. The state s
i
t of an

appliance i at time t is determined as

s
i
t =

8
<

:
1, e

i
t � �

i

�1, otherwise

(4.3)

where �
i represents the threshold value of the i

th appliance, and -1 and 1 correspond to

the OFF and ON states, respectively.

We note that disaggregation is a regression task in which the energy consumption of

individual appliances is estimated. Once the estimates are obtained, they are utilized to

determine the state of each appliance. Therefore, NILM is simultaneously a regression

task and a status classification task. This inspired the choice of the loss function as we

discuss in Section 4.4.3.

Ethical Considerations: In our FL framework for NILM, ethical concerns extend beyond

data privacy and include fairness. The risk of data breaches and unauthorized access to

sensitive information poses significant challenges to the NILM community. Using standard

and widely used and recognized datasets, we ensure the adherence to privacy standards.

These datasets have undergone necessary ethical reviews and clearances, particularly with

respect to data collection, and are anonymized to protect individual privacy, aligning

with standards for research involving human subjects. Furthermore, our use of two

representative NILM datasets, which are collected in two countries from households that

may contain di↵erent types of each appliance, is a step towards addressing issues of fair

and equitable representation.

4.2.2 Federated Learning (FL) and Non-IID Data

The idea of FL is to take advantage of decentralized data and compute power of client

devices to train a machine learning model that achieves high accuracy on the dataset of

every individual client. One of the popular algorithms used to aggregate model updates

from multiple clients is federated averaging (FedAvg) [39]. Concretely, in FedAvg, a server

calculates the average of all updates received from clients in every round to obtain a global

model. The global model is sent to the clients that participate in the next round so they

can further update it according to their own data distribution. Given a loss function f,

the FL’s objective can be written as:

min
w

f(w), where f(w) =
1

n

nX

i=1

f(Xi, Yi;w), (4.4)
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where f(Xi, Yi;w) is the prediction loss on samples of client i, denoted {Xi, Yi}, with w

being the vector of model parameters and n being the number of participating clients in

one round of FL. We assume that clients’ datasets have the following characteristics:

• Non-IID: Every client’s data may be from a di↵erent distribution, such that the data

points and labels available locally do not match the global distribution.

• Unbalanced: The number of training samples in the dataset of each client may vary

drastically depending on the amount of data they hold.

In the NILM application, clients will likely have di↵erent type and number of appliances,

e.g., some customers may not have a microwave at all while others have microwaves of

di↵erent makes and models. Hence, it is reasonable to assume that clients’ datasets are

independent and not identically distributed.

Some of the existing works use FedProx [113] for handling non-iid data, which introduces

an additional regularization term, known as the proximal term, to the standard

federated averaging process. However, FedProx relies on hyperparameter tuning that can

significantly impact its performance. Selecting appropriate values for hyperparameters,

such as the proximal term weight and learning rate, can be nontrivial. Model-Agnostic

Meta-Learning (MAML) [114], on the other hand, aims to learn a general initialization

that can be quickly fine-tuned to new clients or tasks. This enables MAML to handle

variations and imbalances in non-IID data more e↵ectively compared to FedProx. This

motivates the use of MAML for handling heterogeneity in this work.

4.2.3 Threat Model

In this chapter, we assume the aggregation server is honest, but clients can be dishonest

(malicious). The dishonest clients manipulate their own data, but they cannot observe

or manipulate the data of other clients. Multiple dishonest clients may collude and form

a group of sybils to perform coordinated attacks in federated learning. Non-colluding

adversaries can control multiple sets of sybils to carry out poisoning attacks concurrently.

We assume that every class of data required in the global model is included in the dataset

of at least one honest client. This assumption is necessary because, in the absence of any

honest client, the model would not be able to learn anything about the correct classes in

the first place.

We primarily focus on targeted poisoning attacks where the attacker sends malicious

updates to manipulate the parameters of the global model. The goal of the attacker

is to increase the chance of one class being classified incorrectly without changing the

probabilities of other classes. This can be done using the label-flipping strategy [110].

4.2.4 Motivations for the Poisoning Attack

The rationale behind poisoning attacks on NILM-based systems is either to obtain

economic advantages or avoid regulatory compliance issues. One prominent motivation
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is the exploitation of virtual energy auditing [115]. Here, NILM applications, which

analyze appliance-level energy consumption, could be manipulated by attackers possibly

a�liated with appliance manufacturers. Attackers could deceive homeowners into

purchasing new, seemingly more e�cient models by tampering with data to show false

ine�ciencies in appliances like air conditioners. This reveals a strong economic reason

for engaging in poisoning attacks. Moreover, attackers could manipulate NILM data

to show reduced energy consumption to falsely claim incentives o↵ered for buying

energy-e�cient appliances. In commercial contexts, rival companies might engage in

poisoning attacks to impair the NILM systems of competitors, thereby gaining an unfair

market advantage. Furthermore, attackers could alter energy consumption patterns to

either mask aberrant characteristics or create fictitious profiles of a household’s energy

usage to satisfy regulatory requirements.

4.3 The Proposed Solution: Reputation-based Aggregation

and Selection

Suppose there are several homes that have di↵erent kinds of appliances, record their

electricity consumption using a smart meter, and are interested in training an accurate

NILM model in a collaborative fashion. These homes are the clients in FL. There is also

an aggregation server, presumably owned by the NILM service provider, that receives all

the updates from the clients. We outline steps of the proposed FL framework below:

1. The model parameters are initialized and the first round of training begins. At the

central FL server, parameters of the global model are initialized randomly and sent

to participating clients (households) as illustrated in Figure 4.1.

2. The households train the received global model on their own data (locally). They

follow the BERT deep learning model for NILM as discussed in the next section. As

shown in Step 2 of Figure 4.1, the local model updates are then sent to the global

server for model aggregation.

3. The FL server uses the FedAvg algorithm to update the global model. For robust

and fault-tolerant aggregation of the updates, we adopt a reputation model and a

client sampling technique that takes into account clients’ reputation (Steps 3 and 4

of Figure 4.1) as described in Section 4.3.2.

4. The new aggregated optimal model (Step 5 of Figure 4.1) is then broadcast to the

clients and this process repeats until a stopping criterion is met (e.g. maximum

number of training rounds reached).

4.3.1 The BERT Model for NILM

The model we choose for NILM is the Bidirectional Encoder Representations from

Transformers (BERT) model with sequence-to-sequence learning. This model is considered
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Figure 4.1: Illustration of the proposed mechanism.

the state-of-the-art and outperforms the other NILM techniques, according to di↵erent

metrics [98]. The BERT model, with its foundation in transformer architectures,

presents a significant advancement over traditional neural network models such as RNNs.

Transformers employ the self-attention mechanism, allowing the model to process entire

sequences of data simultaneously. This contrasts with older sequence processing methods

that handle one data point at a time. The attention mechanism in transformers

enable dynamic focus on di↵erent parts of the input sequence, which is essential for

understanding context and relationships within data. BERT builds upon this by analyzing

data bidirectionally, considering both prior and subsequent information in the sequence.

This bidirectional processing is particularly e↵ective in NILM, where understanding the

sequential context of energy usage is crucial for accurate predictions.

The basis of the model is BERT [116] which consists of an embedding module,

transformer layers, and an output multilayer perceptron (MLP). It is shown in [116]

that the bidirectional model attains a deeper understanding of the context compared to

unidirectional models. The model takes fixed-length sequential data as input and predicts

the energy usage of individual appliances, an output of the same shape. The on-power

thresholds can then be used to determine the state of each appliance.

The transduction model has an encoder-decoder architecture, where the encoder maps

an input sequence to a continuous sequence of symbols. The decoder then uses the

encoding to generate an output sequence of symbols by spitting out one element at

a time. In the BERT model, the input data is first mapped to a convolutional

output by extracting relevant features from the one-dimensional input sequence and

increasing the dimensionality of the hidden representation sequence. By employing this
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Figure 4.2: Architecture of the BERT model used in this work.

convolutional layer, the network is able to capture important patterns and enhance

the latent representation of the input data. This layer is then pooled and added to

a positional embedding matrix that makes up the sequence positional encoding. The

formed embedding matrix is then sent to a bidirectional transformer consisting of several

layers of transformers and attention heads within each layer. After the multi-head

attention operation in every transformer layer, the previous matrix is further passed

through a position-wise feed-forward network (PFFN). By incorporating the PFFN into

the architecture, the model captures intricate relationships and patterns within the matrix,

leading to improved learning and representation capabilities. Finally, the output MLP

consists of a deconvolutional layer followed by two linear layers. The various layers of the

BERT model are shown in Figure 4.2. The training process of BERT involves masking a

portion of the input sequence with a special token. This random masking, where a fraction

of input elements are masked, allows the model to learn from the surrounding context and

predict the masked items. By focusing on the output results from the masked positions,

the model is compelled to capture significant patterns from the whole input sequence.

Energy prediction is done by the output values multiplied by the maximal device power

while corresponding on-power thresholds are used to obtain the appliance status.

4.3.2 Reputation-based Aggregation for FL

We propose a reputation-based mechanism for the detection of dishonest clients at the

aggregation server. Let cj,t be the gradient received at the server from client j in iteration

t.

Detecting malicious clients

Sybils in FL provide updates that lead to the poisoning of the global model towards a

common objective. In non-IID case, one key insight is that the diversity of the gradient

updates can be used to separate honest clients from sybils. Specifically, since the data

distribution of each client is di↵erent, the updates from sybils will be more similar to

each other compared to the ones from honest clients [117]. Using this insight, we assign

a reputation value to clients that help in the aggregation process by reducing the chances

of suspicious clients being selected. As described in Algorithm 3, cosine similarity is used

to calculate the angular distance between client updates. We choose cosine similarity over
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Euclidean distance because the magnitude of a gradient can be manipulated by sybils to

achieve dissimilarity. But they cannot easily change its direction without reducing the

e↵ectiveness of the attack. We maintain a history for each client and update the history

vector at every iteration into a single aggregated gradient. Thus, instead of using just

the update from the current iteration, cosine similarity is calculated using the aggregated

historical updates. Finally, the maximum cosine similarity a client has with some other

client is compared to the average cosine similarity to calculate the reputation of that client.

Algorithm 3 Detecting malicious clients at server

1: Input: Initial history hj = cj,1, initial reputation rj = 1.
2: for iteration t do
3: for every client j do
4: Receive cj,t for this round and append it to hj

5: while i 6= j do
6: sj,i  hj · hi/(khjkkhik)
7: wj  maxi(sj) . max cosine similarity of client j

8: ⌧ t  average of w for all clients
9: for every client j do

10: if wj > ⌧ t then
11: rj  rj � � · t log t
12: else
13: rj  rj + � · t log t
14: if rj � � then
15: Client j can be chosen for aggregation

16: Select the most reputable K clients for aggregation

Reputation calculation and client selection

The selection of clients for an iteration is based on their calculated reputation for high

accuracy and robust model training. For non-IID data, the reputation is calculated on the

basis of cosine similarity with other clients. The value of reputation, rj is compared to the

average of the maximum cosine similarity of all clients and computed according to Steps

11 and 13 of Algorithm 3. In this algorithm, � represents a hyperparameter that can be

tuned to adjust the rate at which reputations are updated. The choice of t log t as the

reputation update function in the algorithm allows for a gradual and balanced growth of

the reputation score that reflects the long-term contributions and reliability of each client.

It grows faster than linear but slower than quadratic or exponential functions, making

it a better choice for updating the reputation. Since the model should converge to the

optimal point, changes in reputation become more substantial as the number of iterations

increases.

If the reputation score of a client j becomes greater than or equal to the threshold �

(determined experimentally), it means this client can be chosen for aggregation, as it is

considered reputable (Step 14 of the algorithm). Finally, we select K number of clients

with the highest reputation scores for aggregation in this iteration. By iteratively updating
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the reputation scores based on the similarity between client histories and selecting the most

reputable clients for aggregation, the algorithm aims to identify and choose reliable clients,

while detecting potentially malicious or unreliable ones. The reputation scores serve as

a measure of trustworthiness, and the threshold � determines the minimum reputation

required for a client to a↵ect the global model.

