
Trajectory Scheduling of Multi-UAV
System in Infrastructure Deficient

Environment

A Thesis Submitted

in Partial Fulfilment of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY
by

Amanjot Kaur
(2015CSZ0001)

DEPARTMENT OF COMPUTER SCIENCE &
ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY ROPAR

Dec, 2023



ii

Amanjot Kaur: Trajectory Scheduling of Multi-UAV System in Infrastructure Deficient
Environment
Copyright ©2023, Indian Institute of Technology Ropar
All Rights Reserved



iii

Dedicated to
My Parents,
My Husband

and
My Daughter



iv

Declaration of Originality
I hereby declare that the work that is being presented in the thesis entitled
Trajectory Scheduling of Multi-UAV System in Infrastructure Deficient
Environment has been solely authored by me. It presents the result of my independent
investigation/research conducted during the period from Jan 2016 to Dec 2023 under
the supervision of Dr. Shashi Shekhar Jha, Assistant Professor in the Department of
Computer Science & Engineering at the Indian Institute of Technology Ropar and Prof.
Jiong Jin from School of Science, Computing and Engineering Technologies, Swinburne
University of Technology, Melbourne, Australia. To the best of my knowledge, it is
an original work, both in terms of research content and narrative, and has not been
submitted or accepted elsewhere, in part or in full, for the award of any degree, diploma,
fellowship, associateship, or similar title of any university or institution. Further, due
credit has been attributed to the relevant state-of-the-art and collaborations (if any)
with appropriate citations and acknowledgments, in line with established ethical norms
and practices. I also declare that any idea/data/fact/source stated in my thesis has
not been fabricated/ falsified/ misrepresented. All the principles of academic honesty
and integrity have been followed. I fully understand that if the thesis is found to be
unoriginal, fabricated, or plagiarized, the Institute reserves the right to withdraw the
thesis from its archive and revoke the associated Degree conferred. Additionally, the
Institute also reserves the right to appraise all concerned sections of society of the matter
for their information and necessary action (if any). If accepted, I hereby consent for my
thesis to be available online in the Institute’s Open Access repository, inter-library loan,
and the title & abstract to be made available to outside organizations.

Signature

Name: Amanjot Kaur
Entry Number: 2015CSZ0001
Program: PhD
Department: Computer Science & Engineering
Indian Institute of Technology Ropar
Rupnagar, Punjab 140001

Date: 21/12/23



v

Acknowledgement
I am deeply thankful for the support and guidance I’ve received. I would like to express 
my profound appreciation to my thesis advisor, Dr. Shashi Shekhar Jha and Prof. 
Jiong Jin, for their constant encouragement and invaluable guidance throughout my 
research endeavors.
I also want to extend my heartfelt thanks to my Doctoral committee members, Dr. Suman, 
Dr. V. Gunturi, Dr. Apurv Mudgal, and Dr. Nitin Auluck. Their insightful feedback, 
constructive critiques, and thoughtful recommendations have been pivotal in steering both 
the direction and success of my research journey.
My sincere thanks go to my peers and colleagues for their companionship and support 
during this challenging yet rewarding journey.
I am deeply grateful for the unwavering support of all my family members and in-laws 
throughout this journey. Their encouragement has been invaluable to me.
Sincerely,
Amanjot Kaur



vi

Certificate
This is to certify that the thesis entitled Trajectory Scheduling of Multi-UAV
System in Infrastructure Deficient Environment, submitted by Amanjot Kaur
for the award of the degree of Doctor of Philosophy of Indian Institute of Technology
Ropar, is a record of bonafide research work carried out under my guidance and
supervision. To the best of my knowledge and belief, the work presented in this thesis
is original and has not been submitted, either in part or full, for the award of any other
degree, diploma, fellowship, associateship or similar title of any university or institution.
In my (our) opinion, the thesis has reached the standard fulfilling the requirements of the
regulations relating to the Degree.

Signature of the Supervisor(s)
Dr. Shashi Shekhar Jha

Department of Computer Science & Engineering
Indian Institute of Technology Ropar

Rupnagar, Punjab 140001

Signature of the Supervisor(s)
Prof. Jiong Jin

School of Science, Computing and Engineering Technologies
Swinburne University of Technology, Melbourne, Australia



vii

Lay Summary
Our research is centered around the use of drones, or Unmanned Aerial Vehicles (UAVs),
in places where the infrastructure isn’t well-developed, like in remote or underdeveloped
regions. The study explores how UAVs can be effectively used for collecting and sharing
information in such challenging environments. The main idea is to develop a system where
one type of UAVs, called the Access UAV, manages and coordinates the activities of other
UAVs that are equipped with cameras and a limited range of communication. These
camera-equipped UAVs, referred to as Inspection-UAVs, are responsible for collecting
visual data from various locations and then sending this information to Base Station via
Access UAV for processing and storage. The Access UAV plays a critical role in deciding
the trajectory scheduling of the Inspection-UAVs, ensuring they collect data efficiently
from the right places. The approach aims to make sure that all areas of interest are
covered fairly and that the UAVs operate in an energy-efficient manner, which is important
for long-duration missions. Additionally, the research includes a strategy to keep the
data collection process smooth and data queues of the network stable, ensuring that all
information is gathered and transmitted without delays or backlogs.
Overall, the work presents hierarchical multi-UAV network that learns and adapts,
ensuring effective and efficient data gathering and communication in challenging
environments.
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Abstract
The use of unmanned aerial vehicles (UAVs) is rapidly growing in research, particularly
for surveillance and communication in areas without developed infrastructure. Their
versatility allows for a wide range of applications, including remote sensing, traffic
monitoring, and target tracking. By deploying a network of multiple UAVs, extensive
areas can be covered efficiently, enabling synchronized operations that are both quick and
cost-effective. This is especially crucial for real-time monitoring tasks where consistent
and reliable communication is key to maintaining high-quality service.
However, when it comes to real-time monitoring tasks, uninterrupted and reliable
communication channels become crucial to maintain a high Quality of Service (QoS).
This continuous connectivity is essential for the effective and seamless functioning of
UAV-based systems, especially in scenarios that demand constant and accurate data
transmission. This thesis introduces a multi-UAV system designed for efficient data
collection in resource-limited settings. The multi-UAV system is comprised of two types
of UAVs: the Access UAV (A_UAV ) and Inspection-UAVs (I_UAV s). These UAVs
differ in terms of their operational capabilities and maneuverability in the environment.
The A_UAV serves as a central access platform, coordinating the data collection efforts
of I_UAV s, each equipped with a visual sensor for capturing and relaying data to the
cloud. This system is engineered to optimize the trajectory of both A_UAV and I_UAV ,
ensuring data is collected from designated points in a decentralized fashion.
For optimizing the trajectories of the UAVs, this thesis introduces the Distance and Access
Latency Aware Trajectory (DLAT) optimization specifically for the A_UAV s. This
optimization method plays a crucial role in balancing the trajectory planning with the
need to minimize the consumption of total system energy for end to end data offloading
from I_UAV s to the base stations. In addition, a Lyapunov-based online optimization
strategy is employed to ensure the stability of the system, particularly focusing on the
average queue backlogs that is critical for dynamic data collection. To facilitate effective
coordination between the I_UAV and A_UAV , the system incorporates a message-based
mechanism. This aspect is essential for ensuring that data collection and transmission are
synchronized and efficient.
Further, the thesis delves in the aspect of Age-of-Information (AoI) of the data being
collected. A Deep Reinforcement Learning (DRL) framework-based model is conceived
utilizing an actor-critic deep network for learning the optimal policy for the A_UAV s
to minimize the AoI of the data. The AoI problem is mapped to the Markov Decision
Processes (MDP) with a curated reward function to solve trajectory scheduling for the
A_UAV . RL provides a robust framework for modeling the decision-making process,
considering the stochastic nature of UAV environments and various parameters of the
state space such as location, battery levels, and environmental factors. Experiments are
performed against multiple baselines with different parameter settings and multiple seeds.
The proposed approaches in this thesis have shown improved performances against the
available baselines and the methods prevalent in the literature.
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1| Introduction

In the past decade, a dramatic rise in the use of Unmanned Aerial Vehicles (UAVs) across
various sectors has been observed. Their ability to adapt to and meet the complex
requirements of modern tasks has clearly demonstrated their value and utility, making
UAVs a key solution in a rapidly evolving market. Unmanned Aerial Vehicles (UAVs) are
now coming up in all sorts of innovative roles across different fields such as [1], payload
delivery [2], precision agriculture [3] and search and rescue operations [4]. Also, the focus
is growing on automation, sensing technologies, and information exchange in the latest
technical solutions deployed in various scenarios. UAV-based applications are proving
reliable options in industries such as construction, mining, agriculture, and logistics,
especially for monitoring operations and managing resource utilization. UAV-based
solutions are particularly helpful as they can be easily deployed for data collection from
large infrastructure-deficient environments [5, 6]. Additionally, using UAVs that are either
autonomous or semi-autonomous can streamline various evaluations, such as tracking
project progress, checking resources and safety, and spotting environmental risks.
In stochastic scenarios, the deployment of multiple Unmanned Aerial Vehicles (UAVs)
based solutions offers improved capabilities for gathering information and surveillance.
The requirement for uninterrupted communication is particularly inevitable in scenarios
such as crowd monitoring, where timely and accurate information is required to ensure
public safety and security. Additionally, in applications like remote sensing, continuous
communication ensures that the gathered data is transmitted in real-time, allowing for
immediate analysis and decision-making [7, 8, 9]
All multi-UAV applications require the coordination of agents in the field. The
coordination among the UAVs depends on their location, capabilities, and other
constraints. Similarly, trajectory scheduling of UAVs should be such that they can
collectively achieve the system objective. Although integrating a multi-UAV based visual
sensing and monitoring system has many benefits, developing such a system is challenging.
A few of those challenges along with financial budget limitations that restricts the number
of deployed UAVs, are as follows:

• limited battery of UAVs limits the observation span

• restricted on-board processing ability of UAVs makes online offloading of data
necessary

• limited ability to connect for data gathering and offloading tasks in
infrastructure-deficient environments that require smart trajectory planning.

The task of collecting data using UAVs is computationally intensive and limited on-board
computation available with UAVs is a hurdle in the deployment of such solutions. To collect
and/or process data within large sites with poor infrastructure, such as monitoring the
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progress of complex construction sites with limited battery adds another challenge. Many
applications mentioned in existing literature often assume the existence of a continuous
and reliable communication infrastructure. However, this assumption proves to be less
reasonable, particularly in critical situations such as disaster response or emergencies.
In these scenarios, the reliance on persistent communication infrastructure is a weak
assumption. In such scenarios, UAV relay networks become crucial, as they provide
essential connectivity in instances where direct access to the Base Station is unavailable
[5, 6].
In surveillance applications, the effectiveness of UAV trajectory scheduling is critically
evaluated based on the nature of the data being collected. This evaluation primarily
revolves around two pivotal metrics: access latency and Age of Information (AoI). Access
latency refers to the time taken for data to be collected and transmitted to the relevant
endpoints or decision-making centers. This metric is crucial in time-sensitive scenarios
where rapid data collection and processing are vital, such as in emergency response or
real-time security monitoring. On the other hand, AoI [10] defines how fresh or up-to-date
the received information is. In surveillance operations, having the most current data is
often as critical as the speed of its acquisition. The AoI is defined as the time elapsed
since the last piece of data was gathered, emphasizing the need for constant updates and
ensuring that decision-makers have access to the latest information.
Both access latency and AoI play important role in the trajectory planning of UAVs in
surveillance missions. The flight paths and schedules of UAVs must be carefully designed
to minimize delays in data transmission (access latency) while regularly updating the
collected data (minimizing AoI). This necessitates advanced algorithms and strategic
planning in UAV operations, focusing on optimizing routes for quick data acquisition and
timely updates, thus ensuring the overall efficacy and responsiveness of the surveillance
system.
The multi-UAV coordination requires UAVs should make decisions autonomously. In
autonomous decision-making and coordinating multiple UAVs, Reinforcement Learning
(RL) could help find optimal policies [11, 12]. It helps these systems to quickly adapt
to unseen environments. This is important for UAVs working in stochastic environments.
They can learn to make decisions under uncertain conditions by exploring different actions
and updating their policies based on outcomes. RL models can generalize their learned
policies to new, unseen environments. This ability to generalize allows RL agents to
apply knowledge gained in one context to similar but previously unseen scenarios. RL
can be extended to handle multi-agent systems as well, where multiple learning agents
interact with each other. This is beneficial in scenarios where coordination, competition,
or cooperation among multiple entities is required.
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1.1 Motivation, Objectives And Scope

Monitoring events or activities in an area can be challenging, especially when it comes to
Points of Interest (PoIs) that are inaccessible to ground-based monitoring systems. It’s
often hard to predict how these situations will develop without proper observation tools.

It’s really important to keep a close eye on events as they unfold and respond in the
right way. In these cases, we need a system that can track the event’s progress and
keep the information current. Take surveillance in construction sites, for instance. To
properly monitor how the work is progressing, we need data from areas that are hard
to reach. This is where a system that can be quickly set up and adjusted becomes
essential, especially in places lacking the necessary infrastructure. The same goes for
managing crowds; understanding and following the dynamic changes in a crowd can be
quite challenging.

