
 

 

Momentum and Heat Transfer 

Characteristics of Axisymmetric Particles in 

Non-Newtonian Fluids: Sphere and 

Spherical Segments 

 

A Thesis Submitted 

in Partial Fulfilment of the Requirements for the 

Degree of 

 
 

DOCTOR OF PHILOSOPHY 

by 

Preeti 

(2019CHZ0005) 
 

 
 

DEPARTMENT OF CHEMICAL ENGINEERING INDIAN 

INSTITUTE OF TECHNOLOGY ROPAR 

June, 2024 

 

 



 

ii 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Preeti: Momentum and Heat Transfer Characteristics of Axisymmetric Particles in Non-

Newtonian fluids: Sphere and Spherical Segments. 

Copyright ©2024, Indian Institute of Technology Ropar  

All Rights Reserved 



 

iii 
 

 

 

 

 

 

 

 

 

 

 

 

 

Dedicated to my family 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

iv 
 

       Declaration of Originality 

I hereby declare that the work which is being presented in the thesis entitled Momentum 

and Heat Transfer Characteristics of Axisymmetric Particles in Non-Newtonian 

Fluids: Sphere and Spherical Segments has been solely authored by me. It presents the 

result of my own independent investigation/research conducted during the time period from 

December 2019 to May 2024 under the supervision of Dr. Swati A. Patel, Former Assistant 

Professor and Dr. Tarak Mondal, Assistant Professor. To the best of my knowledge, it is an 

original work, both in terms of research content and narrative, and has not been submitted 

or accepted elsewhere, in part or in full, for the award of any degree, diploma, fellowship, 

associateship, or similar title of any university or institution.  Further, due credit has been 

attributed to the relevant state-of-the-art and collaborations (if any) with appropriate citations 

and acknowledgments, in line with established ethical norms and practices.  I also declare 

that any idea/data/fact/source stated in my thesis has not been fabricated/ falsified/ 

misrepresented. All the principles of academic honesty and integrity have been followed. I  

fully understand that if the thesis is found to be unoriginal, fabricated, or plagiarized, the 

Institute reserves the right to withdraw the thesis from its archive and revoke the associated 

Degree conferred. Additionally, the Institute also reserves the right to appraise all concerned 

sections of society of the matter for their information and necessary action (if any). If 

accepted, I hereby consent for my thesis to be available online in the Institute’s Open Access 

repository, inter-library loan, and the title & abstract to be made available to outside 

organizations. 

 
 

 

 

Signature 

 

Name: Preeti (Preeti Suri) 

Entry Number: 2019CHZ0005 

Program: PhD 

Department: Chemical Engineering 

Indian Institute of Technology Ropar 

Rupnagar, Punjab 140001 

Date: June 2024 



 

v 
 

 

Acknowledgement  

I would like to express my deepest gratitude and appreciation to all those who have supported 

and guided me throughout my journey in completing this Ph.D. thesis. Without their assistance 

and encouragement, this achievement would not have been possible. 

First, I am very grateful to my former advisor, Dr. Swati A Patel, for her guidance throughout my 

journey. Her guidance has been invaluable, not only for my professional but also 

in personal life will inspire me to carry on this demanding journey. Her constant support and 

enthusiasm guided me over the years of development. She always provides me 

with moral support while covering many rough patches of life. This work would not have been 

complete without her meticulous scrutiny and unwavering support throughout my PhD. I am truly 

fortunate to work under her supervision. I am quite fortunate to work with the two supervisors. 

My current supervisor, Dr. Tarak Mondal, I have not spent much of my time with him. But he is 

always there in need of time. He is so cooperative and understanding that I never felt a sense of 

change. He provides me with all the freedom to carry out my work effortlessly.  

I would also like to extend my thanks to Prof. Raj Chhabra for providing me with the much-

needed guidance throughout my degree. The way of explaining and elaborating the concept 

always makes it easy to understand the complexity of the transport phenomena 

and the rheological studies. It has been an honor to work under his supervision. I would also like 

to extend my heartfelt thanks to the members of my thesis committee for their valuable insights, 

constructive feedback, and rigorous examination of my work. Their expertise and critical input 

have significantly enhanced the quality of this thesis. 

I am also thankful to the staff, faculty and the HOD of the Department of Chemical Engineering 

for providing me with all the necessary facilities to conduct my research smoothly.   I would like to 

express my sincere appreciation to the Institute for providing the funding and scholarships that 

have supported my research financially. 

I extend my thanks to my lab mates Anshuman Verma, Khyati, Richa, Niharika, and friends 

Anisha and Amrish Choudhary,  who have provided a positive and cheerful environment. Lastly, 

I am grateful to my family, without their constant support, positive criticism, and belief, I would 

never be able to go on this journey. 

Above all, I am eternally grateful to God who always enlighten my path.  

 

Preeti Suri 

 





 

vii 
 

     Lay Summary 

Fluid-particle interactions are a common occurrence in various industrial processes. These processes 

include slurry transportation, pharmaceutical product manufacturing, food processing, paper production, 

catalytic processes, mineral extraction, cooling/heating of mineral slurries, drying of powders, and 

pneumatic conveying. Many transport, dispersion and dissolution processes in nature involve interaction 

between fluid and particles inherently, e.g., the flowing of seeds in wind, sand or soil in a flowing water 

stream. Unit operations such as fluidization, sedimentation, filtration, etc., well recognize processes 

involving fluid-particle interactions in various engineering applications.  Evidently, a few of the 

assumptions in designing these processes consider a particle to be a perfect sphere in shape. Though this 

assumption facilitates design calculations, the drag values for non-spherical particles can deviate 

significantly from that of a sphere. For instance, in the estimation of the rates of heat and mass transfer 

in packed and fluidized beds, the use of the results of a single sphere is well-known in literature. Indeed, 

the drag experienced by the particle is a strong function of its size, shape, and orientation in the 

surrounding fluid medium. On one hand, the assumption of spherical particles may facilitate ease of 

solving non-spherical particulate systems, it makes the process designing less reliable by compromising 

the accuracy up to a certain level. Generally, the non-spherical shapes of the particle can be categorized 

in various ways. The first distinction can be made based on their regularity (sphere, cylinder, cube, 

polyhedron, disc, spheroid, cones, etc.) and irregularity (ash, sand, gravels, additives for polymeric or 

food products, pharmaceutical powders, etc.) in their shapes. The non-spherical shape of regular 

particles is, typically, characterized by sphericity (ratio of the surface area of the equal-volume sphere 

to the actual surface area of the particle),  as a shape descriptor e.g., settling/sedimentation and 

transport of particles. For given dimensions of the regular non-spherical particle, one can easily calculate 

the surface area and hence the sphericity of the particle in a straightforward manner. The major drawback 

of this approach is that particles of different shapes may have the same values of sphericity. In spite of 

this limitation, sphericity is used widely in literature. Hence, the shape of the particle, being a crucial 

entity in studying hydrodynamic and thermal attributes of various applications, remains of great interest 

to researchers. Spherical caps or segments which are seen in the coagulation or breakdown phenomena 

of spherical particles which may not follow the regularity of their parent particles. Such shapes have 

received very little attention in the literature. This study examines the role of spherical segments in 

various flow regimes, including steady creeping, forced, and natural convection. The study also 

investigates the effects of confinement and fluids with non-linear rheology, such as power-law and 

Bingham plastic fluids on momentum and heat transfer characteristics. Additionally, as the Reynolds 

number approaches zero, non-Newtonian fluids tend to behave more like Newtonian fluids. To measure 

zero-shear rate and shear stress-shear rate data for power-law shear-thinning fluids, the Falling Ball 

Method (FBM) has been extended to non-Newtonian systems including virgin and filled polymer melts, 

composites, polymer-solutions, etc. 
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                                   Abstract 

 
This thesis contributes towards understanding the flow and heat transfer characteristics of 

generalized fluids past a particle of the shapes: sphere and spherical segments. In processes like 

fluidization, the interaction between the fluid and solid components plays a crucial role in enhancing 

heat and mass transfer, as well as promoting fluid mixing. The pneumatic transport of the particulate 

matter also involves the hydrodynamic interactions of the particle and the conveying medium. 

Various scenarios, such as solid-fluid interaction in sewage sludge, suspensions, drilling muds in oil 

recovery, sedimentation, thickening of slurries, and waste treatment in mineral industries, involve 

non-Newtonian fluids frequently interacting with non-spherical particle shapes. Furthermore, in 

biological applications of fluid-particle systems, instances like the motion of red blood cells in 

capillary flow and drug delivery systems showcase the relevance of understanding these interactions. 

Thus, the current interest in studying the momentum and heat transfer from spherical segments and 

a sphere as a limiting case of spherical segment in different types of 

fluids and/or under different conditions stems from both fundamental and pragmatic considerations. 

Generalized Newtonian fluids are encountered in a wide range of applications: toothpaste, butter, 

jam, cosmetic creams, mortars, foams, polymeric solutions melt, etc. A great many industrial 

processes involve Generalized Newtonian fluids, power-law, and Bigham plastic, ranging from the 

creation of chocolate to concrete used for the construction of buildings and the paper pulp 

suspensions, dairy products, polymers and polymeric solutions, etc. To achieve the underlying 

objective of this thesis, a finite element based numerical approach has been employed to study the 

crossflow of Bingham plastic or power-law fluids and Newtonian fluids as a limiting case past a 

spherical segment in creeping, forced-, and natural-convective regimes. The numerical 

experiments were conducted using the finite element-based simulation software COMSOL 

Multiphysics. The Bingham plastic fluid behavior was modeled using a regularized continuous 

constitutive relation Papanastasiou model. The evaluation of yielded and unyielded sub-domains in 

the flow field due to the Papanastasiou model has been further substantiated by reproducing similar 

results using the other regularization approaches available in the literature,  i.e., the bi-viscous 

model and Bercovier and Engelman model. The range of nondimensional parameters considered in 

this study is such that the flow and temperature fields remain steady. Using the numerical technique 

outlined above, two noteworthy contributions were made toward understanding the flow and heat 

transfer characteristics of Bingham plastic or power-law fluid flow past spherical segments. First, 

the influence of the shape of the particle, i.e., sphericity of the spherical segment () on the flow and 

thermal characteristics has been examined for the unconfined/confined flow of Newtonian, Bingham 

plastic or power-law fluid in forced/free convection regime. In each case, extensive results for the 

topology of the yielded/unyielded regions, recirculation zones, isotherms, drag and heat transfer 

coefficients as a function of the pertinent parameters have been presented and analyzed in detail to 

elucidate the effect of the shape of the particle and of the confinement on momentum and heat 
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transport.  The second contribution was the numerical results for the creeping flow of power-law 

fluids past a sphere, which have been used to develop a scheme to construct the shear stress–shear 

rate curves using the Falling Ball Method. The work was concluded by presenting extensive 

comparisons with experimental results for Newtonian fluids and shear-thinning polymer solutions in 

the low-shear region including the zero-shear viscosity and the shear-thinning region. 
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 Chapter 1 

Introduction 

 

1.1   Focus of the present study and motivation 

Fluid-particle interactions are encountered in numerous industrial settings such as slurry transport, food 

processing, pharmaceutical product manufacturing, catalytic processes, paper production, coating of 

materials, cooling/heating of mineral slurries, drying of powder, pneumatic conveying, food processing, 

mineral extraction, to name a few. Many transport, dispersion and dissolution processes that occur in 

nature involve interaction between fluid and particles inherently, e.g., the flowing of seeds in wind, sand 

or soil in a flowing water stream. The processes involving fluid-particle interactions in various 

engineering applications are well recognized by unit operations such as fluidization, sedimentation, 

filtration, etc. Evidently, a few of the assumptions in designing these processes consider a particle to be 

a perfect sphere in shape. Though this assumption facilitates design calculations, the drag values for non-

spherical particles can deviate significantly from that of a sphere. For instance, in the estimation of the 

rates of heat and mass transfer in packed and fluidized beds, the use of the results of a single sphere is 

well-known (Comiti et al., 2000; Mauret and Renaud, 1997; Peev et al., 2002). Indeed, the drag 

experienced by the particle is a strong function of its size, shape, and orientation of the particle in the 

surrounding fluid medium (Chhabra, 1995; Wang et al., 2009; Dulhani et al., 2014). On one hand, the 

assumption of spherical particles may facilitate ease of solving non-spherical particulate systems, it makes 

the process designing less reliable by compromising the accuracy up to a certain level. Generally, the 

non-spherical shapes of the particle can be categorized in various ways. The first distinction can be made 

based on their regularity (sphere, cylinder, cube, polyhedron, disc, spheroid, cones, etc.) and irregularity 

(ash, sand, gravels, additives for polymeric or food products, pharmaceutical powders, etc.) in their 

shapes. The non-spherical shape of regular particles is, typically, characterized by sphericity (ratio of the 

surface area of the equal-volume sphere to the actual surface area of the particle), ψ as a shape descriptor 

e.g., settling/sedimentation and transport of particles.  

Sphericity, s

p

S Surface area of the volume-equivalnet sphere

S Surface area of the actual particle
 = =                                                           (1.1) 

For given dimensions of the regular non-spherical particle, one can easily calculate the surface area and 

hence the sphericity of the particle in a straightforward manner. There are several other shape factors 

found in the literature for non-spherical regular shaped particles based on the circularity, perimeter and 

projected area of the particle. For instance, Krumbein (1942) used circularity as the characteristics 

parameter to define the shape of the particle.  
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s

p

p

P Perimeter of equivalent projected area sphere
X

P Projected  perimeter of the actual particle
= =                                                                           (1.2) 

The combination of both sphericity and the perimeter is also considered by several researchers in the 

literature (Dellino et al., 2005; Dioguardi and Mele, 2015) as 

p

Sphericity of the particle
Y

X Circularity of the particle


= =                                                                                                                 (1.3) 

Last but not least, in order to study the effect of the particle elongation Corey (1950) have proposed a 

new shape factor based on the three principal axes of the particle which is defined as follows: 

c

ab
 =                                                                                                                                                                   (1.4) 

Many researchers have used sphericity as a shape descriptor to characterize non-spherical particles. 

However, one major drawback of this method is that particles of different shapes can have the same 

sphericity value. Despite this limitation, sphericity is still widely used in literature to describe particle 

shapes. As the shape of a particle is a crucial factor in studying the hydrodynamic and thermal attributes 

of various applications, it remains of great interest to researchers.   In numerous industrial and natural 

settings (drilling of petroleum, food processing, cosmetic and pharmaceutical manufacturing, fluidization, 

avalanche flow, etc.), these non-spherical particles often encounter non-Newtonian fluids. The 

rheological properties of non-Newtonian fluids are very distinct and obscured from Newtonian fluids. 

Multiphase fluids and many high molecular polymer melts show different fluid properties with respect to 

the applied shear rate or shear stress. Their apparent viscosity either increases or decreases based on the 

nature of the fluid like power-law fluids or they can possess the dual nature like yield stress fluid. Different 

non-Newtonian fluids that are often encountered in industrial applications are summarized by Pang et al. 

(2020). Figure 1.1 shows the shear stress and shear rate plot for the meat extract and carbopol solution 

and their resultant nature of yield stress fluid. The initial stress that is required by these fluids are known 

as critical stress below which they behave like a solid. The dual nature of the fluid has an enormous effect 

on the hydrodynamics behavior as well as on their heat transfer rates.  

In the fluidization process, the fluid-solid interaction plays a vital role in enhancing the heat and mass 

transfer and mixing of the fluid. The solid-fluid interaction in the case of sewage sludge, suspensions,  

drilling muds in oil recovery, sedimentation, thickening of slurries, and disposal of waste treatment from 

mineral industries are a few examples where non-Newtonian fluids are often encountered with non-

spherical particle shapes. Other biological applications of fluid-particle systems also include the motion 

of the red blood cell in capillary flow and drug delivery systems.  

Studying single particles in non-Newtonian fluid builds a solid foundation for knowledge of muti-particle 

systems, and indeed, fluid mechanics has witnessed remarkable progress in this area, especially with the 
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advent of numerical techniques and the enormous improvement in computational abilities. Many non-

spherical shapes like circular cylinders (Zisis and Mitsoulis, 2002; Roquet and Saramito, 2003; Deglo de 

Besses et al., 2003; Bharti and Chhabra, 2006; Bharti et al., 2007;Tokpavi et al., 2008; Mossaz et al., 

2010, 2012; Nirmalkar and Chhabra, 2014), elliptical cylinders (Sivakumar et al., 2007; Bharti et al., 

2008; Patel and Chhabra, 2013, 2014, 2016), spheroid (Tripathi et al., 1994; Gupta et al., 2014; Gupta 

and Chhabra, 2014, 2016), disks (Nitin and Chhabra, 2005, 2006; Gupta et al., 2017), and cones (Sharma 

and Chhabra, 1991; Ahonguio et al., 2015) have been widely studied by researchers in Newtonian and 

non-Newtonian fluids. However, the shapes like segments from the sphere which can be formed due to 

breakdown or coagulation of the spherical particle during process or naturally formed shapes in 

pharmaceutical or catalyst forming processes have received little attention in literature so far. So far, the 

hemisphere is the only spherical segment that have received the attention under various fluid regimes 

numerically (Sasmal et al., 2013; Sasmal and Chhabra, 2014; Nalluri et al., 2015; Prakash et al., 2017). 

The motivation of the present work derives from our interest in the flow of non-Newtonian and Newtonian 

fluid past axisymmetric particles, i.e., spherical segments including sphere as a limiting case due to their 

numerous applications like mine tailing, clay suspensions, mineral slurries, microplastic, semiconductor 

and food industry particularly for the spherical segment. The aim of the present study is focused on the 

sphere and spherical segments under appropriate conditions via. forced and free convection.  The 

momentum and heat transfer characteristics from a range of spherical segments varying in shape dissected 

Figure 1.1 Rheogram for yield stress fluids with their plastic viscosity (Chhabra and Patel 2023). 
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from a sphere have been explored in this work over a range of governing parameters corresponding to 

free or forced convection phenomena in steady state flow regime. The results were also extrapolated in 

each case for the sphere as a limiting shape.  Furthermore, the proximity of the external walls to the heated 

spherical segment also modifies the flow and heat transfer characteristics. The effort has been made to 

explore the effect of confinement on the forced convection heat transfer from spherical caps in Newtonian 

fluids. The free convection in very weak buoyancy flow field (a very low Grashof number) has been 

investigated considering sphere and a pair of spheres as a hot bluff body (or bodies) in the non-Newtonian 

power-law fluids in steady-state flow regime. A universal correlation for the average Nusselt number has 

been proposed to bridge the gap between the conductive heat transfer having a limiting Nusselt number, 

i.e., 2 and high buoyancy convective regime for an isothermal sphere in Newtonian and power-law fluids. 

Additionally, interaction between a pair of spheres in the weak buoyancy flow has been examined by 

varying the distance in the vertical direction. The effect of the spacing between the two spheres modifies 

the condition limit Nusselt number and eventually overall heat transfer characteristics. Finally, the 

applicability of the falling ball method (FBM) which is proven very effective in measuring the viscosity 

of Newtonian fluids under ambient as well as high temperature and pressure condition has been extended 

to evaluate the zero-shear viscosity of non-Newtonian polymer melts, composites solutions (shear-

thinning power-law fluids). The theoretical results for the flow of power-law fluids past a sphere have 

been used to extract the values of the zero-shear viscosity and shear-dependent viscosity in the low-shear 

rate limit (creeping flow). The theoretical scheme outlined in this study has been validated by presenting 

comparisons with experimental results for scores of polymer solutions for which both falling sphere and 

rheological data are available in the literature. 

1.2   Objective of the study 

In particular, this dissertation is concerned with the following specific inter-related problems: 

1. To advance the understanding of the settling and stability criterion of spherical segments in yield 

stress fluids in the creeping flow regime. 

2. To determine the effect of fluid rheological and kinematic parameters on the momentum and heat 

transfer characteristics of Newtonian and non-Newtonian fluids in forced and natural convection 

regimes. 

3. To quantify the impact of axisymmetric shapes of the particle on the flow and thermal 

characteristics in Newtonian and non-Newtonian fluid media.  

4. To identify the role of the confinement in the case of forced convection from non-spherical 

particles in Newtonian fluids. 

5. To establish the correlations between the pertinent parameters and the macroscopic flow and heat 

transfer characteristics thereby enabling their a priori estimation in a new application.  
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6. To develop a scheme to construct the shear rate-shear stress curves for polymeric system (power-

law fluids) based on Falling Ball Method (FBM) by employing numerical results for the creeping 

flow of power-law fluids past a sphere. 

1.3   Outline of the thesis 

The overall purpose of the present work is to explore the fluid mechanical and heat transfer aspects of the 

free-falling motion of asymmetric rigid particles in non-Newtonian fluids, specifically spheres and 

segments dissected from a sphere. The numerically conducted research spans a broad range of flow 

regimes, including creeping to Newtonian flow. The thermal characteristics of Newtonian and non-

Newtonian fluids (Bingham plastic and power-law) flowing past non-spherical particles of various shapes 

have been extended to study the forced as well as natural convection phenomena. Chapter 1, the 

introductory Chapter, gives a detailed overview of the motivation, objectives, and contributions of this 

thesis work in detail. It introduces the characteristics of the rigid particles and the pervasive nature of the 

non-Newtonian fluids encountered in day-to-day life as well as in a wide range of engineering 

applications.  

Chapter 2 illustrates the specific problems statements defined in this work, followed by demonstrating 

the relevant governing equations of fluid dynamics and heat transfer – the continuity, momentum, and 

energy equations– together with the constitutive laws for the Bingham plastic and power-law fluids. The 

discussion has been subsequently followed by the simplifying assumptions employed for each problem.  

The chapter includes the governing dimensionless parameters for momentum and heat transfer 

phenomena that evolve during the scaling of the aforementioned equations.  The specific issues associated 

with the numerical implementation of the ideal Bingham plastic model have also been discussed, and 

alternatives to overcome the inherently discontinuous nature of the Bingham constitutive model have 

been introduced here.  Finally, the details of the numerical methodology employed for this work have 

been outlined. 

Chapter 3 deals with the free motion of spherical segments dissected from a sphere settling in Bingham 

plastic fluids under the influence of gravity. The momentum transfer from the settling particle to yield 

stress fluids in the creeping flow regime has been explored numerically. The effect of the shapes of the 

particle has been analyzed in terms of yield surfaces, stability criteria, and drag coefficients over the range 

of Bingham plastic fluids. 

Chapters 4 and 5 represent the extensive results on forced and free convection phenomena, including 

relevant literature, assessment of the methodology, result analysis, and discussion on momentum and 

thermal characteristics. 

Chapter 4 extends the role of the particle shape in unbounded and bounded Newtonian fluids media, 

illustrating the functional dependence of drag coefficients and average Nusselt numbers on the pertinent 

governing parameters in the forced convection regime. For unconfined flow, the flow and temperature 
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fields are analyzed by plotting the streamlines, isotherms, local Nusselt number. The results of streamline 

profiles show that the shape or lateral surfaces of the particles strongly influence the size of the wake and 

the location of the separation point from the particle surface. Notably, at low Reynolds numbers, particles 

with identical base area and height exhibit the drag in the order of cone < spherical segment < short 

cylinder. The drag coefficient as well as average Nusselt number plots for the three shapes with curvature, 

slanted and flat surfaces suggest that the correlation of drag and average heat transfer coefficients over 

the range of shape factors necessitate additional shape descriptors to enhance the level of fitting.  

The confined Newtonian fluid flow past spherical segments has been studied over the range of 

geometrical parameters, i.e., shapes of spherical segments and confinements examined in terms of 

streamlines, isotherms, drag coefficients and average Nusselt numbers. The impact of the shape on the 

momentum and heat transfer has been quantified by comparing the results of spherical segments with the 

circular disc and sphere. The work has been summarized by proposing a correlation, for drag and average 

Nusselt number with a reasonable accuracy.  

The effect of yield stress on the flow and heat transfer is illustrated in this chapter spanning the range of 

particle shape in the unconfined flow conditions. The flow kinematics has been studied by mapping the 

flow field in the form of streamlines and yielded/unyielded regions while thermal field has been examined 

by plotting the isotherms and local Nusselt number over the range of the geometrical, kinematic and 

rheological parameters. Correlations to predict drag coefficients and average Nusselt numbers have been 

proposed over the pertinent range of parameters. 

Chapter 5 focuses on obtaining reliable results of total drag and average Nusselt number for a heated 

isolated sphere and for vertically aligned two spheres under a very low Grashof number free convection 

regime in power-law fluids. For the vertically aligned twin sphere case, center-to-center spacing between 

two spheres, defined as gap ratio, has been varied to explore the hydrodynamic interference between the 

two spheres. The results of the hydrodynamic drag, drag correction factors, local and average Nusselt 

numbers are examined in detail. The gap ratio plays a vital role in determining the severity of interference 

between the velocity and temperature boundary layers and, hence, the drag and heat transfer coefficients 

for the twin spheres. 

The chapter further includes the free convection from spherical segments exploring the thermal 

characteristics in Bingham plastic fluids. The results are presented in the form of streamlines, 

yielded/unyielded regions, isotherm contours and average Nusselt numbers as a function of geometrical, 

kinematic and rheological parameters. The specific characteristics of the yield stress fluids showing fluid-

like and solid-like regions under the prevailing shear stress field allow identifying the conduction limit 

for the particular shape of the particles. The conduction limit refers to the transfer of heat solely governed 

by the conduction mechanism that has been determined as a function of the particle shape in this work.  
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In Chapter 6, the numerical results for the creeping flow of power-law fluids past a sphere have been 

used to develop a scheme to construct the shear stress–shear rate curves using the falling ball method. For 

a sphere falling in Newtonian fluids, one needs to apply corrections to both the surface averaged shear 

stress and shear rate. For power-law fluids, both these correction factors are functions of the power-law 

index only in the creeping flow regime. The simple expressions have been developed for these correction 

factors in this chapter. The power-law index is given by the slope of the double log plot of the nominal 

average shear stress and shear rate on the surface of the sphere. This work is concluded by presenting 

extensive comparisons with experimental results for Newtonian fluids and shear-thinning polymer 

solutions in the low-shear region, including the zero-shear viscosity and the shear-thinning region, with 

reasonably good agreement.  

Finally, Chapter 7 presents a summary of major findings of this work followed by an identification of the 

areas meriting further investigation. 
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 Chapter 2 

Governing equations and numerical scheme 

 

Fluids can exhibit both continuum and statistical behaviors at different length scales and time periods. 

However, for most practical purposes, at macroscopic scale the fluid behaves as a continuum. This 

hypothesis allows us to assume definite values of fluid properties such as density, temperature, and 

velocity at every point as a continuous function of time and of the position in the fluid. In this particular 

work, the flow and heat transfer are governed by - conservation of mass, conservation of momentum 

(Newton's second law of motion), and conservation of energy (First law of thermodynamics) - according 

to the continuum hypothesis to model momentum and energy transfer. These conservation equations, 

known as Continuity, Cauchy momentum, and energy equations, are tailored to the specific flow regime.  

2.1   Governing equations 

 The governing equations presented here are based on the mass, momentum and energy balances 

with the assumptions of the steady, incompressible and laminar flow of fluid over the range of parameters 

employed in this work. These equations in their non-dimensional forms are written as: 

Continuity equation:   0V =                                                                                                                                                 (2.1)  

Momentum equation: ( )    1 2. .  = − +  + iyV V p N N                                                                (2.2) 

Energy equation:         ( )    2

3 4. :   =  + V N N V                                                                                  (2.3) 

Beside the non-dimensional primitive variables, namely, pressure (p), velocity (V) and temperature () in 

above equations, they further involve fluid properties, namely, density,  ;  shear stress, τ; thermal 

conductivity, k; specific heat, C and thermal expansion coefficient .  

The two phenomena of forced and free or natural convection have been analyzed in this work by 

investigating momentum and heat transfer characteristics in Newtonian and non-Newtonian fluids. 

Beginning with the forced convection, in the forced convection regime where flow is externally imposed 

and the variation of the fluid properties with temperature is insignificant over the narrow range of 

temperature interval (thereby justifying their evaluation at the mean film temperature) which makes it 

possible to solve for the flow field independent of the temperature field. In contrast, in natural convection 

regime, the fluid motion arises due to the density difference caused by the temperature difference, as a 

result, the flow and heat transfer equations are coupled. Due to prevailing body force field, the density 

difference gives rise to the buoyancy forces. This body force appears in the momentum equation when 

the Boussinesq approximation plugs into it to represent the linear relationship between the density and 

temperature. The linear relation between density-temperature is approximated by the standard Boussinesq 
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relationship as:  

( )1 cT T  =  − −                                                                                                                                       (2.4) 

The variation of density  everywhere in the equations can be replaced by the constant density , except 

the body force term in the momentum equation. Also, the temperature Tc far away from the geometry is 

taken as the reference temperature in the buoyancy term. This part of approximation is tantamount to the 

assumption of the incompressible flow.  

Table 2.1 Dimensionless groups in Eqs. (2.1) - (2.3) 

Cases Forced convection Free convection 

Vc U ( )h c cg T T l −  

[N1] 1
f

Re  ( )f f fPr Gr Pr  

[N2] 0 1 

[N3] ( )1 f fRe Pr  ( )1 f fRa Pr  

[N4] ( )f f fBr Re Pr  ( )f f fBr Ra Pr  

f = B for Bingham plastic fluids; f = PL for power-law fluids; without subscript = Newtonian fluids  

The viability of the results obtained by solving the governing equations expands by introducing the non-

dimensional variables.  The non-dimensional forms of the governing Eqs. (2.1) to (2.3) have been derived 

by scaling the variables length, shear stress, pressure and temperature using the lc, as characteristics 

length; fVc / lc, ρ∞Vc
2 and (T-Tc)/(Th -Tc), respectively. The choice of characteristics velocity, Vc depends 

upon the flow regime. Hence, the coefficients in the parenthesis are summarized in Table 2.1 along with 

the choice of characteristics velocity.  

The stress tensor τ in Eq. (2.2) is related to the nature of the fluid via shear stress-shear rate constitutive 

relationship. Similarly, the definition of the dimensionless parameters in governing equations, i.e., Ref, 

Prf, Grf and Raf also varies with the choice of the constitutive relations for type of fluid. Time-independent 

class of fluid or generalized Newtonian fluids are considered in this work and depending upon the 

functional relationship between shear rate and shear stress, they are categorized into two types: 

(i) Shear-thinning and shear thickening fluids 

 Shear thinning or pseudo plasticity is the most commonly encountered non-Newtonian behavior 

in the fluids. A few common examples are polymer solutions, colloidal suspensions, blood, milk etc. The 

apparent viscosity of such fluids decreases with increasing shear rates and fluids becomes thinner as the 

shear rate increases. Shear thickening or dilatant fluids, on the contrary, show opposite behavior. Their 

apparent viscosity increases with the increase in shear rates. The most widely used constitutive equation 
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to mathematically model shear thinning, or shear thickening fluid behavior is two parameter power-law 

models. 

 
nm =                                                                                                                                           (2.5)

 where m and n are empirical parameters known as flow consistency index and flow behavior index,  

Table 2.2 Values of power-law index for fluids at room temperature (Chhabra, 2006) 

Non-Newtonian fluids m (Pa.sn) n 

Chocolate 0.7 0.5 

Mayonnaise 5-100 0.6 

Toothpaste 120 0.28 

Nail polish 750 0.86 

Yoghurt 25 0.5-0.6 

respectively. The value n < 1 is for shear thinning fluids, n > 1 is for shear thickening fluids, and n = 1 for 

Newtonian fluids. Table 2.2 has summarized a few examples of power-law fluids frequently encountered 

in various applications.   

The extra stress tensor for power-law fluids in Eq. (2.2) is given as: 

1 2

2

n

ij ijm


 

−
 

=  
 

                        (2.5a) 

Where,  2

,

1

2
ij

i j

     

(ii) Yield stress fluids  

These are the fluids which behave as plastic solids if the applied stress is less than a critical shear stress 

value, 0  , known as a yield stress. Once applied stress exceeds the critical shear stress value, 0 , the fluids 

subsequently exhibit linear or non-linear relationship between applied shear stress and the resultant shear 

rate. A fluid with the linear flow curve for 0  ,  is known as Bingham plastic fluid. The model 

representing the behavior of such fluids is called Bingham plastic fluid given in dimensional form as,  

            o B ofor       = + 
                                                                                                             

(2.6a) 

 0           ofor   =                                                                                                                           (2.6b) 

The non-dimensional form of the Bingham plastic fluid model is expressed in the following form: 

1            Bn for Bn


 


= +                                                                                                            (2.7a) 
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0           for Bn =                                                                                                                        (2.7b) 

The extra stress tensor for Bingham plastic fluids is given as: 

1ij ij

Bn



 
 
 = +
  

              for   2Bn      (2.7c)

0ij =                                  for   2Bn      (2.7d) 

Where, 2

,

1

2
ij

i j

     and 2

,

1

2
ij

i j

     

Viscosity regularization methods for Bingham plastic fluids: 

Owing to the inherent discontinuous nature of the Bingham plastic model, Eqs. (2.6) and (2.7), cannot be 

employed directly in computing such flows.  The constitutive equation of an ideal Bingham plastic fluid, 

Eqs. (2.6a) and (2.6b), shows that it applies in two distinct regions in the fluid which are not known a 

priori, namely yielded and unyielded regions. Consequently, the apparent viscosity in Eq. (2.6b) becomes 

unbounded or infinite as the shear rate vanishes in the unyielded regions.   

This problem can be circumvented by using regularization methods proposed in the literature that enable 

the transition from the unyielded to yielded regions smooth during solving numerically, avoiding the 

inherent discontinuity of the ideal Bingham plastic model. (Papanastasiou, 1987; Glowinski and Wachs, 

2011).  Papanastasiou (1987) approximated the Bingham plastic viscosity by introducing an exponential 

regularization parameter as: 

1
1

M

p

e
Bn






− −
= +   

 
                                                                                                                        (2.8) 

 where M, the regularization parameter scaled using lc/Vc as the characteristic time scale to be 

dimensionless.  According to the previous studies (Papanastasiou, 1987; Burgos et al., 1999; Mitsoulis and 

Zisis, 2001; Glowinski and Wachs, 2011) stronger the yield stress effects, larger is the value of the 

regularization parameter M needed to obtain accurate predictions of yielded/unyielded regions.  While M 

→ ∞ reproduces the true Bingham plastic fluid behaviour, M = 0 corresponds to the Newtonian fluid 

behavior in Eq. (2.8).  Most of the results reported in this thesis have been obtained using Papanastasiou 

approximation, limited results were cross-checked by employing the two other regularization approaches 

available in the literature, namely, the so-called bi-viscosity model (O'Donovan and Tanner, 1984; Poole 

and Chhabra, 2007) and the one due to Bercovier and Engleman (Bercovier and Engleman, 1980), both of 

which are written as: 
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Bi-viscosity model:            
y

Bv

B





=                if Bn                                                                 (2.9)                    

1 1
1 1Bv

y B

Bn
  

  
= + −   

   

     if Bn                                                                                   (2.10) 

Bercovier and Engleman model:    
1

1BE Bn
 

 
= +   + 

                                                                  (2.11) 

Basically, the bi-viscous model, Eqs. (2.9) and (2.10), overcomes the unbounded nature of fluid viscosity 

for the stress levels below the fluid yield stress by treating it as a highly viscous fluid of viscosity µy 

(yielding viscosity) which is typically several orders of magnitude larger than the Bingham plastic viscosity 

µB.  Similarly, Eq. (2.11) circumvents the discontinuity in the fluid behavior by replacing the zero-shear 

rate in the unyielded part by a very small value, denoted here by .  In summary, the three previous 

approximations replace the true Bingham fluid with a fluid that has vastly different viscous characteristics 

above and below the yield stress. Furthermore, all three approaches rely on selecting a suitable 

regularization parameter, M or µy or .   

2.2   Dimensionless governing parameters 

Dimensionless analysis reveals that the momentum and heat transfer characteristics of forced and free 

convection are governed by the following dimensionless parameters: 

(i) Power-law fluids: 

Reynolds number:  This denotes the ratio of the inertial forces and viscous forces as:  

2 n n

c c
PL

V lInertial forces
Re

Viscous forces m

 −

= =                                                                                              (2.12) 

Prandtl number:  It is the ratio of the momentum diffusivity to thermal diffusivity.   

( 1)

c
p

c

n

PL

Momentumdiffusivity
Pr

Thermal diffusivity k

V
C m

l

−

 

 

= =


                                                                          (2.13) 

Grashof number:  In natural convection, Grashof number defined as the ratio of buoyancy forces 

to the viscous forces. 

( )
22 2

2

n

c

PL

g T lBuoyancy forces
Gr

Viscous forces m

  +

 
= =                                                                                        (2.14) 

where, RaPL Rayleigh number, i.e., PL PL PLRa Gr Pr=   is defined as the product of the Grashof 

number and Prandtl number. 
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(ii) Bingham plastic fluids: 

 Reynolds number:  This denotes the ratio of the inertial forces and viscous forces as: 

2 2

c c c c
B

B c c B

V l V lInertial forces
Re

Viscous forces V l

 

 
 = = =                                                                                      (2.15)

 Bingham number: This represents the ratio of yield stress to viscous (shear) stress.  

( )
o o c

B c c B c

Yield stress l
Bn

Viscous stress V l V

 

 
= = =                                                                                     (2.16) 

In the limit of Bn = 0, it represents the Newtonian fluid behavior.  In the other limit, Bn →  

corresponds to the fully plastic flow condition. 

Prandtl number:  It is the ratio of the momentum diffusivity () to thermal diffusivity ().   

B
B

CMomentumdiffusivity
Pr

Thermal diffusivity k




= = =                                                                                   (2.17) 

Grashof number:  In natural convection, Grashof number defined as the ratio of buoyancy forces 

to the viscous forces. 

2 3

2

B

c
B

g T lBuoyancy forces
Gr

Viscous forces

 


 

= =                                                                                                      (2.18) 

where, RaB Rayleigh number, i.e., 
2 3

c
B B B

B

g T l C
Ra Gr Pr

k

 


 

=  =  is defined as the product of 

the Grashof number and Prandtl number. 

(iii) Sphericity: This denotes the ratio of the surface area of the sphere with the same volume as the 

particle to the actual surface area of the particle. 

( )
2/3

1/3 6 p

p

V

A


 =                                                                                                                                           (2.19)

 

where Vp volume of the non-spherical particle and Ap is the area of the non-spherical particle. 

The characteristics length lc, vary for the sphere and spherical segment. In case of sphere the diameter 

of the sphere is taken as the characteristic length, while in case of the spherical segment the diameter 

equivalent of sphere, 3 6eq pd V =  is considered as their characteristic length in this work. 