Adapting to time-varying clients’ behavior

An assumption made in our work is that clients do not change their type, which dictates

their behavior, during model training; e.g. an honest client will not start behaving

maliciously and vice versa. This can be justified given the short duration of the training

phase, which makes type changes unlikely to occur. But this assumption can be relaxed,

and clients’ reputation can be updated di↵erently to address the following conditions: a)

A client initially deemed trustworthy could begin to exhibit malicious behavior; b) A client

initially categorized as malicious could later demonstrate normal behavior.

To enhance the adaptability of our framework to behavior changes, our reputation

mechanism can be modified to place greater emphasis on the most recent contributions

from clients, rather than a cumulative analysis of their entire historical data, enabling

a more agile and current reflection of a client’s reliability. This can be achieved by

considering a sliding window for calculating each user’s reputation or implementing

exponential smoothing as a forgiveness mechanism.

4.3.3 Model Agnostic Meta-Learning for FL

In meta learning, which is a “learning to learn” approach, the goal is to train a model

(i.e., the main task) by learning from multiple related subtasks. This model can adapt

quickly to new tasks by making use of only a few training iterations and data points. We

use the MAML algorithm of [114] as it is compatible with task definition in FL and allows

us to address the data heterogeneity challenge. Concretely, in our NILM framework, each

subtask involves training the described BERT model on a client’s electricity data. The

global NILM model is optimized towards the direction that could quickly adapt to all

subtasks, each associated with a user’s local data. This enables better generalization to

heterogeneous data.

The benefits of meta-learning in the NILM framework are manifold. First, it allows the

global NILM model to exploit the knowledge gained from training on multiple client

datasets, enabling better generalization to heterogeneous data. This is particularly

advantageous in FL, where clients may have di↵erent types of appliances, energy usage

patterns, or household characteristics. Furthermore, meta-learning can enhance the

e�ciency of the overall NILM process. Since the global model is pre-trained on a diverse

set of subtasks, it can quickly adapt to new client data with only a few iterations and data

points. Additionally, meta-learning enables knowledge transfer across clients. The global

NILM model can capture common patterns and dependencies across di↵erent households,
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appliances, or energy usage scenarios. Overall, meta-learning in the NILM framework

enhances adaptability and generalization capabilities of the global model.

The model parameters are trained by minimizing the meta-loss, which measures the

performance of the adapted model f✓0i with respect to the model parameters ✓ across

a set of tasks sampled from the distribution p(T ). This meta-loss can be expressed as

[114]:

min
✓

X

Ti⇠p(T )

`Ti(f✓0i) =
X

Ti⇠p(T )

`Ti(f✓�↵r✓LTi
(f✓)) (4.5)

Here, `Ti represents the loss function for each task Ti (given in Eq. (4.9)), f✓ denotes the

model with parameters ✓, ✓0i represents the updated model parameters obtained through

gradient descent updates, and ↵ is the step size or learning rate. In summary, our objective

is to find the optimal model parameters ✓ that lead to the best result when updated using

one step of gradient descent on subtasks. This process facilitates the global model’s ability

to adapt swiftly to individual client tasks with minimal fine-tuning.

4.4 Performance Evaluation

4.4.1 Dataset and Preprocessing

We used two real-world energy datasets to evaluate the performance of our framework:

• REDD [118]: The Reference Energy Disaggregation Dataset consists of the electricity

consumption data for 6 real houses in the U.S. over several months, with the sampling

period of 1s for mains and 6s for appliances.

• UK-DALE [119]: The UK-Domestic Appliance-Level Electricity consists of data from

5 houses in the UK with a sampling period of 1s for mains and 6s for appliances.

These datasets were selected due to their status as standard benchmarks in the field of

NILM, o↵ering comprehensive insights from diverse environments. These datasets include

both individual appliance and aggregated consumption data, making them appropriate

for use in training and test phases [120]. Moreover, they encompass a broad range of

appliances, providing a more extensive and varied dataset compared to others that may

lack complete appliance coverage or proper labeling. This diversity not only adds reliability

to our evaluation but also allows us to e↵ectively test our framework in non-IID scenarios,

which is critical for assessing performance in real-world settings.

For the REDD dataset, we choose four specific appliances for training our model:

microwave, dishwasher, washer and dryer, and refrigerator. For the UK-DALE dataset,

we also include the kettle along with these four appliances. Similar to the preprocessing

of BERT4NILM [98], the raw data is resampled and clamped to specify the minimum

on- and o↵-duration, on-threshold, and maximum power of each appliance as given in

Table 4.1. The ON/OFF status of each appliance is determined by a comparison between

the received data and the on-power thresholds, with the status changes being valid if they
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Table 4.1: Overview of di↵erent appliance values.

Dataset Appliance
Max
Power (W)

On-power
threshold (W)

Minimum on
Duration
(s)

Minimum o↵
Duration
(s)

REDD

Microwave 1800 200 12 30
Dishwasher 1200 10 1800 1800
Washer 500 20 1800 160
Fridge 400 50 60 12

UK-DALE

Microwave 3000 200 12 30
Dishwasher 2500 10 1800 1800
Washer 2500 20 1800 160
Fridge 300 50 60 12
Kettle 3100 2000 12 0

Table 4.2: Dataset details for the appliances in REDD Dataset

House No. 1 2 3 4 5 6

# Appliances 18 9 20 18 24 15

Microwave X X X X
Dishwasher X X X X X X
Washer X X X X X X
Fridge X X X X X

Table 4.3: Dataset details for the appliances in UK-DALE Dataset

House No. 1 2 3 4 5

# Appliances 52 19 4 11 24

Microwave X X X X
Dishwasher X X X
Washer X X X X
Fridge X X X X
Kettle X X X X X

last longer than the minimum on/o↵ duration. In the case of REDD, house number 1

is used for testing and other houses are used for training, whereas in UK-DALE, house

number 2 is used for testing and other houses are used for training. Di↵erent appliances

present in the given houses of these datasets are listed in Tables 4.2 and 4.3.
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4.4.2 Baselines

To assess the performance of our proposed approach, we compare with the disaggregation

results of the following learning schemes while keeping the neural network architecture

unchanged:

• Centrally-trained model: The centrally-trained model is the primitive form of

ML training where raw data from all the households is aggregated and processed at

a central location. Only one central model is trained and tested for all the clients.

• FL-based NILM model (using FedAvg): Each client uses its raw dataset to

train a local model and sends model updates to the aggregation server. The server

then aggregates the updates via FedAvg and trains the final NILM model over several

iterations (100 to 150) between the clients and server. Hence, the clients do not need

to share their actual data with the server. This baseline is used for evaluating the

following two schemes in the proposed framework for non-iid datasets:

– FL-based NILM in the presence of malicious clients: An adversary can

impersonate the clients participating in the aggregation process leading to a

targeted attack, i.e., the label flipping attack.

– Robust FL-based NILM: The clients can be adversarial aiming to poison the

model. We use the aggregation technique outlined in Algorithm 3.

4.4.3 Federated Experiments

We evaluate our framework using the sequence-to-sequence (seq2seq) benchmark

evaluation and train the BERT model for NILM. In this chapter, we have used the PyTorch

implementation of BERT4NILM as our base model 1. To train our model, we split the

dataset di↵erently for IID and non-IID settings to simulate a higher number of clients for

accurate training as follows:

• IID Scenario: The data from a single house in our dataset is split day-wise and

distributed proportionally amongst n clients. This is because data from a house will

have the same probability distribution and is therefore suitable for the IID scenario.

• Non-IID Scenario: We know that the same appliances from di↵erent houses can

di↵er in many aspects, such as voltage and power profiles, energy e�ciency, etc.

Therefore, for the data to be split in a true non-IID fashion, we assign the data of

one appliance from every house to each client.

We set the default sampling period to 6s with a learning rate of 10-4 for training the model.

We use Adam as the optimization function as it performs better by faster convergence and

requires lesser parameters for tuning. The loss function used for training (in all learning

schemes) is described next.

1https://github.com/Yueeeeeeee/BERT4NILM

https://github.com/Yueeeeeeee/BERT4NILM
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Loss Function

Following [98], the loss function we use for training the BERT model has multiple terms,

each described below.

The first one is the Mean Square Error (MSE) loss for observed and predicted power usage

values, which is given by:

`mse =
1

T

TX

t=1

(êit � e
i
t)
2
, (4.6)

where T is the disaggregation length, i.e., the total number of time steps, êit is the predicted

energy usage of appliance i at time t, and e
i
t is the corresponding observation as described

in Section 4.2. The energy usage values êit, e
i
t are normalized between 0 and 1 by dividing

them by the maximum power limit. This ensures that the power usage sequences are

comparable and consistent across di↵erent appliances, regardless of their individual power

profile.

To minimize the relative entropy between the predicted and observed power usage, we

also incorporate the Kullback–Leibler (KL) divergence in the loss function. The tempered

softmax operation applies a temperature parameter to the softmax function that converts

a vector of real numbers into a probability distribution. Since electrical appliances are

frequently in an o↵ state, we have chosen a temperature parameter of 0.1 to account

for the distinction between on-loads and o↵-loads. This adjustment aims to enhance the

performance of the model on error metrics, especially for rarely utilized appliances such

as the kettle. A hyper-parameter ⌘ is introduced to fine-tune the temperature for our

designed loss function. It can be given mathematically as:

`kl = DKL(softmax(
ê
i
t

⌘
)||softmax(

e
i
t

⌘
)) (4.7)

Finally, to reduce the e↵ect of misclassification and penalize inconsistent predictions, we

consider a soft-margin loss and an L1 term which are given by:

`sm =
1

T

TX

t=1

log(1 + exp(�sitŝit)) (4.8)

such that s
i
t is the state label of an appliance as described in Section 4.2 and ŝ

i
t is the

corresponding prediction.

Putting these together, the loss function used to train the BERT model for NILM is as

follows:

`total = `mse + `kl + `sm (4.9)

This loss is specifically designed to encourage the model to make more accurate and

consistent predictions, reducing the impact of misclassification. Note that the above loss

function is specific to a single appliance, and during training, the losses for all appliances

are summed up to compute the total loss.
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Table 4.4: Parameters used in our experiments

Parameter Value/Description

Datasets REDD and UK-DALE
Sampling Period 1s for mains, 6s for appliances
Learning Rate 10-4

Optimization Function Adam
Number of Epochs 150
Batch Size 128
Number of Clients 20 to 100
Model Architecture BERT4NILM
Software Environment PyTorch 1.7
Loss Function MSE + KL divergence + soft-margin loss
Aggregation Algorithm FedAvg

Table 4.5: Average performance scores for REDD

Microwave Dishwasher Washer Fridge
Accuracy F1 MAE Accuracy F1 MAE Accuracy F1 MAE Accuracy F1 MAE

Centrally
trained
model

0.991 0.476 17.58 0.986 0.523 20.49 0.997 0.559 34.96 0.895 0.756 32.35

Proposed
(IID)

0.988 0.421 17.21 0.955 0.413 22.13 0.989 0.547 35.13 0.736 0.621 36.91

Proposed
(Non-IID)

0.896 0.413 18.408 0.964 0.510 21.56 0.951 0.516 35.87 0.656 0.543 38.34

Evaluation criteria

For the evaluation of our framework, we adopt three widely used metrics in NILM research:

accuracy, F1 score, and mean absolute error (MAE). Accuracy measures the overall

correctness of appliance state predictions. It is calculated as the ratio of correctly predicted

states (both ON and OFF) to the total number of appliance state predictions. F1 score,

on the other hand, combines precision and recall into a single metric and is particularly

useful when the dataset is imbalanced, which is often the case in NILM. Lastly, MAE is

calculated by taking the average of the absolute di↵erences between the predicted and

true power consumption values per appliance. A summary of the simulation parameters

used in our experiments is given in Table 4.4.