Multi-UAV systems are typically tailored to tackle challenges specific to particular research
areas within a chosen environment. In these systems, UAVs work together and exchange
data to gather insights about specific elements of that environment. The collaboration
of UAVs, regardless of their quantity or the size of the Area of Interest (AOI), leads
to a more comprehensive understanding of the environment. This is achieved through
coordinated efforts, where each UAV contributes a piece of the larger puzzle. By pooling
their resources and capabilities, these UAVs can cover more ground, collect diverse data,
and offer a richer, more detailed view than a single UAV could. This collaborative approach
not only enhances data quality but also improves efficiency in tasks such as mapping,
surveillance, and environmental monitoring, making it a valuable strategy in various fields.
Coordination in multi-UAV systems often involves sharing observations, a key operation in
many recent studies. These studies typically focus on the challenge of limited information,
reflecting real-world scenarios where UAVs face communication constraints like limited
range or bandwidth. In the study by Wan et al.[13], the researchers created a hierarchical
Mobile Edge Computing (MEC) system. This system focuses on the online optimization
of computational resources and employs reinforcement learning for trajectory optimization
of multiple UAV Base Stations (UAV-BSs) tasked with data collection from a network of
static sensors. In a separate study by Zhan et al. [14], the aim was to minimize the energy
consumption and optimize the trajectory of a UAV, with a particular focus on reducing the
task’s completion time. The deployment of multi-UAV solutions for applications such as
surveillance often relies on the assumption of a persistent communication infrastructure.
However, this is not universally available, presenting significant challenges in coordinating
multiple UAVs where connectivity is sporadic and bandwidth is limited. This lack of
ubiquitous communication becomes particularly problematic given the constraints of UAV
battery life.

Furthermore, an additional issue arises with buffer overflow in UAVs during data collection
and offloading tasks. Limited onboard processing capabilities, coupled with the necessity
to share bandwidth for data transfer, can lead to the overall system becoming unstable.
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This situation is exacerbated by varying data traffic volumes and the continuous movement
of UAVs, which complicates the task of stabilizing the system predictably.
Moreover, ensuring efficient energy management and optimizing flight paths in such
unpredictable environments becomes a complex problem. The need to maintain a
consistent data collection process and minimize the AoI of the system without persistent
communication adds another layer of complexity. As UAVs operate in these dynamic
conditions, they must also navigate physical obstacles and environmental factors, requiring
advanced algorithms for autonomous decision-making and real-time adaptations.
Collectively, these challenges underscore the need for advanced research and development
in the field of multi-UAV technology, particularly focusing on enhanced coordination,
robust communication strategies, and adaptive system design to operate effectively in
infrastructure-deficient environments. The challenges and solutions surrounding network
and trajectory scheduling for UAV-based Mobile Edge Computing (MEC) systems are
extensively explored. A significant area of application for these systems is crowd flow
detection during large gatherings, where fixed cameras fall short due to their limited field
of view. In this context, the deployment of UAVs equipped with visual sensors offers a
dynamic solution for collecting visual data, as discussed by [15]. UAVs provide flexibility
and broader coverage, making them ideal for monitoring large or crowded areas.
However, the use of multi-UAV based solutions in such scenarios has its own challenges.
The primary constraints include the limited battery life and communication range of UAVs,
which can significantly impact their operational efficiency. To mitigate these challenges,
the literature suggests the adoption of UAV relayed networks. This approach enables
extended coverage and enhanced data transmission capabilities, allowing UAVs to operate
effectively over larger areas and for extended periods. Moreover, in applications like
real-time image analysis for crowd management, the freshness of data is paramount.
Delayed or outdated information can make such applications ineffective. Hence, AoI
metric becomes crucial in evaluating the performance of these time-sensitive systems.
AoI provides a measure of data timeliness, ensuring that the information used for
decision-making is as current as possible.
In this thesis, we proposed two two-level heterogeneous multi-UAV framework. the system
consists of Inspection UAVs (I_UAV s) which collect visual data and a single UAV Access
Platform (A_UAV ). The data is collected from dynamic sensors (I_UAV s) which send
data to the Base Station (BS) in an environment where limited connectivity is present.
This thesis primarily focuses on the following research gaps:

• Investigate the Role of Multi-UAV Coordination in Resource-Deficient
Environments: To explore and understand the significance of coordinating
multiple UAVs in environments where resources are limited. This involves studying
how such coordination impacts the effectiveness and efficiency of UAV operations
in challenging settings.

• Develop a Trajectory Scheduling Framework for UAVs: To create a comprehensive
framework for UAV trajectory scheduling. This framework will focus on enabling
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UAVs to efficiently transfer data from dynamic sensors and include the optimization
of multi-level queues within the UAV network, ensuring effective data management
and transmission.

• Establish a Deep Reinforcement Learning-Based Coordination Framework for UAVs:
To develop a framework based on Deep Reinforcement Learning (DRL) that
facilitates coordination among UAVs. This approach focuses on achieving multiple
goals for a complex system. It aims to reduce energy use, lower the AoI to ensure
the latest data, and improve the data access latency. All of this will improve the
overall efficiency of the multi-UAV system.

Based on the above research gaps, we identified the following research objectives.

1. The first objective is to develop to create algorithms that enable multi-UAV systems
to function effectively in areas with limited infrastructure. This involves designing
trajectory schedules for Access UAVs (A_UAV s) to efficiently collect data from
dynamic sensors, which are deployed as Inspection UAVs (I_UAV s), especially
considering their limited communication range.

2. The second objective focuses on developing a coordination framework for multiple
UAVs operating in resource-deficient environments. A key aspect of this framework
is to account for the limited buffer capacity of UAVs, ensuring optimal data handling
and communication efficiency within the UAV network.

3. The third objective is to integrate a component that enables A_UAV to estimate the
location of I_UAV s without the help of a central entity in an infrastructure-deficient
environment.

4. The fourth objective is to implement a decentralized approach for scheduling the
trajectories of A_UAV s in unpredictable, stochastic environments. This objective
also includes minimizing critical operational parameters such as the AoI of the data
and the overall energy consumption, ensuring an efficient and effective operational
strategy.

5. The last objective is to implement a decentralized approach for scheduling the
trajectories of I_UAV s in unpredictable, stochastic environments. The objective is
to minimize the access latency of Points of Interest (PoIs), and energy consumption
of UAVs.

The first three research objectives are addressed in Chapter 3, while the last two research
objectives are covered in Chapter 4.
This thesis aims to demonstrate the effective trajectory scheduling in multi-UAV networks
in resource-deficient environments. For each of the objectives mentioned above, the
proposed solutions are highlighted in the research work, as outlined below:
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1. An ILP-Based Trajectory Scheduling Method: We model the two level hierarchical
multi-UAV system. designed and implemented a trajectory scheduling strategy for
UAVs using Integer Linear Programming (ILP). This method would focus on UAVs
deployed as dynamic sensors, with the primary objectives being to efficiently relay
collected data, minimize system energy usage, and reduce access latency. This
solution is to address the first objective.

2. Optimize Multi-Level Queue Management in Multi-UAV Networks: We employ
a Lyapunov-based online optimization approach for managing multi-level queues
within a multi-UAV network. The aim is to effectively handle the limited buffer
capacities of UAVs, ensuring optimal data management and processing within the
network. Additionally, we devised a technique that estimates the candidate locations
of I_UAV s where A_UAV can look for them and collect the data. This solution
addresses the second and third objectives.

3. Autonomous UAV Trajectory Scheduling Using DRL is designed for multi-UAV
systems. We initially introduced a Markov Decision Process (MDP) formulation for
the hierarchical structure of UAVs. This process involves separate encoding of state
and action information for both I_UAV s and A_UAV s. As a result, the fourth
objective, focusing on the use of RL algorithms for UAV trajectory scheduling, is
accomplished through this MDP formulation.

4. Our final objective addresses the enhancement of trajectory scheduling of UAVs based
on the Age of Information (AoI). We adjusted the reward system to optimize the
overall system objective for both groups of UAVs. Each group of UAVs independently
develops their policies, without the need for a centralized coordinating entity.

1.2 Summary of The Contributions

In this section, we provide a brief overview of each of the proposed solutions mentioned
earlier.

1.2.1 Optimizing Trajectory and Dynamic Data Offloading using a UAV
Access Platform

In our study, we introduce a heterogeneous multi-UAV system designed specifically for
dynamic data collection in environments lacking robust infrastructure, as depicted in
Figure 1.1. This system is composed of a single UAV access platform, termed as the
Access UAV (A_UAV ), and multiple Inspection UAVs (I_UAV s) The primary objective
of this arrangement is to optimize the trajectory scheduling of the A_UAV to significantly
reduce both energy consumption and access latency associated with the dynamic sensors
deployed as I_UAV s. The system comprises heterogeneous UAVs, including a group
of N Inspection UAVs (I_UAV s) and a single UAV Access Platform (A_UAV ). The
I_UAV s, which are smaller and more agile compared to the A_UAV , collect visual data
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Figure 1.1: Overview of Multi-UAV Hierarchical Network

from a set of k Points of Interest (PoIs) represented as li. Operating in infrastructure-less
environments with limited Access Points (APs) for cloud connectivity, the I_UAV s face
challenges in direct data transfer to the cloud due to their limited connectivity range. The
larger A_UAV , with higher computational capabilities, coordinates with the I_UAV s to
collect data. It maintains a constant height, confining its trajectory to a horizontal plane.
The A_UAV collects data from the dynamically moving I_UAV s and relays it to the
cloud.
The primary objective of optimizing the Access UAV’s (A_UAV ) trajectory is to efficiently
manage data collection and offloading from multiple Inspection UAVs (I_UAV s) in
infrastructure-deficient environments, impacting energy consumption and access latency.
By planning the A_UAV path strategically, unnecessary movements are minimized,
conserving energy through Distance and Access Latency Aware Trajectory DLAT

optimization, which selects I_UAV s based on proximity. This optimization also
reduces access latency by scheduling A_UAV visits efficiently, preventing I_UAV data
queue overflows and enabling real-time trajectory adjustments to maintain low latency.
In addition to trajectory optimization, our approach incorporates online optimization
techniques to tackle system instabilities, particularly those arising from queue backlogs.
This aspect of our work builds upon the foundational concepts introduced in [16, 17],
further enhancing the system’s efficiency and stability. The system involves a form of
multilevel queue. The queue of data for each I_UAV s Qi(t) has its own queue where
it stores the data it gathers from the points of interest (PoIs). This represents one level
of the queue system. The queue of Data for the A_UAV (L(t)) has its queue where it
accepts data from the selected I_UAV s in each time slot. This queue represents another
level of the queue system. So, in this system, there are multiple levels of queues: one
for each I_UAV s and another for the A_UAV . The collected data moves between these
queues based on the system’s operation and the offloading process.
Incorporating online optimization techniques, such as Lyapunov-based online
optimization, is crucial for managing system instabilities caused by queue backlogs in
multi-UAV systems. This adaptability is essential for maintaining the stability and
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Figure 1.2: System Setup for Reinforcement Learning based Trajectory Scheduling

efficiency of UAV operations in infrastructure-deficient environments.
A crucial feature of our proposed system is the independent operation of the set of
I_UAV s and A_UAV without any dependency on a central coordinating entity. To
ensure effective coordination among these UAVs, we have implemented a message-based
estimation of candidate locations of I_UAV s. This mechanism enables UAVs to share
and update information, ensuring synchronized and efficient operations despite the lack
of a centralized control system. We develop two ILP-Based algorithms for trajectory
scheduling: the Distance and Latency Aware Trajectory (DLAT) and the Hybrid Distance
and Latency Aware Trajectory (HDLAT), specifically for A_UAV s. The performance of
these proposed algorithms is evaluated against baseline models, with focus on optimizing
energy usage, covering more points, among others. Additionally, Lyapunov based
framework ensures system stability, particularly in managing the multilevel queue of
the system when all UAVs have limited buffer size. Overall, our work represents
a significant advancement in multi-UAV coordination, addressing critical aspects like
trajectory optimization, energy conservation, and autonomous coordination, which are
vital for effective multiple UAV-based operations in various scenarios.

1.2.2 Age-of-Information based Multi-UAV Trajectories using Deep
Reinforcement Learning

This research centers on utilizing UAVs to enhance the efficiency of crowd-monitoring
systems by reducing the AoI. It introduces a network of multiple UAVs, where some are
equipped with visual sensors (I_UAV s) and have limited transmission abilities, while one
serves as a data relay (A_UAV ) to a Base Station (BS). The focus is on planning the flight
paths of these UAVs to significantly impact the system’s AoI. Key to this is decentralized
planning for each UAV’s trajectory, coupled with optimizing their energy use. The project
stands out by minimizing AoI and access latency in a UAV network without relying on
a centralized controller for coordinating UAV movements. Challenges arise from limited
communication ranges and the use of UAVs as dynamic data-generating sensors. This
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study is among the first to explore two-level decentralized trajectory planning, aiming to
optimize energy use, AoI, and access latency in a UAV network using DRL. The system
setup is shown in Figure 1.2. We employ algorithms such as Deep Deterministic Policy
Gradients (DDPG) and Advantage Actor-Critic (A2C) methods. We validate our proposed
approach to baseline strategies based on heuristics and meta-heuristic techniques. Various
metrics such as Average AoI, average access latency, average cumulative reward, and total
operational time among others are analyzed to quantify the performance of our proposed
approach. The primary goal is to reduce both the AoI and energy consumption in a
hierarchical multi-UAV network, especially in areas without direct access to a Base Station.