2.3   Numerical solution strategies 

The finite-element based COMSOL Multiphysics  (version 5.3a and 5.6) is used to solve the non-

dimensional governing Eqs. (2.1) - (2.3) along with the appropriate boundary conditions.  The triangular 
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elements have been selected for meshing the computational domain to resolve the steep velocity, pressure 

and temperature gradients in the thin momentum and thermal boundary layers near the particle. A smooth 

transition from fine to coarse mesh regions has been achieved by using an appropriate stretching function 

in the far away domain having quadrilateral mesh elements.  In most cases, the steady, two-dimensional, 

laminar module with the linear direct solver PARDISO (Parallel Sparse Linear Direct Solver) is used to 

solve the system of equations.  The equations discretized by the Finite Element method (FEM) result in 

a sparse linear system. PARDISO can handle a wide variety of sparse matrix types - whether they are real 

or complex, symmetric, structurally symmetric, or nonsymmetric. It can solve these systems of equations 

of the form AX = B on a shared or distributed memory architecture.  A simulation was deemed to have 

converged when the field variables satisfied the relative convergence criterion of 10-6 for the continuity, 

momentum and thermal energy equations everywhere in the flow domain.  A user defined function is 

introduced for the regularization of the Bingham plastic model through the Papanastasiou approach (or 

bi-viscosity model or Bercovier and Engleman model) to estimate the absolute viscosity () to be used as 

an input. 

The numerical solution of Eqs. (2.1) - (2.3) in conjunction with the suitable boundary conditions maps 

the flow domain in terms of the velocity (V), pressure (p) and temperature () fields, which are post-

processed to determine the local as well as the global momentum and heat transfer characteristics as 

functions of the pertinent governing parameters (Re, Pr, Bn, Gr, α). In the ensuing section, we briefly 

introduce the definitions of these parameters. 

Drag coefficient:  This is a measure of the net hydrodynamic force exerted by the fluid on the immersed 

spherical segment in the flow direction.  The total drag coefficient (CD) is made up of two components, 

called as, friction drag (CDF) due to the shearing forces and pressure, or form drag (CDP) due to the normal 

forces exerted on the cylinder.  These are defined as follows: 

Total drag coefficient:  
D DF DP

C C C= +                                                                                                     (2.20) 

Friction drag coefficient:  
21

2

DF

DF

c p

F
C

V A


=                                                                                               (2.21) 

Pressure drag coefficient: 
21

2

DP

DP

c p

F
C

V A


=                                                                                               (2.22) 

where, Ap is the projected area of the particle as seen from the oncoming fluid stream. 

Pressure coefficient:  The ratio of difference between the local pressure and the free stream pressure to 

the normalized dynamic pressure is defined as local pressure coefficient, Cp which can be given 

mathematically as follows: 
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21

2

p

c

p p
C

V





−
=                                                                                                                                                   (2.23) 

Where p is the local pressure at a specific point on the particle and p∞ is the free stream pressure. 

Nusselt number:  The Nusselt number is the dimensionless heat transfer coefficient characterizing the 

rate of convective heat transfer between the particle and the surrounding fluid.  The local Nusselt number, 

Nu, at a point on the surface of particle is evaluated using the temperature field as follows for the 

isothermal boundary condition: 

 c

s surface

hl
Nu

k


= = −

n
                                                                                                                           (2.24) 

where h is the convective heat transfer coefficient and ns is a unit normal vector on the surface of the 

particle. 

The average Nusselt number is obtained by integrating the local Nusselt number over the surface of the 

particle as follows: 

1c

S

hd
Nu Nu dS

k S
= =                                                                                                                                    (2.25) 

Where h is the average heat transfer coefficient over the surface of the particle and dc diameter in case of 

sphere and largest chord length in case of spherical segment. Hence, for spherical segments having α ≤ 

90° it will be the base diameter while for α ≥ 90° it will be the diameter of the frontal area. In the cases 

of cone and short cylinders, dc will be the base diameter. 

In Chapters 3 to 6, the momentum and thermal characteristics of spherical and non-spherical particles in 

Newtonian and non-Newtonian fluids are explored in both forced and free convection regimes.  
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 Chapter 3 

Sedimentation of non-spherical particles 

 

This chapter focuses on the sedimentation of non-spherical particles in the yield stress fluids. The effect 

of the shapes of the spherical segments in two-parameters yield stress fluid, i.e., Bingham plastic fluid 

has been examined on drag coefficient while settling in Bingham plastic fluids. The results of drag 

experienced by spherical segments compared with that of the sphere in the same media in the form of 

correction factor while another correction factor was defined to examine the deviation in drag of spherical 

segments in Bingham plastic fluids from that in the Newtonian fluid. The yield stress at stability limit and 

stokes drag have been investigated over the range of Bigham number for each shape.  

3.1   Previous work 

The very first attempt to introduce sphericity as an expression to represent the shape of the non-spherical 

particle was made by Wadell (1934) for sedimenting rock particles in Newtonian fluids. Subsequent 

efforts have been reported in literature to further explore the shape in terms of circularity, flatness, 

projected area normal to the flow field to characterize non-spherical particle shapes (Clift et al., 1978; 

Michaelides, 2006). Pettyjohn and Christiansen (1948) have correlated the effect of shape on the drag 

experienced by the particle experimentally. They evaluated the drag values for various isometric shapes 

having sphericity in range of 0.67 - 1 and proposed a direct correlation for drag and sphericity of particles 

at high Reynolds numbers. Xie and Zhang (2001) have compared their experimental results of non-

spherical agriculture particles (ψ = 0.2 - 1) with Pettyjohn and Christiansen (1948) and affirmed that the 

particle sphericity could be related to the stokes shape factor (KV) in laminar regime as follow: 

KV = ψ0.83                         (3.1) 

In 1991, Thompson and Clark (1991) introduced a single shape parameter, scruple or Newton’s shape 

factor (KN), to make the results more accessible, similar to the moody diagram for pipe friction factor and 

merged the drag coefficient and Reynolds number data on a single graph for non-spherical particles for 

different values of Newton’s shape factor. Due to the advancement of instrumental and computational 

techniques, vast and reliable data for sedimenting particles for different type of fluids becomes available 

in the literature over the range of shapes and flow regimes. The interest in merging these data into a 

universal correlation persists many researchers to continue investigation in this subject. Haider and 

Levenspiel (1989) have attempted to provide a generalized correlation using a single characteristic 

(sphericity) of particle shape resulted with a good, however cumbersome correlation based on 

experimental data, which also have some inherent errors.   

CD = 24/Re (1+AReB)+C/(1+D/Re)                      (3.2) 
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Later on Ganser (1993) has improvised the correlation with one more shape factor in addition to 

sphericity, i.e., the projected area in the direction of motion for non-spherical shapes spanning over the 

sphericity range of ψ = 0.1 - 1. Furthermore, Chhabra et al. (1999) have performed a detailed study to 

analyze the available correlations to predict the drag coefficient of non-spherical particles and found that 

the Ganser's approach was a good fit with the known sphericity of particles. Similarly, Yow et al. (2005) 

also proposed a three-parameter correlation for regular non-spherical particles based on the Kaskas (1964) 

equation with 97% accuracy with the experimental data.  

Apart from Newtonian fluids, a range of non-Newtonian fluids encountered in various industrial and day-

to day settlings contain presence of particles in the form of dilute suspension or dispersion, such as 

polymer suspensions, colloidal solutions, cosmetics, process foods, pharmaceutical, petroleum products, 

biological products, etc.  Sedimentation or settling of particles over the wide range of non-Newtonian 

fluids, especially in the presence of yield stress fluids significantly modifies the settling behavior of the 

particle. A simplest type of yield stress fluids is the Bingham plastic fluids that are characterized by two 

parameters, i.e., yield stress (τo) and plastic viscosity (µB). The Bingham plastic fluids are able to resists 

deformation up to the critical value of yield stress (τo) above which their flow resembles to the Newtonian 

fluids with constant plastic viscosity (µB). Interestingly, to start settling in the yield stress fluid, the net 

gravitational force exerted on the particle has to be overcome by the force acting on the particle in the 

upward direction due to yield stress. This is known as a stability criterion for the sedimenting particle in 

yield stress fluids. While studying the particles in yield stress fluids, researchers were consciously 

interested in finding the stability criterion, flow visualization and drag experienced by the particles. 

Volarovich and Gutkin (1953) first comprehended this dual behavior around a sphere, and Rae (1962) 

detected that a small solid rigid zone adheres to the sphere’s surface. A critical study of the free boundary 

problem to precisely comprehend the shape of the yield surface around the sphere is given by Beris et al. 

(1985). Furthermore, numerous studies including both experimental (Valentik and Whitmore, 1965; 

Ansley and Smith, 1967; Atapattu et al., 1995) and numerical (Beaulne and Mitsoulis, 1997; Blackery 

and Mitsoulis, 1997) work has confirmed the presence of the fluid envelope surrounding the bluff body. 

As the yield stress of fluid increases, the particle may or may not be able to settle under its own weight 

in quiescent Bingham fluid, known as yield gravity parameter Yg. The value of Yg ranges from 0.080-0.2 

above which the sphere will not fall or get suspended in liquid is calculated employing experimental 

(Broadman and Whitmore, 1961; Brookes and Whitmore, 1968) and numerical approaches (Beris et al., 

1985; Beaulne and Mitsoulis, 1997; Blackery and Mitsoulis, 1997).  

Hence, considering the pertinent literature, it is impressive to notice that the spherical segments, which 

are often happening in industrial applications, have received scant engagement. In this work, the settling 

of the different spherical segments (30° ≤  ≤ 180°) is studied in the creeping flow of yield stress fluid. 
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The effect of the broad range of rheological parameters (0.001 < Bn ≤ 106) is also studied in terms of 

yielded/unyielded surfaces and drag correction factors. 

3.2   Physical model and problem formulation  

The problem describes the settling of a spherical segment base diameter, dc and height hc sectioned from 

a sphere of diameter Ds in a creeping flow regime of yield stress fluids as shown in Fig. 3.1. Different 

spherical segments (α = 30°, 60°, 90°, 120°, and 150°) are considered in this work which are dissected 

from a sphere by a chord that is formed by subtending an angle α from the vertical axis. The flow occurs 

due to the settling of the particle with the flat surface facing downward and is assumed to be axisymmetric 

with respect to the direction of gravity. The equivalent problem is framed here by considering the 

spherical segment appears to be at rest while the surrounding fluid is flowing at a uniform velocity U. 

The unbounded flow condition for the problem has been approximated by enclosing the spherical segment 

in an artificial vertical tubular domain of length L and diameter 2H (Fig. 3.2). In the absence of inertia, 

the steady flow of incompressible flow of Bingham plastic fluid is governed by equations of conservation 

of mass and momentum stated in non-dimensional forms Eq. (2.1) and (2.2). 

The problem statement considering axisymmetric flow, has been completed by identifying the physical 

realistic boundary conditions with that includes: 

At the inlet and outlet, 1, 0z rV V= =  (uniform velocity at upstream and downstream far away from the 

particle) 

Ds 

dc 

 
θ 

z 

Figure. 3.1 Schematics of spherical cap or segment. 
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On the surface of the particle,  0r zV V= =   (no-slip condition) 

On the far away wall of cylindrical envelope, 1, 0z rV V= =  

At the center line, r = 0,  0, 0z
r

V
V

r


= =


 

In the preceding equations Equations (2.1)-(2.2), the scaling of variables has been rendered by using the 

characteristic length, i.e., volume equivalent sphere diameter ( )3 6eq pd V =  as a length scale, U for 

velocities and viscous stress, μBU/deq, for pressure and shear stress.  

The yield stress fluid flow around the spherical segment has been governed by dimensionless parameters, 

Bingham number (Bn), ratio of the strength of the yield stress to the viscous stress or the dimensionless 

yield stress (y), ratio of the yield force to the drag force defined as: 

 
o eq

B

d
Bn

U




=              (3.3) 

o p

g
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A
Y

F


=              (3.4) 
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Figure 3.2 Schematics of flow and computational domain. 
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where Ap is the frontal area of the spherical segment, and FB is the drag force acting on the particle.  

Furthermore, the dimensionless form of the drag force, Cs scaled by viscous stresses is defined as: 

 
4 B

s

B eq

F
C

Ud
=              (3.5) 

which can be further related to Bingham number (Bn) and dimensionless yield stress (y) by 

y

s

Bn

C
 =              (3.6) 

In the limit of Bn → 0, y → 0, the fluid represents Newtonian behavior. At the other extreme limit of Bn 

→ , y attains a constant value, beyond which the particle cannot sediment in the infinite medium under 

its own weight. For a sphere (Beris et al., 1985; Blackery and Mitsoulis, 1997) settling in infinite media, 

the value of y = 0.143.  

The drag experienced by non-spherical particles in Bingham plastic fluids will be further examined in 

terms of normalized drags with respect to fluid media, i.e., Newtonian fluid (Bn = 0) and shape of the 

particle, i.e., spherical particle (dc = Ds) in the otherwise identical conditions. The normalized drag 

coefficient (XBP,f) is defined as the ratio of the drag coefficient of the spherical segment in Bingham plastic 

fluid to the drag experienced by the identical spherical segment in Newtonian fluid.  

,
DB B

BP f

DN N

C F
X

C F
= =                 (3.7) 

where FN and CDN are the drag force and drag coefficient of the spherical segment in the Newtonian fluids, 

respectively. 

Similarly, the normalized drag coefficient with respect to spherical particle, XBP,s can be expressed as: 

  
,

DB B
BP s

DS S

C F
X

C F
= =                (3.8) 

where FS and CDS are the drag force and drag coefficient of the spherical particle in the Bingham plastic 

fluid, respectively. 

In this problem, all the non-dimensional Eqs. (2.1) - (2.2) governing conditions are solved using the finite 

element scheme based COMSOL Multiphysics (Version 5.3a) platform. The linear direct solver, 

PARSIDO disintegrates the PDEs into linear algebraic equations, which is further solved by the software 

using LU matrix factorization. The numerical method never provides the exact solution to the problem. 

However, it approximates the solution of the boundary value problem using the error minimization 

technique up to some fixed criterion, hence this optimization of the criterion and the numerical parameters 

is a fundamental requisite to obtain a prudent solution for the problem. 

3.3. Choice of numerical parameters 

The most distinctive property of creeping flow is its inherent upstream and downstream symmetry while 

flowing past a regular-shaped geometries such as sphere. Nevertheless, in this case, we have irregular or 
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non-spherical shapes which are lacking the anticipated symmetry with respect to the flow direction. 

Owing to non-symmetry of the shape in the direction of flow, the problem has been solved in the domain 

considering axisymmetry in particle shape. The solution of the numerical technique firmly adheres to the 

choice of numerical parameters. The present study has explored various shapes of particles. 

Computational time and CPU memory usage during computation are influenced by factors such as the 

size of the domain, the number of grids and type of grid elements. In consideration of these aspects and  

with the aim of obtained optimized results, two distinct computational domains have been employed. One 

is designated for spherical caps with α < 90°, and the other for those with α ≥ 90°, strategically chosen to 

enhance computational efficiency. Table 3.1 represents the domain independence test for three 

geometrical shapes with α = 30°, 90° and 180°. The effect of the size of the domain on the drag coefficient 

Table 3.1 Domain Independence test at Bn = 0.001 and Bn = 106. 

Domain 

  = 30°   = 90°   = 180° 

L/Ds H/Ds CD L/Ds H/Ds CD L/Ds H/Ds CD 

Bn = 0.001 

D1 20 10 8.43 100 50 18.15 100 50 9.91 

D2 50 25 8.17 200 100 17.85 200 100 9.74 

D3 100 50 8.17 400 200 17.72 400 200 9.65 

 Bn = 106 

D1 20 10 2.05  107 100 50 2.65  107 100 50 1.12  107 

D2 50 25 2.05  107 200 100 2.65  107 200 100 1.12  107 

D3 100 50 2.05  107 400 200 2.65  107 400 200 1.12  107 

 

Figure. 3.3 Grid structure in the vicinity of the geometry. 

 = 30  = 150 
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has been examined at the extreme values of Bingham number Bn = 0.001 and 106 for the present work. 

As Bingham number increases the momentum boundary layer thickness decreases. Hence, from Table 

3.1 it can be concluded that the domain size D2 is adequate over the range of Bingham number and the 

shape geometries considered in this work. Beyond D2 the further increase in the size of domain has not 

shown any significant difference (< 1%) for the drag coefficient values. 

Similarly, Fig. 3.3 illustrates two different grid types of triangular and quadrilateral grids used to 

discretize the domain. The geometries considered in this problem featured sharp corners which often lead 

to singularities at corners in numerical simulations. Furthermore, steep velocity gradients exist in the 

proximity of the geometry surface due to the no-slip boundary condition. Both of these facts mandate an 

exceptional grid distribution in the vicinity of the geometry. Consequently, a free triangular grid is 

employed to precisely capture the thinnest momentum boundary layer adjacent to the geometry. While in 

the far away region, a relatively coarse and mapped/quadrilateral mesh is utilized. The effect of the grid 

is examined on the extreme values of the Bingham number, Bn = 0.001 and 106 by analyzing the total and 

pressure drag coefficients. As shown in Table 3.2, the G3 grid produces comparable results with less than 

a 1% deviation from grid G2, confirming that G2 is an adequate choice for this work.  

In addition to solid boundaries, fluid characteristics also play a crucial role in influencing hydrodynamic 

drag force that need special attention while solving the equations. This work focuses on the sedimentation 

of particles in Bingham plastic fluid which exhibit dual behavior of fluid-like (sheared) and solid-like 

(unsheared) around a specific point of shear stress in the flow domain, known as the critical yield stress.  

Numerically, this discontinuity of Bingham fluid is effectively addressed by employing regularization 

models available in the literature, i.e., Papanastasiou (1987), Bercovier (1980), and Biviscous (2000) 

models that play an indispensable role in studying the momentum behaviour of the particle in yield-stress 

Table 3.2 Grid Independence test at Bn = 0 and Bn = 106. 

  Grids NT NP 

Bn = 0 Bn = 106 

CD CDP CD CDP 

30 

G1 39723 100 7.871 7.046 2.05107 1.90107 

G2 44849 160 7.753 6.998 2.05107 1.91107 

G3 51033 200 7.875 7.118 2.04107 1.92107 

90 

G1 54736 100 17.346 9.638 2.65107 2.27107 

G2 69114 160 17.396 9.753 2.65107 2.28107 

G3 76406 200 17.430 9.827 2.65107 2.29107 

180 

G1 33700 100 19.147 6.359 2.23107 1.70107 

G2 56200 200 19.152 6.370 2.23107 1.71107 

G3 69700 260 19.160 6.386 2.23107 1.71107 
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fluids. The regularization parameter test for the Papanastasiou model, illustrated in Fig. 3.4, confirms the 

selection of M = 106 for this study. This choice is based on assessing the effect of M on yielded (fluid-

like) and unyielded (solid-like) regions. Furthermore, the effectiveness of the selected model and model 

parameter is compared with the other models in Fig. 3.5 to substantiate the selection of the chosen model. 

In Fig. 3.5, the prediction of yielded surfaces by Bi-viscosity and Bercovier Engleman models along with 

the Papanastasiou model are included and the close correspondence between the three results instills 

confidence in the chosen model in this study. The von Mises Yield criterion is implemented with a 

minimum tolerance value of 10-6 for estimating of yield surfaces which distinguish yielded and unyielded 

regions defined by isovalues, 
o =  . The convergence criteria for mass and momentum equations are 

fixed at 10-6 throughout the domain. 

3.4. Results and Discussion 

The sedimentation of non-spherical particles is numerically studied over the wide range of Bingham 

numbers (0.001 to 106) in a very low Reynolds number flow, i.e., creeping flow regime. This section 

Figure 3.4 Regularization parameter test for Papanastasiou model. 

Figure 3.5 Comparison of regularization models. 
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broadly deciphered the impact of particle shape on the overall drag coefficient, yield values and 

yielded/unyielded zone. The study analyzes various shapes individually and in comparison, to spherical 

particles. A general correlation of the drag coefficient concerning the range of shapes is also proposed 

over the range of Bingham fluids in this work. However, before presenting the new results, it is customary 

to validate the numerical methodology adopted in this study. For that in the subsequent section, we have 

presented the benchmark validation comparing the present findings with the limiting cases results from 

the available literature. 

3.4.1 Assessment of numerical procedure 

Researchers conducted an extensive study on the sedimentation of a sphere in both Newtonian and 

Bingham plastic fluids, focusing on low Reynolds number flow regimes. In Table 3.3, numerical values 

of the present drag coefficient, Cs,N of  a sphere in Newtonian fluids (Bn = 0) are compared with the 

numerical values of Blackery Mitsoulis (1997) and estimated by Bohlin  

Table 3.3 Comparison with the drag coefficient of results of sphere in Newtonian 

fluid 

Dc/D 
Cs, N  

(Blackery and Mitsouli, 1997) 

Cs,N (Bohlin’s 

Equation)* 
Cs,N (Present) 

2:1 5.9389 5.9229 5.8990 

4:1 1.9779 1.9789 1.9668 

8:1 1.3529 1.3495 1.3418 

10:1 1.2619 1.2632 1.2559 

50:1 1.0471 1.0439 1.0377 

1
3 5 6 8 10

1 2 1044 2 0887 0 9481 1 372 3 87 4 19s ,N

c c c c c c

R R R R R R
*C . . . . . .

R R R R R R

−

            
 = − + − − + −           
             

 

approximation (1997) The difference between the present and literature values remains less than 0.5% 

over the range of confinement ratio Dc/D. Furthermore, the comparison of the yielded/unyielded fluid 

regions in creeping flow of Bingham plastic fluid past a sphere for Dc/D ratio = 50:1 for present study 

with Blackery and Mitsoulis (1997) in Fig. 3.6. The yielded surfaces appear to be almost identical in size. 

However, yield surfaces in the present study are sharper and clearer as compared to the published results 

due to the employment of denser grids. Similarly, the Stoke’s drag coefficient, Cs, spanning over the range 

of Bingham number (10-3 ≤ Bn ≤ 103) is also compared for different confinement ratios in Fig. 3.7. The 

close agreement between the two sets of results confirms the credibility of the chosen numerical 

technique.  

The results of Stokes drag coefficient, Cs, from the benchmark study of unconfined flow of Bingham 

plastic fluid past a sphere by Beris et al. (1985) are compared in Fig. 3.8 with the present results having 

difference less than 1% over the range of yield stress parameter Yg. Additionally, Fig. 3.9 depicts a close 

and accurate resemblance in the comparison of strain rate contours from present work and that by Beris 
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et al. (1985). The aforementioned comparison of the present predictions with the relevant results available 

in the literature substantiates the reliability and adequacy of the numerical methodology and parameters 

employed in the present study. 

3.4.2 Morphology of yielded/unyielded region and velocity profiles 

The settling of particles in yield stress fluids demonstrates a unique characteristic of the formation of 

yielded/unyielded regions under prevailing shear stress field. The shape of yield surfaces separating fluid 

like and solid like regions depends on the particle shape and Bingham number. The structure of yield 

surfaces in Bingham plastic fluids in the vicinity of the settling particle is presented in Fig. 3.10 over the 

range of Bingham number, 0.01 < Bn  106, encompassing various shapes of spherical caps including 

sphere as well. These yield surfaces serve as delineations between yielded and unyielded fluid regions 

Figure 3.6 Comparison of the extent and shape of the yielded/unyielded regions for Dc/D = 50:1 

for Bingham plastic fluid flowing past a sphere. 
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near the particle, where the fluid undergoes shearing owing to the no-slip conditions on the particle 

surfaces. As expected, the unyielded fluid remains attached forming triangular caps to the front and rear 

Figure 3.7 Comparison of the drag coefficient for a creeping flow of a Bingham plastic fluid 

past a sphere in a tube for different diameter ratios (symbol: present results, line: Blackery and 

Mitsoulis (1997)). 

Figure 3.8 Comparison of the Stokes drag coefficient for unconfined creeping flow 

of Bingham plastic fluid past sphere. 
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stagnation points at the particle surface. Furthermore, unyielded fluid envelope encompasses fluid zones 

far away from the particle. All zones are found to be symmetric around the z-axis, i.e., representing the 

flow direction. A cursory inspection of Fig. 3.10 reveals that the location and shape of the yield surfaces 

are more and less similar for particles varying in shape. As expected, all the static unyielded zones grow 

while fluid like zone shrinks with increase in yield stress. Figure 3.10 shows that Bn > 10 the change in 

the location of yield surfaces at the front stagnation point and far away from the particle surface remains 

insignificant irrespective of the shape of the particles. However, there is a notable observation pertaining 

to the formation of static triangular cap (polar cap) at the rear stagnation point of the particle as observed 

by Blackery and Mitsoulis (1997) for spherical particles in creeping flow regimes. Unlike the unyielded 

envelope away from the particle, the triangular polar cap attached to the particle surface exhibits a 

significant impact of the shape of the particle. Appeared for  < 90° and  > 120°, the rear static unyielded 

triangular cap disappears for  = 90° and 120° as shown in Fig. 3.10. However, it is critical to comment 

on the exact shape of the yielded/unyielded regions, especially for tiny shapes. Since the continuous 

nature of the regularization model used in this work predicts the discontinuity in the fluid behavior in 

unyielded zones by an extremely small value deformation instead of zero shear rate value for chosen 

regularization parameters. Hence it is essential to examine the velocity in such disputed regions to assure 

their existence and modulation in shape as a function of particle shape and Bingham number. Figures 

3.11 and 3.12 plot the non-dimensional z-component of velocity in the radial- and axial- directions from 

the base and rear stagnation point, respectively. As shown in Fig. 3.11 the velocity variation in the radial 

direction for Bn = 0.1 and 106 over the range of particle shapes segmented as I-II and II-III indicating 

fluid-like and solid-like regions. As Bingham number increases, the rigid envelope (II-III) enclosing the 

fluid-like region (I-II) decreases in size irrespective of the shape of the particle. As a result, one case 

observes the acceleration of velocity in I-II region at Bn = 106. Also, the rigid envelop (II-III) is dynamic 

Figure 3.9 Comparison of the strain rate contours for Stoke’s law. 
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in nature and moves with the free stream velocity, U like a solid plug. The disparity of reverse trend in 

Fig. 3.11 from  = 120° to 180° is exclusive because of the chosen location to plot the dimensionless 

velocity as shearing of the fluid is affected by the longest chord length, i.e., the diameter of the geometry. 

On the other hand, in the z-direction, two triangular static unyielded zones adhere to the front and the rear 

ends of the particle. The front static zones formed at the base of the particle are larger in size as compared 

to the rear triangular polar cap. However, with the increase in α, the shape of the particle consists of a 

larger portion of the spherical lateral surface. Thus, at α = 180° due to perfect spherical shapes, these 

static zones become symmetrical in shape and size. Unlike the fluid zones, these static triangular rigid 

Figure 3.10 Progressive variation of yield surfaces with Bingham number. 
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zones grow in size with the increase in Bingham number. The front-end static zone exists over the range 

of Bingham numbers, however, the rear-end static zone remains absent at low yield stress and is only 

formed at high Bingham numbers over the range of the particle shape. The presence of these zones is 

ascertained by plotting the dimensionless velocity component Vz at the rear end of the geometry at Bn = 

106. As shown in Fig. 3.12 segment I-II indicates the static unyielded triangular cap while the segment 

Figure 3.11 Variation of dimensionless velocity component Vz/U at z = 0 as a function of 

r/rc. 

I 

II 

III 

Figure 3.12 Variation of dimensionless velocity component Vz/U as a function of z/hc at Bn = 106. 
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(III-IV) with the constant velocity Vz = 1 corresponds to the outer unyielded envelope flows with a 

constant plug velocity. The segment II-III represents the fluid-like region at the symmetrical axis over the 

range of the particle shape. Here, also the profiles follow a similar trend for α discussed for the velocity 

profiles in the radial direction in the same section. 

3.4.3 Yield Values and Drag Coefficient  

In Bingham plastic fluid, the yield stress balances the gravity force acting on the sedimenting particle. 

Above a certain yield stress value spherical segments are not able to settle down under their own weight. 

Hence, their drag values cease to infinity or much larger values so that the particle remains suspended in 

a fluid which is often required in various applications (Brummer, 2006). Fig. 3.13a illustrates the 

dependence of Stokes drag coefficient on the nondimensional yield stress values over the range of the 

shape of the particle shapes. Figure 3.13a shows that the Stokes drag coefficient increases asymptotically 

as Yg → ∞. Also, the smallest spherical segment becomes motionless at a lower yield stress value of ~ 

0.077 to get stabilized in the fluid. With the increase in α values, the yield stress value required for 

stabilization will also increase in the case of the sphere by ~ 0.141. The yield stress value of the sphere is 

also compared with the available literature values (Blackery and Mitsoulis, 1997) for settling sphere in 

Bingham plastic fluids which show a close correspondence between two sets of data.  

On the other hand, the drag force, i.e., resistance force, experienced by freely falling particles also has 

much importance from a designing and process calculation point of view. The Stoke drag coefficient 

eventually increases with the increase in Bigham number or yield stress which can also be seen clearly in 

Fig. 3.13b. However, under a constant Bingham value, the drag experienced by segments exponentially 

Figure 3.13 Variation of Strokes drag coefficient Cs with (a) yield stress (b) shape factor. 
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decreased with the increase in α value from 30° to 150° and almost become constant after 150°. The 

values of stroke drag coefficient for individual shapes can be correlated in a simplified form as a function 

of Bingham number as:  

Cs = I+ aBnb                (3.9) 

Table 3.4 Coefficient value for Eq. (3.9) 

 α = 30° α = 60° α = 90° α = 120° α = 150° α = 180° 

0.001 ≤ Bn ≤ 10 

I 0.952 0.977 1.037 1.113 1.117 1.122 

a 3.837 3.257 3.046 3.011 2.933 2.934 

b 0.822 0.798 0.778 0.763 0.758 0.757 

δavg 4.00 3.47 3.09 2.84 2.76 2.75 

10 < Bn ≤ 106 

I 6.635 7.948 9.513 13.618 12.727 13.852 

a 2.170 1.658 1.406 1.252 1.193 1.184 

b 1 1 1 1 1 1 

δavg 0.84 1.84 2.92 6.04 5.32 6.47 

 

The coefficients I, a and b of Eq. (3.9) are tabulated in Table 3.4. The dependence of Stokes drag 

coefficient on Bingham number is observed to be ambiguous for each shape till Bn ≤ 10. However, for 

high Bingham numbers, the coefficient b becomes constant and does not vary with the α values. Thus, 

Eq. (3.9) is split into two ranges of Bingham number i.e., 0.001 ≤ Bn ≤ 10, 10 < Bn ≤ 106 and 

corresponding coefficients are tabulated in Table 3.4 along with the maximum and average errors. 

Furthermore, an attempt has been made to collate the Stokes drag coefficient over the range of particle 

shape (α) and Bingham number (Bn). Thus, for all considered spherical segments Stokes drag coefficient 

is correlated as a function of Bingham number (Bn) and shape factor (α) in a single correlation as follows: 

( )( )
( )

1
1

b

S d

c
C acos Bn e

Bn
= + + +

+
               (3.10) 

From Eq. (3.9) it is obvious that the Stroke drag coefficient is very sensitive at low Bingham numbers 

than high values of Bn. Consequently, here also, the range of Bn is divided into two ranges in a similar 

manner as Eq. (3.9) and the coefficients of Eq. (3.10) have been tabulated in Table 3.5 along with the 

average and maximum deviations. 

 

Table 3.5 Coefficient value for Eq. (3.10) 

 a b c d e % δavg % δmax 

0.001 ≤ Bn ≤ 10 0.083 1.620 4.535 -0.694 -3.5 12.53 29.16 

10 < Bn ≤ 106 0.479 0.999 1.559 -1 9.774 8.86 39.25 
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3.4.4 Drag Correction Factor 

For ideal cases of spherical particles in creeping flow regime, a vast literature is available over a range of 

fluids. Nevertheless, we often encountered non-spherical shapes and/or different fluids in real cases rather 

than perfect spherical particle in Newtonian or non-Newtonian fluids. Hence, to predict the drag force 

experienced by non-spherical particles in Newtonian or non-Newtonian fluids, engineers often use 

correction factors or normalized factors to incorporate the diversity of shape and/or fluid characteristics 

compared to the classical spherical shape and/or Newtonian fluid cases. In this work, two types of drag 

correction factors XBP,f and XBP,s have been discussed in this section to show the influence of the fluid 

characteristics for a given shape of the particle and of the shape for a given Bingham plastic fluid, 

respectively. 

The ratio of the drag experienced by the spherical caps in Bingham fluid to that in a Newtonian 

fluid, XBP,f   has been plotted in Fig. 3.14. It appears that over a low Bingham number range, Bn < 0.2, 

XBP,f  remains close to unity. However, the zoom in section in Fig. 3.14 shows that for    90, the drag 

force experienced by a spherical segment is higher in Newtonian fluids compared to Bingham plastic 

fluids, for a given shape of the particle (XBP,f  increases with the increase in ). However, for  > 90°, the 

drag force will be dominant in Bingham plastic fluids as compared to Newtonian fluids, while the effect 

of the particle shape becomes insignificant. With the increase in Bingham number for Bn > 0.2 the 

correction factor is clearly accentuated in the Bingham plastic fluids for all shapes.  It is noticeable that 

the variation of drag correction factor with respect to shape factor  has been flipped over above Bn = 0.2 

showing inverse dependency on .  

Figure 3.14 Effect of Bingham number on correction factor XBP,f . 
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Finally, Fig. 3.15 illustrates the variation of the shape correction factor in Bingham plastic fluids, 

XBP,s over the range of the shapes and Bingham number. Broadly, with the increase in the Bingham 

number, the shape correction factor XBP,s  grows rapidly with the increase in Bingham number for   = 

60° and 90°. The peculiar trend in the variation of XBP,s  is observed for  = 30° for Bn < 0.2 and the 

possible reason can be drawn from the variation of drag coefficient over the range of shapes and Bingham 

number plotted in Fig. 3.13b. It shows that the drag experienced by  = 30°in the limit of Newtonian 

behaviour (Bn = 0.001) remains lower than the sphere due to obvious reason of the difference in the 

frontal area of the two shapes, i.e., frontal area of spherical segment  = 30° is less than that of the parent 

sphere from which it was dissected.  For  > 90°, XBP,s  remains almost constant,  1 , over the low values 

of Bingham number, Bn < 0.2. The increase in XBP,s  for all shapes followed plateau as Bingham number 

increases above Bn   100.  It needs to be realized here that the increase in both the projected and lateral 

surface areas has accentuated the drag experienced by the non-spherical particles compared to the 

spherical shape. Eventually, at Bn = 106, the factor XBP,s  is observed to be highest for α = 60°, possibly 

because of the shape of the particle. of the particle.  

 

 

Figure 3.15 Effect of Bingham number on correction factor X
BP,s.  
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 Chapter 4 

Forced convection 

 

This Chapter aims to explore the forced convection phenomenon from heated spherical segments 

immersed in a uniform stream of a Newtonian or Bingham plastic fluids in steady laminar flow regime. 

The effect of (i) the axisymmetric shapes of the particles in Newtonian and Bingham plastic fluids and 

(ii) channel confinement to the particle in Newtonian fluid have been examined. Results of drag, heat 

transfer coefficient, and flow kinematics are compared with the other similar shapes in order to identify 

the effect of the particle shape. The range of the shapes considered in this study is defined by a shape 

factor, ψ, and the particle longest chord length or base diameter to height ratio.  

4.1   Flow past axisymmetric shapes in Newtonian fluids 

4.1.1 Previous work 

The study of the motion of particles in fluid has received much attention from researchers to understand 

the momentum and heat transfer phenomena. The research explores a wide spectrum of aspects including 

the effect of kinematic parameters, fluid rheology, flow confinement, shape and/or orientation of particles, 

flow regimes, etc. This section limits the review of literature that mainly focuses on the impact of particle 

shape on flow and heat transfer characteristics for fluid-particle interactions. Particularly for 

axisymmetric shapes of the particles, due to the wide occurrence and highest degree of symmetry, the 

spherical shape is the most studied shape by researchers. Considering the sphere as an abundantly studied 

shape, a plethora of research for this shape has been available in the literature based on experimental, 

analytical, and numerical techniques (Dennis and Walker, 1971; Clift et al., 1978; Coulson and 

Richardson, 1990; Chhabra and Patel, 2023). As a result, reasonable forms of correlations are now 

available for spheres for the drag values prediction spanning the entire range from Stokes to Newton 

regimes. These can be found in the literature comprising the reviews and research studies by Clift et al. 

(1978), Chhabra and Patel (2023), Khan and Richardson (1987), Morrison (2013), Goossens (2019), 

Kalman and Matana (2022). On the other hand, convective heat transfer from a heated sphere has been 

reported in the literature over a broad range of fluids, namely, liquid metals (Pr ~ 0.01), air (Pr = 0.7), 

water (Pr = 7) that further extended to the other Newtonian fluids (Pr > 7) found in Witaker (1972), Clift 

et al. (1978), Krieth (2000), Polyanin et al. (2001), Dhole et al. (2006), Rodriguez and Compo (2023) 

covering a range of Reynolds number.  

Unlike spheres, the non-spherical particles describe by more than one length scale. Even though such 

non-spherical particles vary in shape, they might have identical equivalent diameter or characteristic 

length. Additionally, the hydrodynamic and thermal behavior of such particles depends on their 

orientation with respect to the flow direction. Amidst the lack of clarity about the measure of shape, scale, 
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and orientation of non-spherical particles, regular shapes like spheroid, disc, short cylinder, cones, 

hemisphere, and irregular shapes have been examined over the period of time and made available in 

literature by Bagheri and Bonadonna (2016), Govindan et al. (2020), Chhabra and Patel (2023), 

Francalanci et al. (2021), Michaelides and Feng (2023). The predictive correlations/expressions for the 

drag of non-spherical regular shapes are available either considering an individual particle shape and 

orientation or for a range of shapes and orientations altogether. Obviously, the first type of correlation 

has limited applicability with reasonably good accuracy. On the contrary, the second type allows one to 

predict the drag coefficient with a single correlation with less accuracy over the broad spectrum of the 

shape/orientation of particles. It is recommended to provide the correlation applicable universally from 

the engineering application point of view, however, it cannot be extrapolated for the missing shapes of 

particles. Based on the accuracy of the correlations, the most reliable models for estimating the drag 

coefficient include that proposed by Haider and Levenspiel (1989) and Ganser (1993) which cover a wide 

range of particle shapes. Haider and Levenspiel (1989) have established the explicit form of the drag 

correlation as CD = f (Re, ψ) considering range of shapes of isometric particles (ψ ≥ 0.67, Re < 2.5 × 104) 

and disks (ψ < 0.67, Re < 500). For all together shapes, the correlation fits isometric particle data 

reasonably good as compared to poor prediction for disks. The expression for drag coefficient proposed 

by Ganser (1993), CD = f (Re, KS, KN), consists of KS and KN as Stokes’ and Newton’s shape factors, 

respectively. This correlation based on similarity and scaling analysis was found to be promising for low 

Reynolds numbers and isometric shapes with known orientations. Recently, Bagheri and Bonadonna 

(2016) have established a correlation for the drag coefficient with increased accuracy considering 300 

regular and irregular shapes covering Stokes’ flow regimes (Re < 0.1) to Newton’s regime (Re < 3 × 105) 

in their experimental work. Hence, much work has been reported in the literature on drag and heat transfer 

in Newtonian fluids from non-spherical particles.  