4.5 Results and Analysis

For the centrally trained model and our model trained using FL (in the case of IID and

non-IID data), we initially set the number of epochs to 70. Table 4.5 and 4.6 show the

average performance of these models for di↵erent home appliances. It can be seen that

the models trained using FL yield satisfactory performance for most of the appliances

compared to the traditional models. For fridge, which has a less evident signature due

to its relatively low power consumption, the FL-trained models cannot compete with
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Table 4.6: Average performance scores for UK-DALE

Microwave Dishwasher Washer Fridge Kettle
Accuracy F1 MAE Accuracy F1 MAE Accuracy F1 MAE Accuracy F1 MAE Accuracy F1 MAE

Centrally
trained
model

0.997 0.014 6.57 0.985 0.667 16.18 0.974 0.325 6.98 0.873 0.766 25.49 0.998 0.907 6.82

Proposed
(IID)

0.951 0.121 5.45 0.963 0.533 17.02 0.956 0.312 6.99 0.687 0.567 31.26 0.785 0.601 15.71

Proposed
(Non-IID)

0.876 0.012 4.95 0.919 0.512 21.45 0.898 0.297 8.96 0.632 0.498 32.43 0.701 0.479 19.21

(a) REDD Dataset

(b) UK-DALE Dataset

Figure 4.3: Disaggregation accuracy at 150 epochs.

the centrally trained model. Moreover, for less often used appliances such as kettle, an

improved masking strategy and more training data could help improve the scores, given

the BERT model’s complex training mechanism. We have found that by fine-tuning model

parameters and increasing the number of global rounds, the FL-trained model achieves

better performance. Specifically, when we set the number of global rounds to 150, the

performance scores improve drastically as can be seen in Figure 4.3a and 4.3b. Moreover,

Figure 4.4 shows that the accuracy increases with the increase in the number of epochs.

In these figures and the subsequent ones where appliances are represented on x-axis, we

abbreviated the appliance name. Thus, microwave, dishwasher, washer, fridge, and kettle

are denoted as M, D, W, F, and K, respectively. Overall, we conclude that federated

learning makes possible high performance in the NILM task.

4.5.1 Investigating the Non-IID Case

We observe through experimentation that by incorporating MAML into our model

training, the accuracy for non-IID data is improved by 4% to 6%. Although the scores for
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(a) REDD Dataset.

(b) UK-DALE Dataset.

Figure 4.4: Changes in accuracy when using more epochs

(a) REDD (b) REDD

(c) UK-DALE (d) UK-DALE

Figure 4.5: Example power profile of a fridge (samples are taken every 6 seconds).

the federated model achieved satisfying performance, the values for non-IID cases are still

subpar than both the IID and the centralized NILM models. We speculate that the usage

patterns and load consumption signatures of the same appliances from di↵erent houses

may be dissimilar due to several factors. It can be seen from Figure 4.5 that the load

consumption distribution of the appliance fridge for separate houses di↵ers significantly

in both datasets. Therefore, we present a comparison of two cases of data heterogeneity
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(a) REDD Dataset

(b) UK-DALE Dataset

Figure 4.6: Average accuracy in the non-IID case.

(a) REDD Dataset

(b) UK-DALE Dataset

Figure 4.7: Performance under model poisoning attack.

that can be taken into account for the non-IID data distribution:

• Case 1 (missing classes): Each client owns the data from a particular appliance of a

di↵erent house.

• Case 2 (heterogeneous data): 80% of the data owned by a client is from a particular

appliance of a specific house and 20% of the data can belong to other heterogeneous
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(a) REDD Dataset.

(b) UK-DALE Dataset.

Figure 4.8: Performance of the attack model for varying number of sybils in case of non-iid
data.

(a) Reputation scores for di↵erent clients.

(b) Probability of a malicious client being selected.

Figure 4.9: Visualization of reputation scores.

classes of appliances.

Figure 4.6a and 4.6b present the average accuracy for the two cases and highlight the

improvement when the degree of heterogeneity is decreased.
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4.5.2 Evaluating the Robust FL Framework

We now evaluate the performance of our reputation-based aggregation scheme in the

non-IID case when there are some dishonest clients. Figure 4.7a and 4.7b show the

performance of our NILM model in REDD and UK-DALE datasets, respectively. It can be

seen that without using the proposed robust FL framework the model performance drops

drastically under the model-poisoning attack. However, using our framework, we can keep

the accuracy high despite the model-poisoning attack. Moreover, the model performance

does not decline with the increase in the number of dishonest clients as can be seen from

Figure 4.8a and 4.8b. We also show that the probability by which a client is selected

in a particular round decreases with the decrease in his reputation, thus mitigating the

selection of dishonest clients. Figure 4.9a represents the variation of reputation values for a

benign client (honest and accurate), unreliable client (honest but might be inaccurate due

to non-iid data), and malicious client (dishonest). As we can see from Figure 4.9b, if we set

the value of � to 0.01, the probability of selecting a client falls below 50% if its reputation

goes below 0.6. In conclusion, our reputation mechanism demonstrates robust capabilities

in identifying dishonest clients, safeguarding the model’s integrity and contributing to the

overall reliability of our framework.

4.6 Summary

In this chapter, we proposed a FL-based framework for real-life IoT applications. The

proposed framework o↵ers a solution for energy consumption monitoring while preserving

user privacy. By using a bidirectional transformer architecture, a meta-learning algorithm

to handle data heterogeneity, and a reputation mechanism for the selective sampling of

clients, we were able to achieve high accuracy and robust against privacy attacks by

malicious clients. The experimental results demonstrate the e�cacy of the proposed

framework on real-world energy datasets in terms of various parameters. In the next

chapter, we focus on extending this work for a peer-to-peer network without the presence

of a central server.



Chapter 5

Enhancing Data Privacy in a

Decentralized IoT

In this chapter, we focus on the decentralization of the learning process in FL.

Traditionally, FL relies on a central server to facilitate the aggregation and distribution of

model updates as described in Chapter 4. The server introduces bottlenecks and central

points of failure that could compromise both the e�ciency and privacy of the learning

process. To address limitations, we aim to refine our methodology by eliminating the need

for a central server such that the clients can directly exchange model updates with each

other.

5.1 Peer-to-Peer FL for IoT

In specific IoT configurations, the feasibility of maintaining a central coordinating node

becomes di�cult due to connectivity constraints among the devices and components.

Moreover, the distribution of data across IoT devices is often non-IID (independent and

identically distributed). This could hamper the model performance, a↵ecting applications

that rely on the disaggregation result.

To address these challenges, peer-to-peer federated learning (P2P-FL) came into

existence [121]. Instead of using a central server, P2P-FL encourages direct communication

between clients (i.e. nodes in a P2P network) for exchanging model updates. This

reduces the total amount of data that must be sent through the network, cutting down on

communication time and costs. It also addresses the potential risk of having a single point

of failure. However, if the data distribution varies significantly among clients, achieving

convergence will be di�cult. Furthermore, the decentralized nature of P2P-FL opens

up opportunities for adversarial attacks. Malicious nodes could potentially inject false

updates, manipulate the learning process, or even attempt to infer sensitive information

from the exchanged model updates. The lack of a central coordinating node in P2P-FL

also means that there is no central authority to verify the integrity of the model updates

being exchanged.

We propose a robust P2P-FL framework to address the above-mentioned challenges in

training a deep learning model for NILM. In our approach, we use a trust graph consisting

of a network of clients that exchange model updates with each other. To ensure robustness,

this exchange is achieved through a mechanism that involves accepting and incorporating

model updates based on similarity metrics and accuracy thresholds. To calculate the
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similarity among clients without sharing their private data, we introduce a novel approach

that employs a private set intersection (PSI) [122] protocol based on RSA and Jaccard

similarity. Overall, our P2P-FL framework not only protects the privacy and integrity of

local data but also promotes collaborative learning, enhancing the overall robustness and

adaptability of the system in real-world settings. The main contributions in this chapter

are as follows:

• We propose a novel approach to train a transformer-based NILM model by leveraging

the P2P-FL framework and a trust graph of clients. In particular, we train a BERT

model that is specifically designed to work with non-IID NILM data.

• We introduce a technique to measure the similarity between clients within a

peer-to-peer network. This technique uses the statistical features shared by clients

to compute the similarity scores through the Blind RSA-based PSI Protocol [122].

The model updates from the neighbors of a client are accepted according to the

similarity scores and the received model’s accuracy on the client’s dataset.

• We evaluate the e↵ectiveness of our approach through experiments using two

prominent real-world NILM datasets, namely REDD and UK-DALE. Furthermore,

we develop a threat model and analyze the robustness of our P2P-FL approach

against three specific attacks, namely model poisoning, membership inference attack

(MIA), and PSI inversion.

5.2 Problem Definition

Consider a dataset of energy consumption measurements from U users or households.

This dataset consists of time-series data, denoted as Su, representing the total energy

consumption of each user u 2 U . Thus, the aggregate energy consumption of this user

at time t is denoted as Su(t). The core idea behind NILM is the decomposition of this

aggregate signal into the energy consumption of individual appliances:

Su(t) =
X

a2Au

Lu,a(t) + ✏(t) (5.1)

where Au is the set of appliances owned by user u, Lu,a(t) is the power consumption of

appliance a at time t, and ✏(t) is the measurement noise or any latent component at time

t.

The fundamental assumption made in NILM is that loads and appliances have a distinct

power consumption signature. However, in the real world, data collected from di↵erent

appliances of the same type exhibit non-IID characteristics, making it di�cult to solve the

disaggregation problem. This variability can be attributed:

• Diversity of appliances and environments: Consider an appliance as ubiquitous

as a refrigerator. While its fundamental operation remains consistent, its energy
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consumption pattern can vary considerably between households due to the model and

age of the appliance, operating voltage, variations in power supply, and standards

in e↵ect in di↵erent regions.

• Anomalies and unique usage patterns: Data quality issues that occur during data

capture or transmission can appear in time series energy data collected from

some households. Furthermore, in many households, some appliances are used

infrequently, leading to imbalanced classes in a NILM dataset. For instance, the air

conditioner might be used only during the summer season in some regions, resulting

in sparse data for such appliances compared to others that are used on a daily basis.

5.3 Proposed Solution

In our approach, we address the NILM problem through P2P interactions between clients

facilitated by a trust graph. Each user within the graph might have a di↵erent degree,

meaning that the number of connections or neighbors for each user can vary. It can be

visualized through Figure 5.1(a) which shows various houses connected to each other in a

graph. We assume that this trust graph is not dynamically evolving during the learning

process. Every user is already aware of their adjacent neighbors within the graph before the

training is initiated. The steps involved in our proposed P2P-FL approach are described

in the following subsections.

5.3.1 Model Update

In the proposed approach, we use the Bidirectional Encoder Representations from

Transformers (BERT) model [98] as described in the previous chapter. The learning

process begins with clients training a local BERT model on their raw data and then

sharing the obtained model updates with neighboring clients. The decision to accept

these updates or not is determined by evaluating the similarity scores between the models

and the accuracy of the received model updates. This process as described in Algorithm

4 is explained in the following steps:

Local Training

In our setup, every client i starts by training a local model Mi using its raw data.

Furthermore, client i also trains another model M 0
j using the updates received from its

neighbor j and its own local dataset. By doing this, it determines the performance of the

external model received from j on the client’s dataset, which is expressed quantitatively

as accuracy, acc(i, j).

Sharing Model Updates with Neighbors

The locally updated model Mi is shared with the client’s neighbors in the trust graph. The

trust graph maintains a distributed learning network ensuring localized interactions and
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Algorithm 4 Client-Side P2P Federated Learning

1: Initialize Trust Graph G

2: Identify Neighbors based on G

3: Mi Train(LocalData)
4: for j in Neighbors do
5: Send(Mi, j)
6: M

0
j  Receive(j)

7: M
0
j  Train(M 0

j , LocalData)
8: acc(i, j) CalculateAccuracy(M 0

j , LocalData)
9: s(i, j) CalculateSimilarity(Mi,M

0
j)

10: if s(i, j) > ✓sim and acc(i, j) > ✓acc h then
11: Ui  {M 0

j}
12: else if s(i, j)  ✓sim and acc(i, j) > ✓acc l then
13: Ui  {M 0

j}
14: else
15: Ui  {�}
16: M

new
i  Mi+ ↵ · Ui

reducing the network overhead. This mechanism propagates model updates throughout

the network.