1.3 Outline of The Thesis

This section provides an overview of the overall organization of the thesis in five chapters.
The brief description of each chapter of the thesis is as follows:

• CHAPTER 1: It presents an introduction to multi-UAVs, background on
reinforcement learning, and provides a brief overview of its algorithms. It
explores the motivation behind trajectory scheduling and multi-UAV coordination
for infrastructure-deficient environments, particularly for the application of area
surveillance.

• CHAPTER 2: This chapter offers a detailed review of existing literature related
to trajectory scheduling in multi-UAVs, encompassing a wide range of applications.
It also delves into the challenges and limitations found within these studies,
underscoring the gaps in current research.

• CHAPTER 3: In this chapter, a strategy based on Integer Linear Programming
(ILP), referred to as DLAT and HDLAT, is introduced for the trajectory scheduling
of UAVs. This approach is specifically designed to consider factors such as access
latency and the optimization of multiple queues within UAV networks. The proposed
strategy aims to enhance the efficiency and effectiveness of UAV trajectory planning
by integrating these critical operational parameters.

• CHAPTER 4: In Chapter 4, the focus is on area surveillance, where a solution
based on Deep Reinforcement Learning (DRL) is proposed for coordinating multiple
UAVs. This approach introduces a two-level decentralized system for scheduling
UAV trajectories. The design is tailored to optimize several key objectives within the
system, including battery life, AoI, and average access latency. This multi-objective
optimization ensures efficient and effective use of UAV resources while maintaining
high-quality surveillance.

• CHAPTER 5 : This chapter serves as the conclusion of the thesis, encapsulating
the significant contributions made through the research. It summarizes the key
findings and challenges in designing trajectories of UAVs. Furthermore, the chapter
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also offers a perspective on potential future avenues for research, suggesting how the
groundwork laid by this thesis could be expanded and explored further in subsequent
studies
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The purpose of this chapter is to discuss the multi-UAV coordination problem and work
done in literature in this direction. In this chapter, we will discuss contributions on
different algorithms for UAV trajectory scheduling. This literature review chapter aims to
provide a comprehensive overview of multi-UAV coordination techniques with challenges,
and their applications in various scenarios. We will highlight the approaches already
proposed in the literature and directions for further research.

2.1 Multi-UAV Trajectory Scheduling

Various studies have emphasized that trajectory planning of UAVs is an integral component
of the UAV-based inspection and monitoring applications [18, 19, 20]. In [21], the authors
presented the reconstruction of a 3D model and highlighted the importance of UAV
trajectories for computer vision techniques to reconstruct the 3D structure accurately.
In [22], the authors discussed how MEC can be divided into different architectures based
on the role of UAVs, which could be users, computing entities, or data relay entities. The
UAV-enabled MEC system is commonly employed in different scenarios to improve user
experience and service availability or to increase the system’s efficiency. The trajectory
optimization of UAVs is an integral part of such MEC systems as it affects the energy
consumption of the system and the service schedule of static or dynamic sensors. UAVs
could be deployed to relay data further or provide partial computing to improve the
system’s overall quality of service (QoS). In [23], multiple UAVs were deployed for data
relay tasks from mobile devices to the BS. The overall objective was to minimize the
energy consumption of mobile devices by jointly optimizing the task scheduling and
UAV trajectories in resource-constrained environments. Using a different approach, [24]
proposed a single UAV-mounted cloudlet to serve a set of mobile users.
The overall framework minimizes the energy consumption of mobile users while optimizing
the trajectory of the UAV-mounted cloudlet. The work of Xu et al. [25] also considered
the multi-UAV based computing framework to minimize the latency of mobile device
data relay task either by on-board computing or relaying to BS. In [26], a hierarchical
multi-coalition UAV MEC network was discussed where the resource-constrained UAVs
could offload task to other UAVs with high computational resources to improve the overall
system efficiency. However, the authors did not consider the queue optimization, dynamic
access of UAVs and challenges of an infrastructure-deficient environment as modeled in our
work. In [27], authors focused on minimizing the weighted sum of energy consumption of
UAV-enabled MEC system. They performed joint optimization of computation resource
scheduling, bandwidth allocation to user equipment (UEs), and trajectory optimization
of UAV-based edge servers with static ground sensors. The advantage of using multiple
UAVs in the MEC system is further studied in the work of Diao et al. [28], where the
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effects of joint optimization of trajectories of multiple UAVs to improve the system metrics
were considered. However, the dynamic evolution of the data queues of the UAV-based
MEC system could alleviate the problem of queue stability and data offloading.
The authors in [29] addressed the stability issues with a Lyapunov-based joint resource
optimization of bandwidth usage, processing power consumption, and transmission power.
Similarly, the work [30] focus on UAV association and Lyapunov optimization to meet the
system objective by dividing the solving the problem for each time slot. The Zhang
et al. [14] presented a complex system within a dynamic environment that involves
joint optimization of the computation resources of the multiple mobile users, UAV-BS,
and trajectory optimization. The authors in [31] discussed a UAV-assisted mobile edge
computing framework that jointly addressed energy minimization, trajectory optimization,
CPU frequency and offloading schedule. In [32], author considered the completion time
of the task along with the energy minimization and trajectory optimization of a UAV.
One significant difference between our work and those reviewed in the literature is the
estimation of the location of dynamic sensors (i.e. I_UAV ). This problem brings another
challenge of coordination among I_UAV s and A_UAV in the absence of ubiquitous
connectivity with a limited battery.
The literature also discusses the network scheduling problem along with trajectory
scheduling for UAV-based MEC. In [13], authors developed a hierarchical MEC
system considering online optimization of computational resources and reinforcement
learning-based trajectory optimization of multiple UAV-BSs for collecting data from a
set of static sensors. In [33], a sense and send transmission protocol was proposed
using multiple UAVs in a cellular network using an iterative trajectory sensing and
scheduling algorithm. However, this approach does not consider the distributed and
multi-layer interaction of UAVs to collect and offload data with limited connectivity. In
[34], the authors employed reinforcement learning for sensing and sending information
using a decentralized setup for multiple UAVs, however, their work did not consider the
multi-layer UAV network with limited connectivity. As apparent from the literature,
resource scheduling in multi-UAV based solutions is a challenging task, particularly in an
infrastructure-deficient environment with limited connectivity. The dynamic deployment
of mobile UAVs either to collect data or relay data to the cloud could mitigate the issues of
progress tracking and job monitoring in industrial settings and aid in the performance of
project deliveries. In this thesis, we propose a solution for end-to-end data offloading
in large infrastructure-deficient environments using a hierarchical multi-UAV system.
Based on the above literature the identified research objectives could be easily inferred as
following

1. The first objective focus to create an algorithms that enable multi-UAV systems
to function efficiently in areas with limited infrastructure. This involves designing
trajectory schedules for Access UAVs (A_UAV s) to efficiently collect data from
dynamic Inspection UAVs (I_UAV s) with limited communication range. The work
of [13], emphasize the importance of trajectory planning for UAV-based inspection
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and monitoring applications. However, their work focuses on static sensors.
In contrast, our research addresses the challenges of a two-level UAV network,
where dynamic sensors (I_UAV s) are used, adding complexity and requiring more
advanced coordination strategies.

2. The second objective aims on designing a coordination framework for multiple UAVs
operating in infrastructure environments. A key part of this framework is to manage
the limited buffer capacity of UAVs, making sure they handle data and communicate
efficiently within the network. The work of [13] employs Lyapunov optimization, but
it does not consider a two-level UAV system, which is another research gap.

3. The third objective is to design a framework that allows A_UAV s to estimate the
location of I_UAV s on their own, without relying on a central system, especially
in areas with poor infrastructure. The literature on multi-UAV systems does
not address decentralized control as mentioned in our work setup, highlighting a
significant research gap.

2.2 AoI and Reinforcement Learning for Trajectory
Scheduling

When monitoring large events of different types, stationary cameras fall short because
they can’t cover a wide area. Thus, to track crowd movement, it’s necessary to use
flexible options like UAVs equipped with cameras to gather visual information. Yet, the
restricted battery life and communication distance of UAVs create challenges that call
for the use of networks where UAVs relay information to each other [15]. Additionally,
real-time image analysis mandates up-to-date data, and minimizing delay is crucial for
such applications. Therefore, AoI metric proves to be a viable option for evaluating the
performance of time-sensitive solutions. In our research, our emphasis has been on crowd
management within an infrastructure-less environment, particularly in scenarios involving
unplanned massive gatherings in a given area.
The AoI [10] is a metric that measures the time elapsed between the generation of data and
its arrival at its destination through the network. It is particularly useful in evaluating the
performance of time-sensitive applications, such as monitoring and control applications.
A higher AoI implies a diminished value of information for the node generating the data
at the receiving end. The AoI has been extensively studied in the literature for various
applications, such as data collection or relay in sensor networks [35], surveillance [36], data
routing in wireless networks and UAV-aided vehicular networks [37] and others. Yates et
al. [38] conducted a survey that examined the evaluation of AoI across diverse systems.
This encompassed single-source to multiple server systems, multiple sources to a single
server system, multiple sources to multiple server systems, as well as variations in AoI
dependent on the specific system characteristics.
Nowadays, Deep Reinforcement Learning (DRL) based solutions for the cyber-physical
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system are well studied in literature owing to the real environment being dynamic and
stochastic [39]
Our work involves an AoI and access latency minimization approach in a multi-UAV
network, distinguishing it from the work of Biplav et al. [40]. Notably, our system lacks
a centralized controller to coordinate the trajectories of I_UAV s and A_UAV s.
In the literature, various studies are conducted on multi-UAV trajectory scheduling based
minimization of AoI and energy of the system. In the work [41], the primary objective is
to collect real-time data for crowd monitoring while optimizing the system’s energy and
ensuring efficient area coverage using a multi-UAV system. Another approach, proposed by
Chaudary et al. [42], focuses on a centralized two-level AoI minimization approach using
DRL for an IoT sensor network. Another work [43] presents the method that employs two
UAVs: one for data collection and the other for device charging. In this work DRL-based
techniques are utilized while designing UAV trajectory scheduling to optimize both average
AoI and energy consumption. On the other hand, [44] deploys multiple UAV-BSs as edge
servers to collect data from a distributed network of sensors. This study assumes the
persistent connectivity between the UAV-BSs and the cloud, as well as a connection to
the sensors.
The field of crowd monitoring using UAVs has been extensively studied in recent years.
In [45], a group of UAVs is deployed to monitor crowd dynamics. The UAV agents in this
work interact securely using a blockchain framework, achieving the system’s objectives.
Another work [46], uses genetic algorithms for crowd monitoring using multi-UAV system.
Based on the literature, we have identified two key research objectives for our second
work: The first is to create a decentralized method for scheduling the paths of A_UAV s
in unpredictable environments, focusing on reducing the Age of Information (AoI) and
overall energy use to ensure efficiency. Secondly, develop a similar decentralized method
for I_UAV s, aiming to reduce the access latency for Points of Interest (PoIs) and the
energy consumption of the UAVs.

2.3 Introduction to Various Metrics

Based on the literature survey, various metrics have been identified and utilized in Chapters
3 and 4.

• Average Access Latency: This parameter measures the average time delay
experienced by an I_UAV when trying to access the PoI. It is the time elapsed
between the last access of PoI and the current time slot.

• Total Time Slots: his parameter refers to the total number of discrete time intervals
(slots) considered in the system for trajectory scheduling.

• Average AoI (Age of Information): The Age of Information is a metric that measures
the freshness of the information available at the A_UAV . The average AoI is the
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average age of data from the time they are generated at I_UAV to the time they
are successfully received A_UAV .

• Average Crowd Density: This parameter measures the average number of people
present in a specific area covered by the network. It reflects the level of number of
people at particular PoI.

• Cumulative UAV Reward: This parameter is used in reinforcement learning (RL).
The cumulative reward represents the total accumulated score earned by agents over
a period, which could be based on various factors.

• Queue Length: Measures the average or maximum queue size at each UAV over time.
This metric is crucial for assessing the risk of buffer overflow and the effectiveness
of queue management strategies.

• Energy Consumption: Total energy consumed by the UAVs, during their flight and
operation. This includes energy used for movement, hovering, and data transmission.

• System Stability: Measured by the variability or constancy of the queue lengths over
time. A stable system exhibits minimal fluctuations in queue sizes.

• Total Flight Time: The amount of time UAVs spend in operation during a mission.
This metric is linked to energy consumption but focuses on operational efficiency
and mission duration.

• Coverage: Refers to the number of Points of Interest (PoIs) visited or covered during
a mission.