A thorough review of the literature, particularly for axisymmetric shapes, suggests that spheroid 

(Masliyah and Epstein, 1970; Kishore and Gu, 2011), disc (Nitin and Chhabra, 2005), short cylinder 

(Vakil and Green, 2009), cones (Sharma and Chhabra, 1991; Mishra et al., 2019), hemisphere 

(Goharzadeh et al., 2012; Kim and Choi, 2003), spherical segments (Hochmuth and Sutera, 1970; Wang 

et al., 2009) have received attention to some extent. These shapes have been studied numerically and 

experimentally to explore hydrodynamics and/or convective heat transfer characteristics along with the 

correlations for drag and average Nusselt number. However, spherical caps or segments which are seen 

in the coagulation or breakdown phenomena of spherical particles may not follow the regularity of their 

parent particles. Such shapes have received very little attention in the literature. Thus, for instance, very 

scant data is available in the literature for spherical caps and segments, even in Newtonian fluids. 

Hochmuth and Sutera, (1970) conducted experiments for the spherical segments by varying the segment 

diameter to thickness ratio from 0.17 to 0.5 in a very low Reynolds number Poiseuille flow. Their 

experimental study clearly suggests a strong influence of segment diameter on velocity and pressure drop. 
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No more studies are available for spherical segments in literature to the best of our knowledge. However, 

the hemisphere, which corresponds to a limiting case of the spherical segment has received some 

attention. For instance, Kim and Choi, (2003) studied numerically the flow past a hemisphere over the 

wide Reynolds number range (up to Re ~ 300) and have determined the critical Reynolds number above 

which the flow becomes unsteady and periodic in nature for Re ~ 190–200. The PIV (Particle Image 

Velocimetry) measurements around the hemisphere are reported up to Re = 800 in a rectangular channel 

(Goharzadeh et al., 2012). Similarly, scant experimental results for the dependence of drag coefficient on 

Reynolds number and orientation are also available in the literature (Wang et al., 2009). Their results 

show that when the flat base is oriented upstream, the drag experienced by the hemispherical particle is 

higher than that for the flat base oriented downstream. However, the generalized correlations developed 

by Haider and Levenspiel (1989), Ganser (1993), Bagheri and Bonadonna (2016) mentioned above do 

not include spherical caps or segments.  

Thus, it is fair to summarize here that the hydrodynamic and thermal characteristics of spherical segments 

have received very little attention in the literature. Hence, this study explores the momentum and heat 

transfer from a spherical cap or segment in the steady laminar flow regime. Furthermore, the present work 

also ascertains the adequacy of the use of sphericity as a shape factor with or without additional geometric 

characteristics. Finally, the present results for spherical segments and caps are compared with the closest 

shapes like short cylinders, cones, etc. with the same projected areas of the spherical segments.  

4.1.2 Problem formulation  

The schematic representation of the two-dimensional flow of fluid past a spherical segment has been 

shown in Fig. 4.1a. The uniform flow of air (Pr = 0.72) at velocity, U and temperature Tc is considered 

parallel to the axis of symmetry of a particle that is maintained at temperature Th (Th > Tc) as shown in 

Fig. 4.1b. The spherical segments considered in this work are formed by dissecting a sphere of diameter 

Ds (= 2R) at an angle α from its positive y-direction as shown in Fig. 4.2.  A total of five segments from 

a sphere (α = 180°), i.e., α = 30⁰, 60⁰, 90⁰, 120⁰, and 150⁰ are considered for this work as shown in Fig. 

4.2.  Each segmental particle can be characterized by its base diameter, dc, and height 

( )2 20.5c s s ch D D d = − −
  

. Bearing in mind the dimensions of spherical segments i.e., dc and hc, these 

shapes are compared with their possibly closest axisymmetric shapes such as cone, short cylinder, and 

sphere (having identical dimensions of dc and hc) as shown in Fig. 4.1a. The flow past a particle is 

assumed to be two-dimensional, incompressible, and axisymmetric with thermo-physical quantities 

(thermal conductivity, k, specific heat constant, C, density, ρ, and viscosity, ) to be constant.  

The scaling parameters are employed to render the aforementioned Eqs. (2.1) – (2.3) in non-dimensional 

forms are U, ρU2, and (T – Tc)/(Th – Tc) for velocity, pressure, and temperature respectively. To circumvent 
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the complexity of shapes in practical application, the dimensions of the non-spherical particles are 

presented in terms of equivalent spherical diameter deq ( )3 6 pV = which are used as length scale here. 

This choice leads to Reynolds number being defined as, 
eqUd

Re



= . The Prandtl number, 

C
Pr

k


=  

evolves as an intrinsic property of fluids in this study for air, Pr = 0.7 has been used. In addition to these, 

sphericity () is employed as a geometric parameter to quantify the effect of shape of the particle on drag 

over the range of conditions. 

Figure 4.1 Schematics of (a) geometries of various shapes (b) computational domain of problem 

statement. 
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6 p

eq surface

VSurfaceareaof equal volumesphere

Actual surfaceareaof particle d A
 = =                                                                               (4.1) 

Where Vp and Asurface are the volume and surface area of the particle, respectively. The sphericity for a 

spherical segment of the base diameter dc and hc, segmented from a sphere of diameter Ds is given by: 

2

2 21

2

eq

c c

d

d h

 =

+

  (4.2) 

Considering two-dimensional axisymmetric unconfined flow, the above-mentioned partial differential 

equations are solved considering the following boundary conditions: 

At the surface of the particle: Vz = Vr = 0 and ξ = 1 

At the inlet boundary: Vz = 1 Vr = 0 and ξ = 0 

At the hypothetical cylindrical domain wall: Vz = 1 Vr = 0 and 0r  =  

s 

Short cylinder 

Cone 

Sphere 
α = 30° 

 α = 60° 

  
α = 90° 

  

α = 120° 

  

α = 150° 

  

z 

θ 

r 

α 

Figure 4.2 Representation of geometries of spherical segments. 
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At the outlet (Neumann boundary condition): 0
z


=


where ζ = Vz, Vr, and ξ; p = 0 

At the axisymmetric axis: Vr = 0, 0zV r  = , 0r  =  

The solution of Equations (2.1) – (2.3) yields the pressure (p), velocity (Vr, Vz), and temperature (ξ) fields 

which are further post-processed to analyze in terms of streamlines, pressure coefficient (CDP), frictional 

drag (CDF), total drag coefficient (CD), and local (Nul) and average Nusselt numbers (Nu).  

4.1.3 Choice of numerical parameter and assessment of numerical methodology 

The continuity, momentum, and energy equations (Eqs. 2.1-2.3) subjected to boundary conditions 

described in the previous section are solved by using finite element-based commercial software COMSOL 

5.3. The numerical results over the range of shapes should be unimpeded by the domain size, number and 

type of grid elements, and convergence criterion. Hence, the optimum domain size over the range of the 

shape of particles has been identified by systematically varying the domain from D1 to D3 at the Reynolds 

number, Re = 1 (to capture the broadest thickness of boundary layer) for two extreme shapes, α = 30° and 

150° as shown in Table 4.1. The average values of CD, CDP, and Nu in Table 4.1 reveal that the increase 

in domain size from D2 to D3 has a marginal effect (< 1%) on the gross results. 

Figure 4.3 Grid structure in the vicinity of the spherical segments (a) α = 30° and (b) α = 150°.  

(a) 

(b) 
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Table 4.1 Domain independence test at Re = 1. 

 L/Ds D∞/Ds CD CDP Nu 

α = 30° 

D2 400 400 11.735 11.109 2.9971 

D3 600 600 11.684 11.029 2.9974 

α = 150° 

D2 400 400 27.069 9.2812 2.2564 

D3 600 600 27.055 9.2757 2.2564 

Hence, the domain D2 (L = Dꝏ = 200) has been chosen to approximate the unconfined flow condition 

having boundaries sufficiently far away from the particle. Furthermore, the selection of the grid is a 

crucial step for the geometry with sharp corner in addition to capturing the steep changes of momentum 

Figure 4.4 Effect of grids on pressure coefficient and local Nusselt number distribution at Re = 

150 for two extreme shapes of spherical segments. 

α = 30° 

  

α = 150° 
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and thermal boundary layers at the extreme value of the Peclet number, Pe (=Re × Pr). Thus, the effect 

of grids has been examined in terms of local and average numerical results at Re = 150 for two spherical 

segment shapes, α = 30° and 150°. Figure 4.3 shows the grid structure in the vicinity of the particle with 

triangular elements while the remaining domain is discretized in quadrilateral elements. The sharp corner 

of the geometry has been refined with finer mesh to resolve the local singularity at the corner (infinite 

gradients of stress or heat flux). The grid independence test is performed at a high value of Reynolds 

number as the boundary layer is expected to be thinnest at Re = 150 for three grids G1, G2, and G3 at α 

= 30° and 150°. The grid effects have been examined on the local distribution of pressure coefficient and 

Nusselt number along the surface of the spherical segments as shown in Fig. 4.4. The obtained results for 

G2 and G3 in Fig. 4.4 are seen to be indistinguishable from each other. The number of elements required 

for each spherical segment geometry to capture momentum and thermal characteristics reduces gradually 

with the increase in their surface curvature with the increase in α. Therefore, chosen grid G2 has ~350000 

and ~159000 elements for the numerical study of α = 30° and 150°, respectively.  

Table 4.2 Comparison of experimental results with present results of drag coefficient for 

sphere in air. 

Re 
Drag coefficient, CD Nusselt number, Nu (Pr = 0.72) 

Clift et al. (1978) Present Ranz and Marshall (1952) Present 

1 27.16 27.20 2.54 2.25 

2 14.76 14.85 2.76 2.44 

3 10.52 10.61 2.93 2.59 

5 7.03 7.10 3.20 2.85 

7 5.48 5.53 3.42 3.06 

10 4.26 4.28 3.70 3.34 

20 2.74 2.70 4.41 4.05 

30 2.12 2.11 4.92 4.59 

50 1.57 1.57 5.81 5.44 

70 1.31 1.30 6.50 6.12 

100 1.09 1.08 7.38 6.97 

To gain confidence in the adequacy and reliability of the chosen numerical model, methodology, and 

parameters, a few benchmark validations have been performed for the numerical and experimental results 

available in the literature. In particular, spherical segments have been found to be the least studied shape 

in the literature. Considering sphere and hemisphere as liming shapes with α =180⁰ and 90⁰ the available 

results for these two shapes in Newtonian fluids have been validated for this study. Table 4.2 shows the 
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comparison of the present results of the drag coefficient and average Nusselt number for the sphere with 

that of the experimental results by Ranz and Marshall (1952) and Clift et al. (1978). The results have 

shown good agreement with each other. To gain more confidence, the present prediction of the local 

values of pressure coefficient (Cp) and Nusselt number on the surface of the sphere are compared with 

the available numerical results (Dennis et al., 1973; Clift et al., 1978) over the range of Reynolds number 

as shown in Fig. 4.5. They shows very good correspondence with each other with less than 3% error. 

Furthermore, the experimental results of drag coefficient value by Wang et al. (2009) of the upright 

configuration of the hemisphere is compared with the present value in Fig. 4.6 that shows a close 

correspondence between the experimental and numerically predicted values. Aside from this, validation 

has been conducted for other shapes, e.g., cone (Mishra et al., 2019) with apex angle, φ = 20⁰ in 

Newtonian fluid tabulated in Table 4.3 to acquire further confidence for the results of other shapes, cone, 

and short cylinder considered in this study. The results seem to be reasonably close to each other. 

Table 4.3 Validation of conical geometry of apex angle φ = 20° in air. 

Re 
Drag coefficient, CD 

Mishra et al. (2019) Present value 

1 34.116 33.211 

20 3.2193 3.1776 

50 1.8156 1.8084 

100 1.2468 1.2531 

Figure 4.5 Comparison of the (a) pressure coefficient and (b) local Nusselt number on the surface of 

sphere over a range of Reynolds number for Pr = 0.72. 

(a) 

180° 

0° 

(b) 
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4.1.4 Results and discussion 

The present work explores the effect of particle shape on momentum and heat transfer characteristics by 

considering five different geometries for spherical segments characterized by α (30° ≤ α ≤ 150°). The 

range of Reynolds numbers covers 1 ≤ Re ≤ 150 for air (Pr = 0.72) as a working fluid. Bearing in mind 

the asymmetricity of the spherical segments, the closest other possible shapes, cone and short cylinders, 

with identical height and base area have been incorporated in this work to quantify the shape effect on  

momentum and heat transfer phenomena. As shown in Table 4.4, spherical segments for α ≤ 90° have 

been compared with both shapes of cone and short cylinder. While for α > 90°, recognizing the shapes of 

the spherical segment, α = 120° is compared with a short cylinder only having the same base area and 

Table 4.4 Sphericity of the axisymmetric shape in present work.  

Cone Spherical segment Short cylinder 

Cα ψ α rc/R ψ SCα ψ 

C30 0.324 30° 0.5 0.424 SC30 0.541 

C60 0.511 60° 0.866 0.663 SC60 0.726 

C90 0.658 90° 1 0.840 SC90 0.825 

- - 120° 0.866 0.952 SC120 0.872 

- - 150° 0.5 0.996 - - 

Figure 4.6 Comparison of experimental results of drag coefficient of the hemisphere with the 

present study for Pr = 0.72. 
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height. The results of the effect of Reynolds number and shape factor on wake characteristics, total drag 

coefficient, isotherms, local Nusselt number, and average Nusselt number have been discussed in the next 

section. 

4.1.4.1 Flow separation and wake characteristics 

Visualization of flow structure in the vicinity of non-spherical particles is an interesting phenomenon in 

general with a significant impact on practical applications. The spatial variation of velocity around the 

particle has been visualized in terms of streamlines to understand the characteristics of fluid flow past a 

particle. Figure 4.7 elucidates the effect of the Reynolds number on the flow past the spherical segment 

by plotting the streamlines for α = 30⁰, α = 90⁰, and α = 150⁰. Intuitively, the location of the flow separation 

depends primarily on the geometry of the particle. The flow separation from the particle surface occurs 

due to the adverse pressure gradient associated with the sudden change in the body contour of the particle 

geometry. At a low Reynolds number, Re = 1, fluid follows the body contour under the low inertial force 

without losing kinetic energy and remains attached to the particle surface irrespective of the shapes. The 

critical Reynolds number, Rec  defined as the value above which flow has been detached from the particle 

surface. For α = 30⁰, the flow separation occurs early at the critical Reynolds number, Rec ~ 3, due to the 

Figure 4.7 Wakes at the rear end of the spherical segment over the range of Reynolds number.  
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sharp corner and low curvature to the lateral area. On the other hand, for the spherical segment with α = 

150⁰, the flow separation occurs at Rec ~ 22. The values of the critical Reynolds number in Table 4.5 are 

ascertained with the accuracy of ±1 Re. 

Table 4.5 Critical Reynolds number for axisymmetric shape in the present work. 

Spherical Segment Cone Short cylinder 

α 
No wake 

Re 

Wake 

Rec 

Cα 
No wake 

Re 

Wake 

Rec 

SCα 
No wake 

Re 

Wake 

Rec 

30° 2 3 C30 1 2 SC30 - 1 

60° 6 7 C60 5 6 SC60 1 2 

90° 13 14 C90 13 14 SC90 2 3 

120° 19 20 - - - SC120 3 4 

150° 21 22 - - -  - - 

For sphere, α = 180°, Rec ~ 22 

Intuitively, it would be expected that the distinct shape of the particle with identical frontal areas tends to 

modify the wake structure formed at the rear of the particles. Figure 4.8 compares the wake characteristics 

for all three shapes over the range of α for the value of Reynolds number just above the critical values, 

Rec (Table 4.5). For α = 30⁰, streamlines travel along the base of the particles until they detached from 

the surface due to the abrupt change of the lateral surface and formed separation bubbles for all three 

shapes. Figure 4.8 shows that the lateral surfaces of the spherical segment (curvature) and cone (slanted) 

while the flat surface of the short cylinder have been fully enveloped by the twin symmetric vortices. For 

α = 30⁰, it is noticeable that as compared to the curvature, the slant surface of the particle has placed the 

outer boundary of the wake further down forming the broader separation bubbles. Similarly, the wake 

boundary will be pushed further away due to the completely flat rear end of the short cylinder which 

offers a flat surface followed by the vertical surface to the flow as shown in Fig. 4.8.  

As α increases, at α = 60°, the geometry of the spherical segment gains shape in a further smooth curvature 

surface while the cone acquires a less slanted surface compared to α = 30⁰. While the short cylinder shows 

the corresponding change in the height of the geometry only. In the case of a spherical segment, the 

separation bubbles are shifted towards the rear end due to the smooth curvature from the base of the 

particle. On the other hand, the cone with a less slanted surface formed separation bubbles that engulfed 

the complete lateral surface whereas the short cylinder separation bubble remains attached to the flat 

surface. The wake characteristics follow a similar trend with the further increase in α (see results for α = 

90⁰). For α = 90⁰, the shape of the spherical segment has no significant effect on Rec as seen in Table 4.5 

and the value appears to be similar or close to that of the sphere. The obvious reason that even with the 
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flat frontal area, a major part of the shape of these particles, i.e., the lateral area resembles the spherical 

shape. 

The wakes or separation bubbles are generally characterized by the wake or separation length, i.e., a 

measure of the distance between the rear stagnation point and the confluence point (termination of wake 

separation point) of the flow on the streamwise rear axis of the particle. The confluence point can be 

determined from the velocity profile plotted along the rear axis downstream of the rear stagnation point. 

Figure 4.9 illustrates the velocity profiles for Re = 150 over the range of α values for spherical segments 

over the normalized rear axis to estimate the effect of shapes on the separation length. At the confluence 

point, the magnitude of the velocity is zero showing the transition from negative to positive values. Figure 

Figure 4.8 Comparison of the wake formation of spherical segments with their closest non-

spherical geometries and sphere. 
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4.9 clearly shows that at a given Reynolds number, the largest separation length is observed for α = 30⁰ 

and that gradually decreases with the transition of the shape towards more spherical with the increase in 

α.  Before leaving this section, the role of shape on the separation length for the spherical segment, cone, 

Figure 4.9 Non-dimensional velocity profile at the rear of the spherical segments at z = 0. 

Figure 4.10 Representative streamline profiles for spherical segments at Re = 30. 
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and short cylinder has been visualized by plotting the streamlines over the range of α as shown in Fig. 

4.10 at Re = 30 to gain further insight into the prevailing flow structure in the surrounding of the particle. 

It shows that the shape of the particle has a significant influence on the wake structure under otherwise 

identical conditions. 

4.1.4.2 Drag coefficients 

Process designing associated with multiphase and/or particulate systems essentially requires the 

knowledge of the drag characteristics of the particles along with the physics of fluids. The pressure and 

frictional forces experienced by a particle collectively contribute to the resultant drag force. By knowing 

the most stable orientation of the particle in the fluid, in the absence of (or negligible) wall effect, the 

non-dimensional drag force on the non-spherical particle will be expressed as CD = f(Re, ψ). For acquiring 

a clear understanding of the effect of particle shape on the drag coefficient, the dependence of CD on Re, 

and ψ has been plotted in Fig. 4.11-4.13. The dependence of drag on the shapes of the spherical segment 

has been shown in Fig. 4.11(a) and 4.11(b) depict that the shape descriptor (α or ψ) has a significant 

effect on CD at low values of Reynolds number (Re = 1 and 10) that becomes almost independent of 

Reynolds number as Re increases. A sharp increase in the drag coefficient has been observed for Re ≤ 10 

for α ≤ 120° (ψ ≤ 0.952) in Fig. 4.11(a) beyond these values, the drag tends to be constant.  As discussed 

in the previous section, at Re = 1, the flow remains attached to the spherical segment over the range of 

the shape dominated by the frictional or viscous drag. As the viscous drag pertains to the surface area of 

the particle subjected to the flow, the drag coefficient increases with α or ψ as the lateral surface area 

increases shown in Fig. 4.11(a). A similar trend has been observed for Re = 10 as well in Fig. 4.11(a).  

Figure 4.11 Variation of (a) drag coefficient (b) the ratio of pressure drag coefficient to the total 

drag coefficient for a range of spherical segments and Reynolds numbers. 

(a) (b) 
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As the Reynolds number increases further beyond Re = 10, the drag coefficient decreases over the range 

of α.  With the increase in Reynolds number, the total drag dominates by pressure drag with less 

contribution of viscous drag. Hence, as the Reynolds number increases the frontal area of the particle has 

more significance as compared to the surface area. Moreover, in such prevailing conditions, the drag 

coefficient shows weak dependence on shape as well as the Reynolds number. It is noticeable that for Re 

> 50 the drag coefficient increases to the maximum at α = 90° having the largest base area as a frontal 

area over the range of α. Even though having an identical frontal area for α = 90°, 150° and 120° shapes, 

α = 150° and 120° show a decline in drag coefficient as compared to α = 90°. It is noticeable that the drag 

coefficient values for α = 60° and 30° seemed to be close to the drag experienced by spherical segments 

having identical base areas, i.e., α = 120° and 150°, respectively. Hence, it shows that beyond Re = 50, 

the drag of the particle is a strong function of the base or frontal area irrespective of the shape of the 

particle.  

Figure 4.11(b) shows the relative contributions of the viscous and pressure drag corresponding to the 

shape of the spherical segment over the range of Reynolds number spanned here. Figure 4.11(b) reveals 

that for α ≤ 90°, the pressure drag contributes more to the total drag with a little contribution from the 

Figure 4.12 Drag coefficients of the spherical segment (SS), cone (C), and short cylinder (SC) of 

identical base diameter and height as a function of Reynolds number. 

(a)                                                 (b)                                                  (c) 

(d)                                                     (e)                                                     
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viscous drag, specifically for Re ≥ 50. As the shape of the particle tends to be more spherical in shape 

with the increase in α or ψ, for the given value of the Reynolds number, due to the increase in lateral 

surface area the ratio CDP/CD decreases. In summary, the drag force acting on the spherical segment 

displays proportionality to the surface area at the lower values of Re (<~50). Beyond this value of the 

Reynolds number, the drag coefficient is proportional to the projected area.  

To represent the effect of the Reynolds number on the shape of the particles more precisely, Fig. 4.12 has 

been plotted for shapes with identical height and frontal area while varying in lateral surface area as, 

spherical segment, cone, and short cylinder. The lateral area has been considered as the surface area of 

the particle projected on the vertical plane. In Fig. 4.12(a) - (e) it has been evident that for Re < ~50 the 

drag coefficient values dominated by viscous drag differ reasonably for three shapes because of the 

difference in lateral areas. While the drag coefficient drawing little contribution from the viscous drag is 

governed by the frontal area irrespective of the shape of the particle beyond Re  50. It is worth 

commenting here on the shape of the particles (differs in the lateral surfaces or body contours) and how 

it modulates the drag force at the low Reynolds numbers. Particles with slander (cone), vertical (short 

cylinder), and curvature (spherical segment) surfaces experience the drag in the order of cone < spherical 

segment < short cylinder for the identical base area and height (Fig. 4.12).  

Finally, Fig. 4.13 shows the dependence of drag coefficients for all three shapes on the shape factor ψ. It 

is noticeable that the drag curves for cone and spherical segments show smooth variation with the increase 

Figure 4.13 Drag coefficient as a function of sphericity and Reynolds number. 
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in ψ irrespective of the shapes. Contrary to the drag variation of cone and spherical segments, the drag 

curve for short cylinders has been seen to be veering away from the cone and spherical segments over the 

range of Reynolds number. Moreover, this deviation seems to be significant at a low Reynolds number 

that becomes trivial with the increase in Reynolds number, particularly for ψ < 0.8 as seen in Fig. 4.13. 

It is clear from the above discussion that the shape factor ψ will be not sufficient to describe the drag 

coefficient variation over the range of Reynolds number for particles varying in shape. Hence, a 

correlation for drag coefficient has been proposed as a function of Reynolds number and two shape 

descriptors ψ and (dc/hc) as 

0.186
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Figure 4.14 Representative isothermal contours for spherical segments at Reynolds number at Pr = 

0.72. 

α = 30° 

  

α = 90° 

  

α = 150° 

  

α = 180° 

  



| Forced convection 

 

53 

 

The addition of another shape descriptor (dc/hc) to Eq. (4.4) successfully correlates the total of 169 data 

over the range of the shape factor, 0.324 ≤ ψ ≤ 1, and Reynolds number range, 1 ≤ Re ≤ 150 with the 

average and maximum error of 10% and 33%, respectively. 

In addition to devising Eq. (4.4) here using the present numerical results for spherical segment, it is also 

worthwhile to revisit some of the existing drag correlations in the literature. Thus, for instance, the form 

of the correlation Haider and Levenspiel (1989) can be modified as follows for the present results: 

( ) ( )

( )0.281 2.227

2.70 1.878 0.241  1.86024
1

1.023 0.134  
D

exp Re exp
C

Re Re Re exp

 

+

 −  
= − +  

− −  

     (4.5) 

Eq. (4.5) correlates our 169 data points with the average and maximum deviation of 17% and 95%, 

respectively. The above expression yields poor results for ψ ≥ 0.952, particularly, for Re ≥ 60. Similarly, 

the other model proposed by Haider and Levenspiel (1989) has been adopted here which is the modified 

form of the Clift-Gauvin Equation (1971) for spherical particles by introducing the constants as function 

of the sphericity. 

( )
0.037
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−

     (4.6) 

Eq. (4.6) shows a reasonably good fit with the resulting average and maximum % errors of 13.5% and 

35%, respectively. However, Eq. (4.6) contains many more fitting parameters than Eq. (4.4). 

It is worthwhile to note here that the original form of the functional relationship of drag coefficient by 

Haider and Levenspiel (1989) successfully reproduces the results for ψ ≥ 0.511 within the reported range 

of overall average and maximum errors of 16% and 275% respectively. However, its performance 

deteriorated as the value of the sphericity dropped below 0.511. In summary, Eq. (4.4) seems to reproduce 

the present results for spherical segment than Eqs. (4.5) and (4.6). 

4.1.4.3 Heat transfer characteristics 

The visualization of the temperature field in the vicinity of the hot particle in the flow domain helps map 

the regions of relatively low (cold spot) and high (hot spot) temperatures. Figure 4.14 shows the isotherm 

contours for spherical shape particles over the range of Reynolds number. At low Re, the heat transfer is 

primarily governed by conduction mode showing the symmetric contours surrounding the hot particles. 

With the increase in Reynolds number, due to advection the isotherms distorted in the downstream of the 

particle reflecting the structure of vortices. In Fig. 4.15, the local heat transfer coefficient is plotted over 

the surface of the spherical segment of α = 30°, 90°, 150°, and 180°. Advection phenomena of air mainly 

promote heat transfer from the hot particles. The maximum value of the local Nusselt number has been 

observed at the front stagnation point over the range of Reynolds number irrespective of the shape of 

particle. Almost constant values of the local Nusselt number observed along the base of the particle fall 
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to a minimum once they cross the sharp corner of the geometry that precisely indicates the flow separation 

points in Fig. 4.15. It is also evident that the location of flow separation is a strong function of the particle 

shape. Hence, the minima in the local Nusselt number for the spherical segments shift away from the 

corner of the shape with the increase in α. Finally, the peaks observed in the local Nusselt number are of 

no particular significance from a practical standpoint as the corresponding heat transfer area at this 

location of the geometry is zero. 

The average Nusselt number plays a vital role in the process calculations as well as the sizing of 

equipment where heat transfer in various fluid-particle interactions is an inherent phenomenon. In general, 

the average Nusselt number shows a positive dependence on the Reynolds number shown in Fig. 4.16a 

Figure 4.16 Average Nusselt number as a function of (a) Reynolds number (b) range of the shape 

of spherical segment . 

(b) (a) 

Figure 4.15 Local Nusselt number variation for spherical segments over the range of Reynolds 

number.  

α = 30° α = 90° 

α = 150° α = 180° 
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over the range of spherical segments. On the other hand, as shown in Fig. 4.16b, with the increase in α 

the average Nusselt number decreases, and beyond α = 120⁰, the rate of heat transfer becomes independent 

Figure 4.16 Average Nusselt number as a function of (a) Reynolds number (b) range of the shape 

of spherical segment . 

(b) (a) 

Figure 4.17 Variation of Nusselt number as a function of sphericity and Reynolds number.  
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of the shape of the particle. It is observed that at Re = 150, the value of the average Nusselt number for α 

= 30⁰ is ~ 3 times higher than the particles with α > 120⁰. The average Nusselt number for different shapes 

has been shown in Fig. 4.17 as a function of the shape factor, ψ. It again reveals that similar to drag 

coefficient curves, the cone, and spherical segments show the continuity of the variation of Nu over the 

range of ψ irrespective of the shape of the particles. However, the average Nusselt number of short 

cylinders deviates reasonably from cone and spherical segments over the range of ψ. In summary, for the 

average Nusselt numbers of the particles varying in shape, it is essential to introduce additional shape 

descriptor that will aid to establish a more accurate correlation. 

Over the range of the shape factor (0.324 ≤ ψ ≤ 1) and Reynolds number (1 ≤ Re ≤ 150) the average 

Nusselt number has been correlated by employing two shape descriptors ψ and (dc/hc) as follows: 

0.104

0.516 1 3 0.460 c

c

d
Nu A BRe Pr

h
 −  

= +  
 

 (4.7) 

Where, A = 1.870 and B = 0.499 (Fig. 4.18). Equation (4.7) correlates a total of 169 data points with the 

average and maximum deviations of 6.5% and 27%, respectively. Figure 4.18 includes the present 

numerical results compared with the results available in the literature for the intermediate values of ψ = 

Figure 4.18 Comparison of the present results of the average Nusselt number with the published 

results. 



| Forced convection 

 

57 

 

0.779 and 0.874 for the cone and short cylinder, respectively, along with the sphere. The good overlapping 

of the data sets inspires confidence in the newly proposed correlation.  Moreover, for a sphere (ψ = 1, 

dc/hc = 1) above equation reduces to the form, i.e.,  
0.516 1 31.87 0.499Nu Re Pr= +  that is consistent with 

the proposed correlation for air by Ranz and Marshall (1952) and Thorpe and Mason (1971) from 

experimental results. It is worth mentioning here that the widely accepted correlation for a sphere over 

the range of Reynolds and Prandtl numbers consists of A = 2 which denotes the Nusselt number for pure 

conduction Whitaker (1972) in the limit of Re → 0. The present numerical results of the average Nusselt 

number for a spherical particle are found to be well with a maximum deviation of 8% from Whitaker 

(1972) while with Feng and Michaelides (2000) it raised to a maximum of 15%. 

Before leaving this section, it is worth noting here that the flow remains steady for all particle shapes over 

the range of Reynolds number considered in this study. The only shape SC30 (ψ = 0.541) shows transition 

of flow from steady axisymmetric to steady asymmetric at Re’ ~ 135 and that becomes periodic for Re’ 

~ ≥ 155 as observed by Shenoy and Kleinstreuer (2008). Hence, the results for SC30 (ψ = 0.541) using a 

steady solver are probably less reliable for Reynolds number range 135 ≤ Re ≤ 150. This work assumes a 

fixed orientation of the particles in the applications involving free-falling particles, where the orientation 

may change and/or the particle may undergo mixed motion involving rotation and translation. Clearly, in 

this case, three-dimensional time-dependent simulations are required which tend to be computationally 

intensive. It is, therefore, believed that the results presented here can serve at least a first-order 

approximation to estimate the values of drag and Nusselt number in a new application. 

4.2   Flow past a non-spherical particle in confined Newtonian media 

4.2.1 Previous work 

A comprehensive review of the literature on regular shaped particles such as spheres, cylinders (circular, 

square, semi-circular, etc.), and non-spherical with axisymmetry in an unconfined Newtonian fluid is 

presented in section 4.1. The momentum and thermal boundary layers in a steady flow of fluid past such 

geometries are greatly influenced by the shape of the particles, confinement, presence or absence of 

buoyancy force, orientation, etc. Non-spherical particles are frequently encountered in various processes, 

such as the processing of food particles, mining, paper, coal, pharmaceuticals, cosmetics, and fine 

chemicals, to name a few. In literature, the knowledge about non-spherical particles in various 

applications is still not as well established, even in the unconfined domain, let alone confined flow. Due 

to the frequent occurrence of non-spherical shapes in various applications, non-spherical particles remain 

an intriguing subject for researchers to study and interpret the effect of shape on drag and heat transfer 

coefficients in more efficient ways. There are numerous descriptors reported in the literature to 

characterize the deviation in shape of the non-spherical particles from a sphere, e.g., sphericity, volume 

equivalent or surface area equivalent to sphere. In literature Pettyjohn and Christiansen, 1948 and Haider 

and Levenspiel, 1989 have attempted correlations for the drag coefficient for non-spherical particles in 
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an unconfined domain having negligible wall effect, using sphericity as a standard shape descriptor. 

Although, in many practical applications, like pneumatic conveying, drying fluidization, etc. the concept 

of an infinite wall is unrealistic. These applications always follow some finite boundaries that confines 

the flow and that causes extra retardation on particles that instigate more drag. Uhlherr and Chhabra 

(1995) studied the effect of the wall factor on the Reynolds number. In their experimental study,  they 

have reported that the effect of wall factor on Reynolds number has been significant for 0.5 > Re < 

1000. Beyond this range, the Reynolds number shows dependence on the sphere-to-tube diameter ratio. 

Further, Wham et al. (1996) proposed two correlations for the falling sphere in the cylindrical domain as 

a function of confinement ratio, i.e., ratio of diameter of sphere to that of the tube (0.08 ≤ λ ≤ 0.70). The 

study suggested that increasing confinement suppresses the wake formation and decreases the wake 

length. 

On the other hand, Shahcheraghi and Dwyer (1998) studied hydrodynamics and heat transfer 

characteristics for a sphere in laminar Newtonian flow for eccentric position of sphere in the tube. The 

three-dimensional flow has been studied numerically to explore the effect of Reynolds number (Re = 25, 

125) and confinement values (λ = 0.2, 0.4) drag, lift and heat transfer coefficients. Furthermore, 

Maheshwari et al.   (2006) studied the momentum and heat transfer characteristics around single and 

three-sphere systems in the Reynolds number range 1 ≤ Re ≤ 100 for water and air as a fluid media. 

Results showed that confinement strongly influences momentum transfer over the heat transfer.  Krishnan 

and Kannan (2010) also found a similar finding for the momentum and heat transfer studied for a heated 

sphere in a pipe with a fully developed parabolic velocity profile at the inlet. They also suggested that the 

effect of confinement was more dominating in the case of low to moderate Reynolds numbers. As the 

confinement ratio increases, the flow becomes more and more stable and requires a high Reynolds number 

for boundary layer separation. 

As discussed previously, various applications in engineering settings like ore drilling, sea mining, 

fluidization, etc., may not always encounter a perfect spherical shape, in contrast, they may involve other 

non-spherical shapes, such as disc, spheroid, spherical cap, cone, needle-like, and so on. Chhabra (1995) 

investigated the effect of confinement on the terminal velocity of the non-spherical particle 

experimentally and correlated the wall factor with confinement ratio, Reynolds number and shape factor.  

In literature, some shapes like short cylinder (Unnikrishnan and Chhabra, 1991), needle, cube (Chhabra, 

1995), disc (Nitin and Chhabra, 2005), spheroid (Kishore and Gu, 2010) and hollow cylinder (Mohammad 

and Munshi, 2023) are studied under the wall effect. On the other hand, no prior studies have been 

reported for the non-spherical shape, i.e., spherical cap. Hence, the present work aims to study the range 

of the shapes of the spherical cap (α = 30˚, 60˚, 90˚) in two different confinement ratios, λ = 0.2, and 0.5. 

Furthermore, the results of smallest spherical segment (α = 30˚) are compared with circular disc and 

sphere for a fixed confinement ratio (defined as diameter of particle to diameter of the tube) of λ = 0.5 

over a range of Reynolds number, 1 ≤ Re ≤ 100 in air to compare and to gain insight into the effect of the 

shape with axisymmetry in confinement.  
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4.2.2 Problem formulation  

In this study, a heated spherical cap (or a circular disc) at temperature, Th of the base diameter or largest 

chord length, dc is located in the cylindrical confinement of diameter D facing the flat side in the 

downward direction, as shown in Fig. 4.19. Being a segment of a spherical shaped particle of diameter 

Ds, a shape of spherical caps considered in this work has a base diameter dc and corresponding height of 

the segment, ( )2 20.5c s s ch D D d = − −
  

. A total of three segments from a sphere, i.e., α = 30⁰, 60⁰ and 90⁰ 

are considered for this work for two confinement ratios, λ = dc/D = 0.2, and 0.5 and the results are 

compared with the case of unconfined flow from section 4.1. In the case of circular disc located in the 

fixed value of confinement λ = dc/D = 0.5, the diameter and height are chosen to be identical to dc and h 

of the spherical cap of α = 30°. The flow of air (Pr = 0.72) is moving upward in the z-direction with a 

constant velocity of U and temperature, Tc (Tc < Th). Intuitively, the wall confinement imparts stability to 

the flow, it defers the flow separation to the higher Reynolds number. Hence, the assumption of flow to 

be steady over the range of the Reynolds number, 1 ≤ Re ≤ 100 is rational for this this study (Sagar et al., 

2017). The thermo-physical properties of the air (density, ρ; specific heat, C; viscosity,  and thermal 

conductivity, k) are assumed to be constant. The effect of viscous dissipation is assumed to be negligible 

over the range of parameters. The scaling parameters employed to render the aforementioned Eqs. (2.1) 

– (2.3) in non-dimensional forms are U, ρU2, and (T – Tc)/(Th – Tc) for velocity, pressure, and temperature, 

(a) 

Figure 4.19 Schematics of the problem statement (a) Physical domain (b) Computational domain. 

(b) 
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respectively. To circumvent the complexity of shapes in practical application, the dimensions of the non-

spherical particles are presented in terms of equivalent spherical diameter deq ( )3 6 pV = which are used 

as a length scale here. This choice leads to Reynolds number being defined as, 
eqUd

Re



= . The Prandtl 

number, 
C

Pr
k


=  evolves as an intrinsic property of fluids in this study for air, Pr = 0.7 has been used. 

In addition to these, sphericity () is employed as a geometric parameter to quantify the effect of shape 

of the particle on drag over the range of conditions as Eqs. (4.1) and (4.2). 