Conditional Acceptance of Model Updates

A critical aspect of the proposed solution is the approach used by nodes to determine

which updates from neighboring nodes should be accepted. This decision is rooted in

two primary factors: the similarity between clients and the accuracy of the shared model

update on their local data. We delve deeper into the details regarding the computation

of similarity metrics in the next subsection. A higher similarity score suggests that the

nodes have analogous data distributions. In such cases, only updates with high accuracy

are accepted, ensuring that model updates are both relevant and beneficial. Conversely,

for nodes with lower similarity scores, the accuracy threshold is relaxed slightly, under the

assumption that these updates o↵er diverse insights which could potentially improve the

model’s generalization.

We denote the similarity threshold as ✓sim, and the high and low accuracy thresholds as

✓acc h and ✓acc l, respectively. Updates from nodes with similarity scores greater than ✓sim

are accepted if their accuracy exceeds ✓acc h, whereas those with scores less than or equal

to ✓sim are accepted if their accuracy surpasses ✓acc l. As shown in Figure 5.1(a), houses

of the same color have passed both the similarity and accuracy threshold, indicating their

updates are closely aligned. Houses of di↵erent colors (orange and blue), though not that

similar, have achieved a high value of accuracy threshold, and as a result, their updates are

also accepted. But the yellow-colored houses do not meet either the similarity or accuracy

criteria, hence their updates are disregarded by the neighboring clients.
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(a) P2P network (trust graph).
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(b) Training process.

Figure 5.1: Proposed P2P approach overview.

Aggregation

After deciding which updates to accept, the new model Mnew
i is then updated, ensuring

that each client’s model benefits from the collective insights of its neighbors. The learning

rate ↵ determines the extent to which the aggregated update is applied to the local model.

The entire process of model updation in the P2P network is highlighted in Figure 5.1(b).

5.3.2 Similarity Measurement

In our FL framework, we compute the data similarity among clients in a privacy-preserving

manner for protection against potential adversarial threats. The proposed approach

calculates similarity scores s(i, j) between client i and its neighbor j in the following

manner:

Compute Features

Each node computes a number of features from its local dataset, capturing essential

statistics such as mean, variance, skewness, kurtosis, and quantiles. These features

serve as a summarized representation of the energy consumption patterns of di↵erent

households. Once calculated, nodes share these features with their selected neighbors

following Algorithm 5.

Similarity calculation

After receiving features from its neighbors, each client calculates the similarity scores s(i, j)

using the Blind RSA-based PSI Protocol [122]. This protocol ensures that two parties can
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find the intersection of their datasets without revealing any additional information about

their individual sets. Let Si denote the feature set obtained from the NILM data of client

i, and Srecv
j denote the encrypted feature set received from a neighbor j.

Step 1: Initialization: Both parties agree on using RSA encryption, where the public key

(N, e) is shared between them, and each maintains their own private key (N, d) securely.

Step 2: Blinding: Client i blinds its local feature set Si as follows:

BlindedSi = {(x · re) mod N |x 2 Si} (5.2)

Step 3: Transferring: The blinded set BlindedSi is transferred to neighbor j.

Step 4: Intersection on Blinded Data: Neighbor j computes the intersection Si,j as

follows:

Si,j = Blind RSA-based PSI(BlindedSi ,Srecv
j ) (5.3)

Step 5: Unblinding: Client i unblinds the received set Si,j to find the actual common

elements:

UnblindedSi,j = {(x · r�d) mod N |x 2 Si,j} (5.4)

Step 6: Calculate Similarity: To determine the proportion of shared elements, we use

the Jaccard similarity coe�cient, which is defined as the size of the intersection divided

by the size of the union of two sets [123]. The similarity s(i, j) is calculated as follows:

s(i, j) =
|UnblindedSi,j |

|Si|+ |Srecv
j |� |UnblindedSi,j |

(5.5)

This process is outlined in Algorithm 5. By adopting this approach, the framework

manages to balance both the quality and diversity of the model updates, thereby enabling

a more e↵ective and robust FL process.

Algorithm 5 Calculate Similarity Using Private Set Intersection (PSI)

1: LocalSet ComputeSetFromFeatures(LocalData)
. Share LocalSet for PSI-based similarity computation

2: for neighbor in Neighbors do
3: s(i, j) PSI(LocalSet, ReceivedSetFromNeighbor)

4: Return s(i, j)

5.4 Threat Model

Although learning a model on decentralized data eliminates the need for sharing it with a

central server, it is not fully protected as the model updates could still reveal information

about the user’s private data. In this section, we outline our threat model.
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5.4.1 Adversary’s Knowledge

We assume that the adversary, being one of the nodes within the network, is aware of the

model updates shared among nodes. The adversary also knows the network topology, i.e.,

who is connected to whom in the trust graph. Additionally, the adversary has knowledge

of the encrypted features shared by nodes during the initial similarity calculation and the

PSI algorithm being used, but it does not possess the private keys of other clients.

5.4.2 Privacy Attacks

While the space of possible attacks on FL is vast, we focus on a subset that holds particular

relevance to our proposed approach as follows:

1. Model Poisoning Attacks: Poisoning attacks can manifest in two primary forms:

targeted, where the adversary seeks to alter the model’s behavior for specific inputs,

and untargeted, where the aim is to degrade the model’s overall performance rather

than modifying the model’s outcome for a specific input [124]. In the context of our

P2P approach, while both types are of concern, we particularly focus on untargeted

model poisoning attacks. The motivation for this is that untargeted attacks strive to

disrupt the entire consensus of the P2P network, challenging the aggregate learning

capability of the decentralized system. In such attacks, the attacker introduces noisy

or incorrect data into their local model updates, with the hope that when these

corrupted updates are aggregated with genuine ones, the resultant model’s accuracy

and integrity will decrease.

2. PSI Inversion: The adversary aims to reverse-engineer the PSI data to gain

insights into the raw data sets that were intersected. Adversary tries to solve

PSI�1(blinded set) to reverse the blinding.

3. Membership Inference Attacks (MIAs): MIAs aim to ascertain whether a particular

data point x was part of the training set used for a machine learning model [125].

This attack leverages the model’s behavior, such as its predictions or confidence

scores, to infer membership.

5.5 Performance Evaluation

5.5.1 Dataset and Preprocessing

For our experimentation, we utilized two real-world NILM datasets: the Reference Energy

Disaggregation (REDD) dataset [118] and the UK Domestic Appliance-Level Electricity

(UK-DALE) dataset [119]. These datasets are recognized as standard benchmarks in the

field of NILM, o↵ering detailed insights from various environments. They comprise both

individual appliance and aggregate consumption data, making them suitable for both

training and testing phases.
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The REDD dataset consists of recordings from six distinct residential structures situated in

the United States and spans an aggregate of 119 days. It encompasses both high-frequency

and low-frequency measurements, o↵ering a comprehensive view of energy consumption

patterns. For our analysis, we leveraged its low-frequency data, specifically targeting

four appliances (since these labels were available for all houses): the microwave (M),

dishwasher (D), washer and dryer combo (W), and fridge (F). On the other hand,

the UK-DALE dataset, released between 2013 and 2015, provides insights into power

consumption patterns specific to the United Kingdom. This dataset encompasses data

from five diverse residential structures. From UK-DALE, we employ its low-frequency

readings and, while analyzing the aforementioned four appliances, we also add another

appliance kettle (K) to our study list.

Similar to the the preprocessing techniques highlighted in BERT4NILM [98], we

synchronize the timestamps between the primary channels and individual appliances.

This allows us to resample data at six-second intervals and bridge any time gaps that

are less than three minutes using a forward fill method. The configuration settings for

our experiments are described in Table 5.1. We optimized four crucial hyperparameters

for optimal performance: ↵, ✓sim, ✓acc high and ✓acc low. After comprehensive testing, the

optimal value for ↵ was identified as 0.7, ensuring a balanced integration of external

model characteristics while preserving the uniqueness of the local model. ✓sim sets the

similarity threshold for accepting model updates from peers. Through experimentation,

we determined the optimal value for ✓sim to be 0.5. Lastly, we found that setting ✓acc high

to 0.8 and ✓acc low to 0.65 was optimal, providing a good balance between incorporating a

diverse range of models and maintaining a high standard of model accuracy.

5.5.2 Baseline

To evaluate the performance of our proposed approach, we conducted a comparative

analysis with other learning paradigms, while keeping the underlying neural network

architecture intact:

• Centrally-Trained Model: This represents the conventional method of ML

training where raw data from all households is aggregated and processed at a central

hub. A single central model is trained and tested for all clients.

• FL-Based NILM Model (with server): In this approach, each client employs

its raw dataset to train a local model and then transmits model updates to the

aggregation server. The server then aggregates these updates using the Federated

Averaging (FedAvg) technique [39].

• P2P Trained FL Model (without Server): In this approach, clients

collaboratively train the model without relying on a central server.
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Table 5.1: Experimental settings for the proposed approach.

Parameter Value/Description

Datasets REDD and UK-DALE
Number of Epochs 100
Learning Rate Starts at 0.01; reduced by 10% every 10 epochs
Batch Size 128
No of Clients 20 to 100
Sampling time 6s
Optimization Algorithm Adam optimizer
Model Architecture BERT4NILM
Evaluation Metrics Accuracy, Precision, Recall, MAE

5.5.3 Experiments

In this chapter, we use the sequence-to-sequence benchmark evaluation and adopt a

training methodology similar to that of BERT4NILM1. This involves employing the

Masked Language Model (MLM) approach from the pre-training process of BERT. In

this method, the input sequence is subjected to random masking, where a predetermined

proportion of the input elements is masked using a special token. The model then

exclusively uses the outputs corresponding to these masked positions for loss computation,

compelling it to learn from contextual information and predict the masked elements. This

process significantly enhances the model’s ability to capture critical patterns throughout

the input sequence. The specific architectural parameters used for training are 2

transformer layers, 2 attention heads, and a maximum hidden size of 256, with weights

initialized using truncated normal distributions.

To assess the model’s generalization capabilities, the test data is drawn from completely

unseen data of a house. The evaluation data is normalized using the mean and standard

deviation derived from the training data and is input to the model without any masking,

ensuring a thorough evaluation of the model’s performance.

In our experimental evaluation, we sought to assess the performance of the energy

disaggregation model under di↵erent scenarios:

Experiment 1- Centralized ML vs. Standard FL vs. P2P-FL

In the first scenario, we implemented the conventional approach of centralizing all data

from NILM houses. A singular ML model was trained and tested on this combined dataset.

In the second scenario, the NILM data is distributed proportionally amongst clients

for local training and global model aggregation. Lastly, we implemented our proposed

approach and determined the average results across all clients. Through this comparison,

we aim to underscore the e�ciency of each method by using accuracy as our evaluation

metric.

1https://github.com/Yueeeeeeee/BERT4NILM

https://github.com/Yueeeeeeee/BERT4NILM
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Experiment 2- Comparing Standard FL with P2P-FL under di↵erent scenarios

We performed experiments using the Standard FL as well as our proposed P2P approach

for 2 di↵erent scenarios: Firstly, we split the energy data of the houses uniformly amongst

the clients. We then increased the number of clients from 20 to 100 and noted the

performance of both approaches in each case. Secondly, we varied the data present with

each client in a non-iid manner resembling the real-world NILM scenario to determine the

influence of heterogeneity on performance. As the number of heterogeneity was increased

from 20% to 100%, the amount of data available per house for each class decreased.

Experiment 3- Robustness to attacks

Next, we conducted experiments to assess the robustness and performance of our model

in the case of adversarial attacks, specifically untargeted model poisoning attacks,

membership inference attacks (MIAs), and PSI inversion. Each attack scenario is assessed

for its success rate and impact on model accuracy.

(a) REDD Dataset

(b) UK-DALE Dataset

Figure 5.2: Loss variation for 100 epochs.

5.6 Results and Analysis

The results presented in the following subsections demonstrate the e↵ectiveness of our

proposed P2P-FL approach. Figures 5.2a and 5.2b represent the Mean Absolute Errors

(MAE) across 100 epochs for the two datasets, REDD and UK-DALE respectively. By

analyzing the curves for individual nodes along with the average loss, we can draw the

following inferences:
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(a) REDD Dataset

(b) UK-DALE Dataset

Figure 5.3: Appliance accuracies for 100 epochs.

• The loss curves for all nodes (node 0 to node 4) consistently decrease as the number

of epochs increases, indicating successful convergence of the training process.