2.4 Chapter Summary

This chapter investigates the vast array of research on autonomous Unmanned Aerial
Vehicles (UAVs), focusing particularly on the coordination of multi-UAV systems for
trajectory scheduling. The main focus is to study different methods for managing UAV
trajectories in systems that need to balance several goals simultaneously. We explore
a wide range of algorithms for multi-UAV coordination, spanning from heuristic and
metaheuristic to rule-based and reinforcement learning (RL) techniques. Specifically,
we look into the works related to optimizing the Age of Information (AoI), minimizing
access latency, and enhancing energy efficiency, especially in the context of surveillance
applications. Additionally, we identify significant research gaps, such as infrastructure
deficiencies and the absence of reliable communication frameworks, which pose challenges
to the effective deployment of multi UAV solutions. Another research gap is the absence
of decentralized coordination in multi-UAV based autonomous solutions.
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3| Optimizing Trajectory and Dynamic
Data Offloading using a UAV Access

Platform

This chapter introduces a hierarchical multi-UAV system designed for dynamic data
collection in areas with sparse infrastructure. The system consists of a single Access
UAV (A_UAV ) and several Inspection UAVs (I_UAV s). The main objective of this
system is to optimize the trajectory scheduling of the A_UAV . This optimization aims
to decrease energy consumption and lower the time it takes to access data while ensuring
efficient coordination with the I_UAV s. Additionally, our study explores the application
of an online optimization framework, which is crucial for managing and controlling the
backlog in a multi-level queue system.
This chapter is organised as follows: Section 3.1 presents the proposed multi-UAV
framework and the system model. The overall system objective is discussed in Section
3.2. Sections 3.3 and 3.4 discuss the access latency aware trajectory optimization and
Lyapunov based system stability, respectively. Finally the sections 3.5 and 3.6 discuss the
experiments and results.

3.1 System Model

This section presents the key components of the proposed multi-UAV framework. The
system consists of heterogeneous UAVs, including a set of N Inspection UAVs (I_UAV s)
and a single UAV Access Platform (A_UAV ). I_UAV s are smaller in size and more
agile. They collect visual data from a set of k Point of Interests (PoIs) denoted as li.
Because the framework considers infrastructure-less environments, limited Access Points
(APs) available for cloud connectivity. Further, I_UAV s possess a limited connectivity
range, making it difficult to transfer data directly to the cloud. A_UAV , which is larger
in size and possesses higher computational capabilities, coordinates with the I_UAV s
to collect data. We assume that the A_UAV always maintains a constant height, thus
its trajectory lies in a horizontal plane. Figure 1.1 shows a high level overview of the
system under consideration with I_UAV s tasked to collect data from the PoIs, whereas
the A_UAV collects data from the dynamically moving I_UAV s and relay it to the
cloud.

3.1.1 Communication Channel

The communication between I_UAV and A_UAV (A2A channel) has a limited range
and capacity. This work assumes that the achievable data transmission rate of the
ithI_UAV in a given time slot as doffi (t). The communication channel between I_UAV s
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Figure 3.1: Division of a timeslot with different functions of A_UAV

and A_UAV involves both line-of-sight (LoS) and non-line-of-sight (NLoS) links as PoIs
can be distributed vertically and longitudinally. Furthermore, the shadowing effect is
also considered due to obstructions caused by buildings and other structures in the
surroundings [47, 48]. The path loss of a link is given as follows:

Lα = Lα(r0) + 10ϕ log(
r
′

r0
) +Xσ (3.1)

where Xσ is a shadowing factor that is indirectly proportional to the altitude of the PoI,
α ∈ {LoS,NLoS} and ϕ is the path loss exponent. The probability of LoS link, (PLoS),
depends on the angle of elevation and environmental constraints (eo and e1) as given in
Equation (3.2):

PLoS =
1

1 + eo.exp(−e1[θ − eo])
(3.2)

The average path-loss is calculated as:

L = PLoS .LLoS + (1− PLoS).LNLoS (3.3)

In this work, we have assumed Wi-Fi technology without a fixed access point for emergency
or infrastructure deficient scenarios [49]. The network of I_UAV s and A_UAV provides
connectivity to send collected data from PoIs to the cloud.

3.1.2 Data Gathering Process

Each PoI (lj) is a tuple (< dj , Oj >), where dj specifies the amount of data (e.g., images)
to be collected and Oj denotes the 3D coordinates of the PoI. The sequence of PoIs to be
visited is provided to the I_UAV s and the same is also shared with the A_UAV . During
the traversal along the sequence of PoIs, if the buffer of any of the I_UAV s overflows
then that I_UAV waits at the same PoI until its data is offloaded.
In order to gather and offload data, the A_UAV communicates with a single I_UAV
in a time slot. Let us denote the data gathered by each of the I_UAV s in a time slot
t by Ai(t). Let Qi(t) be the queue of the ithI_UAV and doffi (t) denotes the amount of
data offloaded to the A_UAV by the ithI_UAV in time slot t. The recursive equation to
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update the Qi(t) is as follows:

Qi(t+ 1) = max{Qi(t)− doffi (t), 0}+Ai(t) (3.4)

Let L(t) be the queue of the A_UAV where A_UAV accepts the data from the selected
I_UAV in the time slot t. The following equation updates L(t) recursively:

L(t+ 1) = max{L(t) + doffi (t))− doffaccess(t), 0} (3.5)

where doffaccess(t) is the amount of data offloaded to the cloud by the A_UAV in time
slot t. Figure 3.1 shows the different functions performed by an A_UAV in a single
time-slot. The decision function takes negligible time to decide on the next I_UAV for
data gathering, followed by the transition function where A_UAV takes τtrans time to
move near the next possible location to connect with the chosen I_UAV . The search
function (τsearch) estimates the location of the selected I_UAV based on the queue and
position estimation algorithm given in Algorithm 1. The bound on the maximum time
required to estimate the position of I_UAV s is discussed in Section 3.3.1. Finally, the
data transmission function establishes the successful communication with the I_UAV (if
it is not shadowed). The sequence of the functions mentioned above is repeated for every
time slot. The next section describes the objective of the system and formulates it as an
optimization problem.

3.2 System Objective

In the proposed framework, the offloading of data happens at two stages - 1) from I_UAV
to A_UAV and 2) from A_UAV to the cloud. Our main focus is to achieve end-to-end
data offloading to the cloud by minimizing the total energy consumption of the whole
system (Esys) given as:

Esys(t) = Etrans
access(t) + Ecomm

access(t) + Ehover
access(t) +

(
N∑
i=1

(Ecomm
i (t))

)
(3.6)

where Etrans
access(t) is the transition energy of the A_UAV , Ecomm

access(t) is the transmission
of the A_UAV , Ehover

access(t) is the hovering energy of A_UAV and Ecomm
i (t) is the

transmission energy of the ith I_UAV . The following subsections discuss the details
of calculating each component of energy consumption in Equation (3.6).

3.2.1 Transition energy of A_UAV

The transition energy of A_UAV refers to the energy consumed when moving from one
location to another [50, 18, 51] which is given as:

Etrans
access = κ · ||vel(t)||2τtrans (3.7)
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where κ is a constant that depends on the total mass of the A_UAV , vel(t) is the velocity
of A_UAV and τtrans is the time taken to transit from one location to another.

3.2.2 Transmission energy of A_UAV

A_UAV offloads data to the cloud via a wireless channel [52]. The transmission energy
consumed to transmit the data to the cloud is given as:

Ecomm
access(t) = (2

d
off
access(t)

W ·τ − 1) · N0W

ζ
· τcomm (3.8)

where τcomm is the time allotted for data transmission. Other parameters such as doffaccess(t),
W, τ , N0, ζ are defined in the List of Notations.

3.2.3 Hovering energy of A_UAV

A_UAV hovers above the PoI to collect the data. The hovering energy consumed to
collect the data is given as:

Ehover
access(t) = Phover · τhover (3.9)

where, Phover is the power consumed while hovering per unit time and τhover is the time
for hovering.

3.2.4 Transmission Energy of I_UAV s

The energy consumed for offloading the doffi (t) data bits at time slot t from the selected
I_UAV to the A_UAV using the Air to Air channel of bandwidth W Hz is given similarly
to Equation (4.3) as:

Ecomm
i (t) = (2

d
off
i

(t)

W ·τ − 1) · N0W

ζ
· τ (3.10)

The wireless (Air to Air) channel power gain (ζ) from I_UAV to A_UAV can be given
as:

ζ = g0 · (
r0
r′
)ϕ (3.11)

where g0 is the path loss constant, r0 is the reference distance, r′ is the distance between
the UAVs, ϕ is the path loss exponent and τ is the time. Given the system’s energy
consumption, our goal is to find the optimal settings to minimize the expected cumulative
energy across the time horizon. The decision variables in every time slot t that affect the
total system’s energy are given by the set π(t) = {pi(t), Paccess(t), Saccess(t)} corresponding
to the transmission energies of the I_UAVs & A_UAV, and the transition energy of
A_UAV, respectively. Moreover, the channel information for the data offloading task is
not deterministic and varies in the environment, hence the amount of data arrived at
the A_UAV becomes stochastic which depends on the channel characteristics and the
position of the selected I_UAV . Further, this framework does not consider the energy
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consumed for the movement of I_UAV s as the PoIs are predefined and the I_UAV s
follow a predetermined trajectory consuming constant energy. The overall optimization
model for the stable system performance is formulated as:

P1 min
π(t)

lim
T→∞

1

T

T∑
t=1

E[Esys(t)] (3.12)

s.t.

pi(t) ≤ pmax, ∀i, ∀t (3.13)

Paccess(t) ≤ Pmax, ∀t (3.14)

||Saccess(t)− Si(t)|| ≤ vmaxτ, ∀i, ∀t (3.15)
N∑
i=1

RLi(t)(1− xi(t))
N

≤ RLmax, ∀i, ∀t (3.16)

doffi (t) ≤ Qi(t), ∀i, ∀t (3.17)

doffi (t) ≤Wτcomm log2(1 +
ζpmax(t)

NoW
), ∀i, ∀t (3.18)

doffaccess(t) ≤Wτcomm log2(1 +
ζPmax(t)

NoW
), ∀t (3.19)

lim
T→∞

E[Qi(t)]

T
= 0, ∀i, ∀t (3.20)

lim
T→∞

E[L(t)]
T

= 0, ∀t (3.21)

Constraints (3.13) and (3.14) define the maximum transmission power of I_UAV s
and A_UAV , respectively. Constraint (3.15) limits the maximum transition energy of
A_UAV for every transition and Constraint (3.16) limits the time that has elapsed since
the last access of ith I_UAV to be less than RLmax. Additionally, the constraints (3.17),
(3.18) and (3.19) bound the number of transmitted bits. Constraints (3.20) and (3.21)
establish the rate stability of all the system queues (I_UAV s and A_UAV ). Next,
the model to optimize the trajectory of the A_UAV with respect to the trajectories of
I_UAV s is discussed.

3.3 Distance and Latency Aware Trajectory (DLAT)
Optimization

Flexible and dynamic trajectory planning of A_UAV is crucial to applications where
terrestrial communication infrastructure is missing. As already mentioned, the position of
I_UAV s changes in every time-slot since they move through different PoIs to collect data.
The A_UAV ’s trajectory needs to be planned so that it can connect and access an I_UAV
in a time-slot before the I_UAV ’s queue overflows. Whenever an I_UAV ’s queue gets
full, it does not move to its next designated PoI. Instead, it sojourns at the same PoI until
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it can offload its data to the A_UAV and free up the queue space. In order to choose one of
the I_UAV s to gather data, the A_UAV would require the real-time information about
the queues of all I_UAV s in each time-slot. This information is not available a priori due
to the dynamic nature of the system queues. We use a message passing based approach
for estimating the queues of I_UAV s to make a selection. Further, the trajectory of the
A_UAV must be optimized to consume minimal energy.
The trajectory optimization model of A_UAV optimizes the trade-off between the
transition energy of A_UAV and the access latencies of all I_UAV s. In addition, this
access latency based data offloading generates an access fair schedule for the I_UAV s to
offload their data to the A_UAV . The access latency (RLi(t)) of the ith I_UAV in the
time-slot t is the difference between the time of its last access by the A_UAV and the
current time-slot. The distance and latency aware trajectory optimization of A_UAV is
formulated as:

P2 min
Saccess(t)

T∑
t=1

N∑
i=1

||Saccess(t+ 1)− Saccess(t)||2 − V pi(t) (3.22)

s.t.

||Saccess(t)− Si(t)|| ≤ vmaxτ, ∀i, ∀t (3.23)
N∑
i=1

RLi(t)(1− xi(t))
N

≤ RLmax, ∀i, ∀t (3.24)

N∑
i=1

(xi(t) ·Qi(t)) ≥ 0, ∀i, ∀t (3.25)

N∑
i=1

xi(t) = 1, ∀i, ∀t (3.26)

pi(t) ≤ pmax, ∀i, ∀t (3.27)

xi(t) ∈ {0, 1}, ∀i, ∀t (3.28)

where the first constraint (3.23) signifies that the distance travelled within a time-slot is
limited by the maximum velocity. Constraint (3.24) limits the time that has elapsed since
the last access of ith I_UAV to be less than RLmax. The constraint in (3.25) selects the
I_UAV which has data to offload whereas (3.26) enforces the selection of only one of the
I_UAV s in a time-slot. The selected I_UAV transmission power should be bounded as
given in (3.27).