For axisymmetric flow assumed over the range of conditioned spanned in this problem, the physical 

realistic boundary conditions in the nondimensional form are given as: 

At the surface of the particle: Vz = Vr = 0 and ξ = 1 

At the inlet boundary: Vz = 1 Vr = 0 and ξ = 0 

At the pipe wall: Vz = Vr = 0 and 0r  =  

At the outlet (Neumann boundary condition): 0
z


=


where ζ = Vz, Vr, and ξ; p = 0 

At the axisymmetric axis: Vr = 0, 0zV r  = , 0r  =  

The solution of Eqs. (2.1) - (2.3) yields the pressure (p), velocity (Vr, Vz), and temperature (ξ) fields which 

are further post-processed to analyze in terms of streamlines, pressure coefficient, total drag coefficient, 

and local and average Nusselt numbers as discussed in section 2.3. 

4.2.3 Choice of numerical parameter and validation 

Flow around a spherical cap (or a circular disc) is solved using the finite element-based commercial 

software COMSOL Multiphysics (Version 5.3a). The PARDISO scheme is used in order to solve the  

set of continuity, momentum, and energy equations for air. The accuracy and reliability of the chosen 

numerical scheme purely depend on the choice of numerical parameters, domain size, and grid. The 

domain independent test has been conducted by varying the domain length in the upstream and 

downstream directions at Re = 1 and Pr = 0.72. The results of the pressure and total drag coefficients and 

average Nusselt number ensure that the length of 20dc and 40dc in the upstream and downstream, 

respectively are not changing the results significantly (<0.5%) on further increase in the domain size. 

Furthermore, the chosen domain size is found to be in lined with that of considered by Nitin and Chhabra 

(2005) for their numerical study of circular disc in confinement to study hydrodynamics and thermal 

behavior for forced convection phenomena. In a similar manner, the grid independence test is carried 
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out at the highest value of Re = 100. The steep and sharp corner of the geometry elevates the difficulty in 

solving momentum and energy equations due to the singularities at the corners. To capture these steep 

velocity gradients around the corner and to neutralize the effect of sharp corners, a very fine free triangular 

grid is constructed in the vicinity of the geometry walls while far away from the geometry mapped grid 

is generated. Three different grids G1, G2 and G3 are formed for spherical cap (circular disc), and their 

effect is observed on the average drag coefficient and Nusselt number (Table 4.6) and local profiles of 

Nusselt number and pressure coefficient shown in Fig. 4.20. As we move from G1 to G2 and G2 to G3 

there is no significant difference observed in the average value in Table 4.6. However, the local profiles 

Table 4.6 Grid Independence test at Re = 100 and Pr = 0.72 for spherical cap. 

Grid NP NT CD CDP Nu 

G1 170 38039 5.18 5.22 6.50 

G2 475 99256 5.20 5.27 6.47 

G3 630 180293 5.23 5.30 6.48 

Np = Number of elements on the particle surface in the computational domain  

NT = Number of elements in the computational domain 

Table 4.7 Validation of Drag coefficient for a sphere with moving wall at λ = 0.5. 

Re Present Song et al. (2009) Thumati (2016) 

1 142.77 139.577 139.112 

5 28.694 28.136 28.009 

10 14.55 14.217 14.222 

50 3.621 3.583 3.548 

100 2.323 2.263 2.278 

Figure 4.20 Grid independence test at Re = 100 and Pr = 0.72. 
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of the pressure coefficient and Nusselt number over the particle surface show that G1 is not sufficient to 

capture the local variation while G2 and G3 trends are close enough as shown in Fig. 4.20. This justifies 

our chosen grid G2 having 475 elements on the surface and a total of 99256 elements in the computational 

domain are sufficient to capture the steepest gradient in the case of spherical cap as well as circular disc. 

The convergence criterion of 10-5 was set for both momentum and energy equations. 

 The reliability of the chosen numerical technique and level of accuracy of new results is ascertained by 

comparing the present results with the available results for the limiting cases. As mentioned previously, 

sphere is the most extensively studied geometry in the past and the cap is considered as a small  

dissecting portion of the sphere. Hence, the drag values for a sphere at λ = 0.5 have been compared with 

Song et al. (2009) and Thumati (2016) in Table 4.7. Furthermore, Table 4.8 exhibits the comparison 

between the average Nusselt number of a sphere in Poiseuille flow in the confinement of λ = 0.5 with  

 Song et al. (2012) at Re = 10 and 100 over a range of Pr values. The comparison establishes a good 

correspondence. In literature, extensive data is available for the circular disc with and without wall effect. 

Therefore, considering the disc as the closest shape to the spherical cap, benchmark validation for the 

circular disc has been performed to get more hold on the numerical scheme used in the present study. In 

Fig. 4.21, the total drag, and pressure drag coefficient is compared with the circular disc in confinement 

of λ = 0.5 with Nitin and Chhabra (2005) providing an excellent match between both results. Furthermore, 

qualitatively, Fig. 4.22 compares the azimuthal vorticity and the streamline for the circular disc with 

Shenoy (2008). That seems to be in good agreement with each other. A good correspondence between 

the foregoing comparisons establishes confidence in the chosen numerical scheme for the reliability of 

the new data reported here. 

Figure 4.21 Validation of total drag and pressure drag coefficient with Nitin and Chhabra (2005) 

or circular disc (moving wall boundary condition). 



| Forced convection 

 

63 

 

Table 4.8 Validation of average Nusselt number for sphere in Poiseuille flow at λ = 0.5. 

Re Pr Song et al. (2012) Present 

100 1 10.30 9.97 

100 5 17.28 16.68 

100 10 21.77 20.86 

100 20 27.16 26.12 

100 40 34.05 32.76 

10 1 4.69 4.64 

10 5 7.83 7.77 

10 10 9.71 9.62 

10 20 12.05 11.94 

10 50 16.07 15.95 

10 100 20.09 19.91 

4.2.4 Results and discussion 

Present work examines the effect of Reynolds number (1 ≤ Re ≤ 100) on the momentum and heat transfer 

characteristics of the steady flow of air (Pr = 0.72) past a heated spherical cap (α = 30°, 60°, 90°) in the 

Figure 4.22 Validation of steady axisymmetric flow with azimuthal vorticity (left half) and streamline 

(right half) Shenoy et al. (2008) (a) Re = 10 (b) Re = 100. 
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confined tube with λ = 0.2, 0.5. The momentum and heat transfer characteristics have been studied and 

compared for spherical cap (α = 30°) with disc, and sphere having same projected area under identical 

conditions to establish a better understanding of the shape effect.   

4.2.4.1 Flow kinematics and heat transfer characteristics 

The illustration of spatial variation of the velocity and temperature around the particle is customary to 

understand the effect of increasing Reynolds number. Streamline (left half) and isothermal contours (right 

half) are plotted for all three shapes α = 30°, 60° and 90° as shown in Figs. 4.23-4.24 over the range of 

Reynolds numbers for λ = 0.2 and 0.5. Intuitively, the momentum and heat transfer rates increase 

significantly with the increase in inertial forces. Moreover, the shape plays a significant role in modulation 

of momentum and heat transfer rates. The shape of the particle particularly affects the formation of wakes 

at the rear end of the particle. For a fixed confinement, increase in Reynolds number results in acceleration 

in the flow which results in the flow separation and the wake formation. However, the increase in 

Figure 4.23 Streamline (left half) and isotherm contour (right half) for spherical caps (a) α 

= 30°, (b) α = 60° and (c) α = 90° at confinement λ = 0.2. 
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confinement delays the wake formation due to stabilization in the flow.  Thus, for a fixed Reynolds 

number and particle shape, the length of the wake decreases with the increase in the confinement. It is 

observed that for λ = 0.2, the wake is observed at Re = 5 for α = 30⁰ which disappears with the further 

increase in confinement to λ = 0.5. Figure 4.25 represents the velocity profiles at the rear side of the 

spherical caps for both confinement and at the extreme values of the Reynolds number. The dashed lines 

and the solid line represent the velocity profile of λ = 0.2 and 0.5, respectively. At low Reynolds numbers, 

Re = 1, the fluid velocity increases from zero to a constant velocity monotonically, which signifies no 

flow separation for both the confinements. However, as the confinement increases from 0.2 to 0.5 at the 

low Reynolds number, the velocity profiles for λ = 0.5, irrespective of the particle shape, attain to the 

constant fluid velocity earlier downstream of the particle as compared to λ = 0.2 due to wall effects that 

causes flow retardation. Furthermore, the velocity profiles also help to confirm the presence of the wake 

formation as the velocity magnitude downstream of the particle changes from negative to positive. It is 

also noticeable that the point of the change of velocity magnitude from negative to positive in the z-

Figure 4.24 Streamline (left half) and isotherm contour (right half) for spherical caps (a) α = 

30°, (b) α = 60° and (c) α = 90° at confinement λ = 0.5.  
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direction moves closer to the rear stagnation point of the particle. It clearly suggests that the formation of 

the wake decreases with the increase in the confinement. Furthermore, the nondimensional distance 

between the rear stagnation point and the point of the change of the velocity magnitude for the highest 

Reynolds number, Re = 100 shows inverse dependence on shape factor α for both the confinement vales 

(Fig. 4.25).   

Isotherm contours plotted in Figs. 4.23 and 4.24 help to delineate the variation of the temperature field 

around the spherical segments and results in indicating the hot and cold spot near the geometry in the 

confined flow. For a fixed confinement and low Reynolds number, Re = 1, heat transfer is mostly 

dominated by the conduction mechanism irrespective of the shape of the geometry.  The convective heat 

transfer has been observed to be more predominant with the increase in Reynolds number, is manifested 

by the stretching of the contours in the downstream direction. Also, due to wake formation and thinning 

of thermal boundary layers, the heat transfer increases with the increase in Reynolds number. 

Maheshwari et al. (2006) reported that the rate of heat transfer increases with the increase in confinement. 

However, at low Reynolds number (Re = 1) and high confinement (λ = 0.5), the thermal boundary layer 

is observed to be much thicker than that observed for λ = 0.2 (Fig. 4.24). It appears that at low Reynolds 

number the heat transfer is dominated by the conduction mechanism and hence, the shape of the particle 

and percentage confinement to the flow, these two factors play intricate manner.    

4.2.4.2 Drag Coefficient 

Drag plays a vital role from the engineering point of view while dealing with applications involving 

particle-fluid interactions. Figure 4.26 elucidates the relationship between the total and pressure drags 

experienced and the Reynolds number for α = 30˚, 60˚, 90˚ and λ = 0.2 and 0.5. The results of unconfined 

flow λ  0 are also included in the figure from the previous section 4.1 in order to understand the transition 

of the global momentum and heat transfer parameters from unconfined to confined flow.  The figure 

clearly depicts that both the drags experienced by the particle has an inverse relation with the Reynolds 

number. However, the increase in confinement not only increases the drag experience by the spherical 

Figure 4.25 Velocity profiles in the z-direction plotted downstream of the particle from the rear 

stagnation point. for all three shapes of the particle. 
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cap but at the same time it compels drag coefficients to drop faster as Reynolds number increases. The 

total drag experienced by the spherical cap is the resultant of both pressure and frictional forces 

collectively. The pressure drag coefficient (dotted line) is also plotted in Fig. 4.26 which shows a similar 

trend with respect to the Reynolds number over the range of shape factors for both the confinements. The 

impact of the shape of the particle on the total drag coefficient can also be clearly observed in Fig. 4.26. 

The contribution of the pressure drag to the total drag gradually decreases as α decreases and/or Reynolds 

number increases irrespective to the flow confinement. At α = 30˚, foam drag dominates the total drag, 

as shown by the overlapping pressure and total drag coefficients in Fig. 4.26. Yet, the pressure drag values 

does not vary much with the increase in α under otherwise identical conditions. Figure 4.27 plots the 

total drag coefficient, CD, as a function of α, for two extreme values of Reynolds number The figure shows 

that the effect of α and λ on the total drag coefficient is more predominant at low Reynolds numbers.  

Figure 4.27 Variation of drag coefficient over the range of shape factor and extreme values of 

Reynolds number. 

Figure 4.26 Variation of the drag coefficient (solid line) and pressure drag coefficient (dashed 

line) over the range of Reynolds number and confinement ratios. 
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The drag coefficient variation over the range of Reynolds number (1 ≤ Re ≤ 100) for spherical caps as a 

function of Reynolds number and two confinements, λ = 0.2, 0.5. can be represented as a modified form 

of Haider and Levenspiel (1989) correlation. The form of this correlation includes the contribution of 

shapes of the particle as shape factor  which is found as a widely accepted shape descriptor for non-

spherical particle.  Hence, the shape of three particles considered in this work as α = 30˚, 60 ,̊ and 90  ̊are 

incorporated in the proposed equation as  = 0.424, 0.663, and 0.84, respectively. The proposed form of 

the correlation is: 

( )
24

1 p

D

Re
C ARe B

Re Re q

 
= + +  

+ 
 (4.8) 

Where ( )2A exp a b c = + +  and ( )2B exp d e f = + + . 

The Eq. (4.8) correlates total of 42 data for each value of λ = 0.2 and 0.5, respectively. The coefficients 

in the Eq. (4.8) for both the confinements over the range of shape factor and Reynolds number are 

tabulated in Table 4.9 with their average and maximum percentage deviations from the numerical values 

of the drag coefficient. 

Equation (4.8) successfully correlates the drag coefficient for three spherical caps (ψ = 0.424, 0.663, 

0.84) at two confinement ratios over the range of Reynolds number range, 1 ≤ Re ≤ 100. The maximum 

error arises in Eq. (4.8) is corresponding to the smallest spherical cap (α or ψ = 30°or 0.424).  

Table 4.9 Coefficients for Eq. (4.8) 

 a b c d e f p q δavg δmax 

λ = 0.2 -3.952 5.696 -1.060 0.046 2.662 -3.414 0.115 -0.608 ~10% ~ 31.6% 

λ = 0.5 0.552 -1.226 3.029 0.948 3.175 -3.535 -0.012 7.122 ~1.5% ~6.6% 

           

Figure 4.28 Variation of the average Nusselt number over the range of Reynolds number and 

confinement ratios. 
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4.2.4.3 Nusselt number 

Having prior knowledge of the heat transfer coefficient can be very helpful for process engineering 

calculations. Here, the heat transfer is only influenced by the change in fluid inertial force for each shape 

of the spherical cap. For a fixed value of Pr = 0.72, the average Nusselt number is plotted for all three 

spherical caps over the range of Reynolds number (1 ≤ Re ≤ 100) in Fig. 4.28 considering confined (λ = 

0.2 and 0.5) and unconfined flow conditions. It is observed that for low Reynolds number, initially as λ 

increases from 0 to 0.2, heat transfer rates increase. However, it decreases for λ = 0.5 due to the 

intervention between the thermal boundary layer and the proximity of the wall confinement.  Furthermore, 

as Reynolds number increases, the thermal boundary layer thins, resulting in the increase in heat transfer 

being assisted by confinement. For α = 30°, this flip over in the average Nusselt number over the range 

of Reynolds number occurs at Re = ~5. Similar trends are also observed for the other two spherical caps, 

however, with the increase in α, drop in the heat transfer coefficient for λ = 0.5 at low Reynolds number 

is observed more. Also, the value of Reynolds number where the flip over in the average Nusselt number 

occurs, delays with increase in the shape factor α. In order to get insight into the average Nusselt number 

variation with the confinement the results are plotted as a function of α as seen in Fig. 4.29. The average 

heat transfer coefficient has marginal variation for λ = 0 and 0.2 as compared to λ = 0.5 (lowest among 

three values of λ) at Re =1 and all three shapes of the particle. While at Re = 100 the trend of average 

Nusselt number with respect to λ is reversed showing reasonable increase in the rate of heat transfer for 

λ = 0.5 as compared to λ = 0.2 and 0.  

Over the range of the shape factor (0.424 ≤ ψ ≤ 0.84) and Reynolds number (1 ≤ Re ≤ 100) the average 

Nusselt number has been correlated for air as a test fluid.: 

1

c

dNu a b Re




 
= +  

+ 
 (4.9) 

Figure 4.29 Variation of the average Nusselt number over the range of shape factor and extreme 

values of Reynolds number. 
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The Eq. (4.9) correlates total of 42 data for each value of confinement, λ = 0.2 and 0.5, respectively. The 

coefficients for Eq. (4.9) are tabulated in Table 4.10 which includes the average and maximum % error 

in predicted results of average Nusselt number from the numerical results.  

Table 4.10 Coefficients for Equation (4.9). 

 a b c d δavg δmax 

λ = 0.2 1.980 0.382 -0.988 0.463 ~3% ~ 13% 

λ = 0.5 -0.629 0.956 -0.872 0.381 ~7.3% ~22.7% 

 

 

4.2.4.4 Comparison of spherical cap with the corresponding shape of the circular disc 

The effect of confined shape on the momentum and heat transfer characteristics in steady flow of air has 

been further explored by comparing the spherical cap with the circular disc having identical height and 

base diameter. For that spherical cap, α = 30° in the confinement, λ = 0.5 has been chosen from the 

previous discussion. Finally, the limiting case of the spherical cap, i.e., sphere having identical projected 

area has been included to broaden the scope of comparison of results. Figure 4.30 compares the flow 

kinematics and isotherms of spherical cap with the circular disc. It illustrates that the curvature of the 

spherical cap delays the formation of wake to the high value of the Reynolds number than the circular 

disc. It is clearly seen that for a fixed confinement, wake is absent in case of spherical cap at Re = 5, while 

for circular disc the flow separation occurs due to the flat surface in the rear end of the circular disc where 

the fluid is not able to follow the body contour even with low inertial force.  At high Reynolds number 

no such difference has been identified for two different shapes under identical conditions. The isotherms 

for both the shapes are also in close correspondence to each other. 

Figure 4.30 Representation of isotherm (left) and Streamline (right) for circular disc and spherical cap 

(α = 30°) in a fixed confinement of λ = 0.5. 
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Figure 4.31(a) illustrates the relationship between the total drag of the particle and the Reynolds number. 

Interestingly, the spherical cap has experienced a higher drag than other geometries at high inertial flow. 

Despite having an identical projected area for the disc, sphere, and cap, at the low Reynolds number 

values, spherical cap experiences the lowest drag followed by disc. As the Reynolds number increases, 

the falling trend of the drag coefficient of spherical cap and disc flipped over at Re ~ 30. The drag 

coefficient for the sphere for Re > 30 continues to decrease. In Fig. 4.31(b) plots the ratio of drag 

experienced by particle to that of sphere with the identical projected area is plotted. It shows that the 

spherical cap experienced approx. ~1.4 times more drag than sphere at Re = 100. The three different 

shapes are defined with the sphericity as sphere, ψ = 1, circular disc ψ = 0.541, and spherical cap ψ =0.424 

for a confinement of λ = 0.5 are also correlated using the Eq. (4.8) as follows:  

( )0.01224
1

5.824
D

Re
C ARe B

Re Re

−  
= + +  

+ 
   (4.10) 

Where ( )22.792 10.153 5.169A exp  = − + −  and ( )22.928 3.548 1.127B exp  = − + . 

Equation (4.10) correlated the total data of 42 for each of the three shapes with an average error of ~1.1% 

and a maximum error of ~5.2%. The reliability of the proposed correlation is compared in Table 4.11 

with the literature data available for sphere (Song et al., 2011) in the same confinement and it shows a 

good correspondence with less than ~1% error. 

In addition to this case of similar projected area, if we also collaborate the data of other spherical caps (α 

= 60° and 90°) for a fixed confinement of λ = 0.5. The Eq. (4.8) can predict the drag coefficient of these 

spherical caps at high Reynolds number range (30 ≤ Re ≤ 100) with the maximum error of ~21%. 

However, for low Reynolds numbers this error can rise to ~60%. The previously reported simple Eq.  

(a) 
(b) 

Figure 4.31 Dependence of drag coefficient with the Reynolds number for axisymmetric bodies 

having similar projected area and a fixed confinement of λ = 0.5. 



| Forced convection 

 

72 

 

Table 4.11 Comparison of drag coefficient of sphere at λ = 0.5.  

Re Present Song et al. (2011) Equation (4.8) 

1 238.86 236.94 239.12 

5 48.09 48.19 47.72 

10 24.44 24.17 24.35 

50 6.03 6.08 6.07 

100 3.78 3.82 3.84 

    

 (4.4) for the axisymmetric shapes in unconfined domain is also able to correlate all the shapes (three 

spherical caps, disc and sphere) for a confinement λ = 0.5 by just varying the coefficients.  

1.529

1.057

224.2
3.652DC

Re
= +                                                                                                                            (4.11) 

The above coefficients for the Eq. (4.11) are proposed using 70 data points, whose sphericity range is 

0.422 ≤ ψ ≤ 1, with the average error of ~14% and maximum error of ~ 42%. There are only 6 data points 

whose errors are more than ~ 25%. 

Next, Nusselt number for three geometries (sphere, circular disc, and spherical cap, α = 30°) over the 

range of Reynolds number (1 ≤ Re ≤ 100) are shown in Fig. 4.32(a). Heat transfer is maximum for 

spherical cap than the other two considered shapes. At Re = 1, the heat transfer for spherical cap is almost 

~3 times more than the sphere of having same projected area. This comparison of the average Nusselt 

number of the circular disc and spherical cap to the sphere is represented in Fig. 4.32(b). The present 

numerical data for average Nusselt number have been correlated for three shapes by using the previous 

(a) (b) 

Figure 4.32 Dependence of average Nusselt number with the Reynolds number for axisymmetric 

bodies having similar projected area and a fixed confinement of λ = 0.5. 



| Forced convection 

 

73 

 

Eq. (4.9) and with the same coefficient of the spherical caps as mentioned in Table 4.10 for λ = 0.5. 

Aforementioned Eq. (4.9) relates the sphericity and Reynolds number with the deviations of average 

~6.0% and maximum ~62.3% over the range of Reynolds number (1 ≤ Re ≤ 100) for sphere, ψ = 1, 

circular disc ψ = 0.541, and spherical cap ψ = 0.424. The exclusion of the data of sphere for Re ≤ 2 reduces 

the maximum error to ~11.6%. 

4.3   Flow past non-spherical shapes in Bingham plastic fluid 

This present study focuses on the momentum and heat transfer characteristics of the heated spherical 

segments in yield stress fluid whose range varies from pure Newtonian (Bn = 0) to high Bingham plastic 

fluid (Bn = 100) under forced convection regime. The wide range of Reynolds number (0.1 ≤ ReB ≤ 150) 

and Prandtl number (0.1 ≤ PrB ≤ 100) are studied on the formation on the yielded/unyielded regions and 

variation of local (streamlines, velocity contours and profiles) and global parameters (drag coefficient, 

Nusselt number). 

4.3.1 Previous work 

In the previous section 4.1 and 4.2, we briefly reviewed the spherical and non-spherical shapes in the 

unconfined and confined Newtonian fluid. However, in industries as well as in natural processes, the 

various encountered fluids have viscoplastic nature (Hill and Shook, 1998; Chhabra and Richardson, 

2008; Balmforth et al., 2014; Chhabra and Patel, 2023). In particulate flows and single particle studies, 

external flow past various spherical and non-spherical shapes always arises curious studies in the 

literature. Especially in the case of Bingham plastic flow where dual nature of fluid can be seen, these 

studies widely focus on the development of the yielded/unyielded regions around the particle and their 

influence on the drag, wake phenomena and heat transfer rates. In consideration of all different shapes, 

spheres and cylinders are one of the most studied particles due to its symmetry. Nirmalkar et al. (2013a, 

2013b) have extensive studied the momentum and heat transfer studies for a sphere in unconfined 

Bingham and Herschel-Bulkley fluid under the wide range of Reynolds number (1 ≤ ReB ≤ 100), Prandtl 

number (1 ≤ PrB ≤ 100) and Bingham number (0 ≤ Bn ≤ 104 in case of Bingham plastic fluid or 10-3 ≤ ReB 

≤ 10 for Herschel-Bulkley fluid) numerically. The reported work strengthens the idea of delay in the wake 

formation under high yield stress of fluid, hence stabilizing the flow. On the other hand, the heat transfer 

shows the positive dependency on the Bingham number over the fixed values of Reynolds and Prandtl 

number. Similar studies are also found for the circular (Mitsoulis, 2004; Zisis and Mitsoulis, 2002; Roquet 

and Saramito, 2003; Tokpavi et al., 2008; Mossaz et al., 2010, 2012; Deglo de Besses et al., 2003; 

Nirmalkar and Chhabra, 2014; Sairamu et al., 2013) and non-circular cylinders (Nirmalkar et al., 2012; 

Patel and Chhabra, 2013; Bose et al., 2014; Tiwari and Chhabra, 2015). The increase in Reynold number 

and decrease in Bingham number yield more fluid-like behavior which furthermore also modulated by 

the shape of the body. On the other hand, the increase in yield stress shrinks these fluid-like regions and 

as a result the sharp gradients are observed near the surface of the object due to which increase in heat 

transfer rates are observed in such studies. 
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Subsequent, regular non-spherical particles having axisymmetric symmetry like disc, spheroid, cone and 

plate in the viscoplastic fluid also got some attention in the previous decade. Extensively, the researchers 

have studied the axisymmetric shapes like disc (Gupta et al., 2017), spheroid (Gupta and Chhabra, 2014) 

and cone (Sharma and Chhabra, 1991; Ahonguio et al., 2015; Mishra et al., 2019) are also studied under 

the effect of viscoplastic fluid. There is not much literature available for spherical segments but 

considering the hemisphere (Nalluri et al., 2015; Patel et al., 2015) is one of the spherical segments, had 

received much consideration to date in yield stress fluid for different orientation and thermal boundary 

conditions. The flat surface in the hemisphere leads to separate the fluid earlier in comparison to the 

sphere (Nalluri et al., 2015). In their work, Patel et al. (2015) found that the heat transfer rate is more 

prominent in case of inverted configuration of hemisphere and similarly constant heat flux thermal 

boundary yields more efficient results. They have further consolidated their numerical results by 

introducing the Colburn heat transfer j-factor and the modified definitions of the Reynolds and Prandtl 

numbers. 

Hence, considering the pertinent literature, and as far as our knowledge spherical segments have received 

scant to very less engagement till date. The present work aimed to explore the effect of Bingham plastic 

fluid in case of spherical segments (30° ≤ α ≤ 180°) over the wide range of parameters: Reynolds number 

(0.1 ≤ ReB ≤ 150), Prandtl number (0.1 ≤ PrB ≤ 100) and Bingham number (0 ≤ Bn ≤ 100). 

4.3.2 Problem formulation  

In this present work the steady, two-dimensional and incompressible flow of a Bingham plastic fluid with 

the uniform velocity U and temperature Tc past heated spherical segment at temperature Th (>Tc) is studied 

as shown in Fig. 4.33. Five different spherical segments (as shown in Fig. 4.1) are considered in this work 

as previously discussed in section 4.1.2. It is also considered that, all the thermophysical properties of the 

Bingham plastic fluid (specific heat C, density ρ, thermal conductivity k, plastic viscosity μB, yield stress 

τo) are assumed to be constant. Over the range of chosen temperature difference, the ratio of the viscous 

dissipation to the conduction term in the energy equation is very small and thus it justified to neglect the 

viscous dissipation term in the energy equation. Furthermore, in order to circumvent the dual nature of 

the Bingham plastic fluid, Papanastasiou model is used primarily. However, some results of 

yielded/unyielded region obtained by Papanastasiou model are also compared with other regularization 

models in order to check the reliability of the chosen model. 

In order to solve the governing equation in the considered domain, the following boundary conditions 

have been used in the present work: 

At the inlet:                                                         Vz =1; Vr = 0, and ξ = 0 

At the surface of the spherical segment:              Vz = Vr = 0; and ξ = 1 

At the hypothetical cylindrical domain wall:     Vz = 1 Vr = 0 and 0r  =  
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At the outlet (Neumann boundary condition): 0
z


=


where ζ = Vz, Vr, and ξ; p = 0 

At the axisymmetric axis: Vr = 0, 0zV r  = , 0r  =  

Where ξ = c

h c

T T

T T

−
=

−
, non-dimensional temperature. The solution of Eqs. (2.1) – (2.3) yields the pressure 

(p), velocity (Vr, Vz), stress (τ) and temperature (ξ) fields which are further post-processed to analyze in 

terms of streamlines, yielded/unyielded region, pressure coefficient (CDP), frictional drag (CDF), total drag 

coefficient (CD), and average Nusselt numbers (Nu).  

4.3.3 Choice of numerical parameter and validation 

Numerically, the previously mentioned Equations (2.1) - (2.3) have been solved using finite element 

based commercial software, COMSOL Multiphysics (5.3a). The PARDISO solver discretizes the mass, 

momentum and energy equations in a sparse linear system which is further solved by LU decomposition 

Figure 4.33 Schematics of (a) geometries of spherical segment (b) computational domain of 

problem statement. 
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method. All the primitive variables (p, V, T) converge up to five significant digits and the yield surfaces 

converge as per von-Mises criterion with a relative tolerance of 10-6. All the present results are free from 

any numerical artifacts is ascertained by performing domain test, grid test and regularization test and their 

effect on drag coefficient, pressure coefficient, average Nusselt number and local Nusselt number is 

examined precisely. The boundary of the domain will have the maximum impact on the thick boundary 

layers i.e., for Newtonian fluids, as there the spatial variation in the primitive values is slower. Here, we 

have checked the domain of ref. (as previous section 4.1) for Bn = 0, ReB = 0.1 and PrB = 0.1 and it is 

found that it is suitable for the present chosen range of parameters. At the highest value of ReB, PrB, and 

Bn where both the hydrodynamic, thermal and stress boundary layers become thinner in the vicinity of 

the surface of the geometry, grids need to be refined to capture the steep changes in the velocity, 

temperature and stress gradients. Hence, near the surface of the geometry a very fine triangular grid has 

been generated and in the farther domain quadrilateral mesh has been used with the geometrical 

progressive spacing. Three different grids have been examined as G1, G2 and G3 for two extreme shapes 

of the spherical segments (α = 30° and α =180°) by varying the number of elements (Nc × Nf) on the 

curved surface (Nc) and flat base (Nf) as tabulated in Table 4.12. The drag coefficients and average Nusselt 

numbers vary marginally as grid number increases from G2 to G3. Hence, G2 grid has been chosen to 

resolve the flow and thermal fields in this work. Furthermore, the variation of the local pressure 

coefficient and local Nusselt number is also plotted to gain confidence in the chosen Grid G2. Figure 

4.34 compares the local variation of pressure coefficient and Nusselt number for grids G2 and G3 for 

both shapes α = 30° and α =180° at ReB = 150 for extreme values of Bn and PrB. 

The well merged plots of results for both G2 and G3 grids in Fig. 4.34 further confirms the choice of grid 

G2 for present work Finally, the discontinuous nature of the Bingham plastic model for effective viscosity 

is regularized using the Papanastasiou regularization model widely reported in literature (Putz and 

Frigaard, 2005; Gupta and Chhabra, 2014). Nevertheless, to choose the suitable regularization parameter, 

M, for the chosen model, a detailed regularization test is performed at Bn = 10 and ReB = 150 by comparing 

Table 4.12 Grid impendence test at ReB = 150 Bn = 100 PrB = 100. 

Grid Np NT CD CDP Nu 

α = 180° 

G1 120 34400 21.246 15.055 119.15 

G2 260 91500 21.391 14.878 67.337 

G3 300 102500 21.402 14.934 67.758 

α = 30° 

Grid Nc × Nf NT CD CDP Nu 

G1 125 × 100 175759 17.952 17.14 35.21 

G2 175 × 150 372379 17.871 17.236 24.24 

G3 265 × 235 391368 17.85 17.286 23.475 
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the yield surfaces. The effect of M is studied for the three cases of spherical segment (α = 30°, 90° and 

180°) as shown in Fig. 4.35 by plotting the variation of the yield surfaces over range of M values. The 

results show that as M values increase from 106 to 107 the morphology of the yielded/unyielded regions 

remains undistinguished. In addition, some additional simulations were performed to scrutinize the 

chosen Papanastasiou regularization model with other available regularization models. Figure 4.36 

confirms the excellent agreement between results of yield surfaces of the three different regularizations 

models plotted for Bn = 10 and ReB = 150 that lends credibility to the chosen Papanastasiou model. Hence, 

M =106 is chosen as the regularization parameter for the Papanastasiou model. The convergence criterion 

(a) 

(b) 

Figure 4.34 Grid independence test G2 (symbol) and G3 (solid line) (a) α = 30° (b) α = 180°.  
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of 10-5 for continuity, flow and energy equations withing the domain has been established. It was found 

that employing a more stringent criterion had no apparent effect on the results.  

The governing equations (2.1) – (2.3) are numerically solved to investigate the effect of the range of the 

parameters, i.e., Reynolds number (0.1 ≤ ReB ≤ 150), Bingham number (0 ≤ Bn ≤ 100), Prandtl number 

(0.1 ≤ PrB ≤ 100) and shape factor (30° ≤ α ≤ 180°) on the momentum and heat transfer characteristics in 

the steady forced convection regime. The chosen parameters for this study are based on the practical and 

numerical considerations found in the literature (Nalluri et al., 2015; Patel et al., 2015). Ongoing further 

comparison with the currently obtained results using the present numerical technique with the previous 

scant results have been discussed in the next section. 

4.3.4 Results and discussion 

Before discussing the new results, it is mandatory to establish the reliability and accuracy of the current 

numerical scheme and model by validating some previous benchmark solutions. Thus, the comparison 

with the currently obtained results using the chosen numerical technique with the previous scant results 

has been discussed in the next section. The sphere, α = 180°, is one of the limiting cases of the present 

Figure 4.35 Regularization test for different spherical segment at Bn = 10 and ReB = 150. 

Figure 4.36 Comparison of different Regularization models at Bn = 10 and Re
B
 = 150. 
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range of the shape of the geometry studied in the present work in the literature for the forced convection 

in both Newtonian and Bingham plastic fluids. The numerically obtained results of the drag coefficient,  

pressure drag coefficient and Nusselt number for sphere by Nirmalkar et al. (2013a) are compared for  

Newtonian as well as Bingham plastic fluids in Table 4.13 which shows excellent agreement with each 

other within 2-3% deviation. Similarly, the drag experience by sphere in Bingham plastic fluid is further 

compared with the available experimental results in the literature (Valentik and Whitmore, 1965; Pazwash 

and Robertson, 1971, 1975). Both results seem in fair agreement with each other as shown in Fig. 4.37. 

Finally, the surface variation of the Nusselt number for isothermal sphere is also compared in Fig. 4.38 

with the numerical results of Nirmalkar et al. (2013a) at Bn = 0 and Bn = 100 over a wide range  

Table 4.13 Validation of sphere with numerically evaluated data of Bingham plastic fluid.  

Bn ReB 

Nirmalkar et al. (2013a) Present 

CD CDP Nuavg CD CDP Nuavg 

0 

1 27.333 9.148 5.772 27.181 9.064 5.806 

10 4.299 1.522 12.602 4.285 1.517 12.728 

50 1.578 0.654 24.289 1.567 0.658 24.113 

100 1.096 0.512 33.551 1.081 0.509 33.297 

1 

1 96.101 41.222 7.344 95.327 40.973 7.384 

10 10.023 4.349 15.068 9.928 4.314 15.129 

50 2.509 1.165 26.387 2.485 1.161 26.32 

100 1.503 0.756 33.814 1.499 0.751 33.875 

10 

1 433.55 248.92 8.872 430.14 247.96 8.908 

10 43.509 24.903 19.229 43.124 24.873 19.243 

50 9.021 5.199 32.989 8.943 5.206 33.175 

100 4.729 2.769 43.032 4.693 2.774 42.121 

100 

1 3208.1 2222.1 10.179 3179.7 2204 10.224 

10 320.49 222.14 24.545 317.98 220.42 24.511 

50 64.182 44.298 45.856 63.68 44.15 44.391 

100 32.184 22.035 58.942 31.952 22.165 57.301 

        

of Prandtl number. The strong agreement between the two results adds credibility to the reliability of the 

findings presented in this work. 

4.3.4.1 Morphology of yielded/unyielded regions 

Bingham plastic fluids exhibit a unique characteristic where they manifest both solid-like (unyielded) and 

fluid-like (yielded) properties simultaneously under the prevailing shear stress field. Due to the steep 

velocity gradient near the surface of the spherical segment, fluid remains sheared. However, far from 

geometry these velocity gradients gradually decrease and cease at the critical yield stress value (τo) 
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resulting in the formation of solid-like (unyielded) region. Figure 4.39 represents the yielded/unyielded 

regions for three cases of spherical segment (α = 30°, 90° and 150°) at three different values of Bingham 

number (Bn = 1, 10, 100) and for two values of Reynolds number (ReB = 0.1, 150). The yield surfaces 

separate (stress contour plotted at yield stress value) the fluid-like and solid-like regions for the given set 

Figure 4.37 Comparison of present drag experienced by sphere in Bingham plastic fluid with 

experimental data. 

Figure 4.38 Comparison of local Nusselt number of heated spheres in Bingham plastic fluid with 

numerically evaluated data of Nirmalkar et al. (2013a) at ReB = 100.  
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of parameters. At low value of Reynolds number, i.e., ReB = 0.1, it is observable that the fluid region 

(region shaded in yellow) remains encapsulated by the solid zone (region shaded in blue) follow the fore 

and after symmetry in the direction of the flow irrespective of the shape of the geometry and Bingham 

number. With the increase in Reynolds number ReB = 150, the change in the shapes of the 

yielded/unyielded regions are represented by dotted lines as yield surfaces.  Figure 4.39 shows that with 

the increase in inertial force at high Reynolds number the yield surface elongates toward the flow direction 

resulting in pear-like shapes. The elongated fluid-like region downstream of the particle is more 

pronounced at high Reynolds numbers and low Bingham numbers. Furthermore, the shape of the particle 

has a significant effect on the elongated region.  As particle segment shape moves closer to the spherical 

shape, it decreases the elongated region downstream of the particle with the radial expansion that has 

been clearly seen with the increase in the shape factor, α from 30° to 150°. However, for a fixed shape of 

Figure 4.39 Yielded/unyielded region at extreme Reynolds number ReB = 0.1 (shaded regions) and 

ReB = 150 (dotted line) (yellow color: yielded region; blue color: unyielded region). 
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the particle, the increase in yield stress of the fluid suppresses the elongated fluid-like zone to enclose in 

the symmetric envelope in the vicinity of the particle over the range of the Reynolds number. Eventually, 

when the Bingham number or the yield stress of the fluid surpasses a critical threshold, the influence of 

the Reynolds number or inertia force is outweighed by the Bingham number or yield stress. Hence, at Bn 

= 100, the yield surfaces for ReB = 0.1and 100 appear to be undistinguished.  