• Some nodes (node 2 and node 3 in REDD; node 0 in UK-DALE) demonstrate

slightly higher losses in the initial epochs, primarily due to data distribution

discrepancies which the model initially struggles to learn, resulting in higher losses

until it su�ciently adapts to these distinct patterns.

• The average loss, depicted by the dashed line, shows a steep decline in the early

epochs, leveling o↵ as it approaches 100 epochs. This indicates that, on average, the

P2P-FL approach is e↵ective in reducing the overall error across nodes.

• Small fluctuation in individual node losses can be observed in the latter epochs,

hinting at potential noise or variability in the data.

5.6.1 Results from Experiment 1

Our findings from the initial experiment are shown in Figures 5.3a and 5.3b for datasets

REDD and UK-DALE respectively. In most instances, P2P-FL not only outperforms

Standard FL but also achieves accuracy that is nearly on par with Centralized ML. We note

that in P2P-FL, every node has the ability to access data from other nodes. The selective

acceptance of model updates significantly contributes to the improved performance of the

model, especially in the presence of non-iid data. The few anomalies observed, such as the

slightly diminished performance of P2P-FL for certain appliances (such as kettle), could
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be attributed to dataset-specific variations or the intrinsic challenges associated with P2P

computations.

5.6.2 Results from Experiment 2

The results from our second experiment are depicted in Tables 5.2 and 5.3. With the

increasing number of clients (Table 5.2), our proposed approach demonstrated better

performance as compared to Standard FL, especially when the number of clients exceeded

60. For appliances such as the microwave and dishwasher, the accuracy remains high

(above 0.8) for P2P-FL even with 100 clients. In contrast, the performance of the standard

FL approach diminishes more rapidly as the number of clients increases. This is because,

in P2P-FL, each client interacts directly with multiple other clients. This direct interaction

exposes clients to a more diverse set of data samples from their peers, enriching their model

updates and potentially leading to a more comprehensive global model. Moreover, with

increased clients, there’s a higher likelihood of noisy or even adversarial updates during

the aggregation process. Since our approach is more robust to such issues, it reduces the

e↵ects of malicious or noisy peers.

From Table 5.3, we can see that although both methods experience a reduction in accuracy

with increasing data heterogeneity, the decline is less pronounced in the P2P-FL approach.

This is because, in P2P-FL, clients can learn from a diverse set of peers and benefit from

a broader range of data representations. Moreover, in our approach, clients can choose

which peers to interact with through predefined thresholds. This adaptability leads to

more focused learning, improving the accuracy even further.

Table 5.2: Average accuracy scores for REDD.

No of Clients Microwave Dishwasher Washer Fridge
FL P2P-FL FL P2P-FL FL P2P-FL FL P2P-FL

20 0.955 0.968 0.997 0.995 0.961 0.988 0.866 0.867

40 0.856 0.892 0.925 0.934 0.896 0.921 0.845 0.851

60 0.824 0.852 0.891 0.901 0.878 0.902 0.736 0.847

80 0.795 0.836 0.889 0.892 0.840 0.894 0.701 0.821

100 0.743 0.801 0.751 0.856 0.821 0.882 0.693 0.801

5.6.3 Results from Experiment 3

The robustness of our model against untargeted model poisoning attacks is illustrated in

Figures 5.4a and 5.4b. We can see that the P2P-FL approach is more e↵ective in mitigating

these attacks as compared to both the Standard FL and Traditional P2P-FL methods [126].

This can be attributed to its decentralized nature, combined with our enhanced security

mechanism, which minimizes the influence of any single malicious actor. The strategic



Chapter 5. Enhancing Data Privacy in a Decentralized IoT 93

Table 5.3: Average accuracy scores for UK-DALE.

Data
Heterogeneity

Microwave Dishwasher Washer Fridge Kettle

FL P2P-FL FL P2P-FL FL P2P-FL FL P2P-FL FL P2P-FL

20 % 0.923 0.944 0.913 0.925 0.941 0.954 0.871 0.895 0.931 0.945

40 % 0.792 0.810 0.789 0.890 0.787 0.789 0.757 0.772 0.802 0.821

60 % 0.753 0.784 0.731 0.765 0.763 0.774 0.721 0.741 0.753 0.781

80 % 0.621 0.661 0.549 0.604 0.623 0.624 0.572 0.612 0.601 0.631

100 % 0.576 0.612 0.512 0.582 0.591 0.592 0.543 0.566 0.571 0.582

(a) REDD Dataset

(b) UK-DALE Dataset

Figure 5.4: Comparison of the success rates for model poisoning attack with the increasing
number of rounds.

selection process reduces the chances of incorporating malicious or poisoned updates into

the global model, hence improving its resistance against poisoning attacks.

Figure 5.5 shows the e↵ectiveness of the proposed P2P-FL approach against MIA with the

increasing number of training rounds. For both datasets, we observe that the e�ciency

of attack diminishes as the number of training rounds increases. Starting from the initial

rounds, the success rate of the MIAs is quite high as the model might be more vulnerable

to such attacks, possibly due to its under-trained nature and the limited data it has seen.

However, by the 100th training round, the success rate of the MIAs decreases to below 0.4

for both datasets. This drop implies that as the model becomes more refined and exposed

to diverse data, its resilience to MIAs strengthens. Another reason for this descent is

the unpredictability in the model aggregation process, which makes it more di�cult for
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Figure 5.5: Success rates for MIA with the increasing number of rounds.

attackers to reverse-engineer the raw data elements contributing to each update. The PSI

protocol utilizes the mathematical properties of RSA encryption for secure computations

so it is computationally infeasible to attack. The use of the RSA-based PSI ensures

that even if an adversary has access to the blinded set BlindedSi , they cannot infer the

original set Si without the private key d. Mathematically, given a blinded element B

from set BlindedSi , the adversary would need to unblind it to get x. However, unblinding

requires the operation x · r�d mod N , which needs the private key d. Without d, the

adversary cannot perform the unblinding and thus cannot determine x. Therefore, even

after observing the intersection computation, an adversary cannot determine the actual

elements that intersected.

Overall, across all experiments, our P2P-FL model consistently exhibited better

performance, both in terms of accuracy and robustness. The decentralized nature

proves advantageous in diverse settings, ranging from heterogeneous data distribution

to adversarial environments. Moreover, the ability of P2P-FL to e↵ectively handle non-iid

data distributions makes it a suitable choice for real-world NILM applications.

5.7 Summary

In this chapter, we presented a novel approach to address di↵erent challenges of standard

FL. By leveraging a P2P trust graph, we enable clients to interact and share knowledge

without compromising data privacy. Despite the diversity of clients and potential presence

of malicious actors in the network, the proposed framework ensures that the quality of

model updates and accuracy is preserved. In the next chapter, we aim to integrate this

approach with the concept of hierarchical blockchains introduced in Chapter 3 to develop

a comprehensive framework for IoT data management.



Chapter 6

Integration of Privacy and Security

in IoT Infrastructure

In this chapter, we address the integration of privacy and security within the IoT

infrastructure, acknowledging the challenges posed by it. It explores the application of FL

and blockchain to achieve a dual objective: enhancing sustainability through decentralized

parameters optimization and security through immutable, distributed ledgers. This

chapter presents an integration of P2P-FL which was discussed in Chapter 5 with the

blockchain framework proposed in Chapter 3, aimed at enhancing the sustainability and

privacy of blockchain networks used in IoT applications.

6.1 Sustaiable and Secure IoT

Majorly, every node in the blockchain network independently validates transactions and

maintains a complete copy of the ledger, leading to considerable computational overhead

and energy expenditure. As the volume of transactions increases, so does the latency [127],

further straining the network’s capacity to process transactions e�ciently. Therefore,

in the face of global sustainability goals, the burgeoning energy footprint of blockchain

networks cannot be overlooked [128].

With the integration of blockchain and IoT, there is more emphasis on the critical need

for e�cient energy utilization [129]. As IoT devices proliferate, the volume of transactions

requiring validation and ledger updates in a blockchain network increases exponentially.

This surge in activity can lead to bottlenecks, particularly in traditional blockchain models

further increasing the issues of energy consumption and latency.

In blockchain, the original consensus algorithm — Nakamoto’s protocol [130], also known

as Proof-of-Work (PoW) holds a foundational place. It was the first to achieve consensus

in a permission-less environment since Bitcoin’s invention in 2009. Despite being a trusted

and secure public consensus algorithm, PoW is recognized as a computationally intensive

process. For instance, the energy required for Bitcoin mining is substantial enough to

surpass the entire power consumption of Switzerland [131]. Therefore, Bitcoin’s carbon

footprint is non-negligible, with estimates suggesting an annual emission of approximately

33.5 MtCO2e as of May 2018 [132]. The underlying cause of PoW’s excessive energy

consumption is the intention to render attacks on the network prohibitively expensive.

Alternatively, Proof of Stake (PoS) [133] emerged as a more energy-e�cient consensus

alternative, where validators prove ownership of a certain stake to vote on new blocks
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rather than performing extensive computation. This method, however, is susceptible to

the ‘Nothing-at-Stake’ problem, where validators may support multiple blockchain forks

to maximize reward potential [134].

While centralized traditional systems strive to reduce carbon emissions and provide

secure data management, they struggle to match the characteristics of decentralized

blockchain [135], which values transparency and openness. This necessitates a move

towards decentralized and adaptive solutions that can optimize network parameters in

real time, ensuring e�ciency and sustainability without compromising on performance

and privacy. The concept of Federated Learning (FL) emerges as a beacon of innovation

to address these pressing issues [136]. FL ensures privacy by allowing nodes to contribute

to a global model while keeping their individual data localized. This privacy-centric

approach is vital for maintaining the confidentiality and security of information, which

is pertinent in sectors especially with stringent data protection regulations. The ability of

FL to maintain privacy while facilitating collective intelligence makes it an ideal candidate

for optimizing blockchain networks in a manner that is adaptable to dynamic conditions

and unique experiences of individual nodes [137]. However, centralized FL has some

inherent vulnerabilities, such as the risk of a single point of failure and the reliance on

the trustworthiness of the central server. These limitations can hinder the scalability

and robustness of the system, and raise concerns about data privacy and security. To

overcome these challenges, Peer-to-Peer Federated Learning (P2P-FL) [126] emerges as

a more resilient, distributed, and decentralized alternative. In a P2P-FL system, nodes

or clients directly communicate and collaborate with each other to train a shared model.

Each node in P2P-FL contributes to the learning process based on its local data and

computational resources, and the learning updates are shared among peers without passing

through a central entity.

The integration of P2P-FL and blockchain technology can also provide a significant

contribution in designing energy trading frameworks, o↵ering a robust solution for

managing and optimizing energy resources in a decentralized and secure manner. This

approach not only streamlines energy distribution but also empowers consumers and

producers, paving the way for more adaptive and resilient energy networks.

Therefore, in this chapter, we introduce an approach to tackle these challenges: integrating

P2P-FL with blockchain network for sustainability. This approach aims to transform each

node within the blockchain network from being a passive participant to an active agent in

the network optimization process. The nodes collaboratively engage in a decentralized

learning process, sharing insights and updates to create a global model capable of

determining the optimal network parameters. Our federated system therefore not only

learns from the network but also informs it, creating a responsive and self-optimizing

blockchain ecosystem. A general framework of our designed approach is represented in

Figure 6.1. The major contributions of this chapter are described as follows:

• We propose a distributed framework for sustainable blockchain by integrating it with

P2P-FL to determine optimal blockchain parameters for energy conservation without
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Figure 6.1: A Conceptual Representation of the Blockchain-FL Network Architecture.

sacrificing data privacy. We then utilize a load-balancing strategy to distribute data

amongst multiple blockchains according to these optimal parameters.

• We present our problem mathematically using a non-cooperative game-theoretic

model. This approach ensures that each node, while optimizing its own performance,

also contributes positively to the collective e�ciency and sustainability of the

blockchain network.

• We also illustrate a practical case study in renewable energy trading, demonstrating

how blockchain can be e↵ectively used in green energy sectors. By tokenizing

renewable energy and facilitating peer-to-peer transactions on a decentralized ledger,

this framework can contribute to the development of more sustainable and e�cient

energy markets.

• Lastly, we validate the proposed framework through experimentation and results.

The experimental results indicate a substantial decrease in energy consumption for

blockchain networks along with a reduction in the average execution times.