3.3.1 Estimating Position and Queue Length

The exact position and queue length of I_UAV s is not known to the A_UAV a priori.
The A_UAV maintains the last access statistics of each I_UAV using status messages.
The track of status messages received over time helps in computing the position (li) and
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queue length (Qi(t)) of I_UAV s in a time-slot. The status message comprises of the
remaining queue size at the time of access and the data to be collected at the current
PoI. Moreover, the pre-computed trajectory of each I_UAV provides the set of PoIs to
be visited by each I_UAV . Algorithm 1 describes the procedure to estimate the queue
length of each I_UAV in every time-slot.
The algorithm operates through a series of key steps. Initially, each I_UAV sends status
messages to the A_UAV when it comes within range for data offloading. These messages
include the I_UAV last known position and the remaining queue size, which are crucial
for the A_UAV to update its knowledge about each I_UAV state. The A_UAV uses
the data from these status messages to estimate both the position and the queue length of
I_UAV over time. This estimation is done using a recursive update method, predicting
the current state based on the previous state and the known behavior of the UAVs.
To calculate candidate positions, the algorithm starts with the last known position and
queue size of an I_UAV . It considers the data collection rate and buffer capacity, which
influence how quickly an I_UAV ’s queue fills up and when and where it might need to
pause for offloading. The time elapsed since the last update is used to project the current
queue size and position. If the I_UAV is expected to have filled its buffer, it might not
have moved beyond a certain point, constraining its current possible locations to a smaller
area.
As the I_UAV collects data while moving from one Point of Interest (PoI) to another,
if its buffer reaches capacity, it must wait for the A_UAV to offload data before moving
to the next PoI. This waiting time and the buffer overflow potential are key in predicting
the I_UAV ’s movement. Using minimum and maximum data collection scenarios, the
A_UAV calculates the possible range of positions (candidate positions) for each I_UAV .
This range is defined by how far the I_UAV could have traveled given its data collection
rate and buffer size.
Finally, with candidate positions mapped, the A_UAV plans its trajectory to efficiently
meet and offload data from the I_UAV s. The path chosen by the A_UAV aims
to minimize energy consumption while considering the urgency of data offloading for
I_UAV s with nearly full buffers. This algorithm involves a complex interplay of data
prediction, resource management, and real-time adjustment to operational constraints, all
of which are critical for maintaining system efficiency and functionality in a dynamic and
unpredictable environment.

3.3.2 Estimation of Search Time Bound

A_UAV estimates the location of I_UAV s in each time slot using the last access
statistics. It could search the set of candidate locations to locate the precise location
of selected I_UAV s, which contributes to the search time. The bound on the search
time depends on the data generation rate and the maximum buffer of I_UAV s as derived
below.
Lemma 1: The search time τsearch to locate the exact location of I_UAV with max
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Algorithm 1: Estimated position and queue length of I_UAV
1 Input: last_access_timeslot, cur_timeslot, last_accessed_position ,

last_accessed_buffer, data_left_at_last_accessed_position , Modes ,
Dmin, Dmax

2 Output: Qi,max, Qi,min ψmax, ψmin

3 Initialization:
4 time_elapsed←cur_timeslot−last_access_timeslot
5 li = last_accessed_positionofI_UAV s
6 ψmin = li
7 ψmax = li
8 Qi = last_accessed_bufferI_UAV s
9 curr_location_data = data left at last_accessed_position of I_UAV s

10 Modes =Min or Max;
11 D ← Dmin;
12 if Modes ==Max then
13 D ← Dmax;
14 end
15 for I_UAV s do
16 for Modes do
17 j ← 0
18 while j ≤ time_elapsed do
19 if Qi ≤ Qmax then
20 if curr_location_data is not collected then
21 li = last_accessed_position
22 Qi = last_accessed_buffer + data_at_current_loc
23 j ← j + 1;
24 else
25 i← i+ 1
26 li = next_position
27 Qi = last_accessed_buffer+Dmin or Dmax

28 j ← j + 1 if Mode ==Min then
29 Qi,min = Qi

30 ψmin = ψmin ∪ li
31 else
32 Qi,max = Qi

ψmax = ψmax ∪ li
33 end
34 end
35 else
36 li = last_accessed_position
37 Qi = last_accessed_buffer

break
38 end
39 end
40 end
41 end
42 return Qi,max, ψmax, Qi,min, ψmin
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buffer size Qmax is given as:

τsearch(|ψ|) ≤
1

3

σ ·Qmax · ϱ
vmax(µ2 − σ2)

(3.29)

where ϱ is the maximum distance between two consecutive PoIs in the possible set of
locations to be searched and |ψ| is the number of candidate locations for I_UAV and
data generation process at each PoI follows the normal distribution D ∼ N (µ, σ2)

Proof : The time taken to find the location of I_UAV depends on the travel distance to
cover the candidate PoI locations as given in Equation (3.30).

τsearch(|ψ|) ≥ |ψ| ·
ϱ

vmax
(3.30)

By generality,
|ψmin| ≥ |ψmax| (3.31)

where ψmin = {li, ..., li,min} is the set of locations visited when each location has minimum
data Dmin to be collected whereas ψmax = {li, ..., li,max} is the set of locations when
maximum data Dmax is present at each location. As the memory of each I_UAV is
bounded by Qmax, it covers less number of locations for ψmax as shown in Equation
(3.31). Similarly, the data collected in both scenarios will be the same as the maximum
memory size is fixed. The candidate locations are defined as the locations starting at li,max

and ending at li,min. Intuitively, the number of candidate locations |ψ| = |ψmin| − |ψmax|.

|ψmin|.Dmin = |ψmax| ·Dmax

|ψmin| = |ψmax| ·
Dmax

Dmin

|ψmin| − |ψmax| =
(Dmax −Dmin)

Dmin
· |ψmax|

|ψmin| − |ψmax| =
(Dmax −Dmin)

Dmin
· Qmax

Dmax

(3.32)

From the above derivation, the locations in the search trajectory are influenced by data
rate and maximum limit of memory size for I_UAV s. The upper and lower limit of
normally distributed data is given as Dmax = µ+ σ and Dmin = µ− σ respectively. Thus
Equation (3.30) can be written as

τsearch(|ψ|) ≤ 1
3

σ·Qmax·ϱ
vmax(µ2−σ2)

(3.33)
■

To calculate the upper bound for Equation (3.33), ϱ is the distance between consecutive
PoIs which could be calculated from the pre-calculated trajectory of I_UAV s based on
shortest path.
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3.4 Energy Aware Data Offloading

The model presented in P1 in Section 3.2 is a stochastic optimization problem as the
arrival of data in the system queue is stochastic. Using the online Lyapunov optimization
algorithm, we solve the stochastic optimization in P1 and jointly stabilize all queues
by finding the optimal policy to access each I_UAV in each time-slot. The quadratic
Lyapunov function, as given in Equation (3.36) associates a scalar measure to the queues
of the system. Further, the stability of the system is maintained by guaranteed mean rate
stability of the evolving queues as given in Equations (3.34) and (3.35).

lim
T→∞

E[Qi(t)]

T
= 0, ∀i (3.34)

lim
T→∞

E[L(t)]
T

= 0 (3.35)

Z(v(t)) =
1

2

[
N∑
i=1

Qi(t)
2 + L(t)2

]
(3.36)

where v(t) = [{Qi(t)}Ni=1, L(t)] consists of all system queues at a time t and Z(.) is
quadratic Lyapunov function of system queues.

The Lyapunov drift corresponding to the above function is given as:

△Z(v(t)) = E[(z(v(t+ 1))− z(v(t)))] (3.37)

The Lyapunov drift plus a penalty function is minimized to stabilize the queue backlog of
the system is given as:

△DP (t) = △Z(v(t)) + V · E[Esys(t)] (3.38)

where V is a positive constant that controls the trade-off between Lyapunov drift and the
expected system energy. A high value of parameter V signifies more weight on minimizing
the energy of the system at the cost of a high queue backlog. Therefore, V acts as a
trade-off parameter between system energy and queue backlog.

An upper bound on △Z(v(t)) can be derived as follows, (for details see [16])

△Z(v(t)) ≤E[−
N∑
i=1

Qi(t) · doffi (t)]+ E[L(t) · (−doffaccess(t))] + C (3.39)

where C is a deterministic constant.

As a result, the upper bound of the drift plus penalty function becomes

△DP (t) ≤ C − E[
N∑
i=1

Qi(t) · doffi (t)]− E[L(t) · doffaccess(t)] + V · E[Esystem(t)|v(t)] (3.40)
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Hence, the original formulation P1 can be reduced to P3 which bounds the system’s drift
to keep the system stable as follows:

P3 min
pi(t),Paccess(t)

E

[
−

N∑
i=1

Qi(t)
off
i (t)]

]
− E[L(t)offaccess(t)] + V · E[Esys(t)] (3.41)

s.t.

pi(t) ≤ pmax, ∀i, ∀t (3.42)

doffi (t) ≤ Qi(t), ∀i, ∀t (3.43)

doffi (t) ≤Wτcomm log2(1 +
ζpmax(t)

NoW
), ∀i, ∀t (3.44)

Paccess(t) ≤ Pmax, ∀t (3.45)

doffaccess(t) ≤Wτcomm log2(1 +
ζPmax(t)

NoW
), ∀t (3.46)

As can be observed, the constraints in P3 is a subset of the constraints in P1. To further
simplify the solution of the optimization formulation, we reformulate P3 as two separate
sub-problems provided the positions of A_UAV and I_UAV are fixed in a given time slot
t. The Lyapunov-based online optimization is optimal for a stochastic system to derive
the overall optimal solution [53].

3.4.1 Optimization of Transmission Energies of I_UAV s

The first sub-problem deals with the optimization of parameters related to the I_UAV .
The variables Saccess(t), i.e., the position of A_UAV and the offloaded data doffi (t) of the
selected ith I_UAV are coupled in a particular time-slot. The fixed position of A_UAV
decouples these variables. In the optimization model P 3.1, the transmission energy is
optimized for a single time-slot (t) given the position of A_UAV :

P 3.1 min
pi(t)
−

N∑
i=1

Qi(t) · doffi (t) + V · τcomm ·
N∑
i=1

pi(t) (3.47)

s.t.

pi(t) ≤ pmax, ∀i (3.48)

doffi (t) ≤ Qi(t), ∀i (3.49)

doffi (t) ≤Wτcomm log2(1 +
ζpmax(t)

NoW
), ∀i (3.50)

The objective function in P 3.1 is a convex function. The first & second constraints are
linear and the third constraint is upper bounded by a concave function. As a result, the
stationary point of the objective function is found to be: p∗i (t) = min{max{(Qi(t)W

V −
NoW
ζ ), 0}, pmax}.
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3.4.2 Optimization of Transmission Energy of A_UAV

The second sub-problem deals with the optimization of the A_UAV parameters for the
amount of data offloaded to the cloud at time t. The updated optimization model is given
as:

P 3.2 min
Paccess(t)

−L(t) · doffaccess(t) + V · τcomm · Paccess(t) (3.51)

s.t.

Paccess(t) ≤ Pmax (3.52)

doffaccess(t) ≤ L(t) (3.53)

doffaccess(t) ≤Wτcomm log2(1 +
ζPmax(t)

NoW
) (3.54)

The model P 3.2 has a convex optimization objective subject to convex constraints to
solve for the optimal transmission power of the A_UAV . The stationary point of the
optimization model is Paccess(t) = min{max{(L(t)WV − N0W

ζ ), 0}, Pmax}.
Thus, the derived stationary points of the optimization model using the Lyapunov
optimization framework are calculated in every time-step to optimize the A_UAV
trajectory and data-offloading tasks. The overall proposed solution approach is presented
in Algorithm 2. Next, we discuss the experimentation setup for evaluating the proposed
solution.

Algorithm 2: Proposed Solution Approach for Trajectory Scheduling in the
System
1 Input: Trajectories of all I_UAV s, List of Points of Interest (PoIs) li, Time

horizon T
2 Output: Scheduled trajectories for A_UAV , Data collection plan Initialize:

Trajectories of all I_UAVi and list of PoIs li.
3 Time: t = 0 Whilet ≤ T
4 Compute and offload doffaccess(t) as using P 3.2
5 Update L(t)
6 Using Algorithm 1 estimate the {Qi(t)}Ni=1and {Si(t)}Ni=1

7 Select the ith I_UAV to collect data using P2
8 Compute doffi (t) for ithI_UAV using P 3.1 to offload data to A_UAV
9 Update Qi(t)

10 t = t+1

3.5 Experimentation

In this section, we present the simulation setup to validate the efficacy of our proposed
Distance and Latency Aware Trajectory Optimization with Lyapunov based energy-aware
data offloading followed by results and discussions. The simulation parameters are listed
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in Table 3.1.

Table 3.1: List of Simulation Parameters

Parameters Values
Channel Bandwidth 1 MHz

κ 1
Noise Power for I_UAV 10−13

Noise Power for A_UAV 10−20

The path-loss constant g0 10−4

The path loss exponent θ 2 to 4
Memory capacity of I_UAV (Memmax) 105bits

We have considered a 600 x 600 square meter area with PoIs spread along the region
in disjoint clusters and at heights ranging from 70 to 80 meters above the ground. All
experiments are conducted for at least 30 times and the average of results are plotted. We
sample 150 PoI locations uniformly randomly in three disjoint clusters. From a practical
point of view of a multi-UAV system, we consider a system of three I_UAV s with one
A_UAV in all the simulation experiments. Each I_UAV is assigned to a cluster where
I_UAV s randomly chooses a starting location within the cluster. The sequence of PoIs
to be visited by each I_UAV is generated using the shortest path algorithm. Before
proceeding to the next PoI, an I_UAV collects all the data (Ai(t)) from that PoI. In
the data collection process, an I_UAV may sojourn at the same PoI across multiple
time-slots until all the data (Ai(t)) of PoI is collected. For each PoI, the amount of data
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Figure 3.2: Analysis of Average Transmission Power of A_UAV .

to be collected is modeled as a Gaussian distribution with a mean of 150 Kb and variance of
50 Kb. The A_UAV gets partial information about the data generated at each location so
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it could not accurately estimate the location of I_UAV in the next time slot; as a result,
it has to search for candidate locations to access the selected I_UAV s as discussed in
Section 3.3.1. The trade-off parameter V ranges from 10 to 1010. The length of each time
slot(τ) is 25 seconds divided into different sub slots as shown in Figure 3.1. The selection
of I_UAV is assumed to take negligible time whereas transition may take up to 20 sec.
The search and transmit function takes total of 5 seconds. The maximum transmission
power for A_UAV and I_UAV are 5W and 2W, respectively [17]. The other simulation
parameters are listed in Table 3.1.
The system’s performance can be assessed using several key metrics. These metrics help
in quantifying the effectiveness and efficiency of the proposed methods under various
operational scenarios. The following metrics are used in our work to evaluate performance.