The two static zones attached to the particle are also formed at the front and the rear stagnation points of 

the spherical segment which generally shrink in size with the increasing shape factor, α. At the fixed 

Reynolds number value, the front-end static zone grows in size with the increase in Bingham number 

while the size of rear end static zone decreases with the increase in Bingham number. At low plastic effect 

and high Reynolds number the static zone of the rear end of the geometry is formed far away from the 

geometry but eventually with the increasing plastic effect it forms closer to the spherical segment surface 

and at last adhere to the surface.  

4.3.4.2 Streamlines and wake formation  

The spatial variation of the flow field in terms of the nondimensional velocity contours and the streamlines 

have been visualized in Figs. 4.40-4.42 to delineate the flow acceleration and wake formation around the 

spherical segments for two extreme shapes α = 30° and 150° including α = 90°. At low Bingham number 

Bn = 0.01, in Figs. 4.40-4.42 the fluid is able to negotiate with the body contour under low inertial force 

at ReB = 0.1 for all three shapes of the particle.  However, with the increase in Reynold number at fixed 

Bingham number, Bn = 0.01 due to the adverse pressure gradients associated with the sudden change in 

the body contour of the spherical segment leads to flow separation. It can be clearly seen that with the 

increase in Bingham number, the yield stress starts dominating inertial force by pacifying the flow. Hence, 

irrespective of the shape of the particle flow separation has been delayed with the increase in Bingham 

number for fixed value of the Reynolds number. Eventually, the wakes will cease to exist at Bn = 100 can 

be seen in Figs. 4.40-4.42. Interestingly, attention is drawn to the fact that for a particular shape of the 

spherical segment, α = 60°, the evolution of the recirculation zones has been noticeable over the range of 

Reynolds number at fixed Bingham number. At Bn = 5, the formation wake has been explored over the 

range of Reynolds number varying from 0.1 to 150 for α = 60° (Fig. 4.43). The formation of wake has 

been noticed in this work at ReB ~ 45. The visibly small size of wake observed at ReB = 60 in Fig. 4.43, 

however, the wake starts forming at ReB ~ 45 in a tiny size below which flow remains attached to the 

particle. The flow separation begins from the rear stagnation point of the particle on the curved surface 

instead of the sharp corner. In the case of Newtonian fluid, a similar trend of the wake formation has been 

reported for α = 60° (Suri and Patel, 2024). The separation bubbles formed at the rear end of the particle  

(primary bubbles) will grow with the increase in the Reynolds number. At the same time, the secondary 

separation bubbles emerge at the sharp corner of the particle (See in Fig. 4.43 ReB = 75) eventually merge 

with the primary bubbles with the further increase in the Reynolds number can be seen at ReB = 80. 

Eventually, the merged separation bubbles grow radially to engulf the curved surface of the particle as 
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Reynolds number increases (for instance at ReB = 100 for α = 60°) followed by growing in the z-direction 

of the flow. Hence, for each shape of the particle there exists a critical Bingham number for a fixed 

Reynolds number or vice versa.  

In Fig. 4.44, the combination of Reynolds number and Bingham number at the critical condition has been 

mapped to determine the presence or absence of wake for the given shape. By moving along each of the 

dotted lines connecting the data points, it can be inferred that at the fixed value of Bingham number on 

the x-axis, the flow separation has started at a Reynolds number that can be extrapolated on the y-axis. It 

also points out the Bingham number for the given shape delays the flow separation to the higher values 

of Reynolds number. The dotted line indicates the Reynold number at which the wake is present/absent 

for a particular Bingham number.  

At the same time, the color contours in Figs. 4.40-4.42 represent the dimensionless velocity magnitudes 

in the vicinity of the particle over the range of the parameters. For a fixed Reynolds number, as the 

Bingham number increases, the fluid velocity is observed to be increased while flowing past the particle. 

The solid-like regions enlarge due to increase in yield stress effect and, hence, the fluid-like zone 

Figure 4.40 Formation of wakes as a function of Reynolds number and Bingham number for 

α = 30° (lines: streamlines; color contours: velocity magnitude). 
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encapsulating the particle shrinks in size. As a result, the fluid flowing through the high shearing region 

experiences acceleration in velocity in the fluid-like zone as it has to satisfy the conditions of zero-velocity 

on the particle wall and free-stream. In summary, Figs. 4.40-4.42 depict the effect of shapes by indicating 

that the velocities are higher in case of smallest spherical segment (α = 30°) and lowest in case of largest 

spherical segment (α = 150°). 

4.3.4.3 Velocity profiles and shear rate contours 

Plotting the velocity magnitude profiles and shear rate contours in close proximity to the particle can 

provide a better understanding of the flow field around the spherical segment. Figures 4.45 and 4.46 plot 

the variation of the non-dimensional z-velocity component (Vz) in both the r- and the z- directions from 

the particle surface, respectively. Figures 4.40-4.42 have shown that the flow past the particle accelerates 

with the Bingham number increases, as demonstrated by the velocity magnitude. In Fig. 4.45 the non-

dimensional z-velocity component, Vz /U, is plotted in the radial direction for three different spherical 

segments (α = 30°, 90° and 150°) at Bn = 100 over the range of Reynolds number. The radial distance is 

Figure 4.41 Formation of wakes as a function of Reynolds number and Bingham number for 

α = 90° (lines: streamlines; color contours: velocity magnitude). 
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measured from the largest cord length of the particle. Hence, it has been measured from the base of the 

Figure 4.42 Formation of wakes as a function of Reynolds number and Bingham number 

for α = 150° (lines: streamlines; color contours: velocity magnitude).  

Figure 4.43 Effect of Reynolds number and fixed Bingham number (Bn = 5) on streamlines 

of α = 60° spherical segment. 
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particle for α = 30° and 90°while for α = 150° it is measured from the largest cord length of segment that 

is diameter of the spherical particle from which the segment is dissected rather than the base of the 

segment. The reduction in the size of the fluid zone encapsulated particle has been observed to be 

maximum at the highest plastic effect at Bn = 100 in this study (see Fig. 4.40).   The hump observed in 

the Vz /U profile from the particle surface (zero-velocity) plotted in the r-direction indicates the increase 

in velocity of the fluid in the radial direction of the spherical segment followed by decrease to free stream 

velocity the in the plug flow region over the range of Reynolds number. The increase in the peak of the 

hump shows positive dependence of velocity on the Reynolds number within the yielded region. 

Figure 4.45 Non-dimensional velocity in the radial direction of the spherical segment at Bn = 100. 

 

Figure 4.44 Effect of Bingham number on the critical Reynold number of the spherical segment.  
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Furthermore, the effect of shape is also noticeable on the velocity profile, with the increase in the shape 

factor. The hump broadens in width in the radial direction significantly otherwise under identical 

conditions denotes the positive effect of shape on the size of yielded encapsulated zone (see Fig. 4.40). 

In the extreme cases of the α = 30° and α = 150° the velocity increases almost ~1.76 times and ~1.36 

times the free stream fluid velocity of the fluid, respectively, as shown in Fig. 4.45 at ReB = 150 and Bn 

= 100 which consistent with the observations marked for the velocity contours in Figs. 4.40-4.42. 

Non-dimensional velocity Vz /U is further plotted at the rear end of the spherical segment in the z-direction 

over a range of Reynolds number at the extreme values of Bingham number (Bn = 0 and 100) for three 

different spherical segments (α = 30°, 90° and 150°). For the Newtonian fluid (Bn = 0) and ReB = 0.1 for 

all three shapes the velocity profile starts from zero at the rear stagnation point and monotonically 

increases to achieve its asymptotic value of free stream velocity for low inertial flow. However, the 

increase in the inertial force due to increase in Reynolds number creates the adverse pressure gradient 

Figure 4.46 Non-dimensional velocity in the flow direction (r = 0) of the spherical segment. 
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leads to flow separation from the particle surface. Thus, wakes are formed at the rear end of the spherical 

segment. The negative velocities in the velocity profiles signify the presence of recirculation zone at the 

rear side of the segments. Furthermore, these velocity profiles provide insight into the effect of the shape 

and other nondimensional parameters on wake length. The distance between the rear stagnation points 

and confluence point (magnitude of the velocity becomes zero while changing from negative to positive) 

measures the wake length. Figure 4.46 demonstrates for the case of Newtonian fluids; wake length 

decreases with the increase in the shape factor from α = 30° to 150° for fixed value of the Reynolds 

number.  At the same time, the effect of Reynolds number for each shape observed to be increase in wake 

Figure 4.47 Non-dimensional shear rate profiles at the surface of the spherical segment.  
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length. Following the effect of Bingham number on the non-dimensional velocity ratio, Vz /U, three 

sections can be distinguished denoted as I, II, III in Fig. 4.46. The first constant section of velocity profile 

(I) indicates the presence of the static zone attached to the rear end of spherical segment also shown in 

Fig. 4.40. For a fixed Bingham number and shape factor, the size of these static zones increases as the 

Reynolds number increases that can clearly be seen in Fig. 4.46. The second section (II) that 

monotonically increases also known as shearing zone shows the similar behavior as Newtonian fluid since 

here Bingham plastic fluid show fluid like behavior and it tries to approach the free stream velocity. 

However, here the magnitude of nondimensional velocity shows transition from zero to unity even at the 

high Reynolds number which supports the results of the streamlines having no wakes present at Bn = 100. 

With increasing Reynolds number, the slope of section II decreases due to the enlargement of the fluid 

zone in the z-direction (refer to Fig. 4.40). The last section (III) indicates the presence of solid rigid zone 

where the fluid will flow with the translation plug flow velocity. The increase in the shape factor 

significantly reduces the size of the first two sections and quickly approaches the constant plug flow 

velocity. 

In Fig. 4.47 non-dimensional shear rates are plotted at the surface of the spherical segment over the range 

of the Reynolds number and extreme values of Bingham number Bn = 0 and 100. In the case of Newtonian 

fluid (Bn = 0); at the front stagnation point the fluid is stagnant, hence, the velocity gradient becomes 

zero, hence, shear rate vanishes. Moving from the front stagnation point on the flat base of the spherical 

segment due to shearing of the fluid shear rate increases and eventually it achieves the peak value at the 

point of the sharp corner of the spherical segment due to the singularity. On the curved surface, the shear 

rate gradually decreases to zero and then increases again. The location of flow separation is manifested 

by the zero-shear rate on the surface of the particle.  With the increase in Reynolds number, the location 

of zero shear rate on curved surfaces moves closer to the base confirming the early flow separation. The 

separation of the fluid from the surface of the spherical segment is suppressed by an increase in Bingham 

number due to yield stress dominating over fluid inertial force. Evidently, at Bn = 100, there is no drop 

in the shear rate values that can be seen confirms no flow separation. However, the fluctuation of the 

shear rate is thought to be solely due to the particle shape and the size of the unyielded cap on the curved 

surface of the particle. 

4.3.4.4 Drag coefficient 

Drag experienced by any bluff body is generally combination of the two different stress components 

known as normal stress and the shear stress. Both the stresses correspondingly contribute as a foam drag 

and viscous drag in the total drag experienced by the body. Figure 4.48 shows the dependency of the 

total drag (hollow symbols) and the pressure drag (solid symbols) over the range of the Reynolds and 

Bingham number for three shape factors, α = 30°, 90° and 150°. For each shape, the drag coefficient 

follows the standard inverse and positive dependency on Reynolds and Bingham number, respectively.  

In Fig. 4.49 both drag coefficients, total (hollow symbol) and the pressure (solid symbol), are plotted as 

a function of shape factor over the range of Reynolds number and Bingham number. The total drag 
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experienced by the spherical segments are increasing with the increase in shape factor irrespective of the 

Bingham number for a fixed Reynolds number and eventually it becomes almost constant for the largest 

Figure 4.48 Effect of Bingham number on the drag and pressure drag coefficient over the range of 

Reynolds number (hollow symbols: total drag coefficient; solid symbols: pressure drag coefficient). 
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spherical segment (α = 150°) and the sphere (α = 180°). On the other hand, at low Bingham number the 

pressure drags increases with the increase α from 30° to 90° as the projected area of these shapes increase 

with the α values. As the angle α increases from 90° to 180°, the curved surface area of the spherical 

segment continues to increase. However, the projected area (i.e., the diameter of the parent sphere) 

remains constant, resulting in a more contribution of foam drag compared to pressure drag. This 

ultimately leads to an increase in the total drag experienced by the spherical segment. Finally, for the 

highest Bingham number (Bn = 100), the pressure drag coefficient becomes almost constant over the 

range of the shape factor and Reynolds number. 

In order to compare the drag experienced by the different spherical segments with respect to sphere, the 

ratio of the drag coefficient, CDα /CD sphere, is plotted in Fig. 4.50. At the low Reynolds number, the ratio 

of the drag experienced by the spherical segment α = 30° is generally smallest while it is close to unity 

for α = 150° as it has almost similar geometrical feature as a sphere. The drag ratio shows strong 

dependence on Reynolds number above certain critical value of ReB(critical), for instance, ReB(critical) = 0.5 at 

Figure 4.49 Effect of the shape of spherical segment on the drag (Hollow symbol) and pressure 

drag (Solid symbol) coefficient over the range of Reynolds and Bingham number. 

Figure 4.50 Variation of ratio of drag coefficient to the sphere with Bingham and Reynolds number. 

(a)                                                (b)                                                  (c) 
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Bn = 0.01 (Fig. 4.50a). The increase in Bingham number shifts this critical Reynolds to the higher value 

of Reynolds number can be seen in Figs. 4.50b and 4.50c.  For ReB = 150, the CDα /CD sphere is maximum 

for the hemispherical segment. Finally, for the ease of application, the drag coefficient is correlated as a 

function of ReB (0.1 ≤ ReB ≤ 150), Bn (0 ≤ Bn ≤ 100), ψ (0.424 ≤ ψ ≤ 1) and dc/hc (1 ≤ dc/hc ≤ 7.463) using 

two different proposed correlations. Here, the effect of the shape is considered in the form of shape factor, 

ψ (0.424 ≤ ψ ≤ 1) rather than α (30°≤ α ≤ 180°) which is most widely employed and practical measured 

shape factor, specifically for nonspherical particles. 

For ReB < 1:  
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                                                    (4.12) 

Equation (4.12) is proposed using 120 data point with the average and maximum error of 22% and 63%, 

respectively. However, only a few data points, i.e., 19 show the error greater than 40%.  

For ReB ≥ 1: 
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Equation (4.13) is proposed for ReB ≥ 1with the total data point of 359. It shows the average and 

maximum error of 23% and 75%, respectively, where only 3 data points have errors of more than 38%. 

4.3.4.5 Isotherm contour 

The isothermal contours generally help to visualize the local temperature fields while indicating the hot 

and cold spot in the surrounding media. Figures 4.51 and 4.52 represent the isothermal plots for three 

spherical segments (α = 30°, 90°, 150°) and Bingham number (Bn = 1, 10, 100) over the extreme 

combinations of Reynolds and Prandtl number. The left half illustrates the isothermal contours at PrB = 

0.1 and the right half illustrates the contours for PrB = 100. 

At lowest Peclet number (PeB = 0.01) when the convection is very weak, fluid adheres to the surface of 

the spherical segments. Hence, the isotherms show aft and forth symmetry in the direction of the flow 

and the heat transfer is mainly governed by the conduction mechanism seen in Fig. 4.51. Next, with the 

increase in Prandtl number the thinning of the thermal boundary layer, isotherms lose their symmetry in 

the upstream and downstream direction of the flow. Thus, it clustered in the front end of the spherical 

segment while stretched at the rear end of the spherical segment (see right half of Fig. 4.51), hence, the 

rate of heat transfer increases. However, the increase in Bingham number has not significant effect at low 

Peclet number. 

Now, as the Reynolds number increases or high inertial forces, heat is mainly transferred by convection. 

Figure 4.52 depicts that as the Reynolds number increases due to recirculation zones at the rear end of 

the spherical segments, isotherms become denser towards the surface of the spherical segment. Hence, 



| Forced convection 

 

93 

 

promotes mixing and the heat transfer rates. The further increase in Prandtl number creates the distortion 

of the isotherms and crowded near the surface with high temperature gradients that further enhance the 

heat transfer rates. In yield stress fluid heat transfer have strong dependency on the yielded/unyielded 

regions. As in the unyielded region heat is mostly transferred by conduction while in the yielded region 

by convection. Thus, the increase in Bingham number suppresses the flow circulation as it progressively 

reduces the yielded region (see Fig. 4.39) which further reduced the thermal boundary layer and the steep 

temperature gradients exist near to the surface. 

The shape of the spherical segment also plays a crucial role in the heat transfer. Due to abrupt variation 

in the surface of lowest spherical segment (α = 30°), flow separation is more prominent (see in Fig. 4.44) 

hence, the heat transfer is higher. With the increase in shape factor (α), the spherical segment becomes 

streamlined which further delays the flow detachment and thermal boundary layers thicken indicating the 

Figure 4.51 Representation of isothermal contours at ReB = 0.1 at two Prandtl number PrB = 0.1 

(left half) and PrB = 100 (right half). 
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low heat transfer in comparison to α = 30°. Thus, it is fair to postulate here that the heat transfer shows a 

combined behavior as a function of Reynolds, Prandtl and Bingham number. Certainly, these complex  

interplays between the parameters are widely studied for the average Nusselt number in the next section.  

4.3.4.6 Nusselt number 

The average or mean Nusselt number is often required for various engineering applications such as 

fluidization and processing of particulate products. Thus, the dependence of the Nusselt number is studied 

as a function of four non-dimensional parameters, namely, ReB, PrB, Bn, and α. For the Newtonian fluid, 

it is readily acknowledged in the literature that the Nusselt number has a positive dependence on both 

Reynolds and Prandtl number due to the progressive thinning of the thermal boundary layer. The same 

analogy can also be applied here in the case of the spherical segments. Figure 4.53 shows the effect of 

Reynolds number on the average Nusselt number over the range of the Prandtl number for α = 30°, 90° 

Figure 4.52 Representation of isothermal contours at ReB = 150 at two Prandtl number PrB = 0.1 

(left half) and PrB = 100 (right half). 
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and 150°. The solid lines indicate Newtonian fluid (Bn = 0) and the dashed line indicates the Bingham 

plastic fluid (Bn = 100). For all three cases of the spherical segments, the average Nusselt number 

Figure 4.53 Variation of Nusselt number with the Reynolds number at Bn = 0 (solid lines) and Bn 

= 100 (dashed line) over the range of Prandtl number. 

Figure 4.54 Variation of Nusselt number for different spherical segment with the Bingham number 

at PrB = 0.1 
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compared for the Bingham plastic fluids to Newtonian fluids indicates the overall positive dependence of 

Nusselt number on PrB and Bn numbers. 

In Figs. 4.54 and 4.55, the average Nusselt number is plotted as a function of Bingham number over the 

range of the shapes of spherical segment and Reynolds number for the two cases of Prandtl number, i.e., 

PrB = 0.1 and PrB = 100. At low Peclet number (PeB = PrB × ReB = 0.01), the effect of Bingham number 

is not significant; however, with the increase in the Peclet number the effect of Bingham number becomes 

more pronounced can be seen in Fig. 4.54 and 4.55. For fixed PrB = 0.1,   the increase Reynolds number 

above ReB = 0.01 progressively thins the thermal boundary layer resulting in the increase in the overall 

heat transfer rate for all cases of spherical segments. As the Peclet number increases, above PeB = 15 the 

combined effect of ReB, Bn and PrB shows complex behaviour depending upon the yielded/unyielded 

zones formed around the spherical segments can be seen in Fig. 4.55. At high Peclet, PeB = 5×103 and 

15×103 for high Prandtl number and/or Reynolds number, the Nusselt number shows weak dependence 

Figure 4.55 Variation of Nusselt number for different spherical segment with the Bingham 

number at PrB = 100. 
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on the Bingham number initially. Furthermore, a sharp drop in Nusselt number is observed particularly 

for α = 30° to 90° that and increases with the increase in Bingham number The drop in the Nusselt number 

is observed as a function of the shape factor, α.  It can be seen in Fig. 4.55 that for α = 30°, Nu drops at 

Bn ~ 50 while for α = 90°, it moves to smaller value of the Bingham number Bn ~ 5. Intuitively, the 

decrease in the Nusselt number is possibly due to the formation of the solid zones attached to the surface 

of the spherical segment. For α = 60°, the value of Nusselt number is dropped to its minimum at Bn = 10.  

To gain further insight into the significant decrease in the Nusselt number, we plotted the 

yielded/unyielded region alongside the local variation of the strain rate in Figure 4.56 for α = 60° and 

ReB = 150 for three Bingham number values of 1, 10 and 100. 

Figure 4.56 depicts that initially at low Bingham number Bn = 1, the heat is being transferred by 

convection from the surface of the geometry to the encapsulated fluid. The further increase in Bn number, 

Bn = 10, reduces the fluid-like zone at the same time there is a formation of the solid zone adhering to the 

rear end of the spherical segment. Thus, the heat transfer to the surrounding fluid from the hot surface of 

the particle impeded by the presence of the solid zone attached to the particle surface and heat is only 

transferred by the conduction from the curved surface to the solid-like material. This causes the drop in 

the rate of heat transfer, hence, Nusselt number. Eventually, the solid zone starts to disappear with the 

increasing Bingham number which further increases the heat transfer rates.  

The variation in Nusselt number with respect to the shape is plotted in Fig. 4.57. It exhibits that overall, 

the smallest spherical segment (α = 30°) shows a high rate of heat transfer. The increase in shape factor 

steadily reduced the average Nusselt number and eventually it becomes constant.  

In the case of high Peclet and Prandtl numbers, some cases are observed where Nusselt number is not 

high for the smallest segment. A possible reason for this is the presence of the solid zones as discussed 

Figure 4.56 Effect of Bingham number on the formation of the yielded/unyielded region and local 

strain rate for α = 60° at ReB = 150. 
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for Fig. 4.56. Finally, a generalized correlation for the average Nusselt number is proposed as a function 

of PrB (0.1 ≤ PrB ≤ 100), ReB (0.1 ≤ ReB ≤ 150), Bn (0 ≤ Bn ≤ 100) and ψ (0.424 ≤ ψ ≤ 1) is given below: 

 ( ) ( )1 1
b gd e fNu a Bn cRe Pr Bn= + + +                                                                                             (4.14) 

The parameters of the Eq. (4.14) have splitted for the two ranges of PeB (= PrB × ReB) number are given 

in the Table 4.14 as follows: 

Table 4.14 Coefficient for Eq. (4.14) 

 a b c d e f g δavg δmax 

PeB ≤ 15 2 -0.013 0.593 0.481 0.471 -0.719 0.096 10.6% 32% 

PeB > 15 1.27 0.215 0.887 0.431 0.374 -0.473 0.043 8.9% 39% 

For PeB ≤ 15 and PeB > 15, total 1559 and 2273 data points, are used where only 16 and 24 data points 

show more than 30% error, respectively. For both the cases the maximum error arises in the case of 

smallest spherical segment α = 30°. 

 

 

  

 

Figure 4.57 Effect of shape on the Nusselt number at (a) Bn = 0 (square symbol) (b) Bn = 1 

(Delta symbol) (c) Bn = 100 (circle symbol). 
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 Chapter 5 

Free convection 

 

In this chapter, we focus on the natural convection from spherical and non-spherical bodies in non-

Newtonian fluid under steady flow conditions. In the first section, both momentum and heat transfer 

characteristics are studied for the heated single and twin sphere for power-law fluid have been examined 

at very low Grashof number. The effect of gap between the twin spheres is also briefly explored for the 

hydrodynamic interference in between them. Next in the subsequent section, the thermal characteristics 

of spherical segments in Bingham plastic fluid have been explored. The obtained results are presented in 

form of streamlines, isothermal contours, yielded/unyielded region, local and average Nusselt number as 

a function of wide range of rheological and kinematic parameters. 

 

 5.1   Free convection from a single and twin sphere in power-law fluids at low 

Grashof number 

5.1.1 Previous work 

Much of the pertinent literature relates to the prediction of the thermal characteristics of an isothermal 

sphere at small Grashof numbers in Newtonian fluids (Martynenko and Khramtsov, 2005; Patel et al., 

2017; Amato and Tien, 1972; Jafarpur and Yovanovich, 1992). While the early approximate analyses 

were based on the series expansion methods at low Grashof numbers (Fendell, 1968; Hossain and 

Gebhart, 1970; Hieber and Gebhart, 1969; Mahony,1957) which are supplemented by the boundary layer 

results at high Rayleigh and Grashof numbers. Thus, for instance, Hieber and Gebhart (1969) reviewed 

the prior analytical studies (Fendell, 1968; Hossain and Gebhart, 1970; Hieber and Gebhart, 1969; 

Mahony,1957; Elenbass, 1942) in their work on the mixed convection from a sphere in a Newtonian fluid 

(Pr = 1) which delineated the contribution of the forced- and free- convection to the total drag coefficient. 

They used the matched asymptotic expansion in the so-called inner and outer fields within the range of 

the Grashof number to the order of Re2 (both Gr and Re → 0). In the limit of the pure natural convection 

(large Richardson number Ri = Gr/Re2), their analysis suggests the following expression for drag on a 

sphere in the limit of Gr → 0: 

( )24
D

Pr
C

Gr


=   (5.1) 

Equation (5.1) has a striking similarity with the Stokes drag equation by recognizing that Re Gr . 

Similarly, for the surface average Nusselt number Hieber and Gebhart (1969) reported the following 

correlation up to the second-order correction in Grashof number as: 
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( )2 22 0.139 0.4519 1.1902Nu Gr Gr Pr Pr= + + − +   (5.2) 

They divided the flow region into three sub-domains: close to the sphere, there exists a Stokes-like region 

characterized by feeble flow (low momentum) and large body force. Beyond this region, when the fluid 

velocity reaches its maximum value, all terms in the governing equations (momentum, viscous, body 

force, and pressure effects) are relevant, and the fluid velocity eventually approaches zero far away from 

the sphere. Equation (5.2) was stated to be valid under the conditions of Gr ≤ ∼1 and Pr ∼ 1. Their 

analysis also suggests that up to Gr = 0.01, the local Nusselt number is nearly constant (Nu ∼ 2) over the 

entire surface of the sphere whereas at Gr = 0.40, convection sets in the front of the sphere thereby 

augmenting the value of the local Nusselt number beyond its conduction value of Nu = 2. Stewart (1971) 

considered the free convection from a sphere and other three-dimensional shapes within the framework 

of boundary layer equations for Newtonian fluids, which is a further extension of Acrivos (1960) analysis 

in power-law fluids. For Newtonian fluids, this analysis predicts the drag coefficient for a sphere, as:  

( )
1 4

 D

K
C Gr Pr



−
=   (5.3) 

The value of K ranges from 21 for Pr = 0.72 to 27.4 for Pr = 1000, though for Pr ≥ 10, it varies only from 

25.15 to 27.4. Notwithstanding the minor differences in the numerical constants, Eqs. (5.1) and (5.3) 

differ significantly in terms of the role of the Grashof number. This is like the role of Peclet number in 

the forced convection regime. Subsequently, Geoola and Cornish (1981;1982) have numerically studied 

the natural convection in air from a sphere over the range 0.05 ≤ Gr ≤ 50. They have also studied time-

dependent natural convection to delineate the time-delay in the onset of buoyancy-induced flow and they 

observed weak convective current close to the outer boundary even at extremely small values of Grashof 

number (Geoola and Cornish, 1982). Owing to the relatively short computational domain (12d), their 

results are presumed to be less reliable (Jia and Gogos, 1996a; 1996b; Yang et al., 2007). However, more 

reliable results and over a somewhat wider range of Grashof number (10 ≤ Gr ≤ 108) and Prandtl number 

(= 0.72 and 7) have been reported by Gogos and co-workers (Jia and Gogos, 1996a; 1996b; Yang et al., 

2007). These studies also confirm the scaling of the drag coefficient (non-dimensional total drag) as CD 

∼ (Gr Pr)−1/4, in line with the analysis of Stewart (1971), given here by Eq. (5.3). Subsequently, a 

comprehensive study on drag coefficient of a sphere in free convection flows over wide ranges of Grashof 

and Prandtl numbers has been reported in Newtonian as well as in power-law fluids (Prhashanna and 

Chhabra, 2010). However, no attempt was made to develop a correlation between the hydrodynamic drag 

force and the Rayleigh number. There have been parallel experimental developments in the measurement 

of drag on a single sphere in natural convection and mixed convection regimes. For instance, Dudek et 

al. (1988) measured the drag force on 10–250 μm sized spheres in air, N2, and CO2 at very small Grashof 

numbers (0.002 ≤ Gr ≤ 0.03). Based on their experiments, they proposed the following drag correlation 

for a sphere: 
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2log 1.054 0.960 0.097DC x x= − −   (5.4) 

where x = log Gr 

Equation (5.4) was stated to be valid in the range 0.69 ≤ Pr ≤ 0.78. Also, these results agree with the 

numerical predictions of Yang et al. (2007) and the value of the ratio (CDF/CDP) was found to be ∼ 2 at 

such low Grashof numbers, like in the case of the Stokes flow regime. A few other studies on drag 

measurements are also available, but most of these relate to the cross-buoyancy flow (Ziskind et al.,2001) 

or aiding or opposing buoyancy mixed-convection conditions (Mogarbi et al., 2002), etc. Also, these 

studies span relatively small values of Gr and Re which are way below the currently available numerical 

results, and it is thus not possible to make a direct comparison between the predictions and observations. 

An experimental study involving the measurement of velocity and temperature in the vicinity of an 

isothermal sphere has been reported by Hossain (1966) over the range of conditions 0.01 ≤ Gr ≤ 2.54 for 

a wide range of Prandtl numbers. Similarly, Tsubouchi et al. (1959) have documented the values of the 

average Nusselt number for nearly spherical particles in air at low Grashof numbers (0.01 ≤ Gr ≤ 4). At 

such low Grashof numbers, their Nusselt number values do seem to approach the expected limiting value 

of Nu = 2. All in all, as noted above, there is a paucity of results for low Grashof number in general, for 

both Newtonian and power-law fluids even for the case of an isolated sphere. 

The relevant literature for free convection from vertically aligned two spheres is even more scant. For 

instance, Chamberlain et al. (1985) correlated their experimental results on average Nusselt number for 

two vertically touching spheres by adding the expected conduction limiting value and the boundary layer 

predictions (thin boundary layer) over the range 10 ≤ Ra ≤ 107 for air. Similarly, Raithby and Hollands 

(1976) and Hassani and Hollands (1989) identified a linear characteristic dimension for complex shaped 

objects to consolidate their experimental results for two touching spheres obtained in air as the working 

medium. In addition to the above-noted limited experimental studies, Musong et al. (2016) numerically 

investigated free convection heat transfer in air from two spheres with air as the working fluid. In 

particular, their results for vertically aligned two spheres are of direct relevance to the present work. Their 

results are however limited to a single value of Gr = 100 (and Pr = 0.71) but for centre-to-centre spacing 

varying from 1 (touching) to 10. Subsequently, Zhang et al. (2019) have also studied interactions between 

two vertically aligned spheres in air for a fixed value of the Rayleigh number, Ra = 105 and for the centre-

to-centre spacing ranging from 2 to 24. The interference between the two spheres progressively decreased 

with the increasing gap, though the behavior of the upper sphere is influenced by the mixed flow 

impinging on it and due to the preheating of the fluid by the lower sphere. 

As far as known to us, no prior results are available on free convection heat transfer for two vertically 

aligned spheres immersed in power-law fluids. The present study focuses on obtaining reliable results of 

total drag and average Nusselt number for a heated isolated sphere and for vertically aligned two spheres 

under free convection regime. Numerical studies are performed for both Newtonian (n = 1) and power-



| Natural convection 

 

102 
 

law fluid (0.1 ≤ n ≤ 2 for a single sphere and 0.1 ≤ n ≤ 1.5 for a pair of spheres), at low Grashof numbers 

(10−4 ≤ Gr ≤ 10) and high Prandtl numbers (0.72 ≤ Pr ≤ 1000) which considerably extends the range of 

previously reported results for a single sphere (Prhashanna and Chhabra, 2010) and for two vertically 

aligned spheres (Musong et al., 2016; Zhang et al., 2019). For the vertically aligned twin sphere case, 

centre-to-centre spacing between two spheres defined as gap ratio, l/d, three values of 1, 4 and 6 have 

been used to explore the hydrodynamic interference between the two spheres. Furthermore, the present 

results are compared with the scant experimental data as far as possible, especially at low Grashof 

numbers for the isolated sphere as well as the twin sphere case. 

5.1.2 Physical model and mathematical formulation 

Figure 5.1a and 5.1b show the schematics of the two configurations studied herein and the corresponding 

computational domains employed in this work. Since the coupled momentum and thermal equations and 

the boundary conditions employed herein are identical to that used in ref. (Prhashanna and Chhabra, 2010) 

for the isolated sphere, these are presented here in brief. For both cases, the velocity and the temperature 

fields are governed by the momentum and energy equation written in their dimensionless form as Eqs. 

(2.1) – (2.3). 

 
Figure 5.1a. Schematics of (i) physical model and (ii) computational domain for a single sphere.  



| Natural convection 

 

103 
 

Equations (2.1 – 2.3) have been rendered dimensionless using R and Vc as the characteristic length and 

velocity scales, respectively. Thus, pressure and the stress components, respectively, have been scaled as 

ρVc
2 and m(Vc/R)n and whereas the non-dimensional temperature is defined as ( ) ( )c h cT T T T = − − . The 

physically realistic boundary conditions for the flow are that of no-slip and constant temperature on the 

surface of solid sphere for both configurations and for temperature at the far away boundary (fictitious 

spherical envelope of diameter D∞), 0
r


=


 (Neumann type). The fluid velocity is expected to have 

dropped to zero, but the more commonly used condition is that of no stress, similar to Neumann type 

conditions, which ensure that the rate of change of θ-velocity in the radial direction is zero whereas the 

radial velocity itself approaches zero. It is appropriate to add here that the far-away boundary conditions 

exert very little influence on the results for sufficiently large values of D∞ (Saitoh et al., 1993; Prhashanna 

and Chhabra, 2011) such as that used here. 

For the case of the twin- spheres also, the usual no-slip condition for velocity and constant temperature 

for energy equations are implemented on the surface of the spheres. At the faraway spherical boundary, 

Figure 5.1b. Schematics of (i) physical model and (ii) computational domain for a twin sphere. 
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the stress-free boundary condition has been applied as explained above. The surface of the spheres is 

maintained at a constant temperature ξ = 1 whereas the radial temperature gradient is applied at r = D∞/2. 

For both the cases of single and twin spheres, the flow remains steady over the range of parameters 

spanned here and hence, the problem has been solved for by assuming axisymmetric flow. 

The coupled field of Eqs. (2.1) to (2.3) with the constitutve Eq. (2.5) have been solved here using the 

finite element based COMSOL Multiphysics (Version 5.3a), as detailed in a later section. The velocity 

and temperature fields can be post-processed to deduce the value of the heat transfer coefficient and 

hydrodynamic force exerted on the sphere. 

5.1.3 Choice of numerical parameter and validation 

As the numerical solution methodology is described in detail in ref. (Prhashanna and Chhabra, 2010), 

only the key features are presented here. Parameters such as domain size and the number of grid elements 

in the flow domain influence the accuracy and reliability of the numerical results. Bearing in mind the 

fact that at small Grashof numbers and/or Prandtl numbers, the feeble buoyancy-induced flow field decays 

slowly and hence a large domain is required for numerical simulations as noted by others also in the 

context of Newtonian fluids (Dudek et al., 1988). For this purpose, the value of D∞/d was varied from 20 

to 3000 and the resulting values of CD and Nu in Newtonian fluids are shown in Fig. 5.2. Clearly, the 

Nusselt number necessitates a much shorter computational domain (Fig. 5.2b) than that needed for the 

corresponding drag values to stabilize, as also noted by Dudek et al. (1988). Indeed, smaller the value of 

the Grashof number, the larger the value of D∞/d required to obtain reliable values of CD. Figure 5.3 

shows this effect much more clearly with reference to the results of Dudek et al. (1988).  Their numerical 

values are based on D∞/d = 40. The present values of Nu included here are based on D∞/d = 1000. Two 

Figure 5.2 Effect of outer boundary on the drag coefficient and Nusselt number for PrPL = 0.72 for 

a single sphere. 
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observations are in order here. Firstly, the Nusselt number is robust with respect to the size of the 

computational domain, and the Nusselt number is within 0.05% of the expected conduction limit of Nu = 

2 at Gr = 10−4. On the other hand, the present drag values (obtained using D∞/d = 1000) agree with that 

of Dudek et al. (1988) obtained with D∞/d = 40 only up to about Gr = 0.05. In order to further explore 

this aspect, additional simulations have been performed here using D∞/d = 40 (same as that used in 

reference (Dudek et al. (1988)) for 10−5 ≤ Gr ≤ 0.05 (shown as green symbols in Fig. 5.3) and irrespective 

of the value of the Grashof number, the value of the drag is seen to approach a constant value. 

Consequently, to capture both the thickest momentum and thermal boundary layers for n = 0.1 and for n 

= 1 at the lowest value of Pr = 0.72 in this work, two domain sizes were chosen as D∞/d = 3000 and 1000 

for the Grashof number ranges 10−4 ≤ Gr ≤ 0.9 and 0.9 < Gr ≤ 10, respectively. Further increase in the 

value of (D∞/d) for the aforementioned range of parameters changed the values of CD and Nu by less than 

1%. Moreover, for the extreme values of the Prandtl number (Pr = 0.72, 1000) and power-law index (n = 

0.1, 2), the values of drag coefficient and average Nusselt number in both domains were examined at an 

intermediate value of Gr = 0.9 and the difference between these values obtained with the two domains is 

also less than 1%. In a similar fashion, by varying the number of nodes on the surface of the sphere (Np), 

the effect of the grid density on the values of CD and Nu has been explored (Table 5.1a and 5.1b). In the 

case of a single sphere, quadrilateral grids have been used in both domains (Fig. 5.4a). There is only a 

marginal difference observed as the number of nodes (Np) is increased on the surface of the sphere from 

250 to 300 on drag coefficient and Nusselt number values (Table 5.1.1a and 5.1.1b). Furthermore, the 

adequacy of the computational grids used herein has been verified by comparing the Nusselt number  

Figure 5.3 Validation of drag coefficient and Nusselt number for PrPL = 0.72 for a single sphere. 
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Table 5.1a Grid independence test for a single sphere for GrPL  0.9. 

D/d GrPL 

Np = 250, Npd = 1425,00* Np = 300, Npd = 204,000# 

PrPL = 0.72 PrPL = 1000 PrPL = 0.72 PrPL = 1000 

n = 0.1 n = 2 n = 0.1 n = 2 n = 0.1 n = 2 n = 0.1 n = 2 

  CD CD 

3
0
0
0

 

10-4 2777.8 509.69 1343.9 22.786 2776.8 510.31 1342.7 22.811 

0.9 27.028 20.763 7.0608 1.7051 27.014 20.784 7.0729 1.7148 

 Nu Nu 

10-4 2.0009 2.0363 2.034 3.4511 2.0008 2.0363 2.0339 3.4509 

0.9 2.3558 2.4529 5.7636 9.2896 2.3558 2.4528 5.7637 9.2881 

 

distribution on the surface of the sphere for the extreme values of the governing parameters in both 

domains, as shown in Fig. 5.5. It clearly depicts that the values of the Nusselt number overlap for the two 

cases of the nodes on the surface of the sphere from Np = 250 and Np = 300. The present results are, hence, 

based on the Np = 250 and the total grid elements in the computational domain Npd = 142,500 (Grid G1)  

Table 5.1b Grid independence test for a single sphere for GrPL ≥ 0.9. 