6.2 Preliminaries

6.2.1 Sustainability in Blockchain

Blockchain technology fundamentally operates on a chain of blocks, each containing

transaction data. These blocks, denoted as B1, B2, . . . , Bn, form the backbone of

the blockchain ledger. A crucial aspect of blockchain is its consensus mechanism,

particularly Proof of Work (PoW) in many traditional blockchains. PoW involves solving

complex cryptographic puzzles, a process that ensures security and integrity but is also

energy-intensive. The mathematical representation of PoW is finding a nonce value n

such that the hash of the block’s content concatenated with n meets a specific condition,

typically involving leading zeroes:

H(Bikn) < D, (6.1)
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where H represents a cryptographic hash function, and D is the di�culty target, adjusted

dynamically to maintain consistent block generation times.

In the context of blockchain, sustainability primarily concerns the energy e�ciency of the

network. If E denotes the network’s total energy consumption and NT the total number

of processed transactions, the energy e�ciency ⌘ of the network is expressed as:

⌘ =
E

NT
. (6.2)

6.2.2 FL and FedAvg Algorithm

FL enables a distributed approach where each node in the network, denoted as ni, trains

models on its local data Di and computes model updates �Mi. These local updates

are then aggregated to form a global model MG. In centralized FL, this aggregation is

typically done using the FedAvg algorithm [39], which mathematically can be represented

as:

M
(t+1)
G = M

(t)
G +

1

N

NX

i=1

�Mi, (6.3)

where M
(t)
G is the global model at iteration t, and N is the total number of nodes

participating in the training. The FedAvg algorithm is crucial for FL as it allows for

the synthesis of a robust global model from diverse local datasets while preserving data

privacy and reducing central data storage requirements.

6.2.3 Peer-to-Peer Federated Learning (P2P-FL) with Gossip Learning

In P2P-FL, the concept of FL is extended to a decentralized architecture where nodes

directly share model updates with each other, eliminating the need for a central server.

This approach enhances privacy and further reduces the reliance on a central data

repository. One e↵ective method for implementing P2P-FL is through gossip learning

protocols [126]. In this model, each node ni updates its model Mi by incorporating

information from a subset of peer nodes, referred to as Ni. The update rule in a gossip

learning framework can be expressed as:

M
(t+1)
i = M

(t)
i + ↵

X

j2Ni

wij(M
(t)
j �M

(t)
i ), (6.4)

where wij is the weighting factor assigned to the model update from node j, and ↵ is the

learning rate.

We use gossip learning in our approach since it aligns with the decentralized nature of

blockchain. It allows robust model updates by leveraging random and stochastic peer

selection for information exchange. This ensures a wide dissemination of knowledge across

the network as well as optimizes the learning process by distributing computational load.

Consequently, it leads to more energy-e�cient operations, significantly contributing to the

sustainability of the blockchain network.
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6.3 Proposed Approach

In this section, we propose a system model that uses P2P-FL to enhance the sustainability

and e�ciency of blockchain networks. This decentralized approach functions without a

central authority in a collaborative learning environment, mitigating single points of failure

and bottlenecks. The detailed framework of our proposed approach as shown in Figure 6.2

is described as follows:

6.3.1 Blockchain Network and Nodes

The system consists of a network of blockchain nodes that are responsible for processing

transactions and maintaining the integrity of the blockchain. Each node is an independent

entity that contributes to the overall decision-making process of the network by

participating in consensus and validating transactions. These nodes are not only executors

but also learners that continuously collect data and determine the optimal network’s

performance parameters. We consider a blockchain network B composed of N peer nodes

{n1, n2, . . . , nN}, each participating in consensus and transaction verification. These nodes

collectively work towards optimizing a set of performance parameters ⇥ indicative of the

network’s sustainability. At each node ni, local data Di is collected which includes:

• Tpi : Transaction processing time.

• Tbgi : Block generation time.

• Tbpi : Block propagation time.

• Tli : Latency in the network.

• Ei: Energy consumed.

node-1 node-2 node-n

network of blockchain
and FL nodes

load balancer

optimal value of parameters

share model
updates

data from different
blockchains

provided to an FL model

performance
metrics

analyzed

load allocated to
blockchain nodes -
based on optimal
parameter values

Figure 6.2: Framework of our Proposed Approach with Blockchain and P2P Nodes.
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6.3.2 Local Model Training

Each blockchain node also trains a local predictive model that uses the data collected

by the node to make predictions about the optimal parameters for processing. This

predictive capability is used for anticipating and mitigating potential ine�ciencies in

blockchain’s functioning. Each node strives to refine its model so that the predicted

parameters minimize any discrepancy from the ideal state of the network. Each node

ni uses a local predictive model Mi, parameterized by ✓i, to estimate the optimal set of

network parameters ⇥opt
i (t):

Mi(Di(t); ✓i)! ⇥opt
i (t) (6.5)

The objective function for optimizing the blockchain parameters is defined as:

F (⇥opt
i ) =

NX

i=1

(↵ · Tpi + � · Tbgi + � · Tbpi + � · Tli) + �
�
↵
2 + �

2 + �
2 + �

2
�

(6.6)

Where:

• F (⇥opt
i ) is the objective function to be minimized.

• ⇥opt
i represents the set of network performance parameters for node i.

• ↵,�, �, � are the weights corresponding to each parameter in the objective function.

• � is the regularization parameter to prevent overfitting by penalizing the magnitude

of the weights.

The loss function Fi at each node aims to minimize the di↵erence between the current and

the optimal network parameters:

Fi(✓i) = ||⇥�⇥opt
i (t)||2 (6.7)

6.3.3 Peer-to-Peer Model Synchronization

For sharing model updates amongst peers, we use the basic Gossip protocol [126] that

works as follows:

• Each node in the network holds a local dataset and participates in the model training

by sending model updates to its peers.

• At regular intervals, each node engages in a communication process with other nodes

in the network.

• When a node receives a model from another node, it integrates this external

information into its own model.

• The model parameters are updated through a gradient descent process, incorporating

a learning rate and regularization.
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• The nodes operate asynchronously since they don’t wait for each other to complete

a round of updates. The process does not rely on any central control, maintaining

the decentralized nature of the network.

• Nodes use a peer sampling service to randomly select peers for exchanging model

parameters. Over time, as models are exchanged and updated across the network,

they collectively evolve to approximate a model that would have been trained on the

entire dataset centrally.

We use gossip-based communication since it can withstand network partitions because it

does not require every node to receive updates simultaneously. The synchronization of

models across the network can be formalized as follows:

✓
sync
i (t+ 1) =

X

j2Ni

wij✓j(t) (6.8)

where Ni represents the neighboring nodes of ni and wij are the weighting factors based

on the reliability and contribution of each neighboring node’s model.

Algorithm 6 P2P Federated Learning for Blockchain Optimization

1: Initialize network with N nodes, each with initial parameters ✓i(0)
2: Define sustainability goals S
3: for each global epoch t = 1, 2, . . . , T do
4: for each node ni 2 B in parallel do
5: Collect local data Di(t)
6: Train local model Mi with Di(t) to obtain ⇥opt

i (t)
7: Mi(Di(t); ✓i)! ⇥opt

i (t)
8: Exchange model parameters with peer nodes Ni

9: ✓
sync
i (t+ 1) 

P
j2Ni

wij✓j(t)

10: Aggregate synchronized parameters and distribute the load
11: Monitor and adjust to ensure alignment with sustainability goals S
12: M(⇥(t+ 1))! S(t+ 1)

6.3.4 Load Distribution to Di↵erent Blockchains

After local model training and updation, we use a strategy for dynamic load distribution

across multiple blockchain networks. Since adjusting the parameters of a single blockchain

dynamically to optimize performance is not always feasible, this approach seeks to allocate

data loads to various blockchains based on their operational e�ciency.

The core of this strategy is an optimization-based load allocation mechanism. Each

blockchain in our ecosystem is evaluated based on the chosen set of performance parameters

(⇥). Building upon the foundational concept of HierChain [138], we use a load-balancing

mechanism that aligns with our previously proposed method of distributing loads across

multiple blockchains. The algorithm evaluates the current state of each blockchain in terms

of the optimized parameters and selects the one that o↵ers the best performance with the

lowest energy consumption. This decision is made based on real-time data and predictive
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analytics, ensuring that the load is always directed to the most e�cient blockchain. This

load distribution strategy o↵ers several benefits:

• Energy E�ciency: By routing loads to the most energy-e�cient blockchain, the

overall energy consumption of the network is reduced.

• Optimized Performance: Each blockchain can operate under optimal conditions,

enhancing the network’s overall performance.

• Scalability: This approach allows the network to scale more e↵ectively by

distributing loads across multiple blockchains.

6.3.5 Sustainability Metrics and Monitoring

The network performance and sustainability are continuously monitored using a function

M, which assesses whether the current parameters align with the predefined sustainability

goals S:

M(⇥(t+ 1))! S(t+ 1) (6.9)

The steps in the working of our proposed approach are presented in Algorithm 6. The

energy consumption E of a blockchain can be expressed as a function of the chosen

parameters, along with other system parameters:

E = (Tpi + Tbgi + Tbpi + Tli) · P · Erate + Efixed (6.10)

where:

• E is the total energy consumption.

• P is the power usage per unit time for mining and maintaining the network.

• Erate is the energy consumption rate per unit of computational work.

• Efixed is the fixed energy cost.

6.4 Case Study: Renewable Energy Trading on a

Blockchain Network

This case study explores the implementation of our P2P-FL model in a blockchain network

specifically designed for trading renewable energy credits or tokens. The primary objective

is to harness the decentralized and secure nature of blockchain technology to create an

e�cient marketplace for energy transactions.

6.4.1 Description

In the renewable energy sector, there is an urgent need for innovative systems that can

e�ciently and sustainably manage the trading of energy credits or tokens. Renewable
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energy trading on a blockchain network represents the generation of energy from renewable

sources, including solar panels, wind turbines, and hydroelectric plants. This green energy

is then tokenized, converting each unit of energy, typically measured in kilowatt-hours, into

a digital token which is recorded on the blockchain.

The fundamental concept of this framework allows individuals, businesses, and

communities that generate renewable energy to participate in a decentralized marketplace.

Through this marketplace, they can directly sell their excess energy to other consumers

and organizations, e↵ectively transforming participants into prosumers — individuals who

simultaneously produce and consume energy. The renewable energy trading on blockchain

network [139] includes the following key characteristics and elements:

• Tokenization of Energy: The process of converting renewable energy production

into digital tokens is a critical part of this system. Each token represents a specific

quantity of energy generated from sustainable sources. This tokenization enables

fractional ownership, allowing individuals to buy, sell, and trade energy in smaller,

more accessible units.

• Blockchain Ledger: The blockchain ledger is another primary component of the

system, providing a transparent and immutable record of all energy transactions.

Every token transfer, purchase, and sale is securely recorded on the blockchain,

ensuring transparency and traceability.

• Peer-to-Peer Transactions: A defining feature of this system is the direct peer-to-peer

transactions between energy producers and consumers. Participants can negotiate

terms, set prices, and trade energy tokens without the need for intermediaries, such

as traditional energy suppliers.

• Environmental Impact: By incentivizing the use of renewable energy sources and

promoting energy e�ciency, this system contributes to reducing greenhouse gas

emissions and combating climate change. Users can monitor and verify the origin of

their energy, ensuring it comes from sustainable sources.

However, there are major challenges in combining this technology with current energy

systems such as complying with regulations, maintaining data privacy, and making sure

that the blockchain can handle a high volume of transactions.

6.4.2 Distributed Approach

The decentralized and secure characteristics of blockchain when combined with the

cooperative learning of P2P-FL can help establish an e�cient and sustainable marketplace

for renewable energy transactions. The major objectives of this framework are as follows:

• Optimize Transaction Processing: Utilizing distributed learning to enhance the speed

and reliability of transactions in the energy trading platform, thereby reducing

processing times and costs.
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• Minimize Energy Consumption: Implementing P2P-FL to lower the overall

energy consumption of the blockchain network, aligning the technology with the

sustainability goals of the renewable energy market.

• Improve Trading E�ciency: Streamlining the trading process to make renewable

energy more accessible and cost-e↵ective for participants, thereby encouraging the

adoption of sustainable energy sources.