• Queue Length: Measures the average or maximum queue size at each UAV over time.
This metric is crucial for assessing the risk of buffer overflow and the effectiveness
of queue management strategies.

• Access Latency: The time gap between when data is ready to be offloaded and when
it is offloaded.

• Total Flight Time: The amount of time UAVs spend in operation during a mission.
This metric is linked to energy consumption but focuses on operational efficiency
and mission duration.

• Energy consumption: Total energy consumed by the UAVs, particularly the
A_UAV , during their flight and operation. This includes energy used for movement
and hovering energy.

• Total Number Of PoIs: Refers to the number of Points of Interest (PoIs) visited or
covered during a mission.

To validate the performance of our proposed approach, we compared our proposed
approach with a set of baseline approaches on two broad categories of optimization
parameters viz. Trajectory planning and Data offloading. We consider the following
baseline approaches:

• Distance Aware Trajectory planning (DAT): In this approach, the A_UAV selects
to access an I_UAV based on the shortest distance from the current location in
each time slot.

• Round Robin based Trajectory planning (RR): In this approach, the A_UAV
accesses I_UAV s in sequential order in each time slot.

• Maximum Transmission Power (MAX) data offloading: In each time slot, the
A_UAV and the I_UAV operate at the maximum transmission power to offload
data.

The proposed approaches are as follows:
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• Distance and Latency Aware Trajectory Optimization (DLAT): In this approach,
the A_UAV selects the I_UAV based on the minimum distance, with maximum
bits to offload and access latency constraint as given in the trajectory optimization
problem.

• Hybrid Approach for Trajectory Scheduling (HDLAT): In this approach, the
A_UAV selects the I_UAV based on the minimum distance and access latency
constraint as given in the trajectory optimization problem up to a certain threshold
of battery, i.e., 75% of the total battery. Beyond the threshold, the scheduling
algorithm switches to the DAT strategy (proposed approach).

• Lyapunov Optimization for data offloading: In each time slot, the A_UAV and
the I_UAV calculate the optimal value of transmission energy using the Lyapunov
Optimization.

Experiments were conducted by taking a combination of one of the approaches from both
the categories: 1) DAT + MAX, 2) DLAT + MAX, 3) RR + MAX, 4) HDLAT + MAX,
5) DAT + Lyapunov, 6) RR + Lyapunov 7) DLAT + Lyapunov (proposed approach) and
7) HDLAT + Lyapunov
To validate our proposed approach, we compared it with a set of baseline approaches
based on two broad categories of optimization parameters: Trajectory Planning and Data
Offloading. The following combinations were used in our experiments:

• DAT + MAX: Distance Aware Trajectory planning combined with Maximum
Transmission Power data offloading.

• DLAT + MAX: Distance and Latency Aware Trajectory Optimization combined
with Maximum Transmission Power data offloading.

• RR + MAX: Round Robin based Trajectory planning combined with Maximum
Transmission Power data offloading.

• HDLAT + MAX: Hybrid Approach for Trajectory Scheduling combined with
Maximum Transmission Power data offloading

• DAT + Lyapunov: Distance Aware Trajectory planning combined with Lyapunov
Optimization for data offloading.

• RR + Lyapunov: Round Robin based Trajectory planning combined with Lyapunov
Optimization for data offloading.

• DLAT + Lyapunov: Distance and Latency Aware Trajectory Optimization combined
with Lyapunov Optimization for data offloading.

• HDLAT + Lyapunov: Hybrid Approach for Trajectory Scheduling combined with
Lyapunov Optimization for data offloading.

These combinations help in evaluating the performance of the proposed approach under
various optimization strategies.
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3.6 Results and Discussions

In this section, we discuss the comparative performances of our proposed approaches with
baseline approaches.
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3.6.1 Transmission Power and Average Buffer Size

Figure 3.2 depicts the effect of the value of parameter V with respect to the transmission
power of the A_UAV . It is evident from Figure 3.2 that all combinations with max
power consumption for data offloading always consume the maximum energy, making
the average transmission power consumption the same across different values of V. For
baseline and proposed approach with Lyapunov-based data offloading, a drop in the energy
consumption can be observed for log(V) values beyond 7, because large V forces the system
to consume less energy, consequently less data is transmitted to A_UAV . It can be
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Figure 3.7: Analysis of Average Buffer of A_UAV

observed in Figure 3.8 that the average buffer length of I_UAV s increases in line with
the rise of V after hitting the inflection point. The value of V between 6 and 7 could
maintain the queue buffer and consume less transmission energy for I_UAV s. Similarly,
A_UAV has fewer data transmitted from the I_UAV s for higher values of V, which
would decrease the total data collection or transmission further by A_UAV as shown in
Figure 3.7.

3.6.2 Hovering energy of A_UAV

The plot in Figure 3.5 depicts the impact of trade off parameter V on the hovering energy
of A_UAV . The total hovering energy starts increasing after the inflection point because
A_UAV takes more time slots to collect the same amount of data from I_UAV s. As a
result, the energy consumption of A_UAV significantly increases for DAT and HDLAT,
whereas it remains constant for DLAT (total flying time is less). Similarly, Figure 3.6
shows the evolution of total transition energy with V. It is interesting to observe that for
DAT baseline A_UAV stays in the field for a longer time. As a result, transition energy
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is higher compared to DLAT and HDLAT. However, the A_UAV transition energy starts
decreasing after the inflexion point. Similarly, DAT and HDLAT consume less battery
in every time-slot as both save on transition energy by selecting the nearest I_UAV .
This allows A_UAV to stay longer in the field, which is illustrated in Figure 3.4. The
baseline DAT remains for a more extended time, whereas RR stays for the least number of
time slots before running out of battery. The proposed approaches of DLAT and HDLAT
lie between the extreme baselines for the different analyses conducted. This shows that
the proposed approach has an optimized trade-off between energy saving along with the
end-to-end data offloading from multiple I_UAV s.

3.6.3 I_UAV s Access Latency

Figure 3.3 shows the effect of the trade-off parameter V on the average access latency
of the system. The trajectory of the A_UAV affects the access sequence and waiting
times of the I_UAV s to offload their data to A_UAV . This can be observed in the
proposed DLAT + Lyapunov, which has an upper bound on access latency throughout
the system. Similarly, RR-based baseline approach has an access latency of 2 time-slots
whereas for both DAT and DAT + MAX baseline approaches, the average access latency
is higher. The average access latency for DAT baseline approach becomes worse with
increasing V. The same remains stable for DLAT in both scenarios. HDLAT, as per
expectation, remains between the DLAT and DAT approaches. It could be related to the
fact that an increase of V causes the A_UAV to spend more time slots to collect the
data from I_UAV s. An increase in flying time of A_UAV is influenced by a decrease in
transition and transmission power, which increases the average access latency of DAT and
HDLAT approaches. In contrast, it remains constant for DLAT and RR because of latency
constraints. Our proposed approaches lie within the extreme baselines and maintain the
average access latency by saving on transmission energy and transition energy in HDLAT
by switching from DLAT to DAT after 75 percent of the battery is consumed.

The Average energy consumption of A_UAV includes transmission, transition, and
hovering energy consumption. Similarly, the tradeoff between the average access latency
and the average energy consumption can be observed as the average access latency of the
system reduces, the average energy consumption increases. By the definition and from
Figures 3.2, 3.5, 3.3 and 3.6, this can be observed that the RR baseline has the least
average access latency as well as the highest energy consumption whereas, DAT has the
highest average access latency and the least energy consumption.

From Figure 3.3, this can be observed that for HDLAT the average access latency of
A_UAV is reduced by approximately 70% as compared to the greedy approach(DAT)
and remains constant for DLAT. The RR baseline has the least average access latency,
but the gap between HDLAT and RR is much lesser as compared to the gap between
HDLAT and DAT.
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3.6.4 Coverage of PoIs

The coverage of PoIs by the A_UAV can be defined as the number of PoI locations
whose data has been offloaded to A_UAV by the I_UAV s. Figure 3.9 shows the effect
of trade-off parameter V value on the number of PoIs covered in the system. It can be
observed that A_UAV can serve more PoIs for both DLAT and HDLAT approaches than
the RR baseline approach. The DAT-baseline approach serves relatively more PoIs than
DLAT and HDLAT by saving on transition and transmission energy, but not maintaining
low access latencies of I_UAV s.

In Figure 3.10, the effect of increasing the buffer size of I_UAV s on the PoIs is shown.
It can be observed, the number of PoIs served increases with an increase in buffer size. In
our proposed approach, the performance of DLAT and HDLAT is a tradeoff between two
extreme baselines. DAT baseline approach covers more locations but at the cost of access
latency, as shown in Figure 3.11. Similarly to average access latency, the tradeoff between
the PoIs coverage and the average energy consumption is also evident from Figures 3.6
and 3.9. The approach with higher average energy consumption also has a reduced PoIs
coverage. RR has the highest energy consumption and covers the least number of PoIs,
whereas DAT has the least energy consumption but covers the maximum number of PoIs.
In the optimal processing zone of log(V) between 6 and 7, HDLAT covers more than
double the number of PoIs as compared to RR while consuming less energy.
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3.7 Chapter Summary

This chapter introduces the Distance and Latency Aware Trajectory (DLAT) and Hybrid
Distance and Latency Aware Trajectory (HDLAT) algorithms, tailored for planning the
flight paths of Access UAVs in a hierarchical multi-UAV network. These algorithms
are crafted to tackle challenges such as limited infrastructure, constrained battery life,
and the finite buffer capacity of each UAV. To enhance coordination in the absence of
a central controller, we incorporate a unique message-based method that allows Access
UAVs (A_UAV s) to estimate the locations of I_UAV s independently. Furthermore,
we employ a Lyapunov-based online optimization framework to effectively manage the
multilevel queue system. However, there are still areas for improvement, particularly in
refining the trajectory scheduling for I_UAV s and moving towards a more autonomous
system operation.



4| Age-of-Information based Multi-UAV
Trajectories using Deep Reinforcement

Learning

This chapter delves into the trajectory scheduling of multiple UAVs in environments with
limited infrastructure, focusing on minimizing the Age of Information (AoI). It presents
the Markov Decision Process (MDP) formulation for a hierarchical multi-UAV system.
In this research, we explore the use of the Deep Deterministic Policy Gradient (DDPG)
algorithm and the Advantage Actor-Critic (A2C) network for developing effective UAV
policies. The main objective is to reduce AoI and energy consumption for access UAVs.
We aim to enhance the coverage of Points of Interest (PoIs) with higher crowd density,
decrease access latency to these PoIs, and optimize energy efficiency.

This chapter is divided into the following sections. In section 4.1 the proposed
decentralized AoI minimal scheduling for two-level networks is discussed. The section 4.2
discusses the MDP formulation for I_UAV s and A_UAV . The section 4.5 and section 4.6
discuss the experiments and results. The chapter concludes with section 4.7, providing a
concise summary of the covered content.

4.1 System Model

In this section, we introduce a multilayer network model designed for crowd surveillance
utilizing multiple UAVs in an infrastructure-less environment, as illustrated in 4.1. The
group of I_UAV s is tasked with monitoring an area containing randomly distributed
Points of Interest (PoI) for crowd surveillance. However, due to the limited transmission
range of I_UAV s, one-hop transmission becomes ineffective. Consequently, an A_UAV
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Figure 4.1: System Setup for Reinforcement Learning based Trajectory Scheduling



40
Chapter 4. Age-of-Information based Multi-UAV Trajectories using Deep Reinforcement

Learning

is deployed as an access platform to relay the data collected by I_UAV s to the base
station. The PoIs are organized into distinct clusters, with each I_UAV assigned to
cover one cluster of PoIs. The set of I_UAV s is denoted by N , and a single A_UAV
is deployed for assisting in data relay to the base station. Without loss of generality, the
location of Point of Interest li is represented as (xi, yi, 0). At time slot t, the position of
I_UAV is denoted by Si(t) = (xi(t), yi(t), zi(t)), and the position of A_UAV is denoted
by Saccess(t). The maximum velocity of both A_UAV and I_UAV s is constrained due
to mechanical limitations. Each PoI has a distinct crowd arrival rate, which is not known
in advance to either set of UAVs. Each I_UAV is assumed to be equipped with a visual
sensor, enabling it to detect the number of people in each frame of the PoI and store the
latest information of PoI within the assigned cluster. The trajectory of I_UAV s is jointly
designed while considering battery and latency to serve the PoIs. Similarly, the trajectory
of A_UAV is designed to relay data from the I_UAV s to the BS while optimizing battery
and AoI. The 4.1 illustrates the system design where the A_UAV interacts with I_UAV s
to relay data to the BS.