D/d Gr 

Np = 250, Npd = 116,250* Np = 300, Npd = 139,500# 

Pr = 0.72 Pr = 1000 Pr = 0.72 Pr = 1000 

n = 0.1 n = 2 n = 0.1 n = 2 n = 0.1 n = 2 n = 0.1 n = 2 

  CD CD 

1
0

0
0

 

0.9 27.013 20.768 7.6474 10.511 27.103 20.789 7.6744 10.522 

10 6.9375 1.7051 2.0959 1.0154 6.9473 1.7073 2.097 1.0167 

 Nu Nu 

0.9 2.3549 2.4529 3.4862 2.7917 2.3549 2.4529 3.4861 2.7917 

10 5.7238 9.2895 10.535 12.979 5.7235 9.2892 10.529 12.978 

*  Grid G1, # Grid G2 in computational domain 

and 116,250 (Grid G2) for D∞/d = 3000 and D∞/d = 1000, respectively for a single sphere. 

For the case of twin spheres, the domain size chosen above for a single sphere has been found adequate 

for the highest gap ratio l/d = 6. On the other hand, a grid independence study has been performed for the 

extreme values of l/d = 1 and l/d = 6 separately. The flow domain has been discretized using triangular 

grids in the vicinity of the spheres and using quadrilateral cells in the remaining faraway  regions as shown 

in Figs. 5.1.4b and 5.1.4c. The case of the touching spheres (l/d = 1) requires a dense grid on the surface 

(Np = 400 for each sphere) to capture the steep gradients due to a single point of contact. For l/d = 4 and 
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l/d = 6, the number of nodes has been found identical to the single sphere, i.e.,Np = 250. As a result, the 

total number of cells in the domain ranges from Npd = 384,500 for l/d = 1 to Npd = 130,000 for l/d = 6. 

The finite-element numerical scheme adopted in this work by employing COMSOL Multiphysics® 

(Version 5.3a) discretizes the Eqs. (2.1) - (2.3) in a sparse linear system. PARDISO (Parallel Sparse 

Linear Direct Solver) has been used for the steady, 2-D axisymmetric, laminar flow and heat transfer 

modules to solve for the flow and temperature fields. Based on extensive exploratory simulations, the   

relative convergence criterion of 10−5 for the continuity, momentum and thermal energy equations has 

been set for all the field variables in the flow domain for simulations to have converged. Adequacy of the 

Figure 5.4. Grid structure for (a) single sphere (b) twin sphere at l/d = 1 (c) twin sphere at l/d = 6. 
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numerical parameters detailed above is further illustrated by way of presenting detailed comparisons with 

the previous numerical and experimental studies culled from the literature.  

 In Fig. 5.6, the present values of the local Nusselt number are compared with that of Singh and Hasan 

(1983) for air over the range of Grashof number 0.01 < Gr < 1. They used the value of D∞/d in the range 

20 to 80. The agreement between the two results is fair in the overlapping range of conditions. Also, the 

isotherms shown in Fig. 5.7, are in good agreement with each other for Gr ≥ 0.1. Furthermore, the present 

predictions of temperature profiles are compared in Fig. 5.8 with the experimental results of Hossain 

(1966). The agreement is seen to be reasonable in the range 0.023 ≤ Gr ≤ 2.54 and 125 ≤ Pr ≤ 1000. 

Finally, the present numerical and experimental results for the average Nusselt number, Nu of a single 

sphere culled from various sources over the range of 10−4 ≤ Gr ≤∼ 6 and 0.7 ≤ Pr ≤ 1000 have been 

compared with each other in Fig. 5.9. Included here also the predictions of the widely used correlation of 

Churchill and Churchill (1975) given below: 

( )
1 4

4 9
9 16

1.6
2

0.5
1

Ra
Nu

Pr

= +
  
+  
   

  (5.4) 

The correspondence between the present and previous results in Fig. 5.9 is seen to be excellent. The 

preceding comparisons coupled with those reported in ref. (Prhashanna and Chhabra, 2010) for Gr >10 

lend credibility to the new results included here which are regarded to be reliable to within 1–2%. It is  

  

Figure 5.5 Effect of grids on the variation of Nusselt number on the surface of the sphere at n = 

0.1 (filled symbols) and n = 2 (hollow symbols) (a) D∞/d = 1000 at GrPL = 10 (b) D∞/d = 3000 at 

GrPL = 0.9 (symbols: Grid G1; lines Grid G2, see details in Table 5.1). 
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Figure 5.6. Validation of the present results (line) of local Nusselt number with that of Singh and 

Hassan (1983) (symbols) at PrPL = 0.7 for a single sphere.  

Figure 5.7. Comparison of isotherms at PrPL = 0.7 with the results of Singh and Hassan (1983) for 

a single sphere. 
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useful to mention here that in the limit of Ra → 0, the conduction limit for a sphere Nu = 2 is seen to be  

approached here. For instance, the present numerical results approach this limit at about Ra ∼10−4 within 

about 2%. The experimental results from Tsubouchi et al. (1959) shown in Fig. 5.9 also seem to show 

such a levelling off. Also, it is not at all easy to achieve the pure free convection regime in an experimental 

study.  Finally, it is also not always possible to approach the unconfined sphere limit in numerical 

simulations at low Grashof numbers as that used here. All these factors will yield higher values of the 

Nusselt number than that expected in the free convection regime. Also, the experimental errors in this 

limit can be as high as 50% as can be gaged from the scant experimental results (Amato and Tien, 1976; 

Liew and Adelman, 1975) included in Fig. 5.9. For low Rayleigh number, only Chamberlain et al. (1985) 

have reported limited experimental results for twin spheres (l/d = 1). Table 5.2 shows a comparison 

between their and the present results for air (Pr = 0.72); once again, an excellent agreement exists  

Table 5.2 Comparison of the average Nusselt number for air (PrPL = 0.72) for the two touching 

spheres l/d =1. 

GrPL RaPL 

Nuavg 

Present Chamberlain et al. (1985) 

- Ra → 0 1.387 1.386 

0.0001 7.20  10-5 1.3955 1.4148 

0.0005 3.60  10-4 1.4059 1.4321 

0.001 7.20  10-4 1.4133 1.4419 

0.005 3.60  10-3 1.4418 1.4726 

0.01 7.20  10-3 1.4610 1.4901 

0.05 3.60  10-2 1.5305 1.5447 

 

Figure 5.8 Comparison of present temperature profiles (line) at θ = 90° with the experimental 

results of Hossain and Gebhart (1966) (symbols) for a single sphere. 
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between the two results. Finally, the present values of the average Nusselt number for two spheres 

arrangement have been compared with the experimental results of Hassani and Holland (1989) and the 

numerical results of Musong et al. (2016) for air at Ra > 50 for varying gap ratios (Fig. 5.10). The close 

correspondence seen in this case also lends credibility to the present solution methodology. Suffice it to 

Figure 5.9 Comparison of average Nusselt number with the literature for a single sphere. 

Figure 5.10 Validation of the average Nusselt number for twin spheres with the varying gap ratios 

in air (PrPL = 0.72). 
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say here that additional validation and comparison with experimental data on local temperature and 

velocity profiles in power-law fluids are reported in Ref. (Prhashanna and Chhabra, 2010) and hence these 

are not repeated here. 

5.1.3 Results and discussion 

Altogether, nearly 2000 individual numerical results for single and 4600 for twin-spheres denoting 

different combinations of the values of GrPL, PrPL, n and l/d have been obtained in this work; these results 

extend over the following ranges of parameters, GrPL (10−4, 10−3, 5 × 10−3, 10−2, 5 × 10−2, 10−1, 5 × 10−1, 

1, 10), PrPL (0.72 ≤ Pr ≤ 1000), n (0.1 ≤ n ≤ 2 for a single sphere and 0.1 ≤ n ≤ 1.5 for a pair of spheres), 

and l/d (1, 4, 6). These have been used to delineate the influence of each of these parameters on free 

convection from an isolated sphere and from two identical spheres aligned vertically.  

5.1.3.1 Isolated sphere 

A. Drag on sphere 

Figure 5.11 Variation of drag coefficient as a function of Grashof number (GrPL), Prandtl number, 

(PrPL) and power-law index (n) for a single sphere. 
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Figure 5.11 plots the drag coefficient, CD experienced by the sphere for scores of values of the power- 

law index (n), Grashof number (GrPL), and Prandtl number (PrPL). This figure also includes the previous 

results of Prhashanna and Chhabra (2006) for Grashof number GrPL ≥ 10. Interestingly, Fig. 5.11 shows 

that the effect of the power-law index, n on CD is flipped over between 2 < GrPL < 15; for instance, for 

PrPL = 0.72, this flip-over occurs at GrPL ∼> 3. For GrPL < 2, Fig. 5.11 shows varying extents of drag 

augmentation in pseudoplastic fluids (n < 1) whereas it decreases in dilatant fluids (n > 1) with reference 

to the corresponding value in a Newtonian fluid over the range of Prandtl number 0.72 ≤ PrPL ≤ 1000. 

This observation is in stark contrast to the behavior at GrPL >15 reported by Prhashanna and Chhabra 

(2006). Similar trends for a sphere in the forced convection regime (Dhole et al., 2006) have also been 

reported for power-law fluids. The possible reasons for the varying role of shear-thinning and shear-

thickening behavior on the total drag may be attributed to the varying contributions of the friction and 

form drags which scale differently with the velocity and power-law index, e.g., frictional force scales as 

∼ 
n

cV whereas the inertial forces scale as ∼ 2

cV . Figure 5.12 quantifies the contribution of the individual 

components to the total drag coefficient which is seen to be strongly influenced by the values of the 

Prandtl and Grashof numbers, and the flow behavior index, thereby confirming the foregoing assertion 

based on the scaling of the individual drag coefficients. For instance, at PrPL = 0.72, the ratio CDP/CDF is 

below unity up to about n ≥ ∼ 0.4 whereas it exceeds unity for n ≤ ∼0.2 thereby suggesting that CDF rises 

less steeply than CDP. Qualitatively similar trends, though less severe, are seen at PrPL = 100 whereas this 

effect is virtually absent at PrPL = 1000. Returning to Fig. 5.11, the increasing value of the Prandtl number 

reduces the total drag otherwise under identical conditions. To elucidate the effect of power-law index on 

the total drag in an unambiguous fashion, the drag ratio Y(n) defined as the total drag in a power-law fluid 

normalized by the corresponding value in a Newtonian fluid at given values of GrPL and PrPL, is plotted 

in Fig. 5.13. It confirms the tendency of the Grashof number to modulate the effect of power-law index 

on the total drag. Figure 5.13 also shows that with the increasing Prandtl number, the onset of flip over 

Figure 5.12 Effect of power-law index on pressure and frictional drag ratio for a single sphere at 

(a) PrPL = 0.72 (b) PrPL = 100 (c) PrPL = 1000. 
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of the dependence of CD on the power-law index shifts towards a higher Grashof number, as also seen in 

Figs. 5.11 and 5.12. It is useful to recall here that the drag correction factor is a function of the power-

law index only in the forced convection Stokes regime and it ranges from about Y(n) ∼ 0.261 at n = 1.8 

to Y(n) ∼ 1.354 at n = 0.1, with its maximum value of Y(n) ∼ 1.458 at n = 0.4 – 0.5 (Dhole et al., 2006; 

Chhabra and Richardson, 2008). In contrast, this factor shows a strong dependence on the Grashof and 

Prandtl numbers in the free convection regime, as can be seen at PrPL = 7 and PrPL = 100 thereby 

suggesting that even such low values of GrPL do not necessarily correspond to the “creeping flow 

approximation” in the free convection regime. The effect of shear-thinning viscosity (n < 1) on CD as well 

as Y(n) appears to be more pronounced than that of the dilatant fluid viscosity (n > 1). 

 In an extensive experimental investigation on free convection heat transfer from an isothermal sphere in 

power-law fluids by Amato and Tien (1976), two flow regimes have been identified based on the value 

of the modified form of the Rayleigh number defined as: 

Figure 5.13 Variation of drag correction factor, Y(n) = CDn / CDn =1 with Grashof number, GrPL, 

Prandtl number, PrPL and power-law index, n for a single sphere. 
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Within the margin of experimental errors, Amato and Tien (1976) argued that for Ω < ∼10, Nu = 2 and 

for Ω > 10, the Nusselt number exhibited a linear positive dependence on Ω, Nu ≈ Ω. This trend was also 

supported by the subsequent numerical results available in the literature (Prhashanna and Chhabra, 2010). 

However, the present results seem suggest that the conduction limit Nu = 2 approaches only for Ω < ∼1 

instead of Ω =10. Due to the coupling between the flow and thermal fields in the free convection regime, 

the thickness of both the hydrodynamic and thermal boundary layers are determined by the value of Ω, 

one would expect the total drag to exhibit an inverse dependence on Ω. Indeed, this inference is supported 

by the results shown in Fig. 5.14 where the present results (0.0148 ≤ Ω ≤ 10.58) and that of Prhashanna 

and Chhabra (2010) spanning the range 10 ≤ Ω ≤ 103 are included. With the increasing value of Ω, the 

effect of power-law index progressively diminishes due to the gradual weakening of the viscous forces. 

On the other hand, there is a distinct effect of power-law index for Ω <∼5–10, in line with the previous 

discussion in the context of Figs. 5.11 to 5.13. In other words, the composite parameter Ω can be 

interpreted as the effective Reynolds number here. 

 B. Nusselt number 

Figure 4.15 shows the variation of the local Nusselt number, Nul on the surface of the sphere 

encompassing a range of combinations of parameters, namely, PrPL, GrPL, and n. As expected, at low 

Figure 5.14 Drag coefficient as a function of Ω over the range of power-law index for a single 

sphere. 
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Grashof numbers, (e.g., GrPL = 10−4) and Prandtl number (PrPL = 0.72), the local Nusselt number varies 

very little over the entire surface of the sphere being close to the conduction value of Nul = 2 and it 

remains independent of the values of the power-law index. This is so because the conduction heat transfer 

is influenced only by the thermal conductivity of the fluid and the viscous (flow) properties are irrelevant 

in this regime. This is in line with the approximate analysis of Hossain and Gebhart (1970). However, a 

gradual increase in Prandtl number and/or Grashof number raises the Nusselt number by varying amounts 

indicating the onset of convection in the front of the sphere, e.g., see the results in the first row of Fig. 

5.15 and the same effect is further intensified at GrPL = 5 (bottom row). In Newtonian and dilatant fluids 

(n ≥ 1), the local Nusselt number exhibits a peak at the front stagnation point (θ = 0). In contrast, for n = 

0.1 (highly shear-thinning fluid), the peak value shifts slightly downstream from the front stagnation 

point. These results are also in agreement with the previous work at high Grashof numbers (Prhashanna 

and Chhabra, 2010). The shift of the peak of the local Nusselt number from the front stagnation point on 

the sphere surface depends on the critical Rayleigh number (GrPL × PrPL) or on the value of Ω which is a 

strong function of the power-law index (Prhashanna and Chhabra, 2010).  The present results also confirm 

that for n = 0.1, the shift of local maxima for Nusselt number is observed at RaPL = 35 for GrPL = 5 in Fig. 

5.15 whereas it was observed for n = 0.4 by Prhashanna and Chhabra (Prhashanna and Chhabra, 2010) 

Figure 5.15 Local Nusselt number on the surface of sphere over the range of PrPL and n at GrPL = 

10-4 and GrPL = 5 for a single sphere. 



| Natural convection 

 

117 
 

only after RaPL ∼ 7 × 103 for GrPL ∼ 103. At the front stagnation point, the shear rate is maximum which 

corresponds to maximum (or minimum) viscosity depending upon the value of the power-law index. The 

temperature gradient is also maximum at this point. However, both the shear rate and temperature 

gradients decrease along the surface of the sphere. Such a viscosity variation along the surface leads to 

local values of GrPL and PrPL which can be significantly different from those based on the scaling of R 

and Vc. This coupled with the variable temperature gradient determines the local value of the Nusselt 

number. Both the velocity and temperature gradients are strongly influenced by the power-law index. For 

small values of n, the dependence of viscosity on the shear rate is weakened and hence this effect is 

observed only in highly shear-thinning fluids, i.e., small values of n. Finally, the currently available 

numerical results (Prhashanna and Chhabra, 2010) for Ω >10 and experimental results (Amato and Tien, 

1976; Liew and Adelman, 1975) are consolidated in Fig. 5.16 along with the present results. As expected, 

the Nusselt number gradually approaches the limiting value of Nu = 2 for Ω < ∼ 0.1 regardless of the type 

of fluid, Newtonian or power-law (0.1 ≤ n < 2). Similarly, at the other end, Ω > ∼ 10, the results for 

different values of the power-law index seem to collapse onto a single curve, given by Nu ∼ Ω, in line 

with the suggestion of Amato and Tien (1976) and Liew and Adelman (1975) in the range of the power-

law index 0.3 ≤ n ≤ 1. However, in between these two limits corresponding to the onset of convection, 

the results exhibit slightly greater dispersion around the mean value. However, no trend is discernible 

with respect to GrPL, PrPL, Ω, or the value of n in this regime. The difference between the numerical and 

experimental results seen here is well within the margin of errors inherent in the experimental results, as 

Figure 5.16 Comparison of the present values of Nusselt number with the previous numerical and 

experimental results for a single sphere. 
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indicated by the values of Nu < 2 in a few cases. Finally, similar to the flipping over seen in drag results 

with respect to the role of power-law index, the average Nusselt number shows qualitatively similar 

behavior at values of the Grashof number of the order of 5–10 depending on the values of the power-law 

index and Prandtl number when the present results are plotted along with that from ref. (Prhashanna and 

Chhabra, 2010), though these are not included here. 

5.1.3.2 Twin sphere 

The twin heated spheres aligned vertically in a buoyancy driven flow exhibit dramatic changes in the 

overall flow and heat transfer phenomena on three counts: firstly, the plume of the heated fluid rising 

from the upstream sphere impinges on the downstream hot sphere thereby exposing it to the effectively 

buoyancy-assisted mixed convection regime. Secondly, the rising plume expands radially, thereby 

lowering its upward velocity in compliance with the equation of continuity. Both these effects are strongly 

modulated by the gap between the two spheres and the strength of the flow. For instance, for small value 

of l/d, the rising plume will slow down much less than that for large value of l/d. For closely-placed 

spheres, this effect will tend to increase the rate of heat transfer from the downstream sphere, but this 

effect will weaken with the increasing separation between the two spheres. Finally, due to the preheating 

of the fluid by the upstream sphere, the driving force for heat transfer from the downstream sphere is 

lower than that of the upstream sphere. This will lower the rate of heat transfer from the downstream 

sphere. These three factors influence the hydrodynamics (drag) and heat transfer (Nusselt number) of the 

trailing sphere. The relative strengths of these three factors themselves are strongly influenced by the 

values of GrPL, PrPL, l/d and n in a complex manner. Furthermore, due to the coupled flow and heat 

transfer phenomena, the drag experienced by the downstream sphere differs from that for an isolated 

sphere otherwise under identical conditions. Based on these considerations, only three values of l/d have 

been employed here which represent strong to moderate interference between the two spheres as the 

values of l/d is varied from l/d = 1 to l/d = 6. These interactions can also be viewed in terms of the 

boundary layers formed on both spheres and the boundary layer thickness are determined by the values 

of these parameters.  

The ratio of drag coefficients of the downstream sphere (CD1) to the upstream sphere (CD2) is plotted as a 

function of the Grashof number in Fig. 5.17 for l/d = 6 and l/d = 1. It is observed that the drag ratio 

(CD1/CD2) has not exceeded 1 over the range of parameters for twin spheres indicating that the downstream 

sphere has a drag coefficient equal to or less than the upstream sphere. This is due to the effectively 

augmented flow around the downstream sphere, (i.e., effectively high Rayleigh number)  which lowers 

the drag coefficient. Moreover, the ratio becomes more sensitive to power-index as the Grashof number 

increases over the range of Prandtl numbers due to enhanced advection. In other words, for a fixed value 

of PrPL, the drag values vary for both the spheres at low Grashof numbers, e.g., 10−4 over the range of 0.8 

<∼ CD1/CD2 <∼ 1. As the Grashof number increases, their ratio CD1/CD2 decreases while with the increase 

in Prandtl number, it shows a decrease for the case of l/d = 6. On the contrary, for l/d = 1 the effect of the 

Prandtl number has been observed to be the other way around. In this case, it is possible that the plume 
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from the upstream sphere encapsulated the downstream sphere partially or completely thereby effectively 

behaving as a single body. 

The heat transfer characteristics for the twin spheres have been examined in terms of the average Nusselt 

number, as shown in Fig. 5.18. It can be seen that the average Nusselt number values for both spheres 

increase with the increasing gap ratio; however, they remain higher for the upstream sphere (Nu1) 

compared to the downstream sphere (Nu2) for l/d = 1 over the range of the parameters as shown in Fig. 

5.19. In this case, possibly the preheating of the fluid by the upstream sphere dominates the behavior of 

the downstream sphere. As, the gap ratio increases presumably due to the mixed-convection flow 

experienced by the downstream sphere, specifically shear-thinning fluids show a complete flip over this 

behavior (i.e., Nu1/Nu2 < 1) as the Grashof number increases above ∼1. In this case, the mixed-convection 

effect outweighs the preheating effect. On the other hand, in the case of Newtonian and shear-thickening 

fluids, the ratio of Nu1/Nu2 seems to be a function of the Prandtl number. With the increase in the Prandtl 

number, e.g., at PrPL = 100 the ratio of the average Nusselt number, Nu1/Nu2 remains greater than 1 for 

these fluids. Interestingly, the Nusselt numbers for both spheres seem to approach the limiting 

(conduction) value of the Nusselt number as the Grashof number decreases over the range of parameters 

considered in this work (Fig. 5.18). For l/d = 1, the two touching spheres thus forming a single particle 

in a quiescent power-law fluid have a limiting average Nusselt number ∼ 1.387 

Figure 5.17 Effect of gap ratio on drag coefficient (Top row: l/d = 6; bottom row: l/d = 1). 
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which is lower than the limiting average Nusselt number value of Nu = 2. However, this value increases 

with the increasing value of l/d. For instance, for l/d = 4 and 6, these values are 1.783 and 1.849, 

respectively thereby indicating the weakening of the interference in the pure conduction limit. However, 

the single sphere limit cannot be possibly reached for the downstream sphere in the presence of convection 

due to the preheating of the fluid, though the interference between the two spheres diminishes with the 

increasing value of l/d. The present study shows that the gap required to make both spheres act 

independently will certainly be much greater than the gap ratio l/d = 6.   

5.1.3.3 Practical application 

For an isolated sphere, as noted earlier, the drag coefficient exhibits an inverse dependence on Ω 

(modified Rayleigh number) as shown in Fig. 5.11 for an isolated sphere. Clearly, two regimes exist 

roughly separated at Ω ∼ ≤ 10. For Ω ∼> 10, over the range of the power-law index, the results from 

Prhashanna and Chhabra (2010) seem to collapse onto a single curve and the effect of the power-law 

index becomes gradually significant as Ω decreases below Ω ≤ 10. 

For Ω ≤ 10, the relationship between CD and Ω is of the form as: 

b

DC a=    (5.6) 

Figure 5.18 Effect of gap ratio on average Nusselt number (a) l/d = 6 (b) l/d = 4 (c) l/d = 1. 
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The results for Prandtl number of 0.72 are not included in Eq. (5.6) as they are of little interest in the 

context of power-law fluids. This equation predicts 1600 individual values of the drag coefficient with a 

mean error (δavg) of 18% which rises up to a maximum (δmax) of 53% for a single sphere. Further analysis 

of the results shows that the maximum errors were observed for extreme values of the power-law index 

n = 0.1 and n = 2. For Ω ≥ 10, the drag coefficient values of Prhashanna and Chhabra (2010) are also well 

approximated by Eq. (5.6) with the coefficient values, a = 15.580 and b = −1.120 with the mean and 

maximum deviations of 11% mean and 36% respectively for 140 individual data points. It is worthwhile 

to mention here that for n = 1, the value of b is sufficiently close to the value of unity suggested by the 

analysis of Stewart (1971), Eq. (5.3) here whereas the value of a = 15.58 is about 30% lower than their 

proposal. Similarly, at low Rayleigh numbers, our drag results are approximately in line with Eq. (5.1) in 

so far that CD scales as ∼ RaPL
−1/2 as suggested by Eq. (5.1). 

Similar correlations have been also proposed here for the twin sphere system. Equation (5.6) can also be 

used to predict the drag coefficient for both spheres adequately. However, the coefficients in Eq. (5.6) 

are much more involved in this case as, ( )2 4

1 3 1a aa a n a n = −
  and ( )1 2 3b b b n b=  +  −  .The values of 

Figure 5.19 Effect of gap ratio on the ratio of Nusselt number of upstream (Nu1) to downstream 

(Nu2) sphere (Top row: l/d = 6; bottom row: l/d = 1). 
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a1, a2, b1, b2, etc. along with the maximum and average deviations are tabulated in Table 5.3 (excluding 

data for PrPL = 0.72). In each case, the results for the downstream sphere entail greater uncertainty than 

the first sphere. This is obviously due to the mixed convection flow over the downstream sphere and the  

Table 5.3 Coefficients of Equation (5.6) ( )2 4

1 3 1 = −
 

a aa a n a n  and ( )1 2 3=  +  − b b b n b for the 

case of twin spheres. 

Coefficient 
l/d = 6 l/d = 4 l/d = 1 

Downstream Upstream Downstream Upstream Downstream Upstream 

a1 8.249 4.597 6.015 4.365 3.825 3.545 

a2 2.152 2.65 2.484 2.719 2.657 2.727 

a3 5.857 12.866 7.322 12.722 8.501 11.338 

a4 1.747 2.237 2.124 2.329 2.265 2.319 

b1 0.294 0.296 0.212 0.219 0.161 0.108 

b2 0.35 0.393 0.26 0.306 0.191 0.154 

b3 -1.871 -1.762 -1.802 -1.699 -1.755 -1.578 

avg 12.04 9.01 12.57 9.88 11.72 9.84 

max 53.62 36.15 50.19 33.75 58.03 46.12 

# data 1971 1971 1765 1765 900 900 

 

preheating effect which are not being accounted for here. 

Next, a simple expression has been postulated for estimating the average Nusselt number for a single 

sphere as: 

0.358 1.072 0.9Nu = +     (5.7) 

where, 
3 1

4

n

n

+ 
 =  

 
 

Here also, the results of PrPL = 0.72 are not included. Equation (5.7) predicts the average Nusselt number 

with the mean and maximum deviations of 4% and 35% respectively. All in all, 74 data points out of 

1600 show deviations of more than 10%, specifically, at PrPL = 103 for n ≤ 0.3 and GrPL ≥ 0.05. It is 

worthwhile to add here that the present results for PrPL = 0.72 over the low Grashof number range 10−4 ≤ 

GrPL ≤ 10 are close to the available experimental results within the margin of experimental uncertainty. 

In particular, the present numerical results for air (PrPL = 0.72) have been found to be in excellent 

agreement with the available correlations based on experimental results (Campo, 1980; Yuge, 1960; 

Churchill, 1983). In view of the wide acceptance of the correlation due to Churchill (1983) for Newtonian 

fluids, an attempt has been made to correlate the average Nusselt number for power-law fluids as a 
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function of the modified Rayleigh number proposed. 

4 9
9 16

0.589
2

0.43
1

a

PL

Nu

Pr


= +

  
 +  
   

  (5.8) 

This equation correlated the present data of power-law fluids over wide ranges of the modified Rayleigh 

number, 0.0148 ≤ Ω ≤ 731 for 0.1 ≤ n ≤ 2, 10−4 ≤ GrPL ≤ 107 and 0.72 ≤ PrPL ≤ 1000, including the results 

of Prhashanna and Chhabra (2010). The resulting values of the parameter a in Eq. (5.8) are as follows: 

a = 1.32 for 0.0148 ≤ Ω < 10 (% Error: mean = 8%, maximum = 46%, #data = 1846) 

a = 1.073 for 10 ≤ Ω ≤ 731 (% Error: mean = 17%, maximum = 28%, # data = 100) 

For n = 1, Eq. (5.8) approaches the original form of the expression proposed by Churchill (1983) with Ω 

= Ra1/4 and a = 1. Finally, the trends seen in Fig. 5.18 suggest that the correlation for the isolated sphere, 

Eq. (5.7), might be useful to predict the average Nusselt numbers for the twin spheres also with the 

appropriate coefficients. The coefficients in Eq. (5.7) can be represented for the twin spheres as: 

3 4

1 2

c cNu c c= +     (5.9) 

Table 5.4 summarizes the values of the fitting parameters for the twin sphere system along with the 

average and maximum percentage errors for each case excluding the data for PrPL = 0.72. The coefficient 

c1 captures the limiting average Nusselt number that is the function of purely gap ratio. For l/d = 1 

touching spheres, the limiting average Nusselt number. i.e., 1.387, matches with the reported value of 

1.386 by Chamberlain et al. (1985). 

Table 5.4 Coefficients of Equation (5.9) for the case of twin spheres. 

Coefficient 
l/d = 6 l/d = 4 l/d = 1 

Downstream Upstream Downstream Upstream Downstream Upstream 

c1 1.849 1.849 1.783 1.783 1.387 1.387 

c2 1.080 1.030 1.126 0.943 1.018 0.561 

c3 0.977 0.979 0.957 0.985 1.016 1.112 

c4 0.381 0.485 0.356 0.456 0.556 0.663 

avg 4.3 3.7 4.63 4.26 3.94 3.27 

max 40.2 42.03 37.77 39.77 31.62 40.39 

# data 1971 1971 1765 1765 900 900 

 

Before leaving this section, it is worthwhile to add here that the modified Rayleigh number, Ω, employed 

here also captures the varying roles of the Grashof and Prandtl numbers modulated by the value of the 
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flow behavior index (n). For n = 1, it predicts the expected scaling of Nu ∼ RaPL
1/4, i.e., identical roles of 

Grashof and Prandtl number in determining the value of the Nusselt number. For n = 0.1 (highly shear-

thinning fluid), 
0.45 0.077

PL PLGr Pr= thereby implying a much stronger influence of the Grashof  number than 

that of the Prandtl number. At the other extreme of a highly shear-thickening fluid (e.g., n = 2), the 

modified Rayleigh number, 
0.167 0.29

PL PLGr Pr= , weaker influence of Grashof number is evident here with 

reference to that for n ≤ 1. While it is not easy to delineate the individual roles of Grashof number, Prandtl 

number and the flow behavior index due to their entwined definitions via the power-law index. However, 

limited analysis of the drag and Nusselt number results confirms these conjectures apart from the expected 

positive dependence of the Nusselt number on the Grashof and Prandtl numbers as suggested above. For 

fixed values of GrPL and PrPL, boundary layers are expected to be thinner in shear-thinning fluid (n < 1) 

than that in Newtonian fluids thereby fostering heat transfer in moderately shear-thinning fluids under the 

strong flow conditions. This suggestion is also supported by the previous results (Prhashanna and 

Chhabra, 2010). 

5.2   Free convection from spherical segments in Bingham plastic fluids 

5.2.1 Previous work 

The literature pertaining to natural convection from a sphere in Newtonian and power-law fluids has been 

reviewed in the previous section 5.1.1. However, the spherical segments are the least focused geometry 

found in the literature for Newtonian fluids, let alone non-Newtonian fluids in free convection 

regime. This section reviews the literature on free convection form segment of sphere in both Newtonian 

and Non-Newtonian fluids.  In the case of spherical segments, researchers have only given attention to 

the hemisphere as a limiting case. Jaluria and Gebhart (1975) have conducted experimental studies for 

both upright and inverted hemisphere over two boundary conditions of uniform temperature and uniform 

heat flux in free convection regime The study revealed fundamental findings regarding the nature of 

separation in natural convection and the effect of buoyancy force on the orientation of the geometry. The 

results suggested that the inverted hemisphere has weak velocity field and thinner boundary regions than 

the upright hemisphere which provides more insight into the boundary region fluid. Heat transfer from 

the three isothermal hemispherical segments from a sphere placed on a horizontal plate were 

experimentally studied by Stewart and Johnson (1985) for the upright configuration. Over the range of 

Ra number (2.8×105 ≤ Ra ≤ 2.8×107) and fixed Prandtl number (Pr ~ 0.7) they proposed that all the zones 

show a slight variation from the standard correlation of the isothermal sphere i.e., Nu = CRa0.25. 

Subsequently, Cieslinski and Pudlik (1988) extended this work for high values of Prandtl number which 

suggests the influence of the flat base on the overall heat transfer. Their theoretical results were found in 

good agreement with their own experimental results of aqueous glycerin solutions (680  Pr  1700). 

Lewandowaki et al. (1996) investigated analytically and experimentally isothermal laminar natural 

convection from upright hemisphere in air which shows a good agreement with each other and the 
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previous literature. Numerically, Liu et al. (2018) also have investigated the heat transfer from a 

hemisphere in laminar natural convection regime by implying the isothermal curved surface and adiabatic 

bottom flat surface over the range of Grashof number (10 ≤ Gr ≤ 106). Although the plane is adiabatic, at 

low Grashof number the temperature boundary layer still exists in the vicinity of the plane and the local 

Nusselt number for the hemispherical surface is greater than the isothermal condition for different Grashof 

number. Since the scant literature all the above-mentioned studies have only considered the Newtonian 

fluid so far. Sasmal and Chhabra (2014) have studied the two configurations of hemisphere in power-law 

fluid under laminar free convection numerically. The study implied that with respect to Newtonian fluid 

shear-thinning power-law fluid enhances the heat transfer rates while shear-thickening fluid plays an 

adverse role. There are limited results available for the hemisphere segment in yield stress fluid, i.e., 

Bingham plastic examining the effect of buoyancy-driven heat transfer. Only one work reported in 

literature by Nalluri et al. (2015) has studied the mixed convection from a heated hemisphere in a 

Bingham plastic fluid and provides a functional correlation in term of modified Reynolds and Prandtl 

number. The results explored over the broad range of the parameters: Reynolds number, 1 ⩽ Re ⩽ 100, 

Prandtl number, 1 ⩽ Pr ⩽ 100, Richardson number, 0 ⩽ Ri ⩽ 10 and Bingham number, 0 ⩽ Bn ⩽ 100 

covers natural convection dominating flow regime at high Richardson number. The prior discussion 

clearly implies that no studies have been conducted to investigate the effects of the yield stress fluid for 

the geometry of spherical segment. In the present numerical work five spherical segments (α = 30°, 60°, 

90°, 120°, 150°) are studied over the wide range of Grashof number (1 ≤ GrB ≤ 104), Prandtl number (1 

≤ PrB ≤ 100), and Bingham number (0 ≤ Bn ≤ 104).  

5.2.2 Physical model and mathematical formulation 

Figure 5.20 shows the schematics of the spherical segment herein and the corresponding computational 

domains employed in this work. The isothermal heated spherical segment at temperature, Th is placed in 

unconfined steady, incompressible, Bingham plastic fluid at temperature, Tc (<Th). The hypothetical 

unconfined fluid is simulated here by enclosing the fluid surrounding the spherical segment within the 

sufficiently large spherical envelope imposing a stress-free boundary on the periphery. All the 

thermophysical properties of the fluids are assumed to be constant and the viscous dissipation term in the 

energy equation is assumed to be negligible over the range of parameters considered in this work. 

Moreover, the flow is assumed to be axisymmetric under the steady state flow conditions.  The 

temperature gradients between the hot surface of the spherical segment and the cold fluid results in the 

movement of the fluid which aids the heat transfer by free convection.  

To solve the proposed problem, under the aformentiond assumptions Eqs. (2.1 – 2.3) have been rendered 

dimensionless using deq and Vc as the characteristic length and velocity scales, respectively. Thus, pressure 

and the stress components, respectively, have been scaled as ρVc
2 and m(Vc/R)n and whereas the non-

dimensional temperature is defined as ( ) ( )c h cT T T T = − − . In the momentum equation, boussinesq 

approximation is plugged into the body force  to to account the variation of density with temperature 

https://www.sciencedirect.com/topics/engineering/reynolds-number
https://www.sciencedirect.com/topics/chemical-engineering/prandtl-number
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where temperature differece surmises to be small . However, everywhere else density is assume to be 

constant.The physically realistic boundary conditions of no-slip and constant temperature are imposed on 

the surface of spherical segmentwhile at the far away on the evelope surface (fictitious spherical envelope 

of diameter D∞), stress free boundary and radial gradint of temperature, 0
r


=


 (Neumann type) are 

applied. The flow and heat transfer are governed by the dimensionless parameters:Bingham number (Bn), 

Prandtl number (PrB), Grashof number (GrB) and Rayleigh number (RaB = GrB×PrB) that evolved while 

deriving the nondimenstional equations, i.e, Eq. (2.1)-(2.3) in this considered problem. Furthermore, the 

discountinuous behaviour of the Bingham plastic fluid is rendered by using Papanastasiou model as 

discussed in Chapter 2, Section 2.1, Eq. (2.8). 

5.2.3 Choice of numerical parameters 

 The accuracy and reliability of the numerical results are influenced by parameters such as the domain 

size and the number of grid elements in the flow domain. To ensure the results derived are free from any 

artifact of the domain size, the computational domain has to be chosen based on the assumption of 

axisymmetric flow for the domain size D∞ as shown in Fig. 5.20. The outer boundary of the domain is 

carefully chosen by conducting the systematic domain test for the extreme values of the shape factor (α 

= 30° and 150°) PrB = 0.72 and GrB = 1 for Bn = 0 (Newtonian) and 100, since both the momentum and 

thermal boundary layers are thickest at the lowest value of the Prandtl and Grashof numbers. After the 

Figure 5.20 Schematics (i) physical model and (ii) computational domain for spherical segment. 
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detailed examination of the variation in the average Nusselt numbers (Table 5.5), D∞ = 130 has been 

chosen in this work as further increase in size of the domain has marginal, less than 1%, change in the 

values of Nu.  