• Data Privacy: Utilising a privacy-preserving approach while sharing energy data to

preserve the confidentiality of private user data.

Energy
Trading

Model
exchange

Global
model

Global
model

Energy
credits

Energy
credits

Transactions Transactions

Figure 6.3: Sustainable Energy Trading using Distributed FL and Blockchain.

Considering these objectives, a graphical description of the energy trading model is shown

below in Figure 6.3. Each participant in the network, from individual renewable energy

producers to large-scale consumers and energy companies, operates as a node on the

blockchain. These nodes can execute transactions, involving the buying, selling, or trading

of energy credits, represented as digital tokens on the blockchain. In the context of energy

trading, where transactions are numerous, the proposed P2P-FL system intelligently

balances the load to maintain a balance between capacity and speed, thereby optimizing

network throughput and e�ciency.

A key benefit of this approach is the focus on the energy e�ciency of the blockchain

network itself. In a sector centered around sustainability, it is essential that the

blockchain’s operational energy consumption is minimized. Moreover, the network’s ability

to dynamically adjust and respond to changing transaction patterns and loads makes it

exceptionally adaptive. This responsiveness ensures optimal performance even as energy

production and consumption patterns fluctuate which is a common scenario in renewable

energy markets.

6.5 Mathematical Formulation

In this section, we present the mathematical foundation of our problem, outlining the

strategic interactions among nodes and providing a theoretical basis for the proposed

optimization technique. We present a formal analysis through game theory to align
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each node’s individual goals with the overall network’s objectives. A non-cooperative

game-theoretic model is introduced in the following subsections for optimization of

blockchain parameters in a P2P-FL setting.

6.5.1 Problem Definition

We describe our problem in the form of a game where the blockchain network is modeled

as a system of interacting nodes. Each node seeks to optimize a set of controllable

parameters to maximize its own utility while maintaining the global network performance.

The network optimization game is represented by a tuple G = (N , {⇥i}, {Ui}), where:

• N = {1, 2, . . . , N} is the set of players (nodes).

• ⇥i is the set of strategies for player i, corresponding to the parameters each node

will adjust.

• Ui : ⇥1 ⇥ ⇥2 ⇥ . . . ⇥ ⇥N ! R is the utility function for player i, which depends on

the collective strategy profile.

The strategy space for each player comprises the tunable parameters of the blockchain

protocol, such as transaction processing time, network latency, and other communication

delays. These parameters can be represented as a vector for each player:

⇥i = (Tpi , Tbgi , Tbpi , Tli , Ei) (6.11)

Strategic adjustments to key parameters can significantly enhance the network’s

throughput and responsiveness. A faster Tp accelerates transaction handling, while shorter

Tbgi and Tbpi lead to quicker block creation and synchronization across the network,

respectively. A balance between rapid processing and energy e�ciency is essential to

maintain a robust, e↵ective, and eco-friendly blockchain infrastructure, aligning with both

immediate performance goals and long-term sustainability objectives.

6.5.2 Utility Function

The utility function for each node captures its payo↵, which is inversely related to the

cost associated with the chosen strategy. It includes the node’s operational costs, the cost

of non-compliance with the optimal state, and penalties for divergent behavior from the

network consensus.

Ui(⇥i,⇥�i) = �

0

@Fi(⇥i) + �

X

j2Ni

d(✓i, ✓j)

1

A (6.12)

where ⇥�i represents the strategies of all players except i, Fi is the cost function related

to the node’s performance, � is a regularization parameter, and d(✓i, ✓j) is a measure of

the discrepancy between the strategies of node i and the strategies of its peers.
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6.5.3 Nash Equilibrium

In game formulation, Nash Equilibrium is a state where no node has an incentive to

unilaterally change its strategy given the strategies of the others. This concept is

fundamental in non-cooperative games as it represents a stable state from which no

player benefits by deviating. A strategy profile ⇥⇤ = (⇥⇤
1,⇥

⇤
2, . . . ,⇥

⇤
N ) constitutes a Nash

equilibrium if no player can unilaterally deviate to improve their utility:

Ui(⇥
⇤
i ,⇥

⇤
�i) � Ui(⇥i,⇥

⇤
�i), 8i 2 N , 8⇥i 2 ⇥i (6.13)

6.5.4 Learning Dynamics

Learning dynamics describe how the nodes adapt their strategies over time in response

to the observed utility. This process is modeled as a gradient ascent on the utility

function, where each node incrementally adjusts its parameters in the direction that is

locally optimal.

✓i(t+ 1) = ✓i(t) + ⌘r✓iUi(⇥i(t),⇥�i(t)) (6.14)

where ⌘ is the learning rate and it determines the size of the adjustments. The gradient

r✓iUi points in the direction of the greatest increase of utility for node i, given the

current strategy profile.

Therefore, in this game, each node (player) seeks to optimize its utility, which is a function

of both its individual performance and the degree to which it aligns with its peers. This

model can help analyze and predict the behavior of nodes within the network as they

interact and learn from one another.

Table 6.1: Testbed Configuration for P2P FL Blockchain Simulation

Testbed Component Specification

Simulation Platform X-BlockSim Simulator
Node Implementation P2P-FL Local, Gateway, and Ethereum Nodes
Consensus Algorithm PoW, PoS
Number of Nodes 100
Local Model Specs 3-layer Neural Network
Local Batch Size 64
Learning Rate 0.01
Optimizer Adam
P2P-FL Algorithm Gossip Learning
Sustainability Metrics Evaluated Energy E�ciency, Latency
Server Specifications 8 vCPU, 32 GB RAM, 512 GB SSD
Operating System Ubuntu 20.04 LTS
Programming Language Python (for both Simulation and FL)
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6.6 Simulation Setup

To evaluate the e↵ectiveness and performance of our proposed framework, we used a

blockchain network simulator which is an improved version of the BlockSim [140] simulator.

It allows us to simulate the deployment of di↵erent blockchain models with varying

parameters. We have used this simulator for analyzing and benchmarking the di↵erent

metrics of blockchain that are critical in the performance measurement of our framework.

The parameters evaluated are block generation time, latency of the network for block,

block propagation delay, and transaction processing time. Initially, we configure a network

that connects multiple blockchains through gateways. It is structured into several layers,

including the network layer, consensus layer, and application layer. Blockchain nodes

perform diverse set of roles within the network layer. They serve as regular users

submitting transactions, miners responsible for generating events upon mining a block

and adding them to the queue, and gateways responsible for managing transactions

from connected nodes. The number of nodes used are calculated using the formula

N = Gn + (Gn · Dn), where Gn represents the number of gateway nodes in the network

and Dn is the number of devices per gateway in the network. The middle layer includes

the consensus algorithm, block generation, and fork resolution. The transactions that are

carried out in the network layer are finalized in this consensus layer. Our simulation setup

uses several consensus mechanisms (for di↵erent blockchains) for finalizing the blocks. The

final layer is the application layer, responsible for aggregating all blockchain parameters’

statistics. We use a stochastic simulation model with 10 device nodes per gateway in

the network and 10 gateway nodes within the network to replicate a small-to-medium

sized distributed blockchain. Table 6.1 presents the simulation parameters used in our

experiments. Each node in the simulation is characterized by unique computational and

network capabilities reflective of a typical Ethereum node. The nodes are heterogeneous

in terms of hardware configurations and geographical distribution.

Blockchain Simulation Parameters:

We have configured the simulator to reflect the current Ethereum network characteristics:

• Block Time: Block time is considered as the generation time of the whole block that

includes the di↵erence between block creation event and block commit event.

• Transaction Processing Time (TPS): We consider transaction processing time ass

the time taken for all the transactions to be verified and added to the block.

• Propagation Delay: It is the overall time required for a block to be propagated across

the whole network after its generation.

• Network Latency: The network latency encompasses propagation delay, validation

time, and network congestion time.

• Network Adaptation Mechanism: The network’s adaptation is event-driven,

triggered by the completion of each learning round or upon the occurrence of
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significant network events, such as sudden spikes in transaction volume or substantial

changes in node connectivity.

FL Parameters:

For the P2P-FL setup, a simple neural network with two hidden layers is chosen for

local predictions, su�cient to capture the relationship between the input features and

the output parameters. To facilitate e↵ective learning, an initial learning rate of 0.01

was set, which was adaptively modified using an exponential decay rate of 0.96 every 5

epochs. For maintaining the integrity and accuracy of the models, a separate validation

dataset comprising 20% of the local data is used. Each node processed data in batches

of 32, a size that was found to be optimal given the average computational capabilities

of the nodes in our network. A gossip-based protocol is employed for model parameter

exchange, where each node randomly selects peers for synchronization and aggregation.

Load Distribution Metrics:

In order to compare our load distribution strategy, we have compared our proposed

approach with three load distribution techniques [141]:

• Random Allocation- This method involves distributing the load or tasks randomly

across all available resources. The primary advantage of this approach is its low time

complexity and the fact that it doesn’t require tracking the state or performance of

resources. However, its randomness does not guarantee an even distribution of load,

especially in situations where resources vary in capacity or performance.

• Round Robin- Round robin is a systematic, cyclic approach where tasks are allocated

to resources in a sequential, rotating order. It ensures that every resource is utilized

in a fair and predictable manner, making it suitable for scenarios where each task is

of similar nature and requires roughly equal processing time.

• Least Loaded- The least loaded technique involves assigning tasks to the resource that

is currently underutilized or has the least load at the moment of assignment. This

strategy requires real-time monitoring of resource utilization to determine which one

is the least loaded. It aims at balancing the load by preventing certain resources

from being overburdened while others are idle. The main challenge with the Least

Loaded approach is the overhead involved in continuously monitoring the load on

each resource, which can become complex in large-scale systems.

Sustainability Metrics and Evaluation:

The following sustainability metrics are considered in the simulation:

• Energy E�ciency: Measured in Joules reflecting the amount of energy consumed per

day on the blockchain network. The given equation (6.10) is utilized to calculate the

% of energy consumption.

• Resource Utilization: Assessed through the execution time and load distribution

during transaction processing and execution.
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To ensure statistical significance, each simulation run is repeated 30 times. Results are

subjected to statistical analysis techniques, including variance analysis and hypothesis

testing, to determine the reliability and validity of the observed improvements in

sustainability metrics.

(a) Block Propagation Delay and Network Latency.

(b) Block Generation Time and Transaction Processing Time.

Figure 6.4: Average Energy Consumption (Joules).

6.7 Results and Analysis

This section presents the results of our simulation and the e�cacy of our proposed

approach in improving the sustainability and operational e�ciency of blockchain networks.

6.7.1 Energy Consumption Analysis

Our first objective was to understand the relationship between energy consumption and

various network parameters. We examined the energy consumption as a function of block

propagation delay and network latency. The results, as visualized in Figure 6.4 depicts a
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direct correlation between these variables and energy consumption. As shown in Figure

6.4a, on an increase in the block propagation delay from 0.1 to 0.5 seconds, an incremental

trend in energy consumption is observed, indicating that longer propagation delays could

significantly impact the overall energy profile of a blockchain network. Similarly, increases

in network latency also led to a rise in energy usage, though at a less steep gradient than

block propagation delay, showing that its impact is comparatively less pronounced. Figure

6.4b depicts energy consumption variation with block generation time and transaction

processing time. Here, the energy consumption exhibited a more complex relationship with

the parameters. The plot revealed a region where both increased block generation time

and transaction processing time contributed to higher energy consumption, with values

reaching up to 720 Joules. Moreover, as transaction processing times increased beyond a

certain threshold, energy consumption started to plateau, indicating the presence of an

optimal processing time that minimizes energy usage without compromising performance.

(a) Comparison of Energy Consumption.

(b) Energy Distribution across Blockchains.

Figure 6.5: Energy Consumption across di↵erent Blockchains.

As shown in Figure 6.5a, the energy consumption analysis over time demonstrates a

consistently lower energy footprint for our approach as compared to the traditional

blockchain model. Throughout the 30-day period, the traditional model’s energy
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consumption fluctuated between 60-80%, while the P2P-FL model sustained a markedly

lower range of 40-60%. This contrast underlines our framework’s energy e�ciency, proving

its potential for sustainable blockchain operations.