4.1.1 Data Freshness

The concept of Age of Information (AoI) [38] is used to quantify the freshness of data
at the jth Point of Interest (PoI), which is measured by the elapsed time since the latest
information was generated at that PoI.

AoIjaccess(lj , t) = t− t′ , (4.1)

where
AoIjaccess(lj , t) = t− t′ is AoI of jth PoI at time slot t on A_UAV . This is the difference
between current time slot and time slot t′ when it is last accessed by I_UAV .

4.1.2 Transition Energy

The transition energy of A_UAV and I_UAV refers to the energy consumed during the
movement from one point to another. It can be expressed as follows:

Etrans
access = κ · ||vel(t)||2τtrans (4.2)

where κ is a system constant specific to UAVs, vel(t) represents the velocity of the UAVs
at time t, and τtrans denotes the time taken to transit from one location to another. This
equation calculates the energy consumption during the movement of UAVs based on their
velocity and the time taken for transition.



Chapter 4. Age-of-Information based Multi-UAV Trajectories using Deep Reinforcement
Learning 41

4.1.3 Communication energy

I_UAV offloads the data to the A_UAV through a wireless channel. The energy
consumed to transmit the data from I_UAV to the cloud is given as:

Ecomm
i (t) = (2

d
off
i

(t)

W ·τ − 1) · N0W

ζ
· τcomm (4.3)

where τcomm is the duration for communication, doffi (t) is the number of bits offloaded, W
is the bandwidth, τ is the total duration of the timeslot, N0, ζ are communication channel
parameters.

4.1.4 Communication Channel

The connection between I_UAV s and A_UAV is restricted by limited communication
range, which means communication is only possible when they are within each other’s
communication range. The path loss of a link between I_UAV s and A_UAV in
the presence of both line-of-sight (LoS) and non-line-of-sight (NLoS) conditions can be
expressed as:

Lα = Lα(r0) + 10ϕ log(
r
′

r0
) (4.4)

where α ∈ {LoS,NLoS} and ϕ is the path loss exponent. The probability of LoS link,
(PLoS), depends on angle of elevation and environmental constraints (eo and e1) as given
in Equation 4.5:

PLoS =
1

1 + eo.exp(−e1[θ − eo])
(4.5)

The average path-loss is calculated as:

L = PLoS.LLoS + (1− PLoS).LNLoS (4.6)

4.2 RL based Trajectory Scheduling

In this section, we propose a decentralized solution utilizing a two-level (DRL) approach
to optimize the trajectory scheduling of UAVs. The solution operates in a fully distributed
manner, with each UAV learning its policy for trajectory scheduling. The training and
evaluation processes are conducted independently for each UAV.
The problem is formulated as a Markov Decision Process (MDP), where each I_UAV can
only observe its local environment. The objective is to minimize the expected cumulative
energy consumption and latency over the time horizon for each I_UAV . This objective
is captured by Equation 4.7, which represents the optimization goal of the problem.
By utilizing DRL in a distributed manner, each I_UAV can learn its own trajectory
scheduling policy, taking into account its local environment and optimizing for energy
efficiency and latency. This approach enables effective coordination among the UAVs
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while achieving the joint goals of energy efficiency and minimizing AoI and latency.

min
li(t)

lim
T→∞

1

T

T∑
t=1

(E[Ei(t)] + E[AoIi(t)] + E[RLi(t)]) (4.7)

0 ≤
T∑
t=1

Bi(t) ≤ Bmax, ∀i ∈ {1, 2, .., N}, ∀t ∈ T (4.8)

||Si(t)− Si(t− 1)|| ≤ vmaxτ, ∀i ∈ {1, 2, .., N}, ∀t ∈ T (4.9)

0 ≤
T∑
t=1

Baccess(t) ≤ Bmax
access, ∀i ∈ {1, 2, .., N}, ∀t ∈ T (4.10)

||Saccess(t)− Saccess(t− 1)|| ≤ Vmaxτ, ∀t ∈ T (4.11)

N∑
i=1

ui(t) = 1, ∀i, ∀t (4.12)

ui(t) ∈ {0, 1}, ∀i, ∀t (4.13)

P∑
i=1

xi(t) = 1, ∀i, ∀t (4.14)

xi(t) ∈ {0, 1}, ∀i, ∀t (4.15)

The problem introduces several constraints that govern the behavior of the I_UAV s.
Constraint (4.8) and (4.10) sets a maximum limit on the energy or battery capacity of
each I_UAV and A_UAV respectively, ensuring they does not exceed a certain threshold.
Similarly, constraint (4.9) and (4.11) restricts the transition energy of the I_UAV s during
each time slot to a predefined maximum value. These constraints ensure energy efficiency
and prevent excessive energy consumption.
Constraints (4.14) and (4.15) enforce the selection of only one PoI by each I_UAV in
each time slot. This limitation ensures that each I_UAV focuses on monitoring a single
PoI at a time. Similarly, for A_UAV the constraint (4.12) and (4.13) restricts its focus
to only one I_UAV in a given timeslot.

4.3 MDP Formulation

To address the problem 4.7, we reformulate it as an MDP (Markov Decision Process) for
trajectory scheduling of the I_UAV s and A_UAV . An MDP is represented by the tuple
⟨O,A,R, P ⟩, where O, A, R, and P denote the state set, action set, reward, and state
transition probability, respectively. In our context, each I_UAV s and A_UAV is treated
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as an agent in the formulated MDP. We define the observation set, action set, and reward
function for the UAV agents as follows:

• The observation space or state set includes the

Oi(t) = {Bi(t), RLl1..p(t), Sl1..p(t)} (4.16)

The current observation of the i-th I_UAV at time t is denoted as Oi(t). It consists
of variables such as the battery level Bi(t) of the i-th I_UAV , the latency RLl1..p(t)

of the p-th Point of Interest (PoI), the location Sl1..p(t) of the p-th PoI.

Oaccess(t) = {Saccess(t), Baccess(t), AoI1..j(t), Sl1..p(t)} (4.17)

The observation space of A_UAV at time t is denoted as Oaccess(t), which includes
information such as the current position, battery level Baccess(t), the AoI of each
I_UAV (AoI1..j(t)), and the location of the pth PoI (Sl1..p(t)).

• Reward: The reward function is a key component in reinforcement learning as it
guides the learning process toward the optimal policy. Its quality directly affects
the convergence of the network training. In case of A_UAV , the reward function is
defined as a combination of two factors: the average latency of the cluster and the
battery consumption of A_UAV in its assigned cluster. The reward function can
be expressed as follows:

raccess(t) = −(AoIavgaccess(t)) +
Bleft

access(t)

Baccess(t)
− rpenalty

access (4.18)

ri(t) = −(RLavg
i (t)) +

Bleft
i (t)

Bi(t)
− rpenalty

i + CIi (4.19)

The equation 4.19 and 4.18 above calculates the reward function used by the
reinforcement learning agent to determine the optimal policy based on the expected
returns. The reward function depends on two factors: the average latency of the
cluster assigned to the ith I_UAV , and the ratio of the battery used in the given
interval, Bleft

i (t)/Bi(t), by the I_UAV or A_UAV agent. Additionally, a penalty
term introduced in equation 4.20, rpenaltyi , is introduced to capture the relationship
between the average access latency value at the agent(I_UAV s and A_UAV )
and the total available time slots. The last component signifies the number of
people(crowd density) seen so far by ith I_UAV . The constant Ki is a positive
value. The first two conditions impose an additional penalty on the agent if the
average latency exceeds half of the total number of time slots in any given episode.
The last two conditions prevent the agent from always selecting the PoI with either
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the highest or the lowest AoI. These constraints encourage the agent to explore and
avoid getting stuck at a single PoI during the learning process.

rpenalty
i =


+Ki if RLi ≥ T/2

+Ki if RLi(t) ≡ min(RLi(t))

0 else

(4.20)

• Action: The action of I_UAV encompasses the PoI index, while the action of
A_UAV includes the index of I_UAV .

aaccess(t) = i (4.21)

ai(t) = lj(t) (4.22)

4.4 DRL based UAV Trajectory Scheduling

In the research discussed Deep Reinforcement Learning (DRL) methods like Deep
Deterministic Policy Gradients (DDPG) and Advantage Actor-Critic (A2C) are employed
to optimize the trajectory scheduling of I_UAV s and A_UAV s. These advanced DRL
methods are particularly effective in dynamic and complex environments where traditional
heuristic or rule-based approaches may not perform well.
The DDPG algorithm uses an actor-critic framework, which consists of two neural
networks: the actor-network and the critic network. The actor-network at A_UAV selects
actions, which in this case are the indices of I_UAV s to be served next. The critic network
evaluates these actions by predicting the expected rewards.
The A2C method also uses an actor-critic approach but enhances learning stability
through advantage estimation. This technique reduces the variance in the value function
estimation, making the learning process more efficient and effective. The actor-network
in A2C at A_UAV selects the index of the I_UAV to be served, while the critic network
evaluates the chosen actions by estimating the value of the current state.

4.4.1 Complexity Analysis

Complexity based on DRL algorithm is determined by the configuration of the neural
networks utilized. In our work, actor critic based DDPG and A2C are implemented so it
is calculated based on the number of neurons present in each layer of both the actor and
critic networks. During the training phase, this complexity is expressed as a function that
considers the quantity of fully connected layers and the dimensions of the input layers.
However, in the testing phase, each agent utilizes only its actor network, resulting in
a simplified computational load. The algorithm’s convergence is facilitated through the
application of a gradient descent method.
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Algorithm 3: DRL based Trajectory Scheduling
1 Input: LR_A_ddpg, LR_C_ddpg, LR_A_a2c, LR_C_a2c Zui , Zaccess

2 Initialize environment and UAV agents
3 Initialize DRL agent and replay buffer for each UAV i ∈ N and A_UAV
4 Initialize state normalizers and exploration variables
5 for UAV = ui, uj , ..., un, A_UAV do
6 for episode=1,2,... do
7 Initial observation Oi(t), Oaccess(t)
8 while t ≤ T and Baccess(t) > 0 and Bi(t) > 0 do
9 Select action ai(t) and aaccess(t)

10 compute battery left Baccess(t) and Bi(t) for A_UAV and I_UAV
11 Each I_UAV ui makes the next observation Oi(t) and receives reward

ri(t) from the environment.
12 A_UAV makes the next observation Oaccess(t) and receives reward

raccess(t) from the environment.
13 Store transition < Oi(t), ai(t), ri(t), Oi(t+ 1) > in replay buffer Zui

14 Store transition < Oaccess(t), aaccess(t), raccess(t), Oaccess(t+ 1) > in
replay buffer Zaccess

15 if aaccess(t) == ui then
16 update AoI1...j(t) at A_UAV // Considering ui and A_UAV

communicated at time t
17 Update the input state as given in Equation 4.17
18 end
19 if ai(t) == i then
20 update AoI1...j(t) at ui // Considering ui visited ith PoI at time t
21 Update the input state as given in Equation 4.16
22 end
23 Sample Minibatch for each UAV agent.
24 Upadate the weights of network as per rules defined for A2C or DDPG

in every TS steps.
25 end
26 end
27 end
28 Performance metrics

4.5 Experiments

In this section, we describe the simulation setup used to evaluate the effectiveness of our
proposed DRL-based trajectory optimization for I_UAV s and A_UAV , followed by the
presentation of results and discussions. Our experiments are conducted in an area of 400
by 400 square meters. The Points of Interest (PoIs) are distributed across the region in
separate clusters.
The simulation setup includes three I_UAV s acting as data collectors and the A_UAV
serving as the access platform. The optimization of AoI and energy consumption is
performed jointly by the I_UAV s and A_UAV . The I_UAV s autonomously plan
their data collection and data relay schedules in a decentralized manner. Each I_UAV
determines the next PoI to visit for data collection based on factors such as the crowd
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density observed so far, access latency of the PoI, and its current battery level. Similarly,
the A_UAV considers the current AoI of the system and its own battery level to schedule
the I_UAV s for the next time slot. The number of people (crowd density) present at
each PoI is unknown to the I_UAV s beforehand. For simulation purposes, the crowd
density at each PoI is generated from pre-defined normal Gaussian distributions. It is
important to note that our proposed solution is decentralized, meaning that the I_UAV s
and A_UAV make decisions independently based on their observations and objectives.
Due to limited communication and lossy channels at low altitudes, the I_UAV s are unable
to directly communicate with each other. The A_UAV approaches the cluster to establish
a connection and relay the data to the base station (BS).

4.5.1 Crowd Density

In our system, the crowd density at each PoI is unknown to the inspection UAVs
(I_UAV s) in advance. To estimate the crowd density, each I_UAV keeps track of the
average number of people observed at each PoI up to the current point in time. Using
this information, the average crowd density of each PoI can be computed. Our goal is to
optimize the data transmission frequency of the I_UAV s from the locations where crucial
information, such as the number of people at a PoI, is available. This optimization aims to
enhance the efficiency of data transmission by focusing on areas with valuable information
related to crowd density. By simulating these scenarios, we aim to demonstrate the
effectiveness of our proposed decentralized solution for optimizing trajectory planning and
data collection for the I_UAV s and A_UAV . The simulation parameters are listed in
Table 4.1

4.5.2 Baselines:

For comparison, we considered three baseline approaches as follows: greedy and random
policy.