The abrupt change in geometry of spherical segment from flat base area to the curved rear surface, the 

velocity and temperature gradients exhibit a sharp peak at the corner that is not present with spherical  

Table 5.5 Domain Independence Test for PrB = 0.72 and GrB = 1 

D∞ GrB PrB Bn 
α = 30° α = 90° α = 150° 

Nu 

80 
1 0.72 0 2.965 2.490 2.198 

1 0.72 100 2.640 2.304 2.055 

130 
1 0.72 0 2.969 2.493 2.202 

1 0.72 100 2.610 2.286 2.035 

300 
1 0.72 0 2.971 2.497 2.205 

1 0.72 100 2.603 2.269 2.017 

       

shape. Hence, in order to capture these steep gradients, a very fine mesh is required in the vicinity of the 

spherical segment. With the gradual increase in the number of grid element on the surface of spherical  

segments (α = 30°, 90°, 150°), three grids have been studied at the highest values of Prandtl and Grashof 

numbers (PrB = 100 and GrB = 104) for Bn = 0 (Newtonian) and 100. The effect of grids G1, G2 and G3 

are examined on the variation of the local (Fig. 5.21) and average (Table 5.6) Nusselt number. Figure 

5.21 clearly shows that both grids G2 and G3 seem to be indistinguishable. Evidently, G2 is chosen as 

the computational grid for the present work.   

The discontinuous nature of Bingham plastic fluid having a coexistence of solid-like and fluid-like zones 

simultaneously in the flow is rendered here by using the Papanastasiou model. It is evident for Eq. 2.8 

that as the value of M approaches infinite, the regularized model predictions attend the ideal Bingham 

plastic fluid characteristics. Hence, in order to examine the effect of the value of M on the 

Figure 5.21 Grid independent test at GrB = 104, PrB = 100 and Bn =104. 



| Natural convection 

 

128 
 

yielded/unyielded regions, regularization test is performed by varying its value at GrB = 100, PrB = 1 and 

Bn = 1 for three shape parameters where the presence of both yielded/unyielded regions are obvious as 

shown in Fig. 5.22. The yielded/unyielded regions seem to overlap for regularization parameters M = 5 

× 106 and 107 can be seen in Fig. 5.22. Hence, M = 5 × 106 is considered to be satisfactory over the range 

of conditions spanned here. 

Table 5.6 Grid Independence Test at GrB = 104, PrB = 100 

Grid Nc Nf NT 

Nu 

Bn = 0 Bn = 104 

α = 30° 

G1 90 65 55099 27.898 2.639 

G2 165 125 118354 27.616 2.636 

G3 200 175 162713 27.579 2.635 

α = 90° 

G1 60 40 39827 22.329 2.288 

G2 190 150 90355 22.084 2.287 

G3 275 225 144750 22.073 2.287 

α = 150° 

G1 90 25 38140 20.178 2.036 

G2 150 70 93730 20.063 2.035 

G3 260 100 157886 20.064 2.035 

      

However, prior to study the detailed results and discussion of the new outcomes for spherical segments, 

the validity of the adapted computational scheme and numerical parameters has been demonstrated by 

presenting a few benchmark comparisons with the prior studies available in the literature. In literature 

results are found for the two-limiting cases of spherical segments i.e., sphere and hemisphere. The results 

of the sphere in Newtonian fluid under free convection regime are already discussed in the previous 

section 5.1. Hence, the validations for natural convection from a sphere in Bingam plastic fluids and form 

a hemisphere in Newtonian fluid have been added in this section. The results of the local variation of 

Nusselt number and surface vorticity at the surface of the sphere in Bingham plastic fluids are compared 

Figure 5.22 Regularization test for Papanastasiou model at GrB = 100, PrB = 1 and Bn =1. 
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with that of reported by Nirmalkar et al. (2014) in their numerical work in Fig. 5.23 and 5.24, respectively. 

The results are in excellent agreement with each other. The experimental results of Lendawoski et al. 

(1996) are compared in Table 5.7 for Newtonian fluid over three values of Prandtl number, Pr = 6, 700, 

and 1200. The agreement between the present results and the literature values are seen to be excellent 

with the deviation of the order ~ 10%. Finally, the numerical results of average Nusselt numbers for free  

convection from a hemisphere in Newtonian fluids by Sasmal and Chhabra (2014) are compared with the 

present results in Table 5.8 shown good correspondence with each other. Confidence in the reliability  

and precision of the new results is inspired due to the close correspondence between the present and 

literature results, which are within ∼3%. 

5.2.4 Results and Discussion 

The present numerical results have delineated the effect of shape of spherical segments (30°  α  150°) 

on the thermal characteristics in Bingham plastic fluids over wide ranges of parameters: 0  Bn  104, 

Figure 5.23 Comparison of Local variation of Nusselt number for various Grashof number for 

sphere in Bingham Plastic fluids (Line: present results; symbols: Nirmalkar et al. (2014)). 
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0.72  PrB  100, 1  GrB  104 in the steady free convection regime. The detailed momentum and thermal 

characteristics of fluid are represented in terms of streamlines, isothermal contours and yielded/unyielded 

regions. The functional relationship of average Nusselt number dimensionless parameters (GrB, PrB, Bn) 

and shape factor is also explored in this study. 

5.2.4.1 Streamline and isotherm contour 

The heat transfer from the heated spherical segment to the fluid is strongly influenced by the velocity and 

the temperature gradients on/near the surface of the spherical segment. Figure 5.25-5.28 represents the 

streamlines (right half) and isothermal contours (left half) for three cases of spherical segments (α = 30°, 

90°, 150°) over the extreme values of Prandtl and Grashof numbers. At the lowest combination of PrB 

and GrB number as shown in Fig. 5.25, the heat transfer is mostly governing by conduction mechanism 

under the weak buoyancy force, thus, the streamlines follow the body contour while uniformly spread  

Figure 5.24 Comparison of local surface vorticity for various Grashof number for sphere In 

Bingham Plastic fluids (Line: present results; symbols: Nirmalkar et al. (2014)). 
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isotherms confirm the conductive heat transfer. Even at the lowest values of the Grashof number, the 

increase in Prandtl number results in high rate of heat transfer as it makes the thermal boundary layer and 

the rising plume thinner clustering close to the surface of the particle (Fig. 5.26). The cold fluid is mostly 

dragged from beneath spherical segments towards the hot spherical segment as the Prantl number  

increases. On the other hand, the increase in yielded force broadens the size of the plume and allows to  

transfer the heat by conduction only. 

At the high value of Grashof or Rayleigh number (Fig. 5.27-5.28), the heat transfer is promoted by 

advection in the fluid and as a result, more cold fluid entrained from the sides of the spherical segment. 

Both the momentum and thermal boundary layers become thinner and thinner with the increase in Prandtl  

 

Table 5.7 Comparison of the average Nusselt number with the experimental 
literature data 

RaB Lewandowski et al. (1996) Present 

PrB = 6 

104 4.440 4.861 

5 × 104 6.639 6.579 

5 × 105 11.807 11.137 

106 14.041 13.602 

PrB = 700 

104 5.010 5.504 

5 × 104 7.492 7.545 

5 × 105 13.322 12.944 

106 15.843 16.257 

PrB = 1200 

104 5.100 5.519 

5 × 104 7.626 7.589 

5 × 105 13.562 13.140 

106 16.128 16.596 

   

Table 5.8 Comparison of the average Nusselt number for hemisphere in Newtonian fluids 

PrB 

Sasmal and Chhabra 

(2014) 
Present 

Sasmal and 

Chhabra (2014) 
Present 

GrB = 10 GrB = 1000 

0.72 2.697 2.699 4.226 4.223 

10 3.750 3.733 7.321 7.243 

20 4.165 4.153 8.510 8.388 

50 4.847 4.826 10.417 10.210 

100 5.469 5.439 12.166 11.869 
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Figure 5.25 Isotherm (left half) and Streamlines (right half) contours at PrB = 0.72 and GrB = 1. 

Figure 5.26 Isotherm (left half) and Streamlines (right half) contours at Pr
B
 = 100 and Gr

B
 = 1. 



| Natural convection 

 

133 
 

 

Figure 5.27 Isotherm (left half) and Streamlines (right half) contours at PrB = 0.72 and GrB = 104. 

Figure 5.28 Isotherm (left half) and Streamlines (right half) contours at Pr
B
 = 100 and Gr

B
 = 10

4
. 
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number (Fig. 5.27-5.28), the isotherms get more clustered at the front stagnation point due to strong 

buoyancy force effect. However, these forces are further suppressed by the high yield forces with the 

increase in Bingham number and make the contours more symmetrical in the upward and the downward 

directions similar to the low Grashof and Prandtl number cases. 

The effect of the shape on the streamlines and temperature contours is not much differentiable. However, 

the sharp corner of the spherical segment results in the sudden changes in the streamline and isothermal 

contours which promote advection. Though the increase in shape factor tends to make the geometry more 

and more spherical the shape of the contours gets more broadened indicating comparative low heat 

transfer rate as compared to the smallest spherical segment. 

5.2.4.2 Morphology of yielded/unyielded region 

The key feature of the Bingham plastic fluid is their dual behavior of simultaneous existence of both 

solid-like (unyielded) and fluid-like (yielded) zones. The yielded/unyielded region are illustrated in 

Figures 5.29 and 5.30 for three cases of spherical segment (α = 30, 90 and 150) at two extreme values 

of the Grashof numbers, GrB = 1 and 104. At low Bingham number Bn = 0.1, most of the fluid is yielded 

and two unyielded regions are observed at the upstream and downstream of the spherical segment which 

further moves closer to the geometry with the increase in Prandtl number (Fig. 5.29). Eventually, these 

Figure 5.29 Delineate of yielded/unyielded region at GrB = 1. 



| Natural convection 

 

135 
 

zones move towards the geometry surface and adhere to the surface of the spherical segments with the 

increase in Bingham number at fixed Grashof and/or Prandtl number. Due to the advection effect the 

unyielded regions at the front stagnation are generally observed larger due to flat surface than that of the 

rear end. Also, the increase in Bingham number l confines the yielded region in the envelope surrounding 

the spherical segment and eventually fluid-like regions disappear completely at the high value of Bingham 

number (Bn  104). The shape of the fluid like zone specifically depends on the shape of spherical 

segments.  

Due to the high buoyancy forces, the fluid gets more inertia; as a result, the yielded region increases in 

size and eventually requires high yield stress value or Bingham number to attain the perfect solid regions 

see Fig. 5.30. For the GrB = 104, the effect of Prandtl number is more noticeable here. The fluid zone 

becomes thinner and stretches upward with the increase in Prandtl number which is consistent with the 

isotherm contours.  

The Grashof number has a similar effect in the natural convection as the Reynolds number in the forced 

convection. Similarly, it enhances the heat transfer in free convection for low Bingham number where 

fluid can be easily yielded. This suggests that the heat transfer is highest for low Bingham number (Bn 

Figure 5.30 Delineate of yielded/unyielded region at GrB = 104. 
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→ 0) and eventually decreases to the conduction limit as all the fluid gets frozen at high Bingham number 

(Bn → ∞) which is clearly seen in Fig. 5.30 for Bn = 104. 

Fig. 5.31 shows the variation of the non-dimensional z-component of the velocity from base of the particle 

(α = 30º) in the r-direction for two extreme values of Grashof numbers (GrB = 1 and 104) and Prandtl (PrB 

= 0.72 and 100) number over the range of Bingham number. The velocity rises quickly to a maximum 

and then decays very slowly to lower values. For Newtonian fluid, Bn = 0, the velocity tapers off very 

slowly giving a thickest boundary layer. As Bingham number increases, the fluid will be enclosed in the 

vicinity of the particle by solid-like region which is moving with a constant velocity. Hence, it can be 

clearly observed that as the Bingham number increases the velocity profiles quickly approach to lowest 

value showing the decrease in the momentum boundary layer. Furthermore, for the constant Bingham 

number, increase in Prandtl number and/or Grashof number has similar effects which makes the boundary 

Fig.5.31 Velocity profiles over the range of Bingham number in the r- direction from the base 

of the spherical segment for α = 30º 
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layer thinner. The plots for the two other cases of spherical segment (α = 90º and 150º) are mentioned in 

Appendix A2. 

5.2.4.3 Local Nusselt number 

The local variation of Nusselt number over the surface of the spherical segment has contributed to 

understanding the contribution of the different surfaces of the geometry. Even though the surface of the 

spherical segment is maintained at the isothermal condition the temperature gradient normal to the surface 

varies from point to point. Figures 5.32 show the effect of GrB, PrB, Bn and α on the variation of local 

Nusselt number considering the lowest value of GrB = 1 and to extreme values of PrB number i.e., PrB = 

0.72 and 100. It is evident that the heat transfer is governed by conduction at lower values of RaB number 

i.e., RaB = 0.72. For GrB = 1, the local Nusselt number profiles over the range of Bingham number show 

marginal variation irrespective of the shape factor. However, it is noticeable here that the local value of 

the Nusselt number is observed to be lower at front stagnation point than the rear one. For the range of 

Bn number values greater than 0.1 in Fig. 5.32. This is due to the formation of the unyielded zone at the 

front stagnation point as discussed in the previous section 5.2.4.2. While the Bingham number Bn ≤ 0.1 

the trend of local Nusselt number is observed similar to Newtonian fluids having local Nusselt number is 

always higher at front stagnation point than rear stagnation point. In Fig. 5.32, as Rayleigh number 

Figure 5.32 Variation of local Nusselt number with Bingham number at GrB = 1. 
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increases to RaB = 100 for GrB = 1. The increase in Prandtl number enhanced the rate of heat transfer 

which is more visible for Bn ≤ 0.1 for both the extreme values of shape factors. 

With the gradual increase in Rayleigh number in Fig. 5.33, i.e., RaB = 72 × 102 and 106, the role of increase 

in Prandtl number is observed to be similar as discussed before.  However, the increase in RaB postpones 

the conduction limit to the high Bingham number values due to advective heat transfer.  

Finally, the effect of the shape of the spherical segment on the local Nusselt number is more visible on 

the curved surface for the Bingham number values below the conduction limit, particularly at high 

Grashof and Prandtl number values. For α = 30° and 150°, the Nusselt number shows maximum at the 

edge of the base of the spherical segment due to abrupt bending of the streamline and isotherm contours 

to negotiate the body contour of the geometry. As discussed in section 5.2.4.1, the streamlines and 

isotherms seem to be bent severely due to the shape of the particle at α = 30° which gradually becomes 

smooth on the surface of the particle as the alpha increases to 150°. This clearly reflects the highest value 

of the local Nusselt number of the particle which is observed higher for α = 30° than a α = 150°. 

In summary, the local Nusselt number shows the positive dependence on the Grashof and Prandtl number, 

however, this dependence is weak with respect to Prandtl number as compared to Grashof number. 

Moreover, the progressive increase in Bingham number from the Newtonian behavior gradually 

Figure 5.33 Variation of local Nusselt number with Bingham number at GrB = 104. 
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deteriorates the heat transfer due to disappearance of yielded regions. Eventually the heat transfer is 

governed by purely conduction at the limit of Bingham number tends to infinite, which is found to be 

function of GrB, PrB and α. 

The non-dimensional temperature profiles or thermal boundary layer in the radial direction for smallest 

spherical segment (α = 30º) from its base are plotted in Fig. 5.34. A general trend can be seen where the 

thermal boundary layer is observed to be thinnest for the Newtonian fluids and it gradually increases as 

the Bingham number increases. 

5.2.4.4 Average Nusselt number 

Finally, it is worthwhile to analyze the rate of heat transfer in terms of gross parameter i.e., average 

Nusselt number and its dependance on RaB (= GrB×PrB), PrB, Bn and α. The representation of the 

functional dependance of average Nusselt number as f(GrB, PrB, Bn, α) are frequently demanded in the 

various process engineering calculation. Figures 5.35-5.37 illustrate the variation of average Nusselt 

Fig.5.34 Temperature profiles over the range of Bingham number in the r- direction from 

the base of the spherical segment for α = 30º. 
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number with the Bingham number over the range of GrB and PrB for α = 30°, 90° and 150°. The plots 

Figure 5.35 Variation of Nusselt number with Bingham number for α = 30°. 

Figure 5.36 Variation of Nusselt number with Bingham number for α = 90°. 
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reveal the positive dependence of average Nusselt number on Rayleigh number (= GrB×PrB) and Prandtl 

number, while inverse dependence on the Bingham number for the fixed value of alpha. However, the 

average Nusselt number approaches the limiting value of Nusselt number (Nu∞) as Bingham number 

increases where the heat transfer is solely governed by the pure conduction. The maximum value of the 

Bingham number (Bnmax) corresponding to the pure conduction limit (Nu∞) delays with the increase in 

Rayleigh number. 

Furthermore, the examination of Figs. 5.35-5.37 over the range of RaB, PrB and Bn exhibits the inverse 

dependence of average Nusselt number on the α, otherwise under identical conditions. To gain further 

insight into the effect of shape of the particle on the rate of heat transfer, the average Nusselt number has 

plotted as a function of alpha as shown in Figs. 5.38-5.40. The effect of shape on the average Nusselt 

number is more prominent for α ≤ 120° as shown in Figs. 5.38-5.40. Also, it is evident from Fig. 5.39 

that to reach the conduction limit for α = 30°, the Bingham number has to be higher as compared to any 

other alpha value over the range of Rayleigh and Prandtl number considered in this study.  

Finally, have function dependence of the average Nusselt number on GrB, PrB, and Bn for spherical 

segments has been proposed in the form of correlation. It is essential to recall here that in the limit of Bn 

→ , the heat transfer is governed by purely conduction mechanism approaching to the conduction limit 

of the heat transfer. Hence, the limiting average Nusselt number needs to be included in the predictive 

Figure 5.37 Variation of Nusselt number with Bingham number for α = 150°. 
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equation. Using the preceding heuristics, we can establish a satisfactory correlation with the numerical 

Figure 5.38 Variation of average Nusselt number with shape factor (α) at GrB = 1. 

Figure 5.39 Variation of average Nusselt number with shape factor (α) at Gr
B
 = 100. 
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data at hand. 

For Bn < Bnmax : 

0.25

max

1 1

b

c

B B

Bn
Nu Nu a Gr Pr Bn

Bn
                                                                           (5.10) 

For Bn ≥ Bnmax : 

Nu Nu                                                                                                                                          (5.11) 

 Table 5.9 Coefficient for Eqs. (5.10) and (5.11) 

α Nu∞ a b c % δavg % δmax # data 

30 2.609 0.735 0.218 0.894 11.8 60.0 580 

60 2.532 0.623 0.304 0.728 12.5 64.3 539 

90 2.286 0.500 0.319 0.730 13.9 65.7 524 

120 2.079 0.438 0.318 0.730 14.5 58.5 513 

150 2.035 0.412 0.344 0.730 15.2 57.9 504 

        

The Eqs. (5.10) and (5.11) is valid for the range of parameters: Grashof number (1 ≤ GrB ≤ 104) and 

Prandtl number (0.72 ≤ PrB ≤ 100), Bingham number (0 ≤ Bn ≤ 104) and shape factors α = 30°, 60°, 90°, 

Figure 5.40 Variation of average Nusselt number with shape factor (α) at GrB = 104. 
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120° and 150°. The coefficients of Eqs. (5.10) and (5.11) have been tabulated in Table 5.9 including 

number of correlated data for each geometry, maximum and average percentage deviations of the 

predicted values from the numerical values. 

Upon detailed analysis, it was discovered that approximately 10 % of the data points for each geometry 

show deviation greater than 30% in Eq. (5.10), indicating no noticeable trends.  
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 Chapter 6 

Falling ball method (FBM) for determining zero-shear and shear-

dependent viscosities of power-law fluids 

 

The falling ball method (FBM) is one of the well-established techniques for measuring the viscosity of 

Newtonian liquids at the room as well as at elevated temperatures and pressures. Owing to its simplicity 

and low cost, the possibility of extending its range of application to non-Newtonian systems including 

virgin and filled polymer melts, composites, polymer-solutions, etc. is explored here. In this chapter, we 

have used theoretical results for the flow of power-law fluids past a sphere to extract the values of the 

zero-shear viscosity and shear-dependent viscosity in the low shear rate limit. The theoretical scheme 

outlined in this work has been validated by presenting comparisons with experimental results for scores 

of polymer solutions for which both Newtonian and power-law fluid. 

6.1   Previous work 

  Owing to its simplicity and ease of operations, and low cost the falling ball method (FBM) is a 

well-established technique for measuring the viscosity of Newtonian fluids under ambient conditions as 

well as at elevated temperatures and pressures, e.g., see References (Elahi et al., 2012; Gupta, 2014; 

Kono, 2018; and Cartwright, 2020) for a broad spectrum of applications of the FBM. Furthermore, 

Brizard et al. (2005a, b) and Sutterby (1973) have discussed detailed designs, various corrections and the 

precision of the viscosity values for Newtonian fluids obtained by this method. With a suitable design 

and careful operation, it is possible to achieve a relative uncertainty of ~ 0.1% in the value of the measured 

viscosity at ambient temperatures. 

The basic equation used in the FBM is the so-called Stokes law which is written as follows for a sphere 

falling under its own weight, 

( )2

18

sgd

U

 


−
=   (6.1) 

In Eq. (6.1), μ is the viscosity of the liquid, ρs and ρ are the density of the sphere and the liquid, 

respectively, d is the diameter of the sphere, g is the acceleration due to the gravity. The only measured 

quantity in Eq. (6.1) is the terminal falling velocity, U of the sphere. The main assumptions underpinning 

the validity of Eq. (6.1) include the steady, incompressible, isothermal, creeping flow regime (negligible 

inertial effects << viscous effects) and unconfined fluid. The relative importance of the inertial and 

viscous forces is ascertained by calculating the value of the familiar Reynolds number, Re, defined as 

Ud Inertial force
Re

Viscous force




= =  (6.2) 



| Falling ball method  

 

146 
 

Evidently, vanishingly small values of Re → 0 indicate negligible inertial effects. In practice, this 

condition is reached by, Re <~ 1. One can always choose a sphere of appropriate size and density to meet 

this criterion. Since the experimental determination of the terminal falling velocity U is often carried out 

in cylindrical tubes of a finite diameter D and height L with its bottom end closed, therefore, it is necessary 

to correct the experimentally measured value the terminal falling velocity Vm of the sphere for the wall 

and end effects. The wall correction is often applied by using the wall correction factor fw defined as: 

m
w

V
f

U
=  (6.3) 

In the creeping flow regime, this factor fw is only a function of (d/D). One widely used expression is given 

by (Faxen, 1923 and Bohlin, 1960) 

3

1 2.10443 2.08877 ........w

d d
f

D D

 
= − + + 

 
 (6.4) 

Equation (6.4) is valid for Re << 1 and (d/D) ≤ 0.6. Numerous other expressions of varying complexity 

and forms for the wall correction factor spanning the full ranges of the Reynolds number and confinement 

ratio (d/D) are available in the literature though the high Reynolds number results are of no interest here; 

for the falling ball experiments aimed at measuring the viscosity must be carried at small Reynolds 

numbers. (Chhabra, 2006). In contrast, only scant information is available regarding the end effects on 

the falling velocity, albeit this effect is known to be indeed negligible (Brizard et al., 2005a, b). Using the 

analytical results of Tanner (1963) and Kono (2018) prescribed the measured velocity to be multiplied by 

the end correction factor E given by 

 
2

9 9
1

18 2 8 2

d d
E

z z

    
= + +    

    
 (6.5) 

where z is the distance from the bottom end of the tube to the section where the falling sphere velocity of 

the sphere is measured. Within the distance of ten-times the diameter, i.e., z/d = 10, Eq. (6.5) predicts E 

= 1.0256, Eq. (6.5) is applicable. Clearly, for z/d ≥ 20 this correction becomes negligible. Equation (6.1) 

can now be written as 

( )

( )

2

/

s

m w

gd

V f E

 


−
=  (6.6) 

Equation (6.6) thus forms the basis of the FBM for measuring the viscosity of Newtonian fluids as a 

function of temperature and pressure by using the value of the fluid density (ρ) at the relevant temperature 

and pressure. Finally, smaller is the value of the Reynolds number, better should be the result due to strict 

compliance with the condition of inertial forces being negligible. Conversely, the viscous effects 

progressively diminish with the increasing Reynolds number, i.e., the falling velocity shows a dependence 
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weaker than μ-1. This condition is similar to the requirement of operating U-tube and capillary viscometers 

in the laminar flow regime. 

Next, we turn our attention to the application of the FBM for evaluating the zero-shear viscosity of 

polymer melts, solutions and loaded systems. Since in this regime, the shear viscosity is expected to be a 

constant irrespective of the value of the shear rate induced by a falling sphere, the fact that the shear rate 

varies from one point to another on the surface of the sphere is of no significance, akin to that in the case 

of Newtonian fluids. Thus, all that is required is the falling sphere data is obtained in the constant viscosity 

region for the system of interest. Though this range is not known a priori, one can obtain data with a few 

spheres (different size and/or density) to calculate the value of  sing Eq. (6.6) to check whether the 

resulting values of  are identical to each other within the margin of experimental uncertainty. Scaling 

arguments suggest the shear-rate to be of the order of (U/d) and indeed for a Newtonian fluid, the local 

value of 
r ranges from 0 to (3U/d) on the surface of the sphere yielding the surface mean value of (2U/d) 

(Bird et al., 2002; Uhlherr et al., 1976). Thus, by using a few spheres tests, one can ascertain whether the 

sphere is settling in the constant viscosity (0) region or not. In any case, the falling velocity in a viscous 

fluid is very small and therefore the resulting values of the surface average shear rate (2U/d) are generally 

small, and one can even extrapolate these results to extract the value of 0 as demonstrated elsewhere 

(Bird et al., 2002; Chhabra and Uhlherr, 1980; Chhabra, 2006; Tanner, 1963; Uhlherr et al., 1976). 

Beyond this region, however, Eq. (6.6) can still be used to obtain a value of  for a given fluid-ball system 

which is often employed to monitor the uniformity and consistency of a product, though the apparent 

viscosity-shear rate curve cannot be constructed because neither the shear stress nor the shear rate is 

known a priori in the shear-thinning region. This issue is explored in detail in the next section. 

6.2   Creeping flow of power-law past a sphere 

The creeping flow around a sphere is non-viscometric and therefore the shear rate ( )r varies on the 

surface of the sphere, i.e., ( ),r R   from one point to another. This, in turn, depends upon the 

corresponding velocity U(r, θ) field. In principle, the velocity and pressure fields can be obtained by 

numerically solving the governing differential equations for a specific fluid model such as Newtonian, 

power-law, Ellis model, etc. to obtain an expression equivalent of Eq. (6.1), though its specific form will 

depend upon the choice of the specific viscosity model. For an incompressible power-law fluid, the r-θ 

component of the extra stress tensor, r is related to the corresponding component of the rate of strain 

tensor r  as: 

( )2r r    =     (6.7a) 

For a power-law fluid, the viscosity is given by the expression: 
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( ) ( )
1n

m  
−

=  (6.7b) 

For a general flow, the shear rate 𝛾̇ is evaluated as: 

2 ij ji  =  (6.8) 

In Eq. (6.8), 
ij are the components of the rate of deformation tensor (Bird et al., 2002). Here, m and n 

are the power-law constants. For n = 1, Eq. (6.7b) reduces to a Newtonian fluid of viscosity m = μ. Due 

to the axisymmetric nature of the flow, the  r  component of the rate of deformation tensor,   in turn 

is related to the velocity component Vr and Vθ as (Bird et al., 2002): 

1 r
r

V V
r

r r r






  
= + 

  
 (6.9) 

One can now combine Eq. (6.7) to (6.9) to obtain the value of r
 for a fixed value of 

r  Thus, a 

knowledge of the velocity field is required to evaluate (τrθ, r ) on each point on the surface of the sphere. 

The fact that both these quantities vary on the surface of the sphere is of no consequence for Newtonian 

fluids due to their constant shear viscosity (independent of shear rate). But this is not so for a power-law 

fluid. Despite this complexity, the simplicity of this method has received some attention in the literature 

to explore the possibility of extending the FBM to characterize power-law fluids. In order to appreciate 

the intrinsic difficulty in this endeavor, it is instructive to first revisit the issue of constructing the steady 

shear flow curve for a Newtonian fluid using FBM data. For the sake of simplicity, it is assumed hereafter 

that the terminal falling velocity of the sphere is free from wall and end effects and the Reynolds number 

of flow is small. Our analysis begins with the celebrated analysis of the Stokes stream function for the 

creeping flow of a Newtonian flow around a sphere which can be used to write the following expressions 

for r  and τrθ
 (Bird et al., 2002): 

4
3

sin
2

r

U R

R r



 

 
=  

 
                                                                                                                        (6.10a) 

4
3

sin
2

r

U R

R r
 

 
=  

 
                                                                                                                                   (6.10b) 

The component of the viscous force FV along the direction of the sphere fall is calculated as: 

( ) 2sin 2 sinV r r R

o

F R d




    

=
=   (6.11) 

Substituting from Eq. (6.10a) into Eq. (6.11) and evaluating the integral yields: 
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4 2VF RU Ud = =  (6.12) 

It is also known that FV is (2/3) of the total drag force, FD exerted on the sphere for a Newtonian fluid. 

For the case of the steady settling of a sphere under the influence of gravity, the total drag force FD is 

given as: 

( )
3

6
D s

d
F g


 = −  (6.13) 

And hence 

 ( )
32

3 9
V D s

d
F F g


 = = −  (6.14) 

One can now introduce a surface average shear stress < τw > for a Newtonian fluid such that 

2

V N
F d =  (6.15) 

Eq. (6.13) and Eq. (6.14) combine to yield, 

( )
9

sN

gd
  = −  (6.16) 

This equation applies to Newtonian fluids. Now rearranging Eq. (6.1) as 

N N
  =  (6.17) 

It is clearly seen that the average shear rate for a Newtonian fluid 
N

 is given by (2U/d). i.e.,  

2
N

U

d
 =  (6.18) 

This can also be obtained by averaging r , Eq. (6.10b), on the surface of the sphere (Bird et al., 2002). 

Thus, a series of data point obtained from falling sphere tests can be used to construct a flow curve in 

terms of 
N

 , 
N

  which will be a straight line of slope equal to μ and it should pass through the origin 

provided the experimental results are free from wall and end effects and Re < ~ 1 or so. 

In order to parallel this treatment for power-law fluids, one must know the corresponding velocity (i.e., 

stream function) and pressure field to evaluate the drag force on the sphere, equivalent of Eq. (6.12) and 

the ratio of the viscous drag to the overall drag force. In spite of the fact that significant literature has 

accrued on this subject, (Chhabra, 2006; Song et al., 2009, 2011; Sun et al., 2020; Okesanya, 2020) much 

of the literature is concerned with the prediction of the total drag force experienced by a sphere in 
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generalized Newtonian fluids, or viscoelastic fluid in the limit of creeping flow. This body of knowledge 

has been thoroughly revised by Agwu et al. (2018).  Most of these studies either relate to high Reynolds 

number (RePL > 1) and/or are concerned with the development of empirical correlation for predicting the 

terminal falling velocity of a sphere of known size and density in a non-Newtonian liquid of known 

rheology. Therefore, this body of knowledge is of little utility in the present context. 

Dimensional considerations of this flow suggest that even in the creeping flow regime, the flow field to 

be a function of the power-law index and consequently, as demonstrated by Uhlherr et al. (1976) and Cho 

and Hartnett (1983), the ratio of the viscous-to-total drag force is expected to be a function of the power-

law index n and hence the average shear stress and shear rate will also depend upon the value of the 

power-law index (n). Conversely, one can think of applying a correction factor to the corresponding 

Newtonian values as follows: 

1( )
N

f n =  (6.19a) 

2 ( )
N

f n =  (6.19b) 

Neither of this information is available in the above-mentioned previous numerical or experimental 

studies. Much of the limited effort to date has been directed at establishing the form of the two correction 

factors, f1(n) and f2(n) only in an approximate manner in order to use the FBM for power-law fluids in the 

shear-thinning region. The earliest attempt is this direction is due to (Hirota and Takada, 1959) who 

presented the following empirical expression for the maximum shear rate on the surface of the sphere: 

( ) ( )
23

1 2.5 ' 2 0.75 ' 2R

U
n n

d


   = + − − −    
 (6.20) 

where 
ln

'
ln

d U
n

d R
=  

The corresponding maximum shear stress (in Newtonian fluids) is given by: 

( )
6

s

max

gd  


−
=  (6.21) 

For a Newtonian fluid in the Stokes regime, n= 2 (U ~ R2) and thus Eq. (6.20) leads to the maximum 

value of the shear rate at the equator, i.e., (3U/d). Hirota and Takada (1959) reported that their predictions 

are in good agreement with the capillary viscometer data for a few polymer solutions. Clearly, this 

development is not based on a solution of the continuity and momentum equations and thus must be seen 

as an entirely empirical approach. However, in the limit of the Newtonian fluid behaviour (n= 2), this 

method is identical to Eq. (6.1). In contrast, Uhlherr et al. (1976) made use of the approximate drag results 

based on the application of variational calculus. Since the upper bound calculation of the drag on a sphere 
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hinge on a trial velocity profile which merely satisfies the continuity equation and the boundary 

conditions, this may or may not satisfy the corresponding momentum equation (Slattery, 1962; 

Wasserman and Slattery, 1964).  Notwithstanding this limitation, they proposed two methods, namely, 

i.e., either f1 (n) or f2 (n) is needed. Thus, if f1 (n) is used, then f2 (n) = 1 and vice versa if f2 (n) is used, f1 

(n) = 1. However, this analysis is also limited to a rather narrow range of conditions as 0.76 ≤ n ≤ 1.0, as 

the fully converged solution was not feasible for values of the power-law index n < 0.76 (Slattery, 1962). 

Subsequently, Cho and Hartnett (1983) and Cho et al. (1984) improved upon the numerical results of 

(Slattery, 1962 and Wasserman and Slattery, 1964) but their results still denote approximate upper and 

lower bounds on the total drag over the complete range of conditions 0.1 ≤ n ≤ 1. The two bounds deviate 

appreciably with the decreasing value of the power-law index and are limited to shear-thinning fluids 

only. 

In essence, they have used Eq. (6.7) to obtain the functional forms of τrθ (r, θ, m, n) and r (r, θ, m, n) to 

obtain their surface average values. For the upper bound, one can calculate τrθ by substituting the values 

of I2 and r  obtained from the trial stream function whereas the lower bound calculation is based on the 

trial stress profile (i.e., τrθ is known) and one can thus calculate r . However, it needs to be emphasized 

here that these results are based on an incomplete solution of the governing momentum and continuity 

equations. The variational principal approach is concerned with the total energy dissipation, and it is 

therefore neither possible nor justified to delineate the contribution of the viscous and form drags to the 

total drag force within the framework of this approach, i.e., the ratio of FV to the total drag force FD is not 

known. 

They presented empirical expressions for f1(n) and f2(n) as polynomials in the power-law index containing 

terms up to n3 or n4 (Cho and Hartnett, 1983). Two observations are in order here. Firstly, as noted earlier, 

the upper bound calculation does not satisfy the momentum equation. Similarly, the lower bound 

calculation does not satisfy the conservation of mass! Secondly, the two bounds coincide only for 

Newtonian fluids (n = 1), and the two bounds increasingly deviate from each other with the decreasing 

value of the power-law index, e.g., see Fig. 6.1. For instance, the two bounds differ from each other by ~ 

40% for n = 0.3 which rises to ~ 80-90% for n = 0.1. Finally, the variational principles are not applicable 

for n > 1. More detailed discussion regarding the deficiencies of the previous work on the use of the FBM 

for power-law fluids is available in the literature (Chhabra, 2006). In summary, no reliable method is 

available as of now for testing the validity of the FBM for power-law fluids and this work aims to bridge 

this knowledge gap. 

 Admittedly, as noted previously, this problem has attracted a lot of attention, e.g., see recent works (Song 

et al., 2009, 2011; Sun et al., 2020; Okesanya, 2020; Agwu et al., 2018) but most of these studies relate 

either to the intermediate value of the Reynolds number or have not provided the values of the individual 
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drag components or have not presented the surface average value of τrθ or r . In order to extract this 

information, fresh simulations have been conducted here. 

This objective is accomplished here by numerically solving the partial differential equations describing 

the creeping flow (RePL = 0) of a power-law fluid past a sphere. This allows us to examine the variation 

of the shear stress (τrθ), and viscosity () on the surface of the sphere. Using the present numerical results, 

theoretical forms of f1(n) and f2(n) are developed and presented considering the dependence of the ratio 

of the viscous-to-total drag force on the power-law index. Finally, the numerical predictions presented 

here are compared with the experimental results to demonstrate the validity of FBM for power-law fluids 

in the shear-thinning region. Limited results are also included here for finite values of the Reynolds 

number in order to delineate the range of the validity of the FBM outlined here.  

6.3   Numerical methodology 

The creeping flow of a power-law fluid over an unconfined sphere are available in the literature, the major 

thrust of such studies has been on developing the standard drag curve in terms of the drag coefficient-

Reynolds number-power-law index relationship (Chhabra, 2006; Song et al., 2009; 2011). As noted 

earlier, no attempt has been made to delineate the individual drag contribution and/or to evaluate the 

surface average shear stress and shear rate as functions of the power-law index. Hence, low Reynolds 

number (creeping flow) simulations have been carried out here using the Multiphysics finite element 

solver COMSOL version 5.3a. In order to reach the unconfined flow approximation, the outer boundary 

Figure 6.1 Comparison of shear rate over the range of power-law index (Lines represent results 

of Cho and Hartnett (1983) for n ≤ 1). 
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was set at 1400d. This choice was arrived at by varying the location of the boundary from 1000 to 1400 

times the diameter of the sphere. Similarly, an optimal numerical mesh was chosen for these results to be 

free from the numerical artefacts following the strategy similar to that of previous studies (Song et al., 

2009; 2011). 

6.4 Analysis of results 

At the outset, the present values of the drag correction factor Y, defined below, are compared with the 

previous results in Table 6.1 where a good agreement is evident. This lends credibility to the precision 

and reliability of the present results. 

   

 24

D PC ReDrag in power law fluid
Y

Stokes drag

−
= =  (6.22) 
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 −

=  for a power-law fluid. 

Clearly, for n = 1, the drag correction factor Y will be equal to the unity.  An excellent agreement is seen 

to exist between the present and previous results thereby inspiring confidence in the reliability and 

precision of the present results (Table 6.1). Next, the present values are shown in Fig. 6.1 where it is 

clearly seen that these are far off from the lower bound of Cho and Hartnett (1983), and the present results 

are also consistently lower than their upper bound. This clearly elucidates the major deficiencies of  the  

correction factors f1(n) and f2(n) put forward by Uhlherr et al. (1976), Cho and Hartnett (1983, 1984) 

which have been subsequently used by others (Kanchanalakshana and Ghajar, 1986). Included here are 

the results for a few values of the Reynolds number. Clearly, the results for Re = 1 superimpose on the 

Table 6.1: Values of Drag correction factor (Y) 

Values of n 
Values of Y 

Present Ref. (Song et al., 2009) 

0.20 1.432 1.434 

0.25 1.461 - 

0.30 1.480 1.485 

0.35 1.480 - 

0.40 1.492 1.497 

0.50 1.476 - 

0.60 1.428 1.417 

0.70 1.355 - 

0.80 1.257 1.258 

0.90 1.137 - 

1.00 1.006 1.0183 
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creeping flow results for n ≤ 1, this limit appears to be Re ~ 10-5   for shear-thickening fluids. As expected, 

the drag correction factor is now a function of the power-law index and the Reynolds number thereby 

rendering FBM unsuitable beyond the creeping flow regime.   