Figure 6.5b demonstrates the comparative energy consumption percentages of the three

distinct blockchain configurations (with varying operational parameters): Blockchain 1

(private), Blockchain 2 (public), and Blockchain 3 (consortium) over a 30-day period.

Blockchain 1 exhibits the highest energy consumption, with less fluctuation, indicating

a steady demand on computational resources, due to the inherent requirements of

maintaining a public ledger. Blockchain 2 and Blockchain 3 show intermediate levels

of energy usage with moderate variability, reflecting their hybrid structures which balance

the openness of public blockchains with the controlled access of private networks. However,

our proposed approach consistently maintains the lowest consumption with a reduction in

energy usage by up to 50% or more, signifying a substantial improvement in the energy

footprint of blockchain operations.

(a) Comparison of Load Distribution Strategies.

(b) Load Distribution across Blockchains.

Figure 6.6: Load Distribution Performance across di↵erent Blockchains.
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6.7.2 Load Distribution Across Blockchains

Figure 6.6a provides the comparison of execution times for a particular load on the three

blockchain types under various load distribution strategies. It is evident that the proposed

P2P-FL approach leads to significantly lower execution times across all blockchain types

when compared to other strategies. In the case of random allocation, the execution times

are considerably erratic, reflecting a lack of systematic resource allocation which can lead

to ine�ciencies and bottlenecks. The round-robin and least-loaded strategies o↵er some

improvement by promoting a more equitable distribution of tasks. However, they still do

not fully optimize the execution times. Our approach results in the shortest execution

times, indicative of its intelligent routing mechanism that e�ciently allocates tasks based

on real-time network conditions and the operational capacities of each blockchain.

The load distribution over time for our proposed approach is depicted in Figure 6.6b.

Across the span of 30 days, Blockchain 1 shouldered the majority of the load initially,

but as the days progressed, the model intelligently redistributed the load to Blockchain 2

and Blockchain 3. This dynamic load balancing act underscores the adaptability of our

approach to varying network conditions and demands, thus optimizing the overall network

e�ciency and energy consumption.

6.7.3 Model Training and Predictive Performance

The evaluation of model training and predictive performance of our model is highlighted

in Figure 6.7a. The average training accuracy started high and plateaued at around

97.5%, indicating a quick convergence to high-performance levels. The test accuracy

closely followed, stabilizing at 92.5%. Figure 6.7b illustrates the individual accuracies of

20 di↵erent nodes for 15 epochs. The accuracies vary slightly from node to node, with

a mean accuracy hovering around 0.95. This indicates that the P2P-FL framework is

e↵ective in synchronizing the learning process across multiple nodes. The model’s ability

to learn collaboratively without a centralized authority and still reach an accord on the

model’s accuracy works well with blockchain decentralization and security aspects.

In summary, our results and analysis validate our approach in enhancing the blockchain

technology and addressing critical sustainability challenges. The model’s decentralized

learning mechanism, coupled with its dynamic load distribution, not only reduces energy

consumption but also maintains high levels of performance and scalability.

6.8 Security and Scalability Aspect of Proposed Approach

6.8.1 Security Considerations

The P2P-FL model inherently enhances security through its distributed architecture,

which eliminates single points of failure and distributes trust among multiple nodes. By

keeping the training data local to each node and only sharing model updates, P2P-FL
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(a) Variation of Average Accuracy with Epochs.

(b) Variation of Accuracy with No of Nodes.

Figure 6.7: P2P Model Training Accuracy with varying number of Epochs and Nodes.

inherently protects the privacy of the data. This characteristic is crucial in preventing

data breaches and leaks. The distributed nature of the P2P-FL also contributes to

its robustness against several adversarial attacks that can arise due to the presence of

a trusted server. Any attempt to compromise the model would require a substantial

portion of the nodes to be compromised simultaneously, which is considerably more

di�cult to achieve than attacking a centralized system. While the proposed approach

brings substantial improvements in the security of blockchain networks, it is important to

recognize that it does not currently o↵er explicit protections against more sophisticated

attacks such as model poisoning and model inference [142]. However, techniques such as

robust aggregation algorithms, anomaly detection, and secure multi-party computation

can be incorporated into the model for mitigating such attacks [124].

6.8.2 Scalability Aspects

Scalability is a critical aspect of blockchain technology, particularly as networks grow and

transaction volumes increase. The proposed approach addresses scalability through several
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mechanisms.

• Dynamic Load Distribution: One of the most significant features of our framework is

its ability to dynamically distribute the load across multiple blockchains, including

public, private, and consortium chains. This not only enhances the system’s ability

to scale but also optimizes resource utilization across the network, paving the way

for handling larger datasets and more complex computations without a proportional

increase in energy consumption or processing time.

• Decentralized Learning and Decision Making: The decentralized learning aspect

of P2P-FL facilitates scalability by distributing the computational load required for

model training across numerous nodes. This distribution ensures that as the network

grows, new nodes contribute additional computational resources, enabling the system

to scale naturally. Moreover, decision-making processes that are critical to the

network’s operation, such as consensus mechanisms and transaction validations,

benefit from the collective intelligence of the entire network, leading to more robust

and scalable solutions. Finally, since the execution time for our approach is less as

compared to other techniques, the network can process transactions and blocks more

swiftly, thus increasing throughput without necessitating a proportional increase in

resources.

6.9 Summary

Blockchain’s potential to contribute to a sustainable future lies in its ability to enable

transparent, e�cient, and secure transactions across various sectors of IoT. From energy

trading to supply chain management, the technology o↵ers an unprecedented opportunity

to track, verify, and incentivize sustainable practices. However, the traditional models

of blockchain operations, particularly those associated with cryptocurrencies, have been

critiqued for their high energy consumption and environmental impact. This chapter

demonstrated the integration of P2P-FL with blockchain technology, o↵ering a novel

solution to enhance the sustainability and e�ciency of blockchain networks. Our approach

uniquely combines decentralized learning mechanisms with the inherent security and

transparency of blockchain, addressing critical challenges such as scalability, energy

consumption, and latency.



Chapter 7

Conclusion

7.1 Summary

In this concluding chapter of the thesis, we summarize our work and describe how we

addressed critical challenges and research questions in IoT applications. As more devices

connect to the internet, from refrigerators to tra�c lights, ensuring their safety and the

privacy of the data they handle is crucial. Our research identified key vulnerabilities within

the existing methods and the limitations of traditional security frameworks in addressing

the decentralized, heterogeneous, and dynamic nature of IoT networks. One major concern

is how to keep all these devices and their data safe from hackers and other cyber threats.

Another concern is privacy; as these devices collect and share a lot of personal information,

so we need to ensure this data doesn’t fall into the wrong hands. These vulnerabilities

necessitated a robust solution to protect the integrity of data in IoT networks. Therefore,

this thesis proposed an innovative integration of blockchain technology and FL to address

the dual challenges of ensuring data integrity and confidentiality while maintaining the

privacy of user information.

Initially, we discussed the introduction of a blockchain-based architecture for IoT

applications. By addressing scalability issues pertinent to blockchains, we demonstrated

that blockchain could o↵er a secure and distributed ledger system capable of authenticating

data, authorizing access, and ensuring the integrity of device communications. Further,

the utilization of FL was adopted as a solution for preserving user privacy in

IoT. By facilitating the local processing of data on IoT devices, FL ensures that

sensitive information remains within its origin, thereby minimizing the risk of data

breaches. Moreover, our exploration into the optimization of FL models for IoT devices

highlighted the potential for achieving high levels of machine learning performance without

compromising user privacy. Finally, the thesis addresses the problem of sustainability in

blockchain-based frameworks for IoT. Since blockchains consume a lot of energy, it is not

computationally e�cient for resource-constrained IoT devices. Therefore, our research

journey concluded with the development of a sustainable framework that demonstrates

the practical viability of blockchain-FL in the IoT context. The prototype also served as

a platform for identifying operational challenges and limitations, o↵ering valuable insights

that informed our recommendations for future research and development.
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7.2 Future Directions

In the future, our work can be extended in several directions. Addressing the challenges

due to cyber threats will require continuous advancements in security technologies and

strategies. Future work should focus on developing adaptive and resilient security solutions

that can preempt and counter emerging cyber threats. Additionally, the exploration of

energy-e�cient blockchain implementations and the ethical considerations surrounding

IoT data collection and processing will be essential in ensuring the sustainable and

responsible development of IoT technologies. The following areas represent some directions

for future work:

• Enhancing Blockchain Scalability for IoT: Future research should focus on

further overcoming the scalability challenges of blockchain in IoT applications.

Exploring new consensus mechanisms or blockchain architectures designed

specifically for the IoT could improve transaction speeds and data processing

capabilities, making blockchain a more viable solution for large-scale IoT networks.

• Advanced Privacy-Preserving Mechanisms in FL: There is a critical need for

the development of more advanced privacy-preserving mechanisms within the FL

framework. Future studies could investigate the use of homomorphic encryption,

secure multi-party computation, or other cryptographic techniques to enhance

privacy guarantees without compromising the utility of the trained models.

• Optimization of Decentralized FL Architectures: Further research is required

to optimize decentralized FL systems, particularly in designing e�cient algorithms

and protocols that reduce communication overhead and latency. This could involve

the exploration of edge computing to facilitate faster model updates and aggregation

in a distributed learning environment.

• Cross-Domain Applicability of Integrated Blockchain-FL Solutions:

Examining the applicability and e↵ectiveness of the proposed blockchain-FL

framework across di↵erent IoT domains, such as healthcare, smart cities, and

industrial IoT, would provide valuable insights into its versatility and adaptability

to various use cases and requirements.

• Regulatory and Ethical Considerations: Finally, maintaining regulatory

compliance and ethical considerations surrounding IoT data collection and

processing will be essential. Future work should explore frameworks that align

technological innovations with legal and ethical standards to ensure the responsible

and legitimate use of IoT technologies.

7.2.1 Extending Solutions to other IoT Applications

Building upon the solutions and frameworks proposed in this thesis, blockchain technology

and FL can be adapted to enhance security and privacy across a wide array of IoT-based
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applications. The following outlines how these innovations can be extended to di↵erent

sectors:

1. Smart Cities: The blockchain architecture developed for secure and scalable data

management in IoT can be extended to smart city infrastructures. By utilizing

smart contracts for automated transaction validation and decentralized data storage,

urban IoT systems such as tra�c management, public safety, and utility services can

benefit from enhanced security and transparency. FL can be employed to optimize

urban IoT systems by processing data locally on edge devices such as tra�c cameras

and sensors, thus preserving privacy. Customized FL models can predict tra�c

patterns, manage energy distribution, and monitor environmental conditions without

centralizing sensitive data.

2. Agricultural Technology: The HierChain framework for data storage and sharing

can be applied to agricultural IoT systems. By classifying agricultural data based

on sensitivity and storage needs, and utilizing fog nodes for data preprocessing, the

integrity and privacy of farm data can be maintained. Moreover, FL can be applied

to agricultural IoT to analyze soil health, predict crop yields, and manage resources

e�ciently while ensuring that individual farm data remains confidential.

3. Industrial Automation: The blockchain security architecture proposed for IoT can

secure industrial IoT (IIoT) systems by ensuring the integrity and traceability of

machine-to-machine communications and operational data. This framework can be

crucial for compliance and monitoring in industrial settings. It can be combined

with the P2P-FL approach to predict machine failures and optimize maintenance

schedules. By employing privacy-preserving aggregation strategies, industrial data

can be analyzed without compromising proprietary information.

4. Healthcare IoT: The FL framework can be adapted to healthcare IoT for predictive

analytics in patient monitoring devices. This approach ensures that sensitive health

data remains on local devices, thus complying with stringent healthcare privacy

regulations while providing valuable insights.

5. Energy Sector: The proposed blockchain solutions can be used to create transparent

and secure transactions within energy trading platforms. By implementing

sidechains and o✏ine storage, the blockchain can handle the large volumes of data

generated by energy IoT devices e�ciently.

The outlined future research directions promise not only to extend the contributions of

this work but also to inspire further innovations in the field. As we continue to advance in

technology and knowledge, our collective e↵orts will undoubtedly lead to the development

of more resilient, e�cient, and user-centric IoT solutions.
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