• Maximal AoI First (MaxAF): In AoI-based greedy policy, the I_UAV will always
pick the PoI with maximum AoI to collect the data. Similarly, A_UAV will pick
the I_UAV with maximum average access latency.

• Minimum Distance First (MinDF): In the distance-based greedy policy, both
A_UAV and I_UAV s will optimize the battery consumption during the transition.
As a result, I_UAV s will always schedule the nearest PoI to collect the data, whereas
A_UAV will schedule the nearest I_UAV s to collect the data collected from its
respective cluster.

• PSO: The Particle Swarm Optimization (PSO)[54] is a metaheuristic approach in
which I_UAV s and A_UAV find the best location in each time slot. In PSO each
particle represents a candidate solution. During each iteration, particles adjust their
positions based on their own best solution and the best solution found by the entire
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Table 4.1: List of Simulation Parameters

Parameters Values
Channel Bandwidth 1 MHz

Battery capacity of I_UAV 250 kJ
Battery capacity of A_UAV 700 kJ

κ 1
Noise Power -100 dBm

Velocity of A_UAV 50 m/s
Velocity of I_UAV 30 m/s

The path-loss constant g0 10−4

The path loss exponent θ 2 to 4
Mass of small I_UAV s 5 Kg

Mass of A_UAV 9.65 Kg
Replay Memory Buffer( Zui , Zaccess) 10000

Mini-batch size 64
DDPG Actor learning rate(LR_A_ddpg) 0.00011
DDPG Critic learning rate(LR_C_ddpg) 0.00022

Optimizer method Adam
Reward discount 0.001

Learning Rate of DQN 0.00011
A2C Actor learning rate (LR_A_a2c) 0.000035
A2C Critic learning rate (LR_C_a2c ) 0.00002

swarm. By dynamically adapting their positions, particles collectively explore the
search space in search of an optimal solution as defined in Algorithm ??.

4.6 Results

In this section, we discuss the detailed analysis of our proposed DRL-based approaches
comparing their performance with baseline approaches. To confirm the advantage of
DRL-based trajectory scheduling across various metrics, such as cumulative reward,
average crowd density, average number of timesteps per episode, average AoI of data
at A_UAV , and average access latency of PoI for I_UAV , a comparison of training
results for 1000 episodes is conducted.
To ensure a robust evaluation, the test results are presented for the same scenarios across
50 episodes. This rigorous examination aims to provide a thorough understanding of the
performance gains achieved by our DRL-based trajectory scheduling approach in contrast
to the baseline methods. The results are presented for multiple iterations. In the Particle
Swarm Optimization (PSO) algorithm, we utilize a swarm consisting of 1000 particles for
each UAV agent, including both the Access UAVs (A_UAV s) and the Inspection UAVs
(I_UAV s), with each particle having 50 dimensions. The velocity constraints for the
particles are set to ensure controlled movement during the optimization process. For
the A_UAV s, the velocity components are limited to the range of [-10, 10] units. In
contrast, for the I_UAV s, the velocity components are constrained within the range of
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Figure 4.2: Average Access Latency of I_UAV s during Train

Figure 4.3: Average Access latency of I_UAV during Testing

[-3, 3] units. These parameter values are selected to strike a balance between exploration
and exploitation, allowing the particles to efficiently navigate the solution space without
excessive oscillations or divergence. This setup aids in optimizing the trajectory planning
and data collection tasks performed by the UAVs, ensuring both effectiveness and efficiency
in the operations.

4.6.1 Energy Efficiency of System

The chart depicted in 4.4 provides an overview of the total number of timeslots utilized
by each approach in an episode. Initially, all approaches exhibit a relatively shorter
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Figure 4.4: Timesteps of Different Approaches during Train

Figure 4.5: Timesteps of Different Approaches during Testing

duration of activity. However, as experience accumulates, both DDPG and A2C extend
their operational time, indicating a learned optimization in battery usage. Conversely, the
baseline methods PSO and MaxAF display suboptimal performance in this aspect. The
MinDF approach, on the other hand, sustains a longer duration, consistently optimizing
battery usage by minimizing travel in each time step.

In the testing scenario (as illustrated in the 4.5), a parallel behavior is observed. Both
DDPG and A2C demonstrate prolonged field presence compared to PSO, DDQN, and
MaxAF. Notably, the baseline approach MaxAF exhibits the highest battery consumption
due to its consideration of the maximum AoI.
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Figure 4.6: Average AoI of A_UAV during Train

Figure 4.7: Average AoI of A_UAV during Testing

4.6.2 Analysis of Average AoI of A_UAV

The 4.6 illustrates the average AoI of data at the A_UAV for the proposed approaches and
baseline methods. Notably, the MaxAF baseline approach exhibits the lowest average AoI,
as it prioritizes the consideration of maximum AoI when selecting the I_UAV for data
collection. However, this comes at the cost of the A_UAV traveling without considering
battery constraints, leading to maximum energy consumption. However, more energy
consumption leads to early termination of the episode.
Conversely, the MinDF baseline approach yields the highest average AoI since the A_UAV
consistently selects the nearest I_UAV for service without considering the AoI-based
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Figure 4.8: Average Crowd Density at I_UAV during Train

constraint, resulting in the maximum average AoI. The methods relying on DDQN, A2C
and PSO exhibit superior performance compared to the baseline approaches; however,
they do not reach the level achieved by DDPG.
In contrast, our proposed approaches, both based on DDPG and A2C, have successfully
optimized the AoI, showcasing improved performance in this aspect. In the testing phase,
it could be inferred from the 4.7.

4.6.3 Analysis of Average Access Latency of I_UAV s

The 4.2 presents the average access latency of the I_UAV s for both the proposed
approaches and baseline methods. It can be observed that the baseline approach MaxAF
maintains the minimum AoI while selecting the PoIs with the highest AoI to collect data.
Similarly MinDF, the baseline approach consumes the least energy as the I_UAV s always
selects the nearest PoI to serve. Conversely, our proposed approaches, employing DDPG,
A2C, and PSO, outperform the baselines in terms of optimizing access latency at the
I_UAV s level, all while addressing additional objectives. The DDQN approach, while
slightly on the higher side, still outperforms MinDF From the testing results in 4.3, it is
evident that the average access latency achieved by the DDPG-based approach is lower
than that of other techniques. Notably, MinDF and MaxAF serve as the upper and lower
bounds, respectively, in this evaluation.

4.6.4 Analysis of Average Crowd Density

The Figure 4.8 provides insights into the average crowd density observed in the trajectories
of I_UAV s for both the proposed approaches and baseline methods. The MaxAF baseline
approach maintains crowd density by covering all points based on the Age of Information
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Figure 4.9: Average Crowd Density at I_UAV during Testing

(AoI) constraint. Conversely, the MinDF baseline approach, while achieving lower energy
consumption, may neglect points with higher crowd density as I_UAV s consistently opt
for the nearest Points of Interest (PoI) and in the Figure 4.9, it could be observed, that
this approach remains constant across the episode. In contrast, our proposed approaches,
both based on DDPG and A2C, demonstrate superior performance in optimizing crowd
density at the I_UAV s level, in addition to addressing other objectives. For the Average
crowd density metric, DDQN is not stabilizing and the PSO technique is not performing
as required. The testing results, as depicted in Figure 4.9, highlight the improved
performance of the DDPG-based approach compared to other algorithms.

4.6.5 Reward Analysis

The Figure 4.10 and Figure 4.11 depicts the cumulative reward obtained by A_UAV s
and I_UAV respectively. Notably, the cumulative reward of over 1000 episodes is highest
for DDPG, followed by A2C and PSO. This suggests that DDPG outperforms both A2C
and PSO in terms of learning and optimizing energy utilization and other objectives, as
evident from figures Figure 4.4 and Figure 4.5.
For detailed simulation parameters, including optimal learning rates for all DRL-based
strategies, please refer to Table 4.1.

4.7 Chapter Summary

This chapter presents a learning based approach on managing a hierarchical multi-UAV
network in infrastructure-deficient environments using a Markov Decision Process (MDP)
framework. It highlights the deployment of advanced Reinforcement Learning algorithms
viz. Deep Deterministic Policy Gradient (DDPG), Advantage Actor-Critic (A2C), and
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Figure 4.10: Reward of A_UAV

Figure 4.11: Reward of I_UAV

Double Deep Q-Network (DDQN) to optimize the objectives such as energy efficiency and
the Age of Information (AoI). The I_UAV s operate in a decentralized manner, focusing
on reducing access latency and energy consumption while prioritizing the coverage of
high-crowd-density areas. The effectiveness of the proposed approach is demonstrated by
comparing its performance against the traditional heuristic and metaheuristic approaches.
The results show that DDPG and A2C algorithms perform better on various metrics as
compared to the baselines.
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5| Conclusions and Avenues for Future
Research

5.1 Conclusion

In conclusion, the comprehensive research conducted in this thesis presents a detailed
study of multiple unmanned aerial vehicle (UAV) solutions for various applications such
as surveillance, target tracking, large area monitoring and others. The research highlights
the applicability of deploying hierarchical multi-UAV solutions cover larger aspects of the
problem particularly in enhancing the coverage and providing a comprehensive view of
the targeted area However, multi-UAV-based applications bring forth the challenge of
multi-UAV coordination. In other words, the complexity of coordinating them to work
together effectively in achieving the system objective pose a challenge. This interaction
among multiple UAVs could be based on optimizing multiple objectives in the system
subject to different system constraints.
In our work, we have explored the multi-UAV coordination for achieving system objectives
subject to different constraints in an infrastructure-deficient environment without a
centralized controller.
In our first study, we addressed the optimization of multiple objectives such as energy,
access latency, and queue backlog of the system. Our work introduced a heterogeneous
multi-UAV framework that employs distance and latency-aware trajectory optimization
for efficient data collection and offloading. The application of the Lyapunov optimization
approach ensured system stability, adeptly managing system queue backlogs. The
proposed methods have demonstrated superior performance in reducing access latency
compared to other baseline strategies. Moreover, the analysis of the system trade off
parameter V has highlighted a balance between queue stability and system utility. Further
a detailed examination of the energy consumption has been provided for different UAV
models. In this work, there is no central entity which communictaes A_UAV about
the current locations of I_UAV s so we have devised a strategy to estimate the set of
candidate locations of I_UAV s. Hence, we have devised a strategy to estimate the set of
candidates loactions of I_UAV s. We have thus designed a baseline based on heuristics,
such as greedy and Round-Robin scheduling. The total operational time of A_UAV has
increased for both proposed approaches (HDLAT and DLAT) that signifies optimal use
of battery. Similarly, the average access latency of A_UAV is reduced substantially for
HDLAT, compared to greedy approach (DAT). The number of PoIs covered for HDLAT
is 3.5 times of Round Robin and for DLAT the number of locations increased by 3 times
of Round Robin baseline.
In our second work, we have established a decentralized multi-UAV framework based on
Deep Reinforcement Learning principles, utilizing Deep Deterministic Policy Gradients
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(DDPG) and Advantage Actor-Critic (A2C) methods. This framework excels in
minimizing access latency and the AoI while optimizing system energy. In this work, we
have designed the trajectory scheduling of both I_UAV s and A_UAV independently.
The MDP formulation is such that the system doesn’t need a centralized controller.
Our simulation results validate that our proposed approach outperforms various baseline
strategies, especially in terms of minimizing latency and AoI. From the results, it could
be deduced the DDPG and A2C are performing better than the baselines in both training
and testing environments.

5.2 Future work

Looking ahead, the potential to enhance UAV trajectory optimization in a multi-UAV
network, particularly in an infrastructure-sufficient environment, is substantial. The
primary areas for potential improvements include:

• Collaborative Trajectory Scheduling: Focusing on Multi Agent Deep Deterministic
Policy Gradients (MADDPG) shows promise for jointly optimizing the trajectory
scheduling of different UAV groups. This approach enhances the coordination and
efficiency of their flight paths [55].

• Simplifying Complex Goals with Hierarchical RL: Hierarchical RL can be used to
break down the complex goals of the UAV system into smaller, more manageable
tasks. By focusing on these sub-goals in an ordered, step-by-step manner, the system
can handle objectives more efficiently[56].

• Integrating Collision Avoidance Mechanisms: Adding another constraint to avoid
obstacles, ensuring safer operations in crowded or complex environments. This
involves creating algorithms that help UAVs detect and navigate around obstacles
safely.

• Reward Function Refinement: In RL-based solutions, the reward function is key to
achieving system objectives. Improving this function might include incorporating
specific knowledge relevant to the domain or application, or using dynamic reward
strategies to adapt to changing conditions[57].

• Adding more number of A_UAV : Introducing more A_UAV s can provide insights
into energy optimization and the collective impact of multiple UAVs on the overall
system. As the number of A_UAV s grows, coordinating their actions becomes
increasingly important.

• Generating Real World Dataset: Creating and utilizing real-world data to evaluate
the performance of these algorithms could confirm the effectiveness of the proposed
strategies. The real-world data can offer essential insights into the actual operation
of UAVs in real-life situations, helping us understand how they perform outside of
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simulated environments. Performance evaluation on real-world datasets not only
enhances the reliability of multi-UAV system but also ensures that the UAVs are
prepared for the complexities and nuances of real-world applications.
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