Figure 6.2 shows the relationship between the contribution of the viscous drag (due to τrθ) to the total 

drag and the power-law index. This ratio is seen to vary from ~ 0.33 to ~ 0.74 as the value of the power-

law index ranges from n = 0.1 to n = 2 and as expected it is seen to be (2/3) for a Newtonian fluid. Results 

are included here for 1 ≤ Re ≤ 10 in this figure show that FV/FD moves closer to the results for Re = 0 as 

the Reynolds number decreases and has a marginal difference for Re = 1 over the range of the power-law 

index. 

Figures 6.3 and 6.4 show the influence of the power-law index on the distribution of the viscosity, 

(normalized using m(U/d)n-1) and shear stress, respectively, on the surface of the sphere for RePL = 0. 

Evidently, most of the sphere surface is exposed to a nearly uniform viscosity in Fig. 6.3a except for the 

small regions near the front and rear stagnation points (0 ≤ θ ≤ 15° and 165 ≤ θ ≤ 180°). However, smaller 

the value of n, lower is the viscosity and it is always below the Newtonian value (n = 1) except in small 

regions in the vicinity of the stagnation points. On the other hand, in shear-thickening fluids (n > 1), the 

viscosity is also always lower than that the Newtonian value, but it shows much greater variation on the 

surface of the sphere, Fig. 6.3b. The variation flattens with the increasing value of the power-law index. 

The corresponding local shear stress distribution follows qualitatively similar pattern except for the fact 

that the shear stress shows a greater variation. Except the smaller regions near the front and rear stagnation 

points, the bulk of the sphere surface is exposed to a uniform shear stress which decreases with the 

Figure 6.2 Dependence of the ratio F
V
/F

D
 on power-law index (n). 
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increasing degree of shear-thickening fluid behaviour. Using these results, one can also construct the 

corresponding shear rate distribution plots, but these are not shown here for the sake of conciseness. Next, 

one can average the shear stress and shear rate distribution over the surface of the sphere and their 

dependence on power-law index is shown in Figs. 6.5 and 6.6 as functions of n for a range of values of 

Figure 6.3 Viscosity distribution on the surface of the sphere as a function of power-law index (n).  
θ = 0 corresponds to the front stagnation point. 

Figure 6.4 Shear stress distribution on the surface of the sphere as a function of power-law index 

(n). θ = 0 corresponds to the front stagnation point.  
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the Reynolds number. In these figures, the shear stress and shear rate have been normalized using the 

corresponding Newtonian values given by 
N

 and 〈𝛾̇〉𝑁 , respectively. 

Thus, the ordinates in Figs. 6.5 and 6.6 are simply f1(n) and f2(n), introduced in Eqs. (6.19a) and (6.19b), 

respectively. The maximum in Fig. 6.6 at about n ≈ 0.375 is not predicted by previous studies due to the 

approximate nature of their solution. Both f1(n) and f2(n) can be well approximated by the following 

simple expression: 

( )
2

1

0.667
( ) 1.238exp

0.527

n
f n

 −
= − 

  

 (6.23) 

( )
2

3.54
( )

0.248
1 exp

0.0215

f n
n

=
 − 

+ − 
 

                                      0.2 ≤ n < 0.375 (6.24a)                                                                                                           

( )2 ( ) 7.437exp 1.970 0.0153f n n= − −                           .375 ≤ n ≤ 2 (6.24b) 

Equation (6.23) correlates the present numerical results with the mean deviation of 1.6% which rises to a 

maximum of 9%. Similarly, the mean and maximum errors for Eq. (6.24a) and Eq. (6.24b) are  4% and  

9% respectively. However, for n = 1, f1 = 1 and f2 = 1.02 which are sufficiently close to their expected 

Figure 6.5 Dependence of the average shear stress on power-law index (Lines represent 

results of Cho and Hartnett, (1983, 1984)). 
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values of one. Figures 6.5 and 6.6 also include the results of Cho and Hartnett (1983, 1984). Evidently, the 

present results, especially of shear stress, deviate significantly from that of Cho and Hartnett (1983).  

In view of the highly approximate nature of their results, the present results are considered to be more 

reliable than theirs. Also, this really casts doubts about the validity of their method for determining the 

shear stress-shear rate curves by using FBM. The applicability of the new method proposed herein is 

demonstrated in the next section by way of presenting a few comparisons with experiments. 

6.5 Comparison with experiments 

Admittedly a significant body of experimental data exists on the falling sphere experiments in aqueous 

solutions of chemically different polymers (Chhabra, 2006). However, not all authors have presented 

sufficient details for their results to be recalculated in the format required here. For instance, most authors 

have not reported individual value of V, d, ρs, etc. and/or the resulting value of the Reynolds number are 

above unity. In some of the analytical and experimental studies, viscoelastic constitutive models and/or 

viscoelastic fluids have been used and clearly, these results also cannot be used here. A thorough search 

of the literature reveals only very limited data which can be used to validate the present predictions. At 

the outset, it is worthwhile to recall here the key assumptions which must be met by the experiments: low 

Reynolds number (≤ ~ 0.01), steady flow, no wall and end effects and power-law fluid behaviour. Bearing 

in mind these factors, we begin with the case of Newtonian fluids, followed by the determination of the 

zero-shear viscosity and finally the shear-thinning viscosity curves for power-law fluids obtained by 

Figure 6.6 Comparison of shear rate over the range of power-law index (Lines represent 

results Cho and Hartnett, 1983, 1984). 
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the FBM. For this purpose, much of the data used here is taken from the extensive compilations of 

Chhabra (Chhabra, 1980, 2006) as we could not find other data in which the complete information was 

available for the results to be recalculated in the format required here.  

6.5.1 Flow curve for Newtonian fluids 

Figure 6.7 compares the true steady shear stress-shear rate data for corn syrup and silicon oil with that 

calculated using the FBM through Eqs. (6.16) and (6.17). The two results are seen to be virtually 

indistinguishable from each other in the overlapping range of shear rates. Furthermore, the two values of 

the Newtonian viscosities of these two fluids are also extremely close to each other. For instance, the 

viscosity values of the corn syrup of 11.49 and 11.41 Pa.s obtained from the cone-and-plate rheometer 

and the FBM respectively are within 0.7% of each other. The corresponding values for the silicon oil are: 

24.11 an 24.02 Pa.s respectively. Such a close agreement between the two values inspires confidence in 

the experimental protocol followed in conducting these experiments. 

6.5.2 Estimation of zero-shear viscosity 

As noted earlier, the critical value of the shear rate marking the onset of shear-thinning behaviour is not 

known a priori. Therefore, one must perform falling ball tests with a few spheres (different size and/or 

density) to evaluate the zero-shear viscosity. In essence, one must use the Stokes expression, Eq. 6.1 to 

calculate the value of  and if the resulting values corresponding to different balls are constant within the 

Figure 6.7 Comparison between the predicted (hollow symbols: FBM) and Rheometrical 

measurements (filled symbols) of shear stress and shear rate in Newtonian fluids (Chhabra, 1980). 



| Falling ball method  

 

159 
 

margin of experimental errors, this will confirm that these are the values of the zero-shear viscosity and 

one can thus evaluate the average shear rate as (2U/d). Such data are indeed very scare in the literature. 

Table 6.2 presents the results for a few polymer solutions. The results shown in Table 6.2 confirm the 

expectation that the FBM can yield reliable values of the zero-shear viscosity provided the sphere drop 

data fall in the constant viscosity region. The mean values of 0 obtained with the FBM are generally 

within ~ 2-3% of the rheometrical values of the zero-shear viscosity. The values of the surface average 

shear rate 
N

 are also included in this table as are the corresponding value of the Reynolds number 

which all are < 1. In summary, it is thus possible to evaluate the zero-shear viscosity using the FBM even 

for non-Newtonian fluids. 

Table 6.2  FBM results for zero-shear viscosity evaluation (Chhabra, 1980) 

1.46% Methocel in water (ρ = 1003 kg/m3) 

d (mm) ρp (kg/m3) U (mm/s) 2U/d (s-1) 
Zero-shear viscosity (Pa.s) 

FBM Cone & Plate 

12.686 1415 11.1 1.75 3.26 

3.31 

11.115 1490 10.3 1.85 3.18 

10.30 1492 8.62 1.68 3.28 

6.35 2500 10 3.15 3.29 

1.59 7790 2.85 3.60 3.27 

1.25% Polyacrylamide in water (ρ = 1005 kg/m3) 

d (mm) ρp (kg/m3) U (mm/s) 2U/d (s-1) 
Zero-shear viscosity (Pa.s) 

FBM Cone & Plate 

9.51 1190 0.42 0.093 20.7 

19.9 
11.065 1190 0.607 0.11 20.34 

12.686 1190 0.820 0.13 19.80 

6.368 1397 0.460 0.14 18.90 

1.5% Polyacrylamide in water (ρ = 1014 kg/m3) 

d (mm) ρp (kg/m3) U (mm/s) 2U/d (s-1) 
Zero-shear viscosity (Pa.s) 

FBM Cone & Plate 

8.749 1350 0.263 0.055 58.58 

59.0 
10.3 1492 0.460 0.09 60.08 

11.115 1490 0.560 0.101 57.23 

12.686 1415 0.590 0.093 59.61 

0.17% Polyacrylamide in 8.2/91.8% Water-corn syrup solvent (ρ = 1300 kg/m3) 

d (mm) ρp (kg/m3) U (mm/s) 2U/d (s-1) Zero-shear viscosity (Pa.s) 
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FBM Cone & Plate 

1.59 2500 0.127 0.16 13.01 

13.0 3.175 2500 0.512 0.323 12.88 

1.59 4010 0.295 0.371 12.66 

0.24% Polyacrylamide in 11/89% water/corn syrup (ρ = 1310 kg/m3) 

d (mm) ρp (kg/m3) U (mm/s) 2U/d (s-1) 

Zero-shear viscosity (Pa.s) 

FBM Cone & Plate 

1.59 2500 0.097 0.122 16.903 

16.9 
3.175 2500 0.388 0.244 16.85 

1.590 4010 0.232 0.292 16.04 

2.00 4010 0.363 0.363 16.21 

0.07% Polyacrylamide in 8/92 % water/Maltose syrup (ρ = 1310 kg/m3) 

d (mm) ρp (kg/m3) U (mm/s) 2U/d (s-1) 
Zero-shear viscosity (Pa.s) 

FBM Cone & Plate 

1.59 4010 0.44 0.55 8.45 

8.5 

2.00 4010 0.70 0.70 8.41 

1.59 2500 0.19 0.24 8.63 

6.35 2500 3.125 0.98 8.46 

1.59 7790 1.04 1.31 8.59 

      

6.5.3 Shear-rate dependent viscosity 

In order to establish and demonstrate the validity of the approach presented here to extract flow curve for 

power-law fluids using FBM, one must first evaluate the value of the power-law index, n. For this 

purpose, one must plot log 
N

 versus log
N

 , as shown in Figure 6.8 for a series of polymer 

solutions. Indeed, over the range of conditions, linear variation on double logarithmic coordinates is 

evident in each case. The slope of these curves is simply the value of the power-law index, in line with 

the suggestion of Uhlherr et al. (1976) and Cho and Hartnett (1983, 1984). This value can, in turn, now 

be employed to evaluate the correction factors f1 (n) and f2 (n), Eqs. (6.22) and (6.23), respectively. One 

can now evaluate the shear stress and shear rate values via Eq. 6.18 using the falling sphere data. 

Figure 6.9 shows representative results for four different polymer solutions. Included in these figures are 

also the corresponding shear data obtained using the cone-plate system in a rheogoniometer. Indeed, the 
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falling sphere data and rheological measurements literally superimpose within the overlapping range of 

conditions with the margin of experimental errors. 

The minor differences seen here are possibly due to the fact that a single constant value of n has been 

used here in analyzing the falling sphere data. This lends credibility to the validity of the FBM to evaluate 

the flow curves for power-law fluids, especially in the low-shear rate range which is not always accessible 

in rotational viscometer. While the limited validations shown here all pertain to polymer solution, 

unfortunately to the best of our knowledge, no such data is available for filled system and composites in 

the open literature. In principle, the scheme obtained here should work equally well for loaded system 

and composites provided the assumption of continuum is justified, i.e., size of the ball is larger than the 

Figure 6.9 Comparison between the predicted (hollow symbols: FBM) and Rheometrical 

measurements (filled symbols) of shear stress and shear rate (Chhabra, 1980). 

  

Figure 6.8 Estimation of power-law index from log and log 〈𝛾̇〉𝑁 . 
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size of the additives. In practice, this condition is generally met. This is indeed demonstrated by the 

limited experimental results reported by Milliken et al. for the suspensions of microspheres and rods in 

viscus Newtonian solvents (Metzner and Reed ,1955; Milliken et al., 1989). 

In summary, therefore, it is possible to use the FBM for evaluating the zero-shear viscosity and the shear-

dependent viscosity of composites, polymeric melts and solutions provided the falling sphere data is 

obtained in the low Reynolds number range and is free from wall and end effects. This analysis also 

assumes the value of the power-law index to remain constant over the range of shear rate of interest. 

However, this difficulty can be circumvented by using the local value of the slope of log 
N

 versus log 

N
 , plots, akin to the approach of Metzner and Reed (1955) for the capillary viscometer data analysis. 

Similarly, no experimental data is available in the literature for shear-thickening fluids (n > 1) to 

substantiate the validity of the strategy outlined in this work. 

Before leaving this section, it is worthwhile to explore the effect of the Reynolds number on the strategy 

presented here. At the outset it needs to be recognized here that Equation 1 and modifications thereof 

implicitly assume the Reynolds number to be small (< 1). Conversely, outside the so-called creeping flow 

region, the ratio FV/FD, f1(n) and f2(n) are expected to show additional dependence on the Reynolds 

number. Notwithstanding this complexity, limited additional simulations have been performed up to RePL 

= 10 to explore this issue. Indeed, the relative errors in the values of f1(n) and f2(n) with respect to the 

corresponding values for RePL = 0 rose with the increasing Reynolds number and/or the error itself was 

much higher in shear-thickening (n > 1) fluids than that in shear-thinning fluids. For instance, the error 

defined as 
1 1 0

1 0

( ) ( )

( )

PL

PL

Re

Re

f n f n

f n

=

=

−
 ranged from 12% at n = 0.2 to 1262 % at n = 2 for RePL = 1. The 

corresponding values were found to be 41% and 2473% respectively at RePL = 10. This clearly indicates 

the additional role of the Reynolds number in determining the values of correction factors. Thus, this 

method is best studied in the creeping flow regime only.  
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 Chapter 7 

Conclusions and suggestions for future work 

 

This work investigates the flow past axisymmetric particle shapes (i.e., spherical and non-spherical) in 

steady laminar flow in forced- and free-convection regimes for non-Newtonian fluids, including 

Newtonian fluids as a limiting case. The main focus of the present work is to understand the momentum 

and thermal transfer characteristics from axisymmetric shapes over the range of corresponding governing 

parameters in order to delineate the effect of shape in an unconfined flow. Limited efforts have been made 

to explore the preliminary understanding of the confinement flow past axisymmetric particles and how it 

modulates the drag and Nusselt number. Finally, the applicability of the falling ball method (FBM) is 

studied to predict the zero-shear viscosity and shear-dependent viscosity in the low shear rate limit of 

non-Newtonian (power-law shear-thinning fluids) fluids using the numerical solution of the momentum 

equations for the creeping flow of fluids around a sphere. 

In particular, extensive results have been obtained for considering the following specific problems for 

axisymmetric particle shapes (i.e., spherical and non-spherical): 

A. Creeping flow 

B. Forced convection 

o Newtonian fluids 

o Effect of confined flow in Newtonian fluids 

o Bingham plastic fluids 

C. Free convection 

o Sphere and a pair of spheres in low Grashof number power-law fluids 

o Spherical segments in Bingham plastic fluids 

D. Falling ball method 

The key findings of the present work are summarized in the following section, followed by suggestions 

for future work. 

7.1 Conclusions 

The present work significantly contributes to understanding the velocity and temperature fields around 

axisymmetric shapes in Newtonian and non-Newtonian fluids. The main findings can be 

summarized below: 

A. Creeping flow 
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 Chapter 3 represents the sedimentation of the spherical segments and is numerically studied for a 

wide range of Bingham values in creeping flow. The effect of the yield stress fluid on the different shapes 

(30⁰    180⁰) is studied on the formation of the yielded/unyielded zone around the segment, which 

shows the front static zone exists for all the Bn number, but the rear static zone only appears at high Bn 

values. However, the rear static zones also get smaller and smaller with the increase in  values. The 

effect of α is also studied for the yield stress values of Bingham plastic fluids for particles which shows 

that with the increase in α, a greater yield stress is required to suspend the particle in the fluid. The 

correction factor for the fluid and the shape of the particle is also plotted over the range of α and Bn. The 

drag correction factor for the different shapes of spherical segments varies from 0.4 to 1 at low yield stress 

fluid. However, at high yield stress fluid it even arises from more than 1 for some segments. Finally, the 

Stoke drag coefficient is correlated in terms of both Bn and α with reasonable accuracy. 

B. Forced convection 

The first section of Chapter 4 deals with the effect of axisymmetric shapes on the forced convection 

in unconfined Newtonian fluid from an isothermal spherical shape over the range of conditions: 1 ≤ Re ≤ 

150, 30° ≤ α ≤ 150°, and Pr = 0.72 (air). The effect of shapes of the spherical segments varying in the 

range of 30° (ψ = 0.424) ≤ α ≤ 150° (ψ = 0.996) on momentum and heat transfer characteristics have also 

been compared with the similarity in shapes of particles, i.e., cone (0.324 ≤ ψ ≤ 0.658) and short cylinder 

(0.541 ≤ ψ ≤ 0.872) in this work. The results of streamline profiles for spherical segments are discussed 

by comparing the critical Reynolds number (from where the onset of flow separation occurs) for each 

particle shape. The results show that the shape or lateral surfaces of the particles strongly influence the 

size of the wake and the location of the separation point from the particle surface. The critical Reynolds 

number for these axisymmetric particles follows the order of short cylinder > cone > spherical segment.  

The non-dimensional drag force is correlated as a function of sphericity, Reynolds number and diameter 

to height ratio of the particle. In the case of spherical segments, it is observed that for Re > 50, the drag 

values are maximum for α = 90°. With the further increase in α, even though they have the same projected 

area the drag values appear to be less in the case of α = 120° and 150° than α = 90°. Furthermore, the 

shape descriptor or sphericity (particles with identical base area and height) of the particle shows 

significant effect particularly at low Reynolds number in the order of cone < spherical segment < short 

cylinder. However, at high inertial forces, drag experienced by the different particles almost becomes 

independent of the Reynolds number. The drag curves are plotted for the range of the sphericity (0.324 ≤ 

ψ ≤ 1) which suggests that the drag values of short cylinders are significantly deviating from the other 

two shapes (cone and spherical segment) particularly for ψ < 0.8. The correlations proposed for CD and 

Nu as functions of ψ, (dc/hc), and Re enable the estimation of intermediate parameters in new design 

calculations. Also, the reliability and precision of the correlations to predict the results for CD and Nu 

have been confirmed by comparing the predicted results with the limited experimental results found to be 

within the reported experimental uncertainties. 



| Conclusions and suggestions for future work 

 

165 
 

The second section of Chapter 4 deals with the study of the effect of confinement in a Newtonian 

media over the range of the Reynolds number (1 ≤ Re ≤ 100) for three spherical segments (α = 30˚, 60 ,̊ 

90˚) in two different confinement ratios, λ = 0.5, 0.2. The effect of confinement on drag, heat transfer 

coefficient, and flow kinematics are studied compared to unconfined flow. The detailed structure of the 

flow and heat transfer characteristics have been analyzed in terms of streamline, isotherms, velocity 

profiles, drag and Nusselt number for the axisymmetric particles with α = 30˚, 60˚, 90 .̊ As expected, the 

increase in confinement stabilizes the flow past the particle by delaying the wake formation and increases 

the heat transfer rates while thinning the thermal boundaries layer in the vicinity of the particle. The global 

parameters like drag coefficients and Nusselt number are also compared with the unconfined flow results. 

The results illustrate that the increase in confinement leads to an increase in the drag experienced by the 

spherical segment and eventually attains the constant value faster than the unconfined flow with the 

increase in Reynolds number. The increase in shape factor follows a similar trend of increasing drag as 

in unconfined flow. However, at Re = 1, the increase in confinement from 0 to 0.5 leads to an increase 

the drag coefficient values  seven times for a fixed value of α. On the other hand, increase in α shows a 

decreasing trend for drag values at high values of Reynolds number similar to the unconfined flow. 

However, for unconfined flow this trend follows the decrease in drag once α values approached 120°. 

Here, due to the confinement these decreasing values of drag is observed as α values increase from 60° 

to 90° for λ = 0.5. Broadly, the heat transfer rates increase with the increase in Reynolds number and 

decrease with the increase in shape factor. Also, the increase in confinement shows a positive dependency 

on the Nusselt number. However, at Re = 1, the heat transfer rates are lower for the λ = 0.5 than unconfined 

flow, irrespective of the shape. This is due to the fact that at the lowest values of the Reynold number the 

thick thermal boundary layer around the spherical segments gets intervened with the boundaries of the 

continent. As the thermal boundary layer becomes thinner with the increase in Reynolds numbers, the flip 

occurs at specific values for each spherical segment. For α = 30˚, it is observed around Re ~ 5. The study 

suggests that from all three shapes, spherical segment (α = 30˚), circular disc, and sphere, spherical cap 

experiences the highest drag at Re = 100 and the heat transfer rates are almost three times in the case of a 

spherical segment than the sphere at Re = 1 for a fixed confinement ratio (λ = 0.5). The numerical values 

of the drag coefficient and average Nusselt number have been correlated in terms of pertinent 

dimensionless parameters with acceptable levels of accuracy over the range of conditions considered in 

the present study. 

The third section of Chapter 4 investigated the effect of infinite Bingham plastic fluid on the momentum 

and heat transfer characteristics from the heated spherical segments (30° ≤ α ≤ 150°) over the range of 

Reynolds number (0.1 ≤ ReB ≤ 150), Bingham number (0 ≤ Bn ≤ 100) and Prandtl number (0.1 ≤ PrB ≤ 

100). In general, the increase in Reynolds number tends to eliminate the unyielded zones due to the 

increased fluid inertia, which is further suppressed by the increasing Bingham number due to the 

increasing yield-stress effects. Drag coefficients show the positive dependency on the Bingham number. 

The reverse trend of the decreasing drag values after α ≥ 90° at high Reynolds number is more prominently 
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observed for pressure drag coefficient (CDP) in Bingham plastic fluid. The drag experienced by the 

spherical segments is also compared to the spherical particle which shows that at low Reynolds number, 

CDα/CD ratio is constant, which is smallest for α = 30° and close to 1 for the α = 150°. With the increase 

Finally, for ease of applicability, correlations are proposed for the drag coefficient as a function of ReB, 

Bn, ψ and dc/hc which also include the case of spherical particles. The Bingham number influences the 

overall heat transfer in two somewhat opposing ways. Firstly, the yielded zones diminish in size with the 

increasing Bingham number and conduction dominates in the increasingly unyielded regions adjacent to 

the surface of the heated spherical segments. On the other hand, the temperature gradient sharpens in the 

thin yielded fluid-like regions. The former tends to impede heat transfer while the latter tends to promote 

it. Due to which complex behavior is observed. At high Peclet numbers, the sudden drop in the Nusselt 

number is observed with respect to the increasing Bingham number for α = 30° to 90°. For PeB = 15 × 

103, the drop in the Nusselt number is observed at Bn ~ 50 and Bn ~ 5 for α = 30° and 90° respectively. 

The present numerical results have been correlated for average Nusselt number for spherical segments at 

spanning range of ReB, PrB, Bn and ψ. The correlations presented herein work have split up into two 

ranges of Peclet number for better accuracy and predictability in the in between range of parameters.  

C. Free convection 

The first section of the Chapter 5 laminar free convection in power-law fluids over the range of 

vanishingly small Grashof number (10-4 ≤ GrPL ≤ 10) has been investigated numerically for an isolated 

sphere and twin spheres for varying centre-to-centre distance (including limiting case of touching 

spheres). The results of nondimensional total drag (CD), local Nusselt number (Nul), and average Nusselt 

numbers (Nu) have been examined in detail for both cases to understand the momentum and heat transfer 

characteristics embracing broad ranges of Prandtl number (0.72 ≤ PrPL ≤ 1000) and power-law fluid 

behaviour 0.1 ≤ n ≤ 2 for a single sphere and 0.1 ≤ n ≤ 1.5 for a pair of spheres  with the varying gap ratio 

(1 ≤ l/d ≤ 6). The effect of power-law index on the drag coefficient for a single sphere flips over 

somewhere in the range 2 < GrPL < 15 when the drag coefficient increases in shear-thinning or 

pseudoplastic fluids (n < 1) as compared to shear-thickening fluids (n > 1). The drag correction factor 

Y(n) results confirm the increase in the Prandtl number postponing the flip over to higher Grashof 

numbers. The shear-thinning fluids n < 1 exhibit the maximum value of the local Nusselt number on the 

surface of the sphere away from the front stagnation point in contrast to the Newtonian and shear-

thickening fluids (n ≥ 1) for which it occurs at the front stagnation point over the range of PrPL and GrPL 

studied here.  Also, the drag coefficient and average Nusselt number for the vertically aligned twin spheres 

are influenced by the governing parameters (GrPL, PrPL, n) and l/d in a complex manner, though 

qualitatively these are similar to the case of an isolated sphere. The gap ratio plays an important role in 

determining the severity of interference between the velocity and temperature boundary layers and hence 

the drag and heat transfer coefficients for the twin spheres. Finally, simple correlations have been 

proposed for the total drag and average Nusselt number over the range of GrPL (10-4 ≤ GrPL ≤ 10), PrPL (7 

≤ PrPL ≤1000), and n (0.1 ≤ n ≤ 2 for isolated sphere and 0.1 ≤ n ≤ 1.5 for twin spheres). In the limit of 
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Newtonian fluids, the present results lend support to the approximate analyses relevant to the low 

Rayleigh number region whereas the high Grashof number results for a single sphere are consistent with 

the boundary layer analyses available in the literature. The present results also highlight the requirement 

of rather large computational domains at low Rayleigh numbers for the velocity field to decay naturally 

from an isolated sphere. Finally, not only very large gaps between the two spheres are needed to approach 

the single sphere limit but this will also require countering the effect of mixed flow and preheating of the 

fluid impinging on the downstream sphere. 

The second section of Chapter 5 includes the study of heated spherical segments in Bingham 

plastic fluid under free convection regime over the wide range of parameters, 1 ≤ GrB ≤ 104, 0.72 ≤ PrB ≤ 

100, 0 ≤ Bn ≤ 104 and 30° ≤ α ≤ 150°. A detailed examination of the results on the yielded/unyielded 

zones, streamlines, isotherm contours reveals that a variety of yield surfaces can be encountered 

depending on the values of the Grashof number (GrB), Bingham number (Bn) and shape factor (α). The 

increase in the Grashof number and/or Prandtl number promotes the heat transfer due to advection. On 

the other hand, the increase in Bingham number suppresses the fluid like behavior; then the heat transfer 

is solely governed by conduction. The sharp corner in the spherical segments also induces some 

convective force due to high shearing and sudden change in the flow and isothermal contours. Hence, the 

increase in shape factor makes the particle more and more streamlined as a result heat transfer rates have 

been affected adversely. Finally, the average Nusselt number is correlated as a GrB, PrB and Bn for each 

case of spherical segment. 

D. Falling ball method 

Chapter 6 represents the results of a numerical scheme which is used to develop the stress-strain 

curves using the falling ball method. In this work, numerical results for the creeping flow of power-law 

fluids past a sphere have been used to extract the values of the zero-shear viscosity and shear-dependent 

viscosity in the low-shear rate limit. In essence, one needs to apply corrections to both the surface 

averaged shear stress and shear rate for a sphere falling in Newtonian fluids. For power-law fluids, both 

these correction factors are functions of the power-law index only in the creeping flow regime. Based on 

the present numerical results, simple expressions have been developed for these correction factors. The 

power-law index is given by the slope of the double log plot of the nominal average shear stress and shear 

rate on the surface of the sphere. The resulting maximum values of these correction factors are of the 

order of f2 (n) ≈ 3.5 and f1(n) ≈ 1.25, that is, the surface average shear rate is comparable to that in 

Newtonian fluids. The present work is concluded by presenting extensive comparisons with experimental 

results for Newtonian fluids and shear thinning polymer solutions in the low-shear region including the 

zero-shear viscosity and the shear thinning region. Good correspondence between the theoretical and 

experimental results reported here inspires confidence in the use of this simple method to measure the 

viscosity of polymeric systems with acceptable levels of accuracy. Limited results are also included here 

at finite Reynolds number (Re ≤10). These results help delineate the maximum values of the Reynolds 

number of RePL ≤1 for shear-thinning fluids (n ≤ 1) and RePL ≤ 10-5 for shear-thickening fluids (n > 1). 
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Beyond these limiting values, the two correction factors themselves become functions of the Reynolds 

number nor is it possible to evaluate the value of the power-law index as the slope of log ⟨τ⟩N - log ⟨γ⟩N 

data. Thus, on all accounts, this method is only applicable when the inertial effect is negligible.  

7.2 Suggestion for future work 

The present work provides a basic understanding of the physical phenomena involved in the study of 

Newtonian as well as non-Newtonian fluid for different axisymmetric shapes, i.e., spherical segments. 

This understanding can open new research directions to further improve our comprehension of shape in 

complex phenomena.  

• One possibility is to examine the effect of the orientation of an axisymmetric shape on momentum 

and heat transfer characteristics in Newtonian fluids under 3-D flow conditions. 

• The vortex shedding phenomena for spherical segments and the critical Reynolds number for 

onset of unsteady flow can be further studied by exploring the time-dependent behavior of 

Newtonian and non-Newtonian fluids. 

• The study can be extended to other complex axisymmetric shapes, such as convex or concave 

spherical segments in free-, forced- and mixed-convection regimes in Newtonian fluids under 3-

D flow conditions. 

• The role of aiding-, opposing-, and cross-buoyancy on flow and thermal behavior of the fluids 

can be delineated by performing mixed convection for such shapes. 

• The effect of the gap between particles on heat transfer rates can be understood by extending 

single particle analysis to an array in a confined space for both forced and free convection.  

• It may be beneficial to consider the time-dependence of physical properties in Bingham plastic 

fluids to extend the understanding of the behavior of yield stress fluids. 
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APPENDIX-A 

 

A1. Sample calculations for the non-dimensional number with examples in 
practical applications. 
 
A.1.1 Calculations for Grashof (Gr) and Prandtl (Pr) numbers 

Two different polymer systems were considered (Amato and Tien, 1976). CMC-7H (0.5% and 1.0%) and 

Polyox WSR (0.25% and 0.5%). Density-temperature correlation along with their coefficients for the 

mentioned polymer solution is given in the following table which is valid over the temperature range of 

293.15 ≤ T ≤ 333.15: 

Table A1 Density-temperature polynomial coefficients 

( ) ( )( )2
1000 273.15 273.15a b T c T = + − + −  

T (K), ρ (kg/m3) 

Solution a b c 

0.5% CMC-7H 1.0045 -1.7396 × 10-4 -2.3897 × 10-6 

1.0% CMC-7H 1.005 -5.8154 × 10-5 -3.7971 × 10-6 

0.25% Polyox WSR-FRA 0.9939 -9.6665 × 10-5 -3.3115 × 10-6 

0.5% Polyox WSR-FRA 0.99997 -1.5559 × 10-4 -2.7478 × 10-6 

where T (K) and ρ (kg/m3) is the temperature and density of the fluid. 

Coefficient of thermal expansion can be calculated from the density formula through the use of the 

equation: 
1

pT






 
=  

 
 

Similarly, the thermal conductivity and temperature polynomial coefficient for the polymer system is 

given by the following table for the temperature range 298.15 ≤ T ≤ 323.15 K: 

Table A2 Thermal conductivity temperature polynomial coefficients 

( )24.1868 10 273.15k a b T=   + −    

k (J/m s K), T(K) 

Solution a b 

0.5% CMC-7H 1.251 × 10-3 6.626 × 10-6 

1.0% CMC-7H 1.194 × 10-3 9.906 × 10-6 

0.25% Polyox WSR-FRA 1.121 × 10-3 9.323 × 10-6 

0.5% Polyox WSR-FRA 1.121 × 10-3 9.323 × 10-6 
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The rheological data is valid for temperature range 298.15 ≤ T ≤ 308.15 K: 

Table A3  Rheological data for polymer systems 

Solution A B n 

( )/m Aexp B T=   

m (N sn/m2), T(K) 

0.5% CMC-7H 1.251 × 10-3 6.626 × 10-6 0.948 

1.0% CMC-7H 1.194 × 10-3 9.906 × 10-6 0.818 

( )273.15m A B T= + −  

0.25% Polyox WSR-FRA 1.121 × 10-3 9.323 × 10-6 0.592 

0.5% Polyox WSR-FRA 1.121 × 10-3 9.323 × 10-6 0.905 

 

Table A4 Average properties of polymer solutions 

Solution ρavg kavg β m 

0.5% CMC-7H 992.76 0.6278 1.0073 × 10-3 0.314 

1.0% CMC-7H 995.08 0.6554 1.0050 × 10-3 0.328 

0.25% Polyox WSR-FRA 983.41 0.6157 1.0169 × 10-3 0.308 

0.5% Polyox WSR-FRA 988.25 0.6157 1.0119 × 10-3 0.308 

          

         The Grashof and Prandtl number calculated based on these fluid properties for four different 

spherical particle at ΔT = 5 and heat capacity C = 4.19 × 103 J/kg K. 

Table A5 Grashof and Prandtl numbers for a sphere in power-law fluids (PL) in natural convection 

regime  

Solution 

Diameter of spheres (m) 

0.0254 0.0508 0.0762 0.1016 

Gr Pr Gr Pr Gr Pr Gr Pr 

0.5% CMC-7H 16.49 0.190 127.3 0.370 420.5 0.546 982.0 0.720 

1.0% CMC-7H 0.304 7.650 2.144 13.79 6.720 19.46 15.12 24.85 

0.25% Polyox WSR-FRA 7.021 6.259 42.33 9.589 121.1 12.31 255.2 14.69 

0.5% Polyox WSR-FRA 0.022 12.53 0.164 23.80 0.533 34.63 1.229 45.19 
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A.1.2 Calculations for Reynolds (Re) and Bingham (Bn) numbers  

The properties of the fluids are mentioned in the following table (Khahledi et al., 2020): 

Fluid Fluid type Conc. % ρ (kg/m3) m (Pa sn) n τ (Pa) μ (Pa s) 

Kaolin v/v HB 20.3 1336 3.98 0.36 39.4 − 

  HB 13.1 1217 0.067 0.72 8.9 − 

CMC w/w PL 7.55 1043 2.39 0.64 − − 

  PL 6.58 1037 0.882 0.7 − − 

  PL 5.21 1029 0.209 0.79 − − 

  PL 2.81 1016 0.017 0.97 − − 

  N 2.4 1014 0.006 1 − − 

Bentonite 

w/w BP 7.3 1046 0.021 1 30.5 
− 

  BP 6.99 1044 0.014 1 15.7 − 

  BP 3.77 1023 0.006 1 1.13 − 

Glycerine N 100 1258 − − − 0.973 

  N 96 1248 − − − 0.304 

  N 93 1242 − − − 0.129 

  N 65 1179 − − − 0.019 
N: Newtonian fluid, PL: power-law fluid, BP: Bingham plastic fluid, HB: Herschel-Bulkley fluid 

For the fluid velocity U = 0.05 m/s. The Reynolds and Bingham number is calculated in the subsequent 

table for the three different sized spherical particles. 

Fluid 
Fluid 

type 

Diameter (m) 

0.1016 0.0508 0.1016 

Re Bn  Re Bn  Re Bn  

Kaolin v/v 
HB 0.052 7.758 0.070 9.956 0.094 12.78 

HB 0.199 81.57 0.335 134.4 0.558 221.3 

Carboxymethyl 

cellulose 

(CMC) w/w 

PL 0.707 − 1.102 − 1.718 − 

PL 1.830 − 2.972 − 4.828 − 

PL 7.208 − 12.46 − 21.55 − 

PL 77.46 − 151.7 − 297.2 − 

N 214.6 − 429.3 − 858.5 − 

Bentonite w/w 

BP 0.043 737.8 0.087 1475.6 0.174 2951.2 

BP 0.083 569.7 0.168 1139.4 0.337 2278.7 

BP 1.061 95.67 2.207 191.3 4.505 382.69 

Glycerine 

N 1.642 − 3.284 − 6.568 − 

N 5.214 − 10.43 − 20.85 − 

N 12.23 − 24.45 − 48.91 − 

N 78.81 − 157.6 − 315.2 − 

N: Newtonian fluid, PL: power-law fluid, BP: Bingham plastic fluid, HB: Herschel-Bulkley fluid 
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A2. Velocity and temperature profiles for spherical segments in Bingham 
plastic fluids in steady free convection regime 
 

Fig A1.  Velocity profile in the r- direction at the base of the spherical segment (z = 0) for α = 90º. 

Fig A2.  Velocity profile in the r- direction at the base of the spherical segment (z = 0) for α = 

150º. 
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FigA3.  Temperature profile in the r- direction at the base of the spherical segment (z = 0) for α = 

90º. 

Fig A4.  Temperature profile in the r- direction at the base of the spherical segment (z = 0) for α = 

150º. 



| Appendix A 

186 
 

A3. Numerical scheme to develop shear stress-shear rate in case of power-law 
fluid using FBM method 

 

             

 

 

 

 

Spheres of different density (s) 

and/or size (d) 
Power-law test fluid (density, ) 

Falling Ball Method → measure falling velocity, V 

Limitations: low Reynolds number (≤ ~ 1), no 

wall and end effects 

Calculate: Shear stress [gd(s - )/9] and shear rate (2V/d) 

  Plot log[gd(
s
 - )/9] vs  log(2V/D) plot, measure slop = n 

Calculate correction factors f1(n) and f2(n) from Equations 

(6.23) and (6.24) 

Calculate shear stress and shear rate from Equations (6.19a) 

and (6.19b), respectively 

Fig. A5 Flow chart for developing flow curve for power-law fluids using FBM. 
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